BERNARD H. KAHLERT P.Eng.

Consulting Geologist Mineral Exploration

1195 Sutton Pla	ce, West Vancouver, B.C. V7S 2L3	Tel. (604) 925-2743
SUST SUST		
JUN J ~ 1770	• •	
VANCOLIVER		

BEN PROPERTY

(Ben 1 - 6 Claims)

Assessment Report on Grid Construction and Magnetic and VLF - Electromagnetic Surveys

Latitude 52 40' N

Longitude 122 04' W

NTS 93 B / 9E

CARIBOO MINING DIVISION British Columbia

B.H. Kahlert, P.Eng.

West Vancouver, I May 26, 1998 GEOLOGICAL SURVEY BRANCH ASSESSMELTT REPORT

B. H. Kahlert & Associates Ltd. Consulting Geologists

TITLE PAGE

Introduction	Page 1
Location and Access	1
Location Diagram	After Page 1
Property Description	1
Claim Map	After Page 2
Terrain	2
Geological Setting	2
Results of Previous Work	3
1997 Work Program	4
Results of 1997 Work	4
Recommendations	5

APPENDICES

- I "Ben" File Details of Magnetic Readings
- II "VLF Ben" File Details of Electromagnetic Readings
- III OMNI Plus VLF / Magnetometer System
- IV Statement of Expenditure
- V B.H. Kahlert, P.Eng.

LIST OF FIGURES

- Figure 1Magnetic Profiles Showing Ben Claims
- Figure 2 VLF EM Profiles
- Figure 3 VLF EM Profiles with interpreted conductors

BEN PROPERTY

I. INTRODUCTION

The Ben 1 - 6, one unit claims, are owned by B.H. Kahlert of 1195 Sutton Place, West Vancouver. The claims cover a gold prospect identified by previous workers in the mid 1980's. This report covers a short geophysical survey completed over the claims in December 1997. Cost of this survey was \$1650.

II. LOCATION AND ACCESS

The Ben 1 - 6 claims are located 50 km north of Williams Lake, 10 km east of the Gibraltar porphyry copper mine. The claims are situated on NTS Map Sheet 93 B / 9E. Access is via the gravel road leading east from McLeese Lake on Highway 97 towards the town of Likely. At Km 22 from McLeese, a good gravel road north along the the Beedy Creek valley leads to the area of interest. A 4 km logging/ranch access track to the east leads to the western edge of the Ben claims. (See Location Map, over)

III. PROPERTY DESCRIPTION

Claim Name	Record No.	Units
Ben 1	307911	1
" 2	307912	1
" 3	307913	1
" 4	307914	1
" 5	307915	1
" 6	307916	1

All Ben claims are owned by B.H. Kahert and are in good standing until March 1999.

Location map of Ben property. Scale: 1:500,000.

IV. TERRAIN

The claims are situated near the western edge of the Fraser Plateau overlooking the Beedy Creek valley. Relief on the claims is less than 100 metres. Glacial overburden is extensive but thin, generally only 1 - 10 metres. Several creeks cut shallow gullies up to 15 metres deep.

V. GEOLOGICAL SETTING

The Ben Claims are underlain by Cache Creek Group limestones, argillite and chert. Mafic volcanic augite porphyry flows with a boninitic composition are exposed in the western portion of the claims. It is unsure whether these mafics belong to the Cache Creek Group or the Triassic Takla Group.

The most significant prospect on the property is the Main Zone located about 500 metres east of the western Ben claim boundary. The Ben main Zone is an eighty metre wide, highly silicified-carbonated zone exposed only in a shallow gully of North Ben Creek. In the center of the zone is a brecciated, silicified quartz vein or quartz breccia "ledge" surrounded by silicified and carbonatized country rock. Multiple phases of silicification have been identified and abundant open spaces indicates a high level emplacement. The silica ground mass also contains abundant fine grained pyrite with occasional grains of arseno-pyrite. Carbonate minerals, consisting of up to 25 percent magnesite with lesser dolomite, are intergrown with the fine grained silica.

Assaying of the numerous rock chip samples indicates anomalous gold values ranging from 20 to 220 ppb Au accompanied by highly anomalous arsenic, antimony and mercury, typical of trace elements associated with epigenetic gold deposits. Arsenic values up to 570 ppm As and antimony up to 250 ppm Sb are similar in range to rocks proximal to the rich Sleeper deposit in the Nevada and the Castle Mtn. deposits of Southeast California.

At the margins of the silicified zone, abundant chrome mica (mariposite) is noted while assaying indicates high background nickel values of up to 1,800 ppm Ni. This, associated with the high magnesium concentration indicates an association with a deep seated ultramafic suite of rocks. In this regard, the prospect has similarities to the recently discovered high grade Golden Bear deposit of Chevron, the Bralome B.C. camp which produced 4 million ounces gold and the Motherlode camp of central California.

Structurally, the property appears to be cut by north-south trending splay of the extensive Pinchi Fault. Other brecciated, silicified exposures on the property are also anomalous in gold, arsenic and antimony, indicating an extensive zone. A flat, easterly dipping mylonitized zone forming the eastern boundary of the silicified zone may be an overthrust forming an impervious capping to the mineralized zone prior to erosion.

Other strong arsenic-antimony-gold anomalies on the Ben claims which have not yet been examined indicate further potential on this property.

VI. RESULTS OF PREVIOUS WORK

Work on the property in the 1980's by Amoco Minerals and later Circle Resources outlined several silt gold anomalies associated with high trace elements - arsenic, antimony and mercury. Geological mapping located a wide silicified zone with abundant fuchsite carrying anomalous gold and trace elements. These metals are associated with a three stage quartz breccia and silicification event which includes chalcedony - clearly an epigenetic association. Circle Resources planned to drill this zone, however the drill contractor had no dozer, so set up 300 metres from the target and drilled 2 short, vertical holes. Even so, anomalous gold values were encountered in altered volcanics.

VII. 1997 WORK PROGRAM

In mid December, 1997, a short program of line preparation and geological surveying was completed an the Ben claims. The Program was designed by B.H. Kahlert P.Eng and completed between December 12 and 16, 1997.

Four Grid lines totalling 5450 metres were marked and flagged, then geophysically surveyed using an OMNI Plus Instrument V120. This unit, with serial #41456, was rented from S. J. Geophysics of Surrey B.C. The instrument digitally records magnetic and VLF electromagnetic data. Instrument specifications are detailed in Appendix III.

All work was completed by William B. Kahlert, field technician with 10 years experience, who motored to the site.

Data were recovered and plotted by Orequest Consultants who interpreted conductors from the VLF EM data from the Seattle Station.

As profile data only were collected, diurnal magnetic readings were not collected.

VIII RESULTS OF 1997 WORK

Detailed digital data are plotted in Appendix I (magnetic readings) and AppendixII (VLF - EM readings). Both Seattle and Cutler frequencies were read, however the Cutler signal was considered too weak to be interpreted.

Line profiles of magnetic data are plotted on Fig. I. Fig II shows plotted profiles of VLF - EM results using the cutler frequency while Fig III shows VLF - EM profiles using Seattle frequency. Interpreted conductor locations are shown on Fig. III

The conductors have not yet been geologically evaluated. At this time, conductors located just east and west of the base line on lines 500 N. and 700 N. are close to the margins of the Main Ben alteration zone. As such they may represent sulphides or structural weaknesses associated with the margins

of this zone. As overburden deepens to the south the VLF - EM may not detect these on lines 300 N. and 100 N.

Magnetic profiles show generally flat magnetic gradients with positive or negative disturbances of less than 100nT. These may be caused by narrow mafic dykes with trace magnetite or shear zones which destroyed magnetic minerals.

IX. RECOMMENDATIONS

Further work on the Ben Claims should consist of the following:

- 1. Prospecting and mapping to determine source of the conductors and magnetic inflections. Some trenching may be required.
- 2. Sampling of the intense alteration zones to determine the presence and tenor of anomalous gold values as well as related epigenetic trace elements.
- 3. Extensive Induced Polarization Survey to locate modest sulfide zones which may be associated with epigenetic gold mineralization.
- 4. Drilling of several test diamond drill holes on the main Ben zone and other targets to search for buried epigenetic gold mineralization.

B.H. Kahlert, P.Eng.

APPENDIX I

Ben

Tatal Fiel dion	Cm a	nt Magne fics	
	4 T	OTAL GR	
STATION LINE	.# I' 504	57206.9	-999
1800	501	57207.0	-999
1825	501	57207.3	-000
1850	501	37207.4 76466 0	-000
1875	501	10100.9	-333
1900	501	57244.0	-999
1925	501	57251.0	-999
1950	501	57245.5	-332
1975	501	57228.2	-999
2000	501	5/150.0	-999
STATION LINE	:#	OTAL GR	
525	2000	5/155.9	-999
550	2000	5/18/	-888
575	2000	57168.9	-999
600	2000	57169.1	-999
625	2000	57142	-999
650	2000	57193.9	-999
675	2000	57240.5	-999
700	2000	57256	-999
725	2000	57200.5	-999
STATION LIN	E# 3	FOTAL GR	ADIENT
1725	700	57199.8	-999
1750	700	57189.9	-999
1775	700	46263.1	-999
1800	700	57183.3	-999
1825	700	57194.9	-999
1020	700	57188 1	-999
1975	700	51600.8	-999
1075	700	57186.8	-999
1900	700	57188.6	-999
1920	700	57178.4	-999
1950	700	57207.5	-999
1970	700	57268.5	-999
2000	700	57200.0	_000
2025	700	57202.1	-000
2050	700	57210.1	000
2075	700	57101.0	-339
2100	700	5/185.2	-999
2125	700	5/192.4	-999
2150	700	57204.2	-999
2175	700	57195.1	-999
2200	700	57191.5	-999
2225	700	57174.3	-999
2250	700	57170.7	-999
2275	700	67721.3	-999
2300	700	57233.5	-999
2325	700	57251.8	-999
2350	700	57219.5	-999
2375	700	57199.8	-999
2400	700	57171.5	-999
2425	700	57199.9	-999

2450	700	57183.4	-999
2475	700	57209.8	-999
2500	700	57167.1	-999
2525	700	57197.5	-999
2550	700	57198.4	-999
2575	700	57189.5	-999
2600	700	57201.3	-999
2625	700	57206.8	-999
2650	700	57206.8	-999
2675	700	57219.3	-999
2700	700	67775.8	-999
2725	700	57218.2	-999
2750	700	57203.3	-999
2775	700	57204.9	-999
2800	700	57198.7	-999
2825	700	57196.7	-999
2850	700	57184.6	-999
2875	700	57196.4	-999
2900	700	57183.1	-999
2925	700	57197.1	-999
2950	700	57209.5	-999
2975	700	57233.9	-999
STATION LINE	# 1	TOTAL I	GRADIENT
2925	500	57214.8	-999
2900	500	57239.1	-99 9
2875	500	57208.7	-999
2850	500	57272.9	-999
2825	500	57242.9	-999
2800	500	57205.8	-999
2775	500	13953.1	-999
2750	500	56369.7	-999
2705	500	56369 7	-999
2725	500	56369.7	-999
2750	500	56369 7	-999
2705	500	56369 7	-999
2700	500	56369 7	-999
2675	500	57186 1	-999
2650	500	57180.2	-999
2625	500	57186 7	-999
2025	500	57188	-999
2000	500	57199.5	-999
2550	500	57190.9	-999
2530	500	57206.4	-999
2525	500	57174.9	-999
2300	500	57181 5	-999
2475	500	57259	-999
240U 240E	500	57107 1	-999
2420	500	57173.1	-999
2400	500	57183.7	-999
23/3	500	57168 0	-000
2350	500	57100.5	_000
2325	200	01102.3	-338

2300	500	57196.2	-999
2275	500	57162.6	-999
2250	500	57184.8	-999
2225	500	57172	-999
2200	500	57154.2	-999
2175	500	57163.1	-999
2150	500	57165.7	-999
2125	500	57168.9	-999
2100	500	57212	-999
2075	500	57 182 .4	-999
2050	500	57145.1	-999
2025	500	57165.6	-999
2000	500	57 165 .3	-999
1975	500	57202	-999
1950	500	57199.7	-999
1925	500	57159.4	-999
1900	500	57189	-999
1875	500	57248.1	-999
1850	500	57253.8	-999
1825	500	57253.3	-999
1800	500	57255.1	-999
1775	500	57244.4	-999
1750	500	57204.9	-999
1725	500	57208.5	-999
1700	500	57240.3	-999
1675	500	57150.8	-999
1650	500	67669.2	-999
1625	500	57105.5	-999
1600	500	57123	-999
1575	500	57134.4	-999

STATION	LINE #	TOTAL	GRADIENT
1700	300	57208.2	-999
1725	300	57210.1	-999
1750	300	57268.1	-999
1775	300	57268.6	-999
1800	300	57239.7	-999
1825	300	57226.6	-999
1850	300	57221.8	-999
1875	300	57229.8	-999
1900	300	57216.5	-999
1925	300	57215.2	-999
1950	300	57212.9	-999

		67040 0	000
1975	300	57210.2	-353
2000	300	5/224.9	-999
2025	300	5/195.9	-999
2050	300	57200.2	-999
2075	300	57218.8	-999
2100	300	57193.7	-999
2125	300	57135.8	-999
2150	300	57146.8	-999
2175	300	57190.4	-999
2200	300	57222.2	-999
2225	300	57220.2	-999
2250	300	57237.6	-999
2275	300	57219	-999
2300	300	57218.7	-999
2325	300	57212.2	-999
2350	300	57215.1	-999
2375	300	57209.9	-999
2400	300	57210	-999
2425	300	57207	-999
2450	300	57210.4	-999
2430	300	57232.9	-999
2473	300	57208 7	-999
2500	300	57242.2	-999
2020	200	57204.7	-999
2550	300	57215 1	-996
2575	300	57213.1	-000
2600	300	57217.3	-995
2625	300	57203.2	-999
2650	300	5/202.4	-999
2675	300	5/188.4	-999
2700	300	57144.2	-999
2725	300	5/131.5	-999
2750	300	57230.1	-999
2775	300	57192.3	-999
2800	300	57195.9	-888
2825	300	57196.5	-999
2850	300	57193.5	-999
2875	300	57190.7	-999
2900	300	57188.3	-999
2925	300	57207.5	-999
2950	300	57211.5	-999
STATION	LINE #	TOTAL	GRADIENT
2950	100	57209.3	-999
2925	100	57177.3	-999
2900	100	57159.8	-999
2875	100	57168.9	-999
2850	100	57175	-999
2805	100	57190.6	-999
2800	100	57238.3	-999
2000	100	57185.3	-999
2113	100	57234.9	-999
2100	100	57205.3	-999
2123	100	U. 200.V	

2700	100	57187	-999			
2675	100	57182.7	-999			
2650	100	57188.8	-999			
2625	100	57181.8	-999			
2600	100	57191	-999			
2575	100	57193.8	-999			
2550	100	57272.1	-999			
2525	100	57186.7	-999			
2500	100	57270	-999			
2475	100	57187.3	-999			
2450	100	57218.4	-999			
2425	100	57106.8	-999			
2400	100	57191.4	-999			
2375	100	57190.8	-999			
2350	100	57207.5	-999			
2325	100	57190.8	-999			
2300	100	57207	-999			
2275	100	57199.7	-999			
2250	100	57199.8	-999			
2225	100	57194	-999			
2200	100	57198.9	-999			
2175	100	57201.2	-999			
2150	100	57198.8	-999			
2125	100	57187.9	-999			
2100	100	57185.7	-999			
2075	100	57217.5	-999			
2050	100	57219.7	-99 9			
2025	100	57201.3	-999			
2000	100	57220	-999			
1975	100	57235.3	-999			
1950	100	57158.5	-999			
1925	100	46203.5	-999			
1900	100	57217.2	-999			
1875	100	57219	-999			
1850	100	57213.9	-999			
1825	100	57229.2	-999			
1800	100	57209.6	-999			
1775	100	57208.4	-999			
1750	100	57196.2	-999			
1725	100	57194.9	-999			
1700	100	57181.9	-999			
1675	100	57207.5	-999			
1650	100	57205.3	-999			
apres test data						
STATION LINE	Ξ#	TOTAL	GRADIENT			
8301	8301	57225	-999			
8326	8301	57223.8	-999			
8351	8301	57223.9	-999			

-999

-999

57223.5

57223.7

8301

8301

8376

8401

	8426		8301	57223.8	-999
early STA	test d FION 8300 8325 8350 8375 8400 8425 8450	ata LINE	# 8300 8300 8300 8300 8300 8300 8300	TOTAL 57234.5 57234.1 57234 57233.7 57233.8 57233.6 57233.9 57233.2	GRADIENT -999 -999 -999 -999 -999 -999 -999 -9
	0/10				

APPENDIX II

Vlfben

	ittor · 2	4.0 kHz	NAA Cu	tler	
VEP Mans		INPHASE	OUAD	T.FLD	DIR
1800	501	21	4.5	123.5	1.2
1825	501	61	3.4	132.3	3.5
1850	501	4.6	-0.2	142.3	2.6
1875	501	1.2	-1.1	146.5	0.7
1900	501	-2.3	0.5	147.5	-1.3
1925	501	-6.9	-0.4	147.1	-3.9
1950	501	-9.2	-1.7	145.7	-5.2
1975	501	-12.7	-7.3	146.1	-7.3
2000	501	-13.2	-6.9	135.3	-7.6
STATION	LINE #	INPHASE	QUAD	T.FLD	DIR
525	2000	-13.8	-6.4	133.4	-7.8
550	2000	5	0.1	143.5	2.8
575	2000	-11.3	-1.5	154.8	-6.4
600	2000	-1.8	1	152.5	-1
625	2000	-7.3	-1.5	150.2	-4.2
650	2000	-12.9	-4.2	156.2	-7.3
675	2000	2.9	4.8	150.3	1.6
700	2000	-5.5	-1.7	150.6	-3.1
725	2000	-5.3	0.9	149.7	-3
STATION	LINE #	INPHASE	QUAD	T.FLD	DIR
1725	700	7.9	-4.3	124.7	4.5
1750	700	11.1	-9.4	125.6	6.4
1775	700	17	-13.4	130.9	9.8
1800	700	17.9	-11.3	142.6	10.2
1825	700	13.6	-13.4	144.4	7.9
1850	700	9.6	-11.3	149	5.5
1875	700	1.3	-8	147.7	0.7
1900	700	-0.2	-5.3	143.2	-0.1
1925	5 700) 0.2	-2	137	0.1
1950) 700) 6.1	-1.5	i 141.6	3.5
1975	5 700) 1.7	-0.2	145.8	0.9
2000) 700) -5.8	-0,8	142.5	-3.3
2025	5 700) -9.2	2 -0.6	i 141.4	-5.2
2050) 700) -8.3	-3.1	133.3	-4.7
2075	5 700) -4,5	i -5.8	3 130.5	5 -2.6
2100) 700) 1.2	<u>-</u> 8	3 128.8	8 0.7
2125	5 700) 9.7	7 -3.1	136.1	5.5
2150) 700) 2	2 -4.3	3 142.4	1.1
2175	5 700) -3.4	t -4.4	l 139.8	-1.9
2200) 70() -6.8	3 -5.4	135.7	-3.9
2225	5 700) -9.9		7 128.4	-5.7
2250) 700) -5.9	9 -4,4	125	5 -3.4
2275	5 700	0. 0	3 -2. ⁻	125.1	I 0.5
2300) 70¢	0.	7 () 125.2	2 0.4
232	5 700	0 -1 .1	i 1.8	3 127.5	5 -0.6
2350	D 70	0 -8.0	5 0.4	5 128.4	4 -4.9
237	5 70	D -12.1	1 1.4	4 119.6	6.8 -6.8
240	י ס ק כ	0 -11.•	4	3 111.3	3 -6.5
242	5 70	0 -9.3	31.	7 113.	5 -5.3

Vifben

2450	700	-8.5	3.3	110.2	-4.8
2475	700	-6.9	1.9	108.7	-3.9
2500	700	-0.5	3.8	105.6	-0.3
2525	700	-1.4	1.4	108.9	-0.8
2550	700	-3.2	-2.5	105	-1.8
2575	700	-2.3	-1 .1	102	-1.3
2600	700	-3.4	0.3	102.8	-1.9
2625	700	-2.2	-0.7	99.3	-1.2
2650	700	2	-1.4	98.5	1.1
2675	700	3.1	-3	100.4	17
2700	700	2	-3	101.3	1.1
2725	700	0.2	-2.8	102.6	0.1
2750	700	1.5	-1.9	103.1	0.8
2775	700	0.1	2.6	105.5	0
2800	700	-4	6.6	104.7	-2.3
2825	70 0	-4.9	9.7	104.9	-2.8
2850	700	-0.8	10.9	103.4	-0.5
2875	700	-3.7	9.6	109.5	-2.1
2900	700	-14.3	7	104.5	-8.1
2925	700	-8	7	97	-4,6
2950	700	-6.9	9.1	97.1	-3,9
2975	700	-4	8.2	97.4	-2.3
STATION	LINE #	INPHASE	QUAD	T.FLD	DIR
2925	500	28.6	-4.2	86.5	10
2900	500	28,6	-3.9	81.3	15,9
2875	500	22.7	-5	78.3	12.8
2850	500	21.5	-2.6	77.3	12.1
2825	500	19.9	-6.3	/6.6	11.3
2800	500	15.9	-5.2	/5.5	9.1
2775	500	18.2	-3.3	/6.9	10.3
2750	500	-71.6	-0.1	3552	-6
2725	500	-71.6	-0.1	3550	0- T
2775	500	-71.5	-0.1	3553	-1
2750	500	-71.5	-0.1	3553	-0
2725	500	-71.5	-0.1	3553	-1
2700	500	-71.5	-0.1	3552	-D 40 C
2675	500	24.3	-1.3	54.5	13.0
2650	500	22	-2.8	50.3	12.4
2625	500	27.6	-0.6	59.3	15.4
2600	500	29.8	-2.8	59.4	10.6
2575	500	34.5	-1.3	5/.5	19
2550	500	30	-3.4	55.4	10.7
2525	500	24.5	8-	51.3	13.0
2500	500	3.2	-13.4	52	1.0
2475	500	7.9	-12.4	63.8	4.0 40 F
2450	500	18.6	-4.9	67.4	C.UT
2425	500	24.7	-3,4	66.5	13.9
2400	500	23.4	-5.7	63.4	۲۵.2 م ۲
2375	500	15.2	-5.4	60.6	ō./ -7
2350	500	12.3	-6	63.1	1
2325	500	20.1	-0.1	63.6	11.3

Vlfben

2200	500	13	1.5	60.7	7.4
2300	500	76	2.3	64.7	4.3
2275	500	10	4.8	66	5.7
2200	500	62	0.2	65.2	3.5
2220	500	5.1	2.8	63.6	2.9
2200	500	6.5	3.7	63.5	3.7
2175	500	5.8	0	65	3.3
2100	500	8.5	-0.8	67	4.8
2120	500	14.4	1.1	66.8	8.2
2075	500	19	6.4	65.5	10.8
2050	500	23.8	8.8	61.2	13.5
2025	500	18.3	4.7	59.4	10.4
2000	500	13.1	0.3	61.4	7.4
1975	500	16.9	-1.4	60.1	9.6
1950	500	13.3	-0.7	57	7.5
1925	500	9.3	-6.3	58.3	5.3
1900	500	9.5	-8.5	63.2	5.4
1875	500	16	-3.2	64.1	9.1
1850	500	18.1	-2.1	64.3	10.3
1825	500	20.5	0.5	65.3	11.6
1800	500	22.7	-1.6	65.4	12.8
1775	500	24.3	-2.5	65.1	13.6
1750	500	25	1.1	62.6	14
1725	500	28.8	3.2	59.8	16
1700	500	18.8	3.2	60.5	10.6
1675	500	17.4	2.6	64.6	9.8
1650	500	20.6	4.6	65.5	11.6
1625	500	20.7	8.9	63.9	11.8
1600	500	14.9	4	63.6	8.5
1575	500	16.3	7.4	64.2	9.3

STATION	LINE #	INPHASE	QUAD	T.FLD	DIR
1700	300	4.2	0.9	62.6	2.4
1725	300	1	0.5	63	0.6
1750	300	-1.4	0.9	62.4	-0.8
1775	300	-1.1	0.3	57.9	-0.6
1800	300	1.2	2.5	52.8	0.7
1825	300	-0.8	1.5	49.9	-0.4
1850	300	-1.4	0.4	49.1	-0.8
1875	300	-1.7	0.6	47.6	-0.9
1900	300	-1.4	1.5	47.4	-0.8
1900	300	-1.6	0.8	48.6	-0.9
1050	300	-3.2	0.6	48.9	-1.8
1930	000				

.

Vlfben

1975	300	-2.9	2	49.7	-1.6
2000	300	-6	0.8	51	-3.4
2025	300	-8	0.3	50.8	-4.6
2050	300	-8	0.3	51.8	-4.6
2075	300	-9.4	1.1	53.9	-5.4
2100	300	-9.2	1.2	55.8	-5.3
2125	300	-9.4	0.2	58.1	-5.4
2150	300	-7.8	0.6	61.4	-4.4
2175	300	-9.1	-0.3	66.4	-5.2
2200	300	-8.6	-1.3	67.7	-4.9
2225	300	-7.7	-1.5	68.6	-4.4
2250	300	-7.8	-1.9	70	-4.4
2275	300	-9.7	-0.9	70.5	-5.5
2300	300	-9.1	-1.8	71	-5.2
2325	300	-9.9	0	71.5	-7.9
2350	300	-11.3	0.9	73	-6.4
2375	300	-8.9	1.6	72.1	-5.1
2400	300	-9.6	-0.1	72.9	-5.4
2425	300	-11.2	0.6	74.7	-6.4
2450	300	-13.2	2.3	75.6	-7.5
2475	300	-13.2	0.1	75.9	-7.5
2500	300	-14	1.5	75.7	-7.9
2525	300	-14.6	-0.7	76.4	-8.3
2550	300	-12.1	2.1	76.4	-6.9
2575	300	-11.7	1.5	79.9	-6.7
2600	300	-10.6	-0.5	81.9	-6.1
2625	300	-13.1	0.8	83.7	-7.4
2650	300	-10.6	2.7	85.4	-6
2675	300	-14.4	3.5	87.4	-8.2
2700	300	-20	-1.5	81.9	-11.3
2725	300	-10.4	2	75.7	-5.9
2750	300	4.2	5	88.8	2.4
2775	300	1.8	1.3	92.3	1
2800	300	0	0.9	92.7	0
2825	300	-2	0	93.3	-1.1
2850	300	-2	-1.1	91.6	-1.1
2875	300	0.9	-2.7	91.9	0,5
2900	300	0.6	-3.2	94.6	0.3
2925	300	-4.9	-3.8	92.4	-2.8
2950	300	-5.9	-4.4	88.9	-3.3
STATION	LINE #	INPHASE	QUAD	T.FLD	
2950	100	25	1.6	97	14
2925	100	27.3	3.4	94.6	15.3
2900	100	24.1	2.7	94.2	13.5
2875	100	18	1.7	96.8	10.2
2850	100	15.9	2	98.3	9
2825	100	16.4	2.9	100.7	9.3
2800	100	18.8	5	97.5	10.7
2775	100	6.7	0.8	93.5	3.8
2750	100	2.2	-0.8	110.2	1.3
2725	100	12.6	-3.6	111.6	7.2

Vlfben

2700	100	10	-4.7	107.7	5.7
2675	100	6,6	0	109.1	3.7
2650	100	3.3	1.2	115.3	1.9
2625	100	7.6	0.9	116.8	4.3
2600	100	9.6	0.6	117.5	5.4
2575	100	8.5	-1.3	121.6	4.8
2550	100	10	0	128.2	5.7
2525	100	14.9	1.3	127.9	8.5
2500	100	12.8	1.3	128.6	7.2
2475	100	23.9	-2.8	129.3	13.5
2410	100	31.2	0.3	119.2	17.3
2430	100	16.9	-3.6	95.9	9.6
2423	100	8.5	-3	119.9	4.8
2400	100	11 4	-23	124	6.5
2375	100	15.2	-1.2	124	8.6
2300	100	14.4	-1.6	124.6	8.2
2323	100	12.7	0.6	125.5	7.3
2300	100	16.2	-0.3	124	9.2
2273	100	16.7	0.0	126.7	9.5
2200	100	16.0	1 1	125.2	9.6
2223	100	10.0	14	125.3	9.7
2200	100	20.2	1.7	128.2	11.4
21/5	100	20.2	1.0	127.3	11.9
2150	100	21.1	-0.5	121.0	12.7
2125	100	22.0	2 5	127.6	10
2100	100	17.7	-3.3	122.0	111
2075	100	19.0	0.3	120.7	12.5
2050	100	22.2	2.0	127.2	11 9
2025	100	21.2	1.1	122.0	10.9
2000	100	19.4	-0.9	123	14
1975	100	25	0.3	106 1	14.2
1950	100	25.3	4.0	100.1	3.1
1925	100	5,3	-9.2	122.1	5.1 6.4
1900	100	11.3	-2.0	130.7	0.4
1875	100	17.5	-2	130.0	3.3
1850	100	21.8	-1.2	133.9	12.3
1825	100	24	-0.9	130.5	13.5
1800	100	25.6	0.4	127.5	14.3
1775	100	22.9	1.7	125.5	12.8
1750	100	25.6	1.1	129.4	14.3
1725	100	31.1	-2	129	17.3
1700	100	33.5	-1.4	115.7	10.5
1675	100	25.1	-1.8	118.4	14.1
1650	100	22.8	-0.5	118.5	12.0
apres test o	lata				
STATION	LINE #	INPHASE	QUAD	I.FLD	UIK
8301	8301	15.6	1.2	118.2	0.0
8326	8301	15.8	1	118.7	9 A A
8351	8301	15.7	1	118.7	8.9
8376	8301	16.1	1	118.7	9.1
8401	8301	16.7	1.2	119.4	9.5

,

Vifben

8426	8301	16.1	0.9	118.6	9.1
early test d	ata				
STATION	LINE #	INPHASE	QUAD	T.FLD	DIR
8300	8300	11.9	-0.9	47	6.8
8325	8300	12	-1.4	49.8	6.8
8350	8300	11.5	-2.7	50.7	6.6
8375	8300	11.6	-2.3	51.2	6.6
8400	8300	11.5	-2.3	51.6	6.5
8425	8300	11.9	-2.3	52.8	6.7
8450	8300	11.9	-3	54	6.8
8475	8300	12.8	9.6	59.8	7.3

APPENDIX III

OMNI PLUS VLF/MAGNETOMETER SYSTEM

The OMNI PLUS is a portable micro processor based magnetometer/VLF System which is capable of measuring changes or contrasts detected by two different types of geophysical methods: magnetic and VLF-electromagnetic.

A measurement from both of these methods can be read and stored in as little as four seconds to a maximum of thirty seconds.

The OMNI PLUS is a multi purpose instrument designed to operate as a:

- 1. Magnetoneter
- 2. Combined VLE/magnetometer
- 3. VLF System

The OMNI PLUS magnetometer measures and stores the magnitude of the earth's magnetic field independent of its direction.

The OMNI PLUS electromagnetic receiver measures and records the secondary field components of the primary field from up to three transmitting VLF stations.

VLF and magnetic measurements are obtained by the use of two sensors:

1. The proton precession sensor carried on a pole to measure the total magnetic field.

 A three component sensor worn on a backpack to measure the magnetic component of the VLE secondary field.

The OMNI PLUS VLF option monitors the VLF frequencies selected for operator quality and signal to noise ratio during each reading. The operator is able to assess the validity of his data by monitoring the descriptor bars on his console.

Specifications of the Unit are listed on a separate page.

OMNI PLUS stores only raw data for both the VLF and magnetometer measurements. Correction for the magnetic dirurnal variations are performed in conjunction with an OMNI IV Base Station Unit.

The OMNI IV base station utilized with the OMNI PLUS System is a programmable proton precession magnetometer that measures the earth's magnetic field from a fixed location every ten seconds. This data is interrelated with that of the field OMNI PLUS Unit in order to arrive at a dirurnally corrected magnetic value for each of the survey stations in the field.

TECHNICAL SPECIFICATIONS - OMNI PLUS

Wt(kg): wxhxd(mm) Physical Dimensions 122 x 246 x 210 Instrument console only 3.8: 540 x 100 x 40 Battery cartridge 1.8: 138 x 95 x 75 1.8: Battery belt Sensors 56 dia x 220 1.2: Magnetometer remote sensor 56 dia x 790 2.1: Magnetometer gradient sensor VLF sensor module 2.6: 280 x 190 x 60 Environment Electronics Operating temperature range . . . -40 C to +55 C Relative humidity 0 to 100 % (weather-proof) Magnetometer Sensors -45 C to +55 C Temperature range Relative humidity 0 to 100 % (weather-proof) VLF Sensor Temperature range -45 C to +55 C 0 to 100 % (weather-proof) Relative humidity Standard Memory Capacity 1300 sets of readings Field unit 100 sets of readings Tie-line points Base station 5500 sets of readings Electronics RS-232C serial I/O 300 to 9600 baud (programmable); 8 data 2 stop bits; no bits, parity Enclosure contains Electronics console electronics and battery pack (if not contained in separate belt). Front includes liquid panel crystal display (LCD), and keypad. Internal battery pack or Power Supply external battery belt; or 12V car battery (base station).

APPENDIX IV

Statement of Expenditures Ben Claims 1 - 6 # 307911 - 307916

Instrument Rent	\$ 150.00
Travel and Accommodation	450.00
Wages - W.B. Kahlert	450.00
Map Preparation - Ore Quest	100.00
Report Preparation - B.H. Kahlert, P.Eng.	500.00
Stationery, Typing	100.00

TOTAL \$1750.00

APPENDIX V

Statement of Qualifications, B.H. Kahlert, P. Eng.

1966	Graduated UBC, B.Sc, Geology
1971	Attained P.Eng Status, British Columbia
1966 - 1985	20 years Experience as Field Geologist and Exploration
	manager in Canada, USA and Australia.
1985 - Present	Consulting Geologist to various junior and senior Exploration
	Companies in Canada, USA, China, Greenland and Latin
	America.

Practise of Exploration Geology has been continuous for over 30 Years.

)

j.

.