GEOLOGICAL & GEOCHEMICAL ASSESSMENT REPORT ON CERTAIN CLAIMS IN THE ANYOX AREA OF NORTH-WESTERN BRITISH COLUMBIA

REPORT DATE: JANUARY 12, 1998

MINING DIVISION: SKEENA NTS: 1030/8E, 9E 103P/5E, 5W, 12W NEAREST COMMUNITIES: STEWART, PRINCE RUPERT

LATITUDE (CENTER): 55⁰ 25' N LONGITUDE (CENTER): 129⁰ 55' W

UTM EASTING (CENTER): 442 000 UTM NORTHING (CENTER): 6 141 000 UTM BASE: <u>NORTH AMERICAN DATUM 1927</u>

Claim owners:

- 1) ALTA SIERRA RESOURCES INC. #250 - 1025 W. Georgia St. Vancouver, B.C. V6E 3C9
- 3) *CARSTEN MIDE* #1645 - 1185 W. Georgia St. Vancouver, B.C., V6E 4E6

Doug Symonds, P.Geo. #501 - 9847 Manchester Dr. Burnaby, B.C., V3N 4P4 Tel: (604) 444-5729 Fax: (604) 444-5731 2) CANADIAN ZEOLITE LTD. 130 Montieth Dr. GE Saltspring Island, BCEY BRANCH V8K 1H4 SMENT REPORT

Ebo Bakker, M.Sc., P.Geol. #1645 - 1185 W. Georgia St. Vancouver, B.C., V6E 4E6 Tel: (604) 683-7836 Fax: (604) 683-7881

TABLE OF CONTENTS

		Page
ASS	ESSMENT REPORT COVER SHEETS	(Cover)
1.0	INTRODUCTION	1
2.0	SUMMARY & CONCLUSIONS	1
3.0	LOCATION & ACCESS	3
4.0	CLAIM INFORMATION	6
5.0	PREVIOUS WORK	25
6.0	GEOLOGY	26
	6.10 Regional Geology	26
	6.20 Local Geology	27
	6.30 Aerial Photo Interpretation	51
7.0	GEOCHEMISTRY	56
	7.10 Regional Geochemical Survey	56
	7.20 Moss Mat & Stream Sediment Sampling	56
8.0	DISCUSSION OF RESULTS & RECOMMENDATIONS	64
9.0	COST STATEMENT	71
10.0	STATEMENT OF QUALIFICATIONS	75

APPENDICES

I References

- II Acme Laboratory Analytical Certificates
- III Statistical Analysis of Geochemical Data (Moss Mat Samples)

LIST OF FIGURES

		<u>Page</u>
3-1	Location Map	4
3-2	Access Map Showing Claims Worked on in 1997	5
4-1A	Claim Map - <i>Carney Lake</i> Claim Group	13
4-1B	Claim Map - <i>Belle Bay</i> Claim Group	14
4-1C	Claim Map - <i>Close</i> Claim Group & <i>Gap 4</i> Claim	15
4-1D	Claim Map - <i>Hastings</i> Claim Group	16
4-1E	Claim Map - <i>Anyox</i> Claim Group	17
4-1 F	Claim Map - <i>Bonanza</i> Claim Group	18
4-1G	Claim Map - <i>Glacier</i> Claim Group	19
4-1H	Claim Map - <i>Donahue</i> Claim Group	20
4-1 I	Claim Map - <i>Tournay</i> Claim Group	21
4-1J	Claim Map - Observatory Claim Group	22
4-1K	Claim Map - <i>Cascade</i> Claim Group	23

LIST OF FIGURES (Cont'd.)

Page

4-1 L	Claim Map - <i>Gap 4</i> Claim	24
6-1A	Composite Map - <i>Carney Lake</i> Claim Group	39
	(1:20,000 scale in Pocket)	
6-1B	Composite Map - Belle Bay Claim Group	40
	(1:20,000 scale in Pocket)	
6-1C	Composite Map - Close Claim Group & Gap 4 Claim	41
	(1:20,000 scale in Pocket)	
6-1D	Composite Map - Hastings Claim Group	42
	(1:20,000 scale in Pocket)	
6-1E	Composite Map - <i>Anyox</i> Claim Group	43
	(1:20,000 scale in Pocket)	
6-1F	Composite Map - <i>Bonanza</i> Claim Group	44
	(1:20,000 scale in Pocket)	
6-1G	Composite Map - <i>Glacier</i> Claim Group	45
	(1:20,000 scale in Pocket)	
6-1H	Composite Map - <i>Donahue</i> Claim Group	46
	(1:20,000 scale in Pocket)	
6-1I	Composite Map - <i>Tournay</i> Claim Group	47
	(1:20,000 scale in Pocket)	
6-1J		48
	(1:20,000 scale in Pocket)	
6-1K	Composite Map - <i>Cascade</i> Claim Group	49
	(1:20,000 scale in Pocket)	
6-1L		50
	(1:20,000 scale in Pocket)	
6 - 2	Aerial Photographic Coverage Map	52
6 -3	Aerial Photographic Interpretation	(pocket)
7 - 1	Regional Geochemical Data - Gold in PPB	57

1.0 INTRODUCTION

This report has been written on behalf of *Five Star International Resources Inc.*, of Vancouver, B.C. The report describes office studies and field work carried out on certain lode mineral claims in the Anyox area of north-western British Columbia during the period of June 5, 1997 to October 21, 1997.

The claims which are the subject of this report have various owners, as determined by a search of Mineral Tenure records from the Office of the Mining Recorder.

Work done on the claims covered by this report includes geochemical moss mat sampling, reconnaissance geological mapping and aerial photographic interpretation.

The total cost of the work carried out on the claims in question from June 5, 1997 to October 21, 1997 was \$60,175.02. This figure and other pertinent cost information was supplied by a representative of *Five Star International Resources Inc.*

2.0 SUMMARY & CONCLUSIONS

The Anyox area is located approximately 850 air-kilometers northerly from Vancouver, B.C. (see Figure 3 - 1) Access to the Anyox area is by helicopter or by boat (see Figure 3 - 2).

The Anyox area is characterized by steep rugged country, with elevations ranging from sea level to over 1750 meters.

The 11 claim groups and 3 individual claims which are the subject of this report have 3 different owners (see Figures 4 - 1A to 4 - 1L).

Most of the previous work carried out in the Anyox area has been restricted to intense examination of narrow high grade gold veins on Granby Peninsula, copper-gold vein systems in the Maple Bay area, major volcanogenic precious metal-bearing massive sulphide deposits in the Anyox Creek /Bonanza Creek areas and molybdenum occurrences near Granby Bay. Very little recorded work has been carried out over most of the claims covered by this report. A government regional geochemical survey detected anomalous gold values in the Donahue Creek and Belle Bay Creek drainages, which are covered by the some of the claims described in this report.

Reconnaissance surveys carried out east of the dammed lake on Anyox Creek resulted in the detection of numerous zones of copper, gold, silver lead and zinc mineralization⁴.

An updated (1997) regional geology map 2 covers most of the claims under discussion.

In the Anyox area, Jurassic volcanic and sedimentary rocks are preserved as roof pendants within the Late Cretaceous to Early Tertiary Coast Plutonic Complex.

The most important ore deposits in the Anyox area, with a present day value of almost one billion US\$, are the volcanogenic massive sulphide (Au, Ag, Cu, Pb, Zn) *Hidden Creek- Anyox* and *Bonanza* deposits.

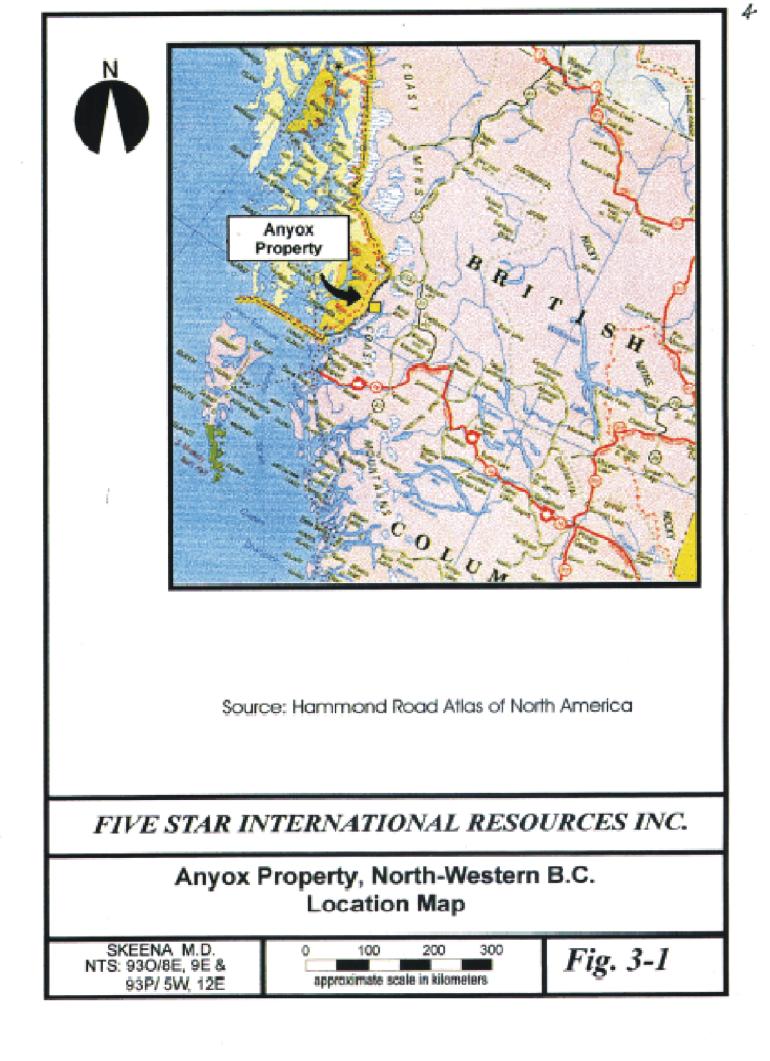
The majority of the important mines and prospects in the Anyox area are found in close proximity to the contact between Hazelton Group metavolcanic rocks and overlying Bowser Lake Group sediments.

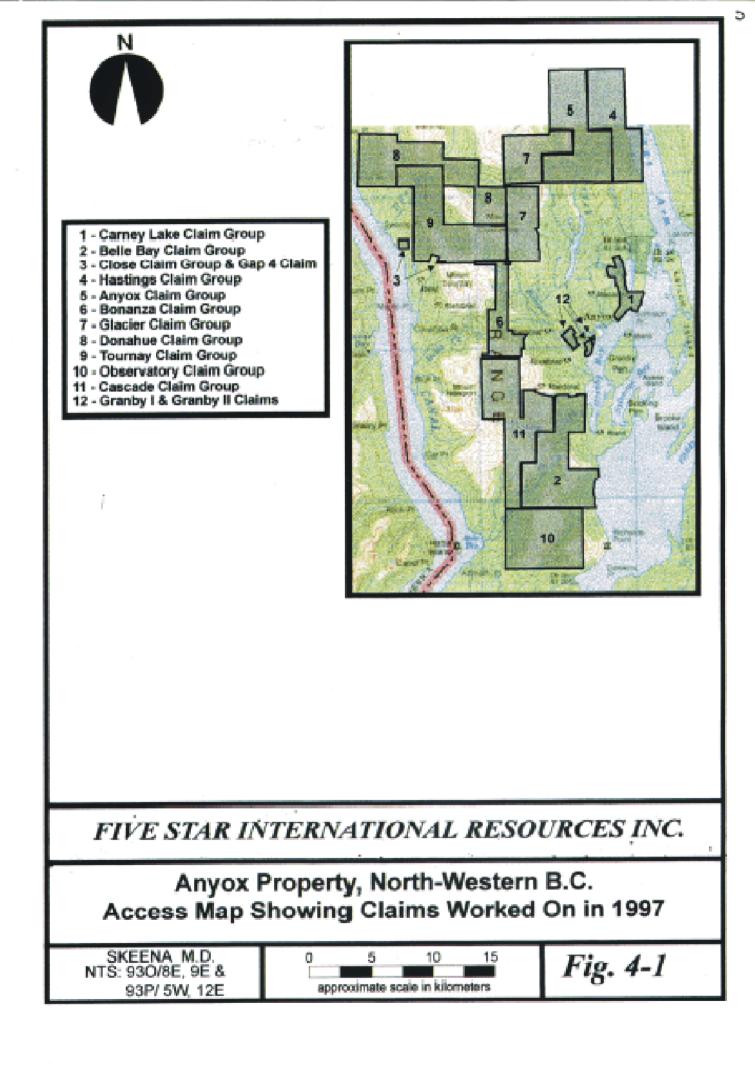
Geochemical moss mat sampling, rock sampling and reconnaissance geological mapping were carried out on portions of the 11 claim groups and 3 individual claims. An aerial photographic interpretation was prepared for the claims.

A total of 22 rock samples were taken and analysed for 16 elements, including Au. A total of 87 moss mat or stream sediment samples were taken and analysed for 30 elements plus Au (see Figures 6 - 1A to 6 - 1L).

Recommendations are made for further work in selected areas on most of the claim groups and individual claims. These recommendations are discussed in more detail in Section 8.0.

A cost statement has been prepared, based on information supplied by a representative of *Five Star International Resources Inc.*, detailing the \$60,175.02 expenditure on the 11 claim groups and 3 individual claims.


3.0 LOCATION & ACCESS


The claims which are the subject of this report are in located in the Anyox area of north-western B. C. This area is approximately 850 air-kilometers northerly from the City of Vancouver, B.C. or approximately 130 air-kilometers northerly from the City of Prince Rupert, B.C.

Access to the claim areas is by helicopter from the City of Prince Rupert, B.C., the Village of Terrace, B.C. or the Town of Stewart, B.C. The claim areas that are near tidewater may be accessed by boat.

Much of the area covered by the subject claims is steep and rugged, with elevations ranging from sea level to over 1750 meters. Tree line in the Anyox area averages about 550 meters. Many of the more prominent drainages are deeply incised, with very difficult access. Early snow and long winters restrict most exploration efforts at higher elevations to the late spring - summer - early fall months, from late May to mid September.

Location and access information is shown in Figures 3 - 1 & 4 - 1.

4.0 CLAIM INFORMATION

This report covers assessment work carried out on 11 claim groups and 3 individual claims on behalf of 3 separate registered claim owners. Claim information is summarized in the following tables by claim group. Claim ownership information was obtained using the Mineral Tenure Search Facility on the B.C. Ministry of Employment & Investment World Wide Web Internet site. Codes used for registered owners of the claims are as follows:

CZL	Canadian Zeolite Ltd.
ALT	Alta Sierra Resources Inc.
MEA	Carsten Mide

<u>CARNEY LAKE Claim Group</u> (15 Claims - 26 Units) - (See Figure 4-1A)

Claim Name	Units	Tenure #	Old Expiry	New Expiry	Registered
			Date	Date	Owner
Victory 1	1	352 222	1997OCT22	2000OCT22	CZL
Victory 2	1	352 223	1997OCT22	2000OCT22	CZL
Victory 3	1	352 224	1997OCT22	2000OCT22	CZL
Victory 4	1	352 225	1997OCT22	2000OCT22	CZL
Victory 5	1	352 226	1997OCT22	1999OCT22	CZL
Victory 6	1	352 227	1997OCT22	1999OCT22	CZL
Buck I	1	315 094	1997DEC04	1998DEC04	CZL
Buck II	1	315 095	1997DEC04	1998DEC04	CZL
Buck III	1	315 096	1997DEC04	1998DEC04	CZL
Buck IV	1	315 097	1997DEC04	1998DEC04	CZL
Tom	6	355 319	1998APR25	1999APR25	ALT
Carney	9	356 816	1998JUN19	1999ЈИМ19	ALT
And 1	1	348 715	1998JUL06	1999JUL06	ALT
And 2	1	348 716	1998JUL06	1999JUL06	ALT
And #3	1	348 717	1998JUL06	1999JUL06	ALT
Total:	26				

Claim Name	Units	Tenure #	Old Expiry Date	New Expiry Date	Registered Owner
Triumph 2	20	352 220	1997OCT22	1998OCT22	CZL
Triumph 3	20	352 221	1997OCT22	1998OCT22	CZL
Del 6	12	355 325	1998APR25	1999APR25	ALT
Sarah 2	20	356 818	1998JUN19	1998JUN19	ALT
And #9	1	348 723	1998JUL06	1998JUL06	ALT
And #10	1	348 724	1998JUL06	1998JUL06	ALT
And #11	1	348 725	1998JUL06	1998JUL06	ALT
And #12	1	348 726	1998JUL06	1998JUL06	ALT
Fortune #1	20	359 388	1998SEP25	1998SEP25	MEA
Total:	96				

<u>BELLE BAY</u> Claim Group (9 Claims - 96 Units) - (see Figure 4-1B)

<u>CLO SE Claim Group</u> (4 Claims - 4 Units) - see Figure 4-1C

Claim Name	Units	Tenure #	Old Expiry Date	New Expiry Date	Registered Owner
Close 1	1	352 595	1997OCT30	1998OCT30	MEA
Close 2	1	352 596	1997OCT30	1998OCT30	MEA
Close 3	1	352 597	1997OCT30	1998OCT30	MEA
Close 4	1	352 598	1997OCT30	1998OCT30	MEA
Total:	4				

<u>HASTINGS</u> Claim Group (3 Claims - 48 Units) - (see Figure 4-1D)

Claim Name	Units	Tenure #	Old Expiry Date	New Expiry Date	Registered Owner
Dinero 4	20	352 578	1997OCT30	1998OCT30	MEA
Oro 10	12	352 588	1997OCT30	1998OCT30	MEA
Oro 12	16	352 590	1997OCT30	1998OCT30	MEA
Total:	48				

<u>ANYOX Claim Group</u> (4 Claims - 71 Units) - (see Figure 4-1E)

Claim Name	Units	Tenure #	Old Expiry Date	New Expiry Date	Registered Owner
Dinero 3	20	352 577	1997OCT30	1998OCT30	MEA
Oro 8	16	352 577	1997OCT30	1998OCT30	MEA
Oro 9	15	352 587	1997OCT30	1998OCT30	MEA
Oro 11	20	352 589	1997OCT30	1998OCT30	MEA
Total:	71				

<u>BONANZA</u> Claim Group (5 Claims - 47 Units) - (see Figure 4-1F)

Claim Name	Units	Tenure #	Old Expiry Date	New Expiry Date	Registered Owner
Gap 3	5	352 593	1997OCT30	1998OCT30	MEA
Steer 1	6	355 326	1998APR25	1999APR25	ALT
Steer 2	6	355 327	1998APR25	1999APR25	ALT
Steer 3	12	355 328	1998APR25	1999APR25	ALT
Steer 4	18	355 329	1998APR25	1999APR25	ALT
Total:	47				

<u>GLACIER</u> Claim Group (7 Claims - 98 Units) - (see Figure 4-1G)

Claim Name	Units	Tenure #	Old Expiry Date	New Expiry Date	Registered Owner
				10000000000	
Gap 1	6	352 591	1997OCT30	1998OCT30	MEA
Gap 2	5	35 592	1997OCT30	1998OCT30	MEA
Oro 5	15	352 583	1997OCT30	1998OCT30	MEA
Oro 6	12	352 584	1997OCT30	1998OCT30	MEA
Oro 7	20	352 585	1997OCT30	1998OCT30	MEA
Dan 1	20	356 819	1998JUN19	1998JUN19	ALT
Richard 1	20	356 823	1998JUN19	1998JUN19	ALT
Total:	98				

9

<u>DONAHUE Claim Group</u> (6 Claims - 98 Units) - (see Figure 4-1H)

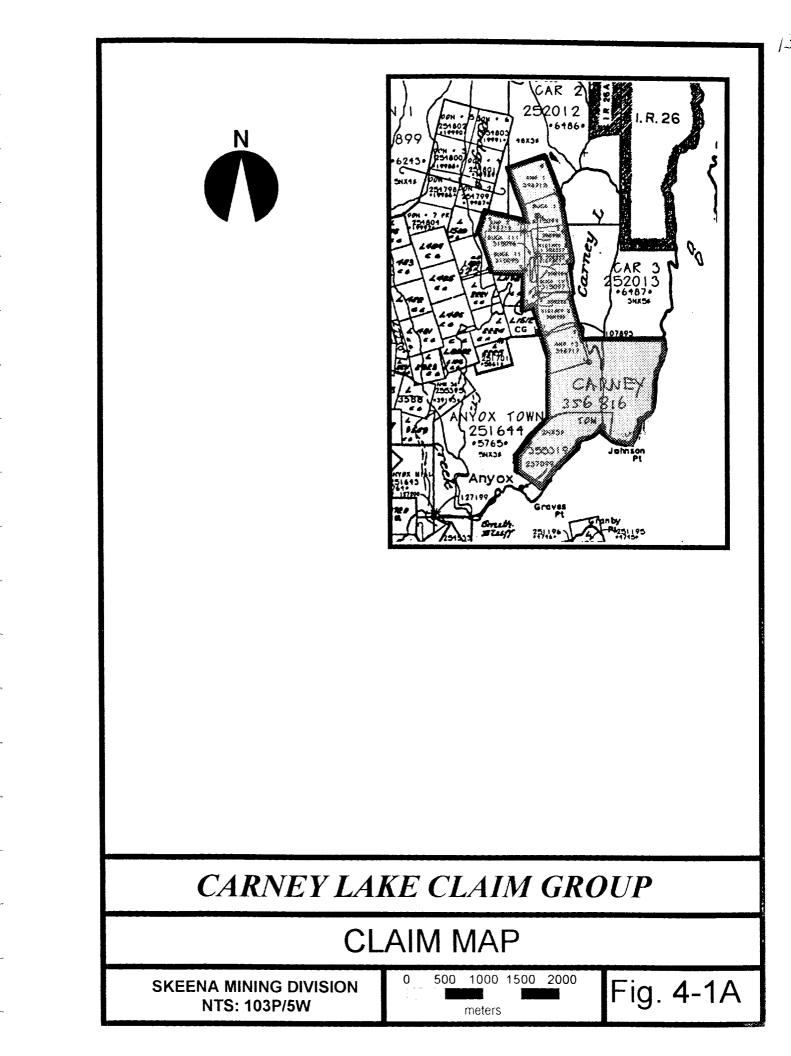
Claim Name	Units	Tenure #	Old Expiry Date	New Expiry Date	Registered Owner
			Date	Date	Owner
Oro 1	20	352 579	1997OCT30	1998OCT30	MEA
Oro 2	18	352 580	1997OCT30	1998OCT30	MEA
Oro 3	15	352 581	1997OCT30	1998OCT30	MEA
Rose 1	20	356 825	1998JUN19	1998JUN19	ALT
Fame #1	5	359 391	1998SEP25	1998SEP25	MEA
Fame #2	20	359 392	1998SEP25	1998SEP25	MEA
Total:	98				

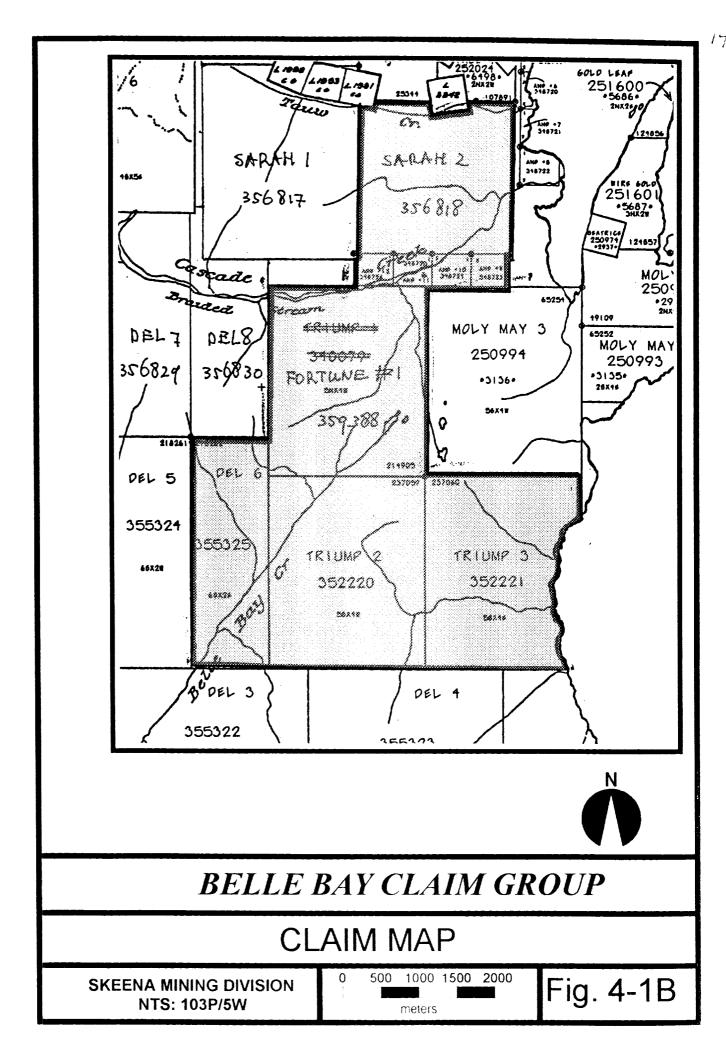
<u>TOURNAY Claim Group</u> (5 Claims - 98 Units) - (see Figure 4-1I)

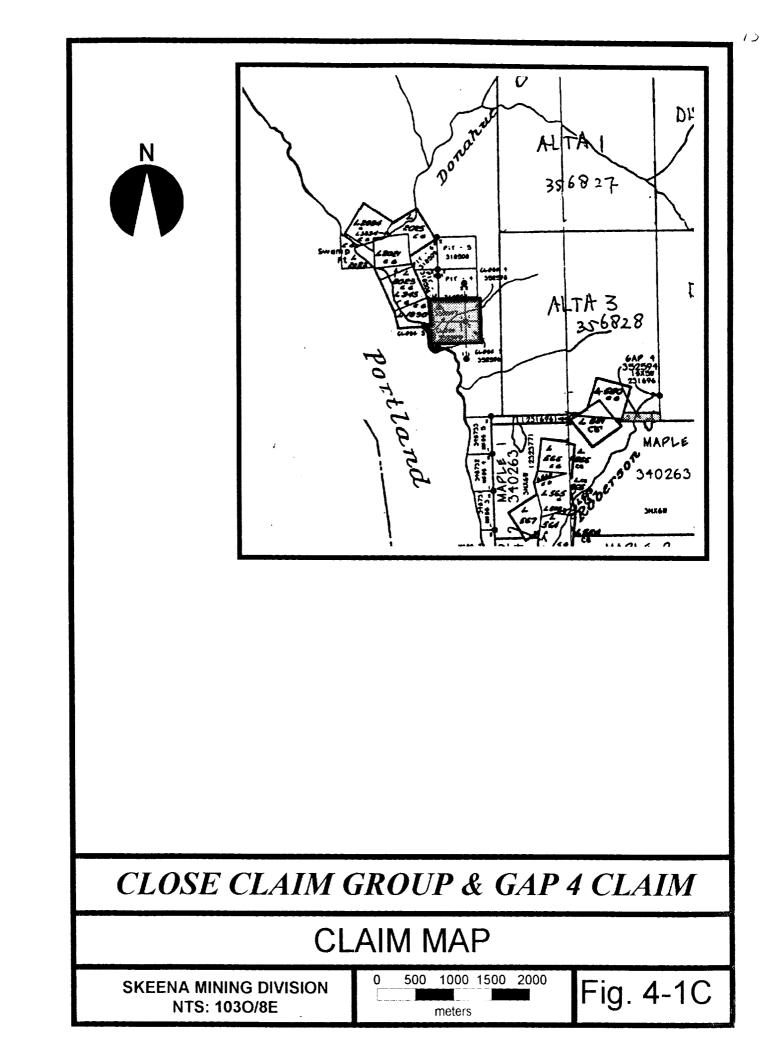
Claim Name	Units	Tenure #	Old Expiry Date	New Expiry Date	Registered Owner
Oro 4	18	352 582	1997OCT30	1998OCT30	MEA
Alta 1	20	356 827	1998JUN07	1999JUN07	ALT
Alta 3	20	356 828	1998JUN07	1999JUN07	ALT
Rose 2	20	356 826	1998JUN19	1998JUN19	ALT
Discovery #2	20	359 390	1998SEP25	1998SEP25	ALT
Total:	98				

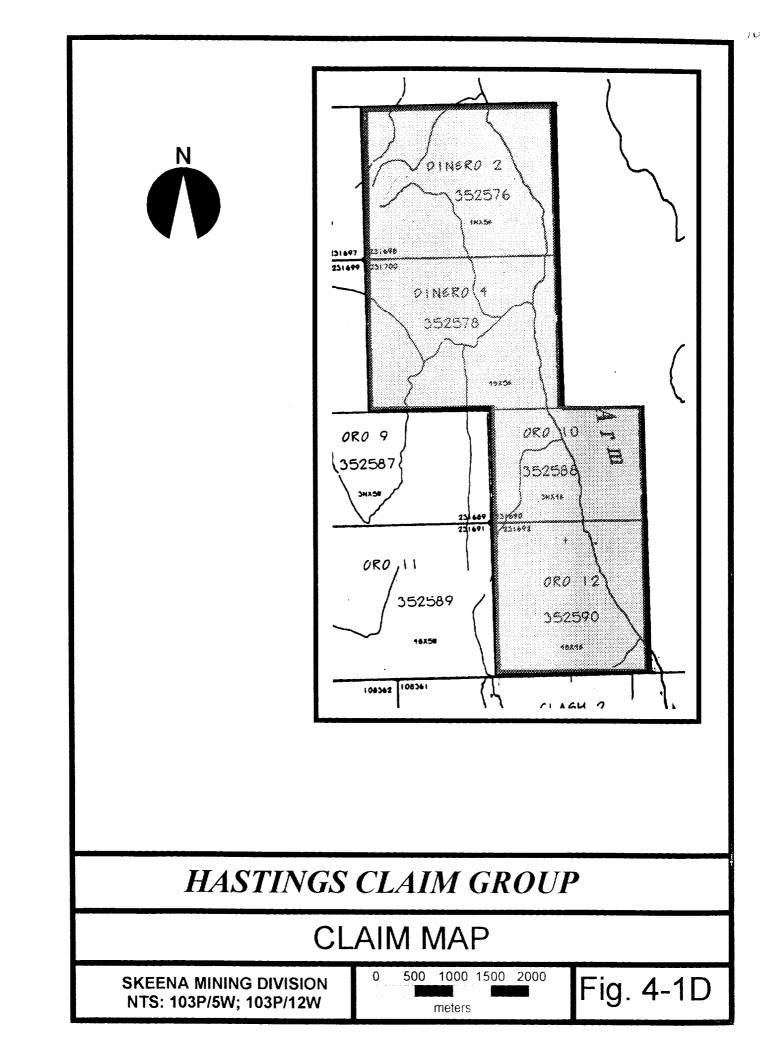
<u>OBSERVATORY Claim Group</u> (2 Claims - 40 Units) - (see Figure 4-1J)

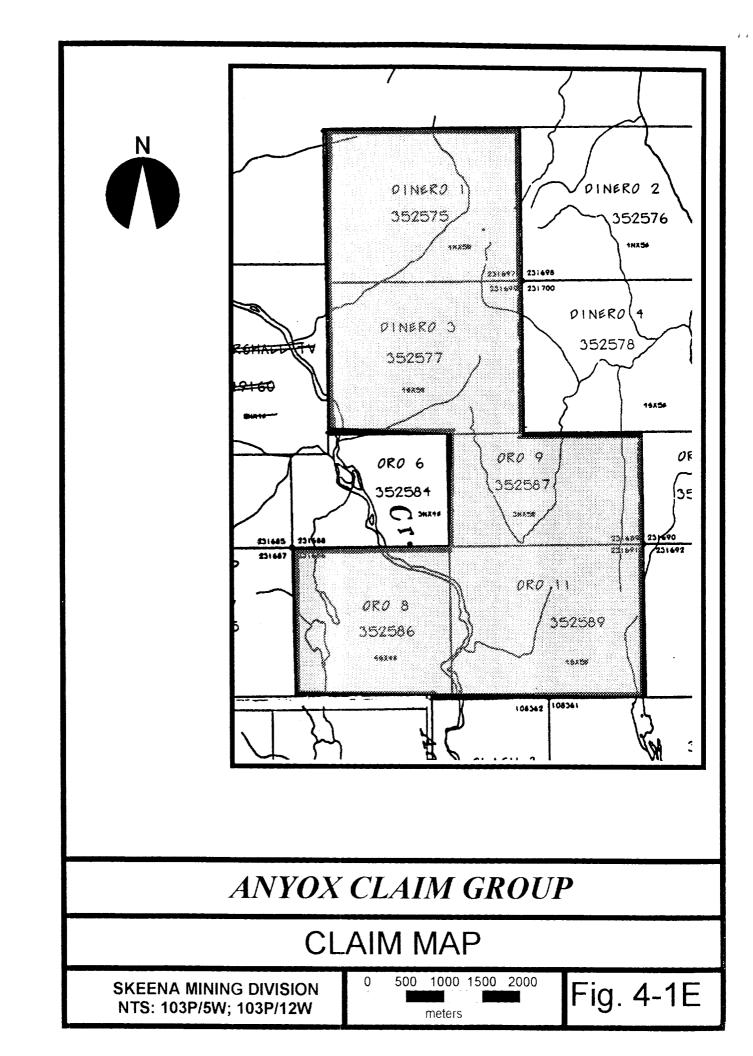
Claim Name	Units	Tenure #	Old Expiry Date	New Expiry Date	Registered Owner
Del 3	20	355 322	1998APR25	1999APR25	
Del 4	20	355 322	1998APR25	1999APR25 1999APR25	ALT ALT
Total:	40				

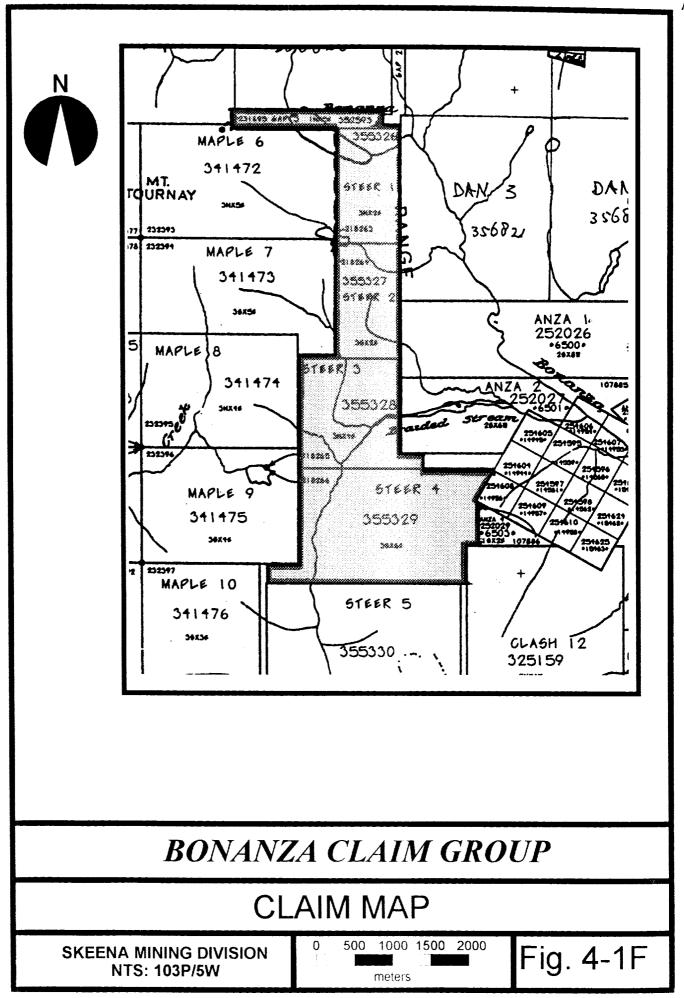

<u>CASCADE Claim Group</u> (6 Claims - 96 Units) - (see Figure 4-1K)

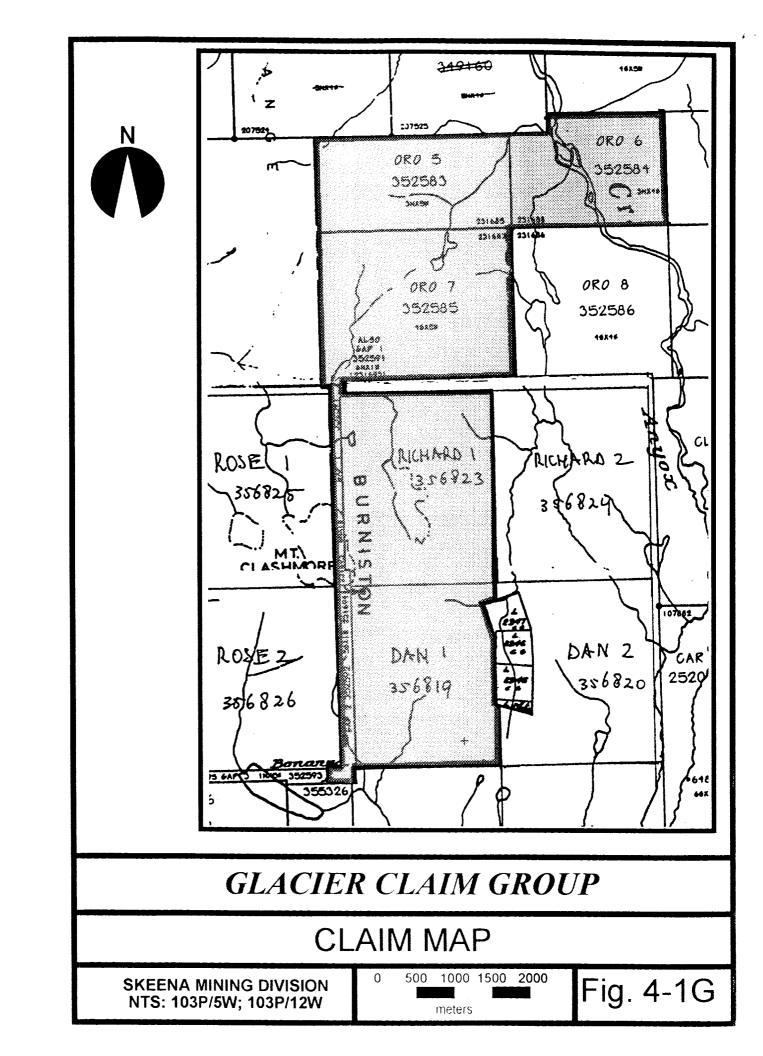

Claim Name	Units	Tenure #	Old Expiry Date	New Expiry Date	Registered Owner
<u>Stern 5</u>	20	255 220	1000 4 55 25	1000 1 000	4 7 77
Steer 5	20	355 330	1998APR25	1999APR25	ALT
Steer 6	20	355 331	1998APR25	1999APR25	ALT
Del 5	12	355 324	1998APR25	1999APR25	ALT
Del 7	12	356 829	1998JUN07	1998JUN07	ALT
Del 8	12	356 830	1998JUN07	1998ЈИМ07	ALT
Sarah 1	20	356 817	1998JUN19	1998ЛИМ19	ALT
Total:	96				

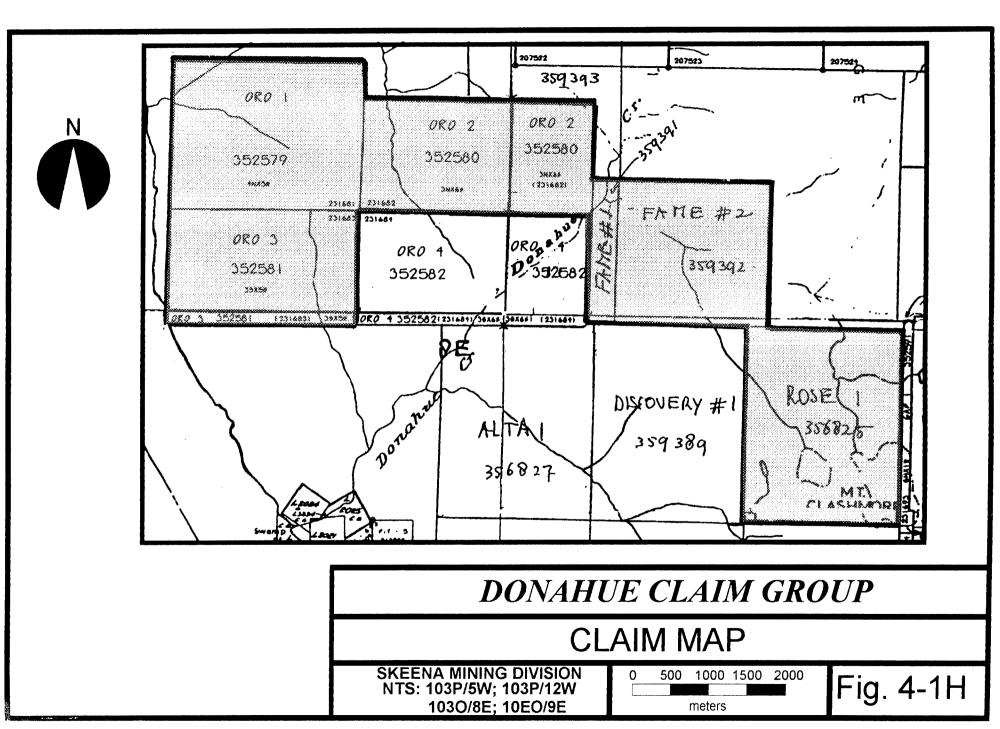

INDIVIDUAL CLAIMS (3 Claims - 19 Units)

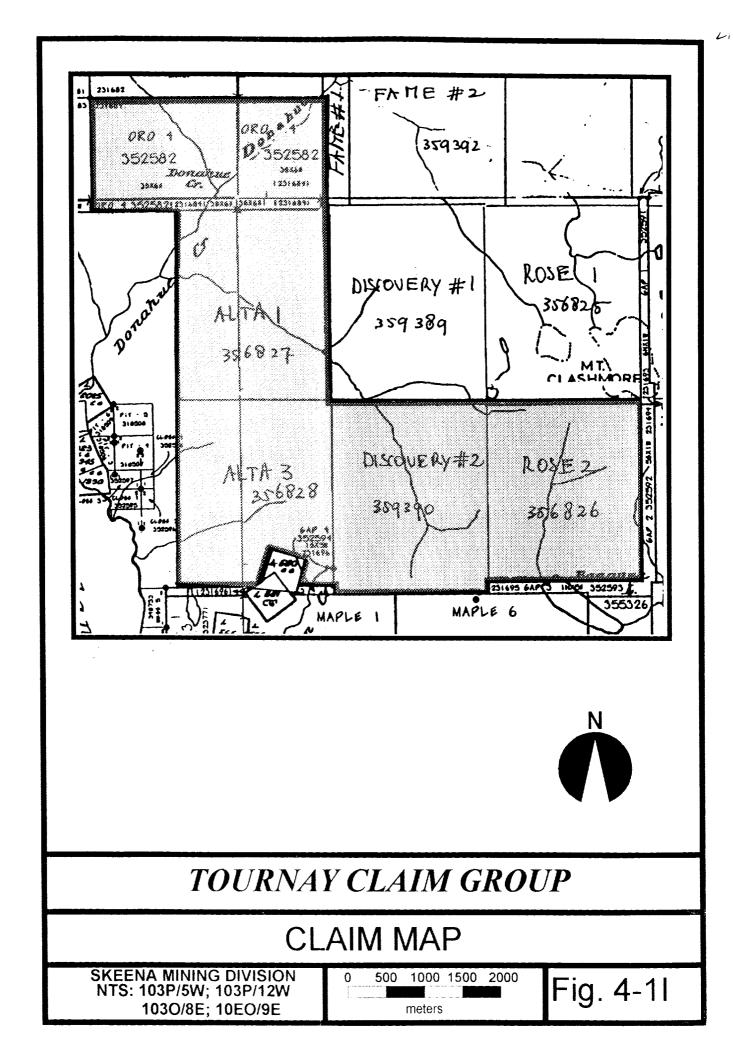

(see Figure 4-1C for Gap 4 Claim) (see Figure 4-1L for Granby I & Granby II Claims)

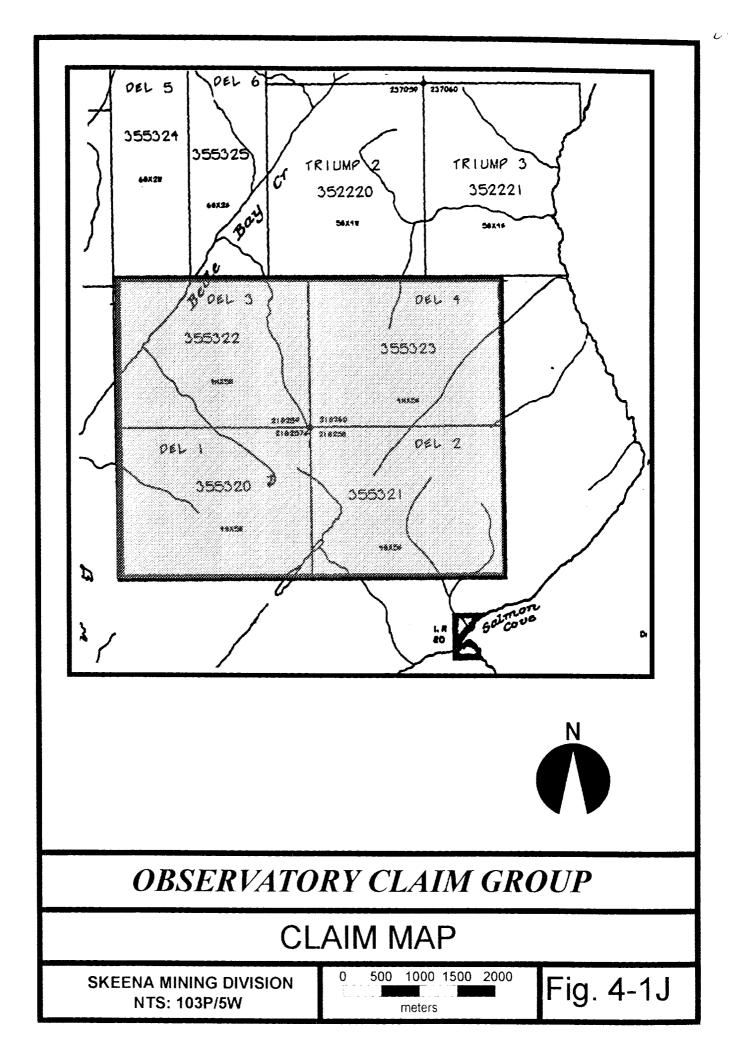

Claim Name	Units	Tenure #	Old Expiry Date	New Expiry Date	Registered Owner
Gap 4	5	352 594	1997OCT30	1998OCT30	MEA
Granby I	6	355 317	1998APR25	2000APR25	ALT
Granby II	8	355 318	1998APR25	2000APR25	ALT
Total:	19				

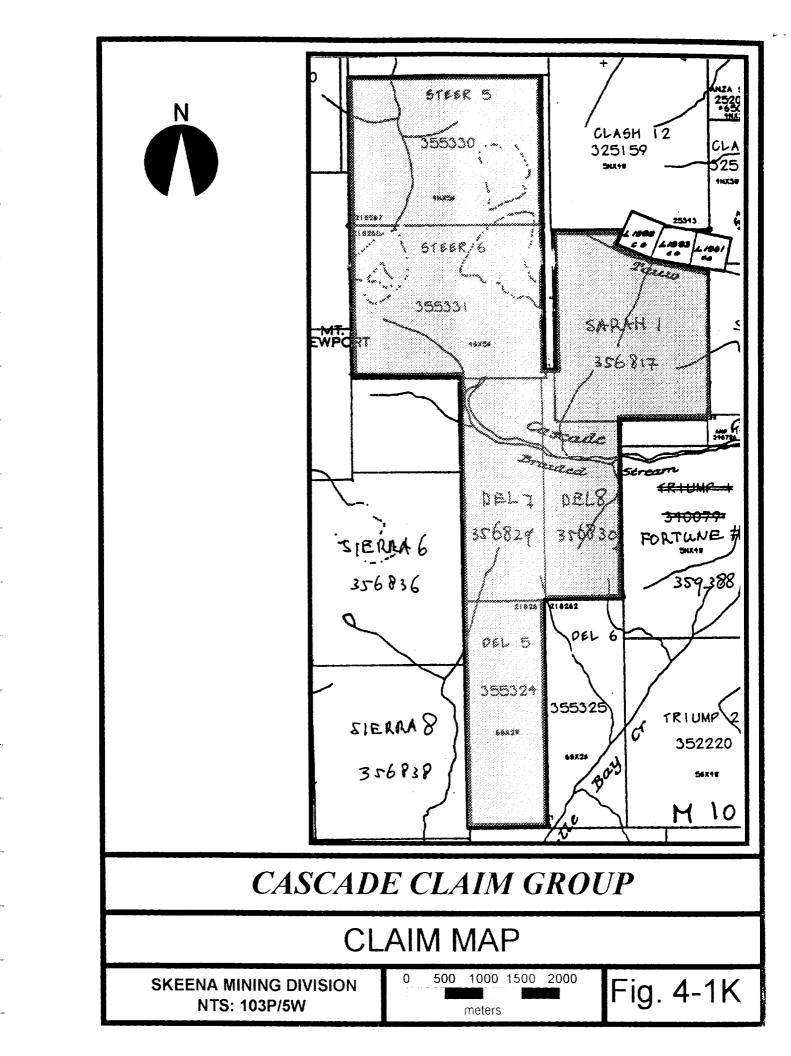


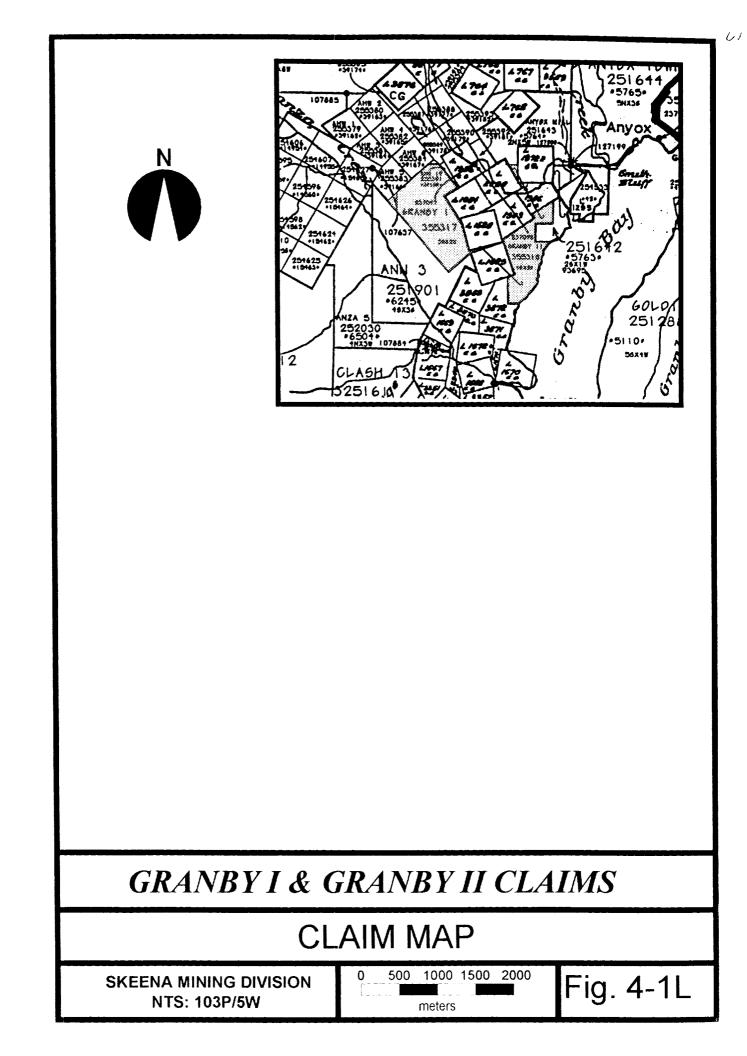











1

}

5.0 PREVIOUS WORK

The majority of the previous work carried out in the Anyox area has been restricted to intense examination of the following areas:

- the narrow, high-grade gold veins on Granby Peninsula

- the copper-gold vein systems in the Maple Bay area

- the major volcanogenic "Anyox type" precious metal-bearing massive sulphide deposits in the Anyox Creek and Bonanza Creek areas

- the molybdenum occurrences near Granby Bay

It appears that very little recorded work has been carried out on the claims covered by this report.

In 1979, the provincial government carried out a <u>Regional Geochemical</u> <u>Survey over the entire Anyox area</u>. The samples taken in 1979 were reanalysed in 1995, using more sophisticated analytical methods for more elements, including gold. There are several anomalous stream Au values covered by the claims which are the subject of this report, including:

- a 313 ppb Au sample in the Donahue Creek drainage

- a 200 ppb Au sample at the south end (outlet) of the dammed lake on Anyox Creek

- two samples of 57 ppb Au and 361 ppb Au on the Belle Bay Creek drainage.

In 1994⁴, reconnaissance surveys were carried out in the area of the Sarah 1 & 2, Dan 2 to 4, Rosel 1 & 2 and Richard 1 & 2 mineral claims. These reconnaissance surveys detected numerous zones of copper, gold, silver, lead and zinc mineralization in quartz veins, gossans, siliceous argillite and sulphide lenses. Au values up to 2,920 ppb, silver values up to 240 ppm, copper values up to 55,000 ppm, lead values up to 4201 ppm and zinc values up to 16,400 were detected in rock samples as a result of this 1994 reconnaissance sampling program.

6.0 GEOLOGY

6.10 Regional Geology

The geology of the Anyox area has been updated in 1997 on a scale of $1:50,000^2$ by the Geological Survey of Canada. Pertinent portions of this map are shown in Figures 6-1A to 6-1L.

In the Anyox area, Jurassic volcanic and sedimentary rock units are preserved as roof pendants within the late Cretaceous to Early Tertiary Coast Plutonic Complex. The Coast Plutonic Complex has, in turn, been intruded by a series of Oligocene or younger lithologically distinctive dykes.

Contact metamorphism has elevated Jurassic units to lower greenschist facies. The area has been cut by major strike-slip, normal and thrust faults. Several phases of folding have deformed the Jurassic succession.

The oldest rock units mapped in the area are Devonian to Jurassic Clashmore Complex (Units DJcg, DJsv, DJcsvm, Djcu & DJcmp). The term "Clashmore Complex" is an informal term given to the region of structurally interleaved and highly-strained metasedimentary, metavolcanic and meta-intrusive rocks which occur west of the Hazelton Group. These rocks outcrop in the northwest portion of the area.

The Hazelton Group of Lower(?) to Lower Middle Jurassic age metavolcanic rocks (Unit JHv) outcrop to the east of the Clashmore Complex rocks. These metavolcanic rocks consist of volcanic breccias, pillowed volcanics and massive volcanic flows.

The Bowser Lake Group of Upper Middle to Upper(?) Jurassic age turbidites (siltstones, mudstones, sandstones and conglomerates) (Unit Jbt) overlies the Hazelton Group metavolcanic rocks and outcrops to the east of these Hazelton Group metavolcanic rocks.

Eocene Hyder Pluton intrusives (Unit ETH) (Granite, quartz monzonite and granodiorite) underlie the Anyox roof pendant rocks and outcrop surrounding the Clashmore Complex, Hazelton Group and Bowser Lake Group rocks. The most important ore deposits in the Anyox area are the volcanogenic massive sulphide deposits which include the *Hidden Creek - Anyox Deposit* and the *Bonanza Deposit*. These two deposits have recorded copper, silver and gold production totaling nearly one billion US\$ gross metal value (based on 1997 metal prices). Other, smaller deposits, including the *Double Ed Deposit* and the *Redwing Deposit* are found in the same geological environment as the major producers. These deposits are all found in the heavily explored and developed area within a few kilometers of the old Anyox townsite.

The major massive sulphide deposits and the majority of the surrounding mining properties are found close to the contact between Hazelton Group metavolcanic rocks (Unit JHv) (volcanic breccias, pillowed volcanics and massive volcanic flows) and the overlying Bowser Lake Group turbidites (Unit JBt) (siltstones, mudstones, sandstones and conglomerates).

Quartzite-hosted sulphides are found within a sequence of Hazelton Group metabasalts on the *Eden Property*, located approximately 3 kilometers east of Mount Clashmore. The *Eden Property* has published reserves of 158,742 tonnes of 1.5% copper and 1.9% zinc.

In the Maple Bay area, there are several smaller vein deposits, including the *Outsider Deposit*, the *Eagle-May Queen Deposit* and the *Princess Deposit*. These deposits occur mainly as quartz veins in greenstones of the Clashmore Complex.

In the Sylvester Bay area, approximately 7 kilometers south of the old Anyox townsite, molybdenum is found in the *Molly May Deposit*. This deposit occurs as 4 zones in an Eocene, northeast-trending 2.5×1.0 kilometer quartz monzonite stock

6.20 Local Geology

Geological observations were made in conjunction with the geochemical sampling program. In addition, specific geologic traverses were made in some of the claim areas.

A total of 22 rock samples were sent to *Acme Analytical Laboratories Ltd.* for analysis. These samples were analysed for Mo, Cu, Pb, Zn, Ag, Ni, Co, Mn, Fe, As, U, Th, Cd, Sb, Bi and Au. These results are shown in **Appendix II**. Au and Ag were determined by fire assay from a 1 assay ton sample. The other elements were analysed by digestion in 30 ml. of aqua regia, dilution to 100 ml. and analysis by Induced Coupled Plasma. Since there were too few sample values to run statistics, anomalous sample values were determined by visual inspection of the data. The only significant anomalous value was an Ag assay value of 3.08 oz/t (Sample #78614).

The locations of geological observation stations are plotted on Figures 6 - 1A through 6 - 1L.

Carney Lake Claim Group (see Figure 6 - 1A):

Station #E42: fine-grained dark grey massive homogenious rock.

Station #E43: massive medium-grained grey rock with feldspar and finer dark minerals.

Station #E44: very fine-grained dark grey argillite, weakly foliated.

Station #E45: very fine-grained dark grey argillite, better cleavage.

<u>Station #E46:</u> very fine-grained dark grey argillite, better cleavage; <u>rock sample</u> <u>#78613</u> from quartz veins.

Station #E47: large outcrops of fine-grained argillite; major joints @ 336/72.

<u>Station #E48:</u> very fine-grained argillite with quartz veins, 0.5 cm. to 5 cm., mostly parallel @ 271/81; <u>rock sample #78614</u>, from a quartz vein with no visible mineralization, returned an assay of **3.08 oz/ton Ag**.

Station #E49: same outcrop (continuous).

Station #E50: argillite slightly mineralized with pyrrhotite? rock sample #78615.

Station #E51: large outcrops of feldspar porphyry.

Station #E52: 0.75 m. zone, mainly quartz; rock sample # 78616.

Station #E53: at geochemical sample #138 from creek mouth; 0.5 meter quartz vein in argillite, 103/72.

Station #E54: large argillite outcrops along shore.

Belle Bay Claim Group (see Figure 6 - 1B):

Station #D50: no outcrop; near geochemical sample #44 taken from small active creek.

Station #D51: no outcrop; near geochemical sample # 45 taken from small active creek.

Station #D52: outcrop of dark grey sediments near geochemical sample #46 taken from small active creek.

<u>Station #D53:</u> quartz flooding at sediment/intrusive contact near <u>geochemical</u> <u>sample #47</u> taken from small active creek; <u>rock sample #78557</u> taken from quartz material.

Station #D54: near geochemical sample #48 on west branch of small creek at Station #D53.

Station #D55: outcrop of dark grey sediments near geochemical sample #49 in small active creek.

Station #D56: siliceous fine-grained rock at contact between sediments and intrusives.

Station #E22: at geochemical sample #119 from tributary; coarse to very coarse granite with biotite and orthoclase; leucocratic bands and patches; slightly sheared (weakly foliated); joints @ 132/23, 122/67 and 190/83.

Station #E24: at geochemical sample #121 in major creek; cobbles and boulders in many varieties.

Station #E25: at geochemical sample #122 from minor creek; no outcrop.

<u>Station #E55:</u> biotite hornblende granite with scattered quartz veining 1 cm. to 5 cm.; mainly vertical, trending 315^{0} ; rock sample #78617.

Close Claim Group & Gap 4 Claim (see Figure 6 - 1C):

<u>Station #D29:</u> no outcrop or float observed at lake outlet near <u>geochemical</u> sample # 29 from small intermittent creek.

<u>Station #E31:</u> dark grey fine-grained homogenious rock outcrops near geochemical sample #127 from poor drainage.

Hastings Claim Group (see Figure 6 - 1D):

Station #D1: outcrop of granitic intrusive in small cliff near swampy area; near geochemical sample #1 at small inactive creek.

<u>Station #D2:</u> granitic intrusive float blocks near <u>geochemical sample #2</u> at medium-large active creek.

<u>Station #D3:</u> outcrop of granitic intrusive near <u>geochemical sample #3</u> in small active creek running through swampy area.

Station #D10: granite intrusive float blocks near geochemical sample #10 in small trickle creek.

<u>Station #D11:</u> granite intrusive float blocks near <u>geochemical sample #11</u> in small trickle creek.

<u>Station #E1:</u> massive coarse granite in scattered outcrops near <u>geochemical</u> sample #101 in level swampy area with small drainage.

<u>Station #E2</u>: no outcrop near <u>geochemical sample #102</u> from main channel of small creek.

Station #E3: 10 m. exposure of light-coloured biotite granite;, homogenious, no veining; joints @ 303/88 (distinct, regular on 1/2 to 1 m. scale), 35/83 (distinct,

irregular on 1/4 to 1 m. scale), 344/06 (similar to 35/83); rock sample #78601 taken for analysis.

Station #E4: no outcrop near geochemical sample #103 from small side drainage.

Station #E5: no outcrop near geochemical sample #104 from slightly larger drainage.

Station #E29: at geochemical sample #125 from creek above waterfall; sediments with fine-grained dark grey banded variety.

Anyox Claim Group (see Figure 6 - 1E):

Station #D4: outcrop of granitic intrusive below lake <u>near geochemical sample</u> #4 in small inactive creek running through intrusive rubble.

<u>Station #D5:</u> outcrop of granitic intrusive with 20 cm. quartz vein trending 026° near geochemical sample #5 from medium-sized active creek.

<u>Station #D6:</u> outcrop of medium grey, highly siliceous volcanic rock in medium-sized active creek near geochemical sample #6.

<u>Station #D8:</u> outcrop of granitic intrusive near <u>geochemical sample #8</u> in small intermittent creek.

<u>Station #D9:</u> granitic intrusive float blocks near <u>geochemical sample #9</u> in small active creek.

<u>Station #D12:</u> granitic intrusive float blocks near <u>geochemical sample #12</u> in small creek with some standing water.

Station #D26: outcrop of granitic intrusive near geochemical sample #26 in medium-sized active creek.

Station #D27: outcrop of granitic intrusive near geochemical sample #27 in smaller active creek.

Station #E6: no outcrop near geochemical sample #105.

<u>Station #E7:</u> outcrop of homogeneous granite.

Station #E8: blocks of biotite granite near <u>geochemical sample #106</u> from creek in major valley.

Station #E12: at geochemical sample #109

<u>Station #E13:</u> at geochemical sample #110 from small creek; scattered outcrops of coarse undeformed hornblende-biotite granite; major joints @ 226/74 and 130/69; rock sample #78605.

<u>Station #E14:</u> at geochemical sample #111 from small creek; rock sample $\frac{#78606}{10}$ from 10 cm. "bull quartz" vein in dark grey medium-grained dyke like basic rock with scattered pyrite; rock sample $\frac{#78607}{10}$ from massive basic rock.

Station #E28: at geochemical sample #124; coarse granite with biotite and hornblende; joints @ 282/22.

Bonanza Claim Group (see Figure 6 - 1F):

Station #D32: boulders of highly deformed intrusive and volcanic rocks near geochemical sample #32 from medium-large creek draining into small lake.

<u>Station #D33:</u> outcrop of dark grey massive fine-grained rock with minor pyrite near <u>geochemical sample #33</u> from medium-sized creek in small canyon.

<u>Station #D34:</u> no outcrop or float observed near <u>geochemical sample #34</u> from small dried up creek.

Station #E35: at geochemical sample #131 from outflow of Bonanza Lake; outcrops of grey fine-grained homogenious rock; rock sample #78611.

Station #E36: at geochemical sample #132 from creek draining small lake; siliceous fine-grained greenish grey rock with fine pyrite.

Station #E37: at geochemical sample #133; massive light grey granite; joints @ 48/86, 137/75 and 141/24.

Station #E38: at geochemical sample #134; no outcrop.

Station #E39: at geochemical sample #135; no outcrop; rock sample #78612.

Station #E40: at geochemical sample #136; no outcrop.

Station #E41: at geochemical sample #137; dark grey massive homogeneous rock outcrop.

Glacier Claim Group (see Figure 6 - 1G):

<u>Station #D7</u>: outcrop of light grey volcanic rock with minor pyrite near geochemical sample #7 at medium-sized creek flowing from lake outlet.

<u>Station #D13:</u> outcrop of well-foliated biotite-rich intrusive near <u>geochemical</u> <u>sample #13</u> from medium-sized active creek.

<u>Station #E10:</u> granite intruded into basic volcanics; <u>rock sample #78602</u> of basic rock with scattered quartz veinlets; granite appears sheared with fault plane (very thin mylonitic) 287/49; <u>rock sample #78603</u> of 1 cm. granitic vein plus wallrock in basic rock; <u>rock sample #78604</u> of loose, basic volcanic, less deformed, has abundant pyrite and some epidote at <u>geochemical sample #107</u>.

Station #E11: at geochemical sample #108 in small creek with boulders and cobbles of granite.

Station #E15: at geochemical sample #112 in major creek; large granitic outcrop.

Station #E17: at geochemical sample #114 in small dry creek bed.

Donahue Claim Group (see Figure 6 - 1H):

Station #D14: granitic intrusive float blocks in swampy area with small poor creek drainage at geochemical sample #14.

Station #D15: no observable outcrop or float near geochemical sample #15 in small trickle creek.

Station #D17: outcrop of dark grey-green highly siliceous chloritized intrusive with minor pyrite near geochemical sample #17 in medium-large creek.

Station #D18: no outcrop or float observed in logged-off area near <u>geochemical</u> sample #18 in intermittent trickle creek.

Station #D19: no outcrop or float observed in logged-off area near geochemical sample #19 in intermittent trickle creek.

Station #E16: at geochemical sample #113 in major creek.

Station #E18: at geochemical sample #115 in major creek; grey fine-grained massive volcanic rock with pyrite.

Tournay Claim Group (see Figure 6 - 11):

Station #D16: outcrop of biotite-rich chloritized intrusive with minor pyrite at cliff near waterfall near geochemical sample #16.

<u>Station #D28:</u> dark grey slaty sediments with interbedded lighter coloured sediments outcrop near <u>geochemical sample #28</u> in medium-sized active creek; intermittent quartz veining observed in creek; <u>rock sample #78551</u> across 20 cm. quartz vein taken for assay; second phase narrow quartz stringers cut across sediments.

Station #D30: blocky and slabby deformed biotite-rich foliated intrusive float near geochemical sample #30; vuggy quartz float from narrow (20 cm. to 60 cm.) quartz veins on sidehill to west; sample of quartz float taken for assay as rock sample #78522.

<u>Station #D31:</u> outcrop of medium grey-green volcanic rock near <u>geochemical</u> <u>sample #31</u> in medium-large active drainage; 60 cm. discontinuous quartz vein in creek assayed as <u>rock sample #78553</u>.

<u>Station #E19</u>: at geochemical sample #116 from small tributary; dark grey finegrained well-foliated rock; rock sample #78608.

Station #E20: at geochemical sample #117 from dry creek bed.

Station #E30: at geochemical sample #126 from major creek; no outcrop; sample about 200 m. from tidewater.

Station #E32: at geochemical sample #128 from small active creek; greenish grey fine-grained siliceous rock with occasional irregular quartz veins.

Station #E33: at geochemical sample #129; outcrop of light grey massive rock.

Station #E34: at geochemical sample #130; no outcrop.

Observatory Claim Group (see Figure 6 - 1J):

<u>Station #D20:</u> granite boulders near <u>geochemical sample #20</u> in medium-large active creek.

Station #D21: granite boulders near geochemical sample #21 in large active creek.

<u>Station #D22:</u> outcrop of unaltered medium-grained granitic rock near geochemical sample #22 in medium-large active creek.

<u>Station #D23:</u> outcrop of granitic intrusive near <u>geochemical sample #23</u> in small active creek.

<u>Station #D24:</u> outcrop of granitic intrusive near <u>geochemical sample #24</u> in medium-sized active creek.

<u>Station #D25:</u> outcrop of granitic intrusive near <u>geochemical sample #25</u> in small active creek.

Station #E21: at geochemical sample #118 on main creek; no outcrop.

Station #E23: at geochemical sample #120; relatively unsheared granite with some sugary textures observed; joints @78/85 and 210/66.

Station #E26: at geochemical sample #123; good rock exposure in canyon; granite with quartz-rich varieties and few quartz veins from 2 cm. to 15 cm; rock samples #78609 & #78610.

Cascade Claim Group (see Figure 6 - 1K):

<u>Station #D35:</u> blocky and slabby rubble which includes deformed intrusives and volcanics near geochemical sample #35.

<u>Station #D36:</u> blocky and slabby rubble which includes deformed intrusives and volcanics near <u>geochemical sample #36</u>.

<u>Station #D47:</u> outcrop of granite in contact with dark grey sediments; at <u>geochemical sample #41</u> taken from small dry drainage.

<u>Station #D48:</u> outcrop of granite in contact with dark grey sediments; at <u>geochemical sample #42</u> taken from small dry drainage.

<u>Station #D49:</u> outcrop of "dirty" granite in contact with dark grey sediments; at <u>geochemical sample #43</u> taken from medium-sized active creek.

Station #E60: very fine-grained dark grey siliceous massive rock.

Station #E61: large outcrops of fine-grained dark grey rock.

Station #E62: granitic rock.

Station #E63: fine-grained rock.

Station #E64: fine-grained dark grey massive rock with well-developed thin bands (appears sedimentary).

Station #E65: granite contact.

Station #E66: argillite cut by 5 m. wide medium-grained diabase dyke.

Station #E67: argillite with scattered irregular quartz veins.

Station #E68: well-bedded argillite; rock samples # 78619, #78620, #78621.

Station #E69: well-bedded argillite; quartz is common, scattered in irregular veins, blebs and lenses; rock sample #78622.

Station #E70: 2 m. wide zone rich in quartz veins; main vein is 1 m. thick in argillite.

Granby I & Granby II Claims (see Figure 6 - 1L):

<u>Station #D37:</u> outcrop of dark grey fine-grained sediments with minor fine-grained pyrite; bedding @ 037/77E; major cross-fracturing @ 088/75N; narrow (2 cm.) quartz ribbons conform with bedding; same outcrop continues to <u>Station #D38</u>.

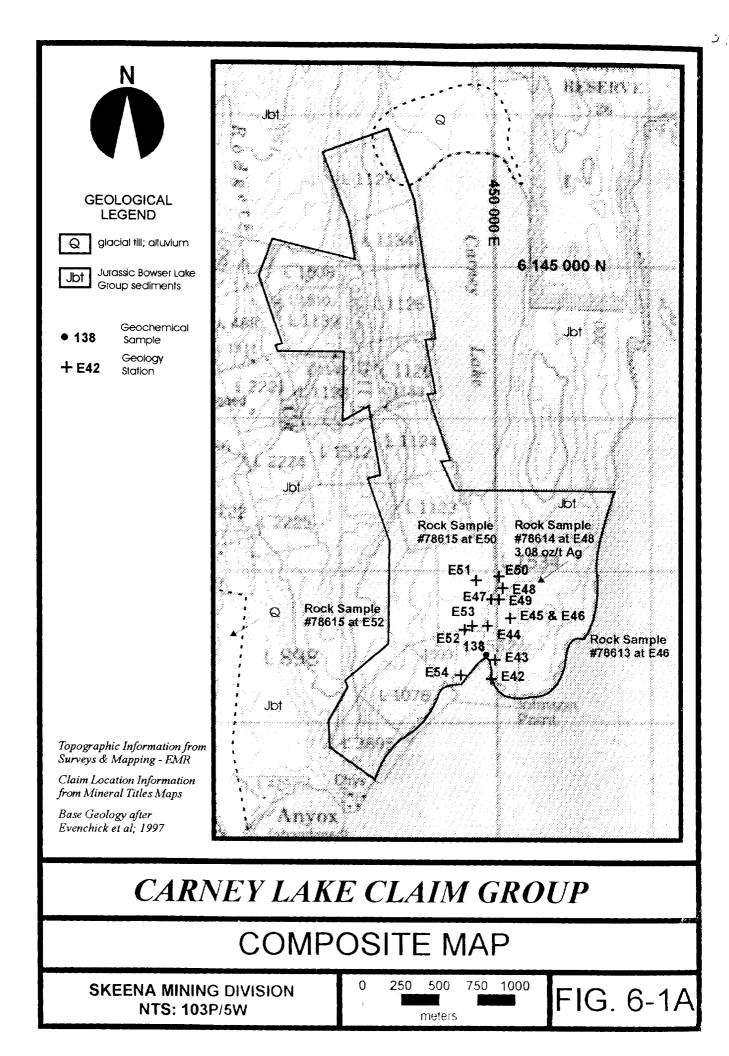
<u>Station #D38:</u> outcrop of dark grey fine-grained sediments (siltstone?) with narrow (2 cm. to 5 cm.) quartz veinlets and ribbons conformable with and cross-cutting bedding; same outcrop continues to <u>Station #D39</u>.

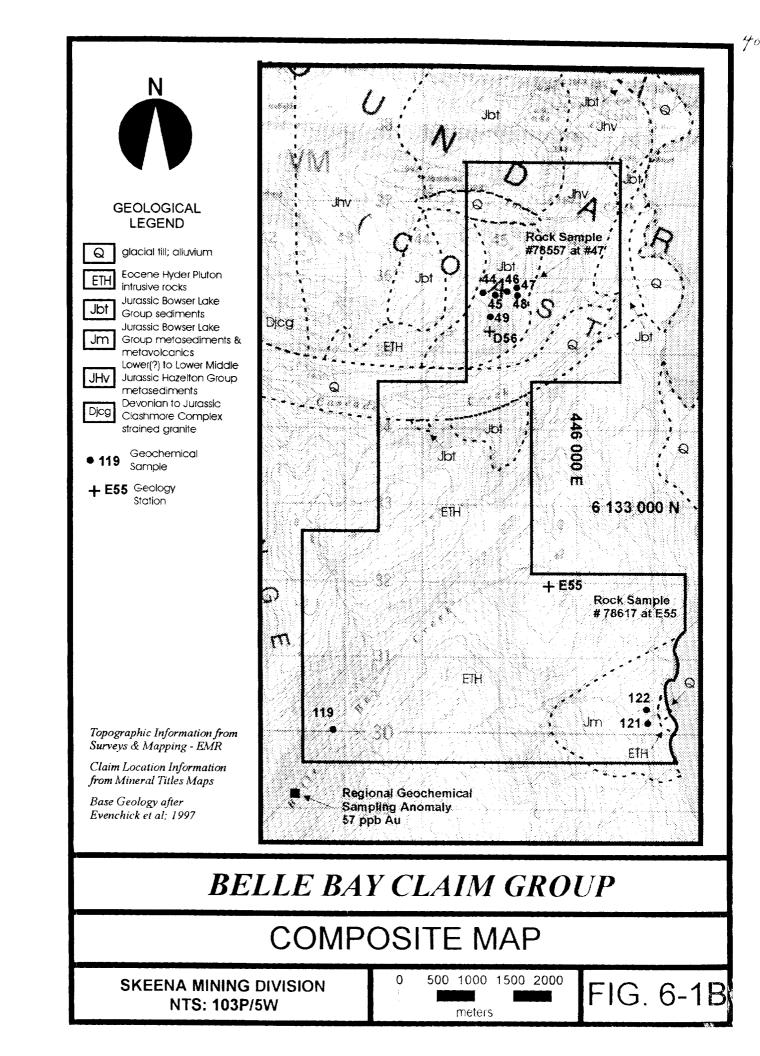
<u>Station #D39:</u> same outcrop as <u>Station #D37 & D38</u>; thin quartz plating on fracture surfaces; bedding @ 050/88S; same outcrop continues to <u>Station #D40</u>.

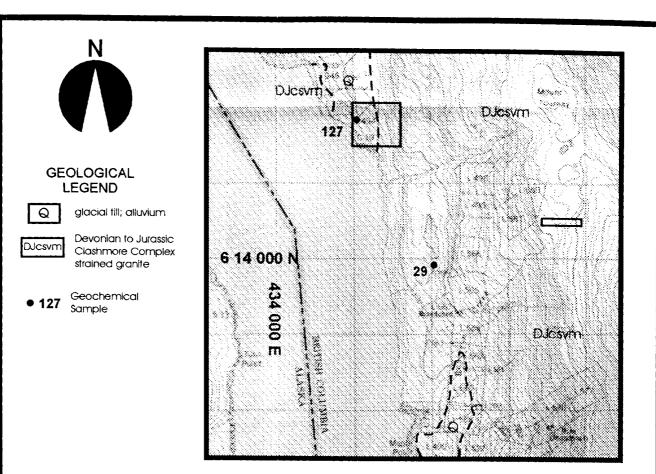
<u>Station #D40:</u> 15 cm. quartz lens, conformable with sediment bedding; <u>rock</u> <u>sample #78554</u>; same sediments continue to <u>Station #D41</u>.

Station #D41: same sediments near geochemical sample #37 from head of small active creek.

Station #D42: no outcrop near geochemical sample #38 in same small active creek.


<u>Station #D43:</u> massive quartz in pyrrhotite-rich dark grey sediments; malachite staining; beginning of pitted area which continues down east side of creek; <u>rock</u> <u>sample #78555</u> taken of quartz material.


- -


Station #D44: 75 cm. wide quartz vein dipping shallowly to north in 30 m. x 60 m. pitted area; rock sample #78556 of quartz vein taken for assay.

<u>Station #D45:</u> geochemical sample #39 taken from small creek near dump with old track visible, near south end of diggings.

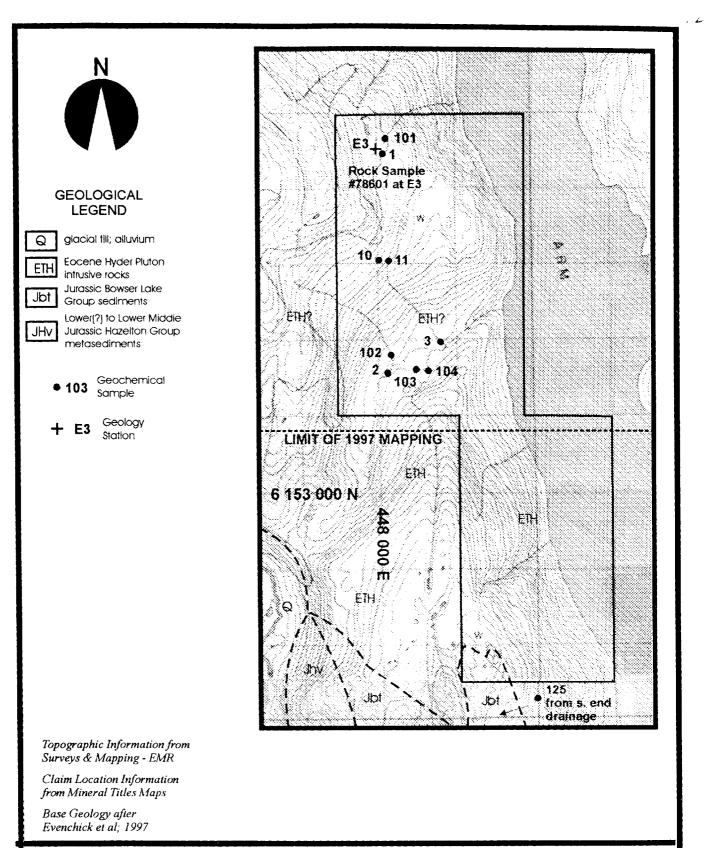
Station #D46: geochemical sample #40 taken from small active creek.

Topographic Information from Surveys & Mapping - EMR

Claim Location Information from Mineral Titles Maps

Base Geology after Evenchick et al; 1997

CLOSE CLAIM GROUP & GAP 4 CLAIM


COMPOSITE MAP

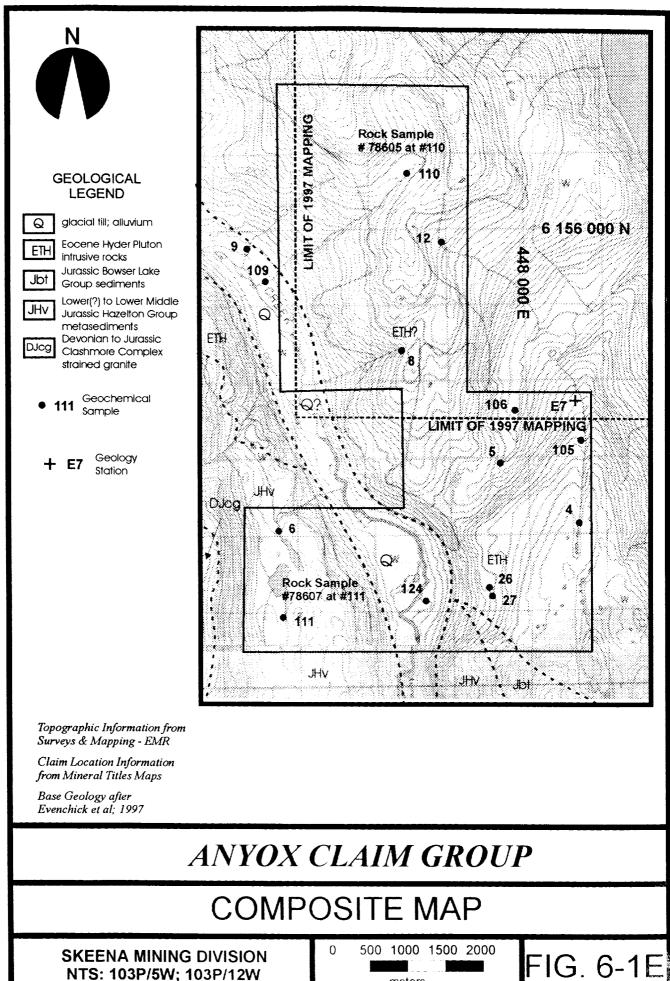
0

SKEENA MINING DIVISION NTS: 1030/8E

500 1000 1500 2000 meters

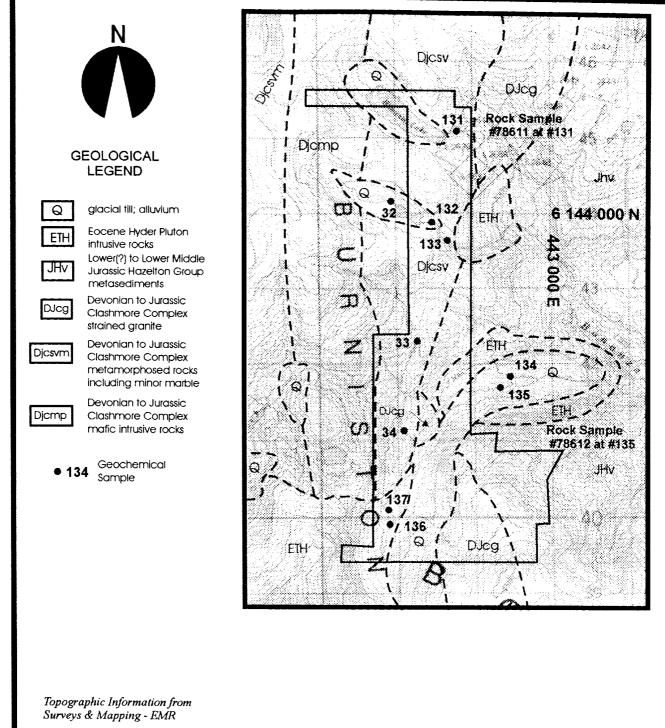
FIG. 6-1C

HASTINGS CLAIM GROUP


COMPOSITE MAP

0

SKEENA MINING DIVISION NTS: 103P/5W; 103P/12W 500 1000 1500 2000


FIG. 6-1D

meters

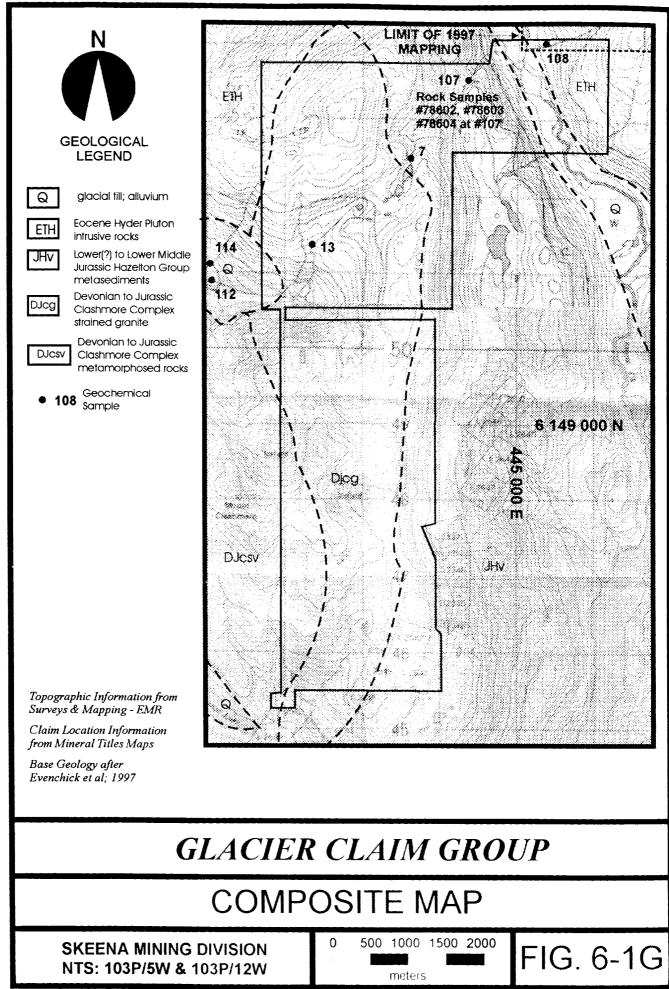
NTS: 103P/5W; 103P/12W

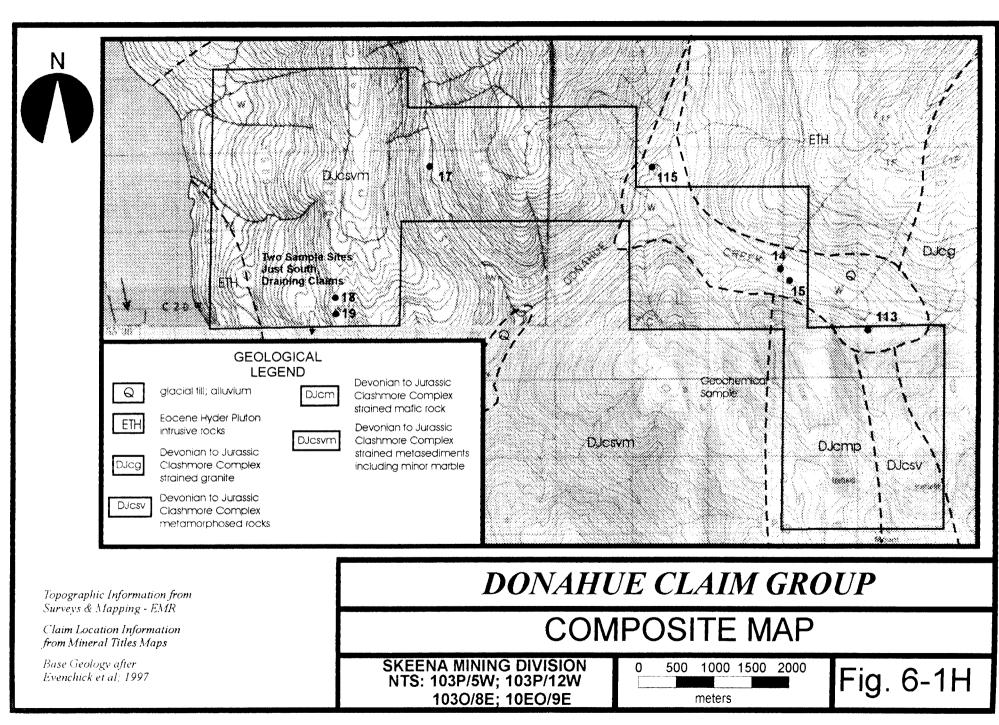
meters

Claim Location Information from Mineral Titles Maps

Base Geology after Evenchick et al; 1997

BONANZA CLAIM GROUP

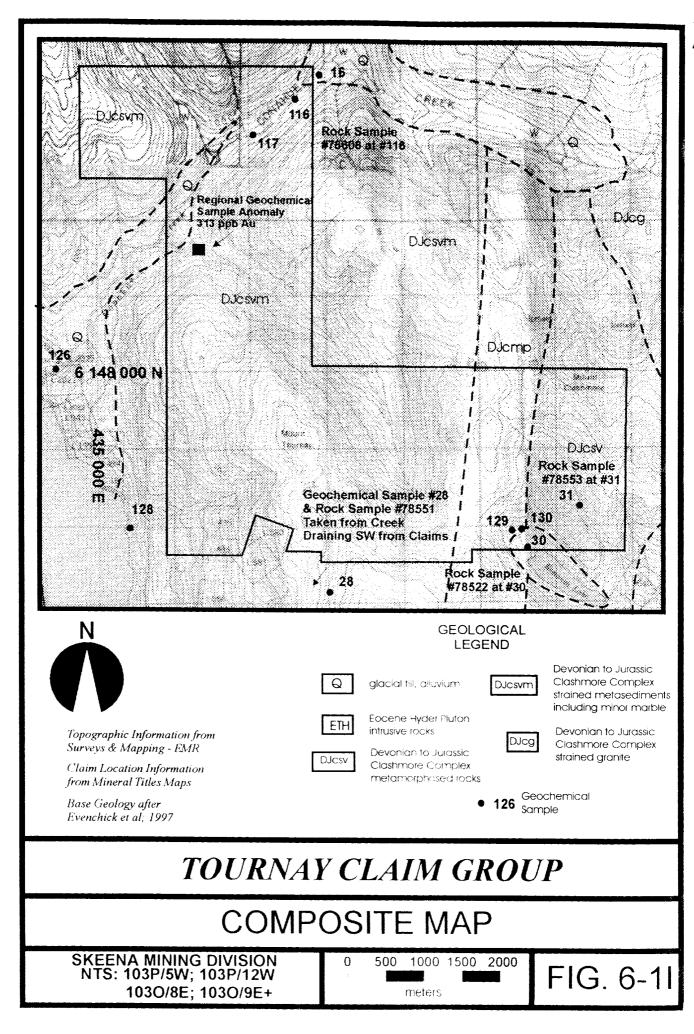

COMPOSITE MAP

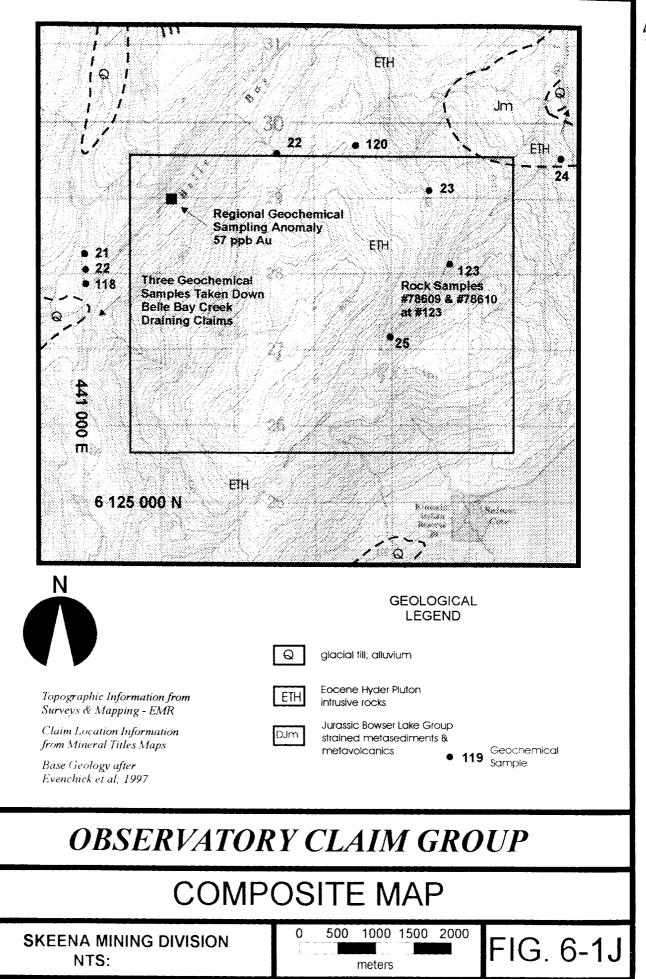

0

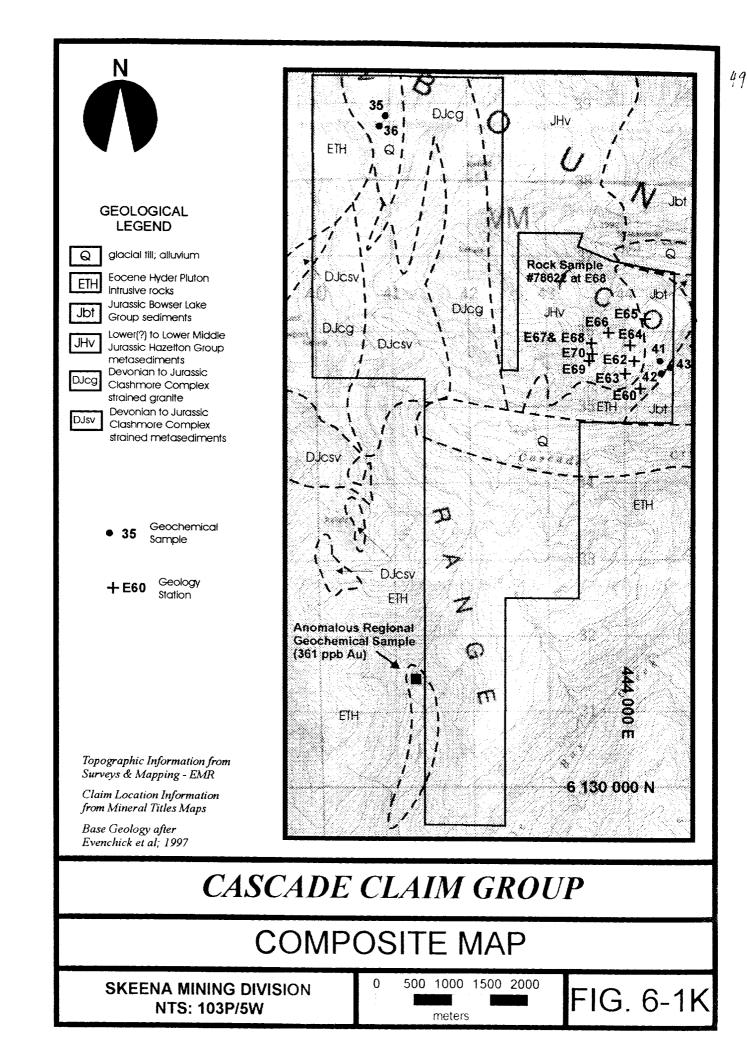
SKEENA MINING DIVISION NTS: 103P/5W 500 1000 1500 2000

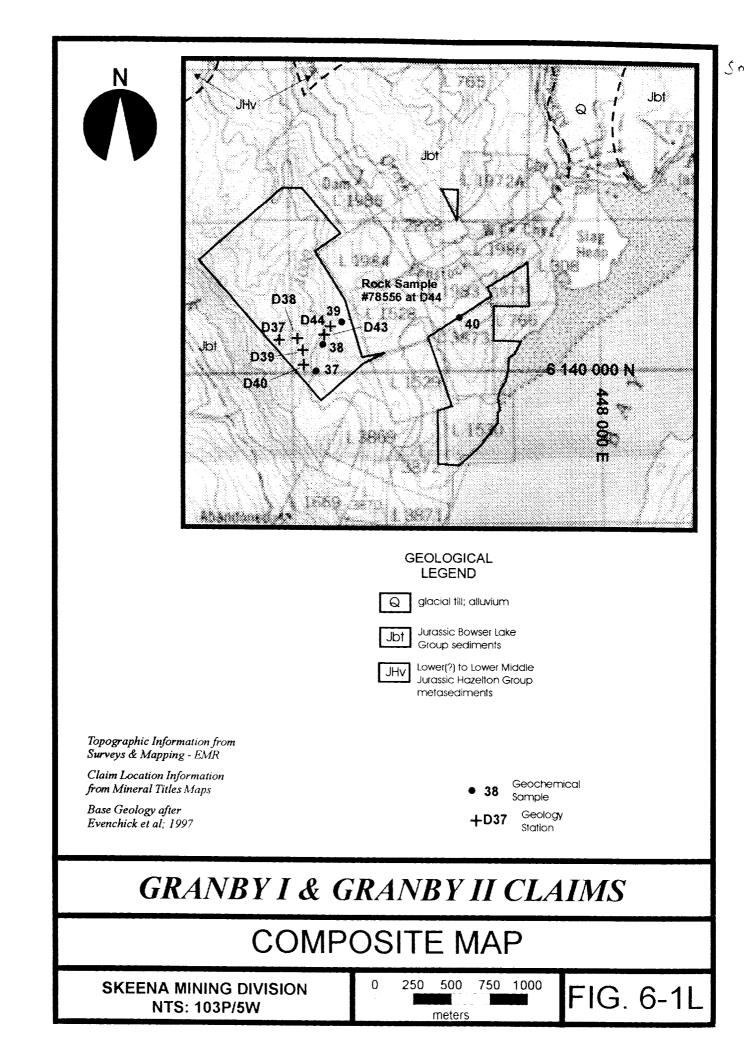
meters

FIG. 6-1F



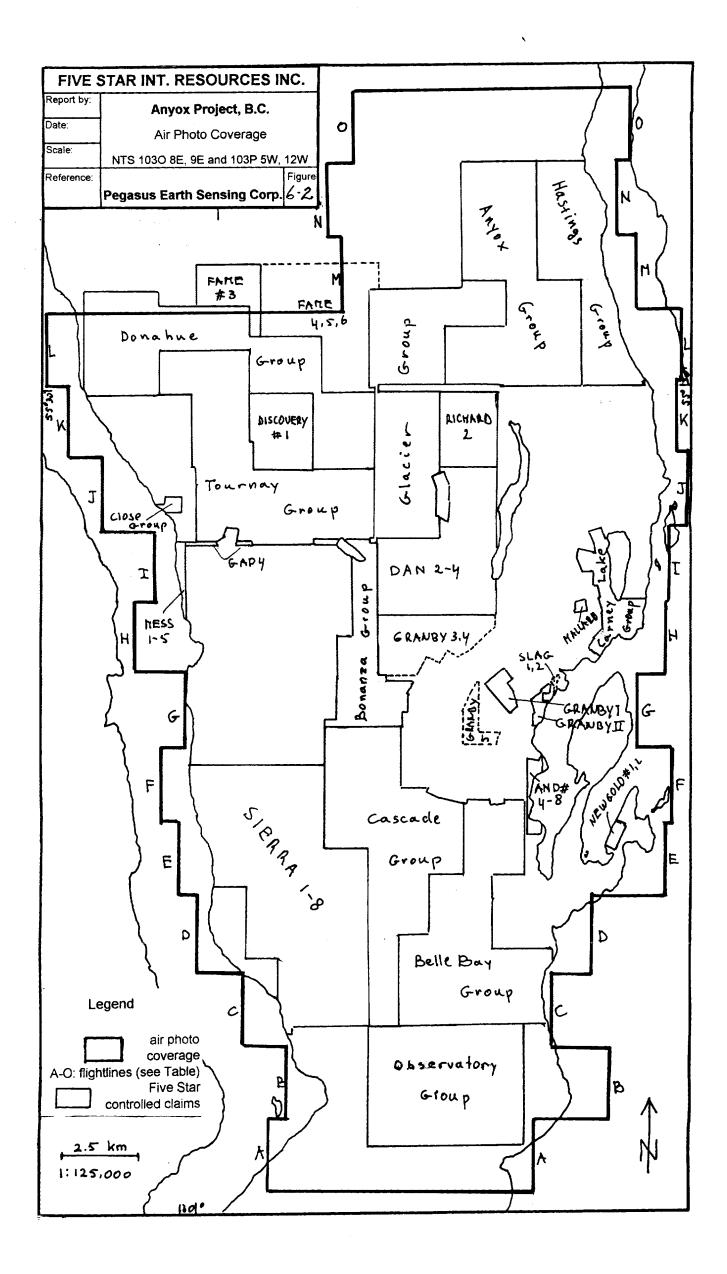



ţ


ł

H

A preliminary interpretation of recent 1:15,000 to 20,000 air photos was carried out to aid the planning and execution of future exploration work at the Anyox Property. The following air photos covering the Property and adjacent ground were used (see Figure 6 - 1):


LINE DESIGNATION	LINE IDENTIFIER	PHOTO NUMBERS
Α	30BCB 94043	177 - 184
В	30BCB 94043	191 - 199
С	30BCB 94043	244 - 252
D	30BCB 94046	102 - 112
E	30BCB 94046	155 - 167
F	30BCB 94046	170 - 183
G	30BCB 94037	29 - 40
H	30BCB 94037	44 - 57
Ι	30BCB 94037	111-124
J	30BCB 94037	128 - 143
K	30BCB 94037	199 - 214
L	30BCB 94037	217 - 233
M	30BCB 94037	293 - 301
N	30BCB 94038	10 - 18
0	30BCB 94038	81 - 89

The following maps were used for reference:

1) Topographic maps (1:50,000): NTS 103O/8, 103O/9, 103P/5 & 103P/12

2)Geologic map (1:50,000): (see Reference #2)

Information collected during the 1997 exploration work at the Anyox property and during helicopter overflights associated with this work were used for ground control. A definite air photo interpretation is planned in conjunction with detailed exploration work to be carried out in the 1998 field season.

いて

INTERPRETATION, GENERAL:

Lineaments: The interpretation which is presented as an 1:50,000 map (see Figure 7 - 2) shows lineaments caused by joints, faults, shear zones, and lineaments caused by foliation and bedding. The difference between these two groups is generally clear. However, it is generally not possible to distinguish between lineaments within these two groups. Most lineaments of the first group are likely caused by joints. Other lineaments are thought to represent shear zones when several are parallel and closely spaced.

Faults are identified by offsets of different rock types or of other lineaments. This was only observed on a very small scale. Normal faulting, which appears the faulting style in this area, is difficult to see on air photos. Lineaments of the second group represent bedding in the Bowser Lake sedimentary rocks (see below) and represent likely another foliation (transposed bedding, axial plane foliation, etc.) in other rocks.

<u>Lithology</u>: Differences between different rock types are clear on the photographs in many locations with good exposure, however, geological contacts are only rarely identifiable. The precise location of these contacts depends heavily on ground observations. Therefore, for this preliminary interpretation, contacts were assumed to be as shown on the published geologic map², except where contacts are clearly visible on the photographs.

Leucocratic and mafic dikes were observed at several locations, mainly in areas with barren rock such as is common adjacent to glaciers.

<u>Topography and Coverage</u>: The topography in the Anyox area is extremely rugged and the area is not easily accessible. Elevations range from sea level to 1680 meters (Mount Clashmore). Creeks tend to cut in deeply and valleys have steep slopes. Lower areas are generally covered by forest of variable density, higher areas have patches of small trees and shrub in grassy areas. Perennial snow is common and several glaciers are present at higher elevations.

INTERPRETATION, DETAILED:

Air photo observations are summarized by lithological unit. The units are as defined by Evenchik et al. $(1997)^2$.

Recent, Pleistocene and Tertiary

<u>Slag:</u> A deposit at Granby Bay resulting from the early century Anyox copper smelter operation.

<u>Alluvium:</u> (common and often extensive in valleys), colluvium (on slopes) and glacial till (scattered) are not shown on the map as boundaries on the photos are often obscure.

<u>Tv - Volcanic Breccia and Flows</u>: An area underlain by light colored rocks with a slightly different joint pattern than the surrounding Hyder granite. Boundary is obscure due to similarity in color.

<u>Hyder Pluton (Eocene, ETH, biotite-hornblende granite, quartz monzonite, granodiorite)</u>: The northern and southern parts of the study area, and smaller areas in the center are underlain by granitic rocks. Areas are well defined because the granite is lighter colored than most other rock types. Craggy outcrops are large and abundant at higher elevations.

Forest cover tends to be dense in areas with a soil cover, but less dense than where underlain by Clashmore Complex rocks. Weathering tends to be smoother in the south than in the north, (different phases?). Boundaries with other rock types are usually clear in well exposed areas. Most exposures exhibit dense erosion patterns along joints. Major joints with pronounced erosion are also clear in covered areas. Joint patterns vary: areas where one direction prevails, areas with regular patterns of two more or less perpendicular directions, areas with a variety of directions. Swarms of narrow mafic dikes are locally present.

Bowser Lake Group (Jurassic, JBt, mudstone, siltstone, sandstone,

<u>turbidites</u>): This unit is present in a large north-south zone at the east side of the study area. The presence of this unit is clear in large parts of this zone due to the lineaments caused by a pronounced differential erosion along parallel bedding planes. Lineaments caused by joints are much less common than in the granites. The vegetation cover is thinner than in most areas underlain by older units. Unfortunately, evidence of folding is, because of the generally steep dipping bedding planes, much less visible than was hoped for. Folding appears common in this unit and detailed knowledge of it is important for the location of the Bowser Lake/Hazelton contact at depth.

The area indicated as underlain by <u>Jm (highly strained metasedimentary and metavolcanic rocks)</u> is covered by forest.

Hazelton Group (Jurassic, JHv, metavolcanic rocks): Rocks of this unit are found in a wide belt adjacent to the Bowser Lake Group. Lineaments caused by a structural foliation and by joints are common, but rocks of this unit are generally poorly exposed, (except in steep slopes and cliffs). Creeks tend to cut in deeply in this unit. The forest cover is sparse but the vegetation cover tends in lower areas to be denser than on rocks of the Bowser Lake Group.

<u>Clashmore Complex (Devonian to Jurassic, DJCg, cataclastic to mylonitic</u> <u>biotite granite)</u>: A narrow belt west of the Hazelton Group is underlain by granites. The unit and its boundaries are clear in well exposed areas due to the lighter color of these rocks. Lineaments are much less common than in the Hyder Pluton. Vegetation is scarce due to the high altitude.

<u>Clashmore Complex (Devonian to Jurassic, DJCsv DJCsvm DJCu DJCmp,</u> <u>deformed volcanic, sedimentary, and plutonic derived rocks)</u>: These rocks occur in a wide belt at the west side of the study area. Exposure is poor in lower areas, due to the generally thick forest cover, even on slopes. Where exposed, rocks are smoothly weathered and medium gray to dark colored. Lineaments often defined by pronounced erosion along joints are common.

OTHER OBSERVATIONS:

A major several meters wide leucocratic dike can intermittently be traced over 700 m from NW to SE. The dike cuts through Clashmore Complex and Hazelton volcanics.

Only a few of the 38 mineral occurrences listed by Evenchik² et al. are visible on the photos:

2 - a quarry south of Swamp Point on Portland Canal (Swamp Point, past limestone producer)

#9 - tailings north of Maple Bay (Outsider, past Cu-Ag-Au-Zn producer)

3 - surface disturbance west of Big Dam Lake (Eden, Cu-Zn deposit)

11 - large pits west of Carney Lake (Hidden Creek, past Cu-Ag-Au-Co-Zn producer)

38 - large tailings area in Granby Bay, (Anyox slag heap).

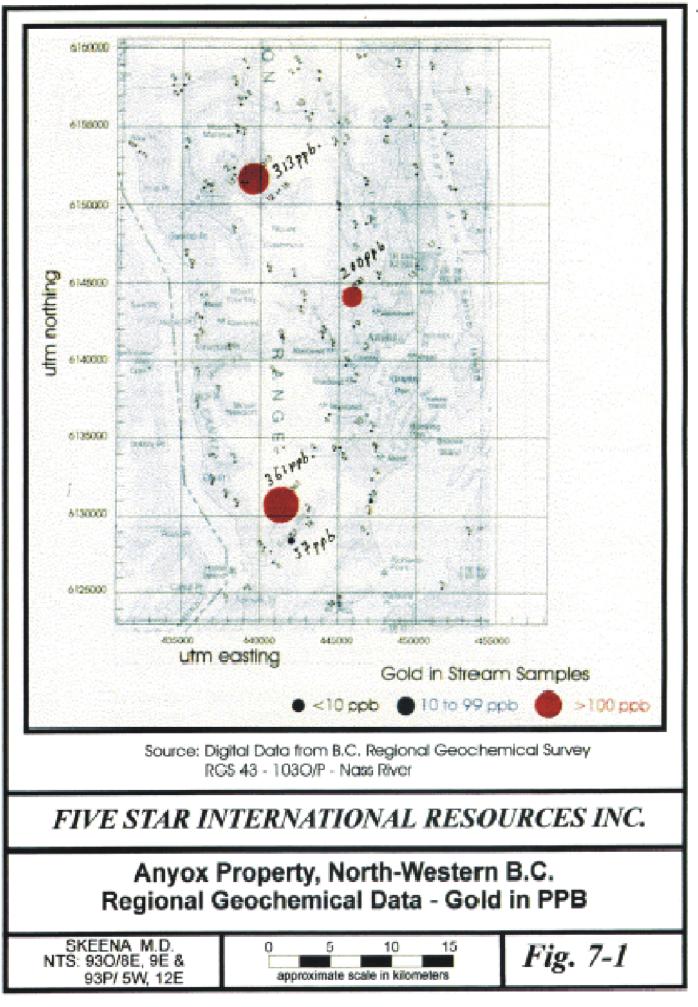
7.0 GEOCHEMISTRY

7.10 Regional Geochemical Survey

The Anyox area was covered by a Provincial Government <u>Regional</u> <u>G</u>eochemical <u>Survey</u>³ in 1979. Initially, the samples were not analysed for gold. Further analyses, including gold, were carried out on the samples in 1995.

Figure 7 - 1 shows the RGS data. There are 3 highly anomalous samples located as follows:

- just below the dam on Anyox Creek (200 ppb Au).


- on a south tributary of Donahue Creek (313 ppb Au); this sample was taken on the present Tournay Claim Group (see Figure 6 - 11).

on the main Belle Bay Creek and on a northern tributary of Belle Bay Creek (361 ppb Au & 57 ppb Au); these samples drain the Cascade Claim Group (see Figure 6 - 1K) and the Observatory Claim Group/Belle Bay Claim Group (see Figures 6 - 1J & 6-1B).

7.20 Moss Mat & Stream Sediment Sampling

A total of 87 moss mat or stream sediment samples were taken on or immediately adjacent to claims that are the subject of this report. Moss mat sampling was chosen as a primary reconnaissance technique in the Anyox area based upon studies of surveys carried out by other workers.

Moss that grows on rocks and old logs in and adjacent to active drainages catches sediment during periods of flooding. This sediment acts as a soil for new moss growth. The amount of sediment trapped by the moss at any particular location relates to many factors. Any mineralization that is being actively eroded in the drainage basin upstream from the location where a moss sample is taken will be detected by chemical sample analysis, provided that the mineralization is strong enough with respect to its distance from the sample location. Studies have shown that gold is preferentially trapped in moss.

Consequently, in certain cases analysis of moss samples can show gold while analysis of the adjacent creek sediment would show no gold.

Moss samples were gathered into 20 cm. x 30 cm. heavy plastic bags. The bags were stuffed as full as possible with moss. Samples were sent to *Acme Analytical Laboratories Ltd.* where they were analysed for 30 elements (Mo, Cu, Pb, Zn, Ag, Ni, Co, Mn, Fe, As, U, Au, Th, Sr, Cd, Sb, Bi, V, Ca, P, La, Cr, Mg, Ba, Ti, B, Al, Na, K, W) plus Au. The 30 element analysis was carried out using the Induced Coupled Plasma technique on a 0.500 gram sample. The 0.500 gram sample is digested with 3 ml. of a mixture of 3 parts HCl - 1 part HNO₃ - 2 parts H₂0. This leach is partial for Mn, Fe, Sr, Ca, P, La, Cr, Mg, Ba, Ti, B and W and limited for Na, K, and Al. The separate Au analysis was carried out using aqua regia/MIBK extraction and finished with GF/AA.

Laboratory data sheets are shown in **Appendix II**. An interactive computer program called *PROBPLOT*¹ was used to interpret the moss mat sampling data. This program generates standard statistics, including arithmetic and lognormal histograms, for each element under consideration. Once the mode of data distribution is determined (arithmetic or lognormal), the data is plotted on a probability graph. On this type of plot, a normal distribution plots as a straight line. Data from probability plots based on arithmetic or lognormal distributions can be partitioned into "families", or separate groups of data exhibiting normal distributions. Threshold values for these "families" can be determined interactively and used to set meaningful anomalous threshold values for each element under consideration. The raw statistical data analysis information is shown in **Appendix III**.

The following table summarizes data distribution type, anomalous threshold value and number of anomalous for each of the elements under consideration, for 87 moss mat samples:

Element	Distribution	Anomalous	# of
	Туре	Threshold	Anomalous Samples
Mo (11)	Logorithmia	>7 nnm	12
	Logarithmic	>7 ppm	and the second
Cu	Logarithmic Logarithmic	>146 ppm	11 2
Pb Zn	Logarithmic	>80 ppm	4
	Logarithmic	>284 ppm >0.79 ppm	6
Ag Ni	Logarithmic		7
	······································	>82 ppm	
Cr	Logarithmic	>70 ppm	24
<u>V</u>	Logarithmic	>90 ppm	32
	Logarithmic	>46 ppm	8
Cd	Logarithmic	>3 ppm	11
<u> </u>	Logarithmic	>36 ppm	4
La	Logarithmic	>16 ppm	17
Th	Logarithmic	>19 ppm	5
As	Logarithmic	>45 ppm	
Sb	Logarithmic	>8 ppm	2
Sr	Logarithmic	>60 ppm	5
Bi	Logarithmic	>2.5 ppm	15
W	Logarithmic	>3.9 ppm	5 3
<u> </u>	Logarithmic	>0.2%	
Ba	Logarithmic	>139 ppm	
<u>B</u>	Logarithmic	>3.9 ppm	4
<u>P</u>	Logarithmic	>0.13%	7
Al	Arithmetic	>2.95%	4
Mn	Logarithmic	>3270 ppm	5
Fe	Logarithmic	>6.3%	6
K	Logarithmic	>0.44%	7
Na	Logarithmic	>0.04%	12
Ca	Logarithmic	>0.83%	9
Mg	Logarithmic	>1.56%	
Au	Logarithmic	>10 ppb	6
-			
	<u> </u> _		

Carney Lake Claim Group (see Figure 6 - 1A):

One sample, #138 was taken on the main creek draining Carney Lake This sample was anomalous for Mo (9 ppm), Cu (367 ppm), Zn (1388 ppm), Ag (1.6 ppm, Ni (107 ppm), Co (68 ppm), Cd (45.6 ppm), As (98 ppm) and Mn (9249 ppm).

This high values in this sample may be the result of contamination from upstream mining activities.

Belle Bay Claim Group (see Figure 6 - 1B):

Nine samples (#44, 45, 46, 47, 48, 49, 119, 121 & 122) were taken on the claims. Sample # 44 was anomalous for Cr (113 ppm). Sample #45 was anomalous for Cr (131 ppm). Sample #46 was anomalous for Cr (94 ppm). Sample #47 was anomalous for Cr (133 ppm) and V (96 ppm). Sample #48 was anomalous for Cr (105 ppm) and Co (53 ppm). Sample #49 was anomalous for Cr (157 ppm). Sample #122 was anomalous for W (4 ppm) and Bi (4 ppm).

Close Claim Group & Gap 4 Claim (see Figure 6 - 1C):

One sample (#127) was taken from a small creek draining a swampy area on the Close Claim Group. This sample was anomalous for Au (34 ppb).

One sample (#29) was taken from the outlet of a small lake west of the Gap 4 Claim. The catchment area for the east side of this lake includes the Gap 4 Claim. This sample was anomalous for Co (120 ppm), Cd (7.9 ppm) and Mn (8814 ppm).

<u>Hastings Claim Group (see Figure 6 - 1D):</u>

Nine samples (#1, 2, 3, 10, 11, 101, 102, 103 & 104) were taken on the claims. One sample (#125) was taken off the south edge of the claims from a creek draining the southern portion of the claims. Sample site #125 was the only geochemical "site of opportunity" accessible near the south border of the claims.

Sample #1 was anomalous for Mo (42 ppm). Sample #2 was anomalous for Bi (4 ppm). Sample #3 was anomalous for Mo (24 ppm) and Bi (4 ppm). Sample #10 was anomalous for Mo (32 ppm) and Bi (3 ppm). Sample #11 was anomalous for Mo (36 ppm) and Bi (3 ppm). Sample # 101 was anomalous for Mo (45 ppm). Sample #103 was anomalous for Mo (13 ppm). Sample #104 was anomalous for Mo (17 ppm). Sample #125 was anomalous for Mo (15 ppm), Pb (346 ppm) and Cd (5.8 ppm).

Anyox Claim Group (see Figure 6 - 1E):

Fourteen samples (#4, 5, 6, 8, 9, 12, 26, 27, 105, 106, 109, 110, 111 & 124) were taken on the claims.

Sample #5 was anomalous for V (93 ppm) and Bi (4 ppm). Sample #6 was anomalous for Cu (247 ppm), Ag (0.9 ppm), Co (92 ppm) and W (4 ppm). Sample #8 was anomalous for Bi (4 ppm) and Mn (3419 ppm). Sample #9 was anomalous for V (233 ppm) and W (4 ppm). Sample #12 was anomalous for Mo (20 ppm). Sample #26 was anomalous for Bi (3 ppm). Sample #109 was anomalous for V (115 ppm) and U (65 ppm). Sample #110 was anomalous for Mo (24 ppm). Sample #111 was anomalous for Cu (345 ppm), Zn (565 ppm), Co (342 ppm), Cd (9.7 ppm) and Mn (4956 ppm). Sample #124 was anomalous for Bi (3 ppm).

Bonanza Claim Group (see Figure 6 - 1F):

Seven samples (#33, 34, 131, 132, 133, 136 & 137) were taken on the claims. Three samples (#32, 134 & 135) were taken just off the claims on creeks draining the claims.

Sample #32 was anomalous for Cr (88 ppm). Sample #33 was anomalous for Cr (102 ppm) and V (130 ppm). Sample #34 was anomalous for V (120 ppm) and Bi (3 ppm). Sample #131 was anomalous for Cr (98 ppm), V (120 ppm) and Cd (3.8 ppm). Sample #132 was anomalous for Ni (89 ppm), Cr (103 ppm), V (132 ppm), Co (61 ppm), Cd (7.9 ppm) and Mn (3165 ppm). Sample #133 was anomalous for Ni (98 ppm), Cr (103 ppm), V (121 ppm), Co (54 ppm), Cd (10.8 ppm) and Mn (3828 ppm). Sample #134 was anomalous for Cr (115 ppm) and V (141 ppm). Sample #135 was anomalous for V (105 ppm). Sample #136 was anomalous for V (96 ppm). Sample #137 was anomalous for V (103 ppm).

Glacier Claim Group (see Figure 6 - 1G):

Four samples (#7, 13, 107, 108) were taken on the claims. Two samples (#112, 114) were taken just off the west boundary of the claims, on creeks draining the claims.

Sample #7 was anomalous for Cu (162 ppm), Pb (122 ppm), Cr (92 ppm), V (116 ppm) and Bi (4 ppm). Sample #13 was anomalous for Co (49 ppm). Sample #107 was anomalous for V (100 ppm). Sample #107 was anomalous for V (178 ppm). Sample #112 was anomalous for Au (112 ppb).

Donahue Claim Group (see Figure 6 - 1H):

Four samples (#14, 15, 17 & 113) were taken on the claims. Three samples (#18, 19 & 115) were taken just off the claims on creeks draining the claims.

Sample #14 was anomalous for Cd (average of two analyses was 3.6 ppm). Sample #17 was anomalous for V (101 ppm). Sample #18 was anomalous for W (6 ppm). Sample #19 was anomalous for V (122 ppm) and Au (11 ppb). Sample #113 was anomalous for Ag (0.9 ppm), As (63 ppm), Sb 10 ppm) and Au (136 ppb). Sample #115 was anomalous for Pb (194 ppm) and V (129 ppm).

Tournay Claim Group (see Figure 6 - 11):

Six samples (#30, 31, 116, 117, 129 & 130) were taken on the claims. Four samples (#16, 28, 126 & 128) were taken just off the claims from creeks draining the claims.

Sample #16 was anomalous for Ni (83 ppm), Cr (113 ppm) and V (99 ppm). Sample #28 was anomalous in Ni (105 ppm) and Cr (141 ppm). Sample #30 was anomalous for Cr (133 ppm) and V (140 ppm). Sample #31 was anomalous for Cr (72 ppm) and V (99 ppm). Sample #116 was anomalous for Cu (342 ppm), Zn (314 ppm) and Cd (5.4 ppm). Sample #117 was anomalous for Cu (average of two analyses was 189 ppm) and Cr (average of two analyses was 80.5 ppm). Sample #126 was anomalous for Cr (94 ppm) and V (96 ppm). Sample #128 was anomalous for Cu (319 ppm), Ni (86 ppm), Cr (180 ppm) and

V (161 ppm). Sample #129 was anomalous for Ni (94 ppm), Cr (125 ppm) and V (124 ppm).

Observatory Claim Group (see Figure 6 - 1J):

Four samples (#22, 23, 25 & 123) were taken on the claims. Five samples (#20, 21, 24, 118 & 120) were taken just off the claims on creeks draining the claims.

Sample #21 was anomalous for V (1102 ppm). Sample #22 was anomalous for V (91 ppm). Sample #23 was anomalous for U (38 ppm). Sample #118 was anomalous for V (96 ppm). Sample #120 was anomalous for U (37 ppm).

Cascade Claim Group (see Figure 6 - 1K):

Five samples (#35, 36, 41, 42 & 43) were taken on the claims.

Sample #35 was anomalous for V (122 ppm). Sample #36 was anomalous for V (94 ppm). Sample # 41 was anomalous for Cr (154 ppm). Sample #42 was anomalous for Cr (147 ppm). Sample #43 was anomalous for Cr (150 ppm).

Granby I & Granby II Claims (see Figure 6 - 1K):

Four samples (#37, 38, 39, 40) were taken on the Granby I & Granby II claims.

Sample #37 was anomalous for Cu (715 ppm), V (98 ppm) and As (112 ppm). Sample #38 was anomalous for Cu (338 ppm), Ag (0.8 ppm) and V (96 ppm). Sample #39 was anomalous for Cu (877 ppm), Ag (1.8 ppm), Cd (4.7 ppm) and As (61 ppm) Sample #40 was anomalous for Cu (289 ppm), Ag (1.1 ppm), As (53 ppm) and Au (66 ppb).

8.0 DISCUSSION OF RESULTS & RECOMMENDATIONS

Carney Lake Claim Group

The regional geology map shows the Carney Lake Claim Group as being underlain by Jurassic Bowser Lake Group sediments,. The majority of the rock outcrops observed during field traverses were fine-grained argillites, usually dark grey in colour.

One of the rock samples taken for assay (#78613) returned an assay value of 3.08 oz/t Ag in what was mapped as a quartz vein "with no visible mineralization".

The single moss mat sample taken on this claim group was anomalous for Mo (9 ppm), Cu (367 ppm), Zn (1388 ppm), Ag (1.6 ppm, Ni (107 ppm), Co (68 ppm), Cd (45.6 ppm), As (98 ppm) and Mn (9249 ppm).

This high values in this sample may be the result of contamination from upstream mining activities.

Further prospecting, geological mapping and sampling should be carried out on this claim group, due to its favourable geology and proximity to known deposits.

Belle Bay Claim Group

The regional geology map shows the Belle Bay Claim Group as being underlain by Eocene Hyder Pluton Intrusive rocks to the south. The northern part of the claim group is underlain by Jurassic Bowser Lake sediments in contact with Jurassic Hazelton Group metavolcanics to the east. The rock outcrops observed during field traverses were consistent with this regional geological mapping.

None of the rock samples taken for assay on this claim group returned any anomalous values.

Six moss mat samples taken on the claim group were anomalous for Cr (94 ppm to 157 ppm). One sample was anomalous for Co (53 ppm).

Further prospecting, geologic mapping and sampling is recommended on the claim group. This work should concentrate on the sediment/metavolcanic contact at the north end of the claim group. It is along this same contact that many of the important deposits are found in the Anyox area.

<u>Close Claim Group & Gap 4 Claim</u>

The regional geologic map shows the Close Claim Group and the Gap 4 Claim as being underlain by Devonian to Jurassic Clashmore Complex strained granite. No outcrops were observed during the course of the work covered by this report.

A single sample taken from a small creek draining a swampy area on the Close Claim Group was anomalous for Au (34 ppb). A single sample taken from the outlet of a small lake west of the Gap 4 Claim was anomalous for Co (120 ppm), Cd (7.9 ppm) and Mn (8814 ppm).

Further prospecting, geologic mapping and sampling is recommended on the Close Claim Group and the Gap 4 Claim.

Hastings Claim Group

The regional geologic map shows the Hastings Claim Group as being underlain mainly by Eocene Hyder Pluton intrusive rocks with a tongue of Jurassic Bowser Lake Group sediments at the south end of the claim group. The rock outcrops observed during field traverses were consistent with this regional geological mapping.

None of the rock samples taken for assay on this claim group returned any anomalous values.

Eight moss mat samples taken on the claim block were anomalous for Mo (13 ppm to 45 ppm). One sample was anomalous for Pb (346 ppm) and Cd (5.8 ppm).

The anomalous molybdenum values may be indicative of the presence of a mineralized stock, possibly hypabyssal, within the Eocene Hyder Pluton intrusives. This area should be examined more closely, using prospecting, geologic mapping and sampling.

The moss mat sample with the elevated Pb value was taken from the sediments. Detailed prospecting, geologic mapping and sampling should be carried out in the sedimentary rock unit in the catchment area above this sample location.

Anyox Claim Group

- -

The regional geologic map shows the Hastings Claim Group as being underlain mainly by Eocene Hyder Pluton intrusive rocks with a tongue of Jurassic Bowser Lake Group sediments in contact with Jurassic Hazelton Group metavolcanic rocks at the south end of the claim group. Hazelton Group metavolcanic rocks outcrop on the southeast portion of the claim group. Sampling and mapping as covered by this report was confined to the granites. The rock outcrops observed during field traverses were consistent with this regional geological mapping.

None of the rock samples taken for assay on this claim group returned any anomalous values.

Two moss mat samples taken from drainages overlying the Hazelton Group metavolcanics returned anomalous values for Cu (247 ppm & 345 ppm), Co (92 ppm & 342 ppm). Two moss mat samples from the north section of the claim group returned anomalous values for Mo (20 ppm & 24 ppm).

The area near the south border of the claims, where sediments and metavolcanics are in contact, should be prospected, geologically mapped and sampled.

66

The catchment areas for the two moss mat samples anomalous in Cu and Co, which are underlain by Hazelton Group metavolcanics, should be prospected, geologically mapped and sampled.

Bonanza Claim Group

The regional geology map shows the Bonanza Claim Group as being underlain by a complex pattern of metasediments, intrusives and metamorphosed intrusives. Limited sampling and mapping as covered by this report is consistent with the regional geological interpretation.

None of the rock samples taken for assay on this claim group returned any anomalous values.

The ten moss mat samples taken on the Bonanza Claim Group were anomalous in one or all of Cr, V, Cd, Ni and Mn. These anomalous values may relate to elevated background levels in the Clashmore Complex metamorphic rocks.

Further, limited reconnaissance prospecting and sampling is recommended on the Bonanza Claim Group, concentrating on the southeast corner of the claim group, on the ground underlain by Hazelton metavolcanic rocks.

Glacier Claim Group

The regional geology map shows the Glacier Claim Group to be underlain mainly by Clashmore Complex metamorphosed rocks, in contact with Hazelton Group metavolcanic rocks on the east side of the claim group. Limited sampling and mapping as covered by this report is consistent with this regional interpretation.

None of the rock samples taken for assay on this claim group returned any anomalous values.

One of the moss mat samples taken from a creek draining the west side of the claim group returned an anomalous Au value of 112 ppb.

The catchment area covered by the anomalous Au value should be prospected, geologically mapped and sampled. Further prospecting and sampling should be carried out in the Hazelton Group metavolcanic unit on the east side of the claim group.

Donahue Claim Group

The regional geology map shows the Donahue Claim Group as being underlain mainly by Clashmore Complex metamorphic rocks. Limited sampling and mapping as covered by this report is consistent with this regional interpretation.

None of the rock samples taken for assay on this claim group returned any anomalous values.

Two of the moss mat samples taken on or just off the claim group returned anomalous Au values of 11 ppb and 136 ppb. The catchment areas for these two anomalous samples should be prospected, geologically mapped and sampled.

Tournay Claim Group

The regional geology map shows the Tournay Claim Group as being underlain mainly by Clashmore Complex metamorphic rocks. Limited sampling and mapping as covered by this report is consistent with this regional interpretation.

None of the rock samples taken for assay on this claim group returned any anomalous values.

Eight moss mat samples were anomalous in one or more of Ni, Cr and V. These anomalous values may relate to elevated background levels in the Clashmore Complex metamorphic rocks. Three moss mat samples were anomalous in Cu (189 ppm to 342 ppm). Catchment areas for these three anomalous Cu samples should be prospected, geologically mapped and sampled.

Observatory Claim Group

The regional geology map shows the Observatory Claim Group as being underlain by Eocene Hyder Pluton intrusive rocks. Sampling and mapping as covered by this report is consistent with this regional interpretation.

None of the rock samples taken for assay on this claim group returned any anomalous values.

Two of the moss mat samples taken on the claim group were anomalous for U (37 ppm and 38 ppm). These U values may represent an elevated background in a pegmatitic phase of the intrusive.

No further work is recommended on these claims.

Cascade Claim Group

The regional geology map shows the Cascade Claim Group as being underlain by Hyder Pluton intrusive rocks to the south. The northwest section of the claim group is underlain by Clashmore Complex metamorphic rocks in contact with Hazelton metavolcanic rocks to the east. Limited sampling and mapping as covered by this report is consistent with this regional interpretation.

None of the rock samples taken for assay on this claim group returned any anomalous values.

None of the moss mat samples showed any important anomalous trends.

Limited further prospecting, geologic mapping and sampling is recommended along the sediment/metavolcanic contact in the northeast corner of the claim group.

Granby I & Granby II Claims

The regional geology map shows the Granby I & Granby II Claims to be underlain by Bowser Lake Group sediments. Limited sampling and mapping as covered by this report is consistent with this regional interpretation.

The single rock sample taken on the Granby I claim showed no anomalous values.

All four of the moss mat samples taken were anomalous for Cu (289 ppm to 715 ppm). One sample was anomalous for Au (66 ppb).

The Granby I & Granby II Claims have favourable underlying geology and close proximity to known ore deposits. Both claims should be prospected, geologically mapped and sampled in as much detail as possible.

9.0 COST STATEMENT

Cost information was supplied by a representative of *Five Star* International Resources Inc.

The total amount which has been spent in total on the 11 claim groups and 3 individual claims from June 5, 1997 to October 21, 1997 is \$60,175.02.

This amount breaks down by category as follows:

OFFICE SUPPLIES/MATERIALS:

Purchase reports (reference material) Purchase maps (reference material) Purchase aerial photographs Photocopies (reference material)	\$80.15 \$108.45 \$1,366.86 \$225.15	\$1,780.61
FIELD SUPPLIES/EQUIPMENT:		
Field equipment Field supplies Emergency supplies Photographs of property	\$596.89 \$514.56 \$584.85 \$53.83	\$1,750.13
TRAVEL EXPENSES:		
Airfares/Buses/Taxis HELICOPTER EXPENSES:	\$3,366.75	\$3,366.75
Helicopter Charter	\$18,031.86	\$18,031.86
FOOD & LODGING: Food Lodging	\$914.99 \$2,018.82	\$2,933.81
COMMUNICATION:		
Telephone (long distance)	\$176.87	\$176.87

GEOCHEMISTRY:

Sample shipment	\$427.74	
Sample Analysis	\$1,840.75	\$2,268.49

OFFICE & FIELD WORK:

Ebo Bakker 27.5 days @ \$450.00/day	\$12,375.00	
(preparation & field work)		
Ebo Bakker 12.5 days @ \$450.00/day	\$5,625.00	
(aerial photograph interpretation)		
Doug Symonds 17 days @ \$374.50/day	\$6,366.50	
(preparation & field work)		
Ted Reimchen 5 days @ \$600.00/day	\$3,000.00	\$27,366.50
(consulting)		

ASSESSMENT REPORT:

Estimated cost of Assessment Report	\$2,500.00	<u>\$2,500.00</u>

TOTAL: <u>\$60,175.02</u>

The total amount of \$60,175.02 has been divided among the 11 claim groups and 3 individual claims based upon the following criteria:

- 1) An average cost of \$507.02 per moss mat sample was calculated as the cost contribution for geochemistry.
- 2) An average cost per man-day of \$4,277.23 was calculated as the cost contribution for geological mapping and aerial photographic study. This man-day cost was broken down further as \$3,235.61 per man-day for field geology and \$1,041.62 per man-day for aerial photographic study

- 3) These average costs were applied to the individual claim groups and claims based on the number of moss mat samples taken on each individual claim group or claim and the amount of time spent on geological mapping or aerial photograph interpretation on each individual claim group or claim.
- 4) A letter is attached (pages 73A & 73B) from Ebo Bakker, P.Geol. who is a representative of Five Star International Resources Inc., the operator of the claims. In this letter, Mr. Bakker affirms that the cost statement was prepared by him and represents only costs directly related to exploration work on the claims in question.
- 5) An eight page detailed assessment cost breakdown, prepared by Ebo Bakker, P.Geol., is attached (Pages 73C to 73J). The "Expenses Anyox to Sept. 30 '97" details all expenses except personnel and report cost. The "Anyox 1997 Assessment" shows the basis for apportioning costs to the various claims (by man-days of geology or number of samples taken).

The following table summarizes expenditures by claim group or individual claim:

Ministry of Energy and Mines Mineral Titles Branch 302 – 865 Hornby Street Vancouver, B.C. V6Z 203 Attention: Mr. Rick Conte

June 8, 1998

Dear Mr. Conte:

I received a copy of your letter, addressed to Alta Sierra Resources Inc. (your file # 13825-03-363), regarding an assessment report for mineral claims ('Anyox claims') between Portland Canal and Observatory Inlet/Hastings Arm, south-west of Stewart.

I participated in the Anyox exploration program and was much surprised to hear that the assessment report was not approved. I was particularly surprised about your negative comment regarding the cost statement.

I kept track of all exploration expenses and prepared the cost statement for the assessment report. I can assure you that all costs that were claimed related directly to exploration work at the Anyox claims. Doug Symonds, who also participated in the exploration work at Anyox and who prepared most of the assessment report, will surely agree, as he was present when most of the expenses were made.

The Anyox area is extremely rugged. Reasonable access to most of the area is only by helicopter, but the exploration work is slow even then, because of the extremely unfavourable terrain conditions. Our Phase 1 exploration work was geared to a program that would cover the large area, were the parties involved had claims, in an efficient way. The program was set up that way, in order to be able to quickly decide on areas of interest (to be retained for future, more detailed, exploration work), and to decide on areas of no interest (areas that should be dropped). To that effect and as preparation for the 1998 fieldwork, I recently made a detailed study of the 1997 sampling results. A 1 1 1 1 1 1

I was also surprised to note that copies of your letter were send to persons who are not registered owners of any of these Anyox claims (i.e. Skoda and Sostad), but that no copies of the letter were send to the authors of the disapproved assessment report.

I am presently in Brazil and will be back in Vancouver on the 29th of June. I hope to discuss the assessment work issue at your convenience upon my return.

Sincerely

Ebo Bakker, P.Geol. 402 – 868 West 16th Avenue Vancouver, B.C. V5Z 1T1 Tel. 683-7837 Fax 683-7881

Cc: Allen Wilcox Douglas F. Symonds, P.Geo. Alta Sierra Resources Inc. Carsten Mide Canadian Zeolite Ltd. Ted H.F. Reimchen, P.Geo., P.Geol.

1997	item	total	ass.ment	type	totals
7-Oct	sample assays, Acme Analytical Labs	1,840.75	1,840.75		1,840.75
3-Sep	courier aerial photographs, McElhanny	22.80	22.80	air	
	180 aerial photographs, McElhanny	1,210.68	1,210.68		
11-Sep	copies aerial photographs, Kinko's	133.38	133.38		1,366.86
	telephone and fax, King Edward	171.93	171.93		
	telephone	4.94	4.94	· · · · · · · · · · · · · · · · · · ·	176.87
13-Aug	photocopying, 1681 @ 0.25	420.25	210.13		
	photo copies, Drug Store	4.82	4.82		
	photocopies, Drug Store	2.99	2.99		
	photocopies, envelopes	2.46	2.46		
	photocopies, Drug Store	4.75	4.75		225.15
	velco strap for bear bells 2, Neville Cro		1.10	the second second	220.10
	emergency pack, Neville Crosby	2.85	2.85		· ······
	emergency blanket, Neville Crosby	3.48	3.48		
	rebar wire, Neville Crosby	5.87	5.87		
	pouch for bear spray can, Nev. Crosby		7.44		
	duct tape, Neville Crosby	11.34	11.34	emr	
	insect repellent 2, Neville Crosby	12.73	12.73	emr	
	yellow poly rope, Neville Crosby	15.90	15.90		
	emergency fire starter kits 2, Neville C	21.29	21.29	emr	
	crack flare refills 6, Neville Crosby	21.29	21.29		
	red flare refills 6, Neville Crosby	22.74			
	foam mattresses 2, Neville Crosby		22.74		
	Bear Shield, Neville Crosby	31.81	31.81	emr	
	SabreLight flashlight, Neville Crosby	32.05	32.05		
	Bear Spray, Neville Crosby	37.05	37.05	emr	
	pan, cups, cutlery, opener, Three Vets	37.40 38.25	37.40	emr	
	emergency food, Three Vets	59.78	38.25	emr	
	crack flare kit, Neville Crosby		59.78		
	duffle bags (emergency) 2, Nev. Crosb	63.21	63.21	emr	
	First Aid kit Level 1, Neville Crosby	65.84	65.84		504.05
	field lunch, 3 persons, Safeway	91.96 6.00	91.96		584.85
	groceries, Terrace	5.00	6.00	f	
	lunch/food (2)	13.92	5.00	f	
	Villa Hotel, food		13.92	1	
	dinner Fongs Garden (2)	14.04	14.04	f	
10-0ep	food, Cut-Rate-Foods and Bakery	30.00	30.00	f	
				f	· _ · _ · _ · _ · _ · _ · _ · _ · _ · _
16-Sep		20.14	20.14		
16-Sep 16-Sep	dinner Bitter Creek Cafe (2)	50.00	50.00	f	
16-Sep 16-Sep 18-Sep	dinner Bitter Creek Cafe (2) dinner Fongs Garden (2)	50.00 35.00	50.00 35.00	f f	
16-Sep 16-Sep 18-Sep 19-Sep	dinner Bitter Creek Cafe (2) dinner Fongs Garden (2) dinner Bitter Creek Cafe (2)	50.00 35.00 45.00	50.00 35.00 45.00	f f f	
16-Sep 16-Sep 18-Sep 19-Sep 20-Sep	dinner Bitter Creek Cafe (2) dinner Fongs Garden (2) dinner Bitter Creek Cafe (2) food, Grocery	50.00 35.00 45.00 8.00	50.00 35.00 45.00 8.00	f f f f	
16-Sep 16-Sep 18-Sep 19-Sep 20-Sep 21-Sep	dinner Bitter Creek Cafe (2) dinner Fongs Garden (2) dinner Bitter Creek Cafe (2) food, Grocery food Cafe	50.00 35.00 45.00 8.00 1.17	50.00 35.00 45.00 8.00 1.17	f f f f	
16-Sep 16-Sep 18-Sep 19-Sep 20-Sep 21-Sep 21-Sep	dinner Bitter Creek Cafe (2) dinner Fongs Garden (2) dinner Bitter Creek Cafe (2) food, Grocery food Cafe dinner Fongs Garden (2)	50.00 35.00 45.00 8.00 1.17 38.00	50.00 35.00 45.00 8.00 1.17 38.00	f f f f f	
16-Sep 16-Sep 18-Sep 20-Sep 21-Sep 21-Sep 22-Sep	dinner Bitter Creek Cafe (2) dinner Fongs Garden (2) dinner Bitter Creek Cafe (2) food, Grocery food Cafe dinner Fongs Garden (2) dinner Bitter Creek Cafe (2)	50.00 35.00 45.00 8.00 1.17 38.00 50.00	50.00 35.00 45.00 8.00 1.17 38.00 50.00	f f f f f f	
16-Sep 16-Sep 18-Sep 20-Sep 21-Sep 21-Sep 22-Sep 24-Sep	dinner Bitter Creek Cafe (2) dinner Fongs Garden (2) dinner Bitter Creek Cafe (2) food, Grocery food Cafe dinner Fongs Garden (2) dinner Bitter Creek Cafe (2) dinner Fongs Garden (2)	50.00 35.00 45.00 8.00 1.17 38.00 50.00 35.00	50.00 35.00 45.00 8.00 1.17 38.00 50.00 35.00	f f f f f f f f	
16-Sep 16-Sep 18-Sep 20-Sep 21-Sep 21-Sep 22-Sep 24-Sep 25-Sep	dinner Bitter Creek Cafe (2) dinner Fongs Garden (2) dinner Bitter Creek Cafe (2) food, Grocery food Cafe dinner Fongs Garden (2) dinner Bitter Creek Cafe (2) dinner Fongs Garden (2) dinner Fongs Garden (2)	50.00 35.00 45.00 8.00 1.17 38.00 50.00 35.00 39.00	50.00 35.00 45.00 8.00 1.17 38.00 50.00 35.00 39.00	f f f f f f f f f f f	
16-Sep 16-Sep 18-Sep 20-Sep 21-Sep 21-Sep 22-Sep 24-Sep 25-Sep 26-Sep	dinner Bitter Creek Cafe (2) dinner Fongs Garden (2) dinner Bitter Creek Cafe (2) food, Grocery food Cafe dinner Fongs Garden (2) dinner Bitter Creek Cafe (2) dinner Fongs Garden (2) dinner Fongs Garden (2) dinner Bitter Creek Cafe (2)	50.00 35.00 45.00 8.00 1.17 38.00 50.00 35.00 39.00 50.00	50.00 35.00 45.00 8.00 1.17 38.00 50.00 35.00 39.00 50.00	f f f f f f f f f f f	
16-Sep 16-Sep 18-Sep 20-Sep 21-Sep 22-Sep 22-Sep 24-Sep 25-Sep 26-Sep 27-Sep	dinner Bitter Creek Cafe (2) dinner Fongs Garden (2) dinner Bitter Creek Cafe (2) food, Grocery food Cafe dinner Fongs Garden (2) dinner Bitter Creek Cafe (2) dinner Fongs Garden (2) dinner Fongs Garden (2) dinner Bitter Creek Cafe (2) lunch King Edward's (3)	50.00 35.00 45.00 8.00 1.17 38.00 50.00 35.00 39.00 50.00 21.85	50.00 35.00 45.00 8.00 1.17 38.00 50.00 35.00 39.00 50.00 21.85	f f f f f f f f f f f f f f f	
16-Sep 18-Sep 19-Sep 20-Sep 21-Sep 22-Sep 24-Sep 25-Sep 26-Sep 27-Sep	dinner Bitter Creek Cafe (2) dinner Fongs Garden (2) dinner Bitter Creek Cafe (2) food, Grocery food Cafe dinner Fongs Garden (2) dinner Bitter Creek Cafe (2) dinner Fongs Garden (2) dinner Fongs Garden (2) dinner Bitter Creek Cafe (2) lunch King Edward's (3) dinner (2), Terrace Mexican	50.00 35.00 45.00 8.00 1.17 38.00 50.00 35.00 39.00 50.00 21.85 45.00	50.00 35.00 45.00 8.00 1.17 38.00 50.00 35.00 39.00 50.00 21.85 45.00	f f f f f f f f f f f f f	
16-Sep 16-Sep 18-Sep 20-Sep 21-Sep 21-Sep 22-Sep 24-Sep 26-Sep 27-Sep 27-Sep	dinner Bitter Creek Cafe (2) dinner Fongs Garden (2) dinner Bitter Creek Cafe (2) food, Grocery food Cafe dinner Fongs Garden (2) dinner Bitter Creek Cafe (2) dinner Fongs Garden (2) dinner Fongs Garden (2) dinner Bitter Creek Cafe (2) lunch King Edward's (3)	50.00 35.00 45.00 8.00 1.17 38.00 50.00 35.00 39.00 50.00 21.85	50.00 35.00 45.00 8.00 1.17 38.00 50.00 35.00 39.00 50.00 21.85	f f f f f f f f f f f f f f f	914.99

EB Expense2.xls 6/15/98

Bakker Geological Consulting

Five Star Int. Resources Inc.

- -

....

- --

- -

- -

- -

...

1997	item	total	ass.ment	type	totals
	tape measure, Neville Crosby	9.45	9.45	fe	
23-Jun	clipboard, Neville Crosby	12.30	12.30	fe	
	stereoscope, Neville Crosby	33.20	33.20	fe	
14-Aug	air photo cover, Neville Crosby	4.50	4.50	fe	
14-Aug	Pretel, digital altimeter, Nev. Crosby	421.66	421.66	fe	···
	acid bottle, Neville Crosby	0.97	0.97	fe	
	axe file, Neville Crosby	5.99	5.99	fe	
	hand trowel, Neville Crosby	7.92	7.92	fe	
10-Sep	acid bottle case, Neville Crosby	22.74	22.74	fe	
	acid bottle, Neville Crosby	0.97	0.97	fe	
	protractor scales 2, Neville Crosby	4.45	4.45	fe	
	carbide point scriber, Neville Crosby	11.34	11.34	fe	
	air photo holders 5, Neville Crosby	22.52	22.52	fe	
	tarps 2 and trowel, Home Depot	23.75	23.75	fe	
	pails for sampling, Drug Store	11.38	11.38	fe	596.89
	field books, Neville Crosby	21.38	21.38	fs	350.05
and the set of the set	aluminum tags, Neville Crosby	8.84	8.84	fs	
	felt (tag) marker, Neville Crosby	2.80	2.80		
	flagging tape, Neville Crosby			fs	
	flagging tape, Neville Crosby	2.85	2.85	fs	
		4.28	4.28	fs	
	Omnichrom pencil, Neville Crosby	1.25	1.25	fs	
	batteries AAA, spare, Neville Crosby	19.02	19.02	fs	
	graph paper, pencil sharpeners, N.C.	23.42	23.42	fs	
	pencil leads, Neville Crosby	2.79	2.79	fs	
	insoles 2 pair, Neville Crosby	4.45	4.45	fs	
	spare C batteries 3, Neville Crosby	6.12	6.12	fs	
	Snow Seal, Neville Crosby	7.92	7.92	fs	*******
	aluminum tags 100, Neville Crosby	10.60	10.60	fs	
	sample bag ties 200, Neville Crosby	15.85	15.85	fs	
	spare AAA batteries 12, Nev. Crosby	19.02	19.02	fs	
	sample bags 200, Neville Crosby	20.41	20.41	fs	
	Tyvek tags 200, Neville Crosby	21.66	21.66	fs	
	felt markers 12, Neville Crosby	26.68	26.68	fs	
	hipchain thread 10 rolls, Neville Crosb	30.72	30.72	fs	
	flagging tape 24 rolls, Neville Crosby	41.04	41.04	fs	
	spare AA batteries 48, Neville Crosby	43.23	43.23	fs	
	Kraft soil sample bags 200, Nev. Cros.	57.00	57.00	fs	
	PVC gloves 4 pair, Neville Crosby	59.04	59.04	fs	
	omnichrom pencil, Nevill Crosby	1.25	1.25	fs	
	pencils 2, Neville Crosby	2.03	2.03	fs	
	eraser, Neville Crosby	2.45	2.45	fs	
	markerpen, Neville Crosby	3.36	3.36	fs	
	pencils 2, Neville Crosby	4.31	4.31	fs	
12-Sep	spare C batteries, Neville Crosby	6.12	6.12	fs	
	colorfilm, London Drugs	22.78	22.78	fs	
14-Sep	office supplies, Staples	21.89	21.89	fs	514.56
7-Jun	helicopter, Northern	2,398.62	2,398.62		
19-Jun	helicopter, Northern	2,081.41	2,081.41		
	VIH 2.9 hours at \$ 861.71	2,498.97	2,498.97		
	VIH 2.7 hours at \$ 861.71	2,326.63	2,326.63		
	VIH 2.2 hours at \$ 900.30	2,004.86	2,004.86		
		-,			

EB Expense2.xls 6/15/98

Bakker Geological Consulting

- -

- -

. .

...

. .

1997	itom	404-1		r 	· · · · · ·
		total	ass.ment	type	totals
	VIH 1.9 hours at \$ 861.71	1,637.26			
	VIH 1.3 hours at \$ 861.71	1,120.23	and the second second second second second second	· · · · · · · ·	
	VIH 1.8 hours at \$ 861.71	1,551.08	1,551.08		18,031.8
	geological map OF 3454, G.S.C.	17.10	17.10	lit	
	BC Open File 1997-1,	11.40	11.40	lit	
	Map copies (Can. Zeol.), Sup. Repro	23.32	23.32	lit	
	Open File Anyox, GSC	28.33	28.33	lit	80.15
	12 nights, 2 persons, King Edward	1,876.80	1,876.80	lodg	
	Sandman Hotel, Terrace (2)	142.02	142.02	lodg	2,018.82
	TRIM maps Anyox area, shipping	6.42	6.42	map	
24-Jul	TRIM maps, Nanaimo maps	56.44	56.44	map	
28-Aug	3 topo maps Anyox area, GSC	32.89	32.89		<u></u>
3-Sep	TRIM map, Nanaimo maps	6.28	6.28		
3-Sep	TRIM maps Anyox area, shipping	6.42		map	108.45
	photographs, prints, London Drugs	2.40	2.40	ph	
	photographs, developm., London Drug	8.26	8.26	ph	
	Konica film, 6, London Drugs	12.91	12.91	ph	
	photographs, London drugs	30.26	30.26	ph	53.83
	equipment and rock samples, Greyh.	98.70	98.70	_	55.65
	extra luggage, 2 pieces	74.90	74.90		
	packing supplies, Home Faire	17.74	17.74		· · · ·
	sample shipment, Greyhound				
	Kalum taxi to Greyhound	90.50	90.50	to the second second	
		7.00	7.00	•	
	sample shipment to Acme, Greyhound	138.90	138.90		427.74
	airfare Vanc Terrace, T. Reimchen	630.39	630.39		
	airfare Vancouver - Terrace, E. Bakker	630.39	630.39		
	home - airport v.v., 30 km @	10.50	10.50		
	parking, airport	12.00	12.00		
	airfare Vancouver - Terrace, E. Bakker	863.49	8 63.49		
	travel to airport v.v., 24 km @ 0.35	8.40	8.40		
	parking, airport	12.00	12.00		
	travel to N. Van v.v., 22 km @ 0.35	7.70	7.70		
	airfare Vancouver - Terrace, E. Bakker	439.19	439.19		
	airfare Vanc Terrace, D. Symonds	439.19	439.19	trav	
	bus Terrace, airport - Greyhound (2)	8.00	8.00	trav	
	airport improvement fee (2)	10.00	10.00	trav	
15-Sep	bus Terrace - Stewart (2)	53.50	53.50	trav	
27-Sep	Stewart - Terrace, private car (2)	200.00	200.00	trav	
	taxi Hotel - airport Terrace	17.00	17.00	trav	
	taxi airport Vancouver - home	25.00	25.00		3,366.75
	management 15%	3,807.12		Ac	
	rent 2 months @ 1727.51	3,455.02		Ac	
	rent August and September @ 1727.5	3,455.02		Ac	
	use of office furniture, 2 mnths @ 200	400.00		Ac	
	service by Fraser	336.30		Ac	
	"For July 1997"	26.16	-	AC	
	management 15%	971.83			
	telephone			Ac	
		10.21		com	
	long distance calls	2.90		com	
	photocopies geology report	25.68		cop	
	copies maps progress report, Speedy	11.40		cop	
30-Seb	photocopying 147 @ 0.25	3 6.75		cop	

Bakker Geological Consulting

.

+ ·+

.....

-

. .

.....

- -

.....

- -

- -

- -

- -

- -

- -

· - ,

1997	item	total	ass.ment	type	totals
	drafting tape, Wilson	0.64	-	dr	·····
13-Jun	set color markers	13.26		dr	
18-Aug	imaging film, Behnsen	6.67		dr	
18-Aug	drafting pens, Behnsen	3.42	-	dr	
15-Sep	publications, G.S.C.	78.11	-	lit	
30-Sep	copies D.J. maps, Sup.Repro		-	lit	
	airfare Vancouver - Terrace, Ed Skoda	630.39	-	stak	
	filing 12 claims, 202 units	2,020.00	-	stak	
18-Jun	claim tags, 11	23.54	-	stak	
18-Jun	airfare Vancouver - Terrace, Ed Skoda	863.49	-	stak	
	filing 11 claims, 209 units	2,090.00	-	stak	
	mineral claim tags	50.32	-	stak	
	nails, Home Faire	0.45	-	stak	
	claim tags, 2-post claims, 2	4.28	-	stak	
	Free Miner Certificate	25.00	-	stak	
	nails, Home Faire	2.39	-	stak	
	wood and nails	19.72	-	stak	
	sawing wood (no receipt)	10.00	-	stak	
	filing 8 claims, 107 units	1,070.00	-	stak	
15-Sep	parking	2.00		trav	
	Total	48,129.96	30,308.52		30,308.52

claim name			units	date compl.		reg.own.	date exp.	calc. reference	applied	exp. date	reg. fee	in 199
CARNEY LAP	KE GR	OUP				vailable \$	4,277					
VICTORY	1	d	1	22-Oct-96	352,222	CZL	22-Oct-97	-	300	22-Oct-00	30	
VICTORY	2	d	1	22-Oct-96	352,223	CZL	22-Oct-97	-	300	22-Oct-00	30	
VICTORY	3	d	1	22-Oct-96	352,224	CZL	22-Oct-97	-	300	22-Oct-00	30	
VICTORY	4	d	1	22-Oct-96	352,225	CZL	22-Oct-97	-	300		30	
VICTORY	5	d	1	22-Oct-96	352,226	CZL	22-Oct-97	-	200	22-Oct-99	20	
VICTORY	6	d	1	22-Oct-96	352,227	CZL	22-Oct-97	-	200		20	
BUCK	I	đ	1	4-Dec-92	315,094	CZL	4-Dec-97	-	200	4-Dec-98	10	2
BUCK	H	d	1	4-Dec-92	315,095	CZL	4-Dec-97		200		10	2
BUCK	III	đ	1	4-Dec-92	315,096	CZL	4-Dec-97		200		10	2
BUCK	IV	d	1	4-Dec-92	315,097	CZL	4-Dec-97		200	4-Dec-98	10	2
ТОМ		d	6	25-Apr-97	+	EFS	25-Apr-98		600			
CARNEY		d	9	19-Jun-97			19-Jun-98	1 man-day	900	19-Jun-99	60	6
AND	1	d	1	6-Jul-96	348,715	ASS	6-Jul-98	1 man-uay			90	
AND	2	d	1	6-Jul-96	348,716		6-Jul-98		100	6-Jul-99	10	
AND #	2	ď	1	6-Jul-96	348,717			-	100	6-Jul-99	10	
//////	Total	u	28	0-Jui-90	340,717	ASS	6-Jul-98	-	100	6-Jul-99	10	·
BELLE BAY		D	20					1 man-day	4,200	PAC 77	380	
TRIUMP			20	22 04 00	+	vailable \$	5,801				10	
TRIUMP	2	d	20	22-Oct-96	352,220		22-Oct-97	-	2,000		200	2,0
	3	d	20	22-Oct-96	352,221	CZL	22-Oct-97	121 122	2,000		200	2,0
DEL	6	d	12	25-Apr-97	355,325	ASS	25-Apr-98	119	1,200	25-Apr-99	120	1,2
SARAH	2	d	20	19-Jun-97	356,818	ASS	19-Jun-98	1 man-day	-		-	2,0
AND #	9	d	1	6-Jul-96	348,723	ASS	6-Jul-98	-			-	1
AND #	10	d	1	6-Jul-96	348,724	ASS	6-Jul-98	-	-		-	1
AND #	11	d	1	6-Jul-96	348,725	ASS	6-Jul-98	~	-		-	1(
AND #	12	d	1	6-Jul-96	348,726	ASS	6-Jul-98	-	-		-	1(
FORTUNE #	1	d	20	25-Sep-97	359,388	СМ	25-Sep-98	-	-		-	2,00
	Total		96					3 + 1 man-day	5,200	PAC 601	530	
CLOSE GRO	UP				a	vailable \$	508				10	
CLOSE	1	С	1	30-Oct-96	352,595	LRS	30-Oct-97	127	100	30-Oct-98	10	1(
CLOSE	2	С	1	30-Oct-96	352,596	LRS	30-Oct-97	-	100	30-Oct-98	10	10
CLOSE	3	С	1	30-Oct-96	352,597	LRS	30-Oct-97	-	100		10	1(
CLOSE	4	с	1	30-Oct-96	352,598	LRS	30-Oct-97	-	100	30-Oct-98	10	1(
	Total		4					1	400	PAC 108	50	
HASTINGS G	ROUF)		+	a	vailable \$	5,079				10	
DINERO	2	b	20	30-Oct-96			30-Oct-97	······	0	let go		
DINERO	4	b	20	30-Oct-96				2 3 10 11 102-104	2,000	30-Oct-98	200	2,00
ORO	10	b	12	30-Oct-96			30-Oct-97	-	1,200	30-Oct-98	120	1,20
ORO	12	b	16	30-Oct-96			30-Oct-97	125	+	30-Oct-98		
	Total		68	00 001-00	352,550		30-001-97	123	1,600	PAC 279	160	1,60
ANYOX GRO						vailable \$	7,111		4,800	FAC 219	490	
DINERO	1	b	20	30-Oct-96			30-Oct-97		,		10	
DINERO	3	b	20	30-Oct-96		LRS	30-Oct-97		0	let go		2 00
ORO	8	b	16	30-Oct-96	· · · · · · · · · · · · · · · · · · ·				2,000		200	2,00
ORO	9	b	t	The second second second second			30-Oct-97		1,600	30-Oct-98	160	1,60
			15	30-Oct-96			30-Oct-97		1,500	30-Oct-98	150	1,5
ORO	11	b	20	30-Oct-96	352,589	LRS	30-Oct-97	4 26 27 124	2,000	30-Oct-98	200	2,00
DOMANTA -	Total	l	91					14	7,100	PAC 11	720	
BONANZA GI		F	• · · ·			vailable \$	5,079				10	
GAP	3	d	5	30-Oct-96			30-Oct-97		500	30-Oct-98	50	5
STEER	1	d	6	25-Apr-97	355,326	ASS	25-Apr-98	32 131	600	25-Apr-99	60	6(

EB Groups.xls

updated 6/15/98

claim name			date compl.		reg.own.	date exp.	calc. reference	applied	exp. date	reg. fee	in 19
STEER 2	d	6	25-Apr-97	+	ASS	25-Apr-98	132 133 134	600	25-Apr-99	60	6
STEER 3	d	12	25-Apr-97	355,328	ASS	25-Apr-98	33 34 135	1,200	25-Apr-99	120	1,2
STEER 4	đ	18	25-Apr-97	355,329	ASS	25-Apr-98	136 137	1,800	25-Apr-99	180	1,8
Total		47		, ,			10	4,700	PAC 379	480	
GLACIER GROUP				a	vailable \$	6,042				10	
GAP 1	d	6	30-Oct-96	352,591	LRS	30-Oct-97	-	600	30-Oct-98	60	6
GAP 2	d	5	30-Oct-96	352,592	LRS	30-Oct-97	-	500	30-Oct-98	50	5
ORO 5	b	15	30-Oct-96	352,583	LRS	30-Oct-97	107	1,500	30-Oct-98	150	1,5
ORO 6	b	12	30-Oct-96	352,584	LRS	30-Oct-97	108	1,200	the second second second	120	1,2
ORO 7	b	20	30-Oct-96	352,585	LRS	30-Oct-97	7 13 114 112	2,000		200	2,0
DAN 1	d	20	19-Jun-97	356,819	ASS	19-Jun-98	25%				2,0
RICHARD 1	d	20	19-Jun-97	356,823	ASS	19-Jun-98	25%		1		2,0
Total		98					6 + 50%	5,800	PAC 242	590	2,0
DONAHUE GROUP				3	/ailable \$	5,352	the second s	0,000	110242	10	
ORO 1	а	20	30-Oct-96	+	LRS	30-Oct-97		2,000	30-Oct-98	200	2,0
ORO 2	ab	18	30-Oct-96		LRS		17	1,800	<u>}</u> ·	180	<u>-</u>
ORO 3	ac	15	30-Oct-96	·	LRS	30-Oct-97	18 19	1,500	30-Oct-98	150	1,8
ROSE 1	d	20	19-Jun-97		ASS	19-Jun-98	113 30%	1,000	30-001-90	150	1,5
FAME# 1	d	5	25-Sep-97		CM	25-Sep-98					2,0
AME# 2	d	20	25-Sep-97		CM	25-Sep-98					5
Total		98	20 000 01	000,002		20-0ep-80	7 + 30%	- -	D40.50		2,0
TOURNAY GROUP					ailable \$	C 977	/ + 30%	5,300	PAC 52	540	
ORO 4	ab	18	30-Oct-96	L	LRS	6,277 30-Oct-97	46 446 447	4 000		10	
ALTA 1	dc	20	7-Jun-97	356,827	ASS		16 116 117	1,800		180	1,8
ALTA 3	dc	20	7-Jun-97	356,828		7-Jun-98	126	2,000		200	
ROSE 2	d	20	19-Jun-97		ASS	7-Jun-98	128	2,000	7-Jun-99	200	
DISCOVERY # 2	d	20			ASS	19-Jun-98	30 31 129 130 20%				2,0
Total	<u>u</u>	20 98	25-Sep-97	359,390	СМ	25-Sep-98		-			2,0
DBSERVATORY G		90					10 +20%	5,800	PAC 477	590	
DEL 1		20	25 4-+ 07		ailable \$	4,571				10	
	d	20	25-Apr-97		ASS	25-Apr-98	•	0	let go		
DEL 2	d	20	25-Apr-97		ASS		25	0	let go		
DEL 3	d	20	25-Apr-97	· ·····	ASS		20 21 22 118	2,000	25-Apr-99	200	2,0
DEL 4	d	20	25-Apr-97	355,323	ASS	25-Apr-98	23 24 120 123	2,000	25-Apr-99	200	2,0
Total		81		l			9	4,000	PAC 571	410	
CASCADE GROUP					ailable \$	5,293				10	
STEER 5	d	20	25-Apr-97		ASS	25-Apr-98	35 36	2,000	25-Apr-99	200	2,0
STEER 6	d	20	25-Apr-97		ASS	25-Apr-98		2,000	25-Apr-99	200	2,0
DEL 5	d	12	25-Apr-97		ASS	25-Apr-98	-	1,200	25-Apr-99	120	1,2
DEL 7	d	12	7-Jun-97	356,829	ASS	7-Jun-98	-	-		-	1,2
DEL 8	d	12	7-Jun-97	356,830	ASS	7-Jun-98	-	-		-	1,2
SARAH 1	d	20	19-Jun-97	356,817	ASS	19-Jun-98	1 man-day	-		-	2,0
Total	<u> </u>	96					2 + 1 man-day	5,200	PAC 93	530	
Assessment for ind	ividual	l clain	ns	av	ailable \$	4,785				-	
GAP 4	dc	5	30-Oct-96	352,594	LRS	30-Oct-97	29 (\$ 508	500	30-Oct-98	50	5
GRANBY I	d	6	25-Apr-97	355,317	EFS	25-Apr-98	0.5 man-day (\$2139)	1,200	25-Арг-00	120	
GRANBY II	d	8	25-Apr-97	355,318	EFS	eren o cin o mare de	0.5 man-day (\$2139)	1,600	25-Apr-00	160	
Total		19					1 + 1 man-day	3,300	PAC 1486	330	
					ailable \$	60,175			PAC 4,375		<u></u>
Grand total				av	anable al	00,175	1	33,0001	PAC 4.3/3	3,6401	
Grand total	rk filed	for			anable ş	00,175		55,800	PAC 4,315	5,640	

- -

i eyasus Latur vensing vurp.

Anyox 1997 Assessment

	claim name		sheet	units	date compl.	tenure	reg.own.	date exp.	calc. reference	applied	exp. date	reg fee	in 1998
	SIERRA	1	dc	16	7-Jun-97	356,831	ASS	7-Jun-98			oxp. date	reg. iee	1,600
	SIERRA	2	d	20	7-Jun-97	356,832	ASS	7-Jun-98	·····				2,000
	SIERRA	3	dc	12	7-Jun-97	356,833	ASS	7-Jun-98					1,200
	SIERRA	4	d	20	7-Jun-97	356,834	ASS	7-Jun-98				1	2,000
langular,	SIERRA	5	d	20	7-Jun-97	356,835	ASS	7-Jun-98					2,000
	SIERRA	6	d	20	7-Jun-97	356,836	ASS	7-Jun-98					2,000
	SIERRA	7	d	10	7-Jun-97	356,837	ASS	7-Jun-98					1,000
	SIERRA	8	d	20	7-Jun-97	356,838	ASS	7-Jun-98					2,000
	DAN	2	d	20	19-Jun-97	356,820	ASS	19-Jun-98					2,000
	DAN	3	d	20	19-Jun-97	356,821	ASS	19-Jun-98					2,000
	DAN	4	d	20	19-Jun-97	356,822	ASS	19-Jun-98					2,000
	RICHARD	2	d	20	19-Jun-97	356,824	ASS	19-Jun-98					2,000
	AND #	4	d	1	6-Jul-96	348,718	ASS	6-Jul-98					100
	AND #	5	d	1	6-Jul-96	348,719	ASS	6-Jul-98	-				100
	AND #	6	d	1	6-Jul-96	348,720	ASS	6-Jul-98	-	-			100
	AND #	7	d	1	6-Jul-96	348,721	ASS	6-Jul-98	-				100
-33-	AND #	8	d	1	6-Jul-96	348,722	ASS	6-Jul-98	•	_			100
	AND #	14	e	1	6-Jul-96	348,728	ASS	6-Jul-98					100
	MESS	1	с	1	8-Jul-96	348,729	ASS	8-Jul-98					100
	MESS	2	С	1	8-Jul-96	348,730	ASS	8-Jul-98					100
	MESS	3	С	1	8-Jul-96	348,731	ASS	8-Jul-98	-				100
	MESS	4	С	1	8-Jul-96	348,732	ASS	8-Jul-98					100
3+10+	MESS	5	с	1	8-Jul-96	348,733	ASS	8-Jul-98	· · · · · · · · · · · · · · · · · · ·				100
	DISCOVERY #	2	d	20	25-Sep-97	359,390	CM	25-Sep-98					2,000
	FAME #	3	d	20	26-Sep-97	369,393	CM	26-Sep-98					2,000
	NEWGOLD #	1	d	1	26-Sep-97	359,394	СМ	26-Sep-98	·				100
	NEWGOLD #	2	d	1	26-Sep-97	359,395	CM	26-Sep-98					100
	Abbreviations:										1998 ass	essment	94,800
12000 20	ASS 139824 Alta Sierra Syndicate EFS						EFS 124862 Edward F. Skoda			Ē.		7 PAC -	4,375
	CZL 136254	Can	adian 2	Zeolite	Ltd.	map shee	ets:			1	1998 regis		9,430
	CM 140451	Car	sten M	ide		a = 103 C	09 E	b = 103 P 12	W	F	\$ required		99,855
	LRS 125300	Larr	y R.W.	Sosta	ad	c = 103 C	08 E	d = 103 P 05	W e = 103 P 05 E	L.			المستنصب

Calculations:			moss mat	samples	rock samples		Total	available	\$60,175.02	
	Sept. days		Doug	Ebo	Doug	Ebo	helicopter hours and \$ Sept.			
moss mat	17-22	4.0	36	37		12	2.9 + 2.7 + 2.2 + 2.8 =	10.6	\$9,243,26	
mapping	24-26	2.7*	13	1	7	10	1.9 + 1.3 + 1.8 =	5.0	\$4,308,57	
	Total	6.7	73 +	14		29			\$13,551.83	

* 1.3 h on day mapping cancelled (bad weather); normal day would have been 1.85 h =(1.9+1.8)/2, so 1.3 h is 0.7 (=1.3/1.85) day

expenses except Sept. helicopter (\$ 60,175.02-13,551.83=) \$ 46,623.19 or per day (\$46,623.19/6.7=) \$ 6,958.69

	first 4 o	days (moss	sampli	ng)
	general	4 * 6958.	69 =	27,834.74
•	helicopter			9,243.26
			total	37,078.00
	final 2.7 da	ays (mappin	g - sar	npling)
-	general	2.7 * 6958	8.69 =	18,788.45
	helicopter			4,308.57
*			total	23,097.02

73 moss mat samples on first 4 days average cost per sample is (\$ 37,078 / 73 =) \$	507.92
average cost per day is (\$ 23,097.02 / 2.7 =) \$	8,554.45
1 man-day is \$	4,277.23
cost for 0.7 day is \$	5,988.12

EB Groups.x/s

r cyasus marar sensing corp.

Anyox 1997 Assessment

claim name sheet units date compl. tenure reg.own. date exp. calc. reference applied exp. date reg. fee in 1998 A day work around the glaciers (recently exposed rock) had been planned, but was not done because of weather conditions;

riday work around the glaciers (recently exposed roci	() nad beel	n planned, bu	it was not done beca	use of wea	ather
the 0.7 day allotted to this and split up as follows:	ROSE 1	ROSE 2	RICHARD 1	DAN 1	1
	30 %	20 %	25 %	25 %	1
\$	1,796.43	1,796.43	2,994.06	- *	

Claim Group Or	# Moss Mat	Cost Apportion	# Man-Days on Geology	Cost Apportion	Total Cost	Applied To Claim	To PAC Account
Individual Claim	Samples	(Geochem)		(Geology)			
Carney Lake Group	0	\$0	1	\$4,277	\$4,277	\$4,200	\$77
Belle Bay Group	3	\$1,524	1	\$4,277	\$5,801	\$5,200	\$601
Close Group	1	\$508	0	\$0	\$508	\$400	\$108
Hastings Group	10	\$5,079	0	\$0	\$5,079	\$4,800	\$279
Anyox Group	14	\$7,111	0	\$0	\$7,111	\$7,100	\$11
Bonanza Group	10	\$5,079	0	\$0	\$5,079	\$4,700	\$379
Glacier Group	6	\$3,047	0.7	\$2,995	\$6,042	\$5,800	\$242
Donahue Group	7	\$3,556	0.42	\$1,796	\$5,352	\$5,300	\$52
Tournay Group	10	\$5,079	0.28	\$1,198	\$6,277	\$5,800	\$477
Observatory Group	9	\$4,571	0	\$0	\$4,571	\$4,000	\$571
Cascade Group	2	\$1,016	1	\$4,277	\$5,293	\$5,200	\$93
Gap 4 Claim	1	\$508	0	\$0	\$508	\$500	\$8
Granby I Claim	0	\$0	0.5	\$2,139	\$2,139	\$1,200	\$939
Granby II Claim	0	\$0	0.5	\$2,139	\$2,139	\$1,600	\$539
TOTALS:	73	\$37,078.00	5.4	\$23,098.00		\$55,800.00	\$4376.00

10.0 STATEMENT OF QUALIFICATIONS

I, Douglas Frederick Symonds, of #501 - 9847 Manchester Drive, Burnaby, B.C. do hereby state that:

- 1) I am an independent Geological Consultant, with offices at #501 9847 Manchester Drive, Burnaby, B.C., V3N 4P4.
- 2) In 1972 I graduated from the University of British Columbia with a Bachelor of Science Degree in Geology.
- 3) I am a Member in good standing of the Association of Professional Engineers and Geoscientists of the Province of British Columbia (Registration #19200).
- 4) I have practiced my profession as a Geologist and as a Geological Consultant in North and South America since graduating in 1972.
- 5) I have gained a working knowledge of the *Anyox Area*, based on field and office work that I have carried out with respect to this area over the last year.
- 6) I have based this report on office and field work that I carried out personally or supervised directly during the period of June 5, 1997 to October 21, 1997.
- 7) I have no interest, either direct or indirect, in the property or securities of Mr. Carsten Mide, or of *Five Star International Resources Inc.*, or of *Canadian Zeolite Ltd.*, or of *Alta Sierra Resources Inc.*, nor do I expect to receive any such interest, either direct or indirect in the property or securities of any of these companies or individuals.

Dated this 12th day of January, 1998 at Burnaby, B.C. D. E. SYMONOS Doug Symonds, P.Geo. SOLL Geological Consultant D. F. SOLL Geological Consultant

APPENDIX I

References

REFERENCES

- Stanley, C.R.; "PROBPLOT An Interactive Computer Program to Fit Mixtures of Normal (or Log Normal) Distributions with Maximum Likelihood Optimization Procedures"; Association of Exploration Geochemists, Special Volume #14; 1989.
- Evenchick, C.A., M^cNicoll, V.J., Holm, K., Alldrick, D.J. & Snyder, L.D.; "Geology, Anyox Pendant & Surrounding Areas in Observatory Inlet"; Geological Survey of Canada, Open File Map #3454, Scale 1:50,000; May 7, 1997.
- 3) B.C. Ministry of Employment & Investment; "1030/P Nass River"; B.C. Regional Geochemical Survey File RGS 43; 1995.
- 4) Davis, J.W. & Aussant, C.H.; "Geological, Geochemical and Geophysical Report on the Anyox Property"; Assessment Report on Behalf of TVI Copper Inc.; August 16, 1994.

APPENDIX II

Acme Laboratory Analytical Certificates

<u> </u>						164	5 •	811 1185 Mn	<u>q C</u> V. G	eorgi	ast	, va	Incou	iver	BC VC		<u> </u>			<u>Р</u>	La	Cr	Mg	Ba	Ti	B	Al	Na ¥	K % (W /	Au* 1	(-8°)
SAMPLE#	ppm	ppm '	ppm	ppm	Ag ppm	ppm	opm	ppm	*	ppm	ppm j	ppm	p bu l	opm	ppm	ppm	<u>bw</u>	ppm	76		ppm (% F							
1 SILT 2 3	6 24	14 16 62	14 50	76 45 73	<.3 .3	5	8 17	829 2688	4.07 3.23 4.16 1.75	3 17	10	<2 <2	8	18 41	.8 1.5 2.9 1.3	<3 9	4 4	64 75 74	.25 .34	.046 .054 .098 .080	24 21 15	15 16 11	.25	55 64 26	.08 .07 .09	4 3	2.32	.02	.07	2	1	23
4 5		74 28		39 53	<.3 <.3				4.23	7	22	<2	16	23	1.6	<3	3	93		.079										<2 ,		
6 7 8 9 10	774	162 41	122 70 17	270 93 67	.7 .3 <,3	34 8 6	42 20 11	1226 3419 551	3.54 4.25 2.54 7.96 3.10	25 10 <2	23 10	<2 <2 <2	5 7 19	13 37 47	2.1	ও ও ও	4	116 38 233	.38 .37 .63	.072 .082 .081 .144 .086	13 18 18	92 : 12 19	2.00 .25 .26	128 71 47	.24 .05 .09	ও ও ও	4.75	.02 .02 .02	.16	4 <2 <2 4 2	<1 4 <1 <1 1	67 29
11 12 13 14	36 20 6 5	34 19 40	72 30 23 16	48 43 100 145	<.3 <.3 <.3	6 4 16 21	16 6 49 21	2445 939 1117 1473	3.96 1.75 2.85 4.14 4.52	34 8 <2 <2	<8 13	<2 <2 <2	7 6 4	17 30 40	1.3 .6 1.3 3.3 3.9	<3	<3 <3	30 45 87	.15 .63	.060 .046 .076 .074 .079	16 18 10	7 27 38	.15 .94 .82	52 146 165	.04	 3<3	2.57 1.81	.05	.56	2		65 18 40
RE 14 15 16 17 18	3 3 3 3	16 92 65 11	11 8 14 8	72 207 153 24	<.3 .4 < 3	19 83 46 5	11 30 19 5	499 630 466 415	2.38 3.74 3.35 .95 3.53	2 ~2 4 ~2	10	<2	2	53 20	.8 3.4 2.0 .5 1.5	3 3 3	থ থ থ থ	99 101 31	1.55 1.07 .25	.062 .063 .096 .047 .100	8 13 6	113 59 10	1.65	44 61 35	.19	0 0 0 0 0	2.08	.08	.08	2	1 <1 <1 <1 11	105 101 36
19 101 102 103 104 105	45 8 13 17	35 23 27 34 29	71 22 24 38	94 67 55 52	<.3 <.3	6 8 10	22 9 11	2981 1034 766 1027	5.85 2.92 2.84 3.61 2.75	9 5 7 11	26 8 19 24	<2 <2 <2 <2 <2	6 17 7 18	36	2.3 1.0 .7 .9 .5	3 4 6	থ্য থ্য থ্য	74 61 67	.42 .69 53	.062 .076 .112 .068 .056	16 16 18	17 12 11	.47	42 45	.13	333	1.26	.02	.50	<2 2	1	15 52 21 18 28
106 107 108 109	5 3 4 5	13 133 20 14 19	12 14 21 17	77 73 67	.4	7 9	19 9 7	393 435 399	2.79 4.02 7.63 4.81 2.25	<2 <2 <2	20 65	<2 <2	6 35 25	37 26 45	.6 .5	<3	ব্য ব্য ব্য	100 178 115	.99 .38 .46	.053 .064 .106 .072 .078	9 22 16	47 23 14	1.23	48 38 38	.17 .08 .12	<3 <3 <3	2.60 .68 .87	04 04 05 03 03	.15	<2 <2 <2	2 <1 1	65 72 40 68 34
110 111 112 113 114 115	6 3 6 7 4	345 45 89 27 41	74 12 29 6 194	565 103 144 53 98	.7 .4 .9 <.3	69 27 63 16 37	342 26 27 14 19	4956 627 695 584 599	5.04 4.03 6.88 3.18 4.85	29 3 63 2 <2	<8 <8 <8 13 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	3 6 4 7	13 30 19 14 33	1.6 .4 1.0	10 <3 7	े उ उ उ	88 58 129	.49 .41 .68	.105 .065 .080	12 7 11	67 30 60	1.48 .66 1.15	54 87 99	.19 .14 .16	<3 <3 <3	1.77 1.43 1.67	7.03 3.02 7.04	.17 .19 .22	2 <2 <2	1	60 94 62 77
STANDARD C3/AU-S		69	38	156	5.6	38	14	774	3.38	54	22	3	21	30	23.0	23	20	88	.58	.088	22	164	.61	149	.10	21	1.90	.04	.17	22	43	-
ICP THI	5 S LEA AMPLE ples	OO GI CH I	RAM S PA	SAMP RTIA	LE I L FO	S DI(R MN	SESTI FE	ED WI SR CA - AQU	TH 3M P LA A-REG	L 3-' CR ! IA/M	1-2 MG B/ IBK e Re	HCL-I A TI EXTR/ ject	HNO3 B W ACT, Reru	H2O AND GF//	AT 9 LIMI VA FI	5 DEC TED I NISHI	G. C FOR ED.(FOR NAK 10 GM	ONE AND 1)	HOUR AL. P	AND	IS DI	LUTE	D TO	10 1	4L W	ITH V	JATER	•			ASSAYERS

1	1		1		İ	1		L		L		L		/	-	<u>, </u>	=	<u>}</u>		}	!		ć,)=	<u></u>)		1			
AA					Peg	asu	s E	lart	h S:	lens	ing	r Co	rp.	PR	OJE	CT	ANY	ox-	97	FI	LE	# 9	7-5	6661				Pa	ge	2	ADE AU	L
ACHE ANALYTICA SAMPLE#	Mo		Pb	Zn	Ag	Ni	Co	Mn	Fe 7	As ppm	U ppm	Au	Th ppm	Sr ppm	bC mqq	Sb ppm	Bi	V mqq	Ca %	P X	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	к %	¥ ppm		wt.(- <i>8</i> °) gm
116	ppn	9pm 342	ppm 7	99m 314	ppm z	ррт 64	<u>ррт</u> 44		2.29	2	<8	<2	<2	29	5.4	<3	ত ত	49 64		.090	8	65	.92 1.16		.07		2.17	.06 .07	.28	<2 3	1 1	15 23

Sample type: MOSS MAT. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

,

Data 1/ FA ____

4	<u>Pe</u>	ga	<u>sus</u>	<u>; E</u>	lar	<u>th</u> 1	<u>Se</u> 645		GEOC ng C 5 W. G			קס	ਹ ਸ	יריי	AN	YOX	- 9	7	Fi	le :	# ≌)7- Bakk					e 1					10
SAMPLE#	Mo	Cu	Pb	Zn	Ag ppm	Ni	Co ppm	Mn ppm	Fe %	As ppm	ppm p	ypm p	pm 1	pm	Cd ppm p	ppm p	pm 1	pm	Ca %	%	La ppm	ppm	%	ppm	*	ppm		%		ppm		gm
20 21 22 23 24	3 2 1 7	8 13 24	8 7 11	51 62 59 36	<.3 <.3 <.3 <.3		6 8 9 9	385	3.28 4.68 4.04 1.36 2.06	<2 <2 4	24 12 38	<2 <2 <2	11	42 54 37		<3 <3 3	<3	91 43 48	.59 .48 .35 .44	.126 .147 .131 .074 .068	17 14 8	42 45 22 30	.84 .46 .57	75 52 45	.13 .09 .08	3 3 18	1.19 1.23 1.05	.03 .03 .22	.21 .12 .17	<2 <2 7	<1 <1 <1 <1 <1 <1	48 29
25 26 27 28 29	5	on	38 45 28	37 42 102	<.3 <.3 <.3	4 105	7 10 27	714 1484 596	1.65 2.56 2.37 3.73 5.25	12 12 9	175 9 31 <8 <8	<2 <2 <2	<2 2 8 <2 <2	32 23	.5 .6	<3	3	52 50	.45	.091 .090 .057 .075 .112	12 12 6 10	10 10 141 37	.27 .18 1.87 .28	48 38 151 160	.07 .09 .19 .03	3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.28 1.00 2.34 1.71	.02 .01 .03 .01	.08 .24 .12	<2 <2 <2 <2	1 4	34 89 30
RE 28 30 31 32 33	1 <1 1 1	89 52	26 9 14	102 123 105 93	<.3 <.3 <.3	103 66 38	27 27 24 15	591 882 1233 409	3.74 4.84 4.74 2.83 4.39	7	<8 <8	<2 <2 <2	2	14	.5 .8 1.3 .6 1.7	<3 4 3	ও ও ও ও	140 99 77	.56 .54 .40	.075 .085 .095 .057 .093	7 9 4 5	133 72 88 102	2.37 1.93 1.55 1.89	69 120 22 136	.19 .17 .15 .17	उ उ उ उ उ उ उ	2.37 2.72 2.34 1.83 2.77	.02 .01 .02 .03	.17 .30 .06 .22	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1 1 1	47 68 96 64
34 35 36 37 38	4525	78 93 38 715 338	35 8 21 42	87 116 96 68	<.3 <.3 <.3	1	15 27 12 2	597 626 430 126	4.33 5.57 4.51 11.72 6.40	9 <2 <2 112	<8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2	3 5	17 33 31 9 12	.4 .5 .3	3 <3	<3 <3	122 94 98	.53 .50 .12	.075 .112 .107 .066 .068	7 10 5	67 36 18	2.44 1.13 .13	285 144 35	.20 .15 .05	ও ও ও	2.80 2.65 1.36 1.62 1.88	.03 .03 .02	.51 .29 .16	<2 <2 <2	1 <1 3	21
39 40 41 42 43	5 3 2 3	877 289 84	47 19 48 43	186 100 139 123	1.8 1.1 <.3		3 9 7 9	127 296 360		53 10 6	<8 <8	<2 <2 <2 <2 <2 <2 <2 <2	5 4 4	10 9 12	.6	6 ८७ ८७	ও ও ও ও	34 85 78	.25 .09 .11	.134 .081 .049 .060 .050	12 8 7 9	154 147 150	.27 1.09 .99 1.12	18 157 156 183	.14 .13 .17	3 3 3 3 3 3 3 3	1.85 .72 2.22 2.29 2.63	.01 .01 .01	.02 .34 .36 .49	<2 <2 <2 <2 <2	66 3 1 1	63 67
44 45 46 47 48	2213	47 31 48 53	12 9 15 14	64 68 71	< . 	3 38 3 38 3 33 3 33	3 9 3 7 5 31 5 35	294 1016 1223	2.82 3.06 3.09 3.27 3.48	5 5 3	10 10 <8 <8 <8	<2 <2 <2 <2	2 <2 2 <2 <2	29 18 63	<.2 .9 1.3 1.9	<3 3 <3 4	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	86 75 96 81	.15 .28 .22 .55	.045 .035 .059 .045 .114	4 5 5 9	131 94 133 105	1.04 .76 1.08 .97	171 139 225 171	.16 .15 .18 .17	3 3 3 3 3 3 3 3	1.77 1.73 1.58 1.90 1.76	.02 .02 .02	.37 .29 .51 .34	<2 <2 <2 <2 <2	<1 <1 <1	41 60 73 52
49 118 119 120 121	1 1 5 4 2	9 11 20 47 20	5 6 15 26 7	44 62 76 84	< < < < < < < < < < < < < < < < < < <	3 29 3 21 3 9 3 11 3 10	2 3 1 7 2 10 3 11 6 8	157 326 1067 671 400	1.52 4.45 3.47 2.04 2.83	<2 <2 5 4 <2	25 17 37 14	<2 <2 <2 <2 <2	22 3 2 7	47 77 50 38	<.2 <.2 .9 <.2	<3 4 <3 <3	उ उ उ उ उ	96 66 54 78	.59 .67 .58 .55		18 12 11	43 17 25 28	.60 .58 .56	68 88 68	.11 .12 .14	3 3 3	1.66	.01 .03 .04	.13	<2 <2 <2 <2	<1 <1 <1	33 36 92
STANDARD C3/AU-S	26	63	34	146	5 5.	6 3	7 1	753	3.38	53	16	<2	19	28	23.0	17	22	85	.58	.087	19	167	.60	148	.10	19	1.85	5 .04	.16	20	47	· •
THI	S LE	500 ACH E_TY	GRAM IS P PE:	ART I	HPLE	IS I FOR I T	DIGES MN FI AU	STED W	ITH 3M A P LA WA-REG	L 3- CR I	1-2 H MG B/ IBK B	ICL-) TI EXTR/	HNO3 BW ACT,	H2O AND GF//	AT 9 LIMI A FI	5 DEC TED I NISHE	S. C OR I D.(*	FOR NAK 10 GM		HOUR AL.	AND	IS D	ILUTE	D TO	10	ML W	ITH V	IATER	•			ASSAYER

AA

Pegasus Earth Sensing Corp. PROJECT ANYOX-97 FILE # 97-5724

ACHE ANALYTICAL	The second
SAMPLE#	Mo Cu Pb Zn Ag Ni Co Mn Fe As U Au In Sr Cd Sb Bi V Ca y La pom 7 pom 7 pom 7 2 2 2 pom pob gm
	pom pom pom pom pom pom pom pom z pom
400	2 29 10 75 <.3 37 13 608 2.74 8 <8 <2 2 36 .8 <3 4 69 .53 .096 11 56 .91 65 .11 <3 1.43 .03 .11 3 7 94
122	
123	
RE 123	1 11 12 12 13 12 7 13 3.75 5 18 <2 19 26 .8 3 3 93 .47 .093 20 26 .36 44 .11 <3 .85 .02 .15 <2 <1 03
124	
125	
	2 57 3 95 < 3 58 17 478 3.93 7 <8 <2 4 26 1.3 6 <3 96 .75 .077 7 94 1.38 43 .20 <3 1.89 .06 .10 <2 <1 69
126	2 57 3 70 3 71 3 271 63 52 58 52 52 36 .6 53 53 8 1.07 .142 2 13 .15 185.01 6 .32 .01 .14 52 54 24
127	
128	1 319 3 203 .3 60 30 070 (10 0 0 8 23 22 34 16 4 33 124 67 095 8 125 1.99 75 .18 3 2.84 .05 .23 32 3 38
129	
130	
	2 56 12 139 < 3 55 30 1912 4.19 14 <8 <2 <2 25 3.6 4 <3 120 .73 .089 6 98 1.80 128 .15 <3 2.61 .03 .26 <2 3 44
131	2 56 12 139 4.3 55 50 1712 4.17 70 0 42 42 19 7.0 6 3 132 68 115 6 103 2.07 199 17 <3 2.82 .03 .56 2 2 36
132	3 66 8 225 3 69 61 5103 5.24 76 78 72 2 22 10 6 6 3 121 77 117 7 103 1.94 167 .14 3 2.74 .03 .31 3 1 39
133	5 84 11 2/3 <.3 96 34 3622 3.00 37 48 42 42 36 1 3 5 43 141 92 110 5 115 1.93 160 .20 <3 2.82 .06 .34 <2 2 64
134	1 8/ 10 113 .5 50 51 1002 4.42 / 10 12 10 10 10 10 11 10 10 15 10 10 15 10 10 15 10 10 15 10 10 15 10 10 15 10 10 10 10 10 10 10 10 10 10 10 10 10
135	3 46 20 91 <.3 17 12 439 5.03 4 <8 <2 4 25 1.0 4 4 105 .47 .090 15 58 1.05 109 .15 <5 1.50 .05 .24 2 5 52
	2 47 22 107 < 3 22 14 471 4.37 <2 <8 <2 6 32 1.0 4 <3 96 .52 .086 11 46 1.44 132 .18 <3 1.74 .03 .35 2 45 74
136	
137	3 40 23 104 .3 19 13 473 4.93 3 6 2 2 89 45 6 5 3 72 .78 .114 13 43 .61 174 .06 <3 2.79 .03 .21 2 9 32
138	9 367 43 1388 1.6 107 68 9249 3.32 76 51 7 10 20 22 2 17 22 84 59 084 19 167 58 145 .10 20 1.84 .04 .16 19 45
STANDARD C3/AU-S	24 60 34 142 5.3 36 11 745 3.31 50 21 3 19 29 22.2 17 22 84 .59 .084 19 187 .58 145 .10 20 1.04 .04 .10 19 45

Sample type: MOSS MAT. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Page 2

ADE MALYTICAL

ACME AT TICAL LABORA	<u>Pegasu</u>				1977 - Nava Angeles († 1986)	Y CER	LIFI(JECT	CATE ANYOX	(- 97	File	# 97-					
SAMPLE#	Mo	Cu	Pb %	Zn %	Ag** oz/t,	Ni	Co	Mn %	Fe %	As %	U %	Th %	Cđ *	Sb *	₹	Au** oz/t
E 78551 E 78552 E 78553 E 78554 E 78555	<.001 .001	.002	<.01	<.01 <.01 <.01 .02 .01	<.01	.001< .001< .001< .002< .002<	.001 .001 .001	<.01 .01 .01 .01 .01	.30 .97 .67 .49	<.01 <.01 <.01 <.01	<.01 <.01 <.01 <.01	<.01< <.01< <.01< <.01< <.01<	.001< .001 .001<	.001	<.01 <.01 <.01	2.001 .001 .001
E 78556 E 78557 E 78601 E 78602 E 78603	4.001	.001	<.01 <.01 <.01	<.01	<.01 <.01< <.01	:.001<	.001	.01 .02 .04 .06	.76 1.03 2.65 2.91	<.01 <.01 <.01 <.01	<.01 <.01 <.01 <.01	<.01< <.01< <.01< <.01< <.01<	.001< .001< .001<	.001	<.01 <.01 <.01 <.01	<.001 <.001 <.001 .003
E 78604 E 78605 E 78606 E 78607 E 78608	<.001 <.001 <.001	.001 .003 .025	<.01	<.01 <.01 <.01 <.01	.01 .03 <.01		.001 .001 .002	.02 .01 .03 .02	.40 .64 2.70 2.35	<.01 <.01 <.01 <.01	<.01 <.01 <.01 <.01	<.01< <.01< <.01< <.01< <.01<	.001< .001< .001<	.001	<.01 <.01 <.01	.001 .001 <.001
E 78609 E 78610 E 78611 E 78612 RE E 78612	<pre><.001 <.001 <.001 <.001 <.001 <.001 <.001</pre>	.001 .010 .009	<.01	<.01	<.01	.001< .001< .004 .006 .007	.001 .002 .003	~~	.58 6.86 5.66 5.82	<.01 <.01 <.01 <.01	<.01 <.01 <.01 <.01	<.01< <.01< <.01< <.01< <.01<	.001< .001< .001<	.001	<.01 <.01 <.01 <.01	<.001 <.001 <.001
E 78613 E 78614 E 78615 E 78616 E 78617	<.001 .001 .003	.004	<.01	<.01	3.08 .08 <.01	.002< .002< .002< .001<	.001	.02 .01 .03 <.01 <.01	.99 2.52 .62 .33	<.01 <.01 <.01 <.01	<.01 <.01 <.01 <.01	<.01< <.01< <.01 <.01< <.01<	.001< .001< .001<	.001 .001 .001	<.01 <.01 <.01 <.01	.001 .001 <.001 <.001
E 78618 E 78619 E 78620 E 78621 E 78622	<.001 <.001 <.001	.006	<.01 <.01 <.01	<.01 <.01 .01 .01 <.01	.01 .04 <.01	.002< .003 .001< .002< .002<	.001 .001 .001	.02 .02 .05 .03 .01	1.06	<.01	<.01	<.01< <.01< <.01< <.01< <.01<	<.001< .001< .001<	.001 .001 .001	<.01 <.01 <.01 <.01	<.001 <.001 <.001 <.001
STANDARD R-1/AU-1	.089	.850	1.32	2.31	2.90	.027	.025	.08	6.73	.99	. 02	.01	.048	.164	.03	.095
		AG** 8 - SAMP <u>Sample</u>	AU** BY PLE TYPE: es beginn	FIRE AS ROCK ning 'RE'	n 30 ml ai say from <u>are refui</u>	1.A.T. SA <u>ns and 'R</u>	MPLE./	Reject F	teruns.	P		o . 50%0	1 11410-			CCAYEDC

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data FA 1113

APPENDIX III

Statistical Analysis of Geochemical Data (Moss Mat Samples)

Variable =	Мо	Unit	Ξ	(ppm)		N	=	87
Mean =	6.247	Min	-	0 500	1.04	Quartile		_
Std. Dev. =	8.563	Mav	~	AE 000		A		2.000
CV % =	137.071	Skewness	-	40,000	2-1	Median	=	
	10071	DRCHICSS	-	2.950	Jra	Quartile	=	6.000
==============	=======================================	============	=====	=======				
	cls int		(# of	bins =	20 -	bin size) =	======= 2.342)
0.00 0.57	-0.671	•						
17.24 17.61	1.671		*****	*******	***			
43.68 60.80	4.013					*****	****	***
16.09 76.70	6.355			* * * * * * * *				* * * * * * *
9.20 85.80	8.697	-	*****	* * *				
2.30 88.07	11.039	1	* *					
1.15 89.20	13.382		ŧ					
1.15 90.34	15.724	4	k.					
1.15 91.48	18.066	4	k					
1.15 92.61	20.408	4	k					
$0.00 \ 92.61$	22.750							
	25.092	1	k 🖈					
	27.434							
	29.776							
1.15 96.02	32.118	4	ĸ					
$0.00 \ 96.02$	34.461							
$1.15 \ 97.16$	36.803	4	F					
0.00 97.16	39.145							
	41.487							
1.15 98.30		*	:					
1.15 99.43	46.171	*	r					
***********		0		1		2	3	4

- -

and a star and all

Variable = M	fo	Unit	t =	(ppm)		N =	87
Std. Dev. =	$0.5690 \\ 0.4151 \\ 72.9631$	Mir Max Skewness	x =	-0.3010 1.6532 0.5315	1st Quart Med 3rd Quart	lian =	$0.3010 \\ 0.4771 \\ 0.7782$
		= 3.70				(+)	9.641
======================================	antilog	cls int	====== {# of	======================================	======================================	======== size =	0 10201
0.00 0.57	0.444	-0.3525					
	0.563	-0.2496	*				
	0.713	-0.1467					
	0.904	-0.0439					
	1.145	0.0590	****	******			
	1.451	0.1618					
	1.839	0.2647					
	2.331		****	****			
	2.954	0.4704					
	3.743	0.5732		****	* *		
	4.743	0.6761					
	6.011	0.7789		****			
8.05 84.66	7.617	0.8818	****	* *			
2.30 86.93	9.653	0.9847	* *				
1.15 88.07	12.232	1.0875	*				
2.30 90.34	15.501	1.1904	**				
1.15 91.48	19.644	1.2932	*				
	24.893	1.3961	* * *				
	31.545	1.4989					
	39.975	1.6018	* *				
2.30 99.43	50.657	1.7046	* *				
~~~~~~~~~~~			}	1	2	3	4

#### ANYOX DATA

01/13/98

PARAMETER SUMMARY STATISTICS FOR PROBABILITY PLOT ANALYSIS

Data File Name = ANYCHEM.TXT

Variable = Mo	Unit	=	(ppm)	N = N CI =	87 20
Transform = Logarithm	ic		Number of	Populations = 4	l

# of Missing Observations = 0.

Users Visual Parameter Estimates

Population	Mean	_	Std Dev	Percentage
1	0.955	_	0.798	15.00
2	2.434	+ -	$\begin{array}{c}1.142\\1.379\end{array}$	55.00
3	5.987	+	$4.296 \\ 4.980$	17.00
4	21.198	+-	7.197 12.477	13.00
4	21.198	- +	$12.477 \\ 36.014$	13.00

Default Thresholds.

Standard Deviation Multiplier = 2.0

Pop.	Thresholds					
1	0.668	1.366				
2	0.782	7.582				
3	4.143	8.652				
4	7.344	61.187				

- -

. .

- -

- -

. .

- .

.....

.....

ANYOX DATA

01/13/98

Variable = (	Cu	Unit	=	(ppm)		N =	87
Std. Dev. =	88.420 137.231 155.204	Min Max Skewness	= {	8.000 377.000 3.690		Quartile = Median = Quartile =	$23.250 \\ 45.500 \\ 86.250$
=======================================	=======================================	=============	=====:	==========	=====	=======================================	========
% cum %	cls int	ł	(# of	bins = 2	20 -	bin size =	45.737)
	-14.868						
33.33 33.52	30.868	ډ	* * * * * *	******	*****	*****	
37.93 71.02	76.605	:	* * * * * * 1	******	*****	******	**
	122.342	\$	*****	******			
3.45 88.07	168.079	<b>د</b>	* * *				
1.15 89.20	213.816	و	*				
1.15 90.34	259.553	3	*				
1.15 91.48	305.289		ŧ				
4.60 96.02	351.026	3	* * * *				
1.15 97.16	396.763	k	*				
	442.500						
	488.237						
	533.974						
	579.711						
0.00 97.16	625.447						
0.00 97.16	671.184						
1.15 98.30	716.921	ন	k.				
	762.658						
	808.395						
0.00 98.30							
1.15 99.43	899.868	4	E.				
		0		1		2 3	4

ANYOX DATA

01/13/98

Variable = Cu	}	Unit	= (ppm)	N =	87
Std. Dev. =		Min Max Skewness	= 2.9430	lst Quartile = Median = 3rd Quartile =	1.3663 1.6580 1.9357
Anti-I	log Mean	= 49.221	Anti-Log	Std. Dev. : (-) (+)	
**************************************	antilog	cls int (		- bin size =	======================================
5.75 10.80 6.90 17.61 8.05 25.57 9.20 34.66 6.90 41.48 17.24 58.52 8.05 66.48 5.75 72.16 12.64 84.66 2.30 86.93 1.15 89.20 1.15 89.20 1.15 90.34 6.90 97.16 0.00 97.16	7.070 9.053 11.591 14.842 19.005 24.335 31.159 39.898 51.088 65.416 83.762 107.253 137.332 175.847 225.164 288.312 369.170 472.705 605.277 775.029 992.388	1.0641 * 1.1715 * 1.2789 * 1.3862 * 1.4936 * 1.6010 * 1.7083 * 1.8157 * 1.9230 * 2.0304 * 2.1378 * 2.2451 * 2.3525 * 2.4599 *	; ;*****		
1.10 00.40		0	1	2 3	4

#### ANYOX DATA

01/13/98

****

PARAMETER SUMMARY STATISTICS FOR PROBABILITY PLOT ANALYSIS

Data File Name = ANYCHEM.TXT

Variable = CuUnit =(ppm)N =87N CI =20Transform = LogarithmicNumber of Populations = 5# of Missing Observations = 0.

Users Visual Parameter Estimates

Population	Mean		Std Dev	Percentage
		-		
]	11.582	-	9.490	10.00
		+	14.137	
2	35.913	-	22.040	65.00
		+	58.520	
3	88.325	-	85.204	7.00
		+	91.561	
4	104.423	-	88.444	5.00
		+	123.289	
5	312.006	-	180.784	13.00
		+	538.475	

Default Thresholds.

Standard Deviation Multiplier = 2.0

Pop.	Thresholds				
1	7.775	17.255			
2	13.526	95.357			
3	82.192	94.915			
4	74.911	145.563			
5	104.751	929.326			

. .

· •••

#### ANYOX DATA

01/13/98

Variable = I	Pb	Unit :	= (ppm)		N =	87
Std. Dev. =			$= 1.500 \\ = 194.000 \\ = 3.419$	Medi	ian =	10.000 16.500 29.000
* cum %	cls int	:=====================================	# of bins =	20 - bins	:======= size =	10.132)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-3.566 6.566 16.697 26.829 36.961 47.092 57.224 67.355 77.487 87.618 97.750 107.882 118.013 128.145 138.276 148.408 158.539 168.671 178.803 188.934	*: *: *: *:	* * * * * * * * * * * * * * * * * * *	******	° <b>***</b> * <b>*</b>	**
1.15 99.43	199.066	*				
		0	1	2	3	4

ANYOX DATA

SUMMARY STATISTICS and HISTOGRAM LOGARITHMIC VALUES

Variable = 1	ър	Unit	= (ppm)	N	= 87
Std. Dev. =	$1.2399 \\ 0.3780 \\ 30.4847$	Min Max Skewness	= 2.2878	lst Quartile = Median = 3rd Quartile =	1.2173
	-	= 17.373	5	Std. Dev. : (- (+	) 41.482
	antitog		(# of bins = 20	- oin size	= 0.1111
0.00 0.57	1.320	0.1205			
1.15 1.70	1.705	0.2317 *	ŧ		
0.00 1.70	2.202	0.3428			
0.00 1.70	2.844	0.4539			
3.45  5.11	3.674	0.5651 *	* * *		
1.15 6.25	4.745	0.6762 *	k		
4.60 10.80	6.129	0.7874 *	* * * *		
3.45 14.20	7.916	0.8985 *	* * *		
$13.79 \ 27.84$	10.225	1.0097 *	*****		
11.49 39.20	13.207	1.1208 *	*****		
	17.059	1.2319 *	* * * * * * * * * * * *		
$10.34 \ 61.93$	22.034	1.0101	*****		
11.49 73.30	28.460	1,1016	* * * * * * * * * *		
5.75 78.98	36.760	1,0001	* * * * *		
8.05 86.93	47.481	110100	* * * * * * *		
4.60 91.48	61.328	1,1011	* * * *		
5.75 97.16	79.214	1.0000	* * * * *		
0.00 97.16	102.316	2.0099			
1.15 98.30	132.156	2.1211 *	ŧ		
	170.699	2.2322			
1.15 99.43	220.482	2.3434 *	ŧ		
		0	1	2	3 4

****

- --

. .

. ----

---

#### ANYOX DATA

01/13/98

****

PARAMETER SUMMARY STATISTICS FOR PROBABILITY PLOT ANALYSIS

Data File Name = ANYCHEM.TXT

Variable = PbUnit =(ppm)N =87N CI =20Transform = LogarithmicNumber of Populations = 5# of Missing Observations = 0.

Users Visual Parameter Estimates

Population	Mean		Std Dev	Percentage
		-		
1	3.053	_	2.035	7.00
		+	4.580	
2	6.964	-	5.940	10.00
		+	8.164	
3	15.130	-	10.131	58.00
		÷	22.596	
4	44.832	-	33.234	22.00
		÷	60.476	
5	105.970	-	66.205	3.00
		+	169.619	

Default Thresholds.

Standard Deviation Multiplier = 2.0

Pop.	Thresholds				
1	1.357	6.871			
2	5.067	9.571			
3	6.784	33.745			
4	24.637/	81.580			
5	41.362	271.497			

***

~ •

ي الم

#### ANYOX DATA

01/13/98

Variable =	Zn	Unit	=	(ppm)		N =	87
Std. Dev. =			=	$\begin{array}{r} 24.000\\ 1388.000\\ 6.090\end{array}$		Quartile = Median = Quartile =	85.500
% cum %	cls int	(	===: (# (	of bins =	20 -	bin size =	======= 71.789)
25.29 25.57	-11.895 59.895			******			
	$131.684 \\ 203.474 \\ 275.263$	*	***	* * * * * * * * * * * * * * * * * * * *	*****	* * * * * * * * * * * * * * *	> 43
$2.30 \ 97.16$ $0.00 \ 97.16$	347.053 418.842		⊧.*	<i></i> .			
0.00 97.16 0.00 97.16	490.632 562.421						
$\begin{array}{c} 1.15 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \end{array}$	634.211 706.000 777.789	*	•				
0.00 98.30 0.00 98.30	849.579 921.368						
0.00 98.30 0.00 98.30	$993.158 \\ 1064.947$						
0.00 98.30 0.00 98.30 0.00 08.30	1136.737 1208.526						
$\begin{array}{c} 0.00 & 98.30 \\ 0.00 & 98.30 \\ 1.15 & 99.43 \end{array}$	1280.316 1352.105 1423.895	đ	k				
		0		1		2 3	4

**********************

---

ANYOX DATA

01/13/98

Variable = Zn	Unit =	(ppm)	N =	87
Mean = 1.9641 Std. Dev. = 0.2891 CV % = 14.7189	Min = Max = Skewness =		rtile = edian = rtile =	$1.7539 \\ 1.9319 \\ 2.1154$
Anti-Log Mean	= 92.059	0	(+)	179.124
% cum % antilog		bins = 20 - bin		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.8903 ***** 1.9831 *****	* * * * * * * * * * * * * * * * * * * *		
	0	1 2	3	4

01/13/98

******

PARAMETER SUMMARY STATISTICS FOR PROBABILITY PLOT ANALYSIS

Data File Name = ANYCHEM.TXT

Variable = ZnUnit =(ppm)N =87N CI =20Transform = LogarithmicNumber of Populations = 4

# of Missing Observations = 0.

Users Visual Parameter Estimates

Population	Mean	_	Std Dev	Percentage
j	29.036	-	24.340	4.00
		+	34.639	
2	69.216	-	49.352	68.00
		÷	97.075	
3	171.092	-	132.719	23.00
		+	220.559	
4	472.014	-	243.602	5.00
		+	914.598	

Default Thresholds.

Standard Deviation Multiplier = 2.0

Pop.	Thresholds				
i	90 100	1: 565			
Ţ	20.403	41.323			
2	35.189	136.148			
3	102.952	284.329			
4	125.720	1772.168			

*******************************

ANYUX DALA

01/13/90

variable = P	ġ	0 <b>1111 =</b>	(ppm)		in =	87
eean =	0.282	min =	0.150	ist	Quartile =	0.150
std. Dev. =	0.305	max =	1.800		Median =	11 150
CV % =	108.275	Skewness =	3.090	Зrd	Quartile =	0.300
å cum å	cls int	(#	of bins =	20 -	bin size =	======== 0.087;
0.00 0.57						
71.26 71.02	0.193	के के	*********	******	**********	> 62
	0.280					
E1.49 82.39	0.367	के के	*******			
	Ũ.454	÷ *	**			
	0.541	**				
	0.628					
	0.714	**				
1.15 92.61	0.801	÷				
0.00 92.61	0.888					
2.30 94.89	0.975	÷ ÷				
0.00 94.89	1.062					
2.30 97.16	1.149	**				
0.00 97.16	1.236					
0.00 97.16	1.322					
0.00 97.16	1.409					
0.00 97.16	1.496					
	1.583					
1.15 98.30	1.670	÷				
	1.757					
1.15 99.43	1.843	÷				
		Ü	 1		2 3	4

Vari	able =	Ag	Uni	t. =	:	(ppm)			N =	87
Std.	Dev. =	-0.6720 0.2754 40.9881	Mi Ma Skewnes	x =	ī.	0.8239 0.2553 1.7550		Mee	tile = lian = tile =	-0.8239
	Anti	l-Log Mean	= 0.2	13		Anti-Lo	g Std.	Dev.		$0.113 \\ 0.401$
=====	=======	=======================================	=========	===			======			=========
%	cum %	antilog	cls int	(#	of	bins =	20 -	bin	size =	0.0568)
0.00	0.57	0.141	-0.8523							
	71.02	0.160	-0.7955	**	****	*****	*****	*****	*****	
	71.02	0.183	-0.7387							> 62
	71.02	0.208	-0.6819							
0.00	71.02	0.237	-0.6251							
0.00	71.02	0.270	-0.5683							
11.49	82.39	0.308	-0.5115	**	****	****				
0.00	82.39	0.351	-0.4547							
4.60	86.93	0.400	-0.3979	* *	**					
	86.93	0.456	-0.3411							
	89.20	0.520	-0.2843	**						
	89.20	0.592	-0.2275							
	89.20	0.675	-0.1707							
	91.48	0.769	-0.1139	**						
	92.61	0.877	-0.0571	*						
	94.89	0.999	-0.0003	**						
	97.16	1.139	0.0565	<b>* *</b>						
	97.16	1.298	0.1133							
	97.16	1.479	0.1701							
	98.30	1.686	0.2269	岸						
1.15	99.43	1.922	0.2837	¥						
				0		1		2	3	4

******

01/13/98

****

PARAMETER SUMMARY STATISTICS FOR PROBABILITY PLOT ANALYSIS

Data File Name = ANYCHEM.TXT

Variable = Ag	Unit =	(ppm)	N = 87 N CI = 20
Transform = Logar	ithmic	Number of Po	opulations = 4
# of Missing Observa	tions = 0.		

Users Visual Parameter Estimates

Population	Mean		Std Dev	Percentage
		-		
1	0.150	-	0.148	65.00
		+	0.152	
2	0.173	-	0.127	20.00
		+	0.235	
3	0.486	-	0.381	7.00
		+	0.621	
4	1.011	-	0.722	8.00
		+	1.417	

Default Thresholds.

Standard Deviation Multiplier = 2.0

Pop.	Thresholds			
1	0.147	0.153		
2	0.094	0.320		
3	0.298	0.794		
4	0.515	1.985		

01/13/98

Variable =	Ni	Un;+		(nnm)		<b>N</b> T	
variabie -	111	UIIIL	÷	(ppm)		N =	87
Mean =	31.190	Min	=	4.000	1st	Quartile =	8 250
Std. Dev. =	26.924	Max	= ]	107.000		Median =	21 000
CV % =	86.325	Skewness	=	1.088	3rd	Median = Quartile =	49 500
				1,000	0. d	quartine -	43.300
===============	=======================================	================	====:	=======	======	===================	=======================================
% cum %	cls int		(# of	bins =	20 -	bin size =	5.421)
0.00 0.57	1.289						
	6.711		* * * * * *	******	* *		
	12.132			*******			
	17.553		* * * * * *				
	22.974	;	* * * * * *	*****			
	28.395	:	* *				
	33.816	;	* * * *				
9.20 71.02	39.237	:	* * * * * *	* * *			
$0.00 \ 71.02$	44.658						
4.60 75.57	50.079	:	* * * *				
	55.500	3	* * * * *				
	60.921		* * *				
	66.342	2	* * * *				
	71.763	د	*				
	77.184	:	*				
	82.605						
	88.026	د	* *				
1.15 94.89	93.447	د	*				
	98.868	2	* *				
	104.289						
2.30 99.43	109.711	c.	* *				
		0		1		2 3	4

01/13/98

Variable = 1	Ni	Unit	= (ppn	)	N =	- 87
Std. Dev. =	$\begin{array}{c} 1.3180 \\ 0.4138 \\ 31.3965 \end{array}$	Min Max Skewness	= 2.02	94	Quartile = Median = Quartile =	
Anti	-Log Mean	= 20.796			(+)	
======================================	antilog	cls int (			bin size ====================================	=======================================
0.00  0.57	3.669	0.5645				
5.75 6.25	4.361		****			
2.30 8.52	5.185	0.7141	*			
8.05 16.48	6.164	0.1000	*****			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7.328	0.0000	* ****			
5.75 24.43 5.75 30.11	$\begin{array}{r} 8.712 \\ 10.357 \end{array}$	0.0101	****			
	12.313	1.0104	**			
3.45 36.93	14.638	1.0001	**			
5.75 42.61	17.402		****			
	20.688		* * * *			
6.90 55.11	24.595		* * * * *			
	29.239		* * *			
3.45 63.07	34.761		* *			
8.05 71.02	41.325		*****			
3.45 74.43	49.128		* *			
9.20 83.52	58.406	1.7665 *	* * * * * * *			
6.90 90.34	69.435	1.8416 *	****			
1.15 91.48	82.547	1.9167 *				
5.75 97.16	98.135	1.9918 *	* * * *			
2.30 99.43	116.666	2.0669 *	*			
		0	1		2 3	3 4

01/13/98

****

PARAMETER SUMMARY STATISTICS FOR PROBABILITY PLOT ANALYSIS

Data File Name = ANYCHEM.TXT

Variable = Ni Unit = (ppm) N = 87 N CI = 20 Transform = Logarithmic Number of Populations = 4 # of Missing Observations = 0.

Users Visual Parameter Estimates

Population	Mean		Std Dev	Percentage
		-		
1	5.058	-	4.174	12.00
		+	6.129	
2	15.137	-	8.170	59.00
		+	28.045	
3	54.459	-	44.133	22.00
		÷	67.202	
4	94.186	-	85.430	7.00
		+	103.839	

Default Thresholds.

Standard Deviation Multiplier = 2.0

Pop.	Thresholds				
1	2 444	7 407			
1	3.444	7.427			
2	4.410	51.960			
3	35.765	82.926			
4	77.488	114.482			

***

l

01/13/98

Variable = (	Cr	Unit	=	(ppm)		N =	:	87
Mean =	53.753	Min	=	7.000	1st	Quartile =	-	14.500
Std. Dev. =	44.820	Max	=	180,000		Median =		38.000
CV % =		Skewness		0.984		Quartile =		86.125
				0.001	01.4	quartific -	-	00.125
================	=======================================	===========	=====	========	======	=======================================	====	
% cum %	cls int		(# of	bins =	20 -	bin size	=	9.105)
		-						
0.00  0.57	2.447							
	11.553		*****					
	20.658			******	* * * * * *			
	29.763		* * * * * * *					
	38.868		* * * * * * *					
	47.974		* * * * * *	* * * *				
	57.079		* * * *					
	66.184		* * *					
4.60 73.30	75.289		* * * *					
	84.395		*					
	93.500		* *					
	102.605		* * * *					
	111.711		* * *					
3.45 88.07	120.816		* * *					
1.15 89.20	129.921		<b>*</b>					
3.45 92.61	139.026	*	* * *					
	148.132	1	* *					
	157.237	*	* * *					
	166.342							
	175.447							
1.15 99.43	184.553	3	*					
		0		1		2	3	4

*****

-

~ ~

01/13/98

Variable = Cr	Unit =	(ppm)	Ν	= 87
Mean = 1.5 Std. Dev. = 0.3 CV % = 25.1	943 Max =	2.2553	lst Quartile = Median = 3rd Quartile =	1.5798
Anti-Log M	ean = 36.974	Anti-Log		) $14.916$ ) $91.654$
=======================================		================================	=======================================	
% cum % anti	log cls int (#	of bins = $20$	- bin size :	= 0.0742)
0.00 0.57 6.4	427 0.8080			
2.30 2.84 7.0				
	0.3524 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3522 + 0.3			
3.45 8.52 10.	731 1.0306 ***	k		
5.75 14.20 12.7	731 1.1049 ***	***		
10.34 24.43 15.1		****		
3.45 27.84 17.9				
3.45 31.25 21.3				
5.75 36.93 25.2		· · * *		
3.45 40.34 29.9				
4.60 44.89 35.4				
9.20 53.98 42.1		· · · · · · · · · · · · · · · · · · ·		
6.90 60.80 49.9		****		
5.75 66.48 59.2				
5.75 72.16 70.3				
2.30 74.43 83.4				
5.75 80.11 98.9	970 1.9955 ***	e ste ste		
8.05 88.07 117.4	415 2.0697 ***	* * * * *		
4.60 92.61 139.2	297 2.0097 ***			
5.75 98.30 165.2	297 2.1439 *** 258 2.2182 ***			
1.15 99.43 196.0	2.56  2.2182  ***	5 ( <b>*</b> *		
1.10 00.40 190.0	JJI 4.4344 T			
	0	1	2 3	3 4

01/13/98

****

PARAMETER SUMMARY STATISTICS FOR PROBABILITY PLOT ANALYSIS

Data File Name = ANYCHEM.TXT

Variable = CrUnit =(ppm)N =87N CI =20Transform = LogarithmicNumber of Populations = 4

# of Missing Observations = 0.

Users Visual Parameter Estimates

Population	Mean		Std Dev	Percentage
		-		
1	10.661	_	8.569	17.00
		+	13.264	-
2	19.417	-	13.928	28.00
		+	27.070	
3	46.793	-	38.004	25.00
		+	57.614	
4	108.177	-	82.129	30.00
		+	142.486	

Default Thresholds.

Standard Deviation Multiplier = 2.0

Pop.	Thresholds					
1	6.888	16.502				
2	9.990	37.739				
3	30.865	70.939				
4	62.353	187.677				

01/13/98

**** SUMMARY STATISTICS and HISTOGRAM ARITHMETIC VALUES

Variable = V	7	Unit	=	(ppm)		Ν	=	87
	83.368	Min	=	8.000	1st	Quartile	=	57.250
	35.020			233.000		Median	=	79.500
CV % =	42.007	Skewness	=	1.100	3rd	Quartile	=	99.000
======================================		================	=====	=======	======	============	=====	========
% cum %	cls int		(# of	bins =	20 -	bin size	) =	11.842)
0.00 0.57		•						
	$\begin{array}{c} 2.079 \\ 13.921 \end{array}$		*					
	15.921 25.763		Ŧ					
4.60 6.25	37.605		* * * *					
	49.447		• • • • • * * * * * * *					
	61.289			*****				
	73.132		*****					
	84.974			*****				
19.54 72.16	96.816			*******	*****			
9.20 81.25	108.658		*****					
	120.500		****					
	132.342		*****	*				
	144.184		**					
	156.026							
	167.868	3	k					
	179.711	×	k					
0.00 98.30	191.553							
0.00 98.30	203.395							
	215.237							
	227.079							
1.15 99.43	238.921	k	k					
		0		1		2	3	4

****

***

01/13/98

Variable = Y	V	Unit	= (p	pm)		N =	87
Std. Dev. =	$1.8804 \\ 0.2029 \\ 10.7930$	Min Max Skewness	$\begin{array}{rcl} = & 0 \\ = & 2 \\ = & -1 \\ \end{array}$	3674	1st Quart Mec 3rd Quart	lian =	1.9004
Anti	-Log Mean	= 75.92	1 An	ti-Log	Std. Dev.	· : (-) (+)	
=======================================	=================	=======================================	========		=========		=========
% cum %	antilog	cls int	(# of bi	ns = 20	- bin	size =	0.0771)
0.00 0.57	7.321	0.8646					
1.15 1.70	8.742		*				
0.00 1.70	10.440	1.0187					
0.00 1.70	12.467	1.0958					
0.00 1.70	14.888	1.1728					
0.00 1.70	17.778	1.2499					
0.00 1.70	21.230	1.3270					
0.00 1.70	25.353	1.4040					
1.15  2.84	30.275	-	*				
3.45 6.25	36.154		***				
2.30 8.52	43.174		* *				
9.20 17.61	51.557	1.7123 *	******				
10.34 27.84	61.568		******	*			
11.49 39.20	73.523		******	* *			
20.69 59.66	87.799	1.9435 *	******	******	***		
20.69 80.11	104.847		******	******	* * *		
10.34 90.34	125.205	2.0976 *	******	*			
5.75 96.02	149.517		****				
2.30 98.30	178.548		* *				
0.00 98.30	213.217	2.3288					
1.15 99.43	254.618	2.4059 *	k				
		0		1	2	3	4

--

-

- - ----

01/13/98

****

PARAMETER SUMMARY STATISTICS FOR PROBABILITY PLOT ANALYSIS

Data File Name = ANYCHEM.TXT

Variable = VUnit =(ppm)N =87N CI =20Transform = LogarithmicNumber of Populations = 2

# of Missing Observations = 0.

Users Visual Parameter Estimates

Population	Mean		Std Dev	Percentage
		-		
1	19.522		9.014	3.00
		+	42.279	
2	78.814	-	53.395	97.00
		+	116.334	

Default Thresholds.

Standard Deviation Multiplier = 2.0

Pop.	Thresholds						
1	4.162	91.565					
2	36.174	171.716					

- -

-----

## ANYOX DATA

01/13/98

Variable =	Со	Unit	=	(ppm)		N	=	87
Std. Dev. =	23.316 39.587 169.783	Max	= = =	2.000 342.000 6.306	1st 3rd	Quartile Median Quartile	=	$7.000 \\ 12.500 \\ 26.750$
% cum %	cls int		(#	of bins =	20 -	bin size		======= 17.895)
36.7878.98 11.4990.34 4.6094.89 1.1596.02 1.1597.16 0.0097.16 1.1598.30 0.0098.30 0.0098.30 0.0098.30 0.0098.30 0.0098.30 0.0098.30 0.0098.30 0.0098.30 0.0098.30 0.0098.30 0.0098.30 0.0098.30 0.0098.30 0.0098.30 0.0098.30 0.0098.30 0.0098.30 0.0098.30 0.0098.30 0.0098.30 0.0098.30 0.0098.30	10.947 28.842 46.737 64.632 82.526 100.421 118.316 136.211 154.105 172.000 189.895 207.789 225.684 243.579 261.474 279.368 297.263 315.158	: : : :	* * *	******** ****** *				****
		0		1		2	3	4

• •

ANYOX DATA

01/13/98

Variable = (	Co	Unit =	(ppm)	N =	87
Mean = Std. Dev. = CV % =	$1.1575 \\ 0.3848 \\ 33.2403$	Min = Max = Skewness =	2.5340	t Quartile = Median = 1 Quartile =	$0.8451 \\ 1.0966 \\ 1.4273$
Anti	-Log Mean	= 14.371	Anti-Log Sto	d. Dev. : (-) (+)	$5.926 \\ 34.853$
	=======================================	=========================	=======================================	=======================================	================
% cum %	antilog	cls int (# of	bins = $20$ -	- bin size =	0.1175)
0.00 0.57	1.747	0.2423			
1.15 1.70	2.290	0.3598 *			
3.45 5.11	3.001	0.4773 ***			
0.00 5.11	3.934	0.5948			
3.45 8.52	5.157	0.7124 ***			
6.90 15.34	6.759	0.8299 *****	*		
14.94 30.11	8.860	0.9474 *****	*****		
17.24 47.16	11.613	1.0649 *****	*****		
9.20 56.25	15.222	1.1825 *****	* * *		
9.20 65.34	19.953	1.3000 *****	* * *		
9.20 74.43	26.153	1.4175 *****	* * *		
10.34 84.66	34.281	1.5351 *****	* * * *		
5.75 90.34	44.935	1.6526 *****			
3.45 93.75	58.899	1.7701 ***			
2.30 96.02	77.203	1.8876 **			
1.15 97.16	101.195	2.0052 *			
1.15 98.30	132.643	2.1227 *			
0.00 98.30	173.864	2.2402			
0.00 98.30	227.896	2.3577			
0.00 98.30	298.719	2.4753			
1.15 99.43	391.552	2.5928 *			
		0	1	2 3	4

01/13/98

****

PARAMETER SUMMARY STATISTICS FOR PROBABILITY PLOT ANALYSIS

Data File Name = ANYCHEM.TXT

Variable = Co	Unit =	(ppm)	N = 87	
			N CI = 20	
Transform = Logari	thmic	Number of P	opulations = 5	
<pre># of Missing Observat</pre>	ions = 0.			

Users Visual Parameter Estimates

Population	Mean	-	Std Dev	Percentage
1	3.306	-	2.460	8.00
		+	4.444	
2	8.304	-	6.498	42.00
		+	10.612	
3	17.650	-	14.407	22.00
		+	21.622	
4	30.530	-	24.787	20.00
		+	37.602	
5	82.739	-	43.231	8.00
		+	158.355	

Default Thresholds.

Standard Deviation Multiplier = 2.0

Pop.	Thresholds						
	<b></b>						
1	1.830	5.973					
2	5.084	13.563					
3	11.760	26.489					
4	20.125	46.313					
5	22.588	303.075					

. ....

. ....

## ANYOX DATA

01/13/98

	<b>a</b> 1							
Variable =	Cđ	Unit	=	(ppm)		Ν	=	87
Mean =	9 0.01					_		
	2.061	Min		0.100		Quartile		0.500
Std. Dev. = $CV \%$ =		Max	=	45.600		Median		0.900
CV % =	248.794	Skewness	=	7.239	3rd	Quartile	=	1.600
2222222222222	==========			=======				
	cls int					======================================		
			( # 01	DIHS =		bin size		2.395)
0.00 0.57	-1.097							
58.62 58.52	1.297	:	* * * * * *	******	******	*******	***	> 51
32.18 90.34	3.692					******		> 51
3.45 93.75	6.087	3	* * *					
	8.482	:	* *					
2.30 98.30	10.876	3	* *					
	13.271							
0.00 98.30	15.666							
0.00 98.30	18.061							
0.00 98.30	20.455							
0.00 98.30	22.850							
0.00 98.30	25.245							
	27.639							
	30.034							
0.00 98.30	32.429							
0.00 98.30	34.824							
0.00 98.30	37.218							
0.00 98.30	39.613							
	42.008							
	44.403							
1.15 99.43	46.797	A	F					
		0		1		2	3	4

----

ANYOX DATA

01/13/98

Variable =	Cd	Uni	t =	(ppm)		N =	87
Std. Dev. =	-0.0317 0.5006 1578.5918	Max	K =	$     \begin{array}{r}       -1.0000 \\       1.6590 \\       0.2587     \end{array}   $	lst Quart Med 3rd Quart	lian =	$-0.3010 \\ -0.0458 \\ 0.2041$
		= 0.93		Anti-Log	Std. Dev.		$\begin{array}{c} 0.294 \\ 2.944 \end{array}$
=======================================				==========	===========	=======	=========
% cum %	antilog	cls int	(# of	bins = 20	) - bin	size =	0.1399)
0.00 0.57	0.085	-1.0700					
9.20 9.66	0.117	-0.9300	* * * * *	* * *			
0.00 9.66	0.162	-0.7901					
1.15 10.80	0.224	-0.6501	*				
3.45 14.20	0.309	-0.5102	* * *				
4.60 18.75	0.426	-0.3702	* * * *				
10.34 28.98	0.588	-0.2303	****	* * * *			
18.39 47.16	0.812	-0.0904	****	*******	* *		
11.49 58.52	1.121	0.0496	****	* * * * *			
13.79 72.16	1.547	0.1895	****	* * * * * * *			
10.34 82.39	2.135	0.3295	****	* * * *			
4.60 86.93	2.947	0.4694	* * * *				
3.45 90.34	4.068	0.6094	* * *				
2.30 92.61	5.615	0.7493	* *				
1.15 93.75	7.749	0.8893	*				
4.60 98.30	10.696	1.0292	****				
0.00 98.30	14.762	1.1692					
0.00 98.30	20.375	1.3091					
0.00 98.30	$28.122 \\ 38.814$	$1.4490 \\ 1.5890$					
$0.00 \ 98.30 \\ 1.15 \ 99.43$	30.814						
1.10 99.43	53.572	1.7289	*				
		0		1	2	3	4

01/13/98

PARAMETER SUMMARY STATISTICS FOR PROBABILITY PLOT ANALYSIS

Data File Name = ANYCHEM.TXT

Variable = CdUnit =(ppm)N =87N CI =20Transform = LogarithmicNumber of Populations = 5

# of Missing Observations = 0.

Users Visual Parameter Estimates

Population	Mean	-	Std Dev	Percentage
1	0.100	-	0.099	6.00
		+	0.101	
2	0.150	-	0.087	9.00
		+	0.258	
3	0.754	-	0.507	55.00
		+	1.123	
4	1.943	-	1.507	18.00
		+	2.505	
5	6.974	-	3.325	12.00
		+	14.628	

Default Thresholds.

•

Standard Deviation Multiplier = 2.0

Pop.	Thresholds					
1	0.098	0.102				
2	0.050	0.445				
3	0.341	1.671				
4	1.169	3.230				
5	1.585	30.681				

****

.

01/13/98

Variable = [	J	Unit	z	(ppm)		N =	87
				(FF)		IN —	07
	12.448	Min	=	4.000	1st	Quartile =	4 000
Std. Dev. =	20.408	Max	=	175.000	*0.	Median =	4.000
CV % =	163.945	Skewness	=	6.115	3rd	Quartile =	4.000
	=======================================	=======================================	====	=======:	======:	=======================================	=========
% CUM %	cis int	(	# of	bins =	20 -	bin size =	9.000)
		-					
	-0.500						
-	8.500					* * * * * * * * * * * *	**> 47
_	17.500			******	*****	* * * *	· • •
	26.500			* * * * * *			
	35.500	*	* *				
	44.500	*	* *				
	53.500						
0.00 97.16	62.500						
1.15 98.30	71.500	*	j.				
0.00 98.30	80.500						
0.00 98.30	89.500						
0.00 98.30	98.500						
0.00 98.30	107.500						
0.00 98.30	116.500						
0.00 98.30	125.500						
0.00 98.30	134.500						
0.00 98.30	143.500						
0.00 98.30	152.500						
0.00 98.30	161.500						
	170.500						
1.15 99.43	179.500	*					
		0		1		2 3	4
							-

N

01/13/98

Variable = U	Unit =	(ppm)	N =	87
Mean = 0.8945	Min =	0.6021 1st	Quartile =	0 0001
Std. Dev. = 0.3630	Max =	2.2430	Median =	0.6021
CV % = 40.5780	Skewness =		Quartile =	0.6021
Anti-Log Mean	= 7.844	Anti-Log Std.	Dev. : (-)	3 401
		0	(+)	18.094
				10,004
		=======================================		========================
% cum % antilog	cls int (# of	' bins = 20 -	bin size =	0.0864)
0.00 0.57 3.621	0 5500			
52.87 $52.84$ $4.418$		* * * * * * * * * * * * * * *	و و و و و و و و و	
0.0052.84 $5.390$	0.7316	• • • • • • • • • • • • • • • • • • •	* * * * * * * * * * * * *	> 46
0.00 52.84 6.576				
1.15 53.98 8.023				
8.05 61.93 9.788		* *		
6.90 68.75 11.942				
8.05 76.70 14.570				
2.30 78.98 17.775				
5.75 84.66 21.686				
6.90 91.48 26.458		*		
3.45 94.89 32.279				
2.30 97.16 39.381	1.5953 **			
0.00 97.16 48.045	1.6817			
0.00 97.16 58.616				
1.15 98.30 71.513				
0.00 98.30 87.247				
$0.00 \ 98.30 \ 106.444$				
0.00 98.30 129.864				
0.00 98.30 158.436				
1.15 99.43 193.295	2.2862 *			
	0	1	2 3	4

01/13/98

****

PARAMETER SUMMARY STATISTICS FOR PROBABILITY PLOT ANALYSIS

Data File Name = ANYCHEM.TXT

Variable = UUnit = (ppm)N = 87N CI = 20

Transform = Logarithmic Number of Populations = 4

# of Missing Observations = 0.

Users Visual Parameter Estimates

Population	Mean	_	Std Dev	Percentage
1	4.122	_	3.562	55.00
2	10 015	+	4.772	
4	12.215	- +	$\begin{array}{r} 9.137 \\ 16.330 \end{array}$	30.00
3	26.017	-	22.006	11.00
		+	30.757	
4	63.239	-	30.581	4.00
		+	130.771	

Default Thresholds.

Standard Deviation Multiplier = 2.0

Pop.	Thresholds						
1	3.077	5.523					
$\frac{1}{2}$	6.835	21.831					
3	18.614						
3		36.362					
4	14.789	270.419					

								= • • • • • • • • • • • • • • • • • • •
Variable =	La	Unit	=	(ppm)		Ν	=	87
Std. Dev. =		Min Max Skewness	z	$2.000 \\ 27.000 \\ 0.487$		Quartile Median Quartile	=	11.000
============	===============	===========	=====:	=======	======	=======================================	====	
% cum %	cls int		(# of	bins =	20 -	bin size	) =	1.316)
0.00 0.57	1.342	-						
1.15 1.70	2.658		ŧ					
2.30 3.98	3.974	×	* *					
11.49 15.34	5.289	*	*****	****				
4.60 19.89	6.605	4	* * * *					
8.05 27.84	7.921	3	* * * * * *	**				
14.94 42.61	9.237	4	*****	*******	*			
	10.553	*	* * *					
	11.868	*	*****	*				
14.94 67.61	13.184	1	*****	******	¢			
	14.500	-	ŧ					
	15.816		* * *					
	17.132		*****					
8.05 89.20	18.447		*****	*				
1.15 90.34	19.763		¢ 					
	21.079		****					
1.15 96.02	22.395	*						
$1.15 \ 97.16 \\ 1.15 \ 98.30$	23.711	*						
	25.026	*	¢.					
$0.00 \ 98.30 \\ 1.15 \ 99.43$	27.658	*						
	47.030	<b>.</b>	•					
		0		1		2	3	4

****

. ier tier

01/13/98

Variable =	La	Unit	=	(ppm)		N =	87
	1.0077	Min	=	0.3010	1st Quart	ilo -	0.0454
Std. Dev. =	0.2339	Max	=	1.4314		ian =	
CV % =				-0.5587	3rd Quart	ilo =	1.0414
					-		
Anti	-Log Mean	= 10.17	9	Anti-Log	Std. Dev.	: (-) (+)	$5.940 \\ 17.441$
	===========	================	=====				
% cum %	antilog	cls int	(# of	bins = 20	) - bin	=======================================	
						SIZe =	0.0595)
0.00 0.57	1.868	0.2713					
1.15 1.70	2.142		*				
0.00 1.70	2.456	0.3903					
0.00 1.70	2.817	0.4498					
2.30 3.98	3.230	0.5092	* *				
0.00 3.98	3.705	0.5687					
3.45 7.39	4.248	0.6282	* * *				
1.15 8.52	4.872	0.6877	*				
6.90 15.34	5.587	0.7472	* * * * * *	k			
4.60 19.89	6.408	0.8067	* * * *				
8.05 27.84	7.348	0.8662	* * * * * *	* *			
6.90 34.66	8.427	0.9257	*****	k			
8.05 42.61	9.664	0.9852	* * * * * *	* *			
10.34 52.84	11.083	1.0447	* * * * * *	* * * *			
9.20 61.93	12.710	1.1042	* * * * * *	* * *			
6.90 68.75	14.576	212007	* * * * * *				
11.49 80.11	16.716		* * * * * *	* * * * *			
10.34 90.34	19.171		* * * * * *	* * * *			
4.60 94.89	21.985		****				
3.45 98.30	25.213	1.4016 *	* * *				
1.15 99.43	28.914	1.4611	*				
*		0		1	2	3	4
							-

-

01/13/98

****

PARAMETER SUMMARY STATISTICS FOR PROBABILITY PLOT ANALYSIS

Data File Name = ANYCHEM.TXT

Variable = LaUnit =(ppm)N =87N CI =20Transform = LogarithmicNumber of Populations = 3

# of Missing Observations = 0.

Users Visual Parameter Estimates

Population	Mean	_	Std Dev	Percentage
1	3.394	_	2.565	0.00
-	0.004	+	4.491	8.00
2	8.561	- +	$\begin{array}{c} 6.237 \\ 11.752 \end{array}$	59.00
3	17.176	-	14.206	33.00
		+	20.767	

Default Thresholds.

Standard Deviation Multiplier = 2.0

Pop.	Thresholds					
1	1.938	5.942				
2	4.544	16.132				
3	11.750	25.108				

01/13/98

SUMMARY STATISTICS and HISTOGRAM ARITHMETIC VALUES

Variable = 7	Γh	Unit	=	(ppm)		Ν	=	87
Mean = Std. Dev. =	$6.098 \\ 7.145$	Min Max	=	$1.000 \\ 35.000$		Quartile Median		
		Skewness				Quartile		$3.000 \\ 7.000$
=======================================	==============	=======================================	=====		=======			
% cum %	cls int		(# of			bin size		1.789)
0.00 0.57	0.105							
20.69 21.02	1.895	3	*****	******	*****			
31.03 51.70	3.684	z	*****	******	*****	*****		
14.94 66.48	5.474	×	*****	******	k			
12.64 78.98	7.263	4	*****	*****				
3.45 82.39	9.053	2	* * *					
0.00 82.39	10.842							
1.15 83.52	12.632	×	k					
3.45 86.93	14.421	*	***					
2.30 89.20	16.211	4	* *					
1.15 90.34	18.000	×	k					
3.45 93.75	19.789	4	* * *					
0.00 93.75	21.579							
1.15 94.89	23.368	ł	k					
$1.15 \ 96.02$	25.158	ł	¢					
0.00 96.02	26.947							
1.15 97.16	28.737	*	ŧ					
0.00 97.16	30.526							
1.15 98.30	32.316	*	c .					
0.00 98.30	34.105							
1.15 99.43	35.895	*	:					
		0		1		2	3	4

01/13/98

Variable = 7	Γh	Unit =	(ppm)	N =	87
Mean =	0.5627	Min =	0.0000 1s	t Quartile =	0.0010
Std. Dev. =			1.5441		
CV % =	76.3952	Skewness =	0.4063 3r	d Quartile =	0.4771
			0.1000 010	a quarerre -	0.8451
Anti-	-Log Mean	= 3.653	Anti-Log Ste	d. Dev. : (-)	1 358
			0	(+)	9.829
					01020
		=======================================	=======================================	=======================================	========================
% cum %	antilog	cls int (# or	f bins = 20	- bin size =	0.0813)
					·
$\begin{array}{ccc} 0.00 & 0.57 \\ 20.69 & 21.02 \end{array}$	0.911	-0.0406			
$0.00\ 21.02$	1.098	010100	***********	k	
$0.00\ 21.02$ $0.00\ 21.02$	1.324	0.1219			
$0.00\ 21.02$ $0.00\ 21.02$	$1.596 \\ 1.925$	0.2032 0.2844			
$19.54 \ 40.34$	1.323 2.321		*****		
0.00 40.34	2.321 2.799	0.3857 ++++	* * * * * * * * * * * * * * *		
	3.375	0.5282 ****	* * * *		
10.34 60.80	4.069	0.6095 ****			
	4.906	0.6908			
5.75 66.48	5.916	0.7720 *****	:		
12.64 78.98	7.133		* * * * * *		
2.30 81.25	8.601	0.9346 **			
1.15 82.39	10.371	1.0158 *			
1.15 83.52	12.505	1.0971 *			
4.60 88.07	15.079				
3.45 91.48	18.182	1.2596 ***			
2.30 93.75	21.923	1.3409 **			
2.30 96.02	26.434	1.4222 **			
2.30 98.30	31.874	1.5034 **			
1.15 99.43	38.433	1.5847 *			
		0			
		U	1	2 3	4

01/13/98

****

PARAMETER SUMMARY STATISTICS FOR PROBABILITY PLOT ANALYSIS

Data File Name = ANYCHEM.TXT

Variable = Th	Unit =	(ppm)		87 20
Transform = Logarit	hmic	Number of P	opulations = 5	
	-			

# of Missing Observations = 0.

Users Visual Parameter Estimates

Population	Mean	-	Std Dev	Percentage
1	1.900	-	1.128	60.00
		+	3.201	
2	5.211	-	4.178	15.00
		+	6.499	
3	7.272	-	6.813	5.00
		+	7.762	
4	11.434	-	8.797	10.00
		+	14.862	
5	22.235	-	16.968	10.00
		+	29.136	

Default Thresholds.

Standard Deviation Multiplier = 2.0

Pop.	Thresholds				
1	0.669	5.392			
2	3.350	8.106			
3	6.384	8.284			
4	6.768	19.317			
5	12.949	38.180			

01/13/98

Variable =	As	Unit	=	(ppm)		N =	87
Mean =	11.897	Min	=	1.000	lst	Quartile =	2 000
Std. Dev. =		Max	=	112.000	100	Median =	2.000
	161.067	Skewness	-	2 970	2 m d	Preutan =	5.500
- · · ·		One wite 55	-	J.410	JIU	Quartile =	11.750
=======================================	=======================================	===========	=====	========	======:		
% cum %	cls int	1	(# of	bins =	20 -	bin size =	5.842)
0.00 0.57	-1.921	-					
35.63 35.80	3.921	;	* * * * *	******	*****	* * * * * * * * * * * * *	
35.63 71.02	9.763					* * * * * * * * * * * * * * * * * * * *	-
10.34 81.25	15.605		* * * * *		• • • • • • •	• • • • • • • • • • • • • • • • • • • •	*
4.60 85.80	21.447		****	****			
1.15 86.93	27.289		*				
3.45 90.34	33.132		***				
3.45 93.75	38.974		***				
0.00 93.75	44.816	-					
0.00 93.75	50.658						
1.15 94.89	56.500	*	k				
1.15 96.02	62.342	*					
1.15 97.16	68.184	*	¥				
0.00 97.16	74.026						
0.00 97.16	79.868						
0.00 97.16	85.711						
0.00 97.16	91.553						
0.00 97.16	97.395						
1.15 98.30	103.237	*	ic .				
0.00 98.30							
1.15 99.43	114.921	*	:				
		0		1		2 3	4

¥2

01/13/98

Variable = As	Unit =	(ppm)	N =	87
Mean = 0.7285 Std. Dev. = 0.5428 CV % = 74.4978	Max =	2.0492	Quartile = Median = Quartile =	0.7386
Anti-Log Mean	= 5.352	Anti-Log Std.	Dev. : (-) (+)	$\begin{array}{c}1.534\\18.677\end{array}$
=======================================	=======================================	=======================================		
% cum % antilog	cls int (# of	bins = 20 -	bin size =	0.1079)
0.00 0.57 0.883	-0.0539			
21.84 22.16 1.132		* * * * * * * * * * * * * *		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		····		
1.15 23.30 1.861				
6.90 30.11 2.385		<u>ب</u>		
4.60 34.66 3.057		<b>T</b>		
$1.15 \ 35.80 \ 3.919$	0.4853 **** 0.5932 *			
13.79 49.43 5.024		* * * * * *		
3.45 52.84 6.440	0.8089 ***	* * * * * * * *		
11.49 64.20 8.256		****		
9.20 73.30 10.583	1.0246 *****			
6.90 80.11 13.566	-			
2.30 82.39 17.391	1.1325 *****	Ŧ		
3.45 85.80 22.293	1.3482 ***			
1.15 86.93 28.577				
5.75 92.61 36.633	1.5639 *****			
1.15 93.75 46.960	1.6717 *			
1.15 94.89 60.198	1.7796 *			
2.30 97.16 77.168	1.8874 **			
1.15 98.30 98.922	1.9953 *			
1.15 99.43 126.807	2.1031 *			
	0	1 2	3	A
	U U	± 2	· 3	4

.

01/13/98

# 

PARAMETER SUMMARY STATISTICS FOR PROBABILITY PLOT ANALYSIS

Data File Name = ANYCHEM.TXT

Variable = As	Unit =	(ppm) N N CI	= 87 = 20
Transform = Logari	thmic	Number of Populations	= 5
	_		

# of Missing Observations = 0.

Users Visual Parameter Estimates

Population	Mean		Std Dev	Percentage
		-		
1	1.348	-	0.883	33.00
		+	2.059	
2	5.582	-	3.892	37.00
		+	8.007	
3	10.330	-	8.961	10.00
		+	11.908	
4	22.559	-	15.869	13.00
		+	32.070	
5	60.532	-	39.127	7.00
		+	93.646	

Default Thresholds.

Standard Deviation Multiplier = 2.0

Pop.	Thresholds				
1	0.578	3.144			
2	2.714	11.484			
3	7.774	13.727			
4	11.163	45.590			
5	25.291	144.876			

01/13/98

#### 

Variable =	Sb	Unit :	=	(ppm)		Ν	=	87
Std. Dev. =	$2.989 \\ 1.972 \\ 65.979$	Min Max Skewness	=	$\begin{array}{c}10.000\\1.372\end{array}$	3rd	Quartile Median Quartile	=	$\begin{array}{c}1.500\\4.000\end{array}$
% cum %		()						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$1.276 \\ 1.724 \\ 2.171 \\ 2.618$	*	****	*******		*******	· <b></b>	> 45
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.066 3.513 3.961	*:	****	******	* *			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4.408 \\ 4.855$	* :	****	*****				
4.60 85.80 0.00 85.80	5.303 5.750	*:	* * *					
$8.05 \ 93.75 \\ 0.00 \ 93.75$	$6.197 \\ 6.645$	*:	* * * * *	* *				
$\begin{array}{c} 2.30 & 96.02 \\ 0.00 & 96.02 \\ 0.00 & 96.02 \end{array}$	7.092 7.539 7.987	*:	*					
$1.15 97.16 \\ 0.00 97.16$	8.434 8.882	*						
$1.15 \ 98.30 \\ 0.00 \ 98.30$	9.329 9.776	*						
1.15 99.43	10.224	*						
		0		1		2	3	4

01/13/98

Variable = Sb	Unit =	(ppm)	N =	87
Mean = 0.3971 Std. Dev. = 0.2528 CV % = 63.6618	Max =	1.0000	Quartile = Median = Quartile =	$0.1761 \\ 0.1761 \\ 0.6021$
Anti-Log Mean	= 2.495	Anti-Log Std		$\begin{array}{c}1.394\\4.465\end{array}$
=======================================		=======================================	=======================================	==========
% cum % antilog	cls int (# of	bins = 20 -	bin size =	0.0434)
0.00 0.57 1.427	0.1544			
51.72 51.70 1.577		* * * * * * * * * * * * * *	*****	> 45
0.00 51.70 1.742	0.2411			> 45
0.00 51.70 1.925	0.2845			
0.00 51.70 2.127	0.3279			
0.00 51.70 2.351	0.3712			
0.00 51.70 2.598	0.4146			
2.30 53.98 2.870	0.4580 **			
13.79 67.61 3.172	0.5013 *****	* * * * * * *		
0.00 67.61 3.505	0.5447			
0.00 67.61 3.873	0.5880			
13.79 81.25 4.280		* * * * * * *		
0.00 81.25 4.729	0.6748			
4.60 85.80 5.226	0.7181 ****			
0.00 85.80 5.774	0.7615			
8.05 93.75 6.381	0.8049 *****	* *		
2.30 96.02 7.051	0.8482 **			
0.00 96.02 7.791	0.8916			
1.1597.168.6091.1598.309.513	0.9350 *			
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.9783 *			
1.13 33.43 10.512	1.0217 *			
	0	1	2 3	4
	•	-	- 0	4

- 1

17:42:37

ANYOX DATA

01/13/98

****

PARAMETER SUMMARY STATISTICS FOR PROBABILITY PLOT ANALYSIS

Data File Name = ANYCHEM.TXT

Variable = Sb	Unit =	(ppm)	$\begin{array}{rrr} N &=& 87\\ N & CI &=& 20 \end{array}$	
Transform = Logarit	hmic	Number of F	Populations = 5	

# of Missing Observations = 0.

Users Visual Parameter Estimates

Population	Mean	Mean Std D		ev Percentage			
		~					
1	2.025	-	1.346	75.00			
		+	3.045				
2	4.229	-	3.828	10.00			
		+	4.673				
3	5.809		5.163	10.00			
		+	6.536				
4	7.319	-	6.776	3.00			
		+	7.905				
5	8.963	-	8.016	2.00			
		+	10.021				

Default Thresholds.

Standard Deviation Multiplier = 2.0

Pop.	Thresholds				
	*********				
1	0.895	4.579			
2	3.464	5.164			
3	4.588	7.354			
4	6.273	8.539			
5	7.169	11.205			

01/13/98

								10000
Variable =	Sr	Unit	=	(ppm)		Ν	=	87
Mean =	32.040	Min	=	3.000	1et	Quartile	_	10 000
		May	_	89.000	151			19.000
		Skewness	_	0.825	2	Median		32.000
	10.700	DREWIICSS	-	0.625	310	Quartile	=	40.750
=================	=======================================	=======================================	=====	========	======	===========		
% cum %	cls int	1	(# of	bins =	20 -	bin size	) =	4.526)
		-						
0.00  0.57	0.737							
1.15 1.70	5.263	3	*					
2.30 3.98	9.789	3	* *					
10.34 14.20	14.316	3	* * * * * *	* * * *				
9.20 23.30	18.842	;	*****	* * *				
11.49 34.66	23.368	د	* * * * * *	* * * * *				
6.90 41.48	27.895	د	*****	k				
$10.34 \ 51.70$	32.421	د	*****	* * * *				
16.09 67.61	36.947	3	*****	******	*			
8.05 75.57	41.474	2	*****	* *				
4.60 80.11	46.000	a	* * * *					
8.05 88.07	50.526	*	*****	* *				
3.45 91.48	55.053	3	* * *					
2.30 93.75	59.579	3	* *					
3.45 97.16	64.105	3	* * *					
0.00 97.16	68.632							
0.00 97.16	73.158							
1.15 98.30	77.684	4	k i					
0.00 98.30	82.211							
0.00 98.30	86.737							
1.15 99.43	91.263	ł	e e					
		0		1		2	3	4
								-

01/13/98

Variable = S	r	Unit	; =	(ppm)		N =	87
Std. Dev. = CV % =	$1.4463 \\ 0.2446 \\ 16.9103$	Max Skewness	<		3rd Quart	lian = ile =	$1.2788 \\ 1.5051 \\ 1.6101$
Anti-	Log Mean	= 27.94	16	Anti-Log	Std. Dev.		$15.912 \\ 49.078$
=============	==========	=============	=====	==========		=======	
% cum %	antilog	cls int		bins = 20			0.0775)
0.00 0.57	2.744	0.4384					
1.15 1.70	3.280	0.5159	*				
0.00 1.70	3.921	0.5934					
0.00 1.70	4.686	0.6708					
	5.602	0.7483					
	6.696	0.8258					
	8.004	0.9033					
2.30 3.98	9.567	0.9808	**				
2.30 6.25	11.436	1.0583	* *				
5.75 11.93	13.670	1.1358	* * * * *				
5.75 17.61	16.340		* * * * *				
9.20 26.70	19.532	1.2907	* * * * *	* * *			
8.05 34.66	23.347	1.3682	* * * * * *	* *			
6.90 41.48	27.907	1.4457	*****	*			
16.09 57.39	33.359	1.5232	* * * * * *	******			
16.09 73.30	39.874	1.6007	* * * * * *	******			
11.49 84.66	47.663	1.6782	* * * * * *	* * * * *			
8.05 92.61	56.973	1.7557	* * * * * *	* *			
4.60 97.16	68.102	1.8332	* * * *				
1.15 98.30	81.404	1.9106	*				
1.15 99.43	97.305	1.9881	*				
		0			2	3	4

01/13/98

****

PARAMETER SUMMARY STATISTICS FOR PROBABILITY PLOT ANALYSIS

Data File Name = ANYCHEM.TXT

Variable = Sr	Unit =	(ppm)	$\begin{array}{rrr} N &=& 87\\ N & CI &=& 20 \end{array}$	
Transform = Logarithmic		Number of F	Populations = 5	

# of Missing Observations = 0.

Users Visual Parameter Estimates

Population	Mean		Std Dev	Percentage
1	6.240	_	3.309	4.00
		+	11.767	
2	14.300	-	11.244	21.00
_		+	18.187	
3	23.445	-	20.248	20.00
		+	27.148	
4	39.226	-	31.697	50.00
		+	48.543	
5	69.371	-	58.538	5.00
		+	82.209	

Default Thresholds.

Standard Deviation Multiplier = 2.0

Pop.	Thresholds			
1	1.755	22.189		
2	8.841	23.131		
3	17.486	31.436		
4	25.614	60.073		
5	49.396	97.423		

****

•

01/13/98

SUMMARY STATISTICS and HISTOGRAM ARITHMETIC VALUES

Variable =	Bi	Unit	=	(ppm)		N	=	87
Std. Dev. = CV % =	$\begin{array}{c} 0.750 \\ 41.054 \end{array}$		=	$4.000 \\ 2.023$	1st 3rd	Quartile Median Quartile	= = =	$1.500 \\ 1.500 \\ 1.500 \\ 1.500$
======================================	cls int		===== # of	======================================	====== 20 -	bin size	====: =	=======================================
$\begin{array}{c} 0.00 & 82.39 \\ 0.00 & 82.39 \\ 0.00 & 82.39 \\ 0.00 & 82.39 \\ 0.00 & 82.39 \\ 0.00 & 82.39 \\ 0.00 & 82.39 \\ 0.00 & 82.39 \\ 0.00 & 82.39 \\ 0.00 & 82.39 \\ 0.00 & 82.39 \\ 0.00 & 82.39 \\ 10.34 & 92.61 \end{array}$	$1.434 \\ 1.566 \\ 1.697 \\ 1.829 \\ 1.961 \\ 2.092 \\ 2.224 \\ 2.355 \\ 2.487 \\ 2.618 \\ 2.750 \\ 2.882 \\ 3.013 \\ 3.145 \\ 3.276 \\ 3.408 \\ 3.539 \\ $	*	****		*****	*****	***	> 72
$\begin{array}{c} 0.00 & 92.61 \\ 0.00 & 92.61 \end{array}$	3.671 3.803 3.934 4.066	*	* * * * *	1		2		4

****

•

ANYOX DATA

01/13/98

Variable = Bi	Unit =	(ppm)	N =	87
Mean = $0.2366$	6 Min =	0.1761 1st	Quartile =	0 1 7 0 1
Std. Dev. = $0.1358$		0.6021	Median =	0.1761
CV % = 57.3879	) Skewness =		Quartile =	0.1761
		1.0010 014	Quartite ~	0.1761
Anti-Log Mean	n = 1.724	Anti-Log Std.	Dev. : (-)	1 261
				2.357
				=:::::
=======================================			=======================================	
	; cls int (# of	bins = 20 -	bin size =	0.0224)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
		* * * * * * * * * * * * * * * * *	*******	> 72
-				
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$				
0.00 82.39 1.992				
0.00 82.39 2.098				
0.00 82.39 2.209	-			
0.00 82.39 2.326				
0.00 82.39 2.449	-			
0.00 82.39 2.579				
0.00 82.39 2.716	-			
0.00 82.39 2.860				
10.34 92.61 3.011		* * * *		
0.00 92.61 3.171				
0.00 92.61 3.339				
0.00 92.61 3.516	0.5460			
0.00 92.61 3.702	0.5684			
0.00 92.61 3.898	0.5909			
6.90 99.43 4.105		*		
	0	1	2 3	4

01/13/98

PARAMETER SUMMARY STATISTICS FOR PROBABILITY PLOT ANALYSIS

Data File Name = ANYCHEM.TXT

Variable = Bi	Unit =	(ppm)	N = N CI =	87 20
Transform = Logarit	thmic	Number of F	Populations = 3	\$

# of Missing Observations = 0.

Users Visual Parameter Estimates

Population	Mean		Std Dev	Percentage
		-		
1	1.500	-	1.483	80.00
		+	1.517	
2	1.620	-	1.301	10.00
_		+	2.017	
3	3.366		2.909	10.00
		+	3.895	

Default Thresholds.

Standard Deviation Multiplier = 2.0

Pop.	Thresholds			
1	1.466	1.535		
2	1.045	2.511		
3	2.514	4.506		

****

01/13/98

Variable = W	V	Unit =	(ppm)		N =	87
Mean =	1.612	Min =	1.000	1st Quarti	le -	1 000
Std. Dev. =		Max =	13 000	Medi	an =	1.000
CV % =	100.218	Skewness =	4 812	3rd Quarti		1.000
		oneuncoo	1.012	JIG QUGILI	16 -	2.000
	=======================================	=======================================	=======================================	==================	======	=========
% cum %	cls int			20 – bin s		
	0.684					
	1.316		*******	* * * * * * * * * * * *	* * * * * *	> 62
	1.947	* *				
	2.579		* * * * * * * * *			
5.75 93.75	3.211	* * * * *	*			
	3.842					
	4.474	* *				
	5.105					
	5.737					
1.15 97.16	6.368	*				
0.00 97.16	7.000					
1.15 98.30	7.632	*				
0.00 98.30	8.263					
0.00 98.30	8.895					
0.00 98.30	9.526					
0.00 98.30	10.158					
0.00 98.30	10.789					
0.00 98.30	11.421					
0.00 98.30	12.053					
0.00 98.30	12.684					
1.15 99.43	13.316	*				
		0	1	2	3	• 4

مربغ. ا

01/13/98

Variable = W	Unit =	(ppm)	N =	87
Mean = 0.122 Std. Dev. = 0.226 CV % = 184.783	$1 \qquad Max =$	1.1139	Median = (	0.0000 0.0000 0.3010
Anti-Log Mea	n = 1.325	Anti-Log Std. De	- · ·	$\begin{array}{c} 0.788\\ 2.231 \end{array}$
<pre>====================================</pre>	g cls int (# of	bins = 20 - bi	======================================	====== D.0586)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0.0293 ***** 4 0.0879 1 0.1466 4 0.2052 ** 6 0.2638	******	*********************	-> 62
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 0.3811 * 2 0.4397 0 0.4983 *****	*****		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 0.6156 ** 3 0.6742			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 0.7915 * 1 0.8501 * 5 0.9087 6 0.9674 7 1.0260			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1 2	3	4

*****

17:52:02

ANYOX DATA

01/13/98

*****

PARAMETER SUMMARY STATISTICS FOR PROBABILITY PLOT ANALYSIS

Data File Name = ANYCHEM.TXT

Variable = W	Unit =	(pp <b>m</b> )	$\begin{array}{rrrr} N &= & 87 \\ N & CI &= & 20 \end{array}$
Transform = Logarit	thmic	Number of P	opulations = 4
<pre># of Missing Observati</pre>	ons = 0.		

Users Visual Parameter Estimates

Population	Mean		Std Dev	Percentage	
1	1.128	~	0.871	75.00	
		+	1.460		
2	2.000	-	1.977	10.00	
_		+	2.023		
3	2.386	~	1.861	10.00	
		+	3.059		
4	6.141	-	3.775	5.00	
		+	9.992		

Default Thresholds.

Standard Deviation Multiplier = 2.0

Pop.	Thresholds					
	~					
1	0.673	1.890				
2	1.954	2.047				
3	1.452	3.922				
4	2.320	16.257				

01/13/98

Variable = '	Ti	Unit	=	(%)		Ν	=	87
Mean =	0.127	Min	~	0.010	1 e t	Quartile	_	0 000
Std. Dev. =				0.380		Median		0.080
		Skewness				Quartile		0.120
		5110111000		0.000	010	Qualitie	-	0.170
==================	==============	===========	=====:	========	======		====	=======
% cum %	cls int		(# of	bins =	20 -	bin size	=	0.019)
$\begin{array}{rrrr} 0.00 & 0.57 \\ 1.15 & 1.70 \end{array}$	0.000		<b>.</b>					
2.30 $3.98$	$0.020 \\ 0.039$		* * *					
	0.039 0.059		* * * * *					
10.34 19.89	0.078		* * * * * * *	* * * *				
13.79 33.52	0.098			******				
12.64 46.02	0.117			*****				
11.49 57.39	0.137		* * * * * * *					
11.49 68.75	0.156	\$	* * * * * *	****				
11.49 80.11	0.176	;	* * * * * * *	* * * * *				
11.49 91.48	0.195	3	* * * * * *	****				
4.60 96.02	0.214	3	* * * *					
$0.00 \ 96.02$	0.234							
1.15 97.16	0.253	2	*					
1.15 98.30	0.273	*	*					
0.00 98.30	0.292							
0.00 98.30	0.312							
0.00 98.30	0.331							
0.00 98.30	0.351							
0.00 98.30	0.370							
1.15 99.43	0.390	×	ĸ					
		0		1		2	3	4

17:52:48 ANYOX DATA 01/13/98 **** SUMMARY STATISTICS and HISTOGRAM LOGARITHMIC VALUES Variable = Ti Unit = (%) N = 87 Mean =-0.9513Min =-2.00001st Quartile = -1.0969Std. Dev. = 0.2406 Max =-0.4202Median = -0.9208CV % = 25.2907 Skewness = -1.24103rd Quartile = -0.7696 Anti-Log Mean = 0.112 Anti-Log Std. Dev. : (-) 0.064 (+)0.195antilog cls int (# of bins = 20 - bin size = 0.0831) % cum % ---- -----_____ _ _ _ _ _ _ _ 0.00 0.57 0.009 -2.04161.15 1.70 0.011 -1.95840.00 1.70 0.013 -1.87530.00 1.70 0.016 -1.79210.00 1.70 0.020 -1.70900.00 1.70 0.024 -1.62581.70 0.00 0.029 -1.54272.30 3.98 0.035 -1.4595* * 2.30 6.25 0.042 -1.3764* * 3.45 9.66 0.051 -1.2933* * * 4.60 14.20 0.062 * * * * -1.21015.75 19.89 0.075 -1.1270**** 13.79 33.52 0.090 -1.0438***** 4.60 38.07 0.109 -0.9607* * * * 19.54 57.39 0.133 ***** -0.877513.79 71.02 0.161 -0.7944******** 20.69 91.48 0.194 -0.7112***** 4.60 96.02 0.235 -0.6281 **** 2.30 98.30 0.285 -0.5449 * * 0.00 98.30 0.345 -0.46181.15 99.43 0.418 -0.3786* 0 1 2 3

01/13/98

PARAMETER SUMMARY STATISTICS FOR PROBABILITY PLOT ANALYSIS

Data File Name = ANYCHEM.TXT

Variable = TiUnit =(%)N =87N CI =20Transform = LogarithmicNumber of Populations = 4

# of Missing Observations = 0.

Users Visual Parameter Estimates

Population	Mean		Std Dev	Percentage
		-		
1	0.027	-	0.015	6.00
		+	0.048	
2	0.064	-	0.051	17.00
		+	0.080	
3	0.088	-	0.081	11.00
		+	0.097	
4	0.152	-	0.116	66.00
		+	0.198	

Default Thresholds.

Standard Deviation Multiplier = 2.0

Pop.	Thresholds						
1	0 000	0.005					
1	0.009	0.085					
2	0.040	0.100					
3	0.074	0.106					
4	0.089	0.259					

****

01/13/98

Variable =	Ba	Unit	=	(ppm)		N	=	87
Mean = Std. Dev. = CV % =	56.444	Min Max Skewness	= 2	285.000		Median	=	67 500
======================================	cls int	=======================================	===== (# of	bins =	20 -	bin size	==== ) =	14.053)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10.974 25.026 39.079 53.132 67.184 81.237 95.289 109.342 123.395 137.447 151.500 165.553 179.605 193.658 207.711 221.763 235.816 249.868 263.921 277.974 292.026		* * * * *	* *				
		0		1		2	3	4

01/13/98

Variable = H	Ba	Uni	t =	(ppm)		N =	87
Std. Dev. =	0.2887	Ma	x =	2.4548	1st Quart Med 3rd Quart	ian =	1.8293
Anti	-Log Mean	= 72.0	81	Anti-Log	Std. Dev.	: (-) (+)	
======================================	antilog	cls int	====== (# of	bins = 2	0 - bin :	size =	======== 0.0631)
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	19.357 $22.386$ $25.889$ $29.940$ $34.624$ $40.042$ $46.308$ $53.554$ $61.933$ $71.624$ $82.831$ $95.792$ $110.781$ $128.115$ $148.162$ $171.345$ $198.156$ $229.162$	1.2237 $1.2868$ $1.3500$ $1.4131$ $1.4762$ $1.5394$ $1.6025$ $1.6657$ $1.7288$ $1.7919$ $1.8551$ $1.9182$ $1.9813$ $2.0445$ $2.1076$ $2.1707$ $2.2339$ $2.2970$ $2.3601$ $2.4233$ $2.4864$	* * * * * * * * * * * * * * *	* * ******			
			0	1	2	3	4

01/13/98

****

PARAMETER SUMMARY STATISTICS FOR PROBABILITY PLOT ANALYSIS

Data File Name = ANYCHEM.TXT

Variable = Ba	Unit =	(ppm)	N = 87 N CI = 20
Transform = Logari	thmic	Number of P	opulations = 5
<pre># of Missing Observat</pre>	ions = 0.		

Users Visual Parameter Estimates

Population	Mean		Std Dev	Percentage
		-		
1	22.031	_	18.301	8.00
		+	26.522	
2	37.474	-	32.067	22.00
		+	43.794	
3	58.084		50.609	20.00
		+	66.662	
4	88.821	-	70.993	20.00
		+	111.126	
5	158.953	-	132.820	30.00
		+	190.228	

Default Thresholds.

Standard Deviation Multiplier = 2.0

Pop.	Thresholds						
1	15.202	31.929					
2	27.439	51.179					
3	44.096	76.508					
4	56.743	139.032					
5	110.983	227.657					

***

01/13/98

Variable = B		Unit =	(ppm)		N =	87
Std Dev. =	1.948	Max =	18.000	lst Quarti Medi 3rd Quarti	an =	1.500
======================================	cls int	:=====================================	of bins =	20 - bin s	====== ize =	0.868)
$\begin{array}{c} 2.30 & 88.07 \\ 6.90 & 94.89 \\ 1.15 & 96.02 \\ 0.00 & 96.02 \\ 1.15 & 97.16 \\ 1.15 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\ 0.00 & 98.30 \\$	$\begin{array}{c} 1.066\\ 1.934\\ 2.803\\ 3.671\\ 4.539\\ 5.408\\ 6.276\\ 7.145\\ 8.013\\ 8.882\\ 9.750\\ 10.618\\ 11.487\\ 12.355\\ 13.224\\ 14.092\\ 14.961\\ 15.829\\ 16.697\\ 17.566\\ 18.434 \end{array}$	* *	****	****	****	> 75
		0	1	2	3	4

ж. .

01/13/98

Variable = E	3	Unit =	(ppm)	N =	87
Std. Dev. =			1.2553	st Quartile = Median = d Quartile =	$0.1761 \\ 0.1761 \\ 0.1761$
Anti-	Log Mean	= 1.713	Anti-Log St	zd. Dev. : (-) (+)	$\begin{array}{c}1.156\\2.539\end{array}$
=========================	===========	=======================================	=================		=========
% cum %	antilog	cls int (# o	f bins = 20	- bin size =	0.0568)
0.00 0.57	1.405	0.1477			
	1.601		* * * * * * * * * * * * *	*****	> 75
	1.825	0.2613			/ /3
	2.080	0.3181			
	2.371	0.3749 *			
	2.702	0.4317			
	3.080	0.4885 ****	* * *		
0.00 94.89	3.510	0.5453			
1.15 96.02	4.000	0.6021 *			
0.00 96.02	4.559	0.6589			
0.00 96.02	5.196	0.7157			
0.00 96.02	5.922	0.7725			
1.15 97.16	6.750	0.8293 *			
1.15 98.30	7.693	0.8861 *			
0.00 98.30	8.768	0.9429			
0.00 98.30	9.993	0.9997			
0.00 98.30	11.389	1.0565			
	12.980	1.1133			
0.00 98.30	14.794	1.1701			
	16.861	1.2269			
1.15 99.43	19.216	1.2837 *			
		0	1	2 3	4

*****

01/13/98

# ****

PARAMETER SUMMARY STATISTICS FOR PROBABILITY PLOT ANALYSIS

Data File Name = ANYCHEM.TXT

Variable = BUnit =(ppm)N =87N CI =20Transform = LogarithmicNumber of Populations = 4

# of Missing Observations = 0.

Users Visual Parameter Estimates

Population	Mean		Std Dev	Percentage
		-		
1	1.508		1.439	87.00
		+	1.580	
2	2.863	-	2.585	7.00
		+	3.170	
3	3.126	-	2.804	2.00
		+	3.485	
4	7.416	-	3.924	4.00
		+	14.015	

Default Thresholds.

Standard Deviation Multiplier = 2.0

Pop.	Thresholds				
1	1.374	1.655			
2	2.335	3.510			
3	2.515	3.885			
4	2.076	26.488			

****

01/13/98

Variable = 1		Unit	=	(%)		N	=	87
Std. Dev. =	$0.087 \\ 0.029 \\ 33.344$	Max	=	$\begin{array}{c} 0.020 \\ 0.160 \\ 0.448 \end{array}$		Quartile Median Quartile	=	0.060 0.080 0.110
						===========	=====	======
% cum %	cls int	ł	(# of	bins =	20 -	bin size	) =	0.007)
$\begin{array}{rrrr} 1.15 & 1.70 \\ 0.00 & 1.70 \\ 0.00 & 1.70 \end{array}$	$\begin{array}{c} 0.016 \\ 0.024 \\ 0.031 \\ 0.038 \end{array}$		*					
	0.046	:	*					
	0.053		* * * * * *					
	0.061	:	* * * * * *	*****				
0.00 25.57	0.068							
11.49 36.93	0.075		* * * * * *					
16.09 52.84	0.083	:	*****	*******	**			
0.00 52.84	0.090							
12.64 65.34	0.097			*****				
6.90 72.16	0.105		* * * * * *					
11.49 83.52	0.112	:	* * * * * *	****				
0.00 83.52	0.119							
4.60 88.07	0.127		* * * *					
3.45 91.48	0.134	3	* * *					
	0.142	:	* * *					
	0.149							
	0.156	:	* * *					
1.15 99.43	0.164	:	*					
		0		1		2	3	4

*****

01/13/98

mean =	-1.0852	Min	. =	-1.6990	lst Quarti	le =	-1.2218
	0.1543	Max	=	-0.7959	Medi	an =	-1.0969
CV % =	14.2158	Skewness	=	-0.6422	3rd Quarti		
					<b>U</b>		
Anti-	Log Mean	= 0.08	2	Anti-Log	Std. Dev.	: (-)	0.058
	0		_			(+)	0.117
						( • )	0.117
=======================================	.===========	==========	=====		=======================================	======	========
% cum %					0 - bin s		
0.00 0.57	0.019	-1.7227					
	0.021	-1.6752	*				
0.00 1.70	0.024	-1.6277					
0.00 1.70	0.026	-1.5801					
0.00 1.70	0.029	-1.5326					
0.00 1.70	0.033	-1.4851					
0.00 1.70	0.037	-1.4375					
1.15 2.84	0.041	-1.3900	*				
0.00 2.84	0.045	-1.3425					
10.34 13.07	0.051	-1.2950	* * * * *	* * * *			
0.00 13.07	0.057	-1.2474					
12.64 25.57	0.063	-1.1999	****	* * * * * *			
11.49 36.93	0.070	-1.1524	* * * * *	* * * * *			
0.00 36.93	0.079	-1.1048					
16.09 52.84	0.088	-1.0573	****	* * * * * * * * *			
12.64 65.34	0.098	-1.0098	****	* * * * * *			
6.90 72.16	0.109	-0.9622	****	*			
16.09 88.07	0.122	-0.9147	* * * * *	* * * * * * * * *			
3.45 91.48	0.136	-0.8672	* * *				
6.90 98.30	0.151	-0.8196	* * * * *	*			
1.15 99.43	0.169	-0.7721	*				
				<b>-</b>			
		0	)	1	2	3	4

01/13/98

# 

PARAMETER SUMMARY STATISTICS FOR PROBABILITY PLOT ANALYSIS

# Data File Name = ANYCHEM.TXT

Variable = P	Unit =	(%)	N = N CI =	$\frac{87}{20}$
Transform = Logari	thmic	Number of	Populations = 4	

# of Missing Observations = 0.

Users Visual Parameter Estimates

Population	Mean		Std Dev	Percentage
		-		
1	0.028	-	0.017	2.00
		+	0.046	
2	0.072	-	0.057	70.00
		+	0.090	
3	0.109	-	0.102	13.00
		+	0.116	
4	0.135	-	0.122	15.00
		+	0.149	

Default Thresholds.

Standard Deviation Multiplier = 2.0

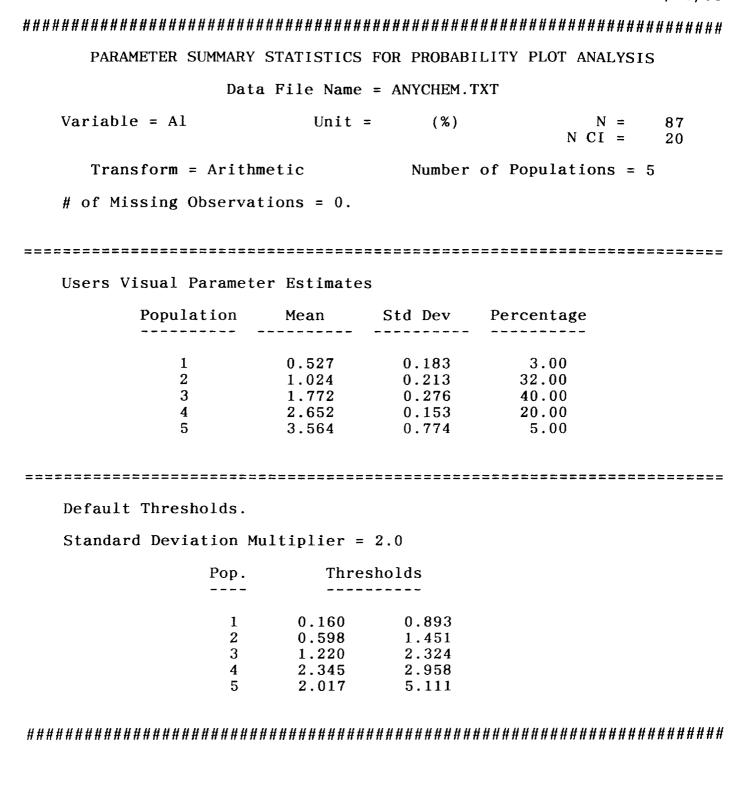
Pop.	Thresholds				
1	0.011	0.075			
2	0.045	0.114			
3	0.095	0.124			
4	0.111	0.164			

****

01/13/98

Variable =	A1	Unit =	(%)		N =	87
Std. Dev. =	$1.780 \\ 0.797 \\ 44.773$	Min = Max = Skewness =	$\begin{array}{c} 0.320 \\ 4.750 \\ 0.812 \end{array}$	Med	lian =	
*=====================================	cls int	(# (	of bins =	======================================	======================================	0.233)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.203\\ 0.437\\ 0.670\\ 0.903\\ 1.136\\ 1.369\\ 1.602\\ 1.836\\ 2.069\\ 2.302\\ 2.535\\ 2.768\\ 3.001\\ 3.234\\ 3.468\\ 3.701\\ 3.934\\ 4.167\\ 4.400\\ 4.633\\ 4.867\end{array}$	* * * * * * * *	* * * * * * * *	*		
		0	1	2	3	4

protes


, **--**---

-

01/13/98

Variable = A	41	Unit	t =	(%)		N =	87
Mean = Std. Dev. = CV % =	$0.2052 \\ 0.2073 \\ 101.0372$	Min Max Skewness	n = k = S =	-0.4949 0.6767 -0.5035	1st Quart Med 3rd Quart	ile = ian = ile =	$0.0755 \\ 0.2214 \\ 0.3692$
Anti	-Log Mean	= 1.60	04	Anti-Log	Std. Dev.	•••	$0.995 \\ 2.585$
		=======================================			===========		=======
% cum %	antilog	cls int	(# of	bins = 2	0 - bin	size =	0.0617)
0.00 0.57	0.298	-0.5257					
	0.344	-0.4640	*				
0.00 1.70	0.396	-0.4024	·				
	0.456	-0.3407					
0.00 1.70 0.00 1.70	0.526	-0.2790					
	0.606	-0.2174	*				
3.45 6.25	0.699	-0.1557	* * *				
	0.805	-0.0941	*				
	0.928	-0.0324	* * * * *	*			
	1.070	0.0293	* * * * *	**			
	1.233	0.0909	* * * * *	*			
	1.421	0.1526	* * * * *				
13.79 48.30	1.638	0.2142	* * * * *	******			
16.09 64.20	1.888	0.2759	* * * * *	*****			
5.75 69.89	2.176	0.3376	* * * * *				
6.90 76.70	2.507	0.3992	* * * * *	*			
	2.890	0.4609	* * * * *	******	* *		
2.30 97.16	3.331	0.5225	* *				
	3.839	0.5842					
	4.424	0.6459	*				
1.15 99.43	5.099	0.7075	*				
			0	1	2	3	4

01/13/98



01/13/98

Variable = !	Mn	Unit	=	(ppm)		N :	= {	37
Std. Dev. =			=	$\begin{array}{r} 126.000\\9249.000\\3.841\end{array}$		Quartile = Median = Quartile =	= 60	03.500
		==============	===		======	=======================================		
% cum %	cls int		(#	of bins =	20 -	bin size	= 48	30.158)
		-						
0.00 0.57	-114.079			* * * * * * * * * * *				
	366.079 846.237					********	* * *	
	1326.395			*******			F T T	-> 41
	1806.553		***					
1.15 88.07	2286.711	-	*					
3.45 91.48	2766.868	,	***	:				
2.30 93.75	3247.026	;	* *					
1.15 94.89	3727.184	:	*					
1.15 96.02	4207.342	:	*					
0.00 96.02	4687.500							
	5167.658	3	*					
0.00 97.16	5647.816							
0.00 97.16	6127.974							
0.00 97.16	6608.132							
0.00 97.16	7088.289							
0.00 97.16	7568.447							
	8048.605							
	8528.763 9008.921		*					
$1.15 \ 98.30$ $1.15 \ 99.43$	9489.079		*					
1.15 55.45	5405.075							
		0		1		2	3	4

Variable = Mn	Unit =	(ppm)	N = 87
Std. Dev. = 0.35	169 Min = 598 Max = 396 Skewness =	3.9661 Me	tile = 2.6133 dian = 2.7807 tile = 3.0104
Anti-Log Me	ean = 702.900	Anti-Log Std. Dev	. : (-) 306.944 (+) 1609.640
% cum % anti	log cls int (# of	bins = 20 - bin	size = 0.0982)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	********* ***** ****	
	0	1 2	3 4

01/13/98

# ****

PARAMETER SUMMARY STATISTICS FOR PROBABILITY PLOT ANALYSIS

#### Data File Name = ANYCHEM.TXT

Variable = Mn	Unit =	(ppm)	N = N CI =	87 20
Transform = Logari	thmic	Number of P	opulations = 5	
<pre># of Missing Observat:</pre>	ions = 0.			

Users Visual Parameter Estimates

Population	Mean	lean Std I		Percentage
		-		
1	191.889	-	136.790	8.00
		+	269.182	
2	461.487	-	354.767	52.00
		+	600.309	
3	943.192	-	791.910	24.00
		÷	1123.375	
4	1850.101		1391.410	8.00
		+	2460.004	
5	4374.510	-	2698.184	8.00
		+	7092.301	

Default Thresholds.

Standard Deviation Multiplier = 2.0

Pop.	Thresholds					
1	97.512	377.609				
2	272.727	780.890				
3	664.893	1337.978				
4	1046.441	3270.967				
5	1664.232	11498.600				

01/13/98

Variable = 1	Fe	Unit	=	(%)		Ν	=	87
Std. Dev. =	2.016	Min Max Skewness	=	15.060	3rd	Median Quartile	=	$3.575 \\ 4.495$
**************************************	cls int		# of	bins =		bin size		0.770)
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		* * * *	************	*** ******* ******* *******	* * *	**		
		0		1		2	3	4

,e~8

01/13/98

Variable = Fe	Unit =	(%)		N =	87
Mean = 0.5427 Std. Dev. = 0.2103 CV % = 38.7473	Min = Max = Skewness =	-0.3665 1.1778 -0.7435	lst Quarti Medi 3rd Quarti	an =	$0.4433 \\ 0.5533 \\ 0.6527$
Anti-Log Mean	= 3.489	Anti-Log	Std. Dev.	: (-) (+)	
<pre>% cum % antilog</pre>	cls int (#	of bins = 20	- bin s	======================================	0.0813)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.4869 ** 0.5682 ** 0.6495 **	* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *	: : <b>****</b>		
	0	1	2	3	4

*****

01/13/98

# 

# of Missing Observations = 0.

______

Users Visual Parameter Estimates

Population	Mean		Std Dev	Percentage
		-		
1	1.614	-	1.005	15.00
		+	2.593	
2	3.763	-	2.913	80.00
		+	4.860	
3	9.409	-	6.755	5.00
		+	13.107	

Default Thresholds.

Standard Deviation Multiplier = 2.0

Pop.	Thresholds					
1	0.625	4.165				
2	2.255	6.277				
3	4.849	18.257				

***

01/13/98

#### 

Variable = H	K	Unit :	=	(%)		Ν	=	87
Std Dev =	0 144	Min Max Skewness	=	0 750		Median	=	0 160
======================================	cls int	· · · · · · · · · · · · · · · · · · ·	===== # of	bins = 2	20 -	bin size	;==== ; =	======= 0.038)
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 0.001\\ 0.039\\ 0.078\\ 0.116\\ 0.154\\ 0.193\\ 0.231\\ 0.270\\ 0.308\\ 0.347\\ 0.385\\ 0.423\\ 0.462\\ 0.500\\ 0.539\\ 0.577\\ 0.616\\ 0.654\\ 0.692\\ 0.731\\ 0.769\end{array}$	* * * * * * * * * * * * * *	***************************************	k				
		0		1		2	3	4

18:12:42

ANYOX DATA

	#######################################
SUMMARY STATISTICS and HISTOGRAM	LOGARITHMIC VALUES

Variable = K	ζ.	Uni	t =	(%)		N =	87
Std. Dev. =		Max	x = -		1st Quarti Media 3rd Quarti	an =	-0.7959
Anti-	Log Mean	= 0.1	60	Anti-Log	Std. Dev.		0.076 0.337
======================================	antilog				======================================		
$\begin{array}{rrrr} 1.15 & 1.70 \\ 0.00 & 1.70 \end{array}$	0.022 0.027 0.032 0.039 0.047 0.057 0.069 0.084 0.101 0.122 0.148 0.179 0.217 0.263 0.318 0.385 0.466 0.563 0.682 0.825	-1.7404 -1.6575 -1.5747 -1.4919 -1.4090 -1.3262 -1.2433 -1.1605 -1.0776 -0.9948 -0.9120 -0.8291 -0.7463 -0.6634 -0.5806 -0.4977 -0.4149 -0.3320 -0.2492 -0.1664 -0.0835	**** ***** ***** * *****	* * * * * * * * * * * * * * * *			
			0	1	2	3	4

ANYOX DATA 18:14:21 01/13/98 *** PARAMETER SUMMARY STATISTICS FOR PROBABILITY PLOT ANALYSIS Data File Name = ANYCHEM.TXT (%) Variable = KUnit = 87 N =N CI =20 Transform = Logarithmic Number of Populations = 3 # of Missing Observations = 0. 

Users Visual Parameter Estimates

Population	Mean		Std Dev	Percentage
		-		
1	0.036	_	0.025	7.00
		+	0.053	
2	0.144	-	0.082	79.00
		+	0.254	
3	0.432	-	0.338	14.00
		+	0.550	

Default Thresholds.

Standard Deviation Multiplier = 2.0

Pop.	Thres	holds
		~~~~
1	0.017	0.078
2	0.047	0.447
3	0.265	0.702

01/13/98

Variable = Na	Unit =	(%)	N =	87
Mean = -1.6243 Std. Dev. = 0.2668 CV % = 16.4275	Max =	-0.6576	lst Quartile = Median = 3rd Quartile =	-1.6990
Anti-Log Mean	= 0.024	Anti-Log	Std. Dev. : (-) (+)	$0.013 \\ 0.044$
% cum % antilog			- bin size =	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1.8940 -1.8234 -1.7527 -1.6821 ** -1.6114 -1.5408 -1.4701 ** -1.3994	* *	*****	
	0	1	2 3	4

01/13/98

Variable = Na	Unit	= (%)	N	= 87
Std. Dev. =		= 0.220	1st Quartile Median 3rd Quartile	= 0.020
======================================	======================================	======================================	20 - bin size	e = 0.011)
$\begin{array}{c} 20.69 & 21.02 \\ 34.48 & 55.11 \\ 24.14 & 78.98 \\ 6.90 & 85.80 \\ 4.60 & 90.34 \\ 5.75 & 96.02 \\ 1.15 & 97.16 \\ 1.15 & 97.16 \\ 1.15 & 98.30 \\ 0.00 & 98.3$	0.027 0.038 0.049 0.060 0.071 0.082 0.093 0.104 0.115 0.126 0.137 0.148 0.159 0.170 0.181 0.192 0.203 0.214	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * *	* * *
1.15 99.43	0.226		2	3 4

18:20:20		ANYOX DATA					
##########		#########	# # #	***		#########	
PARA	METER SUMMARY	STATISTIC	CS F	FOR PROBABI	LITY PLOT ANALYS	SIS	
	Data	File Nam	ne =	= ANYCHEM.7	CXT		
Variabl	le = Na	Unit	; =	(%)	N = N CI =		
Tra	nsform = Logari	thmic		Number	of Populations =	= 2	
# of Mi	issing Observat	ions = 0					
=======================================	*************	=========	===:	============		========	
Users V	/isual Paramete	er Estimat	tes				
	Population	Mean		Std Dev	Percentage		
	1	0.020	- -	0.013	84.00		
	2	0.057	- +	$0.031 \\ 0.037 \\ 0.087$	16.00		
=======================================			-==:	=================			
Defaul	t Thresholds.						
Standa	rd Deviation Mu	ltiplier	= 2	2.0			
	Pop.	Th: 	resl	holds			
	1	0.008		0.049			

01/13/98

Variable = C	Ca	Unit	=	(%)		Ν	=	87
Std. Dev. =	0.291	Min Max Skewness	=	1.550		Median	=	0.495
	======================================	==========	===== / # f	issesses bing -	20 -	hin cig		=======
% cum %	cls int		(# 01	01NS =				0.079)
0.00 0.57	0.011							
	0.089	2	*					
	0.168	:	* * * * * *	k				
5.75 14.20	0.247	:	* * * * *					
	0.326		* * * * * *					
	0.405		* * * * * *					
	0.484			*****				
_	0.563			******				
10.34 71.02	0.642		* * * * * * * *					
	0.721		*****	• • • • •				
- · ·	$0.800 \\ 0.879$		*					
	0.958		*					
	1.037		**					
2.30 94.89	1.116		* *					
0.00 94.89	1.195							
1.15 96.02	1.274		*					
2.30 98.30	1.353		* *					
0.00 98.30	1.432							
0.00 98.30	1.511							
1.15 99.43	1.589		*					
		0		1		2	3	4

3-0

18:20:55

ANYOX DATA

Variable = C	la	Uni	t =	(%)		N =	87
Std. Dev. =	-0.3435 0.2683 78.1239		x =		1st Quart: Med: 3rd Quart:	ian =	-0.3054
Anti-	Log Mean	= 0.4	53	Anti-Log	Std. Dev.		$\begin{array}{c} 0.244 \\ 0.841 \end{array}$
======================================	antilog	cls int	====== (# o	======================================	======================================	======= size =	0.0785)
$\begin{array}{cccc} 0.00 & 1.70 \\ 0.00 & 1.70 \\ 1.15 & 2.84 \\ 1.15 & 3.98 \\ 1.15 & 5.11 \end{array}$	0.046 0.055 0.066 0.079 0.094 0.113 0.135 0.162 0.194 0.232 0.278 0.334 0.400 0.479 0.574 0.687 0.823 0.987 1.182	$\begin{array}{c} -1.3403\\ -1.2618\\ -1.1833\\ -1.1048\\ -1.0263\\ -0.9478\\ -0.8693\\ -0.7908\\ -0.7123\\ -0.6338\\ -0.5553\\ -0.4769\\ -0.3984\\ -0.3199\\ -0.2414\\ -0.1629\\ -0.0844\\ -0.0059\\ 0.0726\\ 0.1511\\ 0.2296\end{array}$	* * * * * * * * * * * *				
			0	1	2	3	4

01/13/98

PARAMETER SUMMARY STATISTICS FOR PROBABILITY PLOT ANALYSIS

Data File Name = ANYCHEM.TXT

Variable = Ca	Unit =	(%)	N =	87
Transform = Logar	ithmic	Number of Po	N CI = opulations = 4	20
		Number of it	spuruerons -	I

of Missing Observations = 0.

Users Visual Parameter Estimates

Population	Mean		Std Dev	Percentage
		-		
1	0.172	-	0.109	20.00
		+	0.272	
2	0.497	-	0.380	65.00
		+	0.650	
3	0.778	-	0.752	5.00
		+	0.804	
4	1.114	-	0.914	10.00
		+	1.358	

Default Thresholds.

Standard Deviation Multiplier = 2.0

Thresholds				
0.069	0.431			
0.291	0.849			
0.728	0.831			
0.750	1.656			
	0.069 0.291 0.728			

01/13/98

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Variable = N	1g	Unit	=	(%)	Ν	=	87
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Std. Dev. =	0.639	Max	=	3.030	Median	=	0.755
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	======================================	cls int	=============					
	3.45 $3.9819.54$ $23.309.20$ $32.3912.64$ $44.896.90$ $51.705.75$ $57.3910.34$ $67.619.20$ $76.704.60$ $81.252.30$ $83.522.30$ $85.801.15$ $86.938.05$ $94.891.15$ $96.020.00$ $96.022.30$ $98.300.00$ $98.300.00$ 98.30	0.148 0.304 0.459 0.615 0.771 0.927 1.083 1.238 1.394 1.550 1.706 1.862 2.017 2.173 2.329 2.485 2.641 2.796 2.952		* * * * * * * * * * * * * * * * * * * *	*** ****** * ****			
			0			 2	3	4

Variable = N	1g	Uni	t =	(%)		N =	87
Std. Dev. =	0.3593	Ma	x =	-1.1549 0.4814 -0.3811		ian =	-0.1221
Anti-	-Log Mean	= 0.6	57	Anti-Log	Std. Dev.		$\begin{array}{c} 0.287 \\ 1.502 \end{array}$
======================================	antilog	cls int			======================================		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.063\\ 0.077\\ 0.094\\ 0.115\\ 0.140\\ 0.171\\ 0.208\\ 0.254\\ 0.310\\ 0.378\\ 0.461\\ 0.562\\ 0.685\\ 0.835\\ 1.018\\ 1.241\\ 1.514\\ 1.846\\ 2.250\\ 2.744\\ 3.346\end{array}$	$\begin{array}{c} -1.1980\\ -1.1118\\ -1.0257\\ -0.9396\\ -0.8535\\ -0.7673\\ -0.6812\\ -0.5951\\ -0.5090\\ -0.4229\\ -0.3367\\ -0.2506\\ -0.1645\\ -0.0784\\ 0.0078\\ 0.0939\\ 0.1800\\ 0.2661\\ 0.3523\\ 0.4384\\ 0.5245\end{array}$	* * * * * * *	* * * * * * * * * * * * * * * * * * * *			
			0	1	2	3	4

18:24:19

ANYOX DATA

01/13/98

PARAMETER SUMMARY STATISTICS FOR PROBABILITY PLOT ANALYSIS

Data File Name = ANYCHEM.TXT

Variable = Mg	Unit =	(%)	$\begin{array}{rrr} N &=& 87\\ N & CI &=& 20 \end{array}$
Transform = Logar:	ithmic	Number of Po	opulations = 4

of Missing Observations = 0.

Users Visual Parameter Estimates

Population	Mean		Std Dev	Percentage
		-		
1	0.161		0.110	10.00
		+	0.237	
2	0.400	-	0.266	42.00
		+	0.602	
3	1.088	-	0.908	33.00
		+	1.303	
4	2.003	-	1.692	15.00
		+	2.372	

Default Thresholds.

Standard Deviation Multiplier = 2.0

Thresholds				
0.075	0.347			
0.177	0.906			
0.758	1.561			
1.429	2.809			
	0.075 0.177 0.758			

01/13/98

**** SUMMARY STATISTICS and HISTOGRAM LOGARITHMIC VALUES Variable = Au Unit = (ppb) N = 87 Mean = 0.1213 Min =-0.3010 1st Quartile = -0.30100.5394 Std. Dev. = Max =2.1335 Median = 0.0000 CV % = 444.8068 3rd Quartile = Skewness = 1.9667 0.3010 Anti-Log Mean = Anti-Log Std. Dev. : (-) 1.322 0.382 (+) 4.579

%	cum %	antilog	cls int	(# of	bins	= 20	-	bin	size	=	0.128	31)
0.00	0.57	0.431	-0.3651									
36.78	36.93	0.579	-0.2370	* * * * * *	* * * * * *	* * * * *	* * * *	* * * *	* * * * *	* * * *	:	
1.15	38.07	0.778	-0.1088	*								
28.74	66.48	1.045	0.0193	****	*****	****	* * * *	****	*			
0.00	66.48	1.404	0.1474									
0.00	66.48	1.886	0.2756									
13.79	80.11	2.533	0.4037	****	*****	*						
6.90	86.93	3.403	0.5318	****	*							
3.45	90.34	4.571	0.6600	* * *								
0.00	90.34	6.139	0.7881									
1.15	91.48	8.246	0.9163	*								
2.30	93.75	11.076	1.0444	* *								
0.00	93.75	14.877	1.1725									
0.00	93.75	19.983	1.3007									
0.00	93.75	26.841	1.4288									
1.15	94.89	36.052	1.5569	*								
1.15	96.02	48.425	1.6851	*								
0.00	96.02	65.043	1.8132									
1.15	97.16	87.365	1.9413	*								
1.15	98.30	117.347	2.0695	*								
1.15	99.43	157.618	2.1976	*								
				0			2			3		4

01/13/98

Variable =	Au	Unit	=	(ppb)		Ν	=	87
Std. Dev. =	$5.928 \\ 20.447 \\ 344.909$	Min Max Skewness	= 1	136.000		Quartile Median Quartile	=	1.000
===============	=======================================	===========	======	========	======	=======================================	=====	========
% cum %		((# of	bins =	20 -	bin size	= =	7.132)
	2 000		•					
$\begin{array}{rrrr} 0.00 & 0.57 \\ 90.80 & 90.34 \end{array}$	-3.066			* * * * * * * *	******	* * * * * * * * * *		
3.45 93.75	$4.066 \\ 11.197$		· · · · · · · · · · · · · · · · · · ·	* * * * * * *	* * * * * * *	* * * * * * * * * * *	• • • •	> 79
0.00 93.75	18.329	•						
0.00 93.75	25.461							
0.00 93.75	32.592							
1.15 94.89	39.724	*	k					
1.15 96.02	46.855	*	k					
0.00 96.02	53.987							
0.00 96.02	61.118							
1.15 97.16	68.250	*	k					
0.00 97.16	75.382							
0.00 97.16	82.513							
0.00 97.16	89.645							
0.00 97.16	96.776							
0.00 97.16	103.908							
0.00 97.16	111.039							
1.15 98.30	118.171	7	ŧ					
0.00 98.30	125.303							
0.00 98.30	132.434							
1.15 99.43	139.566	ł	k					
		0		1		2	3	4

01/13/98

PARAMETER SUMMARY STATISTICS FOR PROBABILITY PLOT ANALYSIS

Data File Name = ANYCHEM.TXT

Variable = Au Unit = (ppb) N = 87 N CI = 20 Transform = Logarithmic Number of Populations = 4 # of Missing Observations = 0.

Users Visual Parameter Estimates

Population	Mean		Std Dev	Percentage
		-		
1	0.500	-	0.494	30.00
		+	0.506	
2	0.905	-	0.493	53.00
		+	1.663	
3	4.225	-	2.634	11.00
		+	6.776	
4	50.668	-	20.307	6.00
		+	126.423	

Default Thresholds.

Standard Deviation Multiplier = 2.0

Pop.	Thresholds					
1	0.489	0.512				
$\frac{1}{2}$	0.268	3.053				
3	1.642	10.867				
4	8.138	315.441				
