

### GEOLOGICAL and LITHOGEOCHEMICAL REPORT

on the

#### AXELGOLD PROJECT

AX 952, 953, 9613; AXD 1-6; AXEL 1-3 (Owner: Lorne Warren)

#### **1997 EXPLORATION PROGRAM**

NTS: 93N/13 W Latitude 55°58' N; Longitude 125°58' W

> Omineca Mining Division, BRITISH COLUMBIA

for Rubicon Minerals Corporation

> GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT



April, 1998 Vancouver, B.C.

.

#### EXECUTIVE SUMMARY

The project area is underlain by a pyritic gold-bearing alkaline/syenite porphyry intrusive complex, possibly Cretaceous in age, situated along a broad structural zone subparallel to the regional Pinchi Fault. The porphyry complex intrudes rocks of the Permian Cache Creek Group (including limestone, phyllite and minor ultramafic rocks) and Triassic Takla Group clastic sediments.

Past exploration work has indicated that the alkalic system is gold bearing, and hosts several large (up to 300 by 700 m) multi-element geochemical anomalies enriched in Te, F, Ag, As, Sb, Mo, Pb, Cu, and Zn. However, trenching and drilling programs to date have failed to effectively test the best geochemical anomalies. Limited whole rock lithogeochemical data has revealed high K<sub>2</sub>O, Ba and Sr values associated with the porphyry. These chemical affinities suggest strong similarities between the Axelgold complex and a number of world class alkaline intrusive-related gold districts.

A program of detailed mapping and lithogeochemical sampling was carried out on a portion of the Axelgold Project during August, 1997. The program was designed to delineate the extent of the intrusive complex, to confirm its alkaline nature, and to establish a geochemical signature using whole rock lithogeochemical analyses. The work was successful in better delineating the extent of the syenite complex, particularly the western boundary. Whole rock analyses also confirmed the nepheline alkaline composition of the intrusion and its enrichment in elements typically associated with a number of productive alkaline-hosted gold deposits.

### TABLE OF CONTENTS

| Page                               |
|------------------------------------|
| SUMMARYi                           |
| 1.0 PURPOSE                        |
| 2.0 BACKGROUND                     |
| 2.1 Introduction1                  |
| 2.2 Location and Access1           |
| 2.3 Tenure                         |
| 2.4 Previous Work                  |
| 2.5 1997 Exploration Program 6     |
| 3.0 GEOLOGY                        |
| 3.1 Regional Geology7              |
| 3.2 Property Geology7              |
| 4.0 RESULTS                        |
| 5.0 CONCLUSION AND RECOMMENDATIONS |
| REFERENCES                         |

### LIST OF FIGURES

•

.

.

.

•

.

.

•

,

.

.

•

.

•

•

•

÷

.

| Figure 1    | Property Location Map                                  | 3 |
|-------------|--------------------------------------------------------|---|
| Figure 2    | Claim Map                                              | 4 |
| Figure 3    | Geological Map of Cache Creek Group and Mesozoic Rocks | 8 |
| LIST OF TAB | LES                                                    |   |
|             |                                                        |   |

| Table I | Claims Work Applied To | . <b></b> . 4 | 2 |
|---------|------------------------|---------------|---|
|---------|------------------------|---------------|---|

# TABLE OF CONTENTS (continued)

### LIST OF APPENDICES

.

.

ς.

.

.

,

.

.

e

.

,

.

•

•

•

, ,

| Appendix I   | Certificate of Qualifications     |        |
|--------------|-----------------------------------|--------|
| Appendix II  | 1997 Program Expenditures         | 14     |
| Appendix III | Axelgold Rock Sample Descriptions | At End |
| Appendix IV  | Certificates of Analyses          | At End |

### LIST OF MAPS

| Map 1 | Axelgold Property D | etail Geology Map | Map Pocket |
|-------|---------------------|-------------------|------------|
|-------|---------------------|-------------------|------------|

#### 1.0 PURPOSE

The following report documents fieldwork (geological mapping and lithogeochemical sampling) conducted on the central portion of the Axelgold Project for assessment purposes.

#### 2.0 BACKGROUND

#### 2.1 Introduction

The Axelgold Project is a newly recognized intrusive-related porphyry gold target with an alkaline affinity.

#### 2.2 Location and Access

The Axelgold property is located in the middle of the Axelgold Range, at 55°58' N and 125°58' W, 150 kilometres northeast of Smithers in north central British Columbia (Figure 1). Helicopter access to the property is possible from Lovell Cove (20 minutes) or from a logging road to Ogden Lake, 10 minutes to the southeast. Thirty-five kilometres to the west, on the eastern side of Takla Lake, a rail line passes through Takla Landing and Lovell Cove. A proposed forestry road would reach within two kilometres of the property.

#### 2.3 Tenure

The Axelgold property consists of ten 4-post claims and 22 2-post claims (192 units) totalling 3,500 hectares (Figure 2). Lorne B. Warren of Smithers, B.C, holds the claims. On October 31, 1996 Rubicon Minerals Corporation accepted the assignment of an agreement between Cyprus Canada Inc. and Lorne Warren dated January 1, 1996, whereby Rubicon may earn a 100% interest by completing payments totalling \$90,000 and work commitments totalling \$365,000, over four years. Table 1 lists the mineral claims to which assessment work credit has been applied.

|         | CLA   | TABLE I<br>IMS WORK APPLIED 1 | 0                 |
|---------|-------|-------------------------------|-------------------|
| Mineral | Claim | Tenure Number                 | Expiry Date After |
| ICON    | 971   | 353265                        | January 15, 2000  |
| ICON    | 972   | 353266                        | January 15, 2000  |
| ICON    | 973   | 353267                        | January 15, 2000  |
| ICON    | 974   | 353268                        | January 15, 2000  |
| AX      | 971   | 354850                        | April 5, 2000     |
| AX      | 972   | 354849                        | April 4, 2000     |
| AX AX   | 973   | 354847                        | April 4, 2000     |
| AX      | 974   | 354848                        | April 4, 2000     |





#### 2.4 Previous Work

- **1984** Equinox Resources conducted regional prospecting, mapping, and silt (73), soil (19) and rock (51) sampling. All methods returned anomalous gold values (up to 660ppb in silt, 640ppb in soil, 585ppb in rock) interpreted to be associated with a "syenitic" intrusion.
- 1985 Imperial Metals and JV partner Equinox established 6 grids (Recce, GAA, GAB, GAC, GAD and GAX) and conducted detailed soil/silt (441) and rock (327) sampling, and petrographic studies (11 slides). Soil contour grid (GAA) over Gossan Hill outlined a 375 by 300 m Au-Ag-Sb-As-Mo anomaly. Au-Cu-Mo soil anomalies were detected southeast of Gossan Hill. Rock sampling returned up to 690ppb Au.
- **1986** Imperial Metals established the AU grid (incorporating GAA, GAC and GAD) and conducted extensive soil (2,235) and rock (143) sampling. A 7-metre trench and several small pits were excavated. Selected areas were mapped at 1:12,500 and 1:2,000 scale. Five major multi-element soil anomalies (up to 700 by 300 m) were identified, including values up to 9050ppb Au. Nine rock samples, mainly from the syenite with associated stibnite-feldspathic veins, returned >1000ppb Au (up to 4820ppb) and one sample 26.2ppm Te. Samples from the trench returned 0.55 g/t Au over 7 m (not including grab samples with up to 12.62 g/t Au), and up to 320,000ppb Hg, 2.26% Ba and 2.0% F. Soils to the southeast returned spotty gold highs (up to 615ppb) thought to be associated with a serpentinized fault block. Mapping delineated a northwest-trending 3 by 1 km syenite intrusion in contact with the Takla Group sediments and (locally) Cache Creek volcanics.
- Imperial Metals extended the AU grid and collected soil (247) and rock (30) 1987 samples, and conducted petrographic studies (14 slides). Local IP (9.75 km) and ground VLF surveys were conducted. Eight DD holes were completed. totalling 726.9 m. Six holes were drilled on the AU grid and two holes on the GAB grid. Four holes (AX-87-3,-4,-5 and -6) were drilled in the syenite intrusion but not necessarily within soil anomalies. Holes AX-87-3, -4 and -5 intersected pyrite+/-fluorite+/-stibnite+/-terahedrite with disseminated stockwork to mineralization. Significant intersections include: 3.12 g/t Au over 5.79 m (AX-87-3); 0.65 g/t Au over 9.23 m (AX-87-5) and; 8.56 g/t Au over 0.61 m (AX-87-6). The best mineralization in AX-87-5 was found in thin massive pyrite bands with gold values up to 2030ppb Au. Four holes (AX-87-1,-2,-7 and -8), intended to test IP chargeability highs, failed to intersect the intrusive-sediment contact, cutting only narrow intervals of feldspar porphyry in Takla conglomerates.

- 1995 <u>Rubicon Minerals</u> and <u>Lorne Warren</u> collected soil (1), rock (43) and core (156) samples, and conducted petrographic studies (2 slides). Re-sampling of Imperial Metals' core confirmed anomalous gold values, including: 3.82 g/t over 3.05 m and 0.37 g/t over 39.20 m (AX-87-5); 1.92 g/t over 6.09 m (AX-87-3), and; 10.84 g/t over 0.47 m (AX-87-6). Gold appears to be associated with pyritic feldspar porphyry in: stockwork veinlets of feldspar porphyry+/-quartz+/-fluorite+/-stibnite+/-tetrahedrite(?); semi-massive fine-grained pyrite stringers, and; disseminated tetrahedrite(?)-stibnite-pyrite zones. Selected samples of conglomerate in AX-87-1 and –8 returned values up to 110ppb Au. Whole rock geochemistry returned high K2O (up tp 13.5%), Ba (up to 1.0%) and Sr (up to 2.4%). Subsequent analyses of drill core returned Te values up to 5.7ppm. Rock sampling included 21 chip samples within areas of anomalous soil geochemistry, returning values up to 1.06 g/t Au over 4.0 m.
- **1996** <u>Cyprus Canada</u> excavated three trenches (361 m) and 33 test pits. Soil (14) and rock (296) samples were collected and analysed, in conjunction with mapping. Although the test pits failed to reach bedrock, 175 grab/chip samples from the trenches encountered anomalous gold (up to 294ppb over 17.0 m). Surface outcrop samples returned up to 2.79 g/t Au.

#### 2.5 1997 Exploration Program

In an effort to further delineate the extent and geochemistry of the intrusion, a program of detailed mapping (1:2,000) and broad sampling (22 rocks) of the intrusion and surrounding rocks was conducted in the core area of the property. Although fresh, relatively unaltered surface outcrop and talus samples were sought for lithogeochemical analyses, the intrusion is characterised by pervasive alteration. Although it is unlikely that any "least-altered" rock has been sampled, the data obtained does provide a geochemical signature.

All samples were sent to Chemex Labs Ltd. in North Vancouver for gold fire assay of 30 g subsamples and atomic absorption finish, 27 element analyses by ICP-AES (triple acid total digestion) and whole rock analyses of major oxides by ICP-AES (meta-borate fusion).

The field crew was based at a camp on Kenny Creek, 40 kilometres south of the property, and consisted of one consulting geologist (Stan Keith, MagmaChem Exploration Inc., Bellevue, WA), one geologist (K McInnis, Rubicon Minerals Corporation) and, for one day, one prospector (L Warren, optionor). The program was completed between August 24 and August 30, 1997. Program expenditures are detailed in Appendix II.

#### 3.0 GEOLOGY

#### 3.1 Regional Geology

The Axelgold property is located in the centre of the Axelgold range, between two major regional northwest-trending fault zones, the Pinchi Fault to the east and the Takla Fault to the west (Figure 3). The oldest rocks lie to the west and belong to the Permian Cache Creek Group, and consist predominantly of highly deformed chert. phyllite and shale/siltstone, local greywacke, and discontinuous bodies of carbonate and metavolcanic rocks. The Cache Creek Group is generally separated from the Jurassic Hogem Batholith to the east by the Pinchi Fault, which is marked by the Omineca River. However, in the Axelgold Project area, sediments of the upper Triassic Takla Group (conglomerate, arkose, shale/mudstone and tuff, with minor layers of limestone) occur between the Cache Creek Group and the Pinchi Fault. Here, the Takla Group is bounded on the west by a major thrust fault contact marked by lenses of serpentinite and talc/mariposite (Permo-Triassic Trembleur Ultramafic Suite), This structure extends the full length of the Axelgold Range, on the eastern flank, as does a parallel fault on the western side of the range. The Axelgold Syenite Complex intrudes the Cache Creek and Takla Groups. The syenitic intrusion is porphyritic, highly altered and contains widespread disseminated pyrite mineralization, giving rise to a large gossanous area (Gossan Hill) where several major multi-element geochemical anomalies have been recorded.

#### 3.2 Property Geology

The core area of the Axelgold property (Map 1) is underlain by the Axelgold Syenite Complex - a two kilometre long by several hundred metres wide Cretaceous(?) pyritic, gold-bearing alkalic porphyry intrusive body. The intrusion was emplaced in the Cache Creek and Takla Groups along a broad structural zone parallel to the Pinchi Fault structure. The intrusive is a multiphase complex consisting of megacrystic orthoclase syenite porphyry flanked by variably altered medium to fine grain syenitic to feldspar phyric phases, along with felsic and dacite lapilli tuff units that may be genetically related. Locally, small diabase, diorite and felsic dykes cut the intrusion and surrounding stratigraphy, particularly southeast of Gossan Hill where the intrusion appears to pinch-out.

The various intrusive phases are typically light grey with well-defined feldspar phenocrysts and rare to absent mafic minerals – possibly destroyed by alteration. The megacrystic syenite is characterised by 30 to 70%, 2-5 cm long orthoclase laths. Generally, the feldspar laths are oriented at 300° to 340° and dip sub-vertically to steeply northeast. The finer grained syenite and feldspar porphyries are typically altered, silicified, brecciated and locally sheared. Where distinguishable, the phenocrysts are 2-5 mm in size, however, any porphyritic texture is frequently destroyed by alteration. Attitudes of the majority of structures range from 280° to 320°, and dip sub-vertically to steeply northeast. Fault/shear zones are typically strongly weathered and locally very rusty. Lenticular bodies of ultramafic intrusive rocks are also associated with major fault structures.



Figure 2. Geological map of Cache Creek Group and Mesozoic rocks at the northern end of the Stuart Lake Belt, central British Columbia.

Figure 3

32

8

#### 4.0 RESULTS

Detailed mapping delineated the position of the west contact of the Axelgold intrusive complex. Where visible, it is marked by a left strike-slip fault. The eastern contact of the intrusion is typically hidden under extensive overburden where the Axelgold Range slopes toward the Omineca River. As well, substantial portions of the remaining contacts are hidden by talus and debris slides. Within these constraints, however, the main portion of the exposed intrusion measures approximately 2 kilometres by 500 metres. The intrusion and surrounding rocks also host a number of cross-cutting biotite dacitic aplite, andesite porphyry and hornblende diorite dykes, which may form part of an Eocene dyke complex.

The overall shape of the intrusion is reflected in the textures within the syenite phases. The megacrystic phase appears to occur as two or three separate bodies, suggesting spatially and temporally distinct emplacement from northwest to southeast. Much of the remaining medium to fine grained intrusion is sufficiently altered and brecciated to prevent a similar conclusion. A pink-orange felsite has been noted in outcrop, and may be a very fine-grained late phase of the intrusion or related to the Eocene (?) dykes.

According to Mutschler and Mooney (1993), alkalic rocks are rare, occupying <1% of the earth's surface. However, they are associated with a number of productive gold deposits, including Cripple Creek, Kirkland Lake, and Lihir. In general, these types of deposits are characterised by native Au +/- Au-Ag telluride mineralization, by low S (as sulphide) content, by Au > Ag, and by high As and Sb. Relative to average alkali basalts, alkaline rocks (including syenite plutons) associated with these deposits are typically enriched in Ba, Nb, Rb, LREE, Sr, Th, U, Zr, Mo, Ag, Pb, F and Tl.

As such, it is worth noting that the Axelgold syenite complex shares a number of these geochemical affinities. The syenite is characterised by pervasive disseminated pyrite mineralization (up to 10-12%) and local fluorite veining. Whole rock geochemistry of the intrusion indicates a nepheline alkalic composition, whereas the dykes to the southeast display a quartz alkaline signature (Keith, personal communication). Current analyses of the syenites also indicate enrichment in Ba, Rb, Sr, As, Hg, Zr and other elements typically associated with alkaline syenites.

#### 5.0 CONCLUSION AND RECOMMENDATIONS

Broad lithogeochemical sampling, in conjunction with field observations and historical data, confirms the nepheline alkaline and anomalous multi-element nature of the intrusive. Although relatively rare, alkalic igneous rocks are both the host and source for a variety of precious-metal deposits.

The intrusion consists mainly of a fault-bounded megacrystic to medium grained porphyritic syenite. According to Keith (1997), strike-slip faults are particularly important to porphyry-related metal plutonic sequences, by controlling the final distribution and evolution of the intrusion.

Past work in the Gossan Hill area of the property has outlined several large (up to 300 by 700 m) multi-element soil anomalies enriched in Te, F, Ag, As, Sb, Mo, Pb, Cu and Zn. Trenching and drilling programs to date have not effectively tested these anomalies. Consequently, the core portion of the property is well suited for further detailed work, including mapping, sampling and geophysics (IP), to better define the extent of the intrusion and to develop additional targets.

#### REFERENCES

Gorc, D.

1991: Summary Report - Axelgold Property; internal report between Cathedral Gold Corporation and Equinox Resources Ltd.

Jiang, X.D. and T.D. Hurley

1996: Axelgold Project – Report on the 1996 Exploration Program; Cyprus Canada Inc., submitted as Assessment Report.

#### Keith, S.B.

1997: Magma-Metal Series Models; MagmaChem Exploration Inc.

Morton, J.W.

- 1985: A Geochemical Soil Survey 'A' Grid; Imperial Metals Corporation, submitted as Assessment Report # 14018.
- 1985: A Reconnaissance Geochemical Follow-up; Imperial Metals Corporation, submitted as Assessment Report # 14020.
- 1985: A Reconnaissance Soil and Lithogeochemical Survey; Imperial Metals Corporation, submitted as Assessment Report # 14521.

#### Mutschler, F.E. and T.C. Mooney

1993: Precious-metal Deposits Related to Alkalic Igneous Rocks: Provisional Classification, Grade-Tonnage Data and Exploration Frontiers; in Kirkham, R.V., Sinclair, W.D., Thorpe, R.I. and Duke, J.M., eds., Mineral Deposit Modeling: GAC Special Paper 40, p. 479-520.

Page, J.W. and R.R. Culbert R.R.

1984: Report on a Geochemical Survey of the Axel Property, Axelgoid Range; Beaty Geological Ltd., submitted as Assessment Report # 12784.

#### Paterson, I.A.

1974: Geology of Cache Creek Group and Mesozoic rocks at the northern end of the Stuart Lake Belt, Central British Columbia; Geol. Surv. Can., Paper 74-1, pt B, p. 31-42.

#### Rubicon Minerals Corporation

1998: Axelgold Gold Project, North Central British Columbia - Executive Summary; internal report.

Scott, A.

1987: Induced Polarization Survey - Takla Rainbow South and Axelgold Grids; internal report by Scott Geophysics Ltd. for Imperial Metals Corporation.

Taylor, A.B.

- 1986: Geology of the Central Axelgold Range; Imperial Metals Corporation, submitted as Assessment Report # 15936.
- 1986: Geology of the Southern Axelgold Range, Axel 1-4 Claims; Imperial Metals Corporation, submitted as Assessment Report #15226.
- 1986: Geology of the Southern Axelgold Range, Axel 5 Claim; Imperial Metals Corporation, submitted as Assessment Report #15226.
- 1986: 1986 Year End Report Axelgold Joint Venture; internal report between Imperial Metals Corporation and Equinox Resources Ltd.
- 1987: Geology of the Central Axelgold Range; Imperial Metals Corporation, submitted as Assessment Report.
- 1987: Geology and Geochemistry on the Axel 4and 9 Claims, Axelgold Range, North-Central B.C.; Imperial Metals Corporation, submitted as Assessment Report # 16508
- 1988: 1987 Year End Report Axelgold Joint Venture; internal report between Imperial Metals Corporation and Equinox Resources Ltd.

#### APPENDIX I

#### STATEMENT OF QUALIFICATIONS

- I, Karin McInnis of Rubicon Minerals Corporation do hereby certify that:
- 1. I am a geologist with Rubicon Minerals Corporation and reside at 13 795 West 8<sup>th</sup> Avenue, Vancouver, B.C. V5Z 1C9.
- 2. I have obtained a BSc (1984) from the University of Waterloo.
- 3. I have practiced my profession in Canada since 1981.
- 4. I have been employed as a geologist with Rubicon Minerals Corporation since 1996.
- 5. This report is based on fieldwork I have carried out and supervised, as well as all reports available to me.

Respectfully,

Kan Mahi

Karin McInnis Rubicon Minerals Corporation

April, 1998 Vancouver, B.C.

### APPENDIX II

.

.

.

,

,

.

,

## (Amended)

## 1997 PROGRAM EXPENDITURES (CDN\$)

19 A.

| <u>Wages</u><br>K McInnis (Geologist) 12 days @ \$210/day<br>S Keith (Consultant) 13.5 days @ \$600/day<br>E Lofton (Asst to Consultant) 3.5 days @ \$295/day<br>L Warren (Prospector) 1 day @ \$350/day | \$2<br>\$8<br>\$1<br>\$ | ,520<br>,100<br>,030<br>350 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------|
| Helicopter Support<br>11.7 hours @ \$700/hour                                                                                                                                                            | \$8                     | ,170                        |
| Food & Accommodation<br>(K McInnis & S Keith) 7 days @ \$75/person/day<br>Groceries                                                                                                                      | \$1<br>\$               | ,050<br>140                 |
| <u>Travel, Mobilization/Demobilization</u><br>Airfare Vancouver to Smithers (K McInnis & S Keith)<br>Fixed Wing Smithers to Kenny Creek<br>Shipping                                                      | (c) (c) (c)             | 700<br>780<br>205           |
| Equipment & Supplies<br>Field Supplies                                                                                                                                                                   | S                       | 90                          |
| <u>Maps &amp; Reproductions</u><br>Photocopies                                                                                                                                                           | 3                       | 40                          |
| Assaving<br>30 rocks FA+AA, ICP, WR @ \$57.15/sample                                                                                                                                                     | S1                      | ,715                        |
| Report Preparation<br>Computer Drafting 2 days @ \$250/day                                                                                                                                               | S                       | 500                         |
| TOTAL                                                                                                                                                                                                    | S2                      | 5,390                       |

### APPENDIX III

,

.

,

,

### AXELGOLD ROCK SAMPLE DESCRIPTIONS

| Sample No. | Туре  | Description                                                                                                       |
|------------|-------|-------------------------------------------------------------------------------------------------------------------|
| RMR30000   | Grab  | Syenite: coarse-crystalline (megacrystic) orthoclase<br>syenite porphyry                                          |
| RMR30001   | Grab  | Syenite: medium-crystalline orthoclase syenite porphyry                                                           |
| RMR30002   | Grab  | Syenite: medium-crystalline orthoclase syenite porphyry                                                           |
| RMR30003   | Grab  | Diorite Dyke(?): with hornblende, fine-grained, medium-<br>dark grey-green, cross-cutting structure and lithology |
| RMR30004   | Grab  | Lapilli Tuff: no coarse fragments, in very fine-grained dark grey-green matrix                                    |
| RMR30005   | Talus | Lapilli Tuff                                                                                                      |
| RMR30006   | Grab  | Syenite: medium-crystalline orthoclase syenite porphyry                                                           |
| RMR30007   | Grab  | Serpentinite                                                                                                      |
| RMR30008   | Grab  | Felsite                                                                                                           |
| RMR30009   | Grab  | Felsite                                                                                                           |
| RMR30010   | Grab  | Diorite Dyke: with homblende, magnetic, cross-cutting svenite                                                     |
| RMR30011   | Grab  | Felsitic Tuff/Ash/Conglomerate: with abundant fuchsite                                                            |
| RMR30012   | Grab  | Felsite: chill margin to feldspar porphyry                                                                        |
| RMR30013   | Talus | Syenite: megacrystic orthoclase syenite porphyry                                                                  |
| RMR30014   | Talus | Dyke: within Fe-carbonate, mariposite, adjacent to<br>serpentinite                                                |
| RMR30015   | Grab  | Dacitic Dyke: fine-medium grained, sub-aplitic texture, with up to 15% biotite                                    |
| RMR30016   | Talus | Dacitic Dyke: fine-medium grained, sub-aplitic texture, with up to 10% biotite                                    |
| RMR30017   | Grab  | Dacitic Dyke: fine-medium grained, sub-aplitic texture, with up to 10% biotite                                    |
| RMR30018   | Talus | Syenite: megacrystic orthoclase syenite porphyry                                                                  |
| RMR30019   | Grab  | Felsite                                                                                                           |
| RMR30020   | Grab  | Dacitic Dyke: medium grained, with biotite                                                                        |
| RMR30021   | Grab  | Dacitic Dyke: fine-medium grained, with biotite                                                                   |

APPENDIX IV

,

.

,

.

CERTIFICATES OF ANALYSES



# Chemex Labs Ltd.

Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

| To: | RUBICON MINERALS CORPORATION |
|-----|------------------------------|
|     | INCOGNITA (BAFFIN) PROJECT   |
|     | 888 - 1100 MELVILLE ST.      |
|     | VANCOUVER, BC                |
|     | V6E 4A6                      |

. . .

QC Page #: Tot QC Pg: 1-A Date: 25-NOV-97 Invoice #: 19750055 P.O. #:

BC105

Project; Comments: ATTN: KARIM MCENNIS

> QC DATA OF CERTIFICATE A9750055

MUCI

STD/DUP/BLANK QC PAGE Au ppb λs sb АІ & Варри Верри Вірри Са & Сфрик Сорри Сгрри Сирри Fe & К & Му & Илрри Морри Hq Aq ppm DESCRIPTION CYPE NO. Ελιλλ ppm ppmppb AAS (ICP) G96-TOT star 1.02 1120 1.5 2.09 1.0 1.6 98 205 1.07 1065 ---------2 4,05 1.97 9 CHEMEX MEAN 7.60 1135 1.1 8 2.13 0.9 17 98 177 4.60 1.00 1025 1.82 8 GEO-96 std1 110 . . . . . . 69 5.8 5.6 --------\_\_\_\_ ----------------. . . . . . CHEMEX MEAN 61 4.8 165 5,6 - ---------\_ \_ \_ \_ \_ ----SY-4 stdi CREMEX MEAN TC-97 stail 185 I CREMEX MEAN 201 ------ -- - -NM830000 Dup)-01 < 5 8 < 0.2 < 10 < 0.2 6.04 2080 3.0 < 2 5.61 0.5 18 140 37G 3.90 820 2.79 2.84 2 Drigl-01 < 5 7 < 0.2 10 < 0.2 6.08 2040 3.0 < 2 5,59 ( 0,5 18 135 417 3.90 3.75 2.80 805 I.

1 1

1 , 4

1 1'÷

C. C. A.

| C                            |              |             | her<br>atytical Che<br>212 Broo<br>British Co<br>PHONE: | me<br>emists * Ge<br>ksbank A<br>blumbia, 1<br>604-984 | eochemista<br>Vee.,<br>Canada<br>-0221 F; | ab<br>s * Registe<br>North V<br>AX: 604 | SL<br>ered Assay<br>ancouver<br>V7J 2C1<br>984 0218 | td.           |                | To:<br>Proj<br>Con | RUBIC<br>INCOG<br>888 - 1<br>VANCO<br>V6E 47<br>ject:<br>nments: | ON MINERAL<br>NITA (BAFFII<br>100 MELVILLI<br>DUVER, BC<br>16<br>BC105<br>ATTN: KARII | S CORPORATION<br>N) PROJECT<br>E ST.<br>M MCENNIS |        | QC Page #:<br>Tot QC Pg:<br>Date:<br>Invoice #:<br>P.O. #: | 1-B<br>1<br>25-NOV-9<br>19750055<br>MUCI |
|------------------------------|--------------|-------------|---------------------------------------------------------|--------------------------------------------------------|-------------------------------------------|-----------------------------------------|-----------------------------------------------------|---------------|----------------|--------------------|------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------|--------|------------------------------------------------------------|------------------------------------------|
|                              |              |             |                                                         | · · · · · · · · · · · · · · · · · · ·                  |                                           |                                         |                                                     |               |                |                    | Q                                                                | C DATA                                                                                | OF CERTIFICATE                                    | E A975 | 0055                                                       |                                          |
| STD/DUP/BLANK<br>DESCRIPTION | QC I<br>PYPE | PAGE<br>NO. | Na %<br>(ICP)                                           | Ni ppm<br>(ICP)                                        | P ppm<br>(ICP)                            | РЫ ррт<br>ЛАЗ                           | Sr ppm<br>(ICP)                                     | Ti %<br>(ICP) | V ppm<br>(1CP) | W ррт<br>(IСР)     | 2n ppm<br>(ICP)                                                  | Fe0<br>%                                                                              |                                                   |        |                                                            |                                          |
| G96-TOT<br>Chemex Mean       | sta1         | 1           | 1.07                                                    | 2 1<br>24                                              | 580<br>624                                |                                         | 259<br>236                                          | 0,35<br>0,34  | 160<br>160     | < 10<br>< 10       | 192                                                              |                                                                                       |                                                   |        |                                                            |                                          |
| GEO-96<br>Chemex Mean        | 3td1         | 1           |                                                         |                                                        | <b>-</b>                                  | 124<br>125                              |                                                     |               |                |                    |                                                                  |                                                                                       |                                                   |        |                                                            |                                          |
| SY-4<br>CREMEX MEAN          | sta1<br>     | 1           |                                                         |                                                        |                                           |                                         |                                                     |               |                |                    | ···                                                              | 2.85                                                                                  |                                                   |        |                                                            |                                          |
| TC-97<br>Chemex Mean         | 3td]<br>     | 1           |                                                         |                                                        |                                           | ·····                                   |                                                     |               |                |                    |                                                                  |                                                                                       |                                                   |        |                                                            |                                          |
| RMR 30000                    | Dup<br>Drig  | -01<br>-01  | 2.25<br>2.36                                            | 39<br>39                                               | 2310<br>2260                              | 20<br>24                                | 980<br>975                                          | 0,44<br>0,44  | 142<br>144     | < 10<br>< 10       | 64                                                               | 3,57                                                                                  |                                                   |        |                                                            |                                          |
|                              |              |             |                                                         |                                                        |                                           |                                         |                                                     |               |                |                    |                                                                  |                                                                                       |                                                   |        |                                                            | ĺ                                        |
|                              |              |             |                                                         |                                                        |                                           |                                         |                                                     |               |                |                    |                                                                  |                                                                                       |                                                   |        |                                                            |                                          |
|                              |              |             |                                                         |                                                        |                                           |                                         |                                                     |               |                |                    |                                                                  |                                                                                       |                                                   |        |                                                            |                                          |
|                              |              |             |                                                         |                                                        |                                           |                                         |                                                     |               |                |                    |                                                                  |                                                                                       |                                                   |        |                                                            |                                          |
|                              |              |             |                                                         |                                                        |                                           |                                         |                                                     |               |                |                    |                                                                  |                                                                                       |                                                   |        |                                                            |                                          |
|                              |              |             |                                                         |                                                        |                                           |                                         |                                                     |               |                |                    |                                                                  |                                                                                       |                                                   |        |                                                            |                                          |
|                              |              |             |                                                         |                                                        |                                           |                                         |                                                     |               |                |                    |                                                                  |                                                                                       |                                                   |        |                                                            |                                          |
|                              |              |             |                                                         |                                                        |                                           |                                         |                                                     |               |                |                    |                                                                  |                                                                                       |                                                   |        |                                                            |                                          |
|                              |              |             | :                                                       |                                                        |                                           |                                         |                                                     |               |                |                    |                                                                  |                                                                                       |                                                   |        |                                                            |                                          |
|                              |              |             |                                                         |                                                        |                                           |                                         |                                                     |               |                |                    |                                                                  |                                                                                       |                                                   |        |                                                            |                                          |
|                              |              |             |                                                         |                                                        |                                           |                                         |                                                     |               |                |                    |                                                                  |                                                                                       |                                                   |        |                                                            |                                          |
| 1                            |              |             |                                                         |                                                        |                                           |                                         |                                                     |               |                |                    |                                                                  |                                                                                       |                                                   |        |                                                            |                                          |



•

.

•

# **Chemex Labs Ltd.**

.

and the second second

1 . . .

. . . . . . . . . .

.

Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

\_\_\_\_\_

# To: RUBICON MINERALS CORPORATION INCOGNITA (BAFFIN) PROJECT 888 - 1100 MELVILLE ST. VANCOUVER, BC VGE 446

.

Comments: ATTN: KARIM MCLNNIS

.

| С                                                  | ERTIFI                       | CATE                                                                           | A9750055                                                                                             |                                                                                                                            |                                                                            | ANALYTICAL P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ROCEDURES                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                        |
|----------------------------------------------------|------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (MUCI) - F<br>Project:<br>P.O. # :                 | AUBICON N<br>BC105           |                                                                                | RATION                                                                                               | CHEMEX                                                                                                                     | NUMBER                                                                     | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | METHOD                                                                                                                                                                                                                                         | DETECTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | uppe <b>r</b><br>Limit                                                                                                                                                                 |
| Samples<br>This rep                                | submitte<br>port was<br>SAMI | ed to our lab<br>printed on 25<br>PLE PREPA                                    | RATION                                                                                               | 983<br>13<br>22<br>20<br>578<br>573<br>565<br>575<br>561<br>576                                                            | 22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22 | Au ppb: Fuse 30 g sample<br>As ppm: HNO3-aqua regia digest<br>Sb ppm: HC1-KClO3 digest, ertrac<br>Hg ppb: HNO3-HC1 digestion<br>Ag ppm: 24 element, rock & core<br>Al %: 24 element, rock & core<br>Ba ppm: 24 element, rock & core<br>Be ppm: 24 element, rock & core<br>Bi ppm: 24 element, rock & core<br>Ca %: 24 element, rock & core                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FA-AAS<br>AAS-HYDRIDE/EDL<br>AAS-BRGD CORR<br>AAS-FLAMELESS<br>AAS<br>ICP-AES<br>ICP-AES<br>ICP-AES<br>ICP-AES<br>ICP-AES<br>ICP-AES                                                                                                           | 5<br>1<br>0.2<br>10<br>0.2<br>0.01<br>10<br>0.5<br>2<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $ \begin{array}{r} 1.0000\\ 1.000\\ 1.000\\ 1.000\\ 1.0000\\ 1.00.0\\ 25.0\\ 1.000\\ 1.000\\ 1.000\\ 25.0 \end{array} $                                                                |
| CHEMEX<br>CODE<br>205<br>226<br>3202<br>285<br>287 | NUMBER<br>SAMPLES            | Geochem ring<br>0-3 Kg crush<br>Rock - save o<br>ICP - HF digo<br>Special dig' | DESCRIPTION<br>to approx 150 mesh<br>and split<br>ntire reject<br>stion charge<br>with organic ert'n | 562<br>563<br>569<br>577<br>566<br>558<br>554<br>559<br>560<br>584<br>559<br>560<br>582<br>579<br>572<br>556<br>558<br>451 | 22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22 | Cd ppm: 24 element, rock & core<br>Co ppm: 24 element, rock & core<br>Cr ppm: 24 element, rock & core<br>Fe %: 24 element, rock & core<br>Fe %: 24 element, rock & core<br>Mg %: 24 element, rock & core<br>Mn ppm: 24 element, rock & core<br>Na %: 24 element, rock & core<br>Ni ppm: 24 element, rock & core<br>P ppm: 24 element, rock & core<br>Fb ppm: 24 element, rock & core<br>Fi 3: 24 element, rock & core<br>Ti 3: 24 element, rock & core<br>Ti 3: 24 element, rock & core<br>Fi 3: 24 element, rock & core | ICP-AES<br>ICP-AES<br>ICP-AES<br>ICP-AES<br>ICP-AES<br>ICP-AES<br>ICP-AES<br>ICP-AES<br>ICP-AES<br>ICP-AES<br>ICP-AES<br>ICP-AES<br>ICP-AES<br>ICP-AES<br>ICP-AES<br>ICP-AES<br>ICP-AES<br>ICP-AES<br>ICP-AES<br>ICP-AES<br>ICP-AES<br>ICP-AES | 0.01<br>1<br>1<br>0.01<br>0.01<br>0.01<br>0.01<br>1<br>0.01<br>1<br>0.01<br>1<br>0.01<br>1<br>0.01<br>1<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.0 | 500<br>10000<br>10000<br>25.0<br>10.00<br>15.00<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000 |

A9750055

\_\_\_\_

.o: RUBICON MINERALS CORPORATION INCOGNITA (BAFFIN) PROJECT 888 - 1100 MELVILLE ST, VANCOUVER, BC V6E 4A6

Page Nu. Jer : 1-A Total Pages : 1 Certificate Date: 25-NOV-97 Invoice No. : 19750055 P.O. Number Account MUCI

• .

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

Analytical Chemists \* Geochemists \* Registered Assayers

**Chemex Labs Ltd.** 

. . .

.

,

0

Project : BC105 Comments: ATTN: KARIM MCLNNIS

. ~ .

. . . . . .

**CERTIFICATE OF ANALYSIS** \_\_\_\_\_\_

| •  |     | 066 |
|----|-----|-----|
| A9 | រោយ | 000 |

λ. . ٠ .

| SAMPLE                                                        | PRI<br>COI                             | EP<br>DE                               | Au ppb<br>PA+AA                | As<br>ppm                     | Sb<br>ppm                          | Hg<br>ppb                        | Ag ppm<br>AAS                                                                               | Al %<br>(ICP)                        | Ba ppm<br>(ICP)                      | Be ppm<br>(ICP)                  | Bi ppm<br>(ICP)                                    | Ca %<br>(ICP)                        | Cd ppm<br>(ICP)                                          | Co ppm<br>(ICP)              | Cr ppm<br>(ICP)               | Cu ppm<br>(ICP)              | Fe %<br>(ICP)                        | К %<br>( ICP )                       | Mg %<br>(ICP)                        | Mn ppm<br>(ICP)                   | Mo ppm<br>(ICP)          |
|---------------------------------------------------------------|----------------------------------------|----------------------------------------|--------------------------------|-------------------------------|------------------------------------|----------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------|----------------------------------|----------------------------------------------------|--------------------------------------|----------------------------------------------------------|------------------------------|-------------------------------|------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------|--------------------------|
| RMR 30000<br>RMR 30001<br>RMR 30002<br>RMR 30003<br>RMR 30004 | 205<br>205<br>205<br>205<br>205<br>205 | 226<br>226<br>226<br>226<br>226<br>226 | <pre></pre>                    | 7<br>24<br>41<br>7<br>64      | < 0,2<br>7.8<br>12,5<br>2.2<br>2.0 | 10<br>60<br>50<br>30<br>100      | <pre>&lt; 0.2 &lt; 0.2</pre> | 6,88<br>7,10<br>4,30<br>7,66<br>7,27 | 2040<br>1140<br>1430<br>5320<br>180  | 3.0<br>3.0<br>2.5<br>4.0<br>3.0  | <pre>{ 2 { 2 { 2 { 2 { 2 { 2 { 2 { 2 { 2 { 2</pre> | 5,59<br>5,16<br>8,57<br>4,25<br>4,25 | <pre>&lt; 0,5 &lt; 0,5 1.0 0.5 &lt; 0.5 &lt; 0.5</pre>   | t 8<br>19<br>23<br>21<br>1 B | 135<br>120<br>177<br>80<br>62 | 417<br>89<br>42<br>114<br>79 | 3.90<br>4.57<br>5.04<br>5.26<br>4.45 | 3.75<br>1.72<br>1.49<br>4.96<br>4.76 | 2.80<br>1.35<br>2.46<br>3.18<br>2.47 | 805<br>800<br>2280<br>940<br>910  | 1<br>( 1<br>3<br>3       |
| RMR 30005<br>RMR 30006<br>RMR 30007<br>RML 30008<br>RML 30009 | 205<br>205<br>205<br>205<br>205        | 226<br>226<br>226<br>226<br>226        | 10<br>300<br>< 5<br>< 5<br>50  | 44<br>1555<br>17<br>16<br>140 | 2,2<br>2,0<br>1,6<br>0,2<br>28     | 100<br>70<br>20<br>150<br>100    | <pre>&lt; 0,2 &lt; 0.2 &lt; 0.2</pre> | 7,21<br>8,30<br>7,51<br>8,11<br>8,40 | 190<br>310<br>5490<br>2290<br>1840   | 3,5<br>2,5<br>3,5<br>3,5<br>3,5  | <pre></pre>                                        | 4,80<br>3.08<br>4.91<br>2.67<br>2.93 | <pre>&lt; 0.5<br/>0.5<br/>0.5<br/>0.5<br/>&lt; 0.5</pre> | 18<br>13<br>20<br>12<br>12   | 91<br>45<br>75<br>54<br>42    | 69<br>100<br>105<br>53<br>82 | 3.56<br>3.91<br>5.25<br>3.94<br>4.35 | 4,96<br>4,19<br>5,00<br>4,45<br>3,67 | 2.48<br>1.57<br>3.13<br>1.24<br>1.11 | 780<br>810<br>1020<br>1095<br>980 | 3<br>1<br>5<br>1<br>1    |
| RMR 30010<br>RMR 30011<br>RMR 30012<br>RMR 30013<br>RMR 30014 | 205<br>205<br>205<br>205<br>205<br>205 | 226<br>226<br>226<br>226<br>226<br>226 | 10<br>< 5<br>240<br>325<br>< 5 | 11<br>14<br>195<br>224<br>6   | 6.6<br>0.8<br>20<br>30<br>1.0      | 280<br>220<br>1620<br>2130<br>50 | 0,6<br>(0,2<br>(0,2<br>(0,2<br>1,4<br>(0,2                                                  | 8,18<br>6,74<br>7,16<br>8,39<br>8,76 | 4140<br>410<br>310<br>230<br>3240    | 5,5<br>12,0<br>2,5<br>2,5<br>5,5 | <pre></pre>                                        | 0.47<br>1.86<br>2.73<br>1.02<br>1.65 | 1.0<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5                  | 26<br>28<br>12<br>11<br>5    | 39<br>349<br>49<br>56<br>51   | 140<br>14<br>47<br>60<br>12  | 4,40<br>4,51<br>3,21<br>3,34<br>2,17 | 5,03<br>1,26<br>4,29<br>7,05<br>3,38 | 1.28<br>4.68<br>0,86<br>1,60<br>0,69 | 3100<br>590<br>835<br>885<br>620  | 19<br>< 1<br>3<br>5<br>3 |
| BMR 30015<br>RMR 30016<br>RMR 30017<br>RMR 30018<br>RMR 30019 | 205<br>205<br>205<br>205<br>205        | 226<br>226<br>226<br>226<br>226<br>226 | <pre></pre>                    | 22<br>25<br>21<br>7<br>13     | 4.4<br>0.6<br>1.4<br>1.2<br>< 0.2  | 180<br>130<br>80<br>60<br>70     | <pre>{ 0,2<br/>( 0,2<br/>( 0,2<br/>1,2<br/>( 0,2</pre>                                      | 8,63<br>7,47<br>8,30<br>7,69<br>7,85 | 3218<br>1080<br>3720<br>6320<br>3960 | 4,0<br>3.0<br>4.0<br>4,0<br>3,5  | <pre></pre>                                        | 2.01<br>4.50<br>3.50<br>3.84<br>3.73 | 0.5<br>< 0,5<br>0.5<br>0.5<br>0.5                        | 8<br>22<br>13<br>16<br>12    | 4 B<br>65<br>39<br>67<br>37   | 29<br>103<br>88<br>81<br>83  | 2,84<br>4,75<br>4,22<br>4,78<br>4,24 | 3.53<br>5.18<br>4,63<br>5.81<br>4.53 | 0.75<br>2.46<br>1.33<br>2.61<br>1.03 | 565<br>970<br>920<br>900<br>895   | 3<br>5<br>4 L<br>2<br>2  |
| NMR30020<br>RMR30021                                          | 205<br>205                             | 226<br>226                             | <br>< S                        | 27<br>29                      | 3.0<br>2.6                         | 140<br>70                        | C 0.2<br>C 0.2                                                                              | 7,80<br>8.66                         | 2710<br>1790                         | 3,0<br>3,0                       | ( 2     ( 2     )                                  | 2,97<br>4,14                         | (0.5<br>0.5                                              | 25<br>21                     | 68<br>113                     | 103<br>113                   | 5,27<br>5,57                         | 5.29<br>5.40                         | 1.25<br>2.72                         | 955<br>945                        | 2<br>3                   |
|                                                               |                                        |                                        |                                |                               |                                    |                                  |                                                                                             |                                      |                                      |                                  |                                                    |                                      |                                                          |                              |                               |                              |                                      |                                      |                                      |                                   |                          |
|                                                               |                                        |                                        |                                |                               |                                    |                                  |                                                                                             |                                      |                                      |                                  |                                                    |                                      |                                                          |                              |                               |                              |                                      |                                      |                                      |                                   |                          |
|                                                               |                                        |                                        |                                |                               |                                    |                                  |                                                                                             |                                      |                                      |                                  |                                                    |                                      |                                                          |                              |                               |                              |                                      |                                      |                                      |                                   |                          |
|                                                               |                                        |                                        |                                |                               |                                    |                                  |                                                                                             |                                      |                                      |                                  |                                                    |                                      |                                                          |                              |                               |                              |                                      |                                      |                                      |                                   |                          |

.

\_\_\_\_



, ٦

# Chemex Labs Ltd.

Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONF: 601-984 0221 FAX: 604 984-0218

RUBICON MINERALS CORPORATION INCOGNITA (BAFFIN) PROJECT 888 - 1100 MELVILLE ST. VANCOUVER, BC 1 O ( V6E 4A6

Page N., Jer (1-B) Total Pages (1) Certificate Date: 25-NOV-97 Invoice No. (19750055) P.O. Number (19750055) MUCL Account

Project : BC105 Comments: ATTN: KARIM MCLNNIS

**CERTIFICATE OF ANALYSIS** 

A9750055

| SAMPLE                                                        | PREP<br>CODE                                                   | Na %<br>(⊺C₽)                                  | Ni ppm<br>(ICP)             | P ppm P<br>(ICP)                     | b ppm &<br>AAS             | Sr ppm<br>(ICP)                      | Ti %<br>(ICP)                        | V ppm<br>(ICP)                  | W ppm<br>(ICP)                                                             | 2n ppm<br>(ICP)             | FeO<br>%                             |                |             |
|---------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------|-----------------------------|--------------------------------------|----------------------------|--------------------------------------|--------------------------------------|---------------------------------|----------------------------------------------------------------------------|-----------------------------|--------------------------------------|----------------|-------------|
| RMB 30000<br>RMR 30001<br>RMR 30002<br>RMR 30003<br>RMR 30004 | 205 226<br>205 226<br>205 226<br>205 226<br>205 226<br>205 226 | 2.36<br>3.33<br>1.39<br>1.78<br>2.32           | 39<br>31<br>14<br>21<br>19  | 2260<br>1990<br>2600<br>3060<br>2590 | 24<br>16<br>18<br>14<br>12 | 975<br>1170<br>2910<br>1925<br>1550  | 0.44<br>0.31<br>0.19<br>0.54<br>0.32 | 144<br>155<br>149<br>203<br>154 | <pre>&lt; 10 &lt; 10</pre> | 78<br>96<br>70<br>96<br>88  | 3.60<br>6.29<br>7.74<br>6.63<br>5.04 |                |             |
| RMR 10005<br>RMR 10006<br>RMR 10007<br>RMR 10008<br>RMR 10009 | 205 226<br>205 226<br>205 226<br>205 226<br>205 226<br>205 226 | 1,90<br>4,16<br>1,55<br>2,97<br>3,79           | 25<br>8<br>20<br>31<br>9    | 2160<br>2210<br>3040<br>2320<br>2850 | 20<br>12<br>26<br>12<br>18 | 1015<br>1245<br>1555<br>1020<br>644  | 0.37<br>0.34<br>0.44<br>0.24<br>0.16 | 151<br>141<br>194<br>164<br>159 | <pre>&lt; 10 &lt; 10</pre> | 82<br>88<br>88<br>90<br>86  | 3.47<br>4.19<br>6.64<br>1.29<br>1.08 |                |             |
| RMR 30010<br>RMH 30011<br>RMH 30012<br>RMR 30013<br>RMR 30014 | 205 226<br>205 226<br>205 226<br>205 226<br>205 226<br>205 226 | 3,25<br>0,84<br>3,29<br>5 1,83<br>5 4,85       | 17<br>402<br>11<br>17<br>23 | 2160<br>170<br>1840<br>1480<br>750   | 300<br>6<br>30<br>36<br>50 | 645<br>360<br>1365<br>1275<br>1310   | 0,30<br>0,26<br>0,14<br>0,12<br>0,21 | 153<br>168<br>102<br>134<br>65  | <pre>&lt; 10 &lt; 10</pre> | 260<br>50<br>54<br>82<br>72 | 1.34<br>4.46<br>0.92<br>0.66<br>1.73 |                |             |
| RMR 30015<br>RMR 30016<br>RMR 30017<br>RMR 30018<br>RMR 30019 | 205 226<br>205 226<br>205 226<br>205 226<br>205 226<br>205 226 | 5 4.32<br>5 1.81<br>5 3.55<br>5 0.84<br>6 2.85 | 18<br>18<br>10<br>21<br>7   | 1360<br>2930<br>2440<br>2750<br>2240 | 44<br>14<br>26<br>80<br>22 | 1740<br>1935<br>1545<br>1570<br>1855 | 0,31<br>0,39<br>0,43<br>0,48<br>0,48 | 90<br>183<br>158<br>170<br>166  | <pre>&lt; i0 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre> | 80<br>90<br>86<br>92<br>88  | 2.16<br>5.25<br>2.49<br>5.48<br>3.60 |                |             |
| RMR 30020<br>RMR 30021                                        | 205 226<br>205 220                                             | 6 2.20<br>6 2.97                               | 35<br>47                    | 3160<br>3000                         | 18                         | 1070                                 | 0,31<br>0,46                         | 193<br>207                      | < 10<br>< 10                                                               | 102<br>96                   | 2.03<br>4.84                         |                |             |
|                                                               |                                                                |                                                |                             |                                      |                            |                                      |                                      |                                 |                                                                            |                             |                                      |                |             |
|                                                               |                                                                |                                                |                             |                                      |                            |                                      |                                      |                                 |                                                                            |                             |                                      |                |             |
|                                                               |                                                                |                                                |                             |                                      |                            |                                      |                                      |                                 |                                                                            |                             |                                      |                |             |
|                                                               |                                                                |                                                |                             |                                      | <b>L</b>                   | <b></b>                              |                                      |                                 |                                                                            |                             |                                      | CERTIFICATION: | <u>'' 0</u> |



# **Chemex Labs Ltd.**

Analytical Chemists \* Geochemists \* Registered Assayers 212 Brooksbank Ave., North Vancouver

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: RUBICON MINERALS CORPORATION INCOGNITA (BAFFIN) PROJECT 888 - 1 100 MELVILLE ST. VANCOUVER, BC V6E 4A6 QC Page #: 1 Tot QC Pg: 1 Date: 19-NOV-97 Invoice #: 19750056 P.O. #: MUCI

Project: BC105 Comments: ATTN: KARIM MCLNNIS

## QC DATA OF CERTIFICATE

A9750056

|                              |                  |             |                         |                      |                          |                      |                      |                      |                      |                              | -                            |                                  |                              |              |                             |  |
|------------------------------|------------------|-------------|-------------------------|----------------------|--------------------------|----------------------|----------------------|----------------------|----------------------|------------------------------|------------------------------|----------------------------------|------------------------------|--------------|-----------------------------|--|
| STD/DUP/BLANK<br>DESCRIPTION | QC<br>TYPE       | PAGE<br>NO. | A1203<br>%              | CaO<br>%             | Cr203<br>%               | Fe203<br>%           | R20<br>%             | MgO<br>%             | MnO<br>%             | Na 20<br>%                   | P205<br>%                    | sio2<br>%                        | TiO2<br>%                    | 1.01<br>%    | TOTAL<br>%                  |  |
| SY-4<br>Chemex Mean          | Std1<br><br>Dupi | 1<br>       | 21.62<br>20.69<br>13.55 | 9.12<br>9.05<br>8.86 | < 0.01<br>< 0.01<br>0.02 | 6.19<br>6.21<br>6.45 | 1.81<br>1.66<br>4.63 | 0.54<br>0.54<br>5.03 | 0.11<br>0.11<br>0.12 | 7.78<br>7.10<br>3.13<br>3.12 | 0.15<br>0.13<br>0.64<br>0.62 | 49.39<br>49.90<br>50.39<br>49.58 | 0.30<br>0.29<br>0.84<br>0.80 | <br><br>8,44 | 96.01<br><br>93.66<br>99.78 |  |
|                              | Origi            | -01         | 12.94                   | 8.63                 | 0.01                     | 6.08                 | 4.65                 | 4.79                 | 0.12                 |                              |                              |                                  |                              |              |                             |  |
|                              |                  |             |                         |                      |                          |                      |                      |                      |                      |                              |                              |                                  |                              |              |                             |  |
|                              |                  |             |                         |                      |                          |                      |                      |                      |                      |                              |                              |                                  |                              |              |                             |  |
|                              |                  |             |                         |                      |                          |                      |                      |                      |                      |                              |                              |                                  |                              |              |                             |  |
|                              |                  |             |                         |                      |                          |                      |                      |                      |                      |                              |                              |                                  |                              |              |                             |  |
|                              |                  |             |                         |                      |                          |                      |                      |                      |                      |                              |                              |                                  |                              |              |                             |  |
|                              |                  | 1           |                         |                      |                          |                      |                      |                      |                      |                              |                              |                                  |                              |              |                             |  |
|                              |                  |             |                         |                      |                          |                      |                      |                      |                      |                              |                              |                                  |                              |              |                             |  |
|                              |                  |             |                         |                      |                          |                      |                      |                      |                      |                              |                              |                                  |                              |              |                             |  |
|                              |                  |             |                         |                      |                          |                      |                      |                      |                      |                              |                              |                                  |                              |              |                             |  |



# Chemex Labs Ltd.

Analytical Chemists \* Geochemists \* Hegistered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

# To: RUBICON MINERALS CORPORATION INCOGNITA (BAFFIN) PROJECT 888 - 1100 MELVILLE ST. VANCOUVER, BC V6E 4A6

. . . . . . . . . .

Comments: ATEN: KARIM MCLNNIS

.

| c                                | ERTIF               | ICATE A97500                                           | 56                                                           |                                                                      | ANALYTICAL                                                                                                                                                   | PROCEDURES                                                                           |                                                      |                                                                    |
|----------------------------------|---------------------|--------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------|
| (MUCI) -<br>Project;<br>P.O. # ; | RUBICON<br>BC 105   | MINERALS CORPORATION                                   | CHEME                                                        |                                                                      | DESCRIPTION                                                                                                                                                  | METHOD                                                                               | DETECTION                                            | Upper<br>Limit                                                     |
| Samp)as<br>This re               | submitt<br>port was | ed to our lab in Vancouver, F<br>printed on 20-NOV-97. | BC. 59<br>58<br>58<br>58<br>58<br>58<br>58<br>58<br>59<br>59 | 22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22 | Al203 %: Whole rock<br>CaO %: Whole rock<br>Cr203 %: Whole Rock<br>Fe203(total) %: Whole rock<br>K20 %: Whole rock<br>MgO %: Whole rock<br>MnO %: Whole rock | ICP-AES<br>ICP-AES<br>ICP-AES<br>ICP-AES<br>ICP-AES<br>ICP-AES<br>ICP-AES<br>ICP-AES | 0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01 | 100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00 |
|                                  | SAM                 | PLE PREPARATION                                        | 599                                                          | 22                                                                   | Na20 %: Whole rock<br>P205 %: Whole rock                                                                                                                     | ICP- <b>Nes</b><br>ICP- <b>Nes</b>                                                   | 0.01                                                 | 100.00<br>100.00                                                   |
| CHEMEX<br>CODE                   | NUMBER<br>SAMPLES   | DESCRIPTION                                            |                                                              | 22<br>22<br>22<br>22                                                 | TiO2 %: Whole rock<br>L.O.I. %: @ 1000 deg.C<br>Total %                                                                                                      | icp-aes<br>icp-aes<br>furnace<br>calculation                                         | 0.01<br>0.01<br>0.01<br>0.01                         | 100.00<br>100.00<br>99.99<br>105.00                                |
| 299<br>200                       | 22<br>22            | Pulp; prepped on other work<br>Whole rock fusion       | orđer                                                        |                                                                      |                                                                                                                                                              |                                                                                      |                                                      |                                                                    |
|                                  |                     |                                                        |                                                              |                                                                      |                                                                                                                                                              |                                                                                      |                                                      |                                                                    |
|                                  |                     |                                                        |                                                              |                                                                      |                                                                                                                                                              |                                                                                      |                                                      |                                                                    |
|                                  |                     |                                                        |                                                              |                                                                      |                                                                                                                                                              |                                                                                      |                                                      |                                                                    |

A9750056

C

-2

# Chemex Labs Ltd.

Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 201 PHONE: 604-984-0221 FAX: 604-984-0218

Fo: RUBICON MINERALS CORPORATION INCOGNITA (BAFFIN) PROJECT 868 - 1100 MELVILLE ST. VANCOUVER, BC V6E 4A6

.....

Page 1 Jer : 1 Total Pages :1 Certificate Date: 19-NOV-97 Invoice No. : 19750056 P.O. Number ; Account : MUCI

BC105 Project : Comments: ATTN: KARIM MCI NNIS -----

|                                                               | r                                      |                                        | • • • • • • • • • • • • • • • •           | r                                     |                                            |                                      |                                      |                                        | CERTI                                | FICATE                               | OF AN                                | ALYSIS                                    | i/                                   | 4975008                                | 56                                            |  |
|---------------------------------------------------------------|----------------------------------------|----------------------------------------|-------------------------------------------|---------------------------------------|--------------------------------------------|--------------------------------------|--------------------------------------|----------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------------|--------------------------------------|----------------------------------------|-----------------------------------------------|--|
| SAMPLE                                                        | PR<br>CO                               | EP<br>DE                               | A1203<br>%                                | CaO<br>%                              | Cr203<br>%                                 | Fe203<br>%                           | K20<br>%                             | MgC<br>%                               | MnO<br>%                             | Na20<br>%                            | P205<br>%                            | sio2<br>%                                 | TiO2<br>%                            | LOI<br>%                               | TOTAL<br>%                                    |  |
| RMR 30000<br>RMR 30001<br>RMR 30002<br>RMR 30003<br>RMR 30004 | 299<br>299<br>299<br>299<br>299<br>299 | 200<br>200<br>200<br>200<br>200        | 12.94<br>13.99<br>9.20<br>14.50<br>14.91  | 8.63<br>8.06<br>14.81<br>6.46<br>6.82 | 0.01<br>0.01<br>0.03<br>0.01<br>0.01       | 6.08<br>7.28<br>8.66<br>8.20<br>7.32 | 4.65<br>2.15<br>2.01<br>7.83<br>6.39 | 4.79<br>2.43<br>4.68<br>5.42<br>4.47   | 0.12<br>0.12<br>0.36<br>0.13<br>0.13 | 3.12<br>4.77<br>2.07<br>2.25<br>3.32 | 0.62<br>0.54<br>0.76<br>0.83<br>0.73 | 49.58<br>49.18<br>37.45<br>48.11<br>47.90 | 0.80<br>0.83<br>0.69<br>0.97<br>0.90 | 8.44<br>11.94<br>20.24<br>5.68<br>8.44 | 99.78<br>101.30<br>100.95<br>100.40<br>101.35 |  |
| RMR 30005<br>RMR 30006<br>RMR 30007<br>RMR 30008<br>RMR 30009 | 299<br>299<br>299<br>299<br>299<br>299 | 200<br>200<br>200<br>200<br>200<br>200 | 13.55<br>15.31<br>14.17<br>15.45<br>16.43 | 7.11<br>4.42<br>7.48<br>3.89<br>4.31  | 0.01<br>< 0.01<br>0.01<br>< 0.01<br>< 0.01 | 5.39<br>5.75<br>8.11<br>5.90<br>6.66 | 6.04<br>5.18<br>6.33<br>5.52<br>4.37 | 4.11<br>2.55<br>5.34<br>2.10<br>1.89   | 0.11<br>0.11<br>0.14<br>0.15<br>0.14 | 2.56<br>5.87<br>1.92<br>4.26<br>5.54 | 0.58<br>0.57<br>0.84<br>0.62<br>0.73 | 50.65<br>52.38<br>46.91<br>55.68<br>53.81 | 0.79<br>0.88<br>0.95<br>0.72<br>0.97 | 7.91<br>7.89<br>8.49<br>6.81<br>6.36   | 98.81<br>100,90<br>100.70<br>101.10<br>101.20 |  |
| RMR30010<br>RMR30011<br>RMR30012<br>RMR30013<br>RMR30014      | 299<br>299<br>299<br>299<br>299<br>299 | 200<br>200<br>200<br>200<br>200        | 17.09<br>12.94<br>13.95<br>16.02<br>17.53 | 0.73<br>2.78<br>4.10<br>4.42<br>2.53  | < 0.01<br>0.05<br>0.01<br>0.01<br>< 0.01   | 7.24<br>7.12<br>5.02<br>5.16<br>3.49 | 6.95<br>4.51<br>5.45<br>9.53<br>4.22 | $2.31 \\ 8.16 \\ 1.44 \\ 2.66 \\ 1.20$ | 0.45<br>0.08<br>0.12<br>0.12<br>0.09 | 4.76<br>1.04<br>4.76<br>2.58<br>7.37 | 0.64<br>0.06<br>0.52<br>0.41<br>0.23 | 55.75<br>48.34<br>56.55<br>51.25<br>60.54 | 0,94<br>0,88<br>0,67<br>0,67<br>0,40 | 1.81<br>13.30<br>6.53<br>7.48<br>3.42  | 98.67<br>99.26<br>99.12<br>100.30<br>101.00   |  |
| RMR30015<br>RMR30016<br>RMR30017<br>RMR30018<br>RMR30019      | 299<br>299<br>299<br>299<br>299<br>299 | 200<br>200<br>200<br>200<br>200        | 16.31<br>14.26<br>15.80<br>14.50<br>15.40 | 2.95<br>6.88<br>5.05<br>5.63<br>5.63  | < 0.01<br>0.01<br>0.01<br>0.01<br>< 0.01   | 4.33<br>7.54<br>6.47<br>7.21<br>6.64 | 4.26<br>6.76<br>5.60<br>8.74<br>5.57 | 1.23<br>4.20<br>2.21<br>4.41<br>1.76   | 0.08<br>0.14<br>0.12<br>0.12<br>0.13 | 6.30<br>2.45<br>5.08<br>1.07<br>4.05 | 0.37<br>0.80<br>0.64<br>0.73<br>0.62 | 60.13<br>45.03<br>52.00<br>49.55<br>51.91 | 0.55<br>0.91<br>0.90<br>0.89<br>0.84 | 3.60<br>9.80<br>7.31<br>6.18<br>7.34   | 100.10<br>98.78<br>101.20<br>99.03<br>99.89   |  |
| RMR30020<br>RMR30021                                          | 299<br>299                             | 200<br>200                             | 15.33<br>14.74                            | 4.55<br>5.61                          | 0.01<br>0.01                               | 9.26<br>7.69                         | 6.62<br>5.67                         | 2.19<br>4.12                           | 0.13<br>0.12                         | 3.23<br>3.51                         | 0.88<br>0.73                         | 50.55<br>50.32                            | 1.02<br>0.90                         | 7.02<br>7.85                           | 99.79<br>101.25                               |  |
|                                                               |                                        |                                        |                                           |                                       |                                            |                                      |                                      |                                        |                                      |                                      |                                      |                                           |                                      |                                        |                                               |  |
|                                                               |                                        |                                        |                                           |                                       |                                            |                                      |                                      |                                        |                                      |                                      |                                      |                                           |                                      |                                        |                                               |  |
|                                                               |                                        |                                        |                                           |                                       |                                            |                                      |                                      |                                        |                                      |                                      |                                      |                                           |                                      |                                        |                                               |  |
|                                                               |                                        |                                        |                                           |                                       |                                            |                                      |                                      |                                        |                                      |                                      |                                      |                                           |                                      |                                        |                                               |  |

Star P. A.S.



Г

ſ

# Chemex Labs Ltd.

Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 North Vancouver V7J 2C1

| To: | RUBICON MINERALS CORPORATION |
|-----|------------------------------|
|     | 888 - 1100 MELVILLE ST.      |
|     | VANCOUVER, BC                |

QC Page #: Tot QC Pg: Date: 1-A 1 21-NOV-97 19750057 Invoice #: P.O. #: MUCI

٦

.

,

Project: BC105 Comments: ATTN: KARIM MCLNNIS

### **QC DATA OF CERTIFICATE**

A9750057

• .

| STD/DUP/BLANK<br>DESCRIPTION | QC<br>Lije  | PAGE<br>NO.  | Ba<br>ppm    | Ce<br>ppm      | Cs<br>ppm  | Со<br>ррв                             | Cu<br>ppm  | Dy<br>ppm      | Er<br>ppm      | Eu<br>ppm      | Gđ<br>ppm    | Ga<br>ррм | Hf<br>ppm  | Во<br>ррш      | La<br>ppm      | Pb<br>Mqq  | Lu<br>ppm      | Nd<br>ppm      | Ni<br>ppm | Ир<br>Шаба | Pr<br>ppm      |
|------------------------------|-------------|--------------|--------------|----------------|------------|---------------------------------------|------------|----------------|----------------|----------------|--------------|-----------|------------|----------------|----------------|------------|----------------|----------------|-----------|------------|----------------|
| SIO2-ME3<br>Chemex Mean      | 91nk<br>    | 1            | 34.5         | 0.5<br>< 0.5   | < 0.1      | 2,5                                   | < 5        | < 0.1<br>< 0.1 | < 0.1<br>< 0.1 | < 0.1<br>< 0.1 | 0.1<br>< 0.1 | < 1<br>   | < 1<br>< 1 | < 0.1<br>< 0.1 | < 0.5<br>< 0.5 | < 5<br>< 5 | < 0.1<br>< 0.1 | < 0.5<br>< 0.5 | < 5       | < 1        | < 0,1<br>< 0.1 |
| SY-4<br>Chemex mean          | 8td1<br>    | 1            | 364<br>340   | 120.0<br>122.0 | 1.6<br>1.5 | 2.5<br>2.8                            | 5<br>7     | 19.2<br>18.2   | 14.4<br>14.2   | 2.0<br>2.0     | 15.3<br>14.0 | 34<br>35  | 11<br>11   | 4.6<br>4.3     | 57.5<br>58.0   | 10<br>10   | 2.2<br>2.1     | 54.5<br>57.0   | 5<br>9    | 13<br>13   | 15.9<br>15.0   |
| HMR 30000                    | Dup<br>Drig | L-01<br>L-01 | 2300<br>2350 | 115.5<br>112.0 | 7.8<br>7.7 | 25.0<br>24.5                          | 395<br>390 | 4.6<br>4.3     | 1.8<br>2.0     | 3.3<br>2.8     | 10.0<br>9.6  | 19<br>20  | 5<br>5     | 0.7<br>0.7     | 57.0<br>54.5   | 25<br>15   | 0.2            | 59.5<br>55.0   | 50<br>45  | 13<br>12   | 15.0<br>14.5   |
|                              |             |              |              |                |            |                                       |            |                |                |                |              |           |            |                |                |            |                |                |           |            |                |
|                              |             |              |              |                |            |                                       |            |                |                |                |              |           |            |                |                |            |                |                |           |            |                |
|                              |             |              |              |                |            |                                       |            |                |                |                |              |           |            |                |                |            |                |                |           |            |                |
|                              |             |              |              |                |            |                                       |            |                |                |                |              |           |            |                |                |            |                |                |           |            |                |
|                              |             |              |              |                |            |                                       |            |                |                |                |              |           |            |                |                |            |                |                |           |            |                |
|                              |             |              |              |                |            |                                       |            |                |                |                |              |           |            |                |                |            |                |                |           |            |                |
|                              |             |              |              |                |            |                                       |            |                |                |                |              |           |            |                |                |            |                |                |           |            |                |
|                              |             |              |              |                |            |                                       |            |                |                |                |              |           |            |                |                |            |                |                |           |            |                |
|                              |             |              |              |                |            |                                       |            |                |                |                |              |           |            |                |                |            |                |                |           |            |                |
|                              |             |              |              |                |            |                                       |            |                |                |                |              |           |            |                |                |            |                |                |           |            |                |
|                              |             |              |              |                |            |                                       |            |                |                |                |              |           |            |                |                |            |                |                |           |            |                |
|                              |             |              |              |                |            |                                       |            |                |                |                |              |           |            |                |                |            |                |                |           |            |                |
|                              |             |              |              |                |            |                                       |            |                |                |                |              |           |            |                |                |            |                |                |           |            |                |
| L                            |             |              |              |                |            | · · · · · · · · · · · · · · · · · · · |            |                |                |                |              |           |            |                |                |            |                |                |           |            |                |

CERTIFICATION: tout Suchler

To: RUBICON MINERALS CORPORATION INCOGNITA (BAFFIN) PROJECT 888 - 1100 MELVILLE ST. VANCOUVER, BC V6E 4A6 QC Page #: 1-B Tot QC Pg: 1 Date: 21-NOV-97 Invoice #: 19750057 P.O. #: MUCI

. .

•

. .

Project: BC105 Comments: ATTN: KARIM MCLNNIS

|                              |              |              |                |              |            |              |            |                |              |            | QC             | DAT        | 4 OF       | CERT             | IFICA      | TE             | <u>م</u>       | 9750      | 057            |  |
|------------------------------|--------------|--------------|----------------|--------------|------------|--------------|------------|----------------|--------------|------------|----------------|------------|------------|------------------|------------|----------------|----------------|-----------|----------------|--|
| STD/DUP/BLANK<br>DESCRIPTION | QC I<br>PYPE | PAGE<br>NO.  | Rb<br>ppm      | Sn<br>ppm    | Ag<br>ppm  | Sr<br>ppm    | Та<br>ррш  | Tb<br>ppm      | T1<br>ppm    | Th<br>ppm  | Tm<br>ppm      | Sn<br>ppm  | ррт<br>М   | ndd<br>D         | V<br>ppm   | Ур<br>рра      | Y<br>ppm       | Zn<br>ppm | Zr<br>ppm      |  |
| SI02-ME3                     | 41nk         | 1            | 0.8            | 0.2          | < 1<br>< 1 | 2.8          | < 0.5      | < 0.1<br>< 0.1 | < 0.5        | < 1<br>< 1 | < 0.1<br>< 0.1 | < 1<br>< 1 | < 1<br>< } | < 0.5<br>< 0.5 - | 5          | < 0.1<br>< 0.1 | < 0.5          | < 5       | 4.0            |  |
| CHEMEX DEAN                  | sta1         | 1            | 58.4           | 13.3         | < 1<br>< 1 | 1240<br>1190 | 0.5<br>0.9 | 3.0<br>2.6     | < 0,5        | < 1<br>1   | 2.4<br>2.3     | 8<br>11 -  | < 1        | 1.0<br>0.8       | < 5<br>B   | 14.3<br>14.8   | 114.5<br>119.0 | 95<br>93  | 514<br>517     |  |
| CHEMEX MEAN                  | Dup<br>Drig  | 1-01<br>1-01 | 123.0<br>121.0 | 10.6<br>10.6 | < 1<br>2   | 920<br>882   | 0.5<br>0.5 | 1.2<br>1.1     | < 0.5<br>0.5 | 11<br>10   | 0.2<br>0.1     | 2<br>1     | < 1<br>< 1 | 6.5<br>6.5       | 125<br>120 | 1.3<br>1.2     | 20.0<br>19.5   | 80<br>90  | 198.5<br>182.5 |  |
|                              |              |              |                |              |            |              |            |                |              |            |                |            |            |                  |            |                |                |           |                |  |
|                              |              |              |                |              |            |              |            |                |              |            |                |            |            |                  |            |                |                |           |                |  |
|                              |              |              |                |              |            |              |            |                |              |            |                |            |            |                  |            |                |                |           |                |  |
|                              |              |              |                |              |            |              |            |                |              |            |                |            |            |                  |            |                |                |           |                |  |
|                              |              |              |                |              |            |              |            |                |              |            |                |            |            |                  |            |                |                |           |                |  |
|                              |              |              |                |              |            |              |            |                |              |            |                |            |            |                  |            |                |                |           |                |  |
|                              | ł            |              |                |              |            |              |            |                |              |            |                |            |            |                  |            |                |                |           |                |  |
|                              |              |              |                |              |            |              |            |                |              |            |                |            |            |                  |            |                |                |           |                |  |
|                              |              |              |                |              |            |              |            |                |              |            |                |            |            |                  |            |                |                |           |                |  |
|                              |              |              |                |              |            |              |            |                |              |            |                |            |            |                  |            |                |                |           |                |  |
|                              |              |              |                |              |            |              |            |                |              |            |                |            |            |                  |            |                |                |           |                |  |
|                              |              |              |                |              |            |              |            |                |              |            |                |            |            |                  |            |                |                |           |                |  |
| L                            |              |              |                |              |            |              |            |                |              |            |                |            |            |                  |            |                | 11             |           | $A \leq A > 0$ |  |

**Chemex Labs Ltd.** 

Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

۰,

C

CERTIFICATION: NCL. 7.4 24 CANAA



- -

# **Chemex Labs Ltd.**

•

Analytical Chemists \* Geochemists \* Registered Assayers 212 Brooksbank Ave., North Vancouver Biltish Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

#### RUBICON MINERALS CORPORATION INCOGNITA (BAFFIN) PROJECT 888 - 1100 MELVILLE ST. To: VANCOUVER, BC V6E 4A6

Comments: ATTN: KARIM MCLNNIS

.

.

. ......

| NUCI) - RUBICON<br>oject: BC105<br>O. W :<br>amples submit:<br>nis report wa<br>SAN<br>SAN<br>CODE NUMBER<br>CODE SAMPLE | MINERALS CORPORATION<br>ed to our lab in Vancouver, BC.<br>printed on 21-NOV-97.<br>PLE PREPARATION<br>DESCRIPTION | CHEMEX<br>CODE<br>2855<br>2501<br>2858<br>2859<br>2860<br>2502<br>2503<br>2504<br>2505<br>2861<br>2842<br>2506<br>2506 | NUMBER<br>SAMPI ES<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22 | DESCRIPTION<br>Ba ppm: ICP-MS<br>Co ppm: ICP-MS<br>Co ppm: ICP-MS<br>Co ppm: ICP-MS<br>Cu ppm: ICP-MS<br>Dy ppm: ICP-MS<br>Bu ppm: ICP-MS<br>Gd ppm: ICP-MS<br>Gd ppm: ICP-MS<br>UF prm: ICP-MS | METHOD<br>ICP-MS<br>ICP-MS<br>ICP-MS<br>ICP-MS<br>ICP-MS<br>ICP-MS<br>ICP-MS<br>ICP-MS<br>ICP-MS<br>ICP-MS | DETECTION<br>LIMIT<br>0.5<br>0.5<br>0.1<br>0.5<br>5<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>1 | UPPER<br>LIMR<br>10000<br>10000<br>10000<br>10000<br>1000<br>1000<br>100 |
|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| OBCI: BC105<br>O.W:<br>amples submit<br>ais report wa<br>SAN<br>CHEMEX NUMBER<br>CODE SAMPLE<br>299 22                   | ed to our lab in Vancouver, BC.<br>printed on 21-NOV-97.<br>PLE PREPARATION<br>DESCRIPTION                         | 2855<br>2501<br>2858<br>2859<br>2860<br>2502<br>2503<br>2504<br>2505<br>2861<br>2842<br>2506<br>2507                   | 22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22                       | Ba ppm: ICP-MS<br>Co ppm: ICP-MS<br>Cs ppm: ICP-MS<br>Co ppm: ICP-MS<br>Cu ppm: ICP-MS<br>Dy ppm: ICP-MS<br>Er ppm: ICP-MS<br>Eu ppm: ICP-MS<br>Gd ppm: ICP-MS<br>Ga ppm: ICP-MS                | ICP-MS<br>ICP-MS<br>ICP-MS<br>ICP-MS<br>ICP-MS<br>ICP-MS<br>ICP-MS<br>ICP-MS<br>ICP-MS<br>ICP-MS<br>ICP-MS | 0.5<br>0.5<br>0.1<br>0.5<br>5<br>0.1<br>0.1<br>0.1<br>0.1                                   | 10000<br>10000<br>10000<br>10000<br>10000<br>1000<br>100                 |
| SAN<br>SAN<br>CHEMEX NUMBER<br>CODE SAMPLE<br>299 22                                                                     | ed to our lab in Vancouver, BC.<br>printed on 21-NOV-97.<br>PLE PREPARATION<br>DESCRIPTION                         | 2055<br>2501<br>2858<br>2859<br>2860<br>2502<br>2503<br>2504<br>2505<br>2861<br>2842<br>2506<br>2507                   | 22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22                       | Ba ppm: ICP-MS<br>Co ppm: ICP-MS<br>Cs ppm: ICP-MS<br>Co ppm: ICP-MS<br>Cu ppm: ICP-MS<br>By ppm: ICP-MS<br>Er ppm: ICP-MS<br>Eu ppm: ICP-MS<br>Gd ppm: ICP-MS<br>Ga ppm: ICP-MS                | ICP-MS<br>ICP-MS<br>ICP-MS<br>ICP-MS<br>ICP-MS<br>ICP-MS<br>ICP-MS<br>ICP-MS<br>ICP-MS<br>ICP-MS<br>ICP-MS | 0.5<br>0.5<br>0.1<br>0.5<br>5<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1                            | 10000<br>10000<br>10000<br>10000<br>10000<br>1000<br>100                 |
| SAN<br>SAN<br>HEMEX NUMBER<br>CODE SAMPLE                                                                                | ed to our lab in Vancouver, BC.<br>printed on 21-NOV-97.<br>PLE PREPARATION<br>DESCRIPTION                         | 2850<br>2501<br>2858<br>2859<br>2860<br>2502<br>2503<br>2504<br>2505<br>2861<br>2842<br>2506<br>2507                   | 22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22                       | Co ppm: ICP-MS<br>Co ppm: ICP-MS<br>Co ppm: ICP-MS<br>Co ppm: ICP-MS<br>Cu ppm: ICP-MS<br>Br ppm: ICP-MS<br>Er ppm: ICP-MS<br>Gd ppm: ICP-MS<br>Ga ppm: ICP-MS                                  | ICP-MS<br>ICP-MS<br>ICP-MS<br>ICP-MS<br>ICP-MS<br>ICP-MS<br>ICP-MS<br>ICP-MS<br>ICP-MS<br>ICP-MS           | 0.5<br>0.1<br>0.5<br>5<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1                                   | 10000<br>10000<br>10000<br>10000<br>1000<br>1000<br>1000                 |
| SAN<br>SAN<br>HEMEX NUMBER<br>CODE SAMPLE                                                                                | PLE PREPARATION<br>DESCRIPTION                                                                                     | 2501<br>2858<br>2859<br>2860<br>2502<br>2503<br>2504<br>2505<br>2861<br>2842<br>2506<br>2507                           | 22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22                             | CS ppm: ICP-MS<br>Co ppm: ICP-MS<br>Cu ppm: ICP-MS<br>Dy ppm: ICP-MS<br>Kr ppm: ICP-MS<br>Ku ppm: ICP-MS<br>Gd ppm: ICP-MS<br>Ga ppm: ICP-MS                                                    | ICP-MS<br>ICP-MS<br>ICP-MS<br>ICP-MS<br>ICP-MS<br>ICP-MS<br>ICP-MS<br>ICP-MS<br>ICP-MS                     | 0.1<br>0.5<br>5<br>0.1<br>0.1<br>0.1<br>0.1<br>1                                            | 10000<br>10000<br>10000<br>1000<br>1000<br>1000<br>1000                  |
|                                                                                                                          | PLE PREPARATION<br>DESCRIPTION                                                                                     | 2859<br>2860<br>2502<br>2503<br>2504<br>2505<br>2861<br>2842<br>2506<br>2507                                           | 22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22                                   | Coppm: ICP-MS<br>Coppm: ICP-MS<br>Dy ppm: ICP-MS<br>Er ppm: ICP-MS<br>Eu ppm: ICP-MS<br>Gd ppm: ICP-MS<br>Ga ppm: ICP-MS<br>UF ppm: ICP-MS                                                      | ICP-MS<br>ICP-MS<br>ICP-MS<br>ICP-MS<br>ICP-MS<br>ICP-MS<br>ICP-MS<br>ICP-MS                               | 0.5<br>5<br>0.1<br>0.1<br>0.1<br>0.1<br>1                                                   | 10000<br>10000<br>1000<br>1000<br>1000<br>1000<br>1000                   |
| SAN<br>NUMBER<br>CODE SAMPLE                                                                                             | PLE PREPARATION<br>DESCRIPTION                                                                                     | 2860<br>2502<br>2503<br>2504<br>2505<br>2861<br>2842<br>2506<br>2507                                                   | 22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22                                         | Cu ppm: ICP-MS<br>Dy ppm: ICP-MS<br>Er ppm: ICP-MS<br>Eu ppm: ICP-MS<br>Gd ppm: ICP-MS<br>Ga ppm: ICP-MS<br>Ga ppm: ICP-MS                                                                      | ICP-MS<br>ICP-MS<br>ICP-MS<br>ICP-MS<br>ICP-MS<br>ICP-MS<br>ICP-MS                                         | 5<br>0.1<br>0.1<br>0.1<br>0.1<br>1                                                          | 10000<br>1000<br>1000<br>1000<br>1000<br>1000                            |
| SAN<br>CHEMEX NUMBER<br>CODE SAMPLE                                                                                      | PLE PREPARATION<br>DESCRIPTION                                                                                     | 2502<br>2503<br>2504<br>2505<br>2861<br>2842<br>2506<br>2507                                                           | 22<br>22<br>22<br>22<br>22<br>22<br>22<br>22                                                     | Dy ppm: ICP-MS<br>Er ppm: ICP-MS<br>Eu ppm: ICP-MS<br>Gd ppm: ICP-MS<br>Ga ppm: ICP-MS<br>HE ppm: ICP-MS                                                                                        | ICP-MS<br>ICP-MS<br>ICP-MS<br>ICP-MS<br>ICP-MS<br>ICP-MS                                                   | 0.1<br>0.1<br>0.1<br>0.1<br>1                                                               | 1000<br>1000<br>1000<br>1000<br>1000                                     |
| SAN<br>CHEMEX NUMBER<br>CODE SAMPLE                                                                                      | PLE PREPARATION<br>DESCRIPTION                                                                                     | 2503<br>2504<br>2505<br>2861<br>2842<br>2506<br>2507                                                                   | 22<br>22<br>22<br>22<br>22<br>22<br>22                                                           | Er ppm: ICP-MS<br>Eu ppm: ICP-MS<br>Gd ppm: ICP-MS<br>Ga ppm: ICP-MS<br>HE prm: ICP-MS                                                                                                          | ICP-MS<br>ICP-MS<br>ICP-MS<br>ICP-MS<br>ICP-MS                                                             | 0.1<br>0.1<br>0.1                                                                           | 1000<br>1000<br>1000<br>1000                                             |
| SAN<br>HEMEX NUMBER<br>SAMPLE<br>299 22                                                                                  | PLE PREPARATION<br>DESCRIPTION                                                                                     | 2503<br>2505<br>2861<br>2842<br>2506<br>2506<br>2507                                                                   | 22<br>22<br>22<br>22                                                                             | Bu ppm; ICF-MS<br>Gd ppm; ICF-MS<br>Ga ppm; ICF-MS<br>HE prm; ICF-MS                                                                                                                            | ICP-MS<br>ICP-MS<br>ICP-MS<br>ICP-MS                                                                       | 0.1<br>0.1<br>1                                                                             | 1000<br>1000<br>1000                                                     |
| SAN<br>CODE SAMPLE                                                                                                       | PLE PREPARATION<br>DESCRIPTION                                                                                     | 2505<br>2861<br>2842<br>2506<br>2507                                                                                   | 22<br>22<br>22                                                                                   | GA ppm: ICP-MS<br>Ga ppm: ICP-MS<br>Mf ppm: ICP-MS                                                                                                                                              | ICP-MS<br>ICP-MS<br>ICP-MS                                                                                 | 0.1                                                                                         | 1000<br>1000                                                             |
| SAN<br>NUMBER<br>CODE SAMPLE                                                                                             | PLE PREPARATION<br>DESCRIPTION                                                                                     | ~ 2861<br>2842<br>2506<br>2507                                                                                         | 22                                                                                               | Ga ppm: ICP-MS                                                                                                                                                                                  | ICP-MS<br>ICP-MS                                                                                           | 1                                                                                           | 1000                                                                     |
| CODE SAMPLE                                                                                                              | DESCRIPTION                                                                                                        | ~ 2842<br>2506<br>2507                                                                                                 | 22                                                                                               | WE TERME TOP-MS                                                                                                                                                                                 | 109-M8                                                                                                     | -                                                                                           |                                                                          |
| CODE NUMBER<br>CODE SAMPLE                                                                                               | DESCRIPTION                                                                                                        | 2506<br>2507                                                                                                           | 1 22                                                                                             | 1 41 5. 171-444 4. 252 2. 202                                                                                                                                                                   | T#* PD                                                                                                     | 1                                                                                           | 10000                                                                    |
| CODE SAMPLE                                                                                                              | DESCRIPTION                                                                                                        | 2507                                                                                                                   | 1 44                                                                                             | HO DOMI IPC-MA                                                                                                                                                                                  | ICB-N8                                                                                                     | 0.1                                                                                         | 1000                                                                     |
| 299 22                                                                                                                   | DESCRIPTION                                                                                                        |                                                                                                                        | 22                                                                                               | I.a ppm: ICP-MS                                                                                                                                                                                 | ICP-MS                                                                                                     | 0.5                                                                                         | 10000                                                                    |
| 299 22                                                                                                                   |                                                                                                                    | 2862                                                                                                                   | 1 22                                                                                             | Pb ppm: ICP-MS                                                                                                                                                                                  | ICP-MS                                                                                                     | 5                                                                                           | 10000                                                                    |
| 299 22                                                                                                                   |                                                                                                                    | 2508                                                                                                                   | 22                                                                                               | Lu ppm: ICP-MS                                                                                                                                                                                  | ICP-MS                                                                                                     | 0.1                                                                                         | 1000                                                                     |
| 299 22                                                                                                                   |                                                                                                                    | - 2509                                                                                                                 | 22                                                                                               | Nd ppm: ICP-MS                                                                                                                                                                                  | ICP-MS                                                                                                     | 0.5                                                                                         | 1000                                                                     |
| 299 22                                                                                                                   |                                                                                                                    | 2863                                                                                                                   | 22                                                                                               | NI ppm: ICP-MS                                                                                                                                                                                  | ICP-MS                                                                                                     | 5                                                                                           | 10000                                                                    |
|                                                                                                                          | Pulp; prepped on other workorder                                                                                   | 2844                                                                                                                   | 22                                                                                               | Nb ppm: ICP-MS                                                                                                                                                                                  | ICP-M9                                                                                                     | 1                                                                                           | 10000                                                                    |
| 297 22                                                                                                                   | Meta-borate fusion charge                                                                                          | 2510                                                                                                                   | 22                                                                                               | Pr ppm: ICP-MS                                                                                                                                                                                  | ICP-MS                                                                                                     | 0.1                                                                                         | 1000                                                                     |
|                                                                                                                          |                                                                                                                    | 2864                                                                                                                   | 22                                                                                               | Rb ppm: ICP-MS                                                                                                                                                                                  | ICP-MS                                                                                                     | 0.2                                                                                         | 10000                                                                    |
|                                                                                                                          |                                                                                                                    | 2511                                                                                                                   | 22                                                                                               | Sm ppm: ICP-MS                                                                                                                                                                                  | ICF-MS                                                                                                     | 0.1                                                                                         | 1000                                                                     |
|                                                                                                                          |                                                                                                                    | 2865                                                                                                                   | 22                                                                                               | Ag ppm: ICP-MS                                                                                                                                                                                  | ICP-MS                                                                                                     | 1                                                                                           | 1000                                                                     |
|                                                                                                                          |                                                                                                                    | 2867                                                                                                                   | 22                                                                                               | Sr ppm: ICP-MS                                                                                                                                                                                  | ICP-MS                                                                                                     | 0.1                                                                                         | 10000                                                                    |
|                                                                                                                          |                                                                                                                    | 2861                                                                                                                   | 22                                                                                               | TA ppm: ICP-M3                                                                                                                                                                                  | ICP-MS                                                                                                     | 0.5                                                                                         | 10000                                                                    |
|                                                                                                                          |                                                                                                                    | 2512                                                                                                                   | 1 22                                                                                             | Th ppm: ICP-MS                                                                                                                                                                                  | ICP-MS                                                                                                     | 0.1                                                                                         | 1000                                                                     |
|                                                                                                                          |                                                                                                                    | 2869                                                                                                                   | 22                                                                                               | TI ppm: ICP-MS                                                                                                                                                                                  | ICP-MS                                                                                                     | 0.5                                                                                         | 1000                                                                     |
|                                                                                                                          |                                                                                                                    | 2550                                                                                                                   | 22                                                                                               | Th ppm: ICP-MS                                                                                                                                                                                  | ICP-MS                                                                                                     |                                                                                             | 1000                                                                     |
|                                                                                                                          |                                                                                                                    | 251                                                                                                                    | 22                                                                                               | Tm ppm: ICP-MS                                                                                                                                                                                  | ICP-MS                                                                                                     | U.1                                                                                         | 10000                                                                    |
|                                                                                                                          |                                                                                                                    | 287                                                                                                                    | ) 22                                                                                             | Sn ppm: ICP-MS                                                                                                                                                                                  | ICP-MS                                                                                                     | 1                                                                                           | 10000                                                                    |
|                                                                                                                          |                                                                                                                    | 287:                                                                                                                   | L   22                                                                                           | W ppm: ICP-MS                                                                                                                                                                                   | ICP-MS                                                                                                     | . <b>.</b>                                                                                  | 10000                                                                    |
|                                                                                                                          |                                                                                                                    | 254                                                                                                                    | 22                                                                                               | U ppm: ICP-MS                                                                                                                                                                                   | ICP-MS                                                                                                     | v.5                                                                                         | 10000                                                                    |
|                                                                                                                          |                                                                                                                    | 287                                                                                                                    | 2 22                                                                                             | V ppm: ICP-MS                                                                                                                                                                                   | ICP-MS                                                                                                     |                                                                                             | 10000                                                                    |
|                                                                                                                          |                                                                                                                    | 251                                                                                                                    | 1 22                                                                                             | Yh ppm: ICP-MS                                                                                                                                                                                  | ICP-W2                                                                                                     | 0.1                                                                                         | 10000                                                                    |
|                                                                                                                          |                                                                                                                    | 287                                                                                                                    | 3 22                                                                                             | Y ppm: ICP-MS                                                                                                                                                                                   | ICP-MS                                                                                                     | 0.5                                                                                         | 10000                                                                    |
|                                                                                                                          |                                                                                                                    | 287                                                                                                                    | 22                                                                                               | Zn ppm; ICP-MS                                                                                                                                                                                  | ICP-M3                                                                                                     | 0 5                                                                                         | 10000                                                                    |
|                                                                                                                          |                                                                                                                    | 207                                                                                                                    |                                                                                                  |                                                                                                                                                                                                 |                                                                                                            |                                                                                             |                                                                          |

A9750057

٠



# **Chemex Labs Ltd.**

,

.

· ·

•

Analytical Chemists \* Geochemists \* Registered Assayers 212 Brooksbank Ave., North Vancouver

 British Columbia, Canada
 V7.J 2C1

 PHONE: 604-984-0221
 FAX: 604-984-0218

Fo: RUBICON MINERALS CORPORATION INCOGNITA (BAFFIN) PROJECT 888 - 1100 MELVILLE ST. VANCOUVER, BC V6E 4A6 Page I. Der : 1-A Total Pages : 1 Certificate Date: 21-NOV-97 Invoice No. : 19750057 P.O. Number : Account : MUCI

~ ~ ~ ~ ~

Project : BC105 Comments: ATTN: KARIM MCLNNIS

|               | <b>/</b> |          | ·····     |           |           |           |           |            |           |           | CE          | KIIFI     | CALE      | UF 4       | ANALY        | (515      | <b>ا</b><br> | 49750        | 057       |           |                |
|---------------|----------|----------|-----------|-----------|-----------|-----------|-----------|------------|-----------|-----------|-------------|-----------|-----------|------------|--------------|-----------|--------------|--------------|-----------|-----------|----------------|
| SANPLE        | PR<br>CO | ep<br>de | Ва<br>ррл | Ce<br>ppm | Ce<br>ppm | Co<br>ppm | Cu<br>ppm | D¥<br>ppm  | Er<br>ppm | Eu<br>ppm | Gd<br>ppm   | Ga<br>ppm | 8f<br>ppm | Но<br>ррш  | La<br>ppm    | Pb<br>ppm | ւս<br>քքա    | БИ<br>mgq    | Ni<br>ppm | Nb<br>ppm | Pr<br>ppm      |
| RMR30000      | 299      | 297      | 2350      | 112.0     | 7.7       | 24.5      | 390       | 4.3        | 2.0       | 2.8       | 9.6         | 20        | 5         | 0.7        | 54.5         | 15        | 0.2          | 55.0         | 4 5       | 12        | 14.5           |
| RMR30001      | 299      | 297      | 1275      | 106.0     | 3.9       | 23.0      | 95        | 4.4        | 1.9       | 2.7       | 8.9         | 20        | 5         | 0.7        | 51.0         | 20        | 0.1          | 50.0         | 35        | 13        | 13.1           |
| RMR30002      | 299      | 297      | 1775      | 132.0     | 3.2       | 35.5      | 35        | 9.2        | 3.7       | 4.4       | 15.2        | 17        | 5         | 1.4        | 62.0         | 25        | 0.4          | 83.0         | 45        | 7         | 19.6           |
| RMR 30004     | 299      | 297      | 3700      | 131.5     | 108.0     | 27.5      | 125       | 5.0<br>5.0 | 2.3       | 3.5       | 10.5<br>9.8 | 20<br>19  | 5         | 0.7<br>0.7 | 66.0<br>64.5 | 25<br>15  | 0.2          | 64.5<br>62.5 | 20        | 17<br>17  | 16.9<br>16.6   |
| RMR 30005     | 299      | 297      | 3440      | 109,0     | 12.9      | 20.5      | 75        | 4.4        | 1.7       | 2.6       | 8.1         | 21        | 5         | 0,6        | 53.5         | 20        | 0.1          | 53.5         | 30        | 13        | 14.0           |
| RMR30006      | 299      | 297      | 3260      | 149.0     | 3.2       | 15.5      | 110       | 5.1        | 2.1       | 3.2       | 9.8         | 22        | 7         | 0.8        | 76.5         | 20        | 0.2          | 68.5         | 10        | 19        | 18.7           |
| NMR3000/      | 299      | 297      | 5990      | 131.0     | 90,3      | 28.0      | 110       | 5.1        | 2.2       | 3.4       | 10.5        | 19        | 5         | 0.7        | 63.0         | 40        | 0.1          | 63.5         | 20        | 16        | 17.5           |
| RMR 30009     | 299      | 297      | 1990      | 127.5     | 5.0       | 15.5      | 100       | 4.8        | 2.5       | 3.6       | 9.8<br>11.7 | 21        | 8         | 0.8<br>0.9 | 64.0<br>78.5 | 25<br>30  | 0.1          | 60.5<br>71.5 | 35<br>10  | 13<br>19  | $16.1 \\ 20.1$ |
| RMR30010      | 299      | 297      | 4520      | 205       | 22.3      | 33.5      | 155       | 6.3        | 3.1       | 4.0       | 13.2        | 26        | 7         | 0.9        | 105.5        | 250       | 0.2          | 76.0         | 25        | 19        | 22.3           |
| RMRJUU11      | 299      | 297      | 1230      | 17.5      | 6.6       | 32.0      | 15        | 3.2        | 2.3       | 0.9       | 3.1         | 15        | 2         | 0.6        | 8.5          | 15        | 0.3          | 10.0         | 425       | 3         | 2.3            |
| RMR30012      | 299      | 297      | 3350      | 143 5     | 3.1       | 13.5      | 90<br>7A  | 0.4        | 2.9       | 4.0       | 13.5        | 29        | 8         | 1.1        | 85.0         | 50        | 0.3          | 75.5         | 25        | 23        | 20.0           |
| RNR30014      | 299      | 297      | 3460      | 111.5     | 10.4      | 8.0       | 15        | 3.7        | 1.9       | 2.4       | 7.5         | 25        | 7         | 0.6        | 58.5         | 50        | 0.1          | 47.0         | 25        | 20        | 16.9           |
| RMR30015      | 299      | 297      | 3440      | 115.0     | 4.1       | 11.0      | 35        | 4.2        | 1.7       | 2.9       | 8.3         | 24        | 6         | 0.6        | 60.5         | 55        | 0.2          | 51.0         | 20        | 17        | 14.3           |
| NANJUUIO      | 299      | 497      | 44/0      | 133.5     | 13.2      | 27.0      | 110       | 5.2        | 2.2       | 3.6       | 9.8         | 21        | 5         | 0.8        | 65.5         | 40        | 0.2          | 62.5         | 20        | 18        | 16.6           |
| NUR30017      | 200      | 207      | 5740      | 101.3     | 41 7      | 20.0      | 22        | 5.4        | 4.2       | 3.8       | 11.4        | 23        | 1         | 1.0        | 81.5         | 35        | 0.3          | 73.0         | 10        | 35        | 20.3           |
| RMR 30019     | 299      | 297      | 4340      | 130.5     | 12.6      | 16.5      | 95        | 4.9        | 2.4       | 3.6       | 10.3        | 23        | 6         | 0.8        | 65.5         | 30        | 0.2          | 62.0         | 20        | 18        | 16.2           |
| RMR30020      | 299      | 297      | 2930      | 142.0     | 6.3       | 30.0      | 115       | 5.4        | 2.2       | 3.5       | 10.8        | 21        | 6         | 0.8        | 70.0         | 40        | 0.2          | 66.0         | 35        | 19        | 18.5           |
| RMR 3 0 0 2 1 | 299      | 297      | 3510      | 104.5     | 36.0      | 23.0      | 105       | 4.4        | 2.0       | 2.8       | 8.8         | 19        | 4         | 0.8        | 51.0         | 20        | 0.2          | 52.5         | 45        | 13        | 13.7           |
|               |          |          |           |           |           |           |           |            |           |           |             |           |           |            |              |           |              |              |           |           |                |

.

3

 $\{ i \in I \}$ 



# Chemex Labs Ltd.

Analytical Chemists \* Geochemists \* Registered Assayers

212 Brocksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: RUBICON MINERALS CORPORATION INCOGNITA (BAFFIN) PROJECT 888 - 1100 MELVILLE ST. VANCOUVER, BC V6E 4A6

Project : 8C105 Comments: ATTN: KARIM MCLNNIS Page I、...er : 1-B Total Pages : 1 Certificate Date: 21-NOV-97 Invoice No. : 19750057 P.O. Number : Account :MUCI

·. ``

|                                                                            |                                                                           |                                         |                                     |                                           |                                      |                                   |                                 |                                   |                            | CE                              | RTIF                  | CATE                                 | OF A                                | NALY                            | 'SIS                            | <u>م</u>                             | 9750                         | 057                                   |  |
|----------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------|-------------------------------------|-------------------------------------------|--------------------------------------|-----------------------------------|---------------------------------|-----------------------------------|----------------------------|---------------------------------|-----------------------|--------------------------------------|-------------------------------------|---------------------------------|---------------------------------|--------------------------------------|------------------------------|---------------------------------------|--|
| SAMPLE                                                                     | PREP<br>CODE                                                              | Rb<br>ppm                               | Sm<br>ppm                           | Ag<br>ppm                                 | Sr<br>ppm                            | Ta<br>ppm                         | Tb<br>ppm                       | T1<br>ppm                         | Th<br>ppm                  | Тш<br>ррп                       | Sn<br>ppm             | M<br>Mđđ                             | ndđ<br>đ                            | A<br>Wdđ                        | Yb<br>ppm                       | Y<br>ppm                             | 2n<br>ppm                    | Zr<br>ppm                             |  |
| RMR 30000<br>RMR 30001<br>RMR 30002<br>RMR 30003<br>RMR 30003<br>RMR 30004 | 299 297<br>299 297<br>299 297<br>299 297<br>299 297<br>299 297<br>299 297 | 121.0<br>80.6<br>59.4<br>417<br>212     | 10.6<br>9.5<br>18.8<br>12.0<br>11.6 | 2 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 | 882<br>1080<br>2840<br>1685<br>1540  | 0.5<br>0.5<br>< 0.5<br>0.5<br>0.5 | 1.1<br>1.0<br>2.2<br>1.3<br>1.2 | 0.5<br>0.5<br>< 0.5<br>4.5<br>3.5 | 10<br>11<br>8<br>13<br>14  | 0.1<br>0.2<br>0.5<br>0.2<br>0.2 | 1<br>1<br>2<br>2<br>2 | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>2 | 6.5<br>7.0<br>7.5<br>7.5<br>6.5     | 120<br>135<br>130<br>175<br>125 | 1.2<br>1.4<br>2.7<br>1.4<br>1.3 | 19.5<br>10.0<br>40.0<br>23.5<br>21.0 | 90<br>110<br>85<br>105<br>95 | 182.5<br>182.5<br>150.0<br>209<br>223 |  |
| RMR 30005<br>RMR 30006<br>RMR 30007<br>RMR 30008<br>RMR 30008<br>RMR 30009 | 299 297<br>299 297<br>299 297<br>299 297<br>299 297<br>299 297<br>299 297 | 192.0<br>107.0<br>267<br>106.5<br>104.0 | 9.7<br>12.4<br>11.4<br>11.0<br>13.5 | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1    | 963<br>1130<br>1370<br>914<br>579    | 0.5<br>0.5<br>0.5<br>0.5<br>1.0   | 1.1<br>1.3<br>1.2<br>1.2<br>1.5 | 3.0<br>1.0<br>4.5<br>0.5<br>0.5   | 11<br>13<br>14<br>10<br>16 | 0.2<br>0.2<br>0.3<br>0.2<br>0.2 | 2<br>3<br>2<br>3<br>3 | < 1<br>2<br>< 1<br>< 1<br>14         | 8.5<br>9.0<br>7.5<br>7.0<br>9.5     | 130<br>125<br>160<br>140<br>140 | 1.3<br>1.5<br>1.4<br>1.5<br>1.4 | 18.5<br>22.0<br>22.0<br>21.0<br>24.0 | 90<br>90<br>100<br>95<br>90  | 185.5<br>280<br>202<br>214<br>297     |  |
| RMR 30010<br>RMR 30011<br>RMR 30012<br>RMR 30013<br>RMR 30014              | 299 297<br>299 297<br>299 297<br>299 297<br>299 297<br>299 297            | 270<br>235<br>184.5<br>245<br>98.2      | 15.9<br>2.5<br>15.1<br>10.6<br>9.1  | 1<br>< 1<br>1<br>3<br>< 1                 | 621<br>330<br>1865<br>1235<br>1230   | 1.0<br>< 0.5<br>0.5<br>0.5<br>1.0 | 1.6<br>0.5<br>1.7<br>1.2<br>0.9 | 4.0<br>3.5<br>2.0<br>3.5<br>0.5   | 22<br>2<br>15<br>18<br>11  | 0.3<br>0.3<br>0.3<br>0.1<br>0.2 | 4<br>1<br>3<br>3      | 2<br>8<br>16<br>10<br>< 1            | 11.0<br>2.0<br>11.0<br>14.0<br>10.5 | 135<br>140<br>130<br>135<br>50  | 1.5<br>1.9<br>2.3<br>1.6<br>1.3 | 27.0<br>16.0<br>20.5<br>22.0<br>19.0 | 285<br>60<br>85<br>85<br>75  | 303<br>74.5<br>298<br>352<br>239      |  |
| RMR30015<br>RMR30016<br>RMR30017<br>RMR30018<br>RMR30019                   | 299 297<br>299 297<br>299 297<br>299 297<br>299 297<br>299 297            | 92.0<br>221<br>142.5<br>264<br>137.0    | 8.8<br>10.9<br>13.2<br>11.8<br>13.2 | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1    | 1555<br>1830<br>1340<br>1375<br>1715 | 0.5<br>0.5<br>1.0<br>0.5<br>0.5   | 1.0<br>1.3<br>1.5<br>1.2<br>1.3 | 0.5<br>3.0<br>1.5<br>2.5<br>0.5   | 12<br>14<br>16<br>14<br>11 | 0.1<br>0.2<br>0.3<br>0.2<br>0.2 | 4<br>2<br>3<br>2<br>2 | 1<br>< 1<br>< 1<br>< 1<br>< 1<br>4   | 9.0<br>8.5<br>8.5<br>8.0<br>5.0     | 75<br>170<br>130<br>130<br>140  | 1.1<br>1.3<br>1.6<br>1.2<br>1.5 | 18.0<br>21.0<br>24.5<br>20.5<br>22.0 | 85<br>130<br>105<br>95<br>95 | 223<br>209<br>293<br>214<br>207       |  |
| RMR 30020<br>RMR 30021                                                     | 299 297<br>299 297                                                        | 199.0<br>220                            | 13.0<br>10.2                        | < 1<br>< 1                                | 1000<br>1095                         | 0.5                               | 1.4<br>1.2                      | 4.0<br>2.0                        | 14<br>10                   | 0.3                             | 3                     | <b>4</b><br>< 1                      | 7.0<br>5.0                          | 175<br>145                      | 1.5<br>1.5                      | 23.0<br>19.5                         | 120<br>95                    | 233<br>179.0                          |  |
|                                                                            |                                                                           |                                         |                                     |                                           |                                      |                                   |                                 |                                   |                            |                                 |                       |                                      |                                     |                                 |                                 |                                      |                              |                                       |  |
|                                                                            |                                                                           |                                         |                                     |                                           |                                      |                                   |                                 |                                   |                            |                                 |                       |                                      |                                     |                                 |                                 |                                      |                              |                                       |  |
|                                                                            |                                                                           |                                         |                                     |                                           |                                      |                                   |                                 |                                   |                            |                                 |                       |                                      |                                     |                                 |                                 |                                      |                              |                                       |  |



