FEB 1 1 1998

Gold Contrain singulation of the ASSESSMENT REPORT ON THE VAR 1997 SOIL GEOCHEMICAL AND INDUCED POLARIZATION GEOPHYSICAL SURVEYS AT THE HARMONY GOLD PROJECT SANDSPIT, AMETHYST AND FEATHER GRIDS

GRAHAM ISLAND, QUEEN CHARLOTTE ISLANDS SKEENA MINING DIVISION BRITISH COLUMBIA CANADA

N.T.S. 103F/08,09 Latitude 53°32' N Longitude 132°13'W

MINERAL CLAIMS REFERENCED

Canyon 9-10, El Ninio, Feather 1-2, Ferguson F 1-13, 15, Gold 10, 13, 14, 21, 22, Gw #7, 8, 9, #11 Misty 1-6, V 0-3, 6, 8-15, Qtz 1-2

Prepared for

Misty Mountain Gold Limited 1020-800 West Pender St. Vancouver, B.C. V6C 2V6

by

R.J. Haslinger, P.Eng. OLOGICAL SURVEY BRANCH ASSESSIONT REPORT

APPENDIX IV

A GEOPHYSICAL ASSESSMENT REPORT ON AN INDUCED POLARIZATION SURVEY ON THE HARMONY GOLD PROJECT QUEEN CHARLOTTE ISLANDS BRITISH COLUMBIA

SKEENA MINING DIVISION

LONGITUDE 132°20'W

LATITUDE 53°32'N NTS 103F/7,8,9 & 15

BY

Daniel A. Klit, B.Sc.

LLOYD GEOPHYSICS INC.

JANUARY, 1998

THIS DOCUMENT IS BOUND SEPARATELY AS VOLUME II

MISTY MOUNTAIN GOLD LTD.

A GEOPHYSICAL ASSESSMENT REPORT ON AN INDUCED POLARIZATION SURVEY ON THE HARMONY GOLD PROJECT QUEEN CHARLOTTE ISLANDS BRITISH COLUMBIA

SKEENA MINING DIVISION

LONGITUDE 132°20'W LATITUDE 53°32'N NTS 103F/7,8,9 & 15

BY

Daniel A. Klit, B.Sc.

LLOYD GEOPHYSICS INC.

JANUARY, 1998

TABLE OF CONTENTS

1.0

2.0

3.0

4.0

5,0

6.0

7.0

8.0

DATA PRESENTATION

INTRODUCTION	1
PROPERTY LOCATION AND ACCESS	1
PROPERTY STATUS AND CLAIM HOLDINGS	1
GEOLOGY	5
INSTRUMENT SPECIFICATIONS	5
SURVEY SPECIFICATIONS	6
DATA PROCESSING	7

9.0	DISCUSSION OF RESULTS	 10
10.0	CONCLUSIONS AND RECOMMENDATIONS	13

APPENDICES

Appendix A	Personnel Employed on Survey
Appendix B	Certification of the Author

Page

9

1.0 INTRODUCTION

During the period of October 7th to November 29th 1997, Lloyd Geophysics Inc. carried out an Induced Polarization (IP) survey on three separate grids: Sandspit, Amethyst, and Feather, on the Harmony Gold Project for Misty Mountain Gold Ltd.

The purpose of the survey on all three grids was to identify areas of sulphide mineralization. In addition, on the Sandspit grid, it was hoped that the location of the Sandspit fault could also be determined.

2.0 PROPERTY LOCATION AND ACCESS

The property is located approximately 35 kilometres southeast of Port Clements, British Columbia, at 53°32'N latitude, 132°20'W longitude, NTS 103F/7,8,9 & 15 in the Skeena Mining Division. (Figure 1)

Access to the property is by truck south along the Yakoun River or Florence River logging roads.

3.0 PROPERTY STATUS AND CLAIM HOLDINGS

The Harmony Gold Project property, located in the Skeena Mining Division, covers about 400 square kilometres. The property consists of four blocks of mineral claims comprising 98 metric four-post claims, 71 two-post claims, and 1 fractional claim totalling 1798 units. Claim location figures as provided by Misty Mountain Gold Ltd. are shown as figures 2.0 and 2.1.

Liovd Ceophysics

4.0 GEOLOGY

For a detailed description of the local and regional geology of the Harmony Gold Project area the reader is referred to a "SUMMARY REPORT on THE HARMONY GOLD PROJECT - SPECOGNA DEPOSIT" by Peter Christopher, August 15, 1997.

5.0 INSTRUMENT SPECIFICATIONS

The equipment used to carry out this survey was a time domain measuring system consisting of a Honda 6500 motor generator and a VIP 4000 transmitter manufactured by Iris Instruments Ltd, Orleans, France and a six channel IP-6 receiver manufactured by BRGM Instruments, Orleans, France.

The transmitter was operated with a cycle time of 8 seconds and the duty cycle ratio: [(time on)/(time on + time off)] was 0.5 seconds. This means the cycling sequence of the transmitter was 2 seconds current "on" and 2 seconds current "off" with consecutive pulses reversed in polarity.

The IP-6 receiver can measure up to 6 dipoles simultaneously. It is microprocessor controlled, featuring automatic calibration, gain setting, SP cancellation and fault diagnosis. To accommodate a wide range of geological conditions, the delay time, the window widths and hence the total integration time is programmable via the keypad. Measurements are calculated automatically every 2 to 4 seconds from the averaged waveform which is accumulated in memory.

The window widths of the IP-6 receiver can be programmed arithmetically or logarithmically. For this particular survey the instrument was programmed arithmetically into 10 equal window widths or channels, Ch_0 , Ch_1 , Ch_2 , Ch_3 , Ch_4 , Ch_5 , Ch_6 , Ch_7 , Ch_8 , Ch_9 (see Figure 3). These may be recorded individually and summed up automatically to obtain the total chargeability. Similarly, the resistivity (ρ_4) in ohm-metres is also calculated automatically.

The instrument parameters chosen for this survey were as follows:

Cycle Time (T_c) = 8 seconds Ratio (Time On) = 1:1 (Time Off)

Duty Cycle Ratio <u>(Time On)</u> (Time On) + (Time Off)	= 0.5
Delay Time (T _D)	= 120 milliseconds
Window Width (t _p)	= 90 milliseconds
Total Integration Time	= 900 milliseconds

6.0 SURVEY SPECIFICATIONS

The configuration of the pole-dipole array used on each grid survey is outlined below:

Sandspit Grid

The dipole length (x) is the distance between P_1 and P_2 and mainly determines the sensitivity of the array. The electrode separation (nx) is the distance between C_1 and P_1 and mainly determines the depth of penetration of the array.

The Induced Polarization survey was carried out with the current electrode, C_1 , east of the potential measuring dipole P_1P_2 . Here the survey lines were 300 metres apart and measurements were taken for x =25 metres and n = 1,2,3,4,5 and 6.

Feather Grid

The Induced Polarization survey on the Feather grid was carried out with the current electrode, C_1 , west of the potential measuring dipole P_1P_2 . Here the survey lines were 250, 300 and 350 metres apart with measurements taken for x =25 metres and n = 1,2,3,4,5 and 6.

Amethyst Grid

The Induced Polarization survey on the Amethyst grid was carried out with the current electrode, C_1 , north of the potential measuring dipole P_1P_2 . Here the survey lines were 300 to 425 metres apart and measurements were taken for x =25 metres and n = 1,2,3,4,5 and 6.

7.0 DATA PROCESSING

The data collected was processed in the field at the end of each survey day using a portable 486 computer and a Fujitsu printer.

The IP pseudo-sections were plotted out in the field and contoured using in-house software based on the mathematical solution known as kriging.

In the office, the data was transferred to mylar using a pentium computer coupled to an HP DesignJet plotter for the preparation of the final maps and pseudo-sections.

Liove Geophysics

BRGM IP-6 RECEIVER PARAMETERS Figure 3

8.0 DATA PRESENTATION

The data discussed in this report is presented on the following sections and maps:

SANDSPIT GRID

Pseudo-Sections (1:20	$\underline{)00}$

Line No.	Dwg. No.	Line No.	Dwg. No.
34400N	97416-S-01	37700N	97416-S-12
34700N	97416-S-02	38000N	97416-S-13
35000N	97416-S-03	38300N	97416-S-14
35300N	97416-S-04	38600N	97416-S-15
35600N	97416-S-05	38900N	97416-S-16
35900N	97416-S-06	39200N	97416-S-17
36200N	97416-S-07	41000N	97416-S-18
36500N	97416-S-08	41900N	97416-S-19
36800N	97416-S-09	43000N	97416-S-20
37100N	97416-S-10	82500E	97416-S-21
37400N	97416-S-11		

Contour Plan Maps (1:10000)

Chargeability 21 Point Triangular Filter	97416-S-22
Resistivity 21 Point Triangular Filter	97416-S-23
Compilation Map	97416-S-24

FEATHER GRID

Pseudo-sections (1:2000)

Line No.	Dwg. No.
26700N	97416-F-01
27000N	97416-F-02
27350N	97416-F-03
27600N	97416-F-04

Contour Plan Maps (1:10000)

Chargeability 21 Point Triangular Filter	97416 -F -05
Resistivity 21 Point Triangular Filter	97416-F-06

AMETHYST GRID

Pseudo-sections (1:2000)

<u>Line No.</u>	<u>Dwg. No.</u>	
6975E	97416-A-01	
7275E	97416-A-02	
7700E	97416-A-03	
9800N	97416-A-04	East part of line
9800N	97416-A-05	West part of line

Contour Plan Maps (1:10000)

Chargeability 21 Point Triangular Filter	97416-A-06
Resistivity 21 Point Triangular Filter	97416-A-07

9.0 DISCUSSION OF RESULTS

An IP response depends largely on the following factors:

- 1. The volume content of sulphide minerals
- 2. The number of pore paths that are blocked by sulphide grains
- 3. The number of sulphide faces that are available for polarization
- 4. The absolute size and shape of the sulphide grains and the relationship of their size and shape to the size and shape of the available pore paths
- 5. The electrode array employed
- 6. The width, depth, thickness and strike length of the mineralized body and its location relative to the array
- 7. The resistivity contrast between the mineralized body and the unmineralized host rock

Liove Ceophysics

The sulphide content of the underlying rocks is one of the critical factors that we would like to determine from the field measurements. Experience has shown that this is both difficult and unreliable because of the large number of variables, described above, which contribute to an IP response. The problem is further complicated by the fact that rocks containing magnetite, graphite, clay minerals and variably altered rocks produce IP responses of varying amplitudes.

A detailed study has been made of the pseudo-sections which accompany this report. These pseudosections are not sections of the electrical properties of the subsurface strata and cannot be treated as such when determining the depth, width and thickness of a zone which produces an anomalous pattern. The anomalies are classified into 4 groups: definite, probable, and possible anomalies and anomalies which have a deeper source. These latter anomalies are mostly related to deeper overburden cover.

This classification is based partly on the relative amplitudes of the chargeability and to a lesser degree on the resistivity response. In addition the overall anomaly pattern and degree to which this pattern may be correlated from line to line is of equal importance.

SANDSPIT GRID

The geophysical survey on the Sandspit grid was oriented so as to delineate the Sandspit fault and find areas of potential economic grade mineralization similar to that of the Specogna deposit. The IP survey covered the northern two thirds of the known boundaries of the Specogna deposit on lines 34700N and 34400N. The geophysical response over the Specogna deposit is a chargeability/resistivity high which drops off rapidly to the west of the Specogna fault. (see dwg 97416-S-24). The Specogna fault is a postulated subsidiary fault of the major transform Sandspit fault. This rapid decrease in chargeability and resistivity fits nicely with the known location of the fault from drilling and the interpreted location from the calculated resistivity of the airborne EM survey carried out in 1995. To the north of the deposit the location of the Sandspit fault has been based mainly on the interpretation of the airborne survey data (Pezzot, 1997).

The IP survey suggests that the Specogna fault may indeed be a subsidiary of the Sandspit fault. Justification of this is based on a partition of the chargeability/resistivity highs by a chargeability/resistivity low which broadens to the north for up to 900 metres north of the deposit. If this is the case then the Specogna fault trends northwest-southeast from about 84275E on line 34400N to 84100E on line 34700N and then roughly north-south to just north of line 35300N where

it appears to be truncated by a northeast-southwest feature which may be a structural contact. The interpreted edge of the Specogna fault is the only place where the resistivity highs are continuous at depth. To the east of this fault the high resistivity values are only at surface and may be reflecting Skonun formation sediments which are pervasively silicified in the upper portions of the deposit area.

The Sandspit fault would then fit well with the edge of the chargeability high to the east which trends from about 84075E on line 34400N to 83550E on line 35300N where the chargeability high appears to be truncated by the same northeast-southwest structural contact mentioned earlier.

The interpreted Specogna fault extends over 500 metres north of the presently outlined deposit which is open to the north and therefore is worthy of further exploration by drilling.

To the west of the Sandspit fault on line 34400N at about 83550E there is a moderately high chargeability area (roughly 10 to 30 milliseconds) coincident with a resistivity high of up to 1000 ohm-metres which is continuous at depth. Surrounding chargeabilities are much higher (up to 40 milliseconds) suggesting a higher pyrite content and possible alteration zone. If favourable geology exists in this area, follow-up exploration is recommended as the geophysical signature suggests it is a good target for epithermal gold exploration.

The northern part of the Sandspit grid is covered with overburden, therefore little is known about the detailed geology of this area. From the IP survey a few subsurface chargeability anomalies were delineated with values of up to 20 milliseconds. There were no significant resistivity contrasts which may indicate a contact or fault associated with these anomalies. The chargeability did however have consistently higher values on the eastern portion of the grid than the western portion, which may reflect the Skonun formation to the east, and the Haida formation to the west. A subtle breakpoint of roughly 7 milliseconds was used to project the possible location of the Sandspit fault along this contour. This interpreted location of the fault fits well with the fault direction as interpreted from the airborne EM survey however is shifted slightly to the east (see fig 97416-S-24).

FEATHER GRID

The Feather grid was likewise designed to look for a Specogna type deposit associated with the Sandspit fault. The fault itself can be traced following the 20 millisecond contour on the chargeability 21 Point filter map (dwg 97416-F-05) which runs from 91475E on line 26700N to 91525E on line 27600N. To the southwest (grid west) of the fault there is a strong increase in chargeability to over

50 milliseconds, and a gradual increase in resistivity from under 100 ohm-metres on the east side of the Sandspit fault, to about 500 ohm-metres on the western boundary of the chargeability high. Though the line spacing on this grid is somewhat large, there appears to be two distinct geologic trends in the data apart from the northwest-southeast strike of the Sandspit fault. The first trend is delineated by a chargeability high (fig 97416-F-05) with values greater that 35 milliseconds, which runs north-south from about 90950E on line 27000N to 91275E on line 27300N. The second trend is delineated by a resistivity high (say greater than 700 ohm-metres) running at roughly 280°, or almost perpendicular to the chargeability high. The intersection of these two trends would be at roughly 90875E and 26900N. No survey lines were run through these coordinates; therefore if favourable geology exists in this area further exploration by IP on closely spaced lines is recommended prior to drilling, in order to fully determine the full extension of the two anomalous features.

AMETHYST GRID

A strong well defined chargeability anomaly was delineated on line 9800N at 6700E with values up to 20 milliseconds within the anomaly and background values in the neighbourhood of 5 milliseconds. Associated resistivities are moderately low, say 200 to 500 ohm-metres with higher resistivity values of over 1000 ohm-metres flanking both sides of the anomaly. This anomaly indicates a fairly shallow source and should be compared to results from soil geochemistry and surface mapping prior to drilling. No lines were surveyed to the north or south of this anomaly by IP, which would have been useful in delineating the extents of the anomaly and the general trend of the fault or structural contact indicated by the resistivity high.

On line 7700E two narrow, near surface chargeability anomalies were delineated centred on 9725N and 10025N respectively. No significant resistivity contrasts are associated with these anomalies that would indicate structural contacts associated with the anomalies.

10.0 CONCLUSIONS AND RECOMMENDATIONS

The IP survey in the Sandspit grid is believed to have outlined the northern limits of the Specogna fault and possibly the northern direction of the Sandspit fault. The Specogna deposit is within a chargeability/resistivity high. Based on the results of the IP survey, the deposit remains open to the

north of the presently drill indicated limits for approximately 500 metres along the hanging wall contact of the interpreted Specogna fault. Further exploration by drilling is recommended to test for potential expansion of the deposit along the eastern side of this fault to the north. Additional IP is recommended to test the extent of the anomaly to the south.

Secondly, an anomaly comprising a chargeability/ resistivity high signature exists on line 34400N at about 83550E. If favourable geology exists in this area then further exploration by drilling is recommended as well as IP to test for an extension of the anomaly to the south.

On the Feather grid an extrapolated intersection of two near-perpendicular trends delineated by chargeability and resistivity highs is recommended for additional fill-in IP lines and to further delineate the anomalies and follow up drilling if favourable geology exists.

On the Amethyst grid a well defined anomaly flanked by resistivity highs was delineated on line 9800N. Follow up exploration of this anomaly should be based on results from soil geochemistry and surface mapping as this anomaly indicates a fairly shallow source.

Finally, additional IP is recommended to further detail and close off anomalies as the line spacing used on the survey was quite large with respect to the dipole spacing used.

Respectfully submitted,

LLOYD GEOPHYSICS INC.

Daniel all

Daniel A. Klit, B.Sc., Geophysicist

APPENDIX A

PERSONNEL EMPLOYED ON SURVEY

Name	Occupation	Address	Dates Worked
D. Klit	Geophysicist	#455-409 Granville Street Vancouver, B.C. V6C 1T2	Jan 26-28/98
J. Cornock	Geophysicist	#455-409 Granville Street Vancouver, B.C. V6C 1T2	Oct 7-Nov2/97
F. Dziuba	Geophysicist	#455-409 Granville Street Vancouver, B.C. V6C 1T2	Nov 3-29/97 Jan 22-23/97
G. Hoornenborg	Geophysical Technician	#455-409 Granville Street Vancouver, B.C. V6C 1T2	Oct 8-Nov 29/97
B. DeWitt	Helper	#445-409 Granville Street Vancouver, B.C. V6C 1T2	Oct 8-Nov 29/97
D.Blunt	Helper	#455-409 Granville Street Vancouver, B.C. V6C 1T2	Oct 8-Nov 29/97
D. Macrae	Helper	#455-409 Granville Street Vancouver, B.C.V6C 1T2	Oct 7-Nov 29/97

APPENDIX B

CERTIFICATION

I, Daniel A. Klit, of #455 - 409 Granville Street, in the City of Vancouver, in the Province of British Columbia, do hereby certify that:

- 1. I graduated from the University of British Columbia in 1987 with a B.Sc. in Geophysics.
- 2. I am a member in good standing of the Society of Exploration Geophysicists of America, British Columbia Geophysical Society, British Columbia and Yukon Chamber of Mines and the Northwest Mining Association.
- 3. I have practised my profession continuously since 1987.

Vancouver, B.C.

5.0	3.7 6.1 <u>6.6</u>	6.5 6	.6 5.3 5.1 5	4.3 2.7	2.4 2.1 6 3.7	2.8 <u>3.6</u> 3.4 <u>4.8</u>	5.8 <u>5.6</u> 6.8 8.2	135 15.9	14.9 11.6	13.4 <u>13.5</u> 18.1 20.7	14.0 18.8	22 1 28.2 25.1
5.6	8.8	5.6 5	.0 7.0	7.2 5.7	4.1 4.6	5.0 7.8	9.0 12.3 9.1 12.3 10		24.8 23.7	20.7 25.2 28.1 33.1	28.7 27.5 21	^{7.4} 28.8 29.4 33 3 29.5 29.0
		6.4 5	.6 6.8		6.9 5.9 0 8.0	7.1 7.7	10.0 14.5 6.9 10.4 11	16.5 21.0 2.1 16.7 22.9	31,9 54.7	42.9 41.8	19.2 38.5 10 43.0 44.5	a.8 33.6 30.2 37.4 34.7 33.1

1 · · · · ·	
	20245 20505 20255 30005 30255 30605 30
	29736 29301 29736 3000E 30236 30306 30
N = 1	88. 59. 58. 53. 91 /7 64
N = 2	73 68 61 76 61 62 //
N = 3	
1	au. /#. /J. 30. 49. /1,
N - 4	
	89. 86. 54. 48. 48. 91
C = N	100. 68. 49. 49. 62.
N == 6	/8 59 47 57 60
· ·	
i	
· · · · · · · · · · · · · · · · · · ·	
i .	
	2975F 2950E 2975F 3000F 3025E 3050F 30
	4.5 5.3 5.2 4.4 4.1 4.5 6 <u>.</u> 0
	\sim 1
N = 2	7.0 5.0 5.8 5.2 4.3 4.8 5
N ≕' 3	6.0 5.6 8.0 7.1 5.2 6.7
N = 4	6.3 6.3 6.8 6.5 6.7 7
N = 5	6.5 5.8 7.2 7.8 80
N = 6	6.5 5.5 77 84 0
l ·	

075E 3100E 3125E 3150E 3175E 3200E 3225E 3250E 3275E 3300E 3325E 3350E 3375E 3400E 3425E 3450E 3475E 3500E 3525E 3550E 3575E 3600E 3625E 3650E 3675E 370 6.2 4.4 8.4 8.8 8.5 47 1.3 7.1 5.2 5.2 5.6 6.7 6.0 6.2 6.9 6.6 6.4 4.6 5.6 4.5 5.0

110 59 78. 20. 58. 57. 112. 128. 65. 10.5. 180. 110. 156. 170. 59. 54. 164. 15.5 123. 165. 120. 69. 109 55. /6. 54. 50 158 123 169. 160. 46. 🔪 183. 134. 174. 172 108. /6. /3. 68. 48. 197 114 67 6 63 61 40

075F 3100F 3125E 3150E 3175E 3200E 3225E 3:50E 3275E 3300E 3325E 3350F 3375E 3400E 3425E 3450F 3475F 3500E 3525E 3550E 3575E 3600E 3675E 3650E 3675E 370

ÖÖF	3725E	3750E	3775E	.3800E	- 38 <u>2</u> 5E	3850F	3875F	3900E	3925E	3950E	3975E	4000E	4025E	4050E	4075E	4100E	4125E	4150E	4175F	4200F	4225E	4250E	4275E	4300E	ć
	-					1								,		1									

4	Ž.	29	2	2.5	17		26		21.		22.	25.		25.	24	! .	. 50		32	28	5.	34	40.		44	61		83	92		69		92.	13.	1	115.	101.	117	<i>.</i>
ŧ,	48.		28.	17	7.	15.		19.		15.	19).	22.		23.	25.		23.	2	8.	28.		24	23		30.	27.		41.	44.		4 4 .	54	ŀ.	55.	82	-	/8.	84
5	6.	41.	1	9.	14.		14.		15.		14.	18.		21.	23	5.	25.		23.	29).	26.	24.		23.	25.		23.	27.		35.		5 1.	41,		44.	67.	61	
).	50.		30.	15	5.	13.		12.		14.	14	l.	17.		21.	20.		25.	2	4.	27.		27.	25.		21.	25.		22.	27.		31.	28	J.	36.	39	6	56.	52
4	1.	36.	2	6	14,		11.		13.		14.	15.		17.	21		20.		25.	25		28.	28.		23.	23.		25.	24.		26 .		31.	28.		33.	37.	49	۱.
)	30		32	25	5	13.		12		14.	14	i.	13.		17	21.		21	2	5	25		29	26		25.	23.		27.	25.		27.	31	1.	27	51		33.	45

DOE 3725E 3750E 3775E 3800F 3825E 3850E 3875E 3900E 3925E 3950E 3975E 4000E	4025E 4050E 4075E 4100E 4125E 4150E 4175E 4200E 4225E 4250E 4275E 4300E 43
5.3 49 53 5.5 5.7 3.9 3.4 3.8 4.7 4.7 4.6 4.3	4.8 5.4 6.0 5.9 5.7 5.1 5.1 4.2 4.1 4.5 4.3 5.3 4.9
6.1 - 6.2 - 6.0 5.1 5.0 6.6 5.4 4.6 4.9 5.4 5.2 5.9 5.8	5.9 6.0 6.0 6.6 5.9 5.8 5.7 4.5 5.0 5.0 6.1 6.7
6.6 7.0 5.8 4.5 4.9 6.8 6.4 5.2 5.7 6.0 6.1 6.7	4 6.6 6.1 6.3 6.4 6.4 6.2 6.5 5.9 6.3 7 1 7.5 B.2
2.0 7.4 6.6 5.3 4.4 6.4 7.6 7.3 5.3 6.1 7.5 7.1 7.3	6.3 6.6 6.7 6.7 7.0 7.1 6.9 8.0 7.7 8.0 8.6 9.0
1.7 6 5.2 4.8 5.0 5.6 8.2 7.3 6.6 6.6 7.7 7.1	2 ⁷ .8 7.2 7.6 7.8 7.7 8.5 8.0 8.4 9.0 8.9 9.5 9.9 10.4
1.0 6.6 5.6 6.0 5.0 5.0 5.6 8.5 8.2 1.3 1.1 8.2 1.7	7.7 18.3 8.2 8.4 9.4 8.9 9.2 9.4 .10.5 10.6 10.4 10.4 1

	2875F	290	DE :	2925	£ 2	2950E	297	5F	3000E	302	5E	3050)E 3	0756	E 31	100E	3125	5E	3150	E 3	5175E	.3200	E .52	25E	3250	E d	3275E	3300	E 33	25F	33
N = 1	13. 3.5	} .	54.		20.	ذ	9.	38.	4	2.	38.		55.	1	00	99		130.		69.	35		31.	51	1	159.	46	5 .	48.	50.	
N = 2	44.	34.		30		13.	60.		45.	56.		48.		12.	10		92.		107		36.	38.	21	8.	96	2	20.5	51,	73) .	6(
N = 3	48	Ì	27.		29.	2	2.	74	7	H .	65		51		62.	81		74.		65.	.35		38	48	\	32.	21		<u>(</u> 3.	83.	
N = 4		41,		27		30.	23.		79.	79.		64.		43.	5	б.	70.		*i \$.		55.	29.	54	4.	51.		123.	204	× 10).	90
N = 5			41.		36.	.5	6.	21.	8.	2.	81.		56.		51.	44		57		49.	46		39.	58	i.	80.	148	. 2	00.	70.	
N = 6				45		40.	43.		29.	/8.		64.		49.	3	3.	37.		4-}.		43.	56.	4:	2.	52.		/8	1.50	195		62

OE .	3375F	3400E	3425F .	3450E 、	3475E 3	500E 3.	355	OF 3575	5E 3600	DE 3625	E 3650E	3675E .	3700E 37	25E 3750	0E 3775	E 3800	E 38251	5 38 50E	38756 3	9001 3925	E3950E	397
2.3	2	Ĵ 2.8	3 2.9	3.0	^{4.1}	5.2	5.0	4.2	4.2	4.5	4.1	4.1 5.2	5.8	5.5	4.5	5.2	5.2	4.5	.8 47	6	6.8 6.	2 .
2	3.2	5.2	5.4	<u>∕</u> ^{4.1}	5.0	59	· ¦ 5	.9 5.3	5 5.1	5.2	50	6 .2	58	6.5 6.2	2 5.7	5.9	5.2	6.2	5.6	58 7.5	6.3	7.€
3.5		/ (4	4.4	5.3	5.8	4.7	5.1	5.7	5.4	5.3	5.9	5. 4 6.8	8 6.4	6.2	6.4	5.7	5.7	5.6	5.1 6.3	6.8	10.4) 7.	5
5 50		, 2.4	4.1		5.1	5.0	4	8 56	5 53	5.0	6.8	6.8	12	7.3 6.1	1 6.5	<u>∖5.</u> /	4.9	6.3	6.8	8.6 6.7	7.2	7.7
\mathbf{N}	5.1	4.5	໌ (^ຍ ິ 4.8	, ^{5.0}	4.5	4.9	4/	4.5 1 4.8	5.2 8 5.0	5.8	5.2	6.8 ^{8.4}), /?-		6.4	8 <u>3</u>	Ů	6.9 (23	7,4 7.	5
						· •	i ''		, J.U	3.0	5.0	r. Z	<i>i.t</i>	9.4 0.2	2 7.1	7.3	6.9	7.1	7.4	1.5 1.0	18.5 👡	-8 ,1

69. 1.5

2850E 2875E 2900E 2925E 2950E 2975E 3000E 3025E 3050E 3075E 3100E 3125E 3150E 3175E 3200E 3225E 3250E 3275E 3300E 3325E 3350

N = 2 N = 3

N = 1

N = 4 N = 5

	: ; ;		
	: : : 1		
	** **		- - -
OE 3375E 3400E 3425E 3450F 3475E 3500E 34	1-3 3550E 3575E 3600E 3625E 3650E 3675	E 3700E 3725E 3750E 3775E 3800E 3825	E 3850F 3875E 3900F 3925E 3950E 39
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10.3 9.0 8.6 8.6 8.6 9.2 10.9 9.2 9.4 8.8 9.4 9.5 9.0 9.1 9.9 9.2 9.5 10.0	8.7 8.7 8.6 8.4 9.6 9.9 9.4 9.5 8.9 9.2 9.3 10.0 10 9.9 9.6 9.2 9.7 10.0 10
4.0 4.3 51 5.7 65 68 73 2 4.0 5.0 5.2 6.2 5.5 6.8	6 3 7 10.4 11 0 11.3 12 1 6.1 8.6 10.8 11.3 13.1 9.6	9.6 9.8 9.5 $(10.2 - 10)$ 10.3 9.9 9.7 9.9 10.1 9.9 10.2	10.3 10.0 9 B 10.2 10.4 10.4 9.9 10.3 10.2 11.3 11.0 10

52. 20. 24. 21. 26. 25. 43. 36. 13. 13. 39.

18.

24.

25

24.

25.

21

23.

| | | | | | | | | | | | | | | | | | | | | | | | | | | ÷ | | | | | | | | | | | | | | | |
|--------------|---------------------------|------------|-------|---------|---------|-----------|--------|--------|---------|---------------|----------|---------|------------|-------|------|-------------|---------------|----------------|-------------|--------|--------|----------|------------|-------|---------------------------------------|----------|--------|---------|-------------|--------|--------|--------|---------|-----------|---------|-----------|------------|-------------|--------------|--------------|------------|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | _ | | | ·· · | | | | | | | | | | | · · · - | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | • | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | 2850F 2875F 2900F 2925F 1 | 2950E 29.7 | | 3025E | 3050E 3 | 0.755 310 | 0E 312 | SE USO | NE 3176 | S 5000 | xr (200 | RE KUKI | NE 499 | | | 261 40 | | <i>ense e</i> | eran 8 | 1060 L | | | and the | | 101 1 | 16 17 20 | 005 10 | 01 E 10 | | | 045 | | | | | | | | | | |
| | | | | | | | | | | | n 327. | | | ar aa | | | $\frac{1}{1}$ | JYDE J* | •00t 0 | 470t J | 4001 0 | 4/01 .): | | ····. |);;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | iyor so | 06 36 | ZDE DO | 50E 36 | 70t 37 | 00E 37 | 75t 37 | /50E 3/ | 775E - 38 | soor si | 825E - 51 | 850F - 3 | 7875E 39 | 3001 30 | 925E - 39 | 750E - 397 |
| N - 1 | | | | | | | | | | | | | | | | _ | | | | | | | | | | | | | | | | | | | | | | | | | |
| N - 1 | 67 37. 34. 18. 17. | 34. | 25. 3 | 2. 25 | 27. | 35. | 35 | 26. | 4/ | 29 | 35. | 35. | 31. | 30. | 40. | 31. | 27. | 28. | 38 . | 29. | 23 | 49. | 52 | 57 | 45. | 68. | 58. | 50 | 36. | 52 | 36. | 39. | 22. | 44. | 29. | 28. | 31. | JO . | 2 19. | 33 | -52 |
| N = 2 | 65. 49. 42. 24. | 14. 21 | 26. | 29. | 21 | 30 31 | 25 | 2.5 | 47 | 54 | 29 | 24 | 1 4 | | 40 | a tr | <i>،</i> | J.A | m | | 51 | | | | | | · | | | | | | | | | | | | | | |
| ·· – | | | 201 | 2.51 | | 50. 0, | | | ••• | _ | . | • •. | 24. | | | . | <i>.</i> . | / * : 4 | | 20. 2 | 21, | 21. | 4 . | | 9 | 4. 4 | د . | o. ∡t | 3. <i>2</i> | د ./ | U. 2 | 5. I | 1. 4 | 25. 3 | 0. 2 | 24. : | 23. | 24. 2 | 24. 1 | 26. 24 | 6. 28. |
| N = 3 | 61. 54. 48. 24. | 13. | 19. 2 | 9. 31. | 30. | 28. | 23. | 23. | 23. | 46. | 28 | 29. | 29. | 35. | 26. | 28. | 28. | 22 | 16. | 20. | 22 | 22. | 18 | 6 | 17. | 26. | 29. | 25. | 25. | 28 | 21 | 18 | 19 | 22 | 26 | 21 | 24 | 23 | .1. | 24 | |
| A.R | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | • • • | | | | 2.02 | \$1. | 3 . | ¥ J. | ÷). | 2 n . | 21 |
| N ≓ 4 | 65. 58. 46 <i>.</i> | 23. 13 | 19. | 23. | 29. | 26. 21 | . 19. | : 1. | 2.5. | 35. | 24. | 25 | 28. | . 28 | . 25 | > 25 | o | 30. 2 | 20 | 13. 1 | 19. | 21 2 | 24. | 1 | 6. | 4. 2 | 0. 2 | I. 2. | 5. 2 | 1. 2 | 6. 2 | 0. 1 | 9. 1 | 17. 1 | 9. ; | 27. | 19. | 22. : | 24. | 24. 2 | 6. 24 |
| N == 5 | 6B 64 40 | | •• * | | 26 | 22 | 10 | 00 | 20 | 20 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| N = 3 | 08 . 54. 42. | 23. | 13, 2 | ·0. 28. | 26. | 22. | 19. | 20. | 20. | 22 | 32. | 24. | 24. | 23. | 26. | 21. | 24 | 24. | 19. | 12. | 18. | 21. | 24 | 9 | 16. | 14. | 19 | 24. | 24. | 26. | 21. | 24. | 19. | 19. | 21. | 28. | 19. | 24. | .14. | 25. | 24 |
| N = 6 | 62 48 | 41 23 | 1.5 | 20 | 26 | 22 20 | 19 | , | 18 | 21 | 20 | 23 | 20 | 94 | | u 90 | ،
۱ | 20 | | 00 | | | 0 | | E . | | | | | | | | | | | | | _ | | | |
| •••• | | | | | | | | , | .0 | 21 | 29 | 23 | 20 | | | / 20 | | cv. 2 | | | | 10 | ~ U | | 0 | J, I | J 1 | 5. 2. | b. 2 | 2 2 | J. 2 | 3. 2. | 13 2 | 20 1 | 6 | 20 (| 26 | 18 2 | 26 - 26 | 21. 20 | 6. 22 |

2850E 2875E 2900E 2975E 2950E 2975E 2950E 2975E 3050E 3075E 3050E 3075E 3050E 3175E 3250E 3275E 3350E 3375E 3400E 3475E 3550E 375E 3400E 3475E 3550E 375E 3400E 3475E 3550E 375E 3500E 375

| N ⇒ 1 ₽ | 86, 66, 58 37 38 3.5 33 2.4 23 23 23 23 2 | 3.0 3.9 3.3 3.5 3.6 3.9 4.5 51 4.5 52 4.9 4.7 50 6.9 6.5 6.4 57 .86 50 4.9 58 6.1 70 7.6 7.7 6.7 6.9 6.7 7.5 7.9 5.6 6.9 5.0 1.6 |
|---------|---|---|
| N = 2 | 7.0 4.8 5.7 3.5 3.0 3.8 3.7 2.7 2.7 2.7 2.7 3.1 | 5.0 2.6 5.1 5.2 5.8 5.3 5.4 3.7 3.9 4.1 4.6 4.4 4.7 4.8 7.2 4.8 5.5 80 87. 68 7.7 80 58 81 73 72 87. 86 7.7 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. |
| N = 3 | 6.1 4.4 5.2 5.8 2.3 3.8 3.5 3.1 3.0 2.9 2.5 3. | 3.0 2.3 3.0 3.4 3.2 2.9 2.8 3.5 3.7 3.8 41 4.3 4.6 4.8 55 5.4 7.5 8.1 8.7 9.6 4.4 8.5 5.5 5.4 7.5 8.1 8.7 9.6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 |
| N = 4 | 6.0 4.1 5.0 4.6 2.6 2.5 2.9 2.8 3.0 3.7 3.7 | |
| N = 5 | 5.1 4.1 4.2 5.4 6.7 | |
| N = 6 | 5.3 (3.8 4.9 3.5 2.1 3.5 3.2 3.4 2.7 3.4. | |

| 285 <u>01 28751</u> | 2900F 292 | E 2950E | 2975F | 000F .30 | 25F 30 | 50F 30 |)/5F 31 | 00F 31 | 25F 31 | -0E 31. | /51 320 | 0F 322 | 151 325 | 0ł. 327 | /5E -331 | QOE 332 | 25E 335 | DE 337 | DE 3400 | it 34251 | : 3450E | . 3475E | E 3500F | <u>3</u> f | 35508 | 3575 | 3600 | F525 | F 3650 | E 36751 | E 3700E | 5725E | 3750F | 3775F | 38000 | 3825F | 3850F | 3875F | 3900F |
|---------------------|---------------|---------|-------|----------------|------------|-------------|--------------|-------------|-------------|---------------|---------|-------------|---------|-------------|--------------|---------|---------|--------------|---------|----------|---------|--------------|-----------|-----------------------------|-------|-------------|------------|--------|---------|------------|---------|--------------|---------------|---------|--------|--------------|--------------|--------------|-------------------------|
| 18. 21. 18. | 33. | 54. 58 | 27. | 26. | 26. | 35. | 39. | 37. | 29. | 38. | 47, | 12. | 52. | 20. | î 6 . | 13. | 12. | б. | 7. | 7. | 21, . | 58. 2 | 25. 2 | 2. | 5 2 | 29. | 20. | 45. | 60. | 83. | 44 | 77. 8 | 5 0. 8 | 17. 9 | 15. 12 | o. 99 | 9. 102 | 69. | V ¹²⁶ |
| 22. 23. | 22. 26. | 42. | 36. | 33. 32 | 2. 2: | 5. 1 | 19. 5
 | 8. 4(|), :• |). 3 7 | . 28 | . 22 | . 28 | . 18.
79 | . 14 | 4. 13 | i. 11 | . 10. | 8. | 10. | 26. | 37. | 31.
16 | 24 - | 24. | ئ.
س | 30. | 35. | 42. | 58.
 | 28. | 46. | 54.
m s | 64.
 | /5. | 116. | <u>)</u> ۹۹. | 89. | 96 |
| 24. 27 | 21
26. 21. | 27 35 | .96. | .36.
57. 34 | ы
1. 2л | 20.
7. 2 | 23.
23. 2 | 50
0. 3: | 20.
2. 2 | 13
1. 13 | 20 | ىرد
د 34 | . 22 | 20
. 24 | , 14 | 4. 12 | . 13 | 10.
. 15, | 12 | 13 | 9. | 2.5 .
21. | ან
ან. | ю.
.(1 | 28. | 29. | 33.
31. | 28 25. | -32
 | 20.
24. | 28 . | 24. J
24, | » .cs.
از. | .56. | 4.5. | 4 100
54. | U. /4 | ы ыл.
64. | 56 |
| 28. | 25. | 18 22 | 54. | 55. | 29 | 28. | 20. | 14. | 28. | 19. | 13 | 25. | 54. | 18. | 21. | 12. | 13. | 11, | 14. | 14, | 14. | 10 2 | 21 | i 4 , ¹ , | ·/ . | 3 3. | 29. | 47. | 23 | 26 | 21. | 28. 2 | 26. 3 | 51, 3 | 54 3 | 8. 36 | 6. 65 | a. 52. | 44 |
| | 26. 22. | 17. | 22. | 31. 3 0 |). J(| 0. 2 | 25. 1 | 4, 1. | 3. / | 5. 21 | 13 | , 26 | . 28 | . 16 | . 18 | 8. 13 | i 15 | . 15. | 14. | 15. | 14, | 10 | 22. | 4 | 37. | 29. | 28. | 26. | 2.5. | 26. | 23. | 26. | 27 | 29. | 33. | 33 | 33. | 53. | 43. |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | : | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | | |
| | | | | | | | | | ţ | | | | | | | | | | | | | | | ļ | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

| N = 1 | 2.9 3.2 | 2.4 | 2.1 | 2.5 | 2.3 | 2. | .) | 2.4 | 2.5 | 2.9 |) 2 | 2.9 | 2.6 | 3.5 | 2.6 | 2.5 | 2.9 | 2.9 | 57 4.0 | 4.4 46 |
|-------|---------|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|---------|-----|-----|--------|-------|---------|---------|
| N = 2 | 2.7 2 | .6 2 | .5 | 2.9 | 2.1 | 2.9 | 2.8 | 2.9 | 9 | 2.7 | 2.5 | 2.8 | 4 | 3.7 | I | 3.5 | 5 2.9 | 5.3 | 2.9 3.4 | 4.2 4 |
| N = 3 | 3.0 | 5.2 | 2.9 | 3.0 | 2.9 | 5 | .0 | 2.8 | 2.7 | 2.0 | 6 2 | 2.3 | 3.0 | 3.8 | 3.9 | 5.0 | 3.0 | s.s . | 4.9 2.3 | 3.0 3.6 |
| N = 4 | د | 3.0 2 | .6 | 3.1 | 3.0 | 3.1 | 3.2 | 3.0 | ם | 2.6 | 2.0 | 2.8 | 3.4 | •)) | 3.1 | 3. | 7 .5.4 | 2.7 | 5.3 2.7 | 2.6 4 |
| N = 5 | | 2.8 | 2.2 | 2.8 | 2.7 | 2 | .9 | 2.7 | 2.5 | 3.1 | 1 2 | 2.5 | 4.1 | 4.2 | 3.2 | 4 0 | 3.8 | 3.4 | 2.3 4.6 | 2.5 3.2 |
| N = 6 | | 3 | .2 | 2.0 | 2.9 | 2.3 | 3.9 | 2.2 | 2 | 24 | 23 | 2.6 | 4,6 | a / 3.2 | 3.4 | 3.9 | 3.6 | 3.6 | 3.9 4.4 | 2.1 3 |

9.4 9.5 10.0 9.6 11.1 (13.4 9.9 10.2 10.3 10.4 9.4 9.1 9.5 9.3 9.4 9.6 8.9 9.8 9.6 10.4 11.0 10.1 11.0 12.2 11.7 10.8 10.7 10.6 11.2 11.1 10.6 10.5 9.9 10.9 10.8 10.3 9.5 4.5 4.5 5.0 4.6 84 13.0 12.7 121 11.6 10.6 11.8 11.9 12.0 11.6 11.2 11.6

|) | I |] | D |
|---|---|---|---|

| | | | | | | | | | | | | | | | | | | | | | | | | - | | | | | | | | | _ |
|-------|---------|-----|-----|------------------|-----|-----|-----|-----|-----|-----|-----|----|-----|-----|-----|-----|-----|--------------|----|------------|-----|------------|-------------|-----|-----|-----|-----|------------|-------------|-----|-----|-----|-----|
| N = 1 | 55. 94. | | 41. | 1 ^{83.} | 5. | 5. | 22. | 20 | | 20. | 1 | 7 | 18. | | 9. | 1 | 0. | ۱0. | | 25. | 2 | 5 . | 3 0. | 54 | | 47. | 55 | ۶. | 39 . | 5 | ż. | 55. | |
| N = 2 | 45. | 86. | 95 | | 44. | 39. | | 20. | 13. | | 11. | 10 |). | 10. | | 11, | 8 | | Э. | | 19. | 26. | | 29 | 27. | | 35. | 34. | | 25. | 51. | | 45. |
| N = 3 | 40. | | 48. | 45. | 25 | €. | 52. | 18 | | 12. | | 9. | 9. | | 11, | 1 | Ü. | 8. | | 9 . | 1 |). | 24. | 25 |). | 25. | 27 | <i>'</i> . | 27. | 20 |). | 29. | |
| N = 4 | | 24 | 24 | | 29 | 23 | | 29 | 18. | | 10. | 8 | i | 9 | | 11. | 10 | | ż | | н | 18 | | 21 | 24 | | 21. | 23. | | 22 | 21 | | 78 |
| N = 5 | | | 14. | 17. | 2. | 5. | 21. | 27. | | 16. | 1 | 0. | 8. | | 9. | 1 | 1 | ! † . | | 8. | i | 3 . | 17. | 20 |). | 21. | 18 | ۶. | 19. | 2 | Ι. | 21 | |
| N = 6 | | | 11. | | 15. | 21. | ; | 20. | 24. | | 15. | 11 | | 8. | | 9. | 11. | | | | 8. | 8 | | 17. | 18. | | 19. | 16. | | 18 | 20. | | 22 |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

5150E 3175E 3200E 3225E 3250E 3275E 3300E 3325E

2850E 2875E 2900E 2925E 2950E 2975E 3000E 3025E 3050E 3075F

| 2850E | 2875E | 2900E | 2925E | 2950E | 2975E | 3000E | 3025E | 3050E | 3075E | 31005 | .5125E | 3 · 50E | 3175E | 5200E | 3225E | 5250E | 3275E | 5300E | 5325E | 3350 |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|---------|-------|-------|-------|-------|-------|-------|-------|----------------|
| , | | | | | | | | | | | | | | 01000 | | 0200C | | | | و فر م کی او ب |

| N = 1 | 2.9 2.3 2.4 2.6 3.8 3.8 7.1 9.1 8.5 8.6 5.9 5.5 5.0 5.6 5.7 5.2 6.4 8.0 8.3 7.7 10.1 | |
|-------|--|----|
| N = 2 | 2.9 2.6 3.1 3.9 3.2 3.3 5.9 5.4 5.1 4.0 4.6 4.8 5.3 5.1 6.3 6.8 7.7 10.0 10.1 9.9 10.7 10.0 10.1 9.9 10.7 10.0 10.7 9.9 10.7 | e. |
| N = 3 | 3.2 3.3 4.1 3.2 3.2 3.0 4.9 5.3 3.7 3.6 4.7 4.2 5.5 5.1 6.7 6.9 8.8 10.2 11.1 10.0 | |
| N = 4 | 37 3.9 3.4 2.8 3.0 2.9 5.1 3.6 3.2 3.3 3.4 3.9 4.6 6.8 7.9 7.2 7.5 10.4 11.2 9.4 | 9 |
| N = 5 | 3.9 3.9 2.9 2.6 2.2 2.7 40 37 32 4.5 3.4 5.4 42 6.0 1.7 19 78 18 10.9 | |
| N = 6 | 3.9 2.9 3.1 2.9 2.4 2.3 4.1 3.2 3.2 3.2 3.8 4.7 4.8 6.7 7.6 6.9 8.0 9.0 11. | \$ |
| | | |

| | 45 | ļ | } 4 | 49 | | 61 | 55. | | e 1 | 78 | | 64 | 54 | | 57 | 46 | f | 5.5 | 50. | 4 | 4 5. | 49 | | 50. | 52 | 5 | 8 | 57 | 56 | ц. | 58 | 51 | | 81. | 68 | 65 | 5 |
|-----|----|-----|------------|-----|-----|----|-----|----|------------|-----|-----|-----|----|-----|-----|-----|-----|-----|-----|-----|-------------|-----|-----|-----|------------|-----|-----|-----|-----|-----|----|-----|-----|-----|-----|-----|------------|
| 29. | | 42, | 49 | | 52. | : | 59. | 51 | | ·•, | 60. | 5. | 3. | 46. | 50 | | 57. | 53. | | 42. | 38. | | 42. | 47 | 7 . | 50. | 47. | | 54. | 55. | | 55. | 50. | | 81. | 68. | 62 |
| | 28 | | 58. | 51. | | 50 | 54, | | 4 · | 58 | | 49. | 45 | | 40. | 42. | 3 | 51. | 44. | | 56. | 33. | | 40. | 46. | 4 | Ο. | 46. | 55 | | 55 | 53 | | 48. | 81. | 6. | ئ . |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

3350E 3375E 3400E 3475E 3450E 3475E 3500E 3775E 3550E 3575E 3600E 3675E 3600E 3675E 3775E 3800E 3875E 3900E 3975E 4000E 4075E 4000E 4075E 4100E 4175E 4150E 4175E 4200E 4275E 4250E 4275E 4000E

65.

MISTY MOUNTAIN GOLD LIMITED

Skeena Mining Division

RESISTIVITY (OHM-M) N = 1 N = 2 N = 3 N = 4 55 44 N = 5 59. 59 N = 656 CHARGEABILITY (MSEC) N = 1 . 8.7 _____8.0 8.6 9.9 N = 2 7.4 6.3

N = 3

N = 4

N = 5

N = 6

11 7.7 7.7 6.8 10.9 . ส_.บ 8.6 7.6 7.7 6.8 8.5 8.3 7.9 6.2 6.7 8.6 8.9 115 7.6 6.7 89 8.6 7.2 68 9.0 8.7 11.2 8.8 🔪 7.2 1.5

63

6.4

| | 2425F 2450F 2475F 2500F 2575F 2500F 2575F 2600F 2675F 2600F 2675F 2700F 2775F 2800F 2875F 2900F 2975F 2900F 2975F 3000F 3075F 3000F 3075F 3050F 3175F 3200F 3275F 3250F 3275F 3350F 3375F 3350F 3375F 3400F 3475F 3450F | 00F 3525E 3550F 3575F 3600F 3625F 3650E 3675E 3700E 3725E 3750E 3775E 3800F 38 |
|--|--|--|
| N = 1
N = 2
N = 3
N = 4
N = 5
N = 6 | 21. 37 35 50. 44. 60 61. 45. 53 46. 49. 56 62 50 57 29 25 28 39 30. 24. 15. 7 10 12 13 13. 14 7. 24 50 46. 42. 39. 94. 77 116 166 262 160. 190 145. 77. 76. 119. 77. 166. | weil state state <thstate< th=""> state s</thstate<> |
| | | |
| | | ·
·
· |
| | | CHARGEABILIT |
| N = 1
N = 2
N = 3
N = 4
N = 5
N = 6 | $\frac{1}{1} - \frac{1}{1} - \frac{1}$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

| | | i |
|---------------------------------|--|--|
| | 1950E 1975E 2000E 2025E 2050E 2075E 2100F 2125E 2150E 2175E 2200E 2225E 2050E 2275F 2300E 2325E 2350E 2375E 2400E 2425E 2450E 2475E 2500E 2525E 2550E 2575E 26 | 600F 26.1 F 2650F 2675F 2700F 2725F 2750F 2775F 2800F 2825F 2860F 18765 2000F 2021F 0010F 2021F 2021F |
| : 1
: 2
: 3
: 4
: 5 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | 1.1 $99.$ $47.$ $46.$ $52.$ $35.$ $46.$ $44.$ $42.$ $36.$ $51.$ $29.$ $23.$ $18.$ $26.$ $12.$ $9.$ $22.$ $40.$ $60.$ $86.$ $66.$ $49.$ $45.$ $40.$ $52.$ $35.$ $52.$ $37.$ $28.$ $23.$ $23.$ $22.$ $10.$ $11.$ $39.$ $57.$ $64.$ $64.$ $65.$ $46.$ $40.$ $41.$ $31.$ $35.$ $35.$ $24.$ $23.$ $24.$ $17.$ $10.$ $11.$ $39.$ $47.$ $64.$ $64.$ $65.$ $46.$ $40.$ $41.$ $31.$ $35.$ $35.$ $24.$ $25.$ $28.$ $20.$ $16.$ $13.$ $13.$ $32.$ $42.$ $36.$ $37.$ $50.$ $37.$ $50.$ $35.$ $51.$ $27.$ $24.$ $25.$ $28.$ $20.$ $16.$ $13.$ $11.$ $42.$ $36.$ $37.$ $30.$ $37.$ |
| 6 | 112 🔩 59. 73. 30 27 26 30. 39. 46 26 0. 26 27. 23. 16 27. 18. 20 24. 45. 67. 34. 29. 43. 31 | 35. 37 33. 52. 53. 49. 51. 29. 26 33. 25. 26. 32 28. 25. 24. 20. 13. 10. |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| = 1 | 19500 1975E 2000E 2025E 2050E 2075E 2100E 2125E 2150E 2175E 2200E 2225E . 250E 2275E 2300E 2325E 2350E 2375E 2400E 2425E 2450E 2475E 2500E 2525E 2550E 2575E 260 | QOE 26.5E 2650E 2675E 2700E 2725E 2750E 2775E 2800E 2825E 2850E 2875E 2900E 2925E 2950E 2975E 3000F 3025F 3050E |
| = 2
= 3
= 4 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

| N = 1 | 5.9 5.9 5.8 5.4 5.6 6.1 6.6 4.4 5.1 4.9 6.8 8.0 6.8 | 6.8 5.7 4.2 5.6 5.2 3.3 5.9 4.0 4.0 | 4.0 4.5 5.4 5.3 3.9 3.9 4.1 3.4 2.9 3.2 2.7 2.8 | 3.5 3.2 3.8 4.3 4.8 4.5 7.5 7.7 6.8 4.7 6.8 5.B |
|-------|---|--|---|---|
| N = 2 | 5.6 6.0 6.3 5.9 5.9 5.4 5.9 5.0 4.8 4.6 6.1 1.3 | 6.2 5.7 5.3 3.6 4.0 3.3 2.9 3.1 3.5 | 40 3.8 3.9 5.3 4.3 5.3 5.1 3.7 41 3.6 5.5 5.1 3.2 | .2 5.5 5.6 4.7 5.3 5.0 3.9 4.8 7.1 7.7 5.9 8.2 |
| N = 3 | 6.0 6.7 7.0 6.4 5.6 5.0 5.9 4.5 4.6 4.1 5.0 6.4 | 5.4 4.6 4.4 3.5 4.0 3.3 2.5 2.9 4.1 | 3.9 3.2 3.6 4.2 3.9 3.3 3.5 3.7 3.0 3.9 3.8 3.6 | 3.3 3.8 4.3 5.0 5.3 4.7 3.0 5.2 7.1 6.2 6.7 9.2 |
| N = 4 | 6.7 7.3 7.3 6.3 5.5 5.0 5.2 4.4 4.3 3.9 4.7 | 6.2 5.0 4 1 4.2 5.4 3 8 3 2 2.8 3.4 | 3.8 3.6 3.0 2.7 3.9 (4.1 1 3.6 3.9 2.9 4.0 4.1 3.8 | B 3.8 4.4 5.0 5.6 4.9 40 3.0 4.8 7.6 8.7 7.6 |
| N = 5 | 6.9 1.5 7.2 6.0 5.3 4.4 4.5 4.2 4.2 3.9 5.0 | 6 2 4.8 4.1 4.2 3.2 3.9 3.4 3.2 3.4 | 5.4 55 2.9 23 37 SB 5B 3.9 41 5.4 43 46 | |
| N = 6 | 7.2 7.4 7.1 6.2 5.0 4.1 4.2 4.2 4.3 3.8 | 4,9 5.8 4.9 3. 9 4.0 3.1 3.8 3.8 3.2 | 5.1 5.4 2.7 2.3 2.3 4.3 41 5.9 4.0 4.4 $ 4.0$ 4.3 4.9 | _G4,4, _4,6, _4,7 _4,5 _4,9 _4,0 _4,0 _7,2 } 0.4 7,9 0.0 |

| 5.9 5.9 5.8 5.4 5.6 6.1 6.6 4.4 5.1 4.9 6.8 8.0 6.8 6.8 5.7 4.2 5.6 5.2 5.3 5.9 4.0 4.0 4.0 4.0 4.5 5.4 5.5 5.9 5.9 5.9 5.2 2.7 2.8 5.5 5.2 5.8 4.3 4.8 4.5 7.5 7.7 6.8 4.7 6.8 4.7 6.8 4.7 6.8 4.7 6.8 6.1 6.6 4.4 5.1 4.9 6.8 6.8 6.8 5.7 4.2 5.6 5.2 5.3 5.4 5.5 5.4 5.5 5.9 5.9 5.9 5.9 5.9 5.2 2.7 2.8 5.5 5.2 5.8 4.3 4.8 4.5 7.5 7.5 7.7 6.8 4.7 6.8 4.7 6.8 4.7 6.8 6.1 6.6 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 | 5 <u>.B</u> |
|--|-------------|
| 5.6 6.0 6.3 5.9 5.4 5.9 5.0 4.8 4.6 6.1 7.3 6.2 5.7 5.3 5.6 4.0 5.3 2.9 3.1 3.5 4.0 3.8 3.9 5.3 4.3 5.3 1 3.7 4.1 3.6 5.5 5.1 5.2 5.5 5.6 4.7 5.3 5.0 3.9 4.8 7.1 7.7 5.9 | 8.2 7.3 |
| 6.0 6.7 7.0 6.4 5.6 5.0 5.9 4.5 4.6 4.1 5.0 6.4 5.4 4.6 4.4 3.5 4.0 3.3 2.5 2.9 4.1 3.9 3.2 3.6 4.2 3.9 3.1 3.5 3.7 3.0 3.9 3.8 3.6 3.3 3.8 4.3 5.0 5.3 4.7 5.0 5.2 7.1 6.2 6.7 | 9.2 |
| 6.7 7.3 7.3 6.5 5.5 5.0 5.2 4.4 4.3 39 4.7 6.2 5.0 41 4.2 5.4 3.8 5.2 2.8 3.4 5.8 3.6 3.0 2.7 3.9 4.1 5.8 5.8 4.4 5.0 5.6 4.9 4.0 3.0 4.1 5.8 5.8 4.4 5.0 5.6 4.9 4.0 3.0 4.1 5.0 5.6 4.9 4.0 5.0 5.6 4.9 4.0 5.0 5.6 4.9 4.1 5.0 5.6 4.9 4.1 5.0 5.6 4.9 4.0 5.0 5.6 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 | |
| $69 \ 7.5 \ 7.2 \ 6.0 \ 5.3 \ 4.4 \ 4.5 \ 4.2 \ 4.2 \ 5.9 \ 5.0 \ 6.2 \ 4.8 \ 4.1 \ 4.2 \ 3.2 \ 3.9 \ 3.4 \ 5.2 \ 5.9 \$ | 8.4 |
| | a's a's |

| N = 1 | 231. 224 2.55. 198. 1.54. 1.42. 1.54. 1.15. 1.29. 89. 109. 1.4.5. 1.4.1 10.5. 1.24. 1.18. 84. 1.10. 87. 1.12. 1.69. |
|--------------------|---|
| N = 2 | 181. 179. 172 142. 145. 114. 104. 112. 90. 60. 80. 99. 96. 69. 92. 68. 81. 96. 59. 84. 109 |
| $N = \overline{3}$ | 143, 140, 128 137, 118, 93, 91, 77 73, 50, 76, 89, 82, 61, 61, 66, 74, 88, 51, 72, |
| N = 4 | 11.3 111 118 112. 95. 84. 65. 62. 68. 54. 82. 55. 80 50. 63. 61 70. 72. 47 4. |
| N = 5 | 93. 105. 99. 92. 87. 64. 53. 57. 70. 58 89. 97. 67. 47. 60. 56. 71. 68. 30. |
| N = 6 | 88. 92. 84. 85. 69. 57. 49. 60. 73. 62. 7 7. 81. 66. 45. 56 49. 66. 48. 2 [°] |
| | |

1550F 1575F 1600E 1675F 1600F 1675F 1700F 1775F 1800F 1875F 1800F 1875F 1900F 1975F 1900F 1975F 2000F 2075F 2000F 2075F 2100F 2175F 2100F 2175F 2100F 2175F 2300F 2375F 2300F 2375F

 117.
 36.
 27.
 24.
 27.
 18.
 26.
 .0
 29.
 20.
 58.
 65.
 55.
 79.
 30.
 16.
 22.
 16.
 32.
 71.
 27.
 24.
 2¹.
 50.
 44.
 51.

 109
 51.
 38.
 26.
 25.
 57.
 43.
 48.
 36.
 25.
 16.
 17.
 16.
 24.
 24.
 21.
 42.
 62.
 1

 60. 42. 56. 29. 17. 17. 20 °4 28. 52. 28. 44. 55. 28 29. 20 1.5. 19. 18 25. 28. 21. .º 19. 52. 58. **43. 43. 38 31. 22.** 17 18. - 35. 55 56. 24 **38** 22 21 24. 17 13 18 19 27 25 18 20. 23. 47 35, 41, 36, 28, 25, 16, 21, 19, 39, 35, 31, 22, 26, 18, 18, 19, 16, 14, 22, 20, 26, 22, 19, 21, 20, 39, 25. 32. 37 33. 25. 23 18. . . 27. 40. 30. 30. 17. 22. 12. 13. 16. 19. 15. 23. 20. 21. 19 18. 19. 20.

2756 1900F 1925F 1950F 1975F 2000F 2025F 2050F 2075F 2100F 2125F 2150F 2175F 2200E 2015F 2250F 2325F 2350F 2325F 2350F 2375E 2400E 2425E 2450E 2475F 2500E 2525F 2550F 2575E 2600F 2625E 2650E 2675E

| | | 1 |
|--|----------------------------------|---|
| | | MISTY MOUNTAIN GOLI
LIMITED |
| RESISTIVITY (OHM-M)
2700E 2725E 2750E 2775E 2800E 2825E 2850E 2875E 2900E 2925E 2950E 2975E 3000E
27. 28. 27. 38. 55. 81. 131. 71. 76. 47. 55. 37 | N = 1 | Sandspit Grid
Skeena Mining Division |
| 27. $28.$ $27.$ $56.$ $55.$ $77.$ $56.$ $77.$ $56.$ $57.$ $56.$ $57.$ $56.$ $57.$ $56.$ $57.$ $56.$ $57.$ $56.$ $57.$ $56.$ $57.$ $56.$ $57.$ $56.$ $57.$ $56.$ $57.$ $56.$ $57.$ $56.$ $57.$ $57.$ $56.$ $57.$ <t< td=""><td>N = 2 $N = 3$ $N = 4$</td><td><u>LINE: 38000N</u></td></t<> | N = 2 $N = 3$ $N = 4$ | <u>LINE: 38000N</u> |
| 42, 40, 24, 45, 65, 39, 26, 33, 31, 33,
38, 46, 42, 23, 44, 54, 36, 23, 53, 30, | N = 5
N = 6 | $WEST \xrightarrow{POLE-DIPOLE ARRAY}_{P_2} WEST \xrightarrow{P_2} \bigcirc \begin{array}{c} P_1 \\ \hline \\ $ |
| | | PLOTTING
POINT
$x = 25\pi$ $n = 1 - 6$
CURRENT ELECTRODE C EAST
OF POTENTIAL DIPOLE BP2 |
| | | SURFACE PROJECTION
OF ANOMALOUS ZONES |
| CHARGEABILITY (MSEC) | | DEFINITE DEFINITE PROBABLE E E E E E E
POSSIBLE 788868186
AT DEPTH ••••••• |
| 5 4.1 5.1 4.1 4.0 9.0 9.1 7.1 8.1 8.4 7.7 5.5 6.4 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.6 8.4 8.2 7.6 7.1 6 6.8 8.0 6.4 5.7 9.5 11.5 8.8 7.7 8.4 8.8 6.8 6.8 6.4 9.2 10.1 8.8 7.7 8.8 6.8 | N = 1
N = 2
N = 3
N = 4 | SCALE 1 : 2000
CONTOUR INTERVALS
APP.CHARGEABILITY : 2.0 (meec)
APP.RESISTIMITY : 100 (ohm-m) |
| 7 + 11.5 + 10.5 + 9.2 + 9.8 + 8.5 + 7.4 + 8.3 + 9.5 + 7.7 + 8.9 + 10.9 + 10.6 + 12.2 + 9.7 + 8.0 + 8.8 + 9.8 + 7.8 + 7 | N = 5
N = 6 | DATE SURVEYED: November 6,7 1997
Tx: Huntec Mk2 Model 7500
Rx: EDA iP-6
2.5393 |
| | | LLOYD GEOPHYSICS |
| | | INDUCED POLARIZATION SURVEY
DRAWING NUMBER : 97416-S-13 |
| | | |

1050F 1075E 1100E 1125E 1150E 1175E 1200E 1225E 1250E 1275E 1300E 1325E 1550E 1375E 1400E 1425E 1450F 1475E 1500F 1525F 1550 N = 1 N = 2 $-\left(4.1 \quad 4.3 \quad 4.2 \quad 4.0 \quad \left[3.1 \quad 5.1 \quad 4.8 \quad 4.7 \quad 4.9 \quad \left(3.\right) \quad 5.5 \quad 5.8 \quad 4.2$ 3.2 3.1 3.9 2.6 4.1 2.4 N = 34,1 3.4 3.1 3.8 3.8 3.0 4,1 4.5 4,2 4,0 4,3 4.9 5.9 50 4.8 5.2 5.4 4.5 5.0 3.0 N = 4 2.8 2.8 2.3 4.2 4.3 4.6 4.4 4.3 4.3 5.3 5.9 5.2 5.9 3.2 2.8 5.2 N = 5 2.9 3.1 4.3 4.5 4.9 4.5 4.3 4.8 5.8 5.8 5.9 4.2 1.4 4.2 5.3 5.3 4.5 4.7 5.2 4.9 4.8 5.2 5.8 6.3 N = 6 2.8 5.1 4.3 4.3 2.9

1050E 1075E 1100E 1125E 1150E 1175E 1200E 1225E 1250E 1275E N = 1 4. 118 N = 2 •110 1DE N = 3 58. 29. 73. N = 4 9. 69. 26. Z1. 63 N = 5 19. N = 6 25. 39 10. 13 18. 9 9

| DF 1575F 1600E 1625E 1650E 1675E 1700E 17. | - 1750E 1775E 1800E 1825E 1850E 1875E 1900E 1925E 1950E 1975E 2000E 2025E 2050E 2075E 2100E 2125E 2150E 2175E |
|--|---|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |
| | |

MISTY MOUNTAIN GOLD LIMITED Sandspit Grid RESISTIVITY (OHM-M) Skeena Mining Division N = 1 LINE: 38300N N = 2 N = 3 16. 18. 19. 24. 21. 24. 25. 19. 19. 19, 19, 28. N = 4 N = 5 19. 19 19. 21. POLE-DIPOLE ARRAY N **≕** 6 26. 26 26. 29. WEST EAST () (\mathbf{I}) Plotting Point x = 25m n = 1 - 6CURRENT ELECTRODE C EAST OF POTENTIAL DIPOLE PIP2 SURFACE PROJECTION OF ANOMALOUS ZONES CHARGEABILITY (MSEC) POSSIBLE **333333333* 2200F 2225F 2250F 2275F 2300F 2325F 2350F 2375F 2400F 2425F 2450F 2475F 2 JOE AT DEPTH N = 1 SCALE 1 : 2000 N = 2 1.6 CONTOUR INTERVALS 5.5 5.3 5.2 N = 320 64 5.0 APP.CHARGEABILITY : N = 4 6.3 6.6 6.8 N = 5 6.7 6.7 6.8 6.5 6.3 7.9 6.8 6.7 November 8.9 199 N = 67.0 6.6 7.1 8.1 7.6 6.1 7.9 7.2 7.1 6.8 Tx: Huntee Mk2 Model 7500 Rx: EDA IP--6 LLOYD GEOPHYSICS INC. INDUCED POLARIZATION SURVEY DRAWING NUMBER : 97416-S-14

| | 13258 1350E 1375E 1400E 1425E 1450E 1475E 1500E 1525E | 1550E 1575E 1600E 1625E 1650E 1675E 1700F | 172 - 1750E 1775E 1800E 1825E 1850E 1875E - | 900E 1925E 1950E 1975E 2000E 2025E 2050E 2075E |
|--|---|--|--|---|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 5.5 ± 10 6.5 7.3 5.7 4.4 4.3 4.1 6.1 6.5 7.3 5.7 4.4 4.3 4.3 4.9 5.4 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 7.7 7.9 5.1 5.4 5.9 7.4 9.4 $7. 6.0 6.4 5.1 4.2 5.7 6.5$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |
| 3.4 2.4 2.5 3.5 2.8 2.3 2.3 2.0 3.7 3.8 3
3.3 2.6 3.0 3.7 2.4 2.5 2.5 2.7 4.3 3.3 | 3.0 3.9 60 7.5 5.9 4.8 4.6 4.7 3.3 6 3.4 60 7.6 6.3 5.1 4.6 4.5 | $5.0 \qquad 3.6 \qquad 5.1 \qquad 4.1 \qquad 4.4 \qquad 4.0 \qquad 5.3 \qquad 5.0 \qquad 5.0 \qquad 3.5 \qquad 5.0 \qquad 4.1 \qquad 4.3 \qquad 4.4 \qquad 5.5 \qquad 5.0 $ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 4.6 4.9 4.7 4.1 4.6 5.0 5.7 5.2 4.9 4.7 4.5 4.7 3.9 5.8 5.9 |
| 3.6 2.8 3.3 3.6 2.5 2.7 3.0 3.2 4 3 5. 3.7 3.2 3.1 3.0 2.8 3.0 3.5 4.0 3.6 | 3.2 2.3 3.5 6.2 7.8 6.5 5.2 4.4 3.0 1.3 2.5 3.8 6.5 7.9 6.5 5.0 4.4 | 4.2 4.9 5.3 4 9 4.1 4.9 4.3 5.
4.3 5.0 5.2 5.0 4.0 5.0 4.3 | 3.6 4.5 4.7 6.9 6.0 4.4 4.3 | 4.5 5.3 4.9 4.9 4.6 4.2 6.1 4
4.8 4.6 5.0 5.4 4.8 4.6 5.7 6.3 |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | a |

N = 1 44. N = 2 56 5.6 N = 3 N = 4 N = 5 N = 6 27 .56. 13 15 10 , , 15 13 17 1.8

1050E 1075E 1100E 1175E 1100E 1175E 1200E 1275E 1200E 1275E 1200E 1275E 1300E 1375E 1400E 1475E 1475E 1475E 1475E 1475E 1475E

MISTY MOUNTAIN GOLD LIMITED Sandspit Grid RESISTIVITY (OHM-M) Skeena Mining Division N = 1 62. LINE: 38600N N = 2 61 60. N = 3 65 N = 4 29 N = 5 POLE-DIPOLE ARRAY N = 6 23. 25. WEST EAST -(V)-x = 25m n = 1 - 6 CURRENT ELECTRODE G EAST OF POTENTIAL DIPOLE PIP2 SURFACE PROJECTION OF ANOMALOUS ZONES CHARGEABILITY (MSEC) POSSIBLE /5E 2200E 2225E 2250E 2275E 2300E 2325E 2350E 2375E 2400E 2425E 2450E 2475E 2500E AT DEPTH ******* N = 1 SCALE 1 : 2000 N = 2 CONTOUR INTERVALS N = 3 4 14 APP.CHARGEABILITY : 2.0 (msec) N = 4 APP.RESISTIVITY 100 (ohm-m N = 5 1.5 5.9 DATE SURVEYED: November 10 1997 6.6 7.9 7.2 7.0 7.7 6.7 7.4 6.7 N = 67.2 8.6 Tx: Huntec Mk2 Model 7500 Rx: EDA iP—6 LLOYD GEOPHYSICS INC INDUCED POLARIZATION SURVEY DRAWING NUMBER : 97416-S-15

| | | <u>, </u> |
|--|---|--|
| | | |
| | | |
| N = 1
N = 2
N = 3
N = 4
N = 5
N = 6 | 6 /pt / 1/pt / 5/pt / 5/pt | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |
| | | |
| | | |
| | | :
:
: 156 - 1700' - 17056 - 17605 - 17756 |
| N = 1
N = 2
N = 3
N = 4
N = 5
N = 6 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |
| | | |

| | 650E 675E 700E 725E 750E 775E 800E 825E 850E 875E 900E 925E 900E 975E 1000E 1025E 1050E 1075E 1100E 1125E 1150E 1175E 1200E 1225E 1250E 1275E 1300E 1375E 1400E 1425E 1450E 1475E 1500E 1525E 1550E 1575E 1600E 1625E 1650E 1 | 1675E 1700F 1725E 1750E 1775 |
|--------------------------|---|--|
| = 1
= 2
= 3 | 53, 73, 42, 41, 29, 40, 31, 46, 44, 35, 87, 40, 40, 54, 79, 52, 18, 20, 38, 35, 72, 70, 48, 45, 60, 26, 36, 39, 41, 55, 55, 31, 40, 43, 35, 12, 9, 9, 10, 12, 13, 25, 52, 31, 29, 37, 31, 24, 24, 49, 31, 31, 54, 31, 7, 38, 29, 29, 27, 20, 19, 22, 50, 25, 22, 35, 21, 26, 22, 22, 50, 41, 45, 52, 45, 25, 16, 13, 11, 14, 14, 10, 14, 14, 14, 10, 14, 14, 10, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14 | 19. 17. 16. 14.
16. 14 20. 16. 13.
13 19. 16. |
| = 4
= 5
= 6 | 24. 26 24. 25. 24 18 21. 35 25. 25. 31 40. 47. 45. 40. 29. 27. 22. 33 25. 26. 30. 25. 25. 26. 14. 46. 56. 21. 20. 16. 16. 16. 16. 16. 14. 11. 25. 26. 19. 22. 26. 17. 21. 30. 25. 26. 25. 41. 28. 29. 30. 26. 27. 21. 24. 30. 36. 28. 24. 19. 16. 24. 14. 17. 14. 17. 14. 9. 23. 22. 18. 23. 23. 17. 20. 30. 26. | 9 14 14 19, 17
9, 14, 14, 19,
10, 10 13, 13, 20, |
| | | |
| | | |
| | | |
| | | : |
| | 650F 675F 700E 725E 750E 775E 800E 825E 850E 875F 900F 925F 950F 975F 1000E 1025E 1050E 1075E 1100E 1125E 1150E 1175E 1200E 1225E 1250E 1275E 1300E 1375E 1400E 1425E 1450E 1475E 1500E 1525E 1550E 1575E 1600E 1625E 1650E | 1675E 1700E 1725E 1750E 1775 |
| = 1
= 2
= 3
= 4 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |
| = +
= 5
= 6 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 6.4 7.0
4.6 5.5 6.2 7.1 7.5 |
| | | |

| | | | MIS |
|--|----------------------|--|-------------------------------|
| N = 1
N = 2
N = 3
N = 4
N = 5
N = 6 | | N = 1
N = 2
N = 3
N = 4
N = 5
N = 6 | WES |
| | | | |
| N = 1
N = 2
N = 3
N = 4
N = 5
N = 6 | CharGebellity (msec) | N = 1
N = 2
N = 3
N = 4
N = 5
N = 6 | C
Al
Al
D
Ta
R |
| | | | INDU |

DRAWING NUMBER : 97416-S-17

| E 1900E 81925E 81950E 81975E 82000F 82025F 82050E 82075E 82100E 82125E 82150E 82175E 82200E 82225E 82300E 82325E 82350E 82375E 82400E 82425E 82450E 82455E 82500E 82525E 82550E 82575E 82600E 82625E 82655E 82655E 8275E 82700E 82725E 8275E 82700E 82725E 8275E 82700E 82725E 8275E 82700E 82725E 8275E | CHARGEABILITY (MSEC) |
|--|---|
| | 82825F 82850F 82875F 82900F 82925E 82950E 82975E 83000E 83025F 43050E |
| 5.7 6.8 7.2 7.2 7.7 7.9 8.3 97 9.5 9.8 11.2 9.7 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 | 6 1.6 5.2 1.7 1.4 6.6 5.9 5.2 5.0 4.4 N = |
| $\frac{11}{16} = \frac{11}{8.1} = \frac{10.6}{9.6} = \frac{10.6}{11.0} = \frac{10.6}{10.4} = 10$ | 13.5 - 12.3 - 9.5 - 11.8 - 11.0 - 9.2 - 8.3 - 7.5 - 6.4 N = |
| 12 17 80 8.6 9.0 8.9 100 106 113 113 109 114 107 104 104 104 104 107 104 104 107 104 1 | 0 - 16.5 - 15.8 - 16.0 - 14.9 - 14.0 - 12.1 - 11.2 - 10.2 N = |
| 7.7 9.1 8.8 9.5 9.5 9.5 10.0 10.8 10.9 10.3 10.0 10.1 10.0 10.0 10.0 10.0 10.0 | 16.6 16.7 17.3 17.3 15.8 15.1 13.5 12.7 N = |
| 8.9 8.5 8.4 9.5 9.4 9.9 10.0 8.7 10.0 10.7 10.1 10.0 10.7 9.5 10.1 10.2 11.3 13.0 13.8 15.9 15.5 16.4 16.2 15.6 15.0 15.4 15.8 15.8 14.9 1.1 14.7 14.3 14.4 14.9 14.2 15 | 2 15.8 - 16.0 16.4 16.7 15.4 15.0 15.2 N = |
| | |

| 5, 51 | | | | | | | | | | | 02U2 | : Sr - C | 200 | | <u>,</u> 075 | t 82 | TOOL | 8212 | SE 8 | 2150 | E 82 | 175E | 822 | 00E | 8222 | 25£ £ | 32,250 | DF 82 | , ≃'5F | 823 | 300E | 82,32 | 5E 82 | 350E | 82,3 | 75F 8 | 32400 |)E 82 | 425E | 824 | 50E E | 32475 | 5E 825 |
|-------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|----------|-----|-----|--------------|------|------|-------------|------|-------------|------|------|------|-----|------|-------------|--------|-------|--------|-----|------|-------|-------|------|-------------|-------------|-------|-------|------|-----|-------|-------|--------|
| 22. | | 28. | | 33. | | 26 | | 29. | | 21. | | 41. | 4 | IQ. | 29 | Ι. | 39. | | 40. | 44 | | 51. | | 48. | | 6 1. | 54 | 4. | 55 | | 45. | | 4. | 40. | | 47. | 5 | ö. | 45. | | 48. | 5 | 8. |
| | 21 | | 21 | | 21. | | 25. | | 23 | | 24. | : | 50. | 3 | 5. | 53. | | 3 5. | 3 | 19 . | 44. | | 41. | | ,4ئ | | 47. | 32 | | 54. | | 47. | 41 | | 55 . | | 46. | 49 | | 41. | | 54. | 39. |
| 15. | | 17 | | 26. | | 27 | | 25. | | 23. | | 29. | 4 | 5 | 52 | | 21 | 1 | 52 | 37 | | 37. | | 34 | | 31. | 35 | 5. | . ! | | .57 | J | 2 | 38. | | 29 | 5 | 9. | 43. | | 42. | 4 | 4. |
| | . 5. | | Ŧ 7 | | 27. | | 28. | | 26. | | 25. | : | 29. | 4, | S | 25. | | 24. | ز. | iu. | 32. | | .52. | | 51, | : | 27. | 26 | | 22. | | 28. | 51 | | 55. | : | 24. | 38. | , | 43. | | 35. | 37 |
| 28. | | 22 | | 18. | | 27. | | 30. | | 28. | | 25. | 2 | 9. | 55 | | 21. | : | 23. | 27 | | 29. | | 51. | | 29. | 2. | 3. | 28 | | 19. | 2 | 9. | 31, | | 5 2. | 1 | 7. | J6. | | 57. | 5 | 2. |
| | . • | | 22 | | 19. | | 29. | | 31. | | 21 | Â | 25. | 2. | / . | 51. | | 21. | 2 | 1, | 26. | | 29. | | 29. | i | 26. | 25 | | 24. | | 20. | 30 | | 30. | : | 29. | 15. | | 31. | | 34. | 29 |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

| CHARGEABILITY | (MSEC) |
|---------------|--------|
|---------------|--------|

| 1 9 | 3. J | , 41. | | 80. | 4 | 19. | 64. | | 32. | 35. | | 43. | | 6. | \$7. | | 43. | 48 | : | 41. | | 46. | 6 | 5 . | 4.3. | | 54. | 60 | | 38 . | 1(| 05 | 4 | 2. | 69. | | 83. | 66 | ÷. | 85. |
|------------|------|--------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------------|------|------|-----|---------|-----|-----|-------------|-----|-----|------------|------|-----|-----|-----|-----|-------------|-----|-----|----|-----|-------------|-----|-----|-----|----------|-----|
| 37. | | | 28. | | 44, | 44 | | 58. | 27. | | 39 | | 40. | 34 | • | .34. | ! | н.
, | 45 | | J 6. | , | 59. | 28 | | 28. | 4 | 1. | 35. | | 42. | | 9. | 40. | | 62. | | 61. | 63 | , |
| 2 | 1. | 29. | | 25. | 4 | 2. | 57, | | 30. | 28. | | 40. | 4 | . 0. | 31, | | 32 | 42 | | 40. | | 26. | 20 |). | 21. | | 21. | 26 | | 32. | | 25. | 4; | 2. | 34. | | 45. | 5/ | . | 49. |
| 18. | 18 | | 24. | | 24 | .54 | | 51 | 31 | | 21 | | 33 | 35 | l. | 28. | | | 39. | | 33. | | 17. | 16 | | t9 | 1: | 5 | 25 | | 22. | 2 | 3 | 42. | | 22. | | 36 | 4.5 | |
| ۱ | 6. | 16. | | 25. | 2 | 20. | 31, | : | 28. | 29. | | 24. | | 4. | 33. | | 24. | 26 | • | 35. | | 20. | 1; | 2. | £4, | | 16. | 15. | | 19, | 2 | 22. | 2 | 1. | 32 . | | 24. | 25 | ı. | 29. |
| 15. | 16. | | 16. | | 22. | 18 | . 2 | 27. | 23. | | 25. | | 20. | 29 | | 27. | | | 26. | | 25, | | 17. | 1.5. | | 12. | 11 | 6. | 13. | | 21. | ź | 3. | | | 28. | | 18. | 16. | ; |

MISTY MOUNTAIN GOLD

| ITE | |
|------|---------------------------|
| ABLE | |
| IBLE | <i>14444445</i> 55 |
| epth | ******* |
| | |

25393 2/2

LLOYD GEOPHYSICS INC

5.3 49 5.0 5.0 50 4.1 9,4 8.8 8.9 9.4 4,9 5.0 4.8 4.8 9.3 10.4 10.9 11.2 11.0 11,3 10.8 11,8 7,6 7,1 5.3 11.7 11.4

501 81775E 81800E 81825E 81850E 81855E 81850E 81855E 81950E 81955E 81950E 81955E 82000E 8205E 8200E 8205E 8205E 8200E 8205E 8200E 8205E 8205E 8200E 8205E 8205E 8200E 8205E 82

74. <u>8</u>2. <u>8</u>¹ 70.

#1400E 81425E 81450E 81450E 81450E 8145E 81500E 81525E 8150E 81550E 8155

25393 2/2

LLOYD GEOPHYSICS INC

| -12.8 - 12.9 13.1 - 13.0 13.0 - 13.2 - 12.9 13.4 - 13.4 11.9 1 | 9.2 8.2 6.8 5.9 4.9 5.7 7.6 9.5 8.7 10.8 11.1 9.2 9.3 12.8 |
|---|--|
| 3.9 14.0 13.6 13.1 13.0 13.4 13.4 13.0 13.7 11.7 8.5 | 8.1 5.3 6.3 5.8 5.8 4.9 6.5 7.8 8.1 9.4 10.2 10.9 9.9 11.6 1 |
| 12.6 13.2 12.0 11.4 11.3 11.9 11.6 10.7 9.2 7.7 | 4 6 4.4 4.9 6.2 6.6 5.5 5.8 6.4 6.4 8.2 8.7 9.6 11.3 11.5 12.2 |
| 0.4 10.5 10.5 9.2 8.9 8.5 8.8 8.6 6.8 5.9 5.6 | 59 4.3 4.7 6.0 6.0 5.8 5.8 5.2 6.5 6.7 7.6 8.0 11.6 10.6 1 |
| 8.5 8.5 9.3 .7.7 8.9 8.8 .7.8 6.8 5.3 5.6 | 5 4.1 4.6 6.6 6.1 8.3 6.5 6.7 6.8 .8.4 7.5 8.6 .8.0 11.5 10.3 |
| | |
| | |
| | |
| | |
| | |
| | |
| | |

| | | • |
|--------------------|---|--|
| | | |
| | | |
| 275E 81300E 81325 | 81350E 81375E 81400E 81425E 81450F 81475E 81500E 81525E 81550E 81575E 81600E 81625E 81650E 81675E 81700E | 725E 81750E 81775E 81800E 81825E 81850E 81875E 819 |
| | 169. 247. 465. 39. 233. 262. 221 190. 180. 154. 182. 168. 127. 150. 285 | 108. 145. 123. 131. 130 113 129. |
| | <u>90.</u> <u>94.</u> <u>98.</u> <u>150.</u> <u>72.</u> <u>107.</u> <u>113.</u> <u>90.</u> <u>87.</u> <u>97.</u> <u>95.</u> <u>97.</u> <u>75.</u> <u>86.</u> <u>55.</u> | 63 84 77. 90. 98 76. 52 |
| 9. 53. 58. | 62. 63. 52 63. 69. 46 68. 73. 56. 63. 64. 56. 58. 72. 33 | 42 67 60 64 65 47 37 |
| 37. 38. 40 | 45, 37, 33, 45, 49, 31, 45, 47, 41, 45, 46 40, 58, 33, 32, | 31. 33 54. 42. 44. 41. 33. |
| 6. 28. 29 | 33 , 31, 30 27. 24. 33 27. 35. 36. 33, 32 33. 46, 27, 22, 1 ⁴ | · 20. 20, 40. 30. 30. 20. |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| 1275E 81300£ 81325 | 81350E 81375E 81400E 81425E 81450E 81475F 81500E 81525F 81550E 81575E 81600E 81625E 81650E 81675E 81700E | 725E 81750E 81775E 81800E 81825E 81850E 81875E 81 |
| 8.5 64 | 7 71 6.9 49 8.3 7.9 6.4 6.1 5.8 7.3 6.1 5.9 59 50 5.8. 57 | 5.9 4.1 4.9 4.2 3.9 4.3 5.6 |
| 2.6 10.5 12.5 | -12.511.711.210.812.113.210.29.510.711.98.78.610.17.78. | 5.0 <u>3.2</u> <u>5.9</u> <u>6.5</u> <u>6.7</u> <u>6.5</u> <u>6.4</u> <u>8</u> |
| 14.1 15.7 15 | b 15.6 14.9 14.9 13.6 14.5 14.1 12.7 12.5 12.6 12.5 11.1 10.4 10.0 9.2 9.4 | 9.6 9.5 8.2 8.2 8.0 7.9 8.0 |
| 6.1 16.6 17.2 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |
| 4.5 13.8 15.1 | | 1.2 12.4 14.0 11.9 11.1 11.3 10.8 9. |
| | | |
| | | • |
| | | |
| | | |
| | - | · · · · · · · · · · · · · · · · · · · |
| <u></u> | | · · · |
| | · ···································· | · · · · · · · · · · · · · · · · · · · |

| | • | | |
|---------------|---|---|---|
| | | | : |
| | | | |
| | | | |
| | | | |
| | | | |
| N = 1 | 38. 55. 53. 71. 46. 73 B8 58 64 35 28 45 29 15 17 70 12 21 19 10 17 | 101 01 01 01 01 01 01 01 01 01 01 01 01 | 9550N 1075N 9600N 9625N 9650N 9675N 9700N 9725 |
| N = 2 | 57. 64. 58. 49. 45. 57. 57. 64 51. 30. 39 32. 30. 51. 25. 25. 29 30 27 33 34. 44. 31. | 30 + 1, 19 , $23 - 30$, 17 , 40 , 17 , 18 , 30 , 20 , $20 - 30$, 30 , $25 - 22$, | 16 16 15. 13. 11. 15. 15. |
| N = 3 | 54 62 41 40. 33 38 55. 56. 35 27. 32. 26 28. 30 26 51 27 27 24 27. | | 22. ¹ 9. 18, 17. 16. 15. 20. 18. |
| N = 4 | 49. 42 34. 29. 24. 58, 44 36, 39 24. 26. 27. 24 24. 25. 74. 26. 28. 23. 24. 27 | | 21 23 27 18 17 29 2220 25 23 21 19 21 21 25 |
| N = 5 | 34 35. 26. 25. 24. 35. 28. 40. 25. 22. 26. 27. 22. 24. 31 24. 28. 19. 26. 24. | 20. 24. 23 22. 21. 20. 25. 20. 16. 21. 25. 23. 21. 22 19. | 22 23. 21. 21. 22. 21. 24. |
| N = 6 | 28. 30. 24. 26. 33. 2 ⁴ . 26. 25. 25 25. 24. 19 20. 35. 26. 26. 16. 23. 24. 16. | 19. 2°. 16. 22 20 20 26 20. 19. 21. 25. 24. 20. 20 20. | 277. 21. 21 24. 72. 24 22. |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | 8600N 8625N 8650N 8675N 8700N 8725N 8750N 8775N 88 N 8825N 8850N 8875N 8900N 8925N 8950N 8975N 9000N 9025N 9050N 9075N 9100N 9125N 9150 | 0N 91755 9200N 9225N 9250N 9275N 9300N 9325N 9350N 9375N 9400N 9425N 9450N 9475N 9500N 9525N 9 | |
| N = 1 | 9.8 9.1 8.8 8.4 8.6 8.6 7.7 6.8 8.5 8.6 7.7 6.9 6.6 6.6 6.6 6.9 7.3 7.0 7.2 7.4 8.1 7.8 8.0 | 7.8 7.7 7.7 7.7 86 63 71 86 77 120 104 89 95 107 107 65 | |
| N = 2 | 11.3 10.2 11.0 11.3 11.1 10.6 10.7 7 10.0 10.2 9.7 9.3 9.3 8.1 6.9 7.7 8.4 7.5 7.9 7.6 7.5 7.6 | 6 6.4 6.4 6.4 6.8 6.1 5.1 7.1 5.9 7.3 9.2 7.7 95 11.2 9.9 8.8 | 8.1 6.9 5.9 61 5.3 4.7 5.9 |
| N = 3 | 11.5 11.3 12.2 11.3 10.9 10.7 11.5 11.1 10.8 10.6 10.4 10.2 9.0 78 8.0 8.8 8.3 8.6 8.1 7.8 7.5 | 6.8 p.7 6.7 6.8 6.0 5.8 6.3 5.6 6.8 6.5 6.6 78 9.8 9.7 8.5 7.5 | |
| N = 4 | 11.5 11.8 11.1 10.4 96 10.9 11.3 10.9 10.6 10.4 9.5 8.3 8.5 9.1 8.7 9.3 8.6 8.4 8.6 7.2 | 2 68 6.8 7.1 66 29 8.8 6.0 6.8 6.8 55 75 8.8 8.8 8.6 7.3 | 79 8.4 8.9 8.6 8.1 8.5 9.0 8.6 |
| N = 5 $N = 6$ | 11.8 10.9 10.1 9.5 9.5 10.4 11.6 10.9 10.7 10.1 9.0 8.2 8.9 8.9 8.6 9.1 9.0 8.7 8.3 8.2 | 7.8 7.6 7.3 7.0 7.3 6.2 8.0 7.4 6.1 7.2 9.0 8.3 8.3 7.5 7.7 | × 8.8 8.6 8.6 9.2 9.5 9.1 |
| | | 7.9 8.1 79 7.0 73 8.2 7.9 8.2 8.4 7.7 8.6 8.5 8.0 8.0 8.0 | 8.5 9.0 9.0 9.5 10.1 10.1 9.7 10.8 |
| | • | | • |
| | | | |
| | | | |
| | | | |
| | ↓
 | | |
| L | | | |
| | | | |

25N 9750N 9775N 9800N 9825N 9850N 9875N 9900N 9925N 9450N 9975N 10000N 10025N 10050N 10075N 10100N 10125N 10150N 10175N 10200N 10225N 10250N 10275N 10300N 10 5N 13. 18. 18. 73. 44. 46. 39. 42 35 35 46 26 15 29 24. 19. 20. 18 14 23 20 24 24 22. 24. 26. 24. 27. 23. 25. 24 25. 24 25. 27. <u>15</u> 45. 21. 26. 22. 20. 24 21 28 23 24, 24 24. CHARGEABILITY (MSEC) 25N 9750N 9775N 9800N 9825N 9850N 9875N 9900N 9925N 9420N 9975N 10000N 10025N 10050N 10075N 10100N 10125N 10150N 10175N 10200N 10225N 10250N 10275N 10300N 101 5N 8.8 10.9 11.0 11.0 10.4 9.1 86 8.6 6.8 9.7 9.0 10.3 196-----8.5 8.8 7.8 7.4 89 9.5 91 9.2 07 9.6 9.5 9.8 9.0 9.0 9.4 9.0 10.4 9.8 9.2 9.8 9.6 9.7 9.7 9.2 8 9.5 10.5 9.9 10.4 11.2 10.0 9.9 10.8 10.4 9.9 10.4 10.5 10.5

| | | ÷ |
|----------------|---|--|
| | | • |
| | | |
| | | |
| N = 1 | 15. 15. 29. 24. 24. 20. 26. 33. 34. 32. 29. 41. 49. 69. 123. 12 129. 123. 12 129. 123. 12 | 0825N 10850N 10875N 10900N 10925N 10 |
| N = 2 | 16. 20. 18. 20. 18. 15. 20. 24. 24. 22. 20. 25. 25. 32. 41. 21. 46. 31. 27. 30. 33. 39. 31. 27. 21. | 63. 77. : 70. 108. 121.
25. 36. 38. 56. 51 |
| N = 3
N = 4 | 22. 19. 21, 20, 17, 17, 20, 22, 19, 17, 19
21, 20, 28, 21, 22, 31, 21, 23, 26, 26, 27, 24, 21,
21, 27, 22, 20, 20, 20, 24, 21, 25, 31, 27, 24, 21, 25, 27, 24, 21, | 27. 28. 28. 35. 43. |
| N = 5 | 24. 23. 21. 22. 24. 21. 20. 21. 20. 23. 19. 24. 24. 24. 21. 24. 24. 21. 24. 25. 24. 26. 23. 21. 24. 23. 21. 21. 23. 17. 24. 24. 21. 25. 2 | 7. 26. 26. 33. 35. 29
26. 25. 33. 36. 26. |
| N = 6 | 24. 22. 23. 26. 22. 1B. 22. 23. 23. 23. 17. 21. 27. 24. 22. 28. 25. 25. 28. 25. 30. 20 | 8 . 24. 31. 36. 27. 22 |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | 10200N 10225N 10250N 10275N 10300N 10325N 10350N 10375N 10400N 10425N 10450N 10475N 10500N 10525N 10550N 10575N 10600N 10625N 10650N 10675N 10700N 10725N 10750N 10775N 10800N 10 | 0825N 10850N 10875N 10900N 10925N 10 |
| N = 1 | | 11.7 11.9 11.0 11.2 9.2 |
| N = 2
N = 3 | 7.7 7.0 6.8 7.2 6.6 7.5 9.4 12.4 13.7 14.8 16.5 18.1 18.4 14.9 17.5 16.1 15.8 14.3 12.8 11.8 11.6 12.0 12.2 11.0 10 | 0.7 11.3 1.1 11.9 10.7 10. |
| N = 4 | 9.0 9.0 8.3 8.6 8.3 8.5 8.8 9.4 9.6 10.7 11.5 9.7 11.0 10.4 11.3 11.2 11.3 10.8 10.5 10.4 10.3 9.5 9.0 | 9.5 9.1 10.7 11.0 11.7
9.5 9.1 1.0 12.0 13.1 12 |
| N = 5
N = 6 | 9.7 9.2 9.5 8.9 9.3 9.4 9.5 9.7 10.8 10.9 9.5 10.5 10.2 10.5 11.1 11.0 11.3 11.0 10.4 10.1 10.4 11.0 | 10.4 11,9 12.8 14.1 13.3 |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |

90550E 90575E 90600E 90625E 90650E 90675E 90700E 90725E 90750E 90750E 9075E 90800E 90875E 90800E 90875E 90900E 90975E 91000E 91025E 91050E 91075E 91100E 91125E 91250E 91275E 91200E 91275E 91350E 91375E 91350E 91375E 91400E 91425E 91450E 91475E 91500E 91525E 91550E 91575E 91600E 91625E 91650E 91625E 91650E 91675E 91000E 91025E 9175E 91200E 91125E 91250E 91275E 91200E 91275E 91350E 91375E 91400E 91425E 91450E 91475E 91500E 91525E 91550E 91575E 91600E 91625E 91650E 91675E 91000E 91025E 91250E 91275E 91200E 91275E 91300E 91325E 91350E 91375E 91400E 91425E 91450E 91475E 91500E 91525E 91550E 91575E 91600E 91625E 91650E 91675E 91000E 91075E 91000E 91025E 91050E 91075E 91000E 91025E 91250E 91275E 91200E 91275E 91300E 91325E 91350E 91375E 91400E 91425E 91450E 91475E 91500E 91575E 91600E 91625E 91650E 91675E 91000E 91075E 91000E 9.7 9.6 Ŷ.Ĵ

176. 533 57.3

MISTY MOUNTAIN GOLD

MISTY MOUNTAIN GOLD LIMITED Feather Grid RESISTIVITY (OHM-M) Skeena Mining Division N = 1 <u>LINE: 27350N</u> N = 2N = 3 152 N = 4 N = 5 POLE-DIPOLE ARRAY N = 6 WEST PLOTTIN x = 25m n = 1 - 6 CURRENT ELECTRODE C EAST OF POTENTIAL DIPOLE PP2 SURFACE PROJECTION OF ANOMALOUS ZONES CHARGEABILITY (MSEC) AT DEPTH ******* N = 1 SCALE 1 : 2000 N = 2 CONTOUR INTERVALS N = 3RGEABILITY : 2.0 (maec) N = 4 10.6 100 (ohm-m N = 5 5.6 54 N = 6 Tx: Huntec Mk2 Model 7500 Rx: EDA iP-6 LLOYD GEOPHYSICS INC INDUCED POLARIZATION SURVEY DRAWING NUMBER : 97416-F-03

90550E 90575E 90600E 90625E 90650E 90675E 90700E 90725E 90750E 90750E 90750E 90750E 9075E 90800E 90875E 90900E 90925E 90950E 90975E 91000E 91025E 91050E 9125E 91250E 3. 11.7 8.4 11.1 9.5 12.0 20.3 4.8 ---- 24.3 *

90550E 90575E 90600E 90625E 90650E 90675E 90700E 90725E 90700E 90725E 90750E 9075E 90800E 90875E 90800E 90875E 90900E 90925E 90950E 90975E 91400E 91425E 91450E 91450E 91455E 91500E 91525E 91550E 915

226.

MISTY MOUNTAIN GOLD LIMITED

RESISTIVITY (OHM-M)

<u>13.</u>

| - | | 24. | | 24. | | 3 1. | | <u>24</u> . | | 33 | | 21. | | 20. | | 22. | | 16. | • | 23. | | 22. | | 39. | N | æ | 1 |
|----------------------------------|--|--|-------------------------------|-----------------------------------|---------------------------------------|---------------------------|---------------------------------|---------------------------------|------------------------------------|--------------------------------|------------------------------------|--------------------------|--------------------------|--------------------------------------|---------------------------------------|--------------------------------|--------------------------------|---|--|--|------------------------------------|-----------------------------|-------------------|--------------------------|------------------|---|----------------------------|
| 3. | 17. | | 13. | | 13. | | 21. | | 14. | | 16. | | 20. | | 17. | | 1 8 . | | 17. | | 17, | | 15. | - | Ν | = | 2 |
| 19. | | 13. | | 11. | | 11. | | 14, | | 1 <u>2</u> . | | 15, | | 19. | | 15. | | 17. | | 15, | | 16. | | | N | - | 3 |
| 3. | 18. | | 12. | | 12. | | 9. | | 11. | | 11. | | 14. | | 18. | | 15. | | 15. | | 16. | | | | N | | 4 |
| 63. | | 18. | | 11. | | 9. | | 10. | | 10. | | 11. | | 13. | | 1 8 . | | t 4 . | | t 3. | | | | | N | - | 5 |
| 2. | 64. | | 18. | | 10. | | 8. | | 10. | | 10. | | 10. | | 14. | | 17. | | 14. | | | | | | N | - | 6 |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | And for a state | | - | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | |) | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | - | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | - | | | |
| | | | | | | | | | | | | | | | | | | | | | _ | | | | | | |
| | | | | | | | | | | | | | C | ЭН | AR | GE | AE | BIL | .IT | Y | (M | ISE | EC |) | | | |
| 1675 | 5 9 17 | 700E | 917 | 725E | 917 | '50E | 917 | 75E | 918 | 00E | 918 | 25E | C
918 | 2H
150E | AR
918 | GE
75E | A E
919 | BIL | .IT
919 | Y
125E | (M
919 | ISE
150E | EC)
919 |)
9751 92000E | | | |
| 1675 | 917
9 | 700E
8.5 | 917
5 | 725E
7. | : 917
1 | '50E
7.0 | 917
5 | 775E
6. | 918 | 00E | 91 <u>8</u> | 25E
7.3 | C
918 | CH
150E | AR
918 | GE
75E
8.6 | AE
919 | 31L
100E | .IT
919
7 | Ý
925E
64 | ()
919
8 | ISE
الالالة
الالالالة | EC)
919 |)
975+ 92000E | N | = | 1 |
| 1675 | 917
9
6.1 | 700E
8.5 | 917
5
7.1 | 725E
7. | : 917
1
7.2 | 250E
7.6 | 917
5
7.: | 775E
6. [°] | 918
7
6.2 | 000E
7.0 | 91 <u>8</u>
)
6.3 | 25E
7.3 | C
918
6.8 | 2 H/
350E
7.7 | 918
918
7 | 6E | 919
979 | BIL
000E | .IT `
919
7
7. | ¥
25E
6.1 | (M
919
8
6. | 1SE
950E
5.0 | 919
919 |)
975+ 92000E | k | = | 1
2 |
| 1 <u>675</u> | 917 | 700E | 917
5
7. | 725E
7.
7 | : 917
1
7.2 | 250E
7.0
2
6.1 | 917
5
7.: | 275E
6. ² | 918
7
6.2 | 5.2 | 918 | 25E
7.3 | 918
918
6.8 | 2 H/
350E
7.7
8 | AR
918
7
7.7 | 6E
75E
8.6 | 919
919 | 31L
100E
7.1 | . T `
: 919
7
7 | ¥
)25E
6.1
3 | (M
919
6.
8 | 1SE
250E
3
6.0 | 919
919
6.0 |)
975t 92000E
•\$* | N
N | | 1
2
3 |
| 1 <u>675</u> | 9
9
6.1
2
2
2.2 | 700E
8.5
7
5.0
3 | 917
5
7.
6 | 725E
7.
7
7.1 | 917
1
7.2
5 | 250E
7.0
2
6.1 | 917
5
7.: | 275E
6. ²
7 | 918
7
6.2
5.2 | 000E
7.0
2
5.2 | 918
6.3
5.1 | 25E
7.3 | 918
6.8 | 2H
350E
7.7
8
6.8 | AR
918
7.7
7.7 | 6E
75E
8.6
7.5 | 919
7.5 | BIL
100E
7.1 | . IT
919
7
7
7. | Y
325E
6.1
3
6.1 | ()
919
6. | 1SE
350E
3
6.0 | 919
919
6.8 |)
975+ 92000E
•\$* | N
N
N | | 1
2
3
4 |
| 1675i | 917
9
6.7
2
2
2.1 | 700E
8.:
7
5.0
3
2.3 | 917
5
7.
6
4 | 725E
7.
7
7.1
2
2. | 917
1
7.3 | 250E
7.0
6.1
5.0 | 917
5
7.1
2
5. | 775E
6.
7
5. | 918
7
6.2
5.2 | 000E
7.0
5.2
4.7 | 918
0
6.3
5.1 | 25E
7.3
6.3
4.7 | 918
6.0
6.1 | 5.1
5.1 | AR
918
7.7
7.7 | GE
75E
7.5
7.5 | AE
919
7.5 | BIL
000E
7.:
5
7.: | . | Ý
325E
6.1
5
6.1 | (M
915
6.
8
6. | 1SE
350E
3
6.8 | 919
6.1 |)
975t 92000E
•\$* | N
N
N
N | | 1
2
3
4
5 |
| 1675i | 9
6.
2
2
2
2
1
7.0 | 7
7
5.0
3
2.2 | 5 917
5 7.
6 4.
3 3. | 725E
7.
7
7.
2
2. | 1
7.2
5
5
2.1 | 7.0
7.0
6.2
5.0 | 917
5
7.1
2
5.
5 | 275E
6.
2
5.
2 | 918
7
6.2
5.2
4
4.4 | 000E
7.0
5.2
4.7 | 918
6.3
5.1
4.6 | 25E
7.3
6.3
4.7 | 918
6.6
5.1 | 7.7
8
6.8
5
5.1
2 | AR
918
7
7.7
7.7 | GE
75E
7.5
7.2 | AE
919
7.5
7.1 | BIL
000E
7.1
5
7.2 | .IT
: 91 <u>9</u>
7
7.
5
7.
2
7. | Ý
325E
6.1
5
6.1
7 | (M
91 <u>9</u>
6.
8
6. | 1SE
950E
5.8
6.8 | 919
6.1 |)
975t 92000E | N
N
N
N | | 1
2
3
4
5
6 |
| 1675i
4.9
6.8
7
7.4 | 2 917
9 6.1
2 2 2.1
1 7.1 | 7
7
5.0
3
2.1
4 | | 725E
7.
7
7.1
2
2. | 1
7.2
5
5
3
2.1 | 250E
7.(
6.2
5.(| 917
3
7.1
5.
5. | 275E
6.
2
5.
2 | 918
7
6.2
5.2
4 | 000E
7.0
5.2
4.3 | 918
0
6.3
5.1
7
4.6 | 25E
7.3
6.3 | 918
6.0
5.2 | 350E
7.7
6.6
5
5.1 | AR
918
7.7
7.1 | GE
75E
7.5
7.5 | AE
919
7.5 | BIL
200E
7.3
7.3
7.3 | .IT`
: 91 <u>9</u>
7
7.
5
7.
2
7. | Y
325E
6.1
5
6.1
7 | ()
919
6
6.
8 | ISE
950E
3
6.8 | 919
6.1 |)
975t 92000E
8 | N N N N N | | 1
2
3
4
5
6 |
| 1675i
4.9
6.8
7
7.4 | <u>9</u>
<u>6</u>
<u>7</u>
<u>7</u> | 7
7
5.0
3
2.1
4 | | 725E
7.
7
7.
2
2. | 1
7.1
5
5
2.0 | 7.0
7.0
6.1
5.0 | 917
5
7.1
5
5 | 275E
6.
2
5.
2 | 918
7
6.2
5.2
4
4.4 | 000E
7.0
2
5.2
4.3 | 918
6.3
5.1
4.6 | 25E
7.3
6.3
4.7 | 918
6.8
6.1
5.1 | 350E
7.7
8
6.8
5
5.1 | AR
918
7.7
7.7
7.4 | GE
75E
7.5
7.5 | AE
919
7.5
7.5 | BIL
000E
7.1
7.1
7.1 | . 1 , <u>1</u> | €
325E
6.
5
6.
7 | (M
915
6.
8
8
8 | ISE
250E
3
6.1 | 5.1
919
6.1 |)
975t 92000E
•\$* | N N N N N N | | 1
2
3
4
5
6 |
| 1675i
4.9
6.8
7
7.4 | <u>9</u>
<u>6</u>
<u>7</u>
<u>7</u> | 700E
8.:
7
5.0
3
2.:
4 | 5
7.
3
3
3. | 725E
7.
7
7.
2
2. | 1
5
5
2.0 | 250E
7.6
6.1
5.0 | 917
5
7.:
5
5. | 275E
6.
2
5.
2 | 918
7
6.2
5.2
4
4 | 000E
7.0
5.2
4.3 | 918
0
6.3
5.1
4.8 | 25E
7.3
6.3
4.7 | 918
6.0
5.1 | 250E
7.7
6.6
5
5.1 | AR
918
7
7.7
7.4 | GE
755
7.5
7.5
7.2 | AE
919
7.5
7.5 | BIL
000E
7.1
7.1
7.2 | .IT
: 91 <u>;</u>
7
7.
5
7.
2
7. | Y
325E
6.1
5
6.1
7 | (M
919
6.
8
6. | ISE
350E
4 | 919
6.1 |)
975€ 92000E
•?* | N N N N N | | 1
2
3
4
5
8 |
| 16751
-4.9
6.8
7
7.4 | 2 917
9 6.1
1 7.7 | 7
3
2.1
4 | 5 7.
5 7.
3 3. | 725E
7.
7
7.
2
2. | 1
5
5
8.4
2.1 | 250E
7.0
6.1
5.0 | 917
5
7.:
5
5. | 275E
6.
2
5.
2 | 918
7
6.2
5.2
4.4 | 5.2
5.2
4.3 | 918
9
6.3
5.1
4.8 | 25E
7.3
6.3
4.7 | 918
6.6
5.2 | 5
5.1
2
2 | AR
918
7.7
7.7
7.4 | GE
755
7.5
7.5 | AE
919
7.5
7.5 | BIL
1000E
7.1
5
7.1 | . 11
: 91 <u>9</u>
7
7.
5
7.
2
7. | 3
3
6 .1
6 .1
7
7 | (M
915
6.
8
6. | 1SE
950E
3
6.8 | 919
6.3 |)
975t 92000E | N N N N N N | | 1
2
3
4
5
6 |
| 1675i
4.39
6.8
7
7.4 | 9
9
6.
2
2
2.
7.0 | 7
5.0
3
2.3 | | 7255 | <u>917</u>
1
5
8
3
2.0 | 250E
7.6
6.1
5.1 | 917
3
7.1
5. | 275E
6.
2
7
5.
2 | 918
7
5.7
4
4.4 | 000E
7.0
5.2
4.3 | 918
0
6.3
5.1
7
4.6 | 25E
7.3
6.3
4.7 | 918
6.0
5.1 | 350E
7.7
6.6
5
5.1 | AR
918
7.7
7.7
7.1 | GE
75E
7.5
7.2 | AE
919
7.5
7.1 | 3IL
000E
7.1
5
7.2 | .1 . 1 . 1
: 919
7
7.
5
7.
2
7. | 925E
6.1
5
6.1
7 | (N
915
6.
8
8 | ISE
33
6، | 5.1
919
6.1 |)
975t 92000E
8 | N N N N N | | 1
2
3
4
5
6 |

| | 9150N 9175N 9200N 9225N 9250N 9275N 9300N 9325N 9350N 9375N 9400N 9425N 9450N 9475N 9500N 9525N 9550N 9575N 9600N |
|-------|---|
| N — 1 | |
| N = 2 | 4.4 5.3 5.8 4.6 4.1 5.5 4.0 4.7 6.4 6.9 7.0 6.4 8.0 8.0 7.8 6.5 8.7 6.9 6.9 |
| N = 3 | 4,4 5.5 6.0 4,1 5.2 4.5 4.3 4.5 6.4 6.9 5.2 6.6 6.8 6.8 6.8 6.1 8.5 6.4 |
| N = 4 | 5.0 4.9 5.9 4.3 (3.7) 4.9 4.7 4.4 (6_{31}) 5.2 5.6 5.9 (6.7) 6.5 (5.8) 7.5 (6.1) |
| N = 5 | 4.9 4.7 6.5 4.1 4.3 5.4 5.1 4.4 5.0 5.6 5.0 5.4 6.3 6.6 6.3 5.2 7.5 |
| N = 6 | 4.5 5.1 6.8 4.4 4.8 5.9 5.4 ∂ 3.7 5.6 ≁6.2 5.5 5.4 6.8 7.1 0.0 5.2 6.0 |
| | |

10.7 117 **2.8 9.5 8.6**

215. 253. 210. 174.

77 7.5 5.0 5.3 5.5 8.3 9.4 6.8

6250E 6275E 6300E 6325E 6350E 6375E 6400E 6425E 6450E 6475E 6500E 6525E 6550E 6575E 6600E 6625E 6650E 6675E 6700E 6725E 6750E 6775E 6800E 6825E 6850E 6875E 6900E

-

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

