Sessment

1997 GEOLOGICAL and GEOCHEMICAL REPORT

ON THE

CASTLE PROPERTY

CEP 2 7 1998 Center of the second Center of the second

NTS: 104G/16E

Latitude: 57°48'N

.

Longitude: 130°12'W

Liard Mining Division

Owner: Teck Corporation, 600 - 200 Burrard Street, Vancouver, B.C. V6C 3L9

Operator: Teck Exploration Ltd. 350 - 272 Victoria Street, Kamloops, B.C. V2C 2A2 Jean Pa

Jean Pautler December, 1997

SUMMARY:

The Castle property, comprising 90 units (2250 ha), was staked to cover a 7 km long Au, Ag, Cu bearing gossanous alteration zone, only 15 km west of the village of Iskut, B.C. and 70 km south of Dease Lake. An ATV trail accesses the eastern property area.

The property is primarily underlain by intermediate volcanic rocks and derived sedimentary rocks of the Jurassic Hazelton Group. These are intruded by felsite, feldspar porphyry and diorite dykes/sills. A Recent olivine basalt cinder cone is exposed in the northwestern property area.

The property is characterized by a 7 km long gossanous alteration zone that obtains widths up to 200m. The alteration consists of pyritized and propyliticly altered volcanic rocks with weak, but pervasive, pyrite-sericite-quartz alteration. More intense, but narrow pyrite-sericite-quartz assemblages (veins) are generally restricted to a conjugate set of structures that trend 35-70°/75-85°SE and 100-140°/70-85°SW.

Work consisted of 1:10,000 scale mapping of the property and mapping with concurrent rock sampling on the poorly explored and previously, largely unsampled Castle East Zone, which hosts the widest extent of alteration on the property (Photos 1-3), and the Castle Central Zone (Photos 4-5). A contract crew was utilized to chip sample, at 1.5m intervals, the steeper portions of the zone.

The higher gold values were obtained from quartz-carbonate-chalcopyrite veins, quartzpyrite veins and in silicified zones, commonly associated with the pyrite-sericite-quartz bearing structures. The maximum values obtained were only 1.5 g/t Au over 3.0m, 2.34g/t Au over 1.5m and 2.82 g/t Au, 44.2 g/t Ag and 7.6% Cu from float.

Previously, it was found that the gold mineralization was hosted by the narrow pyritesericite-quartz structures. The three visible Au occurrences on the property are related to these structures and returned 1) 32.6 g/t Au over 1.0m, within a zone containing 7.35 g/t Au over 18.2m; 2) 40.5 g/t Au over 0.4m; and 3) 27.7 g/t Au over 1.0m.

In conclusion, Au is widespread on the Castle property, but so far not of sufficient grade to host a bulk tonnage deposit. Future work should try to narrow down smaller areas with higher grade. Small, high grade zones have been delineated on Castle Main but, as yet, the continuity is lacking. The potential lies proximal to northerly trending extensional features that should be identified and explored in detail. A detailed air photo interpretation and structural analysis of the core are recommended followed by a 1,500m diamond drill program across the Castle Main Alteration Zone and southeast of the previous drilling to more definitively outline the potential of this zone.

PHOTO 2: view looking southeast

Castle East Alteration Zone

PHOTO 3: view looking southeast in area of chip sample Line A

PHOTO 4: Castle Central Zone view looking northwest

PHOTO 5: Castle Central Zone. Detail view looking northwest

TABLE OF CONTENTS

Page

SUMM	1ARY i
1.	LOCATION AND ACCESS 1
2.	LEGAL DESCRIPTION 1
3.	PHYSIOGRAPHY 1
4.	HISTORY 1
5.	1997 WORK 2
6.	GEOLOGY 2
	a)Regional
	b)Property
	c)Structure
	d)Alteration
	e)Mineralization
7	GEOCHEMISTRY 5
	a)Procedure
	b)Results and Interpretation
8.	CONCLUSIONS AND RECOMMENDATIONS 7

APPENDICES

Appendix	I	Selected	References
----------	---	----------	------------

- Appendix II
- Rock Sample Descriptions Geochemical Procedure and Results Appendix III
- Statement of Expenditures Appendix IV
- Statement of Qualifications Appendix V

LIST OF FIGURES

Following Page

Figure 1	Location Map (1:2,000,000)	1
Figure 2	Claim Map (1:50,000)	1
Figure 3	Regional Geology Map (1: 400,000)	2
Figure 4	Property Geology (1:10,000)	back pocket
Figure 5	Castle East and Central Zones - Sample Locations (1: 5,000)	back pocket

TABLE OF PHOTOGRAPHS

Following Page

Photo 1	Castle East Alteration Zone view looking northeast
Photo 2	Castle East Alteration Zoneview looking southeast
Photo 3	Castle East Alteration Zone - chip sample Line A area i
Photo 4	Castle Central Zoneview looking northwest
Photo 5	Castle Central Zoneview looking northwest

1. LOCATION AND ACCESS (Figure 1)

The Castle property is located 15 km west of the village of Iskut, B.C. and 70 km south of Dease Lake. The property is situated on NTS map sheet 104G/16E, in the Liard Mining Division. Latitude and longitude of the property are 57°48'N, 130°12'W.

Access is by helicopter from Dease Lake with the possibility of temporary bases at Tatogga Lake, south of Iskut and at Bob Quinn. An ATV trail from Iskut accesses the eastern property area.

2. LEGAL DESCRIPTION (Figure 2)

The Castle property consists of 90 contiguous units covering an area of approximately 2250 hectares. The property is owned by Teck Corporation, Vancouver, B.C., with Silver Standard retaining a 10% interest. Teck Exploration Ltd., of Kamloops, B.C., was the operator. A table showing pertinent claim data follows:

Claim Name	Record No.	No. of Units	Expiry Date	Years to be Applied	New Expiry Date
Castle #2	221931	12	Mar. 26, 1999	2	Mar. 26, 2001*
CAS 1	222740	20	July 6, 1999	2	July 6, 2001*
CAS 2	222741	18	July 6, 1999	2	July 6, 2001*
CAS 3	222742	20	July 6, 1999	2	July 6, 2001*
CAS 4	222743	20	July 6, 1999	2	July 6, 2001*
4 8 7 . 8 7					-

* Note: New expiry date based on acceptance of this report.

3. PHYSIOGRAPHY

The claims lie on the southwest slope of Tsazia Mountain on the Klastline Plateau, northwestern B.C. Elevations on the property range from 1300m to 2130m. The property is entirely above tree line in rugged, mountainous terrain and alpine meadow-tundra. Although snow patches persist year round, the property is generally free from snow between late June and early September.

4. HISTORY

The Castle property was originally staked as the JO property by Sumitomo Metal Mining Canada in 1970. They subsequently completed a soil geochemical survey for Cu and drilled about 550m of diamond drilling. Apparently no Au analyses were performed and the core, logs and assays are not available.

The Castle #1 and Castle #2 claims, totalling 27 units, were staked by Teck in 1980 as part of a regional program. After limited soil sampling and mapping it was found that geochemical anomalies in Au, Ag and Cu were associated with a large, heavily pyritized zone in volcanic rocks. Castle #1 was allowed to lapse. In 1985, hand trenching, chip sampling, magnetometer, self potential and VLF surveying yielded positive results with Au values up to 8.2 g/t over 3m. The CAS 1 to CAS 4 claims were added in 1987.

In 1987, in a JV agreement with Kappa Resource Corporation, Teck completed geophysical, geological and soil geochemical surveys as well as hand trenching. New gold showings were discovered with one returning 32.6 g/t Au over 1.0m. The JV completed 1190m of diamond drilling in 11 holes in 1988. Significant results include 4.5 g/t Au over 7.6m, including 11 g/t Au over 1.2m (in DDH 88-7).

In 1990, a new Au zone was discovered by Triumph Resources, assaying 27.7 g/t Au over 1.0m, while conducting a program of additional hand trenching and geochemical sampling. Values of 5.6 g/t Au over 17.8m were obtained from the DDH 88-7 area and 7.35 g/t Au over 18.2m from the vicinity of the above 1987 Au showing.

5. 1997 WORK

A total of 38 man days were spent on the Castle property between July 23 and August 17, 1997. Work consisted of 1:10,000 scale mapping of the property (not previously undertaken) and mapping with concurrent rock sampling on the poorly explored and, previously largely unsampled Castle East Zone, which hosts the widest extent of alteration on the property, and the Castle Central Zone. A contract crew was utilized to chip sample the steeper portions of the zone.

6. GEOLOGY

a) **Regional** (Figure 3)

For a thorough description of the regional geology of the Telegraph Creek Map Area, including the Castle area, refer to Ash, 1997 and Souther, 1972.

The property lies within the Klastline Plateau which is predominantly underlain by probable Lower Jurassic intermediate flows and pyroclastic rocks and fine grained sedimentary rocks of the Hazelton Group (previously mapped as Upper Triassic Stuhinni Group). In the southern property area the volcanic and sedimentary units occur, primarily in fault contact, along an east-west trend which transects the width of the plateau. The central portion of the plateau is occupied by Quaternary black olivine basalt tephra.

Castle Property - REGIONAL GEOLOGY from ASH et al, 1997

b) Property (Figure 4 - 5)

The Castle property is primarily underlain by intermediate volcanic rocks and derived sedimentary rocks of the Jurassic Hazelton Group. The intermediate volcanic rocks consist of green and maroon volcanic breccias and tuffs that are commonly feldspar and hornblende porphyritic and of trachyandesite composition. The presence of feldspar and hornblende phenocrysts as opposed to pyroxene, supports the Hazelton Group affiliation.

The intermediate volcanic rocks have been subdivided into three main units:

- Unit Mt,3: -maroon, distal tuffs
- Unit Cfr,2 -coarse andesitic fragmentals
- Unit Vo,1: -interbedded andesites and breccias that are commonly porphyritic

Unit Vo,1 is considered to be the oldest unit exposed on the property due to its exposure in the valley bottoms. Unit Cfr,2 may be a proximal facies equivalent to Vo,1. Unit Mt,3 appears to overlie the other units. The above units appear to correlate with the older volcanic suite of the Lower Jurassic Hazelton Group, as defined by Ash et al, 1997.

In the southern property area, fine grained epiclastic sedimentary rocks, consisting of mudstones, siltstones, grits and limestones, are exposed to the south of an easterly trending thrust fault. The volcanic/sedimentary contact for the most part follows the thrust but the sediments appear to overlie the volcanic rocks in the southeast on Cas 1. Limestone, argillite and tourmalinized siltstone are exposed on the north Castle #2 claim. The tourmalinization may be related to a large, elongate felsite body that occurs in this area. The sedimentary succession appears to correlate with those described in the younger suite of the Lower Jurassic Hazelton Group (Ash et al, 1997).

The above units are intruded by felsite, feldspar porphyry and syenodiorite sills and dykes. The felsite is orange-brown in colour, aphanitic to weakly porphyritic and appears to occur as sills and some dykes. The feldspar porphyry sills are similar in colour but are medium grained and more porphyritic. The syenodiorite is similar in composition to the porphyritic andesites and may be coeval.

A visually striking, recent olivine basalt cinder cone is exposed in the northeastern property area.

c) Structure

A regional easterly trending thrust fault dissects the property, primarily separating the volcanic and sedimentary sequences. The lithologies strike northwest and dip 70-85° southwest. A major fault appears to follow the main creek in a north-northwest (150-160°) direction which has been displaced by north-northeast (25-35°) faults. The alteration zone on Castle #2 (Main Zone) trends northwest (135°/SE) with internal structures trending 100-130° and 35-70°. On Cas 1, the alteration zone (Castle East) trends northeast (45-60°/SE) with conjugate structures at 100-120°/SW.

d) Alteration (Photos 1-5)

The property is characterized by a 7 km long gossanous alteration zone that obtains widths up to 200m. The most intense alteration and highest pyrite content occurs proximal to the change in direction of the alteration zone, on the Cas I claim. This area is referred to as the Castle East Zone.

The alteration consists of pyritized (5-8%) and propyliticly (chlorite, epidote, \pm magnetite) altered volcanic rocks with weak, but pervasive, pyrite-sericite-quartz alteration. More intense, but narrow pyrite-sericite-quartz assemblages (veinlets) are generally restricted to a conjugate set of structures that trend 35-70°/75-85°SE and 100-140°/70-85°SW. The narrow veins generally range from 0.5-5 cm wide, but occasional related quartz-pyrite veins occur up to 30 cm wide hosted by distinct yellow-orange weathering clay-sericite-pyrite alteration. The narrow pyrite-sericite-quartz structures are easily recognized in outcrop since they are slightly resistant to weathering.

The alteration zones are commonly oxidized to limonite, jarosite and Mn oxides.

e) Mineralization

Pyrite occurs as disseminations generally making up 5-8% of the alteration zone. Local higher concentrations (up to 15%) occur along the narrow structures. The quartz-pyrite veins (Sample Nos. 94860,61,84,93, 94949,50) contain up to 30% pyrite.

Isolated exposures of malachite, chalcopyrite and minor bornite, \pm specularite and molybdenite, occur with pyrite. The copper is generally associated with later quartz-carbonate, (Sample Nos. 94830,32) \pm barite veining or \pm calcareous andesitic volcanic rocks (Sample No. 94829) and also occurs in silicified zones proximal to the pyrite-sericite-quartz bearing structures (Sample Nos. 94864,66). In sample 94949, chalcopyrite occurs with a quartz-pyrite veinlet.

Minor disseminated chalcopyrite is also found in some of the felsite dykes/sills.

Visible Au was previously found in three locations in the Main Zone which are plotted on Figure 4. They appear to be associated with the pyrite-sericite-quartz bearing structures.

7. **GEOCHEMISTRY** (Figures 4 - 5)

a) Procedure

A total of 204 rock samples were collected from the property. The samples were sent to Eco-Tech Labs, Kamloops, B.C. and analyzed for Al, Sb, As, Ba, Bi, Cd, Ca, Cr, Co, Cu, Fe, La, Pb, Mg, Mn, Hg, Mo, Na, Ni, P, Ag, Sr, Ti, Sn, W, U, V and Zn using a 32 element ICP package which involves a nitric-aqua regia digestion. Au, Ag, Cu values >1,000 ppb Au, 30 ppm Ag and 10,000 ppm Cu were assayed. Lab procedures and complete results are outlined in Appendix III.

Most of the rock samples were collected from the, previously, largely unsampled but widest and most intense part of the alteration zone referred to as Castle East. The samples primarily consisted of chip samples across the alteration zone with some separate samples of the quartz-pyrite and quartz-carbonate veins. Grab samples were collected from areas of float or limited subcrop, particularly in the upper, felsenmere covered section of the Castle East Alteration Zone.

Two lines of 1.5m chip samples were collected across the lower section of the Castle East Alteration Zone by a contract crew from Minconsult of Vernon, B.C. The most intensely altered portions of the zone were selected. The location of the lines is outlined on Figure 5. The exposure in this area is excellent with steep cliffs which are dissected by gullies, parallel to the secondary structural control. A third line was chip sampled parallel to the alteration zone, which is generally perpendicular to the gullies, to test the significance of this secondary structure.

Rock sample locations are plotted on Figures 4 and 5 with the geology. Rock sample descriptions of the concurrent mapping and sampling program are outlined in Appendix II with the Au, Ag, Cu results. The contract chip samples consisted of pyritized (5-8%) and variably quartz-sericite altered andesite \pm pyrite- sericite-quartz veins along the controlling structures. Care was taken to sample unleached material.

b) Results and Interpretation

i) **Rocks:** (Figures 4 - 5)

The contract chip sample results yielded values of up to 1.5 g/t Au over 3.0m, although 20% of the samples contained >0.1 g/t Au. It appears that despite the large size of the alteration zone at Castle East, the Au values are not sufficiently high enough for a bulk tonnage target. A high grade target was not delineated by the sampling either. Only four samples contain >1.0 g/t Au with the following Au values obtained from 1.5m intervals: 2.34g/t; 1.5g/t; 1.89 g/t; 1.74 g/t. The higher gold values appear to be associated with the narrow pyrite-sericite-quartz veinlets. Detailed prospecting could possibly yield higher values, but they may be restricted to narrow widths.

In the other 1997 sampling, on the property, the higher gold values were returned from the quartz-carbonate-chalcopyrite veins, the quartz-pyrite veins and in silicified zones, commonly associated with the pyrite-sericite-quartz bearing structures.

Samples 94829,30 and 94832 are examples of the former and returned 0.85 g/t Au with 2.2% Cu; 2.82 g/t Au, 6.9% Cu with 44.2 g/t Ag; and 1.97 g/t Au, 7.5% Cu with 44.2 g/t Ag, respectively. Previous sampling confirms this association, but the copper bearing veins are not always associated with higher Au. Only float was sampled in 1997, but the abundance of the float sampled and previous sampling from the Main Zone indicates that the veins are narrow (< 0.5m wide). In previous sampling, similar values were obtained from these veins and, in the Main Zone area, barite is commonly associated with them.

Samples of the quartz-pyrite veins returned up to 1.12 g/t Au, from Sample No. 94884. Samples 94860, 861 and 94949, 950 returned lower but anomalous Au values as follows; 0.18 g/t Au; 0.50 g/t; 0.27 g/t with 0.1% Cu; and 0.79 g/t Au, respectively. A somewhat leached quartz-pyrite vein returned only 5 ppb Au (Sample No. 94886). Previous sampling from the Main and Central Zones returned similar values up to 2.94 g/t Au over 0.3 cm.

The silicified zones, commonly with the pyrite-sericite \pm quartz bearing structures, returned values up to 1.48 g/t Au over 1.5m (Sample No 94872). Other samples contained lower, but anomalous Au, such as 0.63 g/t Au across 0.6m (94869); 0.41 g/t Au/ 0.3m (Sample No. 94949); 0.31 g/t Au/1.1m (94875) and 0.25 g/t Au with 0.24% Cu (94864). Previous sampling, particularly from the Main Zone, showed a strong association of Au with the pyrite-sericite-quartz bearing structures. For example, the three occurrences with visible Au returned 1) 32.6 g/t Au over 1.0m with 141.8 g/t Au obtained directly from the 5 cm wide vein (visible Au omitted); 2) 40.5 g/t Au over 0.4m; and 3) 27.7 g/t Au over 1.0m. In fact, 27% of the samples collected from the Main Zone in 1987, which primarily consisted of pyritized andesite with the pyrite-sericite-quartz bearing structures, contained >1 g/t Au.

In terms of correlations, some of the higher Au is associated with high Cu, but a direct correlation is not evident. High Au is generally associated with slightly enhanced Ag (0.4-2.6 g/t) and anomalous As in the 20 to 125 ppm range. Higher Ag values are only associated with the quartz-carbonate-chalcopyrite veins (ie. 44.2 g/t Ag from samples 94830,32). Occasional anomalous Mo and Bi and rare anomalous Zn were also sometimes associated with anomalous Au.

8. CONCLUSIONS AND RECOMMENDATIONS

On the Castle property, the higher gold values were returned from the quartz-carbonatechalcopyrite veins, the quartz-pyrite veins and in silicified zones associated with the pyritesericite-quartz bearing structures. Maximum values obtained in the 1997 program were only 1.5 g/t Au over 3.0m, 2.34g/t Au over 1.5m and from float, 2.82 g/t Au, 44.2 g/t Ag and 7.6% Cu.

Previously, it was found that the gold mineralization was hosted by the narrow pyritesericite-quartz structures. The three visible Au occurrences on the property are related to these structures and returned 1) 32.6 g/t Au over 1.0m, within a zone containing 7.35 g/t Au over 18.2m; 2) 40.5 g/t Au over 0.4m and 3) 27.7 g/t Au over 1.0m. Other previous intersections include 4.5 g/t Au over 7.6m and 3.9 g/t Au over 6.3m.

Gold mineralization on the Castle property appears to be associated with pyrite-sericitequartz veinlets that are controlled by a conjugate set of structures trending 35-70°/75-85°SE and 100-140°/70-85°SW. This structural set appears to be related to a compressional event along a major north-northwest trending strike slip wrench fault zone (parallel to the main creek) that also produced the thrust fault, observed on the property. Consequently, the best potential for gold mineralization would be at the intersection of these structures with the northerly trending extensional structures that would have been produced.

One such favourable area would be where the alteration zone changes direction, proximal to the Castle East Zone, which hosts the widest and most intense alteration and pyrite content on the property, and the Castle Central Zone. The focus of the 1997 program was to sample the above zones, but significant results were not obtained.

The best values, to date, have been obtained from the Castle Main Zone with up to 32.6 g/t Au over 1.0m, within a zone containing 7.35 g/t Au over 18.2m. Potential may exist proximal to the extensional features. Any future exploration, should focus on identifying and exploring these structures. A limited 1,500m diamond drill program across the Castle Main Alteration Zone and southeast of the previous drilling would more definitively, outline the potential of this zone. Drill holes should be oriented at about 010°/45°N to intersect both favourable structural directions.

In conclusion, Au is widespread on the Castle property, but so far not of sufficient grade to host a bulk tonnage deposit. Future work should try to narrow down smaller areas with higher grade. Small, high grade zones have been delineated on Castle Main but, as yet, the continuity is lacking. The potential lies proximal to northerly trending extensional features that should be identified and explored in detail. A detailed air photo interpretation and structural analysis of the core are recommended followed by a 1,500m diamond drill program.

APPENDIX I

Selected References

- Ash C.H., MacDonald, R.W.J. and Friedman, R.M. (1997): Stratigraphy of the Tatogga Lake area, northwestern British Columbia (104H/12&13, 104G/9&16) in Geological Fieldwork 1996, B.C. Ministry of Employment and Investment, Energy and Minerals Division, GSB Paper 1997-1, pages 283-290.
- Delaney, T.M., (1988): Diamond drilling report on the Castle group of claims (104G/16), Assessment Report.
- Hilchy, G.R. (1971): Geochemical report on the JO GROUP, for Sumitomo Metal Mining Canada Ltd. Assessment Report 3291.
- Lovang, G. (1986): Geophysical and rock chip sampling report on the Castle #2 mineral claim. Assessment Report 14739 for Teck Explorations Ltd.
- Folk, P. (1981): Geological and geochemical report on the Castle #2 mineral claim, Liard Mining Division. Assessment Report for Teck Explorations Ltd.
- Folk, P. (1987): Geological, geochemical and geophysical report on the Castle Claim Group. Assessment Report 16897 for Teck Explorations Ltd.
- Konkin, K. (1990): Geochemical and trenching report on the Castle Claim Group. Report for Triumph Resources.
- Laird, J. (1996): Castle Property exploration programs. Internal Memo for Teck Explorations Ltd.
- Schellenberg, G. (1981): Geochemical report on the Castle #1 and Castle #2 claims. Assessment Report 09878 for Teck Explorations Ltd.
- Souther, J.G. (1972): Telegraph Creek Map-area, British Columbia; Geological Survey of Canada, Map 11-1971.
- Souther, J.G. (1972): Telegraph Creek Map-area, British Columbia; Geological Survey of Canada, Paper 71-44.

APPENDIX II

Rock Sample Descriptions

.

.

1997 ROC	K SAMPLE DESCRIPTION	NS				: †
SAMPLE	LOCATION	GEOMETRY	GEOLOGY	Au ppb	Ag ppm	Сиррт
94829	Castle East		grab of 20 cm cobble calcareous A. with 2-3% cp, minor mal, 1-2% py, 1.5cm qtz-carb vein	850	3.6	219
94830	Castle E 25m down from 829		grab of 12 cm wide qtz carb vein with 5-8% cp, mal, az, Mn coating	2820	44.2	690
94831	Castle E same area as 830		grab felsic dyke, 15-20% py	70		6
94832	Castle E 10m up from 831		grab of qtz-carb vein cobbles, 5cm vein, mal,az,Mn	1970	44.2	755
94833	Castle E 30m S of 830		grab of felsic dyke with py	30		3
94834	Castle E	060/80S	1.2m chip across s bxed, pyic alteration contact zone	40		4
94835	Castle E below 834		1.2m chip across s bxed, pyic alteration contact zone	15		1
94836	Castle E , above last rusty gully		1.0m chip across altn zone in A., 5-8% py	80		2
94837	Castle E below 836		1.5m chip across altn zone in A., 5% py	95		2
94838	Castle E 25m SW of 836		1.5m chip across alth zone in A., 8% py	70	0.2	3
94839	Castle E below 838		1.5m chip across altn zone in A., 5% py	55		2
94840	Castle E below 839		1.5m chip across altn zone in A., 8-10% py	30		1
94841	Castle E 6m SW of 838		grab of A., py, possible trace cp,very weak mal	45		2
94842	Castle E 100m SW of 841		grab over 4m of A.fp., 5-8% py, dyke?, bxed	40		3
94843	Castle E 8m below 842	100/90 and 060/80S	grab of sil A.p., 5-15% py, fract controlled higher grade pockets	45	· · · · · · · · · · · · · · · · · · ·	2

.

SAMPLE	LOCATION	GEOMETRY	GEOLOGY	Au ppb	Ag ppm	Cu ppm
94844	Castle E		1.2m chip across highly leached alteration zone in A.	80	0.8	198
	below 834?					
94845	Castle E		1.0m chip across altn zone in A., 2% py	25	1	186
	below 844					
94846	Castle E		1.0m chip across altn zone in A., 2% py, locally 5%	45		167
	below 845					
94847	Castle E		85 cm chip across altn zone in A., 2-5% py	40	/	136
	below 846					
94848	Castle E		86 cm chip across altn zone in A., 2-3% py, trace mal	45	i 0.2	118
	below 847					
94849	Castle E		1.0m chip across altn zone in A., 2-3% py	20	1	113
	below 848					
94850	Castle E		grab of s. sil, 10% py in A., 30-40 cm wide	50	/	269
	24m NE of 844					
94853	Castle East	105/80S	10 cm chip across 10cm s sil vein zone, 10-15% py	40	ł	144
94854	Castle East	120/85S	1.5m chip across altered And. porph , s sil, 5-8% py	90	, 	233
94855	Castle East		1.5m chip across altered And. porph , s sil, 5-8% py , N of above sample	60	,	74
94856	Castle East		1.5m chip across altered And. porph , s sil, 5-8% py , N of above sample	90	1	162
94857	Castle East		1.5m chip across altered And. porph , s sil, 5-8% py , N of above sample	115	;	136
94858	Castle East		1.5m chip across altered And. porph , s sil, 5-8% py , N of above sample	45	i	228
94859	Castle East		4m rough grab/chip of m-s sil and. porph, 5-8% py, N of above sample, ends at fresh A.p.	105	; 	194
94860	Castle East		10 cm angular float of gtz-py vein, 7-10% py, as local	180	<u>j</u>	13
	Fault Ck, above cliffs		feisenmere in yellow weath zone			
94861	Castle East	140/45S	rough grab/chip of 20 cm qtz-py vein in 35 cm yellow-	500	0.8	9
	above Fault Creek		orange zone, 30% py			1
94862	Castle East 130m SW of 859	110	1.0m chip of s-i sil A.p., trace cp, bn, 10-15% py	70	0.2	573

	SAMPLE	LOCATION	GEOMETRY	GEOLOGY	Au ppb	Ag ppm	Cu ppm
Ì	94863	Castle East		grab of w sil A. , 8-12% py, trace cp	55		90
ø		136m Sw of 859					
	94864	Castle East		grab of sil A., 15-20% py, trace cp over 15 cm	250	1.4	2358
V		136m Sw of 859					
1	94865	Castle East	130/68S	60 cm chip across rusty, bleached A., 3-8% py	55		147
v		168m Sw of 859					
,	94866	Castle East	130/70S	2m chip across s sil A.p. with 10-15% py, 1-5cm wide qtz-	60	0.4	1170
\mathcal{C}				ser-py veinlets			
\sim	94867	Castle Central, lower N		grab of m sil A.P., 7-10% py, some i sil zones with 2% py	15	0.4	41
		side in cliffs, above lake					
	94868	Castle Central		1.2m chip of vw-s bleached A., well fract, rusty, 2-3%	35	0.4	37
V		W slope of pond		dissem py			
\mathbf{V}	94869	Castle Central		60 cm chip of bleached A., 1-2% dissem and fract	630		23
v		otc in talus below lake		controlled py			
\mathbf{N}	94870	Castle Central		60 cm chip of s rusty A. with 2-3% py as above	280	0.6	67
, •		same otc as 869					
11	94871	Castle Central		1.5m chip of w-m, locally s sil A. with 1-2% py	220	0.4	170
		below pond					
1.	94872	Castle Central		1.5m chip of w-m sil , locally s sil A., 1-2% py	1480	0.6	59
~		N of 871, below pond					
	94873	Castle Central	120/90	1.5m chip of w-m sil , locally s sil A., 1-2% py, rusty yellow-	240	0.8	75
~				brown, minor veinlets up to 1 cm.			
\checkmark	94874	Castle Central		1.5m chip of w-m sil, locally s sil A., 1-2% py, rusty yellow-	85	0.2	46
		N of 873		brown, minor veinlets up to 1 cm.			
	94875	Castle Central		1.1m chip of w-m sil, locally s sil A., 1-2% py, rusty yellow-	305	0.4	125
0		N and above 874		brown, minor veinlets up to 1 cm.			
\sim	94876	Castle Central		1.5m chip of w-m sil , locally s sil A., 3-4% py	35		80
-		:					
V	94877	Castle Central		1.5m chip of w-m sil , locally s sil A., 1-2% py	105		142
<i>v</i>		N of 876				<u> </u>	
\checkmark	94878	Castle Central		1.5m chip of w-m sil , locally s sil A., 1-2% py	50		92
	<u></u>	N of 877					
\mathcal{V}	194879	Castle Central	1	2.0m chip of sil A. with 7% pyrite	80		176
		1m E of 877			1		

SAMPLE	LOCATION	GEOMETRY	GEOLOGY	Аш ррб	Ag ppm	Cuppm
94880	Castle Central		leached A. with 2% py, locally 3-4%	280		127
• •	below and N of 877					
94881	Castle Central		2.0m chip of m sil, locally s sil A.p., 2-3% py	20		113
-	below pond and to S					
94882	Castle Central		3.0m chip of m sil, locally s sil A.p., 2-3% py	180	0.2	178
-	E of 881					
94883	Castle Central		5m grab/chip of A., 7% py, with s sil zones up to 30 cm wide	65		169
94884	Castle Central	130/80N	30 cm qtz-py vein in s sil, pyic A.	1120	0.6	19
94885	Castle East		grab/chip of not rusted A., 2-5% py, tr mal, hard, s fract	50	0.6	984
94886	Castle East		local float of 10 cm quartz-pyrite vein, some leached out	5	;	24
	near 856				<u> </u>	
94893	Castle Main		subcrop of qtz-py vein	Ì	1	{
	East end			400		4.57
94948	Castle Main	Т	30 cm zone of mod sil A. with 10-15% py	40:	2.0	157
	20m above T5					4000
94949	Castle Main,		grab of A.p. with 5-7% py, 1% cp, some qtz-py-cp veinlets	2/0	א. ד	1200
	50m up Ck from T5		up to 0.6mm wide			
94950	Castle Main,		grab of qtz-py vein float, some weathered out, 10% py, Fe,	1 79	נו וט ו	5 35
			IMn coating, from small pit	L		

-

.

NOT A VALUE OF A DESCRIPTION OF A DESCRIPT

APPENDIX III

,

-

Geochemical Procedure and Results

ECO-TECH LABORATORIES LTD.

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloopa, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

GEOCHEMICAL LABORATORY METHODS

Multi Element ICP Analyses

Digestion: 1 gram sample is digested with 6 ml dilute aqua regia in a waterbath at 90°C for 90 minutes and diluted to 20 ml.

Analysis:

Inductively coupled Plasma.

CO-TECH LABORATORIES LTC

ASSAVING - ENVITONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloopo, B.C. V2C 2J3 (004) 370-8700 (ax 573-4657

SAMPLE PREPARATION: ROCK/CORE

The samples are dryed (if wet) , crushed in two stages, blended and mechanically split to give a 250 to 300 gram subsample.

The subsample is pulverized in a "Ring and Puck" pulverizer to approximately -150 mesh (80% < -180 mesh).

The subsample is blended by rolling the sample 60 times on glazed paper.

ANALYSIS:

GOLD ANALYSIS:

Gold is analyzed by conventional fire assay, Atomic Absorption finish.

Samples showing gold content greater than one gram per tonne are automatically re-assayed to verify the first set of results and to determine if a nugget effect exists.

Samples having gold values exceeding five grams per tonne are normally assayed for "hetallics". The procedure involves taking a re-cut from the rejects and acreening the new pulp to -140 mesh. The entire +140 mesh fraction is assayed separately. Two individual assays are performed on the -140 fraction and all the results are pro-rated to give the reported value.

GEOCHEMICAL ANALYSES: AU, CU, DB, 2N

We use a 0.500 gram sample which is digested in aqua regia for 2 hours at 95°C.

Elements are analyzed by atomic absorption using background correction for Aq and Pb.

Each set of forty samples will include one ore standard and one random duplicate sample. Samples giving silver values greater than 30 ppm are normally assayed. Assays for Cu, Pb, Zn are normally performed on samples having values greater than 1000 ppm.

FROM ECCHTECH MANLOOPS

P. 3

Ξ.

ECO-TECH LABORATORIES LTD.

ASSAMING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy - Kamtoops, B.O. 720 203 - .604) 573-5700 Hax 573-4551

GEOCHEMICAL LABORATORY METHODS

BAMPLE PREPARATION (STANDARD)

- 1. Soil or Sediment: Samples are dried and then sieved through 80 mesh nylon sieves.
- Samples dried (if necessary), clushed, riffled to pulp size and pulverized to 2. Rock, Core: approximately =140 mesh.

NETHODS OF ANALYSIS

All methods have wither known or in-house standards sarried through entire procedure to ensure validity of vertite.

1. Multi-Element Od, Cr. Co, Cu. vs (acid soluble), Pb. Mn. Ni, Ag. Sn. Ho

Dicestion	Finish	
Hot aqua-regla	Atomic Absorption, corraction applied appropriate	baction . Wher e
· • • • • • • • • • • • • • • • • • • •		

A) Hulti-Element ICP

Digestion	<u>Finish</u>
Hol agus-regia	ICP

2. Antimony

Digestion	<u>Minish</u>
Hot agua regia	Hydride generation - S.A.S.

Hot aqua regia

3. Arsenio

Digestion	Piniah
Hot aqua regia	Hydride generation - K.A.

4. Barium

<u>Digestion</u>	81niah	
Lithium Hetaborste -		Abrenștian

Ρ.

ECO-TECH LABORATORIES LTD.

Finish

Finish

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamioopa, 8 C. V2C 2J3 - (604) 573-5700. Fax 673-4667

.

5. Beryllium

Digestion

Hot aqua regia

6. Bismuth

<u>Digestion</u>

Hot aqua regia

7. Chromium

Digestion

Sodium Peroxide Fusion

8. Fluorine

Digestion Finish Lithium Netaborate Fusion Ion Selective Electrode

9. Mercury

Digestion

Hot aqua regia

10. Phosphorus

Digestion

Lithium Netaborate Fusion

11. Selenium

Digestion

Hot aqua regia

12. Tellurium

Digestion

Hot aqua regia Potassium Bisulphate Fusion Finish

Atomic Absorption

Atomic Absorption

Atomic Absorption

Finish

Cold vapor generation - A.A.S.

<u>Finish</u>

I.C.P. finish

Finish

Hydride generation - A.A.S.

Finish

Hydride generation - A.A.S. Colorimetric or I.C.P.

.ТО, ECO-TECH LABORATORIES

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

13. Tin

Digestion

Ammonium Iodide Pusion

14. Tungsten

Digestion

Potassium Bisulphate Fusion Colorimetric or I.C.P.

15. Gold

Digestion

Fire Assay Preconcentration followed by Aqua Regia

16. Platinum, Palladium, Rhodium

Digestion

Fire Assay Preconcentration followed by Aqua Regia

17. Uranium

Digestion

Hot HCl

18. Thorium

Digestion

Hot Aqua Regia

JJ3/1

Finish

Hydride generation - A.A.S.

新教教授上的新教会

Finish

Finish

Atomic Absorption

Finish

Graphite Furnace - A.A.S.

Finish

Fluorometric

<u>Pinish</u>

ICP

ASSAYING GEOCHEMISTRY

LABORATÓRIES

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5706 Fax (250) 576-4567

CERTIFICATE OF ASSAY AK 97-801

TECK EXPLORATION LTD. #350-272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2

ATTENTION: Jean Pautier

No. of samples Received:57 Sample Type:ROCK PROJECT #CASTLE SHIFMENT #not given Samples sybmitted by: J. Pautler

CASTLE

ET #.	Tag #	Au (g/t)	Au (oz/ţ)	Ag (g/t)	Ag (oz/ <u>t)</u>	Си (%)	
	94829	-	-			2.18	
2	94830	2.82	0.082	44.2	1.29	6.9 0	
4	94832	1.97	0.057	44.2	1.29	7.55	
42	94872	1.48	0.043	-	-	-	
54	94884	1.12	0.033	-	-	-	
<u>QC DATA:</u> <i>Resplit:</i> R/S 1	94829		-	-	-	2.32	
Repeat: 2	94830	2.67	0.078	-	-	-	
Standard: CPb-1 Mpla STD-M		- - 1.38	- - 0.040	- 69.7 -	2.03	0.25 1.44	

ECO-TECH LABORATORIES LTD.

Frank J. Pezzótti, A.Sc.T. B.C. Certified Assayer

XLS/97Teck fax: @ 372-1285 14-Aug-97

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 572-5700 Fax (250) 573-4557

CERTIFICATE OF ASSAY AK 97- 915

TECK EXPLORATION LTD. #350-272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2

3-Sep-97

ATTENTION: Randy Farmer

No. of samples received:144 Sample Type:Rock PROJECT #: Castle SHIPMENT #: Not given Samples submitted by: Not given

		Au	Au	
Τ#.	Tag #	(g/t)	(oz/t)	
9	95009	2.34	0.068	
37	95056	1.50	0.044	
65	95084	1.89	0.055	
140	95160	1.74	0.051	

OC.	DA1	FA:
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

	_			
9 9	95009	х. Х	2.49	0.073

O-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T.

B C Certified Assayer

XLS/97Teck fax: @ 372-1285 TCO-TECH LABORATORIES LTD. 10641 East frans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-673-5700 Fax 1: 604-573-4567

CASTLE

Values in ppm unless otherwise reported

ICP CERTIFICATE OF ANALYSIS AK 97-801

TECK EXPLORATION LTD. #360-272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2

ATTENTION: Jean Pautier

No. of samplos Received.57 Sample Type:ROCK PROJECT #CASTLE SHIPMENT #not given Samples submitted by. J. Pautler

Et #.	Tag #	Au(ppb)	Ag	A1 %	As	Ba	Bi	Ca ¼	Cd	Ca	Gr	Cu	Fe %	La I	Mg %	Mn	Ma	Na %	N)	P	Pb	\$ 5	Sn	Sr Ti	6 U	v	w	Y	Zn
i	\$482 9	850	3.6	1.15	115	55	<5	5.85	<1	86	70 >	1000047	777	- 10	0.67	1843	33	0.01	14	<10	2	<5	<20	89 0.0	2 <10	40	10	<]	39
2	94820 2 .	52-1000	>30	0.13	55	105	<5	0.03	<1	26	38 >	100004	1 > 10	<10	<0.01	110	201	<0.01	2 :	>10000	10	<5	<20	2 <0.0	1 10	8	10	<1	16
3	94631		-0.2	2 16	20	45	<5	0.31	<1	29	26	521	5.85	<10	2.12	436	17	0.05	6	670	22	<5	<20	53 0.1	4 <10	138	tū	<1	46
4	9483C //	97 >1000	>30	0.22	15	105	<5	0.03	1	28	-51 ×	2 تطبيعات	\$>10	<10	<0.01	233	198	<0.01	3	7010	18	<5	<20	2 <0.0	1 10	10	10	< 1	17
5	94813		<0.2	1.91	<5	45	<5	0.66	<1	25	35	342	6 23	<10	1.79	394	22	0.05	.5	1970	8	≺5	<20	117 0.0	8 <10	95	<10	<1	34
6	94834	40	<0.2	1.75	<5	50	<5	D 52	<1	19	35	422	6.35	<10	1.49	336	5	0.05	5	1220	я	<5	<20	83 01	0 <10	101	10	-1	37
7	94835	10	-C 2	1 88	<3	60	<5	0.64	<1	15	49	141	4.96	~10	1.55	343	4	0.07	5	1220	Å	10	<20	56 01	0 210	110	<10	· ·	27
3	94836	30	<0 Z	1.50	15	50	<5	0.42	<1	15	31	216	7.68	<10	1.45	234	21	0.03	4	1420	6	-5	<20	18 0.0	0 10 R 11	108	10	6	10
9	54837	25	-0.2	1.55	<5	50	<5	0.41	<1	11	29	267	7.24	< 10	1.75	280	16	3.03	2	1320	å	<5	<20	16 0.0	0 -10	125	10	3	נו רכ
10	94838	70	0.2	1 54	<5	40	< 5	0.16	<1	25	11	306	9.03	< 10	1.63	346	54	0.03	2	1270	12	<5	<20	3 0.0	2 <10	127	10	<1	35
11	94839	55	∽û.2	1.53	<5	40	<5	0.14	<1	16	44	210	6.09	<10	1.56	297	47	0 03	2	1140	12	<5	<20	5 0.0	2 <10	97	10	<1	29
12	9484u	30	<02	1.51	<5	70	<5	0.13	<1	8	46	111	5 2 5	~10	1 31	269	9	0.03	- 2	1130	8	<5	<20	6 0.0	3 <10	63	<10	<1	24
13	94841	45	<0.2	1.86	10	40	<5	C.44	<1	21	33	224	7 00	<10	2.02	400	10	0.03	3	1250	10	<5	-20	4 0.0	1 <10	117	<10	<1	40
14	948-12	40	<0.2	2.39	<5	65	<5	0.20	< 1	22	42	325	7.35	<10	1.68	379	2	0.03	9	1150	16	5	<20	31 0.1	8 <10	130	10	4	50
15	94843	45	-C.2	2.06	5	40	<5	0.46	< 1	24	27	247	7.09	<10	1.73	271	7	0.07	5	1310	12	~5	<20	42 č. 1	2 <10	129	10	9	23
16	94844	80	ាន	1.53	15	105	<5	0.25	<1	в	16	198	4.69	<10	1.05	248	8	0.64	1	1230	10	5	~70	41 04	0 -11		-10	- 4	20
17	94845	25	<0.2	1.66	10	80	<5	0.75	51	12	36	186	4 34	<10	1 12	491	ă	0.05	4	1310	10	5	~20	97 0.0	12 - 10 12 - 11	, 50 , 60	~10	~ 1	29
18	94846	45	<0.2	1.37	15	80	<5	0.74	<1	7	26	167	4 5 1	<10	0.98	334	10	0.00	1	1160	12	c5	~20	67 Q.1	אורי בח		~10	21	35
19	94847	40	<0.2	1.93	i G	80	< <u>5</u>	0.65	<1	15	45	135	5 25	<10	1 58	542	7	0.03	35	1100	26	-5	~20	5e 0.	1.1 - 1.1	40) ED	~10		23
20	94848	45	0.2	1.22	15	100	<5	0.29	<1	6	14	118	4 47	<19	0 80	259	5	0.03	2	1260	10	<5	<20	13 <01	11 ~14 11 ~14	/ JC \ 48	~10	20	10
	+									-					v	200	Ŭ	0.00	-				-20	10 -0.1	· · · ·	/ 40	~10	4	40
21	94849	20	<0 Z	1.30	5	75	<5	0.40	<1	8	20	113	4.80	<10	0.89	330	7	0.03	2	1180	10	<5	<20	15 <0.1	1 <1) 43	<10	11	38
22	94850	50	<0.2	1 93	5	50	-5	0.62	<1	15	20	269	5 37	<10	1.95	448	7	0.06	3	1160	12	<5	<20	50 0.	1 <1(108	<10	<1	39
23	94653	40	<0,2	1 42	<5	35	<5	0 25	<1	4	59	144	3 61	<10	146	257	40	0.04	<1	1080	6	10	<20	5 0.0	2 <10	63	<10	5 '	20
24	94854	90	-0.2	2 74	<5	55	-5	0 55	< !	12	30	233	6.25	<10	2.15	296	4	0.07	2	1230	10	<5	<20	32 0.1	0 <10	127	10	11	21
25	94655	£Q	<0.2	173	r 5	50	<5	0 45	<1	11	39	74	563	< 10	1 65	194	3	0 07	3	1080	6	5	<20	29 0.1	1 - 10	113	10	12	14

ICP GERIFICATE OF ANALYSIS AK 37-801

.

ECO-TECH LABORATORIES LTD.

.

	Ēt #.	T.93 %	Au(opb)	Ag	A1 %	Aε	Ba	Bil	Ca %	Cđ	Co	Cr	Cu	Fe %	l.a	M - 3	Mn	Мо	Na %	Ni	Ρ	Pb	Sb	Sn	Sr Ti	%	υ	V	w	Y	Zn
	20	0/256	90	-ac 2	1.55	10	4(j	<0	0.37	<1	17	27	162	6 25	<>0		153	4	0.05	2	1060	10	<5	<20	15 D	11	<10	104	10	13	14
	27	8480	115	÷0 2	1 34	10	50	< <u>5</u>	0.18	<1	12	30	136	5.52	s tù	1 15	16G	6	0.04	< 1	690	а	<5	- 20	13 O.	07 ·	<10	91	< 10	3	11
	23	S4855	45	<c 2<="" td=""><td>3 - 7</td><td>4.5</td><td>50</td><td><5</td><td>9.55</td><td>41</td><td>15</td><td>25</td><td>226</td><td>6 27</td><td><10</td><td>2 10</td><td>273</td><td>2</td><td>0.09</td><td>2</td><td>1230</td><td>6</td><td><5</td><td><20</td><td>45 0.</td><td>10 ·</td><td><10</td><td>148</td><td><10</td><td>8</td><td>19</td></c>	3 - 7	4.5	50	<5	9.55	41	15	25	226	6 27	<10	2 10	273	2	0.09	2	1230	6	<5	<20	45 0.	10 ·	<10	148	<10	8	19
	70	94859	105	r0.2	2.24	×5	50	<5	0.68	<1	13	47	194	5 48	< 10	2.05	283	4	0.10	з	1170	8	15	<20	47 0.	11 ·	<10	150	<10	14	20
	30	94960	160	<0 C	0.26	<٤	35	<5 -	0.01	~1	5	87	13	3.30	<10	0.05	14	14	0.01	3	20	<2	<5	<20	<1 <0.	Ú1 ·	<10	8	<10	<1	<1
	31	94861	500	0.8	6.05	10	50	25	0.01	<1	24	121	9	~10	<10	<0.61	10	18	<0 61	5	<10	4	<5	<20	<1 <0	01	10	2	<10	<1	<1
	32	94862	70	0.2	162	< <u>5</u>	55	<5	0.97	<1	21	56	573	8.01	<10	0.92	415	20	0.02	7	950	4	<5	< 20	7 <0.	01 (<10	50	1D	<1	19
	73	94663	55	<d td="" z<=""><td>1.04</td><td>5</td><td>55</td><td><5</td><td>3.16</td><td><1</td><td>23</td><td>53</td><td>90</td><td>6.79</td><td><10</td><td>0.35</td><td>457</td><td>11</td><td>0.02</td><td>9</td><td>920</td><td>6</td><td>~5</td><td><20</td><td>29 <0.</td><td>01 ·</td><td><10</td><td>32</td><td><10</td><td><1</td><td>9</td></d>	1.04	5	55	<5	3.16	<1	23	53	90	6.79	<10	0.35	457	11	0.02	9	920	6	~5	<20	29 <0.	01 ·	<10	32	<10	<1	9
	24	04004	250	1.1	1.55	_ 30	70	<5	0.89	<1	58	96	2358	>10	- 10	0.38	290	45	<0.01	14	470	14	<5	<zt)< td=""><td>3 <0.</td><td>01</td><td>10</td><td>50</td><td>10</td><td>< 1</td><td>17</td></zt)<>	3 <0.	01	10	50	10	< 1	17
	35	94865	65	<0.2	175	5	60	<5	0.46	<1	11	64	147	4.98	<10	0.42	290	54	0.02	2	1200	6	<5	<20	6 <0.	01 ·	<10	23	<10	12	18
	<u>.</u> 6	94566	60	0.4	1.74	<5	60	<5	3 94	<1	43	52	1170	7.95	-10	1.02	792	40	0.01	11	970	6	<5	<20	37 < 0.	01	<10	58	<10	6	27
	27	94867	15	04	0.96	-5	45	5	0.54	<1	19	73	41	6.49	<10	0.65	575	11	0.02	3	1110	10	<5	<20	7 <0.	Q1 -	<10	41	10	<1	32
	38	94853	35	C 4	164	20	70	10	0.19	<1	11	27	37	7.77	< 10	: 51	670	7	0.03	2	1520	14	<5	~20	1 <0.	01 -	<10	104	10	<1	67
	39	94669	630	<0.2	1 10	15	50	5	0.62	<1	16	48	23	3.98	<10	0.77	310	5	0.03	2	1130	8	<5	<20	30.	02	<10	42	19	4	19
	46	94870	281	06	0.64	15	70	<5	0.06	s1	7	44	67	5 87	< 10	0.37	102	10	0.03	<1	1060	6	-5	<20	3 <0.	01	<10	40	10	< 1	5
	41	94871	220	64	0 59	40	60	<5	0.16	<1	6	57	170	4.93	<10	0.22	96	7	0.01	2	1000	10	<5	<20	<1 0.	02	<10	20	10	e 1	6
	4?	94872 J	48 > 1000	06	087	10	50	15	0.11	<1	9	51	59	7 04	0</td <td>0.62</td> <td>166</td> <td>8</td> <td>0.03</td> <td>1</td> <td>1330</td> <td>12</td> <td><5</td> <td>- 20</td> <td>3 < 0.</td> <td>01</td> <td><10</td> <td>60</td> <td>10</td> <td><1</td> <td>15</td>	0.62	166	8	0.03	1	1330	12	<5	- 20	3 < 0.	01	<10	60	10	<1	15
	43	94673	240	08	0.56	20	55	<5	0 14	≤1	9	39	75	4.45	<10	C 25	73	7	0.01	2	1080	6	<5	<20	2 0.	.02	<10	19	10	<1	3
	44	94874	85	02	0 92	10	60	<5	0.18	<1	11	45	46	474	<10	072	191	10	0.03	1	1170	8	<5	<20	4 0.	.02	<10	54	10	<1	14
	45	94875	305	0.4	0.50	15	80	<5	0.07	1	6	30	125	7 89	<10	0,18	64	11	0.01	1	1160	10	<5	<20	<1 <0	01	10	27	10	<1	5
	46	94676	35	<0.2	1.32	10	40	<5	0 45	<1	18	70	80	5 95	<10	0.94	157	6	0.07	4	1550	10	<5	<20	28 0	07	<10	66	10	,	16
	47	94877	105	<0.2	1 59	10	60	<5	0.39	<1	10	54	142	6 59	<10	1.44	271	3	0.05	3	1590	12	<5	<20	18 0	13	<10	117	10	6	27
	48	94878	50	< 0.2	1.94	-5	60	<5	0.45	< 1	10	41	92	6 59	< 10	172	363	1	0.06	2	1520	14	10	<20	23 0	13	<10	132	10	7	33
	49	94379	50	<0.2	1.52	15	45	<5	9.43	<1	28	ай	176	6.47	<10	1.36	217	1	0.05	4	1330	14	5	<20	19 0	16	<10	112	10	5	23
	50	94880	280	<0.2	1.18	10	70	5	0.19	<1	12	25	127	8 14	<10	1 01	210	2	0.04	<1	1290	12	<5	<20	16 0.	13	<10	96	10	<1	21
	51	94881	20	-0.2	2.10	10	50	<5	0.56	<1	25	30	113	7.04	<10	1.89	300	<1	0 07	2	1280	16	<5	<20	34 0	.14	<10	134	10	8	33
	52	94882	130	0.2	1 42	20	55	< 5	0.22	<1	10	38	178	8.30	<10	1 27	316	5	0.02	2	1190	12	~ 5	<20	4 0	.06	<10	90	10	<1	26
	53	94883	65	<0.2	2 54	5	50	<5	0.87	<1	14	.35	169	7 44	<10	1.68	365	2	0.10	3	1280	16	5	<20	81 0	13	<10	128	10	ß	34
	54	94684 /	/2 >1000	0.6	0 60	10	35	15	0.15	<1	28	90	19	9,97	~ 10	0.36	65	22	0.03	2	740	6	<5	<20	15 0	02	20	Z 3	10	<1	8
	55	34685	50	0.6	2.24	10	45	<5	0 82	<1	34	37	984	9.77	<10	1 92	625	122	0.02	7	1150	16	<5	<20	8 0	01	<10	124	10	<1	41
	56	94886	850	D.4	0.28	10	20	5	0.01	< 1	5	142	24	3 72	<10	0 27	44	74	<0.01	2	80	8	<5	<20	<1 0	.01	~10	23	10	_<1	<1
Int the zer	٢٥	37641 .€-\\$ ≤ 5	5	·U.2	0.37	~5	155	<5	0.05	< 1	3	147	6	97 C	<10	036	156	6	0.01	11	220	4	<5	~20	<1 -40	01	<10	† 0	<10	5	16

Page 2

.

<u> </u>	Tag #	Αυ(ρρδ)	Ag	AL %	As	Ва	Bi	Ca ½	Ċd	Co	Cr	Çu	fe %.	La	Mg %	Ma	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	<u>Ті %</u>	Ų	v	W	Y	Zn
OC DATA: Resplit: R/S 1	94829	<u>300</u>	3.8	121	125	60	<5	6 01	्य	87	75 :	>10000	797	<10	0.65	1873	37	0.01	15	<10	1	<5	<20	85	0.02	<10	43	20	<1	42
Repeat:																														
1	948 <u>2</u> 9	900	3.6	1 16	120	55	<5	5 85	<1	86	70 :	×10000	7.72	<10	0.67	1843	33	0.01	14	<10	4	<5	<20	89	0.02	<10	40	10	د1	20
10	64938	65	<u> </u>	1.64	-5	40	<5	0 16	<1	25	11	306	9 03	<10	1.63	346	54	0.03	2	1270	12	<5	<20	3	0.02	<10	127	10	<1	36
:9	94847	50	-0.2	1.93	5	80	∹5	0.65	<1	15	45	136	5 25	<10	1 55	547	7	0.03	35	1190	36	<5	<20	26	0.01	<10	58	<10	20	65
36	94866	55	0.4	1.74	5	60	<5	3.94	<1	43	52	1170	7 95	<10	1.02	792	40	0.01	11	970	10	<5	<20	37	<0.01	<10	56	10	8	27
45	94875	290	0.4	0.50	15	80	<5	0.07	<1	6	30	125	7.89	<10	0.18	64	11	0.01	<1	1160	10	<5	<20	<1	-0.01	10	27	10	<1	5
54	94884	-	J.6	0.60	10	35	15	0.15	<1	28	90	19	9.97	< 10	0.36	65	22	0.03	2	740	8	<5	<20	15	0 02	20	23	10	<1	6
Standard:																														
GEO'97		145	12	1 79	55	165	<5	1.84	<1	20	63	90	4.12	10 م	0.94	671	<1	0.02	24	710	22	10	<20	59	0.13	<10	79	<10	8	67

ICP CERTIFICATE OF ANALYSIS AK 97-901

d\$′801 XLS/97Teck fax: 372-1285

TECK EXPLORATION LVD.

ECO-TECH LABORATORIES LTD.

.

.

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

Page 3

:	22-Aug-97																											
ECO-TECI 10041 Eas KA)I V2C -	H LABORATOR! It Trans Canada } PS, B.C.	ES LTD. Highway								ICP CEF	RTIFICAT	TE OF /	ANALYSIS AI	(97, 87	9					Т # V	ECK E) 350-272 AMLOC /2C 2A2	(PLOI VICT OPS, E	RATION ORIA S B.C.	I LTD . TREET				
Phone: 60 Fax 604	573-57 00	573-5700 573-4557															A	TTENT	ION:	Jean P	autier							
Values In	bi573-5700 604-573-4557 In ppm unless otherwise reported														N 9 5 5	lo. of sa Sampla T PROJEC SHIPMÉ Samplas	mples Type: T # 4 NT # I subm	: Receiv Rock 1 Not give Not give	ed: 35 n : Jean F	Pautler								
Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	BI Ca	% C(i Co	Cr	Cu	Fe %	La Mg %	Mn	Mo I	Na %	Ni	P	Pb	Sb	Sn	Sr	Π %	U	v	w	Y	Zn
1	94848	405	2.6	0.31	15	35	<5 0.0	07 <	8	102	157	4.21	<10 0.08	103	33 <	0.01	2	220	18	<5	<20	6	0.01	<10	11	<10	<1	5
2	94849	270	1.8	2.95	75	50 20	<5 0.2	25 < 01 ~	1 11	57	1206	>10	<10 1.85	2085	11 <	-0.01	2	1180	18	<5 ~5	<20	1	<0.01 <0.01	<10	72	<10	<1	124
3	24030	190	1.0	V. 10	10	20	0 KU.U	UI 5	1 13	(2)	- 58	0.10	NIV NU.01	40	-101 -	5U.U1	J	40	0	-5	~20	10	~Q.Q1	~ IU	4	< 10	51	S1

••

5-Sep-97

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Llighway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557

TECK EXPLORATION LTD. #350 - 272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2

•

.

· .

ATTENTION : RANDY FARMER

No. of samples received: 144 Sample type Rock PROJECT #: Castle SHIPMENT #:Not given Samples submitted by:

Values in ppm unless otherwise reported

_	El #.	Tag #	Au(ppb)	Ag	Al %	As	Ba	BLC	a %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	_NI	P	Pb	Sb	Sn	_ Sr	Ti %	u	٧	W	Y	<u>2n</u>
-	1	95001	5	<0.2	2.26	< 5	45	<5	2.04	<t< td=""><td>13</td><td>56</td><td>434</td><td>478</td><td><10</td><td>1.16</td><td>1118</td><td>7</td><td>0.03</td><td><1</td><td>1920</td><td><2</td><td><5</td><td>~20</td><td>32</td><td>0.03</td><td><10</td><td>29</td><td><10</td><td>67</td><td>68</td></t<>	13	56	434	478	<10	1.16	1118	7	0.03	<1	1920	<2	<5	~20	32	0.03	<10	29	<10	67	68
	2	95032	5	0.6	1.01	-5	40	×5	1 39	<1	27	88	1180	9.00	<10	0.49	375	21	0.01	2	850	2	≺5	<20	13	<0.01	- 10	27	<10	<1	33
	3	95003	5	<0.2	2.15	<5	35	<5	3.66	<1	12	75	578	4.63	<10	0.42	536	19	0.01	Э	930	- 2	<5	<20	104	<0.01	<10	20	<10	34	24
	4	95004	5	<0.2	1 22	≺5	40	<5	1 23	<1	12	58	485	4 19	s10	0.74	327	85	0 02	1	1190	2	<5	-20	18	<0.01	<10	44	<10	27	37
	5	95005	5	0.4	1.12	- 5	45	<5	2.52	<1	16	79	594	4.02	<10	0.44	467	14	0.01	2	1180	6	<5	-20	36	<0.01	<10	15	<10	18	29
	6	95006	275	0.6	0 69	30	50	<5	1.91	<1	45	66	512	8.77	<10	0.11	332	26	<0.61	<1	1020	а	<5	<20	21	<0.01	<10	9	<10	<1	14
	7	95007	5	<0.2	2.39	30	205	<5	3.51	<1	22	34	460	5.99	<10	1 26	1303	11	0.02	5	1530	4	<5	<20	\$ 7	<0.01	<10	56	<10	41	49
	8	95008	5	<0.2	0.68	5	50	< i	1.33	<1	4	81	69	176	20	0.20	447	8	0.03	<1	510	<2	<5	<20	19	<0.01	<10	4	<10	36	16
15.14	ς9	95009	2.34 <u>>100</u>	<u>1.0</u> _	3.93	<u>90 </u>	25	<5	0.63	<1	101	4B	2463	5.25	10	1 07	6946	52	<0.01	9	480	6	<5	-20	16	0.02	<10	16	<10	204	60
1. 1. 1. 1.	୍ୟୁତ	95010	655	0.4	1.51	125	45	<5	3.14	<1	37	73	316	5.20	<10	0.77	1325	18	G D1	4	750	3	~5	<20	40	<0.01	<10	14	<10	31	46
	C							_							- 4					_		-									
	11	95011	5	04	1 28	<5	40	<5	2.56	<1	31	64	916	6.08	<10	0.51	829	61	0.02	2	1010	5	<5	<20	46	<0.01	<10	30	<10	34	40
	12	\$5012	10	Q.4	0 96	30	40	<5	1.89	<1	26	56	771	5.15	<10	0.31	545	17	<0.01	2	1110	4	~5	~20	27	<0.01	<10	13	<10	24	30
	13	95013	5	0.4	1.35	<5	40	<5	2.50	<1	40	66	1059	9.67	<10	0 64	823	31	0.02	A	910	6	<0	<20	36	<0.01	<10	39	<10	<1	49
	14	95014	5	0.2	1.24	<5	35	<5	2.58	<1	21	74	584	5.38	<10	0.74	601	10	0.03	2	1200	4	<5	<20	34	<0.01	<10	37	<10	29	40
	15	55015	5	<0.2	1.45	<5	35	~5	0 41	<1	19	87	283	7.29	< 10	0.80	434	23	0.02	<1	1250	8	<5	<20	<1	<0.01	<10	41	<10	<1	41
							~*		0.04	- 4	10	50	440	1.00	- 46		624	10	0.02	۰ ۲	1220		~6	~20	-20	-0.04		÷-1	-10	24	20
	15	95016	5	<0.2	103	<5	35	<5 - C	2.21	- 1	19	75	440	-+ DO T 40	210	0.50	231	20	0.02	2	1220	4	~0	~20	20	~0.01	<10	03 44	~10		20 20
	17	95017	10		1.23	15	4:) 50	* 9			20	(0	741	2.44	~10	0.05	420		0.02	د ام	1200	-1	-5	~20	10	-0.01	~10	40	<10	10	40
	18	95018	5	<0.2	1,44	~5	- 00		101	<1		- 12	1.24	042	~ 10	0.62	245	10	0.02	<u>,</u>	1290	4	~	~20	10	-0.01	~ 10	42	~10	10	34
	19	92019		0.4	1.15	30	35	•.5	0.48	~1	15	54		0.08	5 ii) 	0.50	402	- U 63	0.02	~ ~	1140	14	~3	~20	4	-0.01	<10	10	~ 10	-1	2/
	20	95020	51	0.2	1 26	80	40	5	0.69	<1	17	52	-46)	6.40	\$ 10	0.07	402	03	0.01	3	1140	14	• 5	~20	5	SU.01	<10	17	<10	~)	38
	21	95021	-	0.4	0.67	6	70	<5	2.08	<1	7	05	9	1.69	20	0.17	638	10	0.12	1	70	<2	<5	<20	24	<0.01	<10	2	<10	47	17
	27	05020	10	ר. כה	0.07		85	< 5	0.27	<1	-	50	43	4 99	<10	ົ ຄ.42	393	39	0.02	2	1010	4	<5	<20	6	<0.01	<10	23	\$10	<1	20
	23	95503	15	0.4	0.95	<5	65	<5	0 44	<1	17	4.4	79	8 74	<10	0.38	765	42	0.02	2	1100	4	<5	<20	35	<0.01	<10	22	<10	<1	24
	24	95024	45	0.4 E 7	0.86	< 5	40	5	0.23	<1	8	60	38	7.33	<10	0.17	130	23	0.01	<1	1160	6	<5	<20	3	<0.01	<10	13	<10	<1	. 13
	25	95025	 60	0.2	1.37	<5	45	tõ	0.57	2	9	51	44	6.71	< 10	072	447	12	0.02	2	1330	6	<5	<20	7	<0.01	<10	34	<10	<1	
	- 2	0 30.0	00			.0				••	Ť	÷.								-		-	-			- 41	••			-	

Page 1

ICP CERTIFICATE OF ANALYSIS AK 97-915

ECO-TECH LABORATORIES LTD.

Et #.	Tag #		Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Ċu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	ŜЬ	Sn	Sr	Ti %		v	157	~	
26	95026		5	0.2	0.96		125	<5	1 16	<1	8	75	116	2.57	10	0.19	1066	10	0.02	2	460	4	<5	<20	16	-0.01			-10-		20
27	95027		65	-02	0.83	- 5	35	5	3.23	<1	16	72	63	7.49	<10	0.16	820	14	0.01	2	1010	6	-5	< 20	54	×0.04	< 10	-4	510		24
20	95028		140	2.0	0 39	15	50	10	2.06	Ţ	15	52	59	>10	<10	0.02	389	19	<0.01	ĥ	630	4	-5	~20		~0.01	~10		510	<u>د</u>	11
29	95029		5	0.2	0.62	5	45	<5	5.00	<1	13	56	41	6 92	<10	0.10	738	11	0.01	2	1170	л Л	25	~20	23	-0.01	< 10 - 40	5	<10	<1	9
30	95030		55	0.2	1.13	75	45	-5	1.67	c .)	15	81	38	6 4 2	<10	0.37	664	819	0.02		1000	24	~5	~20	40	~0.01	< 10	8	<10	16	17
													•••	• •••		0.07	007			-	1030	24	~0	~20	10	~0.01	<10	16	<10	10	3.3
31	95031		13	<0.2	0.75	20	125	<5	0.28	ंदन	5	92	35	4 39	<10	0.25	288	22	0.62	1	820	e	-6	120	-	-0.04	- • •			_	
32	95051		80	<d 2<="" td=""><td>1.31</td><td>ي.</td><td>70</td><td>10</td><td>0 29</td><td><1</td><td>16</td><td>24</td><td>54</td><td>>10</td><td><10</td><td>1 21</td><td>218</td><td>- C 2</td><td>0.02</td><td>~1</td><td>2020</td><td>20</td><td>- E</td><td>~20</td><td></td><td>~0.01</td><td><10</td><td>11</td><td><10</td><td>3</td><td>18</td></d>	1.31	ي.	70	10	0 29	<1	16	24	54	>10	<10	1 21	218	- C 2	0.02	~1	2020	20	- E	~20		~0.01	<10	11	<10	3	18
33	95052		45	<0.2	174	<5	70	10	0.35	<1	15	26	101	>10	<10	1.69	254	42	0.00		2020	30	~5	~20	21	0.15	<10	126	<10	<1	24
34	95053		20	<0.2	2.48	<5	40	5	1.95	<1	27	52	95	A 1H	<10	1 7 2	725	14	0.04	1	4620	47		~20	20	0.12	<10	149	<10	<1	32
35	95054		15	<0.2	2.30	<5	55	<5	1 11	<1	20	31	69	9.12	<10	1 79	300	7	0.00	د ء	1020	14	~0	~20	42	0.15	<10	177	<10	4	27
							-	-		-	20	· · ·			-10	,	000		0.07	5	1200	10	5	<20	59	0.33	<10	161	<10	<1	26
36	95055		225	0.2	2.24	<5	75	5	0.93	<1	14	40	100	>10	<10	1.70	207	14	0.07		1000										
37	95056	1.5	> 1000	2.2	0.73	45	55	30	0 07	<1	8	76	36	7 23	< 10	0.52	74	10	0.07	-1	1950	22	~ 3	<20	40	0.13	<10	166	<10	~1	24
38	95057		70	<0.2	2 26	~5	65	10	1 16	<1	20	22	72	>10	~10	1.85	228	6	0.03	~ 1	2000	20	- 7	~20	15	0.07	<10	55	<10	~1	10
39	95058		15	<0.2	1.65	5	65	10	0.36	<1	10	41	45	> 10	<10	1.00	203	6	0.07	ن س	2000	19	- 3	~20	42	0.15	<10	207	<10	~1	24
40	95059		150	<0.2	2.03	<5	55	<5	0.91	<1	17	34	207	A 16	<10	167	250	78	0.03	- 1	1000	10	~D	~20	28	0.24	<10	63	<10	-1	30
												• •	20,	0.00	10	1.47	4.00	10	0.00	2	1200	12	<0	~20	56	0.21	~10	167	<10	î	28
41	95060		30	< 0.2	2.04	×5	65	×,	0.56	~1	10	32	87	7.45	<10	2.05	774	2	0.04	•	1000	10	~5	-00	~~						
42	95061		165	-0.2	1.44	<5	95	ä	0.23	<1	10	19	107	9.84	<10	1 75	107	2	0.04) ריה	1470	274	~0 ~E	-20	র ১০	0.23	-10	177	<10	6	37
43	95062		- 70	<0.2	2.67	10	45	<5	1.49	-1	19	46	154	ä 69	<10	2.26	285	7	0.05	- 1	1470	10	~>	- 20	30	0.18	<10	131	<10	<1	25
44	95063		50	< 0.2	2.42	10	60	10	0.69	<1	15	28	108	> 10	<10	207	200	, ,	0.00	4	1200	20		<20	43	0.21	<10	227	<10	20	30
45	95064		50	<0.2	2 45	~5	65	5	0.81	<1	15	42	103	9.71	<10	2.18	361	20	0.10	2	1600	40	- 0	~20	70	0.19	<10	177	<10	<1	32
												-			- I V		501		0.03	2	1000	c	-0	~20	10	0.21	<10	188	<10	1	37
46	95065		5	⊴ 6 2	2.55	<5	55	<5	0.95	- 1	15	30	125	9.65	<10	2.04	314	3	0.10		1400	0	- 6		400						
47	95066		35	<0.2	3.53	< 5	65	<5	1 45	<1	22	117	101	8.24	s10	2.50	433	5	0.10	50	1920		- 0	~20	100	0.16	<10	160	<10	<1	28
48	95067		5	< 0.2	3.64	<5	75	<5	1 26	<1	17	16	152	- 10	<10	2.00	351	12	0.18		1000	4	~ 3 	~20	144	0.22	<10	154	<10	2	36
49	95068		20	< 0.2	1.90	<5	65	5	0.31	<1	11	45	49	90	<10	1 70	204	20	0.06	-1	1020	- -		~20	173	0.10	<10	200	<10	<1	37
50	35009		30	<02	3.06	10	45	<5	1.22	<1	17	24	150	5.68	<10	232	286	<1	0.16	2	1220	4	~ 5	~20	20	Q.15	<าบ	118	<10	<1	29
																	1.00	-	0.10	3	laag	4	10	~20	100	0.17	<10	143	<10	23	34
51	95070		110	<0.2	1.97	5	35	<3	0.61	<1	19	40	95	. 3	<10	1.65	301	8	0.04	c 1	1070	10	- F	20	69	D 46					
52	95071		30	<0.2	2.54	10	70	5	1 53	<1	27	25	78	6.4	<10	1.66	584	<1	0.05	3	1610	17	~5	~20	20	0.10	~10	34	<1U	14	28
53	95072		30	<0.2	1.28	<5	50	5	0.27	<1	22	44	61	: 0	<10	0.93	200	12	0.02	-1	1030	10	~5	~20	47	0.29	< 10 - 10	:34	<10	24	50
54	95073		5	< 0.2	3.62	5	55	<5	5 60	<1	44	263	607	9 02	<10	3 69	1195	 A	0.02	122	810	4	~5	~20	40	0.09	<10 - 40	63	<10	<1	19
55	95074		140	<0,7	0.78	~5	55	5	0.19	<1	11	207	39	6.65	<10	0.57	117	20	0.01	16	460		~5	~20	40	0.15	<1U	131	<10	26	44
																0.0	,		0.01	, Q	-100	0	·. 3	~20	1	0.03	<111	28	<10	<1	8
55	95075		25	<1).2	1.71	<5	65	5	0.23	<1	12	23	53	7.89	<10	1 72	205	7	0.03	<1	1240	6	e:5	×20	74			407			
57	95076		5	~6.2	3.65	<5	60	15	0.56	<1	32	165	71	> 10	<10	5.22	766	5	0.03	103	830	10	~5	~20	14	u. 14	<1U	102	~10	<1	23
55	95077		35	~0.2	1 56	≺5	50	\$	0.35	-1	20	43	35	9.37	<10	1 23	198	я Я	0.02	2	1700	ц. Я	~5	~20	34	0.20	<10	147	<10	<1	48
59	95076		25	< 0.2	2 18	<5	105	-5	0.44	-1	17	60	78	>10	<10	1 71	323	10	0.07	2	1200	10	-0	~20	21	0.14	<10	/6	^10 • 10	<1°	23
60	95079		115	<0.5	2.69	-5	100	10	0.34	<1	iß	63	49	>10	~10	1 73	285	16	0.07	20 26	1500	20	~0	· 20	C0	0.20	<10	115	<10	-1	31
							,	·									1.00	.0		2.5	1.500	20	- 0	520	30	0.19	<10	152	<10	<1	23
-91	20.083		135	< 0.2	2.03	⊴5	100	~5	0.37	-1	16	87	5	- G	16	1 /6	319	14	6.07	1,a	1170	70	×6.	c20	85	0.20	- 4/1	410			d = -1-
											-						0.0	. 4	0.01	د,	1.70	20		· Zu	00	0.20	siu	1.52	<10	<)	36

 $\bigcirc 002$

Contra transmission

FOR HEAL NAME

.

ICP CERTIFICATE OF ANALYSIS AK 97-915

ECO-TECH LABORATORIES LTD.

.

.

ł

Et #.	Tag #		Au(ըքն)	Aq	AI %	As	Ra	81	C 2 %	<u>م</u>	<u> </u>		_																		
57	95091		20	<) 2	: 37	<u></u>	ec.		007			1.0	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	Р	Pb	\$b	Sn	ę.,	17.07		.,			
63	95082		160	<0.2	1.96	-5	20	- ,	0.07	~1	14	65	45	5.18	< 10	2 06	560	7	0.06	16	500	10					<u> </u>	<u> </u>	W	Y Y	Zn
64	95083		-10	~~ <u><</u> 07	1.60	ر مر	0U •0	2	0.45	<1	14	25	- 191	7.26	≺10	1.68	266	7	0 07	9	1110	16	- 0	- 20	40	0.15	<10	125	<10	7	41
-35	95084	1 60	>1000	18	1.43	< 0 40	40	5	0.55	<1	8	82	36	5 22	<10	1.64	241	8	0.01	2	670	10	~9 	< <u>20</u>	- 14	0.14	<10	133	<10	<1	28
		1.01		- '''	5 G4	501	ΕŪ	-5	0.68	- 1	11	21	243	7.20	<10	1 19	338	9	0.02	- ح1	1510	40	~ 5	<20	9	0.06	<10	70	<10	<1	14
÷.;-	05085		L	.0.2	0.00	-										-		Ŭ	d.uz	~ 1	1010	12	<5	<20	19	011	<10	87	<10	11	28
37	95086			-02	3 29	40	55	10	2.12	~1	25	59	£6	8 53	510	2 44	1194	4	0.02	40	0000										
85	95087		60	<0 Z	1.59	30	65	- 5	0.58	<1	20	23	132	>10	<10	1.59	360	17	0.05	10	2080	16	<5	<20	24	Q. 14	<10	99	<10	31	63
5.6	USOBE		ر. مح	<u td="" z<=""><td>2.70</td><td>< 5</td><td>45</td><td><5</td><td>2.06</td><td><1</td><td>22</td><td>44</td><td>297</td><td>7 32</td><td><10</td><td>2 14</td><td>106</td><td></td><td>0.10</td><td>0</td><td>1550</td><td>26</td><td><5</td><td><20</td><td>42</td><td>0.13</td><td><10</td><td>112</td><td><10</td><td><1</td><td>36</td></u>	2.70	< 5	45	<5	2.06	<1	22	44	297	7 32	<10	2 14	106		0.10	0	1550	26	<5	<20	42	0.13	<10	112	<10	<1	36
70	950.00		10-	<0.2	2.27	<5	55	~5	1.50	<1	6	15	191	8.32	<10	1 83	202	3	0.10	L C	1400	10	<5	<20	163	0.10	<10	158	<10	26	26
.0	3.5.4.3		160	<0 Z	2.13	15	35	<5	0.90	<†	13	40	100	7.04	~10	1.00	590	4	0.08	3	1500	12	<5	-20	62	0.12	<10	143	<10	20	
7:	0-001											-			10	107	547	(4	0.07	1	1150	10	<5	<20	77	0 13	<10	117	<10	6	26
75	000001 00000		10	<0.2	2.04	<5	60	<5	0.76	<1	13	26	158	5.94	<10	1.01	240			_										.,	24
-2	000002		15	<0.2	1.33	< 5	65	<5	1.06	<1	14	21	100	8 55	~10	191	-246	5	0.05	2	1490	4	<5	<20	51	0.13	<10	144	-10	10	~ ~
1.3	90093 05067		5	< 0.2	2.12	~5	60	 S	2 55	<1	13	43	342	0.00	~10		407	12	D 04	<1	1260	8	<5	<20	42	0.10	<10	100	-10	- 1	29
74	95054		475	<0.2	1.51	20	45	5	0.59	-1	19	31	70	3 00	~ 10	1 10	015	10	0.03	<1	2220	8	<5	<20	31	0.08	<10	50	~10	<u>~</u> 1	26
10	95095		÷	10.2	0.94	<5	55	-5	0 7 O	<1	8	70	60	0.1/2	510	1.22	397	17	0.02	2	1410	10	<5	<20	18	0.03	<10	77	~10	24	35
10											-		55	210	\$10	0.06	269	14	0.01	<1	1090	6	<5	<20	19	<0.01	<10		~ 10	~ 1	23
6	95096		<u>_210</u>	< 0.2	0.22	5	25	~5	044	<1	12	161	7.4	6 00												4.91	- 10	,	• IQ	<1	9
11	95097		<u>/90</u>	04	1.59	20	50	<5	0.43	<1	10	20		252	<10	0.07	108	34	0.01	6	390	6	<5	<20	7	0.01	c10				
- 11	95098		ā	<0.2	2.46	5	50	\$5	2.26	<1	16	4.5	254	1 13	10	1.22	384	12	0.03	2	1180	12	<5	<20	37	0.00	~10	1;	-10	<1	5
13	92099		5	< 0.2	2.01	5	55	-:5	2.43	-1	17	44	201	5.56	~ 10	1.83	396	<1	0.10	3	1300	12	<5	<20	204	0.05	~10	400	<10	<1	30
eo	951CQ		5	<0.2	173	10	45		1 14		17	43	200	5 51	< 10	1.92	431	2	0.03	<1	1410	12	<5	<20	204	0.13	~10	107	<10	30	32
								-			13	-7-3	70	5 16	-10	163	344	5	0.04	<1	1290	10	<5	:20	23	0.10	~ 10	123	<10	35	30
61	95101		5	<0.2	2.21	15	55	e S	1.50	- 1	4											-	-		20	0.00	~10	82	<10	22	27
8 2	95102		5	<0.2	1.50	<5	50	+5	3.54	~1	13	90	130	6.02	- 10	1.80	400	10	0.08	3	1160	10	<5	<20	40	0.40	- 4 -				
53	95103		105	< 0.2	1.55	<u>ح</u> 5	100		0.04	<u> </u>	15	46	51	B 39	< 10	1.83	266	15	0.05	3	1020	12	<5	~20		0.12	<10	110	<10	14	31
84	95104		80	<0.2	1.64	-	105		0.20		12	28	99	>10	- 10	1.20	317	18	0.06	2	1640	tR	<5	~20	32	0.12	<10	103	<10	<1	32
85	95105		130	<5.2	1.64	~5	00		0.04	~ 1	12	47	103	>10	<10	1 29	362	15	0.0 5	6	1410	1.4	-5	~20	50	0.10	<10	103	<10	<1	30
				- •	1.174	×.1	80	•0	0.42	<]	14	30	95	>1D	~ 10	1 38	292	8	0.05	3	1670	10	~5	~20	48	0.10	<10	96	<10	<1	31
86	95106		20	<0.2	1 5.9	16	75	- 5		_										_			~5	~20	44	0.13	<10	111	<10	<1	30
87	95107		10	50.2	A 4 7	12	75	50	0.99	<1	11	54	112	6 98	<10	1.11	393	10	0.64	а	1310	10		- 0 -		_					
86	95108		40	- 0 -	- 00	 	75	<5	3.00	-1	63	197	123	>10	<10	4.09	1330	<1	0.13	135	520	10	~:) .:	<20	36	0.03	<10	55	<10	4	28
89	95109			0.	50 A.C.2	• 2	85	<5	0 53	<1	9	29	39	9.03	< :O	1.50	419	7	0.03	2	1500	10	< 5	<20	110	0.40	<10	216	<10	28	97
<u>60</u>	95110		-	-0.2	0.03	55 	30	<5	0 81	<1	3	50	77	2.63	<10	0 16	355	5	0.02	~1	410	8	<5	<20	19	0.03	<10	120	<10	<1	34
				64	u 70	<5	30	<5	2.02	<	з	58	61	1 63	<10	0.13	590	ő	0.02	~1	420	4	<5	~20	8 -	50 Q1	< 10	3	<10	18	12
91	95.17		2	- () =														-	0.02	~ 1	ວດເມ	4	<5	<20	20 •	:0 01	<10	2	<10	32	1.4
32	65110			<g 2<="" td=""><td>0.82</td><td><<u>5</u></td><td>35</td><td><5</td><td>1.51</td><td><1</td><td>5</td><td>58</td><td>78</td><td>Z 00</td><td><10</td><td>0.16</td><td>sen</td><td></td><td>0.00</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>17</td></g>	0.82	< <u>5</u>	35	<5	1.51	<1	5	58	78	Z 00	<10	0.16	sen		0.00												17
43	05112		10	• d Z	2.17	5	50	<5	2.14	- 1	33	47	146	9.81	<10	1.57	1000	4.0	0.02		390	4	<5	<20	13 -	0.01	<10	2	<10	28	16
(a.)	081.4		с	02	1.69	~5	30	<5	2.19	<1	8	46	72	4 68	\$10	5.51	1000	10	0.03	4	1310	14	<5	<20	45	0.02	<10	85	<10	3	A / ·
94	05146			<0.2	3 04	15	80	<5	2.66	-1	5	17	164	1.05	<10 < 10	0.00	221	7	-0.04	<1	1230	8	< *	<20	- 22 - <	0.01	< 10	17	< 10	34	47
~	00110		15	-92	259	~ 5	41)	75	1 68	< 1	21	32	346	7.85		1 70	CCA	-	~001 000	< 1	250	14	÷5	<20	94	0.01	<10	7	<10	27	40
63	95116		-													1.10	004	د	1163	4	1259	15	- 5	<20	21	0.10	<10	104	<10	20	ישר סיב
q.	53110 66447		-	- 0.2	453	ភ	40	< 5	5.99	·:1	68	168	234	93-	. 10	965	1000		c. 60								-		•••	59	3/
- 1	30117		5	~02	a Cir	45	75	- 5	2.70	<1	26	9	322	8.67	210 210	3.02 . Э.7м	rou. Epo	- 1	0.02	152	450	16	í.	<20	83	0.50	<10	187	<10	50	
															~ 10	2.00	502	3	012	4	1640	18	<i>د</i> ک	<20	127	0.15	- 10	131	<10	.;.; 10	10-1
															1.3	G€ (· · · ·	145	4.;

ICP CERTIFICATE OF ANALYSIS AIK 97-915

ECO-TECH LABORATORIES LTD.

F	1# 5aaa		•																							-IECUI		AIOR	ES LTE).	
	<u> </u>	*	Au(p;);	1) 4	AG AL	γ A	s Ba	1 E	5i Ca %	C a	<u> </u>	~		_																	
98	95118	6	;	5	12 24	C	5 14					<u> </u>	<u> </u>	u Fet	<u>6</u> L	a Mg %	Mn	M	o Na %	N	i p			_							
38	55119	9	4	0 <0	2 22	2			o ∖18 -	< 7	14	44	16	4 6.6	4 1	1 173	125		7	_		PD -	55	Sn	5	۲ Ti %	. U	U	w.		7-
101	05120)		5			, 10	, .	5 179	- 1	- 39	- 20	60	3 8 3	а. а.т.	0 0.44	. 720	3	7 0129	¥ ا	2 1290	12	5	<20	6	2 0 14	~10	100		<u> </u>	<u></u>
						4 .	<u>ነ ብ</u> ደ	-	5 1,93	<1	22	56	40	> 7.		2.11	290		3 016	3	3 1330	16	<5	200	10	2 0.14	~ 10	102	<10	17	32
101	06.41.4													- 7,4	1 <10	0 085	370		2 0.12	2	2 1310	16	~~	-20	10.	0.13	<10	135	<10	9	33
101	: 51 - T		19	r ≁0	2 2 9	7 .:/			5 I A4												- 1310	10	< 5	< 20	104	¥ 0.19	<10	133	<10	27	74
102	95122		310	0 O	2 11		· ···		a :9⊧ 	1	- 29	21	564	6 21	<10	2 00	380													6. 4	34
'03	95123			: .A		- IL	, 40	ج ا	5 2.32	<1	21	45	515	7.61	1	1 4 80	005		4 0.11	3	1360	12	<5	<20	Q4	i 0.45	~10				
:64	151.24		100		4 I G	(<	5 50	<;	5 063	<1	22	47	280			1 1.00	803	6	5 0.0Z	3	1250	16	<5	< 20		0.10	-10	123	<10	16	33
105	00124		. 9	<u>i</u> 0.	.8 177		i 50		0.67	<1	40	۵۳ ۱۰	21,02	э. л.	• <10	J 1.49	321	11	0.07	3	1220	14	~	~40	01	011	<10	104	<10	34	51
00	\$2125		25	5 °C	2 1 38	5 <5	20	- 1	0.00		40	23	104	>1C	<10	3 1.44	337	C C	0.07		1200	14	< <u>-</u>	<20	36	i 014	<10	121	<10	19	77
									1 0.50	~(11	24	99	6.79	10 <10	123	361	-	1 0.05		1200	12	~5	<20	36	0.13	<10	126	< 10		
Of	9512 6		25	< <u>∩</u> :	2 . 10													_	, n'na	\$1	1040	12	<5	<20	52	0.17	<10	134	-10	~!	.17
107	95127		10		- 200 - 200	່ວ	35		6.02	<1	13	52	467	6 M3	240												-10	1.34	S1U	1	37
108	95 C A		10	×0.	2 189	· · · 5	50	<5	0.72	<1	9	5.4	440	2.0.0	~ 10	112	463	5	0.02	<1	900	<2	eĽ	~ 20		.					
- 10	65.20		15	<[1]	צפי 2	5	50	~:5	0.61	<1	10	20	0.00	1.14	<10	1.39	322	6	0 03	1	1210	2		~40	104	U. 12	<10	74	<10	12	26
	90123		40	× 0.,	2 1.71	<5	59	<5	0.75	- 4		- 20	203	6.51	<10	1 62	253	6	0.07	<1	1110			<:0	42	0,16	<1Q	104	<10	<1	20
1:0	95130		5	<0	2 2 67	< 5	29		0.1	51	23	51	307	6 60	<10	1.39	300	4	6 0e		1110	4	<5	<20	36	0.15	<10	117	<10	c	23
						-0		•0	0.86	<1	10	31	141	5 75	<10	2.07	447		0.00	1	1080	4	<5	<20	37	0.12	<10	105		0	27
711	95151		11		· · · · ·	_										<i>c</i> , (//	447	د ا	U.11	2	1220	6	<5	<20	Ag	0.10	~10	100	×10	4	25
112	95132			0.2	2 :86	<5	65	~5	0.67	<1	12	50	122	6 6 6											-5	ų. Ja	~ 10	176	- 10	20	35
113	65152			- 0.2	/ 192	~5	50	- 5	D.65	-1	21	20	724		<10	1.57	264	2	0.06	2	1130	6	~6								
114	301.) 01.45.1		35	0.	2 1.99	45	70	55	0 44		4.7	.:0	/34	5.87	< 10	167	363	18	0.06	3	1170	5	~0	420	48	0,17	<10	152	<10	11	79
1 14	95134		15	< 0 2	2.12	-5	55		0.55			- 3	230	8 61	<10	177	361	10	0.03	- 1	1000	2	<5	<20	34	0.15	<10	142	<10	 g	70
115	95135		120	0.2	1 85	r.5	55		0.55		12	22	192	6 76	<16	2.17	593		0.00		1220	6	<5	<20	40	0 21	<10	170	<10		20
							55	100	C 66	<1	43	53	282	>10	<10	169	222	21	0.02	< 1	1220	6	<5	<20	25	0.24	<10	167	~10	< }	30
116	9\$136		20	×0.2		_								•=	10	1.00	324	-35	0.03	- 5	1460	8	<5	<20	60	0.24	-10	107	< 10	15	42
11.1	95137		10	×0.2	2 4 1	~5	60	~5	1 63	<1	41	26	000	. 10									-	-10	00	9.21	~10	153	<10	<1	31
119	143.00		1.3	- 0.2	2 85	5	55	~5	1.32	<1	74	34.		10	<10	2 12	476	10	0.03	4	1030	в	~ F								
110	20136		5	<0 Z	1.30	- 9	50	55	0.86	-1			×93	7.93	<10	1.91	280	9	0.08	3	1260	+5	~ 2	<20	135	0.11	<10	130	< 10	<1	17
11.8	92133		55	<0.2	4.12	< 4	50		4 3 3	- 1	20	24	156	7.14	<10	1.31	173	131	0.03		1000	12	<5	<20	69	0.18	< 10	187	<10	e.	~/ ~-
120	S5140		60	3.2	7.65	the second	00		111	< 1	38	47	595	8.40	<10	2 30	705		-0.03 	1	1210	14	<5	~20	35	0.18	s10	170	~10		21
					· · · · · ·	20	60	< 5	3.16	~1	35	35	583	>10	<10	1 00	200	EL	0.23	3	1330	16	<5	<20	144	0.15	c10	404	~10	<1	21
12;	95141		120												10	1 90	207	41	0 12	5	1360	54	5	<20	127	0.10	- 10	191	<10	9	36
172	06147			~92	1 50	- 5	55	•.5	0.50	-1	38	40	500	A									-		12.2	0.1.5	<10	158	<10	9	45
100	05440		÷	<0.2	2.32	< 5	55	<5	0.65	- 1	20		232	a 80	<10	1.38	727	16	0.05	4	1050	e									
10.	95:20		5	<0 2	3.05	- 5	80	25	0.7.4			24	334	B 92	<10	2.09	516	3	0.05	Å	1100	40	·.>	<20	37	0.18	<10	189	<10	< t	ân
(24	95144		٩.	<0.2	3.51	5	70	-0	1174	N 1	14	25	219	7 94	< 10	2.45	658	-	0.00		1100	10	<5	<20	29	0.16	<10	160	~10		
1.35	95145		5	<0.2	3.62	,	10	50	111	<1	15	21	153	6.43	s10	2.43	646		0.09	r	1320	10	<5	<20	53	0.21	e 1 fi	227	- 10	N 1	44
						50	90	~5	172	<1	13	20	124	7.04	~10	4.00	343	4	014	<1	1280	12	<5	<20	02	0.17	-10	<u> </u>	S10	14	62
126	95,46													, .u-	\$10	1.99	\$15	5	0 19	2	1240	10	<5	-20	170	0.17	\$10	212	<10	17	49
177	0.000		- 110	12</td <td>2.27</td> <td><u>~5</u></td> <td>70</td> <td><5</td> <td>0.60</td> <td>-: 1</td> <td>14</td> <td>22</td> <td>240</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>. 2</td> <td></td> <td>νεü</td> <td>128</td> <td>U.14</td> <td><10</td> <td>211</td> <td><10</td> <td>12</td> <td>43</td>	2.27	<u>~5</u>	70	<5	0.60	-: 1	14	22	240								-	. 2		νεü	128	U.14	<10	211	<10	12	43
400	1/3141		155	~0.2	2.44	* 5	65	e 6.	0.5%			22	219	8.24	<10	179	428	2	0.05	1	1090										
128	95148		- 5	<0.2	0.78	<5	25	- 5	4 35	N (16	40	290	8,79	<10	1.81	535	25	0.06		1000	12	-5	-20	82	0 20	<10	162	< 10	<1	40
129	951/9		5	-0.2	1.56	~ 6	45	~3	1.29	<1	6	45	100	7 84	<10	0.44	245	20	0.00	2	1220	12	- 5	<20	41	0.15	<10	162	~10		42
130	95150		5	3.7	1.0	• a	45	<5	5 25	<1	12	58	163	3.40	<10	0.01	505	3	03	~1	340	4	<5	<20	15	0.03	~10	103	~10	<1	47
					1.10	< 5	100	<5	0.62	<1	3	37	65	1 2 2	- 10	V.DZ	091	5	0.04	7	750 .	4	5	<20	24	0.00	-10	31	<10	28	- 12
131	95154		-	~ -									~2	.22	< 1U	0.18	223	2	0 02	t	130	4	4 5	200	24	0.11	510	59	<10	50	21
130	99(8) DE169		5	<0.5	2.74	15	45	<5	1.00	-1		7/1	e	_										-20	20	0.02	< 10	z	r10	20	12
	82125		4 C	<2.2	2.87	<5	50	<c.< td=""><td>11.05</td><td></td><td>21</td><td>29</td><td>557</td><td>815</td><td>< i ()</td><td>2 04</td><td>707</td><td>e</td><td>0.03</td><td>2.</td><td>1210</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></c.<>	11.05		21	29	557	815	< i ()	2 04	707	e	0.03	2.	1210										
1.72	55:60		25	< G 2	2.95		76	-5	0 02 5 0 0	~ I	24	16	244	9.21	<10	2.12	602	6	0.02	~ ~	1210	12	s.	- 20	15	0.09	<10	174	<10	70	50
134	95 1:4		5	রা?	2.31			<0 -	n 9a	<1	17	24	154	8.45	518	2 27	642		0.02	_ 1	1240	6	<ñ	<20	45	0.20	<10	100		×0	50
					.,,,	10	×.	~5	1.64	~ 1	11	3	142	6.64	10	- 40	003		0.06	2 1	1280	10	< 5	<20	92	0.17	< 10	102 040	- U	-1	61
													-		·Ψ'aq	r, 10	09%	2	0 14	2 1	195	10	~ <u>5</u>	-20	269	0.11	~10	210	<10	11	68
																								- E. Q	20¢	U. 14	<10	196	•: 10	22	47

1

Contraction and

ECREPTION DATE AND A

1

top 💯

.

{

ICP CERTIFICATE OF ANALYSIS AK 97-915

ECO-TECH LABORATORIES LTD.

				_			. .		•• •	c.a	Ca	Ċ.	Cu	Fo %	is N	la 14	Ma	Mol	Na %.	Ni	Р	Pb	Sb	್ಷ.್ಯ 8n:್:	9 86 Ti %	U	۷	W	Y	Zn	ļ
<u> </u>	Tag #		vi(bbp)	Ag	AI %	AS	89		-74 7a		40		400	F0 /	-40	216	676	5	0.54		1220	10	<5	0037	1997 0.15	<10	203	10	19	45	1
135	95155		5	<0.2	3.32	5	65	<5	1 34	<1	12	28	100	0,94	S IŲ	2.10	000	Ļ	u. 14	2	1200	12	-0	14							
						_		_			4.5	40	105	0 70	-10	ว าก	543	25	ā 00	2	1180	8	<5	0	46 0.14	<10	172	<10	<1	44	1
136	95156			<0.2	2.69	<5	50	<>	0.84	<1 -4	10	19	400 200	0.70	<10 <10	1.62	442	30	0.04	2	100	Â	6	20	57 0.12	<10	145	<10	<1	39	j –
137	95157		60	<0.2	2.43	<5	55	<5	0.73	<]	13	20	200	0.00	~10	1.03	740	3 7	0.00	1	1320	16	<5	<20	78 011	<10	187	<10	5	73	ś
138	95158		70	<0.2	3.15	20	45	<5	1.27	<۱	22	19	000	0.94	~ (Ų ∠40	2.17	190	12	0.02	5	1260	2	~~ <5	<20	23 <0.01	<10	49	<10	9	19)
139	95159		<u>315</u>	0.6	0.98	<5	45	<5	3.53	1	39	39	1506	7.01	510	0.00	900	סו ביג	0.04	2	600	~2 11	~5	<20 <20	32 <0.01	<10	15	<10	<1	15	5
140	95160	174	>1000_	1.4	0,48	80	45	<5	3.91	<1	46	48	1036	>10	<1 0	0.19	741	43	0.01	3	090	14	-0	·2V	Ψ <u>μ</u> −0.01				•		
								_				400		0	-10	0.24	644	54	0.01	a	680	14	<5	<20	26 <0.01	<10	24	<10	<1	12	2
141	95161		230	1.2	0.63	30	50	<	2.51	<1	33	106	450	210	510	0.24	914 405	-24 2	0.02	-1	600	. т В	-5	<20	10 0.01	<10	11	<10	30	11	1
142	95162		5	0.4	0.61	55	20	-5	1 15	<1	9	80	284	2.20	510	U,20	420	с С	0.02	1	1220	10	-5	- 20	. 18 0.09	<10	82	<10	19	51	1
143	95163		20	<0.2	1.96	<5	40	<5	2.52	<1	23	28	\$69 400	1.49	<10	1.00	247	יכ דר	0.02	4	1330	10	25	0	30 0.02	<10	78	<10	20	34	4
144	95164		45	0.2	1.55	<5	45	<5	3.41	<1	18	31	489	0.03	<10	1.01	141	21	0.02	4	1.5.50	v	*0	100.00	and the second					-	
																									•						
<u>oc data</u>	Ľ																		-												
Perni#.																															
Ris I	95001		5	<02	2.29	10	45	<5	2.19	<1	14	50	443	5.07	<10	1.15	1191	6	0.03	<1	2080	8	<5	<20	31 0.03	<10	30	<1) 75	5 74	4
RIS 38	95055		220	0.2	2.23	<5	75	<5	0.94	2	15	34	101	>10	<10	1.72	210	16	0.07	2	1920	24	5	<20	48 Q.10) <10	168	<1) <1	2	4
P(S 71	950991		15	<0.2	2.01	<5	55	<5	0.76	<1	13	48	155	6.81	<10	1.89	249	7	0.05	. 1	1490	10	<5	<20	44 0.12	2 <10	144	<1	0 16	; 2	9
	05126		30	<0.2	2 01	<5	25	<5	5.25	<1	12	44	361	4.51	<10	0.97	413	4	0.02	<1	860	10	<5	-20	76 0.1) <10	65	<1) 1 1	2	5
DIR 141	05161		210	10	0.58	35	50	<5	2.40	<1	32	96	420	9.96	<10	0.24	487	-60	0.01	3	740	14	45	<20	24 <0,0	<10	. 23	. <u>≮</u> 1	ז ו	1.	3
	00101			-,-																											
Denast																															
i vehene i	95001		5	0.2	2.26	10	45	<5	2,07	<1	13	57	432	4.66	<10	i.16	1138	6	0.03	<1	1950	<2	<5	<20	30 O .D	3 <10	29	- <1	0 <i>1</i> .	26	18
10	95010		705	0.4	1,48	125	45	<5	3.19	<1	37	74	309	5.25	<10	0.76	1343	19	0.01	- 4	760	10	<5	<20	40 < 0.0	<1[) 14	<1	03	2 9	Н
19	95019		135	0,4	1,13	30	35	<5	0.48	<1	15	54	167	6.08	<10	0.50	281	10	0.02	. 3	1280	8	<5	-20	5 <0.0	1 <1() 16	5 <1	0	4 2	17 55
36	95055		195	<0.2	2.21	5	70	<5	0.91	<1	15	40	98	>10	<10	1.68	205	12	0.07	1	1930	26	<5	<20	44 0.1	3 <10	16:	3 <1	0 <	12	!5 •7
45	95064		60	<0.2	2.42	5	65	5	0.79	<1	15	42	102	_9.18	<10	2.18	350	21	0.09	3	1590	8	<\$	<20	75 0.2	1 <10	180	j <1	Q	3 3	51
-10																							_							•	
54	95073		5	⊲0.2	3.63	<5	55	<5	5.61	<1	44	264	610	9.09	<10	3.11	1211	5	0.04	134	810	4	<5	-20	48 0.1	4 <10	0 13	1 <1	0 2	34	44
71	95091		5	<0.2	2.06	10	55	<5	0.80	<1	14	27	158	7.17	<10	1,93	255	5	0. 05	<1	1600	12	<5	<20	47 0.1	3 <1	0 14	8 <1	0 1	6	26
80	95100		5	<0.2	1.65	5	55	<5	1.09	<1	12	51	<u>66</u>	4.97	<10	1.55	331	4	0.04	1	1220	10	<5	<20	22 0.0	7 <1	J 7'	9 <'	0 2	z	20
89	95109		5	<0.2	0.64	<5	35	<5	0.84	<1	3	50	83	271	<10	0.17	365	4	0.02	<	420	4	<5	<20	10 <0.0	1 <1	0 -	4 <'	0 2	U '	13
108	95126		30	<0.2	2.30	<5	25	<5	5.89	<1	- 11	48	420	4.58	<10	0.96	432	4	0.02	1	870	2	<5	~ 20	96 D.1	0 <1	06	8 <	10 1	1 3	24
150	60 1 6V																														~~
115	85135		105	<0.2	1.66	<5	55	4	0.65	<1	42	34	279	>10	<10	1.65	324	36	0.03	e	5 1420	8	<\$	<20	62 0.2	1 1	0 15	4 <	0 4	- -	30
124	95144		5	<0.2	3.50	<5	75	<5	1.12	<i< td=""><td>15</td><td>21</td><td>152</td><td>6.36</td><td><10</td><td>2.42</td><td>540</td><td>3</td><td>0.14</td><td><1</td><td>1270</td><td>12</td><td><5</td><td><20</td><td>90 0.1</td><td>7 <1</td><td>0 21</td><td>1 <</td><td>10 1</td><td>1 4</td><td>49</td></i<>	15	21	152	6.36	<10	2.42	540	3	0.14	<1	1270	12	<5	<20	90 0.1	7 <1	0 21	1 <	10 1	1 4	49
141	95161		255	1.2	0.63	30	· 55	<5	2.52	1	33	107	439	>10	<10	0.24	510	53	0.02	;	5 660	12	<5	<20	29 <0.(11 <1	02	4 <	10 «	1	12

000

01/06/98

15:53

250

573

4557

ECO

TECH

KAM.

↓ ↓ *

TECK

кам

TECK EXPLORATION LTD. Ag Al% As Ba Bi Ga% Cd Co Cr Cu Fe% LaMg% Mn Mo Na% Ni P Pb Sn Sr TI% U V W Y Zn Sb Au(ppb) Et#. Tag# Standard: 73 81 <10 7 63 0.13 <10 <1 0.02 25 680 22 <5 <20 80 4.15 <10 0.93 668 53 <1 19 65 160 <5 1.85 1.2 1.77 GEO'97 140 <10 9 77 <10 84 S <20 70 0.10 20 <10 0.94 691 <1 0.02 24 640 64 78 4.33 20 <5 1.90 5 1.4 1.78 70 170 GEO'97 150 82 60 0.13 <10 79 <10 8 <20 27 720 26 5 0.98 700 <1 0.02 62 79 4.25 <10 20 <5 1.90 <1 1.4 1.72 70 155 145 GEQ'97 <10 8 71 <10 73 <5 -20 54 0.11 <1 0.02 23 660 24 <10 0.94 690 64 78 3.93 18 5 1,74 <1 140 1.2 1.76 60 155 GEO'97 <10 80 <10 10 82 26 5 <20 63 0.12 22 700 <10 0.94 704 <1 0.02 20 63 84 4.37 <5 1.90 <1 170 GEO'97 14 1.78 60 -

ICP CERTIFICATE OF ANALYSIS AK 97-915

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

df/915a XLS/97

٠

-003

86/90/10

15

U A

υ

č

Ē

ECO-TECH LABORATORIES LTD.

APPENDIX IV

Statement of Expenditures

Wages:	J. Pautler	9 days @ 283.00/day (July 24-30, Aug 9,10)	\$ 2,547.00	
	P.L. Grexton	7 days @ 225.00/day (July 24-30)	1,575.00	
		Total: 1	16 man-days	\$ 4,122.00
Groceries:	14 man-days	@ \$ 15.00/md	·	210.00
Meals, Accom	modation: 2 man	-days @ \$50.00/ea.		100.00
Field Supplies	: (flagging tape 14 mar	, thread, sample bags) n-days @ \$10.00		\$ 140.00
Camp Supplie	s: (Propane, tent 7 days	s, hardware, etc.) @ \$20.00		\$ 140.00
Equipment re	ntal: Radios	8 days @ \$15.00/day		120.00
Truck/Gas:	9 days @ \$50	./day + 150.00 gas		600.00
Sampling Crev	w: Minconsult, V (22 md, groce Aug. 9 - 16, 1	ernon, B.C. ries, supplies, expenses) 997		7,960.61

Helicopters: Pacific Western Helicopters

Dease Lake, B.C.

	Date	Hours	Cost ((incl. fuel)	
	July 25	1.6	1,366.8	5	
	July 28	0.9	769.43	3	•
	July 29	1.9	1,623.94	4	
	Aug 10	3.7	3,161.8	8	
	Aug 11	1.9	1,667.8	1	
	Aug 12	0.9	769.43	3	
	Aug 16	1.9	1,623.94	4	
Total:		12.8 h	ours		\$10,983.28
Geochemistry:	Eco-Tech Labs, Kamloops B.C.				
	204 rocks @ 17.00 e	a.	Au, ICP	3,468.00	
	9 rocks @ 8.50 ea	i.	Au/Ag assay	76.50	
			Total:		3,544.50
Maps & Prints:					425.00
Report & Drafting:					<u>\$_3,000.00</u>
	GRAM	ND TOT	ſAL:		\$ 31,345.39

APPENDIX V

STATEMENT OF QUALIFICATION

I, Jean Marie Pautler, do hereby certify that:

- 1) I am a geologist and have worked in the Canadian Cordillera for more than fifteen years.
- 2) I am a graduate of Laurentian University, Sudbury, Ontario with an Honours B.Sc. degree in geology (May, 1980).
- 3) I am a Professional Geoscientist and a Fellow of the Geological Association of Canada.
- 4) I supervised and conducted exploration on the Castle Claim Group between July 23 and August 17, 1997.

parth.

Jean Pautler Project Geologist.

.

.

• • :	-	
	1. (* 1. 1 . 1.	
	ин на селото на селот На селото на селото на На селото на селото н	
, с.		
1 · · · · · · · · · · · · · · · · · · ·		
;		
		· · · ·
U. S.		
	`	
•		
).		
	• • • • • • • • • •	
	· · ·	
	х	
· · · · · · · · · · · · · · · · · · ·	······································	
	n a ng tao ng Tao ng tao ng	
Y States		•
er Le constante de la constante de La constante de la constante de		
		· · · · · · · · · · · · · · · · · · ·
	• •	
- ţ	:	
, }; ;	* 	
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · · ·	
		THOR EVOLODATION I TO
LEGEND	. dunite brequin,	KAMLOOPS BRITISH COLUMBIA
y dylase, medium to copied grained		CASTLE PROPERTY
iji: K-apar trachijia In dimeminated Py, Cjijr		PROPERTY
inte tutte, grite, cherte, turbicio lugo nizud allistone.		GEOLOGY
		0 200 400

Alt Alteration Zone with Emonie, sericite, and pervectually elicities Alt volganice py. cpy. distai zones of aniserile

| · = - --

i

. ...

DATA BY: PW, JL, JP, LG NTS No: 104 C

-

T THUT MT,3 ٧ø, Society Society Starts Starts Starts Starts Vo, 21000 A Alt Art 346K8A -----A start of the second s ا يہنيٽ-TOS/ _ **S** series Due 94994 Yo,1 Vo, ,**5e**,1 Cfr 2 Se,1 ----94959 T.A 1997 SAMPLE LOCATIONS in place, float LineA-all 11111 11 11 11 12 GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT × 4 •

