Phantom Group Claims J and J 2 to 10 Claims

Report On

Prospecting / Geochemical Programs

New Westminister Mining Division

NTS 92H/13E, 92 I/4E LAT 50 degrees 0' 48" N LONG 121 degrees 34' 30" W

MECEIVLL

14N 26 1998

Gold Commissioner's Office VANCOUVER, B.C.

Owner:

Pacific Talc Ltd. # 404 - 815 Hornby Street Vancouver, B.C. V6Z 2EZ

Authors:

David St. Clair Dunn, P. Geo J.B. Delaney, F.M. Sorbara Geological Consulting Ltd. # 500- 789 W. Pender St. Vancouver, B.C. V6C 1H2

January 1997

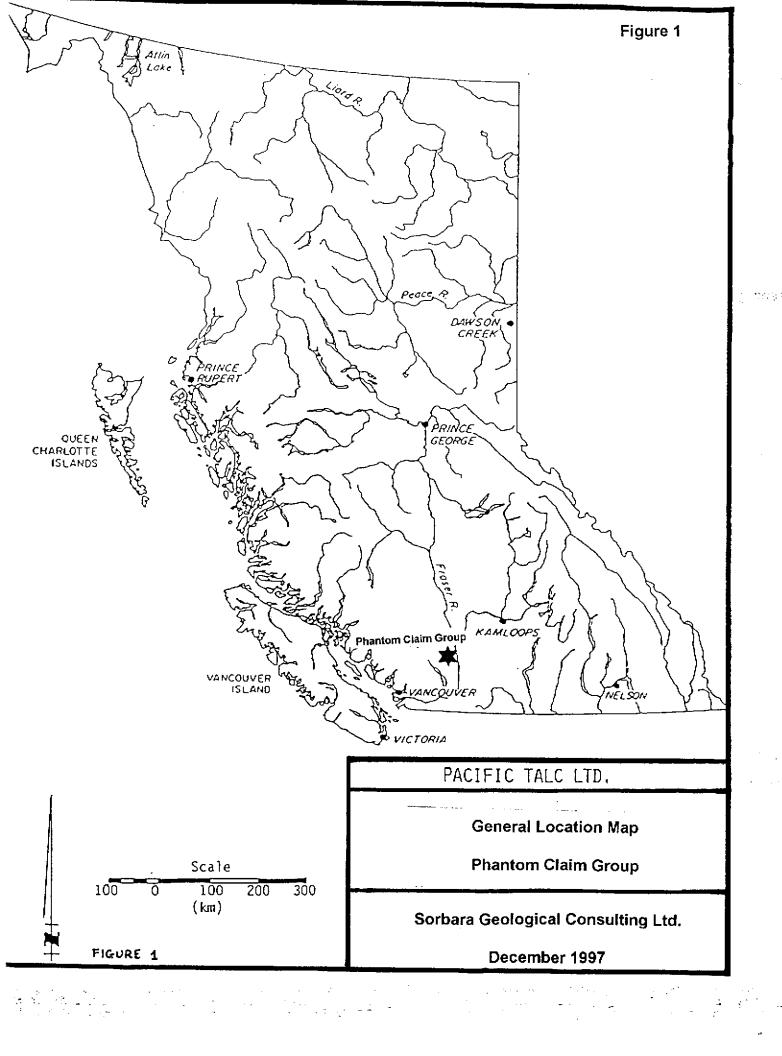
GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

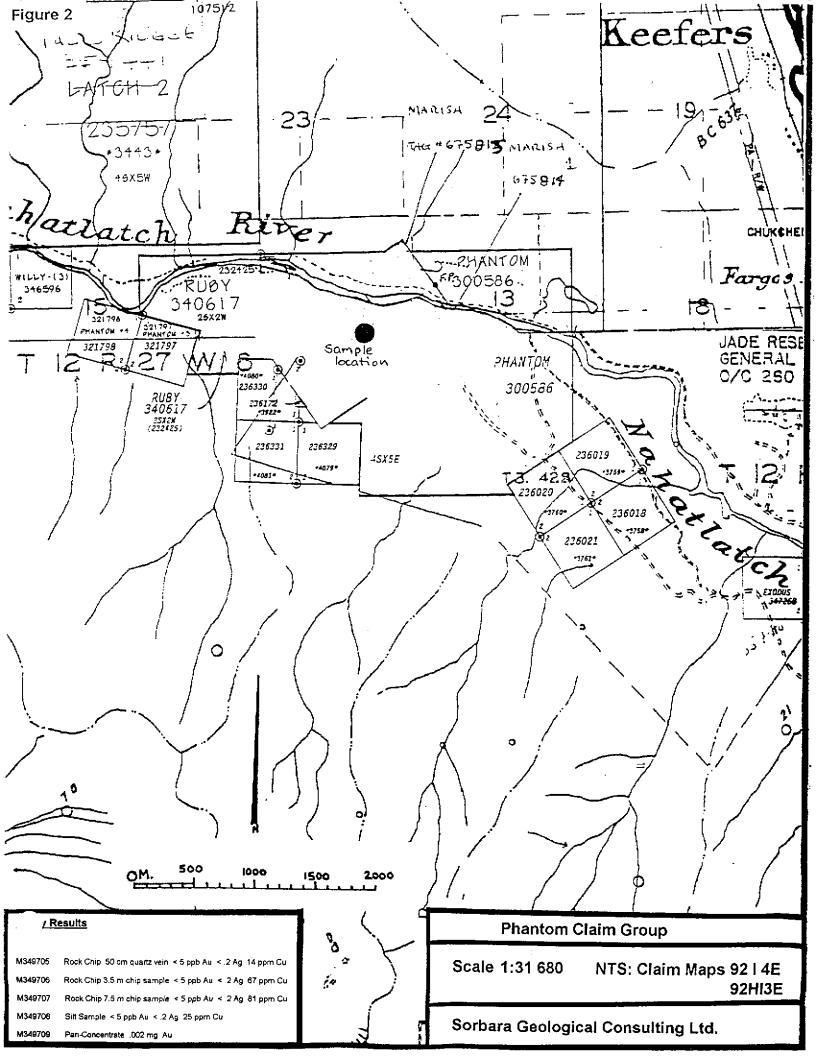
25,411

Table Of Contents

	Page	;
Introduction		1
1997 Work Pro	ogram1	l
Location and A	Access 1	l
Property Geole	ogy 2)
Regional Geol	logy 2	?
Surficial Geole	Pgy 2)
Conclusions		į
Recommendat	tions 3	i
Bibliography	4	
	<u>Appendices</u>	
Appendix A	Analytical Results	
Appendix B	Analytical Methods	
Appendix C	Statement of Costs	
Appendix D	Statement of Quaifcations	
Appendix E	Sampling Methodology	
Appendix F	Sample Description/Location	
	<u>List of Figures</u>	
	After Page	
Figure 1	General Location Map 1	
Figure 2	Claim/Sample Location Map 1	
Figure 3	Fractional Claim Map 1	
Figure 4	Regional Geologic Map	

Introduction


The J nd J claims were first staked in 1970 and since then more than two million dollars have been expended attempting to develop an economic talc ore body on the property. These efforts have not, as yet, been successful. A small geochemical/prospecting program was conducted between Sept. 19th and Sept. 29th 1997 to determine if the property hosted any precious metals as well as the already established talc mineralization. The geological model of mesothermal precious metals veins was used as rationale for this endevour. No market has been developed for the talc to date, so the property has not been put into production. The focus of this program was to determine if economically interesting precious metals mineralization was associated with the talc mineralization. The Authors were commissioned by Frank Anderson, President of Pacific Talc Ltd., to carry out a mineral exploration program, sufficient to cover annual assessment costs on the J and J 2 - 10, Phantom and Ruby Claims, New Westminister Mining Division.


1997 Work Program

A limited program of stream geochemical sampling and prospecting was carried out on the Phantom Group Claims in September and October 1997. The object of this program was to attempt to outline precious metals mineralization on the property. The Phantom Group covers a large body of talc-magnesite-chlorite-dolomite rock. This alteration assemblage is often associated with mesothermal gold-bearing veins. A thepaired pan-concentrate and silt samples were taken from the stream nearest the talc mineralization. Logging roads were prospected for quartz veins and silicified shear zones. Two silicified shear zones were sampled.

Access and Location

Location of the J and J two through 10 and the Ruby and Phantom claims, now grouped under the Phantom name, are situated approxiamately 150 NE of Vancouver, B.C. near the Nahatlach River approxiamately 20 km NW of North Bend, in the New Westminister Mining District. A fractional claim, the Salvaton, is internal to the Phantom Group. (See Fig.3) Access to the property from North Bend is by well maintained gravel road which leads 10.4 km northward to Chamoix siding on the Canadian Pacific Railway and a further 3.3 km to a turn-off leading westward up the south side of the Nahatlach Valley. The left branch affords access to the higher southeastern portion of the claim group, formerly J & J 7,8,9 and 10 claims. The right branch follows the Nahatlach River to the main talc showings approximately

Regional Geology

The Boston Bar Lytton area comprise two distinct geological and physiographic provinces, the Intermontane belt to the east, and the Coast Cascade belts to the west, with the boundary delineated by the North Northwest trending Pasayten and Fraser Faults. The Intermontane Belt is a region of relatively low topographical structural relief, with mainly subgreen-schist metamorphic grade rocks exposed across the entire width. By contrast, the Coast and Cascade belts have high topographic and structural relief; a tract of amphibolite grade rocks on the east and west. The boundary between Coast and Cascade belts is placed at the Fraser River, with the Coast belt to the north and west of it and the Cascade belt to the east and south. (Monger 1989)

The talc deposit is a tabular elongate body of sheared talc-magnesite-chlorite-dolomite rock hosted by a medium to dark grey-green phyllite striking roughly 135 degrees with a vertical to subvertical northeastward dip. The talc mineralization appears conformable to the phyllitic host. The talc itself is platy and light to dark greyish green. (Froc 1992)

Property Geology

The region of the Phantom Claim Group is underlain by strongly graphite, schistose chlorite, and quartzose phyllite correlative to Stone sequences of the middle and early Jurassic Ladner Group. A number of discontinuous elongate Jurassic intrusives complising homblendes diorite, quartz diorite and amphibolite are mapped on the property, the general trend of these mafic intrusives cross the deposite. Granodiorite of the Tertiary Scuzzy Pluton borders the phyllite unit on the southwest and intudes it in several locations. (Froc 1992)

Surficial Geology

The J and J and Phantom/Ruby group of claims is extensively covered by river deposited terrace material. Although soil is thin, the bedrock surface is covered by sands and gravels forming terraces which were laid down by the Nahatlach River, probably as outwash deposites from glaciers during the immediate post-glacial period. They are comprised of medium grained sands with rounded granite boulders to 0.5 m in diameter scattered throughout. The thickness is veriable as would be expected with a deposit laid down on an irregular erosion surface. Near bedrock the amount of country rock fragments increases, these pieces being angular and as a result of present weathering activity. (Perston 1979)

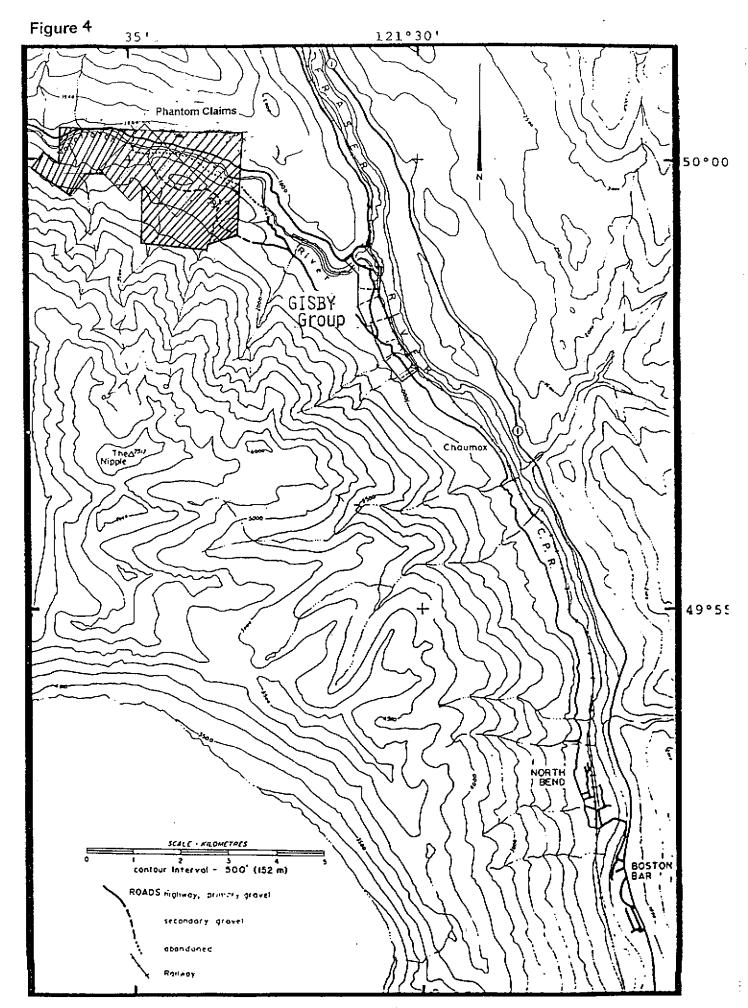


FIGURE 3. North Bend - Nahat7atch River Area

Conclusions

The Phantom group covers a large talc-magesite body, which has recieved a considerable past work for its talc potential. At present there is no market for the talc on the company's property. Talc alteration similar to that on the Phantom Claim Group can be associated with mesothermal precious metals mineralization. This years work did not return any significant precious metals values.

Recommendations

A more extensive geochemical sampling program is needed to make a complete investigation of this potential on the property to host precious metals mineralization.

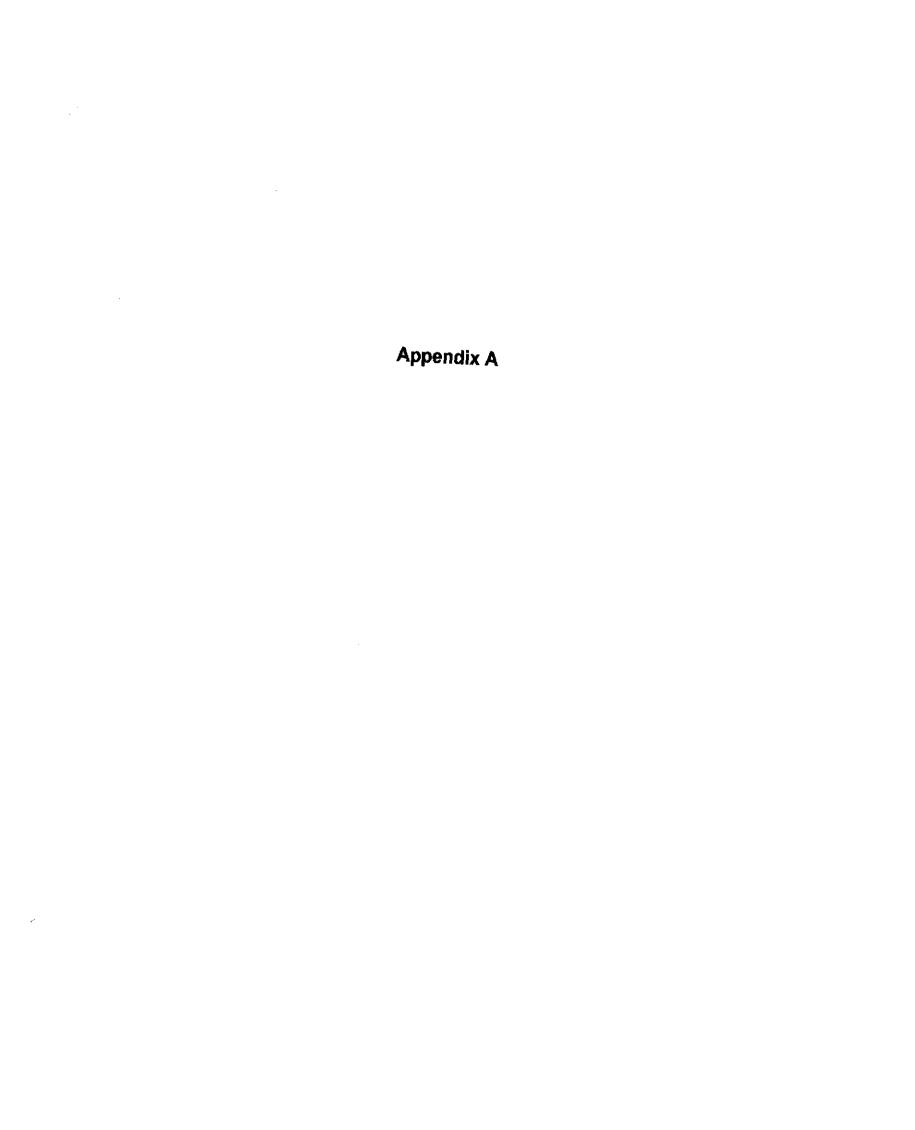
Daivid St. Clares

Respectfu

J.B. Delaney F.M.

Bibliography

Chamberlain, J.A. (1973) Geological Report "H" Claims Nahatlach Area, B.C. Department of Mines and Petroleum


Croft, Stuart A.S. (1987) " A Detailed Investigation of the J and J Claims ", Nevin Sadlier-Brown Goodbrand Ltd.

Froc, Neil (1992) J and J Assessment Report

Monger, J.W.H. (1980-82) Bedrock Geology of Ashcroft 92 I Map Area scale 1:125 000 Geological Survey of Canada

Perston, John W. (1979) " Assessment Report on the J and J group of claims ", Mountain Minerals Ltd.

Sullivan, Joseph (1984) Assessment Report on J and J claims

Analytical Chemists * Geochomists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: SORBARA GEOLOGICAL CONSULTING LTD.

500 - 789 W. PENDER ST. VANCOUVER, BC V6C 1H2

Project: JACK CLAIMS

Comments: ATTN: PAUL SORBERA CC: J.B. DELANEY

Page Number :1-A Total Pages :1 Certificate Date: 17-NOV-97

Invoice No. P.O. Number :19750103

Account :NRD

Phandon Zrosp Samples	`{

			1							<u></u>	ÇE	RTIF	CATE	OF	ANAL	YSIS.		A975	0103		
SAMPLE		REP DDE	Au ppb FA+AA		Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %		_	_		-	
M349705 M349706 M349707 M349710 M349711	205 205 205	294 294 294 294 294	< 5 < 5 < 5	< 0.2 < 0.2 < 0.2	0.41 2.36 2.30 4.40 2.06	8 8 8 72 40	10 150 240 370 110		< 2 < 2 < 2 < 2 < 2	2.24	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	5 21 21 20 12	155 144 128 68 65	14 67 81 37 30	0.81 3.52 3.53 4.93 3.08	< 10 < 10 < 10 10 < 10	< 1 < 1 < 1	0.41 0.54 0.82	< 10 < 10	0,29 1,60 1,53 2,21	115 870 985 695 550
M349713 M349743 M349746 M590413 M590414	205 205	 294 294 294 294	< 5 < 5	NotRed < 0.2 < 0.2 < 0.2 < 0.2	NotRed 2.48 0.28 2.57 2.66	NotRed 1 120 762 68 24	NotRed 60 40 50	NotRed 1 < 0.5 < 0.5 < 0.5 < 0.5	Notred : < 2 < 2 < 2 < 2 < 2	NotRed 0.24 2.85 0.28 0.42	NotRed 3 < 0.5 < 0.5 < 0.5 < 0.5	lotred 1 16 11 17 19					NotRed			NotRcd 1.59 0.97 1.61	
M590415 M590416	205 205	294 294	< 5 < 5	< 0.2 0.6	1.10	94 256	290 230		< 2	0.13 0.29	< 0.5 < 0.5	7 5	105 87	10	1.94	< 10 < 10	< i	0.55	< 10 < 10	0.57	215 240

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: SORBARA GEOLOGICAL CONSULTING LTD.

500 - 789 W. PENDER ST. VANCOUVER, BC V6C 1H2

Project: JACK CLAIMS Comments: ATTN: PAUL SORBERA CC: J.B. DELANEY

Page Number :1-B Total Pages :1 Certificate Date: 17-NOV-97

Invoice No. P.O. Number : [9750103

Account :NRD

						_					CE	RTIF	CATE	OF A	NALY	'SIS	A9750103
SAMPLE	PR CO		Mo ppm	Na %	Ni ppm	P PPM	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	Tl ppm	U ppm	V ppm	ppm W	Zn ppm	
349705 349706 349707 349710 349711	205 205 205	294 294 294 294 294	1 < 1 < 1	< 0.01 0.01 0.02 0.17 0.09	9 38 39 13 12	40 420 420 490 480	< 2 < 2 < 2 < 2	< 2 < 2 < 2 < 2 < 2	1 5 4 19 13	1 36 36 261 143	0.04 0.30 0.26 0.16 0.15	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	22 77 74 175 105	< 10 < 10 < 10 < 10 < 10	10 52 56 68 48	
349713 349743 349746 590413 590414	205 205	294 294 294 294	< 1 < 1	NotRed 1 0.01 0.01 0.01 0.01	NotRed 1 21 14 15 18	FotRed N 540 470 710 780	otred N 4 8 6 < 2	otRed N < 2 < 2 < 2 < 2 < 2	otRed N 5 6 7 6	10	NotRed 1 0.07 0.01 0.14 0.18	NotRdd 1 < 10 < 10 < 10 < 10	NotRed N < 10 < 10 < 10 < 10	TotRod 1 50 15 75 67	TotRed N < 10 < 10 < 10 < 10 < 10	otRed 74 56 88 84	<u></u>
590415 590416		294 294	< 1 < 1	0.05 0.04	41 5	340 590	14 34	< 2 < 2	1	14 33	0.12 0.10	< 10 < 10	< 10 < 10	32 30	< 10 < 10	7B 76	
-																	

CERTIFICATION: CONTROLLE

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: SORBARA GEOLOGICAL CONSULTING LTD.

500 - 789 W. PENDER ST. VANCOUVER, BC V6C 1H2

Project: JACK CLAIMS Comments: ATTN: PAUL SORBERA

CC: J.B. DELANEY

Page Number :1-A Total Pages :1 Certificate Date: 18-NOV-97 Invoice No. : 19750063 P.O. Number

Account :NRD

		1								CI	ERTIF	ICATE	OF A	ANAL	YSIS		A975	0063		
Sample	PREP CODE	Au ppb FA+AA	y g	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm
M349708 M349713 M349714 M349715 M349717	205 226 205 226 205 226 205 226 205 226	< 5 NotRed < 5		1.30	710	70	< 0.5	< 2 < 2 NotRed < 2	0.39	< 0.5	9	139	14	2.33	< 10	< 1	0.14	< 10 10 NotRed < 10	1.03 1.17 NotRed 0.91	400 485 NotRed 410
M349719 M349721 M349723 M349725 M349727	205 226 205 226 205 226 205 226 305 226 205 226	< 5 < 5 < 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.87 1.77 1.56 1.78 1.83 2.78	40 28 22 30 194	70 80 70 80 90 70	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.57 0.60 0.62 0.76 0.78 0.48	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	16 14 15 17	179 138 229 208 158	20 19 19 22 36	4.19 4.95 3.54 4.46 5.59 4.53	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.17 0.18 0.16 0.20 0.23	< 10 10 < 10 10	1.15 1.11 0.97 1.04 1.04	470 425 450 500
K349729 K349731 K349732 K349734 K349736	205 226 205 226 205 226 205 226 205 226	< 5 10 < 5		1.59 1.82 2.41 2.62 2.26	48 50 168 142 154	70 70 70 80 70	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.41 0.76 0.57 0.60 0.58	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	15 14 15 17 14	253 214 173 185 167	19 21 21 24 22	2.95 3.46 4.05 4.38 3.76	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.16 0.16 0.14 0.16 0.15	< 10 < 10 < 10 < 10 < 10 < 10	1.32 1.27 1.89 1.97 1.66	820 485 545 720 750 625
M349738 M349740 M349742 M349745 M349748	205 226 205 226 205 226 205 226 205 226	< 5 15	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.00 2.15 2.18 2.46 2.28	104 14 12 304 236	70 100 80 80 70	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.56 0.71 0.65 0.47 0.49	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	15 25 18 15 13	198 172 163 149 159	21 37 23 22 22	3.60 4.73 3.93 3.87 3.73	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.14 0.36 0.24 0.15 0.12	< 10 10 < 10 < 10 < 10	1.55 1.18 1.34 1.73 1.59	595 605 600 800 770
K349750 K590402 K590404 K590406 K590408	205 226 205 226 205 226 205 226 205 226	15 10 10	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.65 2.68 2.41 3.17 1.73	232 340 116 192 138	90 70 60 180 70	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.65 0.55 0.51 0.53 0.40	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	16 17 17 28 12	146 171 159 548 154	25 23 30 65 16	4.25 4.51 4.02 4.65 2.85	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.17 0.15 0.14 0.26 0.14	< 10 < 10 < 10 10 < 10	1.81 1.96 1.82 3.13 1.30	775 850 665 840 590
M590410 M590412	205 226 205 226		< 0.2 < 0.2	1.51 1.71	150 166	70 100	< 0.5 < 0.5	< 2 < 2	0.33 0.47	< 0.5 < 0.5	10 11	165 271	16 17	2.62 2.77	< 10 < 10	< 1 < 1	0.14 0.19	< 10 < 10	1.03	420 530

CERTIFICATION: State Section

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: SORBARA GEOLOGICAL CONSULTING LTD.

500 - 789 W. PENDER ST. VANCOUVER, BC V6C 1H2

Page Number :1-B Total Pages :1 Certificate Date: 18-NOV-97 Invoice No. :19750063 P.O. Number :

Account :NRD

Project: JACK CLAIMS Comments: ATTN: PAUL SORBERA

CC: J.B. DELANEY

											CE	RTIF	CATE	OF A	NAL	/SIS	A9750063
SAMPLE	PRI		Mo nege	Na *		ppm P	Pb ppm	Sb ppm	Sc ppm	Sr ppm	ri *	Tl ppm	D T	regg	mqq	Zn ppm	
349708	205		< 1	0.03	30	630	< 2	2	5	18	0.12	< 10	< 10	68	< 10	60	
349713	205		< 1	0.03	40	810	2	< 2	5	37	0.20	< 10	< 10	67	< 10	62	
349714 349715	205	226	NotRed < 1	Notred 0.03	Notred 45	NotRed 410	NotRed:	NotRcd : 2	Notrad N	lotrod 1 19	Notred :						
349717	205		< 1	0.03	42	780	< 2	< 2	5	28	0.11 0.16	< 10 < 10	< 10 < 10	44 66	< 10 < 10	52 62	
49719		226	< 1	0.01	53	820	< 2	< 2	- 4	26	0.17	< 10	< 10	72	< 10	62	
349721	205	226	< 1	0.02	41	850	< 2	< 2	- Ā	29	0.13	₹ 10	< 10	53	10	58	
349723	205		< 1	0.05	40	860	< 2	< 2	4	36	0.19	< 10	< 10	61	< 10	56	
349725 349727	205		1	0.03	46	910	2	< 2	5	42	0.22	< 10	< 10	79	< 10	62	
	205		< 1	< 0.01	45	660	ė	< 2	7	24	0.21	< 10	< 10	75	< 10	78	
349729 349731	205		< 1	0.01	121	870	< 2	< 2	4	22	0.12	< 10	< 10	47	< 10	54	
349731 349732	205		< 1	0.03 < 0.01	51 74	730 650	< 2	< 2	5	33	0.17	< 10	< 10	56	< 10	56	
349734	205			< 0.01	71	700	< 2 < 2	< 2	7	41 34	0.19 0.20	< 10 < 10	10 < 10	63 68	< 10 < 10	72 78	
349736	205		< 1	0.01	69	680	< 2	` 2	6	37	0.18	< 10	< 10	58	< 10	70	
349738	205		< 1	0.01	70	650	< 2	< 2	5	31	0.16	< 10	< 10	57	< 10	64	
349740	205		< 1	0.02	58	1700	< 2	< 2	5	36	0.14	< 10	< 10	59	< 10	96	
349742 349745	205		1	0.01	49	1250	< 2	< 2	4	34	0.17	< 10	10	58	< 10	78	
349748	205		< 1 < 1	0.01	59 47	670 630	2 < 2	2 < 2	6 6	31 27	0.15 0.16	< 10 < 10	< 10 < 10	60 58	< 10 < 10	80 74	
349750	205																
1590402	205			< 0.01 < 0.01	56 65	720 690	< 2 < 2	2 2	8 8	46 38	0.18 0.18	< 10 < 10	< 10	68	< 10	B4	
590404	205			< 0.01	68	660	₹ 2	< 2	6	29	0.10	< 10	< 10 < 10	69 62	< 10 < 10	84 72	
590406	205	226	1	0.02	257	670	6	< 2	10	35	0 11	< 10	< 10	79	< 10	98	
590408	205	226	< 1	0.02	61	450	< 2	< 2	4	21	0.13	< 10	< 10	50	< 10	62	
590410 590412	205 205		< 1 < 1	0.02	51	420	2	2	3	17	0.10	< 10	< 10	45	< 10	56	
330812	1203	449	* 1	0.05	70	450	2	< 2	4	25	0.13	< 10	< 10	52	< 10	60	
	- f -																
	i i	ł															
		- 1															
				'													•
		- 1															
		- 1															
																	_

CERTIFICATION:

Phanton

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: SORBARA GEOLOGICAL CONSULTING LTD.

500 - 789 W. PENDER ST. VANCOUVER, BC V6C 1H2

Page Number :1 Total Pages :1 Certificate Date: 13-NOV-97 Invoice No. :19750158 P.O. Number

Account :NRD

Project: JACK'CLAIMS
Comments: ATTN: J.B. DELANEY CC: PAUL SORBARA

				C	ERTIFICA	ATE OF A	NALYSIS	A97	50158	
SAMPLE	PREP CODE	Au FA	fusion wt.gm							
M349709 M349712 M349714 M349716 M349718	235 235 235 235 235	< 0.002 0.022 0.002 < 0.002 0.016	49.47 10.60 14.98 16.26 33.36							
M349720 M349722 M349724 M349726 M349728	235 235 235 235 235	< 0.002 0.046 0.003 < 0.002 0.032	22.04 64.44 51.85 18.71 20.07							
M349730 M349733 M349735 M349737 M349739	235 235 235 235	0.013 < 0.002 < 0.002 NotRed < 0.002	10.62 6.78 20.63 NotRed 17.47							
M349741 M349744 M349747 M349749 M590401	235 235 235 235 235	< 0.002 < 0.002 0.195 < 0.002 0.018	7.02 5.19 2.93 3.77 3.31							
M590403 M590405 M590407 M590409 M590411	235 235 235 235 235	< 0.002 < 0.002 0.005 < 0.002 < 0.002	1.05 1.35 7.94 3.39 7.86							
SPECIMEN FEEDER	235	< 0.002	0.50							
		1]				

Jak Vonh CERTIFICATION:_

Phaudom Grove sample

Appendix B

Sampling Methodology

A. Pan-Concentrate Samples

Approxiamately 1.0 kg of of material was collected from an active stream channel and strained through a .5 cm plastic sieve and was further panned down to heavy mineral concentrates. Another pan was used using the same methods described above to break down very fine clay that was attached to moss on surrounding rocks in the area, this was combined with the two silt pan-concentrates to provide enough material for analysis done at Chemex laboratories in North Vancouver after the field program was completed. At Chemex the entire sample was ground using a ring mill pulverizer with a chrome steel ring set. The Chemex specification for this process is that greater than 90% of the sample will pass through 106 micron (Tyler 150 mesh) screen and the prepared sample was fused with a neutral lead sodium silicate flux. The lead button containing the precious metals is cupelled in a muffle furnace. The gold and silver bead is parted in dilute nitric acid, annealed and weighed as gold.

B. Silt Samples

A 0.5 kg sample of Silt was also gathered at the same time as the pan concentrate and put into a standard gusseted kraft bag and shipped to Chemex Labs upon completion of the field program. The sample was passed through a primary crusher to yield a crushed product of which greater than 60% is less than approxiamately 2mm. Then it was further ground so that greater than 90% of the material passed through a 106 micron (Tyler 150 mesh) and subjected to Nitric Aqua Regia Digestion and Inductively Coupled Plasma - Atomic Emission Spectroscopy (ICP - AES)

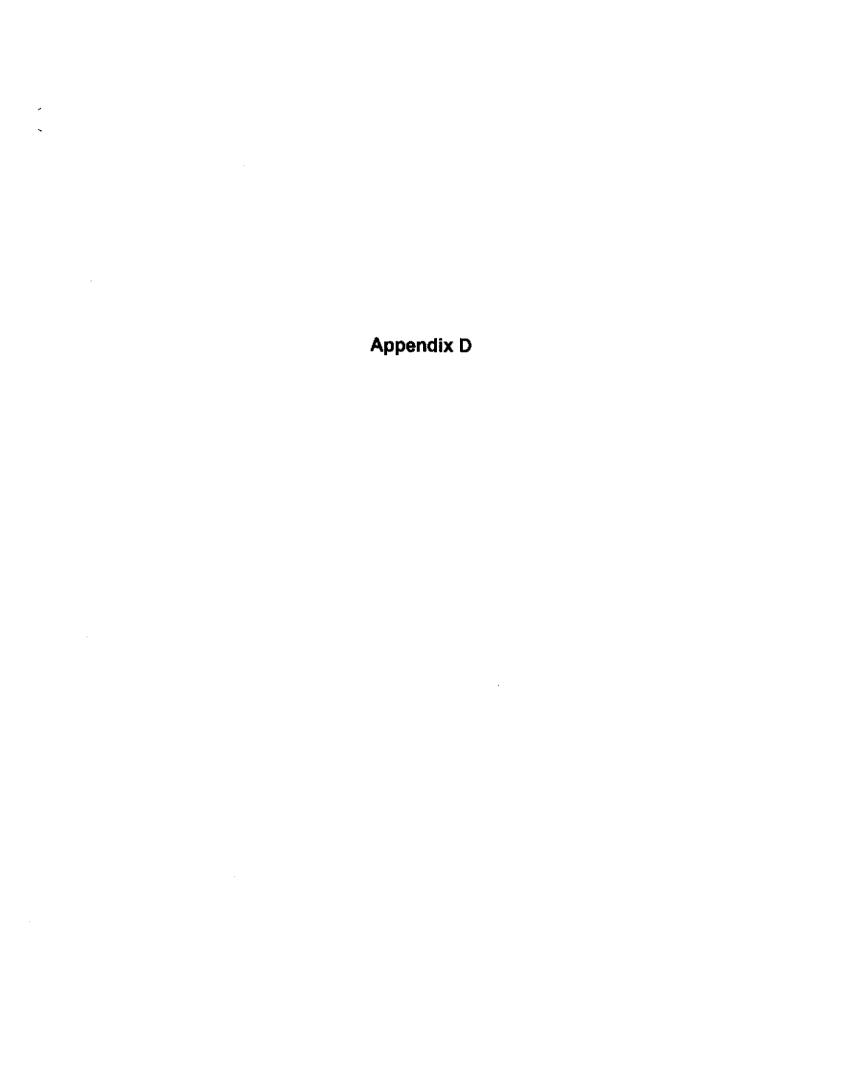
C. Rock Chip Samples

Approxiamately 2 kg of rock was collected and placed in 6 mm plastic sample bags and shipped to Chemex laboratories in North Vancouver upon completion of field work. The material was crushed and pulverized througha primary crusher to yield a product of which 60% was less than 2mm. It was further ground down using a ring mill pulverizer with a chrome steel ring set. The procedure specification is that greater than 90% of the ground material passes through a 106 micron (Tyler 150 mesh) screen. This was then tested using ICP - AES methods.

Appendix C

STATEMENT OF COSTS

Sorbara Geological Consulting Ltd. J.J. Work Project Period of Field Work Sept. 19th / Dec. 4th 1997

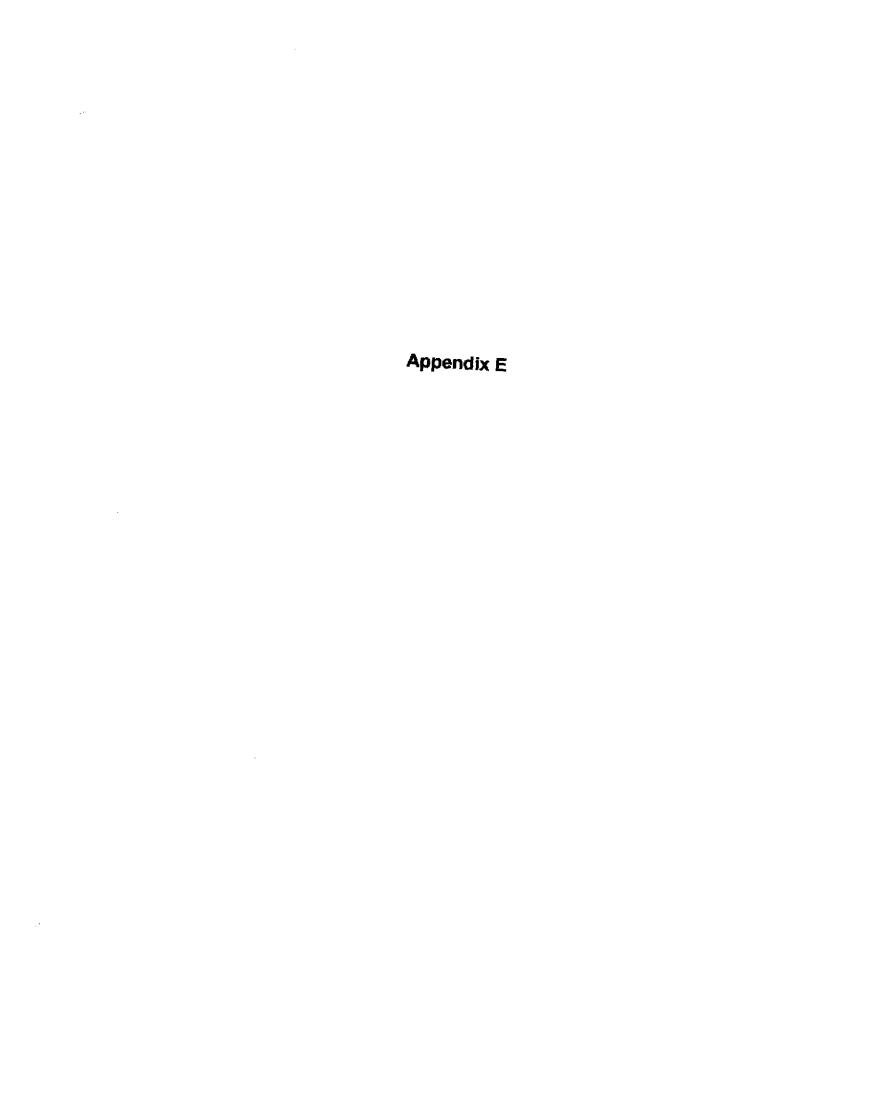

367.85

Salaries D.Dunn, Geologist 1.5 days @ \$ 500/day J. Delaney, Prospector 2.5 days @ 250/day M. Abercrombie, Assistant 2.5 days @ 125/day	\$ 750.00 625.00 <u>275.00</u>	\$ 1650.00
Project Expenses Gas, Food, Lodging, Min-File registry		327.41
Geochemistry and Laboratory Services 4 x samples @ 21.85 per 1 x sample @ 6.00 per GST	\$ 87.40 6.00 <u>6.54</u>	99.94

Report Preporation, drafting and compilation

15 % Management Fees not included in salaries

Total Project Cost



Appendix D

Statement Of Qualifications

I, David St. Clair Dunn, with a business address of RR6S24 C8 Gibson's B.C. do hereby certify that:

- 1. I am a consulting geologist registered with the Geological Association of Canada (Fellow # 4943).
- 2. I am a member of the Association of Exploration Geochemists.
- 3. I hold a B. Sc. degree (1980) in geology from the University of British Columbia.
- 4. I have been practicing my profession as prospector and geologist for 27 years.
- 5. I personally supervised the work on Pacific Talc Ltd., Phantom claims.
- I do not hold any interest in the Phantom claims or in Pacific Talc Ltd.
- 7. I am a professional Geoscientist registered with the Association of professional engineers and geoscientist of B.C.
- I, J.B. Delaney of # 227- 2680 W. 4th Ave. do hereby certify that:
- 1. I have completed the B.C. Yukon Chamber of Mines Prospecting Course in 1994
- 2. I have completed first year Geology requirements at Capilano College, North Vancouver, British Columbia
- 3. I have been employed in the Mineral Exploration Industry for the past 5 years, throughout British Columbia and hold a valid F.M.C.
- 4. I do not hold any interest in the Phonform claims or in Pacific Talc Ltd.

Sample Preparation Procedure - Ring Grinding Whole Sample

Method: Grinding Whole Sample

For a small sample (up to 250 grams) which does not require crushing or splitting, the entire sample is ground using a ring mill pulverizer with a chrome steel ring set. The Chemex specification for this process is that greater than 90% of the sample will pass through a 106 micron (Tyler 150 mesh) screen. Grinding with chrome steel may impart trace amounts of chromium and iron into a sample.

Chemex	
Code	Parameter
	-
268	Assay Grade Ring Grind
209	High Grade Assay Ring Grind
217	Geochemical Ring Grind
235	Pan Concentrate Ring Grind

Fire Assay Procedure - Gold

Sample Decomposition:

Fire Assay Fusion

Analytical Method:

Gravimetric

A prepared sample is fused with a neutral lead sodium silicate flux. The lead button containing the precious metals is cupelled in a muffle furnace. The gold and silver bead is parted in dilute nitric acid, annealed and weighed as gold.

International Units:

Chemex Code	Rush Code	Element	*Sample Weight (assay ton)	Symbol	Detection <u>Limit</u>	Upper <u>Limit</u>
448	n/a	Gold	ail	Au	0.002 mg	30 mg

Fire Assay Procedure - Trace Gold

Sample Decomposition: Fire Assay Fusion

Analytical Method: Atomic Absorption Spectroscopy (AAS)

A prepared sample is fused with a neutral lead sodium silicate flux inquarted with 6 mg of gold-free silver and then cupelled to yield a precious metal bead.

The lead bead is digested in dilute nitric acid. Hydrochloric acid is then added and the solution is digested for an additional hour. The digested solution is then cooled, diluted to 7.5 ml with demineralized water, mixed and then analyzed by atomic absorption spectrometry.

International Units:

Chemex	Rush	Florent	Sample Weight	Canada a 1	Detection	Upper
Code	Code	Element	(grams)	Symbol	<u>Limit</u>	<u>Limit</u>
983	991	Gold	30	Au	5 ppb	10,000 ppb

Sample Preparation Procedure - Crushing

Method: Crushing

The entire sample is passed through a primary crusher to yield a crushed product of which greater than 60% is less than approximately 2mm. A split (split size is determined by the final preparation method and analysis requested) is then taken using a stainless steel riffle splitter.

The crushing code indicates the weight of the original sample.

Chemex Code	Rush Code	Parameter	Sample Weight (lb)	Sample Weight (kg)
226	295	0-3 kg Crush and Split	0 - 6	0 - 3
294	272	4-7 kg Crush and Split	7 - 15	4 - 7
276	293	8-12 kg Crush and Split	16 - 25	8 - 12
273	271	13-18 kg Crush and Split	26 - 40	13 -18
270		19-26 kg Crush and Split	41 - 60	19 - 26
278		27-36 kg Crush and Split	61 -79	27 - 36

Geochemical Procedure - G32 Package

Sample Decomposition:

Nitric Aqua Regia Digestion

Analytical Method:

Inductively Coupled Plasma - Atomic Emission Spectroscopy (ICP - AES)

A prepared sample (1.00 gram) is digested with concentrated nitric acid for at least one hour. After cooling, hydrochloric acid is added to produce aqua regia and the mixture is then digested for an additional hour and a half. The resulting solution is diluted to 25ml with demineralized water, mixed and analyzed by inductively coupled plasma-atomic emission spectrometry. The analytical results are corrected for inter-element spectral interferences.

Chemex				Detection	Upper
Code		Element	Symbol	Limit	Limit
229		ICP-AQ Digestion	n/a	n/a	n/a
2119	*	Aluminum	Al	0.01%	15 %
2141		Antimony	Sb	2 ppm	1 %
2120		Arsenic	As	2 ppm	1 %
2121	*	Barium	Ba	10 ppm	1 %
2122	*	Beryllium	Be	0.5 ppm	0.01 %
2123		Bismuth	Bi	2 ppm	1 %
2125		Cadmium	Cd	0.5 ppm	0.05 %
2124	*	Calcium	Ca	0.01%	15 %
2127	*	Chromium	Cr	1 ppm	1 %
2126		Cobalt	Co	l ppm	1 %
2128		Copper	Cu	1 ppm	1 %
2130	*	Gallium	Ga	10 ppm	1 %
2150		Iron	Fe	0.01%	15 %
2151	*	Lanthanum	La	10 ppm	1 %
2140		Lead	Pb	2 ppm	1 %
2134	*	Magnesium	Mg	0.01%	15 %
2135		Manganese	Mn	5 ppm	1 %
2131		Mercury	Hg	1 ppm	1 %
2136		Molybdenum	Mo	l ppm	1 %
2138		Nickel	Ni	1 ppm	1 %
2139		Phosphorus	P	10 ppm	1 %
2132	*	Potassium	K	0.1%	10 %

Geochemical Procedure - G32 Package (con't)

Chemex				Detection	Upper
Code		Element	Symbol	Limit	Limit
2142	*	Scandium	Sc	1 ppm	1 %
2118		Silver	Ag	0.2 ppm	0.01 %
2137	*	Sodium	Na	0.01%	10 %
2143	*	Strontium	Sr	1 ppm	1 %
2145	*	Thallium	Tl	10 ppm	1 %
2144	*	Titanium	Ti	0.01%	10 %
2148	*	Tungsten	W	10 ppm	1 %
2146		Uranium	U	10 ppm	1 %
2147		Vanadium	V	l ppm	1 %
2149		Zinc	Zn	2 ppm	1 %

^{*}Elements for which the digestion is possibly incomplete.

Geochemical Procedure - G32 Package

Sample Decomposition: Nitric Aqua Regia Digestion

Analytical Method: Inductively Coupled Plasma - Atomic Emission Spectroscopy (ICP - AES)

A prepared sample (1.00 gram) is digested with concentrated nitric acid for at least one hour. After cooling, hydrochloric acid is added to produce aqua regia and the mixture is then digested for an additional hour and a half. The resulting solution is diluted to 25ml with demineralized water, mixed and analyzed by inductively coupled plasma-atomic emission spectrometry. The analytical results are corrected for inter-element spectral interferences.

Chemex				Detection	Upper
Code		Element	<u>Symbol</u>	<u>Limit</u>	<u>Limit</u>
222		TOD A O D'	,	. (-	. 1.
229		ICP-AQ Digestion	n/a	n/a	n/a
2119	*	Aluminum	Al	0.01%	15 %
2141		Antimony	Sb	2 ppm	1 %
2120		Arsenic	As	2 ppm	1 %
2121	*	Barium	Ba	1 0 ppm	1 %
2122	*	Beryllium	Be	0.5 ppm	0.01 %
2123		Bismuth	Bi	2 ppm	1 %
2125		Cadmium	Cd	0.5 ppm	0.05 %
2124	*	Calcium	Ca	0.01%	15 %
2127	*	Chromium	Cr	1 ppm	1 %
2126		Cobalt	Co	1 ppm	1 %
2128		Copper	Cu	1 ppm	1 %
2130	*	Gallium	Ga	10 ppm	1 %
2150		Iron	Fe	0.01%	15 %
2151	*	Lanthanum	La	10 ppm	1 %
2140		Lead	Pb	2 ppm	1 %
2134	*	Magnesium	Mg	0.01%	15 %
2135		Manganese	Mn	5 ppm	1 %
2131		Mercury	Hg	1 ppm	1 %
2136		Molybdenum	Mo	1 ppm	1 %
2138		Nickel	Ni	1 ppm	1 %
2139		Phosphorus	P	1 0 ppm	1 %
2132	*	Potassium	K	0.1%	10 %

Geochemical Procedure - G32 Package (con't)

Chemex				Detection	Upper
Code		Element	<u>Symbol</u>	<u>Limit</u>	<u>Limit</u>
2142	*	Scandium	Ç.	1	1 %
2142	•	-,	Sc	1 ppm	
2118		Silver	Ag	0.2 ppm	0.01 %
2137	*	Sodium	Na	0.01%	10 %
2143	*	Strontium	Sr	1 ppm	1 %
2145	*	Thallium	T1	10 ppm	1 %
2144	*	Titanium	Ti	0.01%	10 %
2148	*	Tungsten	W	10 ppm	1 %
2146		Uranium	U	10 ppm	1 %
2147		Vanadium	V	1 ppm	1 %
2149		Zinc	Zn	2 ppm	1 %

^{*}Elements for which the digestion is possibly incomplete.

Appendix F

SAMPLE DESCRIPTION / LOCATION

M349705	Rock Chip 50 cm quartz vein	1480' elevation Gold Dust Creek J and J group	
M349706	Rock Chip 3.5 m chip sample	1480' elevation Gold Dust Creek J and J group	
М349707	Rock Chip 7.5 m chip sample 10m West of M349706		
M349708	Silt Sample 1480' elevation Gold Dust Creek		
M349709	Pan-Concentrate 1480' elevation Gold Dust Creek		