DIAMOND DRILLING REPORT

on the

LAIDMAN PROPERTY (CR 31-38, LD 1-11 and Laid 1-6 Claims)

> Omineca Mining Division British Columbia

NTS 93F/3 53° 10' North Latitude 125° 13' West Longitude

FEB 0 4 1998

Gold Commissioner's Office VANCOUVER, S.C.

by

P. E. Fox, Ph.D, P. Eng.

FOX GEOLOGICAL SERVICES INC. 1409 - 409 Granville Street Vancouver, BC V6C 1T8

Work Paid for by PHELPS DODGE CORPORATION OF CANADA, LIMITED

January 23, 1998

TABLE OF CONTENTS

	Page
SUMMARY	i
INTRODUCTION	1
LOCATION ACCESS and PHYSIOGRAPHY	1
PROPERTY STATUS	1
PERMITS	
HISTORY	5
REGIONAL GEOLOGY	5
PROPERTY GEOLOGY	
MINERALIZATION	
1995 WORK PROGRAM	
CONCLUSIONS	
DISBURSEMENTS	
BIBLIOGRAPHY	
CERTIFICATES	
List of Tables	
Table I - Claim Data	
List of Figures	
Figure 1 - Location Map	2
Figure 2 - Claim Map	
Figure 3 - Regional Geology	
Figure 4 - Geology and Drill Sites	
Figure 5 - 110 Zone Detailed Geology and Drill Sites	
Figure 6a - Diamond Drill Section 97-1	
Figure 6b - Diamond Drill Section 97-2, 97-3	
Figure 6c - Diamond Drill Section 97-4	ocket
Figure 6d - Diamond Drill Section 97-5	ocket
Appendices	
Appendix I - Diamond Drill Logs	13
Appendix II - Analytical Method and Certificates	. 14

SUMMARY

A diamond drill program was conducted on the Laidman gold prospect during August, 1998. The property is situated in the plateau region of central British Columbia, 155 kilometres southwest of Vanderhoof. The prospect lies in the Nechako Arch, part of the Intermontane accretionary belt of British Columbia, close to the easterly trending Top Lake Lineament. The western part of the property is underlain by Hazelton Group volcanic and sedimentary rocks of Jurassic age and the remainder by granitic rocks of the Cretaceous age Laidman Lake batholith. Extensive argillic alteration and quartz stockwork zones were discovered in 1996 along several logging roads and clear-cut blocks leading to the discovery of a zone of quartz veinlets bearing up to 19.6 gpt gold from bedrock and rubble crop exposures (Discovery zone). Further work in 1996 identified the 110 zone, a partially exposed quartz breccia zone which has returned up to 5640 ppb gold in soils and 1,440 ppb gold in rocks. A less well-defined zone of float and quartz rubble bearing up to 8 gpt gold is located 200 metres west of the Laid 1 corner post.

i

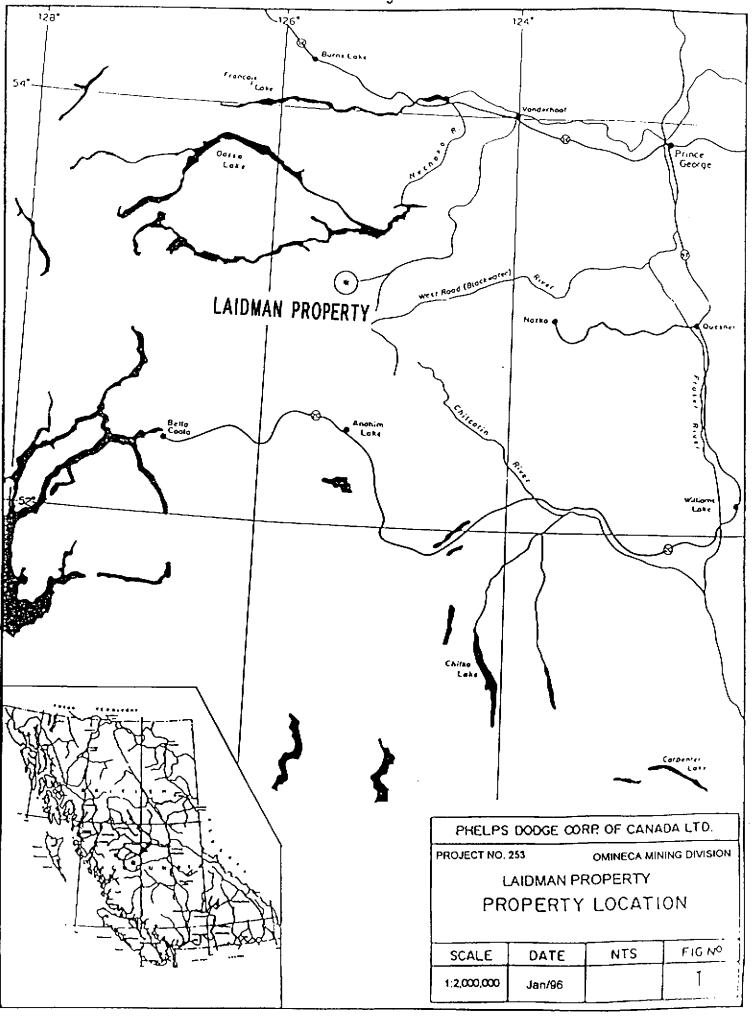
The 1997 diamond drill program consisted of five holes, totaling 1004.5 metres, drilled between August 10 and 26. Drill hole 97-1 was drilled to test mineralization in the original Discovery zone, holes 97-2 through 97-5 tested the 110 zone. Drilling in both zones intersected granite and diorite with lesser monzodiorite and several dacitic to rhyolitic dykes. These rocks are argillic and chlorite altered with local sericitization and silicification. Pyrite is common, occurring as disseminations, clots, fracture fillings and veinlets. Rare traces of chalcopyrite and arsenopyrite were also observed. Gold content was generally low, with only narrow intervals exceeding 100 ppb (up to 192 ppb). The best results were from DDH 97-5 where a heavily silicified interval between two dacite dykes averaged 643 ppb gold over 4.1-metres and DDH 97-4, which returned 18-metres of 116.7 ppb gold.

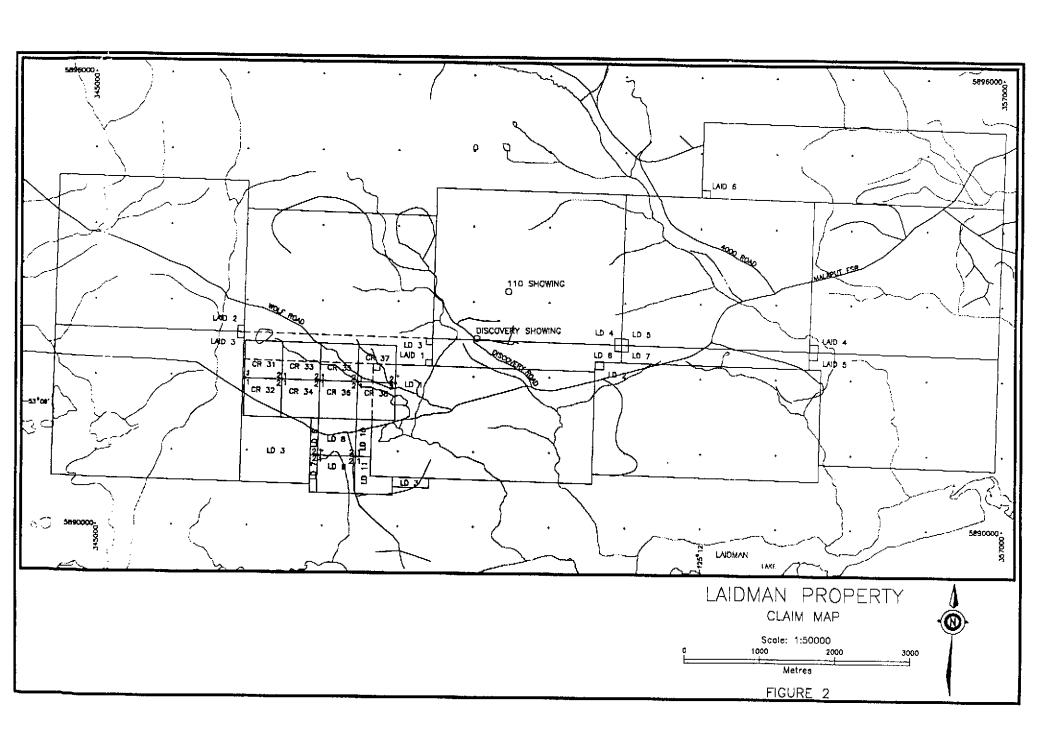
INTRODUCTION

This report describes a diamond drill program conducted on the Laidman gold prospect between August 10 and 26, 1997. Five holes were drilled for a total of 1004.5 metres. Method and results of this program are discussed herein.

LOCATION, ACCESS AND PHYSIOGRAPHY

The Laidman property is situated on the south slopes of the Fawnie Range within the Nechako Plateau of British Columbia. Topography is gentle to moderate with elevations ranging from 1,000 to 1,500 metres. The property is located on NTS map sheet 93 F/3 (Figure 1), 155 road kilometres southwest of Vanderhoof.

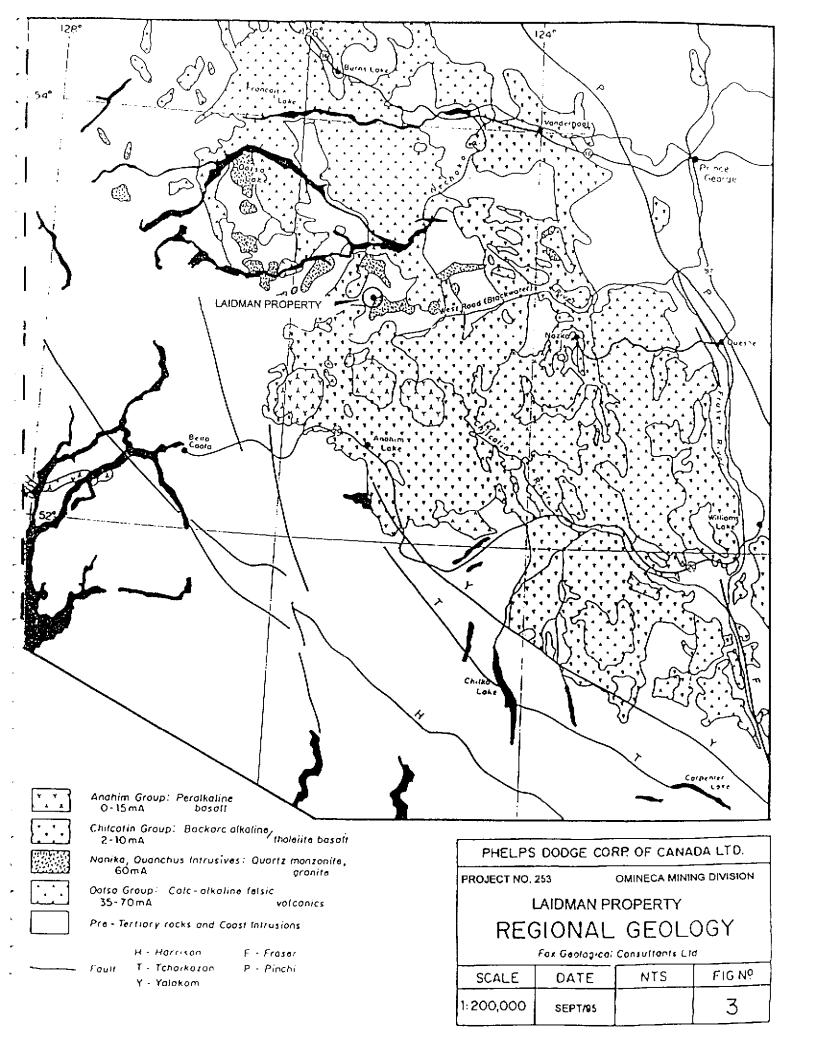

Access to the claims from Vanderhoof is via the Kluskus-Ootsa Forest Service Road for approximately 140 kilometres and then southwest along the Kluskus-Malaput Forest Service road for 15 kilometres. Several short spur roads provide local access to the property. Forest cover is typical of the region, consisting of spruce and pine. Approximately half of the property has been logged by clear cut methods.


PROPERTY STATUS

The Laidman property consists of 14 two-post claims and 13 four-post claims, located in the Omineca Mining Division and shown on B.C. Ministry of Employment and Investment claim maps 93F/3E and 93F/3W (Figure 2). The claim block contains a total of 231 units, however, the effective claim area is somewhat less as the LD 3, 6 and 7 claims, staked during 1996 to cover possible gaps in the property, largely overstake pre-existing claims. Pertinent claim data is tabulated in Table 1 below. Expiry dates shown assume that the current work is accepted for assessment purposes.

Table I: CLAIM DATA										
Name	Tenure No.	Units	Expiry							
CR 31	326633	1	June 3, 2001							
CR 32	326634	1	June 3, 2001							
CR 33	326635	1	June 3, 2001							
CR 34	326636	1	June 3, 2001							
CR 35	326637	1	June 3, 2001							
CR 36	326638	1	June 3, 2001							
CR 37	326639	1	June 3, 2001							
CR 38	326640	1	June 3, 2001							
LD-1	331898	18	October 18, 2000							
LD-2	331899	18	October 20, 2000							
LD 3	348120	20	June 30, 1999							
LD-4	331900	20	October 19, 2000							
LD-5	331901	20	October 19, 2000							
LD-6	331914	1	October 20, 2000							
LD-6	348114	5	June 30, 1999							
LD-7	331915	1	October 20, 2000							
LD-7	348115	5	June 30, 1999							
LD-8	331916	1	October 20, 2000							
LD-9	331917	1	October 20, 2000							
LD-10	331918	1	October 20, 2000							
LD-11	331919	1	October 20, 2000							
Laid 1	326059	20	June 3, 1999							
Laid 2	348118	20	June 30, 1999							
Laid 3	348119	20	June 30, 1999							
Laid 4	348116	20	June 30, 1999							
Laid 5	348117	15	June 30, 1999							
Laid 6	348121	16	June 28, 1999							

PERMITS


All work conducted on the Laidman Property during 1997 was performed under B.C. Ministry of Energy, Mines and Petroleum Resources Annual Work Approval Number PRG-1997-1000843-8579.

HISTORY

Most of the CR and LD claims were staked by Cogema Resources in 1994, when Phelps Dodge Corporation of Canada staked the Laid 1 claim. There is no recorded history of work prior to this time, however, claim posts dating from the 1970's have been found within the property boundaries. During 1994, Cogema and Phelps Dodge conducted geological mapping, prospecting, rock and reconnaissance style till/soil sampling on their respective claims. Cogema prospectors discovered mineralized rocks of the Laidman batholith on a logging road on the LD 4 claim and a zone of skarn mineralization on the western CR claims. Phelps Dodge acquired the Cogema claim block in 1995 and performed extensive mapping, prospecting, rock sampling and trenching over two seasons, identifying the Discovery and "110" mineralized zones.

REGIONAL GEOLOGY

The Laidman gold prospect lies in the Intermontane Belt of British Columbia, a collage of accretionary plates of the Stikinia, Cache Creek and Quesnellia Terranes. These terranes are composed of late Paleozoic to Mesozoic marine volcanic and sedimentary rocks and Mesozoic to late Tertiary marine and non-marine sedimentary and volcanic rocks. The Yalakom and Fraser Fault systems bound the plateau to the southwest and northeast (Figure 3). The claims lie in the Nechako Arch, which consists of several volcanic-stratigraphic groups ranging in age from Jurassic to Miocene. Pre-Tertiary rocks of the Nechako Arch include lower Cretaceous Skeena Group, an assemblage of easterly-derived clastic rocks, the middle Jurassic Hazelton Group, which is composed of arc-type calcalkaline volcanic and volcaniclastic rocks, and granitic plutons of Cretaceous age. The plutons include the Laidman Lake body, which hosts the Laidman gold prospect, and the Capoose batholith to the north, which is associated with the Capoose Lake silver-gold prospect (28 million tonnes grading 36 gpt silver and 0.9 gpt gold). Tertiary and younger rocks comprise the Ootsa Lake Group, which consists of rhyolitic to dacitic tuff, flows and breccias, and Miocene Chilcotin group vesicular basalt flows.

PROPERTY GEOLOGY

The Laidman prospect is underlain largely by the multiphase Laidman Lake batholith of late Cretaceous age which has intruded southwest-dipping sediments and volcaniclastic rocks of the Hazelton Group. The claims lie along the Top Lake lineament which has formed a series of south-facing scarps believed to represent down faulted blocks within the Laidman batholith. Intrusive rocks consist of aplite, granite, quartz monzonite, monzodiorite and diorite. Detailed mapping in the 110 Zone (Figure 5) indicates that the bulk of the batholith consists of two phases of granite and a single phase of quartz monzonite. Granites may contain quartz phenocrysts or eutectic growth textures which are also present in quartz monzonite. The granite is cut by two generations of aplite dykes, a massive and a porphyritic phase bearing quartz phenocrysts. These rocks are, in turn, intruded by medium grained diorite with local fine-grained border phases, then by monzodiorite. The fine grained monzodiorite contains local breccia zones with clasts of all earlier phases.

Extensive argillic alteration and quartz vein stockworks have developed in east-northeast trending zones, several of which are exposed just north of the drill area. Rocks within these zones are foliated, brecciated and contain knots of quartz, chalcedony and clay-altered feldspar. Quartz veins are white to translucent, massive to vuggy and contain disseminated aggregates of sulphide minerals.

MINERALIZATION

Mineralized rocks of the Laidman batholith are poorly exposed in small road cuts, rubble crop and float blocks over an area as much as 300 metres wide (Figure 4). Both the Discovery and 110 zones consist of fine-grained, greyish green, foliated, sheared and brecciated quartz monzonite and granite containing east-striking quartz and chalcedony veins and quartz breccia. Where exposed, the veins form parallel sets of 2 centimeter veinlets consisting of fine-grained quartz and sulphides. Sulphide mineralization consists of fine-grained disseminated pyrite, arsenopyrite, galena, sphalerite and bismuthinite. Rusty weathering granitic rocks, bearing disseminated arsenopyrite and chalcedony veins, lie at the northeast corner of the Laid 1 claim and rusty weathering hornfels in the central part of the claim also contain easterly-trending quartz and chalcedony veinlets in a small body or off-shoot of the Laidman batholith. A third zone of float and bedrock rubble sampled last year lies just west of the legal claim post for the Laid 1 claim.

1996 WORK PROGRAM

The 1997 work program was conducted between August 10 and 26, 1997. Five holes of NQ sized core were drilled from five drill sites by L.D.S. Diamond Drilling Ltd. of Kamloops, B.C. Drill holes were each drilled to just over 200 metres depth, for a cumulative total of 1004.5 metres. Drill hole 97-1 was drilled to test mineralization in the original Discovery zone, holes 97-2 through 97-5 tested the 110 zone.

Drill core was logged on site, split and sampled, usually in 2-metre intervals. Samples were identified with unique numbers and sent to Acme Analytical Laboratories Ltd. of Vancouver, B.C. where they were evaluated by Ultratrace ICP and geochemical gold analysis. Samples from holes 97-1, 97-2, 97-3 and fourteen intervals in hole 97-5 were analyzed individually while samples from holes 97-4 and most of 97-5 were composited by the lab into 6-metre samples for analysis. Drill core was bundled and stored on the property. Drill hole locations and other pertinent data are tabulated below. Drill sites are plotted on Figure 4.

		Table 2: DR		ATA	
HOLE	Loca	4 TÖN	SURVE	YDATA	TOTAL LENGTH
NUMBER	Grid East	Grid North	Azimuth	Dip	(metres)
97-1	102+00	99+75	360	-55	203.3
97-2	110+00	108+10	356	-55	200.3
97-3	100+50	110+00	003	-50	200.3
97-4	112+10	107+25	350	-55	200.3
97-5	111+00	107+70	360	-55	200.3

RESULTS

Drill hole 97-1 (Figure 6a), which tested the Discovery zone, intersected granite and diorite, both containing traces of disseminated and fracture controlled pyrite throughout. The rocks display weak to moderate argillic alteration with local chloritization and sericitization. Gold content was low, generally less than 20 ppb, ranging up to 174 ppb over 2 metres.

Drill hole 97-2 (Figure 6b) was collared in polylithic monzodiorite breccia with granite and minor diorite, rhyolite and dacite fragments. This unit is pyritic and chloritized. Below 85.7 metres, altered granite alternates with minor intervals of feldspar porphyry dacite. Gold concentrations are slightly elevated above background in this hole, ranging up to 192 ppb over 2 metres from a narrow rhyolite dyke with disseminated pyrite and arsenopyrite.

Hole 97-3 (Figure 6b) intersected predominantly sericitic granite with up to 5% disseminated and poddy pyrite. Below 116 metres, the granite contains dacitic inclusions and dacite dykes with granitic fragments. Pyrite content is less than 1% and gold is generally very low, increasing a bit toward the end of the hole to average 97 ppb over 6.3 metres.

Drill hole 97-4 (Figure 6c) intersected diorite to monzodiorite with a 15-metre section of granite and 35 metres of granite breccia. The diorite is chlorite and sericitic, with disseminated and veinlet pyrite. From 106 to 164.8 metres, the diorite is heavily cut by calcite-pyrite +/- chalcopyrite veins (5-10 veins per metre) and is locally brecciated. This hole returned sporadically elevated gold up to 127 ppb. An 18-metre intersection of altered diorite averaged 116.7 ppb gold (from 108 to 126 metres depth).

Hole 97-5 (Figure 6d) cut mildly sericitic granite and minor diorite. A heavily silicified interval between two dacite dykes averaged 643 ppb gold over 4.1-metres (from 137.9 to 142 metres). All other intervals returned less than 100 ppb gold.

CONCLUSIONS

The 1997 drill program intersected generally low gold tenors in all drill holes with a best intersection of 643 ppb gold over 4.1 metres in DDH 97-5.

DISBURSEMENTS

Expenditures for the 1997 work program on the Laidman property totals \$55,370.00, as tabulated below.

L.D.S. Diamond Drilling	1004 metres @ \$55.00/metre	55,220.00
	Mobilization and Demobilization	2,000.00
	2 hours Caterpillar @ \$75/hour	<u>150.00</u>

Total \$ 57,370.00

Prepared by:

P.E. Fox, Ph.D., P/Eng. January 23, 1998/

REPORT DISTRIBUTION:

B.C. Mining Recorder
Phelps Dodge, Toronto Land File
Phelps Dodge, Vancouver

Cogema Resources, Saskatchewan 1

2

BIBLIOGRAPHY

- Diakow, L.J. and Webster, I.C.L. (1994)
 - "Geology of the Fawnie Creek Map Area"; in Geological Fieldwork 1993, Paper 1994-1, British Columbia Geological Survey Branch, 1993.
- Diakow, L.J., Webster, I., Levson, V., Giles, T. (1994)

 "Bedrock and Surficial Geology of the Fawnie Creek Map Area"; Geological Survey
 Branch Open File 1994-2.
- Fox, P. E., (1995)

"Project Report on the Laidman Gold Prospect"; Internal report for Phelps Dodge Corporation of Canada, Limited dated February 22, 1995.

Fox, P. E., (1995)

"Geochemical Assessment Report on the Laid 1 Claim"; Assessment Report by Fox Geological for Phelps Dodge Corporation of Canada, Limited dated January 20, 1995.

- Fox, P. E., (1996)
 - "Geological Report on the Laid 1 Claim"; Assessment Report by Fox Geological for Phelps Dodge Corporation of Canada, Limited dated January 3, 1996.
- Fox, P. E., (1996)

"Project Report on the Laidman Gold Prospect"; Internal report for Phelps Dodge Corporation of Canada, Limited dated December 25, 1996.

Payne, C. W., (1996)

"Geological and Soil Geochemical Report"; Assessment Report by Fox Geological for Phelps Dodge Corporation of Canada, Limited dated January 16, 1996.

Schimann, K. (1995)

"Geological and Geochemical Survey, Laidman Property (Nechako Project) 1994"; Assessment Report by Cogema Resources Inc., January 1995.

CERTIFICATE

- I, Peter Edward Fox, certify to the following:
- 1. I am a consulting geologist residing at #902 2077 Nelson Street, Vancouver, B.C.
- 2. I am a Professional Engineer registered in the Association of Professional Engineers and Geoscientists of British Columbia.
- 3. My academic qualifications are:

B.Sc. and M.Sc., Queens University, Kingston, Ontario Ph.D., Carleton University, Ottawa, Ontario

4. I have been engaged in geological work since graduation in 1966.

Peter E. Fox, Ph.D., P. Eng.

Vancouver, B/C. January 23, 1998

CERTIFICATE

- I, Stephen Wetherup, of the City of Winnipeg, Manitoba, do hereby certify that:
- 1. I am temporarily a consulting geologist working out of 1409-409 Granville Street, Vancouver, B.C., 669-5736, while completing a Master's Thesis at the University of Alberta in the Department of Geology.
- 2. I graduated (with Distinction) from the University of Manitoba in 1995 with a Bachelor of Science degree in geology.
- 3. I have worked summers with the Geological Survey of Canada since 1994.

Stephen Wetherup, B.Sc.

Winnipeg, Manitoba. September 23, 1997

APPENDIX I

Diamond Drill Logs

PHELPS DODGE CORPORATION OF CANADA, LIMITED

PROPERTY: Laidman PROJECT No: 253

Location: L102E, 99+75N

Azimuth: 360

Dip: -55 Start Date: August 11, 1997 Complete Date: August 13, 1997 DRILL HOLE NO: 97-1

Length(m): 203.3

Core Size: NQ

Elevation: Claim No: Section:

Dip Tests:

-53

Date Logged: August 13, 1997 Logged by: Gred Kulla and Sean

		Purpose: Test discovery showing					Logged by: Greg Kulla and Sean Boyd				
From	To	Description	Sample No	Colour	То	Length	Comments	Chi	Ру	Clay	Au
	(metres				(metres)			 			(ppb)
0	3.7	7 Casing						<u> </u>			<u> </u>
3.7	38.2	? Granite:	518001	pink	5.0	1.7		2	tr	1	1
		Pink to pale green, medium grained, sub- to anhedral equigranular quartz and feldspar. Trace to	518002	plnk	7.0	2.0		2	. tr	1	1
		1% chlorite probably replacing biotite (<1mm) is commonly enclosed in plagioclase. Rare hematite	518003	pink	9.0	2.0	8.5-8.8 rubble	2	tr	1	2
		usually with chlorite. Rare fine grained disseminated pyrite. Fracture surfaces are roughly 40 and 90	518004	pink	11.0	2.0	green hairline fractures	2	tr	1	2
		degrees to c/a. Surfaces are coated with pale green to brown chalky clay and are locally chloritic.	518005	pink	13.0	2.0	green hairline fractures	2	tr	1	5
		Pyrite is more common on chloritic fractures. Hairline to 1cm wide veinlets are quartz rich with	518006	pink	15.0	2.0		2	tr	1	8
		dark green selvages. (Prominent from 9.0-13.0m). 23.0-31.0 is pale green, sericite on fractures	518007	рiпk	17.0	2.0		2	tr	1	1
		possibly replacing chlorite. Hairline fractures are offset and locally wall rock grain size is reduced.	518008	pink	19.0	2,0		2	tr	1	4
		Entire unit is weakly argillically altered. Fracture surfaces show moderate argillic alteration. Core	518009	pink	21.0	2.0		1	tг	1	5
		surfaces are chalky. Feldspars are clay aftered around rima.	518010	pink	23.0	2.0			tr	i	1
			518011	pink	25.0	2.0		1	tr	1	4
				pale green	27.0		sericite replacing chlorite?		tr	2	
				pale green	29.0		sericite replacing chlorite?		tr	2	_
				pale green	31,0		sericite replacing chlorite?		tr	2	5
			518015		33.0				tr	1	2
			518016		35.0				tr	1	4
37.3	6	7 Diorite:	518017		37.3			1		1 1	11
	-	Dark green, medium to fine grained. 70% white, 0.5-1mm subhedral plagioclase with 25% chlorite	518018		38.2			3	tr	. 1	11
		and up to 1% magnetite and trace biotite. Chlorite has probably replaced biotite. Local very fine	518019		40.0				tr	1	4
		grained areas with sharp contrasts (clasts). Upper contact is bleached with small guartz veinlets	518020		42.0				tr	•	1
		with local yugs over 1 metre. Fracture surfaces are rough, planar, chloritic and covered with a	518021	-	44.0		very broken		tr	2	
		chalky clay. Some surfaces are red hematitic. Chlorite altered ground mass with chloritic/argillic	518022		46,0		clay gouge-green	_	tr	3	
		fractures. Moderate to strongly magnetic. 42-51m fine grained clay rich, locally gouge, bleached	518023		48.0		bleached- fine grained		tr	2	
		non-magnetic zones. Fine grained bleached lower contact.	518024		50.0		bleached- fine grained		tr	3	
				red/green	52.0		<u> </u>		tr	ž	
			518026	_	54.0		olive green fracture surfaces		tг	1	5
			518027		56.0				tr	•	3
			518028		58.0		two pink granitic veinlets (1cm)		tr	,	3
			518029		80.0				tr	1	3
			518030		62.0				tr	1	1
			518031		64.0				tr	1	ò
67	75	5 Granite:	518032		66.0				tr	1	5
0,	, 0,	V Statille.	0.000		00.0		66.2m purple hematitic		٠		
		Pink, medium grained, argillic. Chlorite hairline fracture stockwork. Rare vugs.	518033	buff	68.0	20	vein/shear	1	tr	1	174
		Tilling manager granted control contro	518034		70.0				tr	2	
			518035	r	72.0		hairline stockwork		tr	2	
			518036	•	74,0		clast of magnetite at 74.3		tr	2	
76.5	а	0 Diorite:	518037		76.0				tr	2	
, 0.0	0	Dark green medium to fine grained chloritic, magnetic. Chilled margins.	518038	•	78.0 78.0	_		-	tr	4	2
BO	۵	19 Granite:	518039	•	70.0 80,0		open vugs along fractures		u tr	1	3
50	٥	Pink medium grained argillic. Chloritic hairline fracture stockwork.	518040	•	82.0				tr	1	1
		This mostom granice organic. Ornariae mainine madale succession,	518041	•	84.0				tr		0
			518042	•	86.0				tr tr	1	4
89		94 Diorite		pink/white	89.0				tr ∶tr	1	
05	9	4 Digitie	0 10040	bull wille	69.0	3.0		3	ιΓ	1	3

Dark gr	een, medium to fine grained magnetic. Chilled margins.
102.3 Granite:	

Bleached pink, medium grained, chloritic vein stockworks.

102,3 127.5 Diorite:

95.3

Dark green to bleached green, medium to fine grained, chloritic alteration along fractures and breaks. Chilled margins at both upper an lower contacts.

127.5 132.2 Dacite Dyke:

Light grey to buff, aphanitic, clay rich, chloritic alteration, clay and chlorite along fractures. Fragments of dacite occur within chilled dlorite along contacts. Soft-waxy white clay inclusions also occur within the diorite along the dacite contacts.

132.2 178.1 Diorite:

Dark green to pale green, medium to fine grained chloritic alteration, chlorite along fractures. 60% white subhedral plagioclase, 30% chlorite. Fine grained segments 0.7-1.3m. Slightly magnetic within harder-greener units, pinstripe chlorite-magnetite stockwork, fractures with rough surfaces and chlorite, pyrite and clay along them.

178.1 203.3 Granite

Pink to pale green, medium to fine grained, subhedrat. Pervasive sericite alteration, feldspars are waxy (green) and soft. Trace disseminated pyrite. Fractures contain clay+/- chlorite and diss.

pyrite. Gradual intercalated upper contact with diorite for approximately 3.2m. Diorite and dacite

,	518044	green	91.0	2.0		3	tr		2	0
	•				93.6-95.3 diorite chill margin					
		green/white	94,0	2.0	vague contact into granite	3	tr		2	0
	518046		95.3	1.3		2	tr		3	17
	518047	pink	98.0	2.7		1	tr		1	14
	518048	pink	100.0	2.0		2	tr		1	1
	518049	pink	102.3	2.3		1	tr		1	18
ļ	518050	areen .	104.0	1.7			tг		1	1
	518051	•	106.0	2.0			tr		1	
	- · ·	3.44				,	u		•	1
	518052	green	108.C	2.0	pyrite on face of fracture 109.1m	3	tr		1	10
	518053		110.0	2.0		3	U			16
	518054		112.0	2.0			. _	1	2	13
	0 10404	green	112.0	2.0		3	tг		1	3
	518055	Green	114.0	20	112.7 bleached green 5cm	_			_	
	518058				contact		tr		2	26
			116.0	2.0			ţΓ		2	13
•	518057	green	118.0	2.0		2	tr		2	2
	2 40/50	***	400.0		119.1 granitic 2cm dyke @ 30					
	518058		120.0		degrees to c/a		ţŗ		1	4
	518059		122.0	2.0			tr		1	3
	518060		124.0	2.0		2	tr		2	3
	518061		126.0	2.0		3	tr		2	4
	518062	green	127.5	1.5		2	tг		3	4
	518063	green	129.0	1.5		1			3	1
4	518064	green	132.2	3.2		1			3	٥
	518065	green	134.0	1.8		3	tг		1	1
:	518066	green	136.0	2.0			tr		2	2
	518067	green	138.0	2.0	136-139 fine grained		tr		2	3
	518068		140.0	2.0	g		tr		1	6
	518069		142.0	2.0			tΓ		i	3
	518070		144.0	2.0			tr		i	1
	518071		146.0	2.0			tr		2	2
	518072		148.0	2,0			tr		_	2
		<u></u>				_	U		2	2
	518073	green	150.0	2.0	locally fine grained 149.5 (40cm)	4	tr		2	1
	518074	green	152.0	2.0	011111) 1111 granta 1 1 1 1 1 () () () ()		tr		3	4
		·				_			J	4
					153.3-153.8 hbi parphyry dyke					
	518075	green/white/b/k	154.0	2.0	.5-3mm hbl,fresh sharp contacts	2	tr		1	1
		red/ollve	156.0		buff colour/heavy alteration	_	tr		i	9
	518077	areen	158.0	2.0		3			1	2
		<u></u>		_,_	150 d /10cm) att unio mith music		п		'	2
	518078	areen	160,0	20	159.4 (10cm) qtz vein with pyrite ② vein contacts	3	4.		1	2
	518079	•	162.0	2.0	Re tem compete					
	518080	_	164.0	2.0		3			1	2
	518081	-	166.0	2.0		2			1	0
		giccii	100,0	2.0		2	τr		1	1
	518082	Oreen.	168.0	20	2-3cm qtz-feld dyke 90 degrees	_				
					to c/a	2			1	1
	518083		170.0	2.0		2			1	2
	518084	•	172.0	2.0		2			1	3
	518085	-	174.0	2.0		4	tr		1	5
	518086	-	176.0	2.0		4	tr		1	1
	518087		178.1		sharp contact	4	tr		1	1
	518088	•	180.C	1.9		2	tr		1	1
(518089	light pink	182.0	2.0		2			1	1
					183-185.2 border with digrite and					
:	518090	pink/green	184,0	2.0	granite (intercalated twice).	2	tr		1	9
					r	_				_

inclusions are found within the granite as well as some mafic clasts/dykes?	518091 pale green 518092 pale green 518093 pale green	186.0 188.0 190.0	185-186.2 chlorite rich, no sericite, 1cm granitic veins 2.0 x-cutting granite diorite contact. 2.0 2.0	3 tr 2 tr 1 tr	1 1 2	1 39 3
	518094 pale green 518095 pale green	192.0 194.0	partially resorbed dacite and 2.0 diorite inclusions 2.0	1 tr 1 tr	1 2	4
End of Hole	518096 pale green 518097 pale green 518098 pale green 518099 pale green 518100 pale green	196.0 198.0 200.0 202.0 203.3	195,6-198 mafic unit @45 2.0 degrees to c/a. 2.0 197-197.2 mafic unit 2.0 198.2-198.4 mafic unit 2.0 7cm dacite dyke 1.3	1 tr 1 tr 1 tr 2 tr 2 tr	2 2 2 2 1	1 2 24 26 17

to the transfer to the second of the second

PHELPS DODGE CORPORATION OF CANADA, LIMITED

PROPERTY: Laidman PROJECT No: 253

Location: L110E,108+10N

Azimuth: 356 Dip: -55

Start Date: August 13,1997 Complete Date: August 15,1997 DRILL HOLE NO: 97-2

Length(m): 200.3 Core Size: NO

Dip Tests:

Elevation: 1405 Claim No: Section:

-51

		Purpose:					Date Logged: August 17,1997 Logged by: Stephen Wetherup					
From	To	Description	Colour	Sample #	To	Length	Comments	Chl	Рγ	Clay	Сру	Αш
(metres)	(metres)			1	(metres)	(metres)				 		(ppb)
0	4.3	Casing			1	,						
4.3	85.7	Polylithic manzodiorite breccia:	grey	518101	6.0	1,7		3	2	: 2	2	6
		f.g. monzondiorite matrix comprises ~50% of the rock. Altered mostly to chlorite with 1% to trace	grey	518102	8.0	2.0		3	2			7
		pyrite within the matrix. Pyrite occurs adjacent to fragments as pods and lenses and along chlorite	grey	518103	10.0	2.0		3	2			3
		veinlets (~0.5mm wide). Fragments are mostly of granitic in composition with some digrite,	grey	518104	12.0	2.0		3	2			8
		bleached digrite, rhyolite, and aphyric dacite mixed in locally. Fragments are between 1 and 10 cm	grey	518105	14.0	2.0		3	2			10
		in size with some as large as 1m. These large clasts are typically granite. A few fresh monzonite	grey	518106	16,0	2.0		3	2			10
		dykes cross-cut this unit as well as minor carbonate veinlets.	grey	518107	18.0	2.0		3	2			107
			• ,				monzonite dyke between 19.6 and		_	_	•	, ,
			grey	518108	20.0	2.0	20.0	3	2	2	,	13
			grey	518109	22.0	20		3	2			14
			dark grey	518110	24.0	2.0		3	2			10
			dark grey	518111	26.0	2.0		4	2			3
			grey	518112	28.0	2.0		á	2			2
			grey	518113	30.0	2.0		3	2	_		4
			grey	518114	32.0	2.0		3	2			2
			grey	518115	34.0	2.0		3	2			11
			grey	518116	36.0	2.0		3	2			18
			dark grey	518117	38.0	2.0		4	2			19
			dark grey	518118	40.0	2.0		4	2			12
			grey	518119	42.0	2.0		3	2	_		28
			grey	518120	44.0	2.0		3	2			74
			grey	518121	46.0			3	2		•	57
			grey	518122	48.0		granite clast 46.8-48.2 m	3	2		-	17
			grey	518123	50.0		3,4 5,451 10.5 15.2	3	2			g
			a·-,	7.0.20		2.0		J	4	•	,	•
			grey	518124	52.0	2.0	chalky blue dusting along fractures	3	2	. 3	1	34
			grey	518125	54.0	2.0	or any place adding proving madages	3	2		3 tr	52
			grey	518126	56.0	2.0		3	2		3 t r	10
			grey	518127	58.0			3	2		on 3 tr	9
			3/0)		00.0		few dark grev siliceous veinlets b/n	· ·	_	J	1 ()	-
			grey	518128	60.0	2.0	59.0 and 59.3	2	2	. 5	3 tr	4
			grey	518129	62.0		9 41.5 2 1.1.	2			3 tr	24
			3,0)		72.0	2.0	Ecoph managerite dules blo 42.5	-		J	, ,,	24
			grey	518130	64.0	2.0	Fresh monzonite dyke b/n 63.5 and 64.5	2	2	. 7	3 tr	9
			light grey	518131	66.0	2.0	B/14 C 7.0	2	2			43
			light grey	518132				2	2			12
			light grey	518133	70.0			2	2			14
			light grey	518134	72.0		nearly all granite	2	2	_	o 4 tr	152
			light grey	518135	74.0		nearly all granite 69.9-74.0	3				
			grey	518136	76.0			3	2		4 tr	26
			light grey	518137	78.0		mostly granite and rhyolite	2	2		3 tr	14
			light grey	518138	80.0				2			3
			light grey	518139			mostly granite	2	2			8
			ngirk grey	310138	ω <u>ν</u> .υ	2.0	· -	2	2	4	•	29
			grey	518140	84.0	2.0	breccia material highly chloritized and almost black.	3				477
			Rich.	310140	<i>8</i> 4.0	2.0	and annost black.	3	2	4	*	177

85.7 128 Granite:

Mafic minerals (likely biotite) completely altered to chlorite ~1-3%. K-feldspar are untouched by alteration but plagioclase is completely altered to sericite except within their cores which have been altered to epidote. K-feldspar and plagioclase are anhedral and intergrown. Grain size is 2-4

mm. Pyrite blebs, stringers and finely disseminated grains are ubiquitous throughout. Locally

sericite alteration grades into a pervasive argillic alteration which affects even the K-feldspar. Light olive, 1cm to 40 cm, feldspar-porphyry dacite dykes cross-cut the granite in several places.

128 135.7 Feldspar porphyry dacite:

25-30%, 1-4 mm feldspar phenocrysts within a greenish grey to grey aphanitic matrix. Feldspars altered to sericite (white) but locally to chlorite +/or smectite (green). Alteration, fracturing, and bleaching of the groundmass occurs predominantly near contacts with the granite. Abundant disseminated pyrite (0.5-1 mm) and pyrite veins (1 mm), up to 5% locally.

135.7 190.4 Granite:

Plagioclase only partially altered to sericite, pyrite and other sulphides occur mainly as blebs and pods near aphyric dacite fragments, colour varies from light grey to light pinkish grey.

				harrie material black, and a						
grey	518141	86.0	2.0	breccia material highly chloritized and almost black.		3	2	4		24
light grey	518142	88.0	2.0	and annost black.		1	2	4		
light grey	518143	90.0	2.0					4		52
	518144	92.0		Assilia basino de 04 0		1	2	-		49
light grey				argillic zone begins @ 91.6 m		1	2	4		49
light grey	518145	94.0	2.0	argillic zone ends @ 93.0 m		1	2	4		103
				cross-cutting buff rhyolite dyke						
				with disseminated pyrite and						
light grey	518146	96,0	2.0	arsenopyrite?		1	2	4		192
				pyrite is podded and not						
light grey	518147	98.0	2.0	disseminated in this zone		1	1	4		54
light grey	518148	100.0	2.0			1	2	4 tr		32
light grey	518149	102.0	2.0			1	2	4		84
light grey	518150	104.0	2.0			1	1	4		79
2				a few grey veinlets accompany the		•	·			, ,
light grey	518151	106.0	2.0			1	1	4 tr		48
light grey	518152	108.0		slightly more chloritic		2	1	4		55
light grey	518153	110.0	2.0	angitty more emerica		1	2	4		146
light grey	518154	112.0	2.0			1	1	4		
light grey	518155	114.0	2.0			1	i	4		37
	518156	116.0	2.0							22
light grey						1	1	4		8
light grey	518157	118.0	2.0			1	1	4		7
light grey	518158	120.0		sericite alteration decreasing		1	1	3		10
light grey	518159	122.0	2.0	sericite alteration decreasing		1	1	3		22
light grey	518160	124.0	2.0	plagioclase partially sericitized		1	1	3		16
light grey	518161	126.0	2.0			1	1	3		26
light grey	518162	128.0	2.0			1	1	3		11
grey	518163	130.0	2.0	bleached and fractured		1	2	4		78
grey	518164	132.0	2.0	some bleached zones		2	2	3		16
grey	518165	134.0	2.0			2	2	3		11
grey	518166	135,7	1.7	last 40cm bleached and fractured		2	2	4		8
light grey	518167	138.0	2.3	a few chalcopyrite blebs ~ 1 cm	tr		2	2	1	33
light grey	518168	140.0		dacite dyke starts at 139.7	tr		2	2 tr	•	8
light grey	518169	142.0		ends at 140.5	tr		2	2 tr		9
light grey	518170	144.0	2.0	51745 dr 1 15.5	tr		2	2 tr		16
3.13/2/							-	2 11		1.0
				an aphanitic dark grey mafic						
light grey	518171	146.0	2.0	fragment @ 145.3 with adjacent cpy, in the granite.	tr		2	71 br		15
light grey	518172	148.0		few cpy blebs				2 tr		15
light grey	518173	150.0	2.0	iew chy blebs	tr		1	2	1	61
iidiii die)	010173	150,0	2.0		tr		2	2 tr		21
light areas	518174	150.0	2.0	fresh section of granite b/n 152.0						
light grey		152.0		and 152.5	tr		1	1		20
light grey	518175	154.0	2.0		tr		2	2 tr		32
light grey	518176	156.0	2.0		ţΓ		2	2	1	46
light grey	518177	158.0	2.0		tr		2	2 tr		11
light grey	518178	160.0	2.0		tr		2	2 tr		31
light grey	518179	162.0	2.0		tr		1	2		11
light grey	518180	164.0	2.0	fresh granite	tr		1	1		3
				2-3 mm wide pyrite veinlets						
				becoming prominent with some						
light grey	518181	166.0	2.0	pods several cm's in size.			2	1 tr		٥
,							-	•		_
				2-3 mm wide pyrite veinlets becoming prominent with some						
light grey	518182	168.0	2.0	pods several cm's in size.			2	1 tr		3
3.47		-		3cm qtz vein with ~30% pyrite			-	1 10		
light grey	518183	170.0	2.0				2	1		20
g g j		11 3.0	2.14				2	1		20
light grey	518184	172.0	2.0	few 2-3 cm nests and pods of pyrite			2			2.4
light grey	518185	174.0	2.0	pyrite			2 2 tr	1 tr		34
	0.0.00		2.0				۱۲ ک	tг		4

190.4 200.3 Feldspar porphyry dacite:

0-2%, 1-3 mm, homblende. Generally not aletered except within 10-15 cm of granite contacts where feldspars are aftered to sericite/smectite. Also, altered zones contain minor (<1%) pyrite veinlets (1-2 mm).

End of hole 200.3 m

light grey	518186	176.0	2.0				2 tr	tг	4
light grey light grey light grey	518187 518188 518189	178,0 180,0 182,0	20	mafic xenolith @ 176,3 with 2-3% pyrite within it. 4 cm wide pyrite vein @ 180,1	tr		2 tr 1 tr 1 tr	tr	9 4 3
				pyrite pods have stopped occurring leaving only the					_
light grey	518190	184.0	2.0	disseminated pyrite		tr	tr		3
light grey	518191	186.0	2.0	, ,			1 tr		3
light pink	518192	188.0	2.0			tr	tr		4
light pink	518193	190.4	2.4			tr	tr		6
greenish gre	518194	192.0	1.6	about 50% granite	tr	tr	tr		8
grey/pink	518195	194.0	2.0	yo granico	tr	tr	tr		_
greenish gre	518196	196.0	2.0		tг	tг			3
greenish gre	518197	198.0	2.0		tr	tr	tr		6
greenish gre	518198	200.3	2.3				tr 		8
g. == - g. v		end	2.0		tr	tr	tr		3

3

PHELPS DODGE CORPORATION OF CANADA, LIMITED

PROPERTY: Laidman PROJECT No: 253

Location: L110+50E, 110+00N

Azimuth: 003

Dip: -50

Start Date: August 15, 1997 5PM Complete Date: August 17, 1997 1:30 AM

DRILL HOLE NO: 97-3

Length(m): 200.3 Core Size: NQ

Elevation: 1425 Claim No: Section:

Dip Tests:

-53

Date Logged:August 19, 1997

		Discourse. Total quantum because in the 440 and					Date Loggeo; August 19, 1997					
	-	Purpose: Test quartz breccia in the 110 zone		Logged by: Wetherup					_			
From	To	Description	Colour	Sample #	To		Comments	Py	Clay	Qtz		۱u ا
(metres)	(metres)				(metres)	(metres)		\	<u> </u>	1		(da
٥		Casing										
4.6	23.7	Weathered Granite:	yellow	518199	6.0	1.4		2		5	1	5
		Two Types: Red: Plagioclase sericitically altered and rusty red in colour. K-feldspar and quartz fresh	yellow	518200	8.0	2.0		2		5	1	8
		Yellow: plagioclase aftered to kaolinite stained yellow K-feldspar aftered to sericite. Both units	vellow	518201	10.0	2.0		2		4	2	6
		contain a few chalcedonic veins with ~5-10% pyrite, buff coloured rhyolite clasts localized within	orange	518202	12.0	2.0		- 1		-		12
		some zones. * A siliceous "chert" breccia cross-cuts the granite in the weathered zone. Its comprised of	red	518203	14.0	2.0		i	- 3	-	4	5
		of a dark grey cherty matrix with aphanitic white siliceous angular fragments.	orange	518204	16.0	2.0		2			4	8
		ora dark grey cherry matrix with opinantic write shocous angular magnetis.	•	518204	18.0	2.0				•	•	-
			orange					2			4	6
			red	518206	20.0	2.0		2	: :	2	5	4
			đárk grey	518207	22.0	2.0	chert breccia with abundant rusty fractures and pyrite veins.	^	tr tr		_	10
			~ /									19
			grey and red	518208	23.7	1.7	up to 22,7m is chert breccia.	2		i	5	10
							4					
23.7	60.0	Altered Granite:	white	518209	26.0	2.0	1cm pyrite vein @ 24.0m and a	3		-		^
23.1	03.3		white	518210		2.0	4 cm qtz/py pod/vein @ 24.4m	1		5	1	6
		Alteration is mostly sericitic alteration of both feldspars. Few scattered quartz and/or pyrite pods.			28.0		fresh to weakly sericitic	1		3 tr		4
		and veins. These veins are up to 3 cm thick but usually 0.5 cm. Disseminated and pods of pyrite	light pink	518211	30.0	2.0		1		•	1	4
		occur within the granite locally composing up to 5% of the rock. Quartz veining and silicification	light pink	518212	32.0	2.0		tr		3 tr		6
		occur sporadically within broad 1 to 2 m zones with up to 5-10% qtz. There are also a few fresh	white	518213	34.0	2.0		1	4	ŧ.	1	5
		sections of granite.	white	518214	36.0	2.0		1	4	1	1	21
							from 37,2-38,0 argillic					
			white	518215	38.0	2.0	alteration.	2	: :	5	2	4
			white	518216	40.0	2.0		2		5	2	7
			white	518217	42.0	2.0	minor argillic @39.6 m	2		5	1	5
			white	518218	44.0	2.0	3	2		5 tr	•	3
			light pink	518219	46.0		@ 44.8 m a qtz/py zone	2		4		4
			light pink	518220	48.0	2.0	G 44.0 ma quapy zone	1		→ 5 tr	ı	17
			white	518221	50.0	2.0		1		5 tr		13
			wille	310221	au.u	2.0		1	;	77 (13
							few qtz/py pods and veins					
			white	518222	52.0	20	within argiflically aftered granite.	2		5	2	19
							,	_		•	_	
							few qtz/py pods and veins					
			white	518223	54.0	2.0	within argillically altered granite.	2	: :	5	3	15
			light yellow	518224	56.0		<u> </u>	1			2	8
							from \$7,0-58.0 m several qtz	·	,	•	-	_
			white	518225	58.0	2.0	and py pods.	2)	π.	3	20
			white	518226	60.0	_,_		2		_	-	15
			white	518227	62.0	2.0		2				
			Wille	310221	02.0	2.0		-	:	5	4	14
							@ 64.2-64.3 a cherty dacitic					
			light grov	518228	64.0	2.0	dyke and @ 65,8 small 2-3cm	_		•	^	
			light grey				shear zone	3				11
			light pink	518229				. 1		5	1	9
			light pink	518230				ţr		5 tr		7
			light pink	518231	70.0	20		tr	:	5 tг		8

69.9	72.2 Rhyolite dyke: Very light greenish grey, aphanitic, aphyric dyke with a few pyrite blebs (<1%); weakly aftered
72.2	116 Altered Granite:

116 200,3 Granite with breccia units:

Contact with the granite is a zone of very dark grey to black aphanitic matrix with small 1 mm to 1 cm comminuted and sheared fragments of bleached white granite. The overall unit is a mixture of (1) granite with brecciated fragments of aphanitic, aphyric light green dacite, and (2) green feldspar porphyry dacite dykes containing angular fragments of granite. These two units are cross-cut by

qtz +/-py +/-dolomite +/-sphalerite veins. Alteration of the granite is either feldspar to epidote or smectite giving it a light apple green colour. Throughout is 0.5% disseminated pyrite. Some localized zones of fresh granite occur near the bottom of the hole.

greenish grey light pink	518232 518233	72.2 74.0	2.2 1.8		tr tr		1 tr 5 tr		8 7
light pink light pink	518234 518235	76.0 78.0	2.0 2.0	small 1-3mm sulphide vein sub-parallel to da @75,0-75,4		1	5 5 tr	1	6 14
light pink white	518236 518237	80,0 82.0	2.0	several grey veins with pyrite 0.5 to 2 cm wide	ţ۲	2	5 tr 5 tr		8 7
white light pink light pink	518238 518239 518240	84.0 86.0 88.0	2.0	sericitic alteration qtz/py zone from 85.9 to 87.0		1 2	5 5	1 2	4 9 16
light pink	518241 518242	90.0 92.0	2.0	2 large qtz/py veins sub// to c/a		1	5	2	11 32
light pink	518243	94,0	2.0	a mage query rema saux to ou		1	5	2	10
light plnk light pink light pink light pink	518244 518245 518246 518247	96.0 98.0 100,0 102.0	2.0 2.0	sulphide breccia vein 2cm wide slightly argillic few qtz veins (minor py) few qtz veins (minor py)	tr tr	1	5 5 5 5	2 1 2 2	16 9 8 8
light pink	518248	104.0	2.0	trace of cpy in a pyrite bleb; @ 103.9 a chloritic slip surface.	tr		5	1	4
light pink light pink	518249 518250	106.0 108.0		@ 105.0 a chloritic slip zone 2 mm wide 30-35 degrees from c/a. small pyrite zone	tr	1	5 tr 5 tr		9 4
light pink	518251	110.0	2.0	2 rhyolite dykes; 108.1-108.2 and 108.6-108.9	tr		5 tr		7
light pink light pink light pink	518252 518253 518254	112.0 114.0 116.0	2,0	chlorite slip zone sub// to c/a b/n 111.4-111.9 becoming argillic mostly argillic	ir tr tr		5 5 tr 5 tr	1	6 10 5
grey light green light green	518255 518256 518257	118.0 120.0 122.0	2.0 2.0 2.0			1 1 1	1 2 2	1 1 1	14 15 84
light green	518258	124.0	2.0	little matrix, mostly heavily		1	3	2	12
light green light green tight pink fight green	518259 518260 518261 518262	126.0 128,0 130.0 132.0	2.0 2.0	silicified granite clasts. qtz veins b/n 128 and 129.0 diorite clast from 131.5-132.0		1 1 2	3 2 2 2	3 3 4 2	23 22 13 5
light green	518263 518264	134.0 136.0		almost all fresh granite with py	tr	1	1	1	13 15
light green light green light green light green	518265 518266 518267 518268	138.0 140,0 142.0 144.0	2.0 2.0	veins and a 5cm qtz vein several qtz veins minor sph.	tr tr	1	1 2 2 2 2	1 1 3 2	15 34 26 18
light green	518269	146.0	2.0	epidote/smectite altered granite		1	4	1	16
light green light green	518270 518271	148.0 150.0	2.0 2.0	minor dolomite in qtz/py veins		1	4 4	2	27 13
light green	518272	152.0	2.0	numerous qtz-py-dol-sph veins feldspar-porphyry andesite		1	4	3	20
light green light green	518273 518274	154.0 156.0	2.0 2.0	dyke b/n 153.0 and 154.6	tr	1	3 4	1 2	7 14

200.3 End of Hole

from 158.0-158.3 dacite with light green 518275 158.0 2.0 granite fragments 20 light green 518276 160.0 2.0 21 1 518277 162.0 light green 2.0 19 1 light green 518278 164.0 2.0 few pyrite zones 2 1 17 light green 518279 166.0 2.0 1 37 massive aphyric dacite from 518280 168.0 light green 2.0 167,6-168.1 4 16 light green 518281 170.0 2.0 several qtz-dol-py veins 3 2 1 32 518282 172,0 light green 2.0 1 3 1 22 large qtz-dol veins (10cm) @ 172.1 with 1cm blebs of cpy. light green 518283 174.0 2.0 and disseminated sph. 3 3 25 518284 light green 176.0 2.0 minor cpy. In veins 3 3 36 1 poss, malachite within a dacite light green 518285 178.0 2.0 fragment. 2 10 4 feldspar-porphyry dacite dyke 2.0 178.1-179.0 518286 180.0 light green 2 tr light green 518287 182.0 2.0 3 10 light green 518288 184.0 2.0 few chalcedonic veins. 3 2 10 518289 light pink 186.0 2.0 3 3 4 light green 518290 188.0 2.0 few chalcedonic veins 3 3 3 light green 518291 190.0 2.0 few chalcedonic veins. 3 3 29 light green 518292 192.0 2.0 3 1 15 light green 518293 194.0 2.0 2 3 21 518294 196.0 light green 2.0 3 1 139 light green 518295 198.0 2.0 1 3 2 16 light green 518296 200.3 2.3 3 2 131

PHELPS DODGE CORPORATION OF CANADA, LIMITED

PROPERTY: Laidman

PROJECT No: 253

Location: L112+10E, 107+25N

Azimuth: 350 Dip: -55

Start Date: August 17,1997 5AM Complete Date: August 18,1997 4PM DRILL HOLE NO: 97-4

Length(m): 200.3 Care Size: NQ

-54

Elevation: 1377 Claim No: Section:

Dip Tests:

Date Locoed: August 21, 1997.

		Distriction To Acad Au and promote at the \$10					Date Logged: August 21, 1997					
	т.	Purpose: To test Au soil anomaly at the 110 zone.	[A			Logged by: Wetherup	,	,				
From	To	Description	Colour	Sample #	То		Comments	Chi	Clay	Ру	Сру	
(metres) (metres)				(metres)	(metres)	<u> </u>					(ppb)
0		Casing									_	
7.3	65.1	Diorite to Monzodiorite:	grey	518297	10.0	2.7		4	1	tr		0
		medium grained, homblende ~20%, biotite ~5-10%, mafic minerals are fresh to chlorite altered.	grey	518298	12.0	2.0		3	1	tr		
		Feldspars altered to sericite locally. Disseminated pyrite and pyrite along veinlets is common,	grey	518299	14.0	2.0		3	1	1	J	
		Few buff rhyolite dykes and 1-3mm calcite veins with chlorite selvages cross-cut the unit. Bleached diorite		540000	40.0	• •						
		zones accompanied by an increase in disseminated pyrite occur throughout. Trace epidote.	grey	518300	16.0	2.0		3	1		tr	1
		zones accompanied by an increase in disseminated pyrite occur tirroughout. Trace epidote,	grey	518301	18.0		rhyolite dyke from 17.6-19.2	3	1	1		
			grey	518302	20.0	2.0		2	1	1		
			grey	518303	22.0		1m bleached diorite zone	2	2	2		4
			grey	518304	24.0	2.0	bleached diorite	2	2	2	<u> </u>	
			grey	518305	26,0	2.0		2	2	1		
			grey	518306	28.0	2.0	small pink granitic dyke at 27,6	2 tr	г	1		2
							large cal-py vein @ 28.4 m. From 28.4-29.5 sub// to c/a					
			grey	518307	30,0	2.0	granitite dyke (1cm)	2	1	1		
			grey	518308	32.0	2.0	3	2	i			
			grey	518309	34.0	2.0		3	1			1
			grey	518310	36.0	2.0		3	1			,
			ş y		00.0	2.0			'	-1		
			grey	518311	38.0	2.0	argillic vein (1cm) sub// to c/a running rfom 38,5-38,9	3	1	tr		
							2 argillic veins @ 45 degrees to					
			grey	518312	40.0	2.0	c/a	3	1	tr		2
			grey	518313	42.0	2.0		3	i			-
			grey	518314	44.0		few cal-py veins	3	i	1		
			5 ,					•	•	'		
			grey	518315	46.0	2.0	few cal-py veins @ 30 degrees to c/a	3	1	1		•
			grey	518316	48.0	2.0		2 tr	. •			3
				518317	50.0		~20-25 cal-py veins over 2m			1		
			grey	518319				3	2	1		
			grey	216218	52.0	2.0	bleached zone from 51,7-53.0	3	3	1		12
							poss, shear zone within ableached diorite zone @					
			grey	518320	54.0	2.0	52.7-52.9 m	3	4	1		
				_			partially assimilated granite					
			grey	518321	56.0	2.0	fragments within diorite.	3	3	ir		
							assimilated granite fragments to					
			grey	518322	58.0	2.0	57.0m then monzodiorite with diorite rounded fragments	2	1	tr		2
			дгеу	518323	60.0	2.0	rounded digrite clasts within a monzodigrite matrix	2	1	1		
			grey	518324	62.0	2,0	diorite with granite fragments in various stages of assimilation	3	1	1		

65.1	Granite: m.g. to c.g. with rhyolite fragments. Fresh except for weak sericitic alteration along joints. Rare diorite clasts. 1m wide alteration zone within the diorite at its contact with the granite. Few blebs and minor disseminated pyrite. Rare f.g grey qtz veins. * Not cross-cut by the calcite-pyrite veins that are so common in the diorite.

106 164.8 Altered Diorite:

106 Diorite:

84.4

Bleached seriote and chlorite altered diorite. Interuded in several locations by granite dykes. Heavily cross-cut by cal-py+/-cpy veins and locally brecciated, ~5-10 veins per metre.

grey	518325	64,0	2.0	diorite with granite fragments in various stages of assimilation	3	2	1	6
				diorite with granite fragments in				
grey	518326	65.1	1.1	various stages of assimilation	3	2	1	
grey	518327	67.0	4.0	~1m of altered diorite and 0.9m		_		
light pink	518328	69.0		granite	2	3	1	
light pink	518329	71.0	2.0 2.0			1 tr		12
light pink	518330	73.0		ete vale GIZ4 E		1	1	
light pink	518331	75.0 75.0	2.0	qtz vein @71.5		1	1	
light pink			2.0	As P. D. A. A.		1	1	6
-	518332 518333	77.0 70.0		few diorite clasts	1	1	1	
light pink	518334	79.0	2.0			1	1	
light pink		81.0	2.0			1	1	2
light pink	518335	83.0	2.0			1	1	
light pink	518336	84.4	1.4		1	1	1	
				bleached zone to 84.7 with				
				bleached veinlets diminishing to				
grey	518337	86.0		86.0	4	1	1	6
grey	518338	88,0	2.0		4	1	1	
				olive dacite dyke with a 4cm qtz				
grey	518339	90.0	2.0	vein runs from 89.2-89,6	4	1	1	
				bleaching and cal-py veins				
				increasing in volume and				
grey	518340	92.0	2.0	number	4	3	2	34
grey	518341	94.0	2.0		4	3	2	
grey	518342	96.0	2,0		4	3	2	
gręy	518343	98.0	2.0		4	2	1	20
grey	518344	100.0	2.0		4	2	ì	
grey	518345	102.0	2.0		4	2	1	
grey	518346	104.0	2.0	3cm qtz vein with py at 103.2	4	2	1	24
				highly bleached with granite	•	_		~~
olive grey	518347	106.0	2.0	dyke from 105.8-106.0	4	3	3	
				granite dyke runs from	•	Ū	,	
olive grey	518348	108.0	2.0	107.6-108.1	4	3	3	
olive grey	518349	110.0		granite dyke from 109.2-110.2	4	3	3	121
olive grey	518350	112.0		2 small granitic dykes.	4	3	3	121
				diorite cross-cut by multitude of	7	J	3	
olive grey	518351	114.0	2.0	veins.	4	3	3	
olive grey	518352	116.0	2.0		4	3	3	107
olive grey	518353	118.0	2.0		4	3	3	127
olive grey	518354	120.0	2.0		4	3	-	
olive grey	518355	122.0	2.0		4		3	
grey	518356	124.0	2.0			3	3	102
grey	518357	126.0	2.0		4	3 3	3	
grey	518358	128.0	2.0		4	-	3	
grey	518359	130.0	2.0		3	3	3	17
grey	518360	132.0			3	3	3	
grey	518361	134.0	2.0 2.0		3	3	3	
					3	3	3 tr	14
grey	518362 518383	136,0	2.0		3	2	1 tr	
grey	518363	138,0	2.0		3	2	1 tr	
grey	518364	140.0	2.0	Silicified	3	2	3 tr	35
				sub// shear zone from 141.2-				
uten	518365	142.0	2.0	144.0, mineralized with calcite.		_		
grey			2.0	py and a v.f.g grey mineral.	3	3	3 tr	
grey	518366	144.0	2.0	de contrare à	3	3	3 tr	
grey	518367	146.0	2.0	few silicified zones	3	3	3	103

		grey	518368	148.0	2.0 few silicified zones	
		grey	518369	150,0	2.0 few silicified zones	
		grey	518370	152.0	2.0	
		grey	518371	154.0	2.0	
		grey	518372	156.0	2.0	
		grey	518373	158.0	2.0	
		grey	518374	160.0	2.0	
		grey	518375	162.0	2.0	
164.8	200.3 Granite Breccia:		518376	164.8	2.8	
104.0	c.g. granite fragments (~20-30%) ~3mm to 3cm in size float within a f.g. grey granite matrix.	grey light pink	518377	168.0	1.2	
	The granite is visually unaltered and contains many pyrite +/- calcite veins and pods.		518378	170.0	2.0	
	The grante is visually unlatered and contains many pyrite +1- calcile verils and pous.	light pink				
		light pink	518379	172.0	2.0 cal-py pod from 170.3-170.4	
		light pink	518380	174.0	2.0	
		light pink	518381	176.0	2,0	
		light pink	518382	178.0	2.0	
		light pink	518383	180.0	2.0	
		light pink	518384	182.0	2.0	
		light pink	518385	184.0	2.0	
		light pink	518386	186,0	2.0	
		light pink	518387	188.0	2.0	tr
		light pink	518388	190.0	2.0	tг
		light pink	518389	192.0	2.0	tr
		light pink	518390	194.0	2.0	tг
		fight pink	518391	196.0	2.0	••
		light pink	518392	198.0	2.0	
200.3	End of Hole	light pink	518393	200.3	2.3	

tr

tr

1 tr 1 tr 1 tr

1 tr

1 tr

3 tr

2 tr

1 tr 1 tr 1 tr В

PHELPS DODGE CORPORATION OF CANADA, LIMITED

PROFERTY: Laidman PROJECT No: 253

Location: L111+00E, 107+70N

Azimuth: 360 Dip: -55

Start Date: August 18, 1997 11AM Complete Date. August 20, 1997 10:45AM Length(m); 200.3 Core Size: NQ

Elevation: 1397 Claim No:

DRILL HOLE NO. 97-5

Dip Tests:

Section:

-54.5

Date Logged: August 22, 1997

		Purpose: Test Au and Ag soil anomaly south of 110 zone					Date Logged: August 22, 1997				
rom	To	Description	Calaria	Camania #1	 -		Logged by: Wetherup				
	(metres)	Description .	Colour	Sample #	To		Comments	Cht	Clay	Ру	Au
0		Casing		<u> </u>	(metres)	(metres)					(ppi
4											
4	23.0	Granite:	light grey	518394	6.0		very mildly weathered		2	1	
		mgeg., fresh to mildly sericitic. Aphanitic, aphyric rhyolite/dacite xenoliths common. Rare	light grey	518395	8.0	2.0	very mildly weathered		2	1	
		sulphide (py) veins and trace disseminated py, where altered. Rare argillic zones with sericitic alteration							_		
		enveloping them (0.5m wide).	light grey	518396	10.0	20	very mildly weathered		2	1	
			J J ,						-	ı	
			light grey	518397	12.0	2.0	a small argillic zone @ 11.5 m with sericite alteration envelope			_	
			light grey	518398	14.0	2.0	with sendia alteration envelope		4	1	:
			light grey						3	1	
				518399	16.0	2.0			4	tr	
			light grey	518400	18.0	2.0			3	tr	
			light grey	518401	20.0	2.0			3 1	tr	
							small black shear zone with pv.				
							b/n 21.3 and 21.4 (~30 deg. to				
			light grey	518402	22.0	2.0	c/a)		3	1	
23.8	30,6	Altered Diorite:	light grey	518403	23.8	1.8	argillic zone @ 23,3		3	•	
									•	•	
							dark grey shear zone @ 25.7- 26.1, ~20% py and 30% energite				
		mg. to fg. with feldspar phenocrysts ~1-2mm, ~20-25%. Altered to a smectite (and/or sericite ??)	light green	518404	26.0	22	+\or bornite.	3	. 4	3	
		assemblage that is bleached to a light olive/tan colour. Py is disseminated throughout and	light green	518405	28.0	2.0	tor bornite.	3		_	
		abundant (3-5%). It is also found along dark grey veinlets where it comprises ~30% of the vein.	dark green	518406	30.6	2.6		5	_	2	
			aam green	010-100	30.0			5	3	1	
		Some zones are dark green and altered to chlorite with magnetite still present but little to no pyrite	light grey	518407	32.0		several py veins within the		_		
30.6	200.3	Granite:	light grey	518408	34.0		vacinity of the diorite contact.	1	5	2	
		as before except local zones with very light green aphanitic aphyric rhyolite clasts and the odd	light grey			2.0	few py veins and diss, py,	1	-	2	
		diorite clast. A few 0.5-1m olive coloured dacite and dark green mafic dykes.		518409	36.0	2.0	few diorite clasts and py, veins	2		2	
		also the class. A few cost in lowe coloured dache and dark green maile dykes.	light grey	518410	38.0		few diorite clasts and py, veins	2	3	2	
			light grey	518411	40.0	2.0		1	3	2	
							few dark grey veins with minor				
			light grey	518412	42.0	2.0	py.	1	3	2	
			light grey	518413	44.0	2.0		tr	3	1	
			light grey	518414	46.0	2.0	diss. py.		3	2	
			light grey	518415	48.0	2.0	diss. py.		3	2	
							diss. py. and grey veins withpy			-	
			light grey	518416	50.0	2.0	pods and stringers @ 49.5		3	2	
			light grey	518417	52.0		diss, py and stringers		3	2	
			light grey	518418	54.0		few rhyolite clasts		3	2	
							•		3	2	
			light grey	518419	56.0	2.0	silicified zone with py stringers and dark grey veinlets.		_	_	
			light grey	518420	58.0		minor epidote		3	2	
			light grey	518421	60.0		unaltered granite		3	1	
			light grey	518422					2	1	
					62.0		py vein @61.2	ţΓ	2	1	
			light grey	518423	64.0	2.0			3	1	
			light grey	518424	66,0		fresh granite		2 t	ŗ	
			light grey	518425	68.0		few thin py velns		2	1	
			light grey	518426	70.0	2.0	few argillic zones and by veins		4	2	
			light grey	518427	72.0	2.0	10cm pyrite zone @70.8		2	2	

1

light grey	518428	74.0	2.0	fg. mafic clast with reaction rim and pyrite adjacent to it		1	3	1	
light grey	518429	76.0	20	pyrite diss., in blebs and stringers			3	2	40
light grey	518430	78.0		1cm py vein at 77.2			3	2	10
		70.0					3	2	
light grey	518431	80.0	2.0	few py blebs and sericitic alteration			3	2	
2 2 ,								2	
light grey	518432	82.0	2.0	small shear zone @81.3 with py mineralization			4	2	34
0 0 3				few soft steel grey veinlets and			•	-	34
light grey	518433	84.0	2.0	argillec zones			4	t	
							,	·	
				couple of slip surfaces with fg. dark grey mineral displaying					
light grey	518434	86.0	2.0	slicks			4	1	
				shear zones @87.4 and 87.6 with					
light grey	518435	8B.0	2.0	chl., py.,and mo?			4	1	21
light grey	518436	90.0	2.0				3	1	
light grey	518437	92.0	2.0	•	tг		2 tr		
light grey	518438	94.0	2.0	rhyolite clasts			2 tr		0
light grey	518439	96,0	2.0	·			2 tr		_
light grey	518440	98.0	2.0	2 argillic zones			4	1	
light grey	518441	100.0	2.0				3	1	6
light grey	518442	102,0	2.0				3	1	_
light grey	518443	104.0	2.0				3 tr		
light grey	518444	106.0	2.0	few py pods			3	1	30
light grey	518445	108.0	2.0	few mo.? veinlets			2	1	
light grow	E48440	440.0							
light grey	518446	110.0		mo? veinlets from108.8 to 109.3			2	1	
light grey	518447 518448	112.0		few argillic zones			4	1	21
light grey light grey	518449	114.0 116.0	2.0				2 tr		
light grey	518450	118.0	2.0	favo analysis and a			3 tr		
iigi it grey	310440	110.0	2.0	few argillic zones			4	1	19
light grey	518451	120.0	2.0	rhyolite dyke 119.2-120.5 with					
light grey	518452	122.0		sericitic granite adjacent several large py pods			4	2	
light grey	518453	124.0	2.0	several large by pods			3 3	2	
	4 10100	124.0	2.0	hopeily feasing and attack of			3	1	12
light grey	518454	126.0	2.0	heavily fractured and silicified zone with py and energite			3	1	9
light grey	518455	128.0		silicified granite with tr. cpy			1	t	13
light grey	518456	130.0		from 128.8-130.2 dacite dyke		3	3 tr	ı	56
light grey	518457	132.0	2.0	trace chlorite along fractures	tr	_	3	1	44
				2 Silicified zones @ 132.4 and			-	•	
light grey	518458	134.0	2.0	133.3-133.4 with enargite			3	1	30
				shear zone @134.2 to 134.6					
light grey	518459	136.0		some silicification			4	1	33
light grey	518460	137.9	1,9	dacite dyke 136.3-137.9		1	4 tr		12
light grey	518461	140.0		heavily silicified from dacite					
	518462			contact to 141		ir		3	904
light grey light grey	518463	142.0 144.0		mostly silicified			1	3	371
light grey	518464			1m dacite dyke		_	2	1	11
light grey	518465	146.0 148.0		fg. mafic dyke 1.6m		2	3	2	16
light grey	518466	150.0	2.0 2.0				1	2	17
light grey	518467	152.0	2.0				1 tr		
light grey	516467 518468	15∠.0 154.0	2.0				1	1	
light grey	518469	156.0	2.0				3	1	17
light grey	518470	158.0	2.0				3	2	
light grey	518471	160.0	2.0				3	2	
light grey	518472	162.0	2.0				3	2	40
anic Birol	0.0472	102.0	2.0				3	2	

to the territorial and the territorial and the control of the cont

200.3 End of Hole

light grey	518473	164.0	2.0			3	2	
light grey	518474	166.0	2.0	black specks within pyrite blebs		3	2	25
light grey	518475	168.0	2.0	•		3	1	
light grey	518476	170,0	2.0	few grey and chalcedony veins		3	1	
light grey	518477	172.0	2.0	,		3 tr		19
light grey	518478	174.0	2.0	silicified zone 173.6-173.8		2	1	
				sulphide bleb 174.8-174.9 and flow banded rhyolite dyke				
light grey	518479	176.0	2.0			2	2	
light grey	518480	178.0	2.0			3	1	19
light grey	518481	180.0	2.0	digrite dyke from 179.3-181.0	3	3	1	
light grey	518482	182.0	2.0		3	1 tr		
light grey	518483	184.0	2.0		tr		1	32
light grey	518484	186.0	2.0		tr	tr	•	
light grey	518485	188.0	2.0		-	3 "	1	
light grey	518486	190.0	2.0		tr	_	1	22
light grey	518487	192.0	2.0		tr		2	
light grey	518488	194.0	2.0		tr		2	
light grey	518489	196.0	2.0		tr		2	99
light grey	518490	198.0	2.0		tr		2	5.0
light grey	518491	200,3	2.3		ir		5	

APPENDIX II

Analytical Method and Certificates

Core Samples

- ICP A 30 gram sample is digested with 180 millilitres 3-1-2 HCL-HNo₃-H₂O at 95° C for one hour and is diluted to 600 millilitres with water. This each is partial for Mn, Fe, Sr, Ca, P, La, Cr, Mg, Ba, Ti, B, W and limited for Na, K, Ga and Al. The solution is analysed directly by ICP. Mo, Cu, Pb, Zn, Ag, As, Au, Cd, Sb, Bi, Tl, Hg, Se, Te and Ga are extracted with MIBK-Aliquat 336 and analysed by ICP. Elevated detection limits for samples contain Cu, Pb, Zn, As>1500 ppm, Fe>20%.
- Au⁺ Extracted by aqua-regia/MIBK extract with GF/AA finished.

AB Y YTI('LAB' 'ORI' '.TD.' '8! '.H' 'NGS \ VF 'UVEY \V 'R6' 'PHC 504' '31' 'FAX'))2! V16'

秮

GEOCHEMICAL EXTRACTION-ANALYSIS CERTIFICATE

(e Corp. PROJEC		
Granville St., Vencouve		

																1000000	AMAIL I	CLCU	HYR :	J.EV	- WC	rue.	up.			2000	90.						
	SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm		Ni Co pm ppm			As ppm				Cd ppm	Şb ppm		ppm V	Ca %		La opm p	Cr pm		Ba Ti pm %					W T1	Hg	Se 1	e Ga		ليست
	518185 518186 518187 518188 518189	6.4 3.5 5.2 3.2 4.2	15.0 11.2 11.4 23.1 14.3	13.9 15.1 11.9	5.9	780 611 618 630 516	3 2	235 333 498	1.55 1.38 2.00 1.39 1.56	5.4 5.3 7.2	< 5 < 5 < 5	6 7 7 6 6	19 24 21	.11 .14 .10 .11	.3 .4 .4 1.5 1.6	.8 .5 .7 .4	2 9 2	.52 .73 .92	.030	9 10 5	15 18 15	.06 .20 .04	27<.01 26<.01 36<.01 25<.01 25<.01	<3 <3 <3	. 18 . 34 . 23	.05 . .04 .:	13 20 17	6 < .2 7 < .2 6 < .2 7 < .2 6 < .2	<10 < 19 < <10 <	.3 . .3 <.	2 1.4	3 4 1 9 3 4	
	518190 518191 518192 518193 518194		9.5 10.7 9.3 17.0 459.0		<1 <1 4.6 5.5 31.3	322 575 119	3 1 4 1 5 4 4 2 7 2	233 395 196	1.24 1.93 1.12	2.8 3.6 2.3	<5 < 5 < 5	8 8 8	17 17 < 39 15 39	.01 .04 .03	.3	.7 .3	9 : 6	.45	.020 .032 .019	16	16 16 16	.05 .25 .15	25<.01 38<.01 50 .01 49 .02 84 .11	<3 <3 <3	.22 .38 .28	.06 .	16 23 14	9 < .2 6 < .2 8 < .2 6 < .2 6 < .2	<10 < <10 < <10 <	.3 . .3 .	4 1 4	5 3 1 4 5 6	
2	RE 518194 RRE 518194 518195 518196 518197	1.9 2.0 5.7	449.2 463.1 63.2 295.2 291.2	4.4 5.5 4.9	31.3 11.6	556 549 338 329 738	8 2 4 1 8 3	479 361 462		4.5 3.8 2.9	B 6 5	4	45	.04 .03 .08	.2 1.4 .2	<.1 .1 .4	60 1 17 1 62	1.44 1.12 .98	.080 .022 .086	12 17 9	21 1 16 21 1	.05 .41 .12 1	93 .11 54 .03 46 .13	<3 1 <3 <3 1	20 .53	.06 .06 .07	22 25 29	7 < .2 5 < .2 7 .2 9 < .2 58 < .2	53 < <10 < 36 <	.3 . .3 <.	2 3 0) 10) 3 ' 6	
4.	518198 518199 518200 518201 518202	17.3 13.7 15.4	260.0 32.4 44.4 23.7 54.4	51.5 88.0 56.9	65.7 58.8 10.8	751 1246	7 5 3 1 3 1 2 3 2 1	43 36 24	3.51 2.71 2.86 1.61 2.18	25.2 30.7 21.9	<5 <5 <5	8 8 5	5 4 4	.03 .02 .05		1.1 1.0 .5	4 2 2	.02 .01 .01	.020 .033 .010	6 7 5	12 11 10	.03 .02 .02	00 .14 89<.01 59<.01 73<.01 99<.01	<3 <3 <3	.59 .53< .47	.01 .: .01 . .01 .	23 16 14	23 < .2 6 < .2 4 < .2 5 < .2 2 < .2	36 1 33 1	.4 1. .1 1. .3 :	2 6 1 1 2 1 0 1 8 3 1 2 8 2 0	. 5 8 8 9	
	518203 518204 518205 518206 RE 518206	30.5	74.1 62.1 39.8	130.3 47.9 41.1	53.6 60.6 33.9	574 683 506 874 931	1 1 2 1 2 1 2 2 3 2	31 32 22	1.44 2.30 1.70 1.78 1.83	16.3 8.6 7.3	<5 <5 <5	7	3 4 2	.03 .02 .01	5.3 3.3 2.9 1.9	.9 1.2 .5	2 · 2 1 ·	<.01 .01 <.01	.022 .012	8 8 5	8 9 10	.01 2 .01 1	06<.01 20<.01 01<.01 12<.01 11<.01	<3 <3 <3	.49< .50< .45<	.01 . .01 .	12 13 14	4 < .2 3 < .2 4 < .2 3 .2 3 < .2	20 37	.6 . .3 . .4 <.	3 1.3 2 1.7 2 1.1 2 1.2 2 1.1	8 6	
	RRE 518206 518207 518208 518209 518210	385.5 66.8	44.4 737.3 472.1 88.0 31.9	144.8 63.7 86.2	159.1 74.4	7643 2682 1127	2 2 6 33 9 78 6 48 3 2	35 28 23	1.86 4.57 5.43 4.38 .90	19.1 11.3 3.4	<5 <5	6 6	2 4 2 2 5 1 6 1	. 57 . 38 . 47	6.0 6.6	<1,3 .4 .4	3 -	<.01 <.01 <.01	.023 .017 .006	4 7 11	15 13 12	.01 .01 .01	05<.01 13<.01 15<.01 24<.01 55<.01	<3 <3 <3	.25< .39< .40<	.01 . .01 .	11 14 12	5 < .2 5<2.6 6 .3 4 .2 6 < .2	317<3 145 2 70 1	.9<2. .2 . .7 <.	5 2.0 2 1.3	: 19) 10 3 6	
	518211 518212 518213 518214 STANDARD DZ/AG-500/AU-R	53.9 39.9	13.2 12.8 11.3 2586.2 129.9	41.6 52.2 252.5	244.9 118.5 538.6		4 3 4 7 4 12 3 13 33 17	46 35 31	1.08 1.37 1.59 1.96 4.86	1.7 2.0 88.5	<5 <5	7 7 7 6 22	5 6	.09 .44 .99	1.2 1.4 1.5 171.8 9.6	2.3	1 2 1	.01 .01	.012 .006 .005	12 14 10	16 15 15	.04 .03 .01	77<.01 58<.01 39<.01 33<.01 264 .15	<3 <3 <3	.38 .41 .33	0.1	14 13 16	5 < .2 7 .2 5 .3 7 < .6 23 2.3	<10 <10 <	.4 <.	2 .9	6 9 5	

ICP - 30 GRAM SAMPLE IS DIGESTED WITH 180 ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K GA AND AL. SOLUTION ANALYSED DIRECTLY BY ICP. MO CU PB ZN AG AS AU CD SB BI TL HG SE TE AND GA ARE EXTRACTED WITH MIBK-ALIQUAT 336 AND ANALYSED BY ICP. ELEVATED DETECTION LIMITS FOR SAMPLES CONTAIN CU,PB,ZN,AS>1500 PPM,Fe>20%.

- SAMPLE TYPE: CORE AU+ - AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED. Samples beginning 'RE' are Reject Reruns.

DATE RECEIVED: AUG 22 1997 DATE REPORT MAILED: Hug 28/97

SIGNED BY ... D. TUYE, C. LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data # FA _

Phelps Dodge Corp. PROJECT 253 FILE # 97-4596

Page 2

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppb		Co ppm	Mn m	Fe %	As ppm	bbw t		Sr	ppm Cd		Bi ppm		Ca %		La ppm		Mg %	Ba ppm	i % pp	BA m	. Ne		ppm ₩	T (Hg ppb	Se ppm	Te pom	Ga ppm		
518217	44.4 43.2 66.3	64.1 13.8 12.8	148.7 188.9 126.7 99.7 120.9	526.3 203.3 357.3	5488 1504 1553	3 3 3	16 12 10	29 20 27	1.98 2.73 2.02 2.00 1.99	6.0 2.2 1.3	<5 <5 <5	6 5 6	4 3 4	4.53	15.2 2.2 1.4	1.1	1< 1< 2<	.01 .01 .01	.004	9 7 8	14< 13< 15<	.01 .01 .01	41<.0 30<.0 32<.0 50<.0	01 < 01 < 01 <	3 .2 3 .2 3 .2	7<.01 3<.01 5 .01	.13 .13	7 4 7	.3	67 19 34	1.3 1.0 1.0	.4 .2 <.2	.8 .8 .5	7 5 3	
RE 518219 RRE 518219	3		118.9 109.2			-			1.93 1.91					4.11 3.60			-		.007 .007				58<.0					_						_	

Sample type: CORE. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

BA TIC LABO ORI TD. 85 NH NGS VA TVEF VORE PHO 704) -31! FAX

秮

GEOCHEMICAL EXTRACTION-ANALYSIS CERTIFICATE

Phelps Dodge Corp. PROJECT 253 File # 97-4676 Page 1
1409 - 409 Granville St., Vancouver BC V61 112 Submitted by: Stephen Wetherup

1) 25

	T								es services	2000 H 0 2 4 4	AUDICE SOL	090000000	00.000001000	1000		966-300-00	0.000.000	<u> </u>	0000000	0.000	0.00000	addig go	ayaya nasa sasa s	iori e o e si e	graphical control follows a control of the control	eri ana verena. Garan manana	11.000	<u> </u>		<u> </u>	<u> </u>		<u></u>
SAMPLE#	Мо	Cu		Zn		Ni		Mn F		As					Sb		٧			La			Ba Ti	В	AL NE	∍ K	¥	ŢĻ	Нд	Se	Te	Ga A	.U+
	bbu	bba	ppm	ppm	bbp t	obu b	pm	ppm	<u> </u>	bbut t	spur k	ppm r	ppm pp	m	ppm	ppm p	ppm	7.	% p	opm p	pm	- %	ppm %	ррп	% %	% %	ppm	ppm	ppb	bbw t	ban b	ppm p	/pb
518221 518222 518223	36.2 37.0 56.0	10.1 28.2 18.9	115.0 261.2 382.0	363.8 165.3 881.2 1152.8 262.1	1946 4983 3381	2 1 3 1	5 17	27 2.1 21 1.2 23 3.4 30 2.0 26 1.7	3 6 8	6.5 2.5	<5 <5 <5 <5	5 7 6 4 5	3 2.9 4 1.3 3 7.8 3 8.8 3 2.2	36 36 36	6.8 2.2 9.9 6.0 3.9	1.0 1.6 2.0	1 .0 1 .0 1 .0 1 .0	03 . 04 . 06 .	012 015 020	8 6	7 8 7	.01 .01 .02	34<.01 57<.01 14<.01 37<.01 34<.01	<3 3 6		1 .11 1 .15 1 .17	2 2 2	.4 .4 .5	73 267 154	.7 · 1.9 ·	<.2 <.2	.6 .5	13 19 15
	42.5 19.4 6.1	22.0 39.2 17.7	265.8	490.6 425.9 447.7 73.0 60.4	2202 4252 1070	<1 2 2 4 2	11	28 1.5 26 1.8 21 1.6 26 .7 91 .8	9 50 7	4.8 4.5	<5 <5	5 5 4 4 7	3 4.2 2 3.8 2 4.0 3 .6 4 .2	39 36 1 33	6.2 6.9 6.2 5.2 5.0	1.3 1.2	1 .0	05 . 05 . 04 .	018 016	6 6 11	8 7 7	.01 .02 .01	43<.01 46<.01 17<.01 17<.01 78<.01	6 4 4	.32<.0° .25<.0° .24<.0° .28<.0°	1 .17 1 .17 1 .10	<2 <2 4	.4 .4 .2	84 117 47	1.1 ⁶ • 9. • 4.	<,2 <.2	.7 .6	15 14 11
518230 RE 518230 RRE 518230 518231 518232	4.2 4.0 11.0	17.6			463 441 858	3 2 3 2	4	279 .8 275 .8 286 .8 61 .9	31 35 21	1.8 2.1 3.3	<5 <5 <5 <5	7 6 7 7 6	5 .2 5 .2 6 .7 4 1.2 4 2.7	20 19 25	3.5 3.6 3.2 3.4 2.3	.3 .3	1 . 1 . 1 . 1 .	09 . 10 . 05 .	014 016 014	12 13	7 8 8	.03 .03 .02	77<.01 83<.01 74<.01 95<.01 28<.01	<3 3 <3	.32<.0° .35<.0°	1 .12 1 .12 1 .15	3 4 3	.3 .2 .3	25 33 52	.3 .	<.2 <.2 <.2 <.2 <.2	.7 .7 .7	7 6 7 8 8
518233 518234 518235 518236 518237	9.8 16.9 68.3	18.1 25.2 24.1	38.8 32.5 24.7 55.4 48.5	68.1 20.3 24.3 98.8 57.0	552 612 927	2 3 1	3 5 6	477 .7 97 1.5 102 .8 51 1.9 134 .8	16 19 76	5.0	<5 <5 <5	6 10 7 7 5	4 .2	22 25 91	9.4 3.6 5.4 4.4 3.0	.4 .4 .3 .6	1.	08 . 08 . 05 .	012 011	12 16 23	7 7 9	.03 .03 .02	31<.01 68<.01 95<.01 39<.01 109<.01	<3 3 <3	.34 .0° .37 .0° .33 .0° .33<.0° .27<.0°	1 .14 1 .13 1 .14	3 5 3	.2 .2 .5	38 33 62	.4 · .3	.2	.7 .6 .8	7 6 14 8 7
518238 518239 518240 RE 518240 RRE 518240	17.7 16.4 16.6	23.7 250.3 258.1			873 3236 3282	3 1 1	4 12 14	463 .8 731 1.3 316 2.2 322 2.2 323 2.1	39 22 4 28 4	8.5 0.6 4.3	<5 <5 <5 <5	6 5 6 6 5	9 1.6 6 2.1 6 2.1 6 2.1	50 74 4 74 4	2.6 7.8 9.7	3.4	2 .	35 . 24 . 24 .	014 018 014 014 014	10 8 9 9	6 7 8	.12 .08 .08	150<.01 66<.01 33<.01 30<.01 31<.01	<3 <3 <3	.33<.0°	1 .14 1 .13 1 .14	<2 <2 2	.2 .3 .2	68 206 210	.5 - 1.6 : 1.7 :	1.3	.5 .7 .8	19
518241 518242 518243 518244 518245	38.5 76.7 17.3	62.2 21.0 867.3	36.4 189.4 52.3 108.7 31.3	21.1 29.5 34.4 163.1 59.8	2921 741 2724		55 9 7	472 1.6 539 9.6 271 1.1 337 1.8 307 .8	59 2 19 30 17	0.6 5.2 6.0		6 5 6 5	7 3 6 7 3 8	65 1 32 46 14	4.0	.7	1 -	11 . 18 . 33 .	800	3 10 8	7 9 8	.03 .06 .09	54<.01 <1<.01 54<.01 39<.01 100<.01	3 <3 <3	.38 .0° .18<.0° .31<.0° .29<.0° .33 .0°	1 .08 1 .12 1 .11	4 4	.2 .5 .2	112	9.4 e .8	1.1 6.0 < .3 .9	4.5 .8 .6	32 10
518246 518247 518248 518249 STANDARD D	29.2 14.0 6.6	143.0 208.9 12.2	2.4	40.9 40.4 33.9 22.9 278.7	1464 363 198	1 2 1	5 3 3	625 .9	98 3 38 7	8.0 10.0 1.1	<5	7	9 .!	11	17.5 12.7 1.1	<.1 .2	1. 3. 3.	38 . 59 . 46 .	.018 .013	12 11 11	7 7 9	.11 .16 .13	74<.01 109<.01 89<.01 24<.01 268 .15	4 <3 <3	.41<.0	1 .13 1 .12 1 .13	4 4 4	. 2	126 65 35	<.3	.3 .2 >	.8	8 8 4 9

Standard is STANDARD D2/HG-500/AU-R.

1CP - 30 GRAM SAMPLE IS DIGESTED WITH 180 ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA II B W AND LIMITED FOR NA K GA AND AL. SOLUTION ANALYSED DIRECTLY BY ICP. MD CU PB ZN AG AS AU CD SB BI TL HG SE TE AND GA ARE EXTRACTED WITH MIBK-ALIQUAT 336 AND ANALYSED BY ICP. ELEVATED DETECTION LIMITS FOR SAMPLES CONTAIN CU,PB,ZN,AS>1500 PPM,Fe>20%.

- SAMPLE TYPE: CORE AU+ - AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED. Samples beginning 'RE' are Repurs and 'RRE' are Reject Reruns.

DATE RECEIVED: AUG 25 1997 DATE REPORT MAILED:

SIGNED BY.

.D.TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data FA

Phelps Dodge Corp. PROJECT 253 FILE # 97-4676

Page 2

SAMPLEF	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag N ppb pp	Vi Co om ppm		Fe %	As ppm j	-	Th S pm pp		Cd om	Sb ppm	B1 ppm p	V pm	Ca %		La (Mg % p	Ba Ti pm %		Al Na		bbw bi				e Gá. пррт	
518250 518251 518252 518253 518254	10.7 32.9	199.9	19.9	123.0 96.2 13.2 33.5 20.9	730 592 2291	3 3 3 7	189 181 156	1.32 .82 .98 .67 .78	3.4 3.6 18.7	<5 5 5 5 5	5 5 6	5 .8 6 .3 5 .8	15 81 4	58.6 3.6 4.4 14.4 6.8	.6 .5 .5 .1	1 1 1	.15 . .15 . .13 .	013 012 013 008 010	8 7 7	6 .	.05 .05 .05	24<.01 21<.01 16<.01 16<.01 7<.01	<3	.36<.01 .36<.01 .32<.01 .38<.01 .33<.01	.14 .11 .12	2 4 3 <	.3 .4 .2	57 <	.3 .:	2 .8 2 1.0 2 .7	4 7 6 10 5
518255 518256 518257 518258 518259		70.7 197.7 136.6	124.0 218.3	60.8 86.3 304.9 461.0 493.4	1982 1348 3960 2439 1277	9 7 3 7 2 6 4 8 3 3	431	1.56	13.4 19.5 16.0	<5 <5 <5 6	4 4 4		88 1 10 2 29 3	20.3 18.3 25.4 32.1 5.2	.9 6.9 .8	2 2 5	.13 . .25 . .27 . .49 .	025 021 047	9	6 . 7 . 5	.07 .05 .13	28<.01 22<.01 20<.01 61<.01 23<.01	<3 3	.31<.0: .23 .0 .24<.0 .30<.0	1 .13 1 .14 1 .16	<2 <2	.4 .6 .3	47 113 173	.6 1.6 .8 <	2 .9 2 .5 6 1.1 2 .9 2 1.0	15 84 12
518260 RE 518260 RRE 518260 518261 518262	25.2 25.6 21.3 56.4 159.0	77.3 73.2 16.6		438.5 443.1 278.7	1849 1878	3 6 2 5 1 6 4 3 1 6	534 526 542	1.51 1.53 1.25	23.6 21.4 9.3	10 <5 6 <5 <5	4 5 5 1	7 4. 7 4. 7 4. 0 2. 15 2.	58 61 64	9.0	1.8 1.6 1.2	1 1 1	.39 . .38 . .38 . .47 . .71 .	.017 .017		8 8 7	.10 .10 .14	20<.01 23<.01 17<.01 56<.01 79<.01	4 3 3	.25<.0 .25<.0 .26<.0 .25<.0	1 .20 1 .19 1 .16		.4 .4 .5	87 102	.4 <.	2 .9 3 .8	26 26 13
518263 518264 518265 518266 518267	26.7 16.4 17.0 20.4 31.7	77.4 40.1 174.6	104.5		1506 1725 1890	3 11	697 1099 1801	2.01	13.7 17.6	<5 <5	5 1 3 2 3 1	19 2. 12 2. 21 3. 18 2. 7 15.	25 17 13 1	11.8	1.4 1.6	1 2 7 1	.78 .49 .96 .07	.028 .029 .052	6 7 5 7 5	В 7 6	. 15 . 30 . 29	91<.01 56<.01 94<.01 33<.01 48<.01	3 <3 <3	.53 .0 .29 .0 .36 .0 .35<.0 .21<.0	1 .15 1 .17 1 .20	2 <2 <2	3	73 88	8 . 7 . 8 .	2 1.6 3 .8 2 1.0 3 1.0 2 1.0	15 15 34
518268 518269 518270 RE 518270 RRE 518270	16.1 31.0 30.3 29.1 31.3	564.7 23.7 23.6	150.3 210.5 208.3	294.5 659.2 672.2 656.9 849.3	2316 1483 1307		665	1.84	13.8	<5 <5 8 <5 <5	2 1 3 4		56 2 22 76	12.0 28.5 5.0 4.6 5.0		18 14 1 1		. 052 . 030 . 029	8 9 9 10 11	7 8 7	.35 .12 .12	42 .01 72 .01 60<.01 62<.01 66<.01	4	.53 .0 .55 .0 .26<.0 .26<.0	1 .17 1 .17 1 .17	<2	. 4 . 4	104 126 <	.4 <.	2 .7	16 27
518271 518272 518273 518274 518275	21.5	448.8 101.1	331.9 56.8 329.5	863.4 4074.0 213.4 385.2 90.0	1251	3 6	3 1387 3 4193 3 1493 3 997 5 806	2.00 1.76 1.76	58.8 8.2 12.8	<5	4 3 3	11 8. 12 41. 27 2. 13 4. 16 1.	34 19 68 1 48	98.1	2.9 .5 1.7	11 : 6	1.30	.028 .050 .044		8 7 7	. 24 . 40 . 22	45<.01 48<.01 52<.01 47<.01 87<.01	<3 <3	.24<.0 .22<.0 .52 .0 .31<.0	1 .21 1 .18 1 .17	2 <2	.3 2 .6	93	.7 <.		14
518276 518277 518278 518279 518280		45.5 2918.3 150.4	76.2	143.7	1436 6152 2287	2 6 8 20 3 !	636	1.02 2.12 1.24	147.4 34.5	<5 <5 <5	4 7 5	9 1.	.53 .77 .72	5.7 7.9 41.7 23.5 4.9	1.5	1 1 1		.022 .017 .026	7 8 5 7 6	6 8	.14 .19 .24	31<.01 40<.01 35<.01 55<.01 29<.01	4 <3 <3	.29<.0 .24<.0 .23<.0 .27<.0	1 .13 1 .12 1 .15	<2 3 2	.4 .5 2.0 .5 .4	51 54 406<1 82 60	.4	3 .9 2 3.1 2 1.0	17
STANDARD D2/HG-500/AU-R	24.6	123.5	102.2	256.4	1957	32 10	5 998	4.41	72.4	19	17	56 2	.39	9.8	23.7	72	. 66	. 101	17	55 1	. 19	261 .14	24	2.28 .0	5 .70	21 2	7.7	481	8 2	3 7 0	509

Sample type: CORE. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Page 3

	i .																																PERCENTION.	
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Νí	Сo	Mn	Fe	As	U	Th	Sr	Cd	Sb	Bí	V	Ca	Р	La	Cr	Ma	Ba Ti	В	Αl	Na	K	U	Τl	Hд	92	Te C	ia Au+	
	ppm	ppm	ppm	ppm	nob	ppm	מממר	ppm	~	000	nnm	nom	mmm	ppm	ppm		-	%																
	PP	PP	PP	PP"		יייקק	PPIII	PPIII		P-P-11	ppm	PPIII	PPIII	Ppiii	PPIII	ppm	PPIII	/4	/4	Phil	ppm		ppm %	bbu	/s	/4	<i>∕</i> ₄	ppm	ppm	bbb	bbiii b	bul bb	add ux	
5400D4	2. 7	544.7		~~.	3540		_				_	_					_																	
518281	24.7					7			1.57			3	13	4.15	44.2	4.5	4	.97	.059	- 6	6	.25	32<.01	<3	.30	.01	.17	<2	.3	173	<.3 <	.2 1.	3 32	
518282	41.5	121.4	113.7	443.1	2029	3	6	452	1.31	28.9	<5	3	4	4.82	20.9	1.5	2	.32	.025	5	9	.08	26<.01	<3	.23	<.01	.17	2	. 3	182	< 3 <	2 1	0 22	
518283	17.0	375.6	103.5	533.3	1840	4	4	7154	2.37	28.0	<5	5	13	5.52	17.0	1.6	2		.025	7	7	.31	76< .01			<.01							9 25	
518284		1022.9				7	13		2.23		7	-					-			;	ŗ													
						2								1.07		.9	1		.020		8	.18		_		<.01						.5 2.	0 36	
518285	74.4	153.7	55.2	99.7	1597	5	6	993	1.40	24.3	<5	2	15	1.02	12.8	1.0	3	1.06	.118	4	8	. 24	29<.01	<3	.31	< 01	. 14	3	.4	45	≺.3	.3 1.	7 10	
518286	18.9	132.2	44.9	181.5	713	4	5	1258	1.59	14.9	<5	2	16	1.70	12.8	.3	15	1.04	non	0	7	28	21<.01	<3	7.6	<.01	17	<2	7	47		3 1	4 1	
518287	35.2		23.4			i				24.4		7	13				_			,	<u>'</u>			_										
	1					-	6					*			8.4	.5	2		.023	2	- (117<.01	_		.01							2 10	
518288	48.2					7	3	479		21.5		4	8		8.1	.3	1	.41	.015	5	8	.12	26<.01	<3	. 25	.01	.12	4	.3	38	<.3 <	.2 1.	2 10	
51 8289	17.4	53.1	23.5	53.1	777	2	3	530	.93	11.6	8	3	9	.87	12.6	.6	1	.50	.020	8	7	. 15	26<.01	<3	.26	<.01	.11	2	.2	33	.3 <	.2 .	6 4	
518290	17.4	109.5	71.6	217.0	1109	2	5	1009	1.32	16.2	<5	<2	12	3.73	23.3	- 5	6	. 03	.041	20	6	.24	20<.01	<3		.01							8 3	
	{					_	_									1,5	_	• • • •					201.01	• • •	4	.01	. 13	٦٢.		143	· ·	٠ .	O 3	
RE 518290	17.3	111.9	71 0	220 0	1140	,	-	4044	4 77	15 7			47	7 01		_					_			_				_	_		_			
						4			1.33						22.9	ج.	- 6	.94		20	- 1		24<.01						. 2	144	<.3 <	.2 1.	0 5	
RRE 518290	18.3		70.6			<1	5		1.33				12	4.23	25.5	.6	6	.95	.041	20	6	.24	20<.01	<3	.34	< .01	. 13	<2	.4	154	<.3 <	.2 1.	1 4	
518291	41.9	99.7	49.3	207.2	1463	2	7	820	1.33	30.3	<5	2	14	2.50	18.0	1.0	3	.84	.042	12	6	. 23	28<.01	<3	.24	<.01	.15	<2	- 4	67	<.3 <	.2 1.	0 29	
518292	14.8	612.2	54.7	186.4	2360	1	6	998	1.44	39.0	<5	<2	13	2.71	53.2	1.9	6	90	.048	10	6	.24				<.01			.3				1 15	
518293	53.7		114.6		-	À			1.91						27.3		_	1.19			2													
710273	٠,٠٠	164.6	114.0	340.3	Z 147	4	13	1240	1.71	22.2	٠,	~~	12	4.00	21.3	2.0	4	1.17	.UDY	y	o	.30	25<.01	<3	. 24	.01	.19	<2	-4	95	<.5 <	.2 1.	4 21	
	l					_	_				_																							
518294	92.0		514.6			2	8	1662	2.17	71.5	<5	2	30	9.20	5.7	.7	9	1.46	.063	6	7	. 41	69<.01	<3	.34	.01	.22	<2	.4	69	<.3 <	.2 1.	4 139	
518295	57.2	46.0	57.6	149.3	932	1	5	775	.84	14.8	5	<2	24	1.15	4.3	.6	2	1.14	.029	8	6	.21	155<.01	<3		.01							7 16	
518296	29.1	63.2	88.2	81.7	1723	3	8	1998	1.92	42.0	<5	2						2.36		7	7	41		_		<.01			.3	69			0 131	
STANDARD D	25.7	130.8		263.7		32			4.47			16			9.0		74			17	F 7													
- TONDARD D	1534	120.0	77.7	203.1	2023	عد	10	1023	4.47	16.3	21	10	21	4.41	7.0	44.7	14	.00	.106	17	5/	1.21	263 . 14		2.28	, 05	./ _	41	2./	436	./ 2	.ა /.	6 546	

Standard is STANDARD D2/HG-500/AU-R. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

AB / YTI/ 'LAB' 'ORI 'ATD: '8! 'AH INGE) V/ DVET 'V' 'R6 'PHC 504' '-31' 'FAY 1)2" 716'

杜

GEOCHEMICAL EXTRACTION-ANALYSIS CERTIFICATE

Phelps Dodge Corp. PROJECT 253 File # 97-4843 Page 4 1409 - 409 Granville St., Vancouver BC V61 172 Submitted by: Stephen Wetherup 44

SAMPLE#	Мо Сі ррт ррі			Ag N										V Ca												ie Te m ppm			
518297/518298/518299 518300/518301/518302 518303/518304/518305 518306/518307/518308 518309/518310/518311	1.5 34.4 1.8 47.2.0 68.3 1.7 27.1.3 17.	5 2.5 3 2.6 7 1.7	118.8 64.0 55.4	117 1 93 1	2 11 2 12 1 12	476 528 515	3.65 3.56 3.57	4.5 3.7 5.0	<5 <5 <5	4 73 3 55 3 57	1.47 .24 .24	.4 .4 .2	1.5 .4 4.4	80 1.22 86 1.95 93 1.49	.122 .134 .142	14 16 16	29 1. 28 . 28 .	00 107 96 109 92 146	7 .13 3 .13 5 .19	<3 1. <3 1. <3 1.	32 .0 37 .0 15 .1	7 .39 6 .39 0 .41	6 6 4	< .2 .2 < .2	•10 <. •10 <. •10 <.	3 < .2 3 < .2	6.1 6.8 5.4	1 4 2	
518312/518313/518314 518315/518316/518317 518319/518320/518321 518322/518323/518324 518325/518326/518327	.9 37. 1.5 100. 1.3 111. 1.8 54. 8.3 96.	0 1.7 4 6.5 7 1.9	96.8 66.7 52.4	149 1 368 1 80 1	.6 14 .3 13 .7 13	730 724 623	4.55 4.35 4.15	5.5 15.0 4.2	<5 < 5 < 5	2 57 2 53 5 49	.37 .18 .05	.2 .6 .2	1 3 3	128 1.67 84 1.99	.167 .140 .148	16 16 19	35 1. 25 1. 42 1.	76 198 27 86 53 24	30 5 .19 4 .28	<3 1. <3 1. <3 1.	94 .0 55 .0 75 .0	7 1.04 5 .78 8 .86	3 4 4	.3 · .2 · .3 ·	<10 <. <10 < . <10 < .	3 < 2 3 < 2 3 < 2	8 7 7 2 7 9	3 12 2	
518328/518329/518330 518331/518352/518333 518334/518335/518336 518337/518338/518339 518340/518341/518342	3.8 23. 11.4 39. 6.8 69. 1.7 84. 1.7 44.	1 33.0 3 19.4 6 3.1	21.3 20.8 54.4	728 621 211 5	6 5 7 3 34 18	385 3 238 3 1011	1.24 .99 4.15	13.2 4.6 5.1	<5 <5 <5	6 36 6 33 3 108	.22 .23 .01	.9 1.7 .3	.6 1 < 1	7 .91 72. 10 138 2.32	. 033 2 .026 2 .156	13 14 16	21 20 92 2	20 94 20 133 40 334	4 .01 3 .01 4 .31	<3 . <3 . <3 2.	35 .0 35 .0 30 .0	5 .22 5 .22 8 1.37	8 7 4	< 2 < 2 4	<10 . <10 <. <10 .	3 < .2 3 < .2 3 < .2	1.2 1.2 9.2	6 2 6	
518343/518344/518345 518346/518347/518348 518349/518350/518351 518352/518353/518354 518355/518356/518357	3.5 133. 4.2 199. 2.5 55. 3.4 45. 5.7 34.	4 13.1 9 25.4 0 28.5	76.1 46.8 53.4	1101 2 1426 2	31 2 4 15 18 21 24	2121 3 1658 4 2268	7.12 4.86 6.77	49.6 64.9 56.9	<5 <5	<2 76 4 60 2 76	.12 .22 .08	.3 .5 .2	1.4 1.1 1.5	144 1.88 41 1.72 59 2.37	.162 2 .113 7 .165	9 6 6	66 2 18 1 24 1	.66 4: .25 3: .85 2:	1 .16 2 .05 5 .06	<3 2 <3 <3 1	.78 .0 .99 .0 .46 .0	5 .72 3 .47 3 .59	2 4 3	4 < 2 2	16 1. <10 . 18 1.	.2 .2 .7 .3 .8 .3	11.7 3.7 6.2	24 121 127	
518358/518359/518360 518361/518362/518363 518364/518365/518366 RE 518364/518365/518366 518367/518368/518369	2.1 60. 2.0 133. 3.5 53. 3.6 51. 1.9 35.	6 11.3 3 80.9 3 79.4	57.7 75.7 73.1	1026 2 3125 3077	24 22 17 15 16 15	2 1786 5 2149 5 2093	6.29 4.97 4.83	27.4 42.1 40.1	<5 <5 <5	2 98 2 78 2 76	.02 .66 .65	.3 4.5 4.3	1.7 2.4 2.4	107 2.59 39 6.5 0 38 6.38	.149 3 .111 3 .108	11 8 8	35 1 18 17	.78 3 .68 4 .66 4	0 .21 4 .04 3 .04	<3 1 <3 <3	.97 .0 .84 .0 .82 .0	5 1.10 3 .42 3 .41	3 4 4	.2	<10 2 18 1 12 1	.2 .3 .9 .3 .9 .3	9.3 3.4 3.4	14 35 24	
518370/518371/518372 518373/518374/518375 518376/5183/7/518378 518379/518380/518381 518382/518383/518384	1.6 112. 1.5 92. 19.0 18. 10.0 13. 8.8 12.	1 5.4 6 35.0 5 51.0	1 34.4) 44.7 L 154.9	290 493 1196	18 17 10 10 7 10	7 1093 D 769 D 541	5.29 3.66 4.75	11.8 6.3 21.6	<5 <5 <5	2 108 4 56 6 31	<.01 .45 .1.99	.3 .4	1.2 1.0 1.8	69 2.5 31 1.9 7 .8	7 .135 5 .095 4 .051	10 14 5	25 1 17 15	.31 2 .65 3 .18 1	9 .12 0 .05 9<.01	<3 1 <3 <3	.33 .0 .78 .0 .32 .0	16 . 64 16 . 39 15 . 21	3 5 7	<.2 <.2 <.2	<10 1 11 1 <10 1	.8 .3 .4 .3 .6 < .2	5.7 3.1 1.4	5 5 11	
518385/518386/518387 518388/518389/518390 518391/518392/518393 STAMDARD 02/HG-500/AU-R	11.0 13. 9.6 14. 10.8 12. 24.9 130.	2 6.5 6 11.3	9 10.0 2 34 .9	712 934	7 8	8 471 7 674	2.91 2.90	9.7 10.0	<5 <5	6 26 5 28	.05	.5 .8	.8 1.0	5 .6 10 .9	7 .039 2 .052	7 7	15 16	.21 2 .32 3	7<.01 3 .01	<3 <3	.27 .0 .44 .0)5 .17)4 .21	' 7 . 7	<.2 <.2	<10 10	.8 .2 .9 .3	.9 1.6	9 B	

1CP - 30 GRAM SAMPLE 1S DIGESTED WITH 180 ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K GA AND AL. SOLUTION ANALYSED DIRECTLY BY ICP. MO CU PB ZN AG AS AU CO SB BI TL HG SE TE AND GA ARE EXTRACTED WITH MIBK-ALIQUAT 336 AND ANALYSED BY ICP. ELEVATED DETECTION LIMITS FOR SAMPLES CONTAIN CU,PB,ZN,AS>1500 PPM,Fe>20%.

- SAMPLE TYPE: P1 TO P3 CORE P4 COMPOSITE AU+ - AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED.

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: AUG 28 1997 DATE REPORT MAILED:

Sept 4/97

SIGNED BY

.D.TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS

YOR:

LTD.

GEOCHEMICAL EXTRACTION-ANALYSIS CERTIFICATE

UVE

LR6

W.V.

Phelps Dodge Corp. PROJECT 253 File # 97-4841 Page 4 1409 - 409 Granville St., Vancouver BC V6T 1TZ Submitted by: Stephen Wetherup

TNO!

	<u> </u>	<u> </u>	<u> </u>	11 11 11 11 11 11		with the second				de	0000000000	00,000,000	0.000	est continu	de decido de	ବ୍ୟବହିତ୍ୟ ହେ	acer	838333		22222			94.0000c	u in contratantes de A residentes de la contrata				ghan a an	115.1	0.000	hardan a	3,34 (7	
SAMP	રાદ #	Mo ppm		Pb ppm			N1 C									Bi ppm p		Ca %			-	-		-				M Tl	_				
5183 5184 5184	394/518395/518396 397/518398/518399 400/518401/518402 405/518406/518407 408/518409/518410	13.2 22.5 3.5	131.3 418.5	21.3 80.6 83.0	167.4 101.3 430.0	391 491 616	4 5 27 2	3 3 3 1 5 9	36 1.2 06 1.1 08 6.4	7 3. 1 9. 0 21.	1 <5 3 <5 9 <5	8 7 2	9 1 10 1 26 8	1.01 1.44 3.17	.9 .7 .8	.3 .4 2.4	1 2 59	.11 .07 .67	.014 .018 .135	8 10 10	14 14 43 1	.04 .04 .01	74<.02 42<.02 24 .08	\ <3 \ <3 3 5	.40 .43 1.64	.04 .03 .05	. 17 . 16 . 59	6 < .2 7 < .2 5 < .2 4 .2 6 < .2	13 12 30	<.3 < <.3 1.7 <	<.2 1.	0 2 8 5 1	20 6 13
5184 5184 5184	411/518412/518413 414/518415/518416 417/518418/518419 420/518421/518422 423/518424/518425	17.5 10.8 14.5	18.5 11.7	56.5 17.0 5.2	224.7 186.0 123.2	714 359 132	7 6 5	9 7 6 6 4 3	43 2.1 22 1.8 60 1.4	1 33. 3 14. 7 5	6 <5 9 <5 7 <5	7 9 5	14 2 13 2 12	2.74 1.62 .99	.7 1.0 .4	.5 .5 .3	2 4 3	.33 .25 .20	.032 .016 .013	10 14 12	17 16 16	.11 .11 .10	33<.03 36<.03 38<.03	1 3 1 <3 1 <3	.34 .33 .29	.03 .05 .06	. 19 . 12 . 13	7 < 2 6 < 2 6 < 2 6 < 2 7 < 2	<10 11 <10	.8 .9 •	.2 <.2 .2	9 4 9 5	45 6 ∈1
5184 5184 5184	426/518427/518428 429/518430/518431 432/518433/518434 435/518436/518437 438/518439/518440	11.3 13.5 9.1	23.3 74.8 82.8	14.0 31.4 12.0	39.7 335.0 32.1	1035 1281 1201	4 4 3	6 4 4 4 5 4	63 1.6 83 .9 32 .9	2 15. 1 49. 4 96.	2 <5 4 <5 5 <5	13 6 10	19 15 16	.64 4.17 .47	.7 6.7 4.7	.8 .5 .2	5 2 2	.62 .46 .48	.018 .014 .018	10 6 8	14 12 13	. 22 . 15 . 15	39<.0 28<.0 28<.0	1 <3 1 <3 1 <3	.41 .41 .43	.06 .04 .06	.16 .14 .13	6 < 2 5 < 2 5 < 2 6 < 2 6 < 2	<10 17 <10	1.0 <.3 · <.3 ·	.5 1 <.2 <.2 1	3 1	10 34 21
5184 5184 5184	441/518442/518443 444/518445/518446 447/518448/518449 450/518451/518452 518450/518451/518452	77.4 12.8 10.6	30.6 19.3	8.4 11.8 62.6	25.8 51.5 151.5	966 947 1171	3 3 3	2 4 3 3 3 2	14 .7 33 .6 04 .9	1 37. 8 21. 9 27.	0 <5 2 <5 4 <5	17 4 5	16 12 8	.35 .64 1.88	2.4 4.3 2.3	.3 .2 .7	2 2 1	.40 .27 .13	.016 .012	5 6 6	13 14 14	.11 .09 .05	37<.0 29<.0 29<.0	1 <3 1 <3 1 <3	.24 .31 .34	.06 .05 .03	.15 .14 .17	6 < .2 5 < .2 6 < .2 5 < .2	<10 <10 20	<.3 <.3 · <.3 ·	.8 1 <.2 <.2	1 3 8 2 7 1	30 21 19
518- 518- 518-	465/518466/518467 468/518469/518470 471/518472/518473 474/515475/518476 477/518478/518479	13.0 7.5 10.9	105.3 141.4	15.4 16.0 19.0	8.8 14.3 14.6	1895 2944 2825	2 4 4	4 2 7 4 7 2	62 1.3 46 1.6 87 1.2	2 19. 3 46. 5 47.	8 <5 0 <5 1 <5	<2 <2 2	23 26 11	.24 .30 .20	10.2 6.3 4.1	.2 .7 .6	1 2 1	.62 .78 .31	.015 .027 .015	2 4 3	13 14 16	.04 .08 .05	28<.0 32<.0 32<.0	1 <3 1 <3 1 <3	. 28 . 31 . 27	.05 .04 .05	.14 .17 .17	6 < 2 6 < 2 6 < 2 5 < 2	<10 10 13	<.3 .3 <.3	<.2 .2 .3	8 2	17 40 25
518- 518- 518-	480/518481/518482 483/518484/518485 486/518487/518488 489/518490/518491 MDARD 02/HG-500/AU-R	8.8 5.7 15.2	38.6 24.1 61.6	18.6 48.2 16.1	12.9 51.7 22.5	3311 3909 2424	4 4 4 1	5 2 5 3 10 3	72 .9 324 1.4 319 1.4	7 40. 7 20. 1 59.	8 <5 7 <5 6 <5	2 4 <2	19 23 20	.20 .68 .36	1.7 1.7 3.9	1.5 1.9 .4	2 3 2	49 53 49	.017 .028 .017	4 6 3	13 13 14	.05 .11 .05	39<.0 41<.0 35<.0	1 <3 1 <3 1 <3	. 26 . 34 . 25	.03 .03 .04	.19 .20 .17	5 .3 5 <.2 5 <.2 6 <.2 20 2.4	<10 10 <10	<.3 3. 6.	1.0 1.2 .3	7 : 9 : 8 :	32 22 99

ICP - 30 GRAM SAMPLE IS DIGESTED WITH 180 ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K GA AND AL. SOLUTION ANALYSED DIRECTLY BY ICP. MO CU PB ZN AG AS AU CD SB BI TL HG SE TE AND GA ARE EXTRACTED WITH MIBK-ALIQUAT 336 AND ANALYSED BY 1CP. ELEVATED DETECTION LIMITS FOR SAMPLES CONTAIN CU,PB,ZN,AS>1500 PPM,Fc>20%. - SAMPLE TYPE: P1 TO P3 CORE P4 COMPOSITE AU+ - AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED.

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

SIGNED BY. Wall. D. Toye, C. LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

44

GEOCHEMICAL EXTRACTION-ANALYSIS CERTIFICATE

IVIC

Phelps Dodge Corp. PROJECT 253 File # 97-4842

'1R6'

Phelps Dodge Corp. PROJECT 253 File # 97-4842 1409 - 409 Granville St., Vancouver BD V61 112 Submitted by: Stephen Wetherup

SAMPLE#	Мо	Cu ppm	Pb	Žn				n Fe			Th		Cd		B1	٧	Ca		La		-	Ba Ti	_	A]	Na	K	W TI	Hg			Ga Au	-
	ppm	ppiii	ppm	ppm	ppu	bbw t	obw bb	10 4	ppii	ppin	ppm t) Juli	ppm	ppm	ррm	ррш		. A	opm I	ppm	- A	ppm 5	K ppm	<u>ه</u>	8	ઢ	ppm ppm	ppo	ppm	ppm p	obu bi	מנ
518403	7.0	293.8	74.8	89.9	293	4	3 1	5 1.33	7.5	< 5	7	10	.76	.6	.8	5	.15 .	016	9	11	.12	27<.01	L < 3	. 53	. 04	.13	4 <.2	29	. 5	< 2	.6	4
518404	8.2	2145.1	580.9	1180.5	1192	35	42 220	6 6 34	47.5	27	3 :	121 1	8.34	3.7	2.1	38 1		224	13	20		27 .02				.42	<2 .7		-	-	2.4 2	
518453	6.2		31.6	36.9	1273	3	2 75				3		.51	2.5	.2			018	5	13		23<.01		. 29		.18	4 < 2				.6 1	-
518454	2.7	32.0	28.1	90.0	958	2		5 2.16				132	.83		1	14 3	-	099	18	6		88<.01	_	71		.40	2 2			. –	 1	
518455	6.2	21.6	19.9	69.7	722	2	2 31			<5		11	.94		1			010	6	13	.07	26<.01		20			5 < 2				i.i 1.5 1	
310433	٠.٠	LITTO	12.2	05.7	,	_	2 0.	U .U-	14.1	-0				2.0		-1	. 20 .	UIV	U	10	.07	204.01	. ~5	. 20	. 04	. 12	ے د	11	٦. ۵	٦.٤	·. 0	.3
518456	7.9	68.7	394.4	947.3	4562	3	2 18	2 .55	23.6	<5	2	6 1	.2.33	6.1	1.2	1	.15 .	013	3	13	0.3	26<.00	1 <3	22	. 02	15	5 <.2	54	< 3	< 2 .	<.5 5	56
518457	8.4	19.7	57.5	71.0	1065	3	7 43						1.36		- 4			048		9		33<.03					3 < .2		<.3		.6	
518458	8.8	28.8	120.3	208.6		3	2 2			_	₹2		3.20		3			016	- •	14	.05	24<.03		.34			6 < 2		<.3		.5 3	
518459	26.3	28.2	155.1	359.3	1572	3		6 .44			2		4.81	4.8	1	_		018	_	12	.03	19<.00			.01		3 < .2				.6	
518460	6.5	32.8	112.9	162.1	2054	3	_	1 1.97			_		1.88		2				15	5		82 .03					<2 1.0				1.5	
323 101	V.0	02.0	111.7	102.1	LUDT	•	10 1	1 1.2.	44.4	٠.	٠		*.00	7.0		21 2	. 50 .	101	13		.01	02 .0.		.00	.01		~¢ 1.V	,,	~.5	~.2.	1.0 .	. 2
RE 518460	6.4	31.9	110.6	161.4	2110	3	10 144	2 1.98	21.9	<5	2	95	1.86	7.1	. 1	22 2	.90	100	15	6	82	86 .00	1 3	.74	.01	.32	2 1.1	79	< 3	< 2 °	1.5	Q
RRE 518460	6.9	32.5	103.3	193.3	2020	3	9 143	1 1.94	21.3	<5	3		2.20		. 1	21 2			15	5		B3 .01	-	.69		.31	<2 1 0				1.3	_
518461	24.3	-	1501.2		75483	ž			358.2	_	<2			204.2	2.0			020		11		24<.0									1.190	
518462	20.6			218.1	10907	2			213.4	_	_		2.95		7	_		033		10		29<.0		.30			2 2	51	-		.9 37	•
518463	7.0		27.6		725	5		0 2.48		_	_	52	.21		,	14 2			12		.45	70 .00	-	.73			4 < 2				1.7	
	•		27.0	25.1		J	U 101		, ,,,	-0	_	02	. 21	2.0	. 2	. 7 4		V.V		^ -	,73	, 0 .0.	ı J	./5		. 27	7 ~.2	10	4	2	1.,	. 1
518464	13.2	12.8	10.5	26.7	5309	11	6 6!	6 3.39	3.9	<5	2	53	. 11	.8	4.1	42 1	.66 .	110	9	22	.75	32 .08	3 <3	1.04	.05	.40	3 .3	<10	. 4	3.1	1.3	16
STANDARD D2/HG-500/AU-R	25.5	131.9	102.1	266.4	2108	32	17 10	0 4.48			20		2.15	_	22.8		.72 .		19			262 . 15					20 2.5				7.1 54	

ICP - 30 GRAM SAMPLE IS DIGESTED WITH 180 ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K GA AND AL. SOLUTION ANALYSED DIRECTLY BY ICP. MO CU PB ZN AG AS AU CD SB BI TL HG SE TE AND GA ARE EXTRACTED WITH MIBK-ALIQUAT 336 AND ANALYSED BY ICP. ELEVATED DETECTION LIMITS FOR SAMPLES CONTAIN CU,PB,ZN,AS>1500 PPM,Fe>20%.

- SAMPLE TYPE: CORE AU+ - AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reguns.

DATE RECEIVED: AUG 27 1997 DATE REPORT MAILED:

TOR

LTI

3. 1

JNG,

18/91

SIGNED BY ... D. TOYE, C. LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

Y604

YTI 'LAB ORI 'TD.' 8! H NGS VI DVEI V R6 PHC 704! '-31'

GEOCHEMICAL EXTRACTION-ANALYSIS CERTIFICATE

PAX

``)2≓

Phelps Dodge Corp. PROJECT 253 File # 97-4397 Page 1

SAMPLE#	Mo ppm	Cu ppm	Pp Pb	Zn ppm	Ag ppb	Ni ppm p		Mn ppm	Fe %	As ppm	bbw b			ppm Cd		Bi ppm	ppm V	Ca %		La ppm		Mg %	Ba ppm	Tí % p	B pm	Al %	Na %	κ %	W 1 ppm pp		•	Se Te om ppr		Au+ ppb ′
518001 518002 518003 518004 518005	2.4 2.8 4.8 6.7 19.7	2.7 2.5 7.1 35.6 22.0	2.6 2.7 4.0 2.7 2.3	11.3 13.5 16.2 13.0 12.9	34 <30 70 274 279	<1 <1 <1 <1	1 2 2	275 320 472 232 176	.80 .83 .98 .77	.8 <.5 1.6 1.5 4.5	<5 <5 <5 <5 <5	7 6 8 7 7	4	.01 <.01 .02 .01 <.01	<.2 .2 .2	<.1 <.1	5 4 4	.07 .07 .07	.016 .018 .019 .018 .016	21 20 18 22 17	12 11 10 11 12	.05 .07 .07 .10	60<. 46<. 57<. 44<. 66<.	61 01 01	< 3 <3 <3	.21 .25	.04 .04	.08 .09 .08	3 <. 3 <. 3 <.	2 :	18 < 19 < 13 <	.3 <.2 .3 <.2 .3 <.2 .3 <.2 .3 <.2	1.5 1.1 1.9	1 1 2 2 5
518006 518007 518008 518009 518010	2.4 11.3 3.7 7.7 2.9	3.9 2.2 15.3 3.1 2.3	2.6 2.3 2.5 3.1 2.3	12.3 12.3 12.3 12.3 9.8	64 <30 98 105 <30	<1 <1 <1 <1 <1		150 178 351 425 296	.74 .70 .84 .93 .77	1.8 .7 3.2 2.6 .5	<5 <5 <5 <5	7 6 7 7 8	4 4	<.01 <.01 <.01 .02 <.01	<.2 .2 <.2	<.1 .1	4 3 2	.06 .07 .07	.017 .017 .016 .016	18 20 17 12 23	11 9 11 11 10	.09 .09 .06 .05	33<. 34<. 70<. 61<. 36<.	.01 .01 .01	<3 <3 <3	.27 .21 .17 .18	.03 .03 .03	.06 .08 .11	<2 <. 2 <. 3 .	2 < 2 < 2 <	10 < 10 < 10 <	.3 <.2 .3 <.2 .3 <.2 .3 <.2 .3 <.2	1.5 1.1 1.0	8 1 4 5 1
RE 518010 RRE 518010 518011 518012 518013	3.2 2.5 2.5 1.4 2.4	2.2 2.4 2.4 7.2 13.7	2.3 2.3 1.9 8.4 43.5	9.9 10.4 10.9 20.0 73.7	<30 30 50 550 1454	<1 <1 <1 <1 <4	2	298 304 465 573 1235	.90	.5 .5 2.4 10.9 20.6	<5 <5 <5 <5	8 7 7 5 7		<.01 <.01 .02 .10	.2 .2 1.8	<.1 <.1 <.1	3 1 1	.07 .07 .07	.016 .016 .016 .016	23 21 14 14 12	10 11 9 10 7	.05 .05 .04 .03	36<. 37<. 70<. 37<. 63<.	.01 .01 .01	<3 <3 <3	.18 .27	.04 .02	.10 .11 .16	3 <. 4 <.	2	14 < 15 < 17 <	.3 <.2 .3 <.2 .3 <.2 .3 <.2	.9 1.0 .9	1 <1 4 6 22
518014 518015 518016 518017 518018	2.9 14.9 2.0 1.9 1.6	2.6 2.0 2.4 2.7 22.2	5.5 3.0 3.1 2.8 14.8	20.0 12.5 15.5 22.4 105.5	195 101 75 142 1106	<1 <1 <1 3 28	2 3 5	474 365 468 834 3352	.83 .99 1.35	14.6 36.9 2.2 3.4 17.9	<5 <5 <5 <5	8 7 7 8 4	5 5 11	.09 .01 .03 .04 .40	.4 .2 .2 .3 2.9	<.1 <.1 <.1 <.1	2 3 3	.06 .07 .08	.015 .015 .017 .014 .123	19 15 18 16 17	8 9 10 8 22	.05 .05 .05 .06	55<. 98<. 56<. 28<. 48<.	.01 .01 .01	<3 <3 <3 <3 <3 <3	.22 .15 .16 .22 .54	.03	.08 .09 .10	2 <. 3 <. 3 <.	.2 < .2 .2	10 < 18 < 13 <	.3 <.2 .3 <.2 .3 <.2 .3 <.2 .3 <.2	1.0 1.0 1.0	
518019 518020 518021 518022 RE 518022	1.2 1.5 1.3 1.1 1.2	45.5 30.4 83.7	1.3 2.6	72.8 62.2 49.9 106.9 112.7		53	19 37	683 696 902 3688 3878	4.90 4.21 8.73	5.7 1.7 1.2 1.7 1.9	<5 <5 <5 <5	_	33 45 19 24 25	.03 <.01 .01 .15	.3 .2 .4	<.1 <.1 <.1	137 107 116	.60 .49 .74	.142 .159 .150 .162 .169	20 18 20	76 55 64	1.84 1.10	119 . 215 . 39 . 104 . 107 .	.02 .01 .01	<3 2 <3 1 <3 1	.92	.02 .02 .02	.14 .11 .16	<2 <. <2	.2 .2 .2	40 < 22 < 58 <	.3 <.2 .3 <.2 .3 <.2 .3 <.2	9.8 7.1 5.5	4 1 1 2 6
RRE 518022 518023 518024 518025 518026	1.5 1.2 1.4 .8 1.1	80.4 81.3	2.6 10.8 5.0	111.9 109.3 162.3 97.1 88.7	84 1059 337	25 4 5 55	24 36 34	3923 3279 4907 2035 930	6.68 9.35 7.10	11.6 7.6	<5 <5 <5 <5	5 5 5 <2 <2	24 18 22 55 43	.50 .16	.2 4.8 6.3	< .1 < .1 < .1	63 87 156	.47 .63 .60	.166 .119 .148 .104 .124	20 12 10	38 75	.49 .46 2.18	109 . 30 . 29<. 1102 . 365 .	.01 .01 .02	<3 <3 <3 2	1.41 .76 .69 2.39 3.80	.03 .01 .02	.14 .26 .16	<2 <2	.2 .5 1 .4	44 < 02 < 30 <	.3 <.2 .3 <.2 .3 <.2 .3 <.2	3.2 1.9 7.4	2 4 5 2 5
518027 518028 518029 518030 STANDARD D	.7 1.1 .8 1.0 27.3		1.1 1.0 2.4	62.3 43.7 42.8 129.3 287.1	64 102 <30	52		571 556 4415	4.51 9.78	3.2 2.8 2.1 3.6 77.6	<5 <5 <5 <5	<2 <2 <2 5 20	22	<.01 .15	<.2 .2 1.5	<.1 <.1 <.1	146 160 135	.74 .73 .81	.128 .143 .160 .196 .109	8 13	71 79 60	2.34 1.74 1.65 .64 1.20	68 . 43 . 274 . 64 . 264	.16 .13 .01	<3 1 <3 ' <3	.82	.04 .04 .01	.05 .08 .18	2	.2 .2 .3	26 < 34 < 52 <	.3 <.1 .3 <.1 .3 <.1 .3 <.1	6.7 7.3 2.8	3 3 1

Standard is STANDARD DZ/HG-500/AU-R.1

ICP - 30 GRAM SAMPLE IS DIGESTED WITH 180 ML 3-1-2 HCL-HNO3-H2D AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K GA AND AL. SOLUTION ANALYSED DIRECTLY BY ICP. MO CU PB ZN AG AS AU CD SB BI TL HG SE TE AND GA ARE EXTRACTED WITH M1BK-ALIQUAT 336 AND ANALYSED BY ICP. ELEVATED DETECTION LIMITS FOR SAMPLES CONTAIN CU,PB,ZN,AS>1500 PPM,Fe>20%.

- SAMPLE TYPE: CORE AU+ - AQUA-REGIA/M1BK EXTRACT, GF/AA FINISHED. Samples beginning 'RE' are Peruns and 'RRE' are Reject Reruns.

DATE RECEIVED: AUG 15 1997 DATE REPORT MAILED:

9 22/97 SIGNED BY. ...

.D.TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data____FA__

Page 2

SAMPLE#	Mo ppm		ı Pb ıpprı			Ni ppm		Mn ppm	Fe %;	As pomp			Sr pm p		Sb ppm			Ca %		La ppm		Mg %	Ba ppm	Ti % p	В	Al %	Na %	Κ %	bus b	ı l	Hg ppb	Se ppm		Ga ppm	/
518033 518034	1.2 1.7 1.7	35.2 36.9 2.6	3.2 3.5 2.6	106.2 84.0 83.7 18.6 20.0	79 100 129	32	27 21 5	3373 3041 2420 928 896	6.99 5.47 1.38	4.4 2.1 1.6	<5 <5	3	19 . 18 . 5 .	15 19 03	3.1 2.8 <.2	<.1	118 73 5		.197 .141 .018	12	53 24 6	.40 .37 .06	17< 17< 35 24<	01 01 01	3. <3.	.76 .93 .23	.01 . .02 .	17 17 12	<2 2	.2 3 2.2	12 13 16	<.3 <.3 <.3	<.2 <.2 <.2	2.2 3.2 .9	5 174
518036 RE 518036 RRE 518036 518037	1.8 1.4	2.7	4.6	34.8 33.0 33.3 18.5	239 225	7 7 6 2	6 7	1740 1652 1694 943	2.15	4.3 3.9	<5 <5	10 10 9 7	5 . 5 .	07 07	<.2 <.2	<.1 <.1 <.1 <.1	6 7	.11 .10 .11	.014 .015	15 16	8 9	80. 80.	18<.0 17<.0 20<.0 22<.0	01 01	<3 . <3 .	.23 .26	.01 . .02 .	11 12	3 -	<.2	15 <10	<.3 <.3	<.2 <.2	1.0	7 11

Sample type: CORE. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

A.

rorí

LTD'

H YNGE

V/ DVE

R6

504

Page 1

31

FAX 1)2

)2° **V**1

GEOCHEMICAL EXTRACTION-ANALYSIS CERTIFICATE

44

Phelps Dodge Corp. PROJECT 253 File # 97-4423 Pac 1409 - 409 Granville St., Vancouver BC V6T 1T2 Submitted by: Steve Wetherup A

SAMPLE#	Mo		Pb ppm		Ag ppb			Min ppm		As ppm		Th	Sr	bbu t	Sb	Вi	٧		P	ppm La	Çr	Mg	Ba 1 ppm	i E	Αl		K		Τl	Hg	Se	Te	Ga A	4u+
518038 518039 518040 518041 518042	1.6 1.1 3.9	54.8 5.1 3.8	2.6 1.7 2.0	36.8 51.7 11.0 8.7 14.0	98 39 94	22 <1 <1	18 3 2	758 399 368	3.28 4.25 1.01 .92 1.25	2.2 .5 .9	<5 <5 <5	<2 9 9	21 6 5	.04 .01 •	.2 c.2	<.1 <.1 <.1	127 7 3	.60 .08 .07	.172 .021 .015	12 21 26	52 9 11	1.25 .07 .05	53 .0 193 .1 23<.0 21<.0	1 <3 1 <3 1 <3	1.58 .22 .17	.04 .03	.26 .09 .09	<2 3 ·	.3 · · 2 · · 2 ·	<10 · <10 · <10 ·	<.3 <.3 <.3	<.2 (<.2	5.5 .9 .8	3 1 <1
518043 518044 518045 518046 518047	1.6 1.8 1.2	37.1 54.8 5.3	2.6 3.8 4.6	15.3 66.0 60.2 16.3 32.1	82 151 176	34 29 6	20 1 19 7	1039 1386 637	4.28	1.7 2.0 3.7	<5 <5 <5	<2 <2 8	34 34 9	.02 .06 .04	.4 .6 .2	<.1 <.1 <.1	97 89 7	.67 .74 .14	.160 .168 .019	17 15 16	79 54 10	1.69 1.13 .09	296<.0 76 .0 63 .0 24<.0)4 <3)4 <3)1 3	2.11 1.83	.03 .02 .01	.14 .25	<2 · <2 3	· .2 · · 2 · · 3	<10 · <10 · 10	<.3 <.3 <.3	<.2 ? <.2 !	7.5 5.8 1.2	<1 <1 17
518048 RE 518048 RRE 518048 518049 518050	.7 .9 1.6	1.6 1.6 4.4	2.1 2.1 2.7	30.7 30.4 29.0 16.0 66.3		6 7 2	7 7 5	1060 1062 512	1.82 1.78 1.77 1.05 4.94	1.1 1.1 4.9	<5 <5 <5	9 10 7	9 9 7	.08 .08 .07 .04	<.2 <.2 .3	<.1 <.1 <.1	6 6 3	.14 .14 .14	.018	20 19 17	7 6 9	.09	22<.0 22<.0 21<.0 26<.0 125 .0)1 3)1 <3)1 <3	.34 .31	.01	.15 .14	2 · 3 ·	<.2 .2 <.2	14 12 <10	<.3 <.3 <.3	<.2 <.2 <.2 <.2 <.2	.9 .9	<1 <1 18
518051 518052 518053 518054 518055	.7 .8 .7	45.2 60.3 37.4	2.9 6.1 2.6	62.1 68.9 65.6 55.6 67.7	176 415 167	26 31 25	22 24 20	1436 1006 645	5.61 4.71 4.10	2.9 9.2 3.9	<5 <5 <5	2 <2 <2	28 32 35	.06 .06 .01	3, 6. 2,>	<.1 <.1 <.1	112 96 114	.70 .89	.173 .162 .167	19 21 14	45 46 48	1.35 1.50 1.72	99 .1 68 .1 1 33 .1	03 <3 02 <3 07 <3	1.73 1.79 1.94	.02	.16 .19 .12	<2 <2 <2	<.2 .2 <.2	<10 <10 <10	<.3 <.3 <.3	<.2 (6.4 6.0 7.1	16 13 3
518056 518057 518058 518059 518060	1.0 3.1 1.2	22.9 46.7 53.2	5.8 4.2 12.5	91.7 71.1 43.3 102.8 162.2	202 246 426	24 19 27	20 15 20	1873 765 1519	4.88 3.24 4.91	2.4 3.1 4.7	<5 <5	4 2 3	61 40 30	.14 .05 .24	.9 .4 .8	<.1 <.1 <.1	77 87 100	2.30 1.17 .81	.158 .138 .162	10 18 16	29 42 37	.99 .82 .89	270<. 83 . 111 .	01 < 05 < 05 <	.7! .9: 1.0:	.01 7 .03 7 .04	.27 .19	3 <2 <2	.2 .2 .2	12 <10 <10	<.3 <.3 <.3	<.2 <.2 <.2	2.0 3.7 3.6	2 4 3
RE 518060 RRE 518060 518061 518062 518063	1.0	57.1 49.1 40.8	8.3 8.2 8.6	160.5 161.6 78.5 64.7 21.7	178 105 194	47 24 21	35 20 16	4621 1977 1268	9.91 5.11	2.2 2.3 3.2	<5 <5 <5	6 3 3	36 35 42	.33 .21 .12	.4 .6 1.3	<.1 <.1 <.1	104 84 83	1.07 .97 .95	.168 .191 .198	20 22 21	56 30 30	.66 .40 .35	696 . 80<. 27 .	02 < 01 < 01 <	7. 7. 3. 7. 3. 1.0	9 .01 5 .02 5 .01	.23 .20 .20	2 <2 <2	.2 .3 .3	14 <10 14	<.3 <.3 <.3	<.2 <.2 <.2	2.8 2.0 3. 0	5 4 4
518064 518065 518066 518067 STANDARD D	1.4 1.2 1.9	50.2 81.1 59.5	3.0 3.3 3.8	32.8 95.9 86.2 92.3 278.9	68 160 761	32 34 35	25 28 28	2208 2056 3017	5.90 6.35	1.4 2.7 6.6	<5 <5 <5	3 2 3	36 30 17	.11 .08 .15	.5 6. 2.0	<.1 <.1 <.1	103 113 83	.87 .77 .70	.189 .199 .174	18 19 21	50 54 33	.61 .81 .42	85<.	02 <: 02 <: 01 <:	3 1.3 3 1.2 3 .6	2 .02 3 .02 8 .01	.23 .20 .23	<2 <2 3	.2 <.2 .3	33 27 34	<.3 <.3 <.3	<.2 <.2 <.2	4.1 4.4 1.8	1 2 3

Standard is STANDARD 02/HG-500/AU-R.

ICP - 30 GRAM SAMPLE IS DIGESTED WITH 180ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML WITH WATER. THIS LEACH IS PARTIAL FOR MM FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K GA AND AL. SOLUTION ANALYSED DIRECTLY BY ICP. MO CU PB ZN AG AS AU CD SB BI TL HG SE TE AND GA ARE EXTRACTED WITH MIBK-ALIQUAT 336 AND ANALYSED BY ICP. ELEVATED DETECTION LIMITS FOR SAMPLES CONTAIN CU.PB.ZN.AS>1500 PPM.Fe>20%.
- SAMPLE TYPE: CORE AU+ - AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED. Samples beginning 'RE' are Reject Regums.

DATE RECEIVED: AUG 18 1997 DATE REPORT MAILED:

Any 22/97

SIGNED BY

T: 1. D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data FA

Page 2

																																- 744-111	
SAMPLE#	Мо	Cu	PЬ	Źn		Ní		Mn	Fe			Th		Cd SI	5	Bi V	Ca		La			Ba	Τi	В								Ga Au	
	ppm	bbu	ppm	ppm	ppb	ppm	ppm	ppm	7.	bbu	bbw l	bbw b	ppm	bbu bbi	n k	obun bbun	χ,	*	ppm	ppm	%	bbw	%	ppm	%	%	% (obw b	bw bbl	a bbw	bbu t	ppa pp	Þγ
519070	1.9	112.0	7 /	93.8	207	E 1	77,	2427	/ 70	7.0	-6	7	74	42		. 1 127		100	4:	٥,		7.0		-									
518068									6.39							<.1 127																	6
	1.9			95.6					4.25			<2				<.1 119															<.2 6		3
518070		74.3		48.2		59			3.34						4	<.1 102	.81														<.2		1
518071		99.8		118.9		67	37 2	2489	7.64	2.5	<5	3	38	•11 •3	7 1	<.1 150	.90	.149	13												<.2		2
518072	1.7	87.9	5.0	61.3	537	45	26	1163	4.53	3.4	6	<2	34	.05 1.4	5 1	<.1 121	.68	.145	11	97	.71	30	.02	<3 '	1.39	.02	.17	<2	.4 < 11	5.× C	<.2 /	6	2
518073		73.2		144.9								5	28	.13 .	7 •	<.1 81	.61	. 144	13	173	1.01	22	.01	<3 '	1.13	.01	.11	<2	.2 <11	0 <.3	<.2 3	. 4	1
518074	1.7	73.5	4.1	59.9	216	53	25	1113	3.95	2.1	<5	<2				<.1 113																	4
518075	1.6	43.7	4.0	97.8	308	59	27 3	2189	5.00	3.0	<5	3	35	.08 .	5 .	<.1 77	.70	.157	11	124	1.32	25	.02	<3 '	1.67	.03	. 13	<2	.2 <1	0 <.3	<.2 4	.3	1
518076	1.0	70.7	13.3	121.1	1277	80	42 3	2493	6.45	14.2	<5	3	57			<.1 114															<.2		9
518077	1.4	78.2		95.5								2	28	.09 2.	4 .	<.1 90	.70	.141	9	181	1.30	23	.09	<3		.03					<.2		2
	i																																_
518078	.8	72.2	2.4	79.4	257	51	26	1531	4.96	3.1	<5	2	38	.08 .	3 -	<.1 111	.78	.151	10	120	1.24	62	.07	<3	1.66	.03	. 12	<2 <	.2 <1	0 <.3	<.2 5	5.2	2
518079	1.1	93.6	1.9	94.6	89	66	37	1672	7.04	2.5	<5	<2	38	.07 1.	2 .	<.1 165	.81	.167	16	178	1.76	22	.05	<3 :	2.22	.04	.16	<2	.2 <1	0 < 3	< 2	7.2	2
518080	.9	81.2	1.3	101.9	71	47			7.54				40			<.1 182																	1
RE 518080	.8	71.1	1.3	90.3	56	41	29	1882						.08 .	2.	<.1 160	.74	.130	9	76	1.02	26	.07	<3	1.43	.04	. 10	<2 <	.2 1	1 < 3	< 2	. 5	i
RRE 518080	.9	75.7	1.1	92.8	59	44						Ž				<.1 168															<.2		1
											•	-			_			,	. •		,			-		••-	• • •			•			'
518081	1.0	94.2	1.1	51.7	60	43	24	637	4.30	1.5	<5	<2	48	.03 <.	2 .	<.1 124	.94	.139	6	104	1.45	28	. 17	<3	1.70	.05	.08	<2 <	.2 <1	0 < .3	<.2 □	5.5	1
518082	1.6	70.8	1.2	48.2	51	54										<.1 74					1.51										₹.2		1
518083	1.0	117.7	1.8	79.8	111	45	30		5.93							<.1 139					1.22										<.2		,
518084	1.0	63.1	2.3	185.5												<.1 143															<.2		۲ .
518085	1	87.8	2.2	66.0	151	54										<.1 122															<.2		ζ
]		3.4				-'				-	_			_				,			٥,	,	•				,_ ,		د.، ٠	-12		-
518086	1.3	63.9	1.2	42.8	33	47	20	635	3.61	1.4	<5	<2	30	.02 <.	2 -	<.1 91	.75	.146	6	116	1.04	156	. 13	<3	1.27	.05	.18	2 <	.2 <1	0 <.3	≺.2 (4.4	1
STANDARD D	–			283.4				1004	4.61	72.3	24	20	59	1.97 8.	8 2	3.9 76	.69	.108	17	57	1.16	264	.15	24	2.44	.05	.73	22.2	7 47	7 .7	2.0	7.1 44	,5
	1							, + + 1			- '												- 1-7				• • •		** *1	, ,,	0	70	

Standard is STANDARD D2/HG-500/AU-R. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

E YTI LAF

ORI LTD.

. 8′ 'n H

NGE VY

V R6

504

PHC

l FAX

) 2.E V.

44

GEOCHEMICAL EXTRACTION-ANALYSIS CERTIFICATE

Phelps Dodge Corp. PROJECT 253 File # 97-4571 Page 1 1409 - 409 Granville St., Vancouver BC V61 172 Submitted by: Stephen Wetherup

		~~~~											2000	X 9 7 9 9 0 0	0000000	0.80(800)	000000	24.8034.00	00000000		000,00000	000000	303033					al a suntita an an an			100.0	0000000	in an a		
SAMPLE#	1	Mo	Cu	РЬ		Αg						U				Sb		٧			La		Мg	Ba Ti	8	Αl	Na	K	W	Τl	Нg	Se '	ie Gr	Au+	
		ppm	ppm	ppm	bbu	ppb	bbull	ppm	ppm	*	þþm	bbu	bbu l	obw)	bbw	bbu	ppm	ppm	. %	%	ppm	ppm	%	ppm %	ppm	%	%	% p	pm p	pm p	bp b	bw b	om bbu	oqq ı	
518087 518088 518089 518090 518091		3.1 3.0 2.0	66.0 10.1 5.3 4.7 38.2	1.9 2.2 2.2	47.0 19.5 46.0 25.5 31.3	39	10 9	5 7 4	455 1173 838		2.3 1.0 2.0 2.1 1.2	<5 <5 <5	5 4 6	18 8	.03 .09 .08	.3 .3 .3	<.1 <.1 <.1	24 10 8	.22 .15 .13	.057 .029 .030	17 12 15	19 8 8	.14 .05 .04	190 .12 138 .02 174<.01 34<.01 66 .03	<3 <3 <3	.39 .35	.04 .01 .02	.10 .12 .12	2 < 3 2	.2 .5 .3	23 < 86 < 39 <	.3 < .3 <	.2 1.6 .2 .9	1 1	
518092 518093 518094 518095 518096		2.6	23.4 33.5 32.3 14.1 2.4	5.9 8.9 5.1	91.3 61.4 99.5 101.5 11.4	200 395	19 27 19	14 25 18	1465 2056 2774	4.06 5.25	9.0 10.5 8.7 4.7 1.2	5 5 <b>&lt;</b> 5	4 3	13 13 11	.31 .38 .20	4.3 4.1 1.5	<.1 .2 .1	55 69 35	.50 .47 .43	.134 .117 .099	14 12 15	29 22 8	.27 .46 .24	268<.01 159<.01 208<.01 287<.01 85<.01	<3 <3 3	.49 .60	.01 .01	.11 .17 .18	<2 2 <2 1 2 1	.3 5 .4 2 .2 2	11 < 45 < 29 <	.3 < .3 <	.2 1.7 .2 1.3	3 4	
RE 51809 RRE 5180 518097 518098 518099		2.1 3.6	2.4 2.2 2.8 2.7 6.6	1.7 2.5 1.9	12.8 13.2 25.4 15.6 38.2	97 110 83	3 3 3 4	3	445 940 635	.85 .80 1.47 1.24 1.87	1.1 1.1 2.4 1.2 6.9	<5 <5 <5	5	9 9 8	.05 .07 .05	.3 .4 .2	.1 <.1 <.1	7 10 6	.10 .13 .12	.029 .029 .030 .034 .041	13 13 15	6 7 8	.04 .05 .04	86<.01 82<.01 201<.01 376<.01 86<.01	<3 <3 <3	.32 .34 .28	.01 .01 .02	.11 .10 .12	<2 3 3 <	.4 .7 1	68 < 06 < 18 <	3 < 3 < 3 <	.2 .6 .2 1.0 .2 .7	1 2	
518100 518101 518102 518103 518104		3.8 4.5 3.1	5.3 89.9 71.5 68.1 46.4	11.3 14.7 11.1	127.8 103.0	1102 1489 1076	7 9	7 7 7	917 1378 1590	2.69 3.78 3.77	4.9 115.9 106.2 161.0 98.8	<5 <5 <5	5 4 3	46 56 81	.17 1.57 1.44 1.32	1.7 3.5 2.4	.2 .1 .1	6 7 15	.86 1.08 1.45	.030 .049 .084 .096 .068	6 6 7	7 6 7	.50 .74 .97	94<.01 29<.01 24<.01 44<.01 27<.01	<3 <3 <3	.30 .33 .43	.03 .03 .03	. 15 . 16 . 18	2 < 2 <	.2 .3 .2 <	19 10 10	.5 < .6 < .3 <	.2 .7 .2 .9 .2 1.2 .2 1.7	6 7 2 3	
518105 518106 518107 518108 RE 51810	08	3.9 3.8 3.2	59.6 63.1 191.5 37.0 37.0	19.0 27.7 6.5	70.9	1708 3080 513	7 9 10	11 22 12	1096 1387 1091	3.61 5.67 4.62	109.9 92.3 655.2 89.7 86.8	<5 <5 <5	4 4 3	61 47 65	1.14 .72 1.14 .20	1.4 2.0 .5	.6 .4 .5	10 8 64	1.30 1.10 .99 1.50 1.50	.079	7 5 8	10 8 14	.55 1.01	26<.01 36<.01 25<.01 52 .05	<3 <3 <3	.38 .39 .83	.03 .03 .05	.17 .17 .24	3 < 2 <	.2 .2 .2	16 22 1 13	.7 1.7 .5	.2 1.0 .3 .9 .2 .6 .4 3.8	10 107 13	
RRE 5181 518109 518110 518111 518112	108	3.3 3.1 7.2	40.5 77.4 61.1 195.6 319.8	23.0 10.5 17.2	88.1 106.3 120.4	1650 852 2562	8 12 9	14 15 11	1571 1637 1619	4.18 5.09 3.98	79.6 147.4 89.6 147.7 23.5	<5 <5 <5	3 3 4	68 60 70	.92	2.5 2.5 2.5	.3 .4 <.1	31 77 30	1.42 1.36 1.40	.134 .098 .137 .089	6 9 7	8 19 9	.85 1.24 .85	56 .05 40 .01 77 .04 25<.01 43 .01	<3 <3 <3	.57 1.23 .77	.03 .05 .03	.16 .24 .17	2 <2	.3 .2 <	19 <10 16	.6 .5 .4 <	.4 3.8 .2 2.3 .2 6.7 .2 2.9	14 7 10 9 3	
518113 518114 518115 518116 STANDARG	0 0	5.6 7.9 3.1	751.2 135.4 120.0 114.5 131.8	6.4 11.7 16.0	80.0	930 1320 1694	7 8	5 9 17	708 1404 1583	1.93 3.17 4.55	153.3 137.6	<5 <5 <5	5 4 3	35 41 41	.70 .65 .46	1.0 1.2 1.6	<.1 .1 .3	8 33 40	.75 .94 1.07	.112	10 10 8	9 12 9	.34 .74 .84	33<.01 42 .01 110 .04 42 .01 261 .14	<3 <3 <3	.35 .70	.04 .04 .04	.14 .24 .19	2 <2	.2 · .2 ·	<10 <10 10	.3 < .3	.2 2.4 .2 1.3 .2 2.1 .2 3.6	3 2 7 11 4 18	

Standard is STANDARD D2/HG-500/AU-R.

ICP - 30 GRAM SAMPLE IS DIGESTED WITH 180 ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K GA AND AL. SOLUTION ANALYSED DIRECTLY BY ICP. MO CU PB ZN AG AS AU CD SB BI TE HG SE IE AND GA ARE EXTRACTED WITH M1BK-ALIQUAT 336 AND ANALYSED BY ICP. ELEVATED DETECTION LIMITS FOR SAMPLES CONTAIN CU,PB,ZN,AS>1500 PPM,Fe>20%.
- SAMPLE TYPE: CORE AU+ - AQUA-REGIA/M1BK EXTRACT, GF/AA FINISHED. Samples beginning 'RE' are Reguns and 'RRE' are Reject Reguns.

DATE RECEIVED: AUG 21 1997 DATE REPORT MAILED:

 ${\mathcal I}$  signed by.,

..D.TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data___ FA _



Page 2



SAMPLE#	Mo ppm	Cu ppm	Pb ppm		Ag ppb				Fe %		_			Cd Sb ppm ppm		V ppm	Ca X		La ppm p			Ba T ppm										
518117 518118 518119 518120 518121	5.9 4.7 3.0	160.2 115.3 98.9 115.4 48.7	8.3 12.4 17.2	33.5 28.5 44.1	1519 1906 2875	7 6 8	19 1 12 1 13 1	1244 1050 1332	4.21 3.60 4.81	508.7 73.9 484.6 906.5 1608.7	<5 <5	4 4 3	44 46 76	1.00 1.3 .18 1.2 .16 1.6 .29 1.9 <.06 1.4	.2 .3 .2	22 20 46	1.23 1.08 1.07 1.54 1.33	.082 .078 .129	9 8	11 9 11	.73 .66 .86	26<.0 26<.0 26<.0 32 .0 20<.0	1 <3 1 <3 1 <3	.62 .53	.03 .03 .04	.16 .15 .22	3 2 <2	2 <1 2 <1 2 <1	0 .	7 .3 7 .4 6 .6	2.4 2.8 2.2 5 1.9 3 <3	12 28 74
518122 518123 518124 518125 518126	6.3 6.2 8.2	95.4 53.4 136.6 423.0 73.8	10.2 12.1 6.7	38.6 59.3 59.7	745 1573 2690		5 1 9 1 11	1124 1118 873		559.6 395.2 50.0 72.7 69.1	<5 <5	4	86 77	.35 1.0 .36 .5 .33 1.8 .31 3.0 .23 .8	.2 <.1 .5	16 27 36	1.64 1.59 1.48	.056 .093	9 9	10 11	.75 .81 .84	26<.0 85 .0 69 .0	1 <3 2 <3 2 <3	.28 .46 .65 .74	.04 .04 .04	.13 .21 .20	3 2 <	.2 <1 .2 <1 .2 1	0 < 0 3	3 <.2 4 <.2 7 .4	2 < .5 2 2.0 3 .1 3 .6 3 1.6	9 34 52
518127 518128 518129 518130 RE 518130	5.2 4.8 4.2	101.4 145.2 556.3 255.8 240.1	11.5 16.3 13.1	30.3 60.9 47.6	2135 5205 2909	7 5 9 8	7 9 8	847 1264 777	2.97 4.28 3.53	130.5 158.1 673.8 196.2 183.7	<5 <5 <5	4 3 4	91 112 77	.19 .6 .25 1.3 .45 .7 .35 .4	.3 .7 .6	7 24 49	1.54 2.05 1.55	.120	8 8 11	7 9 1 15	.69 .01 .93	26<.0 29<.0 32<.0 176 .0 154 .0	1 <3 1 <3 9 <3	.66	.03 .03 .05	.17 .19 .30	3 <. 2 <. 2	.2 1 .2 1 .2 <1	0 . 6 . 0 .	6 .8 6 .8 <b>3</b> .4	3 1.1 3 .7 3 1.4 4 3.3 4 3.2	4 24 9
RRE 518130 518131 518132 518133 518134	5.8 6.8 9.0	257.4 423.8 415.7 338.7 135.2	52.0 17.0 22.9	49.1 322.6 50.5	7452 6093 5392		4 ' 2 ' 4	1194 1090 924	2.80 1.49 1.72	183.1 922.1 671.0 567.8 3520.6	<5 <5 <5	4 5 4	81 65 60	.33 .4 .41 1.0 3.68 .9 .61 .8 .75 1.6	1.0 .2 <.1	27 4 3	1.77 1.58 1.32	.096	8 8 8	10 7 8	.61 .49 .41	155 .0 93 .0 22<.0 23<.0 18<.0	2 <3 11 <3 11 <3	.41 .21	.03 .03 .03	.17	2 < 3 <	.2 2 .2 2 .2 1	3 . 5 .	4 .9 4 <.2 3 .3	3.3 9 1.5 2 1.0 3 <.5 6 <4	43 12 14
518135 518136 518137 518138 518139	3.4 3.2 5.9	41.6 74.7 53.4 20.8 56.3	17.9 11.4 26.4	35.7 40.7	1181 564 722	2 6 6 3 5	5 4 2	1264 1019 680	3.28 2.97 1.04		<5 <5 <5			.21 .7 .42 1.0 .21 .9 .45 1.2 .78<1.2	.1 .3 .1	8 28 2	1.84 1.38 .76	.031 .092 .080 .031	13 14 8	7 11 8	.76 .81 .25	20<.0 27<.0 36 .0 22<.0 18<.0	11 <3	.63 .22	.03 .04 .02	.17 .18 .12	2 < 3 < 3 <	.2 <1 .2 <1 .2 <1	0 . 0 .	6 <.2 3 .2 3 <.2	2 .7 2 1.0 2 2.9 2 .5 2 <3	14 3 8
518140 RE 518140 RRE 518140 518141 518142	5.0 6.2 5.0	363.2 343.7	122.2 90.5 20.4	498.0 364.9 59.6	3443 3516 1609	18 16 15	18 17 18	2301 2142 1641	5.26 5.04 5.68	4116.2 3926.1 2631.2 590.9 708.7	<5 <5	3 3 3	70 66 52	6.03 4.6 5.60 4.1 4.63 3.6 .30 2.9 1.15 1.0	1> <1.2> 5.	64 65 53	2.51 2.36 1.77	. 133	12 11 10	22 1 22 1 20 1	1.58 1.55 1.20	44 .0 43 .0 44 .0 49 .0 20<.0	)2 <3 )2 <3 )3 <3	1.15 1.18 1.19	.03 .03	.27 .28 .31	<2<2 <2	<2 ' .4 ' .3 <'	17 < 15<3. 10 .	3 <2 6<2.4 7 .3	4 <6	184 119 24
518143 518144 518145 518146 518147	10.9 5.8 4.3	65.6 41.1 80.4 50.8 71.3	15.3 14.6 21.1	59.8 26.5 42.0	697 1376 1192	2 3 2	6 13 13	684 624 372	1.20 2.30 2.22	838.4 598.3 1681.1 617.1 412.4	<5 <5 <5	7	20 16 12	1.11 1.7 .75 2.0 .28 6.4 .58 4.3 1.18 2.4	<.1 <.6 1.	1 1 <1	.64 .56 .35	.015	6 4 3	9 8	.16 .15 .08	19<.0 18<.0 20<.0	)1 <3 )1 <3	.20 .24 .20	.02 .02	.13 .14 .14	3 < 4<1 4 <	.2 < .2 < .2 <	10 . 12<1. 10 1.	4 <.2 8<1.2 0 .3	2 .8 2 .6 2 <3 3 <.5 2 <.5	49 103 192
STANDARD D	26.1	132.6	101.8	270.9	2044	32	17	1055	4.75	78.5	17	21	57	2.47 9.7	23.3	77	.71	.111	19	58 '	1.25	259 .	14 25	2.42	.05	.70	23 2	.7 4	25 .	6 2.	1 7.6	457

Standard is STANDARD D2/KG-500/AU-R. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.





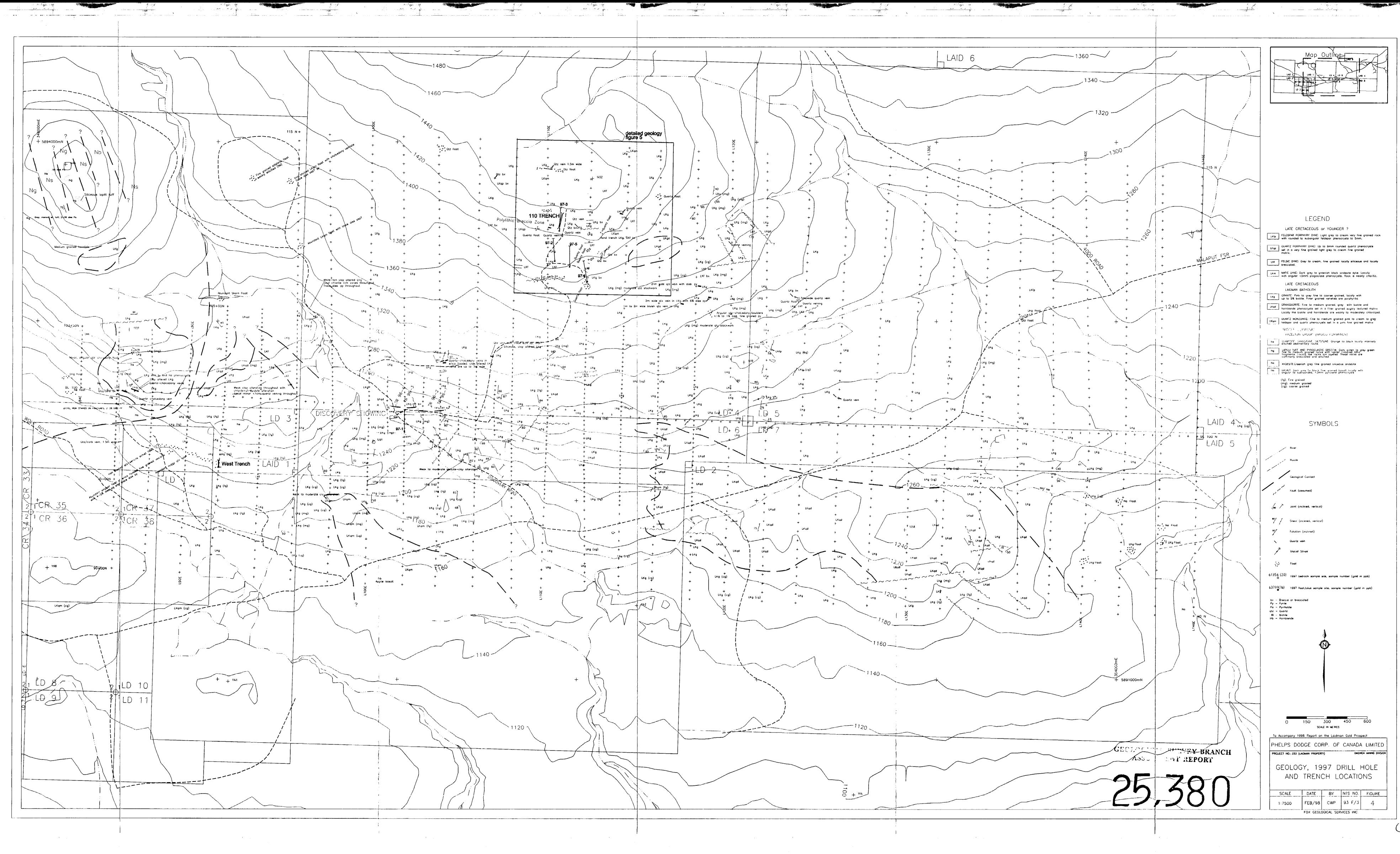
Page 3

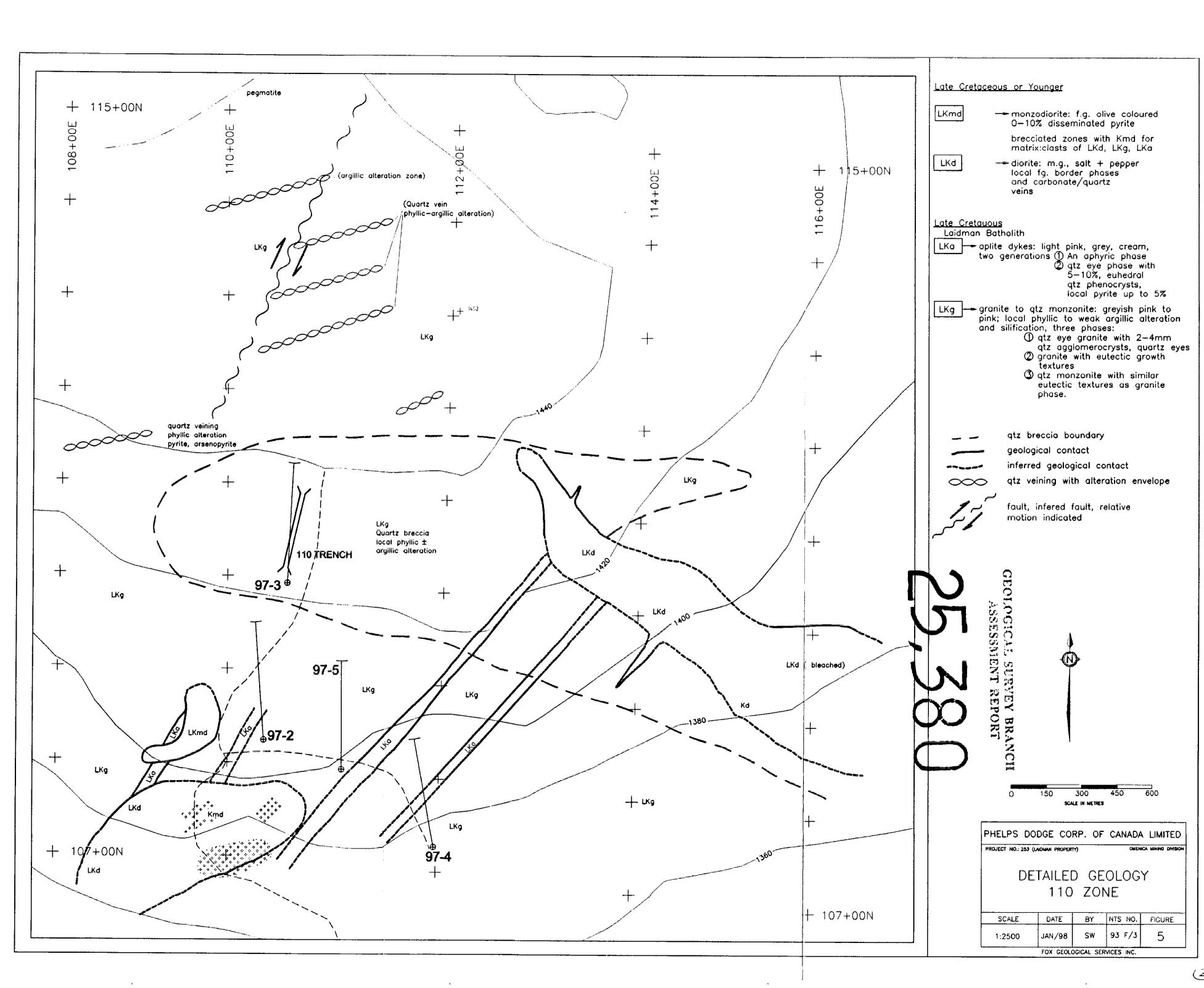


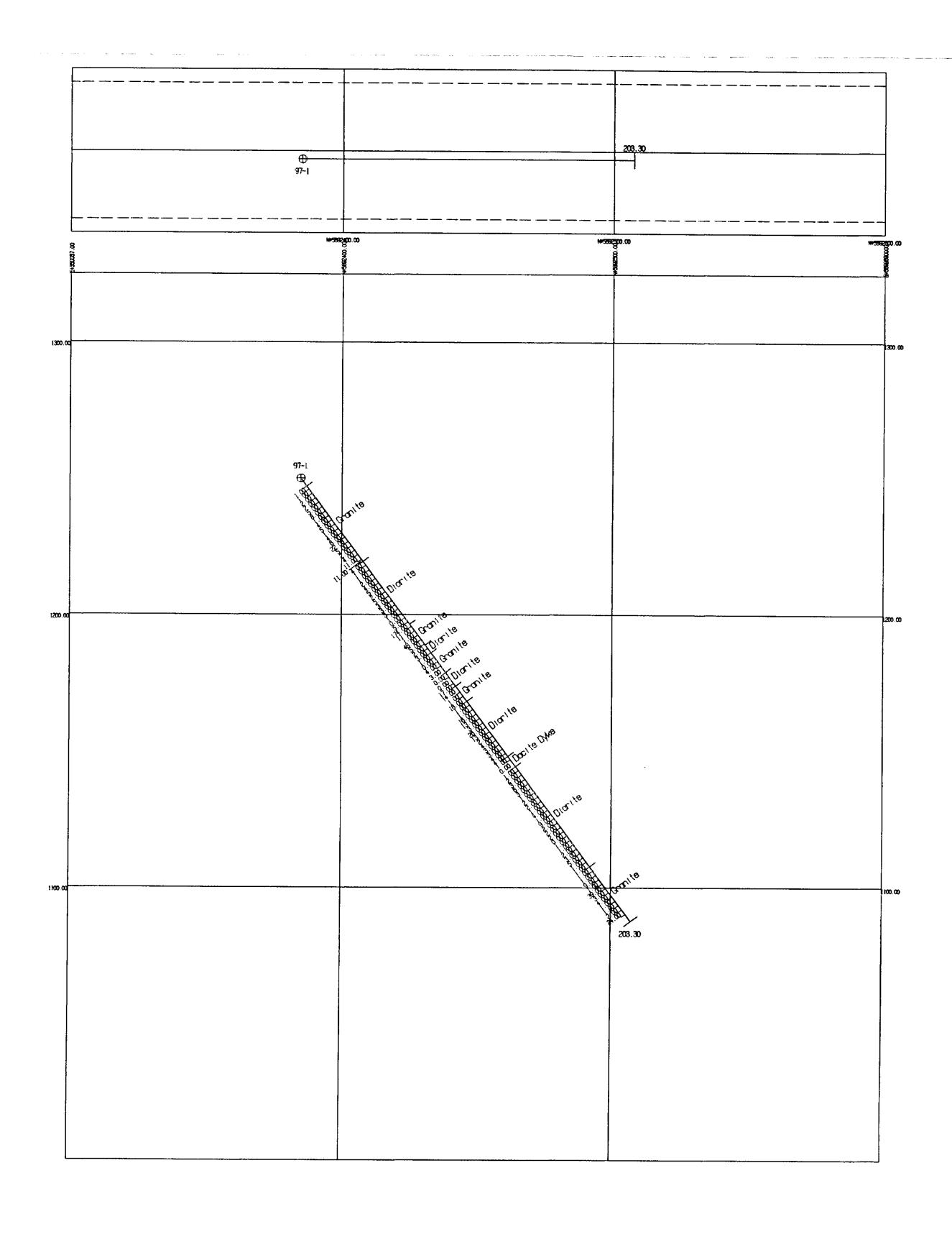
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppbp			n mqq	Fe X	As ppm (	U ppm p			Cd ppm		Bi ppm	ν Ppm	Ca %		La ppm			Ba Ti ppn %		Al %	Na %		₩ Ti					
518150 518151	13.5 14.2 11.5	21.1 76.6 58.3 21.8 105.6	27.0 34.9 21.4	68.2 78.4 39.9	570 870 806 635 915	3 4 4	11 7 4		.73 .87 .87	95.4 135.6 116.3 58.1 105.0	<5 <5	6 7 6	52 33 26	1.00 .53	1.5 1.2 .7 .7	.3 <.1 .1 .1 <.1	5 1	1.14 .89 .70	.011 .017	9 5 10	15 18 22	.23 .03 .12	177<.01 99<.01 29<.01 30<.01 41<.01	<3	.32 .25 .30	.03 .04 .02 .05	.21 .20 .20	5 <.2	2 11 2 <10 2 <10	1 .3 3.> 0 3.> 0	<.2	.7 .5 1.2	84 79 48
518154	18.1 10.9 5.1	117.1 34.0 11.3 11.9 11.8	5.9 7.0 5.9	19.5	1175 352 179 139 156	6 3 3 3 3	3 2 1	635 494 733	.85 .60 .49 .42		<5	7 7	22	.92 .23 .39 .39	1.4 1.1 .5 .3		3 1 1 1	.66 .84	.053 .015 .013 .013	6	18	.27 .11 .08 .08	26<.01 24<.01 28<.01 27<.01 33<.01	<3 <3 <3	.20 .24 .22	.04 .04 .05 .03	. 15 . 17 . 18	5 < 6 . 6 . 6 . 6 . 7 < . 6	2 <10 2 10 2 <10	0 <.3 0 <.3 0 <.3	<.2 <.2	<.5 .8 .7	37 22 8
\$18158 518159 518160 RE 518160 RRE 518160	5.4 6.0 5.2	15.0 17.1 11.9 12.0 13.4	17.6 7.7 6.8	16.0 31.2 33.6 34.5 31.2	109 267 191 159 183	2 2 3 3 3	3 2 2	582 391 397	.52	56.8 59.9	<5 <5	7 7		.16 .40 .42 .39	.3 .4 .7 .6	.1 .1 .1 <.1 <.1		.59 .50 .51	.016 .016 .017 .017	7 10 11	15	.10 .08 .08	27<.01 27<.01 26<.01 27<.01 31<.01	ડ ડ ડ	.17 .19 .19	.05 .04 .05 .05	.15 .13 .14	6 < 4 < 5 <	2 <10 2 <10 2 <10	0 <.3 0 <.3 0 <.3	<.2 <.2 <.2 <.2 <.2	<.5 .7 <.5	22 16 16
	11.3 23.8 8.7	52.3 16.2 38.0 218.5 164.1	29.3 67.4 12.0	81.9 144.5	440 241 966 1970 1732	3 2 5 6 7	2 11 9	504 537 1232 2 755 2 636 2	.49 .63	53.3 31.1 590.6 14.1 12.4	<5 <5 <5	8	18	.39 .92 1.55 .16	.7 .5 .9 7.1 14.5	.1 .8 1.5	1 5 21	.56 1.41 1.47		4 5 9	15 16 10 15 13	.06 .39 .64	28<.01 28<.01 33<.01 74 .02 60 .02	<3 <3 <3	.21 .34 .72		.16 .22 .27	6 <	2 1; 2 <1; 2 <1;	3 <.3 0 .4 0 .7	<.2 .6	<.5 .8 3.3	11 78 16
518166 518167 518168 518169 518170	10.9 10.6 7.2	344.4 682.9 274.7 508.3 332.1	9.6 3.7 5.3	43.7 39.2 29.7 87.4 94.6	10207 1928	5 3 5 5 3	5 9	736 2 247 322 2 351 1 409	.97 .26	2.9 13.0 12.3 18.0 7.2	<5	4 7 6 6 7	47 24 30 34 24	.66 .23	2.1 13.2 3.4 4.4 4.6	4.0	2 17	.61 .81 .90	.077 .020 .042 .036 .021	7 8 8	14 16 15	.09 .36 .26	66 .02 29<.01 54 .02 112 .01 58<.01	<3 <3 <3	. 19 . 45 . 34	.04 .04 .05 .05	.14 .16 .15	4 .: 7 <b>&lt;.</b>	2 <1 2 <1 2 <1	0 .6 0 1.1 0 .7	1.1	1.3	33 8 9
RE 518170 RRE 518170 518171 518172 518173	4.8 9.9 15.0	326.2 325.5 236.9 183.0 103.6	15.3 16.5 25.7	102.4 93.2	4245 4250 12278	2 3 5 3 3	2	412 421 239	.56 .55 .94 .35 .83	6.7 7.0 15.2 4.7 14.3	<5 <5 <5	6	25 33		5.1 1.7 1.2	3.1 7.4	18 1	.69 .84 .57	.020 .021 .048 .016	12 8 6	15 20 15	.12 .24 .02	57<.01 54<.01 46 .04 30<.01 34<.01	<3 <3 <3	.22 .63 .16	.04 .04 .06 .04	.14 .29 .13	4 <.	2 <1 3 <1 2 <1	0 <.3 0 <.3 0 <.3		.6 2.3 .6	15 61
518174 518175 518176 518177 518178	5.1 4.4 3.8	120.8 228.1 258.0 59.9 245.8	8.8 9.1 4.4	64.3 58.1 34.6 19.2 107.2	2304 2954 453	3 3 3 3	2 3 2 1	264		72.5	<5 <5 <5	8 6 6 8 6	17 20 21 17 21	.35	.6 .6	1.4 .7 .1	1 5	.54 .59 .49	.015 .015 .019 .016	7 4 16	15 15 13 17 14	.05 .02 .12	32 .01 28<.01 27<.01 32 .01 36<.01	<3 <3 <3	.19 .18 .28	.05 .05 .04 .06	.14 .15 .13	6 <.	2 <1 2 <1 2 <1	0 0 < 10 <	3 .7 3 <.2	.6 .7 1.6	32 46 11
STANDARD D	26.5	133.8	101.8	281.1	2187	33	18	1071 4	.47	78.0	17	22	59	2.35	9.7	21.5	78	.72	.116	19	60	1.27	269 .15	25	2.48	.05	.74	20 2.	7 45	50 <.:	3 2.4	7.9	531

Standard is STANDARD D2/HG-500/AU-R. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.





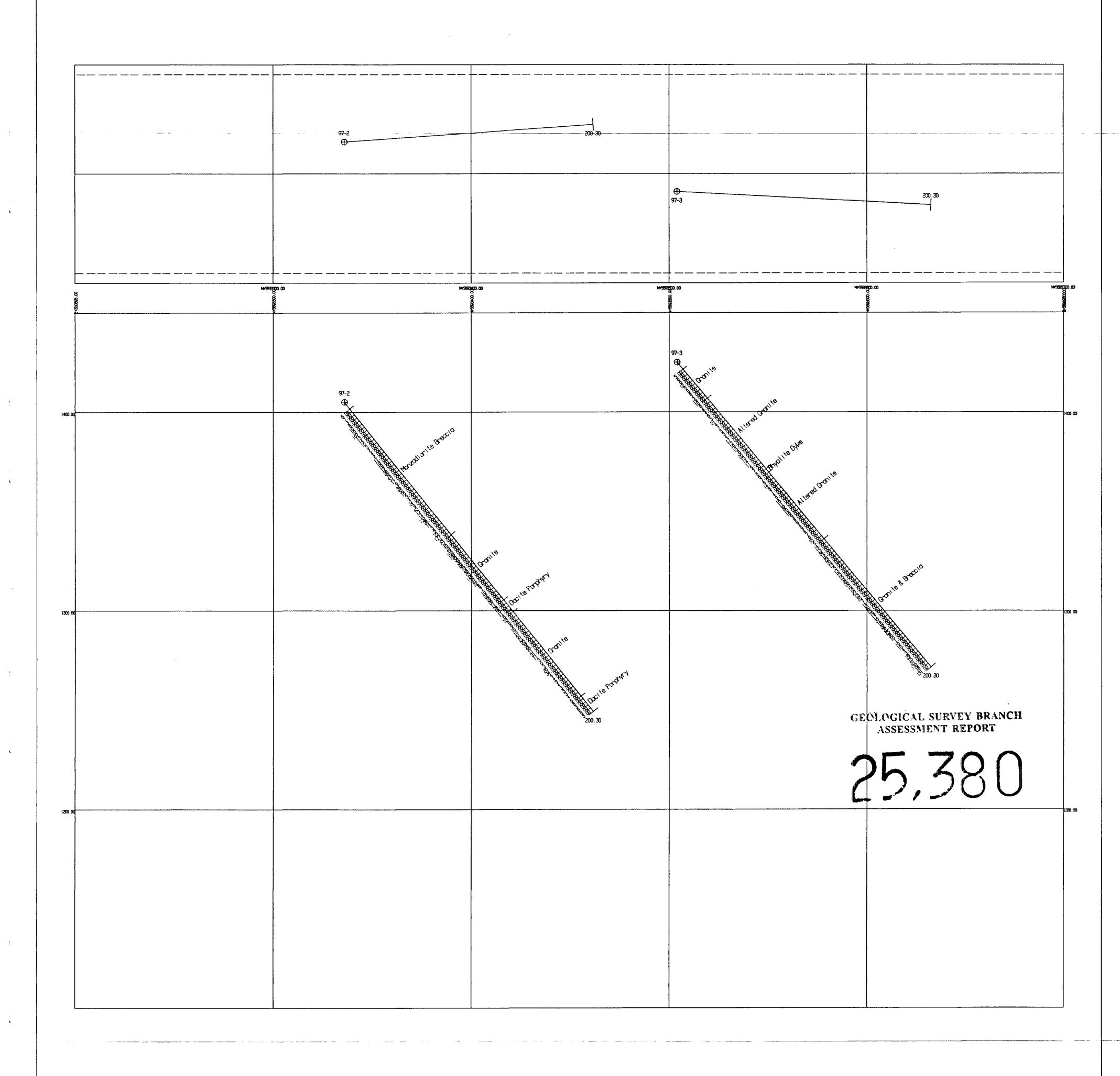


Page 4




SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag N		Mn F				Sr Cd		8i ppmp	ρm V	Ca %		La Cr	Ξ.	Ba Ti ppm %	ppm B		Na K % %	W Tl	Hg dqc			_
518180 518181	4.1 8.2 6.0	163.2 29.8 22.7 17.2 50.6	6.6 5.1 11.5	10.8 5.5 8.9	1078 736 1141	3 2 2 3 3 1 2	67 .7 69 1.1 62 .9 79 2.2	7 5.9 8 7.5	<5 <5 <5	8 6 7	26 .78 21 .14 25 .10 23 .12 29 .23	2.2 2.1 1.3	.6 .4 .9	1 2	.55 .59	.018		.10 .06 .08	31<.01 83<.01 37<.01	<3 <3	.23 . .18 . .18 .	05 .14 05 .14 05 .12	5 <.2 · 8 .2 ·	<10 < <10 < <10	.3 .3 .3 .2 .3 .5	<.5 .8 .9	3 <1 3
RE 518183 RRE 518183 518184	3.0 3.3 4.3	50.3 59.2 16.7	38.0 44.5	13.6 16.8	4814 5620	3 5 4 4 6 5	87 3.6 35 4.0 256 1.4	3 14.0 9 14.5	<5 <5	6 ⁻	29 .23 29 .19 30 .23 21 .46	1.7		3 3 1	.95 1.05		7 14 6 14	.09		<3 <3	.20 . .19 .	04 .15 04 .13	10 <.2 8 <.2	<10 <10	.6 2.0 .8 2.5	.7	20

Sample type: CORE. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.








-20 0 20 40 60

Vancouver Office 1409 – 409 Granville Street	Fox Geological Consultants Ltd.		
Vancouver, BC V6C 1T8	PHELPS DODGE CORPORATION OF CANADA LIMITED		
UNITS : METRES DATE: 98/01/28 TIME: 14:04:44  Drown By :	Geology and Gold Results in ppb		
	CROSS-SECTION 97-1		
	LAIDMAN PROPERTY, BRITISH COLOUMBIA FIG 6a		

(3)



-20 0 20 40 ec

Vancouver Office

1409 - 409 Granville Street

Vancouver, BC
V6C 1T8

UNITS: HETHES DATE: 98/01/28 TIME: 14:18:27

Drawn By:

CROSS-SECTION 97-2, 97-3

LAIDMAN PROPERTY, BRITISH COLOUMBIA FIG 66

(4

		the second control of	
200.30			
97-4			
0			
N+5983300.00			
8 8 9 8 8	M-388800.00 M-388800	0.00 N=5893	00.00 M-5883
97— <b>4</b> ⊕			
00 1 10 11 10 10 10 10 10 10 10 10 10 10			
(30) No Morzodia			
200 1010118			
200			
15 6 10 Carry			
2 m			
**************************************			
non la			1300
Na Na			
12 of Missel Dia			
100			
9.00			CEOLOGICAE DEIDEIDE DE LEIGE
so / " Baccio			GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT
1,20 / 2011			
			つ フへ へ
200.30			ノク  ス  に  に  に  に  に  に  に  に  に  に  に  に
			200

-20 0 20 40 co

Vancouver Office
1409 - 409 Cranville Street
Vancouver, BC
V6C 1T8

UNITS : METRES DATE: 98/01/28 TIME: 14:28:12

Drawn By:

Geological Consultants Ltd.

PHELPS DODGE CORPORATION OF CANADA LIMITED

Geology and Gold Results in ppb

CROSS-SECTION 97-4

25380

LAIDMAN PROPERTY, BRITISH COLOUMBIA FIG 6c

		<del>97-5</del>	200.30		
	N+3933	\$\$pp.00	MO:00 19:5833	500.00 Ne58	REDO.00 N+5593200.00
	) (8,000 mm) (1,000 mm				
1400.00		97-5 <del>Q</del>			400.0
		so anye			
		o's the last		;	
		**************************************		·	
		000			
		og l			
	 	a a a a a a a a a a a a a a a a a a a			
		30 0 C. C. 1/6			
1300.00		, o, o,			300.00
:					
		100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
		**************************************		CEOLOGICAL SI	IRVEV RD ANCH
			20	CEOLOGICAL SI ASSESSMEN	T REPORT
			200.30	25	700
				25,	) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
1200.00					200.00
		·			
:					
_					

-20 0 30 40 50 Scotle 1, 1000

Vancouver Office 1409 - 409 Oranville Street	Fox Geological Consultants Ltd.		
Vancouven, BC V6C LT8	PHELPS DODGE CORPORATION OF CANADA LIMITED		
UNITS : METRES DATE: 98/01/28 TIME: 14:34:22	Geology and Gold Results in ppb		
	CROSS-SECTION 97-5 25380		
	LAIDMAN PROPERTY, BRITISH COLOUMBIA FIG 6d		
1	Software by IPON Secretare Inc.		