

ZYMO #1-10 CLAIMS

RECONNAISSANCE GEOLOGICAL & GEOCHEMICAL REPORT

OMINECA MINING DIVISION BRITISH COLUMBIA

NTS 93-L-13

Latitude 54 degrees 50 minutes north Longitude 127 degrees 56 minutes west

Annual Work Approval No. SMI-97-0200371-55

And For

B.C. Prospectors Assistance Program Reference No. 97/98 P59

By

Robin C. Day B.Sc., F.G.A.C

NOV 01, 1997

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

17 りし

	TABLE OF CONTENTS						
Execut	tive Summary	P.2					
Projec	t Location	P.2					
NTS M	1ар	P.2					
Access	And Logistics	P.2					
Comm	odities	P .2					
Deposi	it Types	P.2					
Geolog	y & Physiography	P.2					
Claim	Ownership	P.3					
Claim	Record Data	P.4					
Work	Undertaken	P.4					
Explor	Exploration History						
Soil, Si	ilt & Rock Geochemistry Results	P.4					
Discus	sion	P.5					
Summ	ary	P.7					
Recom	mendations	P.6					
Acknow	wledgment	P.7					
Refere	nces	P.7					
Statem	ent of Qualifications	P.7					
Statem	ent of Expenditures	P. 7					
Fig.1	Topographic map with Zymo Claim Boundary						
Fig.2	District Geology Map						
Fig.3	Claim Location Map-Regional						
	Claim Map						
Fig.5	Sample Location & Geology Map (1:5000 scale-in pocket)						
	Copper-Gold Soil & Silt Geochemistry Map (1:5000 scale-inpocket)						
Fig.7	Interpretive Cross-Section						

Appendix A1997 Assay Data & Sample DescriptionsAppendix B1996 Assay Data & Sample Descriptions

ZYMO #1-10 CLAIMS PROSPECTING AREA

EXECUTIVE SUMMARY

A new porphyry system (the Zymo porphyry system) has been identified and is characterized by a chalcopyrite-bornite-gold-biotite-quartz-carbonate+magnetite (potassic) mineral assemblage, surrounded by a large zone of pervasive sericite-pyrite+carbonate (phyllic) alteration. Mineralized pebble breccia dykes and adjacent veinlets and small veins carrying elevated Au, Ag, Cu, Pb, Zn, Cd, As, Sb, Hg, Bi, Mn cut the phyllic alteration zone. A discreet 600 meter by 700 meter Cu in soil anomaly (contoured at 120, 200, 400 & >1000 ppm Cu) occurs south and uphill from the potassic alteration zone identified in outcrop during mapping. Soils are characterized as decomposed bedrock colluvium. Cu in soils range up to 3870 ppm. Silt samples deemed anomalous range from >400 ppm up to 2966 ppm Cu and cluster with the Cu in soil anomaly. Au in soils and silts deemed anomalous range from >40 up to 110 ppb and cluster with the Cu in soil anomaly. Cu/Au values from rock outcrop and subcrop from the potassic zone range up to >1% Cu and 428 ppb Au. Cu/Au values from a quartz-carbonate-pyrite+sphalerite stockwork, located on the east flank of the soil anomaly, range up to 5258 ppm Cu and 1609 ppb Au. Peripheral fault-breccia zones carry Au values up to 7233 ppb Au. Mapping indicates the Zymo porphyry system is nested in a multi-phase precursor pluton and is only partially unroofed. Further work, including airborne or ground magnetics, an I.P. survey and drilling, is recommended.

PROJECT LOCATION

West-central B.C. about 48 kilometers west of Smithers on an unnamed creek north of Red Canyon Creek, locally known as Mulwain Creek, or about 1000 meters southwest of minfile #304 (Red).

<u>N.T.S. MAP</u>

93-L-13 at about lat. 54 degrees 50 minutes north and long. 127 degrees 56 minutes west.

ACCESS AND LOGISTICS

By truck from Smithers, B.C.to a landing near end of the McDonald Main logging road and then by helicopter to the claims. Helicopters are based in Smithers, B.C. The logging road is scheduled to be extended across the Zymo porphyry system over the next three years and to the south, over Red Canyon Creek. The property will then be about 25 miles by road from the natural gas-electrical power transmission corridor and about 90 miles by main haul road and 'pavement' from deep water port facilities located at Kitimat, B.C.

COMMODITIES

Gold, silver, copper (chalcopyrite, bornite, gold, sphalerite, galena, sulfosalts etc.)

DEPOSIT TYPES

Early Tertiary to Late Cretaceous age ('Nanika' or 'Bulkley' age) Cu-Au-Ag porphyry; porphyry related Au-Ag sheeted vein or stockwork system (i.e. Snowfield Gold Zone).

GEOLOGY AND PHYSIOGRAPHY

On a district scale, the Zymo porphyry system is located on the western edge of the Stikine terrain and on the north flank of the Skeena Arch. The Stikine terrain is bounded to the west by the Coast Belt, interpreted by van der Heyden(6) as a middle Jurassic to early Tertiary magmatic arc that developed in an Andean-type subduction setting.

The prospecting area is underlain by Lower Cretaceous Skeena Group sandstones and conglomerates intruded by a multi-phase crowded feldspar, granodiorite and diorite porphyry plutonic complex. Within the pluton, mapping has partially defined a large area (about 2000x2500 meters) of pervasive sericite-pyrite±carbonate (phyllic) alteration, devoid of mafic minerals and wherein original mineral texture and fabric has been totally destroyed. The adjacent plutonic rocks and the overlying sediments have undergone carbonate alteration.

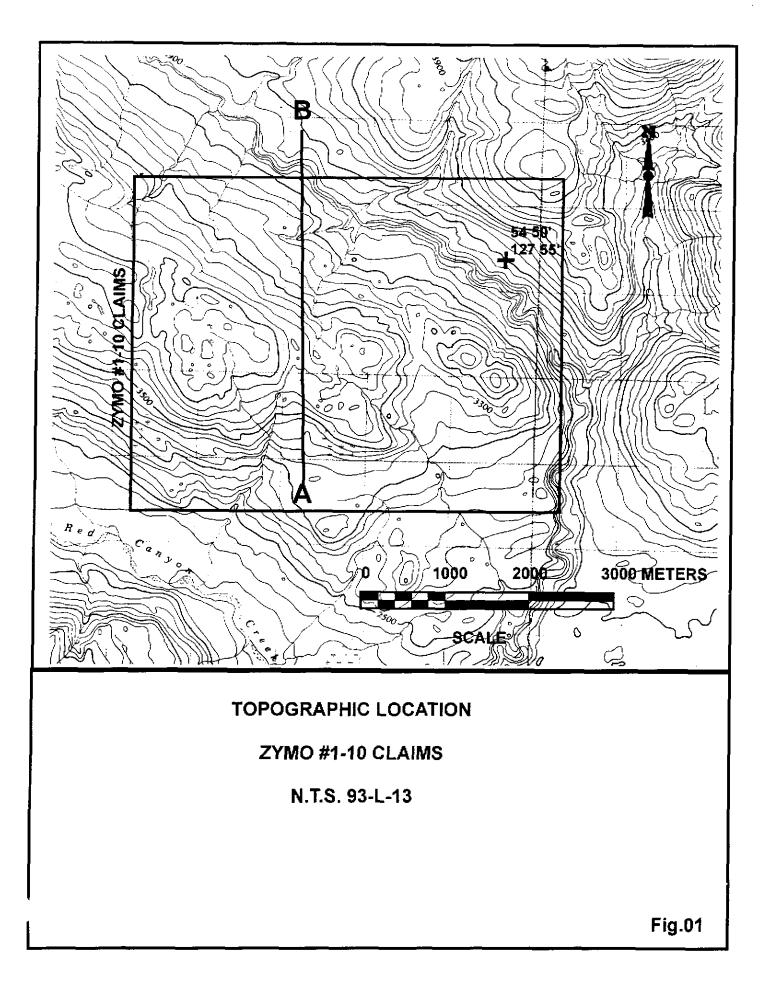
Within the phyllic alteration zone, a chalcopyrite-bornite-gold-biotite-quartzcarbonate<u>+</u>magnetite (potassic) alteration zone has been recognized in outcrop(see fig 5 & 6). Cu/Au values within the potassic alteration range up to >1% Cu and 428 ppb Au. Bornite and chalcopyrite occur on fractures and joints and disseminated, along with disseminated and veinlet magnetite.

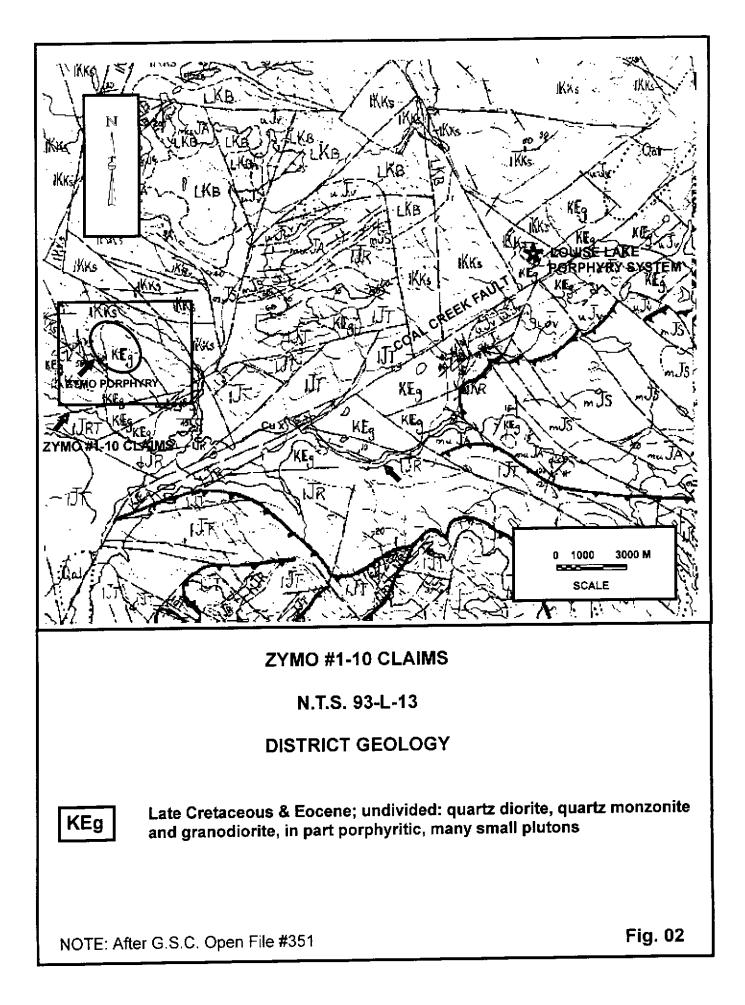
Mineralized pebble breccia dykes have been noted cutting the phyllic alteration zone. Polymetallic veinlets in the footwall or hanging wall and in adjacent veinlets within a few meters of the breccia dykes contain elevated Au, Ag, Cu, Pb, Zn, Cd, As, Sb, Bi, Hg, Ca & Mn (see fig. 5 & 6 and appendix A & B). Rare xenoliths of semi-massive chalcopyrite and rounded mineralized clasts have been observed within these dykes. Metallic grey sphalerite is also common on joint planes exhibiting carbonate alteration, within the phyllic alteration zone.

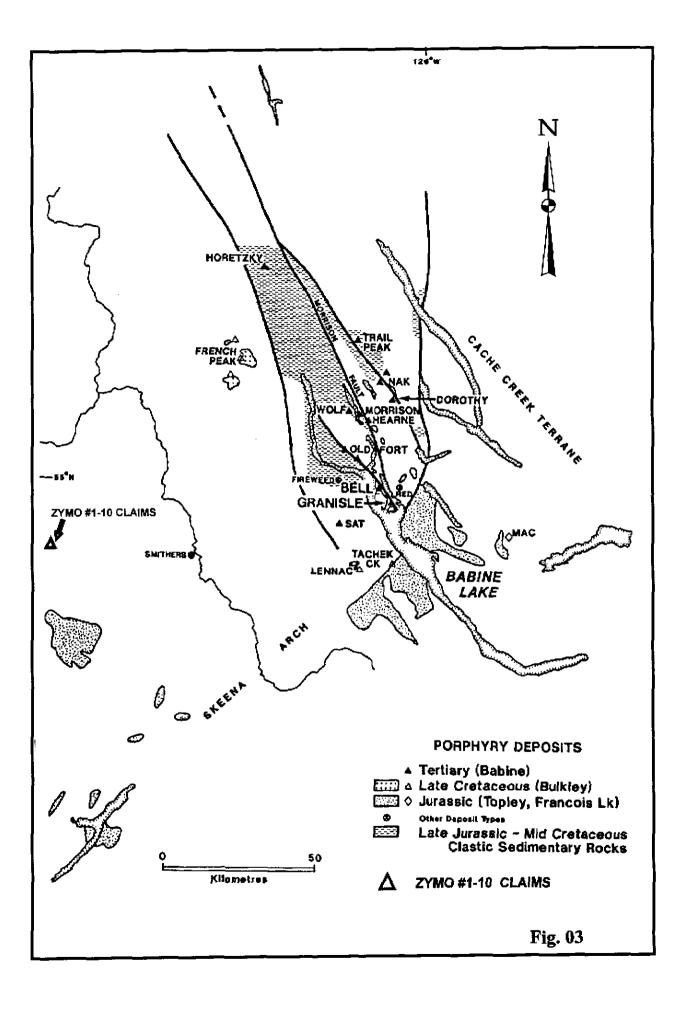
Peripheral quartz-carbonate stockwork-breccia zones contain elevated Au, Ag, Cu &Zn (see fig. 5 & 6).

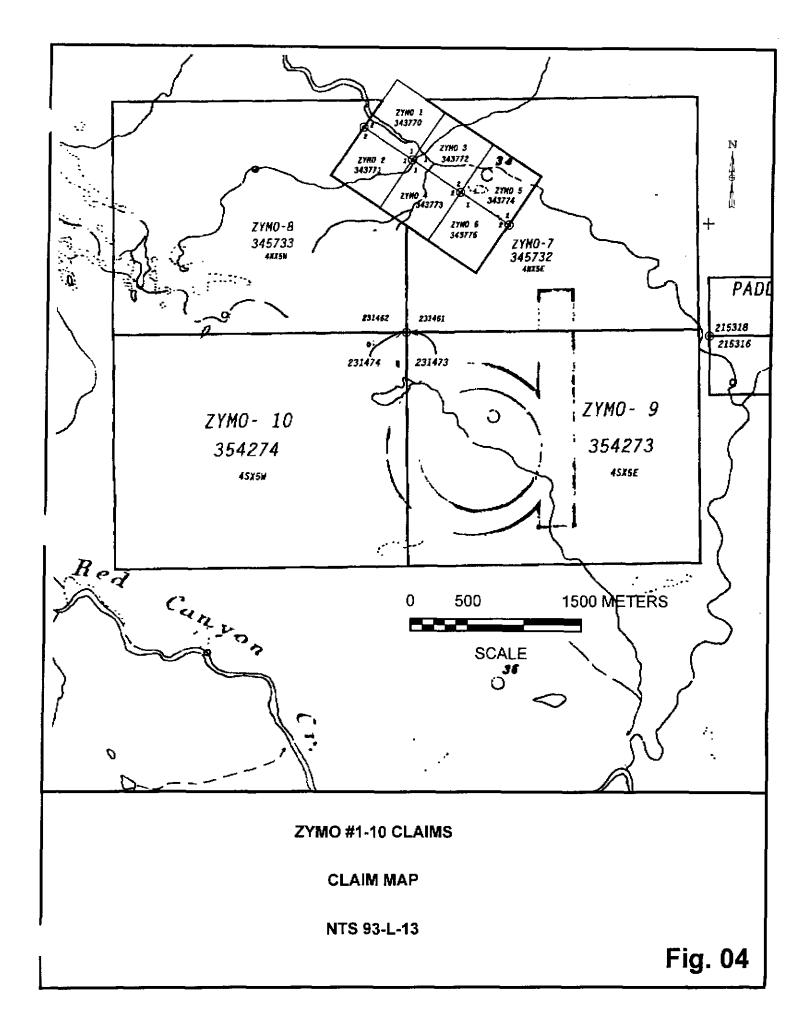
Leached subcrop and up to .5 meter blocks of leached intrusive breccia at sample site ZR-97-08 (365 ppb Au) suggests potential for mineralized breccia pipe(s) or large dykes east of the baseline.

Active 'kill zones' characterized by ferricrete terraces, have a 'battery acid' odor and precipitates from seeps within these zones yield Cu values >400 ppm. Springs or seeps from these kill zones often cement stream gravels with ferricrete, promote dark orange to 'beer bottle brown' limonite gossans and cause solution weathering of carbonate altered porphyry.


Lamprophyre dykes have been noted in the carbonate alteration zone and rare float/subcrop of these dykes has been noted within the phyllic alteration zone.


Large float boulders of andesitic agglomerate occur peripheral to and on the Zymo porphyry system.


Topography in the project area is gentle. The area is below treeline. Vegetation consists of coastal balsam, hemlock and grass swamps. Outcrop is restricted to isolated exposures in the Mulwain Creek valley bottom and streams incised in bedrock, cutting the Zymo claims from south to north. Narrow deep gorges occur on the west creek cutting the Zymo porphyry. Maximum relief is about 325 meters, ranging from about 975 to 1300 meters elevation.


CLAIM OWNERSHIP

The Zymo #1-10 claims are beneficially owned by L. Hewitt and R. Day.

CLAIM RECORD DATA

Claim Name	Tenure No.	Record Date
Zymo-1	343770	Feb. 22, 1996
Zymo-2	343771	Feb. 22, 1996
Zymo-3	343772	Feb. 22, 1996
Zymo-4	343773	Feb. 22, 1996
Zymo-5	343774	Feb. 22, 1996
Zymo-6	343775	Feb. 22, 1996
Zymo-7	345732	May 03, 1996
Zymo-8	345733	May 03, 1996
Zymo-9	354273	Mar. 17, 1997
Zymo-10	354274	Mar. 17, 1997

WORK UNDERTAKEN

Field work was performed on June 18 & 19, June 23,25 & 27, July 03-16, and September 17 & 25 for a total of 48 man days comprised of 6 man days equipment preparation, mobilization, camp set up and egress and 42 man days prospecting, soil, silt and rock sampling, geological mapping and minor grid preparation. This work was undertaken to follow up encouraging results obtained during the 1996 field season (see Exploration History).

EXPLORATION HISTORY

Reconnaissance prospecting performed in 1996 yielded the following results: a 'dacite' porphyry has undergone intense phyllic alteration characterized by pervasive carbonate-sericite-pyrite and quartz-sericite pyrite replacement; copper in silts from a creek cutting this porphyry range from 572 ppm to 1697 ppm; 32 of 74 rock samples contained gold values from greater than 200 ppb to 6900 ppb; high silver values from 117 ppm to 1664 ppm were obtained from semi-massive to massive Zn-Pb-Cu veins associated with breccia dykes cutting the porphyry (see assessment report #24924).

One day of silt sampling and prospecting was undertaken by Skeena Resources Ltd. And Leeward Capitol Corp. in each of 1990 and 1991. Taiga consultants of Calgary, Alberta performed this work. Anomalous Au, Ag, Cu, Pb & Zn silt geochemistry was noted in streams draining the project area. A few rock samples from narrow calcite veins within the surrounding carbonate alteration halo in the Skeena Group sediments reported anomalous Au-Ag-Cu-Pb-Zn values. These occurrences constituted a new minfile occurrence named 'Red' and was assigned minfile #304 on the Smithers map sheet N.T.S.93-L (see assessment Report #21723). No further exploration work was undertaken until 1996 and 1997, as reported herein.

SOIL, SILT & ROCK GEOCHEMISTRY RESULTS

Soil sampling was performed by coring with a tulip bulb auger to a maximum depth of 1.2 meters. Average sample depth is about 0.4 meters. Soil types are for the most part characterized as decomposed bedrock colluvium, ranging in thickness from 0.2 to 4 meters. This is illustrated by a recent erosional cut in a stream bank by sample site ZB-97-19.

Background Cu in soils is about 50-60 ppm. A discreet 600 meter by 700 meter Cu in soil anomaly (contoured at 120, 200, 400 & >1000 ppm Cu) occurs south and uphill of the potassic alteration zone. Cu in soils range up to 3870 ppm.

Silts deemed anomalous range from >400 ppm up to 2966 ppm Cu and cluster with the Cu in soil anomaly.

Au in soils and silts deemed anomalous range from >40 ppb up to 110 ppb and cluster with the Cu in soil anomaly.

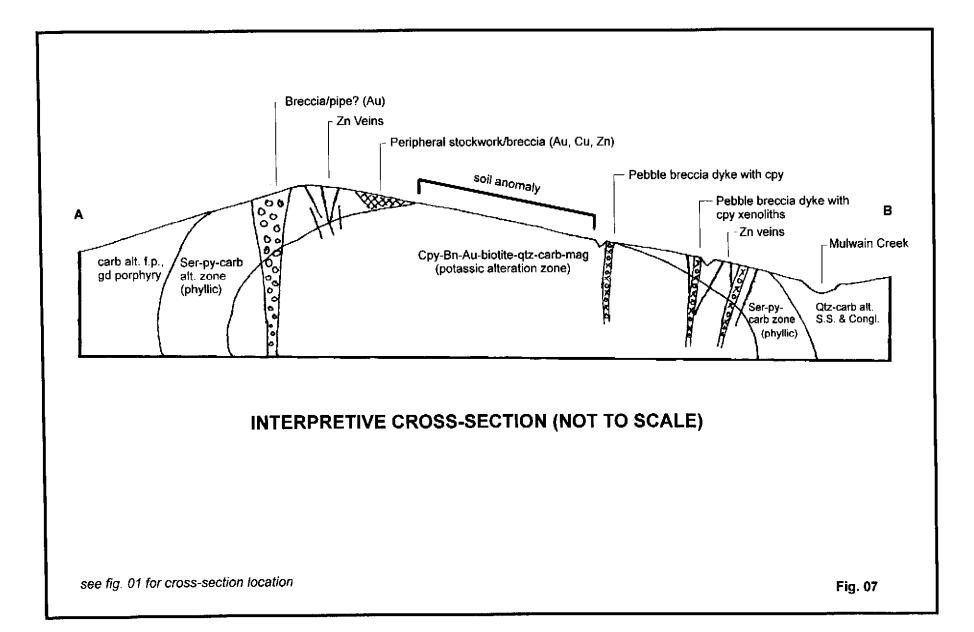
Outcrop and subcrop samples from peripheral stockwork-breccia zones carry elevated Au, Ag, Cu & Zn values.

Rock samples from outcrop and subcrop within the potassic alteration zone exhibit Cu/Au values up to >1% Cu and 428 ppb Au.

DISCUSSION

Carbonate altered porphyries observed in outcrop and float on the east and west sides of the grid indicate the Zymo porphyry is nested in a multi-phase precursor pluton.

Overlying Skeena Group sediments on the northwest end of the grid and sericitepyrite±sphalerite (phyllic) alteration uphill and at the south end of the grid, infer the Zymo porphyry system is only partially unroofed. This inference is also supported by adjacent and peripheral auriferous quartz-carbonate stockworks.


The phyllic alteration zone is open to the south and could increase in size by another 30-50%.

Carbonate alteration appears to be associated with later stage mineralized pebble breccia dykes and associated polymetallic veinlets. Interestingly, there are no known carbonates in the stratigraphy within this area. Although the lamprophyre dykes perhaps represent the last stage of intrusive activity, they suggest a deep seated structure associated with the Zymo porphyry system, inferring that the carbonate may be mantle derived. This could be verified isotopically.

The cross cutting aspect of the pebble breccia dykes, associated carbonate alteration and polymetallic mineralization with a geochemical signature usually associated with epithermal mineralization, suggests that a younger and higher level mineralizing event was superimposed on an older and deeper mineralizing event.

The Skeena Group sediments are 'basement' rocks intruded by the precursor pluton where the overlying volcanic pile associated with the Zymo porphyry is eroded. A possible explanation for the occurrence of boulders of andesitic agglomerates spatially associated with the Zymo porphyry could be gravitational sector collapse of the now eroded volcanic complex, preceded by explosive phreatomagmatic activity, thereby providing extended preservation of agglomerates (normally occurring in an agglomerate apron situated high in volcanic stratigraphy) by downdropping some of them on top of the magma chamber. The pebble breccia dykes and associated mineralization and pervasive carbonate alteration may be evidence of such an event.

The claim line north of the L.C.P. was used as a base line and tied to the creek immediately to the west. Deviation in the base line and a southwest-northeast drift on the cross lines suggests magnetic interference. This seems likely given the secondary magnetite observed in the potassic alteration zone.

As yet undated, the Zymo porphyry system is likely either circa 'Bulkley' age (~80 my) or circa 'Nanika' or 'Babine' age (~50 my).

Most other known porphyry systems associated with the Skeena Arch are deeply eroded, in contrast to the Zymo porphyry system, which appears to be just unroofed. Regional mapping shows Skeena Group sediments juxtaposed against older Jurassic volcanics. This infers that the Zymo porphyry system and surrounding Skeena Group sediments were downdropped in a graben, half-graben or hinged fault, thereby providing extended preservation from erosion.

Transport of anomalous soils is of a colluvial nature and likely on the order of a few tens of meters at most. This infers that the soil anomaly should reflect the extent of copper mineralization sub-cropping under colluvial soil cover.

Anomalous copper and gold in soils overlying carbonate altered Skeena Group sediments on the northwest end of the grid may represent a 'leakage anomaly'.

Mineralized xenoliths and clasts in pebble breccia dykes located within the phyllic alteration zone, indicate that these dykes sampled older mineralization at unknown depth.

Geology and geochemistry infer that the potassic zone has only just been unroofed by erosion and may be considerably larger than indicated. A detailed ground or airborne gradient magnetic survey should map the extent of the potassic alteration zone under phyllic alteration and overlying Skeena Group sediments, given the presence of disseminated and veinlet secondary magnetite in the potassic zone.

Preliminary interpretation of the order of alteration and mineralization is as follows:

- 1. Development of precursor pluton from which saline, metal rich magmatic fluids exolved.
- 2. Uplift and initial mineralizing event (potassic zone and surrounding phyllic shell)
- 3. Continued uplift and collapse of phyllic shell
- 4. Further uplift and emplacement of pebble breccia dykes, widespread carbonate alteration with polymetallic mineralization superimposed on initial older and deeper mineralizing event
- 5. Emplacement of lamprophyre dykes

SUMMARY

A new porphyry system has been identified. This system contains significant copper and gold mineralization hosted in a chalcopyrite-bornite-gold-biotite-quartz-carbonate<u>+</u>magnetite mineral assemblage.

As evidenced by peripheral auriferous quartz-carbonate stockwork/breccia zones, there is also potential for porphyry related bulk tonnage gold deposits, although these exploration targets are an order of magnitude or more smaller than the Zymo porphyry copper-gold system.

RECOMMENDATIONS

- 1. The soil survey should be extended to close off the anomaly to the north and west.
- 2. Mapping, prospecting and gridding should be extended to the south to define the south boundary of the phyllic alteration zone.
- 3. An airborne gradient magnetic survey should be flown over the claim block.
- 4. Line cutting followed by at least two lines of time domain I.P. should be performed.
- 5. Five holes should be cored from 300 to 500 meter depths.

ACKNOWLEDGMENT

The B.C. Prospectors Assistance Program in part provided funding for the exploration program on the Zymo claims. Valuable insights and comments were provided by the Smither's District Geologist, Mr. Paul Wojdak and by Dr. Robert Folinsbee, Professor Emeritus at the University of Alberta.

REFERENCES

- 1. Assessment Reports 21,723 & 24,924
- 2. New Mineral Deposit Models of the Cordillera-1996 Cordilleran Roundup Short Course
- 3. Topographic Map N.T.S. 93-L-13
- 4. B.C.D.M. geology map 69-1
- 5. G.S.C. Open File Map 351
- 6. Van Der Heyden, P., 1992, A Middle Jurassic to Early Tertiary Andean-Sierran Model for the Coast Belt of British Columbia. Tectonics, 11, p. 82-97

STATEMENT OF QUALIFICATIONS

I, Robin C. Day, graduated from the University of Alberta in 1976 with a B.Sc. (Concentration in Geology), have been active as a prospector and geologist in Western and Northern Canada since 1972, and am a Fellow of the Geological Association of Canada.

STATEMENT OF EXPENDITURES Travel: by helicopter; ~9.5 hours @\$863.04/hr \$ 8,198.88 Analyses/assay costs (126 soils, 50 rocks, 37 silts) \$ 4,337.46 Equipment rentals/supplies \$ 500.00 Food and Accommodation: 48 man days @ \$60.00/day \$ 2,880.00 Wages for grantee or hired help @ \$100.00/prospecting day \$ 2,100.00 Vehicle rental/operation 800.00 \$ Other Expenses Report preparation <u>**\$**400.00</u> Total \$19,216.34

APPENDIX A 1997 ASSAY DATA 1997 SAMPLE DESCRIPTION & LOCATION

Quality Assaying for over 25 Means

Geochemical Analysis Certificate

MR. ROBIN DAY Company: Project:

ROBIN DAY Attn:

We hereby certify the following Geochemical Analysis of 24 ROCK samples submitted JUL-21-97 by Robin Day.

Sample	Au-fire	PD	PT	
Number	PPB	PPB	PPB	
	71			
ZB-97-01	42			
ZB-97-02				
ZB-97-03	7233			
ZB-97-04	19			
ZB-97-05	324			
ZB-97-06	119			
ZB-97-07	1			
ZB-97-08	1			
ZB-97-09	8			
ZB-97-10	23			
ZB-97-11	106			
ZB-97-12	107			
ZB-97-12 ZB-97-13	91			
ZB-97-14	173			
ZB-97-14 ZB-97-15	428	<5	<5	
20-97-15	T20			
ZB-97-16	48			
ZB-97-17	275			
ZB-9 7-18	196			
ZB-97-19	94			
ZR-97-01	9			
ZR-97-02	1584			
ZR-97-03	3020			
ZR-97-04	28			
ZR-97-05	223			
				

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C. CANADA V5X 4EB TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C., CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Au Certified by

MIN-EN LABORATORIES

7S-0153-RG1

Date: JUL-31-97

Quality Assaying for over 25 Means

Geochemical Analysis Certificate

Company: MR. ROBIN DAY Project:

Attn: ROBIN DAY

We hereby certify the following Geochemical Analysis of 24 ROCK samples submitted JUL-21-97 by Robin Day.

Sample	Au-fire	PD	PT	
Number	PPB	PPB	PPB	
ZR-97-06	7			
ZR-97-07	85			
ZR-97-08	365			
ZR-97-09	55			
ZR-97-10	12			
ZR-97-11	4			
ZR-97-12	4			
ZR-97-13	17			
ZR-97-14	3			
ZR-97-15	18			
ZR-97-16	10			
ZR-97-17	30			
ZR-97-18	6			
ZR-97-19	31			
ZR-97-20	44			
ZR-97-21	35			
ZR-97-22	118			
ZR-97-23	31			
ZR-97-24	10			
ZR-97-25	28			
ZR-97-26	48			
ZR-97-27	321			
ZR-97-28	29			
ZR-97-29	631			
			• • • • • • • • • • • • • • • • • • •	

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C., CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C., CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Certified by

MIN-EN LABORATORIES

7S-0153-RG2

Date: JUL-31-97

ficato

Quality Assaying for over 25 Aleurs

Geochemical Analysis Certificate

Company: MR. ROBIN DAY Project:

Attn: ROBIN DAY

We hereby certify the following Geochemical Analysis of 2 ROCK samples submitted JUL-21-97 by Robin Day.

Sample	Au-fire	PD	PT	
Number	PPB	PPB	PPB	
ZR-97-30 ZR-97-31	1609 89			

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C., CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C., CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Âu Certified by

MIN-EN LABORATORIES

7S-0153-RG3

Date: JUL-31-97

Quality Assaying for over 25 Mears

Geochemical Analysis Certificate

Company: MR. ROBIN DAY Project: Attn: ROBIN DAY

We hereby certify the following Geochemical Analysis of 24 SILT samples submitted JUL-21-97 by Robin Day.

Sample Au-fire Au-wet Number PPB PPB ------ZS-97-01 55 ZS-97-02 45 ZS-97-03 15 ZS-97-04 25 ZS-97-05 22 ZS-97-06 98 ZS-97-07 20 ZS-97-08 20 ZS-97-09 10 ZS-97-10 20 ZS-97-11 10 ZS-97-12 56 ZS-97-13 71 ZS-97-14 45 ZS-97-15 40 _____ ZS-97-16 25 ZS-97-17 60 ZS-97-18 30 ZS-97-19 20 ZS-97-20 15 ZS-97-21 20 ZS-97-22 25 ZS-97-23 35 ZS-97-24 35

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C., CANADA V5X 4EB TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS B.C., CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Date: JUL-31-97

7S-0153-LG1

Certified by

the

MIN-EN LABORATORIES

Quality Assaying for over 25 Alear;

Geochemical Analysis Certificate

Company: MR. ROBIN DAY Project: Attn: ROBIN DAY

We hereby certify the following Geochemical Analysis of 13 SILT samples submitted JUL-21-97 by Robin Day.

Sample Number	Au-fire PPB	Au-wet PPB	
ZS-97-25		65	
ZS-9 7-26		10	
ZS-97-27	8		
ZS-97-28		40	
ZS-97-29	18		
ZS-97-30	46		
ZS-97-31	16		
ZS-97-32		115	
ZS-97-33		30	
ZS-97-34	10		
ZS-97-35		45	
ZS-97-36	110		
ZS-97-37		65	

Certified by_____

MIN-EN LABORATORIES

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C., CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C., CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Date: JUL-31-97

7S-0153-LG2

Quality Assaying for over 25 Alears

Geochemical Analysis Certificate

Company: MR. ROBIN DAY Project: Attn: ROBIN DAY

We hereby certify the following Geochemical Analysis of 24 SOIL samples submitted JUL-21-97 by Robin Day.

Sample	Au-f:	re	*Au-fire	
Number	1	PB	PPB	
L5000N	4100W	32		
L5000N	4200W		6	
L5000N	4300W	14		
L5000N	4400W		11	
L5000N	4500W	9		
L5000N	4600W	15		
L5000N		17		
L5000N	4800W		54	
L5000N	4900W	19		
L5000N	5000W	4		
L5000N	5100W	8		
L5000N		_	10	
L5000N	5300W	6		
L5000N	5400W	7		
L5000N	5500W		17	
L5000N	5600W	9		
L5000N	5700W		7	
L5000N	5800W	5		
L5000N	5900W	10		
L5000N	6000W		8	
L5000N	6100W	50		
L5000N		-	20	
L5000N		14		
L5000N			51	

*1/2 A.T.

Certified by_____

MIN-EN LABORATORIES

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C., CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS. B.C., CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Date: JUL-31-97

7S-0153-SG1

.

Quality Assaying for over 25 Alears

Geochemical Analysis Certificate

Company: MR. ROBIN DAY Project:

Attn: ROBIN DAY

We hereby certify the following Geochemical Analysis of 24 SOIL samples submitted JUL-21-97 by Robin Day.

Sample	Au-fire	*Au-fire	
Number	PPB	PPB	
L5000N 6500W	28		
L5250N 4000W		4	
L5250N 4100W		22	
L5250N 4200W	7	•	
L5250N 4300W		15	
L5250N 4400W	22		
L5250N 4500W	38		
L5250N 4600W	20	21	
L5250N 4700W		40	
L5250N 4800W	19		
L5250N 4900W		 9	
L5250N 5000W	20	2	
L5250N 5100W	12		
L5250N 5200W	10		
L5250N 5400W			
L5250N 5500W		 29	
L5250N 5600W		17	
L5250N 5700W		12	
L5250N 5800W	12	12	
L5250N 5900W		7	

L5250N 6000W	_	4	
L5250N 6100W	6	. -	
L5250N 6200W		12	
L5250N 6290W	75		

Certified by

*1/2 A.T.

the

MIN-EN LABORATORIES

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER. B.C., CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C., CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Date: JUL-31-97

7S-0153-SG2

Quality Assaying for over 25 Years

Geochemical Analysis Certificate

Company: MR. ROBIN DAY Project: Attn: ROBIN DAY

We hereby certify the following Geochemical Analysis of 24 SOIL samples submitted JUL-21-97 by Robin Day.

Sample Au-fire *Au-fire Number PPB PPB L5250N 6400W 6 L5250N 6500W 10 L5500N 4000W 10 L5500N 4100W 4 L5500N 4200W 12 _____ L5500N 4300W 7 L5500N 4400W 11 L5500N 4500W 8 L5500N 4600W 8 L5500N 4700W 13 L5500N 4800W 3 7 L5500N 4900W L5500N 5000W 10 L5500N 5100W 15 L5500N 5200W 15 L5500N 5300W 70 L5500N 5500W 28 L5500N 5600W 26 L5500N 5700W A 11 L5500N 5700W B 4 L5500N 5800W 17 L5500N 5900W 117 L5500N 6000W 26 L5500N 6100W 25

*1/2 A.T.

Certified by_____

MIN-EN LABORATORIES

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C., CANADA V5X 4EB TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C., CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Date: JUL-31-97

7S-0153-SG3

Date

Quality Assaying for over 25 Mears

Geochemical Analysis Certificate

Company: MR. ROBIN DAY Project:

Attn: ROBIN DAY

We hereby certify the following Geochemical Analysis of 24 SOIL samples submitted JUL-21-97 by Robin Day.

Sample		Au-fire	*Au-fire	
Number		PPB	PPB	
L5500N	6200W	20		
L5500N	6300W	14		
L5500N	6400W	13		
L5500N	6500W	60		
L5750N	4000W	9		
L5750N	4100W	30		
L5750N		25		
L5750N	4300W		10	
L5750N	4400W	5		
L5750N	4500W	23		
L5750N	4600W	15		
L5750N	4700W	6		
L5750N	4800W	28		
L5750N	4900W	73		
L5750N	5000W		11	
L5750N		31		
L5750N		39		
L5750N	5300W	36		
L5750N			37	
L5750N	5500W	45		
L5750N		38		
L5750N	5700W	46		
L5750N	5800W	28		
L5750N	5900W		38	
				

the Certified by

MIN-EN LABORATORIES

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C., CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C., CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

7S-0153-SG4

Date: JUL-31-97

........

Quality Assaying for over 25 Alear;

Geochemical Analysis Certificate

Company: MR. ROBIN DAY Project:

Attn: ROBIN DAY

We hereby certify the following Geochemical Analysis of SOIL samples submitted JUL-21-97 by Robin Day.

Sample Number		Au-fire PPB	*Au-fire PPB	
L5750N		37		
L5750N		40		
L5750N		68		
L5750N	•	24		
L5750N	6400W	39		
L5750N	6500W		2	
L6000N	4000W	14		
L6000N	4100W	8		
L6000N	4200W	6		
L6000N	4300W	8		
LEODON	4400W			
L6000N		29		
L6000N		17		
L6000N	4700W	23		
L6000N	4800W	25		
L6000N	4900W	29		
L6000N		17		
LECOON		58		
L6000N		30		
L6000N	5400W	47		
L6000N		65		
L6000N		17		
LECCON		35		
L6000N		66		

*1/2 A.T.

Certified by

MIN-EN LABORATORIES

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER. B.C., CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C., CANADA VOJ 2N0 TELEPHONE (604) 847-3004 FAX (604) 847-3005

7S-0153-SG5

Date: JUL-31-97

Quality Assaying for over 25 Mears

Geochemical Analysis Certificate

Company: MR. ROBIN DAY Project: Attn: ROBIN DAY

We hereby certify the following Geochemical Analysis of 6 SOIL samples submitted JUL-21-97 by Robin Day.

Sample Number	Au-fii Pl		
L6000N	6000W 13	.0	
L6000N	6100W 5	9	
L6000N	6200W 8	5	
L6000N	6300W 4	3	
L6000N	6400W 9	0	
L6000N	6500W 9	7	

VANCOUVER, B.C., CANADA V5X 4EB TELEPHONE (604) 327-3436 FAX (604) 327-3423 SMITHERS LAB:

VANCOUVER OFFICE: 8282 SHERBROOKE STREET

3176 TATLOW ROAD SMITHERS, B.C., CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

7S-0153-SG6

Date: JUL-31-97

*1/2 A.T.

Certified by_

MIN-EN LABORATORIES

COMP: MR. ROBIN DAY

PROJ:

ATTN: ROBIN DAY

MIN-EN LABS --- ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423 FILE NO: 78-0153-RJ1+2+3

DATE: 97/07/31

ATTN: ROBIN DAY									TEL:	(604)3	27-3436	5 F/	AX:(60	4)327-3	3423								* *	(A	CT:F31)
SAMPLE NUMBER	AG PPM	AL X	AS PPM	BA PPM	BE PPM	BI CA PPM 2	CD PPM	CO PPM	CR PPM	CU PPM	FE X	GA PPM	K L X PP		MN PPM	MO PPM	NA % F	NI P PM PPM		SB S PPM PP			U V PPM PPM	W	ZN
28-97-01 28-97-02 28-97-03 28-97-04 28-97-05	.1 .7 >200.0 5.7 4.8	1.48 .47 .20 .34 .50	21 71 607 29 50	542 103 15 229 116	.6 .6 1.3 1.0 .9	1 .26 1 1.93 325 4.07 5 3.12 8 .45	1.9 >100.0 12.2	6 16 15 5 10	44 84 42 31 87	58	12.60	37 38	.23 .20	1 .98 1 .60 1 1.61 1 .77 1 .49	922 2935 8652 8617 644	27 28 31	.03 .01 .01 .01	1 1720	24 131 >10000 1 722	3 6 119 6	1 30 1 38 1 39 1 24 1 25	1 .01 1 .01 1 .01 1 .01 1 .01 3 .01	1 72.6	34	РРМ 195 362 10000 2178 561
ZB-97-06 ZB-97-07 ZB-97-08 ZB-97-09 ZB-97-10	1.9 .1 .1 .1	.35 .36 1.64 .27 .35	119 15 23 46 90	52 327 283 132 81	1.1 .8 .8 .2 .8	12 .27 1 2.28 1 1.52 2 .03 4 .22	1.2 .1 .1	15 8 11 19 10	53 68 83 232 81	2518 39 15 11 29	10.28 2.19 4.32 3.55 7.23	1	. 19	1 .13 1 .56 3 1.12 1 .02 1 .03	127 1267 1526 35 28	11 1 1 1	.01 .04 .04	6 740 4 1510 6 1680 62 70 4 1380	26 32 57 4	16 1 1 6	1 14 1 169 1 53 1 6 1 13	1 .01 1 .01 1 .01 1 .01 1 .01 1 .01	2 7.6	23393	154 87 146 9 21
ZB-97-11 ZB-97-12 ZB-97-13 ZB-97-14 ZB-97-15	1.0 1.3	1.15 1.31 1.19 .71 1.56	24 23 37 48 59	105 147 102 73 60	.9 .9 1.3 1.4 1.4	1 1.40 3 .80 4 .73 3 .94 73 .51	1.1 1.0 2.4	12 9 21 12 15	92 106 170 85 138	1743 2205 3350 1521 9670	4.63 4.62 7.07 6.88 9.88	1	.44	2 .91 1 .66 1 .59 1 .45 3 1.24	872 1511 1035 978 866	8 5 31 11	-04 -04 -04	4 1680 6 1880 7 1880 5 1790 1 1860	40 63 27 62	1 5 11 8	1 27 1 26 1 22 1 23 1 17	1 .01 1 .01 1 .01 1 .01 1 .01 1 .01	1 28.7 2 29.0 1 23.6 1 18.0 2 25.3	34642	126 167 131 206 143
ZB-97-16 ZB-97-17 ZB-97-18 ZB-97-19 ZR-97-01	1.7 19.7 .8 2.4 .1	.43 .47 .29	74 41 159 699 40	99 86 34 45 70	.5 .8 1.2 .8 .6	7 .08 42 .38 1 1.77 5 .88 2 .23	2.1 .9 .1 1.4	14 9 14 15 19	100 116 57 136 177	1800 >10000 1626 2034 184	6.10 6.60 7.06 5.92 5.25	1 . 1 . 1 .	.37 .48 .27 .30	1 .15 1 .39 1 .82 1 .30 2 .39	38 220 1346 315 2073	10 17 26		6 960 4 1610 4 940 5 930 33 530	66 241 18 87 1	9 21 10 154	1 19 1 21 1 41 1 26 1 7	1 .01 2 .01 1 .01 1 .01 1 .01	1 9.4 2 14.7 1 17.6 1 11.9 2 16.4	4 3 1 6 7	176 159 71 296 163
ZR-97-02 ZR-97-03 ZR-97-04 ZR-97-05 ZR-97-06	.1 >200.0 13.5 16.3 .2	.18 .03 .33 .29 .62	2011 391 113 46 11	35 12 149 38 107	2.3 .6 .9 .6 1.6	51 5.51 39 .05 8 3.10 19 .14 1 3.46	>100.0 21.3 39.2	19 10 12 7 1 3	1 60 51 201 86	1013 160 528	14.89 4.51 3.37 3.35 3.27	36 38 24	. 14	1 2.27 1 .02 1 .85 2 .28 1 1.09	>10000 1444 8112 3812 1457	63 4 7	.01 .01	50 360 22 740 20 1690 31 370 2 3080	>10000 2	12 17	1 26 1 64 1 21 1 9 1 224	1 .01 2 .01 1 .01 1 .01 1 .01	36 26.1	6 823 > 16 35 4	452
ZR-97-07 ZR-97-08 ZR-97-09 ZR-97-10 ZR-97-11	5.2 9.5 .3 .1 .1	.35 .28 .47 1.34 .36	103 222 60 385 4	124 247 163 556 329	1.0 .5 2.0 1.0	2 3.39 17 .18 4 .29 78 .09 1 3.35	.9 .7 22.0	13 5 9 206 7	86 108 124 1 91	65 34 109 517 10	5.21 5.57 4.85 5.53 1.94	27 .	.25 .28 .21 .21 1 .21 1		6048 4456 482 >10000 2429	22 3 36	.01 .01	13 1640 11 670 4 1480 46 890 7 1280	56	6 12 8 52 2	1 35 1 17 1 9 1 114	1 .01 1 .01 2 .01 17 .01 2 .01	3 22.6 2 7.5 1 6.4	19 5 5 17 4	5540 76 125 270 194
ZR-97-12 ZR-97-13 ZR-97-14 ZR-97-15 ZR-97-16	.1 .5 .1 .1	.46 1.61 .43 .60 .52	18 18 15 64 15	502 131 908 410 151	.7 .6 1.0 1.1 .8	1 3.47 6 .40 1 2.39 1 2.85 1 1.39	.7 1.6 .6	10 10 6 10 6	43 78 54 61 162	28 138 5 138 25	2.98 4.19 2.41 3.70 2.59	1 . 1 . 3 . 7 .	13 1 18 22	1 .67 0 1.03 4 .36 3 .83 1 .53	1206 1170 1531 1738 2477	4 1 4	.04 .06 .03 .03 .03	3 1410 5 1160 6 1310 6 970 12 1260	15 65 15	1 1 3 11 4	1 85 1 33 1 85 1 77	1 .01 1 .08 1 .01 1 .01 4 .01	1 49.5 1 69.8 1 32.5 1 52.9 2 11.5	24337	76 168 155 194 479
ZR-97-17 ZR-97-18 ZR-97-19 ZR-97-20 ZR-97-21	.8 .1 .4 .6	.63 .23 .54 .78 .40	35 153 189 41 38	211 + 169 80 116 93	1.0 .2 .8 .9	1 1.84 2 .03 5 .03 3 .47 4 .14	.1 .3 2.1	10 10 13 10	74 219 207 134 76	184 28 27 1179 93	3.57 4.92 8.62 5.22 5.34	1. 2. 1.	.24 .12 .33 .47 .20	1 .91 1 .02 1 .05 1 .30 1 .02	1576 48 50 350 113	5 2 9 3	.05	6 1280 22 60 4 800 4 1420 4 1250	173	1 9 12 7 9	1 144 1 11	1 .01 1 .01 1 .01 3 .01 3 .01	2 55.4 1 4.6 1 8.8 1 5.9 1 7.8	4 8 8 4 3	400 25 31 70 113
ZR-97-22 ZR-97-23 ZR-97-24 ZR-97-25 ZR-97-26	3.5 .5 1.1 2.6 7.7	.38 .43 .38 1.16 .27	36 36 44 31 1	64 302 156 281 149	.3 9 1.0 .8 1.0	4 .01 1 1.86 1 1.87 1 1.67 11 1.68	3.2 10.5 12.6	5 8 10 7 7	130 59 80 35 39	168 71 153 237 95	3.13 3.56 3.41 2.75 2.57	10 .	.13 .11	1 .03 1 .61 1 .88 4 1.25 1 .46	113 3385 3362 3267 4014	1 1 1	.01 .04 .04 .04 .04	4 400 9 1490 8 1700 6 1880 12 1160	72 58 629 995	9 4 8 1	6 1 48 1 36	6 .01 1 .01 1 .01 1 .01 1 .01 7 .01	1 4.4 1 37.2 2 40.6 2 63.5 3 10.0	24 5 10 9	6982 817 2235 2856 10000
ZR-97-27 ZR-97-28 ZR-97-29 ZR-97-30 ZR-97-31	4.0 .1 7.6 23.1 1.5	1.78 .24 .09 .15 .34	34 94 56 916 326	113 42 45 25 47	1.4 1.0 .1 .8 .5	4 .35 4 .02 4 .02 1 4.93 3 .36	1.2 1. >100.0	18 30 3 11 21	72 62 214 107 76	3560 89 68 5250 641	7.64 10.60 2.99 7.13 6.49	1.4.2.1	.27	3 1.45 1 .02 1 .02 1 2.67 1 .08	1461 37 50 3768 149	21 18 8	.04 .01 .01 .01	2 1660 57 70 5 60 1 60 1 1370	140 1 4	8 16 16 89	1 17 1 15	1 .01 1 .01 1 .01 1 .01 1 .01 2 .01	1 40.9 2 4.2 1 2.9 1 23.7 1 6.7	2 3 8	381 30 26 10000 470
																					<u> </u>				4/0
																							-		

MIN-EN LABS - ICP REPORT

FILE #0: 78-0153-LJ1+2

ATTN: ROBIN DAY

PROJ;

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423

DATE: 97/07/31 * * (ACT:F31)

											IELIU	604)32/	- 3430	FA	X:(6U	4)527	-3423									* *	(AC	T:F31
SAMPLE NUMBER	AG PPM	7		BA PPM	BE PPM	BI PPM	CA X	CD PPM	CO PPM	CR PPM	CU PPM	FE X	GA PPM	K X	L1 PPM	MG X	MN PPM	MO	NA X	NI P PPM PPM	PB PPM	SB PPM	SN PPM	SR PPM PI	TH TI		W	ZN
ZS-97-01 ZS-97-02 ZS-97-03 ZS-97-04 ZS-97-05	1.8 .7 .1	1.62 1.74 1.28 .66	36 9 1 85	437	1.2 1.1 .6 .9	11 6 3 2 2	.46 .74 .34 .40 .39	5.4 6.1 1.9 .9 1.6	33 15 8 3 21	1 1 4 7 1	45 46 40 106 115	4.89 4.94 2.72 1.24 5.93	39 24 1 1	.06 .06 .04 .04 .04	9 8 5 4 2	.42 .32 .27 .15 .27	7744 5292 456 201 1463	6 4 1 1	.01 .02 .01 .01 .01	38 1990 24 1980 8 2200 4 1680 21 740	138 257 106 77 39	9 6 1 1 4	1 1 1 1	71 155 90 96 52	1 .04 1 .02 1 .02 1 .01 1 .01	3 81.9 1 59.4 1 43.3 1 25.4	3	PPM 362 570 198 91
2S-97-06 2S-97-07 2S-97-08 2S-97-09 2S-97-10	.7 .1 .1	2.66 3.30 1.69 .97 1.59	1 48 26	416 367	2.8 1.7 1.2 .8 1.1	12 9 10 5 8	.32 .60 .85 .68 .51	3.9 4.9 6.8 2.9 5.2	44 14 21 12 16	11111	1183 49 55 43 60	12.00 3.22 6.02 3.96 4.43	40 34 49 20 34	.04 .04 .05 .06 .05	2 15 6 7 7	.12 .27 .31 .25 .23	6712 6389 8895 3811 6103	12 5 7 2 5	.01 .01 .02 .01 .01	17 2420 24 3040 29 2030 16 1460 20 1840	82 128 136 117 167	22 11 10 5 7		62 89 180 153 130	1 .01 1 .02 1 .01 1 .01 1 .01 1 .01	1 50.1 4 31.9 4 50.0 4 54.6 1 57.3 3 52.7	2432	307 390 449 597 337
ZS-97-11 ZS-97-12 ZS-97-13 ZS-97-14 ZS-97-15	.1 .1 .1 .1	1.64 1.11 1.04	117 129 124 99	140 224 166	1.2 .8 1.7 1.2 1.4	7 5 11 8 7	.58 .42 .33 .37 .29	4.9 2.8 2.6 3.6 4.1	13 15 43 16 24	1 1 1 1	448 448 1518 200 222	4.82 4.66 5.27 5.88 5.35	31 16 30 22 24	.05 .06 .06 .04 .04	12 3 6 4 2	.23 .20 .14 .21 .17	5520 2994 4794 3583 4130	3 11 15 6 5	.01 .01 .01 .01 .01	17 2440 16 1200 20 1250 24 1550 27 1490	85 46 76 110 73	6 11 22 8 8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	154 73 80 32 27	1 .01 1 .01 1 .01 1 .01 1 .01	3 36.3 1 33.6 4 31.3 2 38.4 2 28.7	2222	329 346 321 324 311 359
ZS-97-16 ZS-97-17 ZS-97-18 ZS-97-19 ZS-97-20	.1 .1 .1 .1	1.49 1.38 1.02 1.39 1.25	114 47 216 25	108 348 151 27 405	2.2 2.6 1.3 1.8 .9	5 15 7 5 9	.46 .27 .54	.1 12.3 7.8 .1 5.4	29 37 15 27 15	1 1 1 1	1224 617 463 44	>15.00 7.21 4.08 >15.00 4.21	11 56 29 14 42	.04 .06 .05 .01 .05	2 4 2 1 5	.11 .20 .15 .02 .25	1885 9124 4690 1995 7310	13 15 7 5 3	.01 .01 .01 .01 .01	9 2310 38 1500 20 1180 1 580 24 1730	1 179 67 1 112	23 21 9 27 8	1 1 1 1	216 79 74 44 96	1 .01 1 .01 1 .01 1 .01 1 .01 1 .01	2 27.1 6 56.4 2 38.6 2 30.0 3 45.2	1 4 2 1	316 788 376 48 455
2\$-97-21 2\$-97-22 2\$-97-23 2\$-97-24 2\$-97-24 2\$-97-25	.1 .1 .1 .3	1.64 1.22 1.10 .70 2.49	28 97 103 90		.7 .9 1.6 1.1 2.8	5 8 9 10 1	.68 .80 .78 .44 .60	1.9 3.9 3.5 4.9 2.8	13 14 24 21 33		42 99 43 323 2966	4.00 5.57 11.11 5.14 6.98	7 33 41 47 21	.06 .06 .05 .05 .05	9 8 1 4 8	.40 .16 .15 .14 .23	1905 5423 6316 7496 3707	2 9 25 12 22	.02 .01 .01 .01 .01	16 1340 19 1570 16 2850 30 1160 17 1730	57 67 100 61 76	5 8 16 11 9	1	111 228 253 96 162	1 .03 1 .01 1 .01 1 .01 1 .01 1 .02	1 71.2 3 51.0 4 73.3 4 29.0 4 43.5	2232	230 317 332 440 288
ZS-97-26 ZS-97-27 ZS-97-28 ZS-97-29 ZS-97-30	.1 .1 .1	1.52 .31 1.31 .60 <u>1.01</u>	294 29 46 393		-6 .1 1.3 .5 1.8	2 1 6 4 27	.25 .10 .56 .49 1.51		13 26 16 10 26	8 1 1 1 1	143 60 138	2.46 15.00 5.06 3.94 12.90	1 2 24 17 1	.04 .01 .07 .06 .04	8 1 6 5 9	.32 .01 .19 .15 .21 :	537 14 3990 2914 >10000	1 1 8 4 16	.01 .01 .01 .01 .01	16 1270 1 60 13 1850 10 1270 86 2400	48 1 92 38 84	1 5 8 4 20	1 1 1 1	32 23 49 74 732	1 .01 1 .01 1 .01 1 .01 1 .01 1 .02	1 38.7 6 .1 3 53.1 2 38.3	1 2 1	225 37 378 182 792
ZS-97-31 2S-97-32 ZS-97-33 ZS-97-34 ZS-97-35	.3 1.4 .1 .1	1.22 1.49 1.35 .94 1.22	115 1 39 23	206 397 537 95 175	.9 1.9 1.2 .3 1.0	21 7 5 7	.66 .13 .33	1.0 11.9 5.5 1.4 3.1	23 50 11 17 25	1 1 1 1	20 649 73 14 63	6.46 10.20 2.86 3.07 4.59	7 129 27 17 16	.05 .04 .04 .03 .05	7 3 7 6 6	.39 .14 .23 .18 .30	1848 >10000 4547 2929 2879	2 15 3 1 2	.01 .01 .01 .01 .01	16 860 68 2060 18 1880 16 680 16 1100	29 121 96 44 69	4 18 4 3 3	1 1 1 1	32 222 47 20 58	1 .02 1 .01 1 .01 1 .01 1 .01 1 .02	2 46.3 13 32.0 3 41.6 2 22.1 3 61.4	2 5 2 1	331 641 531 145 309
28-97-36 28-97-37		1.04 2.69		227 164	1.4 3.5	2 10	-46 .60	2.8 4.8	34 67	1 1	1753 1405	9.01 14.92	25 59	.08 .04	54	.26 .12	4200 9637	7 16	.01 .01	22 1200 20 2770	84 92	10 15	1	67	1 .01 1 .01 1 .01	4 47.2 8 27.0	2	595 486
																						<u> </u>						
														<u></u>									<u>u</u>			<u></u>		
		•• • •							<u> </u>										<u></u>							<u>.</u>		
			<u></u>													<u>.</u>	· <u> </u>									<u> </u>		

COMP: MR. RObin DAY

MIN-EN LABS - ICP REPORT

FILE NO: 75-0153-5J1+2

ATTN: ROBIN DAY

PROJ:

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423

TIN: RUBIN DAT								Т	EL:(604)	327-34	36	FAX: ((604)3	527-34	23											* *	(ACT:F3
SAMPLE NUMBER	AG AL PPM %	AS PPM	BA PPM	BE PPM	BI PPM	CA X I			CR PPM I	CU PPM	FE X	GA PPM	K X	LI PPM	MG %	MN PP m	MO	NA X	N I PPM	P PPM	PB PPM	SB	SN	SR .			v	W ZN
L5000N 4100W L5000N 4200W L5000N 4300W L5000N 4400W L5000N 4500W	.1 2.16 .1 1.64 .1 2.53 .1 2.06 .1 2.54	47	110 113 177 441 76	.5 .7 .9	6 8 7 5 8	.10 .11 .25	1.1 1.3 1.2	12 11 11 11 15	8 1 3 6 4	35 47 32 61 46	5.02 5.53 5.51 6.12 7.66	3 6 4 4 8	.05	9 2 7 13 9	.38 .33 .28 .35	963 687 708 673 1305	33323	.01 .01 .01 .01 .01	13 7 11 10	820 740	32 78 72 52 95	PPM 1 3 1 3 2	1 1 1 1	<u>PPM P</u> 33 22 22 37	1 .03 1 .05 1 .03 1 .03	5 1 5 1 2 1	73.0 108.3 86.9 76.0	PPM PPM 2 111 2 183 2 142 2 347
L5000N 4600W L5000N 4700W L5000N 4800W L5000N 4900W L5000N 5000W	.1 1.48 .2 1.83 .1 1.20 .1 2.37 .1 1.72	20 213 85 85	111 221 62 102 64	-6 1.2 -6 .9	8 6 7 10 8	.05 .09 :	1.5 1 .5 1 2.0 2	14 14 17 25 14	1 3 1 7	22 63 247 95 44	6.19 4.44 8.69 5.91 8.31	19 6 19 21 10	.05 .09 .06 .06	1 12 1 11 4	.05 .56 .10 .20	2256 1829 2488 3045 1070	4 2 16 5 4	.01 .01 .01 .01 .01	4 20 6 18	2360 1240 3650 940 3320	168 112 324 179 43		1 1 1 1	20 16 42 21 19 25	1 .03 1 .01 1 .04 1 .04 1 .02 1 .03	2223	87.4 86.7 69.6 63.6 83.2 95.6	2 174 2 268 3 580 2 527 3 434
L5000N 5100W L5000N 5200W L5000N 5300W L5000N 5400W L5000N 5400W	.1 3.04 .1 2.00 .1 2.17 .3 1.39 .1 2.43	109 46	70 47 87 52 75	.6 .4 .8 .4 .9	7 8 5 11 5	.03 .10 .02 .07	.8 1 1.2 1 .7 <u>.8</u> 1	10 13 8 13	10 9 12 5 15	40 62 50 49 177	7.62 6.82 5.69 6.88 5.41	3438 1	.05 .04 .07 .05 .08	11 7 6 2 11	.37 .26 .39 .13 .56	739 386 735 242 636	3 3 2 3 2 3	.01 .01 .01 .01 .01	13 9 15	1100 970 1260 1080 870	220 47 78 50 50	2 6 2 8 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	17 17 26 25 23	1 .02 1 .03 1 .03 1 .03 1 .05 1 .03		83.8 86.9 78.5 102.7 83.7	2 200 2 235 2 117 2 294 2 88 2 161
L5000N 5600W L5000N 5700W L5000N 5800W L5000N 5900W L5000N 6000W	.1 2.61 .1 1.46 .1 1.90 .1 2.48 .4 2.12	127 55 60 78 49	65 122 69 104 208	.5 .4 .6 .9 1.3	9 7 8 7	.02 .06 .31	1.0 1 .9 1 1.1 1 1.7 2	1 16 20	2 10 13 8 8		9.42 5.09 5.69 8.03 5.28	44166	.03 .08 .06 .05 .07	10 6 9 12		448 833 456 664 1862	53335	.01 .01 .01 .01 .01		1120 640 600 840 930	44 35 39 95 57	54342	1 1 1 1	18 94 18 24 44	1 .04 1 .03 1 .03 1 .03 1 .03	1	78.8 88.2 84.6 101.1 71.4	2 135 2 140 2 141 2 173 2 195
L5000N 6100W L5000N 6200W L5000N 6300W L5000N 6400W L5000N 6500W	.3 2.33 .1 1.79 .1 1.09 .2 1.23 .2 1.52	119 109 80 97 70	71 60 57 98 102	.8 .7 .5 .9 .8	10 8 11 17 8	.04 .04 .20 .08 1	.6 1 .4 .7 2 1.4 1	20 15 9 20 12	9 1 1 1	65 33	6.89 7.11 5.96 9.35 5.38	13 3 14 12 12	.04 .07 .04 .04 .06	7 9 2 1 3	.43 .10 .08 .09	2151 639 944 821 1485	53344	.01 .01 .01 .01 .01	15 4 25	1860 660 1920 1420 450	330 147 113 29 145		1 1 1 1 1	20 19 18 27 15	1 .02 1 .03 1 .03 1 .03 1 .03 1 .02	2 1 1 3	61.5	2 335 2 142 2 137 2 149 2 149 2 260
L5250N 4000W L5250N 4100W L5250N 4200W L5250N 4300W L5250N 4400W	.1 2.03 .1 2.68 .1 2.42 .1 1.60 1.4 2.09	19 44 32 39 24	224 76 131 104 168	.5 .8 1.6 .6 .6	67 69 7	.02 1 .15 1 .18 .25 1	1.5 1 1.1 1 .8 1 1.6 1	0 8 7 6	10 5 6 3 5 1	18 40 105	5.21 6.74 6.31 6.75 4.74	2 5 2 6 5	.06 .05 .06 .07 .05	9 8 11 5 16	.53 .26 .43 .54 .39	854 400 459 1117 1127	2 4 3 2 3	.01 .01 .01 .01	16 6 11 11	790 380 2440 1900 1090	55 45 38 101 71	1 1 1 2 1	1 1 1 1 1	38 14 47 30 51	1 .04 1 .03 1 .03 1 .06 1 .03	1 1 1 2	86.7 102.1 112.5 112.3 64.9	2 153 2 162 2 164 2 153 2 390
15250N 4500W 15250N 4600W 15250N 4700W 15250N 4800W 15250N 4900W	.8 2.48 .1 1.70 .9 1.56 .1 1.72 .1 1.85	24 65 139 43 39	181 183 57 3 62 139	.9 .6 .6 1.1 .5	5 6 10 6	.13 1 .02 1 .19 1 .08 1	1.1 1 1.0 1 1.7 2 1.3 1	4 3 6 0 0	1 1	64 173 74 132	5.00 6.88 9.85 7.90 6.66	3 8 15 27 11	.07 .07 .05 .06 .07	18 4 2 14 2	.48 .31 .04 .22 .15	691 1371	3 6 11 10 6	.01 .01 .01 .01	16 7 1 12	870 1140 2540 3150 1000	63 77 72 88 41	1 5 8 6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	37 24 14 51 17	1 .03 1 .02 1 .02 1 .01 1 .02 1 .02	2234	73.4 96.7 54.8 68.8 89.6	2 390 1 174 2 217 1 239 2 190 2 123
L5250N 5000W L5250N 5100W L5250N 5200W L5250N 5400W L5250N 5500W	1.5 3.76 .1 1.88 .1 1.68 .2 1.87 .4 1.78	15 45 42 41 89	165 113 114 63 41	1.2 .6 1.0 .4 .4	10 8 10 8 6	.09 .35 1 .09 1 .03	.9 1 1.8 1 1.2 1 .1 1	3	1 1 11	51 33 53	5.02 6.25 5.34 5.25 0.98	11 9 23 8 6	.05 .07 .06 .07 .06	11 57 4 4	.27 .27 .30 .23 .33	564	16 5 3 3	.01 .01 .01 .01 .01	8 13 10 2	1360 1400 1210 2610 1270	105 52 97 31 41	1 5 6 6 6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	23 18 98 28 20	1 .02 1 .03 1 .04 1 .03 1 .03 1 .02	3 2 4 2	57.0 87.4 108.3 86.8 71.7	2 240 2 127 3 133 2 95 1 161
L5250N 5600W L5250N 5700W L5250N 5800W L5250N 5900W L5250N 6000W	.6 2.49 .2 2.01 .4 2.06 .1 2.08 .1 2.29	203 88 56 53 46	44 55 59 65 57	55245	9 5 8 7 6	.02 .02 .04 1 .05 1	.8 1 .8 1.3 1	0 1	91 11 131	57 72 106	7.73 6.30 5.32 5.47 6.46	66856	.03 .05 .04 .06 .07	8 5 4 8 9	.30 .29 .12 .33 .47	568 348 236 583 863	6 4 4 2 2	.01 .01 .01 .01 .01	10 10 4	1610 770 1130 1230	236 35 30 67 49	39 5 5 4 3	1 1 1 1	19 15 15 22 21	1 .03 1 .02 1 .03 1 .03 1 .02 1 .03	2222	79.8 89.9 70.7 80.3 89.6	2 231 2 113 2 69 2 128 2 111
L5250N 6100W L5250N 6200W L5250N 6290W	.4 2.24 3.3 2.07 .1 2.03	31 34 256	50 69 65	.6 .5 .8	8 8 13		1.0 1 1.0 1 .1 2	0 1	13 1	65	6.59 5.26 6.69	2 3 10	.06 .06 .06	12 8 8	.68 .42 .39	788 388 1433	1 4 4	.01 .01 .01	17 11 14	660 760	34 58 82	1 3 6	1 1 1	15 18	1 .05 1 .05 1 .03 1 .03	223	94.0 72.0 82.6	2 83 2 160 2 201
														,									<u> </u>		<u> </u>			
							-			_							<u> </u>					_ ,		<u> </u>		<u> </u>		<u></u>
_	1																											

DATE: 97/07/31 * * (ACT:F31)

COMP: MR. ROBIN DAY PROJ:

MIN-EN LABS --- ICP REPORT

FILE NO: 75-0153-SJ3+4

ATTN: ROBIN DAY

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423

* * (ACT:F31)

SAMPLE	AG PPM	AL X	AS PPM	BA	BE	81	CA	CD	CO	CR	cu	FE	GA	ĸ	LI	MG	MN	MO	NA	NI	P PI	I SB	SN	SR	74	TI I		(ACT:F31
L5250N 6400W L5250N 6500W	.1	2.16	42 54	PPM 77	.6	<u>PPM</u> 5	.10	PPM 1.0	<u>PPM</u> 11	<u>PPM</u> 14	<u>PPM</u> 51	4.37	<u>PPM</u>	<u>×</u> .05	<u>PPM</u> 9	.41	PPM 552	PPM		PPM _	PPM PPM 800 51	1 PPM	PPM	23	PPM	<u>% PPI</u> 04		PPM PPM
L5500N 4000W	.1	2.61	32 25	61 350 80	1.9 .3	6	.04 .49 .03	1.0 1.1 .8	10 7	437	43 39 24	6.01 4.89	3	.04 .06	17	.22	374 1166	3.	01	5 13 11 12	380 77 270 119	7	1	15 59	1.	02 '	82.7 80.4	7 2 145
L5500N 4200W	1.0	11.70	1	103 131	2.1	<u>30</u> 6		10.4	<u>73</u> 13	1	59	2.10	8 100	.05	3	_	562 10000<	14 .	-	48 7	740 24 240 295		1	18 34	1.	05 ⁻	118.0	3 77
L5500N 4400W L5500N 4500W	.2	2.42	30 33 34	228 106	2.0	55	.45	1.4 1.1	20 15	7 8	36 53 58	5.10 4.79 5.47	3 5 2	.06 .06 .05	12 10	.39 .27	943 927	11.		12 1 ⁴ 12 2:	370 136	56	1	31 122	1.0	04 ⁴ 02 3	96.0 92.1	
L5500N 4600W L5500N 4700W	.1	2.34 2.82	31 19	256 85	1.3	5	.47 .13	6	20 11	6 13	42 50	5.18 5.48	3	.07 .05	15 11	.47 .55 .47	1014 1625 485	3. 1. 3.	01	15 (24 1 [°] 14 26	180 66	5Ž	1	42 149 43		03 2 03 2 04 2	75.	2 i75
L5500N 4800W L5500N 4900W	-1	3.57	24 36	83 210	.8	8	.04 .12	1.1	12 11	15 1	40 28	5.68 4.85	1 5	.05 .07	12	.43	501 769		01	13 7	700 53 740 27	3	1	23	1.0	05 1	93.3	2 142
L5500N 5000W L5500N 5100W L5500N 5200W	.1	1.92 2.34 2.68	65 57 53	183 188 156	1.0 1.0 1.9	5 4 11	.23 .24 .12	.1 1.0 1.7	15 13 22	2	51 76	6.21 7.31	4	.07 .06	10 7	.36 .34	917 739	<u> 4 </u>	01 01	13 8 8 13	350 62	!Ť	i	60 62		02 2		2 181
L5500N 5300W L5500N 5500W	1 1	1.65	101 204	77	1.5	6	.51		<u>22</u> 14 54	1	334	<u>6.90</u> 5.04	_ <u>25</u> _1	.05	<u>5</u> 18	.19 .30	<u>3615</u> 572		01	<u>14</u> 28 10 17			<u>1</u> 1	25 126	1.	02 5	67.8	2 131
L5500N 5600W L5500N 5700W A	.1	1.71 1.65	99 108	248 103	.6 .5	42	.02	.5	11 15	1	347 399	>15.00 10.82 3.10	17 4 1	.06 .14 .06	3 1 10	.18 .19 .46	2697 322 197	12 .			310 121	12	1	20 46	1.0	02 5 02 2	70.0	1 242
L5500N 5700W B	<u>.1</u> .1	.59	642 85	<u>8</u> 497	<u>.1</u> 4.0	46	.03	<u>.1</u> 25.7	<u>21</u> 921	1	128	>15.00 >15.00	3	.02	26	.05	<u>3</u>	1.	01 01 01 1	13	210 47 330 1	15	1	42 10	1.0	<u> </u>	19.6	1 22
L5500N 5900W L5500N 6000W	.1 .1	3.13	1 47	440 67	2.3	43 5	.05 .11	25.2	240 16		3288 132	10.25	1	.07 .06	20 8 9		>10000 >10000 826		01 1	53 11 97 26 13 21	60 346	36	1	121 30 21	1 .0 2 .0 1 .0) 3 27	65.2	9 856
L5500N 6100W L5500N 6200W	.3	2.43	58 33	112 65	1.3	6 3	.05	1.0	20 12	14	172	5.62 5.50	9 1	.07 .07	11 11	.38	1848 439	6 2	01	17 14 20 9	20 94	7	i	32 21	1 .0 1 .0 1 .0)2 3		2223
L5500N 6300W L5500N 6400W L5500N 6500W	.1 .7 .1	1.60 1.81 1.80	72 106 280	75 80 62	.9 .9 .9	4 12 13	.10 .03 .09	2.4 2.4	10 36 16	5 1 1	64 56 232	5.31 8.02	33 2	.05 .06	43	.28	647 4778	7.		9 16 15 22	90 129	9	1	23 19	1.0)3 1)2 4	74.0	2 153
L5750N 4000W L5750N 4100W	.1 .1	3.74	139	199 758		7	.34 .33	1.9	13 25	13	232 34 168	7.50 4.19 7.55	4 1 70	.06 .06 .09	5 13 15	.31 .48 .14	964 1045 >10000	8. 2. 12.	01	25 12		1	1	21 57	1.0	13 2 14 2	70.7 69.4	2 175
L5750N 4200W L5750N 4300W	-4 .9	2.66	97 9	249 112	1.3 1.0	7 5	.28	2.4	17 15	1 3	49 105	6.29 5.10	13	.07	11	.45	2673 1896		01	17 13	00 547 10 266 20 115	4	_ <u>1</u> 1	<u>37</u> 28	<u> </u>)2 3	76.1	3 305
L5750N 4400W L5750N 4500W L5750N 4600W	.1	2.00	24 45	288 109	1.0	5	.36 .09	1.0 1.4	16 14	10 8	36 62	5.17 5.70	1 2	.06 .08	11 10	.61 .46	1063	1.	01	19 7 14 13	10 56		1	27 94 22	1 .0 1 .0 1 .0	14 Ž	84.7	2 150
L5750N 4800W	<u>1.6</u>	1.96	<u>147</u> 39	286	1.3	<u>10</u>	.03	2.2	<u>21</u> 8	<u>1</u> 8_	<u>79</u> 37	<u>6.64</u> 5.10	<u>39</u> 5	.04	4 2	.04	<u> </u>	<u> </u>	01 01	14 32	80 211 20 66		1	26	<u> </u>	11 4		
L5750N 4900W L5750N 5000W	1.5 1.7 .5	3.22 1.62 2.50	54 184 47	135 122 74	1.2 .8 .7	11	. 14 . 07 . 04	2.1 2.0 1.5	16 17 13	2	58 76 58	6.18 7.97	7 32 11	-06 -04	9 1	.31	1294 4633	10 .	01 01	11 11 10 21	90 199 90 559		1	26 12	1.0	13 Ź		3 248 3 574
L5750N 5100W	.1	1.32	96 45	48 85	.6	7	.11	1.4	11 11	<u>i</u> 5	100 56	6.66		.06 .06	8 1 5	.26	1659 771	2.0	01	11 15 8 17	40 77		1	17 26	1 .0 1 .0		88.6	2 164
L5750N 5300W	.i 1.2	4.36 2.47	49 82	71 69	.7 .8	6	.09	1.9	16 19	1	114 466	6.11 8.72 8.32	2	.05 .05 .06	12 12 7	.40 .36 .26	494 1029 1284	3.(6.(5.(01	10 14		5	1	24 19	1 .0 1 .0	iž ž		2 175
L5750N 5500W L5750N 5600W	1.0	1.12	64 119	232 30	.3 .5	24	.29 .07	.5	777	6 1	433 154	2.49	í 5	.07	2	.21	95 146	5.(10.(D1	16 13 7 10 1 12	00 58	11 9 19	1	21 64 33	1 .0 1 .0 1 .0	2 2		1 95
L5750N 5700W L5750N 5800W L5750N 5900W	-1	1.50	93 116	58 71	.6	35	.08	.7 .8	10 11	1	314 142	7.84 9.24	1 4	.11 .05	2	.33	317 393	9.0 7.0	01	4 10 3 23	40 38	13 12	1	46	1.0	2 2	73.6	2 107
C3130N 3900W	.1	2.30	124	186	2.5	4	.33	2.1	16	1	899	5.63	17	.08	11	.24	2997	11 .0			50 108	8	i	58	i .ŭ	1 3	49.8	2 122 2 313
											•										_		_					

DATE: 97/07/31

COMP: MR. ROBIN DAY PROJ:

MIN-EN LABS - ICP REPORT

FILE NO: 78-0153-8J5+6

ATTN: ROBIN DAY

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL: (604)327-3436 FAX: (604)327-3423

DATE: 97/07/31 * * (ACT:E31)

SAMPLE	AC 41	40												.004)3	21-24										* *	(ACT	:F31)
NUMBER	AG AL PPM X	AS PPM	BA PPM	BE PPM	BI PPM	CA X	CD PPM	CO PPM	CR PPM	CU PPM	FE X	GA PPM	K X	LI PPM	MG X	MN PPM	MO PPM	NA X	NI P PPM PPM	PB PPM	SB SI PPM PPI	SR SR	TH TI		V	W	ZN
L5750N 6000W L5750N 6100W L5750N 6225W L5750N 6300W L5750N 6400W	.1 1.19 .1 2.81 .7 1.91 .1 1.80 .3 1.77	35 89 65	119 110 84 64 71	.6 1.0 .7 .6	2 3 11 5 7	.18 .10 .05 .02 .03	.6 .9 1.4 1.1 1.6	12 12 10 11 12	1 9 1 5 1	217 353 124 116 133	6.53 5.25 6.92 7.18 7.05	1 10 3 9	.08 .08 .03 .06 .05	4 10 2 3 4	20 .36 .06 .33 .19	150 405 884	12 8 8 4 7	.01 .01 .01 .01 .01	10 1770 9 1170 1 1500 7 530 6 1530	48 69 73 58	9 4 7 6	25 26 14 15	1 .02 1 .02 1 .02 1 .03	1 2 1	PPM 40.9 61.4 56.6 77.1	1 1 1 2	PPM 152 150 112 136
L5750N 6500W L6000N 4000W L6000N 4100W L6000N 4200W L6000N 4200W	.1 2.06 7.2 2.21 2.0 2.69 .2 1.85 .5 2.83	1	91 259 194 164 122	.6 1.9 .8 .3 .6	7 10 4 5 7	.02 .33 .15 .22 .13	1.3 6.4 1.9 1.0 1.5	9 21 9 8 15	1 11 13 9	56 59 36 27 35	7.33 6.77 3.82 3.04 4.54	9 44 1 1	.03 .10 .04 .03 .04	1 11 11 8 9	.04 .22 .38 .32 .42	843	46212	.01 .01 .01 .01 .01	1 1390 25 2300 14 930 11 590 17 850	91 43 807 45 42 68	8 9 1 1	13 32 21 34	1 .02 1 .01 1 .01 1 .02 1 .03	2 6	69.5 54.2 73.3 65.6 102.3 72.7	1 7 1 2 2	146 95 833 192 93
L6000N 4400W L6000N 4500W L6000N 4600W L6000N 4700W L6000N 4800W	.1 2.77 .1 2.51 .4 3.34 1.7 3.27 .4 2.91	9 53 1 30 14	114 149 184 85 211	.4 1.0 .8 .8	6 11 6 9	.13 .20 .09 .14 .20	1.6 2.5 1.9 1.9 2.4	13 19 20 12 18	12 1 10 5 1	36 54 67 59 67	4.45 6.27 4.84 6.27 5.18	1 25 2 1 10	.04 .06 .07 .06 .07	11 17 13 10 8	.51 .34 .62 .41 .45	615 4448 1592 839	1 5 2 3 2	.01 .01 .01 .01 .01	20 750 20 1580 25 790 11 2030 19 5200	49 176 83 200 181	2 1 6 1 2 4		1 .04 1 .04 1 .03 1 .03 1 .03 1 .03	1422	77.2 77.1 79.3 69.9	2322	150 146 339 373 200
L6000N 4900W L6000N 5000W L6000N 5100W L6000N 5200W L6000N 5400W	.1 1.67 .1 2.86 .1 1.03 1.6 4.19 .2 3.05	159 10 21	99 110 58 89 54	.7 .9 .9 .7	76974	.07 .03	.6 1.4 1.4 2.3 1.8	15 15 16 16 11	4 9 1 11 7	143 109 178 69 158	5.50 5.65 9.71 5.85 5.52	4 3 20 1	.06 .03 .04 .05 .05	5 10 2 14 8	.44 .40 .11 2 .44 .37		3 4 7 3 4	.01 .01 .01 .01 .01	13 620 12 810 4 2490 18 1480 12 1380	114 53 133 135 111	6 1 3 1 11 1 4 1	27 20 64 23 15	1 .04 1 .03 1 .03 1 .02 1 .03 1 .02 1 .03	1 1 4 1	69.2 84.1 95.2 82.2 71.2	2222	287 186 129 330 246
L6000N 5500W L6000N 5600W L6000N 5800W L6000N 5900W L6000N 6000W	.1 1.39 .9 2.32 .1 .92 .1 1.05 .1 1.10	59 42 87 127	47 74 68 67 80	.4	8 5 6 8	.04 .03 .03 .05 .08	.7 .9 .5 .8 .4	12 13 4 9 13	1 4 1 1	136 153 217 271	10.37 7.89 3.46 6.13 9.15	6 2 4 4 9	.07 .04 .04 .05 .06	2 8 1 2 1	.33 .42 .05 .22 .17	470 518 109 226 929	10 4 5 8 11	.01 .01 .01 .01 .01	2 1210 10 970 2 1030 5 1210 2 4130	58 38 31 53 96	9 1 5 1 10 1 16 1	18 14 17 22	1 .04 1 .03 1 .02 1 .02 1 .03	2 1 1 1	66.6 90.6 88.0 68.6 68.5 76.1	1 1 2 1 2 1 1 1	151 138 119 101 184 135
L6000N 6100W L6000N 6200W L6000N 6300W L6000N 6400W L6000N 6500W	.1 1.62 .1 1.77 .1 1.46 .1 1.55 .1 1.56	80 76 97	104 147 142 90 113	1.3 1.1 .9 1.0 1.2	5 6 4 5	-30 -42	1.2 1.6 1.0 1.0	17 18 13 16 19	1 2 1 1	294 256 162 331 244	6.33 5.97 5.61 7.00 8.74	6 3 10 6 5	.07 .09 .07 .07 .06	5 5 10 17 9	.34 .38 .31 .29 .42	1748 1449	6 6 5 8 6	.01 .01 .01 .01 .01	16 780 15 1260 10 1030 9 1410 6 1550	178 241 121 86 116	9 1 10 1 10 1 11 1 11 1	21 34 61 103	1 .02 1 .02 1 .02 1 .02 1 .02 1 .03	1 1 2 2	61.2 60.9 67.4 61.4 69.4	2222	539 295 262 214 263
							_,																, <u>.</u>			<u>- n</u>	
												.									<u> </u>						
							t u														<u></u> -			-		••	
				_	_								<u>.</u>					- , ,								<u></u>	

COMP: MR. ROBin DAY Proj: Attn: Robin Day									M 82	82 SH	ERBRO	DOKE S	N S — T., VA 436	NCOUVE	R, B.	.c. v5	5X 4E8											NO: DAT	E: 97,	/07/3
SAMPLE NUMBER	AG PPM	AL	AS	BA	BE	BI	CA	CD PPM	CO				E GA X PPM					MO	NA	דע –		DD.	CD (PM	<u>CD</u>	T 11	.	* *	(AC	r:F31
L6000N 5300W	.1	.21	1	112	1.1	70	<u>x</u> 5.23	<u>PPM</u> 18.7	<u>PPM</u> 18	<u>PPM</u> 1	<u>PPM</u>	>15.0	<u>% PPM</u> 0 152	.04	<u>РРМ</u> 1	MG % .11	PPM >10000	23	.02	<u>PPM</u> 170	<u>рри</u> 1360	<u>PPM</u> 151	50	эм Эм 1 1	282	тн РМ 1.	<u>% PF</u> 01 5	U M PP 2 15.	V W <u>M PPM</u> 7 8	ZN PPM 113
														<u> </u>															<u> </u>	<u>. </u>
							. .												. <u>,</u>		_						<u>.</u>		-	
																							<u> </u>					, <u>.</u>	<u></u>	
										- <u></u>						<u></u> -						<u> </u>		<u> </u>			·		.	
																		_					<u>. </u>	_				<u> </u>		
											·						<u> </u>											-		_
																					<u>.</u>						-			
																							. <u> </u>		<u> </u>					
			-													<u></u>					<u>.</u>		<u> </u>							
						<u>-</u>												i										<u> </u>		
																							<u></u>]
			_										 .																	

- OUTCROP ROCK SAMPLES ZB-97-01 leached, secondary biotite & magnetite, ~150m from fork-west branch-potassic zone ZB-97-02 .4 meter wide breccia dyke, angular and rounded clasts, dissem py, sph, strike 42, dip 90, ~121m upstream from RB-96-18 ZB-97-03 stringer sph. py one meter from ZB-97-02 ZB-97-04 ser, py, sph at 6010N 4025W ZB-97-05 py, cpy?, stockwork and dissem in creek ~15m upstream from 6000N 5700W ZB-97-06 breccia dyke, strike 150, dip 90, 20 cm wide, mineralized matrix and clasts, minor malachite, 6000N 5700W, dyke cuts $py \pm qtz$ stockwork with dissem py, sulfide only seen in bedrock in creek below water table ZB-97-07 crowded f.p., 5500N 4025W ZB-97-08 intense carb alt ±py, granodiorite-diorite, mafics going to biotite, 5245N 6500W ZB-97-09 intense ser-py alt at 5270N 6310W ZB-97-10 ser, py alt at 5250N 6310W ZB-97-11 creek bottom below waterline, biotite & magnetite, cpy on fracture planes, 128m from fork, west branch-potassic zone ZB-97-12 py, cpy, chalcocite?, moly?, magnetite, 150m from fork-west branch-potassic zone ZB-97-13 cpy, bornite, py, chalcocite?, 172m from fork-west branch-potassic zone ZB-97-14 py, grey copper?, 185m from fork-west branch-potassic zone ZB-97-15 bornite, cpy, py; bornite alt selvages on fracture plane, 206m from fork-west branchpotassic zone ZB-97-16 232m up from mouth of creek, 232m from fork-east branch-potassic zone ZB-97-17 py, bn? In fracture and dissem, 35 m upstream from 6000N 5528W ZB-97-18 on creek ~31 m below 5500N 5290W, Ser, py with veinlets of Mn-carb, dissem &
- stringer py
- ZB-97-19 on creek ~128m below 5500N 5290W, mn-carb alt, dissem and stockwork py

FLOAT-SUBCROP ROCK SAMPLES

- ZR-97-01 silicified conglom, ~1% dissem py, minor ser (see map)
- ZR-97-02 Vein breccia ~10m down from Taiga's YR-7, ~5% py, tr. Gn, sph
- ZR-97-03 5cm semi massive sph-gn veinlet, in ser, py alt, ~290m from mouth of 'east' creek
- ZR-97-04 angular subcrop, py-ser alt, sph, 6010N 4025W
- ZR-97-05 ser alt sandstone?, minor dissem py, 6000N 6360W
- ZR-97-06 f.p., 5750N 4000W
- ZR-97-07 ser-py alt, dissem py, minor sph, gn, 5750N4535W
- ZR-97-08 subcrop, leached intrusive breccia, 5750N4885W
- ZR-97-09 subcrop, 5750N 6060W, ser-py alt, py stringers, minor cpy on fractures, 1cm wide alt envelopes on fractures
- ZR-97-10 WAD, on bank ~5750N5990W below soil#5750N 6000W
- ZR-97-11 carb alt crowded f.p. 5500N 4025W
- ZR-97-12 carb alt crowded f.p. 5500N4140W
- ZR-97-13 breccia, py 5500N 4450W
- ZR-97-14 carb alt f.p. 5500N 4450W
- ZR-97-15 ser-py alt breccia in creek (boulder) 5500N 5290W
- ZR-97-16 py, minor cpy, 5500N 6285W, strong ser-py alt at 5500N 6250W
- ZR-97-17 carb alt boulders of breccia 5250N4560W
- ZR-97-18 subcrop, strong ser-py alt, 5%py 5250N 6378W
- ZR-97-19 subcrop, angular, ser, 3-5% dissem & stringer py
- ZR-97-20 py-ser alt, minor dissem sph in creek 5m south of 5250N 5285W
- ZR-97-21 ser, ~3% dissem & stringer py 5000N 4425W
- ZR-97-22 strong ser, py alt, dissem & stringer py, minor dissem sph 5000N 4905W
- ZR-97-23 ser-py alt, dissem py, minor sph BL5000W 4815N
- ZR-97-24 sub-angular, dissem py, grey metallic sulfide, sph? 5000N 5090W
- ZR-97-25 angular boulder, dissem py, sph, carb alt 5000N 5120W

- ZR-97-26 angular, ser-py alt, sph, ~5010N 5650W
- ZR-97-27 potassic zone, secondary biotite & magnetite, 116m above fork-west branch-potassic zone
- ZR-97-28 float, breccia, py, ~575m from fork-west branch-potassic zone
- ZR-97-29 qtz-py vein material, 2m up from 5750N 5308W
- ZR-97-30 scree below outcrop, stockwork py & mn carb veinlets, sph, in creek ~45m below 5500N 5290W
- ZR-97-31 carb alt, stockwork & stringer py, in creek ~54m below 5500N 5290W

Sample No.	Location	Sample No.	Location
ZS-97-01	5995N 4025W	ZS-97-20	5500N 4315W
ZS-97-02	6000N 4517W	ZS-97-21	5500N 4450W
ZS-97-03	6000N 4970W	ZS-97-22	5500N 4707W
ZS-97-04	6000N 6490W	ZS-97-23	5500N 4960W
ZS-97-05	20m S of 6000N5700	ZS-97-24	5500N 5290W
ZS-97-06	6000N 5530W	ZS-97-25	5500N 5400W
ZS-97-07	5745N 4040W	ZS-97-26	5550N 6500W
ZS-97-08	5740N4535W	ZS-97-27	5500N 5775W
ZS-97-09	5750N 4590W	ZS-97-28	5250N 4470W
ZS-97-10	5750N 4840W	ZS-97-29	5250N 4775W
ZS-97-11	5750N 4920W	ZS-97-30	5250N 5225W
ZS-97-12	5750N 5225W	ZS-97-31	5250N 6400W
ZS-97-13	5750N 5308W	ZS-97-32	5250N 5285W
ZS-97-14	5750N 6155W	ZS-97-33	5000N 4330W
ZS-97-15	5750N 6060W	ZS-97-34	5000N 6360W
ZS-97-16	5750N 5975W	ZS-97-35	5000N 5650W
ZS-97-17	5750N 5870W	ZS-97-36	50 up west fork-potassic
ZS-97-18	5750N 5790W	ZS-97-37	zone Potassic zone, 70m up east fork
ZS-97-19	5750N 5735W		

SILT SAMPLE LOCATION TABLE

APPENDIX B 1996 ASSAY DATA 1996 SAMPLE DESCRIPTION

CERTIFICA OF ANALYSIS

iPL _610839

Out: Sep 10, 1996 In: Sep 03, 1996

iPL: 9610839

INTERNATIONAL PLASMA LABORATERY LEB

Project: None Given

Client: First Point Capital Corporation

Project: None Given	43 Rock	In: Sep 03, 1996	[083915:12:36:69091096] Certified BC Assayer: David Chiu
Sample Name Au ppb	Au Ag Cư Pb Zn As Sb g/mt ppm ppm ppm ppm p	Hg Mo Tì 81. Cd Co pm ppm ppm ppm ppm ppm ppm	o Xi Ba W Cr V Mn La Sr Zr Sc Ti Al Ca Fe Mg K wppm ppm ppm ppm ppm ppm ppm χ X X X X X X
RB96 01 Ř 21 RB96 04 Ř 2 RB96 06 Ř 11 RB96 07 Ř 412 RB96 10 Ř 307	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	< 4 < < < 33	5 40 12 < 109 23 1427 2 14 5 3 2 0.22 0.88 1320.27 0.10 2 37 235 < 116 18 1550 5 29 2 4 2 0.34 1.03 1.48 0.28 0.18 3 46 70 < 156 18 1026 2 15 4 4 2 0.26 0.68 7.73 0.16 0.14 0 5 14 4 34 10 884 10 47 9 2
RB96 11 R 5 RB96 12 R 10 RB96 13 R 2560 RB96 15 R 1770 RB96 16 R 839	- 1.0 34 1494 1729 43 « - 0.2 7 121 102 « « 2.70 0.1m 3.75 4974 1172756 98 - 0.2m 225 8813 4.273996 513 - 97.0 3264 2503 147 624 78	 4 < 12.8 10 2 < 0.9 5 3 < 24 0.6m 2 3 < 36 0.2m 3 7 3 < 0.6m 9 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
RB96 1B R 1470 RB96 19 R 45 RB96 21 R 21 RB96 23 R 51 RB96 24 R 58	1.7 495 330 852 32 5 0.1 261 129 258 < < 4.0 990 1254 2350 108 18	< 33874 < 2,19.8 9 B	
R096 25 K 43 R096 26 K 168 R096 29 K 14 R096 30 K 36 RR96 06 K 444	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		7 18 <
RR96 14 8 6900 RR96 17 8 2950 RR96 23 8 2225 RR96 26 8 2300 RR96 28 8 78	2.32 0.1m 2201 14051 4.47 243 150 12 2.08 0.2m 6557 10935 4.57 509 1992 4	18 < < < 0.27 1 < < < 0.3m 5 20 < < 15 0.2m 11 15 < < 12 0.3m 2 < 11 < < 21.9 1	3 < 73 7 3.32 < 21 15 2 0.08 3.00 0.48 1.02 0.01 4 < 47 4 4.32 < 36 < 1 < 0.07 4.69 1021.69 0.02 4 = 203 3 478 $5 = 2$
RR96 32 (Å 935) RR96 36 (Å 1670) RR96 42 (Å 768) RR96 43 (Å 62) 96RMB 72 (Å 9)	61.7 711 7773 7856 250 44 3.2 32 2633 845 235 7	7 - 40 0.1% 2 17 - 89 0.3m 6 <	$6 ext{ < } 84 ext{ < } 22.92 ext{ < } 31 ext{ 1 } ext{ < } 0.07 ext{ 2.76 } 5.01 ext{ 1.02 } 6.04 \ 12 ext{ < } 125 ext{ 7 } 2304 ext{ < } 30 ext{ 3 } ext{ < } 0.05 ext{ 0.20 } 110.07 ext{ 0.06 } 0.20 \ 110.07 \ 0.20 \ 10.02 \ 10.$
96RMB 73 R 2 96RMB 74 R 5 RS96 01 (H.N.)R 628 RS96 03 (H.N.)R 225 RS96 05 (H.N.)R 35		 4 4 4 2 4 5 5<	67 < 18 27 637 5 1893 1 3 < 0.28 257 1.67 1.13 0.04 9 37 < 29 72 1082 4 580 2 7 < 0.47 117 4.18 4.32 0.04 14 < 250 235 1083 1 50 9 5 0.47 117 4.18 4.32 0.04
R\$96 02 (\$ 152 R\$96 04 (\$ 38 R\$96 06 (\$ < R\$96 06 (\$ < R\$96 07 (\$ 98	1.0 1290	< 1.5 22 < 1 < < 14 < 4 < < 0.7 24	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	1000.00 99.9 20000 20000 20000 y., かか かす FAGray ICP ICP 認識で「 ICP ICP ICP ICP ICP	Prio Uninduficad autor	9.19 9999 999 9999 9999 9999 9999 999 99

2036 Coliminal Street Vancours C.

Canada Voir 3Et

Section 1 of 2

Page 1 of 2

Phone (604) 679-7878/ Fax (604) 879-7891

			OF یا ۲۰۰۰ 10 _ 610	' ANALYSIS 1839		Vancouv 3. Ganada V5y 381	+
Client: First Ac Project: None Giv	oint Capital Cor ven 43 Ro	roporation iPL: 9610 lock	10, 1996 03, 1996	Page 1 of [083915:12:48:69091096]	2 Section 2 o Certified BC Assa	Phone (604) 879 Fax (604) 879 F 2 Yer: David Chiu	-7898
Sample Name	Na P Í Í						- de vi
RB96 04 Ř RB96 06 Ř RB96 07 Ř	0.01 0.04 0.02 0.04 0.01 0.05 0.01 0.11					<u> </u>	
R896 11 (ž R896 12 (ž R896 13 (ž) R896 13 (ž)	0.01 0.01 0.01 0.15 0.01 0.12 0.01 0.12 0.01 <						
R896 18 8 8 R896 19 8 R896 21 8 R896 23 8	0.01 0.04 0.02 0.02 0.02 0.16 0.02 0.14 0.01 0.17 0.01 0.13						
R896 25 8 0 R896 26 8 0 R896 29 8 0 R896 30 8 0	0.01 0.14 0.01 0.12 0.05 0.13 0.02 0.12 0.02 0.06						
RR96 14 8 0 RR96 17 8 0 RR96 23 8 0 RR96 23 8 0 RR96 26 8 0	0.01 0.01 0.01 0.05 0.01 0.03 0.01 0.03 0.03 0.08 0.03 <						
RR96 32 R 0 RR96 36 R 0 RR96 42 R 0 RR96 43 R 0	0.01 0.02 0.01 0.02 0.01 0.04 0.04 0.13 0.02 0.06						
96RMB 73 18 0	0.01 0.03 0.03 0.03 0.06 0.11 0.05 0.09						
RS96 02 12 0. RS96 04 12 0. RS96 06 12 0.	0.02 0.13 0.02 0.13 0.04 0.07 0.01 0.11						
Max Reported* 5.	.01 0.01 .00 5.00 ICP ICP]

CERTIFICAT^P OF ANALYSIS

2036 Columhin Street

Vancouver

Canada V5Y Jic 1

iPL __10839

entrinational Plana Client: First Po Project: None Giv	oint Cap			ition	÷I	PL: 96	510839)					1996 1996		[09	3915 ; 1	12:5	F 2:690	² age)91 0 9	2 of 16]		Cert	Secti	ion i r BC Assa	Fax of 2	ne (604) ((604) (havid Ch	879-73		H.	Ζ.
Sample Name	Au ppb	Au g/mt	Ag ppn	Cu ppm	Pb ppm	Zn ppw		Sile popri	Hg ppn	Ио рре		B1 ppm		Co ppm	NH ppm	Ba pom j	W ppm	Cr ppm	V ppm	Mn ppm	La ppm	Sr ppm	Zr ppn p	Sc Ti xon 2		Ca 7	Fe	Mg	K	
R596 08 8 R596 09 8 R596 10 (ASN) 8 R596 11 (ASN) 8	135 57 14 62		1.5 0.8 0.5 0.4	1697 826	147 52 55	882 510 364 213		\$ 8 ~ ~	~ ~ ~ ~	5 1 1 3 3	* * * *		2.8 2.2 0.3	63	212	179 244 22 14	< < < < <	7	33 25	5833 5193 199 240	20 25 17 11	145	5 8	5 4 0,01 3 0.01 2	i 2.59 i 3.22		8.00 6.19	0, 12	0.06	

Min Limit 2 0.07 0.1 2 1 5 5 3 1 10 2 0.1 3 1 2 5 1 2 3 t 2 1 1 1 0.01 0.01 0.01 0.01 0.01 0.01 Max Reported*

	Cr	ERTIFICAT OF iPL 5010			2036 Colur Stri Vancouver, Canada V5Y 3E1 Phone (604) 879-78	
lient: First Point Capital Corporation sject: None Given 43 Rock	1PL: 9610839	Out: Sep 10, 1996 In: Sep 03, 1996	Page 2 of 2 (083915:12:57:69091096)	Section 2 of Certified 8C Assays	Fax (604) 879-78	
pleName Na P X X						d - v
6 08 № 0.01 0.11 6 09 № 0.01 0.14 6 10 (ASH) € 0.02 0.07 6 11 (ASH) € 0.02 0.05						
2						
Limit. 0.01 0.01						

	CERTIFICATE iPL 96109		2036 Columbia t Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879 -7878 Fax (604) 879 -7898
Client: First Point Capital Corporation IPL: 9610923 Project: None Given 8 Pulp	Out: Sep 24, 1996 In: Sep 24, 1996	Page 1 of 1 [092310:36:13:69092496]	Section 1 of 1 Certified BC Assayer: David Chiu
Sample Name Ag g/mt	······································		
RB 96 13 P 685.3 RB 96 15 P 1654.7 RR 96 14 P 468.2 RR 96 17 P 117.2 RT 95 23 P 150.7			រធ្វ ចេះ ចេះ
RR 96 26 P 332.5 RR 96 32 P 166.0 RR 96 36 P 221.6			
			5 (00 - -)
			FIPST FOINT CAPITAL
Min Limit 0.3			Q. e.

CERTIFICATE OF ANALYSIS

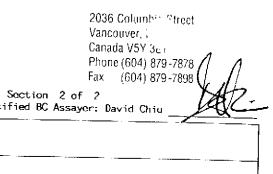
2036 Columni - "treet Vancouver, .

Į

Canada V5Y 3ET

iPL 5010929

INTERNATIONAL F	LASMA LABORATO	RYLTD																								75 Y 3E 304) 879		7
Client: Firs Project: None	st Point Ca 2 Given	apital Co 42 R		۱ 	iPL:	96109	929			: Oct : Sep				[09	2919:	14:5	P 2:691	'age 0049	10 16]	f 2		Sect. ified	ion BC/	Fa 1 of 2 Assayer:		604) 879 d. Chriu	Y	tk.
Sample Name	Au ppb	Au g/mt	Ag g/mt	Ag ppm	Cu ppm	РЬ ppm	Zn ppm	Λs ppm	Sb ppm	Hg ppm		TT ppm		Cd ppm	Со ррт	Ni ppm	Ba ppm	W Ppm	Cr ppm			La	Sr	Zr Sc ppm ppm			Co	
RB-96- 03 RB-96- 06 RB-96- 09 RB-96 14 RB-96- 17	R 2 Ř 11 Ř 34 Ř 990 Ř 44	 1_03 	 254.0	1.2 3.8 4.1 0.2m 1.7	36 35 22 2.5 % 233	192 352 622 2714 271	766 464 1480 3089 485	53 224 71 2924 33	20 6 242 6	V V V V	3 5 7 7 5	* * * * *	17		15 10	34 61 8 6 8	256 6 20 7 11	< < < < < < <	97 47 39	22 21 19 16	2143 3365 1,37 3268 1348	5 4	34 20 40 37 17	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$			1.52 1.42 1.61 1.36	1.76 9.08 3.19
RB-96- 22 RB-96- 27 RB-96- 28 RR-96- 1 RR-96- 2	R 271 Ř 10 Ř 14 Ř < R 304	 		0.1	200 276 183 39 178	127 37 45 8 1408	459 113 117 46 6064	37 10 12 60 207	٢.	VVVVV	4 5 4 4 4	* * * * *	< < <	2.0 1.2 0.4 < 29.3	8	6 5 7 4	9 20 15 24 7	* * * * *	53	41 61 105	104 2159 976 412 2.0 X	3 28 28 5 7	10 87 31 128 80	13 < 6 5 4 5 20 12 7 2	< < 0.23	0.40 0.80 1.07 3.70	0.21 3.44 1.40 2.19	8.79 2.54
RR-96- 3 RR-96- 4 RR-96- 5 RR-96- 7 RR-96- 8	R 32 Ř 269 Ř 25 Ř 178 Ř 55	 	·· 	8.5 0.7	57 560 1 2774 118 40	54 9086 490 1420 116	540	 323 741 340 	୍ୟୁ	VVVV	5 14 6 10 5	~ ~ ~ ~ ~	8 < <	0.4 0.1m 5.8 51.9 0.4	ຳ 12	6 5 22 6 6	20 × 20 9 6	~ ~ ~ ~ ~	65 24 58	18 44 10	370 5.1 % 1151 3930 197	7 5 ~ 22 2	11 109 68 26 27	6 1 2 1 8 5 5 2 10 <	~ ~ ~ ~ ~	0.44	0.41 5.52 0.27 0.54	4.38 6.59
RR-96- 9 RR-96- 10 RR-96- 11 RR-96- 12 RR-96- 13	R 21 R 4 R 14 R 338 R 261	 	3	0.6				38 13 204 128	• •		51 5 6 10 9	* * * * *	< < 8	1.7	10 11	5 6 2 7	15 22 25 55 7	~ ~ ~ ~ ~	60 64 28	10 9 3	2787 543 4728 4.0 % 2911	6 21 13 4 2	37 27 39 131 41	6 1 9 1 9 1 3 1 10 1	* * * *	0.38 0.55 0.49 0.24 0.31	1.40 1.50 1.65 9.98	3.68 4.05 3.42 2.64
RR-96- 15 RR-96- 16 RR-96- 18 RR-96- 19 RR-96- 20	R 3167 Ř 49 Ř 35 Ř 281 Ř 187	3.40 	 1		417 29 562 2	315 245 2554	28 % 1941 757 5961 2107	52	10	20092	9 6 35 10	< < < < <	< ` < `	0.1% 10.9 2.0 26.4 16.3	7 9 9	2 6 6 5	√ 17 5 10 15	* * * * *	56 74 100	11 12 8	7.0 7 7930 4856 5268 1.0 7	< 13 2 5 8	9 31 46 47 25	< 3 9 2 7 1 4 1 7 1	* * * *	0.07 0.43	0.36 1.99 2.65 3.19	6.54 4.40 7.01 4.26
RR-96- 21 RR-96- 22 RR-96- 24 RR-96- 25 RR-96- 27	R 22 K 1800 Ř 1790 Ř 2030 Ř 3660	1_53 1_57 2.23 3.37	151_5	0.1m/3	3:27 3 5:87 2 612 9	2392 1 5058	337 2472 1104 2.37 6.87	241	20 36	141 al 24 al 24	8 4 5 4 2	< 2 < 1	26 1 54 6 62	1.7 11.5 57.0 0.1m 0.4m	10 16 13	5 3 2 4 4	45 9 14 <	* * * * *	79	8	1988 1.07 1.17 5.27 4.37	16 、、、 、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、	21 17 16 26 33	6 2 6 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 <	~ ~ ~ ~	0.57 0.08 0.05 0.10	1.23 0.86 1.85 1.34	
RR-96- 29 RR-96- 30 RR-96- 31 RR-96- 33 RR-96- 34	Ř 2020 Ř 1310 Ř 580 Ř 208 Ř 178	1.90 1.27 		0.1m 2 4.5 1	202 16 629 2 753 1	5752 534 1 043	11 X 12 X 0270 2554 2694	698 414 119	80 37	67 4 V V V	< 27 41 27	<	13	0.5m 0.6m 5.5 2.5 3.6	្បី	4 3 6 11 7	< < 5 10 2	~ ~ ~ ~ ~	2	ाहरू 	4.1 7 12 7 2.3 7 5551 5143	< < 3 8 3	32 27 52 47 53	× × × × × × × × × × × × × × × × × × ×	< < < <	0.07 0.07 0.37 0.48 0.40	1.07 2.30 4.11 2.87	6.47 4.81 6.01 5.12
RR-96- 35 RR-96- 37 RR-96- 38 RR-96- 39	Ř 226 Ř 23 Ř 21 Ř 37			0.3 6 0.2 0.4 2.2	73 773	881 127 130 154	7711 4 197 290 310 1	< <	104 ွ <	385 285	6 7 6 3	• •	< 4 <	7.1 0_1 3.5 2.1	12 8	24 4 4	× 13 38	* * * *	71 50 44 65	97 10 16 1	'211 648 864	4 7 17	50 39	7 <u>1</u> 8 1 8 2	v v v	0.45 0.40 0.41 0.38	0.99 1.89 2.86	8.07 4.39 2.87
lio Limit lax Reported* lethod *No Test in International	FAAA s=Insuffic	ient Sam	0.1 1000.09 FA/Geo ple S⊭S 036 Colum	9.9 200 ICP	በ ላላ	a Course	1		- 1	199 99 CP 1		99 99 CP I(999 CP	9.9 9 ICP I	CP 1(99 99 29 1		99 99	1 19999 ICP I X M	99 <u>9</u>	1 999 99 ICP I 0 Est1	2 199 99 10P 1 Imate	1)99-9; (CP-1(1 10 99 99 1 CPICP	.01		0.01 9.99	



CERTIFICATE OF ANALYSIS

iPL 5.10929

INTERNATIONAL PLASMA LABORATORY LTD

Client: First Point Capital Corporation

Client: Firs Project: None	Given	apita	1 Cor 42 Ro	poration ck	iPL: 9610929	: Oct 04 : Sep 24	Page 1 of 2 Section 2 of 2 [092919:14:53:69100496] Certified BC Assayer: David Chiu	" LATZ
Sample Name	Mg Z	к 7	Na X	Р Х		 `		
R-96- 03	R 0.22). 13 (0.02	0.03		 		
R-96- 06	Ř 0.21 (). 1 <u>8</u> (J. 01 (0.07				
R-96- 09	R 0.21) 25 (1.02	1 16				
8-96-14	R 0.29 (1.12 1	0.02	10				
RB⇔96 17	R 0.11							
RB 96 22	R 0.03 (). 26 (0.01 (0, 10				
IB-96- 27	R D.56 (0.17 0	1.04 (0.18				
B-96- 28	R 0.92 (
R-96- 1	Ř 0.48 (
R-96- 2	Ř 1.08 (
R-96- 3	R 0.09 (.26 C). 03. r	1 14				
2-96 4	Ř 1.40 C	1.09 r	02 0	1 03				
R~96∞ 5	Ř 0.06 (01 0	1 21				
₹-96- 7	Ř 0.06 C	24 0		115				
8-96- 8	Ŕ 0.03 C	27 0	.01 0	.11				
₹~96- 9	Ř 0.17 C	24.0	02.0	10				
-96- 10	Ř 0.66 C	26 0		17				
-96- 11	Ř 0.47 C	20 0		- 17				
-96- 12	К 0.47 G	- 27 0	02 0	- 15				
-96 - 13	Ŕ 3.32 0	12 0	02 0	.03				
-30 - 13	Ř 0.31 0	• I / U	.01 0	-09				
?-96- 15	Ŕ 0.09 0	.04 0	.02 0	.01				
R-96- 16	<u> </u>	.27 0	.02 0	. 17				
R-96- 18	ğ 0.87 0	.23 0	.02 0	.12				
2 -96 ~ 19	Ř 0.64 O	. 19 0	.02 0	.06				
-96- 20	Ŕ 0.23 O							
-96- 21	Ř 0.32 O	.36 0	.02 0	17				
-96- 22	Ř 0.25 0	.03 0	.01 0	11				
-96- 24			.01 0					
-96- 25	Ř 0.46 0							
-96- 27	Ř 1.55 O	03 0	02 0	.03				
-96- 29	R 0.33 0	.04 0	.02.0	.01				
-96- 30	Ř 0.87 0							
-96- 31	Ř 1.38 O	12 0	02 0	04				
-96~ 33	Ř 0.80 D	19 0	02 0	07				
-96- 34	Ř 1.00 0	12 0	.02 0	.05				
-96- 35	ĝ 0.23 0.	.27 0.	.02 0.	.15				
-96~ 37	₿ 0.59 O.	24 0	.03 0	.15				
-96 38	Ř 0.41 0.	19 0	02 0	16				
-96- 39	Ř 0.24 0	23 0.	02 0.	12				
n Limit	0.01 0.	01 0.	01 0	.01		 		
Reported*	9.99.9							
hod			ICP J					

CERTIFICATE OF ANALYSIS

iPL 5010929

INTERNATIONAL PLASMALABORATORY LTO Client: First Point Capital Corporation Project: None Given 42 Rock					iPL:	: 96109	29				1996 1996	(09;	2919:	14:5	Pi 3: 691(age 0049	2 of 6]				ion BC A		Pho Fax F 2	ne (60 (60)-7878)-7898	Jak.	-
Sample Name	Au ppb	Au g/mt	∧g g/mt	Ag ppm	Си ррл	РЬ ррм	7п ррт	 	Hg ppm	Mo ppri		Cd ppm			Ba ppm p	W ppm	Cr ppm	v	Mn	l.a	Sr	Zr	Sc	Ti Z	A1	Ca 7	Fe 7	
RR-96- 40 RR-96- 40A RR-96- 41	R 5670 R 106 R 52	5.50 	308.4 	0.2m) 1.5 8.2	571	4487 245 1407	3, 9% 481 2487	 - 15	еление К Спонение К — К	8 3 6	< 613 < 2		n 2 9	4 5 5	≺ 28 11	< < <	54 45	9	1.9 % 3350 321	2 10 3	34 26	6 12	1 1	<	0.37	2.68 1.45 0.46	11 7 3.01 2.85	-

Min Limit 2 1 5 5 3 1 10 2 0.1 1 1 2 5 1 2 1 2 1 1 1 0.01 0.01 0.01 0.01 0.01 0.1 0.1 1 2 Max Reported* 9999 1000.00 Method --=No Test ins=Insufficient Sample S=Soil R=Rock C=Core L=Silt P=Pulp U=Undefined m=Estimate/1000 X=Estimate X Max=No Estimate ICP ICP International Plasma Lab Ltd. 2036 Columbia St. Vancouver BC VSV 3E1 Ph-604/879-7878 Fav-604/879-7898

2036 Column Treet

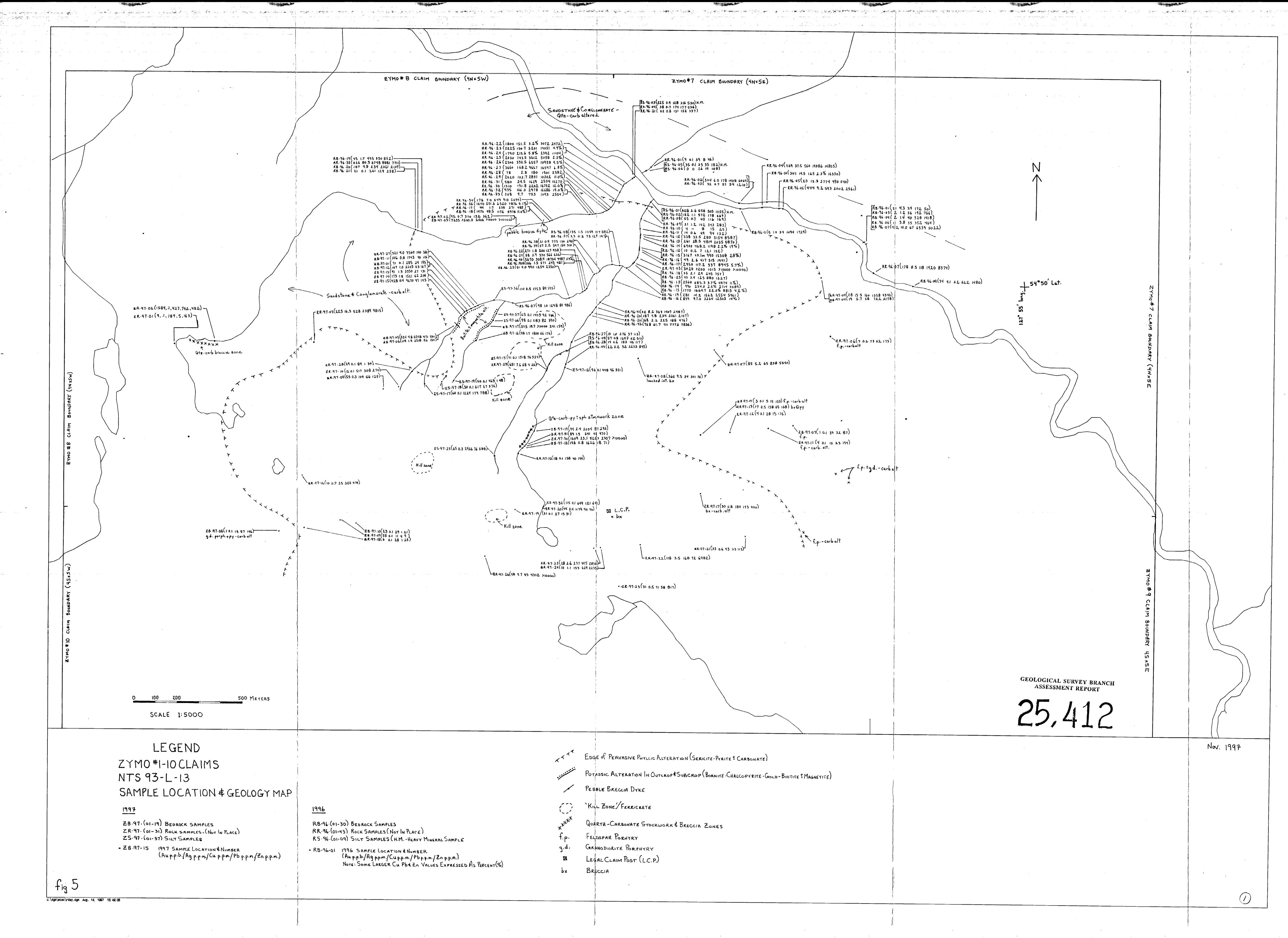
Vancouver,

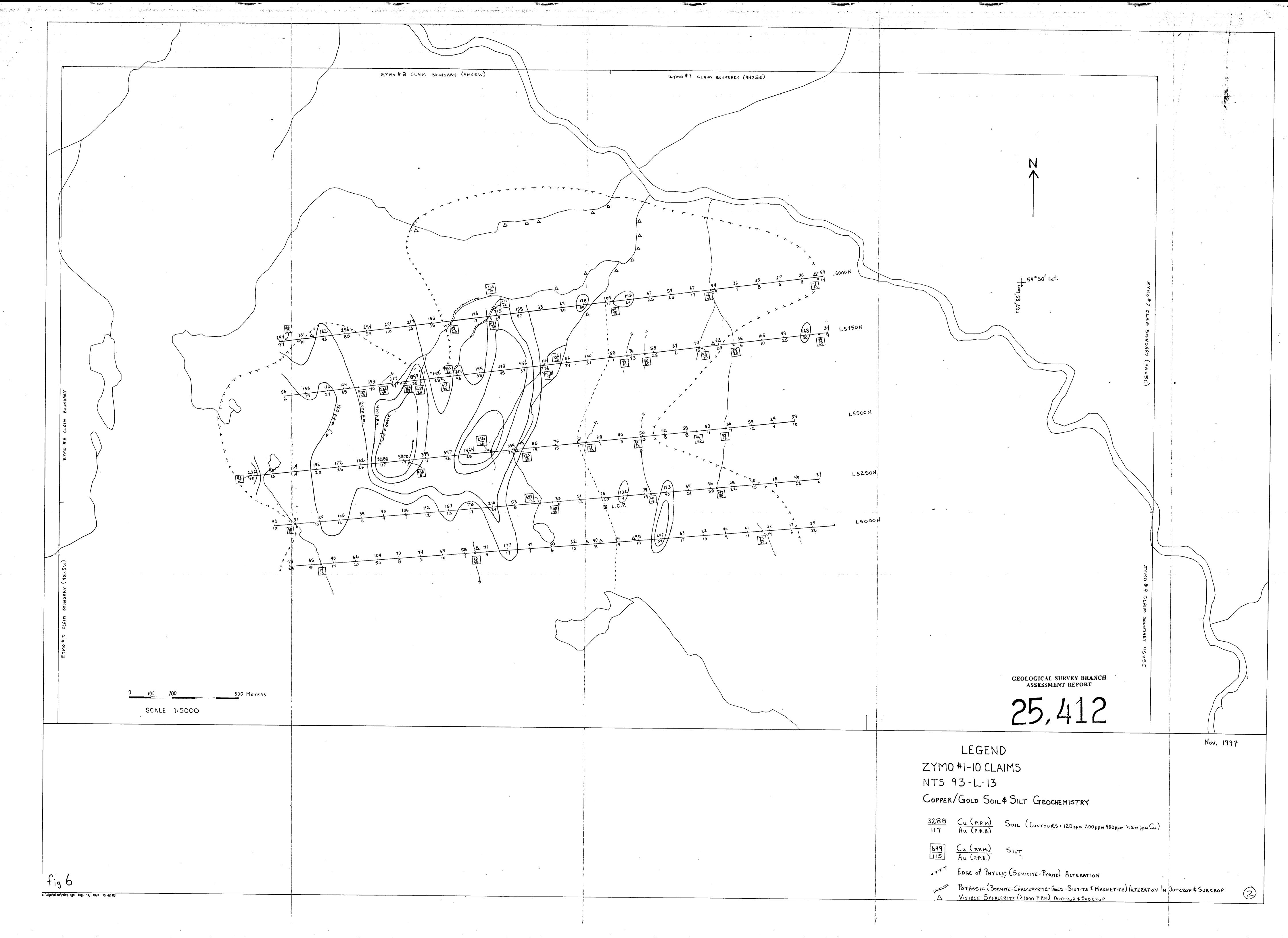
Canada V5Y 3ET

CERTIFICATE OF ANALYSTS

INTERNATIONAL	PLASM	A LABORATA		,			CI	iPL 5.10		2036 Coliants - Orrect Vancouver, E Canada V5Y 3t i Phone (604) 930 - 2020
Client: Firs Project: None	st P : Gi	oint Cr ven	apil	- 42 R	npoi ock	ation	iPt.: 9610929	Out: Oct 04, 1996 In: Sep 24, 1996	Page 2 oF 2 [092919:14:53:69100496]	
Sample Name		Mg X	k 2	(Na Z		Р Х				Certified BC Assayer: David Chiu
RR-96- 40 RR-96- 40A RR-96- 41	Ŕ	0.45 0 0.45 0 0.03 0).24	0.02	0.1	3				

APPENDIX B


OUTCROP ROCK SAMPLES


RB-96-01	semi massive to massive py, from 10 meter wide silicified fault breccia zone in carb. alt.
	Skeena Fm. s.s. and congl., strike at 080 dip 84E
RB-96-02	semi massive to massive py, from zone above
RB-96-03	strong sil, dissem py, trace gn from zone above
RB-96-04	strong silicification, py, minor gn from zone above
RB-96-05	silicification, semi massive py from zone above
RB-96-06	1 meter chip sample, sil. with py stringers from zone above
RB-96-07	Sil, dissem gn, py from zone above
RB-96-08	Sil, dissem gn, py from zone above
RB-96-09	qtz carb zone, 1 meter wide, covered on both sides, disem py, trace gn, sil, alt dacite?
RB-96-10	qtz carb vienlet, 1-10cm wide,, sph, gn, py, strike 070 dip 90
RB-96-11	dacite dyke, 2-3% dissem py, trace gn, 1 meter exposed
RB-96-12	1-4 cm qtz vienlet, py in feldspar porphyry? strike 056 dip56N
RB-96-13	shear in dacite, carb alt, dissem py, semi massive gn, py, cpy, 20 cm wide
RB-96-14	carb alt dacite, wallrock to RB-96-13
RB-96-15	Massive cpy, gn, from shear/vien at RB-96-13
RB-96-16	Semi massive, gn, sph, py vienlet, 2-10cm wide, strike 078 dip 75N
RB-96-17	Carb. alt. dacite, dissem. and fracture controlled py, some shearing, closed spaced
	fractures at 10 - 20 per meter
RB-96-18	Semi massive gn, sph, py, sulphosalts?, 120-20cm thick, 10-20 cm of dissem
	mineralization in breccia above, strike 080 dip 68N
RB-96-19	Fault gangue in argillic alt. zone, grey clay, py, minor gn, sph
RB-96-20	Fault gangue, argillic alt., next to argillic alt breccia zone
RB-96-21	Argillic alt breccia zone, py, ~5 meters wide, breccia zone in contact with weakly altered
	sandstones and conglomerates
RB-96-22	Dacite, dissem and stringer py
RB-96-23	Dacite, dissem py
RB-96-24	Dacite, dissem py, weak purple tinge to alteration
RB-96-25	Silicified dacite, stringer and disem py
RB-96-26	Sil stockwork zone in dacite, py stringers
RB-96-27	Well jointed carb alt dacite, 5% dissem py, joints with py every 2-10 cm
RB-96-28	Carb alt dacite, 3-5% dissem py
RB-96-29	Carb alt dacite, 2-3% dissem py
RB-96-30	Carb alt dacite, stringer and dissem py, gn: fine gn on fractures with py

FLOAT ROCK SAMPLES

- RR-96-01 Carb alt congl, py, gn
- RR-96-02 Qtz-carb, py, minor gn, cpy
- RR-96-03 Dacite, dissem py
- RR-96-04 Qtz-carb vien, 3-5% gn, py
- RR-96-05 Semi massive py cobble
- RR-96-06 Qtz-carb breccia,,py, bn, gn
- RR-96-07 Sil dacite, py, trace gn
- RR-96-08 Dacite, dissem py
- RR-96-09 Qtz-py vienlets in biotite granodiorite? 2-3%dissem py
- RR-96-10 Dacite, dissem py
- RR-96-11 Carb alt dacite, dissem and stringer py
- RR-96-12 Carb alt breccia, black weathering, dissem py, gn
- RR-96-13 Qtz, gn, sph, py vienlets in carb alt dacite
- RR-96-14 Massive gn, some sph, py
- RR-96-15 Massive gn, some py, sph, dacite wallrock

- RR-96-16 Dacite, carb alt, dissem py, minor disem gn
- RR-96-17 Vienlets and stringers of gn, py in dacite
- RR-96-18 Carb alt dacite with py stringers
- RR-96-19 Dacite breccia with gn, py
- RR-96-20 Dacite, carb alt, dissem py, trace gn
- RR-96-21 Dacite, carb alt, dissem py, minor malachite
- RR-96-22 Qtz-carb vienlet, 20% py, trace gn
- RR-96-23 Qtz-carb vienlet, 20% py, 2% sph, 2%gn
- RR-96-24 Py, gn, sph, adularia? vien material
- RR-96-25 Py, gn, qtz, adularia? cobble
- RR-96-26 Gn, sph, py, sulphosalts? in qtz, adularia?
- RR-96-27 Sulphooosalts?, gn, sph, py, qtz, adularia?
- RR-96-28 Py, sulphosalts?, gn, sph, qtz, adularia? vien float
- RR-96-29 Gn, sph, py, sulphosalts? qtz, adularia? cobble
- RR-96-30 Gn, sph, py, suphosalts? qtz, adularia?
- RR-96-31 Silicified breccia, angular to well rounded clasts, dissem py, gn
- RR-96-32 Dacite cobble with gn, sph, py vienlet
- RR-96-33 Breccia boulder, angular and rounded clasts, sil, dissem gn, py
- RR-96-34 Carb alt breccia, angular clasts, sil, py, trace gn
- RR-96-35 Dacite breccia, py, gn vienlets
- RR-96-36 15 cm thick slab, massive gn, sph, py
- RR-96-37 Dacite, dissem py, fracture py with trace cpy
- RR-96-38 Dacite, dissem py, minor malachite
- RR-96-39 Pyritic dacite, minor cpy
- RR-96-40 Massive py vienlet in dacite, some cpy?
- RR-96-40A 3-5%py in dacite
- RR-96-41 Dacite, sil, stringer py, minor gn, sph
- RR-96-42 Qtz-carb alt dacite breccia, py, gn on fractures
- RR-96-43 Carb alt dacite with dissem py, gn

