

REPORT OF 1997 GEOLOGICAL, GEOCHEMICAL, AND PHYSICAL WORK PROGRAM, STEWART PROPERTY, B.C.

> Nelson Mining Division British Columbia

NTS 82F/3 Latitude 49°14"N Longitude 117°20"W

Robert T. Fredericks, lan Thomson Orvana Minerals Corp. January 30, 1998

GEOLOGICAL SURVEY BRANCH

TABLE OF CONTENTS

INTRODUCTION 1	
PROPERTY1	
LOCATION AND ACCESS	
PHYSIOGRAPHY AND CLIMATE 4	
PREVIOUS WORK 4	
1997 PROGRAM	
REGIONAL GEOLOGY 5	
PROPERTY GEOLOGY	
CRAIGTOWN MAP AREA GEOLOGY	
MINERALIZATION9	
ALTERATION1	0
LITHOGEOCHEMISTRY 1	1
SOIL GEOCHEMISTRY 1	2
MOSS MAT GEOCHEMISTRY 1	3
ROAD CONSTRUCTION 1	13
CONCLUSIONS 1	4
RECOMMENDATIONS 1	14
STATEMENT OF COSTS 1	15
STATEMENTS OF QUALIFICATIONS	16,17
REFERENCES	18

Page

n in the second s

LIST OF FIGURES

Page

1	Location Map	2
2	Claim Map	3
3	Property Geology Map	6

LIST OF PLATES

1	Stewart Project Craigtown Creek Geology	Pocket
2	Craigtown Creek Rock and Moss Mat Sample Locations	ű
3	Craigtown Creek Rock and Moss Mat Sample Geochemistry, Au (ppb), Cu (ppm)	u
4	1996-97 Craigtown Creek Soils - Au (ppb)	ű
5	1996-97 Craigtown Creek Soils - Cu (ppm)	ц
6	1996-97 Craigtown Creek Soils - Pb (ppm)	4
7	1996-97 Craigtown Creek Soils - Zn (ppm)	ш
8	1996-97 Craigtown Creek Soils - Mo (ppm)	"
9	1996-97 Craigtown Creek Soils - Ni (ppm)	Ľ
10	1996-97 Craigtown Creek Soils - Cr (ppm)	"
11	1996-97 Craigtown Creek Soils - As (ppm)	٣

APPENDICES

- 1. Rock Sample Field Descriptions
- 2. Rock Sample Geochemical Laboratory Reports
- 3. Soil and Moss Mat Sample Geochemical Laboratory Reports

INTRODUCTION

The Stewart property, located near Salmo, B.C. (Fig. 1) was acquired by Orvana Minerals in 1995. The Stewart property has been explored in the past for molybdenum, copper, tungsten, silver, gold, lead and zine. Most exploration has been conducted during the past two decades. These exploration programs identified several different areas and types of mineralization (porphyry, vein, volcanogenic massive sulphide), some of which have potential to host economic gold, copper/gold, molybdenum, tungsten, or silver/lead/zine mineralization. Orvana partly explored the property, principally for gold and copper, during the 1995, 1996, and 1997 field seasons. This report presents results of work conducted during the 1997 assessment year, which includes geologic mapping, rock, soil and stream sediment (moss mat) geochemistry, grid installation, and road construction. The purpose of this program was to characterize potentially economic mineralization known to occur on the property, further define geochemical anomalies identified during the 1996 program, and to develop and access target areas for drill testing.

PROPERTY

The Stewart property covers an area of 59.25 Km², and includes both two and four post mineral claims and reverted crown grants (Fig. 2). In all, the claims comprise 239 units in 65 different claims. The claims are owned by Eric and Jack Denny of Nelson and Salmo, B.C., M.A. Kaufman of Spokane, WA, and Orvana Minerals Inc. of Vancouver, B.C. The Denny and Kaufman claims are under option to Orvana. Pertinent claim information is summarized below:

Name	Units	Tenure #	Expiry Date
Free Silver, Ruby	1	232633	April 18, 2003
Royal	1	232634	April 18, 2002
Stewart 1	20	232635	April 28, 2000
Stewart 2	20	232636	April 28, 2001
Stewart 3	20	232637	May 8, 2000
Stewart 5	9	232697	Nov. 28, 1999
Stewart 6	16	232698	Nov. 28, 1999
Stewart 7	12	232699	Nov. 28, 2000
Stewart 8	20	232700	Nov. 28, 1999
Stewart 9	20	232701	Nov. 28, 1999
Stewart 10	20	232702	Nov. 28, 1999
Stewart 12	8	232704	Nov. 28, 1999
Houlton	1	232705	Nov. 28, 2000
Fairview	1	234612	Mar. 15, 2002
Dog 1	1	314273	Oct. 25, 2000
Dog 2	1	314274	Oct. 25, 2001
Dog 3-6	4	314275-314278	Oct. 25, 2000
Dog 7	1	321746	Oct. 11, 2001
Dog 8	1	321747	Oct. 11, 2000
Dog 9-12	4	321748-321751	Oct. 23, 2000
Dog 13-14	2	338999-339000	Aug. 19, 2000
Mel 1-8	8	341017-341024	Oct. 19, 1999
E Claire 1-6	6	356440-356445	June 6, 2000
E Claire 7-10	4	356446-356449	June 7, 2000
E Claire 11-15	5	356450-356454	June 9, 2000
E Claire 16	20	356459	June 10, 2000
E Claire 17-20	4	358689-358692	Aug. 28, 2000
E Claire 21-22	2	358693-358694	Aug. 28, 1998
E Claire 23-24	2	358695-358696	Aug. 29, 1998
E Claire 25-26	2	358697-358698	Aug. 29, 2000
Rest 1-3	3	359863-359865	Oct. 23, 1998

ယ

Surface rights are held by several different owners, including timber companies and the Crown.

LOCATION AND ACCESS

The Stewart property is located 50 Km south of Nelson, and 7 Km north of Salmo, British Columbia, at latitude 49°16N', longitude 117°18'W. Map coverage is on sheets 82F/3 and 82F/6. Access to the property is good via the Erie Creek road, 4 Km west of Salmo on Highway 3, and the Stewart Creek road, 4 Km north of Ymir on Highway 6. There are several logging roads and old mining roads that provide additional access on the property. These roads are in various conditions, some being maintained and others growing up with brush and alder. As some of the roads are on private land, they have been gated by the owners to restrict access by the public.

PHYSIOGRAPHY AND CLIMATE

The Stewart property is characterized by mountainous terrain, with elevations ranging 750-1950 meters. Most of the property is forested with dominantly conifer stands, but also with some deciduous stands and minor brush fields. The highest regions are sparsely forested. Logging has been and continues to be widely practiced on the property. Exposure is not real good in general, although on ridge crests outcrop is fairly common. The lower slopes and valley bottoms have extensive deposits of till.

The climate is moderate. Precipitation can occur throughout the year, but is lightest during the summer months. Most of the property is snow-covered during December - April, with the highest regions not melting off until June or July. Temperatures typically range -15° to 20°C annually.

PREVIOUS WORK

The Stewart property is located in an area of much early mining activity, with the Ymir, Erie, Sheep Creek, and Nelson districts being the sites of extensive exploration and production for over 100 years. Recorded work on the Stewart property begins with surface exploration and development of the Arrow Tungsten showing by Premier Gold Mining Co. in 1942. Tungsten mineralization was identified over a 1000 ft strike length, with samples up to a few feet of over 1% WO₃. In the late 1960's and early 1970's, the property was explored for copper by Quintana and Copper Horn. Prospectors Eric and Jack Denny staked the property in 1978, and Shell Canada, followed by Selco, explored the property for molybdenum. Most of this work (including extensive drilling) was focused on the Stewart Moly and Breecia Summit areas. Large areas of the property were also soil sampled on a wide grid, and covered by airborne magnetic and impulse EM surveys. From the mid 1980's to the mid 1990's, several groups explored the property for gold. US Borax and Lacana conducted geochemical surveys, concentrating in the Rest Creek area. Minnova, followed by Cameco, explored in the Craigtown Creek area with geochemistry and geophysics (1.P. and magnetics). Cameco drilled four core holes into one of the targets identified by this work. They found extensive anomalous gold in altered andesite, diorite, and feldspar porphyry (values in the 10's and low 100's of ppb; maximum of 24854ppb over 1 meter in a guartz-sulphide vein). In 1996 Orvana Minerals conducted geologic mapping, rock, soil, and moss mat sampling, and a ground magnetic, VLF-EM survey.

1997 PROGRAM

The 1997 program involved grid installation, soil and rock geochemistry, geologic mapping, and road construction. This work was conducted during the period June 14 - November 17, 1997. In the Craigtown Creek area, the grid established in 1996 was extended west and south to close off soil geochemical anomalies identified in the previous year. Fill-in fines with a spacing of 100m were installed to better define anomalies present in areas previously covered with 200m line spacing. A total of 9800m of grid was established. The grid was installed with line spacings of 100 and 200 meters, and station intervals of 30 meters. The lines were brushed out with an ax, flagged, and stations marked with flagging and tyvic/aluminum tags. The grid was used for a soil geochemical survey and control for geologic mapping and rock sampling. Mapping was conducted at a scale of 1:5000.

Twenty four hundred meters of road were built on the ridge between the south and main forks of Craigtown Creek. The road provides access to the top of the ridge, and to drill targets defined by work conducted in 1996. This road was built under a cost share agreement between Orvana and Erie Creek Forest Reserve, Ltd., the owner of the surface lands. The road will be used by Orvana for subsequent mineral exploration programs, and by Erie Creek Forest Reserve for logging. The bedrock exposures created were mapped, and some of them were sampled.

REGIONAL GEOLOGY

The immediate region is underlain in the east by Paleozoic clastic and carbonate sedimentary rocks of the Kootenay Terrane, and in the west by Mesozoic volcanic rocks of the Quesnel Terrane. In this region, the stratigraphy of both the Kootenay and Quesnel Terranes have been folded and faulted along an east-west compressional axis. They are intruded by felsic rocks that range in age from Jurassic to Tertiary. Coeval dioritic intrusions are common in the mafic andesitic volcanic rocks of the Jurassic Rossland Group. These tend to be relatively small bodies. Extensive late Mesozoic intrusive activity produced the widely distributed Nelson Group intrusives of granitic to dioritic compositions. Eocene age, typically potassic (monzonite) intrusive rocks of the Coryell Group are also widely distributed in the region. Young (Tertiary) dikes and sills of rhyolite and felsite are common, and some more mafic small intrusives are present. Much older clastic sedimentary rocks of the Proterozoic Aldridge (Belt) Supergroup outcrop extensively to the cast.

PROPERTY GEOLOGY

The Stewart property is underlain by sedimentary and volcanic rocks of the Jurassic Rossland Group, and intrusive rocks of various younger ages (Fig. 3). The oldest rocks are of the Elise Formation, the volcanic component of the Rossland Group. The Archibald Formation, which is the basal unit of the Rossland Group and composed of fine clastic sediments, outcrops west of the Stewart Property. The volcanic rocks of the Elise Formation are basaltic to andesitic in composition, tend to be porphyritic flows, breccias, pyroclastics, and subvolcanic intrusives. A fairly significant component of this formation includes fine-grained, equigranular to porphyritic/aphanitic diorite/andesite. Phenocrysts of feldspar, augite, and hornblende are common in some of the units.

Overlying the Elise Formation is the Hall Formation (also Jurassic Rossland Group). These rocks are mostly argillite, siltstone, fine-grained sandstone, and minor conglomerate. They are rarely limy, but are commonly siliceous. Compositionally, the rocks are very heterolithic, with a variety of clasts, including a high percentage of volcanic fragments. The Elise and Hall Formations are folded into a broad, N-S trending syncline (Hall Creek Syncline) that runs through the property and extends both north and south over a 15 mile strike length. This N-S structural feature is the strongest on the property.

A variety of intrusive rock types and ages have intruded the older rocks. These belong to three major groups. The older group consists of coeval diorite intrusives in the andesite pile of the Elise Formation. These tend to be fine to medium-grained, equigranular to weakly porphyritic. They range from very weakly to moderately magnetic. They probably aren't very large, occurring as dikes or sills a few meters thick. Flow lineation in feldspar or hornblende phenoerysts is seen near the intrusive contacts in core.

The next set of intrusive rocks are the Cretaceous Nelson intrusive suite, mostly quartz monzonite on the property, but also monzonite, granite, and diorite. These tend to be large, in places composite, intrusive masses outcropping most extensively in the northern portion of the property, in the Stewart and Craigtown Creek drainages. Smaller stocks occur in the western portion of the property. Rocks of these intrusives are generally medium-grained, equigranular to porphyritic. They seem to range from weakly to fairly strongly magnetic. Porphyry molybdenum mineralization on the property is thought to be related to these intrusives.

Younger intrusives of the Coryell Suite (Eocene or later?) are also monzonitic, but tend to be a little more quartz-poor and alkaline than the Nelson rocks. They are typically biotitic. They may be equigranular or

porphyritic. They occur in both the cast central and west central portions of the property. What are probably the youngest intrusives are rhyolite, latite, and minor basalt sills/dikes that intrude the older Rossland rocks and both Nelson and Coryell intrusives. These cross-cutting intrusives are aphanitic to weakly porphyritic (rhyolite and latite may have quartz eyes), generally strike N-S and are widely scattered on the property. The rhyolite intrusives commonly have distinct flow banding near their contacts with the country rock.

The dominant structural grain on the property is N-S. The Rossland Group stratigraphy generally strikes N-S, as does the Hall Creek Syncline. Northwest and northeast faults and shear zones are known on the property; they appear to be significant controls to mineralization. The common young rhyolite dykes and sills also strike N-S and dip steeply. All of these features indicate that the deformation occurred within a stress regime with an east-west compressional axis that was probably long-lasting and contemporaneous with accretion onto the North American continent.

CRAIGTOWN MAP AREA GEOLOGY

Mapping was conducted over the 1996-1997 grid area, along new and old road cuts, and up some small stream drainages. Much of the area is covered with colluvium or till, so float mapping was employed, and the accuracy of the map is compromised. A geologic map including data points (outcrops, float, etc.) is included in Plate 1. Portions of the area adjacent to this on the east were partially mapped by various earlier workers, including Shell, BP-Selco, Minnova, and Cameco.

The Elise (Jurassic age, Rossland Group) Formation volcanics underlies a large portion of the Craigtown Creek area, and hosts a significant part of the known mineralization. They strike generally N-S and dip moderately to steeply east. Lithologies of the Elise Formation are texturally highly variable. The rocks constitute essentially an andesitic volcanic pile, but include flows, clastics, and intrusives. Color varies from light to dark grey, green, or almost black. Most of the rocks are either porphyritic/aphanitic andesite flows, or tuffs. Feldspar, hornblende, and augite phenocrysts are common. The tuffs vary from ashes to lapilli or even cobble tuffs. Rarely, bedding is visible in ashy beds. Dioritic, porphyritic coeval dikes and/or sills are also common. These commonly have flow lineations preserved in the phenocrysts, near the contacts with the country rock. Compositionally, rocks of the Elise Formation are seen to vary from andesite to gabbro. Some of the rocks are basalt, contain up to 25% dark green to black augite phenocrysts. In the western portion of the map area, a narrow belt of fine-grained tuffaceous volcanics is exposed in road cuts. These rocks lie between the granite and diorite intrusives, and are hornfelsed. They possibly represent a small sliver of the Archibald Formation (rather than the Elise Formation), otherwise not represented in the map area, caught between the two intrusives. Alteration in the Elise Formation wide-spread and commonly consists of a propylitic assemblage, with less common potassic, carbonate, and silicification.

Overlying the Elise Formation on the east are argillite, siltstone and tuffaceous rocks of the Hall Formation. These rocks also strike N-S and dip steeply. They are dark grey, tan, to black, and thinlybedded. They have not been identified as calcareous in the Craigtown Creek area, although they are, in other areas of the property. They are often graphitic. Mineralization of these rocks in the study area seems to be restricted to the contact aureol around the "West Moly Intrusion", which is mostly further east. This mineralization is limited to disseminated pyrite/pyrrhotite and minor small quartz-sulphide veins. Alteration in this aureol includes silicification and hornfels (possible potassium metasomatism or silica flooding).

In the western portion of the map area, a variety of intrusive rocks occur. These probably represent in part, a lobe of Nelson (Cretaceous) granite, quartz monzonite and diorite that extends eastward from the Bonnington pluton up Craigtown Creck. The granite is light speckled grey, pink and tan, medium to coarse-grained, and unaltered. The diorite is medium to dark grey, medium to fine-grained, and tends to be more malie in the west. It is generally unaltered to weakly propylitically altered. The monzonite and quartz monzonite outcrop extensively in the western portion of the grid area. This rock is medium to dark grey, medium-grained and generally equigranular to weakly porphyritic. It tends to be more quartz-rich

in the southern portion of its distribution. It is generally unaltered or only weakly propylitically altered, except near its contact with the country rocks, where propylitic alteration is stronger. This rock intrudes the volcanic rocks of the Elise Formation.

Small monzonitic feldspar porphyry intrusive plugs occur in the Craigtown study area. These rocks are thought to belong to the Nelson intrusive group (Cretaceous). However, Hoy and Andrew (1988) suggest that rocks similar to these, including the Silver King porphyry, may be synvolcanic. One of these porphyries outcrops east of the 1996 grid on "Anomaly Ridge", where Cameco drilled four holes. Others bodies are certain to underlie other areas, as the float is very common. These rocks are porphyritic, with 10-30% feldspar phenocrysts 1/4 - 1 cm long, set in a fine-grained, tannish grey groundmass. In places, anhedral quartz eyes constitute a few modal percent. Petrographic study indicates that the feldspar crystals are plagioclase. They are cream colored and cuhedral. In places they demonstrate a flow lineation. Mafies are mostly hornblende and minor biotite, and constitute a minor portion of the mode. The rocks often contain disseminated pyrite, and in places are cut by stockwork quartz veinlets.

Fine-grained, felsic monzonite intrusives occur in several portions of the map area. These rocks may be from the same magmatic event as the feldspar porphyry intrusive described above, as they are compositionally similar. In a poorly exposed NW trending zone that traverses the central portion of the 1996 grid, a series of outcrops and float of this rock type occurs. These rocks are light tan or grey, with pinkish hue in places, and contain only minor mafic minerals (generally 5% biotite). In places, especially near the ridge crest, brecciation is strong in these rocks. These appear to be intrusive breccias and show several cross-cutting relations. They are altered and mineralized, and are associated with anomalous Au and Cu geochemistry both in soils and rocks. Several percent magnetite is a common component, both as fine to medium-grained disseminations and as stockwork veinlets, with or without quartz. Potassium feldspar and quartz veining and flooding are present in places. These rocks probably represent elongate intrusives, perhaps 100 meters wide by 400 meters long, that were emplaced along the contact between the Elise Formation and the body of medium-grained monzonite. The strong NW elongation implies structural control. A smaller body of similar rock outcrops 1 Km SW of those mentioned above, in the area covered by the 1997 grid. It seems to be less altered, but does have anomalous Cu-Au associated with it. Further to the west, bleached intrusive rocks with similar texture are seen in float. This area has not yet been mapped in any sort of detail.

Latite and quartz latite dykes and small plugs occur in the map area. They are probably Tertiary in age; they intrude the Rossland Group and the diorite and monzonite intrusives. The dykes are only a few meters in width, and have strikes that range from NW to NE, with steep dips. They are usually not altered or mineralized. However, a small plug of a trachytic latite and quartz latite porphyry with quartz veinlet stockwork and anomalous Au (>1 g/t) outcrops poorly in the area of 5458600N 476100E. This plug was intruded along the same NW-striking zone of weakness that parallels the contact between the monzonite intrusives and the volcanies.

Rhyolite dykes are common on the Stewart Property, and a few of these traverse the Craigtown Creek map area. They are also probably Tertiary, as they intrude the Rossland Group and the diorite and monzonite intrusives. They generally strike N-S, and dip near vertically. They are a few meters in thickness. Texturally, the rhyolite is aphanitic, with minor quartz eyes in places. They have been mapped and logged as tuffs, flows, or intrusives by other workers. Based on flow lineations, and chilled lower and upper contacts as seen in core, we believe that they are later intrusives. They are little altered except for some minor late quartz-carbonate veinlets. Some of them contain disseminated pyrite; in fact some earlier workers concluded that they are the source of the Au soil geochemical anomalies at Craigtown Creek. In our experience, they contain very little Au except where accompanied by quartz veinlet stockwork and pyrite.

Minor lamprophyre or porphyritic basaltic dykes, sills, and small plugs are present in the area. They are dark greyish brown, unaltered, not magnetic, and aphanitic, with minor biotite phenocrysts in places. They have distinct chill margins along both contacts in core. They also intrude the Rossland Group and the diorite and monzonite intrusives. They are probably late and unrelated to mineralization.

MINERALIZATION

Mineralization on the property is widespread and varied. Included are porphyry Mo (and Cu?) with high grade breecia (Stewart Moly), contact/skarn related Mo and W (Arrow Tungsten), porphyry/stockwork Au/Cu (Craigtown Creek), stratabound sediment hosted Au-rich sulphide (replacement manto or exhalative, ie.Arlington Mine; Gold Hill?), quartz-pyrite-arsenopyrite stockwork in sediments (Trixi V), sediment hosted Ag-Zn-Pb (Free Silver), and quartz-pyrite veins with gold (Craigtown Creek). Additionally, disseminated pyrite is common in several rock types, including andesite, argillite, rhyolite, and diorite/monzonite intrusives.

In the Craigtown Creek area, where work was conducted in the 1997 program, six types of mineralization are known. These include: 1) disseminated and fracture filling pyrite and/or pyrrhotite, +/- chalcopyrite, 2) quartz-magnetite veinlets, 3) quartz veinlet stockwork, 4) pyrite veinlets, 5) quartz-carbonate veins, and 6) quartz-sulphide veins. The first four types are associated with potentially economic, bulk tonnage, porphyry style gold and copper mineralization. The last type could be associated with the same system that produced the former mineralization types, but is a distinctly different target type that also has economic potential.

Pyrite and pyrrhotite as disseminated grains and fracture fillings is common in the Craigtown Creek area. This type of mineralization is observed in all of the rock types mapped in the area, with the exception of the granite intrusive and basalt dykes. Traces of chalcopyrite are present in places with this mineralization, where it occurs in intrusive or volcanic rocks, usually in association with shearing, brecciation, or quartz veinlets. Propylitically altered quartz monzonite and diorite generally has only 0.5 - 2% sulphide. Andesite typically has more sulphide; 2 - 3% in propylitic rocks and 5 - 10% in silicified rocks, in relative proportion to the amount of alteration. Potassically altered intrusive and volcanic rocks have less sulphide, generally in the 0.5 - 4% range. This type of sulphide is also very common in feldspar porphyry. In the area of grid 8850N 6300E, disseminated and fracture-filling pyrite and pyrrhotite in andesite tulf consistently yield 1-2 g/t Au in rock samples.

Quartz-magnetite veinlets are common in the NNW-trending contact zone between the felsic monzonite intrusives and the Elise volcanics. This zone has strongly anomalous Au and Cu in soils. The host rocks are usually the intrusives and less commonly the volcanics. They are very rarely exposed in outcrop, mostly being seen in float or talus. The veinlets range ≤ 1 mm - 5mm in thickness, constitute 2 - 20% of the rock, and in places constitute a stockwork. Two or three stages of veining are visible in some hand samples; at least one stage is quartz only. Malachite stains are present in places, though the rocks rarely contain sulphide. Where sampled on the surface, rocks containing this type of mineralization contain anomalous Au (100 - 300ppb range) and Cu (200 - 500 ppm range).

Quartz and quartz-pyrite veinlet stockwork was observed in feldspar porphyry float in several places, and in the small latite plug mapped in the southern portion of the NW-striking zone of alteration and anomalous geochemistry that bisects the central portion of the grid. The rocks hosting this stockwork generally are moderately silicified, and contain several percent disseminated pyrite. Pyrite may also have been a component of the veinlets in some samples, but has been oxidized to limonite. This mineralization potentially represents the potential for discovery of a large tonnage Au deposit, as several samples have returned Au values ≥ 1 g/t. This mineralization may represent more than one stage, as some rock samples contain high Au and low Cu; others have high Cu with high Au.

Pyrite veinlets in mafic andesite-basalt contain highly anomalous Au values in the central portion of Minnova's southern grid, east of Craigtown Creek. Dark green to black augite porphyritic mafic andesite or basalt is exposed in a few small outcrops, subcrop, and float. Petrographic study indicates that this rock is propylitically altered and fragmental. It typically contains a few percent disseminated pyrite. In a couple small outcrops, vague pyrite veinlets and clots are present. These vague veinlets have NE orientations. Samples of this material have run in the 8-10 g/t range.

Quartz-carbonate veinlets are present in both the Bonnington Pluton monzonite-diorite intrusive rocks and the Elise volcanics. They seem to occur in sheared, weakly altered (propylitic) outcrops. Shear directions are either NE or N-S, with near vertical dips. Minor amounts of pyrite and or magnetite are present in the host rocks. Samples of these rocks have weakly anomalous Au and Cu.

Quartz-calcite-sulphide veins occurring in Elise volcanic rocks were intersected in hole DEN-93-4, drilled by Cameco in 1994.. They are range 10 - 30 cm wide, and contain mostly white quartz and calcite, with 10 - 30% sulphide (pyrite, pyrrhotite, and minor chalcopyrite). One of these veins contains 24,854ppb Au. They appear to have high enough grade potential to be considered as targets, even in an underground mining situation. They are not known to outcrop anywhere. It is possible that the NE striking Au in soil anomalies located on Orvana's grid, north of Craigtown Creek, are related to this type of mineralization. These anomalies are fairly narrow and linear, appearing to be derived of relatively narrow veins or structures. Veins like this have been demonstrated to occur around porphyry type mineral systems in other important mining camps in British Columbia. Some of these have been + million ounce producers, and include Rossland and the camps of the Iskut River region (Snip, Johnny Mountain, etc.).

ALTERATION

Various types of alteration are known on the Stewart Property. In the area of the porphyry molybdenum occurrences, phyllic and potassic alteration are reported by earlier workers. Silicification is common in various rock types. Propylitic alteration of intrusive and volcanic rocks is widespread on the property. In the Craigtown Creek area, the focus of work in 1996-97, alteration types observed include propyllitic, silicification, carbonate, potassic, and skarn.

Mapping in the Craigtown Creek area demonstrate that propylitic alteration is common in andesitic volcanic rocks of the Elise Formation. Patchy, pervasive epidote and chlorite tint the rocks green. Fractures in the Elise volcanics have fillings, coatings, or selvages of these minerals. Intrusive rocks, including monzonite and diorite, also commonly display pervasive to fracture-controlled propylitic alteration, where mafic crystals have altered to chlorite and/or epidote. This alteration is not as ubiquitous in the intrusives as it is in the volcanic rocks. The propylitic alteration may be related to the margins of the Bonnington intrusive rocks that invade from the west, and the later fine-grained monzonite plugs that intrude the Elise/Bonnington contacts.

Silicification is intense within the Elise Formation andesite in portions of the map area. These rocks typically have a mottled, bleached coloration. Silicification is pervasive, and mafic minerals are generally chloritized. The silicification is usually accompanied by disseminated pyrite or pyrrhotite. It also is coincident with anomalous soil and rock geochemistry (Au, Cu, As) in places, and therefor is assumed to be a function of the mineralization system. On the surface, these silicified rocks tend to form small, iron-stained ridges and knobs with sparse vegetation. They appear to be associated primarily with NW structures, also possibly intrusive contacts and NE structure. On the ridge crest, in the vicinity of UTM 5,459,200N 476000E, silicified rocks appear to extend 100 meters east of the saddle where several NW structures are mapped. This is also within 100 meters of an intrusive contact where potassic alteration is present.

Carbonate alteration is present in places in the andesite of the Elise Formation. This alteration can be either pervasive or veinlet/fracture controlled. Where pervasive, it tends to be apparent only when the rocks are subjected to HCL acid, or with petrography. Petrographic study indicates that most of the carbonate is ferroan dolomite and is generally a late alteration product. A few outcrops were located containing small veinlets of calcite, commonly associated with N-S or NE shearing. In the north Minnova grid area, a NE-trending zone of carbonate alteration, bleaching, and pervasive hematite/limonite traverses the hillside just downhill and cast of the Cameco drill holes. This zone is approximately 20m wide.

Potassic alteration is present in places in brecciated and veined fine-grained felsic monzonite intrusive rocks along the Bonnington Pluton - Elise Formation contact. This alteration is fairly weak, and consists

of pinkish to greyish flooding and veinlets of potassium feldspar. Quartz +/- magnetite veinlets are commonly associated with this alteration.

Skarn alteration was observed in two locations in the Craigtown Creek map area. A small outcrop of green cale-silicate skarn was found just off the western end of the 1996 grid. This rock contains green pyroxene, brownish garnet, and black amphibole (+chlorite?). Similar skarn was found in float near the east end of the old road running up the north side of the North Fork Craigtown Creek. The protolith is probably andesitic fragmental volcanic rock.

LITHOGEOCHEMISTRY

Rock samples were collected during the course of geologic mapping. A total of 75 samples were collected from outcrops, float, and a few from small prospects or workings. Sample locations and results are presented in Plates 2 and 3. Field sample descriptions are included in Appendix 1. The rock samples were submitted to SVI. Analytical, Inc. of Kellogg, Idaho for analysis of 10 elements. Copies of the lab reports are included in Appendix 2. Sample preparation was accomplished by crushing the sample to 1/8 inch, the rolling to -10 mesh, splitting the sample and pulverizing to -140 mesh. A 30 gram split was used for Au and Ag, analyzed by standard fire assay with an AA finish. At the cupulation stage the bead was dissolved in aqua regia and the resulting solution analyzed by flame atomic absorbtion. The other elements, As, Bi, Co, Cu, Pb, Mo, Zn, and Ba were all determined by ICP. A 0.28 gram sample was digested in aqua regia and analyzed by ICP emission spectroscopy. Detection limits for elements using the above described techniques are as follows:

Element	Lower Limit	Upper Limit
Au	5 ppb	none
Ag	0.1 ppm	25 ppm
As	10 ppm	20000 ppm
Bi	10 ppm	10000 ppm
Со	2 ppm	10000 ppm
Cu	2 ppm	20000 ppm
Pb	5 ppm	20000 ppm
Mo	2 ppm	10000 ppm
Zn	2 ppm	20000 ppm
Ba	2 ppm	50000 ppm

Results of the rock sampling in 1997 are similar to those from 1996 in that they demonstrate that elevated Au, and to a lesser degree Cu, are widespread in the Craigtown Creek area. Values range up to 950 ppb Au, and 1100 ppm Cu. Most Au values are in tens to low hundreds of ppb. The highest Au value is from pyrite> quartz vein material collected at an old prospect shaft located near grid 8400N 4150E (#23386). Samples of the mineralized wall rock (felsic intrusive) at this location carry very little Au. Several samples of mineralized feldspar porphyry monzonite collected west of the grid area have 200-300 ppb Au (#23382, 83, 85, 90). Samples collected near the end of the "340 road" have comparable Au values, and Cu values in the 200-500 ppm range. Mineralization at this site lies along the NW-trending zone that includes the contact between the Elise Formation and the fine-grained, felsic monzonite intrusives. The samples collected here (#25516-24) are mineralized but sub-ore grade. Considerably higher values in Au and Cu soil geochemistry are located 100-200m south of the "340 road", and it is expected that a road cut in this area would expose more strongly mineralized rock.

Two samples collected east of the north Minnova grid contain anomalous Au. Sample #24780 is a feldspar porphyry monzonite with NE-trending seams of FeOx; it runs 368 ppb Au. Sample #24784 is carbonate altered intrusive; it runs 235 ppb Au. These samples may reflect the margins of the mineralization indicated by Minnova's work.

SOIL GEOCHEMISTRY

Soil samples were collected over all of the E-W 1997 grid lines at 30 meter intervals; 309 samples were collected. The samples were submitted to Acme Analytical Laboratories in Vancouver, B.C, for preparation and analysis. Copies of the results are attached (Appendix 3). The samples were prepared by drying and sieving to -80 mesh. Gold was determined using a 10 gram aliquot, digested with hot aqua regia, extracted using MIBK and determined by graphite furnace atomic absorption. The detection limit is 2 ppb.

The elements Mo, Cu, Pb, Ag, Ni, Co, Mn, Fe, As, U, Th, Sr, Cd, Sb, Bi, V, Ca, P, La, Cr, Mg, Ba, Ti, B, Al, Na, K, W, Tl, and Hg were determined simultaneously by ICP emission spectroscopy from a 0.5 gram sample aliquot digested with 3 ml of 3-1-2 HCL-HNO₃-H₂O at 90° Celcius for one hour.

Detection limits for the ICP analysis are:

```
Ag - 0.3 ppm
Al, Ca, Fe, K, Mg, Na, Ti - 0.01%
As, Bi, Mn, Sb, Th, W - 2 ppm
B, Pb - 3 ppm
Ba, Co, Hg, Cr, Cu, La, Mo, Ni, Sr, V, Zn - 1 ppm
Cd - 0.2 ppm
Tl, U - 5 ppm
P - 0.001%
```

The primary purpose of soil sampling over the 1997 grid extensions was to close off and better define the Au and Cu anomalies that were left open by the 1996 survey. The 1997 sampling generally defined what appear to be the limits of these soil anomalies, although Cu remains open in an area on the western edge of the grid. Additionally, a reconnaissance survey was conducted, consisting of broadly spaced lines 200m apart south of Craigtown Creek. No discrete anomalies of interest were defined in this portion of the grid, although several metals are anomalous in the far SE portion of the grid. The primary elements of interest, including Au, Cu, Pb, Zn, Mo, Ni, Cr and As are plotted at 1:5000 scale and presented in Plates 4-11.

Gold values in 1997 soil samples range from below the detection limit to 509 ppb. Values equal to or greater than 40 ppb are considered anomalous and are contoured in Plate 4. The Au anomalies are related to the NNW-trending contact zone between the Elise Formation and the intrusive rocks, especially the felsic monzonite plugs. There is also an anomaly associated with a felsic monzonite plug located in the west-central portion of the grid. NE-trending structures also appear to control Au mineralization, as demonstrated by the NE trend of portions of the Au anomalies. Some of these anomalies coincide with NE-trending shears mapped on the ground.

Copper values in 1997 soil samples range 18-509 ppm. Values of 135 ppm or greater are considered anomalous and are contoured in Plate 5. The Cu anomalies reflect controls similar to those described for Au. The NNW-trending Elise Formation/intrusive contact is the strongest control of Cu mineralization. This is probably related to the felsic monzonite plugs that have intruded along the contact zone. The 1997 sampling also defines a Cu anomaly of moderate strength related to a felsic monzonite plug outcropping in the west-central portion of the grid. This anomaly remains open on the west.

Lead values in 1997 samples reach a maximum of 111 ppm; values equal to or greater than 30 ppm are considered anomalous and are contoured in Plate 6. Lead seems to reflect a weak halo around the NNW-trending volcanic/intrusive contact zone. The anomalies are small, and have weak N-S, NW, or NE trends, which probably reflect structural control. Zinc exhibits a similar spatial distribution. Values reach a high of 445 ppm, and those equal to or greater than 225 ppm are contoured in Plate 7. Weak NE-trends are detectable in the Zn data. Both Pb and Zn values are elevated along the far eastern end of the southern grid line. The source of this anomaly is not known.

Molybdenum values are very low in the soils. The highest value in the 1997 samples is 4 ppm; 3 ppm is considered anomalous. There is a weak anomaly that seems to be related to the NNW-trending volcanie/intrusive contact zone. There is another weak anomaly trending NE up the bottom of the Craigtown Creek valley.

Nickel values in 1997 soil samples reach a high of 129 ppm; 40 ppm and greater is considered anomalous. There are weak N-S trending Ni anomalies that are restricted to the areas underlain by the Elise Formation. These probably reflect horizons of mafic volcanic rocks. There are also weak NE-trending anomalies that occur in soils overlying both volcanic and intrusive rock types. These anomalies may reflect NE structural control, similar to that seen in several of the other elements. Chromium values reach a maximum of 157 ppm; those equal to or greater than 70 ppm are considered anomalous. Chromium anomalies in soil are generally coincident with the Ni anomalies, reflecting similar lithologic and possibly structural control.

Arsenic values in soil are generally low. Maximum value in the 1997 samples is 96 ppm; 20 ppm and greater is considered anomalous. A broad, low-level anomaly flanks the NNW-trending volcanic/intrusive contact zone on the east. Other small, scattered, weak anomalies have NW and NE trends, probably reflecting structure.

MOSS MAT GEOCHEMISTRY

Moss mat samples were collected in a few drainages to follow up anomalous samples collected the previous year. This was done by sampling up the drainages at regular intervals of 100 or 200m. Some sites sampled last year were resampled. The drainages sampled are located west of the Craigtown Creek grid area. They are relatively small, seasonal streams, and some portions of them were dry when the samples were collected. The samples were collected from boulders, logs, and other objects located in or on the immediate bank of the streams. The purpose of collecting the moss mats is to sample the fine silt sediment trapped in them. This sediment is transported and trapped during high water flows. Eighteen moss mat samples were collected during 1997. The samples were deposited into soil sample bags and shipped to Aeme Analytical Labs of Vancouver. There the samples were dried, screened, and analyzed just like the soil samples described above. Element detection limits are the same as those listed in the soil geochemistry section above.

Results of the moss mat sampling tend to confirm the results obtained in the previous season's sampling, and are presented in Plate 3, with laboratory reports included in Appendix 3. Where anomalous amounts of gold were found present in the sediments previously, the anomalies repeated. Correlation of numeric values isn't strong, in fact, values vary dramatically within drainages. In some cases, gold values seem to increase upstream, possibly indicating proximity to a bedrock source (SMM104-109). Au values range 6-906 ppb and Cu values range 49-610 ppm in moss mats.

ROAD CONSTRUCTION

Almost 2400m of road was constructed on the ridge between the two forks of Craigtown Creek. The road is an extension of a pre-existing logging road ("340 Road") that ended on the west end of the ridge. It was continued up the west and north flanks of the ridge to a saddle on the top of the ridge. It was built for dual purposes; it provides access to the proximity of several exploration targets defined in the previous years program, and the road will be used for logging and other forest management activities. The road was engineered by the land owner, Erie Creek Forest Reserve Ltd., and was built by Tom Konkin, contractor from Salmo. Orvana contributed to the cost of building this road under an agreement with Eric Creek Forest Reserve. After the road was completed, the newly created bedrock exposures were mapped, and some were sampled (Plates 1-3).

CONCLUSIONS

The Stewart Property has very prospective geology and mineral occurrences, with the potential to host several different types of ore deposits. Efforts during the past two seasons were directed toward the discovery of bulk tonnage Au-Cu porphyry and/or vein deposits in the Craigtown Creek area. This work was all relatively preliminary in nature, with the purpose of identifying and accessing targets for trenching and or drilling. Results of the work in the Craigtown Creek area are encouraging. Several targets have been identified. The targets are primarily related to late felsic monzonite plugs that have intruded along the contacts between the Elise Formation and a larger stock of monzonite/diorite related to the Bonnington Pluton. Some also seem to be related to NE-trending structures. These targets are based on Au/Cu soil anomalies, limited geophysical data, mineralization seen in outcrop/float, and favorable geologic setting. These targets are ready for testing by a trenching and drilling program.

RECOMMENDATIONS

Results of work conducted during the past two seasons have identified several areas that warrent testing by trenching and drilling. These areas are primarily geochemical and alteration/mineralization features associated with felsic monzonite plugs that that have intruded along the contacts between the Elise Formation and a larger stock of monzonite/diorite related to the Bonnington Pluton. Some also appear to be related to NE-trending structures. As outcrop exposure is limited, a trenching program would significantly increase understanding of the style, strength, and dimensions of mineralization. This is the recommended next phase of exploration. Providing the results of the trenching program are encouraging, a drill program is recommended to test the vertical dimension of the mineralization. A minimum program to test the targets would cost approximately \$150,000.

STATEMENT OF COSTS

Geologists (incl. Project Management), 20 days	\$7,813.00
Contractors (Grid Installation, Sampling)	\$4,551.00
Assays, Sample Shipping, 402 samples	\$6,579.00
Room/Board/Travel	\$1,908.00
Vehicles/Transportation	\$1,161.00
Road Construction, 2.4 Km	\$18,190.00
Mapping and Sampling Field Supplies	\$236,80
Computer Drafting, Report Compilation	<u>\$3,000.00</u>
Total	\$43,438.80

Arelerile

STATEMENT OF QUALIFICATIONS

I, Robert T. Fredericks, of 2635 City View Drive, Cocur d'Alene, Idaho, U.S.A., certify that:

- I am a geologist employed by Orvana Minerals Corporation, 710-1177 West Hastings Street, Vancouver, B.C., V6E 2K3, at their office located at 1755 Silver Beach Road, Cocur d'Alene, Idaho 83814.
- 2. I am a graduate (1986) of the University of Idaho, Moscow, Idaho, and hold a B.Sc. degree in Geology.
- 3. I have been practicing my profession for the past 12 years.
- 4. This report is based on information that I and others working under my direction obtained while working on the Stewart Property during the period June 14 November 17, 1997.

Robert T. Fredericks Geologist, Orvana Minerals Corporation

il t A polenik

STATEMENT OF QUALIFICATIONS

I, Ian Thomson of 1628 West 66 Avenue, Vancouver, British Columbia, V6P 2S2, do hereby certify that:

- 1. I am a graduate (1967) of the University of London, England, with a Bachelor of Science degree in Geology and a graduate (1971) of the University of London, England, with a Doctor of Philosophy degree in Applied Geochemistry.
- 2. I am a registered Professional Geoscientist in the Province of British Columbia.
- 3. I have been continuously employed as a geologist-geochemist involved with mineral exploration for 24 years.
- 4. I hold the position of Vice President, Technical and Environment, with Orvana Minerals Corporation, Vancouver, British Columbia.
- 5. This report is based on information obtained by others working under my guidance and from analytical data obtained from commercial laboratories.

REFERENCES

- Carpenter, T., and Grant, B., 1985, Stewart Project (10138) Report on Activities and Results, 1984, BP-Seleo Assessment Report.
- Dunne, K.P.E. (nec Andrew), and Hoy, T., 1992, Petrology of Pre to Syntectonic Early and Middle Jurassic Intrusions in the Rossland Group, Southeastern British Columbia (82F/SW), British Columbia Geological Survey Branch, Geologic Fieldwork, 1991, Paper 1992-1.
- Fredericks, R.T., and Thomson, I., 1997, Report of 1996 Geological, Geochemical, and Geophysical Exploration Program, Stewart Property, B.C., Assessment Report for Orvana Minerals Corp.
- Gilmour, W.R., 1990, Summary Report on the Stewart Property (Stewart 6, 7, and 8 Claims) Located in the Ymir Area of B.C., Nelson Mining Division, by Discovery Consultants for Minnova Inc., Assessment Report.
- Hoy, T., and Andrew, K., 1988, Preliminary Geology and Geochemistry of the Elise Formation, Rossland Group, Between Nelson and Ymir, Southeastern British Columbia (82F/06), British Columbia Ministry of Energy, Mines and Petroleum Resources, Geologic Fieldwork, 1987, Paper 1988-1.
- Hoy, T., and Andrew, K., 1989, The Rossland Group, Nelson Map Area, Southeastern British Columbia (8217/06), British Columbia Ministry of Energy, Mines and Petroleum Resources, Geologic Fieldwork, 1988, Paper 1989-1.
- Hoy, T., and Andrew, K., 1989, Geology of the Nelson Map Area, Southeastern British Columbia, B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Survey Branch, Open File 1989-11.
- Humphreys, N., 1992, Final Report on the Geology, Geochemistry, and Trenching on the Denny Prospect, Cameco Corp, Assessment Report 22829.

Humphreys, N., 1993, Report on the Diamond Drilling on the Denny Prospect, for Cameco Corp, Assessment Report.

Johnson, D., and Klassen, R., 1988, Report on 1987 Geochemical Sampling "Stewart" Property Nelson M.D., Lacana Mining Corporation, Assessment Report.

- Kaufman, M. A., 1995, Stewart Claim Group, Nelson Mining District, Assessment Report.
- MacDonald, J.A., et al, 1996, Metallogeny of an Early to Middle Jurassic Arc, Iskut River Area, Northwestern British Columbia, Economic Geology, Vol. 91, pp. 1098-1114.
- Thomson, G.R., 1988, Geological Sampling Report on the Stewart Claim Group, Ymir-Nelson Mining Division, N.T.S. 82F/3,6, Kerr Addison Mines Ltd. (Minnova), Assessment Report.
- Wells, R.C., 1994, Report on the Katic Property, Nelson Mining Division, B.C., private report for Yellowjack Resources.

Appendix 1

Rock Sample Field Descriptions

S BOURDE COPP. BOOK PORTWAY COM. HORN DEATH (200) BOT-BOOK (200) BOT-BOOK DATE Aug. 7, 1997 DATE Aug. 7, 1997 NP 24773 SAMPLED BY RTF OWNER DR CLAIM Steward LOCATION GOLE & DOSSIENT day GOLE, grid G340 N 5160E KIND OF SAMPLE Sub-Cop DESCRIPTION HD-Wede wordle First grand d. W. & Altered, Ruly off, chlorite To discene blog of sulfilia (ar). D.11 hown Field In Gold bd DUER - EM-10hn. Au Ag 53 0.1 13 44 130 42	Orners Resources Gorp. 2005 Instruction Gern. 2009 & Alema, Jahon Bata (2018) 1807-40000 Arts 7, 1997 DATE AUG 7, 1997 DATE AUG 7, 1997 N. 24774 SAMPLED BY RTF OWNER OR CLAIM Steward LOCATION rear Saddle, Grid 9060N 5920E KIND OF SAMPLE grad DESCRIPTION DK greed, altered disite or volcanic. Highly fx 1 sheared (Indix fectionized) fine grined w/ granuble greename. Chlorte - corbonate att. Prud magnetic (dissen). To dissen py. Himatike on Rx. Au Ag 38. 0.2 410 59 100 <2	Con used Participation (2006) BET-BOOD Participation Basiling (2006) BET-BOOD BASHA (2006) BET-BOOD BASHA DATE A. B. 1997 NO 24775 SAMPLED BY ETF OWNER OR CLAIM SHOWN'T LOCATION C. P. Minnoch Ngrid - 100m above (and aprix grid 9780N 8240E KIND OF SAMPLE Place - Several prices DESCRIPTION for physiftic (Feldspue) intrusing (and be Sig. Felds ford, Aura Her 5-10% d.11 ary gtz utts w/ same p. Elearded Same open fre 61/gtz druse, Aud. dt sightin limentic. Au Ag 8 0.2 410 21 39 42	Orvers Resources Corp. 2005 Ironwood Perkway Coert Chere, Ispin 83814 1200 667-8000 Aug. 8, 1997 DATE	Description File-ganed forfnyr. An (10/10/2011/00/2011/2011/2011/2011/2011/
ORVANA Drughe Announce Corp. 2005 Induced Partney Court River, 1000 8814 (2019 607-0000 8814 (2019 607-0000 8814 (2019 607-0000 8814 DATE DATE NO 24778 SAMPLED BY <u>RTF</u> OWNER OR CLAIM <u>Stewart</u> INO 24778 SAMPLED BY <u>RTF</u> OWNER OR CLAIM <u>Stewart</u> LOCATION <u>70-4 chace 4777</u> , <u>approx grid</u> 5460 200 N 478 260E KIND OF SAMPLE <u>Plat - Several pieces</u> DESCRIPTION <u>GOSSENDON Shak.</u> Thereon d. gry stongly fractured. Very Stong de Dryther Innerte. Some Inderted texture.	ORVANA DORADA BACUTOS COPP. SOB SHOWSON PARAMENTS CONT & ALMS. B. 1997 DATE A.B. B. 1997 N.S. 24779 SAMPLED BY <u>ATT</u> OWNER OR CLAIM <u>Fernal</u> LOCATION <u>USED of Comments</u> <u>Amonal</u> P.K. STA 5460400 N 478180E KIND OF SAMPLE <u>9</u> ab DESCRIPTION <u>Porth</u> (Feldsper) <u>menzants</u> Sta for + <u>minor gitz veins u/</u> OPEN, <u>Ibothy structure</u> , 2% dissem F.a. po. Not magnetic. <u>Sta comple</u> . <u>FEOX</u> . <u>Relativity small petch 5x5m</u> , <u>next to 045 porth in hill.</u> Au Ag <u>21</u> <u>CH</u> <u>19</u> <10 74 <2	ORVANA Down Resource Corp. 2006 Innucod Parkey COOL of Alere Lisho 83814 (2019 667-000 DATE Are. 8, 1997 Nº 24780 SAMPLED BY <u>RTF</u> OWNER OR CLAIM <u>StCLART</u> LOCATION <u>250m Wd Moundyfk 20m S</u> d 1 Jac creat, gril 5460320N 478000E KIND OF SAMPLE <u>Steet</u> DESCRIPTION Annuly fk porphym (Altom) Norzent w/ 040° oxidized subhide <u>COULD 2mm wde</u> . Bed ud much eltered. Au Ag 348 10 48 32 10 <2	ORVANA Drivene Persources Corp. 2003 Instruction Corp. 2009 107 4000 CPAINER (2009 107 4000 CPAINER (2009 107 4000 CPAINER DATE A. 7. 1997 NS 24781 SAMPLED BY RTF OWNER OR CLAIM <u>Standard</u> LOCATION <u>BLUFF</u> NO OF SAMPLE <u>Character</u> KIND OF SAMPLE <u>Character</u> 5460 280N 477920E KIND OF SAMPLE <u>Character</u> 5460 280N 477920E KIND OF SAMPLE <u>Character</u> 5460 290 to 360° voltal. TUP Redding <u>C</u> 345° 90° Old ox Flag <u>C</u> 54c.	Au Ag As B: Cu Mo Barban Argen 4000000 (Krim 2561000)
PD = 100 PPM 2n = 3 70 PPM ORVANA Comma ABBOUTOBE COTP. 2003 ITOM ONDER PERSON COBY BD - 2000 DATE 100, 8, 1927 DATE 100, 8, 1927 Nº 24783 SAMPLE DEV RTF OWNER OR CLAIM Stewart LOCATION SAMPLE Flow + 782 KIND OF SAMPLE Flow + 782 KIND OF SAMPLE Flow - alter acay 10m DESCRIPTION Carborate altered Fg. 1. dryster 7 Cack. Very 54 permanet. Calcott a earthy cyllow FeO. 1% dissen blebs po in frest sample. From 70n 200 wide trading 040? - 028° at from Whely redigtin. Au Ag 22 0.4 51 410 97 42	ORVANA Dreine Resources Corp. 2005 Internet Performed Court Parme, Identification Court Parme, Identification DATE Ag. 8, 197 Nº 24784 BAMPLED BY <u>277</u> Nº 24784 BAMPLED BY <u>277</u> Nº 24784 BAMPLED BY <u>277</u> OWNER OR CLAIM <u>Struct</u> LOCATION <u>700 on Fred (220) fro.</u> 4783 appear.gcd 5460150 N 477750E KIND OF SAMPLE <u>float</u> KIND OF SAMPLE <u>float</u> Cathook alfered interact Wary Sta Valor Field, the Music Vary Sta Valor Field, the Music PY SEE on Field	ORVANA Drynn Recourses Corp. 2005 Ironwood Pathway Down of Pathway Down of Pathway Down of Pathway Date Are. 8, AP7 DATE Are. 8, AP7 DATE Are. 8, AP7 DATE Are. 8, AP7 DATE Are. 8, AP7 NO 24785 SAMPLED BY KIT OWNER OR CLAIM Steely T. LOCATION Minusa GOON 30DE appear and 5459900N 47755DE KIND OF SAMPLE Flast common DESCRIPTION Andra 1.2 volument, some calcia on Ar. mutiled and altered (matty chlade). 5% po as divers Y Fr (catage Laty magnets. Sta FCDX.	ORVANA Drans Previous Corp. 2005 HORNOOD PARINEY CONVICTING LODA (200) 807-6000 DATE A.S. 8. 1997 DATE A.S. 8. 1997 Nº 24786 SAMPLED BY CITE DWNER OR CLAIM SECURIT LOCATION - 180 dau-hill of 47985 (S) CUMON grid 5459720N 477600E KIND OF SAMPLE Flot - Courle P. 205 KIND OF SAMPLE flot - Courle P. 205 STO fr W/ Cots of fry + 10 STO fr W/ Cots of fry + 10 STO d.K. Lincon te. Carbondo altered	ORVANA Orana Resources Corp. 2005 formood Participa Coeff of ADDA Date Any 9, 1997 DATE Any 9, 1997 DATE Any 9, 1997 Nº 24787 SAMPLE BY KIF DWNER OR CLAIM LOCATION Grid TBOON 5650E KIND OF SAMPLE Float DESCRIPTION Med gared non-water of 15-20% builte, Corlande a Hered (but not w/ TEOX), w/ 5% gtfy ven lets whe mod magned (c. 10- from 441 Mb Aux 51). Au Ag B B. (11 Mo 16704, C3m. 17m. 42App. 21mm <2mm

17: ment Loop Cour level Balle Large 567-5000 DATE Sch. 7, 1977 N.9. 25503 SAMPLED BY <u>BTF</u> OWNER OR CLAIM <u>Stewart</u> - & Claim LOCATION <u>340 Rd spr. C</u> end 25 - S of #502, 5458760 N 473790 E KIND OF SAMPLE <u>grab</u> DESCRIPTION <u>Some as #502, w/ minor</u> FEOX scany - offer py 7 Alteration is 1100 ybur Au Ag <u>45</u> C.6 11 <u>38</u> ICC <u>4</u> Z	Convertigation Convertigation of Aleman Liston 2001 (200) 657 8000 DATE Spt. 7, 1947 Nº 25504 SAMPLED BY RTF OWNER OR CLAIM Steinard LOCATION 30m above #505 5457950N 474280E KIND OF SAMPLE 5m gub DESCRIPTION Sheet altered m.g. MONTZANTE W/ Very Sty FEOX after dissen + Stringer gy, Park blooded + wisk cercific clay alt. Sh about alternitin 301 2004 alt. Sh about alternitin 302 2004 alter 620 230 42 Pb = 4600 PM	Comute Convert deno 25514 deno 25514 deno 25514 DATE Sept. 7, 1997 Nº 25505 EAMPLEDBY RTF OMNER OR CLAIM Struct LOCATION Struct LOCATION Struct LOCATION Struct LOCATION Struct LOCATION Struct LOCATION Struct LOCATION Struct ALLOS Structure Structure Structure Structure Structure Structure Structure LOCATION Struct ALLOS Structure Struc	1735 Stiver Beditiop Cour of Hone, Kalo BRIN (208) 667-2000 DATE Seft. 8, PA7 Nº 25506 SAMPLED BY ATT OWNER OR CLAIM Stewart LOCATION Grid BGOON 5315E NOND OF SAMPLE flast - 1 prece (Lorred) DESCRIPTION (Malic phane (pyr?) porf. anderife w/ 1-2% dissim bleb. B fy? po. Lik blacking, malfield. Not myretic Mid caller Felly on far.	Construct in Loop 1785 In Loop CONSTRA LIDERSIA (200) DEATE Series DATE Series DATE Series NO 25507 SAMPLED BY ATT OWNER OR CLAIM Struct LOCATION <u>Gril B500N 5260E</u> KIND OF SAMPLE Floot - Common DESCRIPTION Fix gained Risis monorable (0-20% clibitized notices. Common epidel on for minor pr abo, & tr int veillets, Rect. When and As B. Cin Mo 15ppb Clippin 210pm 23ppm 65pm 22ppm
ORVANA Cryans Resolutors Carp. 1755 Shirer Batch Loop Coeur of Advine, Istano B2814	ORVANA Orvens Resources Corp. 1755 Silver Bakeh Loop Coeur d'Amm, Idaho 83814	ORVANA Orvana Resources Corp. 1755 Stiver Beach Loop Corur 4 Mono, Idaho Ball 4	ORVANA Crvane Resources Corp. 1755 Skiver Reach Loop	
CONFERENCE OF SUPERIOR OF SUPERIOR OF SUPERIOR OF SUPERIOR CLAIM STUDIES OF SUPERIOR CLAIM STUDIES OF SUPERIOR OF SUPERIOR SUPERI	(2005) 807-8000 DATE <u>Dit 20 1997</u> Nº 25516 SAMPLED BY <u>RIF</u> OWNER OR DLAIM <u>Stewart</u> LOCATION <u>340 Rd e suddle (120 m. W)</u> 9255 N <u>5800E</u> KIND OF SAMPLE <u>grab</u> DESCRIPTION <u>Sheared</u> <u>phyllitic fig</u> <u>audeste</u> . DK greenish grey, <u>Sta</u> NE shear fubr 2. <u>Aud. FEOx</u> on fx. <u>Stickesses</u>	DATE OCT. 20, 1997 DATE OCT. 20, 1997 Nº 25517 SAMPLED BY <u>ATF</u> OWNER OR CLAIM <u>Stewart</u> LOCATION 340 rd, <u>n</u> 20 <u>n</u> E <u>et 4516</u> <u>arid</u> 9260N 5820E KIND OF SAMPLE <u>grab</u> DESCRIPTION <u>Sheared</u> , <u>dk grey</u> , <u>F.g.</u> <u>ardeste</u> , <u>wk</u> <u>dlorte?</u> <u>Mod-stg</u> <u>FLOX</u> <u>a</u> , <u>Fx</u>	Conditidante, latter 2014 (200) 1007000 DATE O.C. 20, 1997 Nº 25518 SAMPLED BY R77 OWNER OR CLAIM Stewart LOCATION 340 rd, -10 E of 4517 grid 9260N 5830E KIND OF SAMPLE greb divite DESCRIPTION Sheared andest, red. greensth grey whitest, red. Red. of fr. More febra - rung be introsize. Stg. Magnetic	1755 Shore Beach Loop Court of Americ Lando Bolid (206) 667-6000 DATE Od. ZO, 1997 Nº 25519 SAMPLED BY RTF OWNER OR CLAIM <u>Str. Jack</u> UOCATION <u>310 rd., ~ 20m E of 4518</u> 9265N 5850E KIND OF SAMPLE <u>dfab</u> DESCRIPTION <u>Ardes K. Fine - graned</u> med - dk grey, w/ 1% f3 py <u>As</u> d3gen. + on fx Stg. org FEOX on fx. Dissen regented.
<u>50 0.2 410 35 140 42</u>	SERP C.LIPPIN < ILIPIN < 10pm 180pm <2ppm	<u>36 <.1 <10 130 230 <2</u>	$\frac{116}{116} \frac{0.2}{0.2} \frac{<10}{10} \frac{110}{10} \frac{360}{10} \frac{<2}{10}$	AU AG 322 0.6 <10 21 540 4
Covers Preserves Cop. 1725 Show Beech Loop Cover of Anna, Lance Sold Cover of Anna, Lance Sold Cover of Anna, Lance Sold DATE O.C. 20, 1997 NO 25520 SAMPLED BY <u>CTF</u> COMMER OR CLAIM <u>Stewart</u> LOCATION <u>340 rd</u> , <u>20 - E of ±579</u> <u>9265 N 5070E</u> KIND OF SAMPLE <u>3(a)</u> DESCRIPTION <u>RUSPLED BY ACT-</u> MENZONHE File grained gradiness trackytic feldger planes (Lathis) up to .25 cm. WK <u>check alt. 3%</u> <u>d.ssen + uh.3pt</u> Stringers of Fig. py. <u>Als</u> 23% ant as fizzen + wh.3pt. <u>Lt. greensh grey</u> <u>Aud FeCU</u> . <u>Aud FeCU</u> .	Conners Resources Corp. 1755 Save Beach Loop Cour of the Destal (2001) BOT-BOOD DATE <u>D.d.</u> 20, 1997 NS 25521 SAMPLED BY <u>CTF</u> OWNER OR CLAIM <u>Stewnort</u> LOCATION <u>340 rd ~ 30 m E F # 519</u> grid 9255N 5895E KIND OF SAMPLE <u>grad</u> DESCRIPTION <u>Andeste</u> , f.g. w/ macr Vonblorde pleases //d/fe, L4 grad / grad Common VIE P fr. glz. 4 m. nor mt Common VIE P fr. glz. 4 m. nor mt Common Josen mt + m. nor py. Not ery altered. Mad. dL FEOX.	Contra Resource Corp. 1755 Show Beech Loop Count Alern, latho B3814 (20) B57-200 J. 20, 1997 N.º. 25522 BAMPLED BY <u>PTF</u> OWNER OR CLAIM <u>Sterio (1</u> LOCATION <u>340 RL</u> <u>15m E of # 52/</u> , <u>arid 9250N 5910E</u> KIND OF BAMPLE <u>grab</u> DESCRIPTION <u>Andes K. Fire graved</u> <u>med. greath grey. permisive chlorite all</u> . 2% by as different + this yeakets. By contrage Sty. <u>dk. Fellx on Fx</u> . AU AQ As B: Cu Mo 26 [ppb] <u>C.2446. Cliffere (5500 29] grav</u> . <u>3300</u>	ORVANA OVER REPORTED COMP 1755 SHAR BARTLOOD COMP REPORT (200) 607-6000 DATE <u>O.G. 20, 1997</u> DATE <u>O.G. 20, 1997</u> DATE <u>O.G. 20, 1997</u> DATE <u>O.G. 20, 1997</u> NS 25523 SAMPLED BY <u>ATF</u> OWNER OR CLAIM <u>Stewart</u> LOCATION <u>340</u> <u>RL</u> <u>J. 3. F. J. 4. 5227</u> <u>4. G. 9250N</u> <u>5913E</u> KIND OF SAMPLE <u>grab</u> DESCRIPTION <u>ROPLATZ</u> <u>discretandos</u> <u>7. d. 9250N</u> <u>5913E</u> KIND OF SAMPLE <u>grab</u> DESCRIPTION <u>ROPLATZ</u> <u>discretandos</u> <u>7. d. 9250N</u> <u>5913E</u> <u>KIND OF SAMPLE <u>grab</u> <u>7. d. 9250N</u> <u>5913E</u> <u>COMPTON</u> <u>ROPLATZ</u> <u>discretandos</u> <u>7. d. 9250N</u> <u>5913E</u> <u>COMPTON</u> <u>ROPLATZ</u> <u>discretandos</u> <u>7. d. 9250N</u> <u>5913E</u> <u>AU A0</u> <u>191</u> <u>C.1</u> <u>4.16</u> <u>24</u> <u>14.6</u> <u>4.2</u></u>	ORVANA Dram Resources Corp. 1755 Since Beach Loop Cover of Address, Idaho Sasta (200) 657 40000 DATE Od 20, 1997 Nº 25524 SAMPLED BY RTF OWNER OR CLAIM Stewarth LOCATION 340 Id blues, #520, 521 9260 N, 58,755 KIND OF SAMPLE gial DESCRIPTION Andeste. 1.3/c fildsync Phenos, pocally F.g. McRes are perussuly chilor trad m. ctn.y. 2:3% dissen + fx catioldd f.g. py. Misor ent a dissen + on fx Dx FeCX stain Au Ag 131 C.1 410 77 270 3

Appendix 2

Rock Sample Geochemical Labratory Reports

SVL Job Number :X70114 Sample Receipt : 6/20/97 Date of Report : 7/01/97 No. of Samples : 31 Rock P.O. NO. : SKARN Page 1 of 2

Client: PAUL DIRCKSEN ORVANA RESOURCES 1755 SILVER BEACH LOOP COEUR D'ALENE ID 83814

ATTN: ROB FREDERICKS 7/3/97 - Corrected values for Bi, Mo

CLIENT	SAMPLE	ID	Test : Units : Method:	Au ppb FA+AA	Ag ppm FA+AA	As ppm ICP	Bi ppm ICP	Co ppm ICP	Cu ppm ICP	Pb ppm ICP	Mo ppm ICP
			······································			· · ·					· · · · · · · · · · · · · · · · · · ·

- - - -

10	.2	<10	<10	19	100	8	<2
<5	.1	<10	<10	18	75	12	<2
484	4.7	500	<10	260	1100	190	<2
14	.1	<10	<10	20	120	6	<2
351	.2	<10	<10	14	85	11	4
180	.1	<10	<10	19	200	5	<2
128	.,2	_<10	<10	17	310	7	<2
15	4.8	110	31	89	1000	300	<2
	10 <5 484 14 351 180 	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

CLIENT SAMPLE ID	Test : Units : Method:	Zn ppm ICP	Ba ppm ICP	
23374		70	150	
23375		84	180	
23376		210	28	
23377		38	120	
23378		57	40	
23379		18	31	
23380		21	67	
23381		67	22	

.

SVL Job Number :X70169 Sample Receipt : 8/12/97 Date of Report : 8/27/97 No. of Samples : 39 Rock P.O. No. :SKARN PKG Page 1 of 2 Client: PAUL DIRCKSEN ORVANA RESOURCES 1755 SILVER BEACH LOOP COEUR D'ALENE ID 83814

REVISED REPORT

	Test :	Au	Ag	As	Bi	Co	Cu	Pb	Mo
	Units :	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppm
CLIENT SAMPLE ID	Method:	FA+AA	FA+AA	ICP	ICP	TCP	ICP	ICP	ICF
23382		237	1.0	12	11	2	180	19	3
23383		303	. 4	<10	15	<2	110	17	<2
23384		46	.3	<10	11	9	79	2.0	3
23385		397	1.1	<10	<10	<2	150	30	<2
23386		950	>25	1200	190	57	330	15700	<2
23387	<u>. . </u>	<5	5.0	16	<10	2	130	360	<2
23388		25	5.4	24	<10	6	61	380	28
23389		68	.4	<10	<10	11	120	22	<2
23390		399	.3	<10	<10		34	30	2
23391		29	.1	<10	<10	13	28	47	<2
23392		234	1.2	61	11	14	140	56	4
23393		236	.5	21	<10	11	260	31	<2
23394		67	.2	<10	23	7	86	21	<2
23395		130	.2	<10	<10	3	40	30	<2
23396		28	.2	<10	19	7	200	16	<2
23397		7	.1	<10	10	13	53	18	<2
23398		41	.3	<10	<10	11	160	25	<2
23399		5	. 4	12	<10	35	340	17	3
23400		<5	.1	<10	<10	17	100	14	<2
24770		<5	.7	34	<10	31	200	57	6
24771		21	.1	<10	11	5		15	<2
24772		33	.2	28	<10	32	130	41	<2
24773		53	.1	13	44	17	130	32	<2
24774		38	.2	<10	59	22	100	48	<2
24775		8	.2	<10	21	9	39	32	<2
24776		16	.3	<10	23	22	110	42	<2
24777		<5	.4	10	<10	12	39	76	<2
24778		50	2.4	340	<10	110	84	100	23
24779		21	.6	19	<10	18	74	40	<2
24780		368	1.0	48	32	10	110	39	<2
24781		167	1.4	80	22	26	160	40	2
24782		16	.3	400	<10	6	26	34	<3 -7
24783		22		51	<10	23	97	34	
24/84		235	.4	10	<10	10 19	180	39	~2
24785		90	.2	13	15	12	210	17	ן רי
24786		50	1.6	52	32	19	340	32	~2
24787		162	.3	17	42	14	21	24	~2
24/88		23	.3	<10	10	10	/ ل مد	24	~2
24/89				<10	<u></u>	10	39		<u> </u>

. ·

SVL Job Number :X70169 Sample Receipt : 8/12/97 Date of Report : 8/27/97 No. of Samples : 39 Rock P.O. No. :SKARN PKG Page 2 of 2 Client: PAUL DIRCKSEN ORVANA RESOURCES 1755 SILVER BEACH LOOP COEUR D'ALENE ID 83814

REVISED REPORT

CLIENT SAMPLE ID	Test : Units : p Method: I	Zn Ba pm ppm CP ICP	
23382		21 67	
23383		16 24	
23384		21 65	
23385		40 17	
23386	3.	20 9	
23387		<u>40 14</u>	
23388		33 21	
23389		26 20	
23390		<u>44 30</u>	
23391		83 73	
23392		67 45	
23393		63 32	
23394		47 32	
23395		24 22	
23396		<u>27 14</u>	
23397		53 18	
23398		28 18	
23399		<u>19 11</u>	
23400		10 16	
24770	1	40 60	
24771		<u>31 19</u>	
24772		88 45	
24773		33 90	
24774		<u>95 270</u>	
24775		57 53	
24776	1	70 73	
24777	2	00 27	
24778	5	70 100	
24779	2	20 41	
247.8.0	1	20 27	
24701		94 JD	
24782		61 54	
24783	1	00 63	
24784		52 31	
24785		33 20	
24786		<u>46 80</u>	
24787		44 96	
24788	1	20 57	
24789		2936	

Reviewed By: C. Meyer/BC

_____Date: <u>08/27/97</u> Charges : \$653.25

String +

SVL ANALYTICAL, INC. REPORT OF ANALYTICAL RESULTS

SVL Job Number :X70217 Sample Receipt : 9/17/97 Date of Report :10/02/97 No. of Samples : 26 Rock P.O. No. :SKARN Page 1 of 2 Client: PAUL DIRCKSEN ORVANA RESOURCES 1755 SILVER BEACH LOOP COEUR D'ALENE ID 83814

ATTN: ROB FREDERICKS

CLIENT SAMPLE ID	Test : Units : Method:	Au ppb FA+AA	Ag ppm FA+AA	As ppm ICP	Bi ppm ICP	Co ppm ICP	Cu ppm ICP	Pb ppm ICP	Mo ppm ICP
24790		9	.2	<10	43	10	60	<5	<2
24791		<5	<.1	<10	15	<2	63	20	5
24792		5	<.1	<10	160	10	43	<5	<2
24793		13	.2	22	20	16	46	120	3
24794		<5	<.1	<10	120	29	210	<5	<2
24795		<5	1.0	<10	45	28	510	160	58
24796		14	.3	1500	27	16	110	43	5
24797		17	.3	41	54	17	350	11	17
24798		<5	2	<10	290	41	84	580	<2
24799		<5	.1	<10	64	16	140	<5	7
24800		10	.1	<10	86	10	91	<5	12
25501		14	,1	<10	80	10	130	<u><5</u>	<2
25502		16	.5	<10	43	<2	120	13	18
25503		<5	.6	11	38	3	100	9	<2
25504	·····	34	>25	<10	620	6	230	4600	<2
25505		15	2.7	<10	44	5	210	77	<2
25506		19	.1	<10	47	16	160	<5	<2
25507		15		<10	23	5	60	< <u>5</u>	<2
25508		50	.2	<10	35	21	140	<5	<2
CLIENT SAMPLE ID	Test : Units : Nethod:	Zn ppm ICP	Ba ppm ICP	Ag oz/t FA					
14200								<u> </u>	·
24750		44	110						
24/21		20	50				÷		
24793		140	45	······					
24794		92	140						
24795		79	16						
24796		540	29						
24797		260	66						
24798		350	480						
24799		26	40						
24800		37	54						
25501		43	27						
25502		14	92						
25503		16	31						
25504		66	110	2.29					
25505		28	16						
25506		17	110						
25507		34	18						
25508		24	33						

SVL Job Number :X70266 Sample Receipt :10/30/97 Date of Report :11/10/97 No. of Samples : 9 Rock P.O. No. :SKARN Page 1 of 2 Client: PAUL DIRCKSEN ORVANA RESOURCES 1755 SILVER BEACH LOOP COEUR D'ALENE ID 83814

ATTN: ROB FREDERICKS

CLIENT SAMPLE ID	Test : Units : Method:	Au ppb FA+AA	Ag ppm FA+AA	As ppm ICP	Bİ PPM ICP	Co ppm ICP	Си ррл Іср	Pb ppm ICP	Mo ppm ICP
25516		56	.1	<10	<10	20	180	22	<2
25517		38	<.1	<10	130	27	230	34	<2
25518		118	.2	<10	110		360	23	<2
25519		322	.6	<10	21	30	540	17	4
25520		118	.2	<10	82	24	400	8	15
25521		67	.1	<10	120	17	210	13	3
25522		261	.2	<10	65	14	290	<5	33
25523		191	.1	<10	24	15	160	5	<2
25524		131		<10		14	270	8	3

CLIENT SAMPLE ID	Test : Units : Method:	Zn ppm ICP	Ba ppm ICP	
25516		75	59	
25517		110	300	
25518		80	180	
25519		43	280	
25520		21	78	
25521		27	37	· · · · · · · · · · · · · · · · · · ·
25522		21	46	
25523		14	12	
25524		28	82	

Appendix 3

Soil & Moss Mat Sample Geochemical Labratory Reports

ACME A	YTIC	I I	ABOI	TAS	RI	BS	LTD	•	8	52 I	. H	ASTI	NGS	ST.	ī	100	/BR	BC	V6A	1R(5	PH	ONE	(604)253	-31	58.	FAX (604	1	-171	.6
AA										GE	осн	EMI	CAL	AN	ALY	SIS	CE	RTI	FIC	ATE	:							ц.			Ă J	
ÎĹ					1			<u>Orv</u> 710	<u>rana</u> - 11	<u>Mi</u> 77 W.	ner Hast	als ings	Co St, Vi	ID.	F ver B	ile c V&E	# гкз	97- Sub	333 mitte	l d by:	Pa	ge Denn	1 Y					····			Ĺ	
SAMPLE#	Mo ppm	Ci. ppr	r ₽b i pprn	Zi ppi	n n p	Ag ppm	Ni ppm	Co ppm	Mn ppin	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	к %	W ppm	Au* ppb
.85N 50+10E .85N 50+40E .85N 50+70E .85N 51+00E RE L85N 51+00E	1 1 2 1 2	230 140 284 201 195	32 28 30 36 36 43	16 18 15 24 24	3 0 + 6 9	.5 <.3 .8 .8	59 69 85 103 104	26 25 32 31 31	1453 1617 973 2017 2024	4.71 4.66 5.07 5.47 5.43	7 4 6 12 9	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2	<2 <2 3 <2 2 2	39 59 45 64 64	.4 .2 <.2 1.0 .8	<2 <2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	116 109 131 146 145	.38 .49 .39 .54 .55	.213 .216 .094 .113 .113	10 8 13 16 16	85 95 139 157 155	1.32 1.30 1.67 2.17 2.18	237 255 146 240 240	.19 .18 .19 .22 .22	ব ব ব ব ব ব ব ব	3.29 2.93 3.40 4.25 4.25	.02 .02 .02 .02 .02	.19 .20 .22 .27 .28	< < < < < < < < < < < < < < < <> </td <td>19 6 14 14 13</td>	19 6 14 14 13
85N 51+30E 85N 51+60E 85N 51+90E 85N 52+20E 85N 52+50E	1 1 1 1	122 126 130 224 401	2 36 5 33 0 48 - 28 - 20	23 15 13 12 12	5 5 1 5 7	.5 .4 .3 .3 .3	34 30 28 27 32	23 21 23 27 26	1948 2064 2607 1319 1023	4.11 4.37 4.60 6.43 6.37	6 12 14 23 22	ও ও ও ও ও ও ও	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	<2 <2 <2 <2 <2 <2 <2 <2	50 47 62 63 41	1.4 .2 .6 <.2 <.2	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	97 105 116 173 191	.48 .47 .52 .56 .34	.277 .286 .202 .194 .214	9 9 7 7	50 49 50 55 50	.63 .76 .84 1.23 1.74	204 191 246 126 123	.11 .14 .14 .15 .20	ও ও ও ও ও ও	3.17 3.17 2.62 2.67 3.91	.02 .02 .02 .01 .01	.14 .14 .17 .18 .29	< < < < < < < < < < < < < < < < < <> </td <td>19 15 18 17 34</td>	19 15 18 17 34
85N 52+20E 1 224 28 125 .3 27 27 1319 6.43 23 <5 <2 <2 63 <.2 <2 2 173 .56 .194 7 55 1.23 126 .15 <3 2.67 .01 .18 <2 17 85N 52+50E 1 357 34 144 .3 35 30 2114 6.69 39 <5 <2 <2 41 <.2 < 2 < 2 < 3 $.361$ $.3$																																
.85N 54+30E .85N 54+60E .85N 54+90E .83N 50+10E .83N 50+40E	1 2 1 <1 <1	206 163 161 144 152	5 20 5 16 1 26 1 17 2 18	11 8 14 13 12	2 8 1 8 7	.6 .3 .6 .4	39 44 56 24 21	24 25 24 22 21	1073 1735 745 1260 1046	4.55 4.54 4.81 5.83 5.40	6 9 16 8 10	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2	<2 <2 <2 2 2 2	50 43 48 87 64	<.2 <.2 .3 .2 <.2	<2 <2 <2 <2 2 2	<2 <2 <2 <2 <2 <2	114 117 117 162 150	.41 .36 .43 .70 .46	. 104 .063 .247 .240 .281	7 6 7 13 8	66 78 93 40 34	1.01 1.15 1.34 1.20 .87	192 180 260 191 136	.17 .18 .17 .18 .15	ব্য ব্য ব্য ব্য ব্য	3.27 2.60 3.56 3.25 2.96	.01 .02 .02 .02 .02	. 15 . 12 . 19 . 20 . 15	<2 <2 <2 <2 <2 <2	29 524 309 7 13
.83N 50+70E .83N 51+00E .83N 51+30E .83N 51+60E .83N 51+90E	<1 1 1 1	96 77 86 92 148	5 14 7 25 5 18 2 18 3 19	6 7 6 10 12	6 · 3 · 4 7 6	<.3 <.3 .3 .5	27 26 26 37 35	19 20 19 21 25	642 1776 1074 1043 994	4.21 4.20 3.92 4.08 4.22	7 9 12 9 13	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2	2 <2 <2 <2 <2 <2	57 67 64 53 58	<.2 <.2 <.2 .4	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<2 <2 <2 <2 <2 <2 <2	110 101 95 91 9 6	. 49 . 52 . 47 . 48 . 55	.171 .185 .130 .261 .104	8 6 7 8	49 55 48 51 49	.72 .62 .65 .86 .85	140 297 129 214 161	. 14 . 12 . 11 . 15 . 16	3 3 3 3 3	2.61 1.90 2.03 3.54 3.25	.02 .02 .02 .02 .02	.09 .09 .08 .13 .13	<2 <2 <2 <2 <2 <2	30 88 13 14 13
83N 52+20E 83N 52+50E 83N 52+80E 83N 53+10E 83N 53+40E	1 <1 1 1 <1	120 111 191 121 62) 19 1 20 1 18 1 16 2 19	9 12 9 11 9 10 9 7	4 5 6 1 9	.6 .4 .5 .4 .4	35 37 37 31 25	23 24 22 22 18	1246 1216 735 1390 1338	4.83 5.30 4.80 4.62 4.10	16 17 15 10 7	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	37 50 42 46 39	<.2 <.2 <.2 <.2 <.2	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<2 <2 2 3 <2	112 127 123 120 93	.29 .38 .35 .36 .31	.262 .230 .112 .113 .256	8 9 6 7	50 55 56 54 38	.93 1.05 1.08 1.07 .67	198 174 127 150 233	.15 .19 .17 .16 .14	<3 <3 <3 <3 <3	5 3.10 5 2.99 5 2.68 5 2.81 5 2.71	.01 .02 .01 .01 .02	.14 .17 .13 .10 .09	<2 <2 <2 <2 <2 <2 <2	12 9 68 31 72
83N 53+70E 83N 54+0DE 83N 54+3DE 83N 54+6DE 83N 54+9DE	1 1 1 1 <1	65 52 68 97	5 18 2 19 3 15 5 16 0 14	3 7 9 6 5 7 5 10 10	27146	-9 -4 -9 -5 -8	22 18 19 17 17	18 16 17 17 17	1409 1014 1191 2291 1588	4.26 3.89 4.42 4.57 4.70	8 10 11 8 6	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2	41 30 25 36 45	<.2 <.2 <.2 <.2	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	103 89 106 120 118	.32 .25 .21 .35 .34	.118 .140 .118 .137 .171	7 5 5 8 4	36 31 33 25 34	.62 .49 .47 .69 .82	155 117 117 181 209	.16 .14 .16 .17 .16	<3 <3 <3 <3 <3	5 2.77 5 2.51 5 2.86 5 3.08 5 2.99	.02 .01 .02 .02 .01	.10 .08 .08 .09 .15	<2 <2 <2 <2 <2 <2 <2 <2	14 15 9 9 10
STANDARD C3/AU-	s 25	63	3 36	5 15	7 !	5.8	36	12	775	3.62	56	19	4	17	31	24.3	13	22	80	.62	.087	17	164	.70	153	. 10	20	1.97	. 04	.18	18	44
		ICP THIS - SA	50 5 LEAC MPLE	0 GR H IS TYPE	AM : PAI : SC	SAMP RTIA OIL	LE IS L FOR A F' ar	DIG MN U* -	ESTED FE SR AQU,	WITH CA P A-REG	3ML 3 LA CO IA/MII	5-1-2 R MG H BK EX	HCL-H BA TI TRACT,	INO3-1 BW/ GF//	120 A IND L IA FII	T 95 C Imited Nished	EG. (FOR (10)	C FOR NA K GM)		HOUR AL.	AND 1	S DIL	UTED	TO 10	ML W	ITH W	ATER.					-
DATE RE	CEIVE	D:	JUL 3	3 199	7	DA'	TE P	REPC	RT 1	AIL	<u></u> ED: /	I n	ly	10/0	<u></u> 7	SIG	NED	BY.	<u>(</u>	h		.D.TO	YE, C	LEON	G, J.¥	JANG;	CERT	IFIED	B.C.	ASSA	YERS	
All results	are co	nside	ered t	he c	onfi	iden	tial	ргор	erty (of the	ن clie :	/ 2nt. /	Acme a	SSUM	s the	e list	oilit	ies f	or ac	tual	/ cost ·	of th	e ana	lysis	only				Dat	ta	FA _	

ACHE ANALYTICAL

Orvana Minerals Corp. FILE # 97-3331

Page 2

Data_

FA

SAMPLE#	Mo PPm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mri ppm	Fe %	As ppm	U mqq	Au ppn	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba pom	Ti %	B Al ppm %	Na X	ĸ %	¥ ppm	Au* ppb
L81N 50+10E L81N 50+40E L81N 50+70E L81N 51+00E L81N 51+30E	<1 <1 <1 <1 <1	87 113 146 178 106	20 14 13 15 9	85 68 84 104 64	.5 .4 .7 .5 .4	23 23 21 33 24	17 20 19 21 16	647 632 974 715 470	4.70 5.83 5.02 4.22 5.97	3 <2 5 4 7	জ জ জ জ জ জ	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	2 <2 <2 2 2 2 2	42 52 48 45 43	<.2 <.2 <.2 <.2 <.2 <.2	< < < < < < < < < < < < < < < < < < <> </td <td><2 <2 <2 <2 <2 <2 <2 2</td> <td>119 159 139 109 98</td> <td>.39 .51 .42 .40 .41</td> <td>.215 .208 .227 .265 .187</td> <td>6 8 11 7 6</td> <td>36 40 40 52 38</td> <td>.60 .78 .81 1.06 .71</td> <td>84 105 151 128 124</td> <td>. 14 . 11 . 14 . 15 . 14</td> <td><3 2.91 <3 2.47 <3 3.12 <3 3.12 <3 2.96</td> <td>.02 .02 .02 .02 .02</td> <td>.09 .09 .13 .12 .07</td> <td><? <? <? <?</td><td>590 34 15 16 27</td></td>	<2 <2 <2 <2 <2 <2 <2 2	119 159 139 109 98	.39 .51 .42 .40 .41	.215 .208 .227 .265 .187	6 8 11 7 6	36 40 40 52 38	.60 .78 .81 1.06 .71	84 105 151 128 124	. 14 . 11 . 14 . 15 . 14	<3 2.91 <3 2.47 <3 3.12 <3 3.12 <3 2.96	.02 .02 .02 .02 .02	.09 .09 .13 .12 .07	<br <br <br </td <td>590 34 15 16 27</td>	590 34 15 16 27
L81N 51+60E L81N 51+90E RE L81N 51+90E L81N 52+20E L81N 52+50E	<1 <1 <1 <1 1	97 72 70 87 100	12 12 18 13 19	65 65 67 58 94	.6 .5 .5 .4 .8	24 22 22 26 33	20 17 19 19 24	348 652 637 408 992	4.86 4.55 5.02 4.61 4.99	13 7 5 11 10	ও ও ও ও ও	~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	22222	44 37 37 54 52	<.2 .2 <.2 <.2 <.2 <.2	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<2 <2 <2 <2 <2 <2 <3	124 110 123 115 118	.40 .30 .30 .46 .43	.232 .128 .123 .123 .123 .154	6 9 9 7 11	38 35 35 43 50	.67 .59 .58 .69 .94	81 126 121 100 124	.11 .13 .13 .13 .13 .12	<3 2.63 <3 2.88 <3 2.71 <3 2.86 <3 3.27	.02 .02 .02 .02 .02	.09 .08 .08 .10 .12	₹ ₹ ₹ ₹ ₹ ₹	29 59 14 19 13
L81N 52+80E L81N 53+10E L81N 53+40E L81N 53+70E L81N 54+00E	<1 <1 <1 1 1	76 98 110 133 160	12 10 13 12 25	89 73 83 94 167	.4 .4 1.2 .4 .4	25 24 20 25 21	24 22 20 24 25	1139 666 1060 1290 2823	5.48 5.24 5.03 5.15 7.19	6 11 5 5 6	জ জ জ জ জ জ জ	<> <> <> <> <> <> <> <> <> <> <> <> <> <	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	55 49 47 52 69	<.2 <.2 <.2 <.2 1.3	~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	122 126 120 154 176	.42 .39 .37 .41 .57	.278 .128 .154 .126 .217	7 10 9 8 9	48 48 38 49 36	.89 .70 .75 1.09 1.29	207 102 131 155 334	.10 .12 .13 .14 .17	<3 2.37 <3 2.36 <3 3.05 <3 2.83 <3 2.95	.01 .01 .01 .01 .01	.12 .10 .12 .14 .34	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	30 71 74 41 13
L81N 54+30E L81N 54+60E L81N 54+90E L79N 50+10E L79N 50+40E	<1 1 1 <1 <1	146 132 142 76 103	18 18 49 20 15	174 127 155 130 91	<.3 .3 <.3 .3 .6	23 25 21 28 26	25 25 23 22 21	3061 1699 3688 1205 550	6.90 6.74 5.72 5.65 4.65	5 9 17 7 <2	<5 6 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	71 48 58 38 26	.8 .4 1.4 <.2 <.2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	162 161 127 147 120	.61 .39 .49 .42 .26	.200 .168 .190 .265 .264	10 8 7 6 5	35 50 39 52 39	1.47 .88 .73 .67 .58	395 185 263 160 125	.19 .13 .10 .13 .17	<3 2.64 <3 2.63 <3 2.30 <3 2.48 <3 3.61	.01 .01 .01 .02 .02	.41 .14 .14 .10 .08	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	280 26 32 28 6
L79N 50+70E L79N 51+00E L79N 51+30E L79N 51+60E L79N 51+90E	ব ব ব ব	145 73 70 103 89	15 10 8 17 11	87 72 69 77 65	.4 .6 .5 .7	35 20 20 30 21	24 16 18 20 21	670 605 712 949 662	6.95 5.03 5.62 4.85 5.57	<2 2 2 2 8	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	<2 <2 2 2 2 2 2 2 2	48 41 47 33 45	<.2 <.2 <.2 <.2	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 3	209 132 146 126 151	.44 .36 .39 .29 .42	.129 .254 .222 .251 .221	5 6 9 9	48 26 29 61 35	.93 .60 .57 .80 .63	141 146 167 184 146	.19 .16 .16 .19 .15	<3 2.54 <3 3.30 <3 3.53 <3 5.15 <3 3.25	.03 .03 .03 .03 .02	.12 .09 .08 .10 .14	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	4 11 10 9 9
L79N 52+20E L79N 52+50E L79N 52+80E L79N 53+10E L79N 53+40E	ব ব ব ব ব	47 84 56 54 52	13 12 9 21 12	55 55 63 119 81	.3 <.3 .3 .4 .3	16 21 19 17 18	20 22 20 19 18	1795 566 649 3422 1226	6.16 6.02 5.58 5.56 4.51	10 8 4 8 5	ଏ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	43 45 45 129 54	<.2 <.2 .2 .3 <.2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	2 <2 <2 <2 <2 <2	163 161 146 151 112	.40 .44 .38 .79 .44	.242 .332 .205 .295 .312	7 7 7 7 6	34 41 31 29 33	.47 .73 .63 .38 .55	190 200 148 620 160	.12 .11 .16 .12 .14	<3 2.06 <3 2.54 <3 2.86 4 1.94 <3 3.11	.02 .02 .02 .04 .02	.09 .09 .09 .18 .12	< < < < < < < < < < < < < < < < <> </th <th>22 18 11 9 20</th>	22 18 11 9 20
L79N 53+70E L79N 54+00E L79N 54+30E L79N 54+60E L79N 54+90E	<1 1 1 1	64 73 49 59 73	10 21 11 15 14	85 106 93 83 118	.4 <.3 <.3 <.3 .3	21 20 18 19 23	22 19 20 17 21	1144 1413 1750 774 1009	6.04 4.94 6.01 5.33 5.93	2 5 4 6 5	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	48 55 43 45 59	<.2 .7 <.2 <.2 .3	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<2 <2 <2 2 2	149 126 148 131 142	.37 .54 .30 .40 .50	.216 .063 .150 .140 .218	9 10 5 8 7	41 38 43 33 41	.71 .89 .77 .74 .76	97 110 150 103 176	.14 .15 .15 .17 .17	<3 2.91 <3 2.48 <3 2.48 <3 3.32 <3 2.92	- 02 - 02 - 02 - 02 - 02	.11 .10 .14 .10 .13	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	8 11 120 14 20
STANDARD C3/AU-S	25	64	38	162	5.9	36	12	779	3.66	57	22	3	18	32	24.8	14	24	81	.62	.089	17	166	.70	159	.10	19 2.10	.04	. 18	21	45

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ACHE ANALYTICA

Orvana Minerals Corp. FILE # 97-3331

Page 3

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Min ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	р %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	đ mqq	Al %	Na X	K %	W maa	Au*
L78N 55+20N L78N 55+50N L78N 55+80N L78N 56+10N L78N 56+40N	1 <1 1 <1	84 47 47 61 123	17 16 17 19 56	82 69 80 87 115	.5 <.3 <.3 .4 .3	18 15 16 16 18	19 16 16 19 19	1139 1049 1441 1033 665	6.01 5.31 5.21 6.28 7.17	3 3 <2 3 9	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	54 37 44 46 41	.2 <.2 <.2 <.2 <.2 <.2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 <2 <2 <2 <2 <2 <2 <2	143 120 114 142 166	.44 .26 .34 .37 .43	. 158 .215 .221 .258 .215	7 6 7 6 9	34 27 26 34 33	.78 .60 .59 .82 .69	123 139 172 127 111	.13 .12 .14 .12 .13	3 2 3 2 3 2 3 2 3 2 3 2	.33 .33 .53 .21 .63	.01 .01 .02 .02 .01	.12 .07 .10 .10 .13	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	41 21 20 29 441
178N 56+70N 178N 57+00N 178N 57+30N 178N 57+60N 178N 57+90N	1 1 1 1	116 85 70 92 63	24 28 28 22 33	111 127 120 102 109	.8 <.3 <.3 .4 <.3	19 15 18 16 12	20 18 18 16 18	823 1066 1520 739 1328	5.68 5.06 5.55 5.50 5.62	8 6 5 <2 7	<5 <5 <5 <5	<2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	<2 <2 <2 <2 <2 <2 <2 <2	41 38 42 28 32	<.2 <.2 <.2 <.2 <.2 <.2	< < < < < < < < < < < < < < < < < < < <	<2 <2 <2 <2 <2 <2	159 137 148 124 152	.40 .35 .39 .29 .28	. 195 . 276 . 294 . 289 . 244	7 7 9 6	33 30 31 27 27	-83 .70 .60 .66 .61	128 128 244 132 98	. 15 . 14 . 14 . 15 . 14	<3 2 <3 2 <3 2 <3 2 <3 2 <3 2	.58 .71 .63 .76 .10	.02 .01 .02 .02 .01	.11 .11 .11 .10 .16	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	44 70 107 39 142
L78N 58+20N L78N 58+50N L78N 58+80N L78N 59+10N L78N 59+40N	1 2 3 1 1	64 107 115 121 97	25 15 17 21 17	147 151 176 186 121	.6 .4 .3 <.3 .4	14 26 31 19 22	15 21 22 21 18	977 693 954 1179 562	5.20 5.63 5.14 5.54 5.40	4 5 10 9 <2		< < < < < < < < < < < < < < < < < < < <	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	34 49 57 29 28	.2 .5 1.2 .5 <.2	2 2 2 2 2 2 2 2	<2 <2 4 3 5	112 142 121 129 125	.32 .42 .54 .33 .29	.397 .092 .145 .139 .104	5 7 9 10 8	24 53 60 30 30	.63 1.01 1.24 1.24 1.14	140 93 126 113 118	.12 .14 .13 .18 .20	<3 2 <3 2 <3 2 <3 3 <3 3	2.86 2.19 2.73 5.60 5.53	.01 .01 .01 .02 .01	.09 .14 .12 .19 .14	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	31 105 18 12 22
L78N 59+70N L78N 60+00N L77N 50+10E L77N 50+40E L77N 50+70E	2 2 1 <1	106 70 103 73 82	52 20 12 16 15	101 117 70 107 86	.4 .3 <.3 .3 .3	18 14 36 27 27	19 20 16 19 19	875 1026 420 1298 771	5.64 5.23 3.63 4.16 4.39	5 3 2 5	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 <2 <2 <2 <2 <2 <2 <2	36 26 35 35 45	.3 <.2 <.2 .4 .2	< < < < < < < < < < < < < < < < < < < <	<2 <2 5 2 2	138 113 98 101 110	.32 .20 .49 .41 .49	.117 .112 .148 .323 .228	7 6 6 7	34 27 55 45 49	.95 .79 1.32 .90 .88	92 76 136 273 177	.16 .21 .17 .13 .15	<3 2 <3 3 <3 2 <3 2 <3 2 <3 2	2.82 5.08 5.06 2.72 5.10	.01 .01 .03 .03 .03	.12 .11 .18 .14 .13	< 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	18 130 7 7 15
L77N 51+00E L77N 51+30E L77N 51+60E L77N 51+90E RE L77N 51+90E	<1 <1 1 1	55 60 99 121 118	14 14 30 16 14	94 68 104 85 82	<.3 <.3 <.3 <.3 <.3	30 29 37 30 30	19 20 22 21 21	947 864 1010 549 528	4.38 4.66 5.63 5.14 5.24	5 4 <2 2 3		<> < < < < < < < < < < < < < < < <	<2 <2 2 2 2 2	45 47 51 51 50	.3 <.2 <.2 <.2 <.2	3 ~2 ~2 ~2 ~2 ~2	<2 <2 16 6 4	101 122 134 140 143	.47 .52 .47 .51 .50	.332 .155 .226 .178 .169	6 5 10 7 7	53 48 75 55 55	.75 .75 1.14 1.18 1.18	245 159 187 170 162	. 14 . 14 . 17 . 17 . 17	<3 2 <3 2 <3 2 <3 2 <3 2	2.54 2.30 5.58 5.33 5.19	.03 .03 .02 .03 .03	.11 .11 .16 .19 .19	<2 2 3 2 2	6 8 14 21
L77N 52+20E L77N 52+50E L77N 52+80E L77N 53+10E L77N 53+40E	1 <1 1 1	73 142 77 87 129	18 11 17 19 14	95 113 123 119 113	.3 .5 .5 .5	26 40 32 32 36	21 27 21 22 21	962 1563 1202 1087 1458	4.78 5.89 5.07 5.05 4.89	7 5 <2 3 2	ৎ ১ ১ ১ ১ ১ ১ ১ ১	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	65 47 42 38 38	<.2 .3 .5 .2 .3	<2 <2 <2 <2 <2 <2 <2	<2 5 2 4	117 164 124 122 124	.47 .45 .37 .36 .37	.289 .279 .300 .349 .276	5 8 7 7 9	46 71 47 51 51	.86 1.58 1.00 .99 1.11	235 238 183 201 240	. 13 . 19 . 16 . 15 . 18	<3 2 <3 2 <3 2 <3 2 <3 2	2.68 3.53 3.67 3.54 4.14	.02 .02 .02 .02 .02	.12 .37 .13 .12 .15	<2 <2 <2 3 3	8 8 11 12 6
L77N 53+70E L77N 54+00E L77N 54+30E L77N 54+60E L77N 54+90E	<1 <1 1 1	162 103 72 107 71	16 19 14 15 15	106 98 88 91 87	.5 .3 .4 .6 .3	41 31 23 33 28	24 22 19 22 21	1075 1742 867 610 783	5.07 5.04 4.80 5.62 5.52	<2 3 5 2	<5 <5 <5 <5	<>> <> <> <> <> <> <> <> <> <> <> <>	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	55 60 42 41 33	.4 .3 <.2 <.2 <.2	~ < < < < < < < < < < < < < <> <> <>> <>	5 2 2 2 2 2	133 127 111 150 137	.52 .52 .44 .38 .30	.253 .236 .189 .144 .228	6 8 7 7 7	63 53 37 58 51	1.52 1.07 .83 1.09 .84	197 215 125 145 151	. 19 . 16 . 17 . 17 . 16	3 3 3 3 3 3	8.38 8.02 8.65 8.37 8.13	.02 .02 .02 .02 .02	.20 .15 .11 .11 .11	2 \$2 \$2 \$2 2 2	6 9 102 59 32
STANDARD C3/AU-S	25	62	36	162	5.7	36	12	766	5.55	56	19	4	17	30	24.9	15	22	78	.61	.088	16	161	.67	152	. 10	20 2	2.01	.04	.16	20	50

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Deta - FA

ΔΔ
TT
ADE MALYTICA

Page 4

													· · · · · ·					_												
SAMPLE#	Mo	CU	Pb	Zn	Ag	Ní	Co	Mn	fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca	P	La	Cr	Mg	Ba	Ti	B AL	Nə	K	W	Au*
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	*	ppm	bbu	ppm	ppm	ppm	ppm	ppm	ppm	ppm	*	*	ppm	ppm	*	ррп	7	ppn X	%	%	ppm	ppb
1770 554200	,	77	17	100	. 7			1 70/		-			-			-													_	
1770 554505		147	12	102	~. .>	24	22	1274		,	<>	<2	~~~	42	<.2	<2	< <u>Z</u>	154	.40	.219	6	42	1.01	92	. 14	<3 2.81	.02	.11	<2	8
LIIN SSTOLE	~ 1	100	12	102	.2	20	21	132	2.22	5	<5	<2	<2	35	<.Z	<2	2	141	.36	.221	7	60	1.14	131	. 15	<3 3.36	202	- 14	<2	15
	<	01	10	100	.0	20	17	1079 -	4.55	5	<>	<2	<2	29	<.Z	<2	<2	111	.26	. 150	8	46	. 78	174	.17	<3 3.26	. 02	- 09	2	13
L/TN 50+IUE	<1	00	20	120		26	18	1515	4.19	7	<5	<2	<2	34	.4	<2	2	106	.29	. 166	7	45	.85	151	. 14	<3 2.82	-02	-09	<2	6
L//N DD+4UE	1	61	18	196	.8	-50	18	1051	4.67	5	-5	<2	<2	27	.9	<2	3	109	.23	.213	7	44	.91	168	. 15	<3 3.68	.02	-09	<2	11
1770 E4+705		* 67	- 77	174	-	20	77	F / 7				_	_		_	-			.										_	
1770 57+00E	- 2	104	10	120		27	25	207	2.70	15	<>	<2	<2	- 39	د.	<2	<2	142	.38	199	6	56	1.21	81	- 14	<3 Z.63	.01	-10	<2	36
177N 57400E	~ 1	117	10	100	**	10	10	397	0.50	Y N	<2	<2	<2	41	.8	<2	<2	150	.43	.297	7	38	.67	128	.12	<3 2.23	.01	-09	<2	99
L77N 27-50E	1	115	22	147		20	10	422	2.91	ö	~ >	<2	< <u>Z</u>	40	.8	<2	-2	144	.45	.209	7	41	.93	78	.12	<3 2.26	.01	. 13	<2	45
1771 57-00E	2	12	10	107		22	14	004 -	4.35	14	<>	<2	<2	49	.5	<2	<2	112	.57	.108	8	50	1.25	72	.10	<3 2.23	.02	.09	<2	16
LIIN JIYYUE	2	65	22	120	• (24	15	982 ·	4.24	6	<5	~2	<2	35	.3	<2	<2	99	.36	.133	5	44	.93	83	. 14	<3 3.40	.01	. 10	<2	12
177N 58+20E	2	71	37	108	i n	15	15	1082	4 4 0	6	-5	~2	~2	72	~ >	-	~	112	סר	177	1	77	17	102	47	.7 1 14		00		70
177N 58+50E	3	80	51	115	.5	15	14	763	5 30	Ĕ	-5	~~	~2	72	~ 2	.5		112	10	110	5	22	*D/ 20	70	- 12	-7 7 17	.01	.00		29
L77N 58+80E	2	192	25	108	1.2	22	17	775	6 SN	-2	~5		22	21	2.2	-2	-2	107	. 10	.110	2	27	.00	12	12	-7 7 77	.01	.07	-2	40
177N 59+10F	5	120	28	133	1 4	24	17	1256	1. 26	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		22	<u>.</u> ,	-2	~~	105	.22	195	2	20	- 70	92	. 10	<3.3.72	.01	.09	<2	24
177N 59+40F	2	RL.	38	96		20	10	1010	2 Z.R	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~2	27		· 2	22	100	. 17	1125	D	21	.90	109	- 12	<3 4.03	.01	.10	52	17
	-		20	10	••			1010		5	.,	~6	~	22	1.2	12	~2	100	. 21	• • • • •	2	22	.92	01	. 10	<3 2.13	.01	. 10	~2	14
L77N 59+70E	1	58	19	133	.6	17	18	1060	4.05	3	<5	<2	<2	21	<.2	<2	<2	93	.20	. 235	5	24	.73	116	17	<3 3 38	カン	10	ð	71
L77N 60+00E	1	151	36	149	.4	29	26	825	5.08	5	<5	<2	<2	31	.5	2	<2	124	.30	.150	ล์	33	1 25	128	18	~3 3 44	- 01	13	~2	18
L76N 55+20E	1	64	16	94	.3	19	16	1107	4.51	<2	<5	<2	<2	37	<.2	<2	<2	105	.30	149	6	32	. 61	124	14	<3 3 22	02	07	<2	15
L76N 55+50E	1	57	13	110	.7	23	15	747	3.87	3	<5	<2	ź	22	<.2	<2	<2	88	18	246	Ă	37	71	113	14	-3 6 26	.02		~2	10
176N 55+80E	<1	59	12	132	.3	22	18	1286	4.80	7	<5	<2	<2	49	.5	ž	<2	120	.48	.237	5	41	.98	161	. 16	<3 7.42	.02	.16	<2	11
																													_	
176N 56+10E	1	61	16	164	.4	22	16	1166 -	4.52	4	<5	<2	<2	25	.6	<2	2	100	.24	.340	7	42	.76	160	.13	<3 3.61	.02	. 10	<2	16
L76N 56+40E	1	61	14	203	.5	- 25	18	608 -	4.63	- 5	<5	<2	<2	28	.7	<2	<2	105	. 29	.280	7	40	.86	142	. 13	<3 3.33	.02	.12	<2	22
L76N 56+7DE	1	172	25	124	.7	40	17	539 :	3.98	9	<5	<2	<2	36	.2	<2	4	107	.40	. 137	8	59	1.18	89	.13	<3 3.42	.02	. 10	<2	13
RE 176N 56+70E	1	180	28	127	.7	41	18	555	4.10	6	<5	<2	<2	38	.4	<2	- 3	110	.42	.140	8	61	1.22	92	.14	<3 3.54	.02	.11	<2	12
L76N 57+DDE	1	146	43	154	<.3	41	21	736 -	4.27	12	<5	<2	<2	32	.2	<2	2	106	.36	.145	7	59	1.00	110	. 14	<3 3.70	.02	.08	<2	86
1740 57.20C		150	E/	137			75	04F		~.	-	-	_		-	_					_									
	5	120	24	123	1.4	40	22	715 4	4.00	21	~	<2	<2	26	<.Z	<2	<2	112	.24	.111	7	74	1.10	101	- 16	<3 3.35	.01	.07	<2	16
		127	111	137	.0	27	21	799	4 91	8	<>	<2	<2	26	-4	<2	5	124	.25	.171	5	- 75	1.12	80	. 15	<3 2.94	.01	. 05	<2	31
176N 59-305		120	4/	121	.o	22	22	(13)	4.51	6	<>	<2	<2	25	<.2	<2	3	97	.25	.336	5	54	1.09	136	. 15	<3 3.99	.01	.09	<2	9
176N 50+20E		95	27	116	.0	49	25	638	4.22	< <u>z</u>	<2	<2	<2	26	<.2	2	<2	102	.25	.133	3	80	1.21	113	.19	<3 3.24	.01	.10	<2	9
L/DN 20+205	ţ	111	51	115	1.1	27	21	515	4.14	3	<>	<2	<2	24	۲.2	<2	2	102	.22	.157	5	66	1.22	112	. 16	<3 3.43	.01	.09	<2	10
176N 58+80F	1	110	24	112	c	27	10	875	1 37	~>	-5	-2		77		-7	~2	100	77	160	F	EC		4 E E						47
176N 59+10F	i	89	27	100	.,	22	12	725	1 69	5	~	22	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	20	2.2	-2		100	- 23	. 130	2	20	1.14	100	. 19	4.4 د.	.02	.16	~~~	15
L76N 59+40F	i	01	20	107	.7	21	10	8.7	1.2/	2	2	-2	-2	20		22	20	107	. 24	. 100	2	22	.07	117	. 10	ຸເວັນ. 5 	.02	.11	<2	11
176N 59+70F	i	92	20	117	.7	25	18	080	64 / 75	7	~2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~2	טכ. קר	×.2	2	2	90	.22	. 195	Þ	20	. (9	112	.14	<5 5.4/	.01	.10	<2	15
176N 60+00F	- 1	101	27	105	ט. ד	24	18	776	4.2J	د ۲	~5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	20	2.2	~2	~~	100	- 26	.101	2	36 7/	.90	141	.16	< 5 5.52 -7 7 //	.02	.12	<2	12
	'			100		L4	10	,,,, ,	4.20	د	N	~2	~4	27	~.2	~2	2	101	.25	دد، .	¢	24	.77	158	. 18	<3 5.68	-02	.12	<2	دد
STANDARD C3/AU-S	24	64	34	158	5.7	35	12	751	3.50	52	19	3	16	30	24.4	14	24	77	.60	.086	16	157	.69	150	.09	19 2.01	.04	.16	15	48
								-													_									

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data____FA

Page 5

SAMPLE#	Mo	Cu	Pb	Źn	Aq	Ni	Co	Mn	Fe	As		Au		Sr	Cd	sb	Bi	v	Са	P	La		Ma	Ba	Īi	8	AL	Na	к		Au*
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	7	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	X	*	ppm	ppm	×	ppm	%	ррт	%	%	%	nadd.	ppb
L75N 53+40E L75N 53+70E L75N 54+00E L75N 54+30E L75N 54+60E	1	125 41 59 60 42	17 11 8 15 22	97 109 61 75 84	.4 .4 .3 .4 .4	50 30 33 40 25	21 20 14 17 14	435 408 195 353 787	3.58 4.17 3.06 4.13 3.64	6 4 2 2 2 2	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2	<2 2 <2 <2 <2 <2 <2	29 41 11 29 19	.5 <.2 <.2 <.2 <.2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	3 <2 <2 <2 <2 <2 <2 <2	84 88 52 104 83	.31 .43 .11 .25 .20	. 130 . 340 . 121 . 087 . 161	5 4 6 6	61 51 47 63 45	.99 .56 .31 .93 .53	99 126 57 109 93	. 15 . 15 . 16 . 19 . 16	<3 - <3 - <3 - <3 - <3 -	4.88 4.51 5.87 3.82 3.52	.02 .02 .02 .02 .02	.12 .05 .04 .07 .06	2 2 2 2 2 2 2 2 2	4 3 2 8 4
L75N 54+90E L75N 55+20E L75N 55+50E L75N 55+80E L75N 56+10E	1 2 1 1	43 74 43 45 106	17 19 17 25 33	54 107 114 89 123	.3 .5 .4 .8	22 36 29 20 42	11 20 15 16 22	612 420 513 840 1104	4.28 3.60 3.21 4.94 4.02	6 7 4 16 9	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	29 36 25 66 37	.3 <.2 <.2 .3 .6	<2 ~ 2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <6	91 78 64 106 101	.31 .41 .29 .62 .40	.354 .094 .133 .403 .174	4 8 5 4 7	51 45 46 66	.49 .76 .64 .79 1.14	84 84 97 93 129	.17 .16 .14 .15 .12	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	1.79 4.68 4.17 2.17 2.70	.02 .02 .02 .02 .02 .02	.06 .07 .06 .15 .12	<2 <2 3 <2 <2	8 10 4 7 58
L75N 56+40E L75N 56+70E L75N 57+00E L75N 57+30E L75N 57+60E	1 2 2 1	88 125 96 108 89	36 31 31 68 30	123 137 99 116 95	.9 .8 1.1 .4 .5	38 51 44 39 42	19 25 23 24 22	753 672 435 1650 597	4.03 4.86 4.42 4.38 4.21	6 19 9 16 9	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2	<2 2 2 2 2 2 2 2 2	32 23 22 48 23	.3 .2 .2 .6 .2	~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3 4 <2 <2 <2	110 120 102 106 107	.37 .22 .20 .41 .22	.116 .113 .088 .135 .105	6 8 4 6 6	65 72 58 63 60	1.08 1.16 .92 .95 1.00	107 130 118 130 108	.15 .19 .20 .15 .19	ব ব ব ব ব ব ব	2.56 3.84 4.24 2.99 3.47	-02 -02 -02 -01 -02	.09 .08 .07 .12 .07	<2 2 2 2 2 2 2 2 2 2 2 2 2 2	13 7 5 9 490
L75N 57+90E L75N 58+20E L75N 58+50E L75N 58+80E L75N 59+10E	1 1 1 2 2	79 102 87 106 133	27 36 43 32 63	117 117 118 101 86	.8 .5 1.1 .7 .7	38 46 38 35 30	19 26 21 23 20	792 736 826 887 565	4.16 4.28 4.16 4.20 4.00	7 6 6 9	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	3 <2 <2 <2 <2 3	26 29 28 27 24	<.2 <.2 .3 <.2 <.2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<	97 109 101 97 94	.25 .28 .28 .23 .20	.213 .108 .141 .176 .169	7 6 8 9 7	54 64 57 52 41	.98 1.23 1.04 1.03 .93	117 151 157 187 113	.17 .21 .19 .19 .19	3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3.95 3.50 3.74 3.50 4.47	.02 .02 .02 .02 .02	.11 .11 .09 .10 .09	<2 <2 <2 <2 <2 <2	14 10 13 25
L75N 59+40E L75N 59+70E RE L75N 59+70E L75N 60+00E L73N 50+10E	2 2 1 1	131 139 149 81 38	53 53 56 59 12	95 102 110 138 84	.5 .9 1.0 .4 .3	29 27 29 24 27	22 25 27 29 13	645 1118 1227 4168 427	4.92 4.46 4.71 4.70 3.07	5 2 5 4 <2	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2	2 <2 <2 <2 <2 <2	33 42 45 36 26	.4 <.2 .4 .9 <.2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	119 106 111 108 64	.27 .34 .36 .28 .29	.085 .093 .099 .163 .131	9 10 10 8 7	41 35 39 35 43	1.12 1.12 1.20 .90 .68	146 190 208 326 103	.20 .20 .20 .19 .15	ও ও ও ও ও	3.29 3.47 3.74 2.53 4.54	.01 .01 .01 .02 .02	. 12 . 14 . 15 . 13 .08	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	18 14 13 19 3
L73N 50+40E L73N 50+70E L73N 51+00E L73N 51+30E L73N 51+60E	1 <1 1 1	33 18 43 59 57	14 6 12 23 16	85 38 98 109 86	.5 .3 .6 .4 1.1	26 11 30 35 49	17 8 12 16 29	608 246 584 641 704	3.76 1.78 3.24 4.72 4.11	<2 3 <2 4	<5 <5 5 5 5	<2 <2 <2 <2 <2 <2	<2 <2 <2 4 <2	26 21 29 28 31	<.2 <.2 .3 .2 .2	<2 2 2 2 2 2 2 2 2	<2 <2 <2 2 2 <2	73 23 70 75 97	.31 .26 .38 .28 .31	.206 .064 .091 .263 .058	6 6 10 11	45 12 50 54 75	.63 .16 .75 .92 1.08	111 65 94 136 136	. 18 . 13 . 16 . 15 . 22	उ उ उ उ	3.84 4.77 3.64 3.69 3.53	.03 .02 .02 .02 .02	.07 .04 .09 .12 .11	<2 <2 <2 <2 <2 <2 <2	7 2 21 9 9
L73N 51+90E L73N 52+20E L73N 52+50E L73N 52+80E L73N 52+80E L73N 53+10E	1 1 <1 <1	75 76 43 39 66	16 18 15 14 12	115 98 87 79 92	.4 .5 .3 .6	50 41 34 31 32	21 25 18 17 18	432 413 671 585 1072	4.61 4.17 4.10 3.45 3.76	9 4 2 4 6	<5 <5 <5 <5	<2 <2 <2 <2 <2	3 2 2 2 2 2	27 24 26 21 34	.2 <.2 <.2 <.2	<2 <2 <2 <2 <2	4 <2 <2 <2 3	102 93 93 74 86	.32 .27 .29 .26 .38	.242 .113 .197 .165 .198	8 9 6 4	78 63 63 52 52	1.33 1.05 .85 .78 .85	131 140 127 91 146	. 16 . 20 . 17 . 16 . 18	<3 <3 <3 <3 <3	4.55 4.89 3.53 3.95 2.81	.02 .02 .02 .02 .03	.13 .11 .07 .08 .13	2 3 ~2 ~2 ~2	94 10 5 7 7
STANDARD C3/AU-S	25	61	36	158	5.7	35	12	747	3.46	55	22	4	16	29	24.1	14	23	77	.60	.086	17	157	.67	148	.09	18	1.87	.04	.16	18	43

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data____ FA

Page 6

F.R. ANLULA																											<u></u>				
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni PPm	Co ppm	Mn ppm	Fe %	As ppm	U ppn	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V PPM	Ca %	P %	La	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Nta %	к %	u ppm	Au* ppb
L73N 53+40E L73N 53+70E L73N 54+00E L73N 54+30E L73N 54+60E	1 1 1 1 1 1 1	84 62 60 84 63	15 18 16 16 19	89 95 96 114 98	<.3 .7 .3 .6 .5	38 33 45 67 40	18 16 20 24 16	561 764 890 440 374	3.78 3.38 3.72 4.24 4.41	41 4 8 4 12	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2	<2 <2 2 2 2 2	31 31 31 27 29	.3 <.2 <.2 <.2 <.2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	5 <2 <2 6 2	79 74 82 100 99	.38 .35 .34 .23 .28	.180 .098 .192 .121 .224	10 7 8 7 6	65 56 60 83 63	1.09 .89 .93 1.34 .88	143 108 143 161 114	. 14 . 15 . 17 . 22 . 20	<3 4 <3 3 <3 4 <3 5 <3 4	.65 .30 .34 .46 .79	.03 .03 .03 .02 .03	.19 .11 .10 .14 .12	<2 <2 <2 <2 <2 <2 <2	24 10 7 10 9
L73N 54+90E L73N 55+20E L73N 55+50E L73N 55+80E L73N 55+80E L73N 56+10E	1 1 1 1	69 46 61 66 47	16 14 18 25 17	83 87 119 175 81	.4 .4 .5 .4	47 31 42 45 34	21 21 19 24 15	355 1053 406 764 535	3.84 3.59 3.87 4.26 3.36	4 5 10 6 <2	হ হ হ হ হ হ হ হ হ হ হ হ হ হ হ হ হ হ	<2 <2 <2 <2 <2 <2	2 \$2 2 2 2 2	26 23 24 24 18	<.2 <.2 <.2 <.2 <.2	<2 <2 <2 <2 <2 <2	<2 <2 3 5 <2 3 5 <2	89 80 89 91 72	.23 .23 .22 .22 .18	.101 .151 .129 .174 .101	6 5 8 8 8	54 48 55 57 48	.91 .72 1.01 1.11 .71	156 113 126 157 114	. 22 . 19 . 20 . 16 . 16	<3 5 <3 2 <3 4 <3 4 <3 4	.08 .60 .83 .86 .73	.02 .02 .02 .02 .02	.11 .08 .11 .13 .07	<2 <2 <2 <2 <2 <2 <2	8 11 6 3 5
L73N 56+40E L73N 56+70E RE L73N 56+70E L73N 57+00E L73N 57+30E	1 1 1 2 1	36 45 47 88 110	14 14 14 19 24	89 174 179 110 166	.4 .5 .6 .3	29 28 29 33 29	15 17 18 20 30	659 615 627 334 1136	3.68 4.10 4.22 5.24 4.24	5 14 16 30 45	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	26 41 42 37 5 3	< 2 7 4 7	<2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2	80 98 101 105 94	.28 .54 .55 .40 .69	.120 .125 .128 .050 .237	5 6 8 9	51 50 53 56 43	.63 1.01 1.04 .80 .82	98 131 135 112 142	.15 .20 .20 .26 .13	<3 2 <3 2 <3 2 <3 2 <3 2	5.66 5.00 5.11 5.99 5.03	.02 .03 .03 .02 .02	.07 .16 .16 .12 .14	<2 <2 <2 <2 <2 <2	4 6 4 6
L73N 57+60E L73N 57+90E L73N 58+20E L73N 58+50E L73N 58+80E	1 1 1 1	141 64 509 48 45	33 21 56 22 19	147 119 199 146 130	.5 .4 4.2 .7 .7	39 29 71 26 22	34 21 53 22 12	1452 846 1780 725 688	4.29 4.20 4.20 4.73 3.71	20 12 96 14 12	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	45 40 102 33 22	.9 <.2 2.6 .3 .2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	<2 <2 7 3 <2	104 99 117 98 85	.56 .47 1.17 .35 .24	.073 .066 .203 .325 .117	8 8 52 6 8	54 53 157 49 43	1.03 .94 1.19 .75 .55	101 128 202 164 96	.16 .19 .12 .19 .16	<3 <3 <3 <3 <3 <3 <3	8.12 2.57 5.41 5.82 3.57	.02 .02 .03 .02 .02	.12 .16 .23 .11 .08	<2 <2 <2 <2 <2 <2 <2 <2	11 8 22 3 8
L73N 59+10E L73N 59+40E L73N 59+70E L73N 60+00E L73N 60+10E	1 1 2 1 ≺1	53 73 47 82 55	17 21 31 17 11	143 152 170 187 50	.3 .3 .5 <.3 .5	18 28 22 51 31	16 18 15 22 17	978 633 1175 809 596	4.13 3.50 3.55 4.58 3.75	17 15 12 17 4	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2	25 25 19 52 44	.8 <.2 1.0 .2 <.2	<2 <2 <2 <2 <2 <2	2 <2 <2 4 <2	80 75 67 101 80	.24 .27 .15 .45	.412 .158 .138 .253 .160	7 6 8 15 5	37 37 31 65 60	.64 .80 .48 1.48 .84	98 116 129 281 111	.11 .16 .12 .25 .17	<3 <3 <3 <3 <3	4.09 5.35 5.39 4.76 3.11	.02 .02 .02 .02 .03	.11 .09 .07 .19 .10	<2 <2 <2 <2 <2 <2	7 9 3 6 4
L71N 50+40E L71N 50+70E L71N 51+00E L71N 51+30E L71N 51+60E	<1 1 1 1	51 52 41 53 50	9 20 14 8 17	65 29 78 89 98	.3 .6 .4 .5 .3	36 26 31 71 43	16 11 15 25 21	727 435 602 432 509	3.30 4.12 3.95 3.99 4.07	<2 3 9 <2 6	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	<2 <2 2 2 2 2	36 23 46 21 32	<.2 <.2 .3 <.2 <.2	<2 <2 <2 <2 <2	<2 4 <2 6 2	73 103 89 85 90	.45 .28 .48 .23 .41	.234 .041 .200 .088 .077	6 8 5 5 5	66 57 59 66 67	.87 .53 .77 1.17 .95	142 105 181 154 127	. 13 . 30 . 18 . 24 . 21	<3 <3 <3 <3 <3	2.73 2.13 3.48 4.63 3.94	.03 .02 .03 .02 .03	.09 .10 .10 .14 .12	<2 <2 <2 <2 <2 <2	7 22 4 7 5
L71N 51+90E L71N 52+20E L71N 52+50E L71N 52+80E L71N 52+80E L71N 53+10E	<1 1 1 1	30 38 71 47 45	13 23 15 12 18	59 81 71 62 54	.3 <.3 <.3 .3 .3	30 26 50 41 29	15 21 18 20 15	421 648 531 547 589	3.69 3.72 3.70 3.50 3.58	3 21 27 8 8		<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	32 22 39 33 39	<.2 <.2 <.2 <.2 <.2	<2 <2 <2 <2 <2 <2 <2 <2	<2 <2 7 <2 <2	76 68 88 78 75	.33 .23 .51 .40 .47	. 193 . 254 . 110 . 053 . 058	4 7 9 6 9	58 41 73 58 55	.73 .57 1.26 .92 .63	100 121 154 130 131	.18 .17 .16 .21 .21	3 3 3 3 3 3 3	2.99 3.70 3.90 3.92 2.45	.02 .02 .02 .03 .02	.09 .10 .18 .10 .10	< < < < < < < < < < < < < < < < < < <	2 3 12 10 17
STANDARD C3/AU-S	26	66	38	170	6.2	37	12	789	3.69	58	21	4	18	31	25.0	14	24	83	.63	.091	18	172	.68	157	.10	20	2.03	.04	.16	18	49

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Page 7

JER AND TILL																													AL	C ANNULYI	
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca	P	La	Cr	Mg	Ba	Ti	B	AL	Na	ĸ	W	Au*
	ppm	ррт	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	X	X	ppm	ppm	ž	ppm	%	ppm	%	%	%	ppm	ppb
L71N 53+40E L71N 53+70E L71N 54+00E L71N 54+30E L71N 54+60E	1 1 1 <1	56 44 42 38 35	14 8 12 43 16	65 71 79 100 67	.5 .4 .3 .4 .4	33 29 44 30 26	16 15 19 16 14	479 735 547 1132 795	3.20 2.89 3.44 3.17 3.25	12 8 7 10 5	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2	46 60 32 75 22	<.2 .2 <.2 .2 .2 .2 .2	<2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<2 <2 <2 <2 <2 <2 <2 <2 2	69 65 82 74 74	.54 .85 .39 .66 .26	.058 .082 .081 .468 .133	11 8 6 5 6	50 47 60 58 56	.58 .65 .87 .63 .63	153 153 107 264 93	. 18 . 14 . 19 . 14 . 18	उ 3 3 3 3 3 3 3	3.02 2.84 3.70 2.42 2.80	.02 .02 .02 .03 .02	.11 .12 .11 .16 .71	<2 <2 <2 <2 <2 <2 <2 <2	2 12 5 12 4
L71N 54+90E L71N 55+20E L71N 55+50E L71N 55+80E L71N 55+80E L71N 56+10E	1 <1 <1 1 <1	61 66 50 58 41	13 13 23 14 20	133 124 148 116 90	.8 .4 .3 .7 .4	45 58 44 55 3 9	23 26 20 24 20	1092 575 941 663 1238	3.62 3.70 3.61 4.39 3.77	15 15 13 11 15	ৎ ১ ১ ১ ১ ১ ১ ১ ১	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 2 2 2 2 2	40 23 29 23 23	<.2 <.2 <.2 <.2 <.2	<2 <2 <2 <2 <2 <2 <2	2 2 2 2 2 2	85 94 98 127 109	.54 .36 .42 .26 .24	. 199 . 074 . 096 . 105 . 185	7 6 5 6 5	62 68 74 87 62	1.14 1.26 1.34 1.71 1.19	211 162 124 201 192	. 15 . 24 . 25 . 24 . 22	3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3.51 3.78 2.93 4.57 3.69	.03 .03 .04 .02 .04	.16 .15 .17 .13 .12	<2 <2 <2 <2 <2 <2	3 6 2 5 3
RE L71N 56+10E L71N 56+40E L71N 56+70E L71N 57+00E L71N 57+30E	<1 1 <1 <1 1	42 36 36 93 93	21 15 21 22 23	92 86 107 131 151	.4 .4 .6	40 35 32 54 71	20 19 20 22 27	1271 2 395 2 666 2 1213 2 1134 2	3.82 3.59 3.43 3.35 3.56	14 12 10 13 17	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	<2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	<2 2 2 2 2 2 2 2 2 2 2 2	23 24 22 29 31	<.2 <.2 <.2 .3 1.2	<2 <2 <2 <2 <2 <2	<2 3 2 2 2	111 94 84 83 88	.23 .31 .31 .39 .42	.190 .085 .124 .107 .101	5 4 5 6	63 51 51 53 84	1.21 .99 .87 .80 1.05	197 155 132 158 154	.21 .22 .19 .18 .18	ব ব ব ব ব ব	3.80 3.53 3.20 2.96 3.01	.03 .03 .03 .03 .03	.12 .10 .10 .13 .15	<2 <2 <2 <2 <2 <2	4 5 3 9 3
171N 57+60E 171N 57+90E 171N 58+20E 171N 58+50E 171N 58+80E	<1 1 <1 1 1	66 75 74 63 55	15 16 17 17 19	114 108 115 149 168	.8 .5 .8 .7 .3	46 41 40 42 37	21 23 25 27 24	997 1127 1081 1044 1630	3.19 2.85 3.41 4.02 3.68	10 10 12 12 10	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 <2 <2 <2 <2 <2	33 50 47 47 41	.7 .5 .7 .4 1.3	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	77 72 84 99 86	.46 .69 .59 .57 .56	.088 .114 .064 .102 .127	6 11 8 7 7	73 67 70 85 66	.87 .93 .85 1.01 .81	123 108 183 143 179	.15 .10 .18 .17 .17	ও ও ও ও ও	2.75 3.01 2.75 3.06 3.54	.03 .03 .03 .03 .03	. 13 . 11 . 14 . 14 . 12	<2 <2 <2 <2 <2 <2	4 2 7 4 3
L71N 59+10E L71N 59+40E L71N 59+70E L71N 60+DDE L71N 60+30E	1 1 1 1	55 46 44 75 49	22 15 18 25 20	171 119 109 150 197	<.3 .6 .7 .9	30 33 30 36 36	24 20 18 25 21	1396 654 508 1093 1613	3.83 3.67 3.72 3.90 3.27	14 11 10 21 14	১ ১ ১ ১ ১ ১ ১ ১ ১	<2 <2 <2 <2 <2 <2	₹2 2 2 2 2 2 2	36 24 24 29 31	.5 <.2 <.2 <.2 <.2	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	98 96 91 102 80	.38 .30 .26 .30 .38	.147 .133 .122 .200 .134	6 6 6 6 5	51 52 51 60 59	.82 .90 .82 .99 .86	159 127 120 129 180	.18 .20 .19 .17 .17	<3 <3 <3 <3	3.18 3.76 4.19 4.08 3.34	.03 .03 .02 .02 .03	.11 .11 .10 .13 .11	<2 <2 <2 <2 <2 <2	23 3 4 5 5
L71N 60+60E L71N 60+90E L71N 61+20E L71N 61+50E L71N 61+80E	1 <1 1 1	50 140 44 46 56	29 28 23 15 20	141 218 139 157 155	.7 .8 .8 .7 .9	33 55 30 48 36	24 33 20 21 19	1356 1315 1076 880 851	4.04 4.21 3.86 3.82 3.84	21 31 13 12 12	ৎ ১ ১ ১ ১ ১ ১ ১ ১	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	30 39 24 17 23	.3 .9 .3 <.2 <.2	<2 <2 <2 <2 <2 <2	<2 <2 2 3 2	104 95 89 83 87	.30 .38 .23 .19 .25	.158 .278 .163 .116 .229	7 6 5 4 6	60 113 98 138 94	1.01 1.13 .75 1.07 .93	170 141 132 87 109	. 16 . 14 . 16 . 18 . 14	3 3 3 3 3 3 3	3.19 3.81 2.68 3.69 3.52	.02 .02 .02 .02 .02	.11 .19 .12 .15 .12	< <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	18 9 5 1 3
L71N 62+10E L71N 62+40E L71N 62+70E L71N 63+00E L71N 63+30E	1 1 1 1	52 183 105 64 95	21 25 50 81 78	115 298 235 275 318	.8 .9 .5 .7 .7	22 38 35 25 31	11 21 22 23 28	701 1609 1895 2310 2678	3.45 3.59 3.72 3.98 4.13	13 53 26 45 46	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	19 70 42 34 50	<.2 2.8 1.6 1.7 1.3	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	83 90 92 96 104	.21 1.12 .57 .34 .59	. 145 . 118 . 096 . 136 . 200	6 9 10 12 7	60 68 66 39 45	.62 .98 .80 .74 .94	81 138 119 254 217	. 12 . 13 . 13 . 14 . 15	उ उ उ उ	2.47 3.22 2.54 3.12 3.16	.01 .03 .02 .02 .02	.10 .21 .16 .12 .15	<2 <2 <2 <2 <2 <2	4 5 5 8
STANDARD C3/AU-S	27	6 8	34	172	6.2	38	13	812	3.42	52	23	4	19	32	26.8	15	25	85	.65	.091	18	175	.66	158	. 10	22	2.11	.04	. 17	21	44

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ACHE MHALYTICAL

Orvana Minerals Corp. FILE # 97-3331

Page 8

	A	
L		

ACHE ANALYTICA

ACHE ANALYTICAL																															
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppn	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P La % ppn	a (n pj	or Mg	Ba ppm	Ti X	₿ ppm	Al %	Na %	к %	₩ mqq	Au* ppb	
L71N 63+60E L71N 63+90E L71N 64+20E L71N 64+50E L71N 64+80E	1 1 1 1	103 144 113 109 104	39 47 52 43 49	235 368 299 445 274	.7 .6 .7 .8 .4	46 100 82 95 81	24 32 25 29 29	1402 4 1846 4 1729 4 1487 4 1799 4	4.55 4.83 4.03 4.47 4.28	28 25 27 3 4 32	5 5 5 5 5 5 5	<2 <2 <2 <2 <2 <2 <2	<2 2 2 2 2 3	32 45 55 33 31	.6 1.7 2.3 1.7 1.3	<2 <2 <2 <2 <2 <2 <2	3 <2 2 <2 <2 <2	105 108 87 97 95	.32 .10 .51 .00 .71 .00 .41 .12 .29 .12	10 8 14 11 17 9 13 8 19 6	8 (1 1! 2 1' 8 1/ 6 1:	52 1.20 53 1.62 18 1.26 46 1.61 37 1.51	120 151 100 102 125	.18 .19 .13 .19 .19	5 3 3 3 3	3.49 3.37 3.03 3.61 2.83	.02 .02 .02 .02 .02	. 12 . 17 . 14 . 17 . 15	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	9 353 5 3 7	
L71N 65+10E RF 171N 65+10F	1	104 104	76 77	234 234	.6 .6	61 61	29 29	1904 4 1906 4	4.15 4.20	25 24	<5 <5	<2 <2	<2 <2	55 55	1.9 1.6	<2 <2	3 <2	91 94	.61 .12 .61 .1	27 d 30 d	5	95 1.20 95 1.22	209 210	. 15 . 15	<3 <3	2.14 2.16	.02 .02	. 17 . 17	<2 2	13 4	

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

ACME AT LY	FICAL	۲.A	BOR	ATOR	IRS	LTD	•	8	52 E	. на	STI	NGS	ST.	V' V	COUV	ER :	BC	V6A	1R6		PHO	ONE ((604)	253	-315	58 FAX	(604	1753	-17	16
£ £					<u>0r</u>	van	<u>a M</u> 710	<u>ine</u> 1177	GE ral w. H	OCH <u>s C</u> astin	EMI OTP 95 St	CAL Pl	AN ROJ	ALL ECT F BC	SIS ST V6E 2	CE EWA G	RTI <u>RT</u> Submi	FIC Fi	ATE le i by: R	₿ 9 . Fre	7 - 4: derīci	293 ks							<u>A</u>	
SAMPLE#	Mo DOM	Cu pom	Pb ppm	Zn	Ag	Ni	Co PPM	Mn ppm	Fe X	As	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppn	Bi ppm	V PPM	Ca %	P X	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	BAL ppm %	Na X	K X	w ppm	Au* ppb
81N 48+6DE 81N 48+9DE 81N 49+2DE 81N 49+2DE 81N 49+5DE 81N 49+8DE	1 1 <1 1	70 106 68 157 132	19 15 14 11 16	82 92 79 75 92	.3 <.3 <.3 <.3 <.3	16 29 19 33 30	14 19 16 21 23	1229 1042 562 472 1066	3.82 4.39 5.04 5.54 5.66	5 4 4 8 5	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2	2 2 2 <2 3	38 35 50 48 40	.3 <.2 .2 .3 <.2	ও ও ও ও ও ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ	<3 <3 <3 5 ≤3	107 118 147 166 162	.39 .33 .52 .56 .42	. 116 . 136 . 141 . 183 . 225	10 11 10 8 11	23 49 29 56 53	.43 .63 .48 .77 .75	153 132 136 75 150	.14 .16 .14 .13 .16	<3 3.03 <3 3.47 <3 2.81 <3 2.45 <3 2.93	.02 .02 .02 .02 .02	.06 .08 .08 .08 .08 .10	< < < < < < < < < < < < < < < < < < < <	9 8 18 19 12
80N 60+00E 80N 60+30E 80N 60+60E 80N 60+90E 80N 61+20E	1 1 1 2	191 175 120 134 110	37654	104 110 116 121 124	.3 <.3 .5 .5	26 27 22 24 21	24 23 18 20 21	602 440 542 896 712	6.59 7.00 5.15 5.38 5.21	9 9 9 7 17	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	50 34 24 27 32	<.2 <.2 .3 .5	00000 00000	3 3 3 3 3 3 3 3 3 3 3 3 3	164 178 120 134 119	.53 .36 .23 .23 .36	.306 .180 .259 .191 .310	9 8 8 7 6	44 49 34 41 42	1.06 .97 .76 .89 .80	124 126 126 141 125	.15 .17 .19 .17 .12	<3 3.29 <3 3.57 <3 4.81 <3 3.65 <3 3.50	.01 .01 .02 .01 .01	.18 .12 .10 .12 .13	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	40 46 17 26 53
RE 80N 61+20E 80N 61+50E 80N 61+80E 79N 60+30E 79N 60+60E	2 4 2 1 6	112 225 92 124 88	8 11 12 <3 22	127 116 123 105 189	.6 <.3 .7 .7 <.3	21 31 25 21 28	21 22 18 19 20	726 791 866 704 1569	5.40 4.84 4.17 5.71 4.24	16 16 10 9 13	<8 <8 <8 <8 <8	<> < < < < < < < < < < < < < < < < < <	<2 <2 <2 <2 <2 <2	32 64 33 67 59	.6 .5 .8 .8 3.0	3335 5555 5	4 3 6 4 5	124 122 94 151 109	.37 .66 .34 .76 .83	.313 .078 .238 .143 .108	6 10 6 7	43 52 46 45 48	.81 1.39 .86 .83 1.13	128 127 136 102 121	.12 .14 .14 .14 .14 .13	<3 3.58 <3 3.36 <3 2.79 <3 2.33 <3 2.08	.01 .01 .01 .01	. 13 . 19 . 13 . 12 . 22	< < < < < < < < < < < < < < <> <> </th <th>22 25 16 39 8</th>	22 25 16 39 8
STANDARD C3/AU-S	25	63	32	166	5.3	35	12	724	3.48	55	22	3	18	30	23.4	15	23	81	.58	.085	18	161	.64	146	.10	21 1.97	.04	. 16	22	44

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. - SAMPLE TYPE: SOIL AU* - AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED.(10 GM) Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: AUG 11 1997 DATE REPORT MAILED: AUG 21/97 SIGNED BY A. A. D. TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS

BEOCHEMICAL ANAL SIS CERTIFICATE Page 1 Page 1 SWPLEF Page 1 Page 1 SWPLEF Page 1 Page 1 Page 1 SWPLEF Page 1 Page 2 Page 2 <th col<="" th=""><th>ACME A</th><th>UYTI(</th><th>CAI</th><th>. LA</th><th>BOR</th><th>ATOR</th><th>IES</th><th>LTD</th><th>•</th><th>B</th><th>52 E</th><th>. E2</th><th>STI</th><th>IGS</th><th>ST.</th><th>V - V</th><th>COUV</th><th>ER 1</th><th>BC</th><th>V6A</th><th>1R6</th><th></th><th>PH</th><th>ONE (</th><th>604)</th><th>253</th><th>-315</th><th>8 1</th><th>FAX (</th><th>604`</th><th>°53</th><th>171</th><th>6</th></th>	<th>ACME A</th> <th>UYTI(</th> <th>CAI</th> <th>. LA</th> <th>BOR</th> <th>ATOR</th> <th>IES</th> <th>LTD</th> <th>•</th> <th>B</th> <th>52 E</th> <th>. E2</th> <th>STI</th> <th>IGS</th> <th>ST.</th> <th>V - V</th> <th>COUV</th> <th>ER 1</th> <th>BC</th> <th>V6A</th> <th>1R6</th> <th></th> <th>PH</th> <th>ONE (</th> <th>604)</th> <th>253</th> <th>-315</th> <th>8 1</th> <th>FAX (</th> <th>604`</th> <th>°53</th> <th>171</th> <th>6</th>	ACME A	UYTI(CAI	. LA	BOR	ATOR	IES	LTD	•	B	52 E	. E2	STI	IGS	ST.	V - V	COUV	ER 1	BC	V6A	1R6		PH	ONE (604)	253	-315	8 1	FAX (604`	°53	171	6
SAPLE? Mo Cu Pp X X Pp X Z <thz< th=""> Z Z <thz< td=""><td>44</td><td></td><td></td><td></td><td></td><td><u>Or</u></td><td>van</td><td>a M</td><td><u>ine</u> 710 -</td><td><u>ral</u> 117</td><td>GE <u>s</u>C / W. H</td><td>OCH OTP astin</td><td>EMI(Pl</td><td>CAL ROJI Vanc</td><td>AN. ECT</td><td>ALIS STI BC N</td><td>SIS EWAI 762 20</td><td>CE <u>2T</u> 3 5</td><td>RTI Fi Submi</td><td>FIC le : tted </td><td>ATE # 9 by: R</td><td>7-5: . fre</td><td>260 jerici</td><td>(5</td><td>Pag</td><td>e l</td><td></td><td></td><td></td><td></td><td>4</td><td></td><td></td></thz<></thz<>	44					<u>Or</u>	van	a M	<u>ine</u> 710 -	<u>ral</u> 117	GE <u>s</u> C / W. H	OCH OTP astin	EMI(Pl	CAL ROJI Vanc	AN. ECT	ALIS STI BC N	SIS EWAI 762 20	CE <u>2T</u> 3 5	RTI Fi Submi	FIC le : tted	ATE # 9 by: R	7-5: . fre	260 jerici	(5	Pag	e l					4			
LBB Sp-TDE 221 15 91 .4 323 672 72 3 .6 -2 237 .6 4 -3 132 37 .70 81 221 -12 32 23 .00 02 00 02 02 03 200 02 03 200 02 07 02 11 02 02 10 02 11 02 11 02 11 02 11 02 11 03 10 15 2.2 02 10 22 15 21 15 21 15 21 15 21 15 21 15 21 21 21 <td>AMPLE#</td> <td>M PP</td> <td>10 201</td> <td>Cu ppm</td> <td>Pb ppm</td> <td>Zn ppm</td> <td>Ag ppm</td> <td>Ni ppm</td> <td>Co ppm</td> <td>Min Pism</td> <td>Fe X</td> <td>As ppm</td> <td>U ppm</td> <td>Au ppn</td> <td>Th ppm</td> <td>Sr ppm</td> <td>Cd pom</td> <td>Sb ppm</td> <td>Bi ppm</td> <td>V ppm</td> <td>Ca %</td> <td>P X</td> <td>La ppm</td> <td>Cr ppm</td> <td>Mg %</td> <td>Ba ppm</td> <td>Ti %</td> <td>B B</td> <td>AL X</td> <td>Na X</td> <td>К %</td> <td>N bbw</td> <td>Au* ppb /</td>	AMPLE#	M PP	10 201	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Min Pism	Fe X	As ppm	U ppm	Au ppn	Th ppm	Sr ppm	Cd pom	Sb ppm	Bi ppm	V ppm	Ca %	P X	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B B	AL X	Na X	К %	N bbw	Au* ppb /	
LBBN 51+60E 1 94 34 128 44 42 5 48 < 2 3 35 46 3 45 92 78 68 109 18 5.2.98 02 109 < 2 109 < 2 109 < 2 2.9 109 < 2 109 < 2 2.9 2.9 2.8 119 < 2 109 < 2 2.9 109 2.8 109 2.8 2.9 0.33 159 7 68 74 109 18 5 2.8 2.2 2.3 35 14 76 68 77 102 77 1.02 77 1.02 77 1.02 77 1.02 77 1.02 77 1.02 77 1.02 77 1.02 77 1.02 77 1.02 77 1.02 77 1.02 77 1.02 77 1.02 77 1.02 77 1.02 77 1.02 77 1.02 71 1.02 71 1.02 71 1.11 2.2 1.11<	88N 50+10E 88N 50+40E 88N 50+70E 88N 51+00E 88N 51+30E		<1 <1 1 2 1	221 126 108 95 66	15 16 17 26 34	91 135 126 110 276	.4 <.3 .4 <.3 .3	43 36 49 46 33	23 23 22 23 23	672 1732 825 1152 1777	4.32 3.78 4.05 3.86 3.43	3 2 4 3	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 2 3 4 3	37 36 37 35 30	.6 .5 .5 .6 2.1	4 3 3 3 3 3	3 3 3 3 3 3	134 91 101 99 78	.37 .33 .46 .37 .27	.130 .249 .149 .151 .301	3 6 7 11 8	75 56 78 72 50	.79 .62 .76 .73 .56	81 127 80 92 156	.21 .17 .16 .18 .12	<3 3 4 4 3	2.80 3.02 2.90 3.15 3.02	.02 .02 .02 .02 .02	.10 .09 .11 .10 .09	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	6 5 4 4 1	
LBBN 53+10E 1 127 26 137 < 3 44 27 895 4.38 5 < 8 < 2 2 31 .7 < 3 < 3 < 17 < 3 < 17 < 3 < 17 < 2 < 17 < 2 < 33 < 17 < 2 < 37 < 2 < 37 < 2 < 37 < 2 < 27 < 18 < 4 < 2 < 2 < 2 < 37 < 2 < 17 < 18 < 3 < 2 < 2 < 2 < 3 < 37 < 21 < 33 < 37 < 10 < 72 < 10 < 72 < 10 < 72 < 10 < 72 < 10 < 72 < 10 < 72 < 33 < 37 < 71 < 64 < 52 < 57 < 37 < 71 < 107 75 77 < 73 $77 73 77 73 77 73 77 73 77 73 77 73 77 73 77 73 77 73 77$	88N 51+60E 88N 51+90E 88N 52+20E 88N 52+50E 88N 52+80E	~	1 <1 <1 <1	94 88 110 90 89	34 40 30 31 20	128 126 104 97 137	.4 <.3 <.3 <.3 <.3	44 42 50 48 56	25 26 26 22 26	961 2378 760 665 1037	4.04 3.79 4.06 3.69 3.88	5 7 8 5 8	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	<2 <2 <2 <2 <2 <2	3 <2 <2 2 2	39 35 36 29 34	.6 .4 .5 .5 .7	50000 5000	3 3 3 3 3 3 3 3 3 3	92 90 105 94 93	.38 .33 .33 .29 .31	.149 .159 .114 .136 .232	9 7 7 8 5	76 68 76 77 77	.81 .74 .92 .93 1.02	109 185 110 87 97	. 18 . 16 . 20 . 19 . 20	5 4 3 3 3	2.98 2.69 3.12 3.21 2.97	.02 .02 .02 .02 .02	.10 .09 .09 .12 .11	~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~	4 10 10 8 46	
L88N 54+60E 1 100 18 96 .9 50 16 902 3.00 5 <8	38N 52+80E <1 89 20 137 <.3 56 26 1037 3.88 8 <8 <2 2 34 .7 <3 <3 93 .31 .232 5 77 1.02 97 .20 <3 2.97 .02 .11 <2 46 B8N 53+10E 1 127 26 137 <.3																																	
RE L86N 50+70E 1 97 28 197 <.3 47 30 1839 4.08 4 <8 <2 <2 44 .8 <3 <3 98 .41 .278 8 73 .78 181 .11 <3 2.89 .02 .12 <2 L86N 51+30E <1 81 91 111 <.3 40 23 1512 3.72 4 <8 <2 <2 51 .8 <3 93 .46 .14 .14 .51 .02 .12 <3 2.85 .02 .13 <2 2.85 .02 .13 <2 .13 <2 .24 .3 .3 .3 .21 1090 .44 .8 .5 .3 .3 .10 .11 .3 .28 .02 .12 .2 .2 .2 .2 .11 .23 .28 .02 .12 .2 .2 .2 .41 .8 .3 .3 .30 .20 .11 .2 .2 .2 <td colspan="14">SN 53+40E <1</td> 76 37 92 <.3	SN 53+40E <1																																	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	E L86N 50+70E 86N 51+00E 86N 51+30E 86N 51+60E 86N 51+90E		1 <1 <1 <1	97 71 88 101 80	28 21 19 26 18	197 124 111 121 132	<.3 <.3 <.3 <.3 <.3	47 40 38 33	30 23 23 21 20	1839 1121 1512 1090 1370	4.08 3.72 3.93 3.99 3.32	4 3 4 6	<8 <8 <8 <8	<2 <2 <2 <2 <2	<2 <2 3 2 2	44 51 58 45 41	.8 .5 .5 .8	3 3 3 3 3 3 3 3	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	98 93 99 102 84	.41 .46 .44 .41 .39	.278 .194 .159 .214 .259	8 8 8 6	73 54 65 60 45	.78 .67 .86 .88 .67	181 149 210 137 231	.11 .12 .12 .16 .12	ଏ ଏ ଏ ଏ ଏ ଏ ଏ ଏ ଏ ଏ ଏ ଏ ଓ	2.89 2.85 2.64 2.91 2.97	.02 .02 .02 .01 .02	- 12 - 13 - 12 - 15 - 14	<2 <2 <2 <2 <2 <2	8 3 5 13 5	
L86N 53+70E 2 459 21 100 <.3 61 41 1104 4.83 12 <8 <2 <2 40 .7 <3 <3 147 .37 .173 6 91 1.48 151 .20 <3 3.60 .01 .21 <2 L86N 54+DDE 1 278 14 81 <.3	86N 52+20E 86N 52+50E 86N 52+80E 86N 53+10E 86N 53+40E	•	<1 1 4 2 1	130 205 338 261 200	27 31 22 21 30	123 125 151 137 140	.3 <.3 <.3 <.3 <.3	33 37 58 129 67	26 28 31 40 30	1490 1620 1012 1508 1123	3.94 4.79 5.04 4.37 3.65	8 17 9 8 4	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	3 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	47 41 40 51 40	.6 1.1 1.0 1.1 1.2	ও ও ও ও ও	ଏ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ	95 136 147 122 93	-33 -40 -34 -48 -37	.317 .190 .188 .179 .162	7 7 5 5	50 59 83 107 84	.71 1.07 1.20 1.37 .95	304 234 102 266 161	.15 .18 .20 .19 .18	3 3 3 3 3 3	2.92 2.82 3.36 3.44 2.71	.02 .01 .01 .01 .01	. 14 . 22 . 29 . 19 . 12	<2 <2 <2 <2 <2 <2	6 22 28 8 561	
	86N 53+70E 86N 54+0DE 86N 54+30E 86N 54+6DE 86N 54+90E		2 1 2 1 <1	459 278 171 108 114	21 14 27 19 20	100 81 89 91 127	<.3 <.3 <.3 <.3 .3	61 50 30 26 59	41 33 22 24 27	1104 699 1144 764 1756	4.83 4.85 3.69 5.23 5.10	12 5 4 3 3	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	40 41 25 29 40	.7 .5 .6 .7	८३ ८३ ८३ ८३ ८३	<3 <3 <3 <3 <3 <3 <3 <3	147 140 90 145 131	.37 .37 .20 .24 .33	.173 .146 .151 .198 .176	6 5 6 7	91 81 41 38 95	1.48 1.31 .77 1.06 1.33	151 134 161 118 331	.20 .22 .19 .21 .20	3 3 3 3 3 3 3 3	3.60 2.98 3.59 3.74 3.47	.01 .01 .01 .01	.21 .19 .10 .14 .20	<2 <2 <2 <2 <2 <2 2	71 51 20 15 13	
STANDARD C3/AU-S 25 65 41 160 5.6 39 13 773 3.48 44 16 <2 19 30 24.0 12 20 83 .60 .087 17 176 .62 137 .08 20 1.99 .04 .16 17	TANDARD C3/AU-	- <u>s ;</u>	25	65	41	160	5.6	39	13	773	3.48	44	16	<2	19	30	24.0	12	20	83	.60	.087	17	176	.62	137	.08	20	1.99	.04	. 16	17	45	
ICP500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNC3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. - SAMPLE TYPE: SOIL AU* - AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED.(10 GM) - Samples beginning 'RE' are Refuns and 'RRE' are Reject Refuns.) 	ICP - FHIS - SAM Sampl	.500 LEACH PLE 1 es be) GRAN I IS F YPE: ginni	SAMP ARTIA SOIL	PLE IS AL FOI RET a	S DIG R MH AU* - re Re	ESTED FE SR AQUA FURS	WITH CA P -REGI and (I	3ML 3 LA CR A/MIBH RRE1 a	S-1-2 MG B CEXTR	HCL-H A TI ACT, <u>ject</u>	NC3-H B W A GF/AA <u>Refur</u>	20 AT ND LI FINI	95 D MITED SHED.	EG. C FOR (10 G	FOR NAK M37	ONE H AND A	iour , P	AND IS	DILU	TED 1	10 1 0	ML WI	(TH WA	TER.						
DATE RECEIVED: SEP 11 1997 DATE REPORT MAILED: Sept 22/97 SIGNED BY	DATE RE	CEIV	ED	: 5	EP 1'	1 1993	D.	ATE	REP	ORT	MAI	LED:	Se	pt	22	197	SIC	INED	BY	· :	<u>بب</u>		-p.10	YE, C	LEON	IG, J.	WANG;	CERT	IFIED	B.C.	ASSA'	ERS		
All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only. Data FA	Ali results	s are d	cons	ider	ed th	le cor	fider	ntial	ргор	erty	of the	clie	nt. A	cme a	ssume	s the	liab	iliti	es fo	r act	ual d	cost c	/ f the	anal	ysis	only.				Dat	B	FA		

Orvana Minerals Corp. PROJECT STEWART FILE # 97-5260

Page 2

ALAC AND THOSE																															
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co pop	Mn nom	Fe Z	As	U DOM	Au	Th	Sr	Cd	Sb	Bi	V	Ca V	P	La	Сг	Mg	Ba	Ti "	B	Al	Na 7	ĸ	¥	Au*
	F F F F F F F F F F F F F F F F F F F	- PPin	PPIII	Print I	P P-1	P.P		Print and a second		Pr pr ni	P-P-III	Phil	pipin	Pip	PP=		+7+***	PP40			Phil	Ppm	~	Phu	~	Phur.	~			- hôn	, 040
L84N 50+10E	<1	129	29	111	.6	32	21	1725	3.88	6	<8	<2	3	44	.8	<3	<3	91	.34	.186	9	49	.59	244	.17	4 2	.54	.02	.08	<2	18
L84N 50+40E	1	157	- 33	- 79	.5	- 36	22	1888 1	3.97	5	<8	<2	2	52	.7	<3	<3	106	.39	.081	10	55	.68	142	.17	62	2.43	£02	.10	<2	16
L84N 50+70E	1	130	32	94	.7	- 31	22	1845 4	4.29	8	<8	<2	2	55	.5	3	<3	114	.41	.204	9	49	.63	144	.12	4 2	2.51	.02	.09	<2	9
L84N 51+00E	2	160	27	122	.5	47	24	1575 4	4.60	5	<8	<2	4	59	.9	<3	<3	108	.45	.177	12	66	99	282	18	7 7	19	02	14	<2	15
L84N 51+30E	<1	163	25	104	.5	40	29	1189	4.57	16	<8	<2	3	60	.6	<3	<3	116	48	181	ō	65	.96	261	.12		(ก่า	01	16	~2	102
											-	-	-			•					-	05		201	••						IVL
L84N 51+60E	<1	135	33	124	.4	40	27	1917	4.40	9	<8	<2	<2	64	1.2	<3	<3	113	.53	.203	13	66	.94	259	. 12	5 3	5.10	.01	.17	<2	26
L84N 51+90E	<1	122	- 34	133	.4	- 47	28	1520 4	4.15	6	<8	<2	<2	65	1.0	<3	<3	98	.57	.163	11	73	1.00	244	.10	63	5.20	.01	-29	<2	33
LB4N 52+20E	2	235	58	378	1.0	34	28	3700 5	5.41	9	<8	<2	3	86	2.7	<3	<3	116	.63	.414	11	52	1.07	457	. 18	93	5.82	.01	.27	<2	30
L84N 52+50E	<1	221	22	243	.7	29	27	2045	5 44	12	<8	<2	<2	59	2.7	<3	<3	148	.51	196	10	46	1.02	238	20	5,7	1 33	01	25	-2	70
184N 52+80F	1	247	37	104	.5	27	27	1527	6.72	14	<8	<2	- Z	87	1 2	~3	~3	207	01	077	õ	20	1 00	127		5.5	> 42	.01	. 27		174
	•	L 47	5.					1321 1			-			0.		~		20,		-017	,	-0	1.07	121	•			.01		~2	120
L84N 53+10E	<1	189	37	195	.6	25	24	2971	5.29	9	<8	<2	3	74	1.2	<3	ও	139	.60	. 187	7	45	1.16	163	.20	7 2	2.74	.01	.23	<2	135
L84N 53+40E	1	210	14	100	.3	34	24	876	4.94	8	<8	<2	<2	42	.6	<3	<3	141	.38	.155	, Q	57	. 99	81	19	Ĺ.	03	01	13	ō	41
L84N 53+70E	1	171	27	98	-4	36	24	1468	4.73	8	<8	<2	<2	51	.5	<3	<3	132	44	100	, o	61	. 9 D	122	10	र र	1.12	01	11	ō	27
RE L84N 53+70E	2	163	27	95	4	34	22	1430	4.55	7	<8	<2	<2	20	.6	<3	<3	124	47	007	ó	62	86	116	18	57	เกก	01	10	<2	86
184N 54+00F	1	128	25	101	Ĺ	28	24	2113	2 02	Å	<8	~ 2	- 25	30	ξ	-7		1/1	3/	177	Ŕ	51	.00	15/	10		> 74	.01	11	-2	14
	•	120		101		20	24				-0		-					1-41			0	21	* []*	124	. 17	10 6		.01	• • • •	~2	10
184N 54+30E	<1	120	48	111	.3	32	24	1831	4.52	7	<8	<2	<2	77	.9	<3	<3	122	.58	. 199	6	56	- 82	268	. 16	5 2	2.71	.01	. 16	<2	17
L84N 54+60E	1	146	52	152	.3	30	22	3099 4	4.21	9	<8	<2	<2	55	1.5	<3	<3	111	.4B	.145	8	43	.82	327	18	7 7	86.	01	15	<2	6
L84N 54+90E	Ż	170	22	102	_4	34	23	1806	4.38	8	<8	<2	<2	4R	.6	~7	~~	110	42	100	Ř	61	02	106	18		> 84	01	17	- 22	28
STANDARD C3/AU-S	24	65	37	157	57	38	13	760	7 57	47	20	×۲. ۲	10	31	23.2	16	20		50	080	10	177	-76	13/	- 10	22 4		101	17	10	20
STANDARD GUTAD-S	L4	0.1		1.27			<u> </u>	107.		- 1	60	Ļ	17		2.1.2		20	<u></u>	7	.007	17	117	101	134	.09	66	1.77	.04	. 17	10	4/

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ACME A	YTIC?	AL L	ABOR	ATO	RIES	LTI).	8	52 E	. H)	STI	NGS	ST.	v	יסטי	TER	BC	V6A	1R6		PH	ONE (604)) 253	-31	58	FAX (604	3.	-171	.6
AA	•								GE	OCH	EMI	CAL	AN	ALY	SIS	CE	RTI	FIC	ATE								te çî				
TT .	 				<u>01</u>	var	<u>1a</u> 710	<u>4ine</u> - 117	eral 7 W. H	<mark>s C</mark> astin	OIP 95 St	. Pl , Vano	ROJ	ECT F BC	ST VGE 2	EWA K3	<u>RT</u> Submi	Fi tted	le by:R	# 9 . fre	7-41 deric	294 ks	-								
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Hn ppn	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca X	р Х	La ppm	Cr ppm	Mg %	Ва ррп	тi Х	B ppm	Al %	Na %	к %	₩ PPm	Au* ppb '
РОМИ-1 РОМИ-2 РОМИ-3 РОМИ-4 РОМИ-5	<1 1 1 1 1	12 15 15 22 24	8 12 9 9 14	42 46 45 66 87	<.3 <.3 <.3 <.3 <.3	10 16 10 21 27	7 6 4 7 8	286 352 265 251 432	1.46 1.88 1.48 2.69 2.15	6 9 2 8 13	<8 <8 <8 <8	< < < < < < < < < < < < < < < < < < < <	3 5 2 6 5	24 22 20 28 67	.3 .3 .5 .5	6 3 3 3 5	3 3 3 3 3 3 3	32 25 32 106 27	.33 .22 .19 .33 .73	.050 .044 .042 .046 .078	24 22 18 20 18	10 12 10 22 18	.28 .34 .32 .34 .40	143 84 46 68 84	.07 .07 .09 .11 .09	3 3 3 3 3 4 4	1.08 1.31 1.13 1.21 1.95	.01 .01 .01 .02 .02	.15 .20 .18 .18 .28	<2 <2 <2 <2 <2 <2 <2 <2	38 4 <1 <1 1
SMM 101 SMM 102 SMM 103 SMM 104 SMM 105	2 1 2 1 1	240 280 315 156 162	57 77 79 35 36	191 173 264 181 191	.8 .4 .4 <.3 .4	41 31 64 19 20	16 13 15 16 18	1321 1080 1386 1161 1309	6.09 3.95 4.53 6.69 7.76	9 5 5 8 7	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	2 <2 2 3 4	84 124 89 74 82	2.6 2.7 2.5 1.9 1.5	3 3 3 3 6	0 0 0 0 0 0 0 0 0 0 0 0 0	196 122 141 213 251	1.30 1.65 1.13 .93 1.03	.124 .160 .099 .115 .129	18 16 18 15 16	64 40 63 41 45	.78 .72 .81 .76 .81	121 123 167 78 79	.13 .09 .14 .13 .14	9 5 3 3 9	2.41 2.07 3.05 1.67 1.78	.04 .02 .03 .03 .03	.25 .22 .25 .25 .30	3 3 2 2 2	14 11 10 46 294
SMM 106 SMM 107 SMM 108 SMM 109 SMM 110	1 <1 1 1 2	141 165 204 243 610	32 32 42 53 63	181 181 212 256 155	.4 .5 <.3 .7 1.0	20 20 20 25 20	18 20 15 16 23	1328 1595 1439 1351 1506	9.79 11.10 4.16 4.49 5.04	11 11 6 5	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	5 4 2 3 3	80 88 92 105 128	1.9 1.7 2.5 2.8 1.8	5 4 <3 <3 3	<3 6 <3 <3 4	313 347 137 143 155	1.02 1.14 1.13 1.22 1.73	.128 .141 .122 .126 .160	15 14 18 20 20	49 48 38 45 27	.78 .84 .83 .80 .79	72 87 94 115 119	.13 .13 .12 .11 .11	6 5 3 6 3	1.69 1.77 1.90 1.96 1.59	.03 .03 .03 .03 .03	.31 .35 .32 .28 .26	2 <2 <2 4 4	144 906 29 16 5
RE SMM 111 SMM 111 SMM 112 SMM 113 SMM 113 SMM 114	1 1 1 1	275 276 109 72 67	36 31 26 20 24	94 93 71 71 73	.9 .6 <.3 <.3 <.3	34 34 31 34 32	18 17 21 21 17	788 795 574 565 642	5.49 5.62 6.24 3.36 2.86	14 13 12 11 10	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	3 2 4 3 2	90 91 62 57 68	1.6 2.0 1.3 1.2 1.1	3 6 5 3 5	ও ও ও ও ও	161 165 183 83 72	1.22 1.23 .80 .69 .80	.100 .100 .109 .109 .100	10 10 10 8 8	57 56 84 73 68	.76 .76 .65 .91 .87	73 83 60 70 66	.11 .11 .10 .13 .11	3 6 3 3 4	1.83 1.83 1.47 1.74 1.82	.02 .02 .02 .02 .02	.18 .19 .15 .21 .20	<2 <2 4 <2 3	66 27 72 54 753
SMM 115 SMM 116 SMM 117 SMM 118 STANDARD C3/AU-S	1 2 1 1 26	62 49 70 73 68	26 50 14 16 36	71 87 52 70 157	<.3 <.3 <.3 <.3 5.0	27 19 36 27 36	15 9 16 28 10	601 590 417 597 733	2.87 1.78 2.62 5.95 3.52	9 7 6 22 55	<8 <8 <8 <8 20	<2 <2 <2 <2 <2 <2 <2	2 <2 <2 3 21	74 108 65 61 30	1.3 1.1 .8 1.1 23.5	3 4 3 3 16	<3 <3 <3 <3 19	74 48 78 120 82	.87 1.53 .82 .65 .59	.100 .157 .084 .111 .085	11 11 7 10 18	71 59 70 67 161	.85 .52 .75 1.02 .65	80 76 59 84 141	.13 .06 .12 .14 .10	4 <3 <3 <3 22	1.71 1.26 1.58 1.61 1.92	.03 .02 .03 .01 .04	.20 .32 .22 .13 .16	<2 2 2 2 22 22	10 6 55 163 48
DATE REC	CEIVE	1CP THI - S/ <u>Sam</u>	50 S LEAI AMPLE <u>Dles</u> AUG	00 GR/ CK IS TYPE begin 11 19	AM SAM PARTI : MOSS ning ' 97]	IPLE IAL F MAT <u>RE'</u>	IS DI OR MN are R REI	GESTEI FE Si AU * - e <u>runs</u> PORT	N WITH R CA P ADUA and ' MAI	3ML : LA C -REG1. RRE'	3-1-2 r mg i a/mibi are ri Av	HCL-I BA TI (EXTI eject	HNO3- B W RACT, <u>Reru</u> 23	H2D A AND L GF/A <u>ns.</u> 97	T 95 Imite A fin Sj	DEG. D FOR ISHED	C FOR NA K .(10 D BY		HOUR AL.	AND I	S DILI	UTED DYE, I	TO 10 C.LED	ML WI NG, J.	ITH W	ATER.	TIFIEC) B.C.	ASSA	YERS	
																								·							

2 2 2 2 9 9 V $\vdots_{s} \downarrow_{s} (e) \downarrow_{s} (e) \downarrow_{s} \downarrow_{s} \downarrow_{s} (e) \downarrow_{s} \downarrow_{s$ 60000N-· * * (*) * * * * * * * ? * * * * * * *) 3) 5, 2, 5, 5, 5, 5, 1, 13 3, 1, 2, 4, 1 3, 3, 4, 1 59500N-(1,6 é, 1, é, 1,5 (1,3) 20 é, (2, 5, 6 2 2, 5 2 Kor & E & P

 $\begin{bmatrix} 3 & 5 & 7 & 3 & 5 & 7 & 3 \\ \hline 3 & 5 & 7 & 5 & 5 & 5 \\ \hline 3 & 5 & 7 & 5 & 5 & 5 \\ \hline 3 & 5 & 7 & 5 & 5 & 5 \\ \hline 3 & 5 & 7 & 5 & 5 & 5 \\ \hline 3 & 5 & 5 & 5 & 5 \\ \hline 3 & 5 & 5 & 5 \\ \hline 3 & 5 & 5 & 5 \\ \hline 3 & 5 & 5 & 5 \\ \hline 3 & 5 & 5 & 5 \\ \hline 3 & 5 & 5 & 5 \\ \hline 3 & 5$

 $\begin{bmatrix} 3_{0} & 3_$

 $\left[1 + \frac{1}{2}

 $\dot{z}_{3}\dot{z}$

*, to to to to to to $\begin{bmatrix} 5_{0} & \dot{v}

1. No. 1

نى نى نى نى نى نى نى نى نى نى نى نى نى غى نى ÷ t, th th to to to to to the to to to the to the to the to the to the the to t 3, 50 3, 30 35 4, 4, 65 14 25 (2) 60 20 2 20 20 20 · vous is de to to de to to de to to de 1, 6, 5, 5, 5, 5, 6, 6, 6, 5, $1_{0} \cdot \hat{n}_{0} \cdot \hat{i}_{*} \cdot \hat{i}_{*} \cdot \hat{j}_{*} = \hat{i}_{*} \cdot \hat{i}_{*} \cdot \hat{i}_{*} \cdot \hat{i}_{*} \cdot \hat{i}_{*} + \hat{i}_{*} \cdot $\begin{array}{c} \begin{array}{c} & & \\$

 $\hat{s}_{a} \hat{s}_{a}

 $\hat{J}_{\mu} \hat{J}_{\mu}

 $\frac{1}{3} + \frac{1}{3} + \frac{1$

 $\hat{s}_{3} \hat{s}_{3} \hat{s}_{4} \hat{t}_{3} \hat{s}_{4} \hat{s}_{3} \hat{s}_{5}

 $\left[\hat{f}_{n},\hat{e}_{n}$

 $\begin{bmatrix} \hat{s}_{0} & \hat{s}_{0$

 $\sum_{i=0}^{5(0)} i_{2i}

 $\frac{1}{100} + \frac{1}{100} + \frac{1}$

النالي النالي

 $\begin{bmatrix} 1_0 & \hat{r}_0 & \hat{$ · 20 0, 2, 10 2, 10 2, 12, 22, 10, 0, 25 0, 15 1, 10, 10, \dot{e}_{μ} \dot{i}_{ϕ} \dot{e}_{f} $\dot{f}_{1,2}$ \dot{f}_{μ} \dot{f}_{ϕ} \dot{i}_{ϕ} \dot{i}_{ϕ} \dot{e}_{μ} \dot{e}_{ϕ} \dot{e}_{ϕ} \dot{e}_{ϕ} $\dot{f}_{1,2}$ $\dot{f}_{1,2}$ $\dot{f}_{2,2}$ $\frac{1}{2_{3}}, \frac{1}{2_{9}}, \frac{1}{6_{9}}, \frac{1}{2_{9}}, \frac{1}{6_{9}}, \frac{1}{6_{3}}, \frac{1$ $\left[\dot{1}_{0},\dot{c}_{3},\dot{b}_{4},\dot{b}_{3},\dot{1}_{3},\dot{1}_{0},\dot{c}_{3},\dot{e}_{3},\dot{i}_{1},\dot{e}_{4},\dot{e}_{6},\dot{e}_{4},\dot{e}_{5},\dot{e}_{4},\dot{e}_{3},\dot{e}_{3},\dot{e}_{4},\dot{e}_{5},\dot{e}_{4},\dot{e}_{5},\dot{e}_{4},\dot{e}_{5},\dot{e}_{4},\dot{e}_{5},\dot{e}_{4},\dot{e}_{5},\dot{e}_{4},\dot{e}_{5},\dot{e}_{4},\dot{e}_{5},\dot{e}_{4},\dot{e}_{5},\dot{e}_{4},\dot{e}_{5},\dot{e}_{4},\dot{e}_{5},\dot{e}_{4},\dot{e}_{5},\dot{e}_{4},\dot{e}_{5},\dot{e}_{4},\dot{e}_{5},\dot{e}_{4},\dot{e}_{5},\dot{e}_{4},\dot{e}_{5},\dot{e}_{4},\dot{e}_{5},\dot{e}_{4},\dot{e}_{5},\dot{e}_{4},\dot{e}_{5},\dot{e},\dot{e}_{5},\dot{e},\dot{e}_{5},\dot{e}_{5$ $\hat{v}_{0, \hat{v}_{0, \hat{v}}} \\ \hat{v}_{0, \hat{v}_{0, \hat{v}}} \\ \hat{v}_{0, \hat{v}} \\ \hat{v}_{0, \hat$ نْ الْمَانَ ا لَّنْ بَنْ خَدْ خَهْ فَ خَهْ بَنْ بَنْ أَنْ أَنْ فَعَ بَغْ فَقُ فَقَ بَنْ بَنْ بَنْ بَنْ بَنْ بَنْ فَ بَعْ فَ $\begin{bmatrix}\dot{e}_{\mu} & \dot{v}_{1} & \dot{v}_{3} & \dot{e}_{1} & \dot{e}_{1} & \dot{v}_{\mu} & \dot{v}_{2} & \dot{v}_{\mu} & \dot{v}_{2} & \dot{v}_{\mu} \end{bmatrix} \dot{s}_{\mu} \dot{s}_{\mu$

60000N-

59500N

58500N-

58000N-

E

\$ \dot{p} \dot{p} \dot{s} $\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ **** $\langle_{2}\rangle$, \langle_{2 \$ ******** \$ \$ ゆちちゃちゃちゃちゃ ちゃちゃやちゃちゃ

\$ ţjjjţjjţjţjţjţjţjţjţţţţţţţţţţţţţţ 体体体体体体体体体体体体

 $\left[5_{3},5_$ $\left[3 \diamond_{\tau} \diamond_{\tau} \diamond_{\delta} \diamond_{\tau} \diamond_{\delta} \phi_{\delta} \$ $\hat{\phi}$ $\hat{\phi}$ $\left(\hat{v}$ $\left(\hat{v}$ $\hat{\phi}$ $\hat{\phi$ *** \$\$\$\$\$ \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ うよんうようちちちゃんちちちちちゃちゃううう \$\$ \$\$ \$\$ \$\$ \$\$ \$\$

59000N

60000N-

59500N-

58500N-

58000N-

(6)

\$\$\$\$\$ \hat{h}_{0} \hat{h}_{0} \$\$\$\$\$\$ \$\$\$\$\$\$\$\$ $\hat{\phi}$ ***** $\hat{\phi}$, $\hat{\phi}$ \$\$\$\$\$\$\$\$ $\dot{\psi}$ $\$ ڹٛ؈ٛڣ؉ڽڂ؈ڂۥڂۣڂۣڂڂڂ؋ڂ؋ڣڂڿڿڿۼڿۼۼۼڂڿڿڂڿڂڿڂڡڂ \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ $\dot{\phi}$ 4464444444 $\dot{\phi}$ $\hat{\phi}$ $\left[\overline{b}$ $\hat{\phi}$ \hat{s}_{\hat{\lambda}}$, $\hat{k}_{\hat{\lambda}}$, $\hat{s}_{\hat{\lambda}}$, \hat{s} $[\delta, \hat{r}, \hat{a}, \hat{a}, \hat{c}, $\begin{bmatrix} \hat{\mathbf{e}} & \hat{$ $\hat{\mathcal{G}}$ \$ $\dot{\mathfrak{G}}$ $\dot{\mathfrak$ ؖ؈ٛٙؠ؋ٮۮڣٮٝۼۼۼڂؿڿڿڿڿڿۼۼۿڹۼۼڹٵۣڹڿۼڂۑؿ؇ۛۻۿۻؿڿڿڿڿڿڿڿڿڿڿڿ ٳؿ \$\$\$\$\$\$\$\$\$\$\$\$\$

> ***

\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$

58500N

60000N

59500N-

59000N-

58000N

 \bigcirc

\$\$\$\$\$\$ \$\$\$\$\$ \$\$\$\$\$\$\$\$\$ \$ \$ \$ \$\$\$\$\$ * * * * * * * * * * * ちちゃゃちちちちゃち ちちちちちゃ \$\$\$\$\$\$ 给你你你你你你你你你你 · タ タ/3 3 (x X タ X ö X X S ó X X X X S ó ó X ó ó \$ \$\$\$\$\$\$ **** \$\$\$\$\$\$ [? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?] \$ \$\$\$\$\$ 2 7 9 7 7 7 7 7 7 7 7 7 7 7 7 7

60000N-

59500N-

59000N-

58500N-

58000N-

\$ \$\$\$\$ ÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷ \$\$\$\$\$\$\$ 60000N-\$ s_{b} s_{c} s_{c \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ j_{s} j_{s \$ $\overset{\circ}{}\overset{\circ}$ \$ 59500N-\$ \$\$\$\$ · 你你你你你你你你你你你你你你你 ゆゆやゆゆややゆゆやや 59000N- $\dot{\mathbf{x}} \dot{\mathbf{x}} \dot{\mathbf{$ Diploine to be the prover of the proversion of the provesion o $\hat{\mathcal{A}}_{(2)} \approx \hat{\mathcal{A}}_{(2)} \hat{\mathcal{A}}_{(2)$ 3 (5 (5 5) 5 58500N-\$ $\hat{c}_{\hat{r}} \hat{c}_{\hat{r}} \hat{c$ 58000N-\$ **** \$ ***

9

\$\$\$\$\$ ******** \$\$\$\$\$\$ 60000N-ななななななななななななななな ふ(ふ)やかきももももももやりしら(ひゆなら)をももももももももももももも \$ \$\$\$\$\$\$\$ \$ 59500N-\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ $\sqrt{5}$ $\left(\hat{s}_{0}, \hat{c}_{0}, \hat{c}_{0}, \hat{c}_{0}, \hat{c}_{0}, \hat{c}_{0}, \hat{s}_{0}, \hat{c}_{0}, \hat{c}_{0}, \hat{c}_{0}, \hat{c}_{0}, \hat{c}_{0}, \hat{c}_{0}, \hat{s}_{0}, \hat{c}_{0}, \hat{s}_{0}, \hat{$ **** ややややななななな やなななやややや

 $\begin{bmatrix} \hat{e} \div \hat{e}$

ؖۿؚڿڿڿڿڿڿڿڿڿڿڿڿڿڿڿڮٷۑػؚػؠؖٳڂڿڿڿۼڂ؇ؿؗ؋ڿڿڂڔؗٮٛڿڿڿڋڿڋڿڿڋڿڿڿڂڟ۪ڣۼ*)ۮڿۼ*۞ٛڣڣؗڂڣڂڂڿڂڂڂڂڂ

لَيْ فَرْ شَوْ فَ فَ فَ بَنْ بَنْ فَ فَ جَ بَيْ بَنْ فَ بَنْ بَنْ فَ بَنْ بَنْ الْمَ

 $\left[\dot{z}_{2}, \dot{v}, \dot{v}_{2}, \dot{v}_{2}, \dot{v}_{2}, \dot{v}_{1}, \dot{v}_{1}, \dot{v}_{2}, \dot{v}_{$

59000N-

58500N-

58000N

الله بن ب به به به بن بن بن بن بن بن به به به به به به به ا

(10)

なななななななななななななななななななななななななな \$\$\$\$\$\$ 60000N-**** **** $\dot{\phi}$ $\$\$\$\$\$\$\$ 1 6 6 6 7 4 8 8 9 7 8 8 6 8 6 9 ちちちちゃややややちゃややや 59500N **** , 李 李 香 (珍读 委 委 委 委 委 委 委 委 委 委 委 委 委 委 委 委 \dot{o} \dot{o} \dot{v} $\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$

 $\dot{\circ}$; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;] $\begin{bmatrix} \dot{\mathbf{0}} & \dot{$ $[\dot{o}, \dot{j}, \dot{v}, \dot{v$

58000N-

59000N-

58500N-

 (\mathbb{I})