Kennecott Canada Exploration Inc.

1997 GEOLOGICAL, GEOCHEMICAL, GEOPHYSICAL, AND DIAMOND DRILLING ASSESSMENT REPORT on the IRISHMAN CREEK OPTION

VOLUME 4

- PETROGRAPHIC REPORTS

- GRAVITY SURVEY PROCEDURES AND RAW DA

- BORE HOLE GEOPHYSICAL LOGGING PROCEDURES AND RESULTS
- UTEM SURVEY PROCEDURES AND RESULTS
- Prepared by: -

Kennecott Canada Exploration Inc.
354-200 Granville Street
Vancouver, British Columbia, Canada V6C 1 S4
Phone: (604) 669-1880

Fax: (604) 669-5255

- Auther -

Steven Coombes, P.Geo.

Date of report -

Appendix XI

Petrographic Reports

Kennecott Canada Exploration Inc. Irishman Creek Project - 1997

Samples for petrographic analysis

Sample	Drillhole	Northing	Easting	From	T0	Description
VR 74215	97K-02	5458840	564220	50.60	50.80	Sphalerite veinlet, lesser galena. Subvertical vein within unaltered biotite quartzwacke. Peripherally does not show albitization/sericite alteration. Ideas on origin (ie late Cretaceous/ remobilized Proterozoic).
VR 74217	97K-03	5457870	5568000	297.26	297.32	Coarse subhedral white crystal (flake), is this feldspar? If so, note that they typically occur uppermost in a bed/turbidite sequence and appear to be associated with proximal detrital input. This would likely provide for retention of immature mineralogy, such as feldspar and suggests an environment of increased activity.
VR 74218	97K-03	5457870	5568000	504.52	504.56	Presence of white garnet? This sample is near upper contact of sulfide intersection. Thoughts on galena, clast replacement?
VR 74244	97K-03	5457870	5568000	588.05	568.17	Fine subrounded sphalerite, possibly strataform yet appears concentrated on one side of mineralized fracture:is this primary or epigenetic?
VR 74245	97K-03	5457870	5568000	507.25	507.30	Massive sphalerite, lesser galena intercalated with albitized metasediment. Is this fragment brecciation or clast? Does microscopic view of sulfides show a lineation which may suggest a strataform emplacement, or any textural characteristics for genesis?
VR 75451	97K-04	5457720	567910	229.31	229.37	Dark gray-blue coloration, is this actinolite alteration or remnant bedding? Light green altered biotite to chlorite, or muscovite development as well?
VR 75460	97K-04	5457720	567910	492.15	492.35	Tourmaline, on upper and lower contact, is lower fracture-facilitated and migration path for upper contact? Is core silicic as well as albitic?
VR 75461	97K-04	5457720	567910	500.88	501.07	Very hard, dark gray to black, tourmaline? Bed replacement? Note clast enclosed in quartz, is this tourmaline? Upper and lower contacts are bed parallel.
VR 75478	97K-04	5457720	567910	645.09	645.24	Nature of mineralization? Observe pyrmotite and cotticule garnet (?) at base. Speculation on origin.
VR 75501	K97-03	5457870	5568000	60.12	60.20	Pink granules: garnet I assume or possibly k-spar? With albite/sericite fractures to what degree are they sericite? They are quite hard and appear to have a high albite component. Is matrix albitized or albitic/silicic?
VR 75502	K97-03	5457870	5568000	152.14	152.39	Submetallic, non-magnetic mineral: ilmenite or ??.

VR 75503	K97-02	5458640	564220	378.69	378.77	Coarse, subrounded dark gray fibrous to granular granules. They lack vitreous lustre, softness of biotite and decreased hardness often associated with alteration. MnO, actinolite?
VR 75506	K97-02	5458640	564220	660.99	661.09	Porphryoblastic biotite, pyrthotite occupies similar sized sites either with biotite or alone. Can this be a pseudomorphic development or is chemistry not relational?
VR 75507	K97-02	5458640	564220	86.78	86.82	PA-1: Prismatic, hardness approx. 5, non- calcareous, silky lustre. Is this actinolite? This was suggested and appears to be a common interpretation. However I am somewhat confused as it is frequently noted hundreds of metres from a mafic source along with "biotite-chlorite-albite- actinolite" alteration.
VR 75508	K97-02	5458640	564220	347.39	347.47	PA-2: Is this weak to moderate tourmalinization? It is atypically hard and displays somewhat diffuse as opposed to sharp contacts in the quartzwacke.
VR 75566	K97-04	5457720	567910	877.16	877.2	Strong albitization, mottled styolitic texture: is this remnant bedding, actinolite or fine-felted tourmaline? Tourmaline occurs 1.5m downsection.
VR 75568	K97-04	5457720	567910	898.38	898.44	Banded quartzitic wacke and wacke, wacke beds composed of felted acicular tourmaline as replacement to argillaceous sediment. Why is tourmaline so bed-selective and why does albitization not affect these beds? Thoughts on this occurrence and possible implications.

PETROGRAPHIC REPORT ON 2 THIN SECTIONS FROM MOVIE PROJECT

Feport for: James Foley
Invoice 970643
Kenmecott Canada Exploration Ltd. EGS4 Fort Steele Cemetery Fuad Ft. Steele, E. $\mathrm{E} . \mathrm{VOB}$ IND.

Sept 10, 1997.

VR75507A

FA-1: EALEITE VEIN WITH QUAFTZ-BIOTITE-SEFICITE-EFIDDTE-ACTINDLITE-GAFNET-AFATITE-SFHENE-DFAQUE TWALLFROKK AND/OF VEINS

Described as prismatic, hardness approximately 5, non-calcareous, silky lustre, possibly actinolite; noted hundreds of metres from a mafia source along with bigtite-chloritemalbitemactinalite alteration. Hand sample $i s m a i n l y$ carbonate (vigorous reaction to indicates calcite with minor quartz and a dark green mafia mineral. The rock is not magnetic; there is no stained offout for ki-feldspar. Modal mineralogy in thin section is approximately:

Carbonate (mainly calcite) $\quad 60 \%$
Quartz 30%
Biotite. . 3%
Sericite $\quad 3 \%$
Epidote (zaisite/clingzaisite) 1%
Amphibole (?actinolite) 1%
Garnet 1%
Chlorite < 1%
Opaque < 1%
Sphene $<1 \%$
Apatite
< 1%
This slide consists mostly of coarse-grained calcite (subhedral to euhedral crystals that are optically continuous for up ta 2.5 m . . Across one end of the section, there is a sone up to 1 em thick of quartz-rish row k (?partly recrystallized Aldridge quartz ware and/ar partly quartz vein). Quartz is bimodal in size, with areas af finegrained $\ll 0.3 \mathrm{~mm}$ diameter, an- to subhedral) crystals that possibly represent altered wallrogk, and areas af coarse, subhedral crystals up to 1.7 mm in diameter that likely represent veins.

Finer -grained quartz is mixed in places with interstitial garnet〔 skeletal subhedral crystals mainly less than 0.5 mm in diameter, but
 grained sericite and epidatemoroup mineral. Minor biotite subtedral flakes to o. 1 mm) and patches of sericite (likely after former plagioclase feldspar) reinforce the impression that this material represents altered Aldridge sediment. The origin af the garnet, which is colourless and therefore possibly Mn-rich ethos an only be proven by SEM/microprobe analysis an a polished thin section), is enigmatic but Gould be of exploration significance.

Goarse biotite isubhedral, Eommonly deformed medium br own flakes up tG 1.5 mm diameter) is associated with the edges af the quartz-rich areas. In plates there is minor subhedral amphibole up to 0.15 mm in diameter, with deep green pleachroism suggesting an actinolitic Eomposition. Some biotite shows alteration to green biatite and/ar ohlorite cohlorite has anomalous blue, length-slow birefringence indicating moderate Fe:Fe+Mg, or F/M, ratio around O. $5-0.6$; biotite is mommonly associated with fine-grained masses of sericite that could be after former subhedral ?plagioclase erystalsup to o. 25 mm in diameter, and subhedral crystals of Fe-poor epidotemgroup mineral fnonplegchrgic; zoisite/clinozoisite, <0. 3 mm in size). Fine-grained, subto anhedral opaque grains are less than 0.1 mm in diameter. Sphene forms sub- to euhedral wrystals less than 50 microns in size, in places aggregating tG about 0.1 mm across. Fare apatite forms euhedral prismatis crystals up to 0.2 mm long.

It is difficult to be sure of the relation between the walcite
 sample; in places the mafics (bistite, amphibole, epidate, garnet) appear to be part of a crushed matrix to quartzi-elsewhere they appear interstitial to odetrital quartz.

VR75508A

FA-2: FLAGIOCLASE-RICH (?ALEITIZED) LAYERED FINE QUARTZ-BIOTITE WACKE WITH LAYER-FARALLEL LONCENTRATIONS OF MUSCOVITE-?ALLANITE-SFHENE-RUTILE Described as possible weak to moderate tourmalimization; hand specimen is a layered, dark to light grey sediment that is atypically hard and displays somewhat diffuse rather than sharp contacts with quartz wacke. The rock is not magnetic and shows no reaction to cold dilute $H \mathrm{H}=\mathrm{l}$ or stain for K-feldspar in the etched slab. Madal mineralogy in thin section is approximately:

Quartz (detrital)	40-50\%
Flagiculase (aalbite)	25-35\%
Eigute	10\%
Muscovite, sericite	10\%
Sphene, rutile	1-2\%
FAllanite	1%
Ehlorite (after biotite)	1%
Apatite	< 1%
Zircon	<1\%

This slide consists of alternating layers of goarser-grained (average $0.1-0.2 \mathrm{~mm}$) and finer-grained (average about 50-100 misrans) sedinent; the GGarser tgrained layers are slightly enriched in biotite, aausing the darker grey colour. In both layers, detrital quartz grains are anhedral to highly irreguluar in outline; the largest seen are just GVer O. 3 mm in diameter. Flagioclase feldspar is abundant, forming a "hash" Gf finer-grained, interstitial material that is rarely over o. 15 mm in diameter and only in places displays twinning. The relief appears ta be negative compared to quartz and extinction angle on olo $i s u p t G 12$ degrees, suggesting an albitis composition. Felative proportions af albite and quartz are difficult to determine. with precision; there may be more albite than estimated above. There daes appear to be more albite than normal for Aldridge sediment, suggesting that the unusual hardness af this specimen is waused by signifiant albitization.

Biotite and muscovite form subhedral flakes up to 0.5 and almost 1 mm in diameter respectively; both appear to be partly porphyroblastia, likely formed during metamorphic recrystallization. The coarse muscovite crystals are possibly suggestive of former hydrothermal alteration; they are best developed or associated with unusual layerparallel zones of ?allanite ce-- and EEE-bearing epidote that forms subhedral crystals up to 0.25 mm long, closely intergrown with minor sphene/rutile and surrounded by radiation-damaged chlorite and biotite). Outside these layer-parallel zones, muscovite is associated with clusters up to 0.2 mm across of sphene and rutile. Sphene crystals are subhedral and mainly less than 0.1 mm in diameter, commonly cored by dark brown rutile as rounded crystallites less than 25 microns in diameter. Chlorite associated with these layers (and replacing biotite away from the layers) has optical characteristics typical of low -Fe composition (very pale green, non-pleochraic, lengthfast, non-anomalous birefringence; F / M may be around 0.4-0.5).

Minor apatite (subhedral crystals to 0.15 mm) and rare zircon (eunedra to $E S$ microns) are possibly detrital. Rare quartz veins (<o. 1 mm thick are subparallel to the layering.

This is not a tourmalinite; no tourmaline is detected in thin section. It appears to be albitized, and the presence of coarse porphyroblastic muscovite, in places associated with bedding-parallel concentrations of ?allanite, near the contacts between fine -grained and coarser sediment, may also be of exploration interest.

Craig H.E. Leith, Fh.D., F.Eng (250) ESS-9158
492 Isabella Point Road, Salt Spring Island, E.C. VAr $1 V 4$

Vancouver Petrographics Ltd.

8080 G!_OVER ROAD, LANGLEY, BC. VBA 4P9
PHONE (604) 888-1323 • FAX (604) 888-3642

PETROGRAPHIC REPORT ON 15 THIN SECTIONS FROM MOVIE PROJECT

Report for: James Ryley Kennecott Canada Exploration Ltd. 6654 Fort Steele Cemetery Fad Ft. Steele, B.C. VOB 1 NO .

Invoice 970925

Dec. 19, 1997.

SUMMARY:

This is a suite of quartz wakes to fine silty wackest that range from unaltered (74215) or weakly muscovite/sericite-carbonate-epidotechlorite altered (74217) to alkali feldspar ($K-f e l d s p a r ~ a n d / o r ~ a l b i t e-~$ oligoclase; 75461, 75568) or calcic plagioclase (75460, 77501) altered, to intensely silicified or quartz-muscovite/sericite-epidote group mineraltchlorite, K-feldspar altered (74218, 74244, 75451, 75502, 75566) to weak tourmalinite (75503, 75568). Tourmaline forms <25\% of these rocks, and is generally Fe-rich (green-brown, schorlitic), but is distinguished in 75568 by pale brown, more Mg-rich (intermediate dravite) composition that is of greater significance to exploration. In the latter (75568), it is also layered, rather than with the porphyroblastic texture of 75503 that may indicate a hornfelsed occurrence near a Moyie intrusive. Samples 75461 and 75566 do not contain tourmaline. Other samples thought to be albitic (75460, 75501, 75566,75568) are either silicified, K-feldspathized, or contain anorthitic plagioclase; details are contained in the individual reports appended hereto.

Semi-massive to massive mineralization (74245, 75478) consists of 1-3 cm thick layers or ?veins of red-brown sphalerite with lesser galena and pyrrhotite plus variable quartz and clinozoisite (Fe-poor epidote) in variably quartz-clinozoisite-muscovite+kspar-actinolite-sphene-chlorite-calcite altered wacke. It is not possible to determine if this mineralization is syngenetic or epigenetic from thin section examination. Note the apparent association between mineralization and clinozoisite (white in hand specimen; not garnet as thought in field examination). Fink to colourless sieve-textured garnet does occur (75451, trace; 75501, major; 75506, trace) but is not associated with mineralization.

The TiO2-bearing mineral is predominantly sphene (with traces of rutile) for the suite up to 75501 , but then changes to ilmenite (with generally subordinate sphene) for the rest of the suite to 75568 . Minor allanite, or FEE-bearing epidote-group mineral, is noted in a few samples (75461,75503) where crystals are coarse enough to suggest hydrothermal remobilization of REE.

Craig H.E. Leith, Fh.D., F.Eng (250) 653-9158 492 Isabella Point Road, Salt Spring Island, B.C. VBK 1 VA

Fage 2

VR74215: QUARTZ-SFHALERITE \pm PYRFRHOTITE-GALENA VEIN IN UNALTERED WACKE Described as subvertical sphalerite-lesser galena veinlet within unaltered biatite quartz wacke; no albite/sericite alteration envelope; hand specimen shows trace magnetism and reaction to HCl along the vein. Traces of K-feldspar (long fractures parallel to bedding; not in the vein) are indicated by faint yellow stain in the etched slab. Madal mineralogy in polished thin section is approximately: Quartz (mainly detrital; vein) 60% Biotite 20\% Sericite 10% Feldspar (?mainly plagioclase) 5\% Chlarite 1-2\% Epidote (?clinozoisite, allanite) $1-2 \%$ Sphalerite $1-2 \%$ Pyrrhotite 1% Tourmaline Galena, chalcopyrite $<1 \%$ <1 Wallrock consists of fine (50-75 micron) subhedral quartz, likely recrystallized detrital grains, with interstitial white mica (sericite) as euhedral flakes to 50 microns and feldspar (mainly plagioclase although etched slab indicates minor Kspar) to 30 microns; there are abundant biotite "neacrysts" of up to 0.2 mm diameter. There are only traces of sulfides (pyrrhotite and sphalerite) in the walrock as very fine disseminated crystals to about 50 microns in diameter, in places concentrated along narrow fractures associated with chloritization of biotite and minor epidote. Chlorite forms flakes up to 0.1 mm in diameter that are pale green and have weak blue anomalous, length-slow birefringence, indicating moderate Fe:Fe+Mg or F/M ratio near 0. 5. Epidote shows no discernible pleochroism and is likely Fempoor (oclinozcisite). Scattered euhedral crystals of allanite (REE-bearing epidote) up to 0.1 mm in diameter contain minute sphalerite subhedra. Fare schorlitic tourmaline euhedra up to 0.15 mm long (green cores and brown rims are likely relict detrital and metamorphic overgrowths).

The vein consists of lenticular concentrations of sphalerite enclosing patches of pyrrhotite, and rare galena, in a gangue of quartz and minor biotite with selvages of epidote. Sphalerite forms subhedral crystals up ta about 1.5 mm in diameter, with deep red-brawn calour indicating moderate fe content. Fyrrhotite forms subhedral crystals up to 1.2 mm in diameter, almost all contained within the sphalerite; rare chalcopyrite subhedra to 0.1 mm are associated with the pyrrhotite. Galena is confined around the outer margins af the sphalerite as irregularly-shaped masses up to 1 mm across. Rare pyrrhotite occurs at the selvage of the vein (separate from sphalerite); traces of chalcopyrite occur as fine inclusions in sphalerite at the selvage of the vein. I have seen similar veins in Lower Aldridge (Marysville outcrop) with biotite-only envelopes; fluid inclusions in them linked them to the Froterozoic mineralizing episode. Unfortunately, fluid inclusions appear absent from the quartz in this sample, so I am sorry that the thin section does not unequivocally answer your principal question: is the vein late Cretaceous/remobilized Froterozoic in origin. In my view it is unlikely that a petragraphic analysis can resolve such a question, unless distinctive alteration or fluid inclusions are associated with such veining; possibly fo isotopes would help, but they are an expensive solution.

Page 3

Abstract

VR74217: QUARTZ WACKE (QUARTZ-EIOTITE-MUSCOUITE; SERICITE-CARBDNATE-EPIDOTE-CHLORITE ALTERATIUN); MUSCOVITE-RICH LAYER WITH BLASTIC ?SPHENE

Thin section is aimed at identifying coarse subhedral white crystal (?flakes), possibly ?feldspar; note that only minor parts of the crystals react to HCl , and most appear to be harder than steel. The rock is very slightly magnetic but shows no significant stain for K-feldspar. Modal mineralogy in thin section is approwimately:

Quartz (detrital) $\epsilon 0 \%$ Biotite 15% Muscovite, sericite 15% Carbonate (?mainly calcite) 5% Opaques (?mainly pyrrhotite) 1-2\% Epidote 1-2\% Chlarite Sphene Tourmaline Apatite 1% $<1 \%$ <1\%

The bulk of this section consists of normal Aldridge sediment (mainly detrital quartz with interstitial micas, minor cipaques and scattered tourmaline). If there is any feldspar present, I cannot confidently identify it by relief difference against quartz. Quartz grains are subrounded to anhedral, and fall into two main size ranges: coarse grains of about 0.5 mm diameter, with distinct narrow (50 micron) overgrowths, and fine interstitial grains of about $50-100$ micron grain size. Micas are principally biotite, as subhedral medium brown flakes up to about 0.25 mm in diameter, and white mica (muscovite and sericite respectively as euhedral ?detrital or metamorphic flakes to 0.5 mm and subhedral flakes to 50 microns that may reflect the alteration of ?former minor feldspathic material. In places carbonate (likely mostly calcite) appears to accompany sericite in replacing former feldspar. Opaques form scattered subhedral crystals up to 0.2 mm in diameter that appear to be mostly sulfides (likely pyrrhotite to judge by trace magnetism in hand specimen), locally associated with traces of 20-50 micron ?epidate and chlorite. Scattered euhedral ₹detrital crystals of schorlitic tourmaline and apatite are up to 0.1 and 0.05 mm respectively.

A narrow ($<1 \mathrm{~mm}$ thick) veinlet is composed of ?alkali feldspar as subhedra to 0.2 mm , likely mostly albitic but possibly including trace K-feldspar to judge by the faint yellow stain in hand sperimen. Later carbonate (?mainly calcite) fracturing is found in and adjacent to the veinlet.

The white "crystals", which are unfortunately only barely cut in the thin section, appear to be aggregates of sphene that are present only in a fine-grained, muscovite-rich bed that is quite distinct from the normal, coarser-grained quartz-rich detritus described above. As such, it is likely that the apparent coarse size of the white "crystals" is due to metamorphic (porphyroblastic) growth from some precursor; their seive texture, visible with hand lens, is supportive of such an origin.

Fage 4

VR74218: INTENSELY EFIDOTE (TCLINOZOISITE)-QUARTZ-SFHENE ALTERED ROCK WITH PATCHES/VEINLETS OF GALENA-CHLDRITE-FYRRHOTITE-RARE SFHALERITE Grey-white, massive, strongly altered rock with wispy patches of blue-grey (sulfides, including galena and magnetic ?pyrrhotite) and lesser brown (biotite), from near upper contact of sulfide intersection. The rock is siliceous (harder than steel); white mineral may be ?garnet. There is no reaction to cold dilute HCl, and no stain for K-feldspar in the etched slab. Modal mineralogy in polished thin section is approximately:

Epidote (?clinozoisite) 65%
Quartz 30\%
Galena 3\%
Sphene 1%
Chlorite < 1%
Fyrrhotite < 1%
Sphalerite
tr
This slide consists mainly of epidote-group mineral as fine euhedral crystals, in places hosted by (poikilitically enclosed in) much larger crystals of quartz, or enclosed in a matrix of galena and minor pyrrhotite.

The epidote-group mineral forms euhedral to subhedral crystals up to 0.7 mm long that commonly show parallel extinction and have relatively law birefringence (first-order grey to slightly anomalous yellow-green); this is suggestive of clinozoisite. In places small subhedral to euhedral crystals of pale sphene up to 0.25 mm long are included in clinozoisite or in matrix galena or quartz. The abundance of sphene suggests derivation from an Aldridge sediment; the euhedral erystals and localization, especially along some of the sulfidembearing fractures, suggests remobilization of TiO2, and therefore very strong alteration.

The host quartz forms very large, mainly subhedral crystals that are optically continuous for up to 3 mm in diameter. The crystals are strained (strong undulose extinction that in places defines a lamellar texture) and contain abundant healed fractures evidenced by trails of pseudosecondary fluid inclusions.

Rare chlorite forms subhedral flakes to 0.25 mm diameter in rounded pseudamorphs after former ?mafic minerals up to 0.75 mm in size. Chlorite displays optical characteristics (very pale green colour, weakly to non-anomalous near-zero birefringence) suggestive of lower Fe content (F / M about ?0.4-0.5).

Galena occurs mainly in interstices between clinozoisite crystals, or in narrow (0.1 mm) fractures. The galena forms anhedral masses up ta 1.5 mm in diameter, composed of smaller ?euhedral crystals (not individually discernible in polished sections. Fyrrhotite forms subhedral erystals up to 0.5 mm long generally included in galena. Sphalerite is found as red-brown (moderate $F e$) subhedra to 0.25 mm , only in some of the narrow fractures with galena.

Page 5

VR74244: QUARTZ-SERIEITE-ZOISITE-KSPAR-CHLORITE ALTERED FINE SILTSTONE WITH FRACTURES OF PYRRHOTITE-TOURMALINE-TRACE SFHALERITE-CHALCOFYRITE Dark grey to greenish-buff, fine-grained altered sediment cut by a fracture oblique to bedding that contains pyrrhotite and reportedly fine subrounded sphalerite that may be ?stratiform but is concentrated along one side of the mineralized fracture. Minor Kspar is indicated by yellow stain in the etched slab, particularly in a fine-grained 3 cm thick bed and near the mineralized fracture; there is no reaction to cold dilute HCl; modal mineralogy in polished thin section is roughly:

Quartz (detrital, ?secondary) 50\%
Sericite, muscovite 15%
Epidate-group (?zaisite) 10\%
Pyrrhotite 10\%
Eiotite
Tourmaline (dravite-schorl)
5%
K-feldspar (secondary)
$3-5 \%$
Chlorite (after biotite)
3\%
Sphene, trace rutile
2\%
Chal copyrite, sphalerite
1%
Chalcopyrite, sphalerite <1\%
The wallrock consists of fine silt-sized (approximately 50 micron) quartz grains with lesser interstitial mica (mainly muscovite or sericite, but including variable proportions of biotite that is partly chloritized in places) to 75 microns, and significant pyrrhotite, epidote-group mineral, and tourmaline plus minor sphene. The quartz is likely mostly detrital, but some may be secondary, especially in and near the fracture system. Former plagioclase sites are replaced by the epidote-group mineral, and especially near the fracture/veinlet system, sericite and K-feldspar. The epidate-group mineral has anomalous blue birefringence, suggesting ?zoisite; it forms ragged to subhedral crystals mainly less than 1 mm in diameter. Tourmaline crystals are mainly less than 0.15 mm long, with pale brownish-green colour; abundance near the fracture system suggests it is mostly hydrothermal. Sphene forms mainly euhedral crystals up to 0.1 mm in diameter, rarely with euhedral rutile to 25 microns in their core. Fyrrhotite forms subhedra mainly <0. 1 mm in diameter, closely associated with zzoisite. In the vein/fracture system, pyrrhotite forms sub- to anhedral crystals up to about 0.35 mm in diameter, rarely containing (?altered to) minor ?marcasite/pyrite as irregular aggregates up to 0.2 mm in diameter. The ?marcasite is localized along the interior of the mineralized fracture, passibly due to late-stage but still ?hypogene activity along a re-opening of the fracture. In places pyrrhotite and chalcopyrite "bleed off" the fracture system into the bedding, forming wispy bed-parallel laminae up to 0.2 mm thick, some containing minor sphalerite. Sphalerite is rare in the section, forming subhedral crystals up to 0.2 mm in diameter with red-brown colour (indicating moderate fe content) that are closely associated with pyrrhotite and tourmaline in the quartz-vein mineralized fracture system. Tourmaline occurs as brownish-green euhedra to 0.25 mm long, probably of ferich dravite-schorl composition (F/M perhaps ?0.6-0.7). Minor epidote-group mineral (blue anomalous birefringence suggests zzoisite) forms subhedra to 0.1 mm in the fracture system. Both fresh brown biotite (euhedral flakes to 0.25 mm) and chloritized relics occur in and along the vein, and in places there are traces of sphene (some with cores of rutile) associated with the fractures, suggesting mobilization of TiOZ.

Fage 6

VR74245: MASSIVE SPHALERITE-GALENA-PYRRHOTITE WITH INTEREALATED QUARTZEFIDOTE (CLINOZOISITE/ZOISITE)-ACTINOLITE-SFHENE-CHLORITE-GAREONATE

Semi-massive sphalerite, lesser galena and pyrrhotite crock is weakly magnetic) intercalated with white ?albitized metasediment Cmainly harder than steel; no reaction to cold dilute HCl. Offout not stained for K-feldspar; suggestion of a weak foliation/lineation evident in the sphalerite appears to be due to streaking by the saw blade. Modal mineralogy in polished thin section is approximately:

Sphalerite
Quartz
Galena
Epidote-group (?Clinozoisite, zaisite)
Pyrrhotite
Amphibole (?actinolite)
Sphene, trace rutile
Chlorite (after biotite)
Carbonate

65\%
20%
5% 5\%
1-2\%
1%
1%
1%
<1\%

Massive sphalerite layers are up to 2 cm thick, intercalated with wallrock layers to 1 cm thick and lesser galena-rich lenses to 0.5 cm thick (internal to sphalerite layers). Galena-rich areas contain euhedral crystals of ?zoisite to 3 mm and quartz to 1 mm ; pyrrhotite appears to rim the silicate inclusions in the sulfides. Sphalerite masses show little internal structure ccrystals appear to be subhedral and mainly less than 0.5 mm in size); there is no indication of lineation, unless it is perpendicular to the section. Minor pyrrhotite found along discontinuous stringers or layers, and at borders of massive sphalerite with wallrock, where it forms subhedral crystals up to 1 mm in size, could indicate former ?stratifarm layering. However, the pyrrhatite (with galena) could also be considered to be along fractures in the sphalerite. Note that this distribution could be due to remobilization during deformation, since both galena and pyrrhotite deform more readily than sphalerite. In general, textural features for genetic hypotheses are not likely to be found microscopically in a rook that has undergone middle greenschist metamorphism/deformation; handspecimen or outcrop-scales are more likely to preserve such features.

Altered wall-rock intercalations are similar to the quartz-epidote group mineral rich material described in VR74218; feldspar appears to be absent from this slide. Quartz erystals are mainly subhedral, up to about 0.5 mm in diameter, and show little evidence of strain (lack of undulose extinction, triple junctions indicating recrystallization and later annealing). Epidote-group mineral forms subhedral to euhedral crystals mostly interstitial to quartz and commonly associated with sphalerite/rare pyrrhotite. Epidote-group mineral erystals are less than 0.15 mm in diameter, mainly with anomalous yellow-green interference colours and lack of discernible pleochroism suggesting clinozoisite (Fe-poor epidote); near the margins of massive sphalerite, euhedral crystals to 0.3 mm long have anomalous blue interference colours, suggesting zoisite. In places along the margins of the massive sphalerite, sphene is important as euhedra to 0.2 mm in size, associated with the ?zoisite. Amphibole forms ragged erystals up to 0.7 mm long with deep green pleochroism suggesting actinolite cpartly chloritized in places). Biotite, mostly interleaved or altered to chlorite, forms ragged flakes to 0.25 mm diameter. Fare carbonate is interstitial to quartz, forming anhedra less than 0. 15 mm in size.

Fage 7

UR75451: QUARTZ-EIDTITE WACKE ALTERED PROGRESSIVELY TO MUSCOVITE, CHLORITE, ZOISITE/CLINOZOISITE, K-FELDSFAR, AND QUARTZ-ZOISITE

Bluish-grey, fine-grained, altered sediment, suggested to be due to ?actinolite; pale green due to ?sericite or chlorite. The rock is siliceous (harder than steel), weakly magnetic, does not react to cold dilute HCl but shows minor yellow stain for k-feldspar in certain layers. Modal mineralogy in polished thin section is approximately:

Quartz (detrital, secondary)
Epidote-group (?zoisite/clinozoisite) Muscovite, sericite Eiotite (partly chloritized)
Fyrrhotite K-feldspar Sphene Garnet

60\%
20%
10\%
5%
2%
1-2\%
1%
$<1 \%$

The framework of the rock consists of subhedral quartz crystals, likely mostly detrital grains mainly less than 0.15 mm in diameter, but also mostly recrystallized and possibly added to by secondary quartz; it is hard to be sure at this grade of metamorphism unless the secondary quartz is distributed along obvious zones or fractures (some of which are present in this sample, up to 0.5 mm thick).

Interstitial to the quartz is abundant fine-grained epidote-group mineral and muscovite likely after the original feldspar content of the rock, or in other areas pale brown biotite, and rare garnet. The epidote-group mineral has no pleochroism and low, anomalous blue birefringence; it is likely zoisite, forming ragged to subhedral crystals mainly less than about 0.15 mm in diameter. Sericite forms subhedral flakes to 75 microns in diameter. Biotite occurs as ragged subhedra to 0.5 mm with a washed-out appearance due to partial chloritization and/or interleaving by muscovite (sericite). Chlorite displays optical characteristics (very pale green colour, weakly to non-anomalous near-zero birefringence) suggestive of moderate fe content (F / M about $\% .5$). Sphene forms small euhedral to subhedral crystals mainly less than 0.1 mm in diameter; garnet forms raged sieve-textured crystals less than 1 mm across.

Disseminated pyrhotite is common throughout, mainly as sub-- to anhedral crystals up to 0.5 mm in diameter, locally aggregating to 1 mm and closely associated with chloritized bictite, zoisite and sphene. Traces of chalcopyrite (to 0.1 mm) are found included in pyrrhotite.

Veinlets mainly less than 0.25 mm thick consist of zoisite and lesser sericite, with an inner envelope that contains minor K-feldspar (anhedral interstitial crystals to 75 microns). Blue-grey alteration envelopes around the veinlets are irregular and appear to be enriched in zoisite or clincozoisite; beyond this, musccovite/sericite and relict biotite appear to be more important, although zoisite is also present. The association of epidote (in this case zoisite or clinozoisite), sericite, sphene and garnet with sulfides is typical of alteration in the peripheral North Star Hill area near the Sullivan deposit.

VR75460: TOURMALINE-QUARTZ-ZOISITE VEIN WITH INNER K-SFAR AND OUTEF

 ZOISITE-SERICITE ENVELOFES CUTTING QUARTZ-EALCIC FLAGIOCLASE WACKE Tourmaline-bearing quartz vein about 1 cm thick in pale grey, fine-grained quartz-rich wacke; white alteration envelope up to almost 1 cm thick, with inner envelope containing minor yellow stain for kfeldspar; etched slab shows a selvage on one side of the vein rich in a blue-grey mineral (?zoisite as in 75451). The rock is not magnetic and shows no reaction to cold dilute HCl. Modal mineralogy in polishedthin section is approximately:
Quartz (partly secondary)
Epidate-group (?zoisite)
Tourmaline (mainly vein)
Sericite
K-feldspar (secondary) Sphene

$$
\begin{array}{r}
75 \% \\
15 \% \\
5 \% \\
3 \% \\
1 \% \\
<1 \% \\
<1 \% \\
<1 \% \\
<1 \%
\end{array}
$$

Pyrrhotite, trace galena Carbonate Rutile
Wallrock consists mainly of interlacking quartz and interstitial epidote-group mineral plus minor sericite and sphene, ar further from the vein, calcic plagioclase takes the place of the epidote. In the wallrack, quartz forms anhedral crystals mainly less than 0.3 mm in diameter with a recrystallized, partly overgrown look that suggests some of the quartz is secondary. Distal from the vein, finely twinned ?plagioclase has strong positive relief compared to quartz and is likely very calcic (possibly anorthite; this composition is likely secondary, and implies addition of calcium to the rock, as does the fepoor, Ca-rich epidote group mineral.. Low, weakly blue anomalous birefringence suggests that the epidate-group mineral is zoisite, mostly present in the same sites as plagioclase, where it forms sub- to anhedral crystals mainly less than 0.1 mm in diameter but aggregating to 0.25 mm and associated with minor sericite and sphene. Both zoisite and sericite appear to form at the expense of (replace) plagionlase; this is responsible for the wide white envelope to the vein. An inner envelope contains minor K-feldspar as subhedral crystals less than 75 microns in size, that also occupy the interstices between quartz crystals and may take the place of plagioclase and sericite. Rare coarse tourmaline crystals are up to 0.4 mm long (brown sores with bluish rims suggests very Ferich composition, F/M possibly 0.8-0. 3).

The vein consists of altnerate laminae of tourmaline and quartz on one side, and massive quartz with a selvage of zoisite on the other. The tourmaline is finely felted ceuhedral crystals mainly less than 0.1 mm long, but in places elongated needles up to 0.5 mm). Quartz forms mainly coarse, anhedral to subhedral crystals that are optically continuous for up to 4.5 mm (poikilitically enclosing tourmaline crystals or free of tourmaline, in alternating layers). The colour, a medium brown with tinges of green, suggests fairly sohorl-rich composition with F/M possibly near 0.7. Rare opaques in the vein include lath-like rutile to 0.75 mm long, maimly coated by sphene (implying mobilizaion of TiO2), and minor pyrrhotite as subhedral crystals to 0.35 mm diameter associated with trace ?galena to 25 microns. The zoisite selvage consists of felted, radiating sheaf-like crystals up to 0.5 mm in diameter that are cut by narrow fractures of carbonate, likely late (?post-metamorphic).

Fage 9

VF754E1: ALKALI FELDSFAF (K゙SFAR-ALBITE)-MUSCOVITE-CHLORITE ALTEEED SEDIMENT CONTAINING MINDE TOLEMALINE, CLTT BY CALEITE-CHLOFITE FFACTUFES Dark grey to blue-grey, fine-grained, very hard layer or ?bed replacement in coarser-grained, grey quartzwrich wacke. Late microfractures react to HCl; the rock is not magnetic but stains strongly for K-feldspar throughout. Modal mineralogy in polished thin section is approximately:

Quartz
K-feldspar (?secondary)
Muscovite (sericite)
Flagioclase (?albite)
Chlarite
Rutile, sphene
Garbonate
Tourmaline
Fyrrhotite
TAllanite
35%
35%
15%
7%
3%
1-2\%
1-2\%
1%
$<1 \%$
く 1%

This is (in my experience) an unusual rock for the Aldridge. Although minor tourmaline is present in places, I would not characterize the rock as a "tourmalinite". It is composed mainly of alkali feldspar as a microcrystalline matrix that hosts relict ?detrital quartz grains, patches of muscovite/sericite, chlorite flakes, rutile, and zallanite.

The feldspathic matrix consists largely of K-feldspar as sub- to anhedral crystals to O. 3 mm diameter, although in places subhedral erystals and partly replaced ?relics of twinned albite up to 0.2 mm in diameter are visible contained within the kspar. Fielief af the plagioclase below that of quartz and only slightly above that of Kspar, plus extinction on 010 near 17 degrees, suggests a eomposition near Ano. Quartz grains are generally sub- to anhedral, up to about 0.15 mm in size, and are poikilitically enclosed in the alkali feldspar matrix; the quartz may represent remnant detrital grains.

Irregular patches up to 0.35 mm across compased of mica (mainly ragged to subhedral musiavite up ta 0.15 mm in diameter, or finer seríite of < 50 microns diameter) are partially intergtitial to the alkali feldspar Erystals, or could represent zaltered plagioclase sites. The micaceous patches commonly include minor amounts of chlorite as subhedral flakes to 0.1 mm diameter, passibly after former Fbiotite. Chlurite displays optioal characteristios (pale green pleowhroism, weakly to non-anomalous length-slow birefringence; suggestive of F / M about 20.5 and $i s$ mixed with minor rutile, sphene and ?allanite as very fine subhedral crystals (5-15 misrans) that aggregate to 0.25 m in places. Scattered euhedral tourmaline crystals up to O. 15 mm long are greenishmbrown, sohorlitic (F/M possibly to O. 7) and could be mostly ?detrital. Allanite (?) erystals are up to Go microns long assomiated with carbonate cmostly calcite subhedra to 0.1 mm) and chlorite-rich fracture zones ar veins up to O. 5 mm thick.

Fine-grained pyrrhatite is rare, disseminated in the wallock and mainly confined to fractures in the envelope; pyrrhotite is mostly subto anhedral and less than 0.5 mm in diameter, locally aggregating to 1 mm in the envelope. Futile is the main Tio2 mineral, forming subhedra to 35 microns, locally mixed with sphene (aggregates to o. 2 mm . .

One possible explanation for this rock (to account for the kispar) is that it represents a "granophyritized" sediment fgenerally foumd near a Moyie sill). The ?clast appears to be quartz-rutile rich.

[^0]The massive sulfide layer (or ?vein) consists of a central sphalerite layer about 1 cm thick that $i s \mathrm{mixed}$ toward the edges with increasing amounts of galena and pyrrhotite. The sphalerite, which is red-brown in colour (moderate fe content), forms sub- to euhedral crystals mainly less than 1 mm in diameter. Both galena and pyrrhotite are mainly interstitial to sphalerite, forming intergrown sub- to euhedral crystals rarely up to 1.5 mm in diameter that extend out into wallrock where they appear to replace interstices between quartz grains. Galena is semi-massive along one side of the sphalerite mass and mainly absent along the other margin; pyrrhotite occurs in both the sphalerite and the galena. Rare euhedral arsenopyrite is up to 0.5 mm across at the margins of the sphalerite; chalcopyrite is notably absent from the assemblage.

Irregular pockets up to 1 am in size found along the margins of the sulfide layer/vein consist of aggregates of coarse, subhedral quartz to 3 mm and euhedral clinozoisite to 0.7 mm (likely the material tentatively identified as garnet in hand specimen examination), plus rare euhedral pale brown mica (muscovite/phlogopite).

Wallrock consists of a relatively fine-grained detrital quartz framework with interstitial micas (muscovite-sericite and chlorite, the latter possibly after ?biotite, plus clinozoisite/fzoisite). Quartz grains are mainly anhedral and rarely up to 0.6 mm long, in places polygonalized suggesting some secondary quartz activity. Muscovite forms subhedral flakes rarely over 0.1 mm in diameter; chlarite flakes are ragged subhedra to 0.3 mm associated with subhedral clinozaisite and ?zoisite to 0.1 mm and sparse sphene to 50 microns. Rare feldspar appears to be ?Kspar (subhedral, <0.1 mm). Chlorite displays optical characteristics (very pale green colour/no pleochroism, near-zero birefringence) suggestive of lower Fe content (F / M about $\geqslant 0.4$). There are no clear indications that the alteration minerals (likely replacing former interstitial detrital feldspars) are more concentrated near the sulfide layer/vein, as in an alteration envelope. However, there are also no clear indications in the sulfide mass of primary (syngenetic) textures either, so the origin of the sulfides remains enigmatic.

Page 11

VR75501: SILICIFIED, CLINOZOISITE-CHLDRITE FRACTURED, GARNET, BIOTITE CA-FLAGIOCLASE BEARING QUARTZ WACKE; CLOTS PYRRHOTITE-ZOISITE-SPHENE Fale grey to buff-coloured altered wacke with pink ?garnet granules, brown biotite and white to pale greenish fracture envelopes that may be albite and ?minor sericite. The rock is not magnetic and shows no reaction to cold dilute HCl, and only trace stain for kfeldspar along the fracture envelopes in the etched slab. Madal mineralogy in polished thin section is approximately:

Quartz (partly secondary) 60%
Plagioclase (calcic)
10%
Garnet
10%
Clinozoisite, zoisite
Chlorite
10\%
Biotite
Pyrrhotite
3-5\%

Muscovite
3\%

Sphene
1-2\%

K-feldspar (secondary)
1\%
< 1%
< 1%
Where least altered, the rock consists of an intergrown mosaic of quartz crystals with interstitial plagioclase, clinozoisite and biatite that in places hosts subhedral sieve-textured garnets. Mush of the quartz appears to be secondary (abundant, sub- to euhedral polygonal crystals to 0.35 mm diameter that may have overgrown and partly obscured the original detrital quartz). Interstitial plagioglase forms small sub- ta anhedral twinned crystals less than 0.1 mm in diameter, with extreme positive relief against quartz indicating very calcic composition (?possibly anorthite). As at the Fors oceurrence, this is very likely a secondary composition; note the occurrence with Fe-poor, Ca-rich epidote (clinozoisite), which forms subhedral crystals to 0.2 $m m$ also in interstices between quartz. Biotite forms scattered sub- to euhedral pale brown flakes up to 0.3 mm in diameter; muscovite or sericite appears to be confined to areas around "Elots" as ragged subhedra to 50 microns.

In places the clinozoisite is concentrated in "clots" up to 2 mm across, associated with sulfides, sphene, muscovite and rare chlorite. Sphene forms mainly euhedral crystals up to 0.1 mm in diameter; chlorite forms ragged crystals with near-zero birefringence and virtually no colour (F / M probably 0.4), that in places clearly replace or interleave biotite. Garnet "crystals" are really ragged aggregates up to about 1.5 mm in diameter, of small granules or erystals to 0.5 mm diameter, that appear to replace the matrix between quartz grains. In a<1 Em thick zone crossing the slide, the garnets are associated with coarse subhedral secondary quartz to 2 mm , intergrown with clinozoisite to 0.5 mm , chloritized biotite to 1 mm , minor sphene and sulfides.

The fracture zones are characterized by increased clinozaisite or zoisite (not albite), forming interconnected subhedra mainly less than 0.1 mm in diameter, and with chloritization of biotite (these two minerals account for the pale green colour). Thus there is no albite in this sample and very little sericite.

Sulfides, mainly pyrrhotite as subhedral <0.5 mm crystals in irregularly-shaped aggregates up to 1.5 m across, are lousely associated with the zone of garnets in the middle of the slide, but not with the fracture zones. No base-metal sulfides are moted in the surface of the polished section.

Page 12

VR75502: SILICIFIED, ALBITE/OLIGOLLASE-MINOF SERICITE-CALCITE-ZOISITEFUTILE ALTEEED/STOKKWORKED QUARTZ WACKE CUT EY CALCITE--ILMENITE VEIN Fale grey, siliceous quartz wacke containing bladed submetallic non-magnetic mineral up to almost 1 cm in diameter, localized in a cmthick garbonate vein (vigorous reaction to HCl). The rock is not magnetic and shows no stain for K-feldspar in the etched slab. Modal mineralogy in polished thin section is approximately:

Quartz (detrital and secondary) 65%
Plagioclase (?aligoclase-albite) 20%
Carbonate (vein)
Sericite
10\%
Ilmenite
Rutile, sphene
?Zoisite
1-2\%
?Pyrite or marcasite
く1\%
く1\%
tr
The vein of interest in this sample consists mainly of coarse carbonate (likely all calcite to judge by the reaction in hand specimen), forming sub- to euhedral crystals that are optically continuous for over 1 cm and are characterized by bent twin lamellae cespecially at the margins of the vein). The vein contains coarse bladed laths of ilmenite up to almost 1 cm long coroken in places along their length by Fremobilized calcite. . In places the ilmenite is associated with smaller crystals (euhedra to 0.25 mm) of dark brown rutile and traces af sulfide as a lacey filigree af minute crystals to 10 microns (possibly pyrite or ?marcasite). I cannot recall seeing such an occurrence before in the Aldridge; the veining appears late cquartz veinlets are cut by the Garbonate-ilmenite-rutile vein).

The wallrock consists principally of interlocked quartz and intersitial plagicilase feldspar plus minor sericite, traversed by numerous narrow veinlets composed of quartz and plagioclase in about the same proportions as the host. Quartz grains in the wallrock are $<0.3 \mathrm{~mm}$ in size, predominantly subhedral to anhedral, and likely mostly originally detrital but partly recrystallized by silicification accompanying the stockwork of quartz-plagioclase veinlets.
Interstitial feldspar crystals are sub- to anhedral and appear to have little or slightly negative relief compared to quartz, suggesting composition in the oligoolase-albite range; they show no twinning and are partly altered to fine sericite ($5-30$ micron flakes). Rutile and sphene farm aggregates to 0.1 mm diameter composed of minute euhedra to 20 microns.

In the veinlets, quartz forms interlocking subhedra to 0.6 mm diameter with lesser subhedral twinned plagioclase cnegative relief compared to quartz indicating albite-oligoclase composition). In places, especially near the major calcite vein, minor carbonate (?calcite) to 50 microns accompanies the narrow veinlets, and rare epidote-group mineral (?zoisite, with grey to blue anomalous birefringence) is also seen near the veinlets.

This appears to be a silicified, albite/oligoclase-minor sericite-Galcite-rare zoisite altered and stockworked quartz wacke, sut by a major vein of calcite-ilmenite +/-rutile.

VR75503: WEAK TOURMALINITE (CLUSTERS OF SCHORL WITH MINOR CHLORITIZED BIOTITE-CLINOZOISITE/ALLANITE-ILMENITE, IN QUARTZ-FLAGIOCLASE MATRIX) Described as containing coarse, subrounded dark gray fibrous to granular granules that lack vitreous luster, the softness of biatite and decreased hardnes generally associated with alteration: possibly could be ?Mno or actinolite. However, thin section analysis shows that they are tourmaline and thus this roek might be classed as a weak tourmalinite. The rock is not magnetic and shows only trace reaction to cold dilute HCl ; there is no stain for K-feldspar in the etched slab. Modal mineralogy in polished thin section is approximately:

Quartz (partly secondary)
Flagioclase (?oligoclase-albite) 35%
Tourmaline (schorlitic)
Biotite (partly chloritized)
Clinozoisite, ?allanite
Ilmenite Sphene
Tourmaline in this slide forms subhedral crystals rarely over 0.25 mm long, but commonly in irregular, rounded aggregates or "clots" to 1.5 mm diameter, or rarely lath-shaped ?pseudomorphs up to 2.5 mm long. Dark greenish-brown pleochroism (green cores, brown rims) indicates high Fe content (F/M perhaps as high as 0.8-0.9, i.e. schorl). In places minor brown biotite and colourless clinozoisite (Fe-poor epidotel are associated with the tourmaline clots, forming subhedral crystals to 0.3 mm and 0.1 mm respectively; there may be some ?allanite in place of clinozoisite locally. The biotite is commonly partly chloritized (subhedral flakes to 0.2 mm with optical characteristics such as pale green pleochroism and weakly anomalous birefringence indicating moderate Fe content, F / M around 0.5). Traces of sphene (to 30 microns) are associated with the chloritized biotite.

The clots of tourmaline contain or are closely associated with fine crystals of ilmenite as sub- to euhedra up to 0.1 mm in size. The form of the tourmaline clots is suggestive of replacement after gbiotite or some other mineral; the high F/M ratic could be indicative of recrystallization around a Mayie intrusive.

The matrix to the clots is difficult to be sure of, but most likely consists of interlocking quartz (subhedra to 0.3 mm diameter) and interstitial plagioclase feldspar csub- to anhedra mainly less than 0.1 mm). Although the bulk of the quartz is likely ariginally detrital, it appears to be significantly recrystallized and may be partly to largely secondary. The plagioclase is difficult to quantify due to its slight (lower) relief difference compared to quartz, but it is commonly distinguished by incipient clay alteration. It may be about oligoclase-albite in composition, and could be in part secondary in origin. The proportions given above are estimated from the etched slab, in which quartz is grey and plagiculase is etched white.

Fage 14

VR75SOE: QUARTZ-TOLIGDCLASE WACKE, FARTLY SILICIFIED AND WITH BIOTITE-

 FYREHOTITE-SFHENE/ILMENITE+/-CHALCOFYRITE-CAREONATE "CLOTS"Fale grey siliceous sediment with clusters or porphyroblasts of biotite, some of which contain minor sulfides (mostly magnetic pyrrhotite). The rook shows no reaction to cold dilute HCl, and no stain for k-feldspar in the etched slab. Modal mineralagy in polished thin sertion is approwimately:

Quartz (partly secondary)
Flagioclase (?oligoclase)
Bigtite (partly chloritized)
Fyrrhatite
Sphene, ilmenite
Apatite
Chalcopyrite
Carbonate
50%
40%
5-7\%
1-2\%
1%
< 1%
<1\%
<1\%

This sample is composed mainly of quartz and plagioclase (virtually indistinguishable except in etched slab, where quartz is grey and plagioclase etches white), hosting scattered clots of biotite (some with pyrrhotite) and a few sieve-like garnets.

Quartz grains are mostly subhedral and less than 0.2 mm in diameter; they likely represent detrital grains that have been partly to largely recrystallized by secondary quartz. This is especially obvious in and near the clats, in which coarse subhedral secondary quartz erystals are up to 0.75 mm in diameter. Flagioclase crystals are mainly not discernible in thin section due to lack of any twinning and identical relief compared to quartz. The plagioclase composition is thus probably about oligoclase (Anzomoo). The etched slab indicates that they are generally somewhat finer than quartz, at about 0.1 mm in maximum diameter. In places their presence is indicated by minor alteration to incipient ?clay particles of a few microns diameter. Scattered medium brown arystals of biotite are also found interstitial to quartz/plagioclase as well as in the clots. Traces of ?apatite form minute sub-to euhedral crystals up to 20 microns in diameter between the silicates.

The clats contain subhedral to ragged biotite up to 1 mm in diameter and subhedral pyrrhotite to 0.5 mm , plus lesser sphene to 0.25 mm (in places containing subhedral ilmenite to 0.1 mm and traces of pyrrhatite to 50 microns). Minor garnet is associated with some of the sphene+/-ilmenite aggregates, or cocurs as separate clusters of 50-100 micron subhedra, forming sieved aggregates up to 2 mm in diameter. Eiotite is rarely altered to colourless (low Fe) chlorite, probably with F/M near 0.4. Rare chalcopyrite (subhedra to 0.15 mm) is included in pyrrhotite; rarely, carbonate as subhedra to 0.25 mm is associated with the sulfides/owides in the clots.

The loose association between biotite and pyrrhotite probably relates to the increased availability of Fe in those sites compared ta the general rock; this is commonly true of any altered rook, in which mafic sites are the usual hosts to sulfides and oxides. Thus in a sense the pyrrhotite is pseudomorphing the mafic sites, because of their unique chemistry (I'm not sure if this answers your question adequately).

Fage 15

VR75SEE: SILIGIFIED, SERIGITE-CLINQZQISITE ALTERED QUARTZ WACKE WITH FRACTURE ENVELDFES OF K-FELDSFAF

Fale to dark grey, altered rock with mottled texture cdescribed as stylolitic); fracture envelopes contain minor secondary k-feldspar, indicated by pale yellow stain in etched slab. The rock is not magnetic and shows no reaction to cold dilute HOl. Modal mineralogy in polished thin section is approximately:

Quartz (partly secondary)
Sericite (?after feldspar)
Flagioclase
Glinozoisite
$K-f e l d s p a r ~(s e c o n d a r y) ~$
Sphene/ilmenite
Fyrite
Tourmaline (?detrital)
Zircon (?detrital)
70%
15\%
5%
5\%
2-3\%
1-2\%
<1\%
< 1%
tr

This sample consists mainly of quartz and interstitial sericite or sericitized/epidatized plagicclase, cut by fractures in which secondary K-feldspar is important.

In general, quartz forms anhedral, mainly detrital grains up to about 0.3 mm in diameter that are strongly strained rather than recrystallized cdevelopment of strong undulase extinction, lamellar structures instead of the polyoonal crystals seen in some other samples in this suite). It is possible that at least part of the quartz is secondary. Interstitial areas are filled by sericite, epidote-group mineral, sphene and some relict plagioclase, suggesting that formerly more extensive plagioclase has been mostly replaced by the secondary minerals. Felict plagioclase shows ?negative relief against quartz, suggesting a composition near ?albite-oligoclase; it forms subhedral erystals or possibly detrital grains mainly less than 0.1 mm in diameter. However, the main alteration feature of this sample is not albitization but rather mainly sericitization, and minor k-feldspar. The reason for the dark mottling is not readily apparent in thin section, but may relate to variable abundances of the clinozoisite. The rook is not tourmalinized.

Sericite forms ragged subhedral flakes mainly less than about 50 microns in diameter. The epidote-group mineral has low, weakly anomalous birefringence that suggests a low Fe content colinozaisite or zoisite). The crystals are generally anhedral and less than 0.2 mm in size, and are closely associated with sphene.

Throughout the slide, these fine sub- to euhedral crystals of sphene (aggregates to about 0.25 mm in diameter) are common, generally containing intergrown ilmenite (sub- to euhedral crystals to 0.1 mm in size). Rare sulfides include coarse euhedral pyrite crystals to 1.75 mm in diameter and traces of chalcopyrite as subhedra to 20 microns. There are rare very narrow (10-15 micron thick) fracture fillings of pyrite. Fare euhedral tourmaline crystals cgreenish-brown, schorlitic, to 0.1 mm) and ?aircon crystals are up to 60 microns long, and are probably detrital.

 quartz framewark appears to be lacking, possibly partly replaced by the potassium feldspar. K-feldspar is likely mostly microcline to judge by the grid twinning; it forms mainly subhedral interlocking erystals of less than 0.2 mm diameter. Quartz varies from subordinate to major
 finer than the feldspar, in the 0.1 mm range. Strong grain size variations are noted from the coarse feldspathic layers to the finer quartz-rich layers.

Tourmaline is abundant, forming slender euhedra up to about 0.5 mm in length that are somewhat concentrated in certain layers up to 1.5 mm thick, notably associated with the coarse k-feldspar and with somewhat mor abundant plagioclase (subhedral, Gloudy crystals to 0.2 mm). Note that this tourmaline, which is likely hydrothermal in origin, is pale brown (and uniform) in colour, the lack of colour/compositional zoning suggesting a non-detrital origin and the colour an F/M ratio near oo. 6 , less Ferrich than the commonly observed detrital tourmalines. In other thinner layers (less than 0.5 mm thick), marked by concentrations of ilmenite, tourmaline is also somewhat concentrated. Ilmenite forms small tabular subhedra up to 0.15 mm long, in part rimmed by sphene; it appears that these concentrations of ilmenite mark the obottoms of individual beds (the sites of heavy-mineral concentrations), whereas tourmaline is concentrated in the more argillaceous tops of beds just below the ilmenite laminae. There are no sulfides.

Muscovite forms euhedral flakes to about 0.15 mm diameter, possibly enriched in the same layers as tourmaline and tiny (30 micron) apatite euhedra. Minor amounts af epidote-group mineral (zoisite or clinozoisite) form ragged anhedra to 0.1 mm in interstitial sites.

Appendix XII

Gravity Survey Procedures and Raw Data

SUMMARY REPORT

on a

GRAVITY SURVEY

 conducted on the PANDA AREA of the MOYIE PROJECT Near Cranbrook, British ColumbiaPROPERTY

SURVEY PERIOD
WRITTEN FOR

WRITTEN BY

GEOPHYSICAL INTERPRETATION
DATED
: Tam Mitchell, AScT
QUADRA SURVEYS
200-8191 River Road
Richmond, British Columbia, V8X 3X9
: SW of Cranbrook, British Columbia
: UTM Zone 11 Easting: 566000-569000
: UTM Zone 11 Northing: 5456000-5461000
: October 9 to October 12, 1997
: Kennecott Canada Exploration Inc.
200 Granville Street, Suite 354
Granville Square
Vancouver, British Columbia, V6C 1S4
: None
: November 6, 1997

SUMMARY

An infill gravity survey was conducted in the Panda Basin portion of the Moyie area to further define an area of specific interest, which was identified in a 1996 gravity survey.

The property hosts a geological terrain known to be prospective for sedex type deposits. The purpose of the work was to define possible mineralized zones and geologic structures in the area.

The gravity survey was conducted primarily on foot on uncut lines over the target area. Gravity measurements were carried out using a Scintrex gravity meter. The station locations were obtained with a real time Trimble double differential GPS survey system. Inclinometer readings were taken at every station to a distance of 170 meters for terrain corrections.

The gravity data were corrected for the various influences to yield Bouguer gravity anomaly values. A very small calibration factor was applied to match observed gravity values obtained from the 1996 survey.

TABLE OF CONTENTS

Introduction 1
Location and Access 1
Location Map 2
Survey Procedure 3
Instrumentation 4
Data Reduction and Formulae 5
Results \& Interpretation 7
Survey Precision 7
References 8
Statement of Qualifications 9
Appendices
Calibration I
Gravity \& GPS Base Stations II
Table of Field Notes, Calculations \& Gravity Values III
Partial Bouguer Anomaly Plan Map IV
Illustrations
Figure 1 - Location Map - Scale 1:1,000,000 2
Figure 2 - Gravity Base Station Appendix IFigure 3-4 GPS Base StationsAppendix I
MAPS
Location Map
Figure 1 Scale 1:1,000,0002
Partial Bouguer Anomaly Plan Map / Station Location MapFigure 5Scale 1:20,000

INTRODUCTION

At the request of Kennecott Canada Exploration Inc. an infill gravity survey was conducted in, and proximal to, Panda Basin in the Moyie area, SW of Cranbrook BC. The purpose of the survey was to further define an area of specific interest which was identified in an August September 1996 survey.

The survey was conducted by Tam Mitchell, AscT of Richmond, BC with the assistance of Zyoji Jackson of Cranbrook, BC. The crew was based at the Hastings Management field office at 3380 Wilks Road in Cranbrook. The exploration program was carried out under the field supervision of Steven Coombes of Kennecott Canada Exploration Inc.

The main purpose of the survey was to locate zones sedex type mineralization. Gravity surveying is a very effective tool in locating lead and zinc mineralization, particularly because of the high specific gravity of any sulphide mineralization especially that of lead.

LOCATION and ACCESS

The property is located to the South-West of Cranbrook approximately defined by UTM Zone 11; Easting: 566000 to 569000 and Northing: 5456000 to 5461000 , see figure 1 .

Access to the property was on the Lumberton logging road located approximately 10 km South of Cranbrook on Hwy. 95.

SURVEY PROCEDURE

All gravity readings were tied to the National Gravity Net by a gravity base station established in a 1996 gravity survey. The base is located at the Cranbrook field office at 3380 Wilks Road and is marked by a steel spike and identified by a wooden stake with an aluminum tag reading: "Gravity Base $\mathbf{- 1 0 1 " .}$ Geographic coordinates for the station were derived by GPS measurements as $49^{\circ} 32^{\prime} 48.07384^{\prime \prime} \mathrm{N}$ and $115^{\circ} 48^{\prime} 44.86830^{\prime \prime} \mathrm{W}$ (see figure 2). The station has a National Gravity Net value of $\mathbf{9 8 0 6 8 8 . 1 3} \mathbf{\pm 0 . 0 2} \mathbf{m g a l}$. Field ties were also made to the nearest field base used for the GPS base station. A small calibration factor had to be applied to match the Scintrex gravity meter being used in the survey with the L\&R gravity meters used in the 1996 survey, see appendix I.

All Survey locations were referenced to existing control points set in 1996 and the Real Time Kinematic GPS mode was used to define station locations.

Tam Mitchell, AScT, of Richmond BC, with the assistance of Zyoji Jackson of Cranbrook BC acquired the field data. A total of 37 stations were acquired during the 4 days of the survey.

Stations were accessible by 4 wheel drive, and for the most part, on foot on uncut lines. The survey was mildly hampered by inclement weather conditions, with two days of four having significant snowfall.

Inclinometer readings were taken on each gravity station with a Suunto inclinometer to provide inner zone terrain corrections in accordance with the Hammer Chart method. Zone B inclinometer readings were taken at $0,90,180$ and 270 at a distance of 9.3 meters from the station. Zones C and D were shot at $0,60,120,180,240$, and 300 degrees at distances of 35 and 112 meters respectively. Distances and angles were estimated.

INSTRUMENTATION

GRAVITY

The gravity readings were taken with a Scintrex CG-3 gravity meter (serial no. 10345) manufactured in Concord Ontario. The instrument has a world wide calibration range of over $7,000 \mathrm{mgal}$ and a reading resolution of 0.005 mgal . This instrument features a sensor based on a fused quartz elastic system. The proof mass is balanced by a spring and a relatively small electrostatic restoring force. The position of the mass, which is sensed by a capacitative displacement transducer, is altered by a change in gravity. The inherent strength and elastic properties of the fused quartz together with stop limits around the proof mass permit the instrument to be operated without clamping. Instrument drift is considerably reduced by precise thermostatic control of the unit and software correction for residual effects. The instrument's tilt sensors are analog as well as electronic with a resolution of 1 arc second. Real time corrections for tilt errors can be automatically made for a range of ± 200 arc seconds. The entire gravity sensing mechanism is enclosed in a vacuum chamber to provide isolation from variations in atmospheric pressure. This extremely stable operating environment allows the long term drift of the sensor to be accurately predicted, and real time software correction reduces it to less than $0.02 \mathrm{mGals} /$ day in theory. The unit can also automatically compensate for earth tides. The ETC is generated using the Longman formula (gravimetric factor 1.16).

SURVEYTNG

Station locations were surveyed using the Trimble Site Surveyor 4400 system with a Pacific Crest radio link. The system used was capable of post-processing rapid static measurements with an accuracy of $\pm 5 \mathrm{~mm}+1 \mathrm{ppm}$ horizontal and $\pm 1 \mathrm{~cm}+1 \mathrm{ppm}$ vertical or real time data acquisition with an accuracy rating of $\pm 1 \mathrm{~cm}+2 \mathrm{ppm}$ horizontal and $\pm 2 \mathrm{~cm}+2 \mathrm{ppm}$ vertical.

The Site Surveyor 4400 is based on Trimble's fourth generation real-time survey technology. Incorporating the latest Trimble real-time GPS engine code and solution alogrithms, the system provides very fast on-the-fly (OTF) initializations with the industry's most reliable position results. With this technology, average initialization times are cut in half. With advanced satellite signal acquisition and tracking, the ability to survey near trees is enhanced and downtime due to loss of signal minimized.

DATA REDUCTION and FORMULAE

The gravity data was processed by computer in the following manner:
go Observed Gravity- field observations corrected for earth tides and long term instrument drift were downloaded from electronic storage in the gravity meter and corrections made for instrument height and residual instrument drift. These values were then tied to the National Gravity Net.
gra Free Air Effect- Correction for relative distances of observation points from the centre of mass(earth). This calculation moves all stations to a common elevation datum and corrects for relative distances in distance from the source mass. The elevation datum used was CGVD 28 mean sea level. The formulae used was:

$$
\mathrm{g}_{\mathrm{fm}}=-0.3086 \mathrm{mgal} / \mathrm{m}
$$

g_{bs} Bouger Slab Effect - Correction for the relative differences in amounts of surface rock below gravity stations. This calculation requires that a mean density or rock type between the lowest and highest grid elevations be established. All stations are shifted to a common datum as in the free air effect except that the vertical change is through an assumed slab of the derived density. The elevation datum used was CGVD 28 mean sea level.

$$
\begin{aligned}
& g_{b s}=2 * \mathrm{PI}^{*} .00667 * \sigma \mathrm{mgal} / \mathrm{m} \\
& \text { Where } \sigma=\text { slab density }(\mathrm{gm} / \mathrm{cc})
\end{aligned}
$$

Theoretical Gravity - Yields correction for change of observed gravity with change in latitude which is due primarily to the rotation of the earth and the difference in earth's radius between the poles and the equator.
$g_{1}=g_{e}\left(1+\alpha \sin ^{2} \theta+\beta \sin ^{2} 2 \theta\right)$
Where $g_{e}=$ equatorial gravity $=978,031.85 \mathrm{mgal}$.

$$
\alpha=0.005278895
$$

$$
\beta=-0.000023462
$$

$$
\theta=\text { Latitude }
$$

Terrain Correction- corrections for variations caused by local terrain. The vertical component of the gravitational effect exerted by nearby hills, or not exerted by nearby valleys or gullies, will effect the net reading obtained on any one station. The overall effect on a given line profile or area will be a function of the station spacing relative to the frequency of terrain undulations. Areas were segmented using circular sectors in zones developed by Hammer (1939). Corrections were made for zones B, C, and D (covering an area from 2 to 170 meters from the station). g_{c} was calculated from the following expression:

$$
\mathrm{g}_{\mathrm{t}}=\Sigma \Phi \tau \sigma\left[\mathrm{r}_{\mathrm{o}}-\mathrm{r}_{\mathrm{i}}+\left(\mathrm{r}_{\mathrm{i}}^{2}+\mathrm{z}^{2}\right)^{1 / 2}-\left(\mathrm{r}_{\mathrm{o}}^{2}+\mathrm{z}^{2}\right)^{1 / 2}\right]
$$

Where $\Phi=$ Sector angle $\left(B=90^{\circ}, C \& D=60^{\circ}\right)$
$\tau=$ gravitational constant $=0.00667$
$\sigma=$ average density (gm/cc)
$\mathrm{r}_{\mathrm{o}}=$ outer sector radius $(B=16.6, C=53.3, \mathrm{D}=170)$
$r_{i}=$ inner sector radius $(B=2, C=16.6, D=53.3)$
$z=$ elevation difference between sector and station.
$g_{\text {fan }}$ Free Air Anomaly: is derived from the following formulae:

$$
g_{\mathrm{tan}}=g_{0}-\left(g_{\mathrm{l}}-0.3086^{*} \mathrm{E}\right)=\text { Free Air Anomaly }
$$

Where $\mathrm{g}_{0}=$ observed gravity
$\mathrm{g}_{1}=$ theoretical gravity
$\mathrm{E}=\mathrm{CGVD} 28$ elevation
\mathbf{g}_{ba} Bouguer Anomaly: was derived from the following formulae:

$$
g_{b a}=g_{b}+g_{t a n}+g_{t}=\text { Bouguer Gravity }
$$

Where $g_{b}=$ Bouguer gravity
$g_{\text {tan }}=$ free air anomaly
$g_{t}=$ terrain corrections

RESULTS \& INTERPRETATION

The data was reduced to partial Bouguer gravity anomaly values. Terrain corrections have been applied to 170 meters. A density of $2.67 \mathrm{gm} / \mathrm{cc}$ was used throughout the survey. The partial Bouguer Gravity anomaly values spanned a range of 4.94 milligals from a low of -138.88 mgal to a high of -133.94 mgal. The mean partial Bouguer value was -135.91 $\pm 1.40 \mathrm{mgal}$. The survey confirmed major and minor geologic trends in the area of interest.

SURVEY PRECISION

GRAVITY
Daily gravity loop ties were made to the base station - 101 as follows:

Station	Loop Tie in mgal	Notes
-101	0.02	
-101	0.01	
-101	0.09	
-101	-0.04	

Repeat gravity readings were conducted on 5% of the stations read as follows:

Station	Repeat Accuracy - mgal
8501	-0.04
8503	-0.11

TIES TO 1996 SURVEY

The following ties were made to the 1996 Moyie gravity survey:

Station	1997	1996	Tie
	Observed G	Observed G	
11808	980535.69	980535.78	0.09
12309	980570.62	980570.77	0.15

LOCATION

The horizontal and vertical control for the survey was referenced to an existing control point. No traverses were required to conduct the survey. On every station location the GPS system was re-initialized to verify the accuracy of the recorded station location.

REFERENCES

LaCoste \& Romberg Instruction Manual, Model G and D Gravity Meter, June 1989

Seigel, H.O.; A Guide to High Precision Land Gravimeter Surveys, August 1995

Telford, W. M., Geldart, L. P., Sheriff, R. E., Keys, D. A.; Applied Geophysics, 1982

Longman, I. M.; Journal of Geophysical Research, Volume 64, No. 12; Formulas for Computing the Tidal Accelerations Due to the Moon and Sun, December 1959

Hammer, 1939; (Terrain Correction Model)

STATEMENT OF QUALIFICATIONS

I Thomas L. Mitchell, AScT, of the city of Richmond, Province of British Columbia, DO HEREBY CERTIFY THAT:

1. I am the owner of Quadra Surveys with office at 2-8640 Blundell Road, Richmond, British Columbia, V6R 1K1.
2. I am a graduate of BCIT, with a diploma in Surveying Technology (1977).
3. I am a geophysical surveyor, registered with the Association of Applied Science Technologists and Technicians of British Columbia.
4. I have practiced my profession in Africa, Canada, Japan and USA for 19 years.
5. This report is based on a gravity survey which I conducted.
6. I have no direct or indirect interest in the property nor do I expect to receive any.

Dated at Cranbrook, British Columbia, this $6^{\text {th }}$ day of November, 1997.

APPENDIX I

Calibration

Kennecott Canada Exploration Inc.

Moyie Gravity Reduction Report

Instrumentation; Scintrex CG3 Gravity Meter No. 10345
Surveyed by: Quadra Surveys, June - July 1997

The following ties were conducted from Base -101 which has a value of 980688.13 mgal . A small calibration difference was noted from the 1996 survey.
A linear calibration factor of .9992252 was derived from the following base ties and applied.

Tie to Base Station	1996 Observed Gravity	mgal Change		Tie to	$\begin{array}{r} 1997 \\ \text { Calibrated } \end{array}$	Tie to
		-101	Gravity	1996	Gravity	$\begin{array}{r} 1996 \\ 1906 \end{array}$
-107	980647.33	40.87	980647.26	-0.07	980647.29	-0.04
-106	980522.66	165.55	980522.58	-0.08	980522.71	0.05
			980522.46	-0.20	980522.59	-0.07
			980522.51	-0.15	980522.64	-0.02
			980522.45	-0.21	980522.58	-0.08
-105	980522.67	165.58	980522.55	-0.12	980522.68	0.01
			980522.46	-0.21	980522.58	-0.09
			980522.58	-0.09	980522.71	0.04
			980522.50	-0.17	980522.63	-0.04
-104	980604.13	84.01	980604.12	-0.01	980604.18	0.05
			980604.12	-0.01	980604.18	0.05
			980604.07	-0.06	980604.14	0.01
			980604.00	-0.13	980604.07	-0.06
			980604.12	-0.01	980604.18	0.05
			980604.14	0.01	980604.20	0.07
			980604.09	-0.04	980604.15	0.02
			980604.08	-0.05	980604.15	0.02
			980604.08	-0.05	980604.15	0.02
			Sum:	-1.64		0.00

APPENDIX II

Gravity \& GPS Base Stations

APPENDIX III

Partial Bouguer Anomaly Gravity Data Listing

Real Time GPS Station Locations and Elevation Calculations

Observed Gravity Values - Electronic Notes from Gravity Meter
Observed Gravity Data Reduction and Calculations
Inner Zone Terrain Corrections
1

KENNECOTT CANADA EXPLORATION INC.

1997 Panda Basin Gravity Infill Survey

Partial Bouguer Anomaly Gravity Data Listing

Instrumentation: Scintrex CG3 Gravity Meter No. 10345
Surveyed by: Quadra Surveys. October 1997
Operator: Tam Mitchell

Density 2.67

Stn	NAD 83 Northing	NAD 83 Easting	WGS84 Latitude
DDH K97-03	5457855.125	567984.552	49.2696749
-265	5461001.713	567370.89	49.2980432
-106	5459422.023	566362.102	49.2839458
8501	5458427.835	567690.286	49.2748585
8502	5457993.761	567810.591	49.2709411
8503	5457695.191	567602.593	49.2682788
8601	5458725.264	567489.084	49.2775558
8602	5458210.291	567731.036	49.2728974
8603	5457851.937	567984.779	49.2696462
8604	5457676.741	567854.769	49.2680849
8605	5457835.217	567518.919	49.2695474
8606	5457936.497	567467.885	49.2704639
8607	5458138.751	567342.955	49.2722968
8608	5458090.635	567087.59	49.2718921
8609	5458340.102	567198.585	49.2741236
8610	5458467.26	567301.634	49.2752560
8611	5458620.254	567378.074	49.2766236
8612	5459016.193	567640.52	49.2801557
8613	5458753.361	567956.448	49.2777567
8701	5458694.669	566263.435	49.2774147
8702	5458454.702	566384.61	49.2752433
8703	5458152.342	566471.341	49.2725144
8704	5457951.786	566515.158	49.2707058
8705	5457630.738	566490.148	49.2678210
8706	5457490.568	566656.011	49.2665423
8707	5457284.774	566906.98	49.2646640
8708	5457086.444	567209.079	49.2628470
8709	5456826.923	567485.421	49.2604825

WGS84 Longitude	CGVD28 Elev	Observed G
-116.0654576	1829.934	
-116.0733619	1527.117	980570.65
-116.0874974	1776.601	980522.52
-116.0694052	1772.900	980521.54
-116.0678251	1809.722	980513.39
-116.0707344	1827.951	980508.22
-116.0721207	1750.992	980526.40
-116.0688819	1790.828	980517.62
-116.0654550	1830.341	980508.40
-116.0672716	1852.433	980503.30
-116.0718608	1841.248	980506.32
-116.0725452	1850.070	980504.88
-116.0742283	1849.231	980505.52
-116.0777464	1808.053	980512.32
-116.0761789	1809.285	980513.43
-116.0747410	1796.678	980516.77
-116.0736645	1771.364	980522.10
-116.0699898	1686.566	980538.90
-116.0656913	1684.655	980538.76
-116.0889745	1869.961	980501.49
-116.0873486	1881.021	980498.24
-116.0862066	1922.637	980487.83
-116.0856377	1940.672	980483.82
-116.0860348	1928.123	980486.53
-116.0837785	1925.482	980487.00
-116.0803636	1927.397	980486.27
-116.0762452	1884.688	980495.00
-116.0724913	1951.700	980480.80

Theoretical Terrain Free Air Gravity to 170 m Inomaly

981006.74	0.00	35.18	-135.70
981005.48		65.30	-133.50
981004.66	0.11	63.99	-134.28
981004.31	0.13	67.56	-134.81
981004.07	0.34	68.25	-135.95
981004.90	0.14	61.85	-133.94
981004.49	0.17	65.79	-134.43
981004.20	0.26	69.05	-135.50
981004.06	0.30	70.91	-136.07
981004.19	0.51	70.34	-135.18
981004.27	0.81	71.54	-134.66
981004.43	0.39	71.76	-134.77
981004.40	0.61	65.89	-135.82
981004.60	0.10	67.17	-135.18
981004.70	0.11	66.52	-134.41
981004.82	0.16	63.92	-134.12
981005.14	0.14	54.24	-134.34
981004.92	0.18	53.72	-134.61
981004.89	0.19	73.67	-135.38
981004.70	0.27	74.02	-136.18
981004.45	0.43	76.71	-138.01
981004.29	0.30	78.42	-138.43
981004.03	0.21	77.52	-138.02
981003.92	0.35	77.28	-137.82
981003.75	0.30	77.31	-138.06
981003.59	0.83	73.03	-137.03
981003.38	0.59	79.72	-138.08

KENNECOTT CANADA EXPLORATION INC.

1997 Panda Basin Gravity Infill Survey										
Partial Bouguer Anomaly Gravity Data Listing instrumentation: Scintrex CG3 Gravity Meter No. 10345										
Surveyed by: Quadra Surveys. October 1997										
Operator: Tam Mitchell										
Density 2.67										
	NAD 83	NAD 83	WGS84	WGS84	CGVD28		Theoretical			Bouguer
Stn	Northing	Easting	Latitude	Longitude	Elev	Observed G	Gravity to			Anomaly
8710	5457007.495	567577.121	49.2620964	-116.0712006	1975.594	980475.55	981003.52	0.48	81.70	-138.88
8801	5458102.222	568256.946	49.2718669	-116.0616715	1783.610	980517.94	981004.39	0.26	63.97	-135.35
8802	5458317.962	568101.298	49.2738246	-116.0637742	1757.704	980523.83	981004.57	0.40	61.69	-134.59
8803	5458232.975	568441.57	49.2730223	-116.0591115	1738.926	980525.42	981004.50	1.56	57.55	-135.47
8804	5458020.228	568648.724	49.2710856	-116.0563006	1699.218	980533.15	981004.32	0.94	53.20	-136.00
8805	5457832.273	568617.099	49.2693987	-116.0567675	1738.391	980524.88	981004.17	0.75	57.18	-136.60
8806	5457424.656	568583.8	49.2657363	-116.0572950	1730.161	980525.62	981003.85	0.65	55.70	-137.25
8807	5457346.49	568451.661	49.2650481	-116.0591244	1754.813	980520.98	981003.78	0.63	58.73	-137.00
8808	5457255.524	568226.341	49.2642551	-116.0622365	1786.634	980514.44	981003.71	0.82	62.09	-137.01
11808	5459906.601	566365.142	49.2883038	-116.0873752	1706.538	980535.69	981005.87	0.48	56.46	-134.02
12309	5460974.918	567401.618	49.2977988	-116.0729438	1527.168	980570.62	981006.72	0.00	35.18	-135.70

KENNECOTT CANADA EXPLORATION INC.

1997 Moyie Gravity Infill Survey
Partial Bouguer Anomaly Gravity Data Listing
Surveyed by: Quadra Surveys. June - July 1997
Simple Bouguer
Density
2.67

Stn	NAD 83 Northing	NAD 83 Easting	NAD 83 Latitude	NAD 83 Longitude
9701				
9702	5458167.727	567972.06 49.2724879		
9703	5460363.996	566264.667	49.2960262	-116.0655762 .0886146
9704	5459639.627	566710.946	49.2923601	-116.0839198
9705	5459857.943	566986.569	49.2858643	-116.0825889
9706	5460291.519	566820.478	49.291985	-116.0788389
9707	5459846.014	567463.409	49.2876388	-116.0810501
9708	5458711.895	568414.692	49.2773328	-116.0722846
9709	5459796.489	567641.359	49.2871737	-116.0698963
9710	5460048.278	567743.813	49.2894269	-116.0683949
9711	5460544.134	568266.484	49.2938285	-116.0611235
9712	5459220.842	569331.608	49.2818069	-116.0467064
9713	5459160.939	569149.164	49.2812888	-116.0492249
9714	5458991.991	568992.525	49.2798096	-116.0541569
$9715=22502$	5461539.410	572537.390	49.3022876	-116.0022136
9716	5461554.850	572741.490	49.3024022	-115.9994038
9717	5461579.620	572940.680	49.3026012	-115.9966597
9718	5461763.090	572971.450	49.3042476	-115.9962031
9719	5461955.520	573027.390	49.3059716	-115.9953984
9720	5462132.280	573127.790	49.3075494	-115.9939852
$9721=22503$	5462342.710	573152.920	49.3094389	-115.9936010
9722	5462448.630	573379.540	49.3103643	-115.9904642
9723	5462552.820	573514.500	49.3112851	-115.9885886
9724	5462674.420	573689.530	49.3123577	-115.9861586
9725	5462768.780	573851.510	49.3131867	-115.9839130
9726	5463377.320	573908.880	49.3186529	-115.9830110
9727	5463651.590	574025.270	49.3211055	-115.9813588
9728	5459804.1	562939.72	49.2877444	-116.1344905

Page 1 of 4

KENNECOTT CANADA Exploration Inc.

1997 Moyie Gravity Infill Survey

Partial Bouguer Anomaly Gravity Data Listing Surveyed by: Quadra Surveys. June - July 1997
Simple Bouguer
Density
2.67

	NAD 83 Northing	NAD 83 Easting	NAD 83 Latitude	NAD 83 Longitude
9729	5459987.46	563185.36	49.2893683	-116.1310839
9730	5460064.72	563510.26	49.2900294	-116.1266044
9731	5460455.3	563570.05	49.2935362	-116.1257201
9732	5460746.8	563696.21	49.2961448	-116.1239387
9733	5461062.66	563790.05	49.2989759	-116.1225977
9734	5461252.12	563856.78	49.3006730	-116.1216497
9735	5461520.73	564079.18	49.3030656	-116.1185479
9736	5461562.5	563954.23	49.3034543	-116.1202599
9737	5461661.13	563596.6	49.3043788	-116.1251630
9738	5461807.53	564131.26	49.3056396	-116.1177855
9739	5461465.8	564403.34	49.3025374	-116.1140983
9740	5467089.44	568771.42	49.3526396	-116.0530518
9741	5467152.65	569081.12	49.3531730	-116.0487770
9742	5467122.46	569296.75	49.3528770	-116.0458135
9743	5467092.607	571449.874	49.3523599	-116.0161759
9744	5466699.17	571452.48	49.3488212	-116.0162105
9745	5467122.006	569325.497	49.3528695	-116.0454179
9746	5467102.924	569437.489	49.3526852	-116.0438794
9747	5467130.964	570588.258	49.3528052	-116.0280312
9748	5467110.284	570923.643	49.3525803	-116.0234175
9749	5467076.575	571649.732	49.3521923	-116.0134273
9750	5466934.212	571982.707	49.3508768	-116.0088649
9751	5466233.658	570972.079	49.3446905	-116.0229068
9752	5466488.95	571316.454	49.3469464	-116.0181208
9753	5465384.665	572991.473	49.3368166	-115.9952652
9754	5465224.22	572827.215	49.3353932	-115.9975551
9755	5464955.995	572555.744	49.3330132	-116.0013401
9756	5464697.91	572	49.3307257	-116.0052864

CGVD28 Elev	Calibrated to match 1996 Observed G	Theoretical Gravity	Terrain to 170 m	Free Air Anomaly	Bouguer Anomaly
1659.277	980544.37	981005.96	0.08	46	13
1654.114	980545.80	981006.02	0.28	50.24	-134.57
1630.130	980551.42	981006.34	0.06	48.14	-134.20
1622.754	980553.15	981006.57	0.06	47.37	-134.16
1599.685	980557.61	981006.82	0.00	44.45	-134.55
1587.994	980559.92	981006.97	0.02	43.00	-134.67
1578.048	980561.92	981007.19	0.08	41.72	-134.78
1569.862	980563.57	981007.22	0.03	40.81	-134.82
1571.002	980562.73	981007.31	0.06	40.23	-135.49
1564.109	980564.94	981007.42	0.06	40.21	-134.75
1635.691	980550.51	981007.14	0.26	48.14	-134.63
1524.698	980573.41	981011.63	0.33	32.31	-137.97
1581.205	980562.56	981011.68	0.37	38.84	-137.72
1638.196	980551.63	981011.65	0.31	45.53	-137.47
1634.777	980554.88	981011.60	0.22	47.77	-134.94
1676.463	980546.66	981011.29	0.19	52.73	-134.67
1644.869	980550.08	981011.65	0.27	46.04	-137.75
1676.303	980543.71	981011.63	0.44	49.38	-137.74
1873.491	980505.18	981011.64	0.56	71.69	-137.38
1760.255	980529.90	981011.62	0.22	61.49	-135.25
1614.430	980559.01	981011.59	0.20	45.63	-134.82
1564.110	980567.40	981011.47	0.45	38.61	-135.96
1802.740	980521.40	981010.92	0.57	66.81	-134.34
1721.096	980537.76	981011.12	0.43	57.77	-134.39
1923.537	980493.52	981010.21	0.86	76.91	-137.46
1881.742	980502.11	981010.08	0.59	72.73	-137.24
1815.170	980516.33	981009.87	0.41	66.62	-136.09
1852.161	980508.82	981009.67	0.31	70.7	-136.21

Kennecott Canada Exploration Inc.

1997 Moyie Gravity Infill Survey
 Partial Bouguer Anomaly Gravity Data Listing
 Surveyed by: Quadra Surveys. June - July 1997
 Simple Bouguer
 Density
 2.67

$\left.\left.\begin{array}{rrrrr}\text { Stn } & \begin{array}{r}\text { NAD 83 } \\ \text { Northing }\end{array} & \begin{array}{r}\text { NAD 83 } \\ \text { Easting }\end{array} & \begin{array}{r}\text { NAD 83 } \\ \text { Latitude }\end{array} & \begin{array}{r}\text { NAD 83 } \\ \text { Longitude }\end{array} \\ 9757 & 5466369.224 & 573794.476 & 49.3455748 & -115.9840313\end{array} \right\rvert\, \begin{array}{l}5758 \\ 9466132.948\end{array}\right)$

	Calibrated to match				
CGVD28	1996	Theoretical	in	Air	Bouguer
Elev	Observed G	Gravity			Anomaly
2029.959	980471.90	981011.00	0.24	87.35	-139.55
2012.042	980476.13	981010.81	0.44	86.24	-138.46
1989.430	980481.51	981010.55	0.42	84.90	-137.29
1488.942	980579.23	981008.82	0.10	29.90	-136.61
1501.747	980576.42	981008.54	0.00	31.32	-136.72
1539.773	980569.34	981008.36	0.17	36.14	-135.98
1612.612	980555.14	981008.16	0.14	44.63	-135.67
1607.745	980555.21	981008.40	0.12	42.96	-136.82
1513.514	980574.16	981008.57	0.00	32.66	-136.70
1785.658	980520.91	981005.36	0.06	66.60	-133.15
1761.386	980525.74	981005.20	0.08	64.10	-132.91
1751.880	980527.71	981005.40	0.12	62.94	-132.98
1693.671	980537.94	981004.62	0.22	55.99	-133.31
1645.012	980546.37	981004.07	0.34	49.95	-133.78
1596.277	980554.25	981003.76	0.20	43.10	-135.31
1735.324	980530.16	981004.67	0.48	61.01	-132.69
1786.432	980519.45	981004.88	0.95	65.86	-133.09
1768.988	980520.36	981004.23	0.34	62.04	-135.57
1818.494	980512.08	981004.49	0.44	68.78	-134.26
1892.829	980496.41	981004.72	0.29	75.82	-135.69
1894.682	980496.87	981004.76	0.28	76.81	-134.92
1882.431	980500.21	981004.82	0.23	76.30	-134.10
1762.828	980524.75	981004.97	0.14	63.78	-133.34
1730.925	980530.80	981004.79	0.16	60.17	-133.35
1671.283	980541.82	981004.53	0.34	53.05	-133.62
1660.861	980544.02	981004.43	0.13	52.13	-133.58
1718.519	980532.43	981004.26	0.10	58.51	-133.69
1618.622	980551.30	981004.29	0.31	46.53	-134.28

Page 3 of 4

Kennecott Canada Exploration Inc.

1997 Moyie Gravity Infill Survey

Partial Bouguer Anomaly Gravity Data Listing
Surveyed by: Quadra Surveys. June - July 1997
Simple Bouguer
Density
2.67

Stn	NAD 83 Northing	NAD 83 Easting	NAD 83 Latitude	NAD 83 Longitude	CGVD28 Elev	$\begin{array}{r} 1996 \\ \text { Observed G } \end{array}$	Theoretical Gravity	Terrain to $\mathbf{1 7 0 m}$	Free Air Anomaly	Bouguer Anomaly
9785	5458497.752	562838.609	49.2760052	-116.1360860	1751.075	980525.23	981004.77	1.03	60.85	-134.07
9786	5458886.563	562871.174	49.2794989	-116.1355772	1774.045	980521.21	981005.08	0.49	63.60	-134.41
9787	5459140.842	562837.125	49.2817894	-116.1360054	1819.691	980512.51	981005.28	0.30	68.78	-134.53
9788	5458597.21	563206.179	49.2768619	-116.1310175	1873.551	980502.26	981004.84	0.30	75.59	-133.75
9789	5458317.38	563219.301	49.2743437	-116.1308813	1847.777	980506.96	981004.62	0.17	72.57	-134.02
9790	5458083.461	563157.589	49.2722462	-116.1317666	1829.576	980508.89	981004.43	0.29	69.07	-135.36
11103	5467161.815	570276.593	49.3531187	-116.0323166	1923.378	980493.90	981011.67		75.78	-139.44
12008	5457951.375	562747.803	49.2711003	-116.1374200	1714.028	980532.00	981004.33		56.62	-135.17
12301	5459185.193	568630.07	49.2815655	-116.0563571	1660.512	980542.93	981005.26		50.10	-135.70
12307	5459560.832	567965.267	49.2850183	-116.0654328	1625.873	980551.14	981005.57		47.31	-134.62
21102	5460047.2	562897.99	49.2899352	-116.1350260	1704.008	980535.07	981006.01		54.91	-135.76
23703	5465630.8	573204.368	49.339004	-115.992289	1960.447	980487.54	981010.4		82.12	-13

 \(\Gamma \quad \Gamma\)
 ■
 ■ I
 Г
 \(\Gamma\)
 \(\Gamma\)

KENNECOTT CANADA EXPLORATION INC.

1997 Panda Infill Gravity Survey

Real Time Station Locations and Elevation Calculations
Instrumentation: Trimble RTK 4400 SSI Surveyor
Surveyed by: Quadra Surveys. October 1997

KENNECOTT CANADA EXPLORATION INC.

1997 Panda Infill Gravity Survey

Real Time Station Locations and Elevation Calculations
Instrumentation: Trimble RTK 4400 SSI Surveyor
Surveyed by: Quadra Surveys. October 1997

		Latitude dd mm			Longitude West				Elev	GSD95W Corrected		Notes
Name	Northing				ss.sssss	dd		ss.sssss				
Possible equipment / weather problems, repeat values on following day to be used												
-106	5459411.606	566343.051	49	17	1.87516	116	5	15.93993	1756.046	-13.57	1756.046	Redone
-265	5461001.706	567370.887	49	17	52.9552	116	4	24.10286	1527.777	-13.56	1527.777	Redone
8501	5458428.485	567689.735	49	16	29.51173	116	4	9.88566	1772.858	-13.59	1772.858	Redone
8502	5457993.979	567810.42	49	16	15.39498	116	4	4.17865	1809.671	-13.6	1809.671	Redone
DDH9703	5457854.994	567984.685	49	16	10.82521	116	3	55.64079	1829.875	-13.6	1829.875	Redone
8503	5457693.722	567602.51	49	16	5.756	116	4	14.64895	1827.975	-13.6	1827.975	Redone
-106	5459422.023	566362.102	49	17	2.20502	116	5	14.99081	1776.601	-13.57	1776.601	
-265	5461001.713	567370.89	49	17	52.95544	116	4	24.10272	1527.127	-13.56	1527.117	
12309	5460974.918	567401.618	49	17	52.07566	116	4	22.59765	1527.178	-13.56	1527.168	
11808	5459906.601	566365.142	49	17	17.89373	116	5	14.55075	1706.548	-13.56	1706.538	
8601	5458725.264	567489.084	49	16	39.20082	116	4	19.63468	1750.972	-13.59	1750.992	
8501	5458427.835	567690.286	49	16	29.49045	116	4	9.85877	1772.88	-13.59	1772.900	
8602	5458210.291	567731.036	49	16	22.43048	116	4	7.97486	1790.798	-13.6	1790.828	
8502	5457993.761	567810.591	49	16	15.38784	116	4	4.17033	1809.692	-13.6	1809.722	
DOH K97-03	5457855.125	567984.552	49	16	10.8295	116	3	55.6473	1829.904	-13.6	1829.934	
8603	5457851.937	567984.779	49	16	10.72618	116	3	55.63799	1830.311	-13.6	1830.341	
8604	5457676.741	567854.769	49	16	5.1056	116	4	2.17787	1852.403	-13.6	1852.433	
8503	5457695.191	567602.593	49	16	5.80353	116	4	14.64397	1827.921	-13.6	1827.951	
8605	5457835.217	567518.919	49	16	10.37065	116	4	18.69898	1841.218	-13.6	1841.248	
8606	5457936.497	567467.885	49	16	13.67021	116	4	21.16266	1850.04	-13.6	1850.070	
8607	5458138.751	567342.955	49	16	20.26844	116	4	27.22179	1849.201	-13.6	1849.231	
8608	5458090.635	567087.59	49	16	18.8116	116	4	39.88703	1808.023	-13.6	1808.053	
8609	5458340.102	567198.585	49	16	26.84507	116	4	34.24386	1809.265	-13.59	1809.285	
8610	5458467.26	567301.634	49	16	30.92143	116	4	29.06754	1796.658	-13.59	1796.678	
8611	5458620.254	567378.074	49	16	35.84485	116	4	25.19205	1771.344	-13.59	1771.364	

$\square \quad \Gamma$

Kennecott Canada Exploration Inc.

1997 Panda Infill Gravity Survey

Real Time Station Locations and Elevation Calculations
Instrumentation: Trimble RTK 4400 SSI Surveyor
Surveyed by: Quadra Surveys. October 1997

Name	Northing	Latitude			Longitude West				Elev	GSD95w	Corrected Elev
		Easting			ss.sssss	dd	mm	ss.sssss			
8612	5459016.193	567640.52	49	16	48.56036	116	4	11.9633	1686.556	-13.58	1686.566
8613	5458753.361	567956.448	49	16	39.92416	116	3	56.48859	1684.635	-13.59	1684.655
-106	5459422.023	566362.102	49	17	2.20502	116	5	14.99081	1776.601	-13.57	1776.601
8701	5458694.669	566263.435	49	16	38.69288	116	5	20.30817	1869.951	-13.58	1869.961
8702	5458454.702	566384.61	49	16	30.87576	116	5	14.45484	1881.011	-13.58	1881.021
8703	5458152.342	566471.341	49	16	21.05188	116	5	10.34373	1922.617	-13.59	1922.637
8704	5457951.786	566515.158	49	16	14.54099	116	5	8.29555	1940.652	-13.59	1940.672
8705	5457630.738	566490.148	49	16	4.15572	116	5	9.7251	1928.093	-13.6	1928.123
8706	5457490.568	566656.011	49	15	59.55221	116	5	1.60253	1925.452	-13.6	1925.482
8707	5457284.774	566906.98	49	15	52.79023	116	4	49.3091	1927.357	-13.61	1927.397
8708	5457086.444	567209.079	49	15	46.24936	116	4	34.48255	1884.648	-13.61	1884.688
8709	5456826.923	567485.421	49	15	37.73692	116	4	20.96852	1951.65	-13.62	1951.700
8710	5457007.495	567577.121	49	15	43.54713	116	4	16.32229	1975.544	-13.62	1975.594
-106	5459422.023	566362.102	49	17	2.20502	116	5	14.99081	1776.601	-13.57	1776.601
8801	5458102.222	568256.946	49	16	18.72085	116	3	42.01745	1783.58	-13.6	1783.610
8802	5458317.962	568101.298	49	16	25.76865	116	3	49.58709	1757.674	-13.6	1757.704
8803	5458232.975	568441.57	49	16	22.8801	116	3	32.80135	1738.896	-13.6	1738.926
8804	5458020.228	568648.724	49	16	15.90814	116	3	22.68206	1699.188	-13.6	1699.218
8805	5457832.273	568617.099	49	16	9.83524	116	3	24.36295	1738.361	-13.6	1738.391
8806	5457424.656	568583.8	49	15	56.65074	116	3	26.26207	1730.121	-13.61	1730.161
8807	5457346.49	568451.661	49	15	54.17316	116	3	32.84792	1754.773	-13.61	1754.813
8808	5457255.524	568226.341	49	15	51.31845	116	3	44.05156	1786.594	-13.61	1786.634

Kennecott Canada Exploration Inc.

1997 Moyie Gravity Infill Survey

Real Time Station Locations and Elevation Calculations
Instrumentation: Trimble RTK 4400 SSI Surveyor
Surveyed by: Quadra Surveys. June - July 1997

16-Jun

		Latitude								
Name	Northing	Easting	dd mm	ss.sssss	Longitude					
dd	mm	ss.sssss								

		Corrected Elev
1776.60	-13.57	1776.601
1780.24	-13.60	1780.274
1771.14	-13.55	1771.119
1659.97	-13.56	1659.958
1652.70	-13.57	1652.702
1606.94	-13.57	1606.939
1596.81	-13.56	1596.800

17.Jun

Name	Northing
9707	5459846.01
9708	5458711.90
9709	5459796.49
9710	5460048.28
9711	5460544.13
9712	5459220.84
9713	5459160.94
12301	5459185.19
9714	5458991.99
12307	5459560.83

	Latitude			Longitude dd mm		
Eas			ss.sssss			ss.sssss
567463.41	49	17	15.49960	-116	4	20.22456
568414.69	49	16	38.39808	-116	3	33.83649
567641.36	49	17	13.82523	-116	4	11.44655
567743.81	49	17	21.93690	-116	4	6.22170
568266.48	49	17	37.78242	-116	3	40.04464
569331.61	49	16	54.50496	-116	2	48.14296
569149.16	49	16	52.63980	-116	2	57.20973
568630.07	49	16	53.63572	-116	3	22.88556
568792.53	49	16	47.31445	-116	3	14.96499
567965.27	49	17	6.06571	-116	3	55.5581

\left.| Elev | | GSD95W |
| ---: | ---: | ---: |
| Corrected | | |
| Elev | | |$\right\}$

18-Jun

Suspect
Name

Northing
5465068.53

La mmss.ssses dd $\begin{array}{lllllll}580786.59 & 49 & 19 & 58.76819 & -115 & 53 & 16.97580\end{array}$ $\begin{array}{lllllll}572537.39 & 49 & 18 & 8.23536 & -116 & 0 & 7.96906\end{array}$ $\begin{array}{lllllll}572741.49 & 49 & 18 & 8.64790 & -115 & 59 & 57.85383\end{array}$ $\begin{array}{lllllll}572940.68 & 49 & 18 & 9.36432 & -115 & 59 & 47.97487\end{array}$ $\begin{array}{llllllll}572971.45 & 49 & 18 & 15.29149 & -115 & 59 & 46.33114\end{array}$ $\begin{array}{llllllll}573027.39 & 49 & 18 & 21.49786 & -115 & 59 & 43.43427\end{array}$ $\begin{array}{llllllll}573127.79 & 49 & 18 & 27.17781 & -115 & 59 & 38.34683\end{array}$ $\begin{array}{lllllllllll}573152.92 & 49 & 18 & 33.98008 & -115 & 59 & 36.96362\end{array}$ $\begin{array}{llllllll}573379.54 & 49 & 18 & 37.31148 & -115 & 59 & 25.67120\end{array}$ $\begin{array}{llllllll}573514.50 & 49 & 18 & 40.62640 & -115 & 59 & 18.91900\end{array}$ $\begin{array}{llllllll}573689.53 & 49 & 18 & 44.48771 & -115 & 59 & 10.17079\end{array}$ $\begin{array}{lllllll}573851.51 & 49 & 18 & 47.47227 & -115 & 59 & 2.08662\end{array}$ $\begin{array}{lllllll}573908.88 & 49 & 19 & 7.15030 & -115 & 58 & 58.83947\end{array}$ $\begin{array}{llllllll}574025.27 & 49 & 19 & 15.97970 & -115 & 58 & 52.89185\end{array}$

Corrected

Elev		
GSD95W	Elev	
1126.37	-13.79	1126.367
1901.92	-13.60	1901.729
1896.78	-13.61	1896.599
1887.40	-13.62	1887.229
1873.15	-13.62	1872.983
1856.66	-13.62	1856.492
1846.06	-13.62	1845.885
1833.41	-13.62	1833.239
1814.77	-13.62	1814.598
1799.96	-13.62	1799.788
1779.54	-13.62	1779.371
1766.99	-13.63	1766.827
1714.24	-13.63	1714.078
1689.57	-13.63	1689.407

Kennecott Canada Exploration Inc.

1997 Moyie Gravity Infill Survey

Real Time Station Locations and Elevation Calculations Instrumentation: Trimble RTK 4400 SSI Surveyor
Surveyed by: Quadra Surveys, June - July 1997

Latitude Longitude

Name Northing Easting dd mmss.sssss dd mm ss.sssss -105 5459848.40 211025460047.20 $9728 \quad 5459804.10$ 97295459987.46 $9730 \quad 5460064.72$ $9731 \quad 5460455.30$ 97325460746.80 $9733 \quad 5461062.66$ $9734 \quad 5461252.12$ $9735 \quad 5461520.73$ 97365461562.50 $\begin{array}{ll}9737 & 5461661.13 \\ 9738 & 5461807.53\end{array}$ 97395461465.80
$\begin{array}{lllllll}563995.15 & 49 & 17 & 16.91991 & -116 & 7 & 11.89748\end{array}$ $\begin{array}{lllllll}562897.99 & 49 & 17 & 23.76673 & -116 & 8 & 6.09346\end{array}$ $\begin{array}{lllllll}562939.72 & 49 & 17 & 15.87990 & -116 & 8 & 4.16562\end{array}$ $\begin{array}{lllllll}563185.36 & 49 & 17 & 21.72576 & -116 & 7 & 51.90221\end{array}$ $\begin{array}{lllllll}563510.26 & 49 & 17 & 24.10594 & -116 & 7 & 35.77566\end{array}$ $\begin{array}{lllllll}563570.05 & 49 & 17 & 36.73026 & -116 & 7 & 32.59226\end{array}$ $\begin{array}{lllllll}563696.21 & 49 & 17 & 46.12133 & -116 & 7 & 26.17935\end{array}$ $\begin{array}{lllllll}563790.05 & 49 & 17 & 56.31313 & -116 & 7 & 21.35174\end{array}$ $\begin{array}{lllllll}563856.78 & 49 & 18 & 2.42268 & -116 & 7 & 17.93903\end{array}$ $\begin{array}{lllllll}564079.18 & 49 & 18 & 11.03599 & -116 & 7 & 6.77260\end{array}$ $\begin{array}{lllllll}563954.23 & 49 & 18 & 12.43561 & -116 & 7 & 12.93553\end{array}$ $\begin{array}{lllllll}563596.60 & 49 & 18 & 15.76360 & -116 & 7 & 30.58694\end{array}$ $\begin{array}{lllllll}564131.26 & 49 & 18 & 20.30264 & -116 & 7 & 4.02792\end{array}$ $\begin{array}{lllllll}564403.34 & 49 & 18 & 9.13477 & -116 & 6 & 50.75388\end{array}$

Elev GSD95W		
177.16	-13.56	
04.00	-13.57	170
1669.19	-13.57	1669.19
659.27	-13.57	165
1654.11	-13.56	1654.1
630.13	-13.56	163
1622.76	-13.55	1622.75
1599.70	-13.5	159
1588.01	-13.54	1587.99
1578.07	-13.54	1578.048
1569.88	-13.54	1569.862
1571.02	-13.54	1571.002
1564.13	-13.54	1564.109
635.71	13.	163

20-Jun

Name	Northing	Easting	Latitude dd mmss.sssss			Longitude dd mm		s.sssss
-104	5469919.01	568662.34	49	22	41.16172	-116	3	14.63578
9740	5467089.44	568771.42	49	21	9.50244	-116	3	10.98639
9741	5467152.65	569081.12	49	21	11.42281	-116	2	55.59731
9742	5467122.46	569296.75	49	21	10.35730	-116	2	44.92865
9743	5467153.17	571396.61	49	21	10.47929	-116	1	0.83388
9744	5466699.17	571452.48	49	20	55.75645	-116	0	58.35781

Elev	GSD95W	Corrected Elev
1375.88	-13.56	1375.884
1524.70	-13.56	1524.698
1581.21	-13.56	1581.205
1638.19	-13.57	1638.196
1632.65	-13.60	1632.688
1676.42	-13.60	1676.463

23-Jun

Kennecott Canada Exploration Inc.

1997 Moyie Gravity Infill Survey

Real Time Station Locations and Elevation Calculations
Instrumentation; Trimble RTK 4400 SSI Surveyor
Surveyed by: Quadra Surveys, June - July 1997
24-Jun

Name	Northing	Easting	Latitude dd mmss			Longitude			Elev GSD95W		Corrected Elev
								.ss			
-104	5469919.01	568662.34	49	22	41.16121	116	3	14.63578	1375.88	-13.56	1375.884
9749	5467076.58	571649.73	49	21	7.89210	116	0	48.33810	1614.39	-13.60	1614.430
9750	5466934.21	571982.71	49	21	3.15632	116	0	31.91360	1564.06	-13.61	1564.110
9751	5466233.66	570972.08	49	20	40.88584	116	1	22.46464	1802.71	-13.59	1802.740
9752	5466488.95	571316.45	49	20	49.00693	116	1	5.23477	1721.07	-13.59	1721.096

25-Jun

				de		Long		
Name	Northing	Easting	dd		S.3ssss	dd		s.sssss
-104	5469919.01	568662.34	49	22	41.16121	116	3	14.63578
23703	5465630.80	573204.37	49	20	20.41706	115	59	32.24372
9753	5465384.67	572991.47	49	20	12.53970	115	59	42.95463
9754	5465224.22	572827.22	49	20	7.41559	115	59	51.19853
9755	5464956.00	572555.74	49	19	58.84760	116	0	4.82427
9756	5464697.91	572272.38	49	19	50.61268	116	0	19.03118
9757	5466369.22	573794.48	49	20	44.06918	115	59	2.51260
9758	5466132.95	573649.23	49	20	36.48244	115	59	9.86737
9759	5465816.61	573517.09	49	20	26.29765	115	59	16.62532

Elev	GSD95W	Corrected Elev
1375.88	-13.56	1375.884
1960.39	-13.62	1960.447
1923.48	-13.62	1923.537
1881.69	-13.61	1881.742
1815.13	-13.60	1815.170
1852.13	-13.59	1852.161
2029.89	-13.63	2029.959
2011.97	-13.63	2012.042
1989.36	-13.63	1989.430

26-Jun

Name	Northing	Easting	Latitude dd mms			Longitude			Elev GSD95W		Corrected Elev
-104	5469919.01	568662.34	49	22	41.16121	116	3	14.63578	1375.88	-13.56	137
9760	5463586.86	567514.80	49	19	16.60077	116	4	15.4039	1488.96	-13.54	148
9761	5463250.40	568010.58	49	19	5.50846	116	3	51.05381	1501.77	-13.54	1501.747
9762	5463033.80	568453.08	49	18	58.31736	116	3	29.27115	1539.78	-13.55	1539.77
9763	5462794.30	569297.26	49	18	50.22008	116	2	47.61152	1612.61	-13.56	161
9764	5463096.69	569728.74	49	18	59.83401	116	2	26.05276	1607.75	-13.56	160
976	463283.	568441		19	6.405	116		29.695	513.5	-13.5	

Kennecott Canada Exploration Inc.
 1997 Moyie Gravity Infill Survey
 Real Time Station Locations and Elevation Calculations
 Instrumentation: Trimble RTK 4400 SSI Surveyor
 Surveyed by: Quadra Surveys. June - July 1997

30-Jun -105 5459848.40 97615459251.33 97665459251.33 97675459060.04 97685459306.52 97695458335.20 $9770 \quad 5457653.39$ 97715457268.11 97725458394.39 97735458658.49 $9774 \quad 5457839.58$ $9775 \quad 5458163.27$ 97765458457.82 97775458501.32 97785458573.63

01-Jul
Name Northing Easting dd mmss.sssss dd mm ss.sssss -106 5459422.02 $9779 \quad 5458786.74$ $9780 \quad 5458562.11$ $\begin{array}{ll}9781 & 5458227.10 \\ 9782 & 5458112.82\end{array}$ $\begin{array}{ll}9782 & 5458112.82 \\ 9783 & 54579037\end{array}$ $\begin{array}{ll}9783 & 5457903.77 \\ 9784 & 5457927.69\end{array}$ $\begin{array}{lllllll}566362.10 & 49 & 17 & 2.20502 & 116 & 5 & 14.99081\end{array}$ $\begin{array}{lllllll}565702.32 & 49 & 16 & 41.89199 & 116 & 5 & 48.02242\end{array}$ $\begin{array}{lllllll}565463.40 & 49 & 16 & 34.71100 & 116 & 5 & 59.97850\end{array}$ $\begin{array}{lllllll}565115.47 & 49 & 16 & 23.99766 & 116 & 6 & 17.39288\end{array}$ $\begin{array}{lllllll}565283.06 & 49 & 16 & 20.23295 & 116 & 6 & 9.16733\end{array}$ $\begin{array}{lllllll}565728.60 & 49 & 16 & 13.29248 & 116 & 5 & 47.24384\end{array}$

Latitude Longitud
Name Northing Easting dd mmss.sssss dd mm ss.sssss $\begin{array}{lllllll}563995.15 & 49 & 17 & 16.91940 & 116 & 7 & 11.89748\end{array}$ $\begin{array}{lllllll}564053.22 & 49 & 16 & 57.56500 & 116 & 7 & 9.36766\end{array}$ $\begin{array}{lllllll}564053.19 & 49 & 16 & 57.56502 & 116 & 7 & 9.36872\end{array}$ $\begin{array}{lllllll}564371.75 & 49 & 16 & 51.25066 & 116 & 6 & 53.71311\end{array}$ $\begin{array}{lllllll}564463.39 & 49 & 16 & 59.19664 & 116 & 6 & 49.03435\end{array}$ $\begin{array}{lllllll}564540.66 & 49 & 16 & 27.71723 & 116 & 6 & 45.77437\end{array}$ $\begin{array}{lllllll}564572.39 & 49 & 16 & 5.62904 & 116 & 6 & 44.60021\end{array}$ $\begin{array}{lllllll}564153.44 & 49 & 15 & 53.31281 & 116 & 7 & 5.55190\end{array}$ $\begin{array}{lllllll}564367.27 & 49 & 16 & 29.69950 & 116 & 6 & 54.32041\end{array}$ $\begin{array}{lllllll}564133.29 & 49 & 16 & 38.33938 & 116 & 7 & 5.74676\end{array}$ $\begin{array}{lllllll}563512.93 & 49 & 16 & 12.05711 & 116 & 7 & 36.91545\end{array}$ $\begin{array}{lllllll}563749.18 & 49 & 16 & 22.44940 & 116 & 7 & 25.03965\end{array}$ $\begin{array}{lllllll}563834.36 & 49 & 16 & 31.95432 & 116 & 7 & 20.65556\end{array}$ $\begin{array}{llllll}563643.90 & 49 & 16 & 33.43434 & 116 & 7 \\ 30.05621\end{array}$ $\begin{array}{llllll}563291.89 & 49 & 16 & 35.90729 & 116 & 7 \\ 47.43484\end{array}$

Corrected

Elev GSD95W		Corrected Elev
1777.16	-13.56	1777.159
1785.67	-13.57	1785.677
1785.65	-13.57	1785.658
1761.37	-13.58	1761.386
1751.87	-13.57	1751.880
1693.64	-13.59	1693.671
1644.97	-13.60	1645.012
1596.23	-13.61	1596.277
1735.29	-13.59	1735.324
1786.41	-13.58	1786.432
1768.95	-13.60	1768.988
1818.46	-13.59	1818.494
1892.80	-13.59	1892.829
1894.65	-13.59	1894.682
1882.40	-13.59	1882.431

02-Jul
Name Northing Easting Ld mmss.sssss dd mm ss.sssss
-105
12008
9785
9786
9787
9788
9789
9790 5459848.40 5457951.38 $\begin{array}{lllllll}563995.15 & 49 & 17 & 16.91940 & 116 & 7 & 11.89748\end{array}$ $\begin{array}{lllllll}562747.80 & 49 & 16 & 15.96123 & 116 & 8 & 14.71193\end{array}$ $\begin{array}{llllllll}5458497.75 & 562838.61 & 49 & 16 & 33.61878 & 116 & 8 & 9.90966 \\ 5458886.56 & 562871.17 & 49 & 16 & 46.19605 & 116 & 8 & 8.07807\end{array}$ $\begin{array}{llllllll}5458886.56 & 562871.17 & 49 & 16 & 46.19605 & 116 & 8 & 8.07807 \\ 5459140.84 & 562837.13 & 49 & 16 & 54.44192 & 116 & 8 & 9.61933\end{array}$ $\begin{array}{llllllll}5458597.21 & 563206.18 & 49 & 16 & 36.70272 & 116 & 7 & 51.66300\end{array}$ $\begin{array}{lllllllll}5458317.38 & 563219.30 & 49 & 16 & 27.63726 & 116 & 7 & 51.17285\end{array}$ $\begin{array}{llllllll}5458083.46 & 563157.59 & 49 & 16 & 20.08617 & 116 & 7 & 54.35963\end{array}$

Kennecott Canada Exploration Inc.

1997 Panda Infill Gravity Survey

Observed Gravity Values - Electronic Notes from Gravity Meter Instrumentation; Scintrex CG3 Gravity Meter No. 10345
Surveyed by: Quadra Surveys. October 1997
SCINTREX V5.0 AUTOGRAV / Field Mode R4.4 Ser No: 10345.
Line: 1009. Grid:
0. Job: 1. Date: 97/10/09 Operator: 777. GREF.:
0. mGals

Tilt \times sensit:
271.4

Tilt y sensit.: $\quad 287.4$
$\begin{array}{lccc}\text { GCAL.1: } & 5861.733 & \text { Tilt y sensit.: } & 29.4 \\ \text { GCAL.2: } & 0 . & \text { Deg.Latitude: } & 49.5\end{array}$
TEMPCO.: $\quad-0.1355 \mathrm{mGal} / \mathrm{mK} \quad$ Deg.Longitude:
Drift const.: 0.17 GMT Difference: 6.hr
Drift Correction Start Time: 23:33:43 Cal.after x samples: 12
Date: 97/07/.15 On-Line Tilt Corrected = "m'

Station	Grav. -101 -265	SD. Tilt \times Tilt y4208.249		Temp.	E.T.C. Dur \# Rej				Time	
				-4	-5	-0.8	0	60	0	8:41:26
		4090.689*	0.1	12	11	-1	-0	60	0	12:04:05
	-265	4090.7 *	0.1	7	11	-1	-0	60	0	12:05:35
	8501	4041.552*	0.1	-11	8	-0.9	-0	60	5	12:34:32
	8502	4033.377*	0.1	31	49	-1	-0	60		12:47:09
	8503	4028.293*	0.1	20	19	-1.1	-0.1	60	0	13:56:24
	-101	4208.27 *	0.1	-5	3	-0.9	-0.1	60	0	17:16:38

SCINTREX V5.0 AUTOGRAV / Field Mode R4.4

Ser No: 10345.
Line: 1010. Grid: 0. Job: 1. Date: 97/10/10 Operator: 777.
GREF.: $\quad 0$. mGals \quad Tilt \times sensit.: 271.4
GCAL.1: $5861.733 \quad$ Tilt y sensit.: 287.4
GCAL.2: $0 . \quad$ Deg.Latitude: 49.5
TEMPCO.: $\quad-0.1355 \mathrm{mGal} / \mathrm{mK} \quad$ Deg.Longitude: $\quad 115.7$
Drift const.: 0.17 GMT Difference: 6.hr Drift Correction Start Time: 23:33:43 Cal.after x samples: 12 Date: 97/07/15 On-Line Tilt Corrected $=$ "*"

Station	Grav.		SD.	Tilt \times Tilt y Temf E.T. C Dur					\# Rej Time	
	-101	4208.343 *		8	25	-0.8	0	60	0	7:58:40
	-106	4042.657 *	0	-5	16	-1.2	0	60	0	10:57:56
	12309	4090.747 *	0.1	-16	6	-1	0	60	8	11:24:10
	11808	4055.803 *	0	-6	10	-1	0	60	0	11:46:41
	8601	4046.508*	0.1	25	0	-1	0	60	0	12:01:34
	8501	4041.625*	0.1	7	27	-1.1	0	60	4	12:10:10
	8602	4037.734*	0.1	-2	20	-1.1	-0	60	2	12:20:49
	8502	4034.933*	8.5	0	-43	-1.2	-0	60	0	12:30:36
	8603	4028.525*	0	13	-28	-1.1	-0	60	16	13:05:42
	8604	4023.417 *	0	-14	41	-1.2	-0	60	0	13:25:41
	8503	4028.293 *	0.1	6	22	-1.2	-0	60	6	13:53:21
	8605	4026.45*	0.3	8	38	-1.2	-0.1	60	2	14:11:54

Kennecott Canada Exploration Inc.

1997 Panda Infill Gravity Survey
Observed Gravity Values - Electronic Notes from Gravity Meter Instrumentation; Scintrex CG3 Gravity Meter No. 10345
Surveyed by. Quadra Surveys. October 1997

8606	$4025.005 *$	0.1	20	19	-1.2	-0.1	60	0	$14: 29: 31$
8607	$4025.633 *$	0	22	16	-1.2	-0.1	60	0	$15: 01: 20$
8608	$4032.458 *$	0.4	58	25	-1.3	-0.1	60	3	$15: 24: 41$
8609	$4033.568 *$	0.1	45	21	-1.4	-0.1	60	1	$15: 50: 22$
8610	$4036.912 *$	0.3	20	35	-1.4	-0.1	60	1	$16: 05: 56$
8611	$4042.239 *$	0	13	4	-1.4	-0.1	60	0	$16: 19: 49$
8612	$4059.061 *$	0	-11	14	-1.4	-0.1	60	3	$16: 43: 38$
8613	$4058.924 *$	0	8	25	-1.4	-0.1	60	0	$17: 01: 11$
-106	$4042.579 *$	0	7	-6	-1.2	-0.1	60	2	$18: 29: 05$
-101	$4208.436 *$	0	-12	-3	-0.9	-0.1	60	1	$20: 06: 45$

| SCINTREX V5.0 | AUTOGRAV / Field Mode | R4.4 |
| ---: | ---: | ---: | ---: |
| | Ser No: | 10345. |

Line: 1011. Grid:
0. Job: 1. Date: 97/10/11 Operator: 777.
GREF.: $\quad 0$. mGals Tilt x sensit.: 271.4
GCAL.1: $5861.733 \quad$ Tilt y sensit.: 287.4
GCAL.2: $0 . \quad$ Deg.Latitude: 49.5

TEMPCO.:	$-0.1355 \mathrm{mGal} / \mathrm{mK}$	Deg.Longitude:	115.7	
Drift Const.:	0.17	GMT Difference:	$6 . \mathrm{hr}$	

Drift Correction Start Time: 23:33:43 Cal.after x samples: 12
Date: $97 / 07 / 15 \quad$ On-Line Tilt Corrected $=$ "*"
Station Grav. SD. Tilt x Tilty Temp. E.T.C. Dur \# Rej Time

-101	$4208.379 *$	0	-9	6	-0.9	0	60	0	$8: 33: 14$
-106	$4042.646 *$	0.3	-33	-15	-1	0	60	1	$11: 46: 08$
8701	$4021.609 *$	0.1	-13	8	-1	0	60	1	$12: 34: 16$
8702	$4018.347 *$	0	22	10	-1.1	0	60	0	$12: 53: 00$
8703	$4007.952 *$	0.1	7	0	-1.1	-0	60	3	$13: 18: 04$
8704	$4003.916 *$	0.1	0	9	-1.2	-0	60	2	$13: 35: 28$
8705	$4006.633 *$	0.1	-28	13	-1.2	-0	60	4	$13: 55: 18$
8706	$4007.096 *$	0.1	-10	20	-1.2	-0	60	0	$14: 15: 05$
8707	$4006.365 *$	0.1	6	3	-1.1	-0.1	60	5	$14: 35: 41$
8708	$4015.109 *$	0.3	-24	12	-1.2	-0.1	60	0	$14: 56: 34$
8709	$4000.902 *$	0.3	0	32	-1.2	-0.1	60	0	$15: 26: 34$
8710	$3995.643 *$	0.1	-5	11	-1.2	-0.1	60	0	$15: 48: 07$
-106	$4042.596 *$	0.1	2	11	-1.3	-0.1	60	2	$17: 27: 02$
-101	$4208.378 *$	0	-17	1	-0.8	-0.1	60	0	$19: 16: 46$

Kennecott Canada Exploration Inc.

1997 Panda Infill Gravity Survey
Observed Gravity Values - Electronic Notes from Gravity Meter Instrumentation; Scintrex CG3 Gravity Meter No. 10345
Surveyed by: Quadra Surveys. October 1997
SCINTREX V5.0 AUTOGRAV / Field Mode R4.4
Ser No: 10345.
Line: 1012. Grid: O. Job: 1. Date: 97/10/12 Operator: 777.
$\begin{array}{lccc}\text { GREF.: } & 0 . \text { mGals } & \text { Tilt } \times \text { sensit: } & 271.4 \\ \text { GCAL } & 5861.733 & \text { Tilt } y \text { sensit. } & 287.4\end{array}$
GCAL.2: $0 . \quad$ Deg.Latitude: $\quad 49.5$
TEMPCO.: $\quad-0.1355 \mathrm{mGal} / \mathrm{mK} \quad$ Deg.Longitude:
Drift const.: $0.17 \quad$ GMT Difference: 6.hr
Drift Correction Start Time: 23:33:43 Cal.after x samples: 12
Date: 97/07.15 On-Line Tilt Corrected $=$ "*"

Station	Grav.	SD. Till x	Tilt y	Temp.		C.	Dur \#		Time	
	-101	4208.405*	0	6	6	-0.8	-	60	1	8:27:42
	-106	4042.683 *	0.1	-12	13	-0.7	0	60	1	12:04:14
	8801	4038.08 *	0.1	4	11	-0.8	0	60	4	13:20:04
	8802	4043.993*	0.2	15	-56	-0.8	-0	60	0	13:38:45
	8803	4045.573 *	0	50	-4	-0.9	-0	60	3	14:21:12
	8804	4053.282*	0.1	16	25	-1	-0.1	60	0	15:02:47
	8805	4045.019 *	0.4	138	16	-1.1	-0.1	60	0	15:43:25
	8806	4045.737*	0.2	18	28	-1.1	-0.1	60	0	16:28:50
	8807	4041.101*	0	10	7	-1.1	-0.1	60	4	16:51:24
	8808	4034.559 *	0	-9	24	-1.1	-0.1	60	4	17:15:54
	-106	4042.667 *	0.1	-15	-2	-1.2	-0.1	60	0	18:45:55
	-101	4208.36*	0	-19	10	-0.7	-0	60	0	21:53:42

KENNECOTT CANADA EXPLORATION INC.

1997 Moyie Gravity Infill Survey

Observed Gravity Values - Electronic Notes from Gravity Meter Instrumentation: Scintrex CG3 Gravity Meter No. 10345
Surveyed by: Quadra Surveys. June - July 1997
Operator. Tam Mitchell

Gravity Field Values

Station	Grav.	SD.	Tilt x	Tilt y	Temp.	E.T.C.	Dur	\# Rej	Time
-101	4193.003	0.02	5	-4	-0.96	0.01	60	1	8:17:19
-106	4027.498	0.208	-34	-17	-0.76	0.052	60	0	12:53:15
9701	4024.319	0.03	-4	-8	-0.94	0.02	60	1	14:17:15
9702	4028.307	0.032	10	5	-0.84	-0.002	60	0	15:05:53
9703	4049.596	0.064	-24	7	-0.87	-0.015	60	0	15:34:12
9704	4051.003	0.019	1	5	-0.85	-0.033	60	0	16:18:06
9705	4060.101	0.021	0	-5	-0.9	-0.043	60	2	16:47:36
9706	4062.194	0.021	11	4	-0.91	-0.052	60	0	17:19:06
-101	4193.051	0.026	-9	2	-0.83	-0.055	60	0	21:04:22

Jun-17

Station	Grav.	SD.	Tilt x	Tilt y	Temp.	E.T.C.	Dur	\# Rej	Time
-101	4192.996	0.018	12	5	-1.03	-0.001	60	3	8:11:10
-106	4027.312	0.018	-6	0	-1.07	0.065	60	1	10:19:03
9707	4063.5	0.025	3	-6	-1.04	0.084	60	0	11:46:07
9708	4052.743	0.02	-6	1	-1.15	0.084	60	1	12:11:28
9709	4060.995	0.016	3	2	-1.16	0.078	60	6	12:53:10
9710	4058.696	0.015	-6	3	-1.19	0.069	60	0	13:23:29
9711	4026.13	0.133	-20	1	-1.16	0.054	60	0	14:01:46
9712	4009.462	0.03	-15	-10	-1.19	0.035	60	0	14:41:12
9713	4018.205	0.051	6	-7	-1.28	0.024	60	0	15:01:02
12301	4047.62	* 0.128	4	1	-1.27	0.006	60	0	15:33:53
9714	4051.624	0.041	20	14	-1.21	-0.007	60	0	15:55:49
12307	4055.83	* 0.036	0	4	-1.2	-0.021	60	2	16:23:26
-101	4192.918	0.02	7	-8	-1.15	-0.076	60	1	19:04:18

Kennecott Canada Exploration Inc.

1997 Moyie Gravity Infill Survey

Observed Gravity Values - Electronic Notes from Gravity Meter

Instrumentation: Scintrex CG3 Gravity Meter No. 10345
Surveyed by: Quadra Surveys, June - July 1997
Operator: Tam Mitchell

Gravity Field Values

Jun-18
Station Grav

-101	4192.899	0.024	6	6	-1.13	-0.012	60	0	$8: 18: 23$
-107	4152.039	0.029	-19	16	-1.1	0.035	60	0	$9: 32: 08$
9715	4000.021	0.021	1	6	-1.13	0.086	60	1	$11: 10: 16$
9716	4001.356	0.026	-2	4	-1.32	0.093	60	0	$11: 31: 02$
9717	4004.237	0.029	2	-1	-1.21	0.097	60	0	$11: 47: 29$
9718	4007.672	0.03	0	2	-1.27	0.099	60	0	$11: 57: 41$
9719	4010.784	0.041	-5	-6	-1.28	0.1	60	18	$12: 07: 51$
9720	4013.613	0.028	2	2	-1.29	0.101	60	0	$12: 16: 04$
9721	4016.075	0.024	7	3	-1.27	0.102	60	0	$12: 34: 40$
9722	4019.726	0.022	-9	6	-1.27	0.101	60	0	$12: 48: 55$
9723	4022.718	0.068	-26	4	-1.31	0.1	60	13	$12: 57: 13$
9724	4027.287	0.029	-5	14	-1.31	0.098	60	2	$13: 08: 51$
9725	4029.943	0.03	1	7	-1.32	0.096	60	0	$13: 18: 33$
9726	4041.018	0.046	-4	5	-1.32	0.091	60	20	$13: 38: 42$
9727	4045.902	0.082	1	10	-1.31	0.088	60	0	$13: 48: 00$
-101	4192.977	0.049	8	6	-1.05	0.042	60	3	$15: 20: 53$

Jun-19
Station Grav. SD. Tilt x Tilty Temp. E.T.C. Dur \#Rej Time

-101	4192.863	0.014	14	9	-1.17	-0.032	60	5	$8: 19: 16$
-105	4027.113	0.015	6	7	-1.45	0.086	60	0	$11: 19: 12$
21102	4039.67	0.030	10	7	-1.33	0.11	60	1	$12: 21: 57$
9728	4044.249	0.155	-30	-15	-1.42	0.114	60	0	$12: 54: 43$
9729	4048.966	0.029	-23	24	-1.48	0.115	60	0	$13: 16: 11$
9730	4050.398	0.014	4	-12	-1.5	0.11	60	1	$13: 49: 23$
9731	4056.022	0.017	-13	-2	-1.47	0.106	60	0	$14: 05: 54$
9732	4057.781	0.014	70	-10	-1.49	0.101	60	0	$14: 22: 17$
9733	4062.222	0.064	24	15	-1.49	0.091	60	9	$14: 43: 29$
9734	4064.528	0.041	14	-23	-1.49	0.072	60	5	$15: 21: 12$
9735	4066.532	0.074	30	5	-1.46	0.054	60	0	$15: 49: 34$
9736	4068.174	0.138	2	30	-1.55	0.043	60	3	$16: 06: 03$
9737	4067.331	0.345	16	-45	-1.55	0.027	60	2	$16: 27: 40$
9738	4069.547	0.133	57	16	-1.56	0.007	60	0	$16: 55: 49$
9739	4055.101	0.018	13	-12	-1.58	-0.037	60	2	$18: 01: 50$
9732	4057.72	0.025	41	-8	-1.6	-0.05	60	0	$18: 22: 51$
21102	4039.63	0.018	4	1	-1.6	-0.064	60	0	$18: 50: 50$
-105	4027.128	0.024	3	17	-1.52	-0.078	60	0	$19: 26: 04$
-100	4192.807	0.031	-7	14	-1.23	-0.077	60	0	$23: 09: 41$

Kennecott Canada Exploration Inc.

1997 Moyie Gravity Infill Survey
Observed Gravity Values - Electronic Notes from Gravity Meter
Instrumentation: Scintrex CG3 Gravity Meter No. 10345
Surveyed by: Quadra Surveys, June - July 1997
Operator: Tam Mitchell
Gravity Field Values

Jun-20
GCAL. 1 :
GCAL.2: $0 . \quad$ Deg.Latitude: 49.5
TEMPCO.:
5861.733

Tilt y sensit.:
274.8

Drift const:: $\quad 0.24 \quad$ GMT Difference: $\quad 6 . \mathrm{hr}$
Drif Correction Start Time: 07:35:59 Cal.after x samples: 12
Date: $97 / 06 / 20 \quad$ On-Line Tilt Corrected $=$ " "'

Stn	Time			Grav		Remo Redo		
	Tides	Tides	Grav					
-101	$10: 01: 39$	4196.2	0.07	-0.03	4196.3			
-104	$11: 13: 38$	4112.2	0.06	0.019	4112.3			
9740	$12: 16: 36$	4081.3	0.06	0.063	4081.5			
9741	$12: 57: 22$	4070.4	0.07	0.093	4070.6			
9742	$13: 47: 14$	4059.5	0.08	0.112	4059.7			
9743	$15: 37: 04$	4063.1	0.1	0.116	4063.3			
9744	$16: 13: 37$	4054.5	0.1	0.103	4054.7			
10704	$16: 36: 02$	4064	0.09	0.092	4064.2			
10703	$16: 44: 36$	4067.1	0.09	0.086	4067.3			
10702	$16: 50: 03$	4069.1	0.09	0.083	4069.3			
10701	$16: 56: 51$	4072.2	0.08	0.08	4072.4			
-104	$17: 20: 48$	4112.2	0.08	0.064	4112.4			
-101	$18: 13: 35$	4196.4	0.05	0.028	4196.5			

23-Jun

Station	Time	Grav.
-101	$9: 58: 42$	4196.8
-104	$11: 09: 59$	4112.7
9743	$12: 10: 01$	4063.5
9740	$13: 01: 10$	4082
9741	$13: 33: 54$	4071.1
9745	$14: 28: 34$	4058.7
9746	$15: 13: 27$	4052.3
11103	$16: 59: 14.4002 .42$	
9747	$17: 30: 21$	4013.7
9748	$17: 55: 31$	4038.5
9743	$18: 31: 35$	4063.4
-104	$19: 51: 18$	4112.7
-100	$20: 37: 20$	4196.8

Kennecott Canada Exploration Inc.

1997 Moyie Gravity Infill Survey

Observed Gravity Values - Electronic Notes from Gravity Meter
Instrumentation; Scintrex CG3 Gravity Meter No. 10345
Surveyed by: Quadra Surveys, June - July 1997
Operator. Tam Mitchell

Gravity Field Values

24-Jun
Station Grav. SD. Tiltx Tilty Temp. E.T.C. Dur \# Rej Time

-101	4196.761	0.013	0	1	-0.46	-0.073	60	0	$8: 36: 03$
-104	4112.756	0.013	1	4	-0.47	-0.064	60	1	$1: 13: 43$ Calculated Value
9743	4063.423	0.022	-5	1	-0.39	-0.029	60	0	$11: 58: 26$ from below
9749	4067.546	0.015	11	33	-0.44	-0.017	60	0	$12: 22: 16$
9750	4075.999	0.201	-9	-22	-0.29	0.013	60	1	$13: 22: 18$
9743	4063.512	0.022	-11	22	-0.37	0.036	60	3	$14: 10: 22$
9744	4055.2	0.06	14	5	-0.48	0.043	60	0	$14: 27: 07$
9751	4029.911	0.016	-2	-5	-0.54	0.058	60	0	$15: 09: 00$
9752	4046.297	0.015	5	2	-0.59	0.07	60	0	$16: 09: 11$
9743	4063.364	0.019	-6	-6	-0.59	0.07	60	0	$16: 31: 41$
104	4112.747	0.017	12	8	-0.37	0.066	60	0	$17: 19: 13$
-101	4196.804	0.027	7	14	-0.65	0.048	60	3	$18: 16: 50$

Battery falure reset clock below, used difference between value read at -101at 0:06:41
and at 18:16:50 to calculate a check at -104

-104	4102.253	0.019	1	2	-0.47	-0.064	60	4	$1: 10: 57$
-104	4102.248	0.025	1	3	-0.47	-0.064	60	1	$1: 12: 18$
-104	4102.247	0.013	1	4	-0.47	-0.064	60	1	$1: 13: 43$
-101	4186.295	0.035	7	-16	-1.42	-0.064	60	0	$0: 06: 41$

25-Jun
Station Grav. SD. Tiltx Tilty Temp. E.T.C. Dur \#Rej Time

-101	4196.771	0.023	15	-13	-0.35	-0.05	60	0	$8: 33: 05$
-104	4112.761	0.015	3	-6	-0.43	-0.056	60	0	$10: 13: 50$
23703	3995.95	0.038	-2	11	-0.35	-0.031	60	0	$12: 39: 27$
9753	4002.018	0.118	3	22	-0.35	-0.018	60	0	$13: 19: 58$
9754	4010.609	0.029	4	6	-0.32	-0.008	60	1	$13: 46: 24$
9755	4024.86	0.304	24	-18	-0.24	0.005	60	1	$14: 22: 17$
9756	4017.344	0.27	-58	9	-0.41	0.029	60	4	$15: 35: 45$
23703	3996.12	0.038	-7	0	-0.26	0.043	60	0	$17: 12: 38$
9757	3980.395	0.024	2	7	-0.33	0.042	60	1	$17: 28: 16$
9758	3984.627	0.033	-10	0	-0.35	0.041	60	0	$17: 39: 35$
9759	3990.044	0.036	6	-1	-0.36	0.038	60	2	$18: 11: 25$
-104	4112.75	0.024	-3	10	-0.23	0.016	60	0	$19: 27: 43$
-101	4196.802	0.025	-8	1	-0.19	-0.01	60	0	$20: 28: 39$

26-Jun
Station Grav. SD. Tilt x Tilty Temp. E.T.C. Dur \#Rej Time

Kennecott Canada Exploration Inc.

1997 Moyie Gravity Infill Survey

Observed Gravity Values - Electronic Notes from Gravity Meter Instrumentation; Scintrex CG3 Gravity Meter No. 10345
Surveyed by: Quadra Surveys. June - July 1997
Operator: Tam Mitchell

Gravity Field Values

-104	4196.772	0.015	10	20	-0.34	-0.024	60	0	$9: 08: 34$
-104	4112.768	0.025	-8	1	-0.31	-0.034	60	1	$10: 36: 51$
9760	4087.756	0.028	-1	-6	-0.35	-0.038	60	0	$11: 54: 03$
9761	4085.067	0.214	41	-15	-0.35	-0.035	60	2	$12: 54: 22$
9762	4077.983	0.047	18	3	-0.34	-0.027	60	1	$13: 56: 06$
9763	4063.804	0.179	7	0	-0.31	-0.009	60	0	$15: 18: 41$
9764	4063.895	0.126	-13	22	-0.33	0	60	0	$16: 02: 24$
9765	4082.852	0.043	-22	-25	-0.3	0.008	60	3	$16: 47: 18$
9760	4087.921	0.022	-2	4	-0.29	0.013	60	0	$17: 38: 22$
-104	4112.867	0.085	-11	42	-0.21	0.014	60	0	$18: 14: 42$
-101	4196.932	0.044	2	16	-0.18	0.001	60	1	$19: 49: 37$

30-Jun
Station Grav. SD. Tilt x Tilt y

-101	4196.97	0.02	114	92	-0.75	0.041	60	2	$8: 53: 37$
-101	4196.904	0.019	-4	2	-0.74	0.042	60	0	$8: 55: 42$
-101	4196.905	0.026	8	5	-0.74	0.043	60	0	$8: 57: 02$
-105	4031.372	0.04	1	3	-0.76	0.078	60	0	$10: 40: 11$
-105	4031.369	0.036	-17	3	-0.76	0.078	60	0	$10: 41: 47$
-104	4031.297	0.037	-22	-3	-0.86	0.079	2	0	$10: 51: 57$
-105	4031.351	0.03	-4	9	-0.86	0.079	60	1	$10: 52: 24$
9766	4029.545	0.026	7	5	-0.68	0.079	60	1	$11: 43: 38$
9766	4029.546	0.032	18	7	-0.68	0.079	60	0	$11: 45: 37$
9766	4029.546	0.02	2	6	-0.68	0.079	60	0	$11: 47: 00$
9767	4034.389	0.015	2	4	-0.76	0.077	60	0	$11: 58: 54$
9767	4034.387	0.017	1	0	-0.75	0.077	60	0	$12: 00: 16$
9767	4034.388	0.019	-10	-9	-0.74	0.077	60	0	$12: 02: 10$
9768	4036.441	0.063	-23	15	-0.78	0.072	60	0	$12: 26: 11$
9768	4036.394	0.046	-44	-3	-0.76	0.07	60	0	$12: 32: 02$
9768	4036.393	0.037	-44	-11	-0.77	0.07	60	4	$12: 33: 34$
9769	4046.629	0.026	-3	4	-0.73	0.063	60	0	$12: 54: 56$
9769	4046.626	0.017	-4	2	-0.72	0.063	60	1	$12: 56: 14$
9770	4055.025	0.206	40	7	-0.7	0.057	60	0	$13: 10: 55$
9770	4055.089	0.127	89	-4	-0.7	0.056	60	6	$13: 12: 52$
9771	4062.957	0.046	3	9	-0.7	0.053	60	0	$13: 20: 29$
9771	4062.951	0.018	2	13	-0.7	0.052	60	0	$13: 23: 04$
9772	4038.836	0.032	-7	-3	-0.71	0.038	60	0	$13: 52: 25$
9772	4038.843	0.035	-16	-8	-0.7	0.037	60	7	$13: 54: 04$
9773	4028.121	0.066	-15	3	-0.69	0.026	60	2	$14: 15: 55$
9773	4028.125	0.044	1	15	-0.68	0.025	60	5	$14: 18: 20$
9794	4029.073	0	26	-1	-0.65	0.001	1	0	$15: 05: 08$
9774	4029.055	0.015	0	3	-0.66	0	60	1	$15: 05: 53$

Page 5 of 7

KENNECOTT CANADA EXPLORATION INC.

1997 Moyie Gravity Infill Survey

Observed Gravity Values - Electronic Notes from Gravity Meter Instrumentation; Scintrex CG3 Gravity Meter No. 10345
Surveyed by: Quadra Surveys. June - July 1997
Operator: Tam Mitchell

Gravity Field Values

9774	4029.06	0.014	3	2	-0.65	-0.001	60	2	$15: 09: 07$
9775	4020.757	0.026	-1	10	-0.71	-0.006	60	0	$15: 16: 38$
9775	4020.756	0.013	5	17	-0.7	-0.006	60	1	$15: 18: 07$
9776	4005.07	0.055	13	13	-0.78	-0.017	60	1	$15: 39: 51$
9776	4005.089	0.034	7	24	-0.75	-0.019	60	0	$15: 43: 41$
9777	4005.555	0.117	3	5	-0.75	-0.031	60	0	$16: 07: 40$
9777	4005.556	0.035	-3	4	-0.74	-0.032	60	2	$16: 09: 34$
9778	4008.872	0.021	-7	6	-0.85	-0.037	60	7	$16: 23: 35$
9778	4008.882	0.017	3	16	-0.83	-0.038	60	1	$16: 25: 14$
-105	4031.3	0.023	-11	0	-0.74	-0.067	60	0	$18: 03: 08$
-105	4031.309	0.019	-3	5	-0.73	-0.067	60	0	$18: 04: 35$
-101	4197.001	0.016	-1	1	-0.62	-0.072	60	1	$19: 22: 07$
-101	4196.993	0.023	0	3	-0.63	-0.072	60	0	$19: 24: 36$
-101	4196.988	0.049	2	3	-0.64	-0.072	60	0	$19: 26: 15$

1Jul
Station Grav. SD. Tiltx Tilty Temp. E.T.C. Dur \#Rej Time

-101	4196.938	0.025	-9	18	-0.85	0.015	60	0	$8: 31: 47$
9760	4088.05	0.032	9	2	-0.76	0.087	60	3	$10: 53: 21$
-106	4031.336	0.035	-14	9	-0.76	0.094	60	1	$11: 24: 17$
9779	4033.455	0.054	-7	6	-0.72	0.093	60	3	$12: 42: 19$
9780	4039.518	0.08	-18	6	-0.77	0.091	60	22	$12: 48: 42$
9781	4050.53	0.016	2	0	-0.75	0.087	60	0	$13: 06: 12$
9782	4052.747	0.024	-12	7	-0.76	0.085	60	0	$13: 13: 10$
9783	4041.138	0.027	-11	9	-0.77	0.07	60	3	$13: 49: 56$
9784	4060.045	0.022	14	9	-0.71	0.059	60	1	$14: 14: 23$
-106	4031.315	0.162	-21	5	-0.54	-0.051	60	0	$17: 30: 12$
9760	4088.002	0.013	-15	2	-0.57	-0.061	60	3	$17: 54: 44$
-101	4197.005	0.018	-1	20	-0.57	-0.078	60	0	$19: 12: 25$

Kennecott Canada Exploration Inc.

1997 Moyie Gravity Infill Survey

Observed Gravity Values - Electronic Notes from Gravity Meter
Instrumentation; Scintrex CG3 Gravity Meter No. 10345
Surveyed by: Quadra Surveys. June - July 1997
Operator: Tam Mitchell
Gravity Field Values

2-Jul

Station	Grav.	SD.	Tilt x	Tilt y	Temp.	E.T.C.	Dur	\# Rej	Time
-101	4196.959	0.009	1	0	-0.83	-0.016	60	0	8:17:23
-105	4031.413	0.025	-5	-2	-0.87	0.05	60	0	9:56:18
12008	4040.75	0.011	6	-8	-0.77	0.078	60	0	10:46:23
9785	4034.027	0.239	-23	-20	-0.85	0.107	60	2	12:35:10
9786	4029.949	0.062	-2	15	-0.94	0.104	60	4	13:10:46
9787	4021.23	0.072	-92	-21	-0.88	0.093	60	0	13:54:25
9788	4010.969	0.03	-41	11	-0.83	0.045	60	0	15:27:15
9789	4015.682	0.042	3	-11	-0.87	0.033	60	3	15:45:15
9790	4017.637	0.04	-8	6	-0.86	0.017	60	2	16:09:32
12008	4040.72	* 0.026	-20	-10	-0.92	-0.018	60	0	17:03:29
-105	4031.389	0.017		4	-0.86	-0.04	60	0	17:41:20
-101	4197.035	0.013	-8	-2	-0.74	-0.079	60	0	19:24:4

Kennecott Canada Exploration Inc.

1997 Panda Gravity Survey

Observed Gravity Data Reduction and Calculations
Instrumentation: Scintrex CG3 Gravity Meter No. 10345
Surveyed by: Quadra Surveys. October 1997
Operator: Tam Mitchell

Station	Meter Reading mGal	Time	IH		Drift	Drift Corr. mGal	Uncalibrated Observed Gravity Notes			
-101	4208.249	8:41:26	0.54	4208.42	0.00	4208.42	976479.71	980688.13	-101	
-265	4090.7	12:05:35	0.53	4090.86	-0.01	4090.85	976479.71	980570.56	-265	
8501	4041.552	12:34:32	0.57	4041.73	-0.01	4041.72	976479.71	980521.43	8501	
8502	4033.377	12:47:09	0.58	4033.56	-0.01	4033.55	976479.71	980513.26	8502	
8503	4028.293	13:56:24	0.43	4028.43	-0.01	4028.42	976479.71	980508.13	8503	
-101	4208.27	17:16:38	0.54	4208.44	-0.02	4208.42	976479.71	980688.13	-101 Loop Tie 0.02	
					-0.18					
-101	4208.343	7:58:40	0.54	4208.51	0.00	4208.51	976479.62	980688.13	-101	
-106	4042.657	10:57:56	0.57	4042.83	-0.02	4042.81	976479.62	980522.43	-106	
12309	4090.747	11:24:10	0.6	4090.93	-0.03	4090.91	976479.62	980570.53	12309	
11808	4055.803	11:46:41	0.57	4055.98	-0.03	4055.95	976479.62	980535.57	11808	
8601	4046.508	12:01:34	0.57	4046.68	-0.03	4046.65	976479.62	980526.27	8601	
8501	4041.625	12:10:10	0.56	4041.80	-0.03	4041.77	976479.62	980521.39	8501	-0.04
8602	4037.734	12:20:49	0.55	4037.90	-0.03	4037.87	976479.62	980517.49	8602	
8502	4034.933	12:30:36	0.57	4035.11	-0.03	4035.08	976479.62	980514.70	8502 High SD in G Meter (do not use)	
8603	4028.525	13:05:42	0.51	4028.68	-0.04	4028.64	976479.62	980508.26	8603	
8604	4023.417	13:25:41	0.52	4023.58	-0.04	4023.54	976479.62	980503.16	8604	
8503	4028.293	13:53:21	0.49	4028.44	-0.04	4028.40	976479.62	980508.02	8503	-0.11
8605	4026.45	14:11:54	0.49	4026.60	-0.05	4026.56	976479.62	980506.18	8605	
8606	4025.005	14:29:31	0.53	4025.17	-0.05	4025.12	976479.62	980504.74	8606	
8607	4025.633	15:01:20	0.57	4025.81	-0.05	4025.76	976479.62	980505.38	8607	
8608	4032.458	15:24:41	0.53	4032.62	-0.06	4032.57	976479.62	980512.19	8608	
8609	4033.568	15:50:22	0.52	4033.73	-0.06	4033.67	976479.62	980513.29	8609	

Page 1 of 3

KENNECOTT CANADA EXPLORATION INC.

1997 Panda Gravity Survey

Observed Gravity Data Reduction and Calculations
Instrumentation: Scintrex CG3 Gravity Meter No. 10345
Surveyed by: Quadra Surveys. October 1997
Operator: Tam Mitchell

Station	Meter Reading mGal	Time	IH			Drift		Uncalibrated	
				Corr.		Corr.	Base	Observed	
				mGal	Drift	mGal	Shift	Gravity Notes	
8610	4036.912	16:05:56	0.53	4037.08	-0.06	4037.02	976479.62	980516.64	8610
8611	4042.239	16:19:49	0.56	4042.41	-0.06	4042.35	976479.62	980521.97	8611
8612	4059.061	16:43:38	0.55	4059.23	-0.06	4059.17	976479.62	980538.79	8612
8613	4058.924	17:01:19	0.53	4059.09	-0.07	4059.02	976479.62	980538.64	8613
-106	4042.579	18:29:05	0.56	4042.75	-0.08	4042.67	976479.62	980522.29	-106
-101	4208.436	20:06:45	0.54	4208.60	-0.09	4208.51	976479.62	980688.13	-101 Loop Tie 0.09
-101	4208.379	8:33:14	0.54	4208.55	0.00	4208.55	976479.58	980688.13	-101
-106	4042.646	11:46:08	0.52	4042.81	0.00	4042.81	976479.58	980522.39	-106
8701	4021.609	12:34:16	0.5	4021.76	0.00	4021.76	976479.58	980501.34	8701
8702	4018.347.	12:53:00	0.53	4018.51	0.00	4018.51	976479.58	980498.09	8702
8703	4007.952	13:18:04	0.47	4008.10	0.00	4008.10	976479.58	980487.68	8703
8704	4003.916	13:35:28	0.54	4004.08	0.00	4004.08	976479.58	980483.66	8704
8705	4006.633	13:55:18	0.53	4006.80	0.00	4006.80	976479.58	980486.38	8705
8706	4007.096	14:15:05	0.53	4007.26	0.00	4007.26	976479.58	980486.84	8706
8707	4006.365	14:35:41	0.54	4006.53	0.00	4006.53	976479.58	980486.11	8707
8708	4015.109	14:56:34	0.53	4015.27	0.00	4015.27	976479.58	980494.85	8708
8709	4000.902	15:26:34	0.52	4001.06	0.00	4001.06	976479.58	980480.64	8709
8710	3995.643	15:48:07	0.54	3995.81	0.00	3995.81	976479.58	980475.39	8710
-106	4042.596	17:27:02	0.56	4042.77	0.00	4042.77	976479.58	980522.35	-106
-101	4208.378	19:16:46	0.54	4208.54	0.01	4208.55	976479.58	980688.13	-101 Loop Tie 0.01
					0.07				
-101	4208.405	8:27:42	0.54	4208.57	0.00	4208.57	976479.56	980688.13	-101
-106	4042.683	12:04:14	0.59	4042.87	0.01	4042.88	976479.56	980522.44	-106

Page 2 of 3

KENNECOTT CANADA EXPLORATION INC.

1997 Panda Gravity Survey

Observed Gravity Data Reduction and Calculations
Instrumentation: Scintrex CG3 Gravity Meter No. 10345
Surveyed by: Quadra Surveys. October 1997
Operator: Tam Mitchell

Kennecott Canada Exploration Inc.

[1997 Moyie Gravity Infill Survey

Observed Gravity Data Reduction and Calculations Instrumentation: Scintrex CG3 Gravity Meter No. 10345
Surveyed by: Quadra Surveys, June - July 1997

Panda Basin Area

16-Jun

Station	Meter Reading mGal	Time	IH
-101	4193.00	$8: 17: 19$	0.53
-106	4027.50	$12: 53: 15$	0.46
9701	4024.32	$14: 17: 15$	0.5
9702	4028.31	$15: 05: 53$	0.56
9703	4049.60	$15: 34: 12$	0.57
9704	4051.00	$16: 18: 06$	0.56
9705	4060.10	$16: 47: 36$	0.58
9706	4062.19	$17: 19: 06$	0.54
-101	4193.05	$21: 04: 22$	0.53

17-Jun

Station			
Stal	Meading mGal	Time	IH
-101	4193.00	$8: 11: 10$	0.52
-106	4027.31	$10: 19: 03$	0.55
9707	4063.50	$11: 46: 07$	0.58
9708	4052.74	$12: 11: 28$	0.55
9709	4061.00	$12: 53: 10$	0.57
9710	4058.70	$13: 23: 29$	0.56
9711	4026.13	$14: 01: 46$	0.57
9712	4009.46	$14: 41: 12$	0.56
9713	4018.21	$15: 01: 02$	0.55
12301	4047.62	$15: 33: 53$	0.58
9714	4051.62	$15: 55: 49$	0.54
12307	4055.83	$16: 23: 26$	0.58
-101	4192.92	$19: 04: 18$	0.51

$$
\begin{array}{rr}
\text { IH } & \\
\text { Corr. } & \\
\text { mGal } & \text { Drift } \\
4193.17 & 0 \\
4027.64 & -0.02 \\
4024.47 & -0.02 \\
4028.48 & -0.03 \\
4049.77 & -0.03 \\
4051.18 & -0.03 \\
4060.28 & -0.03 \\
4062.36 & -0.04 \\
4193.21 & -0.05
\end{array}
$$

Base Observed Shift Gravity Notes 976494.96980688 .13
980688.13
4027.62 976494.96 980522.58 Tie -.08 mGal
$4024.45 \quad 976494.96980519 .42$
$4028.45 \quad 976494.96980523 .41$
$4049.74 \quad 976494.96980544 .71$
4051.15 976494.96 980546.11
$4060.25 \quad 976494.96980555 .21$
$4062.32 \quad 976494.96980557 .28$
4193.17 976494.96 980688.13 Loop Tie -.05 mGal

Kennecott Canada Exploration Inc.

1997 Moyie Gravity Infill Survey

- Observed Gravity Data Reduction and Calculations

Instrumentation: Scintrex CG3 Gravity Moter No. 10345

Surveyed by: Quadra Surveys. June - July 1997
$\left[\begin{array}{r}\text { 18Jun } \\ \\ \text { Station } \\ -101 \\ -107 \\ 9715 \\ 9716=226 \\ 9717 \\ 9718 \\ 9719 \\ 9720 \\ \hline 22503 \\ 9722 \\ 9723 \\ 9724 \\ 9725 \\ 9726 \\ 9727 \\ -101\end{array}\right.$

19-Jun

Station
-101
-105
21102
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9732
21102
-105
-101

Meter Reading mGal	Time	IH
4192.90	$8: 18: 23$	0
4152.04	$9: 32: 08$	0
4000.02	$11: 10: 16$	0
4001.36	$11: 31: 02$	0
4004.24	$11: 47: 29$	0
4007.67	$11: 57: 41$	0
4010.78	$12: 07: 51$	0
4013.61	$12: 16: 04$	0
4016.08	$12: 34: 40$	0
4019.73	$12: 48: 55$	0
4022.72	$12: 57: 13$	0
4027.29	$13: 08: 51$	0
4029.94	$13: 18: 33$	0
4041.02	$13: 38: 42$	0
4045.90	$13: 48: 00$	0
4192.98	$15: 20: 53$	0

$$
\begin{aligned}
& \text { IH } \\
& \text { Corr. } \\
& \text { mGal } \\
& 4192.90 \\
& 4152.04 \\
& 4000.02 \\
& 4001.36-0.03 \\
& 4004.24-0.03 \\
& 4007.67-0.03 \\
& 4010.78-0.04 \\
& 4013.61-0.04 \\
& 4016.08-0.04 \\
& 4019.73-0.04 \\
& 4022.72-0.05 \\
& 4027.29-0.05 \\
& 4029.94-0.05 \\
& 4041.02 \\
& 4045.90 \\
& 4192.98-0.08 \\
& \text { Drift } \\
& \text { Corr. } \\
& \text { Drift mGal } \\
& 4192.90 \\
& 4152.03 \\
& 3999.99 \\
& 4001.33 \\
& 4004.21 \\
& 4007.64 \\
& 4010.74 \\
& 4013.57 \\
& 4016.04 \\
& 4019.69 \\
& 4022.67 \\
& 4027.24 \\
& 4029.89 \\
& 4045.84 \\
& 4192.90
\end{aligned}
$$

Base Observed Shift Gravity Notes 976495.23980688 .13 976495.23980647 .26 976495.23980495 .22 976495.23980496 .56 976495.23980499 .44 976495.23980502 .87 976495.23980505 .97 976495.23980508 .80 976495.23980511 .27 976495.23980514 .92 976495.23980517 .90 976495.23980522 .47 976495.23980525 .12 976495.23980536 .20 976495.23980541 .07 976495.23 980688.13 Loop Tie 08

IH		Drift		
Corr.		Corr.	Base	
mGal	Drift	mGal	Shift	Gravity Notes
4192.86	0	4492.86	976495.27	980688.13
4027.11	0.01	4027.12	976495.27	980522.39
4039.67	0.01	4039.68	976495.27	980534.95
4044.25	0.01	4044.26	976495.27	980539.53
4048.97	0.02	4048.99	976495.27	980544.26
4050.40	0.02	4050.42	976495.27	980545.69
4056.02	0.02	4056.04	976495.27	980551.31
4057.78	0.02	4057.80	976495.27	980553.07
4062.22	0.02	4062.24	976495.27	980557.51
4064.53	0.02	4064.55	976495.27	980559.82
4066.53	0.02	4066.55	976495.27	980561.82
4068.17	0.03	4068.20	976495.27	980563.47
4067.33	0.03	4067.36	976495.27	980562.63
4069.55	0.03	4069.58	976495.27	980564.85
4055.10	0.03	4055.13	976495.27	980550.40
4057.72	0.04	4057.76	976495.27	980553.03 Tie -. 04
4039.63	0.04	4039.67	976495.27	980534.94 Tie - 01
4027.13	0.04	4027.17	976495.27	980522.44 Tie +. 05
4192.81	0.05	4192.86	976495.27	980688.13 Loop Tie -0.05

Kennecott Canada Exploration Inc.

1997 Moyie Gravity Infill Survey
Observed Gravity Data Reduction and Calculations Instrumentation; Scintrex CG3 Gravity Meter No. 10345
Surveyed by: Quadra Surveys. June - July 1997

20-Jun

The above loop was redone due to large gravity misclosure.

23-Jun

		Meter Reading mGal	Time	1H	IH		Drift		
					Corr.		Corr.	Base	Observed
	Station				mGal	Drift	mGal	Shift	Gravity Notes
	-101	4196.80	9:58:42	0.53	4196.97	0	4196.97	976491.16	980688.13
!	-104	4112.74	11:09:59	0.54	4112.91	0	4112.91	976491.16	980604.07
-	9743	4063.46	12:10:01	0.57	4063.63	0	4063.63	976491.16	980554.79
	9740	4082.01	13:01:10	0.56	4082.18	0	4082.18	976494.16	980573.34
	9741	4071.13	13:33:54	0.55	4071.30	0	4071.30	976491.16	980562.46
-	9745	4058.68	14:28:34	0.46	4058.82	-0.01	4058.81	976491.16	980549.97
	9746	4052.27	15:13:27	0.56	4052.45	-0.01	4052.44	976491.16	980543.60
[11103	4002.42	16:59:14	0.57	4002.60	-0.01	4002.59	976491.16	980493.75
نس	9747	4013.74	17:30:21	0.47	4013.89	-0.01	4013.88	976491.16	980505.04
	9748	4038.47	17:55:31	0.52	4038.63	-0.01	4038.62	976491.16	980529.78
	9743	4063.42	18:31:35	0.57	4063.59	-0.01	4063.58	976491.16	980554.74 Tie -. 05
	-104	4112.69	19:51:18	0.56	4112.86	-0.02	4112.84	976491.16	980604.00 Tie -. 07
	-101	4196.82	20:37:20	0.53	4196.99	-0.02	4196.97	976491.16	980688.13 Loop Tie -. 02

KENNECOTT CANADA Exploration Inc.

1997 Moyie Gravity Infill Survey

Observed Gravity Data Reduction and Calculations

 instrumentation; Scintrex CG3 Gravity Meter No. 10345Surveyed by: Quadra Surveys, June - July 1997
24Jun

25-Jun

Station
-101
-104
23703
9753
9754
9755
9756
23703
9757
9758
9759
-104
-101

Meter Reading		
mGal	Time	IH
4196.771	$8: 33: 05$	0.53
4112.761	$10: 13: 50$	0.57
3995.95	$12: 39: 27$	0.53
4002.018	$13: 19: 58$	0.53
4010.609	$13: 46: 24$	0.53
4024.86	$14: 22: 17$	0.5
4017.344	$15: 35: 45$	0.5
3996.12	$17: 12: 38$	0.55
3980.395	$17: 28: 16$	0.55
3984.627	$17: 39: 35$	0.56
3990.044	$18: 11: 25$	0.45
4112.75	$19: 27: 43$	0.57
4196.802	$20: 28: 39$	0.53

Kennecott Canada Exploration Inc.

799 Moyie Gravity Infill Survey

Jbserved Gravity Data Reduction and Calculations

-strumentation: Scintrex CG3 Gravity Meter No. 10345
urveyed by: Quadra Surveys, June - July 1997

26-Jun

	Meter			IH		Drift		
	Reading			Corr.		Corr.	Base	Observed
Station	mGal	Time	IH	mGal	Drift	mGal	Shift	Gravity Notes
-101	4196.772	9:08:34	0.53	4196.94	0	4196.94	Did not use	this portion of loop)
-104	4112.768	10:36:51	0.56	4112.94	0	4112.94	976491.14	980604.08
9760	4087.756	11:54:03	0.51	4087.91	-0.01	4087.90	976491.14	980579.04
9761	4085.067	12:54:22	0.51	4085.22	-0.03	4085.19	976491.14	980576.33
9762	4077.983	13:56:06	0.52	4078.14	-0.04	4078.10	976491.14	980569.24
9763	4063.804	15:18:41	0.5	4063.96	-0.06	4063.90	976491.14	980555.04
9764	4063.895	16:02:24	0.47	4064.04	-0.07	4063.97	976491.14	980555.11
9765	4082.852	16:47:18	0.51	4083.01	-0.08	4082.93	976491.14	980574.07
9760	4087.921	17:38:22	0.56	4088.09	-0.09	4088.00	976491.14	980579.14 Tie 0.10
-104	4112.867	18:14:42	0.57	4113.04	-0.1	4112.94	976491.14	980604.08 LoopTie 0.10
-101	4196.932	19:49:37	0.53	4197.10		4197.10	Did not use this	this portion of loop)

Note: Had battery problem so used loop tie at -104

Station	Meter Reading mGal	Time	IH	in Corr. mGal	Drift	Drift Corr. mGal	Base Shift	Observed Gravity Notes
-101	4196.905	8:57:02	0.53	4197.07	0	4197.07	976491.06	980688.13
-105	4031.351	10:52:24	0.53	4031.51	-0.02	4031.49	976491.06	980522.55
9766	4029.546	11:47:00	0.62	4029.74	-0.02	4029.72	976491.06	980520.78
9767	4034.388	12:02:10	0.61	4034.58	-0.02	4034.56	976491.06	980525.62
9768	4036.393	12:33:34	0.52	4036.55	-0.03	4036.52	976491.06	980527.58
9769	4046.626	12:56:14	0.55	4046.80	-0.03	4046.77	976491.06	980537.83
9770	4055.06	13:10:55	0.55	4055.23	-0.03	4055.20	976491.06	980546.26
9771	4062.951	13:23:04	0.58	4063.13	-0.04	4063.09	976491.06	980554.15
9772	4038.843	13:54:04	0.55	4039.01	-0.04	4038.97	976491.06	980530.03
9773	4028.125	14:18:20	0.56	4028.30	-0.04	4028.26	976491.06	980519.32
9774	4029.055	15:05:53	0.54	4029.22	-0.05	4029.17	976491.06	980520.23
9775	4020.756	15:18:07	0.57	4020.93	-0.05	4020.88	976491.06	980511.94
9776	4005.089	15:43:41	0.54	4005.26	-0.05	4005.21	976491.06	980496.27
9777	4005.556	16:09:34	0.55	4005.73	-0.06	4005.67	976491.06	980496.73
9778	4008.882	16:25:14	0.58	4009.06	-0.06	4009.00	976491.06	980500.06
-105	4031.309	18:04:35	0.51	4031.47	-0.07	4031.40	976491.06	980522.46 Tie -. 09
-101	4196.988	19:26:15	0.53	4197.15	-0.08	4197.07	976491.06	980688.13 Loop Tie . 08

Kennecott Canada Exploration Inc.

-1997 Moyie Gravity Infill Survey

Observed Gravity Data Reduction and Calculations
Instrumentation: Scintrex CG3 Gravity Meter No. 10345
Surveyed by: Quadra Surveys. June - July 1997
1-Jul

Station		Time	IH
-101	4196.938	8:31:47	0.54
9760	4088.05	10:53:21	0.53
-106	4031.336	11:24:17	0.51
9779	4033.455	12:42:19	0.53
9780	4039.518	12:48:42	0.53
9781	4050.53	13:06:12	0.56
9782	4052.747	13:13:10	0.53
9783	4041.138	13:49:56	0.57
9784	4060.045	14:14:23	0.53
-106	4031.315	17:30:12	0.54
9760	4088.002	17:54:44	0.54
-101	005	9:12:2	0.52

$\begin{array}{rr}\text { IH } \\ \text { Corr. }\end{array}$ ($\left.\begin{array}{r}\text { mGal } \\ \text { Drift } \\ 4197.10\end{array}\right) 0$.

Drift		
Corr.	Base	Observed
mGal	Shift	Gravity Notes
4197.10	976491.03	980688.13
4088.20	976491.03	980579.23
4031.48	976491.03	980522.51
4033.59	976491.03	980524.62
4039.65	976491.03	980530.68
4050.67	976491.03	980541.70
4052.88	976491.03	980543.91
4041.28	976491.03	980532.31
4060.17	976491.03	980551.20
4031.42	976491.03	980522.45 Tie -. 06
4088.11	976491.03	980579.14 Tie -. 09
4197.10	976491.03	980688.13 Loop Tie 0.07

1-Jul

Station	Meter Reading mGal	Time	IH
-101	4196.959	$8: 17: 23$	0.53
-105	4031.413	$9: 56: 18$	0.54
12008	4040.75	$10: 46: 23$	0.56
9785	4034.027	$12: 35: 10$	0.31
9786	4029.949	$13: 10: 46$	0.5
9787	4021.23	$13: 54: 25$	0.53
9788	4010.969	$15: 27: 15$	0.57
9789	4015.682	$15: 45: 15$	0.58
9790	4017.637	$16: 09: 32$	0.49
12008	4040.72	$17: 03: 29$	0.56
-105	4031.389	$17: 41: 20$	0.53
-101	4197.035	$19: 24: 42$	0.53

H Corr. mGal	Drift	Drift Corr. mGal	Base Shift	Observed Gravity Notes
4197.12	0	4197.12	976491.01	980688.13
4031.58	-0.01	4031.57	976491.01	980522.58
4040.92	-0.02	4040.90	976491.01	980531.91
4034.12	-0.03	4034.09	976491.01	980525.10
4030.10	-0.03	4030.07	976491.01	980521.08
4021.39	-0.03	4021.36	976491.01	980512.37
4011.14	-0.04	4011.10	976491.01	980502.11
4015.86	-0.05	4015.81	976491.01	980506.82
4017.79	-0.05	4017.74	976491.01	980508.75
4040.89	-0.06	4040.83	976491.01	980531.84 Tie -. 07
4031.55	-0.06	4031.49	976491.01	980522.50 Tie -. 08
4197.20	-0.08	4197.12	976491.01	980688.13 Loop Tie . 08

KENNECOTT CANADA EXPLORATION INC.

1997 Panda Infill Gravity Survey
 Inner Zone Terrain Corrections

Surveyed by Quadra Surveys

Page 1 of 2

KENNECOTT CANADA EXPLORATION INC.

Kennecott Canada Exploration Inc.

1997 Moyie Gravity Infill Survey
Inner Zone Terrain Corrections

Surveyed by: Quadra Surveys, June - July 1997

Page 1 of 3

Kennecott Canada Exploration Inc.

1997 Moyie Gravity Infill Survey
Inner Zone Terrain Corrections
Surveyed by: Quadra Surveys. June - July 1997

Abstract

Inclinometer Readings in Deg to Terrain Correction Zones Zone-B Zone-C Zone-D

B. C. $\&$ D

Ter Cor	Stn
0.08	9735
0.03	9736
0.06	9737
0.06	9738
0.26	9739
0.33	9740
0.37	9741
0.31	9742
0.22	9743
0.19	9744
0.27	9745
0.44	9746
0.56	9747
0.22	9748
0.20	9749
0.45	9750
0.57	9751
0.43	9752
0.86	9753
0.59	9754
0.41	9755
0.31	9756
0.24	9757
0.44	9758
0.42	9759
0.10	9760
0.00	9761
0.17	9762
0.14	9763
0.12	9764
0.00	9765
0.06	9766
0.08	9767
0.12	9788

Page 2 of 3

Kennecott Canada Exploration Inc.

1997 Moyie Gravity Infill Survey
Inner Zone Terrain Corrections
Suveyed by: Quadra Surveys. June - July 1997

B.C. 8

Tercor Stn 0.229769 0.349770$0.48 \quad 9772$
0.959774
0.44
9776$0.23 \quad 9778$$0.14 \quad 9779$
0.160.34
0.139782
$0.10 \quad 9783$0.319784
1.03 97850.309787
0.30 97880.29

Appendix XIII

Bore Hole Geophysical Logging Procedures and Results

Kennecott Canada Inc.
Granville Square
\#354-200 Granville St.
Vancouver, B.C.

Attention: Andrew Cole
Project Geophysicist

Dear Mr. Cole:

Re: Geophysical Logging of the K9702 and K9703 Boreholes, Moyie Creek, B.C.

We are pleased to provide a formal letter to follow up the delivery of preliminary logs on September 26, 1997.

Background

Kennecott Canada Inc. is conducting base metal exploration in the Moyie Creek area of southeastern British Columbia. As part of this program, Komex International Ltd. geophysically logged two drilled and cored boreholes, K9702 and K9703. Geophysical logging provides the advantages of continuous objective data collection with no missing sections; the identification of features in the borehole not visible in the core to the naked eye; and the ability to identify features up to a half meter away, but not necessarily intersecting the borehole. Logging services included magnetic susceptibility, induction conductivity, and natural gamma. The specific objective of the program was to identify and resolve significant intersections.

Field Techniques

All field work was performed from September 22 to September 24, 1997. Data were collected with a portable hand cranked winch with $1,000 \mathrm{~m}$ of four conductor cable. All logging depths are referenced to ground surface. All logs were run in K9703. Only susceptibility and natural
gamma logs were run in K9702. The logging tools included the Geonics Ltd. EM39S magnetic susceptibility probe, the EM39G gamma ray probe, and the EM39 borehole conductivity probe.

The EM39S is a new two coil susceptibility tool specifically designed to measure magnetic susceptibilities over a large dynamic range, including at very low values commonly associated with soils and sedimentary environments. The resolution of the EM39S is approximately the intercoil spacing, or 50 cm . Although the thickness of features smaller than 50 cm cannot be precisely resolved, they can still be "seen" if they are of significant susceptibility contrast. The instrument response is generally independent of the borehole diameter. 90% of the instrument response is from earth materials within a radius of 30 cm from the borehole axis. The response of materials from 5 to 25 cm from the borehole axis is roughly uniform. The operating frequency is 39.2 kHz . Data are recorded as 10^{-3} SI units. The instrument is described in detail by McNeill et. al. (1996).

The EM39G counts naturally emitted gamma rays of all energy levels using a scintillation counter. The detector is a thallium activated sodium iodide crystal 2.5 cm in diameter and 6.5 cm in length. The probe counts radiation from material in a sphere of a radius of approximately 20 cm . Data are recorded as raw counts per second (cps) with a time constant of 1 second. The influence of earth materials falls off with the square root of distance from the tool.

The EM39 electromagnetic conductivity tool is described in detail by McNeill (1986). It is very similar in design to the EM39S magnetic susceptibility probe. The intercoil spacing is 50 cm , providing a vertical resolution of approximately 50 cm . Borehole effects are negligible. Formation or annular material within a radius of 18 cm from the probe contributes very little to the measured conductivity. The peak response occurs 32 cm from the borehole. The operating frequency is 39.2 kHz . Data is output as apparent conductivity in millisiemens/meter (mS / m).

Results

The results are described in the accompanying log plots. The logs are presented on a 1:500 vertical scale. No filtering has been applied other than a 9 point boxcar to the natural gamma data in order to mute statistical fluctuations. Some minor block shifting of the susceptibility data has been applied in order to remove some negative values in the very low susceptibility host rock.

The host rock is generally characterized by very low susceptibility values (less than $1 \times 10^{-3} \mathrm{SI}$), low conductivity values (less than $10 \mathrm{mS} / \mathrm{m}$), and high gamma counts (greater than 150 cps). Significant intersections exhibit high magnetic susceptibilities and/or high electrical conductivities. Zones of low gamma counts (less than 100 cps are probably igneous intrusions.

Conclusions

1. Probable intersections are clearly identified by elevated magnetic susceptibilities and/or electrical conductivities. Igneous intrusions are indicated by zones of low gamma counts.
2. Numerous intersections were identified in the accompanying log plots, particularly in K9702.
3. Borehole magnetic susceptibility, conductivity, and natural gamma logging appear to be appropriate techniques for identifying significant intersections in the Moyie Creek area. Other logging services which may be considered in the future include self potential, induced polarization, temperature, borehole orientation, and borehole magnetometer surveys.

If you have any further questions, please do not hesitate to contact the undersigned.

References

McNeill, J.D. 1986. Borehole Conductivity Meter Theory of Operation. Technical Note TN-6. Geonics Limited, Mississauga, Ontario, Canada.

McNeill, J.D., Hunter, J.A., Bosnar, M. 1996. Applications of a borehole induction magnetic susceptibility logger to shallow lithological mapping: Journal of Environmental and Engineering Geophysics, v. 0, no. 2 (January 1996), pp. 77-90.

Yours truly,
Komex International Ltd.

Appendix XIV
UTEM Survey Procedures and Results

UTEM-3 BOREHOLE

\&
 SURFACE SURVEY

Logistics Report
ON THE

MOYIE PROJECT

BH K97-03 : UTM Collar Coordinates: 567984 E, 5457855 N NELSON MINING DIVISION, B.C.

$$
F O R
$$

KENNECOTT CANADA EXPLORATION INC.

SURVEY BY
SJ GEOPHYSICS LTD.

October, 1997
REPORT BY
Rolf Krawinkel
SJ Geophysics Ltd.

TABLE OF CONTENTS

INTRODUCTION 1
DESCRIPTION OF UTEM SYSTEM 1
FIELD WORK 2
DATA PRESENTATION 3
Surface data 3
Borehole data 5
APPENDIX I
\qquad
STATEMENT OF QUALIFICATIONS
\qquad
APPENDIX II
\qquadLEGEND
\qquad
APPENDIX III
\qquad
Production Sheets
\qquad
APPENDIX IV
\qquadA TIME DOMAIN EM SYSTEM MEASURING
\qquad
THE STEP RESPONSE OF THE GROUND.
APPENDIX V.
\qquadData Sections

INTRODUCTION

A large loop time domain electromagnetic (UTEM-3) surface and borehole survey was completed by SJ Geophysics Ltd.. for Kennecott Canada Exploration Inc., on the Moyie Project. during the period of October 9 to October 19, 1997. The Moyie Project consisted of one borehole (k97-03), UTM collar coordinates $567984 \mathrm{E}, 5457855 \mathrm{~N}$. located in the Nelson Mining Division of B.C.. Canada.

The purpose of the survey was to evaluate the conductive response and possible extent of massive sulphide intersections in the borehole.

DESCRIPTION OF UTEM SYSTEM.

UTEM is an acronym for "University of Toronto ElectroMagnetometer". The system was developed by Dr. Y. Lamontagne (1975) while he was a graduate student of that University.

The following is a short description of the UTEM system used in the field. A paper (A time-domain EM system measuring the step response of the ground) by G.F. West, J.C. Macnae and Y. Lamontagne, giving a more complete description with an overview of interpretations is located in Appendix IV.

The field procedure consists of first laying out a large loop, which can vary in size from less than 100 M X 100 M to more than 2 Km X 2 Km , of single strand insulated wire and energizing it with current from a transmitter which is powered by a 2.5 kW motor generator. During a surface survey the lines are generally oriented perpendicular to one side of the loop and surveying can be performed both inside and outside the loop. For borehole survey the sensor coil is placed down the borehole measuring the axial component of the electromagnetic field from a minimum of 2 separate loops.

The transmitter loop is energized with a precise triangular current waveform at a carefully controlled frequency (30.97 Hz for this survey). The receiver system includes a sensor coil and backpack portable receiver module which has a digital recording facility. The time synchronization between transmitter and receiver is achieved through quartz crystal clocks in both units which are accurate to about one second in 50 years.

The receiver sensor coil measures the vertical. horizontal. or axial magnetic component of the electromagnetic field and responds to its time derivative. Since the transmitter current waveform is triangular, the receiver coil will sense a perfect square wave in the absence of geologic conductors. Deviations from a perfect square wave are caused by electrical conductors which may be geologic or cultural in origin. The receiver stacks any pre-set number of cycles in order to increase the signal to noise ratio.

The UTEM receiver gathers and records 10 channels of data at each station occupied. The higher number channels (7-8-9-10) correspond to short time or high frequency while the lower number channels (1-2-3) correspond to long time or low frequency. Therefore, poor or weak conductors will respond on channels $10,9,8,7$ and 6. Progréssively better conductors will give responses on progressively lower number channels as well. For example, massive, highly conducting sulfides or graphite will produce a response on all ten channels.

The Borehole system consists of a normal surface UTEM-3 transmitter and receiver along with special receiver coil ($11 / 4^{\prime \prime}$ in diameter). The coil is connected to the receiver trough a controller and fibre optic cable.

FIELD WORK

Rolf Krawinkel and Zoran Dujakovic, geophysicists with SJ Geophysics Ltd., and the equipment mobilized from Vancouver to Cranbrook by truck on October 9, 1997. Andrew Cole, geophysicist and representative of Kennecott Canada Exploration Inc. as well as Kenji Jackson, a young helper, were available to provide the orientation, assistance in laying out and picking up wire, and preparing a surface line. The drive to the site (approx. 40 km) required about 1.5 hours due to road conditions.

Upon arrival on site there was fresh snow covering the whole area which hindered the placing (and repairing) of the loops. The first loop took more than two days to complete at which time a problem was discovered with the signal interconnection between the receiver and the down hole probe. A replacement fiber optic cable and controller (signal decoder) were obtained the following day from the manufacturers: Lamontagne Geophysics Ltd., of Kingston. Ontario. The equipment problem caused the loss of one day. The first and largest loop (loopl) was used to survey both the borehole (k97-03) and a surface line (L1000E), and then it was used as a basis to form the four smaller subsequent loops by bisecting in two directions.

The borehole was surveyed from five loops and the surface line was completed in two halves, in a period of 11 days comprised of two mobilization days, three strictly looping days, five production (survey) days, and one down day.

DATA PRESENTATION

The results of the 1997 UTEM survey (Appendix V), are presented on 5 data sections of the measured total field (axial component) normalized to the calculated primary field, for the borehole. Together with 10 Vectorplot sections of the primary field. The surface line results are presented as 2 normalizations of the secondary field as obtained by subtracting out Ch1 response. A plan map showing loop locations is also included (Plate G1).

Legends for the UTEM data sections are also attached (Appendix II).
In order to reduce the field data, the theoretical primary field of the loop must be computed at each station. The normalization of the data is as follows:

Surface data

a) For Channel 1:
$\%$ Ch. 1 anomaly $=($ Ch. $1-\mathrm{PC}) \times 100 / / \mathrm{PT} /$
Where:
PC is the calculated primary field in the direction of the component from the loop at the occupied station

Ch. 1 is the observed amplitude of Channel 1
PT is the calculated total field
b) For remaining channels ($\mathrm{n}=2$ to 9)
$\%$ Ch.n anomaly $=($ Ch.n - Ch.1 $) X 100 / N i$
where:
Ch.n is the observed amplitude of Channel n (2 to 9)
$\mathrm{N} \quad$ is Chl for Chl normalized
$\mathrm{N} \quad$ is PT for primary field normalized
I is the data station for continuous normalized (each reading normalized by different primary field)

I , is the station below the arrow on the data sections for point normalized (each reading normalized by the same primary field)

Subtracting channel 1 (Ch.1) from the remaining channels eliminates the topographic errors from all the data except channel 1.

If there is a response in channel 1 from a conductor then this value must be added to do a proper conductivity determination from the decay curves. Therefore channel 1 should not be subtracted indiscriminately.

The data from each line is plotted on at least 2 separate sections consisting of a continuous normalized section and a point normalized section. Additional point normalized data sections were produced where more than one conductor is present on the same line. Point normalization data is the absolute secondary field at a "gain setting" related to the normalization point. The data is usually point normalize over the central part of the crossover anomaly to aid in interpretation.

Borehole data

a) For all channels
$\%$ Ch.n anomaly $=($ Ch.n $) \times 100 / / \mathrm{PT} /$

Where:
PT is the calculated primary field in the direction of the component from the loop at the occupied station

Ch.n is the observed amplitude of Channel n
The calculated primary field is plotted along with the total field to compare so the direction of the anomaly can be compared to the primary field. This also allows easy visualization of any location problems of the loops and boreholes.

Rolf Krawinkel, B.Sc.
Geophysicist

APPENDIX I

STATEMENT OF QUALIFICATIONS

I, Rolf Krawinkel, of 3219 Wellington Avenue, Vancouver, British Columbia, hereby certify that.

1) I am a graduate from the University of British Columbia 1981, receiving a Bachelor of Science in (Hon.) Astronomy and Geophysics.
2) I have been engaged in mining and mining exploration since 1979.

Rolf Krawinkel, B.Sc.
Geophysicist

APPENDIX II

Legend

UTEM SYSTEM MEAN DELAY TIME		
Channel Number	Delay Time [msec)	Symbol
1	12.8	1
2	6.4	\}
3	3.2	1
4	1.6	\square
5	0.8	5
6	0.4	\checkmark
7	0.2	7
8	0.1	\times
9	0.05	Δ
10	0.025	\diamond
Base Frequency $=31 \mathrm{~Hz}$		

APPENDIX III

Production Sheets

	Survey	UTEM3		Equipment		UTEM3, Borehole							
	N.T.S.												
	Latitude			Longitude				Hole: K97-03					
	Survey Dates	Oct. 1997						UTM: 567984 E 5457855N 1835m					
Project Geologist		Ancrew Cole, geophysicist						Helpers:					
	SJGL Crew	Rolf Krawinke-RK						Andrew Co	e-AC				
		Zoran Dujakovic-ZD						Kerii Jackson-KJ					
DAIE	Discription	Property	Grid	(RX	Loop	Ine	from	to	Dist.	1 ixOp	Cor	Other	Comments
09-Oct	Mob day									RK, 2D	AC,K.J		Leave Vancouver at 9am, long drive to Cranbrook, arrive at 9:30pm, eat, unpack
10-0ct	looping	Moyie			1					RK, ZD	AC,KJ		Start laying loop1, several inches of snow, steep, do not complete the loop
11-0ct	looping	Moyie			,					RK, ZD	AC,KJ		Finish laying wire, two breaks, fix last break at 5:40pm
12-0ct	survey	Moyie			1	1000E	2000N	3100 N	1100	RK	ZD	AC,KJ	Few hours to fix loop, setup dummy (work), borehole system didn't work, head off to do surface line 1000E. Rolf checked out probes by oscilloscope in evening. Zoran worked on data.
13-0ct	stand by	Moyie								RK, ZD			Spent a day in Cranbrook, playing with data, buying some miscellaneous items and fixing the truck
14-Oct	survey				1	K97-03	0	730	730	RK, ZD		AC,KJ	Picked up new equipment at the airport at 12:30 and than surveyed BH K97-03. Late finish. AC and KJ put some more wire
15-Oct	survey	Moyie			1	1000E	2000N	1150N	850	RK	ZD	AC,KJ	Finished surface survey, AC and KJ prepared loops for tomorrow
16-0ct	survey	Moyie			2	K97-03	0	730	730	RK	ZD	KJ	very nice day: good weather, good loops, surveyed down and up and picked up some wire. AC worked in office
					3	k97-03	730	0	730	ZD	RK	KJ	
17-0ct	survey	Moyie			4	k97-03	0	730	730	RK	ZD	KJ	some problems with both loops as an animal passed through last night, we finish the survey, another late night: no plots until after midnight. AC worked in office
					5	k97-03	730	0	730	ZD	RK	KJ	
$\begin{array}{\|l\|} \hline 18-\mathrm{Oct} \\ \hline 19-\mathrm{Oct} \\ \hline \end{array}$	looping	Moyie										RK, ZD, KJ	picked up all wire and moved all equipment back to Cranbrook. AC went back to Vancouver
	Mob day									RK, ZD			Mob from Cranbrook to Vancouver. Got vancouver at 12pm

APPENDIX IV

A time domain EM system measuring the step response of the ground.

A time-domain EM system measuring the step response of the ground

G. F. West*, J. C. Macnae*+, and Y. Lamontagne \ddagger

Abstract

A wide-band time-domain EM system, known as UTEM, which uses a large fixed transmitter and a moving receiver has been developed and used extensively in a variety of geologic environments. The essential characteristics that distinguish it from other systems are that its system function closely approximates a stepfunction response measurement and that it can measure both electric and magnetic fields. Measurement of step rather than impulse response simplifies interpretation of data amplitudes, and improves the detection of good conductors in the presence of poorer ones. Measurement of electric fields provides information about lateral conductivity contrasts somewhat similar to that obtained by the gradient array resistivity method.

introduction

This article describes the design of the UTEM system and its development at the Geophysics Laboratory of the University of Toronto by Y. Lamontagne and G. F. West from 1971 to 1979. UTEM is a wideband, time-domain, ground EM system with a step-function system response. It was designed to try to achieve the sensitivity and interpretability necessary to handle problems of deep exploration, conductive environments, and a variety of terrain conditions, in an economically viable manner. As with most EM systems, effective exploration for massive sulfide ores was the principal objective. The method was conceived in 1971, and the first UTEM I instrument was operational in 1972. It was an analog electronic system, and was used in a number of surveys which have been described by Lamontagne (1975). An improved UTEM II which incorporated a digital recording system was then designed and constructed at the University of Toronto with financial aid from a consortium of mining companies. It was first used in 1976. To fall 1980, about 1000 line-km had been surveyed with the system from ! 44 loops in 35 areas. UTEM III, which is a microprocessor-controlled system with expanded capabilities. is now produced commercially by Lamontagne Geophysics Lid. Some of the field results obtained using the UTEM II system have been described in Lamontagne et al. (1977, 1980), Macnae (1977, 1980, 1981), Lodha (1977), and Podolsky and Slankis (1979). Data from all
three UTEM systems are identical incofar as geophysical characteristics are concerned. The differences aftect only data noise levels and operational convenience. Some of the noise rejection features of UTEM III are discussed by Macnae et al. (1984).

THE UTEM SYSTEM

Design philosophy

UTEM uses a large, fixed, horizontal transmitter loop as its source. The field of the loop is mapped in the quasi-static zone with the receiver system; the vertical component of the magnetic field is always measured, and in some circumstances the horizontal magnetic and electric field components may be measured as well (Figure 1). The size of the transmitter loop depends on the prospecting problem; loops may range from about $2 \mathrm{~km} \times 1 \mathrm{~km}$ in resistive terrain to $300 \mathrm{~m} \times 300 \mathrm{~m}$ in a conductive area. Lines are typically surveyed to a distance of 1.5 to 2 times the loop dimensions.

The large loop transmitter-field mapping receiver configuration was chosen in order to give the system the deepest possible exploration for orebody sized conductors, without sacrificing the ability to resolve shallower structures (depth $<50 \mathrm{~m}$). This dictates a very large transmitter moment, and makes an extended'source desirable. The virtue of an extended source is that the coupling between the source and a receiver or the source and a nearby conductive zone is not so many orders of magnitude larger than the coupling to a distant receiver or deep target as is the case with a confined source.

FIG. 1. Schematic layout of a UTEM survey.

[^1]

Fig. 2. Transmitted and received UTEM waveforms. Note that the measurement channels are numbered from the latest to the earliest. Sampling is repeated, with due regard to sign, in every half-cycle.

Given a large transmitter and a large $T_{x}-R x$ separation, it is inevitable that induction in extensive conductive overburden and in large formational conductors will contribute more to the response than with a small scale system. Also, as the separation becomes larger it becomes increasingly likely that the system will be responding to several nearby conductors at once. However, a fixed transmitter-moving receiver system offers a basis for separating the signal contributions from the various conductors and resolving the geometry of deep-seated conductors. At any time instant, the magnetic field of the current system induced in the ground is a potential field (within the quasistatic zone), and if it is mapped on a profile or over a surface, there is a firm theoretical basis for separating it into parts and estimating the current systems which caused it. When the transmitter and hence the eddy current system move for each observation, it is more difficult to find a theoretical basis for stripping of responses into component parts.

There are negative aspects to using a fixed transmitter method. In addition to the aforementioned enhancement of anomalies due to formational conductors, the transmitter can be positioned badly for induction in small plate-like conductors, and a large good conductor can screen a smaller, shorter time-constant conductor which lies behind it. For these reasons it may be desirable to have survey coverage from more than one transmitter location.
The UTEM II transmitter passes a low-frequency current of precise triangular waveform through the transmitter loop. The magnetic field is sensed with a coil, which responds to the time

Fig. 3. Comparison of transient signals in step and pulse type systems.
derivative of the local magnetic field, so in "free space" a precise square-wave voltage would be induced in the receiver. In the presence of conductors the waveform is substantially distorted. The UTEM receiver measures this distortion by determining amplitudes at 10 delay times (actually, averages over time windows) which are spaced in a binary geometric progression between the waveform transitions. The sample scheme is shown in Figure 2. Note that the UTEM channel numbers are conventionally numbered in reverse.order of time. This is because the latest time measurement often serves as a reference to which the other measurements are compared, whereas the number of earlier time measurements which can be made accurately may change if base period or instrument bandwidth is altered. The base frequency of the system is selectable, usually about 30 or 15 Hz (25 or 12.5 Hz in countries with 50 Hz power). A common practice is to set the base frequency (adjustable in 0.1 percent steps) about 0.5 Hz from a subharmonic of the power line in order that power line interference can be detected by slow beating in the data. The base frequency is usually set low enough that all ground response has nearly vanished by the end of the half-cycle. When this is the case, the UTEM system determines the step response of the ground in the time range 25μ to 12.8 ms (30 Hz base frequency).

Time-domain systems

Time-domain systems have some advantage over frequencydomain systems in that simultaneous measurement is easier to achieve over the whole spectrum and, at the same time, it is possible to check the phase synchronization of the transmitter and receiver time bases. Most time-domain systems employ an on-off type of transmitter current and confine all measurements to the off period, as this automatically separates the secondary from the primary field. However, when a coil is used as a sensor, the time derivative of the signal is observed. Thus, if the transmitter loop is energized with a step current, it is the impulse response of the ground which is observed.

When prospecting for conductive mineral deposits, it is generally more desirable for interpretation purposes to observe the step response than any other time response. The reason for this lies in the characteristics of eddy current decay. For the step

Fig. 4. Standard presentation of UTEM vertical component magnetic field data.
response, the early-time limit of response is identical to the frequency-diomain inductive limit, and for a simple conductor in free space this is a function of geometry alone. For the impulse response, the early time limit is scaled from the step response limit by the inverse of the transient decay time constant (Figure 3). Thus, the decay rate must first be determined in order to interpret amplitude information in terms of geometry. This may present little difficulty in simple cases, but when complex or overlapping responses are observed it can be a serious problem. Also, even in the case of the step response, overburden anomalies which generally are of short time constant have early time amplitudes which are very much larger than the anomalies of target conductors with long time constant. Any further amplification caused by measuring the impulse rather than step response is clearly undesirable.

Although a system with a step response is usually desirable for interpretation purposes, the UTEM system is only one implementation of such a system. In fact a system using a magnetometer receiver with a square-wave transmitter instead of an induction coil (referred to as MSW system in the following sections) would have an identical system response. The foregoing rationale of the interpretational advantages of step response does not consider the other important factors which enter the design of actual systems such as signal-to-noise (\mathbf{S} / N) efficiency and transmitter-sensor design constraints which in fact guide the choice of the actual transmitter waveform and sensor used. This is a complex topic discussed by Lamontagne et al. (1980). For example, the UTEM III system actually uses a modified triangular transmitter waveform and deconvolution in the receiver to improve its S / N performance but has a system response identical to the UTEM I and UTEM II systems (Macnae et al., 1984), i.e., a square-wave response. Thus the UTEM I/II systems, the conceptual MSW system, and the

UTEM III system all make identical measu. they excite the ground differently. To avoi discussions in this paper of actual induced c in the ground will be limited to the UTEM sy: triangular waveform and to the MSW system.

The sampling scheme of Figure 2 was chose: all measuring time is utilized and time scalin ments is permitted. In the frequency dom. sponses may be characterized by dimensioni: the form

$$
\theta_{f}=\sigma \mu \omega L^{2}
$$

which demonstrates that scale changes of . quency or (length) ${ }^{2}$ are equivalent to one an gous parameter for the time domain is

$$
\theta_{1}=\sigma \mu L^{2} / t .
$$

In interpreting frequency-domain data, it is pare observed frequency response data w model response data. This is convenient bec: necessity of rescaling the model data for al: physical scale lengths that might be encous cases. The same sort of scaling is possible data, but only if the system function of the af discontinuity response. If this is not the case, the apparatus has a characteristic ramp sh response curves cannot be rescaled in time t. as this would imply rescaling the shut-of different from that used by the apparatus.

To ensure that time scaling can readily 1 that have been sampled and averaged over a also necessary that the window widths be pre after the discontinuity. UTEM has such sam noted that time scaling may only be applied lous responses which are short enough so as in the interval between the two successive trar which form the square wave.

Data presentation

Because the field intensity falls of rapic distance from the transmitter loop, it is c normalize the secondary field observations One suitable normalizing factor is the pris netic field signal (H_{g}^{p}). If the positions of tt and the receiver are known reasonably accur: value of H^{\prime} : may be employed. If the ground by late time, the channel t measurement is H_{i}^{P}. Normal survey data plotting practice procedures.

Figure 4 is an example of a standard plc dary vertical magnetic field data (H_{2}^{2}). Cha secondary field (Ch 1- H_{z}^{P})/ H_{z}^{\prime} (where H_{z}^{\prime} is t. mary field) and all other channels are nor [(Ch n-Ch 1), Ch 1] to correct for any positi tion of H^{p} and also to remove the effect o anomalies (for further details see Lamontagn: channels on the example plot show a crossevly, indicative of a concentration of (changit as will be discussed. The amplitude vari... number indicates that these induced currents
time. A small component of response appears to have persisted to Ch 1 and, for quantitative analysis, it should be remembered that the data reduction process will have caused subtraction of this amount from profiles of $\mathrm{Ch} 2-\mathrm{Chn}$. On the early-time channels, the migration of crossover location from one channel to another indicates that the secondary cursent flow at these times is not fixed in geometry, a characteristic which is indicative of an extensive conductor (here extensive overburden) sather than a localized conductor such as that responsible for the late time crossovers.

Since at any delay time, the secondary field is a potential field, interpretation of geometrically fixed current systems is best performed using absolute secondary fields normalized by the primary field intensity at a single point rather than continuously along the profile. Although only one case presented in this paper has this absolute or "point normalization," recent routine field practice is to point normalize all survey profiles exhibiting discrete anomalies, in order to simplify interpretation.
Horizontal magnetic field measurements may be made by

Fig. 5. Standard presentation of electric field data. The observed component is normalized to the total primary electric field of the transmitter loop.
reorienting the receiver coil. Normalization is done using the vertical primary magnetic field (calculated or vertical Ch 1 measurement). Unfortunately, horizontal field measurtments frequently suffer a somewhat higher noise level than vertical fields, due to the predominantly horizontal orientation of sferic interference.

The electric field waveform is, like the voltage from the coil sensor, a square wave if the ground is very resistive. It is distorted in much the same way as the coil signal when the ground is conductive. Electric field observations are usually plotted as E_{i} / E_{T}^{g}-the observed channel voltage between the electrodes divided by the maximum expected late time voltage between electrodes at the observation point in any horizontal direction, i.e., $E_{T}^{\prime}=\left(E_{x}^{p 2}+E_{y}^{p}\right)^{1 / 2}$. "Expected" here refers to the electric field produced by a loop on a laterally uniform, resistive half-space. This normalization facilitates intercomparison of x and y component data. The geologic noise level in electric field data is usually high, so plotting on expanded scales is rarely justified. All channel data are usually plotted on the same axes, as shown in Figure 5.

Fic. 6. Vector plots of late time electric field. (a) Direction information only. (b) Showing direction and intensity of the primary field.

The reference state for electric field data is usually described as a "laterally uniform, resistive half-space," rather than free space. By resistive is meant a case where all inductive transients have died out. The free-space electric field of a horizontal loop is horizontal, so introduction of a resistive half-space does not affect the field. However, for any other orientation of the transmitter loop or the earth-air interface, the free-space electric field will be directed across the interface and a strong distortion of the field will occur. Since the conductivity of air is virtually zero, the earth-air interface almost always has a high conductivity ratio, even if the earth is resistive in terms of induction. The charge which arises on the interface essentially doubles the vertical component of the E field in the air near the boundaries and annuls the vertical component in the ground. Thus the E field in the ground is (almost always) virtually horizontal. The nomenclature for the reference state serves to remind one that the earth-air interface has an important role in the physics of

FIG. 7. UTEM layered earth response.
the electric field and is always assumed to be lateral inhomogeneity or induction is permittec. model.

The eiectric field of a heterogeneous, condt normaily become constant at late time, as the vanish. At the same time, the rate of change c becomes constant. However, the observed lat usually found to be different from the free-s resistive half-space value, due to lateral inhor: earth's conductivity structure. The late-tir around a loop greatly resembles what mig gradient resistivity survey. The field weaves around the more resistive areas and through tt tive ones. A vector display of the late-time E fiing reflection of the relative conductivity of va ground. It is impractical to plot the unnorme since the true field intensity falls off rapidly distance from the loop. The lengths of the pl therefore proportioned to the normalized fie for profile plots. Vector plots of the free-space it shown in Figure 6. Examples of field data following section.

Errors caused by the presence of EM r geometrical control are discussed for the magn: in Lamontagne (1975). For the electric (E) c_{2} measurement and sources of error are discuss of Macnae (1981). As in the de resistivity mel. features can seriously distort local electric conductivity contrasts such as overburden p lithological changes can have quite large effi tude of measured E fields.

INTERPRETATION

We shall describe briefly the responses fr simple geologic models and how these can interpreted.

Layered earth responses

The problem of EM induction in a layere treated in the literature, particularly for frequ tems (e.g., Wait, 1962). Time-domain caser studied for some specific problems, for exam sheet was solved by Maxwell (1891) and the ! is discussed by Nabighian (1979). A general, $1:$ tion for UTEM geometry and waveforms w:tagne (1975). Figure 7 shows three examph sponses for different layer conductivities. Fis examples of a thin layer at different depths. common characteristics of layered earth res of the anomaious profiles are generally broader at later times. The migration of cro: with positive lobes toward the loop and ne: from the loop, seems to indicate that it system is migrating away from the loop. behavior described by Nabighian (1979) smoke ring.

If the UTEM system employed a magne and a square current waveform in the trat. ring analogy would be exact, as the crossove
the position of the main current concentrations. However, the UTEM receiver is a coil which is sensitive only to $d H / d t$, and thus to the rate of change of induced and transmitter loop current. Thus the moving pattern of crossovers is actually indicating outward migration of changes in the induced current pattern. Toward the end of each half-cycle, the induced current system at any point in the survey area tends to a constant value, as indicated by the eiectric field measurements, but this steady current is invisible to the coil receiver.

When interpreting UTEM magnetic field data, it can often be simpler to think of the data in terms of the magnetometer receiver, square-wave transmitter current (MSW) analogy. Because the analogy is exact for a linear process like EM induction, there is no approximation in using it. It is very convenient to think of the field measurements of secondary signal at any delay time as describing the Biot-Savart magnetic field of a changing and decaying (analogous) induced current system. However, when electric field data are being analyzed and compared with magnetic field ($d H / d t$) data, it is necessary to revert to the true picture of the induced currents (or take a time derivative of the E data) to maintain a consistent relationship. UTEM magnetic field data are usually symbolized as $H_{z 1}^{3}$ (alphabetic subscript $=$ component direction, superscript $=\rho$ primary, s secondary, T total, numeric subscript mannel number) to accord with the magnetometer analogy; and in most discussions of simple induction, it is the time history of the analogous induced current which is described.
An important feature of layered earth $H_{z}^{;}$data is the earlytime limit of continuously normalized $H_{z i}^{3} / H_{z}^{\prime}$ data. If the ground is sufficiently conductive near the surface, the early-time secondary field data at points remote from the transmitter loop will approach $\mathbf{- 2 0 0}$ percent; i.e., one finds that the voltage in the receiver coil has had insufficient time to change from the steady value attained at the end of the previous half-cycle (Figure 2). This situation may be pictured in the magnetometersquare wave current analogy as an induced current system forming near the surface of the ground under the transmitter loop such as prevents the total (analogous) magnetic field from entering into the ground anywhere except very close to the transmitter wire. The $\mathbf{- 2 0 0}$ percent anomaly thus represents response at the inductive limit.

Finite thin plate in free space

A convenient modeling method for thin finite plate conductors in free space is the integral equation solution of Annan (1974). Annan computed the best set of polynomial eigenpotentials of order 4, and used these to represent the induced current flow in the plate as a sum of 15 "eigencurrents." The solution for the eigencurrents themselves is quite complicated, but needs only to be done once for a plate of given width to length ratio. After that, any induced current system can be described in terms of 15 coeflicients in the eigenpotential summation. The secondary field at a receiver can then be simply computed in terms of these induced eigencurtents. One great advantage of Annan's method is that each eigencurrent has a frequency or time-domain response identical to a simple loop circuit. Thus the solution for a broad frequency range or many time windows is very easy to calculate. Routines for simple, interactive application of Annan's algorithms to a number of EM systems have been programmed by Dyck (Dyck et al., 1980).

Examples of type curves generated with Annan's solution may be found in Lodha (1977) and Lamontagne et al. (1980). Figure 9 shows the results of a set of computed UTEM type curves for the geometry shown in Figure 10. Also shown in Figure 10 is the geometry of the primary magnetic field, which controls the nature of induction in the plate. For the zero dip case, the primary field is mostly perpendicular to the plate. The induction in the piate tends to cancel this field at early times, leading to a negative H_{s} anomaly directly over the plate. Positive shoulders on each side show the secondary magnetic field of the "forward (analogous) current" near the front edge of the plate nearest the loop and the "reverse current" near the rear edge. The normalization scheme used in plotting this data is to divide the total secondary field by the calculated primary field at the measuring point. It has the undesirabie effect of making asymmetric a secondary anomaly that is symmetric in terms of absolute amplitude by increasing the relative amplitude away from the loop. In fact, the absolute secondary amplitude of the positive shoulder near the loop is usually larger than the one on the side away from the loop. As the dip of the plate is increased, the positive ṣhoulder moves away, and by the time a 30 -degree dip is reached the reverse crossover is off the end of the plotted line. From dips of 30 to 135 degrees, the anomaly maintains a basic shape in the form of a simple crossover. The amplitude

Fic. 8. Hz response of a thin horizontal sheet at various depths. The conductivity-thickness of the sheet is 2 S . The front of the transmitter loop is at the origin of coordinates.
does vary somewhat, however, being controlled by the primary field component normal to the plate which becomes a smaller and smaller fraction of the total field as the piate rotates from 30 to 150 degrees (Figure 10). The case at a dip of 150 degrees shows a very interesting behavior. The primary field can be seen to be down in the upper half of the plate and up in the lower half. The result of this is that the anomaly changes location and amplitude dramatically. For a very small plate, an anomaly could conceivably disappear completely. This phenomenon has been discussed by Bosschart (1964) for the Turam
method. For a large planar conductor, howev always present since a curving primary field r where, except in the special case when a vert located directly under the center of a horize loop. The 165 -degree dip case of Figure 9 sho crossover on the edge of the conductor far frc normal crossover is very small, due in par induction at the near edge as shown in Figur large primary field used as a divisor for norma:

The electric field anomaly generated by a p:

Fig. 9. UTEM H_{z} (solid) and H_{z} (dotted) profiles over a dipping plate (continuous normalization). (Geometry shc

GEOMETAY FOR 90 CASE

Fig. 10. Geometry and dimensions of the models shown in Figure 9. Also shown is the configuration of the primary field in the vicinity of the target conductor.
a resistive half-space is caused by charge on the plate as well as eddy currents flowing in it, and is affected by the earth-air interface. Annan's algorithm does not determine the charge distribution, so analog scale modeling methods were employed to produce type profiles. Figure 11 shows an example for a vertical plate. The longitudinal electric field is greatly reduced over the body at all times (i.e., there is a strong reduction in the late time limit). The dynamic (time-varying) part of the anomaly has the same time variation as the magnetic field but has a different geometrical pattern. The electric field is highly vulnerable to distortion by any conductivity contrast and the intensity of the static, late-limit anomaly over a conductor may therefore be reduced by any stratification between the conductor and the surface.

Other simple anomaly shapes

A set of simple schematic models is shown in Figure 12, for each of which the main features of the vertical magnetic field are sketched. The set of sketches was derived from quantitative scale model experiments by Lamontagne (1975). For the simple models illustrated where the host rock is completely nonconducting, the general anomaly shape for one body remains quite constant for the whole time range. The changes in anomaly from one channel to another are mostly in the amplitude and smoothness of the anomalies.

Fig. 11. Scale model UTEM secondary magnetic H_{z}^{\prime} and total electric E, data over a vertical plate conductor.

Fig. 12. The form of continuousiy normalized UTEM H_{s}^{2} anomalies over some simple shapes. All conductors are in free space.

West et al.

Fig. 13. The amplitude decay curves for the simple models of Figure 12. Mean sampling times are given for a base frequency of 30 Hz The curve UTEM sampled exponential is a calculated function included for comparison. Lamontagne (1975) gives simple approximation formulas for interpreting target conductance from reference times t_{1}, \ldots, t_{6} determined by translational curve matching.

Fig. 14. Scale model UTEM H_{z}^{\approx} profiles over a conductive thin dike with overburden present.

Thin dike-A conductive, steeply dippir crossover shape similar to the plate mode: point where the anomaly changes sign indi the top edge of the conductor. The anomali to be broader and shifted slightly downdif times. The inductive decay rate of the an cussed in a following section.

Surface horizontsl finite conductor.-A ductor of limited dimensions (not extend: produces an anomaly consisting of a low with large positive shoulders near its t become rounded at later times and migrat. of the conductor. Note that the thin horize Figure 9 has a fairly deep location and thi tion of the crossover points is less evident, :

Shallow block conductor.-This type of c : negative anomaly over its top having an : 200 percent at early times. An importar block-like conductor is the absence of la: anomalies. The amplitude of the positive s 1/10 of the central negative, in contrast t layer where the shoulders have amplitue central negative. The sharpness of the cror can be used as an indication of depth of anomaly is called a top anomaly and is current pattern flowing around the top of

Thick dike.-As might be expected, th: case between a block and a thin dike $:$ tabular body is of the same order as its de cases the response is a combination of cros aly due to vertical and horizontal curre anomaly being more evident on the earlycrossover anomaly on later-time channe decay rates results from the different scale flows, the top anomaly being controlled dike, and the crossover by the depth exter

Extensive horizontal conductors-All stricted lateral extent give rise to localiz simply change amplitude with time (ap sponse of a very large conductor such as 12e is included for comparison. In this c rents are not confined and they migrate hr

Time response of simple free-space mod example decay plots of log anomaly amp: (channel number). The responses shown UTEM sampled step responses that are interpretation of actual field data when lous response has effectively vanished at ing by lateral translation of the graphs cases, as previously discussed. The appl decays to interpretation is discussed $b_{\text {; }}$ including the use of characteristic paramt ductance. A significant point to note is t t finite bodies eventually exhibits exponer: whereas induction in infinite features t : inverse power law (Kaufman, 1978). There and F, the very late portion of the de show an exponential behavior if measurt tivity.

BLAMKNG EFFECT

Fig. 15. Decay plots for the H_{z}^{z} anomalies of Figure 14.

FIG. 16. Decay plots of H_{x}^{s} anomalies over a thin dike (I) under a conductive overburden and (II) in a conductive half-space.

Overburden effects

We will restrict the discussion of overburden and host-rock effects to the case of a simple vertical finite dike conductive target, which was studied by Lamontagne (1975) using a scale model. Conductive overburden cover can modify the responses of underlying conductors in two main ways. Let us consider a dike target whose response in free space is given in Figure 14d. If overburden is now placed over this target conductor, the resultant response (Figure 14b) is not just the sum of the overburden and dike response. At early times it can be seen that there is very little response from the dike. This is because the magnetic field (MSW analogy) has not yet penetrated the overburden, and it leads to the name "overburden blanking" for this characteristic. At later times (Ch 6-1), when we can see from Figure 14a that the field has completely penetrated the overburden layer, the dike and overburden response (14b) is virtually indistinguishable from that of the dike alone (14d). The time decay pattern of the peak-to-peak amplitude of the crossover is plotted in Figure 15. It clearly shows the blanking effect of the overburden at early times (right-hand figure). The minute negative response at earliest time is present only when the
overburden extends under the loop, and : the complicated way in which the field fi. target.

A second effect occurs when the dike is with the overburden. The results are quit where the dike was not in contact (Figu regionally induced (analogous) current flc has been "gathered" or "channeled" int, higher conductivity. This accounts for crossover anomalies at early times. Becaus the dike greatly exceeds that of the overb' current gathering is virtually independe: extent. The gathering effect at early times tor" remaining attached to the overburd dike was removed was found to be over 8Γ complete dike. At later times, when the (a: in the overburden has migrated away (i.e. current is no longer time-varying), the resp identical to that of the dike alone. T response is plotted on Figure 15, and i hancement at early times a slight attenuat: intermediate times can be seen.

Fig. 17. Field example of E, and H_{z}^{\prime} data from a well-stratified earth. The electrical section was obtained fri data. The curves on the H_{z}^{*} graph are the theoretical model; the points are the field data. The bottom axis is geologic section is from nearby gas drilling exploration.

Weat of al.

where and much less on average. It is mostly humus or thin glacial soil. Surface water is fresh, and likely quite resistive ($>100 \Omega \mathrm{~m}$). Figure 17 shows some of the data with a layer and half-space model fitted to it by iterative minimization of squared error. Also shown is a stratigraphic section from a well a few kilometers distant. The dolomite layer is too resistive for its conductivity to be determined by data whose earliest time sample is at $100 \mu \mathrm{~s}$. (The survey was done with UTEM I.) At first glance, the data look just like that for any conductive earth, as the early-time data at the end of profiles have the usual strong negative anomaly, and there is a regular outward progression of crossovers as time progresses (decreasing channe! number). However, the resistive surface layer does reveal itself in the limited approach of the early time curves to - 200 percent anomaly. The convergence of E_{χ} at late time to 100 percent of the primary field confirms the excellent lateral homogeneity of the site.

Thomas Township, Northern Ontario

This site has become an interesting te methods, and a new grid has been cut a hawk Lake geophysical test range. It is a has many of the geometrical and electricmassive sulfide body. It is covered by 83 conductive overburden. It was found a_{a}. EM and has been intersected by two borehc

A UTEM II survey with 30 Hz base ! out on 6 lines of length 2200 ft and transmitter loops to the north and south 0 shows a profile across the middle of the con
At $50 \mu \mathrm{~s}$ (Ch 9), the regionally induced I only 500 ft from the loop. The field ha overburden at the target site. From $100 \mu \mathrm{~s}$ 8-6), a crossover response is observed over

SOUTH LOOP

Fig. 19. Later time H_{s}^{3} profiles ($\mathrm{Ch} 5-2$) outline the perimeter of the conductor.

Host rock effects

Figure 16 II shows the time variation in response of a 60 S vertical plate located in a half-space. The results were calculated by Lamontagne (1975) by Fourier transiormation of the frequency-domain numerical modeling of Lajoie and West (1976). At early times the response is reduced from the free-air response: this corresponds to blanking by the conductive region above the target. At later times the response is enhanced indicating that the regional (analogous) current in the host rock is being gathered into the plate at these times. For poorly conducting host rock, the response at late times is close enough to the free-space response that simple interpretation of the target using a plate in free-space model is valid. For the higher host conductivities (case 4,5) this is no longer the case.

Milton, Ontario

This area was surveyed to demonstrate what data from a conductive, well-stratified earth looks like. The area is one where 650 m of flat-lying Paleozoic sediments overlie the Precambrian basement. The predominant member of the stratigraphy is a uniform and thick sequence of shale. Other beds are mostly resistive caicareous and sandstone formations. The survey area is covered by a mixed forest and marshy streams, with occasional outcrops. The top of the bedrock is a dolomite formation which is everywhere more than 20 m thick. Topographic relief is minor ($<10 \mathrm{~m}$), with occasional rough spots near outcrop. Overburden is probably less than 10 m every-

FIELD RESULTS

Fig. 20. Comparison of H_{z}^{z} data from the south transmitter loop with a free-space plate model. The configuration of the primary field is also shown.
500μ s the response changes to an asymmetric negative anomaly which decays much more slowly than the crossover response. The early-time crossover response is a current gathering or channeling anomaly where the (analogous) anomalous current flows along the length of the zone, while the longer time constant response is a local induction anomaly, where induced currents flow in a vortex within the target conductor.

Figure 19 shows a map of all the late-time profiles. They clearly delineate the edge of the target body. Figure $\mathbf{2 0}$ shows how a rectangular plate model can be found which models the observed results from one transmitter loop quite accurately, but which has to be rotated in order to match the results from the other loop. The late-time induced (analogous) current system in the actual conductor appears to be a tightly defined normal current in the front upper (near-loop) edge of the conductor with a more diffuse, return current deep in the rear of the body. A survey with the transmitter loop located on the other side of the body was similarly fitted by a plate dipping away from that loop, indicating the conductor to be a thick zone in which currents can flow in a variety of directions.

Electric fields were measured at the Thomas site. The late time vector map is shown in Figure 21, along with a rough numerical model. The conductive zone shows very clearly, although its edge is ill defined. Figure 22 shows a profice of the longitudinal component of electric field over the body. The field
intensity is almost constant from channel 6 onward, and the main feature of the response is the aforementioned broad reduction in the field strength over the conductor. It is helpful, when looking at E field profiles, to imagine a plot on the same axes of the negative of the observed channel 1 response. This is the value the field starts from at the half-cycle transition. Even as early as $50 \mu \mathrm{~s}$ (Ch 9), the electric field has made most of its polarity reversal. In fact, between the loop to the target body it has overshot, while from the target body outwards it is changing relatively slowly. The time changes in E are actually very similar to those in H. There are two dominant decay times, a short one corresponding to the overburden and the channeling target response (Ch 8-6) and a long one corresponding to the local induction response ($\mathrm{Ch} 5-1$). Also, these two E-field responses have a different geometrical form corresponding with the different forms of the magnetic anomalies. The scaled up version of the E data in Figure 22 shows the slowly decaying anomaly. Considerable noise is apparent in the data at this magnification.

Bedrock conductor beneath overburden

Figure 23 shows the measured secondary H_{s} fields at a site in Australia. The slow outward migration of the early-time channels and the $\mathbf{- 2 0 0}$ percent early-time limit away from the transmitter loop are characteristics of the response of a nearsurface conductive weathered layer. This layer has a total conductance of about 4 S .
Around station 210W a more local superimposed crossover anomaly is evident which is fixed in location. This feature is evident over a great strike length. When the visually estimated overburden response is stripped from the anomaly and the peak-to-peak crossover response is plotted on a decay plot (Figure 26), the characteristics of early time blanking, time delay, and enhancement are clearly displayed. Corresponding to the model data of Figure 16, the early time blanking attenuates the local anomaly as the (analogous) magnetic field has not had time to penetrate the weathered layer. At intermediate times (Ch 5, 4) the response lies above a fitted free-space, half-plane conductor decay curve. This is partly an amplitude enhancement from current gathering and partiy due to a small delay in time while the (analogous) magnetic field penetrates the near-surface conductor. It is not clear whether any of the L400S response can be identified as due to local induction. Nevertheless, the plotted induction curve for a half-plane in free space serves as a useful reference and establishes an upper limit on the conductance of the feature (7 S in this case).

On two survey lines about 1 km away, the same local feature is observed, but the response has changed to one of longer time constant. As shown in Figure 24, a clear response persists through channels 2 and 1 . These data are replotted with "point normalization" on Figure 25 to show the absolute secondary field. Absolute normalization preserves the true anomaly shape. but has the disadvantizge of scaling up strongly those anomaties which lie near the transmitter. The stripped peak-to-peak response is plotted in decay form in Figure 26 and clearly shows the difference in time constant at the two locations.

The increase in time constant seen on line 600 N is very significant, since little change is seen in the background response and only a lesser change in the blanking time. It indicates that the L 600 N late-time response is due to local induc-

$$
D=90 \mathrm{~m}
$$

NO OVER

Fic. 21. Vector map of the late-time E field at Thomas Twp. A block model is included for comparison. The exar where $\sigma_{B}>\sigma_{O}>\sigma_{H}>\sigma_{\text {AIR }}$.
tion. Model fitting of the decay, taking into account the limited strike extent of the long time constant response, leads to an interpretation of this feature as a local thickening of the halfplane conductor. The local conductance needed to produce the longer time constant is 120 S in contrast to the 7 S maximum of the rest of the bedrock conductor.

Drilling indicated that the extensive conductor was a 50 m thick calc-silicate zone containing both carbonates and sulfide lenses within a talc-sericite host. The locally more conductive part consisted chiefly of nearly massive noneconomic sulfides.

CONCLUSIONS

Experience with UTEM demonstrates that a wideband, time-domain EM system which measures the step response of the ground is electronically feasible and practical. Considerable field and modeling experience has shown that it is simple to use the amplitude information from such a system to aid significantly in interpretation. In our opinion the step response has a
significant advantage over the impulse respr and interpretation of good conductors in the ones. Electric field data measured with the s: independent information about lateral cond and may be a useful aid in interpretation.

ACKNOWLEDGMENTS

Development of the UTEM system and i capability was funded from a number of sou developed with support from the National Re: Canada. UTEM II instrumentation was supt L.t., Texasgulf Inc., and Cominco Ltd., wit studies funded by a consortium of compa Aquitaine, Asarco, Cominco, Geoterrex, Gu_{a} Newmont, Noranda, Phelps Dodge, Selco, ${ }^{\text {E }}$ sources, Texasgulf, and Umex. Graduate stu tagne, G. Lodha, J. Macnae, and M. Vallee, u project received stipendary and computing

Fig. 22. Thomas Twp E, data for line 0 from the south transmitter loop. The expanded scale data on the lower axes show that a very weak dynamic E field anomaly is associated with the main H_{z}^{3} late time response ($\mathrm{Ch} 5-1$).

Natural Sciences and Engineering Research Council of Canada and the University of Toronto. All this assistance is gratefully acknowledged. We also thank an anonymous reviewer for a very careful, helpful review.

REFERENCES

Annan, A. P., The equivalent source method for electromagnetic scattering analysis and its geophysical application: Ph.D. thesis, Memorial Univ. of Newfoundland.

FiG. 23. H: data from New South Wales showing the migrating crossovers of the overburden near the loop and a local anomaly around station 210 W . (Survey frequency 26 Hz .)

Fig. 24. H_{z}^{\prime} data on line 600 N 1 km away from the previous figure showing a time decay of the local anomaly lasting to much later times. Remeasurement of the profile at 13 Hz gave virtually identical profiles (shifted one channel) with no visible Ch 1 anomaly.

Bosschart. R. A, 1964, Analytical interpretation of fixed source electromagnetic data: Doctoral thesis, Univ. of Delf.
Dyck, A. V., Bloore, M, and Vallée, M. A., 1980, User manual for programs PLATE and SPHERE: Res. in Appl. Geophys. 14, Geophys. Lab. Dept. of Physics, Univ. of Toronto.
Kaufman, A., 1978, Frequency and transient responses of electromagnetic fields created by cursents in confined conductors: Geophysics, v. 43, p. 1002-1010.
Lajoie, J. and West, G. F., 1976. The electromagnetic response of a conductive inhomogeneity in a layered earth: Geophysics, v. 41, p. 1133-1156.
Lamontagne, Y.. 1975, Applications of wide-band, time domain EM

Fig. 25. Point normalized H_{z}^{\prime} from line 600 N . The local secondary fields have been normalized to the constant primary field at station 210 W and show how stripped peak-io-peak local anomaly amplitude is estimated.

Fic. 26. Amplitude decay plot of stripped anomaly on lines 400 S and 600 N of the New South Wales survey.
measurements in mineral expioration: Ph.L ronto: a vailable as Res. in Appl. Geophys. 7, (Toronto.
Lamontagne, Y., Lodha, G. L.. Macnae, J. C., a Towards a deep penerration EM system: P. annual meeting of the Can. Inst. of Min. and published in Bull. Austral. Soc. Expl. Geophy: —_ 1980. UTEM, "Wideband Time-doman: Reports 1-5": Res. in Appl. Geophys. 11, GePhysics, Univ. of Toronto.
Lodha. G. L., 1977. Time domain and multifrer responses in mineral prospecting: Ph.D. the available as Res. in Appl. Geophys. 8. Geu Physics. Úniv. of Toronto.
Maenae. J. C., 1977, The response of UTEM ir mineralized environment: M.Sc. thesis, Univ.
-1980. The Cavendish test site: a UTEA lation of other ground geophysical data: Res. Geophys. Lab., Dept. of Physics. Univ. of Toro: 1981, Geophysical prospecting with ele inductive source: Ph.D. thesis, Dept. of Phy 279 p.; a vailable as Res. in Appl. Geophys., I of Toronto.
Macnae, J. C. Lamontagne, Y., and West, G. cessing techniques for time-domain E.M. syste: this issue, p. 934-948.
Maxweil, J. C., 1891, A treatise on electricity at Clarendon Press, v. 2, 500 p.
Nabighian, M. N., 1979, Quasi-static transient : ting half-space-An approximate representatic p. 1700-1705.

Podolsky, G., and Slankis, J., 1979, Izok Li Territories, Canada. A geophysical case hist Geochemistry in the search for metallic ores: Geol. rep. 31, Geol. Survey of Canada.
Wait, J. R., 1962. Electromagnetic waves in York, MacMillan Co.

APPENDIX V

Data Sections

	Total, Chn/\|Hpl	
3	Contin. Norm at depth of 0 m	For: KENNE
Compt: Axial	Base Freq. 30.974	SJ GEOPHYSICS

	Total, Chn/Hpl	
3	c	For:
Compt: Axial	Base Freq	SJ GEOPHYSICS LTD.

Loop: 3	Total, Chn/Hpl	BHUTEM Survey at: MOYIE PROJECT
Hole: k97-03	Contin. Norm at depth of 0 m	For: KENNECOTT CANADA EXPLORATION INC.
Compt: Axial	Base Freq. 30.974 Hz	

\square
三4 $497-03 \quad 203$

 (

Loop: 4 Hole: k97-03 Compt: Axial	Total, Chn//Hp\| Contin. Norm at depth of 0 m Base Freq. 30.974 Hz	BHUTEM Survey at: MOYIE PROJECT For: KENNECOTT CANADA EXPLORATION INC.		
		SJ GEOPHYSICS LTD.	$\begin{array}{r} \text { Job } \\ 9750 \\ \hline \end{array}$	surveyed: 17/10197 Reduced 1911097 Ploted: $21 / 10197$ \qquad

$-\mathrm{COP} 4$
BH K＝？－3

			$\begin{aligned} & 508 \\ & 300 \\ & 00 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { ES } \\ & \text { 总 } \\ & \text { No } \\ & \text { N } \end{aligned}$		

1500
58506 a 568701

1500
458306
$i \quad i \quad i \quad i$
1500
5306
568701

5458106
568701

1500
5457906

1500
457706
5457706
568701

$\int \begin{array}{r}1500 \\ 457306 \\ 567301\end{array}$

05451500 TH67301

1500 456906
\downarrow

LOG10（AMPLITUDE）

Loop: 5	Total, Chn/Hpl	BHUTEM Survey at: MOYIE PROJECT
Hole: k97-03	Contin. Norm at dopth of 0 m	For: KENNECOTT CANADA EXPLORATION INC
Compt: Axial	Base Freq. 30.974 Hz	SJ GEOPHYSICS LTD. Job similid

[^0]: VR75478: SFHALERITE-GALENA-FYFRHOTITE-QUARTZ-CLINOZOISITE TLAYER OR VEIN IN QUARTZ-MUSCDVITE-CHLORITE-KSFAR ALTEFED FINE QUARTZ WACKE Sphaleritemgalena-pyrrhotite ?layer or vein about 3 cm thick, thought to contain "coticule" (garnet-rich) layer or layers associated with the mineralization. However, the thin section shows that this is actually epidate (clinozoisite-zoisite) as in $74218,44,45$ and 75451 and EO. The rock is magnetic but shows only trace ?reastion to cold dilute HCl, and trace stain for K-feldspar in the etched slab. Modal mineralogy in polished thin section is approximately:
 Sphalerite 40%

 Quartz (mainly detrital) 30%
 Muscovite, sericite 10%
 Chlorite 5%
 Clinazoisite, zoisite 5%
 Galena
 Pyrrhotite 5%

 Sphene 3\%

 K-feldspar (?secondary) <1\%
 ?Arsencpyrite
 tr

[^1]: Manuscript received by the Editor November 1983: revised manuscript received December 1983.
 *Geophysics Lab., Dept. of Physics, Univ. of Toronto, Ont., Canada MSS IA7.
 \#Lamontagne Geophysics, 740 Spadina Ave.. Toronto, Ont.. Canada MSS 212.
 © 1984 Society of Exploration Geophysicists. All rights reserved.

