

1997 Geological & Geohemical Report

on the Jake Property

Omineca Mining Division

British Columbia

Lat. 56 15' Long. 127 20'

NTS 94D/3W

For-Teck Corp.

March, 1998 By G.Evans GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

Table Of Contents

....

-

· ----

....

--

677

6115

5

...

<u>#</u>....

8.13

.

1.0 - Introduction	р.1
1.1 - Location and Access	p.1
1.2 - Property and Status	p.1
1.3 - Physiography and Climate	p.1
1.4 - History	p.2
2.0 - 1997 Program	p.2
3.0 - Geology	
3.1 - Regional Geology	p.3
3.2 - Property Geology	р.3
3.3 - Rock Types & Alteration & Mineralization	р.3
4.0 - Soil Geochemistry	p.5
5.0 - Conclusions & Recommendations	p. 7
6.0 - References	p.8
LIST OF FIGURES	
Fig. 1 - Location and Access	after p.1
Fig. 2 - Claim Map	after p.1
Fig. 3 - Regional Geology	after p.3
Fig. 4 - Property Geology	in pocket
Fig.5 - DDH 73 - 2 & 3	in pocket
Fig.6 - DDH 73 - 4 & 5	in pocket
Fig.7 - DDH 73 - 6 & 7	in pocket
Fig. 8 - Cu soil geochemistry	in pocket
Fig. 9 - Pb soil geochemistry	in pocket
Fig.10 - Mo soil gochemistry	in pocket

Fig.11 - As soil geochemistry	in pocket
Fig.12 - Ag soil geochemistry	in pocket
Fig.13 - Au soil geochemistry	in pocket

APPENDICES

- **Appendix 1 Rock Description Table**
- Appendix 2 Certificates of analysis Rocks & Soils
- Appendix 3 Analytical Procedures
- Appendix 4 Statement of Costs
- **Appendix 5 Statement of Qualifications**

1.0 - Introduction

This property was staked by Bruce Hobson for Teck Corp in May of 1997 after the initial review of data suggested it was an open potential precious metal bearing porphyry system. This report summarizes the initial ground follow-up work that was carried out in September of 1997.

1.1 - Location and Access (Fig.1)

The Jake property is located approximately160 km's N of Smithers on NTS 94D/3W. The property is approximately 5 km's SE of where the Squingala River joins the Skeena River. The property is accessed by helicopter from Smithers or from the Bear Lake airstrip 28 km's east of Jake or Northwoods Minaret logging camp 10 km's NE of the property.

1.2 - Property Status (Fig.2)

The Jake group consists of the Jake 1 through Jake 4 claims (total of 45 units). B. Hobson staked this property on May 19, 1997. This claim was transferred to the present owner Teck Corp. Upon acceptance of this report, the property will be valid till May 19,2001.

Claim Name	# of units	Record No.	Expiry Date	
Jake 1	10	356028	May 19, 2001	*
Jake 2	20	356029	May 19, 2001	*
Jake 3	6	356030	May 19, 2001	*
Jake 4	9	356031	May 19, 2001	*

* upon acceptance of this report

1.3 - Physiography and Climate

The property covers two alpine ridges seperated by a steeply incised E-W trending tributary creek to the Squingula river. Alpine begins at elevations of 1400 meters and elevations on the property range from 900-1800 meters. Forest cover below alpine consists of a mix of pine and spruce with areas of thick alder and devils club in wet seeps. Alpine has an unusual flat plateau type topography with steeply incised creeks running both N-S and E-W. The property appears influenced by a moderate semi coastal climate due to proximity to the Skeena river. The property receives moderate precipitation comparable to Smithers and Hazelton with snow cover from late September to late May.

1.4 - History

The property has seen a number of programs over the years and is one of the more explored properties in this SW corner of NTS - 94D (Minfile # 94D/061). The property was discovered by Kennco in 1965 who conducted stream sediment sampling and rock sampling and drilled two Ax holes (55.5 m's).

Canadian Superior staked the ground in 1968 and conducted stream sediment sampling and rock sampling and then allowed the ground to lapse. In 1971 Canadian Superior restaked the ground after discovering copper mineralization. Large programs were carried out in 1972, 1973 and 1976 and included soil and rock sampling, geological mapping and magnetometer surveys, trenching and road building and diamond drilling. Drilling consisted of 3 X-ray holes (94.5 m's), 7 NQ holes (900.5 m's) and two BQ holes (305 m's).

Cities Services Minerals optioned the property in 1977 and conducted additional soil sampling, geological mapping and drilled two diamond drill holes (437 m's). To this point work concentrated on the porphyry Cu potential and very little Au sampling had been conducted. In 1986 Placer Dome conducted stream sediment, rock and soil sampling and staked the area. In 1987 QPX optioned the property and conducted recce. silt , soil and rock sampling with regional mapping and sampling over a 40 square kilometer area. This was followed up with a limited mapping and soil sampling and test VLF survey by Placer Dome in 1990. Since this time the property has remained dormant till the 1997 program.

2.0-1997 Program

During a period from September7-11 (with a return on Sept.14) a two man fly camp was established and an area of 1.0 square kilometer was geologically mapped (1:5,000 scale) and 37 rock samples were collected for analysis. At the same time 3 "recce" soil lines were run accross the system at various elevations to test the response of the main portion of the porphyry system. 90 soil samples were collected at 25 meter stations to get an unbiased geochemical response. Also the 1973 NQ core was located and most of the core with corresponding intervals remained in good shape. This allowed quick logging of the drill holes and selection of skeleton representative samples of the various alteration and mineralization. Holes logged include 73-2 through 73-7.

3.0 - Geology

3.1 - Regional Geology (Fig.3)

The Jake claims lie within the central portion of the Late Jurassic to Early Tertiary Bowser basin. This shallow marine-lacustrine alluvial suite lies conformably on the Hazelton group. Intruding this sedimentary sequence are a number of Late Cretaceous Bulkley intrusives of granodiorite to diorite composition. Later Tertiary Katsberg and Babine intrusives also intrude the Bowser Basin as small isolated plugs throughout the area.

The structure in the area is dominated by block faulting with typical lower Bowser sediments and intrusives within domed portions as probable horsts (generally topographic highs). Upper Bowser sediments are more typically located in grabens within valley bottoms. A diverse number of Cu +/- Mo,Ag,Au,W porphyry systems are related to Bulkley intrusives including Huckleberry, Glacier Gulch, Ox Lake and Louise Lake. The Babine Cu-Au porphyries are well known with production from Bell and Granisle.

Several Cu+/- Ag,Au systems related to Katsberg dykes are located east and SE of Jake. These are hosted in a narrow horst? of Hazelton volcanics i.e. Red-Sping. Two other Au/Ag systems to the south of Jake related to intrusive dykes and stocks within the Bowser sediments are the Mot and Tommy Jack occurrences.

3.2 - Property Geology (Fig. 4)

The property covers a prominant gossan along a N-NE trending series of Katsberg or Babine monzonite dyke swarms. These dykes are not similar to the Bulkley Granodiorite and are extensively altered. Adjacent to the dykes the Bowser sediments are extensively hornfelsed for 200-300 meters which suggests the dykes merge into a larger intrusive body at depth. Sediments are generally subvertical near the dyke swarm while gently folded and more flat lying elsewhere on the property suggesting the sediments have been influenced by the intrusive dykes in a doming effect. Contacts from the generally vertical drill holes and surface mapping suggests steep westerly dipping contacts with NW to NE strikes (generally northerly). Vertical drilling on this property appears to have been a poor way to test targets and future drilling should use angled drilling.

3.3 - Rock Types & Alteration & Mineralization

1a - Bowser Sediments

These units were not seperated in any detail but consist of argillites, siltstone with lesser sandstone and conglomerate formed in a deltaic environment belonging to the Ashman Formation.

SYMBOLS

.

L 1

ί.,

Same

- RIVER --- CREEK ---- GEOLOGICAL CONTACT
- ---- OUTCROP BOUNDARY
- CLAIM GROUP

ROCK UNITS

TERTIARY I BABINE / KASTBERG INTRUSIONS CRETACEOUS 2 BULKLEY INTRUSIONS 3 SUSTUT GROUP JURASSIC 4 BOWSER LAKE GROUP 5 MAZELTON GROUP

MINERAL OCCURRENCE

- I TOMMY JACK Au, Ag, Pb, Zn
- 2/3 JAN -Cu, Mo
- 4/5 ATNA Mo, Cu
- 6 ATNA * Au, Ag, Pb, Zn
- 7 PEAK Mo, Cu
- 8 MOTASE A Cu
- 9 RED Cu,Ag
- 10 PAT-Cu, Ag
- II QUIN Cu, Mo
- 12 CUN Cu, Mo 13 HORN - Cu, Mo
- 14
 - 14 RIM "Cu., Mo 15 FC/HM = Aq, Au

This was demonstrated on the property by the presence of occasional carbonaceous leaf fossils. These units show regional metamorphism has at best, reached upper zeolite facies. These units are commonly bedded on a 1cm scale with graded bedding common.

Proximal to the dyke swarms and occasionally within dyke swarms these sediments have been extensively hornfelsed. Typically this is indicated by pervasive bleaching and a hardening of the sediments which develop a conchoidal fracture. Occasional chlorite and biotite growth is also present on fracture planes.

Mineralization was seen in several areas within these hornfelsed sediments adjacent to mineralized monzonite dykes. This mineralization consists of sulphide +/- quartz veinlets and fractures displaying bleached selvages. These veinlets range in width from 1mm to 10 cm in thickness and consist of pyrite, arsenopyrite +/- chalcopyrite and lesser sphalerite and galena. Rock samples reflecting this type of mineralization include JE-02,03,16 and18. While limited these samples indicate signifigant Au,Ag,Cu +/- Mo,Pb and Zn. These rocks contain mineralization related to both potassic altered monzonites and the argillic altered zones and reflect contact zones which are favorable fluid pathways.

2-Potassic and Biotite Altered Monzonite

This unit appears to reflect the least altered intrusive with fresher sections containing primary features of the monzonite. This is likely a monzonite in composition and as previously mentioned is quite different in appearance from surrounding Bulkley intrusives. Previous work has made tentative comparisons to the Tertiary Katsberg or Babine intrusives. The rock consists of a fine grained plagioclase phyric matrix with 10-30% 2-4mm coarser plagioclase phenocrysts and occasional sections with 10-30% chlorite altered 2-3mm pyroxene phenocrysts. This rock is consistently altered pervasively by a moderate to strong Kspar alteration which develops a pink-brown color which upon initial inspection would lead to calling this rock a syenite. This is clearly a secondary alteration supported by the development of brown biotite booklets which replace primary pyroxene phenocrysts. This rock is a dominant unit on the property and subtle variations in alteration will require future work.

There is an early mineralization stage related to this alteration. Examples of this include JE-01, 04, 17, 19, 24, and 31. Generally mineralization is within strongly altered potassic alteration with the development of secondary biotite present. Mineralization is generally fracture controlled although disseminated mineralization is present. Sulphides are not related to quartz veinlets and generally have selvages of Mn and hematite. Values in Au and Ag appear closely related to copper content. This mineralization has low As, Pb and Zn values associated with it and appears to be an early porphyry system overprinted by a later argillic mineralizing event.

3-Argillic Altered and Quartz Stockwork Monzonite

This alteration phase appears late in the porphyry system and overprints the potassic phase. This system appears to have the best economic potential on the property both with quartz veining and widespread argillic alteration. This system is complex, showing a diversity from quartz/chalcedony veins with only narrow argillic selvages to widespread argillic zones with only occasional quartz veining. In general both veins and alteration are closely related and contain sulphide veinlets and disseminations (2-15% sulphide content) in both types of alteration. This appears to be a high level and perhaps reflects a final siliceous high volatile stage in the system. In portions of this alteration a high energy matrix of clay alteration and quartz stockwork develops a "crackle breccia" with highly angular potassic altered monzonite fragments (1-20cm) within a milled and siliceous matrix. In general the strongly argillic altered monzonite forms a buff colored soft rock (generally recessive zones) which contains variable amounts of Mn oxides and hematite with trace to 15% dissem and veinlet sulphides (very fine grained pyrite, arsenopyrite, galena and sphalerite).

Looking at the rock sample results indicates no clear association to higher grades with density of quartz veining or sulphide content at this time. High Au and Ag values appear associated with As, Mn, Pb, Zn +/- Cu, Mo. This system appears geochemically distinct from the early potassic alteration which has a close relationship of Au and Ag to Cu values. This alteration as the earlier potassic alteration, prefers monzonite/sediment contacts as structural corridors to migrate along.

4.0 - Soil Geochemistry

Three recce. soil lines were run at right angles accross the porphyry system to determine any obvious trends and get an unbiased representation of the system. These were spaced 300-400 meters apart (samples were collected every 25 meters) and the lines were selected to collect material as much as possible from a local source. Soil samples collected consist of a mixture of B and C horizons in this tree covered area which has well developed soils (up to 1.5+ m's thick on L-2). Depths of samples varied from 30-120 cm in depth and were generally a light brown-orange/red well developed soil.

90 soil samples were collected and analyzed for Au geochem and 30 element ICP package at Eco-Tech Labs. With a limited database arbitrary threshold values for the elements plotted (statistical thresholds are not valid) are as follows:

Cu	26ppm	300ppm	600ppm	>1000ppm	1951ppm
Pb	26ppm	100ppm	300ppm	>600ppm	2446ppm
As	5ppm	30ppm	60ppm	>120ppm	900ppm
Мо	3ppm	20ppm	50ppm	>100ppm	418ppm
Ag	0.2ppm	3.0ppm	5.0ppm	>10.0ppm	24.6ppm
Au	5ppb	100ppb	500ppb	1000ppb	>1000ppb

Element Minimum Weakly Anom. Moderately Anom. Strongly Anom. Maximum

Using these elements and the threhold values selected above contoured plots were made to observe apparent trends. Cu (fig.8) shows a clear relationship to the monzonite dykes with values generally greater than 300 ppm. Two distinct areas of greater than 600 ppm Cu appear to outline two separate targets. The western most anomaly defines the sediment /K altered monzonite area while the eastern anomaly covers an area with both pervasive K alteration and extensive argillic alteration in the core of the monzonite dyke swarms.

Mo (fig.10) follows a similar trend to the Cu anomalies with the most pronounced anomaly (50-418ppm) corresponding to the western Cu anomaly. Pb (fig.9) shows a broad area of greater than 100ppm covering the monzonite dykes. Within the central portion of L-1 and L-2 a large anomaly (Pb greater than 600 ppm) appears to reflect the argillic alteration as noted with the rock sampling of the argillic alteration. As (fig.11) again outlines the intrusive complex with greater than 60 ppm. Two greater than 120 ppm anomalies correspond well to the two strong Cu anomalies but reflect different alteration zones (K alteration on the west anomaly and argillic alteration on the east anomaly). Ag (fig.12) again broadly outlines the intrusive complex with a greater than 3.0 ppm anomaly. A moderate 5.0-9.8 ppm anomaly corresponds to the Cu-As anomaly on the western potassic altered zone but a stronger 5.0-24.6 ppm anomaly reflects the large argillic altered zone in the central portion. Au (fig. 13) outlines the intrusive complex with a greater than 100ppb anomaly. Two (+500 ppb) anomalies reflect the Cu anomalies but the strongest Au anomaly is over the central argillic zone.

In summary the Cu, Pb, As, Ag and Au anomalies all highlight the intrusive complex. There appears to be two main anomalous targets on different alteration styles and slightly different geochemical signatures. The western potassic/ sediment area is reflected by strong Cu, Mo, As and somewhat weaker Au and Ag values. The large central argillic altered anomaly is reflected with strong Cu, As, Pb, Ag, Au and somewhat weaker Mo values. These anomalies indicate the argillic altered central zone has excellent precious and base metal potential yet has been largely ignored by previous operators.

Other elements not plotted but potentially signifigant include Fe, Mn, and Zn. High mobility and erratic values make these less useful pathfinders.

5.-CONCLUSIONS & RECOMMENDATIONS

The Jake property covers a large north trending series of Katsberg or Babine dyke swarms and possible intrusive stock. This system has intruded and warped Bowser sediments with local hornfelsing. Two stages of porphyry style mineralization is present in the area examined to date. The earliest stage consists of extensive potassic alteration with related fracture and disseminated Cu,Mo,Ag and Au values. Previous operators have tended to focus their work on this moderately well exposed system. Past drilling and trenching resulted in grades up to 0.39% Cu and 27.4g/t Ag over 27.5 m's.

Work in 1997 on the much more reccessive argillic alteration suggests a higher precious metal content is possible in this alteration. This clay/ quartz vein alteration is believed to postdate the potassic alteration and has a different metal association consisting of Au, Ag, As, Pb, Zn +/-Cu, Mo. Soil sampling indicates wide areas contain consistently elevated precious metal values ie. 500-1000+ ppb Au and 6.0-24.6 ppm Ag.

Future work should consist of initial grid establishment with soil sampling across the width of the intrusive system. This would be combined with geological mapping and sampling at a detailed scale with care given to the various alteration. Areas of recessive argillic alteration on L-2 should be hand trenched and sampled where possible. An I.P. survey would be effective both with sulphide chargeability response and the various resistivity contrasts between alteration styles. At this time the central argillic altered area appears a priority target but this is based on a preliminary database. Pending results of the next program a series of angled holes could be warranted.

References

- Baker, J.F., A.R. 3868, 1972 Geophysical and Linecutting Report on the In Group of Mineral Claims.
- Carter N.C. and Kirkam R.V. B.C. Dept. Of Mines and Pet. Res. Map 69-1 Geological Compilation Map of the Smithers, Hazelton and Terrace areas.
- Price S., A.R. 20,607,1990 A Geological, Geochemical and Geophysical Report on the Jake Claims.
- Richards T.A. and Jeletzky O.L.-Geol. Surv. Can., Paper 75-1, Part A, pp.31-36 A preliminary study of the upper Jurassic Bowser Assemblage in the Hazelton West half map-area.

Sketchley, D.C., 1988 A.R. 16,838 Jake Mineral Claims, Geochemistry and Geology.

Silversides, D.A., A.R. 6,492 Report on Diamond Drilling, In Copper Prospect

APPENDIX 1

**** . **

1

<u>یہ</u> : د . . .

.

(| |

-

÷...

í.

ROCK DESCRIPTION TABLE

JAKE ROCK SAMPLE DESCRIPTIONS

JE-01 Surface Sample - L-1 8.0 meter chip of monzonite with secondary biotite and secondary pervasive Kspar flooding, w/ mod Mn stain and 1-2% py, tr-4% cpy and tr aspy dissem, good malachite staining JE-02 Surface Sample L-1 10.0 meter chip of pervasive Kspar flooding, w/ mod Mn stain and 1-2% py, tr-4% cpy and tr aspy dissem, good malachite staining JE-03 Surface Sample L-1@ 5.0 meter chip of pervasive Kspar flooding, w/ mod moderately argilized siltstone adjacent a monzonit dyke contact. 3-4% Aspy and py veinlets & disseminated cpy. JE-04 Surface Sample L-1@ 5.0 meter chip of monzonite adjacent ample JE-00 700 Pervasive Kait'd monzonite with secondary biotit growth w/ mod Mn stain. 1-2% dissem py.asp and tr-0.4% dissem cpy w/ strong malachite stain JE-05 Surface Sample L-1@ 6.0 meter chip of monzonite adjacent sample JE-05 625 altered monzonite. 3-6% dissem py.asp and tr-0.4% dissem cpy JE-06 Surface Sample L-1@ 8.0 meter chip of strongly argillically altered FP monzonite w/ 10-15% veinlet and dissem py.asp , dissem cpy. JE-07 Surface Sample L-1@ 8.0 meter chip of strongly argillically and sericite altered monzonite w/ 10-5% py. aspy vnlts and dissem, tr dissem cpy. Occasional chalcedony veinl present. JE-08 Surface Sample Surface Sample Aspy and tr dissem chip of strongly argillically and sericite altered monzonite w/ 04 quartz-chalcedony veinlet monzonite w/ 04 quartz-chalcedony veinlet sand 5.8% veinlet. Avera	Sample #	Location	Rock Description
@880 and secondary pervasive Kspar flooding, w/ mod JE-02 Surface Sample L-1 (0.0 meter chip of pervasively hornfelsed siltsone and sandstone w/ 5-8% py,aspy, tr cpy disseminate in rock and associated with 5% white quartz veinlets JE-03 Surface Sample L-1@ 5.0 meter chip of strongly hornfelsed and moderately argillized siltsone adjacent a monzonli dyke contact. 3-4% Aspy and py veinlets & disseminations with 0.2-0.3 % disseminated cpy. JE-04 Surface Sample L-1@ 6.0 meter chip of monzonite adjacent amozonli dyke contact. 3-4% Aspy and py veinlets & disseminations with 0.2-0.3 % dissem py,asp and tr-0.4% dissem cpy w/ strong malachite stain JE-04 Surface Sample L-1@ 8.0 meter chip of monzonite adjacent sample JP-0 700 Pervasive K alt'd monzonite with secondary biotitic growth w/ mod Mn stain. 1-2% dissem py,asp and tr-0.4% dissem cpy w/ strong malachite stain JE-05 Surface Sample L-1@ 8.0 meter chip of strongly argillically altered FP monzonite w/ 10-15% veinlets and dissem py,aspy and tr dissem cpy +/- 5% qtz veinlets JE-06 Surface Sample L-1@ 8.0 meter chip of strongly argillically altered FP monzonite w/ 10-15% veinlets and dissem py,aspy and tr dissem cpy -/- 5% qtz veinlets JE-07 Surface Sample L-1@ 8.0 meter chip of strongly argillically altered FP monzonite w/ 10-15% veinlets and dissem py and yr veinlets and vint py.aspy on dissem cpy -/- 5% qtz veinlets JE-08 Surface Sample Grab of subcrops strongly argillica	JE-01	Surface Sample - L-1	8.0 meter chip of monzonite with secondary biotite
JE-02 Surface Sample L-1 10.0 meter chip of pervasively hornfelsed siltstone and sandstone w/ 5-8% py,aspy, tr cpy disseminate in rock and associated with 5% white quartz veinlets JE-03 Surface Sample L-1@ 5.0 meter chip of strongly hornfelsed and moderately argillized siltstone adjacent a monzonit dyke contact. 3-4% Aspy and py veinlets & disseminations with 0.2-0.3% disseminated cpy. JE-04 Surface Sample L-1@ 5.0 meter chip of monzonite adjacent a monzonit dyke contact. 3-4% Aspy and py veinlets & disseminations with 0.2-0.3% disseminated cpy. JE-04 Surface Sample L-1@ 8.0 meter chip of monzonite adjacent sample JE-02 700 Surface Sample L-1@ 6.0 meter chip of monzonite adjacent sample JE-03 JE-05 Surface Sample L-1@ 4.0 meter chip of monzonite adjacent sample JE-04 JE-05 Surface Sample L-1@ 8.0 meter chip of mod K and mod. Argillically altered FP monzonite w/ 10-15% veinlet and dissem py,aspy , dissem cpy + .5% dz. veinlets JE-06 Surface Sample L-1 8.0 meter chip of strongly argillically and sericite altered monzonite w/ 10-15% veinlet and dissem py,aspy , dissem dy with 3.0 dissem		@880	and secondary pervasive Kspar flooding, w/ mod
JE-02 Surface Sample L-1 @800 10.0 meter chip of pervasively horafelsed siltstone and sandstone w/ 5-8% py, aspy, tr cpy disseminate in rock and associated with 5% white quartz veinlets JE-03 Surface Sample L-1@ 710 5.0 meter chip of strongly horafelsed and moderately argillized siltstone adjacent a monzonit dyke contact. 3-4% Aspy and py veinlets & disseminations with 0.2-0.3% disseminated cpy. JE-04 Surface Sample L-1@ 700 8.0 meter chip of monzonite adjacent as mole JE-04 700 8.0 meter chip of monzonite adjacent as mole JE-04 700 JE-05 Surface Sample L-1@ 625 8.0 meter chip of strongly argillically altered monzonite. 3-6% dissem py,asp and tr-0.4% dissem cpy w/ strong malachite stain 4.0 meter chip of strongly argillically altered FP monzonite w/ 10-15% veinlet and dissem py,aspy and tr dissem cpy JE-06 Surface Sample L-1@ 540 8.0 meter chip of strongly argillically altered FP monzonite w/ 10-15% py, aspy vnlts and dissem, tr dissem cpy. 45% dtz. veinlets JE-07 Surface Sample L-1@ 8.0 meter chip of strongly argillically altered FP monzonite w/ 0ccas. Otz veinlet. Average 5-15% dissem. and vnlt of py,aspy. JE-08 Surface Sample 3.0 meter chip of strongly argillically altered FP monzonite w/ 0ccas. Otz veinlet. Average 5-15% dissem. and vnlt of py,aspy. JE-09 Surface Sample 5.0 meter chip of strongly argillically altered FP monzonite w/ 10% quartz-chalcedony veinl attered monzonite w/ 10% quartz-chalcedony veinl attered monzonite w/ 10% quartz-chalcedony veinlets and 5-8% ve			Mn stain and 1-2% py, tr4% cpy and tr aspy
JE-02 Surface Sample L-1 10.0 meter chip of pervasively horffelsed siltstone and sandstone w/5-8% py,aspy, tr cpy disseminate in rock and associated with 5% white quartz veinlets JE-03 Surface Sample L-1@ 5.0 meter chip of strongly hornfelsed and moderately argillized siltstone adjacent a monzonit dyke contact. 3-4% Aspy and py veinlets & disseminations with 0.2-0.3% disseminated cpy . JE-04 Surface Sample L-1@ 5.0 meter chip of monzonite adjacent asmple JE-02 700 8.0 meter chip of monzonite adjacent sample JE-03 Notissem py,asp and tr character			dissem, good malachite staining
@800 and sandstone w/ 5-8% py.aspy. tr cpy disseminate in rock and associated with 5% white quartz veinlets JE-03 Surface Sample L-1@ 5.0 meter chip of strongly hornfelsed and moderately argillized siltstone adjacent a monzonit dyke contact. 3-4% Aspy and py veinlets & disseminations with 0.2-0.3 % disseminated cpy. JE-04 Surface Sample L-1@ 8.0 meter chip of mozonite adjacent sample Long 700 Pervasive K alt'd monzonite with secondary biotite growth w/ mod Mn stain. 1-2% dissem py.asp and tr=0.4% dissem cpy w/ strong malachite stain tr=0.4% dissem cpy w/ strong malachite stain prevasive K alt'd monzonite with secondary biotite growth w/ mod Mn stain. 1-2% dissem py.asp and tr=0.4% dissem cpy JE-05 Surface Sample L-1@ 625 Surface Sample L-1@ 625 625 altered monzonite. 3-6% dissem py.aspy and tr dissem cpy JE-06 Surface Sample L-1@ Surface Sample L-1@ 8.0 meter chip of strongly argillically altered FP monzonite w/ 10-15% veinlet and dissem py.aspy , dissem cpy -4.5% qtz. veinlet. JE-07 Surface Sample L-1 @300 8.0 meter chip of strongly argillically and sericite altered monzonite w/ 10-15% py, aspy vnlts and dissem, rt dissem cpy. Occasional chalcedory veinl present. JE-08 Surface Sample 5.0 meter chip of strongly argillically altered FP monzonite w/ occas. Qtz veinlets. Average 5-15% dissem and veinlet monzonite w/ 10% quartz-chalcedony veinlets and 5.5% veinlet and dissem py-4. aspy. JE-10	JE-02	Surface Sample L-1	10.0 meter chip of pervasively hornfelsed siltstone
JE-03Surface Sample L-1 @ 7105.0 meter chip of strongly hornfelsed and moderately argilized siltstone adjacent a monzonit dyke contact. 3-4% Aspy and py veinlets & disseminations with 0.2-0.3 % disseminated cpy .JE-04Surface Sample L-1 @ 7008.0 meter chip of monzonite adjacent sample JE-0? Pervasive K alt'd monzonite with secondary biotite growth w/ mod Mn stain. 1-2% dissem py,asp and tr-0.4% dissem cpy w/ strong malachite stainJE-05Surface Sample L-1 @ 6254.0 meter chip of mod K and mod. Argillically altered monzonite. 3-6% dissem py,aspy and tr dissem cpyJE-06Surface Sample L-1 @ 5408.0 meter chip of strongly argillically altered FP monzonite w/ 10-15% venilet and dissem py,aspy and tr dissem cpy +/- 5% qtz. veniletsJE-07Surface Sample L-1 @3008.0 meter chip of strongly argillically and sericite altered monzonite w/ 10-15% py, aspy vnlts and dissem, tr dissem cpy. Occasional cbalcedony veln present.JE-08Surface Sample3.0 meter chip of strongly argillically altered FP monzonite w/ 10-15% py, aspy vnlts and dissem, tr dissem cpy. Occasional cbalcedony veln present.JE-09Surface Sample5.0 meter chip of strongly argillically altered FP monzonite w/ 100% quartz-chalcedony veln present.JE-10Surface Sample5.0 meter chip sample of strongly argillically and sericite altered monzonite w/ 10% quartz-chalcedony veln py.JE-11Surface Foot 10X10 m areaStrong lervasive clay altn. W/ 40% chalcedony veln and 15% dissem py +/- aspy.JE-12Float from old trench L-3 dissem py and 15% dissem and velnet moderately argillic altered FP monzonite w/ 5% chalcedony velnets and d		@800	and sandstone w/ 5-8% py, aspy, tr cpy disseminated
JE-03Surface Sample L-1 @ 7105.0 meter chip of strongly hornfelsed and moderately argillized siltstone adjacent a monzonit dyke contact. 3-4% Aspy and py veinlets & disseminations with 0.2-0.3% disseminated cpy .JE-04Surface Sample L-1 @ 7008.0 meter chip of monzonite adjacent sample JE-40; 700 monzonite with secondary biotik growth w/ mod Mn stain. 1-2% dissem py, asp and tr-0.4% dissem cpy w/ strong malachite stainJE-05Surface Sample L-1 @ 6254.0 meter chip of mod K and mod. Argillically altered monzonite w/ 10-4% dissem py, aspy and tr dissem cpyJE-06Surface Sample L-1 @ 5408.0 meter chip of strongly argillically altered FP monzonite w/ 10-15% veinlet and dissem py, aspy , dissem cpy +/- 5% qtz. veinletsJE-07Surface Sample L-1 @ 3008.0 meter chip of strongly argillically and sericite altered monzonite w/ 10-15% py, aspy vnlts and dissem, tr dissem cpy. Occasional chalcedony veinl present.JE-08Surface Sample3.0 meter chip of strongly argillically altered FP monzonite w/ 10-15% py, aspy vnlts and dissem, and vnlt of py, aspy.JE-09Surface SampleGrab of subcrop strongly argillicaltered monzonit w/ 30-40% qtz. Veinlets and 15% dissem and vnlt py.JE-10Surface Float 10X10 m areastrong prvasive clay atln. W/ 40% chalcedony veinl altered monzonite w/ 10% queites and 15% veinlets and dissem py-4- aspyJE-13(DDH-73-2) 14.6-18.9 m's dissem py and 12-3% cpy dissem and veinlet +/-0.5% cpystrong day-service distered FP monzonite w/ 5% chalcedony veinlets and 15% veinlets and dissem py+/- 4.6y% cpyJE-15(DDH-73-2) 73.6-78.3 m'smoderately argillic altered FP			in rock and associated with 5% white quartz
JE-03 Surface Sample L-1 @ 5.0 meter chip of strongly bornfelsed and moderately argillized siltstone adjacent a monzonit dyke contact. 3-4% Aspy and py veinlets & disseminations with 0.2-0.3 % disseminated cpy . JE-04 Surface Sample L-1 @ 8.0 meter chip of monzonite with secondary bottix growth w/ mod Mn stain. 1-2% dissem py,asp and tr-0.4% dissem cpy w/ strong malachite stain ditered monzonite. 3-6% dissem py,asp and tr-0.4% dissem cpy w/ strong malachite stain dissem cpy JE-05 Surface Sample L-1 @ 8.0 meter chip of mod K and mod. Argillically altered monzonite. 3-6% dissem py,asp and tr-0.4% dissem cpy w/ strong malachite stain dissem cpy JE-06 Surface Sample L-1 @ 8.0 meter chip of strongly argillically altered FP monzonite w/ 10-15% veinlet and dissem py,aspy n, dissem cpy +/- 5% qtz. veinlets JE-07 Surface Sample L-1 @ 8.0 meter chip of strongly argillically and sericite altered monzonite w/ 10-15% py aspy vnlts and dissem, tr dissem cpy. Occasional chalcedony venil present. JE-08 Surface Sample 3.0 meter chip of strongly argillically altered FP monzonite w/ occas. Qtz veinlet. Average 5:15% dissem and vnlt py.aspy. JE-09 Surface Sample Surface Sample 3.0 meter chip of strongly argillically altered monzonite w/ 30-40% qtz. Veinlets and 15% dissem and vnlt py. JE-10 Surface Folat 10X10 m area Strong pervasive clay altm. W/ 40% chalcedony veinlet and dissem, py-aspy. JE-11 Surface Float 10X10 m area Strong clay-sericite altered mo			veinlets
710moderately argillized sittstone adjacent a monzonit dyke contact. 3-4% Aspy and py veinlets & disseminations with 0.2-0.3 % disseminated cpy .JE-04Surface Sample L-1 @ 7008.0 meter chip of monzonite adjacent sample JE-02 Pervasive K aft'd monzonite with secondary biotite growth w/ mod Mn stain. 1-2% dissem py,asp and tr-0.4% dissem cpy w' strong malachite stainJE-05Surface Sample L-1 @ 6254.0 meter chip of mod K and mod. Argillically altered monzonite adjacent and dissem py,aspy and tr dissem cpyJE-06Surface Sample L-1 @ 5408.0 meter chip of strongly argillically altered FP monzonite w/ 10-15% veinlet and dissem py,aspy and tr dissem cpy +/- 5% qtz. veinlets altered monzonite w/ 10-15% py, aspy vnlts and dissem, tr dissem cpy. Occasional chalcedony veinl present.JE-08Surface Sample L-1 @3008.0 meter chip of strongly argillically altered FP monzonite w/ 10-15% py, aspy vnlts and dissem, tr dissem cpy. Occasional chalcedony veinl present.JE-08Surface Sample3.0 meter chip of strongly argillically altered FP monzonite w/ occas. Qtz veinlet. Average 5-15% dissem. and vnlt of py,aspy.JE-10Surface Sample5.0 meter chip sample of strongly argillically altered FP monzonite w/ 10% quartz-chalcedony veinler py.JE-11Surface Float 10X10 m areastrong pervasive clay alt. W/ 40% chalcedony vnl and 15% veinlets and 15% veinlets and dissem py+/- aspy.JE-13(DDH-73-2) 14.6-18.9 m's dissem py and .23% cpy dissem and veinlet +/- 0.5% cpystored FP monzonite w/ 5% dissem py and .23% cpy dissem and veinlet +/- 0.5% cpyJE-15(DDH-73-2) 73.6-78.3 m'smoderately clay altered	JE-03	Surface Sample L-1 @	5.0 meter chip of strongly hornfelsed and
JE-04Surface Sample L-1 @ 7008.0 meter chip of monzonite adjacent sample JE-02 Pervasive K alt'd monzonite with secondary biotiti growth w/ mod Mn stain. 1-2% dissem py,asp and tr-0.4% dissem cpy w/ strong malachite stainJE-05Surface Sample L-1 @ 6254.0 meter chip of mod K and mod. Argillically altered monzonite 3-6% dissem py,asp and tr dissem cpyJE-06Surface Sample L-1 @ 5408.0 meter chip of mod K and mod. Argillically altered monzonite 3-6% dissem py,asp y and tr dissem cpyJE-07Surface Sample L-1 @ 5408.0 meter chip of strongly argillically altered FP monzonite w/ 10-15% veinlet and dissem py,aspy , dissem cpy +/- 5% qtz. veinletsJE-07Surface Sample L-1 @ 3008.0 meter chip of strongly argillically and sericite altered monzonite w/ 10-15% py, aspy vnlts and dissem, tr dissem cpy. Occasional chalcedony veinl present.JE-08Surface Sample3.0 meter chip of strongly argillically altered FP monzonite w/ 00-15% py, aspy vnlts and dissem. and vnlt of py,aspy.JE-09Surface SampleGrab of subcrop strongly argillically altered FP monzonite w/ 30-40% qtz. Veinlets and 15% dissem and vnlt py.JE-10Surface Float 10X10 m areaStrong clay and litered monzonite w/ 10% quartz-chalcedony veinlets and 15% veinlets and 15% veinlets and dissem py-4 aspy.JE-13(DDH-73-2) 14.6-18.9 m's underately argillic altered FP monzonite w/ 5% dissem py and .23% cpy dissem and veinlet weinlets and 15% veinlets and dissem py-/- aspy.JE-14(DDH-73-2) 73.6-78.3 m's moderately cay altered FP monzonite w/ 10% qtzJE-15(DDH-73-2) 73.6-78.3 m'sMater dee argillic alteree		710	moderately argillized siltstone adjacent a monzonite
JE-04Surface Sample L-1 @ 7008.0 meter chip of monzonite adjacent sample JE-02 Pervasive K alt'd monzonite with secondary biotit growth w/ mod Mn stain. 1-2% dissem py,asp and tr-0.4% dissem cpy w/ strong malachite stainJE-05Surface Sample L-1 @ 6254.0 meter chip of mod K and mod. Argillically altered monzonite. 3-6% dissem py,asp and tr dissem cpyJE-06Surface Sample L-1 @ 5408.0 meter chip of strongly argillically altered fP monzonite w/ 10-15% veinlet and dissem py,aspy , dissem cpy +/- 5% qtz. veinletsJE-07Surface Sample L-1 @ 3008.0 meter chip of strongly argillically and sericite altered monzonite w/ 10-15% py, aspy vnlts and dissem, tr dissem cpy. Occasional chalcedony veinl present.JE-08Surface Sample3.0 meter chip of strongly argillically altered FP monzonite w/ 0ccas. Qtz veinlet. Average 5-15% dissem. and vnlt of py,aspy.JE-09Surface SampleGrab of subcrop strongly argillically altered fP monzonite w/ 0ccas. Qtz veinlet. Average 5-15% dissem and vnlt of py,aspy.JE-10Surface Float 10X10 m areaStrong clay and sericite altered monzonite w/ 10% quartz-chalcedony veinlet morzonite and 15% dissem and vnlt py.JE-12Float from old trench L-3 trom old trench L-3strong clay-sericite altered monzonite w/ 5% chalcedony veinlets and 15% veinlets and dissem py+/- aspy.JE-13(DDH-73-2) 14.6-18.9 m's ueinlets and 23% cpy dissem and veinlet weinlets and 35% py, aspy veinlet +/-6.5% cpyJE-15(DDH-73-2) 73.6-78.3 m's moderately clay altered FP monzonite w/ 10% qtz veinlets argilic altered FP monzonite w/ 10% qtz			dyke contact. 3-4% Aspy and py veinlets &
JE-04Surface Sample L-1 @ 7008.0 meter chip of monzonite adjacent sample JE-02 Pervasive K alt'd monzonite with secondary biotit growth wi mod Mn stain. 1-2% dissem py,asp and tr-0.4% dissem cpy w/ strong malachite stainJE-05Surface Sample L-1 @ 5204.0 meter chip of mod K and mod. Argillically altered monzonite. 3-6% dissem py,aspy and tr dissem cpyJE-06Surface Sample L-1 @ 5408.0 meter chip of strongly argillically altered FP monzonite w/ 10-15% veinlet and dissem py,aspy , dissem cpy +/- 5% qtz. veinletsJE-07Surface Sample L-1 @3008.0 meter chip of strongly argillically altered FP monzonite w/ 10-15% veinlets and dissem, tr dissem cpy. Occasional chalcedony veinl present.JE-08Surface Sample3.0 meter chip of strongly argillically altered FP monzonite w/ 10-15% veinlets altered monzonite w/ 10-15% opt. app. vnlts and dissem, tr dissem cpy. Occasional chalcedony veinl present.JE-08Surface SampleGrab of subcrop strongly argillic altered FP monzonite w/ occas. Qtz veinlet. Average 5-15% dissem and vnlt of py,aspy.JE-10Surface Sample5.0 meter chip asmple of strongly clay and sericite altered monzonite w/ 10% quartz-chalcedony veinlets and 5-8% veinlet and dissem py-aspyJE-11Surface Float 10X10 m areastrong clay-sericite altered monzonite w/ 5% chalcedony veinlets and 15% veinlets and dissem py+/- aspyJE-12Float from old trench L-3 float from old trench L-3strong clay-sericite altered monzonite w/ 5% chalcedony veinlets and 15% veinlets and dissem py+/- aspyJE-13(DDH-73-2) 14.6-18.9 m's weinlet sw/ heavy Mn coating 3-5% py, aspy veinle +/-6.5% cpy <td></td> <td></td> <td>disseminations with 0.2-0.3 % disseminated cpy.</td>			disseminations with 0.2-0.3 % disseminated cpy.
700 Pervasive K alt'd monzonite with secondary biotitic growth w/ mod Mn stain. 1-2% dissem py, asp and tr-0.4% dissem cpy w/ strong malachite stain JE-05 Surface Sample L-1 @ 4.0 meter chip of mod K and mod. Argillically altered from consonite w/ 10-15% veinlet and dissem py, aspy and tr dissem cpy JE-06 Surface Sample L-1 @ 8.0 meter chip of strongly argillically altered FP monzonite w/ 10-15% veinlet and dissem py, aspy y, dissem cpy +/- 5% qtz. veinlets JE-07 Surface Sample L-1 @ 8.0 meter chip of strongly argillically and sericite altered monzonite w/ 10-15% py, aspy ynlts and dissem, tr dissem cpy. Occasional chalcedony veinl present. JE-08 Surface Sample 3.0 meter chip of strongly argillically altered FP monzonite w/ 30-40% qtz. Veinlets and 15% dissem and vnlt of py, aspy. JE-09 Surface Sample Grab of subcrop strongly argillicall and sericite altered monzonite w/ 10% quartz-chalcedony veinlets and 5-8% veinlet and dissem. py-aspy JE-10 Surface Float 10X10 m area strong pervasive clay altn. W/ 40% chalcedony vnl and 15% dissem and vnl py/. JE-12 Float from old trench L-3 strong clay-sericite altered monzonite w/ 5% chalcedony veinlets and 15% veinlets and dissem JE-13 (DDH-73-2) 14.6-18.9 m's moderately argillic altered FP monzonite w/ 5% dissem py and .23% cpy dissem and veinlet +/-0.5% cpy JE-14 (DDH-73-2) 73.6-78.3 m's moderately argillic altered FP monzonite w/ 10% quarteret proveinte w/	JE-04	Surface Sample L-1 @	8.0 meter chip of monzonite adjacent sample JE-03.
JE-05Surface Sample L-1 @ 6254.0 meter chip of mod K and mod. Argillically attered monzonite. 3-6% dissem py,asp and tr dissem cpyJE-06Surface Sample L-1 @ 5408.0 meter chip of strongly argillically altered FP monzonite w/ 10-15% veinlet and dissem py,aspy and tr dissem cpy -5% qtz. veinletsJE-07Surface Sample L-1 @ 3008.0 meter chip of strongly argillically and sericite altered monzonite w/ 10-15% veinletsJE-08Surface Sample @ 3003.0 meter chip of strongly argillically altered FP monzonite w/ 10-15% py, aspy vnlts and dissem, tr dissem cpy. Occasional chalcedony veinl present.JE-08Surface Sample3.0 meter chip of strongly argillically altered FP monzonite w/ occas. Qtz veinlet. Average 5-15% dissem. and vnlt of py,aspy.JE-09Surface SampleGrab of subcrop strongly argillic altered monzonit w/ 30-40% qtz. Veinlets and 15% dissem and vnlt py.JE-10Surface Float 10X10 m areastrong pervasive clay altn. W/ 40% chalcedony veinlet and 15% dissem py - aspyJE-12Float from old trench L-3 chalcedony veinlets and 15% veinlets and 15% veinlets and dissem py-aspyJE-13(DDH-73-2) 14.6-18.9 m's moderately argillic altered FP monzonite w/ 15% qtz veinlets w/ heavy Mn coating 3-5% py, aspy veinle +/- 0.5% cpyJE-14(DDH-73-2) 73.6-78.3 m's moderately clay altered FP monzonite w/ 10% qtzJE-15(DDH-73-2) 73.6-78.3 m'sMather and series moderately clay altered FP monzonite w/ 10% qtz		700	Pervasive K alt'd monzonite with secondary biotite
JE-05Surface Sample L-1 @ 6254.0 meter chip of mod K and mod. Argillically altered monzonite. 3-6% dissem py,aspy and tr dissem cpyJE-06Surface Sample L-1 @ 5408.0 meter chip of strongly argillically altered FP monzonite w/ 10-15% veinlet and dissem py,aspy , dissem cpy +/- 5% qtz. veinletsJE-07Surface Sample L-1 @ 3008.0 meter chip of strongly argillically and sericite altered monzonite w/ 10-15% py, aspy vnlts and dissem, tr dissem cpy. Occasional chalcedony veinl present.JE-08Surface Sample3.0 meter chip of strongly argillically altered FP monzonite w/ 10-15% py, aspy vnlts and dissem, tr dissem cpy. Occasional chalcedony veinl present.JE-08Surface SampleGrab of subcrop strongly argillically altered FP monzonite w/ onlt of py,aspy.JE-09Surface SampleGrab of subcrop strongly argillic altered monzonit w/ 30-40% qtz. Veinlets and 15% dissem and vnlt py.JE-10Surface Float 10X10 m areastrong pervasive clay altn. W/ 40% chalcedony vnl and 15% dissem py +/- aspy.JE-12Float from old trench L-3 (DDH-73-2) 14.6-18.9 m's moderately argillic altered FP monzonite w/ 5% dissem py and .23% cpy dissem and veinlet moderately clay altered FP monzonite w/ 10% qtz veinlets who coating 3-5% py, aspy veinle +/- 0.5% cpyJE-15(DDH-73-2) 73.6-78.3 m's moderately clay altered FP monzonite w/ 10% qtat veinlets who cating 3-5% py, aspy veinle +/- 0.5% cpy			growth w/ mod Mn stain. 1-2% dissem py,asp and
JE-05Surface Sample L-1 @ 6254.0 meter chip of mod K and mod. Argillically altered monzonite. 3-6% dissem py,aspy and tr dissem cpyJE-06Surface Sample L-1 @ 5408.0 meter chip of strongly argillically altered FP monzonite w/ 10-15% veinlet and dissem py,aspy , dissem cpy +/- 5% qtz. veinletsJE-07Surface Sample L-1 @ 3008.0 meter chip of strongly argillically and sericite altered monzonite w/ 10-15% py, aspy vnlts and dissem, tr dissem cpy. Occasional chalcedony veinl present.JE-08Surface Sample3.0 meter chip of strongly argillically altered FP monzonite w/ occas. Qtz veinlet. Average 5-15% dissem. and vnlt of py,aspy.JE-09Surface SampleGrab of subcrop strongly argillic altered monzonit w/ 30-40% qtz. Veinlets and 15% dissem and vnlt py.JE-10Surface Sample5.0 meter chip sample of strongly clay and sericite altered monzonite w/ 10% quartz-chalcedony veinlets and 5-8% veinlet and dissem. py-aspyJE-11Surface Float 10X10 m areastrong pervasive clay altn. W/ 40% chalcedony vnl and 15% dissem py +/- aspy.JE-12Float from old trench L-3 (DDH-73-2) 14.6-18.9 m's moderately argillic altered FP monzonite w/ 5% dissem py and 23% cpy dissem and veinlet yeinlets w/ 16% qtz veinlets and 3-5% py, aspy veinlet +/- 0.5% cpyJE-15(DDH-73-2) 73.6-78.3 m's moderately clay altered FP monzonite w/ 10% qt			tr-0.4% dissem cpy w/ strong malachite stain
625 altered monzonite. 3-6% dissem py,aspy and tr JE-06 Surface Sample L-1@ 8.0 meter chip of strongly argillically altered FP JE-07 Surface Sample L-1 8.0 meter chip of strongly argillically and sericite altered monzonite w/ 10-15% py, aspy vnlts and dissem cpy +/- 5% qtz. veinlets JE-07 Surface Sample L-1 8.0 meter chip of strongly argillically and sericite altered monzonite w/ 10-15% py, aspy vnlts and dissem, tr dissem cpy. Occasional chalcedony veinl present. JE-08 Surface Sample 3.0 meter chip of strongly argillically altered FP monzonite w/ occas. Qtz veinlet. Average 5-15% dissem. and vnlt of py,aspy. JE-09 Surface Sample Grab of subcrop strongly argillic altered monzonit w/ 30-40% qtz. Veinlets and 15% dissem and vnlt py. JE-10 Surface Sample 5.0 meter chip sample of strongly clay and sericite altered monzonite w/ 10% quartz-chalcedony veinlets and 5-8% veinlet and dissem. py-aspy JE-11 Surface Float 10X10 m area strong pervasive clay altn. W/ 40% chalcedony vnl and 15% dissem py +/- aspy. JE-12 Float from old trench L-3 strong clay-sericite altered monzonite w/ 5% dissem and veinlet and tissem py +/- aspy. JE-13 (DDH-73-2) 14.6-18.9 m's moderately argillic altered FP monzonite w/ 5% dissem py and .23% cpy dissem and veinlet +/- 0.5% cpy JE-14 (DDH-73-2) 73.6-78.3 m's moderatel argillic altered FP monzonite w/ 10% qt	JE-05	Surface Sample L-1 @	4.0 meter chip of mod K and mod. Argillically
JE-06Surface Sample L-1 @ 5408.0 meter chip of strongly argillically altered FP monzonite w/ 10-15% veinlet and dissem py,aspy dissem cpy +/- 5% qtz. veinletsJE-07Surface Sample L-1 @3008.0 meter chip of strongly argillically and sericite altered monzonite w/ 10-15% py, aspy vnlts and dissem, tr dissem cpy. Occasional chalcedony veinl present.JE-08Surface Sample3.0 meter chip of strongly argillically altered FP monzonite w/ occas. Qtz veinlet. Average 5-15% dissem. and vnlt of py,aspy.JE-09Surface SampleGrab of subcrop strongly argillic altered monzonit w/ 30-40% qtz. Veinlets and 15% dissem and vnlt py.JE-10Surface Sample5.0 meter chip sample of strongly clay and sericite altered monzonite w/ 10% quartz-chalcedony veinlets and 5-8% veinlet and dissem. py-aspyJE-11Surface Float 10X10 m areastrong pervasive clay altn. W/ 40% chalcedony vul and 15% dissem py +/- aspy.JE-12Float from old trench L-3 chalcedony veinlets and 15% veinlets and 15% veinlets and dissem py+/- aspyJE-13(DDH-73-2) 14.6-18.9 m's dissem py and .23% cpy dissem and veinlet weinlets w/ heavy Mn coating 3-5% py, aspy veinle +/- 0.5% cpyJE-15(DDH-73-2) 73.6-78.3 m's moderatel argillic altered FP monzonite w/ 10% qt veinlets w/ heavy Mn coating 3-5% py, aspy veinle +/- 0.5% cpy		625	altered monzonite. 3-6% dissem py, aspy and tr
JE-06Surface Sample L-1 @ 5408.0 meter chip of strongly argillically altered FP monzonite w/ 10-15% veinlet and dissem py,aspy , dissem cpy +/- 5% dz. veinletsJE-07Surface Sample L-1 @ 3008.0 meter chip of strongly argillically and sericite altered monzonite w/ 10-15% py, aspy vnlts and dissem, tr dissem cpy. Occasional chalcedony veinl present.JE-08Surface Sample3.0 meter chip of strongly argillically altered FP monzonite w/ occas. Qtz veinlet. Average 5-15% dissem. and vnlt of py,aspy.JE-09Surface SampleGrab of subcrop strongly argillic altered monzonit w/ 30-40% qtz. Veinlets and 15% dissem and vnlt py.JE-10Surface Sample5.0 meter chip sample of strongly clay and sericite altered monzonite w/ 10% quartz-chalcedony veinlets and 5-8% veinlet and dissem. py-aspyJE-11Surface Float 10X10 m areastrong pervasive clay altn. W/ 40% chalcedony vnl altesem py+/- aspy.JE-12Float from old trench L-3 (DDH-73-2) 14.6-18.9 m's dissem py and .23% cpy dissem and veinlet yeinlets w/ 15% qtz veinlets w/ targe JE-14JE-14(DDH-73-2) 73.6-78.3 m's moderatel argillic altered FP monzonite w/ 10% qt veinlets w/ heavy Mn coating 3-5% py, aspy veinlet /- 0.5% cpy			dissem cpy
540monzonite w/ 10-15% veinlet and dissem py,aspy , dissem cpy +/- 5% qtz. veinletsJE-07Surface Sample L-1 @3008.0 meter chip of strongly argillically and sericite altered monzonite w/ 10-15% py, aspy vnlts and dissem, tr dissem cpy. Occasional chalcedony veinl present.JE-08Surface Sample3.0 meter chip of strongly argillically altered FP monzonite w/ occas. Qtz veinlet. Average 5-15% dissem. and vnlt of py,aspy.JE-09Surface SampleGrab of subcrop strongly argillic altered monzonit w/ 30-40% qtz. Veinlets and 15% dissem and vnlt py.JE-10Surface Sample5.0 meter chip sample of strongly clay and sericite altered monzonite w/ 10% quartz-chalcedony veinlets and 5-8% veinlet and dissem. py-aspyJE-11Surface Float 10X10 m areastrong pervasive clay altn. W/ 40% chalcedony vnl and 15% dissem py +/- aspy.JE-12Float from old trench L-3 strong clay-sericite altered monzonite w/ 5% chalcedony veinlets and 15% veinlets and dissem py+/- aspyJE-13(DDH-73-2) 14.6-18.9 m's issem py and .23% cpy dissem and veinlet weinlets w/ heavy Mn coating 3-5% py, aspy veinle +/- 0.5% cpyJE-15(DDH-73-2) 73.6-78.3 m's moderatel argillic altered FP monzonite w/ 10% qt	JE-06	Surface Sample L-1 @	8.0 meter chip of strongly argillically altered FP
JE-07Surface Sample L-1 @3008.0 meter chip of strongly argillically and sericite altered monzonite w/ 10-15% py, aspy vnlts and dissem, tr dissem cpy. Occasional chalcedony veinl present.JE-08Surface Sample3.0 meter chip of strongly argillically altered FP monzonite w/ occas. Qtz veinlet. Average 5-15% dissem. and vnlt of py,aspy.JE-09Surface SampleGrab of subcrop strongly argillic altered monzonit w/ 30-40% qtz. Veinlets and 15% dissem and vnlt py.JE-10Surface Sample5.0 meter chip sample of strongly clay and sericite altered monzonite w/ 10% quartz-chalcedony veinlets and 5-8% veinlet and dissem. py-aspyJE-11Surface Float 10X10 m areastrong pervasive clay altn. W/ 40% chalcedony vnl and 15% dissem py +/- aspy.JE-12Float from old trench L-3 Strong clay-sericite altered monzonite w/ 5% chalcedony veinlets and 15% veinlets and dissem py+/- aspyJE-13(DDH-73-2) 14.6-18.9 m's Moderately argillic altered FP monzonite w/ 15% qtz veinlets w/ heavy Mn coating 3-5% py, aspy veinle +/- 0.5% cpyJE-15(DDH-73-2) 73.6-78.3 m's moderate argillic altered FP monzonite w/ 10% qt		540	monzonite w/ 10-15% veinlet and dissem py, aspy, tr
JE-07Surface Sample L-1 @3008.0 meter chip of strongly argillically and sericite altered monzonite w/ 10-15% py, aspy vnlts and dissem, tr dissem cpy. Occasional chalcedony veinl present.JE-08Surface Sample3.0 meter chip of strongly argillically altered FP monzonite w/ occas. Qtz veinlet. Average 5-15% dissem. and vnlt of py,aspy.JE-09Surface SampleGrab of subcrop strongly argillic altered monzonit w/ 30-40% qtz. Veinlets and 15% dissem and vnlt py.JE-10Surface Sample5.0 meter chip sample of strongly clay and sericite altered monzonite w/ 10% quartz-chalcedony veinlets and 5-8% veinlet and dissem. py-aspyJE-11Surface Float 10X10 m areastrong pervasive clay altn. W/ 40% chalcedony vnl and 15% dissem py +/- aspy.JE-12Float from old trench L-3 chalcedony veinlets and 15% veinlets and dissem py+/- aspystrong clay-sericite altered monzonit e w/ 5% chalcedony veinlets and 15% veinlets and dissem py+/- aspyJE-13(DDH-73-2) 14.6-18.9 m's moderately argillic altered FP monzonite w/ 15% qtz veinlets w/ heavy Mn coating 3-5% py, aspy veinlet +/- 0.5% cpyJE-15(DDH-73-2) 73.6-78.3 m's moderatel argillic altered FP monzonite w/ 10% qt			dissem cpy +/- 5% qtz. veinlets
@300altered monzonite w/ 10-15% py, aspy vnlts and dissem, tr dissem cpy. Occasional chalcedony veinl present.JE-08Surface Sample3.0 meter chip of strongly argillically altered FP monzonite w/ occas. Qtz veinlet. Average 5-15% dissem. and vnlt of py,aspy.JE-09Surface SampleGrab of subcrop strongly argillic altered monzonit w/ 30-40% qtz. Veinlets and 15% dissem and vnlt py.JE-10Surface Sample5.0 meter chip sample of strongly clay and sericite altered monzonite w/ 10% quartz-chalcedony veinlets and 5-8% veinlet and dissem. py-aspyJE-11Surface Float 10X10 m areastrong pervasive clay altn. W/ 40% chalcedony vnl and 15% dissem py +/- aspy.JE-12Float from old trench L-3 chalcedony veinlets and 15% veinlets and 15% veinlets and dissem py+/- aspyJE-13(DDH-73-2) 14.6-18.9 m's moderately argillic altered FP monzonite w/ 5% dissem py and .23% cpy dissem and veinletJE-14(DDH-73-2) 73.6-78.3 m's moderate argillic altered FP monzonite w/ 10% qt veinlets ard argillic altered FP monzonite w/ 10% qt	JE-07	Surface Sample L-1	8.0 meter chip of strongly argillically and sericite
JE-08Surface Sample3.0 meter chip of strongly argillically altered FP monzonite w/ occas. Qtz veinlet. Average 5-15% dissem. and vnlt of py,aspy.JE-09Surface SampleGrab of subcrop strongly argillic altered monzonit w/ 30-40% qtz. Veinlets and 15% dissem and vnlt py.JE-10Surface Sample5.0 meter chip sample of strongly clay and sericite altered monzonite w/ 10% quartz-chalcedony veinlets and 5-8% veinlet and dissem. py-aspyJE-11Surface Float 10X10 m areastrong pervasive clay altn. W/ 40% chalcedony vnl and 15% dissem py +/- aspy.JE-12Float from old trench L-3 strong clay-sericite altered monzonite w/ 5% chalcedony veinlets and 15% veinlets and dissem py+/- aspyJE-13(DDH-73-2) 14.6-18.9 m's moderately argillic altered FP monzonite w/ 15% qtz veinlets w/ heavy Mn coating 3-5% py, aspy veinle +/- 0.5% cpyJE-15(DDH-73-2) 73.6-78.3 m's moderatel argillic altered FP monzonite w/ 10% qt veinlets argillic altered FP monzonite w/ 10% qt		@300	altered monzonite w/ 10-15% py, aspy vnlts and
JE-08Surface Sample3.0 meter chip of strongly argillically altered FP monzonite w/ occas. Qtz veinlet. Average 5-15% dissem. and vnlt of py,aspy.JE-09Surface SampleGrab of subcrop strongly argillic altered monzonit w/ 30-40% qtz. Veinlets and 15% dissem and vnlt py.JE-10Surface Sample5.0 meter chip sample of strongly clay and sericite altered monzonite w/ 10% quartz-chalcedony veinlets and 5-8% veinlet and dissem. py-aspyJE-11Surface Float 10X10 m areastrong pervasive clay altn. W/ 40% chalcedony vnl and 15% dissem py +/- aspy.JE-12Float from old trench L-3 float from old trench L-3strong clay-sericite altered monzonite w/ 5% chalcedony veinlets and 15% veinlets and 15% veinlets and dissem py+/- aspyJE-13(DDH-73-2) 14.6-18.9 m's moderately argillic altered FP monzonite w/ 5% dissem py and .23% cpy dissem and veinletJE-14(DDH-73-2) 73.6-78.3 m's moderately argillic altered FP monzonite w/ 10% qtz veinlets w/ heavy Mn coating 3-5% py, aspy veinle +/- 0.5% cpy			dissem, tr dissem cpy. Occasional chalcedony veinlet
JE-08Surface Sample3.0 meter chip of strongly argillically altered FP monzonite w/ occas. Qtz veinlet. Average 5-15% dissem. and vnlt of py,aspy.JE-09Surface SampleGrab of subcrop strongly argillic altered monzonit w/ 30-40% qtz. Veinlets and 15% dissem and vnlt py.JE-10Surface Sample5.0 meter chip sample of strongly clay and sericite altered monzonite w/ 10% quartz-chalcedony veinlets and 5-8% veinlet and dissem. py-aspyJE-11Surface Float 10X10 m areastrong pervasive clay altn. W/ 40% chalcedony vnl and 15% dissem py +/- aspy.JE-12Float from old trench L-3 (DDH-73-2) 14.6-18.9 m'sstrong clay-sericite altered monzonite w/ 5% chalcedony veinlets and 15% veinlets and veinletJE-14(DDH-73-2) 55.8-59.7 m'smoderately argillic altered FP monzonite w/ 15% qtz veinlets w/ heavy Mn coating 3-5% py, aspy veinle +/- 0.5% cpyJE-15(DDH-73-2) 73.6-78.3 m'smoderate argillic altered FP monzonite w/ 10% qt			present.
JE-09Surface SampleGrab of subcrop strongly argillic altered monzonit w/ 30-40% qtz. Veinlets and 15% dissem and vnlt py.JE-10Surface Sample5.0 meter chip sample of strongly clay and sericite altered monzonite w/ 10% quartz-chalcedony veinlets and 5-8% veinlet and dissem. py-aspyJE-11Surface Float 10X10 m areastrong pervasive clay altn. W/ 40% chalcedony vnl and 15% dissem py +/- aspy.JE-12Float from old trench L-3strong clay-sericite altered monzonite w/ 5% chalcedony veinlets and 15% veinlets and dissem py+/- aspyJE-13(DDH-73-2) 14.6-18.9 m's UDH-73-2) 55.8-59.7 m'smoderately argillic altered FP monzonite w/ 15% qtz veinlets w/ heavy Mn coating 3-5% py, aspy veinle +/- 0.5% cpyJE-15(DDH-73-2) 73.6-78.3 m'smoderate argillic altered FP monzonite w/ 10% qt	JE-08	Surface Sample	3.0 meter chip of strongly argillically altered FP
JE-09Surface SampleGrab of subcrop strongly argillic altered monzonit w/ 30-40% qtz. Veinlets and 15% dissem and vnlt py.JE-10Surface Sample5.0 meter chip sample of strongly clay and sericite altered monzonite w/ 10% quartz-chalcedony veinlets and 5-8% veinlet and dissem. py-aspyJE-11Surface Float 10X10 m areastrong pervasive clay altn. W/ 40% chalcedony vnl and 15% dissem py +/- aspy.JE-12Float from old trench L-3 (DDH-73-2) 14.6-18.9 m'sstrong clay-sericite altered monzonite w/ 5% chalcedony veinlets and 15% veinlets and dissem py+/- aspyJE-14(DDH-73-2) 55.8-59.7 m's (DDH-73-2) 73.6-78.3 m'smoderately argillic altered FP monzonite w/ 10% qtz veinlets w/ heavy Mn coating 3-5% py, aspy veinle +/- 0.5% cpy			monzonite w/ occas. Qtz veinlet. Average 5-15%
JE-09Surface SampleGrab of subcrop strongly argilic altered monzonit w/ 30-40% qtz. Veinlets and 15% dissem and vnit py.JE-10Surface Sample5.0 meter chip sample of strongly clay and sericite altered monzonite w/ 10% quartz-chalcedony veinlets and 5-8% veinlet and dissem. py-aspyJE-11Surface Float 10X10 m areastrong pervasive clay altn. W/ 40% chalcedony vni and 15% dissem py +/- aspy.JE-12Float from old trench L-3strong clay-sericite altered monzonite w/ 5% chalcedony veinlets and 15% veinlets and dissem py+/- aspyJE-13(DDH-73-2) 14.6-18.9 m'smoderately argillic altered FP monzonite w/ 5% dissem py and .23% cpy dissem and veinletJE-14(DDH-73-2) 55.8-59.7 m'smoderately clay altered monzonite w/ 15% qtz veinlets w/ heavy Mn coating 3-5% py, aspy veinle +/- 0.5% cpyJE-15(DDH-73-2) 73.6-78.3 m'smoderate argillic altered FP monzonite w/ 10% qt			dissem. and vnlt of py, aspy.
JE-10Surface Sample5.0 meter chip sample of strongly clay and sericite altered monzonite w/ 10% quartz-chalcedony veinlets and 5-8% veinlet and dissem. py-aspyJE-11Surface Float 10X10 m areastrong pervasive clay altn. W/ 40% chalcedony vnl and 15% dissem py +/- aspy.JE-12Float from old trench L-3strong clay-sericite altered monzonite w/ 5% chalcedony veinlets and 15% veinlets and dissem py+/- aspyJE-13(DDH-73-2) 14.6-18.9 m'smoderately argillic altered FP monzonite w/ 5% dissem py and .23% cpy dissem and veinletJE-14(DDH-73-2) 55.8-59.7 m'smoderately clay altered monzonite w/ 15% qtz veinlets w/ heavy Mn coating 3-5% py, aspy veinle +/- 0.5% cpyJE-15(DDH-73-2) 73.6-78.3 m'smoderate argillic altered FP monzonite w/ 10% qt	JE-09	Surface Sample	Grab of subcrop strongly argillic altered monzonite
JE-10Surface Sample5.0 meter chip sample of strongly clay and sericite altered monzonite w/ 10% quartz-chalcedony veinlets and 5-8% veinlet and dissem. py-aspyJE-11Surface Float 10X10 m areastrong pervasive clay altn. W/ 40% chalcedony vnl and 15% dissem py +/- aspy.JE-12Float from old trench L-3 Float from old trench L-3strong clay-sericite altered monzonite w/ 5% chalcedony veinlets and 15% veinlets and dissem py+/- aspyJE-13(DDH-73-2) 14.6-18.9 m's CDH-73-2) 55.8-59.7 m'smoderately argillic altered FP monzonite w/ 5% dissem py and .23% cpy dissem and veinletJE-14(DDH-73-2) 73.6-78.3 m's Heavy Mn coating 3-5% py, aspy veinle +/- 0.5% cpymoderate argillic altered FP monzonite w/ 10% qt			w/ $30-40\%$ qtz. Veinlets and 15% dissem and vnit
JE-10Surface Sample5.0 meter chip sample of strongly clay and sericite altered monzonite w/ 10% quartz-chalcedony veinlets and 5-8% veinlet and dissem. py-aspyJE-11Surface Float 10X10 m areastrong pervasive clay altn. W/ 40% chalcedony vnl and 15% dissem py +/- aspy.JE-12Float from old trench L-3strong clay-sericite altered monzonite w/ 5% chalcedony veinlets and 15% veinlets and dissem py+/- aspyJE-13(DDH-73-2) 14.6-18.9 m'smoderately argillic altered FP monzonite w/ 5% dissem py and .23% cpy dissem and veinletJE-14(DDH-73-2) 55.8-59.7 m'smoderately clay altered monzonite w/ 15% qtz veinlets w/ heavy Mn coating 3-5% py, aspy veinle +/- 0.5% cpyJE-15(DDH-73-2) 73.6-78.3 m'smoderate argillic altered FP monzonite w/ 10% qt			py.
JE-11Surface Float 10X10 m areastrong pervasive clay altn. W/ 40% chalcedony vni and 15% dissem py +/- aspy.JE-12Float from old trench L-3 Float from old trench L-3strong clay-sericite altered monzonite w/ 5% chalcedony veinlets and 15% veinlets and dissem py+/- aspyJE-13(DDH-73-2) 14.6-18.9 m's DH-73-2) 55.8-59.7 m'smoderately argillic altered FP monzonite w/ 5% dissem py and .23% cpy dissem and veinletJE-14(DDH-73-2) 55.8-59.7 m's UDH-73-2) 73.6-78.3 m'smoderate argillic altered FP monzonite w/ 10% qt	JE-10	Surface Sample	5.0 meter chip sample of strongly clay and sericite
JE-11Surface Float 10X10 m areastrong pervasive clay altn. W/ 40% chalcedony vnl and 15% dissem py +/- aspy.JE-12Float from old trench L-3strong clay-sericite altered monzonite w/ 5% chalcedony veinlets and 15% veinlets and dissem py+/- aspyJE-13(DDH-73-2) 14.6-18.9 m's moderately argillic altered FP monzonite w/ 5% dissem py and .23% cpy dissem and veinletJE-14(DDH-73-2) 55.8-59.7 m's weinlets w/ heavy Mn coating 3-5% py, aspy veinle +/- 0.5% cpyJE-15(DDH-73-2) 73.6-78.3 m'smoderatel argillic altered FP monzonite w/ 10% qt			altered monzonite w/ 10% quartz-chalcedony
JE-11Surface Float 10X10 m areastrong pervasive clay altn. W/ 40% chalcedony vnl and 15% dissem py +/- aspy.JE-12Float from old trench L-3strong clay-sericite altered monzonite w/ 5% chalcedony veinlets and 15% veinlets and dissem py+/- aspyJE-13(DDH-73-2) 14.6-18.9 m's moderately argillic altered FP monzonite w/ 5% dissem py and .23% cpy dissem and veinletJE-14(DDH-73-2) 55.8-59.7 m's weinlets w/ heavy Mn coating 3-5% py, aspy veinle +/- 0.5% cpyJE-15(DDH-73-2) 73.6-78.3 m'smoderatel argillic altered FP monzonite w/ 10% qt			veinlets and 5-8% veinlet and dissem. py-aspy
areaand 15% dissem py +/- aspy.JE-12Float from old trench L-3strong clay-sericite altered monzonite w/ 5% chalcedony veinlets and 15% veinlets and dissem py+/- aspyJE-13(DDH-73-2) 14.6-18.9 m'smoderately argillic altered FP monzonite w/ 5% dissem py and .23% cpy dissem and veinletJE-14(DDH-73-2) 55.8-59.7 m'smoderately clay altered monzonite w/ 15% qtz veinlets w/ heavy Mn coating 3-5% py, aspy veinle +/- 0.5% cpyJE-15(DDH-73-2) 73.6-78.3 m'smoderate argillic altered FP monzonite w/ 10% qt	JE-11	Surface Float 10X10 m	strong pervasive clay altn. W/ 40% chalcedony vnlts
JE-12Float from old trench L-3strong clay-sericite altered monzonite w/ 5% chalcedony veinlets and 15% veinlets and dissem py+/- aspyJE-13(DDH-73-2) 14.6-18.9 m'smoderately argillic altered FP monzonite w/ 5% dissem py and .23% cpy dissem and veinletJE-14(DDH-73-2) 55.8-59.7 m'smoderately clay altered monzonite w/ 15% qtz veinlets w/ heavy Mn coating 3-5% py, aspy veinle +/- 0.5% cpyJE-15(DDH-73-2) 73.6-78.3 m'smoderate argillic altered FP monzonite w/ 10% qt		area	and 15% dissem py +/- aspy.
JE-13(DDH-73-2) 14.6-18.9 m's dissem py +/- aspymoderately argillic altered FP monzonite w/ 5% dissem py and .23% cpy dissem and veinletJE-14(DDH-73-2) 55.8-59.7 m's winlets w/ heavy Mn coating 3-5% py, aspy veinle +/- 0.5% cpymoderately clay altered FP monzonite w/ 15% qtz veinlets w/ heavy Mn coating 3-5% py, aspy veinle +/- 0.5% cpyJE-15(DDH-73-2) 73.6-78.3 m's moderately argillic altered FP monzonite w/ 10% qt	JE-12	Float from old trench L-3	strong clay-sericite altered monzonite w/ 5%
JE-13(DDH-73-2) 14.6-18.9 m'smoderately argillic altered FP monzonite w/ 5% dissem py and .23% cpy dissem and veinletJE-14(DDH-73-2) 55.8-59.7 m'smoderately clay altered monzonite w/ 15% qtz veinlets w/ heavy Mn coating 3-5% py, aspy veinle +/- 0.5% cpyJE-15(DDH-73-2) 73.6-78.3 m'smoderate argillic altered FP monzonite w/ 10% qt			chalcedony veinlets and 15% veinlets and dissem
JE-13(DDH-73-2) 14.6-18.9 m'smoderately argillic altered FP monzonite w/ 5% dissem py and .23% cpy dissem and veinletJE-14(DDH-73-2) 55.8-59.7 m'smoderately clay altered monzonite w/ 15% qtz veinlets w/ heavy Mn coating 3-5% py, aspy veinle +/- 0.5% cpyJE-15(DDH-73-2) 73.6-78.3 m'smoderate argillic altered FP monzonite w/ 10% qt			py+/- aspy
JE-14(DDH-73-2) 55.8-59.7 m'smoderately clay altered monzonite w/ 15% qtz veinlets w/ heavy Mn coating 3-5% py, aspy veinle +/- 0.5% cpyJE-15(DDH-73-2) 73.6-78.3 m'smoderate argillic altered FP monzonite w/ 10% qt	JE-13	(DDH-73-2) 14.6-18.9 m's	moderately argillic altered FP monzonite w/ 5%
JE-14(DDH-73-2) 55.8-59.7 m'smoderately clay altered monzonite w/ 15% qtz veinlets w/ heavy Mn coating 3-5% py, aspy veinle +/- 0.5% cpyJE-15(DDH-73-2) 73.6-78.3 m'smoderate argillic altered FP monzonite w/ 10% qt			dissem py and .23% cpy dissem and veinlet
veinlets w/ heavy Mn coating 3-5% py, aspy veinleJE-15(DDH-73-2) 73.6-78.3 m'smoderate argillic altered FP monzonite w/ 10% qt	JE-14	(DDH-73-2) 55.8-59.7 m's	moderately clay altered monzonite w/ 15% qtz
JE-15(DDH-73-2) 73.6-78.3 m'smoderate argillic altered FP monzonite w/ 10% qt			veinlets w/ heavy Mn coating 3-5% py, aspy veinlets
JE-15 (DDH-73-2) 73.6-78.3 m's moderate argillic altered FP monzonite w/ 10% qt			+/- 0.5% cpy
	JE-15	(DDH-73-2) 73.6-78.3 m's	moderate argillic altered FP monzonite w/ 10% qtz
chalcedony veinlets w/ 5-8% py,aspy and tr-0.8%			chalcedony veinlets w/ 5-8% py,aspy and tr-0.8%
сру			сру
JE -16 (DDH-73-2) 92.4-97.1 m's hornfelsed siltstone w/ biotite hnfls and weak	JE -16	(DDH-73-2) 92.4-97.1 m's	hornfelsed siltstone w/ biotite hnfls and weak
bleaching w/ 10% qtz veinlets w/ 1-2% py and tr-			bleaching w/ 10% qtz veinlets w/ 1-2% py and tr-
0.5% cpy dissem in vnlts.			0.5% cpy dissem in vnlts.

JAKE ROCK SAMPLE DESCRIPTIONS

.

. .

. . .

.

[]

.

,

, **---**,

i. •

Sample #	Location	Rock Description
JE-17	(DDH-73-2) 120.4-125.3	K alt'd FP/Biotite rich monzonite w/ 1% dissem py
	m's	& tr3% cpy
JE-18	(DDH-73-2) 128.0-132.9	Hornfelsed siltstone w/ 5% qtz. Veinlets w/ 1-2%
	m's	py,aspy vnlts and .3-1.0% cpy
JE-19	(DDH-73-3) 20.1-24.4 m's	Strong pervasive K altn. W/ hem on fractures and
		0.5-2.0 cpy vnlts and blebs, trace bornite dissem.
JE-20	(DDH-73-3) 46.3-50.9 m's	Pervasive K altn. W/ an argillic altn. Overprint w/
		2-3% qtz. Vnlts. Tr dissem py & .5-1.0% cpy (20%
		30-50cm hornfels siltstone bands)
JE-21	(DDH-73-3) 60.0-64.9 m's	same as JE-20
JE-22	(DDH-73-3) 78.3-82.6 m's	FP monzonite w/ moderate-strong pervasive clay
		alteration & 5-8% qtz. Veinlets w/ 1-2% py,aspy
		and tr-0.5% cpy dissem.
JE-23	(DDH-73-3) 87.5-92.5 m's	FP monzonite w/ strong pervasive K altn w/ 3-12%
		chalcedony veinlets and moderate argillic alteration
		overprint. Average of 1.0-2.0% cpy veinlets and
		blebs.
JE-24	(DDH-73-3) 115.0-119.8	Strong pervasive K altn in a FP monzonite w/ 1-2%
	m's	cpy veinlets and blebs.
JE-25	(DDH-73-4) 25.9-29.9 m's	K altd. FP monzonite w/ argillic and qtz vein
		breccia. Heavy win stain and contains 3-5% py,aspy
		aissem and 0.5-2.0% cpy blebs.
JE-26	(DDH-73-4) 40.2-44.9 m's	same as JE-25
JE-27	(DDH-73-4) 63.4-67.7 m's	K aitd FP monzonite w/ 15-20% qtz veins and
		arguine altered preceia. Strong win coating w/ 0.5-
		5.0% cpy blebs and veiniets.
JE-28	(DDH-73-5) 11.7-16.2 m's	K alt a Fr monzonite overprinted by weak arginic
		aneration, 2-4% qtz vennets and tr5% cpy
TE 20	(DDH 73 5) 43 0 46 0	K alt'd FD biotite rich monzonite w/ tr dissem onv
JE-29	(UUD-73-5) 43.0-40.9 M/S	and 3.5% dissem Py & 10% limonitic sericitic fault
1		and 5-570 dissent, i y. & 1076 minomitic seriettic laur
IE 20	(DDH 73 5) 90 5 95 3	K alt'd FP-biotite monzonite as above
JE-30		K alt'd FP monzonite w/ 1- 4% discem ony and 3-
JE-31	(DDf1-75-0) 19.2-23.2 III S	4% quartz veinlets w/ nvrite
IF 32	(DDH_73_6) 36 0_41 5 m ² c	as IF -32 w/ occas nyrite/sericite fracture
JE-34		EP monzonite w/ moderate clav alta and 10%
JE-33	(1/1/1-/3-0) 0/./-/2.2 IR'S	auartz/nyrite veinlets.
IF-34	(DDH_73_6) 06 0_102 1	FP monzonite w/K alt'd anonlar fragments within a
510-54	m's	"crackle breccia". The matrix consists of argillic
]		altered material w/ 10-20% guartz breccia w/ 3-4%
1 .		py & .25% dissem cpy.
JE-35	(DDH-73-7) 23.8-29.3 m ³ s	Strong argillic and sericite altered FP monzonite w/
		wk Mn stain and malachite w/ .2% dissem cpy
JE-36	(DDH-73-7) 50.3-54.56	K alt'd FP monzonite w/ a clay quartz/chalcedony
	m's	stockwork/breccia 2-3% dissem py, & .15% dissem
		сру
JE-37	(DDH-73-7) 70.7-74.7 m's	same stockwork/breccia as JE-36
L		

APPENDIX 2

έ.

Ż.

1

(....

CERTIFICATES OF ANALYSIS - ROCKS & SOILS

.

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557 TECK EXPLORATION LTD. #350-272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2

ATTENTION: G. Evans

No. of samples received: 30 Sample Type: Rock Project Number: 1389-9 SHIPMENT #: Not Given Sample submitted by: G. Evans

Values in ppm unless otherwise reported

	E+ #	Tag #	Au(nab)	٨٩	A1 9/	40	Ba	Di	Ca %	Cd	<u> </u>	~ ~		Eo %	1	er 0/.	Min	Ma	No %	A11		Dh	Sh	Sn	Sr Til			w	v	70
=	4	169 7	20	- 14	1.62	A3	40		0 10	<u></u>	26	50	210	>10		1 40	227	125	0.04		000	22	-5	<20	25 <0.0	1 /1	125	<10		55
	2		20	1.4	1.03	70	40	~5	0.10	~1	17	09	219	4.24	<10	1.40	499	20	0.04	9	100	18	~5	~20	42 0.0	2 ~10	1 70	10	2	22
	2		200	1.0	1.40	20	40	~0	0.13	-1	10	44 20	2053	4.04	<10 (0.00	100	- 37 - 166	0.12	0	400	10	~5	~20	20 0.0	2 -10	· /:	20	-1	70
	3	JE 04	200	0.4	0.46	20	150	~0	0.17	>1	10	- 3 9	2000	1.03	40 0	0.37	E14 604	40	0.04	4	1240	12	<5 <5	~20	20 0.0			20	~1	79
	4	JE - 04		0.0	0.40	10	100	~0	0.92	×1 - 4	13	02	1477	3.00	40 0	0.20	440	12	0.03	10	1040	0	~ 5	~20	18 <0.0	1 11	40	10	-1	400
	5	JE - 00	5	0.8	0.37	10	40	<0	0.08	<1	1	48	164	4.90	<10 <	0.01	132	31	0.02	Z	1300	24	<0	<20	10 <0.0	<10	20	· <10	~1	102
	6	JE - 06	55	1.6	0.30	5	35	<5	0.12	<1	9	52	129	6.60	<10 <	0.01	60	16	0.02	4	1410	38	<5	<20	9 <0.0	1 <1) 32	<10	<1	132
	7	JE - 07	40	12	0.29	20	45	<5	0.07	<1	7	40	130	5.87	<10 <	0.01	55	7	0.01	<1	1160	38	<5	<20	5 < 0.0	1 <1) 23	<10	<1	65
	8	JE - 08	40	3.8	0.23	40	30	5	0.07	<1	11	58	65	6.46	<10 <	0.01	183	8	0.02	3	1020	254	<5	<20	6 < 0.0	1 <1	. 16	5 <10	<1	77
	9	JE - 09	135	21.4	0.20	95	25	<5	0.07	<1	13	73	1712	4.08	<10 <	0.01	22	92	<0.01	4	540	218	<5	<20	6 < 0.0	1 <1) (5 <10	<1	135
	10	JE - 10	315	13.0	0.18	185	20	<5	0.04	<1	6	67	223	5.01	<10 <	0.01	317	7	<0.01	1	680	872	<5	<20	12 < 0.0	1 <1) !	<10	<1	117
											•	•.		•.• •						•			•							
	11	JE - 11	225	14.0	0.18	140	15	<5	<0.01	4	6	55	483	5.28	<10 <	0.01	29	6	<0.01	4	20	168	<5	<20	<1 <0.0	1 <1) (5 <10	<1	715
	12	JE - 12	385	4.2	0.16	505	20	15	0.09	<1	9	80	25	8.50	<10 <	0.01	28	9	<0.01	2	530	1020	<5	<20	5 < 0.0	1 <1) :	3 <10	<1	40
	13	JE - 13	75	3.4	0.52	60	25	<5	0.45	17	22	44	846	7.61	<10 (0.04	1365	56	0.01	9	1320	458	<5	<20	27 <0.0	1 <1) 11	3 <10	<1	2396
	14	JE - 14	85	14.4	0.26	80	20	<5	1.03	15	18	72	1515	8.25	<10	0.29	2301	339	0.01	8	1070	758	<5	<20	20 < 0.0	1 <1) 1	5 <10	<1	2473
	15	JE - 15	125	5.6	0.37	30	25	<5	1.25	3	39	64	773	7.81	<10	0.53	1226	16	0.02	9	1000	186	<5	<20	100 <0.0	1 <1) 20	6 <10	<1	522
				÷																										
	16	JE - 16	205	7.6	1.05	25	45	<5	1.93	3	16	63	1952	8.25	<10	1.08	1515	23	0.03	9	1300	82	<5	<20	110 0.0	3 <1) 10	5 <10	5	381
	17	JE - 17	40	2.2	0.29	5	30	<5	1.55	· 1	9	39	195	4.19	10 (0.41	1276	- 4	0.01	5	1380	70	<5	<20	111 <0.0	1 <1) 2	3 <10	2	214
	18	JE - 18	135	8.8	1.47	25	40	<5	1.58	2	18	65	1251	8.42	<10	1.36	2336	28	0.02	11	820	202	<5	<20	126 0.0	1 <1) 8	5 <10	3	383
	19	JE - 19	185	5.4	0.40	20	25	<5	1.07	<1	21	38	2482	6.55	<10	0.41	1209	17	0.01	13	550	26	<5	<20	39 <0.0	1 <1) 5	5 <10	4	105
	20	JE - 20	485	8.2	0.43	65	25	<5	2.26	<1	30	37	1665	6.70	<10	0.68	1174	15	0.01	13	1880	70	<5	<20	83 <0.0	1 <1) 4	5 <10	6	51
	21	JE - 21	40	0.6	0.38	<5	25	<5	1.49	<1	14	44	437	3.70	<10	0.46	390	12	0.01	4	580	8	<5	<20	95 <0.0	1 <1	2	3 <10	5	27
	22	JE - 22	110	1.2	0.35	<5	25	<5	1.31	<1	25	40	1401	5.96	<10	0.51	444	21	0.01	12	620	10	<5	<20	90 <0.0	1 <1	0 6	9 - (10	4	34
	23	JE - 23	260	4.2	0.43	20	25	<5	1.30	2	19	35	3416	6.41	<10	0.42	406	39	0.01	13	460	64	<5	<20	84 <0.0	1 <1) 6	5 <10	3	421
	24	JE - 24	160	8.0	0.35	20	20	<5	2.15	<1	26	51	3747	6.55	<10	0.67	981	44	0.02	14	430	72	<5	<20	120 <0.0	1 <1) 5	4 <10	3	65
	25	JE - 25	100	6.8	0.37	115	25	<5	1.53	10	13	53	412	7.33	<10	0.72	2441	7	0.01	6	1300	1066	<5	<20	39 <0.0	1 <1	0 3	2 <10	<1	2334

Page 1

UN FOR ELE CLE FOR THE FOR THE THE UNITED AND THE CLE THE CLE AND THE

. . ·

.

ICP CERTIFICATE OF ANALYSIS AK 97-998

ECO-TECH LABORATORIES LTD.

.

.

Et #.	Tag #	Au(ppb)	Ag	Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %_	U	v		Y	Zn
26	JE - 26	315	15.0	0.22	3530	25	<5	0.64	<1	14	82	690	8.06	<10	0.59	1473	19	0.01	5	910	1204	<5	<20	20	<0.01	<10	27	<10	<1	1791
27	JE - 27	80	5.2	0.43	95	30	<5	1.47	<1	24	44	505	6.19	<10	0.75	1311	11	0.02	7	1220	104	<5	<20	1 08 ·	<0.01	<10	33	<10	<1	225
28	JE - 28	55	7.2	0.33	60	30	<5	1.88	2	14	62	1033	5.36	<10	0.87	1542	54	0.02	9	1410	44	<5	<20	59 ·	<0.01	<10	30	<10	3	420
29	JE - 29	25	1.0	0.30	15	35	<5	1.87	<1	7	48	56	2.72	20	0.51	1221	3	0.01	5	990	122	<5	<20	68	<0.01	<10	11	<10	2	203
30	JE - 30	15	1.0	0.30	45	35	<5	1.39	1	8	55	45	3.39	10	0.42	1664	6	0.01	5	1050	80	<5	<20	6 3 ·	<0.01	<10	16	<10	2	487
QC DATA	ŭ																			۲.										
Resplit: B/S 1	JE - 01	45	1.4	1.61	75	40	<5	0.11	<1	38	72	220	>10	<10	1.45	241	130	0.04	11	1010	26	<5	<20	24	<0.01	<10	133	<10	<1	57
Repeat:							•		·																					
1	JE - 01	25	1.6	1.61	70	40	<5	0.10	<1	37	59	219	>10	<10	1.45	233	126	0.04	10	990	28	<5	<20	22	<0.01	<10	133	10	<1	61
10	JE - 10	280	14.2	0.22	190	20	<5	0.05	<1	6	74	246	5.31	<10	<0.01	341	7	<0.01	1	720	924	10	<20	14	<0.01	<10	10	<10	<1	126
19	JE - 19	155	5.6	0.44	25	25	<5	1.10	<1	22	41	2512	6.82	<10	0.42	1251	20	0.01	13	570	26	<5	<20	40	<0.01	<10	58	<10	4	112
28	JE - 28	-	6.4	0.27	60	25	<5	1.73	2	13	58	949	4.90	<10	0.81	1415	49	0.02	7	1310	40	<5	<20	54	<0.01	<10	27	<10	3	381
Standard	:																													
GEO'97		150	1.2	1.5 9	50	140	<5	1.53	<1	17	56	81	3.66	<10	0.84	614	1	0.02	20	580	24	<5	<20	49	0.09	<10	66	<10	4	69

df/998 XLS/97Teck fax: 372-1285

.

FCO-TECH/ BORATORIES LTD.

ECO-TECH ABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

Page 2

TECK EXPLORATION LTD.

ICP CERTIFICATE OF ANALYSIS AK 97-1029

ECO-TECH LABORATORIES LTD.

Et #	f. Tag #	Au(ppb)	Aa	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	NI	Р	Pb	Sb	Sn	Sr	TI %	U	v	w	Y	Zn
26	.BC. 00	15	<0.2	0.84	10	125	<5	0.36	<1	5	107	58	2.83	<10	0.39	453	29	0.07	2	860	8	<5	<20	32	0.08	<10	25	10	3	25
27	- R0 -91	5	1.8	0.42	155	65	<5	0.30	<1	5	121	74	2.33	<10	0.07	411	49	0.04	4	700	34	<5	<20	13	<0.01	<10	6	10	2	69
28	-RG-02	>1000	>30	0.21 >	>10000	25	<5	0.12	<1	8	146	608	4.64	<10	<0.01	112	12	0.01	4	370	6976	2250	<20	7	<0.01	<10	2	<10	<1	4140
29	-RG-90	>1000	3.8	0.11 >	>10000	20	5	0.01	<1	8	165	16	5.41	<10	<0.01	24	13	0.01	5	150	188	35	<20	<1	<0.01	<10	1	<10	<1	877
30	-RO-94	80	7.0	1.05	190	90	<5	0.35	3	7	128	532	2.74	<10	0.40	351	42	0.08	6	840	24	<5	<20	37	0.05	<10	22	10	<1	399
31	- RG85-	115	6.4	0.34	60	70	<5	0.12	<1	3	132	43	1.62	<10	0.03	109	43	0.04	6	580	282	<5	<20	14	<0.01	<10	5	10	<1	24
32	-RG-98-	145	1.6	0.32	215	50	<5	0.14	2	4	152	77	1.53	<10	0.05	360	14	0.06	4	540	200	<5	<20	13	<0.01	<10	6	10	<1	440
33	-RG07	5	<0.2	3.25	25	240	<5	0.82	<1	16	148	24	5.26	<10	1.28	528	5	0.18	28	870	18	<5	<20	72	0.07	<10	89	<10	<1	98
34	JE - 31	90	2.4	0.42	50	30	<5	2.82	<1	41	83	1660	5.68	20	0.79	1023	11	0.03	7	1510	14	<5	<20	101	<0.01	<10	30	10	3	87
35	JE - 32	1 6	3.8	0.43	45	40	<5	2.44	2	22	62	326	6.04	<10	0.69	2091	12	0.02	11	1660	206	<5	<20	94	<0.01	<10	22	<10	2	645
																			_			_					•			4540
36	JE - 33	670	23.8	0.25	605	45	<5	0.27	4	17	86	719	>10	<10	0.03	242	58	0.01	6	810	270	<5	<20	9	< 0.01	10	9	<10	<1	1519
37	JE - 34	90	11.4	0.36	.85	25	<5	2.07	5	20	75	1910	6.95	<10	0.61	1575	33	0.02	12	1440	206	<5	<20	132	<0.01	<10	27	<10	<1 	1107
38	JE - 35	235	16.2	0.55	1865	30	<5	0.88	<1	27	54	3469	9.31	<10	0.25	1415	83	0.01	17	780	2100	<5	<20	35	<0.01	<10	35	<10	<1	1884
39	JE - 36	65	3.6	0.43	25	25	<5	1.93	<1	21	58	1250	6.34	<10	0.44	927	151	0.02	13	710	96	<5	<20	167	<0.01	<10	34	<10	4	140
40	JE - 37	120	13.8	0.46	130	35	<5	1.77	5	17	60	1968	9.40	<10	0.54	3402	90	0.01	18	970	558	<5	<20	21	<0.01	<10	40	<10	2	1070
						45		0.00	-4	~~		4000	0.05	-10	0.04	206	444	0.02		1520	10	26	~20	612	<0.01	<10	16	10	7	22
41	0-1	55	0.8	0.45	110	15	<0	3.38	<1	26	79	1830	4,80	<10	0.04	200	140	0.03	4	11020	00	55	<20	85	<0.01	<10	7	10	2	76
42	0-2	855	3.0	0.35	25	20	<0	3.07	51	10	93	527	4.95	<10	0.44	JUZ	140	0.01	Ű	1100	30	5	-20	00	-0.01	-10	•		-	
QC DA Respili	TA: ::																										_			-
1	K-01	210	6.4	0.07	<5	15	<5	0.02	<1	8	189	119	3.78	<10	<0.01	34	27	0.01	7	320	2	<5	<20	<1	<0.01	<10	5	10	<1	2
36	JE - 33	710	21.8	0.28	585	40	<5	0.27	6	16	87	679	>10	<10	0.04	247	54	<0.01	7	910	296	<5	<20	6	<0.01	<10	9	<10	<1	1546
Bener																														
1	К_01	165	62	0.08	<5	20	<5	0.01	<1	9	187	123	3 75	<10	<0.01	39	26	0.01	5	330	<2	<5	<20	<1	<0.01	<10	5	10	<1	<1
10	K-10	50	<0.2	1.81	<5	100	<5	3 37	<1	21	62	1136	4 14	<10	1.54	386	133	0.05	5	1190	6	<5	<20	572	0.17	<10	109	20	13	27
19	K-21	30	<0.2	1 49	<5	30	<5	0.96	<1	18	88	272	3.49	<10	0.69	436	4	0.15	4	830	16	<5	<20	29	0.08	<10	43	<10	1	35
36	JE - 33	870	25.6	0.25	620	45	<5	0.27	5	18	86	689	>10	<10	0.03	241	57	< 0.01	6	870	278	<5	<20	6	<0.01	<10	9	<10	<1	1583
							-	-																						
Standa	ard:																												-	
GEO'9	7	150	1.4	1.83	70	170	<5	1.89	<1	21	67	84	4.48	<10	0.97	717	<1	0.03	22	720	22	5	<20	62	0.11	<10	81	<10	4	83
GEO'9	7	130	1.4	1.69	70	155	<5	1.79	<1	20	61	81	4.30	<10	0.91	696	<1	0.03	24	730	20	<5	<20	53	0.11	<10	76	40	5	86

df/1029 XLS/97Teck fax: 372-1285

.

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

۰.

Page 2

CT LY ET 13 ET LY FA CH LY LY LY FUR LY LY LY LY LY LY LY

÷.

18-Sep-97

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway

*···· --

ţ-...

٦

KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557

ICP CERTIFICATE OF ANALYSIS AK 97- 1003

۲- ۱ 1

1

۳ د]}

7 ···

1

 Post-It" Fax Note
 7671E
 Date
 Sep 19
 # of
 # of

 To
 G. Evans
 From
 From
 Co.
 Phone #
 Phone #
 Phone #
 Fax #

TECK EXPLORATION LTD. #350-272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2 ATTENTION: G. Evans No. of samples received: 90 Sample Type:Soil PROJECT # 1389-9 SHIPMENT #: Not Given Sample submitted by: G. Evans

r tre

Values in ppm unless otherwise reported

																						1									
Et 弗	Tag #	Mesh Size A	Au(ppb)	Ag	Al %	Ås	Ba	Bi (Ca %	Cd	Co	Gr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	NI	P	Pb	Sb)	Sn	Sr	Ti %	<u>U</u>	V 42	W	Y	210
1	110+00		95	2.6	1.54	60	210	<5	0.04	<1	8	16	240	5.85	<10	0.28	533	6	0.02	18	770	92	୍ ୦ ୦୦	<2U	102	0.01	<10	4 <u>/</u>	10	~	210
2	11.0+25		110	4.2	2.12	25	215	<5	0.07	<1	12	19	373	6.13	<10	0.38	393	11	0.02	21	1000	110	S	SAQ	20	0.01	<10	50	510		211
2	11.0+50		130	4.8	0.57	60	120	<5	0.02	<1	6	1	244	5.82	10	<0.01	264	40	0.01	2	490	140	4	<20	57	<0.01	<10	20	<10	<1 .4	220
Á	11.0+75		70	6.0	1.27	50	245	<5	0.06	<1	7	12	218	6.34	<10	0.20	477	27	0.02	11	1760	170	ব্	<20 .	- 65	<0.01	<10	45	<10	~1	200
5	111+00		65	1.6	1.78	50	205	<5	0.09	<1	12	20	137	5.47	<10	0.44	544	6	0.02	26	670	180	\$	<20 ::	. 21	0.02	<10	50	<1U	2	291
5	E1 1.00																											~ 7			404
6	11.1+25		470	19.6	1.67	120	200	<5	0.03	<1	9	11	861	>10	<10	0.08	240	109	0.03	5	2510	2102	<5	<20	100	<0.01	<10	87	<10	<1	434
7	11 1+50		575	13.6	1.53	95	100	<5	0.06	<1	10	. 8	993	>10	<10	0.07	18 8	137	0.06	4	1840	1516	<5	<20	160	<0.01	<10	11	<10	51	300
8	14 1+75		685	13.4	2.27	110	225	<5	0.02	<1	10	11	857	>10	<10	0.15	333	150	0.03	11	2200	1705	<5	<20	127	< 0.01	<10	04	<10	S1 - 4	419
а а	112400	40 mesh	>1600	24.6	2.60	165	205	< <u>5</u>	0.04	<1	12	14	1335	>10	<10	Q. 17	211	86	0.05	5	1930	2446	<5	<20	130	<0.01	<10	ñò	<1Ų	51	010 474
10	11 2+25		810	8.6	2.42	120	275	<5	0.05	<1	10	19	-690	>10	<10	0.27	192	78	0.04	8	1500	834	<5	<20	17	0.01	<10	99	<10	<1	171
																							···					0 5	-10		400
11	112+50		>1000	20.2	1.88	195	85	<5	0.04	<1	10	5	674	>10	<10	0.02	175	61	0.14	4	2400	2430	<5	<20	261	<0.01	<10	90 70	<10	<1 -4	400
12	11 2+75		>1000	7.2	1.63	135	130	<5	0.03	<1	10	12	358	>10	<10	0.09	225	17	0.05	7	3180	940	<5	<20	171	9.01	<10	73	<10 - 40	51 	210
13	11.3+00		775	7.0	1.75	90	70	<5	0.02	<1	10	6	229	>10	<10	0.05	229	- 55	0.10	5	2580	438	<5	<20	208	<0.01	<10	11	<10 -40	51	201
14	113+25		755	3,4	1.75	110	85	15	0.03	<1	16	4	299	>10	<10	<0.01	239	33	0.19	<1	4040	276	<5	<20	319	<0.01	20	69	<10 <10	51	319
15	113+50		920	9.8	1.12	55	60	<5	0.02	<1	5	<1	117	8.78	<10	<0.01	57	31	0.10	<1	0801	1330	<5	<20	141	< 0.01	<10	30	<10	<1	191
ιų.	210.00																			_				~~			-40	ee	-10		1 27
16	L1 3+75		120	6.6	1.27	105	65	<5	0.04	<1	10	6	241	>10	<10	0.06	145	45	0.05	5	2460	534	<5	<20	205	<0.01	510	00	>10 -40	-1	201 064
17	L1 4+00		120	3.0	0.87	80	245	<5	0.02	<1	9	5	275	6.62	20	0.10	1012	- 11	0.03	5	1310	494	<5	<20	11	<0.01	<10	29	510	-1	201
18	114+25		180	3.6	1.14	95	260	<5	0.04	<1	9	6	313	6.13	<10	0.11	650	19	0.02	8	1080	408	<5	<20	51	<0.01	<10	41	<1U <10	24	200
19	11 4+50		200	4.8	0.84	90	290	<5	0.10	<1	8	6	271	6.27	10	0.12	719	15	0.03	8	1250	462	<0	<20	60	SQ.U1	<10 <10	-09 -44	NU 210	1	207
20	L1 4+75		135	2.0	0.66	95	195	<5	0.04	<1	· 11	7	313	5.91	10	0.14	1027	17	0.02	7	990	442	<5	<20	39	Ų.ŲZ	\$10	-41	510	1	291
20	_,																								400	يە <u>م</u>	40	70	-10	~1	054
21	1.1 5+00		590	12.6	0.77	185	95 .	<5	0.02	<1	13	3	340	>10	<10	<0.01	245	62	0.11	3	3800	1780	· <5	<20	180	<0.01	10	10	510	~	204
22	11 5+25		455	8.8	0.99	115	155	<5	0.02	<	32	<1	411	>10	<10	<0.01	4022	26	. 0.05	8	2830	426	<5	<20	128	<0.01	<10	40	S10	S 1.	280
23	115+50		160	11.0	1.27	160	280	15	0.02	<1	13	1	172	>10	<10	<0.01	502	18	0.03	2	3120	1490	<	<20	108	<0.01	510	30 50	40	51	000 000
24	11 5+75		145	1.0	1.50	100	130	<5	0.04	<1	20	8	331	9.71	10	0.19	966	17	0.02	11	1400	230	<5	<20	19	<0.01	<10	28 -	<1U	2	290
25	116+00		10	0.4	1.11	110	160	<5	0.09	· <1	18	10	125	6.68	<10	0.26	759	8	0.02	15	750	120	<5	<20	17	0.02	<10	64	<10	0	200
20	H. 0.00																S. 1					· ·						•			

<u>___</u>}

09/19/97

15:00

2250 573 4557

ECO-TECH KAM.

↓↓

TECK KAM

111

100 🖾

ECO-TECH LABORATORIES LTD.

ICP CERTIFICATE OF ANALYSIS AK 97- 1003

TECK EXPLORATION LTD.

										. .	A-	.	^		1	ta K	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Şr	Ti %	U	۷	W	Y	Zn
Et #.	Tag #	Mesh Size Au	ı(ppb)	Ag	<u>AI %</u>	As	Ba	BIC	a %	Cd	Co	Ur_		re 76		N 45	DAE	27	0.02	7	2380	548	<5	<20	72 <	0.01	<10	57	<10	3	447
26	L1 6+25		215	3.0	1.62	110	300	<5	0.02	<1	11	8	4/2	>10	20	0.10	010	63 63	0.02	à	1660	184	<5	<20	38	0.02	10	124	<10	<1	178
27	L1 6+50		600	5.8	2.39	115	320	<5	0.05	<1	15	19	1951	>10	<10	0.01	230	442	0.02	้า	2700	A44	<5	<20	136 <	0.01	20	86	<10	<1	110
28	L1 6+75		340	5.2	1.54	95	180	<5	0.02	<1	13	8	489	>10	<10	0.08	104	144	0.00	¢.	2000	212	<5	<20	89	0.05	20	155	20	<1	103
29	L1 7+00		505	6.8	3.39	135	245	<5	0.03	<1	13	25	1425	>10	<10	0.01	100	440	0.00	5	2000	708	<5	<20	106	0.04	20	135	<10	<	149
30	117+25		990	9.8	2.62	120	275	<5	0.03	<1	13	10	848	>10	<10	0.33	102	410	0.01	5	2020	100	~	20							
											· · .					A 67	004	400	0.02	44	1560	352	<5	<20	39	0.01	<10	64	<10	<1	237
31	L17+50		220	3.6	2.34	85	240	<5	0.02	<1	12	14	641	>10	<10	0.27	231	100	0.00	10	2250	262	<5	<20	43	0.01	<10	108	<10	<1	196
32	117+75		175	4.6	3.68	115	280	<5	0.03	<1	16	17	1089	>10	<10	0.46	203	13	0.00	N 0	1700	106	<5	<20	27	0.03	<10	95	<10	<1	147
33	118+00		150	4.2	3.17	85	185	<5	0.06	<1	18	16	755	>10	<10	0.53	417	100	0.00	10	1700	300	<5	<20	25	0.04	10	115	<10	<1	155
24	118+25		70	5.0	3.79	245	255	<5	0.03	<1	13	22	314	>10	<10	0.65	190	23	0.00	10	0000	446	~5	<20	22	0.01	10	86	<10	<1	144
35	1.1 8+50		80	2.6	3,58	90	215	<5	0.07	<1	16	15	325	>10	<10	0.33	200	10	0.05	1	2240	1 TV	-0	-20							
																		05	0.00	40	020	200	<5	<20	40 -	<0.01	<10	53	<10	<1	289
36	1 1 8+75		<5	3.4	2.27	150	260	<5	0.03	<1	23	7	638	8.55	<10	0.18	524	30	0.02	10	500 520	290	~5	<20	8	0.03	<10	56	<10	<1	296
37	120+00		<5	3.2	1,87	25	115	<5	0.13	<1	12	19	49	5.10	<10	0.47	409	4	0.01	41	030 690	00	~5	<20	9	0.04	<10	51	20	3	161
38	12 0+25		5	<0.2	1.59	35	80	5	0.23	<1	17	19	41	4.66	<10	0.50	808	2	0.01	20	030	52	<5	<20	14	0.03	<10	52	<10	<1	200
39	L2 0+50		<5	0.2	1.64	20	125	5	0.26	<1	11	17	26	4,42	<10	0.45	442	0 5	0.01	21	600	104	<5	<20	14	0.02	<10	54	<10	<1	323
40	12 0+75		30	1.8	1.90	30	140	<5	0.18	<1	14	19	44	5.22	<10	0.49	8/1	0	0.01	20	080	104	-0	-20	1.1	0.01		•••			
-10								•								•	1000	F	0.04	20	790	140	<5	<20	18	0.02	<10	58	<10	<1	298
41	121+00		10	2.2	2.34	35	215	<5	0.18	<1	18	21	141	6,13	<10	0.53	1000	G A	0.01	20	460	54	<5	<20	13	0.03	<10	59	<10	9	177
42	12 1+25		<5	0.4	2.13	25	155	<5	0.13	<1	17	24	154	5,15	10	0.60	1000	4	0.02	21	1060	76	<5	<20	69	0.01	<10	53	<10	2	202
43	L2 1+50		15	1.2	1.71	110	410	<5	0.34	<1	13	16	227	7.1/	<10	0.36	1007	10	0.02	20	620	56	<5	<20	15	0.04	<10	55	<10	<1	152
44	12 1+75		<5	0.6	1.56	20	105	<5	ù.22	<1	14	16	- 42	4.66	<10	0.69	033	- 7 6	0.01	43	1700	A70	<5	<20	23	<0.01	<10	41	<10	- 11	844
45	12 2+00		90	3.4	0.96	95	355	<5	0.31	1	15	7	137	6.27	40	0.12	4120	0	0.01	15	12.50	-10	.0								
															-	0.00	2065	19	0.02	20	1400	27R	<5	<20	66	<0.01	<10	49	<10	14	400
46	L2 2+25		105	4.0	1.11	145	525	<5	0.47	<1	20	10	269	/.58	30	0.22	40000	10	0.02.	14	1220	80	<5	<20	47	0.02	<10	23	<10	11	325
47	12 2+50	i	125	4.4	0.52	60	510	<5	0.73	<1	14	5	310	6.04	30	0.07	10000	וו דני	0.01	14 0	1520	708	<5	<20	134	<0.01	<10	42	<10	7	515
48	12 2+75	ł	365	6.4	0.74	165	100	<5	0.16	<1	13	5	632	8.79	20	.0.07	4023	رد ۱۵	0.00	47	1320	396	-5	<20	45	<0.01	<10	45	<10	18	454
49	L2 3+00)	80	2.8	0.91	150	330	<5	0.18	<1	18	8	204	1.54	20	0.17	1004	10	0.02	18	000	212	<5	<20	22	<0.01	<10	56	<10	9	422
50	L2 3+25	5	30	1.4	1.25	85	320	<5	0.21	<1	19	10	123	6.24	10	U.20	1093	1	0.01		000		•								
													(07	4.40	-40	0.50	594		0.01	22	460	48	<5	<20	13	0.04	<10	53	<10	2	138
51	L2 3+50)	<5	0.2	1.61	15	105	<5	0.17	<1	13	19	107	4.49	<10	0.00	1 OC	14	0.01	21	1230	700	-	<20	37	<0.01	<10	49	<10	<1	773
52	L2 3+75	5	>1000	17.2	1.76	220	230	10	D, 17	<	14	16	370	9.90	<10	0.20	1227	44	0.02	20	830	164	<5	<20	14	0.01	<10	50	<10	8	293
53	1.2 4+00)	135	2.2	1.62	105	- 165	<5	0.14	<	16	14	586	7.90	20	U.30	1327		0.01	10	, 000 1 960	216	<5		19	0.01	<10	34	<10	2	391
54	L2 4+28	5 42 mesh	>1000	2.8	0.98	175	100	<5	0.05	<1	13	5	531	9.74	<10	0.14	1040	30	0.01	20	7/0	386	~~ <5	20	16	0.02	<10	48	<10	5	594
55	L2 4+5() 42 mesh	865	1.0	1.45	60	115	<5	0.18	<1	16	15	367	5 .73	<10	0.38	1404	,	0.01	. 21	, 1 -Ю	200	-0								
																	4740		0.00	20	> 1020	284	<5	00	25	0.02	<10	44	<10	14	1121
56	12 4+7	5 42 mesh	115	1.8	1.59	45	165	<5	0.28	4	17.	17	586	6.08	10	0.44	1/42	()	0.02 5 0.04	10	, 1000 1 000	102	~~ <5	<20	18	<0.01	<10	48	<10	<1	671
57	12 5+0) 42 mesh	10	0.6	1.49	40	160	<5	0.22	1	10	15	118	5,17	<10	0.38	400		10.U 1 0.04	12	, 990 2 000	574	<5	20	15	0.02	<10	38	<10	10	1345
58	L2 5+2	5 42 mesh	50	2.0	1.03	60	150	<5	0.15	4	16	9	115	5.16	20	0.22	4595		2 U.UI 7 0.04	- IC - 48	, 32V ; 44/0	304	-v <5	00	18	<0.01	<10	41	<10	<1	1057
59	12 5+5	0 42 mesh	55	2.8	1.68	125	215	<5	0.14	<1	9	g	143	5.43	<10	0.20	40/	ہ ا	4 0.01	14	4 4230	1004	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	20	51	<0.01	<10	42	<10	<1	1846
60	125+7	5 42 mesh	>1000	16.8	1.25	900	205	<5	0.05	<1	8	2	620) >10	<10	0.01	9 0 1	. 14	7 V.UI	-	- 1200	1001	v								

09/19/97

15:01

250 573 4557

ECO-TECH KAM.

↓ ↓

TECK KAM

)

ECO-TECH LABORATORIES LTD.

the first of the first f

ICP CERTIFICATE OF ANALYSIS AK 97- 1003

1 000 000 000

TECK EXPLORATION LTD.

							D -	B: C	- #Z	Ċá	Co	Cr	Ċu	Fa %	Lal	Ma %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn_	Sr	<u>TI %</u>	U	<u>Y</u> .	W	Y	Zn
Et &	Tag #	Mesh Size /	Au(ppb)	Ag	AI %	A\$	58		na 74		26	11	001	694	30	0.21	5523	10	0.01	15	1390	1666	<5	<20	28	0.02	<10	45	<10	18	1137
61	L2 6+00	42 mesh	205	2,6	1.18	105	190	<0 (0.10	ر. ام	44	11	80	5.30	20	0.29	3069	5	0.01	15	720	346	<5	<20	9	0.02	<10	49	<10	11	632
62	L2 6+25	42 mesh	25	7.0	1.30	65	100	10 0	0.10	- 1 A	15	11	1450	5.44	20	0.26	2420	8	0.01	14	1360	418	<5	<20	35	0.02	<10	44	<10	17	864
63	L2 6+50	42 mesh	70	2.2	1.19	115	210	< <u>5</u>	0,24	- 4	24	10	039	6.86	<10	0.22	5031	10	0.01	16	1380	492	<5	<20	36	0.02	<10	43	<10	9	918
64	L26+75	42 mesh	125	. 2.8	1.45	290	200	- 50 i - 45 i	0.03	1 2	45	5	304	5.48	20	0.10	2858	9	0.01	11	1000	474	<5	<20	25	<0.01	<10	32	<10	7	865
65	1.2 7+00	42 mesh	85	3.2	0.83	75	200	· •0	0.10		17	v	. 447	4 , 1 4	-•	••															
					4.00		005	~	n 26.	A	13	8	511	5.76	20	0.19	2185	່ 10	0.01	: 11	1290	412	<5	<20	28	0.01	<10	41	<10	8	667
66	L2 7+25	42 mesh	75	5.4	1.02	200	200	~0	0.20	-1	11	5	246	6.06	20	0.13	2258	8	0.02	10	1030	900	<5	<20	40	<0.01	<10	37	<10	5	918
67	L2 7+50	42 mesh	75	3.4	0,83	200	000	~5	0.10	2	19	11	197	5.51	20	0.33	2729	9	0.02	22	1190	304	<5	<20	30	0.02	<10	47	<10	9	503
68	127+75	42 mesh	30	1.0	1.24	- 20	200	~	0.JU	~	17	8	220	5.46	20	0.23	2369	9	0.01	12	1240	370	<5	<20	19	0.01	<10	40	<10	7	447
69	L2 8+00	42 mesh	90	1.8	0.99	00	440	~5	0.07	<1	11	25	41	5.30	<10	0.53	394	5	0.01	25	890	48	<5	<20	5	0.02	<10	62	<10	<1	131
70	L3 0+00	42 mésh	25	U.0	2.33	χu	110		0,01																						400
				~ ~	0.40	46	05	<5	0.04	<1	11	22	73	5.16	<10	0.42	378	6	0.01	21	670	42	<5	<20	5	0.02	<10	56	<10	<1	162
71	L3 0+25	42 mesh	5	2.0	2.19	10	90 90	-77.	0.04	<1	11	25	39	5.12	<10	0.52	326	6	0.01	27	580	30	<5	<20	. 4	0.02	<10	61	<10	<1	119
72	L3 0+50	42 mesh	5	1.0	2.11	10	80	~5	0.00	<1	10	25	37	5.60	<10	0.47	261	6	0.01	24	820	26	<5	<20	4	0.02	<10	64	<10	<1	84
73	L3 0+75	42 mesh	5	2.0	2.40	10	120	5	0.00	<1	27	22	909	>10	<10	0.70	885	68	0.02	23	1510	32	<5	<20	10	<0.01	<10	90	<10	<1	115
74	L3 1+00	42 mesh	53	3.0	0,20 4.65	0 45	145	<5	0.07	<1	5	13	46	5.82	<10	0.19	126	40	0.03	7	1880	30	<5	<20	57	0.01	<10	55	.<10	<1	44
75	L3 1+25	42 mesh	10	1.4	1.00	- IV	140	-0	0.01																						
		10	20	6.0	2 70	25	۵n	6	n 12	<1	12	38	69	6.53	<10	0.61	403	6	0.01	26	2100	40	<5	<20	7	0.01	<10	74	<10	<1	112
76	L3 1+50	42 mesn	20	0.2	2.10	50	100	র	0 13	<1	97	31	1315	9.03	<10	0.53	5535	- 71	0.02	39	1560	56	<5	<20	14	0.02	<10	84	<10	5	139
77	L3 1+75	42 mesn	40	2.0	4 90	20	240	<5	0.33	<1	13	23	76	5.18	10	0.56	778	5	0.02	27	560	40	<5	<20	28	0.02	<10	53	<10	12	121
<u>78</u>	L3 2+00	42 mesn	10	0,4 ň á	1.00	20	135	ر ه	0.25	<1	16	20	3 0	5.48	20	Ş.41	1193	5	0.01	25	5 1240	49	-5	<20	17	0.01	<10	60	<10	11	100
79	13 2+25	42 mesh	20	0.4	2 1.12	25	70	<5	0.06	<1	11	27	26	5.87	<10	0.47	407	4	0.01	24	1080	28	<5	<20	6	0.02	<10	63	<10	<1	101
80	L3 2+50	42 mesu	្រា	0.2	2,43	20				•																				-4	400
		10k	5	90	2 37	30	75	<5	0.03	<1	11	23	41	6.13	<10	0.41	299	6	0.01	21	1 830	36	<5	<20	6	0.02	<10	1	<10	51	123
81	132+/0	42 mesh	J 5	6.2	2.01	40	75	<5	0.02	<1	9	20	38	6.03	<10	0.29	244	6	0.01	1	5 760	34	<5	<20	4	0.02	<10	f1 00	<10 -40	1	00 405
82	13 3400	42 (1185)) 42 mash	J 5	2.0	2.00	55	90	<5	0.02	<1	9	17	54	6.19	<10	0.25	262	8	0.01	14	4 900	52	<5	<20	6	6 0.01	<10	69	<10	~1	123
83	10 3723	42 mesh	60	0.2	1 14	220	195	<5	<0.01	<1	4	<1	84	7.53	<10	<0.01	14 1	6) 0. 0 2	<'	1 1330	556	25	<20	50	(10.0) (I) (I)	<10	10	<10	~1	241
54	L3 3100	42,111C311	20	16	3.58	45	135	<5	0.04	<1	12	11	226	9.22	<10	0.11	261	25	5 0.06	· 1	1 2150	40	<5	<20	18	§ ⊲0.01	<10	- 87	<10		04
85	L3 37/0	4211681	20	1.0	0.00			-															÷				46	00	40	-1	204
00	12 4400	A9 moch	10	10	2 41	170	405	5	0.07	<1	27	20	191	>10	<10	0.07	959	16) 0.01	23	3 4000	1 76	<5	<20	12	S <0.01	<10 <10	02 60	40	~1	117
60 97	10 4100	A2 moch	5	0.6	2 07	75	100	<5	0.04	<	10	14	36	5.96	<10	0.23	330	7	7 0.01	1	3 1610	66	`<5 	<20		1 <0,01	<10	72	_ 20	-1	110
0/ 00	L3 4720	A2 mooh	35	7.2	3 48	105	170	<5	0.03	<1	24	12	863	>10	<10	0.18	490	23	3 0.05	- 11	8 2090) 62	<5	<20	23	S <0.01	<10	10	~10	-1	100
88	10 4+00	/ 42.000000 / /2.meeh	75	40	2.01	250	65	<5	0.02	<1	11	3	183	>10	<10	0.01	90	244	4 0.30		3 3160) 150	<5	<20	394	1 <0.01	510	91 05	240	~1	81
69	13 4770	42 mash		1.0	1.96	35	95	<5	0.04	<1	9	17	42	6.06	<10	0.22	210	ç	0.02	1:	2 1050) 32	<5	<20	74	1 0.01	<10	60	510	~1	01
an	L3 3400	46 116311	v	1.0	1,00									-		· ·															
	· A +																														
Bonest	D 1																	•						" 70	0	0.04	~10	A A	<10	<1	226
Nepeat.	14 0400	n	90	2.8	1.61	75	215	<5	0.05	1	9	17	249	6.09	<10	0.29	547	. (5 0.02	1	8 850	J. 120 N. 040	S	~20	30	7 0.01 7 0.03	210	00	<10	<1	171
10	(19100	, ;	840	8.6	2.44	125	280	<5	0.05	·· <1	10	19	691	>10	<10	-0.27	196	<u>;</u> 70	9 0.04	1	U 149(818	S)	<20 20	- 11 01	r ∪.∪Z 7 ∠0.04	~10	7N 01	<10 <10	21	312
10	14 4+50	, }	240	4.8	0.87	85	300	<5	0.10	<1	8	6	287	6.28	10	0.12	698	1	4 0.03		8 1250) 4,34	<5 ~	~2U ~DA	19	C. NUIVI 8. 28.04	20	 88	<10	<1	109
19 19	11 8+76	, 5		5.0	1.56	110	170	<5	0.02	<1	13	9	487	>10	<10	30.0	3 - 101	11;	3 0.05		3 2/2	j. 4 4 4	<0	<20	្រុង	0.00	- 20	w	-10	-	-
20 70	117+00	3	460	-			-	-	-	-	-	-	-	•	•	• •	• -		• •				-	•		- •	-	-	-	-	
<i>2</i> .3	L 1 7 7 7 1																														

→→→ TECK KAM

ECO-TECH KAM.

09/19/97

15:02

☎250 573 4557

2003

Page 3

f **** \Box 5 · · · · 1 1) 1 1

ECO-TECH LABORATORIES LTD.

09/19/97

15:03

2250 573 4557

ECO-TECH KAM.

⇒→→ TECK KAM

國 004

ICP CERTIFICATE OF ANALYSIS AK 97-1003

r - ** •

1

1

1

[

TECK EXPLORATION LTD.

. 1

	- 4		Autonhi	10	A (9/	٨٥	Ra	Bi	Ca %	Cd	Ca	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	NI	P	Pb	Sb	Şn	Sr	TI %	U	<u>۷</u>	W	<u>Y</u>	Zn
Et#.	lag #	Mesi Size	wa(hhn)	Ny	HI /		070	40	0.02		26	Ŕ	661	8.93	<10	0.19	571	36	0.02	14	1020	314	<5	<20	37 -	:0.01	<10	55	<10	<1	310
36	L1 0+75		-	3.4	2.40	175	270	~0	0.05	N	20	•	001	0.00						-	-	-	-	-	-	•	1 - 1		-	-	•
37	L2 0+00		<5	-	•	•	-	-	•	-	-	-	-	-		0.40	4050	7	0.01	12	1220	284	<5	<20	24 -	<0.01	<10	40	<10	10	817
45	12 2+00		65	3.4	0.93	95	350	-5	0.30	2	14	6	133	6.07	40	0.12	4009	400	0.01	42	000	226	<5	<20	21	0.01	<10	39	<10	2	421
54	12 4+25	42 mesh	>1000	3.0	1.15	185	110	<5	0.05	<1	15	6	548	9,88	<10	U.14	1147	103	0.01	14	1000	400	~	~20	24	0.02	<10	43	<10	17	859
63	126450	42 mesh	135	2.4	1,19	115	205	<5	0.23	4	16	10	1449	5.37	20	0.25	2516	7	0.01	14	1330	400	N	<u>~20</u>	34	VIVE	-10	V	, AL.	••	
05	120100										•								·			:							-40	24	477
	10.0.05	10 mark		. 20	2 47	35	100	<5	0.04	<1	13	25	80	5.69	<10	0.47	417	7	0.01	25	730	48	<5	<20	5	0.02	<10	03	510	~1	117
71	L3 0+25	42 mesn	-	J.Z	2.40	- 4 0	100		¥.# 1			-	-	-	-	-	· •	· •	-	-	-	-	• •	-	-	•	-	-	-	-	•
72	L3 0+50	42 mesh	10	-							44	97	22	5 86	<10	0.4B	407	5	0.01	24	1070	28	<5	<20	6	0.02	<10	63	<10	<1	100
80	L3 2+50	42 mesh	5	0.2	2.40	20	75	<	0.00		11	21	400	5.00	- 24A	0.70	00	2/2	0.79	2	3250	154	<5	<20	389	⊲0.01	<10	52	<10	<1	119
89	L3 4+75	42 mesh	95	4.0	2.04	255	65	<5	0.02	<1	12	4	180	>10	510	0.02		240	0.20	-	0200		•								
Standart	ł																			-	700	- 20	~5	~20	61	0 12	<10	81	20	4	73
0201007	-		155	1.4	1.85	65	155	<5	1.67	<1	19	58	102	4.50	<10	0.93	666	2	0.03	23	720	20	5	~20	01	0.12	-10	90 90	<10		71
GEOSI			165	12	1 79	55	150	<5	1.72	<1	18	59	63	4.06	<10	0.94	673	- <1	0.03	22	620	18	<5	<20	01	0,12	~10	00	~10	-	70
GEO'9/			100	1.4	4 65	20	155	-6	1 78	<1	19	61	84	4.26	<10	0.95	- 702	<1	0.03	25	690	20	<5	<20	64	0.13	<10	82	<1U	อ	13
GEO'97			. 165	1.2	C0.F	ΰU	190	~U	1.70	-1	14	01	•																		

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T.

B.C. Certified Assayer

df/1003 XLS/97Teck fax: 372-1285

APPENDIX 3

, _____

[

, . . .

.

. . .

ANALYTICAL PROCEDURES

с. С. 24

ECO-TECH LABORATORIES LTD.

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamboops, B.C. V2C 2J3 (604) 573-5700 Fax 573-455

GEOCHEMICAL LABORATORY METHODS

SAMPLE PREPARATION (STANDARD)

1.	Soil or Sediment:	Samples are dried and then sieved through 80 mesh sieves.											
2.	Rock, Core:	Samples dried (if necessary), crushed, riffled to pulp size and pulverized to approximately -140 mesh.											
3.	Humus/Vegetation:	The dry sample is ashed at 550 C. for 5 hours.											

METHODS OF ANALYSIS

All methods have either cannot certified or in-house standards carried through entire procedure to ensure validity of results.

1. MULTI ELEMENT ANALYSES

(a) ICP Packages (6,12,30 element).

Digestion Finish

Hot Aqua Regin ICP

(b) ICP - Total Digestion (24 element).

DigestionFinish----------Hot HCl04/HN03/HFICP

(c) Atomic Absorption (Acid Soluble) Ag*, Cd*, Cr, Co*, Cu, Fe, Pb*, Mn, Mo, Ni*, Zn.

Digestion

Finish

Hot Aqua Regia

Atomic Absorption * = Background corrected

(d) Whole Rock Analyses.

Digestion Lithium Metaborate

fusion

ICP

Finish

ECO-TECH LABORATORIES LT

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamioopa, B.C. V2C 2J3 (604) 673-6700 Fax 575

2. Antimony

.

Digestion

Finish

ICP

Hot aqua regia

3. Arsenic

Digestion

Hot aqua regia

4. Barium

Digestion

Lithium Metaborate

5. Beryllium

Digestion

Hot aqua regia

6. Bismuth

Digestion

Hot aqua regia

7. Chromium

Digestion

Sodium Peroxide Fusion

8. Flourine

Digestion

Lithium Metaborate Fusion Finish

Hydride generation - A.A.S.

Finish

ICP

Finish

Atomic Absorption

Finish

Atomic Absorption (Background Corrected)

Finish

Atomic Absorption

Finish

Ion Selective Electrode

ECO-TECH LABORATORIES LT

3.

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamioops, B.C. V2C 2J3 (804) 573-5700 Fax 57

9. Gallium

Digestion

Hot HC104/HN03/HF

10. Germanium

Digestion

Hot HC104/HN03/HF

11. Mercury

Digestion Hot aqua regia Finish Cold vapor generation -A.A.S.

12. Phosphorus

Digestion

Lithium Metaborate Fusion

13. Selenium

Digestion

Hot aqua regia

14. Tellurium

Digestion

Hot aqua regia Potassium Bisulphate Fusion 'Finish

Finish

ICP finish

Hydride generation - A.A.S.

Finish

Hydride generation - A.A.S. Colorimetric or I.C.P.

Finish

Atomic Absorption

Finish

Atomic Absorption

ECO-TECH LABORATORIES LTD.

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamioops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

GEOCHEMICAL LABORATORY METHODS

Multi Element ICP Analyses

Digestion:

1 gram sample is digested with 6 ml dilute aqua regia in a waterbath at 90°C for 90 minutes and diluted to 20 ml. Ч, //

Analysis:

Inductively coupled Plasma.

APPENDIX 4

.

. 1

: . No 18

. بر الله

بیسم : :

.

[

, **---**,

_

STATEMENT OF COSTS

STATEMENT OF COSTS

1. Wages Graeme Evans - Geologist @ \$250/day for 6 days (Sept 7-11 & 14,1997) \$1500.00 Clint Evans - Technician @ \$143/day for 6 days (Sept 7-11 & 14,1997) \$858.00 2. Accom. And Field Suplies \$ 450.00 Lodging Smithers Sept 7,11,14 -2 people @ \$75/ man day \$ 420.00 Field Supplies (Camp gear, food, field equipment) 3. Helicopter Costs Canadian Helicopters 206 Longranger @ \$1168.75/hr (includes. Fuel) September 8 Mob, September 10 Demob for a total of 4.0 hrs \$4675.00 September 14 portion of 206 flight (1.0 hr. @ \$880.00/hr (includes Fuel) \$ 880.00 4. Rock & Soil Analyses 90 soils analyzed for Au geochem & 30 element ICP @ \$15.24/sample \$1371.60 37 rocks analyzed for Au geochem & 30 element ICP @ \$18.26/sample \$ 675.62 Sample Shipment via. Greyhound (Smithers to Kamloops) \$ 124.00 5. Report Writing & Compiling \$1250.00 G. Evans 5 days @ \$250/day S. Archibald -Draftsman 6 days @ \$170/day \$1020.00 \$ 140.00 Materials & Copy Costs

TOTAL COST

\$13364.22

APPENDIX 5

~

. : مربعة

· . ·

[

. .

STATEMENT OF QUALIFICATIONS

....

STATEMENT OF QUALIFICATIONS

- I, Graeme Evans, do certify that:
- 1) I am a geologist and have practiced my profession for the last fifteen years.
- 2) I graduated from the University of British Columbia, Vancouver, British Columbia with a Bachelor of Science degree in Geology (1983).
- 3) I am a member in good standing with the APEGBC as a professional geoscientist.
- 4) I was actively involved and supervised the Jake program and authored the report herein.
- 5) All data contained in this report and conclusions drawn from it are true and accurate to the best of my knowledge.
- 6) I hold no direct or indirect personal interest, in the Jake property which is the subject of this report.

Jamma Com

Graeme Evans Senior Project Geologist March, 1998

JE+25

JE+29

2+3

-1

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

2 - T

*

•

