REPORT

on the

COPPER MOUNTAIN SYNDICATE CMS GROUP Princeton Area Similkameen Mining Division, British Columbia

Latitude 49° 25' N., Longitude 120° 27' W. NTS map sheet 93H/8W

by

James W. McLeod, P.Geo.

on behalf of

Mr. Guy DeLorme

June 22, 1998 Delta, British Columbia OLOGICAL SURVEY BRANCH ASSESSMENT REPORT

REPORT

on the

COPPER MOUNTAIN SYNDICATE CMS GROUP Princeton Area Similkameen Mining Division, British Columbia

Latitude 49° 25' N., Longitude 120° 27' W. NTS map sheet 93H/8W

by

James W. McLeod, P.Geo.

on behalf of

Mr. Guy DeLorme

June 22, 1998 (Revised September 21, 1998) Delta, British Columbia

.

TABLE OF CONTENTS

	<u>PAGE</u>
SUMMARY	3
INTRODUCTION	4
LOCATION AND ACCESS	4
TOPOGRAPHICAL AND PHYSICAL ENVIRONMENT	4
PROPERTY AND OWNERSHIP	5
HISTORY	5
REGIONAL GEOLOGY	6
LOCAL GEOLOGY	8
PRESENT WORK PROGRAM	9
CONCLUSIONS	10
RECOMMENDATIONS	11
COST ESTIMATE	11
STATEMENT OF COSTS	12
CERTIFICATE	13
REFERENCES	14

APPENDICES

APPENDIX I	- DIAMOND DRILL CORE LOGS	15
APPENDIX II	- GEOCHEMICAL ANALYSES AND ASSAYS	16
APPENDIX III	- MAGNETOMETER & VLF-EM DATA	
	- with Interpretation and Evaluation	17

FIGURES

After Page

.

1.	LOCATION MAP	4
2.	CLAIM MAP	5
3.	CLAIM-GRID-DRILL HOLE LOCATION MAP	6
4.	MAGNETOMETER AND VLF-EM MAP	8
5.	GEOLOGICAL CROSS SECTION	9
6.	GEOLOGY MAP	10

SUMMARY

During the summer of 1997 a diamond core drilling program was carried out on the Copper Mountain Syndicate - (CMS) group of claims situated just north of the Town of Princeton, B.C. in the Similkameen Mining Division, British Columbia. The purpose of the program was to drill test a mainly covered area in between two areas of known mineralization (inventories) of 600,000 tons of 0.25% - 0.30% copper on the east (Granby Zone) and 250,000 tons of 0.5% on the west (Regal Zone) all of which lie within the boundaries of the property.

The drilling program was concentrated in a moderately steep to rounded, open grass covered range area which appears to be underlain by a rather strongly altered bedrock. The writer conducted a VLF-EM and a magnetometer survey over the area prior to drilling which indicated an east-west trending underlying structure, bedrock assemblage or alteration zone.

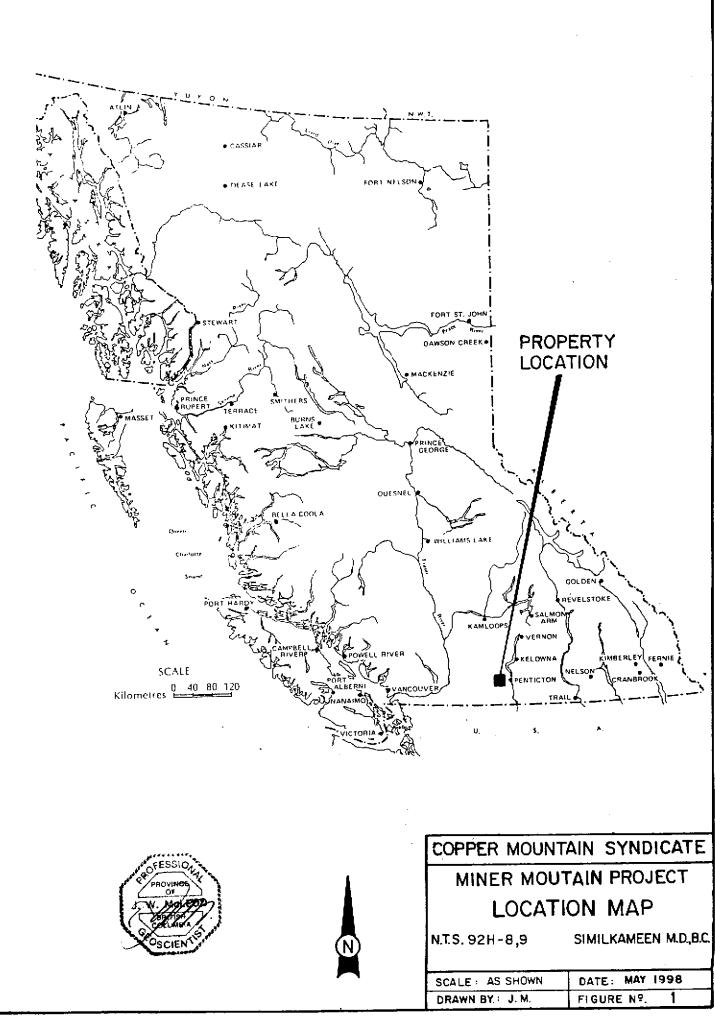
A total of five NQ-wireline diamond drill holes were completed. Four of the holes were in the central area between the Granby zone and the Regal zone and one hole was drilled southeast of the magnetometer grid area (see Figure 2). The four centrally located holes cut sections of Nicola volcanics which reflect varying degrees of alteration and mineralization. Values ranged up to 0.9% copper, 0.05 oz/ton gold and 0.01 oz/t platinum group of which the ratio of platinum : palladium is approximately 1:15. This mineralized section appears to be very similar to some of the ore which was mined from the Ingerbelle deposit of the Princeton Mining Corporation in the Copper Mountain area which occurs 17 km. south-southwest of the property.

INTRODUCTION

The current fieldwork programs were conducted during the period April 24 - June 1, 1997 under the writer's supervision.

The program began by establishing a grid over areas of interest between the eastern, Granby zone and the western, Regal zone (see Figure 3). This zone underwent a VLF-EM and a magnetometer survey, in an area with minimal rock exposure, prior to drill testing.

The current exploration program was conducted at the request of the owner of the mineral claims.


LOCATION AND ACCESS

The general claim area may be located on NTS map sheet, 92H/8W at latitude 49° 25' north and longitude 120° 27' west. The property area is situated north of the Town of Princeton, B.C., on the generally westerly and northerly facing slopes of Miner Mountain (formerly Iron Mountain) and occurs in the Similkameen Mining Division, British Columbia.

Access to the mineral claims is gained by traveling 3 km. north of Princeton on the good all weather Allison Creek road and then to the east for 0.5 km. on the Iron Mountain road.

TOPOGRAPHICAL AND PHYSICAL ENVIRONMENT

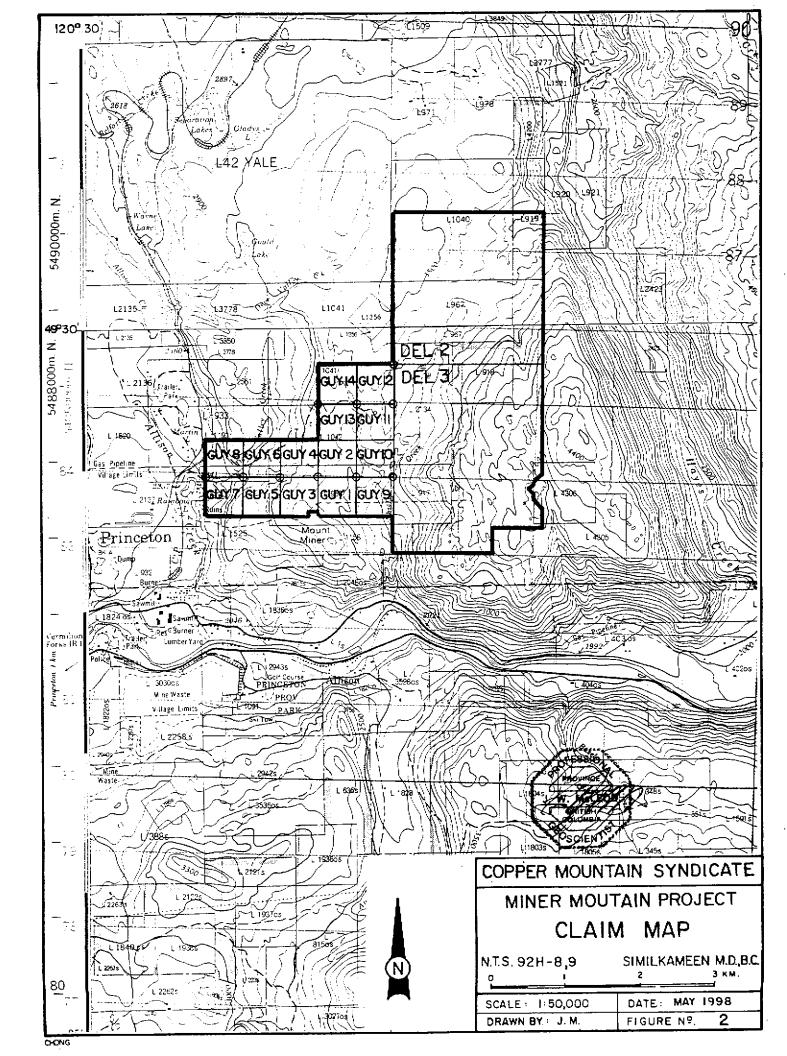
The mineral claims lie within the Dry Interior Belt and more particularly cover low rounded mountainous terrain with patches of conifer covered low plateau or terraced benches. The elevation of the claim areas range from 700 metres (2,300') to 1,310 metres (4,300). The easterly flowing Similkameen River valley is the most dominant feature in the area which forms the southern boundary of the claim area. Glacial and/or fluvial glacial cover appears to be very thin in the

claim area while it has been encountered in much thicker occurrences in some of the adjacent valley bottoms. The tree patches are often composed of Western Yellow pine (Ponderosa), Douglas fir (spruce) and Lodgepole pine. The stream valleys in the area often exhibit a north-south or east-west pattern and probably reflect underlying faults.

The general area experiences approximately 40 cm. of precipitation annually, of which 25-30% may occur as a snow equivalent. The winter weather generally lasts for less than four months, November -February. It is not uncommon for the property area to experience little or no snow and mild conditions throughout some winters.

PROPERTY AND OWNERSHIP

The lode mineral claims comprise one contiguous claim group known as the Copper Mountain Syndicate (CMS) and are listed as follows:


<u>Name</u>	<u>Tenure No.</u>	<u>Units</u>	Anniversary Date
Guy 1-10	345479-88	10	April 24
Guy 11-14	345489-92	4	April 27
Del 2	345477	16	April 30
Del 3	345478	20	April 30
	Total	50 units	

The claim area totals approximately 850 hectares or 2,100 acres.

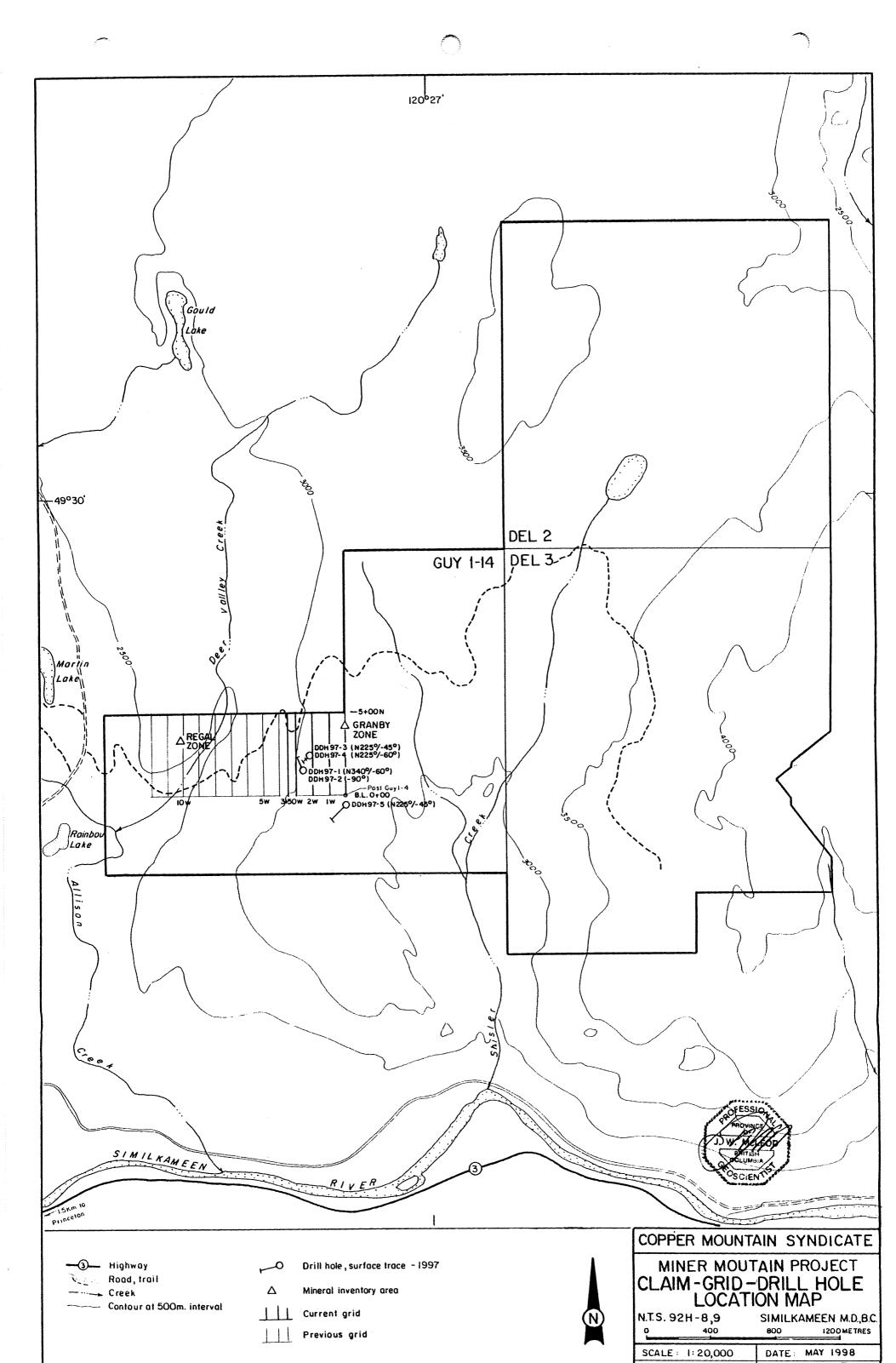
The above listed mineral claims are being held by G. DeLorme of Surrey, B.C. on behalf of Golden Kootenay Resources Inc. and Nustar Resources Inc. of Delta, British Columbia.

HISTORY

The recorded mining history of the general area dates from the 1860's with the discovery of placer gold on the Tulameen and Similkameen rivers. Lode gold was discovered in the Hedley area, 32 km. due east of the property in 1894. By 1904 the Nickel Plate Mine, in the Hedley

Camp was producing for the first of three extended periods, the latest of which ended during the 1990's.

The large porphyry copper (gold and platinum group values) deposits of the Copper Mountain area were first discovered in 1884, but not staked until 1892 and did not actually reach production until 1925 when it was brought on stream by the Granby Consolidated Mining, Smelting and Power Company. The mines here operated between 1925 and 1930 and 1937 and 1957 producing 31.5 million tons of ore grading better than 1% copper. The latest episode of this areas production began in 1972 by the Newmont Mining Corporation on the westside of the Similkameen River at the adjacent Ingerbelle volcanic skarn deposit. Newmont later consolidated the Copper Mountain and Ingerbelle operations which were active under the Princeton Mining Corporation until 1996 as the Similco Operation.


The northern CMS claim area has undergone exploration work intermittently since the 1950's (summaries of these events can be found in previous Assessment Reports).

REGIONAL GEOLOGY

The regional geological setting of the area has been described by many parties since 1910 (see References). A synopsis by the writer is included as follows to outline the underlying setting as a guide to the current exploration program.

The oldest rocks in the general area are the Upper Triassic Nicola Group of volcanic flows and minor sediments. The Nicola Group is characterized by greenish (tight) andesites, coarser grained augite diorite and tuffaceous lavas with isolated occurrences of limestone and minor argillites. The Nicola Group is an elongated belt of eugeosynclinal rocks which occur from near the 49th parallel and trend northward for over 240 kilometres (150 miles). The width of the belt approaches 50 km. in places and is sometimes bound on its' east margin by older Paleozoic (often Permian) rocks and on its' west margin by rocks of the younger Coast Plutonic Complex.

The Nicola Group has been divided into three belts by Preto, 1972 and it is these descriptions and divisions which the writer tried to use when

assessing the Miner Mountain property. A brief synopsis is offered of his Western, Central and Eastern Belts:

a) Western Belt:

Plagioclase andesite to dacite flows, breccia, tuffs, massive to cherty limestone (often fossiliferous), calcareous (volcanic) conglomerate, sandstone and siltstone.

b) Central Belt:

Red-green augite-plagioclase andesite and basalt flows and autobrecciated equivalents, red and/or volcanic breccia and lahars, crystal and lithic tuffs, massive grey, fossiliferous limestone and wellbedded siltstone, sandstone, argillite, gritstone and conglomerate.

c) Eastern Belt:

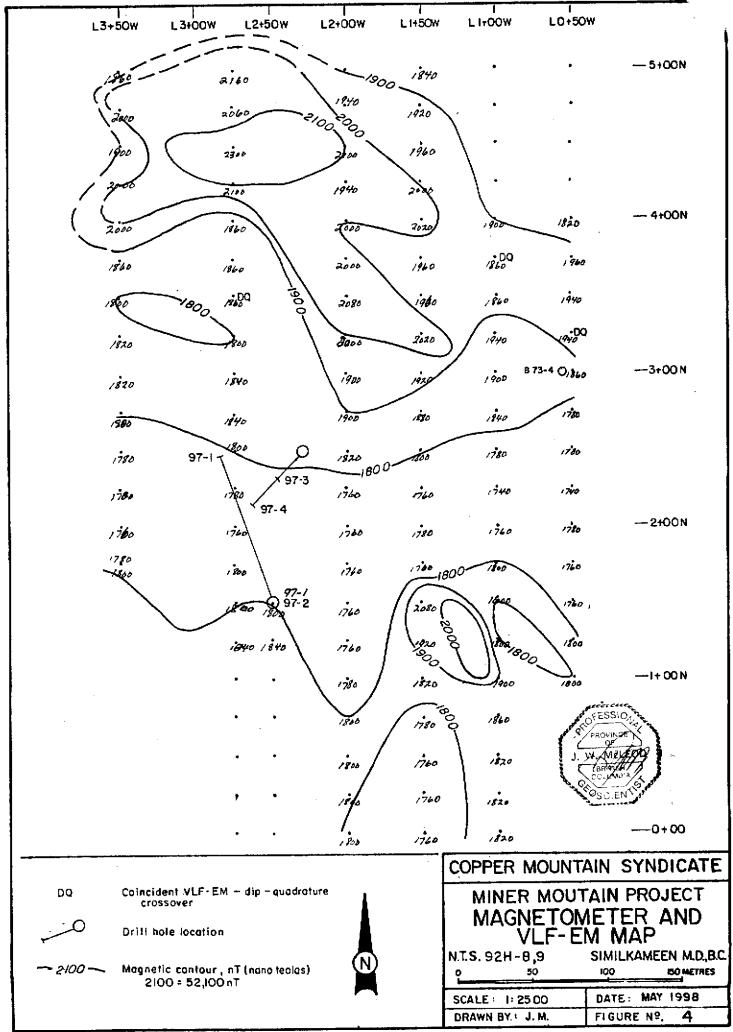
Purple and grey analcite-bearing augite-plagioclase trachyandesite and trachybasalt porphyry flows and breccia, red-green tuffs, lahars and minor conglomerate.

The next oldest rocks in the general area are the Copper Mountain Intrusives which have been assigned a post Upper Triassic age and are characterized by intermediate composition alkaline intrusives which are seen to range in composition from syenite through gabbro and pyroxenite. This differentiated suite is intruded into the older Nicola rocks.

The next oldest rocks observed in the general area are the more acidic calc-alkaline intrusives which are seen to range in composition from granite through quartz diorite, these units have been assigned an Upper Cretaceous or Lower Tertiary age.

The youngest rocks observed in the claim area are those of the Princeton Group, assigned a Tertiary age and comprised of a lower volcanic unit of andesite or basalt and an upper sedimentary unit composed of shale, sandstone, conglomerate which are sometimes seen to contain economic occurrences of coal. The lower Princeton Group volcanics has been observed in places to lie unconformably over portions on the Copper Mountain intrusions.

The Nicola Group is found in places to have been cut by small stocks and dykes of ages varying from late Triassic into the Tertiary.


The general area has also experienced widespread faulting which exhibit an east-west and northwesterly trend which in turn have sometimes been cut by younger northerly trending faults. For example in the Copper Mountain-Ingerbelle Mines the western boundary of the Copper Mountain Stock is truncated by the north trending, west dipping "Boundary Fault". East of the "Boundary Fault" faulting is generally east-west, northwesterly and northeasterly. These faults appear to effect ore control.

Within the major southeastern lobe of the Nicola Group some 39 km. east-southeast of Princeton, B.C. occurs the famous lode gold mines of the Hedley area. These deposits are found to occur within metamorphosed limestone units (skarns) of the Nicola Group near diorite-gabbro intrusive contacts.

LOCAL GEOLOGY

The area being described in this report deals with CMS - Miner (Iron) Mountain area to the east of the northerly trending Allison and Deer Valley creek valleys, just north of the Town of Princeton, B.C., situated on the north and west facing slopes of Miner Mountain. This area is seen to be underlain by Upper Triassic Nicola Group andesites and tuffs which are the oldest rock units observed in the area, as well as what appears to be a younger volcanic unit comprising a hornblende feldspar porphyritic diorite, possibly Cretaceous aged and minor sediments which may be coal bearing (Middle Eocene - Princeton Group).

Mineralization observed are generally copper occurrences as chalcopyrite, malachite, azurite, minor bornite all of which are often accompanied by pyrite and at times by secondary magnetite.

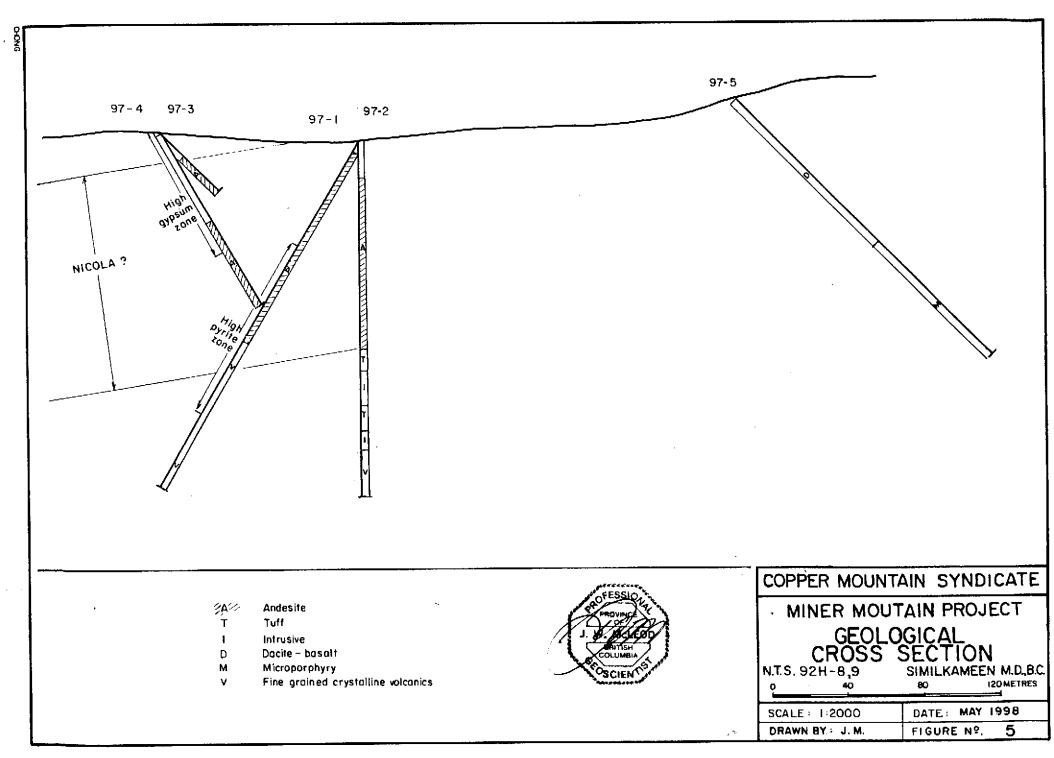
.

∼CN6

The alteration products observed are as gypsum, calcite (dolomite), epidote, quartz, secondary potassium feldspar, and anhydrite? in order of decreasing abundance.

The area exhibits east-west faulting in the rock exposures in the vicinity of DDH 97 1-4. This may also be the strike direction of the underlying rocks in this area.

PRESENT WORK PROGRAM

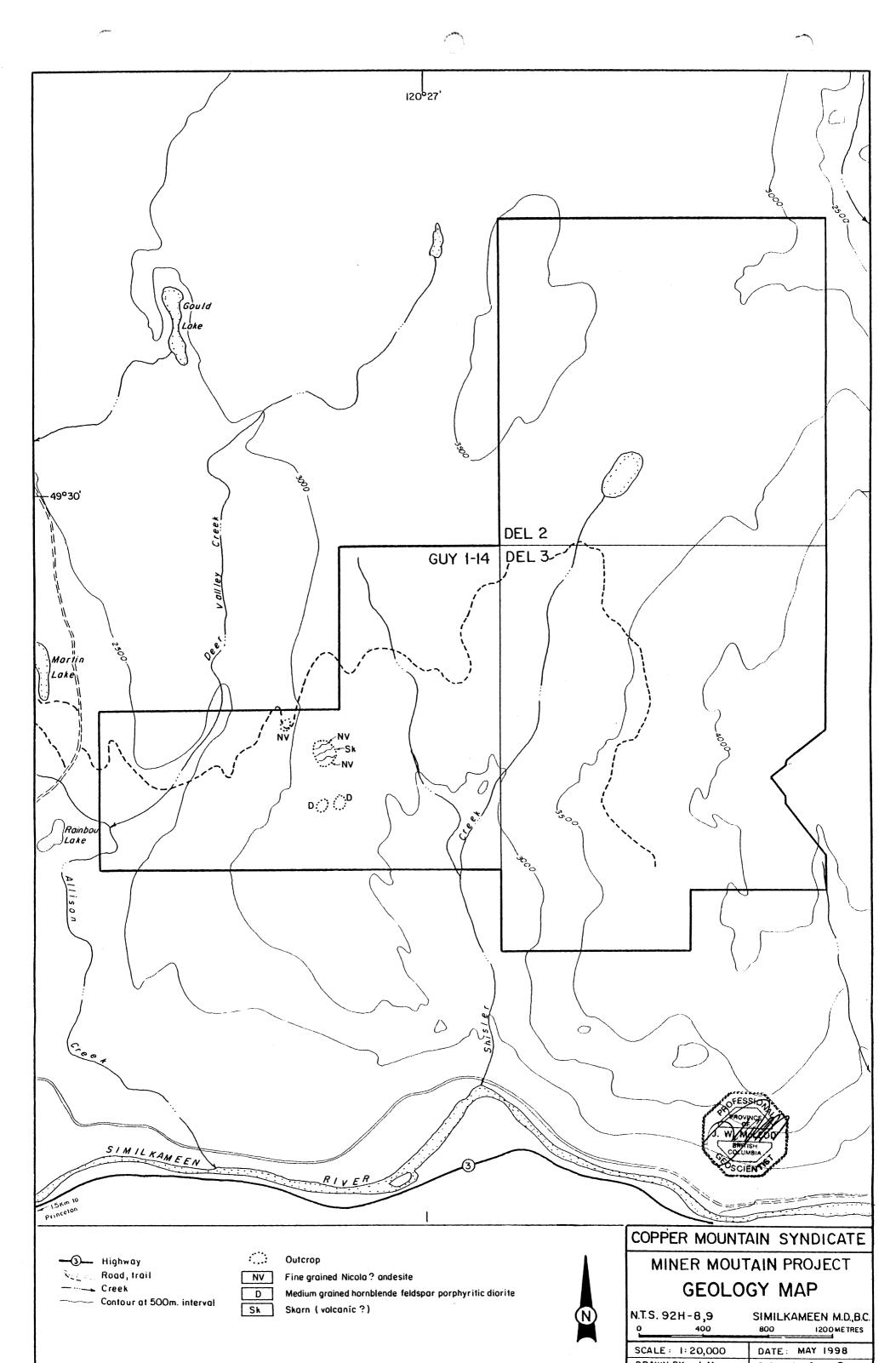

The present fieldwork program was undertaken during April 24-June 1, 1997. The work program consisted of grid installation, where some of the grid was flagged and some was picketed especially in the open range areas where cattle were actively grazing. In the grazing areas the pickets and hip-chain thread was removed at the request of the rancher as some of his cattle had experienced leg cuts from the thread. Rock exposure mapping was carried-out. The gridded area underwent VLF-EM and magnetometer surveys at 50 metre line-spacing and 25 metre station intervals prior to drilling.

A total of 2.7 km. of grid were installed and station intervals were marked at 25 metres.

A total of 2.4 km. of VLF-EM and magnetometer surveying was conducted over the grid.

The instruments used were a Geonics EM-16, model 89 VLF-EM receiver detecting the 17.8 kHz signal from Cutler, Maine and a Scintrex fluxgate magnetometer, model MF-1. The magnetometer readings were diurnally corrected by closing-loops.

A total of five NQ-wireline diamond drill core holes were completed for a total of 718 metres (2,356') (see Appendix I - Drill Core Logs and Figure 5 - Geological Sections). The following is a list of the drill hole parameters:


Ta	ble	1

Hole No.	Grid Location	Azimuth	Dip	Length m. (Ft.)
97-1	2+50W-1+50N	N340°	-60°	205(672)
97-2	2+50W-1+50N	Vertical	-90°	186(612)
97-3	2+30W-2+50N	N225°	-45°	36(118)
97-4	2+30W-2+50N	N225	-60	98(322)
97-5	0+00W-0+50S	N225	-45	192(630)
		TOTAL		718(2,356)

Most drill core sections were sawn with a water-cooled diamond saw and all of the core was logged. Selective sections of drill core were bagged and taken to the Acme Analytical Laboratories Ltd. in Vancouver, B.C. where they underwent analyses for multi-elements by inductive coupled plasma (ICP) and fire assay for gold and several PGE (see Appendix II).

CONCLUSIONS

The current drilling program revealed a number of positive features which add to the overall character of the property and the increasing possibility of encountering economic copper-gold-(platinum group elements - PGE) occurrences on the property. A fairly thick, 110 metres (361') section of Nicola volcanics is indicated from the intercepts in DDH 97 1-4 (see Figure 5). The copper (gold and PGE) values appear concentrated in sections of the Nicola volcanics which have undergone more intense fracturing and alteration to a skarn. A section underlying the Nicola volcanic (skarn) exhibits strong pyritization and an abundance of gypsum, but very low copper and precious metal values. Gypsum is pervasive throughout the DDH 97 1-4 intercepts and is likely a regressive alteration product of anhydrite. Values are found to range up to 0.9% copper; 0.05 oz/t gold and 0.01 oz/t platinum group elements (PGE) of which the ratio of platinum to palladium is 1:15 or in the general range of some of the ore values encountered at the Ingerbelle deposit. Considerable dimensions exist between Regal Zone on the west and the Granby Zone on the east and the currently indicated copper mineralization lying intermediate to these zones. Room is available to host an economically significant ore zone within the indicated parameters.

The writer recommends further drilling to be undertaken in the indicated trend of the Nicola skarn section between the currently drilled area and the western, Regal Zone and the eastern, Granby Zone.

RECOMMENDATIONS

Further drilling is recommended in the area both west and east of the current drilling between the Regal and Granby zones, respectively to allow closure Then step-outs to the north and possibly several check holes to the south could be undertaken. All drilling from this point on should have quality grid control (in three dimensions) to enable detailed calculations to be made from the acquired data.

COST ESTIMATE

Geologist and field supervision for 3 months	\$ 27,000
Grid installation	12,000
Magnetometer and VLF-EM surveys, of entire property	12,000
1,500 metres NQ-wireline core drilling @ \$100/m.	150,000
Camp and board	26,000
Transportation rentals and fuel	9,000
Instrument rentals	2,500
Core handling and sampling	5,000
Analyses and assays	7,000
Permits, fees, filings, insurance, etc.	5,000
Reports and maps	5,000
Contingency	26,500

TOTAL

\$287,000

Respectfully subpris James W. McLeod

STATEMENT OF COSTS

Geology and supervision, J. McLeod, 10 days @ \$300/day	\$ 3,000
Instrument rental and supplies	250
Magnetometer and VLF-EM surveys	500
718 metres of NQ-wireline diamond core drilling at @ \$92/metre, G.D. Drilling, Surrey, B.C.	66,056
Room and board, 25days @ \$80/manday	2,000
Equipment and supplies	200
Transportation, two 4X4, for 26 days @ \$40/dayX2	2,080
Analyses and assays	1,665
Reports and maps	2,100
TOTAL	\$77,851

CERTIFICATE

I, JAMES W. McLEOD, of the Municipality of Delta, Province of British Columbia, hereby certify as follows:

- I am a Consulting Geologist with an office at #203 1318 56th Street, Delta, B.C., V4L 2A4.
- 2) I am a Professional Geoscientist registered in the Province of British Columbia and a Fellow of the Geological Association of Canada.
- 3) I graduated with a degree of Bachelor of Science, Major Geology, from the University of British Columbia in 1969.
- 4) I have practised my profession since 1969.
- 5) I am the President and CEO of both Nustar Resources Inc. (formerly Big I Developments Ltd.) and Golden Kootenay Resources Inc. who are beneficial owners of the Guy 1-14, Del 2 and Del 3 mineral claims.
- 6) The above report is based on personal field experience gained by working on the property at various times during the past 27 years, the latest in 1997.

DATED at Delta, Province of British Columbia this 22nd day of June, 1998.

James W. McLeod, P.Goolenn Consulting Geologist

REFERENCES

British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Reports - 251, 1721, 9634 and 10565.

Camsell, Charles, 1910. Memoir No. 2: Geology, and Ore Deposits of The Hedley Mining District, British Columbia. Geological Survey Branch, Canada. Department of Mines.

McLeod, J.W., P. Geo.(BC) June 1997. Assessment Report #25061, B.C. Department of Energy, Mines and Petroleum Resources.

McMechan, R.D., 1983. Geology of the Princeton Basin, Paper 1983-3. British Columbia Ministry of Energy, Mines and Petroleum Resources.

Montgomery, Joseph Hilton, 1967. Petrology, Structure and Origin of the Copper Mountain Intrusions near Princeton, British Columbia. Ph.D. Thesis, University of British Columbia.

Preto, V.A., 1972. Geology of Copper Mountain. Bulletin 59, British Columbia Department of Mines and Petroleum Resources.

Preto, V.A. Geology of the Nicola Group between Merritt and Princeton. Bulletin 69, British Columbia Ministry of Energy, Mines and Petroleum Resources.

Rice, H.M.A., 1947. Memoir 243: Geology and Mineral Deposits of the Princeton Map Area, British Columbia. Mines and Geological Branch, Canada. Department of Mines and Resources.

Taylor, D.P., 1995. Geological and Geophysical Report. (for BIG I DEVELOPMENTS LTD.)

APPENDIX I

Diamond Drill Core Logs

.

Company:	Copper Mountain Syndicate
	wet of the other

Project: Miner (Iron) Mountain

Location: 2+50W-1+50N

Area: Similkameen Mining Division, British Columbia

Date: May 15, 1998

Hole No.:DDH 97-1Azimuth:N340Dip:-60Total Depth:205 metres (672')Core Size:NQ-wireline

	(%)	
Interval	Recovery	Description
(metres)		
0-5.03	0	Casing.
5.03-5.49	0	Fresh quartz monzonite "boulder" & f.(ine).gr.(ained). Dk(dark).
		Gr'n(green) volc.(anic).
5.49-9.15	0	Broken volc. particles.
9.15-10.98	15	Fresh pebbles.
10.98-12.80	50	Rusty, m.(edium) gr., cryst(alline) intrusive with secondary potassium
		feldspar(K2), ep.(idote), cal.(cite), Hi (high) Mn (manganese) stain, 2mm
		wide strgr. (stringer) of opalline quartz. Abundant strgs of gypsum and ep.
12.80-14.33	45	Gr'n (rusty), f-m gr. (Nicola), blebs of magnetite to 1 cm. Gypsum(4mm)
		veinlets. Sample No. 9351.
14.33-15.85	8	Same matrix, rusty, abund(ant) gypsum crystals and minor calcite.
15.85-17.38	40	Same matrix (Nicola).
17,38-18,90	40	Same matrix (Nicola), gougey.
18.90-20.43	10	Same matrix (Nicola), minor cal., mal(achite), sul(phides.
20.43-22.26	0	Section missing pull casing for new shoe.
22.26-22.86	50	Green X'stal rock, with minor mag', calcite, gypsum, Mn and epidote.
22.86-24.54	63	Nicola volc.s with weak cpy + malach. Sa. 9352
24.54-25.00	50	Rubbly, pebbles to 2 cm. some with CaCO3.
25.00-26.52	40	Less, rusty, grey-green, plus much py. Sample appears to brecciated or
		"crackled".
26.52-28.05	23	Same grey-gr'n r'x.
28,05-29,88	32	Same grey-gr'n r'x, bleached , x'satll'n with py plus abun. Gypsum.
29.88-31.10	90+	Same, but altered with py and clayey (sericite).

31.10-32.62	90 +	Hard (indurated ?) siliceous, chalky white-grey with abund.py, st'r of
		gypsum. Sa. 9353.
32,62-33,84	50	Same greyish r'x.
33.84-35.36	90	Bleached, siliceous similar r'x with py and cpy? Sa. 9354.
35.36-36.58	70	Similar, r'x with some mag'n blebs and 2-4 cm quartz. Sa. 9355
36.58-38.26	90+	Similar, altered greyish, broken and clayey r'x.
38,26-39,33	90	Same, broken, indurated angular, f.gr. greyish r'x with Mag'n, gypsum,
		malach., cpy, silic. Gyp st'r.
39.33-40.24	60	Same 5 cm. malach.at end. Sa. 9356.
40.24-41.16	50	Same r'x, rusty grey rubble. Sa. 9357.
41.16-42.99	90+	Same grey frac., rusty r'x.
42.99-44.36	90+	Silic. Grey breccia with py, sericite, K2
44.36-46.19	80	Grey brec.(cia), rusty block frac.s
46,19-47.26	70	F. gr. dark grey volc. With rustypy sect'ns.
47.26-50.61	90	Same rusty grey py sect'ns.
50.61-52.13	90	Same, but less py.
52.13-52.74	90	Same, but broken rubble.
52.74-54.27	-	Broken unalt. appearance , but much ep., minor calcite, py, cpy & some
		blebs mag'n.
54.27-55.49	75	Same as above (SAA), but not rusty.
55.49-56.25	90+	Broken grey silic. With K2, py, 2- cm q'tz str'g & K2 45 degrees to core axis
1		(c.a.).
56.25-57.47	75	SAA.
57.47-58.54	90+	Same grey X'stal'n "crackled" r'x with rusty py weld. Sa. 9358.
58.54-60.06	30	SAA, some rusty rubble and cal+.
60.06-61.58	80	Changing! Much ep-chl-K2-q'tz str'g- minor bl'k talc? on "slickenside" @
		30 deg(rees) to c.a. Sa. 9359.
61.58-64.63	90	SAA to 65.24. Sa. 9360 and 9361.
64.63-66.16	90	Changing. Grey f-m gr.int. or volc. Alter. With py, v.f.gr. minor cpy. Sa
		9362.
66,16-73,17	95+	SAA with minor cal. Py. Sa 9363.
73.17-93.29	95+	Maybe Nicola skarn, ep-chl-bl'k NOT graph. "slips". Three SK a) cpy-ep-
		chl-K2-gpy. b) hem (1mm) str'g)-ep-chl. c) non-mag. Blk-g'rn. Sa. 9364-68.
93.29-100.30	95	Nicola skarn. Sa.9369.

100.30-106.10	95	Changing! Very f.gr. cream-grey coloured r'x with pythis is the PYRITE- GYPSUM zone! Sa. 9370.
106.10-163.11	90	Same colour to chalky (indurated) white, sometime brec. Some pink anhydrite to 46 cm. @ 140-146 m. Sa. 9371-9380.
163,11-204,88	90	Dark gr'n v.f gr. to aphanitic volc.with calep-chl-gypanhydhempy-cyp. Sa. 9381-88. End-of Hole (EOH).

Company:	Copper Mountain Syndicate	Hole No.:	DDH 97-2
Project:	Miner (Iron) Mountain	Azimuth:	N/A
Location:	2+50W-1+50N	Dip:	-90
Area:	Similkameen Mining Division, British Columbia	Total Depth	: 187 metres (#
Date:	May 15, 1998	Core Size: N	NQ-wireline

Interval (metres)	(%) Recovery	Description
0-18.29	0	Casing.
18.29-109.15	50-90+	Nicola volcanics d'k gr'n f.gr. with some sections more altered than others - alteration as chl-q'tz str'gs to 0.5 cmsome mag'n-cal.(dolo.)-ep-K2- gyp.(anhyd.)-py-cpy. Sa. 107229-242.
109.15-131.55	90	Contact 40 to c.a. Very f. gr. br'n x'stal. Porphyry, alter. (clay) feldspar with cal. on frac's, some fault (mylonite) zones, i.e. some parallel to c.a. with bl'k graph. gouge on frac. Some py i.e. 123.48 m. X'stal Tuff. Sa. 107243-246.
131,55-140,55	90	Contact 45 to c.a. INTRUSIVE with K2-<1% q'tz-py-cpy-plus hematite str'g weld.brec. with chl-cal-2 mm. q'tz "eyes".Sa. 107247-249.
140.55-153.20	95	Tuff with brick-red-green matrix - Hematite-(Mylonite)-TUFF.
153,20-164.33	95+	INTRUSIVE BRECCIA - pink K-sparvery low to nil q'tznon-mag. Sa 107250.
164.33-171.49	95+	Green Mylonitic X'stal (flow) TUFF.
171.49-171.95	95+	FAULT GOUGE).
171.95-182.93	95+	Green-Purple Mylonitic MIX VOLC. Sa. 02547.
182.93-186.58	95+	FAULT GOUGE - Gypsum-rich with py. Sa. 02548. EOH.

metres (612')

Company:	Copper Mountain Syndicate
Project:	Miner (Iron) Mountain
Location:	2+30W-2+50N
Area:	Similkameen Mining Division, British Columbia
Date:	May 15, 1998

Hole No.:DDH 97-3Azimuth:N225Dip:-45Total Depth:36 metres (118')Core Size:NQ-wireline

Interval (metres)	(%) Recovery	Description
0-13.11	0	Casing.
13.11-15.55	45	Nicola volcanics? - f.gr. grey, rusty, some gouge and some malachite stain. Sa. 107224-225. EOH.

DDH 97-4

No.:

Company:	Copper Mountain Syndicate	Hole No.: DDH 97-4
Project:	Miner (Iron) Mountain	Azimuth: N225
Location:	2+30W-2+50N	Dip: -60
Area:	Similkameen Mining Division, British Columbia	Total Depth: 98 metres (322')
Date:	May 15, 1998	Core Size: NQ-wireline

Interval (metres)	(%) Recovery	Description
0-15.85	0	Casing.
15.85-43.29	45	Grey, bleached, clayey rubble.
43.29-47.86	45	Start high gypsum.
47.86-60.67	45	Nicola? - f.gr. gr'n volc. with some magnetite.
60.67-64.63	45	SAA with pink-white, massive, str'gs of alter. material.
64.63-98.17	60	SKARN ZONE, Nicola? - much py and mag. plus minor cpy at 78.35-78.96 and 94.81 EOH.

Company:	Copper Mountain Syndicate	Hole No.:	DDH 97-5
Project:	Miner (Iron) Mountain	Azimuth:	N225
Location:	0+00W-0+50S	Dip:	-45
Area:	Similkameen Mining Division, British Columbia	Total Depth:	192 metres (630')
Date:	May 15, 1998	Core Size: NO	Q-wireline
	·		-

Interval (metres)	(%) Recovery	Description
0-1.52	0	Casing.
1.52-110.00	95	Light gr'n-grey X'stal'n volc. brec. Pink feld. ep- hem anhydrite (pink)-cal str'g-some "in-&-out" in places much brecciation ep-K2-and replac. Feld.'s ep hem.(often Hardness>5.5, may be jasper)-generally gr'n-red volc. breccia. Writer originally called this a dacite-basalt, but the overall <10% quartz, abundance of K-spar, hornblende revises the type to a fine grained syenitic r'x, possibly Preto's trachyandesite he noted to the north of the Miner M'tn property on Summers creek.
110.00-192.00	95	F. gr. brownish-red microporphyry (2 mm.). K-spar>2/3 total feld., <10% quartz, Colour Index (CI) =15-20, mafic - biotite, pyroxene and hornblende, slightly magnetic. Alteration wk-mod. chl, hematite plus calcite welded fractures. Brecciation observed may be in part very angular lithic particles. This rock unit is termed a crystal-lithic TUFF partly because of it's position in regard to the above lying trachyandesite unit . EOH. NOTE: both of these rock units may be included in the Nicola - Eastern Belt of (Preto).

APPENDIX II

Geochemical Analyses and Assays

GEOCHEMICAL ANA_/SIS CERTIFICATE

Omega Services Inc. PROJECT CMS(N) File # 97-2460 Page 1 203 - 1318 - 56th St., Delts BC V4L 2A4

										203 -	131	8 - 5	óth	St.,	Del	ta Bi	Ç V4	L ZA	4														
SAMPLE#	Mo ppm				Ag ppm								Th xpor p		Çq bbu b		₿i ppon p		Ca %		La ppni			Ba ppm	Ti %	B ppm		Na %		W ppm		DOH INITER	AL
G 9351 G 9352 G 9353 G 9354 G 9355	2 2 1	1288 1222 917 766 795	<3	87 41 48	<.3	11 6 13	23 33 23	1698 744 761	8.41 4.77	2 4 4	<5 <5 <5	<2 <2 <2	41 2	14 55 98	1.6 1.1 1.2	<2 2 4 2 2 4 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	317 151 203	6.05 3.55 5.27	.347 .379 .209 .376 .231	17 28 27	17 3 : 9	1.98 2.08 1.62	118 40 51	.02 .01 .02	4 5 3	1.70 2.18 1.57 1.64 1.53	.02 .03 .03	.05 .03 .07 .08 .03	<2	28 97	97-1 14 50-7 27 26 - 2 31, 10 - 3 33, 10 - 3 33, 36 - 3 35 36 - 3	13 757 2.4 5.3
G 9356 G 9357 G 9358 G 9359 G 9360	1 2 2	1325 2683 708 2260 805	-⊲ -⊲ -⊲	72 32 35	<.3 .6 <.3 <.3 <.3	11 4 9	24 24 19	1488 443 492	3.55 7.53 4.48 4.69 3.86	<2	<5 <5 <5	<2 <2 <2	2 <2 <2 3 2 <2 5	69 91 287		<2 <2 <2	3 / 3 / <2 /	235 172 166	3.10 3.62 4.61	.233 .244 .191 .360 .356	28 9 11	9 3 21	2.38	48 57 46	.01 .02 .06	6 ≺3 ≺3	2.17	.03 .03 .01	.09 .02 <.01	<2 <2 <2	388 23 369	38.11-3 40.24-4 57.32-2 60.04- 61.58-	41.71 58.8 61.5
G 9361 G 9362 RE G 9362 RRE G 9362 G 9363	1 1 2	511 451 454 494 1096	उ उ उ	28 27 29	<.3 <.3 <.3 <.3 <.3	17 18	27 27 29	528 500 5 33	4.03 4.98 5.03 5.19 3.61	12 10 12	<5 7 <5	<2 <2 <2	32 112 102 102 <22	267 262 262	1.0 .9 .9	<2 <2 <2	<2 <2 <2	201 200 205	6.09 5.98	.893	28 28 28	36 36 39	2.01 2.16 2.16 2.28 2.32	46 45 44	.15 .13 .13	4 <3 3	2.00 2.01 2.06	.03 .03 .03	.02 .02 <.01	<2 <2 2	16 14 14		65. Ž
G 9364 G 9365 G 9366 G 9367 G 9368	2 3 5	743 624 944 719 601	ন্ট ব্য ব্য	38 25 17	<.3 <.3 <.3 <.3 <.3	12 9	39 33 13	638 552 367	9.27 9.38 5.33 5.16 6.03	9 <2 <2	8 <5 <5 <5			567 276 521	.9 .6	<2 <2 <2	<2 <2 2	367 239 185	11.48 7.38	.701 .204	81 16 6	16 15 13	2.09 2.77 2.08	87 64 69	.03 .16 .26	3 <3 <3	1.76 2.27 2.00	.03 .03 .03	.33 .48	<2 <2 <2	26 10 32	76.980 80.94-1 82.930 91.31 2.07-	91.0 mai
G 9369 G 9370 G 9371 G 9372 G 9373	_	1281 617 329 137 27	3 3 5 5	8 15 8	<.3 <.3 <.3 <.3 <.3	10 10 7 6 7	22 25	143 139 143	5.17 2.77 3.19 3.17 3.82	<2 <2 <2	<5 <5 <5	<2 <2 <2	10 9 <2 2 <2 3 <2 3 <2	535 266 581	.3 .4 .4	2	<2 <2 <2	179 143 156	5.88 6.35 6.24		5 6 1	12 6 3	2.25 1.54 1.84 2.03 1.20	55 28 38	.19 .18 .01	<3 <3 <3	1.21 1.46 1.53	.02 .03 .02	.18 .05 .05	<2 <2 <2	15 8 4	95-12-, 10396-, 109-60-, 15-45- 17-68-	104. 109: 115:
G 9374 RE G 9374 RRE G 9374 G 9375 G 9376	2 2 2 5 2		<3 <3 <3	<1 <1 11	<.3 <.3 <.3 <.3 <.3	5 4 5 5 4	13 18	86 81 109	4.46 4.01 3.88 2.36 3.23	<2 <2 <2	<5 <5	<2 <2 <2		74 78 64	.4 .5	<2 <2 <2 <2 <2 <2 <2	<2 <2	13 15 26	6.02		2 1 1	3	.31	31 42 33	<.01 <.01 <.01 <.01 <.01 <.01	<3 <3 <3	.34 .43 .30	.01 .01 .01 .01 .04 .06	. 17 . 23 . 11	2 2 <2	3	32.92	
5 9377 6 9378 6 9379 6 9380 6 9381	1 1 3 <1 <1	24 <1 21	<3	5 <1 <1	<.3 <.3 <.3 <.3 <.3	10 <1 6	14 <1 17	26 <2 4	3.75 4.39 .02 2.65 5.53	<2 <2 3	<5 16 <5	<2 <2 <2	<2	399 745 132	<.2	<2 <2 2	<2 <2	68 <1 7	3.71 9 .6 2	.081	2 <1 1	7 <1 Z	1.46	17 2 16	<.01 <.01 <.01	ব্য ব্য ব্য	1.12	2 .03 <.01) .01	.13 .07 <.01 .09 <.01	2 <2 <2	< <	150.00	61
G 9382 Standard C3/AU-R	<1 25	244 66	< 3 30	15 151	5 <.3 5.1	8 35	20 11	325 724	6.31 3.29	<2 49	<5 15	<2 <2	<2 19	276 29	.4 19.4	<2 14	<2 20	186 83	2.84	.188 .090	6 17	7 165	3.30 .61	37 150	.01 .10	<3 20	2.90 1.92	5 .04 2 .04	.05			172.54	Gae
THIS ASSAY	LEAC (REC HPLE Les b	CH IS COMME TYPE Degin	PAR NDED : P1 ning	FIAL FOR TO YRE	FOR ROCI P2 CO 2 arg	MN I C ANI Dre F <u>e Rei</u>	FE SI COP P3 R(runs	R CA RE SA DCK and	P LA MPLES AU <u>'RRE'</u>	CR MG IF G J= - are	G BA CU Pi Igni:	TI E B ZN TED, ect F	AS > AQUA AQUA	ND L 1%, -Reg	IMITE AG P IA/MI	ED FC 30 IBK E	DR N≉ PPM	А К А 8 AL Аст,	ND AL J > 10	00 PPB	HED.	(10)	GM)						FIED	Ð.C.	ASS	SAYERS	
All results are consider											Act	ne as	sume	s th	e lia	bili	ities	s for	` actu	al cos	t /of	the	anal	ysis	onl	у.				Dat	a	FA	

Omega Services Inc. PROJECT _MS(N) FILE # 97-2460

SAMPLE#	Mo ppm	Cu ppn	Pb ppm	Zn ppm	Ag	Ni ppm	Co ppm	Mn ppm	Fe %	As	U ppm	Au ppm	Th ppm	Sr ppn	Cd ppm	SP Polut	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti 74	8 ppm	AL %	Na %	к %	Ppm		97
				FF		PT		<u> </u>						. 70	-				/ <u></u> /	171	0	< 7	. 10	18	_01	<3 2	79	.04	.06	<2	512	2.81
9383	<1	464	<3	18	.6	9	16	419	5.29	<2	5	<2	4	178	.2	<2		140 4			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				.01	<3 2			.03	<2		
9384	<1	823	<3	42	-7	8	18	406	6.25	<2	<5	<2	4	83	.3	<2		216 1			14		.64	44						<2	8/7 1/8	5-3 5-7
9385		447	<3	73	.5	9	22	596	4.30	<2	<\$	<2	3	510	.4	3	<2	268 7	7.34	. 145	17	12 3		52	.04	<32		.02 <		_		
5 9386	<1		×۲	85	<.3	8	15	638	4 42	<2	<5	<2	3	608	.4	2	<2	302 5	5.52	. 164	13	73	.52	72	.20	<32		.04	.03	<2	~` }%	76
G 9387	<1	91	<3	58	.4	9	16		6.30	ž	12	<2	4	335	.5	<2		301 9			13	73	.22	64	. 15	<3 Z	.41	.02	.03	<2	<1 20	18 ,
G 938 8	<1	361	3	27	4	16	28	415	9.97	\$ 2	7	<2	3	476	.8	<2	2	372 5	5.02	. 155	7	64	.06	95	.13	<32			.09	<2	<1,20	4
RE G 9388	<1	384	<3	29	.0	16	30		10.60	<2	12	<2	3	513	1.0	<2	<2	397 5	5.32	. 163	7	74	.27	110	. 14	<32	.99	.04	.10	<2	<1.22	37

Sample type: CORE. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data / FA

ACME ALYTICAL LABORATORIES LTD.

852 E. HASTINGS S. VANCOUVER BC V6A 1R6 PHONE (604) 253-3158 FAA (4) 253-1716

GEOCHEM PRECIOUS METALS ANALYSIS

Omega Services Inc. PROJECT CMS(N) File # 97-2460R 203 - 1318 - 56th St., Delta BC V4L 2A4

SAMPLE#	Au** ppb	Pt** ppb	Pd** ppb	97-1		
G 9357 G 9364	443 34	5 1	94 8	40.24 - 41.16 76.98 Grab	· · · · · · · · · · · · · · · · · · ·	

30 GRAM SAMPLE FIRE ASSAY AND ANALYSIS BY ULTRA/ICP.

SIGNED BY.

Ang 11/97

DATE RECEIVED: AUG 1 1997 DATE REPORT MAILED:

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data

ACME ANALYTICAL LABORATORIES LTD.

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Omega Services Inc. File # 97-4178 203 - 1318 - 56th St., Delta BC V4L 2A4 Submitted by: Jim McLeod

																			بستنبس	<u>and in mark</u>						mine					
SAMPLE#	HOLE	Mo ppm	Ću ppm	Pb	Zn	Ag	Ni	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	ĩh ppm	Sr ppm	Cd ppm	Sb ppm	Bi	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba	TÎ X	8 mqq	AL X	Na %	K %	₩ Au** ppm oz/t
	ZNI.(a)	РРи	- Phone	ppm	ppm	ppm	ppm	p.p.m	P.P.		P Paul	Press.	(Alberto	Print and					FF												
	97-2 151-71					-			40//	- <i>.</i> -		- 0	-7	-7	177	7	-7	.7	467	9.65	144	10	162	2 01	673	.01	3 3	2.66	.04	. 17	<2<.001
02547	81.7/	1	233	- 14	89	<u>.</u>	60		1844 !		<2	<8	<2	<2	437	.3	<3	<3	154			12	102			< 01	, , ,		.02	14	2<.001
02548	126.58	- 3	20	4	8	<.3	1	18		1.61	<u> </u>	<8	<2	2	663	<.2	<3	<3		13.49		4		.35				.46		-	
1072 37	98.43	1	1296	14	73	.7	10	- 21	1083		<2	<8	<2	<2	226	<.2	<3	<3				2		1.92	50	.21	<3 1	-	.03	.08	<2 .003
107238	99.54	3	987	11	67	.3	15	44	990	7.02	3	<8	<2	<2	425	<.2	<3	<3	286			5		3.95	40	.29	<33		.03	. 18	<2 .002
1072 39	101.47	2	2540	13	59	.8	17	40	1037	5.80	3	<8	<2	2	499	.5	<3	<3	186	6.79	. 174	11	17	3.70	70	.05	53	5,30	.03	.09	<2.003
107240	103.05	2	594	14	78	.4	10	30	1489	6.57	2	<8	<2	<2	288	<.2	<3	<3	291	7,44	.129	5	8	4.11	66	. 15	4 3	5.34	.03	. 05	2<.001
107241	104 4Z	2	408	7	82	िरं	8		1115		2	<8	<2	2	356	<.2	<3	<3	285	8.43		15	5	2.91	64	.06	<3 2	2.71	.03	.07	<2.001
107242	106.10	_	2090	13	121		10	43	996			<8	<2	2	418	2	<3	<3	303			10		2.85	31	.01	<3 2	2.39	.03	.03	<2.012
107242	114.02	5	135	13	94	7	18		1571		31	<8	<2	~2	502	5	<3	<3	81	9.44		8		2.72		<.01		1.94	.03	.38	<2<,001
	F	2	155	18	111	.5	12			5.51	25	<8		-7	1330	5	3	<3	82			7		2.59		< 01		2.13	.02	.30	<2<.001
107244	16.46	<1	123	1Q	111	.3	14	26	1407	1.21	23	10	72	-2	1350		.,	.,	96	9174	• 1.27	•		2.27							
107245	122.48	10	123	12	91	.5	19	31	1822	5.29	14	<8	<2	<2	800	.9	<3	<3	77	10.54	.130	8	20	3.09	39	<.01	9	1.66	.03	.32	<2<.001
107246	130 64	<1	32	12	84	<.3	17		1082		3	<8	<2	<2	400	.2	<3	<3	173	6.53	.181	10	29	2.18	290	.02	6 '	1.93	.06	. 15	<2<.001
107247	131.65	4	164	20	59	.7	38		1213		29	<8	<2	2	971	.3	<3	<3	59	8.67	.154	8	54	.97	44	<.01	14	1.77	.03	.53	<2<.001
RE 107247	1	2	158	18	56	.6	37		1173		29	<8	<2	2	957	.5	<3	<3	56			В	52	.94	44	<.01	15	1.71	.03	.52	<2<.001
RRE 107247		7	163	19	57	.6	37			3.07	29	<8	~2	<2	968	.5	<3	<3	59			8	50	.96	54	< 01	13 1	1.75	.03	.53	<2<.001
KKE IVIZHI	"	-	100	.,					1121		- /		-			•••				••••		_									
107248	133.84	60	1751	13	63	1.0	5	20	1214	4.31	7	<8	<2	<2	553	.5	<3	<3	117	7.85	.145	11	9			<.01		2.12	.04	.21	2<.001
107249	140-24	<1	118	13	77	<.3	22	32	1313	6.28	<2	<8	<2	2	423	.2	<3	<3	240	7.33	.131	5	60	4.03	814	.01		3.59	.03	. 06	<2<.001
107250	153.90	<1	97	63	133	.6	6		1307		65	<8	<2	2	888	1.8	<3	-3	136	5.64	. 163	11	7	2.11	92	.01	9 1	2.39	.04	.24	<2<.001
	3/AU-1	24	61	41	169	5.6	37	13	743		56	24	3	18	31	24.3	17	20	79	.62	.092	18	158	.69	138	.09	22	2.01	.04	. 16	17 .097
																								· · ·							

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: CORE AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: AUG 8 1997 DATE REPORT MAILED: Hwy 18 97

Data

ACME A ALYTICAL LABORATORIES LTD.

852 E. HASTINGS ST. 'ANCOUVER BC V6A 1R6

GEOCHEM PRECIOUS METALS ANALYSIS

Omega Services Inc. PROJECT CMS File # 97-3667R

Ber Ber setting international statements and the setting of the se	203 - 1318 - 56	th St., Delt	a BC V4	4L ZA4			
		Au** P ppb	t** ppb/	Pd** ppb	97-2		
	107232	1611	22	274	69.21	 	

30 GRAM SAMPLE FIRE ASSAY AND ANALYSIS BY ULTRA/ICP. - SAMPLE TYPE: CORE PULP

DATE RECEIVED:

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data

ACME ... ALYTICAL LABORATORIES LTD.

852 E. HASTINGS S'1 VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAL (004) 253-1716

GEOCHEMICAL AN....YSIS CERTIFICATE

Omega Services Inc. PROJECT CMS File # 97-3667

203 - 1318 - 56th St., Delts BC V4L 2A4 Submitted by: Jim McLeod

		<u>anne ann</u>			*****				<u> </u>																						
SAMPLE#	HOLE	Мо	Cu	Pb	Zn	Ag	Ni	Ĉo	Mn	Fe	As	U	Au	Th	\$r	Cd	Sb	Bi	V morogo	Ca %	P Y	ia p p m	Cr M ppm	д В. Хрр		B ppm	Al 12	Na %	К %	W mqq	
	INT (m)	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		ppm	ppm	ppm	ppm	ppm	ppm	bbu	ppm	Phu	70		P.P.	PP**	<u> </u>		PP		10		244	PP
107226	97-5	1	110	5	117	<.3	10	27	1383	6.23	12	<8	<2	<2	396	.8	<3	<3	180	5.73	.116	7	13 2.2	9 26	.02	<3 2	2.38	.05	.13	<2	2
07227	147.30	<1	68	<3	143	<.3	28	29	1982	5.21	2	<8	<2	<2	447	.5	<3	<3	146	5.05	.079	4	76 3.9	1 :	5.12	4 3	5.07	.05	.01	<2	1
107228	11.7.91	<1	52	<3	90	<.3	19		1614	6.86	6	<8	<2	<2	88	.2	<3	<3	234	4.63	.123	6	42 3.5	32	.22	<3 2	2.41	.05	.07	<2	1
	25-37	a 2	746	<3	79	.3	10	39	1175	6.18	5	<8	<2	3	164	.3	<3	<3	190	4.40	.280	14	8 3.2	65	02. 02	6	1.76	.07	.05	<2	51
	8.20-54	-	822	3	66	.3	6	32	1072	7.19	<2	<8	<2	4	431	.7	<3	9	223	6.56	.428	16	14 2.7	9 4	.04	<3 2	2.24	.04	.07	<2	98
E 107230		1	815	<3	64	.3	12	31	1062	7.09	<2	<8	<2	4	458	.6	<3	<3	223	6.94	.431	17	14 2.7	74	4 .04	ব্য :	2.27	.04	.07	<2	97
RE 107230		1	794	<3	66	.3	9	31	1051	6.99	<2	<8	<2	3	405	7	<3	<3	216	6.65	.390	16	13 2.7	0 3	3.04	<3 .	2.21	.04	.07	2	100
	7-19-67	4	1488	<3	55	<.3	8	24	791	3.60	<2	<8	<2	2	280	<.2	<3	<3	172	5.29	.274	9	8 2.8	Z 6	5 .16	<3	1.92	.03	.06	<2	133
072 32	67.21	-	8898	<3	45	1.7	33	52	758	27.22	<2	<8	<2	2	359	<.2	<3	<3	1099	3.38	.124	5	4 2.0	54	4.28	<3	1.70	.02	.02	2	1640
07233	79.27	2	3096	<3	65	.5	9	19	784	5.25	<2	<8	<2	Ż	554	6.	<3	<3	213	3.66	. 158	7	5 3.3	94	2 .10	<3	2.58	.05	.44	<2	273
07234	80.79	<1	364	5	56	<.3	19	22	702	11.04	<2	<8	<2	3	409	.6	<3	4	565	8.79	.606	10	6 2.2	94	3.12	<3	1,77	.03	.03	<2	-65
	89.63	3	596	<3	36	.3	8	22	704	4.54	5	<8	<2	5	351	.8	<3	<3	217	8.34	.649	22	9 2.7	85	5.05	<3	2.09	.03	.09	<2	- 33
	94.8Z	3	2127	4	71	.6	7	20	780	5.24	3	<8	<2	3	570	.4	<3	<3	232	5.38	. 384	15	12 3.0	1 5	6.04	5	2.28	.04	.06	<2	214
	3/AU-R	26	67	35	169	5.7	34	11	753	3.60	53	21	<2	19	31	22.5	17	22	83	.61	.088	19	172 .6	5 13	8.10	23	2.04	.04	.17	18	536

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: CORE AU* - IGNITED, AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED.(10 GM) Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED:

		YTIC	AL I	(ABO)	RATO	RIES	5 LT	D.			E. H Roci									A IRE		PH	ONE (604) 253	-315	58 F.	AX (· 4)	1253	-17 <u>1</u>	.6
A								<u>01</u>	<u>neg</u> 203	a S	<u>erv:</u> 8 - 5	ices	3 I)	nc.	F.	ile	# <u></u>	9.7 - 1	3051		Pag	je 1 xi									24	
SAMPLE#	HOLE) ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	i N meter	Co ppm	Мл ррп	Fe %	As ppm	U popon	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V Mqq	Ca %	P %	la ppm	Cr ppm	Mg %	Ba ppm	⊺i %	B ppm	Ał %	Na %	к %		Au** ppb
G 9389 G 9390 G 9391 G 9392 G 9393	07-5 182-6-7 12-20-7 10-7 10-7	20 1 -96<1 78 <1	15 443 26 113 61	3 3 3 3 3	100 134 110 79 82	<.3 <.3 <.3 <.3 <.3	4 2 3 3	15 16 16	865 1165 1030 931 1059	3.61 3.58	<2 <2 <2 <2 <2 <2	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	211 160 174 225 417	<.2 .3 <.2 <.2 .4	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<2 <2 <2 <2 <2 <2	80 80	2.78 3.31 2.84 2.57 4.08	.149 .162 .138	8 8 7 6 6	6 5 5	1.38 1.59 1.76 1.77 1.89	45 72 55 95 54	.03 .01 .03 .02 .03	6 1. 7 2. 8 2. 12 2. 8 2.	.14 .06 .18	.04 .04 .04 .04 .04	.14 .07 .11 .06 .03	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	10 3 5 3 19
G 9394 G 9395 G 9396 G 9397 G 9398	RR2L-34 34-60-32 38-94-46 45-12-50 50-80-55	94 <1 12 <1 3 ≤1	343 394 34 19 412	6 <3 5 3 <3	83 88 75 76 92	<.3 <.3 <.3 <.3 <.3	3 <1 <1 4 4	16 15 15	1135 1172 1126 847 971	3.78 3.85 3.32	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<5 <5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2	414 427 240 273 263	1.1 .7 .4 .3 <.2	< < < < < < < < < < < < < < < < < <> <>	<2 <2 <2 <2 <2 <2 <2	105 96	3.88 3.40 3.95 2.15 2.11	.131 .138 .131	6 8 9 6 6	4 5 6	2.15 2.05 1.74 1.73 2.00	66 31 42 30 24	.07 .02 .02 .02 .02	5 1. 4 2 12 1 10 2 9 2	.32 .92 .07	.03 .04 .04 .04 .04	.05 .04 .12 .05 .03	< < < < < < < < < < < < < < < < < < < <	3 3 2 2 2 2 2
RE G 939 RRE G 93 G 9399 G 9400 B 107214	98 // 55/19-60 64-46-66	66 <1	417 459 178 132 1356	3 3 4 3 7	95 96 105 94 71	<.3 <.3 <.3 <.3 2.3	6 8 3 6 99	19 21 20	1012 1172	3.91 4.38	<2 <2 <2 2 10	১ ১ ১ ১ ১ ১ ১ ৩	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	267 276 341 427 197	<.2 <.2 .5 .3 1.0	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 <2 4 <2 <2 <2	79 83 91 120 185	2.14 2.20 3.16 3.55 6.35	.141 .156 .162	6 7 7 7 14	6 5	2.04 2.06 2.30 2.43 4.01	24 27 44	.02 .02 .02 .04 .12	62 112 92 102 42	.27 .11 .03	.04 .06 .04 .06 .04	.04 .04 .04 .04 .03	<2 <2 <2 <2 <2 <2	<2 <2 6 3 19
B 107215 B 107216 B 107217 B 107218 B 107219	119.51 132-93 146-54-15	<1 <1 •1	265 60 5 312 57	<3 4 <3 6 5	77 85 96 94 126	.4 <.3 <.3 <.3 <.3	22 25 11 5 14	29 24 15	1338 958 1247	5.02 6.65 4.76 3.79 4.59	7 4 3 <2 13	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2	133 136 399 399 150	.6 1.0 .3 .3	<2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	219 99 78	5.24 3.72 2.12 5.64 5.59	.119 .128 .125	9 5 4 9 6	79 18	2.60 3.11 2.90 1.55 .89	44 20 14 272 54	.13 .22 .22 .02	4 1 8 2 11 2 6 1 3 1	.17 .18 .98	.06 .05 .06 .04 .07	.07 .06 .03 .15 .21	<2 <2 <2 <2 <2 <2 <2 <2 <2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	166.11		1068 1067	5 9 6 7 5	94 64 63 61 79	<.3 1.1 1.0 .9 <.3	12 9 8 5	9 9 9	1486 1476 1435	5.99 3.48 3.46 3.27 3.76	4 3 2 2 24	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	226 351 349 331 360	1.0 .8 .6 .7 <.2	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	133 132 126	6.20 10.14 10.06 10.02 5.97	.189 .183 .187	7 11 12 11 5	17 18 17	2.31 .81 .80 .79 1.28	76 171 160 150 112	<.01 <.01 <.01	32 31 31 51 41	.30 .30 .20	.04 .05 .05 .05 .05	. 15 .35 .34 .31 .26	<> <> <> <> <> <> <> <> <> <> <> <> <> <	<2 <2 <2 <2 11
B 107223 B 107224 B 107225 STANDARD	<u> 외 36.1</u> 35.1	2 2		3 3 5 33	107 51 16 165	<.3 <.3 <.3 5.5	18 11 3 31	30 7	651 104	4.67 4.73 2.15 3.55	<2 <2 <2 55	<5 6 <5 27	<2 <2 <2 <2 2		195 58 50 32	.5 .3 <.2 23.2	<2 <2 <2 15	<2 <2 <2 25	119 65	5.79 2.55 1.24 .60	.171	13 9 20 18	2	.60	34 117 251 152	<.01	42 51 <3 221	.2 5 ,74	.07 .07 .04 .04	.08 .19 .21 .16	<2 <2 <2 16	2 30 8 481

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES (F CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: P1 CORE P2 ROCK AU** ANALYSIS BY FA/ICP FROM 30 GM SAMPLE. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE REPORT MAILED: UM 30/9 DATE RECEIVED: JUN 23 1997

Data 🕺 FA

22	GEOCHEM PRECI Omega Services I 203 - 1318 - 56		# 97-305		£ /
	 SAMPLE#	Au** Pt** ppb ppb	Pd** dqq	<u>97-5</u>	
	 B 107214	19 5		84.28	
DATE RECEIVED: AU	 ORT MAILED: Ang 5/9	1			.WANG; CERTIFIED B.C. ASSAYERS
	U)			.	
	U)			.	

Data TA YAL

APPENDIX III

Magnetometer and VLF-EM Data with Interpretation and Evaluation

MAGNETOMETER AND VLF-EM DATA

(Line)			
Station	<u>Mag.</u>	<u>C-Dip</u>	<u>C-Quad.</u>
<u>L0+50W</u>			
1+00N	51800	-15	-22
1+25N	51800	-25	+15
1+50N	51760	-10	-13
1+75N	51760	-10	-13
2+00N	51780	-20	+08
2+25N	51740	-15	+16
2+50N	51780	-30	0
2+75N	51780	0	-5
3+00N	51860	-15	+2
3+25N	51940	+15	+3
3+50N	51940	+10	-22
3+75N	51960	+15	-18
4+00N	51820	+10	-6
<u>L1+00W</u>			
0+00N	51820	-5	-13
0+25N	51820	+10	-10
0+50N	51820	+25	-21
0+75N	51860	-5	-29
1+00N	51900	0	-10
1+25N	518 00	+20	-20
1+50N	51800	-10	-11
1+75N	51800	-5	-17
2+00N	51760	-25	+4
2+25N	51740	-20	-22
2+50N	51780	-40	-12
2+75N	51840	-35	-14
3+00N	51900	0	-10
3+25N	51940	-5	0
3+50N	51860	0	+12
3+75N	51860	0	-26
4+00N	51900	+5	-20

L1+50W			
0+00N	51760	+2	-17
0+25N	51760	-24	-28
0+50N	51760	0	-7
0+75N	51780	-10	-38
1+00N	51820	+45	-27
1+25N	51920	0	-12
1+50N	52080	+15	-11
1+75N	51760	-50	-22
2+00N	51780	-70	-18
2+25N	51760	-60	-12
2+50N	51800	-60	-10
2+75N	51880	-20	-24
3+00N	51920	-65	+7
3+25N	52020	-25	+10
3+50N	51960	-45	+10
3+75N	51960	-40	+1
4+00N	52020	-30	0
4+25N	52000	-15	-3
4+50N	51960	-10	-2
4+75N	51920	-80	+1
5+00N	51840	-35	-6
1.2:0034			
<u>L2+00W</u> 0+00N	51900	. 1 5	10
0+00N 0+25N	51800 51800	+15	-19
	51800 51800	+10	-11
0+50N 0+75N	51800	+15	-26
0+75N 1+00N	51600 51780	-15	-42
1+00N 1+25N		+5	-12
1+25N 1+50N	51760 51760	-5	-28
1+50.N 1+75N	51760 51760	+5 +110	-42
2+00N	51760 51760	+110	-7 -20
2+00N 2+25N	51760 51760	+70	-20 -26
2+23N 2+50N	51820	+70 0	-20 -13
2+30N 2+75N	51820 51900	+5	-13 -24
2+75N 3+00N	51900 51900	-25	-24
3+25N	52000	-15	-13 -27
3+50N	52000 52080	-15	-27 -16
110616	S#000	-10	-10

3+75N	52000	-25	-3
4+00N	52000	-5	-10
4+25N	51940	-20	-13
4+50N	52100	-10	-20
4+75N	51940	0	-4
L2+75W			
1+25N	51840	+25	-16
1+50N	51800	+30	-9
1+75N	51800	+5	-14
2+00N	51760	+5	-7
2+25N	51780	-25	-13
2+50N	51800	-25	-20
2+75N	51840	-55	-15
3+00N	51840	-20	-25
3+25N	51800	-15	-14
3+50N	51860	-20	+2
3+75N	51860	+25	-7
4+00N	51860	-10	-18
4+25N	52100	+13	-12
4+50N	52300	-12	-8
4+75N	52060	+70	-10
5+00N	52160	+15	-21
L3+50W			
1+65N	51800	-30	-40
1+75N	51780	+45	-20
2+00N	51760	+35	-21
2+25N	51780	+15	-25
2+50N	51780	-25	-29
2+75N	51800	-20	-8
3+00N	51820	-30	-8
3+25N	51820	-15	-8
3+50N	51800	-25	+4
3+75N	51860	-15	-1
4+00N	52000	0	-21
4+25N	52000	-35	-10
4+50N	51900	-30	-15
4+75N	52000	+25	-16
5+00N	51860	-10	-15
	22000	• •	

INTERPRETATION AND EVALUATION

ţ

The writer generally interprets the east-west trending magnetometer and to a lesser degrees the VLF-EM dip-quadrature pairs as responses to several different, but related causes. These will be described from viewing Figure 4 from south to north as follows:

- The localized magnetic "high" and adjacent "low" on the north between L1+00W and L1+50W from stations 1+00N to 1+50N may reflect a significant increase in the magnetite content of the underlying rocks possibly near the contact of a highly altered section (Gypsum - Pyrite zone) of Nicola andesite.
- 2) The east-west trending magnetic "low" crossing the entire grid between 1+00N and 3+00N is thought to reflect an alteration "low" and not necessarily a rock type change. Evidence of the strong gypsum zone is evident in the core from DDH 97 1-4.
- 3) The next adjacent higher magnetic zone to the north of the altered zone and in the vicinity of Bethlehem 73-4 drill hole (on the eastside of the grid at 3+00N) may offer the best east-west zone in which to try and cut an less altered, but mineralized section of Nicola andesites and further indications of this be the irregular dip-quadrature "pairs" reflecting areas of underlying alteration.
- 4) The broad east-west high magnetic zone **irregularly occurring** between 3+00N and 5+00N may reflect a more highly magnetic and less altered underlying rock type, i.e. like the rock observed along the main property road near L3+50W 1+65N.