

Gold Commissioner's Office VANCOUVER, B.C. AND PROSPECTING REPORT

on the

GOLDMAX #16 CLAIM BLOCK Ample/Goldmax Property

Lillooet Mining Division British Columbia Canada

N.T.S. 92J/09 and 92I/12

Lat. 50° 39′ 33′′ N Long. 121° 59′ 34′′ W

Property Owned by: Gary Polischuk and David Javorsky

Optioned by Operator: Gold-Ore Resources Ltd. 1540-750 West Pender Street Vancouver, B.C. Canada V6C 2T8

Author: J. Wayne Pickett, M.Sc., P.Geo. 8256 McIntyre Street Mission, B.C. Canada V2V 6T3 GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

> Date: July 29, 1998

TABLE OF CONTENTS

1.0 Introduction	1	l
2.0 Location and A	ccess1	l
3.0 Land Status	1	ł
4.0 Physiography, V	/egetation and Climate1	l
5.0 Previous Explo	ation	2
6.0 Regional Geolo	gy2	2
8.0 Mineralization a	nd Rock Sampling Results4	ŧ
	esults	
10.0 Observations ar	d Conclusions	;
11.0 Recommendation	ns5	;
12.0 Statement of Co	osts	5
13.0 References		7
14.0 Certificate of C	ualifications	;

LIST OF TABLES

Tał	ble	After Pag	şe
Ι	Ample/Goldmax property ownership and status		1
Π	Rock sample descriptions and analyses		4
III	Soil sample analyses		5
		Pag	ge
IV	Statement of costs		6

LIST OF ILLUSTRATIONS

 σ_{11}	1 3 4 4
 νII	

[

Figu	ire Af	ter Page
1	Property location	1
2	Ample/Goldmax Property - location of claims	1
3	Regional geology of the Ample/Goldmax area	2

Мар

1	Geology, rock sample locations and gold analyses	in pocke
2	Soil sample locations and gold analyses	in pocke

LIST OF APPENDICES

Appendix A - Analytical 110000010	Appendix	Α	Analytical	Procedures
-----------------------------------	----------	---	------------	------------

- Appendix B Rock Analyses
- Appendix C Soil Analyses

ii

1.0 INTRODUCTION

.....

. Na tito At the request of the management of Gold-Ore Resources Ltd., the author supervised and helped carry out a geological mapping, prospecting and soil sampling program on Claim Block Goldmax #16, part of the Ample/Goldmax Property.

The field program included one and one half days of prospecting carried out by G. Polischuk of Veritas Developments Ltd. March 29 and June 4, 1998 plus three and one half days of geological mapping, prospecting and soil sampling carried out by the author and an assistant between June 2 and June 8, 1998.

The nineteen rock samples and seventy-three soil samples collected were sent to Chemex Labs of North Vancouver where they were assayed for gold by fire assay with AA finish and analyzed for 32 other elements by ICP-AES. Details of the analytical methods are provided in Appendix A.

2.0 LOCATION AND ACCESS

The Goldmax #16 claim block is located on the southern shore of the eastern extremity of Seton Lake about 5 kilometres southwest of Lillooet, British Columbia (Figures 1 and 2). The claim block is on N.T.S. map sheets 92J/09 and 92I/12 at latitude 50° 39' 33'' north and longitude 121° 59' 34'' west in the Lillooet Mining Division.

Highway 99 (the Duffy Lake Road) passes through the central part of the property. A logging road off Highway 99 provides further access to the property's southern portion.

3.0 LAND STATUS

The Goldmax #16 claim block consists of 20 units comprising about 500 ha optioned by Gold-Ore Resources Ltd. from individuals Gary Polischuk and David Javorsky (Figure 2, Table I).

4.0 PHYSIOGRAPHY, VEGETATION AND CLIMATE

Topography in the area of the claim block is generally moderate to steep, rising from Seton Lake at an elevation of 243 metres to a maximum elevation of 880 metres in the southern part of the claim block. Bluffs and cliffs provide good rock exposure in steeper areas. Outcrop is much less abundant in areas having less steep more moderate topography particularly along wooded slopes. Portions of the predominantly Douglas fir forest have been logged.

The claim block, which is in a rain/snow shadow of the Shulaps Range, has a semiarid climate with mean annual precipitation from 30-50 centimetres. Temperatures range from -10° to 0° C in the cool dry winters to 18° to 25° C in the hot dry summers.

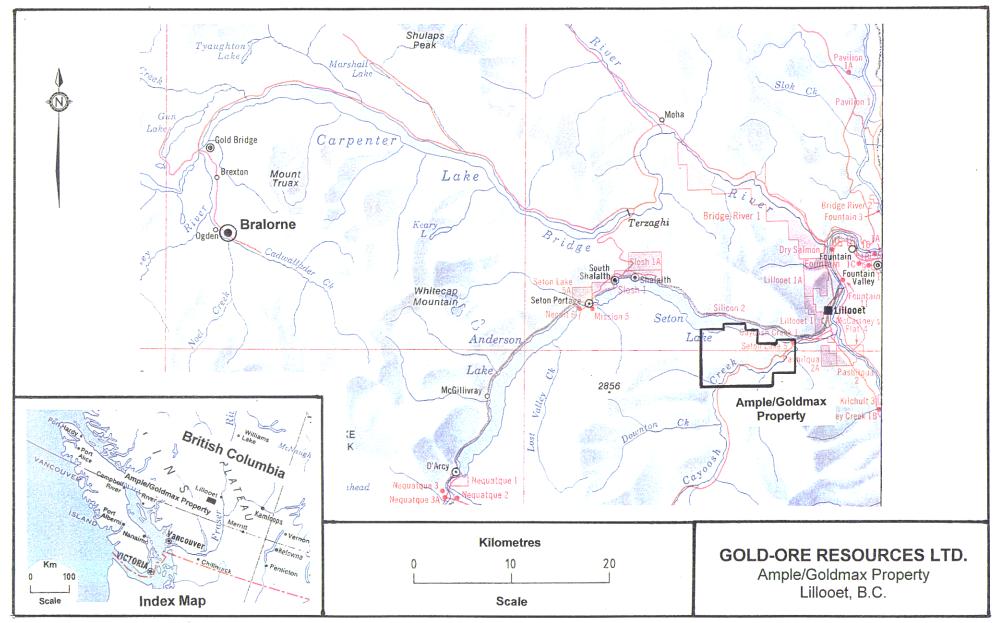


Figure 1: Property Location

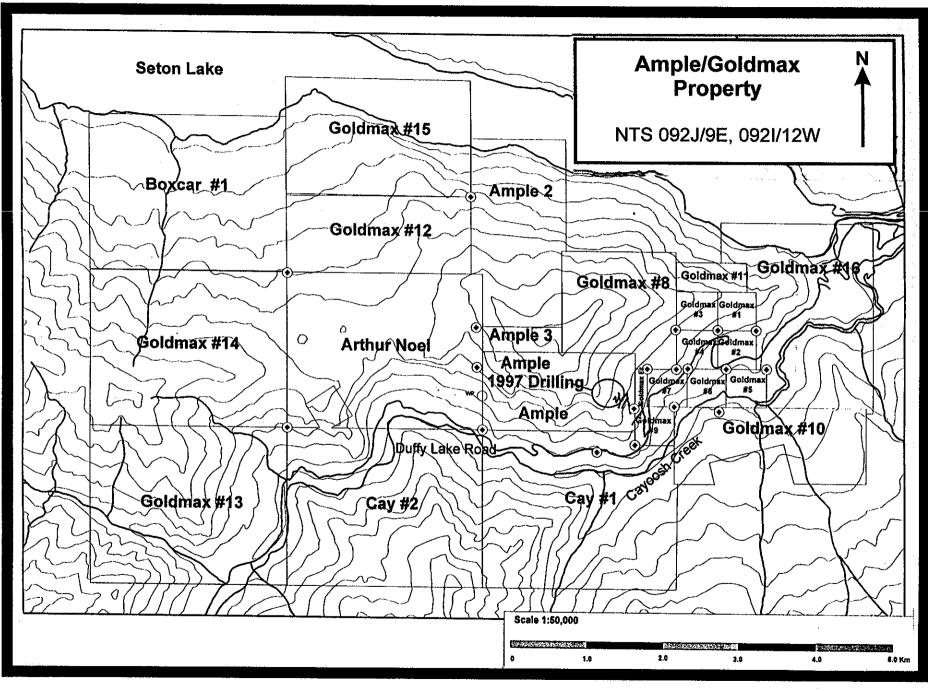


Figure 2: Ample/Goldmax Property - Location of Claims

Table I: Ample/Goldmax property ownership and status

Claim Name	Tenure #	Owner 1	Owner 2	Issued	Good To	Units	Hectares	Map #	Old #	Tag #	Туре
Goldmax #16	357270	David Javorsky	Gary Polischuk	3-Jul-97	July 3, 2001	20 units	500 ha	92J/09E, 92I/12W	357270	211294	4 Post
Ample	314521	David Javorsky	Gary Polischuk	28-Oct-92	October 28, 2007	8 units	200 ha	92J/09E	314521	228585	4 Post
Ample 2	344206	David Javorsky	Gary Polischuk	21-Mar-96	March 21, 2007	15 units	375 ha	92J/09E		219995	4 Post
Ample 3	344761	David Javorsky	Gary Polischuk	30-Mar-96	March 30, 2007	6 units	150 ha	92J/09E		219996	4 Post
Arthur Noel	317008	David Javorsky	Gary Polischuk	15-Apr-93	April 15, 2007	20 units	500 ha	92J/09E	····	118464	4 Post
Boxcar #1	356669	David Javorsky	Gary Polischuk	21-Jun-97	June 21, 1999	20 units	500 ha	92J/09E		211234	4 Post
Cay #1	336814	David Javorsky	Gary Polischuk	16-Jun-95	June 16, 1999	20 units	500 ha	92J/09E		229023	4 Post
Cay #2	336825	David Javorsky	Gary Polischuk	18-Jun-95	June 18, 1999	20 units	500 ha	92J/09E		229024	4 Post
Goldmax #1	229407	David Javorsky	Gary Polischuk	28-Feb-91	February 28, 2007	1 unit	25 ha	92J/09E	4583	614630M	
Goldmax #2	229408	David Javorsky	Gary Polischuk	28-Feb-91	February 28, 2007	1 unit	25 ha	92J/09E		614629M	
Goldmax #3	229409	David Javorsky	Gary Polischuk	28-Feb-91	February 28, 2007	1 unit	25 ha	92J/09E		614628M	
Goldmax #4	229410	David Javorsky	Gary Polischuk	28-Feb-91	February 28, 2007	1 unit	25 ha	92J/09E		614627M	
Goldmax 5	229412	David Javorsky	Gary Polischuk	13-Mar-91	March 13, 2007	1 unit	25 ha	92J/09E	•	614626M	
Goldmax 6	229413	David Javorsky	Gary Polischuk	13-Mar-91	March 13, 2007	1 unit	25 ha	92J/09E	· · · · · · · · · · · · · · · · · · ·	614625M	
Goldmax #7	316221	David Javorsky	Gary Polischuk	28-Feb-93	February 28, 2007	1 unit	25 ha	92J/09E	316221	620704M	2 Post
Goldmax #8	316266	David Javorsky	Gary Polischuk	1-Mar-93	March 1, 2007	9 units	225 ha	92J/09E			4 Post
Goldmax #9	316267	David Javorsky	Gary Polischuk	28-Feb-93	February 28, 2007	1 unit	25 ha	92J/09E	316267	620706M	**
Goldmax #10	317079	David Javorsky	Gary Polischuk	20-Apr-93	April 20, 2007	10 units	250 ha	92J/09E, 92I/12W	317079	200308	4 Post
Goldmax #11	345168	David Javorsky	Gary Polischuk	17-Apr-96	April 17, 2007	20 units	500 ha	92J/09E			4 Post
Goldmax #12	352643	David Javorsky	Gary Polischuk	15-Nov-96	November 15, 2007	10 units	250 ha	92J/09E		211233	4 Post
Goldmax #13	352644	David Javorsky	Gary Polischuk	13-Nov-96	November 13, 2007	20 units	500 ha	92J/09E		*** *****	4 Post
Goldmax #14	352645	David Javorsky	Gary Polischuk	14-Nov-96	November 14, 2007	20 units	500 ha	92J/09E			4 Post
Goldmax #15	357142	David Javorsky	Gary Polischuk	30-Jun-97	June 30, 2001	15 units	375 ha	92J/09E	357142		4 Post
Goldmax Fr.	316306	David Javorsky	Gary Polischuk	2-Mar-93	March 2, 2007	1 unit	25 ha		316306		Fractional

Totals	222 units	5550 ha
		55.5 sq. km

5.0 PREVIOUS EXPLORATION

Placer and hard rock mining activity in the Cayoosh Creek area dates from the mid 1800's. For decades, Chinese miners worked the placers in parts of Cayoosh Creek. Small-scale placer mining operations are still working there. Lode gold deposits were mined at the Golden Cache and Ample Mines. The Golden Cache Mine, which occurs about 6 kilometres west-southwest of the claim block produced slightly over one thousand tons of gold ore in the late 1800's. The mine is noted for spectacular native gold specimens collected from its workings. The Ample Mine about 3 kilometres west-southwest of the claim block was worked intermittently from around the turn of the century to the 1930's. About 300 metres of underground workings were established during that time, but production was likely only a few thousand tons.

The Ample/Goldmax Zone, located about 2 kilometres west-southwest of the claim block, was discovered in 1994 when prospector Gary Polischuk noted visible gold in a quartz boulder on the Duffy Lake road. He subsequently prospected to about 350 metres up slope where gold-mineralization was discovered in place. In 1995, Homestake Canada Inc. optioned the property and contracted Pamicon Developments Ltd. to carry out surface exploration in the area of the Ample/Goldmax discovery. Geological mapping and sampling were done in the area and subsequently a grid was established on which soil sampling as well as VLF-EM and magnetic surveys were carried out. Hand trenching exposed gold-bearing phyllite and auriferous quartz stockwork.

In 1996, Homestake established a 2.2 kilometre access trail, which targeted an elongate soil anomaly associated with the gold mineralization at Ample/Goldmax. Further trenching revealed that the mineralization occurs in flat lying mineralized zones within phyllitic mudstone generally near its fault contact with overlying greenstone. Fourteen drill holes (of which four did not reach bedrock) for a total of 1813 metres drilled to test the Ample/Goldmax Zone intersected significant gold mineralization including 11.76 grams/tonne gold over 8.2 metres (Kuran and McLeod, 1997a). Regional mapping and prospecting traced gold mineralization from the Ample Goldmax zone westerly for about 2.5 kilometres along the Cayoosh Creek Fault, a prominent structure in the area.

An additional fourteen holes totaling 2786.5 metres were drilled by Homestake in 1997. Thirteen of the holes tested the Ample/Goldmax Zone and one tested the down-dip extension of the Ample Mine. Results of the drilling, which include 31.56 grams/tonne (0.92 oz./ton) gold over 2.52 m, expanded the area of known mineralization to about 200 metres by 200 metres along a sub-horizontal to gently dipping zone.

6.0 REGIONAL GEOLOGY

The regional geology of the area is dominated by two units, meta-volcanic rocks and cherts of the Mississippian to Middle Jurassic Bridge River Complex and early Cretaceous clastic sedimentary rocks of the Cayoosh Assemblage (Figure 3). These rocks occur in the Eastern Coast Belt situated along the boundary between the outboard Insular Superterrane to the west and rocks of the ancient North American Craton as represented by the Intermontane Superterrane to the east. The Bridge River Complex and Cayoosh Assemblage are structurally interleaved with other terranes bounded by generally northwest-trending strike-slip and contractional faults of Late Cretaceous to Early Tertiary

LEGEND to Accompany Figure 3

STRATIFIED ROCKS

PLEISTOCENE AND RECENT

Q Quaternary sand, silt, gravel, till

PALEOCENE AND EOCENE

15 KAMLOOPS GROUP: andesite, basalt, pyroclastic rocks, rhyolite, sandstone, shale 14 UNDIVIDED: sandstone, shale, conglomerate, coal

LOWER AND MID CRETACEOUS

13 SPENCES BRIDGE GROUP: basalt-andesite-dacite flows, pyroclastics, siltstone, argillite, coal

12 TAYLOR CREEK GROUP: chert pebble conglomerate, chert-rich sandstone, shale

11 JACKASS MOUNTAIN GROUP: arkosic sandstone, siltstone, shale, conglomerate, lithic sandstone, granule conglomerate, conglomeratic sandstone

MIDDLE JURASSIC - LOWER CRETACEOUS

10 RELAY MOUNTAIN GROUP: siliceous siltstone, calcareous siltstone, calcareous sandstone, conglomeratic sandstone

LOWER JURASSIC to LOWER CRETACEOUS

- 9 CAYOOSH ASSEMBLAGE: phyllite, siltstone, turbidite, volcaniclastic sandstone, shale, quartzose sandstone, phyllitic quartzite, limestone, tuff, breccia
 - 8 UPPER MEMBER: graphitic siltstone, shale, phyllite, arkosic and quartzose sandstone, phyllitic quartzite, calcareous sandstone, tuffaceous sandstone

7 LOWER MEMBER: graphitic phyllite, siltstone, thin-laminated siltstone-sandstone turbidite, tuffaceous phyllite, chert-pebble conglomerate, tuff, tuff breccia

LOWER-MIDDLE JURASSIC

LADNER GROUP

6 DEWDNEY CREEK FORMATION: sandstone, siltstone, mafic-intermediate volcanics, pyroclastics

CARBONIFEROUS - UPPER JURASSIC

BRIDGE RIVER COMPLEX

- 5 Central Belt: mafic volcanic flows (locally pillowed), radiolarian chert, siltstone, chert pebble conglomerate, limestone, turbidite, gabbro, ultramafic rock
- 4 Eastern Belt: mafic volcanic flows (locally pillowed), serpentinite, chert, limestone, siltstone, thin-laminated quartzose turbidite, gabbro, ultramafics

3 Metamorphic Assemblage: melange of mafic greenschist, greenstone, metachert, marble, phyllite, semi-pelite, thin-laminated quartzose schist, meta-gabbro, ultramafics CASHE CREEK COMPLEX

- 2 Western Belt: argillite, siltstone, chert, volcaniclastics, limestone, melange
- 1 Eastern Belt: chert, carbonate, siltstone, basalt, gabbro, ultramafic rock, argillite

PLUTONIC ROCKS

EARLY TERTIARY (36 to 56 Ma) 24 MISSION RIDGE PLUTONIC SUITE: biotite-granodiorite, monzogranite

LATE CRETACEOUS (68 to 84 Ma) BENDOR PLUTONIC SUITE 23 hornblende-biotite quartz-diorite 22 hornblende-biotite granodiorite, quartz-diorite

EARLY MIDDLE JURASSIC - LATE JURASSIC 21 biotite-hornblende quartz-diorite

PERMIAN - TRIASSIC

20 hornblende granodiorite19 diorite, amphibolite

METAMORPHIC ASSEMBLAGES

JURASSIC to CRETACEOUS

18 UNDIVIDED: pelitic schist, amphibolite, felsic-mafic metavolcanic rocks

OPHIOLITE ASSEMBLAGES

PERMIAN

17 EAST LIZA COMPLEX: greenstone flows (locally pillowed) greenstone breccia, diabase, gabbro, serpentinite, limestone, chert

PERMIAN AND OLDER

16 UNDIVIDED: dunite, peridotite, harzburgite, gabbro, serpentenite, listwaenite

SYMBOLS

Geological Contact Synformal Axis Fault (See Note)

Note: "teeth" on thrust faults indicate direction of dip, lines with dots at the end indicate direction of dip for normal and low-angle extensional faults, arrows indicate direction of movement along strike-slip faults

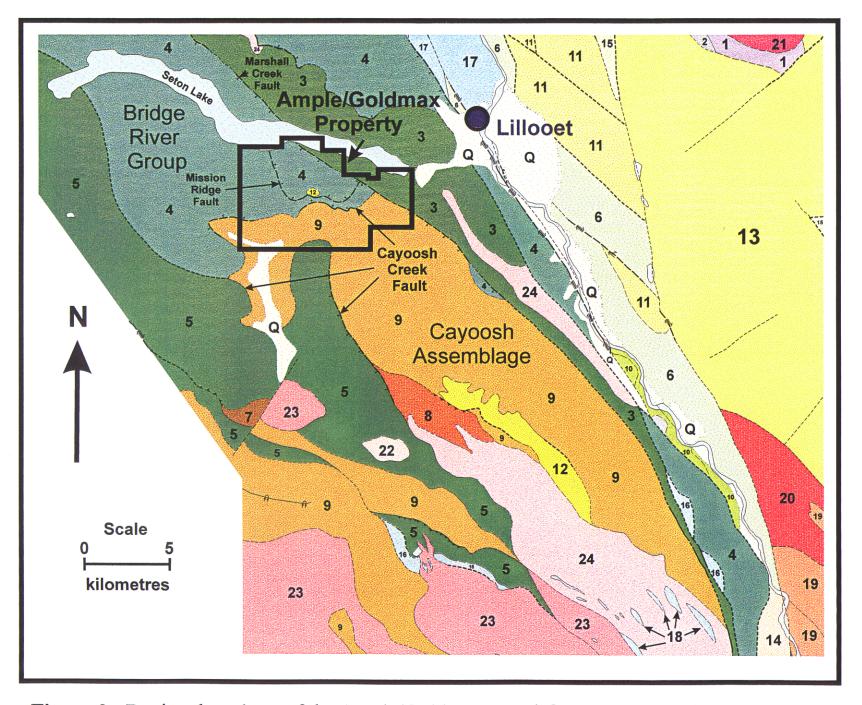


Figure 3: Regional geology of the Ample/Goldmax area (after Journeay and Monger 1994)

age (Journeay and Monger, 1994). The rocks have undergone penetrative deformation and regional metamorphism associated with Alpine-style folding and large-scale imbrication of the Eastern Coast Belt (Journeay and Mahoney, 1994; Journeay and Friedman, 1993). Journeay et al. (1992) note that the Eastern Coast Belt has undergone four periods of deformation: i) southwest-vergent folding and associated thrusting (fold nappe development) between 96 and 91 Ma (million years before present); ii) northeastvergent folding and associated thrusting between 91 and 86 Ma; iii) oblique, southwestvergent thrusting and associated dextral strike-slip faulting between 86 and 68 Ma; iv) and, between 68 and 48 Ma, detachment and northwestward displacement of the Bridge River Complex along the Cayoosh Creek Fault as well as outward-dipping extensional faulting as represented by down-to-the-northwest displacement along the Mission Ridge fault and down-to-the-southwest displacement along the Marshall Creek Fault.

The Bridge River Complex comprises an oceanic assemblage of greenstone and pelagic ribbon cherts accompanied by lesser amounts of silicious siltstone locally interleaved with small amounts of greywacke, limestone and ultramafic rocks (Journeay, 1993). Ultramafic rocks in the area are considered to be fault-bounded slivers thrust into the Bridge River Complex (Kuran and McCleod, 1997b; cf. Leitch, 1990). Harzburgite, accompanied by lesser dunites and gabbros, comprise the dominant rock types (Kuran and McCleod, 1997b; Calon et al. 1990). The rocks are typically serpentinized or listwanitized.

The Cayoosh Assemblage is characterized by upward-coarsening fine grained clastic sedimentary rocks including phyllitic argillite, siltstone, sandstone and conglomerate.

In places the Bridge River Complex is in conformable contact with the stratigraphically overlying Cayoosh Assemblage. According to Journeay and Mahoney (1994), "interlayered greenstone, ribbon chert, limestone, calcareous greenschist and graphitic phyllite of the Bridge River Complex grade upward with apparent conformity into a succession of graphitic siltstone, phyllite, greywacke and thin-bedded turbidites of the Cayoosh Assemblage". They define the basal contact of the Cayoosh Assemblage at the top of the stratigraphically highest chert horizon. Locally the contact is marked by a thin intra-formational pebble conglomerate containing limestone, argillite and chert clasts.

In the Ample/Goldmax area the Bridge River Complex has been structurally emplaced over the Cayoosh Assemblage along the sub-horizontal to shallow northeastdipping Cayoosh Creek Fault (Figure 3). Major faults bounding the regional package include the Fraser Fault, a major right lateral north trending transverse structure, which bounds the eastern portion of the package, and the Marshall Creek Fault which has downto-the-southwest brittle normal fault displacement of about 3.5 kilometres (Coleman, 1990; Journeay et al., 1992). In addition to normal displacement along the Marshall Creek Fault, there is an associated system of top-to-the-southeast displacement along shallow north-east dipping shear zones (Journeay et al., 1992). [

The southern part of the property, where mapped, is underlain by dark grey to black poorly bedded generally well foliated mudstone and lesser siltstone and phyllitic argillite of the Cayoosh Assemblage (Map 1). Bedding, where noted, strikes westnorthwesterly and dips steeply north or south. At least two foliations cut the rocks, one striking northwesterly and dipping 70 to 75 degrees southwest and a second striking eastnortheasterly to northeasterly and dipping 70 to 75 degrees northwest. Minor isoclinal and kink folds were noted at several locations. Typically, the folds have northwesterly striking axial planes with variable dip from gently southwest to moderately northeast. The fold axes plunge variably from shallow southeast to moderately northwest.

A northwest-elongated body of feldspar-hornblende porphyry about 80 to 130 m wide and at least 600 m long intrudes the metasedimentary rocks (Map 1). The intrusion contains abundant one to three mm-long plagioclase phenocrysts and a fewer number of hornblende phenocrysts, all in a chloritized matrix. Apophyses and felsic dykes related to the intrusion typically mark the contact with the sedimentary rocks.

8.0 MINERALIZATION AND ROCK SAMPLING RESULTS

Several quartz veins and fewer quartz and/or calcite veins cut both the porphyry and intruded sedimentary rocks. The veins, which have various strikes and dips, are typically 5 to 20 cm wide and are particularly abundant proximal to the intrusive contact. They generally contain minor amounts of disseminated pyrite and/or pyrrhotite and traces of chalcopyrite at a few locations. Locally such as in the area of sample 709886 (Map 1) pyrite content reaches up to 10%, where it occurs as stringers as well as disseminations. Quartz float (local) noted near the southeastern-most exposure of the intrusion contains about one percent galena (samples 156, 709876,893; Map 1). The galena typically occurs near the vein contact with the feldspar porphyry wall rock. In most areas, wall rock adjacent to the veins is sericitized and locally silicified. Iron carbonate, limonite and chlorite are also present in places.

Sedimentary rocks adjacent to minor faults are typically pyritized, sericitized, chloritized and, in places, have small quartz and/or calcite veins.

A total of nineteen rock samples were collected during the field program, most from the quartz veins exposed at the porphyry/sedimentary rock contact. Sample locations are shown on Map 1 and selected analytical results are listed in Table II. Complete results are presented in Appendix B.

Galena-bearing float consisting of quartz and minor amounts of feldspar porphyry wall rock collected near the southeastern margin of the intrusion returned anomalous gold (maximum 1480 ppb), silver (maximum 28 ppm), lead (maximum 0.6 %) and zinc (maximum 940 ppm) (samples 156, 708976, 709893; Table II, Map 1). Rusty, broken rock along a minor fault cutting argillite at sample location 709883 returned anomalous gold (465 ppb) and elevated arsenic (256 ppm).

Table II: Rock Sample Descriptions and Analyses - Goldmax #16 and #10

No.	Туре	Description	Au	Ag	As	Sb	Sc	Cu	Pb	Zn
Goldmax		Description	ррь	ppm	ppm	ppm	ppm	ppm	ppm	ppm
156	Float	Quartz, about 3% galena, minor pyrite	1480	28.0	14	<2	<1	3	6350	940
709875	Rock	Quartz vein cutting diorite exposed in road cut, trace chalcopyrite and pyrite	<5	<.2	<2	<2	4	35	<2	54
709876	Rock	Galena-bearing quartz float, galena typically occurs near vein contact with wall rock	50		14		<1	9	4470	188
709879	Float	Quartz float 15 to 20 cm across, hematite or limonite along fractures, minor pyrite	5	1.4	12	<2	<1	10	52	28
709880	Rock	Bleached and carbonatized sedimentary rock, minor pyrite	<5	<.2	20	<2	3	70	<2	360
709881		Calcite plus quartz, latter locally rusty containing minor pyrite	130		2	<2	5	14	146	
709882		Breccia with calcite matrix developed within intermediate intrusive rock, about 5% striated pyrite crystals.	75	0.2	398	<2	3	64	<2	46
709883	Rock	Rusty broken rock along minor fault, disseminated pyrite and chalcopyrite	465	0.6	256	<2	2	72	2	50
709884		Quartz vein about 10 cm wide cutting diorite, disseminated pyrrhotite, and chalcopyrite, few pieces of pyrrhotite-bearing host diorite	<5	0.2	10	<2	2	106	8	-54
709885	Rock	Quartz vein about 7 cm wide cutting silicified sedimentary rock, minor disseminated pyrrhotite and chalcopyrite	<5	<.2	10	<2	- 1	40	10	70
709886	Rock	Irregular 5-10 cm wide discontinuous quartz veins and pods cutting quartz feldspar porphyry, about 10% pyrite veins and stringers, minor sericite	20	1.0	20	<2	<1	237	2	14
709887	Rock	Rusty sedimentary rock along fault, 2% disseminated pyrite, sericite, minor chlorite, quartz veins and calcite	10	<.2	10	<2	3	77	2	202
709888	Rock	Quartz veins near contact between poryphyry and sedimentary rocks, 1-2% disseminated pyrite, abundant sericite in wall rock, chlorite in veins	10	0.2	12	<2	2	60	2	36
709889	Rock	Several quartz veins cutting porphyry, near its contact with mudstone, sericite in wall rock, chlorite in veins, disseminated pyrrhotite and pyrite	<5	<.2	6	<2	3		Z	54
709891	Rock	Rusty sedimentary rock, minor quartz	<5	<.2		<2	5	59	<2	348
709892	Rock	Quartz float containing chlorite, sericite and disseminated pyrrhotite, locally graphitic	<5	1.2	<2	<2	1	22	~ <u>~</u> 48	64
709893	Float	Quartz, about 3% galena, minor pyrite	155	9.2	20	2	1	11	3070	558
Goldmax	·						'		0010	550
709877	Rock	Quartz float, altered chloritized, sericitized wallrock with quartz	10	<.2	32	<2	6	20	12	30
709878	Rock	Silicified, ankerite-stained diorite containing quartz veins, minor pyrite	<5	<.2	58	<2	10	1	2	58

9.0 SOIL SAMPLING RESULTS

A total of seventy-three soil samples were collected during the field program. The samples, which consisted mostly of silty to gravelly eluvium, were collected at 15 to 20 cm depth after removing the topsoil utilizing a "pelican pick". An enriched "B-horizon" is developed only locally, but where present was included in the soil sample. Sample locations and gold analyses are shown on Map 2 and selected analytical results listed in Table III. Complete results are presented in Appendix C.

Several of the soil samples returned elevated concentrations of gold (20-90 ppb). A contour of gold analyses greater than or equal to 20 ppb outlines an elongate northwesterly anomaly about 700 m long and 100 to 300 m wide. The anomaly contains a central core defined by gold values greater than or equal to 50 ppb (Map 2).

The anomaly defined by the 50-ppb gold contour is coincident with the area indicated by outcrop exposures to be underlain by the feldspar-hornblende porphyry. This coincidence suggests a possible link between the gold mineralization and the intrusion. Whether the intrusive magma is the source of the gold, acted as a heat engine to drive gold-bearing hydrothermal fluids or whether it merely intruded along the same structural weaknesses utilized by the hydrothermal fluids is uncertain. Empirically, the association is important as a potential guideline for gold exploration in the area.

10.0 OBSERVATIONS AND CONCLUSIONS

Poorly bedded generally well foliated mudstone and lesser siltstone and phyllitic argillite of the Cayoosh Assemblage underlie the southwestern part of the claim block. The sedimentary rocks are intruded by an elongate body of plagioclase- and hornblendephyric porphyry. Abundant quartz veins typically containing disseminated pyrite and locally pyrrhotite or galena cut the porphyry and the intruded sedimentary rocks, particularly near the contact. The quartz veins are locally anomalous in gold.

A gold-in-soil anomaly defined in the area is coincident with an underlying feldspar porphyry intrusion. This association may be useful as a guideline for gold exploration in the area.

11.0 RECOMMENDATIONS

Geological mapping, prospecting and soil sampling is recommended over the remainder of the claim block and the surrounding area. In addition, detailed prospecting and soil sampling should be carried out in the areas upslope to the southeast from soil samples GM 16002 to 06 (rock samples 156 and 709893) and also upslope from GM 16048 to GM16050.

Table III: Soil Sample Analyses - Goldmax #16 and Goldmax #10

sample pt pt<		Au	Ag	As	Sb	Sc	Cu	Pb	Zn	Cd	IdX # I Mo		Π.			_		-										
Coldmax #16 C <thc< th=""> C <thc< th=""> C <thc< th=""> <thc< <="" th=""><th>Sample</th><th></th><th>-</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Mo</th><th>Bi</th><th>Be</th><th>AI</th><th>Ti</th><th>Fe</th><th>Mg</th><th>Ca</th><th>Na</th><th>K</th><th>Mn</th><th>Р</th><th>v</th><th>Ni</th><th>Cr</th><th>Co</th><th>Ba</th><th>Sr</th></thc<></thc<></thc<></thc<>	Sample		-								Mo	Bi	Be	AI	Ti	Fe	Mg	Ca	Na	K	Mn	Р	v	Ni	Cr	Co	Ba	Sr
10 c 64 r 64 r c <th>•</th> <th></th> <th>PPIII</th> <th>Phili</th> <th>Phin.</th> <th>hhin</th> <th>hhu</th> <th>hhm</th> <th>hhui</th> <th>phu</th> <th>ppm</th> <th>ppm</th> <th>ppm</th> <th>%</th> <th>%</th> <th>%</th> <th>%</th> <th>%</th> <th>%</th> <th>%</th> <th>ppm</th> <th>ppm</th> <th>ppm</th> <th>ppm</th> <th>ppm</th> <th>ppm</th> <th>ppm</th> <th>ppm</th>	•		PPIII	Phili	Phin.	hhin	hhu	hhm	hhui	phu	ppm	ppm	ppm	%	%	%	%	%	%	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
CMI-BOOL GO D.2 14 -2 -3 2.4 D.00 D.00 D.00 D.00 D.01 D.00 D.00 <thd.00< th=""> <thd.00< th=""> <thd.00< td="" th<=""><td>(</td><td>T</td><td><.2</td><td>64</td><td>2</td><td>6</td><td>123</td><td>l al</td><td>174</td><td>0.5</td><td></td><td>-2</td><td>~5</td><td>2.24</td><td>0.07</td><td>5.04</td><td>4.00</td><td>0.00</td><td></td><td>0.40</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thd.00<></thd.00<></thd.00<>	(T	<.2	64	2	6	123	l al	174	0.5		-2	~5	2.24	0.07	5.04	4.00	0.00		0.40								
CMIG004 00 0.2 6.7 78 14 1.4 6.5 2 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 78 6.7 78 6.7 78 6.7 78 6.7 78 6.7 71 6.7 70 6.7 70 6.7 70 6.7 70 6.7 70 6.7 70 6.7 71 6.7 71 6.7 70 6.7 71 6.7 6.7 71 6.7 71 6.7 71 6.7 71 6.7 71 6.7 71 6.7 71 6.7 71 6.7 71 <th7< td=""><td>GM16003</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th7<>	GM16003																											
Image: Second	GM16004	20				7																		<u> </u>		22	70	
CMM 6000 60 0.02 00 2 6 6 7 3 2 7 1 <	GM16005	20				7							·													· · · · · · · · · · · · · · · · · · ·		
CM16007 45 0.4 116 -22 6 86 12 178 -5 -4 -22 -5 100 -100 101 0.70 1040 57 44 21 60 101 0.70 1040 57 44 22 100 430 51 44 22 100 430 51 44 22 100 430 51 44 22 100 430 51 44 22 100 430 51 101 102 100 45 100 430 51 102 100 430 51 102 100 100 120 100 420 100 420 100 420 100 420 100 420 100 420 100 420 100 420 100 420 100 420 100 420 100 420 100 420 100 420 430 44 450 450	GM16006	60	0.2	90		6																						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	GM16007	45	0.4	116		6																						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	GM16008	40	0.2	72	<2	6	82												·									
GM 10010 < <t< td=""><td>GM16009</td><td><5</td><td><.2</td><td>44</td><td><2</td><td>7</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	GM16009	<5	<.2	44	<2	7																						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	GM16010	<5	0.2	40	<2	6	64	12																				
GM10012 <5	GM16011	<5	<.2	208	<2	6	65	14	154		2									· · · · · · · · · · · · · · · · · · ·								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	GM16012	<5	0.2	34	<2	5	65	6	114		1								i									
CM10077 -5 -2 26 6 51 6 120 -5 1 -2 <5 219 0.12 3.30 0.77 0.46 <0.70 0.46 430 54 435 52 15 70 225 GM16018 60 <2 28 <2 7 58 6 114 <5 1 <2 <5 218 0.12 700 540 64 46 51 70 238 GM16023 10 0.2 50 <2 8 8 134 <5 1 <2 <5 2.28 0.14 5.17 1.41 2.45 <0.11 700 54 46 46 21 70 46 46 21 70 46 46 21 70 46 46 21 70 46 46 21 70 46 46 21 70 45 56 21 47 438 136 39 13 10 70 53 88 40 430 10 7	GM16016	<5	<.2	34	<2	5	58	4	102		1																	
GM16023 20 < 2 28 < 2 7 58 6 114 <5 1 <22 <5 228 0.12 4.46 1.00 <0 0.12 710 590 55 86 44 18 70 38 GM16023 20 < 2	GM16017	<5	<.2	26	<2	6	51	6	120		1							·····										
GM16023 20 -2 34 -2 6 6 96 <5 1 -22 <5 201 0.11 4.38 1.09 1.28 <0.1 0.10 50 50 64 62 170 439 GM16022 10 0.2 50 -2 85 8 134 <5 1 <2 <5 2.01 0.11 4.38 1.09 1.28 <0.10 1.19 400 55 52 61 27 100 600 GM16022 <5 0.2 36 <2 7 78 8 440 4.0 8 2 <5 1.41 114 710 780 52 64 41 44 22 600 557 658 <01 0.01 54 441 44 22 600 557 55 54 41 44 22 400 557 45 48 48 47 430 1.10 1.28 <01 0.00 556 510 51 61 60 54 <t< td=""><td>GM16018</td><td>60</td><td><.2</td><td>28</td><td><2</td><td>7</td><td>58</td><td>6</td><td>114</td><td><.5</td><td>1</td><td><2</td><td><.5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	GM16018	60	<.2	28	<2	7	58	6	114	<.5	1	<2	<.5															
GM16024 10 0.2 50 < < < < < < <	GM16023	20	<.2	34	<2	6	63	6	96	<.5	1]						· · · · · · · · · · · · · · · · · · ·									
GM16025	GM16024	10	0.2	50	<2	8	85	8	134	<.5	1	<2	<.5	2.59														
GM16026	GM16025	<5	0.2	36	<2	7	86	10	134	<.5	1	<2	<.5	2.41								·						
GM16027		<5	0.2	86	<2	7	78	8	440	4.0	8	2	<.5	1.44	0.11									+				
GM16028 <	· · · · · · · · · · · · · · · · · · ·		<.2	32	2	6	68	8	120	<.5	2	<2	<.5	2.24	0.11							·				·		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			<.2	38	2	8	67	8	98	<.5	1	<2	<.5	2.39	0.12	4.27	0.94	0.47										
GMI6030 50 0.6 88 <2 6 96 18 144 <.5 2 <2 <.5 2.10 0.07 4.92 1.11 0.46 <0 0.16 440 700 48 54 52 20 70 46 GM16031 20 0.4 64 <2 8 94 26 234 0.5 2 <2 <.5 2.25 0.09 5.61 0.95 0.58 <0.01 0.15 1140 1090 57 51 51 26 90 6.63 GM16031 15 0.6 24 <2 7 120 16 232 0.5 4 <2 <5 2.43 0.08 6.34 0.0 0.12 680 480 48 40 19 70 411 GM16033 30 0.8 38 <2 6 98 6 20 0.53 0.08 5.26 0.03 0.62 <01 0.11 880 145 23 80 63 30 0.62 <		45	0.2	36	<2	7	67	16	112	<.5	1	<2	<.5	2.03	0.09	4.40	1.05	1.26										
GM16031 20 0.4 64 <2 8 94 26 234 0.5 2 <2 <5 2.25 0.09 5.61 0.95 0.58 <01 0.15 1140 1090 57 51 51 26 90 68 GM16032 35 0.8 120 <2		50	0.6	88		6	96	18	144	<.5	2	<2	<.5	2.10	0.07	4.92	1.11	0.46						·				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	· · · · · · · · · · · · · · · · · · ·					8	94	26	234	0.5	2	<2	<.5	2.25	0.09	5.61	0.95	0.58	<.01	0.15								
GM16033 15 0.8 50 2 7 129 4 252 0.5 3 <2 <5 2.43 0.08 5.44 0.90 0.48 <.0 0.12 680 480 48 48 40 19 70 41 GM16034 15 0.6 24 <2			0.8	120	<2	7	120	16	232	0.5	4	<2	<.5	2.25	0.08	6.33	1.10	0.52	<.01	0.13								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						7	129	4	252	0.5	3	<2	<.5	2.43	0.08	5.44	0.90	0.48	<.01	0.12	680	480						
GM16035 30 0.8 38 <2 6 95 8 268 0.5 1 <2 <.5 2.15 0.08 5.26 0.83 0.65 0.01 0.14 985 1350 49 48 45 2.3 70 63 GM16036 <5							98	6	280	0.5	1	<2	<.5	2.59	0.09	5.34	0.78	0.53	<.01	0.23	775	820						
GM16036 <5 0.2 42 <2 6 85 2 264 0.5 <1 <2 <5 2.21 0.07 4.73 0.80 0.62 <01 0.17 880 1710 45 51 45 23 80 63 GM16037 <5								8		0.5	1	<2	<.5	2.15	0.08	5.26	0.83	0.65	0.01	0.14	985	1350						
GM16037 <5 0.2 36 <2 6 82 <2 184 <5 1 <2 <5 2.34 0.08 4.48 0.82 0.37 <01 0.17 430 400 45 47 42 16 60 35 GM16038 <5					······			2	264	0.5	<1	<2	<.5	2.21	0.07	4.73	0.80	0.62	<.01	0.17	880	1710	45	51				
GM16038 <5 0.2 44 <2 6 91 2 130 <.5 <1 <2 <.5 2.15 0.11 4.41 1.03 0.45 <.01 0.12 565 350 50 42 47 18 40 25 GM16039 <5				·· · ·				<2			1	<2	<.5	2.34	0.08	4.48	0.82	0.37	<.01	0.17	430	400	45	47	42			
GM16039 <5 <2 30 <2 7 67 <2 98 <.5 <1 <2 <.5 1.98 0.12 3.83 1.01 0.45 <01 0.15 525 410 56 42 55 17 50 26 GM16040 <5				ł.		-	; ;]	2	-	<.5	<1	<2	<.5	2.15	0.11	4.41	1.03	0.45	<.01	0.12	565	350	50	42				
GM16040 <5 <2 28 <2 7 63 <2 100 <5 <1 <2 <.5 1.98 0.12 3.87 1.01 0.48 <01 0.11 610 510 56 43 53 18 60 27 GM16041 <5 <.2 30 <2 6 44 2 170 <.5 <1 <2 <.5 0.12 3.82 0.75 0.60 <01 0.22 830 560 50 46 55 17 130 39 GM16042 <5 <.2 2.85 <1 <2 <.5 <2.13 0.13 3.60 0.78 0.44 <01 0.17 465 340 56 47 60 16 90 30 GM16043 20 0.2 24 2 6 69 <2 126 <5 2 <2 <5 2.18 0.13 3.75 1.07 0.44 <01 0.16 705 590 51 37 44 17 50	J	· · · ·		·						<.5	<1	<2	<.5	1.98	0.12	3.83	1.01	0.45	<.01	0.15	525	410	56	42		17		
GM16041 <5 <.2 30 <2 6 44 2 170 <.5 <1 <2 <.5 0.12 3.82 0.75 0.60 <01 0.22 830 560 50 46 55 17 130 39 GM16042 <5								<2		<.5	<1				0.12	3.87	1.01	0.48	<.01	0.11	610	510	56	43	53		60	
GM16042 <5 <2 28 <2 7 55 <2 114 <.5 <1 <2 <.5 2.31 0.13 3.60 0.78 0.44 <0.1 0.17 465 340 56 47 60 16 90 30 GM16043 20 0.2 24 2 6 69 <2 126 <.5 2 <2 <.5 2.18 0.13 3.75 1.07 0.44 <01 0.16 705 590 51 37 44 17 50 31 GM16044 10 0.2 24 <2	· · · · · · · · · · · · · · · · · · ·					·		2	170	<.5	<1	<2	<.5	2.55	0.12	3.82	0.75	0.60	<.01	0.22	830	560	50	46	55	17	130	·
GM16043 20 0.2 24 2 6 69 <2 126 <.5 2 <2 <.5 2.18 0.13 3.75 1.07 0.44 <0.10 0.16 705 590 51 37 44 17 50 31 GM16044 10 0.2 24 <2								<2	114	<.5	<1	<2	<.5	2.31	0.13	3.60	0.78	0.44	<.01	0.17	465	340	56	47	60	16	90	
GM16044 10 0.2 24 <2 7 66 <2 104 <.5 <1 <2 <.5 2.33 0.14 3.78 0.98 0.40 <.01 0.15 545 350 55 41 54 18 70 26 GM16045 <5										<.5	2	<2	<.5	2.18	0.13	3.75	1.07	0.44	<.01	0.16	705	590	51	37	44	17		
GM16045 <5 0.2 52 <2 6 81 <2 196 0.5 1 <2 <.5 2.49 0.10 4.40 0.92 0.47 <.01 0.15 715 850 53 53 53 21 90 39			·····								<1	<2	<.5	2.33	0.14	3.78	0.98	0.40	<.01	0.15	545	350	55	41	54			
		· · · · · · ·						<2							0.10	4.40	0.92	0.47	<.01	0.15	715	850	53	53	53	21		
	GM16046	25	0.6	50	<2	7	110	4	230	0.5	2	<2	<.5	2.98	0.10	5.20	0.95	0.48	0.01	0.10	990	840	55	54	53			

 Table III: Soil Sample Analyses - Goldmax #16 and Goldmax #10

	Au	Ag	As	Sb	Sc	Cu	Pb	Zn	Cd	Mo	Bi	Be	AI	Ti	Fe	Mg	Ca	Na	к	Mn	Р	v	Ni	Cr	Co	Ва	Sr
Sample	dqq	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	%	%	%	%	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
GM16047	30	0.2	46	<2	6	93	2	144	< 5	1	<2	<.5	1.95	0.09	4.59	1.00	0.42	<.01	0.15	635	400	51	45	45	19	40	61
GM16048	90	0.2	32	2	8	90	4	150	0.5	3	<2	<.5	2.80	0.11	4.76	1.02	0.41	<.01	0.15	905	660	59	54	58	25	90	51
GM16049	60	0.8	32	<2	7	78	40	164	0.5	3	<2	<.5	2.28	0.08	4.50	0.93	0.70	<.01	0.19	920	920	50	48	48	21	120	76
GM16050	90	0.2	28	<2	6	64	4	136	<.5	<1	<2	<.5	1.93	0.09	3.81	0.91	0.78	<.01	0.17	610	620	48	45	49	18	70	60
GM16051	40	0.2	138	2	7	173	2	108	<.5	9	2	<.5	2.09	0.11	5.32	1.08	0.61	<.01	0.15	970	590	56	51	53	28	50	67
GM16052	40	0.2	52	<2	6	100	12	154	<.5	3	<2	<.5	2.20	0.09	4.57	0.88	0.45	<.01	0.18	805	650	52	47	47	24	80	43
GM16053	40	0.2	28	2		67	<2	100	<.5	3	<2	<.5	2.10	0.11	4.07	1.01	0.52	<.01	0.11	505	390	52	39	51	16	70	76
GM16054	<5	<.2	38	<2	7	68	<2	140	<.5	2	<2	<.5	2.35	0.11	4.30	0.89	0.41	<.01	0.16	680	460	55	47	54	20	90	51
GM16055	20	<.2	24	<2	6	58	2	86	<.5	1	<2	<.5	1.81	0.10	3.62	0.95	0.56	<.01	0.08	500	490	50	44	50	17	60	68
GM16056	60	0.2	42	<2	6	341	4	206	1.0	12	<2	<.5	2.51	0.10	5.77	0.94	0.58	< 01	0.18	1195	760	54	51	46	38	90	111
GM16057	<5	0.2	48	<2	7	87	<2	154	<.5	2	2	<.5	2.32	0.10	4.63	1.01	0.50	<.01	0.18	740	550	56	50	58	22	70	77
GM16058	<5	<.2	28	<2	7	66	<2	100	<.5	<1	<2	<.5	2.29	0.13	3.72	1.09	0.86	<.01	0.20	690	600	60	60	71	19	100	41
GM16059	<5	<.2	36	<2	7	69	2	92	<.5	<1	<2	<.5	2.37	0.15	3.88	1.43	1.54	<.01	0.28	670	540	64	71	98	21	100	55
GM16060	20	<.2	34	<2		72	<2	110	<.5	<1	<2	<.5	2.38	0.14	3.96	1.29	1.12	<.01	0.25	710	610	62	68	87	21	120	49
GM16061	<5	<.2	40	<2	7	92	<2	120	< 5	1	<2	<.5	2.34	0.14	4.27	1.31	1.49	<.01	0.18	1010	710	65	57	64	28	80	58
GM16062	<5	<.2	30	<2	6	77	<2	76	<.5	<1	<2	<.5	1.80	0.12	3.22	1.11	3.60	<.01	0.10	655	640	53	42	52	20	50	66
GM16063	35	<.2	38	<2	8	111	<2	106	<.5	<1	2	<.5	2.35	0.14	4.11	1.25	2.28	<.01	0.17	815	530	64	54	66	28	80	109
GM16064	<5	0.2	30	<2	6	120	<2	418	4.0	<1	2	<.5	2.22	0.07	4.33	0.89	3.65	0.01	0.32	1230	1510	49	65	59	28	110	438
GM16065	20	<.2	30	<2		85	2	104	<.5	<1	<2	<.5	2.15	0.12	3.86	1.23	1.88	<.01	0.24	770	760	61	47	61	23	80	67
GM16066 GM16067	<5 30	0.6	64	<2	10	115	<2	126	0.5	1	<2	<.5	2.60	0.14	4.96	1.11	0.46	<.01	0.12	630	300	66	58	75	23	50	27
		0.6	74	<2	8	114	<2	124	0.5	1	<2	<.5	2.27	0.10	4.66	1.26	3.69	<.01	0.16	740	510	60	55	70	25	60	67
GM16068 GM16069	<5	0.2	50	<2	7	115	2	300	1.5	2	<2	<.5	2.60	0.12	4.67	0.96	0.59	<.01	0.22	870	710	57	68	58	25	100	48
GM16070	<5 30	<.2	26	<2	4	84	<2	148	1.5	1	<2	<.5	1.81	0.07		0.89	6.63	0.01	0.11	655	690	38	43	40	25	50	144
GIVITOUTU	30	0.2		<2	8	121	2	254	1.0	1	2	<.5	2.58	0.11	5.08	1.04	0.73	<.01	0.14	1170	620	59	66	62	33	100	47
Goldmax #	40																										
GM1001	25	0.2	50		40	4001				·····																	
GM1002	70	0.2	108	<2 2	10	108	14	128	<.5		<2	<.5		0.05			2.50	<.01	0.11	910	560	68	47	80	27	50	41
GM16001	<5	<.2	26	<2	13	158	2	112	<.5	1	<2	<.5	2.43	0.02			3.72	<.01	0.22	945	360	54	75	74	49	50	90
GM16002	55	0.2	108		8	70	4	106	<.5	1	2			0.14		0.88	0.36	<.01	0.18	385	280	61	44	53	17	60	29
GM16013	<5			<2	5	71	6	130	<.5	1	<2		ł.			0.85	0.37	<.01	0.11	780	530	40	30	26	21	50	30
GM16013	<5	0.2	34	<2	5	59	6	104	<.5	1	<2	<.5				0.94	2.81	<.01	0.13	595	710	43	28	30	17	40	40
GM16014 GM16015	<5 <5	<.2	20	<2	5	39	6	248	0.5	<1	<2					0.66	0.41	<.01	0.19	850	880	45	52	47	16	130	25
GM16019	<5	<.2	26	<2	5	43	6	92	<.5	1	<2			0.09	3.78	1.02	0.49	<.01	0.11	670	570	47	30	38	15	50	23
	-	<.2	30	2	6	58	4	102	<.5	1	<2			0.09	4.37	1.04	1.48	<.01	0.13	735	720	48	33	37	18	60	46
GM16020	<5 <5	<.2	48	<2	7	60	6	94	<.5		<2			0.09	4.62	1.10	0.58	<.01	0.09	710	650	54	37	51	18	40	31
GM16021		<.2	36		6	65	6	106	<,5		<2	·• ··· •		0.11		1.14	2.54	<.01	0.13	770	810	53	38	46	21	60	57
GM16022	25	<.2	194	4	7	74	12	124	<.5	17	<2	<.5	1.73	<.01	7.27	0.90	2.45	<.01	0.04	2570	700	37	69	37	39	50	59
																										·····	l

12.0 STATEMENT OF COSTS

A statement of costs detailing exploration expenses related to the field program is presented in Table IV below. Expenses (minus GST) related to the field program total \$8,240.56.

Table IV: Statement of Costs

Consulting Fees

onsulting Fees	Unit	Unit Cost	Amount
Consulting Geologist	3.5 days	400.00	1,400.00
Geological Assistant	3.5 days	100.00	350.00
Prospector	1.5 days	200.00	300.00

Analysis, Assay

Rock Sample Preparation and Analysis	17	21.85	371.45
Soil Sample Preparation and Analysis	62	18.85	1,168.70

Transportation

Automobile Rental and Related Expenses			577.14
Local truck rental and related expenses	1.0 days	40.00	40.00
Local truck - fuel			11.00

Accommodation and Food

Accommodation	196.56
Food and Meals	252.38

Field Supplies

Supplies	332.19
Global Surveyer Rental	70.00
Two-way radio rentals	90.00

Report Preparation

Consulting Geologist	4.0 days	400.00	1,600.00
Drafting Consultants			732.00

Administration and Overhead 10% of Expenses

SubTotal - Expenses	7,491.42
	749.14
Total	8,240.56

13.0 References

Calon, T.J., Malpas, J.G. and Macdonald, R.

1990: The anatomy of the Shulaps Ophiolite. Geological Fieldwork 1989, British Columbia Ministry of Energy, Mines and Petroleum Resources, Paper 1990-1, p. 375-386.

Coleman, M.E.

1990: Eocene dextral strike-slip and extensional faulting in the Bridge River Terrane, southwest British Columbia. Unpublished M.Sc. thesis, Carleton University, Ottawa, Ontario, 87 p.

Journeay, J.M.

1993: Tectonic assemblages of the Eastern Coast Belt, souhwestern British Columbia: Implications for the history and mechanisms of terrane accretion. Tectonics, Vol. 12, No. 3, p. 756-775. Current Research, Part A; Geological Survey of Canada, Paper 93-1A, p. 221-233.

Journeay, J.M. and Friedman, R.M.

1993: The Coast Belt Thrust System: evidence of Late Cretaceous shortening in the Coast Belt of SW British Columbia. Tectonics, Vol. 12, No. 3, p. 756-775.

Journeay, J.M. and Mahoney, J.B.

1994: Cayoosh Assemblage: regional correlations and implications for terrane linkages in the southern Coast Belt, British Columbia. Current Research 1994-A; Geological Survey of Canada, p. 165-175.

Journeay, J.M. and Monger, J.W.H.

1994: Geology and crustal structure of the southern coast and Intermontane Belts, southern Canadian Cordillera, British Columbia, Geological Survey of Canada, Open File ????, scale 1:500 000.

Journeay, J.M., Sanders, C., Van-Konijnenburg, J.H. and Jasma, M.

1992: Fault systems of the eastern Coast Belt, southwest British Columbia. Current Research, Part A; Geological Survey of Canada, Paper 92-1A, p. 225-235.

Kuran, D.L. and McLeod, R.J.

1997a: Geological and activities report, 1996 program, Ample/Goldmax property, Lillooet Mining Division. Unpublished report by Homestake Canada Inc.

Kuran, D.L. and McLeod, R.J.

1997b: Assessment report on geology and diamond drilling, 1997 program, Ample/Goldmax property, Lillooet Mining Division. Unpublished report by Homestake Canada Inc.

Leitch, C.H.B.

1990: Bralorne: a mesothermal, shield-type vein gold deposit of Cretaceous age in southwestern British Columbia. CIM Bulletin, Vol. 83, No. 941, September, 1990, p. 53-80.

14.0 CERTIFICATE OF QUALIFICATIONS

I, J. Wayne Pickett, do hereby certify that:

- 1. I am a consulting geologist with a business office at 8256 McIntyre Street, Mission, British Columbia, V2V 6T3.
- I am a graduate in Earth Sciences (Geology) of Memorial University of Newfoundland (B.Sc., 1974; M.Sc., 1989).
- 3. I am a Registered Professional Geoscientist in good standing with the Association of Professional Engineers and Geoscientists of the Province of Newfoundland and the Association of Professional Engineers and Geoscientists of the Province of British Columbia. I am a fellow of the Geological Association of Canada.
- 4. I have practiced my profession as a geologist for the past 24 years during which time I have been involved in exploration for and/or evaluation of several types of mineral deposits, including volcanogenic massive sulphide, Mississippi valley lead-zinc and unconformity type uranium deposits in Canada as well as epithermal and mesothermal gold deposits in Canada, Ghana, Peru, Colombia and Jamaica.
- 5. I own no direct, indirect or contingent interest in the subject property and I do not own directly or indirectly nor do I have any contingent interest in the property, leases and/or securities of Gold-Ore Resources Ltd.
- 6. I accept express responsibility for the conclusions and recommendations contained herein.
- 7. The information, opinions, conclusions and recommendations contained herein are based on field work carried out between June 2 and June 8, 1998; on assay results of outcrop and soil sampling carried out during the field program; and on a review of available literature and previous records of work on the property and surrounding area. Literature reviewed comprises published articles in technical journals, reports and maps filed for assessment with the government of British Columbia, and reports supplied by the property vendors, G. Polischuk and D. Javorsky as per the option agreement between them and Gold-Ore Resources Ltd.
- 8. This report may be used by Gold-Ore Resources Ltd. for any Prospectus, Release or Statement of Material Facts, Offering Memorandum or other public document related to the subject property, provided that no excerpts are used out of context with the whole.

Dated at Vancouver, B.C., this 29th day of July, 1998.

J. Wayne Pickett, M.Sc., P. Geo.

Appendix A Analytical Procedures

.

.

ļ

1.5

ċ.

с.)

ł.

i.

: : :

CHEBEA LADO

Chemex Labs

Sample Preparation Procedure - Ring Grinding

Method: Grinding

A crushed sample split (200 - 300 grams) is ground using a ring mill pulverizer with a chrome steel ring set. The Chemex specification for this procedure is that greater than 90% of the ground material passes through a 106 micron (Tyler 150 mesh) screen. Grinding with chrome steel may impart trace amounts of iron and chromium into a sample.

Chemex <u>Code</u>	Rush <u>Code</u>	Parameter
208	258	Assay Grade Ring Grind
205	255	Geochemical Ring Grind

. .

Chemex Labs

Sample Preparation Procedure - Sieve Screening

Method: Sieving

Geochemical samples (soils, stream sediments, silts) are dried and then hammered to disaggregate any clumps. The samples are then placed in a stainless steel sieve and shaken from side-to-side until as much minus fraction as possible has been extracted.

The sieve size opening determines which code will be applied.

Chemex	Rush		Opening Size	Tyler
Code	<u>Code</u>	Parameter	(Microns)	<u>Mesh Siza</u>
*240		Sieve to -10 Mesh	1700	10
3291		Sieve to -20 Mesh	850	20
<u>*2</u> 03	*2 43	Sieve to -35 Mesh	425	35
204		Sieve to -60 Mesh	250	60
201	241	Sieve to -80 Mesh	180	8 0
1338		Sieve to -100 Mesh	150	100
216		Sieve to -150 Mesh	106	150
230		Sieve to -200 Mesh	75	200
254		Sieve to -250 Mesh	63	250

"Note: Samples typically undergo further particle size reduction prior to laboratory analysis.

U//24/35 TRI 11:30 FAA 004 304 0410

UNCHEA LADS

Chemex Labs

Geochemical Procedure - G32m Package

In the G32m package, sample decomposition is achieved with a nitric-aqua regia digestion. One portion of the sample digest is analyzed by ICP-AES for all elements except mercury. In order to obtain a low detection limit for mercury, a second portion of the sample digest is analyzed by flameless atomic absorption spectroscopy.

Sample Decomposition: Nitric Aqua Regia Digestion

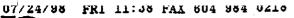
Analytical Method: Inductively Coupled Plasma - Atomic Emission Spectroscopy (ICP - AES)

A prepared sample (1.00 gram) is digested with concentrated nitric acid for at least one hour. After cooling, hydrochloric acid is added to produce aqua regia and the mixture is then digested for an additional hour and a half. The resulting solution is diluted to 25ml with demineralized water, mixed and analyzed by inductively coupled plasma-atomic emission spectrometry. The analytical results are corrected for inter-element spectral interferences.

Chernex <u>Code</u>		Element	<u>Symbol</u>	Detection <u>Limit</u>	Upper <u>Limit</u>
229		ICP-AQ Digestion	n/a	n/a	n/a
2119	*	Aluminum	Âl	0.01%	15 %
2141		Antimony	Sb	2 ppm	1 %
2120		Arsenic	As	2 ppm	1%
2121	*	Barium	Ba	10 ppm	1%
21 22	*	Beryllium	Be	0.5 ppm	0.01 %
2123		Bismuth	Bi	2 ppm	1 %
2125		Cadmium	Cđ	0.5 ppm	0.05 %
2124	*	Calcium	Ca	0.01%	15 %
21 27	*	Chromium	Cr	1 ppm	1%
2126		Cobalt	Co	1 ppm	1 %
2128		Copper	Cu	1 ppm	1 %
2130	*	Gallium	Ga	10 ppm	1 %
2150		Iron	Fe	0.01%	15 %
2151	+	Lanthanum	La	10 ppm	1%
2140		Lead	Pb	2 ppm	1 %
2134	*	Magnesium	Mg	0.01%	15 %

Chemex Labs

Geochemical Procedure - G32m Package (con't)


Chemex <u>Code</u>		Element	<u>Symbol</u>	Detection <u>Limit</u>	Upper <u>Limit</u>
2135		Manganese	Mn	5 ppm	1%
2136		Molybdenum	Мо	1 ppm	1 %
2138		Nickel	Ni	1 ppm	1%
2139		Phosphorus	P	10 ppm	1%
2132	*	Potassium	K	0.01%	10 %
2142	*	Scandium	Sc	1 ppm	1%
2118		Silver	Ag	0.2 ppm	0.01 %
2137	*	Sodium	Na	0.01%	10 %
2143	*	Strontium	Sr	1 ppm	1%
2145	*	Thallium	TI	10 ppm	1 %
2144	*	Titanium	Ti	0.01%	10 %
2148	*	Tungsten	W	10 ppm	1%
2146		Uranium	U	10 ppm	1%
2147		Vanadium	v	1 ppm	1 %
2149		Zinc	Zn	2 ppm	1%

*Elements for which the digestion is possibly incomplete.

Sample Decomposition: Nitric Aqua Regia Digestion Analytical Method: Atomic Absorption Spectroscopy (AAS)

From the same digestion, a portion of the sample is treated with stannous chloride to reduce the mercury. The resulting mercury is volatilized by argon-purging and measured by atomic absorption spectrometry.

Chemex <u>Code</u>	Element	<u>Symbol</u>	Detection Limit	Upper <u>Limit</u>
20	Mercury	Hg	10 ppb	100 ppm

CHEMEA LABS

Fire Assay Procedure - Trace Gold

 Sample Decomposition:
 Fire Assay Fusion

 Analytical Method:
 Atomic Absorption Spectroscopy (AAS)

A prepared sample is fused with a neutral lead sodium silicate flux inquarted with 6 mg of gold-free silver and then cupelled to yield a precious metal bead.

The bead is digested for 4 hour in dilute nitric acid. Hydrochloric acid is then added and the solution is digested for an additional hour. The digested solution is cooled, diluted to 7.5 ml with demineralized water, homogenized and then analyzed by atomic absorption spectrometry.

International Units:

Chemex <u>Code</u>	Rush <u>Code</u>	Element	Sample Weight (grams)	<u>Symbol</u>	Detection <u>Limit</u>	Upper <u>Limit</u>
100	99 0	Gold	10	Au	5 pp b	10,000 ppb
96	1090	Gold	10	Au	0.005 ppm	10 ppm
98 3	9 91	Gold	30	Au	5 ppb	10,000 ppb
99	1091	Gold	30	Au	0.005 ppm	10 ppm
49 4	1209	Gold	30	Au	0.005 g/t	10 g/t
35 83		Gold	50	Au	5 ppb	10,000 ppb
3584		Gold	50	Au	0.005 ppm	10 ppm
3594		Gold	50	Au	0.005 g/t	10 g/t

American/English Units:

Chernex <u>Code</u>	Rush <u>Code</u>	Element	Sample Weight (grams)	<u>Symbol</u>	Detection <u>Limit</u>	Upper <u>Limit</u>
877	1977	Gold	30	Au	0.0002 oz/ton	0.3 oz/ton

Appendix B Rock Analyses

, **---**--

. .

AEDTICIA TO

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

.

To: GOLD ORE RESOURCES LTD.

1540 - 750 W. PENDER ST. VANCOUVER, BC V6C 2T8

Comments: ATTN: WAYNE PICKETT

Ag	82	15	i45

1

TIFICATE	A9821545			ANALYTIC
ORE RESOURCES LT	D	CHEMEX	NUMBER SAMPLES	
was printed on 19	-JUN-98.	983 2118 2119 2120 2121 2122 2123 2124 2125	10 10 10 10 10 10 10 10 10	Au ppb: Fuse 30 g sample Ag ppm: 32 element, soil & r Al %: 32 element, soil & roc As ppm: 32 element, soil & r Ba ppm: 32 element, soil & r Be ppm: 32 element, soil & r Ca %: 32 element, soil & roc Cd ppm: 32 element, soil & roc
	DESCRIPTION	2126 2127 2128 2150 2130 2131	10 10 10 10	Cr ppm: 32 element, soil & r. Cr ppm: 32 element, soil & r Cu ppm: 32 element, soil & r Fe %: 32 element, soil & roc Ga ppm: 32 element, soil & roc
0 0-3 Kg crush 0 Rock - save (and split Intire reject	2132 2151 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2144	10 10 10 10 10 10 10 10 10 10 10 10	Hg ppm: 32 element, soil & rock K %: 32 element, soil & rock La ppm: 32 element, soil & rock Mn ppm: 32 element, soil & rocd Mn ppm: 32 element, soil & rocd Ni ppm: 32 element, soil & rocd Ni ppm: 32 element, soil & rocd Ni ppm: 32 element, soil & rocd P ppm: 32 element, soil & rocd Pb ppm: 32 element, soil & rocd Sb ppm: 32 element, soil & rocd Sr ppm: 32 element, soil & rocd Ti %: 32 element, soil & rocd Ti ppm: 32 element, soil & rocd Sr ppm: 32 element, soil & rocd Ti ppm: 32 element, soil & rocd Ti ppm: 32 element, soil & rocd Ti ppm: 32 element, soil & rocd Sr ppm: 32 element, soil & rocd St ppm
	ORE RESOURCES LT nitted to our lab was printed on 19 AMPLE PREPA BER PLES 0 Geochem ring 0 0-3 Kg crush 0 Rock - save	ORE RESOURCES LTD. nitted to our lab in Vancouver, BC. was printed on 19-JUN-98. AMPLE PREPARATION BER PLES DESCRIPTION 0 Geochem ring to approx 150 mesh 0 0-3 Kg crush and split 0 Rock - save entire reject	ANDEL FOR A COLLEGE AND A CHEMEX CODE nitted to our lab in Vancouver, BC. was printed on 19-JUN-98. AMPLE PREPARATION BEER DESCRIPTION 0 Geochem ring to approx 150 mesh 0 -3 Kg crush and split 0 Reck - save entire reject 0 ICP - AQ Digestion charge 2120 2130 2131 2132 2132 2132 2133 2134	ORE RESOURCES LTD. CHEMEX CODE NUMBER SAMPLES mitted to our lab in Vancouver, BC. was printed on 19-JUN-98. 983 10 2120 10 2120 10 2121 10 2122 10 2122 10 2121 10 AMPLE PREPARATION 2125 10 2124 10 BER PLES DESCRIPTION 2130 10 2132 10 0 Geochem ring to approx 150 mesh 2131 10 2132 10 0 Geochem ring to approx 150 mesh 2131 10 2131 10 0 Geochem ring to approx 150 mesh 2131 10 2132 10 0 JCP - AQ Digestion charge 2136 10 2139 10 2144 10 2144 10 2144 10 2144 10 2144 10 2144 10

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, R, La, Mg, Na, Sr, Ti, T1, W.

	ANALYTICAL P	ROCEDURE	S	
CHEMEX NUMBER	DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT
983 10 2118 10 2120 10 2121 10 2122 10 2123 10 2124 10 2125 10 2126 10 2127 10 2128 10 2130 10 2131 10 2132 10 2131 10 2132 10 2131 10 2132 10 2133 10 2134 10 2135 10 2134 10 2137 10 2138 10 2139 10 2141 10 2142 10 2143 10 2144 10 2145 10 2146 10 2147 10 2148 10 2149 10	Au ppb: Fuse 30 g sample Ag ppm: 32 element, soil & rock As ppm: 32 element, soil & rock Ba ppm: 32 element, soil & rock Ba ppm: 32 element, soil & rock Bi ppm: 32 element, soil & rock Ca %: 32 element, soil & rock Cd ppm: 32 element, soil & rock Cd ppm: 32 element, soil & rock Cu ppm: 32 element, soil & rock Cu ppm: 32 element, soil & rock Ga ppm: 32 element, soil & rock Cu ppm: 32 element, soil & rock Ga ppm: 32 element, soil & rock Ga ppm: 32 element, soil & rock Mg ppm: 32 element, soil & rock Mg ppm: 32 element, soil & rock Mn ppm: 32 element, soil & rock Mn ppm: 32 element, soil & rock Na %: 32 element, soil & rock Na %: 32 element, soil & rock Ni ppm: 32 element, soil & rock Ni ppm: 32 element, soil & rock Sc ppm: 32 element, soil & rock Ni ppm: 32 element, soil & rock Sc ppm: 32 element, soil & rock Sc ppm: 32 element, soil & rock Ti %: 32 element, soil & rock Sc ppm: 32 element, soil & rock Ti %: 32 element, soil & rock Sc ppm: 32 element, soil & rock Ti ppm: 32 element, soil & rock N ppm: 32 element, soil & rock M ppm: 32 element, soil & rock	FA-AAS ICP-AES	5 0.2 0.01 2 10 0.5 2 0.01 0.5 1 1 0.01 10 0.01 1 0.01 1 0.01 1 1 0.01 1 1 0.01 1 1 0.01 1 1 0.01 1 1 0.01 2 2 2 1 1 0.01 2 2 2 1 0 0.5 2 0.5 2 0.5 2 0.5 2 0.5 1 1 0.5 2 0.5 1 1 0.5 2 0.5 1 1 0.5 2 0.5 1 1 0.5 1 1 0.5 1 1 0.5 1 1 0.5 1 1 0.5 1 1 0.5 1 1 0.5 1 1 0.5 1 1 0.5 1 1 0.5 1 1 0.5 1 1 0.5 1 1 0.5 1 1 0.5 1 1 0.5 1 1 0.01 1 0.5 1 1 0.01 1 0 0.5 1 1 0.01 1 0 0.5 1 1 0.01 1 0 0.5 1 1 0.01 1 0 0 0 0	$\begin{array}{c} 10000\\ 100.0\\ 10000 \end{array}$

Chemex Labs Ltd.

Analytical Chemists " Geochemists " Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: GOLD ORE RESOURCES LTD.

*

1540 - 750 W. PENDER ST. VANCOUVER, BC V6C 2T8 Page Number :1-A Total Pages :1 Certificate Date: 19-JUN-98 Invoice No. :19821545 P.O. Number : Account :PWZ

Project :

Comments: ATTN: WAYNE PICKETT

				,, ,,						_ L	CE	RTIFI	CATE	OF A	NAL	rsis		A9821	545	<u> </u>	
SAMPLE	PRE	B	Ац ррб Рд+дд	Ag ppm	¥1	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga. ppm	Hg ppm	K %	La	Mg %	Mn
709869 709870 709871 709872 709873	205 205 205 205 205 205	226 226 226 226 226	10 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.01 0.05 0.80 0.21 0.26	22 66 108 182 426	< 10 10 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.11 0.65 7.75 3.33 2.33	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	1 4 19 7 7	287 246 215 189 198	1 7 1 60 24	0.29 0.54 4.22 2.01 1.59	< 10 < 10 < 10 < 10 < 10 < 10		< 0.01 0.01 0.05 0.09	ppm < 10 < 10 < 10 < 10	0.05 0.24 3.44 1.16	25 120 1565 460
709874 709875 709876 709877 709878	205 205 205 205 205	226 226 226	50 10	< 0.2 < 0.2 15.0 < 0.2 < 0.2	2.72 1.05 0.14 0.45 3.01	< 2 < 2 14 32 58	30 10 < 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 2 18 < 2 < 2	7.04 2.96 1.32 5.59 4.57	< 0.5 < 0.5 1.5 < 0.5 < 0.5 < 0.5	31 7 1 9 16	30 86 232 226 184	46 35 9 20 1	7.20 1.91 0.96 2.64 4.99	< 10 < 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.04 0.13 0.08 0.01 0.03 0.02	< 10 < 10 < 10 < 10 < 10 < 10	0.53 1.71 0.64 0.09 1.43 2.79	335 1380 630 200 800 1515
																	•				
		i														: :					1
													·								
				···		,												·	•		

CERTIFICATION: 11 LR: DO.

The control of the property of the control of the control of C is the control of C

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: GOLD ORE RESOURCES LTD.

.

1540 - 750 W. PENDER ST. VANCOUVER, BC V6C 2T8 Page Number :1-B Total Pages :1 Certificate Date: 19-JUN-98 Invoice No. :19821545 P.O. Number : Account :PWZ

Project : Comments: ATTN: WAYNE PICKETT

1				·				<u> </u>			CE	RTIFI	CATE	OF A	NALY	'SIS	A982	1545	· · · · · · · · · · · · · · · · · · ·
SAMPLE	PRI COI		Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	D D	V ppm	W	Zn ppm		<u></u>	<u></u> _;;;
709869 709870 709871 709872 709873	205 205 205 205	226 226	< 1 < 1 < 1	< 0.01 < 0.01 0.01 < 0.01 < 0.01	9 25 76 33 8	< 10 < 10 100 < 10 10	2 2 < 2 < 2 < 2 < 2 < 2	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	< 1 < 1 11 4 3	4 < 15 < 133 < 106 < 35 <	0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	1 3 38 8 12	<pre>< 10 < 10</pre>	< 2 2 32 16 22		- <u></u>	
709874 709875 709876 709877 709877 709878	205 205 205 205 205 205	226 226 226	< 1 1 5 1 1	0.01 0.03 0.01 0.01 0.02	25 7 5 31 78	500 470 50 140 480	< 2 < 2 4470 12 2	< 2 < 2 2 < 2 < 2 < 2 < 2	22 4 < 1 6 10	55 < 147 67 < 45 < 124 <	0.07 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	131 35 5 17 93	< 10 < 10 < 10 < 10 < 10 < 10	82 54 188 30 58			
																	*:	·	
																:			

 $(\mathbf{1} \ \mathbf{1} \$

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

CERTIFICATE

A9821843

(PWZ) - GOLD ORE RESOURCES LTD.

Project: P.O. # :

Samples submitted to our lab in Vancouver, BC. This report was printed on 23-JUN-98.

	SAMPLE PREPARATION								
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION							
205 226 3202 229	28 28 28 28 28	Geochem ring to approx 150 mesh 0-3 Kg crush and split Rock - save entire reject ICP - AQ Digestion charge							
NOTE	1.								

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Ba, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, T1, W. To: GOLD ORE RESOURCES LTD.

1540 - 750 W. PENDER ST. VANCOUVER, BC V6C 2T8

A9821843

Comments: ATTN: WAYNE PICKETT

CODE	NUMBER SAMPLES		METHOD	DETECTION LIMIT	upper Limit
983	28	Au ppb: Fuse 30 g sample	FA-AAS		
2118	28	Ag ppm: 32 element, soil & real	ICP-ARS	5	10000
2119	28	AL %: 32 element, soil & rock	ICP-AES	0.2	100.0
2120 2121	28	AS ppm: 32 element, soil & rock	ICP-AES	0.01	15.00
2122	28	Ba ppm: 32 element, soil & rock	ICP-ARS	2 10	10000
2123	28	Be ppm: 32 element, soil & rock	ICP-AES	0.5	10000
2124	28	Bi ppm: 32 element, soil & rock	ICP-AES	2	100.0
2125	28	Ca %: 32 element, soil & rock	ICP-AES	0.01	10000
2126	28	Cd ppm: 32 element, soil & rock	ICP-ARS	0.5	15.00
2127	28	Co ppm: 32 element, soil & rock	ICP-AES	1	500
2128	28	Cr ppm: 32 element, soil & rock	ICP-ARS	· 1	10000
2150	28	Cu ppm: 32 element, soil & rock	ICP-ARS	· 1	10000 10000
2130	28	Fe %: 32 element, soil & rock	ICP-ABS	0.01	15.00
2131	28	Ga ppm: 32 element, soil & rock Hg ppm: 32 element, soil & rock	ICP-ARS	10	10000
2132	28	R %: 32 element, soil & rock	ICP-AES		10000
2151	28	La ppm: 32 element, soil & rock	ICP-AES	0.01	10.00
2134	28	Mg %: 32 element, soil & rock	ICP-ABS	10	10000
2135	28	Mn ppm: 32 element, soil & rock	ICP-AES	0.01	15.00
2136	28	Mo ppm: 32 element, soil & rock	ICP-AES	5	10000
2137	28	Na %: 32 element, soil & rock	ICP-AES	1	10000
2138	28	Ni ppm: 32 element, soil & rock	ICP-AES	0.01	10.00
2139	28	F ppm: 32 element, soil & reck	ICP-AES	1	10000
2140	28	PD ppm; 32 element, soil & roch	ICP-AES	10	10000
2141	28	SD PPm; 32 element, soil & root	ICP-AES	2	10000
2142	28	SC ppm: 32 elements, soil & work	icp-aes icp-aes	2	10000
2143	28	Sr ppm: 32 element, soil 6 rook	ICP-ARS	1	10000
2144	28	TI %: 32 Glement, soil & root	ICP-ARS	1	10000
2145	28	TI DDM: 32 element, soil t ware	ICP-AES	0.01	10.00
2146	28	U ppm: 32 element, soil a rook	ICP-AES	10	10000
2147	28	V PPM: 32 Alament, goil & woons	ICP-AES	10	10000
2148	28	W PPm: 32 element, soil & rock	ICP-AES	1	10000
2149	28	Zn ppm: 32 element, soil & rock	ICP-AES	10	10000
				2	10000

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: GOLD ORE RESOURCES LTD.

1540 - 750 W. PENDER ST. VANCOUVER, BC V6C 2T8 Page Number : 1-A Total Pages : 1 Certificate Date: 23-JUN-98 Invoice No. : 19821843 P.O. Number : Account : PWZ

CERTIFICATION: I tran Biclle

Project : Comments: ATTN: WAYNE PICKETT

										CE	DTIC	CATE	05.4							
												CATE			rsis		49821	843		
SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg	K %	La	Mg	Mn
00156 00157 00158 00159 00160	205 226 205 226 205 226 205 226 205 226 205 226	1480 50 40 10 < 5	28.0 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.14 0.08 0.04 0.39 2.50	14 28 34 84 10	10 < 10 < 10 10 160	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.42 0.79 1.58 4.20 2.29	8.0 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	1 3 3 12 24	259 235 158 132 43	3 1 1 28 57	0.62 0.66 0.74 2.37	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1	0.01 0.01 < 0.01 0.04	ppm < 10 < 10 < 10 < 10 < 10	% 0.07 0.24 0.13 1.24	90 170 240 700
00161 00162 00163 00164 00165 00165	205 226 205 226 205 226 205 226 205 226 205 226 205 226	50 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.35 0.08 0.05 0.02 0.05	< 2 116 20 36 30	< 10 < 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	8.68 1.47 0.13 0.43 0.38	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	17 5 1 1 3	44 231 229 233 311	57 17 1 3 1 1	4.91 4.67 0.80 0.27 0.28 0.44	< 10 < 10 < 10 < 10 < 10 < 10 < 10	< 1 -	0.12 0.01 0.03 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10 < 10	1.46 2.60 0.64 0.11 0.17 0.21	615 1530 160 20 45 65
00167 00168 709879 709880	205 226 205 226 205 226 205 226 205 226		< 0.2 < 0.2 < 0.2 1.4 < 0.2	3.39 0.49 2.41 0.42 1.06	114 100 116 12 20	< 10 < 10 20 20 40	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	5.20 4.06 8.20 0.53 4.16	0.5 < 0.5 < 0.5 < 0.5 < 0.5 5.5	35 17 34 4 7	80 171 528 185 72	170 157 51 10 70	8.35 3.59 4.02 1.02 1.98	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.01 0.01 0.11 0.03	< 10 < 10 < 10 < 10 < 10	1.56 0.99 4.84 0.32	1260 1020 910 155
709881 709882 709883 709884 709885	205 226 205 226 205 226 205 226 205 226 205 226	130 75 465 < 5 < 5	9.8 0.2 0.6 0.2 < 0.2	0.10 1.42 1.64 1.02 0.49	2 398 256 10 10	410 20 30 30 20	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	12 < 2 < 2 < 2 < 2 < 2		0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 1 8 11 7 4	73 27 40 103 95	14 64 72 106 40	0.53 3.12 4.13 2.27 1.07	< 10 < 10 < 10 < 10 < 10 < 10 < 10		0.11 0.01 0.12 0.17 0.08	< 10 < 10 < 10 < 10 < 10	0.60 0.16 0.73 0.86 0.56	660 1150 755 395 340
709886 709887 709888 709889 709889	205 226 205 226 205 226 205 226 205 226 205 226		1.0 < 0.2 0.2 < 0.2 < 0.2	0.16 0.88 0.78 0.75 1.96	20 10 12 6 6	< 10 60 60 40 140	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.14 2.59 2.84 4.50 10.75	< 0.5 1.0 < 0.5 < 0.5 < 0.5	38 5 6 5 15	179 72 109 98 84	237 77 60 40 52	5.04 1.99 1.58 1.57 3.10	< 10 < 10 < 10 < 10 < 10	< 1 1 1 < 1	0.07 0.03 0.13 0.17 0.08	< 10 < 10 < 10 < 10 < 10	0.27 0.10 0.47 0.49 0.52	395 45 500 400 675
709891 709892 709893	205 226 205 226 205 226	< 5 < 5 155	< 0.2 1.2 9.2	0.69 0.25 0.25	6 < 2 20	70 10 20	< 0.5 < 0.5 < 0.5	< 2 < 2 8	3.61 3.38 0.95	4.5 0.5 6.0	8 4 4	81 151 243	59 22 11	2.59 1.26 1.13	< 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1	0.13 0.17 0.05 0.05	20 < 10 < 10 < 10	1.47 0.33 0.19 0.15	495 530 470 185
			·																	
					_															

3 (1 1 1 11 1 1 1 ٦.) Ĵ. 1 1 1] 1

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: GOLD ORE RESOURCES LTD.

*

CERTIFICATION: 1 Tray Sichle

1540 - 750 W. PENDER ST. VANCOUVER, BC V6C 2T8 Page Number :1-B Total Pages :1 Certificate Date: 23-JUN-98 Invoice No. :19821843 P.O. Number : Account :PWZ

Project :

Comments: ATTN: WAYNE PICKETT

				• <u>• </u>		·			CE	RTIF	ICATE	OF A	NALY	/SIS	A9821843
SAMPLE	PREP CODE	Mo ppm	Na %	Ni ppm	q mqq	Pb ppm	Sb ppm	Sc ppm	Sr Ti ppm %	T1 ppm	U mqq	V ppm	W ppm	Zn ppm	
00156 00157 00158 00159 00160	205 226 205 226 205 226 205 226 205 226 205 226	<pre> < 1 < < < 1 < <</pre>	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.02	5 13 13 34 58	60 < 10 40 10 410	6350 14 < 2 6 26	< 2 2 < 2 < 2 < 2 < 2 < 2	< 1 1 1 7 10	$\begin{array}{r} 22 < 0.01 \\ 10 < 0.01 \\ 14 < 0.01 \\ 51 < 0.01 \\ 86 < 0.01 \end{array}$	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	4 5 4 18 65	< 10 < 10 < 10 < 10 < 10 < 10	940 8 4 20 114	
00161 00162 00163 00164 00165	205 226 205 226 205 226 205 226 205 226 205 226	< 1 < < 1 < < 1 <	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	16 45 9 12 13	130 < 10 < 10 30 < 10	2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	12 1 < 1 < 1 < 1 < 1	187 < 0.01 $31 < 0.01$ $4 < 0.01$ $16 < 0.01$ $9 < 0.01$	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	91 4 2 1 4	< 10 < 10 < 10 < 10 < 10 < 10	46 6 < 2 < 2 < 2	
00166 00167 00168 709879 709880	205 226 205 226 205 226 205 226 205 226 205 226	4 -	< 0.01 < 0.01 < 0.01 < 0.03 0.02	31 39 218 10 15	470 260 60 270 520	< 2 < 2 < 2 52 < 2	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	30 7 13 < 1 3	$\begin{array}{cccc} 80 & 0.01 \\ 45 < 0.01 \\ 432 < 0.01 \\ 19 & 0.02 \\ 126 & 0.02 \end{array}$	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	329 41 56 13 31	< 10 < 10 < 10 < 10 < 10 < 10	112 24 44 28 360	<u>.</u>
709881 709882 709883 709884 709885	205 226 205 226 205 226 205 226 205 226 205 226	5 < < 1 1 1 < 1	<pre>< 0.01 0.01 0.02 0.01 0.06</pre>	1 5 9 9 9	70 280 390 400 210	146 < 2 2 8 10	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	5 3 2 2 1	$\begin{array}{rrrr} 1440 < 0.01 \\ 362 < 0.01 \\ 68 < 0.01 \\ 82 & 0.05 \\ 70 & 0.02 \end{array}$	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	4 24 25 17 16	< 10 < 10 < 10 < 10 < 10 < 10	14 · 46 50 54 70	
709886 709887 709888 709888 709889 709890	205 226 205 226 205 226 205 226 205 226 205 226	19 39 11 3 < 1	0.01 0.04 0.03 0.04 0.02	14 9 11 9 52	70 400 390 400 1740	2 2 2 4 < 2	< 2 < 2 < 2 < 2 < 2 < 2 < 2	< 1 3 2 3 5	$\begin{array}{rrrr} 19 & 0.01 \\ 130 < 0.01 \\ 132 < 0.01 \\ 320 < 0.01 \\ 609 < 0.01 \end{array}$	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	16 21 13 15 55	< 10 < 10 < 10 < 10 < 10 < 10	14 202 36 54 70	
709891 709892 709893	205 226 205 226 205 226	13 5 < 2	0.03 0.01 0.01	20 9 5	640 260 100	< 2 48 3070	< 2 < 2 2	5 1 1	91 0.13 263 < 0.01 22 < 0.01	< 10 < 10 < 10	< 10 < 10 < 10	59 9 6	< 10 < 10 < 10 < 10	348 64 558	
					·										
					<u> </u>	·									

Appendix C Soil Analyses .

.

5.5

. .

.

e. -

.

. . . `

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: GOLD ORE RESOURCES LTD.

1540 - 750 W. PENDER ST. VANCOUVER, BC V6C 2T8

A9821544

Comments: ATTN: WAYNE PICKETT

P8.	CHEMEX CODE SAMP 983 12; 2118 12; 2119 12; 2120 12; 2121 13;	LES DESCRIPTION Au ppb: Fuse 30 g sample Ag ppm: 32 element, soil 5 rock	METHOD FA-AAS	DETECTION LIMIT	upper Limit
98.	2118 12 2119 12 2120 12	Ag pom: 32 element, soil a more	FA-AAS	······································	······
	2122 12 2123 12	As ppm: 32 element, soil & rock Ba ppm: 32 element, soil & rock Be ppm: 32 element, soil & rock Bi ppm: 32 element, soil & rock	ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	5 0.2 0.01 2 10 0.5	10000 100.0 15.00 10000 10000 100.0
	2124 12 2125 12 2126 12	Cd ppm: 32 element, soil & rock	ICP-ARS ICP-ARS	2 0.01 0.5	10000 15.00 500
CRIPTION	2127 12 2128 12 2150 12 2130 12 2131 12	Cr ppm: 32 element, soil & rock Cu ppm: 32 element, soil & rock Fe %: 32 element, soil & rock Ga ppm: 32 element, soil & rock	ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	1 1 0.01 10	10000 10000 10000 15.00
mesh	2132 12 2151 12	K %: 32 element, soil & rock La ppm: 32 element, soil & rock	icp-ars icp-ars	1 0.01	10000 10000 10.00
n Charge	2134 12: 2135 12: 2136 12: 2137 12: 2138 12: 2139 12: 2140 12: 2141 12: 2143 12: 2144 12: 2145 12: 2146 12: 2147 12:	Mg %: 32 element, soil & rock Mn ppm: 32 element, soil & rock Mo ppm: 32 element, soil & rock Na %: 32 element, soil & rock Ni ppm: 32 element, soil & rock P ppm: 32 element, soil & rock B ppm: 32 element, soil & rock Sb ppm: 32 element, soil & rock Sc ppm: 32 element, soil & rock Ti %: 32 element, soil & rock Ti ppm: 32 element, soil & rock Ti ppm: 32 element, soil & rock	ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	10 0.01 5 1 0.01 1 10 2 2 1 1 0.01 10 10	10000 15.00 10000 10000 10000 10000 10000 10000 10000 10000 10.00 10000
able for samples. Ua regia re: A1,	2148 12 2149 12	W ppm: 32 element, soil & rock	ICP-ABS ICP-ABS ICP-ABS	1 10 2	10000 10000 10000 10000

CERTIFICATE

(PWZ) - GOLD ORE RESOURCES LTD.

Project: P.O. # :

Samples submitted to our lab in Vancouver, BC. This report was printed on 19-JUN-98.

SAMPLE PREPARATION								
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION						
201 202 229	122 122 122	Dry, sieve to -80 mesh save reject ICP - AQ Digestion charge						
NOTE	1:							

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, T1, W.

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: GOLD ORE RESOURCES LTD.

1540 - 750 W. PENDER ST. VANCOUVER, BC V6C 2T8 Page Number :1-A Total Pages :4 Certificate Date: 19-JUN-98 Invoice No. :19821544 P.O. Number : Account :PWZ

Project : Comments: ATTN: WAYNE PICKETT

	····	1					···	•····		CE	RTIFI	CATE	OF A	YSIS		\9821	544			
SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm
BC001 BC002	201 202 201 202		0.8	2.14	40	560	1.0	< 2	1.48	2.5	38	36	217	5.32	< 10		·			
GM1001	201 202	25	0.4	2.67	32 50	720	1.0	< 2	0.67	1.0	36	48	191	5.77	< 10	< 1 < 1	0.25	40 30	0.89	875
GM1002	201 202		0.2	2.43	108	50 50	< 0.5	< 2	2.50	< 0.5	27	80	108	4.70	< 10	< 1	0.11	10	0.95 1.51	890 910
GM1 5001	201 202	< 5	< 0.2	3.13	8	140	< 0.5	< 2	3.72 0.65	< 0.5 < 0.5	49 17	74 94	158 66	6.10 4.84	< 10 < 10	< 1	0.22	< 10	1.01	945
GM15002	201 202	< 5	< 0.2	2.70	12	160	< 0.5	< 2	0.48	< 0.5	15					< 1	0.18	< 10	1.10	410
GM15003 GM15004	201 202		< 0.2	2.45	6	250	< 0.5	< 2	0.75	< 0.5	15	74 56	53 52	3.96	< 10	< 1	0.14	< 10	0.96	395
GM15004 GM15005	201 202 201 202		< 0.2	3.75	< 2	160	< 0.5	< 2	0.93	< 0.5	26	76	5∡ 101	3.62 5.74	< 10	< 1	0.19	< 10	1.00	615
GM15006	201 202 201 202		< 0.2	2.00	< 2	180	< 0.5	< 2	0.44	< 0.5	13	39	23	2.41	< 10 < 10	< 1	0.12	< 10	1.76	775
		5	< U.2	2.07	10	100	< 0.5	< 2	0.48	< 0.5	11	64	39	3.01	< 10	< 1 < 1	0.14 0.10	< 10 10	0.62	520
GM15007	201 202	< 5	< 0.2	2.43	8	170	< 0.5	< 2	A 47								0.10	10	0.75	285
GM15008	201 202		< 0.2	1.83	20	100	< 0.5	< 2	0.47 0.35	< 0.5 < 0.5	15	71	46	3.77	< 10	< 1	0.11	10	1.09	565
GM15009	201 202		< 0.2	2.16	6	340	0.5	< 2	0.57	< 0.5	15 15	71	39	3.18	< 10	<1	0.15	10	0.80	405
GM15010 GM15011	201 202	5	< 0.2	1.84	30	90	< 0.5	< 2	0.32	< 0.5	13	46 54	33 57	3.25	< 10	<1	0.41	10	0.63	1070
GWISOIT	201 202	< 5	< 0.2	2.69	20	130	0.5	< 2	0.29	< 0.5	25	65	74	3.49 5.02	< 10 < 10	<1 - <1	0.21 0.21	10 20	0.74	325
GM15012	201 202	65	< 0.2	2.92	34	240	0.5	< 2	0.38	< 0.5								ΔŲ	1.02	405
GM15013	201 202	10	< 0.2	1.85	24	170	< 0.5	< 2	0.32	< 0.5	24 15	69	62	5.01	< 10 '	< 1	0.09	10	0,95	415
GM15014	201 202	< 5	< 0.2	2.49	8	180	0.5	< 2	0.50	< 0.5	26	43 63	50 67	3.29	< 10	< 1	0.16	10	0.64	420
GM15015 GM15016	201 202 201 202	< 5	< 0.2	1.88	6	110	0.5	< 2	0.38	< 0.5	16	28	47	4. 78 3.30	< 10	< 1	0.11	10	1.02	685
		10	< 0.2	1.74	20	150	0.5	< 2	0.24	< 0.5	12	41	60	4.14	< 10 < 10	<1 <1	0.11 0.12	< 10 10	0.65	450 505
GM15017	201 202	< 5	< 0.2	1.33	18	160	0.5	< 2	0.26	< 0.5	18	38						+		505
GM15018 GM15019	201 202	5	< 0.2	1.93	10	180	0.5	< 2	0.37	< 0.5	12	49	71 51	4.12	< 10	< 1	0.15	< 10	0.33	335
GM15019 GM15020	201 202 201 202	< 5	0.2	1.15	8	150	0.5	< 2	6.33	< 0.5	14	35	47	3.60 4.14	< 10 < 10	< 1	0.18	10	0.63	380
GM15021	201 202	10 10	< 0.2	3.16	10	50	< 0.5	< 2	3.88	< 0.5	24	67	83	5.03	< 10	< 1 < 1	0.09	10	0.91	940
		10	× 0.4	3.68	14	40	< 0.5	< 2	3.66	< 0.5	32	70	102	6.41	10	< 1	0.12 0.11	10 10	1.84 2.18	715
GM15022	201 202	< 5	< 0.2	3.83	8	60	0.5	< 2	3.56	< 0.5									4+10	1000
GM15023	201 202	< 5	< 0.2	3.35	10	50	< 0.5	< 2	3.86	< 0.5	29 28	66 55	105 103	6.09	10	< 1	0.13	10	1,92	915
GM15024 GM15025	201 202	< 5	< 0.2	2.96	30	70	< 0.5	< 2	0.85	< 0.5	31	48	75	5.80	10	< 1	0.13	10	1.87	810
GM15025	201 202 201 202	< 5	< 0.2	2.15	< 2	90	< 0.5	< 2	0.50	< 0.5	12	50	31	6.87 3.00	< 10 < 10	< 1	0.13	< 10	1.08	855
SMIJVAO	201 202	< 5	< 0.2	2.37	10	110	< 0.5	< 2	0.49	< 0.5	16	65	4 B	3.65	< 10	< 1 < 1	0.18 0.15	< 10 10	0.65 0.84	420 465
GM15027	201 202	10	< 0.2	3.01	10	120	< 0.5	< 2	0.63	< 0.5	25	83	67						V+ 61	603
GM15028 GM15029	201 202		< 0.2	2.28	6	90	< 0.5	< 2	0.57	< 0.5	16	83 71	67 50	5.09 3.84	< 10	< 1	0.18	10	1.20	730
GM15029 GM15030	201 202 201 202		< 0.2	3.46	< 2	60	< 0.5	< 2	0.97	< 0.5	25	50	74	6.32	< 10 < 10	< 1	0.19	10	0.88	450
GM15031	201 202	< 5 < 5	< 0.2	2.74 2.55	< 2	140	< 0.5	< 2	0.47	< 0.5	14	53	29	3.06	< 10	< 1 < 1	0.13 0.18	10 < 10	1.19	1005
·				4.55	-	90	< 0.5	< 2	0.67	< 0.5	16	54	39	3.15	< 10	< 1	0.15	< 10	0.75 0.79	820 465
GM15032	201 202	< 5	< 0.2	4.56	4	80	0.5	< 2	1.38	< 0.5	46	132	103	7 60						
GM15033 GM15034	201 202		< 0.2	2.63	< 2	130	< 0.5	< 2	0.56	< 0.5	15	55	103	7.68 3.10	10	1	0.08	10	3.18	1970
GM15034 GM15035	201 202 201 202		< 0.2	2.09	< 2	150	< 0.5	< 2	0.59	< 0.5	12	49	21	2.79	< 10 < 10	< 1 < 1	0.17	< 10	0.88	385
GM15036	201 202		< 0.2	1.90 1.77	8	120	< 0.5	< 2	0.41	< 0.5	11	59	39	3.15	< 10	< 1	0.18 0.11	< 10 10	0.69	665
		``	N V.A	1.11	10	130	< 0.5	< 2	0.25	< 0.5	13	51	46	3.25	< 10	< 1	0.10	10	0.73 0.66	280 305
L		1														-		10	0.00	305

CERTIFICATION: Itmak Bielle.

6 **1** 6 1 1) } 1

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: GOLD ORE RESOURCES LTD.

1540 - 750 W. PENDER ST. VANCOUVER, BC V6C 2T8

Page Number :1-B Total Pages :4 Certificate Date: 19-JUN-98 Invoice No. :19821544 P.O. Number : Account :PWZ

.

Project :

Comments: ATTN: WAYNE PICKETT

CERTIFICATE OF ANALYSIS

r	<u> </u>	·····									RIF	CATE	A9821544			
SAMPLE	PREP CODE	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Tİ %	T1 ppm	U ppm	V ppm	W Ppm	Zn ppm	
BC001 BC002 GM1001 GM1002 GM15001	201 202 201 202 201 202 201 202 201 202 201 202	9 1 4 4 1	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	79 73 47 75 57	910 890 560 360 190	14 10 14 2 2	10 6 < 2 2 < 2 < 2	13 16 10 13 26		0.01 0.01 0.05 0.02 0.11	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	59 69 68 54 126	< 10 < 10 < 10 < 10 < 10 < 10	408 300 128 112 68	
GM15002 GM15003 GM15004 GM15005 GM15006	201 202 201 202 201 202 201 202 201 202 201 202	< 1 < 1 < 1 < 1	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	53 40 53 39 45	160 830 210 1150 220	< 2 < 2 < 2 4 2	< 2 < 2 < 2 < 2 < 2 < 2	17 15 20 4 9	29 32 36 29 25	0.14 0.11 0.20 0.13 0.14	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	100 86 153 48 66	< 10 < 10 < 10 < 10 < 10 < 10	66 98 102 190 58	
GM15007 GM15008 GM15009 GM15010 GM15011	201 202 201 202 201 202 201 202 201 202 201 202	< 1 < 1 1 1	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	51 62 44 50 62	350 340 1120 630 480	2 2 6 4 4	< 2 < 2 < 2 < 2 2 2 < 2	16 7 7 8 11	26 28 47 24 27	0.09 0.13 0.08 0.08 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	84 60 48 57 76	< 10 < 10 < 10 < 10 < 10 < 10	62 58 182 78 114	•
GM15012 GM15013 GM15014 GM15015 GM15016	201202201202201202201202201202	1 · < 1 · < 1 ·	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	69 48 60 36 46	790 540 830 620 430	4 4 2 8 4	2 2 < 2 < 2 < 2 < 2 < 2	9 6 13 9 11	29 <	0.01 0.05 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	85 47 73 45 56	< 10 < 10 < 10 < 10 < 10 < 10	124 98 110 118 104	
GM15017 GM15018 GM15019 GM15020 GM15021	201 202 201 202 201 202 201 202 201 202 201 202	< 1 · 1 · < 1 ·	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	57 49 49 48 48	500 560 510 360 390	6 4 2 < 2 < 2 < 2	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	11 8 11 19 22	31 41 138 < 60 49	0.01 0.06 0.01 0.09 0.14	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	50 56 36 142 194	< 10 < 10 < 10 < 10 < 10 < 10	108 106 62 74 82	
GM1 5022 GM1 5023 GM1 5024 GM1 5025 GM1 5026	201 202 201 202 201 202 201 202 201 202 201 202	< 1 · < 1 · < 1 ·	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	48 47 44 40 50	260 280 400 310 280	< 2 < 2 2 2 2 2	2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	23 17 30 9 12	58 53 26 21 23	0.15 0.19 0.04 0.14 0.16	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	172 160 154 70 87	< 10 < 10 < 10 < 10 < 10 < 10	84 92 84 70 68	
GM15027 GM15028 GM15029 GM15030 GM15031	201 202 201 202 201 202 201 202 201 202 201 202	< 1 · < 1 · < 1 ·	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	62 49 41 45 46	330 210 570 370 510	2 2 6 4 2	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	17 12 32 7 9	26 26 38 25 22	0.12 0.16 0.17 0.16 0.18	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	124 91 176 69 69	< 10 < 10 < 10 < 10 < 10 < 10	68 58 102 104 116	
GM15032 GM15033 GM15034 GM15035 GM15036	201 202 201 202 201 202 201 202 201 202 201 202	< 1 < 1 < 1	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	100 54 37 46 49	400 1170 230 210 260	< 2 4 2 2 2	< 2 < 2 < 2 2 < 2	29 7 6 9 9	33 34 30 27 21	0.15 0.15 0.13 0.11 0.03	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	213 61 51 61 51	< 10 < 10 < 10 < 10 < 10 < 10	124 168 82 60 70	

CERTIFICATION: HTML Bielle.

 $(\mathbf{1} \ (\mathbf{1} \ \mathbf{1}

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: GOLD ORE RESOURCES LTD.

1540 - 750 W. PENDER ST. VANCOUVER, BC V6C 2T8 Page Number :2-A Total Pages :4 Certificate Date: 19-JUN-98 Invoice No. : 19821544 P.O. Number : Account :PWZ

Project :

Comments: ATTN: WAYNE PICKETT

	· [· · · · · · · · · · · · · · · · · ·			<u> </u>						CERTIFICATE OF ANALYSIS						ļ	49821			
SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn
GM15037 GM15038 GM15039 GM15040 GM15041	201 202 201 202 201 202 201 202 201 202 201 202	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5</pre>	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.78 1.66 1.73 1.75 1.93	10 6 8 12 10	230 230 230 170 220	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.32 0.30 0.33 0.35 0.41	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	11 11 11 14 12	50 45 50 50 52	26 20 23 40 33	2.69 2.32 2.47 3.24 3.01	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.21 0.20 0.19 0.18	< 10 < 10 < 10 < 10 10	0.63 0.57 0.63 0.60	ppm 410 360 345 450
GM15042 GM15043 GM15044 GM16001 GM16002 GM16003	201 202 201 202 201 202 201 202 201 202 201 202 201 202	< 5 < 5 < 5 < 5 55 50	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 0.2 0.2	1.88 1.77 1.69 2.52 2.26	24 8 10 26 108	130 210 150 60 50	0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.30 0.46 0.36 0.36 0.37	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	18 10 13 17 21	56 44 49 53 26	56 21 29 70 71	4.47 2.58 2.72 4.15 5.21	< 10 < 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1	0.20 0.13 0.20 0.12 0.18 0.11	10 < 10 < 10 < 10 10 < 10	0.64 0.63 0.56 0.61 0.88 0.85	535 665 420 455 385 780
GM16004 GM16005 GM16006 GM16007 GM16008	201 202 201 202 201 202 201 202 201 202 201 202	20 20 60 45	0.2 0.2 0.2 0.4	2.55 2.26 2.41 1.94 2.07 2.00	104 50 68 90 116 72	70 60 90 60 70	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.41 0.47 0.56 1.61 0.37	0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	22 20 19 21 16	43 39 59 51 47	85 81 96 84 88	5.40 5.17 4.79 4.99 4.95	< 10 < 10 < 10 < 10 < 10 < 10	<1 <1 <1 <1 <1 <1	0.11 0.09 0.17 0.10 0.12	10 10 10 10 10	1.02 1.14 1.01 1.27 0.93	1325 835 670 670 400
GM16009 GM16010 GM16011 GM16012 GM16013	201 202 201 202 201 202 201 202 201 202 201 202	< 5 < 5 < 5 < 5 < 5 < 5	< 0.2 0.2 < 0.2 0.2	2.49 2.18 2.18 1.98	44 40 208 34	60 100 60 50 60	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	1.25 0.48 0.31 0.30 2.85	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	21 19 21 21 18	40 55 28 23 43	82 75 64 65 65	4.91 4.54 5.15 5.42 3.91	< 10 · < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.10 0.13 0.06 0.05 0.11	10 10 10 10 10	1.12 0.87 1.02 1.04 1.13	900 595 970 1155 665
GM16014 GM16015 GM16016 GM16017 GM16018	201 202 201 202 201 202 201 202 201 202 201 202	< 5 < 5 < 5 < 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.18 1.87 1.94 2.19	34 20 26 34 26		< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	2.81 0.41 0.49 2.59 0.46	< 0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5	17 16 15 15 15	30 47 38 31 52	59 39 43 58 51	3.83 3.20 3.78 4.11 3.30	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.13 0.19 0.11 0.06 0.18	10 < 10 < 10 < 10 < 10 < 10	0.94 0.66 1.02 1.05 0.71	595 850 670 565 475
GM16019 GM16020 GM16021 GM16022 GM16023	201 202 201 202 201 202 201 202 201 202 201 202		< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.28 2.04 2.10 2.04 1.73	28 30 48 36 194	50	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	1.00 1.48 0.58 2.54 2.45	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	18 18 18 21 39	44 37 51 46 37	58 58 60 65 74	4.46 4.37 4.62 4.36 7.27	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.12 0.13 0.09 0.13 0.04	10 < 10 < 10 < 10 10 10	1.03 1.04 1.10 1.14 0.90	700 735 710 770 2570
GM16025 GM16025 GM16026 GM16027 GM16028	201 202 201 202 201 202 201 202 201 202 201 202 201 202	20 10 < 5 < 5 < 5	< 0.2 0.2 0.2 < 0.2 < 0.2	2.01 2.59 2.41 1.44 2.24	34 50 36 86 32	70 100 90 10 60	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 2 2 < 2	1.28 2.45 3.96 6.58 2.05	< 0.5 < 0.5 < 0.5 4.0 < 0.5	21 27 24 13 22	46 61 64 25 44	63 85 86 78 68	4.38 5.17 4.85 4.78 4.91	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.12 0.19 0.18 0.01 0.11	10 10 10 < 10 10	1.09 1.41 1.35 0.75 1.19	710 905 895 545 780
GM16029 GM16030 GM16031 GM16032	201 202 201 202 201 202 201 202 201 202 201 202	< 5 45 50 20 35	< 0.2 0.2 0.6 0.4 0.8	2.39 2.03 2.10 2.25 2.25	38 36 88 64 120	80 60 70 90 50	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.47 1.26 0.46 0.58 0.52	< 0.5 < 0.5 < 0.5 0.5 0.5	16 17 20 26 21	58 48 52 51 46	67 67 96 94 120	4.27 4.40 4.92 5.61 6.33	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.15 0.09 0.16 0.15 0.13	10 < 10 < 10 10 10	0.94 1.05 1.11 0.95 1.10	425 565 440 1140 625

CERTIFICATION

() [] 1) T 1 1 Ĩ }

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: GOLD ORE RESOURCES LTD.

٠

1540 - 750 W. PENDER ST. VANCOUVER, BC V6C 2T8

Page Number :2-B Total Pages :4 Certificate Date: 19-JUN-98 Invoice No. : 19821544 P.O. Number : Account :PWZ

Project : Comments: ATTN: WAYNE PICKETT

	· [CE	RTIFI	CATE	A9821544			
SAMPLE	PREP CODE	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	ti %	T1 Ppm	U ppm	V PPm	W M	Zn ppm	
GM15037 GM15038 GM15039 GM15040 GM15041	201 202 201 202 201 202 201 202 201 202 201 202	< 1 < 1 1	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	50 50 53 51 49	410 550 320 340 490	4 2 4 2 2	< 2 < 2 < 2 < 2 < 2 < 2	6 5 5 7 7	23 25 23 24 29	0.09 0.10 0.10 0.09 0.10	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	47 41 45 55 52	< 10 < 10 < 10 < 10 < 10 < 10	82 118 148 128 132	
GM15042 GM15043 GM15044 GM16001 GM16002 GM16003	201 202 201 202 201 202 201 202 201 202 201 202	< 1 < < 1 · 1 · 1 ·	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	53 44 48 44 30	340 780 460 280 530	4 2 4 4 6	< 2 < 2 < 2 < 2 < 2 < 2 < 2	15 6 8 5	22 29 21 29 30	0.01 0.09 0.10 0.14 0.07	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	70 46 48 61 40	< 10 < 10 < 10 < 10 < 10 < 10	84 144 116 106 130	
GM16005 GM16005 GM16006 GM16007 GM16008	201 202 201 202 201 202 201 202 201 202 201 202	3 - 1 - 3 - 4 -	<pre>< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01</pre>	39 36 52 44 47	560 690 890 1040 430	14 14 8 16 12	< 2 < 2 < 2 < 2 < 2 < 2	9 7 7 6 6	31 39 53 71 39	0.08 0.07 0.11 0.09 0.08	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	57 52 59 57 51	< 10 < 10 < 10 < 10 < 10 < 10	164 144 166 150 178	v
GM16009 GM16010 GM16011 GM16012	201 202 201 202 201 202 201 202 201 202 201 202	2 - 3 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	<pre> 0.01 0.01 0.01 0.01 0.01 0.01 0.01 </pre>	38 48 31 27 36	930 440 690 620 760	16 8 12 14 6	< 2 < 2 < 2 < 2 < 2 < 2 < 2	6 7 6 5	51 42 28 25 62	0.06 0.10 0.04 0.03 0.11	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	49 55 42 42 51	< 10 < 10 < 10 < 10 < 10 < 10	152 · 138 166 154 114	
GM16013 GM16014 GM16015 GM16016 GM16017	201 202 201 202 201 202 201 202 201 202 201 202	< 1 < 1 < 1 <	<pre>< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01</pre>	28 52 30 30 45	710 880 570 650 430	6 6 4 6	< 2 < 2 < 2 < 2 < 2 < 2 < 2	5 5 5 5 6	40 25 23 49 25	0.10 0.10 0.09 0.09 0.12	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	43 45 47 44 54	< 10 < 10 < 10 < 10 < 10 < 10	104 248 92 102 120	
GM16018 GM16019 GM16020 GM16021 GM16022	201 202 201 202 201 202 201 202 201 202 201 202	1 - 1 - 1 - 17 -	0.01 0.01 0.01	38 33 37 38 69	590 720 650 810 700	6 4 6 6 12	< 2 2 < 2 < 2 4	7 6 7 6 7	38 46 31 57 59 <	0.12 0.09 0.09 0.11 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	55 48 54 53 37	< 10 < 10 < 10 < 10 < 10 < 10	114 102 94 106 124	
GM16023 GM16024 GM16025 GM16026 GM16027	201 202 201 202 201 202 201 202 201 202 201 202	1 1 8 2	0.01 0.01 0.01	46 52 52 89 41	700 820 750 830 760	6 8 10 8 8	< 2 < 2 < 2 < 2 < 2 2	6 8 7 7 6	49 60 68 79 55	0.11 0.14 0.15 0.11 0.11	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	54 65 64 114 54	< 10 < 10 < 10 < 10 30 < 10	96 134 134 440 120	
GM16028 GM16029 GM16030 GM16031 GM16032	201 202 201 202 201 202 201 202 201 202 201 202	1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	<pre>< 0.01 < 0.01</pre>	45 41 54 51 54	490 510 700 1090 550	8 16 18 26 16	2 < 2 < 2 < 2 < 2 < 2	8 7 6 8 7	44 38 46 68 46	0.12 0.09 0.07 0.09 0.08	< 10 < 10 < 10 < 10 < 10 < 10	< 10 10 < 10 < 10 < 10 < 10	57 50 48 57 54	< 10 < 10 < 10 < 10 < 10 < 10	98 112 144 234 232	· · · · · · · · · · · · · · · · · · ·

CERTIFICATION:

Hart Bielle.

) 1 } 1

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: GOLD ORE RESOURCES LTD.

1540 - 750 W. PENDER ST. VANCOUVER, BC V6C 2T8

Page Number : 3-A Total Pages :4 Certificate Date: 19-JUN-98 Invoice No. : 19821544 P.O. Number : Account :PWZ

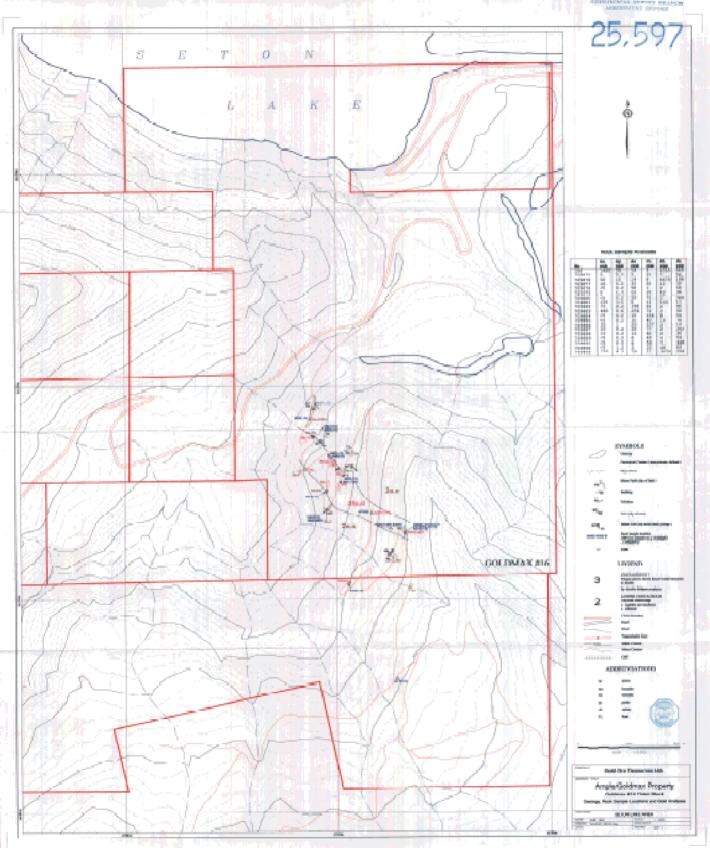
Project : Comments: ATTN: WAYNE PICKETT

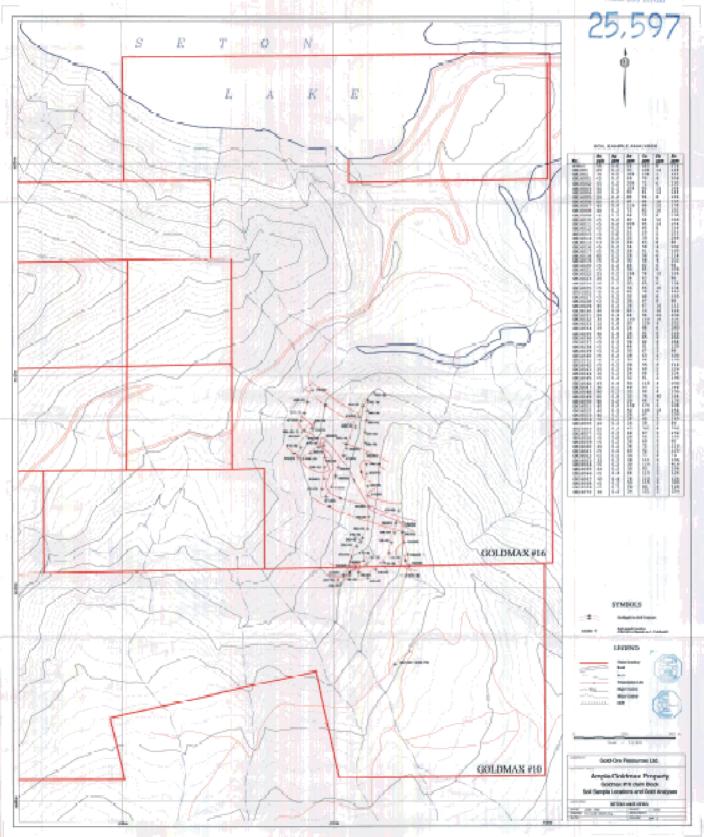
[r		<u></u>						<u> </u>	CE	RTIFI	CATE	OF A	NAL	/SIS	-	\9821	544		
SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La	Mg %	Mn
GM16033 GM16034 GM16035 GM16036 GM16036 GM16037	201 202 201 202 201 202 201 202 201 202 201 202	15 15 30 < 5 < 5	0.8 0.6 0.8 0.2 0.2	2.43 2.59 2.15 2.21 2.34	50 24 38 42 36	70 100 70 80 60	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.48 0.53 0.65 0.62 0.37	0.5 0.5 0.5 0.5 < 0.5 < 0.5	19 21 23 23 16	40 42 45 45	129 98 95 85	5.44 5.34 5.26 4.73	< 10 < 10 < 10 < 10 < 10	< 1 < 1 1 < 1	0.12 0.23 0.14 0.17	ppm < 10 < 10 < 10 < 10 < 10	% 0.90 0.78 0.83 0.80	ppm 680 775 985 880
GM16038 GM16039 GM16040 GM16041 GM16042 GM16043	201 202 201 202 201 202 201 202 201 202 201 202 201 202	< 5 < 5 < 5 < 5 < 5 < 5 20	0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.15 1.98 1.98 2.55 2.31 2.18	44 30 28 30 26	40 50 60 130 90	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.45 0.45 0.48 0.60 0.44	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	18 17 18 17 18 17 16	42 47 55 53 55 60	82 91 67 63 44 55	4.48 4.41 3.83 3.87 3.82 3.60	< 10 < 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.17 0.12 0.15 0.11 0.22 0.17	< 10 < 10 < 10 < 10 < 10 < 10 10	0.82 1.03 1.01 1.01 0.75 0.78	430 565 525 610 830 465
GN16044 GN16045 GN16046 GN16047	201 202 201 202 201 202 201 202 201 202	10 < 5 25 30	0.2 0.2 0.6 0.2	2.18 2.33 2.49 2.98 1.95	24 24 52 50 46	50 70 90 40	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.44 0.40 0.47 0.48 0.42	< 0.5 < 0.5 0.5 0.5 < 0.5	17 18 21 27 19	44 54 53 53 45	69 66 81 110 93	3.75 3.78 4.40 5.20 4.59	< 10 < 10 < 10 < 10 < 10 < 10	<1 <1 <1 <1 <1	0.16 0.15 0.15 0.10 0.10	< 10 < 10 < 10 < 10 < 10	1.07 0.98 0.92 0.95	705 545 715 990
GM16048 GM16049 GM16050 GM16051 GM16052	201 202 201 202 201 202 201 202 201 202 201 202	90 60 90 40 40	0.2 0.8 0.2 0.2 0.2	2.80 2.28 1.93 2.09 2.20	32 32 28 138 52	90 120 70 50 80	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 2 2 < 2	0.41 0.70 0.78 0.61 0.45	0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5	25 21 18 28 24	58 48 49 53 47	90 78 64 173 100	4.76 4.50 3.81 5.32 4.57	< 10 · < 10 · < 10 · < 10 · < 10 ·	<1 <1 <1 <1 <1 <1	0.15 0.19 0.17 0.15	< 10 < 10 < 10 < 10 < 10	1.00 1.02 0.93 0.91 1.08	635 905 920 610 970
GM16053 GM16054 GM16055 GM16056 GM16057	201 202 201 202 201 202 201 202 201 202 201 202	40 < 5 20 60 < 5	0.2 < 0.2 < 0.2 0.2 0.2	2.10 2.35 1.81 2.51 2.32	28 38 24 42 48	70 90 60 90 70	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 2	0.52 0.41 0.56 0.58 0.50	< 0.5 < 0.5 < 0.5 1.0 < 0.5	16 20 17 38 22	51 54 50 46 58	67 68 58 341 87	4.07 4.30 3.62 5.77 4.63	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1	0.18 0.11 0.16 0.08 0.18	< 10 < 10 < 10 < 10 < 10 < 10	0.88 1.01 0.89 0.95 0.94	805 505 680 500 1195
GM16058 GM16059 GM16060 GM16061 GM16062	201 202 201 202 201 202 201 202 201 202 201 202	< 5 < 5 20 < 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.29 2.37 2.38 2.34 1.80	28 36 34 40 30	100 100 120 80 50	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.86 1.54 1.12 1.49 3.60	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	19 21 21 28 20	71 98 67 64 52	66 69 72 92 77	3.72 3.88 3.96 4.27 3.22	< 10 < 10 < 10 < 10 < 10 < 10 < 10	<1 <1 <1 <1 <1 <1 1	0.18 0.20 0.28 0.25 0.18 0.10	< 10 < 10 < 10 < 10 < 10 < 10 < 10	1.01 1.09 1.43 1.29 1.31 1.11	740 690 670 710 1010
5M16063 5M16064 3M16065 3M16066 3M16067 	201 202 201 202 201 202 201 202 201 202 201 202 201 202	35 < 5 20 < 5 30	< 0.2 0.2 < 0.2 0.6 0.6	2.35 2.22 2.15 2.60 2.27	38 30 30 64 74	80 110 80 50 60	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 2 < 2 < 2 < 2 < 2	2.28 3.65 1.88 0.46 3.69	< 0.5 4.0 < 0.5 0.5 0.5	28 28 23 23 25	66 59 61 75 70	111 120 85 115 114	4.11 4.33 3.86 4.96 4.66	< 10 < 10 < 10 < 10 < 10 < 10	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	0.17 0.32 0.24 0.12 0.16	< 10 < 10 < 10 < 10 < 10 < 10 < 10	1.11 1.25 0.89 1.23 1.11 1.26	655 815 1230 770 630 740
0116069 0116070 098+1 098+2	201 202 201 202 201 202 201 202 201 202 201 202	< 5 < 5 30 10 20	0.2 < 0.2 0.2 < 0.2 < 0.2 < 0.2	2.60 1.81 2.58 2.24 2.93	50 26 34 64 28	100 50 100 40 130	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 2 < 2 < 2 < 2 < 2	0.59 6.63 0.73 0.86 0.41	1.5 1.5 1.0 0.5 < 0.5	25 25 33 34 26	58 40 62 31 99	115 84 121 123 69	4.67 3.61 5.08 5.81 5.30	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 1	0.22 0.11 0.14 0.10 0.11	< 10 < 10 < 10 < 10 < 10 < 10	0.96 0.89 1.04 1.08 0.92	870 655 1170 985 680

CERTIFICATION: 1 - - - Sielle

Г

Chemex Labs Ltd.


Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: GOLD ORE RESOURCES LTD.


1540 - 750 W. PENDER ST. VANCOUVER, BC V6C 2T8 Page Number :3-B Total Pages :4 Certificate Date: 19-JUN-98 Invoice No. : 19821544 P.O. Number : Account :PWZ

Project : Comments: ATTN: WAYNE PICKETT

										CE	RTIFI	CATE	OF A	A9821544		
SAMPLE	PREP CODE	Mo ppm	Na %	Ni ppm	р ррт	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Tİ %	T1 ppm	U PPM	V ppm	W ppm	Zn ppm	
GM16033 GM16034	201 202	3 <		48	480	4	2	7	41	0.08	< 10	< 10	48			
GM16035	201 202 201 202	1 <	0.01 0.01	47	820	6	< 2	6	49	0.09	< 10	< 10	45	< 10 < 10	252 280	
GM16036	201 202		: 0.01	48 51	1350 1710	8	< 2	6	63	0.08	< 10	< 10	49	< 10	268	
GM16037	201 202		0.01	47	400	< 2	< 2 < 2	6 6	- 63 35	0.07 0.08	< 10 < 10	< 10 < 10	45 45	< 10 < 10	264 184	
GM16038	201 202	< 1 <	: 0.01	42	350	2	< 2	6	25	0.11						
GM16039	201 202		0.01	42	410	< 2	< 2	7	26	$0.11 \\ 0.12$	< 10 < 10	< 10 < 10	50	< 10	130	
GM16040 GM16041	201 202 201 202		0.01	43	510	< 2	< 2	7	27	0.12	< 10	< 10	56 56	< 10 < 10	98 100	
GM16042	201 202 201 202		< 0.01 < 0.01	46 47	560	2	< 2	6	39	0.12	< 10	< 10	50	< 10	170	
		· • •		• 7	340	< 2	< 2	7	30	0.13	< 10	< 10	56	< 10	114	
GM16043 GM16044	201 202		0.01	37	590	< 2	2	6	31	0.13	< 10	< 10	51	< 10	196	
GM16045	201 202 201 202		< 0.01	41	350	< 2	< 2	7	26	0.14	< 10	< 10	55	< 10	126 104	
GM16046	201 202	2	< 0.01 0.01	53 54	850 840	< 2	< 2	6	39	0.10	< 10	< 10	53	< 10	196	
GM16047	201 202		0.01	45	400	4	< 2 < 2	7 6	47 61	0.10 0.09	< 10 < 10	< 10 < 10	55 51	< 10	230	
GM16048	201 202	3 <	0.01	54	660	4	2							< 10	144	
GM16049	201 202		0.01	48	920	40	< 2	8 7	51 76	0.11 0.08	< 10	< 10	59	< 10	150 ·	
GM16050	201 202		0.01	45	620	4	< 2	6	60	0.09	< 10 < 10	< 10 < 10	50	< 10	164	
GM16051 GM16052	201 202		0.01	51	590	2	2	ž	67	0.11	< 10	< 10	4B 56	< 10 < 10	136	
Shi 6034	201 202	× د	0.01	47	650	12	< 2	6	43	0.09	< 10	< 10	52	< 10	108 154	
GM16053	201 202	3 <	0.01	39	390	< 2	2	7	76	0.11	< 10	< 10				
GM16054	201 202		: 0.01	47	460	< 2	< 2	'n	51	0.11	< 10	< 10	52 55	< 10 < 10	100	
GM16055 GM16056	201 202 201 202		0.01	44	490	2	< 2	6	68	0.10	< 10	< 10	50	< 10	140 86	
GM16057	201 202		< 0.01 < 0.01	51 50	760 550	4	< 2	6	111	0.10	< 10	< 10	54	< 10	206	
						< 2	< 2	7	77	0.10	< 10	< 10	56	< 10	154	
GN16058 GN16059	201 202		0.01	60	600	< 2	< 2	7	41	0.13	< 10	< 10	60	< 10	100	· · · · · · · · · · · · · · · · · · ·
GM16060	201 202 201 202		< 0.01 < 0.01	71	540	< 2	< 2	7	55	0.15	< 10	< 10	64	< 10	92	
GM16061	201 202		< 0.01	68 57	610 710	< 2	< 2	7	49	0.14	< 10	< 10	62	< 10	110	
GM16062	201 202		0.01	42	640	< 2 < 2	< 2 < 2	7 6	58 66	0.14 0.12	< 10 < 10	< 10 < 10	65 53	< 10	120	
GM16063	201 202	< 1 <	(0.01	54	530	<u> </u>								< 10	76	
GM16064	201 202	< 1	0.01	65	1510	< 2 < 2	< 2 < 2	8	109 438	0.14	< 10	< 10	64	< 10	106	
GM16065	201 202	< 1 <	0.01	47	760	2	< 2	2	438	0.07 0.12	< 10 < 10	< 10	49	< 10	418	
см16066 см16067	201 202		0.01	58	300	< 2	< 2	10	27	0.14	< 10	< 10 < 10	61 66	< 10 < 10	104	
	201 202	1 <	< 0.01	55	510	< 2	< 2	8	67	0.10	< 10	< 10	60	< 10	126 124	
GM16068 GM16069	201 202		< 0.01	68	710	2	< 2	7	48	0.12	< 10	< 10	57	< 10	300	
GM16070	201 202 201 202	1	0.01	43	690	< 2	< 2	4	144	0.07	< 10	< 10	36	< 10	148	
G98+1	201 202		< 0.01 < 0.01	66 38	620 690	2 B	< 2	8	47	0.11	< 10	< 10	59	< 10	254	
G98+2	201 202	1	0.01	79	230	< 2	2	6 27	39 25	0.07 0.01	< 10	< 10	47	< 10	174	
								• /	40	0.01	< 10	< 10	117	< 10	70	

CERTIFICATION: In Family Sight

