

A GEOPHYSICAL REPORT

ON

INDUCED POLARIZATION SURVEYING

Stewart Area, B.C. 56° 40'N, 120° 35'W N.T.S. 104A/11 & 12

FOR

GEOFINE EXPLORATION CONSULTANTS LTD.

Toronto, Ontario

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

BY

PETER E. WALCOTT & ASSOCIATES LIMITED

Vancouver, B.C.

OCTOBER 1997

Geophysical Services

TABLE OF CONTENTS.

	Page
INTRODUCTION	1
PROPERTY, LOCATION & ACCESS	2
GEOLOGY	3
PURPOSE	4
SURVEY SPECIFICATIONS	5
DISCUSSION OF RESULTS	6
SUMMARY, CONCLUSIONS & RECOMMENDATIONS	9
APPENDIX	
COST OF SURVEY	i
PERSONNEL EMPLOYED ON SURVEY	ii
CERTIFICATION	iii
PROPERTY LOCATION MAP	
I.P. PSEUDOSECTIONS	
I.P. INVERSION MODELLING	
ACCOMPANYING MAPS MA	P POCKET
GRID LOCATION MAP - Deltaic Grid 1:10,000	
GRID LOCATION MAP - Delta West Grid 1:10,000	
CONTOURS OF APPARENT CHARGEABILITY 21 Point Filter Deltaic grid 1:5000	l W-557-1
CONTOURS OF APPARENT RESISTIVITY 21 Point Filter Deltaic grid 1:5000	W-557-2
PROFILES OF TOTAL FIELD INTENSITY Delta West Grid 1:5000	W-557-3

Geophysical Services

INTRODUCTION.

Between August 5th and 19th, 1997, Peter E. Walcott & Associates Limited carried out induced polarization (I.P.) surveying over parts of a large property, located in the Stewart area of British Columbia, for Geofine Exploration Consultants Ltd.

The surveying was conducted over two grids, the Deltaic grid with traverse lines N 30°W, and the Delta West grid with lines at N 60°E.

Measurements (first to sixth separation) of apparent chargeability and resistivity were made every 25 metres along the survey lines using the pole-dipole method of surveying with a 25 metre dipole.

In addition measurements of the total intensity of the earth's field were made at 12.5 metre invervals over five lines on the Delta West grid using a Scintrex Envi precession magnetometer.

The I.P. data are presented on individual pseudosections bound in this report at 1:2500. In addition the 21 point filter chargeability and resistivity for the Deltaic grid are presented in contour form on plan maps of the line grid at 1:5000. The results of the magnetic survey are presented in profile form at 1:5000.

- 1 -

Geophysical Services

PROPERTY, LOCATION & ACCESS.

The property is located in the Skeena Mining Division of British Columbia and consists of the following fifty seven mining claims:

DELTA 1,2; FOX 1-26, 30-50; OLD 1-4; PAT 50-53.

These claims total 1074 claim units as registered on the British Columbia Minerals Titles Maps.

The claims are situated on either side of but mostly to the east of the Stewart-Cassiar Hwy., some 65 kilometres north of Meziadin Junction, and some 80 air-kilometres northeast of the town of Stewart, British Columbia.

Access to the Deltaic grid was by means of rotary aircraft from a take-off point on the above highway, while that to the Delta West grid was by means of 2 wheel drive vehicle from Bell 2 as the grid lines cross the highway.

- 2 -

GEOLOGY.

The property is mostly underlain by rocks of the Jurassic Hazelton Group and the Paleozoic Stikine Assemblage which have been exposed by the uplift of broad anclinel features known as the Oweegee and Ritchie Domes and by the erosion of the Upper Jurassic sediments of the Bowser Basin.

For better and more detailed information the reader is referred to reports by and/or held by the management of Geofine Exploration Consultants Ltd. and to various publications by the respective Geological Surveys of Canada and British Columbia

- 3 -

- 4 -

PURPOSE.

The purpose of the survey was to try and locate areas of sulphide occurrences in the underlying Hazelton Group, known to be prospective for hosting VMS stratabound base metal and precious metal deposits, in an effort to locate directly or indirectly economic mineralization.

Geophysical Services

SURVEY SPECIFICATIONS.

- 5 -

The induced polarization (I.P.) survey was conducted using a pulse type system, the principal components of which are manufactured by Huntec Limited of Metropolitan Toronto, Ontario, and Iris Instruments of Orleans, France.

The system consists basically of three units, a receiver (Iris)transmitter and a motor generator (Huntec). The transmitter, which provides a maximum of 7.5kw d.c. to the ground, obtains its power from a 7.5kw 400 c.p.s. three phase alternator driven by a gasoline engine. The cycling rate of the transmitter is 2 seconds "current-on" and 2 seconds "current-off" with the pulses reversing continuously in polarity. The data recorded in the field consists of careful measurements of the current (I) in amperes flowing through the current electrodes C_1 and C_2 , the primary voltages (V) appearing between any two potential electrodes, P_1 through P_7 , during the "current-on" part of the cycle, and the apparent chargeability, (M_a) presented as a direct readout in millivolts per volt using a 200 millisecond delay and a 1000 millisecond sample window by the receiver, a digital receiver controlled by a micro-processor - the sample window is actually the total of ten individual windows of 100 millisecond widths.

The apparent resistivity (f_a) in ohm metres is proportional to the ratio of the primary voltage and the measured current, the proportionality factor depending on the geometry of the array used. The chargeability and resistivity are called apparent as they are values which that portion of the earth sampled would have if it were homogeneous. As the earth sampled is usually inhomogeneous the calculated apparent chargeability and resistivity are functions of the actual chargeability and resistivity of the rocks.

The survey was carried out using the "pole-dipole" method of Surveying. In this method the current electrode, C_1 , and the potential electrodes, P_1 through P_7 , are moved in unison along the survey lines at a spacing of "a" (the dipole) apart, while the second current electrode, C_2 , is kept constant at "infinity". The distance, "na" between C_1 and the nearest potential electrode generally controls the the depth to be explored by the particular separation, "n", traverse.

On these surrveys a 25 metre dipole was employed and first to sixth separation readings were obtained.

The magnetic survey was carried out using an Envi proton precession magnetometer manufactured by Scintrex Ltd. of Metropolitan, Toronto, Ontario. This instrument measures variations in the earth's magnetic field intensity to an accuracy of plus or minus one gamma. Corrections for diurnal variations of the earth's field were made by comparison with readings taken at 20 second intervals on a similar Envi base magnetometer.

DISCUSSION OF RESULTS.

It should be mentioned here that the writer has not seen the results of the airborne E.M. and magnetic survey, the geological mapping or the geochemical surveying carried out over the property and/or parts thereof.

The Deltaic Grid.

The I.P. survey as performed with a 25 metre dipole showed this portion of the property to exhibit a low chargeability background - 3 to 6 mV/V - above which several anomalous zones are clearly discernible as can be seen from the respective pseudosections.

The probable extent of these zones are shown on Map W-557-1, the contoured plan map of the 21 point filter chargeability values.

The most prominent and/or correlatible of these zones are labelled A, B, C, D & E on this map and on the respective pseudosections.

Zone A has an indicated shallow flat-lying causative source on Lines 4600 to 4800E with an accompanying resistivity high but its source thickens considerably on Line 4900 & 5100E respectively. However the same high resistivity can be observed on the smaller spacings.

Zones B and C exhibit the characteristic pole-dipole pattern response of a shallow body of limited depth extent, with these patterns being very similar on Lines 4800 or 4900E respectively.

Zone D also appears to have a causative source of limited depth extent as shown by the pattern of the chargeability results on Line 4800E.

Zone E located on the northern extremity of Line 5100E and undefined to the north also appears to exhibit similar characteristics.

A north northwesterly trending fault would appear to cut across the grid as suggested by the offset in zones B and C on Lines 4800 and 4900E respectively. This offset, however, is not suggested by the contoured plan of the 21 point filter resistivity results as illustrated on Map W-557-2. This offset could be attributable to folding.

No resistivity contrast is seen between the volcanics and the arkose-siltstones as per the regional mapping of Greig and Evenchick. The strongest resistivity feature is due to the creek trending northeastwards at the north end of Line 4600N.

Geophysical Services

DISCUSSION OF RESULTS cont'd.

Inverse chargeability modelling carried out by the writer on Lines 4800, 4900 & 5100E respectively would appear to confirm the above interpretation of the causative sources as can be seen from the model chargeabilities and depths on the profiles.

Although the writer is not familiar with the property geology, presumably these anomalies are attributable to sulphide mineralization in the underlying volcanic package on and/or around the contact with porphyritic intrusions.

Similarly less pronounced anomalies are also presumably caused by lesser concentrations of sulphide mineralization and should not be overlooked in the quest for gold occurrences.

Delta West Grid.

Three traverses were carried out on this grid on lines approximately 800 and 400 metres apart.

They cross an area mostly covered by overburden but underlain by rocks of the Bowser Group to the west, and Hazelton Group - Lower Middle Salmon River Spatzi and Lower Jurassic Volcanics - to the east as per the regional mapping of Greig & Evinchick.

Some suggestion of this geology can be seen on the resistivity results which generally show an area of less than 500 ohm-metres to the west, and area of 700 to 1000 in the centre and an area of 1200 and greater to the east trending through all three profiles. These areas show reasonable correlation to the interpreted contacts on the geology map.

A zone of medium resistivity can be seen in the larger one of lower resistivity on Lines 2200 and 2600N and a zone of lower resistivity is observed in the area of high resistivity at the eastern end of Line 1400N.

The lower resistivities in the extreme west end of Line 2600N are due to the flood plain of the Bell - Irving river.

The chargeability results show the background to be similar to that of the Deltaic grid as can be seen from the chargeability values on the extremes of the respective pseudosections.

Within these extremities higher chargeabilities were observed within complex zones associated with interpreted Hazelton Group rocks as per the resistivity survey.

Geophysical Services

DISCUSSION OF RESULTS cont'd

Like the resistivity features the chargeabilities apparently show reasonable line to line correlation despite the large line separations.

The more prominent of these or parts of these zones in chargeability magnitude and/or correlatibility are labelled as Zones "A", "B", "C", "D" & "E" on the respective pseudosections.

Zone "A" is observed trending across all three lines, and is associated with a geochemical anomaly on Line 2600N as per personal communication with Geofine's representative.

Zone "B" is also observed on all three lines and is also associated with higher geochemical soil results.

Zone "C" is most prominent on Line 2600N and is also observed on Line 2200N associated with the area of medium resistivities. It could extend across to Line 1400N but here it is mostly associated with higher resistivities.

Zone "`D" is a zone of moderate chargeability associated with the area of medium resistivity in the larger area of lower resistivities on the western portion of the lines. Apparently some good geochemical response was obtained over it on Line 2200N.

Zone "E" is the strongest part of a complex zone occurring near the eastern end of Line 1400N. It is associated with the previously mentioned area of low resistivity.

Inverse chargeability modelling carried out on Lines 2200N and 2600N showed most of the causative features to be flatlying with significant depth extent.

The magnetometer survey carried out on Lines 1400N, 1800N, 2200N, 2400N (Reccy geochem. line) and 2600N respectively showed the property to exhibit a flat magnetic background above which a couple of low intensity local anomalies are discernible.

These anomalies are at the eastern end of Lines 1400N, 1800N and 2600N in areas of low chargeability and high resistivity.

No magnetic signature was observed with the above mentioned resistivity areas, or over the central high chargeability readings.

Geophysical Services

SUMMARY, CONCLUSIONS & RECOMMENDATIONS.

Between August 5th and 19th, 1997, Peter E. Walcott & Associates Limited carried out limited induced polarization surveying on two grids for Geofine Exploration Consultants Ltd.

The grids, named the Deltaic and Delta West, were established on the Stewart property, located in the Stewart area of British Columbia.

Several zones of moderate chargeability responses thought by the writer to be related to sulphide mineralization were located on the Deltaic grid.

A large area of various complex anomalous chargeability zones were observed trending through the central portion of the Delta West grid in areas interpreted to be underlain by rocks of the Hazelton Group. Parts of these zxones are associated with anomalous geochemical responses obtained on the reconnaissance soil sampling survey.

No magnetic response was obtained over these areas of higher chargeability.

As a result the writer recommends that the I.P. results be correlated with the known geology and geochemical results, information which he is not privy to, for a better understanding of the causative sources of the I.P. response prior to drilling on the Deltaic grid, and prior to additional I.P. on the Delta West grid.

Respectfully submitted,

PETER E. WALCOUT & ASSOCIATES LIMITED

Peter E. Walcott, P.Eng. Geophysicist

Vancouver, British Columbia

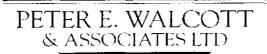
October 1997

Geophysical Services

A P P E N D I X

- i -

COST OF SURVEY.


Peter E. Walcott & Associates provided the geophysical equipment and three crew members on a daily basis. The cost of reporting was extra so that the total cost of services provided was \$25,519.50.

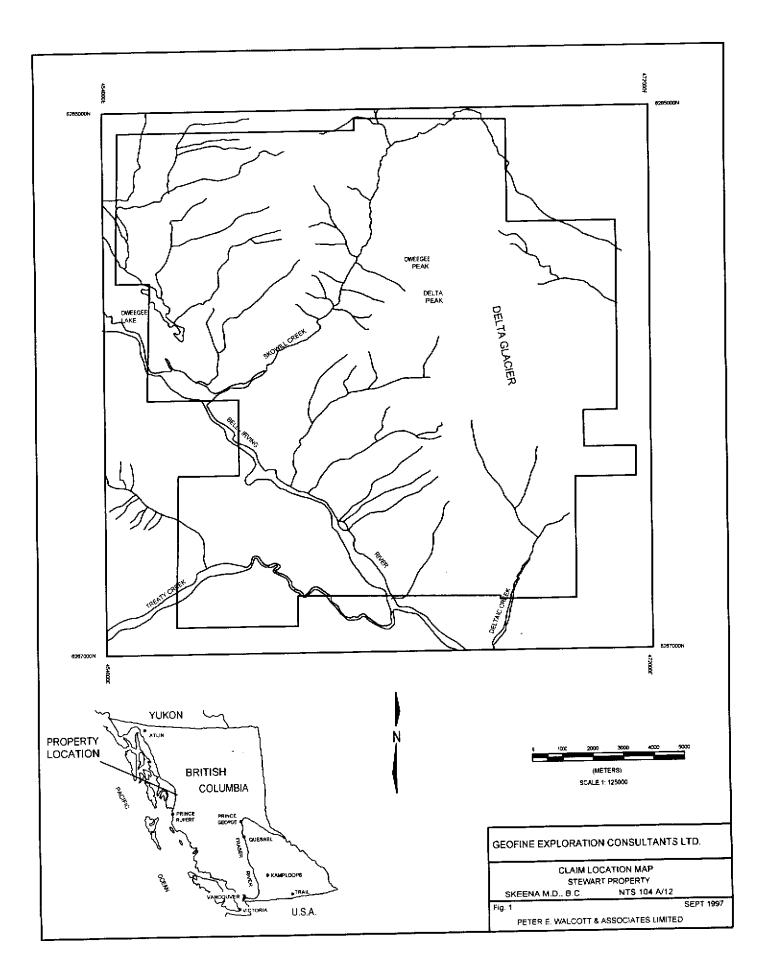
Geophysical Services

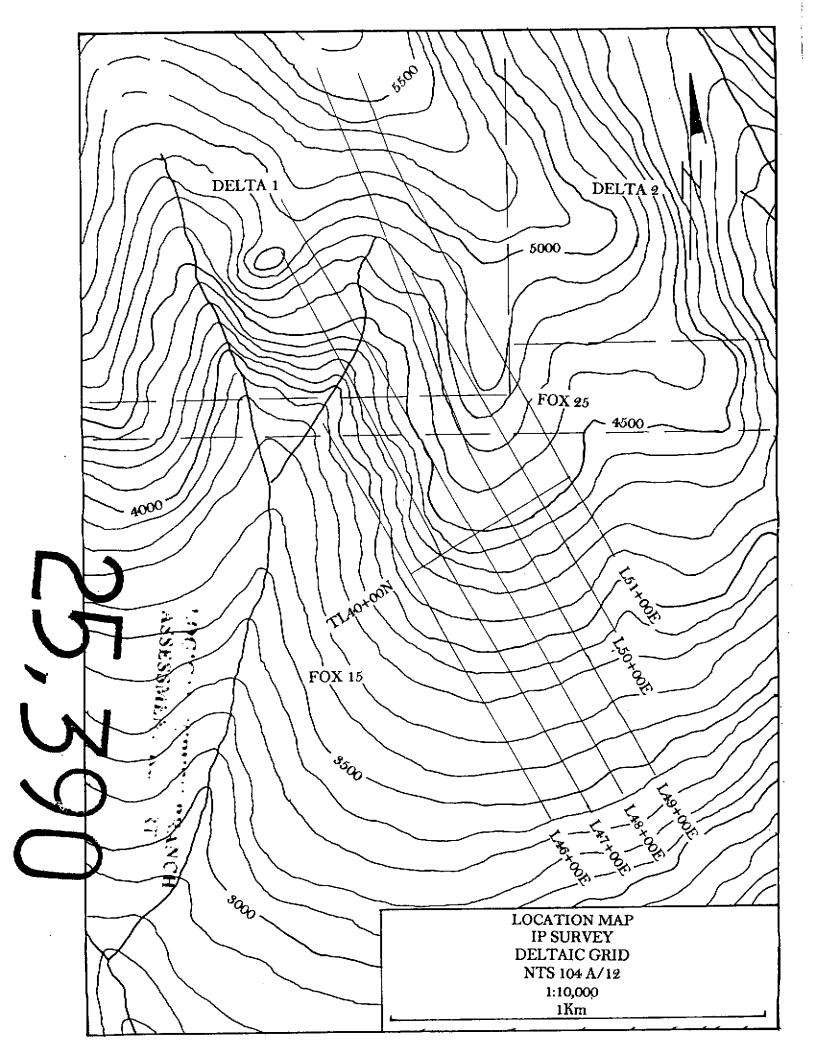
PERSONNEL EMPLOYED ON SURVEY

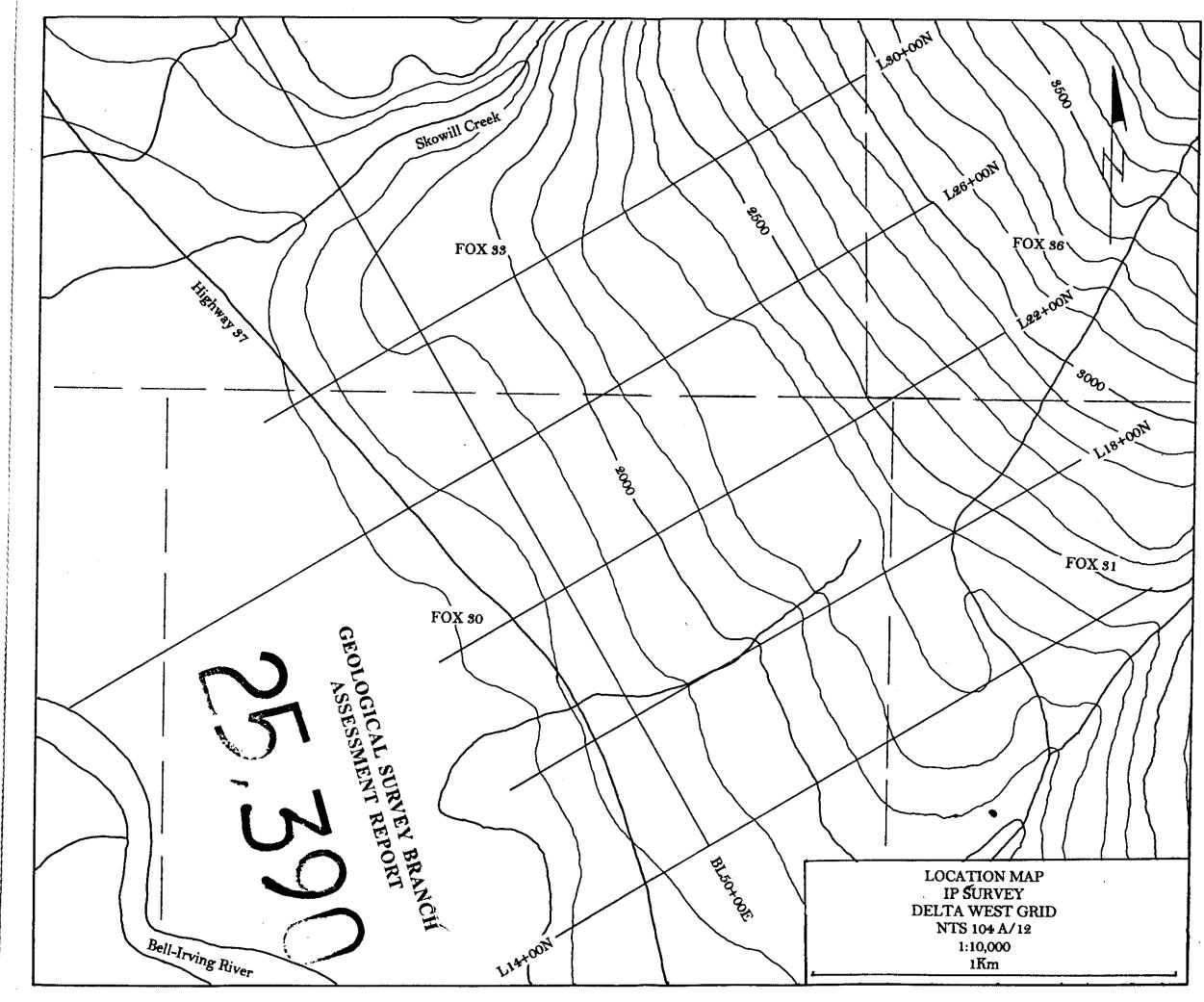
Occupation Address Dates Name Peter E. Walcott & Assoc. Geophysicist Aug. 5th, Sept. 12th Peter E. Walcott 605 Rutland Court, to 14th, 1997 Coquitlam, B.C. Oct. 3rd - 10th, 97 V3Ĵ 3T8 Ħ Sept. 28th - 30th Alexander Walcott Geophysical Oct. 8th, 1997 Operator 11 н Aug. 5th - 19th, 1997 G. MacMillan 11 11 Ħ D. Hewitt ** 17 t! P. Charlie Typing tP. Oct. 2nd & 10th, 1997 J. Walcott Assistants **Geofine Consultants** Aug. 7th - 16th, 1997 **3** Helpers

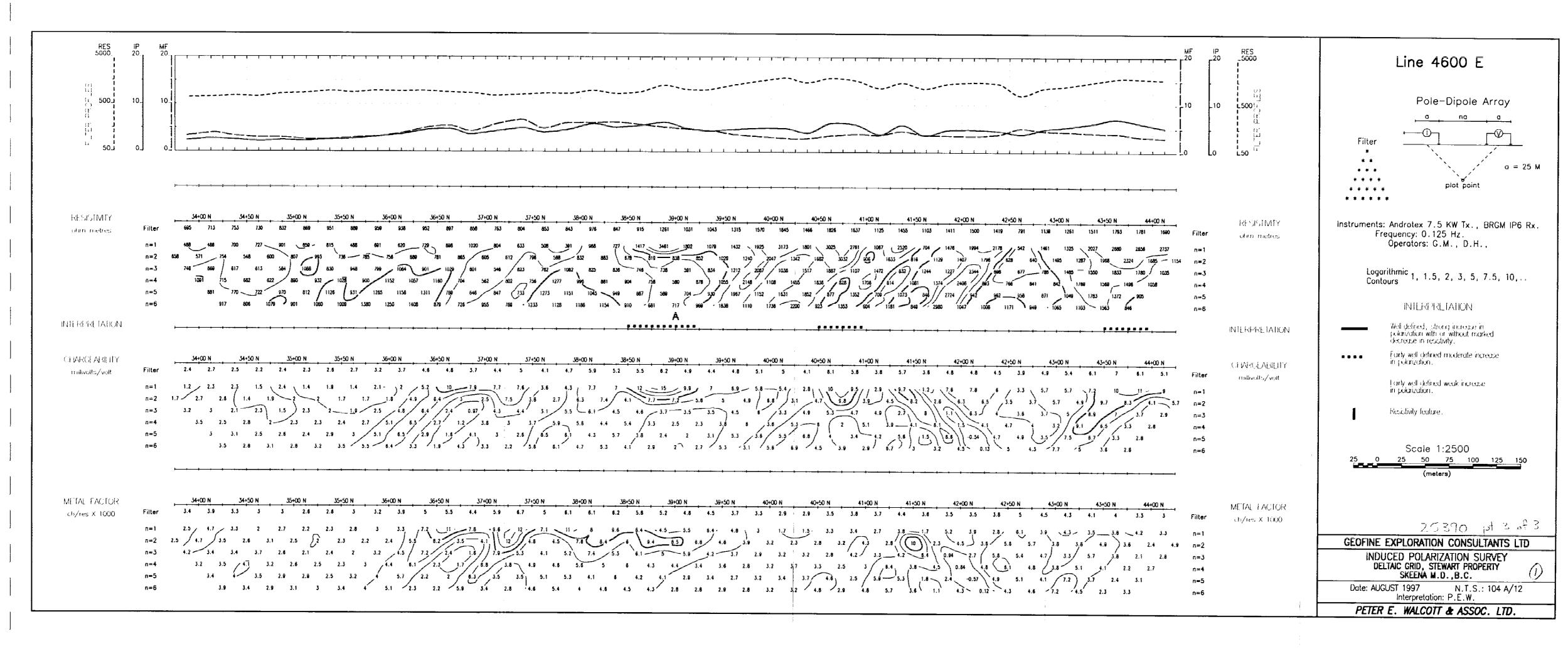
- ii -

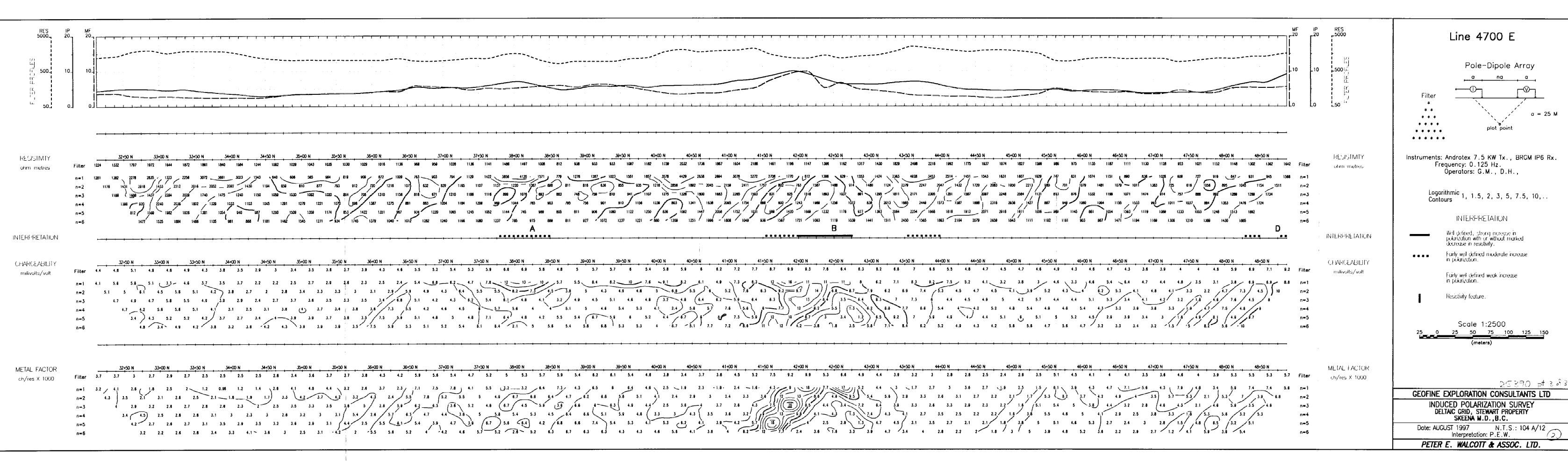
- jii -

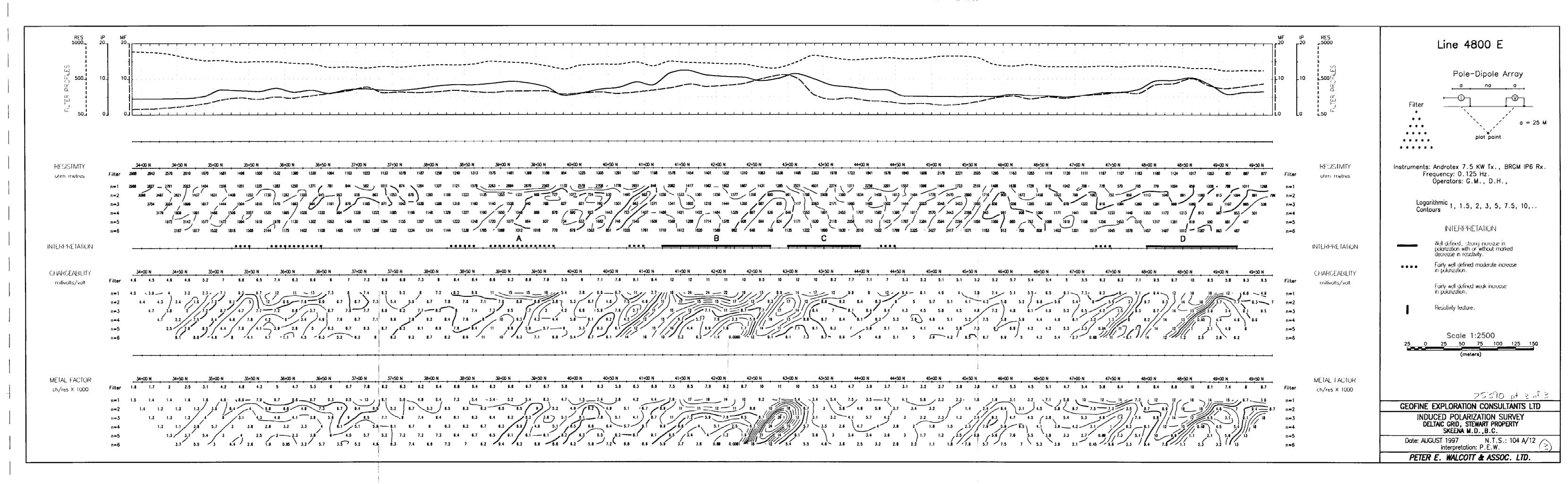

CERTIFICATION.

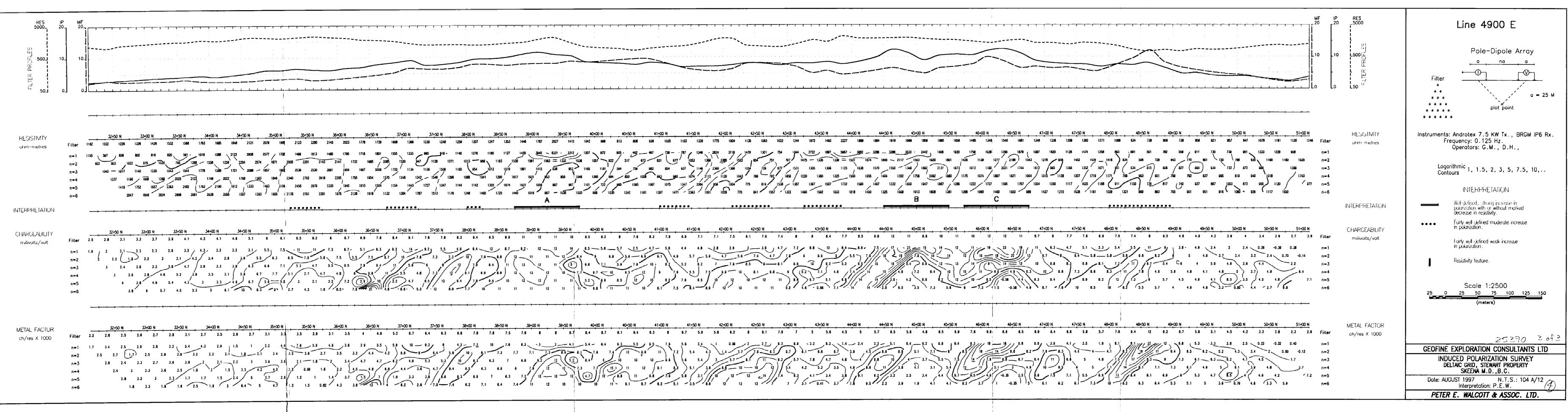

I, Peter E. Walcott, of the City of Coquitlam, British Columbia, hereby certify that:

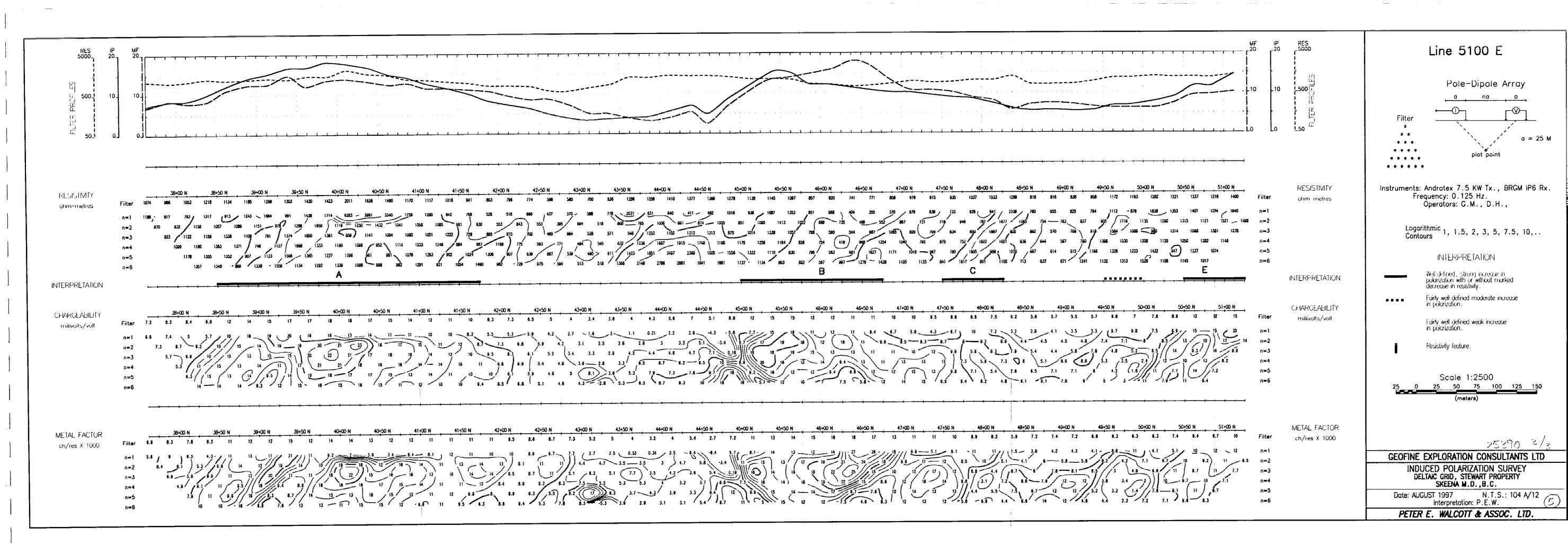

- I am a graduate of the University of Toronto in 1962 with a 1. B.A.Sc. in Engineering Physics, Geophysics Option.
- 2. I have been practising my profession for the last thirty five years.
- I am a member of the Association of Professional Engineers of 3. British Columbia and Ontario.

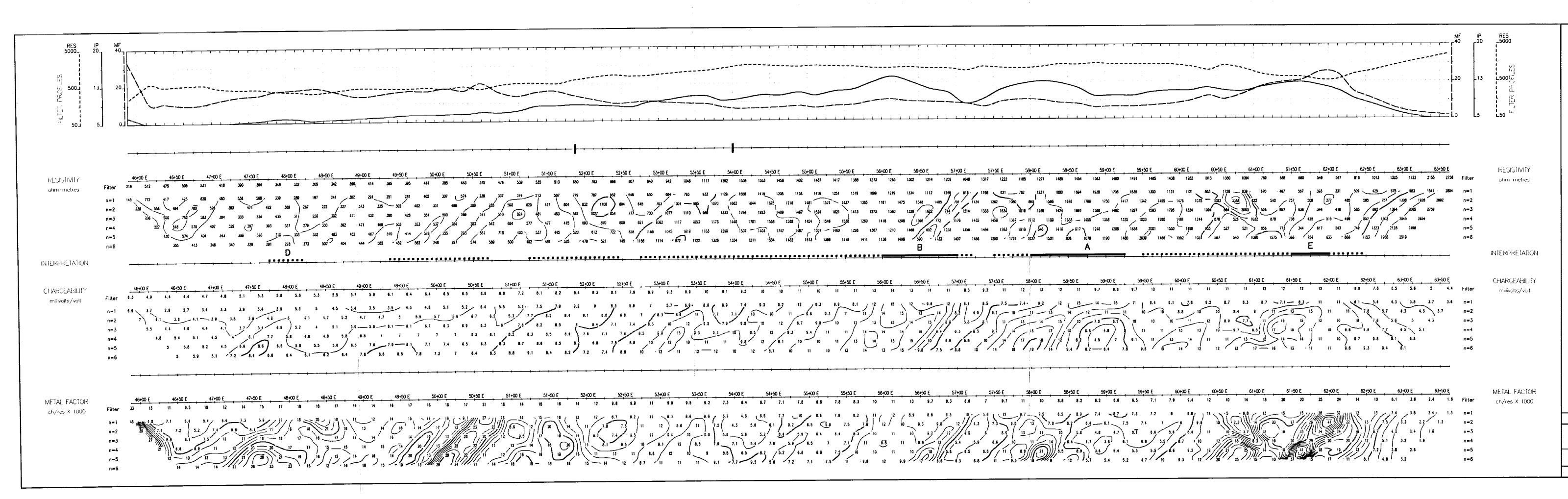

Peter E. Walcott, P.Eng.


Vancouver, B.C. October 1997

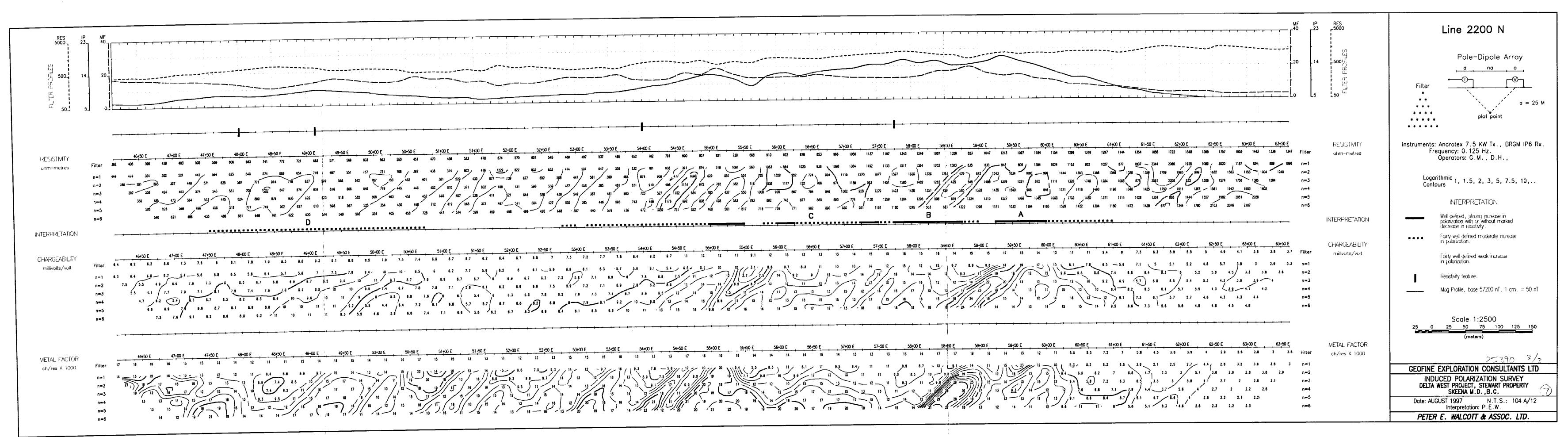


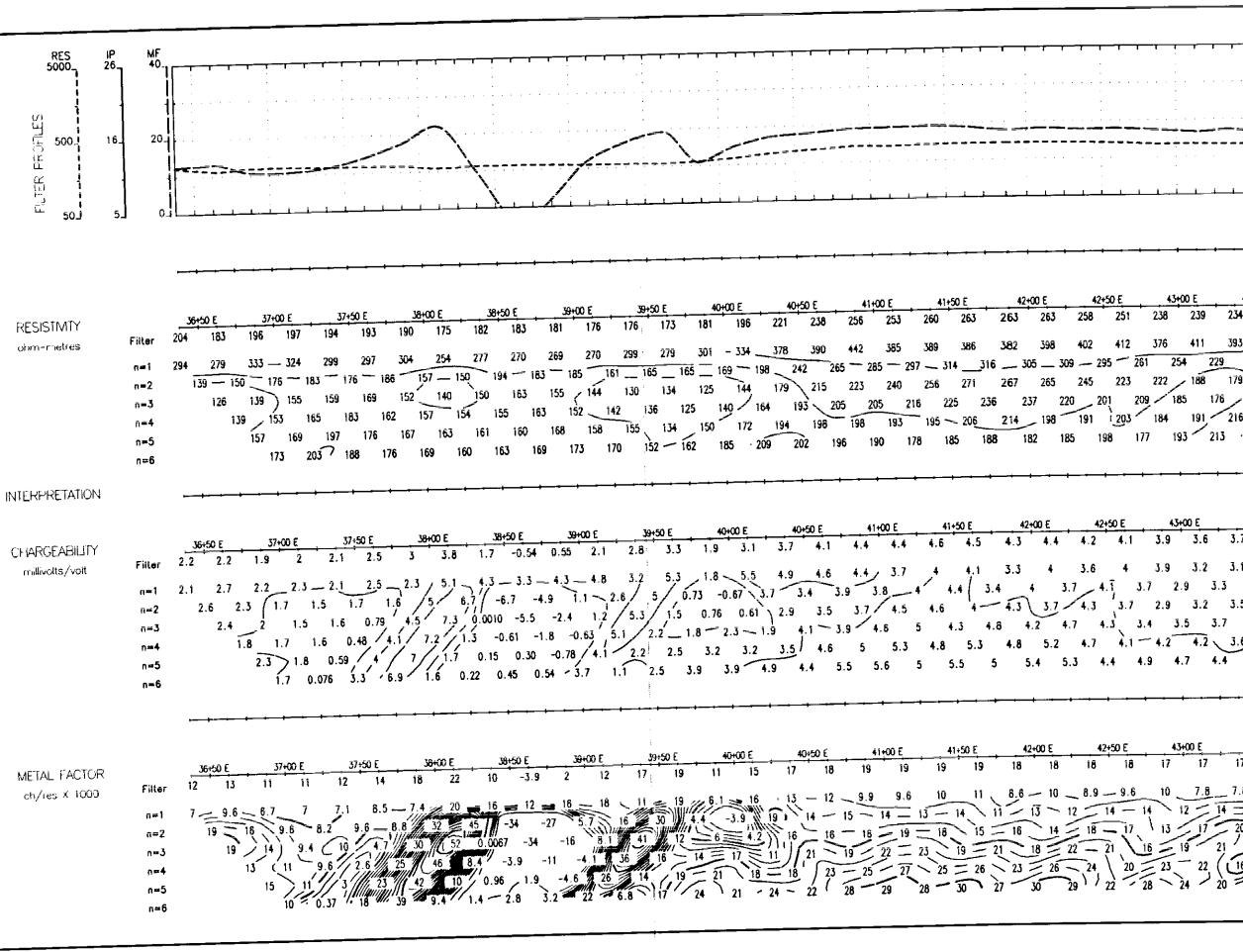


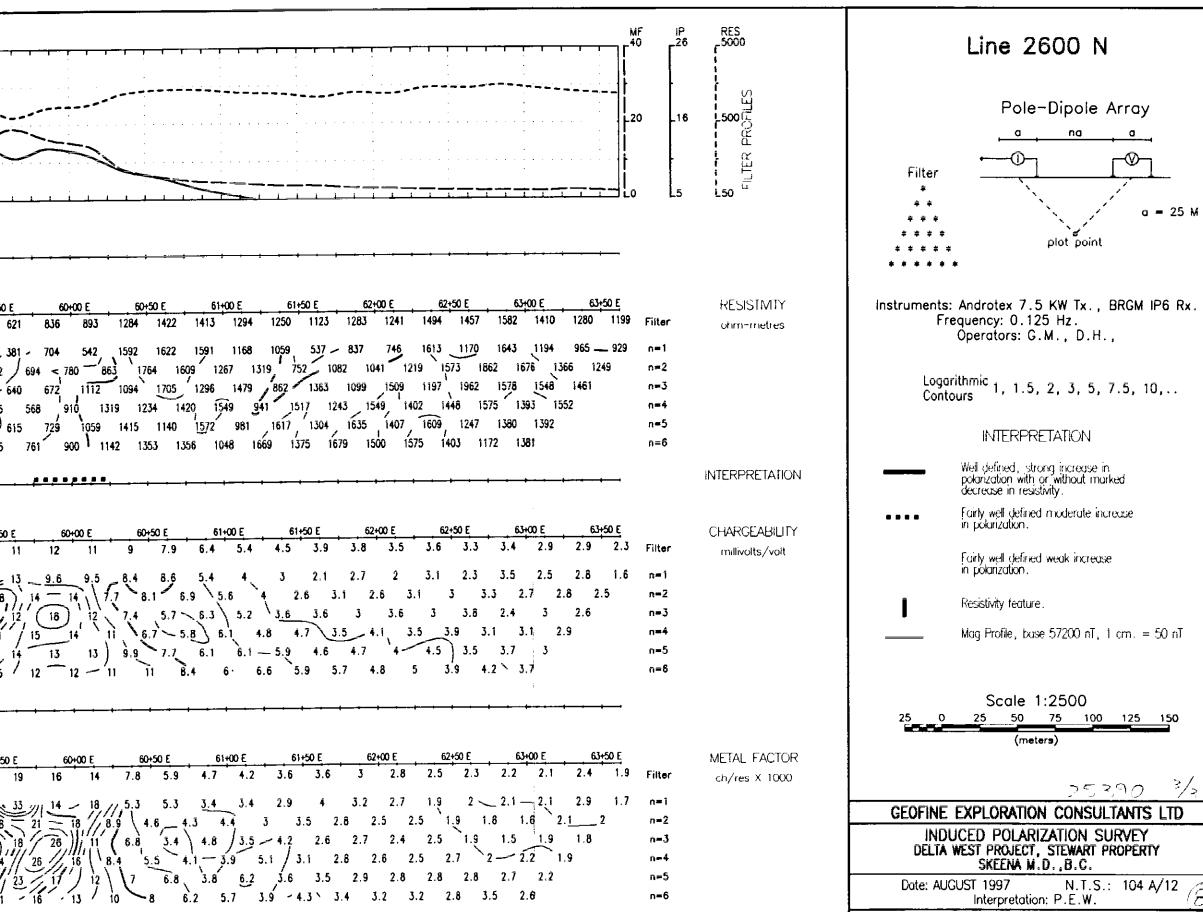







_.....





PETER E. WALCOTT & ASSOC. LTD.

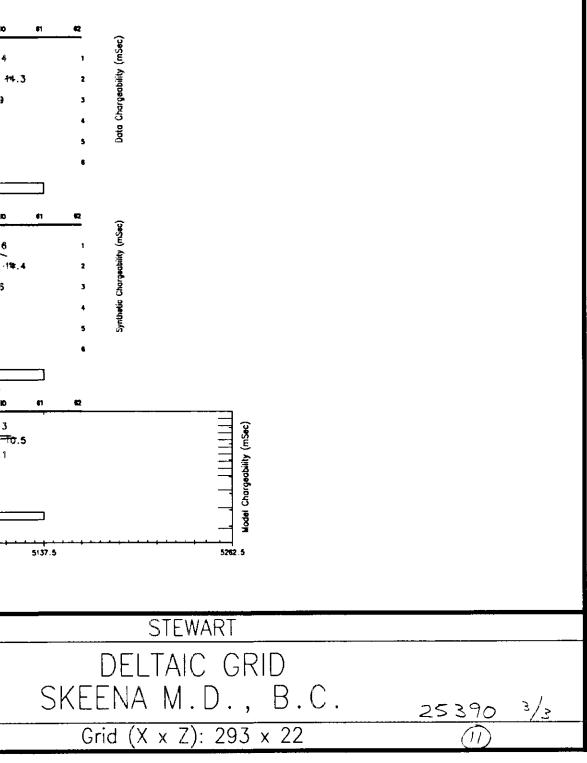
	T T T T T T T T T T			
		······································		
	<u>a i i mont d i i i a a a a a a a a a a a a a a a a</u>	<u>IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII</u>		
	- · · · · · · · · · · · · · · · · · · ·			
	++ + + + + + + + + + + + + + + + + +			
	47+50 F 48+00 F 48+50 F 49+00 E	49+50 E 50+00 E 50+50 E 51+00 E 51+50 E 52+00 E	52+50 E 53+00 E 53+50 E 54+00 E 54+50 E 55+00 E 55+00 E	56+00 E 56+50 E 57+00 E 57+50 E 58+00 E 58+50 E 59+00 E 59+50 E
43-50 E 44-00 E 44-50 E 45-00 E	571 684 650 665 765 752 838 711 81	736 733 708 665 542 455 485 533 592 476 448	550 680 785 607 744 701 747 915 942 876 1013 1001 919 92	7 869 957 861 831 835 916 823 809 798 933 1103 993 1206 1300 1039 821
393 381 452 341 436 441 366 511 516 587 458 484 480 501 646 648	498 685 492 463 731 669 1056 570 92	624 704 673 741 618 472 458 388 589 428 408	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	493 972 480 879 674 476 1378 1164 841 958 - 1022 1014 1120 81	7 $1034 - 925 - 908 - 791 - 949 - 771 - 838 - 681 - 645 - 1313 - 937 - 733 - 1309 - 2093 - 446 - 640$
176 207 194 206 206 178 235 214 211 177 224 323 340 471 514 403 55	194 622 634 810 733 963 605 744 902	673 794 866 801 490 373 328 708 732 406 374 684 954 769 451 373 320 624 632 427 540 425	382 755 455 969 738 440 676 901 781 1079 1044 965 1166 821 606 393 957 800 427 630 1013 626 1014 1146 1003 1117 831 9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1 - 216 / 180 - 200 - 203 - 182 / 229 - 214 - 211 / 180 / 230 - 306 - 305 - 401 - 505 - 379 - 323 - 213 - 189 - 218 - 200 - 172 - 236 - 210 - 215 - 192 - 240 - 318 - 345 - 525 - 561 - 404 - 511 - 5.	532 483 640 837 977 561 734 624 570	914 825 810 430 369 316 626 581 - 430 554 480	667 351 852 786 460 672 936 681 827 1119 1083 1159 776 926	734 675 731 681 765 660 656 527 1044 ₹765 718 1622 2215 517 842 695 76 C A
	D	<u></u>	<u>, , , , , , , , , , , , , , , , , , , </u>	
	· I			
43+50 E 44+00 E 44+50 E 45+00 E 45+50 E 46+00 E 46+50 E 47+00 E	47+50 E 48+00 E 48+50 E 49+00 E	49+50 E 50+00 E 50+50 E 51+00 E 51+50 E 52+00 E	<u>52+50 E 53+00 E 53+50 E 54+50 E 55+00 E 55+50 E</u> 8 2 9 9 8 11 14 15 17 18 18 18 18 18 19	<u>56+00 E 56+50 E 57+00 E 57+50 E 58+00 E 58+50 E 59+00 E 59+00 E</u> 9 18 17 17 16 15 14 14 13 13 14 14 13 14 15 14 11
6 3.7 3.6 3.5 3.5 3.4 3.5 3.5 3.4 3.6 3.7 3.9 4.3 4.8 5.2 5.6 6.4		10 10 9.4 0.5 0.0 7.0 0.9 0.0 7 7.4 0	6.8 7.1 6.8 6.4 = 11 (17 = 17 14 14 15 = 15 12 16 = 16	6 = 13 = 13 = 13 12 · 16 · 12 14 11 9.2 · 6.6 = 10 9.6 $12 = 15$ 22 = 13 -
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.7 6.5 6.4 8 6.9 6.7 0.3 0.7 7.4 9.8 8.9 9.4			
		9.8 - 11 12 8.5 9.9 9.3 5.8 5.5 5.7 6.1 7.4	6.9 7.6 8.3 7.2 13 15 15 13 19 18 10 19 10 17 21	18 - 16 - 16 - 16 - 17 - 12 - 14 - 13 - 11 - 10 - 13 - 3.3 - 3.3 - 10 - 20 - 0.0 - 11 - 10 - 13 - 12 - 11 - 18 - 20 - 4.3 - 12 - 11 - 18 - 20 - 4.3 - 12 - 11 - 18 - 20 - 4.3 - 12 - 12 - 11 - 18 - 20 - 4.3 - 12 - 12 - 11 - 18 - 20 - 13 - 12 - 12 - 11 - 18 - 20 - 13 - 12 - 12 - 11 - 18 - 20 - 13 - 12 - 12 - 11 - 18 - 20 - 13 - 12 - 12 - 13 - 12 - 11 - 18 - 20 - 13 - 12 - 12 - 13 - 13
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7.6 8.5 9.5 10 9.4 10 9.9 11 1	9.8 11 12 8.5 9.9 9.3 5.8 5.5 5.7 6.1 7.4 12 12 8.1 8.9 9.4 8.3 6.3 $\overline{6.3}$ $\overline{6.5}$ $\overline{7.9}$ 7.4 12 12 7.4 8.4 8.5 8.3 8.2 6.4 6.9 8.3 7.7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9.8 11 12 8.5 9.9 9.3 5.8 5.5 5.7 6.1 7.4 12 12 8.1 8.9 9.4 8.3 6.3 6.3 6.5 7.9 7.1 12 12 7.4 8.4 8.5 8.3 8.2 6.4 6.9 8.3 7.7 12 7.7 7.9 8.3 7.5 8.1 8.3 7.4 8.9 8.1 8.3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9.8 11 12 8.5 9.9 9.3 5.8 5.5 5.7 6.1 7.4 12 12 8.1 8.9 9.4 8.3 6.3 6.3 6.5 7.9 7.1 12 12 7.4 8.4 8.5 8.3 8.2 6.4 6.9 8.3 7.7 12 7.7 7.9 8.3 7.5 8.1 8.3 7.4 8.9 8.1 8.1 12 6.9 8 7.6 7 7 8.6 9 9.4 8.5 8.7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9.8 11 12 8.5 9.9 9.3 5.8 5.5 5.7 6.1 7.4 12 12 8.1 8.9 9.4 8.3 6.3 6.3 6.5 7.9 7 12 12 7.4 8.4 8.5 8.3 8.2 6.4 6.9 8.3 7.7 12 7.7 7.9 8.3 7.5 8.1 8.3 7.4 8.9 8.1 8.3 12 6.9 8 7.6 7 7 8.6 9 9.4 8.5 8.7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
				56+00 E 56+50 E 57+00 E 57+50 E 58+00 E 58+50 E 59+00 E 59+50 E
43+50 E 44+00 E 44+50 E 45+00 E 45+50 E 46+00 E 46+50 E 47+00 E	47+50 E 48+00 E 48+50 E 49+00 E	49+50 E 50+00 E 50+50 E 51+00 E 51+50 E 52+00 E	52+50 E 53+00 E 53+50 E 54+00 E 54+50 E 55+00 E 55+00 E 55+50 E	<u>56+00 E 56+50 E 57+00 E 57+50 E 58+00 E 58+50 E 59+00 E 59+50 E</u> 2 21 19 20 19 19 16 18 17 17 15 13 14 12 12 14 19
43+50 E 44+00 E 44+50 E 45+00 E 45+50 E 46+00 E 46+50 E 47+00 E	47+50 E 48+00 E 48+50 E 49+00 E	49+50 E 50+00 E 50+50 E 51+00 E 51+50 E 52+00 E	52+50 E 53+00 E 53+50 E 54+00 E 54+50 E 55+00 E 55+00 E 55+50 E	<u>56+00 E 56+50 E 57+00 E 57+50 E 58+00 E 58+50 E 59+00 E 59+50 E</u> 2 21 19 20 19 19 16 18 17 17 15 13 14 12 12 14 19
43+50 E 44+00 E 44+50 E 45+00 E 45+50 E 46+00 E 46+50 E 47+00 E	47+50 E 48+00 E 48+50 E 49+00 E	49+50 E 50+00 E 50+50 E 51+00 E 51+50 E 52+00 E	52+50 E 53+00 E 53+50 E 54+00 E 54+50 E 55+00 E 55+00 E 55+50 E	<u>56+00 E 56+50 E 57+00 E 57+50 E 58+00 E 58+50 E 59+00 E 59+50 E</u> 2 21 19 20 19 19 16 18 17 17 15 13 14 12 12 14 19
43+50 E 44+00 E 44+50 E 45+00 E 45+50 E 46+00 E 46+50 E 47+00 E	47+50 E 48+00 E 48+50 E 49+00 E	49+50 E 50+00 E 50+50 E 51+00 E 51+50 E 52+00 E	52+50 E 53+00 E 53+50 E 54+00 E 54+50 E 55+00 E 55+00 E 55+50 E	<u>56+00 E 56+50 E 57+00 E 57+50 E 58+00 E 58+50 E 59+00 E 59+50 E</u> 2 21 19 20 19 19 16 18 17 17 15 13 14 12 12 14 19
43+50 E 44+00 E 44+50 E 45+00 E 45+50 E 46+00 E 46+50 E 47+00 E	47+50 E 48+00 E 48+50 E 49+00 E	49+50 E 50+00 E 50+50 E 51+00 E 51+50 E 52+00 E	52+50 E 53+00 E 53+50 E 54+00 E 54+50 E 55+00 E 55+00 E 55+50 E	<u>56+00 E 56+50 E 57+00 E 57+50 E 58+00 E 58+50 E 59+00 E 59+50 E</u> 2 21 19 20 19 19 16 18 17 17 15 13 14 12 12 14 19
43+50 E 44+00 E 44+50 E 45+00 E 45+50 E 46+00 E 46+50 E 47+00 E	47+50 E 48+00 E 48+50 E 49+00 E	49+50 E 50+00 E 50+50 E 51+00 E 51+50 E 52+00 E	52+50 E 53+00 E 53+50 E 54+00 E 54+50 E 55+00 E 55+00 E 55+50 E	56+00 E 56+50 E 57+00 E 57+50 E 58+00 E 58+50 E 59+00 E 59+50 E

PETER E. WALCOTT & ASSOC. LTD.

4.5 3.9 4 3.2 2.3 7.1 9.3 9.7 12.5 10.8 13.3 7.3 8 7.4 6.2 5.1 6 7.2 8.2 8.6 1 14.9 15.4 3.8 6.6 6.7 18.7 24 24.4 22.3 18.7 24 24.4 22.3 7.3 8 -8 6.4 6.1 4.9 4 3.8 2.4 5.1 5.5 6.5 6.1 7.3 9.2 8 5.1 9.4 11.8 15.5 17.5 15.5 6.5 6.1 7.3 9.2 8 5.1 9.4 11.8 15.5 17.5 15.5 6.5 6.1 7.3 9.2 8 5.1 9.4 11.8 15.5 17.5 15.5 10.8 13.7 7.3 9.2 8 5.1 9.4 11.8 15.5 17.5 11.5 6.8 4.917. 12 5.6 9.2 8.4 8.3 6 5.7 5.1 4.1 4.2 5.8 5.2 6.8 5.9 5.4 8 5.5 3 9.7 9.3 14.5 12.5 4.4 4.3 3.4 1.9 7.2 9.1 5 1.7 8.6 7.6 6.9 6.7 8.7 7.3 5.4 5.9 6.7 7.8 7.6 7.1 7.9 8.6 8.8 3.8 5.3 6.7 1.3 1.2 17 1.3 14.8 17.9 11.9 5.3 4.7 3.8 2 7.2 8.7 1.7 7.2 6.8 3.7 6.7 7.9 7.7 6.9 6.2 7.7 8.2 8 7.4 7.3 9.5 7.7 (3 4.2) 6.6 5.9 7.6 (2.7) 1.1 14.7 11.9 7.1 14 8.7 7.7 14.2 8.4 7 8.1 8.4 6.4 (4.3 4.5) 5.8 4.5 4.11 7.2 4.9 6.1 1.5 9.3 8.7 13.8 13.2 8.6 3.4 8.1 9.5 4.1 2.2 7.5 8.4 AB 7.8 AT 6 3.4 4) 7.9 6.7 7.1 6.6 7.8 9.2 8.4 7.6 8 10.5 9.3 4.3 4.4 5.8 6.1 9.2 4.4 1.5 14.6 9.7 5.6 7.5 5.6 / 15.8 12.7 8.8 6.7 6.4 8.1 5.3 5.3 3.9 4.6 5.1 5.2 7.5 5.8 5.9 4.4 4.6 6.1 3.2 1.3 9 8.2 13.9 12.7 10.4 4.4 4.6 8.9 8.1 8.8 4.6 8 4.1 4.1 1.1 4.5 6.3 5.2 6.2 6 8.3 9.2 8.7 8.2 8.6 11.2 10/3 6.3 7.1 6.8 5.4 8.7 6.1 13.7 15.6 10/1 5.2 6.2 1.4 0 11.5 9 6.1 7.3 8.7 6.9 5 4.8 5.1 3 3.9 4.2 8.5 6.7 6.9 43 54 27 07 188 61 137 118 12 25 28 61 4.3 3.6 3.7 3.3 2.7 7.9 9.3 9.7 13.8 <u>10 12.3</u> 7.3 8.3 8 6.6 6.1 5.8 7.1 8.4 9.1 10.1 11.6 13.5 14.7 8.4 6.4 5.6 5.6 9.7 5.2 18.9 22.7 21.0 14.1 10.3 14.5 13.8 11.9 10.9 9.2 60.4 7.1 6 4.6 3.7 3 2.4 13.6 7.6 6.7 7.4 8.7 6.7 7.4 8.7 6.7 10.5 9.3 11.2 6.7 10.8 11.2 6.7 4.1 4.1 3.2 1.7 7.3 8.7 4.9 19.8 8.3 7.7 8.4 7 8.6 6.9 5.7 5.8 6.9 7.9 7.5 7.4 8.7 18.4 9.1 3.7 4.8 7.9 9 4.8 4.5 3.5 1.8 7.3 8.5 1/8 7.8 6.3 6.9 3.5 6.6 7.8 7.4 6.3 6.1 7.6 8.3 7.7 7 7.9 9.6 8.7 1/3.8 1/9 7.3 6.4 8 3.5 1/2.3 7.2 11 8 7 1/3.5 1/4 7 6.5 7.8 8.9 5.5 1.7 4.8 5.3 4.7 4.5 6.7 5.2 5.8 1.4 1.4 13.1 2.9 4.4 13.1 2 3.8 2.1 7.5 8.4 17 7.9 1.3 5.6 3.3 4.6 7.5 6.8 6.8 6.5 7.9 9 8.3 7.5 8.1 9.7 9.1 1.6 5.2 7 6.1 9.1 1.2 14.5 1.2 8.2 6.4 5.9 8.5 6.3 14.3 4.7 4.8 5 4.5 7 5.5 5.9 4.3 4.5 6.2 3.8 1.8 9.4 8.3 14.2 13/1.4 4.1 5.4 7.1 4.6 4.5 1.5 4 / 6.1 5.5 6.2 6.6 8.5 9.4 9.1 8.6 9.2 10.6 9.4 \$ 5.5 6.7 49 8.3 6.2 14 16.4 10.5 5.2 5.2 1 1.1 14.6 10.6 7 8 8.1 7.6 4.8 4.3 4.4 7.5 8.1 8.5 4.9 4.6 5.4 2.9 1.1 8.8 7.5 13 12.4 1.5 2.7 4 5.5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 17 18 19 20 21 12 23 24 25 28 27 28 29 30 31 12 33 34 35 94 37 38 39 40 41 42 43 44 45 46 47 48 48 50 51 52 53 54 55 56 57 58 59 80 61 62 63 84 85 66 67 68 68 70 3.4 3.3 2.1 1.1 5.9 13.7 8.5 10.9 13.5 8.5 8.1 8.2 7 (5.2 3.4 5.2 7.6 8.4 7.8 9.9 11.4 14.4 8 0 0.2 5.5 9.2 7.7 5.7 22.5 31.9 26.9 13.7 18.8 / 3.2/ 5.8 (16.7 19.6) 7.1 6.7 9.5 7.8 6.4 6 4.8 5.9 2.4 2.7 15.8 7 6.3 6.4 7.1 10.8 6.8 2.3 (17.3 20.2 15.8 25. 2.8 2.7 2.3 3.7 8.2 9 7.2 8.4 7.3 6.1 6.9 7.6 5.8 3.9 3.8 4 7.5 7.1 5.7 + 7 5.6 6.8 (2.5 1 3.7 4.4 6 6.1 10.7 20 20.8 17 15.4 15 / 7.3 7.6 14.4 8.8 5.4 6.3 6.3 + 5 4.2 4.1 5.4 5 4.6 2.5 4.4 7.9 8.5 7.4 6.1 7.4 6.8 (3.1 9.13 19.8 15.7 17.3 12.9 5.1 2.4 1.6 19.7 10.2 19.8 15.7 17.3 12.9 5.1 2.4 1.6 19.7 10.2 19.8 15.7 17.3 12.9 5.1 2.4 1.6 19.7 10.2 19.8 15.7 17.3 12.9 5.1 2.4 1.6 19.7 10.2 19.8 15.7 17.3 12.9 5.1 2.4 1.6 19.7 10.2 19.8 15.7 17.3 12.9 5.1 2.4 1.6 19.7 10.2 19.8 15.7 17.3 12.9 5.1 2.4 1.6 19.7 10.2 19.8 15.7 17.3 12.9 5.1 2.4 1.6 19.7 10.2 19.8 15.7 17.3 12.9 5.1 2.4 1.6 19.7 10.2 19.8 15.7 17.3 12.9 5.1 2.4 1.6 19.7 10.2 19.8 15.7 17.3 12.9 5.1 2.4 1.6 19.7 10.2 19.8 15.7 17.3 12.9 19.8 19.7 19.7 19.8 19.7 19.8 19.7 19.7 19.7 19.8 19.7 19.7 19.7 19.3.3 3.6 3.9 4.5 6.8 5.7 5.4 5.7 5.4 5.7 5.4 5.7 5.4 5.7 5.6 4.1 3.9 3.9 3.5 5.6 4.1 3.9 3.5 5.6 4.1 3.9 3.5 5.6 4.1 3.9 3.5 5.6 4.1 3.9 3.7 4 3.2 3.1 4.9 7.1 6.8 5.4 4.9 5.6 4.1 6.2 4.8 4.3 3.9 3.5 5.6 6.5 4.1 3.6 6.1 8.6 8.1 8 4.1 3.1 3.7 4 3.2 3.1 4.9 7.1 6.8 5.4 4.9 5.6 4.1 6.2 4.8 4.3 3.9 3.5 5.6 6.5 4.1 3.6 6.1 8.6 8.1 8.63.7 4 4.6 5.2 4.8 3.7 3.3 3 3.4 4.6 5.6 5.2 4.5 4.2 4.6 5.2 6 5.4 7.6 5.1 6.2 6.7 5.7 3.4 2.6 3 3.9 6.6 8.9 11.80 12.3 11 10.4 10.2 9 10.7 12.1 10.9 12.6 13.1 12.2 9.7 5.9 4.5 4 4.9 5.8 6.8 7.5 7.8 8.6 6.4 5.3 3.9 3.1 3.6 5.4 5.9 9.4 8.8 5.8 5.6 4.4 3.4 2.5 3 3.4 3.1 2.8 3.2 4.1 5.6 7.7 10 10.4 10.2 9 10.7 12.1 10.9 12.6 13.1 12.2 9.7 5.9 4.5 4 4.9 5.8 6.8 7.5 7.8 8.6 6.4 5.3 3.9 3.1 3.6 5.4 5.9 9.4 8.8 5.8 5.6 4.4 3.4 2.5 3 3.4 3.1 2.8 3.2 4.1 5.6 7.7 10 10.4 10.2 9 4637.5 4262 5 STEWART DELTAIC GRID 25390 Grid (X x Z): 329 x 22

CEOEINE EVPLOR	ATION CONSULTANT	
Peter Walco	tt & Associates	
DATA SET: 4800A	DATE: 29SEPT97	
Array: Pole-Dipole	a-Spacing: 25.0	

ç ¹	2 3 4	5 8 7	8 9	10 11 12	13 14 1	5 115 117	18 19 20	21 22	23 24 25	26 27	28 29	30 31	32 23 3	4 35 36	37 38 39	40 41	42 43 44	45 48	47 0 8 4 9	50 51	52 53	54 35 54	57 50 51) 10 81 82 s
Data Chargeability (mSe		2 3	2.2 1.8 2.2 2.4 3.8 3 3.6 3.8 4 3.8 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.9 5.5 6.3 8.3 6.6 5.9 6.7 7.7 5.6 5.6	6.5 7.9 5 7.1 5.3 4.7 5.1 2.7 4 5.5 3 3.1	5.8 7.5 5.5 5.5 6.5 7 4.7 68 8 3.2 7.2 2	7.5 8.7 10.6 9.5 10.6 $9.5 10.6 5 $	0.5 7.6 7.3 5.6 8 6.5 4.8 7.3 4.7 6.5	3 7.3 101 8 12 3 12.2 9 11.6 9.4	5 7.9 8.8 7.9 6.4 6.6 8.9 7.8 9.4 10	11.8 11.4 0.6 12.9 11.0 11.5 12.8 0.5 11.7 12.3	11.3 11.9 8.4 5 10.9 5 9 11.9 10.3 7.7 5 10.9 11.3 5	8 6.8 5. 0.8 7.1 5.9 9.7 ~10⊂3 9. 5.2 8.6 8.5	.9 6.6 9.1 7.8 10,2 8 .5 11.8 9 12.3 10,4 8	4 3 5.7 .2 5.2 6.2 7.9 5.5 .2 7.6 6.5	5.9 7 7.8 7.5 9.9 10 12	7.4 4.7 8.5 8 8 8.1 9.8 10.2 11.6 11.4	7.8 9 8. 8.8 19.2 9 5.1 7. 8.8 5.7	9 9 5.5 6.2 5.2 6 1 5.7 6.6 14 5.1 6.6 14	7.8, ¹⁰ 15.8 11 .5 15, 4 19 14.2 14.9 9 4.5 13.5 2.9	8.6 7.8 13.6 5.4 6.9 11.6 7.2 5.4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	i		,	· · · · · · · · · · · · · · · · · · ·			1	5	······					·····	10		······································	····		····		1		······································
Q ¹	2 3 4	5 8 7	8 9	10 11 12	13 14 1	5 16 17	15 19 20	21 22	23 24 25	28 27	20 29	371 31	32 33 3	4 35 34	57 38 39	40 41	42 63 44	-6 -4	47 45 46	50 51	\$2 53	15 54 :55 :56	57 58 59) (15 lit lit2 (
Synthetic Chargeability (mSi 9 9 5 5 1		2.7 3.5	3.1 2.3 2.7 3.1 3.3 3.4 3.9 3.8 4.1 4.3	2.8 3.4 4. 3.4 4.1 4.8	4 3.4 3.2 3.7 3.4 3.5 9 3.5 3.5 3.6 3.6 6	3.7 5.3 6.5 5.8 6.8 5.9 7.4 6.8 7.6 7.3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.1 6.7 5.8 5.8 5.4 8 4.5 47 8.2 3.7 7.7 8	7.3 7.4 1 .3 7.5 11.8 8.6 11.9 4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7.8 9.8 7.5 12.3 2 12 8.7 11.7 9.2	8 8.7 8.2 8 6.5 9 7 6.5 8.7 7.9 9.1 11	(11.3 11.9 5 12.9 12 11.6 12.6 .2 11.4 12	11.3 11.5 8.3 11.2 8.2 9 11.7 9.2 9.1	8.2 7.3 8. 0.3 8.1 7 8.7 7.5 9. 0.3 7.9 9.9	.2 7 8 8.7 10 3 7 9 11.7 8.9 12.4 10 8	5.1 2 5.3 6.4 7 7.2 .3 8.6 8.5	$\begin{array}{c} 3.3 & 5.2 & 4.8 \\ 8.1 & 6.7 \\ 7.9 & 8.4 & 9.9 \\ 7.7 & \sqrt{10.9} \end{array}$	7.2 6.1 8.3 7.4 8.8 8.1 9.7 9.3 10.3 9.9	7.8 10-778 9. 8.9 9.6 9.4 8 6. 8.2 5.4	9 8.4 5.7 6.9 5.1 6 4 4.5 6.5 4.4 6.2 14	7.8 18.1 17 .7 14.8 15.2 14.2 14.5 3 4.2 14.2 X.8	$\begin{array}{c} & & & & & & & \\ & & & & & & \\ & & & & $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	0							5	······································					•			· · · · · · · · · · · · · · · · · · ·	,					· · · · · · · · · · · · · · · · · · ·	······································
0 <u></u> 0	2 3 4			10 11 12		· · · · ·		· · · · ·						r		· · · · · · · · · · · · · · · · · · ·	••• •• ••••••	·····		,			57 58 59	60 81 82 8
Depth (m) 068 05 55 05 05 05 05 05 05 05 05 05 05 05		0.3	2.8 3.6 3.2 3.2 3.7 3.2 2.9	3.6 4 4. 3.6 3.6 5+1	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2.5 0.4 9.9 2.5 3.5 5.3 3.8 5.9 4.1 4.4	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7.9 0 5 19.2 8 6 2.2 7.8 5.9 10.3 6.8	2.1 10.2 9 8.5 7 8.4	7 15.3 5 46.9 10.73 9. 1 11.5 8.8 9.5 8.5 8	14.7 12.1 4 10.3 10.1 9.5 7.6 9 8.7 7.5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.7 6.8 9 6.1 4.5 5.3 3.5 1 5 3.2 1.5	17.2 8.6 17.2 8.6 2.1 13.2 7.2 11 7	2.8 8.6 3 8.5 11.3 8.5 12.5 7.3 10 11.7	5.4 15 0.9	9 9.9 4:9 76 77 eff	11.6 26 37 .4 18.8 20.7 9.5 19.1 12		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
7	0	····· •	•				10	·····					y	20	····· ,			•		_ ,,,_,	ă.		••••••••••••••••••••••••••••••••••••••	
3087.5	<u>* ₩ *=₩-₩-₩-₩-₩-₩-₩</u>	3212.5	_{┍╺┫╍} ┓┪ _╋ ┍╺┫╍ ┍	3337.5	━╋━╋═╋═ ╂╴┫╸┡╴ ╋╴└╸┨╴┻	.3462.5	<u></u>	3587.5	Ιαι δια δια δια δια δια δια δια δια δια δ	3712.5	<u></u>	3837.5	<u>··</u> ∉. <u>}.</u> ≮. <u>↓</u> ↓ <i>∗</i> .ℓ	<u>3962.5</u>	* * * * * * * * * *	4087.5	Distance (m	4212.5	<u></u>	4337.5	- <u>₩−₩-₩-₩-₩-₩-₩</u>	4452.	<u>, , , , , , , , , , , , ,</u> 5	4587.5


GEOFINE EXPLO	RATION CONSULTANT
Peter Wald	ott & Associates
DATA SET: 4900A	DATE: 29SEPT97
Array: Pole-Dipole	a-Spacing: 25.0

43 64 45 05 67 68 89 70 71 72 73 74 75 76 77 76 79 80 61 82 63 64 65 23.2 1 18 / 10.6 6.3 47 5-5 2.3 8.4 5.5 11 5 9 3.8 4.9 2.4 2 2.4 0.3 - 0.4 0.4 21.5 12.6 9.7 8 6.4 5.8 5.8 6.8 9.6 8.2 6 7 4.9 3.7 3.4 3.2 2.4 0.7 40.1 13.7 11.7 10.3 9.8 8.3 6.8 8.1 7.2 2036 8.7 5.4 6 4 5.9 4.6 3.6 4.4 2.2 10 9.3 Hal 9.5 7.3 8.6 8.3 10,8 7.8 10 5.6 3.8 4.1 4,8 5.7 4.9 5.4 -0.6 4.4 9.3 9.4 7.9 8.9 8.2 (11.5) 7.3 6 5.7 (4.5 4.9 4.1 8.5) 3.4 4.5 4/8 7.1 .5 0.6 4.9 8.7 7.6 10 8.5 10.4 8.2 5.5 5.7 4 4.6 4.8 3.3 0.9 4.4 3.7 9.8 43. IA 65 68 67 68 19 70 71 72 73 74 75 78 77 78 79 90 81 62 83 84 85 21.7 19.9 / 11.1 8.1 4.5 5.5 4 / 5.6 5 10.1 7.7 5.2 5.6 2.9 3.4 2.2 1.1 0.6 0.5 8.7 20.9 12.3 1.8 7.8 6.1 4.8^{5} 6.6 7.1 9.9 8.4 5 5.4 4.3 4.9 4.5 3.1 1.7 1.6 2.5 13.2 10.4 9.4 9.7 8.5 5.3 7.2 7.6 103 7.4 5.3 5.3 4.3 5.7 5 4.3 2.9 2.6 3.5 7.4 9.2 9.6 7.2 7.8 7.9 18/2 7.7 5.4 4.2 /5.5 5.4 4.4 3.5 3.5 4.4 6.4 1.2 3.5 7.5 9.1 8 9.4 8.1 142 7.7 1 5 4.3 15.2 4.8 3.5 4 8.2 7 5.4 2.2 4.8 7.6 7.5 10 9.3 18/1 7.6 5/ 5.2 4 5.2 4.7 4.3 3.7 4.2 5.8 7.5 113 164 165 168 167 168 169 70 71 72 73 74 75 76 77 78 79 80 181 182 183 84 185 <u>421 6.9 / 3.7 3.5 4 4.4 3 4.5 18 8.2 8.6 4.4 3.5 0.4 0 0 0 0 0</u> 26.5 42 0.8 (10 6.5 3.4 3.7 10.9 10.3 42 3.8 2.8 0 3.4 0 0 0 0 11.9 9.5 6.9 8 8.6 9.9 11. 8.2 5.8 5.7 5.5 6.3 5.3 5.5 6.5 6.1 3.6 1.9 6.8 711 3.8 0.5 5.7 8.8 9/ 14.3 9.8 6.1 4.4 4.6 4.4 4.1 4 3.9 4.1 3.2 1.6 4.7 4712.5 4837.5 STEWART _____ DELTAIC GRID SKEENA M.D., B.C. 25390 3/3 Grid (X x Z): 385 x 22 (10)

1 2 3 4 5 8 7 8 8 10 11 12 13 14 15 18 17 18 19 20 21 22 23 24 25 26 27 28 6.6 7.4 5 5.7 10 A6.5 18.9 3645 16.1 15.8 12.8 14.2 11.3 11 10.5 19 8.2 5.5 5.3 5.9 4.2 2.7 1.6 7.3 6.7 6.2 19.1 15 14.2 19 18.2 19.7 21.2 22.6 16.5 17.2 14.9 11.4 12.2 8.7 7.3 6.8 5.9 4.2 3.1 2.4 5.7 6.6 10.3 14.8 12.9 3 - 4 - 8 - 26.4 - 22.3 - 20.8 - 16.8 - 17.7 - 18.5 - 13.8 - 12.4 - 10.5 - 9.5 - 8.3 - 8.1 - 5.2 - 3.4 - 3.3 - 3.4 - 3.3 - 3.4 - 3.3 - 3.4 - 3.3 - 3.4 - 3.5.3 10.8 14.9 13.1 13.8 10.6 17 81.1 20.9 17.7 16.2 16.3 14.1 13.8 10 10.7 9.8 6.9 5.4 14.8 3.6 2.1 9.8 14.9 12.9 14.3 8.5 13.6 18.6 18.3 17.3 17 14.8 13.3 13.5 10.8 10 10.8 8 5.9 4.9 5 8.1 13.9 13.5 13.5 5.3 12.3 15 16.2 14.7 16.4 15 11.3 12.3 10.4 10 9.4 8.5 6.8 5.1/ 4.6 4.3 1 Z 3 4 5 6 7 8 8 10 11 12 13 14 15 16 17 18 11 20 21 22 23 ½4 25 26 27 28 $6.7 \quad 7.7 \quad 5.2 \quad 5.9 \quad 10.4 \quad 16.2 \quad 18.4 \quad 15.6 \quad 16 \quad 11.4 \quad 12.5 \quad 10.6 \quad 11.9 \quad 10.9 \quad 19 \quad 9.2 \quad 5.7 \quad 6.1 \quad 6.4 \quad 4.9 \quad 4.7 \quad 3.2 \quad 10.6 \quad 11.9 \quad 10.9 \quad 1$ 5.5 6.3 5.7 10.2 15 15.2 19.4 17.9 19.5 22.1 21.8 19.1 17.7 15.1 11.9 11.9 8.7 7.2 7 5.8 4.5 4.4 4.1 4.9 6.4 10 14.6 13.3 15-2 14.4 19/8 22.5 21.9 17.5 18.2 16.3 13.1 12.1 9.9 9 7.9 6.5 5.4 4.6 5 5.4 10.6 14.4 12.9 13.5 10.8 18.5 21.6 207 16.2 16.5 15 7 13.2 12.8 9(9 9.8 9.3 7.4 6.1 5.3 5.2 5. 9.9 14.9 12.8 13.1 9.56 13.6 18.3 19.4 15.5 15.9 14.2 12.5 12.8 10.5 2.8 9.9 8.6 7 6 5.8 5.3 14.4 13.2 13 9.3 12.7 5.8 18.4 +++++++ 15.4 13.7 11 12.1 10.7 10.5 10.1 9.2 7.9 6.8 6.4 5.9 54 2 3 4 5 8 7 8 9 10 11 12 13 14 15 18 17 18 19 20 21 22 23 24 25 28 27 28 -4 5.5 3.5 2.3 4.9 4.4 4.9 10.6 8.1 2.2 2.6_5-5-2 6.5 HA 21.9 17.5 1.8 1.6° 107 4.9 19 6.8 4.2 4 23.3 16.8 9.1 7.8 5.2 6.4 8.4 14(8 16 V 11 5 5 0.1 0.5 45 V 0 7.5 (11.5 10.2 10.7 12.4 9.5 5.9 1.9 0.3 4.2 0 4.2 5.3 7.4 2.9-5 9.5 3887.5 4012.5 4137.5 4262.5 3637.5 3762 5

29 30 31 32	33 54 35 34 37 31	39 40 41 42 43	44 85 44 47 48	4 30 51 52 53	54 55 54 57 59 50 10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5-1 -3. 9 7 16.8 18.8 4 7 7.1 0.2 8.7 18.4 16.5	17.8 12.5 157 11.2 9.9 8 17.8 12.9 13.4 10.6 11.2 13.4 14.2 9.4 12.8 10.7 12 11.6 9.4 6.6 12.4 12.2	.5 8.3 8.7 8 8.2 8.5 10.1 11.9 9.8 5.8 8.3 2.6 12.6 12.5 7.3 5.6 7.3 14.7 12.9 9.8 7.1 5.4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
10 20 30 31 32	33 34 35 34 37 34	15 38 45 41 42 43	44 65 48 47 48	20 66 30 51 52 53	23 34 38 56 57 58 39 (D
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 3.3 8.7 17.4 19.8	15 1 13.3 14.4 11.5 9.8 8 13.4 12.7 11.9 10.3 10.2 13.3 11.9 9 .9 10.2 10.4 12 11.6 8.8 8.2 10.2 12.3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 4.8 4.2 4.3 6.9 7.2 6.1 5.3 5.9 7 5 7 6.1 7 8.1 5.7 6.3 8.5 7.8 8.9 5.9 4	4.3 3.4 ² 10.9 9 13.4 ⁵⁶ 7.6
10 1 29 30 31 32	33 34 35 38 37 3	15 15 19 40 41 42 43	44 45 4 8 47 4 8	20 49 50 51 52 53	25 54 55 56 57 58 39 80
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.8/ /14.3 82.5 27.2 21.4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
20	<u>,</u>		30	······································	che Che
4387.5	4512.5 Distance (m)	4637.5	4762.5	4887.5	5012.5

GEOFINE EXPLO	RATION CONSULTANT	
 Peter Walco	ott & Associates	
DATA SET: 5100A	DATE: 29SEPT97	
Array: Pole-Dipole	a-Spacing: 25.0	

1	2 3 4	5 5 7 8	\$ 10 1I 12 13	14 15 16 17 18	19 20 21 22 23	24 25 26 27
1 2 3 4 5 8		2 80 291 28 3 292 ⁵⁵ 338 356 485	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	890 879 905 626 60 77 749 902 627 610	39 566 642 767 780 783 452 616 606 649 719 445 20 618 582 605 403 452	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1	2 3 4	5 8 7 8	500 9 10 11 12 13	14 15 16 17 18	11 20 21 22 23	1000 24 25 28 27
1 2 3 4 5 6		325.3 321.3 321 295.6 342.7 325.5 481.5	436.1 470.2 565.6 613.8 592.2 452 462.1 564.1 527.2 545.6 69 5 486.5 557.7 512 4 465.2 621.4 10.6 579.6 500.6 447.6 533.7 78	724-7 886.3 751.5 795,8 59 0.6 963.2 847.4 839.3 599.7 878.9 859.3 895.4 621.6 59 0.5 765.3 885.9 655.1 609.5	553.3 627.4 683.6 678.6 644.7 3 7.9 549.6 659.5 724.4 735.2 634.1 599.8 591.3 639.5 685.4 437.3 4.7 619.1 569.3 602.2 401.6 454.9 602.9 580.3 544.8 363.5 429.8 4 8.9 558.6 550.4 337.7 405.8 423.4	417.5 391.5 841.9 400. 454 408.8 627.4 355.9 438.9 665.8 402.7 837 39.9 707.9 5420.9 597
1	2 3 4	5 8 7 8	500 B 10 11 12 13	14 15 18 17 18	19 20 21 22 23	1000 24 25 26 27
0 10 20 30 40 mdan		240.7 204.9 374.4 190.5 253.4 3 275-3 ³⁰ 382 418.9 5	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
				· · · · · · · · · · · · · · · · · · ·	20000	

~___

- -

·

29 30 31 32 33 34 35	38 <u>37 38 39</u> 40 41 4	12 43 44 45 46 47	48 49 50 51 S2 53	<u>54 55 56 57 58 99 (10</u>
497 511 584 427 655 385 446	390 464 874 908 471 4098 629 481 621 910 496 1151 672 762 483 603 723 527 7152 684 780		766 974 1189 593 1451 1585 4 848 1062 928 1279 1423 14 865 890 774 1130 1259 1294	526 1326 1251 379 642 1543 1034 1 1482 1262 525 545 1488 1379 1251 120 1351 469 565 1328 1435 4340 1295 508 619 1224 1315 1227 1068
	1300		, , , , , , , , , , , , , , , , , , ,	2000 4 195 194 197 198 199 197
979.3 565.6 730.4 511.9 585 556.2 698.7 3.4 705.2 676.6 678 505.6 429 610.3 3 465.8 734.4 615.8 564.7 421.3 587.2 392.7 4.7 513.9 647.2 523 457.4 594.3 391.2 48 470 487.6 543.7 423.7 638.9 396.6 479 9.5 483.1 432.7 435.3 602.8 422.5 482.5 61	388 454 8 797.9 588.6 458 1042 675.6 479 609 953.3 512.4 1/11. 649.5 826 82.8 625.4 742.8 526.7 1/44 890 819 622.8 754.1 427.9 1172 894.3 815.5 426	665.3 550 77.8 1251. 933.9 72 01 578.5 737.7 1048. 1112 768.9 440.1 538.5 972.7 945.4 823.1 757 4604.4 758.5 928.7 744.9 865.4	932 1142 1217. 1057. 15219 16 786.1 985.6 1172. 963.6 1362. 1572. 7.2 841.8 1825. 910.8 1229. 1397. 14 852 895 799 1151. 1273. 1278.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
za 30 31 32 33 34 35	15300 38 37 38 39 40 41	(2 43 44 45 44 47	48 48 50 51 52 53	2009 54 55 56 57 58 59 60
85 802 7 620 356.9 325 354.8 306.9 5 502 8 585.9 499 8 413.3 422.7 380.4 466.1 7.7 583.1 554.4 557.6 548.1 304:4 517.5 62 584.3 551.8 589 613 5 572 7 532.2 547.2	577 (174. 2040 887.3 352 5 628.3 671.5 1 751.5 1147. 1126 727.2 755.5 813.8 688 22.3 798.9 940.3 887.4 923.7 984.9 837.4 2 857.5 816.9 903.8 937.9 974.8 892.1 739	726 5 1320. 1175. 1138. 1098. 814 .1 (840.7 4084. 1039. 1071. 990.5 714.2 295.3 843.2 880.1 891.6 104 .3 677.1 703. ²⁶ 715.5 748.5 824.2	1.5 994.8 1237 202 0.007228 1902. 97 - 1043 1202. 1548. 1807. 1723. 1302. 1. 1141. 1279. 1472 1478. 1446. 13 977-5 1068. 1195 1293 1335. 1351.	1502384 3015. 2707 485.4 500442.3 30107. 955.4 1.3 966.2 r001103 550.4 607.8 1265. 1536.2 875.9 907.2 833.2 788.3 1165 1367. 4584. 176. 950.3 873.5 898.4 1178 1395. 1380. 1 1578. 958.4 61034. 1284 1408. 1366. 17.7 825.7 929.2 1136. 1244. 1480. 1576.
30000	*000	b	5000	
5237.5	5362.5 5487.5 Distance (m)	5612.5	5757.5	5862.5

GEOFINE EXPLOR	ATION CONSULTANT
Peter Walcot	tt & Associates
 DATA SET: 2200A	DATE: 04SEPT97
 Array: Pole-Dipole	a-Spacing: 25.0

\$1 \$2 \$3 \$4 \$65 \$66 \$7 \$68 \$89 70 71 72 73 74 75 78 77 2344 2066 | 1928 / 1089 | 2020 **824** 809 1049 1020 1359 2709 1293 209 1632 1563 1240 1386 1153 812 1111 1320/ 1749 1284 1083 828 (2061 2208 982 1308)1574 1756 385 1190 1040 1425 1750 1011 1367 1581 1231 / 1718 1942 1903 1602 4 5 1045 2076 2107 1428 2103 ¢1 42 63 64 ()5 66 57 69 89 70 71 72 73 74 75 76 77 1213. 946.6 wd 020. 996.2 1224. 1110. 1975. 2002. 2189. 1748, 978.3 1397. 1089. 1085. 1033 1066. . 1005. 1175. 1311. 1362. 1015. 944 6 \$40. 2430 203. 1503. 1523. 1226. 803.7 1144. 1323. 1653 1236 1025. 93.2 1889. 2067. 93.45 1345. 1646 1753 1326. 1289. 68,7 921 8 1239. 1669. 1669 1184. 1012 1389. 1712 928,2 1371. 1453. 1769. 1710. 4 . 1402. 790.8/ 1341 1473. 1597. 1658. 1793. 1350. 1135. 1543. 5 1152, 1084, 1368 1468, 1364 1265, 1678 1521, 677-8 1165, 1444, 1618, 1473, 1696 (r) 42 43 44 45 66 67 68 89 70 71 72 73 74 75 76 77 1472 2127 1568 541 250 871 9 1001453. 1069 1182. <u>857 5-560 8 10759 1755 5784.</u> 3039. 1745. 100 1007 1319 74 8 405 10 4048 2459 2273. 2192. 2333 549-1 +173/ 471.5 5 995.9 -648 1326. 773 871 2 1750. 2363 1907. 1957. 1862. 1813. 63, 1622, 1622 1614, 1676. 1175. 1026. __1708 __2047 2403. 1756 2127, 2538, 3115, 4938, 74499 6112.5 6237.5 6362.5 6987 5 DELTA WEST GRID STEWART PROPERTY SKEENA M.D., B.C. 25390 3/3 Grid (X x Z): 353 x 22 15

1 2 3 4 5 6 7 B 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 8.3 6.4 6.8 5.7 5.4 5.8 6.8 6.5 5.8 5.4 5.7 5.8 7 7.3 7.9 9.4 10.<u>4 10</u>.4 8.5 6 6.2 7.7 5.9 7.5 5.5 - +79 6.9 7.9 7.3 8 8.9 6.7 6.8 6.9 8.7 9.2 9.4 +9. - 10.2 8.3 8.7 7.9 6.9 6.7 6.7 6.7 6 5.5 4.1 7.7 7.9 7.1 8.1 7.9 7.4 7.6 7.8 9.4 9.8 10.2 10.4 9.5 7.4 5.7 7.8 7.8 7.1 5.8 6.1 4.7 5.2 5.4 8.3 8.7 8.3 8.2 8.3 8.4 30 9.6 10.5 10.8 9 6 5.5 6.8 7.6 8 6.1 5.4 6 6.8 6.9 7.9 9.6 8.7 8.1 8.9 8.8 x0.4 10.3 11 11.1 9.2 5.5 A. 6.4 7.2 8.1 6.8 5.7 5.7 7.3 7.6 9.1 9.2 8.6 8.8 9.2 10.6 10.3 10.7 10.9 9.3 5.5 4.6 5.9 6.6 7.4 7.1 6.6 5.8 6. 1 2 3 4 5 6 7 8 1 10 11 12 13 14 15 18 17 18 19 20 21 22 23 24 25 26 27 28 6.1 6.8 6.9 5.9 6 5.5 6.3 6.3 5.9 5.8 5.7 5.6 7 7.3 8.6 **10.3** 9.5 8.1 6.1 6.2 7.7 6.2 7 5-----+2,9 7.2 6.9 7.1 8.1 7 6.6 6.9 7 8.7 9 9.2 9.8 9.7 8.4 8.2 7.9 6.6 6.8 6.5 6 5.7 4 / 5.7 7.4 7.8 8.3 8.1 7.4 7.5 7.9 9.5 9.6 10 2 9.1 7 5.8 7.8 7.9 7.2 5.8 6.1 6.2 6.9 8.1 8.8 8.1 8.2 8.2 8.3 10.1 10.1 10.3 10.7 9.1 6.1 5.5 6.8 7.8 8.1 6.1 5.5 6.4 7.2 5.6 7.8 9.2 8.6 5.1 8.8 8.7 10.3 10.6 11 9.4 5.9 13 6.1 7 7.9 6.8 5.7 5.7 7.6 7.6 9 8.9 8.8 8.6 9.1 10.4 10.3 10.8 11.2 9.6 6.1 4.8 5.9 6.5 7.3 6.7 6.3 5.9 6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 9.5 10 6.3 3.4 3.5 3 4.2 5.4 4.9 4.1 3.4 2.9 5.7 8.7 10.8 11.5 9.1 5.1 6.2 8 7.2 7.7 6 7.5 7.4 3.8 7.5 19.4 7.6 7.3 5.8 5.3 7.7 8.3 8.2 5.9 7.9 0.1 18 3 13.6 5 3.1 8 6.2 5.5 5. 8.2 7.1 7.2 9.8 9 8.9 9.5 8.4 9.2 10.8 10.9 9.9 9.8 11.9 13.9 13.1 6.7 3.5 7.1 8.1 6.7 7.1 6.7 6.4 7.7 8.4 8.8 19 9.7 9.7 (10.7 11.1 11.3 11.1 12.4 12 7.9 5.8 7.5 8.6 8.3 9 7. 4:9 6.1 7.2 7.9 9.3 10 9.6 9.7 9.8 10 10.2 9.4 9.8 9.4 7.1 5.5 7.3 8.4 7.9 8.7 7.5 7.3 9.3 10.3 11.5 12.4 12.6 12.2 11.4 10.7 10.2 7.4 6.2 5.8 3.1 2.9 1.9 7.1 7.7 7.1 5.9 6.1 4987.5 5112.5 4612.5 4737.5 4862.5 4487.5

29 30 31 32 33 34	<u> </u>	39 40 41 42 43	-44 -45 -46 -47 -48	· ···· ···· ···· ···· ················	() 4 55 58 57	50 30 40
6.2 6 6.1 5.9 6.9 6.1 5 6.9 6.7 6.3 7.3 5.8 6.2 8.9 6.6 7.5 5.9 7.2 5 6.3 6.8 7.8 6.1 7.6 6.7 6.6 8.2 6.8 8 7.9 2 6.7 8.2 6.9 8.4 8.1	7.1 6.9 6 7.8 8. 7.1 6.9 7.8 8.2 7.3 7.4 8.7 8.8 9, 6 9.2 38:1 8.8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12 11.7 13.7 11.8 15.8 13. 1 13 14.4 11.7 18.4 4.8 13.1 1/53 12.3 16.5 15.1 17. 15.4 12.9 17.2 15.4 17.7	8 13.8 12.2 1.2 11 16.2 12.4 12 13.8 2.1 2 11.7 13 16.7 22.9 15.8 14.7 17.5 23.6 17	18.9 18.5 1 2 19.8 12.8 18.9 14.3 1 .7 14.9 13.9
29 30 31 32 53 34	- <u> </u>	15 39 40 41 42 43	44 15 48 47 48	i	54 55 54 57	20 58 19 40
6.1 5 6.1 5.8 7 6.1 5 6.5 6.7 6.2 7.1 5.7 6.3 7 5.7 7.6 6.1 7.4 .2 6.7 7 8 6.4 7.8 6.5 6.8 8.2 6.7 8.1 8 5 6.6 7.9 6.8 8.3 8.1	6.7 6.5 6.1 7.3 7. 7.3 7.3 8.1 8.4 7.8 7.8 9.1 9 9, 8 9.4 9.8 9.9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13.2 14.1 11.5 16.4 15 13.5 15:6 12.2 16.4 15.3 16. 15.7 13.3 17 15.1 17.3	1 13.9 11.6 4.3 11.9 16. 12.5 12 13.2 2 9 14.5 13 16.1 22.1 15.3 14.8 16.8 24.4 19	18.3 18.5 17.5 13.1 19 13.8 1 .3 19.9 13.7
		15				20
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 8.5 8.8 7.3 8.1 7.5 9.6 9.6 7.7 9 7.10.4 11.7 10: <u>2 8.9</u> 12.1 13 11.2 11.3 11.1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	26.1 38.7 .6 24.8 5.6 23.7 14.8 .7 (8.7 11.8
······································	•	230		· · · · · · · · · · · · · · · · · · ·		30
5237.5	5362.5	5487.5 Distance (m)	5612.5	5737.5	5862.5	
		GEO	-INE EXPLO	RATION CONS	ULTANT	

6 7.8 9 7.8 8.7 8.8 .2 1 0.1 10.5 10.7	38 39 40 41 42 43 44 45 46 47 44 6.1 5.4 6.8 9.1 10.4 10.2 3.1 8.8 9.7 8.3 10.6 10 8.8 7.5 10.9 12.2 12.3 3.7 7.5 13.5 9.2 9 12 8.8 7.5 10.9 12.2 12.3 3.7 6.5 8.7 12.7 12 11 11.6 13.7 6.5 8.7 12.7 12 11 11.6 13.7 13.8 11.4 13.3 13.4 13.1 13.1 14.4 15.6 6.6 11.5 15.7 13.7 14.2 15.1 16.6 16.9 15.7 12.9 14.4 16.4 9.6 12.3 15.7 13.7 14.2 15.1 16.6 16.9 15.7 13.7 14.2 15.1 16.6 16.9 15.7 13.7 14.2 15.7	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9 18.5 12.3 14.8 9.8 9.8 19.8 12.8 12.2 13 12.4 9 14.3 12.7 11.4 15.1 13 14.9 13.9 11.8 13.7 15.5 9 14.3 12.7 14.3 14.7 15.5 20	7.8 6.5 5.8 7.1 59 3.6 7.4 6.8 6.4 6.3 10.9 9.2 8.9 5.7 6.8 10.1 8.4 8.2 6.3 6.4 12.7 11.5 9.7 7.3 6.1	6 5.2 5.8 4.5 3.3 6.5 5.4 5.3 4.3 3.6 3 5.6 5.5 4.3 3.9 4.1 5.7 5.7 4.6 4.3 4.3 4 5.8 4/9 4.8 4.5 4.8	2.9 2.9 3.3 1 E 3.8 3.6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
.3 5.6 6.1 7.3 .3 8.1 9.1 9 .4 9.8	5.9 5.5 6.6 8.5 9.8 10.5 3.8 8.8 9.8 7.9 10.8 10 7.1 7.8 10.9 12.4 12.4 3 8 7.5 13 9.3 9.2 11.7 8.4 8.9 11.5 13.6 14.4 6.6 8.6 12.8 11.9 11 11.8 13 9.7 12.4 13.9 19.4 7.9 10.8 13.9 12 13.3 13.6 13.5 9.9 12.9 14.5 15.5 6.5 11.7 18.4 12.8 13.4 15.4 14.9 15 12.3 14.7 15.9 6.4 12 16.1 13.5 13.8 45.4 16.3 16.8 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8.8 7.1 6.3 6.7 6.3 10.4 9.2 7.6 5.9 6.4 10.6 9.3 7 6.3 6.4 12.8 10.4 8.6 7.5 7	5.9 5.5 4.8 5 3.6 3.6 3.6 5.1 5.8 4.2 3.2 6.1 5 5.3 5.3 5.5 4.4 3.9 4 5.9 6 4.9 4.6 4.5 4 7 5.8 5.5 5.4 4.9 4.6 4.5 4 4.5 4 4 5 4 4 5 4 4 5 4 4	3.1 2.9 3.2 1 3.5 3.4 2 3.7 3.9 3 200 4.1 4 200 200 4.4 5 200 200	
5.2 5° .7 9.2 12.1 13 .3 13.4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14. 21.4 20.9 13.6 13.6 6.1 13.6 6.1 13.6 6.1 13.6 13.6 13.6 13.6 13.6 13.6 13.6 13.6 13.7 14.1 10.6 11.4 10.4 10.7 14.8 11.8 10.9 19.2 22.5 23 1 10 10.2 14.9 12.6 12.2 12.1 19.4 22.9 22.7	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.5 2.8 1.5 3.1 4.6 2.5 5.3 4.2 3.8	
5362.5	20 5487.5 5612.5 Distance (m)	5737.5 5962.5	30 5987.5	¢112.5		, <u>, , , , , , , , , , , , , , , , , , </u>	
	GEOFINE EXPLORA	TION CONSULTANT			DELTA WEST GF	RID	
		t & Associates			STEWART PROF		,
	DATA SET: 2200A Array: Pole-Dipole	DATE: 04SEPT97 a-Spacing: 25.0			KEENA M.D., Grid (X x Z): 353		$\frac{25390^{3/3}}{(3)}$

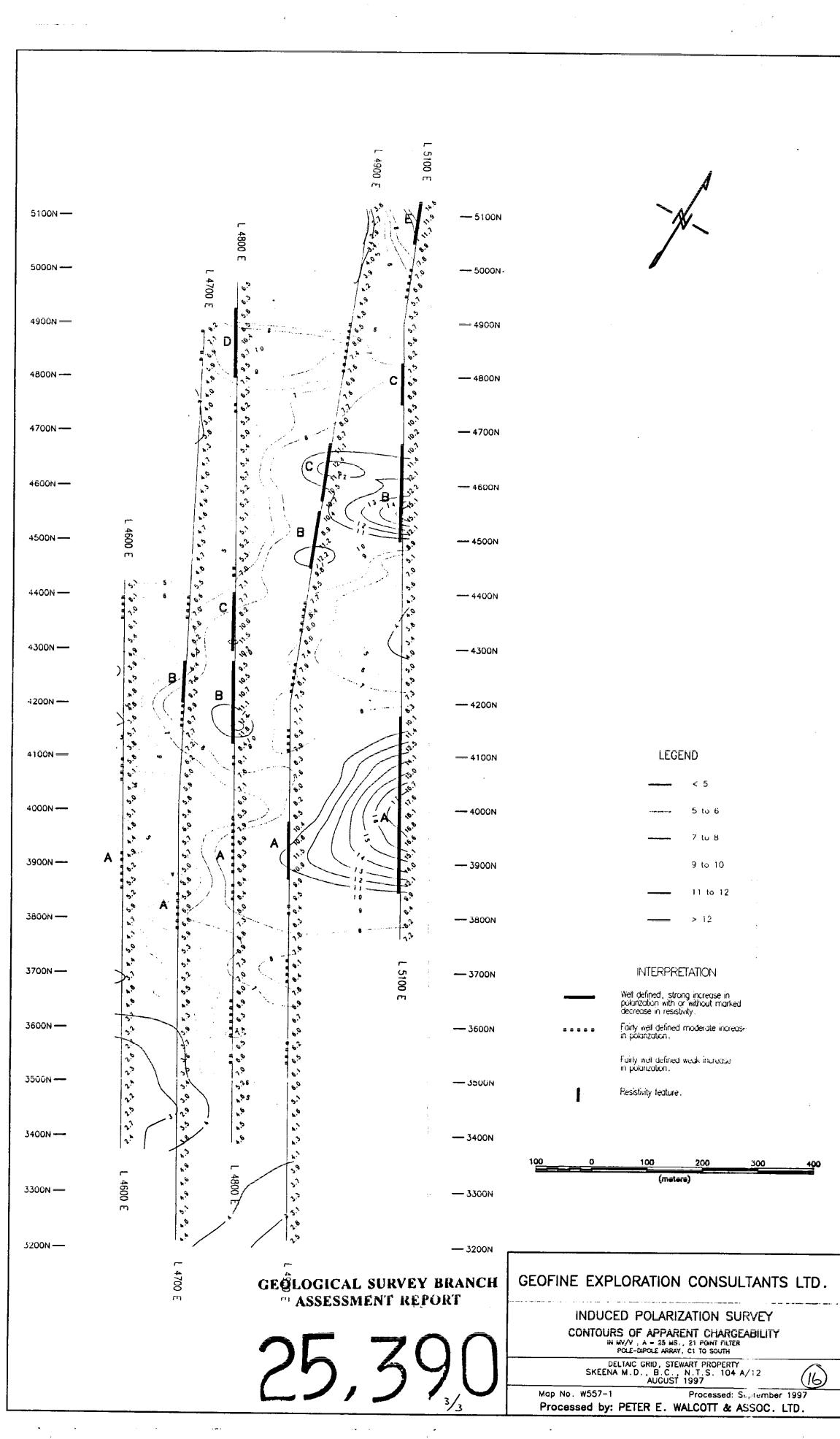
					_		_									18	17	1.8	74	20	71	77	23	24	25	26	27	73
Data Apparent Resistivity (ohm-m)	1 1 2 3 4 5	2	.3	4.	348 471	434 500-514	659 559 403	455 594 825	588	685 75 742 511 511	803 3	683 7 73 839	790	63 60 596	78 78 594 95 74 748	9 78 1653 1653 1653 633	z 673	8 69 803 3 79 634	93 7. 719 94 80 954	896 896 55 80 764	747 94 4 451	99 477 80 3 373	372 373	423 381/ 328 624	(537 - 5 ³⁷ (19) 708 7 632	9 3 5 706 132 4) 402 06 3 (540)	408 49 522 405 (322 4 574 382 425 6 180 ⁹⁵ 667
2	1	2	3	•	5	5	7	3				12	13	, , , ,	15	18		18	10	20	21	72	2	1 24	5	28	27	1000 28
Synthetic Apparent ResistAdy (ohnn-n	1 2 3 4 5 8				357.7 4 494.4	504.3 40.7 5 510.8 560 3	647.1 62.5 394.3 57.4	5 477). 154 1 3 614. 340.3	.4 752* 647 .4 624. 595.2	e5 744 727.4 .1 582 507.5	.3 496 613.9 .2 860 814.1	733.3 733.3 9 744 832.1	08 76 742.4 4.3 92 916.6	4.5 945 967.5 6.6 610 584.2	5.7 243 612.4 0.6 781 775.8	913 .1 769 664.4	.1 814 760 .7 728 721.9	.7 681 789 .1 808 .744.8	1.7 76 738 8.1 84 908.1	1.8 84 879.9 2.5 77 759.1	8.5 70 752.1 3/1 49 4/9	8.5 4. 482.2 9.5 30 371.3	54.4 365. 56.4 320.	118.9 4 7 380.7 527.1 7 9 633	50.8 70 813.2 13.4 5 636.4	99.9 56 666.9 107 4 467.3	5.p 29 364 29 40 462.7	447.1 54 00.2 419.1 337.5 47 03.9 386.2 440.8 63 39.6 705.5
	1	2	3	4	5	5	7	8	9	500	11	12	13	14	15	16	17	18	19	20	21	22	2	3 24	23	28	27	1000 28
	0 10 20 30 49 50 60				471.8 4 410.8	542.5 35.1 7 5 538.5 489 7	27.1 360.1 104.3	- 100 100 6 100 310.6	947.8 947.8 6 792. 889	0 426 603.5 .3 639 750.4	554.4 554.4 .5 659 702	.3 641 672.2 .4 873 755.4	1.8 (2 (1234 3.5 13 10 92	95. 11 1127	2.3 887 9143.6 70. 914 927	.7 866 935.8 .5 821 815.9	5.1 821 824.8 .1 774 _75 6.1	.3 791 808.5 .6 799 737.8	5.5 71 809.2 9.5 86 	8.6 56 808.8 2.2 76 	5.4 48 621 7.8 65 653.8	9 2. 5 5 626 50.6 6 581	83.9 620. 16.8 531	4 693.4 527.6 9 421.3	7929 51 588.7 #65 4. \$ 390.9	27.5 42 463.6 38.5 43 427.5	2.6 3 400.4 57.4 ع 483\8	621.9 49 12:5 79574 555.9 12 515 849.1 668.3 81 52.6 681
	70 60 4525	<u></u>	<u>. 8</u>		• • . • . •	4650	<u> </u>	┺═┅╧╸╋═╍┶╴	┈╻┈╸╸┙	. <u></u>)	4775			<u></u>	┶┶┶╍╪╾┸	4900		, 	4 ± 44	<u>↓_↓</u>	502	<u>, , ,</u>		↓ \$%#{	4 - 4 - 4	5150	<u></u>	· t, t t j t i.

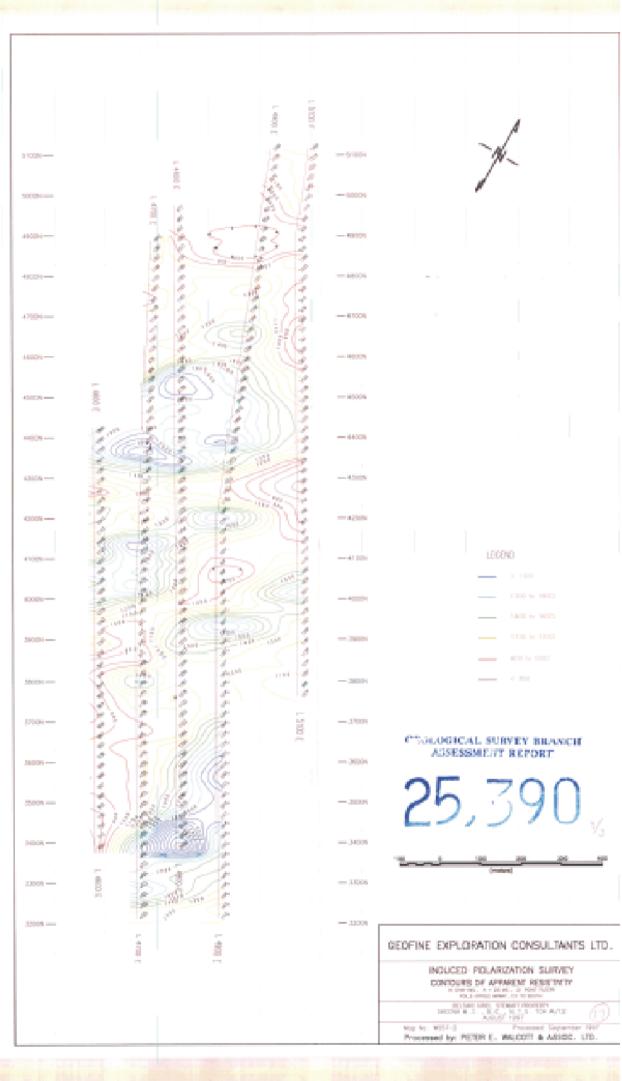
.----

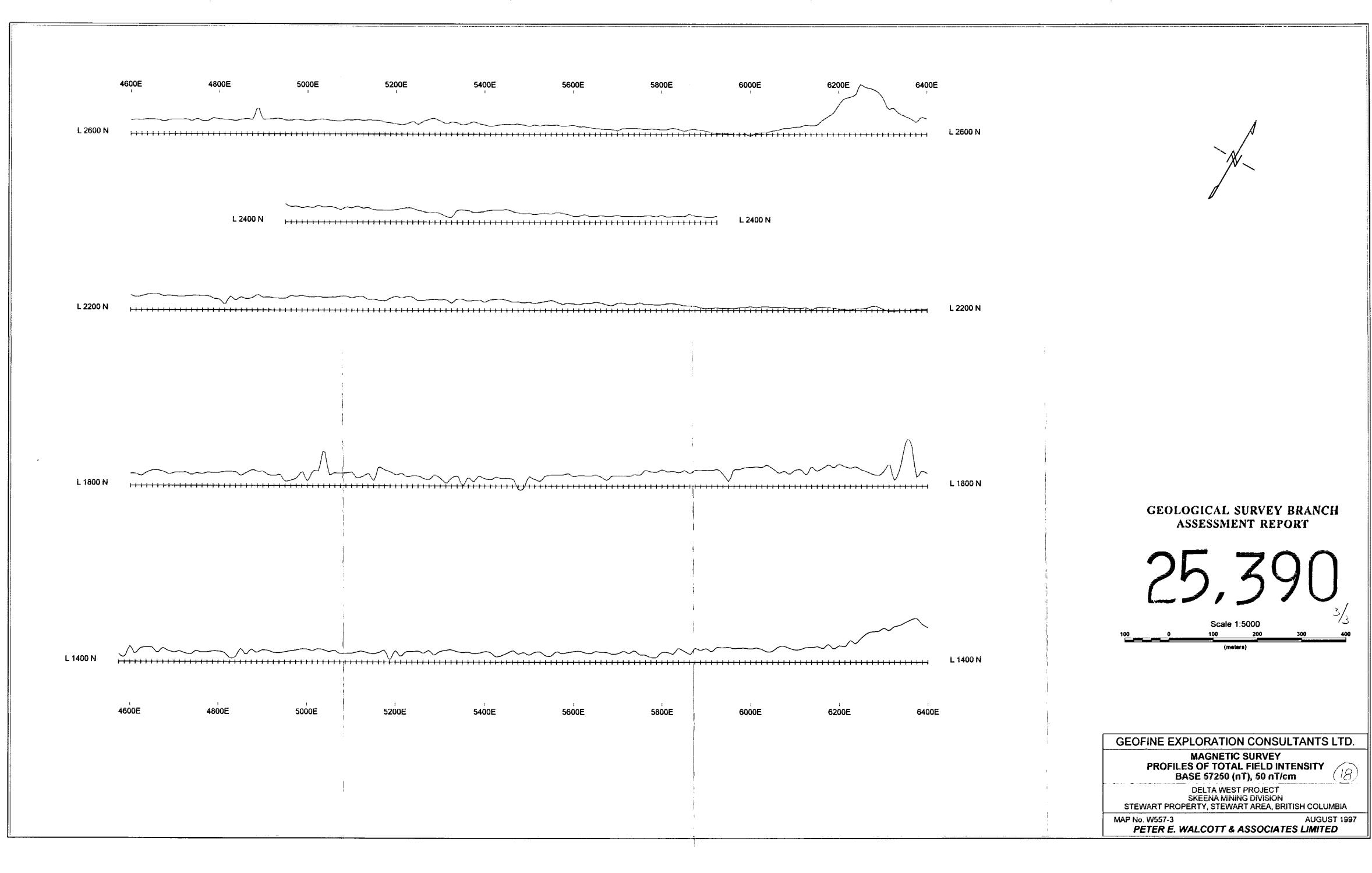
•

29 38 31 32 33 34 35	38 37 38 39 40 41 42 43 44 45	-44 47 48 48 50 51 52 53 54	55 54 57 58 59 40
755 456 969 758 440 676 9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	791 949 771 838 681 645 1313 99937 793 17 939 816 812 614 572 1252 874 812 14 969 767 862 616 525 5124 834 747 7680	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
0		1 1500 41 42 41 44 45 41 52 53 54	······································
623.8 1036 464.6 744.2 763.2 459.1 96 477.8 987.2 487.9 685.5 673.9 477.6 745.6 477.8 987.2 487.9 685.5 673.9 477.6 745.6 477.8 987.2 487.9 685.5 673.9 477.6 745.6 477.8 987.2 487.9 685.5 673.9 477.6 745.6 96 633.6 588.6 906.9 757.7 454.4 688.7 981.2 5 5 347 815.2 740.8 457 724 885.9 46 70 34 57 724 885.9 46 56 70 30 31 32 33 34 35 707 954.30.4 1289 756.1 - 1287. 799 364.59 4 505.9 1028 230.5 748.7 1028 655.9 10 1 924 586.2 566.9 1054 1344 1131 13	502 504.6 617.6 914.5 890.5 836.2 9066 873.5 1187. 899.4 2.4 50 1188 567.3 913.6 1137. 890.3 1037. 838.6 1117. 1073 822 1249. 830.5 912.4 1054. 1032. 1084. 793.4 1045. 920 890.8 7.7 830.1 7054. 1030. 964.4 1207. 797.8 948 828.3 777.5 835 1055.2 1044. 1159. 947.8 1131. 856.5 935.1 773.2 723.7 757.2 2.5 844 1129. 1048. 1110. 796.9 982.4 757.1 691.5 728 916 3 37 38 40 41 42 43 45 5 5 5 6 6 6 6 6 1207.7 797	8.8 821.6 $1096.$ 890.4 913.3 767.6 654.7 $1322.$ 824.7 744.7 785.1 960 767.6 844.3 690.7 637.6 $1305.$ 951.5 792.7 6.5 930.1 767.2 797.7 633.9 569.8 $1279.$ 876.8 842.7 156.9 983.3 767.6 823.8 611.3 539.1 $1165.$ 838.4 783.8 $1564.$ 983.3 767.6 823.8 611.3 539.1 $1165.$ 838.4 783.8 $1564.$ 8.9 819 840.7 632.5 530.1 $7122.$ 759.3 745.5 $1492.$ $192.$ $1099.$ $1105.$ $15698.$ $1320.$ $1138.$ 632.2 466.7 $930.8.5$ $54.4.8.7$ $1099.$ $1105.$ $15698.$ $1320.$ $1138.$ $632.2.2.$ $466.7.$ $930.8.5.5$ $54.4.8.7$ $71.4.9.56.6.6.7.593.6.5.6.569.5.5698.5.566.7.569.5.5698.5.566.7.5698.5.566.7.569.5.566.7.5698.5.566.7.5698.5.566.7.5698.5.566.7.5698.5.566.7.5698.5.$	1 1754. 1894. 140.3 649.6 703.4 922 1381. 2928. 11.8 638.6 616.9 1035. 62. 1775. 1775. 1775. 139.5 588.4 899 130 1885 409.8 883 679.7 842 1139. 58. 435.1 800 745.9 943 1062. 125 58. 435.1 800 745.9 943 1062. 125 58. 435.1 800 745.9 943 1062. 125 58. 435.1 800 745.9 943 1062. 125 58. 435.7 800 745.9 943 1062. 125 58. 1277.1 1277.202 1215 1062. 125 132. 1376.3 377.3 360.5 30 155 49. 1954. 1506. 778.9 764 1273.47 1361. 1567.3 965.5 1082. 1082.
5000		7500	
<u>5275</u>	5400 5625 Distance (m)	5650 5775	5900
	GEOFINE EXPLO	RATION CONSULTANT	
		ott & Associates	
	DATA SET: 2600A	DATE: 04SEPT97	

Array: Pole-Dipole


a-Spacing: 25.0


l11 \$2 \$3 64 (15 63 67 **6**8 69 70 71 72 73 74 75 746 1613 100 1643 1059 -537 -6-837 1194 965 929 1764 1609 1267 1319 752 1082 1219 1573 1862 1676 1366 1249 1094 1296 1479 1383 1099 1197 1962 1578 1548 1461 1705 / J 1402 1448 1575 1395 1395 1517 1243 1234 1420 6 5 1415 1140 1304 / 1635 1247 1380 1392 1048 1869 1375 1679 1500 1575 1403 1172 1381 6 2000 (h1 62 63 64 05 66 67 66 68 70 71 72 73 74 % 548 1 1858 804.5 1451. 1163 1567 993.7 937.6 1689. 1597 1291. 1329. /761.6 1114. 994. 1 1255. 1688. 15\8. 1230. 1240. 1404. 1101 1460 1202. 1808. 1401. 1424. 1386 791. 1441. 3 1371. 1463. -_1538/ 09. 1307. 1450. 1538 1284. 4 1496. 850,5 1564, 1342, 1745. 408 1834. 1330. 1398. 1409 1417. 1120. 5 252. 1219. 1217. 902 2 1548. 1330. 1779. 1523. 1691. 1455. 1249 1415. 1 ln 12 63 64 18 16 67 68 99 70 71 72 73 74 15 <u>____</u> 6275 10725 6150 DELTA WEST GRID STEWART PROPERTY Skeena M.D., B.C. 25390 3/3 Grid (X x Z): 345 x 22 (14)


čec)	1	2	3	4	5 6	7	8	9	10	0 11	1	12	13	Fa	•	15	16	17		18	19	20	21	22	!	23	24	15	26	77	28
Jata Chargeability (mSec)	1 2				4.6 4.	5 4,7	6.0	67.	1.1	8.6	9.7	9.3	7	. 4	9.6	8.9	9.4	<u>م</u>	1. 9	10.9	11.	9 8.	59	9.9	9.3	5.8	5.5	5.1	76.	17.	7.4 6 4 6.9 7.2 7
a Charg	4				4.5 5.						1										/										
Dat	5 6				5.8 6.2 6.						1									/											8.3 7 8.4
a	1	2	3	•	5 8	, ,	2	9	10	a 11	1	12	13	14	• •	15	15	17		18	18	20	21	22	!	23	24	15	24	27	:73
Synthetic Chargeobliky (mSec)	1					4.5	/															্র							-		
argeabi	2 3				4.3 4. 4.5	5					\sim	<u> </u>					10					/									8 7 7.6 7
hetic Ct	4				4.75 5.	-					1																				
Syntl	5											/								/											8.3 0
	6				6.57.	2 7.5	5 7.3	88.	9	9.6	9.3/	11.5	5 11	0.9	12.1	11.8	13	12	2.7	7.9	8.3	· 7.	8	7	7.1	8.1	8.6	i 8.1	88	8.	4 8.13
		[•						,		
	•	2	3	4	5 6		8			0 11	1	12	13			15	16	17		18	19	20	21	22		23	24	15		 	
	20				2.8 2.	3 4.2	z 9,-	814	4.1	12.8	6.7	7.8		1.8	8,8	6	6.1	16	5.6	_91	,17.	12		5.5	8.1	-		i 3.	5 3.	እ 7.	8.1 3 9 7.1 8.3 _{
Depth (m)	30 40				6.7 6.		∍ lų.	.6 13	3.3	13	11.5	11.8	3 1.	2.5	13	1 3.1	13.	4 14	4.1	14	13	1	3	7	7	8.3	8.9	يو ا	9 8.	97.	4 10.4 8.2
Dept	50				7.5 6.																										
	70	0				-	· · · · · · · · · · · · · · · · · · ·		·			-							10												
	60 <u> </u> 4525	<u>ı ↓. ı ı ı</u>			4650		• • • •		-	47	75	· · · · ·	. <u>+</u> t	.i. 4	þ	<u>. </u>	4900				• • •	· • • •	502	5		· • • •	_ <u>, </u>	•••	5150		

29 30 31 32 33 34 35	36 57 38 39 40 41 42 43 44 45	4 6 47 48 H0 50 51 52 53 54	55 56 57 58 59 (0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14.3 13.6 14.6 14.8 12.4 16 15.9 13.3 13 12.6 .9 18.3 15.9 18.8 16.4 17.4 20.6 18.2 15.5 16.4 17.4 20.6 18.1 19.3 18.2 18.8 20.6 20.8 18.5 18 16.4 17.4 20.6 20.8 20.6 20.8 18.5 18 16.2 11 19.1 20.8 21.2 20.5 20 20.1 17.6 11 17 21.7 19 18.2 20.8 21 19.4 20 15 19.9 19.5 19.1 26.1 20.4 19.7 20.7 20.4 21.4 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
10 28 30 31 32 33 34 35		1 15 44 47 48 10 51 52 53 54	165 54 57 5 0 59 1 0
7.4 7.8 7.2 13.1 14.4 13.9 18. 7.6 7.8 8.1 13.9 14.3 12.1 16.6 1 8 8.3 14.4 14.3 11.7 15.5 18. 8.4 8.8 14.3 14.3 11.6 35.5 17.6	14.7 15 15.2 15.8 13 15.5 15.4 13 13.5 .5 18.2 15.5 18.5 18.1 18.8 20.2 18 15.3 15.7 1 .20.6 17.7 18.9 17.9 18.5 19.9 20.1 18.1 17.6 18.2 .4 19 .20.6 17.8 19 21 19.7 19.6 19.9 17.7 16.6 21.4 18.9 18.3 21 20.6 19.4 21.2 19.4 29.1 .8 19 19.2 18.9 20.1 20.1 21 20.4 21.4 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
10 29 30 31 32 33 34 35		1 15 48 47 48 49 50 59 52 53 54	95 54 57 58 59 00
7.4 8.4 $\frac{10.6}{7.4}$ 7.4 8.4 $\frac{10.6}{7.4}$ 7.4 8.4 8.6 1 3.9 21.9 42.2 43.9 9.6 8.7 9.6 29.2 27.2 10 4 12.9 13.1 45.7 18.3 23.1 21.3 23.1 11 13.6 16.5 16.8 16.9 19.7 19.6	14.7 14.5 12.3 13.3 5.7 10.4:7 8.9 10.3 11.9 15.8 3 19.3 13.6 9.5 20.3 22.9 20.2 19.4 10.8 16.1 1 22.5 23.4 16.1 20.5 22.1 22 19.4 10.8 16.4 1 1 27.9 24.5 20.5 22.1 22 19.3 18.1 16.2 14.5 1 23.4 26.3 22.9 17.5 18.1 15.5 17.1 17 15 .8 27.5 31.9 30.3 20.3 13.4 18 22.5 24.3 21.9 21.9	2.1 15 12.1 13.3 17.4 6 1.2 8.2 7.9 2.1 9-9 $_{10}$ 10.8 12.3 12.6 10.9 7.4 9 12.9 9.2 1.5 8.6 10.4 11.6 13.6 12.2 9.9 13.3 16.2 18.3 -31.7 10 11 13.5 15.4 13.2 10.7 19.9 18.2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
20 	······································	36 36	······································
5275	5400 5625 Distance (m)	5650 5775	5600
	GEOFINE EXPLO	RATION CONSULTANT	
		ott & Associates	
	DATA SET: 2600A	DATE: 04SEPT97	
	Array: Pole-Dipole	a-Spacing: 25.0	

a a <th>e Data Chargeability (mSec)</th>	e Data Chargeability (mSec)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Synthetic Chargeochility (mSec)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Model Chargedbility (mSec)
DELTA WEST GRID	
	25390 3/3
Grid (X x Z): 345 x 22	(15)

