GEOLOGICAL, GEOCHEMICAL AND TRENCHING REPORT ON THE BISMARK PROPERTY

SLOCAN MINING DIVISION, B.C. NTS: 082F/14E LATITUDE 49⁰55'N LONGITUDE 117⁰04'E

for

CREAM MINERALS LTD. 1610 - 777 DUNSMUIR ST. VANCOUVER, B.C. V7Y 1K5

by

LINDA DANDY, P.Geo. Consulting Geologist

January 9, 1998

GEOLOGICAL SUBJEV DRANCH ASSESSMENTES SOLUCIE

SUMMARY

The Bismark silver-lead-zinc property is located near the town of Kaslo in southern British Columbia. The property has complex shear-breccia-replacement mineralization in a large roof pendant of Slocan Group metasediments within the Nelson Batholith. Past production (1896 - 1970) along a strike length of nine kilometres has been in excess of 210,000 tons of silver ore grading between 100 and 5000 g/t silver plus significant lead and zinc values.

This report presents the results of geological and geochemical surveys, followed by excavator trenching and rock chip sampling conducted from July to October 1997, throughout the Bismark claims held by Cream Minerals Ltd. Historically, mineralization in this area exhibits very high grade silver, lead and zinc values as confirmed by the rock sampling program. Sub-parallel mineralized shear zones occur along the length of the property and average several metres in width. These zones are readily identifiable by geological mapping and geochemical sampling. A program of detailed geological, surface geophysical and geochemical surveys to locate the most promising structures and grades of the shear-breccia-replacement zones, followed by diamond or reverse circulation rotary drilling is warranted.

TABLE OF CONTENTS

SUMMARY	page 1
1) INTRODUCTION	5
2) LOCATION AND ACCESS	5
3) PHYSIOGRAPHY	8
4) HISTORY	8
5) CLAIM INFORMATION	12
6) REGIONAL GEOLOGY	15
7) PROPERTY AND ECONOMIC GEOLOGY	1 7
8) TRENCHING AND CHIP SAMPLING	31
9) GEOCHEMISTRY 9A) ROCK SAMPLES 9B) SOIL SAMPLES 9C) SILT AND HMC SAMPLES	53 53 53 55
10) CONCLUSIONS	57
REFERENCES	58
COST STATEMENT	59
QUALIFICATIONS	61
APPENDICES	62

:

.....

TABLES AND FIGURES

TABLE I - CLAIM INFORMATION	13
TABLE II - ROCK SAMPLE RESULTS	27
TABLE III - TRENCH CHIP SAMPLE RESULTS	36
FIGURE 1 - LOCATION MAP	6
FIGURE 2 - CLAIM MAP	pocket
FIGURE 3 - REGIONAL GEOLOGY MAP	16
FIGURE 4 - CORK/PROVINCE/DUBLIN GEOLOGY, GEOCHEMISTRY AND TRENCH	
LOCATION MAP	pocket
FIGURE 5 - UPPER BEN HUR GEOLOGY AND GEOCHEMISTRY MAP	pocket
FIGURE 6 - BISMARK/GOLD CURE GEOLOGY, ROCK SAMPLE AND TRENCH LOCATION MAP	pocket
FIGURE 7 - BISMARK NO.1 LEVEL GEOLOGY MAP	20
FIGURE 8 - GIBSON/HARTFORD GEOLOGY, GEOCHEMIST AND TRENCH LOCATION MAP	[RY pocket
FIGURE 9 - CONNECTION SAMPLE LOCATION MAP	pocket
FIGURE 10 - SILVER BEAR GEOLOGY, ROCK SAMPLE AND TRENCH LOCATION MAP	pocket
FIGURE 11 - INDEX/METROPOLITAN GEOLOGY AND GEOCHEMISTRY MAP	pocket
FIGURE 12 - GEOLOGY MAP TRENCH 97-1	39
FIGURE 13 - GEOLOGY MAP TRENCH 97-2	40
FIGURE 14 - GEOLOGY MAP TRENCH 97-3	41

TABLES AND FIGURES (continued)

FIGURE 15A & B - GEOLOGY MAP TRENCH 97-5	42
FIGURE 16 - GEOLOGY MAP TRENCH 97-7	44
FIGURE 17 - GEOLOGY MAP TRENCH 97-8	45
FIGURE 18A - LOCATION MAP TRENCHES 97-9 & 10	46
FIGURE 18B - GEOLOGY MAP TRENCH 97-9	47
FIGURE 18C - GEOLOGY MAP TRENCH 97-10	48
FIGURE 19 - GEOLOGY MAP TRENCH 97-11	49
FIGURE 20 - GEOLOGY MAP TRENCH 97-12	50
FIGURE 21 - GEOLOGY MAP TRENCH 97-13	51
FIGURE 22 - GEOLOGY MAP TRENCH 97-14	52
FIGURE 23 - SILT AND HMC SAMPLE LOCATION MAP	pocket

P & L Geological Services, RR#1, Telkwa, B.C., V0J 2X0 Ph: 250-846-9242

4

1) INTRODUCTION

The Bismark Property is a silver-lead-zinc prospect located 12 kilometres west of Kaslo in southern British Columbia. The property was acquired by Cream Minerals Ltd. from vendors Jack and Eric Denny in late 1996.

The Bismark Property lies within a roof pendant of Slocan Series sedimentary and metasedimentary rocks within the Nelson Batholith. A series of small past producing mines lie along a series of subparallel shear-breccia-replacement zones. Most notable of these historical showings is the Cork-Province Mine, while smaller workings on the property include the Dublin, Bismark, Gold Cure, Gibson, Hartford, Connection, Silver Bear, Index and Metropolitan. All of these showings include one or more small adits and numerous surface cuts which were worked sporadically from 1896 to 1970.

This report covers rock and soil sampling, and geological mapping conducted throughout the property from July to October, 1997. An excavator was utilized to dig trenches in favourable geological areas in order to assist with chip sampling. The purpose of this sampling project was to determine the width, grade and continuity of the mineralized shear-replacement structures.

Work was carried out by a four person crew working out of the town of Kaslo. Field work was supervised by the author.

2) LOCATION AND ACCESS

The Bismark Property is located along Keen Creek, 12 kilometres west of Kaslo in the Slocan Mining Division of southern British Columbia (Figure 1). The claims cover an area of approximately 20 square kilometres and are centred at latitude 49°55'N and longitude 117°04'E, all within NTS mapsheet 82F/14.

Access to the property is via Highway 31A for 7 kilometres west from Kaslo, then 6.5 kilometres southwest along Keen Creek Road to the property boundary. The property lies along and to the southeast of the Keen Creek Road for approximately 9.5 kilometres. New logging roads and numerous old mining roads and trails, some of which are heavily overgrown, bisect the property.

CORK/PROVINCE

The Cork/Province mine lies adjacent to the Keen Creek Road at kilometre 8. The millsite, waste dump and tailings are located on the northwest side of the road, while the main adit (No.3) is on the southeast side of the road. The Cork No.2 adit is about 150 metres southeast of the main road along a network of old mining roads, and the Province No.1 adit is along nearby Ben Hur Creek.

5

<u>DUBLIN</u>

The Dublin workings are located along an old mining road which runs parallel to and about 250 metres uphill from the Keen Creek Road. This road leaves the Keen Creek Road near the Cork/Province mine site and goes southwest for 800 metres to the Dublin adit.

UPPER BEN HUR CREEK

Upper Ben Hur Creek is accessed by logging roads which leave the Keen Creek Road at the Cork/Province mine site (kilometre 8). This logging road switches back and crosses Ben Hur Creek twice before reaching its conclusion in a logged cut at kilometre 4.

BISMARK

The Bismark workings are accessed by a steep, narrow mining road which leaves a spur of the Ben Hur logging road 100 metres above the Keen Creek Road. The Bismark road leaves this spur road at kilometre 1.0 and heads southeast and switches back through the Briggs Creek valley for 2.6 kilometres to a small cabin (Bismark Cabin). From the cabin an overgrown road switches back to the north for a few hundred metres to access the Bismark workings.

GOLD CURE

Access to the Gold Cure workings follows the Bismark access road to the Bismark cabin. From the Bismark Cabin the road crosses Briggs Creek and switches back to the southwest for two kilometres to the ridge hosting the Gold Cure workings.

GIBSON

The Gibson workings are located on the northeast side of Klawala Creek. The Gibson access road leaves the Keen Creek road at kilometre 12 and switches back through the Klawala Creek valley for two kilometres to the Gibson workings.

HARTFORD

The Marsh Tunnel on the Hartford claim is accessed via cut line and old mining trails which leave the Gibson access road at its termination adjacent to the old Hartford cabin. The trail travels southeasterly for 300 metres to the Marsh Tunnel.

SILVER BEAR

A new logging road, criss-crossed by a series of old mining roads, leaves the Keen Creek Road at kilometre 14, near Kyawats Creek, and provides access across the Silver Bear claim. Logging and mining roads run adjacent to four of the adits: the No. 1, No.2, South Old Tunnel and North Old Tunnel. The main Keen Creek road passes the lowest working, the No. 3 adit.

CONNECTION

The connection workings lie on the north side of Kyawats Creek and are accessed via an overgrown mining road which branches off the new logging road running past the Silver Bear workings. This overgrown road crosses Kyawats creek 300 metres east of the Silver

Bear workings and then switches back to run sub-parallel to the creek for 400 metres. The workings are located about 50 metres northeast of this old road.

INDEX

The Index workings are located adjacent to Desmond Creek. The old mining access road leaves the Keen Creek road at kilometre 16 and switches back to the southeast for 800 metres to the workings. This road then switches back again and continues on to join up with the Silver Bear workings 700 metres to the northeast.

METROPOLITAN

The Metropolitan workings are accessed via trail which heads east leaving the Index/Silver Bear road near its mid point. This trail is approximately 400 metres long and switches back and climbs steeply. A new logging road which passes through the Silver Bear workings now ends about 100 metres to the north of the Metropolitan adit.

3) PHYSIOGRAPHY

The Bismark Property is located in an area of rugged mountainous terrain. Topography on the property is steep with elevations ranging from 1050 metres along the Keen Creek valley to 2200 metres on the Gold Cure ridge.

The Keen Creek valley runs along the northwest boundary of the property, with numerous tributaries crossing the property and emptying into Keen Creek. The major tributaries, from northeast to southwest are Ben Hur, Briggs, Klawala, Kyawats and Desmond Creeks.

Much of the claim area is covered with second growth forest consisting of hemlock, cedar, fir and occasional pine. Thick growths of alder and devil's club are found along many of the creeks.

4) HISTORY

The Bismark property consists of a number of small mines which were originally discovered and worked near the turn of the century for high grade silver ores during the heyday of the Slocan Mining Camp. Intermittent exploration, development and production took place at various locations on the property since that time, notably in the 1920s and 1950s. See Figure 2 for locations of the deposits discussed below.

CORK/PROVINCE

The Cork Group was consolidated in 1900 and by 1904 considerable development work, including the No.3 (or main haulage) crosscut had been completed. The adjoining Province Group was being operated independently at this time and a promising ore-body had been developed on the eastern extension of the Cork lode. From 1906 to 1913, the

8

two mines continued to be worked independently, but by agreement, the Province mine used the lower main access and mill of the Cork mine. The Cork and Province were consolidated in 1914, and development work renewed the following year. The development work up to 1920 did not produce satisfactory results, and the mine shut down. Operations were renewed in 1922, with a shaft sunk to explore lower levels where it was proved that the ore-bodies maintained their grade. From 1922 until 1935, production was mainly from the lower No.4 level. During the period 1950 to 1953, an internal shaft was deepened from No.6 to No.8 level and the continuation on dip of one section of the vein was explored. Most of the millfeed was mined from above No.6 level; the oreshoot below No.6 level was not stoped. From 1964 to 1966 the mine was worked mainly on No.7 and No.8 levels where ore which had been blocked out earlier was extracted.

Production commenced in 1903 and shipments were made up to 1909 inclusive, during which 16,000 tons of ore were mined at an average grade of 110 to140 g/t silver and 5% lead. The next period of production extended from 1913 to 1919 during which time over 24,000 tons were shipped averaging about 85 g/t silver and 4% lead. In 1918 and 1919 the shipments also contained 52,000 kilograms of zinc. Production resumed in 1923, and up to the end of 1926, included nearly 18,000 tons carrying between 110 to 140 g/t silver, over 5% lead and 2.5% zinc. During 1929, the Cork-Province mill treated nearly 6,000 tons containing net recovered metals as follows: gold 255 grams (0.04 g/t); silver over 567,000 grams (94.5 g/t); lead nearly 188,000 kilograms (3.5%); and zinc over 235,000 kilograms (4.3%). Total reported production of the Cork Mine is listed at 210,996 tons of .009 g/t gold, 70.3 g/t silver, 3.05% lead and 4.72% zinc.

More recently, programs were conducted on the Cork-Province claims by Arctex Engineering Ltd. in 1979 and 1992. In 1979, a program of surface prospecting, soil sampling and geological mapping was conducted on the property. In 1992, the main mine haulage access (No.3 crosscut adit) was reopened and geologically mapped and rock sampled.

There is presently neither machinery nor buildings on the property. The main haulage adit had been backfilled, but could be reopened with a back-hoe.

DUBLIN

The Dublin lode outcrops on the Dublin claim and is located 580 metres south and 275 metres vertically above the main adit of the Cork-Province mine. A shaft and crosscut located 60 metres below the surface outcropping, have opened up the lode with short drifts in either direction. These workings are credited with small production in early days.

Several surface cuts and three diamond drill sites are located southeast of the Dublin adit and likely date back to exploration in the 1950s although no documentation has been found to confirm this.

UPPER BEN HUR CREEK

During the course of prospecting to the northeast along the mineralizing trend which hosts the Gibson, Gold Cure and Bismark workings, several very old caved pits and workings were found in the upper Ben Hur Creek area. No historical data has been located with reference to these workings.

More recently, in 1983, soil and silt sampling surveys were undertaken in this area. One silt sample located near the above mentioned trend returned very high silver (37.2 ppm) and zinc (3100 ppm) results. The soil sampling results returned anomalous silver and zinc values up slope from the silt sample location.

BISMARK

The first recorded mention of the Bismark property was in 1898, but it came into some prominence in 1900 when three adits were driven. The property was worked at a small scale every year until 1910. Total production from 1898 to 1910 is recorded in Minister of Mines Annual Reports at 957 tons grading 2353 g/t silver and 5% lead, and in Zinc and Lead Deposits in Canada at 1063 tons grading 2863 g/t silver and 15% lead.

The property was idle from 1910 to 1928 when Consolidated Mining and Smelting Company (Cominco) optioned it, but dropped the option in fall of the same year. In 1951, the road to the Bismark property was upgraded in anticipation of the following season's work, which was not done.

The property then remained dormant until 1980 when the road was again upgraded. In 1982, the property had a preliminary evaluation by Greenwich Resources Inc. which included collecting 3 rock samples from the old workings. These samples gave average values of 598 g/t silver and 22% zinc. In 1984, geological mapping and a small program of soil sampling and VLF-Em surveying was conducted.

GOLD CURE

Very little historical information is available on the Gold Cure group. Records show that the claims were being worked, and ore was being shipped by 1898. In 1909, the only recorded shipment from this property was made, and was reported to be 20 tons of ore grading 2835 g/t silver and 50% lead. Development work in several adits and open cuts continued on these claims from 1917 to 1924. In 1950 and 1951 plans were made to diamond drill the property, but no further mention of this work was found.

More recently, in 1982, a reconnaissance soil and rock sampling program was conducted by Greenwich Resources Inc. on the Gold Cure group. Results of this work showed an average grade for rock samples of 490 g/t silver, 2.9% lead and 1.7% zinc. Soil sampling was demonstrated to be an effective exploration tool and was continued in 1983, accompanied by geological mapping and VLF-Em surveying. Seven diamond drill holes were put in to test the mineralized trend on the Gold Cure group in 1986 and returned mixed results.

GIBSON

Historical production from the Gibson workings from 1895 to 1935 is reported to be 676 tons grading 0.06 g/t gold, 482 g/t silver, 16% lead and 8% zinc. From 1895 to 1919 and 1923 to 1929, small scale development and production continued on the Gibson property. In 1926 and 1927, a two kilometre long tram line was put in from the workings to the Keen Creek road. In 1935, 1946, 1957 and 1967 small development or exploration programs were conducted on the property. The Gibson area has never been consistently worked as the property has been in litigation over ownership since 1919.

A property evaluation undertaken in 1957 blocked out 10,000 tons of ore grading 173 g/t silver, 6.0% lead and 8.3% zinc. No work, except road upgrading has been done on the Gibson property since 1957.

HARTFORD

The old Hartford workings consist of two caved adits covering a vertical distance of about 100 metres. The more southerly adit, known as the Marsh Tunnel, has a waste dump which exhibits galena, sphalerite and pyrite mineralization. No historical development or shipment records for the Hartford workings are available.

In 1984, Greenwich Resources Inc. did preliminary soil and rock sampling and a small VLF-Em survey on the Hartford claim. This work was followed up by more detailed soil sampling in 1987 by Strand Resources.

SILVER BEAR

Historical production (1919 to 1952) on the Silver Bear claim is recorded as 508 tonnes yielding 710,621 grams silver (or 1418 g/t), 9827 kilograms lead (or 2.15%), 8496 kilograms zinc (or 1.85%), and 85 grams gold. The first recorded work on the Silver Bear claim was in 1897, when two original cross-cuts were installed and three zones of high grade silver (>5000 g/t) were reported. Work on the property continued intermittently for the next 50 years, with total development in five tunnels equaling about 1200 metres of crosscutting, drifting and raising, together with numerous surface cuts to develop the two (three?) parallel veins. All underground workings are inaccessible at the present time.

Recent work on the Silver Bear claim consists of soil sampling and VLF-Em surveys done by Greenwich Resources in 1984 and by St. James Minerals Ltd. in 1985. An Induced Polarization survey in 1987 was followed up with a single diamond drill hole by Strand Resources Inc. in 1988.

In July 1997, Cream Minerals Ltd. diamond drilled three holes in the vicinity of the Silver Bear workings to test geochemical and geophysical anomalies defined by earlier work done by Strand Resources Inc. Bad ground conditions did not allow the drill holes to reach target depths.

CONNECTION

No historical data is available on the Connection area, with the exception of a reported property visit which may or may not refer to this area. A 1920 Munition Resources

Commission Report on a visit to the Index Mine, discussed a property visited afterwards that is believed to be the Connection ground. The author states that he took two samples of intrusive rocks which returned gold and platinum values.

In 1987, Strand Resources Inc. did a soil sampling survey in the Connection area. They did not test the soils for gold or platinum. A number of caved adits and old cuts were located during the course of the soil survey.

INDEX

The Index workings lie on both sides of the Keen Creek Road and comprise three adits aggregating about 400 metres of lineal work. The first reported work on the Index property was in 1905 when a small amount of development was done. The mine was worked annually until 1909, with increased production from 1915 to 1920 at which time most of the ore had been stoped out of the upper levels and development work was underway at depth. The property appears to have been idle until 1948 when it was restaked. In 1949, surface trenching was done, and six tons of 30 year old stockpiled ore was shipped, returning 779.6 g/t silver, 17.0% lead and 26.4% zinc. Incomplete production records for the Index mine state that 17 tons of ore was shipped from 1909 to 1949, grading 1814.4 g/t silver, 51% lead and 9% zinc. Minor development work was again done in 1951 followed by a small ore shipment in 1957. In 1967 to 1972, road building, trenching, geophysics and limited diamond drilling was done on the property.

METROPOLITAN

Very little historical information is available on the Metropolitan workings, which appear to have been worked in conjunction with the Index Mine as they lie on the same claim. In 1911, a reference to considerable development at the Metropolitan is reported. Cairnes (1935) states that the Metropolitan workings lies 300 metres above the road, and include two adits of unknown length. No shipment records for the Metropolitan have been found.

5) CLAIM INFORMATION

The Bismark Property is located within the Slocan Mining Division and consists of 7 modified grid, 10 crown grants, 8 reverted crown grants and 24 2-post claims to total 141 units (Figure 2). Claim information is listed in Table I.

CLAIM INFORMATION

Claim Name	<u>Status</u>	Units	Record No.	Anniversary Date
Bismark	Crown Grant	1	L11273	-
Bismark 1	Modified Grid	20	255714	February 26
Bismark 2	Modified Grid	6	256203	March 25
Bismark FR	Two Post	1	266993	September 28
Broughton	Reverted C.G	1	255499	February 3
Broughton 1	Two Post	1	256397	September 21
Broughton 2	Two Post	1	256398	September 21
Broughton 3	Two Post	1	256399	September 21
Broughton 4	Two Post	1	256400	September 21
Butte	Crown Grant	1	L12410	
Charlie 1	Modified Grid	9	360498	November 9
Charlie 2	Modified Grid	20	360501	November 11
Charlie 3	Modified Grid	20	360502	November 11
Charlie 4	Two Post	1	360499	November 12
Connection	Modified Grid	8	256188	February 11
Connection Fr	Two Post	1	256189	February 11
Cork	Two Post	1	350252	November 9
Cork 1	Two Post	1	350252	September 2
Cork 2	Two Post	1	350251	September 2
Cork 3	Two Post	1	360505	November 12
Cork 4	Two Post	1	360506	November 12
Cork 5	Two Post	. 1	360507	November 12
Cork 6	Two Post	1	360508	November 12
Cork 7	Two Post	1	360509	November 12
Cork 8	Two Post	1	360510	November 12
Crown Point	Reverted C.G.	1	255460	January 18
Dublin	Two Post	1	255805	November 10
Francis	Crown Grant	1	L14365	
Full Rig	Reverted C.G.	1	255456	December 6
Gold Cure	Reverted C.G.	1	255454	December 6
Gold Cure Fr	Reverted C.G.	1	255455	December 6
Hartford	Reverted C.G.	1	255584	March 2
Highland Laddie	Crown Grant	1	L11275	
Ida	Crown Grant	1	L14368	
Index 1	Two Post	1	356677	June 16
Index 2	Two Post	1	356678	June 16
Index 3	Two Post	1	360500	November 9
Jennie	Crown Grant	1	L14366	
Manhattan	Two Post	1	318936	July 12
Mountain Goat	Crown Grant	1	L11274	-

1

Ì

ĩ

Oxide	Crown Grant	1	L14367	
Province	Two Post	1	328205	July 18
Province 1	Modified Grid	16	351863	October 18
Silver Bear	Reverted C.G.	1	255498	February 3
Silver Bear 1	Two Post	1	255995	October 17
Silver Bear 2	Two Post	1	255996	October 17
Spokane	Crown Grant	1	L14369	
Susquehanna	Reverted C.G.	1	255585	March 2
Wintrop	Crown Grant	1	L12409	

14

6) REGIONAL GEOLOGY

The Bismark Property is underlain by Triassic Slocan Group sedimentary and metasedimentary rocks. These rocks have been folded into a steeply dipping synclinal wedge bounded on the north and south by Cretaceous Nelson Batholith intrusive rocks. Faulting, shearing and metasomatism accompanied intrusive activities and are directly related to the formation of vein, breccia and replacement deposits of silver-lead-zinc (Figure 3).

The Slocan Group consists primarily of argillites, limestones, quartzites and minor schists. Sedimentary strata generally strike 035° to 050° and dip steeply to the northwest or southeast, with common local variations. Argillites are fine-grained, thinly bedded, well indurated and have a slatey cleavage. Carbonate content in the argillites increases at or near the contact with limestone units. Iron oxide staining is common in some areas and minor limestone concretions and inclusions are prevalent. Limestone units are fine-grained, grey on weathered surfaces, white on fresh surfaces and may host iron oxide stained pods of argillite. Quartzites are normally grey, fine-grained, well indurated rocks that are rarely found in areas of sulphide mineralization. Schistose phyllites are found throughout the Bismark property and may be of significance in locating new mineral deposits. The schistose phyllite is considered a metasomatized or metamorphosed argillite and may contain minor amounts of andalusite schist.

The Nelson Batholith is comprised of Cretaceous granitic intrusives which flank Slocan Group rocks to the northwest and southeast. Dykes of aplitic and granitic composition intrude and intersect the Slocan Group on the Bismark Property. Field relationships are unclear, but, it is assumed that these intrusive units are "late stage" events that have little or no bearing on the emplacement of silver-bearing sulphide mineralization.

Lamprophyre dykes of mafic to ultramafic composition containing hornblende, biotite and pyroxene may be associated with the Nelson Batholith intrusives. On exposure, this unit weathers into loose, coarse granular products.

Structurally, the Slocan Group roof pendant which has been folded into a doubly plunging syncline. Old mine workings appear to be near or on the axial plane indicating a major structural control on sulphide localization. Old literature often cites the presence of a "crushed zone" within argillite units where silver-bearing mineralization is present and may reflect on faulting and shearing events.

7) PROPERTY AND ECONOMIC GEOLOGY

Geology and mineralization of the deposits summarized below has been compiled from Cairnes (1934, 1935), Report of the Zinc Commission (1906) and various government assessment and unpublished company reports listed in the references at the end of this report.

CORK/PROVINCE

The workings of the Cork-Province mine lie entirely within Slocan Group sediments. The contact with the Nelson batholith lies 300 metres to the north of the mine on the opposite side of Keen Creek. This contact plunges south and probably underlies the Cork-Province group at no great depth and the sediments in the vicinity of the mine are considerably metamorphosed. The strata tend to dip away from the batholithic contact, thereby assuming a position almost at right angles to the general north-westerly trend. Their strike here varies from 055° to 090° , dipping south from 50° to 90° , averaging 75° . The sediments include a large proportion of argillites, mostly characterized by a lesser or greater proportion of andalusite and commonly referred to as andalusite schists. Interbedded with these are some quartiztic beds and a number of crystalline limestone and other beds notably limy in composition. At the intersection of these limestones and limy strata by the main lode, the principal ore bodies have been developed.

The ore-bodies of the Cork-Province mine have been formed along a well-defined lode, designated as the "main vein", striking about 050° and dipping southeast at an average angle of 65° . This lode is a fault-fissure zone cutting obliquely across sedimentary beds of the Slocan series. The ore-bodies in each case have their most pronounced development where this lode intersects beds of crystalline limestone or other notably limy strata. The lode follows the course of a fault and, consequently, the limestone beds are displaced, the hangingwall section of the lode being offset, relatively to the footwall, about 25 metres to the west. The apparent displacement varies somewhat from one limestone bed to another, due to complications set up by numerous other faults of minor throw which angle across or run parallel with the main lode.

The shape of the ore-bodies and extent of ore deposition appear also to have been influenced by cross-fracturing running mostly in an east direction. These cross-fractures run either from wall to wall of the main lode or connect this lode with nearly faults. They have both directed and facilitated the upward course of ore-bearing solutions originating from the neighbouring batholithic intrusives. Where these solutions have come in contact with limestone or other limy strata they have effected an important replacement of these rocks for distances in places as great as 30 metres or more from the wall of the main lode, the distance being largely determined by the extent of cross-fracturing involving the limy beds.

Ore at the Cork-Province mine consists of an intimate mixture of sphalerite and galena with minor proportions of pyrite and chalcopyrite in a gangue composed largely of siderite but including varying amounts of quartz and calcite associated with altered wall rock.

1997 geological mapping of road cuts in the Cork-Province area is shown on Figure 4. Outcrops tend to be argillaceous andalusite or mica schists and occasional limestone. Bedding/foliation strikes generally east-west, and dips vertically or steeply to the south. Feldspar porphyritic intrusives outcrop along the Dublin road, and meta-intrusive in the form of biotite gneiss (with abundant pyrite and pyrrhotite) occur where the mineralizing structure crosses the main Ben Hur logging road.

Seven rock chip samples (labelled CPR0+39.5E to 0+56E) were collected from the rusty outcroppings of biotite gneiss along the Ben Hur logging road. The best grades obtained was from a 2 metre chip sample is 3.0 g/t silver and 0.25% copper. Rock grab samples were collected from the Province No.1 adit dump (PRO-1 and 2), from the Cork No.2 adit dump (CORK-2) and from two stoped areas (CORK-3 and PRO-3). All of these samples had high grade silver, lead and zinc values ranging from 124.5 to 677.8 g/t Ag, 0.80 to 29.54% Pb and 5.43 to 27.46% Zn. Gold values for these same samples range up to 0.71 g/t Au.

DUBLIN

Geologically, the Dublin mineralization appears to be similar to that found in the Cork-Province area. Shear-veins of siderite with varying amounts of galena and sphalerite can be seen in surface cuts and underground workings. These veins, which are 0.5 to 1.0 metre in width, strike 060° and dip steeply to the south.

Seven rock grab/chip samples were collected from the Dublin workings in 1997 (Figure 4). DUB-1 to 3 are 40 to 50 centimetre chip samples collected from the main shear in the underground workings. No fresh sulphide mineralization was visible in these samples, however the sheared and brecciated rock is extremely rusty and contains abundant carbonate. Assays from these samples ranged from 10.7 to 55.1 g/t silver, up to 1.19% lead and up to 0.36% zinc. DUB-4 to 6 are chip samples collected from an open cut where an one metre siderite/sphalerite vein is visible. Sample DUB-5 was taken from this vein and DUB-4 and DUB-6 were taken from the footwall and hangingwall respectively. Sample DUB-5 ran 77.3 g/t silver, 2.11% lead and 4.48% zinc, while only traces of mineralization was obtained from the wallrock samples. Sample DUB-7 was taken from a second open cut located about 200 metres from the above described cut, and was a chip sample collected from a pyrite/pyrrhotite rich felsic dyke. See Table II for rock sample descriptions and results, and see the Appendix for Assay Certificates.

UPPER BEN HUR CREEK

Figure 5 shows geology and sample locations in the upper Ben Hur Creek logging road cuts. Rock types are argillite to quartzite, often metamorphosed to andalusite or mica schists, and minor interbeds of limestone. Bedding/foliation generally strikes between 035° to 090° and dips moderate to steep in either direction. This indicates a series of synclines and anticlines in the meta-sediments probably caused by nearby Nelson batholith intrusives. Small outcroppings of granodiorite are visible near the centre of the map sheet and a few felsic and mafic intrusive dykes can be seen toward the south end of the area.

At the southern terminus of the Ben Hur logging road, some very old pits and caved workings are visible near the top of the cut block and for a few hundred metres into the forest following a 135^o trend. This trend of workings lines up with those to the southwest such as the Bismark, Gold Cure, Gibson, etc., and are believed to represent the northeastern extension of the mineralized zone. Additional work is required in this area to determine the significance of these workings.

Only one rock sample was collected in the Upper Ben Hur Creek area in 1997. Sample BH-1 was taken from andalusite schist hosted bull quartz veins, and no significant assay results were returned.

BISMARK

The Bismark workings lie mostly within a belt of interbanded argillites and limestone beds or otherwise limy strata of the Slocan series which is flanked and intruded by granitic rocks of the Nelson batholith. The sediments strike 055°, dip 70° to the northwest, and are intruded by a few dykes. The ore-bodies are formed partly by replacement of one or more limestone beds outcropping in the vicinity of the workings.

The workings comprise three adits over a vertical range of about 120 metres. They develop a lode that conforms nearly with the enclosing sediments, though in places it appears to strike more to the west. Early reports and mine maps indicate that a shoot of oxidized lead ore, some 10 metres long, exposed at the surface and encountered near the portal of the uppermost adit, persisted in chimney shaped form to the No.2 level 35 metres below; and is probably an extension of the same shoot as was encountered near the face of No.3 level at an additional depth of 70 metres; and at this lowest level the vein matter had a width of 60 centimetres.

At the surface, the lode is 1.2 metres wide and is of zinc carbonates with bunches of galena, a little quartz and pyrite and considerable oxidized material. The ore from the two upper levels is principally lead and zinc carbonates, with considerable iron oxide and quartz. The lead carbonates average from 6 to 10% lead and 3825 g/t silver, while the zinc carbonate ore has run up as high as 15% zinc, but is usually considerably lower. The lowest level shows a narrow, but well defined and high grade streak of sphalerite and galena. This shoot appears to be different in character from anything found in the upper levels of the mine.

During the 1997 field program the lowest (No.3) Bismark adit was mapped and a few rock chip and grab samples were collected. Figure 6 shows the Bismark surface workings and Figure 7 is a map of the underground workings. Figure 6 shows quartzite, argillite and limestone interlayers in the vicinity of the Bismark workings. Beddings tend to strike 070° and dip steeply toward the north. Figure 7 shows similar geology and bedding orientations in the underground workings. Numerous shears and faults are visible and tend to be related to ore emplacement, especially at the far end of the main drift, and along the cross-drift.

ţ

Two rock chip samples (BM-1 and 2) were collected underground from a 60 centimetre wide brecciated vein and returned values of 2134.5 and 2323.5 g/t silver, 0.27 and 0.23% lead and 26.36 and 31.25% zinc. Samples BM-3 to BM-6 are grab samples collected from dump piles on surface and graded from 483.3 to 5695.5 g/t silver, from 0.04 to 2.80% lead and from 3.29 to 30.23% zinc. A series of three metre rock chip samples (BI97-1 0-3 to BI97-1 12-15) were collected from outcrop adjacent to the lowest (No.3) adit, where it is believe the mineralizing structure comes to surface. The best result from these chip samples is sample BI97-1 6-9 which contained 5.6 g/t silver over three metres. See Table II for rock sample results and descriptions and Appendix for Certificates of Analyses and Assays.

GOLD CURE

There are no available historical descriptions of the mineralization encountered in several adits on the Gold Cure group. The general nature of waste material on the adit dumps is similar to much material in the Bismark dumps.

Mineralization is predominately pyrite with sphalerite and minor galena. Gangue minerals are quartz and calcite. The "vein" shows evidence of brecciation and exhibits replacement type ore textures. The original replacement of sulphide mineralization appears to have been along a plane of weakness paralleling the bedding and lithologic layering. The plane of weakness is now a shear zone near the comformable contact between the argillaceous rocks and the recrystallized coarse limestone of the Slocan series. Evidence to date indicates that the mineralizing event occurred during the late stages of intrusion and hydrothermal events of the Nelson batholith.

Figure 6 shows geological mapping undertaken in 1997 along road cuts on the Gold Cure group. Rock types mapped include quartzite, mica and andalusite schists, graphitic argillite and ridge forming limestone. Bedding/foliation orientations are generally 045^o, dipping steeply to the northwest, except immediately southwest of the Bismark cabin, where syncline and anticline structures affect the dips. In the vicinity of the Gold Cure workings, black graphitic shears which parallel bedding/foliation orientations are visible. The contact with the underlying Nelson batholith was mapped in the extreme south of the map area.

Rock samples GC-2 to GC-5 were collected from waste dumps at the No.1 to No.4 Gold Cure adits. These samples ranged in values from 1025.9 to 2467.5 g/t silver, 4.79 to 14.58% lead and 3.12 to 5.36% zinc. Samples GC-6 to 8 were chip samples taken across a poorly exposed outcrop of mineralized vein material located near the No.8 adit, and samples GC-7 and GC-8 (representing a true width of 65 centimetres) ran 153.7 and 175.6 g/t silver, 0.06 and 0.08% lead and 8.38 and 8.18% zinc respectively. Samples GC-1 and GC-9, collected from quartz rich materials in old workings, returned low values.

Samples 97CURE-1 to 3 were chip samples, of rusty pyrite and pyrrhotite rich quartzitic units, collected along the Gold Cure access road. These samples gave results up to 7.4 g/t silver, 0.05% lead and 0.16% zinc.

<u>GIBSON</u>

The Gibson workings lie in a belt of Slocan sediments about 600 metres wide and striking northeasterly. The belt of sediments is intruded on both sides by granitic rocks of the Nelson batholith. In the vicinity of the mine workings abundant limestones and other calcareous rocks are interlayered with argillaceous and quartzitic beds, some of which are quite carbonaceous. The average dip is about 75° to the northwest.

Nine adits have explored two nearly parallel lodes, known as the "A" and "B" lodes. These lodes are about 90 metres apart and conform very nearly with the strike and dip of the enclosing rocks. A third, or "C" vein is reported to outcrop about 75 metres southeast of the "B" vein, but it was not located. The "A" lode is a mineralized, sheared and brecciated zone over a metre wide, filled with broken rock and carrying in places disseminated sphalerite, galena, and pyrite associated with siderite and a little quartz. The "B" lode's average width is less than that of the "A" lode. This ore contains galena in solid cubes and bands, or mixed galena and sphalerite with pyrite and a little chalcopyrite in a gangue of siderite and partly replaced wallrock. The walls show much slickensiding and carbonaceous matter.

In general, mineralization seems to be largely a replacement of the wall rocks and is more pronounced where the rocks are most calcareous. The mineralization is mainly pyrite, sphalerite and coarse and fine grained galena. Cerrusite, siderite and non-sulphide zinc were noted particularly in the upper workings.

Figure 8 shows the location of the Gibson No.1 to No.9 and L adits, and the approximate surface trace of the "A" and "B" lodes. Historically, it was thought that the Gibson workings lie within a steeply dipping syncline of sediments. Additional geological mapping in this area is required in order to do a structural interpretation.

In 1997, samples were collected from waste dumps at the No.1 to No.7 and "L" adits (see Figure 8). These samples contain high grade sphalerite, galena and pyrite in a quartz-carbonate gangue (see Table II for results). Assays from the No.1 to No.7 dumps (samples WIN#1 to WIN#7) returned values averaging 931.7 g/t silver, 14.71% lead, 10.30% zinc and 0.43 g/t gold. In the vicinity of the No.3 adit, chip samples were collected from the footwall (sample WIN#3-1) and across rusty sediments and quartz-galena vein material in an open cut (samples WIN#3CUT-1 to 5). The footwall rocks contained only traces of mineralization, while the open cut material ran up to 600.3 g/t silver, 1.71% lead and 0.78% zinc over 85 centimetres.

HARTFORD

The old Hartford workings consist of two caved adits covering a vertical distance of about 100 metres. The underground workings appear to be located at or near the axial plane of the synclinally folded roof pendant of Slocan metasediments, indicating a major structural control on sulphide mineralization and localization. The country rocks are argillaceous and calcareous members of the Slocan series. Sulphide mineralization (as seen in old

dumps) consists of galena, sphalerite and pyrite occurring as irregular replacements in silicified shear zones within altered limestones.

In 1997, one sample was collected from Marsh Tunnel waste dump material located on the Hartford claim. Sample HART-1 returned values of 545.2 g/t silver, 0.44% lead, 2.49% zinc and 0.77 g/t gold. A second working (caved adit?) located 100 metres north of the Marsh Tunnel showed outcroppings of rusty pyritic argiilite/quartzite. No economic mineralization was seen.

SILVER BEAR

The Silver Bear workings comprise six adits covering a vertical distance of 1220 metres. Most of the development work has been carried out at the northern end of the Silver Bear reverted crown grant L1781 which developed an ore zone to a depth of 100 metres. All of the workings are inaccessible at this time.

These workings lie along a sheared and fissured mineralized zone situated toward the middle of a belt of Slocan sediments having a width, on this claim, of between 450 to 600 metres. The belt has a general northeasterly trend and the strata composing it have the same general strike. The sediments comprise interbedded limy and quartzitic argillites, limey quartzites, and some beds of nearly pure limestone. The belt of sediments is flanked by granitic intrusives of the Nelson Batholith, chiefly coarse grained porphyritic granite which, near the sedimentary contacts is less porphyrytic and somewhat more basic than elsewhere. The sediments tend to dip away from the granitic contacts, so that the general structure of the belt is synclinal. This structure is, however, complicated by much faulting and shearing.

The lode system on the property has a general northeasterly strike, dips southeast at about 65°, and has been traced by underground and surface workings over a length of about 300 metres. As indicated by the workings there are two principal lodes that are nearly parallel and are separated by an interval of 25 metres or so of comparatively massive rock. The lodes are zones of strong shearing and fissuring with each varying from less than 30 centimetres to several metres in width, and are composed of broken and crushed rock plus ore and gangue minerals. Most of the work has been done on the more westerly or "footwall" lode. The ore in the upper workings lay against a heavy seam of gouge on the hanging-wall side of the lode and consists of broken bodies of quartz with some calcite, siderite, and ore minerals. The latter include galena, sphalerite, pyrite and one or more silver bearing minerals (including native silver). The more easterly or "hanging-wall" lode is similar in type to the "foot-wall" lode.

In 1997, geological mapping of road cuts in the Silver Bear area is shown, with rock sample locations, on Figure 10. This area is underlain by massive to banded, often schistose quartzite and argillite, with occasional limestone interlayers. Fine grained pyrite and pyrrhotite is often present in more quartzitic sections. Bedding/foliations generally strike about 060° and dip moderately to the south. The main mineralizing feature is a 25 metre wide shear zone trending across the area at 040° . Numerous normal fault offsets

affect this sheared mineralization, with offset distances of up to 75 metres. Mineralization along this sheared zone consists of pods and bands containing galena or sphalerite within gougy graphite, oxide, clay and talc.

Grab rock samples containing sphalerite, galena and pyrite were collected from many of the waste dump piles of the old Silver Bear workings. Grab samples SB-1, 2, 5, 7, 8, 17, 30-32 returned values ranging from trace to 4536.5 g/t silver, 15.59% lead, and 15.55% zinc. The remainder of the rock samples collected at Silver Bear are chip samples taken whenever possible from outcrop exposed in old caved trenches. These samples generally did not represent examples of good mineralization, but rather tend to represent footwall or hangingwall rocks. Assay values from chip samples ranged up to 92.0 g/t silver and 1.32% zinc over one metre and 147.1 g/t silver over 90 centimetres.

Chip samples B140-146.2 (6.2 metres), B146.2-B148 (1.8 metres) and B148-B153 (5 metres) were collected from a new logging road cut, which obliquely bisects the Silver Bear mineralized shear zone. These samples are of graphitic and oxidized shear gouge containing pods and bands of galena and sphalerite. Sample results from these three chip samples are 3.9, 2171.4 and 26.0 g/t silver, 0.05, 9.08 and 0.13% lead, and 0.11, 1.39 and 0.25% zinc respectively. Grab sample B175 was collected 25 metres farther along the road cut and ran 2361.8 g/t silver, 10.43% lead and 14.26% zinc. This road cut area was later re-opened by excavator as Trench TR97-11 during the trenching phase of this year's field work (see Section 8 of this report).

Samples B60-62 (2 metres), B275-285 (10 metres), B285-290 (5 metres), B305-308 (3 metres), and B308-310 (2 metres) are chip samples collected at the corresponding meterages on the new Silver Bear logging road cut. Sample B60-62 was taken from black graphitic gouge and ran 8.4 g/t silver and 0.13% zinc and sample B308-310, taken from a shear zone, returned 13.3 g/t silver and 0.15% lead. These zones likely represent mineralized shear structures running parallel to the main Silver Bear zone.

CONNECTION

In the 1920 Munition Resources Commission Report, after a visit to the Index Mine the author headed toward the Connection area and reported:

"...we returned down the wagon road about 1 mile to a point where a rockslide from a mountain lying to the south reaches the road.

The rock fragments forming this slide consist of various phases of the local granodiorite, and range from those containing mainly blackish-green ferromagnesian silicates to angular fedspathic fragments of a white to pinkish colour and a dense structure resembling quartzite.

...the last mentioned type of rock was material that had been sent to be assayed and which was reported to contain a trace of platinum. On examination of the rock I found that it contained specks and small masses of a hard, dark coloured mineral which appeared to be almost free from weathering effects, more so than

the rock itself. Two samples of the light coloured rock containing the dark mineral were taken and returned 1.13 and 1.70 g/t gold and 2.27 and 1.42 g/t platinum."

During the 1997 field season, two rock samples were collected from a granodiorite bearing rock slide adjacent to the Keen Creek Road. One sample (PT-1) was from the granodiorite which contained minor fine grained pyrite, and the other (PT-2) was from a fine grained felsic phase of the intrusive which contained small dark hard magnetite crystals. Neither of these samples contained any mineralization of significance.

Figure 9 shows the Connection area workings and rock sample locations. Five grab and chip samples (CON-1 to 5) were collected from the area of the old workings. All samples were analyzed for platinum and palladium in addition to gold, silver and multi-element ICP. The best results from these samples is 23.0 g/t silver in CON-1, none of the other samples returned any significant results. The numerous workings (i.e. eight caved adits and several open cuts) could not be explained by the results of this program.

INDEX

The southeastern contact of a belt of Slocan sediments with coarse grained granitic intrusives of the Nelson batholith passes through the Index property. The sediments consist of limey and quartzitic argillites, most of which are considerably fractured and sheared, and are cut by several dykes and sills of feldspar porphyry. They strike from 005° to 040° , and dip 70° to the southwest. The narrow body of sediments lies parallel to the valley bottom and is bounded on both sides by granitic intrusives of the Nelson batholith. Minor folds and shears have occurred with the intrusion. The long axis of shearing is responsible for mineralization which occurs in a strong 3 to 9 metre wide shear zone.

Fissure veins and replacements occur in folded meta-sedimentary rocks near the granitic rocks. The upper two adits explore a mineralized crushed zone striking about 125^o and dipping steeply but irregularly to the southwest or occasionally northeast. The lode is composed of chiefly crushed rock, but carries pockets and narrow veins, consisting mainly of quartz, although containing some siderite and calcite and variable proportions of galena, sphalerite and pyrite. A crushed zone exposed on surface carries narrow veins of quartz, galena, sphalerite and pyrite.

Figure 11 shows mapping done in 1997 on road cuts in the Index area, which confirms the historical geology reported above. No detailed mapping was done in the vicinity of the workings.

Two grab rock samples were collected from waste dump material at the intermediate (or No.2) adit. These samples, INDEX-1 and 2, were collected from sphalerite, galena, pyrite and quartz rich rocks. Assays returned were 35.3 and 158.1 g/t silver, 0.8 and 4.38% lead, 0.1 and 10.53% zinc, and 0.41 and 1.47 g/t gold.

METROPOLITAN

Figure 11 shows the location of the Metropolitan workings. Historical records indicate the presence of two adits, however only one caved adit and several very old open cuts were located. The workings are located along the contact of a narrow roof pendant of Slocan sediment and granodiorite of the Nelson batholith. This contact trends approximately 030° in the Metropolitan area.

Two grab rock samples were collected in 1997. Sample MET-1 was taken from waste dump material beside the caved adit and was comprised of carbonate-rich breccia with minor galena and returned 51.9 g/t silver, 0.5% lead and 0.2% zinc. Sample MET-2 was taken from a granodiorite outcrop which showed small specks of a dark coloured mineral. This sample was analyzed for platinum and palladium, as well as the usual suite. Assay results from MET-2 returned 4.9 g/t silver, but no other values of any significance.

DISCUSSION

All of the above described showings and old mines tend to lie along mineralized shear structures which trend northeasterly, either parallel to or obliquely crossing metasedimentary bedding. Geology and geochemistry indicate that many of these showings may lie on the same structures.

The Cork, Province, Dublin (and adjacent Black Fox) workings lie along a series of shear zones in the Keen Creek valley. These shears have been explored for a strike of about 1.5 kilometres, and are open in both directions and at depth.

The Upper Ben Hur workings, Bismark, Gold Cure, Gibson, Hartford, Connection, Silver Bear and Index mines line up along a series of one to three or more parallel shear zones located sub-parallel to and about 1.2 kilometres southeast of those hosting the Cork, Province and Dublin workings. This zone strikes northeasterly and trends for about 7 kilometres. This shear zone is open to the north and at depth, but trends into Kokanee Glacier Park on the south where exploration is not permitted.

A third band of mineralization is located subparallel to the above mentioned shears and about 300 metres southeast of the Connection-Silver Bear-Index area. This zone trends along the contact with the Slocan sedimentary rocks and Nelson batholith granodiorites. The BNA and Silver Bell (not located on Cream Minerals Ltd.'s ground) and the Metropolitan line up along this belt which is about 1.5 kilometres long. This shear zone is open to the north, but trends into Kokanee Glacier Park on the south where exploration is not permitted. Depth potential for this zone may be limited due to the extent of the underlying granodiorites.

Mineralization could be found anywhere along these sub-parallel shear zones, but historically has primarily been located at higher elevations where outcrop exposure is good. In valley bottoms, very little exploration work has been done due to problems with overburden. In all, a total of over 9 kilometres of mineralized trends exist on Cream Minerals Ltd.'s property to be further explored.

ROCK SAMPLE RESULTS

SAMPLE #	LOCATION	DESCRIPTION	Ag (g/t)	Pb (%)	Zn (%)
CORK#2	CORK	grab-ZnS,PbS,FeS2,qtz	231.1	9.44	5.43
CORK#3	CORK	grab-PbS,ZnS,seds	24.5	0.80	17.80
PRO-1	CORK/PROVINCE	grab-massive PbS	6 77 .8	29.54	5.68
PRO-2	CORK/PROVINCE	grab-massive ZnS1	170.8	2.26	22.43
PRO-3	CORK/PROVINCE	grab-FeS ₂ ,ZnS,PbS	343.7	8.35	27.46
CPR0+39-					
0+41.5E	CORK/PROVINCE	2m chip-rusty shear	0.5	<0.01	0.02
0+43E	CORK/PROVINCE	1.5m chip-rusty shear	0.3	<0.01	0.01
CPR0+44-					
0+46E	CORK/PROVINCE	2m chip-rusty shear	0.8	<0.01	0.01
0+48E	CORK/PROVINCE	2m chip-rusty shear	3.0	<0.01	0.01
CPR0+50-		1 5			
0+52E	CORK/PROVINCE	2m chip-rusty shear	<0.3	<0.01	0.01
CPR0+52- 0+54E	CORK/PROVINCE	2m chip-rusty shear	<0.3	<0.01	0.01
CPR0+54-					
0+56E	CORK/PROVINCE	2m chip-rusty shear	<0.3	<0.01	0.01
BH-1	CORK/BENHUR	grab-qtz veins	0.6	<0.01	<0.01
DUB-1	CORK/DUBLIN	50cm chip-qtz/cb shear	14.9	0.10	0.07
DUB-2	CORK/DUBLIN	50cm chip-clay/cb shear	10.7	0.12	0.16
DUB-3	CORK/DUBLIN	40cm chip-qtz/cb shear	55.1	1.19	0.36
DUB-4	CORK/DUBLIN	50cm chip-felsic dyke/qtz	0.3	0.03	0.26
DUB-5	CORK/DUBLIN	120cm chip-ZnS/PbS/FeCO	3 77.3	2.11	4.48
DUB-6	CORK/DUBLIN	65cm chip-rusty, schisty sec	ls 0.6	0.01	0.25
DUB-7	CORK/DUBLIN	grab-felsic dyke, pyrite	6.8	0.11	0.15
BM-1	BISMARK	60cm chip-shear,rusty,qtz-o	cb,		
		minor PbS,ZnS	2134.5	0.27	26.36
BM-2	BISMARK	grab-same as BM-1	2323.5	0.23	31.25
BM-3	BISMARK	grab-seds,minor PbS/ZnS	814.6	1.67	5.91
BM-4	BISMARK	grab-PbCO3,ZnCO3	1723.2	2.80	7.99
BM-5	BISMARK	grab-PbCO ₃ ,ZnCO ₃	5695.5	2.36	30.23

ROCK SAMPLE RESULTS

SAMPLE #	LOCATION	DESCRIPTION	Ag	Pb	Zn
			<u>(g/t)</u>	(%)	(%)
BM-6	BISMARK	grab-FeS ₂ ,PbS,ZnS	483.3	0.04	3.29
BI97-1 0-3	BISMARK	3m chip-rusty seds	<0.3	<0.01	0.01
BI97-1 3-6	BISMARK	3m chip-rusty seds	4.6	<0.01	0.01
BI97-1 6-9	BISMARK	3m chip-rusty seds	5.6	0.01	0.03
BI97-1 9-12	BISMARK	3m chip-rusty seds	<0.3	<0.01	0.01
BI97-1 12-15	BISMARK	3m chip-rusty seds	<0.3	<0.01	0.01
GC-1	GOLD CURE	grab-qtz,FeOx	0.3	<0.01	<0.01
GC-2	GOLD CURE	grab-brxx qtz/cb,PbS,ZnS	1025.9	14.58	3.12
GC-3	GOLD CURE	grab-brxx qtz,FeS ₂ ,PbS	2467.5	6.41	4.80
GC-4	GOLD CURE	grab-qtz,FeS ₂ ,PbS,ZnS	1264.6	5.01	3.93
GC-5	GOLD CURE	grab-qtz,FeS ₂ ,ZnS,PbS	2017.9	4.79	5.36
GC-6	GOLD CURE	250cm chip-gouge,FeOx	7.5	0.04	0.15
GC-7	GOLD CURE	35cm chip-qtz,ZnS,PbS	153.7	0.06	8.38
GC-8	GOLD CURE	30cm chip-seds,FeOx,goug	ge 175.6	0.08	8.18
GC-9	GOLD CURE	grab-qtz,FeOx,gouge	4.5	0.01	0.03
86-2 105-107	GOLD CURE	old core-gouge	1.5	0.01	0.02
86-4 176-183	GOLD CURE	old core-gouge	1.1	0.01	0.01
86-7 98-100.5	GOLD CURE	old core-gouge	0.3	<0.01	0.01
97CURE-1	GOLD CURE	50cm chip-qtzite,FeOx,FeS	S ₂ 7.4	0.05	0.19
97CURE-2	GOLD CURE	3m chip-qtzite,FeOx,FeS ₂	2.4	<0.01	0.06
97CURE-3	GOLD CURE	grab-dyke,FeOx	0.4	<0.01	<0.01
WIN#1	GIBSON	grab-ZnS,PbS,FeS ₂ ,qtz	320.5	15.76	5.31
WIN#2	GIBSON	grab-ZnS,minor PbS,FeS ₂	188.3	0.10	6.21
WIN#3	GIBSON	grab-ZnS,PbS,FeS ₂	2264.3	10.14	10.45
WIN#4	GIBSON	grab-ZnS,PbS,FeS ₂	552.1	24.69	14.00
WIN#5	GIBSON	grab-ZnS,minor PbS,FeS ₂	446.8	5.06	15.78
WIN#6	GIBSON	grab-ZnS,PbS,FeS ₂	507.6	14.09	5.69
WIN#7	GIBSON	grab-ZnS,PbS,FeS ₂	2232.6	33.13	14.65
WIN X	GIBSON	1m chip-chalcedonic qtz	0.4	<0.01	0.01
WIN#3-1	GIBSON	5m chip-seds,py/po	3.4	0.03	0.05
WIN#3CUT-1	I GIBSON	60cm chip-qtz,arg,rusty	73.6	0.13	0.06
WIN#3CUT-2	2 GIBSON	150cm chip-seds	7.2	0.10	0.10
WIN#3CUT-3	B GIBSON	40cm chip-qtz,PbS,gouge	277.6	1.40	0.06
WIN#3CUT-4	4 GIBSON	220cm chip-seds	20.1	0.20	0.07
WIN#3CUT-5	5 GIBSON	85cm chip-rusty seds	600.3	1.71	0.78
L ADIT	GIBSON	grab-gouge, seds, FeS ₂	2.1	0.01	0.01

ROCK SAMPLE RESULTS

SAMPLE #	LOCATION	DESCRIPTION	Ag	Pb	Zn
			<u>(8/1)</u> _	(70)	
HARTI	HARTFORD	grab-FeS ₂ ,minor PbS/ZnS	545.2	0.44	2.49
CON-1	CONNECTION	grab-qtz	23.0	0.01	0.07
CON-2	CONNECTION	grab-siliceous sed po	7.2	0.01	0.04
CON-3	CONNECTION	grab-quartzite	3.8	<0.01	0.01
CON-4	CONNECTION	grab-qtz,limonite	0.7	<0.01	0.01
CON-5	CONNECTION	120cm chip,qtzite,FeOx,pc	< 0.3	<0.01	0.01
PT-1	CONNECTION/PT	grab-felsic dyke, qtz, mag	1.4	0.03	0.08
PT-2	CONNECTION/PT	grab-diorite, FeS ₂	0.3	0.01	0.02
		-			
SB-1	SILVER BEAR	grab-ZnS,FeOx,qtz	29.1	0.13	2.15
SB-2	SILVER BEAR	grab-qtz,FeOx,ZnS,chl	3481.2	0.14	3.25
SB-3	SILVER BEAR	130cm chip-gouge,qtz	10.0	0.02	0.16
SB-4	SILVER BEAR	100cm chip-gouge,qtz	20.0	0.02	0.14
SB-5	SILVER BEAR	grab-ZnS,PbS,qtz,FeOx	68.1	0.48	15.55
SB-6	SILVER BEAR	100cm chip-seds,ZnS,PbS	92.0	0.01	1.32
SB-7	SILVER BEAR	grab-PbS,ZnS,CuFeS ₂	4536.5	15.59	6.20
SB-8	SILVER BEAR	grab-ZnS,PbS	291.6	0.07	11.50
SB-9	SILVER BEAR	160cm chip-rusty metased	0.3	0.01	0.04
SB-10	SILVER BEAR	105cm chip-metaseds	0.7	0.01	0.04
SB-11	SILVER BEAR	75cm chip-seds,FeOx	2.1	0.01	0.10
SB-12	SILVER BEAR	160cm chip-rusty metased	0.3	<0.01	0.03
SB-13	SILVER BEAR	120cm chip-metased, PbS, 2	2nS 0.3	<0.01	0.04
SB-14	SILVER BEAR	105cm chip-metased, PbS, 2	2nS 0.3	<0.01	0.03
SB-15	SILVER BEAR	90cm chip-ZnS,PbS,metas	ed 1.7	0.04	0.09
SB-16	SILVER BEAR	105cm chip-rusty metased	<0.3	<0.01	0.02
SB-17	SILVER BEAR	grab-qtz,ZnS,FeS ₂ ,PbS	105.9	0.32	4.74
SB-30	SILVER BEAR	grab-qtz/cb,po,minor PbS	1.5	0.01	0.02
SB-31	SILVER BEAR	grab-cb,minor ZnS,PbS	36.4	0.16	0.37
SB-32	SILVER BEAR	grab-qtz,FeS ₂	<0.3	<0.01	<0.01
TR-SB-2	SILVER BEAR	60cm chip-seds	2.7	0.01	0.10
TR-SB-3	SILVER BEAR	90cm chip-gouge,ZnS	147.1	0.01	0.04
TR-SB-4	SILVER BEAR	80cm chip-gouge, seds, qtz	29.3	0.02	0.13
TR-SB-5	SILVER BEAR	90cm chip-seds,qtz,gouge	5.0	<0.01	0.07
B60-62	SILVER BEAR	2m chip-graphitic gouge	8.4	0.03	0.13
B140-146.2	SILVER BEAR	6.2m chip-shear/gouge	3.3	0.05	0.11
B146.2-148	SILVER BEAR	1.8m chip-shear/gouge	2171.4	9.08	1.39
B148-153	SILVER BEAR	5m chip-shear/gouge	26.0	0.13	0.25
B175	SILVER BEAR	grab-shear/gouge,PbS	2361.8	10.43	14.26

ROCK SAMPLE RESULTS

SAMPLE #	LOCATION	DESCRIPTION	Ag	Pb	Zn
·	<u> </u>		<u> (g/t) </u>	(%)	(%)
B275-285	SILVER BEAR	10m chip-shear/gouge	2.0	< 0.01	0.07
B285-290	SILVER BEAR	5m chip-shear/gouge	2.0	0.01	0.07
B305-308	SILVER BEAR	3m chip-shear/gouge	1.8	<0.01	0.02
B308-310	SILVER BEAR	2m chip-shear/gouge	13.3	0.15	0.07
INDEX-1	INDEX	grab-qtz,FeS ₂ ,PbS	35.3	0.85	0.08
INDEX-2	INDEX	grab-FeS ₂ ,PbS	158.1	4.38	10,53
MET-1	METROPOLITAN	grab-cb,PbS,minor FeS2	51.9	0.46	0.23
MET-2	METROPOLITAN	grab-granite	4.9	0.02	0.01

8) TRENCHING AND CHIP SAMPLING

Once preliminary prospecting, grab and chip sampling and geological mapping were completed on the Bismark Property, an excavator trenching program was implemented. A total of 13 trenches reached bedrock, and several did not. Figures 4, 6, 8 and 10 show the locations of these trenches, and Figures 12 to 22 are detailed trench maps.

CORK

Two trenches were excavated in the Cork mine area (Figure 4). Trench T97-7 was put in over the crown pillar of the old Cork mine workings (Figure 16). This trench intersected four metres of semi-massive pyrite, sphalerite and galena mineralization hosted within interbedded siliceous argillite and andalusite schist. The mineralization was soft, sheared and gougy for two metres and was hard and resistive for an additional two metres. Rock chip sample results for this four metre section averaged 30.7 g/t silver, 1.27% lead and 1.08% zinc. The surface trace of the main shear zone mined at Cork is located 15 metres west of this intersection and it is believed that this zone represents a secondary parallel zone to the main mine orebody. Deep overburden and groundwater problems did not make bedrock exposure possible at the main target area.

Trench T97-8 is located 200 metres to the southwest of T97-7 and about 100 metres southwest of the main Cork mine crosscut. This trench intersected bedrock from 4 to 18 metres, and semi-massive sulphide mineralization from 6 to 15 metres (Figure 17). The mineralization in this trench is variable, ranging from blue clay gouge with galena, to iron oxide with galena and sphalerite, to hard, resistive, massive galena and sphalerite, to banded galena and sphalerite in limestone. The apparent hangingwall rocks are micaceous argillites and andalusite schist, and the footwall is comprised of bleached, soft sericite schist. A large granitic boulder obscured the hangingwall contact and part of the mineralized section. Rock chip samples were collected at two metre intervals where possible, and the average over the mineralized exposure is 136.7 g/t silver, 3.45% lead and 6.47% zinc over 9 metres or a true width of about 6.5 metres.

BISMARK

Several trenches were excavated downslope of the lowest Bismark adit (Figure 6). None of these trenches intersected bedrock, due to deep slide and talus rocks in the area. An old trench was re-opened in the Briggs Creek valley, near the Bismark cabin (T97-6). This trench was not located along the trend of the mineralizing shear which runs between the Bismark and Gold Cure workings, and did not intersect mineralization. One rock chip sample was taken of rusty argillite/quartzite rock, but did not return any significant results.

GOLD CURE

Five trenches (T97-1 to 5) were excavated on the Gold Cure claims (Figure 6). Trench T97-4 did not intersect bedrock. Trench T97-2 was located in the footwall of the shear zone, and showed extremely sheared rock, but only traces of mineralization (Figure 13). Trench T97-3 was dug across a secondary structure to the west of the main shear zone and intersected 20 centimetres of graphitic shear material, but returned no significant

assays (Figure 14). Trench T97-1 and T97-5 were excavated across the main mineralizing shear structure.

Trench T97-1 was excavated near the Gold Cure ridge, several hundred metres above the Gibson workings, at an elevation of 2130 metres. This trench intersected a 19 metre wide gougy and graphitic shear zone (from 0 to 19 metres) within blocky quartz-mica schist. From 5.8 to 12.8 metres this shear zone becomes entirely graphitic, with minor iron oxide and quartz-carbonate veining (Figure 12). At 14.1 metres a narrow quartz veinlet contains abundant galena. Average assay grades over 20 metres hosting the shear zone are 106.1 g/t silver, 0.26% lead and 0.35% zinc, while values over an 8 metre section from 8 to 16 metres are 260.4 g/t silver, 0.64% lead and 0.71% zinc. These sections are believed to represent true widths. Fresh sulphide mineralization, as is visible in many waste dump piles in this vicinity, was not seen in the trench, indicating surface weathering is likely occurring. It is believed that sulphide mineralization will increase with depth.

Trench T97-5 is located along a road cut about 300 metres northeast of T97-1, and intersected very similar shearing and mineralization to that in T97-1 (Figures 15A and 15B). The main shear zone is located from 1.5 to 14 metres and consists of very soft, clay altered, graphitic and rusty banded material, with the strongest shearing from 8 to 11 metres of intensely graphitic and oxidized material containing quartz fragments. The orientation of the shearing appears to strike 040° and dip vertically. Blocky and broken quartzite/argillite hosts the sheared material. Secondary smaller shears are visible around 30 and 34 metres in this trench, and are very soft, rusty and graphitic. Average assay results for the shear zone from 2 to 14 metres is 46.5 g/t silver, 0.04% lead and 0.14% zinc, while the stronger shearing from 6 to 12 metres ran 91.1 g/t silver, 0.08% lead and 0.23% zinc. Again, surface weathering is likely the cause of less sulphide mineralization being present than is noted on waste dumps nearby.

GIBSON

Figure 8 shows the location of excavator trenches at the Gibson workings. Two trenches were dug near the No.2 adit but did not hit bedrock. Trenches T97-9 and T97-10 are located between the No.3 crosscut adit and the No. 5 adit. A single trench was planned to cross the surface trace of the "A" and "B" lodes in this area, but unstable ground made it necessary to put in two trenches instead of one (Figure 18A).

Trench T97-9 intersected a 20 centimetre galena rich quartz vein, at 4.5 to 4.7 metres, which ran 288.4 g/t silver and 0.25% lead (Figure 18B). This is likely part of the "A" lode mineralization. A surface cut located uphill and along strike of this vein exhibited a much wider zone of mineralization (chip samples WIN#3CUT-1 to 5). From 0 to 16 metres in T97-9 consisted of very soft, limonitic schisty argillite, and from 16 to 30 metres was more competent, blocky, silicified siltstone containing up to 30% finely disseminated pyrite. Siliceous, light green, pyrite rich, felsic dykes cross the trench at 19 and 26 metres and represent the surface expression of the underlying Nelson batholith.

No high grade mineralization was intersected in trench T97-10 although it was designed to cross the "B" lode and a smaller lode located between the "A" and "B", historically referred to as the "F" lode (Figure 18C). Surface slumping features and poorly consolidated bedrock was encountered in T97-10 around 14 to 22 metres where the "B" lode is thought to be. Chip sample 14 to 16 metres returned an assay of 8.0 g/t silver which may be the leached surface expression of the "B" lode. Chip sample 50 to 52 metres assayed 4.8 g/t silver and may correspondingly represent the surface expression of the "F" lode. In the vicinity of these two anomalous samples bedrock is extremely soft, sheared and gougy, with minor quartz veining. The remainder of the trench shows bedrock of silicified to clay altered siltstone-argillite-quartzite. One interesting feature is noted in the trench at 20 to 22 metres, where finely disseminated strataform bands of sphalerite and galena are present in hard, silicified, banded quartzite-argillite. The disseminated mineralization returned assays of 4.4 g/t silver, 0.14% lead and 0.50% zinc.

Surface weathering and slumping makes excavator trenching a poor exploration tool for use at the Gibson workings.

SILVER BEAR

Four trenches (T97-11 to 14) were excavated on the Silver Bear claims (see Figure 10). Trench T97-11 is located along a new logging road near the north end of the Silver Bear workings, trench T97-12 is adjacent to the South Old Tunnel, trench T97-13 is between the South Old Tunnel and the No.1 adit, and T97-14 is to the south of the Deadman adit on the road to the Index mine.

T97-11 parallels a new logging road which opened up the main Silver Bear mineralizied shear zone. Rock chip samples B140-146.2, B146.2-148 and B148-153 correlate roughly with metres 2 to 15 in trench T97-11. Grab sample B175 is from the vicinity of 38 metres in this same trench. The entire 82 metre length of the trench is in black graphite, blue-grey clay, rusty oxide and grey-white gouge. No unaltered rocks are present, but relict bedding is visible in this highly altered zone, striking 030° and dipping 50° to the east. The best mineralization in this trench is located in the vicinity of an old raise at 10 metres, in a poddy breccia vein at 26 metres and in a graphitic sheared zone with quartz at 38 metres. Galena and sphalerite are present in brecciated and discontinuous pods and veins of quartz-carbonate within extremely rusty, sheared and graphitic rock. Rock chip samples were collected at five metre intervals along the length of the trench. From 0 to 40 metres assays returned 194.5 g/t silver, 1.37% lead and 2.10% zinc, including a 5 metre chip sample (from 35 to 40 metres) which ran 907.5 g/t silver, 8.61% lead and 4.36% zinc. Historically, the true width of the mineralized zone is reported to be about 25 metres wide, but this mineralized intercept appears to be closer to 10 metres true width.

Trench T97-12 contains a black graphitic shear zone from 3.5 to 24.5 metres. Rusty sections occurred within this sheared zone, however no quartz-carbonate or sulphide mineralization was present. Bedding in the badly broken and fractured micaceous argillites hosting the shear zone trends from 000° to 020° , and dips 60° to the east. The main Silver Bear mineralized shear zone is located immediately to the northeast of this

trench. Steep ground conditions did not allow for extension of the trench in that direction, however a small side trench dug in that direction, labelled A - B, gave the best assay values found in this trench. The 2 metre chip sample results were 40.2 g/t silver, 0.13% lead and 0.10% zinc.

T97-13 intersected a narrow (40 centimetre) zone of black graphitic shear material and rusty quartz-carbonate breccia with sphalerite at 7 metres. The one metre chip sample hosting this shear-breccia zone assayed 6.0 g/t silver, 0.04% lead and 0.46% zinc. The trench contains much soft, altered, muscovite schist grading to argillite at the northwest end of the trench. The main Silver Bear shear zone is believed to lie off the southeast end of the trench (off the 0 metre end) about 20 metres away, but steep ground conditions did not allow ready access for trenching.

Trench T97-14 was excavated across the old Index mine access road to the southwest of the Silver Bear workings. This trench hit abundant blue clay, black graphite, rusty oxide, and beige talcy gouge. Bedrock was not exposed from 9.7 to 11.5 metres in the trench due to deep overburden. As in T97-12 and T97-13, no unaltered rock or sulphide mineralization was observed. The best 2 metre chip sample, taken from 4 to 6 metres, returned assay results of 10.2 g/t silver, 0.05% lead and 0.16% zinc.

DISCUSSION

In summary, trenches were successfully excavated on the Cork, Gold Cure and Silver Bear areas of the property. The Bismark and Gibson trenching did not reach bedrock in the best target areas. On the Cork, bedrock was only intersected in the extreme bottom of the trenches and was limited in exposure due to the depth of overburden. On the Gold Cure, two of the trenches crossed the mineralized shear zone, but fresh sulphide mineralization as observed in waste dump piles was not encountered due to near surface weathering. High silver values were returned, but lead and zinc values were a fraction of what was returned from fresher rock. On the Silver Bear, one trench bisected the main mineralized shear structure, while the other three hit good shear zones, but not the main mineralized area. Steepness of terrain and heavy tree cover did not allow for additional trenches to be excavated along the main shear at this time.

Trenching, where bedrock lies near surface and can be excavated to a suitable depth, appears to be a good exploration tool. Many areas of the property however do not reach this criteria, leaving drilling as the primary exploration option.

TRENCH CHIP SAMPLES

1

÷

SAMPLE #	WIDTH	LOCATION	Ag	Pb	Zn
	(metres)		<u>(g/t)</u>	(%)	(%)
TR97-1 0-2	2	GOLD CURE	2.8	<0.01	0.03
TR97-1 2-4	2	GOLD CURE	<0.3	<0.01	0.02
TR97-1 4-6	2	GOLD CURE	1.1	<0.01	0.02
TR97-1 6-8	2	GOLD CURE	6.6	0.03	0.14
TR97-1 8-10	2	GOLD CURE	526.9	0.58	0.54
TR97-1 10-12	2	GOLD CURE	305.1	1.72	0.70
TR97-1 12-14	2	GOLD CURE	45.1	0.02	0.80
TR97-1 14-16	2	GOLD CURE	164.6	0.22	0.81
TR97-1 14.1	GRAB	GOLD CURE	813.8	3.17	5.84
TR97-1 16-18	2	GOLD CURE	6.2	0.01	0.11
TR97-1 18-20	2	GOLD CURE	2.9	< 0.01	0.28
TR97-1 20-22	2	GOLD CURE	1.0	< 0.01	0.17
TR97-2 0-2	2	GOLD CURE	2.8	0.01	0.02
TR97-2 2-4	2	GOLD CURE	6.3	0.02	0.05
TR97-2 4-6	2	GOLD CURE	0.7	< 0.01	0.02
TR97-2 6-8	2	GOLD CURE	1.0	<0.01	0.03
TR97-2 8-10	2	GOLD CURE	4.7	0.01	0.12
TR97-2 10-12	2	GOLD CURE	1.1	< 0.01	0.06
TR97-3	0.2	GOLD CURE	1.3	0.01	0.02
TR97-5 0-2	2	GOLD CURE	<0.3	<0.01	0.01
TR97-5 2-4	2	GOLD CURE	<0.3	< 0.01	0.01
TR97-5 4-6	2	GOLD CURE	4.3	0.01	0.13
TR97-5 6-8	2	GOLD CURE	66.8	0.06	0.34
TR97-5 8-10	2	GOLD CURE	150.1	0.11	0.22
TR97-5 10-12	2	GOLD CURE	56.5	0.06	0.13
TR97-5 12-14	2	GOLD CURE	1.4	< 0.01	0.03
TR97-5 14-16	2	GOLD CURE	1.3	0.01	0.03
TR97-5 28.2-3	1 2.8	GOLD CURE	3.8	0.09	0.09
TR97-5 32.8-3	5 2.2	GOLD CURE	1.8	< 0.01	0.01
TR97-6 2-4.6	2.6	BISMARK	0.4	< 0.01	0.01

ļ

;

:

ŗ

35
TABLE III

TRENCH CHIP SAMPLES

SAMPLE #	WIDTH	LOCATION	Ag	РЬ	Zn
	(metres)		(g/t)	(%)	(%)
TR97-7 0-2	2	CORK	0.5	<0.01	0.01
TR97-7 2-4	2	CORK	36.9	1.43	1.17
TR97-7 4-6	2	CORK	24.4	1.13	0.99
TR97-7 6-8	2	CORK	0.9	0.01	0.02
TR97-7 8-10	2	CORK	1.8	0.01	0.02
TR97-8 7-8	1	CORK	53.1	1.04	2.66
TR97-8 8-10	2	CORK	73.7	1.37	4.35
TR97-8 10-12	2	CORK	195.3	5.08	5,33
TR97-8 12-14	2	CORK	267.4	7.75	15.69
TR97-8 14-16	2	CORK	52.4	0.81	2.42
TR97-8 16-18	2	CORK	1.0	0.04	0.12
	2	GIRSON	3.0	0.01	0.12
TP07024	2	GIBSON	<u>л</u> а	<0.01	0.07
TR97-9 2-4	2	GIDSON	517	0.04	0.07
TR97-94-0	7 0 2	GIBSON	288.4	0.04	0.00
TR97-94.3-4.	ィー 0.2 つ	GIBSON	200. 4 7.8	0.25	0.02
TP070810	2	GIBSON	2.6	0.05	0.19
TP07 0 10 12	2	GIBSON	2.0 4.6	0.01	0.07
TR97-9 10-12 TP07 0 12 14	2	GIBSON	3.6	0.07	0.03
TD07 0 14 16	2	GIBSON	37	0.02	0.08
TR07.0 16-18	2	GIBSON	27	0.01	0.03
TP07_0 18_20	2.	GIBSON	0.3	<0.01	0.02
TR07_0 20_22	2	GIBSON	0.5	<0.01	0.02
TR97-9 20-22 TR97-9 27-24	2	GIBSON	<0.7	<0.01	0.02
TP07-0 24-26	2	GIBSON	1.6	<0.01	0.05
TP07_0 26_28	2	GIBSON	0.3	<0.01	0.05
TR97-9 20-20 TR97-9 28-30	2	GIBSON	<0.3	< 0.01	0.04
1107-9 20 50	-	GIBBOIN	0.5	0.01	
TR97-10 0-6	6	GIBSON	<0.3	<0.01	<0.01
TR97-10 12-14	42	GIBSON	1.4	<0.01	0.01
TR97-10 14-10	52	GIBSON	8.0	0.02	0.04
TR97-10 16-18	82	GIBSON	3.8	0.01	0.03
TR97-10 18-20) 2	GIBSON	2.2	0.01	0.05
TR97-10 20-22	22	GIBSON	4.4	0.14	0.50
TR97-10 22-24	42	GIBSON	<0.3	0.01	0.22

ł

ł

P & L Geological Services, RR#1, Telkwa, B.C., V0J 2X0 Ph: 250-846-9242

36

TABLE III

TRENCH CHIP SAMPLES

SAMPLE #	WIDTH	LOCATION	Ag	Pb	Zn
	(metres)		(g/t)	(%)	(%)
TR97-10 24-20	62	GIBSON	0.9	0.02	0.24
TR97-10 26-28	82	GIBSON	2.1	0.03	0.15
TR97-10 28-30	02	GIBSON	<0.3	<0.01	0.11
TR97-10 30-32	22	GIBSON	0.4	< 0.01	0.11
TR97-10 32-34	42	GIBSON	0.8	< 0.01	0.16
TR97-10 34-30	52	GIBSON	0.4	< 0.01	0.06
TR97-10 36-38	82	GIBSON	0.4	<0.01	0.05
TR97-10 38-40	02	GIBSON	1.0	0.03	0.06
TR97-10 40-42	22	GIBSON	<0.3	<0.01	0.03
TR97-10 42-44	42	GIBSON	<0.3	< 0.01	0.02
TR97-10 44-40	52	GIBSON	<0.3	<0.01	0.02
TR97-10 46-44	82	GIBSON	0.5	<0.01	0.03
TR97-10 48-50	2	GIBSON	1.6	< 0.01	0.11
TR97-10 50-52	22	GIBSON	4.8	0.01	0.13
TR97-10 52-54	42	GIBSON	1.0	0.01	0.08
TR97-10 54-56	52	GIBSON	<0.3	< 0.01	0.04
TR97-10 56-58	32	GIBSON	1.6	< 0.01	0.05
TR97-10 58-60) 2	GIBSON	0.3	< 0.01	0.03
TR97-10 60-62	22	GIBSON	< 0.3	< 0.01	0.04
TR97-10 62-64	42	GIBSON	1.1	<0.01	0.04
TR97-11 0-5	5	SILVER BEAR	10.5	<0.01	0.08
TR97-11 5-10	5	SILVER BEAR	206.1	0.62	0.56
TR97-11 10-15	5 5	SILVER BEAR	209.1	0.42	0.78
TR97-11 15-20) 5	SILVER BEAR	5.1	0.02	0.17
TR97-11 20-25	5 5	SILVER BEAR	13.8	0.10	0.44
TR97-11 25-30) 5	SILVER BEAR	198.8	1.07	9.99
TR97-11 30-35	5 5	SILVER BEAR	4.8	0.08	0.45
TR97-11 35-40) 5	SILVER BEAR	907.5	8.61	4.36
TR97-11 40-45	5 5	SILVER BEAR	8,0	0.30	0.16
TR97-11 45-50) 5	SILVER BEAR	4.5	0.05	0.16
TR97-11 50-55	5 5	SILVER BEAR	1.6	0.01	0.07
TR97-11 55-60) 5	SILVER BEAR	0.5	0.01	0.05
TR97-11 60-65	5 5	SILVER BEAR	3.4	0.01	0.08
TR97-11 65-70) 5	SILVER BEAR	3.3	< 0.01	0.06
TR97-11 70-74	4 4	SILVER BEAR	1.3	< 0.01	0.06
TR97-11 78-82	2 4	SILVER BEAR	1.0	0.01	0.05

TABLE III

TRENCH CHIP SAMPLES

SAMPLE #	WIDTH	LOCATION	Ag	Pb	Zn
	(metres)		<u>(g/t)</u>	(%)	(%)
TR97-12 A-B	2	SILVER BEAR	40.2	0.13	0.10
TR97-12 0-2	2	SILVER BEAR	1.7	< 0.01	0.04
TR97-12 2-4	2	SILVER BEAR	4.1	0.02	0.07
TR97-12 4-6	2	SILVER BEAR	5.0	0.01	0.06
TR97-12 6-8	2	SILVER BEAR	3.1	< 0.01	0.05
TR97-12 8-10) 2	SILVER BEAR	2.7	0.01	0.03
TR97-12 10-1	12 2	SILVER BEAR	2.2	0.01	0.03
TR97-12 12-1	14 2	SILVER BEAR	1.9	<0.01	0.02
TR97-12 14-1	16 2	SILVER BEAR	2.8	0.01	0.08
TR97-12 16-1	82	SILVER BEAR	5.1	0.04	0.10
TR97-12 18-2	20 2	SILVER BEAR	9.2	0.09	0.23
TR97-12 20-2	22 2	SILVER BEAR	1.3	< 0.01	0.03
TR97-12 22-2	24 2	SILVER BEAR	3.6	0.05	0.21
TR97-12 24-2	26 2	SILVER BEAR	1.5	0.02	0.06
TR97-12 26-2	28 2	SILVER BEAR	<0.3	< 0.01	0.01
TR97-12 28-3	30 2	SILVER BEAR	<0.3	0.01	0.01
TR97-13 6-7	1	SILVER BEAR	0.7	< 0.01	0.01
TR97-13 7-8	1	SILVER BEAR	6.0	0.04	0.46
TR97-13 8-10) 2	SILVER BEAR	1.2	<0.01	0.07
TR97-13 10-1	12 2	SILVER BEAR	0.6	< 0.01	0.03
TR97-13 12-1	14 2	SILVER BEAR	1.1	0.01	0.03
TR97-13 14-1	16 2	SILVER BEAR	1.9	<0.01	0.03
TR97-13 16-1	18 2	SILVER BEAR	2.1	<0.01	0.04
TR97-13 18-2	21 3	SILVER BEAR	1.4	< 0.01	0.02
TR97-14 0-2	2	SILVER BEAR	1.4	<0.01	0.04
TR97-14 2-4	2	SILVER BEAR	3.2	0.01	0.11
TR97-14 4-6	2	SILVER BEAR	10.2	0.05	0,16
TR97-14 6-7.	6 1.6	SILVER BEAR	1.2	0.01	0.03
TR97-14 8.5-	9.7 1.2	SILVER BEAR	0.8	< 0.01	0.03
TR97-14 11.5	5-12.6 1.1	SILVER BEAR	0.9	0.01	0.02
TR97-14 13.5	5-15.5 2	SILVER BEAR	<0.3	0.01	0.02
TR97-14 15.5	5-16.5 1	SILVER BEAR	0.9	< 0.01	0.02

1

÷

Ł

(

<u>.</u>. . . . <u>.</u> .

TRENCH 97-5 - GOLD CURE FACING SOUTHEAST (165 deg.) 075° usty & black banded gouge bedding completely red to clay gouge, bedding 042/90, competent graphitic, biotitic argillite with gouge on beds blue/biege gouge on bedding xx, grey, biege, : clay gouge oreccia & gouge, rus blue clay, minor qtz edge of main shear 032/90 strongly graphitic with gouge on b grey, biege 35% 35% minor relict bedding 040/90 bedding 045/90 CONTINUED (on Figure 15B) surface slump bedg Б clay 0 -2 16 m 14 12 10 8 6 4 MAIN SHEAR READ CUT 20 metres blocky argillite slightly rusty CREAM MINERALS LTD. LEGEND **BISMARK** PROPERTY STRONGEST SHEAR SLOCAN MINING DIVISION NTS: 82F/14 & MINERALIZATION bedding/foliation GEOLOGY MAP TRENCH 97-5 shear SCALE = 1:1004 4 4 breccia BY: L.D. FIGURE: 15A DATE: NOVEMBER 1997

(

C

C

. _ .

ſ

U

.

9) GEOCHEMISTRY

During the course of the 1997 exploration program a total of 49 rock grab, 186 rock chip (including those collected from trenches), 130 soil, 22 silt and 8 heavy mineral concentrate samples were collected.

9A) ROCK SAMPLES

ROCK SAMPLE COLLECTION AND ANALYSES

Rock grab samples generally consist of two or three fist size specimens collected from a single site or waste dump pile. Chip samples were continuous samples collected perpendicular to bedding or mineralizing structures wherever possible and consist of numerous 2 to 3 centimetre rock chips. All sample sites were marked with fluorescent spray paint or flagging marked with the sample number.

Samples were placed in poly bags labelled with the corresponding sample number and were shipped to Acme Labs Ltd. in Vancouver for analyses. In the laboratory, samples were crushed to minus 200 mesh and fire assayed for gold and silver, and geochemically analyzed for 30 additional elements by the ICP method. Where ICP results warranted, samples were re-assayed for lead, zinc or copper. Several samples returned significantly higher silver and lead values when re-assayed, as these elements often cause interference with each other in the standard multi-element ICP process. Also, 9 rock samples were fire assayed for platinum and palladium when these samples were collected where historical records indicated that these elements may be present.

ROCK SAMPLING DISCUSSION

Results of the rock grab and chip sampling have been discussed in Sections 7 and 8 of this report. Tables II and III summarize these results.

9B) SOIL SAMPLES

SOIL SAMPLE COLLECTION AND ANALYSES

In 1997, soil samples were collected from three small grids (DUBLIN, GIBSON and MET Grids, see Figures 4, 8 and 11 for grid locations and results). As well, two soil samples of black sheared material were taken from road cuts on the Upper Ben Hur and Gold Cure areas (samples BH-2 and GC9+75E 5+50N, see Figures 5 and 6 for sample locations and results). Four soil samples were taken from the base of waste dump piles adjacent to old workings found in the Connection area to determine the types of mineralization explored by the workings (sample SOIL 1 to 4, see Figure 9 for sample locations and results). Two lines of soil samples were collected along the Ben Hur logging road cut; one along the projection of the Cork-Province shear (samples CP0+00E to 1+00E, see Figure 4 for sample locations and results), and the second where the Bismark-Gold Cure-Gibson shear is projected (samples BH0+25 to 3+25, see Figure 5 for sample locations and results).

P & L Geological Services, RR#1, Telkwa, B.C., V0J 2X0 Ph: 250-846-9242

Samples were collected at 25 metre intervals along flagged grid lines, and at 5 or 25 metre intervals along road cuts. The 'B' soil horizon was sampled in most cases, with the aid of a mattock or small shovel. Sample sites were marked with labelled flagging, and samples were place in correspondingly labelled kraft envelopes and shipped to Acme Labs Ltd. in Vancouver for analyses.

In the laboratory, samples were oven dried at approximately 60° C and sieved to minus 80 mesh. The coarse fraction was then discarded and the minus 80 fraction analyzed for gold by atomic absorption and 30 elements by the ICP method.

SOIL SAMPLING DISCUSSION

CORK-PROVINCE

Three hundred metres northeast of the main Cork mine workings, the mineralizing shear zone is projected at 050° to cross the Ben Hur logging road (see Figure 4). Soil samples were collected at 5 metre intervals for 100 metres across the trace of the shear zone (samples CP0+00E to 1+00E). No direct evidence of shearing is visible at this location, and outcrop visible in the road cut seems to be predominantly pyritic intrusives. No soil sample values of any significance were obtained at this location. The mineralized shear zone may be offset by one of the numerous cross faults that traverse this area, or could be obscured by the granitic intrusive.

DUBLIN

The Dublin soil grid was established over the Dublin workings located about 500 metres southwest of the Cork Mine (see Figure 4). Four 100 metre spaced soil lines were run at 135° to cross the trend of mineralization. Soil samples were collected at 25 metre intervals along these lines. The Dublin adit is located at grid coordinates 22+40E, 20+90N, and a large pit containing a 1.5 metre wide siderite/sphalerite vein is located at 20+25E, 20+00N. Several soil samples returned values in excess of 1.0 ppm silver and 500 ppm zinc. Two samples had greater than 100 ppm lead and one sample returned 123 ppb gold. Although several anomalous samples were obtained, no good trends can be observed.

UPPER BEN HUR CREEK

A single soil sample (BH-2) was collected along the Ben Hur logging road between the surface projections of the Cork-Province and Bismark-Gold Cure shears. This sample was taken in a small gully and consisted of decomposed, black, graphitic, sheared bedrock and returned 2.3 ppm silver.

A 300 metre long soil line with 25 metre spaced samples (BH0+25 to 3+25) was run across the surface trace of the Bismark-Gold Cure shear located at the southeastern end of the Ben Hur logging road (Figure 5). These samples were collected from colluvium and 'B' horizon material along the road cut. Only the two most northwesterly samples returned high silver and zinc values (1.2 ppm silver, up to 795 ppm zinc). This may

represent the mineralized shear, but additional work is required in this area to make that determination.

GOLD CURE

In the Gold Cure area, one soil sample (GC9+75E 5+50N) was collected along a road cut, beneath a talus slide (see Figure 6). This sample was taken from black, sulphidic decomposed bedrock, similar to that described as BH-2 above. This sample returned 2.0 ppm silver.

<u>GIBSON</u>

Two soil lines were put in across the Gibson workings (see Figure 8). Samples were collected at 25 metre intervals along these lines. Many high silver, lead and zinc values were obtained, most of which correlate to the location of waste dump material from the old workings. Additional work is required to determine which samples mark the extent of this dump material and which may be defining the trend of mineralization. A single sample (L82E, 47+00N) returned 122 ppb gold, 865 ppm copper, 329 ppm molybdenum in addition to 203.4 ppm silver, 22435 ppm lead and 4567 ppm zinc.

CONNECTION

Four soil samples (SOIL-1 to 4) were collected from the area of the Connection workings (see Figure 9). Examination of the workings and waste dump material did not indicate the minerals being sought (i.e. no galena, sphalerite or other economic minerals were visible), therefore these soil samples were collected from the base of four of the larger waste dumps, adjacent to caved adits, in order to determine if trace amounts of economic mineralization is contained in the soil. In addition to gold and multi-element ICP analysis, these samples were also analyzed for platinum and palladium as historical reports indicate their presence in this area. Zinc values were in the range of 300 ppm, but no other elements returned values of any significance.

METROPOLITAN

A three line soil grid was put in over the Metropolitan workings (see Figure 11). The lines, which trend 135^o, were spaced at 100 metre intervals and samples were collected at 25 metre stations along the lines. All grid lines cross the sediment-granite contact. The Metropolitan adit is located at 2+00N, 6+00E, which is the centre of the grid. The only sample of significance is located adjacent to the Metropolitan adit, and is likely caused by contamination. At the south end of the grid, slightly elevated silver and zinc values were obtained from two samples collected over the granitic rocks.

9C) SILT AND HMC SAMPLES

SILT AND HMC SAMPLING PROCEDURES AND ANALYSES

Silt and Heavy Mineral Concentrate (HMC) samples were collected along the Keen Creek road from streams draining the mountains to the southeast. In several instances, silt or gravel was not available in these streams due to their steep gradient and high turbulence. Silt samples were collected by hand from several locations across the stream bed, and placed in labelled kraft envelopes. HMC samples were collected by panning down three or four pans of gravel to about 250 grams of fine heavy material, which was placed in a labelled poly bag. A correspondingly labelled flag marks each silt and HMC sample site. Samples were shipped to Acme Labs Ltd. in Vancouver for analyses.

In the laboratory, silt samples were oven dried at 60° C then sieved to minus 80 mesh. The coarse fraction was discarded and the minus 80 mesh fraction analyzed for gold, and in some instances platinum and palladium, by atomic absorption plus 30 additional elements by the ICP technique.

SILT AND HMC SAMPLING DISCUSSION

Silt (SILT-1 to 16) and HMC samples (HMC-1 to 3, 5 to 8 and 16), collected along the Keen Creek Road from northwest flowing tributaries, carried anomalous levels of silver and zinc in the southern portion of the map area (see Figure 23). SILT-1 and HMC-1 were taken from Desmond Creek, downstream from the Index mine workings. The HMC values were approximate double those obtained from the silt samples, and returned 34 ppb gold, 14.0 ppm silver, 1000 ppm lead and 1858 ppm zinc. SILT-4 was collected from a small stream (no gravel was available to allow for HMC sampling) which drains the Silver Bear workings and returned 43 ppb gold, 46.6 ppm silver, 1099 ppm lead and 4028 ppm zinc. The silt and HMC samples collected between these two locations all returned silver values of greater than 1.0 ppm and three samples had zinc in excess of 1000 ppm. None of the remaining silt or HMC samples collected along the Keen Creek valley returned results of any significance, likely due to the increasing distance away of the Bismark-Gold Cure mineralizing shear structure as it heads northeasterly. No samples were collected in the Cork-Province-Dublin area where a second subparallel mineralized shear is again located in close proximity to the Keen Creek valley.

Two silt samples (BH97-1 and BH-2) were collected in the Upper Ben Hur creek area (see Figure 5). In 1983, silt samples were collected in this area by the property owners, and one sample, in the vicinity of the projected continuation of the Bismark-Gold Cure shear structure, returned 37.2 ppm silver and 3100 ppm zinc. The two samples collected this year were an attempt to locate the up slope source of this mineralization. Neither sample returned values of any significance.

Four silt samples (MS-1 to 4) were collected in the vicinity of the Metropolitan workings from small seeps located along the sediment-granite contact (see Figure 11). In addition to gold and multi-element ICP, these samples were analyzed for platinum and palladium because of their granitic source. All of these samples returned in excess of 1.0 ppm silver and up to 5 ppb platinum and palladium.

10) CONCLUSIONS

The Bismark property lies along a belt of Slocan series sedimentary and metasedimentary rocks, which form a roof pendant in the surrounding Nelson Batholith. Emplacement of the intrusive rocks caused uplift, folding, fracturing and shearing of the Slocan series rocks. The shears and fractures in the sediments act as conduits for mineralizing solutions which accompany the intrusive events. Galena, sphalerite, and lead and zinc carbonates, containing high-grade silver, are present along several subparallel, linear shear-breccia-replacement zones which trend northeasterly across the property.

Rock grab samples collected from old workings and waste dump piles returned very high grade silver, lead and zinc values from showings lying along the shear-breccia-replacement zones. Many samples returned values of greater than 2000 g/t silver, 5% lead and 5% zinc, confirming reported historical grades.

As most of the old workings are caved, excavator trenching was necessary to find the mineralization in some locations. Trenches at the Cork-Province, Gold Cure and Silver Bear areas exposed economic grades and widths of mineralization. At the Bismark and Gibson workings, excavator trenching did not prove to be a successful exploration tool.

Soil, silt and heavy mineral concentrate sampling may prove useful in defining the extent of the mineralizing trends, however, topographic considerations must be made. An insufficient number of samples were collected to determine the usefulness of soil, silt or heavy mineral concentrate sampling.

In summary, over 9 kilometres of shear-breccia-replacement systems, hosting silver-leadzinc mineralization, have been located on the Bismark property. These systems are open to depth and in at least one lateral direction. Numerous old high-grade workings lie along these trends, mainly in areas with good outcrop exposure.

Future exploration programs need to concentrate on tracing the depth, extent and grade continuity along the shear-breccia-replacement systems at and between historically proven areas.

Detailed geological, geophysical (VLF-Em) and soil surveys are recommended along the trace of mineralization in order to determine areas with the most promising structures and grades. These target areas should then be opened by excavator trenching, in areas where this has been proven to be an effective tool, or by a combination of diamond and reverse circulation rotary drilling.

Respectfully submitted,

inda Dandy, P.Geo

P & L Geological Services, RR#1, Telkwa, B.C., V0J 2X0 Ph: 250-846-9242

<u>REFERENCES</u>

CAIRNES, C.E., 1935; Descriptions of Properties, Slocan Mining Camp, B.C.: Geological Survey of Canada Memoir 184.

CAIRNES, C.E., 1934; Slocan Mining Camp, British Columbia: Geological Survey of Canada Memoir 173.

COHEN, H.H., 1965; Report on the Index Mine, Keen Creek: Unpublished Report for Index Mines Ltd.

DANDY, L., 1997; Diamond Drilling Report on the Bismark Property: MEI Assessment Report.

DENNY, E., 1985: Unpublished Report titled Silver Bear.

EVANS, D.S., 1987; Follow-up and Detailed Exploration Programs for the Bismark Properties: Unpublished Report for St. James Minerals.

EVANS, D.S., 1987; Drilling Report Bismark Properties: MEMPR Assessment Report.

EVANS, D.S., 1985; Report on the Bismark Properties: Unpublished Report for St. James Minerals.

EVANS, D.S., 1985; Reconnaissance Geochemical and Geophysical Surveys, Silver Bear Claims: MEMPR Assessment Report.

EVANS, D.S., 1984; Prospecting Report Hartford-Susquehanna: MEMPR Assessment Report.

EVANS, D.S., 1982; Bismark Property Preliminary Evaluation: Unpublished Report for Greenwich Resources Inc.

GOLDSMITH, L.B., 1992; Reconnaissance Underground Mapping and Sampling 3-Level Crosscut, Cork-Province Mine: MEMPR Assessment Report.

GOLDSMITH, L.B., 1983; Surface Geology and Soil Geochemistry, Cork-Province Mine: MEMPR Assessment Report.

HILL, H.L., 1965; Report on Daybreak Mining Corporation (1957) Ltd.: Unpublished Addendum to 1957 Report.

HILL, H.L., 1957; Report on Daybreak Mining Corporation (1957) Ltd.: Unpublished Report.

KONKIN, K. and EVANS, D.S., 1984; Geological Assessment Report Bismark-Gold Cure Claims: MEMPR Assessment Report.

LITTLE, H.W., 1960; Nelson Map Area, West Half, British Columbia: Geological Survey of Canada, Memoir 308.

REPORT OF THE ZINC COMMISSION, 1906; Government Publication.

ROCKEL, E.R., 1987; Report on Induced Polarization and Resistivity Surveys on the Bismark Properties for Strand Resources Inc. by Interpretex Resources Ltd.

SINDEN, G.W. and EVANS, D.S., 1984; Prospecting Report, Silver Bear Claims: Unpublished Report for Greenwich Resources Inc.

WESTERMAN, C.J., 1989; Diamond Drilling Report on the Bismark Property; MEMPR Assessment Report.

WESTERMAN, C.J., 1987; Geological, Geochemical and Geophysical Report of the Bismark Property: MEMPR Assessment Report.

COST STATEMENT

()

GENERAL COST:		
Salaries and Wages: 4 pers., 27mdays @ \$321.00		\$ 8,667.00
Benefits: @ 20%		1,733.40
Food & Accommodation: 4 pers., 146mdays @ \$	51.14	7,466.75
Supplies: @ Sundry		1,632.33
Travel:		
Helicopter: High Terrain Helicopters	\$1,101.83	
4wd Trucks: 73 days @ \$44.23	3,228.86	
Fixed Wing: CAI, Vcr-Castlegar	1,097.72	5,428.41
Fuel:		450.58
Power Saw:		50.00
Supervision:		1,872.50
Report Preparation		3,566.25
TOTAL GENERAL COST:		\$30,867.22
GEOCHEMICAL SURVEY		
Salaries & Wages: 4pers., 46mdays @ \$216.65		\$ 9,966.00
Benefits: @ 20%		1,993.20
Assays & Analyses: Acme Labs Ltd.		
87 Rock for Ag, Au & 30 elem ICP @ \$21.00	\$1,827.00	
160 Soil/Silt/HMC for Au & 32 elem ICP @ \$11	.94 1,910.40	
31 Pulp for Pb @ \$9.39	291.09	
6 Pulp for Pb @ \$8.43	50.58	
6 Pulp for Zn @ \$8.43	50.58	
50 Pulp for Pt/Pd @ \$11.56	578.00	
8 Pulverized Samples @ \$2.12	16.96	
87 Rock Prep. @ \$4.10	356.70	
160 Soil/Silt/HMC Prep. @ \$1.31	209.60	5,290.91
Chemex Labs:		
1 Soil for 30 elem ICP		25.57
General Cost Apportioned: (46/146*\$30,867.22)		<u>9,725.29</u>
TOTAL GEOCHEMICAL SURVEY COST:		\$27,000.97
		-
GEOLOGICAL MAPPING		
Salaries & Wages: 2pers., 14mdays @ \$321.00		\$ 4,494.00
Benefits: @ 20%		898.80
General Cost Apportioned: (14/146*\$30,867.22)		<u>2,959.87</u>
TOTAL GEOLOGICAL MAPPING COST:		\$ 8,352.67

59

P & L Geological Services, RR#1, Telkwa, B.C., V0J 2X0 Ph: 250-846-9242

TRENCHING

. __ . . . __ .

Salaries & Wages: 3pers., 37mdays @ \$287.73		\$10,646.00
Benefits: @ 20%		2,129.20
Assays & Analyses: Acme Labs Ltd.		
152 Rock for Ag, Au & 30 elem ICP @ \$21.21	\$3,223.92	
103 Pulp for Cu, Pb, Zn @ \$8.43(special)	868.29	
8 Pulp for Pb, Zn @ \$9.39	75.12	
152 Rock Prep @ \$4.10	623.20	4,790.53
Fred Critchlow Contracting Ltd., EX-100, ATV, F	latbed	11,989.40
General Costs Apportioned: (37/146*\$30,867.22)		7,822.52
TOTAL TRENCHING COST:		\$37,377.65
TOTAL COSTS		
GEOCHEMICAL SURVEY COST		\$27,000.97
GEOLOGICAL MAPPING COST		8,352.67
TRENCHING COST		<u> 37,377.65</u>
		\$72,731.29

i

QUALIFICATIONS

I, Linda Dandy, hereby certify that:

- 1. I am an independent Consulting Geologist with P&L Geological Services having an office at RR#1, Walcott Road, Telkwa, British Columbia, V0J 2X0.
- 2. I am a graduate of the University of British Columbia with the degree of Bachelor of Science in Geology (1981).
- 3. I am a member of the Association of Professional Engineers and Geoscientists of British Columbia (Registration No. 19236) and a Fellow of the Geological Association of Canada (Membership No. F5201).
- 4. I have practiced my profession in North America since 1981, having worked as an employee and consultant for Major Mining Corporations and Junior Resource Companies.
- 5. This report is based upon a personal examination of all available company and government reports pertinent to the subject property, and upon field work undertaken on the property between July 2 and October 30, 1997.

January 9, 1998 Telkwa, B.C.

Linda Dandy, P.Geo., F.G.

Consulting Geologist

APPENDIX

CERTIFICATES OF ANALYSES

P & L Geological Services, RR#1, Telkwa, B.C., V0J 2X0 Ph: 250-846-9242

ÀCME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE (604) 253-31	158 FAX (604) 253-1716
GEOCHEMICAL ANALYSIS LERTIFICATE	
Cream Minerals Inc. PROJECT BISMARK File # 97-3520 Page 1 Box 10435, 1610 - 777 Dun, Vancouver BC V7Y 1K5 Submitted by: L. Dandy	TT
SAMPLE# Mo Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Mg Ba Ti B ppm ppm ppm ppm ppm ppm ppm ppm ppm % ppm ppm	Al Na K W Ag** Au** % % % ppm gm/t gm/t
-ÓUB-1 28 146 963 662 24.5 227 18 10491 8.25 568 <8	.81 .01 .19 4 14.9 .17 .54 .01 .15 <2 10.7 .47 1.10 .01 .19 3 55.1 .15 .57 .01 .25 5 .3 .02 .15<.01 .03 <2 77.3 .33
vpu8-6 3 39 71 2537 1.3 316 35 7190 6.37 250 <8 <2 3 273 25.6 <3 <3 119 3.34 .210 18 493 4.52 56 .01 8 2 MET-1 <1	2.83<.01
$ \begin{array}{c} \checkmark \text{SB-1} \\ \checkmark \text{SB-2} \\ \checkmark \text{SB-2} \\ \checkmark \text{SB-2} \\ \checkmark \text{SB-3} \\ \checkmark \text{SB-3} \\ 26 172 234 1431 21.9 137 18 2298 3.85 61 12 <2 5 19 22.2 <3 3 1088 155.3 <3 <3 57 17.40 .049 13 5 3.53 39<.01 9 \\ \checkmark \text{SB-2} \\ \checkmark \text{SB-3} \\ \checkmark \text{SB-4} \\ \circlearrowright \text{SB-5} \\ 26 05 4278 99999 59.5 27 1 10908 5.70 60 <8 <2 3 1088 155.3 <3 <3 57 17.40 .049 13 5 3.53 39<.01 9 \\ \checkmark \text{SB-3} \\ 26 172 234 1431 21.9 137 18 2298 3.85 61 12 <2 5 17.3 <3 <3 105 .49 .083 18 21 1.22 86<.01 7 1 \\ \checkmark \text{SB-4} \\ 26 05 4278 99999 59.5 27 1 10908 5.70 60 <8 <2 <2 821 1243.0 10 3 52 16.15 .004 15 8 2.55 55<.01 <3 \\ \end{array} $.41 .01 .13 <2 29.1 .03 .36<.01 .01 <2 3481.2 .14 1.47 .01 .26 2 10.0 .02 1.62 .01 .23 2 20.0 .02 .80<.01 .02 <2 68.1 .05
V\$8-6 16 106 93 15031 92.8 25 6 3904 3.34 142 <8 <2 3 257 96.8 14 <3 47 4.53 .089 14 22 1.19 46 .03 3 v\$8-7 6 833 18197 51068 413.5 17 <1	.81 .03 .11 <2 92.0 .02 .42 .01 .05 13 4536.5 .29 .88 .01 .05 2 291.6 .05 1.92 .16 .41 <2 2.7 .02 1.92 .16 .43 2 147.1 .06
VTR-SB-4 15 158 180 1330 31.8 33 2 2620 1.84 35 <8	.71 .01 .10 4 29.3 .02 .41 .01 .08 3 5.0 .01 .22 .01 .04 5 .4 .01 .23 .01 .02 <2
VIIN #2 <1 345	.29<.01<.01 <2 188.3 .11 .19<.01 .03 <2 2264.3 .92 .24 .01 .03 2 552.1 .47 .34<.01 .06 10 446.8 .12 .48<.01 .04 <2 507.6 1.01
VIIN #7 2 1934 14823 99999 159.1 44 4 10906 11.92 391 <8 <2 <2 15 1641.0 1009 <3 15 .07<.001 1 19 .39 <1<.01 8	.29<.01<.01 12 2242.6 .27 2.15 .14 .53 2 3.4 .01 .43 .01 .12 3 73.6 .06 .65<.01 .22 <2 7.2 .02 .25<.01 .10 3 277.6 .14
STANDARD C3/ 25 66 35 167 6.9 33 11 872 3.55 56 22 2 17 30 26.1 15 18 78 .61 .089 18 163 .65 150 .10 21 :	2.00 .04 .16 19 102.1 3.37
Standard is STANDARD C3/R-1/AU-1. ICP500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH M THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK AG** & AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE. Semples beginning (RE/ are Recurs and (REF are Reject Recurs.	WATER.

££ (_			<u> </u>	Cr	eam	M	ne	rals	; Ir		P	RO	JEO	CT	BI	(SMA	Ċ rk	F	IГ	E #	97	-35	520)						Pa	ge	2	ADE ANIL	L TICAL
SAMPLE#	Ma) Cu		Pb pm	Zn ppm	Ag ppn	i Ni i ppi	i Co appr	o Mi n ppi	<u>דייי</u> ח	e A % pp	s m p	υ Prn p	Au xpnn	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca X	P X	La ppm p	Cr pm	Mg X	Ba ppm	Ti X	B ppm	Al X	Na X	K X	¥ ppm	Ag** gm/t	Au** gm/t	
√WIN #3 CUT-4 ✓WIN.#3 CUT-5 RE WIN #3 CUT-5	20 28 28	5 155 3 615 3 618	19 152 154	61 95 8 79 8	720 3481 3586	21.4 377.2 320.8	1! 2 3 1	5 1) <' 3 <'	3 73 1 2053 1 2065	4.5 22.8 3 23.0	64 9 94 52 06 52	0 6 6	<8 11 9	<2 <2 <2	7 5 5	19 11 11	7.3 60.0 60.3	<3 25 22	उ उ 5	44 62 61	-08 -03 -03	.113 .031 .030	12 5 5	22 29 29	.04 .04 .03	73< 39< 42<	.01 .01 .01	4 <3 <3	.48 .46 .47	.01 .01 .01	.26 .17 .17	3 <2 <2	20.1 600.3 604.0	.02 .16 .19	

Sample type: ROCK. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

.

Data J_FA

ACHE ANNLYTICAL		(_		<u>-8-</u>	Cr	ean	. Mir	nera	ls	In	.c.	PR	20J	ECI	B	ISM	IAR	С к	FIL	E ‡	‡ 9	7-3	52()					Ī	Page	e 3		ADE AN	
SAMPLE#	No ppm	Cu ppn	Pb ppm	Zn ppm	Ag	Ni	Co ppm	Mn ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V Ppm	Ca %	P X	La ppm	Cr ppm	Mg X	Ba ppm	Ti X	B ppm	Al X	Na %	К Х ј	W ppm	Ag** gm/t	Au** gm/t	Pt** gm/t	Pd** gm/t	
✓DUB-7 ✓ MET-2 RE MET-2	<1 3 3	23	1061 157 146	1486 140 133	7.4	422 14 16	41 2 2	20980 642 576	10.97	587 9 7	<8 <8 <8	<2 <2 <2	4 11 10	136 93 91	11.3 1.1	<3 4 5	रउ 5 6	63 100 98	2.74	. 182 . 161 . 160	13 35 35	218 17 17	3.02 .17 .16	67 26 23	.02 .11 .11	<3 3 3	1.46< 1.30 1.29	.01 .03 .03	.42 .05 .05	<2 2 3	6.8 4.9 5`8	.02 <.01 .01	<.01 <.01 <.01	<.01 <.01 <.01	

Sample type: ROCK. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. AG** AU** PT** & PD** BY FIRE ASSAY FROM 1 A.T. SAMPLE.

the second s

ACME ANALYTICE LABORATORIES LTD.	852 B. HASTINGS ST. VAL	NCOUVE BC V6A 1R6	PHONE (604) 253-3158	FAX (604) 253-126
Cream I	Minerals Inc. PROJECT Box 10435, 1610 - 777 Dur	BISMARK File # 9 Ny Vancouver BC V7Y 1K5	7-3520R	t t
	SAMPLE#	PB Zn % %		
	DUB-3 DUB-5 CORK #2 CORK #3 HART-1	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		
	SB-1 SB-2 SB-5 SB-6 RE SB-6	.13 2.15 .14 3.25 .48 15.55 .01 1.32 .01 1.34		
	SB-7 SB-8 WIN #1 WIN #2 WIN #3	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		
	WIN #4 WIN #5 WIN #6 WIN #7 WIN #3 CUT-3	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		
	WIN #3 CUT-5 STANDARD R-1	1.71 .78		

.250 GM SAMPLE LEACHED IN 30 ML AQUA - REGIA, DILUTE TO 100 ML, ANALYSIS BY ICP. - SAMPLE TYPE: ROCK PULP Samples beginning <u>'RE' are Reguns and 'RRE' are Reject Reguns.</u>

Data (1/FA

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ACM	e ai	VALY	TIC	LAP	ORAT	ORI	ES	LTD.		852	E.	HA:	STI	NGS	ST. V	ANCO	U	∼ ₹	BC '	76A	1R6		P	HONE (6	04)	253	-31!	58	Fax	(604) 25	3-7-7:	L6
			L	1 and a start of the second se			299.QP			G	EO(THE	MI	CAL	ANA	LYS:	cs-	ĊË	RTII	'ICF	\TE												
44						Cr	еат	n Mi	nera	l s	Tno		PR	ਸ਼ਾਨ	CT B	TSM	ARK		File	• #	97	- 37	734	Pa	ae	1							
								Bo	x 1043	5, 16	10 -	777	Dun	, Var	couver	BC V7	1K	5	Submit	ted b	y: L	inda	Danc	y	-								
SAMPLE#	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	٧	Ca	P	La	Сг	Mg	Ba Ti	В	Al	Na	ĸ	WP	rt** P	d**	Ag**	Au**
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm j	pm	pm	ppm	ppm	ppm	ppm	ррп	%	%	ppm	ppm	%	ppm %	ppm	%	%	% F	nqc	ppb	ppb	gm/t	gm/t
BM-1	13	1270	2448	99999	255.9	9	4	22495	5.36	57	<8	<2	<2	224	2953.4	1044	<3	10	8.35	.042	2	5	1.67	11<.01	<3	.28	.01	.10	<2	-	- 2	2134.5	.03
BM-2	4	1556	1860	99999	261.6	4	4	25923	5.76	25	<8	<2	<2	126	3399.1	1216	<3	5	6.89	.039	1	5	1.66	8<.01	3	. 15	.01	.07	<2	-	- 2	2323.5	.03
BM-3	10	334	12310	54883	278.1	17	4	43158	7.35	438	<8	<2	<2	420	616.6	371	<3	12	14.14	.045	3	9	2.40	8<.01	<3	.12	.01	.05	<2	-	-	814.6	.21
BM-4	19	896	22702	76857	246.9	25	3	45482	7.73	1514	8	<2	<2	243	997.2	674	<3	38	12.69	.084	7	13	.41	11<.01	<3	.22	<.01	.06	<2	-	- '	723.2	.07
BM-5	3 40 4067 21070 99999 272.4 49 3 18501 5.14 1333 8 <2														.07																		
8M-6	40 4067 21070 99999 272.4 49 3 18501 5.14 1333 8 <2															.03																	
CON-1	40 4067 21070 99999 272.4 49 3 18501 5.14 1555 8 <2 <2 39 4089.4 2565 <3 34 5.56 .057 4 10 .56 6<.01 <3 .26<.01 .02 <2 - 5695.5 .07 6 15 259 432 30763 316.2 10 2 53071 6.43 721 <8 <2 <2 343 336.3 212 <3 37 17.07 .066 6 10 3.27 7<.01 <3 .14 .01 .04 <2 - 483.3 .03 1-1 2 28 101 725 22.2 12 4 615 1.29 9 <8 <2 <2 19 9.2 12 <3 26 .43 .019 7 35 .47 107 .11 <3 .99 .05 .29 5 1 <1 23.0 <.01															<.01																	
CON-2	2	170	54	371	8.4	35	20	724	4.01	8	<8	<2	4	19	5.4	6	<3	42	.49	.051	15	44	1.19	169.14	ও	2.00	.03	.64	2	<1	<1	7.2	<.01
CON-3	2	37	33	146	4.0	24	5	199	.83	3	9	<2	3	252	1.8	5	<3	10	2.42	.082	11	21	.23	44 .10	3	2.32	.15	.16	6	1	1	3.8	<.01
CON-4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																																
CON-5	8	38	13	56	-8	36	6	255	1.51	2	<8	<2	5	106	,5	<3	<3	33	1.17	.096	16	38	.51	38.11	<3	1.68	.17	.18	3	1	3	<.3	<.01
GC-1	1	16	10	43	.8	7	1	67	.46	<2	<8	<2	<2	6	.5	<3	<3	- 3	.06	.004	<1	25	.02	4<.01	<3	.05	.01	.01	6	-	-	.3	.01
GC-2	5	2076	24147	32534	177.2	82	9	1336	4.76	309	<8	<2	<2	21	345.9	430	<3	- 7	1.80	.017	3	15	. 15	9<.01	<3	.13	.01	.06	18	-	- 1	1025.9	.14
GC-3 -	4	1274	14038	48529	161.6	- 79	9	568	12.34	1205	<8	<2	<2	30	465.2	802	3	- 4	1.27	.006	<1	10	.58	2<.01	<3	.05	<.01	.03	12	-	- 2	2467.5	.69
GC-4	4	846	15958	42467	93.1	63	8	797	9.62	1075	<8	<2	<2	39	407.0	342	3	3	1.10	.008	<1	10	.75	1<.01	<3	.06	<.01	.03	16	-	- '	1264.6	.38
GC-5	2	671	10789	54156	146.6	69	10	1932	13.72	2157	<8	<2	<2	15	536.9	250	<3	4	.80	.003	<1	6	.21	1<.01	<3	.04	<.01	.02	16	-	- ;	2017.9	.51
GC-6	4	53	393	1540	8.5	40	9	1387	2.25	22	<8	<2	5	18	12.9	4	<3	17	.39	.114	29	20	. 18	48<.01	<3	.68	<.01	.13	<2	-	-	7.5	<.01
GC-7	12	395	545	72678	134.9	16	6	32654	7.33	110	<8	<2	<2	369	709.0	39	<3	19	13.54	.008	10	5	2.78	24<.01	4	.14	<.01	.09	<2	-	-	153.7	.03
GC-8	6	545	750	73176	164.8	21	8	16465	4.77	40	<8	<2	2	222	801.3	46	<3	- 7	8.00	.084	8	8	1.10	28<.01	5	.24	<.01	.14	14	-	-	175.6	.07
GC-9	2	11	84	341	5.0	9	1	147	1.06	80	<8	<2	<2	3	2.4	3	<3	13	.02	.019	4	16	.01	6<.01	<3	.13	<.01	.04	6	-	-	4.5	-01
RE GC-9	2	12	81	335	5.1	8	1	139	1.07	81	<8	<2	<2	3	2.4	3	<3	13	.02	.019	5	15	.01	6<.01	<3	.13	<.01	.04	7	-	-	4.5	.02
INDEX-1	7	53	8488	839	34.0	- 47	9	110	4.75	3674	<8	<2	2	8	14.7	15	<3	6	.15	.049	3	17	.08	42<.01	5	.25	.01	.16	6	-	-	35.3	41
INDEX-2	20	1422	9482	99999	161.7	32	8	16 1	15.12	2039	<8	<2	<2	11	2004.0	23	<3	8	1.04	.021	1	11	.21	2.01	- 3	.66	.01	.24	<2	-	-	158.1	1.47
PRO-1	17	496	20982	57188	164.7	23	9	41046	17.92	182	<8	<2	<2	63	567.8	479	<3	15	1.30	.021	<1	6	1.30	3<.01	<3	.20	.01	.03	<2	-	-	677.8	- 14
PRO-2	8	1213	17388	99999	160.9	18	10	52592	20.13	71	<8	<2	<2	56	2076.9	28	<3	9	1.71	.027	<1	5	1.62	5<.01	<3	.03	.01	.04	<2	-	-	170.8	.03
PRO-3	<1	2995	19479	99999	229.4	28	35	18721	24.27	729	<8	<2	<2	10	2893.5	173	<3	7	. 19	.020	<1	<1	.49	1<.01	5	<.01	<.01	.01	<2	-	-	343.7	.21
PT-1	<1	12	275	801	1.6	1	1	297	.68	2	<8	<2	16	9	7.7	<3	<3	11	.11	.019	8	11	.11	7.03	<3	,25	.05	.13	5	<1	<1	1.4	<.01
PT-2	1	27	134	218	.5	13	11	690	3.20	2	<8	<2	5	61	2.2	<3	<3	90	1.27	. 189	17	36	1.21	35.13	<3	1.20	.09	.21	3	1	1	.3	<.01
SB-9	9	10	109	410	1.1	33	7	8132	5.34	48	<8	<2	3	572	4.2	<3	<3	43	15.91	.074	13	20	2.19	31<.01	<3	1.30	.01	.13	<2	-	-	.3	<.01
SB-10	6	8	139	407	1.5	26	4	5807	5.01	43	<8	<2	2	1007	4.7	<3	<3	114	22.65	.026	17	32	3.33	22<.01	<3	1.87	.01	.04	<2	-	-	.7	<.01
SB-11	23	82	163	1013	2.5	98	14	1149	3.94	34	<8	<2	6	55	13.6	<3	<3	233	1.03	.085	29	83	2.11	64.01	<3	2.12	.01	.27	3	-	-	2.1	.03
SB-12	8	56	44	346	1.2	30	5	933	2.20	13	<8	<2	3	63	5.9	<3	<3	78	2.02	.099	10	28	1.28	33.03	<3	.99	.01	.11	133	-	-	.3	<.01
SB-13	8	11	46	402	1.1	21	- Ĺ	5431	6.59	69	<8	<2	<2	1207	4.1	<3	<3	83	19.19	.030	18	22	5.13	30<.01	<3	1.34	.01	,05	<2	-	-	.3	<.01
SB-14	2	ġ	28	268	0	19	4	5943	7.04	371	<8	<2	2	1049	3.5	<3	<3	65	18.26	.063	14	29	5.18	43<.01	<3	1.87	.01	.05	<2	-	-	.3	.02
SB-15	2	18	380	880	2.1	22	8	4804	4.79	114	<8	<2	5	961	9.9	<3	3	40	16.08	.036	21	25	3.87	37<.01	<3	2.28	.01	.11	<2	-	-	1.7	.01
STANDARD	28	69	45	176	5.8	38	13	824	3.67	60	23	4	19	30	26.0	17	19	84	.61	.092	20	169	.68	125 .11	20	1.98	.05	.16	19	-	-	98.4	3.29
Standard	is Sl	FANDA	RD C3/	R-1/AU ICP -	-1. .500 G	RAM	SAMPI	.E 15	DIGESTI	ED WIT	rh 3m	L 3-	1-2	HCL-I	HNO3-H2(CAT S	95 DE	G. (C FOR (ONE HO	our A	AND I	S DI	LUTED TO) 10 M	IL WI	тн м	ATER.					

THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL.

ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB

- SAMPLE TYPE: P1 TO P2 ROCK P3 HMC/P4 SILT P5 TO P7 SOIL PT** PD** BY FIRE ASSAY & ANALYSIS BY ULTRA/ICP. (30 gm) AG** & AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE. <u>Semples beginning 'RE' are Reruns and 'RE' are Reject Reruns</u>.

DATE RECEIVED: JUL 21 1997 DATE REPORT MAILED: July 31/67 SIGNED BY...: D.TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS All results are considered the confidential property of the cliept. Acme assumes the liabilities for actual cost of the analysis only.

ſ

Cream Minerals Inc. PROJECT BISMARK FILE # 97-3734

					ACME ANALYTICAL
SAMPLE#	Mo Cu Pb Zn	n Ag Ní Co Mn Fe As U Au	Th Sr Cd Sb Bi V Ca	P La Cr Mg Ba Ti B Al Na K W Ag** Au**	
	ppm ppm ppm ppm	m ppm ppm ppm ppm % ppm ppm ppm ppm ppm	opm ppm ppm ppm ppm %	% ppm ppm % ppm % % % ppm gm/tgm/t	
SB-16	3 30 27 225	5 1.1 158 19 2154 3.62 221 <8 <2	3 436 2.9 3 <3 82 7.59	.110 12 208 3.47 48 .01 <3 1.98<.01 .11 <2 < 3 < 01	
SB-17	4 475 2598 31843	3 103.2 10 1 8778 5.30 330 <8 <2	2 824 250.3 11 <3 27 22.14	.012 7 9 3.48 26<.01 <3 .37<.01 .06 25 105.9 .02	
RE SB-1	7 4 487 2580 31703	3 104.8 9 1 8786 5.31 351 <8 <2	2 824 252.3 12 <3 27 22.16	.012 9 7 3.48 26<.01 <3 .37<.01 .06 32 105 0 03	

Sample type: ROCK. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. AG** & AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE.

Assay in progress for Pb, Zn >1%

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data FA YA

Page 2

ACHE ANALYTICAL				Cre	am	Miı	nera	ls 1	Inc	. P	ROJ	JEC	'T	BIS	MAR	.K.	FI	LE	#	97-	-37	34						Pa	age	e 3			CAL
SAMPLE#	Мо	Cu	Pb	Zn	Ag	Ni	Co M	n Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca	Ρ	La	Cr	Mg	Ba	Τi	В	AL	Na	κ	W /	Au**	Pt**	Pd**	1
	ppm	ppm	ppm	ppm	ppm	ppm	ppm ppr	n %	ррт	ppm	ppm	ppm	ррт	ppm	ppm	mqc	ppn	%	%	ppm	pm	%	ppm	%	ppm	%	%	<u>%</u>	ppm	ppb	ppb	ррь	
НМС-1 НМС-2 НМС-3 НМС-5	6 7 8 2	46 41 46 13	1000 27 125 25	1858 325 1090 108	14.0 1.3 2.3 <.3	31 37 58 22	7 39 6 450 7 60 6 37	1 3.11 5 2.10 1 2.32 5 2.34	108 12 40 17	<8 <8 <8 <8	<2 <2 <2 <2 <2	9 5 5 7	41 41 30 35	29.9 1.5 5.6 .5	⊲ ⊲ ⊲ ⊲	ব্য ব্য ব্য ব্য	94 . 86 . 72 . 37 .	.77 .69 .40 .44	.108 .071 .082 .073	29 12 17 25	38 39 34 26	.69 .99 .89 .78	77 85 62 53	.13 .06 .04 .05	3333	1.02 1.32 1.19 1.29	.06 .03 .02 .03	.16 .24 .20 .19	2 2 2 2	34 <1 1 <1	<1 1 1 <1	<1 2 1 <1	
HMC-6	1	12	18	107	.3	19	4 28	0 1.76	8	<8	<2	5	27	1.1	<3	<3	35.	.38	.052	19	22	.36	59	.08	<3	.85	.05	. 15	5	<1	<1	<1	
RE HMC-6 HMC-7 HMC-8 HMC-16	1 1 2	12 13 11 19	17 38 4 53	107 72 38 108	<.3 <.3 <.3 <.3	18 12 11 21	4 28 5 36 4 26 5 24	5 1.78 1 2.04 1 1.55 4 1.64	7 4 2 23	<8 <8 <8 <8	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	6 5 4 5	28 76 55 31	1.1 _4 _2 _6	<3 4 <3 <3	3 3 3 3 7	36 52 42 32	.38 .54 .43 .39	.052 .086 .066 .065	18 16 14 14	22 21 20 27	.36 .54 .39 .55	60 38 44 54	.08 .08 .08 .07	<3 <3 <3 <3 20	.87 .91 .73 .93	.05 .05 .06 .04	.16 .14 .14 .18	5 3 4 4	<1 <1 <1 3 49	<1 <1 1 <1 50	<1 <1 <1 <1 48	

Sample type: HMC. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. AU** PT** & PD** ANALYSIS BY ULTRA/ICP FROM 30 GM SAMPLE.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

.

- -

T

Cream Minerals Inc. PROJECT BISMARK FILE # 97-3734

Page 4

Data____ FA _____

SANDLE# Ma Cu Dh Zh Az Ni Ca Mh Ea Ar U Au Th Sh Cd Sh Ri V Ca D La Ch Mh Ba Ti D Al Na K U Aut Dr## Dd#	
ייש איזירע איזיגע א	* h
bhu	<u> </u>
BH97-1 1 18 17 286 .5 34 7 280 1.15 5 <8 <2 2 205 3.9 <3 <3 35 13.91 .070 7 30 7.78 46 .06 <3 1.05 .02 .16 <2 2 -	-
MS-1 1 18 23 56 2.5 22 3 292 .96 9 211 <2 2 246 .9 <3 <3 43 2.12 .100 32 160 .33 44 .03 7 .89 .02 .07 <2 2 5	5
MS-2 1 12 14 53 1.4 20 3 357 1.13 10 99 <2 2 116 .6 <3 <3 52 1.01 .054 17 74 .39 32 .06 <3 .83 .02 .09 <2 <1 4	2
MS-3 3 37 39 123 1.5 64 6 1298 2.06 11 132 <2 3 133 1.4 <3 <3 56 1.20 .081 56 106 .79 77 .07 <3 1.51 .02 .15 <2 1 <1 ·	1
MS-4 3 39 31 149 1.8 62 8 1553 2.08 9 88 <2 2 138 5.7 3 <3 59 1.49 .089 108 146 .66 93 .06 <3 1.35 .02 .18 <2 1 3 <	1
	-
	-
	-
	-
SILI-5 / 24 /0 180 1.4 32 12 822 3.03 39 <8 <2 5 85 2.0 3 <3 56 ./5 .096 50 39 .95 88 .07 5 2.31 .02 .14 <2 6 -	-
SILT-6 2 28 25 236 .9 39 6 489 1.64 12 <8 <2 4 37 4.2 <3 <3 36 .58 .066 38 21 .39 66 .06 <3 1.36 .01 .10 <2 2 -	-
SILT-7 1 25 11 89 .3 21 9 535 2.54 10 <8 <2 4 112 1.1 5 <3 68 1.12 .194 22 28 .78 44 .06 <3 1.52 .02 .13 <2 2 -	-
SILT-8 3 37 13 95 .5 26 8 564 1.95 5 <8 <2 3 107 1.4 <3 <3 53 1.07 .110 33 26 .64 67 .07 3 1.47 .02 .16 <2 2 -	-
SILT-9 2 42 20 94 1.1 23 8 1026 2.42 8 19 <2 5 134 1.2 4 <3 66 1.25 .120 51 32 .62 78 .07 3 2.25 .02 .12 <2 2 -	-
SILT-10 <1 17 17 67 <.3 17 7 850 1.87 5 <8 <2 6 72 .9 3 <3 53 .67 .107 46 24 .40 64 .07 <3 1.13 .03 .12 <2 1 -	-
	_
	_
	-
	-
	-
	-
SILT-15 2 30 41 133 .8 38 8 367 1.94 9 <8 <2 6 61 2.0 <3 <3 44 .84 .125 20 40 .85 68 .10 4 1.55 .05 .20 <2 3 -	-
SILT-16 1 30 98 143 .7 29 7 301 1.74 38 <8 <2 7 28 .7 <3 <3 39 .47 .090 18 33 .74 50 .10 <3 1.22 .02 .21 <2 7 -	-
STANDARD C3/AU-S 25 66 40 152 5.6 37 12 782 3.48 58 20 <2 21 29 23.7 17 22 80 .60 .088 21 170 .69 151 .11 19 1.96 .04 .17 16 45 -	-

Sample type: SILT. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. AU* - AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED.(10 GM)

PT** & PD** ANALYSIS BY ULTRA/ICP. (30 gm)

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Cream Minerals Inc. PROJECT BISMARK FILE # 97-3734

Page 5

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th. ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	К %	W ppm	Au** ppb	Pt** ppb	Pd** ppb	
SOIL-1 SOIL-2 SOIL-3 SOIL-4 RE SOIL-4	5 5 3 6 6	12 13 13 28 28	20 14 18 24 23	337 348 339 283 282	<.3 <.3 .5 <.3 <.3	23 23 26 39 39	6 10 7 8 8	382 615 320 665 690	2.00 2.41 2.10 2.34 2.35	3 2 4 17 18	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2	3 3 3 8 8	20 26 25 39 38	1.6 3.2 2.1 4.2 4.0	<3 4 <3 <3 <3	उ उ उ उ उ	54 54 51 56 57	.16 .37 .30 .45 .45	.049 .118 .106 .068 .068	9 7 8 47 47	24 33 20 28 28	.42 .62 .35 .57 .57	90 98 100 37 37	.11 .15 .12 .08 .08	<3 <3 4 <3 <3 <3	1.68 1.98 1.71 1.07 1.06	.02 .03 .02 .03 .03	.07 .10 .09 .13 .13	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	2 1 1 4 3	2 <1 <1 <1 <1	1 <1 <1 <1 <1 <1 1	
L5E 3+00N L5E 2+75N L5E 2+50N L5E 2+25N L5E 2+00N	1 1 3 2 2	8 10 8 8 6	9 16 22 20 15	58 127 78 124 95	<.3 <.3 <.3 <.3 <.3	8 12 7 11 8	2 5 3 4 5	490 358 289 403 273	1.13 1.91 3.77 2.46 2.59	3 6 2 2 2 2	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	2 2 4 3	13 17 5 13 8	.4 .5 1.1 .6	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	3 3 3 3 3 3 3	35 41 64 53 54	.11 .17 .05 .14 .11	.042 .232 .211 .125 .137	7 7 6 9 9	12 20 18 19 17	.14 .35 .13 .31 .20	61 61 47 65 46	.09 .10 .19 .15 .14	3 <3 <3 4 <3	.59 1.71 3.75 1.84 2.01	.01 .01 .02 .02 .02	.04 .04 .04 .06 .06	<>> <> <> <> <> <> <> <> <> <> <> <> <>	1 <1 1 2 1	1 1 2 2	<1 1 2 3 2	
L5E 1+75N L5E 1+50N L5E 1+25N L5E 1+20N L6E 3+00N	2 1 3 2 2	7 6 17 24 18	11 24 65 16 15	40 37 334 242 117	<.3 .5 1.1 .4	5 4 36 38 16	2 2 7 8 4	212 194 804 233 259	1.01 .97 2.24 2.83 2.28	2 3 19 3 5	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 <2 2 4 4	7 9 17 26 12	.3 <.2 1.0 1.1 .6	ও ও ও ও ও ও ও ও ও	ব্য ব্য ব্য ব্য	26 28 42 59 48	.07 .05 .17 .12 .17	.037 .052 .130 .146 .107	8 6 17 7 11	10 8 33 35 28	.14 .07 .53 .55 .78	32 56 83 61 61	.08 .14 .05 .12 .08	ব্য 3 ব ব ব ব	.77 .65 2.15 3.83 1.60	.02 .02 .01 .02 .02	.04 .03 .06 .05 .07	<2 <2 <2 <2 <2 <2	<1 <1 <1 1 <1	<1 1 <1 2 <1	<1 1 <1 2 <1	
L6E 2+75N L6E 2+50N L6E 2+25N L6E 2+25N L6E 2+00N L6E 1+75N	2 1 3 5 3	21 11 12 10 11	11 24 19 80 21	99 324 270 375 214	.4 .3 .3 2.1 .4	15 17 9 13 7	3 8 5 5 5	172 481 533 420 544	2.23 2.69 2.47 1.99 1.92	5 2 3 11 3	<8 <8 <8 11 <8	< < < < < < < < < < < < < < < <> <> </td <td>4 7 2 2 2 2</td> <td>10 19 17 48 19</td> <td>.6 .8 .9 1.0 .9</td> <td>ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও</td> <td></td> <td>49 51 48 66 46</td> <td>.14 .33 .16 .28 .16</td> <td>.065 .084 .073 .054 .057</td> <td>10 25 10 10 9</td> <td>29 28 19 26 15</td> <td>1.08 .58 .37 .25 .31</td> <td>56 71 56 51 57</td> <td>.06 .14 .16 .14 .14</td> <td><3 <3 <3 <3 <4</td> <td>1.66 2.04 1.39 2.10 1.06</td> <td>.01 .02 .02 .03 .02</td> <td>.07 .16 .10 .05 .09</td> <td><2 <2 <</td> <td><1 <1 <1 <1</td> <td>1 <1 <1 2 1</td> <td>1 <1 <1 1 <1</td> <td></td>	4 7 2 2 2 2	10 19 17 48 19	.6 .8 .9 1.0 .9	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও		49 51 48 66 46	.14 .33 .16 .28 .16	.065 .084 .073 .054 .057	10 25 10 10 9	29 28 19 26 15	1.08 .58 .37 .25 .31	56 71 56 51 57	.06 .14 .16 .14 .14	<3 <3 <3 <3 <4	1.66 2.04 1.39 2.10 1.06	.01 .02 .02 .03 .02	.07 .16 .10 .05 .09	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<1 <1 <1 <1	1 <1 <1 2 1	1 <1 <1 1 <1	
L6E 1+50N L6E 1+25N L6E 1+00N L7E 3+00N L7E 2+75N	1 2 2 2 1	11 10 21 7 13	15 10 24 10 13	93 38 71 41 76	<.3 <.3 <.3 <.3 .4	20 11 29 9 18	5 2 6 3 5	271 126 231 447 231	2.54 1.58 2.19 1.08 1.85	2 2 3 2	<8 <8 <8 <8 13	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	4 3 4 2 4	22 19 37 20 50	.7 <.2 .5 .3	3 3 3 3 3 3 3 3	⊲ ⊲ ⊲ ⊲ ⊲	67 49 58 29 47	.12 .09 .15 .13 .17	.065 .029 .052 .060 .119	10 5 7 9 11	46 13 34 14 24	.55 .27 .60 .21 .37	51 32 58 29 53	.15 .13 .15 .07 .10	4 <3 <3 <3 <3	1.41 .65 1.27 .69 1.42	.02 .01 .01 .02 .02	.08 .04 .09 .04 .05	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	<1 <1 <1 <1 <1	<1 <1 2 <1 <1	<1 <1 <1 <1 <1	
L7E 2+50N L7E 2+25N L7E 2+00N L7E 1+75N L7E 1+75N L7E 1+50N	4 2 <1 3 4	30 9 6 16 10	15 16 23 12 25	99 65 34 53 55	.3 .6 .6 <.3 <.3	64 8 5 111 18	9 3 2 13 5	250 511 99 249 172	2.33 1.38 .74 2.59 3.19	<2 2 <2 <2 3	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	3 2 2 2 5	91 32 19 19 33	.5 .4 .2 <.2 .4	ও ও ও ও ও	র র র র র র	80 33 29 86 85	.21 .08 .09 .17 .09	.085 .191 .022 .026 .081	7 4 6 4 14	119 20 6 297 73	1.21 .19 .09 1.71 .38	68 76 53 63 56	.14 .12 .17 .42 .16	3 3 3 3 4	1.84 1.10 .65 1.87 2.55	.01 .02 .02 .02 .02	.05 .04 .03 .04 .06	<2 <2 <2 <2 <2 <2	<1 1 <1 <1 1	<1 2 <1 2 2	<1 2 <1 1 2	
L7E 1+25N L7E 1+00N STANDARD C3/FA100	1 3 25	10 10 65	19 13 38	19 173 155	.3 <.3 5.8	3 11 35	2 7 12	117 2040 784	.86 2.42 3.52	2 <2 52	11 <8 14	<2 <2 2	2 3 19	16 25 28	<.2 .8 23.6	<3 <3 15	<3 <3 18	39 47 80	.08 .13 .58	.035 .089 .088	10 19 19	7 13 167	.08 .21 .65	33 100 146	.15 .16 .11	<3 .4 21	.71 2.22 1.90	.02 .03 .05	.04 .06 .16	<2 <2 18	<1 <1 49	<1 <1 50	<1 <1 45	

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. AU** PT** & PD** ANALYSIS BY ULTRA/ICP FROM 30 GM SAMPLE.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data / FA YAK
4	A ^T	
ACHE ANA		

(

Cream Minerals Inc. PROJECT BISMARK FILE # 97-3734

Page 6

ANAL VTICAL

																_															المستحمي
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Nі ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	8i ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	⊺i %	B ppm	Al %	Na %	K %	W ppm	Au* ppb
L20E 20+50N L20E 20+25N RE-L20E 20+25N L20E 20+00N L20E 19+75N	4 2 2 1	49 39 38 34 25	30 57 49 100 18	145 128 122 549 93	1.1 1.1 1.0 1.5 1.2	58 42 39 52 43	10 7 7 9 9	338 226 216 306 293	3.13 2.33 2.18 2.56 2.37	6 5 4 10 4	<8 <8 <8 <8 <8	< < < < < < < < < < < < < < < < < < < <	<2 <2 <2 3 2	37 18 17 23 25	1.0 .4 .2 2.1 .6	ও ও ও ও ও	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	68 57 55 52 54	.27 .17 .16 .30 .31	.099 .076 .070 .111 .086	15 11 10 15 14	63 49 47 45 50	1.18 .93 .87 .90 .75	74 52 49 75 50	.12 .11 .11 .10 .10	4 <3 3 3 <3	2.56 1.86 1.73 2.35 1.78	.02 .01 .01 .02 .02	.30 .13 .12 .16 .13	<2 <2 <2 <2 <2 <2 <2	<1 <1 1 2 1
L20E 19+50N L20E 19+25N L20E 19+00N L21E 21+00N L21E 20+75N	1 1 <1 <1 1	23 33 25 14 44	13 12 57 11 22	73 80 300 132 237	.4 .5 1.8 .6 <.3	26 43 40 21 111	7 10 8 8 18	290 309 166 567 1675	1.93 2.43 2.05 1.57 2.98	4 5 7 11	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2	<2 ~2 ~2 ~2 ~2 ~2 ~2	28 20 16 17 29	.3 .2 .4 .6 1.9	ব্য ব্য ব্য ব্য ব্য	ও ও ও ও ও ও	53 57 36 34 63	.28 .32 .19 .17 .33	.074 .093 .113 .080 .077	15 14 7 6 13	38 61 30 26 170	.61 .94 .45 .45 1.70	49 89 40 67 171	.09 .12 .09 .09 .14	<3 3 3 <3 <3	1.52 1.99 1.17 1.21 2.94	.02 .02 .01 .03 .02	.14 .26 .04 .06 .26	<2 <2 <2 <2 <2 <2 <2	<1 <1 <1 <1 1
L21E 20+50N L21E 20+25N L21E 20+00N L21E 19+75N L21E 19+50N	<1 2 1 <1 <1	15 8 11 12 13	15 11 15 15 15	96 96 60 82 128	<.3 <.3 <.3 1.2 <.3	17 14 16 11 18	7 5 6 9	499 396 1036 1438 1257	1.33 1.63 1.34 1.62 1.82	8 5 3 <2 3	<8 <8 <8 <8 <8	< < < < < < < < < < < < < < < < <> </td <td><2 <2 <2 <2 <2 <2 <2 <2 <2</td> <td>15 16 12 13 18</td> <td>.4 .3 .2 .3 .2</td> <td><उ <उ <उ <उ</td> <td>ও ও ও ও ও</td> <td>28 37 34 33 34</td> <td>.13 .14 .14 .16 .21</td> <td>.048 .165 .079 .221 .131</td> <td>8 9 9 6 10</td> <td>16 20 22 16 26</td> <td>.22 .29 .41 .21 .42</td> <td>56 72 55 209 181</td> <td>.08 .11 .09 .14 .11</td> <td>ও ও ও ও ও ও ও ও</td> <td>.84 1.55 1.03 1.73 1.53</td> <td>.01 .02 .02 .02 .02</td> <td>.03 .05 .06 .05 .10</td> <td>~2 ~2 ~2 ~2 ~2 ~2</td> <td><1 <1 <1 <1 <1</td>	<2 <2 <2 <2 <2 <2 <2 <2 <2	15 16 12 13 18	.4 .3 .2 .3 .2	<उ <उ <उ <उ	ও ও ও ও ও	28 37 34 33 34	.13 .14 .14 .16 .21	.048 .165 .079 .221 .131	8 9 9 6 10	16 20 22 16 26	.22 .29 .41 .21 .42	56 72 55 209 181	.08 .11 .09 .14 .11	ও ও ও ও ও ও ও ও	.84 1.55 1.03 1.73 1.53	.01 .02 .02 .02 .02	.03 .05 .06 .05 .10	~2 ~2 ~2 ~2 ~2 ~2	<1 <1 <1 <1 <1
L21E 19+25N L21E 19+00N L22E 21+00N L22E 20+75N L22E 20+50N	<1 1 3 5 3	11 12 37 39 36	12 11 80 94 154	130 133 697 972 800	<.3 <.3 3.1 3.2 1.9	20 22 56 66 44	8 9 18 18 14	487 511 1370 1324 1131	2.12 2.17 4.36 3.88 3.31	<2 2 231 771 199	<8 <8 <8 <8 <8	< < < < < < < < < < < < < < < <> </td <td>3 3 3 3 2</td> <td>15 16 21 20 33</td> <td>.5 .4 3.9 5.2 5.3</td> <td>ব্য ব্য ব্য ব্য ব্য</td> <td>র র র র র র র</td> <td>46 46 57 61 44</td> <td>.15 .15 .20 .16 .45</td> <td>. 137 . 163 . 157 . 146 . 264</td> <td>9 10 16 15 13</td> <td>28 30 44 47 39</td> <td>.52 .53 .73 .90 .62</td> <td>100 95 158 110 142</td> <td>.14 .13 .11 .13 .12</td> <td><3 <3 <3 <3 4</td> <td>1.90 2.18 2.56 3.20 4.27</td> <td>.02 .02 .01 .02 .02</td> <td>.06 .06 .13 .14 .09</td> <td><2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <</td> <td><1 <1 2 123 5</td>	3 3 3 3 2	15 16 21 20 33	.5 .4 3.9 5.2 5.3	ব্য ব্য ব্য ব্য ব্য	র র র র র র র	46 46 57 61 44	.15 .15 .20 .16 .45	. 137 . 163 . 157 . 146 . 264	9 10 16 15 13	28 30 44 47 39	.52 .53 .73 .90 .62	100 95 158 110 142	.14 .13 .11 .13 .12	<3 <3 <3 <3 4	1.90 2.18 2.56 3.20 4.27	.02 .02 .01 .02 .02	.06 .06 .13 .14 .09	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<1 <1 2 123 5
L22E 20+25N L22E 20+00N L22E 19+75N L22E 19+50N L22E 19+25N	<1 <1 2 1	21 33 28 46 28	24 15 13 11 14	169 127 121 201 163	.9 .4 .4 .8 .7	26 37 36 68 35	8 10 8 16 14	493 453 728 409 710	2.19 2.50 2.13 2.67 2.67	9 8 3 4 <2	<8 <8 <8 <8 <8	< < < < < < < < < < < < < < < < < <> </td <td>2 <2 <2 2 2</td> <td>16 20 11 23 22</td> <td>1.1 .8 .6 1.0 1.3</td> <td><3 <3 <3 <3 <3</td> <td>ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও</td> <td>48 52 50 51 62</td> <td>.13 .22 .15 .27 .21</td> <td>.110 .182 .085 .172 .113</td> <td>11 15 9 10 9</td> <td>39 48 47 42 35</td> <td>.66 1.10 1.08 .96 .87</td> <td>95 120 50 79 82</td> <td>.11 .11 .10 .12 .14</td> <td>3 <3 <3 <3</td> <td>1.60 3.05 2.28 2.38 2.50</td> <td>.01 .02 .01 .02 .02</td> <td>.09 .19 .09 .12 .08</td> <td><2 <2 <2 <2 <2 <2</td> <td>1 <1 <1 <1</td>	2 <2 <2 2 2	16 20 11 23 22	1.1 .8 .6 1.0 1.3	<3 <3 <3 <3 <3	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	48 52 50 51 62	.13 .22 .15 .27 .21	.110 .182 .085 .172 .113	11 15 9 10 9	39 48 47 42 35	.66 1.10 1.08 .96 .87	95 120 50 79 82	.11 .11 .10 .12 .14	3 <3 <3 <3	1.60 3.05 2.28 2.38 2.50	.01 .02 .01 .02 .02	.09 .19 .09 .12 .08	<2 <2 <2 <2 <2 <2	1 <1 <1 <1
L22E 19+00N L23E 21+00N L23E 20+75N L23E 20+50N L23E 20+25N	1 2 1 3	23 28 40 29 28	12 25 26 20 36	199 226 236 153 356	<.3 .7 .5 .3 <.3	33 38 51 29 47	12 13 15 8 11	836 1478 1013 616 711	2.74 3.06 3.38 2.28 2.52	<2 35 44 15 19	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	<2 <2 3 <2 2	25 18 25 20 26	1.2 1.7 2.5 1.1 2.6	ও ও ও ও ও ও	८२ ८२ ८२ ८२ ८२	57 58 65 51 53	.23 .17 .24 .19 .24	.091 .103 .087 .058 .121	9 11 13 10 12	38 45 50 33 36	.98 .89 1.20 .71 .65	88 154 204 134 141	. 14 . 16 . 18 . 12 . 10	ব্য ব্য ব্য ব্য	2.21 3.06 3.83 1.78 1.98	.02 .02 .02 .02 .02	.08 .13 .26 .17 .10	<2 <2 <2 <2 <2 <2 <2	<1 <1 1 <1
L23E 20+00N L23E 19+75N L23E 19+50N L23E 19+25N L23E 19+25N L23E 19+00N	3 9 6 1 1	25 38 48 22 22	19 19 15 9 10	456 590 472 245 262	.5 .6 .3 <.3	51 51 57 39 36	12 13 12 11 12	255 370 346 506 560	2.47 4.06 3.44 2.01 2.40	5 3 5 <2 <2	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2	2 3 3 <2 3	18 37 33 34 26	2.5 3.2 2.4 1.6 2.0	<3 <3 <3 <3 <3	3 3 3 3 3 3 3 3	54 92 77 30 55	. 16 . 15 . 17 . 28 . 27	.099 .163 .139 .140 .090	10 11 12 8 11	34 40 37 18 36	.58 .64 .65 .30 .67	80 140 93 44 99	.11 .12 .10 .06 .14	ব্য ব্য ব্য ব্য ব্য	2.30 2.52 2.39 2.10 2.14	.02 .02 .03 .04 .02	.07 .09 .08 .03 .08	<2 <2 <2 <2 <2 <2	<1 <1 <1 <1 1
STANDARD C3/AU-S	27	69	37	164	5.7	38	13	798	3.69	59	23	2	18	30	25.5	10	21	82	.60	.094	21	168	.68	147	.11	20	2.06	.04	.16	16	48

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. AU* - AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED.(10 GM)

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 1 FA 1

ACHE ANALYTICAL

T

Cream Minerals Inc. PROJECT BISMARK FILE # 97-3734

Data 1 FA 1

Page 7

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppn	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppn	Cr ppm	Mg %	Ba ppm	Ti %	B	Al %	Na %	К %	W /	\u* opb	
L81E 48+00N L81E 47+75N L81E 47+50N L81E 47+25N L81E 47+25N L81E 47+00N	3 2 4 6 8	40 17 20 45 22	130 80 103 704 81	333 312 367 505 506	2.3 1.3 1.3 17.2 .9	40 26 27 17 33	13 7 5 5	1656 787 797 1022 232	2.23 1.71 1.96 2.03 2.35	11 6 6 26 15	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	37 40 32 17 21	3.6 2.7 1.8 2.9 1.4	<3 <3 <3 4 3 <3	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	70 58 69 54 77	.35 .56 .29 .19 .16	.083 .123 .063 .086 .079	8 6 8 8 8	34 28 37 20 30	.52 .46 .61 .29 .52	104 84 158 118 70	.08 .07 .09 .06 .11	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	1.21 1.32 1.40 1.06 1.48	.02 .02 .02 .02 .02 .02	.09 .08 .10 .07 .06	<2 <2 <2 <2 <2 <2 <2	<1 <1 <1 2 1	
L81E 46+75N L81E 46+50N L81E 46+25N L81E 46+00N L81E 45+75N	13 <1 <1 4 1	231 37 27 26 24	8051 118 25 107 50	3371 1154 146 332 275	97.5 1.6 .6 <.3 .3	33 51 51 54 57	10 12 9 11 12	4960 470 541 656 767	7.53 2.80 1.78 3.00 2.89	177 2 2 7 5	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	2 22 22 23	26 31 97 61 76	31.8 3.9 1.9 2.5 2.4	13 <3 <3 <3 <3	3 3 3 3 3 3 3 3	68 57 37 96 88	.33 .30 .65 .44 .73	.161 .067 .076 .105 .185	15 10 7 12 19	37 40 79 49 56	.97 .85 .67 .87 .95	53 64 87 98 141	.05 .12 .05 .11 .10	<3 3 3 3 4	1.74 2.69 1.67 2.78 2.05	.02 .02 .02 .03 .03	.13 .18 .08 .17 .26	<2 <2 <2 <2 <2 <2 <2 <2	31 <1 <1 <1	
L81E 45+50N RE L81E 45+50N L81E 45+25N L81E 45+20N L81E 45+00N L82E 48+00N	<1 1 1 3	15 17 15 42 51	14 14 16 47 82	111 107 245 263 313	<.3 <.3 <.3 <.3 1.8	28 27 43 90 74	7 7 12 19 15	247 234 304 375 1828	2.32 2.29 3.44 3.96 2.96	3 3 8 28	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	2 2 3 3 ~2	61 60 33 130 73	1.3 1.3 2.1 4.9 4.6	<3 <3 <3 <3 <3 <3	3 3 3 3 3 3 3 3 3	76 75 91 121 66	.30 .29 .22 .59 1.24	.045 .044 .063 .063 .164	15 16 10 17 13	42 40 55 95 47	.55 .53 .77 1.27 1.01	82 78 112 66 86	.14 .14 .20 .11 .07	<3 <3 <3 <3 <3 <4 <3 <	1.52 1.47 3.15 3.13 2.14	.02 .02 .03 .05 .03	.33 .31 .32 .31 .15	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<1 <1 <1 <1 1	
L82E 47+75N L82E 47+50N L82E 47+25N L82E 47+20N L82E 47+00N L82E 46+75N	10 3 5 329 27	57 33 37 865 44	506 62 20 22435 287	530 264 284 4567 604	8.2 .7 .3 203.4 5.3	66 42 86 114 46	15 12 14 19 15	2154 1533 508 7388 3186	2.89 2.39 2.42 9.73 2.35	40 5 4 352 12	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	<2 <2 <2 5 <2	66 63 25 24 19	7.0 5.1 3.0 50.3 9.1	4 <3 <3 75 <3	ও ও ও ও ও ও	78 64 73 65 69	1.01 .64 .24 .27 .19	.162 .103 .065 .143 .076	16 10 8 24 11	47 47 84 43 34	.94 .87 .62 .84 .66	67 191 50 35 183	.05 .13 .08 .02 .06	<3 3 <3 <3 5	1.76 2.01 1.59 1.71 1.83	.02 .03 .02 .01 .02	.11 .29 .08 .11 .09	<2 <2 <2 <2 <2 <2	3 <1 1 122 3	
L82E 46+50N L82E 46+25N L82E 46+00N L82E 45+75N L82E 45+50N	<1 1 3 4 <1	27 46 30 53 31	580 2136 17 16 53	905 1918 246 330 185	5.0 28.6 .7 1.2 .7	35 20 71 110 45	5 7 12 19 13	415 2873 277 389 1270	2.20 2.21 3.14 3.39 2.20	16 32 <2 <2 5	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	<2 <2 3 6 <2	19 34 31 267 128	1.3 11.7 1.7 13.6 3.2	<3 4 <3 <3 <3	ও ও ও ও ও ও ও	55 35 95 120 63	.30 .73 .41 1.48 .58	.075 .110 .043 .140 .062	8 9 28 16	43 20 80 46 33	1.08 .36 1.65 .89 .74	74 99 60 102 216	.04 .04 .10 .05 .10	<3 4 5 7 <3	2.27 1.39 3.22 3.40 1.69	.01 .03 .01 .12 .02	.05 .07 .11 .09 .16	<2 <2 <2 <2 <2 <2	6 5 <1 <1 <1	
L82E 45+25N L82E 45+00N Standard C3/AU-S	4 <1 24	30 7 67	19 14 41	324 87 159	<.3 <.3 5.8	62 14 35	10 5 12	291 513 788	2.56 1.83 3.45	2 2 53	<8 <8 15	<2 <2 4	4 2 17	416 28 29	3.5 <.2 22.6	3 <3 17	<3 <3 18	119 53 81	.67 .21 .59	.045 .034 .090	12 9 19	58 25 171	.68 .28 .64	70 81 135	.04 .14 .12	<3 <3 20	2.61 1.11 1.91	.03 .02 .05	.13 .12 .17	<2 <2 20	<1 <1 52	

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. AU* - AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED.(10 GM)

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE

ASSAY CERTIFICATE

Cream Minerals Inc. PROJECT BISMARK File # 97-3734R Box 10435, 1610 - 777 Dun, Vancouver BC V7Y 1K5 Submitted by: Linda Dandy

SAMPLE#	Pb Zn % %
BM-1 BM-2 BM-3 BM-4 BM-5	$\begin{array}{r} - 26.36 \\ - 31.25 \\ 1.67 5.91 \\ 2.80 7.99 \\ 2.36 30.23 \end{array}$
BM-6 GC-2 GC-3 GC-4 GC-5	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
GC-7 GC-8 INDEX-2 PRO-1 PRO-2	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
PRO-3 SB-17	$8.35\ 27.46 - 4.74$

1.00 GM SAMPLE LEACHED IN 75 ML AQUA - REGIA, DILUTE TO 250 ML, ANALYSIS BY ICP.

- SAMPLE TYPE: ROCK PULP

DATE RECEIVED: AUG 5 1997 DATE REPORT MAILED: Hug 11/47

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANC	OUT R BC V6A 1R6 PHONE (604) 253-3158 FAX (604) 253 716
AA ASSAY CERTI	FICATE
Cream Minerals Inc. PROJECT BI Box 10435, 1610 - 777 Dun, Vancouver BC V7	SMARK File # 97-3734R2 Y 1K5 Submitted by: Linda Dandy
SAMPLE#	Pb %
BM-1 BM-2 BM-6 GC-7 GC-8	.27 .23 .04 .06 .08
	.32
PB BY REGULAR ASSA - SAMPLE TYPE: ROL DATE RECEIVED: AUG 19 1997 DATE REPORT MAILED: AUG 21/97 S	AY ICP. CK PULP SIGNED BY

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 🖊 FA

ACME ANALYTICA	LABC	RAT	ORIES	5 LTI	•	85	52	E. I	IAST:	ING	5 S'	r.	VAN	COT	R: A	BC	v	6A	1R6		P	IONE	:(60	4)2	53-	315	58	Fax	(60	4)2	53	716
							GI	EOC)	HEM]	CA	L 1	ANA	LY	SI	}-c	ERT	TF:	ICA	TE												Å	
TT		Ç	<u>lrea</u>	<u>n Mi</u>	nera Box 10	<u>als</u> 1435,	<u>I</u> 1 161	<u>1C.</u> 0 - 7	<u>PR(</u> 77 Du	DJE n, V	CT ancol	<u>BI</u> uver	SM BC	ARI v7y	<u>΄</u> 1κ5	Fil Sub	e ; mitt	# 9 ed b)7- y: L	600 Inda	2 dand	r P	age	2 1							Ľ.	
SAMPLE#	Mo ppm	Cu ppm	Pb	Zn ppm	Ag ppm	Ni ppm p	Co ppm	Mn ppm	Fe %	As ppm (U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	sb ppm	Bi ppm	v ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	К %	W ppm	Ag** gm/t	Au** gm/t
T97-1 0-2 T97-1 2-4 T97-1 4-6 T97-1 6-8 T97-1 8-10	1 2 1 1 9	54 55 38 57 357	58 16 38 343 6213	221 165 166 1224 5363	1.9 1.0 1.3 6.7 233.4	53 67 49 37 21	7 8 7 6 8	1005 431 608 503 1208	1.68 2.21 2.00 1.91 2.73	28 6 4 41 168	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2	4 4 5 3	14 26 25 20 18	1.8 1.5 1.1 6.1 15.3	<3 <3 <3 3 29	उ उ उ उ उ उ उ	42 52 32 23 20	.46 .64 .56 .44 .38	.134 .152 .106 .122 .146	27 19 22 25 16	30 51 37 20 21	.27 .82 .70 .21 .07	31< 28 38 35< 25<	.01 .04 .02 .01 .01	<3 <3 <3 <3 4	.66 1.12 1.17 .71- .41-	.01 .01 .01 <.01 <.01	.10 .05 .09 .09 .10	<2 <2 <2 <2 <2 <2 <2 <3	2.8 <.3 1.1 6.6 526.9	.02 .01 .01 .01 .41
RE T97-1 8-10 T97-1 10-12 T97-1 12-14 T97-1 14-16 T97-1 16-18	9 9 7 11 4	368 321 186 486 46	6298 17789 227 2072 99	5499 7061 8080 7890 868	122.0 187.6 46.4 158.3 5.9	21 30 27 18 13	8 8 9 9 1	1224 1993 2317 1477 83	2.79 2.88 3.05 3.83 2.45	169 217 51 111 344	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	2 4 3 5	19 9 6 13	15.7 27.8 37.5 23.0 18.3	30 34 16 42 5	3 3 3 3 3 3 3 3 3	20 17 12 9 13	.39 .20 .14 .15 .08	. 151 . 100 . 082 . 098 . 084	16 22 17 18 24	21 16 16 13 10	.07 .06 .05 .04 .03	26< 40< 38< 32< 26<	.01 .01 .01 .01 .01	उ 4 उ उ उ उ	-43 -40 -33 -33 -28	<.01 <.01 <.01 <.01 <.01	.10 .12 .12 .13 .13	2 4 2 2 2 2 2	521.6 305.1 45.1 164.6 6.2	-40 -08 -03 -07 -03
T97-1 18-20 T97-1 20-22 T97-1 14.1 T97-2 0-2 T97-2 2-4	3 2 31 <1 2	66 54 1949 65 70	53 19 22414 92 230	2392 1568 68096 239 483	2.9 1.5 126.1 3.2 7.8	53 53 24 38 52	35 9 6 9 10	2106 1414 2396 768 697	2.34 2.38 5.02 1.71 2.73	29 33 76 15 11	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	5 6 <2 5 6	16 10 5 13 17	11.6 6.1 39.7 1.0 1.4	3 <3 189 <3 4	3 3 3 3 3 3	28 40 6 28 23	.22 .21 .03 .26 .32	.104 .094 .027 .082 .090	30 45 7 29 32	28 38 13 28 22	. 18 . 33 . 02 . 12 . 14	72 64< 13< 41< 41<	.01 .01 .01 .01 .01	<3 4 <3 <3 <3	.68 .77 .12 .69 .63	<.01 <.01 <.01 <.01 <.01	.09 .06 .04 .08 .08	<2 <2 <2 <2 <2	2.9 1.0 813.8 2.8 6.3	<.01 .01 .05 .01 .02
T97-2 4-6 T97-2 6-8 RE T97-2 6-8 T97-2 8-10 T97-2 10-12	1 1 2 1 1	57 49 50 47 44	18 32 38 161 40	147 228 239 1061 542	1.1 1.4 1.8 5.0 1.8	49 45 47 34 39	9 9 9 8 9	771 590 625 1822 1484	1.82 1.94 2.01 2.21 2.16	7 4 35 14	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	5 4 6 4 4	24 18 18 18 23	1.2 1.6 1.8 12.8 7.7	<3 <3 <3 <3 <3	3 3 3 3 3 3 3 3 3 3 3 3 3	33 34 36 33 33	.46 .40 .42 .36 .35	.124 .099 .103 .119 .097	28 21 22 24 26	34 37 40 26 20	.27 .61 .64 .34 .60	58< 48 49 52 72	.01 .05 .05 .01 .01	3 3 3 3 3 3 3 3	.93 .96 1.01 .75 1.16	<.01 .01 .01 <.01 <.01	.08 .09 .09 .14 .15	<2 <2 <2 <2 <2 <2 <2 <2 <2	.7 1.0 .5 4.7 1.1	.01 <.01 <.01 .01 .01
T97-2 12-14 not received T97-2 14-16 not received T97-3 T97-5 0-2 T97-5 2-4	- - <1 <1 1	- 90 38 37	- 96 13 11	213 80 122	- 1.5 .5 .8	- 42 36 31	- 10 10 7	- 605 480 892	2.43 2.20 1.75	- 28 15 18	- - <8 <8 <8	- - <2 <2 <2	- 4 4 4	- - 10 7 17	- 1.1 .4 1.9	- 5 ≺3 ≺3	- 3 3 3	- 20 48 28	- .27 .29 .48	- .112 .094 .105	- 39 15 19	20 46 25	- .42 1.30 .42	- 53< 31 35	.01 .06 .02	- <3 3 <3	- .97 [.] 1.55 .79	- - 01 .01 .01	- .14 .10 .04	- <2 <2 <2	1.3 <.3 <.3	.01 .01 .01 <.01
197-5 4-6 197-5 6-8 197-5 8-10 197-5 10-12 197-5 12-14	2 10 11 15 4	52 66 134 80 45	110 605 1166 693 44	1081 2995 1883 1121 313	4.4 66.5 131.8 60.1 3.3	47 82 42 46 55	8 9 7 6 8	1121 7605 3595 5263 1275	2.06 3.03 3.40 3.96 2.54	57 230 424 322 45	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	4 5 2 2 5	17 22 12 28 13	6.8 40.0 24.5 11.5 3.5	<3 10 16 14 3	<3 <3 <3 <3 <3	27 17 14 24 41	.51 .44 .23 .36 .48	.117 .092 .069 .098 .155	24 24 13 12 25	36 21 20 23 39	.38 .10 .04 .04 .05	46 103< 56< 69< 33<	.01 .01 .01 .01 .01	3 3 3 3 3 3 3 3 3 3	.69 .40 .24 .26 .45	<.01 <.01 <.01 <.01 <.01	.12 .16 .10 .09 .11	<2 2 2 2 2 2	4.3 66.0 150.1 56.5 1.4	.01 .12 .15 .12 .01
T97-5 14-16 T97-5 28.2-31 T97-5 32.8-35 STANDARD C3/R-1/AU-1 STANDARD G-1	4 2 1 25 <1	40 52 43 65 3	132 908 16 37 4	288 809 119 153 50	2.2 4.7 1.6 5.8 <.3	46 37 98 37 9	8 7 10 12 5	1752 3968 903 759 598	1.96 2.81 2.67 3.27 2.13	43 90 8 53 <2	<8 <8 <8 17 <8	<2 <2 <2 <2 <2 <2 <2 <2	6 4 4 17 2	10 41 22 28 65	3.1 6.2 1.3 23.2 <.2	3 <3 16 <3	<3 <3 <3 19 <3	28 17 46 80 44	.39 .98 .47 .57 .60	.144 .430 .152 .084 .078	28 26 44 19 7	31 19 67 170 87	.05 .08 1.01 .58 .66	51< 41< 43 143 270	.01 .01 .03 .09 .15	4 <3 19 <3	.42 [.] .53 [.] 1.32 1.81 1.02	<.01 <.01 .01 .04 .06	.13 .17 .05 .15 .52	<2 <2 <2 17 <2	1.3 3.8 1.8 97.3 <.3	<.01 .01 .01 3.38 <.01
ICP THI ASS - S <u>Sam</u>	5 S LEA AY RE AMPLE ples	00 GH CH IS COMME TYPE begin	RAM SAM S PARTI ENDED F E: ROCK	IPLE IS AL FOR OR ROO (/ RE' ar	G DIGES MN FE K AND G** & e Reru	STED SR CORE AU** JNS a	WITH CA P SAM BY nd '	3ML LA (PLES FIRE RRE'	3-1-2 R MG IF CU ASSAY are R	HCL BA T PB FRO ejec	-HNO IB ZNÁ M1 <u>tRe</u>	3-H2 W AN S > A.T. runs	OAT DLI 1%, SAM	95 MITE AG >	DEG. D FOI 30 (C FO R NA PPM 8	NR ON K AN AU	IE HO ID AL > 10	NUR A	ND IS PB	5 DIL	UTED.	το 1	IO ML	WIT	H WA	TER.					
DATE RECEIVED:	ост	9 19	97 D.	ATE I	REPOR	тм	AIL	ED:	Οι	t	20	197	7	SI	GNEI) BY	:.Ç.		.h.		Б .то	YE, C	C.LEO	NG,	J.WAI	NG;	CERTI	IFIED	B.C	. AS	SAYERS	
All results are consid	ered	the c	confide	ntial	proper	ty o	f th	e cli	ent.	Acme	ass	umes	the	lia	bili	ies	for	actu	al c	ost c	of th	e ana	alysi	s on	ly.				D	ata_	FA	<u> </u>

Cream Minerals Inc. PROJECT BISMARK FILE # 97-6002

Page 2

Data

FA

ACHE ANALYTICAL

SAMPLE#	Мо	Çu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	۷	Ca	P	La	Сг	Mg	Ba	Ti	В	AL	Na	K	W	Ag**	Au**
	PPm	Phil	ppiii	ppii	Phu	ppii	phii	phil	/0	ppiii	phil	phu	ppin	hhii	ppiii	hhu	ppiii	ppiii	~	/0	ppm	pm	/ a	ppm	6	pm	76	76	76	ppm	gm/τ	gm/t
197-6 2-4.6	2	49	16	46	1.0	40	7	261	1.32	2	<8	<2	3	30	.7	<3	<3	18	.77	.252	13	24	.34	29	.06	<3	.60 .	.02	.07	2	.4	.02
B197-1 0-3	11	56	23	74	1.7	41	10	146	5.16	2	<8	<2	10	354	1.0	<3	<3	98	2.39	.100	10	48	.61	43	.06	<3 3	.70 .	.25	.29	11	<.3	.01
BI97-1 3-6	7	46	69	214	5.4	54	19	341	4.80	15	10	<2	11	75	3.0	<3	<3	76	.97	.061	17	40	.99	23	.03	4 2	. 15	05	13	<2	4.6	<.01
BI97-1 6-9	9	43	85	416	7.1	57	12	501	4.53	17	<8	<2	7	381	17.6	5	<3	98	6.58	.115	13	55	.73	64	.06	33	.39	09	.25	<2	5.6	.02
B140-B146.2	27	91	487	918	3.3	85	12	1058	3.48	51	<8	<2	5	22	8.1	4	<3	119	.42	.127	26	29 1	.09	59<	.01	31	.17<	.01	.19	<2	3.3	.01
RE B140-B146.2	27	90	510	904	3.2	83	11	1054	3.43	52	<8	<2	5	21	7.9	4	<3	118	.41	.126	26	31 1	80.1	59<	.01	51	.15<.	.01	.19	<2	3.9	<.01
B146.2-B148	150	918	19263	13704	743.5	94	10	18853	11.50	988	<8	<2	3	71	66.4	325	<3	73	.68	.265	18	15	.67	55	.01	3	.96<.	01	.09	<2.2	171.4	.30
B148-B153	37	93	1243	2040	26.6	81	10	2659	3.17	182	<8	<2	4	69	18.7	10	<3	105	1.52	.216	19	30	.96	55<	.01	4 1	.13<	01	.16	2	26.0	-01
B175	11	1167	19875	99999	186.0	17	2	6467	6.41	513	<8	<2	<2	366	1016.1	213	<3	14	7.36	.005	2	3 1	1.28	9<	.01	4	.15<.	.01	.02	<2 2	361.8	.12
SB-30	1	43	55	148	1.3	19	4	1246	1.78	2	<8	<2	<2	265	1.1	<3	<3	26	5.28	.058	4	10 1	1.41	64	.01	3	.47 .	.01	.05	<2	1.5	<.01
97CURE-1	113	163	475	1598	7.4	120	18	266	3.25	3	13	<2	2	133	29.7	6	<3	203	1.68	.115	4	51	.38	53	.06	<3 2	.57 .	.13	.23	<2	7.4	<.01
97CURE-2	37	115	35	501	2.2	62	11	193	3.25	2	<8	<2	- 4	121	6.4	<3	3	99	1.61	.099	6	32	.41	91	.07	32	.45 .	.10	.18	3	2.4	<.01
97CURE-3	2	31	32	41	1.6	3	3	225	2.29	<2	<8	<2	4	76	.4	<3	<3	25	.51	.126	19	8	.50	38	.10	<3	.86 .	.06	.36	<2	.4	<.01
STANDARD C3/R-1/AU-1	25	63	34	145	5.7	36	12	741	3.32	50	18	2	17	28	22.0	15	20	79	.55	.082	19	167	.57	143	.10	20 1	.82	04	.15	19	103.6	3.32
STANDARD G-1	2	2	<3	36	<.3	6	4	520	2.00	<2	<8	<2	4	72	<.2	<3	<3	41	.64	.090	9	17	.56	228	.14	<3	.97	09	.47	5	-	•
																					•											

Sample type: ROCK. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ACME ANALYTICH LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUR	BC V6A 1R6 PHONE (604) 253-3158 FAX (604) 253 716
ASSAY CERTIFICA	TE
<u>Cream Minerals Inc. PROJECT BISMARK</u>	File # 97-6002R Page 1 AA
Box 10435, 1610 - 777 Dun, Vancouver BC V7Y 1K5	Submitted by: LINDA DANDY
SAMPLE#	CU PB Zn % % %
T97-1 0-2 T97-1 2-4 T97-1 4-6 T97-1 6-8 T97-1 8-10	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
RE T97-1 8-10	.035 .58 .53
T97-1 10-12	.031 1.72 .70
T97-1 12-14	.018 .02 .80
T97-1 14-16	.049 .22 .81
T97-1 16-18	.006 .01 .11
T97-1 18-20	.006 < .01 .28
T97-1 20-22	.005 < .01 .17
T97-1 14.1	.179 3.17 5.84
T97-2 0-2	.005 .01 .02
T97-2 2-4	.006 .02 .05
T97-2 4-6	.005 <.01 .02
T97-2 6-8	.004 <.01 .03
RE T97-2 6-8	.006 <.01 .03
T97-2 8-10	.005 .01 .12
T97-2 10-12	.003 <.01 .06
T97-2 12-14 not received T97-2 14-16 not received T97-3 T97-5 0-2 T97-5 2-4	 .007 .01 .02 .004 <.01 .01 .004 <.01 .01
T97-5 4-6	.005 .01 .13
T97-5 6-8	.006 .06 .34
T97-5 8-10	.013 .11 .22
T97-5 10-12	.008 .06 .13
T97-5 12-14	.004 <.01 .03
T97-5 14-16	.004 .01 .03
T97-5 28.2-31	.004 .09 .09
T97-5 32.8-35	.004 <.01 .01
STANDARD R-1	.836 1.25 2.31

1 GM SAMPLE DIGESTED IN 50 ML AQUA - REGIA, DILUTE TO 100 ML, ANALYSIS BY ICP.

- SAMPLE TYPE: ROCK PULP Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data \mathcal{V} FA

- -

Cream Minerals Inc. PROJECT BISMARK FILE # 97-6002R

Page 2

Data 🏷

	SAMPLE#	CU %	PB %	Zn %	
	T97-6 2-4.6 BI97-1 0-3 BI97-1 3-6 BI97-1 6-9 B140-B146.2	.005 .007 .006 .004 .009	<.01 <.01 .01 .01 .05	.01 .01 .03 .05 .11	
	RE B140-B146.2 B146.2-B148 B148-B153 B175 SB-30	.010 .090 .009 .140 .005	.05 9.08 .13 10.43 .01	.11 1.39 .25 14.26 .02	
	97CURE-1 97CURE-2 97CURE-3 STANDARD R-1	.017 .013 .002 .852	05 .05 2.01 .01 2.01 .01 1.31	.19 .06 <.01 2.27	
Sample type: PULP. Sar	ples beginning 'R	E' are	e Reru	ns and	'RRE' are Reject Reruns.

ACME ANALYTIC LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUR BC V6A 1R6 PHONE(604)253-3158 FAX(604)253 716 GEOCHEMICAL ANALYSIS CERTIFICATE Cream Minerals Inc. PROJECT BISMARK File # 97-6005 Box 10435, 1610 - 777 Dun, Vancouver BC V7Y 1K5 Submitted by: LINDA DANDY SAMPLE# Mo Cu Pb Zn Ag Ni Со Mn Fe As U Au Th Sг Cd SЬ Bi Ca v Ρ La Cr Mg Ba Τī ₿ Αl Na κ ₩ Au* ppm mag ppm PDM ppm ppm ppm ppm % ppm ppm ppm ppm % % ppm % ppm ppm ppm ppm ppm ppm ppm % ppm % % % ppm ppb BH-2 8 531 2.16 2 21 12 112 <.3 32 3 13 <2 <2 86 9.8 3 <3 73 1.60 .083 14 48 .54 52 .10 4 1.95 .07 .19 <2 <1 ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. - SAMPLE TYPE: SILT AU* - AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED.(10 GM) All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only. Data 🗸 FA

acme anai	ATIC (Ċ	LABC	RAT	ORIE	S LI	D.		852 G	E. EOC	hast 'Hem	ING: ICA	s si L A	. v. NAI	ANCO AYSI	5	r bc Cert	V6 IFI	а 1 Сал	R6 'E	I	HON	e (6 0	4)2!	53-3	158	Fay	(60	4)25	K	716 A	
						Cre	am Box	Mir 1043	1era 5, 16	18 10 -	Inc 777 D	. P un, V	ROJ ancou	ECT ver B	' BI c v7Y	SM7 1K5	<u>NRK</u> Sub	Fi mitte	le d by:	# S LIND	97-6 1a dan	006 DY								T	T	
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	v mqq	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ťi %	B ppm	Al %	Na %	K %	W ppm	Au* ppb	
GC 9+75E 5+50N	1	60	18	89	2.0	90	12	401	2.64	3	<8	<2	2	67	3.4	<3	<3	12	1.10	.411	12	7	.02	9	.03	<3	.57	.02	.01	<2	5	

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. - SAMPLE TYPE: SOIL AU* - AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED.(10 GM)

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 🗁 f

ACME ANALYT	ſ	, LA	BORA	FORIE	S LT	D.		852	E. I	LAST]	LNG	ៜៜ	т.	VAN	ICOT	`R E	BC	V61	A 1R6		P	HON	E (6()4)2	53-:	8158	3 F	AX (604	253	1.6	
A A	\sim							G	EOCI	HEMJ	[CA	L,	ANZ	ALY	SIS	CEI	ST I	FI	CATE											Î	I A	
44					Crea	am	Mi:	nera	ls :	Inc.	, F	RO	JE	CT	BISM	ARI	<u>c</u>	Fi	le #	97	-6(026										
			4.33	8 i 4		Box	104	35, 16	510: - 7	77 Du	n, V	anco	uver	BC	V7Y 1K5	S	ubmi	tteo	l by: L	inda	Dand	Y							6.667			
SAMPLE#	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	۷	Ca	P	La	Cr	Mg	8a	Ti	8	Al	Na	K	₩ Ag**	Au**	
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	7.	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	7.	%	ppm	ppm	76	ppm	% р	pm	76	74	× pp	<u>m gm/1</u>	; gm/t	
BI 97-1 9-12 CHIP	9	30	9	61	.9	72	14	404	2.75	4	<8	<2	3	298	1.4	3	<3	66	10.96	.061	6	94	1.25	135	.11	31.	. 88 .	. 80	61 <	2 <.?	s <. 01	
BI 97-1 12-15 CHIP	6	28	7	74	.6	45	10	307	2.33	4	<8	<2	3	244	1.5	<3	<3	50	9.34	.062	7	56	1.50	131	.14	<3 1.	.64 .	06.	59	2 <.?	<.01	
197-7 0-2	3	32	28	63	1.2	41	18	2293	3.84	46	<8	<2	10	79	.8	<3	<3	26	.91	.053	29	21	.54	73	.02	5 1.	.02 .	01.	32 <	2 .5	<.01	
197-7 2-4	15	169	12262	11502	41.7	31	10	20114	10.54	265	<8	<2	6	80	87.2	20	<3	20	.86	.025	.7	10	.23	-58<	.01	9.	.32 .	01.	17	2 36.9	/ .10	
197-7 4-6	29	163	9645	10036	27.4	41	12	45938	16.18	80	<8	<2	10	167	84.7	18	3	37	.58	.076	17	15	. 19	148<	.01	11 .	.48 .	01.	21 <	2 24.4	, .02	
197-7 6-8	3	44	94	174	1.1	38	16	423	3.81	35	<8	<2	11	32	2.3	<3	<3	24	.34	.051	21	24	.63	42<	.01	4 1	.29 .	01.	20 <	z .	/ <.01	
T97-7 8-10	8	42	91	154	1.1	50	17	998	4.14	36	<8	<2	12	33	2.6	4	<3	49	.33	.057	33	33	.71	71	-01	31.	.56 .	01.	24 <	Z 1.8	1.01	1
T97-8 7-8	1	196	9420	26214	58.3	28	8	17326	5.78	32	<8	<2	8	119	203.3	18	<3	45	2.36	-096	10	23	.79	66	.03	7	.89 .	03.	26	3 53.	.02	
T97-8 8-10	12	199	10732	39422	75.0	17	6	36375	14.42	46	<8	<2	7	160	348.5	29	<3	17	2.40	.041	- 7	10	.52	52	.01	11 .	.39 .	01.	18 <	2 73.	.06	
197-8 10-12	3	192	16745	46702	169.6	10	4	47337	19.16	80	<8	<2	5	39	392.2	69	<3	16	.73	.030	5	10	1.20	28	.02	12	.37.	01.	10 <	2 195.3	; .08	
T97-8 12-14	12	1060	17588	99999	256.5	16	12	34944	18.98	3305	<8	<2	3	43	1313.7	118	<3	12	.48	.021	2	8	.75	20	.01	9	.23 .	01.	07 <	Z 267.	.72	
т97-8 14-16	2	174	7622	22673	47.8	29	15	12803	8.17	464	<8	<2	4	43	174.0	19	<3	23	.39	.049	8	14	.72	45	.02	6	.81 .	02.	24	2 52.4	• .11	
RE T97-8 14-16	3	180	7727	23844	50.8	30	15	13318	8.49	523	<8	<2	4	44	182.7	18	<3	24	.40	.049	9	15	.74	46	.02	6	.84 .	02.	24 <	2 49.8	3 .10	
т97-8 16-18	4	12	429	1106	2,0	33	14	3175	4.80	53	<8	<2	7	82	9.5	3	<3	21	-72	-049	27	20	.79	41	-01	31.	.03 .	01.	21 <	2 1.6) <.01	
STANDARD C3	25	66	35	153	5.6	37	12	745	3.36	53	22	2	17	30	22.2	17	19	82	.59	.083	20	172	.57	144	.10	20 1	.90 .	04.	16 1	8	• •	
STANDARD G-1	2	5	4	44	<.3	9	5	579	2.15	<2	<8	<2	3	67	<.2	<3	<3	43	.61	.073	8	90	.62	251	. 15	3 1	.01 .	06.	48 <	2		

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK AG** & AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE. Samples beginning 'RE' are <u>Reruns and 'RRE' are Reject Reruns</u>.

Data FA

Assay in progress Ph. 3n = 1%

L	LTD. 852 E. HASTINGS ST. V	ANCOT R BC V6A 1R6	PHONE (604) 253-3158 FAX (604) 253
	ASSAY CER	TIFICATE	
	Box 10435, 1610 - 777 D	<u>BISMARN</u> FILE # : un, Vancouver BC V7Y 1K5	97-6026R
	SAMPLE#	PB Zn % %	
	T97-7 2-4 T97-7 4-6 T97-8 7-8 T97-8 8-10 T97-8 10-12	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	T97-8 12-14 RE T97-8 12-1 T97-8 14-16 T97-8 16-18	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
DATE RECEIVED: OCT 22 1997 DA	.250 GM SAMPLE DIGESTED IN 30 ML AQUA - R - SAMPLE TYPE: ROCK PULP Samples beginning 'RE' are Reruns and 'RR TE REPORT MAILED:	EGIA, DILUTE TO 100 ML, ANALY: <u>E' are Reject Reruns.</u> 7 SIGNED BY.	SIS BY ICP.
·			

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data KFA

ACME ANALY	ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOURT BC V6A 1R6 PHONE (604) 253-3158 FAX (604) 253 716																														
AA	L	- 1947) A A A A A	13.5	34 CO)	840		isti ar	1813	GE	осн	EMT	CAT.	AN	AT.Y	STA		RTT	FTC	ATE			8 Q.								L.	
AA		67.			(2)) - (i de la compañía de la Compañía de la compañía								18 2			ĪĪ													
					<u> </u>	rea	m M	ine	ral	s I	nc.	<u>PR</u>	<u>OJE</u>	<u>CT</u>	BIS	MAR	<u>K</u>	Fil	e #	97	-60	27							201 - 7		
							Box 1	0435,	1610	- 11	/ Dun	, Van	couve	r BC	V/Y 1	K5	Submi	tted	by: L	Inda	Dandy									••••• 2010	
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sг	Cd	sb	Bi	٧	Ca	P	La	Cr	Mg	Ba	Ti	В /	AL .	Na	ĸ	W	Au*
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ррт	ppm	ррт	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ррп	ppm	%	ppm	%	ppm	%	%	%	ppm	ppb
BH 0+25	र	70	25	705	12	87	16	1048	z 51	0	<8	0	~2	47	11 6	3	<3	120	51	101	22	80	1 34	50	12	33	70	02	10	~2	<1
BH 0+50	4	52	18	653	1.2	104	22	641	3.93	7	<8	<2	2	181	28.1	6	<3	105	1.82	298	23	67	1.13	57	.06	3 3.4	36	.08	.09	<2	<1
BH 0+75	3	34	21	417	.5	55	13	396	3.61	3	<8	<2	2	49	8.0	5	<3	117	.46	.234	14	57	.67	72	.11	64.	20	.02	.06	<2	<1
BH 1+00	4	52	20	131	.4	31	11	498	4.34	<2	<8	<2	<2	43	3.0	3	<3	87	.32	.121	13	42	.55	146	.13	3 2.0	50	.03	.27	<2	<1
BN 1+25	2	53	23	305	.7	53	31	2611	3.59	<2	<8	<2	<2	99	17.3	3	<3	88	1.26	.146	17	39	.52	276	.10	43.	00	.03	. 15	<2	<1
				447	-					,		~				-	-						74			- /			~~		
BH 1+50	4	30	14	187	.3	32	10	587	3.14	4	<8	<2	<2	55	5.5	3	<3	81	.60	.219		30	.31	161	.12	54.4	40	.02	.09	<2	<1
BH 1+62.5	2	55	19	221	.5	48	10	527	5.91	<2	<8	<2	<2	50	5.5	5	<3	137	.22	.125	17	65	.03	82	.12	4 3.	52	.02	.18	<2	<1
BH 1+75	4	32	18	700	-4	25	6	268	5.48	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<8	<2	<2	20	4.0	د>	<5	18	- 14	-211	10	41	.21	174	. 12	32.	10	.02	.12	<2	< 2
BH 1+87.5	2	40	29	390		107	19	200	4.10	10	~0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4	00 E/	7.0	-7	(5) 77	175	.44	.070	20	60	1.44	00 7/	- 10	4 3.4	+/ 20	.03	12	~2	2 -1
BH 2+00		29	29	123	د.	60	12	200	4.75	2	×0	×2	~ 2	74	3.5	0	<2	135	• 17	.071	19	07	• ()	54	.17	<> >	10	.01	. 12	~2	N 1
BH 2+12.5	7	35	38	144	.6	88	15	421	4.45	3	<8	<2	<2	70	3.2	3	<3	129	.35	.065	16	118	.94	77	.17	32.	25	.01	.14	<2	<1
BH 2+25	5	33	20	114	.6	51	10	291	3.84	3	<8	<2	<2	90	4.8	3	<3	102	1.05	.110	18	70	.52	70	. 13	<3 4.	47	.01	.17	<2	3
BH 2+50	7	31	19	118	.3	43	10	376	3.60	3	<8	<2	<2	57	3.2	4	<3	98	.29	.099	16	50	.51	46	.09	33.	09	.02	.17	<2	<1
BH 2+75	3	31	15	187	.4	48	11	647	3.17	3	<8	<2	<2	50	6.0	<3	<3	89	.26	.173	15	53	.61	97	.07	32.	28	.02	.18	<2	<1
RE BH 2+75	2	30	17	188	.4	48	11	656	3.14	3	<8	<2	<2	51	6.1	4	<3	89	.26	.175	15	51	.61	99	.07	32.	30	.02	.19	<2	<1
88 3+00	र	32	24	228	-6	53	11	450	3.39	2	<8	<2	<2	72	8.3	3	<3	102	.92	- 283	14	56	.57	161	. 11	5 2	91	.02	- 19	<2	<1
BH 3+25	3	24	20	144	.5	40	8	451	2.45	3	<8	<2	<2	51	3.1	<3	उ	83	.42	.332	11	55	.51	59	05	4 1.	94	.02	.12	<2	<1
STANDARD C3/AU-S	25	61	38	148	5.5	37	12	761	3.34	52	22	2	17	29	22.3	15	19	80	.57	.084	19	164	.57	141	.10	21 1	B4	.04	.16	18	44
STANDARD G-1	2	4	5	37	<.3	7	4	526	2.07	<2	<8	<2	4	70	<.2	<3	<3	42	.65	.087	9	88	.55	214	.14	4.	94	.08	.44	3	<1

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. - SAMPLE TYPE: SOIL AU* - AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED.(10 GM) Samples beginning 'RE' are Reruns and 'RRE' are Reject <u>Reruns</u>.

DATE RECEIVED: OCT 10 1997 DATE REPORT MAILED: Oct 20/97 SIGNED BY......D.TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS

.

Data 🕚 🗛

	ACME ANALYTICAL	LAB	ORA	TOR:	CES	LTD.		8	52 I	:. H	\ST]	ENGS	3 5'	r.	VAN	COU	FR	BC	٧e	5 a 1	.R6		PHO	ONE	604) 25	3 - 3	158	F	AX (604) 253	7-7	16
									G	EOC	HEN	MIC	AL,	/AS	SA	y d	ሥላ]	'IF	ICI	\TE													k	
	44			Cre	am .	Min	era	118	In	с.	PRC)JE	CT	BI	SM	ARK	E	'i1	e ł	ŧ 9'	7-6	185		Pa	ge	1								P
ز کرد. مصنع						BC	5x 10	435,	1610	- 77	7 Du	n, V	ancol	uver	BC	v7Y 1	K5	Subr	nitte	ed by	: Lin	nda D	andy											
	SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag opm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm j	Au ppm p	Th ppm	Sr ppm	Cd ppm	sb ppm	Bi opm į	V opm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	ті %р	B IPM	Al %	Na %	К % (W ppm	Ag** gm/t	Au** gm/t	
	T97-9 0-2 T97-9 2-4 T97-9 4.5-4.7 T97-9 4-6 T97-9 6-8	25 24 24 43 25	90 92 81 83 80	93 43 2392 359 489	1015 599 185 499 1525	3.1 3.4 202.7 51.8 7.6	47 43 2 26 57	11 9 <1 6 12	1540 1780 77 993 3135	3.12 2.60 2.23 3.18 2.94	19 18 159 69 35	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	6 5 <2 5 7	7 5 10 13	13.2 10.1 .9 5.3 22.9	उ उ 5 उ उ	<3 <3 <3 <3 <3	58 87 11 69 54	.10 .11 .01 .04 .17	.066 .080 .011 .064 .093	17 16 2 15 27	27 39 16 26 26	.39 .63 .01 .24 .58	92<. 82<. 31<. 67<.	.01 .01 .01 .01 .01	<3 <3 1 <3 <3 <3 1	.82 .06 .12< .68 .12	.01 .01 .01 .01 .01	.17 .19 .05 .20 .21	<2 <2 4 2 2 2 2 2	3.0 4.4 288.4 51.7 7.8	.01 .01 .06 .03 .02	
	T97-9 8-10 T97-9 10-12 T97-9 12-14 T97-9 14-16 T97-9 16-18	19 9 18 18 29	71 64 38 88 69	73 81 162 322 51	1685 600 301 769 301	2.7 4.2 3.8 3.4 2.1	115 73 37 78 57	11 11 8 11 10	3370 2068 1950 2174 363	2.72 2.57 2.72 2.88 3.07	25 43 54 40 4	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2	7 7 5 6 5	13 11 12 16 13	29.3 10.5 5.5 12.7 5.0	<3 3 <3 <3 3 3	<3 <3 <3 <3 <3	24 31 33 84 176	.29 .20 .17 .33 .38	.132 .095 .105 .096 .092	35 29 19 27 11	23 27 23 53 75	.79 .68 .35 1.21 1.21	86<, 51<, 62<, 81 , 49	.01 .01 .01 .02 .10	3 1 4 1 <3 1 <3 1	.30< .16< .96< .55 .36	.01 .01 .01 .01 .03	.22 .18 .21 .18 .18	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	2.6 4.6 3.6 3.7 2.7	.01 .01 .01 .01 <.01	
	T97-9 18-20 T97-9 20-22 T97-9 22-24 T97-9 24-26 RE T97-9 24-26	8 5 30 33	42 41 40 62 66	21 11 7 12 13	190 165 148 412 420	.8 .5 .9 .9	26 37 35 65 66	6 7 6 9 10	405 192 115 269 280	2.89 1.93 1.34 2.42 2.50	4 17 2 5	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	5 5 5 6	51 33 31 22 23	2.5 2.6 4.6 7.6 7.9	3 3 3 3 3 3 3 3 3	<3 <3 <3 <3 <3	73 28 17 134 139	.59 .63 .65 .45 .46	.095 .086 .108 .081 .083	20 16 15 16 17	35 27 18 53 52	.84 .51 .22 .62 .64	52 32 28 39 40	. 12 . 11 . 10 . 12 . 13	<3 1 <3 <3 <3 <3 1	.42 .76 .42 .98	.05 .05 .03 .04 .04	.21 .14 .04 .13 .14	2 <2 2 2 2	.3 .7 <.3 1.6 1.3	<.01 .01 .01 .01 <.01	
	T97-9 26-28 T97-9 28-30 T97-10 0-6 T97-10 12-14 T97-10 14-16	25 54 1 2 2	61 60 39 37 44	6 7 9 9 240	452 386 33 90 351	.6 .5 1.8 7.6	56 48 41 45 67	13 10 7 6 9	1263 498 327 904 1712	2.77 3.02 1.31 1.77 2.22	3 5 2 6 15	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	7 9 5 5 6	26 30 50 44 134	12.8 9.4 1.2 1.3 3.1	⊲ ⊲ ⊲ ⊲ 3	<3 <3 <3 <3 <3	221 154 23 27 38	.32 .44 .94 1.05 2.69	.077 .103 .157 .112 .153	17 23 20 22 27	69 64 38 30 64	.92 .69 .46 .96 1.51	94 56 36 39 42<	. 12 . 14 . 08 . 03 . 01	4 <3 <3 <3 <3	.26 .89 .69 .24 .85	.04 .04 .03 .01 .01	.31 .34 .06 .10 .15	<2 <2 <2 <2 <2 <2 <2 <2	.3 <.3 <.3 1.4 8.0	<.01 .01 .01 .01 .01	
	T97-10 16-18 T97-10 18-20 T97-10 20-22 T97-10 22-24 T97-10 24-26	1 3 9 <1 1	40 33 34 37 58	92 153 1373 43 163	263 403 5069 1758 2138	4.8 2.3 5.2 1.1 1.1	43 71 41 32 38	8 12 9 7 6	1521 2628 5747 909 1049	2.22 2.94 3.60 1.57 1.35	5 15 14 3 2	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	6 6 7 5 4	67 125 289 392 44	2.9 4.5 48.3 18.9 23.0	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	<3 <3 <3 <3 <3 <3	37 41 29 31 32	1.74 .85 2.90 3.80 1.22	.101 .109 .201 .121 .150	25 25 26 17 20	50 67 40 31 32	1.54 2.15 2.43 1.03 .99	44 55 49< 39 24	.01 .02 .01 .06 .07	<3 1 <3 1 4 2 4 3	.85 .93 .36 .88 .87	.01 .01 .01 .02 .02	.15 .09 .12 .05 .05	<2 <2 <2 <2 <2 <2	3.8 2.2 4.4 <.3 .9	<.01 <.01 <.01 .01 .01	
	T97-10 26-28 T97-10 28-30 T97-10 30-32 T97-10 32-34 T97-10 34-36	1 1 1 3 1	46 42 28 68 56	302 31 22 23 17	1204 912 898 1387 504	1.3 .7 .3 1.0 .5	32 40 31 56 49	6 7 9 11 9	721 537 532 539 405	1.28 1.74 2.30 2.71 1.59	2 2 ~2 ~2 ~2 ~2	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	4 5 7 6	45 30 34 87 92	15.7 12.9 13.2 19.1 7.9	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	3 3 3 3 3 3 3 3	24 33 41 45 28	.81 .68 .73 1.25 1.04	.118 .118 .093 .113 .079	16 17 19 23 18	26 35 41 41 37	.63 .72 1.06 .80 .72	26 36 33 52 38	.07 .08 .07 .06 .10	3 <3 <3 <3 <3	.73 .94 1.43 1.47 1.48	.02 .03 .02 .04 .10	.05 .06 .09 .12 .07	<2 <2 <2 <2 <2 <2 <2 <2	2.1 <.3 .4 .8 .4	02. 01 < 01 < 01 .01	
	T97-10 36-38 T97-10 38-40 T97-10 40-42 T97-10 42-44 T97-10 44-46	2 3 6 5 3	84 62 55 40 33	10 276 21 11 16	422 544 237 199 177	.8 1.1 .6 .3 <.3	54 53 63 60 50	12 16 14 13 15	586 679 527 588 527	2.89 4.32 3.39 3.24 4.12	2 3 2 2 3	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	7 10 7 8 9	131 68 104 90 27	7.6 7.8 2.3 1.4 1.3	<3 <3 <3 <3 <3	<3 <3 <3 <3 <3	53 122 88 65 65	1.06 .55 1.12 .93 .31	.083 .080 .106 .071 .057	19 24 17 20 23	52 65 59 52 56	1.01 1.34 1.13 1.15 1.35	83 82 157 275 193	. 11 . 12 . 15 . 16 . 13	<3 2 <3 2 <3 2 <3 2 <3 2	2.50 2.68 2.42 2.75 2.50	.11 .05 .10 .06 .03	. 15 . 26 . 35 . 55 . 52	5 <2 <2 <2 <2	4 1.0 < 3 < 3 < 3	.01 .01 .01 <.01 .02	
	STANDARD C3/R-1/AU-1 Standard G-1	27 2	65 1	35 <3	156 44	5.8 <.3	38 9	13 5	775 616	3.49 2.28	53 <2	18 <8	<2 <2	19 3	31 72	23.4 .2	16 <3	21 <3	85 45	.61 .65	.087 .078	20 8	180 100	.60 .67	152 270	. 11 . 16	20 <3	1.96	.04 .07	.17 .52	17 <2	103.6 .5	3.41 .01	
	II A A Date recrived.	CP - HIS L SSAY SAMP ample	.500 EACH RECO PLE T es be	GRAM ISF MMENE YPE: ginni	ARTIA PARTIA DED FC ROCK Ing 'R	LE IS L FOR R ROCH AC E' are TE P	DIGE MN F K AND G** + e Rer EPO	STED E SR COR AU*	WIT CA I E SAI ** BY and MATI	I 3ML LA C IPLES FIRE (RRE)	3-1- R MG IF C ASSA are	2 HC BA U PB Y FR <u>Reje</u>	L-HN TIB ZN OM1 ctR	03-H W A AS > A.T <u>erun</u>	20 A ND L 1%, . SA <u>s.</u> 7	T 95 IMITE AG > MPLE.	DEG. DFO 30	C FO R NA PPM		E HOU ND AL > 10	IR AND	D IS PB	DILU	TED 1	0 10	ML W	U TH	WATE	R.	FIFD	BC	Acci	YEDS	
	All results are consid	derec	the	conf	ident	ial p	roper	ty c	f the	clie	nt.	Acme	assi	umes	/ the	liab	oilit	ies	for	actua	l cos	t of	the	ana l	ysis	only					Da	ta <u> </u>	FA	111-

Cream Minerals Inc. PROJECT BISMARK FILE # 97-6185

ACHE ANALYTICAL

Page 2

SAMPLE#	Mo Cu ppin ppin	Pb ppm	Zn ppm	Ag N ppn pp	Vi Co pm ppm	Min Fe ppm %	As ppm	AU aqimqo	lu 1 xm pp	Th Sr prnpprn	Cd ppm	Sb ppm	Bi V ppm ppm	Ca %	P %	La ppm	Cr	Mg B %pp	a Ti m %	BA ppm	Na K X	К % р	W J ppm g	Ag** Au* gm/t gm/	** /t
T97-10 46-48 T97-10 48-50 -T97-10 50-52 T97-10 52-54 T97-10 54-56	4 32 27 96 17 64 8 47 19 40	9 30 99 98 22	277 931 1114 738 324	.3 1.8 4.6 1.4 5 5	38 12 75 11 11 9 90 12 59 12	537 3.35 776 2.91 1160 2.74 1111 3.10 411 2.98	160 16 81 26 6	<8 < <8 < <8 < <8 < <8 <	<2 <2 <2 <2 <2 <2 <2 <2 <2	6 34 4 31 5 103 5 32 4 44	1.6 12.3 27.9 13.2 5.1	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	<3 59 <3 154 <3 174 <3 118 <3 93	.38 .37 .49 .60 .76	.050 .089 .100 .087 .088	21 23 30 31 14	46 57 46 1. 48 1. 44 1.	.93 18 .85 9 .30 16 .38 17 .05 16	6.14 8.02 6.05 0.15 5.18	<3 2.0 <3 1.4 <3 1.6 <3 2.1 <3 2.2	7 .05 03 02 04 2 .10	.52 .19 .13 .47 .56	<2 <2 <2 <2 <2 <2 <2 <2	.5 .0 1.6 .0 4.8 .0 1.0 .0 <.3 <.0	02 01 03 01 01
RE T97-10 54-56 T97-10 56-58 T97-10 58-60 T97-10 60-62 T97-10 62-64	18 37 43 58 11 48 6 33 46 79	20 23 28 20 9	315 465 263 404 376	.4 1.0 .7 .6 1.1	58 12 85 9 58 12 44 14 46 7	400 2.92 344 2.40 382 2.93 619 3.89 296 3.12	4 10 4 7 3	<8 < <8 < <8 < <8 < <8 <	2 2 2 2 2 2 2 2 2	4 43 4 18 3 51 5 14 4 47	5.1 11.8 3.5 6.0 7.1	ও ও ও ও ও ও ও	<3 91 <3 117 <3 39 <3 76 <3 304	.74 .50 .90 .27 .60	.087 .123 .093 .051 .080	13 13 12 21 13	41 1. 40 . 36 . 54 1. 86 1.	.03 16 .74 4 .95 6 .45 14 .09 8	0.18 3.08 1.06 9.14 5.12	<3 2.1 <3 1.1 <3 2.1 <3 2.3 <3 1.6	2 .10 0 .05 5 .10 3 .04 1 .06	.54 .14 .20 .49 .43	<2 <2 <2 <2 <2 <4	<.3 <.0 1.6 <.0 .3 <.0 <.3 <.0 1.1 <.0	01 01 01 01 01
T97-11 0-5 T97-11 5-10 T97-11 10-15 T97-11 15-20 T97-11 20-25	19 119 104 310 71 307 26 121 39 61	48 6648 4565 234 1066	683 5478 7927 1399 3725	10.4 204.4 1 191.3 1 5.0 1 15.0 9	79 11 18 13 37 12 26 20 98 14	578 3.37 7314 5.90 10051 6.49 2332 4.20 5797 6.23	45 174 319 147 158	<8 < <8 < <8 < <8 < <8 <	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	4 19 3 31 3 86 2 177 4 572	7.4 34.5 50.6 14.1 47.4	3 67 66 3 <3	<3 124 <3 129 <3 131 <3 136 <3 181	.38 .44 1.60 2.87 8.98	. 106 . 133 . 260 . 078 . 091	27 28 22 11 14	33 1. 35 1. 38 1. 147 2. 40 4.	.02 7 .33 9 .26 8 .28 6 .32 8	3<.01 2<.01 5<.01 2<.01 2<.01	<3 1.3 <3 1.3 <3 1.5 <3 1.7 <3 2.7	0<.01 5<.01 0<.01 5<.01 5<.01	.25 .22 .19 .17 .14	<2 2 2(<2 2) <2 <2 <2	10.5 <.0 06.1 .0 09.1 .0 5.1 <.0 13.8 .0	01 04 04 01 01
T97-11 25-30 T97-11 30-35 T97-11 35-40 T97-11 40-45 T97-11 45-50	33 817 37 93 29 603 40 89 37 119	10565 858 26495 3296 576	999999 3910 39694 1410 1490	201.7 9 5.7 10 (115.1) 5 9.0 7 4.8 7	90 13 01 13 55 11 71 14 75 14	7021 7.74 6579 5.88 4368 5.84 1709 4.81 1006 4.00	342 300 987 68 82	<8 < <8 < <8 < <8 < 8 <	<2 <2 <2 <2 <2 <2 <2	3 120 3 149 <2 254 4 23 4 245	727.2 45.5 347.7 22.7 19.0	21 <3 140 3 <3	<3 103 <3 100 <3 65 <3 55 <3 82	1.77 2.34 4.21 .27 3.76	.064 .083 .049 .076 .088	14 17 3 17 7	27 2. 31 1. 17 1. 21 1. 25 1.	.01 4 .32 7 .37 3 .29 7 .11 5	5 .01 5 .01 5<.01 3<.01 3<.01	<3 1.4 <3 1.2 <3 .8 <3 1.3 <3 1.3	1 .01 3 .01 2<.01 7<.01 0<.01	.17 .20 .13 .23 .20	<2 1' <2 <2 9' <2 <2	98.8 .0 4.8 .0 07.5 .0 8.0 .0 4.5 <.0	05 01 09 01 01
197-11 50-55 197-11 55-60 197-11 60-65 197-11 65-70 197-11 70-74	20 92 16 63 22 128 25 133 33 100	142 51 101 25 14	639 418 701 537 508	2.1 8 1.3 7 3.5 8 2.9 8 2.1 8	83 14 73 14 66 12 60 10 69 8	877 3.83 782 3.42 574 3.43 182 3.42 241 3.25	52 49 77 31 42	<8 < <8 < 11 < <8 < <8 <	<2 <2 <2 <2 <2 <2 <2 <2 <2	3 179 2 143 4 47 4 14 4 8	8.6 6.0 13.3 8.5 3.6	ও ও ও ও ও ও ও ও	<3 58 <3 34 <3 41 <3 39 <3 67	3.26 2.86 1.40 .43 .22	.069 .068 .078 .074 .084	8 7 7 8 10	29 1. 21 1. 20 . 18 . 17 .	.24 6 .26 5 .64 7 .59 7 .81 8	0 .01 4<.01 1<.01 7<.01 5<.01	<3 1.5 <3 1.4 <3 .9 <3 .9 <3 1.2	2<.01 7 .01 0<.01 9<.01 9<.01	.21 .22 .21 .19 .21	<2 <2 <2 <2 <2 <2	1.6 <.0 .5 .0 3.4 <.0 3.3 <.0 1.3 <.0	01 01 01 01 01
T97-11 78-82 B 2+75-2+85 B 2+85-2+90 GIBSON L ADIT STANDARD C3/R-1/AU-1	11 133 38 95 40 87 4 22 27 64	92 6 70 96 37	471 592 626 127 169	1.5 1.7 2.4 2.0 5.7	72 12 56 8 94 12 40 8 39 13	766 3.25 273 3.73 1697 3.88 1262 3.59 785 3.48	46 3 62 75 54	<8 < <8 < <8 < 21 <	<2 <2 <2 <2 <2 <2 <2	4 18 3 23 4 105 6 51 17 30	6.6 13.6 9.1 2.1 23.5	<3 <3 <3 <3 15	<3 56 <3 215 <3 150 <3 20 21 85	.30 .38 3.19 1.56 .60	.082 .073 .073 .041 .086	16 5 16 18 21	22 62 1 37 1 24 179	.92 9 .08 10 .32 4 .42 5 .60 14	2<.01 7.04 5<.01 5<.01 9.11	<3 1.1 <3 1.7 <3 1.5 <3 1.1 16 1.9	7 .01 0 .04 6<.01 1 .01 3 .04	.19 .29 .21 .21 .16	2 <2 <2 2 19 1	1.0 .(2.0 <.(2.0 <.(2.1 .2 04.4 3.(03 01 01 22 09
STANDARD G-1	2 <1	5	44	<.3	9 5	602 2.24	<2	<8 <	<2	5 72	<.2	<3	<3 44	.64	.077	9	97	.65 26	2.16	<3 1.0	5.07	.51	<2	1.2 <.0	01

Sample type: ROCK. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Asson in progress for Cu. 75. En 7 200 ppm

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

852 E. HASTINGS ST. VANCOUWP BC V6A 1R6

ASSAY CERTIFICATE

Cream Minerals Inc. PROJECT BISMARK File # 97-6185R Box 10435, 1610 - 777 Dun, Vancouver BC V7Y 1K5 Submitted by: Linda Dandy

		enter an	<u> 19. – 11. – 11. – 11. – 11. – 11. – 11. – 11. – 11. – 11. – 11. – 11. – 11. – 11. – 11. – 11. – 11. – 11. – 1</u>	
SAMPLE#	CU %	PB %	Zn %	
Ť97-9 0-2 Ť97-9 2-4 Ť97-9 4.5-4.7 Ť97-9 4-6 Ť97-9 6-8	.010 .010 .008 .008 .008	.01 <.01 .25 .04 .05	.12 .07 .02 .06 .17	
T97-9 8-10 T97-9 10-12 T97-9 12-14 T97-9 14-16 T97-9 16-18	.007 .007 .004 .009 .007	.01 .01 .02 .03 .01	.19 .07 .03 .08 .03	
T97-9 18-20 T97-9 20-22 T97-9 22-24 T97-9 24-26 RE T97-9 24-26	.005 .004 .004 .007 .007	<.01 <.01 <.01 <.01 <.01	.02 .02 .02 .05 .05	-
T97-9 26-28 T97-9 28-30 T97-10 0-6 T97-10 12-14 T97-10 14-16	.006 .006 .004 .004 .005	<.01 <.01 <.01 <.01 .02	.05 .04 <.01 .01 .04	
T97-10 16-18 T97-10 18-20 T97-10 20-22 T97-10 22-24 T97-10 24-26	.004 .003 .004 .004 .005	.01 .01 .14 .01 .02	.03 .05 .50 .22 .24	
T97-10 26-28 T97-10 28-30 T97-10 30-32 T97-10 32-34 T97-10 34-36	.005 .004 .003 .007 .006	.03 <.01 <.01 <.01 <.01	.15 .11 .11 .16 .06	
T97-10 36-38 T97-10 38-40 T97-10 40-42 T97-10 42-44 T97-10 44-46	.008 .007 .005 .004 .003	<.01 .03 <.01 <.01 <.01	.05 .06 .03 .02 .02	
STANDARD R-1	.877	1.33	2.62	

1.000 GM SAMPLE DIGESTED IN 30 ML AQUA - REGIA, DILUTE TO 100 ML, ANALYSIS BY ICP.

- SAMPLE TYPE: PULP Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: NOV 4 1997 DATE REPORT MAILED: SIGNED BY. All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 🗸 FA

PHONE (604) 253-3158 FAX (604) 253-

Page 1

16

Cream Minerals Inc. PROJECT BISMARK FILE # 97-6185R

Page 2

SAMPLE#	CU PB Zn
T97-10 46-48 T97-10 48-50 T97-10 50-52 T97-10 52-54 T97-10 54-56	.004 <.01 .03 .010 <.01 .11 .006 .01 .13 .005 .01 .08 .004 <.01 .04
RE T97-10 54-56 T97-10 56-58 T97-10 58-60 T97-10 60-62 T97-10 62-64	.004 <.01 .04 .006 <.01 .05 .005 <.01 .03 .004 <.01 .04 .008 <.01 .04
T97-11 0-5 T97-11 5-10 T97-11 10-15 T97-11 15-20 T97-11 20-25	.012 <.01 .08 .030 .62 .56 .029 .42 .78 .012 .02 .17 .006 .10 .44
T97-11 25-30 T97-11 30-35 T97-11 35-40 T97-11 40-45 T97-11 45-50	.083 1.07 9.99 .010 .08 .45 .068 8.61 4.36 .008 .30 .16 .011 .05 .16
T97-11 50-55 T97-11 55-60 T97-11 60-65 T97-11 65-70 T97-11 70-74	.009 .01 .07 .006 .01 .05 .012 .01 .08 .014 <.01 .06 .010 <.01 .06
T97-11 78-82 B 2+75-2+85 B 2+85-2+90 GIBSON L ADIT STANDARD R-1	.013 .01 .05 .010 <.01 .07 .008 .01 .07 .003 .01 .01 .851 1.25 2.33

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data_____FA

ACME ANALYTICA	LABORATOR	IES LTD.	852 E. HA	ASTINGS ST. VAN	COUPER BC V6A 1R6	PHONE (604) 253-3158 FAX (604) 253 771	6
			GEOCH	EMICAL ANALY	SIS-CERTIFICATE		
<u>aa</u>		A	<u>v:1-</u> .				
		<u>Cream</u> Box	<u>Minerals 1</u> 10435. 1610 - 77	7 Dun. Vancouver BC	<u>BISMARK</u> FILE # 97 V7Y1K5 Submitted by:Linda	-6202 Dandy	
	1						
SAMPLE#	Mo Cu Pl	o Zn Ag ∣ n norm norm ni	Ni Co Mn Fe	As U Au Th Sr	Cd Sb Bi V Ca P La) Cr Mg Ba Tỉ B Al Na K W Ag**Au** ⊐ DDD - X DDD - X S S DDD - Au**	
	hhi hhi hh	ii phii phii p	hiihhii bhii vi	bhu bhu bhu bhu bhu	bhu bhu bhu bhu v v bh	i phu v phu v phu v v v phu guy c guy c	
B 0+60-0+62	11 51 28	5 1263 8.7	40 8 2381 2.63	194 <8 <2 5 426	9.2 3 <3 79 8.33 .083 1	35 1.72 39 .01 3 1.64 .01 .16 <2 8.4 .01	
B 3+05-3+08	24 63 1	5 213 1.1	33 3 353 3.56	10 <8 <2 7 85	5-9 <3 <3 115 .53 .091 19	27 .84 186 .12 <3 2.41 .12 .60 <2 1.8 .01	
B 3+08-3+10	60 124 148	082 13.4	06 0 947 0.797 06 16 771 / 00 1	429 <8 <2 8 18	5.5 5 5 107 .15 .100 1 5 7 7 7 7 7 7 7 7 7 7	/ 30 .49 64<.01 <3 1.19 .01 .21 2 13.3 .05	
197-12 A-B 197-12 A-B	69 167 133	1 426 1 0 3	80 23 400 3 04	21 <8 <2 6 15	3 2 3 3 205 15 068 20	1 61 85 76 02 23 1 852 01 22 22 1 7 01	
	47 100 2	420 1.0	0/ 23 40/ 5.04				
T97-12 2-4	41 125 24	9 652 3.8	85 14 655 3.27	59 <8 <2 6 14	13.3 <3 <3 95 .31 .103 23	35 1.01 62 .01 5 1.51<.01 .21 <2 4.1 .01	
т97-12 4-6	37 121 12	2 562 4.8	70 10 540 3.36	211 <8 <2 7 14	12.1 4 <3 117 .25 .075 2'	40 1.14 59<.01 3 1.44<.01 .18 <2 5.0 .02	
197-12 6-8	53 142 1	4 528 2.8	66 11 323 4.22	36 <8 <2 8 12	8.4 3 <3 126 .24 .071 18	3 41 1.10 45 .01 <3 1.53<.01 .15 6 3.1 .01	
197-12 8-10	36 156 6	4 318 2.1	62 12 289 3.68	25 <8 <2 8 10	6.7 5 <5 101 .24 .085 27 5 4 .7 .7 119 75 107 27	2 28 1.20 57<.01 4 1.76<.01 .16 2 2.7 .01	
197-12 10-12	24 102 10	9 320 1.0	05 15 410 5.05	40 10 12 0 13	5.6 3 3 118 .55 .107 27	2 39 1.49 32 .01 3 2.03<.01 .19 <2 2.2 .01	
T97-12 12-14	32 96 4	B 233 1.7	43 12 369 3.24	14 <8 <2 8 14	4.6 3 <3 175 .29 .080 20	3 59 1.16 39<.01 <3 1.67<.01 .20 <2 1.9 .01	
T97-12 14-16	34 92 6	B 753 2.2	91 11 1005 3.01	36 <8 <2 7 72	8.6 3 5 191 2.17 .076 18	3 53 1.14 35<.01 <3 1.85<.01 .23 <2 2.8 .01	
T97-12 16-18	13 45 35	4 1046 4.2	39 8 1903 2.86	57 <8 <2 7 176	6.1 <3 <3 70 5.67 .058 1	7 30 1.27 30<.01 <3 1.58 .01 .19 <2 5.1 .01	
RE T97-12 16-18	14 43 38	0 1074 4.4	41 9 1957 2.92	56 <8 <2 7 180	6.2 <3 <3 72 5.85 .058 1	/ 31 1.30 26<.01 <3 1.63<.01 .19 <2 4.0 .01	
197-12 18-20	18 51 94	0 2307 9.4	26 7 1936 3.01	120 <8 <2 / 185	14.2 <3 <3 41 5.66 .061 1	7 22 1.54 20<.01 <3 1.61<.01 .20 <2 9.2 .01	
197-12 20-22	3 42 3	8 255 .9	48 11 783 2.97	19 <8 <2 7 134	1.5 <3 <3 91 3.58 .074 20	0 79 1.85 61 .10 4 2.07 .02 .17 <2 1.3 .01	
197-12 22-24	10 115 50	6 2098 3.5 1	58 15 2055 4.61	88 <8 <2 9 21	23.3 <3 <3 113 .42 .109 50	0 48 1.86 40 .03 3 2.48 .01 .24 <2 3.6 .01	
T97-12 24-26	5 39 19	5 617 2.0	33 10 1150 2.72	25 <8 <2 7 100	4.7 <3 <3 94 3.10 .068 20) 45 1.51 43 .10 <3 1.77 .02 .16 <2 1.5 .01	
197-12 26-28	4 47 2	0 128 .3	46 11 542 2.72	10 <8 <2 8 66	1.5 <3 <3 85 .76 .069 20	57 1.50 88 .19 <3 1.96 .05 .35 2 <.3 <.01	
T97-12 28-30	2 44	8 73 <.3	33 10 401 2.18	4 <8 <2 6 169	.6 <3 <3 61 4.14 .088 18	3 38 .94 52 .12 <3 1.51 .05 .20 3 <.3 .01	
197-13 6-7	11 60 1	2 112 .9	53 12 339 2.90	15 <8 <2 6 24	2.1 <3 <3 108 .51 .091 1	5 83 1.72 47 .09 <3 1.73 .03 .57 2 .7 .01	
197-13 7-8	6 71 35	3 4601 5.0 1	14 20 5401 5.51	119 <8 <2 5 118	35.4 <3 <3 125 4.19 .139 1	2 173 3.33 63 .01 4 2.14 .01 .14 <2 6.0 .01	
т97-13 8-10	4 64 2	3 687 1.1	56 14 1141 2.80	22 <8 <2 6 22	5.4 <3 <3 34 .44 .126 1	7 36 1.31 77 .02 <3 1.37 .01 .22 <2 1.2 <.01	
T97-13 10-12	3 96 1	3 291 1.2 1	12 24 776 4.09	19 <8 <2 5 21	2.6 <3 <3 89 .48 .124 12	2 226 2.77 69 .04 <3 2.36 .01 .25 <2 .6 <.01	
197-13 12-14	6 71 11	4 313 1.4	84 13 715 3.06	18 <8 <2 6 17	3.1 <3 <3 51 .40 .119 2) 62 1.79 47 .02 <3 1.67 .01 .19 <2 1.1 .01	
T97-13 14-16	14 114 4	र ररर २ 1	48 10 342 3 00	56 <8 <2 7 11	3 9 <3 <3 55 19 040 1	5 17 33 79 01 6 66< 01 21 3 1 9 01	
197-13 16-18	18 128 2	8 384 2.2	54 13 1046 4.37	31 <8 <2 7 16	7.4 <3 <3 225 .36 .120 1	5 25 1.03 74 .01 3 1.07 .01 .19 <2 2.1 <_01	
197-13 18-21	24 94 4	2 236 1.8	57 10 745 2.66	51 <8 <2 6 12	3.3 <3 3 68 .26 .087 1	4 16 .48 76 .01 <3 .81<.01 .18 3 1.4 <.01	
STANDARD C3/R-1/AU-1	25 65 3	6 153 5.2	35 12 730 3.37	49 12 <2 19 29	22.5 15 21 83 .58 .084 19	9 171 .58 146 .10 19 1.85 .03 .16 17 97.8 3.62	
STANDARD G-1	24	4 46 <.3	9 6 578 2.16	<2 <8 <2 4 68	<.2 <3 <3 44 .62 .074	3 92 .64 245 .15 <3 1.02 .06 .49 <2 <.3 .01	

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK AG** & AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE. / Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data A FA

ACMB ANALY IC	LA	BOR	ATOR	LIES C	LTD rea	<u>m 1</u> Box	<u>Min</u> 1043	852 <u>era</u> 5, 161	B. 1 GEO 1 <i>5</i>	HAST CHE Inc 77 D	MI Un,	35 : CAI PRC Vanc	ST. J/A)JE ouve	VAN SSA CT r BC	ICO Y BIS V7Y	ER ER MA	BC TIF <u>RK</u> Sub	V 'IC F mitt	GA 1 ATE ile ed by:	R6 # 9 : Lint	97- Ja Dr	PHC 625 andy	DNE (604)	25	3-3	158	P.	X X (604) 253	716 AA
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppmr	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti % (B	Al %	Na %	К %	u ⊎ Ppm	Ag** gm/t	Au** gm/t
T97-14 0-2 T97-14 2-4 T97-14 4-6 T97-14 6-7.6 T97-14 8.5-9.7	14 19 21 5 7	66 58 88 54 54	44 145 515 52 38	439 1139 1619 337 294	1.2 4.0 11.3 1.1 1.3	58 55 54 48 46	12 14 14 12 10	612 2238 5927 748 709	3.25 4.42 5.34 2.82 2.44	34 65 113 30 19	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	4 5 6 5	15 24 163 201 112	2.3 6.0 16.5 2.5 2.9	3 <3 <3 <3 <3	<3 <3 13 <3 <3	41 73 130 56 68	.22 .27 4.19 4.80 3.66	.049 .062 .069 .082 .083	19 20 15 15 14	24 27 39 41 44	.67 .77 1.71 1.83 1.36	77 . 101 . 94 . 54<. 56 .	.01 .01 .01 .01 .01	<3 <3 3 3 4	1.24 1.24 1.75 1.96 1.69	.01 .01 <.01 <.01 .01	.26 .29 .23 .24 .33	4 2 18 <2 <2	1.4 3.2 10.2 1.2 .8	<.01 <.01 .04 <.01 <.01
T97-14 11.5-12.6 RE T97-14 11.5-12.6 T97-14 13.5-15.5 T97-14 15.5-16.5 BH-1	1 1 2 2	32 31 17 31 6	82 83 67 40 4	171 168 235 231 7	.9 .9 .5 .7 <.3	23 23 13 36 4	6 6 3 6 1	671 657 1092 703 69	1.73 1.71 1.62 2.07 .44	28 27 26 32 <2	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2	4 4 7 6 <2	145 141 228 35 3	.9 1.0 2.2 2.2 <.2	ও ও ও ও ও ও ও	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	17 16 7 21 3	3.80 3.74 5.51 .70 .03	.065 .063 .053 .079 .005	24 23 36 43 1	17 16 7 25 19	.60 .59 .42 .68 .03	35<. 35<. 32<. 51<. 4<.	.01 .01 .01 .01 .01	4 7 5 3 3	1.01 .99 .89 1.09 .07	<.01 <.01 <.01 <.01 .01	.23 .24 .24 .29 .02	~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	.9 .5 <.3 .9 .6	<.01 <.01 <.01 <.01 <.01
SB-31 STANDARD C3/R-1/AU-1	1 26	79 66	1617 35	3688 164	34.0 5.8	3 35	1 : 13	20785 770	5.95 3.46	348 55	<8 22	<2 3	15 18	1130 31	26.2 23.3	5 14	<3 25	52 86	19.55 .60	.006 .086	6 18	5 171	3.23 60	18<. 152 .	01 10	22 16	.46 1.87	<.01 .04	.02 .16	<2 22	36.4 101.2	.02 3.80

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK AG** + AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data CFA

ACME AN	ALYT	ICAT	(I.A.	BORA	TOR	ES .	LTD.		85	2 E.	. HA	STIN	gs	ST.	VAN	couv	RR E	C	V6A	1R6		PHC	NE (604)	253	-315	8 F	'AX ((504)	253	-1716	
AA	•	L								GEC	CHE	EMIC	AL	ANZ	LYS	JIS-	-CEF	TII	7IC2	\TE											хA	
ŤŤ						<u>C1</u>	ear E	n Mi Box 10	Lner 435,	als 1610	<u>s Ir</u> - 777	<u>1C.</u> Dun,	PR(Vanc	<u>)JEC</u> ouver	CT E BC V	<u>315</u> N 77 1k	<u>1ARF</u> 5 \$	<u>C</u> I ubmit	7ile ted b	è # y:Li	97- nda D	-625 andy	54									
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Со ррт	Mn ppm	Fe %	As ppm	U mqq	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	К %	W ppm	Au* ppb	
BH-2	1	35	50	130	2.3	43	11	2333	4.66	24	<8	<2	3	566	5.3	<3	3	109	2.14	.222	24	21	.30	101	.05	<3	2.86	.42	.14	<2	4	

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. - SAMPLE TYPE: SOIL AU* - AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED.(10 GM)

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 💾 F

ACME ANAL	TIC	<u>۲</u>	ABOI	RATO	RIES	LT	D.	<u>.</u>	852	E.H	(AST)	INGS	ST	VA	NCOL	R	BC	V62	A 1R6		PH	one (604) 253	-315	58 1	FAX (604)	25?	~71	6
AA	Ľ	-///							G	EOCI	HEMJ	CAI	- A1	VAL'	rsi	-CI	ERTI	FIG	CATE	6.6.5											
AA												÷.						ġġi									8899			<u>• V.</u>	
					S	<u>:rea</u>	am . Box	10435	era. , 161	L8 . 0 - 7	L <u>nc</u> . 77 Du	n, Va	ncouv	⊴C⊥ er BC	<u>ВТ:</u> 77	<u>SMA1</u> 1K5	<u>K.</u> Subm	『다니. itted	Le # by:L	9/ .inda	-64 Dandy	34									
CANDI E#	Mo	<u>Fu</u>	Db.	70	Åa	M i	<u>می</u>	Mn		Åe.	<u></u>	A.1	Th	<u></u> ۲	<u>ь</u>	SP	Ri	<u>v</u>		 D	<u></u>	<u> </u>	Ma	Ro	 Ti	B	<u></u>	No	<u></u> K	<u></u> u	 ≜⊥ı≭
SAMF LE#	ppm	ppm	ppm	ppm	ppm	ррп	ppm	ppm	%	ррт	ppm	ppm	ppm	ppn	ppm	ррт	ррп	ppm	×	%	ppm	ppm	***	ppm	%	ppm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	%	%	ррт	ppb
CP 0+00E	1	32	24	191	<.3	46	14	497	3.31	7	<8	<2	6	51	1.9	<3	<3	81	.62	.149	22	50	1.12	142	. 14	<3 2	2.45	.04	.45	2	3
CP 0+05E	1	48	16	172	.8	46	12	546	2.90	8	<8	<2	7	85	3.7	<3	<3	84	- 89	.124	25	58	1.37	102	.13	32	2.58	.05	.31	<2	1
CP 0+10E	1	31	18	99	<.3	33	10	310	2.09	6	<8	<2	7	32	1.3	<3	<3	54	-38	.119	26	36	.67	82	.08	<3 1	1.63	.03	.21	<2	1
CP 0+15E	2	36	15	93	<.3	38	13	360	2.38	13	<8	<2	- 7	49	1.9	্র	<3	62	.43	.096	21	38	.90	101	.09	<31	1.83	.04	.31	2	2
CP 0+20E	1	34	17	97	<.5	56	15	524	2.36	(<8	<2	6	527	3.2	<5	<5	79	1.94	.119	15	83	. 76	65	.07	<5 3	5.70	.49	. 28	<2	2
CP 0+25E	1	32	19	117	<,3	35	11	518	2.25	9	<8	<2	5	113	2.9	<3	<3	64	. 88	.139	21	34	.69	78	.07	<3 1	1.39	.06	.23	<2	1
CP 0+30E	1	30	23	100	<.3	32	10	344	2.42	8	<8	<2	6	107	2.0	<3	<3	53	.96	.110	27	36	.65	56	.08	3 1	1.36	.04	.25	<2	<1
CP 0+35E	<1	14	14	48	.3	15	5	182	1.16	5	<8	<2	- 3	1224	.9	<3	<3	23	16.92	.074	14	19	.35	33	.04	<3	.67	.02	.10	<2	<1
CP 0+40E	5	44	17	251	.5	52	21	973	5.05	6	<8	<2	5	193	8.7	<3	<3	147	1.32	. 194	29	37	1.98	369	.10	<3 3	3.21	.13	.77	2	3
CP 0+45E	2	121	13	219	.4	63	23	688	4.97	10	<8	<2	5	113	3.4	<3	<3	143	.93	. 185	23	67	1.36	123	.09	<3 2	2.27	-08	.48	<2	2
CP 0+50E	1	158	10	136	.4	42	18	1178	5.69	5	<8	<2	3	109	2.7	<3	<3	98	2.00	.183	24	48	1.34	121	.12	<3 1	1.87	.02	.66	<2	1
CP 0+55E	2	61	17	127	<.3	48	11	1017	3.16	6	<8	<2	4	75	4.5	<3	<3	108	.84	.207	24	54	1.02	166	.10	<3 1	1.54	.03	.52	<2	<1
CP 0+60E	<1	45	13	130	<.3	25	10	626	3.01	6	<8	<2	- 4	53	1.6	<3	<3	83	.57	.133	19	25	.79	70	.10	<3 1	1.45	.02	.43	<2	23
CP 0+65E	17	72	15	260	.4	71	27	553	4.58	12	<8	<2	7	116	4.7	<3	<3	183	.66	.089	17	68	1.31	241	.10	<3 2	2.46	.09	.58	<2	5
CP 0+70E	3	43	15	236	<.3	49	16	726	3.51	7	<8	<2	5	151	8.1	<3	<3	107	1.00	. 164	16	40	1.44	308	.08	<3 2	2.22	.12	.69	<2	4
CP 0+75E	1	25	25	122	<.3	28	9	384	1.85	9	<8	<2	6	81	1.2	<3	<3	48	.81	.100	21	27	.55	62	.07	<3 1	1.15	.04	.20	<2	2
CP 0+80E	1	56	42	190	.6	28	16	1322	5.23	8	<8	<2	2	- 77	5.9	<3	<3	94	.79	.171	19	17	1.11	72	.11	<3 '	1.49	.02	.51	<2	1
CP 0+85E	1	52	25	123	.5	20	13	678	4.35	10	<8	<2	3	71	4.6	<3	<3	86	.70	. 148	24	22	.93	74	.09	<3 '	1.41	.02	.37	<2	1
RE CP 0+80E	1	58	48	195	.8	29	16	1358	5.35	7	<8	<2	2	77	6.1	<3	<3	96	.80	.173	19	18	1.15	74	.11	<3 '	1.53	.02	.53	<2	2
CP 0+90E	1	32	22	130	.8	24	11	745	3.57	7	<8	<2	4	69	4.5	<3	<3	71	.70	. 151	25	22	.85	86	.09	<3 '	1.41	.02	.46	<2	1
CP 0+95E	<1	31	24	128	<.3	29	11	547	2.72	7	<8	<2	6	49	1.7	<3	<3	62	.51	.115	28	28	.75	62	.09	<3 '	1.33	.02	.39	<2	2
CP 1+00E	<1	17	14	82	<.3	16	6	234	1.19	5	<8	<2	5	46	1.0	<3	<3	30	.46	.086	21	20	.31	36	.05	<3	.67	.03	.11	<2	1
STANDARD C3/AU-S	26	63	37	167	5.6	37	13	767	3.44	58	22	2	18	29	23.6	16	21	82	.58	.085	21	169	.60	143	.10	21	1.91	.04	.16	19	48
STANDARD G-1	2	2	<3	42	<.3	8	5	556	2.11	<2	<8	<2	4	75	<.2	<3	<3	42	.68	.096	10	70	.62	232	.13	4	1,00	.09	.51	3	<1

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. - SAMPLE TYPE: SOIL AU* - AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED.(10 GM) Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. DATE RECEIVED: OCT 30 1997 DATE REPORT MAILED: Nov 6/97 SIGNED BY.....D.TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data

ACME ANALYTI	LAB	ORA T	OR.	LES	LT.	D.		852	E.	HAS	TI	IGS	ST	. v,	ANCO	C	R	BC TET	V6A	1R6		PI	IONI	5(60)4)2	253	-315	8	FAJ	<u>c (60</u>	4)2!	C	16
										Л	<u>си</u> .		чц/л от	n or	DAT		л 1.	72 T		а - Л	~ 7	į,	1.7.7									<u> </u>	
				Ē	rea	am Box	104	<u>ner</u> 35, 1	<u>als</u> 610 -	<u>1n</u> 777	C. Dun,	Var	ncouv	er B		1K5		<u>rc</u> Submi	tted l	e # oy:Li	97 nda	-04 Dand	too Y									L	L
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Со ррп	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	К %	W ppm	Ag** gm/t	Au** gm/t	
CPR 0+39.5E-0+41.5E	2	30	12	166	.3	38	10	399	3.29	<2	<8	<2	5	903	6.3	<3	<3	156	10.04	.113	16	73	1.44	297	.10	<3	4.09	.42	.66	4	.5	<.01	
CPR 0+41.5-0+43E	4	110	8	93 105	.4	40 56	18 67	·673	4.27	<2	<8>	~2	4	147 53	2.8	<3 <3	<3 <3	146	2.65	.250	19 28	48 77	-89 1-34	36 20	.08	<3 <3	2.24	.18	.23	2	.3 .8	i <.01 i <.01	
CPR 0+46-0+48E	6	2526	21	129	4.3	64	73	469	14.60	<2	<8	<2	Ž	46	2.2	<3	<3	91	.68	.216	19	58	1.21	17	.10	ঁ	1.88	.03	.23	2,	3.0	<.01	
CPR 0+50-0+52E	<1	32	10	99	<.3	10	8	574	3.22	<2	<8	<2	2	48	.5	<3	<3	66	.49	.098	17	16	.76	96	.18	<3	1.38	.07	.86	4	<.5	o <.01	
RE CPR 0+50-0+52E	1	31	7	95	<.3	10	7	557	3.13	3	<8	<2	2	47	.7	<3	<3	64 110	_47 _75	-096	17	16 56	.73	95 76	.18	<3 <3	1.33	.07	.85	4	<.3	<.01	
CPR 0+52-0+54E CPR 0+54-0+56E	1	37	7	59	<.3	12	6	507 475	2.79	2	<8>	<2	2	92	.9	<3	<3	69	.97	.120	18	15	.75	117	.12	3	1.74	.14	.45	2	<.3	<.01	
SB-32 STANDARD C3/R-1/AU-1	23 24	136 64	29 35	36 165	.8 5.5	104 36	217 12	1407 756	24.31 3.41	47 55	<8 20	<2 2	3 17	14 29	<.2 22.6	<3 15	7 19	59 80	.11 .58	.054	12 20	95 169	1.43 .59	11 140	.02	<3 17	1.93	.01 .04	.07	3 16	د.> 101.s	5 <.01 3.53	

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK AG** + AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: OCT 30 1997 DATE REPORT MAILED: NOV 14/97 SIGNED BY. J. D. TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS

Data / FA YING

	SLOCAN MINING DIVISION, BRITISH COLUME NTS: 82F/14	31A
Scale 1:2500	CONNECTION AREA SAMPLE LOCATION MAP	
	BY: L.D. FIGUR	E: 9

:

• • · · ·

FIGURE: 23

LEGEND	
Road / Trail	ange appen appen ander a set enter a set
Creek	\longrightarrow
Bridge	
Cabin	íoì
Clearing / Waste Pile	******
Adit	\succ
Old Trench	\succeq
Trench 1997	
Drill Site	0
 Fault / Shear	
Bedding	···
Fracture	
Veinlet	
Foliation	
Dyke	• • • • •
Float	×
Soil / Silt Sample	0
Rock Sample	A
Assay Results 5 element (Au (ppb), Ag (ppm), Cu (ppm), Pb	(ppm), Zn (ppm))
Assay Results 4 elements (Au (ppb), Ag (ppm), Pb (ppm), Zn	(ppm))
Α	Araillite

Bridge	
Cabin	
Clearing / Waste Pile	
Adit)
Old Trench	\asymp
Trench 1997	\asymp
Drill Site	0
Fault / Shear	
Bedding	
Fracture	v
Veinlet	
Foliation	-+
Dyke	<u></u>
Float	×
Soil / Silt Sample	0
Rock Sample	A
Assay Results 5 element (Au (ppb), Ag (ppm), Cu (ppm), Pb (ppm), Zn (ppm))	
Assay Results 4 elements (Au (ppb), Ag (ppm), Pb (ppm), Zn (ppm))	
A	Argillite
ASc	Andalusite Schist
BGn	Biotite Gneiss
BSc	Biotite Schist
fp	Feldspar Porphyry
gd	Granodiorite
gr	Graphite / Graphitic
Ĺ	Lamprophyre Dyke
Ls	Limestone
MSc	Mica Schist
ро	Pyrrhotite
ру	Pyrite
Q	Quartzite
atz	Quartz
Sc	Schist / Schisty
SI	Siltstone
SSc	Sericite Schist

