

GEOLOGICAL AND GEOCHEMICAL REPORT FOR THE MOLI 6 CLAIMS BABINE LAKE AREA, B.C.

Tenure Number: 341845

OMINECA MINING DIVISION BABINE LAKE AREA, B.C.

N.T.S. 93-M-01W

Latitude 55° 08' 05" N; Longitude 123° 23' 40"W

November 1996- November 1997

Owner

STEVEN HORVAT 10th Floor - 609 West Hastings St. Vancouver, B.C. V6B 4W4

Operator

BOOKER GOLD EXPLORATIONS LTD. 10th Floor - 609 West Hastings St. Vancouver, B.C. V6B 4W4

> by Erin K. O'Brien Geologist

> > January 26, 1998

CEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

TABLE OF CONTENTS

1.0	Introduction	Page 1
1.1	Work Completed	1
2.0	Property Location and Access	2
3.0	Regional Geology And Mineralization	6
3,1	Previous Work	6
4.0	Geology of the Moli 6 claims	6
5.0	Surficial Geology and Geochemisitry of the Claims	7
5.1	Surficial Geology	7
5.2	Geochemistry	7
6.0	Conclusions and Recommendations	8
7.0	References and Bibliography	9
8.0	Statement of Qualificaions	10
9.0.	Itemized Cost Statement	11

LIST OF FIGURES

.

.

.

.

.

-

.

.

Figure 1:	Location and Access	3
Figure 2:	Moli 6 Claim Map	4
Figure 3:	Sample location map	5
Figure 4:	Copper geochemistry	Appendix A
Figure 5:	Gold geochemistry	Appendix A
Figure 6:	Molybdenum geochemistry	Appendix A
Figure 7:	Silver geochemistry	Appendix A
Figure 8:	Zinc geochemistry	Appendix A

APPENDIX A

References Guide to Sample Attributes	Appendix A
Geochemical Results and Sample Attributes	Appendix A

1.0 Introduction

The Moli 6 claims are situated in the Babine Belt, central British Columbia. The Babine Belt hosts multiple Cu-Au porphyry deposits and showings related to the Eocene-age Babine Igneous Suite of biotite-feldspar porphyritic (BFP) intrusives. The claims lie within the 15 km of two former open-pit porphyry Cu-Au deposits, the Bell and Granisle mines. There is a high potential for further economic deposits to be uncovered in this area due to the favorable geology for mineralized porphyry systems.

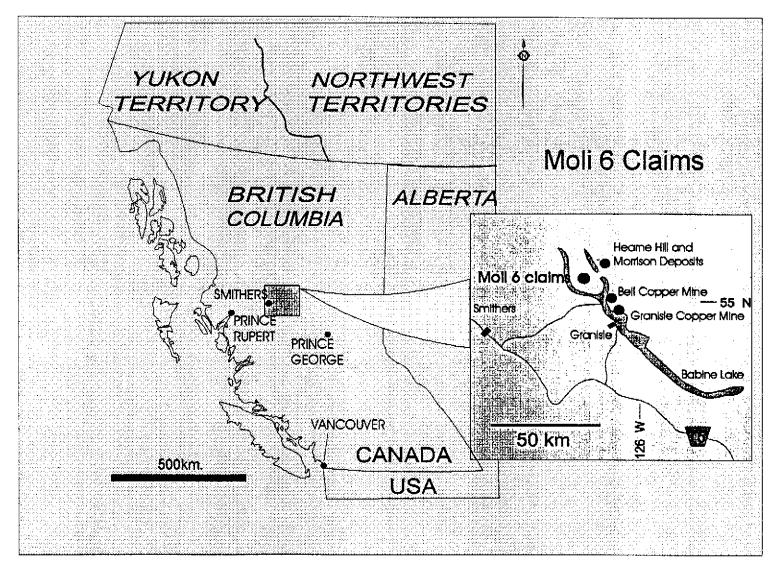
This report describes the work completed, results obtained and geological interpretations from the 1997 summer and fall field work program on the Moli 6 claims and provides recommendations for future work.

1.1 Work Completed

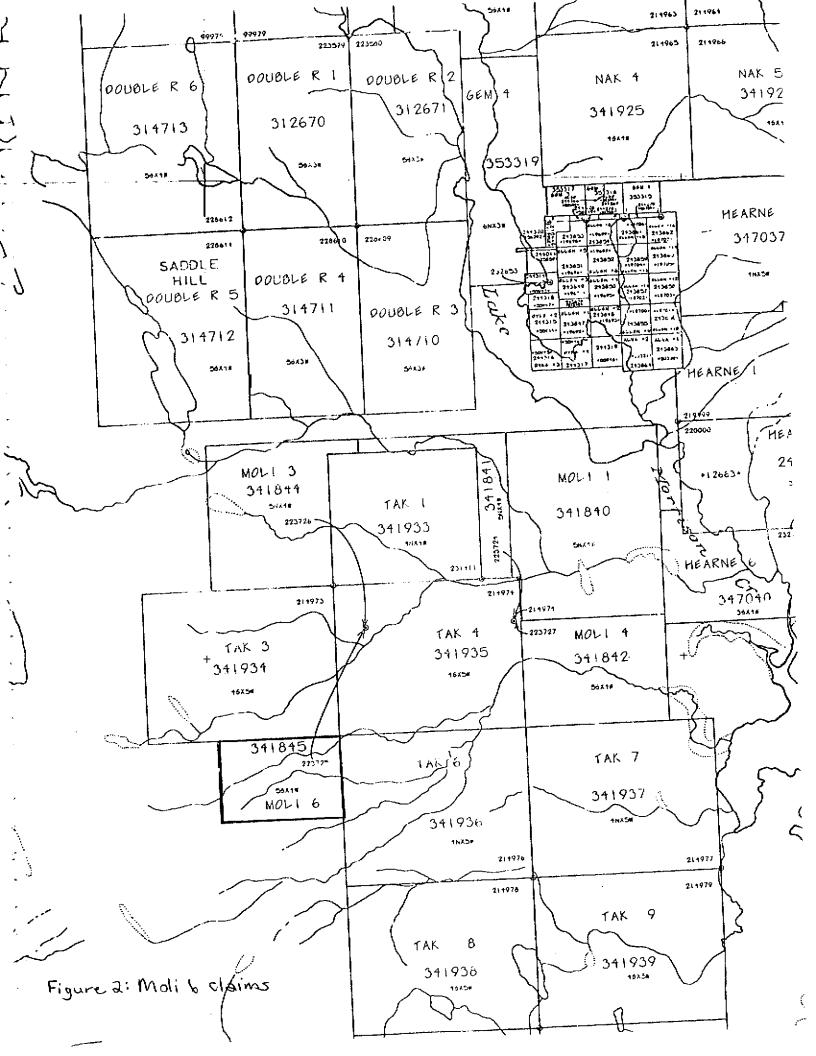
The property was staked in November, 1995. No work has been filed prior to this report. A reconnaissance program was initiated in May, 1997 on the Old Fort Mountain Mapsheet (NTS 93M/01), the Wolf Group, Buzz Group and Moli Group, also operated by Booker Gold Explorations Limited.

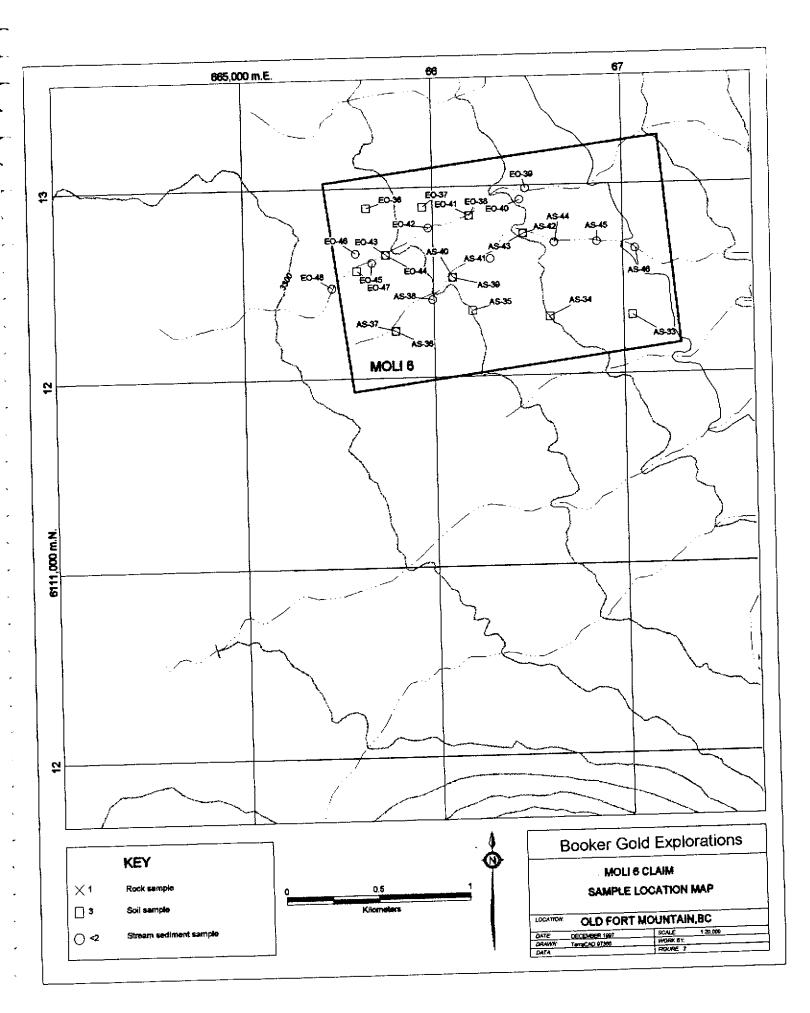
Baseline exploration studies on the Moli Group of claims included the following: reviewing 1995 BCGS till geochemical results from the study area, completing a cursory air photo interpretation and conducting a reconnaissance soil program in conjunction with drift prospecting. A total of 11 soil/till and 16 stream sediment samples were collected, shipped to Vancouver and assayed for 30 element ICP and Au by geochemistry by Acme Laboratory.

2.0 Property Location and Access


The Moli 6 claims are located approximately 65 km north-east of Smithers, central British Columbia and lie on the Old Fort Mountain (NTS 93 M/01) map sheet (Figure 1). The Babine area is characterized by basin and range physiography. The Moli 6 claims are located about 2 km south of the Moli 3 claims and lie approximately 5 km due west of the tip of Babine Lake (Figure 2). The claims are situated on a gently inclined east-facing slope with elevations ranging from 915 m (3000') to 1000 m (3275'). The approximate location of the centre of the claims is at latitude 55° 08' 05" N and longitude 123° 23' 40" W. The following table summarizes the pertinent claim data:

Claim	Tenure No.	Units	Expiry Date (1998)*
Moli 6	341845	20	November 9


* Contingent to the acceptance of this report.


The Moli 6 is located in a structurally down-faulted basin and has flat, low-lying topography (Figure 3). A small part of the property was clear-cut logged in the winter of 96-97 which provides further access to the property.

The Old Fort Mapsheet is accessed by barge across the Babine Lake out of Topley Landing. The Jinx, Hagan, Morrison Main and the Morrison West Main Forest Service roads provide access to the claims. Subsidiary 4WD or ATV logging roads provide further access on the claims.

Figure 1: Location Map

3. 0 Regional Geology and Mineralization

The Moli 6 claims are situated on the northern edge of the Skeena Arch (c.f. MacIntyre et al., 1997). The regional bedrock geology consists of volcanic and epiclastic rocks ranging in age from the Lower to Middle Jurassic volcanic rocks from the Hazleton Group to Lower Cretaceous Skeena Group sediments. This sequence of rocks has been cut by a northwest-trending series of faults that have created a long linear sequence of horsts and grabens. The Hazleton and Skeena group rocks have been intruded by Tertiary to Eocene age intermediate to felsic stocks, plugs and dykes (Richards, 1990). Biotite feldspar porphyry (BFP) plugs and stocks of the Babine Igneous Suite were intruded along major faults in a continental magmatic arc setting. Two ore bodies, the Bell and Granisle mines, and numerous sub-economic deposits occur as porphyry-copper deposits which are temporally and spatially associated with the Eocene Babine Igneous Suite intrusions (Carson and Jambour, 1974).

3.1 Previous Work

Although the Babine Lake area has been actively explored since the 1920's, no previous work has been recorded on the property. The Moli 6 claims are situated 7 km south-west of the Morrison property and 8 km south-west of the of the Hearne Hill property (Figure 1). The Morrison property was extensively explored and drilled by Noranda Exploration Company throughout the 1960's. Since that time the property has been relatively inactive, except for minor drilling and surface work. Ninety-five drill holes, systematically spaced, provide a geological reserve of approximately 190 million tonnes of 0.4% Cu and 0.2 g/t Au. Mineralization at the Hearne Hill property was first discovered in 1967. The property was explored by numerous exploration companies since that time, until Booker Gold Explorations Ltd. acquired full ownership of it in 1992 (*cf.* Stevenson and Weary, 1997). In October, 1997, Booker Gold signed an agreement with Noranda, allowing Booker Gold to earn a 50% interest in the Morrison property by spending \$2.6 million on the property and delivering a bankable feasibility study within five years.

4.0 Geology of the Moli 6 Claims

The Moli 6 claims are underlain by Lower Cretaceous-age Skeena Group sediments (MacIntyre *et al.*, 1997). This unit is characterized by marine sandstones and near-marine deltaic deposits of siltstone and carbonaceous mudstone. Skeena Group sediments occur in down-faulted basins and are thus poorly exposed (*ibid.*). No outcrop was found during foot traverses, however, a recent clear-cut on the property may have exposed bedrock and should be field-checked next year.

Due to the lack of outcrop on the Moli Group, pebbles from hand-dug pits and road-cuts were carefully examined and their occurrences recorded at each site (Appendix A). Lithologies on the Moli 6 claims consisted mainly of sediments and minor clasts of volcanic rocks.

5.0 Surfical Geology and Geochemistry of the Claims

5.1 Surficial Geology

Glacial sediments obscure the bedrock over all of the property (Huntley *et al.*, 1996). The topography is flat-lying and very uniform. Basal till covers almost all of the property, with minor local washed areas near active creeks.

5.2 Geochemistry

The geochemical survey was aimed at identifying areas with higher potential for mineralization. C-horizon samples were collected along on foot traverses. Samples were sent to Acme Analytical Laboratories in Vancouver, BC. Samples were sieved to the -230 fraction and analyzed for 30 element ICP and gold by geochemistry.

Basal till, which consists of lodgement and melt-out till, was the preferred sample medium. Since tills are 'first-derivative' products of bedrock, deposited by the movement of glaciers, till dispersal trains are relatively easy to trace back to the point of origin.

A total of eleven soil/till samples and 15 silt stream sediment samples were collected on the Moli 6 claim. Results from till and stream sediment samples in this area indicate background levels of copper. Values for Cu were low, between 19 and 30 ppm (Figure 4). Several gold, silver and molybdenum values are mildly to moderately anomalous. Stream sediment sample EO-41 assayed 27 ppb Au, with high Mo (8 ppm), As (35 ppm), Mn (17423 ppm) and Ba (1570 ppm). The several other samples have assays of 5 or 6 ppb Au, which is above background levels for the area (Figure 5). Molybdenum values are low, but typical for values in the Old Fort Mountain Area (Figure 6). Most samples assay 1 or 2 ppm Mo, except for EO-41 (8 ppm) and EO-40 (3 ppm). Silver values are relatively anomalous for the area (Figure 7). Eleven of the 26 samples had values of 0.3 ppm to 0.6 ppm. Arsenic, Co and Ni have weakly anomalous values and Zn has very anomalous values, up to 274 ppm for the area (Figure 8).

The results for the geochemical survey have outlined several multi-element geochemical anomalies which should be investigated further with follow-up and more detailed sampling.

6.0 Conclusions and Recommendations

Soil and silt samples collected on the claims area identified one sample with significant gold results. Several multi-site, multi-element geochemical anomalies were also identified. The sources of the geochemical anomalies are undetermined at present. Additional prospecting and till/soil and stream sediment sampling is required to better delineate the geochemical anomalies and determine their sources. Since bedrock exposure is very limited, a more intensive prospecting program is suggested, with samples collected from till or colluvium overburden units. Furthermore, rock grab samples should be assayed to determine background geochemical levels in the various rock types and assess the potential for mineralization. The survey failed to identify any anomalous Cu geochemical anomalies or BFP boulders. Thus, porphyry-related mineralization is unlikely the source of the known geochemical anomalies.

A geochemical and prospecting program recommended for next year. The goals of that program would be to further define geochemical anomalies and identify possible mineralization sources.

7.0 References

Carson, D.J.T. and Jambour, J.L. Mineralogy, Zonal Relationships and Economic Significance of Hydrothermal Alteration at Porphyry Copper Deposits, Babine Lake Area, B.C., C.I.M. Bulletin, February 1974.

Huntley, D.H., Levson, V.M. and Weary, G.F. (1996): Surficial Geology and Quaternary Stratigraphy of the Old Fort Mountain Area (NTS 93 M/01). *Ministry of Energy, Mines and Petroleum Resources*, Open File 1996-9.

MacIntyre, D.G., Webster, I.C.L. and Villeneuve, M. (1997): Babine Porphyry Belt Project: Bedrock Geology of the Old Fort Mountain Area (93M/1), British Columbia. *in* Geological Fieldwork 1996. *Ministry of Employment and Investment* Paper 1997-1.

Richards, T.A. (1990): Geology of the Hazleton Map Area (93M). *Geological Survey of Canada*, Open File 2322 Map, two sheets.

Stumpf A.J., Huntley D.H., and Levson, V.M. (1996): Babine Porphyry Belt Project: Detailed Drift Exploration Studies in the Old Fort Mountain (93-M-1) and Fulton Lake Map areas B.C. BCMEMPR Geological Fieldwork 1995, Paper 1996-1.

Stevenson, J.P. and Weary, G.F. (1997): Assessment Report October 1995-October 1996 for Diamond Drilling, Geochemistry and Geophysics on the Hearne Hill Property. *Booker Gold Explorations Limited*.

8.0 Statement of Qualifications

I, Erin O'Brien, of North Vancouver, British Columbia, do hereby certify that:

- 1. I am a graduate of McGill University, Montreal Quebec, with a B.Sc. in Geology and Environmental Studies (1994). I have a post-graduate degree from the University of New Brunswick, Fredericton, New Brunswick, with a M.Sc. in Geology (1996).
- 2. I am enrolled with the Association of Professional Engineers and Geoscientists of British Columbia as a Professional Geoscientist in Training.
- 3. I have been employed in mineral exploration in British Columbia since 1994.
- 4. I conducted the field work described in this report and this work forms the basis of the conclusions and recommendations outlined.

Vancouver British Columbia February 3, 1998 Erin O'Brien, M.Sc. Geologist

9.0 Itemized Cost Statement

Personnel*

. .

.

.....

• .

.

-

,

.

.

.

.

v

,

.

.

.

.

Geologist 1	2.05 days @ 225.00 per day	461.25
Geologist 3	1 day @ 175.00 per day	175.00
Assistant 1	1.2 days @ 125.00 per day	150.00
Assistant 2	1 day @ 160.00 per day	160.00
Subtotal		\$946.25

* Personnel costs include a pro-rated amount for mob/demob

Hand-held and truck radios 4 days at \$1.50 per day Subtotal \$ Miscellaneous Supplies \$ Assessment reports 20.00 Air photographs 40.00 Field supplies 30.00	00.00
Hand-held and truck radios4 days at \$1.50 per daySubtotal\$Miscellaneous SuppliesAssessment reports20.00Air photographs40.00Field supplies30.00	
Subtotal\$Miscellaneous SuppliesAssessment reports20.00Air photographs40.00Field supplies30.00	6.00
Miscellaneous SuppliesAssessment reports20.00Air photographs40.00Field supplies30.00	106.00
Assessment reports20.00Air photographs40.00Field supplies30.00	h
Air photographs40.00Field supplies30.00	
Field supplies 30.00	
Subtotal \$90.00	
Personnel Expenditures	
Camp Costs 4.0 days at 30.00 per day 120.00	
Food 4.0 days at 45.00 per day 180.00	
Subtotal \$300.00	
Samples and Assays	
Soil 27 @ \$14.40 per sample 388.8	
Shipping 27 @ \$3.00 per sample 81.00	
Subtotal \$469.8	
Assessment Report	
Report Writing 1.8 days @ 225.00 per day 405.00	
Drafting 2 hours @ 40.00 per hour 80.00	
Subtotal \$485.00	
Grand Total \$2316.25	

APPENDIX A

. .

р. -

.

.

-

.

Reference guide to sample attributes. Soil and silt geochemical data and sample attributes. Copper geochemistry. Gold geochemistry. Molybdenum geochemistry. Silver geochemistry. Zinc geochemistry.

APPENDIX A

. .

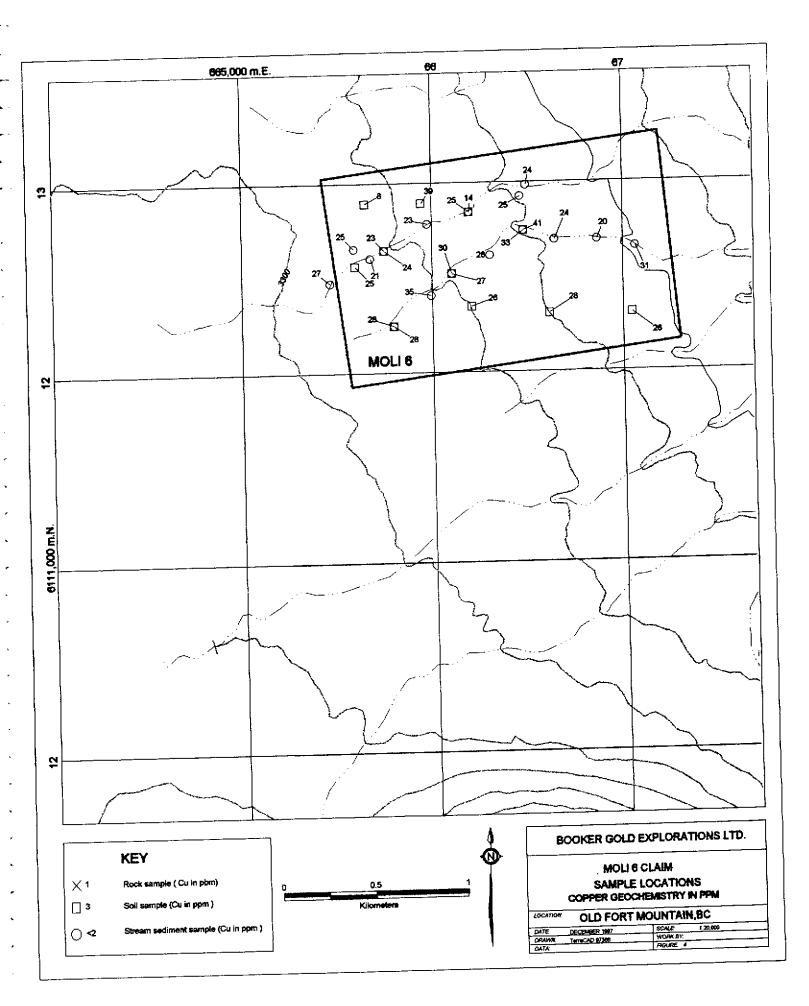
4

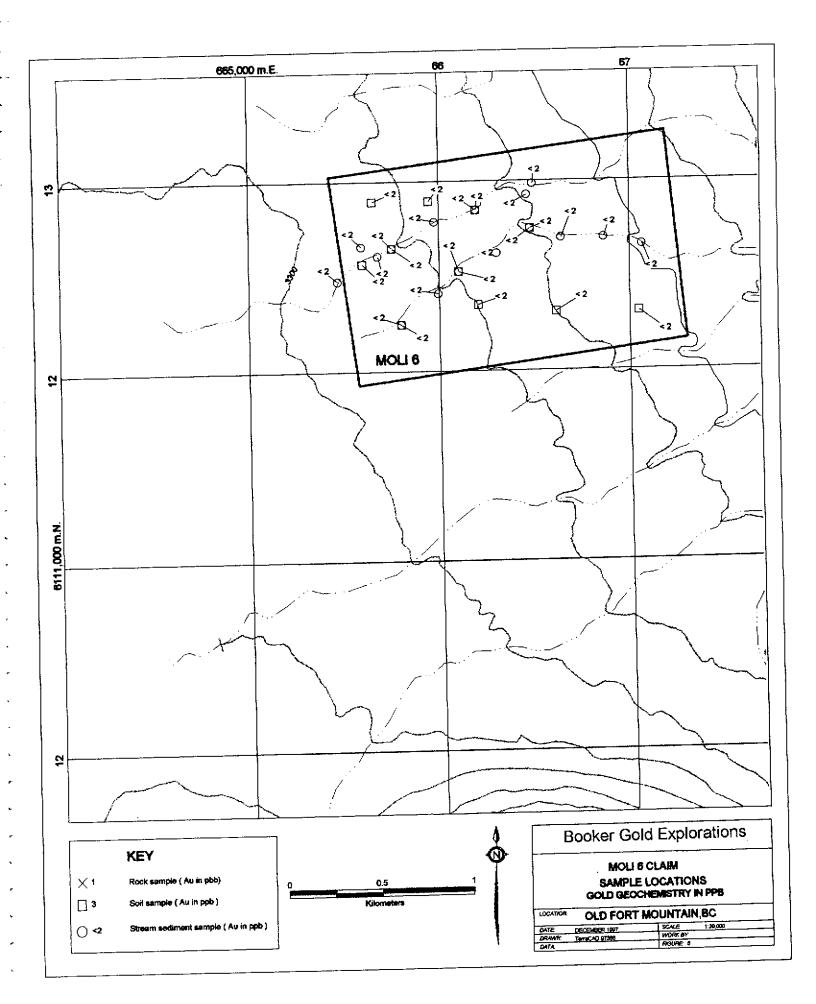
Reference guide to sample attributes:

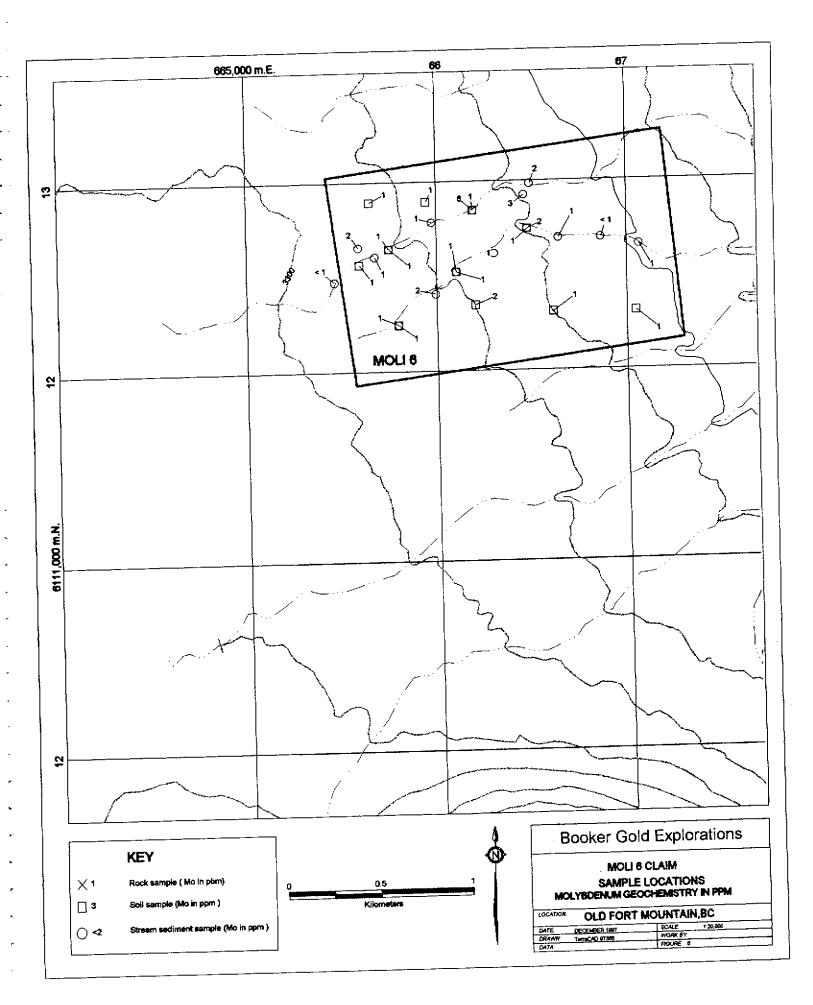
Sample number	Drainage - of sample area: poor to well
UTM North Coordinate	Fissility - Type of fissility, from none to weak
UTM East Coordinate	Density - Consolidation of the sample
	From loose to compact
Date	Oxidation - Extent of sample oxidation
Collected by	Jointing - Amount of jointing from none to
	strong
Claim name	Color - of sample
	Matrix - percentage of fines
Surficial geology map units 1 and 2	Abbreviations Key
Mb - Till blanket	B/R= bedrock
My - Till veneer	N= north, S= south, E= east, W= west
Cb – Colluvial blanket	w/= with
Cy - Colluvial veneer	tr. =trace
O – Organics	S = small; M= medium; L= large
Fg – Glaciofluvial sediments	A= angular; SA= subangular; R= rounded
Lg - Glaciolacustrine sediments	f.g.= fine grain; m.g.= medium grain; c.g.=
R – Rock (bedrock)	coarse grain; v.f.g.= very fine grain;
Stream Seds: silt from active creek	f.d.= finely disseminated
x/y - Unit x is more abundant than unit y	py= pyrite; cpy= chalcopyite; mal= malachite
-	qtz= quartz; chl= chlorite; epi= epidote
x//y – Unit x is much more abundant	gm= green
than unit y	dior= diorite; vol= volcanic; and = andesite;
x:y - Unit x occurs with unit y	ss= sandstone; zs= siltstone
	BFP= Biotite feldspar porphyry
	f/spar or f/s= feldspar
Sediment type sampled	Clast Mode
Dmm - Massive, matrix-supported	Size of clasts in sample
diamicton	From small to large pebble
s – sandy	
z — Silty	Clast Roundness – Shape of clasts from
sz - sandy silt	angular to rounded
zs - silty sand	
c clay	Bedrock - Type of bedrock underlying or near
g – gravelly	to the sample site. Refer to abbreviations key.
Depth to sample from surface, in cm	
Exposure - where sample was	Comments - Unique to the sample site
collected	and the second second second second second second
Topographic position	Lithology - Clasts collected from the pit,
Aspect – direction of slope	relative percentage of each and roundness of
Slope – angle in degrees	the clasts.

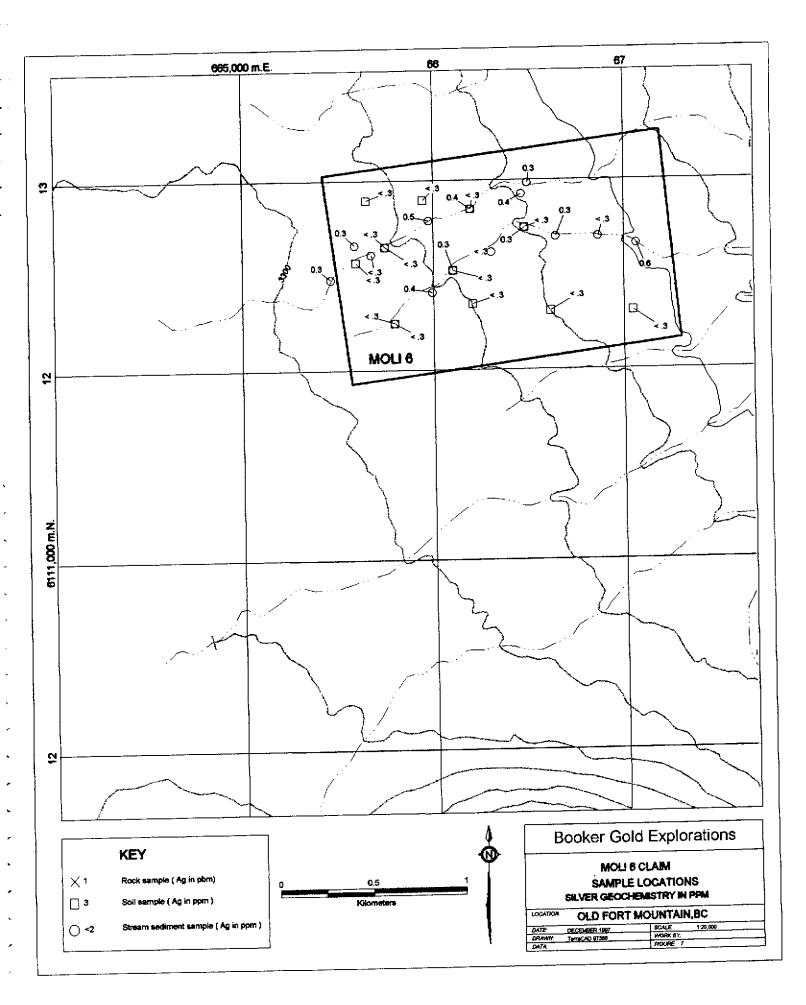
Mo(ppm) Cu(ppm) Pt 1 8 1 39 1 14 2 24 3 25 6 25 6 25 1 23 1 14 2 3 1 14 2 3 1 23 3 25 6 25 3 1 5 2 25 7 1 5 2 25 7 1 25 5 2 25 7 1 25 6 1 27 3 1 25 7 1 28 2 26 6 6 1 28 2 35 9 1 27 10 1 26 1 30 1 1 26 42 2 41 1 26 1 30 1 <th>8</th> <th>Pb(ppm)</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>the second day of the second day of the</th> <th></th> <th></th> <th>and a second</th> <th>Cd(ppm)</th> <th>Vipeni</th> <th>Ca(%)</th> <th>P(%)</th> <th>La(ppm)</th> <th>(mogh2</th> <th>Hg(%)</th> <th>Ba(ppm)</th> <th>TI(%)</th> <th>B(pom)</th> <th>AI(%)</th> <th></th>	8	Pb(ppm)								the second day of the			and a second	Cd(ppm)	Vipeni	Ca(%)	P(%)	La(ppm)	(mogh2	Hg(%)	Ba(ppm)	TI(%)	B(pom)	AI(%)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8		Zotoomi	Ac(ppm)	NKppm)	Co(ppm)	Mn(ppm)	P=(%)	As(ppm)	U(ppm)	Au(ppm)		Sr(ppm)	< 2	- 11-10-11-1 6.4	0.21	0.026	1	23	0.34	167	0.01	< 3	1.45	0.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	A	51	<.3 1	21	6	151	2.21	6	< 5	< 2	< 2	23	12	53	0.47	0.056	12	32	0,45	267	0.02	< 3	1.73	0.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		10	97	< 3	43	9	328	3.64	13	< 5	<2	×2	35	- 2	51	0.32	0.053	.7	28	0,45	179	0.02	<3	1.63	10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		 +-	61	< 3	33	. 8	408	3.37	11	<5	<2	< 2	32	1.2	80	0.59	450.0	10	30	0,49	384	0.01	< 3	2.25	1-0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		11	175	0.3	47	15.	3275	4.88	19	< 5	<2	< 2	57		62	0.0	0,103	12	29	0.52	454	0.01	5	2.41	1-9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		4	210	0.4	50	16	4223	6.09] 19	< 5	< 2	< 2	77	<u> </u>	50	0.99	0,101	15	24	0,39	1570	< .01	< 3	2.49	4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Ř	274	0.4	59	28	17423	8.15	35	< 5	<2	< 2	116	2	75	0.65	0,112	10	29	0,4	487	< .01	3	2.44	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		7	163	0.5	36	21	3985	6.66	<u> </u>	< 5	<2	< 2	85		89	0.64	0,108	8	31	0.44	342	< .01	< 3	2.23	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		5	156	- 3	34	18	2695	5.39	11	< 5	<2	< 2	61	×.2 ×.2	47	D.25	0.034	8	22	0.76	225	0.01	4	1.49	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		8	96	< 3	22	6	250	2.35	5	< 5	< 2	< 2	29	0.3	65	0.67	0,126	7	72	0.27	322	<.01	< 3	1.9	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		12	110	<.3	27	17	4282	4.77	2	< 5	<2	< 2	63	0.3	89	0.46	0.082	7	36	0.48	357	0.01	< 3	2.28	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		17	133	0.3	36	29	3517	6.44	13	< 5	< 2	< 2	50	<.2	47	0,13	0.064	8	28	0.41	127	Q.02	< 3	1.68	1
3 < 1 27 3 1 25 4 1 28 5 2 26 6 1 28 7 1 28 8 2 33 19 1 27 10 1 30 11 1 26 42 2 41	_		62	<.3	37	8	246	2.97	11	< 5	< 2	< 2	18	0.3	28	0.53	0.105	8	24	0.3	283	< .01	3	2.13	
3 1 25 4 1 28 5 2 26 6 1 28 7 1 28 10 29 1 27 10 1 26 1 27 10 1 26 1 26 11 26 1 26 1	4	- Ř	85	0.3	28	6	252	1.1	< 2	< 5	<2	< 2	54	0.5	50	0.35	0.066	10	29	0.46	227	0.02	< 3	1.67	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		7	81	<.3	34	10	538	3.23	13	< 5	< 7	< 2	32	0.2	45	0.3	0.038	В	21	0.39	226	0.01	< 3	1.44	_
5 2 26 8 1 29 97 1 28 18 2 33 19 1 27 10 1 30 11 26 42 2 41 1		8	85	<.3	21	9	372	2.5	11	<5	2	< 2	32	0.4	50	0.15	0.035	9	20	0.32	253	0.01	3	1.99	-
66 1 29 77 1 28 18 2 33 19 1 27 100 1 30 11 1 28 12 2 41		7	111	< 3	26	10	244	3.07	20	< 5	<2	<2	20	0.5	52	0.23	0.051	9	24	0.34	236	0.02	< 3	1.89	4
77 1 28 18 2 35 19 1 27 10 1 30 11 1 26 12 2 41		12	107	5.3	33	9	321	3.32	7	< 5	2	< 2	27	0.4	61	0.65	0.111	8	26	0.46	382	0.01	3	2.06	-
18 2 35 19 1 27 10 1 30 11 1 28 12 2 41		8	117	<.3	25	11	924	4.04	8	<5	< 2	<2	86	0.8	55	0.85	0,134	9	25	0.37	401	0.01	< 3	1.96	+
1 27 10 1 30 11 1 26 12 2 41			127	0.4	28	13	1759	3.98	7	5	<2	<2	23	- 2	62	0.17	0,034	7	24	0.32	240	0.02	<3	1,76	4-
10 1 30 11 1 26 12 2 41		8	127	<.3	23	8	273	3.77	15	< 5	<2	<2	70	2	64	0.72	0.105	10	28	0.49	387	0.01	<3	2.05	_
11 1 28 12 2 41		16	136	0.3	34	15	2001	4.61	11	< 5	<2	<2	42	5.2	48	0.42	0.081	11	26	0.49	204	0.03	<3	1.55	_
12 2 41		10	95	<.3	38	T 11	413	3.42	9	<5	<2	42	20	<.2	58	0,14	0.03	8	30	0.44	204	0.02	< 3	1.83	_
		6	117	<.3	44	6	232	3.86	20	- 5	<2	2	59	0.6	48	0.65	0.104	11	29	0.44		0.01	3	2.12	_
13 1 33	33	15	130	0.3	33	10	350	2,39	6	- 5			49	0.5	64	0.56	0.093	12	35	0.74	295	0.02	3	2.19	_
$\frac{1}{1}$		12	143	0,3	41	12	581	3,63	10	< 5		<2	48	0.4	46	0.49	0.105	8	24	0.38		0.01	<3	1.81	
15 C1 20	24	+	115	<.3	30	10	946	2.83	7	<5	2	+ 22	39	<.2	65	0.41	0.117	11_	41	0.59	299	0.01	< 3	2.06	<u> </u>

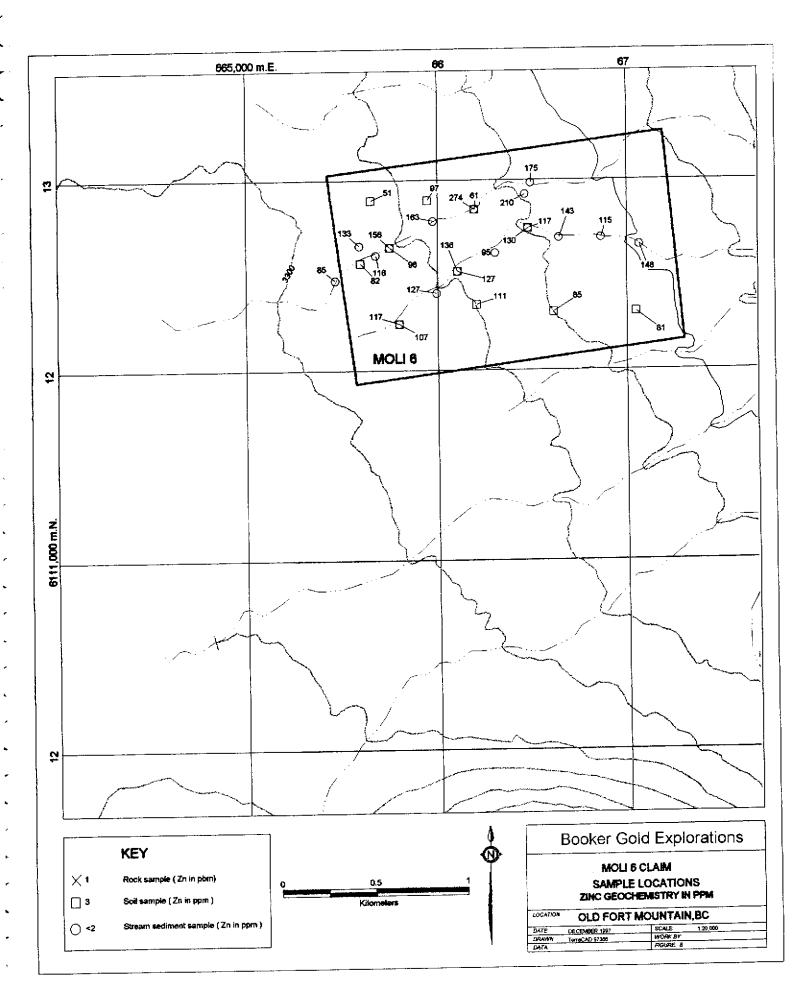
.


								Domain of Pro-	Claim	MaoUnit1	MapUn#2	SampleMedium	Depth	Exposure	Торо роз.	Aspect	Siops	Dramage			Ordelion	Jointing weakly
ample	K(%)	W(ppm)	Aur (ppb)	Unite Code		Northing			Mol 6	Mb		2Dmm	1 3	eri û	fløt	-			weak mo		10000	weekly
038	0.04	<2	<1	0		6112900	16-J.n-97		Moli6	Mb	<u> </u>	sDmm	4	OPIE	flet				week	mod	0000	0-W
037	0.05	< 2	\$	0		6112900	16-Jun-97		Mol 6	Mb (washed	<u>1 </u>	sDmm		5 PK	edge of guly			med	week	low		
038	0.04	<2	1	¢		6112850	16-Jun-97		Molifi	streemseds	¥	25G		1		4			ļ		+	ł
039	0.06	<2	1	\$ \$.	666450				Molt 6	streamsetts		zsG					1		1		+	<u>₩</u>
040	0,06	<2_	<1	SS		6112930			Moli 6	streamseds		ISG	1	Same as E	0-38					+	+	
041	0.06	< 2	27	55		6112850			Mol 6	streamseds		21G							 		<u> </u>	┼───
042	0.08	< 2	<1	SS	665930	· · · · · · · · · · · · · · · · · · ·			Moli6	streamseds		Z\$G	· ·	Same as f	0-44						mid-mottle	
043	0.07	< 2	<1	SS	665700			ASTÆO	MOLIG MOLIG	Mb	<u>+</u>	cszDmm		45 tree fall	revine			poor-mod	week	mod	mand-moxue	weakiy
044	0.05	< 2	<1	0	665700			AST/EO	Molif	streamseds					1		1					+
045	0.07	< 2	<1	88	65362.			AST/EO	_	streamsort									<u> </u>	<u> </u>		weatty
046	0.07	<2	1	\$ S	665540			AST/EO	Mol 6	Mb	·	zDmm		70 000	9 deg skope			poor	wesk	mod	none	wearry
047	0.05	< 2	1	0	66554		_		Mol 6	streamsed			_								-	0009
EO48	0,06	< 2	<1	55	66541			7 AS/ED	Mol 5	Mbr	•	szÖrnm		70 p#	field				low	none	none	none
AS-33	0.04	< 2	3	0	66700				Mol 6	Mbr		IszOmm		70 pt	Ret		Τ		low _	none	none	none
AS-34	0.06	<2	1	0		0 611231			_	Mb		sezDmm		70 pM	flet		1		mod	Ngh	none	none
AS-35	0.04	< 2	2	0		0 611235			Moli6	Mbr		eszDmm		75 oft	flet		1		low	mod	none	INAIN
AS-36	0.04	<2	13	0		0 611225			Moli 6	Stream se		-		-1 -1					<u> </u>		-	
AS-37	0.08	< 2	6	55		0 611225		7 AS/DK	Moli 6	Stream se										-	-	none
AS-38	0.07	< 2	<1	55	66595			7 AS/DK	Mol 6	Mbr		czDmm		60 plt	embankmont		1		kaw	high	none	110.10
AS-39	0.03	< 2	<1	0	86606				Mol 6	Streem se	da —	-			-T			_		_		
A5-40	0.05	< 2	<1	55	66606			7 AS/DK	Mol 6	Sinem se										- mild	none	0000
AS-41	0.06	<2	T 2.	SS	66625			7 AS/DK	Moli 6	Mor	<u> </u>	DOWN		80 p#	emberkment				10W	- mina		1044.00
A9-42	0.03	< 2	<1	0	66543				Mol 6	Stream H	da da		-									
A9-43	0.07	<2	<1	88	66643			7 AS/DK	Moli 6	Stream se												
AS-44	0.07	< 2	1	83		0 611270		7 AS/DK	Mol 6	Stream se												+
AS-45	0.05	<2	<1	SS		22 611270		AS/DK	Mol 6	Stream \$4		-						<u></u>				
AS-46	0.09	<2	5	55	66703	25 611241	1) 6-Jun-	97 AS/DK		Tog goen as												


•


						Commertit	Lithology				╤╧┷╴
mple	Matrix(%)	Colour	ClastsMode	Clastsshepe	Bedrock	wet simple, ler cherc.good (ii(500m east)	F.gr.green	volceniciesti	:7. moit, A-	SR; BFP 10-15%, SA-SR, \$5.	
036		dark grey	M-L	SA-SR	1	Good til, 800m cast	tendstone	silistone ani	i menon-gri	HER VOICENCS, 2014 SECT, OP-O	~ [^
037			M-L	SA-SR		washed till (1100m east at 1260, ig boulder purple undesite	Maroon-or	een volcanic	astic, \$6,2%;	SASR	
038			M-L	SR		washed (iii () 100m east at 1280, g bodios: pa pio anotatio					1
039	<u> </u>					SS 0m. Outwash nearby on fluted ridges.					
						\$S = 200m					
040						SS + 400m=site as EO-38					
041						at 160 deg from E0-37 (S8 + 600m)	_				
042			·•					6004 . C an ar	and Divelo	SA, 10%; andesite, 20%	
043			M-L	SA-SR			35, A-ar.	5071, 111 Q .	And Frights	T	1
044	8	brown	M-L .	- AAAAA		organic -swampy sample (ss + 1000m)			-	+	-
045	1	<u> </u>				\$5 + 1200m. Organic-swampy-soily.			<u>. </u>		
046]					50-60m southwest of Eo045 ~es1060	55, 50%, 4	SR; Phylic	encesite, 11	the green purple andesite	
047	7	5 brown	L	SR				Ļ		<u></u>	
048						MOLI 6, edge of clearing		<u> </u>			-+-
8-33	6	5 k grey	M	SR-R		MOLI 6, 200m W of clearing	sandstone				
S-34	7	0 k grey	L	SA		MQLI 5 600m W of cleaning	sandslof	V volcanic			
8-35	2	0 orange	M	SR		MOLI 6 at 0m along stream	tg mefic/t	andstone			_+
48-36	7	5 brown to orange	M	SR		MOLTO & WITHOUT SHEAR		1			
S-37			<u> </u>								_+
48-38							sandston	e/ig matic			
45-39	+	thrown to orange	S-M	A-SR		MOLI 5 at 400m next to stream		T			
A5-40	+							t			
AS-41	+		1				fa voican	ic/sendslone			
	+	5 It grey to orange	S.M.	SR		MOLI 6 at 800m next to stream		T	-		
49-42	· +	A new York to drama	<u> </u>					1	-		T
49-43		_ <u></u>	+				· · · · · · · · · · · · · · · · · · ·	1			
AS-44	_ _		 								
AS-45 AS-46				_ 							<u> </u>


.


	1	3	2 3 6	1 1 2 1	(1 1 (1 5 2	<1 5 1 1 <1	27 <1 <1 <1 <1 <1	1 2 1	<1 1 <1 1	51
À	W Au pm p#	<2	<2 <2 <2 <2	<2 <2 <2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<2 <2 <2 <2 <2 <2	~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	15
A	K X p	04	.06 .04 .04 .08	.07 .03 .08 .06 .03	.07 .07 .05 .09 .08	.04 .05 .04 .06 .06	.06 .08 .07 .05 .07	.07 .05 .06 .05 .05	.11 .11 .07 .08 .07	.16
i i	Na X	.01 .	.01 . .01 .	.01 .02 .01	.01	.01 .01 .01 .02 .02	.02 .02 .01 .01 .01	.02 .01 .01 .01 .01	.01 .02 .02 .01	.03
بر د	AL X	.67 .	99 <. 89	1.76 2.05 1.55	1.81 2.06 2.09	1.45 1.73 1.63 2.25 2.41	2.49 2.44 2.23 1.49 1.90	2.28 1.68 2.13 1.43 1.09	5 1.76 5 1.70 7 2.06 3 2.00 3 1.82	9 1.89
le :	B ppm	<3	3 <3	ও ও ও ও	200 200	ও ও ও	6 A A G		2 <	0_1
Pag	Ti %	.02	01 01 02 01	.01 .02 .01 .03 .02	.01 .02 .01 .01 .01	.01 .02 .02 .01 .01	<.01 <.01 .01	.01 .02 <.01 .03 .04	02_ 01	.10
	Ba	227	253 236	401 240 387 204 204	354 295 321 299 308	167 267 179 384 454	1570 467 342 225 322	357 127 283 151 139	278	146
	Mg		32 / 34 /	.32 .49 .49	.74 .38 .59	.34 .45 .45 .49 .52	.39 .40 .44 .26 .27	.48 .41 .30 .38 .35	.61 .36 .68 .67 .59	.64
	Cr	29 -	21 . 20 . 24 .	24 28	Z 4	23 32 28 30 29	24 29 31 22 22	36 28 24 22 20	28 22 37 35 32	162
	.8		8 9 9	9 7 10 11 6	11 12 8 11 11	7 12 7 10 12	15 10 8 7	7 8 8 9 8	10 7 8 7	17
	> 1		8 5 1	14 15 11	93 05 17	56 53 84	12 08)34	064	165 068 071 075	089
		.06	.03 .03 .05	.03 10 08	5 .10 6 .0 9 .10 1 .1 2 .1	1 .0 7 .0 2 .0 9 .0	29 .1 35 .1 34 .4 26 .0 57 .1	53. 14.	37 . 56 . 56 .	58
	Ce	ڑ تح	.30	-1 .7 .4	.5	5.4 1.3	5. 9.	7 8 6	56 58 48	78
800 Q	<u></u> V	ррт 50	45 50 52 61	55 62 64 48 56	86	5 5 6	2 6	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 5 2 2	3
	Bi	<u>ppm</u> <2	2 2 3 2 2 4 2 2 2	3 3 2 3 2 3 2 3 2 3 2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<	< <		5 2
CER	Sb	<u> </u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	8888 8888 8888 8888 8888 8888 8888 8888 8888	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<2 <2 <2 <2 <2 <2	<	1!
			.4 .2 .4 .5 .4	.8 <.2 <.2 <.2 <.2	.6 .5 .4 <.2 <.2	<.2 <.2 <.2 1.2 1.0	3.0 <.2 <.2 <.2 .3	.3 <.2 .3 .3 <.2	.9 <.2 <.2 <.2	22.7
	Sr	pm k	32 32 20 27 86	70 42	59 49 48 39 40	23 35 32 57 77	116 85 61 29 63	50 16 54 23 25	- 48	29
		epan p	<2 <2 <2 <2 <2 <2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~	< < < < < < < < < < < < < < < < < < <	2000 2000	<2	17
		pm p	~~ ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	< < < < < < < < < < < < < < < < < < < <	<2	2
		pm p	<5 <5 <5 <5 <5	হ হ হ হ হ হ হ হ হ হ হ হ হ হ হ হ হ হ হ	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	5 5 5 5 5 5 5 5 5	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	かかかか		22
		om p	11	7 15 11 9 20	6 10 7 22 22	6 13 11 19 19	35 9 11 5 2	13 11 <2 4 6	12 11 16 17 9	52
989 ÷	8000 X			37	9 3 3 7	:1 4 17 18	15 66 39 35	97 10 50	.86 .23 .66	,38
	Fe	X	3.23 2.50 3.07 3.32 4.04	3.98 3.77 4.81 3.42 3.86	2.39 3.63 2.83 7.37 7.43	1 2.2 3 3.6 3 3.3 5 4.8 3 6.0	3 8.1 5 6.6 5 5.3 0 2.3 2 4.7	7 6.4 8 2.9 52 1.4 34 2.5	06 3. 13 3. 41 5. 43 5. 07 3.	513.
		Mn ppm	372 244 321	1759 273 2001 413	350 581 946 523	151 328 408 3275	1742 398 269 25	24 25 28	101 154 234	0 7
	<u></u>	Co opm	10 9 10 9 11	13 8	10 12 10 12 14	6 9 9 15 16		29 8 6 8 8	13 17 20	5 10 IS DI
	<u></u>	Ni pm	34 21 26 33	26 28 23 34 36 44	33 41 30 38 38	21 43 33 47 50	59 36 34 22 27	38 37 28 22 24	46 31 59 56	36
- 23-23	<u>.</u>		.3 .3 .3 .3	<.3 .4 <.3 .3 <.3 <.3	<.3 .3 <.3 .6 .4	<.3 <.3 <.3 <.3 .3 .3	.4 .5 <.3 <.3 <.3	.3 <.3 .3 <.3 <.3	<.3 <.3 <.3 <.3 <,3	5.5
2000			85 · 11 · 07 ·	27 127 136 95	130 143	51 97 61 175 210	274 163 156 96 116	133 82 85 65 56	93 194 129 132	163
}			5 7 1 2 1	1 1 8 1 6 1 0	15 12 5	8 10 7 11	7 6 7 5 8 12	17 8 8 10	15 16 13 16	76
/		Pt ppr	1	1		B 9 4 4	5 3 3 4	25 25 27 19	46 34 31 27	31 62
نىد		Cu ppm	26 28 26 28	28 35 27 30 28	41 33 24 20 31 31	8 39 14 24	2	2 2 1 2 1 2 1 1	1 4	-
		Mo prn j	1 1 2 1	1 2 1 1	2 1 1 1 1 2	1 1 1 2	3 8 1 1 1	2 1 <1 1	1	
u1 /		- I - '								11-5
						ĸ	* * *			ARD C3/AU
A	L	MPLE#	-33 -34 -35 -36	5-37 5-38 5-39 5-40 5-41	5-42 5-43 5-44 5-45 5-46	E AS-4 0-36 0-37 0-38 0-39 1	0-40 4 0-41 4 0-42 4 0-43 0 0-43 0	E0-45 E0-46 E0-47 E0-48 E0-49	E0-50 E0-51 E0-52 E0-53 E0-54	EO-55
		SAI	AS As	AS AS AS	A! A! A! A!	E E E	E E E I			

