Geochemical Report

Approval Number SMI-97-0200532-233

On Field Work Done

Between July 3 and October 6 1997

On

The Hope Mineral Claim Group

Located on Morice Mountain Omineca Mining Division, B.C. NTS Map 9**3** L/7 Latitude 54 deg. 17 min. Longitude 127 deg. 46 min.

Owner/Operator Steve Bell

Ву

Steve Bell

June 1997

Steph Bell

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

ΕD

NOT AN OFFICIAL RECEIP

TRANS #

Table of Contents

2

Introduction	1
Location and Access	1
Claims and Ownership	2
Geochemical Survey	2
Conclusion / Recommendations	12
Itemized Cost Statement	13
Record of Work	14
Authors Qualifications	16

<u>Appendix</u>

Analytical Procedure	(Sample Preparation)	A-1
Analytical Procedure.	(ICP Analysis)	A-2
Statistical Summary fo	r Soil ICP Analysis	A-3
ICP Report		A-4

Figures

1.	Hope Claim	Group / S	ample	Locations	In	Poc	ket
2.	Copper Geo	chemistry				**	
3.	Zinc Geoch	emistry				Ħ	
4.	Lead Geoch	emistry				11	
5.	Anomalous	Silver				11	
6.	Anomalous	Arsenic				11	
7.	Anomalous	Barium				11	
8.	Anomalous	Cadmium				ŦŦ	
9.	Anomalous	Antimony				11	
10.	Location M	ap			Pa	age	2-1

Introduction

The following report is a record of the exploration work done on the Hope claim group between July 3 and October 6 1997. This property consists of one 16 unit 4 post claim and 3 one unit 2 post claims. No previous assessment has been recorded at this location. The property may host vein / disseminated / replacement type deposits related to intermediate - felsic intrusions.

Location and Access

The Claims are located on Morice Mountain near Peacock Creek. They lie about 13.5 km South - West of Houston B.C. The Hope claim legal post is located near grid coordinates 6018000 N and 646000 E. (N.T.S. Ref. 93L/**9**W). Morice mountain is accessed by vehicle via the Morice river forest service road. At 8km leave Morice river road and follow Peacock creek west road to its end at 6 km. Travel South from this point by foot through forested terrain. The Northern edge of the Hope claim group lies about 1.8 km to the South.

<u>Claims</u> And <u>Ownership</u>

The Hope claim group is owned by S. Bell of Houston B.C.

<u>Claim name</u>		Record	Nos.
Hope		233733	
Hope 2		659298	Μ
Hope 3		659291	М
Hope 4		659294	М
Copper Nail	1	659292	м
Copper Nail	2	659293	М

Geochemical Survey

A Geochemical survey was performed over the claim group where 583 soil samples and 2 rock samples were taken from specific locations and analysed for base metal and pathfinder elements. Threshold values were calculated from this data to identify anomalous terrain.

Sample locations are indicated on Fig. 1. Samples H1 through H7 correspond to Hope 1 through Hope 7 in the ICP report and are stream sediments. Samples T1 and T2 were taken from a tributary of Peacock creek just north of the Hope claim.

1. Soil Survey

2

Baselines were established for survey control in an East/West direction every 500m. Sample lines were spaced 100m apart and ran North/South to tie in with the baselines. Samples were taken along each sample line at 100m intervals forming a rectangular sample pattern. Samples were taken from the "C" horizon at depths between 50 and 70 cm. and put in 4"x 7" Kraft paper bags. In swampy areas the grey clay which underlies the organic soil was sampled. Each bag was filled to ensure adequate sample material. Sample locations were noted on each bag and in the field with red flagging.

The survey was designed to test for the following mineralization.

- A) Extensions of existing epithermal mineralization found in Hazelton volcanic rocks near an old adit located at 18,800 N x 46,625 W.
- B) Undiscovered polymetallic mineralization indicated by float recovered from Peacock creek.
- C) Vein/Disseminated/Replacement deposits related to Intermediate - felsic intrusions.
- Note: In the vicinity of A) the sample spacing was decreased to 50m along sample lines.

Mineralized float found in Peacock creek assayed in p.p.m. >10,000 Cu, >200 Ag, 6,459 Sb, 3013 Zn and 2,220 As

2. Soil Development

4

The soil overlies glacial till and locally derived colluvium which is typical of the area. It is primarily of the Podzolic order. Regosolic soils are found over small areas at the higher elevations near the western boundary of the claim group. This soil is poorly developed in places however not enough to hamper sampling. Occasionally small swampy areas were encountered where the soil is largely organic and directly overlies a light grey clay.

3. Analytical Procedure

Samples were transported from the field to Smithers B.C. for sample preparation at Mineral Environments Laboratory. Here the samples were dried and screened. A minus 80 mesh fraction sub sample was sent to Vancouver. At the Vancouver lab ICP analysis was performed to detect the following trace elements:

Cu. Zn. Pb. Ag. As, Ba, Cd, Sb, Mo, Ni, Fe, K

4. Rock Samples

Two rock samples were analysed. The first rock tested was a a small plug of Nanika style granite found at 20,000 N x 45,100 W. The testing was performed to see if the plug was enriched in base metals. The results proved negative.

A second rock sample was taken from a pyrite bearing rhyolite encountered at 20,325 N x 44,400 E during a reconnaissance traverse to the north of the Hope claim. Tests proved negative for precious and base metals.

Interpretation of Results

Threshold values were calculated in order to interpret anomalous areas. Thresholds for the trace elements are defined as the geometric mean plus two times the standard deviation. Anomalous soil samples exceed the threshold values in p.p.m. trace elements.

5

Element	Geometric	Threshold
	Mean	Hope Project
Cu	23	51
Zn	88	148
Pb	23	44
Ag	0.14	0.8
As	7.4	31
Ba	185	465
Cd	.55	1.8
Sb	2.3	15

Threshold values for pathfinder elements in p.p.m.

1. Geochemical Data

Raw data is located in the appendix with the statistical analysis. Geochemistry is plotted for individual elements on figures 1-9. All data for the most important path finder elements Cu, Zn, and Pb have been plotted. Only anomalous values of the other elements tested for are plotted. The exception is for antimony where all samples were plotted to indicate a problem possibly related to the 5 p.p.m. detection limit. There are two blocks of samples indicated on figure 9 which are highly anomalous for antimony. R.W. Boyle (1979) suggests a mean of 0.7 p.p.m. for Sb in soils. These anomalous zones are suspect since they are so regular in shape. Furthermore the samples which define the anomaly were submitted for analysis at the same time. This suggests an analytical rather than geological cause for the elevated values. 7.

2. Soil Anomalies

The amount of pathfinder elements normally found in weathered residuum and glacial material compares favourably with values determined by the survey. Low order Cu, Zn, Pb, and Ag anomalies encountered during the survey are interpreted as follows.

- A) Poly metallic anomalies consisting of more than two adjacent samples indicate the most extensive mineralization.
- B) Anomalies consisting of at least two adjacent samples represent localized sub economic enrichment of metals in the underlying Hazelton volcanic rock similar to that observed in Peacock creek.

C) Isolated anomalies consisting of one sample are considered to be mostly spurious and probably the result of enrichment due to adsorption or organic fixation. These anomalous samples were often collected from the clay underlying an organic soil in a swampy area. They are often mono metallic and unsupported by other pathfinder elements.

Frequency of anomalies encountered is as follows:

Ç,

1 type "A" anomaly

7 type "B" anomalies

44 type "C" anomalies

Only the type "A" anomaly at 20,300 N \times 44,300 E warrants further investigation.

3. Anomaly "A"

Anomaly "A" is a low order Zn-Pb-Ag anomaly located on a prominent ridge at 4,300 feet elevation. Local topography is flat however it rapidly falls away toward the east and west forming a water shed. Overburden is relatively thin with much locally derived colluvium. Angular rock fragments indicate nearby bedrock. The anomaly appears to stem from an area centered about 22,300 N x 44,300 E where there are several small outcrops of pyritic rhyolite and a circular patch of muskeg about 60 m in dia. which drains to the west. The Lead anomaly starts at this point and extends in a down slope direction to the North - East about 500 m. The zinc anomaly follows a similar pattern with some dispersion toward the western watershed. Topography seems to be the major control.

The pyritic rhyolite tested outcrops on Hope 2 claim near the head of anomaly "A". Here the rhyolite is brecciated, bleached and fractured. Fine grained pyrite occurs through out a micro felsitic and chlorite ? rich matrix which supports small white bleached and corroded breccia fragments. Pyrite is also localized on fine fractures which appear as small 1 mm wide veinlets in section. No flow structures were noted.

A kaolinized, lithic pyroclastic flow rock appears in a bed near 20,000 N x 44,500 E. Massive green propylitic volcanic rock of andesitic composition outcrops in a stream bed near H1. The andesite is characterized by fine grained pyrite and coarser calcite which occurs throughout.

9

10.

Escaping hydrous fluids rich in carbon dioxide and sulfur related to the process of doming and localized venting of felsic intrusive rocks are likely responsible for the most intensive alteration found in the rhyolite at 20,350 N x 44,300. Near by andesites were probably propylitized by circulating fluids and later diagenisis.

Pyritic float was commonly encountered in sample holes on Hope 2 claim. No sulphide minerals other than pyrite were observed. Near the western boundary of the claim large 1 to 2 meter biotite-feldspar porphyry boulders can be found resting on surface. These boulders are probably float from a large bulkley intrusive which lies to the South West. This intrusion was not observed in the field however government mapping indicates the contact is very close possibly on Hope 3 or 4.

<u>Conclusion</u>

The source of the mineralized float found in Peacock creek remains a mystery. Geochemical sampling does not indicate underlying mineralization in the vicinity of Peacock creek canyon. A mineralized source could however escape detection if it does not penetrate overlying argillites which outcrop outside the canyon. In this case the source is probably small with low economic potential. A low order Zn, Pb, Ag anomaly was detected stemming from a source located near 54 19 50 N \times 127 47 00 E. The associated underlying rocks are pyritic rhyolite and propylitic andesite. The altered and fractured rhyolite breccia found at the head of the anomaly indicates that localized venting or degassing of the volcanic rocks occurred here.

The rhyolite at 20,325 N \times 44,400 E lies on the edge of the anomalous zone and assays in p.p.m.

62 Zn, 17 Pb, 16 Cu, 0.4 Ag and 0.01 Au

Residual soils overlie this outcrop and should reflect the chemistry of the underlying bed rock. This soil assays.

103 Zn, 41 Pb, 13 Cu and 0.8 Ag

Zn, Pb and Ag concentrations in the soil are approximately double that of the parent material. If these elements are being concentrated by adsorption or some organic process it has not affected the Cu which remains at a low background level. Contamination is likely from the anomalous area 100m to the west where these processes are taking place or the underlying rock is enriched in these metals.

Recommendations

12

The cause of the anomaly should be investigated by:

1) Taking more soil samples in an attempt to increase the magnitude of the anomaly and reduce the possibility that adsorption and organic fixation are the cause. Eight samples should be collected in a grid about point 20,300 N x 44,300 E. The samples should be taken as deep as possible greater than 1 meter. In addition bulk samples should be taken which are panned down to obtain heavy mineral concentrates. These concentrates should be analysed for gold.

in mapped area should be the geology of 20 The be paid to topographic lineaments and detail. Attention should structures that might have channelled circulating fluids. Pyritic identify analysed toshould be altered outcrop and lithogeochemical halos. The intrusive porphyry to the South -West should be investigated.

The target is a disseminated and/or stockwork gold - silver deposit in volcanic flows and associated volcaniclastic rocks. Unfortunately commercial deposits of this type are very rare because typical gold and silver values found in them are low. High grade shoots would have to be present since there is limited potential in this location for large tonnages.

ITEMIZED COST STATEMENT

(a). Allocation for wages.

S. Bell Sample taking 365 hours @ \$20 per hour \$ 7,300.00 S. Bell Examine outcrop (Hope 2 claim) 26 hours @ \$25 per hour \$ 650.00 S. Bell Deliver samples to Min En lab. 18.5 hours @ \$15 per hour \$ 277.50 S. Bell Record keeping 12 hours @ \$20 per hour \$ 240.00 S. Bell Report writing 37 hours @ \$20 per hour \$740.00 (b). Analytical services \$ 4,314.31 (c). Vehicle Operation \$ 337.56 (d). Supplies (Sample bags, Hipchain, flagging etc.) \$ 532.89

Total expenditures

\$ 14,392.26

RECORD OF WORK

i

DAILY REPORTS (diary)

		Project Area	Date	Hours	Work Performed
Day	1	Норе	18-06-97		Çlaim Staking
Day	2	IF	1-07-97		Finish Staking
Day	3	H	2-07-97		Grid Preparation
Day	4		3-07-97	12	Samples # 1-21
Day	5) !	4-07-97	12	" # 22-46
Day	6	**	5-07-97	12	# 47-64
Day	7	"	6-07-97	12	
Day	8	**	7-07-97	12	" # 73-84
Day	9	11 ———————————————	8-07-97	12	" # 85-108
Day	10	"	9-07-97	12	" # 109-127
Day	11	# 	10-07-97	3	Samples to Smithers
Day	12	11	11-07-97	12	" # 128-156
Day	13	"	14-07-97	12	" # 157-179
Day	14	If	15-07-97	12	" # 180-200
Day	15	"	16-07-97	4	Record Keeping
Day	16	11	17-07-97	12	Samples # 201-222
Day	17	"	18-07-97	12	" # 223-244
Day	18		19-07-97	3	Record Keeping
Day	19	. 11	21-07-97	2.5	Samples to Smithers
Day	20	II	22-07-97	14	Samples # 245-264
Day	21	f1	23-07-97	12	" # 265-286
Day	22	"	24-07-97	12	" # 287-306
Day	23	11	25-07-97	13	" # 307-326
Day	24	H	26-07-97		Repair Equipment
Day	25	11	28-07-97	2.5	Samples to Smithers

14.

RECORD OF WORK

DAILY REPORTS (diary)

		Proje Area	ect 1 	Date	H 	ours		Work	Perf	orm 	ed	
Day	26	11		29-07-95	7	14		?!	#	32	7-342	2
Day	27	P1		30-07-97	7	11			#	34	3-367	7
Day	28	"		1-08-97	7	10		ŧ1	#	36	8-384	1
Day	29	"		2-08-97	7 	5		Recor	d Ke	epi	ng	
Day	30	H		3-08-91	7	12		#	#	38	5-400)
Day	31	Ft		6-08-97	7 	12		H	#	40	1-423	3
Day	32	**		7-08-97	7	2.5		Sampl	les t	o S	mithe	ers
Day	33	11		8-08-97	7	12		H	#	42	4-453	3
Day	34	"		11-08-97	7	12	· · · · · · · · · · · · · · · · · · ·	tt	#	45	4-475	5
Day	35	f1		12-08-97	7	12		n 	#	47	6-496	5
Day	36	"		13-08-97	7 	14		"	#	49	7-518	}
Day	37	H		14-08-97	7	11		n 	#	51	9-540)
Day	38	fi		15-08-97	7 	2.5		Sampl	.es t	o S	mithe	ers
Day	39	Ħ		19-08-97	7	12		11	#	54	1-550)
Day	40	11		20-08-97	7	12		"	#	55	1-564	1
Day	41			21-08-97	7	3.0		Sampl	es t	o S	mithe	ers
Day	42			25-08-97	1	12			#	56	5-572	2
Day	43			3-09-97	T	14		PT	#	57	3-583	}
Day	44			17-09-97	/	2.5		Sampl	.es to	o S	mithe	ers
Day	45	Норе	2	5-10-97		14	*	Exami	.ne (Jut	crop	
Day	46	Норе	2	6-10-97		12	*	Exami	.ne (Dut	crop	
											· · · =	

Total Hours 421.5

* note outcrop was examined on Hope 2 Claim in order to aid in the interpretation of anomaly "A".

15.

AUTHORS QUALIFICATIONS

This is to certify that I, Stephen Bell have graduated from Queen's University, Kingston, Ontario with the degree of Bachelor of Science, Mining Engineering on May 25 1985.

In 1989, I completed two years training in the department of Geological Engineering at Queen's University.

I have been employed in the mineral industry as a Mining Engineer and have a variety of experience working in various geology departments. I am now an independent Prospector.

Period Employer

Position

1985 - 1987	-Randfontein Estates Gold Mines	Junior Engineer
	-Rustenberg Platinum Mines	Junior Engineer
	-Atok Platinum Mines	Junior Engineer
1987	-Noranda Mines Geco Div.	Junior Engineer
1988	-Teck Corona	Junior Engineer
1990 - 1994	-J.S Redpath Limited	Project Engineer
	-Mining Contracting	

Houston, B.C. July 1998

Stephe Bell

Stephen Bell

Bibliography

Cameron, E.M.

1966: Proceedings, Symposium on geochemical prospecting, Ottawa, April, 1966, GSC paper 66-54.

Boyle, R.W.

1976: The geochemistry of gold and it deposits, GSC Bulletin 280.

Valentine, K.W.

1978: The soil landscapes of British Columbia, Ministry of Environment, Victoria, British Columbia.

APPENDIX

604 327 3423 P.02

 $\Delta - 1$

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C. CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TEL (604) 847-3004 FAX (504) 847-3005

ANALYTICAL PROCEDURE REPORT FOR ASSESSMENT WORK: PROCEDURE FOR SAMPLE PREPARATION

a.) The soil and stream sediment samples are dried at 60 Celsius. The sample is then screened by 80 mesh sieve to obtain the -80 mesh fraction for analysis.

b.) The rock and core samples are dried at 60 Celsius and when dry are crushed in a jaw crusher. The 1/4 inch output of the jaw crusher is put through a secondary roll crusher to reduce it to -1/8 inch. The whole sample is then riffled on a Jones Riffle down to a statistically representative 300 gram sub-sample. This sub-sample is then pulverized on a ring pulverizer to 95% minus 150 mesh rolled and bagged for analysis. The remaining reject from the Jones Riffle is bagged and stored.

As-001 DOC

MIN-EN LABS

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS - ASSAYERS + ANALYSTS + CEOCHEMISTS

Quality Assaring for over 25 Years

Δ-2

VANCOUVER OFFICE: \$282 SHERBROOKE STREET VANCOUVER, B.C., CANADA V5X 468 TELEPHONE 16041 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C., CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

ANALYTICAL PROCEDURE REPORT FOR ASSESSMENT WORK: PROCEDURE FOR TRACE ELEMENT ICP Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sn, Sr, Th, Ti, U, W, Zn.

0.50 grams for the sample pulp is digested for 2 hours with an 1:3:4 HNO₃:HCl:H₂0 mixture. After cooling, the sample is diluted to standard volume.

The solutions are analyzed by computer operated Perkin Elmer Optima 3000, Inductively Coupled Plasma Spectrophotometers.

Statistical Summary for Soil ICP Analysis

Date	Sept 3/97
Client:	Steve Bell
Sample Type:	Soil
Analysis Type	ICP aqua regia leach
Elements	12
Min-En Files	7S-0142
	78-0158
	7S-0165
	78-0193
	7S-0221
	78-0240

Summary of Statistics

Variable:	Ag	As	Ba
Units	ppm	ppm	ppm
Sample size	562	562	562
Average	0.204804	12.7224	217.868
Median	0.1	11	179
Mode	0.1	1	154
Geometric mean	0.137119	7.40763	185.405
Variance	0.0971427	135.595	19553.2
Standard deviation	0.311677	11.6445	139.833
Standard error	0.0131473	0.491194	5.89848
Minimum	0.1	1	33
Maximum	3.1	125	1099
Range	3	124	1066
Lower quartile	0.1	3	125
Upper quartile	0.1	19	264
Interguartile range	0	16	139
Skewness	4.91931	2.60317	2.22294
Standardized skewness	47.6098	25.1939	21.5139
Kurtosis	32.5425	17.4404	7.62641
Standardized kurtosis	157.476	84.3955	36.9048
Coeff. of variation	152.183	91.5275	64.1822
Sum	115.1	7150	122442
Variable:	Cd	Cu	Fe
Units	ppm	ppm	<u>%</u>
Sample size	562	562	562
Average	0.833986	25.9573	3.91859
Median	0.7	24	3.86
Mode	0.1	21	4.41
Geometric mean	0.547109	23.1098	3.83/3/
Variance	0.654297	198.996	0.632441
Standard deviation	0.808887	14.1066	0.795261
Standard error	0.0341208	0.595051	0.0335461
Minimum	0.1	1	1.38
Maximum	4.9	153	7.24
Range	4.8	152	5.86
Lower quartile		4 -	
	0.3	17	3.43
Upper quartile	0.3 1	17 31	3.43 4.34
Upper quartile Interquartile range	0.3 1 0.7	17 31 14	3.43 4.34 0.91
Upper quartile Interquartile range Skewness	0.3 1 0.7 2.51771	17 31 14 3.12351	3.43 4.34 0.91 0.523089
Upper quartile Interquartile range Skewness Standardized skewness	0.3 1 0.7 2.51771 24.3668	17 31 14 3.12351 30.2298	3.43 4.34 0.91 0.523089 5.06254
Upper quartile Interquartile range Skewness Standardized skewness Kurtosis	0.3 1 0.7 2.51771 24.3668 7.69085	17 31 14 3.12351 30.2298 19.476	3.43 4.34 0.91 0.523089 5.06254 1.56626
Upper quartile Interquartile range Skewness Standardized skewness Kurtosis Standardized kurtosis	0.3 1 0.7 2.51771 24.3668 7.69085 37.2166	17 31 14 3.12351 30.2298 19.476 94.2458	3.43 4.34 0.91 0.523089 5.06254 1.56626 7.57924

Sum

Page 1

468.7

2202.25

14588

Summary of Statistics

	14	Na	NI
Variable:	ĸ	OIN	
Units	<u>%</u>	ppm 560	ppin
Sample size	562	202	11 7117
Average	0.0586299	1.27700	11.7 [7
Median	0.05	1	10
Mode	0.05	1	10 10 10
Geometric mean	0.0553378	1.18490	10.0479
Variance	4.86E-04	0.3934	44.0308
Standard deviation	0.0220373	0.627216	0.03007
Standard error	9.30E-04	0.0264575	0.279905
Minimum	0.02	1	1
Maximum	0.2	7	54
Range	0.18	6	53
Lower quartile	0.05	1	8
Upper quartile	0.07	1	15
Interquartile range	0.02	0	7
Skewness	2.02793	3.10439	1.90452
Standardized skewness	19.6267	30.0448	18.4323
Kurtosis	6.96356	15.0889	6.81843
Standardized kurtosis	33.6972	73.0164	32.9949
Coeff. of variation	37.5871	49.0941	56.6574
Sum	32.95	718	6582
Variable:	Pb	Sb	Zn
Units	ppm	ppm	ppm
Sample size	562	562	562
Average	25.1655	4.51779	92.1192
Median	24	1	89
Mode	19	1	75
Geometric mean	22.87	2.25986	87.7639
Variance	110.506	39.1164	897.381
Standard deviation	10.5122	6.25431	29.9563
Standard error	0.443429	0.263822	1.26363
Minimum	1	1	22
Maximum	86	30	326
Range	85	29	304
l ower quartile	19	1	74
Lipper quartile	29	4	105
Interquartile range	10	3	31
Skowpess	1,59461	1.97794	1.84217
Standardized skowness	15.4329	19.1428	17.8288
Standardized Shewness	6 17633	3.01655	9.18647
Runusis Standardized kurtasis	29 8877	14.5973	44.454
Stanuaruizeu kunusis	20.0011		
Cooff of variation	41 7721	138.437	32.5191
Coeff. of variation	41.7721 14143	138.437 2539	32.5191 51771

Page 2

Highest Values

44400E20300N 3.1 46800E18900N 125 46300E19400N 100 45400E19100N 3.1 46000E20000N 76 45000E20000N 100 45500E19800N 2.1 46400E19000N 76 45500E19800N 86 17400N45400E 2.0 46600E19400N 51 45900E18700N 86 44300E20300N 1.5 44300E19100N 49 45700E19500N 86 46800E18750N 1.5 46600E18800N 48 45200E19200N 76 46900E18200N 1.5 46600E1880N 48 45200E19200N 76 46900E18200N 1.5 46600E1880N 48 45200E19200N 76 46900E18200N 1.5 46500E1820N 41 T-2 77 44500E20400N 1.3 46200E18850N 39 46100E19500N 66 46800E18650N 1.3 46500E19050N 39 46000E19400N 66 46800E18650N 1.3 46500E19050N 39 44800E19200N 66 46800E18650N 1.3 46500E19050N 39 44800E19200N 66
45400E19100N 3.1 46000E20000N 76 45000E20000N 10 45500E19800N 2.1 46400E19000N 76 45500E19800N 8 17400N45400E 2.0 46600E19400N 51 45900E18700N 8 44300E20300N 1.5 44300E19100N 49 45700E19500N 8 46800E18750N 1.5 46600E18800N 48 45200E19200N 7 46900E18200N 1.5 46500E18200N 41 T-2 7 44500E20400N 1.3 46200E18850N 39 46100E19500N 6 44400E20400N 1.3 46500E19050N 39 44800E19200N 6 46800E18650N 1.3 46500E19050N 39 44800E19200N 6 46800E18650N 1.3 46500E19050N 39 44800E19200N 6 46800E18650N 1.3 46500E19050N 39 44800E19200N 6
45500E19800N 2.1 46400E19000N 76 45500E19800N 88 17400N45400E 2.0 46600E19400N 51 45900E18700N 88 44300E20300N 1.5 44300E19100N 49 45700E19500N 88 46800E18750N 1.5 46600E18800N 48 45200E19200N 77 46900E18200N 1.5 46500E18200N 41 T-2 77 44500E20400N 1.3 46200E18850N 39 46100E19500N 66 44400E20400N 1.3 46400E18700N 39 46000E19400N 66 46800E18650N 1.3 46500E19050N 39 44800E19200N 66 5 5 5 5 5 5 6 46800E18650N 1.3 46500E19050N 39 44800E19200N 6 46800E18650N 1.3 46500E19050N 39 44800E19200N 6 46800E18650N 1.3 46500E19050N 39 44800E19200N 6
17400N45400E 2.0 46600E19400N 51 45900E18700N 88 44300E20300N 1.5 44300E19100N 49 45700E19500N 88 46800E18750N 1.5 46600E18800N 48 45200E19200N 76 46900E18200N 1.5 46500E18200N 41 T-2 77 44500E20400N 1.3 46200E18850N 39 46100E19500N 66 44400E20400N 1.3 46400E18700N 39 46000E19400N 66 46800E18650N 1.3 46500E19050N 39 44800E19200N 66 46800E18650N 1.3 46500E19050N 39 44800E19200N 66 5 5 5 5 5 6 6 46500E19050N 39 44800E19200N 6 6 46500E19050N 39 5 5 6 46500E19050N 39<
44300E20300N 1.5 44300E19100N 49 45700E19500N 88 46800E18750N 1.5 46600E18800N 48 45200E19200N 7 46900E18200N 1.5 46500E18200N 41 T-2 7 44500E20400N 1.3 46200E18850N 39 46100E19500N 66 44400E20400N 1.3 46400E18700N 39 46000E19400N 66 46800E18650N 1.3 46500E19050N 39 44800E19200N 66 Sample Cd (ppm) Sample Cu (ppm) Sample Fe (%)
46800E18750N 1.5 46600E18800N 48 45200E19200N 77 46900E18200N 1.5 46500E18200N 41 T-2 77 44500E20400N 1.3 46200E18850N 39 46100E19500N 66 44400E20400N 1.3 46400E18700N 39 46000E19400N 66 46800E18650N 1.3 46500E19050N 39 44800E19200N 66 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 46800E18650N 1.3 46500E19050N 39 44800E19200N 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
46900E18200N 1.5 46500E18200N 41 T-2 7 44500E20400N 1.3 46200E18850N 39 46100E19500N 6 44400E20400N 1.3 46400E18700N 39 46000E19400N 6 46800E18650N 1.3 46500E19050N 39 44800E19200N 6 Sample Cd (ppm) Sample Cu (ppm) Sample Fe (%)
44500E20400N 1.3 46200E18850N 39 46100E19500N 66 44400E20400N 1.3 46400E18700N 39 46000E19400N 66 46800E18650N 1.3 46500E19050N 39 44800E19200N 66 Sample Cd (ppm) Sample Cu (ppm) Sample Fe (%)
44400E20400N 1.3 46400E18700N 39 46000E19400N 66 46800E18650N 1.3 46500E19050N 39 44800E19200N 66 Sample Cd (ppm) Sample Cu (ppm) Sample Fe (%)
46800E18650N 1.3 46500E19050N 39 44800E19200N 66 Sample Cd (ppm) Sample Cu (ppm) Sample Fe (%)
Sample Cd (ppm) Sample Cu (ppm) Sample Fe (%)
Sample Cd (ppm) Sample Cu (ppm) Sample Fe (%)
44600E19600N 4.9 45200E18100N 153 44500E20300N 7
44600E19900N 4.5 45000E20000N 136 44700E18500N 7
45700E18500N 4.5 46000E19400N 90 46600E19400N 6
44600E18900N 4.4 44800E18500N 86 45500E19800N 6
44700E18000N 4.3 45700E19500N 79 46600E18050N 6
44600E19000N 4.3 44800E19100N 74 46400E19000N 6
44600E19500N 4.3 44900E18800N 74 45400E19700N 6
45700E18600N 4.2 46300E19400N 70 46200E18850N 6
44600E19100N 4.2 45900E18700N 69 46100E19300N 6
170007 (07001) 4 0 105007 10050N 69 15500518100N 6
45900E18700N 4.0 46500E19050N 66 45500E16100N 6
45900E18700N 4.0 46500E19050N 66 45500E18100N 6
45900E18700N 4.0 46500E19050N 68 45500E18100N 68 Sample K (%) Sample Mo (ppm) Sample Ni (ppn)
45900E18700N 4.0 46500E19050N 68 45500E18100N 68 Sample K (%) Sample Mo (ppm) Sample Ni (ppm) 45200E18100N 0.2 46600E18000N 7 46400E18600N 6600E18600N
Sample K (%) Sample Mo (ppm) Sample Ni (ppn) 45300E19500N 0.2 46600E18000N 7 46400E18600N 46600E18500N 46600E18500N 46600E18500N 46600E18500N 46500E19315N
A5900E18700N 4.0 46500E19050N 68 45500E18100N 0 Sample K (%) Sample Mo (ppm) Sample Ni (ppm) 45200E18100N 0.2 46600E18000N 7 46400E18600N 46500E19315N 45300E19500N 0.2 46800E19000N 46400E19315N 46400E19900N
Sample K (%) Sample Mo (ppm) Sample Ni (ppm) 45200E18100N 0.2 46600E18000N 7 46400E18600N 46500E19315N 45300E19500N 0.2 44600E18500N 46500E1900N 46600E1900N 46600E19315N 45700E19500N 0.2 46800E19000N 46400E19000N 46400E19000N 44200E19500N 0.2 46800E18800N 45900E18700N 45900E18700N
Sample K (%) Sample Mo (ppm) Sample Ni (ppn) 45200E18100N 0.2 46600E18000N 7 46400E18600N 46400E18600N 45300E19500N 0.2 44600E18500N 46500E19315N 46500E19315N 45700E19500N 0.2 46800E19000N 46400E19000N 46400E19000N 44200E19500N 0.2 46800E18800N 45900E18700N 445900E18700N 44300E19500N 0.2 46800E18600N 46700E19475N 46700E19475N
Sample K (%) Sample Mo (ppm) Sample Ni (ppn) 45200E18100N 0.2 46600E18000N 7 46400E18600N 46400E18600N 45200E19500N 0.2 44600E18500N 46500E19315N 46500E19315N 45700E19500N 0.2 46800E19000N 46400E19000N 46400E19000N 44200E19500N 0.2 46800E18800N 45900E18700N 46400E19000N 44200E19500N 0.2 46800E18800N 45900E18700N 445900E19475N 44300E19500N 0.1 44300E19500N 3 44700E18500N
Absolution Action Absolution Absolution<
Absolution Action Absolution Absolution<
Absolution All Absolution
Addition
45900E18700N 4.0 46500E19050N 68 45500E18100N 0 Sample K (%) Sample Mo (ppm) Sample Ni (ppn) 45200E18100N 0.2 46600E18000N 7 46400E18600N 46500E19315N 45300E19500N 0.2 44600E18500N 46500E19315N 46600E18900N 466400E19000N 44200E19500N 0.2 46800E18800N 466400E19000N 466400E19000N 44200E19500N 0.2 46800E18800N 45900E18700N 46700E19475N 44300E19500N 0.2 46800E18600N 46500E19475N 46500E19250N 44900E19200N 0.1 44300E19500N 3 44700E18500N 45000E20000N 0.1 45900E18700N 3 44200E20200N 46600E18500N 0.1 44900E20000N 3 46200E18800N 44700E18500N 0.1 44900E20000N 3 46300E1900N 44700E18500N 0.1 46900E18300N 3 46300E1900N
45900E18700N 4.0 46500E19050N 68 45500E18100N 0 Sample K (%) Sample Mo (ppm) Sample Ni (ppm) 45200E18100N 0.2 46600E18000N 7 46400E18600N 46500E19315N 45300E19500N 0.2 44600E18500N 46500E19315N 46500E19300N 46600E19000N 45200E19500N 0.2 46800E18000N 46600E18700N 46600E19000N 46600E19000N 44200E19500N 0.2 46800E18800N 45900E18700N 46600E18700N 44300E19500N 0.2 46800E18600N 46700E19475N 44900E19200N 44900E19200N 0.1 44300E19500N 3 44700E18500N 46600E1800N 0.1 46600E18050N 3 46500E19250N 46600E18500N 0.1 4900E20000N 3 46200E18800N 44700E18500N 0.1 46900E20000N 3 46300E19000N 44700E18500N 0.1 46900E18300N 3 46300E19000N 44700E18500N 0.1 46900E18300N
45900E18700N 4.0 46500E19050N 68 45500E18100N 68 Sample K (%) Sample Mo (ppm) Sample Ni (ppn) 45200E18100N 0.2 46600E18000N 7 46400E18600N 46600E19315N 45300E19500N 0.2 46600E18500N 46600E19300N 46600E19300N 46600E19315N 45700E19500N 0.2 46800E18800N 4 46500E1930N 46400E19000N 44200E19500N 0.2 46800E18800N 4 45900E18700N 446400E19000N 44300E19500N 0.2 46800E18600N 4 46700E19475N 44900E19200N 44300E19200N 0.1 44300E19500N 3 44700E18500N 46500E19250N 46600E1800N 0.1 45900E18700N 3 44200E20200N 46300E19250N 44700E18500N 0.1 46900E18300N 3 46300E1900N 46300E1900N 44700E18500N 0.1 46900E18300N 3 46300E1900N 46300E1900N 44700E18500N 0.1 46900E18300N
45900E18700N 4.0 46500E19050N 68 45500E18100N 68 Sample K (%) Sample Mo (ppm) Sample Ni (ppn) 45200E18100N 0.2 46600E18000N 7 46400E18600N 46400E18600N 45300E19500N 0.2 46800E18500N 46500E19315N 46500E19315N 45700E19500N 0.2 46800E18800N 46500E18700N 46400E1900N 44200E19500N 0.2 46800E18800N 45900E18700N 445900E1870N 44300E19500N 0.2 46800E18600N 46700E19475N 44900E1920N 44300E19500N 0.1 44300E19500N 3 46500E19250N 46600E1800N 0.1 45900E18700N 3 44200E20200N 45000E20000N 0.1 45900E18700N 3 46200E18800N 44700E18500N 0.1 46900E19200N 3 46300E1900N 44700E18500N 0.1 44900E19500N 3 46300E1900N 44700E18500N 86 44300E19500N 30 44200E20200N <t< td=""></t<>
45900E18700N 4.0 46500E19050N 68 45500E18100N 0 Sample K (%) Sample Mo (ppm) Sample Ni (ppn) 45200E18100N 0.2 46600E18000N 7 46400E18600N 45300E19500N 0.2 44600E18500N 46500E19315N 46500E19315N 45700E19500N 0.2 46800E18500N 46600E18700N 46400E19000N 44200E19500N 0.2 46800E18800N 46500E1970N 46900E1870N 44300E19500N 0.2 46800E18600N 46700E19475N 44900E19200N 44300E19500N 0.1 44300E1950N 3 44700E18500N 46600E18500N 0.1 45900E1870N 3 44200E20200N 46600E18500N 0.1 45900E1870N 3 46200E1880N 44700E18500N 0.1 46900E18300N 3 46300E1900N 44700E18500N 0.1 46900E18300N 3 46300E1900N 44700E18500N 0.1 46900E18500N 30 44200E20200N 30
45900E18700N 4.0 46500E19050N 66 45500E18100N 66 Sample K (%) Sample Mo (ppm) Sample Ni (ppm) 45200E18100N 0.2 46600E18000N 7 46400E18600N 46400E18600N 45300E19500N 0.2 46800E18500N 46500E19315N 46500E19315N 45700E19500N 0.2 46800E18600N 46400E19000N 46400E19000N 44200E19500N 0.2 46800E18600N 46700E19475N 44900E19200N 44300E19500N 0.1 44300E19500N 3 44700E18500N 46600E1800N 0.1 46600E18050N 3 46200E19250N 45000E2000N 0.1 45900E18700N 3 44200E20200N 46600E18500N 0.1 46900E18700N 3 46200E18800N 44700E18500N 0.1 46900E19500N 3 46300E19000N 44700E18500N 0.1 46900E19500N 3 46300E19000N 44700E18500N 86 44300E19500N 30 44200E20200N 44200E
45900E18700N 4.0 46500E19050N 68 45500E18100N 68 Sample K (%) Sample Mo (ppm) Sample Ni (ppm) 45200E18100N 0.2 46600E18000N 7 46400E18600N 45300E19500N 0.2 44600E18500N 46500E19315N 45700E19500N 0.2 46800E19000N 46500E19000N 44200E19500N 0.2 46800E18600N 46600E18700N 44300E19500N 0.2 46800E18600N 46600E18700N 44300E19500N 0.1 44300E19500N 3 44700E18500N 46600E1890N 0.1 46600E18050N 3 46500E19250N 46600E1850N 0.1 45900E18700N 3 44200E20200N 46600E1850N 0.1 44900E20000N 3 46200E18800N 44700E18500N 0.1 44900E20000N 3 46300E19000N 44700E18500N 0.1 44300E19500N 30 44200E20200N 44700E18500N 86 44300E19500N 30 44200E20200N
45900E18700N 4.0 46500E19050N 68 45500E18100N 68 Sample K (%) Sample Mo (ppm) Sample Ni (ppn) 45200E18100N 0.2 46600E18000N 7 46400E18600N 45300E19500N 0.2 46600E18500N 4 46500E19315N 45700E19500N 0.2 46800E19000N 4 46400E19000N 44200E19500N 0.2 46800E18600N 4 45900E18700N 44300E19500N 0.2 46800E18600N 4 45900E18700N 44300E19500N 0.2 46800E18600N 4 46700E19475N 44900E19200N 0.1 44300E19500N 3 44700E18500N 46600E1800N 0.1 45900E18700N 3 44200E20200N 46600E18500N 0.1 44900E20000N 3 46300E19800N 44700E18500N 0.1 44900E20000N 3 46300E1900N 44700E18500N 0.1 44900E19500N 30 44200E20200N 44700E18500N 86 <td< td=""></td<>
45900E18700N 4.0 46500E19050N 66 45500E18100N 6 Sample K (%) Sample Mo (ppm) Sample Ni (ppn) 45200E18100N 0.2 46600E18000N 7 46400E18600N 46500E19315N 45300E19500N 0.2 46600E18500N 46500E19315N 46500E19315N 45700E19500N 0.2 46800E18800N 46500E1930N 46600E18700N 44300E19500N 0.2 46800E18600N 466700E19475N 46300E1920N 44300E1920N 0.1 44300E19500N 3 44700E18500N 46300E19400N 0.1 46600E18050N 3 46500E19250N 46600E18500N 0.1 45900E18700N 3 44200E20200N 46600E18500N 0.1 4900E20000N 3 46200E18800N 44700E18500N 0.1 4900E20000N 3 46300E1900N 44700E18500N 0.1 46900E18300N 3 46300E1900N 44700E18500N 86 44300E19500N 30 44200E20200N
45900E18700N 4.0 4500E1900N 66 45500E18100N 66 Sample K (%) Sample Mo (ppm) Sample Ni (ppn) 45200E18100N 0.2 46600E18000N 7 46400E18600N 46500E19315N 45300E19500N 0.2 46600E18500N 46500E19315N 46500E19315N 45700E19500N 0.2 46800E18600N 46500E1930N 46600E18700N 44300E19500N 0.2 46800E18600N 46500E1970N 46600E18700N 44300E19500N 0.2 46800E18600N 46500E1920N 46600E18500N 44300E1920N 0.1 44300E1950N 3 44700E18500N 46600E1850N 0.1 45900E1870N 3 44200E2020N 46600E1850N 0.1 4900E2000N 3 46200E1880N 44700E1850N 0.1 4900E2000N 3 46300E1900N 44700E1850N 0.1 4900E1950N 30 44200E20200N 44700E1850N 86 44300E1950N 30 44200E2020N 3
45900E18700N 4.0 46500E19050N 68 45500E18100N 0 Sample K (%) Sample Mo (ppm) Sample Ni (ppn) 45200E18100N 0.2 46600E18000N 7 46400E18600N 46500E19315N 45700E19500N 0.2 46800E19000N 46500E19315N 46500E19300N 46500E1930N 44200E19500N 0.2 46800E18600N 45900E18700N 46500E19475N 44300E19500N 0.2 46800E18600N 46500E19475N 46300E19400N 44300E19200N 0.1 44300E19500N 3 44700E18500N 46600E1850N 45000E20000N 0.1 45900E18700N 3 46200E19250N 46300E19200N 44700E18500N 0.1 44900E20000N 3 46300E1900N 46300E1900N 44700E18500N 0.1 44900E19500N 3 46300E1900N 46300E1900N 44700E18500N 0.1 44900E19500N 3 46300E1900N 44200E20200N 44500E18700N 86 44300E19500N 30 44200E20200

Frequency Tabulation for Silver

Class	Lower Limit	Upper Limit	Midpoint	Frequency	Relative Frequency	Cumulative Frequency	Cum. Rel. Frequency
at	or below	.000		0	.00000	0	.000
1	.000	.100	.0500	453	.80605	453	.806
2	.100	.200	.1500	16	.02847	469	.835
3	.200	.300	.2500	14	.02491	483	.859
4	.300	.400	.3500	25	.04448	508	.904
5	.400	.500	.4500	12	.02135	520	.925
6	.500	.600	.5500	6	.01068	526	.936
7	.600	.700	.6500	4	.00712	530	.943
8	.700	.800	.7500	6	.01068	536	.954
9	.800	.900	.8500	6	.01068	542	.964
10	.900	1.000	.9500	2	.00356	544	.968
11	1.000	1.100	1.0500	5	.00890	549	.977
12	1.100	1.200	1.1500	3	.00534	552	.982
13	1.200	1.300	1.2500	3	.00534	555	.988
14	1.300	1.400	1.3500	0	.00000	555	.988
15	1.400	1.500	1.4500	3	.00534	558	.993
16	1.500	1.600	1.5500	0	.00000	558	.993
17	1.600	1.700	1.6500	0	.00000	558	.993
18	1.700	1.800	1.7500	0	.00000	558	.993
19	1.800) 1.900	1.8500	0	.00000	558	.993
20	1.900	2.000	1.9500	1	.00178	559	.995
21	2.000	2.100	2.0500	1	.00178	560	.996
22	2.100	2.200	2.1500	0	.00000	560	.996
23	2.200	2.300	2.2500	0	.00000	560	.996
24	2.300	2.400	2.3500	0	.00000	560	.996
25	2.400	2.500	2.4500	0	.00000	560	.996
26	2.500	2.600	2.5500	0	.00000	560	.996
27	2.600	2.700	2.6500	0	.00000	560	.996
28	2.700	2.800	2.7500	0	.00000	560	.996
above	2.800)		2	.00356	562	1.000
	 Mean =	= 0.204804	Standard	d Deviation	= 0.311677	Median = ().1

Frequency Tabulation for Arsenic

Class	Lower Limit	Upper Limit	Midpoint	Frequency	Relative Frequency	Cumulative Frequency	Cum. Rel. Frequency
at	or below	.00			00000		
1	.00	2.00	1.00	130	.00000	120	.000
2	2.00	4.00	3.00	36	.06406	166	.231
3	4.00	6.00	5.00	33	.05872	199	.293
4	6.00	8.00	7.00	33	.05872	232	.304
5	8.00	10.00	9.00	36	.06406	268	•413
6	10.00	12.00	11.00	32	05694	300	.4//
7	12.00	14.00	13.00	42	.07473	342	.034
8	14.00	16.00	15.00	34	.06050	376	.009
9	16.00	18.00	17.00	39	.06940	415	.009
10	18.00	20.00	19.00	38	.06762	453	- 7.56
11	20.00	22.00	21.00	27	.04804	480	+ 000 854
12	22.00	24.00	23.00	15	.02669	495	.0.34
13	24.00	26.00	25.00	18	.03203	513	-001 012
14	26.00	28.00	27.00	8	.01423	521	.913
15	28.00	30.00	29.00	7	.01246	528	940
16	30.00	32.00	31.00	7	.01246	535	952
17	32.00	34.00	33.00	6	.01068	541	963
18	34.00	36.00	35.00	5	.00890	546	972
19	36.00	38.00	37.00	5	.00890	551	980
20	38.00	40.00	39.00	4	.00712	555	988
21	40.00	42.00	41.00	1	.00178	556	989
22	42.00	44.00	43.00	0	.00000	556	989
23	44.00	46.00	45.00	0	.00000	556	. 989
24	46.00	48.00	47.00	1	.00178	557	991
25	48.00	50.00	49.00	1	.00178	558	
26	50.00	52.00	51.00	1	.00178	559	995
27	52.00	54.00	53.00	0	.00000	559	995
28	54.00	56.00	55.00	0	.00000	559	995
29	56.00	58.00	57.00	0	.00000	559	.995
30	58.00	60.00	59.00	0	.00000	559	.995
above	60.00 -			3	.00534	562	1.000
	Mean =	12.7224	Standard	Deviation =	11.6445	Median = 11	

Standard Deviation = 11.6445

Median = 11

Frequency Tabulation for Barium

Class	Lower Limit	Upper Limit	Midpoint	Frequency	Relative Frequency	Cumulative Frequency	Cum. Rel. Frequency
at	or below	.00		0	.00000	-	
1	.00	40.00	20.00	1	.00178	1	00178
2	40.00	80.00	60.00	29	.05160	30	05338
3	80.00	120.00	100.00	100	.17794	130	23132
4	120.00	160.00	140.00	105	.18683	235	41815
5	160.00	200.00	180.00	85	.15125	320	56940
6	200.00	240.00	220.00	74	.13167	394	70107
7	240.00	280.00	260.00	45	.08007	439	.78114
8	280.00	320.00	300.00	27	.04804	466	.82918
9	320.00	360.00	340.00	28	.04982	494	.87900
10	360.00	400.00	380.00	17	.03025	511	.90925
11	400.00	440.00	420.00	14	.02491	525	.93416
12	440.00	480.00	460.00	9	.01601	534	.95018
13	480.00	520.00	500.00	5	.00890	539	.95907
14	520.00	560.00	540.00	5	.00890	544	.96797
15	560.00	600.00	580.00	6	.01068	550	.97865
16	600.00	640.00	620.00	2	.00356	552	98221
17	640.00	680.00	660.00	3	.00534	555	98754
18	680.00	720.00	700.00	1	.00178	556	. 98932
19	720.00	760.00	740.00	1	.00178	557	.99110
20	760.00	800.00	780.00	0	.00000	557	.99110
21	800.00	840.00	820.00	1	.00178	558	.99288
22	840.00	880.00	860.00	1	.00178	559	.99466
23	880.00	920.00	900.00	1	.00178	560	. 99644
24	920.00	960.00	940.00	0	.00000	560	. 99644
25	960.00	1000.00	980.00	0	.00000	560	. 99644
above	1000.00			2	.00356	562	1.00000
	Mean =	217.868	Standard	Deviation =	139.833	Median = 179	9

Frequency Tabulation for Cadmium

Class	Lower Limit	Opper Limit	Midpoint	Frequency	Relative Frequency	Cumulative Frequency	Cum. Rel. Frequency
at	or below	.000		0	.00000	0	 000
1	.000	.100	.0500	101	.17972	101	.180
2	.100	.200	.1500	22	.03915	123	.219
3	.200	.300	.2500	26	.04626	149	.265
4	.300	.400	.3500	33	.05872	182	.324
5	.400	.500	.4500	39	.06940	221	.393
6	.500	.600	.5500	40	.07117	261	.464
7	.600	.700	.6500	44	.07829	305	.543
8	.700	.800	.7500	37	.06584	342	.609
9	.800	.900	.8500	42	.07473	384	.683
10	.900	1.000	.9500	39	.06940	423	.753
11	1.000	1.100	1.0500	32	.05694	455	.810
12	1.100	1.200	1.1500	24	.04270	479	.852
13	1.200	1.300	1.2500	19	.03381	498	.886
14	1.300	1.400	1.3500	10	.01779	508	.904
15	1.400	1.500	1.4500	8	.01423	516	.918
15	1.500	1.600	1.5500	5	.00890	521	.927
1/	1.600	1.700	1.6500	5	.00890	526	.936
10	1.700	1.800	1.7500	1	.00178	527	.938
19	1.800	1.900	1.8500	2	.00356	529	.941
20	1.900	2.000	1.9500	0	.00000	529	.941
21	2.000	2.100	2.0500	1	.00178	530	.943
22	2.100	2.200	2.1500	1	.00178	531	.945
23	2.200	2.300	2,2500	3	.00534	534	.950
24	2.300	2,400	2.3500	1	.00178	535	.952
20	2.400	2.500	2.4500	1	.00178	536	.954
20	2.500	2.600	2.5500	0	.00000	536	.954
27	2.600	2.700	2.6500	0	.00000	536	.954
20	2.700	2.800	2.7500	L	.00178	537	.956
30	2,800	2.900	2.0500	U	.00000	537	.956
21	2.900	2 100	2.9500	0	.00000	537	.956
32	3 100	3,100	3.0500	1	.00178	538	.957
33	3,200	3.200	3.1500	T	.00178	539	.959
34	3 300	3.300	3.2500	U	.00000	539	.959
35	3 400	3.400	3.3300	5	.00890	544	.968
36	3 500	3,500	3 5500	3	.00534	54/	.973
37	3 600	3,000	3,5500	1	.00000	547	.973
38	3 700	3 800	3 7500	1	.00178	548	.975
39	3 800	3,900	3 8500	1	.00178	549	.977
40	3 900	4 000	3 9500	2	-00178	550	.979
41	4 000	4 100	4 0500	0	.00534	553	.984
42	4,100	4.200	4 1500	2	.00000	223	.984
43	4.200	4.300	4,2500	2	.00530	550	.988
44	4.300	4.400	4 3500	1	00179	· 330	.993
45	4.400	4.500	4,4500	2	00356	551	.995
46	4,500	4,600	4.5500	Ĺ Ĺ	00000	561	.998
47	4.600	4.700	4,6500	ñ	.00000	561	, 778 000
48	4.700	4.800	4.7500	ñ	.00000	561	. 370
49	4.800	4.900	4.8500	1	.00178	562	1 000
50	4.900	5.000	4.9500	ō	,00000	562	1 000
above	5.000			Õ	.00000	562	1.000
	Mean =	 0.833986	Standard	Deviation =	0.808887		 7

Frequency Histogram for Cadmium 0.18 0.15 0.12 Relative Frequency 0.09 0.06 0.03 0 0 1 2 з 4

Cd (ppm)

5

Frequency Tabulation for Copper

Class	Lower Limit	Upper Limit	Midpoint	Frequency	Relative Frequency	Cumulative Frequency	Cum. Rel. Frequency
at	or below	.00		0	.00000	0	.0000
1	.00	2.00	1.00	1	.00178	1	00179
2	2.00	4.00	3.00	2	.00356	3	00534
3	4.00	6.00	5.00	1	.00178	4	00712
4	6.00	8.00	7.00	7	.01246	11	01057
5	8.00	10.00	9.00	14	.02491	25	01957
6	10.00	12.00	11.00	22	.03915	47	08363
7	12.00	14.00	13.00	40	.07117	87	15490
8	14.00	16.00	15.00	38	.06762	125	22242
9	16.00	18.00	17.00	32	.05694	157	27936
10	18.00	20.00	19.00	48	.08541	205	36477
11	20.00	22.00	21.00	48	.08541	253	45019
12	22.00	24.00	23.00	50	.08897	303	53915
13	24.00	26.00	25.00	41	.07295	344	61210
14	26.00	28.00	27.00	41	.07295	385	.68505
15	28.00	30.00	29.00	36	.06406	421	74911
16	30.00	32.00	31.00	26	.04626	447	79537
17	32.00	34.00	33.00	22	.03915	469	.83452
18	34.00	36.00	35.00	14	.02491	483	.85943
19	36.00	38.00	37.00	17	.03025	500	.88968
20	38.00	40.00	39.00	9	.01601	509	.90569
21	40.00	42.00	41.00	7	.01246	516	.91815
22	42.00	44.00	43.00	6	.01068	522	. 92883
23	44.00	46.00	45.00	8	.01423	530	.94306
24	46.00	48.00	47.00	4	.00712	534	.95018
25	48.00	50.00	49.00	3	.00534	537	.95552
26	50.00	52.00	51.00	2	.00356	539	.95907
27	52.00	54.00	53.00	1	.00178	540	.96085
28	54.00	56.00	55.00	3	.00534	543	.96619
29	56.00	58.00	57.00	2	.00356	545	.96975
30	58.00	60.00	59.00	3	.00534	548	.97509
31	60.00	62.00	61.00	2	.00356	550	.97865
32	62.00	64.00	63.00	0	.00000	550	.97865
33	64.00	66.00	65.00	1	.00178	551	.98043
34	66.00	68.00	67.00	2	.00356	553	.98399
35	68.00	70.00	69.00	2	.00356	555	.98754
0C 7C	70.00	72.00	71.00	0	.00000	555	.98754
37	72.00	74.00	73.00	2	.00356	557	.99110
38	74.00	76.00	75.00	0	.00000	557	.99110
29	76.00	78.00	77.00	0	.00000	557	.99110
40	78.00	80.00	79.00	1	.00178	558	.99288
41	80.00	82.00	81.00	0	.00000	558	.99288
42	82.00	84.00	83.00	· 0	.00000	558	.99288
43	84.00	86.00	85.00	1	.00178	559	.99466
44 45	86.00	88.00	87.00	0	.00000	559	.99466
43	88.00	90.00	89.00	1	.00178	560	.99644
40 17	90.00	92.00	91.00	0	.00000	560	.99644
41	92.00	94.00	93.00	0	.00000	560	.99644
40	94.00 96.00	96.00	95.00	0	.00000	560	.99644
4 9 5 0	30.00	98.00	97.00	0	.00000	560	.99644
aboro	30.00	T00.00	99.00	0	.00000	560	.99644
	100.00			2	.00356	562	1.00000
Mean = 25.9573		Standard	Deviation =	14.1066	Median = 24		

Frequency Tabulation for Iron

Class	Lower Limit	Upper Limit	Midpoint	Frequenc	Relative Cy Frequency	Cumulative Frequency	Cum. Rel. Frequency
at	or below	.000		0	.00000		.00000
1	.000	.160	.0800	0	.00000	0	.00000
2	.160	.320	.2400	0	.00000	0	.00000
3	.320	.480	.4000	0	.00000	0	.00000
4	.480	.640	.5600	0	.00000	0	.00000
5	.640	.800	.7200	0	.00000	0	.00000
6	.800	.960	.8800	0	.00000	0	.00000
7	.960	1.120	1.0400	0	.00000	0	.00000
8	1.120	1.280	1.2000	0	.00000	0	.00000
9	1.280	1.440	1.3600	1	.00178	1	.00178
10	1.440	1.600	1.5200	1	.00178	2	.00356
11	1.600	1.760	1.6800	0	.00000	2	.00356
12	1.760	1.920	1.8400	2	.00356	4	.00712
13	1.920	2.080	2.0000	3	.00534	7	.01246
14	2.080	2.240	2.1600	1	.00178	8	.01423
15	2.240	2.400	2.3200	2	.00356	10	.01779
16	2.400	2.560	2.4800	9	.01601	19	.03381
17	2.560	2.720	2.6400	8	.01423	27	.04804
18	2.720	2.880	2.8000	9	.01601	36	.06406
19	2.880	3.040	2.9600	26	.04626	62	.11032
20	3.040	3.200	3.1200	38	.06762	100	.17794
21	3.200	3.360	3.2800	28	.04982	128	.22776
22	3.360	3.520	3.4400	38	.06762	166	.29537
23	3.520	3.680	3.6000	41	.07295	207	.36833
24	3.680	3.840	3.7600	66	.11744	273	.48577
25	3.840	4.000	3.9200	54	.09609	327	.58185
26	4.000	4.160	4.0800	40	.07117	367	.65302
27	4.160	4.320	4.2400	49	.08719	416	.74021
28	4.320	4.480	4.4000	37	.06584	453	.80605
29	4.480	4.640	4.5600	29	.05160	482	.85765
30	4.640	4.800	4.7200	15	.02669	497	.88434
31	4.800	4.960	4.8800	12	.02135	509	.90569
32	4.960	5.120	5.0400	16	.02847	525	.93416
33	5.120	5.280	5.2000	11	.01957	536	.95374
34	5.280	5.440	5.3600	5	.00890	541	.96263
35	5.440	5.600	5.5200	3	.00534	544	.96797
36	5.600	5.760	5.6800	3	.00534	547	.97331
37	5.760	5.920	5.8400	3	.00534	550	.97865
38	5.920	6.080	6.0000	6	.01068	556	.98932
39	6.080	6.240	6.1600	1	.00178	557	.99110
40	6.240	6.400	6.3200	0	.00000	557	.99110
41	6.400	6.560	6.4800	1	.00178	558	.99288
42	6.560	6.720	6.6400	1	.00178	559	.99466
43	6.720	6.880	6.8000	1	.00178	560	.99644
44	6.880	7.040	6.9600	1	.00178	561	.99822
45	7.040	7.200	7.1200	0	.00000	561	.99822
46	7.200	7.360	7.2800	1	.00178	562	1.00000
47	7.360	7.520	7.4400	0	.00000	562	1.00000
48	7.520	7.680	7.6000	0	.00000	562	1.00000
49	7.680	7.840	7.7600	0	.00000	562	1.00000
. 50	7.840	8.000	7.9200	0	.00000	562	1.00000
above	8.000			0	.00000	562	1.00000
	Mean =	3.91859	Standard	Deviation	= 0.795261	Median = 3.	86

Frequency Tabulation for Potassium

Class		Lower Limit	Upper Limit	Midpoint	Frequency	Relative Frequency	Cumulative Frequency	Cum. Rel. Frequency
at	or	below	.0000		0	.00000	0	.00000
1		.0000	.0100	.00500	0	.00000	0	.00000
2		.0100	.0200	.01500	1	.00178	1	.00178
3		.0200	.0300	.02500	37	.06584	38	.06762
4		.0300	.0400	.03500	100	.17794	138	.24555
5		.0400	.0500	.04500	160	.28470	298	.53025
6		.0500	.0600	.05500	109	.19395	407	.72420
7		.0600	.0700	.06500	64	.11388	471	.83808
8		.0700	.0800	.07500	40	.07117	511	.90925
9		.0800	.0900	.08500	22	.03915	533	.94840
10		.0900	.1000	.09500	7	.01246	540	.96085
11		.1000	.1100	.10500	7	.01246	547	.97331
12		.1100	.1200	.11500	4	.00712	551	.98043
13		.1200	.1300	.12500	2	.00356	553	.98399
14		.1300	.1400	.13500	4	.00712	557	.99110
15		.1400	.1500	.14500	1	.00178	558	.99288
16		.1500	.1600	.15500	1	.00178	559	.99466
17		.1600	.1700	.16500	2	.00356	561	.99822
18		.1700	.1800	.17500	0	.00000	561	.99822
19		.1800	.1900	.18500	0	.00000	561	.99822
20		.1900	.2000	.19500	1	.00178	562	1.00000
21		.2000	.2100	.20500	0	.00000	562	1.00000
22		.2100	.2200	.21500	0	.00000	562	1.00000
23		.2200	.2300	.22500	0	.00000	562	1.00000
24		.2300	.2400	.23500	0	.00000	562	1.00000
above		.2400			0	.00000	562	1.00000
	Mea	an = 0.0	586299	Standard	Deviation =	0.0220373	Median = 0	0.05

к (%)

Relative Frequency

Frequency Tabulation for Molybdenum

Class	Lower Limit	Upper Limit	Midpoint	Frequency	Relative Frequency	Cumulative Frequency	Cum. Rel. Frequency
at 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 above	or below 500 .500 1.500 2.500 3.500 4.500 5.500 6.500 7.500 8.500 9.500 10.500 11.500 12.500 13.500 14.500 15.500 16.500 17.500 18.500 20.500	500 .500 1.500 2.500 3.500 4.500 5.500 7.500 8.500 9.500 10.500 11.500 12.500 13.500 14.500 15.500 16.500 17.500 18.500 19.500 20.500	.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00	$\begin{array}{c} 0\\ 0\\ 446\\ 84\\ 27\\ 4\\ 0\\ 0\\ 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$.00000 .00000 .79359 .14947 .04804 .00712 .00000	$\begin{array}{c} 0\\ 0\\ 446\\ 530\\ 557\\ 561\\ 561\\ 561\\ 562\\ 562\\ 562\\ 562\\ 562\\ 562\\ 562\\ 562$.000 .000 .794 .943 .991 .998 .998 .998 .998 .998 .998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
	Mean =	1.27758	Standard	Deviation =	0.627216	 Median = 1	

Frequency Tabulation for Nickel

Class	Lower Limit	Upper Limit	Midpoint	Frequency	Relative Frequency	Cumulative Frequency	Cum. Rel. Frequency
at	or below	.00					
1	.00	1.00	. 500	Ă	.00000	0	.00000
2	1.00	2 00	1 500	er O	.00712	4	.00712
3	2 00	3 00	2 500	16	.01001	13	.02313
4	3 00	4.00	2.500	10	.02847	29	.05160
5	4 00	4.00	3.500	18	.03203	47	.08363
5	4.00	5.00	4.500	32	.05694	79	.14057
- -	5.00	0.00	5.500	32	.05694	111	.19751
<i>'</i>	6.00	7.00	6.500	29	.05160	140	.24911
8	7.00	8.00	7.500	39	.06940	179	.31851
9	8.00	9.00	8.500	32	.05694	211	.37544
10	9.00	10.00	9.500	56	.09964	267	.47509
11	10.00	11.00	10.500	52	.09253	319	.56762
12	11.00	12.00	11.500	43	.07651	362	.64413
13	12.00	13.00	12.500	26	.04626	388	.69039
14	13.00	14.00	13.500	32	.05694	420	.74733
15	14.00	15.00	14.500	31	.05516	451	.80249
16	15.00	16.00	15.500	24	.04270	475	.84520
17	16.00	17.00	16.500	15	.02669	490	87189
18	17.00	18.00	17.500	21	.03737	511	90925
19	18.00	19.00	18,500		00890	516	01015
20	19.00	20.00	19.500	1	00178	517	01002
21	20.00	21.00	20.500	11	01057	520	.91995
22	21 00	22 00	21 500	1	.01937	520	.93950
23	22.00	22.00	22,500	4	.00712	532	.94662
24	22.00	21.00	22.500	4	.00712	536	.953/4
25	23.00	24.00	23.500	2	.00178	537	.95552
20	24.00	25.00	24.500	3	.00534	540	.96085
20	25.00	20.00	25,500	Z	.00356	542	.96441
27	26.00	27.00	26.500	2	.00356	544	.96797
20	27.00	28.00	27.500	1	.00178	545	.96975
29	28.00	29.00	28.500	1	.00178	546	.97153
30	29.00	30.00	29.500	3	.00534	549	.97687
31	30.00	31.00	30.500	2	.00356	551	.98043
32	31.00	32.00	31.500	2	.00356	553	.98399
33	32.00	33.00	32.500	0	.00000	553	.98399
34	33.00	34.00	33.500	0	.00000	553	.98399
35	34.00	35.00	34.500	3	.00534	556	.98932
36	35.00	36.00	35.500	0	.00000	556	,98932
37	36.00	37.00	36.500	1	.00178	557	.99110
38	37.00	38.00	37.500	0	.00000	557	.99110
39	38.00	39.00	38,500	2	.00356	559	99466
40	39.00	40.00	39,500	0	. 00000	559	99466
41	40.00	41.00	40.500	1	00178	560	99611
42	41 00	42 00	41 500	<u>_</u>	00000	560	. 59044
43	42 00	43 00	42 500	0	.00000	500	.99044
44	43.00	43.00	42.500	0	.00000	560	.99644
45	40,00	44.00	43.500	0	.00000	560	.99644
46	45 00	46.00	44,000	0	.00000	500	.99644
40	46 00	40.00	45.500	U A	.00000	560	.99644
4/ 10	40.00	47.00	40.000	U	.00000	560	.99644
40	47.00	48.00	47.500	U	.00000	560	.99644
49	48.00	49.00	48.500	0	.00000	560	.99644
,50	49.00	50.00	49.500	1	.00178	561	.99822
above	50.00			1	.00178	562	1.00000
	·						

Mean = 11.7117

Standard Deviation = 6.63557

Median = 11

Ni (ppm)

Frequency Tabulation for Lead

Class	Lower Limit	Upper Limit	Midpoint	Frequency	Relative Frequency	Cumulative Frequency	Cum. Rel. Frequency
at	or below	.00		0	.00000		
Ţ	.00	2.00	1.00	5	.00890	Š	.00000
2	2.00	4.00	3.00	2	.00356	7	.00090
3	4.00	6.00	5.00	2	.00356	ģ	01601
4	6.00	8.00	7.00	5	.00890	14	02/01
5	8.00	10.00	9.00	11	.01957	25	01110
6	10.00	12.00	11.00	9	.01601	34	06050
	12.00	14.00	13.00	18	.03203	52	09253
8	14.00	16.00	15.00	29	.05160	81	.14413
30	16.00	18.00	17.00	45	.08007	126	22420
11	18.00	20.00	19.00	65	.11566	191	33986
10	20.00	22.00	21.00	58	.10320	249	44306
12	22.00	24.00	23.00	55	.09786	304	.54093
12	24.00	26.00	25.00	38	.06762	342	.60854
14	26.00	28.00	27.00	51	.09075	393	. 69929
15	28.00	30.00	29.00	47	.08363	440	.78292
10	30.00	32.00	31.00	27	.04804	467	-83096
1/	32.00	34.00	33.00	18	.03203	485	86299
10	34.00	36.00	35.00	19	.03381	504	- 89680
19	36.00	38.00	37.00	18	.03203	522	. 92883
20	38.00	40.00	39.00	6	.01068	528	. 93950
21	40.00	42.00	41.00	5	.00890	533	.94840
22	42.00	44.00	43.00	4	.00712	537	.95552
23	44.00	46.00	45.00	4	.00712	541	.96263
24	46.00	48.00	47.00	4	.00712	545	.96975
25	48.00	50.00	49.00	1	.00178	546	.97153
26	50.00	52.00	51.00	2	.00356	548	.97509
27	52.00	54.00	53.00	4	.00712	552	.98221
28	54.00	56.00	55.00	3	.00534	555	.98754
29	56.00	58.00	57.00	1	.00178	556	.98932
20 21	58.00	60.00	59.00	1	.00178	557	.99110
37 32	60.00	62.00	61.00	0	.00000	557	.99110
22 22	62.00	64.00	63.00	1	.00178	558	.99288
22	64,00	66.00	65.00	0	.00000	558	.99288
54 55	66.00	68.00	67.00	0	.00000	558	.99288
30 36	88.00	70.00	69.00	0	.00000	558	.99288
20	70.00	72.00	71.00	0	.00000	558	.99288
20	72.00	74.00	73.00	0	.00000	558	.99288
20 20	74.00	76.00	75.00	0	.00000	558	.99288
39 40	76.00	78.00	77.00	1	.00178	559	.99466
40	78.00	80.00	79.00	1	.00178	560	.99644
41 40	80.00	82.00	81.00	0	.00000	560	.99644
42	82.00	84.00	83.00	0	.00000	560	.99644
4.5	84.00	86.00	85.00	2	.00356	562	1.00000
44	86.00	88.00	87.00	0	.00000	562	1.00000
45	88.00	90.00	89.00	0	.00000	562	1.00000
40 47	90.00 92.00	92.00	91.00	0	.00000	562	1.00000
1 Q	92.00	94.00	93.00	0	.00000	562	1.00000
70 70	94.00	96.00	95.00	0	.00000	562	1.00000
マフ 50	90.00	98.00	97.00	0	.00000	562	1.00000
000	90.00 100 00	100.00	99.00	0	.00000	562	1.00000
				0	.00000	562	1.00000
	Mean =	25.1655	Standard	Deviation =	10.5122	Median = 24	

Frequency Histogram for Lead

Pb (ppm)

Frequency Tabulation for Antimony

Class	Lower Limit	Upper Limit	Midpoint	Frequency	Relative Frequency	Cumulative Frequency	Cum. Rel. Frequency
at	or below	500			.00000	 0	.000
1	500	.500	.00	0	.00000	0	.000
2	.500	1.500	1.00	312	.55516	312	.555
3	1.500	2.500	2.00	45	.08007	357	.635
4	2.500	3.500	3.00	40	.07117	397	.706
5	3.500	4.500	4.00	28	.04982	425	.756
6	4.500	5.500	5.00	11	.01957	436	.776
7	5.500	6.500	6.00	11	.01957	447	.795
8	6.500	7.500	7.00	12	.02135	459	.817
9	7.500	8.500	8.00	5	.00890	464	.826
10	8.500	9.500	9.00	5	.00890	469	.835
11	9.500	10.500	10.00	4	.00712	473	.842
12	10.500	11.500	11.00	5	.00890	478	.851
13	11.500	12.500	12.00	5	.00890	483	.859
14	12.500	13.500	13.00	10	.01779	493	.877
15	13.500	14.500	14.00	4	.00712	497	.884
16	14.500	15.500	15.00	6	.01068	503	.895
17	15.500	16.500	16.00	6	.01068	509	.906
18	16.500	17.500	17.00	11	.01957	520	.925
19	17.500	18.500	18.00	10	.01779	530	.943
20	18.500	19.500	19.00	7	.01246	537	.956
21	19.500	20.500	20.00	8	.01423	545	.970
22	20.500	21.500	21.00	3	.00534	548	.975
23	21.500	22.500	22.00	0	.00000	548	.975
24	22.500	23.500	23.00	1	.00178	549	.977
25	23.500	24.500	24.00	4	.00712	553	.984
26	24.500	25.500	25.00	1	.00178	554	.986
27	25.500	26.500	26.00	2	.00356	556	.989
28	26.500	27.500	27.00	2	.00356	558	.993
29	27.500	28.500	28.00	2	.00356	560	.996
30	28.500	29.500	29.00	1	.00178	561	. 998
31	29.500	30.500	30.00	1	.00178	562	1.000
above	30.500			0	.00000	562	1.000
		4.51779	Standard	d Deviation	= 6.25431	Median = 1	

Frequency Histogram for Antimony

Frequency Tabulation for Zinc

Class	Lower Limit	Upper Limit	Midpoint	Frequency	Relative Frequency	Cumulative Frequency	Cum. Rel. Frequency
at	or below	.00		0	.00000	 0	
1	.00	4.00	2.00	0	.00000	0	.00000
2	4.00	8.00	6.00	0	.00000	Ō	.00000
3	8.00	12.00	10.00	0	.00000	Ō	.00000
4	12.00	16.00	14.00	0	.00000	Ō	.00000
5	16.00	20.00	18.00	0	.00000	, Ö	.00000
6	20.00	24.00	22.00	2	.00356	2	.00356
7	24.00	28.00	26.00	2	.00356	4	.00712
8	28.00	32.00	30.00	2	.00356	6	.01068
9	32.00	36.00	34.00	4	.00712	10	.01779
10	36.00	40.00	38.00	1	.00178	11	.01957
11	40.00	44.00	42.00	3	.00534	14	.02491
12	44.00	48.00	46.00	3	.00534	17	.03025
13	48.00	52.00	50.00	7	.01246	24	.04270
14	52.00	56.00	54.00	10	.01779	34	.06050
15	56.00	60.00	58.00	14	.02491	48	.08541
16	60.00	64.00	62.00	17	.03025	65	.11566
17	64.00	68.00	66.00	27	.04804	92	.16370
18	68.00	72.00	70.00	25	.04448	117	.20819
19	72.00	76.00	74.00	55	.09786	172	.30605
20	76.00	80.00	78.00	36	.06406	208	.37011
21	80.00	84.00	82.00	46	.08185	254	.45196
22	84.00	88.00	86.00	23	.04093	277	.49288
23	88.00	92.00	90.00	40	.07117	317	.56406
24	92.00	96.00	94.00	38	.06762	355	.63167
25	96.00	100.00	98.00	37	.06584	392	.69751
26	100.00	104.00	102.00	28	.04982	420	.74733
27	104.00	108.00	106.00	23	.04093	443	.78826
28	108.00	112.00	110.00	15	.02669	458	.81495
29	112.00	116.00	114.00	24	.04270	482	.85765
30	116.00	120.00	118.00	16	.02847	498	.88612
31	120.00	124.00	122.00	11	.01957	509	.90569
32	124.00	128.00	126.00	4	.00712	513	.91281
33	128.00	132.00	130.00	5	.00890	518	.92171
34	132.00	136.00	134.00	7	.01246	525	.93416
35	136.00	140.00	138.00	3	.00534	528	.93950
36	140.00	144.00	142.00	6	.01068	534	.95018
37	144.00	148.00	146.00	3	.00534	537	.95552
38	148.00	152.00	150.00	7	.01246	544	.96797
39	152.00	156.00	154.00	3	.00534	547	.97331
40	156.00	160.00	158.00	1	.00178	548	.97509
41	160.00	164.00	162.00	1	.00178	549	.97687
42	164.00	168.00	166.00	0	.00000	549	.97687
43	168.00	172.00	170.00	4	.00712	553	.98399
44	172.00	176.00	174.00	1	.00178	554	.98577
45	176.00	180.00	178.00	0	.00000	554	.98577
46	180.00	184.00	182.00	2	.00356	556	.98932
47	184.00	188.00	186.00	1	.00178	557	.99110
48	188.00	192.00	190.00	0	.00000	557	.99110
49	192.00	196.00	194.00	0	.00000	557	.99110
50	196.00	200.00	198.00	1	.00178	558	.99288
above	200.00			4	.00712	562	1.00000
	Mean =	92.1192	Standard	Deviation =	= 29.9563	Median = 89	

Zn (ppm)

ICP DATA

• •

. - _

10-10

.

Д-4.

.

·ENVIRONMENTS LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

Quality Assaying for over 25 Years

Assay Certificate

Company:MR. STEVE BELLProject:HOPEAttn:Steve Bell

We hereby certify the following Assay of 1 ROCK samples submitted AUG-21-97 by STEVE BELL.

Sample Number		Au-fire g/tonne	
R20325N	44400E	.01	

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C., CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C., CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Certified by

MIN-EN LABORATORIES

7S-0240-RA1

Date: SEP-02-97

OMP: MR. STEVE BELL ROJ: HOPE TTN: Steve Bell		MI 8282 T	N-EN SHERBROO EL:(604)3	LABS - KE ST., V 27-3436	ANCOUVE	P REP R, B.C. 04)327-3	ORT V5X 4E8 423			FILE	NO: 7S-0 DATE: 9 * (ACT	0240-R. 97/09/0 :ICP 31
SAMPLE NUMBER	AG PPM	AS PPM	8A PPM	CD PPM	CU PPM	FE %	K %	MO PPM	N I PPM	PB PPM	SB PPM	ZN
R20325N 44400E	.4	18	59	.1	16	3.85	.13	2	3	17	2	62
												<u></u>
	·						<u> </u>					

(

(

 \bigcirc

)														. •)		
COMP: MR. STEVE BELL PROJ: HOPE ATTN: STEVE BELL									MIN 8282 TE	1 – EN Sherbi 1 : (604	Г ЦД ROOKE 4)327	ABS 5 ST., 7-3430	, VANC 5 FA	ICP OUVER	RE , B.C 4)327	SPOF . v5x -3423	RT 4E8										FIL	E NO: DA * *	7S-0 TE: 9 (A	158-RJ1 7/07/31 CT:F31)
SAMPLE	AG	AL	AS	BA	BE	BI	CA %	CD PPM	CÔ PPM	CR	CU	FE %	GA PPM	K %	LI	MG %	MN PPM	MO	NA % F	NI PM PP	P PB M PPM	SB I PPM	SN PPM	SR PPM	TH PPM	T1 % P	U V PM PPM	/ W 1 PPM	ZN A PPM	u-wet PPB
NUMBER R 20000N 45100E	.1	.33	218	382	.5	1	2.24	.1	16	98	20	1.77	1	.22	1	.49	1087	1	.03	3 57	0 56	5 1	1	43	1	.01	1 5.4	. 3	94	20
							. <u> </u>	<u>-</u>						<u>_</u>							<u></u>									
																														
																												<u>.</u> .		
																											_			
								<u> </u>																						
														-																
											_,																			

COMP: MR. STEVE BELL PROJ: HOPE ATTN: Steve Bell

MIN-EN LABS ---- ICP REPORT 8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423

FILE NO: 7S-0330-SJ1 DATE: 97/10/24 * * (ACT:ICP 31)

SAMPLE NUMBER	AG PPM	AS PPM	BA PPM	CD PPM	CU PPM	FE %	K %	MO PPM	N I PPM	PB PPM	SB PPM	ZN PPM	Au-fire PPM
HOPE 1	.9	14	365	.5	57	2.72	.08	1	11	17	1	110	
HOPE 2	.4	10	271	.4	30	3.53	07	1	11	17	1	110	
HOPE 3	.3	12	197	.3	24	3.81	07	1	11	22		107	
HOPE 4	.6	12	334	2	37	3.62	11	1	14	10	1	400	
HOPE 5	.3	13	391	.2	43	3.58	.09	1	14	14	1	108	1
HOPE 6	.6	10	316	.3	17	4 41	.06	1	14	10	1	114	
HOPE 7	1.3	17	668	.4	13	6.06	.06	2	12	13	1	178	

 COMP: MR STEVE BELL
 MIN-EN LABS
 ICP REPORT
 FILE NO: 7S-0142-SJ1+2

 PROJ: HOPE
 8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8
 DATE: 97/07/21

 ATTN: STEVE BELL
 TEL:(604)327-3436
 FAX:(604)327-3423
 * * (ACT:F31)

SAMPLE	AG	AS	BA	CD	CU	FE	K	MO	NI	PB	SB	ZN
NUMBER	PPM	PPM	PPM	PPM	PPM	<u></u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	PPM	7547	22M	PPM	PPM
5500E 18000N	.1	13	57 264	1.2	12 34	4.02	.05	1	14	48	1	128
5500E 18200N		12	351	1.0	26	4.14	.03	1	9	31	1	93
5500E 18300N	.1	5	340	1.4	35	3.86	.09	1	15	29	1	103
5500E 18400N	1	9	342	1.0	40	4.12	.09	1	14	32	1	105
5500E 18500N	.1	11	181	1.1	20	3.78	.05	1	13	26	1	95
5500E 18600N	.1	15	281	1.0	20	5.85	.05	1	13	20	1	100
5500E 18700N	.1	3	184	.9	16	2.91	.05	i	10	21	i	82
45500E 18900N	.1	6	344	1.4	37	4.57	.08	1	16	38	1	103
45500E 19000N	.1	22	151	.8	20	3.32	.05	1	11	20	1	75
5500E 19100N	.1	5	172	1.0	13	3.06	.05	1	8 17	17 33	1	64 05
5500E 19185N	1.1	1	429	1.5	20	3.15	-04	1	4	18	ź	57
45500E 19200N	.1	4	324	1.2	25	3.82	.07	1	13	32	1	98
5500E 19400N		4	156	1.0	10	2.91	.06	1	4	19	1	67
5500E 19500N	1	5	146	1.0	13	3.56	.06	1	6	26	1	73
5500E 19600N	-1	8	100	1.0	17	3.63	.06	1	5	24	1	75 53
45500E 19700N	1 .1	1 25	94 880	1.5	15 52	2.54 6.72	.05	3	18	38	3	86
15500E 19800N	2.1		2007	0	17	3 05		1	5	16	1	65
45500E 19900N		7	140	.o 1.9	13	5.63	.04	i	5	21	3	109
45600E 18000N		37	113	.7	12	5.35	.04	1	3	12	5	70
45600E 18500N	1	13	196	.9	20	3.54	.05	1	10	27	1	74
45600E 19000N	.1	1	145	1.2	13	5.01	.07			- 27		
45600E 19100N	-1	14	139	.9	27	4.4/	-00- 00	1	12	20	3	92
45600E 19200N	-1	18	183	-5	27	3.88	.06	1	15	17	1	89
45600E 19300N	.1	11	150	.3	14	3.74	.05	1	9	19	1	70
45600E 19500N	_1	19	286	.3	14	3.91	.04	1	6	19	2	121
5600E 19600N	.1	21	106	1.2	17	3.67	.06	1	9	20	1	76
5600E 19700N	.1	1	54	.7	6 21	2.71	-04 05	1	7	23	1	75
45600E 19800N	.1	19	273	.0	15	3.04	.06	1	8	20	1	89
45600E 20000N	1	4	135	1.1	15	3.48	.08	1	4	21	5	74
45700E 18000N	.1	18	109	1.2	19	5.88	.04	1	10	23	3	105
45700E 18100N	.9	32	251	.5	48	4.32	.05	1	12	25	4	105
45700E 18200N	1	23	302	.9	51 18	4.25	-07	1	9	24	3	94
45700E 18500N 45700E 18400N	.1	20	294	1.3	38	4.10	.12	i	18	33	1	115
45700E 18500M		13	213	4.5	19	3.87	.06	1	12	28	1	101
45700E 18600N	.2	15	496	4.2	33	4.73	.09	2	21	35	4	103
45700E 18700N	.1	15	145	.6	19	3.51	-05	1	11	25	1 1	02 55
45700E 18800N	.1	2	87 273	5. ۵۵	у 19	2.40 3.99	.10	1	10	27	4	74
45700E 16900N	- 1		12/	4.0	21	3 70	.07	1	10	27	2	78
45700E 19000N 45700E 19100N	.1	10	123	.5	29	4.06	.06	1	12	27	3	96
45700E 19200N	.1	18	107	.7	20	3.97	.07	1	11	17	1	92
						<u>.</u>						

MIN-EN LABS — ICP REPORT 8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423

FILE NO: 7S-0142-SJ3+4 DATE: 97/07/21 * * (ACT:F31)

SAMPLE	AG PPM	AS PPM	BA PPM	CD PPM	CU	FE %	K	MO		РВ	SB DDM	ZN
45700E 19300N 45700E 19400N 45700E 19500N 45700E 19600N 45700E 19600N 45700E 19700N	.1 .6 .1 .1	18 26 4 13 18	289 276 808 150 203	.8 .3 2.4 1.2 .1	29 30 79 17 19	4.15 4.47 4.34 3.57 3.71	.07 .06 .17 .04 .04	1 1 1 1 1 1	11 12 21 8 11	22 24 54 23 26	2 2 1 5 4	123 87 146 84 92
45700E 19800N 45700E 19900N 45700E 20000N 45800E 18000N 45800E 18100N	.1 .1 .7 .1 .1	12 17 12 16 22	117 110 462 90 172	1.0 1.0 .6 1.4 1.2	12 14 10 17 28	3.59 3.60 2.84 3.68 4.60	.05 .05 .07 .03 .05	1 1 1 1 1	6 6 12 13	21 21 23 24 33	4 1 1 3 5	104 82 78 81 121
45800E 18200N 45800E 18300N 45800E 18400N 45800E 18400N 45800E 18500N	.1 .1 .1 .1 .1	17 13 11 17 22	302 249 240 188 166	.9 .9 1.0 .6 1.0	30 37 19 16 23	3.89 4.03 3.33 3.43 4.44	.07 .06 .05 .05 .07	1 1 1 1	10 10 7 7 11	28 23 22 20 29	3 4 2 2 4	93 79 69 81 111
45800E 18700N 45800E 18800N 45800E 18900N 45800E 19000N 45800E 19100N	.1 .1 .1 .1 .1	16 18 5 9 17	221 119 143 91 112	1.0 .5 .5 .1 .8	28 14 18 14 21	3.62 3.42 3.53 3.26 3.92	.07 .06 .06 .06 .05	1 1 1 1	13 11 10 6 12	30 21 28 31 30	6 1 2 1 4	105 73 108 76 87
45800E 19200N 45800E 19300N 45800E 19400N 45800E 19400N 45800E 19500N 45800E 19600N	.1 .1 .1 .1	13 20 27 9 17	106 242 150 352 168	1.0 1.4 1.0 1.3 3.4	21 32 25 23 15	4.41 4.15 3.81 4.49 3.72	.05 .07 .06 .06 .04	1 1 1 1	11 15 14 20 9	26 23 22 34 25	4 2 3 3 3 3	97 99 95 103 98
45800E 19700N 45800E 19800N 45800E 19900N 45800E 20000N 45900E 18000N	.1 .1 .1 .1 .1	31 23 35 20 15	154 114 78 51 151	3.1 3.4 1.1 .3 .7	16 21 13 4 30	3.28 3.98 3.98 2.47 4.24	.05 .04 .04 .05 .05	1 1 1 1	10 9 5 1 16	17 27 23 6 34	1 5 4 4 2	74 112 91 22 99
45900E 18100N 45900E 18200N 45900E 18300N 45900E 18300N 45900E 18400N 45900E 18500N	.1 .1 .1 .1 .1	19 12 33 13 16	304 80 264 250 173	.6 1.1 1.0 1.4 1.7	43 9 21 35 20	3.84 3.34 4.52 3.86 3.96	.06 .02 .04 .05 .04	1 1 1 1	14 6 13 10 10	25 24 30 36 29	1 6 3 3 3	88 62 123 89 99
45900E 18600N 45900E 18700N 45900E 18700N 45900E 18800N 45900E 18900N 45900E 19000N	.1 .5 .1 .1 .1	20 1 19 15 9	145 866 252 150 108	1.0 4.0 .5 .3 1.5	17 69 18 10 23	4.08 4.65 3.03 3.10 4.50	.04 .11 .06 .07 .06	1 3 1 1 1	10 39 8 6 9	27 85 20 26 30	4 4 1 1 4	101 143 80 60 104
45900E 19100N 45900E 19200N 45900E 19300N 45900E 19300N 45900E 19400N 45900E 19500N	.1 .1 .1 .1 .1	7 6 18 24 19	143 119 478 231 320	.3 1.0 .9 .5 .9	33 19 32 24 20	4.61 4.36 4.27 4.04 4.02	.04 .07 .06 .05 .06	1 1 1 1 1	18 13 17 18 10	44 29 28 24 27	1 1 5 2	94 104 87 98 72
45900E 19600N 45900E 19700N 45900E 19800N	.1 .1 .1	20 14 21	272 246 110	.6 1.2 .7	15 21 16	3.59 3.31 3.81	.05 .05 .04	1 1 1	10 10 10	23 23 24	1 1 2	90 67 94

.

MIN-EN LABS --- ICP REPORT 8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423

FILE NO: 7S-0142-SJ5+6 DATE: 97/07/21 * * (ACT:F31)

SAMPLE NUMBER	AG PPM	AS PPM	BA PPM	CD PPM	CU PPM	FE %	к %	MO PPM	NI PPM	PB PPM	SB PPM	ZN PPM
45900E 19900N 45900E 20000N 46000E 18000N 46000E 18100N	.1 .1 .1 .1	8 18 6 13	180 108 152 93	.6 .2 .9 .8	20 58 24 17	4.18 3.78 4.33 4.25	.05 .03 .03 .03	1 1 1 1	11 10 14 10	24 28 28 33	3 3 3 3	115 97 110 103
6000E 18200N 6000E 18225N 6000E 18300N	1 	21 7 16	116 568 109	1.3 1.4 .7	16 48 23	5.81 3.81 3.86	.03 .08 .05	2 1 1	5 18 12	16 37 25	4 1 1	9 12 7
6000E 18375N 6000E 18400N 6000E 18500N	.1 .1 .1	11 8 1	456 240 574	.7 .7 1.1	31 31 29	3.81 3.67 3.10	.07 .04 .06	1 1 1	11 10 7	28 21 20	1 1 2	10 7 15
5000E 18600N 5000E 18700N 5000E 18800N 5000E 18900N 5000E 19000N	.1 .1 .1 .1	15 16 12 18 7	329 250 234 102 146	.7 .7 .3 .6 .4	36 29 25 16 15	4.49 4.26 4.16 3.54 3.36	.04 .05 .07 .05 .05	2 1 1 1 1	15 11 12 10 8	33 19 29 20 24	4 2 1 1 1	8 10 7 6 9
6000E 19100N 6000E 19200N 6000E 19200N 6000E 19300N 6000E 19400N	.1 .1 .1 .1 .1	18 24 15 3 23	61 162 98 675 167	.8 .5 1.0 1.9	33 20 23 90 22	4.78 3.79 4.32 4.13 3.41	.05 .05 .05 .09 .05	1 1 1 2 1	18 13 10 31 12	21 25 22 43 16	1 1 3 4 1	10 7 10 11
6000E 19600N 6000E 19600N 6000E 19700N 6000E 19800N 6000E 19900N 6000E 20000N	.1 .2 .1 .2 .1	20 5 14 6 76	179 55 405 307 166	1.0 .2 .9 .7	19 18 32 24 7	5.21 2.11 4.17 3.65 4.45	.06 .03 .06 .08 .05	2 1 1 1 1	6 2 15 10 1	24 7 29 26 11	6 6 5 1 1	1
									.			
		· · · · · · · · · · · · · · · · · · ·										
					. <u> </u>							

•

MIN-EN LABS — ICP REPORT 8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423

FILE NO: 7S-0158-SJ1+2 DATE: 97/07/31 * * (ACT:F31)

SAMPLE	AG PPM	AS PPM	BA PPM	CD PPM	CU PPM	FE %	К %	MO PPM	NI PPM	PB PPM	SB PPM	ZN PPM
44800E 19000N 44800E 19100N 44800E 19200N	.1 .1 .6	24 1 1	151 453 647	.4 2.3 2.3	21 74 31	3.88 4.57 4.24	.05 .08 .08	1 3 2	10 17 16	22 50 37	1 1 1	76 142 116
44800E 19300N 44800E 19400N	.1 .1	7 6	181 121	.6 .9	11 11	3.20	.05	1 1	6 4	14 16	1	67 55
44800E 19500N 44800E 19600N 44800E 19700N 44800E 19700N	.2 .1 .1	14 8 9	173 167 132 77	.9 .6 .7	25 20 10 13	3.44 2.97 2.73 3.63	.06 .06 .06	1 1 1 1	6 7 3 4	21 24 19 23	1 1 1 1	66 75 51 66
44800E 19800N 44800E 19900N	.4	1	506	1.5	45	2.87	.07	<u>i</u>	7	28	<u>i</u>	79
44800E 20000N 44900E 19000N 44900E 19100N 44900E 19200N	.1 .1 .5	1 6 9 1	93 277 272 614	1.3 1.1 1.3 1.3	13 21 23 37	4.44 4.06 5.07 5.15	.03 .03 .04 .14	2 2 2 2	6 12 17 14	40 28 38 47	1 1 1 1	102 84 143 111
44900E 19300N 44900E 19400N 44900E 19500N 44900E 19500N	.1 .1 .2	4 5 12 1	234 139 174 234	.8 .9 .8	10 15 12 27	2.84 3.09 2.94 2.43	.05 .06 .04 .08	1 1 1	5 5 3	22 16 29	1 1 1	73 64 46
44900E 19700N 44900F 19800N	.1	12 7	77 99	.6 1.2	11 19	3.02 3.80	-05 .04	1 1	4 5	20 22	1 1	49 90
44900E 19900N 44900E 20000N 45000E 19900N 45000E 19100N 45000E 19100N	.1 .6 .3 .3	3 1 9 1	90 433 290 192 136	1.5 2.1 1.0 1.7	13 50 14 31 25	3.95 4.65 3.27 5.28 5.02	.07 .11 .05 .05	2 3 1 2 1	4 15 12 24 10	23 53 29 47 27	1 1 1 1	74 169 84 185 119
45000E 19200N 45000E 19300N 45000E 19400N 45000E 19500N 45000E 19600N	.1 .1 .1 .1 .1	1 9 6 4	433 137 175 84 154	1.5 1.6 1.2 1.1	32 26 36 13 12	3.69 4.39 3.52 2.08 3.05	.08 .05 .08 .05 .06	2 2 1 1 1	14 6 7 3 4	30 25 28 18 28	1 1 1 1 1	113 81 102 42 64
45000E 19700N 45000E 19800N 45000E 19900N 45000E 20000N 45100E 19000N 45100E 19100N	.1 .1 1.1 .1	12 5 1 4 15	95 57 1075 163 161	1.1 1.1 2.5 1.6	13 3 136 18 14	3.92 2.48 4.03 4.02 3.20	.05 .03 .14 .03 .04	1 1 2 2 1	2 1 16 15 7	12 11 51 40 17	3 2 1 1 1	65 36 151 116 53
45100E 19100N 45100E 19200N 45100E 19300N 45100E 19400N 45100E 19500N 45100E 19500N	.1 .4 .4 .1 .1	16 7 5 2 4	122 351 227 214 130	.8 1.1 1.1 .9 1.0	22 25 29 18 25	3.85 3.35 2.60 3.24 3.17	.05 .06 .05 .05 .04	1 1 1 1 1	8 10 8 7 5	21 21 20 24 20	1 1 1 1 1	74 74 79 85 61
45100E 19700N 45100E 19800N 45100E 19800N 45100E 19900N 45100E 20000N 45200E 18000N	.1 .1 .1 .1	7 7 23 1 12	126 84 220 275 67	.9 1.3 1.2 .7 .5	7 23 14 15 7	2.88 4.20 5.07 1.38 2.47	.05 .04 .03 .03 .03	2 1 2 1 1	6 3 5 1 4	8 19 3 9 9	4 4 3 2	78 60 109 23 36
45200E 18300N 45200E 18200N 45200E 18300N	1.1 .1 .1	1 4 4	597 141 123	.7 1.4 .8	153 27 20	4.04 4.27 3.05	.20 .06 .05	1 1 1	22 14 6	46 38 28	1 1 1	113 118 72
												<u> </u>
						10.m.,,						
	1											

MIN-EN LABS — ICP REPORT 8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423

•

FILE NO: 7S-0158-SJ3+4 DATE: 97/07/31 * * (ACT:F31)

SAMPLE	AG	AS	BA	CD PPM	CU	FE %	K %	MÖ PPM	N I PPM	PB PPM	SB	ZN
45200E 18400N 45200E 18500N 45200E 18600N	.1 .1 .1	12 18 1	102 226 362	1.3	21 39 27	4.58 4.05 3.34	.03 .03 .05	2 1 1	11 8 13	26 16 20	1 1 1	106 93 99
45200E 18700N 45200E 18750N	.1	14 6	186 100	.8 1.2	50 22	3.85 3.94	.05	1	10 8	18 23	1	83 78
45200E 18800N 45200E 18900N 45200E 19000N	.1 .1 .1	7 2 9	71 111 111	1.5 .9 1.4	21 29 35	4.49 4.63 3.98	.04 .04 .05	2 2 1	6 15 14	22 26 27	2 1 1	82 118 96
45200E 19100N 45200E 19125N	.1	12 13	210 139	1.1 1.2	31 30	3.38	.05	1	17	22 28	1	94 84
45200E 19150N 45200E 19200N 45200E 19300N	.1 .4 .5	10 1 1	130 746 430	.4 .7 1.6	13 45 26 70	2.94 4.51 2.99	.04 .10 .07	1 1 1	9 30 13 3	13 36 35	1 1 1	61 115 97
45200E 19400N 45200E 19500N	.1	1	137	.6	12	2.75	.04	1	4	16	1	60
45200E 19600N 45200E 19700N 45200E 19800N 45200E 19900N	.1 .1 .1	10 19 1 1	102 80 394 348	.6 .7 1.6 1.0	37 15 38 17	3.42 3.13 3.44 3.30	.05 .05 .08 .05	1 1 1 1	2 3 10 9	19 13 32 28	1 1 3 1	61 57 92 73
45200E 20000N 45300E 18000N 45300E 18100N 45300E 18200N	.1 .1 .2	1 16 10 2	126 108 409 97	1.0 .8 .4 .8	23 11 37 22	3.45 3.37 3.92 3.60	.04 .04 .06 .05	1 1 1 1	6 5 11 6	23 18 24 20	1 2 1 1	73 54 103 66
45300E 18300N 45300E 18400N	.1	1	196 221	.7 1.1	27 32	3.79 3.62	.06	1	7 9	16 33	1 1	79 77
45300E 18500N 45300E 18600N 45300E 18700N 45300E 18800N	.1 .1 .1 .1	15 10 14 18	318 312 254 177	.6 .1 .1 .6	29 18 25 23	3.58 3.51 3.03 4.17	.05 .05 .05 .05	1 1 1 1	12 11 10 14	20 20 20 21	1 1 1 1	94 92 70 96
45300E 18900N 45300E 19000N 45300E 19100N 45300E 19200N 45300E 19300N	.1 .1 .3 .6	16 1 4 1 1	357 310 590 501		36 24 37 25	3.74 3.58 4.45 3.07	.07 .06 .08 .08	1 1 1 1	16 12 32 11	30 25 46 35	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	102 78 125 91
45300E 19400N 45300E 19500N 45300E 19600N 45300E 19700N 45300E 19800N	.1 .8 .1 .1	1 1 5 8 13	243 511 82 160 80	.2 1.2 .5 .9	21 60 22 31 14	3.06 4.87 3.61 3.72 3.74	.07 .17 .05 .05 .04	1 2 1 1 1	12 4 7 5	64 19 22 19	1 1 1 1 1	138 83 82 72
45300E 19900N 45300E 20000N 45400E 18000N 45400E 18100N	.1 .2 .1 .1	11 11 29 7	250 295 115 328	4 1.2 	20 15 21 46	3.16 3.10 5.70 3.18 7.22	.05 .05 .03 .05	1 1 3 1	6 6 12 10	16 16 23 27 26	1 1 3 1 1	70 57 78 71 99
45400E 18200N 45400E 18300N	.6	13	305	.5	35	4.30	.07	2	12	35	2	116
45400E 18400N 45400E 18500N 45400E 18600N	.1 .1 .1	12 7 15	125 364 176	.1 .7 1.1	23 22 32	3.52 3.21 4.49	.05 .05 .04	1 1 2	7 13 14	24 31 26	1 1 1	64 96 108
											<u></u>	
		- _										

7 - N

MIN-EN LABS — ICP REPORT 8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423

.

•

FILE NO: 7S-0158-SJ5 DATE: 97/07/31 * * (ACT:F31)

SAMPLE NUMBER	AG PPM	AS PPM	BA PPM	CD PPM	CU PPM	FE %	К %	MO PPM	NI PPM	PB PPM	S8 PPM	ZN
45400E 18700N	.1	28	209	.1	19	3.70	.05	1	11	21	1	100
45400E 18900N	.1	18	204	.8 .4	21	3.13 3.74	.04	1	9 13	17 22	1	67 03
45400E 19000N 45400E 19100N	.1 3 1	15	110 586	.5	24	3.82	.05	1	12	22	i	76
45400E 19200N	- 1	14	213	7	24	3 58	.05		10	33	1	
45400E 19300N	.1	6	418	.4	48	3.48	.07	i	18	32	1	100
45400E 19400N 45400E 19500N	.1	15	2 <i>37</i> 188	1.0 .8	23 16	3.13 3.05	.07 .05	1	8 8	28 22	1	92 67
45400E 19600N	.1	10	145	.6	22	2.97	.04	1	3	13	1	43
45400E 19700N 45400E 19800N	.1	17 20	216 00	1.5	43 17	6.06 4.25	.07	1	5	16	2	215
45400E 19900N	.1	20	386	.9	30	3.66	.06	1	6	21	1	112
45600E 18100N	.1	13	143 131	1.0 .3	22 33	3.82 3.69	.05	1 1	7 12	26 30	1 1	65 92
45600E 18200N	.4	17	251	1.8	26	5.26	.03	1	16	37	2	89
45600E 18300N 45600E 18400N	1 1	15 4	169 326	1.0 1.1	23 14	3.80	.04 05	1	14	29 10	1	82 75
45600E 18600N	.1	16	205	.3	35	3.11	04	1	11	17	1	71
45600E 18700N	.1	20	150	.4	16	3.44		1	11	19	1	68
45600E 18900N	.1	22	210	.2	26	2.96	.05	1	10	19	1 1	77
				<u> </u>							<u></u>	
	•											
1												

MIN-EN LABS — ICP REPORT 8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423

,

FILE NO: 7S-0175-SJ1+2 DATE: 97/08/06 * * (ACT:F31)

						-					•	
SAMPLE NUMBER	AG PPM	AS PPM	BA PPM	CD PPM	CU PPM	FE %	K %	MO PPM	NI PPM	PB PPM	SB PPM	ZN PPM
44600E 18000N	.1	13	346	1.0	26	3.77	.06	1	11	27	1	101
44600E 18100N	.1	10	419	.9	30	4.09	.07	1	18	41	1	124
44600E 18200N	.1	21	85	1.1	21	5.05	.03	1	11	31	1	93
44600E 18300N	.]	21	123	.5	28	4.20	.05	1	14	33	1	82
44000E 18400N		2	115	[.]	20	4.00	.00	1	11	30	1	98
44600E 18500N	.2	1	248	3.4	45	5.13	.08	4	28	79	1	229
44600E 18600N	.2	11	91	1.7	27	4.60	.05	1	12	51 60	1	87
44000E 10700N		5	100	.y z o	20	4 22	.04	1	21	20	ו ג	135
44600E 18900N	.3	4	162	4.4	18	4.34	.06	ż	12	34	3	102
44400E 10000H	z	1	27/	1.7	79	/ R/	06	7	27	57	2	114
44600E 19000N 44600E 19100N		21	234	4.2	27	4.49	.00	2	14	32	3	103
44600E 19200N	4	13	320	4.0	30	3.95	.06	1	13	22	4	119
44600E 19300N	.5	3	447	3.8	28	4.06	.09	1	17	42	1	124
44600E 19400N	_4	17	177	3.4	22	3.12	.06	2	8	21	7	58
44600E 19500N	.4	10	184	4.3	24	4.17	.06	2	9	38	6	75
44600E 19600N	.8	1	583	4.9	32	3.32	.11	2	16	52	2	116
44600E 19700N	.4	5	220	3.5	15	3.22	.06	1	9	29	3	87
44600E 19800N	.5	22	128	3.4	20	3.73	.06	2	8	25	4	87
44600E 19900N	.5	1	226	4.5	29	4.26	-06	2	15	45	1	106
44600E 20000N	_4	19	136	3.7	29	5.28	.05	2	7	30	7	97
44700E 18000N	.5	1	421	4.3	29	3.85	-09	1	17	39	4	95
44700E 18100N	.4	19	209	3.5	24	4.41	.04	1	14	37	3	105
44700E 18200N		2	123	3.7 T	20	4.92	20.	2	19	20	0	90 7/
44700E 18300N	• 1		1.50		20							
44700E 18400N	-]	1	118	.2	11	5.45	.05	1	5	1/	1	81
44700E 18500N		1	292	• / 2	11	4 82	. 15	1	۲۵ ۱۸	00 60	1	104
44700E 18000N		1	156	.7	28	3.93	.08	1	8	22	1	83
44700E 18800N	1 .1	10	204	.3	21	3.90	.06	1	14	25	1	86
// 700E 18000N	1	7	373	1.0	33	4 28	06	1	18	35	1	84
44700E 19700N	.1	1	396	-8	32	4.95	_08	1	19	46	1	133
44700E 19100N	.1	8	233	.3	22	4.50	.05	1	10	27	1	105
44700E 19200N	.1	7	231	-1	19	4.75	.05	1	8	26	1	98
44700E 19300N	1	3	244	.4	19	3.45	.06	11	7	14	1	73
44700E 19400N	.1	1	280	.5	17	3.27	.06	1	. 5	19	1	56
44700E 19500N	.1	4	223	.6	28	3.44	.08	1	5	18	1	73
44700E 19600N	.1	6	298	1.3	31	4.00	.09	1	7	31	1	96
44700E 19700N	.2	3	370	.5	26	3.20	.10	1	9	28	1	95
44700E 19800N	. 1	1	100	•>	19	3.94	.07			22	<u>ا</u>	
44700E 19900N	.1	6	96	.7	19	4.88	.05	1	6	20	1	97
44700E 20000N	.1	1	129	.8	14	4.58	.05	1	5	19	1	97
44800E 18000N	.1	1	210	1.0	21	5.70	.00 00	1	10	32	1	104
44800E 18100N 44800F 18200N	1 .1	4	151	.9	25	4.41	.06	1	16	31	i	95
44000E 10200N		· ·	200	4 7		7 (5	04			10		97
44800E 18300N	.1	2	200	1.5	19	3.07 707	80. 80	1	12	21	1	75
44800E 18400N	-1	ँ	361	1.2	86	4.17	.10	1	17	29	:	89
440002 105000		5	201				•••	·	••		-	
	1											
	1											
· · · · · · · · · · · · · · · · · · ·	<u> </u>											
	1											
	1											

(

÷

MIN-EN LABS — ICP REPORT 8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423

FILE NO: 7S-0175-SJ3+4 DATE: 97/08/06 * * (ACT:F31)

CANDIE											· · ·	
NUMBER	AG PPM	AS PPM	BA PPM	CD PPM	CU PPM	FE %	к %	MO PPM	NI PPM	PB PPM	SB PPM	ZN PPM
44800E 18600N	.1	14	239	.6	35	4.46	.03	1	15	31	1	89
44800E 18700N	.1	7 10	139	.4	20	4.05	.06	1	6	15	1	76
44800E 18900N	.1	19	197	1.0	25	3.88	.06	1	10	27	1	136 92
44900E 18000N		11	192	.3	34	3.62	.06	1	9	21	1	81
44900E 18100N	.1	6	269	.6	20	3.83	.06	1	10	28	1	99
44900E 18200N	.1	14 24	199 184	.6	18 23	4.05	.05	1	12	28 20	1	111
44900E 18400N	.1	36	154	.2	26	4.02	.06	i	11	22	i	90
44900E 18500N	.1	22	160	.4	27	3.95	.06	1	11	28	1	82
44900E 18600N	.1 1	1 26	355 257	.7	40 17	4.55	-09 05	1	16	38	1	138
44900E 18800N	.1	12	373	.7	74	4.99	.12	i	14	38	1	141
44900E 18900N	.1	3	347	-6	34	3.66	-08	1	11	24	1	87
45000E 18000N	· • • •		221	-1	22	4.41	.05	1	<u> </u>	26	1	91
45000E 18200N	.1	16	391	.1	21 34	5.45 4.41	.05	1	9 16	21	1	114
45000E 18300N	.1	18	248	.9	31	4.25	.07	i	14	29	i	122
45000E 18400N	.1 1	23	199 130	-9 8	25 35	4.45	.06 04	1	15	29 30	1	116
45000F 18600N		32	200		24	3.81	.07	······	12	18	1	- 105
45000E 18700N	.1	11	225	.3	24	3.44	.06	i	7	19	1	77
45000E 18800N	-1	19	175	.4	21	3.72	.07	1	12	22	1	81
45100E 18900N	.1	10	123	.o .1	20	3.86	.08	1	9	28 29	1	96 82
45100E 18100N	.1	14	126	.2	25	4.79	.04	1	8	34	1	90
45100E 18200N	-1	25	196	-6	26	4.91	.05	1	12	34	1	107
45100E 18400N	.1	21	194	.1	20	3.96	.05	1	12	29	1	98
45100E 18500N	.1	14	147	.2	27	4.14	-06	1	15	26	1	94
45100E 18600N	-1	26	166	.1	30	4.34	.05	1	15	28	1	78
45100E 18700N	.1	20 29	405	.1	50 40	4.52	.05	1	12 23	25 38	1 1	84 146
45100E 18900N	.1	28	225	.2	33	4.43	.05	1	16	32	1	94
				· ···•								

			TEL:(RBROOKE S		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	DATE: 9	97/08/ Act:F3				
SAMPLE NUMBER	AG PPM	AS PPM	BA PPM	CD PPM	CU PPM	FE %	K %	MO PPM	NI PPM	PB PPM	SB PPM	ZN PPM
τ-1	1.1	10	714	.9	57	3.02	.09	1	14	24	1	90
				<u> </u>					·			
						- 18						
			 _ /									

•

÷

 $\widehat{}$

 $\sum_{i=1}^{n} e^{i i i i}$

 $\sum_{i=1}^{n} \sum_{j=1}^{n} (i - j) = \sum_{i=1}^{n} (i - j) = \sum_{i=1}^$

COMP: MR. STEVE BELL PROJ: ATTN: Steve Bell

MIN-EN LABS --- ICP REPORT 8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423

FILE NO: 7S-0193-SJ1+2 DATE: 97/08/14 * * (ACT:F31)

.

SAMPLE NUMBER	AG PPM	AS PPM	BA PPM	CD PPM	CU PPM	FE X	K X	MO PPM	NI PPM	PB PPM	SB PPM	ZN PPM
17400N 44700E 17400N 44800E 17400N 44900E 17400N 45000E 17400N 45100E	.1 .1 .1 .1	16 20 15 1 13	135 87 125 458 96	.3 .3 .5 1.1 .1	19 14 28 30 27	4.97 5.16 5.47 3.84 4.83	.04 .04 .03 .05 .06	1 1 1 1	8 3 3 10 11	24 13 19 33 30	1 1 2 1 1 1	90 64 112 140
17400N 45200E 17400N 45300E 17400N 45400E 17500N 44700E 17500N 44800E	1.1 .1 2.0 .1 .1	6 17 1 10 10	229 278 415 76 82	.1 .1 .1 .1	31 56 25 19 25	4.19 4.98 1.91 4.65 4.66	.05 .06 .05 .05 .05	1 1 1 1 1	10 25 3 7 8	27 41 22 33 33	1 1 1 1 1	80 113 50 89 104
17500N 44900E 17500N 45000E 17500N 45100E 17500N 45200E 17500N 45300E	.1 .4 .1 .1	4 1 19 6 38	183 464 94 260 140	.3 1.1 .3 1.2 .1	21 21 34 38 37	3.69 4.22 5.27 5.30 4.49	.06 .08 .03 .05 .05	1 1 1 1 1	8 19 10 12 8	23 41 34 35 28	1 1 1 1	86 151 90 107 78
17500N 45400E 46100E 18500N 46100E 18600N 46100E 18700N 46100E 18700N	.1 .1 .1 .1 .1	9 19 14 10 3	262 126 172 146 234	.5 .4 .4 .1 .5	22 24 25 22 30	4.18 3.63 4.28 3.08 4.11	.05 .05 .03 .05 .05	1 1 1 1	10 11 15 11 10	22 17 24 20 27	1 1 1 1 1	89 76 88 66 111
46100E 18900N 46100E 19000N 46100E 19100N 46100E 19100N 46100E 19200N 46100E 19300N	.1 .1 .1 .1 .1	26 11 24 29 13	191 217 326 188 499	.7 .3 .1 .1 .8	24 24 28 29 66	4.91 3.13 4.29 4.24 6.03	.04 .05 .05 .05 .12	1 1 1 1	11 10 18 17 31	19 16 25 19 40	1 1 1 1 1	116 73 116 90 142
46100E 19400N 46100E 19500N 46200E 18500N 46200E 18600N 46200E 18650N	.1 .2 .1 .1 .1	33 7 17 22 30	289 - 675 213 130 129	.4 1.1 .7 1.0 .8	42 55 27 23 30	5.05 4.68 3.36 5.39 4.80	.06 .11 .06 .04 .04	1 1 1 1	17 22 14 12 13	19 37 25 20 23	1 1 1 1	115 142 83 172 97
46200E 18700N 46200E 18750N 46200E 18800N 46200E 18850N 46200E 18900N	.1 .1 .1 .1 .1	28 15 25 39 5	64 119 92 120 212	.7 .1 1.1 .6 .8	18 28 41 37 42	4.33 3.85 5.78 6.05 3.97	.05 .06 .05 .03 .07	1 1 1 1	12 15 35 25 21	13 15 10 16 29	1 1 3 2 1	66 73 156 152 106
46200E 19000N 46200E 19100N 46200E 19200N 46200E 19300N 46200E 19400N	.1 .1 .1 .1	1 20 3 22 17	415 156 264 222 235	1.4 .9 .4 .4 .7	54 43 28 20 45	3.81 4.43 3.44 3.75 4.27	-08 -05 -07 -05 -07	1 1 1 1 1	17 10 21 9 18	31 20 24 10 29	1 1 1 1 1	106 110 87 101 100
46200E 19500N 46300E 18500N 46300E 18600N 46300E 18600N 46300E 18700N 46300E 18800N	.1 .1 .1 .1	17 25 1 1 10	174 251 88 180 112	.7 .7 .4 1.1 .9	17 44 10 36 14	3.34 3.79 4.01 3.70 3.41	.04 .08 .10 .07 .04	1 1 1 1 1	8 17 18 16 6	16 22 20 30 22	1 1 1 1	72 94 62 116 119
46300E 18900N 46300E 19000N 46300E 19100N	.1 .1 .1	21 26 - 8	161 338 352	.7 .7 .8	27 42 38	3.60 4.97 3.94	.06 .08 .08	1 1 1	17 32 14	25 32 29	1 1 1	87 110 114

COMP: MR. STEVE BELL PROJ:

ATTN: Steve Bell

MIN-EN LABS --- ICP REPORT 8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423

FILE NO: 7S-0193-SJ3+4+5 DATE: 97/08/14 * * (ACT:F31)

•

SAMPLE NUMBER	AG PPM	AS PPM	BA PPM	CD PPM	CU PPM	FE %	K %	MO PPM	N I PPM	PB PPM	SB PPM	ZN PPM
46300E 19200N 46300E 19300N	.1 .1	23 20	131 166	1.0	33 20	4.33 4.10	.05	1	15 14	20 19	1	83 92
46300E 19400N 46300E 19500N 46400E 18500N	.4 .1 .1	1 22 10	1099 452 335	2.8 1.4 1.2	70 40 40	4.53 4.65 3.67	.14 .08 .08	2 1 1	27 25 16	56 38 21	1 1 1	151 135 99
46400E 18600N 46400E 18700N	.4	1 39	228 133	.1 1.2	29 26	4.92	.08	1	54 18	56 21	1 2	101 153
46400E 18800N 46400E 18900N 46400E 19000N	.1 .1 .1	14 33 76	135 172	1.3 1.0 .6	14 42 28	4.33 5.24 6.12	.07 .04 .04	1	14 22 41	28 21 30	1 2 1	75 118 174
46400E 19100N 46400E 19200N	.1	- 14 14	138 105	1.7	30 28	3.92 4.41	.05	1	11 13	24 27	1	88 103
46400E 19300N 46400E 19400N 46400E 19500N	.1 .1 .1	26 23 17	120 118 147	1.2 .8	25 21 23	5.09 3.84 3.54	.04 .05 .05	1 1 1	13 10 9	16 20 19	1 1 1	105 82 87
46500E 18700N 46500E 18750N	.1 .1	18 9	179 168	1.3	25 35	4.62	.04 .05	1	17 23	25 26	1	112 109
46500E 18800N 46500E 18850N 46500E 18900N	.1 .1 .1	16 21	145 101 166	1.3 .9 1.5	14 15 28	3.20 2.85 4.17	.03 .06	1 1	8 6 14	14 13 23	1 1	82 59 118
46500E 18950N 46500E 19000N	.1 .1	20 4	240 235	1.6	30 14	3.77	.05	1	22 15	27 22	1	97 84
46500E 19050N 46600E 18025N 46600E 18800N	.0 .1 .1	14 26 48	415 164 242	2.3 .9 .1	68 24 32	5.14 4.39 4.77	.06 .09	1 1 1	50 14 21	44 19 11	1	89 100
46600E 18850N 46600E 18900N	.1	34 19	71 163	.1	16 22	3.87 3.10	.05 .04	1	11 13	4 17	1	75 67
46600E 19000N 46600E 19050N 46600E 19100N	.1	50 18 28	175 163 55	.2 .2 .1	24 25 14	3.97 3.18 4.13	-08 -04 -03	1 1	21 15 5	28 18 8	1	74 76
46600E 19150N 46600E 19200N	.1	32 28	111 143	- 1 - 1	40 20	3.86	.04 .04	1	9 17	14 16	1 1 7	83 98
46600E 19250N 46600E 19300N 46600E 19350N	.1 .1 .1	31 26	70 71 115	.1 .5	24 27	4.03 3.69	.03 .06	1	15 10	5 17	3 1	126 124 92
46600E 19400N 46600E 19500N	.1	51 24 21	160 157 270	.7 .4	27 19 21	6.88 3.66	.05	2 1	26 19	1 19 18	6 1	134 86 78
46700E 18900N 46700E 19000N 46700E 19050N	. 1 .1 .1	21 21 37	229 142	.4 .1 .7	32 30	3.75 5.21	.05 .04	1 2	13 15	23 24	1 5	83 119
46700E 19100N 46700E 19150N	.1	21 25	131 129	.1	25 28 27	3.26	_04 _04	1	13 9	17 10	1 3 1	69 73 92
46700E 19200N 46700E 19250N 46700E 19300N	.1	13 31	198 33	- 1 - 1 - 1	23 30 62	3.52 3.17	.05 .04	1	26 2	23 1	2	83 47
46700E 19350N 46700E 19400N	.1	29 23	108 249 218	.1 .1	25 21 71	3.82 3.70	.04 .05	1 1 1	10 14 30	17 18 11	2 2 1	73 107 118
46700E 19475N 46700E 19500N 46750E 19300N	.1	7 28	188 171	1.0 .8	33 42	3.60 3.82	.04	1 1	15 15	18 13	1	77
46750E 19400N 46800E 19000N	.1 .1	20 20	233 290	.8 .9	42 34	3.63 3.85	.05 .09	1 1	16 15	16 24	1 1	98 96

•

1

COMP: MR. STEVE BELL PROJ: HOPE

ATTN: STEVE BELL

 MIN-EN LABS
 ICP REPORT
 FILE NO: 7s-0221-SJ1+2

 8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8
 DATE: 97/08/22

 TEL:(604)327-3436
 FAX:(604)327-3423

SAMPLE NUMBER	AG PPM	AS PPM	BA PPM	CD PPM	CU PPM	FE %	К %	MO PPM	NI PPM	PB PPM	SB PPM	ZN PPM
44200E 19000N 44200E 19100N 44200E 19200N	.1	1 2 1	289 372 184	.4 .1	26 34 21	4.40 4.34 3.80	.08 .12 .07	1 2 2	11 16 10	36 38 32	23 24 24	170 117 93
44200E 19300N 44200E 19400N	.3	1 6	94 124	.1 .1	9 24	2.42 4.18	.07 .09	2	2 8	21 36	17 27	33 92
44200E 19500N 44200E 19600N 44200E 19700N 44200E 19800N	.4 .1 .1	1 1 1	620 90 110 176	1.1 .1 .1	45 16 15 18	4.18 3.93 3.65 2.91	.16 .07 .07	2 2 1 2	11 5 5	47 31 30 39	28 24 20 28	118 75 75 61
44200E 19900N	.2	1	165	.1	17	3.53	.06	1	8	32	20	83
44200E 20000N 44300E 19000N 44300E 19100N 44300E 19200N 44300E 19300N	.1 .4 .4 .1	7 6 49 5 1	80 279 354 227 97	.1 .1 .2 .1 .1	15 23 28 21 21	4.16 4.69 4.05 4.17 4.26	.06 .06 .05 .08 .06	1 2 2 1 2	7 16 8 12 7	28 36 25 30 35	24 29 21 20 27	82 132 105 105 75
44300E 19400N 44300E 19500N 44300E 19500N 44300E 19600N 44300E 19700N 44300E 19800N	.1 .4 .1 .1	2 1 1 1 9	231 422 78 95 118	.1 .3 .2 .1	15 49 11 13 22	3.14 4.38 2.65 3.33 4.00	.09 .15 .07 .06 .06	1 3 1 1	4 11 2 4 9	24 53 23 27 29	15 30 15 20 18	80 132 49 60 83
44300E 19900N 44300E 19900N 44400E 20000N 44400E 19000N 44400E 19100N 44400F 19200N	.3 .1 .1 .3 .1	1 9 1 1 11	146 96 327 313 284	.1 .1 .1 .1 .1 1.1	11 14 29 36 24	2.67 3.71 4.41 4.23 4.01	.06 .05 .09 .08 .07	1 1 1 1 1	4 6 14 18 11	22 25 32 35 29	16 17 20 26 14	54 80 108 102 94
44400E 19300N 44400E 19400N 44400E 19500N 44400E 19500N 44400E 19700N	.1 .1 .1 .1 .1 .1	20 18 10 12 1	205 139 214 143 99	.7 .2 .4 1.0 1.1	21 16 21 14 11	3.98 3.20 3.73 3.61 3.64	.09 .06 .05 .06 .05	1 1 1 2 2	8 4 6 5 2	26 18 22 23 21	17 9 13 17 19	96 63 53 72 58
44400E 19800N 44400E 19900N 44400E 20000N 44500E 19000N 44500E 19100N	.1 .1 .1 .1 .1	1 11 7 1 18	114 70 235 159 345	.9 1.2 1.0 .9 1.1	18 14 37 23 24	3.73 4.75 3.84 4.28 4.26	.06 .05 .07 .06 .07	2 2 1 1 1	5 3 12 13 13	31 18 35 32 29	20 19 16 18 13	72 71 99 85 99
44500E 19200N 44500E 19300N 44500E 19400N 44500E 19400N 44500E 19600N	.1 .1 .1 .1 .1	2 9 16 11 6	271 344 124 262 220	.8 .9 .7 .5	30 34 23 16 15	3.76 3.94 4.49 3.04 3.51	.07 .10 .04 .06 .06	1 1 2 1 1	12 11 7 3 5	30 30 36 19 19	15 15 25 9 8	89 107 104 57 68
44500E 19700N 44500E 19800N 44500E 19900N 44500E 20000N 46500E 18000N	-1 -1 -1 -1 -1 -1	2 20 16 4 4	208 99 106 88 126	.5 .6 .3 1.2 .5	24 19 16 16 20	3.83 5.43 3.97 4.23 3.41	.08 .04 .04 .04 .04	1 2 2 1	9 3 5 5 10	26 20 24 25 25	13 20 18 18 13	83 94 93 128 65
46500E 18100N 46500E 18200N 46500E 18300N	.1 .1 .1	36 41 13	43 163 233	.1 .7 1.1	26 28 33	4.85 5.94 4.41	.04 .07 .08	2 3 1	13 16 19	8 1 17	16 14 15	83 71 94
											<u>,,</u>	
1	1											

COMP: MR. STEVE BELL PROJ: HOPE

ATTN: STEVE BELL

 MIN-EN LABS
 ICP REPORT
 FILE NO: 7S-0221-SJ3+4

 8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8
 DATE: 97/08/22

 TEL:(604)327-3436
 FAX:(604)327-3423

* SOIL * (ACT:F31)

SAMPLE NUMBER	AG PPM	AS PPM	BA PPM	CD PPM	CU PPM	FE %	К %	MO PPM	NI PPM	PB PPM	SB PPM	ZN PPM
46500E 18400N 46500E 18500N 46500E 19050N 46500E 19075N	.1 .1 .1	33 5 39 11	105 240 166 3 95	.1 .3 .6 1.2	33 36 45 33	4.28 3.82 6.01 4.61	.03 .07 .06 .09	2 1 3 2	15 21 30 29	17 23 20 36	15 8 21 19	84 98 182 149
46500E 19100N 46500E 19150N 46500E 19200N 46500E 19250N 46500E 19250N	.1 .1 .1 .1	34 20 13 17 22	112 222 201 179 154	.1 .1 .1 .1	40 29 27 37 24	5.03 4.56 3.85 4.34 4.62	.04 .07 .05 .07	2 1 1 3	18 18 21 35 23	17 28 19 29 29	17 19 12 14 19	118 115 115 116 130
46500E 19300N 46500E 19315N	.1	6	331	.4 .1	40	4.62	.05	2	50	38	17	135
46500E 19350N 46500E 19400N 46600E 18000N 46600E 18050N 46600E 18100N	.1 .1 .1 .1	8 35 37 39	97 114 110 337 66	.5 .1 1.3 .1 .5	24 17 37 57 52	5.03 3.43 5.52 6.45 4.22	.05 .05 .08 .11 .09	1 7 3 2	18 7 12 21 15	23 25 1 1 27	18 13 10 12	77 120 80 115
46600E 18200N 46600E 18300N 46600E 18400N 46600E 18500N 46600E 18600N	.1 .1 .1 .9 .1	7 24 20 1 14	231 88 128 545 145	.8 1.1 .5 .5	44 26 24 55 23	4.05 4.49 4.25 3.82 3.83	.11 .04 .04 .14 .04	1 2 1 1	18 8 10 21 11	12 15 19 56 23	12 19 18 26 18	69 92 99 121 74
46700E 18000N 46700E 18100N 46700E 18200N 46700E 18300N 46700E 18300N	.1 .1 .1 .1 .3	25 12 8 16 1	54 300 257 318 216	.7 .6 .2 .6 .1	18 31 25 25 24	4.00 3.76 3.57 3.87 3.47	-07 -10 -07 -04 -06	3 2 1 1 2	4 12 12 9 11	15 20 18 23 20	17 13 11 16 10	60 78 64 90 74
46700E 18500N 46700E 18600N 46700E 18700N 46700E 18750N 46700E 18750N 46700E 18800N	.3 .5 .4 .8 .5	2 1 1 1 1	168 187 112 189 155	.5 .4 .4 1.1 .5	15 12 23 27 34	2.95 2.51 4.10 3.49 4.06	.05 .04 .05 .06 .07	2 2 3 3 3	9 7 12 14 18	18 18 29 23 27	9 8 19 11 13	63 55 113 75 97
46800E 18000N 46800E 18100N 46800E 18200N 46800E 18300N 46800E 18400N	.4 .5 .5 .9 .9	1 1 1 1	94 541 108 126 217	1.0 .6 .3 .7 .9	26 21 18 19 20	3.74 3.75 3.75 3.18 3.24	-04 -06 -04 -05 -06	2 3 3 3 2	8 16 9 10 12	17 27 19 18 22	12 18 17 13 11	79 71 78 68 74
46800E 18500N 46800E 18550N 46800E 18600N 46800E 18650N 46800E 18700N	1.2 1.0 .7 1.3 1.0	1 4 1 1 1	274 181 148 326 171	-6 .4 1.3 .9 1.1	23 23 20 24 21	3.11 2.78 3.96 3.02 3.45	.06 .05 .04 .07 .05	3 3 4 2 3	13 8 10 11 11	23 17 21 21 21 21	13 11 17 11 13	72 52 82 69 76
46800E 18750N 46800E 18800N 46800E 18900N 46800E 19000N 46900E 18000N	1.5 .9 .8 .9 1.2	1 1 125 19 1	544 378 108 308 76	.9 .6 .1 .8 .9	37 46 20 29 18	3.43 4.04 3.62 4.86 3.22	.07 .06 .04 .06 .03	3 4 3 4 3	15 10 7 18 5	32 31 19 20 16	18 21 16 17 17	83 129 63 88 50
46900E 18100N 46900E 18200N 46900E 18300N	1.1 1.5 1.2	8 1 1	190 173 208	.6 1.7 .9	13 12 17	3.00 2.33 3.25	.04 .04 .07	3 3 3	7 4 8	17 18 19	14 16 18	60 37 65
												······································

MIN-EN LABS — ICP REPORT 8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423

FILE NO: 7S-0221-SJ5 DATE: 97/08/22 * SOIL * (ACT:F31)

SAMPLE	AG PPM	AS PPM	BA PPM	CD PPM	CU PPM	FE %	K %	MO	NI PPM	PB PPM	SB PPM	ZN PPM
46900E 18400N 46900E 18500N 46900E 18550N 46900E 18600N 46900E 18650N	.1 .1 .1 .1 .1	1 1 3 1 1	153 137 253 207 218	.5 .5 .1 .1 .1	17 13 14 15 16	2.91 3.09 2.74 3.03 3.19	.04 .04 .04 .05 .04	2 2 1 2 2	9 8 10 9 11	23 16 17 21 19	9 7 6 7 7	76 66 62 77 77
46900E 18700N 46900E 18800N 46900E 18900N 46900E 18900N 46900E 19000N 47000E 18000N	.1 .1 .1 .1 .1	1 3 1 1 1	384 254 154 348 137	.7 .2 .6 .1 .8	22 32 11 20 8	2.49 3.24 2.34 2.91 1.87	.05 .05 .04 .06 .04	2 2 1 1 2	5 10 8 11 5	20 22 19 21 13	10 7 6 7 8	93 66 50 67 32
47000E 18100N 47000E 18200N 47000E 18300N 47000E 18300N 47000E 18400N 47000E 18500N	.1 .1 .1 .1 .1	1 1 1 1 1	78 107 192 125 336	.5 .9 .5 .1 .3	7 8 12 14 24	1.94 3.16 2.90 3.08 3.38	.03 .04 .04 .04 .05	2 2 1 1 2	3 5 9 7 11	16 8 18 21 29	7 8 5 7 10	26 58 74 66 91
47000E 18600N 47000E 18700N 47000E 18800N 47000E 18800N 47000E 18900N 47000E 19000N	.1 .1 .1 .1	1 2 1 3 1	241 154 553 129 221	.4 .4 .5 .5 .1	16 15 47 15 14	2.81 3.43 4.01 3.43 2.94	.04 .04 .08 .04 .04	1 2 2 1	9 10 18 7 11	17 21 35 14 18	5 7 12 9 5	71 75 109 80 66
18700N 46650E 18700N 46750E 18800N 46725E	.1 .1 .1	7 1 1	213 448 376	.1 .1 .3	19 34 29	3.12 3.53 3.26	.05 .07 .08	2 1 1	11 14 13	18 27 27	6 7 6	77 84 82

COMP: MR. STEVE BELL PROJ: HOPE ATTN: Steve Bell MIN-EN LABS — ICP REPORT 8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423

FILE NO: 7S-0240-SJ1 DATE: 97/09/02 * * (ACT:ICP 31)

						,						
SAMPLE NUMBER	AG PPM	AS PPM	BA PPM	CD PPM	CU PPM	FE %	K %	MO PPM	NI PPM	PB PPM	SB PPM	ZN PPM
44200E 20100N 44200E 20200N 44200E 20300N 44200E 20300N	.1 .5 .4	19 18 20 7	138 391 81 129	.1 .4 .1	18 28 27	3.73 5.00 4.44 2.63	.05 .13 .07	1 1 1	16 35 12 6	14 19 30 9	2 4 4 2	93 326 115 47
44200E 20500N		16	115	.1	9	3.55	.05	1	11	13	2	75
44300E 20100N 44300E 20200N 44300E 20250N 44300E 20250N	.1 .1 .7 1.5	36 21 16 21	259 109 169 72	.1 .1 .1	22 17 11 10	5.11 3.84 3.69 4.29	.06 .04 .08 .05	1 1 1	21 19 16 8	17 9 11 78	4 3 2 3	136 81 172 198
44300E 20400N	.1	11	104	.1	9	3.21	.04	1	7	16	2	76
44300E 20500N 44400E 20100N 44400E 20200N 44400E 20300N 44400E 20325N	.1 .1 .1 3.1 .8	9 17 13 10 19	86 100 86 273 90	.1 .1 .2 .1	1 14 9 44 13	5.06 3.62 3.29 1.45 3.99	-08 -05 -06 -05 -05	1 1 1 1	3 16 10 8 10	16 10 12 37 41	2 1 3 2 3	79 82 79 33 103
44400E 20400N 44500E 20100N 44500E 20200N 44500E 20200N 44500E 20300N	1.3 .2 .1 .3	14 19 14 29	162 200 171 103	.1 .1 .1 .1	26 16 7 34	4.09 3.73 3.69 7.24	.06 .07 .04 .06	1 1 1 1	12 15 8 12 12	44 15 14 15 57	3 2 3 3 2	147 130 84 74 257
44500E 20500N T-2	.8 1.1	13 10	250 705	.1 .2	30 20	4.26 2.92	-06 -09	1	15 11	13 9	3	152 76
						- <u></u> ,	, <u></u>					
						- 1 - 1 - 1 - 1 - 1 - 1						

F F	COMP: MR.STEVE BELL PROJ: HOPE ATTN: Steve Bell		MI 8282 T	N-EN SHERBROO EL:(604)3	LABS - KE ST., V 27-3436	IC VANCOUVE FAX:(6	ORT 5x 4e8 23	FILE NO: 7S-0282-SJ1 DATE: 97/09/23 * * (ACT:ICP 31)					
	SAMPLE NUMBER	AG PPM	AS PPM	BA PPM	CD PPM	CU PPM	FE X	K %	MO PPM	NI PPM	PB PPM	SB PPM	ZN PPM
	44000E 20100N 44000E 20200N 44000E 20300N 44000E 20300N 44000E 20400N 44000E 20500N	.1 .1 .1 .1 .1	18 20 20 14 14	154 154 143 175 181	.1 .2 .1 .1 .1	6 12 8 2 2	3.72 4.31 4.17 3.81 3.64	.05 .07 .07 .07 .07	1 1 1 1	18 23 18 15 17	14 19 28 16 14	2 2 1 2 1	81 115 93 85 80
	44100E 20100N 44100E 20200N 44100E 20300N 44100E 20300N 44100E 20500N	.1 .4 .3 .1 .3	11 16 23 8 19	158 338 114 83 248	.2 .6 .1 .1 .1	4 19 2 1 8	3.47 4.68 4.25 3.84 4.07	.06 .12 .06 .04 .09	1 1 1 1	17 28 17 7 19	9 21 24 9 16	2 2 2 1 2	120 158 104 83 86
							<u></u> _ = = = = = =						
:													
									,				
								<u></u>					
							<u></u> ,						
										<u>.</u>			
-		-											
		<u> </u>		<u>, n</u>								. <u>, , , , ,</u>	
COMP: MR. STEVE BELL PROJ: HOPE

 $\left(\right)$

MIN-EN LABS --- ICP REPORT 8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423

FILE NO: 7S-0286-SJ1 DATE: 97/09/24

TIN: Steve Bell		Т	EL:(604)3	27-3436	FAX:(C	04)327-30	423				~ ~ (/	ACT:F31
SAMPLE NUMBER	AG PPM	AS PPM	BA PPM	CD PPM	CU PPM	FE %	K %	MO PPM	NI PPM	PB PPM	SB PPM	ZN PPM
44350E 20375N 44600E 20400N 44600E 20500N 44600E 20600N 44600E 20700N	.1 .7 .1 .1 .1	1 33 20 23 20	198 199 313 269 256	.3 .1 .1 .1 .3	23 26 31 22 20	3.44 4.28 4.75 4.27 4.87	.06 .08 .07 .07 .05	2 2 3 3 4	13 10 17 13 15	80 64 52 33 40	24 16 31 17 28	129 149 112 111 129
44700E 20400N 44700E 20500N 44700E 20600N 44700E 20700N	.1 .1 .1 .1	14 14 2 23	198 259 319 124	.1 .1 .6 .1	24 20 28 25	4.14 3.70 4.60 4.40	.07 .07 .08 .07	2 2 4 3	10 6 19 13	33 49 49 32	18 18 31 23	111 128 121 111
											_	
						· · · · · · · · · · · · ·				<u></u>		
1												

	13	N	COPPER GEOCHEMISTRY
	20,700 N	20 25	HOPE PROJECT
	17	22 28	meters
24 37	43	8 2 9 1 30 31 20	0 100 200 300 400 500
	30	1 2 3 9 23 26 12 26 24	3. FELL NOV. 1 1997 FIG. 2
		2 8 27 10 44 34 11 20	
	\frown	19 12 28 17 9 7	LEGEND
	57	4 6 19 22 14 16	GREATER THAN SI P.P.M. CU
	20,000 —	15 14 37 16 29 14 13 50 136 15 23 15 22 13 15 10 4 58 7	GEOLOGICAL SURVEY D
		17 11 14 16 20 19 45 13 3 14 17 20 30 13 15 14 13 20 34	ASSESSMENT REPOI
		18 22 18 19 20 10 13 19 13 23 38 14 17 52 21 12 21 16 32	25 5/
	,	15 13 11 24 15 26 10 11 12 7 15 31 43 15 6 19 16 21 18	C2,26
		16 11 14 15 32 31 00 27 13 25 37 22 22 17 17 17 15 15 19	
	19,500	45 49 21 16 24 28 25 12 36 19 12 60 15 13 14 79 23 20 22 55 17	
		24 15 16 23 22 17 11 15 26 29 32 21 23 10 14 30 25 24 30 44 44	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	۵	9 21 21 34 28 19 11 10 32 25 26 25 45 25 27 29 32 32 32 30 20 20 20 20 20 20 20 20 20 20 20 20 20	37 31 30
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20 40 29 38 30 40 14 25
	19.000	26 23 40 23 38 32 21 21 14 18 35 36 24 20 13 21 14 23 15 24 54	33 45 25 30 42 28 14 24 32,34,29 20 14
	19,000	19 33 25 34 26 33 10 19 21 37 26 19 18 10 16 24 40	30 27 42 28 22 21 20 11 15
		37 20 21 29 74 21 40 21 33 11 16 29 9 14 18 25 30 41	15 16 14 14 14 32,29,34 46 32 47
		22 59 28 20 17 24 30 50 25 10 31 16 19 28 69 39 22 13	35 37 36 36 25 19 23,34,21 22 15
		27 11 35 40 24 30 27 18 20 35 33 23 17 35 25 23	24 15 5 10 29 23 12 20 15 16
	18,500	45 61 85 27 35 27 39 29 20 20 19 15 20 29 24 27	14 14 40 36 55 15 23 13 24
		28 II 28 26 25 23 CI 32 C7 40 14 38 10 55 31 31	33 24 24 20 17 14
		28 28 19 23 31 26 20 27 35 35 23 18 37 21 03	33 26 25 19 17 12
		48 21 26 25 18 34 26 27 22 59 26 26 31 30 9 16	28 44 25 18 12 8
		$30 \ 24 \ 28 \ 20 \ 21 \ 25 \ (153) \ 37 \ 46 \ 34 \ 33 \ 48 \ 29 \ 4^2 \ 17$	$25\left(\begin{array}{c}52\\57\end{array}\right)$ 31 21 13 7
	18,000 N	ICE FLOW 83°	20 37 18 26 18 8
		4,500 5,000 5,000	2003; 0003;
	x		Ö E

•

•

	The Sector of Se						
	178			N		ZINC GEOCHEMI	STRY
	20,700 N		129 111	Ν		HOPE PRO	JECT
	95 106 108		111 121			meters	
		80 86 75 79 15	2 112 128			0 100 200 300	400 500
	107	\$5 83 47 76 147 25 129 103	7 149 111			S. BELL NOV. 1 1997	FIG. 3
		93 104 115 198 33 74 172 115 158 325 81 30 51		76	90		
	110	81 120 93 156 82 130	0			LEGEND	
	20,000	82 du 39 126	3 97 97 102/ 169 151	1 23 73 57 65 109	74 78 20 97 152	GREATER THAN 148 P.P.M. (ZN
		83 54 71 93	106 97 79 74 36	109 73 70 112 65	89 82 91 115 73		
		61 83 72 94	87 85 66 90 65	60 92 72 91 86	75 104 112 94 95		GEOLOGICAL SURVEY BRANCH
		75 60 58 83	87 95 51 49 64	78 57 d2 (215) 53	44 92 74 67 27		ASSO SEMILLE REPORT
		75 49 72 6b	116 96 75 46 42	61 61 83 43 75	76 84 98 90 154		25 560
	19,500	118 132 53 57	75 73 66 64 102	85 60 138 67 73	121 146 103 72 69 142	72 135 87 183 86 77	[2], 200
		33 75 96 107	58 56 55 73 81	79 55 101 92 67	70 87 95 98 117 115	100 151 82 77 134 107 ·	
14 ⁴ * .		93 105 94 89	119 98 116 111 119	74 117 125 20 57	89 123 99 87 108 142	101 92 105 130 124 47	
		117 105 102 99	103 105 142 143 185	53 9- 78 32 64	97 96 87 24 106 HE	87 83 103 115 98 92 	
	19,000	170 132 108 85	116 133 76 84 84	116 06 102 76 75	76 78 76 104 90 73	106 110 174 84 108 83 58 67	
			102 84 92 87 96	94 118 94 93 103	77 74 108 60 66 116	106 87 118 118 67 78 63 50	80
			01 06 136 141 81	146 82 96 67 82	75 55 73 80 79 111 (156) 119 75 82 100 97 129 66	109
			135 83 76 117 77	84 83 70 100 100 1	68 82 105 143 100 66	66 116 153 112 . 113. 76 93	75
			87 72 89 138 89	78 99 92 108 80	71 103 HI 101 86 88	172 62 101 74 55 82 77	71
	18,500		229 164 89 82 105	94 93 94 96 95	14 101 81 99 158 76	83 94 99 98 121 63 72 66	91
			82 74 83 85 122	98 106 77 64 105	75 115 69 89 70	84 99 74 74 76	66
		OPE	93 98 95 111 114	107 LLC 66 99 93	82 94 79 123 72	94 92 90 68 65	74
		NOWIN SE	124 105 121 99 77	90 113 103 71 128 9	92 103 121 88 103	71 69 64 78 37	58
	18,000 N	ICE FLOW 83	101 95 104 81 91	82 36 54 78 6 5 7	°0 105 81 99 110	65 120 60 79 50	26
		4 4	4				
		4,500 000	СО С	15,5 0	46,0C	46,50	47,00
	t	m	O	O	ŏ	õ	ŏ m
				an a		· · · · · · · · · · · · · · · · · · ·	

	13		Ν		LEAD GEOCHEI	MISTRY
	20,700 N	40 32	Ν		HOPE PROJEC	Т
	10	33 49			meters	
	22 19 14	14 16 13 15 13 52 49 1			0 100 200 300 400	500
	7	16 9 9 16 80 44 57 64 33			S.BELL NOV. 1 1997	FIG. 4
		28 24 30 78 37 15	Э	24		
	13	19 21 19 9 12 14			LEGEND	
	· · · · · · · · · · · · · · · · · · ·	14 9 14 17 10 15			GREATER THAN 44 P.P.M.	
	20,000	28 25 35 25 30 19 13 5	3 51 9 23 16 26 21	21 23 6 29 11		GEOLOGICAL SUR
		32 22 18 24 45 20 28 2	3 11 3 28 16 21 16	20 21 23 24 25		ASSESSMENT
		39 29 31 20 25 32 23 2:	2 10 19 32 19 22 31 0 00 0 17 00 10 17	23 21 27 24 29		ot c
		30 27 21 26 29 28 19 2		4 20 23 26 23 24		
	19500	47 53 22 19 38 18 21 1	6 28 24 16 64 22 26	19 (54) 34 27 16 37	16 38 19 44 19 19	
	10,000	35 24 18 36 21 19 16 21	2 25 20 9 27 28 19		29(55) 20 25 1 18	
		21 35 26 30 42 14 14 1	g 30 21 35 35 32 32	2 17 22 23 28 22 40	10 19 16 29 5 1	
4	ana ana amin'ny tanàna amin'ny tanàna amin'ny tanàna amin'ny tanàna amin'ny tanàna amin'ny tanàna amin'ny tanàn	32 30 29 30 22 26 37 4	7 27 21 36 45 24 18	20 17 26 29 25 13	24 20 27 19 16 19	
		39 25 35 29 32 27 50 3	B 47 17 22 25 33 17	28 27 30 44 21 25	20 29 24 17 8 17	
	19,000	36 36 32 32 53 46 22 2	8 29 40 27 30 22 20	29 27 6 30 24 15	: . 31 32 30 22 28 23 20 21 1	8
		. 34 35 27 2	4 28 32 26 30 22 38	8 19 27 10 26 20 19	29 25 21 23 17 18 19 19 14	4
		29 25 31 3	8 22 38 22 21 17 21	10 17 11 20 29 27	10 22 28 14 11 27 31 22 3	5
		60) 22 15 2	4 19 85 18 20 21 22	2 19 23 13 35 19 20	13 30 21 25 . 29, 21 20 2	1
		31 40 31 3	8 19 29 20 20 26 20	6 27 35 29 27 33 24	20 20 55 23 18 21 21 1	7
	18,500	79 85 17 2	8 30 26 16 22 31 20	5 17 28 20 2 9 20 17	25 22 21 23 55 18 23 16 2	9
		36 17 12 23	2 0.9 25 26 35 24 32	2 19 33 22 36 21	17 14 20 22 23 2	21
		33 29 7 2	9 29 29 28 16 35 29	9 20 24 23 30 37	17 15 23 18 19 1	8
		31 36 16 2	8 33 34 38 20 26 31	37 24 28 24 16	1 12 19 19 18 8	
		41 37 15 2	8 21 34 28 24 27 49	a) 30 25 33 25 33	8 27 20 27 17 1	5
	18,000 N	27 39 16 2	1 25 29 9 18 23 15 	6 12 23 24 34 08 I	25 i 15 17 16 1	3
		,000,000				

.

