Gold Commissioner's Office VANOCATION ASSESSMENT REPORT ON THE 1997 SOIL GEOCHEMICAL AND INDUCED POLARIZATION GEOPHYSICAL SURVEYS AT THE HARMONY GOLD PROJECT SANDSPIT, AMETHYST AND FEATHER GRIDS

GRAHAM ISLAND, QUEEN CHARLOTTE ISLANDS SKEENA MINING DIVISION BRITISH COLUMBIA CANADA

N.T.S. 103F/08,09 Latitude 53°32' N Longitude 132°13'W

MINERAL CLAIMS REFERENCED

Canyon 9-10, El Ninio, Feather 1-2, Ferguson F 1-13, 15, Gold 10, 13, 14, 21, 22, Gw #7, 8, 9, #11 Misty 1-6, V 0-3, 6, 8-15, Qtz 1-2

Prepared for

Misty Mountain Gold Limited 1020-800 West Pender St. Vancouver, B.C. V6C 2V6

by

R.J. Haslinger, P.Eng.

January 30, 1998

VOLUME I

GEOLOGICAL SURVEY BRANCH ASSESSMENT MELORI

ASSESSMENT REPORT ON THE 1997 SOIL GEOCHEMICAL AND INDUCED POLARIZATION GEOPHYSICAL SURVEYS AT THE HARMONY GOLD PROJECT SANDSPIT, AMETHYST AND FEATHER GRIDS

TABLE OF CONTENTS

	VOLUME I	<u>Page</u>
1.0	Summary	1
2.0	Introduction	2
	2.1 Location and Access	2
	2.2 Physiography and Climate	3
	2.3 Exploration History	3
	2.4 1997 Surveys	4
3.0	Claim Data	4
4.0	Property Geology	5
5.0	Soil Geochemical Surveys	7
6.0	Induced Polarization Geophysical Surveys	8
7.0	Conclusions	9
8.0	Statement of Costs	10
9.0	References	12
10.0	Statements of Qualifications	14

LIST OF TABLES

		Following Page
1.0	Mineral Claims Referenced	4

LIST OF FIGURES

		Following Page
1.0	General Location	2
2.0	Regional Geology	3
3.0	Mineral Claim Locations, North West	4
3.1	Mineral Claim Locations, South East	4
3.2	Mineral Claims and Grid Locations, 1:50,000 Scale	In pocket
4.1	Gold Soil Geochemistry and IP Grid Lines, Sandspit Grid	In pocket
4.2	Gold Soil Geochemistry and IP Grid Lines, Amethyst Grid	ln pocket
4.3	Gold Soil Geochemistry and IP Grid Lines, Feather Grid	In pocket

APPENDICES

- I Harmony Gold Project Mineral Claim Holdings, January 1998
- II ICP and Fire Assay Analytical Procedures for Soil Geochemical Samples
- III Analytical Results for Soil Geochemical Samples

VOLUME II

IV A Geophysical Report on an Induced Polarization Survey on the Harmony Gold Project. Queen Charlotte Islands, British Columbia, by D.A. Klit, Lloyd Geophysics Inc.

1.0 SUMMARY

This report documents soil geochemical and induced polarization geophysical surveys completed in 1997 within the Harmony Gold Project mineral claim block. This block of 116 contiguous claims is centered on the Specogna epithermal gold deposit and the related, prospective Sandspit fault. These surveys are part of ongoing exploration by Misty Mountain Gold Limited of epithermal gold targets along the Sandspit fault and related structures. Latest resource estimates for the Specogna deposit indicate a mineable resource of 33.5 million tonnes of material grading 2.11grams gold per tonne at a 1.20 grams gold per tonne cut-off.

The Harmony Gold Project claims are situated on Graham Island at latitude 53° 31' north and longitude 132° 13' west, in NTS map sheet area 103F/9E, about 770 kilometres north of Vancouver, British Columbia.

The 1997 surveys were completed at three structural or geochemical target areas called the Sandspit, Amethyst and Feather grids.

Survey Type	Sandspit	Amethyst	Feather
	Grid	Grid	Grid
Line cutting and grid surveying (km)	35.1	14.2	6.9
IP geophysics (km)	35.1	5.1	6
Soil Geochemistry (number of samples)	206	328	184

Results of these surveys indicate two principal targets for further exploration.

A possibly significant gold resource could underlay the central Amethyst grid where a 400 m long by about 200 m wide area contains samples with greater than 30 parts per billion gold up to 368 parts per billion gold. Additional exploration for the bedrock source of this gold is warranted. The IP survey over this area did not indicate a possible source.

The Specogna deposit induced polarization chargeability/resistivity high extends over 500 m north of its present drill defined northern edge. This response warrants exploration by drilling.

2.0 INTRODUCTION

This report documents soil geochemical and induced polarization (IP) geophysical surveys completed in 1997 at three locations within the Harmony Gold Project mineral claim block. This block of 116 contiguous claims is centered on the Specogna epithermal gold deposit and the related, prospective Sandspit fault. These surveys are part of ongoing exploration by Misty Mountain Gold Limited of epithermal gold targets along the Sandspit fault and related structures.

Latest resource estimates for the Specogna deposit undertaken on behalf of Misty Mountain Gold Limited indicate a mineable resource of 33.5 Mt of material grading 2.11g Au/t at a 1.20 g Au/t cut-off (Whelhener, 1997). In addition to this, a further 19.2 Mt of material grading between 1.20 and 0.80g Au/t are available as a stockpile resource. Combining these two resources furnishes a potentially mineable resource of 52.7 Mt of material grading 1.70g Au/t, at an overall waste to ore stripping ratio of 1.2:1 (Niosi, 1997).

2.1 Location and Access

The Specogna deposit and regional Harmony Gold Project claims are situated on Graham Island at latitude 53° 31' north and longitude 132° 13' west, in NTS map sheet area 103F/9E, about 770 kilometres north of Vancouver, British Columbia. Graham Island is the most northerly large island in the Queen Charlotte Islands archipelago (Figure 1.0).

Access to the Specogna deposit is via logging roads from the towns of Queen Charlotte City and Port Clements with road distances of approximately 40 kilometres and 30 kilometres, respectively. Misty Mountain Gold Limited has established a trailer camp at Port Clements which is a 35-minute drive from the deposit. Daily flights from Vancouver and Prince Rupert land at the Sandspit airport where taxi and ferry service is available to Queen Charlotte City. Freight can be transported from or to the mainland by scheduled or contract-freight services using B.C. Ferries or independent barge services.

2.2 **Physiography and Climate**

The Specogna deposit is situated at a dilational jog along the northwest trending Sandspit fault (Figure 2.0). The fault scarp forms a major physiographic and geological boundary on Graham Island. The Fault separates the hilly and mountainous terrain associated with Mesozoic and Tertiary rocks of the Skidegate Plateau to the west from the predominantly flat and poorly drained terrain associated with Late Tertiary rocks of the Queen Charlotte Lowlands in the east (Sutherland Brown, 1968).

A substantial part of the claim area has been clear-cut logged, including the Specogna deposit area. Logging activity is presently ongoing in the claim area.

The climate of the Queen Charlotte Islands is typical of British Columbia maritime areas, with temperatures ranging from 1°C in January to 15°C in August. Annual average precipitation is in the order of 2 metres. Rain falls on approximately 213 days of each year. Snow falls on approximately 18 days of each year.

2.3 Exploration History

The Specogna deposit, previously referred to as the Cinola deposit, was discovered in early 1970 by two prospectors, Efrem Specogna and Johnny Trico (Champigny et al., 1980). From 1971 to 1991, nine successive companies completed 392 holes for a total drilling meterage of 44,831m. During this period 474 metres of underground exploration was also completed and a mine development plan for the deposit was taken to an advanced stage feasibility study (Christopher, 1997; City Resources (Canada) Limited, 1988).

In November 1994, directors of the Hunter Dickinson Group (Inc.) acquired controlling interest in the deposit through the formation of a new company called Misty Mountain Gold Limited. Subsequently, 36,626 metres of additional diamond drilling in 151 holes and a number of technical studies on gold amenability have been completed.

2.4 1997 Surveys

The 1997 surveys of Induced Polarization (IP) geophysics and soil geochemistry were completed at three structural or geochemical target areas called the Sandspit, Amethyst and Feather grids.

Survey Type	Sandspit	Amethyst	Feather
	Griu	Gria	Gria
Line cutting and grid surveying (km)	35.1	14.2	6.9
IP geophysics (km)	35.1	5.1	6
Soil Geochemistry (number of samples)	206	328	184

3.0 CLAIM DATA

The 304 square kilometre Harmony Gold Project consists of 116 mineral claims totaling 1,217 units. These claims are located as shown in overview in Figures 3.0 and 3.1 and in detail in Figure 3.2. The claims are situated in the Skeena Mining Division on NTS map sheets 103/F08 and 103/F09.

The claims are owned 100% by Misty Mountain Gold Limited except for the El Ninio claim. Misty Mountain Gold Limited has an option to earn a 75% interest in the El Ninio claim which is held by Doromin Resources Ltd.

A listing of the claims for which the assessment work documented in this report was filed, is given in Table 1.0. A listing of all Harmony Gold Project claims is listed in Appendix I.

Table 1.0 Mineral Claims Referenced

NTS 103F8, 103F9.

,

.

Skeena Mining Division

Claim	Units	Tenure	Completion	Expiry
Name		Number	Date	Date*
CANYON 9	1	333026	06-Dec-94	06-Dec-07
CANYON 10	1	333027	06-Dec-94	06-Dec-07
EL NINIO	8	252959	21-Aug-89	21-Aug-07
FEATHER 1	20	333008	05-Dec-94	05-Dec-00
FEATHER 2	20	333009	05-Dec-94	05-Dec-01
FERGUSON	20	333005	02-Dec-94	02-Dec-07
F 1	1	359401	18-Sept-97	18-Sept-98
F2	1	359402	18-Sept-97	18-Sept-98
F 3	1	359403	18-Sept-97	18-Sept-98
F 4	1	359404	18-Sept-97	18-Sept-98
F 5	1	359505	18-Sept-97	18-Sept-98
F6	1	359506	18-Sept-97	18-Sept-98
F 7	1	359507	18-Sept-97	18-Sept-98
F8	1	359508	18-Sept-97	18-Sept-98
F 9	1	359509	18-Sept-97	18-Sept-98
F 10	1	359510	18-Sept-97	18-Sept-98
F 11	1	359511	18-Sept-97	18-Sept-98
F 12	1	359512	18-Sept-97	18-Sept-98
F 13	1	359513	18-Sept-97	18-Sept-98
F 15	1	359514	18-Sept-97	18-Sept-98
GOLD 10	20	332944	28-Nov-94	28-Nov-07
GOLD 13	18	332947	30-Nov-94	28-Nov-05
GOLD 14	18	332948	30-Nov-94	28-Nov-05
GOLD 21	15	332955	30-Nov-94	30-Nov-07
GOLD 22	15	332956	30-Nov-94	30-Nov-06
GW #7	15	324493	26-Mar-94	26-Mar-07
GW 8	20	324494	26-Mar-94	26-Mar-07
GW 9	20	334640	31-Mar-95	31-Mar-07
GW #11	20	324497	28-Mar-94	28-Mar-07
MISTY 1	6	357218	25-Jun-97	25-Jun-08
MISTY 2	20	357219	29-Jun-97	29-Jun-08
MISTY 3	20	357220	29-Jun-97	29-Jun-07
MISTY 4	16	357221	29-Jun-97	29-Jun-07
MISTY 5	16	357222	29-Jun-97	29-Jun-08
MISTY 6	20	357223	29-Jun-97	29-Jun-07
Va	18	324185	16-Mar-94	16-Mar-01
V 1	20	324019	09-Mar-94	09-Mar-07
V2	20	324020	11-Mar-94	11-Mar-07
Vā	20	324186	18-Mar-94	18-Mar-01
Ve	20	324187	17-Mar-94	17-Mar-01
V 8	20	324023	12-Mar-94	12-Mar-07
V 9	20	324189	17-Mar-94	17-Mar-01
V 10	20	324484	30-Mar-94	30-Mar-01
V 11	18	324485	01-Anr-94	01-Apr-01
V 12	a	324486	02-Apr-04	02-Anr-01
V 13	15	324487	02.4pr.04	02-00-01 03-Apr-02
V 14	20	324488	03. Anr. 04	03-Apr-02
V 15	1	360740	27-Nov 07	27-Nov 98
OTZ 1	12	357224	01-10-07	01-101-01
OT72	20	257005	01 1.07	
	2V	301220	01-301-97	01-30-01

* subject to acceptance of this assessment report.

4.0 **PROPERTY GEOLOGY**

The geology of the Queen Charlotte Islands has been mapped by A. Sutherland-Brown and documented in the British Columbia Department of Mines Bulletin No. 54 (1968). The bulletin identifies five main rock formations within the Harmony Gold Project claim area: the Jurassic Yakoun Formation; the Cretaceous Queen Charlotte Group, which includes the Haida and Honna Formations; the Early Tertiary Masset Formation; and the Late Tertiary Skonun Formation (Figure 2.0). The Gold Creek and Juskatla Tertiary volcanic complexes have been mapped and described more recently by Hickson (1991).

The Harmony Gold Project claims are aligned along the northwest trending, steep easterly dipping Sandspit fault. The Specogna deposit is located in the immediate hanging wall of the fault at a strike flexure or dilational jog, possibly related to the fault intersecting the Gold Creek volcanic complex. The fault appears to have been an active scarp that resulted in the Masset and Yakoun formations west of the fault contributing to the Skounon Formation sediments being deposited east of the fault in a subsiding basin. The Specogna gold deposit formed by a hot spring system that was fed by a fluid conduit within the plane of the Sandspit fault.

4.1 Yakoun Group

The lithology of the Middle Jurassic (Bajocian) Yakoun Group is described by Indrelid et al. (1991). The Yakoun Group contains an abundance of primary and reworked volcanic material that was deposited in marine and subaerial environments. These volcanics include tuffs, lapilli tuffs, breccias and andesitic flows. Lithologies of the reworked sedimentary sections include the following: relatively deep water interbedded tuff and shale; shallower marine interbedded tuffaceous shale, siltstone and fine to coarse sandstone; and conglomerate, ranging from matrix supported gravel conglomerate to clast supported pebble and cobble conglomerate.

4.2 Queen Charlotte Group

The Middle to Upper Cretaceous Queen Charlotte Group rock sequence is composed of a tripartite sedimentary package of conglomerates, sandstones and mudstones: the Albian Haida Formation, the Cenomanian to Santonian Skidegate Formation, and the Coniacian to Santonian Honna Formation (Forgarassy and Barnes, 1991). These rock types have been identified in outcrop at numerous localities in the Queen Charlotte Islands (Haggart, 1991).

Forgarassy and Barnes (1991) suggest that the Haida-Skidegate-Honna sequence represents an overall fining upward sedimentary package deposited during a marine transgression event. The base of the Haida Formation is recognized as a non-marine, probably fluvial deposit that quickly grades upward into near shore shallow marine sediments. The overlying mudstones of the Skidegate Formation indicate the gradual deepening of waters in this marine environment. The Honna Formation, which overlies the Haida and Skidegate Formations, consists of coarse grained clastics that may represent either submarine channel and turbidite deposition or fan-delta deposition.

4.3 Masset Formation

The Late Oligocene to Early Pliocene Masset Formation is composed of aphyric to feldsparphyric, mafic to felsic lava flows and pyroclastics. Minor intercalated sediments that underlie much of Graham Island occur within the Formation (Hickson, 1991). Hickson observed thick rhyolite flows at the core of inland hills along the west coast of Graham Island. These flows may represent vent areas from which volcanic products and sediments were shed to the east and west. Hickson indicates that the Masset Formation accumulated at or above sea level.

4.4 Skonun Formation

The Specogna deposit is hosted by the Tertiary (Miocene to Pliocene) Skonun Formation. This formation is the youngest present on Graham Island and is characterized by marine and non-

marine detrital sediments. These sediments consist of a thick sequence of conglomerates, sandstones, mudstones, siltstones, and volcanic pyroclastics. Seven units of the Skonun Formation have been identified in the area of the Specogna Deposit (Deighton et al., 1989). These units include mudstones, siltstones, sandstones, conglomerates and sedimentary breccias.

5.0 SOIL GEOCHEMICAL SURVEYS

During August to November 1997, Misty Mountain Gold Limited conducted soil geochemical surveys at the Sandspit, Amethyst and Feather grids. These grids are located as shown in Figure 3.2. The locations of the Sandspit and Feather grids were selected by centering the grids on the Sandspit fault as indicated by airborne geophysics (Case, 1997; Pezzot, 1997). The Amethyst grid is a westward extension of an earlier grid that had anomalous gold soil geochemistry at its west edge.

Soil samples were collected along the surveyed grid lines at the locations shown in Figures 4.1 to 4.3. The grid coordinate for each sample was used as the sample number. Samples were collected from glacial basal till underlying a 0.5 to 2 m thick blanket of black organic soil. The basal till is generally unoxidized and contains varying amounts of rounded pebbles and cobbles in a very compacted blue-grey clay matrix. Augers were used to sample the till through the organic soil. Samples were sent to International Plasma Laboratory in Vancouver for preparation and 32 element ICP and gold geochemical analysis. The analytical procedures used are given in Appendix II and the analytical results are given in Appendix III.

The gold geochemistry for the surveys are plotted in Figures 4.1 to 4.3. Gold is the single most significant element in these surveys since it strongly indicates the Specogna deposit at the east end of lines 5934700N and 5935000N where highs of 592 and 138 parts per billion (ppb) gold were obtained (Figure 4.1). The target areas of the Sandspit grid survey were the western and northern portions of the grid. No significant results worth pursuing were obtained.

With the results from near the Specogna deposit as a guide, it is apparent that a potentially significant gold resource could underlay the central Amethyst grid. Here, centered on line 9800N and station 7275E, the soil geochemical survey resulted in a significant area of samples containing greater than 30 ppb gold, with highs of 320 and 368 ppb gold (Figure 4.2). Additional exploration for the bedrock source of this gold is warranted in this 400 m long by about 200 m wide area.

Gold soil geochemistry for the Feather grid resulted in an isolated single maximum sample result of 150 ppb (Figure 4.3). Based on these results alone, no further work is recommended here.

6.0 INDUCED POLARIZATION GEOPHYSICAL SURVEYS

In October to November 1997, Lloyd Geophysics Inc. of Vancouver conducted IP surveys on the Sandspit, Amethyst and Feather grids under contract to Misty Mountain Gold Limited. These surveys were completed after an initial orientation survey over the Specogna deposit indicated that the technique would work well on delineating this moderately sulphidic and strongly silicified deposit type. The Sandspit and Feather grids were located along the Sandspit fault as defined by Pezzot (1997). The Amethyst grid was located over an area of anomalous gold geochemistry as defined in Section 5.0 above. The purpose of the surveys at each of the grids was to search for signatures similar to that of the Specogna deposit.

A complete report by D.A. Klit of Lloyd Geophysics Inc., January 1998, giving the IP survey techniques, data and results is attached in Appendix VI.

In his report, Klit indicates that the Specogna deposit chargeability/resistivity high extends over 500 m north of its present drill defined northern edge. This IP response warrants exploration by drilling. Klit also identifies several IP features at the Feather and Amethyst grids that would be of more interest if they coincided with anomalous soil geochemistry. No significant IP response is associated with the gold soil geochemical anomaly at the Amethyst grid.

7.0 CONCLUSIONS

The results of the soil geochemical and IP geophysical surveys on the Sandspit, Amethyst and Feather grids indicate two principal targets for further exploration.

A possibly significant gold resource could underlay the central Amethyst grid. A 400 m long by about 200 m wide area contains samples with greater than 30 parts per billion gold, and with highs of up to 368 parts per billion gold. Additional exploration for the bedrock source of this gold is warranted. The IP survey over this area did not indicate a possible source.

The Specogna deposit chargeability/resistivity high extends over 500 m north of its present drill defined northern edge. This IP response warrants exploration by drilling.

8.0 STATEMENT OF COSTS

The collective costs for the line cutting, grid surveying, soil sampling and IP geophysical surveying on the Sandspit, Amethyst and Feather grids, for the period August 15 to December 15, 1997, are as follows:

Line cutting, grid surveying and soil sampling field personnel: Sandspit Grid

Sandspri Grid		
Bernhard Augsten, project manage	r 36 days at \$300/day	\$10,800
Bogart Cross, field technician	53 days at \$180/day	\$ 9,540
Thomas Nottelman, field technicia	n 27 days at \$240/day	\$ 6,480
Peter Fischl, field technician	18 days at \$240/day	\$ 4,320
Gary Parup, field technician	20 days at \$240/day	\$ 4,800
Kevin Maguire, field technician	21 days at \$180/day	\$ 3,780
John Merril, field technician	29 days at \$160/day	\$ 4,640
Wilfred Parnel, field technician	30 days at \$160/day	\$ 4,800
Gerald Amos, field technician	<u>35 days</u> at \$160/day	<u>\$ 5,600</u>
	Subtotal 269 person days	Subtotal\$54,760
Amethyst Grid		
Bernhard Augsten, project manage	r 12 days at \$300/day	\$ 3,600
Bogart Cross, field technician	18 days at \$180/day	\$ 3,240
Thomas Nottelman, field technicia	n 20 days at \$240/day	\$ 4,800
Peter Fischl, field technician	12 days at \$240/day	\$ 2,880
Gary Parup, field technician	4 days at \$240/day	\$ 960
Tara Laycock , field technician	12 days at \$240/day	\$ 2,880
John Merril, field technician	18 days at \$160/day	\$ 2,880
Wilfred Parnel, field technician	20 days at \$160/day	\$ 3,200
Gerald Amos, field technician	<u> </u>	<u>\$ 2.880</u>
	Subtotal 134 person days	Subtotal\$27,320
Feather Grid		
Bernhard Augsten, project manages	r 6 days at \$300/day	\$ 1,800
Bogart Cross, field technician	12 days at \$180/day	\$ 2,160
Thomas Nottelman, field technician	n 16 days at \$240/day	\$ 3,840
Tara Laycock , field technician	11 days at \$240/day	\$ 2,640
John Merril, field technician	15 days at \$160/day	\$ 2,400
Wilfred Parnel, field technician	<u> </u>	<u>\$ 2.560</u>
	Subtotal 76 person days	Subtotal\$15,400

Crew mobilization/demobilization from Vancouver to Port Clements......\$8,100

Food and Accommodation (479 field technician plus 200 IP crew person days):Food services679 person days at \$67.50/day\$45,833Accommodation3 months trailer camp at \$3400/month\$10,200Subtotal.....\$56,033

Vehicle Rentals: Four crew cab and suburban 4X4's	for 3 months at \$1875/month	\$22,500
Equipment and Supplies:		
Field supplies including chain saw	rentals and repairs	\$7,875
Vehicle fuel and repairs	-	\$5,590
1		Subtotal\$13,465
Laboratory Soil Sample Analysis:		
Sandspit grid 206 samples	at \$25/sample	\$ 5,150
Amethyst grid 328 samples	at \$25/sample	\$ 8,200
Fcather grid 184 samples	at \$25/sample	<u>\$ 4,600</u>
Č -	-	Subtotal\$17,950
Contractors: Lloyd's Geophysics In	nc Induced Polarization Surveying	
Sandspit grid 29 survey days at	\$1765.50/day	\$51,200
Amethyst grid 5 survey days at	\$1765.50/day	\$ 8,827
Feather grid 6 survey days at	\$1765.50/day	\$10,593
(Crew of 5 for 40 days = 200) person days)	
One ton 4x4 crew cab for 40 days a	t \$80.25/day	\$ 6,472
Mob/demobilization from Vancouv	er to Port Clements	\$ 9,611
Report and map preparation		<u>\$ 4.280</u>
		Subtotal\$90,983
Report Preparation:		
Haslinger, Richard - writing	5 days at \$400/day	\$ 2,000
Nottelman, Thomas – graphics	15 days at \$260/day	<u>\$ 3,900</u>
		Subtotal\$5,900
Management:		
Haslinger, Richard	15 days at \$400/day	\$ 6,000
Regagliati, Mark	5 days at \$500/day	<u>\$ 2,500</u>
		Subtotal\$8,500
		<u>TOTAL \$320,911</u>

These costs were incurred at the three grids in separate approved work programs as follows:

Work Approval Number	Grid	Portion of Costs
SMI-97-0200017-164	Sandspit grid	\$191,650
SMI-97-0200017-249	Amethyst grid	\$ 76,492
SMI-97-0200017-290	Feather grid	<u>\$ 52,769</u> Total \$320,911

Case, T.T., 1997. 1997 Interpretation Assessment Report of Airborne Geophysical Survey, Feather Lake Area, June 18, 1997, 11 pages.

Case, T.T., and Fischl, P., 1997. 1996 Specogna Deposit Diamond Drilling Program Assessment Report, May 1, 1997.

Champigny, N., Sinclair, A.J. and Sanders, K.G., 1980. Specogna Gold Deposit of Consolidated Cinola Mines, an Example of Structured Property Evaluation, Western Miner, Volume 3, pages 35-44.

Christopher, P.A., 1997. Summary Report, Harmony Gold Project – Specogna Deposit, Skeena Mining Division, report for Misty Mountain Gold Limited by Peter Christopher & Associates Inc., August 15, 1997, 30 pages.

City Resources (Canada) Limited, 1988. Cinola Gold Project Stage II Report, prepared for City Resources (Canada) Limited, coordinated by Norecol Environmental Consultants Ltd., June 1988, 102 pages.

Deighton, J., Froc, N., and Borschneck, T., 1989. Interim Report on the geology of the Cinola Gold Deposit, 1989.

Forgarassy, J.A.S. and Barnes, W.C., 1991. Stratigraphy and diagenesis of the middle to Upper Cretaceous Queen Charlotte Group, Queen Charlotte Islands, British Columbia; *in* Evolution and Hydrocarbon Potential of the Queen Charlotte Basin, British Columbia, GSC Paper 90-10, pages 279-294.

Haggart, J.W., 1991. A synthesis of Cretaceous stratigraphy, Queen Charlotte Islands, British Columbia; *in* Evolution and Hydrocarbon Potential of the Queen Charlotte Basin, British Columbia, GSC Paper 90-10, pages 253-277.

Hickson, C.J., 1991. The Masset Formation on Graham Island, Queen Charlotte Islands, British Columbia: *in* Evolution and Hydrocarbon Potential of the Queen Charlotte Basin, British Columbia. Geological Survey of Canada. Paper 90-10, pages 305-324.

Indrelid, J., Hesthammer, J., and Ross, J.V., 1991. Structural geology and stratigraphy of Mesozoic rocks of central Graham Island, Queen Charlotte Islands, British Columbia; *in* Evolution and Hydrocarbon Potential of the Queen Charlotte Basin, British Columbia, GSC Paper 90-10, pages 51-58.

Niosi, D.W., 1997. Misty Mountain Gold – Harmony Project Memorandum on IMC Mine Related Activities for Scoping Study, internal Misty Mountain Gold Limited memorandum, 7 pages.

Pezzot, E.T., 1997. Interpretation Report on an Airborne Magnetometer, Electromagnetometer and Radiometric Survey on the Feather Lake, North Juskatla, West Juskatla Claim Blocks, prepared for Misty Mountain Gold Limited, March 1997, 29 pages.

Rebagliati, C.M., Case, T.T., and DeLong, C., 1995. Harmony (Cinola) Property Assessment Report, 1995 Geochemical Exploration Program, May 11, 1995.

Sutherland Brown, A., 1968. Geology of the Queen Charlotte Islands, British Columbia. B. C. Ministry of Energy, Mines & Petroleum Resources, Bulletin 54, 226 pages.

Welhener, H., 1997. Misty Mountain Gold Limited - Harmony Project Annual Production Statements for an Open Pit Mining Schedule, Telecopy Report to D.W. Niosi, from Independent Mining Consultants Inc. dated June 5, 1997, 22 pages.

10.0 STATEMENT OF QUALIFICATIONS

I, Richard J. Haslinger, of the City of Vancouver, Province of British Columbia, DO HEREBY CERTIFY THAT:

- 1. I am a Geological Engineer employed by Misty Mountain Gold Limited, a mineral exploration company with offices at Suite 1020 800 West Pender Street, Vancouver, British Columbia.
- 2. I am a graduate of the University of British Columbia, with a Bachelor of Applied Science in Geological Engineering, 1986.
- 3. I have practiced my profession continuously since graduation.
- 4. I am a member in good standing of the Association of Professional Engineers and Geoscientists of British Columbia.
- 5. The foregoing report is based on:
 - a) A study of available company and government reports.
 - b) My personal knowledge of the area resulting from my direct participation in and management of exploration on the Harmony Gold Project since February 1995 to December 1997.

R.J. Haslinger, P.Eng. January 30, 1998

APPENDIX I

,

HARMONY GOLD PROJECT MINERAL CLAIM HOLDINGS JANUARY 1998

APPENDIX 1 HARMONY GOLD PROJECT MINERAL CLAIM HOLDINGS JANUARY 1998

NTS 103F8, 103F9, 103F15 Skeena Mining Division

r

.

۰.

\$

Claim	Units	Tenure	Completion	Expiry	Ownership
Name		Number	Date	Date	
CANOE CREEK FRACTION	1	333004	08-Dec-94	08-Dec-07	Misty Mountain (100%)
CANYON 1	1	333018	06-Dec-94	06-Dec-07	Misty Mountain (100%)
CANYON 2	1	333019	06-Dec-94	06-Dec-07	Misty Mountain (100%)
CANYON 3	1	333020	06-Dec-94	06-Dec-07	Misty Mountain (100%)
CANYON 4	1	333021	06-Dec-94	06-Dec-07	Misty Mountain (100%)
CANYON 5	1	333022	06-Dec-94	06-Dec-07	Misty Mountain (100%)
CANYON 6	1	333023	06-Dec-94	06-Dec-07	Misty Mountain (100%)
CANYON 7	1	333024	06-Dec-94	06-Dec-07	Misty Mountain (100%)
CANYON 8	1	333025	06-Dec-94	06-Dec-07	Misty Mountain (100%)
CANYON 9	1	333026	06-Dec-94	06-Dec-07	Misty Mountain (100%)
CANYON 10	1	333027	06-Dec-94	06-Dec-07	Misty Mountain (100%)
CH 14	1	334391	14-Mar-95	14-Mar-07	Misty Mountain (100%)
CH 15	1	334392	15-Mar-95	15-Mar-07	Misty Mountain (100%)
CH 16	1	334393	15-Mar-95	15-Mar-07	Misty Mountain (100%)
CH 17	1	334394	15-Mar-95	15-Mar-07	Misty Mountain (100%)
CH 1B	1	334395	15-Mar-95	15-Mar-07	Misty Mountain (100%)
CH 19	1	334396	15-Mar-95	15-Mar-07	Misty Mountain (100%)
CH 20	1	334397	15-Mar-95	15-Mar-07	Misty Mountain (100%)
CH 21	1	334398	15-Mar-95	15-Mar-07	Misty Mountain (100%)
CH 22	1	334399	15-Mar-95	15-Mar-07	Misty Mountain (100%)
CH 23	1	334400	15-Mar-95	15-Mar-07	Misty Mountain (100%)
CH 24	1	334401	15-Mar-95	15-Mar-07	Misty Mountain (100%)
CH 25		334402	15-Mar-95	15-Mar-07	Misty Mountain (100%)
CH 26	1	334403	15-Mar-95	15-Mar-07	Misty Mountain (100%)
CH 27		334404	15-Mar-95	15-Mar-07	Misty Mountain (100%)
CH 28	1	334405	15-Mar-95		Misty Mountain (100%)
CH 29	1	334406	15-Mar-95	15-Mar-07	Misty Mountain (100%)
CH 30	1	334407	10-IVIAI-90	21 Aug 07	Decemin Recourses (100%)*
	70	202909	21-Aug-09	21-Aug-07	Michi Mountain (100%)
	20	333008	05-Dec-94	05-Dec-00	Misty Mountain (100%)
	20	333009	03-Dec-94	02 Dec-07	Misty Mountain (100%)
FERGUSUN	1	250401	19 Sept 97	18-Sent-08	Misty Mountain (100%)
	1	359401	18-Sept-97	18-Sent-98	Misty Mountain (100%)
F 2 E 2	1	359402	18-Sent-97	18-Sent-98	Misty Mountain (100%)
F 3 E 4	1	359403	18-Sept-97	18-Sent-98	Misty Mountain (100%)
F 4 E 5	1	359505	18-Sept-97	18-Sept-98	Misty Mountain (100%)
	1	359506	18_Sent-97	18-Sept-98	Misty Mountain (100%)
F 7	1	359507	18-Sept-97	18-Sept-98	Misty Mountain (100%)
F 8	1	359508	18-Sept-97	18-Sept-98	Misty Mountain (100%)
FG	1	359509	18-Sept-97	18-Sept-98	Misty Mountain (100%)
F 10	1	359510	18-Sept-97	18-Sept-98	Misty Mountain (100%)
F 11	1	359511	18-Sept-97	18-Sept-98	Misty Mountain (100%)
F 12	1	359512	18-Sept-97	18-Sept-98	Misty Mountain (100%)
F 13	1	359513	18-Sept-97	18-Sept-98	Misty Mountain (100%)
F 15	1	359514	18-Sept-97	18-Sept-98	Misty Mountain (100%)
GOLD 1	20	332935	23-Nov-94	23-Nov-07	Misty Mountain (100%)
GOLD 2	20	332936	23-Nov-94	23-Nov-07	Misty Mountain (100%)
GOLD 3	20	332937	22-Nov-94	22-Nov-07	Misty Mountain (100%)
GOLD 4	20	332938	22-Nov-94	22-Nov-07	Misty Mountain (100%)
GOLD 5	20	332939	26-Nov-94	26-Nov-07	Misty Mountain (100%)
GOLD 6	20	332940	26-Nov-94	26-Nov-07	Misty Mountain (100%)
GOLD 7	20	332941	26-Nov-94	26-Nov-07	Misty Mountain (100%)
GOLD 8	20	332942	26-Nov-94	26-Nov-07	Misty Mountain (100%)
GOLD 9	20	332943	28-Nov-94	28-Nov-07	Misty Mountain (100%)
GOLD 10	20	332944	28-Nov-94	28-Nov-07	Misty Mountain (100%)
GOLD 11	20	332945	28-Nov-94	28-Nov-07	Misty Mountain (100%)
GOLD 12	20	332946	28-Nov-94	28-Nov-07	Misty Mountain (100%)
GOLD 13	18	332947	30-Nov-94	30-Nov-05	Misty Mountain (100%)
GOLD 14	18	332948	30-Nov-94	30-Nov-05	Misty Mountain (100%)
GOLD 15	20	332949	27-Nov-94	27-Nov-07	Misty Mountain (100%)
GOLD 21	15	332955	30-Nov-94	30-Nov-07	Misty Mountain (100%)
GOLD 22	15	332956	30-Nov-94	30-Nov-06	Misty Mountain (100%)
GW #1	20	324028	07-Mar-94	07-Mar-07	Misty Mountain (100%)
GW #2	20	323715	15-Feb-94	15-Feb-07	Misty Mountain (100%)
GW # <u>3</u>	16	323716	<u>18-Feb-94</u>	18-Feb-07	Misty Mountain (100%)

APPENDIX 1 HARMONY GOLD PROJECT MINERAL CLAIM HOLDINGS JANUARY 1998

NTS 103F8, 103F9, 103F15 Skeena Mining Division

,

.

.

•

.

.

.

. .

.

Name Number Date Date GW #4 20 324029 05-Mar-94 05-Mar-07 Misty Mountain (100%) GW #5 20 324029 25-Mar-94 25-Mar-07 Misty Mountain (100%) GW #6 20 324493 26-Mar-04 26-Mar-07 Misty Mountain (100%) GW #1 15 324493 26-Mar-94 26-Mar-07 Misty Mountain (100%) GW #10 20 334641 31-Mar-95 31-Mar-07 Misty Mountain (100%) GW #11 20 324497 28-Mar-94 28-Mar-07 Misty Mountain (100%) GW 12 20 324498 29-Mar-07 Misty Mountain (100%) GW 13 20 324498 03-Apr-94 03-Apr-07 Misty Mountain (100%) HOODDO 1 1 333029 06-Dec-07 Misty Mountain (100%) HOODDO 2 1 333031 06-Dec-07 Misty Mountain (100%) HOODDO 5 1 333033 06-Dec-07 Misty Mountain (100%) HOODDO 6 1	Claim	Units	Tenure	Completion	Expiry	Ownership
GW #4 20 324029 05-Mar-94 05-Mar-07 Misty Mountain (100%) GW #5 20 324030 10-Mar-94 10-Mar-07 Misty Mountain (100%) GW #6 20 324492 25-Mar-07 Misty Mountain (100%) GW #7 15 324493 26-Mar-04 26-Mar-07 Misty Mountain (100%) GW #10 20 334640 31-Mar-95 31-Mar-07 Misty Mountain (100%) GW #10 20 324497 28-Mar-94 28-Mar-07 Misty Mountain (100%) GW #11 20 324497 28-Mar-94 28-Mar-07 Misty Mountain (100%) GW #12 20 324497 28-Mar-95 29-Apr-07 Misty Mountain (100%) HOODOC 1 1 333020 06-Dec-07 Misty Mountain (100%) HOODDOC 4 1 333031 06-Dec-07 Misty Mountain (100%) HOODDOC 5 1 333032 06-Dec-07 Misty Mountain (100%) HOODDOC 6 1 330333 06-Dec-07 Misty Mountain (100%)	Name		Number	Date	Date	
GW #4 20 324023 05-Mar-94 05-Mar-97 Misty Mountain (100%) GW #5 20 324493 25-Mar-94 25-Mar-07 Misty Mountain (100%) GW #7 15 324493 26-Mar-04 25-Mar-07 Misty Mountain (100%) GW 8 20 324493 26-Mar-04 25-Mar-07 Misty Mountain (100%) GW #10 20 334640 31-Mar-05 31-Mar-07 Misty Mountain (100%) GW #11 20 324497 28-Mar-94 28-Mar-07 Misty Mountain (100%) GW #11 20 324498 29-Mar-95 31-Mar-07 Misty Mountain (100%) GW #11 20 324498 28-Mar-94 28-Mar-07 Misty Mountain (100%) GW #11 20 332718 22-Apr-95 29-Apr-07 Misty Mountain (100%) HOODDO 1 1 333029 06-Dec-07 Misty Mountain (100%) HOODDO 5 1 333031 06-Dec-07 Misty Mountain (100%) HOODDO 6 1 333033 06-Dec-07 Mist	011.44	20	224020	OF Mar Of	OF Mor 07	Minty Mountain (100%)
GW #6 20 324492 25-Mar-97 125-Mar-97 125-Mar-97 Misty Mountain (100%) GW #7 15 324492 26-Mar-94 25-Mar-97 Misty Mountain (100%) GW #0 20 334640 31-Mar-95 31-Mar-97 Misty Mountain (100%) GW #10 20 334641 31-Mar-95 31-Mar-07 Misty Mountain (100%) GW #11 20 324492 28-Mar-94 28-Mar-94 28-Mar-07 Misty Mountain (100%) GW #12 20 324493 29-Mar-94 28-Mar-97 Misty Mountain (100%) GW 12 20 324493 03-Apr-94 03-Apr-07 Misty Mountain (100%) HOODOO 1 1 33029 06-Dec-94 06-Dec-07 Misty Mountain (100%) HOODOO 2 1 330330 06-Dec-94 06-Dec-07 Misty Mountain (100%) HOODOO 4 1 330331 06-Dec-07 Misty Mountain (100%) HOODOO 5 1 333033 06-Dec-07 Misty Mountain (100%) HOODOO 6 1 <		20	324029	10.Mar.94	10-Mar-07	Misty Mountain (100%)
GW #7 15 324493 22-Mar-94 28-Mar-97 Misty Mountain (100%) GW 8 20 324494 26-Mar-94 26-Mar-97 Misty Mountain (100%) GW 8 20 334494 26-Mar-94 26-Mar-97 Misty Mountain (100%) GW #10 20 334461 31-Mar-95 31-Mar-07 Misty Mountain (100%) GW #11 20 324497 28-Mar-94 28-Mar-94 28-Mar-97 Misty Mountain (100%) GW 13 20 324498 29-Mar-94 03-Apr-97 Misty Mountain (100%) HC1 20 335718 29-Apr-95 29-Apr-07 Misty Mountain (100%) HOODDO 1 1 333029 06-Dec-94 06-Dec-07 Misty Mountain (100%) HOODDO 4 1 333033 06-Dec-94 06-Dec-07 Misty Mountain (100%) HOODDO 5 1 333033 06-Dec-94 06-Dec-07 Misty Mountain (100%) HOODDO 6 1 330335 06-Dec-94 06-Dec-07 Misty Mountain (100%) HOODDO 7	GVV #5	20	324030	25 Mar 04	25 Mar 07	Misty Mountain (100%)
GW #/ 15 324494 20-Mar-94 20-Mar-94 20-Mar-94 Misty Mountain (100%) GW 9 20 334494 31-Mar-95 31-Mar-07 Misty Mountain (100%) GW #10 20 334641 31-Mar-95 31-Mar-07 Misty Mountain (100%) GW #11 20 324497 28-Mar-94 28-Mar-07 Misty Mountain (100%) GW 12 20 324498 29-Mar-94 29-Mar-94 03-Apr-07 Misty Mountain (100%) GW 13 20 324499 03-Apr-94 03-Apr-07 Misty Mountain (100%) HOODOO 1 1 333028 06-Dec-94 06-Dec-07 Misty Mountain (100%) HOODOO 4 1 333031 06-Dec-94 06-Dec-07 Misty Mountain (100%) HOODOO 5 1 333033 06-Dec-94 06-Dec-07 Misty Mountain (100%) HOODOO 6 1 333033 06-Dec-07 Misty Mountain (100%) HOODOO 7 1 333035 06-Dec-07 Misty Mountain (100%) HOODOO 8 1 <t< td=""><td>GYV #0</td><td>15</td><td>324432</td><td>20-Mar-94</td><td>25-Mar 07</td><td>Misty Mountain (100%)</td></t<>	GYV #0	15	324432	20-Mar-94	25-Mar 07	Misty Mountain (100%)
GW 5 20 324497 20-Mail-94 20-Mail-94 20-Mail-94 GW #10 20 334640 31-Mail-95 31-Mail-97 Misty Mountain (100%) GW #11 20 324497 28-Mail-94 28-Mail-94 28-Mail-97 Misty Mountain (100%) GW 12 20 324498 29-Mail-94 28-Mail-97 Misty Mountain (100%) GW 13 20 324499 29-Apri-95 29-Apri-07 Misty Mountain (100%) HODDOO 1 1 333029 06-Dec-94 06-Dec-07 Misty Mountain (100%) HODDOO 2 1 333031 06-Dec-94 06-Dec-07 Misty Mountain (100%) HODDOO 4 1 333033 06-Dec-97 Misty Mountain (100%) HODDOO 5 1 333033 06-Dec-94 06-Dec-07 Misty Mountain (100%) HODDOO 6 1 333033 06-Dec-97 Misty Mountain (100%) HODDOO 7 1 333036 06-Dec-07 Misty Mountain (100%) HODDOO 8 1 333036 06-Dec-97 <td< td=""><td></td><td>20</td><td>324493</td><td>20-Mar 04</td><td>20-Wai-07</td><td>Misty Mountain (100%)</td></td<>		20	324493	20-Mar 04	20-Wai-07	Misty Mountain (100%)
GW #1 20 334641 31-Mar-93 31-Mar-93 31-Mar-94 Misty Mountain (100%) GW #11 20 334641 31-Mar-94 28-Mar-94 28-Mar-97 Misty Mountain (100%) GW 12 20 324498 29-Mar-94 29-Mar-94 29-Mar-97 Misty Mountain (100%) GW 13 20 324498 29-Mar-94 03-Apr-07 Misty Mountain (100%) HC 1 20 332498 03-Apr-95 29-Apr-07 Misty Mountain (100%) HODDOO 1 1 333028 06-Dec-94 06-Dec-07 Misty Mountain (100%) HODDOO 4 1 333031 06-Dec-94 06-Dec-07 Misty Mountain (100%) HODDOO 6 1 333033 06-Dec-94 06-Dec-07 Misty Mountain (100%) HODDOO 7 1 333035 06-Dec-94 06-Dec-07 Misty Mountain (100%) HODDOO 8 1 333037 06-Dec-07 Misty Mountain (100%) HODDOO 9 1 333037 06-Dec-07 Misty Mountain (100%) MISTY 1	GW 0	20	324494	20-Mar-94	20-Wai-07	Misty Mountain (100%)
GW #10 20 33491 314041-01 Misty Mountain (100%) GW #11 20 324497 28-Mar-94 29-Mar-07 Misty Mountain (100%) GW 13 20 324498 29-Mar-07 Misty Mountain (100%) HC 1 20 335718 29-Apr-95 29-Apr-07 Misty Mountain (100%) HODDOO 1 1 330028 06-Dec-07 Misty Mountain (100%) HODDOO 2 1 333030 06-Dec-44 06-Dec-07 Misty Mountain (100%) HODDOO 5 1 333031 06-Dec-94 06-Dec-07 Misty Mountain (100%) HODDOO 6 1 333032 06-Dec-94 06-Dec-07 Misty Mountain (100%) HODDOO 7 1 333035 06-Dec-94 06-Dec-07 Misty Mountain (100%) HODDOO 9 1 333037 06-Dec-97 Misty Mountain (100%) MISTY 1 6 557218 25-Jun-97 25-Jun-08 Misty Mountain (100%) MISTY 5 16 57222 29-Jun-97 29-Jun-08 Misty Mountain (100%)	GW 9 CM 410	20	334040	21 Mar 05	31 Mar 07	Misty Mountain (100%)
GW #1 20 324491 20-Mart-94 20-Mart-97 Misty Mountain (100%) GW 12 20 324499 03-Apr-94 03-Apr-07 Misty Mountain (100%) HC 1 20 324499 03-Apr-94 03-Apr-07 Misty Mountain (100%) HC 1 20 335718 29-Apr-95 29-Apr-07 Misty Mountain (100%) HODDOO 1 1 333029 06-Dec-94 06-Dec-07 Misty Mountain (100%) HODDOO 4 1 333031 06-Dec-94 06-Dec-07 Misty Mountain (100%) HODDOO 5 1 333033 06-Dec-94 06-Dec-07 Misty Mountain (100%) HODDOO 6 1 333033 06-Dec-94 06-Dec-07 Misty Mountain (100%) HODDOO 9 1 333036 06-Dec-94 06-Dec-07 Misty Mountain (100%) MISTY 2 20 357218 25-Jun-97 25-Jun-08 Misty Mountain (100%) MISTY 2 20 357220 29-Jun-97 29-Jun-07 Misty Mountain (100%) MISTY 4 16		20	334041	01-Nidi-90	31-Wal-07	Misty Mountain (100%)
GW 12 20 324499 29-Ind 1-94 29-Ind 1-97 Misty Mountain (100%) HC 1 20 335718 29-Apr-95 29-Apr-07 Misty Mountain (100%) HC 1 1 33028 06-Dec-94 06-Dec-07 Misty Mountain (100%) HODDOO 2 1 33029 06-Dec-94 06-Dec-07 Misty Mountain (100%) HODDOO 5 1 33031 06-Dec-94 06-Dec-07 Misty Mountain (100%) HODDOO 6 1 330332 06-Dec-94 06-Dec-07 Misty Mountain (100%) HODDOO 7 1 330335 06-Dec-94 06-Dec-07 Misty Mountain (100%) HODDOO 8 1 330335 06-Dec-94 06-Dec-07 Misty Mountain (100%) HODDOO 9 1 330336 06-Dec-94 06-Dec-07 Misty Mountain (100%) MISTY 1 6 557218 25-Jun-97 25-Jun-08 Misty Mountain (100%) MISTY 5 16 357221 29-Jun-97 29-Jun-08 Misty Mountain (100%) MISTY 5 16		20	324497	20-Mar-94	20-Wat-07	Misty Mountain (100%)
GW 13 20 324493 29-Apr-94 US-Apr-97 Misty Mountain (100%) HCODDOO 1 1 333028 06-Dec-94 06-Dec-07 Misty Mountain (100%) HOODDOO 2 1 333030 06-Dec-94 06-Dec-07 Misty Mountain (100%) HOODDOO 4 1 333030 06-Dec-94 06-Dec-07 Misty Mountain (100%) HOODDOO 5 1 333033 06-Dec-94 06-Dec-07 Misty Mountain (100%) HOODDOO 6 1 333033 06-Dec-94 06-Dec-07 Misty Mountain (100%) HOODDOO 7 1 333035 06-Dec-94 06-Dec-07 Misty Mountain (100%) HOODDOO 8 1 333036 06-Dec-94 06-Dec-07 Misty Mountain (100%) MISTY 1 6 357218 25-Jun-97 25-Jun-08 Misty Mountain (100%) MISTY 2 20 357219 29-Jun-97 29-Jun-07 Misty Mountain (100%) MISTY 4 16 357223 29-Jun-97 29-Jun-08 Misty Mountain (100%) MISTY 5 16<		20	324490	29-IVIAI-94	02 Apr 07	Misty Mountain (100%)
Inc 1 20 330716 29-Ap1-50 29-Ap1-50 Misty Mountain (100%) HOODOO 1 1 333029 06-Dec-94 06-Dec-07 Misty Mountain (100%) HOODOO 3 1 333031 06-Dec-94 06-Dec-07 Misty Mountain (100%) HOODOO 4 1 333032 06-Dec-94 06-Dec-07 Misty Mountain (100%) HOODOO 5 1 333033 06-Dec-94 06-Dec-07 Misty Mountain (100%) HOODOO 6 1 333033 06-Dec-94 06-Dec-07 Misty Mountain (100%) HOODOO 7 1 333033 06-Dec-94 06-Dec-07 Misty Mountain (100%) HOODOO 9 1 333036 06-Dec-94 06-Dec-07 Misty Mountain (100%) MISTY 1 6 357218 25-Jun-97 29-Jun-08 Misty Mountain (100%) MISTY 2 20 357222 29-Jun-97 29-Jun-07 Misty Mountain (100%) MISTY 6 20 35723 29-Jun-97 29-Jun-07 Misty Mountain (100%) MISTY 6 20		20	324489	20 Apr 05	20 Apr 07	Misty Mountain (100%)
HODDOO 1 333029 06-Dec-94 06-Dec-07 Misty Mountain (100%) HOODOO 3 1 333030 06-Dec-94 06-Dec-07 Misty Mountain (100%) HOODOO 4 1 333030 06-Dec-94 06-Dec-07 Misty Mountain (100%) HOODOO 5 1 333033 06-Dec-94 06-Dec-07 Misty Mountain (100%) HOODOO 6 1 333033 06-Dec-94 06-Dec-07 Misty Mountain (100%) HOODOO 7 1 333035 06-Dec-94 06-Dec-07 Misty Mountain (100%) HOODOO 8 1 333035 06-Dec-94 06-Dec-07 Misty Mountain (100%) HOODOO 10 1 333037 06-Dec-97 Misty Mountain (100%) MISTY 2 20 357218 25-Jun-97 25-Jun-08 Misty Mountain (100%) MISTY 3 20 357220 29-Jun-97 29-Jun-07 Misty Mountain (100%) MISTY 6 20 357223 29-Jun-97 29-Jun-07 Misty Mountain (100%) MISTY 6 20 357223		20	222020	29-Apr-95	29-Api-07	Michy Mountain (100%)
Nobbol 2 1 33303 06-Det-94 06-Det-07 Misty Mountain (100%) HOODDO 3 1 333031 06-Det-94 06-Det-07 Misty Mountain (100%) HOODDO 5 1 333032 06-Det-94 06-Det-07 Misty Mountain (100%) HOODDO 6 1 333033 06-Det-94 06-Det-07 Misty Mountain (100%) HOODDO 7 1 333033 06-Det-94 06-Det-07 Misty Mountain (100%) HOODDO 8 1 333035 06-Det-94 06-Det-07 Misty Mountain (100%) HOODDO 10 1 333037 06-Det-94 06-Det-07 Misty Mountain (100%) MISTY 1 6 357218 25-Jun-97 29-Jun-07 Misty Mountain (100%) MISTY 3 20 357220 29-Jun-97 29-Jun-07 Misty Mountain (100%) MISTY 5 16 357222 29-Jun-97 29-Jun-07 Misty Mountain (100%) NF #5 20 323712 19-Feb-94 17-Feb-97 Misty Mountain (100%) NF #5 20			333020		06-Dec-07	Michr Mountain (100%)
NODDOUS 1 333030 06-Dec-94 06-Dec-07 Misty Mountain (100%) HOODDO 5 1 333032 06-Dec-94 06-Dec-07 Misty Mountain (100%) HOODDO 6 1 333033 06-Dec-94 06-Dec-07 Misty Mountain (100%) HOODDO 7 1 333034 06-Dec-94 06-Dec-07 Misty Mountain (100%) HOODDO 8 1 333035 06-Dec-94 06-Dec-07 Misty Mountain (100%) HOODDO 10 1 333037 06-Dec-94 06-Dec-07 Misty Mountain (100%) MISTY 2 20 357218 25-Jun-97 29-Jun-07 Misty Mountain (100%) MISTY 3 20 357220 29-Jun-97 29-Jun-07 Misty Mountain (100%) MISTY 6 16 357221 29-Jun-97 29-Jun-07 Misty Mountain (100%) MISTY 5 16 357222 29-Jun-97 29-Jun-08 Misty Mountain (100%) MISTY 6 20 357221 29-Jun-97 29-Jun-07 Misty Mountain (100%) NF #3 18			333029	06-Dec-94	06-Dec-07	Misty Mountain (100%)
HODDOUG 4 1 333031 06-Dec-94 06-Dec-07 Misty Mountain (100%) HODDOO 5 1 333032 06-Dec-94 06-Dec-07 Misty Mountain (100%) HODDOO 6 1 333033 06-Dec-94 06-Dec-07 Misty Mountain (100%) HODDOO 7 1 333035 06-Dec-94 06-Dec-07 Misty Mountain (100%) HODDOO 8 1 333035 06-Dec-94 06-Dec-07 Misty Mountain (100%) HODDOO 10 1 333037 06-Dec-94 06-Dec-07 Misty Mountain (100%) MISTY 1 6 357218 25-Jun-08 Misty Mountain (100%) MISTY 2 20 357212 29-Jun-97 29-Jun-07 Misty Mountain (100%) MISTY 4 16 357222 29-Jun-97 29-Jun-07 Misty Mountain (100%) MISTY 6 20 35723 29-Jun-97 29-Jun-07 Misty Mountain (100%) NF #5 18 323712 18-Feb-94 17-Feb-94 17-Feb-97 Misty Mountain (100%) NF #6 15			333030	06-Dec-94	06-Dec-07	Misty Mountain (100%)
HODDOD 1 33032 06-Dec-94 06-Dec-07 Misty Mountain (100%) HODDOO 6 1 33033 06-Dec-94 06-Dec-07 Misty Mountain (100%) HODDOO 8 1 33033 06-Dec-94 06-Dec-07 Misty Mountain (100%) HODDOO 9 1 33033 06-Dec-94 06-Dec-07 Misty Mountain (100%) HODDOO 10 1 33033 06-Dec-94 06-Dec-07 Misty Mountain (100%) MISTY 1 6 357218 25-Jun-97 29-Jun-07 Misty Mountain (100%) MISTY 2 20 357220 29-Jun-97 29-Jun-07 Misty Mountain (100%) MISTY 4 16 357222 29-Jun-97 29-Jun-07 Misty Mountain (100%) MISTY 5 16 357223 29-Jun-97 29-Jun-07 Misty Mountain (100%) NF #3 18 323709 17-Feb-94 20-Feb-07 Misty Mountain (100%) NF #6 15 323712 18-Feb-94 20-Feb-07 Misty Mountain (100%) NF #6 20			333031	06-Dec-94	06-Dec-07	Misty Mountain (100%)
HODDOC 5 1 33033 06-Dec-94 06-Dec-07 Misty Mountain (100%) HODDOC 7 1 33033 06-Dec-94 06-Dec-07 Misty Mountain (100%) HODDOC 9 1 33035 06-Dec-94 06-Dec-07 Misty Mountain (100%) MISTY 1 6 357218 25-Jun-97 25-Jun-08 Misty Mountain (100%) MISTY 2 20 357219 29-Jun-97 29-Jun-07 Misty Mountain (100%) MISTY 3 20 357222 29-Jun-97 29-Jun-07 Misty Mountain (100%) MISTY 4 16 357222 29-Jun-97 29-Jun-07 Misty Mountain (100%) MISTY 5 16 357222 29-Jun-97 29-Jun-07 Misty Mountain (100%) MISTY 6 20 357212 18-Feb-94 17-Feb-07 Misty Mountain (100%) NF #3 18 323709 17-Feb-94 17-Feb-07 Misty Mountain (100%) NF #5 20 323711 20-Feb-94 20-Feb-07 Misty Mountain (100%) NF #6 324020			333032	06-Dec-94	06-Dec-07	Misty Mountain (100%)
HODDOO 1 33034 06-Dec-94 06-Dec-07 Misty Mountain (100%) HOODOO 8 1 33035 06-Dec-94 06-Dec-07 Misty Mountain (100%) HOODOO 10 1 330337 06-Dec-94 06-Dec-07 Misty Mountain (100%) MISTY 1 6 357218 25-Jun-97 25-Jun-08 Misty Mountain (100%) MISTY 2 20 357220 29-Jun-97 29-Jun-07 Misty Mountain (100%) MISTY 3 20 357221 29-Jun-97 29-Jun-07 Misty Mountain (100%) MISTY 6 20 357223 29-Jun-97 29-Jun-07 Misty Mountain (100%) NF #3 18 323709 17-Feb-94 17-Feb-07 Misty Mountain (100%) NF #6 15 323712 18-Feb-94 18-Feb-07 Misty Mountain (100%) NF #6 15 323713 20-Feb-94 20-Feb-07 Misty Mountain (100%) NF #6 20 324019 09-Mar-94 20-Feb-07 Misty Mountain (100%) V 1 20 324020 11-Mar-94 10-Mar-07 Misty Mountain (100%) V 2			333033	06-Dec-94	00-Dec-07	Misty Mountain (100%)
HODDOD B 1 333335 06-Dec-94 06-Dec-07 Misty Mountain (100%) HODDOO 9 1 333036 06-Dec-94 06-Dec-07 Misty Mountain (100%) MISTY 1 6 357218 25-Jun-97 25-Jun-08 Misty Mountain (100%) MISTY 2 20 357219 29-Jun-97 29-Jun-07 Misty Mountain (100%) MISTY 3 20 357220 29-Jun-97 29-Jun-07 Misty Mountain (100%) MISTY 4 16 357222 29-Jun-97 29-Jun-07 Misty Mountain (100%) MISTY 5 16 357223 29-Jun-97 29-Jun-07 Misty Mountain (100%) NF #3 18 323709 17-Feb-94 17-Feb-07 Misty Mountain (100%) NF #5 20 323711 20-Feb-07 Misty Mountain (100%) NF #7 NF #8 20 323713 20-Feb-94 20-Feb-07 Misty Mountain (100%) V1 20 324185 16-Mar-07 Misty Mountain (100%) V1 V2 20 324185 10-Mar-07 Misty Mountain (100%) V3 20 324186 1			333034	05-Dec-94	06-Dec-07	Misty Mountain (100%)
HOODOO 9 1 333036 06-Dec-94 06-Dec-07 Misty Mountain (100%) MISTY 1 6 357218 25-Jun-97 25-Jun-08 Misty Mountain (100%) MISTY 2 20 357219 29-Jun-97 29-Jun-07 Misty Mountain (100%) MISTY 3 20 357220 29-Jun-97 29-Jun-07 Misty Mountain (100%) MISTY 4 16 357221 29-Jun-97 29-Jun-07 Misty Mountain (100%) MISTY 5 16 357222 29-Jun-97 29-Jun-07 Misty Mountain (100%) MISTY 5 16 357223 29-Jun-97 29-Jun-07 Misty Mountain (100%) MISTY 6 20 323712 17-Feb-94 17-Feb-07 Misty Mountain (100%) NF #5 20 323713 20-Feb-94 20-Feb-07 Misty Mountain (100%) NF #6 15 323712 18-Feb-94 18-Feb-07 Misty Mountain (100%) V 1 20 324185 16-Mar-94 16-Mar-01 Misty Mountain (100%) V 2 20 324020 11-Mar-94 16-Mar-07 Misty Mountain (100%)	НООДОО В		333035	06-Dec-94	06-Dec-07	Misty Mountain (100%)
HOODOC 10 1 333037 06-Dec-94 06-Dec-07 Misty Mountain (100%) MISTY 1 6 357218 25-Jun-97 25-Jun-08 Misty Mountain (100%) MISTY 2 20 357219 29-Jun-97 29-Jun-07 Misty Mountain (100%) MISTY 3 20 357221 29-Jun-97 29-Jun-07 Misty Mountain (100%) MISTY 5 16 357222 29-Jun-97 29-Jun-07 Misty Mountain (100%) MISTY 5 16 357223 29-Jun-97 29-Jun-07 Misty Mountain (100%) MISTY 6 20 357223 29-Jun-97 29-Jun-07 Misty Mountain (100%) NF #3 18 323709 17-Feb-94 17-Feb-07 Misty Mountain (100%) NF #5 20 323711 20-Feb-94 20-Feb-07 Misty Mountain (100%) NF #7 16 323713 20-Feb-94 20-Feb-07 Misty Mountain (100%) V 1 20 324019 09-Mar-94 10-Mar-07 Misty Mountain (100%) V 2 20 3	НООДОО 9	1	333036	06-Dec-94	05-Dec-07	Misty Mountain (100%)
MISTY 1 6 35/218 25-Jun-97 29-Jun-08 Misty Mountain (100%) MISTY 2 20 357219 29-Jun-97 29-Jun-07 Misty Mountain (100%) MISTY 3 20 357220 29-Jun-97 29-Jun-07 Misty Mountain (100%) MISTY 4 16 357221 29-Jun-97 29-Jun-07 Misty Mountain (100%) MISTY 6 20 357223 29-Jun-97 29-Jun-07 Misty Mountain (100%) MISTY 6 20 357223 29-Jun-97 29-Jun-07 Misty Mountain (100%) NF #3 18 323709 17-Feb-94 17-Feb-07 Misty Mountain (100%) NF #5 20 323711 20-Feb-94 20-Feb-07 Misty Mountain (100%) NF #6 15 323713 20-Feb-94 20-Feb-07 Misty Mountain (100%) V 1 20 324019 09-Mar-94 16-Mar-01 Misty Mountain (100%) V 2 20 324020 11-Mar-94 11-Mar-07 Misty Mountain (100%) V 3 20 324022 10-Mar-94 10-Mar-01 Misty Mountain (100%) V 4 <t< td=""><td>HOODOO 10</td><td>1</td><td>333037</td><td>06-Dec-94</td><td>06-Dec-07</td><td>Misty Mountain (100%)</td></t<>	HOODOO 10	1	333037	06-Dec-94	06-Dec-07	Misty Mountain (100%)
MISTY 2 20 357219 29-Jun-97 29-Jun-08 Misty Mountain (100%) MISTY 3 20 357220 29-Jun-97 29-Jun-07 Misty Mountain (100%) MISTY 4 16 357222 29-Jun-97 29-Jun-07 Misty Mountain (100%) MISTY 5 16 357222 29-Jun-97 29-Jun-07 Misty Mountain (100%) MISTY 6 20 357223 29-Jun-97 29-Jun-07 Misty Mountain (100%) NF #3 18 323709 17-Feb-94 17-Feb-07 Misty Mountain (100%) NF #6 15 323712 18-Feb-94 20-Feb-07 Misty Mountain (100%) NF #7 16 323713 20-Feb-94 20-Feb-07 Misty Mountain (100%) NF #8 20 323714 20-Feb-97 Misty Mountain (100%) V V 1 20 324019 09-Mar-94 16-Mar-01 Misty Mountain (100%) V 2 20 324020 11-Mar-07 Misty Mountain (100%) V 4 V 20 324186 18-Mar-94	MISTY 1	6	357218	25-Jun-97	25-Jun-08	Misty Mountain (100%)
MISTY 3 20 357220 29-Jun-97 29-Jun-07 Misty Mountain (100%) MISTY 4 16 357221 29-Jun-97 29-Jun-07 Misty Mountain (100%) MISTY 5 16 357222 29-Jun-97 29-Jun-07 Misty Mountain (100%) MISTY 6 20 357223 29-Jun-97 29-Jun-07 Misty Mountain (100%) NF #3 18 323709 17-Feb-94 17-Feb-07 Misty Mountain (100%) NF #6 15 323711 20-Feb-94 20-Feb-07 Misty Mountain (100%) NF #7 16 323713 20-Feb-94 20-Feb-07 Misty Mountain (100%) NF #8 20 323714 20-Feb-94 20-Feb-07 Misty Mountain (100%) V 1 20 324019 09-Mar-07 Misty Mountain (100%) V V 2 20 324020 11-Mar-94 11-Mar-07 Misty Mountain (100%) V 3 20 324021 10-Mar-94 10-Mar-07 Misty Mountain (100%) V V 4 20 324022 10-Mar-94 10-Mar-07 Misty Mountain (100%) V S <td>MISTY 2</td> <td>20</td> <td>357219</td> <td>29-Jun-97</td> <td>29-Jun-08</td> <td>Misty Mountain (100%)</td>	MISTY 2	20	357219	29-Jun-97	29-Jun-08	Misty Mountain (100%)
MISTY 4 16 357221 29-Jun-97 29-Jun-07 Misty Mountain (100%) MISTY 5 16 357222 29-Jun-97 29-Jun-08 Misty Mountain (100%) NISTY 6 20 357223 29-Jun-97 29-Jun-07 Misty Mountain (100%) NF #3 18 323709 17-Feb-94 17-Feb-07 Misty Mountain (100%) NF #5 20 323711 20-Feb-07 Misty Mountain (100%) NF #6 15 323712 18-Feb-94 20-Feb-07 Misty Mountain (100%) NF #7 16 323713 20-Feb-94 20-Feb-07 Misty Mountain (100%) NF #8 20 323714 20-Feb-94 20-Feb-07 Misty Mountain (100%) V 1 20 324019 09-Mar-94 09-Mar-07 Misty Mountain (100%) V 2 20 324021 10-Mar-94 10-Mar-07 Misty Mountain (100%) V 4 20 324021 10-Mar-94 10-Mar-07 Misty Mountain (100%) V 5 20 324022 10-Mar-94	MISTY 3	20	357220	29-Jun-97	29-Jun-07	Misty Mountain (100%)
MISTY 5 16 357222 29-Jun-97 29-Jun-08 Misty Mountain (100%) MISTY 6 20 357223 29-Jun-97 29-Jun-07 Misty Mountain (100%) NF #3 18 323709 17-Feb-94 17-Feb-07 Misty Mountain (100%) NF #5 20 323711 20-Feb-94 20-Feb-07 Misty Mountain (100%) NF #6 15 323713 20-Feb-94 20-Feb-07 Misty Mountain (100%) NF #8 20 323714 20-Feb-94 20-Feb-07 Misty Mountain (100%) V 0 18 324185 16-Mar-94 16-Mar-01 Misty Mountain (100%) V 1 20 324019 09-Mar-94 09-Mar-07 Misty Mountain (100%) V 2 20 324020 11-Mar-94 18-Mar-01 Misty Mountain (100%) V 4 20 324021 10-Mar-94 10-Mar-07 Misty Mountain (100%) V 5 20 324021 10-Mar-94 10-Mar-07 Misty Mountain (100%) V 5 20 324021	MISTY 4	16	357221	29-Jun-97	29-Jun-07	Misty Mountain (100%)
MISTY 6 20 357223 29-Jun-97 29-Jun-07 Misty Mountain (100%) NF #3 18 323709 17-Feb-94 17-Feb-07 Misty Mountain (100%) NF #5 20 323711 20-Feb-94 20-Feb-07 Misty Mountain (100%) NF #6 15 323712 18-Feb-94 20-Feb-07 Misty Mountain (100%) NF #7 16 323714 20-Feb-94 20-Feb-07 Misty Mountain (100%) NF #8 20 323714 20-Feb-94 20-Feb-07 Misty Mountain (100%) V 0 18 324185 16-Mar-94 16-Mar-01 Misty Mountain (100%) V 2 20 324020 11-Mar-94 11-Mar-07 Misty Mountain (100%) V 4 20 324021 10-Mar-94 10-Mar-07 Misty Mountain (100%) V 5 20 324021 10-Mar-94 10-Mar-07 Misty Mountain (100%) V 4 20 324021 10-Mar-94 10-Mar-07 Misty Mountain (100%) V 5 20 324021 <	MISTY 5	16	357222	29-Jun-97	29-Jun-08	Misty Mountain (100%)
NF #3 18 323709 17-Feb-94 17-Feb-07 Misty Mountain (100%) NF #5 20 323711 20-Feb-94 20-Feb-07 Misty Mountain (100%) NF #6 15 323712 18-Feb-94 18-Feb-07 Misty Mountain (100%) NF #7 16 323713 20-Feb-94 20-Feb-07 Misty Mountain (100%) NF #8 20 323714 20-Feb-94 20-Feb-07 Misty Mountain (100%) V 0 18 324185 16-Mar-94 16-Mar-01 Misty Mountain (100%) V 1 20 324019 09-Mar-94 09-Mar-07 Misty Mountain (100%) V 2 20 324020 11-Mar-94 18-Mar-01 Misty Mountain (100%) V 3 20 324021 10-Mar-94 10-Mar-07 Misty Mountain (100%) V 4 20 324022 10-Mar-94 17-Mar-01 Misty Mountain (100%) V 7 20 324187 17-Mar-94 17-Mar-07 Misty Mountain (100%) V 7 20 324187 17-Mar-94 17-Mar-01 Misty Mountain (100%) V 8 20 <td>MISTY 6</td> <td>20</td> <td>357223</td> <td>29-Jun-97</td> <td>29-Jun-07</td> <td>Misty Mountain (100%)</td>	MISTY 6	20	357223	29-Jun-97	29-Jun-07	Misty Mountain (100%)
NF #5 20 323711 20-Feb-94 20-Feb-07 Misty Mountain (100%) NF #6 15 323712 18-Feb-94 18-Feb-07 Misty Mountain (100%) NF #7 16 323713 20-Feb-94 20-Feb-07 Misty Mountain (100%) NF #8 20 323714 20-Feb-94 20-Feb-07 Misty Mountain (100%) V 0 18 324185 16-Mar-94 16-Mar-01 Misty Mountain (100%) V 1 20 324019 09-Mar-94 09-Mar-07 Misty Mountain (100%) V 2 20 324020 11-Mar-94 11-Mar-07 Misty Mountain (100%) V 3 20 324021 10-Mar-94 18-Mar-01 Misty Mountain (100%) V 4 20 324022 10-Mar-94 10-Mar-07 Misty Mountain (100%) V 5 20 324021 10-Mar-94 17-Mar-01 Misty Mountain (100%) V 7 20 324187 17-Mar-94 17-Mar-07 Misty Mountain (100%) V 7 20 324188 19-Mar-94 19-Mar-07 Misty Mountain (100%) V 8 20	NF #3	18	323709	17-Feb-94	17-Feb-07	Misty Mountain (100%)
NF #6 15 323712 18-Feb-94 18-Feb-07 Misty Mountain (100%) NF #7 16 323713 20-Feb-94 20-Feb-07 Misty Mountain (100%) NF #8 20 323714 20-Feb-94 20-Feb-07 Misty Mountain (100%) V 0 18 324185 16-Mar-94 16-Mar-01 Misty Mountain (100%) V 1 20 324019 09-Mar-04 09-Mar-07 Misty Mountain (100%) V 2 20 324020 11-Mar-94 11-Mar-07 Misty Mountain (100%) V 3 20 324186 18-Mar-94 18-Mar-01 Misty Mountain (100%) V 4 20 324021 10-Mar-94 10-Mar-07 Misty Mountain (100%) V 5 20 324187 17-Mar-94 17-Mar-01 Misty Mountain (100%) V 6 20 324187 17-Mar-94 19-Mar-07 Misty Mountain (100%) V 7 20 324188 19-Mar-07 Misty Mountain (100%) V8 V 7 20 324189 17-Mar-94 17-Mar-01 Misty Mountain (100%) V 8 20 <td< td=""><td>NF #5</td><td>20</td><td>323711</td><td>20-Feb-94</td><td>20-Feb-07</td><td>Misty Mountain (100%)</td></td<>	NF #5	20	323711	20-Feb-94	20-Feb-07	Misty Mountain (100%)
NF #7 16 323713 20-Feb-94 20-Feb-07 Misty Mountain (100%) NF #8 20 323714 20-Feb-94 20-Feb-07 Misty Mountain (100%) V 0 18 324185 16-Mar-94 16-Mar-01 Misty Mountain (100%) V 1 20 324019 09-Mar-94 09-Mar-07 Misty Mountain (100%) V 2 20 324020 11-Mar-94 11-Mar-07 Misty Mountain (100%) V 3 20 324186 18-Mar-94 18-Mar-01 Misty Mountain (100%) V 4 20 324021 10-Mar-94 10-Mar-07 Misty Mountain (100%) V 5 20 324022 10-Mar-94 10-Mar-07 Misty Mountain (100%) V 6 20 324187 17-Mar-94 17-Mar-01 Misty Mountain (100%) V 7 20 324188 19-Mar-94 19-Mar-07 Misty Mountain (100%) V 8 20 324484 30-Mar-94 17-Mar-01 Misty Mountain (100%) V 10 20 324484 30-Mar	NF #6	15	323712	1B-Feb-94	18-Feb-07	Misty Mountain (100%)
NF #8 20 323714 20-Feb-94 20-Feb-07 Misty Mountain (100%) V 0 18 324185 16-Mar-94 16-Mar-01 Misty Mountain (100%) V 1 20 324019 09-Mar-94 09-Mar-07 Misty Mountain (100%) V 2 20 324020 11-Mar-94 11-Mar-07 Misty Mountain (100%) V 3 20 324020 11-Mar-94 18-Mar-01 Misty Mountain (100%) V 4 20 324021 10-Mar-94 18-Mar-07 Misty Mountain (100%) V 5 20 324022 10-Mar-94 10-Mar-07 Misty Mountain (100%) V 6 20 324187 17-Mar-94 17-Mar-01 Misty Mountain (100%) V 7 20 324188 19-Mar-94 19-Mar-07 Misty Mountain (100%) V 8 20 324023 12-Mar-01 Misty Mountain (100%) V 9 20 324484 30-Mar-94 17-Mar-01 Misty Mountain (100%) V 10 20 324484 30-Apr-94 30-Mar-0	NF #7	16	323713	20-Feb-94	20-Feb-07	Misty Mountain (100%)
V 0 18 324185 16-Mar-94 16-Mar-D1 Misty Mountain (100%) V 1 20 324019 09-Mar-94 09-Mar-07 Misty Mountain (100%) V 2 20 324020 11-Mar-94 11-Mar-07 Misty Mountain (100%) V 3 20 324186 18-Mar-94 18-Mar-01 Misty Mountain (100%) V 4 20 324021 10-Mar-94 10-Mar-07 Misty Mountain (100%) V 5 20 324022 10-Mar-94 10-Mar-07 Misty Mountain (100%) V 6 20 324187 17-Mar-94 17-Mar-01 Misty Mountain (100%) V 7 20 324188 19-Mar-94 19-Mar-07 Misty Mountain (100%) V 8 20 324023 12-Mar-94 12-Mar-07 Misty Mountain (100%) V 9 20 324189 17-Mar-94 17-Mar-01 Misty Mountain (100%) V 10 20 324485 01-Apr-94 01-Apr-01 Misty Mountain (100%) V 11 18 324485 01-Apr-94	NF #8	20	323714	20-Feb-94	20-Feb-07	Misty Mountain (100%)
V 1 20 324019 09-Mar-94 09-Mar-07 Misty Mountain (100%) V 2 20 324020 11-Mar-94 11-Mar-07 Misty Mountain (100%) V 3 20 324186 18-Mar-94 18-Mar-01 Misty Mountain (100%) V 4 20 324021 10-Mar-94 10-Mar-07 Misty Mountain (100%) V 5 20 324022 10-Mar-94 10-Mar-07 Misty Mountain (100%) V 6 20 324187 17-Mar-94 10-Mar-07 Misty Mountain (100%) V 7 20 324187 17-Mar-94 17-Mar-01 Misty Mountain (100%) V 7 20 324188 19-Mar-94 19-Mar-07 Misty Mountain (100%) V 8 20 324023 12-Mar-94 12-Mar-07 Misty Mountain (100%) V 9 20 324189 17-Mar-94 17-Mar-01 Misty Mountain (100%) V 10 20 324484 30-Mar-94 30-Mar-01 Misty Mountain (100%) V 11 18 324485 01-Apr-94 01-Apr-01 Misty Mountain (100%) V 12 9	V 0	18	324185	16-Mar-94	16-Mar-01	Misty Mountain (100%)
V 2 20 324020 11-Mar-94 11-Mar-07 Misty Mountain (100%) V 3 20 324186 18-Mar-94 18-Mar-01 Misty Mountain (100%) V 4 20 324021 10-Mar-94 10-Mar-07 Misty Mountain (100%) V 5 20 324022 10-Mar-94 10-Mar-07 Misty Mountain (100%) V 6 20 324187 17-Mar-94 17-Mar-01 Misty Mountain (100%) V 7 20 324188 19-Mar-94 19-Mar-07 Misty Mountain (100%) V 7 20 324188 19-Mar-94 19-Mar-07 Misty Mountain (100%) V 7 20 324189 17-Mar-94 12-Mar-07 Misty Mountain (100%) V 8 20 324189 17-Mar-94 17-Mar-01 Misty Mountain (100%) V 9 20 324485 01-Apr-94 01-Apr-01 Misty Mountain (100%) V 10 20 324485 01-Apr-94 01-Apr-01 Misty Mountain (100%) V 12 9 324486 03-Apr-94 03-Apr-02 Misty Mountain (100%) V 13 15	V 1	20	324019	09-Mar-94	09-Mar-07	Misty Mountain (100%)
V 3 20 324186 18-Mar-94 18-Mar-01 Misty Mountain (100%) V 4 20 324021 10-Mar-94 10-Mar-07 Misty Mountain (100%) V 5 20 324022 10-Mar-94 10-Mar-07 Misty Mountain (100%) V 6 20 324187 17-Mar-94 10-Mar-07 Misty Mountain (100%) V 7 20 324188 19-Mar-94 19-Mar-07 Misty Mountain (100%) V 7 20 324188 19-Mar-94 19-Mar-07 Misty Mountain (100%) V 8 20 324023 12-Mar-94 12-Mar-07 Misty Mountain (100%) V 9 20 324189 17-Mar-94 17-Mar-01 Misty Mountain (100%) V 10 20 324484 30-Mar-94 30-Mar-01 Misty Mountain (100%) V 11 18 324485 01-Apr-94 01-Apr-01 Misty Mountain (100%) V 12 9 324486 02-Apr-94 02-Apr-01 Misty Mountain (100%) V 13 15 324487 03-Apr-94 03-Apr-02 Misty Mountain (100%) V 14 20	V 2	20	324020	11-Mar-94	11-Mar-07	Misty Mountain (100%)
V 4 20 324021 10-Mar-94 10-Mar-07 Misty Mountain (100%) V 5 20 324022 10-Mar-94 10-Mar-07 Misty Mountain (100%) V 6 20 324187 17-Mar-94 10-Mar-07 Misty Mountain (100%) V 7 20 324187 17-Mar-94 17-Mar-01 Misty Mountain (100%) V 7 20 324188 19-Mar-94 19-Mar-07 Misty Mountain (100%) V 8 20 324023 12-Mar-94 12-Mar-07 Misty Mountain (100%) V 9 20 324189 17-Mar-94 17-Mar-01 Misty Mountain (100%) V 10 20 324484 30-Mar-94 30-Mar-01 Misty Mountain (100%) V 11 18 324485 01-Apr-94 01-Apr-01 Misty Mountain (100%) V 12 9 324486 02-Apr-94 02-Apr-01 Misty Mountain (100%) V 13 15 324487 03-Apr-94 03-Apr-02 Misty Mountain (100%) V 14 20 324488 03-Apr-94 03-Apr-01 Misty Mountain (100%) V 15 1	V 3	20	324186	18-Mar-94	18-Mar-01	Misty Mountain (100%)
V 5 20 324022 10-Mar-94 10-Mar-07 Misty Mountain (100%) V 6 20 324187 17-Mar-94 17-Mar-01 Misty Mountain (100%) V 7 20 324188 19-Mar-94 19-Mar-07 Misty Mountain (100%) V 8 20 324023 12-Mar-94 19-Mar-07 Misty Mountain (100%) V 9 20 324189 17-Mar-94 12-Mar-07 Misty Mountain (100%) V 9 20 324189 17-Mar-94 17-Mar-01 Misty Mountain (100%) V 10 20 324484 30-Mar-94 30-Mar-01 Misty Mountain (100%) V 11 18 324485 01-Apr-94 01-Apr-01 Misty Mountain (100%) V 12 9 324486 02-Apr-94 02-Apr-01 Misty Mountain (100%) V 13 15 324487 03-Apr-94 03-Apr-02 Misty Mountain (100%) V 14 20 324488 03-Apr-94 03-Apr-01 Misty Mountain (100%) V 15 1 360740 27-Nov-97 27-Nov-98 Misty Mountain (100%) QTZ 2 20	V 4	20	324021	10-Mar-94	10-Mar-07	Misty Mountain (100%)
V 6 20 324187 17-Mar-94 17-Mar-01 Misty Mountain (100%) V 7 20 324188 19-Mar-94 19-Mar-07 Misty Mountain (100%) V 8 20 324023 12-Mar-94 19-Mar-07 Misty Mountain (100%) V 9 20 324189 17-Mar-94 12-Mar-07 Misty Mountain (100%) V 9 20 324189 17-Mar-94 17-Mar-01 Misty Mountain (100%) V 10 20 324484 30-Mar-94 30-Mar-01 Misty Mountain (100%) V 11 18 324485 01-Apr-94 01-Apr-01 Misty Mountain (100%) V 12 9 324486 02-Apr-94 02-Apr-01 Misty Mountain (100%) V 13 15 324487 03-Apr-94 03-Apr-02 Misty Mountain (100%) V 14 20 324488 03-Apr-94 03-Apr-01 Misty Mountain (100%) V 15 1 360740 27-Nov-97 27-Nov-98 Misty Mountain (100%) QTZ 1 12 357224 01-Jul-97 01-Jul-01 Misty Mountain (100%) QTZ 2 20	V 5	20	324022	10-Mar-94	10-Mar-07	Misty Mountain (100%)
V 7 20 324188 19-Mar-94 19-Mar-07 Misty Mountain (100%) V 8 20 324023 12-Mar-94 12-Mar-07 Misty Mountain (100%) V 9 20 324189 17-Mar-94 12-Mar-07 Misty Mountain (100%) V 10 20 324189 17-Mar-94 17-Mar-01 Misty Mountain (100%) V 10 20 324484 30-Mar-94 30-Mar-01 Misty Mountain (100%) V 11 18 324485 01-Apr-94 01-Apr-01 Misty Mountain (100%) V 12 9 324486 02-Apr-94 02-Apr-01 Misty Mountain (100%) V 13 15 324487 03-Apr-94 03-Apr-02 Misty Mountain (100%) V 14 20 324488 03-Apr-94 03-Apr-01 Misty Mountain (100%) V 15 1 360740 27-Nov-97 27-Nov-98 Misty Mountain (100%) QTZ 1 12 357224 01-Jul-97 01-Jul-01 Misty Mountain (100%) QTZ 2 20 357225 01-Jul-97 01-Jul-01 Misty Mountain (100%) TOTAL # CLAIMS:	V 6	20	324187	17-Mar-94	17-Mar-01	Misty Mountain (100%)
V 8 20 324023 12-Mar-94 12-Mar-07 Misty Mountain (100%) V 9 20 324189 17-Mar-94 17-Mar-01 Misty Mountain (100%) V 10 20 324484 30-Mar-94 30-Mar-01 Misty Mountain (100%) V 11 18 324485 01-Apr-94 01-Apr-01 Misty Mountain (100%) V 12 9 324486 02-Apr-94 02-Apr-01 Misty Mountain (100%) V 13 15 324487 03-Apr-94 03-Apr-02 Misty Mountain (100%) V 14 20 324488 03-Apr-94 03-Apr-01 Misty Mountain (100%) V 15 1 360740 27-Nov-97 27-Nov-98 Misty Mountain (100%) QTZ 1 12 357224 01-Jul-97 01-Jul-01 Misty Mountain (100%) QTZ 2 20 357225 01-Jul-97 01-Jul-01 Misty Mountain (100%) TOTAL # CLAIMS: 116 1217 1217 1217 1217	V7	20	324188	19-Mar-94	19-Mar-07	Misty Mountain (100%)
V 9 20 324189 17-Mar-94 17-Mar-01 Misty Mountain (100%) V 10 20 324484 30-Mar-94 30-Mar-01 Misty Mountain (100%) V 11 18 324485 01-Apr-94 01-Apr-01 Misty Mountain (100%) V 12 9 324486 02-Apr-94 02-Apr-01 Misty Mountain (100%) V 13 15 324487 03-Apr-94 03-Apr-02 Misty Mountain (100%) V 14 20 324488 03-Apr-94 03-Apr-01 Misty Mountain (100%) V 15 1 360740 27-Nov-97 27-Nov-98 Misty Mountain (100%) QTZ 1 12 357224 01-Jul-97 01-Jul-01 Misty Mountain (100%) QTZ 2 20 357225 01-Jul-97 01-Jul-01 Misty Mountain (100%) TOTAL # CLAIMS: 116 1217 1217 1217 1217	VB	20	324023	12-Mar-94	12-Mar-07	Misty Mountain (100%)
V 10 20 324484 30-Mar-94 30-Mar-01 Misty Mountain (100%) V 11 18 324485 01-Apr-94 01-Apr-01 Misty Mountain (100%) V 12 9 324486 02-Apr-94 02-Apr-01 Misty Mountain (100%) V 13 15 324487 03-Apr-94 03-Apr-02 Misty Mountain (100%) V 14 20 324488 03-Apr-94 03-Apr-01 Misty Mountain (100%) V 15 1 360740 27-Nov-97 27-Nov-98 Misty Mountain (100%) QTZ 1 12 357224 01-Jul-97 01-Jul-01 Misty Mountain (100%) QTZ 2 20 357225 01-Jul-97 01-Jul-01 Misty Mountain (100%) TOTAL # CLAIMS: 116 1217 1217 1217 1217	V 9	20	324189	17-Mar-94	17-Mar-01	Misty Mountain (100%)
V 11 18 324485 01-Apr-94 01-Apr-01 Misty Mountain (100%) V 12 9 324486 02-Apr-94 02-Apr-01 Misty Mountain (100%) V 13 15 324487 03-Apr-94 03-Apr-02 Misty Mountain (100%) V 14 20 324488 03-Apr-94 03-Apr-01 Misty Mountain (100%) V 15 1 360740 27-Nov-97 27-Nov-98 Misty Mountain (100%) QTZ 1 12 357224 01-Jul-97 01-Jul-01 Misty Mountain (100%) QTZ 2 20 357225 01-Jul-97 01-Jul-01 Misty Mountain (100%) TOTAL # CLAIMS: 116 5 Subset in potion apprending apprending the Doption Resources ind 1217	V 10	20	324484	30-Mar-94	30-Mar-01	Misty Mountain (100%)
V 12 9 324486 02-Apr-94 02-Apr-01 Misty Mountain (100%) V 13 15 324487 03-Apr-94 03-Apr-02 Misty Mountain (100%) V 14 20 324488 03-Apr-94 03-Apr-01 Misty Mountain (100%) V 15 1 360740 27-Nov-97 27-Nov-98 Misty Mountain (100%) QTZ 1 12 357224 01-Jul-97 01-Jul-01 Misty Mountain (100%) QTZ 2 20 357225 01-Jul-97 01-Jul-01 Misty Mountain (100%) TOTAL # CLAIMS: 116 1217 Stated in option appended with Doctron Resources Ltd	V 11	18	324485	01-Apr-94	01-Apr-01	Misty Mountain (100%)
V 13 15 324487 03-Apr-94 03-Apr-02 Misty Mountain (100%) V 14 20 324488 03-Apr-94 03-Apr-01 Misty Mountain (100%) V 15 1 360740 27-Nov-97 27-Nov-98 Misty Mountain (100%) QTZ 1 12 357224 01-Jul-97 01-Jul-01 Misty Mountain (100%) QTZ 2 20 357225 01-Jul-97 01-Jul-01 Misty Mountain (100%) TOTAL # CLAIMS: 116 1217 Subset in option appendent with Doption Reserves 1 vid	V 12	9	324486	02-Apr-94	02-Apr-01	Misty Mountain (100%)
V 14 20 324488 03-Apr-94 03-Apr-01 Misty Mountain (100%) V 15 1 360740 27-Nov-97 27-Nov-98 Misty Mountain (100%) QTZ 1 12 357224 01-Jul-97 01-Jul-01 Misty Mountain (100%) QTZ 2 20 357225 01-Jul-97 01-Jul-01 Misty Mountain (100%) TOTAL # CLAIMS: 116 1217 Subset in option appendent with Doption Reserves Ltd	V 13	15	324487	03-Apr-94	03-Apr-02	Misty Mountain (100%)
V 15 1 360740 27-Nov-97 27-Nov-98 Misty Mountain (100%) QTZ 1 12 357224 01-Jul-97 01-Jul-01 Misty Mountain (100%) QTZ 2 20 357225 01-Jul-97 01-Jul-01 Misty Mountain (100%) TOTAL # CLAIMS: 116 1217 Subset in option appendent with Doption Resources Ltd	V 14	20	324488	03-Apr-94	03-Apr-01	Misty Mountain (100%)
QTZ 1 12 357224 01-Jul-97 01-Jul-01 Misty Mountain (100%) QTZ 2 20 357225 01-Jul-97 01-Jul-01 Misty Mountain (100%) TOTAL # CLAIMS: 116 1217 Subset in option appendent with Doctron Resources Ltd	V 15	1	360740	27-Nov-97	27-Nov-98	Misty Mountain (100%)
QTZ 2 20 357225 01-Jul-97 01-Jul-01 Misty Mountain (100%) TOTAL # CLAIMS: 116 TOTAL # UNITS: 1217 Subset in option appement with Doppin Resources Ltd	QTZ 1	12	357224	01-Jul-97	01-Jul-01	Misty Mountain (100%)
TOTAL # CLAIMS: 116 TOTAL # LINITS: 1217 : Subject to option appement with Doppin Resources Ltd	QTZ 2	20	357225	01-Jul-97	01-Jul-01	Misty Mountain (100%)
TOTAL # INITS: 1217 Subject to policy appearant with Domain Resources Ltd	TOTAL # CLAIMS	116				
	TOTAL # UNITS.	1717		* Subset in online some	enset with Commin Re-	soures I tri

TOTAL # UNITS:

Subject to option agreement with Doromin Resource Ltd.

APPENDIX II

ICP AND FIRE ASSAY ANALYTICAL PROCEDURES FOR SOIL GEOCHEMICAL SAMPLES

2036 Columbia Street Vancouver, B.C. Canada VSY 3E1 Phone (604) 879-7878 Fax (604) 879-7898

works\faaas.pag

Method of Gold & Silver analysis by Fire Assay / AAS

- (a) 10.0 to 30.0 grams of sample was mixed with a combination of fluxes in a fusion pot. The sample was then fused at high temperature for one hour to form a lead "button".
- (b) The precious metals are extracted by cupellation. The dore bead is then dissolved in boiling concentrated aqua regia solution heated by a hot water bath.
- (c) The gold & silver in solution are determined with an Atomic Absorption Spectrometer. The value, in ppb or ppm or grams-per-tonne is calculated by comparison with a set of known standards.

QUALITY CONTROL

Every fusion of 24 pots contains 22 samples, one internal standard or blank, and a random reweigh of one of the samples. Samples with anomalous gold values greater than 1000 ppb are automatically checked by Fire Assay/AA methods. Samples with gold values greater than 10000 ppb are checked by Fire Assay/Gravimetric methods.

2036 Columbia Street Vancouver, B.C. Canada VSY 3E1 Phone (604) 879-7878 Fax (604) 879-7898

works\icpaqr.pag

Method of 30 element analysis by Aqua Regia digestion/ICP

- (a) 0.50 grams of sample is digested with diluted Aqua Regia solution by heating in a hot water bath, at about 95 Celsius for 90 minutes, then cooled and bulked up to a fixed volume with de-mineralized water, and thoroughly mixed. digested samples are let settled over night to separate residue from solution.
- (b) The specific elements are determined using an Inductively Coupled Argon Plasma spectrophotometer. All elements are corrected for inter-element interfernce. All data are subsequently stored onto computer diskette.

QUALITY CONTROL

The machine is first calibrated using three known standards and a blank. The test samples are then run in batches.

A sample batch consists of 38 or less samples. Two tubes are placed before a set. These are an Inhouse standard and an acid blank, which are both digested with the samples. A known standard with characteristics best matching the samples is chosen and placed after every fifteenth sample. After every 38th sample (not including standards), two samples, chosen at random, are re-weighed and analyzed. At the end of a batch, the standard and blank used at the beginning is rerun. The readings for these knowns are compared with the pre-rack knowns to detect any calibration drift.

APPENDIX III

1

ANALYTICAL RESULTS FOR SOIL GEOCHEMICAL SAMPLES

INTERNATIONAL PLASMA LABORATORY LTD

S. . . .

.

CERTIFICAT⁻⁻ OF ANALYSIS iPL 97L1206

.

2036 Columbia et Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898 E120617:45:46

Misty Mountain Gold Ltd.	20)6 Sampl	es Out: Dec 12, 1997 In: Dec 08	, 1997	[120	617:45:46:79121297]
Shipper: Ron Konst Shippent: PO#: Analysis:	CODE AMO B111	UNT TYPE 206 Soil	PREPARATION DESCRIPTION Dry & sift to -80 mesh, discard reject.	NS=No Sample	Rep=Replicate 1	PULP REJECT 12M/Dis 00M/Dis M=Month Dis=Discard
Au(FA/AAS 20g) ICP(AqR)30	Analyn ## Code Met	cal Summa hod Units	Oescription	Element	Limi	t Limit
Comment: Document Distribution 1 Misty Mountain Gold Ltd. EN RT CC IN FX (1020 - 800 West Pender Street) 1 2 2 2 1	01 0312 FA/ 02 0721 03 0711 04 0714 05 0730	AAS ppb ICP ppm ICP ppm ICP ppm ICP ppm	Au FA/AAS finish 20g Ag ICP Cu ICP Pb ICP Zn ICP	Gold Silver Copper Lead Zinc	Lov 0.	w High 5 9999 1 99.9 1 20000 2 20000 1 20000
Vancouver DL 3D EM BT BL B.C. V6C 2V6 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <t< th=""><td>06 0703 07 0702 08 0732 09 0717 10 0747</td><td>ICP ppm ICP ppm ICP ppm ICP ppm ICP ppm</td><td>As ICP Sb ICP Hg ICP Mo ICP Tl ICP (Incomplete Digestion)</td><td>Arsenic Antimony Mercury Molydenum Thallium</td><td>10</td><td>5 9999 5 999 3 9999 1 999 0 999</td></t<>	06 0703 07 0702 08 0732 09 0717 10 0747	ICP ppm ICP ppm ICP ppm ICP ppm ICP ppm	As ICP Sb ICP Hg ICP Mo ICP Tl ICP (Incomplete Digestion)	Arsenic Antimony Mercury Molydenum Thallium	10	5 9999 5 999 3 9999 1 999 0 999
	11 0705 12 0707 13 0710 14 0718 15 0704	ICP ppm ICP ppm ICP ppm ICP ppm ICP ppm	B1 ICP Cd ICP Co ICP N1 ICP Ba ICP (Incomplete Digestion)	Bismuth Cadmium Cobalt Nickel Barium	0.	2 9999 1 99.9 1 9999 1 9999 1 9999 2 9999
	16 0727 17 0709 18 0729 19 0716 20 0713	ICP ppm ICP ppm ICP ppm ICP ppm ICP ppm	W ICP (Incomplete Digestion) Cr ICP (Incomplete Digestion) V ICP Mn ICP La ICP (Incomplete Digestion)	Tungsten Chromium Vanadium Hanganese Lanthanum		5 999 1 9999 2 9999 1 9999 2 9999 2 9999
	21 0723 22 0731 23 0736 24 0726 25 0701	ICP ppm ICP ppm ICP ppm ICP X ICP X	Sr ICP (Incomplete Digestion) Zr ICP Sc ICP Ti ICP (Incomplete Digestion) Al ICP (Incomplete Digestion)	Strontium Zirconium Scandium Titanium Aluminum	0.0 0.0	1 9999 1 9999 1 9999 1 9999 1 1.00 1 9.99
	26 0708 27 0712 28 0715 29 0720 30 0722	ICP # ICP # ICP # ICP # ICP # ICP # ICP #	Ca ICP (Incomplete Digestion) Fe ICP Mg ICP (Incomplete Digestion) K ICP (Incomplete Digestion) Na ICP (Incomplete Digestion)	Calcium Iron Magnesium Potassium Sodium	0,0; 0.0; 0.0; 0.0; 0.0;	1 9.99 1 9.99 1 9.99 1 9.99 1 9.99 1 5.00
DUPLICATE	31 0719	ICP X	Р ІСР	Phosphorus	0.02	1 5.00

EN=Envelope # RT=Report Style CC=Copies IN=Invoices Fx=Fax(1=Yes 0=No) Totals: 2=Copy 2=Invoice 0=3½ Disk DL=Download 3D=3½ Disk EM=E-Mail BT=BBS Type BL=BBS(1=Yes 0=No) ID=C008501 * Our liability is limited solely to the analytical cost of these analyses.

BC Certified Assayer: David Chiu

n /

.

•

.

CERTIFICAT OF ANALYSIS iPL 97L1206

[120610:00:44:79121297]

INTERNATIONAL PLASMA LABORATORY LTD

2036 Columbia et Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898 Out: Dec 12, 1997 In : Dec 08, 1997 Page 1 of 6 Section 1 of 1

.

206 Samples 206=So11 Client : Misty Mountain Gold Etd. Project: Specogna = SANDSPIT GRID

					0 1-1	<u> </u>																										
Sample Na	ame	Au ppb	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm p	Sb pm	Hg ppm j	Mo ppm p	T1 pm	B1 ppm	Cd ppm	Co ppm	N1 ppm	Ba ppm p	W mqc	Cr ppm	V mqq	Mn ppm	La ppm	Sr ppm	Zr ppm	Sc ppm	Ti X	۸۱ لا	Ca Xa	Fe X	Mg X	K X	Na X	P X
L 4400N L 4400N L 4400N L 4400N L 4400N L 4400N	3000E S 3025E S 3050E S 3075E S 3100E S	7 < 17 12 8	0.1 0.1 0.1 <	22 10 15 18 18	16 10 12 16 9	69 53 65 86 82	13 10 23 24 45	~ ~ ~ ~ ~	~ ~ ~ ~ ~ ~	1 1 1 5	~ ~ ~ ~ ~	~ ~ ~ ~ ~	0.7 0.4 0.7 0.7 0.8	11 9 11 12 15	12 8 9 14 14	137 82 124 96 109	~ ~ ~ ~ ~ ~	21 15 18 19 21	77 46 73 77 85	343 286 365 315 441	11 9 11 10 15	24 17 17 13 22	3 1 3 1 1	6 4 5 6	0.11 0.10 0.09 0.09 0.08	1.98 1.82 2.09 2.72 2.53	0.34 0.24 0.25 0.16 0.36	2.68 1.88 2.49 2.66 3.31	0.81 0.67 0.76 0.84 0.89	0.05 0.04 0.04 0.05 0.05	0.02 0.02 0.02 0.01 0.01	0.04 0.02 0.03 0.07 0.08
L 4400N L 4400N L 4400N L 4400N L 4400N L 4400N	3125E S 3150E S 3175E S 3200E S 3225E S	< < < < 6	< < 0.2 0.1	11 11 17 9 23	16 12 13 7 13	52 74 66 38 85	22 19 23 17 37	~ ~ ~ ~ ~	~ ~ ~ ~ ~	1 2 2 4	~ ~ ~ ~ ~	< < < < < <	0.6 0.6 0.5 0.2 0.5	8 10 10 5 12	10 10 11 3 14	59 84 58 55 101	~ ~ ~ ~ ~	16 16 18 10 19	61 77 65 30 78	277 293 321 201 312	9 10 9 9 11	13 18 17 24 19	1 < 1 < 1	4 5 4 2 5	0.09 0.05 0.06 0.06 0.04	2.37 2.28 2.32 0.98 2.99	0.19 0.26 0.19 0.40 0.26	1.98 2.68 2.11 0.85 3.04	0.69 0.73 0.69 0.27 0.85	0.04 0.05 0.04 0.04 0.06	0.01 0.01 0.01 0.03 0.03	0.04 0.07 0.08 0.07 0.09
L 4400N L 4400N L 4400N L 4400N L 4400N L 4400N	3275E S 3300E S 3325E S 3350E S 3375E S	< < 7 < <	< 0.1 < < <	15 13 15 8 8	12 10 13 13 12	87 77 60 42 67	29 27 53 54 58	~ ~ ~ ~ ~	~ ~ ~ ~ ~	2 2 3 3 3	* * * * *	~ ~ ~ ~ ~	0.6 0.5 0.7 0.5 0.6	11 9 11 5 8	12 10 12 7 10	56 73 93 52 59	~ ~ ~ ~ ~	17 14 16 15 13	59 61 72 68 67	269 332 316 225 327	8 9 8 8	15 16 18 15 12	1 < 1 <	3 3 4 1 3	0.08 0.06 0.09 0.03 0.07	2.37 2.38 2.15 2.21 2.34	0.26 0.22 0.24 0.18 0.17	2.31 2.48 2.78 1.91 2.68	0.87 0.73 0.73 0.42 0.62	0.07 0.05 0.09 0.04 0.05	0;01 0.01 0.01 0.01 0.01	0.10 0.07 0.08 0.06 0.05
L 4400N L 4400N L 4400N L 4400N L 4400N L 4400N	3425E S 3450E S 3475E S 3500E S 3525E S	< 10 19 <	0.1 0.1 0.1 0.1 <	5 13 7 7 1	15 15 12 10 6	31 50 36 38 24	64 31 70 368 46	~ ~ ~ ~ ~ ~	~ ~ ~ ~ ~	3 2 4 4	A A A A A	~ ~ ~ ~ ~	0.4 0.5 0.6 1.7 1.8	4 7 4 5 2	6 10 7 9 5	49 56 33 30 20	~ ~ ~ ~ ~ ~	12 19 15 17 8	73 62 77 189 115	147 212 149 228 123	8 10 9 7 6	13 13 11 11 8	~ ~ ~ ~ ~	1 2 1 1	0.03 0.05 0.03 0.04 0.03	1.89 2.61 1.76 2.10 1.32	0.15 0.15 0.13 0.12 0.07	1.73 1.78 2.34 6.53 7.07	0.33 0.53 0.40 0.38 0.23	0.04 0.06 0.06 0.04 0.02	0.02 0.02 0.01	0.05 0.05 0.04 0.07 0.03
L 4400N L 4400N L 4400N L 4400N L 4400N L 4400N	3550E S 3575E S 3600E S 3625E S 3650E S	18 9 5 6 <	0.1 0.1 0.1 0.1 0.2	18 3 6 1 5	14 8 13 7 12	78 13 26 11 45	26 30 56 23 102	~ ~ ~ ~ ~	~ ~ ~ ~ ~	3 1 1 1 2	~ ~ ~ ~ ~	~ ~ ~ ~ ~	0.6 <0.4 0.1 1.2	9 1 3 1 5	14 2 5 2 5	122 36 49 34 45	~ ~ ~ ~ ~ ~	18 9 13 6 16	67 30 69 34 99	416 70 134 60 301	8 7 7 7 8	16 12 12 9 8	1 < < < <	5 < 1 1 2	0.06 0.01 0.02 0.01 0.03	2.69 1.24 1.74 1.31 1.87	0.15 0.12 0.12 0.0B 0.07	2.93 0.52 1.66 0.54 4.71	0.73 0.09 0.25 0.09 0.41	0.05 0.03 0.04 0.02 0.05	0.01 0.03 0.02 0.02	0.06 0.04 0.06 0.03 0.05
L 4400N L 4400N L 4400N L 4400N L 4400N L 4400N	3675E S 3700E S 3725E S 3750E S 3775E S	<	0.1 0.1 0.1 0.1 0.4	4 3 7 2 5	11 13 17 15 15	47 27 47 25 40	92 18 104 79 178	~ ~ ~ ~ ~	~ ~ ~ ~ ~	3 1 3 2 3	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~ ~ ~ ~ ~	1.6 0.3 0.6 0.7 1.5	7 3 6 3 5	10 3 8 4 8	39 41 51 37 34	~ ~ ~ ~ ~	15 9 19 11 19	105 31 59 52 97	551 340 253 247 261	5 7 9 8 5	7 8 8 6 4	< < < 1	2 1 1 3	0.03 0.01 0.02 0.02 0.02	2.45 1.44 2.40 1.84 2.66	0.06 0.07 0.07 0.06 0.03	6.48 1.51 2.59 3.09 5.64	0.38 0.22 0.37 0.17 0.38	0.03 0.05 0.06 0.03 0.03	<pre> 0.02 0.01 </pre>	0.05 0.03 0.06 0.02 0.04
L 4400N L 4400N L 4400N L 4400N L 4400N L 4400N	3800E S 3825E S 3900E S 3925E S 3950E S	34 5 <	0.2 0.1 0.6 0.2	8 4 30 2	18 16 11 23 15	63 26 17 87 24	125 65 39 41 36	~ ~ ~ ~ ~ ~	~ ~ ~ ~ ~	2 1 2 1	v v v v v	< < < < < <	1.1 0.5 0.6 1.4 0.4	9 3 1 8 2	10 3 2 21 5	57 33 33 54 52	~ ~ ~ ~ ~ ~	19 9 6 31 8	87 52 61 84 42	224 91 106 366 60	7 8 5 5 5	5 6 5 5 7	2 	4 2 1 5 1	0.03 0.01 0.01 0.03	3.43 1.86 1.36 5.45 1.71	0.03 0.05 0.03 0.06 0.04	4.07 1.82 2.76 5.41 2.11	0.41 0.19 0.24 0.57 0.13	0.04 0.04 0.04 0.04 0.04	< 0.01 < <	0.02 0.02 0.03 0.04 0.02
L 4400N L 4400N L 4400N L 4400N L 4400N	3975E S 4000E S 4025E S 4075E S	< < 5	< 1.7 0.2 0.1	10 13 15 9	15 16 17 15	54 13 70 63	47 31 37 28	~ ~ ~ ~	~ ~ ~ ~	2 1 2 2	~ ~ ~ ~	< < < <	1.2 0.2 0.6 0.7	5 1 8 9	7 4 14 14	37 54 67 87	~ ~ ~ ~	20 7 23 16	60 9 85 71	243 51 250 402	6 6 10 6	6 16 14 15	1 < 1 <	2 1 4 3	0.05 0.01 0.08 0.10	3.17 1.72 3.79 2.63	0.06 0.15 0.11 0.17	4.65 0.37 2.76 2.81	0.32 0.06 0.55 0.62	0.04 0.03 0.06 0.04	< 0.03 0.01 0.01	0.04 0.14 0.06 0.05
Min Limit Max Repor Method	: "ted" st InsIns	5 9999 FA/A ufficier	0.1 99.9 ICP 11 Samr	1 20000 ICP	2 20000 ICP =Delay	1 20000 ICP Max-	5 9999 ICP No Estin	5 999 ICP mate	3 9999 ICP Rec	1 999 ICP -ReCh	10 999 ICP	2 9999 ICP	0.1 99.9 ICP 1000	1 9999 ICP %=Est	1 9999 ICP	2 99999 ICP *% NS	5 999 1CP -No 1	1 9999 ICP Sampi	2 99999 ICP s-Soi	1 99999 ICP	2 9999 ICP	1 9999 ICP	1 9999 ICP	1 9999 ICP	0.01 1.00 ICP	0.01 9.99 ICP	0.01 9.99 ICP	0.01 9.99 ICP	0.01 9.99 ICP	0.01 9.99 1CP	0.01 5.00 ICP	0.01 5.00 ICP

• . •

CERTIFICAT[¬] OF ANALYSIS iPL 97L1206

. . .

,

2036 Columbia 🛀 et Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

INTERNATIONAL PLASMA LABORATORY (10) Client : Misty Mountain Gold Itd.

lient : Project:	Misty Mon Specogna	untain	Gold	Ltd.			206 (206	Sar So	nple	5					ł	1206	510:00	0:44:	79121	297]			Out In	: Der	c 12, c 08,	1997 1997	,	Pa Se	ge ction	2 o 1 o	f 6 f 1
Sample	Name	Au ppb	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm p	Sb pm	Hg ppm p	Mo T opmi ppr	Bi ppm	Cd ppm	Со ррт	Ni ppm	Ba ppm p	W pm	Cr ppm	V PPm	Mn ppm	La ppm	Sr ppm	Zr ppm	Sc ppm	Ti X	A1 *	Ca X	Fe X	Mg X	K X	Na X	P X
L 4400N L 4700N L 4700N L 4700N L 4700N	4100E S 3000E S 3025E S 3050E S 3075E S	、、 、	0.3 < 0.2 < 0.1	77 26 11 10 20	15 11 7 11 13	63 50 45 25 83	44 9 28 44	~ ~ ~ ~ ~	~ ~ ~ ~ ~	32223		1.2 1.1 2.2 1.0 0.7	10 8 9 3 10	12 7 6 7 11	53 50 32 31 90	~ ~ ~ ~ ~ ~	20 12 11 8 14	89 118 151 61 74	355 185 394 117 384	11 10 7 9 11	7 8 8 7 13	4 ~ ~ ~ ~ ~ ~	6 3 3 2 4	0.09 0.02 0.06 0.04 0.06	4.14 1.63 2.16 1.55 2.34	0.05 0.10 0.08 0.08 0.16	4.33 4.23 8.44 4.41 3.00	0.39 0.25 0.61 0.23 0.60	0.03 0.05 0.03 0.04 0.06	< < < 0.01	0.03 0.09 0.04 0.05 0.07
L 4700N L 4700N L 4700N L 4700N L 4700N	3100E S 3125E S 3150E S 3150E S 3175E S 3200E S	< < 5 10 <	0.1 < < < <	18 16 25 19 12	14 16 13 15 14	78 63 75 54 48	33 28 37 25 24	~ ~ ~ ~ ~	~ ~ ~ ~ ~ ~ ~	3 2 2 2 1		0.6 0.3 0.7 0.4 0.4	13 10 14 9 8	14 12 13 11 10	64 60 72 61 42	~ ~ ~ ~ ~	17 16 17 16 13	80 60 80 68 55	277 186 331 267 237	10 9 13 11 8	9 10 9 10 11	< < 1 1 1	3 5 4 3	0.07 0.07 0.07 0.07 0.12	2.88 2.42 3.22 2.65 1.89	0.11 0.09 0.14 0.14 0.15	2.63 1.74 2.73 2.07 1.73	0.75 0.55 0.70 0.62 0.55	0.05 0.05 0.06 0.06 0.05	0.01 0.01 0.01 0.01 0.01	0.07 0.06 0.09 0.08 0.05
L 47001 L 47001 L 47001 L 47001 L 47001 L 47001	3225E S 3250E S 3275E S 3300E S 3325E S	< < < < < < < < < < < < < < < < < < <	0.2 0.1 < 0.1	7 22 12 19 20	13 15 15 13 13	28 69 47 68 70	36 36 41 42 44	~ ~ ~ ~ ~	< < < < <	3 2 2 2 2		1.4 0.7 0.4 0.7 0.8	4 14 7 13 13	5 13 9 13 11	25 75 54 71 75	~ ~ ~ ~ ~	12 17 13 15 15	109 79 85 91 80	180 301 195 259 300	8 10 12 11 12	3 10 11 11 12	1 < < 1	3 4 2 4 5	0.05 0.08 0.07 0.09 0.10	3.47 3.31 3.05 3.36 3.21	0.03 0.15 0.12 0.13 0.17	5.53 2.73 2.17 2.68 2.91	0.22 0.69 0.47 0.64 0.70	0.02 0.06 0.06 0.06 0.06	<pre> </pre> 0.01 0.01 0.01 0.01 0.01	0.02 0.10 0.06 0.07 0.08
L 4700 L 4700 L 4700 L 4700 L 4700	8 3350E S 8 3375E S 8 3400E S 8 3475E S 8 3500E S	V V V V	0.1 < < <	21 13 18 17 6	13 14 16 17 12	79 48 62 90 32	43 32 29 38 30	~ ~ ~ ~ ~	~ ~ ~ ~ ~	2 1 2 2 1		0.6 0.5 0.6 0.6 0.4	14 8 10 13 4	14 10 12 15 6	102 65 62 65 33	VVVVV	17 14 18 19 8	86 76 86 75 42	298 213 275 267 95	12 10 11 11 8	12 10 7 11 6	1 < < 1 <	5 3 3 4 1	0.13 0.06 0.08 0.07 0.01	3.19 2.85 3.00 3.29 1.80	0.15 0.13 0.09 0.20 0.07	3.01 2.15 2.65 2.65 1.65	0.73 0.55 0.72 0.74 0.24	0.06 0.06 0.06 0.07 0.05	0.01 0.01 0.01 0.01 0.01	0.08 0.06 0.05 0.10 0.05
L 4700 L 4700 L 4700 L 4700 L 4700 L 4700	N 3525E S N 3550E S N 3575E S N 3600E S N 3625E S	8 8 12 12 6	0.2 0.1 0.2	13 28 14 20 10	13 25 20 22 12	69 116 76 90 44	86 46 104 40 31	~ ~ ~ ~ ~	~ ~ ~ ~ ~	4 3 3 2		1.1 1.1 1.2 0.8 1.3	11 10 11 16 6	13 19 17 17 8	83 45 61 77 30	~ ~ ~ ~ ~ ~	18 31 18 20 14	96 137 101 77 118	277 399 271 281 173	10 9 8 10 8	14 7 8 10 6	< < 1 1	3 3 5 3	0.08 0.03 0.04 0.09 0.06	3.05 3.97 3.11 3.12 2.39	0.10 0.07 0.08 0.11 0.06	4.42 3.73 4.81 3.12 4.84	0.68 0.70 0.53 0.66 0.42	0.06 0.05 0.07 0.08 0.08	< < 0.01 <	0.06 0.07 0.06 0.06 0.03
L 4700 L 4700 L 4700 L 4700 L 4700 L 4700	N 3650E S N 3675E S N 3725E S N 3750E S N 3775E S	13 < 6 10	< 0.2 0.1	2 3 6 22 17	7 3 16 14 17	13 12 49 79 46	23 15 51 43 60	~ ~ ~ ~ ~ ~	~ ~ ~ ~ ~	2 2 4 2 2	<	1.6 0.7 1.0 0.5 0.5	2 < 5 11 5	2 2 8 16 8	13 15 47 82 36	~ ~ ~ ~ ~ ~	7 2 17 18 22	119 55 91 67 55	259 56 207 256 173	6 4 7 11 10	4 3 4 14 8	1 < 2 2 2	1 < 4 5 3	0.03 0.01 0.02 0.06 0.06	1.55 0.85 3.73 3.33 4.19	0.04 0.03 0.02 0.11 0.08	6.31 3.53 4.35 2.64 2.17	0.09 0.03 0.29 0.57 0.41	0.02 0.05 0.02 0.06 0.05	< < 0.01 0.01	0.02 0.01 0.02 0.05 0.04
L 4700 L 4700 L 4700 L 4700 L 4700 L 4700	N 3800E S N 3900E S N 3925E S N 3950E S N 3975E S	 6 12 48 12 	0.2 0.3 0.1 0.1 0.7	13 10 26 21 14	17 13 12 16 13	39 39 128 98 49	34 17 18 89 37	~ ~ ~ ~ ~	~ ~ ~ ~ ~	2 2 1 3	<	0.5 0.8 1.2 0.9	6 22 15 11 5	7 6 32 26 10	60 50 55 89 37	~ ~ ~ ~ ~ ~	15 13 28 19 14	66 72 53 62 75	132 1422 474 400 201	9 8 10 8 10	8 8 11 11 6	1 < < <	2 2 3 4 3	0.02 0.01 0.01 0.01 0.04	2.90 1.88 2.61 2.73 3.20	0.07 0.09 0.13 0.12 0.05	1.44 3.32 4.18 3.74 3.73	0.30 0.30 1.05 0.83 0.30	0.05 0.06 0.08 0.07 0.04	0.01 < < <	0.05 0.03 0.03 0.05 0.05
L 4700 L 4700 L 4700 L 4700	N 4025E S N 4050E S N 4075E S N 4100E S	5 51 5 19 5 148 5 592	1.6 0.7 1.3 1.0	20 15 13 4	15 14 12 5	55 43 32 12	63 51 85 171	< < 36	~ ~ ~ ~	3 2 2 2	< · < ·	1.2 1.2 1.2 0.2	6 6 4 2	12 8 7 2	35 35 34 16	VVVV	20 17 16 3	84 78 83 63	242 234 273 87	7 8 8 6	7 6 5 3	3 2 1 <	4 4 3 1	0.04 0.07 0.06 0.04	4.91 4.62 4.44 0.64	0.04 0.04 0.04 0.03	4.73 4.11 4.29 1.92	0.27 0.28 0.21 0.03	0.04 0.03 0.03 0.02		0.05 0.05 0.06 0.02
Min Lim Max Rep Method	it orted* Test Ins-In:	5 9999 FA/A sufficien	0.1 99.9 ICP	1 20000 ICP ble Dei	2 20000 ICP ≖Delay	1 20000 ICP Max=	5 9999 ICP No Esti	5 999 ICP mate	3 9999 ICP Rec=	1] 999 99 ICP 10 ReChe	0 ; 9 999; P IC :k ·m=	2 0.1 999.9 9 ICP x1000	1 9999 ICP %=Es	1 9999 ICP timate	2 9999 ICP % NS	5 999 ICP ≠No 3	1 9999 ICP Sample	2 9999 ICP eS~So	1 9999 ICP	2 9999 ICP	1 9999 ICP	1 9999 ICP	1 9999 ICP	0.01 1.00 ICP	0.01 9.99 ICP	0.01 9.99 ICP	0.01 9.99 ICP	0.01 9.99 ICP	0.01 9.99 ICP	0.01 5.00 ICP	0.01 5.00 ICP

. .

` . •

CERTIFICAT[¬] OF ANALYSIS iPL 97L1206

2036 Columbia 👘 et Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

lient : 'roject:	Misty Hou Specogna	untain	Gold	Ltd.			206 3	Sai -So	nptes	6							[120	610:0	0:44:	79121	297]			Out In	: Dec : Dec	12, 08,	1997 1997		Pa Se	ge ctior	3 o 1 o	f 6 f 1
Sample N	ame	Au ppb	Ag ppm	Си рртя	Pb ppm	Zn ppm	As ppm p	SD pm	Hg ppm p	Mo 1 pm pr	() 200	8i ppm	Cd ppm	Co ppm	Ni ppm	Ba ppm	W ppm	Cr ppm	V mqq	Mn ppm	La ppm	Sr ppm	Zr ppm	Sc ppm	Ti t	A1 لا	Ca X	Fe X	Mg X	K X	Na X	P X
L 5000N L 5000N L 5000N L 5000N L 5000N L 5000N	3000E S 3025E S 3050E S 3075E S 3100E S	v v v 5 v	0.1 < 0.1 0.2	14 23 17 17 21	13 12 12 14 14	23 63 61 64 68	30 34 32 50 39	~ ~ ~ ~ ~ ~	* * * * *	2 1 2 1 2	~ ~ ~ ~ ~ ~	~ ~ ~ ~ ~ ~	0.2 0.7 1.0 0.8 1.1	4 10 10 12 11	6 13 9 12 13	37 76 56 63 84	~ ~ ~ ~ ~ ~	15 15 15 16 16	81 72 68 77 88	113 255 316 547 453	9 12 11 12 9	9 9 7 7 6	< 1 2 2 1	2 (5 (5 (5 (5 ().05).09).08).12).13	2.04 2.80 2.65 3.02 2.84	0.08 0.11 0.08 0.07 0.07	1.52 2.45 3.59 3.80 4.51	0.29 0.63 0.58 0.63 0.63 0.59	0.03 0.06 0.05 0.07 0.05	0.01 0.01 <	0.04 0.08 0.07 0.07 0.07
L 5000N L 5000N L 5000N L 5000N L 5000N L 5000N	3125E S 3150E S 3175E S 3200E S 3225E S	< < 40 <	0.2 0.1 0.2 0.2 <	12 8 10 21 19	10 12 14 11 12	57 40 45 75 62	90 58 61 45 35	* * * * *	* * * * *	2 2 2 2 2	~ ~ ~ ~ ~	~ ~ ~ ~ ~	1.2 1.1 1.3 0.6 0.7	14 5 5 12 10	9 7 10 12 8	51 38 29 103 51	~ ~ ~ ~ ~ ~	13 10 16 16 15	107 108 111 84 77	831 167 224 252 263	8 9 7 12 10	5 5 4 9 8	< 3 1 1	3 (3 (5 (5 (5 ().03).05).03).08).09	2.26 3.03 4.21 3.20 2.47	0.02 0.05 0.02 0.07 0.07	5.04 4.46 5.52 3.24 3.05	0.47 0.34 0.36 0.67 0.61	0.02 0.05 0.02 0.05 0.05	< < < 0.01	0.04 0.04 0.03 0.07 0.06
L 5000N L 5000N L 5000N L 5000N L 5000N	3250E S 3275E S 3300E S 3325E S 3350E S	~ ~ ~ ~ ~ ~ ~	< < 0.1 <	14 11 12 15 19	13 12 14 15 14	63 56 47 60 62	31 42 32 27 33	~ ~ ~ ~ ~	~ ~ ~ ~ ~ ~	2 2 1 2	~ ~ ~ ~ ~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0.8 0.6 0.4 0.5 0.5	10 8 7 10 10	10 10 9 12 11	124 42 80 110 75	~ ~ ~ ~ ~ ~	15 14 15 16 16	80 72 60 77 70	264 202 190 280 228	10 12 10 11 10	13 6 9 15 8	1 < 1 1	5 3 2 4 4).10).04).05).10).08	2.93 3.26 2.90 2.81 2.70	0.11 0.07 0.09 0.15 0.09	3.21 2.53 1.66 2.71 2.35	0.70 0.61 0.55 0.67 0.59	0.07 0.04 0.04 0.07 0.07	0.01 0.02 0.01 0.01	0.07 0.07 0.07 0.08 0.06
L 5000N L 5000N L 5000N L 5000N L 5000N L 5000N	3375E S 3400E S 3425E S 3450E S 3475E S	5 < < <	< < < < < <	5 6 3 2	17 14 12 6 10	33 24 16 5	29 25 20 14 13	~ ~ ~ ~ ~ ~	v v v v v	1 1 < 1	~ ~ ~ ~ ~ ~	< < < < <	0.3 0.4 0.2 <	4 5 3 2 1	6 6 4 1 1	48 40 34 17 21	~ ~ ~ ~ ~	11 9 7 2 2	47 63 39 29 16	143 134 102 44 38	8 9 8 7 7	7 8 8 4 5	* * * * * * * * *	2 2 1 1 <).05).06).07).04).05	1.95 1.95 1.31 0.80 0.73	0.06 0.07 0.07 0.03 0.04	1.59 2.03 1.08 0.75 0.35	0.37 0.31 0.20 0.07 0.04	0.05 0.05 0.03 0.03 0.03	0.01 0.01 0.02 0.02 0.02	$\begin{array}{c} 0.02 \\ 0.02 \\ 0.03 \\ 0.02 \\ 0.02 \\ 0.02 \end{array}$
L 5000N L 5000N L 5000N L 5000N L 5000N L 5000N	3525E S 3550E S 3600E S 3625E S 3650E S	16 10 87 6 12	< < < 0.1 <	5 4 21 1 4	15 8 16 7 9	15 11 79 6 19	27 32 73 1109 589	v v 57 v v	~ ~ ~ ~ ~	1 2 3 2	~ ~ ~ ~ ~	< < < < < < < < < < < < < < < < < < <	0.1 0.2 0.6 1.2 1.1	2 2 7 1 2	4 2 13 2 7	25 17 78 15 17	~ ~ ~ ~ ~ ~	6 6 17 3 9	18 30 55 84 71	33 64 229 102 60	8 7 9 4 8	4 4 2 2	< < < < <	< 1 3 < 1 1	0.05 0.03 0.04 0.01 <	0.93 0.87 2.18 0.81 1.11	0.04 0.04 0.07 0.02 0.02	0.31 0.99 2.65 5.41 4.42	0.06 0.13 0.57 0.02 0.23	0.06 0.04 0.08 0.08 0.08 0.07	0.02 0.01 < <	0.01 0.02 0.05 0.03 0.02
L 5000N L 5000N L 5000N L 5000N L 5000N	3675E S 3700E S 3725E S 3775E S 3800E S	66 20 19 6	0.4 0.3 0.2 <	11 18 12 16 22	19 17 14 15 18	70 67 41 47 70	108 114 58 112 35	~ ~ ~ ~ ~	~ ~ ~ ~ ~	2 2 3 2 2 2	~ ~ ~ ~ ~	~ ~ ~ ~ ~	1.6 0.8 1.2 1.3 0.9	7 7 4 5 10	9 10 7 10 11	39 51 33 31 76	~ ~ ~ ~ ~	24 16 17 18 16	92 62 80 93 56	337 242 153 244 464	6 10 8 9 8	4 9 4 6 7	2 2 4 2 1	3 4 4 4 4	0.01 0.05 0.04 0.04 0.06	3.18 3.05 4:49 3.62 2.43	0.02 0.13 0.03 0.10 0.09	6.07 2.99 4.40 5.11 3.21	0.43 0.51 0.17 0.39 0.46	0.05 0.05 0.03 0.03 0.05	<pre> </pre>	0.03 0.07 0.04 0.05 0.05
L 5000N L 5000N L 5000N L 5000N L 5000N	3850E S 3875E S 3900E S 3925E S 3950E S	112 98 15 12 12	0.3 0.1 0.3 0.3 0.3	12 12 15 24 17	17 14 12 15 14	42 44 53 73 50	217 165 42 53 58	5 5 < < <	~ ~ ~ ~ ~	2 3 2 1 2	~ ~ ~ ~ ~	~ ~ ~ ~ ~	1.0 0.9 0.7 0.7 1.2	16 13 7 11 7	8 10 11 17 11	45 46 57 63 51	~ ~ ~ ~ ~	11 11 13 19 22	65 52 64 66 81	1350 819 363 283 218	7 6 8 12 8	5 6 9 11 6	< < 1 5	2 2 3 5 7	D.01 < D.05 D.05 0.06	1.59 1.54 2.25 3.94 4.86	0.05 0.04 0.12 0.12 0.05	4.33 3.85 3.13 2.91 4.35	0.36 0.40 0.44 0.59 0.32	0.10 0.09 0.04 0.06 0.04	~ ~ ~ ~ ~	0.06 0.06 0.06 0.08 0.03
L 5000N L 5000N L 5000N L 5000N	3975E S 4000E S 4025E S 4050E S	13 5 13 6	0.3 0.2 0.2 0.3	11 10 17 18	11 12 13 10	65 44 67 63	22 19 38 34	V V V V	V V V V	2 3 2 2	< < < <	~ ~ ~ ~ ~	1.0 1.1 0.9 0.8	8 7 12 10	12 8 12 13	44 48 73 66	* * * *	15 13 15 14	83 99 70 75	602 217 511 526	7 8 10 10	10 20 13 10	< 1 2 1	2 3 5 4	0.06 0.07 0.08 0.08	2.07 2.56 3.12 2.57	0.09 0.15 0.11 0.08	3.80 4.23 3.42 3.52	0.48 0.37 0.51 0.53	0.05 0.04 0.05 0.05	< < < <	0.04 0.03 0.06 0.05
lin Limi	t	5	0.1	1	2	1	5	5	3	1	10	2	0.1	1	1	2	5	1	2	1	2	1	1	1	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01

INTERNATIONAL PLASMA LABORATORY LTD.

CERTIFICAT OF ANALYSIS iPL 97L1206

•

.

٦. . •

2036 Columbia

Vancouver, B.C.

Canada V5Y 3E1 Phone (604) 879-7878

Fax (604) 879-7898

.

et

Client Project	Misty Mo Specogna	ounta 11 a	ı Gol	d Lt	d.			206 20	Sล เ 6 - 50	mple il	S					I	[120	610:0	0:44:	79121	297]			Out In	: De : De	c 12. c 08.	1997 1997	(Pa Se	ge ction	4 o 1 1 o	f 6 f 1
Sample	Name	Au ppb	Ag ppn	ן ב וק ה	Cu pm	Pb ppm	Žn ppm	As pp m	Sb ppm	Hg ppm j	Mo T1 opmi ppmi	Bi ppm	Cd ppm	Co ppm	N1 ppm	Ba ppm j	W ppm	Cr ppm	V mqq	Mn ppm	La ppm	Sr ppm	Zr ppm	Sc ppm	T1 *	A1 *	Ca X	Fe X	Mg X	K X	Na X	Р Х
L 50001 L 50001 L 50001 L 50001 L 50001	4075E 4100E 4125E 4150E 4150E 4175E	5 21 S 83 S 60 S 47 S 96	$ \begin{array}{c} 0.3 \\ 0.9 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ \end{array} $	3	13 13 8 14 16	12 13 15 16 13	37 25 20 41 42	42 161 99 70 106	~ ~ ~ ~ ~	< < < < < < < < < < < < < < < < < < <	3 « 3 « 4 « 2 « 3 «	< < < < < <	1.1 1.2 1.1 1.1 1.4	5 3 6 8	8 5 7 8 6	35 41 29 49 46	~~~~~	15 14 11 15 18	83 95 103 82 88	236 193 141 326 886	7 7 7 8 9	7 8 6 10 8	1 1 < 1 1	3 3 1 3 5	0.08 0.07 0.06 0.08 0.09	3.22 3.44 2.38 3.68 4.98	0.05 0.07 0.03 0.06 0.03	4.38 4.77 4.47 3.87 4.71	0.27 0.11 0.08 0.28 0.17	0.03 0.03 0.01 0.03 0.03	V V V V V V V V	0.04 0.05 0.04 0.06 0.07
L 5000 L 5000 L 5000 L 5000 L 5000	4200E 4225E 4250E 4250E 4275E 4300E	5 12 5 16 5 23 5 154 5 138	$0.5 \\ 0.4 \\ 0.6 \\ 0.6 \\ 0.9$	5	13 14 14 13 16	15 13 12 12 11	39 41 38 28 29	42 40 40 183 194	< < 16 9	* * * * *	2 < 2 < 3 < 3 <	v v v v v	1.1 0.9 1.2 1.6 1.5	9 7 6 4 4	6 7 8 4 7	36 40 38 37 46	~ ~ ~ ~ ~	15 16 16 17 16	98 79 79 88 81	810 302 461 396 300	9 9 10 9 9	9 8 8 7 7	< 1 1 1 1	3 4 3 4 3	0.10 0.09 0.09 0.09 0.09 0.09	3:76 4.07 3.83 3.47 3.67	0.04 0.04 0.04 0.05 0.05	4.32 3.63 4.62 5.42 5.48	0.16 0.21 0.21 0.15 0.14	0.04 0.03 0.03 0.03 0.03		0.04 0.05 0.04 0.06 0.06
L 5000 L 5000 L 5000 L 5000 L 5000	4325E 4350E 4375E 4400E 4425E	S 87 S 55 S 50 S 53 S 45	0.4 0.6 0.2 0.3	4 5 2 3 4	12 6 10 17 18	10 11 9 12 16	31 17 42 53 66	179 311 106 56 108	12 18 8 6 6	< < < < <	3 < 3 < 2 < 3 < 3 <	< < < < <	1.1 1.7 0.8 0.8 1.1	5 2 5 7 8	7 4 7 11 15	71 42 51 49 72	~ ~ ~ ~ ~ ~	15 9 12 15 17	58 106 67 78 78	180 115 199 220 322	8 9 7 9 11	9 7 8 6 9	1 < 1 < 2	3 2 2 3 5	0.08 0.04 0.08 0.06 0.06	2.97 2.23 2.07 3.23 4.56	0.03 0.06 0.06 0.04 0.07	4.54 6.04 2.96 3.15 3.93	0.30 0.08 0.36 0.44 0.56	0.04 0.05 0.05 0.04 0.08		0.06 0.05 0.03 0.04 0.10
L 5000 L 5000 L 5000 L 5000 L 5000	N 4450E N 4475E N 4500E N 4525E N 4550E	S 30 S 24 S 23 S 30 S 6	0.2 0.2 0.2 0.1	3 2 3 1	19 16 18 5 2	13 9 13 8 11	64 68 71 15 5	51 50 53 42 19	* * * * *	~ ~ ~ ~ ~	2 < 2 < 3 < 1 <	< < < < < <	0.6 0.7 0.8 0.2 0.1	10 10 9 2 1	16 14 16 4	78 96 208 48 23	~ ~ ~ ~ ~ ~	16 15 15 7 2	65 69 69 44 25	303 314 311 71 30	11 9 8 9 7	13 18 59 8 6	1 1 < <	5 4 4 1 <	0.09 0.08 0.07 0.03 0.04	3.02 2.83 3.14 1.44 0.76	0.09 0.11 0.14 0.06 0.03	2.75 3.08 3.33 1.09 0.36	0.56 0.56 0.58 0.13 0.04	0.08 0.06 0.07 0.06 0.04	0.01 0.01 0.02	0.07 0.05 0.07 0.02 0.01
L 5000 L 5000 L 5000 L 5000 L 5000	N 4575E N 4600E N 4625E N 4650E N 4675E	S 19 S 25 S 18 S 16 S 19	0.3 0.4 0.4	3 3 4 3 4	15 18 16 21 13	15 16 12 14 14	59 47 70 72 46	38 48 57 34 122	<	~ ~ ~ ~ ~	2 < 2 < 3 < 2 <	< < < < <	0.6 0.5 0.6 0.8 1.2	8 6 10 10 5	12 12 15 11 12	68 72 97 158 51	~ ~ ~ ~ ~ ~	16 19 16 17 23	74 73 68 72 87	269 201 296 269 172	9 9 10 12 7	15 14 21 28 6	1 - 1 2 8	3 2 4 5	0.06 0.05 0.06 0.06 0.05	2.85 3.70 3.39 2.53 5.28	0.11 0.10 0.14 0.24 0.03	2.51 1.93 2.76 2.48 4.86	0.54 0.53 0.57 0.64 0.28	0.07 0.05 0.06 0.07 0.02	0.01 0.01 0.01 0.01	0.04 0.04 0.06 0.03 0.02
L 5000 L 5300 L 5300 L 5300 L 5300	N 4700E N 3000E N 3025E N 3050E N 3150E	S 16 S < S < S < S <	0.4 0.1 0.1 0.1	4 3 2 2 3	13 17 16 10 10	12 20 14 15 17	53 65 71 64 69	94 48 35 20 30	5 v v v v	< < < < < < < < < < < < < < < < < < <	2 < 2 < 1 < 3 <	< < < < < <	1.0 0.6 0.7 0.6 0.6	6 7 8 5 7	12 9 8 5 10	102 36 52 65 81	~ ~ ~ ~ ~ ~	20 19 12 8 15	74 92 68 61 69	232 161 219 286 192	15 9 12 15 9	14 6 13 9	1 1 1 1	5 4 3 3	0.06 0.06 0.05 0.04 0.03	4.50 3.80 2.88 2.10 3.00	0.05 0.05 0.07 0.11 0.07	4.21 2.41 2.95 2.10 1.77	0.41 0.48 0.48 0.26 0.60	0.04 0.05 0.06 0.07 0.06	< < 0.01 0.01	0.04 0.04 0.07 0.04 0.04
L 5300 L 5300 L 5300 L 5300 L 5300 L 5300	N 3175E N 3200E N 3225E N 3250E N 3275E	S < S < S 10 S < S <	0. 0. 0. 0.	1 3 2 4 3	1 23 15 16 11	7 10 15 15 10	10 78 66 66 72	14 28 27 41 13	* * * * *	< < < < < <	<pre>< < 1 < < 1 < 1 < 1 < 1 < 1 < </pre>	< < < < < <	0.2 0.8 0.4 0.6 0.5	1 9 7 7 7	1 8 10 11 9	14 193 74 76 88	~ ~ ~ ~ ~ ~	1 12 15 18 13	16 73 59 78 50	32 228 176 178 193	8 19 8 9 9	5 21 7 11 12	< 13 1 < <	< 8 3 2 3	0.02 0.12 0.07 0.02 0.06	0.80 2.50 2.47 2.99 1.72	0.04 0.17 0.07 0.08 0.12	0.15 3.03 1.80 2.17 1.85	0.03 0.41 0.46 0.54 0.54	0.02 0.06 0.07 0.07 0.07	0.02 0.01 0.01 0.01 0.01	0.01 0.06 0.05 0.06 0.04
L 5300 L 5300 L 5300 L 5300	N 3300E N 3325E N 3350E N 3375E	S 33 S < S < S <	0. 0. 0.	2 2 3 4	17 2 10 7	16 8 11 14	68 7 36 25	28 12 24 30	~ ~ ~ ~	< < < <	2 < 1 < 1 <	< < <	0.4 0.3 0.2	11 1 5 3	16 7 7	59 36 72 61	~ ~ ~ ~	19 1 11 9	66 29 49 35	250 37 121 77	10 6 9 8	7 4 5 7	< < 1 <	2 1 2 1	0.01 0.01 0.05 0.01	2.81 0.90 2.20 2.36	0.09 0.03 0.05 0.04	2.18 0.76 1.13 0.72	0.60 0.05 0.37 0.25	0.07 0.06 0.04 0.04	0.01 0.02 0.01 0.02	$\begin{array}{c} 0.06 \\ 0.01 \\ 0.03 \\ 0.05 \end{array}$
Min Lim Max Rep Method	it orted* Fest Ins=Ir	9999 FA/A Isufficie	0. 99. IC nt Sar	1 9 20(P 1 mple	1 000 2 ICP Del=	2 0000 ICP Delay	1 20000 ICP Max=	5 9999 ICP No Est	5 999 ICP imate	3 9999 ICP Rec*	1 10 999 999 ICP ICP ReCheck	2 99999 ICP	0.1 99.9 ICP 1000	1 9999 ICP %=Es	1 9999 ICP timate	2 9999 ICP % NS	5 999 1CP	1 9999 ICP Sampl	2 9999 ICP \$~\$oi	1 9999 ICP	2 9999 1CP	1 9999 ICP	1 9999 ICP	1 99999 ICP	0.01 1.00 ICP	0.01 9.99 ICP	0.01 9.99 ICP	0.01 9.99 ICP	0.01 9.99 ICP	0.01 9.99 ICP	0.01 5.00 ICP	0.01 5.00 ICP

				٦							CE	RT	'IFI	ICA il	47 21 9	01 07L	F A 120	NA 6	LY	SIS							203 Van Can Pho	6 Colu couver ada V5 ne (60-	mbia ; B.C. Y 3E1 4) 879-	et -7878			
면 Client :	rernafional plas Misty Mol	Malaeon Intain	Go1d	2 Ltd.		-	206	San	npie	5														0u	t: Dec	: 12.	Fax 1997	(60	4) 879- Pag	-7898 ie	5 oʻ	6	
Project:	Specogna						206	5⇒Soi	1	-							[1206	510:00):44:	79121	297]			În	: Dec		1997		Sec	tion	1 of	i	
Sample	Name	Au ppb	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm p	Sb opm	Hg ppm p	Mo T opmippi	i B n pp	i (nn p	Cdi pmr p	Co pp m	N1 ppm	Ba ppm (₩ ppm	Cr ppm	V ppm	Mn ppm	La ppm	Sr ppm	Zr ppm	Sc ppm	Ti ∦	۲۹ ۲	Ca X	Fe X	Mg X	K X	Na X	P X	
L 5300M L 5300M L 5300M L 5300M L 5300M	3400E S 3425E S 3450E S 3550E S 3575E S	< < 9 97	0.3 0.1 0.1 0.1	14 3 1 6 16	17 7 4 9 15	91 6 3 25 69	20 11 5 30 29	~ ~ ~ ~ ~ ~	< < < < < <	2 3 2 1 <	< < < < < <	< 0 < 0 < 0 < 0	.7 < .2 .5	8 < 2 6	10 1 3 16	55 24 15 65 73	~ ~ ~ ~ ~ ~	14 1 6 21	82 17 8 34 67	237 22 17 248 254	9 13 3 10 11	8 3 1 19 12	1 < < < <	5 < 1 4	0.03 0.01 < 0.01 0.01	2.15 0.75 0.41 1.86 2.62	0.12 0.02 0.01 0.20 0.16	2.88 0.26 0.65 0.86 2.36	0.47 0.05 0.01 0.20 0.72	0.09 0.07 0.09 0.04 0.10	0.02 0.01 0.02	0.15 0.02 0.02 0.02 0.02	
L 5300) L 5300) L 5300) L 5300) L 5300) L 5300)	3600E S 3625E S 3650E S 3675E S 3700E S	11 6 180 24 <	0.3 0.1 0.2 0.4 0.3	13 3 2 39 6	17 13 17 24 7	77 15 15 182 23	31 19 21 74 77	~ ~ ~ ~ ~	~ ~ ~ ~ ~	2 5 3 6 1	< < < <	< 0 < 0 < 1 < 0	.5 < .4 .2	6 1 12 12	15 1 2 14 1	44 38 34 53 42	~ ~ ~ ~ ~	23 2 4 16 5	55 16 44 81 22	184 54 53 337 84	10 3 3 14 9	6 4 3 9 6	1 < 3 <	3 1 1 8 1	0.02 < 0.01 0.01 <	2.68 0.85 0.88 2.99 1.29	0.08 0.03 0.02 0.13 0.10	1.86 0.70 2.06 4.96 1.21	0.63 0.06 0.09 0.32 0.11	0.07 0.11 0.07 0.05 0.05	0.01	0.07 0.03 0.02 0.10 0.03	
L 5300/ L 5300/ L 5300/ L 5300/ L 5300/ L 5300/	3725E S 3750E S 3775E S 3800E S 3825E S	14 10 6 23 23	0.1 0.2 0.3 0.4 0.3	4 18 24 10 7	16 19 19 18 16	26 61 65 36 54	40 81 56 66 50	VVUVV	~ ~ ~ ~ ~	3 8 1 5 4	~ ~ ~ ~ ~	< 0 < 3 < 1 2 1 < 1	.2 .1 .3 .1	1 8 4 26 7	2 3 6 10	33 78 37 38 47	~ ~ ~ ~ ~	4 11 19 12 15	32 101 75 79 125	90 502 391 2253 372	4 6 5 5	3 6 3 2 7	< 1 2 1 <	1 1 4 2 3	0.01 0.01 	0:95 1.76 4.44 3.18 2:72	0.03 0.04 0.02 0.01 0.07	1.68 10% 5.02 4.63 5.62	0.18 0.32 0.39 0.15 0.45	0.11 0.09 0.06 0.05 0.07	0.01	0.03 0.05 0.03 0.03 0.03	
L 5300 L 5300 L 5300 L 5300 L 5300	1 3850E S 1 3875E S 1 3900E S 1 3925E S 1 3950E S	56 20 22 29 8	0.5 0.4 0.4 0.3 0.2	11 11 7 14 2	16 14 17 19 11	56 52 47 58 12	78 53 44 39 21	~ ~ ~ ~ ~	~ ~ ~ ~ ~ ~ ~ ~	2 3 1 1 <	< < < < < < <	< 1 < 1 < 0 < 0 < 0	.2 .2 .6 .3	5 4 4 4 <	9 7 7 9 1	62 51 37 45 24	~ ~ ~ ~ ~	22 18 13 15 4	83 98 60 52 24	223 185 140 179 38	11 8 8 8 6	6 4 5 9 4	7 5 < 1 <	7 5 2 1	0.04 0.05 0.03 0.01 0.01	4.62 3.96 2.67 2.88 1.12	0.04 0.03 0.04 0.08 0.03	4.62 4.32 2.45 1.57 0.47	0.33 0.21 0.31 0.45 0.06	0.05 0.03 0.05 0.09 0.04	0.01 0.01	0.02 0.02 0.03 0.09 0.01	
L 5300 L 5300 L 5300 L 5300 L 5300 L 5300	N 3975E S N 4000E S N 4025E S N 4050E S N 4075E S	15 46 8 11 10	0.4 0.4 0.2 0.2 0.3	18 20 9 9 17	18 21 14 11 12	97 147 56 39 75	44 77 21 39 34	~ ~ ~ ~ ~	~ ~ ~ ~ ~	3 4 3 3	< < < <	< 0 < 0 < 0 < 2 < 1	.5 .6 .5 .2 .1	10 15 6 27 13	15 19 10 13	63 64 83 237 95	~ ~ ~ ~ ~ ~	20 22 12 13 15	62 66 50 78 94	174 152 189 2691 366	10 10 8 10 11	12 6 13 42 9	1 3 5 2 1	4 4 3 3 5	0.05 0.02 0.05 0.01 0.10	3.65 5.14 2.20 3.44 2.99	$0.06 \\ 0.04 \\ 0.13 \\ 0.04 \\ 0.09$	2.13 2.12 2.16 7.67 4.16	0.47 0.37 0.40 0.13 0.47	0.06 0.06 0.04 0.02 0.06	0.01 0.01 0.01	0.06 0.10 0.04 0.04 0.04 0.04	
L 5300 L 5300 L 5300 L 5300 L 5300 L 5300	N 4100E S N 4125E S N 4150E S N 4175E S N 4200E S	11 98 6 19 25	0.3 0.3 0.3 0.3 0.1	15 11 15 15 14	14 16 14 13 10	62 54 67 53 56	51 200 53 65 27	~ ~ ~ ~ ~ ~ ~	~ ~ ~ ~ ~	3 2 3 2 2	< < < < < < <	< 1 < 1 < 1 < 1 < 1 < 1	3 4 3	9 10 7 5 6	12 9 10 6 10	61 43 72 33 63	~ ~ ~ ~ ~	17 13 18 18 15	95 68 89 85 75	269 803 308 190 305	10 9 9 10 9	7 5 5 4 10	2 1 3 2 <	6 3 5 4 3	0.08 0.01 0.04 0.06 0.06	3.99 2.22 4.29 4.54 1.92	0.04 0.03 0.03 0.04 0.08	4.54 4.42 4.88 5.12 3.81	0.30 0.40 0.35 0.28 0.45	0.04 0.06 0.04 0.03 0.07	V V V V V V	0.04 0.05 0.04 0.04 0.04	
L 5300 L 5300 L 5300 L 5300 L 5300 L 5300	N 4225E S N 4250E S N 4275E S N 4300E S N 4325E S	23 18 7 35 24	0.1 0.4 0.1 0.2 0.2	20 15 12 19 17	15 13 12 12 17	86 65 49 69 65	50 47 22 42 57	~ ~ ~ ~ ~ ~	* * * * *	2 3 2 2 1	~ ~ ~ ~ ~ ~	< 0 < 1 < 1 < 1 < 1 < 1	2 2 0 1	16 5 5 14 8	16 10 7 14 12	81 60 38 94 56	~ ~ ~ ~ ~ ~	18 20 16 16 18	71 91 105 70 73	568 234 232 482 198	10 8 6 9 11	9 9 8 10 7	1 4 2 1 4	4 4 2 4 5	0.08 0.06 0.08 0.07 0.06	3.27 4.39 2.45 2.86 5.12	0.06 0.06 0.05 0.09 0.03	3.49 4.29 4.69 3.74 3.84	0.63 0.28 0.22 0.55 0.27	0.07 0.03 0.04 0.06 0.04	< < < < < <	0.05 0.05 0.02 0.04 0.03	
L 5300 L 5300 L 5300 L 5300	N 4350E S N 4375E S N 4400E S N 4425E S	45 7B 27 25	0.1 0.3 0.2 0.1	6 8 26 17	8 12 11 12	35 44 82 66	144 206 55 37	~ ~ ~ ~ ~ ~	v v v v	1 2 1 2	< < < < < < < < < < < < < < < < < < <	< 0).9 0 2).7	4 9 16 10	3 6 14 11	35 53 122 77	~ ~ ~ ~	8 12 15 14	59 67 76 65	248 833 755 334	6 9 12 9	7 4 20 14	< < 1 1	1 3 5 4	0.01 0.01 0.07 0.07	1.18 2.26 2.29 2.29	0.02 0.01 0.11 0.10	3.22 4.20 3.94 2.72	0.18 0.37 0.53 0.46	0.11 0.05 0.08 0.05	> ~ 0.01	0.14 0.04 0.07 0.07	

 Min Limit
 5
 0.1
 1
 2
 1
 2
 1
 2
 1
 1
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01

0	
Ā	ė.
27	199

CERTIFICAT OF ANALYSIS iPL 97L1206

2036 Columbia

Vancouver, B.C.

Canada V5Y 3E1 Phone (604) 879-7878

Fax (604) 879-7898

et

. . .

INTERNATIONAL PLASMA LABORATORY LTD

Client : Project:	Histy Mou Specogna	untair	Gold	Ltd.			206 20	i Sa)6=So	mple	S							[120	610:0	0:44:	7912	L297]			Out In	: De : De	c 12. c 08.	1997 1997	(60	Pa Se	ge ge ction	, 6 c 1 l c	ารี 6 วรี 1
Samp1e	Name	Au ppb	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm	Sb ppm	Hg ppm j	Mo opmip	T1 Spm	Bi ppm	Cd ppm	Co ppm	Ni ppm	8a ppm	W ppm	Cr ppm	V ppm	Hn ppm	La ppm	Sr ppm	Zr ppm	Sc ppm	Ti X	A1 *	Ca X	Fe X	Mg X	K X	Na X	P X
L 5300 L 5300 L 5300 L 5300 L 5300 L 5300 L 5300 L 5300 L 5300 L 5300	4450E S 4475E S 4500E S 4525E S 4550E S 4550E S 4575E S 4625E S 4650E S 4650E S 4675E S 4675E S	13 66 74 40 14 < 10 12 20 46 12	<pre></pre>	4 15 14 15 11 21 7 11 4 6 2	9 14 13 13 9 11 13 13 8 8 5	16 76 56 61 50 92 28 48 20 39 26	17 83 102 71 41 28 24 28 13 25 10	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~~~~ ~~~~~	1 2 2 2 1 3 2 2 1 2 1 2 1	VVVV VVVVV V	~~~~	0.1 0.9 1.2 1.0 1.0 1.0 1.1 0.4 1.0 0.2 0.5 0.1	28 68 5 63 4 3 4 3	2 12 9 11 7 13 4 7 3 4 2	31 61 32 32 74 43 46 36 37 45	~~~~	5 18 20 20 12 17 8 15 6 7 4	29 66 70 85 100 79 78 91 71 69 28	48 305 194 235 206 287 90 161 75 169 116	6 8 6 8 4 6 5 6 8 6	7 9 5 5 5 7 6 8 8 8 8 17	<pre>< 4 7 3 1 2 < 2 < 4 </pre>		0.05 0.08 0.08 0.10 0.10 0.02 0.08 0.08 0.02 0.08 0.04 0.07 0.07	0.96 5.20 5.80 4.66 2.50 3.48 1.38 3.08 1.09 1.49 0.95	0.02 0.04 0.03 0.03 0.04 0.04 0.03 0.02 0.05 0.05	0.63 3.40 4.39 4.12 4.21 3.55 1.75 4.21 1.70 1.96 0.85	0.05 0.45 0.31 0.34 0.25 0.30 0.12 0.23 0.11 0.21 0.12	0.04 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.03	0.02	0.01 0.06 0.04 0.03 0.03 0.04 0.01 0.02 0.01 0.02

Min Limit Max Reported* Method ---- No Test Ins=Insufficient Sample Del=Delay Max=No Estimate Rec=ReCheck m=x1000 %=Estimate % NS=No SampleS=Soil

A CONTRACTOR AND A CONT

INTERNATIONAL PLASMA LABORATORY LTD

CERTIFICATE (ANALYSIS iPL 97J1038

· · ·

.

۸.

2036 Columbia et Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

· ·

.

Misty Mountain Gold Ltd.		186	Sample	es	Out: Oct 17, 1997 In: Oct	15, 1997	[103	8816:37:41:79	3102197]
Project : Canyon Grid = AMETHYS/ GRID			TYPE	DDEDADA			· · · · · ·		DE YEAT
Shipper: Kon Kunst Shippent: DB#		/C AMADAT 11 186	Soll		tift to -80 more discard valuet			12M/04e	
Analutit		1 100	3011	Diy ei :	sind to -oo mesh, orscard reject.	NS-No Samolo	Reo-Reolicate	⊺∠ryvis M–Mooth Die	Discoord
$\Delta u(FA/AAS 20\alpha)$ (CP(AAR)30		nalvti	cal Su	mmarv.		No=NO Samp (e	Rep=RepTicace		=UISCAPO
huli hi hh cogy to (hui yao	## 6	ie Method	Lunits	Descriu	ation	Flement	limi	t timit	
Comment:			0.1125			E nomorro	le Le	w High	, I
	01 03	12 FAZAAS	i oob	Au FA/A	AS finish 20a	Gald	20	5 10000	.
	02 07	21 ICF	2 000	Ag ICP		Silver	0.	1 100.0	, 1
	03 07	I ICF	0 000	Cu ICP		Cooper		1 20000	, 1
Document Distribution	04107	14 ICF	000	PE ICP		Lead		2 20000	,
1 Misty Mountain Gold Ltd. EN RT CC IN FX	05 07	30 ICF	, DD41	Zn ICP		Zinc		1 20000	۱ ۱
1020 - 800 West Pender Street 1 2 2 2 1									
Vancouver DL 3D EM 8T BL	06 07	03 ICF	naga u	As ICP		Arsenic		5 10000	j I
B.C. V6C 2V6 0 0 0 0 1	07 07	JZ ICF	, ppm	Sb ICP		Antimony		5 1000)
Canada	08 07	32 ICF	, DDW	Ho ICP		Mercury		3 10000	J
Att: Ron Konst Ph: 604/684-6365	09 07	17 ICF	, DDM	Mo ICP		Molvdenum		1 1000	j
Fx: 604/684-8092	10 07	47 I.CF	> nom	TI ICP	(Incomplete Digestion)	Thallium	1	a 1000	,
Em: tomk@hdgold.com			FF				,		
	111 07	05 ICF	noo C	B1 ICP		Bismuth		2 10000)
	12 07	07 ICF	pom c	Cd ICP		Cadmium	0.	1 100.0	3
	13 07	10 ICI	maa c	Co ICP		Cobalt		1 10000	j
	14 07	18 ICF	מסס כ	NI ICP		Nicke]		1 10000	, · · ·
	15 07	04 ICF	ррт	Ba ICP	(Incomplete Digestion)	Bartum		2 10000	נ
			,.						
	16 07	27 ICI	p bbw	W ICP	(Incomplete Digestion)	Tungsten		5 1000)
	17 07	09 ICI	p pm	Cr ICP	(Incomplete Digestion)	Chromium		1 10000	נ
	18 07	29 ICI	p ppm	V ICP		Vanadium		2 10000	j
	19 07	16 ICI	p pm	Mn ICP		Manganese		1 10000	j
	20 07	13 IC	polici c	La ICP	(Incomplete Digestion)	Lanthanum		2 10000	j
	21 07	23 ICI	р роп	Sr ICP	(Incomplete Digestion)	Strontium		1 10000	3
	22 07	31 IC	p bbu	Zr ICP		Zirconium		1 10000	3
	23 07	36 IC	P ppm	 Sc ICP 		Scandium		1 10000	5
	24 07	26 IC	Р %	TI ICP	(Incomplete Digestion)	Titanium	0.0	1.00	3
	25 07	01 IC	P 🕱	AT ICP	(Incomplete Digestion)	Aluminum	0.0	01 10.00	3
	26 07	08 IC	P 🕱	Ca ICP	(Incomplete Digestion)	Calcium	0.0	01 10.0	a
	27 07	'12 IC	P 🗶	Fe ICP		Iron	0,0	01 10.0	0
D 1 B B I C A T C	28 07	'15 IC	P 🕱	Mg ICP	(Incomplete Digestion)	Magnestum	0.0	01 10.0	0
	29 07	'20 IC	P 7.	K ICP	(Incomplete Digestion)	Potassium	0.6	01 10.0	0
DULLVAL	30 07	'22 IC	Р 🏅	Na ICP	(Incomplete Digestion)	Sodium	0.0	01 5.0	Ò
	31 0	'19 IC	Р 🗶	F ICP		Phosphorus	0.0	01 5.0	0
	1 1.								
	'								
	1 1								

EN-Envelope # RT-Report Style CC=Copies IN-Invoices Fx=Fax(1=Yes 0=No) Tot DL=Download 3D=3} Disk EM=E-Mail BT=88S Type BL=88S(1=Yes 0=No) 1D=C008501 # Dur listicity is listical solary to the realistical cost of these palyees Totals:

2=Copy 2=Invoice 0=31 Disk

PC Contified Annual David Chiu

.

.

.

•

. ۰.

CERTIFICATE C ANALYSIS iPL 97J1038

· · ·

.

Del=Delay

2036 Columbia et Vancouver, 8.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

INTERNATIONAL PLASMA LABORATORY LTD

ent : M)ject: (listy Mou Canyon Gr	untain rid	Gold = 111	Ltd. ••••••••	4 7 5T	GAL	18 5 ¹⁸	6 : 6=So	Samp 11	les					[[1034	814:5	5:07:	79102	197]			Out In	: Oct : Oct	: 17. : 15.	1997 1997		Pag Sec	je stion	1 a 1 a	f 5 f 1
mple Na	1m@	Au ppb	Λg ppm	Си ррт	Pb ppm	Zn ppm	As ppm	Sb ppm	Hg pom p	Mo T1 pm ppm	81 ρρπ	Cd ppm	Со ррл	N1 ppm	Ba ppm p	W ppm	Ст ррт	V ppm	Mn ppm	La ppm	Sr ppm	Zr ppm	Sc ppm	T1 7	A1 Z	Ca %	Fe X	Mg Z	K Z	Na Z	
9800N 9800N 9800N 9800N 9800N 9800N	6000E \$ 6050E \$ 6075E \$ 6100E \$ 6125E \$	* * * *	¢ 0.1 ¢ 0.2	15 65 48 47 35	12 14 14 14 8	41 82 72 57 49	38 34 40 66	* * * * *	* * * *	1 < 1 < 1 < 2 < 3 <	<	0.6 0.4 0.9 0.2	9 19 13 20 9	12 18 21 25 7	117 96 152 87 73	* * * * *	16 24 24 23 18	79 120 89 110 206	287 728 315 994 213	4 8 10 2	117 213 236 167 26	1 7 4 2 5	4 (11 (9 (9 (4 ().08).13).12).10).24	2.63 3.01 3.62 5.20 1.56	0.51 1.17 0.88 0.57 0.05	2.04 3.40 2.66 3.19 4.29	0.69 1.05 0.95 0.96 0.15	0.04 0.06 0.06 0.05 0.05	0.06 0.10 0.08 0.06 0.03	0.0
9800n 9800n 9800n 9800n 9800n 9800n	6150E S 6175E S 6200E S 6225E S 6250E S	< < 5 <	0.1 < < <	42 30 39 35 28	11 10 10 15 12	80 72 65 62 71	55 24 41 78 50	* * * * *	* * * * *	1 < 2 < 2 < 1 < 2 <	< < < < < <	0.1 < 0.8 0.2	20 18 19 16 18	20 16 14 18 21	136 84 73 104 167	~ ~ ~ ~ ~	23 23 21 25 30	133 154 183 132 136	668 719 1031 346 503	5 3 3 5 5	110 88 80 78 240	5 3 7 13 6	9 (6 (12 (10 (12 (0.17 0.23 0.25 0.19 0.17	4,69 3,10 4,19 5,93 4,37	0.48 0.32 0.83 0.42 1.14	3.75 4.49 4.38 2.62 3.25	1.22 1.21 1.53 1.01 1.44	0.07 0.04 0.07 0.04 0.03	0.05 0.04 0.06 0.04 0.12	0.0 0.0 0.0 0.1
9800N 9800N 9800N 9800N 9800N 9800N	6275E S 6300E S 6325E S 6350E S 6375E S	* * * * *	< < 0.1 <	18 24 23 33 26	10 8 11 12 11	64 71 61 70 70	50 47 36 46 42	* * * * *	< < < < < <	1 < 2 < 1 < 1 < 1 <	~ ~ ~ ~ ~ ~ ~	0.6 0.7 0.8 0.2 0.2	15 16 14 19 26	15 18 16 17 16	210 140 118 118 118 111	~ ~ ~ ~ ~ ~	23 26 24 24 24	111 122 107 146 142	392 436 381 547 457	4 5 6 7 4	196 172 154 146 93	5 4 4 6 4	9 (9 (8 (10 (8 (0.17 0.17 0.15 0.18 0.18	4.30 3.98 3.79 3.89 3.89 3.70	0.91 1.03 0.97 0.80 0.47	2.47 2.85 2.70 3.09 3.95	1.17 1.27 1.06 1.12 0.94	0.04 0.03 0.04 0.07 0.04	0.09 0.10 0.08 0.07 0.06	0. 0. 0. 0.
9800N 9800N 9800N 9800N 9800N 9800N	6400E S 6425E S 6450E S 6475E S 6500E S	5 * * * *	~ ~ ~ ~ ~ ~ ~ ~	31 24 26 23 26	12 13 11 16 9	57 67 54 61 50	57 66 60 17 36	* * * * *	<	2 < 2 < 3 < 1 < 2 <	* * * * * * *	0.3 0.7 0.2 0.2	18 19 21 13 14	18 19 16 11 21	126 190 133 56 90	~ ~ ~ ~ ~	23 24 19 26 28	118 107 129 107 110	440 393 1641 723 380	5 6 7 4	126 166 126 17 74	7 4 7 5 5	9 (8 (9 (6 (8 (0.16 0.15 0.15 0.18 0.18	4.37 4.78 4.53 2.40 3.09	0.48 0.67 0.56 0.33 0.25	3.20 2.58 3.36 3.79 3.30	0.81 1.08 0.90 1.50 0.85	0.05 0.04 0.05 0.05 0.04	0.06 0.08 0.08 0.04 0.05	0. 0. 0. 0.
9800n 9800n 9800n 9800n 9800n 9800n	6525E \$ 6550E \$ 6575E \$ 6600E \$ 6625E \$	5 < < < <	، ، 0.1	34 27 23 34 33	12 12 9 10 10	79 79 75 77 78	57 42 69 79 76	* * * * *	* * * * *	4 < 3 < 2 < 1 < 1 <	< < < < < <	0.3 0.2 0.2 0.2 0.1	17 21 20 25 16	25 21 23 25 22	149 188 217 201 213	* * * * *	33 25 26 25 24	135 123 133 126 120	580 427 402 427 405	7 5 4 5 5	150 194 145 137 128	7 6 5 7 8	12 8 7 9 8	0.17 0.16 0.12 0.15 0.16	3,60 4,15 5,57 6,04 5,70	0.93 0.58 0.45 0.50 0.45	3.28 3.07 3.67 3.15 3.08	1.21 1.15 1.10 1.08 0.90	0.02 0.05 0.03 0.05 0.04	0.09 0.07 0.06 0.06 0.06 0.06	0. 0. 0. 0.
9800n 9800n 9800n 9800n 9800n 9800n	6650E S 6675E S 6700E S 6725E S 6750E S		0.2 0.1	24 4 18 32 35	11 9 13 11 12	60 10 40 70 70	69 8 40 62 65	* * * * *	~ ~ ~ ~ ~	1 1 2 1 2	< < < < <	0.2 0.1 3.6 0.1	14 6 8 20 25	21 4 11 19 23	220 163 96 168 255	* * * * *	29 9 28 25 27	115 46 186 122 143	500 368 190 532 842	6 2 2 4 3	96 57 22 86 136	8 1 9 9 8	8 1 5 8 9	0.15 0.11 0.19 0.15 0.15	5.21 0.70 4.70 5.28 5.30	0.22 0.09 0.04 0.38 0.54	3.32 0.69 5.99 4.12 4.52	0.76 0.10 0.26 0.95 1.25	0.04 0.02 0.02 0.05 0.05	0.04 0.03 0.02 0.06 0.06	0. 0. 0. 0.
9800N 9800N 9800N 9800N 9800N 9800N	6775E \$ 6800E \$ 6825E \$ 6850E \$ 6875E \$		< < 0.1 0.2	32 25 41 20 19	12 10 8 14 12	77 63 73 76 54	54 41 35 68 28	~ ~ ~ ~ ~	* * * * *	2 2 2 1 2	< < < <	0.4 0.3 0.4 0.7 0.1	20 19 20 14	21 16 26 16 11	159 153 145 211 167	* * * * *	25 23 25 21 17	132 131 120 88 102	630 847 1036 231 660	4 4 8 7 4	110 124 262 73 73	6 6 11 6 2	9 8 12 8 5	0.15 0.14 0.12 0.15 0.12	4.62 3.82 3.47 4.83 2.47	0.48	3.62 3.92 3.84 2.39 3.28	1.09 0.89 1.30 0.57 0.74	0.05 0.07 0.07 0.02 0.02	0.06 0.06 0.13 0.05 0.04	0. 0. 0. 0.
9800N 9800N 9800N 9800N	6900E S 6925E S 6975E S 7025E S		0.1 0.2 0.1 0.1	12 13 10 40	10 12 10 4	78 41 39 52	28 8 4	< < < <	* * * *	3 2 1 2		*	: 16 : 19 : 18 : 19	10 7 6 5	135 109 93 45	* * * *	19 17 11 19	128 164 145 325	4315 1644 780 880	2	46 29 13 5	2 4 5 9	4 4 6	0.14 0.18 0.18 0.25	2.46 1.42 1.76 2.11	0.2 0.0 0.0 0.0	3.67 3.90 5.23 6.63	0.81 0.57 0.73 0.34	0.03 0.03 0.05 0.02	0.03 0.03 0.03 0.02	; 0. ; 0. ; 0. ; 0.
n Limit x Repor	-ted#	9999 FA//	5 0.1 99.9 ICF	1 20000 ICP	2 20000 ICP	1 20000 ICP	5 9999 ICP	5 999 ICP	3 9999 ICP	1 10 999 999 ICP ICI) 2 9999 9 ICF	0.1 99.9 ICF	1 99999 91CP	1 9999 ICP	9999 ICP	5 999 ICP	1 9999 ICP	2 9999 1CP	1 9999 ICP	9999 1CP	1 9999 ICP	1 9999 ICP	1 9999 ICP	0.01 1.00 ICP	0.01 9,99 IC	0.01 9.99 IC	0.01 9.99 ICP	0.01 9.99 ICP	0.01 9.99 1CP	0.01 5.00 ICF	0. 5. I

X=Estimate X

NS=No SampleS=Soil

•

1 1 1 1 1 1 1

CERTIFICATE C ANALYSIS iPL 97J1038

Second Second

2036 Columbia et Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

,

٠

× •

x x x

INTERNATIONAL PLASMA LABORATORY LTD.

Client : Mi Project: Ca	isty Mou anyon Gr	untain rid	Gold	Ltd.			1 8 18	6 S 6=So	Samp 11	les					١	(103f	914:5	5:07:	79102	197]			Out Iл	: 0c1 : 0c1	t 17. t 15.	1997 1997		Pa Se	ga ction	2 o 1 o	.f 5 if 1
Sample Nam	ne	Au բրե	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm	Sb ppm	Hg ppm p	Mo 11 pm ppm	B1 ppm	Cd ppm	Co ppm	N1 ppm	Ba ppm p	W ppm	Cr ppm	V ppm	Mn ppm	La ppm	Sr ppm	Zr pom	Sc ppm	T I Z	A1 X	Ca Z	Fe 7	Mg Z	к 7	Na Z	р Х
L 9800N 7 L 9800N 7 L 9800N 7 L 9800N 7 L 9800N 7 L 9800N 7	7075E S 7125E S 7175E S 7225E S 7275E S	62 42 51	0.2 0.2 0.2 0.1 0.4	17 33 29 25 35	13 8 15 22 12	44 57 66 32 106	19 24 ~ 31	~ ~ ~ ~ ~	* * * * *	3 < 2 < 1 < 1 < 1 <	* * * * *	* * * * * * *	9 23 23 17 24	11 7 6 4 14	145 42 83 60 92	~ ~ ~ ~ ~	16 20 19 11 21	191 406 250 280 175	235 2503 4696 2515 954	3 < 3 < 3	27 11 14 13 25	5 6 4 5 6	5 7 9 5 10	D.23 D.39 D.28 D.33 D.33 D.24	2.46 1.41 3.26 1.04 4.16	0.06 0.12 0.07 0.07 0.16	3.85 6.26 5.32 3.88 5.55	0.39 0.47 0.43 0.40 1.17	0.04 0.05 0.04 0.06 0.04	0.03 0.02 0.02 0.02 0.02 0.03	0.01 0.03 0.03 0.03 0.03
L 9800N 7 L 9800N 7 L 9800N 7 L 9800N 7 L 9800N 7 L 9900N 6	7325E S 7375E S 7425E S 7475E S 6075E S	28 69 16 19 <	1.3 1.4 0.2 0.2 0.1	71 42 32 36 19	17 19 13 12 41	102 72 77 67 47	83 77 52 50 72	~ ~ ~ ~ ~	~ ~ ~ ~ ~	2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 <	< < < < < <	0.1 0.4 1.0 0.3 0.4	24 15 19 17 8	21 14 16 16 11	200 225 237 211 171	~ ~ ~ ~ ~	26 23 28 28 33	156 104 130 141 107	536 321 571 528 208	4 5 6 5 3	49 54 149 155 39	18 9 8 7 10	17 15 14 14 7	0.19 0.15 0.19 0.18 0.18	6.36 6.10 3.96 3.96 5.73	0.15 D.18 1.05 0.78 0.07	4.09 3.06 2.80 3.10 4.66	0.75 0.60 1.25 1.16 0.41	0.04 0.04 0.04 0.04 0.04	0:03 0.04 0.07 0.08 0.03	0.03 0.03 0.04 0.03 0.02
L 9900N 6 L 9900N 6 L 9900N 6 L 9900N 6 L 9900N 6 L 9900N 6	6100E S 6125E S 6150E S 6175E S 6200E S	< 5 < 20	0.3 0.2 0.1 0.1 0.1	15 16 27 22 23	23 17 20 16 18	41 41 44 44 39	50 36 62 × 13	* * * * *	* * * * *	3 × 2 × 2 × 1 ×	< < < < <	< 0.7 < <	57 11 12 15 11	7 9 5 3 8	80 106 55 63 47	~ ~ ~ ~ ~	31 21 23 19 26	182 198 257 461 271	1,6 2 932 664 388 287	4 4 2 ~	54 62 15 20 17	1 2 17 8 15	6 4 11 6 5	0.14 0.13 0.26 0.50 0.33	3.26 2.56 5.93 1.72 3.91	0.19 0.27 0.12 0.12 0.15	5.69 2.84 5.66 6.64 7.22	0.76 0.46 0.24 0.35 0.39	0.04 0.04 0.01 0.02 0.03	0.04 0.03 0.02 0.03 0.03	0.04 0.05 0.01 0.01 0.02
L 9900N 6 L 9900N 6 L 9900N 6 L 9900N 6 L 9900N 6	6225E S 6250E S 6275E S 6300E S 6325E S	5 <	0.1 < < 0.1	29 22 18 24 20	14 8 12 10 17	58 47 55 67 43	73 14 54 65 72	~ ~ ~ ~ ~	* * * * *	1 < 3 < 2 < 2 <	* * * * *	< * 0.2	16 11 11 16 8	12 10 12 19 8	102 82 157 222 141	* * * * *	28 21 29 26 32	145 259 183 146 178	326 370 335 426 199	2 2 4 2 2	29 34 47 131 29	23 4 15 7 15	16 5 7 8 6	0,19 0,20 0,20 0,16 0,18	7,50 2,33 5,29 5,18 6,28	0.08 0.10 0.08 0.40 0.05	4.54 5.41 6.18 3.81 5.86	0.46 0.44 0.60 1.00 0.24	0.02 0.02 0.04 0.05 0.01	0.03 0.03 0.03 0.05 0.05	0.02 0.02 0.01 0.03 0.01
L 9900N (L 9900N (L 9900N (L 9900N (L 9900N (6350E S 6425E S 6450E S 6475E S 6500E S	< < 5 <	0.1 0.2 < 0.1 0.1	14 17 13 11 12	11 12 17 7 15	55 39 38 26 41	25 51 57 ~ 21	* * * * *	* * * * *	3 × 3 × 3 × 8 ×	< < < < <	0.2 2.5 <	12 8 7 7 14	13 9 9 5 8	114 110 113 91 61	* * * * *	20 23 28 16 39	166 158 118 220 158	363 196 150 220 847	2 V U V V	101 36 30 29 24	3 9 7 3 3	5 6 5 2 6	0.17 0.18 0.15 0.21 0.19	2.51 4.40 5.03 0.86 2.27	0.46 0.08 0.05 0.04 0.07	3.90 4.75 4.00 3.34 4.39	0.93 0.30 0.33 0.13 0.95	0.03 0.02 0.02 0.02 0.02 0.01	0,06 0.03 0.02 0.02 0.02 0.03	0.02 0.03 0.02 0.01 0.02
L 9900N (L 9900N (L 9900N (L 9900N (L 9900N (6525E S 6550E S 6600E S 6650E S 6675E S	89 ~ ~ ~	0.1 0.1 0.1 0.2	19 20 15 12 11	14 14 13 12 13	41 50 77 26 29	62 58 43 48 11	~ ~ ~ ~ ~	* * * * *	2 × 2 × 4 × 1 ×	* * * * *	0.7 0.2	14 10 11 6 4	10 11 13 6 4	102 111 105 71 80	~ ~ ~ ~ ~	34 32 25 21 13	149 145 116 106 59	1827 203 458 135 175	32 32 2 2 2 2	24 16 46 29 32	14 16 2 5 1	7 8 5 4 1	0.22 0.17 0.15 0.15 0.07	6.01 5.44 3.44 3.53 1.03	0.06 0.03 0.25 0.07 0.18	5,23 4,39 2,56 1,93 1,61	0.43 0.27 0.97 0.29 0.29	0.02 0.02 0.03 0.02 0.02	0.03 0.03 0.04 0.03 0.04	0.01 0.02 0.03 0.01 0.01
L 9900N L 9900N L 9900N L 9900N L 9900N L 9900N	6700E \$ 6750E \$ 6775E \$ 6800E \$ 6875E \$	7 8 9 13	< < < 0.3	16 30 19 13 25	10 16 11 13 29	29 58 34 35 51	48 92 61 23 20	< < < < <	* * * * *	2 < < < 2 < 1 < 3 <	* * * * *	< 0.1 < < <	10 17 7 8 12	8 14 8 8 11	58 158 114 113 186	~ ~ ~ ~ ~	30 25 32 21 21	170 114 148 165 167	235 421 192 192 323	< 4 2 3	12 45 32 36 46	14 16 16 3 5	8 13 8 4 5	0.26 0.18 0.19 0.20 0.23	4.72 7.57 5.18 2.47 2.67	0.06	4.71 3.63 4.97 3.88 5.26	0.30 0.77 0.30 0.44 0.61	0.01	0.03 0.03 0.03 0.03 0.03	0.02 0.03 0.01 0.02 0.02
L 9900N L 9900N L 9900N L 9900N	6900E S 6950E S 6975E S 7050E S	22 6 7 32	0.2 0.2 0.2 0.1	21 37 29 41	30 14 13 8	48 43 46 33	23 32 63 7	* * * *	* * *	3	< < < <	< 0.2 0.2	10 12 11 14	6 8 7 3	71 91 98 43	* * * *	15 18 20 14	181 129 109 334	352 679 303 415	2 6 3	15 26 33 9	5 3 16 14	5 6 8 6	0.21 0.15 0.16 0.30	1,54 3,47 6,22 0,85	0.06	4.00 3.91 3.84 4.39	0.57 D.46 0.43 0.34	0.06	0.02	0.02 0.02 0.02 0.03
Min Limit Max Report Method —=No Test	:ed* : Ins	5 9999 FA/A FInsu	0.1 99.9 ICP ff1c1e	1 20000 ICP ent Sam	2 20000 ICP	1 20000 ICP Del-	5 9999 ICP Delay	5 999 ICP	3 9999 ICP 4ax=No	1 10 999 999 ICP ICP Estima	2 9999 ICP	0.1 99.9 ICP Rec=	1 9999 ICP ReChe	1 9999 ICP ck	2 9999 ICP m=x10	5 999 ICP 200	1 9999 ICP X =1	2 9999 ICP St1m	1 9999 ICP ate X	2 9999 ICP N	1 9999 ICP S+No 1	1 9999 ICP Samp 16	1 9999 ICP S=So1	0.01 1.00 ICP	0101 9,99 ICF	0.01 9.99 ICF	0.01 9.99 ICP	0.01 9.99 ICF	0.01 9.99 ICF	0.01 5.00 1CP	0.01 5.00 ICP

and the second sec

.

CERTIFICATE C ANALYSIS iPL 97J1038

and the second second

2036 Columbia et Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

.

.

INTERNATIONAL PLASMA LABORATOR	Y LTO
--------------------------------	-------

Client : Project:	Misty Mo Canyon G	untair rid	Gold	Ltd.			18 18	6 3 6=So	Samp	les					(1038	314:5	5:07:	79102	197]			Out In	: Oct : Oct	E 17, E 15,	1997 1997		Pa Se	ge ctior	3 o 1 o	of 5 of 1
Sample	Name	Au ppb	Ag ppm	Cu ppm	Рђ ррт	Zn ppm	As ppm	Sb ppm	Hg ppm p	Mo T1 apm ppm	81 ppm	Cd ppm	Co ppm	N1 ppm	Ba ppm p	W maa	Сг ррт	V ppm	Mn ppm	La ppm	Sr ppm	Zr ppm	Sc ppm	т і Х	A1 7	Ca %	Fe 7	Mg 7	к 7.	Na Z	P X
L 99001 L 99001 L 99001 L 99001 L 99001	1 7100E S 1 7125E S 1 7200E S 1 7250E S 1 7250E S 1 7300E S	28 24 350 8	1.2 0.6 0.1 0.2 0.2	37 35 18 57 23	15 24 11 11 9	57 52 27 85 36	90 30 79 25	* * * * *	< < < < < <	2 < 2 < 1 < 2 < 1 <	<	~ ~ ~ ~ ~	64 11 9 40 12	9 5 4 10 9	113 64 101 91 126	* * * * *	25 21 14 23 20	149 273 220 196 161	1021 454 394 1.97 1071	6 2 4 3	20 16 22 19 24	16 13 4 5 4	16 7 4 16 6	0.16 0.22 0.24 0.23 0.19	7.23 4.07 1,30 4.87 2.93	0.04 0.11 0.06 0.10 0.07	4.62 6.80 3.52 4.95 4.54	0.26 0.20 0.19 1.11 0.36	0.02 0.02 0.04 0.04 0.02	0.03 0.03 0.03 0.03 0.03	0.02 0.03 0.02 0.05 0.03
L 99001 L 99001 L 99001 L 99001 L 99001	H 7325E S H 7350E S H 7375E S H 7425E S H 7450E S	368 80 13 23 44	0.6 0.3 0.2 0.5 0.7	34 32 32 26 31	14 23 14 16 29	47 43 53 47 46	59 6 45 58 82	< < < < < <	~ ~ ~ ~	2 < 2 < 2 < 2 < 2 <	< < < < <	* * * * *	15 18 19 11 12	7 7 10 9 10	100 95 126 78 85	~ ~ ~ ~ ~	23 22 26 31 29	177 275 187 185 185	733 951 642 419 399	3 < 3 2 2	18 20 25 19 18	B 7 13 14 22	11 8 11 8 11	0.21 0.35 0.24 0.20 0.21	4.91 1.73 4.53 4.81 6.09	0.05 0.09 0.09 0.12 0.07	4,95 4,95 4,97 5,18 5,58	0.32 0.67 0.46 0.47 0.54	0.01 0.03 0.03 0.02 0.02	0.02 0.03 0.03 0.03 0.03	0.03 0.03 0.02 0.02 0.02
L 99001 L 99001 L 99001 L 99001 L 99001	N 7475E S N 7500E S N 7525E S N 7550E S N 7575E S	28 32 65 52 39	0.7 0.1 0.6 0.5 0.2	29 27 18 26 20	38 17 15 16 24	53 104 85 81 44	26 43 72 27 48	~ ~ ~ ~ ~	* * * * *	3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 <	<	<pre></pre>	15 28 18 18 18	9 21 13 11 9	76 377 252 73 117	~ ~ ~ ~ ~	23 27 26 24 21	266 123 112 169 128	457 4895 1.5% 1781 452	3 5 9 3 5	17 112 120 31 43	8 4 1 4 3	7 11 8 10 7	0.29 0.18 0.12 0.19 0.17	2.88 4.04 3.39 2.74 3.24	0.05 0.43 0.44 0.35 0.17	6.54 3.68 2.59 3.97 2.33	0.53 0.94 0.75 1.47 0.55	0.03 0.08 0.07 0.04 0.04	0.03 0:05 0.05 0.03 0:04	0.03 0.02 0.06 0.04 0.02
L 9900 L 9900 L10000 L10000 L10000	N 7675E S N 7700E S N 6000E S N 6025E S N 6050E S	88 27 <	0.1 0.1 0.1 0.1	26 6 22 11 7	19 17 12 7 13	50 16 42 58 28	67 13 66 <	~ ~ ~ ~ ~	5 ~ ~ ~ ~ ~ ~	1 < 1 < 2 < 1 <	~ ~ ~ ~ ~	0.7 « « «	13 7 9 12 9	12 2 9 5 3	157 93 201 87 75	~ ~ ~ ~ ~	22 10 23 12 8	126 159 154 191 151	440 175 276 498 264	4222	62 28 63 104 43	6 2 19 11 4	9 2 8 3 2	0.20 0.30 0.21 0.27 0.24	4.45 0.91 5.54 1.29 1.22	0.32 0.07 0.09 0.22 0.19	2.78 1.38 4.95 4.24 3.25	0.73 0.12 0.39 0.61 0.43	0.05 0.04 0.03 0.06 0.05	0.04 0.03 0.03 0.04 0.03	0.03 0.01 0.02 0.02 0.02
L10000 L10000 L10000 L10000 L10000	N 6075E S N 6125E S N 6150E S N 6175E S N 6200E S	< 24 12	0.1 0.1 0.2 0.1	19 19 42 28 31	12 15 12 12 16	44 42 42 97 76	55 85 57 42 <	< < 6 < <	< < 55 < X	2 < 2 < 1 < 2 < 4 <	<	0.7 0.1 <	10 9 15 34 30	8 13 6 13 14	114 142 26 105 86	* * * * *	19 26 15 30 27	107 111 111 253 408	474 259 851 8293 615	4 3 4 3 2	59 68 69 42 31	4 13 5 3 9	5 6 7 10 10	0.15 0.15 0.16 0.27 0.47	3.43 5.52 4.22 3.98 2.76	0.21 0.15 1.93 0.29 0.32	2.94 3.40 3.61 6.97 8.13	0.57 0.50 1.28 1.19 1.03	0.05 0.02 0.34 0.06 0.03	0.05 0.04 0.14 0.04 0.05	0.03
L10000 L10000 L10000 L10000 L10000	N 6225E 5 N 6250E 5 N 6275E 5 N 6300E 5 N 6325E 5	5 13 5 5 5 5	0.1 < 0.1 <	32 21 31 21 13	16 11 15 10 10	50 49 74 56 46	75 45 79 58 62	<	~ ~ ~ ~ ~	2 < 3 < 1 < 2 < 3 <	< < < < <	< 0.2 0.1 <	14 14 21 11	12 8 18 16 11	115 108 143 161 145	* * * * *	28 23 26 22 27	165 222 107 136 172	334 1519 630 306 880	3 5 7 3	44 40 114 64 53	18 4 2 3 10	11 9 10 6 8	0.16 0.20 0.14 0.14 0.14	6.33 4.74 5.87 4.56 5.36	0.16 0.25 0.67 0.14 0.09	4.69 6.82 3.07 3.86 5.91	0.51 0.38 1.06 0.68 0.45	0.03 0.02 0.05 0.02 0.02	0.04 0.03 0.06 0.04 0.04	0.02
L10000 L10000 L10000 L10000 L10000	N 6350E N 6375E N 6400E N 6425E N 6425E N 6450E	5 138 5 < 5 < 5 < 5 16	¢ 0,1 < < 0,1	18 19 28 18 18	13 15 14 9 14	51 49 52 86 44	32 52 93 34 38	* * * * *	~ ~ ~ ~	2 < 2 < 1 < 2 <		* * * *	27 12 14 22 10	13 10 14 10 8	119 153 145 142 113	* * * * *	23 26 25 16 24	147 177 127 175 242	906 297 323 2182 230	33332	75 44 72 98 31	9 12 23 2 12	6 9 13 8 6	0.22 0.18 0.18 0.20 0.22	3,31 4,82 6,90 3,76 4,48	0,22 0,07 0,22 0,71 0,09	4,42 4,97 4,12 5,32 5,37	0.75 0.45 0.63 1.31 0.26	0.03	0.04 0.03 0.05 0.05 0.11	0.02 0.02 0.02 0.02
L10000 L10000 L10000 L10000	N 6475E N 6500E N 6525E N 6550E	5 6 5 4 5 4	0.1 0.2	20 15 17 24	12 15 17 16	31 37 51 41	60 7 34 1 85 5 74	< < < <	<	2 3 2 2		< 0,1 0.7 <	9 18 13 11	5 7 11 9	83 92 112 122	* * * *	23 17 23 29	148 153 101 184	228 762 623 248	7	26 32 51 39	15 5 7 15	7 4 8 12	0.20 0.21 0.16 0.21	5,15 3.03 5.77 6.16	0,06 0.10 0.15 0.13	4,55 3,94 2,63 4,85	0.30 0.32 0.52 0.42	0.02	2 0.03 3 0.03 3 0.04 2 0.03	3 0.02 1 0.02 1 0.04 3 0.02
Min Lim Max Rep Method — =No 1	ilt orted* 'est In	9999 FA// S=1:151	5 0.1 99,9 ICP	1 20000 ICP ent Sau	2 20000 ICP mpla	20000 ICI Del	i 5 5 9999 9 ICP •Delay	5 999 ICP	i 3 9999 P ICP Max=No	1 10 999 999 ICP ICF Estimation) 2 9999 9999 1CP	0.1 99.9 ICP Rec=	1 9999 ICP ReChe	1 9999 1CP ck	9999 1CP m=x10	5 999 ICP	1 9999 ICP Zei	2 9999 ICP Est1m	1 9999 ICP ate X	9999 ICF	1 9999 ICP IS=No	1 9999 ICP Samp1	1 9999 ICP 9S=So	0.01 1.00 ICP	0.01 9.99 IC	0.01 9.99 IC	0.01 9.99 ICP	0.01 9.99 9 ICF	0.01 9.99 ICF	0.0 5.0 9 IC	0.01 5.00 I 5.00

1 1 1 1 N

•

CERTIFICATE C ANALYSIS iPL 97J1038

2036 Columbia et Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

.

× /

INTERNATIONAL PLASMA LABORATORY LTD.

lient : Mi moject: Ca	isty Mo anyon G	untain rid	Gold	Ltd.			18	6 3 6×So	Samp 11	les					ť	[1038	314:5	5:07:	79102	197]			Qut In	:: 0ei : 0ei	: 17, : 15,	1997 1997	•	Pa Se	g o ction	4 o 1 o	ਜ 5 ਜ 1
jample Nam	ne	Au ppb	Ag ppm	Си ррт	РЬ ррт	Zn ppm	As ppm {	Sb ррт	Hg ppm p	Mo T1 opm ppm	B1 ppm	Cd ppm	Са ррт	N1 ppm	Ba ppm p	W pm	Ç≁ ppm	V maq	Mrs ppm	La ppm	Sr ppm	۲r ppm	Sc ppm	T 1 7	A1 %	Ca 7	Fe X	Mg %	K Z	Na %	F 7
.10000N 6 .10000N 6 .10000N 6 .10000N 6 .10000N 6	5575E S 5600E S 5625E S 5650E S 5675E S	< < < < <	0.1 0.1 0.1	21 15 28 16 18	8 14 13 12 10	59 47 60 31 35	50 21 81 15 12	< < < < < < < < <	* * * * *	2 < 4 < 2 < 1 < 2 <	< < < < <	0.4 < 0.1 <	16 16 14 7 10	15 10 16 7 8	123 104 171 89 97	* * * * *	24 25 30 18 26	128 154 149 123 246	574 730 396 217 227	- 5 3 2 <	59 52 46 52 24	4 5 18 6 10	7 5 9 3 4	0.18 0.20 0.18 0.15 0.28	3.93 2.82 6.15 1.89 2.94	0.34 0.20 0.11 0.36 0.06	3.20 4.45 4.94 3.44 6.06	0.76 0.62 0.79 0.33 0.25	0.04 0.04 0.03 0.03 0.01	0.05 0.05 0.04 0.06 0.03	0.04 0.02 0.02 0.02 0.02
.10000N 6 .10000N 6 .10200N 6 .10200N 6 .10200N 6	5700E S 5725E S 5000E S 5025E S 5050E S	35 19 6 <	0.1 < < <	16 27 28 15 19	14 8 13 10 11	47 47 78 33 47	55 17 52 48	~ ~ ~ ~ ~	< < < < <	3 × 2 × 1 × 2 × 2 ×	< < < < <	0.6 < < < <	13 19 18 7 10	9 14 17 6 12	128 52 163 150 168	~ ~ ~ ~ ~	22 43 25 16 32	138 256 145 177 160	235 718 835 185 277	6 < 5 2 2	59 17 129 43 59	4 5 4 2 13	7 10 10 2 8	0.21 0.25 0.14 0.16 0.18	4.13 2.33 5.06 1.32 5.04	0.12 0.12 1.04 0.07 0.09	2.90 4.92 4.38 4.43 5.49	0.41 1.00 1.22 0.15 0.57	0.03 0.04 0.06 0.03 0.02	0.04 0.03 0.07 0.03 0.03	0.02 0.02 0.03 0.03 0.03
_10200N 6 _10200N 6 _10200N 6 _10200N 6 _10200N 6 _10200N 6	5075E S 5100E S 6125E S 6175E S 6200E S	9 × 5 ×	~ ~ ~ ~ ~	13 14 18 6 6	12 8 12 6 11	112 62 101 23 21	84 19 55 21 11	* * * * *	~ ~ ~ ~ ~	3 < 3 < 4 < 1 <	< < < < < <	< 0.2 0.4 <	25 14 11 3 5	22 13 17 5 5	277 162 294 136 77	~ ~ ~ ~ ~	27 17 20 13 15	150 100 98 40 126	2432 733 278 128 162	4 3 6 2 3	171 131 252 122 29	2 1 2 1 3	6 4 6 1 3	0.08 0.09 0.05 0.03 0.12	4,25 2,48 4,05 1,48 1,61	0.51 0.29 0.63 0.31 0.13	4.21 3.21 3.02 0.84 3.18	0.80 0.58 0.76 0.18 0.27	0.05 0.04 0.03 0.03 0.03	0.05 0.04 0.05 0.04 0.03	0.0 0.0 0.0 0.0 0.0
_10200N 6 _10200N 6 _10200N 6 _10200N 6 _10200N 6	6225E \$ 6250E \$ 6275E \$ 6300E \$ 6325E \$	6 12 ~ ~	0.3 、 0.1 、	33 28 20 19 23	17 10 12 10 10	41 65 48 40 57	53 74 100 9 18	* * * * *	~ 5 ~ ~ ~	1 × 2 × 3 × 3 ×	<	1.0 < < < <	12 24 10 10 16	10 17 13 8 9	105 164 176 163 135	< < < < <	25 24 34 25 19	89 161 167 261 237	283 564 272 240 399	20 7 2 2 3	122 93 73 36 53	•4 6 25 6 7	7 12 13 4 7	0.07 0.19 0.21 0.26 0.29	3, 34 5, 91 8, 21 2, 17 3, 14	1.36 0.30 0.11 0.12 0.25	1.83 4.05 4.94 5.22 5.08	0.71 0.83 0.42 0.23 0.82	0.03 0.04 0.03 0.04 0.03	0.07 0.05 0.03 0.03 0.03	0.0 0.0 0.0 0.0
_10200N (_10200N (L10200N (L10200N (L10200N)	6350E \$ 6375E \$ 6400E \$ 6425E \$ 6425E \$	6 < 6 4	0,1 0.1 < <	42 25 18 24 34	10 12 15 10 14	65 76 53 57 58	105 68 94 < 64	~ ~ ~ ~ ~	* * * * *	2 < 2 < 1 < 2 <	< < < < < <	0.4 < < < <	18 33 19 16 18	14 14 12 8 9	225 105 92 238 141	* * * * *	22 19 26 21 20	134 177 218 317 263	385 1097 255 384 456	3 4 10 3 3	87 53 40 110 53	24 6 18 6 18	15 9 13 5 12	0.20 0.25 0.27 0.33 0.28	8.20 5.84 7.94 1.75 6.35	0.37 0.34 0.20 0.18 0.28	3.94 4.80 4.95 5.62 5.28	0.87 1.01 0.42 0.43 0.72	0.05 0.03 0.02 0.03 0.03	0.04 0.04 0.03 0.05 0.04	0.0
L10200N L10200N L10200N L10200N L10200N L10200N	6475E \$ 6500E \$ 6525E \$ 6550E \$ 6550E \$	5 16 5 16 5 <	~ ~ ~ ~ ~	31 31 24 24 27	14 10 8 10 13	40 58 83 52 53	88 72 39 81	~ ~ ~ ~ ~	* * * * *	2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 <	< < < <	< < < 0.4	14 17 17 13 16	5 11 7 10 13	37 119 66 195 135	~ ~ ~ ~ ~	24 20 32 19 20	299 236 547 215 154	285 428 477 347 431	3 ~ 3 3	14 57 29 87 62	27 16 5 7 15	21 12 4 9 10	0.34 0.24 0.41 0.21 0.18	8.42 6.17 1.41 4.50 6.30	0.08 0.27 0.18 0.19 0.24	6.62 4.80 6.36 5.63 3.79	0.38 0.72 0.28 0.62 0.70	 0.02 0.02 0.03 0.03 	0.03 0.04 0:03 0:04 0:04	
L10200N L10200N L10200N L10200N L10200N	6600E 3 6625E 3 6650E 3 6675E 3 6700E 3	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0,2 * * *	24 26 22 20 24	11 9 11 10 13	41 52 47 44 51	23 17 51 15 78	~ ~ ~ ~ ~	* * * * *	2 1 2 2	~ ~ ~ ~	0.1 0.1	12 15 12 12 12	5 10 11 10 11	84 98 141 136 133	* * * * *	28 22 22 24 26	354 271 157 170 122	271 486 312 453 260	2 3 4 3	22 42 56 60 32	14 7 6 5 18	7 7 8 4 10	0.28 0.25 0.21 0.21 0.21 0.18	4.35 3/55 4.74 2.48 7.11	0.10	7.80 5.93 3.33 4.53 3.88	0.50 0.81 0.68 0.72 0.50	0.01 0.03 0.03 0.02 0.02	0.03 0.04 0.04 0.03 0.03	
L10200N L10400N L10400N L10400N	6725E 6000E 6025E 6050E	\$8 511 552 \$<	0.1 < 0.1	15 18 17 14	9 10 12 14	32 55 49 45	30 59 37 59	* * * *	* * * * *	3 2 3 2		< < <	9 9 10 8	6 15 10 10	155 188 216 131	* * * *	24 26 32 32	219 118 166 144	266 291 317 226	< 4 2 3	31 76 56 33	9 5 11 15	4 6 7	0.23 0.11 0.19 0.19	3.47 4,78 3.99 5.60	0.0 0.1 0.0 0.0	5 5.84 5 3.38 5 5.79 5 4.91	0.26 0.62 0.54 0.39	0.01 0.03 0.02 0.02	0:03 0:04 0:02 0:03	0.0 0.0 0.0 0.0
lin Limit lax Report Nathod 	ed*	5 9999 FA/A	0.1 99.9 ICP	1 20000 ICP ent Sa	2 20000 ICP mole	1 20000 ICP 0e1e	5 9999 ICP Delav	5 999 1CP	3 9999 1CP Max=N	1 010 999 999 ICP ICF 5 Est1m) 2 9999 9 1CP	0.1 99.9 ICP Rec=	1 9999 ICP ReChe	1 99999 1CP ick	2 9999 901 m=x10	5 999 ICP	1 9999 ICP ICP	2 9999 ICP Estim	1 9999 ICP ate Z	9999 1CP	1 9999 ICP S=No	1 9999 ICP Samo J	1 9999 ICP	0.01 1.00 ICP	0.01 9.99 ICF	D.0 9.9 IC	0.01 9.99 ICP	0.01 9.99 ICP	0.01 9.99 ICP	0.01 5.00 1CF	0.0 5.0 IC

•

e se e se se

CERTIFICATE C ANALYSIS iPL 97J1038

Vancouver, 8.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

Page

5 of 5

Out: Oct 17, 1997

Client : Misty Mountain Gold Ltd. · · · p,

186 Samples

Sample Name Au Ag Cu Pb Zn As Sb Hg Mo T1 B1 Cd Co N1 Ba W Cr V Mn La Sr Zr Sc 1 ppb ppm ppm <th>1 A1 Ca 7 7 7 6 6.92 0.08 5 8.16 0.14 4 6.68 0.10 4 4.50 0.25 1 7.36 0.14 8 5.42 0.08</th> <th>Fe Mg K Na X X X X X 4.52 0.64 0.02 0.03 0.03 4.78 0.71 0.03 0.03 0.03 6.50 0.50 0.02 0.03 0.03 4.11 1.13 0.05 0.03 0.03 4.41 0.61 0.03 0.05 0.03</th>	1 A1 Ca 7 7 7 6 6.92 0.08 5 8.16 0.14 4 6.68 0.10 4 4.50 0.25 1 7.36 0.14 8 5.42 0.08	Fe Mg K Na X X X X X 4.52 0.64 0.02 0.03 0.03 4.78 0.71 0.03 0.03 0.03 6.50 0.50 0.02 0.03 0.03 4.11 1.13 0.05 0.03 0.03 4.41 0.61 0.03 0.05 0.03
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 6.92 0.08 5 8.16 0.14 4 6.68 0.10 4 4.50 0.25 1 7.36 0.14	4.52 0.64 0.02 0.03 0.0 4.78 0.71 0.03 0.03 0.0 6.50 0.50 0.02 0.03 0.0 4.11 1.13 0.05 0.05 0.0 4.41 0.61 0.03 0.05 0.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9 5 42 0 00	
L10400N 6225E S < < 15 14 44 59 < < 2 < < < 9 10 188 < 33 144 208 2 64 15 8 0.1 L10400N 6250E S < < 19 17 58 88 < 2 < < < 11 15 226 < 39 140 271 2 63 23 11 0.1 L10400N 6275E S < < 12 13 36 50 < 2 < < 0.3 6 10 214 < 22 94 144 3 73 2 4 0.1 L10400N 6300E S 8 < 16 10 44 22 < 2 < < 8 8 11 128 < 20 138 265 2 40 3 3 0.1 L10400N 6325E S < < 16 12 52 30 < 2 < < 8 9 11 282 < 22 136 298 4 133 4 5 0.1	7 6.95 0.08 0 3.42 0.09 4 2.54 0.08 7 3.60 0.12	4.81 0.35 0.02 0.03 0.03 4.74 0.45 0.03 0.03 0.03 1.72 0.38 0.03 0.03 0.03 4.25 0.43 0.02 0.03 0.03 4.28 0.51 0.03 0.03 0.03
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7 5.14 0.20 7 3.89 0.21 0 4.89 0.27 2 5.09 0.14 6 3.86 0.12	3.94 0.63 0.04 0.03 0.0 3.80 0.76 0.04 0.04 0.0 4.97 1.05 0.03 0.06 0.0 4.74 0.86 0.02 0.04 0.0 5.19 0.85 0.03 0.03 0.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 4,99 0.14 1 5.00 0.13 7 6,20 0.14 7 4,16 0.05 0 3,27 0.26	4.08 0.87 0.04 0.04 0.0 3.71 0.43 0.03 0.05 0.0 5.16 0.50 0.03 0.03 0.0 5.22 0.33 0.02 0.03 0.0 5.35 0.69 0.05 0.04 0.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 3.15 0.14 9 4:80 0.08 4 6:57 0.11 6 5:27 0.24 9 5:90 0.76	3.55 0.47 0.04 0.04 0.0 3.544 0.99 0.02 0.03 0.0 4.20 0.76 0.03 0.03 0.0 5.65 0.92 0.01 0.04 0.0 4.26 0.85 0.05 0.05 0.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 4.79 1.11 5 4.51 1.05 8 4.04 1.13 18 4.12 0.82 23 7.93 0.15	4.05 0.90 0.03 0.05 0.0 5 3.99 1.16 0.05 0.07 0.0 3 3.45 1.35 0.03 0.09 0.0 2 3.17 1.36 0.04 0.07 0.0 5 4.89 0.81 0.02 0.04 0.0

Max Reported* Mathod -----No Test

INTERNATIONAL PLASMA LABORATORY LTD.

.

CERTIFICATE U. ANALYSIS iPL 97J1057

.

.

. .

. .

.

2036 Columbia eet Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

1

· •

· ·

						, ax (004)	010 7000	
Misty Mountain Gold Ltd.		142	Sample	es Out: Oct 24, 1997	In: Oct 21, 1997	[105]	715:02:51:791	(02897)
Shipper : Canyon and E MAREMUSI GROU	CODE	ΔΜΌΠΝΤ	TYPE				DUIL D	DE IECT
Shipper: Konkonst Shippert: PO#	8111	142	Solt	Dry & sift to _80 mosh dia	nand majort		12M/Die	
Analysis:	1 0111	146	3011	biya shic co -bo mesh, dist	NS-No Sample	Pop-Poplicato X	L-Month Dir-	
Au $(EA/AAS, 20\sigma)$ ICP $(A\sigma R)$ 30	λna	lvtic	al Sur	<u> </u>	NS=NO Salipite	керакерпсасе г		UISCATO
(12(1)()))(2 2 2 3) 12 ((14))23	## Code	Method	Units	Description	Flement	timit	timit	
Connent:					E tenerto	Lav	/ High	
	01 0312	FA/AAS	apb	Au FA/AAS finish 20a	Gold		9999	
	02 0721	ICP	DOM	Ag ICP	Silver	0.1	99.9	
	03 0711	1CP	nqq	Cu ICP	Соррег	1	20000	
Document Distribution	04 0714	ICP	ppm	РЬ ІСР	Lead	2	20000	
1 Misty Mountain Gold Ltd. EN RT CC IN FX	05 0730	1CP	ppm	Zn ICP	Zinc	1	20000	
1020 - 800 West Pender Street 1 2 2 2 1			.,					
Vancouver OL 3D EM BT BL	06 0703	ICP	ppm	As ICP	Arsenic	5	5 9999	
B.C. V6C 2V6 0 0 0 0 1	07 0702	ICP	ppm	SF ICP	Antimony	ç	5 9 99	
Canada	08 0732	ICP	ppm	Hg ICP	Mercury		9999	1
Att: Ron Konst Ph: 604/684-6365	09 0717	ICP	ppm	Mo ICP	Molvdenum	1	999	
Fx: 604/684-8092	10 0747	[CP	ppm	T1 ICP (Incomplete Digestion	n) Thallium	10	999	
Em: tomk@hdgold.com				,				
	11 0705	ICP	oom	BT ICP	Bismuth	2	0000	
	12 0707	ICP	0.000	CH ICP	Cadmium	0 1	99.9	
	130710	ICP	000	Co TCP	Cobalt	1	9999	
	14 0718	ICP	000	N1 ICP	Nickel	•	9999	
	15 0704	1CP	0.000	Ba ICP (Incomplete Digestio	n) Bartum		0000	
		1.41	Phil	ou to (theorphoto bigastio	ny Barrolli	c c		
	16 0727	ICP	ppm	W ICP (Incomplete Digestio	n) Tungsten	ŗ	5 999	
	17 0709	ICP	ppm	Cr ICP (Incomplete Digestio	n) Chromium	ſ	9999	
	18 0729	ICP	ppm	V ICP	Vanadium		2 9999	
	19 0716	ĮCP	ppm	Mn ICP	Manganese	1	9999	
	20 0713	ICP	ppm	La ICP (Incomplete Digestio	n) Lanthanum	1	29999	
			• •					i
	21 0723	ICP	ppm	Sr ICP (Incomplete Digestio	n) Strontium	•	1 9999	
	22 0731	ICP	ppm	Zr ICP	Zirconium	•	1 9999	
	23 0736	ICP	ppm	Se ICP	Scandium	•	1 9999	
	24 0726	ICP	7	Ti ICP (Incomplete Digestio	n) Titanium	0.01	1 1,00	
	25 0701	ICP	*	Al ICP (Incomplete Digestio	n) Aluminum	0.0	1 9.99	
	26 0700	TCO	•		-> ->			
	2710712	ICP	÷	Callor (Incomplete Digestio	n) Calcium	0.0	1 3.33	
	20 0715	ICP ICP	*	He ICD (Incomplete Disserve)	1ron	0.0.	1 9.99	
	2010710	ICP	4	Mg ICP (Incomplete Digestio	n) Magnestum	0.0.	1 9.99	
UHPIKAIF	2910720	ICP	2	N ICP (Incomplete Digestio	n) Potassium	0.0	1 9,99	
	3010722	ICP	*	Na ICP (Incomplete Digestic	n) Sodium	0.0	1 5.00	
	31 0719	ICP	X	P ICP	Phosphorus	0.0	1 5.00	
						(1	

EN=Envelope # RT=Report Style CC=Copies IN=Invoices Fx=Fax(1=Yes 0=No) Totals: 2=Copy 2=Invoice 0=31 Disk DL=Download 3D=31 Disk EM=E-Mail B1=88S Type BL=88S(1=Yes 0=No) ID=C008501

OF COMPETEND AND SUPER DALLY FOR BUILDING

x r x r x r x

CERTIFICATE C. ANALYSIS iPL 97J1057

· ·

.

. .

.

.

. .

2036 Columbia 3et Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

. . . *.*

• •

•

INTERNATIONAL PLASMA LABORATORY LTD.

llient : Misty Project: Canyon	Moun Gri	tain d g	Gola 1910	d Ltd. E71(f.	sT 6-,	RID	14 14	2 2≖Se	Samj 511	ple	s						(10	5715:	02:51	: 7910)28 9 7]			Out: (In : ()ct)ct	24, 21,	1997 1997		P. Se	age ectio	1 1 1	of 4 of 1
Sample Name	p	Au pb	Ag ppm	Cu ppm	РЬ ррт	Zn ppm	As ppm p	Sb pm	Hg ppm p	Mo pm p	71 •pm	81 ppm	Cd ppm	Со ррлі	N1 ppm	Ba ppm	W ppm	Сг ррл	V ppm	Мп ррт	La ppm	Sr ppm	Zr ppm	Sc Ti ppm 27	,	A1 %	Ca %	Fe X	Mg Z	K X	Na Z	P Z
9000N 6000E 9000N 6025E 9000N 6050E 9000N 6055E 9000N 6075E 9000N 6100E	s s s s	< 9 < < <	0.3 0.4 0.3 0.4 0.3	19 17 16 18 17	22 19 17 18 14	37 45 47 42 44	54 45 18 62 19	* * * *	< < < < < <	2 1 2 1 2	~ ~ ~ ~ ~ ~	< < < < < <	< < < < < <	6 7 8 7 8	10 10 13 12 9	363 164 153 117 118	< < < < < < <	21 18 19 24 25	110 91 95 100 175	197 239 309 249 271	3 4 2 3 2	45 61 60 30 27	11 7 3 10 4	5 0.14 4 0.10 4 0.10 5 0.13 5 0.18	5.4 4. 2. 5.0 3.	48 (75 (74 (04 (18 (D.10 D.14 D.14 D.14 D.09 D.03	4.91 3.71 3.24 3.95 4.92	0.25 0.32 0.53 0.39 0.19	0.03 0.03 0.03 0.03 0.03 0.03	0.03 0.03 0.03 0.03 0.03 0.02	0.02 0.04 0.02 0.03 0.02
9000N 6125E 9000N 6150E 9000N 6175E 9000N 6200E 9000N 6225E	5 5 5 5 5 5	* * * * *	0.4 0.3 0.4 0.2 0.5	22 21 22 21 20	18 15 23 18 14	43 45 59 54 41	39 51 74 83 43	< < 5 < <	< < < < < <	2 2 1 2 1	* * * * *	< < < < <	* * * * *	7 7 12 13 8	14 10 17 13 9	154 123 140 187 101	~ ~ ~ ~ ~	24 21 29 23 22	129 127 121 110 125	238 270 400 639 280	2 4 5 7 4	34 28 38 53 26	5 4 11 9 7	4 0.13 5 0.35 10 0.15 9 0.16 7 0.13	4.1 5. 6. 7.	86 (23 (79 08 58 (0.06 0.05 0.08 0.10 0.10	4.78 4.61 4.54 3.90 4.41	0.31 0.27 0.57 0.53 0.34	0.02 0.02 0.04 0.04 0.04	0.03 0.03 0.03 0.03 0.03 0.03	0.03 0.03 0.05 0.05 0.03
9000N 6250E 9000N 6275E 9000N 6350E 9000N 6375E 9000N 6400E	S S S S S	х х х 1 2 х	0.4 0.2 0.3 0.5 0.3	18 13 22 22 23	15 13 16 18 19	41 35 45 43 37	57 5 51 37 67	~ ~ 6 ~ ~	< < < <	2 2 2 2 2 2	~ ~ ~ ~ ~ ~	~ ~ ~ ~ ~	~ ~ ~ ~ ~	7 7 8 8 7	12 9 13 12 11	168 135 110 91 93	~ ~ ~ ~ ~	25 19 29 20 32	111 124 152 109 130	227 211 252 238 199	2 2 4 2 2	36 47 27 29 28	7 3 9 6 20	6 0.13 3 0.14 6 0.17 5 0.12 8 0.18	5. 1. 5. 3. 7.	27 76 90 75 08	0.05 0.12 0.05 0.14 0.07	4.30 3.78 5.60 3.69 5.08	0.38 0.30 0.39 0.37 0.38	0.02 0.04 0.01 0.03 0.02	0.03 0.03 0.03 0.03 0.03 0.03	0.03 0.02 0.02 0.04 0.04
9000N 6425E 9000N 6475E 9000N 6500E 9000N 6525E 9000N 6550E	S S S S S S	< < < < 7	0.2 0.3 0.4 0.3 0.2	36 26 19 21 29	13 14 7 19 18	84 40 28 26 32	10 26 14 64 82	* * * * *	< < < < <	1 2 1 1	× × × × ×	* * * * *	< 0.3 <	17 9 5 8 8	9 7 4 5 7	80 68 73 45 61	* * * * *	20 21 10 16 16	183 171 105 127 99	573 347 191 227 235	< 5 4 6 2	47 33 9 14 20	6 8 2 17 13	6 0.4 5 0.2 2 0.09 12 0.2 11 0.16	2. 4. 2. 5. 8.	20 25 09 48 03	0.30 0.09 0.06 0.05 0.20	3.95 5.37 2.98 3.70 3.72	0.96 0.27 0.11 0.25 0.56	0.04 0.03 0.02 0.01 0.02	0.06 0.03 0.03 0.03 0.03 0.04	0.02 0.02 0.01 0.03 0.02
9000N 6600E 9000N 6625E 9400N 6000E 9400N 6025E 9400N 6025E 9400N 6050E	5 5 5 5 5 5 5	~ ~ ~ ~ ~	0.4 0.4 0.3 0.3 0.3	15 22 18 18 23	10 12 13 18 13	50 45 39 43 43	13 16 31 59 42	* * * * *	<	2 2 2 2 1		< < < < <	< < < < < <	8 13 6 9 7	12 11 11 11 11	143 111 190 157 139	* * * * *	16 16 25 23 26	134 119 117 96 118	320 416 198 289 230	2 3 2 5 5	66 50 42 50 37	2 2 4 5	4 0.14 4 0.19 4 0.11 7 0.11 7 0.11	2.	27 50 80 56 01	0.17 0.21 0.07 0.07 0.06	3.56 3.65 4.37 3.52 4.26	0.53 0.90 0.30 0.38 0.38	0.04 0.04 0.02 0.04 0.04	0,03 0,04 0,03 0,03 0,03	0.01
9400N 6075E 9400N 6100E 9400N 6125E 9400N 6150E 9400N 6175E	5 5 5 5 5	~ ~ ~ ~ ~	0.3 0.4 0.8 1.0 1.0	15 15 19 20 21	11 15 19 19 17	32 38 42 47 52	21 52 46 45 69	~ 5 ~ ~ 5	~ ~ ~ ~ ~ ~	1 1 1 1 1	A A: A A: A. A.	< < < < < <	0.3 < < <	5 6 7 8 8	8 12 11 10 14	102 119 153 163 172	~ ~ ~ ~ ~	15 24 22 29 38	86 111 93 86 94	262 251 413 254 286	3 5 5 6 7	31 34 44 43 43	3 7 3 6 10	2 0.04 7 0.13 5 0.14 7 0.0 10 0.14	2 4 2 4 9 5 9 6	54 88 79 61 39	0.10 0.05 0.07 0.06 0.06	2.87 3.96 3.71 3.35 3.57	0.22 0.24 0.39 0.40 0.44	0.04 0.03 0.03 0.03 0.03	0.03 0.03 0.03 0.03 0.03	0.04 0.03 0.05 0.04 0.06
9400N 6200E 9400N 6225E 9400N 6250E 9400N 6250E 9400N 6275E 9400N 6325E	5 5 5 5 5 5 5	~ ~ ~ ~ ~	0.4 0.5 0.4 0.2 0.2	17 23 20 20 20	14 16 11 20 16	47 39 28 49 72	38 30 18 53 50	~ ~ ~ ~ ~	* * * * *	2 1 1 1 1	X X X X X	< < < < <	< 0.3 (0.1	8 15 6 9	11 11 10 13 14	154 85 57 107 169	* * * * *	19 25 30 30 23	91 123 99 108 92	495 1274 377 316 190	3 4 5 4	52 23 19 32 58	2 2 4 5 2	4 0.0 4 0.1 3 0.1 7 0.1 4 0.0	9 3. 1 4. 0 2. 1 5. 8 4.	32 08 45 95 14	0.11 0.08 0.07 0.05 0.10	3.10 4.37 2.97 3.99 1.82	0.42 0.25 0.24 0.35 0.46	0.03	0.03 0.03 0.03 0.03 0.03	3 0.04 3 0.03 3 0.04 3 0.06 3 0.03
9400N 6350E 9400N 6400E 9400N 6425E 9400N 6450E	S S S S	~ ~ ~ ~	0.3 0.2 0.1 0.2	15 17 12 10	18 19 13 8	43 46 26 21	60 51 26 30	* * * *	~ ~ ~ ~ ~ ~ ~	2 2 1 <	* * * *	< < < <	0.3 0.1 ×	6 8 5 3	10 13 7 5	191 128 103 111	~ ~ ~ ~ ~ ~ ~	27 27 13 14	92 132 61 38	216 240 160 98	2 5 2 3	29 36 50 80	10 3 1 1	7 0.1 5 0.1 2 0.0 2 0.0	0 5. 4 4. 8 2. 5 1.	. 61 . 30 . 22 . 91	0.04 0.07 0.08 0.16	3.67 2.70 1.36 0.84	0,29 0,42 0,29 0,18	0.02 0.03 0.04 0.03	0.03 0103 0.03 0.03	3 0.02 3 0.03 3 0.02 3 0.02
Min Limit Max Reported* Method	9 . F	5 1999 A/A	0.1 99.9 ICP	1 20000 ICP	2 20000 ICP	1 20000 ICP	5 9999 ICP	5 999 ICP	3 9999 ICP	1 999 ICP	10 999 ICP	2 9999 ICP	0.1 99.9 1CP	1 9999 ICP	1 9999 ICP	2 9999 ICP	5 999 ICP	1 9999 ICP	2 9999 ICP	1 9999 1CF	9999 9999 1CP	1 9999 ICP	1 99999 ICP	1 0.0 9999 1.0 ICP IC	10. 09. P	.01 .99 ICP	0.01 9.99 ICP	0.01 9.99 ICP	0.01 9.99 ICP	0.01 9.99 9.59	0.01 5.00 ICI	0.01 5.00 ICP

a second s

CERTIFICATE C. ANALYSIS iPL 97J1057

• • • • • • • •

2036 Columbia set Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

.

•

INTERNATIONAL PLASMA LABORATORY LTD.

Client : Misty Project: Canyo	/ Mou on Gr	intair id	n Gold	l Ltd.			14 1	42 42=S	Sam oil	ples						[10	5715:	02:51	: 7910	2897)			Out In	t: Oc : Oc	st 24 st 21	, 1997 , 1997	7	F S	age ection	20	of 4 of 1
Sample Name		Λu ppb	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm	Sb ppm	Hg ppm p	Mo T1 xom pom	81 ppm	Cd ppm	Со рот	N1 PPM	Ba ppm	W ppm	Cr ppm	V pom	Мп ррт	La ppm	Sr ppm	Zr ppm	Sc ppm	11 72	A1 7	Ca 7	Fe Z	Mg %	К 7.	Na 7	Р %
9400N 6475E 9400N 6500E 9400N 6525E 9400N 6550E 9400N 6550E 9400N 6575E	5 5 5 5 5 5	* * * * *	0.3 0.3 0.3 0.4 0.3	22 11 7 17 15	17 13 12 19 15	41 28 25 43 34	46 18 16 54 31	5 < < < <	~ ~ ~ ~ ~	2 < 2 < 1 < 1 <	~ ~ ~ ~ ~	~ ~ ~ ~ ~	9 6 5 8 6	12 9 8 12 10	145 150 132 154 96	* * * * *	32 20 14 25 25	136 116 84 85 92	273 164 129 224 179	5 2 2 3 2	27 34 37 42 21	13 3 1 9 8	10 0 3 0 2 0 7 0 5 0	. 16 . 13 . 12 . 11 . 12	5.46 3.03 1.73 5.36 4.14	0.06 0.08 0.06 0.07 0.06	5.00 4.13 1.89 3.35 3.34	0.40 0.31 0.28 0.42 0.29	0.04 0.03 0.03 0.04 0.03	0.02 0.03 0.03 0.03 0.03 0.03	0.02 0.02 0.01 0.02 0.02 0.02
9400N 6600E 9400N 6625E 9400N 6675E 9400N 6750E 9400N 6800E	S S S S S S	5 7 7 <	0.3 0.5 0.3 0.3 0.3	11 16 18 17 18	17 20 14 15 12	24 32 42 48 48	41 41 35 33	~ ~ ~ ~ ~	< < < < < <	2 < 2 < 1 < 2 < 2 <	< < < < < <	0.5 0.2 <	6 6 7 8 11	6 7 11 10 12	93 75 177 145 126	~ ~ ~ ~ ~	13 15 20 18 20	119 99 86 74 129	178 288 219 262 480	2 2 4 4	30 24 47 97 49	2 2 1 3	2 0 3 0 5 0 4 0 6 0	1,18 1,12 1,11 1,11 1,15	1.05 1.58 3.52 2.74 3.49	0.07 0.13 0.09 0.31 0.14	2.91 2.52 2.29 1.70 3.60	0.23 0.37 0.46 0.62 0.59	0.04 0.05 0.04 0.04 0.05	0.03 0.03 0.03 0.05 0.04	0.01 0.03 0.03 0.06 0.04
9400N 6825E 9600N 6000E 9600N 6025E 9600N 6050E 9600N 6075E	s s s s	~ ~ ~ ~ ~	0.4 0.4 0.4 0.3 0.3	25 13 17 12 17	15 14 14 11 12	82 39 47 42 45	65 19 53 17 17	< < 7 < <	< < < < <	2 < 2 < 1 < 2 <	<	< < < < <	23 7 8 9	20 10 12 9 11	228 152 175 125 122	~ ~ ~ ~ ~	37 20 24 19 19	112 114 107 137 116	1442 217 226 182 356	5 3 4 3	87 54 59 58 60	4 5 10 2 2	10 0 5 0 8 0 4 0 4 0), 12), 15), 15), 15), 15	6.00 3.52 4.87 2.62 2.69	0.23 0.11 0.15 0.09 0.17	3.43 4.08 3.71 4.18 4.25	0.97 0.42 0.48 0.45 0.59	0.05 0.03 0.03 0.04 0.04	0.04 0.03 0.04 0.03 0.03 0.04	0.04 0.02 0.02 0.02 0.03
9600N 6100E 9600N 6125E 9600N 6150E 9600N 6175E 9600N 6200E	5 5 5 5 5 5 5 5	5 × 12 5 ×	0.3 0.2 0.3 0.4 0.3	19 14 16 15 22	20 8 15 13 13	56 38 44 52 87	60 < 30 24 38	* * * * *	~ ~ ~ ~ ~ ~ ~	2 < 2 < 2 < 1 <	* * * * *	* * * * *	11 9 9 11 17	13 7 9 10 16	208 104 186 166 151	* * * * *	29 19 23 25 23	133 228 137 139 134	304 261 262 360 630	4 4 3 3	75 37 75 60 99	15 3 5 5 2	10 0 2 0 6 0 5 0 6 0), 19), 27), 16), 16), 17	7.67 1.23 4.45 3.74 3.23	0.10 0.05 0.09 0.08 0.38	4.75 4.67 4.91 4.83 4.33	0.53 0.10 0.42 0.46 0.97	0.05 0.02 0.04 0.03 0.06	0.03 0.02 0.03 0.03 0.03 0.05	0.02 0.01 0.02 0.02 0.04
9600N 6225E 9600N 6250E 9600N 6250E 9600N 6275E 9600N 6300E 9600N 6350E	5 5 5 5 5 5 5	* * * 5 *	0.2 0.3 0.3 0.4 0.4	21 17 21 12 22	15 13 12 18 17	70 80 58 80 73	38 30 22 31 36	* * * * *	* * * * *	2 « 2 « 7 « 2 «	< < < < <	1.7 0.3	13 12 12 29 21	15 15 13 18 29	123 163 114 135 184	* * * * *	24 27 24 34 49	121 128 156 104 112	455 481 460 854 529	4 4 2 3 5	67 61 51 65 113	2 2 1 2	6 0 6 0 4 0 8 0), 14), 14), 18), 10), 15	4.38 3.83 3.14 3.53 4.25	0.20 0.17 0.11 0.34 0.72	4.03 4.00 4.55 2.88 3.71	0.78 0.78 0.94 0.71 1.29	0.06 0.05 0.04 0.07 0.07	0.04 0.04 0.04 0.04 0.04 0.05	0.03 0.03 0.02 0.03 0.03
9600N 6375E 9600N 6475E 9600N 6500E 9600N 6525E 9600N 6550E	5 5 5 5 5 5	* * * * *	0.2 0.3 0.3 0.1 0.3	8 14 8 4 18	16 14 13 9 14	46 43 24 14 67	19 27 17 9 39	* * * * *	* * * * *	2	< < < < <	0.4 0.1 < 0.2 0.4	7 8 6 4 14	9 11 5 4 18	145 142 131 75 201	< < < < < <	19 23 17 10 21	97 89 127 58 78	348 235 138 93 317	2333 336	91 56 34 31 116	2 3 3 2 2	4 (5 (3 (2 (6 (), 11), 15), 19), 16), 12	2.16 3.61 2.10 0.95 3.85	0.38 0.11 0.06 0.05 0.41	2.25 2.42 2.70 0.74 2.03	0.48 0.56 0.23 0.14 0.82	0.04 0.02 0.02 0.03 0.03	0,04 0103 0.03 0.03 0.03 0.05	0.02 0.02 0.01 0.01 0.01
9600N 6575E 9600N 6625E 9600N 6650E 9600N 6675E 9600N 6700E	\$ \$ \$ \$ \$ \$ \$ \$	<	0.2 0.2 0.2 0.3 0.3	24 10 20 6 10	9 16 15 10 13	59 35 48 13 20	42 9 73 16 24	* * * * *	* * * * *	2 1 4 1 1	< < < <	0.5 0.1 0.2	11 11 11 2 4	16 8 13 4 8	188 133 141 98 96	* * * * *	23 12 24 11 17	114 59 88 42 47	294 257 270 87 76	5393	160 72 91 55 50	5 5 8 1 1	8 (3 (9 (1 (1 (0.16 0.24 0.12 0.05 0.05	3.76 1.35 6.45 1.35 1.93	0.58 0.33 0.23 0.12 0.13	2.43 1.97 1.86 0.73 0.86	0.88 0.34 0.70 0.09 0.22	0.03 0.05 0.03 0.04 0.04 2 0.04	0.07 0.05 0.05 0.03 0.03	0.06 0.03 0.06 0.03 0.04
9600N 6725E 9600N 6750E 9600N 6775E 9600N 6800E	5 5 5 5 5	~ ~ ~ ~	0.2 0.3 0.4 0.4	20 16 14 7	12 18 12 9	69 35 51 27	52 77 43 21	< 6 < <	<	1 2 1		0.2 < 0.4 0.1	18 6 9 4	17 8 12 7	220 91 143 117	~ ~ ~ ~	23 28 19 12	92 99 54 35	347 151 166 167	4	122 24 55 65	3 17 1 <	7 (9 (2 (1 (0.14 0.14 0.06 0.06	4.66 6.98 3.49 1.65	0.41 0.05 0.11 0.13	2.56 4.39 1.25 0.91	0.90 0.29 0.47 0.31) 0.04) 0.01 7 0.03 0.04	0.06 0.03 0.03 0.03	0.03 0.02 0.05 0.05
Min Limit Max Reported [*] Method	•	5 9999 FA/A	0.1 99.9 ICP	1 20000 ICP	2 20000 ICP	20000 ICP	5 9999 ICP	5 999 1CP	3 9999 ICP	1 -1(999 999 ICP ICI) 2 9999 1CP	0.1 99.9 ICP	1 9999 ICP	1 99999 ICP	9999 1CP	5 999 ICP	1 9999 ICP	2 9999 ICP	1 9999 ICP	9999 9999 ICP	1 9999 ICP	1 9999 ICP	1 9999 ICP	0.01 1.00 ICP	0:01 9.99 ICP	0.01 9.99 ICP	0.01 9.99 ICP	0.0 9.99 IC	0.01 9.99 1CP	0.01 5.00 ICP	0.01 5.00 ICP

• 、

CERTIFICATE C. ANALYSIS iPL 97J1057

,

2036 Columbia .et Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898 ~

.

the second s

INTERNATIONAL MASMA LABORATORY LTD.

Client : Misty Project: Canyor	Mour n Gri	ntain Id	Gold	f Ltd.			1	42 42=S	Sam oil	ple	s						[10	5715:	02:51	: 7910	2897)			Out In	: 0c : 0c	st 24, st 21,	1997 1997		Pa Se	ge ctior	3 c 1 l c	⇒F 4 ⇒F 1
Sample Name	ŕ	Au opb	Ag ppm	Cu ppm	РЬ ррт	Zn ppm	As ppm	Sb ppm	Hg ppm	Ma ppm pp	Г1 211	Ві ррлі	Cd ppm	Co ppm	N1 ppm	fla ppm	W ррт	Cr ppm	V ppm	Mn ppm	La ppm	Sr ppm	Zr ppm	Sc ppm	⊺1 %	۸1 %	Ca %	Fe %	Mg 7	K Z	Na X	р 7
9600N 6850E 9600N 6875E 9600N 6950E 9600N 6975E 9600N 7000E	S S S S S	5 31 20 6 27	0.2 0.1 0.3 0.3 0.9	21 9 21 11 25	28 7 18 11 20	78 15 66 28 62	51 8 50 42	* * * * *	* * * *	2 1 1 2	* * * * *	* * * * * * * *	< 0.3 <	10 3 10 5 8	11 1 16 5 10	157 25 130 106 83	* * * * *	23 4 22 13 17	126 110 102 142 99	272 94 235 144 265	< 5 3 4	16 2 27 31 19	9 4 3 2 3	50 20 60 20 70	.09 .12 .12 .13 .10	4.53 0.52 5.09 1.01 4.07	0.03 0.01 0.06 0.07 0.04	4.42 1.72 2.78 3.18 3.30	0.42 0.09 0.58 0.16 0.19	0.02 0.05 0.04 0.05 0.02	0.02 0:02 0.03 0.03 0.03	0.01 0.02 0.03 0.01 0.02
9600N 7025E 9600N 7050E 9600N 7075E 9600N 7125E 9700N 6000E	S S S S S S	19 32 15 100 15	0.7 0.4 0.2 0.B 0.7	36 12 18 19 29	18 12 15 6 16	43 18 25 21 67	29 5 18 40 52	* * * * *	* * * * *	1 1 2 1 1	~ ~ ~ ~ ~	~ ~ ~ ~ ~	< 0.1 < < <	8 4 7 13 14	7 6 1 13	95 110 197 35 169	* * * * *	23 11 20 9 22	148 91 204 161 133	239 127 277 7797 337	3 2 3 3 5	16 31 39 4 28	8 2 3 1 9	50 20 40 30 100	.15 .11 .18 .06 .16	4.16 1.07 2.14 1.82 5.19	0.04 0.09 0.07 0.03 0.06	4.99 2.37 3.02 3.44 4.71	0.20 0.11 0.23 0.05 0.51	0.02 0.04 0.05 0.05 0.04	0.02 0.03 0.03 0.02 0.03	0.02 0.03 0.03 0.07 0.07
9700N 6000E A 9700N 6025E 9700N 6050E 9700N 6075E 9700N 6100E	5 5 5 5 5 5 5	~ ~ ~ ~ ~	0.2 0.1 0.2 0.2 0.1	9 8 18 20 15	23 14 14 20 16	15 56 41 43 52	161 53 25 63 46	~ ~ ~ ~ ~	* * * * *	1 1 1 2 1	~ ~ ~ ~ v	3 < < < <	0.2 0.2 <	4 9 9 11 11	6 11 8 9 14	31 164 97 116 135	* * * * *	25 17 18 24 25	47 63 101 132 100	73 163 188 227 221	11 4 6 4	9 95 40 42 24	14 2 9 14 10	13 0 4 0 7 0 11 0 8 0	0.05 0.11 0.15 0.18 0.18	117 4.37 4.47 6.45 5.08	0.02 0.16 0.06 0.06 0.06	1.61 2.37 3.98 4.36 3.69	0.10 0.52 0.41 0.35 0.52	0.01 0.02 0.03 0.03 0.03	0.02 0.03 0.03 0.02 0.02	0.10 0.02 0.02 0.02 0.02
9700N 6125E 9700N 6150E 9700N 6175E 9700N 6200E 9700N 6250E	ន ទ ទ ទ	~ ~ ~ ~ ~	0.3 0.2 0.2 0.2 0.2 0.1	14 19 24 10 25	11 16 11 11 15	39 39 55 54 57	11 48 11 15 42	* * * * *	* * * * *	1 2 1 1	A A A A	* * * * *	< 0.5 0.2 0.4	7 8 9 9 12	8 8 11 11 17	112 117 127 143 187	~ ~ ~ ~ ~	18 22 18 15 21	131 135 94 89 78	243 225 297 317 259	4 5 5 4 5	44 33 95 92 126	3 12 1 2 3	4 0 9 0 4 0 4 0 6 0), 16), 19), 15), 15), 12	2.88 5;38 2.02 2.14 4.10	0.08 0.08 0.36 0.23 0.61	4.33 4.38 2.87 2.67 2.04	0.29 0.37 0.48 0.71 0.90	0.04 0.02 0.06 0.03 0.05	0:03 0:03 0:04 0:04 0:05	0.02 0.02 0.02 0.02 0.02
9700N 6275E 9700N 6300E 9700N 6325E 9700N 6350E 9700N 6400E	S S S S	< < 7 < <	0.2 0.1 0.2 0.2 0.2	22 19 12 18 11	14 16 13 13 8	61 61 39 26 27	34 31 30 22 ×	~ ~ ~ ~ ~	* * * * *	1 2 3 4	X X X X X	* * * * *	0.2 0.3 0.2 1.3 <	12 10 5 2 8	16 15 10 6 5	145 142 162 75 54	~ ~ ~ ~ ~	23 21 16 14 17	74 93 60 37 107	359 291 144 353 858	5 3 3 3	94 79 157 60 34	2 3 1 1 1	5 C 6 C 2 C 1 C 2 C), 11), 15), 06), 02), 04	3.64 3.28 2.57 1.41 1.41	0.49 0.44 0.34 0.60 0.37	1.89 2.24 1.09 0.40 5.67	0.91 0.85 0.43 0.10 0.20	0.05 0.04 0.03 0.03 0.02	0:04 0:04 0:04 0:04 0:04 0:04	0.04 0.03 0.03 0.05 3 0.05
9700N 6425E 9700N 6450E 9700N 6450E 9700N 6500E 9700N 6525E	\$ 5 5 5 5 5 5 5	8 28 < < <	0.2 0.3 0.1 0.1 0.1	5 9 5 13 16	11 7 9 12 12	17 13 14 40 45	17 8 22 45	* * * * *	<	2 1 1 2	A. A. A. A. A.	* * * * *	0.1 0.2 0.1 0.1 0.3	5 4 4 7	3 6 3 10 13	120 76 94 109 131	< < < < <	10 45 7 21 19	100 44 78 89 67	200 494 71 185 231	< 3 2 3 5	32 30 35 40 76	3 * 2 2 3	2 (< (1 (5 ().15).02).16).13).09	0.84 1,35 0,72 2,56 4,28	0.04 0.12 0.05 0.07 0.15	2.46 0.81 1.03 2.15 2.24	0.19 0.06 0.11 0.51 0.61	0.02 0.05 0.04 0.03 0.03	2 0.02 5 0.03 1 0.03 1 0.03 3 0.03	! 0.0 } 0.0 } 0.0 } 0.0 } 0.0
9700N 6550E 9700N 6625E 9700N 6675E 9700N 6700E 9700N 6725E	S S S S S S S	~ 5 ~ ~ ~ ~	₹ 0.1 0.2 0.2 0.1	18 7 14 12 15	12 11 13 18 17	60 19 24 40 54	44 35 48 50	* * * *	<	2 2 2 2 2 2	× × × × ×	<	0.4 < 0.1 1.7	14 6 5 7 13	17 4 6 8 12	177 81 102 105 136	~ ~ ~ ~ ~	18 12 19 20 27	81 143 109 87 123	303 140 123 216 301	5 < 3 4 3	104 20 15 33 26	3 3 6 3 12	6 (2 (4 (5 (12 (0.11 0.18 0.13 0.13 0.15	4.00 1.38 4.03 4.48 5.72	0.33 0.03 0.03 0.07 0.07	2.28 3.10 3.54 2.06 4.00	0.72 0.19 0.16 0.41 0.55	2 0.03 0.02 5 0.01 1 0.02	3 0.04 2 0.03 1 0.03 2 0.03 2 0.03	1 0.0 2 0.0 2 0.0 2 0.0 3 0.0
9700N 6750E 9700N 6775E 9700N 6800E 9700N 6825E	5 5 5 5	5 < < <	< 0.2 0.3 0.6	10 8 7 10	11 8 12 13	28 24 21 21	19 12	* * * *	< < < <	2 3 1 1	~ ~ ~ ~	< < < <	0.1 < 0.1 <	5 4 4 10	5 4 6	78 50 117 86	* * * *	18 20 13 18	79 149 33 59	172 106 91 907	2 < 3 2	39 9 51 39	2 1 1 1	2 (2) 1) 1)	0.10 0.15 0.06 0.05	1.28 1.07 1.87 1.44	0.13 0.02 0.08 0.13	2.29 4.11 0.76 1.88	0.42	2 0.04 3 0.03 3 0.03 2 0.03	1 0.0 3 0.0 3 0.0 3 0.0	3 0.0 2 0.0 3 0.0 3 0.0
Min Limit Max Reported* Method	F T	5 9999 FA/A	0.1 99.9 ICP	1 20000 ICP	2 20000 ICP	1 20000 ICP	9999 9999 ICF	5 999 FICP	3 9999 ICP	1 999 9 ICP	10 999 ICP	2 9999 ICP	0.1 99.9 ICP	1 9999 1CF	1 9999 9 ICP	2 9999 ICP	5 999 ICP	1 9999 ICP T	2 9999 1CP	1 9999 ICP	2 9999 ICP	1 9999 ICP NS=No	1 9999 ICP	1 9999 ICP	0.01 1.00 1CP	0.01 9.99 ICP	0.01 9.99 ICP	0.01 9.99 ICP	0.01 9.99 ICF	0.01 9.99 9.10	0.01 9 5.00 9 5.00	0.0 5.00 IC

A CALL AND A CALL AND A CALL AND A

CERTIFICATE C. ANALYSIS iPL 97J1057

2036 Columbia Jet Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

the second second

.

142 Samples

llent : Misty Project: Canyo	Moi In G	untai rid	n Gole	d Ltd.			142 142	2 : ?⇒So	Sam 11	ple:	5						[10	5715:	02:51	:7910)2897]			Ou In	t: Oc : Oc	:t 24, :t 21,	1997 1997		Pa Se	ige Action	4 0	of 4 of 1
Sample Name		Au ppb	Ag ppm	Cu ppm	РЬ ррм	Zn ppm	As S ppm pp	бb xm	Hg ppm p	Mo T opmopp	n bb	nt () bC pm pp	Co pm	N I ppm	Ba ppm	W ppm	Cr ppm	V maqq	Mri ppm	L a ppm	Sr ppm	Zr ppm	Sc ppm	Ti %	A 1 %	Ca %	Fe 7	Mg T	K %	Na %	P %
9700N 6850E 9700N 6875E 9700N 6900E 9700N 6925E 9700N 7000E	ទទទទទ	< < 5 22	0.4 0.3 0.3 0.3 0.3	13 16 12 13 26	13 12 67 11 16	30 84 69 66 63	46 21 29 26 21	< < < < < < <	< < < < < < <	1 3 1 2 3	< < < < < < < <	< 1. < < 0. <	.0 < .1 <	6 9 13 10 14	7 11 11 15 12	131 132 125 186 114	~ ~ ~ ~ ~	22 22 19 21 26	92 108 63 135 176	155 1124 501 341 404	4 2 3 2	48 56 53 65 15	5 1 1 1	5 (4 (3 (5 (7 (), 13), 10), 09), 11), 22	3.44 2.69 2.48 3.19 3.69	0.07 0.13 0.14 0.17 0.05	2.00 3.28 1.75 4.07 5.28	0.30 0.63 0.60 0.80 0.56	0.03 0.03 0.05 0.04 0.04	0.03 0.04 0.03 0.04 0.04 0.03	0.02 0.02 0.03 0.03 0.03 0.02
9700N 7025E 9700N 7075E 9700N 7100E 9700N 7150E 9700N 7175E	S S S S S	26 36 58 52 56	0.3 0.3 0.3 0.6 0.4	49 4 13 34 26	27 6 7 15 12	84 13 24 44 43	64 7 40 10	< < < < 5	* * * * *	2	~ ~ ~ ~ ~	< < 0 < <	< 2 < < <	17 3 4 23 14	17 2 3 5 5	130 19 49 59 133	* * * * *	36 5 14 20 17	173 89 127 171 184	378 58 259 4100 1714	2 2 4 3	19 3 7 9 20	20 4 3 3 2	13 (1 (3 (13 (7 (), 19), 10), 14), 16), 18	6.98 0.34 0.66 4.18 1.90	0.05 0.02 0.05 0.04 0.14	5.60 0.39 2.62 4.48 4.09	0.65 0.03 0.17 0.22 0.42	0.03 0.09 0.07 0.03 0.05	0.03 0.02 0.03 0.02 0.02	0.01 0.01 0.03 0.04 0.03
9700N 7200E 9700N 7250E 9700N 7255E 9700N 7275E 9700N 7300E 9700N 7325E	5 5 5 5 5 5	30 12 7 86 11	0.3 0.3 0.3 1.4 0.2	41 26 21 24 24	12 10 15 14 16	62 56 48 69 39	35 17 30 27 48	~ ~ ~ ~ ~	<	1 1 2 2 2	~ ~ ~ ~	* * * *	< < < < <	19 29 12 13 8	11 7 8 9 8	110 125 83 94 149	* * * * *	23 17 21 19 25	158 192 159 147 157	4106 4180 480 511 220	5 4 3 4 4	35 23 26 24 46	2 2 4 2 8	וז 7 7 9), 18), 21), 18), 22), 22), 19	3.96 2.22 3.77 3.33 5.36	0.16 0.25 0.13 0.15 0.06	4,25 4,50 4,46 3,32 4,61	0.90 0.71 0.43 0.47 0.29	0.06 0.07 0.03 0.04 0.03	0.03 0.02 0.03 0.03 0.03	0.05 0.05 0.02 0.03 0.02
9700N 7350E 9700N 7375E 9700N 7400E 9700N 7425E 9700N 7450E	\$ \$ \$ \$ \$ \$	30 9 7 <	0.3 0.4 0.3 0.8 0.5	29 31 41 14 20	19 14 16 9 8	53 49 66 16 25	65 15 23 20 11	7 < < < <	* * * * *	1 2 ~ 6	N. N. N. N. N.	< < < < < 0	<	14 13 14 1 1	11 9 14 3 3	152 128 124 81 58	* * * * *	25 20 28 11 8	134 142 144 15 26	442 633 465 57 43	5 5 4 5 2	36 31 53 33 16	14 2 2 1 1	14 6 7 1 2	0.21 0.18 0.22 0.02 0.02	5.78 2.68 3.20 1.28 0.67	0.10 0.23 0.31 0.39 0.15	3.96 3.81 3.87 0.18 0.47	0.70 0.64 1.19 0.10 0.0B	0.04 0.07 0.06 0.02 0.05	0.03 0.03 0.04 0.03 0.03	0.03 0.02 0.02 0.04 0.04
9700N 7475E 9700N 7525E 9700N 7550E 9700N 7675E 9700N 7700E	S S S S S	< 10 41 12 84	0.4 0.4 0.3 0.7 0.7	7 14 22 19 17	10 12 13 16 19	36 28 61 27 27	6 28 31 57 57	* * * * *	* * * * *	1 H 1 H 2 H 1 H	* * * * *	< 0 < 0 < 0 < 7	.5 .3 ~	1 5 13 10 8	3 6 12 5 7	94 119 137 33 70	* * * * *	4 16 29 24 26	12 87 97 204 214	236 415 489 491 219	3 4 4 × 2	57 50 65 7 15	1 1 5 9 3	1 2 9 10 4	0.01 0.06 0.21 0.22 0.23	0.37 2:01 3:03 4:97 1:59	0.94 0.31 0.41 0.08 0.06	0.23 1.06 2.29 3.28 4.56	0.16 0.39 1.11 0.69 0.36	0.04 0.03 0.04 0.02 0.04	0104 0103 0104 0102 0102	0.05 0.03 0.03 0.02 0.02
Min Limit			5 0.1	1	2		5	5	3	1	10	2	 D. 1		1	2	5		2		2	1	1		0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01

Max Reported* Method ----No Taet

INTERNATIONAL PLASMA LABORATORY LTD.

CERTIFICATE ' ANALYSIS iPL 97J1058

s a second s

2036 Columbia Cireet Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

.

Misty Mountain Gold Ltd.		93	Sample	es	Out: Oct 30, 1997	In: Oct 21,	1997	[1]	05814:07:4	2:79103097]
Shipper : Ron Konst	CODE	AMOUNT	TYPE	PREPARA	TION DESCRIPTION				PUL	P REJECT
Shipment: PO#:	B111	93	So11	Dry & s	sift to -80 mesh, disc	ard reject.			12M/Di	: OOM/Dis
Analysis:	_						NS=No Sample	Rep=Replicate	M≠Month	Dis=Discard
Au(FA/AAS 20g) ICP(AgR)30	Ana	ιτάςτις	al Sur	mary-						
r	## Code	Method	Units	Descrip	otion		Element	Lin	iit L	imit .
Comment:	01 0312	244/43	pob	A., FA/A	NAS fipish 20a		Gold	L	.ow r	11gn 2000
	02 0721	ICP	000	An ICP	via i misii eog		Silver	ſ	.i (, a a a a a a a a a a a a a a a a a a a
	03 0711	ICP	DDM	Cu ICP			Copper	•	1 20	0000
Document Distribution	04 0714	ICP	ppm	Pb ICP			Lead		2 20	0000
1 Misty Mountain Gold Ltd. EN RT CC IN FX	05 0730	ICP	ppm	Zn ICP			Zinc		1 20	3000
1020 - 800 West Pender Street 1 2 2 2 1										
Vancouver DL 3D EM BT BL	06 0703	ICP	ppm	As ICP			Arsenic		5 !	3999
B.C. V6C 2V6 0 0 0 0 1	07 0702	100	ppm	S5 ICP			Antimony		5	999
Lanada Abb. Ban Kanat	08 0732	109	ppm 	Hg ICP			Mercury		3 !	3999
Att: Kon Konst Ph: 004/084-0305	1010747	ICP ICP	ppm com	10 JUY TI 300		`	Molyderum		1	999
Fm: tonk@bdoold.com	1010747	TOP	ppm	11 109	(Incomplete Digestion)	Inaliium		10	aaa
	11 0705	ICP	000	Bi ICP			Rismuth		2	9999
	12 0707	ICP	DDM	Cd ICP			Cadmium	ſ). ĩ	99.9
	13 0710	ICP	ppm	Co ICP			Cobalt		1	9999
	14 0718	ICP	ppm	NI ICP			Nickel		1 9	3999
	15 0704	ICP	ppm	Ba ICP	(Incomplete Digestion)	8ar1um		2	9999
	16 0727	ICP	ppm	W ICP	(Incomplete Digestion)	Tungsten		5	999
	17 0709	ICP	ppm	Cr ICP	(Incomplete Digestion)	Chromium		י ר	9999
	18 0729	ICP	ppm	V ICP			Vanad1um		2	9999
	19 0716	ICP	ppm	Mn ICP		、	Manganese		1	3999
	20 0/13	ICP	ppm	La ICP	(Incomplete Digestion	I)	Lanthanum		2	3999
	21 0723	ICP	ppm	Sr ICP	(Incomplete Digestion	1)	Strontium		1	9999
	22 0731	ICP	ppm	Zr ICP			Zinconium		1	9999
	23 0736	ICP	ppm	Sc ICP			Scandium		1	9999
	24 0726	ICP	z	TH ICP	(Incomplete Digestion	1)	Titanium	Ó	.01	1.00
	25 0701	ICP	2	AT ICP	(Incomplete Digestion	(ו	Aluminum	0	.01	9.99
	26 0708	ICP	X	Ca ICP	(Incomplete Digestion	(ו	Calcium	0	.01	9.99
	27 0712	? ICP	7	Fe ICP	•		Iron	. 0	.01	9.99
	28 0715	I I CP	· <u>x</u>	Mg ICP	(Incomplete Digestion	1)	Magnesium	Q	.01	9,99
	29 0720) ICP	X	K ICP	(Incomplete Digestion	າ)	Potassium	0	.01	9,99
	3010722	ICP	· 1	Na ICP	' (Incomplete Digestion	ר)	Socium	0	.01	5.00
DIDICATE	31 0719	D ICP		P ICP	Ì		Phosphorus	0	.01	5.00
DUPLICATE										
								(

EN=Envelope # RT+Report Style CC=Copies IN=Invoices Fx=Fax(1=Yes 0=No) Totals: DL=Download 3D=3½ Disk EM=E-Mail BT=BBS Type BL=BBS(1=Yes 0=No) ID=C008501 * Our liability is limited solely to the analytical cost of these analyses.

2=Copy 2=Invoice 0=31 Disk

BC Certified Assayer: David Chiu

CERTIFICATE (ANALYSIS iPL 97J1058

the second se

2036 Columbia Arreet Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

INTERNATIONAL PLASMA LABORATORY LTD

Client : Project:	M Fi	isty eath	Mou er (untai Grid	n Goli	d Ltd.			9 3 93	3 3=Sc	Samj M	ples						(10	5814:	07:42	:7910	3097]			Out: In :	0c 0c	t 30, t 21,	199 199	7 7	Pag Sec	ge ction	1 c 1 c	⊪f 3 ≽f 1
Sample	Nar	me	•	Аи ррЬ	Λg ppm	Cu ppm	Pb ppm	Zn ppm	As 5 ppm pp	Sb xm	Hg ppm p	Мо ТІ рліррл	Bi Popen	Cd pp#	Co ppm	NH ppm	Ba ppm j	W mqq	Cr ppm	V motod	Mn ppm	La ppm	Sr ppm	Zr ppm	Sc ppm	T i 7	41 7	Ca X	Fe X	Mg X	K Z	Na X	Р Х
27300N 27300N 27300N 27300N 27300N 27300N	90 90 90 90 90	500E 525E 550E 575E 600E	8 5 5 5 5	* * * * *	0.1 < 0.1 <	27 30 6 17 13	15 10 9 11 12	51 59 22 52 44	75 89 21 18 12	* * * * *	* * * * *	1 × 2 × 2 ×	* * * *	~ ~ ~ ~ ~	8 10 6 7	10 11 4 8 8	69 66 27 36 36	~ ~ ~ ~ ~	18 23 12 13 14	137 174 235 204 161	243 262 121 179 251	4 3 2 3 3	14 12 16 17 20	3 8 1 2 2	6 0. 8 0. 2 0. 3 0. 4 0.	09 15 21 14 13	4.82 7.14 1.25 3.34 2.49	0.07 0.06 0.08 0.11 0.13	4.78 5.74 4.57 6.13 4.38	0.62 0.51 0.20 0.34 0.57	0.03 0.02 0.03 0.03 0.03 0.03	0.02 0.02 0.03 0.03 0.03	0.03 0.03 0.01 0.02 0.02
27300N 27300N 27300N 27300N 27300N 27300N	90 90 90 90 90	625E 650E 675E 700E 850E	~~~~	* * * *	* * * *	31 22 20 15 32	9 8 16 11 16	69 62 58 46 92	68 62 54 39 37	~ ~ ~ ~ ~	* * * *	2 1 1 1 1		0.5 0.7 0.2 1.0	11 11 9 7 13	13 11 11 9 15	58 66 81 69 197	* * * * *	24 18 18 13 24	142 107 95 92 136	329 286 284 215 455	4 5 5 3 6	18 33 37 30 113	11 3 3 1 5	10 0. 7 0. 6 0. 4 0. 10 0.	18 15 13 12 12	7.47 5.14 4.3B 2.91 3.57	0.08 0.15 0.16 0.12 0.56	5.29 2.78 2.21 1.58 2.73	0.67 0.59 0.69 0.53 1.1D	0.02 0.03 0.05 0.03 0.06	0.02 0.03 0.03 0.03 0.03	0.02 0.03 0.03 0.02 0.02
27300N 27300N 27300N 27300N 27300N 27300N	90 90 90 90 90 91	875E 900E 925E 950E 025E	5 5 5 5 5 5 5 5	< < < < <	~ ~ ~ ~ ~	35 33 45 35 9	11 13 14 13 11	74 77 79 88 39	58 52 25 48 17	~ ~ ~ ~ ~	< < < < <	 1 1 4 		0.6 D.2 2.5 0.1 0.7	14 16 19 17 8	15 16 15 17 7	173 174 182 219 68	~ ~ ~ ~ ~	22 24 21 23 12	116 123 129 136 98	398 593 1081 713 267	6 5 7 7 3	93 69 83 114 33	4 5 5 6 2	10 0. 11 0. 11 0. 11 0. 4 0.	12 12 12 13 13	4.56 5.19 3.84 4.23 1.99	0.35 0.24 0.35 0.45 0.18	2.76 3.73 4.00 4.20 2.72	0.99 1.01 0.96 1.12 0.55	0.04 0.05 0.05 0.05 0.05 0.04	0.04 0.04 0.04 0.04 0.04	0.04 0.03 0.03 0.03 0.03 0.03
27300N 27300N 27300N 27300N 27300N 27300N	91 91 91 91 91	050E 075E 100E 150E 175E	55555	< < < < < <	* * * * *	25 23 17 23 19	12 17 8 14 15	57 52 36 40 30	49 66 32 38 70	* * * * *	< < < < <	1 3 3 2 2		* * * *	11 9 7 8 6	11 10 7 9 8	52 53 55 52 52	* * * * *	23 21 16 21 20	160 146 171 186 112	341 275 234 253 305	3 4 2 4 4	15 17 21 14 12	5 6 2 4 5	60. 70. 50. 70. 60.	18 15 15 16 10	4.73 5.88 3.58 5.12 5.84	0.09 0.08 0.09 0.08 0.08	4.38 4.53 4.39 5.92 4.78	0.72 0.52 0.35 0.49 0.30	0.03 0.03 0.02 0.03 0.03	0.03 0.03 0.03 0.03 0.03	0.02 0.03 0.02 0.03 0.03 0.03
27300N 27300N 27300N 27300N 27300N 27300N	91 91 91 91 91 91	1200E 1225E 1250E 1275E 1300E	55555	< 5 13 <	* * * * *	48 34 24 19 95	12 11 12 7 13	67 40 41 18 59	173 119 87 196 157	* 57 * 7	< < < < <	5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	• • • • • • • • • • • • • • • • • • •	* * * •	18 9 8 5 12	13 7 8 4 15	211 57 51 34 134	* * * * *	13 17 19 10 18	160 107 127 177 89	1207 380 330 127 296	5 3 6 3 9	44 17 14 8 44	4 6 8 2 5	12 0. 8 0. 10 0. 4 0. 10 0.	14 11 11 10	7.77 7107 6.26 2.96 8,52	0.24 0.08 0.08 0.06 0.46	6.17 4.67 5.14 4.50 3.10	0.98 0.35 0.44 0.21 0.78	0.08 0.03 0.04 0.03 0.12	0.05 0.03 0.03 0.02 0.02	i 0.06 i 0.05 i 0.04 2 0.02 5 0.07
27300N 27300N 27300N 27300N 27300N	91 91 91 91 91	1350E 1375E 1400E 1425E 1450E	55555	< < 8 <	~ ~ ~ ~ ~ ~ ~ ~ ~	28 15 99 49 4	10 3 7 6 6	67 51 36 72 60	85 28 27 27 67	* * * * *	~ ~ ~ ~ ~	3 2 3 2 6		< < < 0.1	12 11 15 12 14	14 12 17 11 6	92 116 89 148 98	~ ~ ~ ~ ~	16 17 14 15 11	126 104 81 71 81	541 607 515 429 2708	5 3 14 8	30 22 30 51 19	1 1 2 2 1	50. 40. 80. 70 30	.05 .06 .01 .03 .01	3.27 2.73 2.54 2.50 2.02	0.26 0.20 0.56 0.72 0.35	5.47 5.44 4.95 3.45 4.75	D.70 0.79 1.00 1.02 0.62	0.07 0.06 0.10 0.11 0.07	0.0 0.0 0.0 0.0	i 0.03 i 0.02 i 0.06 i 0.06 i 0.04 i 0.02
27300N 27300N 27300N 27300N 27300N	1 9 1 9 1 9 1 9 1 9	14758 15008 15258 15508 15758	555555	< < < < <	* * 0.2 * 0.1	11 B 31 9 10	6 4 12 4 6	61 15 81 43 43	340 116 92 16	* * * * *	* * * * *	17 3 4 2 3			10 2 72 72 72 72 19	7 2 12 5 4	91 14 66 42 63	* * * * *	12 3 20 11 11	178 58 103 143 134	1136 221 1726 622 2926	4 5 5 2 2	25 4 11 14 15	1 < 8 1 2	2 0 1 12 0 4 0 2 0	.02 .03 .03 .02	2.51 0.87 5.27 2.11 2.31	0.35 0.05 0.07 0.15 0.12	117 6.01 9.00 8.28 167	0.38 0.04 0.33 0.38 0.38	0.05	0.0 0.0 0.0 0.0	3 0.05 1 0.02 2 0.04 2 0.03 2 0.03
273001 273001 273001 273001 273001	9 9 9 9 9 9	1600) 1650 1700 1725	E S E S E S	<	< < 0.2	· 9 18 17 24	7 9 6 10	57 80 52 70	48 44 32 33	* * * *	* * * *	322	~ ~ ~	0.6	: 8 5 27 : 9 : 16	6 10 9	62 67 74 103	~ ~ ~ ~	11 17 16 16	128 56 141 137	329 469 312 689	5 5 6 2 2 3 3	19 21 23 31	< < 1 2	30 20 40 60	.01 .03 .03 .02	3.13 3.32 3.29 3.67	0.10 0.12 0.08 0.25	4.87 2.50 5.20 5.36	0.44 0.37 0.66 1.00	0.03	0.0 0.0 0.0 0.0	3 0.03 3 0.03 3 0.02 7 0.02
Min Li Max Re Method	mit por Tes	ted*	10	9999 FA/A	0.1 99.9 1CP	1 20000 ICP	2 20000 ICP ample	1 20000 ICP De1	5 9999 ICP =Delay	5 999 ICP	3 9999 ICP Max=M	1 3 999 99 ICP 10 10 Est	10 2 19 9999 10 ICI imate	2 0.1 9 99.9 9 ICI Rec	I 1 9 9999 9 ICF ==ReCt	1 9999 900 ICP Mack	9999 ICP	5 999 ICP 1000	1 9999 ICP	2 9999 ICP =Est1	9999 ICF mate	2 9999 9999 91CP	1 9999 ICP NS-No	1 9999 ICP Samp	1 0 9999 1 ICP 1eS=So1	.01 .00 ICP 1	0.01 9.99 ICF	0.01 9.99 1CF	0.01 9.99 ICP	0.01 9.99 ICP	0.01 9.99 ICF	0.0 5.0 IC	1 0.01 0 5,00 P ICP

.

.

CERTIFICATE (ANALYSIS iPL 97J1058

· · · · · · · · ·

2036 Columbia Threet Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

and the second second

INTERNATIONAL PLASMA LABORATORY LTD.

Client : Project:	Misty Feath	Mou er G	ntai Irid	n Golo	d Ltd.			9 9	3 3≖So	Sam)	ple	3					[10	5814:	07:42	:7910	3097]			0u In	t: Do : Do	:t 30 :t 21	, 1993 , 1993	7 7	P S	age ectio	2 n 1	of 3 of 1
Sample	Name		Au ppb	Ag ppm	Сл ррт	РЬ ррт	Zn ppm	As ppm p	Sb opm	Hg ppm p	Mo T pom pp	l Bi n ppm	Co ppr	í Co n ppm	Ni ppm	Ва ррт	W ppm	Cr ppm	V ppm	Mri ppm	La ppm	Sr ppm	Zr ppm	Sc ppm	Т 1 %	רא ג	Ca Ż	Fe 1	Mg Ž	к Z	Na X	р Х
27300N 27300N 27300N 27300N 27300N 27300N	91750E 91775E 91800E 91900E 91925E	ន ទ ទ ទ ទ ទ ទ	< < 6 16	< < 0.1 5.2	23 21 23 49 28	6 7 8 10 82	63 69 71 76 82	22 30 37 46 113	* * * * *	* * * * *	1 2 3 1 3	~ ~ ~ ~ ~ ~ ~	0.3	24 22 22 3 3 3 5	9 8 9 17 13	100 116 193 171 164	< < < < < <	14 15 18 32 13	142 140 172 143 103	1419 1293 734 390 237	3 3 4 9 9	44 39 38 68 49	2 1 2 4 1	6 (6 (7 (12 (3 ().03).03).03).11).02	2.90 2.94 3.58 3.07 1.72	0.33 0.29 0.21 0.58 1.08	5.44 6.14 6.30 4.31 5.31	0.98 1.18 0.92 1.03 0.14	0.09 0.11 0.07 0.05 0.03	0.08 0.07 0.06 0.07 0.03	0.04 0.04 0.02 0.04 0.05
27300N 27300N 27600N 27600N 27600N	91975E 92000E 90500E 90525E 90525E	ន ទ ទ ទ ទ	6 < < < <	< 0.1 < 0.1	10 7 2 15 8	10 11 8 9 11	25 18 6 51 31	66 39 13 43 18	* * * * *	< < < < <	2 < 2 < 4	<	0.6 0.2 0.2 0.6	5 7 2 5 2 2 6 8 4 5	10 4 13 7	30 19 53 167 73	* * * * *	32 17 5 18 12	118 131 22 68 64	203 140 42 235 169	6 2 3 6 3	18 13 22 88 36	4 1 1 2 2	9 (4 (1 (5 (3 (0.13 0.12 0.05 0.07 0.10	4.60 2.07 0.72 3.83 1.77	0.14 0.11 0.04 0.19 0.11	2.45 1.57 0.22 2.48 2.26	0.60 0.30 0.05 0.51 0.32	0.04 0.01 0.04 0.05 0.04	0.03 0.03 0.02 0.03 0.03	0.02 0.01 0.01 0.05 0.02
27600N 27600N 27600N 27600N 27600N 27600N	90575E 90600E 90625E 90675E 90700E	5555	< 8 < < <	0.2 0.1 0.2	16 16 26 20	9 12 9 14 12	35 47 17 55 41	34 44 21 55 41	~ ~ ~ ~ ~	< < < < <	1 2 1 1 2	· · · · · · · · · · · · · · · · · · ·	D. 0. 0.	5 6 < 7 2 3 1 9 < 10	8 11 5 10 7	91 128 80 104 67	~ ~ ~ ~ ~	14 19 9 21 22	70 118 55 145 199	173 185 67 244 232	5 3 3 5 9	43 21 29 33 16	1 4 1 3 9	2 (5 (2 (7 (8 (0.05 0.10 0.08 0.11 0.18	2.86 4.04 1.56 4.68 5.20	0.20 0.07 0.08 0.18 0.08	1.30 3.74 0.95 3.15 5.63	0.40 0.40 0.14 0.61 0.27	0.04 0.02 0.04 0.04 0.02	0.03 0.03 0.02 0.03 0.03	0.04 0.01 0.02 0.04 0.02
27600N 27600N 27600N 27600N 27600N	90725E 90750E 90775E 90800E 90825E	5555	<	~ ~ ~ ~ ~ ~ ~ ~	20 45 8 31 10	12 15 17 15 18	43 99 26 64 32	58 36 12 82 16	~ ~ ~ ~ ~	* * * *	2 2 1 1	र - र - र - र -	0. 0. 0. 0.	< 19 1 20 1 6 6 10 5 8	8 14 6 11 6	67 171 51 60 39	< < < < <	22 24 14 23 13	149 137 186 125 112	200 851 156 325 265	3 8 2 5 3	18 101 18 24 18	8 6 2 4 2	9 (14 (3 (8 (4 (0.15 0.15 0.17 0.13 0.16	5:17 3.72 1.94 6:50 1.87	0.08 0.67 0.08 0.15 0.12	4.47 4.47 3.75 2.77 2.23	0.31 1.26 0.34 0.63 0.52	0.02 0.08 0.02 0.02 0.02	0,03 0.06 0.03 0.03 0.03	0.02 0.03 0.01 0.05 0.02
27600N 27600N 27600N 27600N 27600N 27600N	908508 908758 909008 909758 910008	50555	v 9 v v v	0.2 0.1 0.2 0.2 0.5	26 5 6 10 8	10 17 15 9 8	41 21 20 25 34	38 13 14 38 12	* * * * *	~ ~ ~ ~ ~	1 1 2 <	* * * * *	• 0. • 0. • 0. • 0.	< 12 6 7 5 4 3 4 3 1	19 4 3 6 4	24 30 45 69 33	* * * * *	27 8 9 13 9	174 269 111 49 23	292 174 129 140 64	2 2 4 4 2	14 14 20 28 25	16 2 1 <	5 3 2 2 1	0.22 0.22 0.09 0.05 0.02	3.96 1.56 1.78 2.27 0.67	0.11 0.12 0.10 0.22 0.33	4.89 2.77 2.46 1.03 0.51	0.57 0.28 0.21 0.33 0.11	0.03 0.03 0.04 0.04 0.02	0.03 0.03 0.02 0.03 0.03 0.03	0.03 0.01 0.01 0.03 0.05
27600N 27600N 27600N 27600N 27600N 27600N	910258 910508 911258 911508 911758	55555	* * * * *	< < < < < <	8 13 12 26 26	12 10 15 12 12	19 33 32 54 50	25 14 14 53 45	* * * * *	* * * * *	1 2 2 4	~ ~ ~ ~	< 0. < <	1 4 < 7 < 6 < 9 < 9	5 6 7 10 12	38 40 41 59 63	* * * * *	9 19 13 22 17	76 185 153 141 156	111 201 138 264 290	3 3 4 3 3	14 9 11 14 19	1 5 9 3	2 4 3 8 5	0.15 0.18 0.10 0.13 0.13	1.70 3.02 2.44 5.06 4.29	0.08 0.05 0.05 0.06 0.13	1.25 6.37 4.16 4.75 4.54	0.21 0.39 0.25 0.50 0.53	0.03 0.03 0.04 0.03 0.03 0.02	0.02 0.02 0.02 0.02 0.02	0.02 0.02 0.01 0.02 0.03
27600N 27600N 27600N 27600N 27600N	912000 912250 912500 912750 912750 912750	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	< 18 < 9 <	* * * * *	27 18 27 25 25	10 8 15 12 10	50 32 60 37 69	82 18 56 33 58	* * * * *	* * * * *	2 - Saladad va 1 - Saladad va 1 - Saladad va	* * * * * *	< < < <	< 9 < 9 < 11 < 6 < 23	10 6 9 6 6 1	53 36 35 48 61	* * * * *	17 12 22 14 20	170 174 165 151 142	302 210 651 230 736	4 2 4 4 6	22 11 10 13 27	2 1 4 3 2	5 3 7 6 9	0.11 0.05 0.11 0.14 0.13	3.90 2.62 5.60 4.52 4.93	0.11 0.05 0.06 0.11 0.13	3.82 4.85 5.31 6.11 4.37	0.61 0.24 0.39 0.43 0.66	0.03 0.02 0.03 0.05 0.03	0,03 0,02 0,02 0,04 0,03	0.03 0.02 0.04 0.03 0.03
27600N 27600N 27600N 27600N	91325 91350 91425 91450	E S E S E S	< < < <	<	24 16 5 20	9 12 9 8	54 55 22 33	52 38 × 50	* * * *	< < < <	1 1 2 2	~ ~ ~ ~	< 0. < D. <	1 14 4 11 < ! < 10	1 9 1 9 5 3 0 8	73 76 32 41	~ ~ ~	17 16 7 23	121 113 177 145	444 421 250 227	6 4 3 4	34 19 11 8	3 3 1 7	7 4 2 7	0.12 0.11 0.10 0.15	4.79 3.83 1.71 4.98	0.19	3.98 3.68 4.70 5.37	0,68 0,51 0,37 0,43	0.04 0.04 0.03 0.03	0.04 0.03 0.02 0.02	0.03
Min Lin Max Rep Method =No 1	lit ported* [est	Ins	5 9999 FA/A =1ns	0.1 99.9 ICP uffic	1 20000 ICP 1ent Si	2 20000 1CP ample	20000 ICP De1	5 9999 ICP -Delay	5 999 ICP	3 9999 1CP Max=M	1 999 9 ICP I ko Est	10 99 999 CP IC Imate	2 0. 9 99. P 10 Re	.1 .9 9999 CP 1Cl sc=ReCl	1 1 9 9999 9 1CP meck	9999 99999 • ICF	5 999 1CP	1 9999 ICP	2 9999 ICP Esti	1 9999 ICP	9999 1CP	1 9999 ICP NS=No	1 9999 ICP Samp	1 99999 ICP 1eS=Sc	0.01 1.00 ICP	0.01 9.99 1CF	0.01 9.99 ICP	0.01 9.99 ICP	0.01 9.99 ICF	0.01 9.99 , ICP	0.01 5.00 ICF	0.01 5.00 ICP

CERTIFICATE ANALYSIS iPL 97J1058

•

2036 Columbia 9et Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

. .

.

INTER	INATIONAL	ASMA LABORAT	087 LTD.	
Hent:	Misty	Mountain	Go 1d	Ltd,

Client Project	: Mis : Fea	sty Ma ather	Grid	in Gol	d Ltd.			<u> </u>	93=S	Sam	ples	5					[10	5814:	07:42	2:7910	3097]			Out: In :	Oc Oc	t 30 t 21	, 199 , 199	7 7	F	'age Sectio	3 n 1	of 3 of 1
Sample	Name	•	Ал роб	Λg ppm	Cu ppm	Pb ppm	Zn ppm	As ppm	Sb ppm	Hg ppm (Мо Т ортпрр	8 1 9 99 11	ן אין די זיכן די	Xi Co xm ppm	o Ni ⊳ppmr	Ba ppm	W ppm	Cr ppm	V pom	Mn ppm	La ppm	Sr ppm	Zr ppm	Sc ppm	1 7	A1 %	Ca Z	fe Z	Mg X	к 7	Na Z	Р Т
27600N 27600N 27600N 27600N 27600N 27600N	9147 9150 9152 9155 9157	75E S DOE S 25E S 50E S 75E S	< 8 < < <	~ ~ ~ ~ ~	20 17 14 8 20	13 9 9 7 9	66 50 44 32 43	43 42 41 16 44	~ ~ ~ ~ ~	~ ~ ~ ~ ~	1 1 < 1	<	< 0. < 0. < <	.5 14 .3 E < 6 < 5	13 8 8 5 8 5 6 7 7	85 52 39 29 33	* * * * *	16 12 16 9 20	111 118 168 199 225	304 217 204 193 189	3 3 3 3 3 3	30 15 13 10 7	2 1 2 1 6	4 0. 4 0. 3 0.0 2 0.0 6 0.	12 : 11 : 09 : 06 : 11 :	3.32 3.11 3.75 2.22 4.83	0.16 0.07 0.07 0.06 0.03	2.65 2.72 4.37 4.91 6.60	0.79 0.51 0.41 0.36 0.18	0.04 0.03 0.03 0.04 0.01	0.03 0.02 0.02 0.02 0.02	8 0.02 2 0.01 2 0.02 2 0.01 2 0.01
27600N 27600N 27600N 27600N 27600N 27600N	9160 9162 9165 9165 9167 9177	DOE S 25E S 50E S 75E S 75E S	< < < < <	< 0.1 0.1 <	23 23 13 13 5	9 10 6 9	33 65 32 36 10	21 30 8 14 11	~ ~ ~ ~ ~	< < < < <	2 1 2 4	< < < < < <	< < < < 0	 < 21 < 22 < 2 < 2 < 4 < 4 < 4 	5 5 3 9 3 3 3 4 2 4	37 117 24 29 45	* * * * *	12 13 6 10 6	193 133 184 161 16	160 1577 122 189 100	3 4 2 2 4	7 43 3 10 26	2 1 1 1 1	4 0.1 5 0.1 1 0.1 2 0.1 1 0.1	02 2 02 2 03 - 03 - 03 -	2.70 2.81 1.25 1.99 0.48	0.03 0.39 0.01 0.08 0.51	5.17 4.83 3.71 4.75 0.22	0,18 0,89 0,06 0,37 0,11	0.02 0.12 0.02 0.04 0.04	0.02 0.07 0.02 0.02 0.02	2 0.02 7 0.03 9 0.01 2 0.02 8 0.02
27600N 27600N 27600N 27600N 27600N	918 9192 9192 9193 9193 9193	75E S 25E S 50E S 75E S 00E S	10 10 4 12	0.2 < < <	3 5 24 18 6	14 8 11 9 9	30 19 58 51 16	5 17 85 68 6	~ ~ ~ ~ ~	< < < < <	< 1 2 <	< < < < < < <	< 0. < < < < 0	.3 < 4 < 1(< .2	1 1 1 3 0 12 7 9 1 3	37 34 58 58 16	* * * * *	2 8 33 29 8	8 72 135 125 132	46 82 215 207 119	2 2 3 3 3 3	29 15 12 11 7	< 1 12 B 1	<pre></pre>	< 1 13 13 11 12	0.24 1.08 7.17 5.72 0.80	0,50 0.06 0.05 0.04 0.04	0,23 1,20 5,68 4,75 1,82	0,11 0,14 0,40 0,32 0,11	0.02 0.03 0.03 0.02 0.02	0.03 0.02 0.02 0.02 0.02	3 0.02 2 0.01 2 0.02 2 0.01 2 0.01 2 0.01
																			_													

 Min Limit
 5
 0.1
 1
 2
 0.1
 1
 1
 2
 5
 1
 2
 1
 1
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01<

îP1

· ·

INTERNATIONAL PLASMA LABORATORY LTD.

CERTIFICATE ANALYSIS iPL 97J1093

2036 Columbia ret Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879 -7878 Fax (604) 879 -7898

Shipper: Ron Konst Shipper: Poll: Analysis:			<u> </u>	Dumpre		010: NOV 03, 1997	In: Oct 29,	1331	[109	310:22:29:79	1102473
Shipment: PO#: Analysis:		CODE	AMOUNT	TYPE	PREPARA	TION DESCRIPTION				PUL P	REJECT
Analysis:		8111	91	So11	Dry & s	ift to -80 mesh, disca	ard reject.			12M/01s	00M/D1s
					5	.,	•••••	NS=No Sample	Rep=Replicate	M=Month Dis=	Discard
Au(FA/AAS 20g) ICP(AqR)30		Ana	lytic	al Su	mmary-				, ,		
	##	Code	Method	Units	Descrip	otion		Element	Limi	t Limit	
Comment:									Lo	w High	
	01	0312	FA/AAS	ppb	Au FA/A	VAS finish 20g		Gold		5 9999	
	02	0721	ICP	ppm	Ag ICP			Silver	0.	1 99.9	
	03	0711	ICP	ppm	Cu ICP			Copper		1 20000	
Document Distribution	04	0714	1CP	ppm	РЬ ІСР			Lead		2 20000	
1 Misty Mountain Gold Ltd. EN RT CC I	N FX 05	0730	ICP	ррт	Zn ICP			Zinc		1 20000	
1020 - 800 West Pender Street 1 2 2	2 1										
Vancouver DL 30 EM B	T BL 06	0703	ICP	ррт	As ICP			Arsenic		5 9999	
B.C. V6C 2V6 0 0 1	0 1 07	0702	ICP	ppm	SF ICP			Antimony		5 999	
Canada	08	0732	ICP	ppm	Hg ICP			Mercury		3 9999	
Att: Ron Konst Ph:604/684-	6365 09	0717	ICP	ppm	Mo ICP			Molydenum		1 999	
Fx: 604/684-	8092 10	0747	ICP	ppm	TI ICP	(Incomplete Digestion))	Thallium	1	0 999	
Em:AllanE@hdgold	.com										
	11	0705	ICP	ppm	Bi ICP			Bismuth		2 9999	
	12	0707	ICP	ppm	CG ICb			Cadmium	Ů.	1 99.9	
	13	0710	ICP	ppm	Co ICP			Cobalt		1 9999	
	14	0718	ICP	ppm	NI ICP		-	Nickel		1 9999	
	15	D704	ICP	րթո	Ba ICP	(Incomplete Digestion)	>	Bartum		2 9999	
	16	0727	ICP	ppm	W ICP	(Incomplete Digestion)	>	Tungsten		5 999	
	17	0709	IČP	ppm	Cr ICP	(Incomplete Digestion))	Chromium		1 9999	
	18	0729	ĮĊP	ppm	V ICP			Vanadium		2 9999	
	19	0716	ICP	ppm	Mn IÇP			Manganese		1 9999	
	20	0713	ICP	ppm	La ICP	(Incomplete Digestion)	Lanthanum		2 9999	
	21	0723	ICP	ppm	Sr ICP	(Incomplete Digestion)	Strontium		1 9999	
	22	0731	ICP	ppm	Zr ICP		-	Zircontum		1 9999	
	23	0736	ICP	ppm	Sc ICP			Scandium		1 9999	
	24	0726	ICP	I	T1 ICP	(Incomplete Digestion)	Titanium	0.0	1 1.00	
	55	0701	ICP	z	A1 ICP	(Incomplete Digestion)	Aluminum	0,0	9.99	
	26	0708	ICP	z	Ca ICP	(Incomplete Digestion	3	Calcium	<u>0.</u> 0		
	27	0712	ICP	z	Fe ICP	······	,	Iron	0.0	n 9,99	
	26	0715	ICP	z	Mg ICP	(Incomplete Digestion	1)	Magnesium	0.0	1 9.99	
	29	0720	109	X	K ICP	(Incomplete Digestion	ń.	Potassium	0.0	n 9.9 9	
	30	0722	ICP	X	Na ICP	(Incomplete Digestion	í)	Sodium	0.0	5.00	
		0710	זרס	-	B 100						

EN=Envelope # RT=Report Style CC=Copies IN=Invoices Fx=Fax(1=Yes 0=No) Totals: 2=Copy 2=Invoice 0=3½ Disk DL=Download 3D=3½ Disk EM=E-Mail BT=BBS Type BL=BBS(1=Yes 0=No) ID=C008501 * Our liability is limited solely to the analytical cost of these analyses. BC Certific

BC Certified Assayer: David Chiu

INTERNATIONAL PLASMA LABORATORY ETD.

· · ·

٦. .

CERTIFICATE (ANALYSIS iPL 97J1093

a second second

2036 Columbia - ret Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

. . . .

``

Client : Misty M Project: Feather	ountai Grid	n Gol	d Ltd.			9 9	1 1=Sc	Samp 11	les						[109	316:2	22:29	: 79110	0597}			Out In	: No : Oc	v 03, t 29,	1997 1997	1	P S	age ectio	1 1 1	of 3 of 1
Sample Name	Au ppb	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As : pom pi	Sb pm	Hg l ppm pj	4o ⊺1 ⊳m ppm	81 ppm	Cd ppm	Со ррт	N1 ppm	Ba ppm p	W open	Cr ppm	V mqq	Mri ppm	La ppm	Sr ppm	Zr ppm	Sc ppm	T %	A1 7	Ca Z	Fe 7	Mg ⊼	к 7	Na 7	ዮ ጚ
26700N 90500E 8 26700N 90525E 8 26700N 90550E 9 26700N 90550E 9 26700N 90575E 8 26700N 90600E 8		0.1 < 0.3 <	23 14 19 10 9	11 14 9 9 8	69 37 68 20 20	31 25 10 <	* * * * *	* * * * *	2 < 2 < 1 < 1 < 1 <	<	* * * * *	9 5 4 5	10 6 4 3 3	76 42 23 30 30	~ ~ ~ ~ ~	21 18 11 8 8	125 125 132 86 186	257 133 262 121 133	3 3 2 2 2	24 11 B 15 11	10 8 2 1 1	7 0. 5 0. 2 0. 2 0. 2 0.	11 10 01 08	4.35 5.28 2.91 0.84 0.86	0.10 0.03 0.04 0.11 0.05	4.28 4.85 4.74 1.41 2.96	0.43 0.17 0.17 0.18 0.14	0.03 0.01 0.02 0.03 0.02	0.03 0.02 0.02 0.03 0.03	0.01 0.02 0.02 0.01 0.01
26700N 90625E 3 26700N 90650E 3 26700N 90675E 3 26700N 90700E 3 26700N 90700E 3	5 × 5 × 5 × 5 × 5 × 5 × 5 × 5 × 5 × 5 ×	0.2 0.1 < <	13 17 19 25 7	14 12 14 15 4	45 48 40 55 17	31 21 35 49 ×	* * * * *	~ ~ ~ ~ ~	2 < 1 < 2 < 1 < 1 <	~ ~ ~ ~ ~	0.2 < 0.2 <	9 6 8 10 5	6 7 9 10 3	49 45 55 67 51	~ ~ ~ ~ ~	15 17 20 17 6	95 178 147 100 53	516 175 220 259 241	4 2 3 5 2	15 9 20 26 28	2 6 9 4 1	3 0. 6 0. 6 0. 1 0.	07 08 14 12 09	4.62 5.14 5.07 5.72 1.04	0.09 0.03 0.08 0.10 0.07	2.93 6.18 4.48 2.78 1.28	0.29 0.22 0.38 0.60 0.20	0.02 0.01 0.02 0.03 0.02	0.03 0.03 0.03 0.03 0.03	0.03 0.02 0.02 0.03 0.03
26700N 90750E 26700N 90775E 26700N 90800E 26700N 90825E 26700N 90825E 26700N 90875E	S < S 60 S 5 S < S <	~ ~ ~ ~ ~ ~	9 13 24 13 5	10 9 16 9 6	34 48 41 23 28	7 18 37 <	* * * * *	* * * * * *	2 « 1 % « 2 % « 2 % « 1 «	< < < < <	< < < < < <	5 9 8 5 5	6 8 9 4 4	68 85 87 35 53	~ ~ ~ ~ ~	11 12 23 17 7	102 81 113 272 86	198 273 237 129 334	< 2 2 2 3	27 43 20 7 41	1 12 5 1	20 30 90 40 20	.12 .09 .14 .17 .05	1.48 2.38 5.55 2.49 1.17	0.11 0.14 0.06 0.03 0.10	1.95 1.90 4.36 5.45 3.74	0.42 0.45 0.46 0.13 0.20	0.03 0.02 0.01 0.01 0.02	0.03 0.03 0.03 0.02 0.02	0.01 0.02 0.01 0.01 0.01
26700N 90950E 26700N 90975E 26700N 91000E 26700N 91025E 26700N 91025E 26700N 91050E	s < s < s < s < s <	< < 0.1 0.1	4 20 27 18 29	2 14 11 13 19	73 66 83 39 76	× 34 111 19 52	~ ~ ~ ~ ~	* * * * *	4 * 2 * 2 * 2 *	<	* * * * *	6 11 16 8 12	7 11 23 9 15	.58 74 244 46 82	* * * *	12 19 21 15 21	146 134 112 160 131	564 269 602 186 261	< 3 3 3 3 3 3	29 34 80 15 18	1 3 3 3 11	30 50 80 30 80	.05 .13 .12 .19 .14	2:50 4:08 3:37 2:45 5:56	0.30 0.27 0.54 0.06 0.07	9.34 3.01 3.85 4.32 4.36	0.58 0.72 0.92 0.32 0.49	0.03 0.05 0.02 0.02	0:03 0:04 0:05 0:03 0:03	0.03 0.02 0.02 0.02 0.02 0.02
26700N 91075E 26700N 91100E 26700N 91125E 26700N 91125E 26700N 91150E 26700N 91175E	S < S 5 S < S < S <	0.1 0.1 0.1 0.1	29 23 13 34 20	18 13 12 16 11	76 40 34 39 33	62 38 9 44 20	* * * * *	* 3 * * *	2 2 2 6 2	< < < < < <	* * * * *	9 8 6 9 7	10 7 7 8 6	57 44 43 65 45	* * * *	19 19 9 14 12	92 152 152 154 164 121	166 209 216 257 278	3 2 3 2 2 2	18 17 17 27 25	13 9 2 4 2	70 60 30 40 30	12 19 13 18 18	6.36 4.79 2.04 2.73 2.58	0.05 0.09 0.10 0.17 0.18	3.80 5.63 4.20 4.34 3.56	0.30 0.37 0.38 0.40 0.30	0.02 0.01 0.03 0.03 0.01 0.01	0.03 0.03 0.03 0.04 0.04	0.01 0.02 0.02 0.02 0.02
26700N 91200E 26700N 91225E 26700N 91250E 26700N 91250E 26700N 91275E 26700N 91300E	55555555555555555555555555555555555555	0.2 0.2 0.2 0.2	20 26 26 27 24	15 18 17 19 20	28 55 50 60 49	38 39 35 32 49	~ ~ ~ ~ ~	~ ~ ~ ~ ~	2 3 2 2 4	< < < < <	~ ~ ~ ~ ~	7 13 13 9 8	7 8 8 8 9 1 10	46 66 54 69 80	* * * * *	11 17 15 17 18	152 122 136 113 122	215 421 571 328 231	······································	15 19 18 20 24	3 6 2 5 4	3 C 6 C 5 C 6 C 6 C), 17), 15), 13), 12), 13	2.12 4.43 3.98 4.62 4.70	0.08 0.10 0.09 0.08 0.09	4.29 4.23 4.14 4.06 4.34	0.25 0.29 0.49 0.4	5 0.01 9 0.02 9 0.02 1 0.02 1 0.02	0.00	2 0.02 3 0.04 3 0.04 3 0.03 3 0.03 3 0.03
26700N 91325E 26700N 91350E 26700N 91350E 26700N 91375E 26700N 91400E 26700N 91450E	5555	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	2 27 2 21 2 41 5 43 1 35	21 14 22 13 8	48 31 56 51 32	33 20 78 66 309	* * * * *	<	3 3 3 4 4		~ ~ ~	10 9 10 10) 10 8 8) 12) 8 7 11	74 51 58 45 39	* * * * *	21 14 30 20 32	119 143 121 111 113	359 208 243 247 154	3 4 3 6 5	23 18 18 22 16	5 3 11 7 3	5 (5 (9 (5 (5 ().12).12).14).10).06	4.33 3.10 6.69 4.49 4.01	0.09	4.51 5.49 4.90 4.63	0.3 0.2 5 0.3 3 0.4 5 0.3	5 0.0 5 0.0 1 0.0 0 0.0 3 0.0	0,0 2 0,0 2 0,0 3 0,0 2 0,0	\$ 0.03 3 0.03 3 0.03 4 0.04 3 0.03
26700N 91475E 26700N 91500E 26700N 91525E 26700N 91550E	S S S	< 0.1 < 0.1 < 0.1	< 15 2 24 1 13 3 16	6 12 14 12	3) 3(3) 3) 3)	5 13 3 40 5 46 5 27	~ ~ ~ ~	<	2 3 3 2		0.1	1 6 2 1(2 7 2	3 8 0 10 7 7 7 6	75 96 105 88	<	14 24 18 18	140 165 128 188	197 303 129 170	2 3 3	35 36 30 36	2 14 10 10	3 (7 6 4	0.14 0.18 0.13 0.16	1.58 5.39 5.42 4.68	0.12 0.12 0.06 0.06	2.8 5.7 4.3 5.9	7 0.2 9 0.5 5 0.2 2 0.2	7 0.0 6 0.0 7 0.0 6 0.0	3 0.0 2 0.0 3 0.0 2 0.0	4 0.02 3 0.02 3 0.03 3 0.02
Min Limit Max Reported* Method 	999 FA/	5 0. 9 99. A IC	1 1 9 20000 P ICF	2 20000 ICF) 2000) 2000) IC	1 5 5 9999 P ICP 1=Delay	5 999 1CP	3 9999 1CP Max=M	1 1 999 99 ICP IC 10 Esti	9 9999 9 9999 P IC mate	2 0.1 99.9 9 ICI Rec	9 9999 9 10 = ReC	1 1 9 9999 P 1C heck	99999 99999 CICP	5 999 ICP 1000	1 9999 ICP	2 9999 ICP =Est1	1 9999 ICP mate	9999 1CP	1 9999 ICP NS=No	1 9999 ICP Samp	1 9999 ICP 1eS=So	0.01 1.00 ICP 11	0.0 9.99 IC	0.0 9.9 7 IC	0.0 9.9 P IC	1 0.0 9 9.9 P IC	1 0.0 9 9.9 P IC	1 0.0 9 5.0 P 10	1 0.01 0 5.00 P ICP

- - - -

•

CERTIFICATE (ANALYSIS iPL 97J1093 2036 Columbia net Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879 -7878 Fax (604) 879 -7898

a character a

INTERNATIONAL PLASMA LABORATORY LED

Client : Project:	: Misty : Feath	Mount: er Grie	ain 1	Gold	Ltd.			9 9	1 }1≖5⊲	Sam 311	ples	;					[10	9316:	22:29	:7911	0597]			Out In	: No : Oc	ov 03 st 29	, 199 , 199	7 7	Pa Se	ige sottor	2 o 1 l o	F 3 F 1
Sample	Name	A pp	ן קכ	Ag pm	Cu ppm	Pb ppm	Zn ppm	A s ppm p	Sb pm	Hg ppm p	Mo T sprii ppr	l Bi n ppm	Cd ppm	Со ррт	Ni ppm	Ba ppm	W ppm	Cr ppm	V ppm	Mn ppm	La ppm	Sr ppm	Zr ppm	Sc ppm	T 1 7	A1 %	Ca X	Fe X	Mg Z	. x	Na %	P 7
26700N 26700N 26700N 26700N 26700N	91575E 91600E 91625E 91650E 91675E	s s s s s	< 0 < 0 < < 0	.2 .4 .1	17 20 15 12 20	14 13 6 7 13	39 41 25 28 37	12 29 49 12 53	* * * * * * * *	< < < < < < <	4 1 3 2 3		< < < < < <	9 9 7 7 7	8 7 8 5 8	70 54 27 54 38	* * * * *	21 23 25 11 27	234 193 195 174 111	185 274 177 181 188	2 3 < 2 3	22 22 10 25 15	11 11 3 2 10	6 0 6 0 4 0 3 0 6 0	. 20 . 16 . 16 . 17 . 17	4.59 6.31 2.16 1.28 5.63	0.05 0.10 0.07 0.16 0.07	6.23 6.12 5.52 2.78 4.30	0.24 0.34 0.29 0.24 0.37	0.01 0.01 0.01 0.02 0.02	0.03 0.03 0.03 0.03 0.03 0.03	0.02 0.03 0.03 0.01 0.02
26700N 26700N 26700N 26700N 26700N	91700E 91825E 91850E 91875E 91900E	S S S S	< 5 0 < 0 < 0 < 0	< .2 .4 .1	13 6 20 19 22	12 5 16 9 10	63 13 29 36 49	28 11 57 22 94	* * * * *	< < < < < <	2 2 3 2 1	<	<	10 4 6 8 8	11 3 6 8 8	107 31 31 41 42	~ ~ ~ ~ ~	35 8 35 16 30	89 82 138 176 124	233 82 147 196 180	5 3 2 2 3	18 16 11 13 10	6 1 16 3 9	60 10 90 40 80	. 14 . 11 . 12 . 12 . 11	4.09 0.93 6.78 2.39 7.04	0.08 0.09 0.04 0.06 0.04	4.14 1.06 5.27 5.26 4.94	0.72 0.11 0.17 0.35 0.26	0.03 0.03 0.01 0.01 0.02 0.02	0.03 0.02 0.02 0.03 0.03	0.01 0.02 0.03 0.01 0.03
26700N 26700N 26700N 26700N 27000N	91925E 91950E 91975E 92000E 90525E	5 5 5 5 5	< < 0 < 0 <	< < 1.1 .1	20 11 19 19 4	7 12 11 6 4	31 14 34 32 41	42 23 29 11 7	* * * * *	< < < < <	2 1 2 2 2	< < < < < < < < < < < < < < < < < < <	< < < < <	9 4 7 7 13	8 6 8 8 3	26 80 38 38 47	* * * * *	22 20 27 18 10	204 106 106 178 105	206 102 182 236 2657	2 4 4 3 3	14 67 14 16 22	4 1 11 3 2	40 30 60 30 20	.16 .07 .12 .11 .08	3.15 2.40 5.74 2.38 1.40	0.11 0.09 0.07 0.07 0.22	6.05 1.77 4.53 4.37 4.19	0.40 0.27 0.35 0.27 0.34	0.01 0.02 0.02 0.02 0.02	0.03 0.03 0.03 0.03 0.03	0.02 0.03 0.02 0.03 0.03
27000N 27000N 27000N 2700DN 2700DN 27000N	90550E 90575E 90625E 90675E 90700E	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	6 < 0 < 0 <	< < 2.(2.(*	23 15 6 29 26	16 10 ⊀ 15 16	48 59 39 68 53	46 41 158 55 48	* * * 5 *	* * * * *	2 3 4 2 3		0.2 、 、 、 、	9 17 13 11 10	11 9 1 12 10	97 62 43 75 58	~ ~ ~ ~ ~	21 17 10 25 21	84 113 211 129 96	240 654 3276 548 428	6 4 • 3 2	49 36 20 21 16	3 1 4 8 7	50 30 10 90 50	.09 .10 .03 .13 .09	5.27 2.99 1.84 6.89 6.17	0.17 0.36 0.23 0.08 0.06	2.33 3.57 207 4.45 4.69	0.59 0.58 0.10 0.53 0.43	0.03 0.02 0.02 0.01 0.01	0.04 0.03 0.02 0.02 0.03	0.04 0.03 0.03 0.03
27000N 27000N 27000N 27000N 27000N	90800E 90850E 90875E 90925E 90975E	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$	~ ~ ~ ~ ~	< < < < <	28 10 28 29 17	12 7 18 14 9	45 14 40 47 36	46 11 81 149 212	* * * * *	< < < < <	2 3 3 2 3	~ < < < < < < < < < < < < < < < < < < <	< < 0.2	9 3 7 9 9	9 3 7 9 6	56 25 51 60 37	* * * * *	20 11 26 23 21	194 141 157 130 205	281 105 190 253 239	2 3 4 6 2	11 6 12 20 16	6 2 11 11 9	70 20 130 110 50	.15 .08 .13 .15 .19	4.66 2.05 6.39 7.63 4.33	0.07 0.05 0.05 0.12 0.11	6.07 4.97 4.75 2.90 6.79	0.52 0.16 0.35 0.58 0.45	1 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	0.03	0.0
27000N 27000N 27000N 27000N 27000N 27000N	91000E 91050E 91075E 91075E 91125E 91150E	S 3 S 3 S 15 S 15	V 00 V 00 V	* * * * *	9 9 13 16 13	10 12 12 9 14	23 30 28 19 35	68 40 32 26 52	* * * * *	* * * * *	2 1 1 1 2		0.1 0.1	5 7 6 2 7	5 7 4 8	38 44 74 36 54	~ ~ ~ ~ ~	12 11 12 10 15	143 87 62 38 115	143 217 159 92 290	2 3 4 3 2	13 33 22 16 32	2 1 1 1	3 0 3 0 3 0 < 0 3 0), 12), 12), 07), 02), 12	2.17 2.03 1.72 1.21 2.12	0.07 0.20 0.10 0.10 0.15	3.59 1.97 1.76 0.59 2.29	0.32 0.57 0.39 0.20 0.82	2 0.04 7 0.02 9 0.09 9 0.09 2 0.0	0.03 0.04 0.04 3.0.02 4.0.04	0.0 0.0 0.0 0.0
27000N 27000N 27000N 27000N 27000N 27000N	911756 912006 912506 913506 913506 913756	5 5 5 5	* * 2 * *	* * * * *	17 12 10 43 15	11 9 13 11 9	36 22 34 37 31	50 50 24 20 33	* * * * *	< < < < <	1 1 2 2 2		0.1 0.1	10 3 6 11 5	13 4 7 15 8	50 60 79 99 68	* * * * *	19 11 11 24 22	97 64 116 171 64	228 108 168 234 179	3 3 3 3 5	23 31 34 29 40	2 1 1 6 1	3 0 1 0 2 0 7 0 2 0).13).08).11).20).06	2.44 1.68 2.12 4.17 3.12	0.20 0.14 0.14 0.21 0.21	1.82 0.99 2.53 5.22 1.44	0.80 0.30 0.30 0.55) 0.02) 0.03 3 0.03 5 0.0 5 0.0 3 0.0	2 0.04 3 0.02 3 0.02 4 0.05 5 0.05	0.0 0.0 0.0 0.0 0.0 0.0
27000N 27000N 27000N 27000N	914008 914258 914508 914758	5 5 5 5	~ ~ ~ ~	* * * *	13 13 15 13	10 7 14 9	22 33 27 13	36 125 61 19	~ ~ ~ ~	< < < <	4 6 4 2	~ ~ ~	0.2	5 7 6 3	6 7 5 4	71 79 32 27	~ ~ ~ ~	24 17 31 12	109 168 166 109	125 193 165 83	4 2 3 2	22 25 13 7	2 2 14 2	5 0 4 0 6 0 3 0), 10), 11), 16), 10	3.09 3.26 5.62 2.01	0.14 0.28 0.04 0.07	2.14 4.50 6.43 2.29	0.4) 0.4) 0.1) 0.1)	2 0.0 6 0.0 8 0.0 5 0.0	5 0.04 3 0.07 2 0.02 1 0.02	0.0 0.0 0.0 0.0
Min Lim Max Rep Method 	nit xorted* lest	99' FA, Ins•I	5 99 9 /A	0.1 9.9 ICP fici	1 20000 ICP ent Sa	2 20000 ICP	1 20000 ICP De1	5 9999 ICP =Delay	5 999 1CP	3 9999 ICP Max=N	1 999 99 ICP IC to Est	0 2 99999 29 10 Imate	2 0.1 99.9 99.9 ICF	1 9999 ICP = ReCh	1 99999 ICP Heck	9999 ICP	5 999 ICP 1000	1 9999 ICP X	2 9999 ICP =Est1	1 9999 ICP	9999 1CP	1 9999 ICP NS=No	1 9999 ICP Samo	1 (9999 1 ICP 1eS=So1	0.01 1.00 ICP	0.01 9.99 ICF	0.01 9.99 ICF	0.01 9.99 ICP	0.0 9.9 IC	1 0.0 9 9.9 P IC	0.01 9 5.00 P C	0.0 5.0 IC

INTERNATIONAL PLASMA LABORATORY LTD.

CERTIFICATE (ANALYSIS iPL 97J1093

.

.

2036 Columbia et Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879 -7878 Fax (604) 879-7898

۰ ۲

lient :	Misty Mountain Gold Ltd.	
rolect:	Feather Grid	

lient : Misty Mountain Gold Ltd. roject: Feather Grid	91 Samples 91=Soli	Out: Nov 03 [109316:22:29:79110597] In : Oct 29	1, 1997 Page 3 of 3 1, 1997 Section 1 of 1
Sample.Name Au Ag Cu Pb ppb ppm ppm ppm	D Zn As Sb Hg Mo Ti ppm ppm ppm ppm ppm ppm ppm	Bi Cd Co Ni Ba W Cr V Mn La Sr Zr Sc Ti Al ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm	Ca Fe Mg K Na P 7. 7. 7. 7. 7. 7. 7.
27000N 91500E S <	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.06 4.99 0.25 0.01 0.03 0.02 0.06 6.14 0.30 0.01 0.03 0.02 0.04 8.02 0.16 0.01 0.03 0.02 7 0.10 6.03 0.29 0.02 0.03 0.03 0.06 4.12 0.25 0.03 0.03 0.01 0.12 5.80 0.25 0.02 0.03 0.02 0.05 5.49 0.22 0.02 0.03 0.01
27000N 97750E S < < 10 S 27000N 91775E S < < 10 4 27000N 91800E S < < 9 <	3 20 < < < 1 4 30 < < 3 4 < 27 < < 2 4	<pre>< < 3 6 44 < 18 232 222 2 14 2 2 0.16 1.01 < < 7 6 25 < 12 195 212 < 9 2 1 0.09 0.76</pre>	0.03 4.52 0.14 0.03 0.02 0.01 0.02 3.68 0.17 0.02 0.02 0.01
27000N 91900E S < < 11 8 27000N 91925E S < 0.1 19 9 27000N 91975E S < 3 5	3 27 18 < 2 9 35 19 < 3 5 10 < 2 10 < 1	< < 6 6 76 < 19 153 137 2 18 7 4 0.12 3.96 < < 6 5 81 < 19 181 165 2 19 9 4 0.14 4.22 < < 4 3 28 < 15 37 328 2 25 1 2 0.07 0.66	0.04 4.62 0.13 0.01 0.02 0.02 0.05 5.54 0.15 0.01 0.03 0.03 0.17 1.25 0.29 0.05 0.04 0.02

2 1 5 5 3 1 10 2 0.1 5 0.1 Min Limit 1 Max Reported* Method Ins+Insufficient Sample Del=Delay Max=No Estimate Rec=ReCheck m=x1000 Z=Estimate Z NS=No SampleS=Soil -----No Test

APPENDIX IV

A GEOPHYSICAL ASSESSMENT REPORT ON AN INDUCED POLARIZATION SURVEY ON THE HARMONY GOLD PROJECT QUEEN CHARLOTTE ISLANDS BRITISH COLUMBIA

SKEENA MINING DIVISION

LONGITUDE 132°20'W

LATITUDE 53°32'N NTS 103F/7,8,9 & 15

BY

Daniel A. Klit, B.Sc.

LLOYD GEOPHYSICS INC.

JANUARY, 1998

THIS DOCUMENT IS BOUND SEPARATELY AS VOLUME II

i = i = i

.

