APPENDIX 2

Strathcona Mineral Services Limited

REGIONAL RESOURCES LTD. GWR RESOURCES INC. LAC LA HACHE PROJECT 1995 DRILL PROGRAM OPHIR COPPER PROPERTY

Longitude $121^{\circ} 18^{\prime} \mathrm{W}$, Latitude $51^{\circ} 58^{\prime} \mathrm{N}$

 Clinton Mining Division, B.C.NTS 92 P/14 W

TABLE OF CONTENTS

Page
SUMMARY 1
INTRODUCTION 2
LOCATION AND ACCESS 2
PHYSIOGRAPHY AND CLIMATE 2
PROPERTY STATUS 4
PROJECT HISTORY 4
REGIONAL GEOLOGY 7
PROPERTY GEOLOGY 9
DRILL PROGRAM 9
CONCLUSIONS AND RECOMMENDATIONS 15
PROPOSED 1996 BUDGET 17
EXPENDITURES 18
REFERENCES 19
STATEMENT OF QUALIFICATIONS 20
LIST OF TABLES
Table 1: DDH A94-0 6
Table 1: Ophir Copper Property - Drill Hole Statistics 10
Table 2: Ophir Copper Property - 1995 Expenditures 18
LIST OF FIGURES
Figure A-1: General Location 3
Figure A-2: Claim Location 5
Figure A-3: Regional Geology 8
Figure A-4: Gold Occurrence, Plan 11
Figure A-5: Section A95-03 13
Figure A-6: Section A95-01, A94-01 pocket
Figure A-7: Section A95-02 14
Figure A-8: Section A95-04 16
LIST OF APPENDICES
Appendix 1: Drill Logs
Appendix 2: Assay Sheets

SUMMARY

Drilling of four holes with a combined length of 687 metres at the "Zone 3" IP chargeability anomaly (Aurizon Gold Zone) on Ann 1 claim was a continuation of work by GWR Resources in 1994, which had indicated low grade, erratic gold-copper mineralization in potassic altered, brecciated monzonite, and gold values up to $11 \mathrm{~g} / \mathrm{t}$ over 3.8 metres core length in quartz-calcite-chalcopyrite veins along the contacts of a red brown porphyry dike.

The shallow southwesterly dipping porphyry dike was traced on three sections over a strike length of 140 metres. Gold values from the contact zones of the dike were generally low, the best intersection in hole A95-02 returned $1.1 \mathrm{~g} / \mathrm{t}$ gold and 0.18% copper over 6.0 metres in the footwall of the dike. The thickness of the dike on the southernmost section in hole A95-02 is 12 metres. It is pinching to the northeast and appears to be thinning at depth. Fracturing and faulting of the host monzonite and emplacement of the relative young, hydrothermally altered porphyry dike are probably related events, and have allowed migration of solutions and deposition of chalcopyrite and gold.

Further work could be done on the projected extension of the dike to the south, where some 400 metres strike length are left between hole A95-02 and the southern boundary of the Ann 1 claim. The erratic nature of the gold mineralization and the generally low grade however, do not justify more drilling of this target.

It is recommended to drill 250 metres in two holes on chargeability anomaly Zone 1 in the centre of the property, as proposed in 1993. The anomaly is situated on the intersection of two major geophysical trends, and has known low-grade copper-gold mineralization in outcrop of a monzonitic intrusive.

INTRODUCTION

The Lac La Hache joint venture of Regional Resources Ltd. and GWR Resources Inc. was formed in 1993, to explore a block of claims north of Lac La Hache, south-central British Columbia (Figure A-1), for porphyry and skarn-type copper and copper-gold deposits.

Work on the Ophir Copper property by the Lac la Hache joint venture in 1993 had identified induced polarization chargeability anomalies on Ann 1 claim, three of which were proposed for drilling. GWR Resources drilled two holes on Zone 3 ("Aurizon Gold Zone") in 1994, which indicated gold mineralization in a brecciated monzonitic intrusive, and in veins along the contacts of a porphyry dike.

This report describes results of drilling of 686.5 metres in four NQ-size holes on Ann 1 claim, three holes at Zone 3, and one hole at a copper-gold showing on the main access road, at the boundary of Ann 1 and Ann 2 claims. Field work was carried out by Strathcona Mineral Services Limited on behalf of the joint venture partners.

LOCATION AND ACCESS

The Ophir Copper property is situated on NTS sheet $92 \mathrm{P} / 14 \mathrm{~W}, 20$ kilometres northeast of Lac La Hache, south-central British Columbia, and is centred at Longitude $121^{\circ} 18^{\prime} \mathrm{W}$ and Latitude $51^{\circ} 58^{\prime} \mathrm{N}$. The property is accessible by 30 kilometres of asphalt and gravel road from Lac La Hache via Rail Lake road.

PHYSIOGRAPHY AND CLIMATE

The Central Plateau in the Lac La Hache region is characterized by gentle, rolling hills with elevations ranging from 850 m to 1500 metres above sea level. About 40% of the forests in the area have been clear cut. The climate is cold temperate with an annual precipitation of 500 to 1000 millimetres. Snow cover on the ground averages one to two metres, with snow arriving in November and departing by mid-April. The Ophir Copper property is situated on a north slope which rises from 1100 metres elevation to 1450 metres and has relatively abundant outcrop exposure.

PROPERTY STATUS

The Ophir Copper property comprises the Ann 1 and Ann 2 claims, which are located in the Clinton Mining Division of south-central British Columbia. The claims are under option from Ophir Copper Corporation and constitute "Claim Group 2" of the Regional Resources / GWR Resources agreement. Regional has the right to acquire a 39\% interest in these claims (GWR 26\%, Ophir Copper 35\%) by incurring cumulative work costs and option payments of $\$ 4000000$ before December 31, 1998 on all of the Lac La Hache claims.

Ophir Copper Property

Claim Name	Record Number		Number of Units	
Ann 1	208270		Expiry Date	
Ann 2	208271	$\underline{20}$	May 4, 2005	
			40	May 4, 2005

PROJECT HISTORY

The project area is underlain by Nicola Group volcanic and alkalic intrusive rocks, and covers part of the southern lobe of a large aeromagnetic anomaly, which has attracted the attention of exploration companies since its delineation by the Geological Survey of Canada in 1967. Magnetite may indicate potassic alteration zones, which are associated with alkaline porphyry copper-gold deposits. Surveys were mostly directed towards areas of abundant outcrop along the southern portion of the magnetic anomaly and resulted in the discovery of the Spout Lake copper-magnetite skarn, the Peach Lake, Miracle and Tim copper-gold occurrences and other showings associated with Nicola Group alkalic intrusions and volcanic rocks.

Exploration on the Ann claims started in 1966 and was concentrated on the area of the Ann 2 claim. Work consisted of mapping, sampling, trenching, geophysical surveys (Mag, IP, VLF-EM) and drilling, performed by Coranex Syndicate Ltd. (196667), Amax Potash Ltd. (1972), Asarco Exploration Company (1991) and other companies ${ }^{\text {(11) }}$. Three mineralized zones on the Ann 2 claim were explored by drilling.

The Peach Two-Jody Zone in the southeast corner of Ann 2 claims was drilled with 10 percussion holes by Amax and Asarco, which returned low copper and gold values, e.g. 27.4 m of $0.15 \% \mathrm{Cu}, 0.05 \mathrm{~g} / \mathrm{t} \mathrm{Au}$, or 6.1 m of $0.13 \% \mathrm{Cu}, 0.26 \mathrm{~g} / \mathrm{t}$ gold. Drilling of the Peach One Zone, located one kilometre to the west, with eight percussion holes and the Northwest Zone (part of the East Zone anomaly on Peach Lake and PMA properties), with four percussion holes had similar results. Results of two holes, drilled by Amax in 1972 in the northwest corner of Ann 1 claim are unavailable.

Work in 1993 on the Ann claims by the Lac La Hache joint venture consisted of line cutting, geological mapping, prospecting, silt and rock sampling, 28 kilometres of IP surveys and 31 kilometres of magnetometer surveys. The IP survey identified four chargeability anomalies on Ann 1 claim, three of which were proposed for drilling ${ }^{(2)}$.

Drilling of the weak "Zone 3^{n} anomaly ("Aurizon Gold Zone") in the southeast corner of Ann 1 claim with two holes was performed by GWR Resources in $1994{ }^{(3)}$. Hole A94-01 (Figure A-6) intersected potassic altered, brecciated and faulted monzonite cut by a quartz feldspar porphyritic dike. Five intervals of anomalous gold and copper returned results shown in Table 1 below. Highest gold values are found in quartzcalcite veins at the contacts of a dike, carrying quartz, feldspar and hornblende phenocrysts in a red-brown fine-grained matrix. Hole A94-02 returned anomalous gold of up to 2.6 metres of $4.1 \mathrm{~g} / \mathrm{t}$ in altered monzonite.

Table 1: DDH A94-01

From	To	Interval	Au	Cu
(m)	$\mathrm{(m)}$	$(\mathrm{~m})$	g / t	$\%$
95.0	98.0	3.0	4.0	0.06
134.0	140.0	6.0	2.9	0.16
170.0	173.0	3.0	2.7	0.19
209.4	213.2	3.8	11.4	0.22
225.9	228.3	2.4	3.6	0.47

REGIONAL GEOLOGY

The Ophir Copper property is situated within the Upper Triassic to Lower Jurassic Nicola Group, which forms part of the Quesnel Trough (Figure A-3), a volcanic and sedimentary arc sequence affected by Upper Triassic to Jurassic intrusions, and by volcanic activity continuing into the Quaternary. The Quesnel Trough extends for over one thousand kilometres from northern Washington State to north-central British Columbia, and hosts alkalic porphyry copper-gold deposits (Afton, Ingerbelle) and mine prospects (Mount Milligan, Mount Polley) as well as gold-skarns, and numerous porphyry occurrences.

Northeast of Lac La Hache, Nicola Group sediments, basalts, andesites and breccias are intruded by coeval small stocks of syenitic to dioritic composition. These highlevel intrusions typically consist of densely crowded euhedral plagioclase phenocrysts and minor amounts of pyroxene, hornblende and biotite in a fine-grained feldspar matrix. Textures of intrusive and volcanic rocks may resemble each other closely which makes identification problematic.

The north-northwest $\left(340^{\circ}\right)$ striking Pinchi Fault separates the Quesnel Trough from the Cache Creek Group and straddles the east corner of Lac La Hache lake. Prominent structural features (faults, intrusive contacts) on the Lac La Hache property as indicated from geology, magnetics, IP surveys and topography are 300-310 ${ }^{\circ}$, 50-60 ${ }^{\circ}$ and $20-30^{\circ}$ south of Spout Lake, 300° and 325° at the east side of the property (Nemrud) and 350° in the Murphy Lake area.

Potassic and propylitic alteration has affected Nicola Group intrusives and metavolcanic rocks and includes K-feldspar flooding, development of biotite, magnetite, quartz, albite, epidote and chlorite. Porphyry and skarn-type chalcopyrite, bornite and pyrite mineralization is locally associated with these alteration zones (Peach, Miracle, Tim, WC, Nemrud).

The Takomkane batholith, a zoned, granodioritic intrusion measuring about 50 km in diameter, is located with its centre 35 kilometres northeast of Lac La Hache, and borders the Nicola Group at the east side of the Lac La Hache property. It is estimated to be 187-198 million years old ${ }^{(4)}$, and is cut by a younger (102 million years) quartz

monzonite, which hosts the Boss Mountain molybdenum deposit. This deposit opened in 1965 and produced intermittently until 1983.

Tertiary basalts unconformably overlie and crosscut Triassic-Jurassic rocks on the Lac La Hache property, and are most frequent on the Murphy Lake and Murphy claims.

PROPERTY GEOLOGY

The Ann claims are underlain by mafic to intermediate metavolcanic tuffs, flows(?) and breccias, which are intruded by small stocks and dikes of syenite, monzonite and diorite. The intrusives exhibit "crowded" plagioclase textures, which are characteristic for Nicola Group high-level alkalic intrusives (V. Preto, 1995, pers. comm., and ${ }^{(5)}$). Outcrop knobs are frequently separated by very distinctive, narrow east-southeast to west-northwest striking lineaments. The two main joint sets strike southeastnorthwest and southwest-northeast.

Propylitic and potassic alteration has affected the rocks to a varying degree and most frequently consists of saussuritization (epidote-chlorite \pm albite) but locally also of a strong k-feldspar, biotite, epidote, magnetite alteration, which may be associated with chalcopyrite and pyrite mineralization.

The geology and mineralization of the southern portion of the Ann claims is subject of a Bachelor of Science thesis in geology by Robin Whiteaker at the University of British Coulmbia, currently performed under the supervision of Dr.J. Mortenson and Mike Cathro, Resident Geologist, Kamloops.

DRILL PROGRAM

General

Drilling of holes A95-01 to A95-04 was performed by Tex Drilling Ltd. of Kamloops, using a Longyear 38 drill, mounted on a 690 John Deere undercarriage. Core was logged, cut and stored on Don Fuller's property in Lac La Hache.

Core samples were shipped to Acme Analytical Laboratories Ltd. in Vancouver for 30 element ICP analysis, and for gold fire assays of 30 gram samples.

Construction of drill roads was contracted to Kingsgate Auto Ltd. of 100 Mile House.

Table 2: OPHIR COPPER PROPERTY - DRILL HOLE STATISTICS

DDH No.	Claim	Location		Azimuth (deg)	Incli- nation (deg)	Depth (m)	Overburden (m)	$\begin{aligned} & \text { Core } \\ & \frac{(\mathrm{m})}{} \end{aligned}$	Assays
		South	West						
A95-01	Ann 1	1265	633	90	-45	160.7	9.5	151.2	16
A95-02	Ann 1	1337	612	70	-45	160.6	10.0	150.6	19
A95-03	Ann 1	1213	647	70	-45	120.4	7.0	113.4	17
A95-04	Ann 1	1244	2808	135	-45	244.8	3.4	241.4	43
Total						686.5	29.9	656.6	95

Results

Drill hole locations are shown on Figure A-4, a 1:1000 scale compilation map, and drill results on four 1:1000 scale sections (Figure A-5, -6, -7, -8). Holes A95-01 to A9503 were drilled to follow-up on dike related gold mineralization, while the target of hole A95-04, was a copper showing on the main access road near the boundary of Ann 1/2 claims.

Results from Ann 1 claim drilling (Figure A-4) confirmed generally low-grade gold mineralization in altered monzonite, mainly along the contacts of a porphyry dike, however, values were generally lower than those of hole A94-01, which had intersected thicker quartz-calcite-chalcopyrite veins.

Hole A95-02 (Figure A-7) intersected the dike 50 metres southeast of A95-01, at a vertical depth of 75 metres, and returned 1.25 m of $0.04 \% \mathrm{Cu}, 0.03 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ at the hangingwall contact and 6.0 m of $0.18 \% \mathrm{Cu}, 1.13 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ at the footwall contact.

The dike is reduced to approximately one metre thickness in hole A95-03, 100 metres on strike to the northwest from A95-01. Assays from A95-03 returned background copper and gold values.

Hole A95-01 was drilled on section with A94-01, but from the opposite direction (Figure A-6), with the objective to establish the dip of the porphyry dike and the continuity of related gold mineralization. The hole intersected monzonite and syenitic dike affected by potassic alteration and hydrothermal brecciation (calcite, chlorite, quartz, hematite/limonite, clay), with traces of pyrite and chalcopyrite and traces of gold in breccias and pyrite-quartz-calcite veinlets. The porphyry dike was intersected approximately 100 metres up-dip from the intersection in A94-01 at a vertical depth of 90 metres. A zone of potassic alteration at the hangingwall contact including minor calcite veins, assayed $0.2 \mathrm{~g} / \mathrm{t}$ gold and 0.22% copper over 4.2 metres length (2.6 m of $0.47 \% \mathrm{Cu}, 3.6 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ in hole A94-01). A 7.5 metre-long section at the footwall of the dike consisting of black, chilled dike(?), fault breccia and strongly fractured monzonite returned $0.2 \mathrm{~g} / \mathrm{t}$ gold and 0.06% copper (3.8 m of $0.22 \% \mathrm{Cu}, 11.4 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ in hole A94-01). Calcite-quartz-chalcopyrite veining along the dike contacts was much weaker developed than in hole A94-01, which explains the lower values. The dip of 50° to the west, indicated for the porphyry dike from this section, would result in a thickness of the dike in hole A94-01 of approximately two metres only, compared to 10.5 metres in hole A95-01. It is possible that faulting and to a lesser extent the inaccurate location of intersections in both holes (no dip tests for hole A94-01, relative surface elevations from inclinometer readings) may have contributed to this reduction in thickness.

Hole A95-02 (Figure A-7), intersected 12 metre of porphyry dike, 50 metres on strike to the southeast. Potassic altered, strongly brecciated monzonite at the footwall assayed $1.13 \mathrm{~g} / \mathrm{t}$ gold and 0.18% copper over 6 metre core length, while the hangingwall section had traces of gold and copper only.

Hole A95-03 (Figure A-5) was drilled under the only outcrop of red brown porphyry dike found in the area. It intersected one metre of dike without related gold-copper mineralization, approximately 100 metres on strike to the northwest of section A94-01/A95-01. A shallow westerly dip of the dike can be constructed from this section.

A malachite-chalcopyrite showing in k-feldspar, magnetite altered monzonite on the main access road near the boundary of Ann $1 / 2$ claims returned high grade copper and gold values from grab samples. The showing has a coinciding weak IP chargeability anomaly ($5-7 \mathrm{msec}$) on the flank of a strong anomaly over the Peach Two-Jody Zones. Hole A95-04 (Figure A-8) drilled perpendicular to the IP anomaly under the showing, intersected propylitic and potassic altered monzonite and andesitic volcanics with wide sections of geochemically anomalous copper and gold. Best intersections are 0.13\% copper, $0.06 \mathrm{~g} / \mathrm{t}$ gold over 4.6 metre and 1.31% copper and $0.07 \mathrm{~g} / \mathrm{t}$ gold over 1.0 metre. The latter assay includes a 30 centimetre-thick coarse-grained calcite, quartz, specularite, chalcopyrite, bornite vein which may part of the surface showing. Some massive white zones in core, seen in this hole only, are probably albite alterations.

CONCLUSIONS AND RECOMMENDATIONS

The 1995 drill program on the Ophir Copper property was primarily intended to trace gold and low-grade copper mineralization in quartz-calcite-chalcopyrite veins and breccias at the contact of red brown porphyry dike and in its monzonitic hostrock ("Aurizon Gold Zone"). The northwest-southeast striking, and shallow to moderately southwesterly dipping dike was intersected on three profiles over a length of 150 metres. Its thickness varies from 12 metres on the southernmost section to less than one metre on the northernmost section, where it is exposed in outcrop. The amount of veining in brecciated hostrock at the dike contacts was much less than in hole A9401 , which may explain the generally lower assay values. A maximum of $1.1 \mathrm{~g} / \mathrm{t}$ gold and 0.18% copper over 6.0 metres was found in the footwall of the dike in hole A9502.

Concluding from intersections in holes A94-01 and A95-01, it appears that the dike is pinching to depth, which would strongly reduce its true thickness and that of goldbearing veins along its contacts in hole A94-01. Faulting and the inaccurate location of the intersections (hole A94-01 has no dip tests, and relative surface elevations are from inclinometer readings) may also have had an effect on the apparent true width of the dike. The strike of the dike is parallel to prominent lineaments on the Ophir Copper property, e.g. a narrow valley crossed by the now blocked road to Fly Lake

and Lac La Hache. This valley has no outcrops which would reveal its cause, but could possibly be underlain by a fault, shear and/or dike.

The porphyry dike is open to the south, where a strike length of approximately 400 meters on the Ann 1 claim remains untested. However, with the gold content at the dike contacts being erratic and mostly of low grade, no further work is recommended on this anomaly.

Abstract

Drilling of the Zone 1 IP anomaly with 250 metres recommended in 1993 should be considered for 1996. This anomaly is situated in the centre of the property, at the intersection of two geophysical/structural trends, i.e., a north-northeast striking cluster of mineralized zones/IP anomalies (Jody-Peach Two, Zone 1, Zone 2) and a northwesterly trend from the Aurizon Zone to the East Zone anomaly on the junction of Ophir Copper, Peach Lake and PMA properties.

PROPOSED 1996 BUDGET

Diamond drilling
250 m @ \$100 25000
Geology and support 4000
Contingency 1000
Total 30000

Strathcona Mineral Services Limited

$$
\text { - } 18 \text { - }
$$

EXPENDITURES

Table 3: OPHIR COPPER PROPERTY - 1995 EXPENDITURES

Description	Jan 1- Jul 31	Aug 1-Dac 31	Total
Diamond Drilling		37301	37301
Geologists	1934	10931	12865
Assaying		1884	1884
Warehouse rental		210	210
Room \& Board		1394	1394
Communications		52	52
Materials \& Supplies		256	256
Travel		652	652
Freight, Truck		1721	1721
Project Management		1041	1041
Total	1934	55442	57376

REFERENCES

（1）Gale，R．E．（1991）Geology and drilling of the Ann 1 and 2 claims．Asarco Exploration Company of Canada Ltd．$K K=$
${ }^{(2)}$ von Guttenberg，R．（1994）Regional Resources Ltd．，GWR Resources Inc．，Lac La Hache project，report of 1993 field work，Ann 1，Ann 2 claims
（3）Blann，D．E．（1995）Diamond drilling report on the Ophir Copper property，for Ophir Copper Corp．，GWR Resources Inc．，Regional Resources Ltd．Aバン975
（4）Campbell，R．B．，Tipper，H．W．（1972）Geological Survey of Canada Memoir 363， Geology of Bonaparte Map Area
${ }^{(5)}$ Nelson，J．et al（1990）British Columbia Geological Survey Branch，geological fieldwork 1990，Paper 1991－1

STATEMENT OF QUALIFICATIONS

I, Reinhard von Guttenberg, residing at 171 Romfield Circuit, Thornhill, Ontario, do hereby certify that:

1. I am a graduate of the University of Munich, Germany (1969), and have obtained a Dr. rer. nat. in geology from that university in 1974;
2. I have been practising my profession as a geologist since graduation;
3. I have been employed by Strathcona Mineral Services Limited, of Toronto, Ontario, an independent consulting firm for the mining industry, since 1989;
4. I am a Fellow of the Geological Association of Canada, and a Member of the Canadian Institute of Mining, Metallurgy and Petroleum;
5. I have supervised and carried out on behalf of Regional Resources Ltd., and GWR Resources Inc. the work performed on the Nemrud grid.
6. I have no interest, either direct or indirect, in the properties or securities of Regional Resources Ltd. and GWR Resources Inc.

Dated at Toronto, Ontario this \qquad day of \qquad , 1996

APPENDIX 1

REGIONAL RESOURCES LTD./GUR RESOURCES INC. - LAC LA HACHE PROJECT

DIAMOND DRILL RECORD

Grid:
Co-ords: $\quad 1337 \mathrm{~s}$
$\begin{array}{lll}\text { Azimuth: } \quad 70.0 & 612 \mathrm{~W}\end{array}$
Dip: $\quad-45.0$
Elevation: Not surveyed, appr. 1430 m
Length: 160.6
Purpose: IP Anomaly, gold occurrence
$\begin{array}{ll}\text { Purpose: } & \text { IP } \\ \text { Assays: } & 19\end{array}$
Core at: D. Fuller

*** Dip Tests	***
Depth	Azi.

Hole No.:
Claim:
Date Started: Date Completed Logged by: Contractor: Drill Type: Core size:

A95-02
Ann 1
September 27, 1995 September 28, 1995 Rvg RvG
Tex Tex
Longyear 38 Na

DIAMOND DRILL RECORD
Grid: Ann
Co-ords: 1979W 667S
$\begin{array}{lllll}\text { Co-ords: } & 1979 \mathrm{w} \\ \text { Azimuth: } & 135.0 & \text { \#t* } & \text { Dip Tests } & \text { t** } \\ \text { Dip: } & -45.0 & \text { Depth } & \text { Azi. } & \text { Dip } \\ \text { Elevation: } & \text { Not surveyed, appr. } 1400 \mathrm{~m} & & & \\ \text { Length: } & 244.8 & 244.0 & 135.0 & -42.0\end{array}$
$\begin{array}{ll}\text { Length: } \quad 244.8 \\ \text { Purpose: } & \text { IP Anomaly, Cu showing }\end{array}$

Purpose: 1 P
43
D. Fuller

Hole No.:
Claim:
Date Started: Date Completed
Logged by:
Contractor:
Drill Type: Core Size:

A95-04
Ann 1
Sept. 29 - Oct. 1, 1995
Sept.29-0ct.1,
Oct. 24-25, 1995
Oct.
Rvg
Tex
Longyear 38
NO

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline From (m) \& To (m) \& Geology \& Sample No. \& From (m) \& \begin{tabular}{l}
To \\
(m)
\end{tabular} \& Length (m) \& Copper (ppm) \& \begin{tabular}{l}
Gold \\
(ppb)
\end{tabular} \& Silver (ppm) \\
\hline 75.20 \& 127.55 \& \begin{tabular}{l}
epidote as blebs and on fractures at 10 to 40 degrees. Upper contact 60 degrees. \\
bASALT / ANDESITE \\
Dark green, fine-grained, 5 to \(20 \%\) epidote \(+/-\) k-feldspar alteration, chloritic, hairline fractures at 15 degrees with saussuritization. Core fractured, purple hematite coatings on fractures. Trace calcite veinlets. \\
\(76.50 \quad\) Pyrite on 2 cm chlorite calcite vein at 45 degrees. \\
77.20 Fault gouge, 5 cm . \\
77.85 Trace native copper. \\
86.75 96.60 Patches feldspar porphyritic. \(15 \%\) epidote blebs and veinlets. \(1 \%\) brown k-feldspar. \\
99.4099 .90 Mosaic breccia, \(k\)-feldspar alteration fragments in epidote calcite matrix. \\
103.75104 .05 Quartz calcite hematite chalcopyrite bornite vein. Upper contact 90 degrees, lower contact 45 degrees. Coarse grained, euhedral quartz, specularite, blobs chalcopyrite, trace bornite. Vuggy, chlorite growth on quartz crystals. Separated from hostrock by 5 cm epidote \(k\)-feldspar veins at hangingwall and footwall at 45 degrees. \\
104.40 Calcite epidote vein at 35 degrees, 1 cm , at 35 degrees. Trace native copper. \\
\(113.10114 .6540 \%\) epidote albite magnetite alteration, medium to light grey matrix, magnetite stringers at 15 degrees. \\
114.65 119.30 Dark green grey, fine-grained, 5 to \(10 \%\) epidote \(+/\) - calcite, \(k\)-feldspar, magnetite veinlets and patches. \\
119.30120 .95 Porphyritic dike. Upper contact 40 degrees, lower contact 60 degrees. To 120.25 m massive, hard, light grey to brown red, albite epidote \(+/-\) \(k\)-feldspar. Epidote hairline fractures at 15 to 20 degrees. 120.25 to 120.95 m dark matrix, moderate \(k\)-feldspar, epidote, magnetite alteration. \\
120.95124 .005 to \(10 \%\) epidote \(+/\) magnetite, calcite on hairline fractures and veins at 15 degrees. \\
124.00 127.55 Light grey to medium grey, massive, \(10 \%\) albite epidote magnetite alteration. Also pervasive albite alteration. \\
MONZONITE \\
Medium grey to light grey to green, also brown red to pink. 'crowded' porphyritic texture. Plagioclase euhedral, 1 to 3 mm. Disseminated magnetite. Moderate to strong \(k\)-feldspar epidote albite magnetite alteration, trace calcite stringers. Alteration as massive patches to stringers and veinlets. Trace pyrite. Upper contact 15 degrees. \\
128.35 128.85 Massive dark red brown \(k\)-feldspar epidote/ saussurite magnetite alteration. Magnetite as stringers and veins at 45 degrees. \\
130.60131 .10 Massive albite epidote \(+/-k\)-feldspar alteration. \\
145.30 147.40 Core strongly broken. \\
147.90 148.40 Massive albite epidote \(+/-k\)-feldspar, magnetite alteration, \(1 \%\) pyrite. \\
149.00 159.00 Moderate \(k\)-feldspar magnetite alteration, trace epidote. \\
159.00 162.50 Moderate to strong k-feldspar epidote magnetite alteration. \(1 \%\) pyrite with epidote stringers and veinlets. \\
162.50168 .7010 to \(15 \%\) epidote albite \(k\)-feldspar magnetite alteration stringers and
\end{tabular} \& \begin{tabular}{l}
31550 \\
31551
\end{tabular} \& \[
\begin{aligned}
\& 102.70 \\
\& 103.70 \\
\& \\
\& 104.70 \\
\& 113.00 \\
\& \\
\& 116.00 \\
\& 119.00 \\
\& \\
\& \\
\& 122.00 \\
\& 125.00 \\
\& \\
\& 128.00 \\
\& \\
\& \\
\& \\
\& \\
\& \\
\& 159.00 \\
\& 162.00 \\
\& 165.00
\end{aligned}
\] \& 103.70
104.70

105.70
116.00
119.00
122.00

125.00
128.00

131.00

134.00
137.00
140.00
143.00
146.00
149.00
162.00
165.00
168.00 \& \& 288
13069
909
296
277
106

34
143
233

257
182
216
290
237
279
316
467
1423 \& $\begin{array}{r}28 \\ 67 \\ \\ 47 \\ 25 \\ \\ 10 \\ 7 \\ \\ \hline\end{array}$ \&

\hline
\end{tabular}

From (m)	To (m)	Geology	Sample No.	From (m)	To (m)	Length (m)	Copper (ppm)	Gold (ppb)	silver (ppm)
168.70	177.00	patches. Trace bornite, chalcopyrite, pyrite. Andesite, monzonite wedges at footwall. ANDESITE Medium to dark green grey, massive. 1 to 5% white plagioclase specks. 5% biotite, chlorite. Weak epidote (k-feldspar) alteration as stringers, veinlets at 20 to 35 degrees. Matrix with epidote specks, plagioclase partly saussuritized. Magnetic. 174.65175 .30 Sheared, epidote altered, red hematite calcite coatings on fractures. Upper contact 80 degrees, lower contact 45 degrees.	31554	168.00	171.00	3.00	310	22	
177.00	205.00	SYENITE / MONZONITE Medium to light green grey, 3\% biotite in medium grey UNALTERED matrix. 30 to 50\% albite epidote $+/-k$-feldspar, calcite, chlorite, magnetite alteration as patches and bands at 30 to 40 degrees. Some alteration zones non-magnetic. Trace chalcopyrite with epidote. 175.87185 .93 Core 0.6 m short. 188.10189 .30 189.40, 189.60 m Blobs chalcopyrite on epidote albite calcite k-feldspar veinlets at 15 and 45 degrees. 190.70 epidote calcite chalcopyrite vein, 2 cm , at 15 degrees. $192.00,192.55 \mathrm{~m}$ epidote slbite magnetite calcite chalcopyrite vein, 5 cm , at 45 degrees. 192.10 to $192.25,194.85$ to 195.50 m dark chlorite $+/-$ magnetite stringers at 40 to 70 degrees. 196.95 to $197.80,200.50$ to 200.70 m intermediate dike, 40 to 45 degrees, feldspar porphyritic with feldsper saussuritized, medium green, medium grained, green epidote blebs, weakly magnetic.	$\begin{aligned} & 31555 \\ & 31556 \\ & 31557 \\ & 31558 \\ & 31559 \\ & 31695 \\ & 31696 \\ & 31697 \\ & 31698 \\ & 31699 \end{aligned}$	$\begin{aligned} & 177.00 \\ & 180.00 \\ & 183.00 \\ & 186.00 \\ & 189.00 \\ & 190.60 \\ & 193.60 \\ & 196.60 \\ & 199.60 \\ & 202.60 \end{aligned}$		3.00 3.00 3.00 3.00 1.60 3.00 3.00 3.00 3.00 3.00	728 455 331 1350 1236 649 298 1353 57 224	51 19 24 77 28 19 14 20 8 24	
205.00	215.60	BASALT / MONZONITE 70\% Basalt (205.0-206.50, 207.60-210.00, 211.00-212.95, 213.20-213.95 m). Medium to dark green, fine-grained, with 10 to 30% epidote alteration, trace chalcopyrite. 30\% monzonite Contacts at $205.0 \mathrm{~m} 30,210.0 \mathrm{~m} 45,212.95 \mathrm{~m} 50,213.20 \mathrm{~m} 75,213.95 \mathrm{~m} 45,214.50 \mathrm{~m} 50$, 215.60 m 35 degrees.	$\begin{aligned} & 31700 \\ & 31701 \end{aligned}$	$\begin{aligned} & 205.60 \\ & 208.60 \end{aligned}$	$\begin{aligned} & 208.60 \\ & 211.60 \end{aligned}$	$\begin{aligned} & 3.00 \\ & 3.00 \end{aligned}$	$\begin{aligned} & 360 \\ & 419 \end{aligned}$	12	
215.60	225.70	MONZONITE Medium grey, medium grained, massive, homogeneous, 3 to 5% disseminated biotite, 1 mm. Chlorite after hornblende. Magnetic. 5 to 10x epidote veinlets with k-feldspar envelopes at 15 and 45 degrees, also blebs epidote k-feldspar.							
225.70	242.80	MONZONITE As above, but 60% pink to red k-feldspar +/- epidote veining and green epidote albite alteration and veining, e.g at 228.0 to 229.90 m , mostly at low angle to core axis. Trace chalcopyrite.	$\begin{aligned} & 31702 \\ & 31703 \\ & 31704 \\ & 31705 \end{aligned}$	$\begin{aligned} & 233.00 \\ & 236.00 \\ & 239.00 \\ & 242.00 \end{aligned}$	$\begin{aligned} & 236.00 \\ & 239.00 \\ & 242.00 \\ & 244.75 \end{aligned}$	3.00 3.00 3.00 2.75	65 99 179 81	3 12 38 12	
242.80	244.75	bASALT Dark green, fine-grained, 10 to 20% epidote albite alteration as veins sub-parallel core axis, stringers and blebs with trace chalcopyrite. 244.75 End of hole.							

SAMPLE\#	$\begin{array}{\|c} \hline \text { Mo } \\ \text { Ppp } \end{array}$	$\begin{gathered} \mathrm{Cu} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \mathrm{Pb} \\ \mathrm{PPD} \end{array}$			ppm	$\begin{gathered} \text { Co } \\ \text { ppm } \end{gathered}$	$\begin{aligned} & \mathrm{Mn} \\ & \mathrm{ppm} \end{aligned}$		$\begin{aligned} & e \mathrm{As} \\ & \times \mathrm{ppm} \end{aligned}$	$\begin{gathered} u \\ \text { ppm } \end{gathered}$	$\underset{\mathrm{pppm}}{\mathrm{Au}}$	Th ppm	$\begin{gathered} \text { Spr } \\ \text { pppm } \end{gathered}$	$\begin{gathered} \mathrm{cd} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \text { Sb } \\ \text { pppm } \end{array}$	$\begin{gathered} \text { Bi } \\ \text { ppm } \end{gathered}$		$\begin{gathered} \mathrm{CB} \\ \boldsymbol{2} \end{gathered}$		$x_{\text {ppon }}$		$\begin{gathered} \mathrm{Mg} \\ \boldsymbol{2} \end{gathered}$		$\begin{gathered} \overline{T i} \\ \boldsymbol{z} \end{gathered}$	$\underset{\text { pppm }}{B}$	$\begin{gathered} A l \\ Z \end{gathered}$	$\begin{array}{r} \mathrm{Na} \\ \mathrm{x} \end{array}$		$\begin{gathered} W \\ \text { pPom } \end{gathered}$	$\begin{gathered} A u^{m *} \\ \text { ppb } \end{gathered}$	
E 93244	2	166	6		<. 3	6	8	487	4.01	6	< 5	<2	<2	183	<. 2	<2	<2	132	1.92	. 177	9	8	. 68	38	. 16	3	1.28	. 10	. 10	<2	8	14
E 93245	2	157	12		<. 3	12	12	519	4.50	3	<5	<2	<2	160	. 3	<2	3	158	2.03	. 207		8	1.00	57	. 19	3	1.52	. 08	. 23	<2	12	15
31509 M	7	253	6	25	<. 3	7	37		3.54	15	<5	<2	<2	48	<. 2	<2	2	51	3.16	. 065	5	5	. 24	24	. 01	-3	. 54	. 03	. 13	10	143	12
31510 M	2	760	8	47	. 4	7	22	605	4.61	5	<5	<2	<2	115	<. 2	<2	5	137	2.23	. 195	d	6	. 84	43	. 18	3	1.12	. 07	. 23	3	122	15
31511 M		1050	5	48	. 9	6	75	565	5.51	23	<5	<2	<2	81	<. 2	<2	4	128	1.92	. 186	7	5	. 91	26	. 16	3	1.04	. 06	. 20	<2	450	14
31512 M	2	165	6			8	19		3.74	8	<5	<2	<2	100	<. 2	<2		108	2.73	. 184	7		1.04	20	. 13		1.15	. 05	. 12	<2	47	16
31513 M	3	1438	4	53	. 7	7	73	719	5.40	17	<	<2	<2	71	. 4	<2	5	123	1.89	. 194		5	1.64	19	. 09	3	1.57	. 04	. 16	<2	198	16
31514 M	1	171	<3	45	<. 3	8	11		4.07	2	<5	<2	<2	108	<. 2	<2	2	117	2.46	. 197	7	6	1.08	39	. 13	5	1.32	. 05	. 26	<2	23	15
31515 M	5	579	4	45	. 4	7	39	828	4.41	14	< 5	<2	<2	76	. 3	2	2	122	3.69	. 174	7	6	. 89	26	. 08	4	1.09	. 03	. 27	<2	227	13
31516 M	1	225	7		<. 3	9	16	742	4.63	<2	<	<2	<2	92	. 2	<2	3	165	2.82	. 181	8	5	1.17	39	. 15	<	1.01	. 06	. 30	<2	26	15
RE 31516 M	1	224	3			9	16		4.65	7	<5	<2	<2	94	<. 2	<2		166	2.84	. 185	9		1.18	41	. 15	3	1.03	. 05	. 30	<2	23	
RRE 31516 M	1	217	4	57	. 3	7	16		4.66	5	<	<2	<2	91	<. 2	<2		166	2.72	. 187		6	1.19	45	. 15	c 3	1.03	. 05	. 30	<2	29	-
31517 M	2	268	<3		<. 3	8	19		4.55	10	<	<2		108	<. 2	<2	4	163	2.81	. 184			1.25	53	. 15	3	1.15	. 05	. 39	<2	26	15
31518 M	2	215	3		<. 3	9	22		4.85	5	< 5	<2	<2	117	<. 2	<2	<2		4.11	. 211	7		1.26	87	. 15	5	1.40	. 05	. 44	<2	26	13
31519 M	2	166	<3	65	<. 3	8	17	839	5.12	10	<5	<2	<2	101	. 2	<2	<2	182	3.83	. 210	8	5	1.30	60	. 12	3	1.34	. 05	. 41	4	21	14
31520 M	2	279	<3			9	18	766	4.49	12	< 5	<2	<2	82	<. 2	<2	<2	149	3.70	. 172	9	7	1.15	38	. 08	<3	1.20	. 03	. 26	<2	28	15
31521 M	2	276	6	47	. 3	5	45	749	5.23		5	<2	<2	75	. 4	2	2	147	2.95	. 173	7	6	1.41	37	. 11	3	1.46	. 04	. 44	<2	42	14
31522 M	2	143	6	54	. 3	10	26		4.70	19	<	<2	<2	82	. 3	2	<2	142	3.32	. 180	7		1.42	33	. 11	3	1.50	. 05	. 39	<2	26	16
31523 M	4	461	3	59	. 3	8	15		3.91	9	5	<2	2	84	<. 2	2	<2	107	3.25	. 148	16	14	1.17	72	. 04	<3	1.46	. 05	. 31	<2	27	12
31524 M	6	297	4		< 3	5	43	741	4.18	10	5	<2	<2	66	. 2	2	<2	104	3.69	. 166	,	5	. 82	31	. 02	<3	1.24	. 02	. 23	<2	53	12
RE 31524 M	6	292	6		<. 3	6	42		4.15	13	5	<2	<2	65	<. 2	<2	5	103	3.67	. 168	8	5	. 81	33	. 02	<3	1.22	. 03	. 22	2	51	-
RRE 31524 M	9	309	6		<. 3	6	54		4.43	14	6	<2	<2	66	. 7	<2	<2		3.64	. 172	9	6	. 87	37	. 02	3	1.30	. 02	. 22	2	52	\bigcirc
31525 M	36	3364	<3		2.5	4	85	816	5.24	25	<5	<2	<2	66	. 7	6	10		3.89	. 182	-9	4	. 85	65	. 02	3	1.36	. 02	. 43	10	2205	15
31526 M	2	108	<3	65	< 3	5	14	827	3.95	τ	5	<2	<2	94	<. 2	<2	3	123	3.12	. 196	9	5	. 86	42	. 13	3	1.07	. 05	. 43	<2	39	15
STANDARD C/AU-R	20	60	36	123	6.0	65	31	1060	3.94	36	19	6	35	51	16.5	16	22	59	. 50	. 091	38	57	. 89	189	. 08	24	1.84	. 06	. 14	8	482	-

Sample type: CORE. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^0]

[^1]

Sample type: CORE. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

ACME MNAL SAMPLE		W	$180 R$	MOR	IES ona	IIM						$\begin{aligned} & \text { CAI } \\ & \frac{L t d}{20} \end{aligned}$	$\begin{gathered} \text { ARE } \\ \text { Taron } \end{gathered}$	ROJ	818 ECTI	CE		FTC 4 288	Fil			40			ge	1					
	$\begin{array}{r} \text { Mo } \\ \text { ppm } \end{array}$	$\begin{gathered} \mathrm{Cu} \\ \mathrm{ppm} \\ \hline \end{gathered}$	$\begin{array}{r} \text { Pb } \\ \mathbf{p p} \boldsymbol{m} \end{array}$	$\begin{array}{r} \mathbf{Z n} \\ \text { ppm } \end{array}$	$\begin{array}{r} A g \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Mi} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \text { Co } \\ \text { ppm } \\ \hline \end{array}$	$\begin{gathered} \mathrm{Mn} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \mathrm{Fe} \\ \mathrm{Z} \end{array}$	$\begin{gathered} \text { As } \\ \text { ppm } \end{gathered}$	$\begin{array}{r} \mathrm{U} \\ \text { ppm } \end{array}$	$\begin{array}{r} \text { Au } \\ \text { ppon } \end{array}$	$\begin{array}{r} \text { Th } \\ \text { ppm } \end{array}$	$\begin{array}{r} \mathbf{S r} \\ \mathbf{p p p m} \end{array}$	cd ppm	$\begin{array}{r} \text { Sb } \\ \text { ppian } \end{array}$	$\begin{array}{r} 8 i \\ \text { ppm } \end{array}$	$\begin{array}{r} v \\ \text { ppm } \end{array}$	Ca	$\begin{aligned} & \mathbf{P} \\ & \mathbf{Z} \end{aligned}$	$\begin{gathered} \text { La } \\ \text { ppin } \end{gathered}$	$\begin{array}{r} \mathrm{Cr} \\ \mathrm{ppm} \\ \hline \end{array}$	$\begin{gathered} \mathrm{Mg} \\ \mathbf{Z} \end{gathered}$	$\begin{gathered} \mathrm{Ba} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \mathrm{Ti} \\ \mathrm{Z} \end{array}$	$\begin{array}{r} 8 \\ \text { ppin } \\ \hline \end{array}$	$\begin{gathered} \text { Al } \\ Z \end{gathered}$	$\begin{gathered} \mathrm{Na} \\ \Sigma \end{gathered}$	$\begin{aligned} & K \\ & Z \end{aligned}$	ppm	$\mathrm{u}^{\star \star}$
31501 M	2	211	12	28	. 5	37	15	586	3.33	20	<5	<2	2	133	<. 2	6	<2	92	3.23	. 145	8	12	1.20	31	. 09	5	1.15	. 05	. 12	<2	73
31502 M	1	194	<3	23	<. 3	10	52	506	4.00	6	<5	<2	<2	98	< 2	<2	<2	84	2.35	. 150	8	5	1.13	21	. 08	<3	1.23	. 05	. 11	<2	105
31503 M	2	211	6	44	<. 3	11	14	368	4.21	5	<5	<2	<2	168	<. 2	<2	<2	123	1.60	. 156	8	6	. 68	37	. 12	3	1.15	. 08	. 11	<2	21
31504 M	4	502	7	44	. 3	5	74	418	4.23	17	<5	<2	<2	156	<. 2	<2	4	106	1.82	. 145	8	5	. 58	43	. 11	6	1.17	. 08	. 12	66	348
31505 M	2	157	7	61	<. 3	4	12	479	4.16	2	<5	<2	<2	174	. 2	<2	<2	130	2.03	. 177	9	6	. 52	35	. 14	4	1.27	. 09	. 10	2	23
31506 M	2	197	3	57	<. 3	5	16	461	4.12	7	<5	<2	<2	153	<. 2	<2	2	125	1.90	. 153	10	6	. 45	50	. 13	3	1.24	. 09	. 10	<2	618
31507 M	8	554	4	59	. 5	5	43	451	4.65	33	<5	<2	<2	172	. 5	<2	2	126	1.89	. 161	9	6	. 37	47	. 13	3	1.26	. 11	. 10	<2	118
31508 M	2	203	7	67	<. 3	3	10	526	4.00	<2	<5	<2	<2	211	$<.2$	<2	<2	126	2.13	. 153	10	6	. 47	48	. 12	5	1.39	. 12	. 10	<2	25
31527 M	1	154	<3	59	< 3	4	11	580	4.14	3	<5	<2	<2	123	. 4	<2	<2	146	2.30	. 205	9	6	. 69	54	. 17	5	1.01	. 07	. 34	<2	16
31528 M	6	261	5	44	<. 3	5	10	444	3.26	13	<5	<2	<2	137	$<.2$	<2	3	77	1.80	. 133	8	5	. 43	33	. 12	8	. 85	. 05	. 10	<2	27
RE 31528 m	6	266	5	45	<.3	7	9	449	3.28	12	<5	<2	<2	138	. 3	<2	<2	78	1.82	. 132	8	6	. 43	35	. 12	6	. 85	. 05	. 09	<2	25
RRE 31528 M	6	283	6	47	<. 3	3	10	469	3.58	10	<5	<2	<2	144	. 2	<2	<2	84	1.86	. 138	7	5	. 46	35	. 13	8	. 89	. 06	. 10	<2	25
31529 M	4	695	4	40	<. 3	4	12	377	6.54	12	<5	<2	<2	93	<. 2	<2	3	93	1.05	. 104	6	6	. 25	44	. 12	4	. 67	. 06	. 12	<2	47
31530 M	8	326	7	54	< 3	4	5	491	2.85	5	<5	<2	<2	97	. 5	<2	<2	50	1.37	. 087	6	8	. 20	35	. 12	7	1.00	. 13	. 08	<2	12
31531 M	8	753	5	46	$<.3$	7	10	662	4.62	10	<5	<2	<2	136	$<.2$	<2	<2	84	2.92	. 114	6	12	. 52	29	. 13	10	. 97	. 08	. 09	<2	27
31532 M	8	1128	9	52	. 5	7	15	678	4.26	16	<5	<2	<2	169	<. 2	<2	<2	103	3.10	. 179	7	6	. 85	31	. 13	6	1.12	. 04	. 08	<2	65
31533 M	9	568	8	61	<. 3	9	16	870	4.00	24	<5	<2	<2	209	<. 2	<2	8	118	3.34	. 181	7		1.30	35	. 17	7	1.60	. 04	. 09	<2	24
31534 M	2	283	5	71	< 3	6	20	939	5.83	23	<5	<2	<2	144	$<.2$	<2	2	154	3.07	. 207	6		1.90	36	. 22	4	2.25	. 05	. 19	<2	30
31535 M	1	40	8	84	<. 3	5	23	1050	6.89	26	5	<2	<2	177	. 2	<2	<2	174	2.97	. 205	6		2.19	35	. 29	5	2.78	. 04	. 26	<2	10
31536 M	1	288	4	58	<. 3	5	19	683	5.26	21	< 5	<2	<2	100	. 3	<2	2	130	2.18	. 201	5	4	1.40	46	. 23	5	1.79	. 14	. 61	<2	28
31537 M	2	13069	4	48	1.8	6	15	735	4.16	14	<5	<2	<2	74	$<.2$	<2	12	92	3.67	. 142	5		1.17	21	. 17	3	1.30	. 04	. 18	2	67
31538 M	1	909	4	72	< 3	9	20	709	5.37	22	<5	<2	<2	102	< 2	<2	<2	123	2.01	. 206	5		1.43	43	. 23	4	1.81	. 09	. 40	<2	47
31539 M	3	296	6	90	<. 3	5	22	758	5.74	19	<5	<2	<2	160	< 2	<2	<2	132	2.44	. 203	5		1.79	31	. 24	<3	2.12	. 09	. 38	<2	25
31540 M	3	277	3	89	<. 3	5	19	714	5.74	18	<5	<2	<2	105	. 2	<2	4	146	1.77	. 187	4		1.96	54	. 27	<3	2.17	. 08	. 69	<2	10
RE 31540 M	4	284	7	89	$<.3$	6	21	718	5.84	22	5	<2	<2	106	<. 2	<2	3	148	1.77	. 193	4		1.99	56	. 27	4	2.22	. 08	. 70	<2	10
RRE 31540 H	4	501	7	91	$<.3$	7	22	745	6.12	22	<5	<2	<2	117	<. 2	<2	6	154	1.89	. 196	5		2.02	56	. 28	6	2.32	. 09	. 68	<2	18
31541 M	5	106	5	33	<. 3	6	7	521	3.69	11	<5	<2	<2	111	<. 2	<2	<2	73	2.50	. 138	4	10	. 73	10	. 15	5	. 99	. 06	. 09	<2	7
31542 M	5	- 34	4	42	<. 3	10	8	660	4.59	17	<5	<2	<2	115	<. 2	<2	<2	84	2.77	. 167	4	16	1.11	12	. 15	8	1.24	. 06	. 05	<2	6
31543 M	4	143	6	43	<. 3	5	7	523	4.57	20	<5	<2	<2	134	$<.2$	<2	<2	96	2.07	. 172	4	13	. 95	15	. 17	6	1.20	. 06	. 08	<2	13
31544 M	7	233	6	41	< 3	5	6	455	4.41	11	<5	<2	<2	66	. 5	<2	<2	64	1.58	. 076	5	5	. 39	19	. 12	5	. 56	. 05	. 10	<2	15
31545 M	ó	257	4	30	$<.3$	6	6	463	2.43	6	<5	<2	<2	59	$<.2$	<2	3	44	1.74	. 085	5	9	. 46	14	. 13	7	. 62	. 06	. 10	<2	9
31546 M	4	182	5	30	<. 3	4	6	493	1.81	7	<5	<2	<2	57	<. 2	<2	4	32	1.78	. 072	5	5	. 54	16	. 12	7	. 60	. 06	. 09	<2	7
31547 M	7	216	7	30	$<.3$	4	6	468	1.95	8	<5	<2	<2	66	< 2	<2	<2	34	1.81	. 070	5	7	. 45	23	. 12	7	. 68	. 07	. 09	<2	17
31548 M 31549	7	290	7	32	$<.3$	5	6	497	1.61	4	<5	<2	<2	82	< 2	2	2	27	1.94	. 063	5	7	. 35	21	. 12	13	. 59	. 06	. 10	<2	16
31549 M	4	237	<3	53	$<.3$	5	18	736	4.23	16	<5	<2	2	138	< 2	<2	<2	76	3.24	. 102	6	4	. 63	15	. 11	5	. 93	. 04	. 07	<2	20
$31550 \mathrm{~m}$ 31551	9	279	5	36	<. 3	5	14	729	3.02	15	<5	<2	<2	78	<. 2	<2	<2		3.26	. 094	5	6	. 71	8	. 09	5	. 79	. 05	. 05	<2	23
31551 M	6	316	4	49	< 3	5	11	497	4.17	16	<5	<2	<2	127	< 2	<2	<2	102	1.76	. 151	7	4	. 58	21	. 14	5	. 90	. 06	. 11	<2	25
STANDARD C/AU-R	20	61	36	131	6.4	65	31	994	4.07	39	21	6	37	51	17.7	15	20	58	. 51	. 094	40	58	. 91	188	. 09	25	1.92	. 05	. 16	9	459

- SAMPLE TYPE: CORE AU** AMALYSIS BY FA/ICP FRON 30 GM SAMPLE.

Samples beginning 'RE' are Reruns and 'RRE' are Reiect Rerunst

Sample type: CORE. Samples beginning 'RE' are Reruns and 'RRE' are Reiect Reruns.

Sample type: CORE. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^2]

SAMPLE*	$\begin{array}{\|rr} \text { Mo } & \text { Cu } \\ \text { ppmin } & \text { pppm } \\ \hline \end{array}$	Pb ppm	$\begin{array}{r} 2 n \\ p p m 1 \\ \hline \end{array}$	$\begin{gathered} \mathrm{Ag} \\ \mathrm{ppm} \end{gathered}$	$\underset{\text { ppm }}{\mathrm{mi}}$	$\begin{gathered} \mathrm{Co} \\ \mathrm{ppm} \\ \hline \end{gathered}$	$\begin{array}{r} \mathrm{Mn} \\ \mathrm{ppm} \\ \hline \end{array}$	Fe re \%	$\begin{array}{r} \text { As } \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{u} \\ \mathrm{ppom} \end{array}$	$\begin{gathered} \mathrm{Au} \\ \mathrm{ppm} \mathrm{p} \end{gathered}$	$\begin{aligned} & \text { Th } \\ & \text { ppon } \end{aligned}$	$\begin{array}{r} \text { Sr } \\ \text { ppon } \end{array}$	Cd ppm	$\begin{gathered} \text { Sb } \\ \text { ppmin } \end{gathered}$	$\begin{array}{r} \text { Bi } \\ \text { ppn } \\ \hline \end{array}$	$\begin{array}{r} v \\ \text { pponn } \end{array}$	$\begin{gathered} C \Delta \\ Z \end{gathered}$	$\begin{aligned} & \mathbf{P} \\ & \mathbf{Z} \end{aligned}$	Le ppn	$\begin{array}{r} \mathrm{cr} \\ \mathrm{ppm} \end{array}$	Mg \bar{x}	$\begin{gathered} \mathrm{Ba} \\ \mathrm{ppm} \\ \hline \end{gathered}$	$\begin{array}{r} 1 i \\ X \\ \hline \end{array}$	$\begin{array}{r} \text { B } \\ \text { ppm } \end{array}$	$\begin{aligned} & \text { A! } \\ & \mathbf{K} \end{aligned}$	$\begin{gathered} \mathrm{Na} \\ \mathbf{\%} \\ \hline \end{gathered}$	$\begin{aligned} & \mathbf{K} \\ & \boldsymbol{z} \\ & \hline \end{aligned}$	$\begin{array}{r} 4 \\ \text { ppm } \end{array}$	$\begin{aligned} & \text { Au** } \\ & \text { ppb } \end{aligned}$	$\begin{aligned} & \text { PLE } \\ & \text { Ib } \end{aligned}$	
31552 M	3467	3	69	. 4	9	14	463	4.87	12	< 5	<2	<2	130	. 5	3	<2	145	1.44	. 161	7	14	. 60	66	. 18	<3	1.13	. 10	. 21	<2	43	16	
31553 M	41423	<3	65	1.0	11	13	490	4.69	13	<5	<2	<2	121	. 7	<2	4	139	1.90	. 153	6	27	. 91	67	. 22	7	1.54	. 12	. 27	<2	25	16	
31554 M	4310	7	87	. 5	9	21	738	7.22	22	< 5	<2	<2	86	1.0	<2	<2	194	1.70	. 173	5	61	1.33	101	. 30	3	1.53	. 09	. 66	<2	22	16	
31555 M	4728	3	50	. 3	7	13	774	3.61	18	<5	<2	<2	115	. 4	<2	<2	109	3.47	. 176	7	51	1.03	43	. 16	13	1.17	. 06	. 17	<2	51	15	
31556 M	6455	8	50	. 5	5	14	751	4.05	18	<5	<2	<2	94	.7	<2	<2	113	3.06	. 183	6	51	1.21	47	. 15	3	1.20	. 05	. 18	<2	19	15	
31557 M	$5 \quad 331$	5	58	. 3	8	16	764	4.34	15	< 5	<2	<2	90	. 2	<2	2	118	3.62	. 183	6	71	1.32	42	. 14	<3	1.34	. 05	. 16	<2	24	16	
31558 M	41350	3	55	. 6	7	13	617	4.22	14	<	<2	<2	105	. 6	2	6	119	2.65	. 185	6	51	1.17	40	. 16	4	1.15	. 05	. 16	<2	77	16	
31559 M	81236	<3	60	. 6	7	18	804	4.61	14	< 5	<2	<2	106	. 8	2	4	140	2.95	. 185	7	51	1.54	79	. 18	<3	1.47	. 06	. 26	<2	28	17	7
31560 M	161183	<3	26	. 5	10	22	393	3.64	16	<5	<2	<2	62	.3	<2	<2	130	3.06	. 120	7	231	1.13	44	. 18	3	1.23	. 04	. 53	<2	94	15	
31561 M	71075	4	19	. 5	9	16	359	2.76	15	<5	<2	<2	67	.4	<2	2	106	3.05	. 108	7	19	. 90	40	. 12	3	. 91	. 04	. 43	<2	102	15	
31562 M	81300	6	24	. 6	11	30	308	3.99	33	<5	<2	<2	60	. 2	<2	2	132	1.88	. 125	7	251	1.11	52	. 21	3	1.04	. 06	. 52	<2	118	16	6
31563 M	201349	< 3	24	. 8	12	29	298	3.96	15	< 5	<2	<2	66	. 3	<2	3	127	1.97	. 125	7	231	1.22	42	. 19	3	1.14	. 06	. 40	<2	101	15	
31564 M	191758	<3	25	. 7	12	27	394	4.13	26	< 5	<2	<2	77	. 8	<2	3	89	4.24	. 108	8	20	. 82	25	. 05	4	1.04	. 04	. 19	<2	108	15	
31565 M	71149	3	25	. 5	12	13	500	3.58	35	< 5	<2	<2	77	. 4	2	<2	94	5.96	. 117	8	16	. 65	25	. 03	5	. 99	. 04	. 22	<2	81	16	6
RE 31565 M	71131	3	26	. 6	11	12	495	3.54	33	<5	<2	<2	76	. 4	<2	<2	93	5.90	. 115	8	16	. 64	28	. 03	3	. 97	. 04	. 21	<2	81		-
RRE 31565 M	91131	<3	25	. 5	11	13	481	3.53	29	<5	<2	<2	75	. 6	<2	4	92	5.69	. 110	8	15	. 64	24	. 03	4	. 99	. 04	. 22	<2	64		-
31566 M	441262	3	22	. 4	8	13	297	2.63	17	< 5	<2	<2	60	. 4	<2	<2	66	2.74	. 073	8	14	. 71	26	. 04	5	. 79	. 05	. 19	<2	58	16	6
31567 M	81335	<3	18	. 5	8	10	321	1.94	8	< 5	<2	<2	49	<. 2	2	<2	51	2.24	. 059	9	15	. 74	22	. 03	3	. 52	. 04	. 17	<2	95	15	5
31568 M 31569	61335	3	26	. 6	14	16	323	3.27	12	< 5	<2	<2	55	<. 2	2	2	93	1.96	. 080	7	21	. 97	43	. 12	3	. 87	. 05	. 28	<2	84	15	5
31569 M	71205	4	24	. 4	11	20	381	2.90	6	<5	<2	<2	49	. 3	2	6	69	2.90	. 068	6	12	. 73	28	. 05	5	. 84	. 04	. 18	<2	70	18	8
31570 M	91264	<3	24	. 5	12	13	471	3.99	8	6	<2	<2	66	.4	<2	3	105	4.11	. 090	6	14	. 87	28	. 07	4	1.14	. 03	. 22	<2	72	16	6
31571 M	5559	4	27	. 3	12	12	3%	3.37	9	<5	<2	<2	53	. 3	<2	4	92	2.69	. 075	6	28	. 96	22	. 09	3	. 90	. 04	. 18	<2	33	16	6
31572 M	$\begin{array}{ll}3 & 824\end{array}$	6	44	. 6	40	22	471	5.53	19	5	<2	<2	71	. 6	<2	<2	176	2.41	. 131	7	1031	1.81	122	. 27	<3	1.44	. 06	. 61	<2	47	15	5
31573 M	51217	3	28	. 6	14	27	372	4.05	13	< 5	<2	<2	63	1.0	<2	<2	126	2.17	. 112	6	271	1.13	44	. 19	3	1.02	. 06	. 36	<2	86	15	5
31574 M	3918	<3	26	. 3	15	22	354	3.55	10	<5	<2	<2	62	. 6	<2	<2	116	1.95	. 122	7	301	1.15	44	. 17	<3	. 99	. 05	. 36	<2	52	16	6
31575 M	3271	4	20	<. 3	5		325	3.91	8	<5	<2	<2	76	. 2	<2	3	103	2.02	. 140	9	5	. 83	38	. 10	<3	. 97	. 06	. 24	<2	15	16	
31576 M	1289	<3	35	<. 3	25	12	690	3.69	11	5	<2	3	92	<. 2	<2	2	110	5.17	. 127	9	571	1.08	82	. 11	3	1.27	. 04	. 37	<2	23	16	6
31577 M	4260	4	24	<. 3	5	11	567	3.73	23	7	<2	<2	81	. 2	2	<2	64	4.81	. 115	10	5	. 58	35	. 02	5	. 82	. 04	. 15	<2	32	15	5
RE 31577 m	4252	3	23	< 3	5	11	548	3.61	26	<5	<2	<2	78	. 6	<2	<2	61	4.63	. 113	10	4	. 56	31	. 02	3	. 78	. 04	. 14	<2	35	-	-
RRE 31577 M	4261	3	24	<. 3	4	11	556	3.72	22	5	<2	<2	80	. 2	<2	<2	64	4.71	. 114	10	5	. 57	27	. 02	3	. 82	. 04	. 15	<2	31		-
31578 M	$\begin{array}{ll}5 & 674\end{array}$	5	26	. 3	10	13	524	3.47	24	<5	<2	<2	60	. 5	<2	2	96	3.80	. 110	8	18	. 98	33	. 07	4	. 69	. 05	. 17	<2	88	16	6
31579 M	5777	3	27	. 3	11	12	727	3.91	6	9	<2	<2	85	. 5	<2	<2	119	5.21	. 107	8	27	1.05	35	. 14	5	1.07	. 05	. 33	<2	65	16	6
31580 M	$\begin{array}{ll}4 & 897\end{array}$	3	33	. 4	13	16	559	4.99	13	6	<2	<2	84	.4	<2	<2	165	3.93	. 123	7	27	1.27	123	. 18	4	1.19	. 05	. 39	<2	55	17	7
$31581 \mathrm{M}$	51193	<3	23	. 5	7	13	243	3.03	6	5	<2	<2	55	. 2	<2	<2	75	2.04	. 105	8	11	. 62	35	. 10	<3	. 72	. 06	. 17	<2	101	16	6
31582 M	41367	4	20	. 5	5	13	384	2.68	7	6	<2	<2	68	.3	<2	<2	72	3.69	. 124	10	5	. 64	36	. 08	<3	. 78	. 05	. 19	<2	107	16	6
$\begin{aligned} & 31583 \mathrm{M} \\ & 31584 \mathrm{M} \end{aligned}$	$\begin{array}{ll}8 & 425 \\ 9 & 776\end{array}$	4	21 18	< 3	4	9	271	3.22 3.54	7 2	7	<2	<2	62 51	< 2	<2	<2	97	2.42 1.93	. 130	8 7	5	.78 .80	35	.13 .16	<3	. 92	. 07	. 20	<2	26	15 16	5
STANDARD C/AU-R	2063	35	128	6.2	67	32	982	4.03	43	19	7	36	51	18.2	17	21	57	. 51	. 092	39	57	. 91	183	. 08	31	1.86	. 06	. 15	10	388		6

Sample type: CORE. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

ICP - . 500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER.
THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL.
ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1X, AG > 30 PPM \& AU > 1000 PPB
SAMPLE TYPE: CORE AU** ANALYSIS BY FA/ICP FROM 30 GM SAMPLE.
Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

SIGNED BY......... .D.TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS

[^0]: IC - . 500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-hNO3-H2O at 95 DEg. C FOR ONE HOUR AND IS DILUTED TO 10 ML HI TH HATER
 THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR MA K AND AL.
 ASSAY RECOMHENDED FOR ROCK AND CORE SAMPLES IF CU PB 2N AS > 1\%, AG > 30 PPM 8 AU > 1000 PPR
 SAMPLE TYPE: CORE AU** ANALYSIS BY FA/ICP FROM 30 GM SAMPLE.
 Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns,

[^1]: Sample type: CORE. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^2]: ICP - . 500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-hnO3-hZO AT 95 DEG. C FOR ONE HOUR AMD IS DILUTED TO 10 ML WITH WATER.
 THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B G AMD LIMITED FOR MA K AMD AL.
 ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS $\geqslant 1 \%$, AG >30 PPN \& AU >1000 PPB

 - SAMPLE TYPE: CORE AU** ANALYSIS BY FA/ICP FROM 30 GN SAMPLE.
 Samples beginning 'RE' are Reruns ond 'RRE' are Reject Reruns.

