Gold Commissioners Chine. VANCOCHEMICAL AND GEOLOGICAL ASSESSMENT

REPORT

ON THE FRI 1-4, 6,7,8, FL 3,4 9-14, RO 15-18 MINERAL CLAIMS OF THE FRIENDLY LAKE PROJECT IN THE KAMLOOPS MINING DIVISION

NTS 92 P/9W

LATITUDE 51°35'N LONGITUDE 120° 28'W

FOR OPERATOR:

MIDLAND EXPLORATION CORPORATION

AND OWNER:

ELECTRUM RESOURCE CORPORATION 912 - 510 WEST HASTINGS STREET, VANCOUVER, B.C. V6B 1L8

By

GERALD D. DELANE, P.Eng.

- DECEMBER 1997-

ASSESSMENT REPORT

TABLE OF CONTENTS

PAGE:

I. SU	MMAR	Y	4
II.	INTR	ODUCTION:	5
	A .	LOCATION, ACCESS AND TOPOGRAPHY	6
	B.	CLAIMS & PROPERTY STATUS	6
	C.	PROPERTY HISTORY	6
	D.	1997 WORK PROGRAM	7
Ш.	GEOI	LOGY	8
	A.	REGIONAL GEOLOGY	8
	B.	LOCAL AND PROPERTY GEOLOGY	9
	C.	LITHOLOGIC UNITS	9
	D.	STRUCTURAL GEOLOGY	9
	E.	MINERALIZATION AND ALTERATION	10
IV.	GEOC	CHEMISTRY	12
	A.	SOIL GEOCHEMICAL SURVEY	12
	B .	STREAM SEDIMENT GEOCHEMICAL SURVEY	13
	C	ROCK SAMPLING	13

PAGE:

V.		CS - MAGNETICS, HLEM, POLARIZATION SURVEYS	14
VI.	CONCLUSIO	ONS	15
	RECOMME	NDATIONS	15
	REFERENC	ES	16
	STATEMEN	T OF QUALIFICATIONS	17
		APPENDICES:	
APPE	NDIX 1:	STATEMENT OF EXPENDITURES	18
APPE	NDIX 2:	ROCK AND SOIL ANALYTICAL PROCEDURES AND DETECTION LIMITS	21
APPE	NDIX 3:	ROCK SAMPLE DESCRIPTIONS	22
APPE	NDIX 4:	ANALYTICAL RESULTS	24

LIST OF FIGURES

		Follows page:
FIGURE 1	LOCATION MAP	5
FIGURE 2	CLAIM MAP	6
FIGURE 3a	PROPERTY MAP - RO, FL, FRI CLAIMS	7
FIGURE 3b	ORIENTATION MAP SHOWING GRIDS 1,2,3	in pocket
FIGURE 4	REGIONAL GEOLOGY	8
FIGURE 5	PROPERTY GEOLOGY - RO, FL, FRI CLAIMS	in pocket
FIGURE 6	STREAM SEDIMENT SURVEY ON CAMP CREEK	in pocket
FIGURE 7	ROCK SAMPLE LOCATION MAP WITH RESULTS	in pocket
FIGURE 8	VERTICAL SECTION OF GRID 2 TRENCH SHOWING GEOLOGY AND SAMPLING RESULTS	11
FIGURE 9	PART OF AEROMAGNETIC MAP 5229 G	14
FIGURE 10a	SOIL GEOCHEMISTRY RESULTS - GOLD	13
FIGURE 10b	SOIL GEOCHEMISTRY RESULTS - SILVER	13
FIGURE 10c	SOIL GEOCHEMISTRY RESULTS - COPPER	13
FIGURE 10d	SOIL GEOCHEMISTRY RESULTS - MOLYBDENUM	13
FIGURE 10e	SOIL GEOCHEMISTRY RESULTS - LEAD	13
FIGURE 10f	SOIL GEOCHEMISTRY RESULTS - ZINC	13
FIGURE 10o	SOIL GEOCHEMISTRY RESULTS - ARSENIC	13

I. SUMMARY

The Friendly Lake property is located about 27 kilometres northwest of the village of Little Fort, B.C. which in turn lies approximately 90 kilometres due north of the city of Kamloops. Access to the property is by paved Highway 24 westerly from Little Fort to the Wavey Lake turn-off followed by 20 km of good logging road to the work area of the property.

The property currently consists of 28 claims totalling 246 units and covers an area of approximately 5860 hectares. Twenty-four of the claims are owned by Electrum Resource Corporation and an additional 4 claims are held by Electrum by option from Fleck Resources Ltd.

The property is located within the Quesnel Trough, a 2000 kilometer long, northwesterly-trending belt of Mesozoic volcanic and sedimentary rocks that lie along the western margin of the Omineca Crystalline Belt. These Mesozoic rocks include Upper Triassic to Lower Jurassic Nicola Group volcanic and sedimentary rocks that are generally intruded by comagnatic alkaline dykes and stocks of monzonite, syenite and diorite. Within the trough, several of these intrusions are the sites of significant alkali-porphyry coppergold mineralization, such as the Afton, Copper Mountain, Kemess, Mount Polley and Mount Milligan deposits.

The Friendly Lake property area is underlain by Nicola alkaline volcanic and sedimentary rocks which have been intruded by comagnatic diorite to syenite stocks. From the mid-1980's up to recent years, the general area has undergone sporadic amounts of exploration which has lead to the discovery of evidence of copper, molybdenum, gold, silver, lead, zinc mineralization in the vicinity.

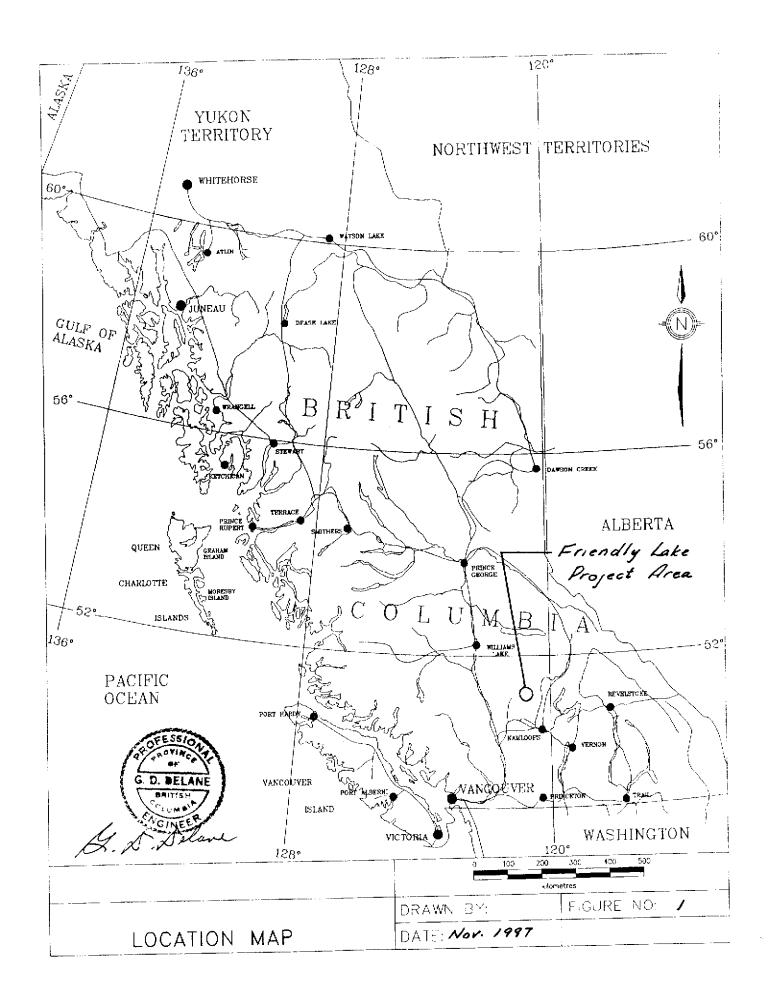
During 1997, Midland Exploration Corporation carried out geophysical surveys (induced polarization, electromagnetic, magnetic), soil, rock and stream sediment surveys concurrent with reconnaissance geologic mapping. This exploration work was carried out primarily on overburden-covered areas on parts of the RO, FL and FRI claims which were considered to have potential for copper and structurally controlled gold mineralization in proximity to the margins of syenitic intrusions. Studies of aerophotos and aeromagnetic maps of the general area by previous workers have identified intense block faulting on the property as suggested by the linear patterns (Figure 9). Some of the photo-linears are suspected to be indicators of major fracture systems. In addition, these areas of interest appear to lie on the northwesterly regional trend towards the Bogg property where previous exploration work by Placer Dome Inc. in 1991 had identified large alteration zones containing scattered gold, copper, lead and silver mineralization or anomalies believed to be associated with syenitic to monzonitic intrusive bodies.

I. SUMMARY (Cont'd)

The results of the 1997 geophysical work by Midland Explorations Corp. on Grid 1 (also called the West Grid) and Grid 2 (also called the East Grid) identified magnetic anomalies and areas of high chargeability which were considered significant because such features could be interpreted to suggest the presence of possible covered intrusive contacts and/or as indicators of a possible increase in the concentration of sulfides in the underlying rocks.

Midland's geochemical work confirmed the presence of higher copper and silver values indicated by previous workers and also identified a zone of coincident copper, gold and arsenic values which appear to trend northeasterly across the Grid 2 area.

Soil sampling was also completed over a small grid (called Grid 3) which covered an area on the flanks of an observable monzonite-syenite plug northwesterly from Spectacle Lakes.


Grid 1 was also soil sampled to cover an area where suspected east-northeast structures may be present lying beneath swamps entering Spectacle Lakes. In this vicinity significant amounts of oxidized and fresh sulfides were identified in outcrops of leucogranite rocks which returned elevated levels of gold and copper values from samples.

II. INTRODUCTION

During the period from August 25 to September 13, and from October 21 to 24, 1997, Midland Exploration Corporation carried out an exploration program on some of the mineral claims of the Friendly Lake Project which are owned by Electrum Resource Corporation.

The exploration work consisted of geophysics including magnetics, horizontal loop electromagnetics (Max-Min HLEM) and time domain induced polarization surveys concurrent with geochemical surveys and reconnaissance geological mapping. In addition, hand trenching and rock sampling was carried out on a mineralized showing.

The objective of this work was to identify areas in the vicinity of alkalic intrusions and also near the intersections of linears and faults which have been inferred from studies of aerophotos and aeromagnetic maps to determine if these areas could host indications of structurally controlled gold mineralization.

A) Location, Access and Topography

The claims are located about 27 kilometers northwest of Little Fort, B.C. on NTS map sheet 92 P-9 W, at latitude 51°35' N and longitude 120°27'W. The property is accessible by paved Highway 24 westerly from Little Fort to the Wavey Lake Forest Service Road turn-off, a distance of about 38 kilometers. About 20 kilometers of good logging road leads to the work area of the property.

Elevations range from 1552 metres on the northern part of the work area to about 1370 metres in the swampy low lying portions near the central part. A considerable portion of the property has undergone clearcut logging and the remaining unharvested timbered lands consist of mature spruce and fir.

B) Property Status

The Friendly Lake property is situated in the Kamloops Mining Division on NTS map sheet 92 P-9 W and consists of 28 mineral claims totalling 246 units. Twenty-four of the claims are owned by Electrum Resources Corporation and an additional 4 claims are hold by Electrum by an option from Fleck Resources Ltd. The Friendly Lake property is currently under option to Midland Exploration Corporation.

The claims are described and listed in Table 1.

C) <u>History</u>

During the summer of 1965, Anaconda American Brass Ltd. carried out regional reconnaissance geochemical surveys in selected areas between 70 Mile House and Little Fort and from Bonaparte Lake north to Canim Lake.

Anaconda commenced staking a large block of ground north of Friendly Lake based on the results of their stream sediment geochemical surveys. Their follow-up prospecting led to the discovery of fracture controlled copper-molybdenum porphyry style mineralization on the eastern part of the FRI claims and also silver-lead mineralization in stockwork / breccia rocks north of Friendly Lake. Anaconda carried out geophysical work followed by trenching and drilling in the following years 1966-1968.

The Saskatchewan Mining Development Corporation (SMDC) optioned the Anaconda claims in 1982 and carried out further geological, geochemical and geophysical work on them.

In 1983, Lornex Mining Corporation optioned the claims and drilled 17 short percussion holes.

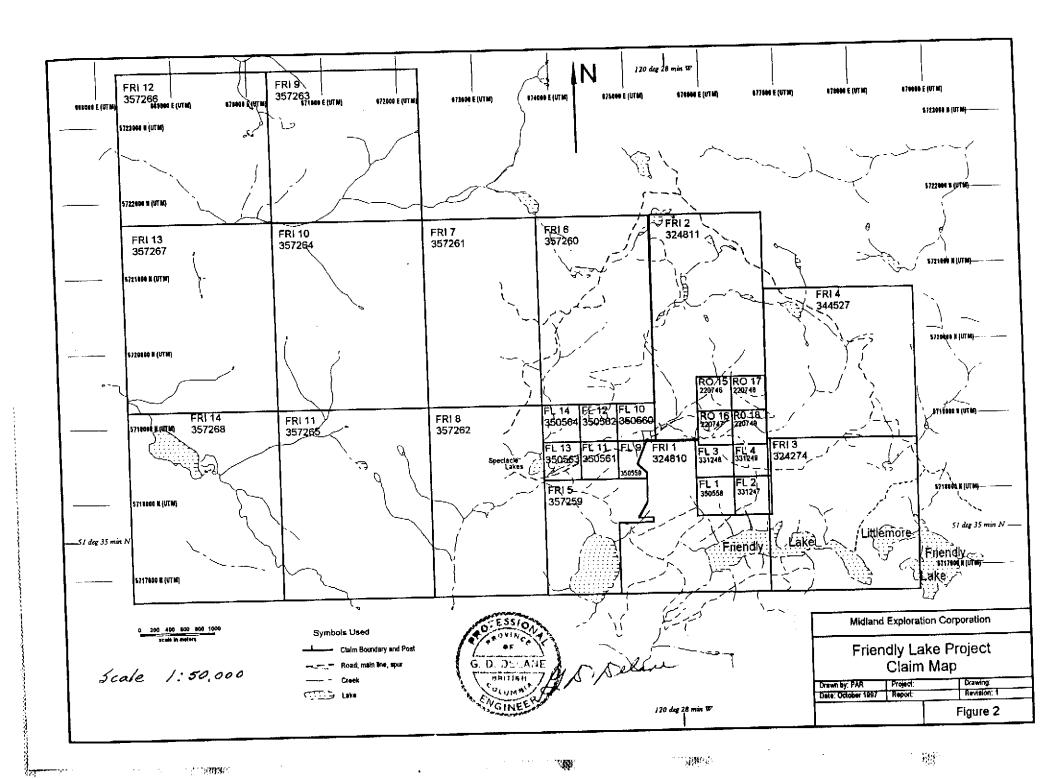


Table 1: Mineral Titles

Record	Name of	Owner of Record	Expiry Date			Size in
Number	Claim		Year	Month	Day	Units
350558	FL1	Electrum Resources* Corp.	2000	8	31	1
331247	FL2	Electrum Resources Corp.	2001	9	21	1
331248	FL 3	Electrum Resources Corp.	2001	9	21	1
331249	FL4	Electrum Resources Corp.	2001	9	21	1
350559	FL9	Electrum Resources Corp.	2000	9	1	1
350560	FL 10	Electrum Resources Corp.	2000	9	1	1
350561	FL 11	Electrum Resources Corp.	2000	9	1	1
350562	FL 12	Electrum Resources Corp.	2000	9	1	1
350563	FL 13	Electrum Resources Corp.	2000	9.	1	1
350564	FL 14	Electrum Resources Corp.	2000	9	1	1
324810	FRI 1	Electrum Resources Corp.	1999	4	5	16
324811	FRI 2	Electrum Resources Corp.	1999	4	5	18
324274	FRI 3	Electrum Resources Corp.	1998	3	18	16
344527	FRI 4	Electrum Resources Corp.	1998	3	19	16
357259	FRI 5	Electrum Resources Corp.	1998	6	19	9
357260	FRI 6	Electrum Resources Corp.	1998	6	20	15
357261	FRI 7	Electrum Resources Corp.	1998	6	21	15
357262	FRI 8	Electrum Resources Corp.	1998	6	19	15
357263	FRI 9	Electrum Resources Corp.	1998	6	23	16
357264	FRI 10	Electrum Resources Corp.	1998	6	23	20
357265	FRI 11	Electrum Resources Corp.	1998	6	21	20
357266	FRI 12	Electrum Resources Corp.	1998	6	24	16
357267	FRI 13	Electrum Resources Corp.	1998	6	23	20
357268	FRI 14	Electrum Resources Corp.	1998	6	21	20
220746	RO #15	Fleck Resources Ltd.	2000	8	16	1
220747	RO #16	Fleck Resources Ltd.	2000	8	16	1
220748	RO #17	Fleck Resources Ltd.	2000	8	16	1
220749 RO #18		Fleck Resources Ltd.	2000	8	16	1
Total Claims:		28		Total (Units:	246

Notes: *the name on record with the Mineral Titles Branch is Electrum Resources Corp. According to Mr. Barakso the correct name is Electrum Resource Corp.

information in this table was obtained via electronic download from B.C. Mineral

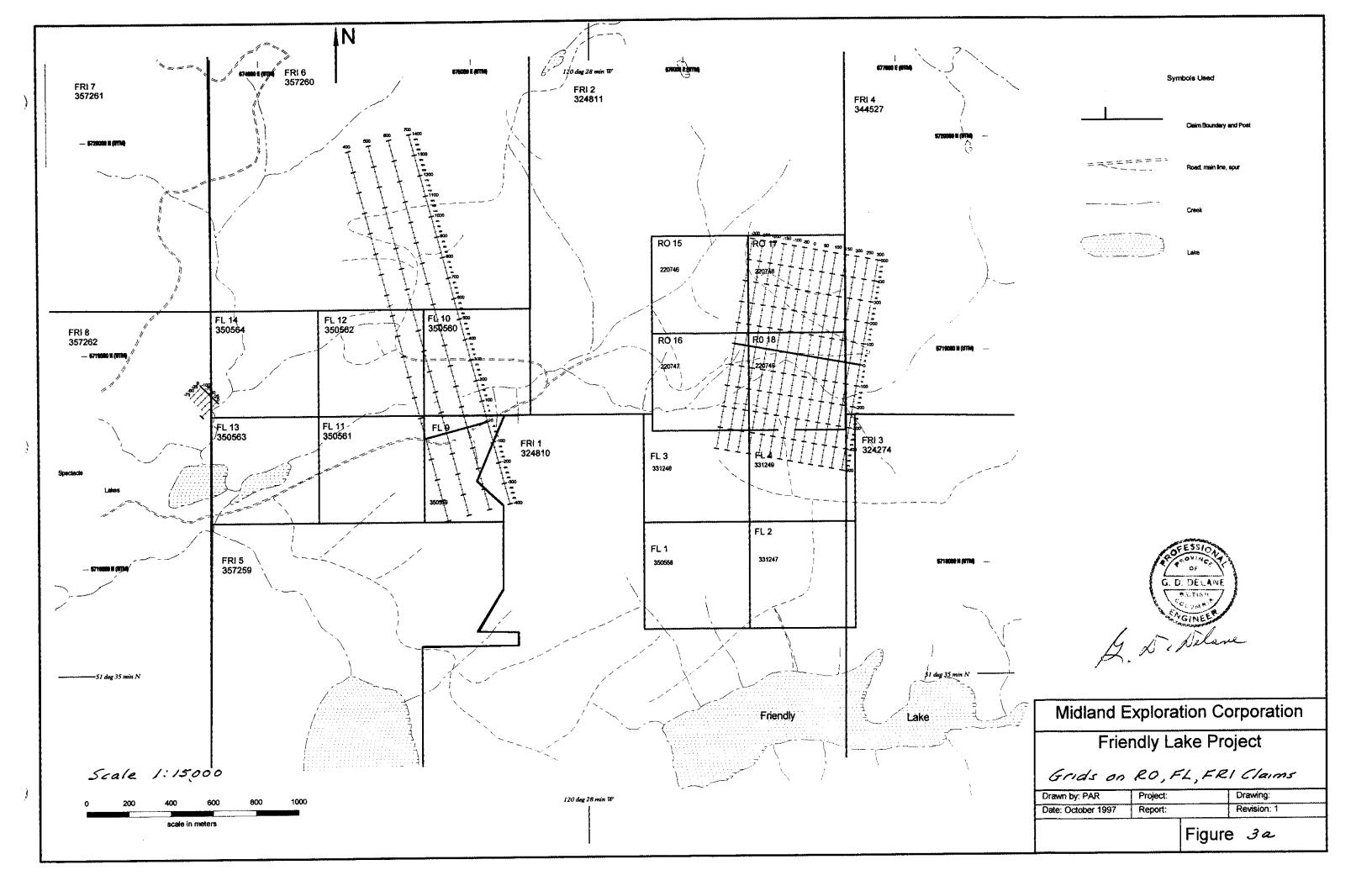
Record	Name of	Owner of Record	Expiry Date		Size in	
Number	Claim		Year	Month	Day	Units

Titles Branch, World Wide Web site, 30 October 1997. A disclaimer attached to the data notes that it may be as much as 4 weeks out of date at the time of downloading.

claims appear on mineral title maps 092 P 09W and 092 P 10E

all claims are in the Kamloops Mining Division

one claim unit is 25 hectares. The nominal size of the property is therefore 6,150 hectares. The size as measured on a claim map is 5,860 hectares, less than the nominal size due to claim boundary overlaps. This measurement is only approximate. A legal survey would be required to accurately determine the property size.


Electrum Resource Corportion staked the FRI claims in 1994 and carried out a rock and stream sediment survey (Zastavnikovich, 1995 report). In 1996 Electrum conducted VLF-EM geophysical surveys, rock geochemistry, photogeology and geological reconnaissance work.

D) 1997 Work Program

During the period from August 25 to September 13, and from October 21-24, Midland Exploration Corp. expanded and extended the pre-existing Grid 1 (or West) and Grid 2 (or East) lines and carried out geophysical surveys Max-Min, magnetometer, induced polarization, trenching, geochemical sampling, geologic mapping (reconnaissance), and rock sampling. The objective of this exploration work program was to identify areas deemed to have some potential for the discovery of porphyry-style copper-gold mineralization in the vicinity of the intersections of the NE and NW-trending structures and also near the margins of syenitic intrusions.

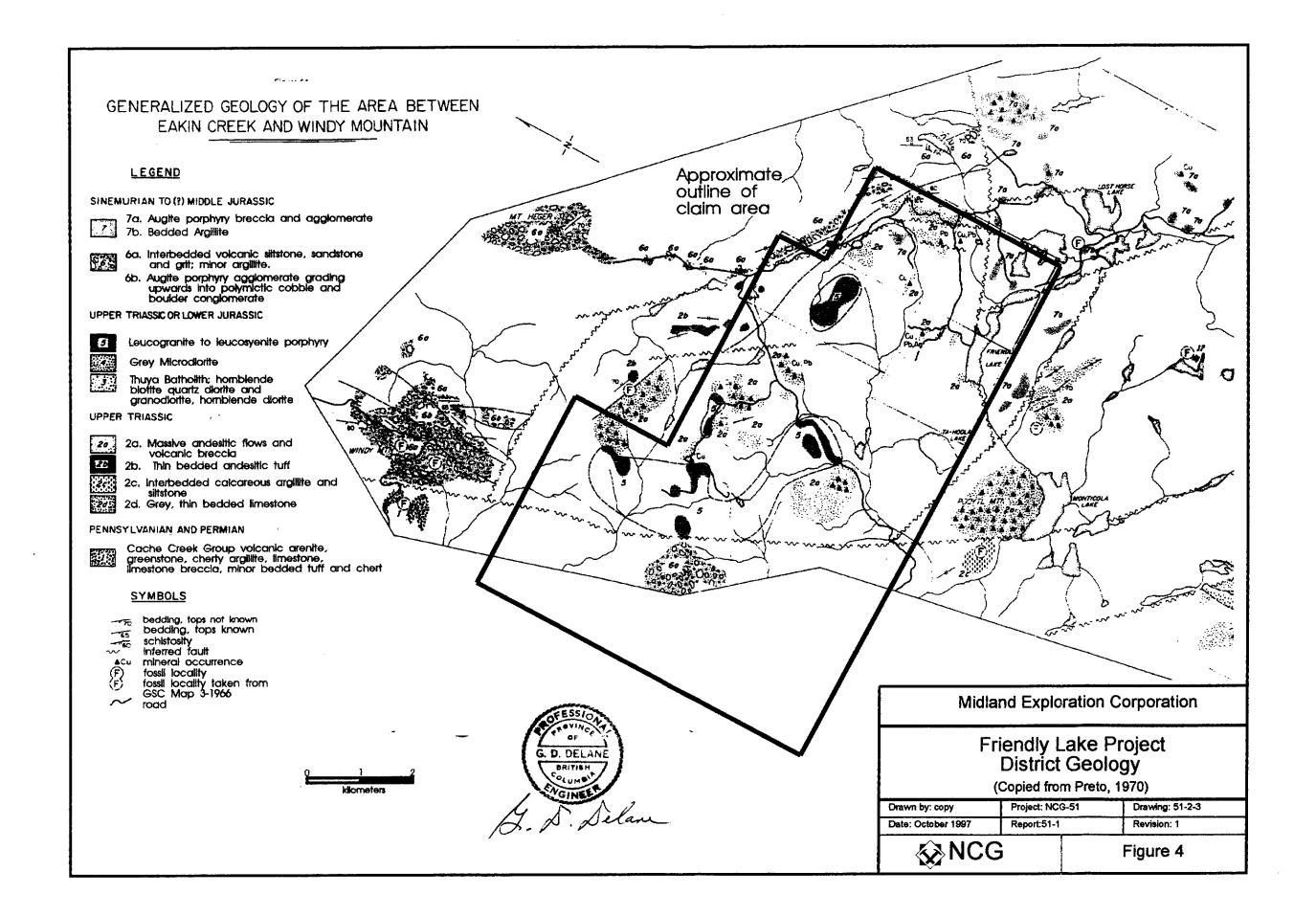
A small soil grid, called Grid 3, was established just north of Spectacle Lakes in the vicinity of a swampy drainage where Electrum had earlier obtained a elevated copper value in a stream sediment sample.

The claims covered by the 1997 work program include RO 15-18, FL 3,4, 9-14, and FRI 1-4, 6,7,8.

III. GEOLOGY

The following geological descriptions are extracted and condensed from a report prepared for Electrum Resources Corporation by Peter A. Ronning, P.Eng., dated February 1997.

A) Regional Geology


The Friendly Lake property is situated within the Quesnel Trough, a 2,000 kilometer long northwesterly-trending belt consisting of upper Triassic to lower Jurassic volcanic rocks, derived sedimentary rocks and intrusives. The belt is characterized by a volcanic core of Triassic subaqueous andesite pyroxene porphyritic flows, tuffs and breccias. Interbedded with the volcanics are calcareous argillite, siltstone, siliceous cherty sediments and limestone. On the eastern and western margins of the volcanic core is an overlying and flanking sequence of lower Jurassic pyroxene porphyritic volcaniclastic breccias with proximal to distal epiclastic sediments consisting of conglomerate, greywacke and argillite. To the extreme east are fine clastic sediments, consisting of siltstone, shale and argillite, which appear to form the base of the Triassic sequence.

Regional mapping indicates the property area is underlain by Nicola Group alkaline volcanic and sedimentary rocks intruded by numerous comagmatic diorite to syenite stocks (Preto, 1910, Campbell and Tipper, 1971).

Hydrothermal events believed to be related to the plutons introduced volatiles and metal into the volcanics and extensively altered and mineralized large volumes of shattered volcanic rocks. The Copper Mountain, Afton, Mount Polley and several other porphyry copper-gold deposits are found in a similar geologic setting within the Nicola Group or, in northern British Columbia, the related Takla Group.

Auriferous carbonated alteration zones are known to exist on the Friendly lake and nearby properties.

The Friendly Lake property lies within an area of intense block faulting, formed where the North Thompson Fault bifurcates into a multitude of northwesterly trending splays.

B) Property Geology

The Friendly Lake property is covered by extensive thicknesses of glacial overburden ranging from one to a few meters.

Outcrops of andesitic rocks are scarce and probably do not exceed 0.5% of the explored area. However, leucogranite or leucosyenite rocks were noted to be very abundant in particular northwest of Spectacle Lakes where the more resistant outcroppings occupy an area of higher topography. Swampy ground occupy areas immediately northeast and north of Spectacle Lakes.

C) Lithology

The Friendly Lake property is underlain by Nicola Group volcanic rocks (mainly horblende andesites) which have been intruded by syenite to granite plutons and by dykes described as leucogranite or leucosyenite porphyries. A few exposures of these rocks were found on Grid 1 along the main access road and parallel to the swampy stream entering Spectacle Lakes. Most of these heavily-oxidized and fractured rock exposures were observed to be well mineralized with sulfides, primarily pyrite. No lithologic contacts were observed at these locations.

D) Structural Geology

As noted by Rebagliati (1988) the property lies within an area of intense block faulting. On the FRI claims the block faulting manifests itself geomorphologically as surface depressions that form photo linears with two prominent trends and a third less prominent one. These trends are approximated as:

These depressions, forming photo-linears, are believed to be the surface expressions of major fracture systems. Their dips aren't known but are presumed to be steep, based on the lack of deflection of the linears with topographic elevation changes. Similarly the degree of displacement on any of the fracture systems is not known.

Since the fractures form topographic depressions filled with sediment they can't be directly observed in outcrop, so details of their character are unknown. The character of the surrounding rocks and the many minor fractures that are observable indicates that the fractures are probably brittle rather than ductile.

Along the northeastern edge of the Friendly Lake property, one of the 320° structures forms the demarcation between Triassic Nicola volcanics to the west and Jurassic epiclastic sediments to the east.

Recent interest on the Friendly Lake property has focused on a major swampy topographic depression on the west side of the property. From Spectacle Lakes it trends about 65° towards the centre of the property. Just west of the RO claims it crosses a 320° structure and then appears to weaken towards the northeast as it enters the syenite plug on the FRI 2 claim. For convenience this 65° structure is referred to as the Spectacle Lakes "a", or Sla Structure.

E) Alteration and Mineralization

Greenschist grade regional metamorphyism is widespread in the Nicola volcanics sequence and is indicated by weak to moderate chlorite alteration and up to 4% disseminated pyrite in the rocks. Localized moderate to intense chloritization is also often accompanied by the development of epidote, carbonate and potassium feldspar veining in the volcanics adjacent to the intrusions due to hydrothermal alteration.

Intense quartz-carbonate alteration accompanies the large northwest-southeast trending shear zone which is reported to extend at least from the Friendly Lake project area northwesterly through to the vicinity of the porphyry type copper mineralization occurring on the former Bogg claims of Placer Dome Inc. This alteration zone is reported to be up to 300 metres wide at surface and extends over 1.5 kilometers along strike.

Preto (1970) has described half a dozen types of mineral occurrences in the district. He has identified lead-silver mineralization in andesite on the present Friendly Lake property at a location about 900 meters north of Friendly Lake where it occurs as disseminated argentiferous galena, pyrite and minor chalcopyrite localized in a shear zone that is reported to strike about 120° with a 65° dip to the southwest.

them

The recent exploration work on the Grids 1 and 2 and the area between than has been primarily directed towards the search for gold and copper deposits in the vicinity of the two prominent depressions or linears that appear to trend at approximately 65° and 320° as observed on acrophotos, aeromagnetic and topographic maps. It is speculated that these features are representative of major fracture systems created by block faulting.

Because of the scarcity of outcrops no positive identification of gold mineralization was observed during the traverses. However, where andesitic outcrops were located they were often found to contain disseminations or fracture fillings or veinlets of pyrite and accompanied by limonite specks or fracture coatings. An oxidized pyritic occurrence exposed in the road bank near the base line of Grid 2 was hand-trenched and exposed sheared and mineralized andesite fairly continuously over a length of 12 metres (Figure 8).

The wall of the trench was chip or channel sampled vertically at 1 metre intervals over its exposed 12 metre length where it became completely obscured by overburden at both extremities of the trench.

During the sampling it was noted that limonite and pyrite as veinlets and as disseminations were fairly abundant in the carbonate altered and fractured volcanics and conspicuously these features became more intense and more abundant towards the east extremity of the trench where it appeared to disappear beneath the overburden and under the road. Traces of galena, sphalerite and chalcopyrite were also observed in the andesite towards the east end of the trench where the last four channel sampled lines returned anomalous values up to 627 ppb gold, 64.3 ppm silver, 5636 ppm lead and elevated values in arsenic.

At the base of the most easterly sample line, 12E, a boulder (float or outcrop?) of a siliceous, dense, pyritic leucogranite - looking rock was observed adjacent to the andesite. A grab sample obtained from this "boulder" returned values of 191 ppb gold and 10.1 ppm silver. The overlying depth of glacial till and the proximity to the access road prevented further excavation by hand methods to determine if the siliceous boulder was part of a leucogranite dyke in place or of transported origin.

Two ferricrete seepage occurrences were also observed in and adjacent to the bank of a nearby stream located downslope and about 100 metres south of the trench. The intensity and the abundance of the colouration of the ferricrete showings would tend to suggest to the observer that the pyritic source could be nearby and upslope, perhaps, in the vicinity of the trenched area. However, four channel samples of the ferricrete muck failed to return significant values in gold, silver or copper.

Exposures of pyritic blocky andesite and as float rubble were found in the uphill portion of the logging road at a location about 250 metres north of the trench. Samples from these limonite-stained occurrences returned significant values of 701 and 164 ppb gold.

Sample line azimuth @ III "II Feo staining G.D. DELA". "III Feo staining G.D. DELA". "III Feo staining G.D. DELA". "IIII GOLUMENT GOLU	# 11 15084 15085 15085 160264 160264 andesite in apper 0.4mm 10 14 15086 15086 160264 160264 andesite in apper 0.4mm 10 10 10 10 10 10 10 1
MIDLAND EXPLORATION CORP. Vertical Section Showing Geology of Trench on Grid 2 - Looking North DRAWN BY G.D. SCALE 1:100 NTS 92 P9W NOVEMBER 1997 FIGURE 8	Listy andeste with Felon surfaces; more intense Felo in lower partion. 3 8 15075 383 0.9 13 15076 6 17 15076 6 18 15 15076 6 18 15 15077 6 18 15 15077 6 18 15 15077 6 18 15 15078 21 194 15078 24 627 15079 24 627 15079 24 627 15079 26 15080 27 15080 28 15080 29 15080 20 15080 20 15080 20 15080 21 15080 22 15080 23 15080 24 627 15080 26 26 26 3 15080 27 15080 28 15080 29 15080 20 15080 20 15080 20 15080 21 15080 22 15080 23 15080 24 15081 25081 26 26 26 3 20 77 27 15081 28 15080 29 15081 20 15081 20 15081 20 20 20 20 20 20 20 20 20 20 20 20 20 2

IV GEOCHEMISTRY

A) Soil Geochemical Survey

Midland's crew collected 660 soil grid,17 stream sediment and 37 rock samples in the fall of this year from the RO, FRI and FL claims of the Friendly Lake Project. Most of the surface area of these claims are covered by glacial fill, swampy or boggy terrain with very few outcrops exposed.

A combination of sampling tools including mattocks, stainless steel garden trowels, and soil augers were employed in order to obtain sufficient penetration into the overburden to secure a sample. In boggy or swampy environments, a 1.5 m long soil auger with a 5 cm diameter blade was used to retrieve a sufficient amount of organic material or swamp muck to fill a sample bag.

In general, the 'B" soil horizon was the preferred sample material and was usually obtained at depths of around about 30 cm. Where the 'B' horizon was found to be absent, the 'A1' or 'A2' horizon would be substituted. The sample was placed in a gusseted brown water proof kraft envelope and each was labelled with the appropriate coordinates of the sampled station.

The two sampled grids 1 and 2 were emplaced to transect the Sla structure which trended east-northeast from Spectacle Lakes and which was believed to be part of a large fracture system created by block faulting that was represented by aerophoto linears and by aeromagnetic map signatures.

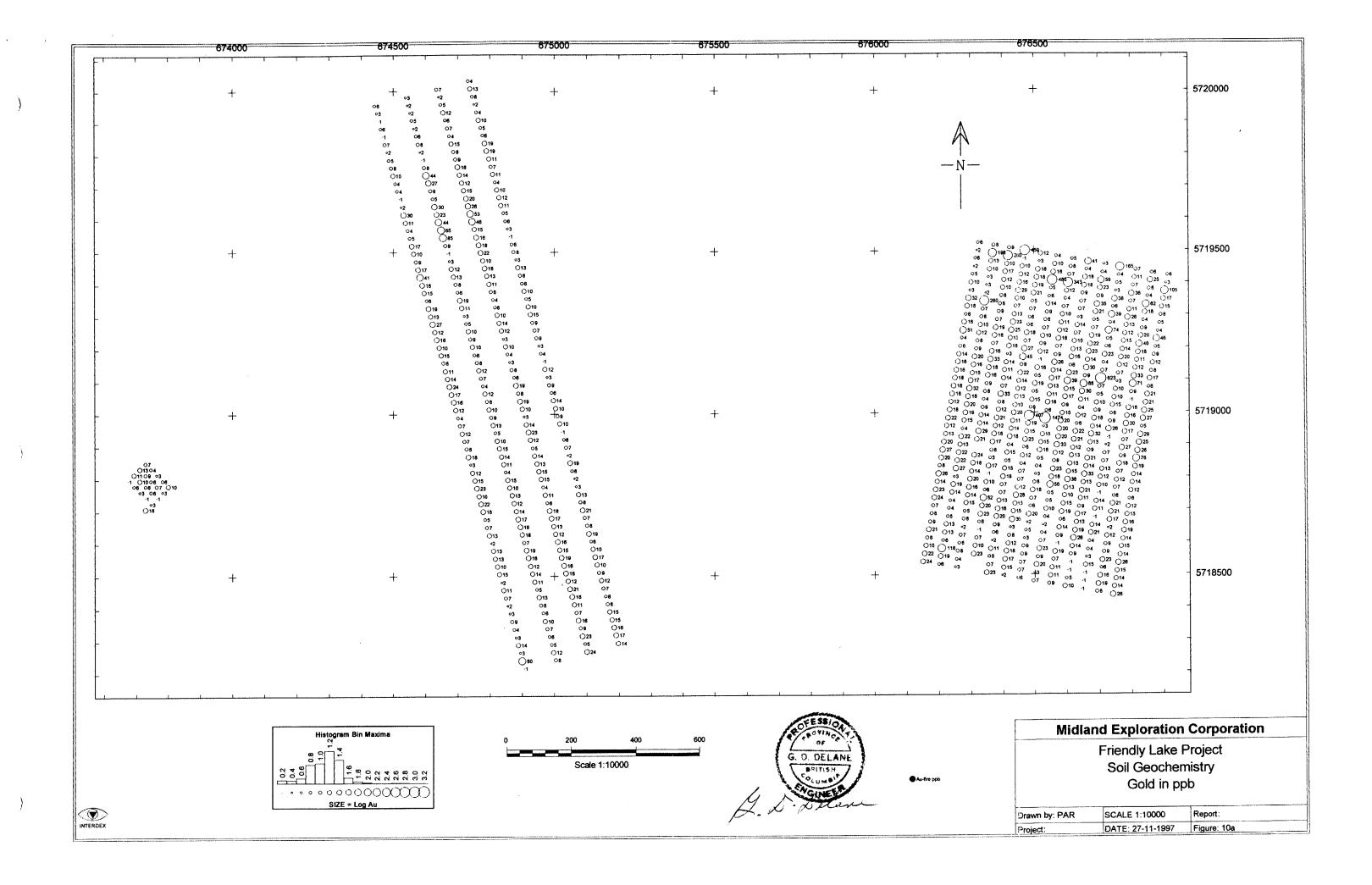
Grid 3 is a small 100 m x 100 m grid with 25 m stations which was located adjacent to a large swampy area situated about 200 m north of Spectacle Lakes.

It was in this vicinity where Electrum Resource had obtained an elevated copper value in a silt sample collected during their 1996 sampling traverses. Grid 3 was positioned also to be in proximity to the contact of the monzonite or syenite stock with the volcanics. Subsequent mapping on uphill traverses northwest of Grid 3 confirmed the presence of abundant outcroppings and cliffs of granitic rock and of rubble debris shed from the stock or plug. Quartz veining was observed in several of the granite outcrops in the vicinity of the grid but sulfides were found to be relatively scarce.

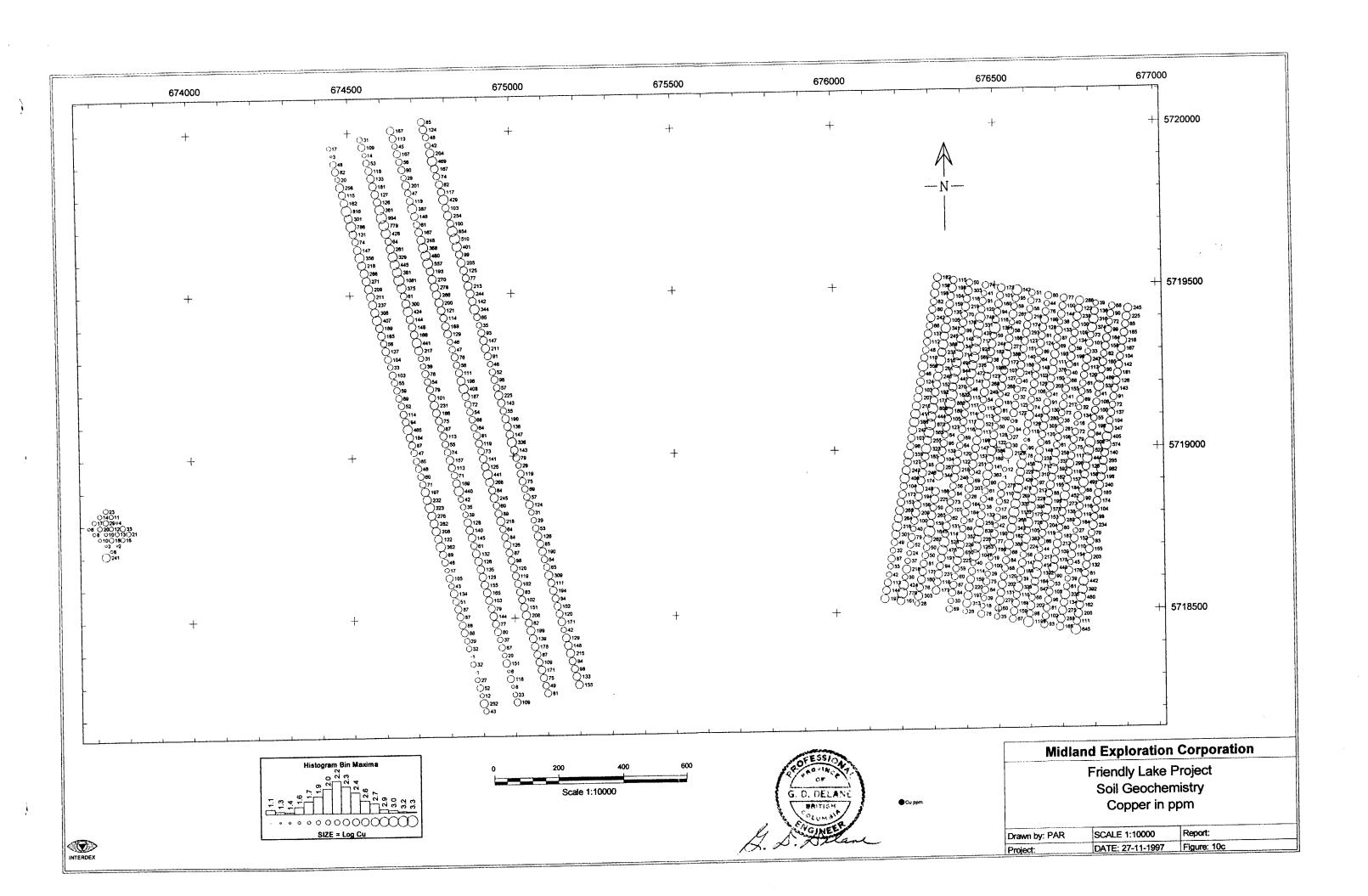
B) Stream Sediment Geochemical Survey

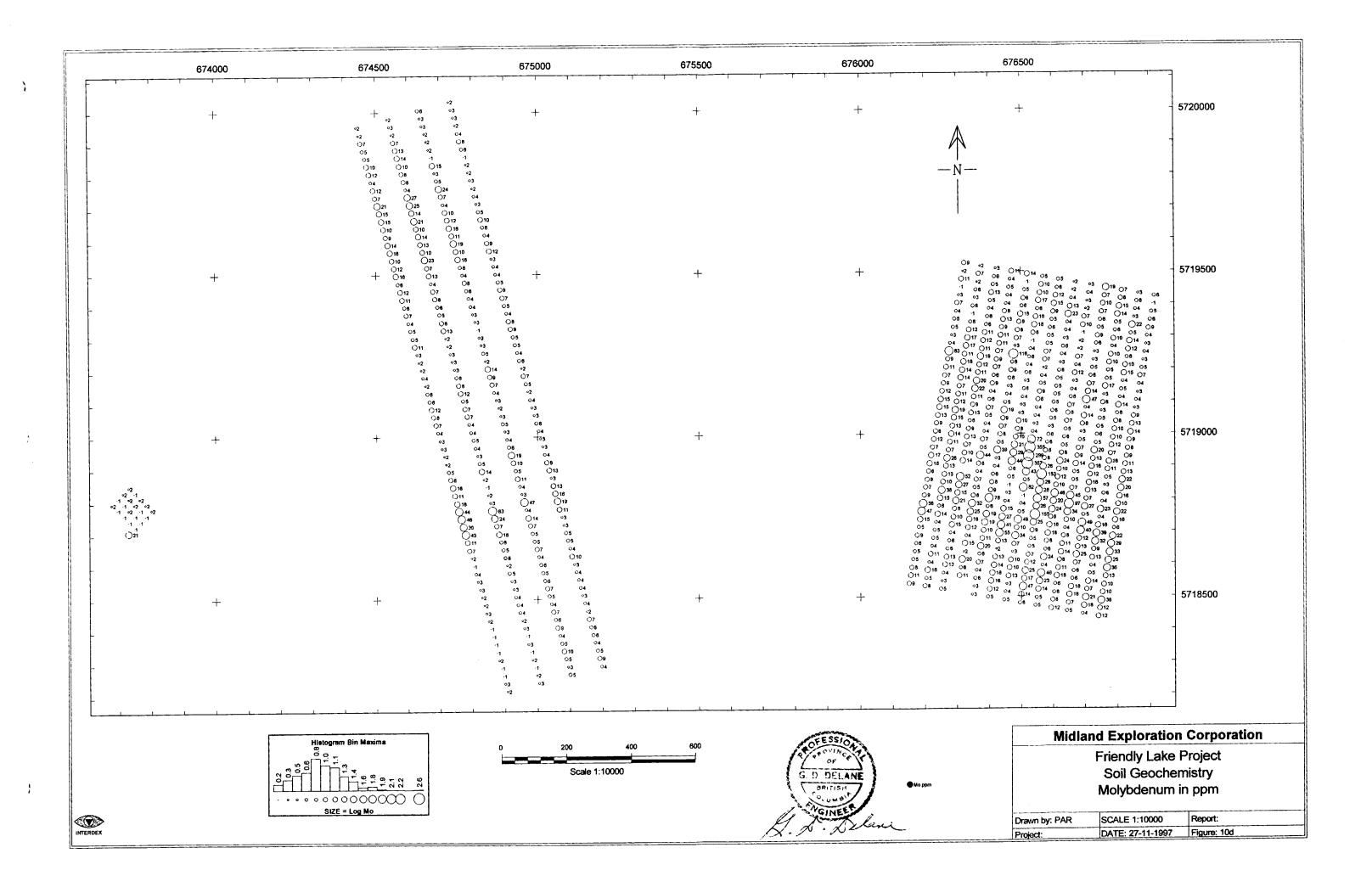
A chained stream sediment sampling traverse was also carried out on Camp Creek which appears to be in proximity to the contact area of the stock and which ultimately empties into Spectacle Lake (Figure 6).

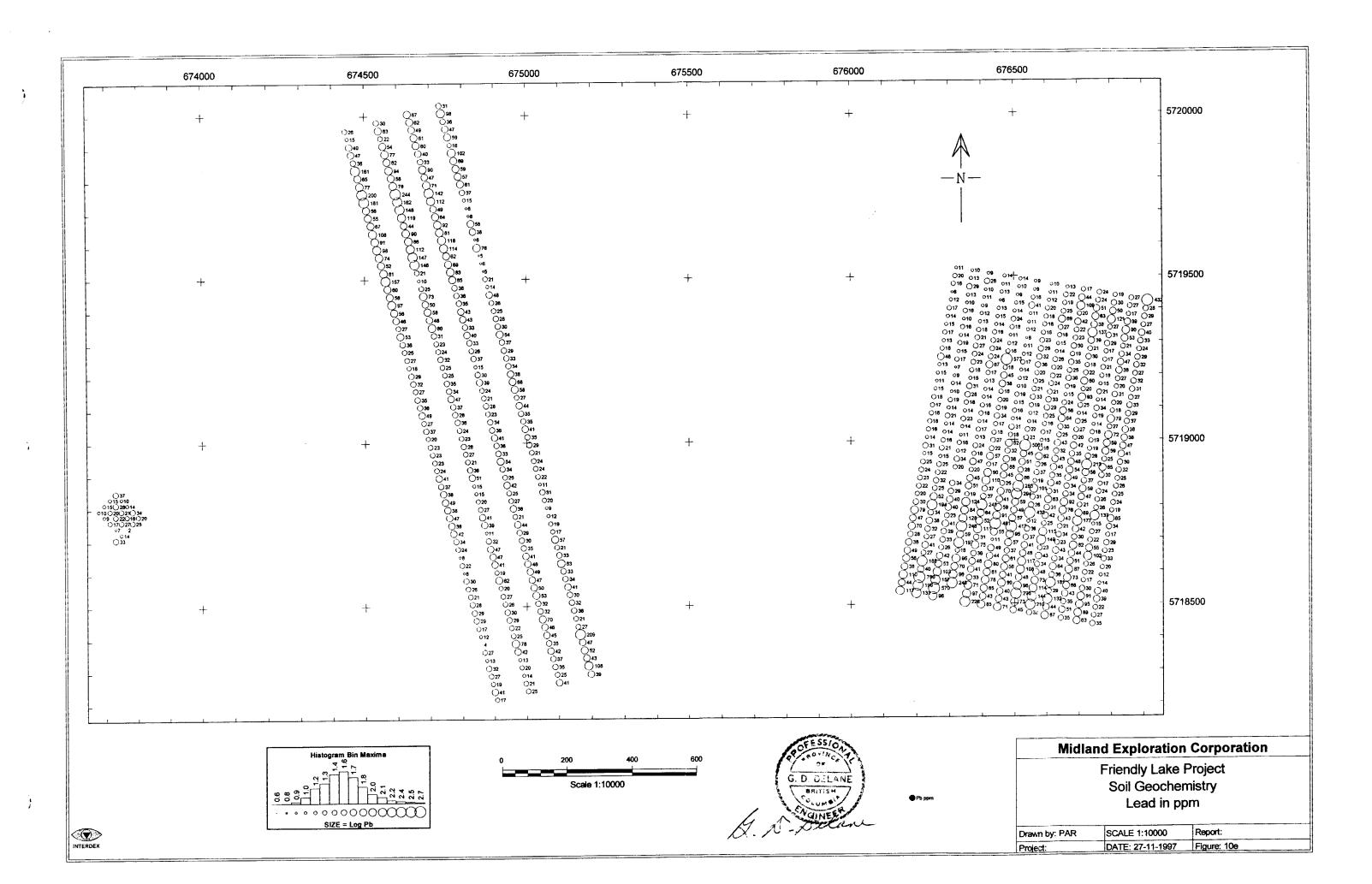
C) Rock Sampling

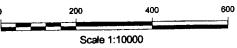

Due to the scarcity of mineralized outcrops on the claims, only about 4 locations of mineralized occurrences were identified on the gridded areas (Figure 7). In addition to these sampled outcrops, samplings of some mineralized float material were also collected for analysis. The highest gold valves were obtained from a grab sample from a 5 m long outcrop exposed in a logging road cut in the northeast part of Grid 2. This sample (#15097) of a siliceous, pyritic, limonite-stained rock (leucosyenite?) returned an assay value of 701 ppb gold. This location is believed to be in close proximity to the mapped edge of the syenite stock (Preto).

The highest copper assay (2322 ppm) was obtained from a grab sample (#238308) from an outcrop of pyritic leucosyenite located about 162 m west of junction 'A' along the main access road on Grid 1. A sample from a float boulder of an intrusive-looking rock (#15094) found near the western edge of a logging clearcut area northeast of Spectacle Lakes returned 13.9 ppm silver.


In addition, 13 channel samples of rock were collected from a 14 metre - long hand trench excavated on a mineralized fractured andesite occurrence on Grid 2 (Figure 8) and returned significent anomalous values in gold (up to 627 ppb), silver (up to 64.3 ppm) and copper (up to 631 ppm).

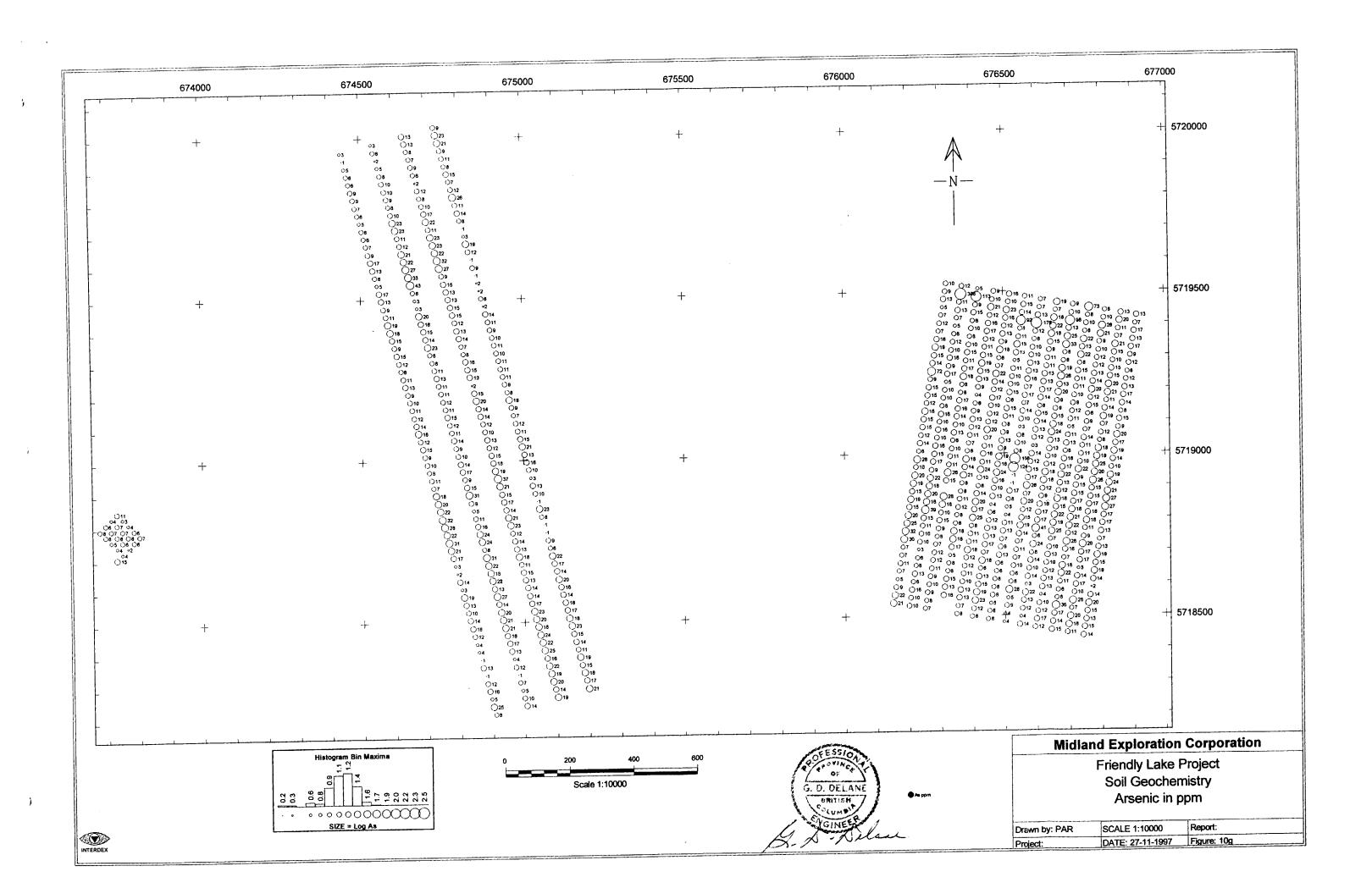

Two ferricrete occurrences located about 100 m south of and down slope from the above described trench on Grid 2 were sampled and one of the samples, #15088 returned 20 ppb gold (Figure 7).


All of the collected soil, stream sediment and rock samples were delivered to Min-En Laboratories Ltd. for multi-element (31 elements) ICP analysis and fire assaying for gold with A.A. finish. Computerized plots of the soil sample locations and of their multi-element results are shown on Figures 10a to 10g.



Midland Exploration Corporation

SIZE = Log Zn



пррт

Friendly Lake Project Soil Geochemistry Zinc in ppm

•		
Drawn by: PAR	SCALE 1:10000	Report:
Project:	DATE: 27-11-1997	Figure: 10f

V. GEOPHYSICS

The geophysical surveys carried out on the property by SJ Geophysics Ltd. and S.J.V. Consultants Ltd. consisted of 17.65 km of magnetics, 10.85 km of Max-Min HLEM, and 12.65 km of time domain induced polarization.

This work was carried on two separate grids called Grid 1 (or the West Grid) and Grid 2 (or the East Grid) and included establishing the I.P. grid lines by chain and compass.

A brief summary of the results of the geophysical survey follows and more detailed description appears in the report submitted by SJ Geophysics Ltd. for assessment on October 1997 titled Magnetometer, Horizontal Loop EM, and Induced Polarization Survey on the Friendly Lake Project.

On Grid 1, the geophysical crews identified higher amplitude magnetic responses at the north end of the grid and lower amplitude responses to the south of the base line. They have suggested that the responses to the north may be the surface expression of the syenite intrusive contact. The responses to the south are interepreted to be caused by localized, near - surface concentrations of magnetite or pyrrhotite.

In the HLEM survey, they identified several weak conductive responses which they believe to have been caused by numerous, closely-spaced conductive zones.

The induced polarization surveys on Grid 1 identified four weak, localized chargeability anomalies which they feel may be caused by near surface and also deep sources and therefore of exploration interest.

On Grid 2, the east grid, they detected several weak magnetic responses and also four small areas of higher magnetic intensity. They interpret that the two smaller anomalies located near the north end of the grid are related to the contact of the syenite intrusion mapped in that general area. The other two magnetic high anomalies are believed to reflect localized concentrations of magnetite or pyrrhotite in the volcanics.

One well - defined but weak HLEM anomaly was found on Grid 2 and is interpreted to be a thin sheeted structure dipping near vertically.

The IP survey work on Grid 2 produced two pronounced chargeability highs both of which were noted to be associated with elevated resistivities and were interpreted to possibly reflect increase sulfide concentrations located immediately south of the syenite intrusion. A sharp contact response was noted in both the chargeability and in the apparent resistivity psueo-sections at the north ends of two grid lines 200E and 200W which was attributed to the proximity to the edge of the syenite intrusion.

The presence of quartz veins associated with the SL structures and also a larger fracture system suggests that this is a target area for exploring for large bodies of structurally controlled gold-quartz vein mineralization. Based on the results of the survey work, the geophysical contractor had concluded that diamond drilling will be required to test the conductors and the chargeability anomalies.

VI CONCLUSIONS

The results of the 1997 work program identified two areas where significant elevated values in copper, silver, and locally gold were obtained from the soil sampling surveys. The area around the Grid 2 trench on the RO claims and secondly, the Grid 1 area easterly from Spectacle Lakes towards road Junction 'A' (including Anaconda's pit) were both observed to contain rocks (andesite and leucosyenite) which had undergone varying amounts of quartz - carbonate veining fracturing and alteration accompanied by some visual evidence of copper and silver mineralization, and locally geochemical evidence of elevated values in gold in the fractured rock.

In addition, the induced polarization surveys identified two conspicuous chargeability highs on Grid 2 both of which are associated with elevated resistivities. The larger chargeability high is reported to cover an area 250 metres by 450 meters and lies immediately south of the syenite intrusion. Mapping and sampling has identified mineralization in the Grid 2 trench as well as in outcrops at or near the margin of the syenite intrusion near the north part of the grid.

No strong IP anomalies were detected from the survey work carried out on Grid 1, however, four localized and weak chargeability anomalies have been identified. One of them is centred on Line 8+00E near the base line and it is in this vicinity where several mineralized and fractured outcrops of leucosyenite were observed and were sampled. Chargeability and resistivity data suggests that the central part of this grid is heavily covered with overburden.

RECOMMENDATIONS

The four mineralized target areas which were identified on Grids 1 and 2 should be further explored by hand trenching or by mechanical trenching in order to attempt to expand the dimensions of the observed mineralization in the outcrops for additional rock sampling and mapping. If the thickness of the overburden is found to be excessive in the target areas, then the only recourse will be to test them by diamond drilling.

Concurrent with this work, some prospecting, reconnaissance mapping and geochemical sampling could be carried out in the un-investigated areas lying northwesterly from the RO claims, specifically those portions of claims FRI 2, 6 and 7 which lie near the peripheries of the syenite stocks. Prior to this exploration field work, however, some literature research and aerophoto studies of these areas is recommended.

REFERENCES

Campbell, R.B. and Tipper, H.W., 1971

Geology of Bonaparte Lake Map Area, British Columbia

Preto, V.A.G. 1970.

Geology of the Area Between Eakin Creek and Windy Mountain; Geology, Exploration and Mining in British Columbia, pp. 307-312; British Columbia Department of Mines and Petroleum Resources

Rebagliati, C.M. 1988

Overview, Friendly Lake Precious Metal Project, RD Claims, Kamloops Mining Division, British Columbia, unpublished consultant's report.

Zastavnikovich, S. 1995

Geochemical Assessment Report On the FRI Group Mineral Claims consultant's report for Electrum Resource Corporation.

Pezzot, E.T. 1997

Magnetometer, Horizontal Loop EM, and Induced Polarization Survey on the Friendly Lake Project for Electrum Resource Corp.

Ronning, P.A. February, 1997

1996 Exploration Program On the Friendly Lake Project.

STATEMENT OF QUALIFICATIONS

Gerald Dennis Delane, of 1178 West 26th Ave., Vancouver, B.C. hereby certify that:

- 1. I am a Consulting Geologist with an office at 1178 West 26th Ave., Vancouver, B.C.
- 2. I am a graduate of the University of British Columbia with a degree of Bachelor of Science in Geology and Geophysics (1961)
- I have been practicing my profession continuously since graduation, including a total of 26 years as Senior Geologist with Placer Dome Canada Ltd., Placer Dome Inc., Newmont Exploration of Canada Ltd., and Getty Minerals Ltd.
- 4. I am a registered member in good standing of the Association of Professional Engineers and Geoscientists of British Columbia, the Society of Mining Engineers of A.I.M.E., the Geological Association of Canada, and the Canadian Institute of Mining, Metallurgy and Petroleum.
- 5. I have carried out or supervised the geological and most of the geochemical work described in this report.
- 6. I hold no beneficial interest in the mineral claims which are the subject of this report, nor in any corporation or other entity whose value could reasonably be expected to be affected by the conclusions expressed herein.
- 7. I consent to the use of this report by Midland Exploration Corporation and by Electrum Resource Corporation to satisfy the requirements of the Vancouver Stock Exchange and the B.C. Securities Commission.

Dated at Vancouver, British Columbia, this 22nd day of December, 1997.

G.D. Delane, P.Eng.

APPENDIX 1 STATEMENT OF EXPENDITURES FOR FRIENDLY LAKE PROJECT

1997 Statement of Expenditures for Friendly Lake Project

1. Personnel & Labour Costs

Name:	<u>Position</u>	Field Work <u>Dates</u>	No.of <u>Days</u>	Rate (Day)	Total <u>Wages</u>
G.D.Delane	geologist	Aug. 26-31 Sept. 1-5 Sept. 8-13	6 5 6	\$480	8,160.00
G.Brown	field assistant	Aug. 25-29 Sept. 1-4 Sept. 8-12	5 4 5	\$225	3,150.00
P.Soczynski	field assistant	Aug. 25-29 Sept. 1-4 Sept. 8-12	5 4 5	\$161	2,250.00
J.Ashenhurst	field assistant	Oct. 21-24	4	\$200	800.00
C.Marchildon	field assistant	Oct. 21-24	4	\$200	800.00
A.Waterhouse	field assistant	Oct. 21-24	4	\$200	800.00
P. Ronning (N.C.G. Consu	consultant ulting Ltd.)	Sept.3,4,5,6,7	5	\$400 	2,000.00

TOTAL LABOUR COSTS:

\$17,960.00

2. Transportation

	4x4 Tilden truck rental - 20 days @\$72.	05 =		\$1,441.00
	Truck fuel & oil	=		795.00
3.	Field supplies, road tolls, etc.,	=		2,897.00
4.	Communication - long distance & collect	calls =		1,000.00
5.	Analytical charges - geochemistry 31 eler ICP + F.A. gold + geochem on all sample			
	515 soil samples, as above + Hg geochen 145 soil samples, as above @18,51 = 17 silt samples, as above @18.51 = 37 rock samples, as above @22.25 =	2,684.00 315.00	,170.00	ı
	Total analytical charges:			17,992.00
6.	Meals, accommodation and food purchase for 6 persons: (Cabin rental for 2 persons @\$69/day)	es		9,238.00
7.	Report compilation: Map reproduction, drafting supplies Typing, photocopying, computer time	1,500.00 130.00 1,370.00	=	3,000.00

Total cost: \$54,323.00

APPENDIX 2 ROCK AND SOIL ANALYTICAL PROCEDURES AND DETECTION LIMITS

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C., CANADA VSX 468 TELEPHONE (804) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW-ROAD SMITHERS, 8.C., CANADA VIIJ 2NO TELEPHONE 16041 847-3004 FAX 16041 847-3005

Quality Assaying for over 25 Years

ANALYTICAL PROCEDURE REPORT FOR ASSESSMENT WORK: PROCEDURE FOR SAMPLE PREPARATION

- a) The soil and stream sediment samples are dried at 60 Celsius. The sample is then screen be 80 mesh sieve to obtain the -80 mesh faction for analysis.
- b) The rock and core samples are dried at 60 Celsius and when dry are crushed in a jaw crusher. The ¼ inch output of the jaw crusher is put through a secondary roll crusher to reduce it to 60% -10 mesh. The whole sample is then riffled on a Jones Riffle down to a representative 250 gram sub-sample. The sub-sample is then pulverized on a ring pulverizer to 90% minus 150 mesh, rolled and bagged for analysis. The remaining reject from the Jones Riffle is bagged and stored.

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS - ASSAYERS - ANALYSTS - GEOCHEMISTS

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C., CANADA V5X 468 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3175 TATLOW ROAD SMITHERS, B.C., CANADA VOJ 2ND TELEPHONE (604) 847-3004 FAX (604) 847-3005

Quality Assaying for over 25 Years

ASSAY PROCEDURE FOR AU FIRE ASSAY

Samples are fire assayed using one assay ton sample weight. The samples are fluxed, a silver inquart added and mixed. The assays are fused in batches of 24 assays along with a natural standard and a blank. This batch of 26 assays is carried through the whole procedure as a set. After cupellation the proious metal beads are transferred into new glassware, dissolved, diluted to volume and mixed.

These agua regia solutions are analyzed on an atomic absorption spectrometer using a suitable standard set. The natural standard fused along with this set must be within 2 standard deviations of its known or the whole set is re-assayed. Likewise the blank must be less than 0.015 g/tonne.

The top 10% of all assay per page are recheck and reported in duplicate along with the standard and blank.

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS - ASSAYERS - ANALYSTS - GEOCHEMISTS

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C., CANADA V5X 468 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB; 3176 TATLOW ROAD SMITHERS, B.C., CANADA YOJ 2NO TELEPHONE (604) B47-3004 FAX (604) B47-3005

Quality Assaying for over 25 Years

ANALYTICAL PROCEDURE REPORT FOR ASSESSMENT WORK: PROCEDURE FOR TRACE ELEMENT ICP

Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sn, Sr, Th, Ti, U, W, Zn.

0.50 grams for the sample pulp is digested for 2 hours with an 1:3:4 HNO₃:HCl:H₂0 mixture. After cooling, the sample is diluted to standard volume.

The solutions are analyzed by computer operated Perkin Elmer Optima 3000, Inductively Coupled Plasma Spectrophotometers.

MULTI ELEMENT ICP ANALYSIS

Element	Lower Limit	Upper Limit
Aluminum (Al - %) *	0.01 %	15 %
Silver (Ag - ppm)	0.2 ppm	200 ppm
Arsenic (As - ppm)	5 ppm	10000 ppm
Barium (Ba - ppm) *	10 ppm	10000 ppm
Beryllium (Be - ppm) *	0.5 ppm	100 ppm
Bismuth (Bi - ppm)	5 ppm	10000 ppm
Calcium (Ca - %) *	0.01 %	15 %
Cadmium (Cd - ppm)	l ppm	100 ppm
Cobalt (Co - ppm)	1 ppm	10000 ppm
Chromium (Cr - ppm) *	1 ppm	10000 ppm
Copper (Cu - ppm)	l ppm	10000 ppm
Iron (Fe - %)	0.01 %	15 %
Gallium (Ga - ppm) *	10 ppm	10000 ppm
Potassium (K - %) *	0.01 %	10 %
Lithium (Li - ppm) *	- 1 ppm	10000 ppm
Magnesium (Mg - %) *	0.01 %	15 %
Manganese (Mn- ppm)	5 ppm	10000 ppm
Molybdenum (Mo - ppm)	2 ppm	10000 ppm
Sodium (Na - %) *	0.01 %	5 %
Nickel (Ni - ppm)	l ppm	10000 ppm
Phosphorous (P - ppm)	10 ppm	10000 ppm
Lead (Pb - ppm)	2 ppm	10000 ppm
Antimony (Sb - ppm)	5 ppm	10000 ppm
Tin (Sn - ppm)*	10 ррт	1000 ppm
Strontium (Sr - ppm) *	l ppm	10000 ppm
Thorium (Th - ppm)	1 ppm	1000 ppm
Titanium (Tí - ppm) *	0.01%	10 %
Uranium (U - ppm)	5 ppm	10000 ppm
Vanadium (V - ppm)	l ppm	10000 ppm
Tungsten (W - ppm)*	10 ppm	10000 ppm
Zinc (Zn - ppm)	1 ppm	10000 ppm
-Aqua Regia digestion: Dissolution	may not be con	aplete for
elements marked with an asterisk (*)-	

\$6.30 Any 6 - 12 elements \$7.30 All 31 elements

APPENDIX 3 ROCK SAMPLE DESCRIPTION

Rock Sample Descriptions

23803	Float sample of vuggy intrusive (monzonite or syenite?), intense limonite coating. Located about 102 m west of Junction 'A', on Sth road bank.
23804	Very hard, fractured monzonitic outcrop, limonite coatings or fractures and contains disseminated pyrite Located 135 m west of Junction 'A' on south bank of road.
23805	Grab from outcrop of dense, hard leucosyenite (?) disseminations of pyrite, intense limonite coatings on one surface; non-magnetic. Located 151 m west of Junction 'A' on south bank of road.
23806	Grab sample from outcrop of leucosyenite (?) cut by a 1 cm wide quartz vein, disseminations of pyrite and limonite coating on fracture surfaces.
23807	Grab sample from large syenite float boulder on north side of road, about 161 m west of Junction 'A' - boulder contains disseminated pyrite and limonite coatings on surfaces, visible chalcopyrite and malachite staining.
23808	Grab sample from outcrop located about 162 m west of road Junction 'A'; abundant fine disseminations of pyrite in leucosyenite, also visible chalcopyrite specks & limonite coatings on surfaces.
15089	Greenish - black hornblende andesite outcrop located near Line 1+00 W and 4+50 N on logging road on Grid 2; outcrop appears to be locally fragmental and contains sparse limonite.
15096	Grab sample from an outcrop of blocky green andesite located on Grid 2 at approximate coordinates 1+80 E and 3+50 N on north bank of logging road cut, limonite staining on fractures, jointing at 07°/86°S.
15097	Grab chip sample from an outcrop of leucosyenite, very hard with micro-fractures & abundant limonite on fractures and also disseminations of pyrite - this outcrop is located adjacent to and just west of outcrop sample 15096.
15098	A grab sample from an oxidized float boulder of andesite located in centre of logging road on Grid 2 at approximate coordinates Line 1+50E, 3+25N, contains limonite coatings.

APPENDIX 4 ANALYTICAL RESULTS

PROJ: FRIENDLY LAKE

ATTN: JOHN BARAKSO

MIN-EN LABS — ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8

TEL:(604)327-3436 FAX:(604)327-3423

FILE NO: 7V-0680-RJ1+2 DATE: 97/09/15

* * (ACT:ICP 31)

TN: JOHN BARAI	KSO								ŦΕΙ	L:(604))327-34	50 P	AX:(6	141327-	3423											
SAMPLE NUMBER	AG PPM	AL %	AS PPM	BA PPM	BE BI PPM PPM	CA %	CD PPM P	CO CR	CU 4 PPM	FE % I	PPM :	C LI K PPM	MG %	MN PPM	PM	NA NI % PPM		PPM	PPM P	SN SR PM PPM		TI % P		PPM PPI	M PPB	rfire PPB 9
R-97-01 R-97-02 R-97-03 15073	12.1 2.0 1.0 1.5	.85 .36	11	213 256 225 238 159	.1 1 .2 1 .2 1 .3 1	.71	.3 .6 1.9 .6	7 67 17 154 20 197 33 366	2 270 7 383 4 21 7 325 6 170	3.94 1.06 3.50 3.66 5.38	3 .5 1 .3 1 .5 1 1.2 1 2.6	6 104	2.15 4.51	214 183 867 1317 1359	5. 1. 11. 2.	05 89 03 150	350 1240 900 1030	86 65 32 111 224	3 1 4 3 4	1 23 1 73 1 47 1 46 1 21	22 . 34 .	. 12 . 19	5 74.0 1 38.4 4 117.2 5 140.5 7 151.4	1 5 1 8 1 16 2 22	2 5 5 25 5 35 1 15	12 10 20 4
15075 15076 15077 15078 15079	-9	1.48 .92 1.04 .46	3	268 312 231 570 465	.1 1 .4 1 .3 1 .9 114 .4 75	.35 .55	1.2 1.7 2.2 1.0	26 244 24 3 29 6 13 9 10 11	4 383 1 631 3 616 8 468 7 548	4.51 4.44 5.23 3.20 3.01	1 1.4 1 .7 1 .8 1 .4	9 4		1064 947 1078 934 1316	3 . 6 . 8 . 21 . 24 .	.01 2	1150 1550 1790 1100 1960	3200	32322	1 50 1 44 1 56 1 73 1 81	24 28 17 14	.01	6 129.3 6 120.1 7 129.3 4 118.8 4 80.2	2 14 1 14 1 1 7 1 1 4	2 55 4 40 0 35 2 30	17 83 194 62
15080 15081 15082 15083 15084	64.3 10.1 1.7 3.3	.16 .05 .91 .40	57 35 8 8	1506 1222 187 279 116	.5 124 .4 19 .1 1 1.2 9 .1 1	.42	1.0	12 6 11 5	0 620 2 191 6 354 3 384 8 276	3.73 1.96 3.70 3.13 2.91	1 .0 1 .8 1 .8 1 .3	9 44 2 24 0 29	.49 1.22 1.46 .63	3463 2300 678 1759 928	66 . 12 . 6 . 11 . 4 .	.06 2	770	917 197 426 118	4 3 2 2 1	1 256 1 293 1 36 1 63 1 41	22 17 17		5 123.3 2 79.5 5 99.5 4 177.4 4 102.8	3 34 5 1 13 6 1 10 3 1 9	2 75 3 5 4 10 1 5	26 19 2 1 1
15085 15086 15087 15088 15089	g	.68 1.34 1.13 1.67	6 4 8 10	226 202 451 663 98	.1 1 .1 1 8.4 4 17.9 8 .8 25	.71 .75 .97 2.65 3.20	2.6	30 6 39 5 15 20	7 285 9 296 62 43 63 59 00 170	9.86 14.20 2.83	1 .9	79 74	1.86	1103	36 . 61 . 1 .	.05 2: .04 8: .02 10: .01 13: .07 11	4 800 5 560 1 620	34 1548		1 52 1 44 1 106 1 245 1 96	22 47 71 19	.11 .13 .11 .05	4 81.9 4 108.3 13 85.3 22 65.4 4 89.1	3 1 14 3 1 10 3 1 8 0 1 10	2 25 11 30 17 55	2
15090 15091 15092 15093 15094	.3	.76 .35 2.03 3 .03	2 79 15 1 33	170 91 62 719 1379	.1 1 .1 1 .1 1 .3 1 .2 26	1.70 3.59 2.96 8.97 5.42	3	18 7 24 2 19 13 5 7 4 19	97 <u>5</u> 8	6.14 5.25 2.88 2.75	1 .1 3 .1 1 .1)2)1 (2 1.87 5 2.62 9 1.59 3 4.38 2 1.92	1019 1469	1 1 10 10	.01 1 .01 1	7 1370 7 1110 8 40 5 340	16 14 70 1462	1 2 : 14	1 75 1 239 1 63 1 280 1 410	35 5 28 5 22 3 17	.09 .01 .22 .01 .01	6 153.0 8 40. 7 154. 4 71.0 4 69.	1 1 6 1 1 9 6 1 5 5 1	56 5 74 10 32 5 34 95	5
R15095 R15096 R15097 R15098	1.9	9 .02 2 .15 5 .11 3 .22	75 19 238 157	914 285 331 244	.2 2 .6 1 .2 3	>15.00 4.75 2.94 2.78	2	2 3 13 13 12 6 11 5	34 22 33 9 60 173 96 193	3.38 3.17 3.89 4.18	1:		4 5.27 6 1.49 2 .59 8 .87	1683 1956 641 1199	11	.01 1 .05 7 .01 2 .03 2	9 800 4 1510 7 880 7 1070	134 23 28 1 17	3 6 3 5	1 190 1 10 1 140	25	.04	4 246. 5 99. 5 212.	0 2 17	27 125 26 75 60 105	70
				.,											_										·	
									, , , , dah																	
													-													
						-	_																			

PROJ: FRIENDLY LAKE

ATTN: JOHN BARAKSO

MIN-EN LABS - ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8

TEL:(604)327-3436 FAX:(604)327-3423

FILE NO: 7V-0681-\$J1+2 DATE: 97/09/15

* * (ACT:1CP 31)

GB-SS2	P PB SB SN SR TH TI U V W ZN Hg Au-fil
SB-SS1	PPM PPM PPM PPM PPM PPM % PPM PPM PPM PP
### Section Se	1000 76 2 1 39 21 .11 5 97.3 2 235 60 940 55 1 1 40 21 .12 5 95.7 2 204 55 940 61 2 1 49 21 .10 5 86.6 2 199 75
1.	800 51 2 1 40 22 .11 5 93.7 2 130 60 790 52 2 1 32 21 .12 5 90.7 1 109 45 790 53 2 1 34 21 .11 5 87.7 1 105 35 820 30 2 1 27 25 .09 6 81.3 1 76 60
B-TS 20+1 B-TS 20+2	1150 45 2 1 88 12 .05 3 51.7 1 86 170 650 57 1 1 26 18 .12 4 84.2 1 105 45 660 95 4 1 55 34 .13 9 141.4 1 124 155 820 68 3 1 33 23 .13 5 94.3 1 104 45
1.0 2.10 9 87 .1 1 .28 .4 16 103 212 4.45 5 .19 75 1.70 177 12 .02 54 22 100E 1258	6 810 69 2 1 32 22 .12 5 92.9 1 105 65 870 43 3 1 80 28 .14 7 114.8 2 255 100 3 1010 45 2 1 42 28 .12 7 113.8 1 114 75 0 350 35 2 1 29 25 .16 6 108.3 1 105 55
R2 100E 225S	1 920 63 4 1 100 45 .11 12 108.5 1 113 110 5 980 31 4 1 38 25 .14 5 121.4 1 109 70 3 590 42 3 1 47 28 .17 7 138.2 2 153 110
R2 100E 350S	8 470 115
R2 100E 475\$	1 250 48 1 1 12 26 .24 5 128.4 1 156 10 0 610 73 3 1 39 32 .16 7 128.1 1 100 35 6 400 114 3 1 21 31 .22 7 152.3 1 76 35 6 660 144 2 1 12 29 .22 7 125.8 1 95 45
150F 758 1 2 79 12 77 .1 1 .33 .3 25 172 195 5.82 4 .31 109 2.48 403 5 .02 96	6 690 32 2 1 12 28 .23 6 126.0 1 157 45 12 950 48 3 1 57 28 .15 7 116.2 3 325 135 12 830 54 2 1 43 24 .14 6 118.7 1 94 35 16 1100 49 2 1 11 34 .24 8 142.7 1 168 10
R2 150E 100S	15 600 34 2 1 26 26 .15 6 110.2 1 136 15 18 1050 92 3 1 36 33 .17 7 137.5 1 96 45 15 860 76 5 1 73 83 .06 24 81.8 1 106 45 13 1030 43 3 1 42 29 .14 6 154.2 1 137 55
GR2 150E 225\$	7 360 21 1 1 15 22 .20 5 106.6 1 70 85 155 1270 34 2 1 13 30 .20 7 141.9 1 119 25 158 440 23 1 1 18 22 .21 5 131.9 1 77 30

PROJ: FRIENDLY LAKE

MIN-EN LABS - ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8

TEL:(604)327-3436 FAX:(604)327-3423

FILE NO: 7V-0681-SJ3+4 DATE: 97/09/15

* * (ACT:ICP 31)

ATTN: JOHN BARAKSO						I	EL:(6	04)327-3	43D	PAXI	(004)	27"24	<u></u>											
SAMPLE NUMBER	AG AL PPM %	AS BA			A CD % PPM P	CO CR PM PPM	CU PPM	FE GA % PPM	К %	LI PPM	MG %		PM %	NI PPM	P PPM F	PM PP		PPM	PPM	TI U % PPM		₩ ZI PPM PPI	1 PPB	Au-fire PPB 13
GR2 150E 300S GR2 150E 325S GR2 150E 350S GR2 150E 375S GR2 150E 400S	4.4 2.39 2.0 2.59 6.9 2.59 1.5 1.91 1.9 2.33	10 186 12 25 13 276 13 123 4 9	.1 5 .5 2 .1 7 .1	1 .9 1 1. 1 .!	29 1.7 10 2.4 83 .9 75 .7	19 112 15 99 19 110 19 98 24 267	164 547	3.75 4 4.22 3 4.16 3 4.97 2	.20	100 82 72 123	1.15 1.56	441 401 571	11 .02 14 .03 8 .02 11 .02 18 .03 6 .02	110 58 131	600 790 520	64 36 181	2 1 2 1 2 1 3 3 3	38 46 48 32 35	20 . 23 . 23 . 31 .	.15 5 .26 6	97.5 84.9 96.3 108.3 111.4	1 11 1 15 1 9 2 18	1 110 9 165 7 210 2 60 1 95 1 105	19 26 14 9
GR2 150E 4258 GR2 150E 4508 GR2 150E 4758 GR2 150E 5008 GRZ 200E 258	1.0 2.95 .5 2.10 .3 2.18 3.1 2.04 .4 1.71	10 89 12 100 17 7 12 29 9 2	3 .1 7 .1 1 .1	1 .4 1 .1 1 1.4		16 156 23 75 15 126 16 94 13 61	202 98 1109	4.24 4 5.04 3 4.64 4 3.70 1 5.07 5	. 27 . 15 . 34 . 14	86 50 56 106	1.92 1.84 1.34 1.48	602 336 768 321	6 .02 8 .02 12 .02 13 .02	36 59 92 23	1800 490 620 690	132 44 87 213	2322	17 27 60 11	30 27 21 28	.17 6 .19 6 .12 5 .15 7	114.8	1 10		1 5 10 1
GR2 200E 50S GR2 200E 75S GR2 200E 100S GR2 200E 125S GR2 200E 150S	.7 2.25 .3 2.01 2.0 2.45 .7 2.47 .3 1.88	15 10 15 10 17 15 18 13 21 7	8 .1 6 .1 6 .1	1 .	84 .5 85 .7 76 2.1 77 1.0 47 .4	26 99 22 107 25 105 25 122 16 69	184 452 273	5.41 4.79 5.16 5.10 4.19		50 89 61 59	2.30 1.66 1.65 1.77 1.31	783 728 418	13 .02 7 .01	65 112 98 57	650 380 680 620 740	58 37 59 47 21	3 3 3	32 35 38 38 21	26 29 29 24	.16 6 .18 7 .15 7 .11 5	117.3 118.5 115.0 120.7 95.7	1 12 1 16 1 11 1 8	3 40 5 70	7 7 13 12
GR2 200E 175S GR2 200E 200S GR2 200E 225S GR2 200E 250S GR2 200E 275S	.9 2.44 .6 2.61 .2 1.76 .9 2.15 .6 2.82	22 15 12 3 28 8 16 14 7 9	1 .1 7 .1	1 1.	99 2.2 21 .2 60 .6 12 .8 76 .2	37 114 20 280 24 79 34 188 26 418	60 183 212	5.07	.26 1 .57 2 1.07	107 37 76 110	3.95	425 371 2062 475	5 .03 49 .02 40 .02 12 .03	129 53 115 175	720 1610 4 2 0	69 177 42 30 82	43334	1 52 1 8 1 77 1 56 1 34	29 27 30 37	.25 6 .12 6 .11 7	126.6 105.1 130.0 145.0	1 12 1 9 2 11 1 13	6 50 3 75 1 145	1 14 11 1
GR2 200E 300S GR2 200E 325S GR2 200E 350S GR2 200E 375S GR2 200E 400S	.2 1.88 3.8 3.42 .7 2.18 .6 1.99 .3 2.22	6 8		1 .	67 .6 80 1.7 28 .1 39 .3 22 .1	22 109 19 116 16 219 19 189 21 212	440 90 53 105		2 .26 3 .21 4 .13 4 .35 3 .51	81 81 88 1 79	2.55	332 372 390	13 .02 25 .03 7 .03 6 .03 6 .03	116 87 102 88	940 1490 820	44 51 87 73 68	3 2 3	1 29 1 40 1 12 1 13 1 10	29 30 29 27	.16 .21 .25 .23	7 123.0 7 121.6 6 136.0 6 115.2 8 214.0	1 13 1 1 1 1	14 115 12 25 75 35 11 35	21 4 4 3
GR2 200E 425S GR2 200E 450S GR2 200E 475S GR2 200E 500S GR2 200E BLON	.5 2.14 .6 2.17 .5 2.19 .2 2.07 .5 2.33	17 9 14 15	26 .1 26 .1 73 .1 52 .1 59 .5	1 .	.26 .3 .43 .1 .28 .3 .30 .2 .77 1.8	17 102 12 110 14 125 15 98 25 107	81 102 3 93	5.16	6 .13 6 .08 5 .16 4 .11 1 .11	3 49 2 63 7 44 7 34	1.55 1.44 1.80 1.45 1.47	255 315 324 1587	18 .07 16 .07 7 .07 5 .07 20 .07	2 43 2 52 2 48 2 85	320 470 980 610	43 35 51 35 28	2 3 3 3	1 13 1 23 1 17 1 13 1 44	28 26 22 29	.21 .19 .18 .12	7 170.3 5 149.6 5 105.8 7 111.7	1 1 1 1 2 2	33 50 28 45 06 3 5	1 1 1 26
GR2 250E 258 GR2 250E 508 GR2 250E 758 GR2 250E 1008 GR2 250E 1258	.1 2.34 1.1 1.95 .2 2.34 .1 2.21 .1 2.00	15 1 15 17	01 .1 54 .1 53 .1 63 .1	1	.69 .3 .78 1.8 .27 .2 .33 .2 .44 .2	32 184 18 107 18 8 14 86 18 86	491 68 5 90	5.97 4.16 4.28 4.60 5.13	2 .84 1 .23 4 .09 3 .09 4 .31	3 33 9 44 9 46	2.94 1.33 1.46 1.50 1.59	1066 281 317	16 .0. 11 .0 5 .0 3 .0 6 .0	2 105 2 45 1 41 2 40	560 1110 610 1150	65 30 17 24 26	4 2 3 2	1 30 1 40 1 1 1 14 1 14	23 1 24 4 25 5 28	.11 .14 .14 .18	8 165.6 5 88.3 5 100.0 6 106.0 7 131.1	1 1 1 1	99 140 41 45 98 35 90 25	27 9 18 7
GR2 250E 150S GR2 250E 175S GR2 250E 200S GR2 250E 225S GR2 250E 250S	.1 2.31 .9 2.33 .4 1.80 .1 1.95	11 9 29 1	82 .1 73 .1 54 .1 05 .1	1 1 1 1	.44 .2 .50 .6 .21 .2 .74 .7 .41 .2	10 5	1 164 6 27 2 154	7 4.72 6 4.49 7 3.66 2 5.45 3 3.88	3 .2 3 .2 5 .0 3 .2 2 .1	4 90 5 25 6 30	7 1.90 2.58 3 .70 3 1.53 1 1.08	401 156 599	4 .0 23 .0 4 .0 16 .0 39 .0	2 146 2 22 2 65	990 1030	15 27 22	3 4 1 4 2	1 2 1 3 1 1 1 3 1 3	3 27 0 19 6 32 2 21	.20 .16 .10 .11	6 112.6 6 108.5 5 88.9 7 111.5 5 83.6	11	11 15 17 40 88 45 07 65 75 30	7 5 6 5 21 2 21
GR2 250E 275S GR2 250E 375S GR2 250E 30S GR2 250E 325S GR2 250E 350S GR2 250E 375S	.3 1.89 .8 1.87 .3 2.59 .2 1.54	17 1 3 14 1 17	07 .1 59 . 33 . 55 .	1 1 1 1	.65 .3 .38 .2 .36 .2 .24 .1 .39 .1	25 9 13 22 20 12 11 8 13 11	5 4! 3 174 4 3'	4 4.97 5 4.33 6 4.97 9 4.10 1 3.29	3 .4 4 .1 4 .2 6 .0 3 .2	9 76 3 80 8 31	2 1.87 5 2.20 0 1.77 1 1.07 3 1.64	302 502 181 316	32 .0 9 .0 13 .0 4 .0 5 .0	3 79 2 73 12 3 12 5	670 3 1050 3 700	102 26 22 17	2 2 2 2 2	1 1	6 26 8 28 2 22 7 19	.19 .17 .21 .18	6 125.9 6 117.0 6 127.2 5 136.5 4 108.6	1 1 1	85 6! 22 3! 56 2! 66 3!	2 12 5 9 0 9
GR2 250E 400S GR2 250E 425S GR2 250E 450S	1.9 2.88 .7 2.14 .5 2.49	28 2 7	68 23		.78 .6 .31 .2 1.19 .8	55 55	9 13	5 4.82 4 4.66 5 4.95	4 .2 3 .6 1 .4	8 113	2 1.66 3 2.97 9 2.17		14 .0 7 .0 21 .0	3 10	8 630	91	3 2	1 1	9 27 4 29 9 30		6 122.1 6 134.1 7 112.1	1 1 1	42 90 22 60 02 13	5 6

PROJ: FRIENDLY LAKE

MIN-EN LABS -- ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4EB

FILE NO: 7V-0681-SJ5+6 DATE: 97/09/15

* * (ACT: ICP 31)

N: JOHN BARAKSO	TEL:(604)327-3436 FAX:(604)327-3423 * * (ACT:1CP
AMPLE UMBER	AG AL AS BA BE BI CA CD CO CR CU FE GA K LI MG MN MO NA NI P PB SB SN SR TH T! U V W ZN Hg Au-fi PPM % PPM PPM PPM PPM PPM PPM PPM PPM PP
R2 250E 475S R2 250E 500S R2 250E BLON R2 300E 25S R2 300E 50S	-4 2.26 18 190 .1 1 .84 1.3 24 154 288 4.93 2 .42 58 1.98 832 18 .02 94 550 89 3 1 37 29 .15 6 123.8 1 82 75 .6 2.33 11 134 .1 1 .56 .2 23 96 165 5.38 4 .46 59 2.08 612 4 .02 48 1000 63 1 1 14 30 .24 7 148.7 1 123 30 .2 2.19 20 98 .1 1 .55 .4 24 132 126 4.63 2 .19 45 1.81 634 7 .02 79 870 25 3 1 27 27 .16 6 116.6 1 111 60 .2 2.19 20 98 .1 1 .92 .4 27 156 198 5.12 1 .33 36 1.99 845 11 .02 89 760 32 3 1 44 30 .15 6 121.7 1 94 70 .4 1.94 21 121 .1 1 1.09 .9 23 113 240 4.56 1 .22 29 1.58 1068 13 .02 77 770 25 3 1 53 26 .13 6 101.9 1 105 85
R2 300E 75\$ R2 300E 100S R2 300E 125\$ R2 300E 150\$ R2 300E 175\$	2 2.01 27 145 .1 1.01 .7 27 135 174 4.94 1 .30 34 1.93 1917 20 .02 95 1050 25 2 1 49 29 .13 6 108.0 1 96 70 .2 1.67 17 81 .1 1 .54 .6 21 75 104 4.19 1 .19 32 1.39 921 16 .02 42 680 24 2 1 32 24 .12 5 99.7 1 91 35 .1 2.08 17 70 .1 1 .39 .2 21 155 99 4.38 2 .23 45 1.93 374 10 .02 92 640 19 2 1 20 25 .17 6 112.7 1 99 40 .2 2.22 13 143 .1 1 .71 .7 27 192 234 4.77 1 .43 58 2.25 998 22 .02 109 800 65 3 1 45 28 .15 6 108.3 1 121 70
R2 300E 200S R2 300E 225S R2 300E 250S R2 300E 275S R2 300E 300S	3 2.89 7 79 .1 1 .28 .1 27 336 74 .13 3 .15 42 1.89 408 6 .02 99 460 17 2 1 15 24 .18 5 101.7 1 117 45 .1 1 .25 .2 17 173 93 4.13 3 .15 42 1.89 408 6 .02 99 460 17 2 1 15 24 .18 5 101.7 1 117 45 .2 2.14 19 85 .1 1 .55 .3 24 112 155 4.78 2 .27 38 1.72 809 22 .02 68 790 29 2 1 34 26 .14 6 111.7 1 92 65 .2 2.14 19 85 .1 1 .87 1.1 24 175 203 4.82 2 .33 41 2.18 631 29 .02 112 930 23 2 1 46 29 .16 6 110.4 2 118 65 .1 2 2.19 15 132 .1 1 .87 1.1 24 175 203 4.82 2 .33 41 2.18 631 29 .02 112 930 23 2 1 46 29 .16 6 110.4 2 118 65 .1 2 2.19 15 132 .1 1 .73 5 27 201 132 4.88 1 .38 70 2.23 1047 33 .02 109 620 33 3 1 39 29 .19 6 111.1 1 139 45
R2 300E 325S R2 300E 350S R2 300E 375S R2 300E 400S R2 300E 425S	.4 1.90
R2 300E 4258 R2 300E 4758 R2 300E 5008 R2 300E BLON R2 300E 25N	. 4 2.11 13 139 .1 1 .51 .1 17 131 200 4.18 3 .11 51 1.79 469 38 .02 75 440 22 1 1 27 25 .16 5 106.5 1 75 45 .2 2.02 15 113 .1 1 .78 .1 22 147 111 4.38 2 .30 46 2.02 594 12 .02 75 590 27 2 1 34 26 .16 6 114.0 1 79 40 .2 2.01 14 151 .1 1 1.45 .6 22 137 645 4.36 1 .34 34 1.84 816 12 .02 87 1030 35 3 1 58 26 .12 6 99.8 1 82 145 .7 2.22 19 129 .1 1 .88 1.0 29 182 982 5.15 1 .61 46 2.14 1159 9 .02 132 970 30 3 1 44 31 .17 7 129.0 1 106 105 .7 2.22 73 10 96 .1 1 .52 .3 36 113 295 6.40 5 .41 66 2.29 622 8 .01 43 450 41 1 1 20 36 .24 8 169.8 1 113 40
R2 300E 50N R2 300E 75N R2 300E 100N R2 300E 125N R2 300E 150N	1.5 2.08 14 95 .1 1 .84 .7 20 112 140 4.25 2 .22 59 1.74 504 9 .02 77 580 47 2 1 58 25 15 3 103.7 1 104 5 1 1 1 1.07 2.0 24 115 574 4.66 1 .24 51 1.43 1200 14 .02 133 570 38 2 1 54 26 .12 6 108.9 1 115 85 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
R2 300E 175N R2 300E 200N R2 300E 225N R2 300E 250N R2 300E 275N	1 2.17 15 73 .1 1 .35 .4 18 135 137 4.74 3 .14 55 1.80 361 4 .02 74 830 33 2 1 20 28 .17 6 122.2 1 112 40 1 1 1.46 8 80 .1 1 .27 .4 15 74 72 3.46 4 .08 29 .86 401 3 .02 36 650 27 1 1 14 19 .15 4 94.8 1 98 35 1 1 1.46 8 80 .1 1 .37 .4 18 129 91 4.79 6 .10 56 1.34 242 4 .02 66 1090 31 2 1 21 26 .18 6 109.9 1 130 45 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
R2 300E 300N R2 300E 325N R2 300E 350N R2 300E 375N R2 300E 400N	1 2.51 12 75 .1 1 .36 .6 21 198 181 5.43 4 .39 84 2.37 415 3 .02 107 790 32 2 1 13 31 .21 7 137.5 1 146 3 .02 1 1 2.08 8 87 .1 1 .28 .3 17 102 142 4.87 6 .12 57 1.26 230 4 .02 51 920 29 1 1 13 27 .25 6 139.8 1 87 30 .1 1.87 12 72 .1 1 .35 .2 17 97 104 4.45 5 .08 45 1.32 330 3 .02 53 960 24 1 1 16 24 .23 6 132.7 1 89 5 .1 1.87 12 72 .1 1 .35 .2 17 97 104 4.45 5 .08 45 1.32 330 3 .02 53 960 24 1 1 16 24 .23 6 132.7 1 89 5 .1 1.87 12 72 .1 1 .29 .3 23 126 167 5.37 6 .10 99 1.52 316 4 .02 61 1270 33 1 1 12 30 .27 7 146.0 1 109 30 .27 3 3 1 1 1 2 30 .26 7 126.1 1 103 55
GR2 300E 425N GR2 300E 425N GR2 300E 450N GR2 300E 475N GR2 300E 500N GR3 0+00SW 0+25NW	1 2.62 13 78 .1 1 .38 .1 26 209 185 5.54 4 .45 70 2.69 429 6 .02 111 650 27 2 1 19 34 .24 7 148.1 1 86 40 12 12 149 17 55 .1 1 .27 .1 19 259 85 5.42 4 .30 53 2.42 324 5 .03 110 620 29 2 1 11 31 .24 7 153.0 1 44 35 12 12 157 7 39 .1 1 .41 .2 19 183 225 6.04 4 1.10 77 3.29 447 1 .02 69 910 28 3 1 10 36 .26 8 161.7 1 61 45 13 1.60 13 39 .1 14 .43 .1 19 180 245 4.56 4 .15 69 1.91 341 6 .03 91 860 432 1 1 16 26 .23 6 112.4 1 88 30 13 30 1 14 .43 .1 19 180 245 4.56 4 .15 69 1.91 341 6 .03 91 860 432 1 1 18 25 .16 6 101.8 1 160 50
GR3 0+00SW 0+50NW GR3 0+00SW 0+75NW GR3 0+00SW 1+00NW	2 5.10

PROJ: FRIENDLY LAKE

ATTN: JOHN BARAKSO

MIN-EN LABS --- ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8

TEL:(604)327-3436 FAX:(604)327-3423

FILE NO: 7V-0681-SJ7 DATE: 97/09/15

* * (ACT: [CP 31)

TN: JOHN BARAKSO								TEL:	(604)327	- 5456) FA	X:(0	04)5	21-342	•													
SAMPLE NUMBER	AG PPM	AL A	S BA		BI PPM	CA % P	CD CO PM PPM		CU FE PPM %	GA PPM	K % F	L I PM	MG %	MN PPM PI	PM X		PPM	PPM F	SB S	M PP	M PP	м %		PPM		PM P		PPB
GR3 0+255W 0+25NW GR3 0+255W 0+50NW GR3 0+255W 0+75NW GR3 0+255W 1+00NW GR3 0+505W 0+25NW	.1 3 .1 2 .1 2	.35 .93 .20 .57 .34	6 94 7 146 7 66 4 64 6 121	.1	1 1 1 1	.21 .11 .17	.1 9 .1 7 .1 12 .1 8	34 41 29 40	13 2.76 12 3.01 29 3.79 14 2.54 18 3.39	5 6 5	.03 .05 .03 .04	15 23 45 20 31	.20 .31 .80 .26	134 252 274 290 204	1 .02 2 .01 2 .02 2 .02 1 .01	13 18 9 17	1340 2000 1100 2870 1210	16 21 28 15 27	1 1 1 1	1 2 1 1 1 2	0 1 2 2 9 1 1 1	4 .13 6 .11 1 .18 4 .14 9 .12	5 3 4	57.2 59.3 94.1 50.7 72.7 80.3	1 2 1	98 49 75 108	65 75 40 95 45 40	7 6 13 6
GR3 0+50sW 0+50nW GR3 0+50sW 0+75NW GR3 0+50sW 1+00nW GR3 0+75sW 0+25NW GR3 0+75sW 0+50NW	.1 2 .1 2 .1 1 .3 3	.96 .94	6 124 7 129 6 109 4 189 5 98	5 .1	1 1 1 1	.28 .21 .12 .17		9 49 3 42 7 21 3 31	10 3.63 20 3.27 17 2.95 3 2.83 10 2.64	4 4 5 4	.04 .05 .04 .04	26 36 23 12 19	.39 .79 .59 .12 .37	239 313 173 206 328	2 .01 1 .01 1 .01 1 .01	24 1 18 1 19 1 13	1090 2010 3360 1020	20 15 7 17	1 1 1	1 2 1 2 1 1 1 1	28 2 29 1 14 1 19 1	0 .14 16 .10 16 .13 15 .12	4 4 4 3	80.8 77.2 40.6 64.0	1 1	143 75 168 1 86	45 40	1
GR3 0+75sW 0+75NW GR3 0+75sW 1+00NW GR3 BLO SW 0+00NW GR3 BLO 0+25sW GR3 BLO 0+50sW	.3 2 .1 5 .1 1 .1 2	. 10 . 44 ? . 17	6 10 8 7 7 11 6 7 2 1	9 .1 6 .1 6 .1 8 .1	1 1 1 1	.13 .10 .24 .17	.1	5 24 7 30 3 39 9 36 2 5	Z .64	5 1	.03 .06 .04 .02	14 17 18 33 1	.21 .18 .56 .58	36	2 .0° 2 .0° 1 .0° 1 .0°	1 9 1 20 2 14 2 2	2330 640 1550 90	10 20 25 2	1 1 1	1 1	11 1 22 1 13 1 5	17 .16 15 .11 17 .13 3 .05	4 4 1	55.3 72.1 75.3 25.4 43.8	1 1 1 1	80 1 99 101 14	10 25 35 10 20	1
GR3 BLO 0+755W GR3 BLO SS GD-1 15095	1.4 2 -3 1	2.56	4 14 15 35 11 13	B 2.6	1 1	.10 2.24 .77	1 1 1.3 1 1.0 1	4 73	6 1.81 241 3.13 67 3.70	3 3	.02 .12 .22	8 27 27	.15 .76 1.09	89 370 1727	21 .0:	1 12 2 52 1 37	580 840	33	1	1 1	38	18 .06 20 .10	4	78.2 91.0	1 1	97 1	145 45	1
			,																									
																<u></u>												
					~-		 -																					
	 																											
																												<u>.</u>
	-																											
												~~																
															<u> </u>	_												
																								<u> </u>				

PROJ: FRIENDLY LAKE

MIN-EN LABS - ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8

TEL:(604)327-3436 FAX:(604)327-3423

FILE NO: 7V-0698-SJ1+2+3+4 DATE: 97/09/30

* 42 Core/3 Std/3 Blk * (ACT:ICP 31)

ATTN: JOHN BARAKSO	TEL:(604)327-3436 FAX:(604)327-3423 42 66 C/3 213/3
SAMPLE	AG AL AS BA BE BI CA CD CO CR CU FE GA K LI MG MN MO NA NI P PB SB SN SR TH TI U V W ZN Hg Au-fire PPM % PPM PPM PPM PPM PPM PPM PPM PPM PP
NUMBER G.2 LOE 025N G.2 LOE 075N G.2 LOE 125N G.2 LOE 175N G.2 LOE 225N	1 1.83 8 60 .1 1 .21 .4 12 59 30 3.41 4 .06 34 .80 143 4 .02 26 940 23 2 1 9 18 .16 4 97.2 1 70 70 11 .1 1.68 8 53 .1 1 .28 .3 13 66 94 3.19 3 .11 40 .89 168 4 .01 35 850 14 2 1 15 18 .14 4 91.2 1 70 70 11 .1 1.61 10 87 .1 1 .41 .4 16 101 123 3.60 3 .19 52 1.37 276 8 .02 56 580 19 2 1 19 21 .17 5 109.9 1 73 55 17 .1 1.61 10 87 .1 1 .41 .4 16 101 123 3.60 3 .19 52 1.37 276 8 .02 56 580 19 2 1 15 15 .12 4 92.2 1 39 65 26 .1 1.00 7 61 .1 1 .27 .2 7 41 32 2.88 3 .05 14 .57 160 5 .01 18 830 21 2 1 15 15 .12 4 92.2 1 39 65 26 .1 1.00 7 61 .1 1 .27 .3 11 64 40 3.67 5 .06 32 .80 185 2 .02 27 1580 20 2 1 9 19 .17 5 113.1 1 84 75 7 .1 1.55 7 61 .1 1 .22 .3 11 64 40 3.67 5 .06 32 .80 185 2 .02 27 1580 20 2 1 9 19 .17 5 113.1 1 84 75 7
G.2 LOE 275N G.2 LOE 325N G.2 LOE 375N G.2 LOE 425N G.2 LOE 475N	1 2.33 10 43 .1 1 .36 .1 24 364 151 4.29 2 .28 80 3.25 452 5 .03 203 660 23 4 1 12 28 .27 6 129.9 2 122 15
G.2 LOE 0258 G.2 LOE 0758 G.2 LOE 1258 G.2 LOE 1758	1 29 124 270 56.9 14 1.14 .9 13 15 1 >15.00 1 .02 4 .07 /838 355 .01 39 /10 45 0 16 /838 .01 29 24.1 3 230 15 15 1 .11 1 46 .2 7 1.25 1.7 4 4 1 >15.00 9 .02 2 .06 997 357 .02 36 410 28 3 1 66 88 .01 29 24.1 3 230 15 15 1.11 1 46 .2 7 1.25 1.7 4 4 1 >15.00 9 .02 2 .06 997 357 .02 36 800 285 3 1 17 30 .25 7 127.7 2 158 40 5 12.28 8 60 .1 1 .40 .2 25 180 110 5.08 3 .76 81 3.00 700 5 .02 68 800 285 3 1 17 30 .25 7 127.7 2 158 40 5 12.28 8 60 .1 1 .33 .12 466 17 4.99 3 1.31 107 4.74 699 1 .03 163 860 59 4 1 12 33 .30 6 120.5 2 167 25 3 1 2.86 4 72 .1 1 .33 .1 12 463 42 4.37 5 .11 57 1.96 246 5 .02 48 690 57 3 1 10 24 .22 5 136.5 1 97 50 18
G.2 LOE 225s G.2 LOE 275s G.2 LOE 325s G.2 LOE 375s G.2 LOE 375s G.2 LOE 425s	1 2.58 9 133 .1 1 .98 .9 26 425 .77 4.73 2 .73 96 4.21 904 10 .03 138 960 95 5 1 31 31 .24 6 142.1 1 151 45 6 .1 2.58 9 133 .1 1 .31 .1 14 144 19 4.25 5 .12 35 1.64 280 7 .03 51 360 37 2 1 14 24 .27 5 140.1 1 82 35 1.48 6 73 .1 1 .31 .1 14 144 19 4.25 5 .12 35 1.64 280 7 .03 51 360 37 2 1 14 24 .27 5 140.1 1 82 35 1.47 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
G.2 LOE 475S G.2 L50E BLON G.2 L50E 050N G.2 L50E 100N G.2 L50E 150N G.2 L50E 200N	1 1.28 12 103 .1 1 .48 .4 13 71 78 3.34 2 .11 21 .98 337 6 .01 37 760 16 2 1 24 18 .11 4 85.2 1 58 20 29 .1 1.28 12 103 .1 1 .20 .2 8 55 8 2.21 5 .07 15 .60 116 3 .02 21 840 17 1 1 10 12 .19 3 72.4 1 50 30 9 .1 1.89 13 86 .1 1 .42 .3 19 126 126 4.06 3 .25 48 1.62 339 6 .02 69 690 25 2 1 20 23 .19 5 117.6 1 79 40 15 .1 1.89 13 86 .1 1 .42 .3 19 126 126 4.06 3 .25 48 1.62 339 6 .02 69 690 25 2 1 20 23 .19 5 117.6 1 79 40 15 .1 1.57 15 65 .1 1 .25 .2 15 63 74 3.24 3 .06 19 .87 232 5 .01 42 500 33 3 1 14 18 .12 4 83.8 1 69 45 23 .1 1.57 15 65 .1 1 .25 .2 15 63 74 3.24 3 .06 19 .87 232 5 .01 42 500 33 3 1 12 25 15 .01 42 .10 12 .
G.2 L50E 250N G.2 L50E 300N G.2 L50E 350N G.2 L50E 450N G.2 L50E 450N	1 1.81 13 80 -1 1 -41 .1 18 115 102 4.32 4 .19 50 1.44 378 3 .02 59 850 20 2 1 13 23 19 142 1 170 20 14 12 12 11 65 .1 1 .40 .2 21 195 64 4.62 4 .11 52 2.11 269 6 .02 103 590 14 2 1 20 26 .23 6 137.8 1 70 20 14 1 2.12 11 65 .1 1 .40 .2 21 195 64 4.62 4 .11 52 2.11 269 6 .02 103 590 14 2 1 20 26 .23 6 137.8 1 70 20 14 1 2.12 11 65 .1 1 .40 .2 21 195 64 4.64 5 .12 84 1.89 397 4 .02 69 1070 18 2 1 10 25 .26 6 128.1 1 99 25 7 1 2.37 9 57 .1 1 .34 .1 21 147 124 4.54 5 .12 84 1.89 397 4 .02 69 1070 18 2 1 10 25 .26 6 128.1 1 99 25 7 1 1 1.37 18 58 .1 1 .37 .1 11 56 128 4.71 4 .10 30 1.63 338 23 .03 12 1240 69 1 1 11 25 .25 6 143.5 1 51 20 9 1 1 1 1.37 18 58 .1 1 .37 .1 11 56 128 4.71 4 .22 100 3.01 277 4 .03 170 750 19 3 1 12 26 .26 5 126.2 1 69 25 18
G.2 L50E 500N G.2 L50E 050S G.2 L50E 100S G.2 L50E 150S	1 2 27 19 52
G.2 L50E 200S G.2 L50E 250S G.2 L50E 300S G.2 L50E 350S G.2 L50E 400S	1 2.40 7 295 .1 1 .63 1.9 21 181 182 4.19 1 .36 97 2.09 7655 25 .02 116 520 36 4 1 28 23 .19 5 107.0 2 128 85 5 1 1 2.40 68 4.69 5 .09 69 1.46 198 5 .02 17 1160 41 1 1 10 25 .13 6 97.3 1 104 35 4 1 1.53 7 56 .1 1 .27 .1 12 40 68 4.69 5 .09 69 1.46 198 5 .02 17 1160 41 1 1 10 25 .13 6 97.3 1 104 35 4 1 1.53 7 56 .1 1 .27 .1 12 85 68 3.60 5 .09 48 1.36 286 7 .03 29 1380 117 1 1 12 20 .18 5 117.1 1 106 15 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
G.2 L50E 450S G.2 L50E 500S G.2 L100E 025N G.2 L100E 075N G.2 L100E 125N	2.2 2.01
G.2 L100E 175N G.2 L100E 225N G.2 L100E 275N G.2 L100E 325N	1 2.01 9 71 .1 1 .42 .3 17 170 91 4.37 4 .19 80 1.87 338 4 .02 87 1800 13 2 1 12 29 .17 7 144.2 1 59 15 23 1 1.83 20 63 .1 1 .31 .1 20 94 205 5.18 4 .42 49 18.9 409 12 .02 47 650 36 2 1 12 29 .17 7 144.2 1 59 15 23 1 1.72 76 82 .6 1 .77 .1 23 81 376 6.12 4 .42 54 1.94 642 7 .01 46 460 35 3 1 17 33 .16 8 178.7 1 92 20 19 .1 1.98 8 74 .1 1 1.14 .1 20 51 195 5.22 5 .35 60 1.84 627 2 .02 26 1040 30 1 1 25 28 .22 7 148.3 1 67 10 5

PROJ: FRIENDLY LAKE

MIN-EN LABS - ICP REPORT 8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8

TEL:(604)327-3436		* * (ACT:ICP 31)
TEL:(604)327-3430		y y 1 78 Ho Au-fice
AG AL AS BA BE B1 CA CD CO CR CU FE GA	K LI MG MN MO NA NI P PB SB SN SR IN II	DOM DOM DOM POM POM POB POB

FILE NO: 7V-0698-SJ5+6+7+8

DATE: 97/09/30

SAMPLES PM AL AL SA R SE BL CA CD CD CR CD CD CR CD CD	TIN: JOHN BARAKSO	TEL:(604)327-3436 FAX:(604)327-3423 * * (ACT:1CP)
22 L11066 275N	SAMPLE	AG AL AS BA BE BY THE CALL OF THE PRINCIPLE OF THE PRINCI
6.2 1196 109h	G.Z L100E 375N G.2 L100E 425N G.2 L100E 475N G.2 L150E BLON	1 2.18 33 68 .1 1 .24 .2 20 134 87 5.09 5 .09 67 1.96 309 10 .02 68 770 22 3 1 10 28 .22 7 106.3 1 72 30 2 1 1.95 13 75 .1 1 .21 .1 18 105 38 3.74 4 .06 30 .92 682 2 .02 52 1210 20 2 1 11 20 .20 5 106.3 1 72 30 2 1 1.95 13 75 .1 1 .52 .2 19 236 100 4.52 4 .16 70 2.46 405 4 .02 107 1080 44 3 1 18 26 .23 6 121.7 1 75 30 1 2.24 10 57 .1 1 .52 .2 19 236 100 4.52 4 .16 70 2.46 405 4 .02 107 1080 44 3 1 18 26 .23 6 121.7 1 75 30 1 2.24 17 143 .1 1 .84 2.3 20 111 337 5.07 4 .16 84 1.67 491 7 .02 104 450 35 4 1 36 28 .16 7 123.0 2 153 50 1 1 2.54 17 143 .1 1 .84 2.3 20 111 337 5.07 4 .16 84 1.67 491 7 .02 104 450 35 4 1 36 28 .16 7 123.0 2 153 50 1 1 1.33 8 100 .1 1 .33 .3 12 56 61 3.00 4 .08 26 .78 255 3 .02 31 770 20 2 1 17 15 .13 4 77.5 1 86 25 1 1 1.33 8 100 .1 1 .33 .3 12 56 61 3.00 4 .08 26 .78 255 3 .02 31 770 20 2 1 17 15 .13 4 77.5 1 86 25 1 1 1.33 8 100 .1 1 .33 .3 12 56 61 3.00 4 .08 26 .78 255 3 .02 31 770 20 2 1 17 15 .13 4 77.5 1 112 30
6.2 L150E 550W	G.2 L150E 100N G.2 L150E 150N G.2 L150E 200N G.2 L150E 250N	-1 2.55 11 113 .1 1 .45 .5 23 89 281 4.73 4 .11 132 1.44 342 14 .02 79 890 25 3 1 10 24 .18 6 127.1 1 73 5 62 .1 2.03 11 62 .1 1 .27 .2 16 92 73 4.46 5 .09 39 1.39 247 47 .02 45 890 25 3 1 10 24 .18 6 127.1 1 73 5 62 .1 1.70 9 69 .1 1 .20 .1 10 59 41 4.15 4 .09 28 1.22 203 7 .02 21 880 20 3 1 10 22 .15 5 97.6 1 47 10 .1 1.70 9 69 .1 1 .20 .1 10 59 41 4.15 4 .09 28 1.22 203 7 .02 21 880 20 3 1 18 20 .16 5 95.2 1 92 15 .1 1.82 11 90 .1 1 .38 .5 18 134 68 3.69 3 .15 45 1.51 396 5 .02 76 820 22 3 1 18 20 .16 5 95.2 1 92 15 .1 1.82 11 90 .1 1 .38 .5 18 134 68 3.69 3 .15 45 1.51 396 5 .02 76 820 22 3 1 18 20 .16 5 95.2 1 92 15 .1 1.82 11 90 .1 1 .57 .1 23 311 61 5.27 5 .43 96 3.03 482 3 .02 173 810 30 4 1 25 30 .21 7 134.0 1 65 15 7
1. 2200E 1DIN	G.2 L150E 350N G.2 L150E 400N G.2 L150E 450N G.2 L150E 500N	1 1.87 22 103 .1 1 .20 .1 18 217 59 4.23 4 .12 70 .165 243 9 .02 47 810 38 2 1 9 27 .23 6 175.2 1 69 35 3 .1 1.95 22 78 .1 1 .19 .1 19 108 109 4.91 4 .31 58 2.00 399 6 .02 47 810 38 2 1 9 27 .23 6 175.2 1 69 35 3 .1 1.95 22 78 .1 1 .10 .1 29 366 288 6.86 6 .29 94 2.09 314 10 .02 38 1080 51 2 1 9 36 .22 9 193.0 1 85 40 .1 2.47 10 53 .1 1 .26 .2 18 81 230 6.66 6 .29 94 2.09 314 10 .02 38 1080 51 2 1 9 36 .22 9 193.0 1 85 40 .1 2.67 73 73 .1 1 .10 .1 29 366 288 6.86 4 .43 116 3.13 375 19 .03 182 950 24 6 1 8 38 .21 9 246.0 1 93 50 16 .1 2.67 73 73 .1 1 .10 .1 29 366 288 6.86 4 .43 116 3.13 375 19 .03 182 950 24 6 1 8 38 .21 9 246.0 1 93 50 16 .1 33 11 100 .1 1 .56 .9 12 71 75 3.03 3 .09 33 .98 408 6 .02 39 620 19 1 1 26 16 .13 4 86.9 2 77 65
6.2 L200E 330N	G.2 L200E 100N G.2 L200E 150N G.2 L200E 200N G.2 L200E 250N	1 2.46 14 79 .1 1 .28 .3 21 158 72 4.64 4 .14 58 1.97 279 5 .02 83 680 14 3 1 14 26 .17 6 113.2 1 58 20 .1 1.87 9 66 .1 1 .25 .2 21 53 134 5.22 4 .22 48 1.66 180 8 .02 25 1170 34 2 1 7 28 .17 7 119.2 1 58 20 .1 1.87 9 66 .1 1 .26 .4 17 131 89 4.44 6 .07 54 1.44 210 17 .02 79 860 21 3 1 14 24 .19 6 117.9 1 100 30 1 .1 2.21 15 79 .1 1 .26 .4 17 131 89 4.44 6 .07 54 1.44 210 17 .02 79 860 21 3 1 14 24 .19 6 117.9 1 100 30 1 .1 2.19 20 91 .1 1 .33 .2 21 179 61 4.17 3 .12 42 1.63 500 5 .02 97 840 18 2 1 15 23 .19 5 108.5 1 96 40 1 .1 2.19 20 91 .1 1 .33 .2 21 179 61 4.17 3 .12 42 1.63 500 5 .02 97 840 18 2 1 15 23 .19 5 108.5 1 96 40 1 .1 2.00 13 93 1 1 .50 .5 23 133 117 3.96 3 .20 57 1.61 603 10 .02 78 700 17 2 1 19 22 .19 5 108.1 2 87 45
G.2 L250E 100N 1 1.67 8 73 . 1 1 .38 .3 14 61 .84 .444 5 .15 30 .120 276 8 .02 26 1270 27 27 14 .23 1.19 5 132.9 1 .73 15 .20 .25 15 .20 .25 149 .25 .25 .25 .25 .25 .25 .25 .25 .25 .25	G.2 L200E 350N G.2 L200E 400N G.2 L200E 450N G.2 L200E 500N	1 2.20 12 68 1 1 .29 .5 22 305 33 4.48 5 .11 80 2.28 340 10 .03 135 940 29 3 1 15 26 .26 6 145.7 2 133 42 1 1 1.75 9 54 .1 1 .37 .1 14 131 73 4.06 5 .10 33 1.50 440 5 .02 49 720 27 1 1 14 22 .21 5 120.6 2 97 40 .1 1.75 9 54 .1 1 .56 .1 37 839 316 7.12 3 2.28 145 7.22 866 15 .02 390 590 50 8 1 30 45 .24 10 118.4 1 84 35 .1 3.97 26 79 .1 1 .56 .1 37 839 316 7.12 3 2.28 145 7.22 866 15 .02 390 590 50 8 1 30 45 .24 10 118.4 1 84 35 .1 2.64 8 72 .1 1 .54 .1 26 476 39 4.72 3 .32 76 4.44 386 7 .02 255 480 19 5 1 24 31 .23 6 117.1 1 81 45 .1 2.64 8 72 .1 1 .54 .1 26 476 39 4.72 3 .32 76 4.44 386 7 .02 255 480 19 5 1 24 31 .23 6 117.1 1 81 45 .1 2.64 8 72 .1 1 .57 .1 26 476 39 4.72 3 .32 76 4.44 386 7 .02 255 480 19 5 1 24 31 .23 6 117.1 1 81 45 .1 2.64 8 72 .1 1 .57 .1 26 476 39 4.72 3 .32 76 4.44 386 7 .02 255 480 19 5 1 24 31 .23 6 117.1 1 81 45 .1 2.64 8 72 .1 1 .57 .1 26 476 39 4.72 3 .32 76 4.44 386 7 .02 255 480 19 5 1 24 31 .23 6 117.1 1 81 45 .1 2.64 8 72 .1 1 .57 .1 26 476 39 4.72 3 .32 76 4.44 386 7 .02 255 480 19 5 1 24 31 .23 6 117.1 1 81 45 .1 26 476 39 4.72 3 .32 76 4.44 386 7 .02 255 480 19 5 1 24 31 .23 6 117.1 1 81 45 .1 26 476 39 4.72 3 .32 76 4.44 386 7 .02 255 480 19 5 1 24 31 .23 6 117.1 1 81 45 .1 26 476 39 4.72 3 .32 76 4.44 386 7 .02 255 480 19 5 1 24 31 .23 6 117.1 1 81 45 .1 26 476 39 4.72 3 .32 76 4.44 386 7 .02 255 480 19 5 1 24 31 .23 6 117.1 1 81 45 .1 26 476 39 4.72 3 .32 76 4.44 386 7 .02 255 480 19 5 1 24 31 .23 6 117.1 1 81 45 .1 26 476 39 4.72 3 .32 76 4.44 386 7 .02 255 480 19 5 1 24 31 .23 6 117.1 1 81 45 .1 26 476 39 4.72 3 .32 76 4.44 386 7 .02 255 480 19 5 1 24 31 .23 6 117.1 1 81 45 .1 26 476 39 4.72 3 .32 76 4.44 386 7 .02 255 480 19 5 1 24 31 .23 6 117.1 1 81 45 .1 26 476 39 4.72 3 .32 76 4.44 386 7 .02 255 480 19 5 1 24 31 .23 6 117.1 1 81 45 .1 26 476 39 4.72 3 .32 76 4.44 386 7 .02 255 480 19 5 1 24 31 .23 6 117.1 1 81 45 .1 26 476 39 4.72 3 .32 76 4.44 386 7 .02 370 50 50 8 1 30 45 .24 10 118.4 10 118 10 118 10 118 10 118 10 118 10 118 10 118 10 118 10 118 10 118 10 118 10
G.2 L250E 450N	G.2 L250E 100N G.2 L250E 150N G.2 L250E 200N G.2 L250E 250N	1 1.67 8 73 .1 1 .38 .3 14 61 84 4.44 5 .15 30 1.20 276 8 .02 26 1270 27 2 1 14 23 .19 5 132.9 1 73 15 .1 1.59 7 56 .1 1 .29 .3 13 66 55 4.04 5 .08 33 1.00 162 14 .02 31 540 18 2 1 11 21 .19 5 132.9 1 73 15 .1 1.59 7 56 .1 1 .28 .5 17 109 106 4.37 4 .12 53 1.47 251 5 .02 59 820 31 4 1 13 24 .17 5 120.5 2 170 10 .1 2.22 14 70 .1 1 .28 .5 17 109 106 4.37 4 .12 53 1.47 251 5 .02 59 820 31 4 1 13 24 .17 5 120.5 2 170 10 .1 2.65 21 126 .1 1 .40 .9 25 149 531 4.57 4 .11 86 1.45 536 15 .02 149 450 27 4 1 18 25 .19 6 113.3 2 181 45 .1 1 .40 .9 25 149 531 4.57 4 .11 86 1.45 536 15 .02 149 450 27 4 1 18 25 .19 6 113.3 2 181 45 .1 1 .39 .4 15 131 90 4.41 5 .14 35 1.61 277 6 .02 61 590 47 3 1 15 24 .20 5 135.6 1 107 30
G.R.2 L250E 075N G.R.2 L250E 125N G.R.2 L250E 225N G.R.2 L250E 275N G.R.2 L250E 325N G.R.2	G.2 L250E 350N G.2 L250E 400N G.2 L250E 450N G.2 L250E 500N	1 1.77 10 64 .1 1 .42 .4 14 94 62 3.92 5 .07 74 1.02 24 12 02 53 770 90 4 1 10 27 .19 6 156.4 1 62 40 .1 1.59 21 49 .1 1 .18 .1 15 131 164 5.05 5 .21 58 1.79 237 22 .03 53 770 90 4 1 10 27 .19 6 156.4 1 62 40 .1 1.59 21 49 .1 1 .28 .1 18 221 72 4.53 4 .15 53 2.18 334 4 .02 105 660 17 3 1 15 26 .24 6 131.2 1 91 35 .1 1 2.1 1 .28 .1 16 142 68 4.73 6 .07 60 1.63 231 3 .03 52 760 27 2 1 9 25 .28 6 145.5 1 65 30 .1 1 .73 13 53 .1 1 .28 .1 16 142 68 4.73 6 .07 60 1.63 231 3 .03 52 760 27 2 1 9 25 .28 6 145.5 1 65 30 .5 1 1 1 .74 10 .25 .5 1 2.08 1.6 10 43 565 2.47 1 .07 25 .50 759 15 .02 50 1490 14 2 1 88 12 .05 3 49.0 1 63 200
G.R.2 L250E 325N	G.R.2 L250E 075N G.R.2 L250E 125N G.R.2 L250E 175N G.R.2 L250E 225N	1 1.58 10 153 .2 1 1.71 1.2 15 58 444 2.97 2 .16 25 .86 627 12 .02 50 950 14 2 1 66 16 .07 4 70.4 1 65 135 1 1 .32 8 111 .1 1 .79 .6 12 52 171 3.08 2 .09 33 .66 385 7 .02 37 490 10 1 1 32 15 .12 4 87.4 1 56 75 1 1.32 8 111 .1 1 .18 .7 11 48 152 3.06 3 .07 44 .59 489 14 .03 35 630 9 1 1 49 15 .11 4 73.9 1 76 105 1 1 1.63 10 149 .1 1 1.18 .7 11 48 152 3.06 3 .07 44 .59 489 14 .03 35 630 9 1 1 49 15 .11 4 73.9 1 76 105 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
G.R.2 L300E 050N	G.R.2 L250E 325N G.R.2 L250E 375N G.R.2 L250E 425N G.R.2 L250E 475N	1 2.36 12 103 .1 1 .32 .1 23 147 245 4.75 4 .63 70 2.48 357 6 .02 68 670 16 3 1 14 27 .24 6 167.6 1 60 25 2 1 1 1.98 5 57 .1 1 .29 .1 20 163 105 4.84 5 .34 63 2.11 340 6 .02 56 760 16 1 1 8 27 .23 6 159.0 1 74 15 1 1 1.98 5 57 .1 1 .29 .1 20 163 105 4.84 5 .34 63 2.11 340 6 .02 56 760 16 1 1 8 27 .23 6 159.0 1 74 15 1 2.33 13 85 .1 1 .17 .1 22 178 159 4.91 4 .19 89 2.25 282 6 .02 91 610 13 3 1 11 29 .20 6 172.6 1 71 25 1 2.33 13 85 .1 1 .17 .1 22 178 159 4.91 4 .19 89 2.25 282 6 .02 91 610 13 3 1 11 1 14 38 .27 8 307.0 2 118 65 1 1 3.24 306 33 .1 1 .27 .1 39 684 198 6.20 3 1.15 143 5.07 471 7 .01 369 580 13 11 1 14 38 .27 8 307.0 2 118 65 1 1 3.24 306 33 .1 1 .53 .6 19 85 103 3.84 2 .17 43 1.38 611 9 .02 47 440 16 3 1 22 22 .13 5 98.9 1 76 40
	G.R.2 1300E 050N G.R.Z 1300E 100N	5 2.72 15 199 .1 1 1.37 1.9 15 80 388 4.21 4 .19 50 .89 547 15 .02 79 900 16 3 1 65 22 .12 5 86.8 1 122 199 1 1 2.37 18 151 .1 1 .74 .9 19 94 215 4.52 3 .18 57 1.21 683 12 .02 68 440 18 3 1 36 24 .15 6 109.9 1 124 135 1 2.37 18 151 .1 1 .74 .9 19 94 215 4.52 3 .18 57 1.21 683 12 .02 68 440 18 3 1 36 24 .15 6 134.6 1 125 60
\mathbf{f}		

PROJ: FRIENDLY LAKE

ATTN: JOHN BARAKSO

MIN-EN LABS --- ICP REPORT

8282 SHERBROOKE ST.,

TEL:(604)327-3436

	NCOUVE FAX: (4				 	 	 	 	.,,			••••	T:1CP 31: Au-fire
	LI PPM	MG %	MQ PPM	NI PPM	PB PPM		TH	PPM	PPM	PPH	PPM	PPB	PPB

FILE NO: 7V-0698-SJ9+10+11+12

SAMPLE S/b L300 W			CD CO CR CU FE C	GA K LI MG PM % PPM %	PPM PPM % PPM PP	P PB SB SN SR T M PPM PPM PPM PPM PPM	4 % PPM PPM PPI	ZN Hg Au-fire
G.R.2 L300E 200N G.R.2 L300E 250N G.R.2 L300E 300N G.R.2 L300E 350N	.1 1.41 9 .1 2.28 14 .1 1.71 19 .1 1.93 7	70 1 1 48	.3 10 52 46 3.37 .3 25 168 110 4.31 .3 20 98 112 4.21 .2 14 59 66 3.51 .1 13 46 80 3.63	3 .20 48 1.84 2 .19 32 1.47 5 .08 39 .83	141 9 .02 24 31 730 4 .02 98 69 555 5 .02 54 89 177 4 .02 29 111 165 3 .02 22 61	0 18 3 1 28 2 0 17 3 1 23 2 0 14 2 1 10 1 0 12 2 1 6 1	9 .20 4 136.1	1 72 85 4 1 134 60 16 1 85 50 18 1 89 65 3 1 47 40 5
G.R.2 L3001 400N G.R.2 L3001 450N G.R.2 L3001 500N G.R.1 L500E 050N G.R.1 L500E 150N G.R.1 L500E 250N	.1 2.03 13 .1 1.85 10 .1 1.97 24 1 .1 1.38 23	89 .1 1 .20 57 .1 1 .24 13 .1 1 1.20 90 2.2 1 1.43 91 .1 1 .39	.1 16 77 198 4.45 1 15 62 182 4.57	4 .14 64 1.52 4 .21 34 1.32 4 .15 35 1.49	315 11 .02 38 81 174 9 .02 26 100 505 9 .02 58 95 934 55 .02 119 90 217 4 .02 33 72	0 16 2 1 11 2 0 11 2 1 7 2 0 52 5 1 45 2 0 37 2 1 135 2 0 16 2 1 19 2	9 .05 8 70.3 0 .16 5 115.4	1 91 10 6 1 32 15 6 1 114 90 14 1 119 160 12 1 87 45 5
G.R.1 L500E 250N G.R.1 L500E 350N G.R.1 L500E 450N G.R.1 L500E 550N G.R.1 L500E 650N G.R.1 L500E 750N	.1 1.94 23 .1 1.99 10 1 .1 2.48 16 1	90 .1 1 .72 24 .1 1 .50 26 .1 1 .84 75 .1 1 .41 129 .1 1 .66	.5 24 106 137 4.88 .5 15 61 67 3.53 .7 17 120 145 4.83 .1 15 145 71 4.22 .7 21 95 184 4.40	3 .27 31 1.60 4 .08 33 .79 4 .23 50 1.59 4 .09 48 1.64 3 .15 48 1.41	821 5 .02 64 107 358 7 .02 37 30 495 8 .02 68 45 331 4 .02 66 66 635 5 .02 63 56	70 27 4 1 33 2 00 21 3 1 27 1 50 44 3 1 40 2 20 39 3 1 22 2 20 46 3 1 32 2	8 .12 4 84.9 6 .14 6 112.1 3 .16 5 109.9 4 .14 6 105.5	2 123 65 13 1 87 25 3 1 125 40 9 1 103 45 4 1 108 75 20
G.R.1 L500E 750N G.R.1 L500E 050S G.R.1 L500E 150S G.R.1 L500E 250S G.R.1 L500E 350S G.R.1 L600E BLON	.1 2.05 28 1	117 .1 1 .86 71 .1 1 .23 78 .1 1 .16 68 .1 1 .18 89 .1 1 .71	.6 26 137 162 5.09 4 8 44 26 3.54 .1 12 46 22 4.08 4 12 46 30 3.78 .4 21 95 123 4.63	3 .31 41 1.94 6 .05 18 .39 5 .03 20 .57 5 .05 24 .66 2 .21 30 1.52	855 6 .02 84 101 139 5 .02 18 30 348 2 .02 21 100 304 2 .02 20 81 767 6 .02 54 90	60 31 2 1 20 1 50 23 2 1 17 1 80 41 5 1 31 2	7 .14 4 97.5 9 .13 5 92.8 9 .14 5 95.1 5 .10 6 106.6	1 116 55 19 1 73 55 2 1 103 40 5 1 158 35 2 1 103 55 22 1 98 105 16
G.R.1 L600E 100N G.R.1 L600E 200N G.R.1 L600E 300N G.R.1 L600E 400N G.R.1 L600E 500N	.1 2.28 30 .1 1.37 9 .1 2.00 20 .1 2.99 16 3 .1 1.78 15	104 .1 1 .79 102 .1 1 .54 117 .1 1 .82 212 .1 1 .72 80 .1 1 .58	.1 28 113 113 5.62 .3 10 47 35 2.02 .9 18 91 294 4.77 .9 21 98 138 4.83 .2 14 72 68 3.75	4 .14 40 1.35 3 .09 30 1.29	253 7 .02 23 3 674 8 .02 59 11 1081 5 .02 69 5 409 4 .02 41 4	90 22 2 1 39 1 10 26 4 1 45 2 40 35 5 1 40 3 90 18 1 1 28	10 .07 2 74.5 P6 11 6 104.7	1 49 40 29 1 93 100 14 1 141 55 7 1 91 60 11 2 188 140 17
G.R.1 L600E 600N G.R.1 L600E 700N G.R.1 L600E 800N G.R.1 L600E 100S G.R.1 L600E 200S	.5 4.60 35 .1 .94 4 .1 2.30 19 .1 1.48 17 .1 2.04 22		1.7 23 118 407 7.43 .1 10 76 17 2.35 .8 19 84 210 4.69 .8 17 79 108 3.72 1.2 21 109 148 4.58		189 1 .02 33 5 816 7 .02 60 5 695 7 .02 48 8 1106 7 .02 61 9	90 25 1 1 14 5 50 44 4 1 33 5 40 42 3 1 56 30 60 4 1 44 5	13 .16 3 75.6 24 .11 6 105.7 19 .07 5 80.2 24 .09 6 101.4 19 .09 5 72.2	1 55 20 3 1 114 70 15 1 80 75 15 1 102 65 14 1 111 105 12
G.R.1 L600E 300S G.R.1 L600E 400S G.2 L50W 025N G.2 L50W 075N G.2 L50W 125N	.1 1.58 11 .1 2.38 9 .1 1.50 9 .1 1.84 11	82 .1 1 .48 64 .1 1 .23	1.0 15 65 132 3.59 .4 13 68 50 3.64 .1 14 80 81 4.03	4 .05 21 .68 3 .11 86 .97 4 .14 41 1.11 4 .09 46 1.07	206 3 .02 26 7 658 8 .02 65 3 219 3 .02 33 12 219 4 .02 39 10	000 28 2 1 62 80 23 1 1 14 50 18 2 1 33 70 14 1 1 25 140 15 2 1 12	17 .11	1 75 10 9 1 91 30 6 1 74 15 5 1 75 10 5
G.2 L50W 175N G.2 L50W 225N G.2 L50W 275N G.2 L50W 325N G.2 L50W 375N	.1 1.99 6 .1 2.34 10 .1 2.87 11 .1 3.02 13 .1 1.84 11	66 .1 1 .22 74 .1 1 .24 62 .1 1 .21 81 .1 1 .24 57 .1 1 .24	.3 16 127 42 3.52 .3 22 115 127 4.40 .1 24 194 172 4.58 .1 26 284 271 5.23 .1 16 126 58 4.41 .1 24 89 281 6.32	4 .13 55 1.14 4 .14 69 1.63 4 .10 79 2.46 4 .45 108 3.54 5 .09 38 1.58 5 .26 47 1.71	255 4 .02 65 10 306 4 .02 130 8 368 8 .02 154 5 209 10 .02 64 6	010 14 2 1 12 010 12 3 1 10 010 12 3 1 10 010 11 1 1 12	25 .18 6 115.0 27 .23 6 130.4 33 .26 7 165.7 25 .23 6 157.6 34 .16 8 255.4	1 133 15 9 1 108 20 7 1 106 20 9 1 71 10 6
G.2 L50W 425N G.2 L50W 475N G.2 L50W 025S G.2 L50W 075S G.2 L50W 125S	.1 2.54 15 .1 1.99 16 .4 1.98 16 .1 2.01 13	86 1 1 .34	.1 25 180 95 5.28 1.5 26 135 169 5.19 4.7 19 112 363 3.56 .1 15 143 61 4.31	5 .28 71 2.53 3 .39 42 1.97 1 .24 56 1.62 4 .12 62 1.63	310 10 .02 88 5 737 21 .02 70 6 786 44 .02 120 5 267 5 .02 68	540 9 2 1 16 540 32 2 1 44 910 68 4 1 56 540 25 2 1 20	30 .29	1 87 10 10 1 105 20 19 2 173 50 23 1 103 25 12 2 151 35 7
G.2 L50W 175S G.2 L50W 225S G.2 L50W 275S	.4 3.36 6 .2 3.00 13 .1 2.07 17	75 .1 1 .23 266 .1 1 .44 195 .1 1 1.23	_6 26 157 259 4.9 <u>1</u>	3 .26 86 1.81 2 .44 52 1.79	031 15 02 135	930 41 3 1 11 370 91 3 1 26 940 55 3 1 58	28 .22 6 99.7 27 .16 6 114.5 22 .14 5 121.8	2 152 50 12 2 99 60 15

COMP: BARAKSO CONSULTANTS LTD. PROJ: FRIENDLY LAKE

MIN-EN LABS - ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8

TEL:(604)327-3436 FAX:(604)327-3423

DATE: 97/09/30

FILE NO: 7V-0698-SJ13+14+15+16

* * (ACT:ICP 31)

ITN: JOHN BARAKSO	TEL:(604)327-3436 FAX:(604)327-3423
SAMPLE	AG AL AS BA BE BI CA CD CO CR CU FE GA K LI MG MN MO NA NI P PB SB SN SR TH TI U V W ZN Hg Au-fire
NUMBER G.2 L50W 325S G.2 L50W 375S G.2 L50W 425S G.2 L50W 475S G.2 L100W BLON	PPM % PPM PPM PPM PPM % PPM PPM PPM % PPM
G.2 1.100W 050N G.2 1.100W 100N G.2 1.100W 150N G.2 1.100W 200N G.2 1.100W 250N	1 1.58
G.2 L100W 300N G.2 L100W 350N G.2 L100W 400N G.2 L100W 450N G.2 L100W 500N	1 1.88 6 80 .1 1 .39 .1 21 109 183 4.55 5 .47 56 1.84 367 7 .02 52 800 12 2 1 13 23 .17 5 170.2 1 67 20 5 .1 1.26 9 53 .1 1 .39 .1 13 70 59 3.92 6 .11 29 1.24 192 9 .02 25 300 18 1 1 111 21 .27 5 170.2 1 67 20 5 .1 1.26 9 53 .1 1 .39 .1 13 70 59 3.92 6 .11 29 1.24 192 9 .02 25 300 18 1 1 111 23 .17 5 121.9 1 98 25 19 .1 2.27 12 77 .1 1 .26 .2 18 103 116 4.18 4 .11 34 1.30 325 6 .02 54 790 14 2 1 11 23 .17 5 121.9 1 98 25 19 .1 2.27 12 77 .1 1 .26 .2 18 103 116 4.18 4 .11 34 1.30 325 6 .02 153 440 9 4 1 16 29 .23 6 184.0 1 81 20 18 .1 2.66 23 110 .1 1 .27 .1 26 277 160 4.96 3 .36 89 2.97 280 5 .02 153 440 9 4 1 16 29 .23 6 184.0 1 81 20 18 .1 2.66 23 110 .1 1 .22 .1 19 147 173 5.33 4 .12 78 1.85 278 14 .02 73 1000 14 3 1 10 29 .19 7 143.6 1 173 130 14
G.2 L100W 050S G.2 L100W 100S G.2 L100W 150S G.2 L100W 200S G.2 L100W 250S	2 2 .05
G.2 L100W 300S G.2 L100W 350S G.2 L100W 400S G.2 L100W 450S G.2 L100W 500S	2 2 .43 18 137 .1 1 1.19 .7 20 191 229 4.66 2 .51 63 2.31 744 10 .03 111 810 31 3 2 18 5 97.9 1 132 90 9 1 19 2.91 12 219 .1 1 .67 2.4 21 97 225 4.29 3 .12 160 1.09 1218 20 .03 91 520 36 2 1 34 22 .18 5 97.9 1 132 90 9 1 19 2.91 12 219 .1 1 .67 2.4 21 97 225 4.29 3 .12 160 1.09 1218 20 .03 74 800 41 2 1 25 22 .20 5 110.5 1 119 5 2 1 1 1.66 10 152 .1 1 .57 .3 19 171 60 3.90 3 .24 50 2.05 871 7 .03 74 800 41 2 1 25 22 .20 5 110.5 1 119 5 2 1 1 1.66 10 152 .1 1 .57 .3 19 171 60 3.90 3 .24 50 2.05 871 7 .03 74 800 41 2 1 25 22 .20 5 110.5 1 119 5 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
G.2 L150W 025N G.2 L150W 025N G.2 L150W 025N G.2 L150W 125N G.2 L150W 125N G.2 L150W 225N	1 1.48
G.2 L150W 275N G.2 L150W 325N G.2 L150W 375N G.2 L150W 425N G.2 L150W 475N	1 1.87 19 117 .1 1 .75 .2 26 127 569 5.27 3 .87 5 .10 105 1.19 391 9 .02 95 460 18 2 1 31 20 .20 5 108.8 1 133 25 7 .1 1.93 11 158 .1 1 .73 .6 18 112 717 3.87 5 .10 105 1.19 391 9 .02 95 460 18 2 1 31 20 .20 5 108.8 1 133 25 7 .1 1.93 11 158 .1 1 .30 .1 25 151 331 5.02 5 .19 78 1.93 314 8 .02 88 370 15 3 1 16 27 .19 6 151.2 1 104 10 29 .1 2.40 17 112 .1 1 .30 .1 25 151 331 5.02 5 .19 78 1.93 314 8 .02 88 370 15 3 1 16 27 .19 6 151.2 1 104 10 29 .1 2.40 17 112 .1 1 .30 .1 25 151 331 5.02 5 .19 78 1.93 314 8 .02 298 480 6 5 1 17 38 .33 8 194.5 1 64 15 12 .1 3.61 12 51 .1 1 .40 .1 27 576 120 6.39 5 1.75 206 5.30 478 4 .02 298 480 6 5 1 17 38 .33 8 194.5 1 64 15 12 .1 3.61 12 51 .1 1 .40 .1 27 576 120 6.39 5 1.75 206 5.30 478 4 .02 398 480 6 5 1 17 38 .33 8 194.5 1 64 15 12 .1 3.61 12 .20 .20 5 151.4 1 48 25 1
G.2 L150W 0258 G.2 L150W 0758 G.2 L150W 1258 G.2 L150W 1758 G.2 L150W 2258	.1 1.71 18 71 .1 1 .64 .1 24 103 120 4.55 3 34 35 1.24 5169 44 .02 118 1090 47 3 1 56 34 .07 10 94.1 1 123 85 18 .7 1.72 21 246 2.7 1 1.00 3.3 28 83 218 7.40 1 .14 35 1.24 5169 44 .02 118 1090 47 3 1 56 34 .07 10 94.1 1 123 85 18 .7 1.7 1.7 21 246 2.7 1 1.00 3.3 28 83 218 7.40 1 .14 35 1.24 5169 44 .02 118 1090 47 3 1 56 34 .07 10 94.1 1 123 85 18 .7 1.7 1.2 1 246 2.7 1 1.00 3.3 28 83 218 7.40 1 .14 25 10 .1
G.2 L150W 2758 G.2 L150W 3258 G.2 L150W 3758 G.2 L150W 4258 G.2 L200W BLON	1 2.43 18 69 .1 1 .23 .1 20 143 114 6.19 5 .14 93 .50 1028 4 .02 109 740 197 3 1 35 32 .19 7 122.0 1 138 205 23 7 2.77 5 125 .4 1 1.00 .8 26 237 476 5.71 4 1.18 118 3.50 1028 4 .02 109 740 197 3 1 35 32 .19 7 122.0 1 138 205 23 1 2.77 5 125 .4 1 1.00 .8 26 237 476 5.71 4 1.18 118 3.50 1028 4 .02 109 740 197 3 1 35 32 .19 7 122.0 1 138 205 23 1 2.27 7 164.3 1 122 20 1 1 1 2.48 6 109 .1 1 .49 .1 36 176 94 5.78 5 1.06 66 3.14 828 2 .03 67 1040 96 2 1 12 33 .27 7 164.3 1 122 20 1 1 2 2 2 2 2 3 3 1 3 65 .1 1 .36 .4 24 201 116 5.17 4 .50 72 2.76 555 6 .03 89 790 96 2 1 14 28 .23 6 135.0 1 103 35 10 2 2 2 2 3 3 1 3 65 .1 1 .36 .4 24 201 116 5.17 4 .50 72 2.76 555 6 .03 89 790 96 2 1 14 28 .23 6 135.0 1 103 35 10 2 2 2 2 3 3 1 3 65 .1 1 .70 .3 15 76 95 3.76 3 .15 37 1.35 407 9 .02 41 600 11 2 1 30 20 .15 5 107.2 1 61 40 98 3 1 1 .70 .3 15 76 95 3.76 3 .15 37 1.35 407 9 .02 41 600 11 2 1 30 20 .15 5 107.2 1 61 40 98 3 1 1 .70 .3 15 76 95 3.76 3 .15 37 1.35 407 9 .02 41 600 11 2 1 30 20 .15 5 107.2 1 61 40 98 3 1 1 .70 .3 15 76 95 3.76 3 .15 37 1.35 407 9 .02 41 600 11 2 1 30 20 .15 5 107.2 1 61 40 98 3 1 1 .70 .3 15 76 95 3.76 3 .15 37 1.35 407 9 .02 41 600 11 2 1 30 20 .15 5 107.2 1 61 40 98 3 1 1 .70 .3 15 76 95 3.76 3 .15 37 1.35 407 9 .02 41 600 11 2 1 30 20 .15 5 107.2 1 61 40 98 3 1 1 .70 .3 15 76 95 3.76 3 .15 37 1.35 407 9 .02 41 600 11 2 1 30 20 .15 5 107.2 1 61 40 98 3 1 1 .70 .3 15 76 95 3.76 3 .15 37 1.35 407 9 .02 41 600 11 2 1 30 20 .15 5 107.2 1 61 40 98 3 1 1 .70 .3 15 76 95 3.76 3 .15 37 1.35 407 9 .02 41 600 11 2 1 30 20 .15 5 107.2 1 61 40 98 3 1 1 .70 .3 15 76 95 3.76 3 .15 37 1.35 407 9 .02 41 600 11 2 1 30 20 .15 5 107.2 1 61 40 98 40 10 10 10 10 10 10 10 10 10 10 10 10 10
G.2 L200W 050N G.2 L200W 100N G.2 L200W 150N	.3 1.72 10 dd .7 7.12 10 dd .7 7.12 10 10 12 10

COMP: BARAKSO CONSULTANTS LTD. PROJ: FRIENDLY LAKE

MIN-EN LABS - ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8

TEL:(604)327-3436 FAX:(604)327-3423

FILE NO: 7V-0698-SJ17+18+19+20 DATE: 97/09/30

* * (ACT:1CP 31)

MIN-EN LABS -- ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8

#1LE NO: 7V-0697-RJ1 DATE: 97/10/02

PROJ: FRIENDLY LAKE ATTH: JOHN BARAKSO

TEL: (604)327-3436 FAX: (604)327-3423

* Soil * (ACT: ICP 31) }

AMPLE UMBER	AG PPM	AL X	AS PPH	BA PPM	BE PPM	BI PPH	CA X	ÇD PPM	CO PPH		CU PPM	X	GA PPM	~	004	MG X	PPM F	MO I	X PI	PM F	'PM P	PB PM P	58 S PM PP	N SR M PPM	PPM	7.	PPM	PPM	PPM	PPM I	PB	rfire PPB
38301 38302 38303 38304 38305	:1	.52 .01 .08 .11	36 4 6 2 7	292 335 115 202 160	31.3 9.9 4 .6	9	2.43 >15.00 1.09 7.83 2.65	1. 2. 1.2 8.	9 15 2 14 20	20 11 26 113 52	1 9 765	>15.00 9.73 1.21 4.03 4.10	13 1 1	.07 .02 .07 .12 .08	8 1 1 32 3. 6 1.	16	1993 0000 271 1189 786	81 11 1 . 1 . 9 .	02 01 02 01 01	26 7 76 1 14 74 6 35 9	70 00 40 70 250	34 15 32 50 55	2 2 3 2	1 318 1 678 1 32 1 315 1 164	38 8 25 21	.01 .01 .01 .01	14 1 5 5	78.4 9.4 22.6 144.8 72.9	2	16 116 77	70 65	5 3 38 1 16
38306 38307 38308	-1 -1 -1	.20 .07 .09	3 3 3	140 257 218	.3 .1 .2	1 1 2	2.89 2.49 2.67	1.3	15 9 14	58 60 41	847 798 2322	3.96 2.38 3.10	1	.23 .08 .11	69 1. 2 19 1.	61 97 15	527 397 371	4 · 31 ·	02 01 01	23 17 22 1	770 770 190	24 14 36	3 3 3	1 115 1 76 1 114	24 13 17	.02 .01 .01	5 3 4	149.8 72.3 85.2	1	62 32 62	55 65 95	6 5 30
								. 	···					**.*								•										
												, ,								<u> </u>												
·				· ·								<u> </u>					··										**************************************	· · · · · · ·	-			· - -,·
					<u>-</u>	 -						·											tomur		- · • • • • • • • • • • • • • • • • • •						, .	
											-		. , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						, _{V-}			•										
			. 			 -									. <u> </u>			<u>. </u>		17E -												
	<u></u>	 			_			· · · · · · · · · · · · · · · · · · ·															. عردڪيني					••				
																										•	· · · · · · · · · · · · · · · · · · ·					<u>-</u>
																					<u></u>			· · · · · · · · · · · · · · · · · · ·			T					

COMP: BARAKSO CONS. _(ARTS LTD.)

PROJ: FRIENDLY LAKE

ATTN: JOHN BARAKSO

MIN-EN LABS - LCP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8

1EL:(604)327-3436 FAX:(604)327-3423

FILE NO: 7V-0698-SL1+2+3+ DATE: 97/10/0 🖳

* * (ACT: ICP 31

MITHE DUM BARAKSO																																		_ 1'
SAMPLE NUMBER	AG PPH	AL X	AS PPK	BA PPN	BE PPM 1	B PPM		CD PPK	CO PPN		CU PPH	FE X	GA PPM		L I PPM		KN PPM	MO PPK	HA X		P PPH		SB PPM		SR PPM	TH PPM	T] %	U 1499	V PPH	и РР И	ZN PPM		u-fire PP 6	- 1
G.2 LOE BLON G.2 LOE 050N G.2 LOE 100N G.2 LOE 150W G.2 LOE 200N	.2	1.62 1.23 1.81 1.77	10 3 14 17	50 52 55	1.2 .1 .1 .1	104	.61 .21 .20 .28 .23	6.3 .2 .2 .1	14 14	70 118 96 54	2129 27 9 123 72	11.39 3.98 2.32 4.21 3.69	6 5 5	.21 .07 .09 .11	36 23 45 34	99 1.09 1.34	3318 193 111 223 202	3 4 9 4	.01 .02 .20 .20 .03	34 59 46 32	1640 400 750 1250	5061 22 12 33 25	Ž	1 1 1 1	69 10 10 15 11	21 14 23 19		5 3 5 5	109.4 91.4	2 1 1 1	158 91 33 60 71	30 25	1474 18 13 14 9	1997 13
G.2 LOE 250N G.2 LOE 300N G.2 LOE 350N G.2 LOE 400N G.2 LOE 450N	.1	1.92 2.05 2.04 2.48 1.36	13 10 12	51 77	.1	1 1 1 1	.48 .44 .23 .19 .34	.1 .1 .2 .1	19 22 13	178 181 131 133	245 140 127 174 56	4.88 5.19 5.06 4.71 3.61	6 7 6 5	.10 .08	72 57 65 32	1.92 2.06 2.21 1.65 1.34	513 385 300 328 152	6 9 12	.02 .02 .02 .01	84 64 61	590 730 770 200	36 29 16 18 12	2 2 3 2	1 1	17	28 29 25 20		7 6 6 4	143.5 153.0 150.3 130.7 129.2	1 1 1	64 67 76 124 43	40	18 11 7 12 7	₩ ₩
G.2 LOE 500N G.2 LOE 050S G.2 LOE 100S G.2 LOE 150S G.2 LOE 200S	2.1 2.1	2,30 .10 1.74 2.42 2,28	1 17 5 11	61 233 160 47	8.2 2.0 2.1	1	.17 .24	4.3	16	98 189 148	51 12 275 52 52 95	4.85	1 6 5	25	43 133 79	4.08 2.41	338 8301 >10000 355 379	299 43 82 4	.02 .03 .02	399 245 37 57	470 940 1060 1080	10 51 66 294 49	2	1 1 1	ŢĬ	56 31 36 29	.26 .01 .07 .22 .19	18 8 7		1 10 2 1 2	92	105 30	5 15 18 4 8	
G.2 LOE 2508 G.2 LOE 3008 G.2 LOE 3508 G.2 LOE 4008 G.2 LOE 4508	3.9 .2 1.1 .4	2,55 2,30 2,50 2,81 1,36	13 6 8 5	250	.1 .4 .1 .1	1 1 1	.11 .34 .24	5.0 5.1 8. 1.	18 21	251 102 213 146 124		7.43 2.81 5.60 4.18 3.14	1 5 3	. 13 . 65	47 111 88	4.34 1.10 3.23 1.95 1.58	2942 737 546 430 281	34 3 10		117 72 87	460	417 57 61 41 40		1 1 1	32 68 6 16 10	33 24 18	.19	4	106.9	1 2 2 1	176	225 20	7 20 5 9 7	3
G.2 LOE 500S G.2 L50E 025N G.2 L50E 075N G.2 L50E 125N G.2 L50E 175H	.1 .3 .5	2.38 1.82 2.03 1.54 1.38	14 12 14	139	.1	1 1 1 1 1	.27 .36 .21 .61	.1 .3 .2 1.4	18 19	187 73 113 78 68	78 90 118 445 53	4.85 3.63 3.67 3.47 3.37	4 3	.60 .07 .21 .16	36 43 36 31		506 270 277 313 264	6 5 5	.02 .01 .01 .01	67 56	620 710 500	71 15 16 29 21		1 1 1		19 21 19	. 15	65544	107.3 82.7 98.1 88.7 95.5	2 1 1 1 1	121 85 84 73 63	15 5 20 45 20	6 15 17 39 6	H
G.2 150E 225N G.2 150E 275N G.2 150E 325N G.2 150E 375N G.2 150E 425N		1.64 1.84 2.02 1.73 2.54	13 11 15	83 48 69	-1	1 1 1	.24 .31 .37 .20	.1 .1	20 21 14	105 119 172 53 206	125 148 86 81 199	4.15 4.66 4.34 3.57 5.18	5 4		51 51 32 112	1.59 1.86 2.14 86 2.59	290 620 243 183 273	4 3 4	.02 .02 .02 .01	59 94 33	740 540 1260	22 26 15 27 25	2 2 3	1	12 12 15 10 11	26 24 19	.19 .21	5	110.4 136.2 127.3 86.4 156.5	1 1 1 1	63 67 64 76 83	15 10 10 20 5	13 7 3 7 18	
G.2 L50E 475N G.2 L50E 025S G.2 L50E 075S G.2 L50E 125S G.2 L50E 175S	1.1	1.54 1.91 2.08 1.74 1.16	15 26 20	55 145 103 158 254	.1 .1 3.6	1 1 1	.97 1.09	3.1 1.0 4.8 2.4	21 41	175 129 204 105 50	44 456 426 269 1120	3.57 4.03 3.69 7.43 3.09	3 2	. 10	54 44 45	1.47 1.54 2.12 1.35	296 720 1002 4633 213	8 26 28	.02 .20. 20. 20.	103 152 220	640 980 660		2 4 4	1	53 101	23 23 37	.12 .13 .08	5		1 2 1 1	46 227 139 128 86	95	4 20 33 9 18	
G.2 L50E 2258 G.2 L50E 2758 G.2 L50E 3258 G.2 L50E 3758 G.2 L50E 4258	1.1 2.0	.21 2.85 1.54 2.40 2.52	11 10	71 257 63 114 153	.1	1 1 1	2.67 .72 .19 .67 .63	.2 .6 .2	19 12 21 27	136	388 84	4.32 4.44 4.55 4.70 4.53	5 6 5	.08 -46 1.22	70 90 113 122	.08 1.80 1.28 1.28 2.87 2.78	311 492 263 395 561	9 5 12	.16 .02 .02 .02 .03	91 34 115	580 1160 390	48	1 2	1 1 1		25 24 29	.01 .18 .16 .21	6	32.3 100.1 108.5 110.6 105.6	1 2 1 1 2	19 113 92 124 128	25 60	5 10 2 7 9	
G.2 L5DE 4758 G.2 L1008 BLON G.2 L100E 050N G.2 L100E 100N G.2 L100E 150N	1 .4	1.81 1.81 2.24 1.84 2.15	12 13 24	149 98 114	.1	1 1 5 7 7	.49 .34 .17 .43	.4 .5 .1 .3	14 15 24 19	89 147 159	60 235 65 305 130	3.51 3.90 4.94 5.45 5.21	6 6	. 06 . 60	5 49 5 58	2.18 71.16 71.06 71.06 71.08 71.88	366 215 211 627 289	5 5 8	.03 .01 .01 .01	47 41	540 1890 790	25	1 2 2		8 19	21 25 32	.15 .15 .15	7	97.2 96.7 122.2 135.7 136.0	1 2 2 1	109 145 147 77 97	40 25 20 25 10	3 6 4 30 9	504
G.2 L100E 200N G.2 L100E 250N G.2 L100E 300W	2,	1.85 1.93 1.85	13	106	-,1	1	.24 ,37 .51	_1	22	57 129 186			5	.27	53	2 .59 3 1.79 1 2.47	213 408 420	4	.01 .02 .02	68			Ī	1		26	. 10 . 19 . 20		80.1 122.7 140.7	1	76 77 65	50 25 10	14 22 7	327 04K
			•••••												-, ,										· · · - · · ·		·······						<u> </u>]

COMP: BARAKSO CO. LIANTS LID.

PROJ: FRIENDLY LAKE

ATTH: JOHN BARAKSO

MIN-EN LABS - ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8

TEL:(604)327-3436 FAX:(604)327-3423

FILE NO: 7V-0698-SL5+6+7+8 DATE: 97/10/07 🗇

* * (ACT: (CP 31)

V W 2N Hg Au-fire CA CD CO CR CU FE GA K L1 MG HN HO NA NI P PB SB SN SR TH T1 U BA BE BI SAMPLE AL PPM PPM PPM PPB X PPM PPM PPM PPM PPM PPM PPM % PPM × PPH PPM PPM PPH % PPM PPM PPM PPM X PPM X PPM X PPH PPN PPM NUMBER .02 32 1350 23 5 103.9 21 8 21 .39 69 4.18 .06 32 .94 320 .2 1.63 16 64 G_2 L100E 350N ÚĎ. 7 .02 113 840 42 10 26 .21 38 .24 6 128.8 90 .09 66 2.11 316 G.2 L100E 400N .2 2.05 25 55 -21 -34 20 228 133 4.51 Ż 15 88 59 .01 203 840 109 13 8 173.7 .59 105 3.17 583 G.2 L100E 450N .4 3.19 98 51 1 29 232 144 6.53 29 .23 81 3 .02 249 560 17 6 115.3 5 -24 28 445 77 4.50 24 111 258 4.89 .15 134 4.12 298 14 G.2 L100E 500N 0 54 .1 .1 28 445 .1 3.27 1 42 ŹÒ. 26 6 123.5 10 18 62 1.97 542 5 .02 67 940 . 15 1 117 .1 2.02 64 .1 .46 .5 .35 16 G.2 L150E 025N įō .40 .25 15 19 .16 101.9 63 15 10 . 15 47 1.08 277 8 .02 39 670 27 1 5 .3 1.47 13 75 .1 .4 14 67 106 3.66 G.2 L150E 075N 38 540 1 11 14 .16 3 88.4 .11 19 .84 167 4 .02 20 14 48 35 2.81 G. 2 L150E 125N .1 .96 41 .1 10 27 .14 87 25 .33 71 217 5.16 5 14 01 41 680 93 16 6 164.6 .2 16 .24 63 1.66 436 G.2 L150E 175N .4 1.91 12 73 .1 25 287 53 930 60 12 25 .15 6 102.3 1 98 23 . 1 49 1.40 6 .01 1D 114 . 25 .4 18 89 155 4.55 5 .10 G.2 L150E 225N ,1 2.08 18 ,14 20 52 450 18 13 58 5 4 26 1.18 236 3 -02 4 89.8 .30 14 104 40 3.21 .10 .1 1.35 11 64 .1 G.2 L150€ 275N 53 .27 .27 .37 196 5 35 .42 57 1.91 304 6 .02 42 740 21 9 29 .20 133.0 15 4 18 94 6 .1 2.13 75 .1 8 G.2 L150E 325N 402 5 .02 7 .02 .02 107 810 137 1 13 35 .29 .24 8 132.2 112 20 21 269 134 5.92 .62 97 3,48 13 81 6 .1 2.62 - 1 G.2 L150E 375H 1 28 35 B 137.1 20 -1 .91 46 2.46 402 56 860 63 39 3 15 174 100 6.32 6 .2 2.16 8 127 G.2 L150E 425W 7 .02 26 1170 24 13 24 .20 5 121.8 45 5 42 1.51 234 1 Ř 13 77 123 4.42 -10 .1 1.73 72 .1 - 26 -1 G.2 L150E 475N 5 .02 60 600 19 2 24 21 .12 5 2 123 25 9 .09 45 1.39 484 1 89.7 16 100 111 3.76 10 108 -46 -4 G.2 LZ00E 025H .3 1.87 .01 <u>23</u> 75 40 15 .50 79 2.82 -11 30 .93 426 5 40 630 18 15 .10 69.1 100 13 .2 1.24 11 G.2 L200E 075N 9 55 16 3.27 .04 19 .52 151 3 .01 24 1070 19 10 16 .12 79.4 73 25 10 6 .5 1.53 56 G.2 L200E 125N .05 20 -91 188 3 .01 52 800 14 B 16 .13 79.9 47 10 56 .1 .16 11 101 32 2 94 .1 1.32 6 G.2 L200E 175N 19 .12 55 3 49 .06 30 1.13 279 5 .01 46 1110 15 12 87.3 1 83 25 13 87 4 .1 1.68 12 59 .22 .4 G.Z L200E 225X .3 20 160 120 4.01 4 .13 64 1.84 372 10 .02 92 940 21 14 24 .16 5 108.5 1 95 35 15 73 . 28 .1 2.19 14 .1 G.2 L200E 275N 13 17 5 . 10 43 1.79 392 4 .07 91 940 15 108.9 105 1 1.91 12 91 .30 .5 21 153 247 4.04 G_2 L200E 325N 13 23 .22 59 11 260 6 .02 63 330 31 5 125.3 10 49 . 34 16 161 101 4.20 6 .12 58 1.45 50 .5 1.61 .1 .1 G.2 L200E 375N 14 .02 211 83D 121 28 40 .20 9 136.5 85 36 373 374 6.59 5 1.18 108 3.94 890 40 36 21 100 .1 .72 1 .4 2.57 G.2 1200E 425N 16 97 136 4.92 30 98 444 5.60 .40 .38 B .02 980 30 15 27 .18 6 130.6 50 20 11 10 117 .1 6 45 1.77 47 .1 1.83 .1 G.2 L200E 475K 59 31 . 12 934 12 .02 70 950 1 32 1 105 65 30 40 1.69 7 117.1 .3 1.83 ŻŠ. 13B -60 -9 G.2 L250E 025N 34 1.49 18 .7 .45 797 10 .01 50 1070 26 28 .11 7 112.1 1 86 45 .59 27 70 506 5.17 .4 1.51 18 113 G.2 L250E 075N 29 .18 24 .13 55 1.67 58 79 12 7 123.0 98 40 .40 25 111 190 5.35 . 13 332 6 .02 920 12 G.2 L250E 125H .4 2.41 68 420 62 990 20 18 9ž 33 5 102.6 40 .1 1.91 19 65 .37 18 111 100 4.31 .17 36 1.74 4 .01 1 1 G.2 L250E 175N .1 17 .14 78 15 11 26 .87 **251** 4 .02 35 1170 20 1 12 4 94 5 5 -07 G.2 L250E 225N .1 1.48 11 65 . 23 11 77 41 3.35 .61 1.3 18 95 486 4.37 5 .09 81 .86 375 10 .02 88 430 38 31 22 .14 5 103.3 1 122 65 46 159 G.2 L250E 275N 1.6 2.03 20 12 .02 34 29 .23 .48 .4 23 122 165 5.40 -25 -12 77 1.79 352 65 610 17 7 142.1 96 G.2 L250E 325N .3 2.13 15 61 53 .27 20 149 158 5.09 68 1.85 356 5 .02 77 840 13 28 .20 6 122.7 118 55 18 4 2.25 15 57 .4 .2 -1 G.2 1250E 375N 3 .02 960 39 21 .17 26 .18 5 114.0 75 35 37 .23 14 116 99 3.87 5 .08 27 1.25 285 53 1 10 1 4 4 1.40 7 .1 G.2 L250€ 425N 27 .25 .1 17 123 90 4.71 .09 50 1.76 265 6 .02 59 740 2 14 124.2 65 20 25 G.2 L250E 475N .1 1.96 20 87 .1 ž 20 13 .02 710 38 22 .12 97.4 97 95 .6 2.04 .86 17 91 255 4.05 .26 42 1.42 674 61 14 1 16 145 _1 -6 G.R.Z L250E BLON 1 1.22 1.8 .17 .98 1117 19 .03 99 1030 21 22 .11 133 140 32 19 52 85.8 G.R.2 L250E 050N 2.2 2.86 16 262 .6 83 873 4.32 6 .98 992 15 19 83 606 3.96 41 11 .02 86 1000 19 58 21 .10 5 74.1 91 145 G.R.Z L250E 100N 1.5 2.41 16 241 .3 1 1.30 1.5 . 17 44 1 1.19 1.4 50 192 3.09 4 .06 .56 189 14 .02 33 330 14 54 15 .09 66.9 77 95 50 .4 1.57 10 173 .1 10 G.R.2 L250E 150N 39 90 35.9 27 160 .32 969 18 .02 1560 2 Я 1.4 1.04 5 200 .2 1 2.59 1.3 6 24 246 1.33 .04 16 7 .03 G.R. 2 L250E 200N .07 17 .02 820 15 14 .08 65.4 63 175 15 2.4 1.68 9 164 _5 1 1.01 1.5 12 45 515 2.87 44 .56 1458 54 42 4 G_R.2 1250E 250N 7 49 389 2.97 95 .57 1378 12 .02 72 450 36 15 .12 68.4 99 105 2.1 14 .05 14 1.7 1.91 10 G.R.2 L250E 300H 164 .01 1180 8 177.8 .59 111 2.87 10 14 35 .27 .1 2.59 37 110 341 5.97 368 58 75 15 G.R.2 L250E 350H 89 .32 .52 10B 2.51 412 3 .02 99 570 10 11 30 .26 25 .27 23 168 135 5.06 6 193.5 68 G.R.2 1250E 400M .2 2.27 62 .1 6 13 2 .01 880 29 22 .18 5 122.5 55 . 19 78 104 4.20 .05 40 1.16 323 44 8 76 .1 2.23 11 62 .1 16 G.R.2 L250E 450K .09 2 .01 45 1020 10 25 .19 6 122.3 60 .20 19 86 115 4.46 50 1.41 313 8 83 8 G.R.2 L250E 500H .1 2.74 12 80 .1 52 1.00 52 77 1.13 1.1 17 70 247 3.80 3 .12 707 13 .02 64 440 18 2 1 20 5 74.1 1 160 120 18 12 193 .1 .9 2.51 1 G.R.Z £300£ 025N . 16 15 .02 13 64 411 3.67 4 37 .72 570 63 980 17 1 18 .08 5 71.0 102 255 18 1 1.8 2.25 15 186 1 1.72 2.0 G.R.2 L300E 075N 9 -02 310 5 12 146 1 .65 .6 16 75 207 3.71 3 .12 51 1.13 713 62 15 31 20 .12 90.5 1 80 70 18 . 1 G.R.Z L300E 125N .6 2.05 TU. 8

Ñ. $\bigcirc 1$ Ţ,

COMP: BARAKSU CONS

PROJ: FRIENDLY LAKE

ATTN: JOHN BARAKSO

HIS LID.

MIN-EN LABS — P REPORT 8282 SHERBROOKE ST., VANCOUVER, B.C. VSX 4E8

TEL:(604)327-3436 FAX:(604)327-3423

FILE NO: 7V-0698 __7+10+11+12

DATE: 97/10/07

•	(ACT:1CP 31)	5
7 U	an furfire	

WITH: JOHN BARAKSO							ICLA	(004734	_ , ,	30	TAA;	(004)	1321-	3423															. 😀
SAMPLE NUMBER	AG AL PPM %	AS B	BE E		CD PPM		CR CU PH PPN	FE X	GA PPM		L1 PPM	MG X		MO PPH	NA X	HI PPM	P PPK	PB PPM	SB PPH	SH PPM		TH PPM	T1 X	U PPM	V PPM	₩ ; PPM PI		Au⊸fire PPB]
G.R.2 L300E 175N G.R.2 L300E 225N G.R.2 L300E 225N G.R.2 L300E 325N G.R.2 L300E 375N	1.2 1.77 2.9 4.13 .1 1.79 .1 1.71 .4 2.59	15 90 72 324 15 5 16 66 12 9	1.4	1 .97 3 1.35 1 .33 1 .26 1 .20	.4 .9 .1 .1	33 1 14 19 1 19	76 124 42 559 77 48 16 137 73 242	10.08 3.90 3.78	5 6 5 4 7	.11 .26 .08 .21	43 35 40	1.06 1.28 1.10 1.61 1.33	2546 234 252	63 3 5	.02 .01 .01 .01 .01	106 41 68	430 1080 540 560 910	15 46 13 15 17	3 6 3 1 2	1 1 1 1	44 70 18 14 8	50 20 22	.12 .08 .12 .13 .20	5	96.2 211.0 93.1 103.6 159.6	2 1	33 75 23 445 24 40 58 35 72 65	6 32	7.667-
G_R_2 L300E 425N G_R_2 L300E 475N G_R_1 L500E BLON G_R_1 L500E 100N G_R_1 L500E 200N	.2 3.02 .1 2.62 .5 1.77 .6 1.42 .1 1.79	5 9 9 9 20 12 15 11 15 5	.1 3 .1 2.0	1 .25 1 .34 1 .92 1 1.21 1 .31	.1 .7 2.1 1	21 21	66 156 79 106 70 192	4.92 3.92 3.58	7 6 3 3 4	.61 .09 .15 .08	74 28 30	3.20 1.36 1.21 1.05 1.29	401 793 306	4 27	.02 .01 .02 .02 .01	97		37 40	22324	1 1 1 1	12 9 35 40 15	26 22 19	.36 .21 .08 .06 .11		119.4 139.9 87.9 70.3 98.3	1 1		12 10	12:52
G.R.1 L500E 300N G.R.1 L500E 400N G.R.1 L500E 500H G.R.1 L500E 600H G.R.1 L500E 700N	2.4 3.26 .2 1.57 .1 1.84 .1 1.71 .5 1.86	20 22 7 9 14 8 9 8 13 13	.1 3 .1 5 .1	1 .89 1 .46 1 .52 1 .30 1 .31	1.8	12 17	02 290 53 47 81 74 58 64 31 74	3.03 4.02 3.38		.17 .06 .11 .06 .09	31 28 24	1.06 .82 1.29 .85 1.32	267 545 249	3 5 4	.02 .02 .02 .01	32 45 30		18 26 24	4 2 2 2 1	1 1 1	51 21 26 18 15	16 22 19 25	.09 .10 .09 .10	4 5 4	111.9 72.5 86.7 74.5 115.1	1 1 1 1 1 1	10 55 27 30 38 40	6 20 9	
G_R.1 L500E 800M G_R.1 L500E 100S G_R.1 L500E 200S G_R.1 L500E 300S G_R.1 L500E 400S	.3 1.73 1.4 2.37 .1 1.65 .1 .47 .5 2.95	12 8 21 14 10 7 3 6 12 11) .1) .1 .1	1 .71 1 1.08 1 .25 1 .10 1 .56	.3 .3 .4	17 10 6 17	87 122 85 94 59 21 13 12 69 183	4.38 3.30 2.57	5	.18 .12 .05 .02 .08	34 23 2	1.55 1.29 .76 .10 .84	656 207 216 514	3 2 4	.02 .01 .01	52 27 4	650 900 740 580 380	24 21 23	43112	1 1 1	29 44 15 27 31	23 17 11 22	.13 .09 .11 .11	5 6 4 3 5	103.2 93.0 81.4 82.0 91.1	1 7	70 55 41 75 97 35 57 25 93 80	8 4 2	M.
G.R.1 L600E 050N G.R.1 L600E 150N G.R.1 L600E 250N G.R.1 L600E 350N G.R.1 L600E 450N	.5 1.90 .6 1.60 1.1 1.95 .1 1.64 .5 1.96	16 10 29 10 14 11 12 8 11 13	4 1.9 7 .1 1 .1 5 .1	1 .71 1 .58 1 .63	1.5 .6 .4	15	78 71 80 206 67 162 71 82 59 75	3.61 3.91 3.68 3.38	4	.09 .10 .10 .15	30 27 27	1.22 .86	249 580 492	58 7 3 3	.02 .02 .01 .02	83 44 42 35	980 500 710 560	26 31 24	5	1 1 1 1	32 101 41 26 33	20 20 21 17	.06 .09 .10 .09	55554	85.5 78.9 83.9 88.5 81.1	1 1 1 1	70 65 11 110 18 80 89 70 91 65	16 12 24	Z-W
G.R.1 L600E 550H G.R.1 L600E 650N G.R.1 L600E 750H G.R.1 L600E 050S G.R.1 L600E 150S	.1 1.77 .1 1.44 .3 1.89 .4 1.83 1.0 2.35	13 9 15 5 14 8 12 12 23 15	0 .1 8 .1 7 .1 6 .2	1 .56 1 .36 1 .39 1 .98 1 1.18	.3 .7 1.3	22	72 80 56 90 74 107 96 115 111 150	3.54 3.96 3.99 4.83	4 4	.14 .06 .11 .14	22 36 36 40	1.12 .96 1.05 1.37 1.49	275 305 474 855	5 4 6 8	.01 .02 .02	31 41 52 66		31 39 50 55	2 4	1 1 1 1	26 17 20 39 47	19 21 23 26	.10 .09	5 6	87.7 81.8 102.6 96.8 110.1	1 1 1	91 105 66 5 86 10 99 95 12 85	23 13 15 16	ABS
G.R.1 L600E 250S G.R.1 L600E 350S G.2 L50M BLON G.2 L50M D50N G.2 L50M 100H	.4 1.76 .1 1.96 .3 1.81 .1 1.86 .1 2.11	25 8 20 7 19 15 13 12 8 8	0 .1 3 .1 3 .1 5 .1	1 .50 25. 1	1.1 1.8 .5	22 26 21 20	128 384 90 120 87 100	4.59 4.78 4.04 3.79	3 2 4 5	.20 .18 .40 .20	41 44 67 46	1.58 1.64 1.84 1.45 1.12	629 1149 324 220	10 10 3	.02 .01 .02 .03	58 78 57 54	740 870 450 1130	40 57 31 16	3 3 3	1	35 23 40 24 12	26 27 23 21		6 5 5	98.6 110.0 112.8 103.5 92.3	1 1 1 1 1 1		14 407 15 19	
G.2 L50W 150H G.2 L50W 200N G.2 L50W 250N G.2 L50W 350N G.2 L50W 350N	.1 1.88 .1 2.12 .1 2.07 .1 3.08 .1 2.27	15 10 15 8 10 6 5 10 18 6	6 .1 0 .7 8 .2 1 .1	1 .40 1 .29 1 .20 1 .44 1 .31	.1 .1 .1	22 15 42 22	129 181 141 268 103 107 443 386 196 166	5.02 4.38 6.38 4.74	5 5 7 5	1.95 .28	77 45 148 69	1.91 2.28 1.40 5.04 2.40	341 218 700 324	6 6 1 1	.02	75 49 135 114	780 1040 400	12 17 11 12	1 5	1 1 1	13	30 24 41 28		6 5 8 6	130.7 142.9 128.6 151.7 155.1	1 2 2 1	19 60 78 71	12 10 8 14	
G.2 L50H 400N G.2 L50H 450N G.2 L50H 500N G.2 L50H 050S G.2 L50H 100S	.1 1.22 .1 1.56 .1 1.61 .1 2.14 .3 2.11	11 5 24 17 10 7	2 .1 7 .1 0 .1 8 .1	1 .41 1 .25 1 .22 1 .77 1 .47	.1 .6 .1	27 18	70 40 54 59 46 542 103 141 121 90	4.85 5,20 5,57 4.00	7 6 4	. 25 . 26 . 17	37 51 32 47	1.01 1.24 1.48 1.47 1.81	210 294 884 576) 10 5 29 6	.02 .02 .02 .02	19 24 56 61	550 1060 530 690	16 9 38 45	1 3 3	1 1 1 1	13 8 6 46 27	25 28 31 23	-19 -20 -18 -12 -14	6 6 7	119.4 178.4 153.6 118.8 104.9	1	02 45 56 65 33 35 99 66 83 46	16 4 15	604
G.2 150W 150S G.2 150W 200S G.2 150W 250S	.2 2.71 .2 2.79 1.4 2.30	4 8 12 5 13 25	1 .1	1 .33 1 .27 2 1.09	' .1	25 23 42	368 48 296 132 290 639	2 5.48	6		115	3.62 3.38 3.55	487	4	.02	156 123 114		59	3	1 1		33	.23	7	117.4 133.6 156.3	11		7	7 10 10 10
			- Carameter (C.)																										Ö
								,																					20 4

FILE NO: 7V-0698-5L13+14+15+16

DATE: 97/10/07

* * (ACT:1CP 31)

MINHEN LABS

17 1<u>7</u>1 1<u>7</u>1 ₩ ₩ ₩

COMP: BARAKSO CONSULTANTS LTD.

MIN-EN LABS -- 1CP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8

DROJ: FRIENDLY LAKE	DEDY DECKEROOME ALL. AMERICAN	31)
ATTN: JOHN BARAKSO	TEL:(604)327-3436 FAX:(604)327-3423	re
SAMPLE	AG AL AS BA BE BI CA CD CO CR CU FE GA K LI MG MN MO NA NI P PB SO DA Y PPN PPN PPN PPN PPN PPN PPN PPN PPN P	15
NUMBER	PPH X PPH PPH PPH PPH PPH PPH PPH PPH PP	3
G.2 L50W 300S G.2 L50W 350S		12 17
1 G 2 I SON 4005	6 2 03 15 128 1 1 07 1 2 26 138 197 4.75 4 39 41 1 83 853 16 02 80 840 65 3 1 15 16 20 4 99.4 1 61 25	2
G.2 L50V 450S G.2 L50V 500S	1.3 1.16 6 60 .1 1.32 -	10 12
G.2 L100W 025W	.4 2.13 11 164 .1 1 .61 .5 18 93 198 4.13 4 .15 58 1.38 433 7 .02 65 360 10 7 126.8 1 106 80 1.9 3.24 20 422 .8 1 1.15 1.8 21 111 521 5.55 5 .19 57 1.23 961 19 .02 106 850 34 4 1 65 28 .10 7 126.8 1 106 80 1.9 3.24 20 422 .8 1 1.15 1.8 21 111 521 5.55 5 .19 57 1.23 961 19 .02 106 850 34 4 1 65 28 .10 7 126.8 1 106 80 1.9 3.24 20 422 .8 1 1.15 1.8 21 111 521 5.55 5 .19 57 1.23 961 19 .02 106 850 34 4 1 65 28 .10 7 126.8 1 106 80 1.9 3.24 20 422 .8 1 1.15 1.8 21 111 521 5.55 5 .19 57 1.23 961 19 .02 106 850 34 4 1 65 28 .10 7 126.8 1 106 80 1.9 3.24 20 422 .8 1 1.15 1.8 21 111 521 5.55 5 .19 57 1.23 961 19 .02 106 850 34 4 1 65 28 .10 7 126.8 1 106 80 1.9 3.24 20 422 .8 1 1.15 1.8 21 111 521 5.55 5 .19 57 1.23 961 19 .02 106 850 34 4 1 65 28 .10 7 126.8 1 106 80 1.9 3.24 20 422 .8 1 1.15 1.8 21 111 521 5.55 5 .19 57 1.23 961 19 .02 106 850 34 4 1 65 28 .10 7 126.8 1 106 80 1.9 3.24 20 422 .8 1 1.15 1.8 21 111 521 5.55 5 .19 57 1.23 961 19 .02 106 850 34 4 1 65 28 .10 7 126.8 1 106 80 1.9 3.24 20 422 .8 1 1.15 1.8 21 111 521 5.55 5 .19 57 1.23 961 19 .02 106 850 34 4 1 65 28 .10 7 126.8 1 106 80 1.9 3.24 20 422 .8 1 1.15 1.8 21 111 521 5.55 5 5 .19 57 1.23 961 19 .02 106 850 34 4 1 65 28 .10 7 126.8 1 106 80 1.9 3.24 20 20 20 20 20 20 20 20 20 20 20 20 20	22
G.2 L100W 075N G.2 L100W 125N	1.9 3.24 20 422 8 1 1.15 1.8 21 111 521 5.35 3 .14 22 .97 382 4 .01 32 820 20 Z 1 18 19 .11 4 86.9 1 57 40 1 1 1.21 12 82 1 1 34 .2 14 59 112 3.35 3 .14 22 .97 382 4 .01 32 820 20 Z 1 18 19 .11 4 86.9 1 59 40 1 1 1.21 12 82 1 1 34 .2 14 59 112 3.35 3 .14 22 .97 382 4 .01 32 820 20 Z 1 18 19 .11 4 86.9 1 59 40 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	22 45 7
G.2 L100W 175W	1 1.74 17 105 1 1 126 1 13 113 123 4.12 4 10 50 1.69 257 6 .02 33 760 16 1 1 10 16 19 4 105.0 1 58 45	6
G.2 L100W 225W G.2 L100W 275W	5 1.41 7 74 .1 1 .20 .1 11 48 38 3.19 5 .56 83 3.20 354 8 .02 171 510 11 3 1 14 32 .27 7 148.2 1 10 70	7 21
I G. 2 I 100H 325M	1 4 6 4 6 13 184 1 0 1 .92 2.0 28 100 1321 4.43 1 .50 57 3.23 219 8 02 133 670 15 4 1 22 28 19 9 110.9 1 10 15	18
G.2 L100W 375N G.2 L100W 425N	1 2.29 18 81 -1 22 100 101 5.02 8 12 96 1.89 304 1 .02 57 690 10 2 2 17 20 1 88 40	11
6.2 L100W 475N	1	18
G.Z L100W 025S G.Z L100W 075S	1 - 1 + 10 = 10 - 40 + 1 = 10 = 10 + 10 = 10 = 10 = 10 = 10	15 15
G.2 L100W 125S	1 2 2 3 14 2 3 1 1 43 6 18 98 184 4.69 8 -14 100 -95 392 9 -92 20 1270 64 1 1 16 25 19 5 115.5 1 82 55	7
G.2 L100N 175S G.2 L100N 225S	-6 2.04 B 66 .1 1 .31 .1 15 101 57 4.30 3 .20 37 376 346 19 .02 64 1030 111 3 1 44 39 .16 9 159.1 1 69 105	13 20
G.2 L100W 275S G.2 L100W 325S	1 -5 2.66 11 20 -1 1 79 2.3 19 157 650 4.58 5 -22 162 1-54 313 11 02 102 330 48 1 1 11 31 35 7 180 9 1 75 35	11
6.2 L100M 375S	1 2 2 39 11 114 1 1 15 12 243 65 776 5 10 57 1 84 393 4 .02 60 390 23 6 1 32 53 165 7 465 7 4 67 20	7
G.2 L100W 425S G.2 L100W 475S	.5 1.52 7 55 .1 1 .25 .8 14 123 30 3.22 4 30 3E 04 310 4 02 31 570 13 1 3 23 15 .14 3 88.3 1 57 40	12 33
C 2 1150M BLOW	1 .2 1.28 6 97 -1 1 -45 -4 12 63 14 4 05 5 18 52 1.50 333 5 .02 51 760 14 1 13 20 23 17 5 125 8 1 103 40	14
G.2 L150W 050N G.2 L150W 100N	1 2 13 13 83 1 1 35 12 18 101 114 4 53 5 107 26 1 83 200 9 102 31 470 14 1 1 17 17 16 4 101 0 1 78 20	18
G.2 L150N 150N	1 14 1477 2 14 16 1 17 1/1 1 1 4 20 30 1411 420 7 400 74 22 7	75
G_2 1150W 200W	1 1.77 15 111 .1 1 .45 .2 25 120 375 4.67 3 .51 48 1.88 630 7 .02 118 420 24 2 1 32 20 .12 5 99.6 1 95 55	13
G.2 L150H 300N	15 2.04 15 165 .6 1 .69 .5 18 85 925 3.75 4 .23 50 1.35 363 13 .02 53 490 14 2 1 23 21 .15 5 132.6 1 59 43 1 3 1 50 1 3 1 20 7 207.1 1 66 20 1 3 1 50 1 3 1 50 1 3 1 50 1 3 1 50 1 3 1 50 1 3 1 20 7 207.1 1 66 20 1 3 1 50	16 10
G.2 L150W 350N G.2 L150W 400N	1 1 2 3 3 4 5 1 25 1 21 122 9 4.70 0 -14 21 1.30 340 3 400 1	459
G.2 L1509 450H	1 1 5 000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12 17
G.2 L150N 500N G.2 L150N 050S	11 1.83 14 87 .1 1 .57 .1 19 97 122 3-28 2 .00 103 .81 338 8 .02 99 390 20 2 1 30 17 .13 4 (2.1 110 55	5
G.2 L150H 100S G.2 L150H 150S	1 2 3 3 17 111 84 4.72 6 .11 90 1.40 277 8 .02 36 1170 124 2 1 17 34 .23 7 140.4 1 119 45	
G.2 L150V 200S	770 50 3 1 48 27 12 6 103.4 1 116 110	50
G.2 L150V 250S G.2 L150V 300S	1 -1 2-30 17 158 -1 1 196 1-1 18 126 528 4-86 4 -35 48 1-54 111 15 102 40 870 18 1 1 28 10 107 3 48-3 1 46 125	6 7
G.2 L150V 350\$	2.3 1.41 8 148 1 1 141 2 23 150 231 5.20 5 .22 64 2.01 452 20 .02 72 400 70 5 1 13 32 .20 7 133.1 1 166 65	23
G.2 L150H 400S G.2 L150H 450S	1.5 2.37 16 86 .1 1 .31 .4 25 221 177 5.12 4 .82 134 3.38 187 18 .88 14 1 1 27 11 .10 3 65.2 1 55 20	4 9
G.2 L200W 025W	2 1 55 10 86 .1 1 .62 .3 15 69 100 3.44 3 15 65 232 22 02 153 610 28 2 1 45 23 .13 6 102.9 2 100 123	18
G.2 L200V 075H G.2 L200V 125H	3.1 2.37 16 295 .3 1 .93 3.3 17 78 680 4.67 4 .12 85 .85 733 22 .02 153 618 26 2 1 32 23 13	1
		,

DATE: 97/10/07 (ACT:1CP 31)

8282 SHERBROOKE ST., VANCOUVER, 8.C. V5K 4E8

PROJ:	COLE	mrt V	LAYE
ATTM:	TOHM	BAR	KK SO

COMP: BARAKSO Co SETANTS LTD.

TH: JOHN BARAKSO								TEL:	(604))32 7 -3	3436	FAK	(:(604)	>327-3	423												H He	Au-fire	1 7
SANPLE	AG AL PPM %		BA PPM	BE B		A CD % PPH (FE GI % PPI		K LI X PPH			PPM		PH F	PPN PF	PH PP	B SN M PPM	PPH	PPH	X P			W Z PN PPI 1 6		FP8	
G.2 £200W 175N G.2 £200W 225N G.2 £200W 275N G.2 £200W 325W G.2 £200W 375W	.6 1.40 1.9 2.24 .7 2.27 .3 1.80 .1 2.14	8 18 11 10	103 227 166 116		1 .75 1 .35 1 .26	22 1.3 71 1.3 33 .3 26 .1	18 20 18	96 94 77 71 80 14 181 13	70 3.4 44 4.1 14 4. 45 4.1 76 4.1	80 18 03 50	6 .2 5 .2	2 50 1 118 1 47 8 77	1.20 3 1.06 7 1.34 7 2.37	1059 435 267 290	19 12 6 4	02 10 02 9 02 3 02 9	08 98 39 90	730 2 460 3 640 500	27 18 12	1 1 2 1 2 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1	24 51 32 14 14	25 21 22 27	.15 .17 .20 .24	6 1 5 1 6 1	99.7 14.1 109.6 134.0 160.1	1 10 1 13 1 9 1 7	95 100 36 70 86 30 79 15	18 7 8 10	1 1 1
G.2 L200W 425N G.2 L200W 475N G.2 L200W 025S G.2 L200W 075S G.2 L200W 150S	.3 2.08 .1 1.73 .5 2.45 .1 2.07 .2 1.72	15 113 11 26 28	155 106	• •	1 .2 1 .2 1 .6 1 .7	21 .1 60 .4	22 19 26 1 32	53 3 83 1 164 2 97 1	19 4. 03 5. 39 3. 57 5. 66 5.	36 98 39 14	6 .11 6 .01 5 .1 4 .4 2 .2	B 63 12 48 11 40 20 21	7 1.27 3 1.27 8 1.16 0 2.17 7 1.41	217 690 852 1681	6 13 10 52	.01 .02 .02 1 .02	26 57 07 1 68 1	910 2 440 1020 1030	16	2 1 2 1 3 1 3	6 32 36	28 21 31 28	.19 .14 .12	7 1 5 1 7 6	198.8 102.2 119.9 108.8		64 25 04 55 12 75 01 85	280 14 29	(n N)
G.2 L200W 200S G.2 L200W 250S G.2 L200W 300S G.2 L200W 350S G.2 L200W 400S	.8 2.27 1.4 2.21 4.3 2.59 .2 2.29 .3 2.77	9 7 7 12	122 172 100	.1 .1 .1 .1	1 .8	49 .3 80 .8 51 2.1 32 .4 35 .2	14 1 9 18 1 23 2	105 1 51 2 123 226 1	50 4. 59 3. 63 2. 50 4. 31 5.	.87 .68 .95 .11	5 .1 4 .0 5 .1 5 .2	15 10: 19 7: 10 6: 25 8:	0 2.19 5 1.28 5 .48 5 1.53 4 2.86	317 690 440 568	8 15 6 13	.02 .03 .02 .02	61 70 58 1 97	570 630 1290 520	23 29 26 53	1 1 1 2 1	37 30 1 13 1 19	21 13 27 30	.15 .15 .18 .22	5 3 6 7	87.4 55.2 123.2 148.7	1 8	85 85 24 120 66 35 18 45	16 15 8 7	
G.2 L200W 450S G.2 L200W 500S G.2 L250W 050S G.2 L250W 100S G.2 L250W 150S	1.1 1.83 2.6 3.31 -2 1.88 .8 2.22 .9 2.19	3 9 1 7 3 17 2 22	38 129 174	.1 .1 .1 .1	1 .0 9. 1 1.0	33 .7 08 1.1 95 .4 01 1.3 19 1.3	15 22 3 21 3 24	89 89 1 97 2 89 2	76 3. 28 3. 165 4. 246 5. 248 4.	.43 .35 .12 .47	3 .2	14 2 25 3 25 3 26 3	7 1.99 7 43 2 1.41 4 1.32 3 1.28	337 720 1391 937	5 11 26 13	.02 .02 .02 .02	22 53 68 60	860 850 990	57 96 21 25 32	2	1 16 1 5 1 41 1 48 1 58	16 24 27 24	.14 .12 .11 .11	4 6 7 6	57.2 103.7 108.8 102.5	1 10 1 10 2 1 ⁴	4B 75 07 45 96 85 15 75	15 22 22	高
G.2 L250W 200S G.2 L250W 250S G.2 L250W 300S G.2 L250W 350S G.2 L250W 400S	.4 1.98 2.7 2.48 .1 2.88 .7 .98 .4 2.20	B 39 B 11 B 10 B 6	146 78 71	:1	1 .9 1 .4 1 .2 1 .3	91 1.6 94 1.5 40 .1 .20 .1 .34 .8	17 1 24 1 1 B 3 33 1	95 1 323 47 236 2	156 6. 100 3. 79 5. 24 2. 218 5.	.90 .41 .37 .79	5 .5 5 .6 3 .9	14 12 50 6 07 1 93 6	5 1.68 2 1.21 59 3.43 15 .63 66 2.95	1 363 3 506 3 206 5 1876	6 4 5 5	.02 .03 .02 .02	154 14 77 1	540 740 640 1220 1	34 32 41	3	1 66 1 44 1 14 1 11 1 16	21 32 13 34	.14 .27 .16 .18	5 7 3 7	84.5 130.9 78.2 173.3	2 14 1 4 1 4 2 1	45 65 85 20 48 25	19 4 5 13	
G.2 L250W 450S G.2 L250W 500S G.2 L300W 050S G.2 L300W 100S G.2 L300W 150S	3.0 2.25 2.5 2.53 .2 2.1 1.4 2.2 .5 2.0	3 10 5 28 5 20	149 3 145 0 174 3 127	-1	1 .5 1 .6 1 .8	.99 2.8 .59 1.6 .83 .9 .86 1.4 .60 .7	6 19 9 24 4 18 7 21	119 1 108 3 81 2 94	424 6 161 4 339 5 243 4 104 3	.17 .20 .28 .98	5 4 4	12 6 26 3 19 5 20 4	13 3.47 36 1.27 36 1.66 33 1.10 49 1.35	7 886 2 826 0 820 5 804	5 B 5 12 7 17 6 B	.02 .02 .02	71 73 63 57	520 1 1050 520	790 131 31 25 23 20	2 5 3	1 27 1 40 1 42 1 31 1 45	7 23 0 29 2 23 1 23	.15 .11 .12 .13	5	99.2 111.7 98.2 95.3	1 1 1 1 2 1 1 1	20 105 04 95 34 105 02 75 76 80	6 22 13 5 27	2 3 7
G.2 1300W 200S G.2 1300W 250S G.2 1300W 350S G.2 1300W 350S G.2 1300W 400S	1.0 1.9 .7 1.7 2.9 2.6 .3 1.5 .2 1.9	5 15 3 25 6 30 6 7	5 311	3.9	1 1. 1 1. 1 .	.88 .8 .53 4.7 .43 2.3 .34 .2 .32 .3	7 39 3 21 2 12 3 15	97 132 97 156	153 3 264 7 301 4 32 2 35 4	.24 .90 .92 .61	1 3 5	17 4 24 5 07 3	36 .8' 40 1.3(59 1.6) 38 1.14 56 1.8	8 2557 7 1423 4 285 1 328	7 56 3 15 5 9 8 5	20. 20. 50. 50.	168 85 41 61	1230 1080 510 770	79 70 38 56	4 5 1 3	1 42 1 33 1 59 1 18 1 15	3 36 9 27 8 17 5 25	.09 .08 .09 .17 .20	9 6 4 6	95.5 101.4 87.6 124.0	2 1 2 1 1 1	164 115 134 240 95 30 112 40	5 14 0 24 0 8 0 21	4 8 1
G.2 L300W 450S	2.4 1.8	<u>0</u> 9	9 182	2 ,1	1 1.3	.23 2.6	5 13	76 	113 2	88	1 .	.09 4	61 .B	8 114		.02	46	780				1		•					_
<u>andre de la companya de la companya</u>																													
		A301-1444 - 11																<u>, </u>											
						·	*****																	-				*	
																									*****	·			\dashv

MIN-EN LABS - ICP REPORT

FILE NO: 7V-0784-\$11+2

DATE: 97/11/07

zh lig Au-fire

(ACT:109.31)

8282 SHERBROOKE ST., VANCOUVER, B.C. VSK 4E8 TEL:(604)327-3436 FAX:(604)327-3423

PROJ: FRIENDLY LAKE ATTN: JOHN BARAKSO

CONP: BARAKSO CONSULTANTS

bion: Akteuner cross					166:70	メリセノンビリーブ・							SR T	u Ti	UV	W ZN HY A	W 1112 1
ATTN: JOHN BARAKSO				CA CD CO	CR CU	FE G	A K L1	MG	ON HK	JN AK Nggy		SB SF PPH PPF			рри рри	PPM PPN PPB	PPB
SAMPLE	AG AL	АЅ ВА РРН РРН	BE BI			X PPI	H X PPH		PPH PPM	-15 10		1	104	3 .01	2 12.7 13 96.3	1 23 315 3 113 95	13
NUMBER		3 86	1	1 3.90 1.7	2 6 43	.44	1 .02 1 6 .13 30	.09 1.23	259 1 818 4	.02 54	860 30	5	1 40 2 1 32 2	5 - 11	12 103.6	3 95 60	13
1400E 0+008LS	1.0 .47	19 129	1	1.02 .9 1	8 86 134 4 68 51	4,20 3,76	6 .06 53	.88	264 3	.01 35	360 26	2		6 .08	9 75.0	3 73 85 4 100 105	10 1
1400E 0+25S 1400E 0+50S	4 1.97	13 95	-1	j .92 .7 1/ 1 1.63 1.1	56 87	2.93	5 .06 28	.74	253 3 750 2	.01 32 .01 43	2 430 21 2 800 28	Ž	i 37 <u>2</u>	1 .10		3 100 55	
1 + ADDE 0+75\$.5 1.39 .7 1.73	10 88 16 85	. i	1 16 1 7 1	7 73 87	5.79	5 .09 24	1.06	583 2	01 4	3 430 29	2	1 30 2	4 .11	13 105.4 12 105.2	3 77 55	ารั
L400E 1+00S	2 2.42	16 109	.1	1 75 7 1	9 82 88		7 .08 55 6 .06 39	1.05	349	. Öi 3	8 280 29	2	1 16 4 1 15 1	9 .17	12 70.9	4 114 65	7
1400E 1+25S 1400E 1+50S	1 2.11	12 83		1 .38 .5 2 1 .16 .3 1	0 73 88 8 22 29		8 .02 26	.24	316	2 .01 1 1 .01	2 630 17 5 1030 12	i		0 .14	12 75-7 3 33.5	2 54 70	3
1 1480E 1+755	.2 3.49	4 62 4 82		1 .13 .1	7 14 30	3.84	8 .03 11	.22	207 °	i .õi	1 220 4	1	<u> 1 5 </u>	4 .05		75 400	9
1 1 400E 2+00S	.1 1.39	1 12		1 .03 .1	3 3	<u> </u>	7 .05 30		207	1 .01 2	9 B30 27	1	1 16	24 . 12 0 12	12 95.6 6 56.9	1 20 60	4
£400E 2+258	1 2.23	13 55	.1	1 16 1	10 67 37 4 7	2 3.96 1 1.93	4 .02	.08	173	1 .01 2 .01 2	2 420 13 2 980 32	1	1 23	21 .13	12 114.3	2 58 95 3 93 90	14
1,400E 2+50S 1,400E 2+75\$.2 .42	$\frac{1}{47}$]	1 .07 .1	9 59 Z	7 4.04	8 ,04 1 4 7 ,08 24		308 452		7 1060 27	2	1 10	23 . 13 12 . 09	12 105.3 R 75.4	3 43 105	
1400E 3:00S	.4 1.93	16 8	í .i	1 .20 .1	14 75 51	2 3.96	7 .08 Z	8 .21	298	i 101	<u>9 780 19</u>	1_	1 0	12 10	76 165 1	4 110 135	80

5 .03 41 .11 .1 2.37 12 2.58 4 37 1400E 3+255 36 1620 3 .01 58 120 645 66 32 1.59 15 .10 75 252 11 .08 10 7.60 13 14008 3+508 16 1050 4 110 130 .01 35.3 13 .48 650 22 -11 3 .01 25 .1 3.81 3.17 4 .03 I_{k} Ÿ 4.1 - 3 53 870 10 210 7 2 .02 7 .21 L400E 3+75S 14 2 13.7 5 .09 .95 596 59 46 85 110 .3 1.59 3.85 14 67 105 В . ġ 960 58 335 .21 1400F 4+00S 1.21 112 12 1 .02 .07 16 .01 14 158 64 1.3 2.38 17 .37 32 870 24 4 13 1400E 0+25N 11 .16 4.21 1.4 2 105 430 .09 2348 37.5 -87 .09 1 3 4 .37 3.84 55 .01 48 122 L400E 0+50N 120 1450 22 1 2.27 145 310 43 .17 3 160 6 26 5981 81.3 .08 35 .04 4 1 .04 127 89 11.99 10 123 1300 3 111 140 1400E U+75N 6 2.14 3.7 21 30 .01 26 688 82.0 . 98 39 .06 .52 17 498 \$.09 36 97 .9 6.23 23 70 362 132 990 58 95 205 1400E 1400N 1 1.88 4.3 .01 .07 46 24 103.7 25 85 5682 4.7 3B 21 154 10, 1 5B 15 90 1190 8 1.60 55 132 8.11 47 5 180 140 28 1400E 1+25N 1 1.23 3.0 .01 378 44 23 137.2 297 2.6 8 .12 35 1.22 36 .10 31 54 9 1.27 308 7.2B 91 38 81 1150 12 1400E 1+50N .62 1.1 14 16 .02 205 105 37 1.16 1232 24 155.8 55 18E 22 107 287 6.96 . 24 7 1.98 30 .11 L400E 1+75N .<u>8</u> .3 ,92 1.1 970 49 4 117 280 11 .02 87 1.9 4.00 28 215 31 1-41 969 19 126.2 11 .27 30 .07 78 1400E S+00M 22 125 276 7.23 71 1390 2 142 165 18 38 .97 1.7 16 .02 953 17 120.6 29 .09 247 55 -85 32 22 8 .19 1.4 4-14 5.85 54 83 18 86 373 37 4 158 110 950 14008 2+25N 8 .02 75 1.49 2.4 18 124.2 31 1.21 878 31 .09 .6 50 248 8 .19 5.4 3.08 104 232 5.49 950 41 55 .98 1.4 16 5 .02 80 3 115 L400E 2+50N 10 81.5 43 1.3B 1321 19 .10 224 . 4 8 .18 21 20 5.61 1.8 3.45 21 114 197 740 24 .86 1.5 40 12 1400F 2+75N 2 .01 2 82 29 .89 656 231 5 .08 92.2 1.1 3.79 18 11 17 63 3.29 23 23 25 22 . 13 .9 71 [400€ 3±00N 640 .01 44 94 119 .5 1.88 7 519 23 26 78.0 39 1.32 5 12 17 .10 10 3.59 L400E 3+25N 34 51 35 2 2 3 2 2 115 17 81 430 3 .02 22 .12 22 .11 88.6 416 41 75 5 .07 29 .88 43 1.40 11 12 .2 1.70 3.07 23 48 460 13 17 59 3 .01 3 80 50 1400E 3:50N .3 .48 85.4 499 6 .09 25 36 8 95 3.59 ,4 1.75 65 520 20 37 16 .58 .57 89 3 134 35 1400E 3+75M 4 .01 14 110.0 .6 523 25 1.21 90 27 .14 10 .07 .2 1.89 3.41 15 6B 47 55 360 17 1400E 4+00N .4 7 .02 2 93 696 9 74 37 1.26 77.9 7 .12 .3 1.56 4,43 80. 1D 87 19 21 93 .74 1.1 27 24 1400E 4+75N 920 50.8 54 3 173 215 19 118.2 15 137 772 .89 .5 2.34 23 .10 3.28 4 .16 61 32 1400E 4+50N 67 184 49 14 980 3 106 45 1 1.09 1.9 13 12 .02 106 13 104.9 740 39 1.27 12 116 8 .26 31 27 .14 2.5 1.63 121 465 5.91 11 530 36 1 1.20 1.7 17 6 .02 60 2 105 1400E 4+75H 697 13 102 8 224 6 .16 41 1.44 33 23 .12 18 4.31 4.2 3.04 19 100 94 520 35 8 6 .01 45 4 135 1400E 5:00H .6 -69 613 .3 2.10 .5 2.22 14 104.2 100 6 .10 35 1.09 25 . 14 14 83 114 4.09 18 27 17 36 1160 15 .6 10. S L400E 5+25N .63 47 1.05 **Z95** 121 .07 2 82 12 105.8 4.48 14 12 22 25 15 75 52 1400E 5+50N .37 32 10 880 88 4 .01 47 3 82 .1 1.97 11 496 44 1.59 93.2 6 .23 20 ,12 11 15 L400E 5+75N 3.89 69 29 18 16 780 46 19 2 .01 36 95.1 3 114 404 68 1 1.78 10 6 .09 30 1.02 19 24 .11 13 59 3,40 3 12 670 .4 13 70 2 .01 38 1 100 L4008 6+00M .34 500 12 107.3 29 1.20 Q 58 6 .08 21 23 .13 2 1.62 2 1.90 27 55 4.03 75 700 27 14 3 01 39 2 73 90 L400E 6+25N 37 12 108.9 35 1.23 569 13 85 6 .15 18 20 .17 3.79 70 103 25 1400E 6+50N .3 26 230 13 .38 18 11 01 .66 166 97 51 96.2 2 101 4 1.76 11 .05 21 .13 3.79 11 33 .5 11 53 **Z** 1 30 1400E 6+75N .30 40 540 36 19 5 ,01 68 1 83 65 .96 446 13 119.2 8 1.55 6 6 .13 26 .13 37 3.67 29 1400E 7+00R .8 .5 65 104 740 53 27 15 5 .02 4 .01 45 .69 65 706 32 1.42 13 .12 7 73.4 9 1.84 12 131 4.17 6 .25 127 80 21 520 21 1400E /+25N .69 .51 308 6 1.78 15 97 .1 5 .08 15 56 2.45 9 39 L400E 7+50N 9 88 3 1.08 1.400E 7+75N

COMP: BARAKSO CONSULTANTS PROJ: FRIENDLY LAKE

The state of the state of the state of

MIN-EN LABS - ICP REPORT 8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 FILE NO: 7V-0784-533+4 DATE: 97/11/D7

* * (ACT:10P 31)

jj: FRIENDLY LAKE	TEL:(604)327-3436 FAX:(604)327-3423
IN: JOHN BARAKSO	AG AL AS BA BE BI CA ED CO CR CU FE GA K LI MG MN NO NA NI P PB S8 SN SK (N 11 PPM PPM PPM PPM PPM PPM PPM PPM PPM
400E 8+09N 400E 8+25N 400E 8+25N 400E 8+50N 400E 8+75H 400E 9+00N	1.3 1.63 15 135 .1 1 .82 1.0 15 62 165 3.44 5 .12 27 .83 960 56 4 1 36 26 .11 13 101.7 3 113 165 .1 1 .88 .7 20 79 189 4.16 5 .28 31 1.30 792 6 .02 53 960 56 4 1 36 26 .11 13 101.7 3 113 165 .6 1.62 18 121 .1 1 .88 .7 20 79 189 4.16 5 .28 31 1.30 792 6 .02 79 850 97 2 1 53 24 .10 12 89.9 3 113 165 .3 1.82 19 192 .1 1 1.29 1.7 20 114 407 3.94 5 .29 41 1.36 1000 11 .02 79 850 97 2 1 53 24 .10 12 89.9 3 113 165 .3 1.82 19 192 .1 1 1.29 1.7 20 114 407 3.94 5 .29 41 1.36 1000 11 .02 79 850 97 2 1 53 24 .10 12 89.9 3 113 165 .3 1.82 19 192 .1 1 1.56 1.6 15 65 306 3.06 4 .19 36 .92 675 12 .02 55 780 58 3 1 58 18 .08 9 66.1 4 93 105 .20 1.55 11 164 .1 1 1.56 1.6 15 65 306 3.06 4 .19 36 .92 675 12 .02 55 490 60 2 1 49 15 .11 8 49.4 2 88 150 .20 1.55 11 164 .1 1 1.13 1.4 11 52 237 2.66 4 .08 47 .59 492 6 .02 55 490 60 2 1 49 15 .11 8 49.4 2 88 150 .20 1.55 11 164 .1 1 1.13 1.4 11 52 237 2.66 4 .08 47 .59 492 6 .02 57 580 157 1 1 43 24 .12 13 93.2 4 122 55 .46 1.75 9 153 .1 1 1.13 1.4 11 52 237 2.66 4 .08 47 .59 492 6 .02 57 580 157 1 1 43 24 .12 13 93.2 5 2 103 65
400E 9+25N 400E 9+50N 400E 9+75H 400E 10+00N 400E 10+25N	0 1.99 13 194 1 1.90 8 22 83 209 4.21 5 .33 49 1.35 888 12 .02 39 980 52 1 1 70 11 .07 6 46.9 2 70 140 8 1.78 17 139 -1 1 1.00 8 22 83 209 4.21 5 .33 49 1.35 888 12 .02 39 980 52 1 1 70 11 .07 6 46.9 2 70 140 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
400E 10+50N 400E 10+75N 400E 11+00N 400E 11+25N 400E 11+50N	3 1.76 17 118 .1 1 .82 .5 26 75 358 .75 122 15 .02 24 340 67 1 1 13 18 .21 10 93.4 3 100 45 .2 1.77 9 130 .1 1 .46 .8 18 60 147 4.06 7 .24 79 1.51 478 10 .02 41 550 108 1 1 13 18 .21 10 93.4 3 100 45 .2 1.77 9 130 .1 1 33 .4 12 44 74 3.18 8 .06 58 .71 222 15 .02 24 340 67 1 1 13 18 .21 10 93.4 4 134 60 1.7 1.39 7 93 .1 1 .33 .4 12 44 74 3.18 8 .06 58 .71 222 15 .02 38 370 55 1 1 19 19 .16 10 95.4 4 134 60 1.7 1.39 7 93 .1 1 .54 1.9 17 57 131 3.26 6 .08 75 .93 495 15 .02 38 370 55 1 1 19 19 .16 10 95.4 2 70 128 .7 1.51 6 127 .1 1 .54 1.9 17 57 131 3.26 6 .08 75 .93 495 15 .02 71 950 56 1 1 71 13 .07 7 49.4 2 70 128 .7 1.51 6 127 .1 1 .89 3.8 12 53 786 2.21 1 .09 34 .58 1634 21 .02 71 950 56 1 1 71 13 .07 7 49.4 2 70 128 .7 1.51 6 127 .1 1.89 3.8 12 53 786 2.21 1 .09 34 .58 1634 21 .02 71 950 56 1 1 1 40 21 15 11 74.8 4 177 75 3.6 1.32 6 245 .4 1 1.89 3.8 12 53 786 2.21 1 .09 34 .58 1634 21 .02 71 950 56 1 1 1 40 21 15 11 74.8 4 177 75 3.6 1.32 6 245 .4 1 1.89 3.8 12 53 786 2.21 1 .09 34 .58 12 7 .02 99 480 181 1 1 40 21 15 11 74.8 4 177 75 3.6 1.32 6 245 .4 1 1.89 3.8 12 53 786 2.21 1 .09 34 .58 12 7 .02 99 480 181 1 1 40 21 15 10 88 7 3 81 105
400E 17+75N 400E 12+00N 400E 12+25H 400E 12+50N 400E 12+75N	9 1.73 5 176 -1 1 1.06 1.5 23 27 30 162 264 2 .08 26 .41 1652 12 .02 38 640 200 2 179 27 1 1 17 23 .18 12 112.9 3 191 40 6.1 1.40 6 315 1.1 1 -99 4.3 19 27 816 2.64 2 .08 26 .41 1652 12 .02 38 640 200 2 179 77 1 1 17 23 .18 12 112.9 3 191 40 6.1 1.40 6 315 1.1 1 1.47 .5 22 39 162 3.93 8 .11 62 1.18 315 4 .02 23 790 77 1 1 17 23 .18 12 112.9 3 191 40 6.1 1.44 7 113 .1 1 1.47 .5 22 39 162 3.93 8 .11 62 1.18 315 4 .02 23 790 77 1 1 17 23 .18 12 112.9 3 191 40 6.1 1.44 7 113 .1 1 1.47 .5 22 39 162 3.93 8 .11 62 1.18 315 4 .02 23 790 77 1 1 1 26 20 .13 11 100.9 3 123 85 1.1 1 1.20 12 12 12 12 12 12 12 12 12 12 12 12 12
400E 13+00R 400E 13+25H 400E 13+50N 400E 13+75N 400E 14+00N	4 1.38 6 73 .1 1 .58 .1 11 .55 .20 .3.4 8 .24 67 1.35 639 5 .02 29 1140 47 1 1 12 22 4.20 14 130.4 3 117 35 .2 2.85 6 97 .1 1 .67 .9 22 52 82 4.78 8 .24 67 1.35 639 5 .02 29 1140 47 1 1 12 22 24 .20 14 130.4 3 117 35 .2 2.85 6 97 .1 1 .81 .4 16 43 48 4.26 9 .18 55 1.20 389 7 .02 21 1020 40 1 1 22 24 .20 14 130.4 3 117 35 .1 1.68 5 97 .1 1 .81 .4 16 43 48 4.26 9 .18 55 1.20 389 7 .02 21 1020 40 1 1 12 12 .23 6 70.4 2 42 35 .1 1.68 5 97 .1 1 3.4 1 9 28 3 1.86 7 .16 20 .75 173 2 .03 9 290 15 1 1 12 12 .23 6 70.4 2 42 35 .2 98 1 47 .1 1 3.4 1 9 28 3 1.86 7 .16 20 .75 173 2 .03 9 290 15 1 1 19 15 .20 8 95.6 1 49 40 .2 98 1 47 .1 1 1.07 .1 10 31 17 .62 8 .11 120 .68 348 2 .02 15 500 26 1 1 19 15 .20 8 95.6 1 49 40 .2 117 150 .2 117 160
L500E 0+00B\S L500E 0+25\$ L500E 0+50\$ L500E 0+75\$	3 2 23
15000 1+008 15000 1+258 15000 1+508 15000 1+758 15000 2+008	1.2 2.46 21 165 .1 1 .98 1.9 18 86 144 4.43 6 .12 32 1.29 785 4 .01 51 690 30 3 1 31 26 .14 17 117.1 6 217 85 .2 2.15 21 117 .1 1 .68 .6 22 87 77 4.38 6 .12 32 1.29 785 4 .01 52 580 29 2 1 19 28 .14 17 117.1 6 217 85 .12 2.15 21 117 .1 1 .36 9 17 84 80 5.43 10 .10 50 .85 363 4 .01 52 580 29 2 1 19 28 .14 17 117.1 6 217 85 .10 3.37 16 173 .1 1 .36 9 17 84 80 5.43 10 .10 50 .85 363 4 .01 52 580 29 2 1 16 19 .10 10 91.8 2 78 35 .10 3.37 16 173 .1 1 .24 .2 11 64 37 3.46 6 .86 18 .87 295 2 .01 30 630 22 2 1 16 19 .10 10 91.8 2 78 35 .1 1.45 17 97 .1 17 81 67 4.06 6 .07 31 1.23 367 3 .01 42 700 25 2 1 16 24 .14 13 107.3 2 82 35 .1 1.24 17 117 81 67 4.06 6 .07 31 1.23 367 3 .01 42 700 25 2 1 10 24 .14 13 107.3 2 82 35 .1 1 1 17 81 67 4.06 6 .07 31 1.23 367 3 .01 42 700 25 2 1 10 25 11 .08 7 68.3 1 31 49 .10 10 10 10 10 10 10 10 10 10 10 10 10 1
L500E 2+258 L500E 2+508 L500E 2+758 L500E 3+008 L500E 3+258	2 .44 4 51 .1 2 .06 .1 5 10 20 2.40 4 .02 2 .13 10 50 590 42 1 1 39 25 .13 13 99.5 10 48 35 1 .20 31 12 71 .1 1 1 .04 .2 20 90 151 4.15 6 .07 42 1.44 909 3 .02 50 590 42 1 1 24 9.10 6 64.2 1 48 35 1 .20 31 12 71 .1 1 1 .04 .2 20 90 151 4.15 6 .07 42 1.44 909 3 .02 50 590 42 1 1 24 9.10 6 64.2 1 48 35 1 .20 31 1 1 .1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
L500E 3+50S L500E 3+75S L500E 4+00S L500E BLON L500E 0+25N	1 1.73 10 67 .1 1 .15 .1 9 45 23 3.81 8 .04 18 .57 198 2 .01 36 290 25 1 1 23 23 .15 13 103.4 3 96 43 .12 .13 .13 .14 .66 109 4.27 9 .05 30 .75 189 3 .01 36 290 25 1 1 23 23 .15 13 103.4 3 96 43 .15 .12 .12 .12 .12 .13 .13 .13 .13 .13 .13 .13 .13 .13 .13
LSODE 0+50N LSODE 0+75N LSODE 1+00N LSODE 1+25N	1.4 1.89 22 104 .1 1 1.24 .5 17 97 125 6.28 1 .08 19 .83 2812 18 .01 46 990 32 3 1 75 31 .04 20 (4.5) 1 36 415 1.7 1.12 31 204 .1 4 2.32 1.0 15 61 137 6.28 1 .08 19 .83 2812 18 .01 46 990 32 3 1 75 31 .04 20 (4.5) 1 36 415 1.7 1.12 31 204 .1 4 2.32 1.0 15 61 137 6.28 1 .08 19 .83 2812 18 .01 46 990 32 3 1 101 13 .01 9 14.0 1 36 415 1.7 1.12 1 13 325 1.3 8 75 .5 1 3.52 1.4 4 8 61 2.75 1 .10 2 .17 886 7 .17 17 1320 11 2 1 101 13 .01 9 14.0 1 36 415 1.3 1.22 24 369 1.4 4 1.66 2.2 23 65 145 9.44 1 .15 21 .92 7895 24 .24 105 1300 39 3 1 154 46 .04 31 71.2 1 113 325 1.3 1.22 24 369 1.4 4 1.66 2.2 23 65 145 9.44 1 .15 21 .92 7895 24 .24 105 1300 39 3 1 154 46 .04 31 71.2

DOMP: BARAKSO CONSULTANTS PROJ: FRIENDLY LAKE

MIN-EN LABS - ICP REPORT BZBZ SHERBROOKE ST., VANCOUVER, B.C. VSX 4E8 TEL:(604)327-3436 FAX:(604)327-3423

FILE NO: 7V-0784-515+6 DATE: 97/11/07

* * (ACT+1CP 31)

SILVERN LARG

00 00 00

+ .] [+_1 -.]

(3.60 (0.00)

10 (Z) (L)

3.73 (0.0)

XXIND: BYXVIZO CONSOCI	ton i n		628	2 SHERBROOKE SI.	, VARLUUVEK, D	AT T/37				(MC12101 2 17
ROJ: TRIENDLY LAKE				TEL: (604)327-343	6 FAX:(604)3			en se th ti U	y u zn	Ng Au-fire
ATTN: JOHN BARAKSO				CU FE GA	K LI MG	HH NO HA HI	P PR SB PPM PPM PPM P	он ром ром 7 ром	PPH PPH PPH P	PPB PPB
SAMPLE	AG AL AS	come Chil	CA CD CO CR % PPN PPN PPN	PPM % PPM	% PPM %		7 1200 AL A	1 139 57 04 41		
NUMBER	рри % РРИ		1.52 3.0 35 57	140 11.93 3 -1	12 1B .71 >10		7 1200 41 4 7 710 27 2	1 74 20 13 17	119.4 4 109 98.7 2 97	20 4
L500E 1+50N	2.4.1.04 24	125	1.71 .6 25 89	128 4.77 6 -]		774 3 .02 55 264 2 .01 34	7 1250 20 2	- 1 - 1번 - 57 (122) '즉		30 11
1 1500É 1+75N	.2 2.49 16 1 1 96 11		31 2 12 73	37 3.00	08 35 1.10 07 17 .68	161 1 .02 2	2 480 15]	10 12 145 16		80 14
LSODE 2+00N	.1 1.96 11 .2 1.34 5	. 15 14	30 2 7 45	35 2.43 5 4 42 3.36 7 4	·	159 2 .01 2		10 10 10	151.5 5 170 7	270 15
1500E 2+25N 1500E 2+50N	2 2.20	81 .1 1	25 1 9 57			1073 14 .02 10	0 1230 5) 5		111 4 4 160	90 10 1
L500E Z+75N	4.6 4.37 3	310 -	1.37 1.9 20 118			iozo 5 .02 6	3 700 36 2 9 500 21 2	i 24 21 .13 11	89.2 3 133 105.6 2 111	80 13
1200E 3+00N	1,3 2.85		74 1 2 18 86 54 .5 12 62	71 3.50 6 .	10 42 1.04		4 1020 27 2	1 10 2	105.6 2 111 103.1 2 135	LV
1500E 3+25N	,0 1,000	7 116 1 1	68 6 23 113	1.14M (1.12E)	24 28 1.58 14 31 1.13		9 640 28 2			
1500E 3+50H		4 154 .1 1	.70 1.3 15 87	157 4.48 6 -			0 460 23 2	1 28 24 .14 12 1 30 23 .15 12		35 8
L500E 3+75N		0 108 .1 1	.67 .6 18 84	74 3.95 6. 55 3.77 6.		661 4 .02 4	4 470 24 1 5 640 36 1	1 30 23 .15 12	101.0 2 121	70 12
L500E 4+00N L500E 4+25N	4 1.89	0 93 1 1	.65 .6 19 79 .81 .8 16 86	113 4.32 5 -	14 31 1.13	_ An r	5 640 36 1 60 430 28 2	1 32 24 .15 13		- /Y
LS00E 4+50N		4 145 -1 1 106 -1	.81 .8 16 86 .70 .7 18 83	67 4.03 6 .		628 7 .02 5 573 5 .02 5	2 450 37 2			
L500E 4+75N		11 106 -) 12 103 -1 -	.66 .5 20 86	75 4.21 6.		822 12 -02 7	70 550 47 2	77 77 74		225 8
1500E 5+00N		15 144 .1	91 1.2 20 111		.17 44 1.49 .10 20 .67	637 8 .20	53 1020 34 3		109.2 1 96	55 6
L500E 5+25# L500E 5+50N	1 1.0	1 166 .6	2 30 2 1 10 56 1 60 3 18 104		.22 43 1.59		54 540 35 1 34 640 25 1	1 22 20 -12 11		72 5
1500E 5+75N	.2 2.15 1	12 98 .1 11 78 .1	1 .60 .3 18 104 1 .39 .1 13 <u>62</u>	79 3.54 5	.06 21 .97 .07 31 1.02		36 810 25 _ 1	1 17 21 13 11		
1500E 6+00N		11 84 -1	34 .2 11 75				72 780 32 2	1 25 29 .18 14 1 12 19 .13 11		35 5
L500E 6+25N	1	13 96 1	1 .47 .1 17 153		.15 56 1.84 _05 20 .60	215 2 -01	21 1100 24 2		7 80.6 1 47	40
15006 6+50N 15006 6+75N		11 78 -1	1 .27 .5 9 46		.06 17 .57	1100	22 300 23 1 46 1070 31 1	1 99 15 .04		195 11 165 19
1500E 7+00N	.4 .85	6 70 .1 8 273 .2	1 .19 .1 9 30 1 2 47 2 1 9 44	217 2.75 3	.13 19 .54 .20 39 1.20		79 740 BU 3			
1 + 500F 7+25N	2.0 1.35 2.8 2.89	8 273 .4 23 238 .6	1 .87 2.0 20 106				55 590 48 Z	. 1 24 52 735 4		7 115 8
L500E 7+50N		14 243 .1	1 .58 2.0 16 77		.12 49 .92 .12 44 .97	485 6 .02	44 490 58 1 47 930 50 2		6 111.1 2 96	5 90 13
L500E 7+75N L500E 8+00N	1.0 1.89	15 168 -1	1 .96 .9 17 71 1 .87 .5 20 81	177 // 22	.20 30 1.28	WU 2 "II	47 930 50 2 64 960 73 2	1 52 25 09 1	4 98 6 3 106	5 170 17 6 1503
1500E 8+25H	1 .5 1.79	16 116 -1 20 214 -3	1 1.23 1.9 21 8	424 4.35 4			23 1050 25	OE 1-1-		9 90
1500E 8+50N	2.6 2.07 2.1 .87	20 214 .3 3 163 .4	1 2.39 1.7 5 1			1127 13 .03	12 760 10 1	1 51 5 .75		9 170 9 1
1500E 8+75H	-5 -46	3 92 .1	1 .66 .7 6		A- 6 40	707 7 01	28 1010 21 1		B 118.0 3 10	3 320 85
L500E 9+00N L500E 9+25N	2.3 .63	6 182 .3	1 2.97 2.1 4 1		.16 28 .61	398 23 .02 963 10 .02	75 730 146 3 66 570 147 3	28 32 .14 1	16 141.0 1 12	1 110 65
1500E 9+50N	8.8 2.58	43 320 1.4 33 153 .1	1 1.23 2.2 14 8	4 381 5.21 7	.34 57 1.64	963 10 -02 812 13 -02		2 1 33 30 .14	10 11 11 11 11 11 11 11 11 11 11 11 11 1	· <u></u>
1500E 9+75H	7.0 2.02 3.0 2.37	33 153 .1 27 208 .2	73 .7 21 11		75 57 1.39	1164 14 .02	69 660 B6 3			4 105 23 6 65 30
1500E 10+00M		22 230 1	1 1.07 3.2 18 9		.19 43 1.07 45 44 1.82	886 10 .02	79 910 90			3 60 5
1.500E 10+25W	3.0 1.70 .7 1.76	21 112 1	1 73 4 25 11	1 201 2048 3	11 53 .93	237 21 .02	27 290 44) 42 630 119	1 1 56 16 10	9 68.2 1 6	59 90 Y 16 110 27
[500E 10+50N L500E 10+75N	,61,32	12 112 -1	1 .49 .4 13 5 1 1.57 2.0 12 5	4 428 2.95 5	09 48 66	314 14 .02 1144 25 .02	42 630 119 101 550 148			
1500E 11+00N	2.2 1.45	11 182 .1 23 341 .9	93 2.6 22 10	Z 779 6.12 B	3 .24 54 1.06		115 790 162	3 (34 225 44 5 34 70 8
L5D0E 11+25N	5,2 3,00	23 436 2.5	1 1.39 2.4 22 12	·	7 .26 56 1.02	1232 27 .02 3411 4 .02	59 1080 2 <u>44</u>	1 75 55		38 50 II
1.500E 11+50H	10.1 3.75 1.9 1.70	10 399 1.0	1 .67 2.5 41	35 361 4.24 1 37 126 3.97 8	1 .21 Z0 1.03 3 .20 73 1.05	283 8 .02	29 500 78		11 104.4 1 10	06 45
L500E 11+75N L500E 12+00N	8 1.49	8 149 .1	7		6 .15 61 1.06	348 8 .02			14 125.1 3 11	
1500E 12425N	7 1.50	9 91 -1		77 181 4.50	7 26 82 1.48	600 10 .02		2 1 23 28 .19	Ten 12712 4 44	09 70 6 1 10 35 2
LS00E 12+50N	2 1.82	$-\frac{10}{40}$		J 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 .25 75 1.36	387 14 -02 1216 13 .02		1 37 18 .15	10 79.9 3 11 10 86.4 1 11	17 27
L500E 12+75N	1 1.74	10 112 -1 8 187 -1	1 1.01 2.2 17	to 118 3.13 4	4 .08 166 .85 6 .10 155 .83	616 7 .02		1 1 35 18 .16	10 86.4 1 11	DI. DA
1500E 13+00H	1.3 1.83 1.6 1.83	5 120 .1	1 .97 .9 16	39 53 3.09	0 .40 100 100					
L500E 13+25H	1									

AND CONTRACTOR OF THE PROPERTY OF THE PROPERTY

CHEP: BARAKSO CONSULTANTS

A STATE OF THE PARTY OF THE PAR

RDJ: FRIENDLY LAKE

ATTN: JOHN BARAKSO

MIN-EN LABS -- ICP REPORT 8282 SHERBROOKE ST., VANCOUVER, B.C. VSX 4E8

FAX: (604)327-3423 TEL:(604)327-3436

FILE NO: 7V-0784-517+8 DATE: 97/11/07 (ACT: ICP 31)

Kg Au-fire ZN ¥ SM SR SB TH ₽ PB NO. NA HI HM K LI рри рри рри РРВ PPB FE GA CO CR CU % PPH AL X PPN PPH PPN PPM PPN В1 PPM 84 ΒE AG AS ž PPH PPH X PPM SAMPLE X PPH X PPH × PPM PPM PPH PPM 51.0 92.7 94.7 PPM PPM PPH PPH PPM NUMBER .02 . 6 280 .07 9 .25 118 14 1.48 10 108 .30 20 26 _16 81 15 .41 3 .02 2 .04 7 .02 35 1150 63 1 1500E 13+50N 66 1.08 291 .12 4 139 35 70 109 3.65 9 . 39 15 .23 1 72 46 590 30 ,2'1.53 6 148 8 .59 75 2.59 515 13 1500E 13+75N 81 120 19 277 31 3.37 83.4 3 .08 10 -46 49 20 41 45 890 .1 1.81 784 12 1500€ 14+00N 5 .12 29 1.13 3 85 130 77 120 3.63 1.35 16 22 ,09 11 90.6 56 126 48 15 49 870 .5 1.53 700 4 .02 6 .14 LENG 30091 93 119 3.84 36 1.36 1 1.55 .3 18 16 2 86 135 90.5 .5 1.79 13 .1 11 22 .09 810 L600E 0+25\$ -02 46 6 .11 34 1.23 722 6 74 15 B4 102 4.05 2 18 89.7 _1 1 1.06 .6 38 21 .08 10 124 14 820 47 4 1,68 42 1600E D+50S 936 5 .01 19 5 .12 31 1.23 2 83 110 74 83 3.83 92.5 .97 18 38 22 .08 11 14 100 880 50 ,4 1.57 953 6 .01 47 16 L600E 0+75S 31 1 24 2 104 130 6 .13 79 102 4.03 1 1.01 19 52 26 .08 14 105.3 99 53 17 7 .02 60 880 L600E 1+00S .4 1.60 37 1.44 964 18 4 106 180 22 101 151 4.82 . 14 23 .09 12 96.5 139 . 1 1 1.28 32 44 .5 2.02 23 L600E 1+25S 5 .02 61 620 37 1.18 721 7 .16 93 208 4.38 1 1.02 18 12 20 156 125.8 18 28 .15 1.1 2.08 32 14 510 1600£ 1+50S 58 352 4 .01 62 1.44 4 107 21 9 .12 90 20 102 82 5.16 14 117.2 .32 .3 2 2 3 53 28 .11 106 .1 70 18 940 .1 2.62 7 .02 71 41 1.64 1111 18 L600E 1+75\$ 22 118 199 4.97 .18 94 130 38 36 35 1 1.22 . 9 13 104.8 26 .11 57 950 138 .1 46 24 .8 2.21 37 1.49 838 6 .02 11 4 115 L600E 2+00S 95 139 4.55 7 -17 75 120.8 .85 _5 22 45 27 .11 14 1 97 . 1 560 5 1.98 22 9 .02 67 1.600E 2+25\$ 45 1.37 696 9 .14 60 20 108 178 5.14 13 111.3 1 75 .72 .a 27 .13 35 1.2 2.57 25 158 . 1 610 .02 72 754 L600E 2+50\$ 7 .20 41 1.78 **22 118 87 4.50** 16 1.03 .5 3 82 79 ٦٠. 33 _11 13 111.6 **78** .3 1.91 16 1600E 2+755 59 610 5 .02 7 .18 32 1.50 833 4 110 125 112 109 4.90 .3 .7 .09 13 96.6 23 22 22 88 .1 730 37 65 50 1 1 91 16 .01 . 91 461 2<u>3</u> 1 ADDE 3+00\$ 53 86 81 171 4.39 114.9 3 222 . 14 15 20 25 12 1.40 35 1.3 1.99 19 117 5 .01 48 600 39 1.45 578 1.600F 3+25\$ 7 .11 ž 91 25 75 4 44 19 100 11 101.6 .40 .22 25 31 21 _11 20 73 3 .01 35 820 .1 1.79 .99 299 24 1600E 3+50S 7 .05 31 75 20 11 104.5 79 49 4.08 13 19 24 .14 88 .1 660 41 14 51 .1 1.85 5 .01 34 1,50 698 1600E 3+75\$ 23 100 81 4.24 6 .14 17 95 .33 2 70 60 .1 -1 74.5 19 17 .07 .1 1.78 35 5 _02 36 830 L600E 4+005 .08 28 .64 707 18 98 3.23 15 62 93.6 94 1.84 _8 22 .13 40 _7 1.53 11 131 5 .02 43 740 30 139 7 .10 36 1-15 720 85 6 1.600E 0+25N 72 87 4.15 79.4 18 11 .97 .6 46 20 .10 29 1.0 2.33 18 154 .02 47 910 11 L600E 0+50N .12 35 .90 616 82 79 126 3.84 9 103.6 3 13 .12 29 50 1.15 1.1 1.4 2.02 154 .1 39 640 44 13 14 .02 29 1.18 454 45 1600E 0+75N 84 3.53 8 . 13 9 85.7 91 17 89 17 .13 .63 .1 .2 21 108 .02 35 420 .7 2.16 14 .08 28 .79 283 4 10 61 64 3.41 £600E 1+00N 8 145 185 15 15 , i .48 69.1 12 130 109 27 24 .04 .4 2.22 1140 38 47 .18 132 L600E 1+25N 24 .77 36 1.47 1353 3 101 50 56 218 5.80 .09 . 15 11 116.3 2 1.35 4.3 25 20 3.4 27 160 52 1120 13 14 5 .9 1.27 23 3 ,02 337 L600E 1+50N .12 3 121 2 77 10 104.9 89 4,12 .35 .1 13 105 30 20 . 16 65 43 410 25 .02 .1 2.49 21 .93 585 77 1600E 1+75N 1600E 2+80H . 10 41 93 **9** 60 3.72 . 14 15 .45 18 66 42 5 54 27 .1 2.14 1060 14 111 .93 207 11 .02 78 49 .2 245 5.47 10 .20 1 101 . 13 11 100.0 13 75 29 1 .83 25 1 22 17 255 5 .01 530 42 .1 3,09 462 .13 35 1.1B 12 23 14 L600E 2+25N 17 75 84 4.02 .55 .4 14 105.0 3 122 130 15 80 . 1 51 25 . 11 34 25432 L600E Z+50N .4 1.81 10 .02 63 860 628 35 1.07 В .22 6 181 285 80 268 5.11 24 172.5 .86 16 54 71 41 .09 19 .02 102 1270 21 37 170 1,8 2.59 13 .36 41 1.39 B70 1.600E 2+75N 135 441 8.29 24 22 23 . 10 12 103.9 2 94 75 1 1.10 .7 20 32 33 298 .8 960 2.9 4.70 28 1.19 6 .01 48 3 554 16006 3+00N 7 .20 55 74 125 4.61 99.2 117 .6 21 36 28 .09 12 36 -67 .6 1.94 19 100 . 1 31 1.03 27 1.36 .02 57 650 10 728 7 ,15 Ž 30 L600E 3+25N 15 79 141 4.42 11 101.0 81 .14 .64 41 .7 2.52 15 158 . 1 3, .02 49 670 778 6 .15 1600E 3+50N 19 73 4.11 .58 .3 23 79 4 118 97.8 .1 1.69 77 40 21 .10 11 15 600 36 L600E 3+75N 54 6 .12 34 1.02 1189 5 ,02 114 76 119 4.21 18 .72 1.1 30 23 .13 11 108.4 540 34 12 176 . 1 47 .7 2.44 36 1.29 987 3 .02 19 1600E 4+00N 81 4.29 7 .11 96.6 92 23 -57 76 26 20 . 13 10 23 510 .3 2.21 13 117 2 .01 3 .02 38 30 1.10 480 6 .08 40 3 116 L600E 4+25N 17 64 3.79 21 15 96.7 .47 .3 66 29 10 28 1 500 38 LADOE 4+50N .2 1.93 10 117 6 .11 37 1.18 645 8 68 3.91 82 45 1 .60 .3 18 67 28 22 .13 10 100.2 119 38 540 21 12 .2 2.04 28 1.29 653 4 .01 1600E 4+75N .10 3 54 3.91 .58 17 71 2 109 10 94.7 14 85 2 3 2 35 21 _ 13 .1 1.88 24 .02 360 L600E 5+00N 7 40 624 6 .11 39 1.05 3 118 75 72 3.87 16 68 14 106.5 26 .12 .70 ۵. 46 108 530 39 .5 2.00 14 63 9 .02 46 1.24 643 99 220 10 L6006 5+25N 87 187 4.83 8,16 ġ 62.3 2 .08 .88 1.0 18 89 17 68 1490 30 .8 2.58 20 143 .1 _02 3 4 .12 26 .60 1074 14 L600E 5+50N 41 480 52 408 3.40 2.7 11 .01 10.8 1.83 15 37 16B 3 27 1110 15 177 3.4 2.41 2 .29 .22 454 12 L600E 5+75N .55 1 .06 3 101 50 8 196 25 .14 13 117.3 3.93 2.4 Ź 30 2 133 .4 .01 50 440 2.1 .56 . 14 33 1.37 704 LEGOE 6+00M 95 111 4.69 8 14 21 .51 .3 <u> 20</u> 2 77 10 93.5 13 115 .12 4 2.41 1 15 220 547 27 100D 26 .01 160DE 6+25N 56 3.85 76 4.32 26 .77 10 . 05 52 11 107.9 2 94 35 .33 24 .15 Ż 1 24 15 71 49 32 33 .1 1.68 3 .01 900 . 18 35 1.44 53 1.09 1600E 6+50N 98 87 7B .43 18 10 119.1 .3 20 .19 .1 1 990 40 12 .1 1.90 67 16 259 1 .02 1600E 6+75N 47 3.78 8 .09 12 .26 B 81 .2 1.58 L600E 7+00M

COMP: MARAKSO CONSULTANTS

a de la Carle de la casa de la capación de la construida de de destruida de la construida de la construida de l

PROJ: FRIENDLY LAKE ATTN: JOHN BARAKSO MIN-EN LABS -- ICP REPORT

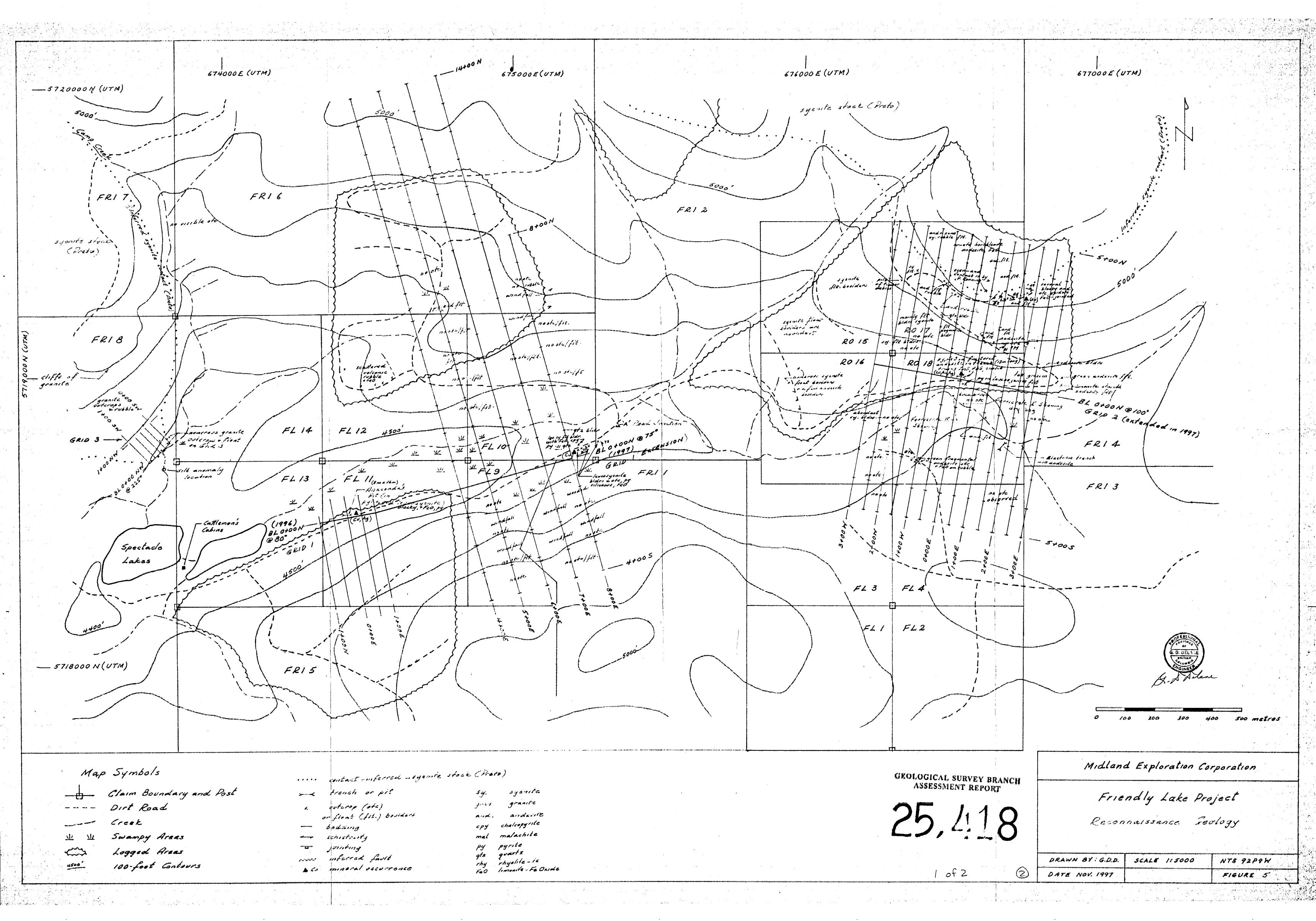
8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4EB TEL:(604)327-3436 FAX:(604)327-3423 FILE NO: 7V-0784-\$39+10 DATE: 97/11/07 * * (ACT:1CP 31)

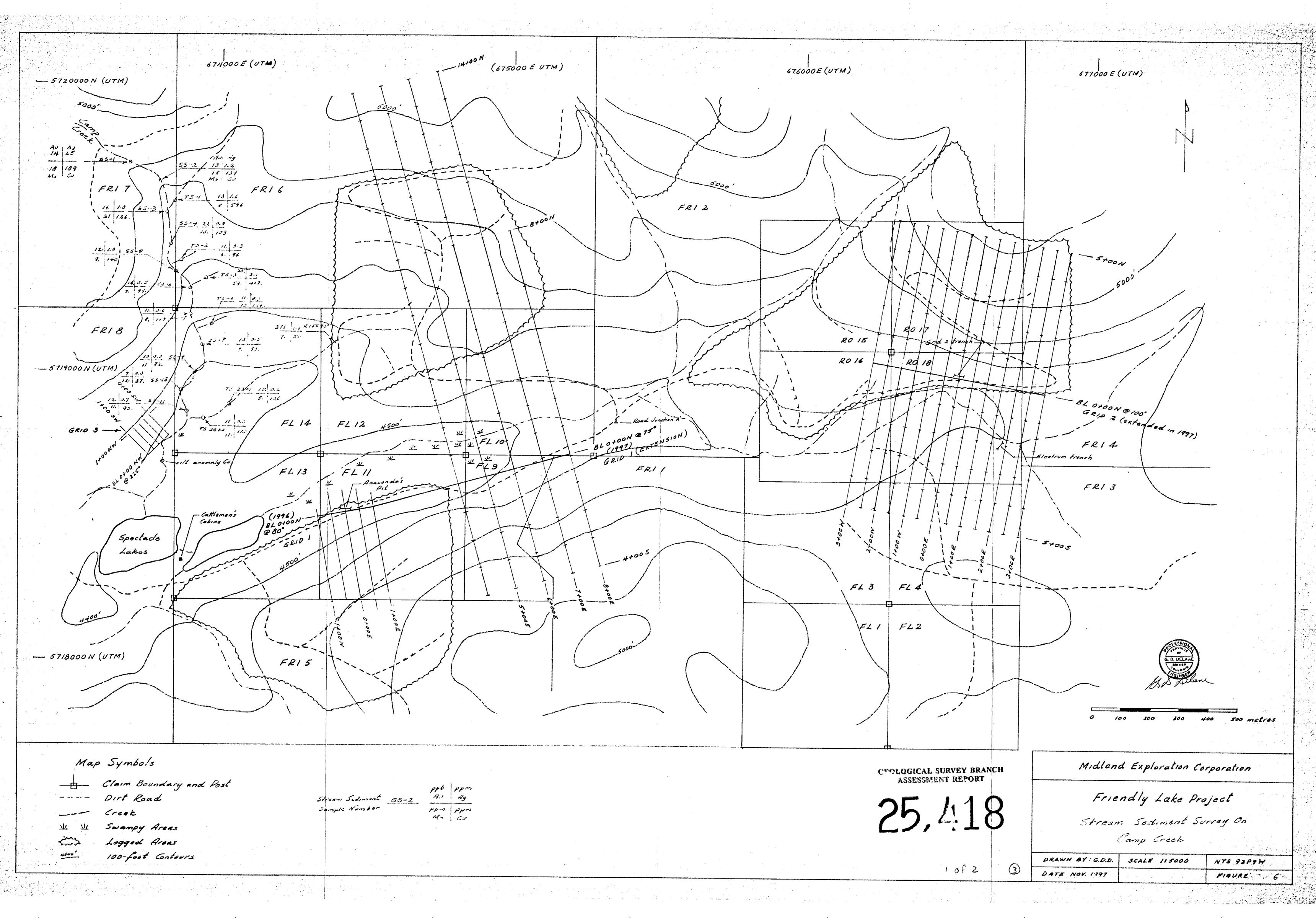
TH TI ZN Ng Au-fire PB. SØ SN SR Ш CO CA CO CR CU SAMPLE AS AL % PPH PPM PPM PPM PPB % PPM PPH PPN PPK PPM PPM PPN PPH PPH PPH PPH PPH X PPK X PPN z PPN PPN PPH PPH χ, .PPM NUMBER PPM 22 .23 25 .15 21 .14 23 .12 21 .10 Z/5 29 460 45 1.26 .31 13 73 46 3.94 .20 L600E 7+25N .3 1.54 3 .02 52 400 43 223 30 22 12 112.6 3 35 1.36 20 16 91 129 4.42 .16 677 103 .61 1600F 7+50N .2 1.96 14 .1 86 87 169 3.91 ,93 1 10 105.9 65 11 34 427 4 .02 48 390 43 .11 13 126 .38 L600E 7+75N .6 1.89 -1 35 1 28 11 103.9 3 90 13 .58 30 1.34 728 4 .01 46 720 19 80 114 4.22 7 .17 L600E 8+00N .5 1.81 12 86 50 6 .01 38 660 36 26 11 B6.8 72 18 .99 49 15 61 121 3.86 4 .11 23 477 15 75 L600E 8+25N _1 1.48 _ 1 51 130 65 15 200 3.08 _07 19 .59 757 6 .02 35 1020 36 13 49 15 149 1.56 1.1 L600E 8+50N 1.0 1.37 3 104 170 22 43 1.12 571 4 .02 58 940 65 50 21 .10 11 84.3 6 .17 1 1.20 20 77 266 4.00 179 2.0 L600E 8+75H 1.6 2.11 13 21 .10 3 135 150 19 6 .02 53 800 48 11 82.5 71 278 3.90 . 25 35 1.18 1099 83 19 1.5 1.86 13 170 .1 1 1.22 1.7 1600E 9+00H .07 69 140 16 43 69 58 19 10 70.7 3 .15 31 ,86 1357 16 .02 810 71 270 3.63 1.2 1.64 1 1.61 1,600E 9+25H 15 189 1.3 16 15 750 62 54 17 .07 Ŷ 66.5 2 79 105 10 .01 38 55 193 3.17 4 .14 26 . 83 766 1 1.44 1.3 14 L600E 9+50N 1.0 1.40 9 143 5 175 140 46 43 31 .15 16 127.5 25 139 557 5.78 8 .23 8 .37 65 1.48 1016 19 .02 590 114 1.8 230 1 1.06 3.2 2.59 27 L600E 9-75N 53 31 .16 28 .14 7 253 110 11 .02 93 520 118 30 15 134.5 29 154 460 5.33 81 2.03 984 2.3 2.33 2.5 2.44 L600E 10+00N 177 .68 1.1 32 -1 14 122.1 4 191 120 28 20 103 368 5.15 6 .22 45 1.29 1509 16 .02 79 490 81 38 22 23 23 22 .80 204 1.4 L600E 10+25N 30 25 . 13 13 118.0 3 119 80 23 103 248 4.72 50 1.44 72 1.77 1089 12 .02 70 520 92 .8 2.03 .5 2.03 6 .21 .9 145 .67 L600E 10+50N .1 15 10 .02 25 27 . 15 12 118.3 4 149 65 93 570 64 23 166 167 4.53 .23 613 109 .56 8 .4 L600E 10+75N 16 .13 89.7 2 84 -01 34 510 49 В 49 11 62 61 3.06 .19 35 . 90 290 4 .3 1.07 11 L600E 11+00N 20 24 .13 11 107.8 1 106 40 95 148 4.07 .28 58 1.70 429 7 .02 54 800 112 .52 19 90 L600E 11+25N .4 1.64 22 95 45 25 .13 4 154 18 13 104.7 38 89 387 4.61 . 15 123 1.25 1118 24 .02 89 450 142 20 4.4 2.40 17 334 .96 2.9 L600E 11+50N 28 .17 4 135 9 15 14 123.2 .47 19 60 119 5.03 10 .22 92 1.63 465 5 .02 30 1160 71 .1 2.09 .3 1.62 10 89 L&00E 11+75N 2 112 8 3 .02 21 .18 11 108.3 48 1.06 352 27 1180 47 14 99 40 14 62 47 4.03 10 ,15 1600E 12+00N .1 4 158 15 28 25 .14 13 114.0 92 201 4.64 15 .01 60 710 .32 112 1.50 1558 1.2 2.27 . 73 1.1 24 6 12 179 L600E 12+25H 30 850 33 15 26 ,22 10 98.8 3 142 ġ 93 2.45 421 1 .03 133 .39 19 285 29 3.71 . 44 .1 1.99 2 75 . 1 L600E 12+50N 12 111.7 4 162 7 13 26 .19 90 4.51 .24 85 1.56 419 2 .02 56 1330 49 19 119 10 116 .38 L600E 12+75N ,1 2-11 6 _1 3 122 12 21 . 19 11 103.7 6 36 1080 60 59 1.11 355 2 .02 109 .29 17 89 56 3.97 .11 ,4 1.82 _1 L600E 13+00N 2 111 12 26 _17 .02 33 BDD 61 8 10 106.1 8 . 15 51 1.12 401 .26 .2 15 81 107 3.57 L60DE 13+25N .3 1.39 64 5 7 3 .02 28 830 10 19 .18 9 107.2 2 99 42, 1,10 353 .28 45 3.31 . 13 .2 1.31 8 69 L600E 13+50N .90 206 4.02 3 .03 278 780 62 13 38 .21 14 116.1 164 29 370 113 5.09 .29 10 508 L600E 13:75N .1 2.89 13 101 . 1 4 149 2 99 2 89 76 1.70 6 .02 43 35 910 67 10 28 . 19 14 126.3 10 .22 404 21 105 167 5.06 12 65 54 3.82 13 .26 .2 .7 1600E 14+00N .4 2.35 96 10 92.6 620 ŽÌ. 24 20 .11 80. 31 1.02 377 17 98 **60** L700E BLON .1 1.63 8 .08 42 1.49 312 4 .01 48 380 33 19 23 .13 10 101.2 65 3.91 64 .54 . 3 14 89 14 L700E 0+25S .3 1.81 19 32 7 .38 42 1.74 785 10 .02 84 980 83 .86 .4 .5 .7 23 119 309 4.66 .3 1.72 20 76 _1 1.700E 0+50S 23 32 34 25 25 24 12 110.1 3 95 6 33 ,11 49 1.36 593 3 .01 51 430 .58 90 111 4.40 .14 .1 1.95 16 107 L700E 0+75S 10 782 64 630 . 13 12 106.5 97 4 .02 .83 22 107 194 4.50 .17 64 1.46 1700E 1+00S .8 2.05 14 110 83 17 69 920 41 .12 11 104.4 2 ,23 37 1.71 707 4 _02 .89 22 141 94 4 05 6 .6 1.76 -6 16 114 .1 1700E 1+25S 3 143 36 10 21 . 12 11 87.9 48 1.05 964 4 .02 56 590 30 .83 18 86 102 3.80 6 .09 17 127 1.6 2.9 2.28 1,700E 1+50S 9 25 3 161 3 .02 580 35 . 13 13 102.7 60 1.27 677 66 20 103 120 4.55 _10 1.5 2.44 18 145 . 1 .76 1.3 1.700E 1+75S 12 430 36 38 27 . 13 15 113.4 4 152 95 21 109 171 5.29 4 .02 78 . 14 85 1.17 462 77 2.4 2.97 1700E 2+00S 23 209 1.1 20 25 . 12 14 113.0 2 122 50 35 293 .01 34 1320 21 .05 .87 1 1 74 . 29 15 72 42 5.07 L700E 2+25S 15 74 . 4 3 123 35 49 1.15 22 25 .07 14 107.3 514 7 .01 57 360 27 105 129 4.88 .06 .1 2.01 73 . 39 21 14 1,700E 2+50S 8 17 .09 9 72.1 1 91 95 56 780 209 71 148 3.16 .10 43 .97 1795 6 .02 11 88 .65 1.2 15 1.7 1.59 ٦. L700E 2+75S 13 91.4 4 129 105 15 68 1.14 6 .02 74 560 93 215 4.54 7 _00 165 .1 .86 19 L700E 3+00S 2.1 2.56 19 21 27 . 13 14 113.7 3 142 40 15 610 52 .06 50 1.20 363 .01 45 .1 2.41 .38 88 94 5.24 99 _4 24 L700E 3+25S 31 25 25 .10 13 100.1 3 104 50 16 5 .02 760 43 98 4.60 7 ,16 36 1.48 762 57 .B5 20 97 .4 1.86 18 90 1,700E 3+505 .10 17 9 .02 600 108 29 12 109.7 3 114 60 7 .17 46 1.57 715 55 21 106 133 4.45 .5 1.80 17 95 .01 1700E 3+75S 39 23 13 88.0 3 162 100 14 .02 680 43 .11 B3 155 4.50 46 1.01 959 45 .98 19 6 .11 1.2 2.68 21 188 1.6 L700E 4+00S 3 113 21 120 190 5.07 .32 795 5 .02 88 1010 30 30 .13 14 121.6 .57 8 40 1.81 .1 2.06 22 103 L700E 0125M 25 .02 29 1250 17 47 13 .07 7 60.1 1 51 105 4 .11 7 .11 .66 1.40 8 42 85 2.39 94 .6 1700E 0:50N 1.9 1.25 6 10 92.1 13 30 .78 288 3 .02 32 510 19 15 19 ,12 2 81 75 52 91 126 3.83 9 .35 1700E 0+75R .1 2.00 -1 ì

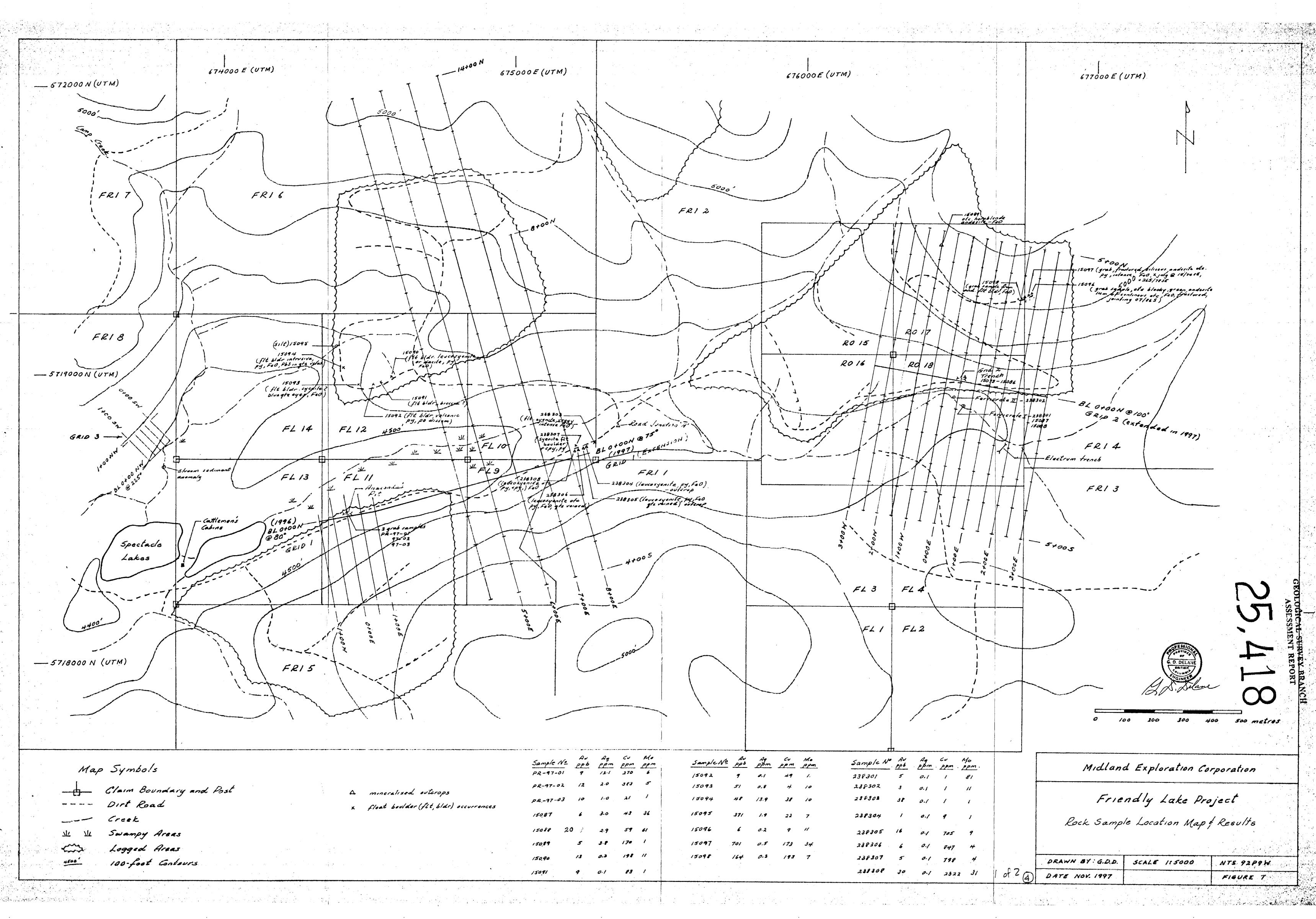
TO CONTRACT THE STATE OF STATE

COMP: BARAKSO CONSULTANTS PROJ: FRIENDLY LAKE


MIN-EN LABS --- ICP REPORT


8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8


FILE NO: 74-0784-\$J11+12+13 DATE: 97/11/07


* * (ACT:1CP 31)

TOTAL ENTENDLY LAKE	TEL : (604) 327-3436 FAX: (604) 327-3423
PROJ: FRIENDLY LAKE	THE THE THE THE THE THE TENT OF THE TENT O
ATTH: JOHN BARAKSO	TO CO CP CI SE GA K LI NG MM NO MA NI P PO SO M ST PPM PPM PPM PPM PPB PPB
SAMPLE	AG AL AS RA BE BY Y DOM
NUMBER	PPN 2 PPN PPN PPN PPN PPN PPN PPN PPN PP
1700E 1+00H	422 1 133 -1 12.65 1.0 30 5 29 1.26 1 .03 1 -11 315 19 -23 13 101 20 1 1 12 16 36 9 74.3 2 59 70 0
1700E 1+25H	$\begin{bmatrix} 1 & .2 & .42 & 1 & 126 & -6 & 1 & .42 & .42 & .43 & .41 & .42 & .33 & .41 & .42 & .42 & .43 $
1700E 1+50H	1 .2 1.4(8 470 1) 1 82 1.0 20 86 124 5.75 4 -18 30 1 -23 249
L700E 1+75H	1 1 2 92 2.6 3 8 57 .53 3 .04 2 .21 112 27 28 23 2 1 58 13 .10 7 77.7 1 47 110
L700E 2+00N	1 1 69 6 11 48 69 2.72 6 .09 19 .45 204 13 1470 24 2 1 34 20 .16 9 03.2 3 90 400 1
L700E 2+25N	1 -91-97 17 77 -1 1 53 .4 15 70 73 3-49 1 30 42 30 70 660 24 1 1 165 4 .01 2 20 6 20 6 20 6 20 6 20 6 20 6 20 6
1700E 2+50N	7 7 35 3 114 -2 1 2.64 2.2 3 4 10 7 10 26 82 178 3 .01 29 610 21 1 1 24 10 10 10 10 10 10 10 10 10 10 10 10 10
1700E 2+75H 1700E 3+00N	1 1.38 10 78 .1 1 36 .3 17 77 70 3 R6 7 .09 34 1.03 270 3 .82 42 460 29 3 1 27 27 30 4 107 85 18
L700E 3+25N	4 1.80 16 93 1 1 24 16 12 77 123 4 07 7 14 33 1.02 537 4 .02 52 640 35 1 1 49 20 11 16 123 3 5 155 95 14
1700E 3+50N	1.0 2.03 13 135 -1 1-64 2-1 17 111 336 5.80 10 .22 33 1.30 667 6 .02 87 820 35 2 1 22 10 12 107-2 4 141 65 6
1700E 3+75N	1 2.3 3.22 21 224 -2 1 72 20 14 85 147 4.53 8 .12 36 1.05 38) 3 -05 26 500 35 5 1 28 24 .13 12 106.2 4 128 20 3 1
1.700E 4+00K	7 2.50 13 140 1 1 45 1 1 21 97 138 4 36 7 18 44 1 17 1072 4 02 67 630 44 2 1 32 25 .10 13 110.6 3 137 13
1700E 4+25N	1 2 81 17 1 1 .56 1.1 20 85 190 4.65 7 . D . 3 430 27 1 1 21 17 .14 9 89.2 2 105 45
1700E 4-50N	5 70 7 111 .1 1 -41 .4 11 53 55 3.33 5 12 20 86 1298 5 .02 47 720 58 3 1 47 20 49 11 137 5 4 153 95 4
1700E 4+75N 1700E 5+00N	9 238 9 166 -1 1 -89 1-2 18 9/ 225 5 44 9 19 34 1-18 989 7 .02 68 890 68 3 1 25 46 10 8 76.3 3 91 45 3
1700E 5+25N	1.7 3.16 18 208 4 1 1 47 3 11 45 57 3.00 6 07 29 57 235 2 .02 47 580 34 2 1 38 21 11 11 97.6 4 109 55 9
1,700E 5+50N	5 64 8 70 1 1 73 1.0 16 67 96 4.13 6.12 30 .99 1000 0 27 120 33 2 1 27 18 .09 10 88.1 4 122 45
1700E 5+75H	1 176 1 3 49 5 18 56 52 3-60 6 07 27 78 558 5 02 31 510 29 2 1 35 18 10 9 84-1 2 96 75 15
L700F 6+00M	1 -1 1.78 11 99 11 1 166 4 16 56 46 3.44 7 108 30 79 298 5 102 38 380 37 2 1 43 17 12 10 40 5 3 84 125 10
1700E 6+25N 1700E 6+50N	16 2 15 11 129 1 1 1 79 13 14 55 211 3 44 5 110 31 -74 576 9 102 47 220 34 1 1 41 15 110 9 85.1 3 80 110 5
1700E 6+75N	1.6 1.76 10 140 .2 1 12 49 147 3.35 5 .06 28 .40 654 8 .02 36 657 29 1 1 31 20 12 10 95.6 1 93 70 10
1,700E 7+00N	2.4 1.78 11 120 - 1 16 63 93 3.85 6 .09 35 .97 684 4 .02 40 250 25 1 1 16 16 .13 9 91.2 1 69 35
1.700E 7+25N	1 1 2 2 3 43 35 3.19 (100 10 10 10 10 10 10 10 10 10 10 10 10
1.700F 7150H	1 100 11 100 11 1 151 4 16 59 65 4-16 9 100 10 10 10 10 10 10 10 10 10 10 10 10
L700E 7+75N L700E 8+00N	5.1 1.94 14 172 1.0 1 2.52 2.5 1 1 6 162 37 1 .03 1 .15 141 5 .22 28 620 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1700E 8+25N	2.2 .45 2 1/2
1700E 8+50N	1 2.9 1.09 0 100 4 16.55 2.7 2 6.213 .37 1 .02 1 .17 .602 4 .01 10 .750 6 1 1 By 5 .04 3 .21.9 1 16.100 2
1708E 8+75H	2.6 -47 2 88 1 1 2.33 1.1 3 11 77 1.07 2.02 1 12 600 12 20 17 780 5 1 1 153 3 01 3 6.4 1 10 160 6
170BE 9+00#	16 36 1 132 1 1 3 97 7 1 4 6 205 2 83 4 11 39 66 396 9 25 39 680 76 1 1 63 14 100 11 11 11 11 11 11 11
1,700E 9+25N 1,700E 9+50M	2 9 1 50 9 109 .1 1 2.04 1.3 1 40 1 108 254 4 .02 12 540 6 1 1 64 4 .03 3 66 2 44 200 11
1.700E 9+75H	1 1 7 49 1 70 1 1 1 61 47 1 2 401 2 84 4 08 29 49 628 6 02 46 700 38 1 49 21 08 13 86 8 3 100 400 12
1700E 10+00H	4.6 1.56 12 120 10 1 1.78 1.6 14 58 510 4.71 7 12 24 .52 500 10 12 70 820 6 4 1 143 2 .01 1 7.0 1 14 185
L700E 10+25N	3.8 2.77 7 1 3.93 2.4 2 8 654 32 1 03 1 14 67 3 36 15 450 6 2 1 154 2 01 1 15.0 1 24 07
L700E 10+50N L700E 10+75N	1 184 1 1 4.54 3.9 1 4 100 10 10 10 10 10 10 10 10 10 10 10 10
	3.6 77 8 228 .1 1 3.61 2.3 .4 34 407 124 9 14 63 1.66 295 2 .02 42 1400 37 2 1 13 26 10 13 106 4 7 277 45 11
L700E 11+00N L700E 11+25N	1 1.86 14 72 1 1 38 21 18 70 429 4.17 7 12 112 1.08 377 3 02 89 250 61 1 10 33 19 17 172.3 2 113 60 19
1700E 11+50N	$\frac{1}{2.3} \frac{2.41}{2.41} \frac{11}{11} \frac{220}{25} \frac{1}{11} \frac{1}{18} \frac{138}{138} \frac{117}{117} \frac{5.86}{5.86} \frac{11}{11} \frac{15}{117} \frac{81}{117} \frac{1.91}{117} \frac{292}{117} \frac{2}{117} \frac{292}{117} \frac{1}{117} \frac{1}$
1700E 11+75N	8 2.32 20 24 1 37 1 17 94 82 4.36 7 10 34 1.40 303 1 2 3 4 14 70 22 35 166 9 3 181 50 6
12:00H	7 80 1 1 33 .4 21 136 74 5-28 10 .16 107 1.92 293 660 102 3 1 28 33 .12 15 155.3 3 114 45 10
L700E 12+25B	1 2 36 15 120 .4 1 .83 .4 27 76 160 .70 1 06 7 .21 1909 8 .13 64 1580 16 3 1 134 4 106 2 17.5 5 186 35 4
L700E 12:50N	3.7 .60 B 313 -1 14.25 5-1 23 102 204 5.14 9 .21 83 1.83 455 4 .02 53 880 57 1 1 16 24 .24 12 137.4 3 94 30
1700E 13+00N	7 2.07 11 64 -1 137 2 15 68 42 4.46 11 .07 25 1.15 273 7 .02 29 770 47 1 1 0 27 26 15 181.5 3 75 40 6
1.700E 13+25N	3 1.62 y 12 1 1 23 1 13 63 48 5.37 12 .07 32 1.01 288 3 .02 25 1890 30 1 11 26 .18 13 142.3 5 91 50
1.700E 13+50M	- 1 5 1.55 21 69 · 1 1 76 · 1 48 75 124 4.73 9 .16 49 1.32 404 3 .06 36 36 36 46 1 1 10 22 18 12 131.9 4 78 40 · "
₹700€ 13+75N	14 1.71 23 58 -1 1 20 17 10 69 85 4.21 9 .09 37 1.15 267 2 .02 30 1120 31 1 10 22 110 120 12
1.700E 14+00N	

