	SUB RECORDER					
	APR 1 6 1998					
Ì	M.R. #					

GEOCHEMICAL REPORT

on the

STAR CLAIMS

OMENICA MINING DIVISION

N.T.S. 94-C-5E and 94-C-12E

Lat.: 56°29'N Long.: 125°40'W

by

U. MOWAT, P. GEO.

APRIL, 1998

GEOLOGICAL SURVEY BRANCH

TABLE OF CONTENTS

1.0	Introduction	1
2.0	Location and Access	1
3.0	Claim Data	1
4.0	History	4
5.0	Regional Geology	4
6.0	Property Geology	5
7.0	Mineralization	6
8.0	Alteration	7
9.0	Work Program	7
10.0	Sample Descriptions	8
11.0	Results	10
12.0	Conclusions	20
13.0	References	21
14.0	Statement of Costs	23
15.0	Statement of Qualifications	25

.

FIGURES

Figure 1:	Location Map	2
Figure 2:	Claim Map	3

TABLES

2

Table 1:	Copper in ppm	11
Table 2:	Nickel in ppm	12
Table 3:	Cobalt in ppm	13
Table 4:	Iron in per cent	14
Table 5:	Chromite in ppm	15
Table 6:	Titanium in per cent	16
Table 7:	Gold in ppb	17
Table 8:	Platinum in ppb	18
Table 9:	Palladium in ppb	19

Appendix: Analytical Results in pocket

Maps: Sample Location Map

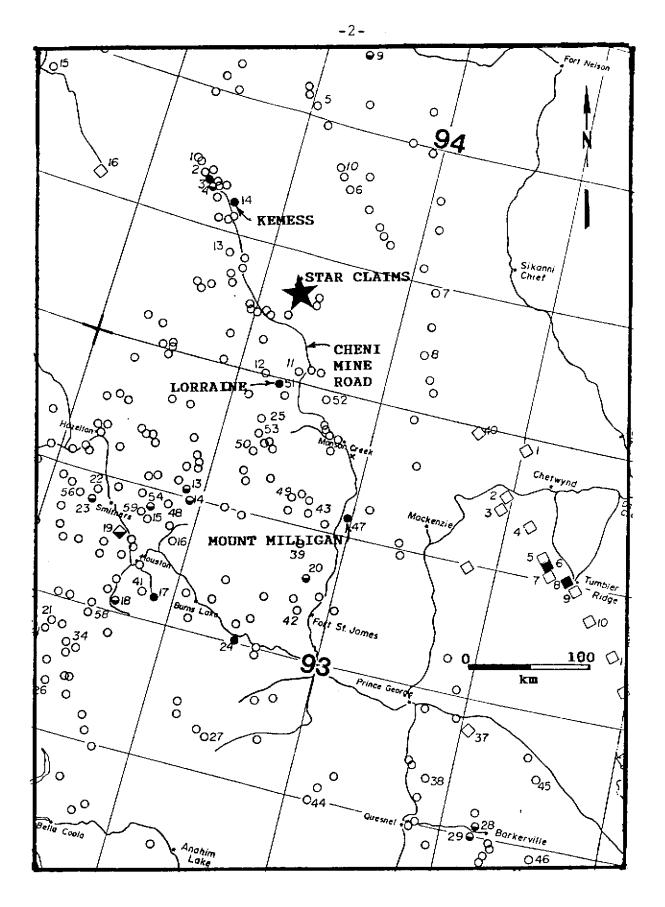
PAGE

1.0 INTRODUCTION

On September 6, 1997 two men collected 27 rock samples and 2 silt samples from various locations on the Star claims that previous sampling had indicated anomalous geochemical results. A variety of different lithologies were sampled in order to attempt to determine if there was a geochemical preference of certain metals for a specific rock type. All samples were analysed for 30 elements by ICP and Au, Pt, Pd by fire assay/ICP.

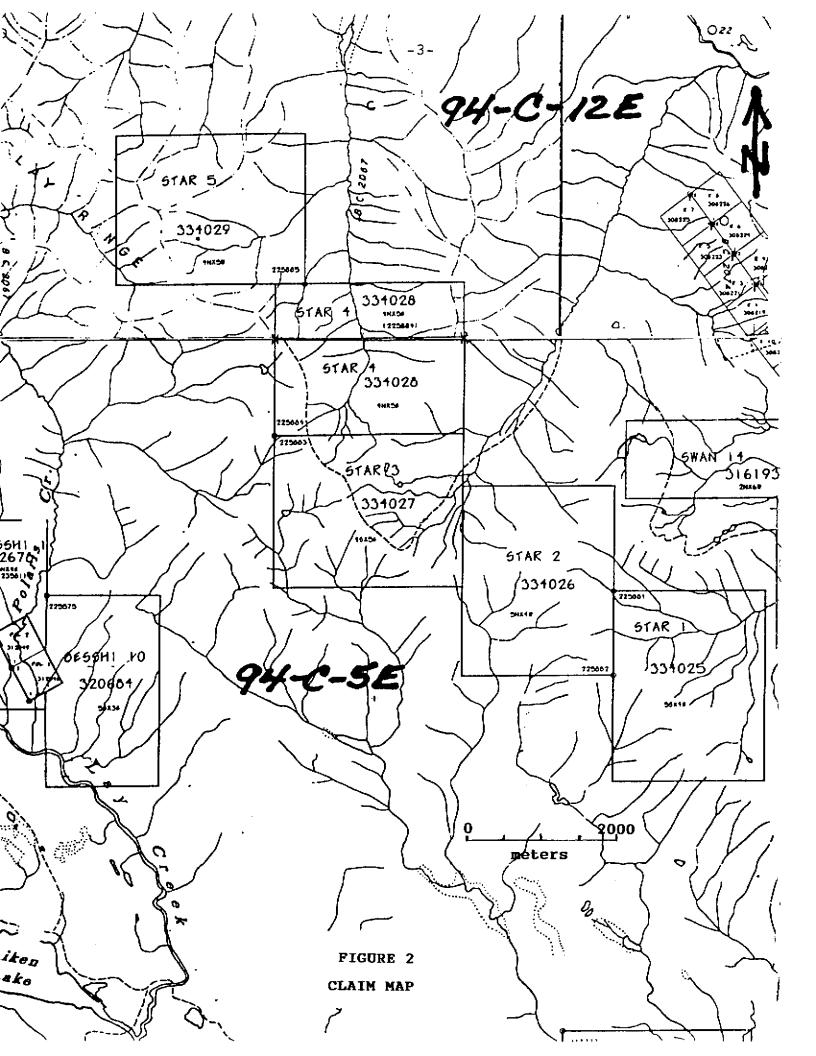
Thirteen of the original samples were re-analysed to determine if there was any nugget effects from awaruite, gold, platinum or palladium as coarsegrained awaruite and a yellow metallic tentatively identified as gold were noted in hand specimen. All samples were analysed for 30 elements by ICP and Au, Pt, Pd by fire assay/ICP.

Five samples were selected for concentrating using a Knelsen concentrator. The samples were analysed for 30 elements by ICP and Au, Pt, Pd by fire assay and ICP.


2.0 LOCATION AND ACCESS

The Star 1 - 5 claims, which are located on map sheets 94-C-5E and 94-C-12E, are 13 km northeast of Aiken Lake and 100 km almost due north of Germansen Landing.

Access to the property is by helicopter from Fort St. James. The Cheni Mine Road (Omineca Forestry Road) and the Kemess power line pass within 8 km of the property. Logging roads reach the outer boundary of the property.


3.0 CLAIM DATA

Claim Name	Record Number	No. of Units
Star 1	334025	20
Star 2	334026	20
Star 3	334027	20
Star 4	334028	20
Star 5	334029	20

LOCATION MAP : STAR CLAIMS

FIGURE 1

4.0 HISTORY

The area of the Polaris Complex has been examined by R. G. McConnell in 1894, V. Dolmage in 1927, D. Lay in 1939 and J. E. Armstrong in 1945. The first mapping of the Polaris Complex was done by E. F. Roots in 1946, 1947 and 1948.

No geological activity is recorded until 1968 when T. N. Irvine made petrologic studies of the Polaris Complex. The area remained idle until 1974 when T. N. Irvine and F. H. Foster mapped the Polaris Complex in some detail.

In 1986, a small portion of the Polaris Complex was staked by Equinoz Resources who conducted an extensive silt and rock sampling program over their ground in a search for Pt group metals. In 1987, Lacana Mining Corporation and Esso Minerals also staked portions of the Polaris Complex for the same reason. In 1988 and 1989, the Polaris Complex was mapped and petrologically studied by the BCDM as part of a Pt-chromite study.

The Star 1 - 5 claims were staked in February, 1995 to cover a unit of the Polaris Complex lithologically similar to the Voisey's Bay nickel-cobalt discovery.

5.0 REGIONAL GEOLOGY

The Polaris Complex is located in the Omineca Crystalline Belt which is bounded on the west by Triassic Takla volcanics and sediments. The eastern side of the Omineca Crystalline Belt is separated from the Upper Proterozoic Ingenika Group and the Wolverine Metamorphic Complex, which both consist of sediments and metasediments including gneisses and schists, by the Swannell Fault.

The area immediately west of the Polaris Complex is underlain by the Lay Range Assemblage which has also been called the Slide Mountain Group and the Harper Ranch Groups by various authors. The lithologies consist of mafic tuffs, argillites, metavolcanics, metasediments and limestones and are of Middle Pennsylvanian to Permian in age. The area to the east of the Polaris Complex is underlain by shale, argillite and limestone of either Upper Devonian to Lower Permian Big Creek Group, Cooper Ridge Group of the Slide Mountain Group. The Polaris Complex, a crudely zoned ultramafic massif, is approximately 15 km long and 3 to 4 km wide. The core of the complex is olivine-rich lithologies of dunite, peridotite and wehrlite. The outer phases become more pyroxenitic and range from olivine clinopyroxenite to pyroxenite to hornblende-magnetite pyroxenite and finally to hornblendite and metamorphosed, metasomatized volcanics and sediments. The Polaris complex exhibits a thermal halo up to 2500 meters in width. In certain areas, the metasomatism has been so intense that hornblende crystals up to 1 meter in length have been observed.

The Polaris Complex and the surrounding area have been intruded by Late Triassic to Cretaceous syenites and diorites which are probably related to the Hogem Intrusive Complex. Potassium-argon dating of biotite forming a potassic halo around one intrusive in the Polaris Complex yielded ages of 167 + 9 Ma and 156 + 15 Ma.

Mineral deposits in the vicinity of the Polaris Complex include several high grade but small gold-bearing quartz veins associated with intrusive dykes in argillites, amphibolite containing coarsely crystalline pyrrhotite, pyrite, chalcopyrite and arsenopyrite as seams and as massive sulphide bodies up to 8 meters wide and 150 meters long and also shale-hosted zinc-lead sedex-type mineralization.

6.0 PROPERTY GEOLOGY

The Star claims are dominantly underlain by a pyroxenitic suite of rocks including olivine clinopyroxenite, pyroxenite and hornblende clinopyroxenite. The southern claims and lower elevations are dominantly underlain by more olivinerich lithologies of dunite and peridotite. The northern claims and some of the ridges are underlain by sedimentary lithologies including limestone and siltstone which have been locally metamorphosed to biotite hornfels and marble.

Several intrusives have been observed intruding the ultramafics and the sedimentary package. The intrusives range in composition from gabbro, diorite, syenite, monzonite to alaskite and occur as dykes and plugs. Locally some of the intrusives have produced skarn-like metamorphic effects from Ca-rich ultramafics or Ca-rich volcanics or sediments. Zones of massive coarse-grained pyroxene (hedenbergite? diopside?) and coarsegrained hornblendite-amphibolite with quartz stockworks have been found in close proximity to the intrusives.

7.0 MINERALIZATION

Three types of potentially economic mineralization occur on the Star claims and they are Ni-Co-PGE in the olivine-rich lithologies, magmatic Cu-Co-Ni-PGE +/- Au in the pyroxenitic units and pyritechalcopyrite +/- bornite within dioritic intrusives and contact rocks with the intrusives.

Awaruite, pentlandite and heazlewoodite have been found disseminated relatively uniformly throughout the olivine-rich phases of the Polaris Complex. In addition, gold, although sporadic in nature, also occurs in the olivine-rich lithologies. The gold does not appear to be related to sulphide mineralization and it is believed that it occurs as a discrete native metal.

The olivine-clinopyroxenite and pyroxenite units are host to pyrite, chalcopyrite mineralization which occurs as coarse-grained disseminations forming up to 40% of a specimen. Previous sampling indicates the sulphide mineralization carries Pt, Pd +/- Au. The PGE's although dominantly associated with chalcopyrite has also been found to occur in the olivine-clinopyroxenite without any sulphides being noted suggesting that Pt and Pd, just like the Au in the olivine-rich lithologies, occurs as discrete entities or possibly tied up with magnetite.

Pyrite, chalcopyrite and bornite occur as coarsegrained disseminations within dioritic intrusives and as haloes around the intrusives. The sulphide content of the intrusives and the haloes range from 10 to 50%. Sulphides within the intrusive appear to carry virtually no precious metals while the haloes, some of which are "skarn" and amphibolite have variable PGE values. The highest Pt and Pd values (1114 and 990 ppb respectively) came from a sample of amphibolite.

Other mineralization noted on the Star claims consists of 5 to 10% disseminated pyrite in siltstone and listwanite and quartz boulders with pyrite and arsenopyrite.

8.0 ALTERATION

The most obvious alteration seen on the Star claims is listwanite composed dominantly of carbonate with lesser amounts of quartz and mariposite. The listwanite weathers to a bright orange. Extensive listwanite development occurs on the Star 3 claim. The largest body forms a linear feature 50 meters wide and at least 200 meters long. Numerous shear and fault zones in this area also contain listwanite development.

The olivine pyroxenites and to a lesser extent the dunites have undergone serpentinization of variable intensity. Specimens range from waxy green with no primary features remaining to fresh-looking. The degree of serpentinization does not appear to be related to sulphide mineralization or awaruite mineralization.

Alteration of the intrusives varies in intensity from relatively non-altered to intensely bleached or occasionally completely replaced by pervasive finegrained epidote. The metamorphic/metasomatic alteration generated by the intrusives also varies from non-existant to potassic haloes with biotite flakes reaching up to 2.5 cm in diameter as well as intense "skarn" and amphibolite development. The amphibolite occasionally exhibits intense quartz stockworking in close proximity to the intrusives. The intrusives have also produced biotite hornfels in the siltstones and also minor amounts of marble.

9.0 WORK PROGRAM

On September 6, 1997 two men collected 27 rock samples for general analytical work and for further examination of possible nugget effects from native gold, native platinum and awaruite. Thirteen samples of the original 27 that were collected were re-analysed. Five selected samples were concentrated using a Knelsen concentrator. All samples were analysed for 30 elements by ICP and Au, Pt, and Pd by fire assay/ICP.

10.0 <u>SAMPLE DESCRIPTIONS</u>

Sample Number	Sample Description
11981	Black c.g. pyroxenite; no visible sulphides; strongly magnetic
11982	Black vfg gabbro; no visible sulphides; strongly magnetic
11983	Black vvfg gabbro?; no visible sulphides; strongly magnetic
11984	Black dense vfg siltstone?; cut by minor carbonate stringers; no visible sulphides; non-magnetic
11985	Pale grey limestone
11986	Black phlogopite-rich olivine pyroxenite; no visible sulphides; strongly magnetic
11987	Black olivine pyroxenite; no visible sulphides; moderately magnetic
11988	Greyish green serpentinized? dunite?; no visible sulphides; very strongly magnetic
11989	Black c.g. olivine pyroxenite; no visible sulphides; very magnetic; trace awaruite
11990	Very rusty, black brecciated olivine pyroxenite; no visible sulphides; trace awaruite; very magnetic
11991	Very rusty black dunite; trace - 0.5% awaruite; moderately magnetic
11992	Extremely rusty deep red brown ??? with much box- work weathering; trace awaruite and yellow sulphide; non-magnetic
11993	Black vfg dunite; 0.5% fairly coarse awaruite; no visible sulphides; very magnetic
11994	Very rusty red brown dunite?; o.5% fairly coarse awaruite; strongly magnetic
11995	Black massive chromite
11996	Black f.g. olivine pyroxenite; magnetite and green celadonite on fractures; non-magnetic elsewhere; trace yellow sulphide and awaruite
11997	C.g. black olivine pyroxenite; non-magnetic; no visible sulphides
11998	Black sand; dominantly olivine, lesser pyroxene and minor magnetite
11999	Black c.g. pyroxenite; very rusty; 3% white sulphide (pyrite?); minor chloritic alteration; very magnetic
12000	Monzonite; c.g. black hornblende in white feldspar matrix; malachite and limonite stained; black magnetite on fractures; 0.5% diss'd pyrite; trace white metallic
142308	White quartz vein 10 cm wide with c.g. fragment of hornblende and hornblende-magnetite; very magnetic on fractures; VG? and minor diss'd pyrite? in black material

Sample Number

142309	C.g. quartz monzonite? white feldspar matrix with
	c.g. black hornblende; tr. sulphide; most sulphides
	at contact in black hornblende-tremolite-actinolite
	material; very magnetic; very rusty on fractures
142310	Black biotite-hornblende rock; slightly chloritic;
112010	extremely magnetic; cut by minor white quartz
	veinlets; 3% sulphide (pyrite?) and speck of a
	very yellow metallic (VG?)
1 40011	
142311	V.c.g. to porphyritic hornblendite; very magnetic;
	slightly chloritized; interstitial epidote; trace
	pyrite, chalcopyrite, pyrrhotite
142312	M.g. diorite; 60% feldspar, 40% hornblende; 10%
	disseminated pyrite; trace chalcopyrite; non-
	magnetic; intensely altered by pervasive epidote
142313	Black porphyritic hornblendite; patchily magnetic
	from non to very; interstitial white quartz and/or
	carbonate with minor epidote; trace very bright
	white metallic; no visible sulphides
142314	M.g. pinkish grey equigranular granite; 30%
	hornblende phenocrysts altered to biotite and/or
	magnetite, 30% quartz and 40% pinkish feldspar;
	non-magnetic; no visible sulphides
142315	Composite sample of 142312 and 142313
142315	Black sand composed of olivine, epidote, hornblende
147210	and minor magnetite; one silvery white speck; one
	gold speck

11.0 <u>RESULTS</u>

Sampling in areas of previous sampling that had returned anomalous values resulted in the discovery of an area of intense quartz stockwork in amphibolite and "skarn" apparently related to a large diorite intrusive. In addition, talus boulders of intensely leached boxwork weathered material (sample 11992) returned values of 2180 ppm Ni and 145 ppm Co suggesting that the voids may have been filled with sulphides possibly pyrrhotite or pentlandite.

The analytical results strongly suggest a nugget effect for nickel and to a lesser degree for iron suggesting Ni:Fe alloy or awaruite. While precious metals are not of economic significance the nugget effect is seen to occur. Results of the concentrator tests are generally negative except for sample 11986 where gold was slightly enhanced and sample 142315 where iron due to coarse grained pyrite was enhanced. The negative results suggest that the fine-grained nature of the mineralization may not be conducive to enhancement by concentration.

Sample No.	Rock Type	3:1 Cu	Cu Rerun	Cu Conc.
11981	C.g. pyroxenite	137	137	126
11982	V.f.g. gabbro	135		
11983	V.f.g. gabbro	196		206
11984	Siltstone?	106		
11985	Limestone	7		
11986	Phlogo. ol. cpx	11	5	9
11987	01. cpx	7	2	
11988	Serp'd dunite	4		
1 19 89	01. cpx	4	3	
11990	Bx'd ol. cpx	19		
11991	Dunite	3 7	2	
11992	Boxwork ??	7		
11993	Dunite	6	2	
11994	Dunite	5	2	
11995	Chromite	4		
11996	01. cpx	6		
11997	01. cpx	5		
11998	Silt	99		
11999	C.g. pyroxenite	767		
12000	Monzonite	1355	1437	
142308	Quartz vein	179	151	
142309	C.g. monzonite	202		
142310	Biot. hornblendite	479	471	
142311	Porph. hnbdite	175	164	151
142312	M.g. diorite	322		
142313	Porph. hnbdite	115	121	
142314	M.g. granite	9		
142315	Comp. 312/313	784	761	79 7
142316	Silt	707		

TABLE 1: COPPER IN PPM

3:1	HC1-HNO3 digestion
cpx	clinopyroxenite
conc.	concentrate from Knelson concentrator

Comments: The highest value 1355 ppm Cu (1437 in the repeat analyses came from the area of intense quartz stockworking. Concentration did not generally enhance copper values.

Sample No.	Rock Type	3:1 Ni	Ni Rerun	Ni Conc.
11981	C.g. pyroxenite	25	22	25
11982	V.f.g. gabbro	6		
11983	V.f.g. gabbro	8		10
11984	Siltstone?	22		
11985	Limestone	4		
11986	Phlogo. ol. cpx	1586	1445	1358
11987	01. cpx	2451	1813	
11988	Serp'd dunite	1904		
11989	01. cpx	1250	1162	
11990	Bx'd 01. cpx	1955		
11991	Dunite	2378	1950	
11992	Boxwork??	2180		
11993	Dunite	1628	1302	
11994	Dunite	2108	1724	
11995	Chromite	2292		
11996	01. cpx	2243		
11997	01. cpx	278		
11998	Silt	1156		
11999	C.g. pyx	63		
12000	Monzonite	40	52	
142308	Quartz vein	23	21	
142309	C.g. monzonite	18		
142310	Biot. hbdite	105	97	
142311	Porph. hbdite	41	36	48
142312	M.g. diorite	18		
142313	Porph. hbdite	23	23	
142314	M.g. granite	4		
142315	Comp. 312/313	43	38	52
142316	Silt	72		

TABLE 2: NICKEL IN PPM

3:1 HC1-HNO3 digestion

cpx clinopyroxenite

conc. concentrate from Knelsen concentrator

Comments: All rerun analyses are substantially lower than the original analyses implying that nickel is metallic and not uniformly present throughout the sample. Concentration did not improve nickel values.

Sample No.	Rock Type	3:1 Co	Co Rerun	Co Conc.
11981	C.g. pyroxenite	42	45	46
11982	V.f.g. gabbro	13		
11983	V.f.g. gabbro	25		25
11984	Siltstone?	13		
11985	Limestone	1		
11986	Phlogo. ol. cpx	113	102	97
11987	01. cpx	147	114	
11988	Serp'd dunite	139		•
11989	01. cpx	97	90	
11990	Bx'd ol. cpx	157		
11991	Dunite	153	119	
11992	Boxwork ??	145		
11993	Dunite	172	135	
11994	Dunite	163	131	
11995	Chromite	176		
11996	01. cpx	152		
11997	01. cpx	28		
11998	Silt	96		
11999	C.g. pyx	53		
12000	Monzonite	89	96	
142308	Quartz vein	23	21	
142309	C.g. monzonite	22		
142310	Biot. hbdite	43	42	
142311	Porph. hbdite	33	32	44
142312	M.g. diorite	19		
142313	Porph. hbdite	19	23	
142314	M.g. granite	3		
142315	Comp. 312/313	59	56	100
142316	Silt	31		

TABLE 3: COBALT IN PPM

3:1 HC1-HNO₃ digestion

cpx clinopyroxenite

conc. concentrate from Knelsen concentrator

Comments: Generally repeat analyses are lower than the original analyses. Sample 142315 shows a considerable enhancement possibly because of coarse-grained pyrite.

TABLE 4: IRON IN PER CENT

11981	C.g. pyroxenite	10.28	11.56	13.74
11982	V.f.g. gabbro	4.35		
11983	V.f.g. gabbro	5.62		6.47
11984	Siltstone?	2.72		
11985	Limestone	0.25		
11986	Phlogo. ol. cpx	8.57	7.10	6.89
11987	01. cpx	6.74	4.73	
11988	Serp'd dunite	6.46		
11989	01. cpx	5.82	5.21	
11990	Bx'd ol. cpx	9.07		
11991	Dunite	7.50	5.31	
11992	Boxwork ??	7.37		
11993	Dunite	10.33	7.84	
11994	Dunite	8.28	6.00	
11995	Chromite	3.69		
11996	01. cpx	7.60		
11997	01. cpx	1.73		
11998	Silt	7.89		
11999	C.g. pyx	8.42		
12000	Monzonite	6.07	6.50	
142308	Quartz vein	5.32	4.54	
142309	C.g. monzonite	4.16		
142310	Biot. hbdite	6.77	6.71	
142311	Porph. hbdite	5.64	5.22	7.78
142312	M.g. diorite	4.66		
142313	Porph. hbdite	4.34	4.57	
142314	M.g. granite	1.49		
142315	Comp. 312/313	6.91	7.35	10.06
142316	Silt	5.41		
3:1	HC1-HNO3 digestic	n		

3:1	HC1-HNO3 digestion
cpx	clinopyroxenite
conc.	concentrate from Knelsen concentrator

Comments: The rerun values for iron are generally lower than the original analyses just as in the case of the nickel values suggesting that part of the iron is possibly tied up in Ni-Fe alloy (awaruite). Iron values are generally enhanced by concentration.

Sample No.	Rock Type	3:1 Cr	Cr Rerun	Cr conc.
11981	C.g. pyroxenite	39	32	46
11982	V.f.g. gabbro	10		
11983	V.f.g. gabbro	11		14
11984	Siltstone?	33		
11985	Limestone	6		
1 1 986	Phlogo- ol. cpx	555	436	581
11987	01. cpx	74	42	
11988	Serp'd dunite	173		
11989	01. cpx	141	125	
11990	Bx'd ol. cpx	134		
1 1991	Dunite	75	41	
11992	Boxwork ??	104		
11993	Dunite	121	84	
11994	Dunite	80	46	
11995	Chromite	109		
11996	01. pyx	89		
11997	01. pyx	298		
11998	Silt	418		
11999	C.g. pyx	77		
12000	Monzonite	44	48	
142308	Quartz vein	17	11	
142309	C.g. Monzonite	5		
142310	Biot. hbdite	81	77	
142311	Porph. hbdite	43	41	66
1423 12	M.g. diorite	23		
142313	Porph. hbdite	16	16	
142314	M.g. granite	10		
142315	Comp. 312/313	51	52	72
142316	Silt	117		

TABLE 5: CHROMITE IN PPM

3:1	HC1-HNO3 digestion
срх	clinopyroxenite
conc.	concentrate from Knelsen concentrator

Comments: Generally chromium rerun values are lower than the original analyses. Chromium shows increased values by concentration.

Sample No.	Rock Type	3:1 Ti	Ti Rerun	Ti conc.
11981	C.g. pyx	0.26	0.19	0.21
11982	V.f.g. gabbro	0.17		
11983	V.f.g. gabbro	0.29		0.27
1 1 984	Siltstone?	0.22		
1 1 985	Limestone	nil		
11986	Phlogo. ol. cpx	0.05	0.04	0.05
11987	01. pyx	nil		
11988	Serp'd dunite	nil		
11989	01. cpx	0.01	0.01	
11990	Bx'd ol. cpx	nil		
11991	Dunite	nil	nil	
11992	Boxwork ??	nil		
11993	Dunite	nil	nil	
11994	Dunite	nil	nil	
11995	Chromite	nil		
11996	01. cpx	nil		
11997	01. cpx	0.01		
11998	Silt	0.07		
11999	C.g. pyx	0.39		
12000	Monzonite	0.20	0.19	
142308	Quartz vein	0.29	0.24	
142309	C.g. monzonite	0.15		
142310	Biot. hbdite	0.34	0.28	
142311	Porph. hbdite	0.39	0.32	0.40
142312	M.g. diorite	0.22		
142313	Porph. hbdite	0.32	0.32	
142314	M.g. granite	0.08		
1 42315	Comp. 312/313	0.22	0.20	0.27
142316	Silt	0.22		

TABLE 6: TITANIUM IN PER CENT

3:1	HC1-HNO3 digestion
cpx	clinopyroxenite
conc.	concentrate from Knelsen concentrator

TABLE 7: GO)LD	IN	PPB
-------------	-----	----	-----

Sample No.	Rock Type	3:1 Au	Au Rerun	Au conc.
11981	C.g. pyx	nil	1	2
11982	V.f.g. gabbro	6		
11983	V.f.g. gabbro	11		10
11984	Siltstone?	2		
1 1 985	Limestone	3		
11986	Phlogo. ol. cpx	2	45	155
11987	01. cpx	nil	3	
11988	Serp'd dunite	ni1		
11989	01. cpx	70	9	
11990	Bx'd ol. cpx	nil		
11991	Dunite	nil	nil	
11992	Boxwork ??	nil		
11993	Dunite	ni1	2	
11994	Dunite	2	2	
11995	Chromite	nil		
11996	01. cpx	nil		
11997	01. cpx	6		
11998	Silt	l		
11999	C.g. pyx	3		
12000	Monzonite	4	nil	
142308	Quartz vein	2	nil	
142309	C.g. monzonite	nil		
142310	Biot. hbdite	3	1	
142311	Porph. hbdite	2	10	3
142312	M.g. diorite	2		
142313	Porph. hbdite	nil	ni1	
142314	M.g. granite	nil		
142315	Comp. 312/313	5		3
142316	Silt	2	3	
3:1	HC1-HNO3 digestic	17 1		
cpx	clinopyroxene	**1		
conc.	concentrate from	Knolson c	oncont rator	-
COLC.		METSEN C	oncentra du	
Comments:	Two samples (1) sporadic nature effective in or	e of gol	d. Conce	ntration was

•

Sample No.	Rock Type	3:1 Pt	Pt Rerun	Pt conc.	
11981	C.g. pyx	15	12	13	
11982	V.f.g. gabbro	8		~	
11983	V.f.g. gabbro	9		9	
11984	Siltstone?	3			
11985	Limestone Dalage al gue	1	22	25	
11986	Phiogo. ol. cpx	54	22	25	
11987	01. cpx	3 17	1		
11988	Serp'd dunite	4	mi 1		
11989	01. cpx		nil		
11990	Bx'd ol. cpx	11	c		
11991 11992	Dunite Deurscele 22	1 8	6		
	Boxwork ??	0	4		
11993	Dunite	nil	6		
11994	Dunite Chromite	3	0		
11995 11996	01. cpx	3			
11997	-	1			
	01. cpx Silt	1 7			
11998	_	9			
11999 12000	C.g. pyx Monzonite	9 7	11		
142308	Quartz vein	1	4		
142309	C.g. monzonite	1	7		
142310	Biot. hbdite	4	5		
142311	Porph. hbdite	27	37	30	
142312	M.g. diorite	l L	37	50	
142313	Porph. hbdite	5	9		
142314	M.g. granite	nil	2		
142315	Comp. 312/313	18		20	
142316	Silt	12	22	20	
142310	5110	12			
3:1	HC1-HNO3 digestic	m			
cpx	clinopyroxenite				
conc.	concentrate from	Kneisen c	concentrator		
Comments:	Platinum shows sporadic as go enhance the val	ld. Con			

TABLE 8: PLATINUM IN PPB

Sample No.	Rock Type	3:1 Pd	Pd Rerun	Pd conc.	
11981	C.g. pyx	23	26	15	
11982	V.f.g. gabbro	7			
11983	V.f.g. gabbro	10		8	
11984	Siltstone?	5			
11985	Limestone	2			
11986	Phlogo. ol. cpx	13	4	1	
11987	01. cpx	2	2		
11988	Serp'd dunite	2		-	
11989	01. cpx	8	2		
11990	Bx'd ol. cpx	5			
11991	Dunite	2	5		
11992	Boxwork ??	3			
11993	Dunite	2	1		
11994	Dunite	2	5		
11995	Chromite	1			
11996	01. cpx	2			
11997	01. cpx	5			
11998	Silt	11			
11999	C.g. pyx	14			
12000	Monzonite	15	21		
142308	Quartz vein	7	8		
142309	C.g. monzonite	3			
142310	Biot, hbdite	10	14		
142311	Porph. hbdite	32	40	27	
142312	M.g. diorite	4			
142313	Porph. hbdite	17	24		
142314	M.g. granite	2			
142315	Comp. 312/313	32		25	
142316	Silt	23	37		
3:1	HC1-HNO3 digestic	רזו			
cpx	clinopyroxenite				
conc.	concentrate from	Knelsen o	oncentrator		
Conce			•••••		
Comments:	Concentration did seems to prefer t units. Palladium as gold and plati have a good corre	he pyroxe 1 does not .num. Ele	nite and ho appear to wated palla	rnblendite be as sporadic dium values	

.

TABLE 9: PALLADIUM IN PPB

12.0 CONCLUSIONS

Although analytical results were generally low, zones of intense quartz stockworks, the development of "skarns" and the extensive areas of sulphide mineralization need to be examined and sampled in more detail.

The failure to concentrate economic values by the use of the Knelsen concentrator strongly suggests that this method of concentration is probably not effective. It is thought that the poor results may be due to the fine-grained nature of the mineralization.

13.0 <u>REFERENCES</u>

- Assessment Report 15955, Report on a Geochemical Survey of the Polaris Property Consisting of the Polaris Claim, Pole 1 and Pole 2 Claim, by Jay W. Page, 1986.
- Assessment Report 16236, Report on Geological and Geochemical Work, "Lay" Claims, Aiken Lake, by D. Johnson, 1987.
- Assessment Report 16628, Report on Prospecting and Sampling Work, Lay Property, Aiken Lake, by R. J. Johnston, 1987.
- GSC Paper 46-11, Aiken Lake (South Half) British Columbia, by J. E. Armstrong, 1946.
- GSC Paper 48-5, Geology and Mineral Deposits of Aiken Lake Map Area, British Columbia, by J. E. Armstrong and E. F. Roots, 1948.
- GSC Paper 68-1, Part A, Petrologic Studies of Ultramafic Rocks in the Aiken Lake Area, British Columbia (94-C West-Half), by T. N. Irvine, p. 110, 1968.
- GSC Paper 74-1A, Ultramafic and Gabbroic Rocks in the Aiken Lake and McConnell Creek Map Areas, British Columbia, by T. N. Irvine, pp. 149 -152, 1974.
- GSC Paper 76-1A, Alaskan-type Ultramafic-Gabbroic Bodies in the Aiken Lake, McConnell Creek and Toodoggone Map-Areas, by T. N. Irvine, pp. 76 - 81, 1976.
- BCMEMPR Bulletin 1, Aiken Lake Area, North-central British Columbia, by R. Lay, 1932.
- Open File 1989-17, Preliminary Geology and Noble Metal Geochemistry of the Polaris Mafic-Ultramafic Complex, by G. Nixon et al., 1989.
- Open File 1990-13, Geology of the Polaris Ultramafic Complex, by G. Nixon et al, 1990.
- GSC Memoir 274, Geology and Mineral Deposits of Aiken Lake Map Area, British Columbia, by E. F. Roots, 1954.

- B. Sc. Thesis, U.B.C., History and Origin of the Polaris Ultramafic Complex in the Aiken Lake Area of Northcentral British Columbia, by F. H. Foster, 1974.
- Assessment Report 24300, Geologic Report on the Star Claims, by U. Mowat, P.Geo., February 1996.
- Assessment Report 25002, Geochemical and Petrographic Report on the Star Claims, by U. Mowat, P. Geo., February 1997.

14.0 STATEMENT OF COSTS

Analytical Work

29 samples analysed for 30 elements by ICP and geochem Au, Pt, Pd by Ultra/ICP at \$17.30/sample 27 rock preps at \$4.25/sample 2 silt preps at \$1.35/sample GST	\$ 501.70 114.75 2.70 <u>43.34</u> \$ 662.49
13 rock samples analysed for 30 elements by ICP and geochem Au, Pt, Pd by Ultra/ICP at \$17.30/ sample	\$ 224.90
13 rock preps at \$2.20/sample GST	28.60 <u>17.75</u> \$ 271.25
5 rock samples analysed for 30 elements by ICP and geochem Au, Pt, Pd by Ultra/ICP at \$17.30/ sample	\$ 86.50
5 rock preps at \$2.20/sample 3 hours Knelsen concentrating at \$25.00/hour	11.00 75.00
GST ST	$\frac{12.08}{184.58}$
Helicopter	

4.3 hours at	\$630.00/hour	\$2709.00
371.6 liters	at \$0.70/liter	260.12
130.0 liters	at \$1.10/liter	143.00
GST		217.85
		\$3329.97

Labour

•

1 man for 1 day at \$200.00/day	\$ 200.00
1 man for 7 days at \$400.00/day	2800.00
	\$3000.00

Accommodation

1 room for 3 nights at \$52.90/night	\$ 158.70
Meals	\$ 46.72
Airfare	\$ 125.35

Bus	\$ 13.18
Taxi	\$ 25.50
Freight	\$ 110.70
Photos	\$ 11.18
Telephone	\$ 1.22
Reproduction	\$ 50.00
Equipment	\$ 6.55

TOTAL \$7997

15.0 STATEMENT OF QUALIFICATIONS

- I am a graduate of the University of British Columbia having graduated in 1969 with a Bachelor of Science in Geology.
- I have practiced my profession since 1969 in mineral exploration, oil and gas exploration and coal exploration.
- 3. I am a registered member of the Association of Professional Engineers and Geoscientists of British Columbia.
- 4. I have a direct interest in the Star Claims.

Ursula A. monat Ursula G. Mowat, P. Geo.

Dated this 15th day of april, 1998 at Vancouver, B. C.

APPENDIX

I

ACME ANA	ICAL LABORATORIES LTD. 852 B. HASTINGS ST. V OUVER BC V6A 1R6 PHONE(604)253-3158 FAY 34)253-1716
AA	GEOCHEMICAL ANALYSIS CERTIFICATE <u>Mowat, Ursula</u> File # 97-5238 1405 - 1933 Robson St., Vancouver BC V6G 1E7 Submitted by: Ursula Nowat
SAMPLE#	Mo Cu Pb Zn Ag Ni Co Mn. Fe As U Au Th Sr. Cd Sb Bi V Ca. P La Cr. Mg Ba Ti B. Al Na K. W Au** Pt** Pd** ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm
C 11981 C 11982 C 11983 C 11984 C 11985	<1 137 19 63 <.3 25 42 810 10.28 <2 <8 <2 <2 144 .6 <3 <3 512 3.84 .446 4 39 2.66 99 .26 4 2.36 .49 .19 <2 <2 15 23 1 135 6 33 <.3 6 13 394 4.35 <2 <8 <2 <2 23 <.2 <3 <3 240 1.16 .068 3 10 .68 45 .17 5 1.09 .11 .14 <2 6 8 7 1 196 16 64 <.3 8 25 583 5.62 <2 <8 <2 <2 60 <.2 <3 <3 280 1.99 .061 3 11 1.47 59 .29 6 2.71 .18 .15 <2 11 9 10 1 106 17 60 <.3 22 13 290 2.72 <2 <8 <2 5 47 .3 <3 <3 100 2.98 .072 21 33 .86 21 .22 6 2.57 .09 .12 <2 2 3 5 1 7 8 4 <.3 4 1 39 .25 2 <8 <2 7 5 <.2 <3 <5 .06 .007 6 6 .03 19<.01 3 .16 .11 .01 <2 3 1 2
C 11986 C 11987 C 11988 C 11989 C 11989 C 11990	1 11 15 61 .3 1586 113 1524 8.57 <2
C 11991 C 11992 C 11993 C 11994 C 11995	1 3 10 35 <.3
C 11996 C 11997 C 11999 C 12000 RE C 12000	<1
E 142308 E 142309 E 142310 E 142311 E 142311 E 142312	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
E 142313 E 142314 E 142315 Standard C3/4	<1 115 12 48 <.3 23 19 660 4.34 <2 <8 <2 <2 110 .3 <3 <3 209 2.23 .095 5 16 2.19 80 .32 <3 2.11 .55 .23 <2 <2 5 17 <1 9 5 15 <.3 4 3 167 1.49 <2 <8 <2 5 73 <.2 <3 <3 55 .24 .019 11 10 .25 266 .08 <3 .38 .06 .11 2 <2 <1 2 1 784 13 40 <.3 43 59 405 6.91 2 <8 <2 <2 172 <.2 <3 <3 205 2.06 .231 4 51 1.55 22 .22 3 2.03 .28 .11 <2 5 18 31 AU-R 27 69 40 168 5.7 41 13 769 3.59 55 29 <2 18 30 23.5 14 26 88 .60 .090 19 178 .65 155 .10 22 1.99 .04 .16 16 471 -

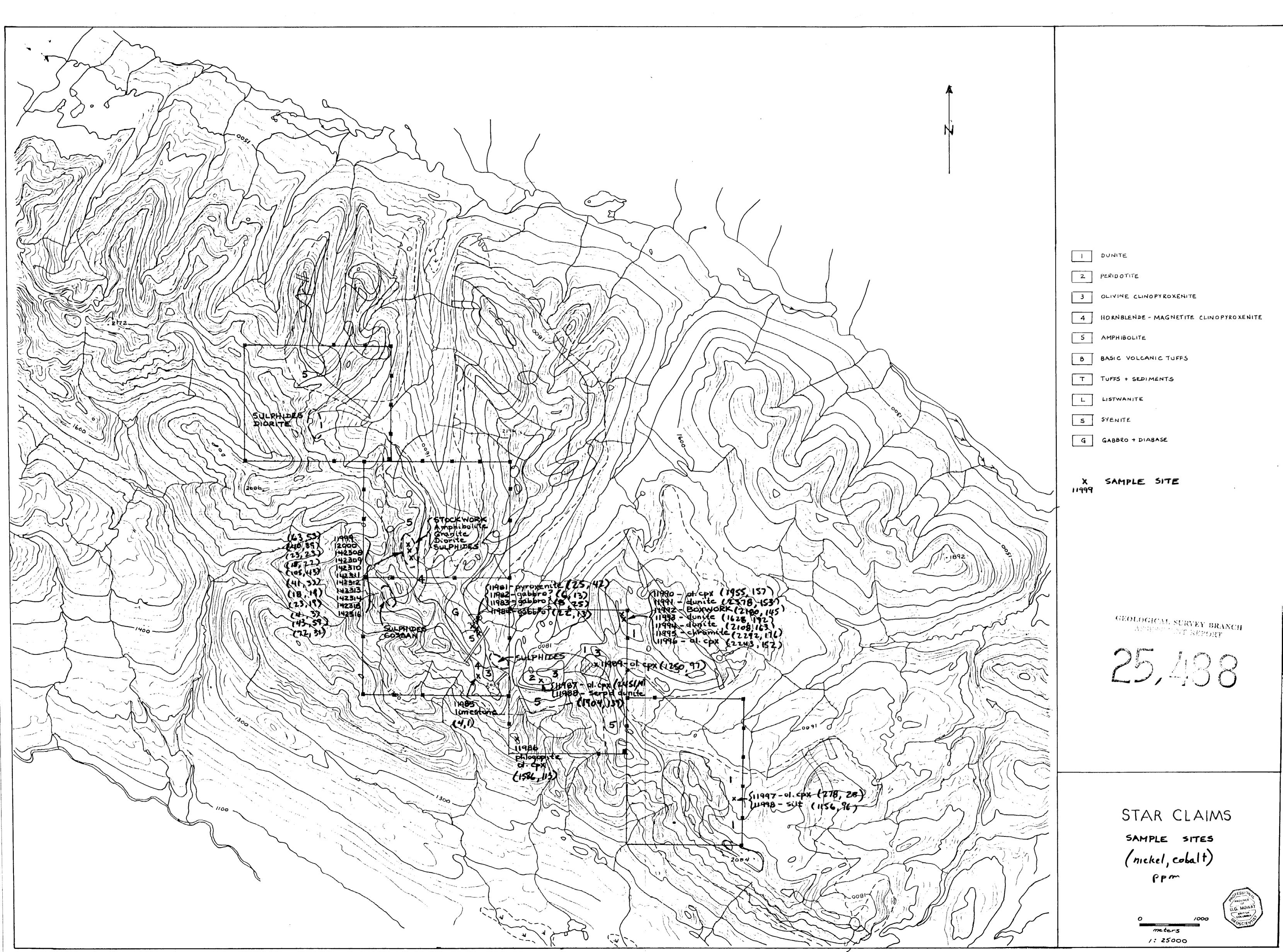
ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPN & AU > 1000 PPB - SAMPLE TYPE: ROCK AU** PT** PD** BY FIRE ASSAY & ANALYSIS BY ICP/GRAPHITE FURMACE. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

ACME ANAJ "IC	AL L	ABO	RAT	ORI	ES	LTD.		8	52 E	. H	1ST	ING	S S	T.	V7	'0 0	VER	BC	V	5 a 1	R6		PHO	NE (6	04)	25	3-31	58	FA	7 ' T	04)	253	1716
<u>A</u> A									GE(<u>Mow</u>	at,	បៈ	rsu	<u>.1a</u>	I	Lia File St., V	≥ #	9'	7 – 5	238	3R	ſE												
SAMPLE#	Mo ppm	Cu	Pb ppm		Ag	N î ppm	Co ppm	Mn ppm		As ppm	U	Au	Th	\$г	Cd ppm	Şþ	Bi	۷	Ca %	P	La ppm			Ba ppm	Ti %p	B	Al %	Na %	к % р	N N more		ot** bbp	Pd** ppb
C 11981 C 11986	<1 <1	137 5	<3 10		<.3 <.3	22 1445			11.56 7.10	_	-	_	<2 <2	156 9		<3 <3		542 19		.434 .005	_		2.80 19.91				2.47			<2 <2	1 45	12 22	26 4
C 11987 C 11989 C 11991	<1 1	232	<3 <3 <3	23	<.3		90		4.73 5.21 5.31	<2	<8	_		6 1 1	.3 <.2 3.	⊲ ⊲ ⊲	<3	<1 1 <1	.07	.005 .004 .004	-	125	23.41 15.07 24.02	7.	.01	12 3 <3	.05<			<2 <2 <2	3 9 <1	1 <1 6	2 2 5
c 11993	<1	-	- <3	40	<.3	1302	135	1538	7.84	<2	<8	<2	<2		.3	- <3	<3	<1	.07	.004	<1	84	25.22	4<.	.01	<3	.04	.01<	.01	<2	2	4	1
C 11994 C 12000 RE C 12000		2 1431 1437	3	25 53 53	<.3	1724 52 43		1278 757 759	6.50	2	<8 <8 <8	<2 <2 <2	<2		.2 <.2 <.2		<3	154	3.03		6	48	23.33 2.17 2.15	47	.19	33	.05 3.19 3.22	.08	.07	<2 <2 2	2	6 11 9	5 21 21
E 142308	-	151	<ŝ		<.3	21		358			-	<2	<2	124	<.2	<3	<3	233	1.76	.047	3	11	1.23	101	.24	<3	1.62	.23		<2	<1	4	8
E 142310 E 142311 E 142313	<1 <1 <1	471 164 121	-	35	<.3 <.3 <.3	97 36 23	32	539	6.71 5.22 4.57	<2	<8	<2	_	139	<.2 <.2 <.2	<3	<3	274	2.70	.050 .069 .103	2	41	1.70 2.26 2.44	81	.32	<3 7	2.37	.39	.26	<2 <2 <2	1 10 √1	5 37 9	14 40 24
E 142315 E 142315 STANDARD C3/FA100	<1 24	761 62	<3		<.3	38	56	416	7.35	<2	<8	<2	<2	180	<.2 22.0	<3	<3	198	2.02	.211	3	52 169	1.53	57 153	.20	<3	2.04	.16	.11	<2 15	3 48	22 53	24 37 54
STANDARD G-1	<1	3	3	48	<.3	10	5	626	2.20	<2	<8	<2	6	73	<.2	<3	<3	44	.65	.081	9	101	.70	288	.17	4	1.12	.06	.51	<2	<1	2	2

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK REJ. AU** PT** PD** BY FIRE ASSAY & ANALYSIS BY ULTRA/ICP. (30 gm), Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data

DATE RECEIVED: OCT 27 1997 DATE REPORT MAILED: $\sqrt{0}\sqrt{6}/\hat{47}$


All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

			na nan n Cina an in Maria									G	FO	CHI	IME	CAL	AN	AL_	JIS	CE	RTI	FIC	ATE				en normalise Son a forski e Soner a forski		anna an				میں بریکر ہے۔ محمد ہوتے ہوتے حالہ بریکر انہ		
						м	സ്ത	at.	ា	rsn	l a	Ъ	۲.Os	ጉርግ	r n	тск	EL.	ST	AR (IMS	F	ile	# !	97-	523	38R:	2 2							
														1405	- 15	933 R	obson	St.,	Vanco	uver	BC V6	G 1E7													
MPLE#	Mo pprn p				-	-		Co ppm	Mn ppn									Bi ppm p	V C	Ca %	PLa % ppn			Ba ppm					к % г		Au** ppb			ORG. gm	CONC.
11981 11983 11986 142311 142315	<1 1	206 9 151	5 <3 <3	6 5 6	7 <.3) <.3	3 3 13 3	10 358 48	25 97 44	671 1244 667	6.4 6.8	.7 < 19 18 <	<2 < 3 < <2 <	<8 < <8 < <8 <	<2 < <2 < <2 <	<28 <21 <215	1.2 3.2 7.3	<3 <3 <3	ব্য 2 ব্য ব্য 4	93 2.4 27 .1 20 3.3	47 .0 14 .0 38 .0	63 4 04 <' 57 3	4 14 1 581 3 66	2.87 1.59 18.49 2.88 1.87	97 97 90	.27 .05 .40	10 : <3 3 :	3.14 .48 2.77	.14 .04 .55	.20 .33 .37	<2	2 10 155 3 3	30	8 1 27	750 660 780 770 750	160 150 160 170 160
E 142315	<1	793	<3	3	7 <.:	3	52	101	513	10.0	4 <	<2 ·	<8 <	<2 •	<2 18	4 <.2	<3	<3 2	65 2.5	57.1	91	3 72	1.88	34	.27	3	2.24	.30	.18	2	4	20	Z5	-	-
DATE RE			- •			.,	.,							-	140		- /	'/						_				-							
																								I											
													-											I											
													-											I											
													-											Ι											
													-											Ι											
													-											Ι											
													-											Ι											

ACME ANAJ	TCAL	LAB(JRA'	TOF	IES	S.LI	D.		853	2 E	. H	AST	ING	SS	T	VA	١	JVEI	BC	Ve	iA J	R6		PHO)NE (60	4)25	3	315	8	FAX	*4	253-	1716
<u> </u>								1405		Mot	vat		Ūrs	sul	a	Fi	le		ERT 97- Subm	523	9		ula Mc	wat										A
SAMPLE#		Cu f ppn pp			-	Ni ppm	Co ppm	Mn ppm			U mqq	Au ppm				Sb ppm		V ppm	Ca %		La ppm			Ba ppm		8 Inqq	AL ۲	Na X		¥ ppm	Au** ppb		Pd** ppb	
C 11998	<1					1156	9 6	1269		_	_	_	<2		.2	-	<3		.52				13.57				.53			_		7	11	
E 142316 RE E 142316	-	707 · 764 ·					31 32	403 421	5.41 5.37	<2 <2		_	<2 <2				-		1.21		_	117 114	1.81			-	1.73			_	2	12 18		

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

