DRILLING REPORT

BRENDA PROPERTY

BRENDA GOLD-COPPER PORPHYRY HECETOODOGGONE-KEMESS GOLD CAMP MAR 16 1998

Gold Commissioner's Office VANCOUVER, B.C.

Omineca Mining Division

British Columbia

Canada

N.T.S. 94E/2W, 7W

Latitude 57°16'N Longitude 126°52'W

Author: P.J. Weishaupt Operator: Canasil Resources Inc. GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

February, 1998

TABLE OF CONTENTS

1.0	 INTRODUCTION	
2.0	GEOLOGY 2.1 Regional Geology 2.2 Property Geology	7
3.0	DIAMOND DRILLING PROGRAMME 3.1 Presentation of Drill Hole Data 3.2 Synopsis of Drill Holes	
4.0	SUMMARY	15
5.0	CONCLUSIONS AND RECOMMENDATIONS	17
6.0	REFERENCES	
	DRAWINGS	<u>Scale</u>
Figure 2 Figure 3 Figure 4 Figure 5 Figure 6	Index-Location Map Claim Map Regional Geology Property Geology D.D.H. Location Plan Section 10600N D.D.H. 97-01, 97-02	1:2,500,000 1:50,000 As Shown As Shown 1:50,000 1:1,000
¥	Section 10650N D.D.H. 97-03, 97-04 Section 10400N D.D.H. 97-05	1:1,000 1:1,000

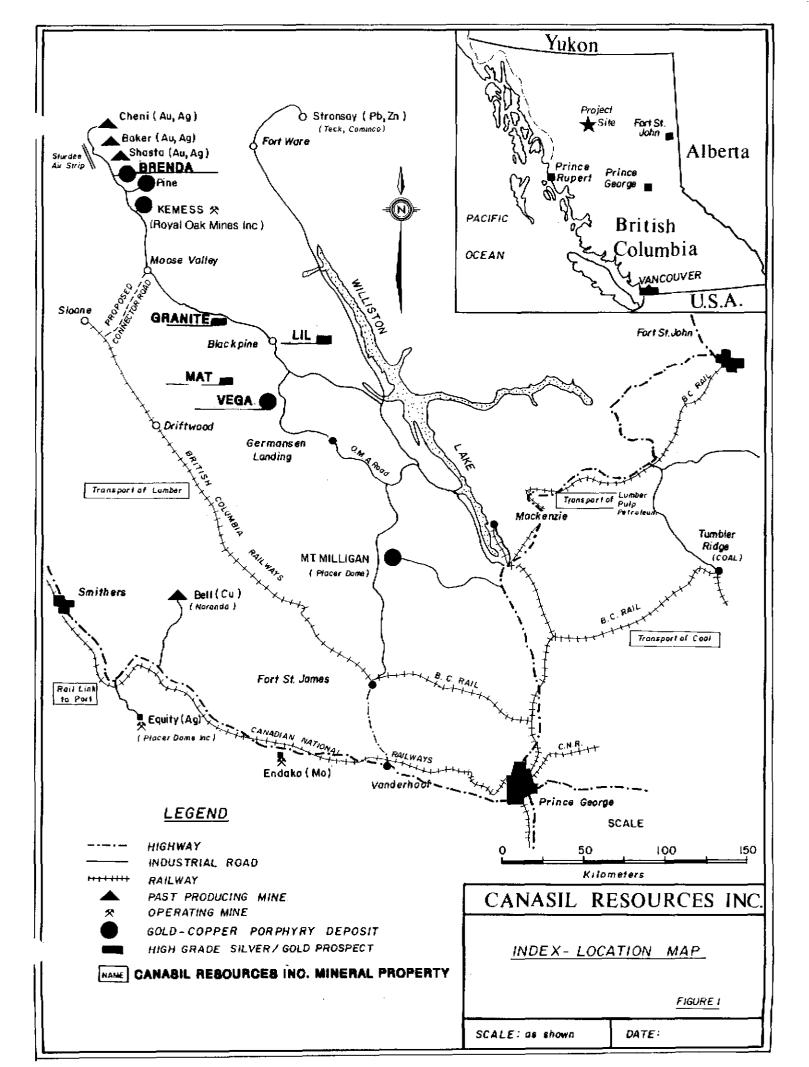
APPENDICES

Appendix I	Laboratory Analytical Techniques
Appendix II	Drill Core Assay Results
Appendix III	Detailed Drill Logs
Appendix IV	Statement of Costs
Appendix V	Statement of Qualifications

<u>PAGE</u>

1.0 INTRODUCTION

During the period of June 11, 1997 to September 15, 1997 Canasil Resources Inc. and Britton Brothers Diamond Drilling conducted a Drill Program on the Brenda property.


1.1 Location and Access

The Brenda property is located in latitude 57°16'N and longitude 126°52'W in the Omineca Mining Division, approximately 275 km north of Smithers and 450 km northwest of Prince George (Figure 1).

The Sturdee Valley airstrip, which is suitable for Hercules cargo aircraft and turbo prop commuter aircraft, is situated 21 km west of the property. Road access from the airstrip is via the Shasta mine road, a road distance of about 12 km and then by a 9 km long four wheel drive road to the centre of the property.

The Omineca Resource Access Road and all weather mainline logging roads provide access to the Sturdee airstrip from Mackenzie and Fort St. James. The Baker and Cheni mine sites, located 15 km and 23 km respectively northwest of the Brenda claims, are also road accessible from the Omineca Resource Access Road.

Royal Oak Mines development of the \$390 million Kemess gold-copper project and the construction of the connection load to the British Columbia Railway at Sloane, via Moose Valley will greatly facilitate the development and operation of porphyry deposits in the Kemess-Toodoggone district.

1.2 Topography and Physiography

Topography is generally moderate except for local areas along incised creek canyons and cirques. Elevations range from 1200 m to 1900 m with the Brenda gold-copper porphyry zone situated at the 1500 m elevation. Vegetation comprises a mix of sub-alpine lodge pole pine, balsam and spruce. The climate is generally moderate with temperatures ranging from $+30^{\circ}$ to -30° celsius. Precipitation, at 900 mm per year, is moderate and is more or less distributed throughout the year. Ample water is available for diamond drilling and mine development.

1.3 Exploration History

In 1950 Emil Bronlund discovered gold-bearing quartz veins in outcrops along the banks of Jock and Red Creeks and staked four claims. The claims were subsequently allowed to expire.

In 1980 P. Weishaupt restaked the area and between 1980-1985 Canmine Development Company Inc. undertook limited prospecting and hand trenching programs. Float samples of epithermal vein quartz grading up to 0.91 oz per ton gold and 63.5 oz per ton silver were found. Even though several epithermal vein occurrences were discovered no source for the high grade float was found.

In 1987 Cypress Gold Canada Inc. optioned the claims and in 1988 drilled 12 diamond drill holes totalling 1219 m (3998 feet) to test epithermal vein zones along Jock and Red Creeks. Results were not up to expectations and the option was dropped.

Soil geochemical surveys and trenching, conducted by Canasil Resources Incorporated from 1989 to 1991, discovered the White Pass area, where highly anomalous concentrations of gold occur in an extensive zone of quartz breccia and stockwork associated with a zone of intense argillic alteration. Trench #5, sampled in two segments graded 964 ppb (0.964 grams/tonne) (0.028 oz/ton) across 19 m and 776 ppb (0.776 grams/tonne) (0.023 oz/ton) across 28 m. An 11 m interval between the two segments was not sampled. Trenching traced the mineralization over a 300 m by 60 m area and indicated that the zone was open in all directions.

The grade and continuity of the gold mineralization encountered in the trenches was sufficiently good that in 1992 Canasil Resources Incorporated bored four short diamond drill holes totalling 271 m, to test, at shallow depths, the mineralization exposed in the trenches. Drill results are summarized as follows:

HOLE	FROM (m)	TO (m)	LENGTH (m)	GOLD (ppb)	GOLD* (oz/t)	COPPER (ppm)	COPPER + (%)
WP92-1	11.25 12.25	12.25 26.50	1.00 14.25	197 NA ^x	(0.006)	796	(0.08)
	26.50	28.50	2.00	419	(0.012)	1070	(0.11)
WP92-2	10.60 28.50	28.50 33.60	17.90 5.10	151 NA [×]	(0.004)	1481	(0.09)
	33.60 34.60	34.60 38.70	1.00 4.10	936 NA	(0.027)	905	(0.14)
	38.70	41.70	3.00	704	(0.021)	1372	(0.14)
WP92-3	9.50 11.00	11.00 29.00	1.50 18.00	811 NA	(0.024)	1363	(0.14)
	29.00	38.60	9.60	818	(0.024)	1499	(0.15)
	38.60	56.60	18.00	NA			
	56.60	66.10	9.50	772	(0.023)	1901	(0.19)
WP92-4	16.40	43.00	26.60	915	(0.027)	282	(0.03)

* converted from parts per billion gold to ounces gold per ton

+ converted from parts per million copper to percent copper

x not assayed

All holes intersected disseminated and vein stockwork mineralization but unfortunately only selected intervals were analyzed and many intervals remain unsampled. As a result, the continuity and tenor of the zone could not be determined. However, from this drilling program, the potentially significant tenor of copper in the mineralized zone became apparent. At surface, where the zone has been intensely weathered and leached, copper concentrations are generally at or below background concentrations.

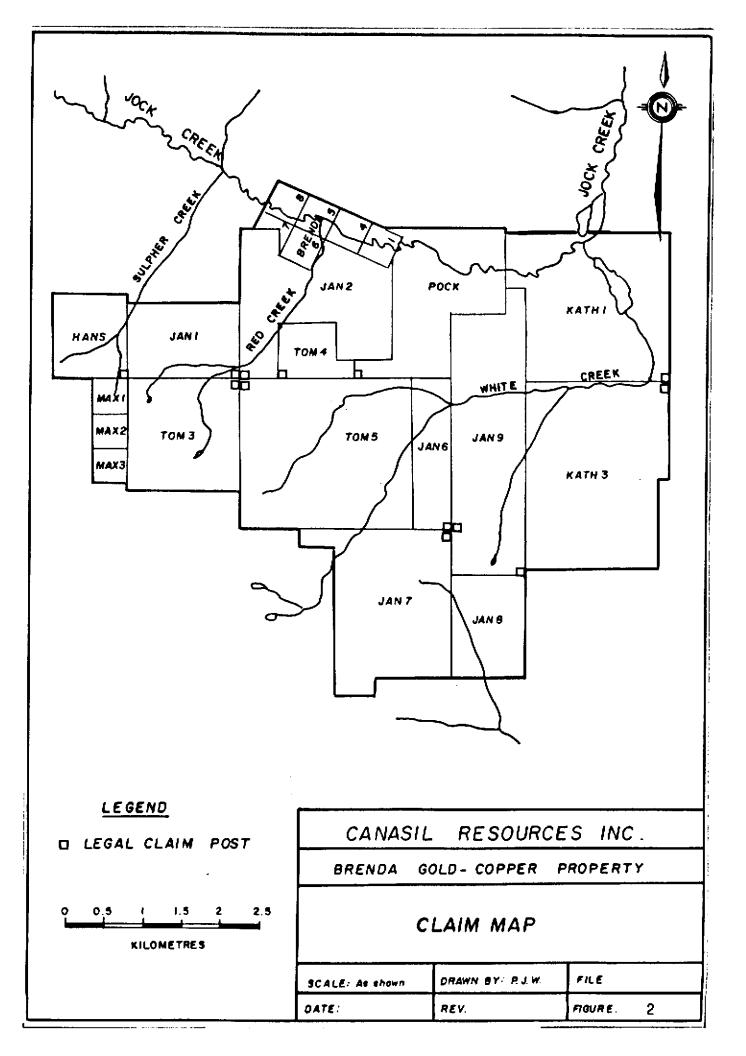
In 1993 Romulus Resources Ltd. bored four diamond drill holes totalling 957.61 meters to test at depths the 1992 drill results. Results are summarized as follows:

HOLE	FROM (m)	TO (m)	LENGTH (m)	GOLD g/tonne	<u>ุ</u> รั	AG ppm	MO ppm	PB ppm	ZN ppm	AS ppm	SB ppm
93 -1	9.14	57.00	47.86	1.10	0.130	4.8	11	33	110	1	2
	57.00	281.00	224.00	0.05	0.016	0.2	5	77	409	3	3
	281.00	289.00	8.00	0.30	0.031	0.2	2	7	64	1	1
-	289.00	331.04	42.04	0.02	0.007	0.1	З	44	141	3	3
	3.66	10.00	12.34	0.02	0.007	0.1	1	27	308	9	7
	10.00	134.00	118.00	0.40	0.054	0.4	18	63	542	6	6
	134.00	234.00	100.00	0.05	0.013	0.1	5	140	344	17	18
93-2	234.00	260.00	32.00	0.62	0.116	0.7	10	140	652	8	17
	260.00	270.36	4.36	0.06	0.031	0.1	7	116	561	15	17
93-3	12.20	121.00	108.80	0.48	0.144	1.0	13	105	400	3	2
93-4	15.00	40.00	25.00	0.44	0.103	0.5	11	52	331	5	1
	178.00	193.00	15.00	0.46	0.054	6.6	15	151	1688	5	1

During July to September 1995 Canasil Resources Inc. completed a four (4) hole diamond drill program totalling 477.91 meters. Hole 95-01 and 95-02 tested an IP anomaly 2.0 km east of the White Pass Zone. Hole 95-03 and 95-04 were drilled in the White Pass Zone. Results are summarized as follows:

HOLE	FROM (m)	TO (m)	LENGTH (m)	GOLD g/tonne	CU %	AG ppm	MO ppm	PB ppm	ZN ppm	AS ppm	S8 ppm	
95-03	20.40	61.90	41.50	0.77	0.11	3.3	10	38	246	12	2	
95-04	29.55	99.65	70.10	8-12% Pyrite only								
95-02	3.04	19.00	15.96	Pyrite only anomalous values AU and CU								
95-01	3.04	94.48	91.44	Pyrite only anomalous values AU and CU								

1.4 Claim Data


The Brenda Property consist of 9 two post claims and 13 modified grid claims comprising a total of 178 units owned 100% by Canasil Resources Incorporated.

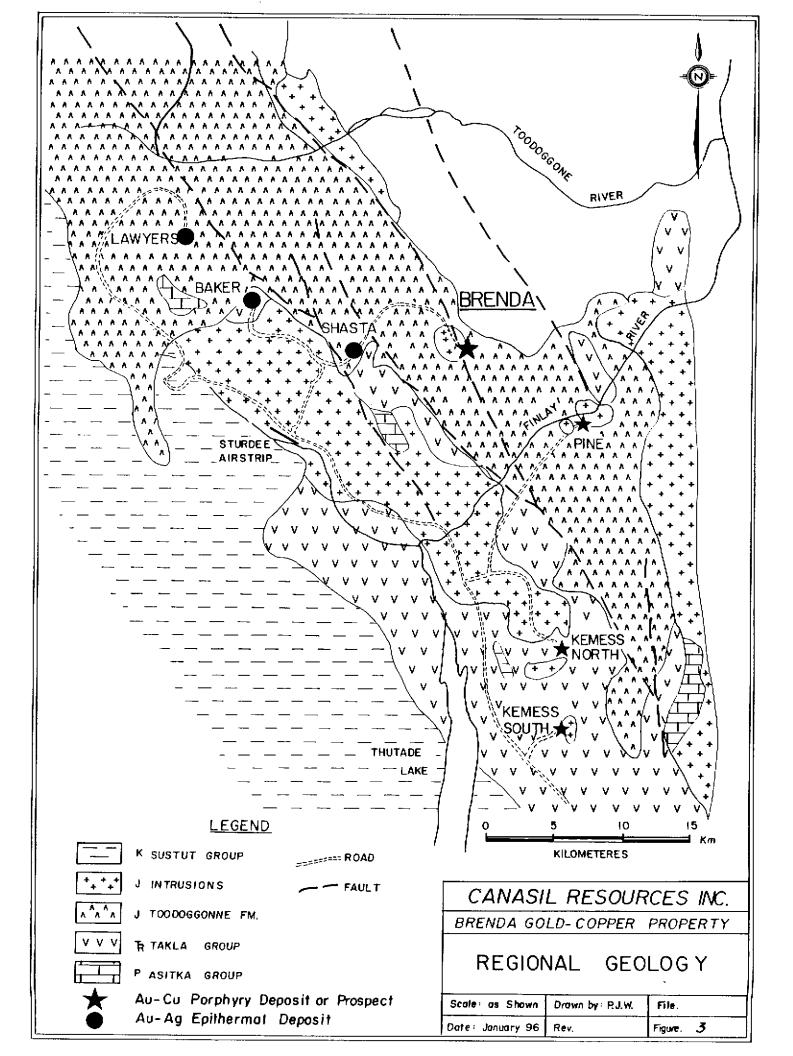
Some claims may in part overlap prior existing claims and as a result reduce the effective area of the claim block (Figure 2). Essential claim data are as follows:

<u>Claim Name</u>	<u>No. of</u>	<u>Tenure No.</u>	Recording Date	Expiry Date
Brenda #1	1	238271	June 13, 1980	June 13, 2004
Brenda #4	1	238272	June 13, 1980	June 13, 2004
Brenda #5	1	238273	June 13, 1980	June 13, 2004
Brenda #6	1	238274	June 13, 1980	June 13, 2004
Brenda #7	i	238275	June 13, 1980	June 13, 2004
Brenda #8	1	238276	June 13, 1980	June 13, 2004
Jan 1	6	238770	March 29, 1984	March 29, 2004
Jan 2	16	238771	March 29, 1984	March 29, 2004
Jan 6	4	239100	Feb. 28, 1986	Feb. 28, 2004
Jan 7	20	239101	Feb. 28, 1986	Feb. 28, 2004
Jan 8	10	239102	Feb. 28, 1986	Feb. 28, 2004
Jan 9	16	240972	July 6, 1989	July 6, 2004
Tom 3	9	306720	May 31, 1988	May 31, 2004
Tom 4	6	239993	May 31, 1988	May 31, 2004
Tom 5	20	306721	May 31, 1988	May 31, 2004
Pock	16	239522	July 6, 1987	July 6, 2004
Hans	6	239523	July 6, 1987	July 6, 2004
Max No. 1	1	238872	Aug. 21, 1984	Aug. 21, 2004
Max 2	1	238873	Aug. 21, 1984	Aug. 21, 2004
Max 3	1	238874	Aug. 21, 1984	Aug. 21, 2004
Kath 1	20	319655	July 19, 1993	July 19, 2004
Kath 3	20	319657	July 20, 1993	July 20, 2002

1.5 Economic Potential

The Brenda Property is considered promising for hosting porphyry-type gold-copper occurrences to the south to epithermal-type gold-silver vein and breccia deposits to the northwest.

Geotechnical and geophysical surveys conducted including diamond drilling suggest that the gold-copper mineralization is associated with (parallel) linear structural zones.


2.0 GEOLOGY

2.1 Regional Geology

The Brenda property lies within the regionally extensive early mesozoic Quesnel Belt. This island-arc belt extends northwesterly for 1600 kilometres and includes equivalent rocks of the upper Triassic to Lower Jurassic Takla, Nicola and Stuhini Groups. To the west, deformed up-lifted Permian Asitka Group rocks are separated from the Quesnel Belt by a regionally extensive fault.

In the southern Kerness-Toodoggone district, the Takla Group is comprised of extensive subaqueous augite porphyry flows and breccias with interbedded graphitic shales, chert, siltstone and minor limestone. Partly subaerial strata, transitionally overlying the subaqueous units, are dominated by polymictic pyroxene and plagioclase porphyry agglomerates and lahars. They are typically matrix-supported and grey-green to maroon in colour.

Intruding the volcanic-sedimentary strata of the Quesnel Belt are coeval alkaline and calc-alkaline batholiths, stocks and dykes which range up to middle Jurassic in age. Many of the plutons lie along linear trends which are interpreted to reflect the fault zones which controlled the location of vulcanism and stock emplacement. Some of these stocks are sites of significant porphyry gold-copper mineralization (Figure 3). In some of the related porphyry deposits, the economic significance of gold is greater than that of copper.

In the Brenda property area, Lower to Middle Jurassic Hazelton Group, Toodoggone volcanics unconformably overlie the Takla Group. Airfall ash tuff, ash flows, coarse pyroclastics, lava flows and interbedded epiclastic sedimentary rocks comprise the Toodoggone volcanic assemblage.

Lower to Middle Jurassic Omineca Intrusions have intruded the Takla and Hazelton Group in the central and eastern parts of the region, and form the eastern margin of the Toodoggone District. Within the district, monzonitic and quartz feldspar porphyry plutons and dykes may be feeders to the Toodoggone Volcanics.

In the northern Quesnel Belt, a wide variety of mineralization is found, including epithermal and mesothermal veins, porphyries, skarns and placer gold deposits. In the Kemess-Toodoggone gold-silver mining district, examples of every style of mineralization from high-level hotspring deposits to deeper-level porphyries have been preserved. In addition to the epithermal and mesothermal gold-silver vein deposits (Cheni, Baker and Shasta mines), significant gold concentrations are associated with copper porphyry deposits. The Kemess North and Kemess South gold-copper porphyry deposits, located 22 km and 28 km south of the Brenda property are hosted by Takla Group volcanic strata and monzonitic intrusions. At the Pine property, 11 km to the southeast an auriferous copper porphyry is hosted by a quartz monzonite pluton intruding Toodoggone volcanics. Gold-bearing and copper-lead-zinc-silver/bearing skarns are often associated spatially with the porphyry deposits.

In the Toodoggone mining camp, epithermal-mesothermal gold mineralization is associated with Jurassic volcanic centres. Individual gold deposits lie close to major northwest faults and are spatially-associated and genetically-lined with synvolcanic lower-middle Jurassic hypabbysal intrusions (Figure 3).

It is postulated by C.M. Rebagliati that, in the Kemess-Toodoggone district, gold-rich porphyry copper deposits are genetically related to the epithermal gold-silver vein deposits. The quartz monzonite intrusions hosting auriferous porphyry copper mineralization may represent formerly buried magma chambers that fed the overlying Toodoggone volcanic assemblage which hosts the numerous epithermal deposits and prospects. On the Kemess Property, the overlying Toodoggone Volcanics have been removed by erosion and several monzonitic intrusions, with large associated hydrothermal alteration zones, have been exposed. Porphyry gold-copper mineralization is variably hosted by the intrusions and by the adjacent Takla volcanics. On the Pine Property, where the depth of erosion is less, the mineralization is hosted by both the Toodoggone volcanics and a comagmatic high level quartz monzonite pluton.

The Brenda prospect, hosted by Toodoggone volcanics, appears to be positioned at the transition between the epithermal environment of the Toodoggone camp to the north and the deeper seated Kemess porphyry camp to the south. Undoubtedly, as exploration proceeds, more auriferous porphyry copper deposits will be discovered, especially now that it has been clearly demonstrated that copper mineralization previously considered as being "too low-grade" can be associated with appreciable concentrations of gold.

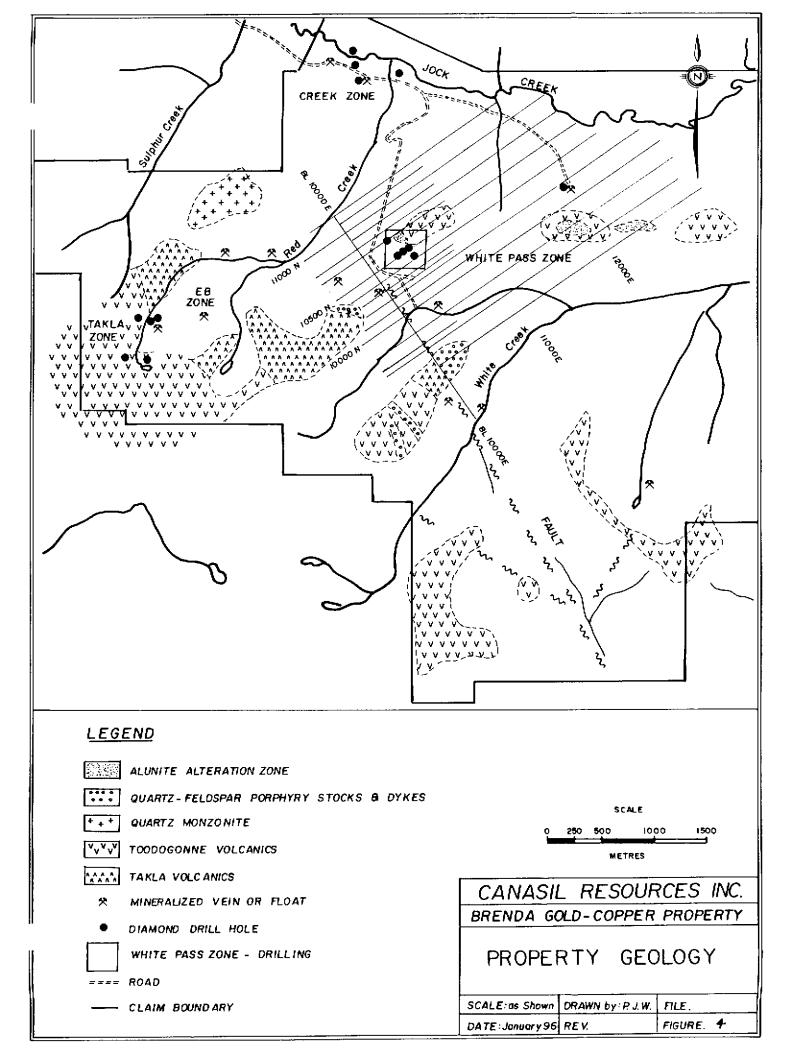
The abundance and diversity of deposit types in the Kemess-Toodoggone district attests to the high exploration potential of the geological units underlying the Brenda claim.

The Brenda property is underlain by northwesterly trending belts of subaqueous Upper-Triassic Takla Group volcanic strata and subaerial Lower to Middle Jurassic Toodoggone volcanic and volcaniclastic strata. The distribution of the Takla and Toodoggone strata and map unit patterns are determined by the numerous parallel

steeply dipping normal faults and a number of strike-slip and thrust faults that juxtapose the various stratigraphic successions. The dominant northwesterly structural trend is disrupted by cross-structures that create block fault domains with variably tilted and rotated blocks of strata.

The influence of some faults on the emplacement of plutons and dykes is suggested by the northwest elongation of plutons and the preferred orientation of dykes congruent with the trend of the major regional faults. Intrusives comagmatic with the eruption of the Toodoggone volcanics resulted in the synchronous formation of high level epithermal deposits and deeper level porphyry deposits. In the district, increasingly greater tectonic uplifting and correspondingly deeper erosional levels have exposed progressively deeper levels of porphyry and skarn-types of mineral occurrences southwards from the property.

On the Brenda property, this faulting has juxtaposed: near surface epithermal alunite alterations zones, epithermal quartz veins and breccias, basement Takla Group strata, Toodoggone Formation strata and, monzonite plutons and related felsic dykes. As a result, gold-copper porphyry mineralization and epithermal-type mineralization are exposed over a broad vertical range of elevations.


2.2 Property Geology

Faulted segments of Takla Group volcanic strata occur along the southwestern side of the property. This strata lies adjacent to and is overlain by Toodoggone volcanics. Quartz-feldspar and esites and dacitic lapilli tuffs dominate the Toodoggone assemblage in the property area.

Stocks and dykes of quartz monzonite, quartz feldspar porphyry and syenite intrude both the Takla and Toodoggone strata. This intrusion prone area is marked by an extensive sulphide-related gossan which extends over much of the property.

Numerous banded fissure veins, quartz-chalcedony stockworks and breccias associated with silica, clay, sericite, alunite, chlorite and epidote alteration typify the epithermal occurrences on the claims. Spatially these occurrences appear to form a partial ring positioned around the central quartz monzonite stock (Figure 4). These veins and breccias have been extensively prospected, trenched and diamond drilled, and have occasionally yielded high gold and silver values. However, they generally are narrow, low grade and lack continuity over significant strike lengths. Of potentially greater importance is the Brenda Zone which lies adjacent to the north side of the northwesterly trending Weishaupt fault and south of a zone of intense alunite alteration.

Previous soil geochemical surveys over the zone revealed moderately high contrast, coincident gold and silver anomalies. Trenching in the area of the soil geochemical anomaly revealed that the gold mineralization, corresponds to a quartz-potassium feldspar stockwork-breccia zone, associated with locally intense argillic alteration, enveloped by a more extensive zone of propylitic alteration. Trench analyses for gold from the sampled portions of the trenches are as follows:

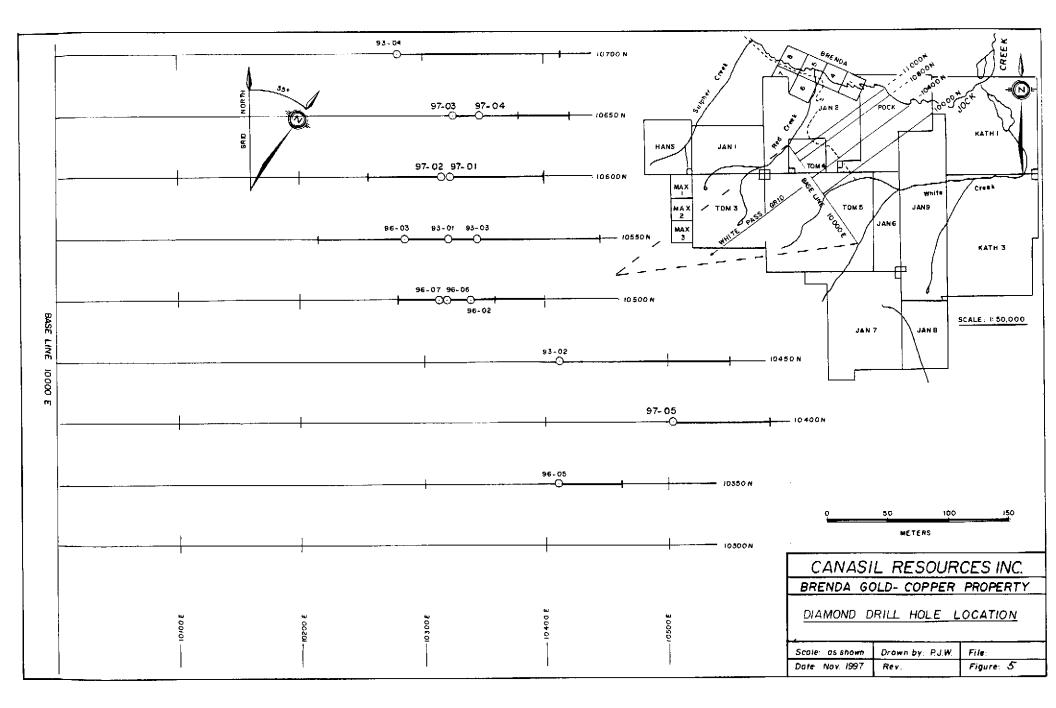
Trench	From (m)	To (m)	Length (m)	ppb Au	(Au g/tonne) *	(Au oz/tonne) *
2	0			462	(0.462)	(0.013)
3	67	102	35.0	575	(0.575)	(0.017)
	8	31	23.0	182	(0.182)	(0.005)
4 5	12	31	19.0	964	(0.964)	(0.028)
	42	70	28.0	776	(0.776)	(0.023)
6	20	24	4.0	345	(0.345)	(0.010)
6 7	9	14	5.0	490	(0.490)	(0.014)
8	8	24	1	818	(0.818)	(0.024)
9-1994	}		}			
11-1 9 94	0	3.0	3.0	140	0.14	0.004
	3.0		3.0	1020	1.02	0.030
		9.0	3.0	270	0.27	0.008
	9.0	12.0	3.0	270	0.27	0.008
	12.0	15.0	3.0	93	0.09	0.003
	15.0	18.0	3.0	480	0.48	0.014
	18.0	21.0	3.0	950	0.95	0.028
	21.0	24.0	3.0	520	0.52	0.015
	24.0	27.0	3.0	550	0.55	0.016
·	27.0	30.0	3.0	210	0.21	0.006

* converted from geochemical analyses reported in parts per billion.

Silver and copper concentrations in the near surface highly leached material are at general background levels. The trenching program demonstrated that significant gold concentrations have good continuity from sample to sample and from trench to trench and that the auriferous zone is open to extension in all directions.

3.0 DIAMOND DRILLING PROGRAMME

During June to September 1997 Canasil Resources Inc. completed a five (5) hole diamond drill programme totalling 734.25 meters. The drill programme explored the southwest and northwest projection of the mineralization within geochemical and geophysical anomalies.


3.1 Presentation of Drill Hole Data

A drill hole location plan is shown in Figure 5 with sectional data logs presented in Figures 6 to 8. Detailed drill logs are found in Appendix III and geochemical results from core are found in Appendix II.

Hole #	Length Metres	Coord	linates	Azimuth	Dìp	Date Collared	Date Completed		
		North	East	-					
9 7-01	172.82	10600	10320	055°	-60°	June 19/97	June 21/97		
97-02	137.46	10600	10316	235°	-65°	June 21/97	June 24/97		
97-03	130.15	10650	10324	055°	-65°	June 25/97	June 27/97		
97-04	133.20	10600	10348	055°	-60°	June 28/97	June 30/97		
97-05	160.63	10400	10502	055°	-60°	July 21/97	July 22/97		

Drilling parameters for Hole 97-01 to 97-05 are listed in the table below.

Grades and trace element concentrations for the 1997 drill programme are summarized as follows:

.

HOLE	FROM {m}	TO (m)	LENGTH (m)	Au {g/t}	Cu {a/a}	Ag (g/t)	Pb (ppm)	Zn (ppm)
97-01	111.0	114.4	3.4	0.61	0.14	2.8	15	358
97-01	127.0	139.0	12.0	0.52	0.10	3.0	53	651
97-01	148.0	172.8	24.8	1.12	0.13	4.5	41	517
97-02	17.35	35.35	18.0	0.54	0.01	2.6	80	151
97-02	35.35	75.30	39.95	1.12	0.18	3.2	872	878
97-02	84.4	90.5	6.1	0.98	An	omalous Va	ues in Cu, <i>i</i>	Ág
97-02	99.66	105.76	6.1	1.50				-
97-02	105.76	137.46	31.7	Pyrit	e only			
97-03	35.65	41.75	6.1	1.03	0.08	2.3	19	96
97-03	58.8	71.8	13.0	0.84	0.09	2.0	63	248
97-04	51.8	57.8	6.0	0.45	0.1 1	3.0	55	445
97-05	5.2	50.9	45.7	0.52	anon	nalous value	s in Cu, Pb,	Zn
97-05	72.2	87.2	15.0	0.26	anon	nalous value	s in Cu, Pb,	, Zn
97-05	130.1	144.1	14.0	0.37	anon	nalous value	s in Cu, Pb,	. Zn

3.2 Synopsis of Drill Holes

Holes 97-01 to 97-05 intersected massive pink-orange porphyritic latite flows. The latite typically is comprised of 30% 1-3 mm euhedral plagioclase, 25% 0.5 - 2 mm combined sub to euhedral hornblende and augite, and 45% fine grained to aphanitic potassium feldspar-rich matrix. Rare xenoliths of latite ranging from 1-20 cm are present.

Porphyritic latite dykes with well-defined chill margins intrude the latite flow rock. Core length widths of the dykes range from 2 - 20 m.

The latite flow rock is pervasively propylitically altered. Epidote, comprising 2-15% of the rock, partially to fully replaces plagioclase, hornblende and augite phenocrysts, and fills fractures and/or forms envelopes adjacent to fractures. Additional wide

spread alteration occurs as pink zeolite (?) + gypsum \pm calcite lining fractures that cross cut earlier epidote alteration.

There are a number of zones of more intense alteration and mineralization superimposed on the latite. These occur intermittently throughout the holes. Holes intersecting wide zones of quartz and magnetite stockwork have been overprinted by a series of quartz + sericite + pyrite \pm secondary potassium feldspar stringers and veins. Typically, the magnetite of the primary stockwork has been sulphidized and is rimmed by pyrite and is no longer present in the secondary stockwork.

Narrow zones of shearing and gouge occur locally within and generally bound the zones of the secondary stockwork. Minor chalcopyrite and lesser sphalerite and galena occur both with the quartz-sericite veining and within an even later set of calcite and gypsum stringers and veins. Concentrations of these sulphides rarely exceed 0.1% over a 2 m sample interval.

Pyrite is fine-grained and disseminated across the silicified stockwork zones and occurs concentrated in up to 1 cm thick seams in quartz veins. Pyrite locally comprises up to 5% of a 2 m interval.

Additional zones of sulphide-bearing quartz stockwork and sericite alteration, occur over narrower widths, usually enveloping a fault or shear zone. Black basalt or pink latite dykes up to 2.5 m wide often intrude along these structural breaks.

4.0 SUMMARY

The soil geochemical and geophysical surveys conducted to date have outlined a series of gold-copper porphyry targets. Of these only the Brenda Zone (White Pass Gride) and East Creek Zone have been explored. The rest remain unexplored.

At the Brenda Zone diamond drill holes intersected porphyry-type gold-copper mineralization over variable but significant lengths. Grades are in the range of those currently being mined in porphyry copper (gold) operations in British Columbia.

Two phases of mineralization are present. Both are associated with quartz stockworks and sericitic alteration. One phase carries gold mineralization plus copper in the range of 0.1% to 0.3%. The other carries similar gold grades but associated copper concentrations are only in the order of approximately 0.05%. In the upper 20 metres of each hole, where oxidation and acid leaching have removed the copper, it is not possible to distinguish the two styles of mineralization. While minor concentrations of native copper and chalcocite have been observed, no significant supergene zone has yet been discovered.

Both the diamond drilling and the IP results suggest that the gold-copper mineralization is associated with (parallel) linear structural zones. Trenching and drilling has so far been confined to the core of the anomalies.

At the East Creek Zone two diamond drill holes drilled in 1995 intersected only pyrite mineralization with anomalous values in copper and gold.

The potential of a predominantly porphyry-type gold-copper occurrences has been recognized. However the numerous epithermal quartz veins surrounding the porphyry systems require further investigation for small tonnage high-grade gold-silver targets.

Sample results from three different quartz-breccia veins returned the following values.

Vein System	Gold oz/per ton	<u>Silver oz/per ton</u>
Takla Vein	1.23	47.5
EB Vein	0.91	49.0
Pass Vein	0.69	3.69

5.0 CONCLUSIONS AND RECOMMENDATIONS

Results from the exploration programs conducted to date are sufficiently good to warrant continued exploration on the Brenda Property.

It is recommended that:

1. Additional trenching and/or drilling be directed towards exploring the full extend of the changeability anomaly and the copper and gold enrichments in soils.

6.0 REFERENCES

- Barr, D.A., 1978; Chappelle gold-silver deposit, British Columbia: Canadian Inst. Mining Metallurgy Bull., v. 71, no. 790, p. 66-79.
- Buchanan, L.J. 1981; Precious metal deposits associated with volcanic environments in the southwest, in Dickinson, W.R. and Payne, W.D., eds., Relations of tectonics to ore deposits in the southern Cordillera, Arizona Geological Soc. Digest, v. 14, p. 237-261.
- Clark, J.R. and Williams-Jones, A.E., 1986; Geology and genesis of epithermal goldbarite mineralization, Verrenass deposit, Toodoggone district, British Columbia: Geological Assoc. Canada Annual Meeting Program, Abstracts, v.11, p. 57.
- Diakow, L.J. Panteleyev, A. and Schroeter, T.G., 1985; Geology of the Toodoggone River area (94E): British Columbia Ministry of Energy, Mines and Petrol. Res., Preliminary map 61.
- Forster, D.G., 1984; Geology petrology and precious metal mineralization, Toodoggone River area, north-central British Columbia: Unpub. M.Sc. Thesis, Vancouver, University of British Columbia, 313 p.
- Panteleyev, A., 1982; Geology between Toodoggone and Sturdee Rivers (94E): British Columbia Ministry of Energy, Mines and Petrol. Res., Geological Fieldwork 1982, Paper 1983-1, p. 142-148.
- Rebagliati, C.M., 1992; Overview of the Toodoggone Project Claims, Finlay River Area, British Columbia for Minerva Gold Mines Ltd.
- Rebagliati, C.M., Copeland, D.J., Bowen, B.K., 1992; 1991 Exploration and Delineation Drilling Program on the Kemess North Project, Omineca Mining Division, British Columbia, Canada.
- Rebagliati, C.M., Copeland, D.J., Bowen, B.K., Harris, M. 1992; 1991 Exploration and Delineation Drilling Program on the Kemess South Property, Omineca Mining Division, British Columbia, Canada.
- Rebagliati, C.M., Copeland, D.J., Bowen, B.K., 1993; Pine Gold-Copper Porphyry Project, Romulus Resources ltd., Summary Report on the 1992 Exploration and Diamond Drilling Program. Omineca Mining Division, British Columbia.

Rebagliati, C.M., 1993; Summary Report, Brenda Property, Toodoggone-Kemess Gold Camp B.C., Rebagliati Geological Consulting Ltd. for Romulus Resources Ltd.

Rebagliati, C.M., 1993; 1993 Summary Report, Phase I Program, Brenda Property. Toodoggone-Kemess Gold Camp B.C., Rebagliati Geological Consulting Ltd. for Romulus Resources Ltd.

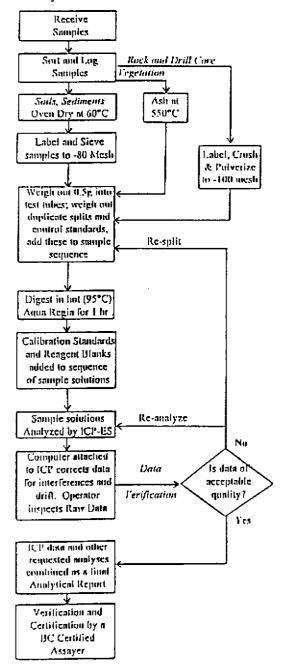
1993; Summary Report, Phase II Program, Brenda Property.

Toodoggone-Kerness Gold Camp B.C., Rebagliati Geological Consulting Ltd. for Romulus Resources Ltd.

1993; Summary Report, Phase III Program, Brenda Property. Toodoggone-Kemess Gold Camp B.C., Rebagliati Geological Consulting Ltd. for Romulus Resources Ltd.

- Schroeter, T.G., Diakow, L.J. and Panteleyev, A., 1986; Toodoggone River area (94E); British Columbia Ministry of Energy, Mines and Petrol. Res., Geological Fieldwork 1985, Paper 1986-1, p. 167-168.
- Thiersch, P. and Williams-Jones, A.E., 1990; Paragenesis and Ore Controls of the Shasta Ag-Au Deposit Toodoggone River Area, British Columbia (94E); British Columbia Ministry of Energy, Mines and Petrol. Resources., Geological Fieldwork 1989, Paper 1990-1, p. 315-322.
- Vulimiri, M.R., Tegart, P. and Stammers M.A., 1986; Lawyers Gold-Silver Deposits, British Columbia, in Morin, J.A., ed., Mineral deposits of the Northern Cordillera, Canadian Inst. Mining and Metallurgy, Special Vol. 37, p. 191-201.
- Weishaupt, P.J., 1991; Brenda Group of Mineral Claims, Toodoggone Gold Camp, Omineca Mining District, British Columbia for Canasil Resources Incorporated.
- Weishaupt, P.J., 1992; Geological and Geochemical Report, Brenda Group of Mineral Claims, Toodoggone Gold Camp, Omineca Mining District, British Columbia for Canasil Resources Incorporated.
- Weishaupt, P.J., 1994; Summary Report, Brenda Property Toodoggone-Kemess Gold Camp, British Columbia.

APPENDIX I


LABORATORY ANALYTICAL TECHNIQUES

ACME ANALYTICAL LABORATORIES LTD. Assaying & Trace Analysis 852 E. Hastings St., Vancouver, B.C., Canada V6A 1R6 Telephone: (604) 253-3158 Fax: (604) 253-1716

METHODS AND SPECIFICATIONS FOR ANALYTICAL PACKAGE GROUP ID - 30 ELEMENT ICP BY AQUA REGIA

Analytical Process

Comments

Sample Preparation

Soils and sediments are dried (60°C) and sieved to -80 mesh (-177 microns), rocks and drill core are crushed and pulverized to -100 mesh (-150 microns). Plant samples are dried (60°C) and pulverized or dry ashed (550°C). Moss-mat samples are dried (60°C), pounded to loosen trapped sediment then sieved to -80 mesh. At the clients request, moss mats can be ashed at 550°C then sieved to -80 mesh although this can result in the potential loss by volatilization of Hg. As, Sb, Bi and Cr. A 0.5 g split from each sample is placed in a test tube. A duplicate split is taken from I sample in each batch of 34 samples for monitoring precision. A sample standard is added to each batch of samples to monitor accuracy.

Sample Digestion

Aqua Regia is a 3:1:2 mixture of ACS grade conc. 11Cl, conc. 11NO₃ and demineralized H₂O. Aqua Regia is added to each sample and to the empty reagent blank test tube in each batch of samples. Sample solutions are heated for 1 hr in a boiling hot water bath (95°C).

Sample Analysis

Sample solutions are aspirated into and ICP emission spectrograph (Jarrel Ash AtomComp model 800 or 975) for the determination of 30 elements comprising: Ag, Al, As, Au, B, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sr, Th, Ti, U, V, W, Zn.

Data Evaluation

Itaw and finnt data from the ICP-ES undergoes a final verification by a British Columbia Certified Assayer who then signs the Analytical Report before it is released to the client. Chief Assayer is Clarence Leong, other certified assayers are Dean Toye and Jacky Wang.

Duqueent ICP3061&S.doc

Date: Muvember 15, 1995

Prepared By: J. Gravel

APPENDIX II

.

.

.

DRILL CORE ASSAY RESULTS

WE ANALYTICAL									1. A.	10.1 m		1111	- 1. A A	- apres	e al e cara e c		200			6A 1 ICA			rn	~115	100	4 <u>i</u> F	- ננ	373	đ	Г М А	101	753-1
	<u>C</u> a	<u>ina</u>	81]	L F	les	<u>our</u> 200 -	<u>ce</u> 165	8 I	nc.	PF	ί ΟJ	ECI	Ċ.19	RE	ND	WHT	тe	рă	ġg	F: ted by	410	; # .J. \	97 Ieishi	-32 Wot	269		Pa	ge	1			4
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn	λg	NI	Co		Fe	As	U	Λu	Th	51	Cd	Sb	Bi	v	Ċa	Р Х	1 8	Cr	Mo	Aa	т;	B	Al X	Ne X	K	W	Au*	SAMFLE Ib
A 110153 A 110154 A 110155 A 110156 A 110156 A 110157	10	1395 174	15 61	358 901	2.8	2	7	1179	3.28 2.69 3.31 2.49	15 16 13 29	<5 9 8 5	<2 <2 <2	244	132 70 118	.5 .7 2.5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 2 2 2	40 28 51	.08 .23 2.30	.139 .068 .110 .094 .104	12 7 7	4 6	.37 .89 .73	95 73 38	.11 .10 .06	3 3 3	.94 1.33 1.00	.03 .02 .04	. 18 . 18 . 09	<2 <2 <2	32 12 613	14 12
A 110158 A 110159 A 110160 A 110161 A 110162	6 7 9 9	806 1323 1100 767	33 81 39 16	661 834 573 356	1.7 3.0 4.0 2.6	2 3 3 3	8 9 10 10	2076 1899 2137 1643	5.55 5.11 5.74 7.17	20 20 19 15	8 7 <5 7	<2 <2 <2	2332	99 64 80 73	4.9 6.6 4.3	<2 4 2 2 2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	63 51 54	1.92 1.70 1.51	.118 .095 .095 .092 .092	6 5 4	364	1.27	25 19 23	.10 .09 .09	43	1.54 1.37 1.58	.03 .03 .03	.07 .08 .10	<2 <2 <2	434 568 516	16 15 15 15 15
A 110163 RE A 110163 RRE A 110163 A 110164 A 110165 A 110165	3 3 3 9	182 180 185 972	135 139 135 80	495 500 472 407	1.0 1.1 1.0 2.5	3 4 4 2	9 9 9 6	1809 1824 1822 1531	4.09 4.13 4.17 5.60	10 10 11 14	5 10 <5	~2 ~2 ~2	~2 ~2 ~2	122 124 119	3.2 2.9 2.6	~~~~~	~~~~	74 75 78	2.69 2.75 2.77	.110 .113 .113 .112 .105	9 9 9	443	1.19 1.21 1.22	99 93 97	.20 .20 .21	<3 <3	2.73 2.77 2.77	.04 .04 .04	. 14 . 15 . 14	~2 ~2 ~2	62 64 57	12 - 14 16
A 110166 A 110167 A 110168 A 110169 A 110169 A 110170	15 8	1638 1304 966 1330 1422	71 21	706 488	4.2 5.2	2 3	8	1549	5.43	12	<5 <5	~2 ~2 ~2	4	199 163	5.0 4.8 7.7	3	<2	63 45 60	2.76 3.31 2 72	.103 .108 .094 .115 .102	6 6 5	4 5 4	1.09	37 27	.07	4	1.39	.03	.08	<2 <2	891 649	15 16 16 16 16
A 110171 A 110172 A 110173 A 110173 A 110174 A 110175	10 5 9	2131 67 122	43 21 175	225 169 150	8.4 2.0 2.2	4	65	1037	4.14 5.46 4.96 4.56 4.27	10	-5 -5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3	255 35 67	1.3 .8 .5	23	~2 ~2	24 . 86 77	3.98 .35 .29	.080 .075 .088 .089 .087	4 8 8	5	.68 1.47 1.29	34 49 676	.01	2 3 5	1.11 1.60 1.60	.01	.24	<2 <2	2550 653	16 16 4 4
A 110176 1	9 9 23	121 55 301	174 33 58	139 182 108	4.1 2.3 3.6	6	562	1160 1050 763	4.28 4.27 5.19 4.67 4.41	10 10	ý	<2 <2	23	29 33	.4 .3 .5 <.2	~2 ~2 ~2 ~2	3 <2 <2 3	68 68 90 58	.20 .20 .31	.087 .086 .061 .081 .030	9 6 0	5 5 5	1.21 1.17 1.75 1.02	92 91 54 203	.11 .11 .18	800	1.52 1.52 1.76	.04 .05 .04	.09 .11 .09	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	319 412 613	5
A 110179 97- A 110180 00 A 110181 00 A 110182 A 110183	9 15 22	2310 1888 2840	38 67 422	256 338 508	2.0 1.3 3.8	3	10 10	1383 1740	4.79	10 24	5	~2	3	30 28	1.5 1.8 2.6	(2 (2 (2 (2 (2)))	<2 <2 <2 <	70 76 86	.33 .37 .42	.049 .067 .071 .058 .064	7 6 7	6 4 5	1.39 1.50 1.46	82 79 78	.11 .12 .15	43 43	1.61 1.62 1.58	.04 .03 .04	.11 .07 .10	<2 +2 +2	944 1050 648	5 7 11 11 12
A 110184 STANDARD C3/AU-R	15 1	408	40	310	3.2	4	10	1181	5 12	45	7	-7	E	40	1		-				-											10
ici Thi As: <u>Sen</u>	P - IIS LU SAY P SAMPU MDLei	500 ACH ECOM E TY beg	GRAM IS P MEND PE: <u>Inni</u>	I SAM PARTI PED M CORE	IPLE IAL I FOR F E <u>RE</u>	IS D FOR M ROCK AU* are	IGES N FE AND - I <u>Reru</u>	TED N SR (Core Gnite <u>Ins Be</u>	A P U Sampu D, Ag M <u>'R</u> e	INL 3 .A CR .ES 1 WA-R .E' a	-1-2 Mg I F Cu Fgta	HCL BA T PB 2 /MTRI	- HNO I B ZN A K EX	3-H2 W AN S >	DAT DLIM 1%, J	95 DA NITED IG > 1	EG. FOR	C FOI NA I	R ONE	-	AND	15										
DATE RECEIVED: All results are consid	JUL	.12 1	997	D.	ATE	RE	POR	TM	ILE	D: {	dn	ly	25	/97	7	sigi	ie d	BY	<u>.</u>	. <u>.</u>	<u>^</u>	÷-p.	TDYE	, c.1	LEONG	i, J.	WANG	; CE	RTIF	IED B	.c. /	SSAVERS

.

44	
A ME ANAL VELICAL	

Canasil Resources Inc. PROJECT BREND WHITE PASS FILE # 97-3269

SAMPLE#	No Cu	Pb 7					e As	U	Au	Th	Sr	Cd	Sb	Bi	٧	Ca	P	LB	Cr								Au*
	tebus beur	ppm p	bw bbw	(ppm	bbw b	çxn	X ppm	ppm	ppm	ppm	ppm	PPM	ppm	ppm pp	m	X	×р	pm p	pm			K ppm					ppb
A 110185	12 2136	48 1	57 3.6	4	97	69 6.8	9 10	<5	ø	٦	22	1 4	-2	3 5		30 D	N77	0		40	t4 0'	37	• •				
A 110186	8 2653	23 1			14 8	83 10.1	2 10	- 5	2	2	24	2.7	22	25		.30 .0 76 n	066	4	۰. د	67 (40)	00,00 10 01	2 3	1.30	.02	. 32	<2	1160
A 110187 V	17 2316		02 2.9	ż	5 10	66 6.6	3 12	<5	5	5	28	3 1		-2 5	7.	74 0	004	7	7.	07 1	10.00		1.20	.01		- 52	2160
A 110188	12 1244	-	79 2.9	_	9 13	15 5.4	0 11	-5	2	5	20	27	22	12 1		1, 14. 1, 14.	010	5	÷ .	72 I/ 77 -	20.03		1.00	.02	. 33	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2040
A 110189	7 1251	14 19			8 12	10 5.9	6 12	<5	<z< td=""><td>4</td><td>20</td><td>2.4</td><td>3</td><td><2 5</td><td>8.</td><td>.31 .0</td><td>097</td><td>7</td><td>5 1.</td><td>19 1</td><td>32 .03</td><td>33</td><td>1.82</td><td>.02 20. 1</td><td>.23</td><td><2</td><td>1050</td></z<>	4	20	2.4	3	<2 5	8.	.31 .0	097	7	5 1.	19 1	32 .03	33	1.82	.02 20. 1	.23	<2	1050
A 110190	10 453	724 169				72 1.8		<5						<2 1								1 <3					
A 110191	8 777	211 33	55 3.2	2	64	69 2.6	0 14	<5	<2	3	9	40.1	<2	2	7	.21 .0	058	8				ið					988
A 110192		10532 431	11 9.7	2	63	50 2.4	09	<5	<2	2	40	50.6	<2	3	à .	34 .0	067					ं उ					
A 110193	9 189	499 8	83 2.3	2	1	97 .4	6 <2	7	<2	2	13	.2	<2	3	2.	.18 .0	052	7	7	02 (21 e 01	1 3		.01	20	2	241
A 110193 D A 110194 D T	10 160	74 :	55 1.8	2	3	97 1.2	33	<5	<2	3	43	.2	<2	<2	2.	.19 .0	054		7.	03	59<.01	3	.34	<.01	.16	3	368
A 110195 CO	8 39	4	13 .4	3			7 <2					.2	<2	<2	3.	.21 .0	052	7	7.	03	28<.01	<3	. 47	01	21	2	214
		17 6	61 2.1	3	6	87 3.0	7 15	<5	<2	3	13	.6	<2	ž		.18 .0		ŝ	6	06	51<.01	i J	14		21	5	517
RE A 110196 RRE A 110196	11 212		65 2.4		6	86 3.1	2 15	<5	<2	3	13			ž					7	06	52<.D	3	.41	.01	21	5	590
RRE A 110196	12 211	18 6	60 2.4	2	6	97 3.3	9 18	<5	<2	- 4	14	.4	<2	3	4.	.21 .0		5	7.	08	SO<.01	उ		.01	.25	5	571
A 110197	11 836	155 20	68 4.3	3	69	04 5.0	4 40	<5	<2	3	19	2.0	<2	3 1	ο.	.38 .0	057	5				i <3					1360
A 110198	11 707	17 21	18 1.1	5		89 6.4				2	60	1.4	<2	22	9.	.11 .0	049	6	91.	07 (54 .D1	I <3	1.70		.24	0	078
A 110199	10 705		04 1.9		8 19	28 7.3	7 58	<5	3	- 3	83	24.0	<2	<2 2	3.	.10 .0	065	6	7 1.	10 <i>i</i>	(2 N1	1 ~1	1 88	01	22	- 2	2000
A 110200	8 114	33 1			20 8	05 4.5	4 24	< 5	- 2	- 3	- 39	11.5	<2	<2 10	5	.71 .1	157	10	41 1	66 3	21 29		2 01	6.2	14	~7	1.74
A 110301	8 72	15 6	64 <.3	11	11 2	:74 3.3	56	<5	<2	<2	17	1.1	<2	52	8.	.16 .0	D42	3	10	दर '	10 117	t ~1	75	01	32	2	280
A 110302	10 46	25 5	51 .8	7	9	79 3.5	0 12	<5	<2	2	23	<.2	2	3	7.	.07 .0	073	5	8.	05	254.01	ं	.58	.01	. 19	3	333
A 110303	8 152		69 <.3		5 13	20 4.5	38	<5	<2	2	27	.7	<2	<2 4	۱.	.24 .1	196	5	15.	59 2	21 .04		1 30	04	10	T	62
A 110304	11 590	36 47	72 2.1	6	12 10	33 4.6	1 13	<5	<2	- 3	56	26.8	<2	<23	ο.	. 28 . 1	102	0	15	51 7	15 AS		1 21	0.2	20	- 2	262
A 110305	8 552	21 63	32 1.2	•		UU 3.2	I 19	<>	<2	- 5	149	1.4	- 7	34	2.	71 .1	122	9	19 .	91 (58 .06	3 (3	1.85	.02	. 16	2	115
A 110306	6 345	200 3		1	<1 2	97 Z.S	57	<5	<2	- 3	- 34	<.2	<2	<22	3.	.06 .0	051	14	5.	30 10	4 .01	ंड	1.04	.02	.44	< Ž	\tilde{n}
A 110307	12 341	46 12	28 2.4	2	<18	58 5.3	4 23	<5	<2	5	29	<.2	<2	<2 5	۱.	.05 .0	077	11	4.	95 19	6 .02	2 3	1.93	.06	.43	<s.< td=""><td>626</td></s.<>	626
A 110308	4 187		85.8	-		08 2.9			<2	4	24	.2	<2	<2 3	2.	.17 .0	024	6	5.	82 13	1 .OE	5 <3	1.40	.03	.25	~2	21
A 110309	3 744		98 .9		36	52 2.8	1 13	9	<2	3	50	.2	2	23	ο.	.12 0	752	0	6	74 (25 02	2 . 2	1 44	0.2	20	- 2	7/
A 110310	2 629		91 .4	_	68	82 2.7	6 12	10	<2	4	46	1.9	<2	<23	9.	.29 .0	060	10	51.	D1 /	10 NS		1 57	50	22	~ 7	10
REA 110310	2 629	17 19			0 0	83 2.1	/ 12	- 14	<2	- 5	46	1.6	<2	-<2 3	9.	.30 .0	060	10	6 1.	DO 6	\$805	i (3	1 58	03	23	e 2	18
RRE A 110310	- 1	15 16	DY .4	2	68	50 2.6	U 11	7	<2	4	43	1.5	<2	<2 3	7.	.27 .0	059	10	4.	97 (52 .04	<3	1.48	.02	. 19	<2	17
A 110311	1 Q 876		96 2.3	3	65	75 3.8	78	<5	<2	2	71	1.0	<2	Z 2	5.	30 .0	092	7	6.	61 3	53 .02	2 3	1.24	.03	.30	,	1032
A 110312 L A 110313 G	14 966	11 19	56 2.5	- 4	11 9	UZ 5.7	5 12	<5	<2	- 3	37	.6	<2	-<2 4	41.	. 13 . 1	100	11	4 1.	08 3	S4<.01	i <3.	1.43	. 02	. 25	e7	1200
		10 14				19 4.4		<5	<2	3	58	.3	<2	<26	21.	.46 .0	097	13 -	6 1.	14 I	35<.01	3	1.42	.04	.18	- 0	ROO
A 110314	13 678	10 17		3	77	84 4.5	99	<5	<2	3	52	.7	<2	25	2 1.	33 .0)93	14	5	89 6	56<.01	ं उ	1.22	.03	10	- 2	530
A 110315	10 1138	73 21	10 2.7	3	10 11	27 5.8	6 19	<5	<2	3	52	.6	2						61.	07	4<.01	3	1.45	.03	.23	<2	786
A 110316	9 1295	35 19		4	12 13	32 5.6	4 16	<5	<2	4	56	.4	<2	26	1 1.	.39.1	05	13	6 1.	32 4	5 .01	3	1.45	-03	. 11	0	ATA
A 110317	11 655	244 61	17 1.9	2	12 17	28 6.4	2 19	7	<2	2	66	3.7	<2	45	31.	.32 .1	102	11	6 1	30 1	េ ភា	28	1 41	04	17	- 2	232
STANDARD C3/AU-R	25 61	37 15	50 5.3	35	11 7	30 3.4	4 57	19	<2	18	29	23.1	15	22 7	6	.60 .0	192	18 1	64	67 14	3 00	20	1 84	.04		17	523

Sample type: CORE, Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns,

Data___ FA

44

Page 2

	o O		(Can	asi	1 R	es o	urc	68	Inc	. Р	ROJ	ECT	BR	END	WH	ITE	ра	SS	FI	LE	# 9	7-3	269			P	age	3			
			Cu ppn	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Со ррл	Mri ppm	Fe	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	B1 ppm	V PPM	Ca X	P X	La ppm	Cr ppm	Hg X	Ba ppm	Tİ X	B ppm	Al X	Na X	K X		Au* ppb
A 110318 A 110319 A 110320 A 110321 A 110322 A 110322	17-04 -	15-1 17	973 115	77 86 24 63 36	1817 394 496 81 100	.7 1.8 4.1 1.5 1.2	4 2 2 3	10 9 1	1226 1389 1568 94 216	5.00 5.27 4.51	19 10 11 8 9	6 <5 5 <5 <5	<2 <2 <2 <2 <2 <2	4 2 3 5 4	45 40 29 84 80	15.7 2.5 3.9 .3 .3	< 2 2 2 2 2 2 2 2 2 2 2 2	<2 <2 3 2 3	30 49 55 21 24	.17 .77 .09	.067 .053 .106 .128 .139	9 8 11 22 19	- 4	1.09 1.55 1.05 .08 .10	71 35 46 517 537		ख ख ख	1.39 1.91 1.54 1.02 .96	.03 .03 .03 .06 .03	. 16 .29 .16 .29 .25	<2 <2	27 444 447 864 735
A 110323 A 110324 A 110325 A 110326 A 110326 A 110327		7 73	55 303 427 409 201	199 96 159 73 33	70 133 264 156 307	2.1 1.7 1.3 1.3 1.5	2 1 4 3 3	1 6 12 8	243 515 198	4.06 3.70 5.03 6.80 4.50	11 6 5 <2 11	<5 <5 <5 9 <5	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	4 3 2 2 3	59 45 41 42 19	.4 2.1 4.5 1.4 3.9	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<2 3 <2 3 2	12 10 11 10 8	.08 .07 .08	.123 .061 .064 .060 .034	13 12 11 7 4	4 3 5 5 3	.06 .18 .37 .19 .32	24 14 12	<.01 <.01 <.01 <.01 <.01	<3	.67 .74 1.02 .98 .90	.13 .04 .03 .01 .01	.39 .24 .21 .24 .19	<2 <2 <2	346 603 486 989 334
RE A 110327 RRE A 110327 A 110328 A 110329 A 110330		29 38 19	196 199 394 442 161	33 234 236	309 310 1337 2274 1374	1.4 1.4 1.8 1.7 1.4	3 2 3 4 2	8 8 11 10 10	276 495 604		13 9 <2 5 6	\$ 5 5 5 5 5 5 5	< < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 <	3 2 2 3 4	18 60 75	3.7 3.7 20.9 31.6 29.9	<2 <2 <2 <2 <2 <2 <2	<2 <2 2 3 3	7 7 11 9 7	.08 .16 .16	.034 .034 .128 .164 .094	4 8 11 18	3 3 5 2 3	.32 .32 .38 .41 .26	22 23 29	<.01 <.01 <.01 <.01 <.01 <.01	<3 <3	.90 .90 1.19 1.32 .93	.01 .01 .02 .02 .01	. 19 . 19 . 22 . 25 . 19	~2 ~2 ~2	316 352 346 607 325
A 110331 A 110332 A 110333 A 110334 A 110335			99 409 177 121 284	30 52	1584 2109 236 420 385	1.6 1.3 1.1 1.3 1.2	4 3 5 3 4	7 8 10 9 9	162 69 65	4.19 4.15 6.44 4.99 4.45	8 <2 8 7 2	<5 <5 ₹5 7 5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	3 3 2 3 2	9 12	16.8 15.1 1.7 2.7 2.2	< < < < < < < < < < < < < < < < < < <	<2 3 2 2 2	7 7 9 6 7	.21 .23 .30	.075 .098 .097 .113 .105	7 9 9 9	4 5 8 5 6	.09 .26 .03 .04 .18	17 13 13	<.01 <.01 <.01 <.01 <.01	0 0 0 0 0 0 0	.64 .76 .63 .57 .74	.01 .01 .01 .01 .01	.23 .25 .30 .26 .27	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	666 335
A 110337 A 110338 Re a 110338	DH 97-05	11 2 1 1	70 54 28 30 26	136 257 183 184 179	312 466 205 221 203	1.0 .9 <.3 <.3 <.3	6 3 1 2 2	7 6 6	1846 2667 2788 2801 2798	3.70 3.66 3.71	28 3 <2 <2 2	5 5 5 5 5 5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 2 2 2 2 2 2 2 2	25 41 54 53 53	1.7	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	71 82 82	2.24 2.79 2.45 2.48 2.45	.088 .092 .093	13 13 8 8 8	6	.94 .98 1.02 1.03 1.03	29 126 81 79 79	<.01 .04 .11 .10 .10	3 3 3	1.51 1.46 1.53 1.53 1.52	.02 .03 .03 .03 .03	.25 .20 .13 .13 .12	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	49 19 9 8 6
A 110339 A 110340 A 110341 A 110342 A 110343		9 18	60 113 65 265 239		816	.5 .7 1.1 .8 2.5	3 3 2 3	8 8 10 11	173 637	4.21 3.73 3.94 5.00 5.76	3 6 7 6 8	5 5 5 5 5 5 5 5 5 5	< < < < < < < < < < < < < < < < < < <	3 3 2 2 2		7.2	2 <2 <2 <2 <2 <2 <2 <2	<2 2 2 2 2 2 2 2 2 2 2 2 2 2	56 8 7 9 9	.43 .78	.093 ,094 .109 .100 .112	14 11 11 9 9	8 5 4 4	.75 .19 .13 .54 .17	18 21	.02 <.01 <.01 <.01 <.01 <.01	<3 <3	1.27 .65 .67 1.04 .71	.03 .01 .01 .01 .01	.26 .24 .27 .29 .28	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	182 436
A 110344 A 110345 A 110346 A 110347 A 110348		34 33 40 28 14	142 124 183 107 194	119 236 94	1758 1244 1974 492 3747	1.6 1.0 1.1 .6 1.2	2 2 3 3	10 9 9 8 9	838 799 720	5.13 4.66 4.55 3.76 4.61	6 8 10 7 9	5 5 5 5 5 5 5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 <2 <2 2 2 2	152 126 58	14.7 11.9 17.8 3.7 32.7	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~ ~~ ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	9 11 12	1.04 2.67 2.33 1.32 1.25	.094 .092 .100	11 5 7 13 14	4 5 6 3	.35 .44 .37 .57 .35	21 18 22		5 5 5 5 5	.83 .95 .89 1.16 .91	.01 .02 .02 .03 .02	.28 .38 .36 .43 .37	_	650 564 344
A 110349	- R	9 25	58 64		2627 152	.7 5.3	2 34			3.96 3,39	5 58	<5 19	<2 <2	2 18		21.3 22.1	2 17	4 20		1.83 .59		15 19	5 166	.49 .63	26 153	<.01 .09		.97 1.93		.35 .16		134 503

Sample type: CORE. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data____FA

APPENDIX III

DETAILED DRILL LOGS

	<u> </u>		CANASIL RESO	URCE:	s inc	· · ·							
Locati	on: <u>Mh</u>	ite Pass	DIAMOND DRILL			-			PAGE	1	HOL	E No. 97	-01
Azimu	th: 03	55 "		Easting		10320		Property: ERENDA					
Dip:	- 6	500		n: 1555	.			<u> </u>	oim: /	ihite P	255 2	one	
Date	Started :	June I		gged : J(197				10600			
			21./97 Dip Test: N/A		<u>.,,</u> ,					$\mathbf{y}: P.J.$		haunt	
										/ ·_/			<u></u>
Purpos	se : <u>Tes</u>	+ IP And	inaly										
											_		
	•	-					¥						
		Recovery	DESCRIPTION	Somple		ters	Lenght	Au	Ag	Cu	Pb	Zn	
rom	To	%		No.	From	То	Meters	ppb	ppm	ppm	ppm	ppm	
0 49	4.9 /8.2	80	CASING	 	<u> </u>	<u> </u>	1		 	 	<u> </u>	∤	
<u>* 7</u>	10.2	00	LATITE Pink mafic minerals altered to			<u> </u>						┨───┤	
			chlorite and or epiclote replacement								<u> </u>		
			Epidote along Stacture planes			<u> </u>			· · ·				
10 n	226	85	Core proken up.										
0.2	22.6	03	Latite bleached, ponphyritic structure		 								
2.6	28.95	85	LATITE PORPHYRY, bleached and partly Oxiclised yellow stain along fine							-	·	 	
	[Oxiclised yellow strin along line	110153	22.6	25.6	3.0	32,	0.8	266	65	58	
		۰		110154	25.6	28.95	335	12	0.6	483	40	94	
		<u> </u>	dine disseminated cubic line grained	110155	111.0	114,4	3.40	613	2.8	/395	15	358	
895	42.36	/00	felcispan possible DYKE?	<u> </u>	į	ļ					l		
			Jelcisptin possible DYKE?		ļ	_						ļ	
2.36	80.46	100	Alteneoi LATITE PORPHYRY DIOWN to pink		ļ	<u> </u>				1	I		
			matic minerals altered to clark chloritic		1				L		<u> </u>	┦──┤	
_			clots chlorite and epiclote along line		 				<u> </u>		ļ		
			fractures Disseminated pyrite in the rock is		 						<u> </u>		
-			Relatively printer in the rock is		<u> </u>	1						┨────┤	
in de	81.46	100	ATTE- RASALT DYKE block to brown block		+	+			 	ł	<u> </u>		
	C1.40	/00	LATITE-BASALT DYKE black to brown black 70° to CA			1 .	l		<u> </u>		<u> </u>	<u> </u>	
1.46	102.7	100	LATITE PORPHYRY DINK	1		1			<u> </u>		<u> </u>	╏───╉	
	104.7		Basic Dykes black intrude the pink	†	1						<u> </u>		
			Latite Porphyrey The Width of the pacie	1	1	1					1	<u> </u>	
			clytes are from 3cm to 60cm.	1	1		1			<u> </u>	1	1 1	
					1	1			1	1	 	tt	
					1	1	1		1	1	1	1 1	

CANASIL RESOURCES INC.

Locoti	no : Lit	ite Pas	CANASIL RESU			<u>.</u>					·	·····
COCOT	<u>un · ////</u>		DIAMOND DRILL	RECOR	D				PA	6E 2	HOL	E NO. 97-0
Azimu	<u>th:</u> C)55°	Longitude: Northing /0600 Latitude	Easting		10.320	,	Pro	perty :	BREN	VDA	
Dipi		- 60°	Length: 172.82 Elevatio		555				aim ;	Jan		
)ate	Started	: <u>June</u>	19/97 Core Size: Not Date Lo	ogged : <u>J</u> l.		97			ction :			<u> </u>
Date	Complet	ed : June	= 21. /97 Dip Test: N/A		1					Y PJ		haupt
					••						100131	<u></u>
Ригро	se: <u>Te</u> s	<u>+ </u>	nomaly									
			•									
Ме	ters	Recovery		Sample	Me	ters	Lenght	Αu	Ag	Cu	Pb	Zn
om	То	%	DESCRIPTION	No.	From	To	Meters	ppb	ppm	ppm	ppm	ppm
4.7	12.4.0	100	LATITE PORPHYRY Pink	110156	124.0	127.0	3.0	98	0.5	174	61	901
			110.94-114.40 increase in silica	1/01 57				594	3.0	907	59	537
			114.40-124.0 this section intructed by	1101 58				434	1.7	806	33	66/
			3 Basic, black Dykes, broken up contact approx. 90° to CA	110159				568	3.0	/323	81	834
			CODION. 90° to CA	110160				576	4.0	1100	39	573
4.0	172.82	100	GUARTZ LATITE PORPHYRY Brown to pink	110161		142.0	3.0	401	2.6	767	/6	356
			in color.	110162	142.0	145.0	3.0	225	2.8	786	3/	824
		-	Guartz Stockwork throughout whole	110163	145.0	148.0	3.0	62	1.0	182	135	495
			Section	110164	148.0	151.0	3.0	778	2.5	972	80	407
			Fine clisseminated pyrite minor	110165	151.0	·152.4	1.4	732	3.7	1203	27	3/0
			chalcopyrite and magnetite	110166	152.4	155.4	3.0	1030	5.3	1638	38	687
			aucurtz' Veinlets l'Icon I to 2 mm minachized	//0/67				891	3.6	1304	17	535
			with pyrite, magnetite, spaleRite and minor chalcopyrite. Sysum Veinlets AT 12.9.7 to 132.8 Epiciote fillect fracture	110168					42	966	7/	706
			minor chalcopyrite. Cypsum Veinlets	110169						1330	2/	488
			AT 129.7 to 132.8 Epiciote filled fracture	110170	164.4	/67.4	3.0		3.4	1422	39	623
			ZUIR	1101 11					4.3	//37	Z4	501
			144.1 to 146.1 Basic Dyke swarm cut the	1101 72	/70.4	/72.8	2.4	2550	8.4	Z/3/	43	225
			Section Section is 60 ° Dyte 40% Guartz									
			Latile Porphyry From 169.77 to encl of							L]	'	
			hole increase in chlorite changing in							↓ !	ļ	
			Color from Drown-pink to Green GRey.	<u> </u>	╞╴╴┤				ļ	┟────┤		┝━━─┤
			increase in quartz. Minor epictote Veinleh		<u>├</u>					$ \longrightarrow $		↓
			Hematite film on small fractule planes.		<u>}</u> }			··	·	┥───┥		┢
			ENDOFHOLE 172.82m Bit Ploblems)	L	╉───┤					Į		┢━━━- ┟──
			I NULLE TIVIE [14,04 m SII / IONIEMS]		┨────┤					┥───┤		┟───╋─
-										┢━┉─┦		┟──┤──
	L						}			1 /	1	

			CANASIL RESO	OURCE.	S INC	· · ·		_					
_Locat i	on: Wh	ite Pas	DIAMOND DRILL						Penge	= 1	ноц	E No. 97	-02
Azimu		35°	Longitude ; Northing /0600N Latitude	Easting	10316			Pro	perty:	BREN	104	<u> </u>	<u> </u>
Dip:		65°	Length: /37.46 Elevatio	n: 1553		•			aim :	Jan		· · · · · · · · · · · · · · · · · · ·	
		June		ogged : Jc	1/7 22.	197		Se	ction :	106	DON		
Date	Complet	ed . June	24./97 Dip Test: N/A			· · · · · · · · · · · · · · · · · · ·		Log	gged B	Y PJ	Weis	haupt	
													_
Purpo:	se: /cs	+TPAn	emaly										
	<u> </u>	-					-						
Me	ters	Recovery		Somple	hte	ters	Lenght	Au	1.0	Cu	Pb	Zn	<u>_</u>
From	To	%	DESCRIPTION	No.	From	To	Meters	ppb	Ag pom	ppm	00m	DDm	
0	/7.35		CASING	110173	17.35	20.35		653	2.0	67	21	169	
17.35	32.90	75	GILLARTZ LATITE PORPHYRY light GRey	110174	11: + -	23.35		357	2.2	/22	175	150	
			broken up core Oxiclized line black	110175	23.25			4/2	4.6	/23	181	14	
			specks of magnelite open spaces	110176				6/3	2.3	55	33	182	
			indication Teached Sulfides only	110177	29.35			592	3.6	301	58	108	
			MINOR PYLITE VERY Line grained	110178	32.35	35.35	3.0	635	0.8	293	/4	155	
32.90	66.14	90	Minor pylite Very fine grained Quartz latite porphyry green to light	110179			3.0	944	1.9	1603	26	233	
			GIEY MUGINTZ STOCKWORK MECUUM	110180	38.35		3.0	1050	2.0	2310	38	Z56	
			Magnetite and pyrite mineralization	110181				648	1.3	1888	67	338	
	-		in Guartz stringers 1 to 2 %	110182		47.35		1150	3.8	2840	422	508	
			Small epidote veinlets cut by guartz	110183		50.35		775	2.6	2/29	26	8	
		· · · · ·	Veinlets Hematite film along fractures.	110184	50.35			650	3.2	1408	40	310	
			some leaching of sulfides in mineralized		53.35			1160	3.6	2/36	48	/57	
CC W	90.52	100	quantz veintets.	110186		59.35		2160	3.7	<u>Z653</u>	23	/73	
00./7	90.52	100	LATITE light grey ponphyritic	110187				2040	2.9	23/8	/2	302	
			Structure hand to recognize Small stringers of black sullide non		62.35		3.0	1180	2.9	12.44	23	277	
			Inagnetic /2n) fourt at 67.0m (0.80m)	110189	60.35 68.35			1050 498	2.3	12.51	/4	197	
			Section intuded by / diffe Dytes at	10/91	71.35	72.30		788	3.2	<u>453</u> 777		/697 3355	
			72.84 (Gocm) 25° CA	10/92		75.30	2.0	100	9.7	1346	2./1 10532	3500	
			81.38 (1.5m) 28° CA	110/93				264	2.3	1346	499	83	
				110194		8130		368	1.8	/60	774	55	
90.52	99.66		LATITE DYKE	1/0/95				2/4	0.4	39	4	/3	
				110196				590	2.4	2/2	17	61	
				110197				1360	43	836	155	248	
											<u> </u>		
										Γ			

			CANASIL RES	OURCES	5 INC	· · ·					. .		
Locatio	on: Ni	hite Pa	DIAMOND DRIL	L RECOR	D	-			Pag	7e 2	HOL	ENO. 97	-02
Azimu	th: 2	35°	Longitude : Northing /0600N Latitud	e Easting	0316			Property: BRENDA					
Dīp:		650	Length: /37.46 Elevati		555	- • ·			aim :	Jan			
		: June	21. / 97 Core Size: N& Date L	ogged : JC		197		Se	ction :	1060			
Date	Comple	ted : <u>Jun</u>	c. 2.4./97 Dip Test: N/A		7	·r				I: PJ.		haupt	
Purpos	se: 7æ	ST IP AL	nomaly										
			•										
Me	ters	Recovery		Commente					1		<u> </u>		
From	To	%	DESCRIPTION	Sample No.	ме From	ters To	Lenght Meters	Au ppb	Ag ppm	Cu ppm	Pb	Zn	l
	121.0	1	VERY POOR CORE RECOVERY (FAULT ZONE ?)	1/0/98			3.05				ppm	ppm	
		25%	Chiorite rich, gunatz pebbles, 1% sulficles	110/99					1.9	707	 	2/8	
		10%	as above	110200					0.3	705 114		204 /56	,
		20%	Mainly guantz, preculated, cube pylite	1/0 301				280		72			
<u>/////////////////////////////////////</u>	100.01	20 10	in quantz pebbles						0.3		/5	64	
IDA AI	117.95	10%	higher un l'adile Paret a la inac	110302	11.00	14.70	3.04	333	0.8	46	25	51	
100.01	111.10	. 10 /0 .	Cullicle priveralization	//0303	114.90	117.90	3.05	62	0.3	/5Z	9	/69	
11795	121.0	20%	bioken up Latite Porphyry Minon Sulficle Mineralization. Heavy altered, sheared, chloriterich	110304	116.13	177 03	3.00	115	2.7 /.Z	590	<u>36</u> 57	47z	·
	/	A	aren Latite	110303	12.0	122.03	1.03	-//3-	/ <u>· ~</u>	552	3/	235	
121.0	122.83	80	GUODES Latite creen to dook creen										
			Guanta Latite green to clark green Minor epiclote and pyrite along fine									┨────┤	
			finctures	1			 	<u> </u>					<u> </u>
122 83	127.10	90	Shean Zone possible basic Dyke)							<u>├</u>			
			dine clained clark area to black calor	1		-						-	
127.10	137.46	100	fine Glained, clark grey to black color. Soft clark grey Volcanic?								-		
			with very line grained Ryrite in							 			<u> </u>
			chlusteer and veinlets throughout	1				[· · ·				
			Section. Gypsom Veinlets up to 2mm					1		1			
_			some sections appear to be preciated				1						
			line pyrile surrounding small rock									<u>†</u>	
			fragments. 3% to 5% pyrite only									<u>├───</u>	
		ļ	throughout whole section									<u>† </u>	
			Section could be EW. of White Pass 20ne?										
		<u> </u>	ENDOF Hole 137.46 m	1									••
		ļ											
i	L	<u> </u>]									

			CANASIL RESO	URCES	S INC	.		_					
	-	nite <u>Pas</u>	DIAMOND DRILL			-			Page 1			HOLE NO. 97-03	
	th: C		Longitude : Northing /0650 Latitude	ude: Easting 10324 Property: BRENDA									
Dip:		65°	Length: /30.15 Elevatio	n: 1565					aim :	Jan			
		June		ogged: Jc	14 23	1997		Se	ction:	10650	ON		
Date	Complet	red : <u>Joine</u>	- 27/97 Dip Test: N/A					Log	gged By	1 : P.J.	Weish	aupt	
Purpo	se: /e	St <u>TPAN</u>	VOMALY	······									
Ma	ters	Recovery		Sample		ters						3.	
From	To	%	DESCRIPTION	No.	From	To	Lenght Meters	Au ppb	Ag ppm	Cu ppm	Pb ppm	Zn ppm	
0	4.57		CASING	//0306	//.3	14.3	3.0	72	/.3	345	260	51	<u> </u>
		20%	Broken up core heavy oxidised and	/10307	14.3	17.3	3.0	626	2.4	370	46	/28	·
			badly weathered	10308	/7.3	20.3	3.0	21	0.8	187	$\frac{72}{2/}$	85	
/1.27	26.30	45	Brokenup Latite PorphyRy gley in	110309	203		3.0	34	0.9	744	2/	98	
			Color weathered and oxidised. some	110310				/8	0.4	588	/7	/90	
			surgets tick sections prenounced	110311				1032	2.3	826	/9	96	
			Yellow staining. Fine grained pyrite	110312			3.0		2.5	966	11	/56	
			Yellow staining. Fine grained pylite mineralization throughout section. Altered Quarts Latite Porphyry	110313		64.8	3.0	809	1.6	897	10	142	
26.30	41.75	60	Altered Guartz Latite Porphyry	//03/4		67.8		530	1. Z.	678	10	171	
			Dink to light Drown Line gictined	110315	67.8	70.8	3.0	786	2.7	1138	73	Z/0	
			Epidote and chlolite replacing	110316	70.8	71.8	1.0	636	2.6	1295	35	194	
			delaspan and or hornblend.	110317	92.0	95.2	3.2	323	1.9	655	244	617	
-			Minor plack magnetic patches										
41.75	<u>58. 82</u>	100	Minor black magnetic patches Gucintz Latite Porphyry, pink dine Graineer. I to 2% scildiges.	10887	12.0	· · · ·	<u>3.4</u>	250	/.8	644	42	/77	
			Crained. 1 to 2% sulficies.	ļ		<u> </u>							
50 00	95.20	10.0						<u> </u>					
00.02	73.20	100	Gucietz Latite Porphyry green to light	<u> </u>									
			plown, Minon Otz Stock WORK development									· · · ·	
			from 58 m to 72 m. 1 to 2% sulficies	L	<u> </u>								
			minor chalcopyrite. Hemalile and sulficles along fine fracture planes		<u> </u>		<u> </u>		<u> </u>	<u> </u>			
			surgences mong anne promise premes		 		 		<u>+</u>				
					t	· · · · ·	1			<u> </u>			
						-							
						· · ·			t	1			
											[

Azimuth : Dip : Date Start Date Comp	055 - 65 red : Jan pleted : J [est <u>I</u>	Length: /30.15 Ele DC 20./97 Core Size: N/& Da Cure 27./97 Dip Test: N/A PAnomary DESCRIPTION		RD 10324 5 1/7 23	- !		CI Se	operty : aim : ction :	16E 2 18REN 1003 1065 1065 1065	1DA 0		-03
Dip: Date Start Date Comp Purpose: / Meters From To	- 65 led: Jun pleted: J Test It Recove %	Longitude: Northing 10650 Lo Length: 130.15 Ele DC 20.197 Core Size: N/& Da Cure 27.197 Dip Test: N/A PAnomary DESCRIPTION	titude:Easting evotion: 156 tre Logged: J2.	10324 5 1/7 23			CI Se	operty : aim : ction :	<u>В</u> КЕЛ Jan 2 1065	1DA 0		
Date Start Date Comp Purpose : / Meters From To	ted : Jan pleted : J Test In Recove	е <u>Length: /30.15</u> Ell <u>DC 20./97</u> <u>Core Size: N/& Da</u> <u>Cure 27/97</u> <u>Dip Test: N/A</u> <u>P Anomaly</u> <u>DESCRIPTION</u>	evotion: 1563 te Logged: JC	5 //7 23			CI Se	aim: ction:	Jan 7 1065	0	aupt	
Date Comp Purpose : / Meters Fram To	pleted : J Test IF Recove	DC 20.197 Core Size: N/& Da Core 27/97 Dip Test: N/A PAnomaly TY DESCRIPTION	ite Logged : JC.		1997		Se	ction:	1065	0	aupt	
Purpose : / Meters From To	Test II Recove	Dip Test: N/A PANOMALY TY DESCRIPTION										
Purpose : / Meters From To	Test II Recove	DESCRIPTION	Somple		·····-			yyeo Dy				
Meters From To	Recove	DESCRIPTION	Sample		·							
Meters From To	Recove	DESCRIPTION	Somple									
From To	%	DESCRIPTION	Somple		_					· · ·		
From To	%	DESCRIPTION	Somple									
				[ме	Somple Meters		Au	Ag	Cu	Pb	Zn	
<u> 73.20 11/.0</u>	63 700		No.	From	To	Meters	ppb	ppm	ppm	ppm	ppm	1
			2					1			· · ·	
		by 4 Basic Dykes clark grey to black Location in m. Width of basic Dyke					_					
		Location in m. Width of basic Dyke										· <u> </u>
	-	99.9 0.15m										
		100.5 0.35m										
	<u> </u>	108.2 0.80 m 40° to CA										
	_	120.1 0.9010 60° to CA										
17 49 19		121.0 0.40m 45° to CA										
/17.65 /30.	.14 /00	= 1 VIVEN (50) (5 + 0) (1) (5 FORF (1) VEN (1) FEN (1) (1)	10 .									
		in color. Minion pylite mineralization At 128.64 m to encl of hole 130.14										
		4+ 128.64 m to encl of hole 130.14										
		Mineralized Augusts Stock WORK (Zonez)	?									<u> </u>
		Lost hole at 130.14 m (bloken Rods)							Ĩ			
		End of hall 12+15										
		Encl of hole 130,15 m.		<u> </u>			-				_	
				·		┟───┤		├				
						┟───┤		┝━┦				
- ·					·····	╞╴┈┥		┝ ↓				
						┼───┤						
						╂━╾╴╴┦						
						╏┈╼╾┥			+			
						<u> </u>		ł				
						┝╾──╁				{		
				······		┟━━━ ┟				<u> </u>		

CANASIL RESOURCES INC.

Lanati	an i hik	ite Pas				<u>'.</u>								
		nte puis	DIAMOND DRILL	RECOR	םא	_			Pag	ie 1	нош	E No. 97-0	94	
Azimu	th: C	<u> 255°</u>	Longitude: Northing /0600 Latitude	Easting	10348	•		Pro	pertv :	BREN	DA			
Dip		- 60 °	Length: 133.20 Elevatio	n: /57	'5				im:	JAN				
Date	Started	: June.		ogged : Jc.		197		Section: 10600 N						
Dote	Complet	ted : Jun	e 30. / 97 Dip Test: N/A			<u> </u>						haupt		
										/		///////		
Purpo	se: Tes	+ IPar	namaly											
					-		·				<u></u>			
Me	ters	Recovery		Somple	1 140									
From	To	%	DESCRIPTION	No.			Lenght Meters	Au ppb	Ag ppm	Cu ppm	Pb ppm	2n ppm		
0	4.87		CASING	110318		57.81	2.10	27	0.7	537	77	/8/7		
4.87	31.10	80	hicothered Rock - yellow and prange	116319					1.8	/424	86	394		
			Brising lock concres to be Guar to	110320				447	4.1	973	24	496		
		<u> </u>	Original lock appears to be Guartz Ponphyry Latite		10 1.00	<u>, </u>	, .	<u> </u>			<u>_~T</u> _	778		
		1	Gt 31.10 4.0m broken up black basic Dyke Guartz Ponphyry Latite orange - Brown 10% 6.5-2mm Guartz eyes, weak quartz		1	· · · ·						┟───┼─	<u></u>	
31.10	47.87	100	GUCETS PORDAYEY LOLITE DEALE - BIOWN									┝╼──┼╴		
			10% 6.5-2mm August eves beeck august			1						┟───┿		
			+ magnetite stock work:		1							┢╼──┼─		
			Servicite and chlorite and epiclote replacing			<u> </u>								
			augite and hornblende.			 -				•				
			Minon sullicle mineralization disseminated	·	1							<u>├</u> ── │		
47.87	57.0	65	Guantz PonphyRy Lalite glean to light									-		
			arey Fine alcunea alisseminated pylite		1		· · · · · ·							
			Guantz Ponphyry Latite glean to light grey Fine glained alisseminated pylite At 52.12 to 57.0 (4.88m) weak guantz		1					1		 		
			Stockwork increase in sulliced to 3%							1				
57.0	75.60	100	Guarto Ponchypy Latite arance pick							1				
-			chlorite, reiclote replacing audite and or	1							<u> </u>			
			Mornolencie.											
<u>75:60</u>	80.10	/00	Altered Ponphyry Latile influded by											
			black basic Dike (Z.Om) chlorite and											
			epiclote replacing mafic minerals.											
				1	ļ									
_														
		ļ												
				1	1									

		nite Pa	DIAMOND DRIL						Page	2	HOL	E No. 97	7-0
		55 °	Longitude : Northing 10600 Latitu	de:Easting	10348			Pr	operty :	BREN	IDA		
			Length: /33.20 Eleva	ion: 157	ν <u>ς</u>			CI	aim :	JAN	2		
		June _		Logged : Ja	11,25	<u>. 97</u>		Se	ction:	1060	ON		
Date	Comple	ted : Jerni	e 30./97 Dip Test : N/A		_/			Lo	gged Bj	1 : P.J.	Weis	haup	7
Purpo:	se: Te:	st <u>IPA</u>	nomaly										
Ме	ters .	Recovery		Sample	Me	Hers	Lenght	Au	Ag	Cu	Pb	7.	1
From	To	%	DESCRIPTION	No.	From	To	Meters	ppb	Dom.	ppm	ppm	Zn ppm	
90.10	133 20	100	GURINTZ LATITE PORPHICE DINK ALADDA			†							\vdash
			AT951 (20cm) of mineralized weak Stock.		1	1	1						†
			WORK			T							
			Broken up black basic Dykes intilice		Ι	1			1		1		1
			Broken up black basic Dykes intilice Lalite at 96.77112 (30cm)		1	1					<u> </u>		-
			at 97.90m (10cm)			1			1				
	ļ		nt 98.20m (20cm)										
			Contacts are broken up										
		<u> </u>	Minon shearing and movements throughout section.									-	
			throughout section.		L								1
			Finctures are filled with Chlorite, epiclote and minor hematite. minon fine grained pyrite.		L			_					1
			epiclote and minor hemotite.		ļ								
			minon fine grained pyrite.		ļ	ļ	<u> </u>						
					<u> </u>								
					 	<u> </u>		_					
			Enclof Hole 133.20 meters.		<u> </u>		┿╌╴┤		<u> </u>		Ļ		
		· · · · ·	The of The ISS. 20 Thereks.		<u> </u>				 				
							┨						<u> </u>
					<u> </u>	 	┼───┤		<u> </u>				
-						<u> </u>	┤──┦						<u> </u>
					 		╉┯┯╸╂						<u> </u>
							1		<u> </u>				<u> </u>
				-	t	!	<u>├</u> {				I		
				_	<u> </u>		+						—
					I		╉┈╌╼╋						
									i 1				

Azimu Dip Date Date	th: O - G Started : Complet	60 ° July ed : July	DIAMOND DRILL Longitude : Northing 10400 Latitude Length: 160.63 m Elevatio		RD <u>10502</u> >	_ 		Cla	perty: sim: J ction:	<u>BREN</u> AN 2 1040	DA	EN0.97-05 Пацрт
	•											
		Recovery	DESCRIPTION	Sample		ters	Lenght	Au	Ag	Си	Pb	Zn
From O	To	%		Na.	From	То	Meters	ppb	ppm	ppm	ppm	ppm
	4.26 15.24	70	CASING	//032/	5.Z	82	3.0	864	1.5	//5	63	81
<u>7.40</u>	13.27	10	Neathered Rock Core well broken and	110322	8.2	/1.2	3.0	735	/ 2	//7	38	/00
			Oxicized. All flactules hemotite roated	//0323	//.2	<u>14.2</u>	3.0	346	2.1	55	/99	70
		-	Most sulficles leached out. Rock appears	//0324 //0325	/42	/7.2	3.0	603	1.7	303	96	/33
5-24	50.90	100	Guantz-Senicite Latite PonphyRy	110325	/7.2 20.2	<u>20.2</u> 23.2	3.0 3.0	486	/.3	427	/59	
	<u></u>		Giev to blue. Minon Bugintz Stock work.	1/0320	23.2	26.2	3.0	989 352	/.3 /.4	409 /99	73	156
		- • • • • • • • • • • • • • • • • • • •	fine disseminated pylite 2-3%	1/0328	26.Z	29.2	3.0	<u>30</u> 2 346	1.8	394	<u>33</u> 234	310 1337
			throughout whole section. Minor	/10329		32.2	3.0	607	1.7	442	236	<u>/33/</u> 2274
			chalcopyrite. Fine black minerals		32.2	35.2	3.0	325	1.4	161		/374
			clisseminated from 26.2 m to 41.7m		35.2	38.2	3.0	766	1.6	99	79	
			(15.50ml possible 2n mineralization.	110332	38.2	44.7	3.0	680	1.3	409		209
			Possible autting at 45.4 anel 47.2 m.	110333		44.7	3.0	666	1.1	/77	52	236
			Fruit gouge 30 cm and 1.0 m respect-	//0334		47.7	3.0	335	1.3	/2/	24	420
			Ively.	1/2335	47.7	50.9		225	1.2	284	155	
	71.01			//0336	50.9	53.9	3.0	49	1.0	70	/36	3/2
0.70	71.94	100	Guciretz Porphyrey Latite orange to brown fine clisseminated pyrite fine hematite	1/0337	53.9	56.9	3.0	/9	0.9	54	257	
			Jine auseminated pyrite, fine hemalite	10338	36.9	59.9	50	8	0.3	30	<u> /84 </u>	
			and senicile veinlets.	<u>//0339</u>	59.9	6/.9	20	43	0.5	60	// 7	608
			Small, black basic Dykes intrude Latite at 51,80 m (55cm) and 52,50m (20cm)									
- 1			(ontact of basic D-kes bloken up.	<u> </u>								<u> </u>
			TOTTOL OF MINE DATES DIOREPT UP.									
				<u> </u>				 				
										-		

		1 00-	CANASIL RESO	DURCES	S INC			_					
		ite Pas	DIAMOND DRILL	RECOR	D.	-			120	9e 2	но	e No. 97	-05
Azimu	th: O		Longitude: Northing /0400 Latitud	e : Easting	1050	2		Pro	operty:	BREN	104		
Dip.		600	Length: 160.63 m Elevatic	tion: 1550 Claim: TAN 2									
Date	Started :	July2	21./97 Core Size: N& Date L	ogged: <u>J</u>		97		Se	ction ;	1040	0N		
Date	Complet	ed: Jur	22. 197 Dip Test: N/A									haupt	
		1											
Purpos	se: / @	st LP C	momely										
					<u></u>				_				
Me	ters	Recovery		Sample	مه ال	ters	أعمام	4			0	T 3	
From	То	%	DESCRIPTION	No.	From	To	Lenght Meters	Au ppb	Ag ppm	Cu ppm	Pb ppm	Zn ppm	
71.94	87.47	100	Quantz-Sericite Latite Porphyry,	110340	-	75.2	3.0	170	0.7	//3	/30	8/6	
			light area to light blue Disseminated	10341		78.Z		/82	11	65	90	449	
				110342		81.2	3.0	436	0.8	265	208	1489	·
			Shearing and minon Poult couce of	110343		84.2	3.0	234		239	23/	2073	
			Shearing and minor fault gouge at 77.42 and 86.86 m. Latite Porphyry, pink to grey minon fine grained cubic pyrite	1/0344			3.0	306	1.6	/42	177	1758	·
<u>87.47</u>	/30./5	100	Latite Porphies pink to cley	110345			3.0	650	1.0	/2.4	119	/244	
			minon line clained cubic pylite	110346	/33.1	1361	3.0	564	1.1	183		1974	
			D	//0347	136.1	139.1	3.0	344	0.6	107	94	492	
/30./5	144.17	100	Quantz-Servicite Latite ParphyRy	110348		142.1	3.0	/6,2	1.2	194		3747	
	-		light blue-grey.	110349	/42.1	144.1	2.0	134	0.7	58	306	2627	
			Fine glained by rite with fine		_						1		
			Time glaineal byrite with fine clisseminaled black minetals (2n?)	ļ									
140.0													
<u>[44.] </u>	/60.63	100	and silicious, small cluster of chlorite	ļ									
			and Silicious, small cluiter of chlorite										
			ENDOFHOLE 160.63 meters								ļ		
			EMILOF 19018 160.63 METERCE							 			
·								.		 	 		
							I	·			 	╉──╴┨	
										<u> </u>		┼───┤	
				+	-					<u> </u>		╉───┦	
										<u> </u>		<u>├</u> ──	
							F			†		┿──┤	
				1			1				ŀ	┼───┤	
										t		┼──┤	

APPENDIX IV

.

.

.

STATEMENT OF COSTS

CANASIL RESOURCES INC.

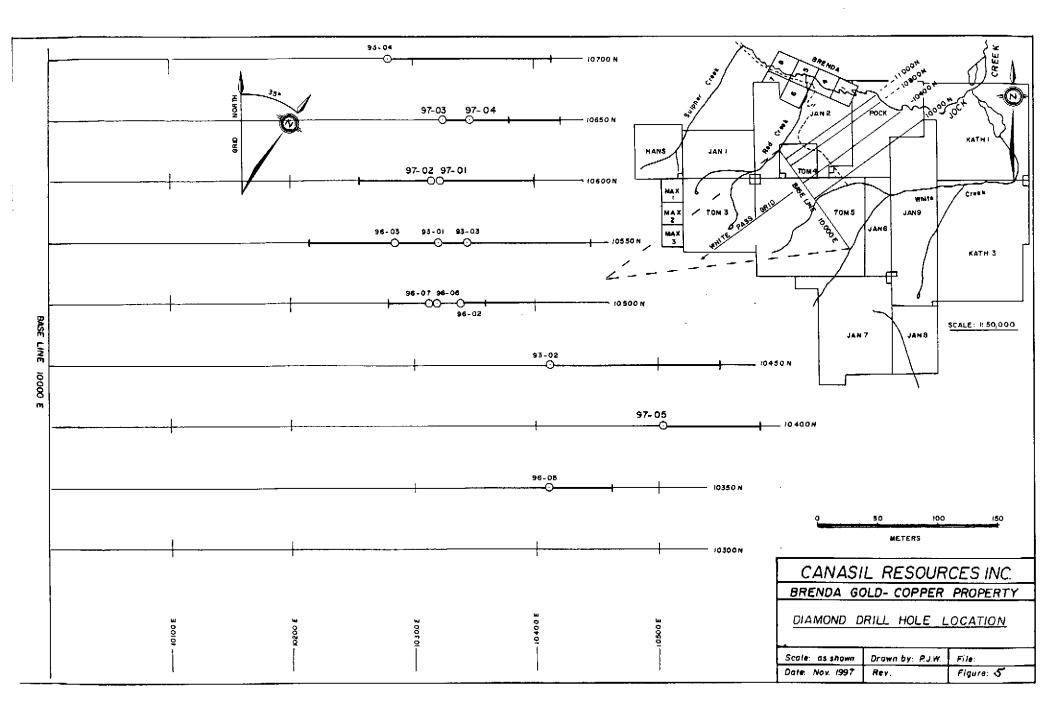
Statement of Cost

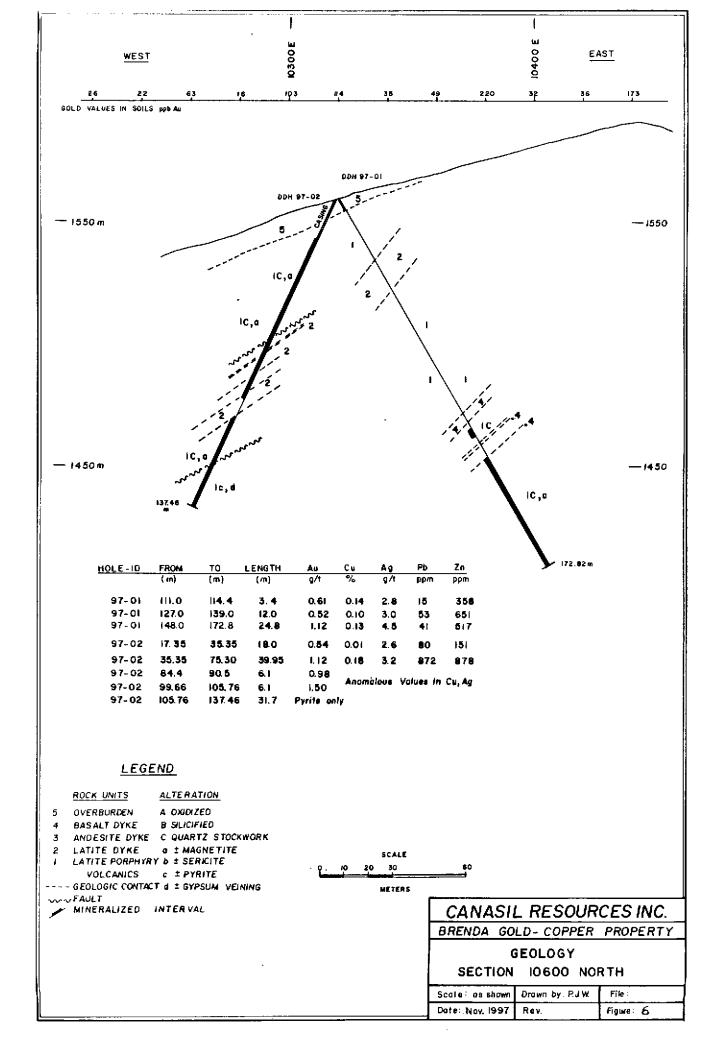
Project: BRENDA Type of Report: Diamond Drilling

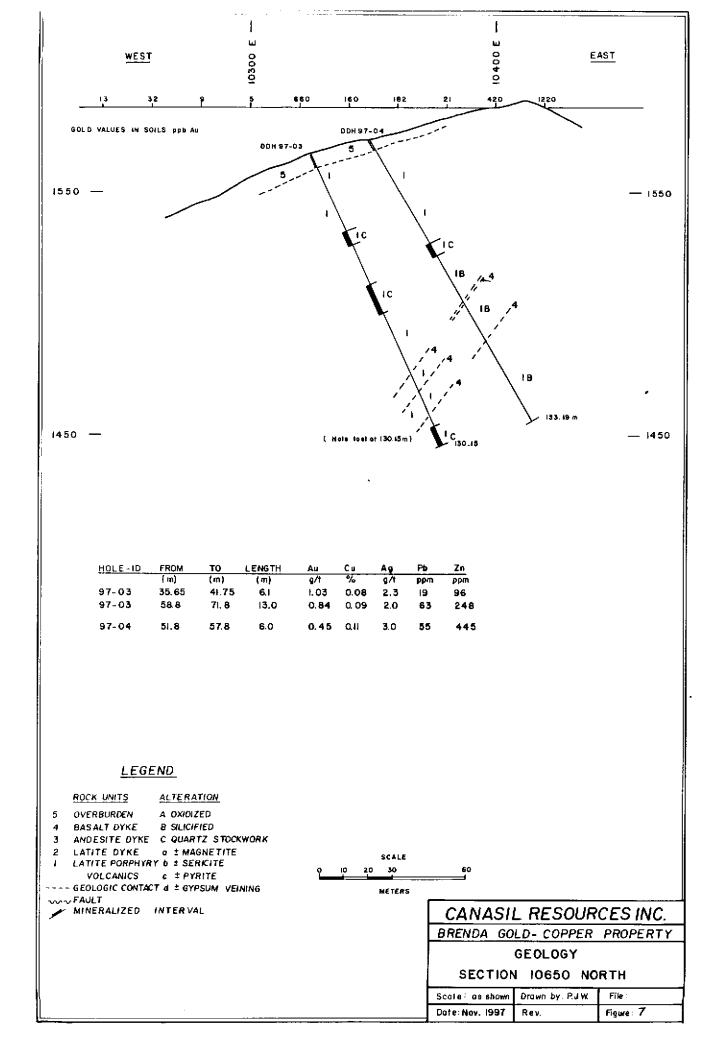
а.	<u>Wages</u> :	Geological crew No. of Mandays Rate per Manday Dates Total Wages	: : :	102 \$215.90 June 11 to September 15, 1997 \$ <u>22,021.80</u>
b.	Food and A	ccommodations: Geo No. of Mandays Rate per Manday Dates Total Cost	:	Crew and Drillers 154 \$35.00 June 11 to September 15, 1997 \$ <u>5,390.00</u>
с.	<u>Transportati</u>	on: Truck No. of Mandays Rate per Manday Dates Total Cost	::	87 \$63.00 June 11 to September 15, 1997 \$ <u>5,481.00</u>
d.	<u>Supplies</u> :	No. of Mandays Rate per Manday Dates Total Cost	:	102 \$35.00 June 11 to September 15, 1997 \$ <u>3,570.00</u>
e.	<u>Drilling</u> :	Britton Bros. Diamo No. of Meters Cost per Meter Dates Total Cost	ond Dri : : :	lling, Smithers, B.C. 734.25 \$89.30 June 11 to September 15, 1997 \$ <u>65.555.55</u>
f.	Analysis:	Total Cost	:	\$ <u>1,687.30</u> (see attached schedule)
g.	Mob and De	mob of Crew Total Cost	:	\$ <u>2,499.65</u>
h.	<u>Communicat</u>	tion: Satellite Phone Total Cost	•	\$ <u>940.90</u>

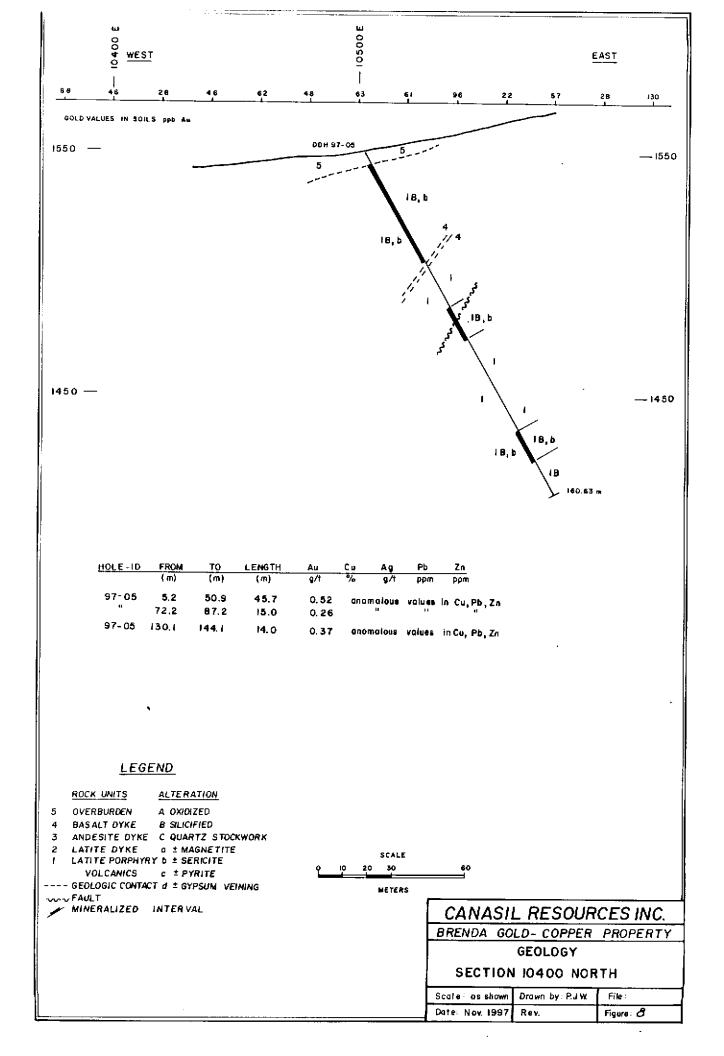
APPENDIX V

STATEMENT OF QUALIFICATIONS


.


.


STATEMENT OF QUALIFICATIONS


<u>NAME</u> :	P.J. Weishaupt						
EDUCATION:	Graduated Institute of Technology Agriculture Flawil, Switzerland						
AFFILIATIONS:	The Geological So	Institute of Mining ciety al Association of Canada					
EXPERIENCE:	1960 - 1967	Bralorne-Pioneer Mines Prospector, Geologist's Assistant Underground mining and surveying					
	1968 - 1970	Can-Fer Mines Ltd. Geologist					
	1970 - 1973	Bralorne Resources Ltd. Exploration Manager					
	1973 - 1975	Westfour Contracting Ltd. Manager, Coal Division					
	1975 - 1977	Dolmage, Mason & Stewart Consulting Project Manager					
	1978 - 1981	McIntyre Coal Mine Environmental Consultant					
	1981 - to present	Canmine Development Company Inc. & Canasil Resources Inc. President					

.

