ASSESSMENT REPORT ON THE 1997 DIAMOND DRILL PROGRAM

JEAN PROPERTY JW 162, 201, 300 - 308, 309FR, 309, 310

NATION LAKES AREA

N.T.S. 93N/2W

OMINECA M.D.

Latitude: 55° 05' NORTH Longitude: 124° 55' WEST

Report by

DAVID L. COOKE, Ph.D., P.Eng. D., L. COOKE & ASSOCIATES LTD.

and

RAGNAR U. BRUASET, B.Sc. RAGNAR U. BRUASET & ASSOCIATES LTD.

REPORT DATE : JULY 20, 1998

FIELD WORK DONE: AUGUST 12 TO OCTOBER 10, 1997 CLAIMS WORKED: JW 300, 301, 303, 305, 307

OPERATOR: CONTINENTAL ENERGY CORPORATION

OLOGICAL SURVEY BRANCH

ASSESSMENT REPORT

TABLE OF CONTENTS

Page

. 11. -

SUMMARY		2
INTRODUCTION		3
LOCATION AND ACCESS		4
PROPERTY AND OWNERSHIP		4
PREVIOUS WORK		5
1998 WORK PROGRAM		5
REGIONAL GEOLOGICAL SETTING		5
PROPERTY GEOLOGY AND MINERALIZATION		6
 1997 DRILL RESULTS: SAMPLE PREPARATION AND ANALYSIS DISCUSSION OF DRILL RESULTS 1. N INDUCED POLARIZATION ANOMALY 2. B ZONE 		7 8 9
CONCLUSIONS		10
REFERENCES		11
STATEMENTS OF QUALIFICATION	12 &	13
COST STATEMENT		14

ILLUSTRATIONS:	Scale
Plate 1 - PROPERTY LOCATION MAP	Bar Scale
Plate 2 - CLAIM MAP	1:50,000
Plate 3 - DRILL PLAN	1:5,000

APPENDICES:

APPENDIX I - DIAMOND DRILL LOGS APPENDIX II - ANALYTICAL RESULTS & ANALYTICAL PROCEDURE

SUMMARY

The Jean property consists of the JW 162, 201, 300 - 310 mineral claims, situated 15 kilometres south of Tchentlo Lake in the Omineca Mining Division of British Columbia. The claims cover a porphyry copper-molybdenum-gold-silver prospect which occurs at the southern contact of the Jean Marie stock and the intruded Takla volcanic rocks. Sulphide mineralization occurs as disseminations and fracture fillings within both intrusive and volcanic rocks in the form of widespread pyrite, chalcopyrite and molybdenite. Three zones of copper-molybdenum mineralization were indicated by previous shallow percussion and diamond drilling along the favourable intrusive-volcanic contact area.

Extensive Induced Polarization surveys defined the three zones of mineralization (A, B and C Zones) along a 4 kilometre length of the intrusive-volcanic contact. Furthermore, the Induced Polarization surveys located two other large IP anomalies away from the contact area (H and N), indicative of extensive sulphide accumulations.

Previous work, in addition to the Induced Polarization, geochemical and geological surveys, consisted of 2,785 metres of diamond drilling in 24 holes and 3,200 metres of shallow percussion drilling in 40 holes between 1969 and 1995.

The 1997 program consisted of 11.7 kilometres of road building and 11 diamond drill holes for a total of 2,279.72 metres, which tested the N Induced Polarization anomaly, and extended the B Zone of mineralization beyond the shallow depths of previous percussion drilling. The three holes which were drilled in the N anomaly encountered pervasive pyrite and argillic alteration in both Takla volcanic host rocks and associated felsite and quartz-feldspar porphyry intrusions. Although these holes encountered anomalous values in copper and gold, the values were too low to be of economic interest at this time. The eight holes drilled within the B Zone extended and confirmed previously inferred Cu-Mo mineralization.

<u>DDH</u>	From(m)	<u>To (m)</u>	Intercept (m)	<u>% Cu</u>	<u>% Mo</u>	<u>g/t Au</u>	<u>g/t Ag</u>
J 97-4	2.4	28.0	25.6	0.26	Tr	Tr	Tr
	68.0	144.0	76.0	0.44	0.014	Tr	Tr
J 97-8	8.0	94.0	86.0	0.28	0.02	Tr	2.6
J 97-10	30.0	160.0	130.0	0.30	0.006	0.02	0.9
incl.	64.0	114.0	50.0	0.51	0.01	0.03	1.6
J 97-11	22.0	74.0	52.0	0.34	Τr	0.03	1.5
	181.0	208.0	27.0	1.55	0.04	0.03	5.4

The best drill intersections in the B Zone are as follows:

INTRODUCTION

Continental Copper Corporation has an option to earn 100% interest in the Jean property by executing certain exploration and development work programs. The objectives in 1997 were to drill test the N Induced Polarization anomaly for copper-molybdenum-gold mineralization, and to extend the B Zone of mineralization beyond the current known limits. In order to accomplish these tasks, 4.6 kilometres of good gravel road were constructed to provide access to the B Zone and the area of the N IP anomaly. The old road (1972 vintage) between the B and C Zones was refurbished to good 4-wheel drive standard for a length of 3.6 kilometres. A further 3.5 kilometres of roads were built to access individual drill sites from the main roads. Road construction was contracted to K & D Logging Ltd. of Ft. St. James, B.C.

Diamond drilling was done by Phil's Diamond Drilling Ltd. of 100 Mile House, B.C., utilizing a Longyear 38 drill. NQ size core was drilled in all holes. Of the proposed 25 drill hole program planned, only 11 holes were completed.

Field supervision and core logging were done during the period August 12, 1997 to October 10, 1997 by the following personnel:

David L. Cooke, Ph.D., P.Eng.	-	August 12 - 28, 1997
Roy Lammle, P.Eng.	-	August 28 - September 15, 1997
Ragnar U. Bruaset, B.Sc.	-	September 16 - October 10, 1997

Overall supervision was provided by David L. Cooke. Field assistance, core splitting and sampling throughout the drill program was provided by Ivor and Eric Saunders.

This report is written by David L. Cooke and Ragnar U. Bruaset.

LOCATION AND ACCESS

The JW claims, which constitute the Jean property, are located at the headwaters of Jean-Marie Creek, 15 kilometres south of Tchentlo Lake in the Omineca Mining Division (Plate 1). The property is accessible by good logging roads approximately 100 kilometres northwest of FCt. St. James, B.C., via the Tachie Road and Leo Creek main roads. The terrain is gentle to moderately steep with elevations ranging from 1,000 to 1,600 metres.

The area is extensively covered by glacial till, which supports marketable stands of spruce, fir, balsam, and lodgepole pine.

PROPERTY AND OWNERSHIP

The Jean property is comprised of 13 contiguous four post mineral claims and one fractional claim for a total of 202 claim units (Plate 2). The pertinent claim data is as follows:

<u>CLAIM NAME</u>	<u>TENURE NO.</u>	<u>UNITS</u>	EXPIRY DATE
JW 162	330447	16	August 31, 2006
201	329920	15	August 10, 2006
300	338497	15	July 26, 2006
301	338498	20	July 29, 2006
302	339499	16	July 31, 2006
303	338500	16	August 3, 2006
304	338501	20	August 4, 2006
305	338488	12	August 5, 2006
306	338489	15	August 5, 2006
307	338490	20	August 5, 2006
308	338491	15	August 6, 2006
309 Fr	338948	1	August 6, 2006
309	359377	6	Sept. 24, 1998
310	359378	15	Sept. 24, 1998

The registered owner of the JW claims is Continental Energy Corporation. The property is subject to an option agreement with D. L. Cooke & Associates Ltd. and Ragnar U. Bruaset & Associates Ltd., dated July 18, 1995.

i pel compositivamente l'angle d'Artamente l'angle d'Artamente l'angle d'Artamente l'angle d'Artamente

4

PREVIOUS WORK

The initial claims were staked near the headwaters of Jean-Marie Creek in 1969 to cover geochemically anomalous results for copper and molybdenum. This work was done by Bacon and Crowhurst Ltd. for the NBC syndicate, consisting of several major mining companies (Carter, 1995, p.7). Exploration work between 1969 and 1978 included geological mapping, geochemical surveys, 130 line kilometres of Induced Polarization and magnetometer surveys, 48 kilometres of road building and trenching, 1,950 metres of diamond drilling in 19 holes and 3,200 metres of percussion drilling in 40 holes.

The original claims lapsed in 1991 and the Jean property were staked. Work between 1991 and 1995, mainly under the aegis of Continental Energy Corporation (formerly Continental Copper Corporation and Int'l. Focus Resources Inc.), consisted of extensive biogeochemical (conifer outer bark) sampling, 45 line kilometres of Induced Polarization and Resistivity surveys and 838 metres of diamond drilling in 5 holes (Bruaset, 1995).

1998 WORK PROGRAM

The 1998 exploratory work consisted of 11.7 kilometres of road building, the construction of 30 drill sites, and the drilling of 11 diamond drill holes for a total of 2,285.0 metres. The drill hole locations are shown on Plate 3. Drill holes 97-1, 2 and 3, which totalled 449.3 metres, were drilled to test the sulphide mineralization indicated by the N Induced Polarization anomaly. The other eight drill holes, 97-4 to 11 were drilled within the B Zone.

REGIONAL GEOLOGICAL SETTING

The Jean property lies within the Quesnel Terrane, a band of Triassic and Jurassic rocks extending from southern British Columbia northwesterly to the Yukon Territory. The Quesnel Terrane borders the eastern boundary of the Intermontane tectonic belt, and is characterized by island-arc volcanic and lesser sedimentary assemblages intruded by coeval and younger granitic intrusions. In the Nation Lakes area the Quesnel Terrane is bounded by two major transform faults, the Manson Creek-McLeod Lake fault on the east, and the Pinchi fault on the west. The Pinchi fault separates the Jurassic-Triassic assemblage (Takla Group) from the older, oceanic Cache Creek Group to the west.

A. STURY
A.

The principal type of mineralization in the Takla Group of the Nation Lakes area is represented by numerous porphyry copper (+ gold + molybdenum) prospects. These are associated with late Triassic to early Cretaceous alkaline and calc-alkaline intrusions. The Mt. Milligan deposit, 55 kilometres east of the Jean property, is the most well known porphyry deposit in the area, where exploration to date has outlived 298 million tonnes of open pit material grading 0.22% copper and 0.45 grams/tonne gold.

The porphyry copper mineralization at this deposit and other prospects in the area consists of disseminated and fracture-filling sulphides within the marginal areas of the granitic intrusions. The abundance of sulphides makes Induced Polarization useful in defining mineralized zones in an area which is generally covered by extensive glacial till. Magnetite, which is often present in these deposits, creates a prominent magnetic signature.

PROPERTY GEOLOGY AND MINERALIZATION

The Jean property is underlain by Takla volcanic rocks and by the southwest portion of the Jean-Marie intrusive stock. The stock, which measures 11×3 km. in plan, is an outlier of the Hogen batholith and consists mainly of granodiorite and quartz diorite. The intruded Takla volcanic rocks consist of basalt and andesite flows, lapilli tuffs, and minor agglomerates. Locally both intrusive and volcanic rocks are intruded by monzonite and/or felsite dikes along the northwest trending contact area. The northwest tending contact area appears to be further complicated by a broad zone of sub-parallel faulting.

Adjacent to the Jean-Marie intrusion, the volcanic rocks are altered to biotite hornfels and lesser epidote-garnet-calcite skarn. Hydrothermal alteration is accompanied by quartz, pyrite, chalcopyrite and molybdenite mineralization. This mineralization occurs mainly in quartz veinlets and disseminations within the intrusion, and as hairline fracture-fillings and desseminations within the volcanic rocks. Fractures and quartz veinlets are generally oriented east-west and dip moderately to the south. Potassic alteration is present as kfeldspar selvages marginal to mineralized quartz veinlets in the intrusive rocks and pervasive secondary biotite in the volcanic rocks.

Several zones of copper-molybdenum mineralization have been indicated along the southwestern contact of the stock by exploration work to date. The three most prominent zones (A, B and C, Plate 3) have been partially delineated by previous percussion and diamond drilling.

al andre contra atta antre contra Marca Marca Contra Marca Marca Marca Anaga Marca Marca

An Providence
 An Original Andreas
 <li

1997 DRILL RESULTS

A total of eleven diamond drill holes tested two road-accessible targets in the Jean property in 1997; three within the N Induced Polarization anomaly, and eight within the B mineralized zone. NQ size core was recovered in all holes. Hole locations are shown on Plate 3 and the pertinent hole information is tabulated below:

<u>Hole No.</u>	Location 1997	<u>Dip</u>	<u>Azimuth</u>	Total Depth (m)
J97-1	N Anomaly	-90°	-	69.5
J97-2	N Anomaly	-90°	-	203.6
J97-3	N Anomaly	-90°	-	176.2
J97-4	B Zone	-90°	-	202.4
J97-5	B Zone	-56°	358°	245.0
J97-6	B Zone	-90°	-	313.3
J97-7	B Zone	-55°	360°	197.5
J97-8	B Zone	-55°	028°	188.4
J97-9	B Zone	-90°	· –	194.4
J97-10	B Zone	-55°	360°	212.7
J97-11	B Zone	-90°	-	276.7

The drill logs are presented in Appendix I and the analytical results in Appendix II.

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

In the field all core was delivered in covered boxes to the core shack by the driller at the end of each shift. The core was generally sampled in 2 metre lengths and split with a standard Longyear core splitter. Half the core was bagged and transported weekly to Min-En Laboratories in Smithers, B.C. for analysis. In a few sections of some holes, where there seemed to be rapid variation in the amount of chalcopyrite over short intervals, the core was split in 1 metre lengths. On rare instances sections of entire drill core were sampled (and skeleton samples retained) in the hope of getting the most representative analysis. All remaining drill core was returned to the core boxes, which were cross-piled near the core shack on the Jean property. The procedures for sample preparation and for ICP analysis and Atomic Absorption measurements are given at the end of the analytical results in Appendix II.

esse in consecution sectoritation of grandings of consecutions

DISCUSSION OF DRILL RESULTS 1. N INDUCED POLARIZATION ANOMALY

The three vertical holes (DDH J97-1,2 and 3. See Plate 3) which were drilled to test the N Induced Polarization anomaly intersected predominantly augite andesite flows, tuff and lapilli tuff. Dikes of feldspar porphyry and quartz feldspar porphyry were intersected in all three holes. Wide intersections of monzonite porphyry and a crowded quartz feldspar porphyry also occur in hole DDH J97-2. Weak to moderate argillic alteration occurs throughout the dikelike intrusions. Propylitic alteration, in the form of epidote patches and carbonate seams, are characteristic of the volcanic flows and tuffs.

Very fine-grained anhedral pyrite is disseminated throughout both intrusive and volcanic rocks, and is present in sufficient quantities to account for the anomalous Induced Polarization responses of 15 to 25 millivolts/sec chargeability. Although copper and gold values are below economic levels in these three holes, they occur in anomalous amounts. Silver and molybdenum levels are relatively low.

In this target Cu and Mo are typically much lower than the B Zone area but common gold affiliated commodity elements are higher. Out of 211 samples of drill core in the N anomaly area the means for Au is 35.4 ppb, Ag 0.57 ppm, Sb 2.6 ppm, As 80 ppm, Cu 83.7 ppm, Mo 4.4 ppm, Pb 30.9 ppm and Zn 85 ppm. The highest gold analysis obtained from drilling of the N anomaly was 588 ppb Au. With the exception of Cu and Mo, the common precious metal indicator elements are higher in the N anomaly area than the B Zone. The N anomaly based on the >15 millivolt/sec. chargeability contour is 2.7 km by 0.7 km. This target requires further testing, although further target definition is desirable. Precious metal target definition could be accomplished by Enzyme Leach sampling because the area is covered by variable thicknesses of glacial till. A very large area of >10 millivolt/sec chargeability is indicated in the general area of the N anomaly, and extending eastward to the so-called H anomaly.

Pate of a De
 Prevalet of Att
 Addreastar Bo
 Addreas

8

2. B ZONE

The significant Cu and Mo intersections for the B Zone are tabulated as follows:

			Interval				
<u>DDH</u>	From (m)	<u>To (m)</u>	<u>(m)</u>	<u>% Cu</u>	<u>% Mo</u>	<u>g/t Au</u>	<u>gt/Ag</u>
J97-4	2.4	28.0	25.6	0.26	Tr	Tr	Tr
	28.0	68.0	.40.0	0.11	Τr	Tr	Tr
	68.0	144.0	76.0	0.44	0.014	Tr	Τr
	144.0	202.3	58,3	0.12	Tr	Tr	Tr
J97-5	36.0	62.0	26.0	0.19	Tr	0.05	1.2
	62.0	100.0	38.0	0.06	Tr	Tr	Tr
	100.0	110.0	10.0	0.73	Tr	Тr	2.4
	110.0	128.0	18.0	0.07	Tr	Tr	Тr
	128.0	178.0	50.0	0.30	0.025	Tr	1.1
	178.0	216.0	38.0	0.08	0.02	Тr	Tr
J97-6	1.0	100.0	99.0	0.07	Tr	Tr	1.8
•.	100.0	184.0	84.0	0.17	Tr	Tr	2.3
	184.0	242.0	58.0	0.07	Tr	Tr	1.7
	242.0	262.0	20.0	0.27	Тr	Tr	3.3
J97-7	64.0	72.0	8.0	0.21	Tr	Tr	Tr
	120.0	190.0	70.0	0.09	Tr	Tr	Τr
J97-8	8.0	94.0	86.0	0.28	0.02	Tr	2.6
J97-9	18.0	32.0	14.0	0.16	Tr	Tr	1.8
	100.0	158.0	58.0	0.15	Tr	Tr	Tr
J97-10	64.0	114.0	50.0	0.51	0.01	0.03	1.6
	160.0	210.0	50.0	0.10	0.06	Tr	Tr
J97-11	22.0	74.0	52.0	0.34	Tr	0.03	1.5
	74.0	120.0	46.0	0.06	Tr	Tr	Tr
	120.0	181.0	61.0	0.14	0.01	Tr	Tr
	181.0	208.0	27.0	1.55	0.04	0.03	5.4
	208.0	256.0	48.0	0.12	Tr	Tr	Tr

The 1997 drill testing in the B Zone area consisted of 8 NQ holes (DDH J97-4 to 11) drilled between Lines 32 West and 48 West a distance of 1,600 feet (487.7 metres). In the 1997 program the B Zone mineralization was intersected on every section tested. The attitude of the zone changes from a dip of about 2 degrees to the south on Section 48 West to about 45 degrees south on Section 32 West. Most of the holes were collared in altered hornfelsic volcanics or skarnified volcanics. Several of these holes penetrated granodiorite of the Jean stock. Other sections of volcanics were later intersected in some holes before they ended in intrusive rocks, suggesting repetition by faulting.

9

Major zones of faulting, as indicated by tens of metres of frequent gouge and slickensides surfaces, are indicated within the B Zone or in the underlying volcanics and intrusives. This is believed to be the so-called Contact fault which is now thought to represent a broad zone of faulting dipping generally southerly. This structure may be the principal ore control. On Section 48 West this zone has a thickness ranging from 18 to 32 metres. The minimum width of this zone on the same section is about 300 metres and the zone is open to grid-north. Eastward from Section 44 West the thickness of the B Zone range from 65 to 75 metres and the down-dip extension varies from 130 metres on Section 44 West to 70 metres on Section 32 West.

CONCLUSIONS

On the Jean property, significant copper and molybdenum mineralization extend to depths of more than 200 metres in the B Zone. The zone was drill tested over a strike distance of 488 metres in 1997, and remain open to the east, north and west. The sulphide mineralization appears to be related to a broad zone of faulting which is localized in the footwall of the mineralization.

The amount of sulphides encountered in the drill holes within the N Induced Polarization anomaly may explain the presence of this IP anomaly. The size of this anomaly, however, is too large to be fully evaluated by three drill holes. The 1997 drilling has shown the N anomaly to have the highest potential for precious metals of the areas tested.

REPORT BY:

D. L. COOKE & ASSOCIATES LTD.

RAGNAR U. BRUASET & ASSOC. LTD.

David L. Cooke, Ph.D., P.Eng.

July 20, 1998 COOKE

Ragnar U. Bruaset, B.Sc.

Australia (1996)
 Australia (1996)

REFERENCES

- Bruaset, R. U., 1995; Assessment Report on the 1995 Diamond Drilling on the Jean Property, 13 pp.
- Bruaset, R. U., 1995; Assessment Report: Geology, Biogeochemistry, IP on the 1994 Program on the Jean Property, 11 pp.
- Bruaset, R. U., 1993; Assessment Report on the 1993 Geological-Geochemical Survey of the JW Claims, Jean Property, 15 pp.

STATEMENT OF QUALIFICATIONS

I, DAVID LAWRENCE COOKE, of the city of Surrey in the Province of British Columbia, hereby certify:

- 1. That I am a consulting Geologist, residing at 16331 59 Avenue, Surrey, B.C. V3S 1J9, with a business office at 811-675 West Hastings Street, Vancouver, B.C., V6B 1N2.
- 2. That I graduated with a B.Sc. degree in Geology from the University of New Brunswick in 1959, and with M.A. and Ph.D. degrees in Geology from the University of Toronto in 1961 and 1966 respectively.
- 3. That I have practised my profession as an exploration geologist from 1959 to the present time in Canada, the U.S.A., Mexico, the Caribbean and South America.
- 4. That I have been a registered member in good standing of the Association of Professional Engineers & Geoscientists of the Province of British Columbia since 1971.
- 5. That I supervised the 1997 drill program on the Jean property, and was in attendance on the property for the period August 12-28, 1997.
- 6. That I am the co-author of this report, and that I have beneficial interests in the Jean property and shares of Continental Energy Corporation.

DAVID L. COOKE, PH.D, P.ENG.

STATEMENT OF QUALIFICATION

- 1. I am a 1967 graduate of the University of British Columbia with a B.Sc. degree in geology.
- 2. I have supervised diamond drilling programs at various times in my geological career, including programs on the Jean Property in 1975, 1995 and 1997.
- 3. I supervised programs involving geological mapping, geochemistry, Induced Polarization, percussion drilling and major access preparation on the Jean Property on behalf of N.B.C. Syndicate over a seven year period from 1973 to 1980 as an employee of Cominco Ltd.
- 4. I carried out geological and geochemical programs on the Jean Property in 1991, 1993 and 1994.
- 5. The 1997 drilling program was directed by Dr. D. L. Cooke on behalf of Continental Energy Corporation Ltd.
- 6. I am the co-author of this report, and I have beneficial interests in the Jean Property and shares of Continental Energy Corporation Ltd.

Ragnar U. Bruaset

5851 Halifax Street, Burnaby, B.c. V5B 2P4

13

July 20, 1998

COST STATEMENT

DIRECT DRILLING COSTS

Contract charges, \$2,279.72/m

\$226,528.89

INDIRECT DRILLING COSTS

Camp	\$ 8,817.50	
Analyses	17,791.62	,
Drilling miscellaneous	6,374.69	
Transportation	14,398.02	
Supervision	34,945.95	
Labour: 84 man days	20,730.55	
Reporting, typing, reproduction,		
& drafting	7,587.69	
		<u>\$110,646.02</u>
	TOTAL	\$337,174.91

Cost/m = \$337,174.91 / 2,279.72m = \$147.90/m

APPENDIX 1.

DIAMOND DRILL LOGS

							·	
			D	RILL'LO	3	· · ·		HOLE NO
CONTR	ACTOR -		SKETCH, PLAN SECTION	DEPTH	TEST DIP	AZIMUTH	DATE STARTED August 15, 1997	PROPERTY JEAN
PHIL DI	AMOND	DRILLING LTD.	· · · · · · · · · · · · · · · · · · ·	COLLAR	-90°		DATE COMPLETED August 17, 1997	CLAIM JW 307
CORES	SIZE	NQ					COLLAR ELEV. 1064 m.	TARGET "N" IP Anomaly
OVERALL CORE RECOV 89.9%		RECOV. 89.9%					NORTH 7355 m.) relative to astro	nomic grid with 10,000N, 10,000E
ANALY	FICAL RE	FS					EAST 10,952 m.) at DDH 95-2.	
MIN-EN	LABS		-				AZIMUTH N/A	NTS 93N/2W
FILE NO): 7S-0	245-RJ1+2					DEPTH 67.50 m.	DATE LOGGED August 17, 1997
							TIE IN POINT Hip chain road traverse by Also by G.P.S.	R.U.B. Plottted @ 1:1000 LOGGED BY D.L. Cooke
INTERV	/AL (m)		LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC.
FROM	то	cold	our, texture, grain size, composition etc.				bedding, faults, folds fractures etc.	mineralization, type, age relations, etc.
0	1.22	Casing.						
		<u> </u>						
1.22	8,70	Augite andesite.	Dark green, massive. Minor Qz/Ca veins + HM	Pyrite-C/FR Tr-2%	C/CH	С	FR/2/D	
		random orientatio	л.	C/FR/HM-1%				
8.70	10.0	Light coloured fel	dspar porphyry dike (?). Contact at 30° to core	None	B/Clay/P		FR/1	
		axis. Greenish cl	ay alteration of feldspars.					
10.0	11.21	Andesite lapilli tu	ff	C/D/Tr-1%	С/СН		FR/7/D	
						1		
11.21	15.05	Light grey colour	ed Quartz porphyry. Badly fractured with fault	РҮ	A/Clay/P		FLT/14.15-16.63/3.	
		gouge at 14.15-1	4.63. contact at ± 30° to core axis. Pervasive		B/PY	<u> </u>	*	
	<u> </u>	green clay altera	tion. Fine pyrite is disseminated around quartz		· · · · · · · · · · · · · · · · · · ·			
		crystals.						
		<u> </u>						
15.05	18.57	Green Andesite I	apilli tuff – Massive,	C/Py/FR/Tr		80°-85°		<u> </u>

.

.

PAGE __I__OF _2__

HOLE NO. J97-1

		HOLE NO. J-97-1					
INTE	RVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	то	colour, texture, grain size, composition etc.	-			bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
18.57	21.20	White felsite.	B/PY/FR/D/2-3%				
21.20	29.37	Grey bleached andesite tuff to lapilli tuff. Heavily faulted, fractured	A: PY/FR/D/3%	A: Clay/P	FR/80°±	FLT/FG: 21.80, 22.3, 25.0, 29.0	
		and impregnated with sooty pyrite.				· · · · · · · · · · · · · · · · · · ·	
29.37	44.32	Grey andesite tuff. Minor lapilli and cherty sections. Minor	C: PY/FR/Tr-1%	C: BL/PA		FLT/FG: 32.05	
		bleaching and associated pyrite in patches.					
44.32	58.68	Augite andesite flow and tuff. Broken up and fractured, with minor	C: PY/FR/Tr-1%			FLT/FG: 46.20, 47.73, 49.60	
		pyrite in fractures.				FR: 3/47.0-51.0	
						ELECTION CO. CO. CO. CO. CO. D. D.	
58.68	69.50	Augite andesite/ Massive. Minor pyrite along fractures.	C:PY/FR/Tr-1%	C: BL/PA		FLT/FG: 58.52-58.82, 60.84,	
		63.39-69.50: Badly broken and sheared andesite. Sheared,			F41	61.05/85°, 61.78/50°	
		fractured, dark green and chloritized. Note same			ļ		
		pyrite and pyrrhotite in fracture places at 60° and				SHR-FR: 60°,10%3	
		10° to core axis. Chloritic shears at 50°.					
		64.3-69.50: No core. Coarse sand recovered.		· · · · · · · · · · · · · · · · · · ·			
69.50		End of hole.		. <u></u>			
			-			l	

PAGE ____2__OF ____

	· • · · · · · · · · · · · · · · · · · ·		D	RILLLO	3		· · · · · · · · · · · · · · · · · · ·	HOLE NO
CONTR	ACTOR		SKETCH, PLAN SECTION	DEPTH	TEST DIP	AZIMUTH	DATE STARTED August 20, 1997	PROPERTY JEAN
PHIL'S	DIAMON	D DRILLING	-	COLLAR	-90*		DATE COMPLETED August 24, 1997	CLAIM JW 300
CORE	SIZE	NQ	1				COLLAR ELEV. 1128 m.	TARGET - TEST "N" IP ANOMALY
OVERA	LLCOR	E RECOV. 92.31	1				NORTH 7969 N. } relative to astron	nomic grid with 10,000N, 10,000E at
ANALY	TICAL R	EFS					EAST 10,854 E. } collar of DDH J9	<i>i</i> 5-2.
ECO-T	ECHLA	3.	1				AZIMUTH N/A	NTS 93°N/2W
75-024	5-RJ 1+2	+3+4+5+6					DEPTH 203.6/m	DATE LOGGED August 21-24 /97
	•••··						TIE IN POINT- Hip chain road traverse by R.U.B. also G.P.S.	LOGGED BY - D.L. COOKE
INTER	VAL (m)		LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC.
FROM	то	col	our, texture, grain size, composition etc.			-	bedding, faults, folds fractures etc.	mineralization, type, age relations, etc.
0	15.24	Casing / Overbur	den.					
			· · · · · · · · · · · · · · · · · · ·					
15.24	21.30	Andesite, Abund	ant pyrite mineralization as disseminations and	A: PY/FR/D/ +5%	8: EO/2		FR /0°, 20°,40°, 50°, 70°	
		fracture-fillings.	Moderate to strong epidote alteration along	to 10%		-		
		fractures and in p	pervasive patches. Vague banding at 50° to core					
		axis in tuffaceous	s areas. Dark green in colour.					
24.20	28.60	t instar colourod	andocito. May be tuffaceous and silicified		C: FP/1		FR / Various	
21.30	20.00	Abundant pyrite i	in fractures and as disseminations.	5%-10%	0, 1, , ,			
28.60	29.80	Grey Feldspar Pe	orphyry. May be a monzonite in composition.	A: PY/FR/D		FR/0°/3	FR / Various	
		Dike with fine-gra	ained margins at $\pm 75^\circ$ to core axis.	5-7%			······	
					`*	1	· · · · · · · · · · · · · · · · · · ·	
29,80	32.25	Mixed Feldspar f	Porphyry and volcanics.	A: PY/FR/D/			FR / Various	
				5-7%;		<u> </u>		
	1	1		C: CB/20° & 80°	1	1	1	

PAGE _______OF _____

HOLE NO DDH J97-2

			<u>~</u>				
			HOLE NO. DDH J97-2				
INTE	RVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	то	colour, texture, grain size, composition etc.				. bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
32.25	34.63	Grey to green volcanics. Contact & feldspar porphyry is at 45° to	A: PY/FR/D 10%	C: EP/2		FLT&FG-32.36-33.15	
		core axis. Fractured and faulted.				34.00-34.36	
34.63	35.45	Grey feldspar porphyry dike.	A: PY/FR/D 5-7%	C: EP/2			
35.45	36.15	Grey volcanics with irregular quartz stringers (or silicified andesite)	A: PY/FR/D 5%			. FR	
36, 15	41.30	Grey dacitic? Tuff / badly sheared and broken.	A: PY/FR/D 5-10%			FR	
		· · · · · · · · · · · · · · · · · · ·				FLT&FRG-36.73-37.15 50° to c.a. 36.92; 37.37-38.20, 46.30-40.88;	
41.30	48.00	Grey fine-grained volcanics with brown hornfelsic cast in patches.	A: PY/FR/10%	B: EP/3		FR-Various	
		Abundant disseminated pyrite is more prominent than fracture				FG-43.00?-43.75	Intensely fractured.
		filling.					
48.00	61.87	Grey feldspar porphyry. Pyrite occurs mainly as disseminations,	A: PY/D/5-10%	C: EP/2 to 3		<u> </u>	
	1	lesser amounts in fractures. Cloudy vague feldspar phenocrysts			1		
	+	are set in a fine-grained brown groundmass. Minor carbonate	+		1		
		fracture-fillings. Fine grained down hole.					*
				<u>``.</u>			
61.87	63.15	Grey altered volcanics. Quartz-carbonate veins at ±30° to core	A: PY/D/3-5%	C: EP/2			
		axis.					

е. Т

•

.

PAGE ____2_OF _5__

HOLE NO. DDH J97-2

		DR	ILL LOG			
INTE	RVAL.	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE
FROM	то	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc
63.15	65.80	Grey volcanics with irregular patches of grey feldspar porphyry.	A: PY/D/FR 3-5%	C: EP/1		
65.80	80.72	Monzonite or syenite: Crowded feldspar porphyry? Irregular pink	A: PY/D/3% Tr-3%	B: CL/D		
		feldspar grains. Grades up into grey feldspar porphyry. Pyrite				
		decreases with depth. Note biotite in groundmass. Greenish				
		ctay alteration of feldspars in centre and basal parts. Minor				
		carbonate-pyrite veins at 45°, 50° & 70° to core axis.		· · · · ·	1	· · · · · · · · · · · · · · · · · · ·
	 					

			4			
65.80	80.72	Monzonite or syenite: Crowded feldspar porphyry? Irregular pink	A: PY/D/3% Tr-3%	B: CL/D		
		feldspar grains. Grades up into grey feldspar porphyry. Pyrite				
		decreases with depth. Note biotite in groundmass. Greenish				
		ctay alteration of feldspars in centre and basal parts. Minor				
		carbonate-pyrite veins at 45°, 50° & 70° to core axis.				
80.72	83.65	Attered monzonite or svenite. Bleached to light grey in colour. Soft,	A; PY/D/FR/Tr-2%	A: CL/P	 FL&FG at 80.72, 82.63	
		sheared with quartz-pyrite seams at 60° and 20° to core axis.	CP/D/Tr?		 	
		Strong argillic alteration throughout. Note 2% disseminated pyrite	Mo/FR/Tr			
		(very very fine chalcopyrite) around 82,0-83,5m. MoS2 occurs in			 	
		blackshears at 05° and 85° to core axis and in minor hairline			 	
		fractures.			 	
83.65	87.00	Ditto feldspar porphyry – but less bleached, although pervasively	PY/D/FR/1-3%	A: CL/P		
		clay altered. Gradually gets less altered with depth, although	Cp/D/Tr?			
		disseminated pyrite persists.	Mo/FR/Tr			
					 	J
87.00	97.50	Ditto. Syenite of feldspar porphyry still less altered. Note grains of		1.	 	
		epidote scattered throughout. Abundant red hematite along				
		fractures at 20°, 50°, 70° to core axis. Pinkish-brown in colour.			 	
		· · · ·				

PAGE _____OF ____

 γ

HOLE NO. DDH J97-2

HOLE NO. DDH J97-2

MISC

mineralization, type, age relations, etc.

			N'N				
	· ·.	DRI	LL LOG				HOLE NO. DDH J97-2
INTEI	RVAL.	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	то	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
97.50	103.00	Ditto. Feldspar-porphyry (monzonite). Clay altered feldspar					
		grains give the rock a pink colour. Shears at 40° - 50° to core				· · ·	
		axis at 97.75; at 80° at 98-0 m.					
103.00	109.40	Oitto Feldspar porphyry Pervasive clay alteration in this section.	PY/D/1%	B: CL/P		FG-105.0, 106.28; 107.12, at 50° &	
100.00		Sheared and fractured throughout. Light grey in colour. Minor				30° to core axis.	
		quartz-pyrite veining.					
109.40	114.67	Bleached, white, altered and brecciated light grey rock. Crowded	PY/D/FR/1%	A: CL/P		FG-109.67-109.85; 111.05; 111.09;	
		feldspar porphyry. Note narrow black, sulphide-rich shears at	CP/D/Tr?			111.45; 111.60-111.83; 113.23-	
		40°, 50 ° and 60° to core axis.				113.40; 113.83-113.91; 114.67.	
114.67	118.72	Crowded feldspar porphyry. Grey in colour, bleached and	PY/D/FR/1%	A: CL/P		SSHR-114.67-114.88; 70°-116.60-	
		clay-altered. Similar to rock above but not brecciated. Note pyrite				118.64	
		shear and vuggy quartz at 116.50-116.60 m.					
118 72	140.75	Grev crowded feldspar porphyry weakly clay alteration of feldspar	PY/D/FR/Tr-1%	C: CL/P		FR-Various angles.	
		crystals. Scattered zones of bleaching, fracturing and shearing.				SHR-120.52; 120.66; 131.12; 134.35;	
		Sulphides have diminished to 1% or less mainly as				138.47; @ 60°-75°.	
		disseminations. Epidote alteration near base.		~		FG-127.70; 131.90; 139.05;	
	[
140.75	142.68	Dark green fine-grained volcanic rock (Andesite?)	PY/D/FR/1-3%	B: EP/D		FR-Various hainine quartz pyrite	
						filled fractures.	

.

.

PAGE ____4___OF ____

HOLE NO DDH J97-2

,

		DR		HOLE NO. DDH J97-2			
INTER	RVAL	. LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	то	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
142.68	145.76	Altered feldspar porphyry. Grey, bleached and cut by irregular	PY/D/FR/1-2%	B: CL/P		FG-145.50 AT 70° + PY	V-PY/CB/HM (specularite) - 5 cm
		pyrite-carbonate-hematite veins at 10°-20° to core axis.					at 20° AT 143.20-143.60 m.
		Unaltered at base.					
145.76	147.90	Dark hornfelsic volcanic (?)	PY/D/FR/1-2%				
147.90	151.70	Bleached, fractured and sheared rock (feldspar porphyry?)	PY/D/FR/1-2%	A: CL/P		FG/BX-148.44-149.19 m.	
						@ 40°-45° to core axis.	
		•					
151.70	156.50	Pale green, fine-grained volcanic rock. Heavily fractured, minor	PY/D/FR/Tr				
		carbonate veins at 45° to core axis.			· · · ·	-	
156.50	165.66	Bleached, altered, fractured and brecciated Lapilli Tuff (?). In	P/D/FR/Tr	B: CL/P		FG-160.80; 161.86; 163.95-164.28	
		part, massive augite andesite sections.				@ 35° to core axis.	
165.66	203.61	Unaltered, massive, Lapilli Tuff, Minor pyrite-carbonate veinlets	P/D/Tr-1%	C: EP/D		MAS	
		at \pm 45° to core axis. Pyrite cubes are disseminated throughout.		B: CH/P			
		Minor epidote.				· · · · · · · · · · · · · · · · · · ·	
203.61		End of hole.		<u>\</u>			

...

PAGE __5_OF _5_

HOLE NO. DDH J97-2

			DI	RILLLOO	3			HOLE NO97-3
CONTR	ACTOR -		SKETCH, PLAN SECTION	DEPTH	TEST DIP	AZIMUTH	DATE STARTED August 24, 1997	PROPERTY JEAN
PHIL'S		D DRILLING		COLLAR			DATE COMPLETED	CLAIM JW 300
CORES	SIZE.	NQ		Vertical			COLLAR ELEV. 1105 m.	TARGET 'N' IP ANOMALY
OVERA	OVERALL CORE RECOV. 94.38%					NORTH 8061 N.		
ANALY	TICAL RE	FS					EAST 10,245 E.	
ECO-TE	CH LAB.						AZIMUTH N/A	NTS 93N/2W
75-0263	-RJ 1+2+	+3+4					DEPTH 176.17 m.	DATE LOGGED August 25, 1997
							TIE IN POINT - Road traverse by R.U.B.	LOGGED BY D.L. COOKE / C.A.R. LAMMLE
INTER	/AL (m)	<u></u>	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC.
FROM	то	colou	ur, texture, grain size, composition etc.				bedding, faults, folds fractures etc.	mineralization, type, age relations, etc.
0	9.75	Casing/ Overburde	n.					
9.75	11.88	Green augite ande	site with 1-3% pyrite as disseminations and	PY/FR/D/1-3%	C: BL/2			
		fracture fillings. Bl	eached adjacent to pyrite-carbonate fractures					
		at ± 45° to core ax	kis. Note 10 cm quartz-pyrite vein at 65° to core					
		axis at 11.67 m.						
11.88	15.70	Black, fine-grained	l volcanic rock.	PY/FR/D	8: EP/4			
		_						
15,70	33.30	Augite andesite.	Epidote occurs in irregular patches and in	PY/FR/D/1-2%	B: EP/4		FG: 17.32-17.42	
		hairline fractures v	with pyrite and pyrrhotite. Sand seams (core	CP/FR/Tr (16.70)			Sand seams at 24.95, 25.40 & 26.75.	
		lost) at 24.95-25.1	6; 25.40-26.22 and 26.75-26.85.					
33.30	46.50	Andesite lapilii tuff	Massive. Minor epidote-pyrite fractures,	PY/D/FR/2-4%	C: EP/D/FR			
		plus disseminated	pyrite cubed and epidote specks throughout.		1		· · · · · · · · · · · · · · · · · · ·	

PAGE _____OF ____

HOLE NO. J97-3

.

.

.

			٣,				
		DR	LL LOG				HOLE NO. J97-3
INTEF	VAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
EROM	το	colour, texture, grain size, composition etc.			·····	bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
46.50	60.45	Augite andesite. Massive, green with brownish hornfets sections	PY/D/FR/1-3%	C: EP/D/FR		FLT: 48.00-48.16.	
		and bleached quartz-pyrrhotite epidote, pyrite vein's at 25° to core	PO/FR/Tr-1%	C: QV.25°			
		axis. The bottom 1-2 m appears to be a lapilli tuff.					
60.45 90.50		Grey fine-grained volcanic rock. Andesite? Strongly fractured	PY/D/FR/2-4%	B; EP/D/FR		FLT: 62.15-63.40 (No core recovered)	; 65.40
		and sheared. Irregular, pyrite-pyrrhotite carbonate veins and	PO/D/Tr-1%			FR: 64.69-64.91; 66.80-67.00 - 45°	
		stringers. Some sections of augite andesite flows. Epidote	CB/FR/± 45°	at 66.80; 69.00;			
		alteration decreases down the hole. Carbonate-chlorite-pyrite					
		fractures occur at various angles.					
90.50	95,30	Augite andesite. Note star like sprays of mafic minerals	PY/FR/1-3%	C: CH/FR			
		containing disseminated pyrite. Chlorite-pyrrhotite filled fractures	PY/FR/Tr-1%				
		cross-cut pyrite fractures. Unaltered.					
95,30	96.70	Feldspar augite porphyry flow.					
					1		
96.70	100.33	Fine-grained, grey andesite (?) Pyrite-pyrrhotite-carbonate	PY/FR/Tr-2%				
		fractures at various angles to core axis.				·	
							ð
100.33	103.76	Andesite with large (2-4 cm) star like sprays of mafics	P/FR/2-4%	` <u>~</u>			
		impregnated with pyrite. Chlorite-calcite-pyrite filled fractures				· · · · · · · · · · · · · · · · · · ·	
		occur at 60° and sub-parallel to core axis. Unattered.	<u> </u>				
			<u> </u>				<u> </u>

· ·

.

.

PAGE ______OF ____

		DRI	LL LOG				HOLE NO. J97-3
INTE	RVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
EROM	10	colour texture, grain size, composition etc.			······	bedding, fautts, folds fractures etc	mineratization, type, age relations, etc.
103.76	110.10	Andesite. 2 mm augite phenocrysts in places. Strongly fractured.	PY/FR/Tr-1%			FR/104.0-105.50	
		Unattered in general.					
110,10	130,00	Andesite; pyroxene, light green, fine grained, mottled texture.	A: PY/FF/1%	B: CA+EP/P	117.7	Lapiti & aggiomeratic. Some minera	ization described as FF is probable
		Mottled texture caused by tuffaceous and fragmental fabric of the			FR/20/3	@ 117.7 FR/20/3	envelopes around fragments
		rock - sizes centimetres to decimetres. Carbonate irregularly			Mainly		
		envelopes the lapilli and other fragments causing a lighter			fragmental		
		coloured margin to some of them. Noted a few radiating stars		· · · · · · · · · · · · · · · · · · ·	fabric		
	<u></u>	(0.8cm) of a black thin-bladed mineral that was eventually					
<u> </u>		assumed to be homblende. Faintly and uniformly magnetic as					
	1	tested with pencil magnet.					
			A: PY/FF/0.5	B: CA+ED/P	1	@ 120.7 FR/75/3	
			B: PY/D/Tr			@ 120.8 FR/45/2	
		·	A: PY/FF 122.5	A:CA/FF/BX/FLT		50% Carb 126.8-127.1 FLT	Heavy pyrite, 10mm, @ 122.5
	.l		A: PY/FF 124.2			@ 122.5 FR/30/2	Heavy pyrite, 10mm, @ 124.2
				+		@ 124.5 FR/20/3	
						@ 125.8 FR/10/2	
					+	@ 126.9 FR/45/3	
	1		<u> </u>			0 127 5 5P/45/4	

.

•

PAGE ____OF ____

HOLE NO _____ J97-3

			HOLE NO. J97-3				
INTE	RVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	то	cotour texture grain size composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
FROM			A: PY/BX/BB	A: CA/8X		127.6-127.8 BX @ 127.5 FLT/45/4/C/	4
			C: PY/FF/TR	A: CAVEF	12	128.1 FR/60/3	
				B: CA/EP/FR	11	128.2 FR/70/4	
					6	128.3 FR/60/3	
	ļ				3	128.4 FR/60/3	
						128.6 FR/50/2	
120.0	124.0	As above but precisted pyritized carbonate on stronger				129.0 FR/80/1	
130.0	134.0	As above, but bleckales, pyracts, carbonate or otherse					
		fractores, and light-colored of eached civelopes of that mo	INCONSIPICUOUS	A: EP/P	5	@ 133.7 FR/30/1	
		fractures. Magnetism weaker.	IF ANY - probably		2	@ 134.2 FR/25/1	
134.0	162.3	As above, but twice as dark in colour. Magnetistin faint to fill.	TriDies	<u> </u>	0	@ 134.5 FR/30/2	
		Essentially unmineralized except for rare tracture limiting. Approx.			7	@ 138.0 FR/40/4 Limy	
		3m brecciates section centered at 147m. Pyrite coming in again	<u> </u>		ļ	@ 138.1 FR/50/3 Limy	
		at 15om. Coring in 5ft sticks at 156m, and amounts and sizes of				@ 138 7 5P/35/4 Limy	
		lapilli becoming smaller.					
			Nearly barren	A: CA/P/1	4	@ 139.1 FR/40/3	
			possibly minor	B. CHI/P/1	4	@140.0 FR/0/1	
			possibly minor		3	@ 141.0 FR/0/1	
	<u> </u>				4	@ 141.5 FR/30/4 CALCITE 1cm	<u>}</u>
				<u> ``</u>		@ 141.9 FR/50/4 CALCITE 3 cm	
				· · · · · · · · · · · · · · · · · · ·		@ 143.7 FB/20/2 CALCITE	
		*			<u> </u>		

٩,

PAGE ____I__OF ____

.

		٩,	<u></u>			
		DRILL LOG				HOLE NO. J97-3
RVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
то	colour texture grain size composition etc.		1		bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
		Minor PY/D	A: CA/P/4	4	147.7-148.5 BX	
			B: CHL/P/1	3	147.9 FLT/50/3 Pyritized over 2 cm	
				BX		
				3		
			A: CAVEE/P	4		
	····	@ 154.0 PY/FF/-	B: CHL/P	5		
		@ 154.5 PY/FF		3		
				2		
	· · · ·			1	@ 150.8 FLT/60/5 25 cm wide, margi	ns, brecciated, central gouge all headed
					@ 151.4 FR/60/2 CA	by calcite. Not mineralized.
	· · · · · · · · · · · · · · · · · · ·				@ 152.0 FR/30/1 CA	
					@ 152.5 FR/40/2 CA	
	· · · · · · · · · · · · · · · · · · ·			1		
				2	@ 156.2 FR/30/2 CA	
	· · · · · · · · · · · · · · · · · · ·		<u></u>	2	@ 157.0 FR/50/2 CA	
				1	@ 158.0 FR/40/4 CA 5 mm	
	1		1		-	
			+			
	RVAL TO	EITHOLOGY TO colour, texture, grain size, composition etc.	Image: Second	Image: State of the state	International and and an analysis of the second	DRILL LOGY MINERALIZATION ALTERATIONS FRACTURES/M STRUCTURE TO colour, texture, grain size, composition etc. Minor PY/D A: CA/P/A 4 147.7148.5 BX TO colour, texture, grain size, composition etc. Minor PY/D A: CA/P/A 4 147.7148.5 BX Colour, texture, grain size, composition etc. Minor PY/D A: CA/P/A 4 147.7148.5 BX Colour, texture, grain size, composition etc. Minor PY/D A: CA/P/A 4 147.7148.5 BX Colour, texture, grain size, composition etc. Minor PY/D A: CA/P/A 4 147.9 FL/f007 Dyritized over 2 cm Colour, texture, grain size, composition etc. Minor PY/D A: CA/FF/P 4 147.9 FL/f007 Dyritized over 2 cm Colour, texture, grain size, composition etc. Minor PY/D A: CA/FF/P 4 147.9 FL/f007 Dyritized over 2 cm Colour, texture, grain size, composition etc. Q: 154.0 PY/FF/F B: CHU/P 5 2 2 Colour, texture, grain size, composition etc. Q: 154.5 PY/FF B: CHU/P 1 Q: 152.0 FR/301 CA Colour, texture, textu

·

HOLE NO _______.

<u>م</u> ,
•

		DR	ILL LOG				HOLE NO. J97-3
INTE	RVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
						bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
FROM	TO	colour, texture, grain size, composition etc.	UNMINERALIZED	CLAY: A: FLT/?/2	<u> </u>	Crushed zone recemented with	Incipient fault zone -
162.3	104.4	As above, but bleccated, closied and clayer, electrical 168m			2) 2	CaCOz	more just crushing
		non magnetic. Pyroxene phenocrysts inte to upnatiko ut reatili			5)	@ 161.7 FR/30/1	No definitive plane or gouge
					BX	@ 162.6 FR/45/2	
ļ		·			BX	@ 164.0 FR/50/1	
		the second with minor	LINMINERALIZED	FRESH & UN-	1	@ 164.2 FR/40/3	
164.4	176.10	Andesite as above. Hole ends in proken ground with million		ALTERED		@ 166.2 FLT/25/4	Bottom of clay zone.
		pyrite on fractures at 176.17.	·	LOOKING		@ 166.4 FR/20/4	
	ļ	•			·	@ 167.0 FR/0/1	
				FRESH	24/6.09	@ 167.2 FR.50/4	
						@ 168.5 FR/20/2	
				CLAY CHI	3.9	@ 169.6 FR/75/3	
				after 170		@ 170.6 FR/15/4 CLAY	
						@ 171.5 FR/60/1	
						@ 171.6 FR/65/1	
						@ 172.0 FR/20/3 CARBONATE	
			<u> </u>				
					16/		
			UNMINERALIZED	+	3.8		•
				<u> </u>		@ 173.2 FR/5/1	
						@ 173.4 FR/35/4 CA	
						0 1736 FR/60/4 CA PY	
		•				@ 175.6 FR/0/4 CA	
	-1		A: PY/FF/		1		

2 I

ı

.

PAGE _____OF ____

		HOLE NO. J97-3					
INTE	RVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURE\$/M	STRUCTURE	MISC
FROM	то	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
176.10			A: PY/FF/				
	176.10	Hole end with minor PY/FF in broken ground.	· ·				
		1.83 m of box is unused.				···	
		MISPLACED BLOCK CAUSED PROBLEM – REMEDIED.					
		73" of box empty					
		1.85 m of box empty-					
		LOST CORE AT END HOLE PROBABLY STOPPED BECAUSE					
		OF DIFFICULTY AT LONGYEAR 138.					
		End of Hole 578' (last block) = 176.1744 m.					
		finished night shift 27Aug97					
		N core 47.625 mm dia.					
						• •	

		· · · · · · · · · · · · · · · · · · ·			_		
	- 						

N,

· .

•

.

PAGE __7__OF _7__

HOLE NO. ____<u>J97-3</u>____

DRILL'LOG H								HOLE NO. <u>DDH J97-4</u>	
CONTRACTOR - SKETCH, PLAN SECTION			DEPTH	TEST DIP	AZIMUTH	DATE STARTED August 29, 1997	PROPERTY JEAN		
			Along steep narrow road cut into mineralized	COLLAR			DATE COMPLETED September 1, 1997	CLAIM JW 301	
CORES	376	Difficento 270.	bedrock Bedrock much faulted and badly				COLLAR ELEV. See sketch on J97-5	TARGET Cu-Mo-Au	
OVERA		RECOV 89 59%	broken. Probably fairly close to a major				NORTH 9915 N } Relative to astu	ronomic grid whose 10,000 E ,	
		FS	easteriv fault CONTACT FAULT.				EAST 10,280 E) 10,000 N is collar of DDH J95-2		
	NI ARS		see 197-5 for details				AZIMUTH Vertical	NTS 93N/2W	
79.028	D 11+2+	3+4+5				· · · · · · · · · · · · · · · · · · ·	DEPTH 2,02.39 m	DATE LOGGED August 30, 1997	
75-020	0084 D	57475 A1					TIE IN POINT R.U.B. road survey.	LOGGED BY C.A.R. LAMMLE	
Cert. 7c	-0204-10				AI TERATIONS	FRACTURES/M	STRUCTURE	MISC.	
INTERV	/AL (m)	_		Mindle Cib (non	1		bedding, faults, folds fractures etc.	mineralization, type, age relations, etc.	
FROM	то	color	r, texture, grain size, composition etc.						
0	2.43						· · · · · · · · · · · · · · · · · · ·	·····	
1.00									
								·····	
2.00		A	Freeseined bord non-limy Badly	A 01/// 7/4	11		NOT MEANINGELILLY MEASURABLE*	Cov. py: mainly as fracture filling	
2.43	9.00	Andesite: medium	grey, the graned, hard, horenny. Dady		Homieis		Associate he matchin flow	Mineralization is predominantly	
3.00		broken and oxidized to 11.5m; some small sections consist		B: CPY/FF/2			Appears to be massive now.	fracture controlled - comptimes	
		9 of sand. Many pieces show evidence of core having been		C: PY/D/1				hactore controlled - sometimes	
4.00		ground, and of pol	ish from the bit. Pencil magnetism					Discontinution is pagligible	
		faint to nil.		Estimate				Dissemination is negligible.	
5.00				0.1-0.2% Cu				· · · · · · · · · · · · · · · · · · ·	
				0.5% Py			· · · · · · · · · · · · · · · · · · ·		
6.00									
					<u>\</u>	<u> </u>			
7.00			· ·						
8.00			•	e .		1			

-

£

.

PAGE _1_OF _19_

HOLE NO. DDH J97-4

[
INTE	MISC						
INTERVAL		EIMOLOGI	MINERALIZATION	ALTERATIONS	FRACIORES/M	SIROCIORE	MISC
FROM	то	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
9.00	48.00	(Cont'd.) non-magnetic, hornfelsic, non-limy, hard and					
		mineralized with pyrite and chalcopyrite. Pocket knife					
		glides along on rock without scratching it. Hairline fractures	A: CPY/FF	hornfelsing		Appears to be massive flow.	Mainly fracture filling py, cpy.
<u> </u>	•	with bleached envelopes contain films of sulphides, some	B: PY/FF	Oxidation to 11.5	3.7		
		healed by calcite, some by quartz. Crush zone @ 25.3 - 25.6m.		Fracture joints			
<u> </u>	1	· · · · · · · · · · · · · · · · · · ·	Estimate	healed with		Core badly broken to 10.0, then	
		· · · · · · · · · · · · · · · · · · ·	0.5% Py	qtz/carbonate		recovery starts to become normal.	8" sand midway along second tier
			0.1% Cu				unmineralized.
			· · · ·			@ 11.3 FR/7*/3	
						@ 11.6 FR/70/3	
						@ 11.8 FR/20%1	
		· · · · · · · · · · · · · · · · · · ·		Thin bleached		@ 13.5 FR/IRREG.	
		· · · · · · · · · · · · · · · · · · ·	A: PY/FF/0.5%	envelopes on		· · · · · · · · · · · · · · · · · · ·	
		· · · · · · · · · · · · · · · · · · ·	B: CPY/FF/0.5%	either side of			-
			C: CPY/D/0.1%	fractures			
	+				· · · · · · · · · · · · · · · · · · ·		
	· · · ·						· · · · ·
		······································					
					···		
<u> </u>		· · · · · · · · · · · · · · · · · · ·		<u> </u>		· · · · · · · · · · · · · · · · · · ·	- <u>-</u>
				- <u>-</u>			
					<u> </u>		

.

PAGE _2_OF _19_

2

HOLE NO. DDH J97-4

÷

,

	HOLE NO. DDH J97-4						
INTERVAL		LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	TO	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
		•					
			A: PY/FF/TR	A: HF/P	3.3		
	•		B: PY/D/TR		-		
		· · · · · · · · · · · · · · · · · · ·	C: CPY/FF/0.3%			Numerous hairline fractures with	
		······································				cpy/FF top half first tier & partly in	Copper mineralization at top of first
			·····			second tier. Est. first two tiers	tier - weakens in remainder of box.
				· · · ···		0.3% Cu.	
						·····	·····
		· · · · · · · · · · · · · · · · · · ·				@ 21.3 FR/80%SI	
				· · · ·		@ 24.2 FR/30/CPY SI	
					· · ·	@ 24.7 FR/75°/QTZ Carbonate	
		· · · · · · · · · · · · · · · · · · ·			7.5	@ 25.0 Crush zone over 0.3m.	
		-	A: CPY/FF/0.2%	A HF/P		@ 25.5 FR/30°/3QTZ Carbonate.	
			B: PY/FF/0.2%				
		· · · · · · · · · · · · · · · · · · ·				@ 26.6 FLT/65*/2	CRUSHED ZONE
	••••••••••••••••••••••••••••••••••••••		· · · · ·			@ 26.9 V/65°/4 5mm with cpy.	
		· · · · · · · · · · · · · · · · · · ·				@ 26.96 V/30°/2 10mm with quartz.	
						•	· · · · · · · · · · · · · · · · · · ·
				<u>├</u> ∽			
		· · · · · · · · · · · · · · · · · · ·					
		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	+	· · · · · · · · · · · · · · · · · · ·	
			•	1			

PAGE _3_OF _19_

HOLE NO. DDH J97-4

			м			·····	
		HOLE NO. DDH J97-4					
INTERVAL		-LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	то	colour, texture, grain size, composition etc.				bedding, fauits, folds fractures etc	mineralization, type, age relations, etc.
			· · · · · · · · · · · · · · · · · · ·				· · · · · ·
	·`-		A. PY/FF/TR	A: HF/P	1.6	Apparently massive textured flow	
						- fragments not evident.	
							~
		·····					
		·					
		· ····					
				@ 36.5 A: EP/FL	1 1/3	@ 36.5 FLT/70/4 Epidotized.	
		· · · · · · · · · · · · · · · · · · ·	Pelatively	A: HF/P	1.3	Can't count tractures in last two tiers,	
			unmineralized.	@ 37.3 ELT/70%		Bx & gouge.	
				@ 37.5 V/50/3		5mm/quartz	Last two tiers of box badly broken &
			A: PY/FF/TR	@ 37.6 V/90/3		10mm/quartz	occupy twice the normal space.
				@ 37.8 FR/10/1 CA			-
				B: CB/Broken zone.)
				<u>``</u>			
		· · · · · · · · · · · · · · · · · · ·			0.9		
r				1	1		1

PAGE _4_OF _19_

HOLE NO. DDH J97-4

.

.

.

.

.

•
-

_

		n.		·····		· · · · · · · · · · · · · · · · · · ·	·····
		. D	RILL LOG				HOLE NO. DDH J97-4
INTE	RVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
						· · · · · · · · · · · · · · · · · · ·	
FROM	10	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
-	L						Core loss @ 40.3
		•	MINOR PY	A: HF/P			Core loss @ 46.5
			NO CPY EVIDENT			@ 40.5 FR/20%2 CB	
		· · · · · · · · · · · · · · · · · · ·				@ 40.8 FR/5*/1 CB	
			Est. JR, PY.			@ 41.5 FR/50%1	
						@ 44.0 FR/35%3	
						@ 44.2 FR/20%3	
					1		
				@ 45.8 to 46.3		@ 45.8 FLT/45°/5	Associated SI & K alteration.
			•	A: SI/P			
			@ 46.1	B: K/P with cpy.			
			A: CP/FF/50				
48.00	53.1	Rhyolite: light grey to pinkish, fine grained, pervasively		7		······································	
-		crushed. Some pyrite in fractures. Pencil magnetism nil to	A: PY/FF/0.5	/	0.6	· · · · · · · · · · · · · · · · · · ·	
		rarely faint. No cpy evident. Minor section of beach-like	@ 48.1				
		sand @ 51.5-52.8m., grains are rounded.	PY/FF/ 10mm				
						@ 50.3 FLT/70 15mm graphite	······································
			UNMINERALIZED			@ 50.4 FLT/80 25mm graphite	
				A: HF/P		· · · · · · · · · · · · · · · · · · ·	
				B: CHL/FF		MISSING CORE IN SANDY SECTION	
		· · ·		· · · · · · · · · · · · · · · · · · ·			Slight pale green bleaching along
							hairline fracturing.
53.10	70.00	Andesite; medium grey to black, fine grained to aphanitic,					

.

· · ·

PAGE _5_OF _19_

HOLE NO. DDH J97-4

.

4

*

		HOLE NO. DDH J97-4					
INTE	RVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	то	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
53.10	70.00	(Cont'd.) non-limy, hornfelsic. Broken and brecciated. Rock is					
		becoming softer starting around 62m, partly due to incipient					
	•	crushing, partly due to weakening of the hornfelsing.	A: P/FF/0.5%	A: HF/P	1.3	Late hairline fractures healed by SI	
						& CB. Earlier fractures chloritized.	
						@ 54.0 V: /50° 30mm wide Felsite or	r rhyolite.
	· .						
						Faulting seems incipient at 59.7	
						@ 54.3 FR/25% 2Chl	
			@ 54.6 PY/FF			@ 56.1 FR/20%2	
			@ 55.1 PY/FF			@ 55.1 P	
						@ 58.00-59.75: Rock is softer due to	crushing & closeness to faulting.
			A: P/FF/TR	A: JF/PA	1.6	@ 62.4 FR/45°/3	Fractures generally healed by quartz
			Pyrite is negligible.	but weaker.		@ 62.6 FR/60%2	or by albite. Fillings are non-limy.
			No cpy noted.	Last half of box		@ 62.8 FR/30%1	
				not hornfelsed.		@ 63.0 FR/20%1	*
				~		@ 63.7 FR/40°/4	
		•					Fractures have no bleached
							envelopes.
							Hole appears to be in proximity to
							major fault.

٩,

.

PAGE _6_OF _19_

HOLE NO. DDH J97-4

.

÷

1

		DR	ILL LOG				
				T			HOLE NO. DDH J97-4
	RVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	то	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
						@ 64.5 FR/40°/3	@ 64.6 Possible core loss.
			C: PY/FF/TR	C: HF/PA	1	@ 64.7 FR/5%2	
						@ 64.9 FR/5%1	
							-
	. <u>.</u>					@ 67.6 FR/15%1	
						@ 68.0 FR/10%2	
						@ 69.6 FLT/?/2 gouge 3cm.	
		· · · · · · · · · · · · · · · · · · ·	(@ 70.1 FLT/? / MUDDY ROCK DETE	RIORATION 10cm.
		· · · · · · · · · · · · · · · · · · ·					
			<u>\</u>				
70.00	440 70						
70.00	113.70	Andesite very much as the foregoing; non-hornfelsic, lighter				· · · · · · · · · · · · · · · · · · ·	
		in colour, rock broken and rehealed with quartz-feldspar	A: PY/FF/TR	A: SI/P	INNUMERABLE	······································	
		-minor carbonate. Multitude of contorted veinlets filling old		B: Clay/P	say 30	@ 70.4 - 70.8: Sand, ground rock place	ced in box to fill up lost rock.
		fractures. Pencil magnetism nil to faint on a few fracture	×	C: Albite/?/			
		planes, as if due to pyrrhotite or magnetite. At 84m,		C: CHL/P		@ 71.85 White gouge 1cm @ 80°.	
		innumerable weak hairline fractures @ 10 degrees with				@ 72.5 FR/50*/3	
~		respect to core, healed by quartz-feldspar. At 96m rock is		1		@ 72.6 FR/0%1	
		becoming gritty looking due to coarser grain size of feldspar				@ 73.9 FR/50*/3	
		and pyroxene, perhaps a feldspar-pyroxene porphyritic				@ 75.0 FR/50°/2	
		andesite. Grades back to fine grained and aphanitic by 99m.					
		Becoming mottled due to increase In amounts of conspicuous					

.

÷

,

PAGE _7_OF _19_

.

HOLE NO. DDH J97-4

.

4

		HOLE NO. DDH J97-4					
INTE	RVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	то	colour, texture, grain size, composition etc.			·	bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
70.00	113.70	(Cont'd.) lapilli, but still with myriad's of hairline fractures healed by					
		quartz-feldspar-carbonate. At 108m a few of the hairline fractures					
		are healed by hematite red material. Becoming hornfelsic again @	A: PY/FF/0.1%	A: HF/Patchy	0.5	@ 77.0 - 78.0: FLT/CLAY Plane of fa	uit gouge rolls. FLT/70°/ 5cm gouge
		111m, and pinkish alteration of Kspar metasomatism is now					1m crushed zone.
		evident.					-
							· · · · · · · · · · · · · · · · · · ·
		· ·					·····
		· · · · · · · · · · · · · · · · · · ·					
						@ 81.7 FR/10%1	······
			A: PY/FF/0.5%	A: HF/P	3.1	@ 82.3 FR/80*/4	3mm quartz albite.
			B: CPY/FF/0.1%			@ 82.6 FR/75°/2	4mm quartz py. cpy.
			@ 82.95 C:SHALERI	TE/FF/trace		@ 82.9 FR/70%4	2mm quartz py. cpy.
						@ 84.6 FR/40°/2	White 3mm.
					1	@ 86.5	Possible, qtz. feldspar dolomitic
							carbonate filling at intersticie between
		· · · · · · · · · · · · · · · · · · ·		<u>``</u>			pillow in the flow.
							······································
		· · · · · · · · · · · · · · · · · · ·			··· ··	·····	· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·	· · · · · ·				

.

PAGE _8_OF _19_

HOLE NO. DDH J97-4

.

.

ç

.

			DRILL LOG				HOLE NO. DDH J97-4
INTE	RVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	то	- COLOUR texture grain size composition of					
		contra to tento, gran azo, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
			· · · · · · · · · · · · · · · · · · ·				
			A. DV/CC/10/				
ļ			A. F 1/FF/170	A. HF/PP	2.4	· · ·	
			B: CPY/FF/0.2%	B: Clay/PP			-
	·						
		· · · · · · · · · · · · · · · · · · ·	@ 89.9 90mm dtz.				@ 87.5 - 88.0: Faulty recovery.
			veinlet with good			@ 89.9 30mm qtz. with 50% cpy.	
			сру. ру			over that interval.	
						@ 89.98 FLT/85° 1cm gouge, 10cm	crushing.
						@ 91.8 FR/10°/4 5mm qtz. albite.	
						@ 92.8 FR/30°/2 and then small see	tion pale hematite to red andesite.
						@ 92.0 FR/80°/1 2mm quartz.	
						@ 91.2 FR/45°/1	
						@ 91.3 FR/20%1	
			A: PY/D/2%	A: HF/ very			
			B: CPY/D/0.4%	patchy mostly		· · · · · · · · · · · · · · · · · · ·	Numerous small discontinuous
			locally 0.1%	ับกูattered.		@ 96.7 FR/5%1	irregular hairline fractures filled with
			generally.				quartz or albite. Most not measurable
						······································	meaningfully.
			·				
							1
						<u></u>	

PAGE _9_OF _<u>19</u>

HOLE NO. DDH J97-4

í

.

. 1	~
)
)

_

		HOLE NO. DDH J97-4					
INTE	RVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	то	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
		·					
		· · · · · · · · · · · · · · · · · · ·		Mainly unaltered			
				mirror hard	2.3		@ 101.4 to 102 tier filled with ground-
				hornfelsic patches			up rock (sludge) tamped in by driller.
		· ·	@ 101.0 CPY/30mm	with qtz. 0.1%		@ 101.4 FLT/ 40mm gouge.	
			B: PY/FF/trace	[Core loss below.	
		· · · ·	C: CPY/FF/trace			@ 99.2 FR/75%2	
						@ 99.5 FR/10%2	
						@ 99.8 FR/80°/2	
						@ 101.4 FLT/?/5	
			·			@ 102.7 FR/15%1	
						@ 103.5 FR/30°/2	
			A: PY/FF/0.5%	A: HF/PP	≅4	@ FR/60°/4	Cpy irregular in associated fracture.
			B: CPY/FF/0.1%			@ 104.7 FR/40%1 red.	
						@ 104.8 FR/50%2	· ·
		· · · · · · · · · · · · · · · · · · ·				@ 105.4 FR/40°/3	106.7 - 107.3 50% recovery.
				\sim		@ 105.6 FR/20*/1	2
		•					
		· ·					
			1		1	1	

Υ.

.

PAGE __10__OF __19__

HOLE NO. ______

;

.

.

.

ŝ

•

.

		HOLE NO. DDH J97-4					
INTE	RVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	то	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
							-
<u> </u>			A: CD/EE/0.294		4.2		
			B: DV/EE/0 1%		1.3		
		· · · · · · · · · · · · · · · · · · ·	D. P 1/(F/0.170	General propylitic			-
				alteration in		· · · · · · · · · · · · · · · · · · ·	
	· ·		· · · · · · ·	volcanic rock.	· · · · ·		
		· · · · · · · · · · · · · · · · · · ·					
····-		······································				· · ·	
113.70	114,00	Granodiorite dyke. Medium grain size, base is finer - probably					1/2" on top of granodiorite dykes is
		chilled against host andesite. Lower 10cm is dull red hornfels.				··· · · · · · · · · · · · · · · · · ·	affected by dyke - minor discoloration
114.00	117.4	Andesite as above the dyke.	· ·				only.
		· · · · · · · · · · · · · · · · · · ·	A: CPY/FF/0.2%				
			B: CPY/D/0.1%	A: HF/P		@ 116.1 FR/70%1	
				B: BL/PP	0.9	· · · · · · · · · · · · · · · · · · ·	i e
						@ 115.8 FR/25%1	
117.40	119.40	Rhyolite: dirty tan in colour fine grained to aphanitic, very hard	A: PY/D/0.1%	UNALTERED		@ 116.0 FR/80°/4 CPY	Negligible fine py dissemination in
		and siliceous-like. Both contacts are knife-edge sharp without					rhyolite amount is to TR to 0.1%.
		any chilling effects evident. Seems to be devoid of cpy.					
		· · ·	-				

2 I

.

PAGE _11_OF _19_

.

-

.

.

.

___...

11

2

--

		HOLE NO. DDH J97-4					
INTE	RVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	то	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
119.40	123.50	Andesite: as above; medium grey, fine grained, faint response					
		to pencil magnet.	A: CPY/FF/0.2%	A: HF/P	0.1	@ 119.7 FR/10%1 Calcite.	
·	· · ·		B: PY/FF/0.1%			@ 120.4 FR/80% Py, cpy, quartz.	
			C: CPY/D/0.1%			@ 120.6 2cm semi-massive cpy.	
		· · · · · · · ·	A: CPY/FF/0.4%	A: HF/P	1.6	······································	
	<u> · · · ·</u>		B: CPY/D/0.1%	B: BL/PP	-		
<u>_</u>			C: PY/FF/0.2%				
		· · · · · · · · · · · · · · · · · · ·					
		•					Contact marked by 35mm black
123.50	127.30	Granite Porphyry; pinkish brown, medium grained, faint response	A: PY/D/TR	UNALTERED			graphitic gouge - probable angle 55°
		to pencil magnet like the andesite. Melanocratic - about 25%	B: CPY/D/TR	A: K/V	·····		
		mafic, half of which is biotite, and half of which is pyroxene or	Top 0.1m of granite is	massive chalcopyrit	e which is non-ma	gnetic:	
		perhaps hornblende. Top 40cm is chilled and resembles the	· · · ·	}			
		rhyolite as described earlier. Becoming brecciated - 125m to		} Bx			@ 126.1 0.1m pebble breccia.
		127m.		} A: K/V		····	
			A: PY/FF/TR	A: Clay/P			2cm gouge at bottom of xenolith.
127.30	128.40	Andesite: as before but soft and clavey, probably a xenolith.	B: CCP/FF/TR			•	
			C: Mo/FF/TR	A: K/V			
128.40	152.40	Granite Porphyry: as before. Rock becoming more competent	@ 128.6 Mo/FF				Moly in fracture filling could be
		after the preciation above the xenolith. Texture is that of a	–			· · · · · · · · · · · · · · · · · · ·	graphite, but looks like MoS2
····	<u> </u>	crowded porphyry. Gradational contacts to feldspar porphyry					gp
			· .				

.

.

.

.

-

PAGE __12_OF _19_

HOLE NO. DDH J97-4

.

.

			<u> </u>			•	
		DR	ILL LOG				HOLE NO. DDH J97-4
INTE	RVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	то	colour, texture, grain size, composition etc.			1	bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
128.40	152.40	(Cont'd.) between 133 and 138m. Below the feldspar porphyry,			1		
		granite porphyry has broad areas of textural change evidenced by	A: CPY/FF/.1%	A: K/PP		4. A., 64	· · · · ·
		a mottled appearance. Incipient faulting noted in several places.	<u> </u>			@ 131.2 FR/50%3 2mm quartz	-
		Response to pencil magnet weakens - faint to nil.				@ 131.3 /50° 3cm quartz vein with g	ood cpy
						· · · · · · · · · · · · · · · · · · ·	
						@ 131.6 FR/50%1 quartz.	_
						@ 132.5 FR/70°/2 quartz.	
			A: CPY/FF/.1%	A: K/PP	1	@ 133.6 FR/40°/2 gradational contact	
			B: PY/FF/.1%	B: CB/P		@ 133.8 FR/70°/2 calcite.	
						@ 134.5 cpy. py. qtz. over 2cm	
						· · ·	····
					<i>.</i>	@ 136.55 FR/60*/5 6cm (1/2 qtz) (1/	2 solid py.)
						@ 136.85 FR/60°/5	
		· · · · · · · · · · · · · · · · · · ·	-			@ 137.2 FR/70°/4 3mm solid cpy.	
			A: CPY/FF/.1%			@ 137.5 FR/85°/2 3mm MoS2	
			B: CPY			@ 139.7 FR/60°/4 10cm cpy.	
			C: MoS2/FF/0.1%				Gradational contact.
				A: K/PP			
						@ 140.3 FR/60°/4 4mm cpy.	2
				· ·			Heavy sulphide, 140.7-140.9 cpy.
						@ 141.2 Good disseminated	
						aggregates.	

· •

÷

.

PAGE _13_OF. _19_

HOLE NO. DDH J97-4

		HOLE NO. DDH J97-4					
INTE	rval.	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	то	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
						· · _ ·	
		· •					Box ends with cpy.
			A: CPY/V/0.2%	A: K/PP	2		
	•		B: MoS2/FR/TR	B: Clay/FLT		@ 142.1 FR/80%	
			C: / PYFR/0.2%			@ 142.7 V/75%Cpy. quartz 5mm	
						@ 142.9 V/50°/Cpy. quartz 40mm	
						@ 143.2 FR/50°/ MoS2	
						@ 143.5 FLT/50°/Graphite? MoS2?	30mm CLAY.
		· · · · · · · · · · · · · · · · · · ·				@ 146.2 FLT/65°/Clay	······································
			,			· · · · · · · · · · · · · · · · · · ·	
			Essentially none	MORE		@ 150.4 V/CPY/ MoS2 4mm quartz @	j 70°.
			apparent either cpy	HOMOGENOUS			
		· · · · · · · · · · · · · · · · · · ·	or py. except for	& UNALTERED			
			one veinlet.				
							-
						*	, 9
				<			· · · · · · · · · · · · · · · · · · ·
				•			
						• • • • • • • • • • • • • • • • • • • •	

t i

.

PAGE __14__OF __19__

HOLE NO. DDH J97-4

		DR	RILL LOG				HOLE NO. DDH J97-4
INTE	RVAL.	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURESIM	STRUCTURE	MISC
FROM	то	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
152.40	154.20	Diorite Porphyry: gray, fine to medium grained, similar to the	A: CPY/D/0.1%	A: Clay/FLT			Minor clay alteration close to minor
		feldspar porphyry but with about 25% mafic. Contains fine	B: FR/TR				incipient fault.
		disseminated cpy and minor moly the latter mainly coating			1.7	@ 153.1 FR/55%1	
		fractures.				@ 153.4 FR/50*/3	Upper and lower contacts with
154.20	174.60	Granite Porphyry; as before.		A: K/PP		@ 154.2 FLT/50°/4	gradational, lower put at minor fault.
			@ 153.3 FR/ MoS2/0	CPY Generally	·····.	@ 155.2 V/FLT/50°/4	
		· · · · · · · · · · · · · · · · · · ·		unaltered.			
						· · ·	
		· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	
			A: CPY/FR/0.05%	A: K/PP	1	@ 158.4 FLT/BL/MoS2 1cm irregula	potassium
			B: MoS2/FR/TR	B: Clay/FLT		@ 159.4 FR/CPY/QTZ 2mm alteration	on throughout.
		· · · · · · · · · · · · · · · · · · ·		C: BL/FLT		@ 159.9 V/40/QTZ/feldspar along joi	nts and 60° hairline fracture.
			Pyrite negligible			@ 160.9 V/70/QTZ/K	
			minor on FR.			@ 161.85 V/CPY/QTZ 1cm 60°.	
		· · · ·		<u>~</u>			
		•					

.

í

-

PAGE _15_OF _19_

-

HOLE NO. DDH J97-4

.

.

	DRILL LOG									
INTE	RVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC			
FROM	то	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.			
		· · · · · · · · · · · · · · · · · · ·								
			A: CPY/V/0.1%	A: K/PP/FR		@ 163.8 FR/40°/CHL	Pink "K" alteration along joints and			
			B: MoS2/V/TR	B: SI/PP/	. 0.7	@ 164.5 FR/40°/Albite	fractures.			
			C: PY/V/TR	Myriad joints with		@ 165.3 V/irreg./QTZ/minor MoS2				
				pink alteration		@ 165.5 FLT/7/CLAY, QTZ, CPY, MC	5 <u>5</u> 2			
				envelopes.						
		·		C: BL/PP		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
		·····		1			· · · · ·			
			•			· · ·	-			
		· · · · · · · · · · · · · · · · · · ·			· · · · · ·					
			Essentially	AI KK/PP/FR	<u>`````````````````````````````````````</u>					
			unmineralized 1 FR	B: SVPP	0.6	Stor				
	· · ·	· · · · · · · · · · · · · · · · · · ·	with cpy, MoS2	C: Clay/FLT/PP						
			paint. Pyrite not	D: BL/PP						
			evident.			@ 169.9 FR/45% MoS2 SLIP,				
		· · · · · · · · · · · · · · · · · · ·				@ 171.6 FR/V/60/CPY/ MoS2/Qtz 10	m			
			A: MoS2/FR/0.1%			@ 171.8 FR/60°/BL				
			B: CPY/FR/0.1%			@ 172.3 FR/10º/K				
				5		@ 172.8 FR/65°/Qtz/ MoS2				
						@ 172.9 V/80°/Qtz 6mm				
						@ 173.3 V/80° Calcite 3mm				
						@ 173.5 FLT/80° 1cm gouge.				

. .

PAGE __16__OF __19__

2

HOLE NO. DDH J97-4

.

.

.

ŝ

-

2

· · · ····· · · · · · ·

		DR	ILL LOG			·····	HOLE NO. DDH J97-4
INTÉR	RVAL.	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	то	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
174.60		Andesite: medium grey to black, fine grained to aphanitic,	Near bottom	As before mottled			Contact is minor fault @ 45°. Andesit
		becoming coarse lapilii and in places agglomeratic over a few	@ 174.7 CPY/FR	A: Clay/FLT		@ 174.7 CPY/FR	below is crackled, myriad fractures
	•	metres, and then back to fine grained. Core crackled with fractures	@ 175.0 CPY/FR	B: BL/FR		@ 175.0 CPY/FR in dyke.	healed by carbonate fizzes. Two or
		healed by calcite. Incipient fault @ 176.1m. Some cpy, py		C: CB/FR			three small dykelets of granite within
		mineralization is associated with dykelets of granite porphyry. At					1 1/2 metres of contact. Minor patchy
		191m, begins to look distinctly like a tuffaceous marine flow,		····			hornfelsic below contact.
		because of area that appear to be apical inter-pillow				······	
		replacements and in-fillings. Pencil magnetism becoming				· · · · · · · · · · · · · · · · · · ·	
		stronger faint to moderate - at 196m.				······	
				Generally			
				unaltered to hole			
••••			Minor py on	bottom.			
		•	fractures.				
						@ 180.2 5cm qtz. vein	
				A: BL/FR		·····	
		· · · · · · · · · · · · · · · · · · ·	A: CPY/FR/0.2%	Thin bleached		@ 182.2 V:/55°/QTZ/Albite 3cm	
		· · · · · · · · · · · · · · · · · · ·	Pyrite negligible.	envelopes along	i		
		· · · · · · · · · · · · · · · · · · ·	MoS2 not seen,	fractures.	·	•	
					·····	@ 183,7 FR/80*/BL	
			· · · ·	· •••			
·							
						······································	······································
			I	F	L	l	

.

PAGE __17__OF __19__

HOLE NO. DDH J97-4

÷

.

,

.

э

	DRILL LOG										
INTER	VAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC				
FROM	то	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.				
└── - ├			A: PY/FR/TR	A: BL/FR		@ 185.0 FR/75°/BL					
		· · · · · · · · · · · · · · · · · · ·		B. CB/FR	<u> </u>	@ 1854 EB/80°/BL/ guartz					
				C: Clauff P		@ 187.6 ED/45%/04					
				C. Clay/FR							
			No cpy seen minor			@ 188.2 FR/80/QHZ					
			py on a few	NOT		@ 188.4 FR/75°/Qtz	~				
			fractures.	HORNFELSED		@ 190.0 FR/80°/CB epidote Chl. alt	leration				
		•									
					1	· · · · ·					
						· · · · ·	······································				
		· · · · · · · · · · · · · · · · · · ·	A: PY/FR/0.1%								
			B: CPY/FR/TR		1.1	· · · · · · · · · · · · · · · · · · ·					
		*									
		· ····································				@ 192.7 FR/20%/1/CB, CHL	· · · · · · · · · · · · · · · · · · ·				
		<u> </u>				@ 193.1 FR/30%1/CB, CHL					
				·							
		· · · · · · · · · · · · · · · · · · ·				@ 194.6 FR/irreg./ PY/QTZ/CB	-				
						-					
				<			-				
		•		· ·		@ 195.7 V/60/K (Orthoclase)					
		· • • • • • • • • • •		[· · ·	1						

PAGE _18_OF _19_

HOLE NO. DDH J97-4

.

6

. .

-

		HOLE NO. DDH J97-4					
INTER	VAL	ĻITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	то	colour, texture, grain size, composition etc.	. <u>.</u>			bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
							Come noteb attention looks like what
	-	•	A: PY/FR/0.1%	A CB/PP			Some pater alteration nooks like what
			B: CPY/FR/TR	B: CHL/PP	1.8	@ 196.5 FR/75°/2 Quartz.	one might expect at the apical
	•					@ 199.8 FR/80°/PY	interstices of a submarine flow
						@ 200.3 FR/65°/2 CB	- CB, Q, K filling.
						@ 200.6 FR/55%3 CB	
		·				· · · · · · · · · · · · · · · · · · ·	
			· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	
						· · · · · · · · · · · · · · · · · · ·	
•							
202.39		End of hole. (664 feet)		n	ļ		
				<u> </u>			
	[-	
				· · · · · · · · · · · · · · · · · · ·			
				-			
				L	<u> </u>		v
		· · · · · · · · · · · · · · · · · · ·		<u>`</u>			
	1						
	†				1	1	1

 ,

.

;

-

PAGE _19_OF _19_

HOLE NO. DDH J97-4

.

[D	RILL LOC	3			HOLE NO. DDH J97-5
CONTR	RACTOR		SKETCH, PLAN SECTION	DEPTH	TEST DIP	AZIMUTH	DATE STARTED September 4, 1997	PROPERTY JEAN
PHIL'S	DIAMON	D ORILLING LTD.		COLLAR			DATE COMPLETED September 9, 1997	CLAIM
CORE	SIZE	NQ					,COLLAR ELEV. 1024 m.	TARGET Cu-Mo
OVER	ALL COR	E RECOV. 98.29%					NORTH 9820 N) Relative	to 10,000N, 10,000 E. at
ANALY	TICAL R	EFS					EAST 10,330 E) collar o	f DDH 95-2.
MIN-I	EN LABS	· · · · · · · · · · · · · · · · · · ·					AZIMUTH 358°	NTS 93N/2W
78-02	79-RJ 1+	2+3+4+5+6					DEPTH 245.06 -56°	DATE LOGGED Sept. 6, 1997
Cert. 7	S-0279-R	A1					TIE IN POINT Road traverse by R.U.B.	LOGGED BY C.A.R. LAMMLE
INTER	VAL (m)		LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC.
FROM	то	color	ır, texture, grain size, composition etc.				bedding, faults, folds fractures etc.	mineralization, type, age relations, etc.
0	1.25	Casing and overbu	irden, peobly recovery starts at 1.25.					
	1							
1.25	14.95	Andesite; medium	grey, fine grained to aphanitic, hard and	A: PY/FR/TR	A: HF/PP		Recovery poor to 4-2m, ground core is	Azurite & trace cpy in sump
2.00		irregularly hornfels	ic, mottled appearance due to lapilii-		8: BL/FR		pebbly.	immediately in front of collar.
	1	aggtomerate fabric	, size 3cm to 0.3m. Oxidation persists as rust	B: CPY/D/TR	C: CHL/FR			
3.00		on fractures to 15n	n. Pencil magnetism irregular - faint to	C: CPY/FR/TR				
	+	moderate mainly	near the surface close to the copper					
4.00	1	mineralization expe	osed in the sump. Trace cpy-epidote at 14.63m.					
	<u> </u>		<u></u>					
5.00								
	<u> </u>	<u></u>		· · · · · · · · · · · · · · · · · · ·				
6.00	-						4	
	1				· · · ·			
7.00	<u> </u>							· · · · · · · · · · · · · · · · · · ·
	-							
8.00			· · · · · · · · · · · · · · · · · · ·					

PAGE I OF 23

1.15

HOLE NO DDH J97-5

····· - ·					s	r	HOLE NO. DURISANS
ΙΝΤΕΓ	RVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	то	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
8.00						·	
9.00			A: PY/FR/TR	A: HF/P	0.5		
				B: BL/PP			
10.00				D: Clay/PP			
				E: EP/V/FR			
11.00						@ 11.00 FR/5º/1	
12.00							
13.00				<u> </u>			
14.00				C: K/V/55°			
				C: K/V/70°	1.5		
14,95	24.00	Rhyotite; pinkish brown, fine grained, patches are porphyritic due to					
		a matic mineral, probably pyroxene. Pencil magnetism faint to nil.	NONE				Upper contact marked by minor
16.00		Irregular discontinuous hackly fractures healed by carbonate. Some	APPARENT	A: EP/contacts			veinlets of KSPAR, EPIDOTE,
		remnants of older andesite occur as partially resorbed fragments,		B: CB/V	1.2		ANDESITE FRAGMENTS.
17.00	<u>}</u>	particularly near the bottom of the rhyolite. Base is marked by patch					Attitude not clear
		of epidote.					
18.00							
19.00	t	· · · · · · · · · · · · · · · · · · ·				1	

2 I

PAGE _2__OF__23__

HOLE NO. DDH J97-5

· ·

		HOLE NO. DDH J97-5					
INTE	RVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	то	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
19.00							
19.50			NONE APPARENT	A: K/PP			
20.00				B: CB/V		@ 20.4 FR/40°/4/ CB	
				C: Clay/PP		@ 20.6 FR/55°/2	
21.00						@ 21.0 FR/60°/4/ CB	
						@ 21.60 FR/35%2	Bottom contact marked by small
22.00							xenoliths of andesite and patches of
		······································	L	<u>·</u> ···			epidote.
23.00	· · · ·						
24.00	102.60	Andesite; as above the rhyolite. As before lapilli are a little lighter				@ 24.0 FR/5°/4/ CB	
		in colour and coarser in grain, create a mottled appearance. Large	A: PY/FR/TR	A: HF/PP	0.5		
25.00		block of porphyritic pyroxene andesite at 29m, and another 0.5m in	B: CPY/FR/TR	B: BL/PP			
		size nearby. Chalcopyrite in fractures that test nil to the pencil		C: EP/PP			
26.00		magnet. At 39m, clay epidote attenation over about one-half the					-
		box (i.e. Box No 7). Some patchy areas of potassic alteration				@ 26.7 FR/50°/2	
27.00		entering into the rock at 44m, minor skarn alteration at 48.6m,	A: PY/FR/0.1%				
<u>.</u> .		strong K-spar alteration at 49.3m. Becoming more uniform, fine	Negligible amount				
28.00		grained, irregularly and faintly magnetic, and hard, typical of Jean	other sulphides.	A: BL/PP			
		andesite at 51m. Grades to mottled texture again at 57m, with		B: CB/V		@ 28.9 FR/85*/3/BL/ CB	
29.00		irregular bleaching of some lapilli. Grades back to homogenous,		MOSTLY			
		fine grained, unbleached variety at 60m with increased magnetic		UNALTERED			
30.00		mineral content on fractures. Pyrite begins to increase noticeably					

PAGE 3____OF 23___

HOLE NO DDH J97-5

		HOLE NO. DDH J97-5					
INTE	RVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	то	colour, texture, grain size, composition etc.				bedding, fauits, folds fractures etc	mineralization, type, age relations, etc.
24.00	102.60	(Con'td.) in amount at 68m. Generally good recovery in					
30.50		competent rock. Several gougy faults appear at 100m and continue		A: BUPP			
31.00		to a faulted contact at 102.5m.		B: C8/V			
				1	?	@ 31.5 FR/25°/1/ CB	
32.00						@ 32.15 FR/60%3	
33.00				A: BL/PP		@ 33.50 FR/35°/3/ CB/ Albite	
			@ 33.9 CPY/D	B: CP/V		@ 32.92 FR/20°/3/ CB	
34.00			B: PY/FR/TR			@ 33.90 Looks like incipient fault zor	e gougy and clayey. Mineralized.
						@ 34.50 FR/5°/4/ CB	
35.00							
			@ 35.9 CPY/FR				
36.00						1	
						@ 36.7 FR/60°/3 in epidote clay mag	netite heavy cpy occupying about
37.00			@ 37.5 CPY/V/10cm	,		1/2 of vein.	
		-	B: PY/FR/TR	1			
38.00							
			A: PY/FR/TR	A: HF/PP/ Weak		@ 38.5 FR/25°/2	
39.00					1,5		
				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
40.00							
41,00					l	· · · · · · · · · · · · · · · · · · ·	

.

HOLE NO DDH J97-5

•

× ×					1					
DRILL LOG										
LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURESIM	· STRUCTURE	MISC					
plour, texture, grain size, composition etc.		1	<u></u>	bedding, faults, folds fractures etc	mineralization, type, age relations, etc.					
		A. EPARP								
		B: BL/PP		@ 41.6 FR/0%1						
· · · · · · · · · · · · · · · · · · ·		Some clayey								
	·	epidote minor								
·····		magnetite altered		@ 43.5 FR/25%2 CB/ALBITE						
	A: PY/FR/TR	control in box.		@ 43.9 FR/15%1 CB						
	B: MT/D/TR									
		A: EP/PP								
		B: K/PP	3.6							
		C: CB/V								
· · · · · · · · · · · · · · · · · · ·		D: Magnetite		@ 46.1 FR/30°/2 CB/ALBITE						
· · · · · · · · · · · · · · · · · · ·			·	@ 46.4 FR/10%2 CB						
·····				@ 47.25 FR/30°/2 CB						
····	Mineralization is	Alteration is		@ 47.6 FR/50%1 CB						
	negligible.	suggestive of			Many hairline fractures with CB filling.					
		intrusive nearby.								
			•							
<u> </u>			1	@ 49.6 FR/60%1	÷					
		A: HF/PP/ Weak	1	@ 50.4 FR/60°/2						
	A: CPY/FR/4	B: EP/PP	2.6	,						
	B: PY/FR/TR	C: CB/V								
					-					
	@ 52.8 CP/FR 3mm	1								
	LITHOLOGY	LITHOLOGY MINERALIZATION  Note: texture, grain size, composition etc.  A: PY/FR/TR B: MT/D/TR B: MT/D/TR A: CPY/FR/TR A: CPY/FR/TR B: PY/FR/TR B: PY/FR/TR B: PY/FR/TR C: CPY/FR/TR C: CPY/	LITHOLOGY MINERALIZATION ALTERATIONS Ilour, texture, grain size, composition etc.  A: EP/RP B: BL/PP Some clayey epidote minor magnetite altered A: PY/FR/TR control in box. B: MT/D/TR A: EP/PP B: K/PP C: C: CB/V C: CB/V D: Magnetite C: CB/V D: Magnetite Atteration is negligible. Suggestive of A: HF/PP/Weak A: CPY/FR/TR C: CB/V B: PY/FR/TR C: CB/V B: PY/FR/TR C: CB/V C: CB	LITHOLOGY MINERALIZATION ALTERATIONS FRACTURES/M Hour, texture, grain size, composition etc. A: EP/RP B: BL/PP B: BL/PP P P P P P P P P P P P P	LITHOLOGY MINERALIZATION ALTERATIONS FRACTURESM STRUCTORE Iour, texture, grain size, composition etc. A: EP/RP B: BL/PP B: BL/PP Q 41.6 FR/07/1 G 43.5 FR/257/2 CB/ALBITE C 43.9 FR/157/1 CB B: MT/D/TR A: EP/PP C 2007 B: K/PP C C 2B/V C C 2B/V C C 2B/V C 2B/C Mineralization is Alteration is Q 47.6 FR/307/2 CB/ALBITE Q 46.1 FR/307/2 CB/ALBITE Q 47.25 FR/307/2 CB Mineralization is Alteration is Q 47.6 FR/307/2 CB A: FF/PP/Weak Q 50.4 FR/607/1 A: FF/PP/Weak Q 50.4 FR/607/2 A: CP//FR/4 B: EP/PP 2.5 , B: PY/FR/T C: CB/V					

.

,

.

s.

PAGE ____5___OF ___23___

.

.

.

-

HOLE NO. DDH J97-5

+

		DRIL	······································				
INTE	RVAL	LITHOLOGY M	INERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	то	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
52.00		Su	Iphides on FR				
		bu	ilding up.	· · · · · · · · · · · · · · · · · · ·		@ 39.85 FR/80°/1/ CB	
53.00		A:	CHL/FR/CPY/TR		· · · · · · · · · · · · · · · · · · ·		
		B:	PY/FR/TR	@ 53.7 - 54.0			
54.00		C:	MT/FR/TR	epidote / albite		@ 54.60 FR/60%1/ CB	
						@ 54.80 FR/45%1	
55.00							
		A:	CPY/D/0.1%	A: Propylitic		@ 55.50 FR/30°/2	
56.00		B:	PY/FR/TR	B: HF/PP	1.2		
				C: BL/FR		@ 56.50 FR/25°/2	
57.00					ļ		······································
	••••••		57.4 CPY/FR/TR			· · · · · · · · · · · · · · · · · · ·	
58.00		· · · · · · · · · · · · · · · · · · ·					
59.00		@	58.5 CPY/D/0.1%				
					1.3		
60.00		A.	CPY/FR/0.1%	Generally			
		B:	PY/FR/0.1%	unaltered.		@ 60.5 - 61.0 Crushed & rotten - incip	pient fault.
61.00				Possibly weakly			· · · · · · · · · · · · · · · · · · ·
				hornfelsed.		-	
62.00				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			· · · · · · · · · · · · · · · · · · ·
						@ 62.5 FLT/85º/ 5mm white gouge.	
63.00				• • • • • • • • • • • • • • • • • • • •			

· ,

HOLE NO. DDH J97-5

	DRILLLLOG									
INTEI	RVAL	ŁITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC			
FROM	то	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.			
63.00										
64.00										
65.00										
66.00			A: PY/FR/0.5%	A: HF/P/ Weak		@ 66.10 FR/80°/2 quartz, cpy.				
			B: CP/FR/0.1%	B: BL/FR/ Weak	:	@ 66.80 FR/20°/4 py 5mm				
67.00					2.6	@ 68.20 FR/85°/3 clay				
			Some magnetite			@ 68.40 FR/85°/3 clay				
68.00			may be converted							
			to pyrite.							
69.00						@ 69.10 FR/30%1				
						@ 69.90 FR/65°/3 quartz, cpy, py.				
70.00						@ 70.50 FR/70°/3/ CB				
71.00			A: PY/FR/0.2%	A: HF/P/ Weak		@ 71.10 FR/70°/1 cpy				
			8: CPY/FR/0.2%	B: BL/FR/ Weak	2.3	@ 71.90 FR/60°/2 cpy				
72.00										
						@ 72.80 FR/35°/4 CB				
73.00						@ 73.00 FR/70°/3 cpy				
						@ 73.70 FR/20°/1 CB				
74.00			·							

.

PAGE ___7___OF __23___

HOLE NO DDH J97-5

. .

		DRILLLOG										
					-	STRUCTURE	HOLE NO. DDH 397-5					
INTE	RVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURESIM	STRUCTURE	MIGC					
FROM	то	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.					
74.00						· ·						
75.00												
76.00						@ 76.05 FR/45°/2 cpy						
76.50			A: CPY/FR/0.3%	A: BL/FR Weak		@ 76.60 FR/85°/4 cpy						
77.00			B: PY/FR/0.2%	B: CB/FR		@ 77.10 FR/40%3 CB						
			C: CPY/D/TR		3.9	@ 77.30 FR/80°/2 cpy						
78.00						@ 78.10 FR/80°/4 4mm qtz. cpy						
.,						@ 78.80 FLT/30°/4 2cm CB & gouge	<u>.</u>					
79.00		· · · · · · · · · · · · · · · · · · ·		-		@ 79.40 FR/40º/1 cpy						
					-							
80.00					· · · ·							
			· · · · · · · · · · · · · · · · · · ·									
81.00						-						
·			-			@ 81.90 FR/45%1 cpy py.						
82.00	<u> </u>		A: CPY/FR/0.2%	Minor hairline	3.3	@ 82.20 FR/50*/1 CB						
·			B: PY/FR/0.1%	fractures healed		@ 82.60 FR/30%1 CB						
83.00				by quartz and								
				carbonate.			•					
84.00				<u> </u>		@ 84.05 FLT/80°/4 3cm gouge qtz.	сру					
···· ·					1	@ 84.70 FR/50%3 CB						
85.00		· · · · · · · · · · · · · · · · · · ·			1	@ 85.10 FR/80°/2 py						

· · · · ·

PAGE 8_OF 23_

HOLE NO DDH J97-5

INTERVAL

		· ·		
L`LOG				HOLE NO. DDH J97-5
MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
			bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
			@ 86.40 FLT/20°/4 3cm qtz. gouge	pyrite.
- CPY/FR/0.4%	Generally		@ 88.00 FR/35%1 CB	
	l	<u>↓ − − − − − − − − − − − − − − − − − − −</u>	····	

•

TO	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
	· · · · · · · · · · · · · · · · · · ·	······································				
		······································				
					0 86 40 ELT/20°/4 3cm atz anuae i	avrite
		A: CPY/FR/0.4%	Generally		@ 88.00 FR/35*/1 CB	
		B: PY/FR/TR	unattered.			
			1			
				2.1	@ 89.10 FLT/85°/4 2cm gouge.	
			1		@ 89.80 FR/80°/3 qtz, albite	
		· · · · · · · · · · · · · · · · · · ·	@ 90.8 6cm qtz		@ 90.60 FR/20°/2 CB	
			K, CB.		@ 90.70 FR/25°/2 qtz, CB	
					@ 91.10 FR/10%1 CB	······································
<del>.</del>						
					@ 92.40 FR/40°/2 qtz, py	
					@ 93,70 FR/35°/3 qtz, py	
		A: CPY/FR/.1%	A: HF/P	2.9	@ 94.30 FR/45°/3 qtz	
		B: PY/FR/.1%	B: CB/FR		@ 94.90 FR/60°/3 qtz, CB	
		C: MT/FR/TR	-,		@ 95.30 FLT/80°/4 rock disrupted ov	er 20cm,
					@ 96.00 FLT/80°/4 1cm	
			To         colour, texture, grain size, composition etc.	10       colour, texture, grain size, composition etc.	10       colour, texture, grain size, composition etc.	10       colour, texture, grain size, composition etc.

DRILL

LITHOLOGY

.

PAGE __9__OF _<u>23__</u>

.

HOLE NO. DDH J97-5

		DR					HOLE NO. DDH J97-5
INTER	RVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	то	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
96,00						@ 96.15 FLT/70°/3 1cm	
			A: CPY/FR/0.2%	A: HE/P		•	
97.00			B: PY/FR/0.1%	8: CP/PP			
98.00						A 49 49 59 49 60	
		· · · · · · · · · · · · · · · · · · ·				@ 98.80 FR/40°/3 CB	
99.00						@ 99.00 FR/30°/2 cpy	
100.00	-				3.2	@ 100.60 FLT/80°/3 10cm gouge &	crushed rock.
100.00				· · · · · · · · · · · · · · · · · · ·		@ 100.70 FR/75%2 py, cpy.	
101.00							
102.00				A: CHUPP			
102.60	108.90	Rhyolite; pinkish brown, fine grained to aphanitic, pencil		B: Clay/PP		Contact is broken rock, looks like a lit	tle ground up core - minor core loss.
103.00		magnetism faint to nil. Several well broken and faulted zones		A: K/PP		Upper part of rhyolite is kspar rich. Le	ower part if andesite is clayey and
		at 105m (middle part of Box No 19) with heavy cpy over 10cm				chlorite rich.	
104.00		@ 106.6m, brecciated below the cpy. Lower contact is chilled	A: CPY/FR/0.2%				
		aphanitic hornfelsic grey rock.					
105.00							-
106.00				°м			
			@ 106.6 9cm mass	ive cpy @ 60°			
107.00			A: CPY/FR/0.4%				

PAGE 10__OF 23___

HOLE NO. DDH J97-5

		DR	ILL LOG				HOLE NO. DDH J97-5
INTE	RVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	то	colour, lexture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
107.00							
			A: CPY/FR/0.2%	Probably	?		
108.00	· · · ·		B: PY/FR/0.1%	unaltered.			
108.90	142.50	Andesite; as before. Homogeneous, non-mottled, not lapilli type,					
109.00		softer to the pocket and relatively un-hornfelsed. Rock is cut by			1	Contact: underlying andesite is hornfe	sed and crackled, along with minor
		a reticulate system of small fractures which have faint thin	A: PY/FR/0.5%	A: HF/PP		faults: Overlying rhyolite is chilled and	grey.
110.00		bleached envelopes to 1cm on either side of the fracture. Starts	B: CPY/FR/TR	Decreasing in	5		
		to become unhomogeneous and mottled due to fragments at	······································	intensity			
111.00		120m. Well fractured and several gougy faults. Soft and gougy		downwards.		Many small fractures generally @ 50°	- 80° with respect to core axis filled with
<u> </u>	<u> </u>	above and below fault at 127.2m. Hornfelsic alteration becoming		B: CB/FR		carbonate and quartz.	
112.00	<u>}</u>	prominent once again at 136m, and rock is very difficult to split.		C: CHL/FR			
		Good cpy mineralization begins at 141m.				@ 112.50 FLT/80°/ 1cm minor	
113.00					1		
}	<u> </u>						-#
114.00	·]				1		
<b> </b>				A: HF Weak		@ 114.40 FLT/75°/4 3cm gouge	
115.00		· · · · · · · · · · · · · · · · · · ·		to unaltered.	6.5	@ 114.70 FR/70%4 bleached	
	····-			B: BL/ Fairly		@ 115.10 FR/65°/2 CB	
116.00				strong envelopes		@ 116.30 FR/40°/2 CB	
				on fractures.	1	@ 116.90 FR/80°/3 kspar	
117.00	+			· · ·			
ļ			1	1		@ 117.40 FLT/20°/4 gouge & carbo	nate
118.00	+						· · · · · · · · · · · · · · · · · · ·

.

.

PAGE 11_OF 23

HOLE NO DDH J97-5

[			DRILL LOG				HOLE NO. DDH J97-5
INTER	VAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	· STRUCTURE	MISC
FROM	то	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
118.00				<u>~</u>			· · · · · · · · · · · · · · · · · · ·
119.00						@ 119.70 FR/85°/2 CB	
120.00						•	
						@ 120.60 FLT/ gouge & fine fragmen	ts to 20cm.
121.00			A: PY/FR/TR			@ 121.40 FLT/770°/2 minor offset	
			B: CPY/FR/TR		3.4	@ 121.70 FR/85%1 CB	
122.00							
123.00						•	
124.00							
124,00					Bx	Zone of crushing - incipient faulting.	· · · · · · · · · · · · · · · · · · ·
125.00						· · · · · · · · · · · · · · · · · · ·	
		-					
126.00						Cool is an an U. of and an about	
126.50			A: CPY/FR/0.1%	A: Clay/PP	BX	Rock is generally soli and crushed	
127.00			B: PYFR/IR			Сонау госій	
128.00				· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·
						1	
129.00						Fault is marked by gougy rock.	

.

PAGE 12_OF 23_

HOLE NO DDH J97-5

			DRILL				HOLE NO. DDH J97-5
INTERVAL		LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	то	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
118.00						•	
119.00							
						@ 119.70 FR/85"/2 CB	
120.00					<u> </u>	@ 120.80 FLT/ gouge & fine fragment	ts to 20cm.
121.00			A: PY/FR/TR			@ 121.40 FLT/770%2 minor offset	
			B: CPY/FR/TR		3.4	@ 121.70 FR/85%1 CB	
122.00							
123.00							
124.00						<u> </u>	
					Bx	Zone of crushing - incipient faulting.	
125.00							
		· · · · · · · · · · · · · · · · · · ·					
126.00			A: CPY/ER/0.1%	A' Clay/PP	Br	Rock is generally soft and crushed	·····
127.00			B: PY/FR/TR				
						Gougy rock.	
128.00				<u>`</u>		1	
129.00						Fault is marked by gougy rock.	

.

.

PAGE 12_0F 23_

HOLE NO DDH J97-5

東信

INTERVAL*

LITHOLOGY

				······································
L`LOG				HOLE NO. DDH J97-5
MINERALIZATION	ALTERATIONS	FRACTURESIM	STRUCTURE	MISC
			bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
			•	
: CPY/FR/0.1%			@ 129.55 Vein 15cm qtz. carbonate	with 5mm cpy at base of vein.
		3.6		
1: CPY/FR/0.3%	A: Clay/PP			

	l	· · ·					
FROM	то	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
129,00							
129,50		······	A: CPY/FR/0.1%	1		@ 129.55 Vein 15cm qtz. carbonate v	with 5mm cpy at base of vein.
130.00							
					3.6		
131.00			A: CPY/FR/0.3%	A: Clay/PP			
·				B: HF/PP		@ 131.60 CPY/FR/ 1cm nice cpy.	<u> </u>
132.00		·····	A: CPY/FR/0.3%	C; BC/FR	-		
	·· •• •••	······································		D: CB/FR		@ 132.95 CPY/D/ 25mm - nice disse	mination
133.00				-			
				1		@ 133.60 Kspar alteration over 10cm	· · · · · · · · · · · · · · · · · · ·
134.00		······································					]
		· · · · · · · · · · · · · · · · · · ·		······································			
135.00		······································		1			
· · ·							
136.00						······································	
136.50			A: CPY/FR/0.1%	A: HF/P	2.4		
137.00			B: CPY/D/0.1%	B: EP/P		@ 137.00 FR/85*/2 CB	· · · · · · · · · · · · · · · · · · ·
			C; PY/F/0.2%	C: CB/V		@ 137.50 FR/80°/2 CB	
138.00				D: Clay/F4			
				E: KIPP			2
139.00		· · · · · · · · · · · · · · · · · · ·			1	@ 139.50 FLT/CPY/Clay 20cm goug	e & clay
·						30cm crushed zone above fault	1
140.00			· · · · · · · · · · · · · · · · · · ·				
L		······································	L				L

.

DRILL

PAGE ____13 ___OF ___3_

HOLE NO. DDH J97-5

		DR	LL、LOG			,	HOLE NO. DDH J97-5
INTE	RVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	то	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
140.00						·	
			A: CPY/FR/.2%	A: HF/P	3		
141.00			B: CPY/D/.1%	B: CB/FR			
			C: PY/FR/.1%	C: K/Contact	<u> </u>	Cpy associated with kspar alteration.	
142.00							
142.60	175.10	Granite; pinkish orange mainly but grades in several areas to					
143.00		light grey; uniformly medium grained, 25% matic content - biotite				Contact is broken.	
		slightly exceeding pyroxene in amount. Generally unmineralized		A: K/PP			
144.00		but occasional slickensided slips host graphite	A: CPY/FR/.2%	B: CB/FR			
· · · · ·	···		B: MoS2/FR/.1%	C: Q/V			
145.00		· · · · · · · · · · · · · · · · · · ·	C: PY/FR/.1%				
					2		
146.00							
		· · · · · · · · · · · · · · · · · · ·					
147.00							
148.00		· · ·					
···· ·		· · · · · · · · · · · · · · · · · · ·					
149.00							
150.00				<u>х</u>			*
151.00							

PAGE _____OF _____

HOLE NO. DDH J97-5

			HOLE NO. DDH J97-5				
INTER	RVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	то	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
151.00						•	
150.00			A: CPY/ER/0.1%				
152.00			B: MoS2/FR/0.1%			@ 152.85: FLT/QTZ/CPY/MoS2/ ove	I ar 3cm several hairline fractures coated
153.00			C: CPY/FR/TR	Very minor		with muddy MoS2.	
		· · · · · · · · · · · · · · · · · · ·		kspar alt.		-	
154.00				envelopes on a			
				few fractures.			
155.00						· · · · · · · · · · · · · · · · · · ·	
160.00					31		
150.00							<u></u>
157.00						<u> </u>	
		······································					
158.00							
159.00				ļ			
160.00							
161.00				<u> </u>			-
<del>_</del>						@ 161.80: FR/40°/CHL	
162.00	1						

.

.

PAGE ____15___OF ___23___

HOLE NO. DDH J97-5

			DRILL LOG				HOLE NO. DDH J97-5
INTE	RVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	то	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineratization, type, age relations, etc.
162.00						@ 162.00 FR/40°/2 CHL	
			A: CPY/FR/.1%	A: K/FR		@ 162.50 Irregular 3cm quartz with	good cpy MoS2.
163.00			B: MoS2/FR/.05%	B: CHL/FR			
			C: PY/FR/TR	C: CB/FR	2.2		
164.00							
165.00							
			· · · · · · · · · · · · · · · · · · ·				
166.00							
167.00			A: CPY				
168.00		· · · · · · · · · · · · · · · · · · ·					
					3.1	@ 168.50 25cm FR/Q/CPY/ MoS2//	(-SPAR
169.00							
		······	As above	As above			
170.00							
	1				1		
171.00					<b>.</b>		
	<del> </del>	1			+	- • • • •	· / ·
172.00	<u> </u>			1 ·		· · · · · · · · · · · · · · · · · · ·	
	+	· · · · · · · · · · · · · · · · · · ·			+		
173.00				+			

· .

· · ·

PAGE ______ 16____OF ______

HOLE NO. DDH J97-5

						•		
	HOLE NO. DDH J97-5							
INTERVAL		LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC	
FROM	то	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.	
173.00								
173.50			A: CPY/FR/0.4%	A: K/FR				
174.00			B: MoS2/FR/0.1%	B: CB/FR	4.5			
			C: PY/FR/0.2%	C: K/PP		@ 174.6 - 175.0 Good coarse		
175.10	176.50	Rhyolite; light grey dense, aphanitic. Good cpy, py and some				grained cpy, py over 40cm. Upper contact faulted & broken, lower		
		moly above and below the dyke.	·			contact sharp, no visible affects in either rock type.		
176.00								
176.50	181.80	Granite; as before pink to orange and medium grained. Rare	1					
177.00		translucent quartz veinlets - 1-3cm. Mineralization weakens away				@ 177.00 Q/V/ 3cm cpy immediately below		
		for dyke and rock becoming grey in direction away from dyke.						
178.00		· · · · · · · · · · · · · · · · · · ·			4.6			
			As above	As above				
179.00								
180.00								
		÷		-				
181.00								
181.80	188.45	Rhyolite; pinkish orange, glassy and brittle, well broken. Colour				@ 181.8 CONTACT SHARP - THIN	chilled envelope 2cm in RHYOLITE 1cm	
182.00		changes to grey at 187m towards bottom of dyke.		-		alteration and discoloration in granite.		
						@ 182.1 30cm fine fragmental Bx.		
183.00							•	
· · · · ·				1		@ 183.50 FR/40°/4 CB		
184.00		······································				@ 183.60 FR/20º/1 CB		

.

PAGE 17_0F 23_

HOLE NO. DDH J97-5

	HOLE NO. DDH J97-5						
INTERVAL		. LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	то	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
184.00							
			This dyke appears	A: CB/FR			
185.00			to be essentially	B: K/PP			
			barren.				
186.00			· · · ·				
				·····	1	@ 186.40 FR/60°/3 CB	
187.00			No mineralization			@ 187.10 FR/75°/2 CB	
		· · · · · · · · · · · · · · · · · · ·	noted.				
188.00		· · · · · · · · · · · · · · · · · · ·					
188.45		Granite; as before, pink to orange grading variously to grey,	A: MoS2/FR/0.1%		2.5	@ 188.45 FLT/75° 20cm gouge & crushed CLAY ALTERATION	
189.00		uniformly medium grained, melanocratic, 25% matics - biotite>	B: CPY/F/TR	A: Clay/FR			
		pyroxene and perhaps minor amphibole. Unaltered except for		B: CB/FR			
190.00		thin (5 mm) K-spar envelopes on either side of fractures. Small					
		rhyolite dyke (60cm) starting at 210m - cpy and moly associated					
191.00		with this small rhyolite dyke. Granite becoming more crushed and					
		broken with increasing depth, i.e., starting around 215m. Patchy			3.3		
192.00		K-spar alteration at 218m.					
193.00							
194.00		······································					
195.00		· · · · · · · · · · · · · · · · · · ·					
195.00		·					

.

PAGE 18_OF 23_

10

HOLE NO DDH J97-5

		<u></u>			··· ···	•	
			DRILL [\] LOG				HOLE NO. DDH J97-5
INTERVAL		LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	τo	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
195.00						· ·	
195.50			A: MoS2/FR/TR	A: K/PP			
196.00	3.00 B: CPY/FR/TR B: CB/FR 3.0		Massive fractured uniform granite, minor 1-2cm translucent quartz veinlets.				
		· · · · · · · · · · · · · · · · · · ·	C: PY/FR/TR	C: Clay/FR			
197.00			· · · · · · · · · · · · · · · · · · ·			•	
<del>~ . ~</del> .							
198.00						· · · · · · · · · · · · · · · · · · ·	
		······				@ 198.70 FR/CPY/TR	
199.00			A. MoS2/FR/TR	A' K/PP		<u> </u>	
			B: CPY/ER/TR		27	· · · · · · · · · · · · · · · · · · ·	
200.00		······································				@ 200.00 ELT/MoS2/OTZ 100m 201	une & aruphord
200.00						@ 200.00 FEI/M032012 Toom got	
						@ 200.50 FR/CP1/K/4	
201.00							
202.00							
			· · · · · · · · · · · · · · · · · · ·		i i i i i i i i i i i i i i i i i i i		
203.00							
		······································				@ 203.70 FR/MoS2/2	
204.00							1:
						<u> </u>	¢
205.00		h		@ 205.10 FR/85°/3 guartz cpv 5mm			
206.00				<b> </b>	+		
206.00							1

PAGE ____19___OF _<u>23__</u>

HOLE NO. DDH J97-5

	HOLE NO. DDH J97-5							
INTERVAL		LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC	
FROM	то	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.	
206.00								
			A: MoS2/FR/TR	A: K/PP	2.9			
207.00			B: CPY/FR/TR	B: CHL/PP/V		@ 207.10 FR/80°/MoS2/ graphite?		
				C: CB/V		@ 209.80 Contact is mineralized fault. Granite is fine grained to aphanitic		
208.00			above, as if gradational contact		above, as if gradational contact. RI	nyolite has weak development if bloter		
						contact is 1cm fauit gouge.		
209.00						@ 209.90 V/QTZ/MoS2 20mm		
						@ 209.95 FR/40°/2/ K-spar		
210.00						@ 210.00 V/K/4 K metasomatism		
		· · · · · · · · · · · · · · · · · · ·	······································			@ 210.60 FLT/4°/Clay 2cm gouge		
211.00		······				@ 211.20 FR/MoS2/TR slickensided		
					•	@ 211.90 FR/65%1 Clay alteration	[	
212.00		······································						
.,								
213.00							1	
			······					
214.00		· · · · · · · · · · · · · · · · · · ·						
						@ 214.60 V/65°/4 Quartz 1cm trace cpy.		
215.00								
			·····	A: K/PP	2.7	· · · · · · · · · · · · · · · · · · ·	¢	
216.00				B. K/V	1	@ 216.00 DISS/CP 2.0cm		
			·	C: CHL/V				
217.00								
			·	l	I			

PAGE ____20___OF __23___

HOLE NO. DDH J97-5

•

.

,
		DR	ILL`LOG				HOLE NO. DDH J97-5
INTE	RVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	то	colour, texture, grain size, composition etc.					mineralization, type, age relations, etc.
			A: CPY/TR/FR	A: K/PP			
218.00			B: MoS2/TR/FR	B: CHL/V		· · · · · · · · · · · · · · · · ·	
		· · · · ·			3.5		
219.00							
220.00							· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·		ļ			
221.00							
221.80	222.70	Crush and fault zone - 221.8 to 222.7m, without sulphides,					
222,00		Strong gougy and clayey alteration. Rhyolite xenolith and several					
		small centimeter sized andesite xenoliths evident at 232m.	UNMINERALIZED	A: Clay/FLT			
223.00		Patchy K-spar alteration a 236m and continuing in typical granite					
· - · ·		to the end-of hole at 245.06m. (Hole was limited to the depth at	A: CPY/FR/TR				
224.00		this point in time - driller out of rods, additional rods were	B: MoS2FR/TR	A: K/PP		@ 224.30 FR/K	
		enroute.)		B: CHL/V		@ 224.60 FR/K	
225.00				C: CB/V	3.4		
						· · · · · · · · · · · · · · · · · · ·	-
226.00							
				<u> </u>	ļ		
227.00					ļ	@ 227.20 FR/Clay @ 65°	
			·····	· · · · · · · · · · · · · · · · · · ·			
228.00	ł					]	

.

PAGE ____21__OF __23___

		HOLE NO. DDH J97-5					
INTER	VAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	то	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
228,00						•	
			A: CPY/FR/TR				
229.00			No pyrite	A: K/FR Weak			
			conspicuous.	B: CB/FR Weak	2.5	Three hairline fractures noted in this be	ox with minor cpy on them. Usually with
230.00						thin veinlet translucent quartz centrally	enveloped by K-spar - to 2cm on either
				Relatively		side.	
231.00				unaltered.			
232.00			· · · · · · · · · · · · · · · · · · ·				
233.00							
234.00							
235.00		·····		A: K/PP Weak	2.8	@ 235.20 FR/80%1 K-spar	
		·	No sulphides	A: KK/FR Weak		@ 235.30 FR/80%1 K-spar	
236.00			conspicuous!	No carbonate		@ 236.20 Fissility/30°	
				conspicuous but			
237.00			No sulphides noted	still relatively			
			prior to splitting.	unaltered.			
238.00				<b>`</b> \\		@ 238.00 FR/45°/1	
						· · · · · · · · · · · · · · · · · · ·	
239.00				1		@ 239.00 Fissility/ 25° - 30°	

PAGE ____22__OF __23__

HOLE NO DDH J97-5

.

.

.

.

		DR		HOLE NO. DDH J97-5			
INTER	VAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	то	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
239.00							
240.00							
			No sulphides noted	A: K/FR/ Weak		@ 240.80 FLT White gouge & ground	o rock over 15cm, 10cm translucent qtz
241.00			in these last two	A: Clay/FLT		vein immediately below fault, general C	CLAY alteration adjacent to both.
· · · · · · · · · ·			boxes prior to				
242.00			splitting.				
			NO GRADE				
243.00			exceeding TRACE.			@ 243.00 FR/80°/2 3mm translucent	quartz thin K-spar envelope.
244.00							
					· · ·	Xenoliths, and some general inhomoge	enity in rock texture & fabric suggests that
245.06		End of hole.				may be nearing contact with andesite?	1
		NOTE: Lammle personally was on drill and shut down drill at this					
		point. Machine was limited to this depth, as well by drill rods. All					
		usable rods in camp were in the hole, others on way to increase					
		depth capacity to 1000'.					
				l			
				· · · · · · · · · · · · · · · · · · ·			
		1					
			1				

PAGE ____23___OF __23___

•

			Mr.	DRILL LO	G			HOLE NO
CONT	RACTOR	{	SKETCH, PLAN SECTION	DEPTH	TEST DIP	AZIMUTH	DATE STARTED September 10, 1997	PROPERTY JEAN
PHIL	S DIAMON	ND DRILLING LTD.		COLLAR			DATE COMPLETED September 2, 1997	CLAIM JW 301
CORE	SIZE	NQ					COLLAR ELEV. 1124 m.	TARGET Cu-Mo
OVER	OVERALL CORE RECOV. 99.57%			<b>N</b>		NORTH 9819 N. Relative	to astronomic grid in which 10,000 E	
ANAL	TICAL R	EFS					EAST 10,330 E	t collar of DDH 95-2
MIN-E	N LABS. 1	7S-0283-RJ-1+2+3					AZIMUTH VERTICAL	NTS 93N/2W
75-029	91-RJ-1+2	2+3+4					DEPTH 313.32	DATE LOGGED
75-029	91-RJ 1, 7	78-0291-RA-3					TIE IN POINT SITE 17	LOGGED BY C.A.R. LAMMLE
INTE	RVAL	•	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC.
FROM	то	colou	r, texture, grain size, composition etc.				bedding, faults, folds fractures etc.	mineralization, type, age relations, etc.
0	1	Casing and overbu	rden.					
1.00	5.80	Andesite; grading to	o skarned andesite at 5m. Initial recovery			1		
		is rubbly, several pi	eces showing grinding and bit pollshing.	Not apparent.	A: /SKARN/PP			· · · · · · · · · · · · · · · · · · ·
		Tough on bits, rean	ning shells and stabilizing bar. Andesite is		B: HF/P		Fractures oxidized.	
		becoming more con	npetent. It is medium grey, hard,					
•		hornfelsic. Skarn is	epidote green tinged by pink here and					
		there,				· · · · · ·	· · · · · · · · · · · · · · · · · · ·	
-			· · · · · · · · · · · · · · · · · · ·					
							<u></u>	
				A: Cpy/FR/TR	A: /SKARN/PP		······································	
				B: MT/FR/TR	····	· · · · ·		Pinkish mineral in skorp excepte
5.80	16.20	Skarn; green-pink, t	line grained epidote, diopside, k-spar,	C: Py/FR/TR			·····	with knife, probably tag act to be
		calcite, metasomati	c skarn. Mineralization very weak and					andradite - probably K Spec
		not readily apparent	t					andrauke - propably K-Spar.
				**				
	<u> </u>							

.

.

PAGE __1__OF __18__

.

.

HOLE NO. DDH J97-6

~

....

		RILL				HOLE NO. DDH J97-6	
INTE	RVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	то	colour, texture, grain size, composition etc.			······································	bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
8.00							
8,50		•	Not apparent.	As above.	As above.	No measurable attitude.	Skarn is greenish pink epidote
9.00							diopside K-Spar calcite skarn, fine
							grained.
10.00							
						· · · · · · · · · · · · · · · · · · ·	
11.00					-		
						@11.6 FLT/Broken zone, poor recov	ery upper contact faulted and broken.
12.00					Broken		
13.00						Massive -	
						No measurable attitude,	
14.00							
		· · · · · · · · · · · · · · · · · · ·					
15.00						@ 17.1 FR/45°/2 Bleached.	
						@ 17.4 FR/25°/3 3mm Calcite	
16.00		-					Lower contact faulted and broken.
16.20	17.70	Andesite; as at the start of the hole.		A: HF/P	Broken		
17.00						•	
17.70	20,40	SKARN: As above. Much more inhomogeneous due to				· · · · · · · · · · · · · · · · · · ·	
18.00		segregation of epidote, and concentrations of orthoclase.		~			
18.50				A: SKARN	Broken	······································	Contacts gradational over 10cm or so,
19.00							above and below,

.

.

PAGE ____2__OF ___18___

HOLE NO. DDH J97-6

.

- 5

-

[			HOLE NO. DDH J97-6				
INTE	RVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	то	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
19,00							
19.50			Not conspicuous	A: SK/P			
20.00			when unsplit				
20.40	24.60	Andesite, composition similar to foregoing descriptions, but	probably traces of			@ 20.8 FR/CB/BLEACHED	
21.00		this thin intercept is hematite red in colour as if oxidized in a	cpy and py.	A: HF/P		@ 21.4 FR/CB/60 1cm	
		sub-aerial environment.	·······			Numerous small hairline to 1/16" FR	
22.00					4.6	with carbonate	skarn mag. represent carbonate reef
						@ 22.1 FR/70°/CB/ 5mm	such as an atoll around the edges of a
23.00					· · · · · · · · · · · · · · · · · · ·	@ 22.3 FR/5º/CB/ 3mm	volcano emerging from the sea.
20.00				Oxidized. Dull			Contains white porphyry fragments.
24.00				hematite red		@ 24.3 FR/80° 1/minor CB	
24,00	25.20	Advante modium grou to block as not tunical lean andesite as if		andesitic			
24.50	25.20	Andesite, medium grey to black as per typical seam andesite, as in	· · · · · · · · · · · · · · · · · · ·	agglomerate.	<u> </u>	@ 25.2 FR/70°/3/CB	· · · · · · · · · · · · · · · ·
25.00		Taid down below water revents not posticizing submanne		A' SKIP	- <b> </b>		
		environmeni,					
25.20	27.60	Skarn; dirty green, due to less k-spar. Mottled appearance due to	······				
		irregular amounts of un-skarned particles of dark grey andesite.					
27.00						@ 27.6 FR/40°/3/ 5mm CB	
27.60	101.50	Andesite: medium grey, fine grained to aphanitic, inhomogeneous,		A: HF/PP		@ 28.0 FR/40°/2/ 3mm CB	
28.00		pencit magnetism faint to nil. Hornfelsing is not pervasive, and is		B: CB/FR	4.0	@ 29.0 FR/05°/3/ 15mm CB	
	- <del> </del>	not very intense - portions of the core can be scratched with the	A: Py/D/TR	C: Clay/FLT	1	@ 29.6 FR/45°/2/ CB	1
29.00	+	pocket knile. Very irregularly spaces propylitic alteration beginning		~		@ 29.9 FR/15°/1/ CB	
	+	at 38m, and all core at this point is resistant to the pocket knife.				@ 30.2 FR/25°/2/ CB	
30.00		Reticulate pattern of hairline fractures. Geologist doing the logging				@ 31.2 FR/10°/2/ CB	

PAGE ______OF ____

r			<u> </u>				1
		DRI	LL LOG				HOLE NO. DDH J97-6
INTE	RVAL	-LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	то	colour, texture, grain size, composition etc.	j			bedding, faults, folds fractures etc	mineralization type, age relations etc.
27.60	101.50	(Cont'd.) thought that the bit was soon to core into an intrusive.			<u>†</u>	,	
		Becoming variably coloured at 42m - grey and black and dirty	· · · · · · · · · · · · · · · · · · ·				
31.00	·	green – due to variations in intensity of propylitic alteration.				@ 32.8 FR/70°/2	
		Becoming fairly homogeneous at 50m to homogeneous at 60m.			Pretty well	@ 33.1 FR/60%1	
32.00		Ubiquitous thin films of quartz and calcite healing fractures.			broken up.		
32.50		Becoming strongly hornfelsed and very hard at 55m. General		A: HF/PP/		· · · · · · · · · · · · · · · · · · ·	
33.00		texture at 66m is massive - only a very occasional fragment or		B: CB/F/2	3,6		
		lapilli being noticeable. Sulphides generally inconspicuous or		C: /CHL/bleach		@ 33.8 FR/70%3	
34.00		absent. Rock is competent - coring is good. Intensity of hornfelsing			<u> </u>	@ 34.4 FR/55°/2	
34.50		is weakening at 76m, but cpy and py mineralization is more	A: CPY/FR/0.1%				
35.00		readily apparent. Ubiquitous fractures healed by calcite, some	B: PY/FR/TR			@ 35.3 FLT/?	3 cm gouge.
		by quartz. Portions of the core can, at 83m, be scratched with the				@ 35.8 FR/70°/ 6 mm calcite.	
36.00		pocket knife. At 87m rock is variably hard, parts being scratchable,				@ 36.05 FR/CPY/	3cm good cpy.
		other parts being immune to the knife.				@ 37.2 FR/25%1	
37.00						@ 37.4 FR/30%1	
37.50		-		A: HF/D			
38.00				B: Propylitic	2.1		
				i.e.; chl. epid.			
39.00				carb., py./patches		······································	\$
			[	<u>``</u>		· · · · · · · · · · · · · · · · · · ·	
40.00						@ 40.3 FR/40%2 Chi.	······································
41.00		· · · · ·					

· ·

•

PAGE __4__OF _<u>18__</u>

			DRILL LOG				HOLE NO. DDH J97-6
INTE	RVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	то	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
41.00							
42.00						@ 42.4 FR/65°/2 Chi.	
						@ 43.0 FR/70%3	Propylitic.
43.00			A: CPY/FR/0.1%	A: HF/P		@ 43.5 FR/70°/2	
			B: PY/FR/TR	B: Propylitic/PP		@ 46.1 FR/40°/	Carbonate & gouge.
44.00					,	@ 47.0 FR/30°/2	
					3.6	@ 47.5 FR/35°/2	3mm carbonate.
45.00						@ 47.7 FR/60°/2	2mm cpy.
						@ 45.8 MT in fractures -	appears to be mineralized by
46.00		······································					magnetite in fractures over 3cm.
					· ·		
47.00							
48,00	·					@ 48.4 FR/20°	3cm quartz carbonate.
48.50			A: CPY/FR/0.1%	A: HF/P			
49.00			B: PY/FR/TR	B: CB/FR	4.7	@ 49.1 FLT/60° 2cm gouge.	
			C: PYRR/FR/TR	C: Clay/FR			
50.00							
	· · · · · ·						<b>9</b>
51.00				~			
						@ 51.9 FLT/75° 25cm gouge	& crushed rock.
52.00						@ 52.3 possibly some core loss.	

PAGE __5__OF __18__

			DRILL LOG				HOLE NO. DDH J97-6
INTER	RVAL.	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	то	colour, texture, grain size, composition etc.			·	bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
52.00				-			
53.00							
54.00			A: CPY/FR/0.1%	A: HF/P	4.8	@ 54.4 FLT/4	4cm crushed rock.
			B: PY/FR/TR	B: CB/FR	· · · ·		
55.00						@ 55.5 FR/ 5cm	coarse calcite.
						a few (4-6) hairline fractures with cpy	
56.00						pyrite is generally inconspicuous on	
						un-split core.	
57.00							
58.00						@ 58.4 FR/80°/4	1cm translucent quartz & cpy.
				+			
59.00			A; CPY/FR/0.2%	A: HF/P	5.1	Massive homogeneous numerous	@ 59.0 FR/70°/ cpy
			B: PY/FR/0.1%	B: CB/PP	1	tightly healed hairline fractures many	@ 59.3 FR/70°/ good cpy
60.00				C: CHL/FR		partially painted with thin film cpy.	
			· · · · · · · · · · · · · · · · · · ·	+	1		@ 60.9 FR/70°/ cpy
61.00							@ 61.1 FR/20% good cpy.
							@ 61.5 FR/70º/ 2cm quartz-cpy.
62 00							@ 61.8 FR/80°/ good cpy.
63.00					1	· · · · · · · · · · · · · · · · · · ·	

PAGE __6__0F __18__

			DRILL LOG				HOLE NO. DDH J97-6
INTE	RVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	то	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
63.00							
						@ 63.8 FR/60°/	translucent quartz 2cm.
64.00						@ 64.0 FR/CPY/65°	
65.00			A: PY/FR/TR	A: HF/P	2.7	Massive; carbonate alteration on	
			B: CPY/FR/TR	B: CB/PP		two incipient faults.	
66.00							
						@ 66.9 FLT/45°	3cm carbonate alteration.
67,00							
68.00							
							imaginar corporate attorntion
69.00						@ 69.1 FL1/15*	
						@ 69.8 FR/35°/1	
70.00		· · ·	A: CPY/FR/0,1%	A: HF/P		@ 70.1 FR/30°/2	
			B: PY/FR/TR	B: CB/FR		@ 70.7 FR/40°/2/CPY	
71.00						@ 71.4 FR/60°/2	
		1			5.6	@ 71.5 FR/30°/3	
72.00	1						
	1						
73.00	1						
<u> </u>	1	· · · · · · · · · · · · · · · · · · ·					
74.00							

Υ,

2 A

,

.

PAGE __7__OF __18__

)	
 1	

			~		_		
			DRILL LOG			·	HOLE NO. DDH J97-6
INTE	RVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	то	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
74.00							
75.00						@ 75.0 FR/15°/2/CB	
			A: CPY/FR/0.1%	A: HF/P weak		@ 75.6 FR/25°/1 CB	
76.00	-		B: PY/FR/TR	B: CB/FR		@ 76.1 FR/10%3 CB	
					4.2		
77.00						@ 77.1 FR/15%4 CB	
78.00						@ 78.2 FR/25"/1 CB	
						0.70.0 504094 00	
79.00						@ 79.3 FR/10/1 CB	
80.00							
	· · · · ·					2.01.0.FD/559/0.om/. Fowar	
81.00			A: CPY/FR/TR	A: HF/PP/weak		fractures, rock more competent.	
82 00					2.1	@ 82.0 FR/85°/2 CB	
						@ 82.15 FR/75°/3 Cpy 2mm	
83.00			Mineralization	<u>_</u>		0 00 5 504500 CD	
			weaker.	_ <u>_</u>		@ 83.5 FR/457/3 CB	
84.00							
85.00			·	+	·	@ 85.2 FR/0º/1 CB 1cm	

HOLE NO _______ DDH J97-6_____

			٣,				
			DRILL LOG			· · ·	HOLE NO, DDH J97-6
INTER	RVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	то	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
35.00							
36.00			A: CPY/FR/TR	A: CB/FR		@ 86.0 FR/40°/2 CB	
			B: PY/FR/TR			@ 86.5 FR/0°/3 5mm CB	
37.00							
37.50			Minor mineralization		ļ	@ 87.9 FR/5%3 CB	
38.00			on fractures, usually		22		
39.00			unsolit core.		2.2	@ 89.4 FR/45°/2 2mm CB	
90.00							
1.00						@ 91.0 FR/60°/4 3mm CB with cpy	envelope
91.50			A: CPY/FR/TR	A: CB/FR		@ 91.5 FR/30°/2 CB	
2.00		·	B: CPY/FR/TR				
02.00							
93.00					Broken core.	-	
94.00							<b>a</b>
				<u> </u>			
95.00							
			· ·			@ 95.6 FLT/60°/5 3cm gouge, 10cm	B + on top gouge & broken ground
96.00						beneath.	

· ,

PAGE ___9__OF ___18___

			~					
		DRI	LL LOG				HOLE NO. DDH J97-6	
INTE	RVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC	
FROM	то	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.	
96.00								
07.00			A: CPY/FR/0.2%	Pretty much	Rock in box	Rock in this box is generally crushed, a	as if something is happening. Nothing	
			8: PY/FR0.05%	unaltered.	too broken up	one can put the protractor on and mea	sure. Numerous hairline fractures are	
98.00					to be	healed by CB others are not healed at	all.	
					meaningful.			
99.00								
100.00								
						Magnetite in fractures @ 100.2. Uppe	r contact of rhyolite is not clear. Occurs	
101.00					· · · · · · · · · · · · · · · · · · ·	in broken rock at top of box. Bottom c	ontact is the quartz vein.	
101.50	105.30	Rhyolite; similar to rhyolite mapped in previous holes. Pinkish	Magnetite in		·····			
102.00		orange to light brown, aphanitic, brittle, with faint disseminated	fractures @ 100.2					
		cpy. Very badly broken - hard to get much reliable structural	metres.		Broken.			
103.00		information from the unit. Bottom of rhyolite is marked by40cm				@ 104.0 FLT 3cm gouge.		
		of variably white/translucent bullish quartz.				@ 104.7 FLT		
104.00					<u> </u> .			
104.50			A: CPY/V/QTZ					
105.30	145.60	Andesite; as before but massive, very hard, dense and hornfelsic.	B; PY/FR/1%			Excellent mineralization in quartz vein	sample 104-106m probable runs 1.5%	
	· ·	Inhomogeneous appearance due to irregular propylitic alteration.		×. •		Cu.		
106.00	<u> </u>	No features were noted that would give any indication of the		A: HF/P				
<u> </u>	<u> </u>	attitude of the rock. Usual ubiquitous fractures healed by calcite		B: porphyritic		@ 106.3 FR/10/2 CB		
107.00		and sometimes quartz. Rock is occasionally softened due to		C: CB/FR		@ 106.8 FR/45°/3 CB		

PAGE 10___OF 18___

HOLE NO. DDH J97-6

.

Sec. 1

.

,

			~,_								
	DRILL LOG										
INTE	RVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC				
FROM	то	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.				
105.30	145.60	(Cont'd.) proximity to faults or incipient faults. Immune to pocket	A: CPY/FR/0.2%	A: HF/P							
		knife at 120m where reticulate pattern of fractures are healed by	B: PY/FR/TR	B: CB/FR	3.8	Massive - no measurable features to g	ve attitude of the andesite.				
108.00		K-spar, and have thin(up to 1cm or so) bleached envelopes on									
		either side. Noticeable mineralization is usually associated with				@ 108.6 FR/80°/2 CPY					
109.00		the k-spar alteration. At 132m fractures to 5mm in width are				@ 109.2 FR/20%1 CB					
		healed with pretty pink k-spar, others with white calcite. Propylitic									
110.00		alteration becoming very strong and pervasive at 136m, rock				@ 110.2 FR/35% CB					
		becoming pinkish due to k-spar, site geologist betting with				@ 110.3 FR/45°/2 CB					
111.00		driller that the bit would go into granite within a shift. Copper									
		content is definitely associated with the k-spar atteration, so				@ 111.5 FR/0%3 CPY parallel to core					
112.00		strong that sections of the core resemble latite, or perhaps			-	@ 111.7 FR/VEIN/CPY 2cm					
		rhyolite in composition.				@ 112.6 FR/40°/2					
113.00			A: CPY/FR/0.1%	A: HF/P		@ 113.2 FR/30%2 CB					
			B: PY/FR/TR	B: CB/V	3.9						
114.00		······································		C: Clay/FLT			·····				
				D: Propylitic/PP							
115.00						@ 115.0 FR/65°/4 good cpy over 3cr	n				
						@ 115.6 FR/80°/3 py + cpy over 3mm.					
116.00						@ 116.0 FR/60°/3	CLAY/CARB/QTZ				
				N							
117.00	· · ·					@ 117.4 Incipient fault / 30° mainly CB some sulphites.					
118.00											

.

PAGE 11 OF 18

HOLE NO DDH J97-6

			<u> </u>				
	HOLE NO. DDH J97-6						
INTER	VAL	, LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	то	colour, texture, grain size, composition etc.	6 -			bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
118.00						@ 118.0 FR/20°/4	
			A: CPY/FIL/2	A: HF/P			
119.00		······································	B: CYP/D/TR	B: K/FR	5.1	@ 119.2 FR/30°/3	
			C; PY/FR/TR	C: CB/F/2		@ 119.7 FR/25%3	
120.00		·				@ 120.3 FR/35%3	
			· · · · · · · · · · · · · · · · · · ·			@ 120.6 FR/30°/3	
121.00						@ 121.3 FR/45%2 CB	
						@ 121.4 FR/80°/2 CB	
122.00						@ 121.5 FR/CK/2 Cpy. diss.	
		· · · · · · · · · · · · · · · · · · ·				@ 122.0 FR/45°/2 CB	
123.00							
124.00							
124.50			A: CPY/FR/0.1%	A: HF/PP	2.7		
125.00			B: PY/FR/TR	B: Propylitic/p		@ 125.0 FR/65°/4 Pink K-spar 3mm.	· · · · · · · · · · · · · · · · · · ·
				C: CB/FR		@ 125.7 FLT/50°/5 reheated by Qtz	: CB. 20cm.
126.00		······································				@ 126.1 FR/45%2 CB	
						·····	
127.00						· · · · · · · · · · · · · · · · · · ·	•
				· · ·	· · ·		
128.00							
						@ 128.8 FR/75°/2 CB	
129.00		·					

· . .

.

.

PAGE ____ 12___OF ____8___

		DR	ILL' LOG					
INITES	21/21				CRACTURES IN	STOLICTURE	HOLE NO. DDH 397-6	
	(VAL	LINOLOGI	MINERALIZATION	ALTERATIONS	PRACTORES/M	STRUCTURE	WIGC	
FROM	то	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.	
129.00			A:					
			CPY/Propylitic/0.2%	A: HF/PP		Hornfetsed, but softened to near goug	je, by incipient faults.	
130.00			B: CPY/FR/TR	B: Propylitic/PP				
			C: PY/FR/TR	C: CB/FR		@ 130.8 FR/45°/2		
131.00						PROBABLY SOME OF THE BEST CP	Y MINERALIZATION IS ASSOCIATED	
						WITH THIS PALE OLIVE GREEN PRO	OPYLITIC ALTERATION. IT'S MORE	
132.00						THAN JUST FRACTURE FILLING IN	SOME OF THESE AREAS.	
						@ 131.3 FR/20°/2		
133.00			1		· · · · · · · · · · · · · · · · · · ·		·····	
134.00		· · · ·						
			· · · · · · · · · · · · · · · · · · ·			@ 134.8 MT/FR/2 MAGNETITE		
135.00			A: CPY/Propylitic	A: Propylitic/heavy		@ 135.2 FR/70°/2 4mm K-spar		
			B: CPY/FR/0.3%	B: HF		@ 135.6 Crushed zone - 20cm		
136.00		<u> </u>	C: PY/FR/TR					
		······································						
137.00		······································				······································	1	
· · ·						Nice fracture & disseminated mineraliz	ation building up near bottom of the box	
138.00			1			@ 138.1 Crushed gougy zone - 10cm	h	
						·	•	
139.00			+	·		······································		
		· · · · · · · · · · · · · · · · · · ·					·	
140.00	·· · ·			<u> </u>	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
140.00			1	1	:			

PAGE 13___OF 18___

HOLE NO. DDH J97-6

-

	DRILL~LOG											
INTE	RVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC					
FROM	то	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.					
140.00			A: CPY/FR/0.2%	A: Propylitic/PP	Rock is much							
		· · · · · · · · · · · · · · · · · · ·	8: CPY/D/0.1%	B: K/PP	fractured and	MUST BE APPROACHING THE GRAN	ITE CONTACT.					
142.00			C: PY/FR/TR	C: HF/PP	partially	· · · · ·						
				D: CB/FL	reassimilated.							
143.00			· · · · · · ·									
						· · · · · · · · · · · · · · · · · · ·						
144.00						End of shift 13-Sept.97. Driller & wife	-					
						went to town for groceries & a break.						
145.00						· · · · · · · · · · · · · · · · · · ·						
145.80	178.80	Fine grained greenish grey Takla andesite containing widespread	A: PY/FF/2.5%	A: CHL/P/8		145.8-147.64: Mineralized fractures @	10°, 75-80°. Mineralized fractures are					
146.00		splashes of cpycpy in fractures usually associated with pyrite.	B: CPY/FF/1.00%	B: CAL/FF/5	· · ·	those containing one or more of. cp	y or moly. Pyrite may or may not be					
		1mm-augite phenocrysts occasionally noted. Felsic dykelets (light		C: EPVFF/1		present.						
147.00		grey) common.				· · · · · · · · · · · · · · · · · · ·	······					
						148.13: FLT/0°/gouge.						
148.00						150.58: 10cm of heavy Kspar in rhyoliti	c dykelet. Upper contact @ 60°, lower					
						@ 20°. Heavy cpy.						
149.00		· · · · · · · · · · · · · · · · · · ·				151.00: Kspar selvage relative to 5mm wide quartz vein @ 75°. Ven						
						cpy. Similar looking mineralization to the "B" Zone.						
150.00						153.16-154.82: Relatively heavy py & c	py in fractures mainly @ 70-80°.					
						154.20: FLT/20°/gouge includes pyrite.	\$					
151.00		· · · · · · · · · · · ·		~		154.82: FLT/60°/chloritic gouge.						
						165.80: Heavy cpy in fractures @ 65°.						
152.00		169.90-170.51: Felsic dyke containing heavy disseminated	A: PY/D/4%			175.53: FLT/70°/gouge.	······································					

PAGE 14___OF 18___

HOLE NO. DDH J97-6

.

ê

.

7

•

.

.

· ·

		DR	ILL~LOG				HOLE NO. DDH J97-6	
INTERVAL		LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC	
FROM	то	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.	
	[	(169.90-170.51 cont'd.) sulphide - mainly pyrite. Upper & lower	B: CPY/D/0.6%			175.45: FLT/75%gouge.		
		contacts @ 80° & 50°, respectively.			h	179.46; FLT/80*/gouge.		
						182.00: FLT/30°/gouge.		
178.80	183.69	Fine-grained greenish Takla andesite similar to 145.80-178.8 but	A: CPY/FF/2%	A: CHL/P/8		182.73: FLT/60°/gouge.		
		now cpy>>py. Very strong Cu mineralization in parts of the	B: PY/FF/0.25%	B: CAL/V/2		182.77-183.31: Very heavy cpy in quartz vein @ 65°, 80°. Also molybdenite in		
		section. E.g. 182.77-183.31.	C: Moly/FF/<0.1%	C: Kspar		a fracture in quartz and as irregular	massive seams.	
						185.00: FLT/50°/gouge.	~	
183.69	189.76	189.76 Fine-grained leucocratic crowded porphyry dyke. Strongly		A: Clay/P/8		185.25: FLTS/10°, 45°/slickensided m	bly.	
		altered and mineralized by pyrite. Abundant white feldspars	B: CPY/F/0.2%	B: Calcite/V/4		187.24: FLT/20°		
		@ 0.5mm to 1mm. Upper contact sharp @ 80°.				· · · · · · · ·	······	
	· · · ·	······································				····· · · · ·		
189.76	195.00	Andesite. Moderately strongly faulted overall with sections of	A: PY/FF/0.5%	A: CHL/1/9		189.8: FLT/70%gouge.		
		15cm of strong gouge development.	B; CPY/FF/0.2%	B: Calcite/V/r		190.10: Heavy cpy 1mm fracture @ 80	o	
				C: Kspar/P/2		193.00-193.29: FLT/25*/slickensides.		
			······	D: Epidote/F/1		193.40: Heavy cpy in fracture @ 70°,		
		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		193.61: FLT/30°/gouge.		
195.00	200.40	Fine-grained andesite. Heavy fine grained disseminated pyrite.	A: PY/D/2%	A: CHL/P/5		194.20-194.5: FLT's/0*, 35*/ essential	y all gouge.	
		Weak fractures controlled sulphide mineralization.	B: PY/F/0.1%	B: CAL/V/4				
			C: CPY/D/0.1%					
		· · · · · · · · · · · · · · · · · · ·				\$02.39	•	
200.40	204.00	Fine-grained andesite with heavy fracture controlled chalcopyrite.	A: PY/F/2%	A: CHL/P.5		202.72-22-89. Very heavy cpy in mass	ive veinlets up to 1.25cm thick. Core	
			B: PY/F/1%	B: Q/V/3		angles typically 85°.		
				C: Kspar/V/2		· · · · · · · · · · · · · · · · · · ·	······································	
r		L		L	1		L	

.

\$

.

PAGE ____15___OF ___18___

HOLE NO. DDH J97-6

-

.

.

	DRILLLL										
INTERVAL		LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC				
FROM	то	colour, texture, grain size, composition etc.		-		bedding, faults, folds fractures etc	mineralization, type, age relations, etc.				
				D: EPI/V/1							
204.00	206.00	Fine-grained andesite as above. Very brittle. Weakly	A: PY/D/0.5%	A: CALIV/9							
		mineralized by fracture controlled sulphide.	B: CPY/D/<0.1%	B: CHL/P/4							
·				C: Biotite/P/3							
206.00	220.42	Andesite. Fine-grained. Altered. Fairly prominent secondary	A: PY/D/0.5%	A: CAL/V/9							
		biotite as faint reddish brown streaks. Heavy calcite veining.	B: PY/0/<0.1%	B: CHL/P/4							
				C: Biotite/P/3							
220.42	230.62	Fine-grained andesite. Most of the section is very intensely	A: PY/FF/1.50%	A: CHL/P/7							
		fractured. Moderate sulphide. Sulphide mostly in hairline	8: CPY/D+F/trace	B: CAL/V/3							
		fractures.	· · · · · · · · · · · · · · · · · · ·								
230.62	245.00	Fine-grained augite andesite. Locally very heavy cpy.	A: CPY/FF/1,50%	A: CHL/P/8		230.80: Minor epidote in a fracture,					
			B: PY/FF/10.25%	B: CAL/V/5		242.25-242.80: Zone of faulting as inc	licated by slickensides but no gouge				
		· · · · · · · · · · · · · · · · · · ·		C: EP/FF/1		present. Heavy chalcopyrite in sheare	d and crushed quartz vein. Very strong				
						chlorite alteration. The mineralization	predates the faulting.				
						242.25-243.80: FLT's/60°, 70°/slicken	sides, gouge & mylonite.				
						244.45: FLT/65º/gouge.					
245.00	258.80	Augite andesite. Weakly mineralized.	A: PY/FF/1.0%	A: CHL/P/8		· · ·	*				
			B: CPY/FF/0.1%	B, CAL/V/8							
258,80	267.80	Augite andesite similar to 245.0-258.80. More highly	A: PY/FF/0.5%	A: CHL/P/8		258.80: Relatively heavy cpy in a fract	lure @ 60°.				

.

PAGE _______ I6____OF ____18___

HOLE NO. DDH J97-6

----

		DR	ILL [、] LOG			·········	HOLE NO. DDH J97-6
INTE	RVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	то	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
		(258.80-267.80 cont'd.) mineralized with cpy starting at 258.80 m.	B. PY/FF/0.2%	B: CAL/V/4		259.42: FLT/75%slickensides.	
					1	261.00: Heavy cpy in 2 fractures @ 65	5°.
						262.00: Cpy in a fracture @ 55°.	
267.80	272.00	Augite andesite occasionally with augite phenocrysts to 3mm and				270.13-270.20: FLT/65°/mylonite.	
		minor pyroclastics. Spotty sections of reddish brown streaks of				270.45: FLT/60%gouge.	
• • •		biotite, locally pervasive.				271.00: FLT/45%gouge.	
		271.16-271.23: Augite phenocrysts to 3mm.	A: PY/FF/0.1%	A: CHL/P/7		271.02: FLT/65%slickensides, gouge.	· · · · · · · · · · · · · · · · · · ·
			B: CPY/FF/<0.1%	B: CAL/V/4		271,49: FLT/10º/slickensides.	
				<u>.</u>	···	272.35-273.00: FLT/10º/ Profound she	aring with some gouge.
272.00	275.30	Lapilli tuff. Lapilli to 5 cm. Patchy fine-grain biotite as seen above	A: PY/FF/0.1%	A: CHL/P/7		273.50: FLT/15%gouge.	· · · · · · · · · · · · · · · · · · ·
		common.	B: CPY/FF/trace	B: CAL/V/4		275.00; FLT/75*/gouge.	
			•	C: Biotite/P/2	1	278.85: FLT/70°/ slickensides, gouge.	
275.30	284.00	Andesite similar to 267.80-272.00 but increased faulting with	A: PY/FF/<0.1%	A: CHL/P/7		278.85: Heavy py in vein @ 85°.	
		depth.	B: CPY/FF/trace	B: CAL/V/4		279,99: FLT/60°/	
				C: Biotite/P/2		280.30: FLT/10°/slickensides, gouge.	
284.00	295.56	Andesite as above. Abundant brown biotite alteration. No		A: Biotite/P/10		286.60: FLT/45%gouge.	
		sulphide minerals seen. Gypsum occurs in calcite veins.	· · · · · · · · ·	B: CAL/V/2	··	287.10: FLT/55°/gouge.	1
 				C: Gypsum/FF/1		293.28: Heavy gypsum in fracture @ 2	1. 0°. Associated with calcite.
		288.00: 5cm vein of simple pegmatite @ 10°. Biotite, white				295.13-295.38: FLT/65%entirely gouge	
		feldspar.		`n		295.57-298.00: FLT 25°, 70°, 85°. Es	sentially the entire section is gouge.
295.56	313.32	Andesite. Greenish grey. Competent.	A: PY/FF/<0.1%	A: CHL/P/8			

· .

.

PAGE 17_OF 18

		HOLE NO. DDH J97-6					
INTERVAL		. LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	то	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
			B: CPY/FF/trace	B: CAL/V/2		303.13: Pyrite in fractures.	
		· · · · · · · · · · · · · · · · · · ·				306.15: Cpy in fractures @ 70°.	
						307.77-311.00; FLT's 10-40°. Slickens	sides & gouge in (many places in this
	<u> </u>					heavy broken section. Hematized fract	ures occasionally noted.)
	<u> </u>		· · · · ·			308.10: Heavy pyrite in calcite vein @	60°.
						308.25: FLT/45°.	
						308.41: Pyrite in fracture @ 55°.	
						311.56-312.42: FLT/50° Gouge & slick	ensides also hematized fractures.
	313.32	End of hole. = 1028 feet.				······································	
		· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	
	<u> </u>						
		· · · · · · · · · · · · · · · · · · ·					
	<b> </b>					· · · · · · · · · · · · · · · · · · ·	
					· · · · · · · · · · · · · · · · · · ·	······································	*
				<u>``</u>		······································	
				·····			
	·····						
		· · · ·					

.

PAGE _____ I8___OF ____18___

HOLE NO. DDH J97-6

			. D		G	-			
CONTR	RACTOR	_	SKETCH, PLAN SECTION	DEPTH			DATE STARTED Sept 22 1007	PROPERTY JEAN	
PHIL'S	DIAMON	ID DRILLING LTD.		COLLAR -55°		172.00011	DATE COMPLETED Sept 24 1997	CLAIM M/ 301	
CORE	SIZE	NQ					COLLAR FLEV 1138 m		
OVERALL CORE RECOV. 95,23%		E RECOV. 95.23%				+	NORTH OTON IN RELEV. 1138 M. TARGET B ZONE		
ANALY	TICAL R	EFS	-		·		EAST 10.264 E1 10.000 N is the or	oliar of DDH 105.2	
MIN-E	EN LABS	·						NTS 02M/2M	
78-03	02-RJ 1	2+3+4				·	DEPTH 197.50 m	DATE LOCCED Sont 1007	
	•••••••••						TIF IN POINT 1997 Road survey	LOGGED BY P. I. Prinest	
INTER	VAL (m)					FRACTURESM		NICO	
FROM	то	color				FIGACI DICEONA			
0	2 13	Overburden			· ···		bedding, radius, rokos tractures etc.	mineralization, type, age relations, etc.	
						· · · ·			
2.13	48.00	Lapilli tuff with lapil	li to 5cm; rare breccia size fragments; 10cm	A: PV/FF/0.2%	A' BI /P/8		17.48: Hemay cov & pyrite in quartz vain 6	3 20°	
		size Selective ble	aching of some lanilli I ocally skamified	B' Cov/D/trace	B. CHI /PA 7		17.60. Hederately bener only in time third	y 30 . 	
		Patchy gamet deve	elopment, 15.54, 19m, Minor reddish garnet		C: CAL A//3		The indefacely reavy cpy in mini tack	C pyrite-cpy nactore @ 65°.	
		Bleaching along fra	actures		D' EP/EE/1				
		21.48: Minor game			E: Garnet/P/1			· · · · · · · · · · · · · · · · · · ·	
		23 00-23 30: Mode	erately beavy garget		E. Guillett M				
		1			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		
48.00	59.52	Augite, Augite tvp	cally 2-4mm and now mostly bleached. Also	A: Cov/V/0.1%	A: CHL/P/6		48 25 48 30: Ven/ hemo/ on/ 8 n/ (1:1) in	munta poloite vicio @ 65%	
		minor associated h	ornblende which is less intensely altered	B: Pv///<0.1%	B: CALINIA		58 50: ELT/25*/gourge	quanz-calcite vein @ 65*.	
					D. 010111		300.00. TE1/20 /g00ge.		
59.52	63.60	Augite porphyry wi	h chlorite after augite. Lesser fresh hornblende	A: Pv/FE/0.1%	A' EHL/P/6		60.35: ELT/0%slickensides		
		phenocrysts, Augi	e is occasionally fresh		B' CALN/2		SUSU, TETTO /SILCRETISIUES.		
					0. 0.0012		66 34 68 03: Shear zone @ 10º including	blaashing conformable to the phone	
63,50	67.20	Andesite Attered	s weakly pyritized				Weak purite in this structure	pleaching contormable to the shear	
			a manual bitter and	L	·		weak pyike in and suuclure.		

PAGE ___1__OF _5__

HOLE NO. DDH J97-7

	-	HOLE NO. DDH J97-7						
INTE	RVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC	
FROM	то	colour, texture, grain size, composition etc.			· ··	bedding, faults, folds fractures etc	mineralization, type, age relations, etc.	
67.20	69.10	Andesite. Relatively well mineralized with cpy & py.	A: Py/FF/2.5%	A: Biotite/P/7		67.38-68.00: The best section of cpy in the hole to date by far. Cpy bearing		
			B: Cpy/FF/0.5%	B: CAU/V/R		fractures @ 35:55, 80°.		
						67.75-67.80: Blotchy cpy & py (3:1) in	fractures @ 30°.	
69.10	78.64	4 Andesite, Altered, Weakly mineralized mainly py. A: Py/FF/0.2% A: CHL/P/8 68.06: FLT/60°/g		68.06: FLT/60%gouge.				
	B: Cpy/FF/minor B: Biotite/P/2 71.16: Heavy cpy in 3m		71.16: Heavy cpy in 3mm thick vein @	40°, associated py.				
				C: CAL/V/2				
		75.59-76.10. Biotite-rich section grades into semi-massive reddish				77.08: FLT/55°/slickensides.		
		brown garnet at 76.10				77,46: FLT/45°/chloritic gouge.		
		76.10-76.87: Massive reddish brown garnet with associated chl.	A: Py/D/0.3%	A: Garnet/P/10				
		and calcite. Disseminated pyrite in the garnet. No cpy seen.		B: CHL/V/6				
78.64	110.72	Andesite. Altered & weakly mineralized mainly by py.	A: Py/FF/0.3%	A: CHL/D/8		84.40-85.10: Relatively heavy pyrite w	ith minor associated cpy in sheared	
			B: Py/FF/minor	B: Biotite/PP/4		andesite @ 10°.		
		· · · · · · · · · · · · · · · · · · ·		C: Calcite/V/2		85.00: FLT/20°/slickensides.		
				D: Kspar/V/1		91,00: FLT/25°/slickensides.	·	
						91.10: FLT/20°/gouge.		
		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			.96.50: FLT/0°/Fault breccia + gouge.		
		· · · · · · · · · · · · · · · · · · · · · · · ·				97.00: FLT/0%Fault breccia.	,	
			· · · · · · · · · · · · · · · · · · ·	·~~		98.00-98.59: FLT/35°/Strong shearing	& gouge.	
						103.51: Heavy cpy in quartz vein @ 3	cm @ 30°. Kspar present.	
					1	104.00: FLT/20°/gouge.		

.

.

PAGE ______OF _5___

	DRILL`LOG									
INTE	RVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC			
FROM	то	colour, texture, grain size, composition etc.		1.		bedding, faults, folds fractures etc	mineralization, type, age relations, etc.			
		· · · · · · · · · · · · · · · · · · ·				104.44-104.70: FLT/20°/mylonite & gos	uge.			
		······································				109.80: Heavy cpy in fracture @ 60°.	· · · · · · · · · · · · · · · · · · ·			
110.72	113.33	Feldspar porphyry dyke. Medium grained. About 1% hornblende	A: Py/D/0.1%			113.33-114.36: FLT/10º/gouge & heav	y shearing.			
		feldspar phenocrysts poorly developed. Upper contact @ 40°.								
113.33	117.78	Feldspar porphyry dyke. Coarser variety than 110.72-113.33.	A: Py/D/0.1%	A: CHL/FF/5		· · · · · · · · · · · · · · · · · · ·				
		About 2% biotite - now altered to chlorite. Lower contact @ 70°.		B: CHL/D/3			· · · ·			
				C: CAL/V/2%						
117 78	131 21	Addesite Fine-grained	A: Cov/EE/0.1%	A: CHUP/5		121 21-121 54: Et T/10%gourge				
	191.21		B: Dy/EE/<0.1%	P: CALAVIA		122.121.21.04. FL 1/10 / googe.	· · · · · · · · · · · · · · · · · · ·			
			D. 19/11/0.1/0	D. CADVIA		123.10. FE1733 /gouge.				
						124.36-126.46: Cpy in fractures @ 50.3	>>,80°.			
						129.54: Heavy cpy in a tracture.				
						129.54-129.90: FLT/10*/gouge, slicken	sides.			
						130.70: ·FLT/20°/gouge.				
131.21	133.27	Feldspar porphyry dyke similar to 113.33-117.78. Ground mass is	A: Py/D/0.1%	A: CHL/D/6						
		pinkish, Upper contact @ 55°. Lower obscured by broken core.		B: CHL/FF/4						
				C: Calcite/FF/6			·			
133.27	138.45	Andesite. Strongly altered & faulted.	A: Cpy/FF/0.3%	A: CHL/D/9		134.65: FLT/45%gouge.				
			B: Py/FF/0.2%	B: CHU/F/8		134.82: FLT/55°/gouge.				
			C: Cpy/D/0.1%	C: CAL/V/E		135.77: FLT/40°/gouge, slickensides.				
· · · · · ·		······································	D: Py/D/0.1%	D: BL/P/2		136.15: Heavy cpy & py in a 2mm fract	ure @ 55°.			

•

PAGE _____OF ____

HOLE NO. DDH J97-7

			<u>~,</u>				· · · · · · · · · · · · · · · · · · ·
		DR	RILL LOG				HOLE NO. DDH J97-7
INTE	RVAL	· LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	TO	colour, texture, grain size, composition etc.				· bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
						136.79: Heavy cpy in a 2mm fracture	@ 60°. Associated chlorite.
						137.14: FLT/30*/gouge.	
					<u> </u>	137.38: Disseminated cpy.	
						136.63: Cpy in fracture @ 10°. FLT/5	0°/gouge.
						138.00: Cpy in fracture @ 20°.	1
				· · · · ·		138.24-138.39: FLT/65°/gouge.	
138.45	141.90	Feldspar porphyry dyke similar to 113.33-117.78. Chlorite 2%	A: Py/FF/0.5%	A: CHL/D/6		138.70-139.00: FLT/45°/gouge.	
		after biotite.	B: Cpy/D/0.1%	B: CAL/FF/4		139.00: 2cm thick pyrite vein @ 55°.	
						140.18: FLT/60°/slickensides.	
141.90	145.00	Andesite. Altered & mineralized by fracture controlled pyrite &	A: Py/FF/0.3%	A: CHL/D/6		142.09-142.20: Fractures 10, 60, 75°	with heavy py, cpy @ 85°.
		сру.	B: Cpy/FF/0.2%	B: CAL/V/2		142.97: FLT/30°/slickensided pyrite.	
				C: Epiodote/F/1			
	•						
145.00	149.00	Andesite. Strong secondary biotite development.	A: Py/FF/trace	A: Biotite/D/5			
		·		B: CAL/V/2			
149.00	153.30	Andesite. Chalcopyrite fairly common in hairline fractures.	A: Py/FF/0.3%	A: CHL/P/6		150.17: FLT/20%slickensides.	
		Similar to nearby Blueberry showing.	B: Py/FF/0.15%	B: CAL/V/6		152.76-159.30: Strongest fracture con	trolled and disseminated cpy seen for
						awhile.	3
153.30	173.13	Andesite. Weakly mineralized with cpy, py.	A: Py/FF/<0.1%	A: CHL/P/6		153.38: FLT/40%slickensides.	·····
			B: Cpy/FF/minor	B: CAL/FF/3	+ • • • • • •	154.23: Cpy in hairline fracture @ 45°	associated py.
				C: Biotite/P/2		156.80-157.00: Hairline fractures with	сру @ 20, 50°.
		1			+ ·· · · · · · · · · · · · · · · · · ·	157.40: Cpy in fracture @ 45°.	

. ,

.

PAGE _____OF _5__

HOLE NO. DDH J97-7

.

		HOLE NO. DDH 397-7					
INTE	RVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	то	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineratization, type, age relations, etc.
						157.80: Cpy in fracture @ 10, 50°.	
						158,38: Cpy in hairline fractures @ 75	5°.
			· · · · · · · · · · · · · · · · · · ·			158.69: Cpy in hairline fractures @ 50	)°.
				1		163.12: Closely spaced cpy bearing fi	ractures @ 45° over 7 cm.
			· · · · · · · · · · · · · · · · · · ·			164.00: FLT/25%slickensides.	
						165.28: FLT/50°/slickensided py.	
					168.00: FLT/10º/gouge.		
		· · · · ·				172.68: FLT/30°/gouge.	
173.13	197,50	Andesite, Weakly mineralized. Secondary biotite present. A: Py/FF/0.2% A: CHL/P/7 178.32: Cpy in hairline fractures @ 60		)* <u>.</u>			
		178.33: Epidote in calcite vein @ 20°.	B: Cpy/FF/trace	B: Biotite/P/5		180.90: Cpy in a fracture @ 30°.	
		179.80: Kspar selvages relative to pyrite fracture @ 65°.		C: CAL/V/3		181.75-182.70; Fault/10*/slickensided	і ру, сру.
		181.12: Kspar selvage relative to calcite vein is offset by fault	-	D: Epidote/FF/1		182.86: Very heavy cpy in vein @ 80°	· · · · · · · · · · · · · · · · · · ·
		@ 0°.		E: Kspar selvage/	FF/1	183.00: Heavy cpy & py in fractures (	@ 60°. Kspar selvage.
		181.53: Very heavy cpy & pyrite in vein @ 80°. Kspar selvage.			1	183.80: Heavy cpy & Kspar envelope	@ 70° cut off by fault @ 60° with 1.5cm
		189.42; 3cm wide Ksparthized zone with heavy pyrite				of displacement.	
		disseminated and fracture controlled cpy.				184.00-184.80: FLT/10*/cpy incorpora	ated in the fault.
		192.00: Kspar fracture 2mm thick with heavy pyrite @ 70°.				186.88: FLT/15°/slickensides.	
						188.80: FLT/20°/slickensides.	· · · · · · · · · · · · · · · · · · ·
	197.50	End of hole. 648 feet = 197.50m	+			196.35: Cpy in 2mm-calcite stringer @	<b>9</b> 55°.
						196.45: Cpy in fracture @ 40°.	2
				<u>``</u>	+	197.40: Heavy pyrite in hairline fractu	re @ 40°. No cpy.
				·	1		
•							
			1	1	1		

· ,

.

.

PAGE __5__OF _5__

			D	RILL LOC	3			HOLE NO. <u>DDH J97-8</u>	
CONT	RACTOR	-	SKETCH, PLAN SECTION	DEPTH	TEST DIP	AZIMUTH	DATE STARTED September 22, 1997	PROPERTY JEAN	
PHIL'S	DIAMON	D DRILLING LTD	-	COLLAR -55			DATE COMPLETED September 23, 1997	CLAIM JN 301	
CORE	SIZE	NQ			l		COLLAR ELEV. 1120.0 m Est	TARGET B ZONE	
OVERALL CORE RECOV. 96 79%		E RECOV. 96 79%					NORTH 9814 m) relative to astrono	mic grid with DDH 95-2 at	
ANALY	TICAL R	EFS					EAST 10,445 m} 10,000 N, 10,000	E.	
MIN-E	N LABS.		4 4				AZIMUTH 028°	NTS 93N/2W	
ICP RE	PORT +	Au .					DEPTH 188.37 m	DATE LOGGED September 1997	
File No	No. 7S-0303-RJ 1+2, 3+4					TIE IN POINT Survey of roads & other drill holes.	LOGGED BY R U. Bruaset		
INTER	ERVAL (m) LITHOLOGY		MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC		
FROM	то	colou	ur, texture, grain size, composition etc.				bedding, faults, folds fractures etc.	mineralization, type, age relations, etc.	
0	4,88	Overburden.		1					
4.88	24.92	Granodiorite. Mas	sive medium grained hornblende granodiorite	A: Cpy/FF/1.5%	A: Kspar/selvages	/9	6.00: Cpy, malachite in fracture @ 70°.		
		5% hornblende. S	trongly Kspathized. Weak to moderately	B; MoS2/FF/0.3%	B: Q/V/7		8.42, 8.61: Cpy, & malachite in fractures @ 75°, 60° respectively.		
		magnetic, Plagioc	lase is hard to knife. Mineralization with cpy,	C: Py/FF/<0.1%	C: CHL/D/6		10.00: Cpy, & moly in fractures @ 70°, 75°.		
	1	py, moly in fracture	es with Kspar selvages well developed.				11.88: Cpy, moly in fractures and quartz ve	ins @ 70°, 85°.	
		4.88-9.00: Minor n	nalachite in fractures. Minor limonite.				12.67-12.76: Semi-massive chlorite incl. mi	nor secondary biotite band @ 40°	
							containing disseminated cpy.		
	1	24.92: Lower cont	act of granodiorite @ 55° is sharp. No faulting				13.65: Heavy cpy, moly and chałcocite in v	ein @ 65°. Immediately below is	
		at this contact, and	I the granite is not chilled and there is no				5cm thick band of massive chlorite conta	ining heavy cpy.	
		apparent contact e	affect on the volcanics by the granodiorite.				14.33; Cpy in fracture @ 60°.		
				T			14.63: Cpy, & moly in fracture @ 65*. *		
·						15.00: Cpy in fracture @ 65°.			
							15.95-16.02: Massive chlorite @ 70° contai	ining heavy disseminated cpy and	
•							moly. This is the most strongly mineraliz	ed short section so far in this hole.	
	1					1	Also cpy in parallel calcite vein @ 70°.		

PAGE ____I___OF ___8__

	DRILLÈLOG									
INTE	RVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE				
FROM	то	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	minera			
						16.63: FLT/10%slickensided sulphide.	•			
					· · · ·	18.61: Heavy moly & cpy on 2 fracture	es @ 65°.			
						20.25: FLT/60°/slickensided pyrite.	1			
						21.90; FLT/20%gouge.				
						22.70: FLT/30°/gouge.	1			
				<u>+</u>		24.12-24.30: FLT/20°/gouge incl. slick	ensided m			
24.92	27.20	Augite Andesite. Weakly mineralized.	A: Cpy/FF/0.1%	A: CHL/Q/6	<u> </u>	25.14: Cpy in fracture @ 80°.	1			
			B: Cpy/FF/<0.1%	B: CAL/V/4		26.25: FLT/10%gouge.				
			1			28.35: Cpy in hairline fractures @ 65*				
27.20	57.83	Garnet, chlorite, epidote & magnetite skarn. Veinlets of magnetite.	A: Cpy/FF/1%	A: CHL/P/8		28.83: FLT/15%gouge.				
<u> </u>		Considerable cpy in hairline fractures and veins.	B: Cpy/D/0.3%	B: Garnet/P/4	1	30.40: Cpy in hairline fractures @ 80°.	1			
. <u> </u>		······································	C: Moly/FF/0.1%	C: EPI/Patchy/4	· · · · ·	30.84: Cpy in fracture @ 60°.	1			
		2		D: CAL/V/3	1	30.90: Heavy disseminated cpy & py i	n massive			
	I	1	·							

2
27.20
Augite Andesite. Weakly mineralized.
A: Cpy/FF/0.1%
A: CHL/0/6
25.14: Cpy in fracture @ 80°.

2
27.20
Augite Andesite. Weakly mineralized.
B: Cpy/FF/0.1%
B: CAL/V/4
26.25: FL7/10*gouge.

2
27.20
Augite Andesite. Weakly mineralized.
B: Cpy/FF/0.1%
B: CAL/V/4
26.25: FL7/10*gouge.

2
27.20
Gamet. chlorite. epidote & magnetite skarn. Veinlets of magnetite.
A: Cpy/FF/1%
A: CHL/P/8
28.83: FLT/15*/gouge.

2
Considerable cpy in haitline fractures and veins
B: Cpy/FD/0.3%
B: Garnet/P/4
30.40: Cpy in haitline fractures @ 80°.

2
Considerable cpy in haitline fractures and veins
C: Moly/FF/0.1%
C: EPU/Patchy/4
30.40: Cpy in haitline fractures @ 80°.

2
Considerable cpy in haitline fractures and veins
C: Moly/FF/0.1%
C: EPU/Patchy/4
30.40: Cpy in haitline fractures @ 80°.

2
Considerable cpy in haitline fractures and veins
C: CAU/V/3
30.90
Heavy disseminated cpy & py in massive epidote patches.

2
Considerable cpy in haitline fractures and veins
C: Moly/FF/0.1%
C: EPU/Patchy/4
30.40: Cpy in haitline fractures @ 80°.

3
C: Moly/FF/0.1%
C: EPU/Patchy/4
30.90

PAGE ____2___OF __8___

HOLE NO DDH J97-8

HOLE NO. DDH J97-8

MISC

mineralization, type, age relations, etc.

			<u> </u>				
		HOLE NO. DDH J97-8					
INTE	RVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	то	colour, texture, grain size, composition etc				bedding, fauits, folds fractures etc	mineralization, type, age relations, etc.
		· · · · · · · · · · · · · · · · · · ·				40.25: Cpy in fracture @ 70°.	
					· · · · ·	42.15: Cpy & py in border of quartz vei	n @ 15°.
						43.40: Cpy in hairline fracture @ 75°.	
						43,75: Cpy in hairline fracture @ 80°.	
				·····		44.15: Cpy in fracture @ 70°.	
	<u> </u>					44.33: FLT/40°/minor gouge.	
	44.30-44.59: Semi-massive pyrite with					v15% сру.	
						44.59: FLT/80°/gouge.	
		45.83-46.33: Granodiorite as at start of hole. Lower contact	A: Py/D/0.1%	A: CHL/P/9		47.90: Cpy & py in vein @ 35°.	
		irregular @ 30°. Upper contact @ 20°.	B: Cpy/D/<0.1%	8: Q/V/2		48.54, 46.81: Cpy & pyrite in fractures	@ 65°, 75°, respectively.
						50.62, 50.90: Cpy in fractures @ 60°, 6	5°, respectively.
		51.00-57.83: Weaker cpy and more pyrite.				51.24, 53.47: Cpy in hairline fractures (	@ 65°, 75°, respectively.
		······································				52.00-52.63: FLT/10°/slickensides & ge	buge,
						53.61: FLT/15%slickensides.	
						55.27: Cpy in hairline fracture @ 75°.	
57.83	63.00	Granodiorite similar to start of this hole. Hornblende mafics. Weak	A: Py/FF/0.3%	A: CHL/D/4		57.00-57.63: FLT/10°/slickensides and	gouge,
		to moderately magnetic. Less intensely mineralized & altered than	B: Cpy/FF/0.2%	B: Clay/PP/3		61.33: Pyrite & cpy in quartz vein @ 30	№. Ру>>Сру.
		in granodiorite at the start of the hole.		C: CAL/V/2	·		
	1			D: Kspar/selvages	/1		4
	1	61.43-62.37: Intense clay alteration of feldspar - feldspar is soft to		N		62.16: Heavy cpy in fractures @ 75°.	
		linger nails.					
		62.51-62.79: Inclusion of garnet-epidote skarn as above. Heavy					
		disseminated pyrite in the epidote.					

· · · · · ·

*

PAGE __3__OF _8__

	DRILL LOG										
INTE	RVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC				
FROM	то	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.				
63.00	91.30	Granodiorite as above but containing more sulphides - cpy, moly	A: Cpy/FF/1%	A: Clay/PP/6		64.00: Heavy cpy with calcite gangue i	n 2mm veinlet @ 40°.				
		and py. Sulphides occur in fractures & narrow quartz stringers	B: Py/FF/0.3%	B: CHL/D/4		64.23: FLT/40°/gouge.					
		commonly with Kspar selvages.	C: Moly/FF/0.1%	C: Kspar/selvages	/3						
					<u> </u>						
		64.59-64.88: Aplitic dyke. Pink. Upper contact @ 60°. Lower				65.53: Quartz vein with sericite selvage	es contains minor pyrite.				
		@40°. Minor disseminated cpy & pyrite and fracture fillings.				65.69: Heavy moly in fracture @ 65°.					
		· · · · · · · · · · · · · · · · · · ·				66.00: FLT/50°/gouge.					
						66.25: FLT/60°/gouge.					
		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · ·		68.00: FLT/15%gouge.					
			69.90-70.00: FLT/50°, 80°/gouge & slid		ckensides.						
						70.70: FLT/50°/gouge & slickensides.					
		72,54-79.36: Strong clay alteration: feldspars soft to finger nails.				73.33: Minor cpy in hairline fracture @	55°.				
						73.80-73.95: FLT/10°, 60°/gouge.					
						74.10: Splashy cpy, pyrite (1:1) in quar	tz vein. Largest concentration of cpy				
						since the start of the section.					
						74.18-74.30: Very heavy moly in fractu	re.				
				1		75.59: Very heavy moly in fracture @ 6	60°.				
						76.60: Very heavy cpy & moly in vein.					
				·	· · ·	77.26: Heavy moly vein @ 50°.					
					1	78.18-78.25: Extremely heavy moly in	fractures @ 60°.				
			+			79.10: Cpy & pyrite, moly in 1cm quart	z vein @ 60°.				
	· ·	· · · · · · · · · · · · · · · · · · ·			1	82.08-82.11: Quartz vein containing 1c	om thick massive cpy seam. Also a				
					· · ·	conformable moly seam 3cm thick,					

×.,

.

•

PAGE __1_OF _8__

HOLE NO DDH J97-8

	DRILL LOG									
ΙΝΤΕΙ	RVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC			
FROM	то	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.			
						84.00: Moly slip @ 50°. Slickensided	sulphide.			
						86.61-86.72: Very heavy moly slip in b	orders of quartz vein containing heavy			
						cpy. The heaviest moly seen in whi	te.			
						88.55: FLT/80°/slickensided sulphite.				
		·····				89.80: 1cm quartz vein with semi-mas	sive pyrite & very heavy moly. Also			
						slickensided moly & cpy.				
91.30	0 102.70 Granodiorite. Similar to the section above but generally weaker A: Cpy/FF/0.4% A: Kspar/selvages/8 91.54-91.57: Very heavy moly as slips				· · · · · · · · · · · · · · · · · · ·					
		cpy & Mo.	B: Mo/FF/0.1%	B: Clay/PP/4		91.68: Cpy & moly in a quartz vein & a	fracture @ 40°, 50°.			
			C: Py/FF/0.1%	C: CHL/PP/3		92.10: Moly in fracture @ 45° including	j Kspar selvages.			
				D: Q/V/2		92.15: Moly disseminated in Kspar sel	vages of a fracture.			
	·					92.72: Cpy in hairline fracture @ 80°.				
			· · · · ·			93.69-93.79: Very heavy moly in fractu	red quartz vein. Minor cpy associated.			
						93.74: FLT/15°/gouge.				
						94.30: FLT/50°/slickensided pyrite.				
					·	95.39: FLT/50°/moly slip.				
						95.80: Very heavy slickensided moly i	n fracture @ 60° in quartz-Kspar			
						alteration.				
			·			96.35: FLT/75º/gouge.				
						97.93: Heavy pyrite in gouge zone @	1			
					<u> </u>	99.68: Heavy moly and pyrite in quartz	-calcite Kspar vein system @ 30°.			
102.70	120.00	Granodiorite, Similar to above. Weaker Cu mineralization;	A: Moly/FF/0.2%	A. Kspar/selvage/8	3	107.80-102.70. Hematitic fractures con	nmon.			
<u> </u>	i	fairly strong Mo.	B: Cpy/FF/0.1%	B; CHL/PP/3		102.62-102.70: Very heavy moly & py	ite in quartz-calcite assembly. Kspar			
			C: Py/FF/<0.1%	C: CAL/V/2		selvages @ 60°.	<u> </u>			

.

PAGE __5__OF _8__

10

HOLE NO. __<u>DDH J97-8</u>_____

		HOLE NO. DDH J97-8					
INTE	RVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	то	colour, texture, grain size, composition etc.			····	bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
						105.60: Heavy moly slip @ 60°.	
	·····					105.91-106.00: Heavy moly in quartz	vein with strong clay alteration above &
		·····			1	below including emerald green ser	cite. Core angle is 60°.
						108.52: Moly slip @ 55°.	
120.00	131.39	Granodiorite, Similar to above. More competent. Less Kspar	A Py/FF/<0.1%	A: Kspar/selvages	/4	123.40: Pyrite in fracture @ 60°.	
		selvage development.	B: Cpy/FF/<0.1%	B: CHL/PP/3		125.60: FLT/60°/gouge.	
			C: Mo/FF/0.1%	C: CAL/V/2		126.31: FLT/20°/slickensides.	
				D: Clay/PP/1			
131.39	152.66	Granodiorite with more intense clay alteration locally. Weak Cu	A: Py/FF/0.1%	A: Clay/PP/5		131.49: FLT/0°/gouge Slickensides &	pink carbonate.
		and moly generally.	B: Moly/FF/0.1%	B: CAL/PP/4	+	132.52: FLT/40°/gouge.	1
			C: Cpy/FF/trace	C: Kspar/selvages/	1	133.20: FLT/60°/gouge.	
		132.36-133.58: Strong clay alteration. Feldspars greenish and		D: Calcite/V/2	·	135.00: FLT/40°/slickensided moly@	40°.
		soft to fingernail.		E: Emerald green	sericite/1	136.34: Kspar selvages relative to frac	sture @ 60°.
		· · · · · · · · · · · · · · · · · · ·		F: Sericite/D/1	1	137.41-137.57: Heavy pyrite (almost	semi-massive)
		137.28-136.54: Strong clay alteration with feldspars soft to finger				137.41: Moly in fracture @ 50°.	·····
		nails, also some emerald green sericite.				138.03-136.17: Heavy moly in fracture	with associated slickensided pyrite.
						138.57: Heavy pyrite with minor assoc	iated moly in quartz-carbonate vein
<u> </u>		146.00-147.20 Generally intense clay alteration also some				@ 70°.	1
		emerald green sericite. Kspar selvages occasionally noted				.141.81: FLT/65°/gouge, slickensides.	
		with minor associated py.				146.05: FLT/15°/gouge, slickensides.	•
	<u> </u>	<u></u>		<u>``</u>		150.22: Very heavy moly in seam @ 6	0°.
		152.19-152.66: Intense clay alteration. Feldspars soft to finger				152.38: Heavy moly in stip @ 70°.	
		nails, Also some emeralo green sericite development.	<u> </u>		<u> </u>	152.52: FLT/55°/slickensides.	

· ·

.

PAGE __6__OF _8__

		DF	RILL~LOG				HOLE NO. DDH J97-8	
INTE	RVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC	
FROM	то	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc	
152.66	167.61	Granodiorite. Generally veins weakly attered. Hornblende is	A: Py/FF/0.1%	A: Clay/PP/3		157.00: FLT/70%slickensides.		
		generally fresh, plagioclase is hard. Locally Kspar selvages	B: Moly/FF/<0.1%	B: Kspar/selvages/	2	158.08: Heavy moly slip @ 60°.		
		occur relative to fractures. A few short intervals of fair	C: Cpy/FF/<0.1%	C: Q/V/1		158,39: Fault/45°/cpy.		
		molybdenite.		D: CAL/V/1		159.46: Moly slip @ 65°. Slickensided	cpy.	
		· · · · · · · · · · · · · · · · · · ·				161.58-161.67; Moly in quartz stringer	s @ 30°, 40°.	
						161.80-162.11: Strong cpy & pyrite, m	oly in quartz stringer & fractures with	
		· · · · · · · · · · · · · · · · · · ·				Kspar selvages. Mineralized struct	ures @ 40°.	
						162.50: Fracture with strong pyrite @	50°. No cpy or moly associated.	
			·   · · · · · · · · · · · · · · · · · ·			166.12: FLT/40º/slickensides.	1	
						167.02: FLT/50%slickensides.		
						167.03: FLT/30%slickensides.		
					• ••••	167.10: FLT/15%slickensides.		
						167.47: FLT/20°/slickensides & gouge		
167.61	176.17	Granodiorite. Very broken core with frequent gouge zones.	A: Py/FF/0.2%	A: Clay/P/5		167,70: FLT/55%slickensides.		
. <b>.</b> .		Scattered moly slips.	B: Moly/FF/<<0.1%	8: Kspar/selvages/	4	167.79: FLT/55°/slickensides & gouge		
			C: Cpy/FF/<<0.1%	C: CALC/V/2		168.20: FLT/30°/gouge, slickensides.	1	
	· · · · · ·	167.61-167.89: Strong clay alteration. Plagioclase generally		D: Q/V/2		168,49; FLT/10%gouge.		
· · · · · · · · · · · · · · · · · · ·		soft to finger nails.	-	E: Emerald green s	ericite/PP/1	168.85: Heavy moty in fracture @ 50°.		
						169.00: FLT/25°/gouge.	1	
···· .						169.80: FLT/0*/gouge.	2	
				·~		171.33: FLT/35°/slickensides & gouge	<u>L</u> , , , ,	
						171.43-171.83: FLT/70°/gouge, moly	slips.	
	<u>├</u>		····			175.59: FLT/60°/gouge.	1	

· · · · · ·

.

PAGE ___7__OF _8__

		•	<u> </u>				1 1
		DRI	LL LOG				HOLE NO. DDH J97-8
INTE	RVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	то	colour, texture, grain size, composition etc.		a		bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
176.17	188.37	Granodiorite. More competent than above. A few faults & moly	A: Py/FF/0.3%	A: kspar/selvages/	3	176.51: Cpy in hairline fractures @ 55°	
		slip.	B: Moly/FF/<<0.1%	B: CHU/D/2		177.49; FLT/25°/slickensided pyrite.	
			C: Cpy/FF/<<0.1%	C: CAL/V/1		177.81: FLT/50°/gouge, slickensides.	
			·			178.28: Moly slip @ 70°.	
			· · · · · · · · · · · · · · · · · · ·	],,, · · · · ·		179.00: Moly in fracture @ 75°. Cpy in	n fracture @ 5°, 40°, 65°.
					179.85: Minor cpy & moly in fracture @	<u>9</u> 55°.	
					181.21: Heavy moly associated with p	y in fracture @ 65° also cpy.	
	181.54-183.24: Feldspar porphyry dyke with pinkish cast. Upper A: P		A: Py/D/0.3%	A: CHL/D/3		183.90: Moly slip @ 65°.	
		contact @ 50°. 2-3mm white plagioclase phenocrysts in	B: Cpy/D/<0.1%	B: CAL/V/2		185.00: Heavy cpy & pyrite 2:1 in quar	tz stringer @ 65°.
		dense gravish ground mass. Traces of matics. Lower contact	C: Moty/FF/<0.1%			185.35: Moly slip @ 65°.	
		@ 55°. The pink coloration is likely due to hematite after				185.93: FLT/55°/slickensided pyrite.	
		plagioclase.				186.25: Moly slip @ 65°.	
· · · · · · · · ·					·	187.60: FLT/40%slickensided moly.	
						187.75: Minor fracture controlled cpy.	
	188.37	End of hole. 188.37m = 618 ft.					
				N		······································	
<b></b>				×		······	
		· · ·					

· ,

-

HOLE NO. DDH J97-8

				<u> </u>				
[			D		<b>G</b> -			HOLE NO. DDH J97-9
CONTR	ACTOR		SKETCH, PLAN SECTION	DEPTH	TEST DIP	AZIMUTH	DATE STARTED Sept. 24, 1997	PROPERTY JEAN
PHILS	DIAMON	D DRILLING LTD		COLLAR -90°	N/A		DATE COMPLETED Sept. 28, 1997	CLAIM JW 301
CORE	SIZE	NQ					COLLAR ELEV. 1100 m. est.	TARGET
OVERA	FRALL CORE RECOV. 98.77%					NORTH 9883) relative to astronomic g	rid with 10,000 N, 10,000 E	
ANALY	TICAL RE	FS		·····			EAST 10,218} at collar of DDH 95-2.	
}	MIN-EI	N-LABS			<u> </u>		AZIMUTH N/A	NTS 93N/2
File No.	75-0304	-RJ1, RJ 1 +2+3.					DEPTH 194,45 m	DATE LOGGED Sept. 24-28/97
					1		TIE IN POINT Road traverse.	LOGGED BY R.U. BRUASET
INTER	/AL (m)		LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC.
FROM	то	colo	#, texture, grain size, composition etc.				bedding, faults, folds fractures etc.	mineralization, type, age relations, etc.
0	7.32	Overburden.					8.24: Cpy in hairline fracture @ 60°.	
7.32	32.00	Augite andesite, vi	ariously containing augite phenocrysts and 1mm	A: Cpy/FF/0.7%	A: CHL/P/7		8.50: Very heavy disseminated cpy & cpy	in hairline fractures over 5cm. Core
		plagioclase pheno	crysts.	B: Py/FF/0.5%	B: CAL/V/3		angles of fractures 70°.	
		19.68-21.29: Fine	to medium grained porphyritic granitic dyke	C: Moly/FF/<0.1%	C: Kspar/envelopes/2 8.60: Cpy in 1mm thick fracture @ 75°.			
		with hornblende pl	enocrysts. Very intensely Kspathized in the		D: Epidote/FF/1	D: Epidote/FF/1 8.85: Heavy cpy in		5-75°
		form of selvages re	elative to narrow quartz veinlets. Relatively	A: Cpy/FF/1%	A: Kspar/selvages/	6	9.41: FLT/55°/ minor gouge including cpy	& py in shear fractures.
		strongly mineralize	d by cpy, pyrite - cpy occurs in quartz veins and	B: Py/FF/0.5%	B: Qtz/vein/5		10.38: FLT/55% gouge	
		Kspar envelopes.	The rock is extremely intensely fractured.	C: Moly/FF/<<0.1%			11.76: Pyrite bearing fracture @ 70°.	
}		Most of the copper	occurs in quartz veins.				13.38: Heavy cpy in fracture @ 45° & less	ser cpy in a fracture @ 60°.
							15.72: Cpy in hairline fracture @ 65*.	
							17,72: FLT/35% slickensides & gouge.	
							18.20; FLT/20°/ slickensides.	
					·		18.31: Cpy in hairline fracture @ 25°.	
						18.60: Cpy in hairline fracture with Kspar	envelope.	
ы. <u>.</u>	····						19.50-19.63: FLT/60°/ gouge.	
							20.87-21.29: FLT/60*/ Heavy gouge inch	uding some moly gouge.

· ·

.

PAGE____1___0F____7___

HOLE NO DDH J97-9

DRILL LOG							
						HOLE NO. DDH J97-9	
INTERVAL		LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	то	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
						23.34-23.41: FLT/55°/ gouge.	
						22.76: Cpy in fracture @ 90°.	
						23.00: Cpy in fracture @ 55° & as cpy & py veins @ 60°.	
	1					23.05: Cpy in fracture @ 0°.	
						23.64: Heavy cpy in calcite stringers @ 50°, 60°, 80°. These are offset by fault	
						@ 10°. Also disseminated cpy adjacent to one vein. Also brown secondary	
						biotite in the rock.	
						23.64-32.00: Abundant hairline fractures containing cpy & py ranging from	
						5 ° to 80° to core axis.	
						24.35: Cpy with heavy py in fracture @	25°.
						24.58: Cpy in hairline fracture @ 70°.	
						24.83: Very heavy cpy and pyrite in 8mm thick seam @ 50°. Calcite gouge.	
						Сру:ру 1:1	
						29.00-29.20: FLT/60°/ partly gouge.	
						31.62: FLT/70% gouge.	· · · · · · · · · · · · · · · · · · ·
		•				31.80-32.00: FLT/30°/ all gouge.	
32.00	37.37	Andesite, Less well mineralized than 7.32-32.00. Strongly altered.	A: Py/FF/0.5%	A: CHL/P/7		32.25: Cpy in hairline fracture @ 70°.	
			B: Cpy/FF/0.1%	8: CAL/V/5		36.90-37.30: FLT/60°/ gouge generally	
						51.00: Cpy & py in hairline fracture @ 7	70°.
37.37	50.88	Andesite, Hornfelsed, Generally very competent core, Weakly	A: Py/FFArace	A: CHL/P/5		52.43: Cpy & py in calcite vein @ 70°.	4
		mineralized. Weakly fractured & veined. Abundant fine grained	B: Cpy/FF/trace	B: Biotite/PP/4		54.43: Semi-massive cpy in 5cm thick quartz vein @ 70°.	
		brownish biotite.		C: Calcite/V/2		55.85: Heavy cpy in quartz -calcite vein @ 75°.	
	<u> </u>	· · · · · · · · · · · · · · · · · · ·				56.69: Cpy & pyrite in 2mm stringer @ 70°.	

PAGE____2___OF____7____
		DR	ILL LOG				HOLE NO. DDH J97-9
INTE	RVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	то	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
50.88	88.74	Andesite. Hornfelsed. Cpy & pyrite common in hairline fractures.	A: Py/FF/0.7%	A: CHL/P/5		57.27: Cpy-pyrite in quartz stringers @	. 65°.
			B: Cpy/V/0.3%	B: Biotite/PP/4		57,35: Cpy in calcite stringer @ 70°.	
				C: CAL/V/2		59.10: Heavy cpy in 2mm-quartz string	jer @ 70°.
				D: Kspar envelope	es/2	61.04: Heavy cpy in quartz-catcite strin	iger @ 70°.
	· · ·			E: Epidote/1	1	60,15-60.35: FLT/30*/ gouge.	
						61.54: Cpy in hairline fracture @ 75°.	
			· · · · · · · · · · · · · · · · · · ·			61.88: Cpy in 2mm-quartz vein @75°.	
			•			62.21: Heavy pyrite & cpy as vein @ 7	0° Kspar envelopes.
						63.20: Heavy cpy in quartz vein @ 75*	
						63.34: Heavy cpy in calcite-quartz vein	@ 75° including moly in vein borders.
						64.76: Cpy in quartz stringers @ 70°.	
					1	71.26: Cpy in border of a 2mm-quartz	stringer @ 70°.
					1	72.22: Cpy in hairline fracture @ 20°,	70°.
		73.53: Minor epidote in pyrite fractures @ 50°.			1	73.30: Cpy & py in hairline fracture @	30°.
						79.00: Quartz vein with heavy py & min	пог сру @ 50°.
		81.00: Minor epidote in hairline fractures @ 75°.	-			80.50: Cpy & py in fracture @ 50°. Ks	par selvage.
					1	80.55: Cpy in hairline fractures @ 50°,	60°.
<del></del> ,					1	81.10: Minor cpy with heavy pyrite in c	alcite filled fracture @ 10°.
				+	1	82.00-82.28: Heavy cpy in fractures @	§ 10°, 85°. The heaviest cpy occurs in a
					+	fracture @ 10° running the length of	the interval.
						82.89: Heavy cpy in quartz-carbonate v	/ein @ 55° also Kspar envelopes. Cpy
		· · · · · · · · · · · · · · · · · · ·				also occurs in hairline fractures @ 4	0°, 50°.
						83.54: Cpy in hairline fractures @ 40°.	
	1	( · · · · · · · · · · · · · · · · · · ·		1	1		

· ·

•

PAGE _____OF ____7

HOLE NO. DDH J97-9

٠

· · ·

.

		DR	ILL`LOG				HOLE NO, DDH J97-9
INTE	RVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	το	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
						84.10: Cpy in fractures @ 75°, 0°.	
		· · · · · · · · · · · · · · · · · · ·				86,60: Cpy in-quartz-calcite stringer (	@ 65°. Minor associated epidote.
				· •		87.78-88.14: FLT/5%gouge.	
38.74	90,59	Feldspar porphyry dyke. Altered and mineralized. About 3%	A: Py/D/3%	A: CHL/D/7		89.24: FLT/0°/gouge.	
		hornblende, now generally altered to chlorite. Hornblende 1-	B: Cpy/FF/minor	B: CAL/FF/3		89.62: FLT/80°	
		3mm. Plagioclase phenocrysts 1-4mm. Upper contact is irregular	· · · · · · · · · · · · · · · · · · ·			89.88: FLT/60°/moly in the gouge.	
		-estimated @ 90°. Lower contact is very irregular. Minor cpy at				90.38: FLT/50°/slickensided pyrite.	
		the lower contact.				92.45: Heavy cpy in calcite stringer @	65°.
		· · · · · · · · · · · · · · · · · · ·	<u> </u>			95.00: Cpy in fracture @10°.	
0,59	107.00	Andesite similar to 50.88-88.74. Spotty cpy. Cpy mainly in	A: Cpy/V/0.1%	A: CHL/P/8		97.00: FLT/55°/slickensided pyrite.	-
		hairline fractures.	B: Cpy/FF/0.1%	B: Bleaching/PP/5	I	99.16-99.21: Quartz-carbonate veins	@ 75° contain heavy pyrite & minor cpy.
	· · -	· · · · · · · · · · · · · · · · · · ·	C: Py/V/<0.1%	C: CAL/V/2	· ·	101,19-101.26: Quartz vein @ 50° wit	h splashy cpy and pyrite. Est. 10% Cu.
		102.20-107.00: Strong bleaching.				102.11-102.20: Very heavy cpy in hair	rline fractures @10°.
						104.15: Cpy in hairline fracture @10°	·
107.00	114.00	Feldspar porphyry. Rare phenocrysts of pink feldspar up to				104.85: Minor cpy & py in fracture @ f	65°.
		1/2cm. About 2% fine grained hornblende now generally attered				112.65: FLT/55%gouge.	
		to chlorite. The porphyry has a pinkish cast. Traces of				115.21: Minor cpy in "crushed" zone.	
		disseminated pyrite. The lower contact Is chilled @ 30°. Most				118.42: Minor cpy in 1.5cm thick calci	te vein @ 60°.
		of sulphide (pyrite) occur in the lower half of the dyke where				119.00: FLT/40%gouge.	
		disseminated sericite occurs.					P
				N		· · · · ·	
114.00	144,00	Andesite. Dark green	A: Py/FF/0.3%	A: CHL/P/8		······	
			B: Cpy/FF/0.2%	B: CAL/V/3		122.50: FLT/75°/slickensides.	

PAGE____1___OF____7____

HOLE NO DDH J97-9

		DR	ILL LOG				HOLE NO. DDH J97-9
INTE	RVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	то	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
						122.82-124.50: Numerous fractures co	ntaining cpy. The greatest amount of
						cpy seen in a while.	
						123.00: Fractures with cpy @ 0°, 20°.	·····
						124.00-124.50: Fracture @ 10°, 15°, 8	0° contain cpy.
						128.00: FLT/55°/gouge, slickensided py	rrite.
						131.39: Hairline fracture with cpy @ 60	Jo
				· · · · · · · · · · · · · · · · · · ·		133.00: Moly slip @ 55°.	
						133.19: Cpy in quartz stringer @ 30*.	L
						135.30: 4cm thick bleached zone relat	ive to a calcite vein @ 60° containing
						minor cpy.	
						136.44: FLT/35°/gouge.	
						137.95: FLT/80°/gouge.	
						138.58: FLT/40°/gouge & slickensides.	
						138.79: FLT/70°/slickensides.	
				······································		139.15: FLT/80°/slickensides.	
				· • · · · · · · · · · · · · · · · ·		141.35: Layering in the volcanics @ 55	5° <u>.</u>
144.00	167.33	Andesite. Dark grey. Generally more strongly mineralized. This	A: Cpy/FF/1%	A: CHU/P/8		142.83: Layering in the volcanics @ 80	)°.
		section is somewhat similar to the so called "B" zone in holes	B: Py/FF/0.5%	B: CAL/V/3		144.00: FLT/25%fault breccia. Cpy be	aring hairline fractures @ 60° are
		J95-1, J95-2, etc. But is lower grade than these because of the		C: Q/V/2		truncated by this fault.	
		occurrence of relatively few 'high grade' veins of chalcopyrite.		D: BL/V/1		144.73 and 144.95: Cpy bearing veinte	s @ 65°.
		The flattish ore controlling fractures are common to this section				145.35-145.63: Trace cpy bearing hair	line fractures @ 75°.
		and the "B" zone as is the greater abundance of chalcopyrite				145.82-146.00; Scm cpy bearing fractu	ıre @ 75°.
		relative to pyrite.				146.60-146.74: Five-cpy bearing fractu	ires 65°-80°.

· · · · ·

PAGE___5___0F___7

HOLE NO DDH J97-9

		DRI	ILL LOG				HOLE NO. DDH J97-9
INTEF	RVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	TO	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineratization, type, age relations, etc.
						148.00: 3mm-quartz stringer @ 80° co	ntains heavy cpy.
						150.27: 2 quartz stringers @ 1,2mm @	g 80° with heavy cpy.
						151.00: FLT/50°/slickensides.	
						151.50: FLT/20°/slickensides.	
						151.62-151.88: Quartz vein @ 80° with	h blotchy cpy.
						151.78: FLT/60°/slickensided moly.	
				·····		152.00-156.60: Highly broken core cor	ntains many hairline fractures with cpy
						@ 60 to 80°.	
						157.05-157.18: Five hairline fractures	40°, 55°, 65° with cpy.
						157.33-158.00: At least 12 hairline frac	stures and veinlets to 2mm @ 75-80°
						contain cpy.	
				· · · · · · · · · · · · · · · · · · ·		157.35: 1-2mm fracture with cpy @ 80	°.
						157.83: Cpy in hairline fracture @ 75°.	
						158.07-158.21: Interval of strong blead	ching including calcite vein @ 80°
						containing semi-massive cpy over 2	icm.
					1	162.38: Cpy in hairline fracture @ 80°.	
					· · · · · · · · · · · · · · · · · · ·	163.97-164.07: Cpy in hairline fracture	@ 10°, 65°, 80°.
				······		165.76-166.00: FLT/35°/gouge.	
						166.12: Cpy in 1mm thick fracture fillin	g @ 80°.
167.33	194.45	Andesite. Altered interval weakly mineralized with cpy & pyrite.		·		166.48: Moly slip @ 45°.	
		The bulk of the sulphides in the section occurs in the vein at				166.57: Heavy cpy in vein @ 80°.	
		177.32. Patchy brownish alteration is probably secondary biotite.				167.23: FLT/40°/slickensides.	
		Weak copper mineralization and decreasing with depth.				168.00: Heavy cpy & lesser pyrite in 1	cm thick calcite stringer @ 55°.

PAGE___6___0F___7____

HOLE NO. DDH J97-9

		D	RILL LOG				HOLE NO. DDH J97-9
INTE	RVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	то	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
						171.50; FLT/60°/gouge & slickensides	,
						176.82: Pyrite in fracture @ 60°. No c	py.
						177.32-177.38: Quartz vein @ 80° with	h heavy py, cpy 1:1.
						184,60: Pyrite in hairline fracture @ 50	)°. No сру.
	194.45	194.45m (638 ft.) End of hole.	·			185.70: FLT/40%slickensides.	
						189.50: FLT/50°/slickensides.	
<u></u>							
	<b> </b>						
						1	
	ļ						· · ·
					·		
	ļ				<u> </u>		
					·		
	ļ						
	I						
	<u> </u>					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	<u> </u>			<u> </u>	-		
		Ţ,					

. . .

.

PAGE___7___0F____7____

HOLE NO. DDH J97-9

____

			D	RILL LOO	3			HOLE NO. DDH J97-10
CONTI	RACTOR	-	SKETCH, PLAN SECTION	DEPTH -55°	TEST DIP	AZIMUTH	DATE STARTED September 29, 1997	PROPERTY JEAN
PHIL'S	DIAMON	D DRILLING LTD		COLLAR	N/A		DATE COMPLETED October 3, 1997	CLAIM JW 303
CORE	SIZE	NQ					COLLAR ELEV. 1070 m. estimated.	TARGET 8- ZONE
OVER/	ALL COR	E RECOV.98,25%					NORTH / SOUTH 9980m N} relative to	astronomic grid with
ANALY	TICAL RI	EFS					EAST / WEST 10119m E) 10,000N,	10,000E at coliar of DDH 95-2.
MIN-E	N LABS L	.TD. ! ACME La	rs. chucksample on 292996 by minEn				AZIMUTH 025°	NTS 93N/2W
File No	75-0316	5-RJ 1+2, R <b>J 3</b> +4,		-			DEPTH 212.75m	DATE LOGGED SeptOct, 1997
75-031 Mini-En p. ACME &	8-RJ 1+2 RPT5:BV 0 AB RC: 2	+3, 7S-0316-RA 1 136 (April 01 PP), 12994 (4-142m) Check	ov-oist RGI (Apille/Ar) rc (41-162m) (Semple on MiniEn				TIE IN POINT 1997 Road survey & grid of 1970's	LOGGED BY R.U. BRUASET
INTER	VAL (m)		LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC.
FROM	то	colo	ur, texture, grain size, composition etc.				bedding, faults, folds fractures etc.	mineralization, type, age relations, etc.
0	16.46	Overburden.						
16.46	20.84	Felsic dyke. Mass	sive, Heavy disseminated pyrite. Weakly	A: Py/D/3%	A: Sericite/PP/3			
		fractured. Sharp I	ower contact @ 70° core angle. Felsite-					
		supported fragme	nts of andesite occur in the contact area. The					
		contact is irregular	suggesting the dyke is emplaced in a tension					
ļ		fracture. Contact	is chilled.	· · · · · · · · · · · · · · · · · · ·				
20.84	41.61	Andesite. Pyrite a	nd chalcopyrite occur in quartz stringers &	A: Py/FF/0.5%	A: CHL/P/8		22.00: Py & cpy in fracture @ 35°.	
		hairline fractures.	Cpy & MoS2 appear to be increasing with	B: Cpy/FF/0.2%	B: CAL/V/4		·	·
		depth.		C: Cpy/D/minor			·	
	<b></b>						>	
		22.39-22.68: Mas	sive dioritic dyke – no quartz – containing	A: Py/D/0.1%	A: CHL/D/5			
	 	disseminated pyrit	e. Mafics chloritized. Mafic content as				25.68; Heavy cpy disseminated but near	by fracture contains only pyrite,
		hornblende is 2%.	· · · · · · · · · · · · · · · · · · ·				25.88: Cpy in a hairline fracture @ 65°;	associated py.
		L					26.00: Cpy in a hairline fracture @ 25°; a	ssociated py.

· · · ·

.

PAGE __ I __ OF _12__

 $\{G_{ij}^{(1)}\}_{i=1}^{n}$ 

HOLE NO. ______.

.

		DRI	LL LOG				HOLE NO. DDH J97-10
INTE	RVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	то	colour texture grain size composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
FROM						26.45: Trace cpy in hairline fracture @	70°; associated py.
						28.15: Minor cpy in hairline fracture @	45°; associated py.
						30.64: Heavy cpy in hairline fracture @	75°; associated py.
						30.75: Very heavy cpy in a quartz strin	ger @ 15°.
			· · · · · · · · · · · · · · · · · · ·			30.82: FLT/50°/gouge.	
						32.48: Cpy in two hairline fractures @	45°, @ 60°.
						32.75: Cpy and pyrite in a fracture @ 5	55°.
						32.98: Cpy in a fracture @ 80°.	
						33.29: Cpy with py. in a fracture @ 80*	
						35.38: Cpy in a fracture @ 40°.	
		•				36.85: Heavy cpy in quartz vein 3mm t	hick and minor cpy in hairline fracture
						with associated py.	
·						38.85: Heavy cpy in 3mm-quartz veinte	et and moly slip in vein contact @ 60°.
						39.51: Cpy in fracture @ 55°.	
						39.83: Minor cpy in hairline fracture w	ith py @ 70°.
						39,90: Minor cpy in hairline fracture @	75°, associated py.
	-		·			40.61: FLT/60°/gouge.	
						41, 17: Cpy in fracture @ 75°.	
41.61	47.00	Andonito including abundant feldspar pornhyry dykes. Similar to the	A: Cov/V/3%	A: CHL/D/6		41.60: Quartz vein @ 50° with heavy of	py and minor MoS2.
41.01	41.02	Andesite including authority is great deal more chalconvrite and	B: Pv/FF/0.75%	B: Biotite/PP/5		41.85: Two quartz veinlets @ 55° with	heavy disseminated cpy in the quartz
ļ		is unider structures. This is considered to be part of the "R" Zone	C: MoS2/V/minor	C: 0/V/4	<u> </u>	and minor disseminated molybdenit	e.
		In which should be the state of the DDH 175 1.8, 105 2, as well as a large			<b> </b>	42.00; 8mm-guartz vein with very heav	лу сру @ 70°.
		Which was intersected in UDH 375-1 & 355-2, as well as a large			+	42 64-43 37 Abundant fractures conta	ining py but only traces of cpy.
	1	number of 1974 percussion holes. The upper part of the "B" Zone	L E			TE.OT TO.OT, FIDINGON NORTHOGODO	

 $\sim$ 

-----

.

-

_____

. . . . .

PAGE ___2_OF ___2_

HOLE NO. DDH J97-10

			~				
		DR	LL LOG				HOLE NO. DDH J97-10
INTE	RVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	TO	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
		in the current hole contains a great deal of poorly mineralized					
		feldspar porphyry - only minor feldspar porphyry occur in the zone					
		intersected in the1975 and 1995 drilling.					
		1171 A1 00: Eddonor northun dukalat @ 569 with 2 2mm		A: 00//6			
		41.71-41.60. Peruspan porphyry dykeaet (2.55 with 2-56m)	A. Fylo/0.1%	A. GIVIO			
		plaglociase phenocrysis. The dyke cuts quality veins in the andesite	B. Moly/Datanor	B. CHUU/4			
		containing disseminated cpy, and heavy cpy & Mo in one case.					
		Feldspar porphyry contains minor disseminated pyrite.					
				· · · · · · · · · · · · · · · · · · ·		······································	
		42.21-42.64: Feldspar porphyry dyke @ 60° at lower contact.	A: Py/D/2%	A: CHL/D/4			
		Minor cpy at the upper contact.					
		42.83-43.00: Feldspar porphyry dyke similar to 42.21-42.64 but	A: Py/D/2%	A: CHL/D/4			
		includes fragments of Jean biotite granodiorite. These fragments					
	• •	are weakty magnetic.				43.64-44.67: Very strongly mineralized	section containing 10 quartz veins with
						chalcopyrite @ 55-75°. Abundant re	eddish brown hematite in this section.
		43.38-43.64: Feldspar porphyry dyke similar to 42.21-42.64. This	A: Py/D/2%	A: CHUD/7		44,67: FLT/80°/gouge.	-
		dyke is late as it cuts a 10cm long patch of very strong cpy				45.20-45.22: FLT/80°/gouge - includin	g a 2cm thick mass of strongly biotitized
		occurring in quartz veins hosted by andesite.				andesite as noted above.	<b>P</b>
	·· ··			<i>`</i> ~		46.90-47.77; Weak cpy in fractures py	>>сру.
		44.67-46.44; Feldspar porphyry dyke similar to 43.38-43.64. Upper		· · · · · · · · · · · · · · · · · · ·		51.00; Minor cpy in hairline fracture wit	h pyrite @ 70°.
		contact is a fautt @ 80° (gouge). This dyke contains Moly. In this				51.50: Cpy in hairline fracture @ 60°.	
		dyke within 5cm of its lower contact are 2mm thick quartz stringers				51.71: Trace cpy in quartz stringers @	45° with py.

PAGE ______OF ____

HOLE NO. DDH J97-10

			w				
		DR	ILL LOG				
INTE	RVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	то	colour, texture, grain size, composition etc.	1			bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
		containing disseminated moly but no cpy. The fault @ 80° cuts				52.33: FLT/30%slickensided py.	
		strong mineralization in vein at 44.67.				54.18: Cpy in hairline fracture @ 55°.	
		· · · · · · · · · · · · · · · · · · ·				54.55: Heavy cpy in 4mm-quartz string	er @ 60°.
		46.72-46.82: Feldspar porphyry dyke with heavy disseminated	A: Py/D/2%	A: CHL/D/4		55.85: Heavy cpy in 3mm-quartz vein (	@ 75°.
		pyrite. The dyke is conformable to quartz veins containing heavy	B: Cpy/V/0.2%			56.70: FLT/60°/gouge, Heavy cpy in 4	mm quartz vein @ 60°.
		cpy hosted by the volcanics.					
						57.30: FLT/15°/gouge.	
47.02	62,73	Andesite. Weakly mineralized by cpy. This zone is separated by	A: Py/FF/0.5%			57.51; FLT/15°/strongly developed slic	kensides and hematite gouge.
		faulting from the better mineralized zone below.	B: Cpy/FF/0.4%			58,70: Cpy in hairline fracture @ 70°.	
				A: CHL/P/9		58.83: Cpy in Kspar selvage & pyrite in	3mm-quartz vein @ 70°.
				B: CAL/V/3	·	59.10: Cpy in hairline fracture @ 60°.	
			· · · · · · · · · · · · · · · · · · ·	C: Q/V/2		61.23: FLT/45°/slickensided pyrite.	
		· · · · · · · · · · · · · · · · · · ·		D: Epi/FF/1		61.90: FLT/10°/gouge.	
				E: Kspar selvages		62.44: FLT/10°/slickensides.	
62.73	112.40	Andesite similar to 47.02-62.73 but more strongly mineralized by	A: Cpy/V/2%	A: CHL/P/9		62.75: FLT/35°/chloritic gouge & slicke	nsides.
		cpy. This appears to be the mineralized zone best compared to	B: Cpy/FF/0.3%	B: Q/V/4		62,90-63,10: At least 10 hairline fractu	es with chalcopyrite @ 40°.
		the B Zone in holes J75-1 & J95-2. The relatively constant core	C: Cpy/D/0.2%	C: CAL/V/3		63.20-63.70: Chałcopyrite in hairline fra	actures @ 20°, 60°.
		angle of the mineralized fractures is also characteristic, as is the	D: Py/FF/0.1%	D: Kspar/selvages	12	-64.00: Cpy in hairline fracture @ 65°.	
		fact that cpy>>pyrite. Molybdenite appears to increase with depth.		E: Epi/FF/1		64.50: FLT/15°/slickensides.	* *
		By 109.54 the Cu mineralization begins to decrease.		F." BL/P/1		64.66-64.82: FLT/40°/slickensided pyri	te & moly.
		112.40 is the end of the well-mineralized section. Spotty				64,75: 5cm thick quartz vein with disse	minated cpy, moly and py @ 45°.
		chalcopyrite from then on				65,65: 2cm thick quartz vein @ 80° wit	h disseminated cpy & moly.
						65.90-66.00: Heavy cpy in quartz string	jers @ 50°, 75°.

· · ·

.

PAGE ____4___OF ___2__

•

	<u> </u>	DF	RILL LOG				HOLE NO. DDH J97-10
INTE	RVAL.	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	то	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
						66.41: 1cm thick quartz vein with nea	rly massive cpy @ 75°.
					······	66.85-109-54: Numerous cpy-bearing	veins with core angles typically 70-80°.
						These are generally from 2mm to 1	5cm thick. Also abundant hairline
						fractures with coy.	
		· · · · · · · · · · · · · · · · · · ·				68.27: FLT/50°/gouge.	
	····	73.92: Epidote in hairline fracture @ 80° with associated py.				73.53-73.86: FLT 0°, 15° gouge. Inclu	ided in the gouge are fragments of quartz-
		· · · · · · · · · · · · · · · · · · ·				moly-cpy-pyrite vein material.	
				· · · · · · · · · · · · · · · · · · ·		75.10: FLT/20°/slickensides.	· · · · · · · · · · · · · · · · · · ·
						76.50: Heavy cpy & moly in 4-mm qua	artz vein @ 75°.
						76,90: Cpy in quartz stringer cut by fa	ult @ 40°.
						80.82-81.00: Disseminated cpy wides	pread.
						81.68: Fault/20°/gouge.	T
						84.94: Kspar selvages in margin of qu	Jartz vein.
						87.68: Heavy cpy & moly in 3cm-quar	tz stringer @ 80°. Kspar selvages
						present.	
		· · · · · · · · · · · · · · · · · · ·				88.10: FLTs/30°+ 80°/gouge.	
						88.45,88.58: Quartz veins @ 55°, 60°	, 75° with heavy cpy.
						88.76: Quartz veinlet @ 70° with Ksp	ar seivage.
		······································				89.45-88.50: Massive cpy vein @ 70*	
• • • • • •				·		88.61-88.64: Two quartz veins @ 70*	with heavy cpy & minor moly.
						90.35: One-cm wide quartz vein with	strong Kspar selvages @ 65°. Heavy
						cpy, py, moly in vein.	
· · · · ·						90,63: Cpy is 3mm wide quartz string	er @ 50°. Kspar occurs in the vein but

~

.

.

.

PAGE __5__OF _12__

HOLE NO. DDH J97-10

.

			S				
			DRILL LOG				HOLE NO. DDH J97-10
INTE	RVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	то	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
						not as selvage.	
<b>_</b>						93.71: Cpy in hairline fracture @ 60°.	
<u> </u>						94.00: Cpy in quartz stringers 2mm th	nick @ 20° - this is an unusual core angle
						in this section. Also cpy in quartz str	ingers @ 60:m
						94.81: FLT/30°/gouge.	
				· · · · · · · · · · · · · · · · · · ·		94.98-95.08: Quartz vein @ 70° with h	eavy cpy and extremely heavy moly.
					1	95.13: FLT/60*/gouge including cpy an	nd moly in the gouge.
						95.40: Heavy cpy in quartz vein @ 75°	-
						97.58: Heavy cpy in seam @ 35°.	
						98.82: Fault/50°/gouge.	
·					· · ·	98.95: Heavy pyrite in seam @ 4mm in	ncluding well developed Kspar envelope
						also chlorite & partly an epidote env	elope.
					1	99,50: FLT/20°/slickensides.	
┣───			, ·			104.50: FLT/20°/slickensides.	
		· · · · · · · · · · · · · · · · · · ·			1	105.83: Heavy cpy in 2 hairline fracture	es @ 65°.
						106.07-106.50: Five hairline fractures	containing cpy all @ 60-70°. All
						fractures are truncated by fault @ 1	0°.
						106.73: FL.T/40°/gouge.	
						107.71-108.00: Heavy cpy & pyrite in v	vein with Kspar selvage.
				<u> ``~</u>	1	109.37: FLT/45%gouge.	ĺ
						109.54: Heavy cpy in quartz stringer @	9 65°.
	·····				1	110.00: FLT/40°/gouge.	
						110.23: Cpy in fracture @ 55°.	
		•		1	1	the second se	· · · · · · · · · · · · · · · · · · ·

.

PAGE __6__0F _12__

HOLE NO. ______.

INTERVAL    LITHOLOGY    MMERALIZATION    ALTERATIONS    FRACTURESAL    STRUCTURE    MISC      FROM    TO    colour, texture, gran size, composition etc.    Immeratization, type, ago relation    Immeratization, type, ago relation    Immeratization, type, ago relation    Immeratization, type, ago relation      Immeratization    Immeratization    Immeratization    Immeratization    Immeratization, type, ago relation    Immeratization, type, ago relation      Immeratization    Immeratization<			DR	ILL LOG		~		HOLE NO. DDH J97-10		
Income  Colour, texture, grain size, composition etc.  Image: mile addition in the section of the sectin of the section of the sectin of the section of the s	INTE	RVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC		
Image: Section of the secting of the section of the secting of the secting of th	FROM	то	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc		
110.82: Cpy in fracture @ 15°    111.33: Cpy in fracture @ 15°    111.33: Cpy in fracture @ 15°    111.33: Cpy in fracture @ 15°    111.24: 112.28: Very heavy cpy in quartz veins. Also heavy associated veins @ 55°, 60°.    112.24: 112.28: Very heavy cpy in quartz veins. Also heavy associated veins @ 55°, 60°.    112.40  161.40    Andesite chloritized. This is part of the footwall of the "B" Zone.  A 'Py/FF/1%    A CHUP/8  112.40: Very heavy cpy in calcite vein @ 45°.    Cpy is decreasing with depth but still quite a few hainine fractures  B. CALIV/6    Containing cpy. Pyrite is becoming more abundant.  C: Kspar/P/2    D: EPVFF/1  113.30: TLY 50°/gouge.    III.133: Cpy in fracture @ 30°.  F: BLUP/1    113: 50: FLI X50°/gouge.  III.50: FLI X50°/gouge.    III.133: Cpy in fracture @ 35°.  III.50: Heavy cpy in fracture @ 35°.    III.133: Cpy in fracture @ 35°.  III.50: FLI X50°/gouge.    III.135: Cpy common in hairline fractures @ 50°. 60°.  III.50: FLI X50°/gouge.    III.135: Cpy common in hairline fracture @ 35°.  III.50: FLI X50° Yein In hairline fracture @ 35°.    III.135: Cpy common in hairline fracture @ 50°. 80: NET/TOS Yein Common in hairline fracture @ 10-20°.  III.50: FLI X50° Yein X50°.    III.136: Cpy common in hairli							110.49-110.54: Heavy disseminated of	py in bleached section.		
Image: Second		1		· ····		1	110.82: Cpy in fracture @ 15°.			
Image: Second							111.33: Cpy in fracture @ 60°.			
112.40  161.40  Andesite chloritized. This is part of the footwall of the "B" Zone.  A. Py/FF/1%  A. CHUP/8  112.40. Very heavy cpy in calcite vein @ 45".    112.40  161.40  Andesite chloritized. This is part of the footwall of the "B" Zone.  A. Py/FF/1%  A. CHUP/8  112.40. Very heavy cpy in loalicite vein @ 45".    Image: Containing cpy. Pyrite is becoming more abundant.  E. Ca/V/5  112.61: Pyrite, cpy in hairline fracture & minor epidote.    Image: Containing cpy. Pyrite is becoming more abundant.  D. EPWFF/1  113.30: 113.37: Cpy in 10-hairline fracture @ 40°.50°.    Image: Containing cpy. Pyrite is becoming more abundant.  D. EPWFF/1  113.30: FLT/25*/gouge.  Image: Containing cpy. Pyrite is becoming more abundant.    Image: Containing cpy. Pyrite is becoming more abundant.  Image: Containing cpy. Pyrite is becoming more abundant.  D. EPWFF/1  113.30: FLT/25*/gouge.    Image: Containing cpy. Pyrite is becoming more abundant.    Image: Containing cpy. Pyrite is becoming more abundant.  Image: Containing cpy. Pyrite is becoming more abundant.  Image: Containing cpy. Aprite is containing conta		ļ					112.21-112.26: Very heavy cpy in qua	Intz veins. Also heavy associated moly		
112.40  161.40  Andesite chloritized. This is part of the footwall of the "B' Zone.  A Py/FF/1%  A. CHUP/8  112.40. Very heavy cpy in calcite vein @ 45°.    112.40  Cpy is decreasing with depth but still quite a few hairline fractures  B. Cpy/Fr/0.3%  B. CALIV/5  112.80. Yery heavy cpy in hairline fracture @ 45°.    112.40  Containing cpy. Pyrite is becoming more abundant.  C: Kspar/F/2  112.90. Heavy cpy in hairline fracture @ 20°. 40°.    113.30-113.37. Cpy in 10-hairline fractures @ 40°.50°.  D: EPI/FF/1  113.30-113.37. Cpy in 10-hairline fractures @ 40°.50°.    112.40  Intervention of the "B" Zone.  F: BLUP/1  113.50. FLT/50°/gouge.    115.57. Cpy in 2-hairline fractures @ 50°. 60°.  115.55. FlT/25°/gouge.  115.50. Heavy cpy in fracture @ 35°.    115.50  Heavy cpy in fracture @ 35°.  115.50. Heavy cpy in fracture @ 35°.  115.50. Heavy cpy in fracture @ 35°.    115.50  Bitchy cpy in shar zone @ 30°.  116.60. Cpy common in hairline fractures but the mineralization is dying below as evidenced by 2 boxes of core in which cpy is very scarce.    115.50  Heavy cpy in fracture @ 51° with associated cong & 122.00. FLT/30°/gouge.  120.67-121.20. Strong calcite veining & Kspar in shear zone @ 10-20°.    116.60. Cpy common in hairline fractures but the mineralization is dying below as evidenced by 2 boxes of core in which cpy is very scarce.  1							veins @ 55°, 60°.			
Cpy is decreasing with depth but still quite a few haitline fractures  B: Cpy/FF/0.3%  B: CAL/V/5  112.61: Pyrite, cpy in hairline fracture & minor epidote.    containing cpy. Pyrite is becoming more abundant.  C: Kspar/P/2  112.90: Heavy cpy in hairline fracture @ 20°, 40°.    D: EPI/FF/1  113.30-113.37: Cpy in 10-hairline fractures @ 40°-50°.  D: EPI/FF/1  113.50: FLT/50°/gouge.    Image: Contract of the provide of the provi	112.40	161 40	Andesite chloritized. This is part of the footwall of the "B" Zone.	A Py/FF/1%	A: CHL/P/8	+	112.40: Very heavy cpy in calcite vein	@ 45°.		
containing cpy. Pyrite is becoming more abundant.  C: Kspar/P/2  112.90: Heavy cpy in hairline fracture @ 20°. 40°.    D: EPI/FF/1  113.30-113.37: Cpy in 10-hairline fractures @ 40°.50°.  F: BLL/P/1  113.50: FLT/50°/gouge.    Image: Containing cpy. Pyrite is becoming more abundant.  F: BLL/P/1  113.90-113.37: Cpy in 10-hairline fractures @ 40°.50°.    Image: Containing cpy. Pyrite is becoming more abundant.  F: BLL/P/1  113.50: FLT/55°/gouge.    Image: Containing cpy. Pyrite is becoming more abundant.  F: BLL/P/1  115.50: FLT/25°/gouge.    Image: Containing cpy. Pyrite is becoming more abundant.  F: BLL/P/1  115.50: FLT/25°/gouge.    Image: Containing cpy. Pyrite is becoming more abundant.  Image: Containing cpy. Pyrite is contained in the fractures of the synthematic fracture is the synthematic fracture of the synthematic fracture is the synthematic fracture of the synthematic fracture is the mineralization is dying    Image: Containing cpy. Pyrite but mode fractures for the synthematic fracture is the synthematic fracture of the synthematic fracture of the synthematic fracture is the synthematic fracture of	<b>.</b>		Cpy is decreasing with depth but still quite a few hairline fractures	B: Cpy/FF/0 3%	B: CAL/V/5		112.61: Pyrite, cpy in hairline fracture	& minor epidote.		
Image: Second		†	containing cpy. Pyrite is becoming more abundant.		C: Kspar/P/2	· · ·	112.90: Heavy cpy in hairline fracture	@ 20°, 40°.		
Image: Second			· · · · · · · · · · · · · · · · · · ·		D: EPI/FF/1		113.30-113.37: Cpy in 10-hairline frac	.30-113.37: Cpy in 10-hairline fractures @ 40°-50°.		
Image: Section of the section of th					F: BLU/P/1		113.50: FLT/50°/gouge.	T		
Image: Section of the sector of the secto						· · ·	115.15: FLT/25%gouge.			
Image: Section of the section of th							115.35: Cpy in 2 hairline fractures @ 5	1 50°, 60°.		
Image: Second			······································				115.50: Heavy cpy in fracture @ 35°.	1		
Image: Second							115.90: Blotchy cpy in shear zone @ 3	<u>1</u> 30°.		
Image: Second			· · · · · · · · · · · · · · · · · · ·				116.00: Cpy common in hairline fractu	res but the mineralization is dying out		
Image: Strain of the strain							below as evidenced by 2 boxes of c	ore in which cpy is very scarce,		
Moderately heavy pyrite but no cpy. Also heavy moly at the bottom.    121.20: FLT/30°/gouge.    123.00: Heavy cpy & py @ 75° in calcite stringer 2mm wide.    124.87: Minor epidote in fracture @ 55° with associated cpy.    calcite.    128.52: Very heavy cpy in a fracture @ 50°. Strongest cpy seen since to			· · · · · · · · · · · · · · · · · · ·			<b> -</b>	120.67-121.20: Strong calcite veining	& Kspar in shear zone @ 10-20°.		
Image: Constraint of the second se							Moderately heavy pyrite but no cpy.	Also heavy moly at the bottom.		
Image: calcite.  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1							121.20: FLT/30%gouge	1		
124.87: Minor epidote in fracture @ 55° with associated cpy,  126.60-126.80: FLT/10°/slickensides and gouge.    calcite.  128.52: Very heavy cpy in a fracture @ 50°. Strongest cpy seen since to					<u>```</u>		123.00: Heavy cpy & py @ 75° in calci	te stringer 2mm wide.		
calcite. 128.52: Very heavy cpy in a fracture @ 50°. Strongest cpy seen since to			124.87: Minor epidote in fracture @ 55° with associated cpv.				126.60-126.80: FLT/10%slickensides a	ind gouge.		
i construction of the indexise (group seen since t	· · _ · _ ·		calcite.				128.52: Very heavy cov in a fracture 6	> 50° Strangest on seen since the		
main mineralized zone			· · · · · · · · · · · · · · · · · · ·				main mineralized zone	, so . on ongest cpy seen since the		

×.,

PAGE __7__OF _12__

_____

17

HOLE NO DDH J97-10

		DR	ILL LOG				
				1	·····	1	HOLE NO. DDH J97-10
		LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	то	colour, texture, grain size, composition etc.				bedding, lauits, folds fractures etc	mineralization, type, age relations, etc.
	ļ					137.26: Heavy cpy in fracture @ 65°.	
						138.00: Heavy cpy, py, and moly in 1c	m thick quartz vein @ 60°. Strong clay
						alteration locally.	
						138.00: FLT/65% gouge along vein cor	itact.
		151.91-152.04: Medium grained granodiorite dyke with contacts				147.83: Py, cpy, moly in catcite stringer @ 40°.	
		@ 55°. Minor cpy & pyrite disseminated in the lower contact area					
		of the dyke.					
							······································
		152.40-160.58: Patch bleaching along fractures.				153.38: Heavy cpy in 3 hairline fractures @ 45°, 75°, 80°.	
						153.57: Very heavy pyrite with minor cpy in fracture @ 60°.	
		152.78-154.46: Medium grained, massive, granodiorite with upper	A: Py/D/0.1%	A: CHL/D/5			
		contact @ 80°. Most of mafics altered to chlorite. Feldspars are	B: Cpy/FF/0.1%			· · · · · · · · · · · · · · · · · · ·	
		hard to knife. Minor pink coloration of feldspar along fractures is	C: Py/FF/0.1%				
		probably hematite after plagioclase. Lower contact @ 70°.					
		Weakly to moderately magnetic.				··· · · · · · · · · · · · · · · · · ·	
		155.94-156.00: Granodiorite. Upper and lower contacts are 60°,	A: Py/D/trace	A: CHL/D/2		159.14-159.57: Heavy fine grained dise	seminated cpy.
		55°, respectively. Matics is hornblende mainly and weakly				159.55-159.73: Fine grain disseminate	d cpy.
		chloritized.		·		159.91-159.95: Relatively heavy cpy in	hairline fractures @ 75°, 10°, 60°.
		· · · · · · · · · · · · · · · · · · ·	1			160.00: Heavy fine grained disseminated cpy.	
		161.00-161.14: Fine grained andesite with abundant hairline	1		1	161.36: FLT/65°/gouge & slickensides. This is a minor fault. Post mineral as	
		fractures containing pyrite and minor cpy.				cpy is slickensided.	
						161,50-161,73: Intense clay altered fel	sic unit with heavy cpy & moly.

ν,

.

.

PAGE __8__0F _12__

)

HOLE NO DDH J97-10

「日本の日本のため」の

			~				
		DR	ILL LOG				HOLE NO. DDH J97-10
INTE	RVAL	· LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	то	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
		161.14-161.35: 15% soft light greenish grey mineral with				161.73-161.78: FLT/65-70% gouge, s	lickensided cpy, seams of moly.
	-	equant outline.				163.13: FLT/50°/gouge.	
						163.14: Cpy in fracture @ 70°.	
161.40	212.75	Granodiorite. Massive, medium grained biotite granodiorite.	A: Moly/FF/0.2%	A: Clay/P/6		163.64: FLT/45°/gouge.	
		Mafics generally altered to chlorite & feldspar is usually soft to	B: Py/D/<.2%	B: CHL/D/5		163.98: FLT/60°/gouge.	
•		finger nail. The typical mineralization is in the form of heavy	C: Cpy/V/<0.2%	B: Kspar/selvages	1 <u></u> 12	164.86: FLT/20°/gouge.	
		moly slips and rare quartz veins containing Mo±Cpy±Py. The	C: Magnetite/D/<<0.	1%		165.27; FLT/45°/gouge.	
		entire core was sampled at 1m intervals. This core would turn to				165.52: FLT/30°/gouge.	
		sand upon the first freezing & thawing. Much of the core was				165.80: FLT/30°/gouge.	
		so friable that it was impossible to lift the core out of the core box				166.51: FLT/60°/gouge & slickenside	d moiy.
		without the core disintegrating. Abundant sections of reddish				166.80: FLT/15°/gouge.	· · · · · · · · · · · · · · · · ·
		coloured feldspar in areas of faulting is probably due to hematite				169.00-170.24: Very intense moly in	at least 8 major concentrations.
	<del>.</del>	after plagioclase. Pink Kspar forms vein selvages relative to		1		Estimated 5% moly. Very intense q	uartz veining up to 13cm wide. Also some
		mineralized structures.		· · · · ·		quartz rich sections are strongly bre	cciated. Also heavy associated cpy.
		· · · · · · · · · · · · · · · · · · ·		1		170.73-171.23: FLT/10°, 70°. About	half of the section is gouge.
		· · · · · · · · · · · · · · · · · · ·		1		171.32: FLT/60°/slickensided cpy & N	NoS2.
						172.00-172.39: FLT/60% About 20cm	n of gouge also moly slips over 5cm at
					· · · · · ·	bottom of the interval.	1
						172,53-173.59: Heavy moly in section	I n of intense clay alteration. Moly forms
·				N		heavy streaks in section of shear	ing and in quartz stringers.
				-		173.30: FLT/45°/gouge.	
						173.52: Quartz vein @ 65° with heav	y MoS2 + Cpy.
		· · · · · · · · · · · · · · · · · · ·				174.00: FLT/50°/gouge	· · · · · · · · · · · · · · · · · · ·

PAGE ___9__OF ___12___

.

HOLE NO DDH J97-10

		DRI	LL LOG				HOLE NO. ODH J97-10
INTE	RVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	το	colour texture grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
						174.21-175.08: Several strong moly zo	nes including moty gouges,
						moly bearing quartz veins. Also abu	indant hairline fractures containing moly.
			·			Dominant core angles 60°, 70°.	
						174.38: FLT/60°/gouge. Also 2.5cm th	ick quartz vein @ 70° is about 30% moly
						and minor associated cpy.	
						175.06-175.16: FLT/70°/gouge. Defor	med veins with cpy & py.
						175.42: Two fractures @ 60° contain c	py & have Kspar selvages.
						175.80: FLT/70°/gouge.	
						176.00-176.06: FLT/30%gouge & moly	stips.
						176.49-176.55; FLT/35°, 20°/slickensic	led moly.
						177.00; FLT/45° - Moly slip @ 45° in co	intact of quartz vein.
						177.39: FLT/70°/gouge.	
						178.35: Moly and cpy in 8mm-quartz v	ein @ 35°.
						179.40: FLT/15° - Strongly slickensided	moly in addition to gouge.
						179.66: Cpy and moly in 3mm-quartz v	rein @ 60°.
·· · ·						180,16-180.36: Intense clay alteration	& moly slips @ 70°.
						182.50: FLT/20º/slickensides.	
						185,20: Strong Kspar selvages relative	to 4mm thick quartz vein containing
						heavy moly.	
····						185.30: Very heavy moly in 4cm wide	quartz vein @ 35°. About 80% of vein is
L				~		moly.	1
						187.80: Cpy & py in 3mm-quartz string	er @ 20°. No molybdenite. Kspar
						selvages.	
			t	1	1	-	

PAGE 10 OF 12

HOLE NO. __ DDH J97-10_____

	DRILLLLOG								
INTE	RVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC		
FROM	то	- colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.		
			1			188.24: FLT/0* - Hematitic slickenside	s,		
						188.61: FLT/50°/moly is slickensided.			
						190.12: FLT/40°/slickensides,	· · · · · · · · · · · · · · · · · · ·		
						190.77-190.87: Extremely heavy moly	but no cpy in 3 quartz veins @ 60°.		
				·····		Kspar selvages.			
						191.07: FLT/65°/moly slip.			
						191.71: Moly in 3mm-quartz vein @ 60°.			
						191.77: Very heavy moly in quartz vein @ 45°.			
						192.31: Moly in 3mm-quartz vein @ 50°. Kspar selvages.			
						192.80-192.86:Semi-massive moly in d	eformed quartz vein. Also some		
						slickensides.	······································		
		193.00-195.00: Extremely crumbly core due to abundant hematite			·····	193.12: FLT/60% gouge. The fault cuts	a cpy-moly vein @ 15°.		
		fracturing.				193.38: FLT/50°. Moly bearing fracture	e @ 60° is cut by the fault.		
						195.84: FLT/60°/hematitc gouge & slic	kensides.		
		196.85-197.05: Pink aplite dyke @ 50°.				196.88: FLT/55°/slickensided moly.			
						198.40: Heavy moly in 1.5 thick shear :	zone @ 35°.		
						199.68: Heavy moly in fracture @ 60°.			
						199.78: FLT/40°/slickensides.			
						.200.63: FLT/35°/slickensides.			
						200.85: FLT/30°/gouge.			
				1. Na.		201.00: FLT/75° - Heavy moly slip.			
						201.00-201.29: Four very heavy moly s	Seams @ 60°.		
		· ·				201.76: FLT/45°/gouge.			

· · · ·

.

HOLE NO. _____DDH J97-10_____

			D	RILL-LO	G				HOLE NO. <u>D</u>	DH J97-11 .
CONT	RACTOR	:	SKETCH, PLAN SECTION	ОЕРТН	TEST DIP	AZIMUTH	DATE STARTED	October 4, 1997	PROPERTY	JEAN
PHIL'S	DIAMON	ID DRILLING LTD	-	COLLAR -90	N/A		DATE COMPLETED	October 8, 1997	CLAIM	JW 303
CORE	SIZE	NQ		1			COLLAR ELEV.		TARGET	В Zone
OVER	LL COR	E RECOV.					NORTH / SOUTH			
ANALYTICAL REFS		EFS					EAST / WEST			
Min-En Labs – ICP RPT,		ICP RPT.					AZIMUTH		NTS	93N/2
7S-03	7S-0317-RT1-6						DEPTH	276.75m	DATE LOGGE	0
75-03	17-RA1					TIE IN POINT- Preliminary tie-in only due to severe winter conditions making access difficult at completion of hole			LOGGED BY -	R.U. Bruaset
INTE	RVAL		LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCT	URE		MISC.
FROM	то	colo	our, texture, grain size, composition etc.				bedding, faults, fold	Is fractures etc.	mineralization, ty	pe, age relations, etc.
0	15.80	Overburden.					(Angles give are the c	pre angles.)		
15,80	37.75	Andesite. Altered	& fractured and relatively heavily mineralized	A: Cpy/V/1.5%	A: CHL/P/8		15.97: Three hairline	fractures with cp. 2 (		
		with cpy. The visa	acopyrite: pyrite ratio is >>1 which is	B: Cpy/FF/0.5%	B: Qtz/V/5		16.12-16.18: Heavy fi	g. cpy along 2cm wi	de shear @ 45° a	iso heavy cpy in
		characteristic of th	is mineralized zone which was also intersected	C: Py/FF/0.5%	C: BL/P/3		hairline fracture @	80°.		
		in DDH 75-1- DDI	195-2 as well as in percussion holes P74-6, 7.	N.	D: BL/PP/3		16.85: Heavy cpy in 2	mm quartz veinlet @	9 65°.	
					E:CAL/V/2		19.00: Heavy cpy & p	yrite in quartz veinle	t @ 4mm @ 75°.	
			E EPIN/1		20.45: Cpy & pyrite in quartz stringer @ 80° with minor epidote.			Inte		

PAGE ___ I ___ OF __13___

21.33-24.54: Patchy bleaching.

5

HOLE NO. DDH J97-11

21.13: FLT/20°/slickensides & gouge.

22.02: Pyrite in fracture @ 80°.

21.33-21.52: FLT/20°/stickensided sulphide.

24.30-24.38: Cpy in hairline fracture @ 20°, 80°.

few quartz stringers up to 2mm with cpy.

23.77-24.50; Five hairline fractures with pyrite & epidote - no cpy.

25.97-26.08: Heavy disseminated cpy in quartz veins @ 60°, 65°.

24.80-25.44: Approx. 60 hairline fractures @ 75° containing cpy & py plus a

			×.					
		HOLE NO. ODH J97-11						
INTE	RVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC	
FROM	то	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineratization, type, age relations, etc.	
	Ì					26.54-26.90: Faults @ 30°, 70° trunca	ate quartz stringers with cpy. Gouge &	
						slickensides.		
						26.90-26.95: Massive cpy in 5cm thic	k band @ 70°. Fault at upper contact.	
						26.94: FLT/30°/slickensides.		
						29.65-29.79: Extraordinarily heavy cp	y in quartz veins from 2mm to 2cm thick	
						as well as in hairline fractures. Vei	ns as well as mineralized streaks have	
						core angles of 75-80°. Very heavy reddish brown alteration in the fc		
						of secondary biolite in this zone. T	his is some of the most spectacular	
						cpy seen anywhere on this property	y. (Several photographs taken. Cpy>>py.	
		-				28.00-34.78: Abundant haidine fractur	res and 2mm thick quartz stringers	
						containing cpy. Typical core angles	s are 55-80°. A total of at least 135 such	
						fractures & veins in this interval.		
						33.10: FLT/15%slickensides		
						34.79-37.74: Moderately abundant cp	y mineralized structures consisting of	
						hairline fractures and narrow quartz	stringers typically @ 60-80° and	
					· · · · · · · · · · · · · · · · · · ·	occasionally @ 10-20°.		
				· · · · · · · · · · · · · · · · · · ·		37.74: 1.5cm thick cpy-magnetite vein	@ 70°. This is the last major	
						mineralized structure in the "B" zone	е.	
						32.74-42.15: Weak cpy with py in hair	line fractures. The mineralized fracture	
				<u>`</u>		density is lower and sulphides are n	nore strongly controlled by steep	
						-10 to 20° fractures than in the sect	tion above. Py >>Cpy.	
						41.20-41.21: Magnetite seam @75°.		
						41.69: Cpy & py in hairline fractures 8	0°.	

PAGE __2__OF __13__

HOLE NO. DDH J97-11

•

			~						
ļ	DRILL LOG								
INTE	RVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC		
FROM	то	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.		
37.75	86.77	Andesite, Altered & mineralized. Mineralization is locally intense	A: PY/FF/2%	A: CHL/P/8		43.15: Cpy in hairline fracture @ 55°.			
		but overall less than the section above. Py>Cpy. Minor	B: CPY/FF/1%	8: BL/PP/6		43.26: Epidote in hairline fracture with	ру.		
		molybdenite noted. Hairline fractures containing magnetite	C: CPY/D/0.1%	C: CAL/V/2	·	48.72: Mineralized structures @ 10, 1	5, 100° - quartz veins & hairline fractures		
		occasionally noted. e.g. 67.60.		D:EPI/FF/1		with pyrite and cpy.	]		
						49.70: 5cm thick quartz-calcite vein @	80° with heavy pyrite and molybdenite		
					<b></b>	and moderate cpy,			
						49.80: Strong cpy in veinlet @ 60°.			
						50.70: Heavy cpy in fracture @ 15°. Also cpy in hairline fractures @ 70-1			
						Disseminated cpy between mineralized structures.			
		· · · · ·			· · · · · · · · · · · · · · · · · · ·	50.90-51.10: Heavy cpy in fracture @	20, 60°.		
		· · · · · · ·			···· ·	51.82: Heavy cpy in hairline fracture @	70°.		
						52.57-52.61: Heavy calcite veining with	h heavy pyrite and heavy epidote locally.		
· —·						Also some magnetite.			
						54.80: Epidote and pyrite in hairline fra	cture @ 55°.		
						55.29: Cpy in hairline fracture with py (	@ 65°.		
			-		1	55.48: Hairline fracture @ 65° containi	ng magnetite.		
						55.26: Pyrite in fracture @ 70° includin	g epidote,		
						57.57: FLT/30°/gouge.			
					l	60.90: Cpy associated with heavy py ir	fracture @ 80°.		
·				² %	· · · · · ·	63.85: Heavy cpy in calcite vein @ 70*			
			+			64.60: FLT/80°/slickensides.			
			1		<u> </u>	64.90: Heavy molybdenite & cpy in 4m	m thick quartz veinlet @ 70°. Also		
		· · · · · · · · · · · · · · · · · · ·		·		strongly slickensided molybdenite @	) 70°.		
			- I	J	1				

PAGE ____3___OF ___13___

HOLE NO. DDH J97-11

		ng					
				1 · · · · · · · · · · · · · · · · · · ·	- L		HOLE NO. DDH J97-11
INTE	ERVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	то	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
	1					65.45-70: Pyrite and cpy in hairline fra	ctures and stringers @
						35, 60, 70, 75°.	
<u> </u>	1		1	-		71.10: Pyrite & epidote in fracture.	
		86,40-86.71: Pervasive carbonate alteration. Greenish grey.	1		1	73.57: Heavy cpy & pyrite in quartz str	inger @ 80°.
	1	Strong HCI reaction. Also calcite veins. Cpy occurs in fractures.				77.30: 1cm thick vein of massive cpy-	by @ 80°.
	<u> </u>	Faulting at the bottom of the section,				80.60: Gypsum in fracture @ 50°.	1
					1	86.70: FLT/40° /gouge.	
86.77	129.97	Andesite similar to the section immediately above. Lower overall	A: Cpy/FF/0.75%	A: CHL/P/8		90.78: Heavy cpy in hairline fracture @ 60°.	
		sulphide content with greater proportion of chalcopyrite	B: Py/FF/0.5%	B: Q/V/2	1	91.56; Heavy epidote in 2mm thick frac	ture @ 60°. Associated pyrite.
		relative to pyrite. Many faults present and increasing intensity of			1	92.17-92.71; FLT/50° /essentially all go	uge
	-	faulting with depth. This increased faulting with depth was also			· · · ·	93.00: FLT/60° /gouge.	
	1	noted in DDH 75-1 upon approaching the granodiorite contact.				93.18: Cpy in hairline fracture @ 10°.	<u> </u>
						93.34-93.40: FLT/55° /gouge.	
		122.90-123.10: Medium grained biotite-hornblende granodiorite			1	95.13: FLT/65° /gouge.	
		dyke. No chilling at contact. Trace disseminated cpy.				95.21-96.46; FLT/50° About half of the	interval is gouge. The rest of the core is
			·····		· · · · · · · · · · · · · · · · · · ·	broken with the strength of gouge.	1
						97,29: FLT/60° /slickensides.	
· · · · · · · · · · · · · · · · · · ·						97.42: Hairline fracture @ 65° with pyr	ite.
						98.33: 2cm thick quartz vein @ 75° wit	h heavy MoS2 & minor cpy.
	<u> </u>	· · · · · · · · · · · · · · · · · · ·		<u></u>		98.35-98.40: FLT/60° /gouge & slicken:	sides.
		· · · · · · · · · · · · · · · · · · ·	1			98.50: FLT/40° /slickensides.	
		· · · · · · · · · · · · · · · · · · ·				99.18: Heavy cpy in hairline fracture @	10°.
	<u> </u>		· · · · · · · · ·		<u> </u>	99.24: Heavy cpy in 2mm thick veinlet	@ 80°.

Ч,

.

PAGE ____4___OF ____3___

HOLE NO. DDH J97-11

-

			<u> </u>				1	
		HOLE NO. DDH J97-11						
INTE	RVAL	. LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC	
FROM	то	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.	
						99.82: Cpy>>py in hairline fracture @	10°.	
						101.12-101.24: FLT/0°/talcous gouge	1	
		· · · · · · · · · · · · · · · · · · ·				102.80: Cpy <py 3="" fractures<="" hairline="" in="" td=""><td>@ 80°.</td></py>	@ 80°.	
						104.90. FLT/20°/slickensides.		
						105.38; FLT/10°/slickensided py.		
						106.67: Heavy cpy & pyrite in fracture @ 70°.		
						108.35: Heavy cpy in fractures @ 10-20°.		
						110.00-111.00: Many hainline fractures @ 10-40° with cpy.		
	· · ·			· · · · · · · · · · · · · · · · · · ·	· · ·	112.33: FLT/60°/slickensides & gouge.		
						113.12: Cpy & py in fractures @ 35°.		
						113,46-113.57: FLT/65°.		
					<u> </u>	114.00: FLT/80°/Strong moly slip in ed	lge of a vein.	
						117.50; FLT/0°/slickensides.		
				····		118.30: FLT/5°/ gouge.		
						120.93-121.00: FLT/25% gouge.		
						121.40-121.60: Very heavy fine grain	disseminated cpy. (The strongest copper	
						seen in a while)		
						122.00-122.37: FLT/35°/slickensides (	å gouge.	
					<b>}</b>	122.48-123.58: FLT/50°/ gouge.		
						125.00: Cpy in 2mm-quartz stringer (	0 75°.	
						125.24: Cpy along fracture @ 50°.	1	
					+	127.20: FLT/40% 2cm thick mylonitic	zone. A chalcopyrite & magnetite vein is	
	<u> </u>	125.61-125.81: Granodiorite as 112.90-123.10.			ļ	conformable to the mylonite and as	other vein cuts it.	

•

PAGE __5__OF _13__

HOLE NO. DDH J97-11

.

•

 $x \geq 0$ 

	HOLE NO. DDH J97-11					
RVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
TO	colour, texture, grain size, composition etc.	1			bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
	128.66-129.25: Biotite-hornblende granodiorite. Minor	A: CPY/D/0.1%	A: CHL/D/5		127.22: Cpy in hairline fracture @ 40°.	
	disseminated cpy & pyrite. Similar, or same, as 125.61-125.81.	B: PY/0/0,1%		- · · · ·	128.60. FLT/60°/gouge.	
		· · · · · · · · · · · · · · · · · · ·			128.69: FLT/30°/slickensides.	
					129.00: FLT/20°/slickensided py.	
					129.75: Fault/30°/truncated quartz chai	copyrite veins.
150.32	Biotite granodiorite. Medium grained, altered and mineralized				130.04: FLT/50°/gouge.	
	with cpy, molybdenite, and pyrite. This is a fault-bounded block.				130.19: FLT/55°/gouge.	
	129.95-133.50: Clay alteration is less intense than in the unit	A: CPY/FF/0.2%	A: CHL/D/6		130.34: Cpy & MoS2 in 7mm-quartz stri	inger @ 60°. No pyrite.
	below. Considerable faulting.	B: Mo/FF/0.1%	B: Kspar selvages/	3	130.41: FLT/60°/moly slip & gouge.	
			C: Qtz/V/2	-	130.57: FLT/20°/slickensides.	
	· · · · · · · · · · · · · · · · · · ·		D: Clay/P		130.68: FLT/20°/slickensides with hema	alite.
				• • • • • • • • • • • • • • • • • • •	130.91: FLT/35°/slickensided moly.	
	133.50-150.32: The granodiorite is intensely clay altered. Mafics	A: CPY/FF/0/4%	A: Clay/P/100		131.18: Cpy in fracture @ 80° with Ksp	ar selvage.
	are altered to sericite and chlorite. Plagioclase is greenish. Core	B: PY/FF/0.2%	B: CHL/D/6		131.78: FLT/30°/slickensided moly.	
	is "candy striped" as Kspar selvages are well developed.	C: Moly/FF/0.1%	C: Kspar/6		131.93-131.94: FLT/45%heavy moly go	uge.
	· · · · · · · · · · · · · · · · · · ·		D: Ser/PP/5		132.19. Minor cpy in fracture @60° & K	spar selvage.
			E: Q/V/3		132.52: FLT/50°/gouge.	-
					132.76: Cpy & moly in Kspar selvaged	guartz stringer 2mm thick @ 60°.
			·		133.70; FLT/45°/gouge.	
					134.69: Cpy & moly in quartz stringer @	§ 65°.
		······································		·····	135.58: Cpy & pyrite (1:1) in quartz strir	nger @ 70°.
				-	135.85; Heavy moly in vein @ 30°.	
					136,66: Moly slip @ 45°.	
	RVAL 70 150.32	RVAL  LITHOLOGY    TO  colour, texture, grain size, composition etc.    128.66-129.25. Biotite-hornblende granodiorite. Minor    disseminated cpy & pyrite. Similar, or same, as 125.61-125.81.    150.32    Biotite granodiorite. Medium grained, altered and mineralized    with cpy, molybdenite, and pyrite. This is a fault-bounded block.    129.95-133.50: Clay alteration is less intense than in the unit    below. Considerable faulting.    133.50-150.32: The granodiorite is intensely clay altered. Mafics    are altered to sericite and chlorite. Plagioclase is greenish. Core    is "candy striped" as Kspar selvages are well developed.	Biolite granodiorite. Medium grained, altered and mineralized  A: CPY/I/0.1%    150.32  Biolite granodiorite. Medium grained, altered and mineralized    with cpy, molybdenite, and pyrite. This is a fault-bounded block.  A: CPY/I/F/0.2%    129.95-133.50. Clay alteration is less intense than in the unit  A: CPY/IFf/0.2%    below. Considerable faulting.  B: Mo/FF/0.1%    133.50-150.32. The granodiorite is intensely clay altered. Mafics  A: CPY/IFF/0.2%    is "candy striped" as Kspar selvages are well developed.  C: Moly/IFF/0.1%    is "candy striped" as Kspar selvages are well developed.  C: Moly/IFF/0.1%	RVAL  LITHOLOGY  MINERALIZATION  ALTERATIONS    Y0  colour, texture, grain size, composition etc.  ALTERATIONS  ALTERATIONS    128.66-129.25. Biothe-hornblende granodiorite. Minor  ALCPY/D/0.1%  ALCHL/D/5    disseminated cpy & pyrite. Similar, or same, as 125.61-125.81.  B. PY/D/0.1%  ALTERATIONS    150.32  Biothe granodiorite. Medium grained, altered and mineralized	Bitte granodiorite. Medium grained, altered and mineralized  MiNERALIZATION  ALTERATIONS  PRACTURES/M    128.66-129.25. Biotite-hornblende granodiorite. Minor  A: CPY/D/0.1%  A. CHL/D/5	DRILL LOGY  MINERALIZATION  ALTERATIONS  FRACTURESM  STRUCTURE    TO  colour, texture, grain size, composition etc.  mineralization  ALTERATIONS  RAC CHL/D/5  FRACTURESM  STRUCTURE    128.65-129.25. BioRite-homblende granddiorite  Minor  A: CPV/D/0.1%  A: CHL/D/5  127.22  Cpv in hairline fracture @ 40°.    disseminated cpv & pyrite. Similar, or same, as 125.61-125.91.  B: PV/D/0.1%  A: CHL/D/5  128.69  FL730/%ickensided py.    150.32  Biotite granodiorite. Medium grained, altered and mineralized  Incompatibility.  Incompatibility.  130.04  FU/T50%gouge.    150.32  Biotite granodiorite. Medium grained, altered and mineralized  Incompatibility.  A: CHV/D/6  130.34. Cpy & MoS2 in /mm-quart.str    150.32  Biotite granodiorite. Sintense than in the unit  A: CPY/FP/0.2%  A: CHU/D/6  130.34. Cpy & MoS2 in /mm-quart.str    129.95.713.50  Clay alteration is less intense than in the unit  A: CPY/FP/0.2%  A: CHU/D/6  130.39.7. FL/T30%ickensides.    133.50-150.32  The granodiorite is intensely cap altered. Mafics  A: CPY/FP/0.2%  A: CHU/D/6  131.78. FL/T30%ickensides with herm    133.50-150.32  Th

Ч,

PAGE ____6___OF ___13___

HOLE NO DDH J97-11

		DRI	LL LOG				HOLE NO. DDH J97-11
INTE	RVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	то	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, lype, age relations, etc.
						137.11: Cpy & moly in 8mm-quartz str	inger @ 75°. The moly is in the edge of
						the Kspar selvage.	
						138.32: Cpy + py + moly in 5mm quar	z veintet. Kspar selvage.
						139.21: Heavy moly in fractures @ 70	°.
						139.27: Heavy cpy in 8mm-quartz veir	a @ 65°. No pyrite.
	139.67-139.74: Quartz vein with extrao		rdinarily heavy cpy + moly.				
						140.43: Heavy cpy in quartz vein 10mr	n thick @ 60°.
						141.80: FLT/45°/gouge.	
						142.82: Moly slip @ 60°.	
						143.42: Heavy cpy & moly in 10mm qu	iartz vein @ 75°.
				·		145.00-145.09: Heavy fine moly in she	ar @ 50°.
						145.48-145.66: FLT/20°/entire section	is gouge.
						145.83: FLT/20°/gouge.	
						145.92-146.04: Heavy moly in hairline	fractures.
		ð <u>.</u>				146.10; FLT/30°/gouge.	
						146.61-146.75: Heavy moly in gouge, a	also in quartz veins, both @ 55°.
	t					146.85: Heavy cpy in quartz stringer @	§ 50°. Kspar envelopes. Minor moly.
						147.82: Cpy & py, moly in irregular qu	artz vein @ 60° Kspar selvages.
						Emerald green sericite present for 1	5 to 10cm respectively, above & below
• • • • • • • •						this mineralized structure.	
						148.21: Heavy cpy, py, and moly in ma	argins of 6cm-quartz vein @ 60°.
		149.19-149.68: Aphanitic volcanic. Intensely fractured. Very heavy				148.35: Moly slip @ 30°.	
		disseminated pyrite and cpy, as well as fracture controlled cpy & py.				148.74: Heavy moly in slip @ 55°.	

حر^ور

.

.

PAGE __7_OF _13_

HOLE NO. DDH J97-11

		DR	ILL LOG				HOLE NO. DDH J97-11
INTE	RVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	то	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
						149.00-149,20: FLT/60°/All gouge. He	avy moly, py, cpy occur in the gouge.
150.32	181.20	Andesite. Aphanitic to fine grained. Greenish. Attered &	A: Cpy/FF/2%	A: CHL/P/8		150.32-150.86: Fault @ 50°. The entit	re section is gouge. No mineralization in
		generally moderately well mineralized cpy>>py. The principal	B. Py/FF/0.25%	B: CAL/V/6		this gouge.	
		controls are quartz stringers @ 2-4mm and hairline fractures.		C: BL/P/2		151.65-154.80: Cpy in quartz veins @	65-80°. Also hairline fractures @ 75°.
		Faulting at bottom marks the boundary with strong copper		D: EP/P/1		At least 25 mineralized fractures an	d veins counted.
		mineralization.				154.18-159.10: Hematite fracture coat	ngs common.
		159.00: Heavy epidote band 4cm thick @ 30° contains very		·		157.24: FLT/80º/gouge.	
		heavy disseminated cpy.				159.15: Quartz vein @ 70° with heavy	сру.
		· · · · · · · · · · · · · · · · · · ·				160.18-160.25: FLT/80°/gouge.	
						164.00: FLT/45°/gouge. Truncates cp	bearing hairline fracture.
						164.70: Cpy in quartz veinlet @ 70°.	
						164.90: Heavy cpy in fracture @ 85°.	Minor py.
						165.64-165.73: FLT/50%gouge.	
						168.90: Heavy cpy in quartz stringer @	€ 45°.
						170.49-170.65: FLT/40°/gouge.	
						174.88-175.41: Nine mineralized fractu	rres with cpy @ 70°.
						173.41-178.12: Abundant hematilic fra	ctures.
						178.46-178.82: FLT/65°/Heavy gouge.	No mineralization in the gouge.
			· · · · · · · · · · · ·			179.60: Quartz veinlet @ 50° with mind	or cpy, py ratio 1:1.
			h	····	• •• • • • •	179.67: 3mm-quartz stringer with heav	y cpy & minor moly @ 60°.
181.20	204.00	Quartz breccia consisting of angular fragments of fine grained	A: Cpy/BB/3%	A: Q/FF/10		181.00-181.24: FLT/25-30°/gouge, slic	kensides.
		volcanics & intrusive set in a groundmass of quartz. Fragments	B: Py/BB/1/5%	B: CHU/D/7		182.15: FLT/15°/gouge.	
		are groundmass-supported. The breccia is well "flushed"	C: Mo/D/<.1%			184,67: FLT/55°/gouge.	

PAGE ____8__OF ____3__

۰.

HOLE NO. DDH J97-11

			~		• • • • • • • • • • • • • • • • • • •		
		DR	ILL LOG				HOLE NO. DDH J97-11
INTE	RVAL	. LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	то	colour, texture, grain size, composition etc.				. bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
		- almost no fine grained material left. Fragments are unmilled.				193-193.10: FLT/10°/gouge.	
		They are very angular-typically 2-3cm long by 0.5 to 1cm wide.		1		199.78-200: Very heavy cpy in quartz	vein @ 30°.
		Cpy & py occur as blotches to 6407cm in the quartz groundmass	1			200.00-200.12: Very heavy cpy in qua	rtz vein @ 60°.
		as fracture fillings & disseminations in the fragments. Material of				200.30: FLT/30%gouge.	T
		this type has never been seen before in drill core in the A-B zone				200.65: FLT/45%gouge.	
·		area.				200.88-201.29: FLT/slickensides, gou	ge
	<b> </b>	186.39-187.78: Fine grained pinkish dyke with quartz stringers				204.44: Pre-deformation quartz vein 2	cm thick contains cpy, py, and moly.
		containing cpy. The dyke is in sharp contact with breccia @ 30°.				204.65: FLT/65°/gouge.	1
						204.70-205.44: FLT/50°/gouge. Cpy i	n quartz vein incorporated in the gouge.
		194.06-194.45: Pink felsic dyke, fine grained to aphanitic similar				E.g. 205.10.	
		to 186.39-186.78. Unmineralized.				205.35: Very heavy cpy occurs in 'crus	shed' quartz vein @ 55°.
	· · · · ·	200.65-200.78: Dyke as 194.06-194.45.				206.60-207.39: Very heavy cpy & less	er py as blebs in intensely fractured
204.00	207.48	Felsite. Intense deformation by faulting and shearing. Strong	A: Cpy/V/5%	A: Clay/p/8		quartz vein @ 50°. Very heavy mol	y as ribbons in the quartz .03+
		fabric development. Very strongly mineralized with cpy, py and	B: Py/V/1%	B: Q/V/6		12-15% Au in this structure. The up	pper & lower contacts are faults @ 60°+
		moly in quartz.	C: Moly/v/0.5%	C: CAL/V/1		55°, respectively.	
		· · · · · · · · · · · · · · · · · · ·	·			207.40-207.47: Mylonite-like material.	The contact with the underlying
207.48	230.47	Andesite. Dark grey. Altered. Abundant calcite-filled fractures.	A: PY/FF/0.5%	A: CHL/P/5		volcanics is obscured by the deform	ation.
		Cpy in hairline fractures & a few quartz veinlets. Mineralized	B: Cpy/FF/0.35%	B: CAL/V/3		207.85: FLT/30°/gouge.	
		veins are spotty. Talcous slips are common. The best estimate	C: Cpy/D/0.1%	C: BL/P/2		208.00; Quartz vein @ 75° with heavy	cipy.
		at the contact is 40° core angles.	<u> </u>	×		208.04: Quartz vein @ 30° with heavy	сру.
						209.18: Disseminated cpy & py in sect	ion of strong bleaching.
						210.14: FLT/30°/slickensides.	
			<u> </u>			210.14: Cpy in magnetite stringer @ 3	1 D°,

PAGE ____9__OF ___13___

HOLE NO. DDH J97-11

		DR DR	ILL LOG				HOLE NO. DDH J97-11
INTEI	RVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	то	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
						210.27: Disseminated cpy > py in blead	ched section.
						212.23: FLT/15%gouge.	
						214.00: Cpy in hairline fracture @ 30°.	
						215.60: Minor cpy with pyrite in hairline	fracture @ 60°.
						216.59: Pyrite > cpy in fracture @ 30°.	
						218.60: Heavy disseminated cpy in feld	Ispathic patch 1cm x 4cm.
						218.88: FLT @ 20° along border of frac	ture @ 20° containing heavy cpy
						221.59: Fault @ 20° slickensides.	
		· · · · · · · · · · · · · · · · · · ·				221.83: Two hairline fractures with cpy	@ 20°.
						222.00: Three hairline fractures @ 5, 10	, 20° containing cpy, and py.
						222.27: Heavy cpy in 2 fractures @ 70°	
						223.00: Cpy & pyrite in fracture @ 0° to	core.
						223,50: FLT/10°/gouge. The fault cuts of	py & pyrite bearing hairline fracture.
						224.47: FLT @ 5° In border Of chalcop	vrite fracture. Gouge & slickensides.
						225.37: Hairline fracture @ 70°. Finely	disseminated cpy in the adjacent rock
						extending several cm from the fractu	re.
						226.00: Cpy in hairline fractures @ 0°.	45°.
						226.30-228.16: Numerous quartz veinig	ts & hairline fractures with heavy cpy
				· · · · · · · · · · · · · · · · · · ·		@ 20°, 30°, 45°.	
						228.33: FLT/20°/gouge.	
						229.64: FLT/50°/gouge.	
						229.97: FLT/60°/gouge.	
						231.22: Spotty cpy in fractures @ 20°, 4	15°.

.

.

.

•

PAGE ______OF _____

HOLE NO. DDH J97-11

ή

	-	DF	RILL LOG				HOLE NO. DDH J97-11
INTE	RVAL	LITHOLOGY	MINERALIZATION	ALTERATIONS	FRACTURES/M	STRUCTURE	MISC
FROM	TO	colour, texture, grain size, composition etc.				bedding, faults, folds fractures etc	mineralization, type, age relations, etc.
						259.32: Cpy in hairline fracture @ 20°.	
						259,45: FLT/45°/gouge.	
						261.00: Minor cpy & pyrite in hairline fra	actures @ 25, 45, 50, 60, 65, 70°.
						261.51-265.30: Cpy & moly in a total o	f 5 quartz stringers & hairline fractures
						@ 45, 50, 60 & 70°.	
						264.45: FLT/30°/gouge.	
						265.49-265.80: FLT/20°/gouge.	
		· · · · · · · · · · · · · · · · · · ·				266.22: Heavy cpy in hairline fracture	<u>ð</u> 60°.
						267.70: Moly in fracture @ 40°.	
						268.80: Heavy cpy & moly in quartz ve	in @ 40°.
						271.80: Moly in hairline fracture @ 60°.	
						272.24: Moly slip @ 60°.	
		······································				274.40: Heavy cpy & moly 2cm thick qu	artz stringer @ 45°.
				······································		274.48: Moly in hairline fracture @ 65°.	
						276.23: Cpy in hairline fracture @ 65°.	
						276.73: Heavy cpy in 1mm wide fractu	ire @ 60°
	276.75	End of hole.					
						ŧ	
					· · · · · · · · · · · · · · · · · · ·		
				· · · · · · · · · · · · · · · · · · ·			

Μ,

.

..

.

.

PAGE ____13___OF ____3__

HOLE NO. DDH J97-11

APPENDIX 2

## ANALYTICAL RESULTS & ANALYTICAL PROCEDURES

JEAN P	ROPERTY	Y - CORE	E RECOVI	ERY AND	SAMPLE	ANA	LYSES	3									÷		٠																	
J97-1	From	То	Length	Recov.	Cu	Cu	MO	Au-fire	AG	FE	MG	AS	SB	BI	BA	BE	CA	PB	ZN	CD	Ni	co	CR	w	AL	NA	к	P	MN	ы	SR	GA	тн и	J	тι	v
Sample	metres	metres	metres	metres	PPM	%	PPM	PPB	PPM	%	%	PPM	PPM	PPM	PPM	PPM	%	₽₽М	PPM	PPM	PPM	PPM	PPM	PPM	%	%	%	PPM	PPM	PPM	PPM	PPM F	PM PF	٠M	%	PPM
292001	1.22	4	2,78	1.17	171		1	31	0.1	4.15	2.13	1	1	1	96	0.1	1.73	32	55	0.1	21	24	92	1	1.91	0,04	0.27	1670	771	19	41	1	1	1	0.11	122.1
292002	4	6	2	2.00	71		1	11	0.1	5.31	2.61	1	1	1	66	0.1	4.19	34	59 '	0.1	7	24	92	1	2.31	0.04	0.21	1430	1232	30	136	1	1	1	0.09	172.1
292003	6	8	2	2.00	114		1	7	0.1	5.11	2.44	1	1	1	72	0.1	3.99	27	61	0.1	8	24	88	1	2.05	0.02	0.35	1640	1139	17	94	1	1	1	0.11	153.1
292004	8	10	2	1.51	79		1	9	0.1	5.84	2.89	` 1	1	1	65	0.1	4.13	21	63	0.1	14	25	100	1	1.64	0.03	0.23	1490	1328	16	160	1	1	1	0.07	147.4
292005	10	12	2	1.95	117		1	4	0.2	5.21	2.98	1	1	1	144	0.1	4.04	39	279	0.1	66	29	157	1	2.41	0.05	0.31	800	1160	31	81	1	1	1	0.14	146,4
292006	12	14	2	2.00	60		1	10	0.1	6.19	2.69	8	1	1	137	0.1	4.1	25	94	0.1	37	23	74	1	1.4	0.04	0.25	1130	1965	16	114	1	1	1	0.05	115.8
292007	14	16	2	1.69	39		1	24	0.1	6.33	4.36	54	1	1	96	0.1	3.89	40	85	0.1	68	28	167	1	2.13	0.01	0.2	710	2408	20	94	1	1	1	0.01	141.8

	•		-																																
292005	10	12	2	1.95	117	1	4	0.2	5.21	2.98	1	1	1	144	0.1	4.04	39	279	0.1	66	29	157	1	2.41	0.05	0.31	800	1160	31	81	1	1	1	0.14	146,4
292006	12	14	2	2.00	60	1	10	0.1	6.19	2.69	8	1	1	137	0.1	4.1	25	94	0.1	37	23	74	1	1.4	0.04	0.25	1130	1965	16	114	1	1	1	0.05	115.8
292007	14	16	2	1.69	39	1	24	0.1	6.33	4.36	54	1	1	96	0.1	3.89	40	85	0.1	68	28	167	1	2.13	0.01	0.2	710	2408	20	94	1	1	1	0.01	141.8
292008	16	18	2	2.00	87	1	4	0.1	5.72	4.42	1	1	1	127	0.1	2.36	37	81	0.1	60	26	154	1	2:42	0.03	0.15	550	1297	26	111	1	1	1	0.02	170.5
292009	18	20	2	1.73	108	1	3	0.1	5.8	2.36	33	1	1	42	0.1	2.4	13	187	. 0.1	13	25	26	1	0.92	0.03	0.08	560	1189	25	118	1	1	1	0.01	137.3
292010	20	22	2	2.00	84	1	3	0.1	6.47	2.56	34	1	1	43	0.1	2.96	13	134	0,1	10	28	10	1	0.87	0.02	0.13	410	1318	20	126	1	1	1	0.01	124.6
292011	22	24	2	1.15	149	1	6	0.1	5.36	1.95	65	13	1	69	0.1	2.77	13	127	0.1	19	26	23	1	0.43	0.01	0.16	560	1274	7	93	1	1	1	0.01	73.9
292012	24	26	2	1.54	83	1	132	0.1	4.82	2.75	503	1	1	32	0.1	6.14	38	90	0.1	15	17	17	1	0.35	0.01	0.16	610	1857	1	135	1	1	1	0.01	36.4
292013	26	28	2	1.75	50	1	5	0.1	4.77	1.73	63	1	1	51	0.1	2.99	8	137	0.1	51	21	37	1	0.48	0.02	0,18	1120	1050	2	109	1	1	1	0.01	42.8
292014	28	30	2	1.6 <del>6</del>	408	1	120	43.6	8.49	2.2	472	160	1	51	0.1	4.06	457	245	0.1	28	24	15	1	1.03	0.02	0.13	840	2370	7	79	1	1	1	0.03	80.3
292015	30	32	2	2.64	40	1	15	0.4	4.64	2.52	1	1	1	72	0.1	1.44	37	42	0.1	49	21	128	1	2.11	0.04	0.41	1240	576	21	53	1	1	1	0.14	105.5
292016	32	34	2	2.00	29	1	16	0.1	4.67	2.72	1	1	1	76	0.1	1.44	39	41	0.1	64	22	165	1	2.21	0.05	0.31	1360	666	30	72	1	1	1	0.09	95.9
292017	34	36	2	2.25	6	1	26	0.3	3.92	2.66	1	1	1	32	0.1	1.43	38	35	0.1	62	19	166	1	2.11	0.05	0.05	1270	631	45	57	1	1	1	0.1	86.3
292018	36	38	2	1.96	6	1	6	0.4	3.19	2.42	1	1	1	30	0.1	1.88	40	33	0.1	46	15	149	1	2.08	0.06	0.09	1220	522	44	36	1	1	1	0.13	79,7
292019	38	40	2	2.05	45	1	12	1	3.54	2.57	1	1	3	58	0.1	2	43	40	0.1	53	17	162	1	2.36	0.07	0.19	1220	530	42	47	1	1	1	0.18	93.5
292020	40	42	2	1.43	8	1	15	0.6	3.42	2.5	1	1	1	95	0.1	1.94	44	57	0,1	47	15	155	1	2.38	0.06	0.3	1160	507	40	49	1	1	1	0.14	89.1
292021	42	44	2	1.03	312	1	37	0.9	5.62	2.39	1	1	1	50	0.1	2.47	38	213	0.1	39	40	64	1	2.14	0.05	0.17	1000	842	35	64	1	1	1	0.14	152.8
292022	44	46	2	2.00	269	1	41	0.7	4.93	2.1	1	1	1	46	0.1	2.37	37	177	0.1	1	37	9	1	2.09	0.06	0.07	1160	835	40	48	1	1	1	0.12	151.9
292023	46	48	2	2.55	69	1	47	0.5	4.31	2.4	1	1	1	74	0.1	2.38	35	86	0.1	20	23	57	1	2.15	0.06	0.35	1130	700	31	60	1	1	1	0.13	127.6
292024	48	50	2	2.23	201	1	172	0.7	4.54	2.1	1	1	1	46	0.1	2.41	40	/8	0.1	4	32	21	1	2.15	0.05	0.07	1160	730	38	38	1	1	1	0.13	122.4
292025	50	52	2	2.40	110	1	87	0.1	4.82	2.46	7	1	1	43	0.1	3.95	43	52	0,1	1	24	37	1	2.4	0.07	0.06	1230	931	37	29	1	1	1	0.16	165.1
292026	52	54	2	2.70	33	1	139	0.1	3.64	1.85	1	1	2	40	0.1	2.36	31	35	0.1	3	15	24	1	1.86	0.08	0.06	1240	656	30	33	1	1	1	0.17	126.3
292027	54	56	2	2.13	32	1	92	0.3	4.11	2.45	1	1	2	81	0.1	2.39	35	36	0.1	41	18	126	1	2.18	0.11	0.45	1210	623	23	64	1	1	1	0.2	122.3
292028	56	58	2	1.85	141	1	10	1.1	4.88	3.76	1	1	3	200	0.1	1.93	48	40	0.1	61	28	150	1	3.05	0.17	1.5	960	603	18	68	1	1	1	0.3	160.2
292029	58	60	2	2.00	92	1	70	0.4	4.82	2.95	1	1	1	154	0.1	2.37	47	42	0.1	39	28	117	1	3.1	0.26	0.58	880	622	28	111	1	1	1	0.21	127.3
292030	60	62	2	2.00	166	1	232	0.1	4.31	1.98	23	5	5	180	0.1	3.09	40	40	0.1	17	27	88	1	2.72	0.27	0.29	950	667	18	145	1	1	1	0.17	113.9
292031	62	64	2	2.00	114	1	53	1	4.11	2.1	1	1	15	97	0.1	2.45	35	40	0.1	18	22	123	1	2.25	0,26	0.12	870	596	12	101	1	1	1	0.25	124.5
292032	64	66	2	sand12	151	1	12	2	5	1.64	1	4	14	54	0.1	2.38	26	79	0.1	37	21	86	17	1.75	0.09	0.09	680	798	12	43	1.	1	1	0.21	132.9
292033	66	68	2	sand50	118	1	8	1	5.24	1.71	1	5	19	73	0.1	1.69	28	67	0.1	44	19	129	18	1,96	0.17	0.09	830	612	11	52	1	1	1	0.24	139.5
292034	68	69,5	1.5	snad59	169	1	7	0.3	5.33	1.67	2	5	9	71	0.1	1.66	23	81	0.1	48	21	104	23	1.81	0.11	0.08	670	615	9	44	1	1	1	0.17	128.4
			~		· · · · · · · · ·																														

.

Note: - Sand12 means 12% of the cuttings were recovered as sand.

Page 1

107.0	Casas		1.00.040	Deserve		<b></b>	210		**		140	**	00	21	-	00	~ •		711	00		00	~ ~	112			17	-				m	
397-2	From	10	reugu	Recov.	60	Gu	MO.	Au-nre	AG	re	MG	A2	<b>5B</b>	ы	BA	BF	ÇA	РВ	2.N	CD	NI	υÜ	UK	W	AL	NA	ĸ	P	MN	LI	SR	GA TH	- U
Sample	metres	metres	metres	metres	PPM	%	PPM	PPB	PPM	%	%	PPM	PPM	PPM	PPM	PPM	%	PPM	PPM	РРМ	РРМ	РРМ	PPM	PPM	%	%	%	PPM	PPM	PPM	РРМ	PPM PP	м ррм
,	-15.24	1 A 1																															
292035		18	2	1.55	122		40	16	0.6	4.78	1.57	1	4	9	65	0.1	1.47	28	38	0.1	30	25	57	1	2.02	0.18	0,11	690	460	14	82	1	1 1
292036	18	20	2	1.70	88		3	16	0.7	6	2.91	1	1	8	83	0.1	1.54	25	48	0.1	42	- 30	112	1	1.93	0.05	0.32	590	748	16	42	1	1 1
292037	20	22	2	1.84	124		1	331	1.5	6.84	3.12	1	1	12	96	0.1	1.44	31	57	0.1	41	31	131	1	2.1	0.05	0.45	640	834	19	40	1	1 1
292038	22	24	2	2.00	114		3	18	0.7	6.33	2.55	1	1	12	81	0.1	1 67	28	56	0 1	11	29	75	1	1 86	0.07	0.28	700	800	15	31	1	1 1
292039	24	26	2	1 84	107		1	20	0.5	5 79	2 13	1	1	10	62	0.1	1 95	24	59	0.1	19	30	80	1	1.63	0.08	0.11	580	797	12	30		4 1
202040	26	29	2	2.00	125			12	0.0	6.26	2 35	- 1		16	144	0.1	1.00	23	52	0.1	34	26	107	4	1.00	0.00	0.11	500	600	44	53	4	4 4
202040	20	20.	2	2.00	120			12	0.0	0.20	2.50			10	144	0.1	1.07	23	34	0.1	34	. 00	440		1.90	0.14	0.20	300	000	10	00		1 1
292041	20	30	2	2.00	129			9	0.0	0.10	2.00			0	143	0,1	2.4	33	14	0.1	34	31	110	1	2.2	0.11	0.29	730	969	12	62	1	1 1
292042	30	32	2	1.75	120		1	13	0.1	7.16	3.21	1	1	1	96	0.1	3.08	42	112	0.1	8	31	13	1	2.72	0.1	0.2	520	1506	12	53	1	1 1
292043	32	34	2	1.50	87		48	8 ب	0.1	6.84	2.64	1	1	1	134	0.1	3.86	31	62	0.1	2	30	17	1	2.66	0.1	0.16	600	1325	13	96	1	1 1
292044	34	36	2	1.50	65		7	<b># 22</b>	0.1	7.77	2.81	1	1	1	85	0.1	2.97	27	118	0.1	1	31	8	1	2.44	0.05	0.28	520	1804	17	78	1	1 1
292045	36	38	2	1.89	17		1	21	0.1	7.25	1.79	28	1	1	61	0.1	4.39	11	101	0.1	10	21	1	1	0.59	0.01	0.22	510	3634	2	77	1	1 1
292046	38	40	2	1.73	34		1	12	0.1	6.89	2.07	28	1	1	86	0.1	4.29	14	- 54	0.1	8	19	1	1	0.49	0.01	0.26	490	4825	1	75	1	1 1
292047	40	42	2	1.63	47		1	18	0.1	5.94	2.08	73	1	1	71	0,1	4.17	17	247	0.1	11	19	1	1	0.67	0.01	0.23	520	3410	1	67	1	1 1
292048	42	44	2	1.00	53		4	14	0.1	5.78	1.4	23	3	1	66	0.1	3.02	12	56	0.1	3	18	28	1	1.49	0.04	0.27	960	1361	9	74	1	1 1
292049	44	46	2	1.40	54		2	19	0.1	5.61	1.93	1	1	1	82	0.1	3	24	95	0.1	5	22	27	1	1.81	0.04	0.34	·670	1175	7	46	1	1 1
292050	46	48	2	1.15	67		2	6	0.1	5.12	2.48	1	1	1	81	0.1	2.4	26	67	0.1	35	22	82	1	1.88	0.07	0.31	610	920	9	50	1	1 1
292051	48	50	2	1.50	60		1	6	0.7	4.36	2.37	1	1	12	254	0.1	1.27	31	59	0.1	12	22	60	1	1 72	0.06	0.62	1060	645	12	76	1	i i
292052	50	52	2	1.65	117		1	16	0.4	6.06	2.67	3	1		78	0.1	2	28	73	0.1	37	33	68	1	1.93	0.07	0.29	640	830	15	15	4	4 1
202053	52	54	2	1 50	84		1	8	0.3	5.69	2 44	1	1	11	91	0.1	16	23	54	0.1	41	22	82	1	1.85	0.08	0.2	600	665	12	40	4	
202000	54	56	2	1.00	69		4	ŏ	0.0	5.8	2.44	1	4	8	88	0.1	1 0/	23	56	0.1	16	30	60	4	1.05	0.00	0.22	660	740	10		4.	3 I 4 4
202005	59	50	2	1.40	70		4	11	0.2	6 34	2.04	4	4	4	100	0.1	0.05	20	60	0.1		20	40	4	1,73	0.00	0.22	600	743	14	60		1 1
292000		00	2	1.00	73			11	0.1	0.34	3.03	1	4		100	. 0.4	2.20	20	03	0.1		32	40	1	2.23	0.07	0.33	000	907	14	5/	1	1 1
292000	30	00	4	2,00	70			14	0.1	7 40	2,04				120	. 0.1	2.93	20	04	0.1	5	29	- 34	1	2.17	0.08	0.57	630	965	14	46	1 '	1 1
292057	60	62	2	1.90	82			20	0.1	7.13	3.32	2	1	1	123	0.1	3.65	21	60	0.1	1	30	21	1	2.04	0.06	0.51	450	1130	14	4/	1	1 1
292058	62	64	2	1.90	/4		1	10	0.1	5.9	2.54	6	1	1	61	0.1	6.27	19	46	0.1	1	24	10	1	1,74	0.02	0.19	440	1472	7	135	1	1 1
292059	64	66	2	1.90	258		1	27	0.1	7.39	2.37	11	1	1	96	0.1	3.01	19	6 <del>9</del>	0.1	1	30	17	1	1.95	0.07	0.34	500	1124	10	79	1 .	1 1
292060	66	68	2	2.00	211		1	12	0.4	4.18	1.71	1	1	2	171	0.1	1.95	24	56	0.1	14	20	101	2	1.51	0.1	0.33	680	658	8	65	1 .	1 1
292061	68	70	2	2.00	40		1	8	0.4	2.08	1.01	9	1	1	125	0.1	1.43	20	40	0.1	16	9	102	3	0.89	0.08	0.13	1030	390	5	56	1 '	1 1
292062	70	72	2	n/d	35		2	4	0.4	2.31	1.21	1	1	2	114	0.1	1.44	31	65	0.1	22	11	177	5	1.16	0.1	0.19	870	470	7	60	1	1 1
292063	72	74	2	2.10	21		1	2	0.5	2.12	1.01	4	1	7	131	0.1	1.13	20	43	0.1	19	10	132	4	0.92	0.09	0.19	890	350	8	53	1 *	1 1
292064	74	76	2	2.00	20		5	17	0.2	2.49	1.01	30	1	1	131	0.1	1.46	18	41	0.1	41	11	146	4	0.85	0.07	0.2	850	622	6	77	1 1	1 1
292065	76	78	2	1.97	20		1	3	0,3	2.2	1.09	1	1	1	179	0.1	1.48	22	51	0.1	23	10	90	2	0.91	0.06	0.22	940	510	6	113	1 .	1 1
292066	78	80	2	2.00	19		4	3	0.1	2.72	1.29	1	1	1	232	0.1	2.53	22	53	0.1	11	11	54	1	0.82	0.06	0.22	1420	830	4	190	1 .	1 1
292067	80	82	2	1.78	13		1	3	0.1	2.86	1.54	1	1	1	153	0.1	3.02	21	52	0.1	6	11	60	1	0.82	0.05	0.2	1420	838	3	241	1 1	1 1
292068	82	84	2	1.90	35		17	8	0.1	2.95	1.26	43	1	1	73	0.1	2.97	27	67	0.1	7.	9	40	1	0.51	0.03	0.16	1080	853	1	183	1 .	1 1
292069	84	86	2	2.00	42		5	5	0.1	2.59	1.1	53	1	1	93	0.1	1 45	30	52	0.1	9	8	66	1	0.87	0.04	0.15	1160	484	3	131	1 1	1 1
292070	86	88	2	2.00			9	2	0.1	2 44	1.09	6	1	1	99	0.1	1 44	22	40	0.1	10	ā	60	1	0.95	0.04	0.15	1100	435	5	03	1 1	1 4
292071	88	90	2	1 81	e a		6	4	0.1	232	1 11	Å	1	1	83	0.1	1 44	29	54	0.1	à	Ř	69	1	11	0.04	0.13	1170	468	å	01		4 4
202071	00	00	2	1.01					0.1	2.52	1 17	0 6	4	4	110	0.1	1.67	23	E7	0.1	10		05	2	4 40	0.04	0.13	1150	400	0	91	4 4	
202072	30	92	2	1.70	۰ ۲		4	6	0.1	2.0	1.17	4			100	0.1	1.07	21	57	0.1	10	9	00	4	1.15	0.05	0.14	1100	000	0	90	4 1	1 1
292073	92	94	2	1.00	5			00	0.1	2.31	1.20	40			102	0.1	1.00	30	20	0.1	10	9	92	1	1.12	0.05	0.08	1160	610	5	73	1 1	1 1
292074	94	90	2	1.02	13		4	235	0.1	2.0	1.13	18	1	1	114	0.1	1,67	28	48	0.1	11	9	140	3	1.13	0.07	0.12	1130	535	5	93	1 1	1 1
292075	96	98	2	1.90	6		1	20	0.1	2.47	1.09	36	1	1	104	0.1	1.95	39	149	0.1	11	8	59	1	0.73	0.03	0.14	1140	975	1	84	1 1	1 1
292076	98	100	2	1.60	5		2	9	0.1	2.34	0.92	19	1	1	163	0,1	1.7	54	55	0.1	9	8	103	2	0.55	0.05	0.17	1150	676	1	142	1 1	i 1
292077	100	102	2	1.75	6		1	7	0.1	2.32	1.04	6	1	1	156	0,1	2.01	18	51	0.1	8	8	43	1	0.36	0.04	0.15	1060	648	1	172	1 1	1 1
292078	102	104	2	1.10	17		1	12	0.1	2.49	0.99	19	1	1	135	0.1	1.66	14	35	0.1	10 1	~, 8	101	2	0.49	0.05	0.2	1130	598	1	141	1 1	1
292079	104	106	2	1.80	26		1	99	0.1	3.1	1.07	218	1	1	79	0.1	2.38	33	64	0.1	9	×8	35	1	0.37	0.02	0.18	900	1028	1	127	1 1	1 1
292080	106	108	2	1.85	54		1	237	-0.1	3.56	1.29	245	1	• 1	68	0.1	2.43	36	219	0.1	8	9	84	1	0.42	0.02	0.2	850	929	1	109	1 1	( 1

,

T v

%

1 0.01 1

1 0.01 38.7

1 0.01 1

201 1 1 1 0.01 34.3

1 134 1 1 1 0.01 22.7

1 156 1 1 1 0.01 29.1

4 150 1 1 1 0.01 40.7

.

1

0.01 1

> 0.01 40.9

0.03 51.9 0.01 45.4

0.01 30.1 0.01 31.2

0.01 28.2

0.01 31.1

0.01 24.2

0.01 20.1

27

29.1

37.6

45

1 0.16 93.2

1 0.26 182.2 1 0.27 216.2 1 0.27 216.5 1 0.22 153.5 1 0.27 178.5 1 0.22 154.7 1 0.09 216.2 1 0.12 194,4 1 0.05 179.1 1 0.01 58.8 1 0.01 42.2 1 0.01 41.9 1 0.01 76.9 1 0.04 113.2 1 0.15 154.1 1 0.25 130.2 1 0.25 165.4 1 0.25 158.3 1 0.23 167.7 1 0.18 187.7 1 0.2 187.2 1 0.18 203.7 1 0.02 139 1 0.09 223.2 1 0.13 124.6 1 0.07 50.1 1 0.09 55.2 1 0.11 55.1 1 0.06 45.4 1 0.06 48.2 1 0.03 51.6 0.02 63.6

РРМ

JEAN PROPERTY - CORE RECOVERY AND SAMPLE ANALYSES

292081 108

292082 110

292083 112

292084 114

292085 116

110

112

114

116

118

2

2

2

2

2

1.85

1.80

2.00

1.70

1.60

60

57

11

21

33

1

1

1

1

1

17

62

13

13

22

0.1 2.74 1.27 317

0.1 2.47 0.92 42

0.1 2.63 0.85 79

1,13 416

1.08 260

0.1 2,88

0.1 2.52

Page 1

1 1 121 0.1 2.39 34 95 0.1

1 1 138 0.1 2.36 36

1 1 338 0.1 2.01 12

9 7

7

9 8 49

1 ,1 156 0.1 1.89 19 35 0.1 10 9 43 1 0.82 0.04 0.08 1110 480

8 45

1 1 150 0.1 1.69 13 59 0.1 10 9 49 1 0.41 0.04 0.11 1100 453 1 173 1 1 1 0.01

85 0.1

33 0,1

62 1 0.36 0.02 0.17 950 945

1 0.55 0.03 0.15 1010 719

1 0.55 0.04 0.11 1130 509

()

J97-2	From	То	Length	Recov.	CU	Cu	MO .	Au-fire	AG	FE	MG	AS	SB	BI	BA	BE	ĊA	PB	ZŃ	CD	NI	co	CR	w	AL	NA	к	Р	MN	LI	SR	GA T	'H	J	TI	v
Sample	metres	metres	metres	metres	РРМ	%	PPM	PPB	PPM	%	%	РРМ	PPM	PPM	PPM	PPM	%	ррм	PPM	РРМ	PPM	РРМ	РРМ	РРМ	%	%	%	РРМ	PPM	PPM	PPM I	РРМ РІ	РМ Р	M	%	РРМ
292086	118	120	2	1,70	48		1	10	0.1	2.75	1	35	1	1	161	0.1	1.68	17	45	0.1	15	9	67	1	0.65	0.04	0.09	1160	502	3	143	1	1	1	0.01	37.9
292087	120	122	2	2,00	58		1	54	0.1	2.69	1.19	12	1	1	154	0.1	1,98	22	44	0.1	10	9	82	1	0.9	0.05	0,08	1160	544	5	159	1	1	1	0.01	44.9
292088	122	124	2	1,80	111		1	39	0.1	3.39	1.43	83	5	1	209	0.1	2.01	33	32 '	0.1	6	9	76	1	1.87	0,1	0.09	1350	621	15	103	1	1	1	0.01	56.2
292089	124	126	2	2.10	108		1	46	0.1	3.06	1.46	33	1	1	158	0.1	2.35	29	35	0.1	6	9	65	1	1.44	0.05	0.08	1350	734	12	85	1	1	1	0.01	52.9
292090	126	128	2	1.65	43		1	65	0.1	2.11	1.2	24	1	1	179	0.1	2.28	26	40	0.1	8	7	71	1	0.9	0.05	0.09	1140	626	6	146	1	1	1	0.01	38.9
292091	128	130	2	2.60	61		1	41	0.1	2.68	1.11	33	1	1	141	0 1	1.68	29	88	0.1	11	9	54	1	0.65	0.04	0.09	1160	560	4	161	1	1	1	0.01	41
292092	130	132	2	2.05	62		1	20	0.1	2.64	1.18	19	1	1	111	0.1	17	28	43	01	10	9	82	1	1 15	0.04	0.09	1160	494	8	91	1	1	1	0.01	50.5
292093	132	134	2	2 10	62		1	35	01	2.79	1.21	242	1	1	105	0.1	1 74	28	33	0 1	9	10	111	2	1 22	0.05	01	1130	538	8	90	1	1	1	0.01	50.9
202000	134	136	2	2.00	68		1	114	0.2	3 25	1 14	544	7	1	111	0.1	2 47	28	35	0.1	7		50	1	0.91	0.03	0.16	1240	679	6	115	1	1	1	0.01	37.5
202004	136	138	2	2.05	33		1	14	01	2.59	1 11	48	1	1	104	0.1	2.94	31	46	0.1	6	8	79	1	1 07	0.05	0.13	1290	676	6	82	i	1	1	0.01	42.8
202000	138	140	2	2,00	61		7	24	0.1	27	1 19	57	· 2	1	100	0.1	2.04	32	30	0.1	ä	Ř	60	4	1 20	0.05	0.10	1150	562	10	73	i	i	1	0.01	49.9
202000	140	140	2	2.00	158		10	16	0.1	4 96	1 94	46	1	1	111	0.1	2.01	23	83	0.1	13	18	78	4	1 77	0.00	0.00	810	1109	8	68	i	4	1	0.05	111 3
292097	140	144	2	2.00	75		2	23	0.1	9.17	2.20	30		1	120	0.1	6 16	20	100	0.1	10	31	30	4	2.22	0.00	0.10	480	4457	10	81	÷	1	4	0.00	123.6
292090	142	146	2	2.00	51		18	20	0.1	5 35	2,23	1	-	1	251	0.1	3.06	20	300	0.1	16	17	30	4	2.22	0.05	0.3	1220	2122	1.4	132	1	1	4	0.11	02.0
292099	144	140	2	2.00	72		4	2	0.1	6.60	2.1	4	-	1	201	0.1	0.00	30	06	0.1	1.5	20	24	4	2.01	0.00	0.25	610	1/1/		100	-	-	4	0.03	32.5
292100	140	140	2	2.00	60			С	0.1	6.05	2.2	00	-	1	110	0.1	2.42	20	122	0.1	40	30	34	4	2.01	0.12	0.20	460	1000	14	147	-	-	1	0.10	172 4
292101	140	100	~	2.00	120		4	17	0.1	6.00	2.00	40	2	1	120	0.1	3.09	41	100	0.1	10	32	50	4	2.31	0.11	0.12	400	14020	14	70		-	4	0.01	100.9
292102	150	152	2	2,05	100			100	0.1	6.90	3.07	শহ ব	4	1	120	0.1	2.43	57	222	0.1	24	39	01		3,30	0.10	0.09	400	1400	23	13				0.05	102,3
292103	152	154	2	2.00	114			100	0.5	5.45	3.00	447		1	97	0.1	200	00	497	0.1	10	31	37	3	3,48	0.29	0,06	370	1107	19	57	1	1	1	0.2	1/2.2
292104	154	150	2	2.00	113		1	142	1.2	5.4/	3.10	117	40	1	221	0.1	3.09	24	296	0.1	29	30	70	1	3.21	0.21	0.04	370	1218	15	57	1	1	1	0.2	109,6
292105	156	158	2	2.00	65			231	0.2	7.10	3.37	1044	10	1		0.1	2.43	240	930	2.0	10	34	70	1	3.3	0.18	0.04	430	12/0	17	63	1	1	1	0.09	107.0
292106	158	160	2	2.10	90		1	24	0.1	5.91	3.24	19	1	1	20	0.1	2.43	23	110	0.1	19	31	75	1	3.2	0.2	0.04	380	1162	19	62	1	1	1	0.1	1//.2
292107	160	162	2	1.88	119			52	0.1	1.23	3.50	140	1		12	0.1	3.13	153	311	0,1	24	33	71	1	3.51	0.11	0.05	320	1542	21	58	1	1	1	0.03	188.8
292108	162	164	2	2.05	79		1	14	0.1	6.29	3.43	40	1	1	46	0.1	3.13	95	153	0,1	18	34	/1	1	3.19	0.17	0.03	380	1423	16	62	1	1	1	0.13	188.1
292109	164	166	2	2.10	83		1	14	0.3	5.56	3.17	233	1	1	47	0.1	3.16	6/	107	0.1	11	29	42	1	2.71	0.16	0.03	420	1241	14	57	1	1	1	0.16	166.9
292110	166	168	2	1.83	90		1	8	0.2	5.42	3.2	6	1	1	141	0.1	2.46	62	82	0.1	18	33	37	1	3.42	0.2	0.04	390	977	23	49	1	1	1	0.1/	159.2
292111	168	170	2	1.95	80		1	20	0.7	5.48	3.48	72	1	1	79	0.1	1.9	86	134	0.1	10	33	36	1	2.99	0.18	0.03	400	933	17	45	1	1	1	0.23	162.7
292112	170	172	2	2.00	85		1	10	0.6	5.83	3.55	8	1	1	86	0.1	1.72	60	255	0.1	11	34	36	1	3.07	0.17	0.03	420	933	17	45	1	1	1	0.25	178.7
292113	172	174	2	2.06	111		1	10	0.7	5.56	3.25	10	1	3	71	0.1	2.01	47	80	0.1	5	32	40	1	2.64	0.17	0.04	780	900	15	43	1	1	1	0.25	170.2
292114	174	176	2	2.00	89		1	7	1	5.44	3.22	15	1	5	99	0.1	2.17	49	68	0.1	9	33	37	1	3	0.24	0.12	590	989	17	48	1	1	1	0.28	176.2
292115	176	178	2	2.00	86		1	3	1.1	5.08	3.58	11	1	1	47	0.1	1.52	55	70	0.1	9	33	33	1	2.98	0.2	0.05	410	874	16	33	1	1	1	0.25	156.5
292116	178	180	2	2.00	85		1	9	1.1	5.28	3.71	12	1	2	52	0.1	1.98	82	201	0.1	9	33	36	1	3.16	0.19	0.04	360	910	19	29	1	1	1	0,28	159.7
292117	180	182	2	2.00	78		1	1	1	4.87	3.7	14	1	1	77	0.1	1.68	95	106	0.1	5	32	30	1	3.17	0.2	0.04	330	867	23	49	1	1	1	0.26	145.1
292118	182	184	2	2.06	43		1	2	1.3	4.85	3.13	1	1	15	119	0.1	2.54	61	65	0.1	1	26	13	1	3.22	0.25	0.18	410	877	16	51	1	1	1	0.33	157.1
292119	184	186	2	1.86	55	•	1	1	1.1	4.94	3.06	1	1	9	49	0.1	1.73	75	92	0.1	1	26	3	1	2.97	0.18	0.05	380	833	20	38	1	1	1	0.28	145.9
292120	186	188	2	1.95	44		1	2	0.9	4.77	3.04	1	1	6	42	0.1	2.02	63	75	0.1	1	26	12	1	3.29	0.22	0.09	400	811	17	42	1	1	1	0.25	129.3
292121	188	190	2	2.03	53		1	3	1.1	4.99	3.12	1	1	19	63	0.1	1.69	47	73	0.1	1	28	14	1	2.99	0.16	0.22	540	766	21	33	1	1	1	0.32	150.1
292122	190	192	2	1.97	36		1	1	1	5.02	3.15	1	1	20	41	0.1	2.33	44	81	0.1	1	26	12	1	3.05	0.14	0.06	560	795	24	37	1	1	1	0.34	146.6
292123	192	194	2	1.91	56		1	1	1.2	4.98	3	1	1	23	87	0.1	2.28	66	102	0.1	1	27	10	1	3.29	0.24	0.15	540	795	21	59	1	1	1	0.34	158.4
292124	194	196	2	2.05	52		1	1	0.8	4.76	2,87	1	1	14	54	0.1	1.96	47	66	0.1	1	25	6	1	3.13	0.22	0.15	470	771	19	44	1	1	1	0.26	135.6
292125	196	198	2	2.00	60		1	1	0.9	4.65	3.16	1	1	10	28	0.1	2.36	48	83	0.1	1	25	6	1	3.01	0.17	0.05	360	840	19	32	1 •	1	1	0.26	127.2
292126	198	200	2	2.00	63		1	2	0.7	5.45	3.49	1	1	7	35	0.1	1.41	55	102	0.1	1	29	2	1	3.18	0.16	0.09	440	729	17	37	1	1	1	0.26	147.5
292127	200	202	2	2.00	74		1	1	0.7	5.72	3.58	1	1	6	41	0.1	1.66	48	69	0.1	1	29	3	1	3.21	0.16	0.05	440	810	18	50	1	1 `	1	0.27	156.3
292128	202	203.61	1.61	1.61	50		1	3	0.9	5.35	3.52	1	1	11	40	0.1	1.92	57	84	0,1	1	30	9	1	3.18	0.15	0.09	350	868	18	38	1	1	1	0.31	150.8

																÷																			
JEAN P	ROPERT	Y - CORE	RECOVERY AND	SAMPLE	E ANA	LYSES	5																•												
J97-3	From	To	Length Recov.	CU	Cu	MO	Au-fire	AG	FE	MG	AS -	\$B	BI	BA	BE	CA	₽B	ZN	CD	NI	co	CR	W	AL	NA	к	Р	MN	LI	SR	GA 1	TH	U	TI	v
Sample	metres	metres	metres metres	PPM	%	РРМ	PPB	РРМ	%	%	PPM F	РРМ	PPM	PPM	PPM	%	PPM	PPM	PPM	PPM	PPM	РРМ	PPM	%	%	%	РРМ	PPM	РРМ	PPM	PPM F	PPM P	PM	%	PPM
292129	9.75	12	2.25 1.34	97		62	50	1.1	7.91	1.56	119	3	5	48	0.1	2.43	24	128	0.1	16	23	46	2	2.39	0.03	0.19	490	6783	20	38	1	40	11	0.02	91.2
292130	12	14	2 1.25	173		26	15	0.1	4.87	1.61	11	2	1	302	0.1	1.93	8	51	0.1	13	19	38	1	2.45	0.22	0.13	590	590	12	47	4	26	6	0.17	137.2
292131	14	16	2 1.95	270		59	13	0.1	5.13	1.99	ຸ 9	1	1	124	0.1	1.21	8	59	0.1	15	24	37	1	1.71	0.1	0.08	610	636	12	38	2	28	7	0.23	154.9
292132	16	18	2 2.00	358		30	22	0.4	5.59	1.93	<u></u> 16	2	1	82	0.1	2.13	15	68	0.2	18	31	34	1	2.05	0.11	0.16	570	906	15	60	2	30	7	0.14	131.8
292133	18	20	2 0.75	206		7	11	0.1	5.51	2.6	3	1	1	131	0.1	0.89	9	72	0.1	18	30	42	1	2,25	0.17	0.47	480	550	17	47	3	31	7	0.27	16 <b>1</b> .8
292134	20	22	2 2.17	118		11	9	0.1	5.56	2.12	7	1	1	79	0.1	1.03	12	60	0.1	13	26	39	1	1,95	0.18	0.17	520	497	16	38	3	31	7	0.22	156.9
292135	22	24	2 1.83	153		35	9	0.1	4.83	1.84	9	1	1	164	0.1	1.77	10	55	0.1	13	25	32	1	1.67	0.15	0.1	500	444	15	47	3	27	6	0.18	127.1
292136	24	26	2 1.08	172		9	11	0.2	4.81	1.69	24	1	1	231	0.1	1.63	15	71	0.1	20	29	58	19	1.94	0.22	0.1	560	465	12	56	2	26	6	0.2	126.9
292137	26	28	2 1.44	141		14	8	0.1	4.57	1.79	22	2	1	164	0.1	3.48	12	75	0.2	15	25	33	3	2	0.16	0.31	500	481	12	69	3	25	6	0.19	122.1
292138	28	30	2 1.97	153		13	9	0.1	3.83	1.51	20	1	1	61	0.1	2.29	11	51	0.2	17	25	51	1	1,86	0.22	0.06	660	403	12	51	2	21	5	0.16	94
292139	30	32	2 1.94	154		30	10	0.1	2.67	1,45	20	1	1	51	0.1	2.75	6	38	0.1	27	21	90	1	1.65	0.14	0.07	840	297	13	53	1	16	3	0.11	60.9
292140	32	34	2 1.97	339		25	11	0.4	4.75	2.02	19	1	1	46	0.1	2.15	9	59	0,1	18	31	54	1	2.12	0.14	0.11	610	413	16	39	3	27	6	0.19	109.1
292141	34	36	2 2.00	154		10	10	0.5	4.06	1.58	20	2	1	44	0.1	2.67	30	90	0.4	15	27	33	1	1.73	0.17	0.04	660	526	12	47	2	22	5	0.14	91.3
292142	36	38	2 2.00	246		22	11	0.4	4.52	1.63	23	1	1	47	0.1	2.54	9	51	0.1	17	32	62	1	2.04	0.19	0.06	700	438	15	65	3	25	6	0.19	95
292143	38	40	2 2.03	126		12	12	0.2	4.67	1.83	23	2	1	38	0,1	2.41	10	60	0.2	16	25	41	1	2.17	0.18	0.06	660	498	14	48	3	26	6	0.18	110.7
292144	40	42	2 2.05	114		5	8	0.1	4.85	1.95	21	2	1	45	0.1	2.08	10	59	0.2	19	29	53	1	2.42	0.2	0.06	640	514	17	66	2	27	6	0.2	114.5
292145	42	44	2 2.00	154		29	5	0.2	4.88	2.16	26	2	1	29	0.1	2.07	10	66	0.1	18	28	44	1	2.47	0.15	0.05	650	505	18	45	3	28	6	0.16	114.2
292146	44	46	2 2.05	94		12	5	0.1	5.14	2.15	17	2	1	59	0.1	1.85	9	62	0.2	18	24	43	1	2.54	0.17	0.05	590	520	17	57	3	29	7	0.15	117.1
292147	46	48	2 1.50	81		6	8	0.1	5.08	2.13	27	2	1	37	0.1	1.96	11	56	0.1	16	29	38	1	2.53	0.18	0.05	570	505	19	43	3	29	7	0.14	115
92148	48	50	2 2 15	104		37	20	0.1	3 86	2.18	147	2	1	77	0.1	4.12	7	52	0.1	25	21	75	1	2.38	0.22	0.21	690	503	17	83	2	22	5	0.12	92.5
92149	50	52	2 2 00	201		15	8	0.2	4 12	2.76	28	2	1	134	01	2.5	17	64	02	13	25	32	1	2 75	0.16	0.35	550	506	19	72	3	24	5	0.19	145.1
292150	52	54	2 1 88	179		3	588	0.7	53	271	47	9	1	157	0.1	2 23	475	1092	8.6	12	31	28	10	2 81	0.17	0.53	560	680	17	64	4	30	7	0.21	146.8
292151	54	56	2 2 00	137		13	11	0.1	4 98	2.61	21	2	1	174	0.1	1.87	8	59	01	12	24	27	1	2.67	0 15	0.56	610	462	16	61	4	28	7	0.21	137.6
292152	56	58	2 2 00	170		13	55	0.1	5 16	2 86	330	3	1	105	0.1	2.29	9	66	01	16	27	44	1	2 59	0 14	0.42	570	536	19	63	4	30	7	0.23	140.2
292153	58	60	2 1 96	173		.5	11	0.3	4.83	2 72	34	2	1	82	0.1	2 12	ġ	66	0.1	14	29	34	1	2.33	0.13	0.31	580	549	16	52	3	28	â	0.21	132.1
292154	60	62	2 1 25	167		ě	20	0.5	5 34	3 31	56	2	1	51	01	3 33	17	83	0.1	15	29	29	1	2.00	0.10	0.19	530	855	23	81	š	32	7	0.21	156 1
292155	62	64	2 1 16	136		10	13	16.6	5 53	2.54	31	2	1	48	0.1	2.65	9	70	0.1	23	29	28	20	3	0.28	0.08	610	717	21	88	Ă	31	7	0.2	135.9
292156	64	66	2 1 60	66		3	14	0.1	5 24	23	37	2	i	20	0.1	3.08	ğ	50	0.1	18	32	23	1	2 21	0.18	0.00	640	743	21	60	3	30	7	0.11	119
92157	66	68	2 1.85	97		š	13	0.1	5.91	2 52	42	3	1	30	0.1	3 14	11	56	0.1	16	34	23	1	2.54	0.23	0.05	520	726	20	91	Ă	33	8	0.16	143 5
292158	68	70	2 2 10	148		26	138	0.1	5 79	2.55	1670	5	ſ	52	0.1	2 73	20	72	0.1	13	30	22	i	2 75	0.21	0.07	560	635	23	77	4	32	Ř	0.10	135.3
292159	70	72	2 2 15	88		2	17	0.1	5.64	2.68	46	3	1	27	0.1	2 11	-8	52	0.1	16	33	23	i	2.00	0.21	0.05	660	609	21	60	Å	32	7	0.12	131.5
292160	72	74	2 2 00.	52		4	15	0.1	5.22	2.00	40	ă	1	40	0.1	1.92	10	53	0.1	18	27	29	1	2.01	0.21	0.00	480	703	25	50	4	30	7	0.17	126
92161	74	76	2 1 95	91	·	2	11	0.1	5 69	3.45	41	ž	4	43	0.1	1 17	10	63	0.1	18	32	32		2.07	0.17	0.04	400	670	26	40	3	34	Ŕ	0.12	143 4
92162	76	78	2 1,00	81		1	34	0.1	5 66	3	36	2	1	40	0.1	1.51	8	60	0.1	18	29	37	1	2.55	0.14	0.07	850	616	22	30	Ă	34	7	0.10	156 1
92163	78	80	2 2 00	108		3	61	0.1	5 95	33	51	3	1	41	0.1	2 16	ă	65	0.1	20	34	44	1	2.00	0.17	0.06	640	724	27	54	4	35	8	0.10	151 3
292164	80	82	2 2 10	73		1	79	0.1	5 39	2 75	173	š	1	40	0.1	1 53	Â	50	0.1	17	26	35	4	2.83	0.2	0.06	610	608	23	64	4	31	7	0.16	122.4
02165	82	84	2 2.10	76		-	182	0.1	5 72	2.73	1003	3	1	35	0.1	1.55	Ŕ	52	0.1	15	21	27	4	2.00	0.25	0.06	600	666	20	96	4	30	6	0,10	124.4
02166	84	86	2 2.20	66		4	102	0.1	5.74	2.13	37	3	1	20	0.1	1 76	ő	56	0.1	15	28	31	1	2.0	0.17	0.00	560	621	20	52	-	20	7	0.13	104.7
02167	86	89	2 2.00	40		1	10	0.1	5.24	2.02	50	3	4	23	0.1	1.08	0	51	0.1	20	20	44	4	2.00	0.17	0.03	560	673	24	62	- 0 - 0	30 34	7	0.14	1204
100160	00	00	2 2.20	47		-	05	0.1	5.20	2,03	244	2	4	21	0.1	1.50	2	40	0.1	20	20	99 90	1	2.40	0.19	0.04	550	613	20	40	່ ?	20	4	0.12	129.4
202100	00	80	2 2.10	40			104	0.1	0.21	2.40	1200	2	1	10	0.1	1.01	40	49	0.1	14	21	20	4	2.38	0.15	0.04	640	037	20	40	ి	20	· <u>'</u> '	0.13	124.0
292109	90	92	2 1.90	40		2	104	0.1	5.33	2.03	1309	3	1	10	0.1	1.41	40	40	0.1	13	20	29	1	2.33	0.13	0.03	610	0/0	27	34	3	30	<i>(</i>	0.1	126.3
92170	92	94	2 2,05	28		1	55	0.1	0.1	3.08	240	3	1	20	0.1	1.41	10	40	0.1	15	30	21	1	2,54	0,15	0.05	620	/13	26	41	4	35	8	0.14	147.1
92171	94	96	2 1.78	67		1	28	0.1	4.23	2.28	65	2	1	44 ee	0.1	1.55	10	43	0.1	21	29	54	1	2.17	0.17	0.07	720	498	19	5/	2	25	5	0,1	91.2
92172	96	98	2 2.20	84		1	24	0.1	5.07	1.9/	62	3	1	55	0.1	1.56	40	43	0.1	18	32	26	1	2.1	0.18	0.05	820	506	23	42	3	28	1	0.11	109.6
92173	98	100	2 1.70	59		1	8	0,1	5,54	2.15	31	2	1	38	0.1	1.81	10	60	0,1	34	26	25	1	2.71	0.16	0.05	680	/14	26	53	4	31		0.17	154.8
92174	100	102	2 1.90	48		1	16	0.1	5,62	2.89	51	2	1	25	0.1	1.54	9	5/	0.1	12	30	19	1	2.7	0.18	0.03	480	814	29	41	3	33	<u> </u>	0.13	143.9
92175	102	104	2 2.00	50		1	28	0.1	5.79	2.87	147	3	1	18	0.1	3.46	11	56	U.1	12	31	18	1	2.47	0.2	0.03	500	1000	28	54	3	33	8	0.14	146.4
92176	104	106	2 1.07	52		1	18	0.1	5.52	3.16	47	3	1	33	0.1	1.46	9	58	U.1	14	27	25	1	2.74	0.17	0.04	590	721	30	39	4	33	7	0.16	149.7

Page 1

22 0.1 1.84

18 0.1 3.46

28 0.1 1.28

26 0.1 1.28

1.85

16 0.1

8

8

7

16 0.1 1.77 8 51 0.1 15 29

51 0.1

60 0.1

54 0.1 11

9 64 0.1 12 27

7 54 0.1 14 22

17

14 30

29

19

28

23

1 2.45 0.19 0.04

26 1 2,54 0,17 0.03

31 1 2.49 0.15 0.04

30 1 2.47 0.11 0.04

29 1 2.21 0.09 0.03

0.12 0.03

1 2.34

640

560

500

510

510

500

646 28

663 27

758 28

715 26

700 25

667 24

51 4 31 7 0.13 137.5

45 3 29 6 0.14 117.4

35 3 28 6 0.15 127.8

33 3 28 7 0.11 114.1

7 0.11 129.6

6 0.12 117.8

40 3 31

77 3 26

3

2 1

3 1

2 1

2 1

1

45

43 3 1

28

37

25

63

92177 106

92178 108

92179 110

92180 112

92181 114

92182 116

108

110

112

114

116

118

2 2.00

2 1,95

2 1.92

2 2.00

2 1.57

2 2.00

68

55

26

39

32

46

17

12

11

42

8

13

1

1

1

1

1

1

0.1 5.57 2.62

0.1 4.38 2.71

0.1 4.97 2.71

0.1 4.67 2.92

0.1 5.03 2.61

2.65

0.1 5.48

 $\widehat{}$ 

2

397-3	From	10	Length Recov.	CU Cu	MO	Au-mre	AG	FE	MG	AS	36	Dł	DA	DE	ŲΑ	PD	ZN	CD	NI	00	UK	44	AL.	NA	n	۳	IAILM	LI	эк	GA	10	U	11	v
Sample	metres	metres	metres metres	PPM %	PPM	PPB	PPM	%	%	PPM	PPM	PPM	PPM	РРМ	%	PPM	PPM	PPM	PPM	PPM	PPM	PPM	%	%	%	PPM	PPM	PPM	PPM	PPM I	PPM F	РM	%	PPM
292183	118	120	2 2.00	36	1	34	0.1	4.69	2.67	42	2	1	24	0.1	1.46	8	51	0.1	12	23	24	1	2.44	0.1	0.04	510	620	27	32	2	28	6	0.13	114.9
292184	120	122	2 2.10	46	1	11	0.1	4.92	2.52	27	1	1	27	0.1	1.73	6	47	0.1	15	24	24	1	2.36	0.12	0.05	610	606	28	43	3	29	6	0.15	124.2
292185	122	124	2 2.00	49	1	19	0.1	5.42	2.51	36	3	1	14	0.1	1.72	9	53	0.1	12	26	23	1	2.29	0.08	0.02	600	674	24	32	3	31	7	0.15	115.9
292186	124	126	2 2.00	50	1	11	0.1	5.83	2.59	35	2	1	12	0.1	1.66	10	55	0.1	13	33	17	1	2.38	0.12	0.03	560	687	23	35	3	33	8	0.21	134.5
292187	126	128	2 1.80	21	1	20	0.1	4.35	2.07	<u>` 46</u>	2	1	26	0.1	4.73	5	39	0.1	11	21	15	1	2.39	0.2	0.04	490	770	26	93	3	24	6	0,25	121.7
292188	128	130	2 1.80	14	1	14	0.1	4.18	2.37	44	1	1	27	0.1	1.7	6	46	0.1	11	25	14	1	2.56	0.19	0.04	490	631	23	48	2	24	5	0.23	114.2
292189	130	132	2 2.00	53	1	17	0.1	4.83	2.19	43	2	1	54	0.1	1.81	6	43	0.1	16	30	26	1	2.81	0.23	0.18	750	532	24	71	3	27	6	0.2	113.9
292190	132	134	2 2.00	101	1	5	0.1	3,43	1.64	37	1	1	63	0.1	1.88	4	39	0.1	19	24	66	1	1,98	0.13	0,53	1460	357	17	61	2	20	4	0.14	91.2
292191	134	136	2 2.00	103	1	6	0.1	3.15	1.61	53	2	1	60	0.1	2.25	4	40	0.1	20	26	69	1	1.96	0.1	0.35	1560	387	20	61	2	18	4	0.12	83.3
292192	136	138	2 2.00	103	1	4	0.1	3.9	1.9	43	2	1	74	0.1	1.95	4	51	. 0. 1	21	27	61	1	2.27	0.13	0.41	1380	456	20	58	2	22	5	0.14	98,9
292193	138	140	2 2.00	41	1	4	0.1	4.05	2.24	37	1	1	19	0.1	2.29	4	56	0.1	14	27	23	1	2.38	0.16	0.04	430	647	23	46	2	23	5	0.22	110.2
292194	140	142	2 1,80	40	1	5	0.1	4.2	2.48	38	2	1	30	0.1	2.74	9	68	0.1	16	27	25	1	2.42	0.19	0.03	440	740	28	57	2	25	5	0.21	115.4
292195	142	144	2 1.80	46	1	6	0.1	4.9	2.94	40	1	1	17	0.1	2.33	6	71	0.1	17	30	28	1	2.72	0.17	0.03	430	783	33	37	2	29	6	0.27	133
292196	144	146	2 2.00	43	1	8	0.1	5.02	2.74	45	2	1	13	0.1	4.31	10	62	0.1	16	30	28	1	2.49	0.11	0.03	450	898	25	35	3	30	7	0.36	162.6
292197	146	148	2 2.00	50	1	109	0.2	4.76	2.34	730	3	1	23	0.1	5.6	11	43	0.1	16	27	29	1	2.16	0.1	0.03	400	929	25	56	2	27	6	0.15	135
292198	148	150	2 2.00	24	1	9	0.1	5,19	2.82	50	3	1	17	0.1	3.5	5	56	0,1	16	28	28	1	2.54	0.13	0.03	430	959	29	63	3	30	7	0,29	150,2
292199	150	152	2 2.00	37	1	43	0.1	5,55	2.51	81	4	1	23	0.1	5,53	13	70	0.1	13	26	24	1	2.22	0.12	0.03	510	982	26	80	3	31	8	0.13	144.9
292200	152	154	2 2.00	18	1	94	0.1	5.8	3.2	256	2	1	31	0.1	2.06	5	72	0.1	13	31	19	1	2.76	0.12	0.03	530	887	30	40	4	33	8	0.28	164.9
292201	154	156	2 2.00	26	1	11	0.1	6.12	3.86	71	2	1	23	0.1	1.68	9	86	0.1	16	38	26	1	3.23	0.13	0.04	550	901	33	36	3	37	8	0.39	196.3
292202	156	158	2 2.00	32	1	15	0.1	6.13	3.61	67	3	1	14	0.1	2.33	9	67	0.1	26	38	31	1	3.05	0.12	0.02	500	899	32	30	4	36	8	0.32	173.2
292203	158	160	2 2.00	39	1	6	0.1	5.37	3.16	47	1	1	18	0.1	2.46	10	63	0.1	19	33	28	1	2.92	0.15	0.04	470	876	34	33	3	32	7	0.28	153.1
292204	160	162	2 2.00	42	1	7	0.1	4.84	2.97	43	2	1	24	0.1	2.17	10	71	0.1	14	29	19	1	2.72	0.14	0.03	470	790	30	33	3	29	6	0.23	132.4
292205	162	164	2 1.90	42	1	6	0.1	5.28	2.84	42	3	1	34	0.1	3.02	8	70	0.1	17	29	25	1	2.51	0.17	0.03	480	955	32	85	3	31	7	0.13	119.7
292206	164	166	2 2.00	38	1	6	0.1	4.99	2.48	42	4	1	45	0.1	4.23	13	60	0.1	17	27	17	1	2.25	0.19	0.02	470	1050	29	152	1	29	7	0.04	97.1
292207	166	168	2 1.90	36	1	8	0.1	5.91	3.65	38	2	1	25	0.1	2.57	7	67	0.1	14	27	25	1	2.85	0.11	0.02	420	1040	25	75	3	36	8	0.16	143.8
292208	168	170	2 2.00	44	1	9	0.1	5.6	3.57	36	2	1	27	0.1	1.24	7	70	0.1	13	27	25	1	2.9	0.1	0.03	470	869	25	32	3	34	7	0.21	156.4
292209	170	172	2 2.00	40	1	38	0.1	5.5	2.7	92	2	1	33	0.1	3.34	6	73	0.1	18	30	37	1	2.58	0.12	0.03	430	945	33	47	3	32	7	0.23	151.4
292210	172	174	2 1.90	37	1	514	0.1	4.22	1.72	628	6	1	13	0.1	5,33	11	69	0.1	14	24	25	1	1.68	0.06	0.02	440	900	22	43	2	23	5	0.07	123.1
292211	174	176,1	2.1 2.10	64	1	152	0.2	5.13	2.27	148	2	1	29	0.1	4.21	9	46	0.1	16	26	39	1	2.38	0.13	0.03	440	971	31	48	2	29	7	0.18	140.4

ŀ

•

																								)		
JEAN PROPERTY - CORE RECOVERY AND SAMPLE ANALYSES J97-4 From To Length Recov. CU Cu MO Au-fire AG	3 FE	MG	AS	SB	BI	ва	BE	ĊA	РВ	ZN	СD	NI	со	CR	W	AL	NA	к	Р	MN	LI	SR	GA 1	гни	TI	v

Sample	metres	metres	metres	metres	PPM 9	6 PPN	A PPB	PPM	%	% 1	PPM F	PM PF	РМ	PPM	PPM	%	РРМ	PPM	PPM	PPM	PPM	PPM PI	PM	%	%	%	PPM	PPM	PPM	РРМ	PPM F	PPM PI	PM	%	PPM
292212	2.43	4	1.57	1.45	4392		3 28	1.7	3.66	1.82	4	1	1	178	0.1	2.1	2	41	0.3	31	19	72	1	4.18	0.48	0.8	580	209	17	124	4	22	5	0.25	151.7
292213	4	6	2	1.46	2947		1 16	0.8	2,81	1.17	5	1	1	64	0.1	1,89	2	24	0,2	34	18	42	1	3,28	0.38	0.2	680	190	13	106	4	16	4	0.15	89.2
292214	6	8	2	1.45	2286		1 12	0.7	3.08	1.18	5	2	1	65	0.1	1.98	3	29	0.1	39	20	42	1	3.02	0.36	0.18	670	212	13	95	3	17	4	0.17	91.8
292215	8	10	2	1 45	1503		2 10	0.4	3 11	1.25	4	1	1	91	0.1	1 67	2	25	0 1	38	19	41	1	2.89	0.38	0.26	590	247	12	92	4	18	4	0.18	98.6
292216	10	12	2	1.45	550		1 6	0.1	3 11	1.35	3	2	1	111	0.1	2 17	1	22	0.1	37	20	53	1	3	0.37	0.3	570	299	12	132	3	18	4	0.17	92.3
202210	10	14	2	1.80	1250		, J R 7	0.0	3.03	1 27	2	2		106	0.1	1 77	· 2	23	0.1	28	19	54	1	2.85	0.38	0.32	580	239	12	105	3	17	۸	0.18	95.2
202211	12	46	4	1.00	2254		0 17	1.1	3.05	1.20	2	ŝ	-	00	0.1	2.06	2	20	0.1	20	20	59	4	2.00	0.00	0.02	670	245	12	120	4	24	5	0.10	101 7
292210	14	10	2	1.00	5351		ອ 17 ວ່ວ5	1.1	3.74	1.20	5	4	-	75	0.1	2.00	о 0	20	0.1	24	20	50	-	3.10	0.95	0.33	570	240	49	114	7	21	c	0.10	101.7
292219	15	18	3	3.00	5148	1	3 20	1.7	3.11	1.03	2			10	0.1	4.44	6	31	0.4	33	23	55	5	3.12	0.35	0.3	500	200	13	114	4	20	5	0.10	101.9
292220	18	20	2	2.00	3526	-	3 10	1.1	4,55	1,49	4	T	1	100	0.1	1.69	2	33	.0.1	44	33	55	-	3.3	0.35	0.75	200	235	10	104	4	24	0	0.24	130
292221	20	22	2	2.00	1804	2	7 8	0.5	3.4	1.24	5	1	1	132	0.1	2.05	2	22	0.1	38	23	56	1	3.43	0.42	0.45	600	222	14	108	4	19	4	0.2	103,2
292222	22	24	2	2.00	720		35	0.1	2.98	1.25	2	1	1	98	0.1	2.1	1	19	0.1	32	19	59	1	3.15	0.35	0.34	580	235	14	102	4	17	4	0.21	105
292223	24	26	2	2.00	2490	1:	2 16	0.9	3.05	1.32	4	2	1	52	0.1	2.17	4	30	0.2	50	18	97	1	1.7	0.17	0.13	1260	233	13	58	3	19	4	0.2	87.8
292224	26	28	2	1.40	3609	2	520	1.5	3.63	1.97	6	2	1	54	0.1	3.07	6	33	0.1	59	20	119	1	1.86	0.06	0.24	1290	318	17	97	3	24	5	0.19	113.7
292225	28	30	2	2.00	710		37	0.2	2.41	1.29	4	1	1	39	0.1	1.7	2	17	0.1	47	14	103	1	1.64	0,13	0.15	1280	187	13	62	3	17	3	0.19	79.9
292226	30	32	2	2.00	1330	2	19	0.5	3.75	1.35	4	2	1	42	0.1	1.13	4	24	0.1	70	26	94	1	1,68	0.12	0.17	1240	186	13	78	2	23	5	0.18	82.4
292227	32	34	2	2.00	189		23	0.1	3,97	1.69	5	2	1	97	0.1	0.91	2	19	0.1	67	23	132	1	2.05	0.16	0.57	1290	227	18	74	3	25	5	0.24	104.5
292228	34	36	2	2.00	156		24	0.1	2.49	0,98	7	1	1	71	0,1	0.71	2	13	0.1	73	15	96	1	1.08	0.11	0.18	1310	181	10	47	1	16	3	0,18	62.7
292229	36	38	2	2.00	2762	3	0 11	0.9	2,73	1.18	10	2	1	45	0.1	1.99	7	23	0.1	47	16	84	1	1.1	0.06	0.12	1500	242	11	88	1	21	4	0,1	62.3
292230	38	40	2	1.90	568		4 4	0.1	2.71	1.06	6	2	1	60	0.1	1.06	3	17	0.1	61	19	90	1	1.14	0.12	0.12	1340	188	10	76	2	18	3	0.14	62.7
292231	40	42	2	1 80	2447	1	5 14	0.8	3.04	1.1	6	2	1	51	0.1	1.95	6	20	0.1	70	21	79	1	1.43	0.13	0.1	1360	247	11	111	2	19	4	0.12	66
292232	42	44	2	2.00	383	•	3 3	0.1	3 65	1 84	3	2	1	95	0.1	1 72	3	21	0 1	55	20	96	1	1 93	0.11	0.18	1380	363	16	115	3	24	5	0.16	95.6
202233	44	46	2	2.00	669	5	2 7	0.2	3.9	2.03	7	3	1	55	0.1	1.62	12	37	0.2	64	22	106	5	1.82	0.08	0.16	1220	390	16	77	Š	26	5	0.19	103.8
202200	46	48	5	1.00	456			0.4	1 01	0.47	16	11	1	22	0.1	1 70	10	21	0.2	7	A.	62	1	0.57	0.00	0.10	720	460	١č	52	1	13	1	0.10	10.0
202204	40	40 E0	2	2.00	400		0 0 9 6	0.7	1.01	0.47	11	5	4	17	0.1	1.65	0	16	0.2	, e	г А	10	4	0.07	0.00	0.00	790	242	ŝ	52	4	16	2	0.00	28.4
282233	40	50	2	2.00	7700			0.2	2.05	0.01		2	1	65	0.1	1.00	40	04	0.1	10	ں ح	43	2	0.00	0.00	0.05	000	240	é	02	1	10	2	0.02	20.1
292230	50	52	4	2.00	1723	14	9 0 5 6	~ ~ ~	2,05	4.02	5	3	4	440	0.1	1.00	10	21	0,3	10	10	40	4	0.00	0.00	0.07	700	330	40	402		10	5	0.02	22.0
292231	52	54	2	0.80	4/3	1		0.2	2.30	1.23	0		1	100	0.1	1.71	3	19	0.1	21	13	50	4	2.29	0.43	0.21	120	240	13	103	2	17	3	0.14	14.1
292238	54	56	2	2.00	198		3 3	0.1	3.3/	1.27	3	2	1	101	0.1	1.73	4	17	0.1	57	23	102	1	2.4	0.34	0.21	810	238	14	93	3	20	4	0.16	82
292239	56	58	2	2.00	258	:	5 3	0.1	3.56	1.55	5	2	1	155	0.1	1.66	1	19	0.1	75	22	156	2	2.51	0.26	0.35	950	265	16	94	2	22	4	0.21	95.2
292240	58	60	2	1.90	332	•	46	0.2	2.41	0,94	3	1	1	41	0.1	1.89	1	15	0.1	55	17	70	1	1.65	0.31	0.07	1040	206	8	98	1	15	3	0.1	53.5
292241	60	62	2	2.00	237		54	0.1	3.32	1.08	2	2	1	38	0.1	1.08	3	12	0.1	35	16	48	1	1.47	0.17	0.2	1390	147	13	65	2	19	4	0.14	71.1
292242	62	64	2	2.00	1103		5 10	0.6	3.16	0.75	4	1	1	30	0.1	1.23	5	19	0.1	60	21	74	1	1.22	0.17	0.06	1510	176	10	53	2	18	4	0.13	62.4
292243	64	66	2	2.00	728	1	29	0.4	3.21	1.55	2	1	1	18	0.1	2.67	4	24	0.1	46	15	111	1	1.72	0.2	0.05	1020	331	22	66	1	20	4	0.12	91.5
292244	66	68	2	2.00	863 [`]	:	3 11	0.4	2.41	0.72	4	1	1	21	0.1	1.33	3	17	0.1	77	18	66	1	1.03	0.17	0.05	1050	175	7	56	1	14	3	0.11	49.8
292245	68	70	2	1.90	3047	10	5 26	1.2	2.78	0.91	4	1	1	40	0.1	1.67	6	21	0.1	48	17	74	1	1.41	0.23	0.1	1180	204	8	79	2	17	3	0.14	69.9
292246	70	72	2	1.50	4773	15	4 20	3.2	3.62	1.05	11	16	1	54	0.1	3.49	249	96	1.9	50	17	97	2	2.15	0.22	0.14	980	320	9	105	3	21	5	0.13	75.2
292247	72	74	2	2.00	4353	2	5 34	1.4	2.39	1.08	4	1	1	82	0.1	2.98	4	23	0.2	44	14	66	1	3.37	0.24	0.07	1000	216	9	227	4	15	3	0.11	57.8
292248	74	76	2	1.80	4093	63	3 23	1.5	2.63	1.4	6	2	1	76	0.1	3.43	4	21	0.2	48	15	102	1	3.29	0.28	0.08	970	306	12	247	3	18	3	0,11	66.1
292249	76	78	2	2.00	2221		7 17	0.7	3.65	1.73	4	3	1	123	0.1	3.88	5	26	0.1	46	18	90	1	2.18	<b>0</b> .15	0.28	740	583	16	296	2	22	5	0.11	110.3
292250	78	80	2	2.00	2121	1:	3 15	0.8	1.91	0.75	5	1	1	60	0.1	2.12	3	18	0.1	41	11	63	1	2.74	0.39	0.07	1130	184	8	144	3 -	12	3	0.1	46.3
292251	80	82	2	2.00	1994	1	a 29	1	2.42	0.96	3	1	1	64	0.1	1.57	1	19	0.1	52	15	106	1	2.15	0.29	0.11	1030	198	9	98	3	15	3 1	0 17	65.4
292252	82	84	2	2.00	2502	1	3 36	18	1 75	0.53	3	1	7	64	01	2 72	144	567	10	37	11	60	4	3.06	0.45	0.07	1010	196	ě	178	3	11	2	0.08	35.4
202202	84	86	2	2.00	1078	1.	2 11	n 4	1 72	0.56	š	1	1	42	0.1	171	2	17	01	47	12	60	i.	1 49	0.24	0.06	1000	165	š	79	ž	11	2	0.11	201
202200	96	00	2	1.00	2027	24	⊊ 11 n 40	11	2 04	0.00	8	2	÷	38	0.1	2.07	131	699	0.1	41	11	74	7	1 10	0.24	0.00	080	646	8	77	4	12	2	0.1	47
202204	00	00	2	1.50	2027	120	2 10	1.1	2.07	0.75	Ă	1	;	63	0.1	1 16	404	2000	0.7	52	46	106	4	1.10	0.15	0.00	000	244	7	60	4	14	~ .	0.14	56.0
292200	00	90	2	1.50	2070	100		10	0.10	4.4	-	1	2	03	0.1	0.40	3	20	0.0	00	10	70	1	1.10	0.17	0.1	990	244	10	100		10	4 1	J. 14	00.9
292200	90	92	2	2.00	3879	3	9 04	1.9	2.41	1.1	3		9	94	0.1	2.12		29	0.2	35	13	/0	1	1.09	0,23	0.10	020	290	10	106	1	10	3 1	J. 16	01
292257	92	94	2	2.00	2112	1	\$ 19	0.9	3.56	1.63	4	2	1	157	0.1	1.73	4	25	0.2	42	18	145	1	2.5	0.34	0.52	1150	228	14	113	3	22	4 (	J.21	98.4
292258	94	96	2	2.00	3032	19	3 27	1.2	5.65	2.04	6	3	1	94	0.1	0.69	8	35	0.2	84	31	223	1	2.24	0.17	0.7	1160	188	18	56	4	34	7	0.2	130.1
292259	96	98	2	2.00	2305	23	3 30	1	3.57	1.36	8	3	1	95	0.1	1.24	4	27	0.1	63	19	195	1	1.84	0.22	0.39	1100	182	11	107	3	22	5 (	J.17	88.7
292260	98	100	2	2.00	298	:	5 4	0.1	3.26	1.91	4	2	1	120	0.1	1.11	3	20	0.1	83	22	316	1	1.91	0.14	0.44	1130	255	16	81	1	22	4 (	J.28 -	140.7
292261	100	102	2	1.50	4314	16	6 16	5.6	3.26	1.21	5	8	1	82	0.1	1.81	54	31	0.4	73	19	203	6	1.54	0.16	0.2	1150	322	11	80	2	20	4 (	J.17	82.4
292262	102	104	2	2.00	3430	58	3 31	1,3	3.22	1.56	7	1	1	225	0.1	1.51	3	23	0.1	41	15	142	1	2.57	0.3	0.33	1210	185	14	122	3	22	4 (	J.21	78.9
292263	104	106	2	2.00	2577	24	£ 20	0.9	3.02	1.56	4	1	1	97	0.1	1.31	6	20	0.1	34	13	105	1	1.76	0.1	0.31	1190	194	13	85	3	22	4 (	J.18	63.6
292264	106	108	2	1.10	867	:	37	0.2	2.6	1.16	1	1	1	92	0.1	1.12	2	18	0.1	19	11	58	1	1.64	0.2	0.19	1160	196	10	52	3	18	3 (	3.18	48.2
292265	108	110	2	2.00	2193	29	) 14	0.7	2.89	1.31	2	1	3	76	0.1	1.21	2	22	0.1	45	14	132	1	1.36	0.12	0.16	1280	256	12	60	1	20	4 (	J.18	71.3

Page 1

						-	-										•																			
J97-4	From	То	Length	Recov.	CU	Cu	MO	Au-fire	AG	FE	MG	AS	SB	ы	BA	ΒE	CA	PB	ZN	CD	NI	ço	CR	W	AL	NA	к	P	MN	LI	SR	GA	тн (	J	TI	v
Sample	metres	metres	metres	metres	PPM	%	PPM	PPB	PPM	%	%	PPM	₽₽М	PPM	PPM	PPM	%	PPM	PPM	PPM	РРМ	PPM	PPM	РРМ	%	%	%	PPM	PPM	РРМ	РРМ	РРМ Р	PM PI	ΡМ	%	PPM
292266	110	112	2	2.00	2063		29	9	0.9	2.55	1.11	1	1	1	78	0.1	0.82	5	17	0.1	19	9	54	2	1.05	0.06	0.22	1100	193	9	27	2	18	3 (	0.17	39.4
292267	112	114	2	2.00	2088		50	16	0.8	2.59	1.13	3	1	1	71	0.1	0.73	1	17	0.1	19	10	77	1	1.14	0.07	0.22	1170	161	10	38	2	19	3 (	0.19	49.3
292268	114	116	2	2.00	3168		31	13	1.2	3.34	1.97	1	1	1	226	0.1	0.72	2	24	• 0.2	62	19	191	1	1.65	0.1	0.66	1150	250	15	41	2	23	4 (	0.25	116.6
292269	116	118	2	2.00	2018		44	16	0.8	2.98	1.24	1	1	1	111	0.1	1.52	4	19	0.1	39	15	116	1	1.15	0.05	0.26	920	249	11	40	1	19	4 (	0,18	75.2
292270	118	120	2	2.00	950		7	8	0.3	2.55	0.73	<ul><li>1</li></ul>	1	1	83	0.1	1.95	5	11	0.1	25	11	90	1	0.86	0.05	0.2	700	169	7	45	2	18	3	0.1	49.4
292271	120	122	2	2.00	>10000	1.23	25	32	3.4	3.84	1.83	1	1	1	248	0.1	1.33	10	25	0.2	41	16	114	3	1.65	80.0	0.24	1620	230	17	66	2	25	5 (	0.21	102.6
292272	122	124	2	2.00	>10000	1.28	10	101	6.7	4.27	1.05	1	1	8	115	0.1	1.93	18	23	0.3	37	18	75	1	1.15	0.09	0.13	900	250	10	76	2	24	6 (	0.12	63.5
292273	124	126	2	2.00	· 261		3	2	0.1	1.31	0.48	1	1	3	46	0.1	1.93	4	10	0.1	7	5	43	1	0.57	0.03	0.12	490	122	5	60	1	13	2 (	D.01	12.5
292274	126	128	2	2.00	2725		71	18	1.3	2.27	1.29	1	1	4	75	0.1	1.63	6	15	0.1	36	9	109	1	1.06	0.07	0.12	750	224	10	97	1	19	3 (	0.04	44.6
292275	128	130	2	2.00	1760		219	22	0.9	2.27	1.21	1	1	1	148	0.1	1.54	5	18	0.1	28	9	111	1	0.96	0.07	0.09	1070	247	9	102	1	25	3 1	0.08	58 7
292276	130	132	2	2.00	3573		409	35	1.1	2.29	0.89	1	1	1	128	0.1	0.83	5	18	0.1	18	8	127	i	0.76	0.06	0.13	1040	167	7	61	1	25	3 (	07	48.1
292277	132	134	2	2.00	1016		252	9	0.3	2.04	0.75	5	1	1	120	0.2	2 74	5	16	0.1	15	6	76	1	0.00	0.05	0.14	990	222	7	149	4	24	3 4	0.07	33.8
202278	134	136	2	2.00	3020		142	15	11	2 17	0.48	5	1	1	150	0.3	349	7	12	0.1	17	7	110	4	0.00	0.00	0.2	1060	221	5	183	4	22	2 1	0.02	27.0
202270	136	138	2	2.00	>10000	2 75	1165	22		3.42	0.52	š	4		87	0.0	2.55	17	24	0.1	22	á	64	4	0.02	0.03	0.12	1150	170	6	125	1	20	5 1	0.01	21.0
202280	138	140	2	2.00	8088	2.75	62	73	21	2.56	0.62	1	4	1	00	0.2	1 03	10	16	0.0	22	7	04	4	0.71	0.04	0.12	010	167	7	140	4	20		0.01	20
292200	140	140	2	2.00	<10000	1 78	756	00	0.8	1 34	0.00	2	4	2	100	0.2	1.30	26	34	0.2	22	14	33	120	0.0	0.04	0.13	1400	107		110	4	29 25	4 1 c /	0.01	24.7
292201	140	142	2	2.00	-10000 5270	1.70	1476	30	3.0	9.09	0.91	2	1	4	100	0.1	1.00	20	- 34 - 14	0.5	40	14	120	130	0.00	0.04	0.17	1400	144	9	65	1	35	0 1	0.05	41.2
292202	142	144	2	1.90	00/0		1470		1.7	4.02	0,30	4		4	120	0.1	1.90	4	14	0.1	10	4	100	1	0.00	0.04	0.10	1030	101	0	83	1	24	3 (	0.06	41.8
292200	144	140	2	1.00	904 776		69	10	0.1	1.03	0.02	2			101	0.1	2.41	2	12	0.1	10	4	109		1.03	0.05	0.19	930	210		124	1	23	3 1	J.03	37.8
292204	140	140	2	1.60	770		20	12	0.1	1.97	0.84	ు ం	4		196	0.1	1.9	ð	17	0.1	16		106	1	0.85	0,05	0.17	1030	235	8	96	1	25	3 (	0.06	48.5
292200	140	150	2	2.00	720		107		0.1	1.07	1.12	~			134	0.1	1.04	8	19	0.1	15	8	82	1	0.81	0.06	0.11	1020	224	8	73	2	27	3 (	3.08	49.1
292280	150	152	2	2.00	498		107	5	0.1	1.87	0.89	2	1	1	189	0.1	0.89	8	19	0.1	14	8	102	1	0.71	0.06	0.11	1020	185		61	1	25	3 (	0.09	48.9
292287	152	154	2	2.00	2125		1156	14	0.5	2.43	0.74	12	1	2	144	0.4	2.14	11	15	0.1	19	8		1	1.06	0.05	0.17	970	202	(	129	1	27	3 (	0.01	30.8
292288	154	156	2	2.00	1120		287	10	0.2	1.92	0.79	3	1	2	188	0.1	1.81	6	13	0,1	15		81	1	0.86	0.05	0.17	940	190	7	99	1	25	3 (	0.04	38.8
292289	156	158	2	1.80	831		147	14	0.2	1.93	0.84	1	1	5	263	0.1	1.24	5	13	0,1	15	8	85	1	0.85	0.06	0.21	920	167	9	86	1	24	3 (	0,09	48,5
292290	158	160	2	1.90	1263		36	10	0.1	1.91	0.86		1	1	223	0.1	2.33	8	12	0.1	15	8	66	1	0.83	0.05	0.17	990	216	8	117	2	24	3 (	0.06	44.3
292291	160	162	2	2.00	2912		385	12	0.7	2.06	0.83	6	1	1	229	0.1	2.18	11	14	0,1	15	7	89	1	0.88	0.06	0.16	980	208	7	103	1	25	3 (	0,05	40.4
292292	162	164	2	2.00	833		9	7	0.1	1.93	0.98	1	1	1	205	0.1	1.65	7	14	0.1	15	7	82	1	0.92	0.05	0.2	950	222	8	88	1	24	3 (	),06	43.1
292293	164	166	2	1.80	1752		799	11	0.5	2.4	0.94	18	1	1	190	0.2	3.4	8	16	0.1	26	8	89	1	0.99	0.05	0.21	1030	340	7	183	1	24	3 (	0.03	41.1
292294	166	168	2	2.00	372		28	6	0.1	2.03	0.92	4	1	1	279	0.1	2.09	6	14	0.1	15	7	79	1	0.86	0.05	0.22	1070	236	6	138	1	24	3 (	).04	36.8
292295	168	170	2	1.90	1147		346	12	0.2	1.89	0.78	1	1	1	239	0.1	1.72	7	14	0.1	14	7	71	1	0.79	0.05	0.21	900	235	7	99	1	24	2 (	0.06	39
292296	170	172	2	2.00	1413		1266	8	0.4	2.35	0.93	6	1	1	245	0.1	1.85	6	20	0.1	19	9	82	1	0.97	0.05	0.28	1220	249	8	105	1	26	3 (	0.08	47.4
292297	172	174	2	2.00	1362		103	9	0.2	1.89	0.59	7	1	1	215	0.2	2.3	11	13	0.1	15	7	71	1	0.89	0.05	0.25	940	230	6	134	1	23	2 (	).03	32,3
292298	174	176	2	1.80	3342		190	21	0.9	3.44	1.24	2	1	2	116	0.1	2.47	10	30	0.1	20	12	91	1	1.18	0.06	0.16	900	430	11	120	2	25	4 (	0.08	95.2
292299	176	178	2	1.60	459		14	9	0.1	3.59	2.77	1	3	1	319	0.1	2.28	9	33	0.1	62	20	213	1	3.55	0.33	0.24	1010	392	22	244	2	26	5 0	).17 °	131.8
292300	178	180	2	2.00	1165		25	11	0.2	2.64	1.46	1	2	1	184	0.1	1.82	5	20	0.1	60	15	159	1	1.97	0.19	0.21	940	231	10	121	2	17	3 (	) 16	96.2
292301	180	182	2	2,00	668		47	5	0.1	3.3	1.98	1	1	1	309	0.1	2.41	7	26	0.1	57	17	155	1	1.82	0.15	0.51	1030	410	15	123	1	23	4	0.2	125.8
292302	182	184	2	2.00	1919		35	15	0.6	3.14	1.47	2	1	1	107	0.1	3	5	27	0,1	47	14	99	1	1.76	0.19	0.15	970	354	11	131	2	19	4 0	80.(	91
292303	184	186	2	2.00	823		11	9	0.3	2.94	1.56	1	2	1	154	0.1	2.51	7	25	0.1	50	14	98	1	1.77	0.14	0.21	1060	366	11	114	1	19	4 0	.07	77.6
292304	186	188	2	2.00	662		13	8	0.2	2.28	1.46	1	1	1	146	0.1	1.53	5	18	0.1	52	14	111	1	1.97	đ.27	0,19	1080	244	9	104	1	16	3 0	.12	71.4
292305	188	190	2	2.00	105		10	2	0.1	3.66	2.63	1	3	1	472	0.1	3.05	7	29	0.1	74	19	193	1	2.65	0.18	0.69	920	448	17	148	1.	25	5 C	).15 ·	122.8
292306	190	192	2	2.00	302		31	5	0.1	3.41	2.41	1	2	1	488	0.1	1.83	3	23	0.1	77	21	224	1	2.3	0.2	0.78	940	335	19	101	2	24	4 C	.29	133.6
292307	192	194	2	2.00	411		13	6	0.1	3.72	2.4	1	2	1	320	0.1	1.68	4	27	0.1	73	21	228	1	2.35	0.19	0.55	980	344	19	97	2	25	5 0	32	148.9
292308	194	196	2	2.00	1684		55	21	0.4	2.8	1.42	3	1	1	281	0.1	1.45	2	20	0.1	59	15	194	1	1.58	0.13	0.29	990	192	13	63	2	19	4	0.2	114.1
292309	196	198	2	2.00	1288		18	17	0.4	2.71	0,93	2	1	1	117	0.1	1.6	4	18	0.1	43	15	92	1	1.2	0.09	0.21	980	162	10	51	3	16	3 0	15	99.6
292310	198	200	2	2.00	1034		11	6	0.3	3.35	1.92	2	2	1	277	0.1	1.09	8	29	0.1	92	20	229	1	1.92	0.14	0.8	900	274	17	50	1	23	4 0	25	120.3
292311	200	202.3	2.3	2.30	281		15	5	0.1	3.71	2.81	1	2	1	378	0.1	0.92	1	32	0.1	98	23	259	1	2.21	0.09	0.86	910	353	23	58	1	26	5	0.3 1	138.4
00040	(00 0			~								~	•	•				40												~~	~~			-		
292312	139,6	142.6	n/a	Sludge	5613		64	33	2,1	4.46	0.9	6	3	2	64	0.1	2.87	19	60	0.3	77	25	90	49	1.67	0.25	0,14	720	455	9	103	2 2	24	5 O.	.09	61.2

JEAN PROPERTY CORE RECOVERY AND SAMPLE ANALYSES J97-5 From To Length Recov. CU Cu MO Au-fire AG FE MG AS SB BI BA BE CA PB ZN CD NI CO CR W AL NA K P MN LI SR GA TH																																			
J97-5	From	То	Length	Recov.	CU Cu	MO	Au-fire	AG	FE	MG	AS	SB	BI	BA	BË	CA	PB	ZN	CD	NI	co	CR	w	AL	NA	к	Р	MN	LI	SR	GA `	TH I	u	TI	v
Sample	metres	metres	metres	metres	PPM %	РРМ	PPB	PPM	%_	%	PPM	ррм І	РРМ	PPM	PPM	%	PPM	РРМ	PPM	PPM	PPM	PPM	PPM	%	%	%	PPM	РРМ	PPM	PPM I	PM P	PM PF	PM	%	РРМ
292313	1.5	4	2.5	1.30	260	11	5	0.2	3.11	0.78	6	1	1	43	0.1	2.35	9	23	0.1	61	14	126	1	2.17	0.12	0.11	1240	228	10	49	3	15	4	0.1	115.3
292314	4	6	2	1.20	633	2	9	0.4	3.24	0.7	5	1	1	23	0.1	1.87	12	29	0.1	81	19	137	2	1.82	0.22	0.13	1540	235	13	74	3	15	4	0.14	136.1
292315	6	8	2	1.90	94	2	4	0.1	2.96	0.95	4	2	1	21	0.1	1.81	9	25	0.1	66	15	124	1	2.03	0.21	0.14	1400	275	13	75	3	15	4	0.12	112.2
292316	8	10	2	1.60	115	1	11	0.1	1.99	0.4	<u>`</u> 6	1	1	28	0.1	2.74	9	20	0.1	48	9	75	1	3.17	0.75	0.18	1610	221	8	235	3	9	2	0.08	73.2
292317	10	12	2	1,90	42	1	9	0.1	2.61	0.65	10	2	1	30	0.1	2.58	17	32	0.1	72	15	143	1	2.73	0.46	0.18	1380	286	10	159	3	13	3	0.11	91.4
292318	12	14	2	2.00	69	1	4	0.1	4.47	1.36	8	2	1	35	0.1	1.9	5	34	0.1	128	27	178	1	2.4	0.1	0.17	1360	384	19	36	3	22	6	0.21	143.1
292319	14	16	2	1.80	192	2	4	0.1	3,65	1.43	10	3	1	37	0.1	3.08	10	37	0.1	86	27	208	2	2.57	0.13	0.24	940	619	14	66	2	18	5	0.15	90.1
292320	16	18	2	1.90	96	2	5	0.1	2.42	1.09	16	2	1	15	0.1	4.8	12	31	0.1	36	14	95	1	2.41	0.01	0.08	1150	739	12	18	1	13	3	0.07	57
292321	18	20	2	2.00	135	1	5	0.1	2.02	0.76	15	1	1	12	0.1	4.68	10	30	.0.1	41	10	83	1	2.38	0.07	0.07	1160	615	10	83	1	10	3	0.07	49,2
292322	20	22	2	1,90	155	2		0.1	2.42	1.31	12	3	1	17	0.1	3.64	6	39	0.1	94	18	151	1	2.45	0.13	0.11	1040	492	15	122	1	13	3	0.08	55.8
292323	22	24	2	1.90	/1	3	5	0.1	3,15	1.45	16	2	1	13	0.1	4.81	10	35	0.1	11	20	156	1	2.68	0.01	0.07	1170	783	16	22	1	17	4	0.09	59.2
292324	24	26	2	1.90	52	1	2	0.1	2.27	0.78	4	2	1	37	0.1	3.58	3	18	0.1	65	15	152	1	4.12	0.48	0,16	880	277	8	258	4	11	3	0.11	97.2
292325	26	28	2	2.00	130	1	9	0.1	3,09	1.07	4	1	1	44	0.1	2.07	5	22	0.1	/9	24	117	1	2.49	0.27	0.22	960	281	12	105	3	16	4	0.16	100.3
292326	28	30	2	2.00	943	19	10	0.6	2.8	0.74	Z	1	1	29	0.1	2.65		28	0.2	67	23	100	1	3.26	0.4	0.15	1010	197	11	174	4	13	4	0.14	79.3
292327	30	32	2	2,00	333	1	4	0.1	4.08	1.01	4	2	1	31	0.1	1.6	8 7	22	0.1	91	31	103	1	2.05	0.21	0.15	1030	227	13	55	3	20	5	0.2	98.3
292328	32	34	2	1,90	1021	0	10	0.7	4.01	1.22	4	1	1	22	0.1	2.41	10	34	0.1	64	22	129	4	2.69	0.1	0.15	720	256	15	35	5	20	5	0.2	112.4
292329	34	35	2	2,00	1031	4	20	0.0	3.42	1.09	ి	~	1	19	0.1	1.92	10	20	0.2	51	22	73	1	2.05	0.14	0.08	1070	2/3	13	40	3	17	4	0,17	107.3
292330	35	38	2	2,00	4697	25	22	5.1	3.24	1.27	2	2	70	19	0.1	3.15	78	38	0.2	51	30	62	1	2.02	0.07	0.1	1060	407	12	29	4	25		0.18	113.8
292331	30	40	2	2.00	430	10	46	0.2	3.03	0.73	2	4	4	11	0.1	22	7	20	0.1	40	20	45	4	1.72	0.12	0.1	1460	323	44	40	3	10	4	0,15	03.1
282332	40	42	2	2.00	2220	13	24	15	3.55 A 1A	1 14	4	2	1	12	0.1	2.2	0	36	0.4	40	20	40	4	245	0.09	0.00	1400	200	15	29	4	17	5	0.09	00.1
292333	44	44	2	2.00	669	2	4	n.5	2.86	0.78	3	1	1	59	0.1	1 75	5	21	0.2	71	18	146	4	1.88	0.14	0.00	870	102	10	- <del>2</del> 0	3	14	4	0.11	74 9
202335	46	40	2	2.00	2356	8	104	1.5	3.95	1.03	ă	2	1	47	0.1	2.53	11	41	0.7	127	30	152	4	2 71	0.13	0.17	950	257	18	86	4	10	5	0.10	00.6
202336	48	50	2	2.00	2618	30	400	17	3 13	0.63	5	2	3	43	0.1	2.57	ġ	37	0.3	75	23	123	÷	2.11	0.18	0.10	740	205	13	75	2	14		0.17	87.6
292337	50	52	2	2.00	1280	ž	15	04	2.58	0.93	6	1	1	25	0.1	1.87	10	38	0.0	37	12	73	i	1 28	0.10	0.12	1110	264	10	34	Ĭ	14	3	0.12	64.2
292338	52	54	2	1.90	1314	4	12	0.5	2.18	0.75	7	1	1	16	0.1	1.9	5	26	0.2	36	12	83	2	17	0.00	0.07	1130	202	10	59	2	11	3 1	0.07	61 7
292339	54	56	2	2.00	156	2	4	0.1	2.44	0.91	4	1	1	30	0.1	1.37	6	17	0.1	35	11	57	1	1.32	0.09	0.1	1080	213	11	26	2	13	3 1	0 11	73.7
292340	56	58	2	2.00	551	3	8	0.2	2.7	0.84	5	2	1	20	0.1	2.19	7	23	0.1	57	16	137	i	1.93	0.19	0.08	1020	259	11	68	3	14	3 1	0.09	66.6
292341	58	60	2	1.90	2046	2	15	0.8	1.83	0.49	4	1	1	23	0.1	1.78	8	27	0.1	55	12	95	1	1.78	0.24	0.08	800	145	7	90	2	9	2 1	0.09	42.7
292342	60	62	2	2.00	2427	24	14	0.7	3.34	0.93	5	1	1	88	0,1	1.42	15	39	0,1	55	17	139	1	1.28	0.1	0.27	1040	179	11	180	2	17	4 (	0.13	86.7
292343	62	64	2	2.00	1734	27	13	0.8	2.69	0.61	3	1	1	21	0,1	1.09	7	27	0.2	72	17	106	1	1.07	0.12	0.08	590	153	8	33	1	13	3	0.1	45.3
292344	64	66	2	2.00	779	18	7	0.2	3.8	1.03	3	2	1	114	0.1	0.86	8	28	0.1	103	25	249	1	1.49	0.08	0.4	410	182	13	24	2	19	5 (	0.23	58.5
292345	66	68	2	2.00	1422	3	11	0.5	5.03	1	2	2	1	123	0.1	0.52	12	44	0.1	94	34	241	1	1.41	0.08	0.56	550	165	14	17	3	24	6 (	0.24	63.3
292346	68	70	2	2.00	376	1	6	0.1	6.85	1.77	3	4	1	186	0.1	0.74	11	70	0.1	72	25	432	1	2.63	0.1	1.5	270	307	23	24	6	33	9 (	0.47	64.2
292347	70	72	2	2.00	153	2	5	0.1	7.07	1.94	4	2	1	263	0.1	1.21	6	83	0.1	93	26	360	1	4.04	0.29	2.03	430	318	24	75	6	34	9 (	0.47	98.6
292348	72	74	2	2.00	159	1	5	0.1	5.46	1.26	4	3	1	200	0.1	2.5	4	65	0.1	79	20	286	1	4.88	0.37	1.28	350	283	19	119	6	26	7 (	0.27	65,9
292349	74	76	2	2.00	418	8	7	0.1	5.83	1.42	4	2	1	167	0.1	1.9	6	45	0.1	81	25	295	1	3.16	Q.31	0.75	550	327	21	79	5	28	8 (	0.29	82.2
292350	76	78	2	2.00	277	2	6	0.1	4.97	1.31	4	1	1	394	0.1	1.49	7	36	0.1	60	22	202	1	3.3	0.31	1.21	730	285	17	62	5	24	6	0.3	104.9
292351	78	80	2	2.00	1076	6	10	0.2	3.81	1.41	2	1	1	154	0.1	2.27	6	27	0.1	27	19	42	1	3.22	0.31	0.57	550	244	19	81	4 1	20	5 (	0.19	145.8
292352	80	82	2	2.00	870	9	8	0.3	1.88	0.56	2	1	1	59	0.1	0.88	8	17	0,1	44	14	67	1	0.99	0.14	0.11	1320	130	6	32	1	10	2 (	0.09	35.9
292353	82	84	2	2.00	704	12	9	0.2	3.15	1.25	2	1	1	188	0.1	1.43	5	26	0.1	44	19	74	1	2.21	0.25	0.31	870	241	14	59	3	17 ்	4 (	D.17	89.2
292354	84	86	2	2.00	676	34	11	0.3	2.11	0.62	5	1	1	63	0.1	2.95	3	16	0.1	23	16	22	1	3.6	0.58	0.11	550	186	10	319	3	10	3 (	0.07	57.3
292355	86	88	2	2.00	224	3	6	0.1	2.02	0.73	1	1	1	86	0.1	2.56	1	12	0.1	16	11	36	1	3.34	0.62	0.17	440	186	11	254	3	10	3 (	0.09	63.7
292356	88	90	2	2,00	398	2	7	0.1	2.83	1.09	3	1	1	140	0.1	2.24	2	19	0.1	20	16	38	1	3.63	0.42	0.35	500	215	14	146	4	14	4 (	0.15	96.2
292357	90	92	2	2.00	918	5	10	0.3	2.4	0.75	2	1	1	58	0.1	3.01	3	17	0.1	22	15	39	1	3.79	0.49	0.15	550	204	13	166	4	12	3 (	0.09	67.2
292358	92	94	2	2.00	483	10	5	0.1	2.67	1.06	2	1	1	114	0.1	1.62	5	20	0.1	24	16	44	1	2.33	0.4	0.4	590	200	13	137	2	14	3 (	0.15	81.6
292359	94	96	2	2.00	199	2	5	0.1	2.42	1.06	3	1	1	101	0.1	2.3	21	20	0.1	19	13	32	1	3.23	0.57	0.28	440	233	14	215	3	13	3 0	0.12	76
292360	96	98	2	2.00	292	47	6	0.1	2.39	1.01	2	1	1	75	0.1	1.9	3	19	0.1	22	15	31	1	2,48	0.45	0.16	490	223	15	151	2	13	3 0	0.13	77
292361	98	100	2	2,00	1099	2	10	0.5	2.27	0.82	2	2	1	61	0.1	2.5	3	20	0.1	29	16	30	1	3.1	0.56	0.08	500	217	10	160	2	12	30	0.07	62.5
292362	100	102	2	1,90	/04/	4	3/	3.2	3,88	1./3	4	2	1	81	0.1	2.76	9	30	0.2	33	23	43	1	3.53	0.31	0.19	620	304	16	183	4 2	21 /	5 C	0.14	111.3
292363	102	104	2	2.00	432	3	3	0.1	0.9	0.48	4	2	1	22	0.1	1.97	10	12	0.1	(	4	55	1	1.28	0,08	0.04	680	121	4	72	2	13	10	).04	25.3
202265	104	109	2	2.00	556	60	4	0.2	U./0 297	0.57	22	2	T E	10	0.1	1.92	15	17	0,1	21	3	45	1	0.6	0.05	0.05	750	248	3	50	1	12 '	10	0.04	21.3
232305	100	110	2	2.00	4002	. 09 E	44	7.D	3.01 22	0.34	22	4	3 1	22 63	0.3	3.U3 1.07	ა <del>ა</del> ი	40	0.8	21	12	71	1	0.71	0.05	U.1	1250	380	6	63	2 2	20 1	50 000	0.01	25.4
22300	100	110	4	2.00	1003	U		0.0	6.0	1.19	<u> </u>	6			U.1	1.01	3	20	0.1	30	13	13		0,30	V. I	0.09	1200	300	Ö	63	- T - T	17 - 2	ა 0	1.08	33.Z

Page 1
J97-5	From	То	Length	Recov.	CU	Cu	MO	Au-fire	AG	FE	MG	AS	\$B	BI	вА	BE	ĆA	PB	ZN	CD	NI	со	CR	w	AL	NA	к	р	MN	LI	SR	GA TH	U	ΤĮ	v
Sample	metres	metres	metres	metres	PPM	%	PPM	PPB	PPM	%	%	РРМ	РРМ	РРМ	PPM	PPM	%	PPM	PPM	РРМ	PPM	PPM	PPM F	РМ	%	%	%	PPM	PPM I	PPM	PPM I	PPM PPM	PPM	%	PPM
292367	110	112	2	2.00	797		2	9	0.4	3.15	1.19	19	2	1	207	0.1	3.01	2	19	0.1	29	23	31	1	4.41	0.53	0.25	500	324	16	228	4 17	4	0.11	93.2
292368	112	114	2	2.00	269		3	3	0.1	2.87	0.84	6	2	1	93	0.1	2.39	5	14	0.1	26	23	28	1	3.58	0.51	0.12	560	214	12	204	4 14	4	0.09	62.3
292369	114	116	2	2.00	897		7	7	0.2	3.08	1.23	2	2	1	71	0.1	2.3	3	17	10.1	30	21	47	1	2.94	0.46	0.13	610	268	12	165	3 17	4	0.14	84.9
292370	116	118	2	2.00	833		2	3	0.3	2.86	1.23	3	2	1	72	0.1	2.15	10	21	0.1	27	20	37	3	2.92	0.45	0.13	500	256	12	165	2 16	4	0.12	74.4
292371	118	120	2	1.90	196		1	2	0,1	3.67	1.29``	× 2	2	1	83	0.1	1.96	8	21	0.1	27	27	29	1	2.34	0.27	0.14	680	323	11	147	3 19	5	0.12	88.8
292372	120	122	2	2.00	186		3	2	0.1	3.74	1.83	6	2	1	91	0.1	2.27	4	19	0.1	27	20	41	1	2.91	0.41	0.17	480	365	21	119	3 20	5	0.14	107 7
292373	122	124	2	2.00	662		4	9	0.3	3.44	1.28	2	2	1	85	0.1	1.5	5	20	0.1	50	24	75	1	2.31	0.41	0.16	920	240	13	78	2 19	4	0.14	83.9
292374	124	126	2	2.00	· 1327		30	17	0.5	3.15	1.42	7	2	1	69	0.1	2.82	10	22	0.1	56	16	110	1	1.88	0.24	0.12	1090	415	13	102	2 18	4	0.09	72.3
292375	126	128	2	1.50	1289		11	14	0.4	3.22	1.35	5	3	1	112	0.1	1.84	8	23	0.1	73	22	173	1	2.06	0.3	0.21	1070	315	12	130	2 18	4	0.11	73.3
292376	128	130	2	2.00	2609		55	21	1.4	3.19	1.43	7	5	8	104	0.1	2.92	20	29	0.2	69	17	157	1	2.01	0.25	0.17	1160	679	10	223	1 18	4	0.07	67.7
292377	130	132	2	1.90	4254		60	21	1.7	2.73	1.17	3	2	1	36	0.1	2.19	12	26	0.2	53	16	110	1	1 4 1	0.13	0.08	1260	399	8	105	1 16	3	0.08	57 1
292378	132	134	2	2.00	1614		6	17	0.7	3.03	1.14	6	2	1	72	0.1	3.04	8	25	0.1	65	21	95	i	16	0.16	0.07	1230	430	Ř	129	1 18	Ă	0.07	59.8
292379	134	136	2	2.00	133		2	4	0.1	2.31	0.98	6	3	1	93	0.1	2	5	17	0.1	44	16	105	1	1.69	0.19	01	1100	294	7	124	2 14	3	0.12	56.7
292380	136	138	2	2.00	411		16	4	0.1	2.82	1 18	Å.	2	1	42	0.1	1 22	7	18	0.1	46	20	79	1	1.52	0.10	0.00	880	210	11	58	2 16	4	0.12	82.4
292381	138	140	2	2.00	2232		12	16	1.5	2.83	1 35	2	2	1	116	0.1	1.52	7	18	0.1	57	21	110	1	1 78	0.24	0.00	1040	213	12	71	2 17	7	0.17	02.1
292382	140	142	2	2.00	1527		10	13	0.6	1 74	0.69	1	2	1	59	0.1	1.37	4	14	0.1	41	12	72	1	1 15	0.24	0.10 0.06	1120	141	6	50	1 10	2	0.08	13.0
292383	142	144	2	2.00	3604		166	22	17	1.94	0.85	4	1	1	87	0.1	1 4 8	10	16	0.1	26	11	101	1	1.25	0.20	0.00	1150	140	8	70	2 10	2	0.00	47.9
292384	144	146	2	2.00	>10000	1 23	368	36	3.9	2.51	0.76	2	1	1	46	0.1	1 04	20	21	0.2	17	8	62	1	0.72	0.22	0.03	1160	111	7	50	1 26	8	0.05	47.0
202004	146	148	2	2.00	1164	1.20	108	9	0.2	1.86	0.77	2	1	1	64	0.1	1 23	Ĩ	12	0.1	15	8	87	1	0.72	0.05	0.07	1020	136	2	50	2 24	3	0.13	4J 53 1
292386	148	150	2	2.00	1546		31	6	0.2	1.98	0.71	2	1	1	92	0.1	14	5	12	0.1	16	8	80	1	0.72	0.10	0.00	1020	147	2	62	2 24	3	0.13	51 7
292387	150	152	2	2 00	52		10	3	01	1.95	0.59	2	1	1	222	0.1	0.84	Ă	11	0.1	14	7	116	1	0.65	0.00	0.00	1020	127	ź	56	2 25	2	0.12	55 1
292388	152	154	2	2.00	1218		886	5	0 1	2.08	0.91	4	1	1	169	0.1	1 4 1	5	18	0.1	17	7	89	1	0.77	0.08	0.10	1020	237	Ŕ	69	1 25	3	0.12	A7 A
292389	154	156	2	2 00	1435		496	12	12	2.09	0.91	· ,	1	2	359	0.1	1.56	š	17	0.1	17	, 8	106		0.17	0.00	0.15	1000	242	å	70	1 26	3	0.03	41.4
292390	156	158	2	2.00	1811		85	10	0.3	1 98	0.91	3	1	1	743	0.1	1 23	š	16	0.1	16	8	72	1	0.84	0.07	0,10	1000	185	ě	54	2 26	2	0.1	40
292391	158	160	2	2 00	2271		777	12	0.7	2 02	0.87	5	i	1	339	0.1	1.33	Ă	16	0.1	16	e a	44	4	0.04	0.00	0.00	960	163	7	61	1 26	2	0.11	40,0
292392	160	162	2	2.00	442		18	3	0.1	4 48	1.02	3	2	1	158	0.1	1 13	9	16	0.1	22	28	61	4	0.0	0.00	0.03	1000	180	á	70	4 36	e a	0.1	52.2
292393	162	164	2	2.00	6947		223	65	16	2 64	1.03	4	1	1	130	0.1	1 76	41	24	0.1	17	20	90	4	0.34	0.06	0.00	1100	261	å	63	2 28	Å	0.03	45.5
292394	164	166	2	2.00	1089		92	6	0.1	1.87	0.79	4	1	1	396	0.1	1.09	4	15	0.1	14	7	66	1	0.00	0.00	0.10	1070	263	Â	66	1 26	2	0.00	40.0
292395	166	168	2	2.00	1234		56	10	0.2	2.03	0.75	3	1	1	1074	0.1	1.52	5	17	0.1	14	Ŕ	91	1	0.11	0.00	0.00	1060	174	7	67	2 26	2	0.13	55 5
292396	168	170	2	1.90	6675		898	32	17	2 73	1.04	4	1	1	187	0.1	1.25	, 9	32	0.2	20	10	79	1	0.84	0.07	0.00	1130	185	á	68	1 20	1	0.15	53.0
292397	170	172	2	2 00	2701		28	48	11	2 15	0.96	1	2	1	396	0.1	1 43	6	15	0.1	17	11	96	4	0.87	0.07	0.1	1110	161	ă	00	2 26	2	0.15	59.9
292398	172	174	2	2.00	6611		285	25	2.2	2.19	1.18	2	1	1	62	0.1	1.43	8	16	0.1	19	8	83	Å	0.91	0.04	0 11	1130	136	10	65	2 26	3	0.10	50
292399	174	176	2	2.00	4469		260	13	2.6	4.01	0.72	2	1	9	55	0.1	1.77	11	12	0.1	22	18	87	1	07	0.04	0.12	820	107	8	57	2 29	6	0.01	222
292400	176	178	2	2.00	6841		1296	26	3.8	2.72	0.87	6	1	2	89	0.1	1.43	7	15	0.1	23	11	94	1	0.78	0.04	0.11	950	124	Ř	52	1 26	4	0.04	35
292401	178	180	2	2.00	1491		81	7	0.6	2.09	1.05	1	1	1	266	0.1	1.22	6	14	0.1	17		118	1	0.92	0.07	0.12	1080	169	å	59	2 26	2	0.13	57
292402	180	182	2	2.00	1295		60	10	0.3	1.92	0.85	2	1	1	304	0.1	2.3	5	15	0.1	16	7	78	1	0.92	0.05	0.26	1010	211	8	98	2 24	3	0.05	40.8
292403	182	184	2	2.00	74		3	3	0.1	1.35	0.51	1	1	1	70	0.2	2.29	5	9	0.1	7	3	69	1	0.77	0.04	0.18	530	135	5	82	1 15	2	0.01	13.8
292404	184	186	2	2.00	132		11	3	0.1	1.38	0.54	2	1	1	169	0.3	1.88	6	10	0.1	8	1	49	1	0.72	0.05	0.17	530	132	4	133	1 14	2	0.01	10.4
292405	186	188	2	2.00	833		62	5	0.1	2.16	0.61	2	2	1	288	0.1	3.01	5	15	0.1	15	7	89	1	0.84	đ05	0.2	1060	224	5	193	2 24	3	0.02	37
292406	188	190	2	2.00	902		251	7	0.4	2.4	1.25	3	1	1	205	0.1	1.75	6	21	0.1	20	8	77	1	1.03	0.06	0 16	1190	298	ğ	105	1 -27	3	0.06	54 7
292407	190	192	2	2.00	347		29	9	0.1	2.21	1.08	2	1	1	163	0.1	1.13	4	19	0.1	17	8	116	1	0.9	0.09	0.1	1090	228	8	108	2 29	3	0.04	52.7
292408	192	194	2	2.00	191		34	6	0.1	2.3	1,12	2	1	1	185	0.1	1.48	4	18	0.1	17	8	85	1	0.95	0.07	0.11	1090	240	9	123	1 26	3	0.06	54.9
292409	194	196	2	2.00	752		60	5	0.1	1.98	1.01	2	1	1	262	0.1	1.88	7	15	0.1	15	7	88	1	0.98	0.06	0.14	1030	247	8	122	2 24	3	0.05	44.9
292410	196	198	2	2.00	145		20	3	0.1	1.76	0.75	2	1	1	142	0.1	1.12	6	13	0.1	13	6	64	1	0.66	0.06	0.09	1070	180	õ	95	2 23	ž	0.06	47.6
292411	198	200	2	2.00	674		124	5	0.1	1.89	0.72	2	1	1	251	0.1	1.03	5	12	0.1	14	7	113	1	0.72	0.08	0.15	1060	157	6	74	2 23	2	0.00	497
292412	200	202	2	2.00	592		653	10	0.1	1.71	0.84	4	1	1	231	0.1	1.14	4	12	0.1	15	6	78	1	07	0.05	0.11	1140	173	7	78	1 23	2	0.07	43 3
292413	202	204	2	2.00	794		86	6	0.1	1.86	0.77	3	1	1	216	0.1	1.13	7	14	0.1	14	7	93	1	0 72	0.06	0.1	1110	165	6	66	2 24	3	0.07	40.0
292414	204	206	2	2.00	346		112	5	0.1	1.7	0.66	2	1	1	237	0.1	1.25	6	11	0.1	13	6	75	1	0.63	0.06	0.08	1110	140	6	65	2 22	2	0.00	48.2
292415	206	208	2	2.00	495		49	5	0.1	1.97	0.91	4	1	1	275	0.1	1.65	6	16	0.1	16	8	96	1	0.83	0.05	0 17	1070	287	7	88	2 23	3	0.07	44.6
292416	208	210	2	2.00	1814		1675	8	0,3	2.13	1.14	8	1	1	247	0.1	1.42	3	21	0.1	17	5	68	1	1.05	0.04	0.2	1060	239	8	86	1 26	3	0.06	42.4
292417	210	212	2	2.00	1039		210	7	0.2	1,91	0.83	3	1	1	253	0.1	2.2	6	12	0.1	15	7	93	1	0.84	0.05	0.2	1000	258	6	196	1 22	3	0.05	42.4
292418	212	214	2	2.00	1852		221	12	0,4	1.95	1.22	3	1	1	182	0.1	1,26	6	14	0.1	18	8	83	1	0,89	0.05	0.16	1110	156	9	83	2 25	3	0.12	59.9
292419	214	216	2	2.00	2144		107	15	0.6	2.05	0.91	6	1	1	199	0.1	1.22	6	13	0.1	18	8	109	1	0.82	0.06	0.17	1070	138	8	107	2 25	3	0.09	57.5
292420	216	218	2	2.00	735		57	7	0.1	1.91	1.01	2	1	1	179	0.1	1.13	5	12	0,1	15	8	67	1	0.77	0.05	0.11	1030	142	8	101	2 24	ž	0.1	54.3
292421	218	220	2	2.00	535		97	5	0.1	1.96	0.99	1	1	1	171	0.1	1.02	6	11	0.1	15	7	109	1	0.93	0.07	0.11	1070	125	10	85	2 24	3	0.11	54.1
															•										-			-					-		

). .

19. A

				_	<b></b>	-											1.		'			••	~~					_			~-				
J97-5	From	То	Length	Recov.	CU	Cu	MO	Au-fire	AG	₽Ę	MG	AS	SB	BI	BA	BE	CA	PB	ZN	CD	NI	co	CK	W	AL	NA	к	Р	MN	LI	SR	GA TI	U	Ŧ	v
Sample	metres	metres	metres	metres	PPM	%	PPM	PPB	РРМ	%	%	РРМ	PPM	PPM	РРМ	PPM	%	PPM	PPM	PPM	PPM	PPM	PPM	PPM	%	%	%	PPM	PPM	PPM	PPM	PPM PPI	I PPM	%	PPM
292422	220	222	2	2.00	507		18	5	0.1	2.08	1,15	3	1	1	347	0.1	2.03	26	19	0.1	17	8	65	1	1.02	0.05	0.18	1090	250	9	167	2 2	i 3	0.08	51.3
292423	222	224	2	2.00	539		48	5	0.1	1.73	0.73	4	1	1	771	0.1	3.11	4	13	0.1	14	6	96	1	0.85	0.04	0.25	920	308	6	212	1 2	2	0.05	41.6
292424	224	226	2	2.00	379		18	4	0.1	1.94	1.15	1	1	1	147	0.1	0.87	5	16	0.1	16	8	81	1	Ò.85	0.06	0.12	1110	202	9	68	2 2	3	0.13	55.3
292425	226	228	2	2.00	174		18	4	0.1	1.91	0.94	3	1	1	152	0.1	0.96	6	16	0.1	16	8	99	1	0.78	0.07	0.1	1160	180	8	66	2 2	i 3	0.1	52,3
292426	228	230	2	2.00	396		11	10	0.1	1.87	0.79	<u></u> 2	1	1	381	0.1	1.38	7	16	0.1	15	7	86	1	0.8	0.07	0.07	1110	178	8	123	2 24	3	0.11	53.2
292427	230	232	2	2.00	615		18	5	0.1	1.93	0.76	2	1	1	360	0.1	1.06	5	15	0,1	15	8	97	1	0.89	0.07	0.08	1140	149	10	87	2 24	3	0.13	56.7
292428	232	234	2	2.00	287		3	5	0.1	2	0.72	2	1	1	492	0.1	1.19	5	16	0.1	16	8	95	1	0.78	0.07	0.1	1170	174	9	90	2 24	3	0,12	56.9
292429	234	236	2	2.00	164		9	3	0.1	1.97	0.77	2	1	1	486	0.1	1	6	15	0.1	15	8	120	1	0.81	0.08	0.13	1040	186	9	80	2 24	3	0.13	57.9
292430	236	238	2	2.00	52		3	1	0.1	1.87	1.1	3	1	1	298	0.1	1.35	4	18	0.1	17	7	80	1	1.05	0.05	0.14	1100	236	10	81	3 24	3	0.11	60,6
292431	238	240	2	2.00	118		12	8	0.1	2.12	1.39	3	2	1	278	0,1	1.31	5	19	.0.1	18	9	120	1	1.12	0.08	0.19	1080	285	12	92	2 24	3	0.12	56,6
292432	240	242	2	2.00	376		56	7	0.1	1.86	0.8	1	1	1	238	0,1	2.54	7	15	0.1	16	7	91	1	0.87	0.05	0.19	1010	247	9	120	2 2	2	0.07	44.8
292433	242	244	2	2.00	195		48	3	0.1	1.99	0.8	1	1	1	278	0.1	1.44	4	15	0.1	15	8	111	1	0.79	0.07	0.15	990	214	9	79	2 24	3	0.12	56.3
292434	244	245.06	1.06	0.90	293		25	6	0.1	1.96	0.88	1	1	1	165	0.1	1.25	4	13	0.1	15	8	108	1	0.84	0.07	0.12	1040	203	8	89	2 24	3	0.13	55.5

.

ŀ

~

.

JEAN PI	ROPERTY	- CORE	RECOVE	ERY AND S	AMPLE /	ANALYSES	3											,																	
J97-6	From	То	Length	Recov.	cu	Cu MO	Au-fire	AG	FE	MG	AS	SB	Bi	BA	BE	CA	PB	ZN	CD	NI	CO	CR	w	AL	NA	к	Р	MN	LI	SR	GA T	н	Ų	TI	v
Sample	metres	metres	metres	metres	PPM	% PPM	PPB	PPM	%	%	PPM	PPM F	РΜ	PPM	PPM	%	PPM	PPM P	PPM	РРМ	PPM	PPM	Р	%	%	%	PPM	PPM	PPM	РРМ	ΡF	2 I	P	%	PPM
292435	1	4	3	0.60	1441	7	17	1.4	3.32	0.55	1	37	24	36	0.1	2.82	39	39	1.4	68	17	107	7	3.15	0.3	0.1	1560	256	9	133	1	1	1	0.16	111
292436	4	6	2	1.50	799	14	11	1.5	4.1	0.91	1	22	19	21	0.1	2.18	26	29 ·	0.1	102	31	161	8	2.24	0.16	0.11	1300	273	12	17	1	1	1	0.23	151.8
292437	6	8	2	1.20	738	6	16	1.7	3.38	0.82	1	26	20	22	0.1	2.17	35	35	0.3	67	20	124	7	2.44	0.35	0.15	1470	262	13	63	1	1	1	0.21	119
292438	8	10	2	1.20	410	7	10	1.4	2.69	0.34	· 1	47	22	36	0.1	2.86	51	22	1.3	69	20	122	7	3,77	1.02	0.23	1420	241	8	196	1	1	1	0.21	93.6
292439	10	12	2	1.80	870	16	15	1.2	3.56	0.7	1	41	17	23	0.1	3.92	51	38	1.1	56	22	112	6	3.55	0.5	0.17	1310	563	11	103	1	1	1	0,15	103.6
292440	12	14	2	2.00	1889	9	21	1.6	4.65	1.23	1	34	18	12	0.1	5.88	42	57	0.1	68	45	128	5	3.22	0.02	0.07	1140	1116	11	1	1	1	1	0.13	87.6
292441	14	16	2	1,80	217	4	6	0.7	3.5	1.33	1	28	3	10	0.1	5,73	46	39	0.1	58	21	91	3	-3.03	0.01	0.05	1210	930	15	1	1	1	1	0.12	69.2
292442	16	18	2	2.00	204	4	7	1.7	3.34	1.38	1	37	16	28	0.1	3.82	57	38	0.1	59	21	138	6	3.78	0.36	0.18	1010	505	14	113	1	1	1	0.27	123.8
292443	18	20	2	1.90	119	5	10	1.4	1.76	0.55	1	31	13	14	0.1	3.87	42	36	0.4	35	13	74	5	2.72	0.37	0.08	1290	432	8	141	1	1	1	0.14	67.3
292444	20	22	2	2.00	130	6	10	1.6	2.13	0.49	1	45	20	36	0.1	3.79	54	33	2.1	38	16	79	6	3.52	0.86	0.23	1460	337	9	189	1	1	1	0.17	89.2
292445	22	24	2	2.00	76	4	7	2	3.49	1.19	1	33	17	34	0.1	2.87	49	36	0.1	60	21	156	8	3.07	0.26	0.18	1150	390	15	78	1	1	1	0.26	159.3
292446	24	26	2	2,00	387	3	9	1.3	4.13	1.52	1	35	9	18	0.1	4.02	56	44	0.1	86	21	228	9	3.74	0.05	0.09	1100	681	15	4	1	1	1	0.17	139.1
292447	26	28	2	2.00	281	4	8	1	3.31	0.95	1	39	11	17	0.1	5.85	47	30	0.1	66	17	152	8	3.48	0.1	0.07	1040	757	12	23	1	1	1	0.14	95.7
292448	28	30	2	2.00	587	3	9	1.7	4.47	1.4	1	38	17	27	0.1	3.82	52	34	0.1	87	32	144	7	3.54	0.2	0.13	970	429	17	121	1	1	1	0.23	123.6
292449	30	32	2	2.00	393	4	14	1.4	4.48	1.12	1	34	14	19	0.1	2.96	40	23	0.1	90	33	92	5	2.89	0.2	0.11	1450	359	17	66	1	1	1	0.19	111.6
292450	32	34	2	2.00	463	3	11	2.3	3.43	1.24	1	24	20	47	0.1	2.34	37	28	0,1	54	20	181	8	2,5	0.15	0.17	1020	289	15	21	1	1	1	0,26	146.1
292451	34	36	2	2.00	963	63	7	3.2	4.43	1.57	1	26	25	51	0.1	2.36	40	37	0.1	65	28	239	9	2.48	0.09	0.22	700	402	18	20	1	1	1	0.33	150.1
292452	36	38	2	2.00	832	27	8	2.9	3.67	1.27	1	22	22	22	0.1	2.83	48	29	0.1	36	23	81	. 4	2.23	0.08	0.09	970	390	13	2	1	1	1	0.21	117.1
292453	38	40	2	2.00	43	5	3	2.1	2.28	0.8	1	19	13	33	0.1	1.92	29	25	0.1	24	12	57	3	1.66	0.17	0.12	1130	318	10	26	1	1	2	0.19	81.7
292454	40	42	2	2.00	263	6	13	1.9	1.94	0.3	1	57	20	33	0.1	3	62	21	2.2	50	18	91	6	4.31	0.73	0.12	1070	177	8	217	1	1	1	0.15	61.6
292455	42	44	2	2.00	752	7	10	2.5	1.62	0.4	1	36	24	29	0.1	2.32	45	28	1.5	47	14	98	6	2.78	0.45	0.1	950	169	8	153	1	1	2	0.17	69.2
292456	44	46	2	2.00	888	11	9	2.1	3.91	0.57	1	47	23	57	0.1	2.95	43	27	1.3	60	23	152	8	3.49	0.44	0.19	880	302	12	132	1	1	1	0.17	93.9
292457	46	48	2	2.00	893	12	10	2.4	3.75	0.78	1	37	25	21	0.1	2.98	37	29	1.5	119	24	225	10	2.91	0.21	0.11	500	272	11	56	1	1	1	0.22	92.7
292458	48	50	2	2.00	318	5	6	2.4	2.99	0.93	1	29	20	24	0.1	2.37	41	22	0.1	94	20	257	10	2.68	0.21	0.13	460	258	14	61	1	1	1	0.25	77.8
292459	50	52	2	2.00	267	4	3	0.6	3.74	0.92	1	23	16	31	0.1	2.27	33	22	0.1	67	24	237	9	2.46	0.21	0.18	610	255	12	57	1	1	1	0.25	66.4
292460	52	54	2	2.00	1024	2	8	2	5.65	1.31	16	17	33	149	0.1	0.85	22	35	0.1	76	32	346	12	1.8	0.08	0.7	480	252	16	19	1	1	1	0.39	79.7
292461	54	56	2	2.00	766	4	5	2,2	6.31	1.55	25	21	34	157	0.1	1,3	27	36	0.1	67	26	401	13	2.12	0.07	0.78	330	299	19	12	1	1	1	0.46	84
292462	56	58	2	2.00	263	2	8	2,2	6.34	1.44	18	24	35	195	0.1	0.85	26	40	0.1	92	30	352	12	2.1	0.08	1.02	250	312	21	11	1	1	1	0.49	73.8
292463	58	60	2	2.00	2594	21	11	2.4	4.1	1.16	2	18	42	201	0.1	1.14	24	33	0.1	57	21	247	9	1.64	0.12	0.59	670	261	13	25	1	1	1	0.34	96.4
292464	60	62	2	1.90	2283	6	21	2.1	3.41	1.38	1	17	32	130	0.1	1.45	35	30	0.1	26	20	54	2	1.87	0.15	0.45	780	254	12	22	1	1	1.	0.28	122.2
292465	62	64	2	2.00	1696	53	9	2.2	2.98	1.37	1	22	26	171	0.1	1.97	45	25	0.1	25	18	57	3	2.57	0.25	0.46	790	255	13	53	1	1	1	0.27	113.1
292466	64	66	2	2.00	984	7	9	1.5	2.52	0.75	1	18	19	60	0.1	1.69	28	19	0.1	42	18	46	3	1.7	0.21	0.12	1010	203	7	47	1	1	1	0.19	72
292467	66	68	2	2.00	496	- 5	2	1.4	2.05	0.78	1	17	17	41	0.1	1.98	32	18	0.1	43	16	85	3	1.75	0.2	0.1	1020	207	6	34	1	1	1	0.21	64.2
292468	68	70	2	2.00	681	6	6	1.5	2.76	0.95	1	22	17	45	0.1	2.39	34	24	0.1	59	21	98	4	2.25	0.09	0.09	1010	231	8	21	1	1	1	0.2	78.3
292469	70	72	2	1.90	736	4	12	1.4	2,73	1.22	1	17	15	53	0.1	2	36	27	0.1	37	16	96	4	2.04	0.13	0.11	1170	280	10	31	1	1	1	0.21	82.6
292470	72	74	2	2.00	330	7	4	1.6	2.11	0.97	1	13	15	57	0.1	1.48	31	18	0.1	30	15	74	3	1.51	0.13	0.12	1130	215	10	28	- 1	1	1	0.21	71.6
292471	74	76	2	2.00	313	4	6	1.6	3.23	1.38	1	13	14	181	0.1	1.29	32	26	0.1	23	18	53	2	1.75	0.1	0.37	1230	270	12	14	1	1	1	0.27	103.9
292472	76	78	2	2.00	469	4	5	2	3.7	1.8	1	9	16	273	0.1	1.2	36	30	0.1	27	20	75	2	1.86	,0.13	0.63	1170	307	14	20	1	1	1	0.32	119,1
292473	78 [.]	80	2	2.00	328	11	3	1.7	2.88	1.63	1	17	13	211	0.1	1.7	45	24	0.1	46	19	151	4	2.52	0.21	0.51	1020	258	13	51	1-	1	1	0.27	107.1
292474	80	82	2	2.00	1510	6	7	2.5	3.71	1.81	1	14	22	165	0.1	1.69	42	25	0,1	43	23	100	3	2.15	0.17	0.45	1350	313	11	45	1	1	1	0.3	124.9
292475	82	84	2	2.00	201	3	3	2	3.5	1.97	1	27	13	276	0.1	1,95	57	26	0.1	72	22	251	8	3.34	0.3	0.91	1090	277	14	106	1	1 -	1	0.32	124.9
292476	84	86	2	2.00	344	4	5	0.8	3,31	0.98	1	36	14	36	0.1	3.69	46	22	0.1	65	24	36	2	3.31	0.61	0.07	1430	302	13	99	1	1	1	0.19	80
292477	86	88	2	2.00	71	5	1	1.4	3,28	1.26	1	35	17	110	0.1	2.82	53	24	0.1	51	19	80	4	3.44	0.42	0.23	1430	285	16	109	1	1	1	0.29	97.4
292478	88	90	2	2.00	46	5	3	1.3	3,76	2.29	1	33	3	332	0.1	2.4	71	35	0.1	108	27	293	8	4.37	0.43	0.79	840	340	21	151	1	1	1	0.26	103,7
292479	90	92	2	2.00	157	1	2	1.8	3.72	2.29	1	26	9	252	0.1	1.92	61	30	0.1	86	25	278	8	3,63	0.34	0.72	970	306	19	113	1	1	1	0.32	127.2
292480	92	94	2	1.80	527	4	3	1.6	3.9	1,72	1	13	13	88	0.1	1.3	36	23	0.1	67	24	215	7	2,07	0.11	0.23	1060	235	17	36	1	1	1	0.28	121.4
292481	94	96	2	2.00	2510	91	14	2.1	5.14	1,98	3	28	25	80	0.1	2.44	49	38	0.1	114	38	214	6	3.02	0.37	0,18	940	407	20	93	1	1	1	0.26	150.6
292482	96	98	2	2.00	689	4	9	1.7	3,48	1.44	1	15	15	121	0.1	1.47	37	30	0.1	113	24	185	6	2.02	0.24	0,24	1150	327	12	82	1	1	1	0.25	90.7
292483	98	100	2	2.00	1315	40	9	1	2.41	1.18	3	10	10	112	0.1	2.04	27	18	0.1	29	15	83	2	1.34	0.07	0.24	960	276	7	150	1	1	1	0.12	67,5
292484	100	102	2	1.90	2444	6	19	19	1.72	0.76	1	6	26	33	0.1	1.45	19	20	0.1	19	11	72	2	0.83	0.11	0.05	1180	169	3	43	1	1	1 1	0.11	53
292485	102	104	2	2.00	348	9	5	0.4	0.92	0.57	1	1	1	13	0.1	2.35	14	12	0.2	6	4	32	1	0.5	0.03	0.03	760	199	3	9	1	1	1 (	0.02	29
292486	104	106	2	2.00	6593	194	8	8.1	2.82	0.83	58	120	58	34	0,1	4.28	67	122	2.8	47	14	180	7	1.76	0.17	0.17	870	661	5	44	1	1	1 1	0.12	81.2
292487	106	108	2	2.00	1112	18	· 7	1.9	3.55	1.73	5	17	18	126	0.1	2.38	40	32	0.1	60	22	376	13	2.34	0,17	0.7	880	414	16	43	1	1	1 1	0.26	150.6
292488	108	110	2	2.00	645	7	8	2.5	4,07	1.7	1	15	23	159	0.1	1.13	39	42	0.1	82	28	345	13	2.16	0.1	0.71	770	330	18	23	1	1	1 1	0.37	177.6
			-			•	-		. – .			-	-					-	-	_	-										-	1			

Page 1

.

·")

197.6	From	To	l enath	Recov	CII	Cu	MO	Au-fire	AG	FF	MG	AS	SB	BI	BA	BF	ĊA	PB	ZŃ	CD	NI	co	CR	w	AL	NA	к	P	MN	LI	SR (	GA T	нu	TI		1
Sample	matree	metres	motroe	metres	PPM	%	PPM	PPR	PPM	%	%	PPM I	PPM P	PPM	PPM :	PPM	%	PPM I	PPM I	PPM I	PPM	PPM	PPM	P	%	%	%	PPM	PPM 1	PPM	PPM	PF	) P	%	00	284
202400	110	140	2	2 00	2727	70	5	24	23	4 11	1.63	1	10	30	48	01	1 96	40	44	0.1	76	35	152	5	23	0.08	0.18	880	361	15	11	1	1	1 0 2	11 05 10/	ມຍ
202400	110	444	2	2.00	156		2	-1 6	17	1 04	1.00	1	13	12	61	0.1	1 04	42	34	0.1	88	28	200	ã	24	0.08	0.25	690	382	19	16	1	1	1 0 2	20 120	J.0 7 7
202404	112	114	2	2.00	2624		10	15	2	3 46	1 44	1	19	32	47	0.1	1 97	36	37	0.1	78	24	145	5	2 11	0.17	0.19	990	323	14	34	1	1	1 0 3	20 102	412
202401	114	110	2	2.00	360		7	5	13	33	1 22	1	19	12	26	0.1	2 33	35	29	0.1	60	19	136	ă	2.19	0.16	0.13	780	356	11	35	1	1	1 0 2		10
292492	110	110	2	2.00	450		10	5	1.0	2.0	1.04	. 1	16	12	40	0.1	1.67	34	26	0.1	48	10	100	5	1.83	0.10	0.10	720	243	12	23	1	1	1 0.2	22 124	4.9
292493	110	120	2	2.00	100		20	24	2.3	2.50	0.01	· •	10	33	25	0.1	1.60	30	20	0.1	30	17	37	2	1.00	0.17	0.20	1210	254	10	38	1	1	1 0.2	120	J.9 2.0
292494	120	122	2	2.00	2030		23	24	2.0	2.70	1.03	4	10	24	30	0.1	1.00	30	30	0.1	21	15	41	2	1,02	0.16	0.11	1210	316	10	20	i	à	1 0.1	10 00	3.9 E O
292495	122	124	2	2.00	1049		41	10	1.2	2.03	1.00	1	17	41	47	0.1	1.72	20	26	0.1	21	17	41	2	172	0.10	0.14	1030	301	11	10	4	1	1 0.1	10 00	3,9 0.0
292495	124	120	~	2.00	200			10	1.3	2.04	1.00	4	14	10	55	0.1	1.30	29	46	0.1	27	16	40	3	1.70	0.2.1	0.14	1230	308	13	13	1	1	1 0.2	21 103	9.0 0.4
292497	126	128	2	0.00	4244			40	1.3	2.33	0.00	। न	10	04	22	0.1	1.00	20	72	0.1	21	16	49	2	1.40	0.10	0.10	1230	335	11	27	1	1	1 0.2	20 113	d.1 7 0
292498	128	130	2	2.00	1341		c c	12	1.7	2.13	4 20	4	10	10	20	0.1	1.33	22	20	0.1	20	20	50	2	1.00	0.43	0.03	1060	307	14	10	4	1	1 0	.2 91	1.8
292499	100	132	2	2.00	774		10	0	1.0	3,33	1.09	4	14	17	30	0.1	1.60	20	28	0.1	24	17	12	5	1 /3	0.16	0.14	1140	200	10	20	1		1 0.2	20 104	4.4
292500	132	134	2	2.00	1005		10	44	1.3	2.90	1.09		11	22	10	0.1	1.09	20	20	0.1	24	12	42	2	1.43	0,10	0.11	1050	255	10	20	4	4	1 0.4	2 11	1.Z
292501	134	136	2	2.00	1995		32		1.4	2.47	0.77	4	21	22	10	0.1	2.99	42	20	0.4	21	10	172	3	1.33	0.00	0.07	000	204	11	70	4	4	1 0.1	13 73	3.8
292502	136	138	2	2.00	989		22		1.0	3.15	1.2		40	20	33	0.1	4.00	43	21	0.1	04 60	19	172	6	1 55	0.41	0.10	500	203	0	17	4	4	1 0.2	210 103	3.8
292503	138	140	2	2.00	3210		12	10	2.0	3.30	1 01	4	10	20	44	0.1	1.00	21	24	0.1	70	22	221	0	1.00	0.10	0.14	570	200	10	40	4	-	1 0,2	22	79
292504	140	142	2	2,00	5523		12	10	4.4	4.74	1.21	4	40	22	30	0.1	1.90	40	29	0.1	10	23	200	3	2.09	0.30	0.33	600	203	10	42	-	4	1 0,2	21 13	3.5
292505	142	144	2	2.00	930		 		27	4.25	1 0 2	4	19	46	20	0.1	24	40	27	0.1	24	21	107	4	1.70	0.14	0.17	570	200	15	52		4	1 0.4	20 73	3.Z
292506	144	140	2	2,00	2609		5		4.1	4.0	1.92	4	3	10	20	0.1	2 77	42	27	0.1	24	4.4	00	2	2.07	0.14	0.23	1140	360	10	40	4	4	1 0.4	20 153	5.7
292507	146	148	1.98	2.00	092		0 7	0	1.3	3.14	1.07	4	14	0	20	0.1	3.11 1 7E	-4-3	21	0.1	20	14	30	5	1 00	0.55	0.05	1200	360	12	35	1	4	1 0.1	10 103	5.3
292508	148	150	1.95	2.00	2/1		10	4	1.0	2.20	1.02	4	26	17	00	0.1	27	53	29	0.1	22	24	13	5	3.60	0.01	0.1	650	203	11	108	4	4	1 0.1	17 400	71 6 7
292509	150	152	2.05	2.00	4764		10	19	2.0	3.07	1.00	4	10	1/	06	0.1	2.1	40	20	0.1	20	20	40	4	2.03	0.05	0.18	560	207	12	100	4	4	1 0.1	17 100	3.7
292510	152	154	2	2.00	1/04		20	42	2.1	3.24	1.40	4	10	12	76	0.1	2.1	45	22	0.1	20	20	56	4	2,23	0.7	0.24	100	773	11	Q1	4	4	1 0.1	10 102	2.8
292511	154	100	2	1.92	1010		о 0	10	2.0	4.03	1.01	1	10	10	79	0.1	1 75	33	22	0.1	20	21	35	4	2.01	0.04	0.25	530	203	12	66	4	4	1 0.1	0 0	1.1
292012	100	100	2	1.70	200			12	2.2	3,33	1.00	1	20	8	70	0.1	27	50	18	0.1	20	10	40	1	3 38	0.0	0.10	500	285	12	107	4		1 0.1	ເດ ອະ	2.0
292919	100	160	2	1.69	1116		2	6	1.7	3 55	1 15	4	20	7	64	0.1	3.63	60	31	0.1	30	31	35	1	3 16	0.54	0.16	530	338	11	107	4	1	1 0.1	10 04	+.0 4 0
202515	160	164	2	1.00	420		1	ă	1.0	3.57	1.33		_Q	, R	59	0.1	2 71	31	25	0.1	59	23	109	3	2 55	0.36	0 11	1100	352	12	59	1	1	1 0 1	17 93	1.5
202516	102	104	2	2.03	920		à	7	1.0	3.04	0.96	1	7	11	52	0.1	1 71	19	23	0.1	57	23	82	3	1.38	0.23	0.08	1150	267	9	41	1	1	1 0 1	16 70	2, <del>3</del> 0,7
202517	166	168	2	1.94	1679		12	11	23	3.04	13	1	4	14	53	0.1	2.16	23	29	0.1	57	20	117	4	1.49	0.19	0.09	1190	346	9	45	1	1	1 0	2 89	8.1
202518	168	170	2	2 18	659		4	10	1.8	2.99	1.28	1	2	11	59	0.1	1.48	21	23	0.1	54	19	106	3	1.4	0.21	0.11	950	297	9	30	1	1	1 0	2 83	3.6
292519	170	172	2	2.10	438		7	6	1.4	2.88	1.44	2	1	5	119	0.1	2.07	23	23	0.1	38	16	122	3	1.38	0.1	0.32	940	300	10	39	1	1	1 01	18 78	84
292520	172	174	2	2.04	104		1	2	1.8	3.23	2.29	22	3	2	233	0.1	2.56	47	38.	0.1	114	31	226	4	3.01	0.33	0.47	1070	450	18	116	1	1	1 0 2	4	92
292521	174	176	2	2.05	703		36	4	2.2	3.42	2.5	1	2	4	236	0.1	2.15	52	29	0.1	102	26	240	4	3,03	0.29	0.66	1030	359	16	75	1	1	1 0 2	7 104	43
292522	176	178	2	2.10	485		6	1	1.7	2.42	1,59	18	14	6	1288	0.1	2.19	55	27	0.1	108	25	223	6	3.29	0.49	0.44	1170	292	14	123	1	1	1 0.1	9 65	5.4
292523	178	180	2	2.02	1093		1	7	2.9	4	3,04	1	1	6	347	0.1	1.45	43	36	0.1	76	27	238	3	2.49	0.17	0.91	1240	422	17	64	1	1	1 0.3	4 130	0.3
292524	180	182	2	1.90	2581		65	18	3.1	3.82	2.47	1	1	14	213	0.1	1.76	37	36	0.1	51	21	143	1	2.21	0.16	0.44	1270	456	15	93	1	1	1 0.2	25 126	6.6
292525	182	184	2	1.94	>10000	1.82	128	37	9.1	4.74	1.19	1	35	85	145	0.1	3.67	931 1	423	30.5	48	20	74	4	1.72	0.09	0.3	1410	583	10	76	1	1	1 0.0	9	78
292526	184	186	2	2.22	157		4	1	0.3	1.63	0.31	1	3	1	198	0.1	2.6	21	19	0.6	11	8	98	4	0.73	0.05	0.29	550	284	2	31	1	1	1 0.0	11 14	4.6
292527	186	188	2	2.24	292		5	1	0.6	1.55	0.19	1	4	5	103	0.1	1.79	19	15	0.8	5	8	37	1	0.57	<b>9</b> .04	0.21	550	206	3	44	1	3	1 0.0	1 5	5.7
292528	188	190	2	2.01	155		5	3	0.6	1.68	0.43	1	7	2	76	0.1	2.75	14	12	0.6	11	7	70	3	1.25	0.14	0.25	650	299	4	74	1.	1	1 0.0	3 31	1.4
292529	190	192	2	2.10	879		33	4	2.1	3,08	1.62	1	5	8	163	0.1	2.16	41	27	0,1	28	18	62	1	2,51	0.25	0.28	1310	396	14	104	1	1	1 0.1	9 109	э.2
292530	192	194	2	2.08	1711		28	24	1.5	4.1	2.29	1	2	1	148	0.1	3.67	47	39	0.1	43	24	78	1	2.7	0.18	0.27	1140	685	15	138	1	1 -	1 0.1	6 125	5.5
292531	194	196	2	2.00	362		1	5	0.5	3.54	1.77	1	1	1	235	0.1	1.79	35	23	0.1	22	18	72	1	2.22	0.25	0.14	640	408	9	130	1	1	1 0.1	2 88	3.5
292532	196	198	2	2.30	163		1	6	1.1	3.34	1.12	1	3	12	126	0.1	0.84	23	26	0.1	14	18	55	2	1.45	0.15	0.09	490	254	10	39	1	1	1 0.2	:1 !	90
292533	198	200	2	2.12	1427		4	12	1.3	2.88	0.58	1	10	11	122	0.1	1.71	17	20	0.1	20	18	72	3	1.29	0.21	0.05	610	245	6	45	1	1	1 0.1	1 52	2.9
292534	200	202	2	2.10	3013		3	26	2.5	4.55	0.54	4	14	22	49	0.1	1.29	9	29	0.3	33	43	37	2	1.38	0.19	0.04	740	165	6	44	1	1	1 0.0	9 53	3.2
292535	202	204	2	2.08	5184		3	13	3.8	3.78	0.66	2	17	29	59	0.1	1.75	23	26	0.4	29	28	64	2	1.72	0.23	0.1	630	213	7	61	1	1	1 0.1	2 67	1.2
292536	204	206	2	1.52	119		1	4	1.4	3.01	0.84	1	8	18	139	0.1	1.03	22	20	0.1	12	16	39	2	1.51	0.13	0.2	560	233	10	40	1	1	1 0.2	3 93	3.6
292537	206	208	2	2.00	171		2	3	1.3	2.93	0.75	1	9	16	75	0.1	1.15	21	20	0.1	14	18	61	3	1.54	0.2	0.1	500	232	10	54	1	1	1 0.	2 79	J.6
292538	208	210	2	2.41	149		1	3	1.1	3.29	0.88	1	9	13	90	0.1	1.32	22	22	0.1	22	19	32	2	1.74	0.18	0.13	600	274	10	72	1	1	1 0.1	8 91	1.4
292539	210	212	2	2.02	66		1	1	1.6	3.97	1.45	1	15	16	156	0.1	2.48	48	32	0.1	8	19	61	2	2.98	0.31	0.21	560	397	15	117	1	1	1 0.2	8 135	9.ز
292540	212	214	2	2.04	660		2	4	2.4	3.85	1.61	1	10	20	153	0.1	1.74	41	36	0.1	47	25	146	5	2.56	0.24	0.29	890	346	18	65	1	1	1 0.3	1 1	13
292541	214	216	2	2.02	75		1	1	2.1	3.83	2.12	1	7	14	168	0.1	2.75	47	36	0.1	59	21	214	6	2.95	0,17	0.36	970	396	21	69	1	1	1 0.3	3 134	1.9
292542	216	218	2	2.04	165		1	1	2	4.59	2.08	1	10	14	143	0.1	2.17	47	33	0.1	45	29	96	2	3.28	0.25	0.25	960	403	24	74	1	1	1 0.3	3 168	¥.8
292543	218	220	2	2.05	181		1	1	1.5	3.5	0.83	1	10	18	76	0.1	1.34	21	20	0.3	16	20	41	2	1.54	0.15	0.1	730	261	12	56 .	1	1	1 0.2	2 10	01

 $\left( \right)$ 

)

J97-6	From	To	Length	Recov.	CU	Cu	MO	Au-fire	AG	FE	MG	AS	SB	81	BA	BE	ĊA	PB	ZN'	CD	NI	CO	CR	W	AL	NA º⁄	ĸ	P	MN	LI	SR	GA .	ГН	U	ΤI	V
Sample	metres	netres	neues	1 07	120	70	2 P M	1	PPIV	70	70 0.70	7 PPIVI 1	- PWI P	16	74	PPM 0.1	70	22M	24	PPIVI 0.1	14	10	PPW	r	%0 1.5.4	×0 0.00	70	PPN	PPIVI I	PPM	PPM 40	۳.	P _	۲.	% 0.0	PPM
232344	220	224	2	2 12	05		1	4	1.4	2.86	0.75	1	6	16	79	0.1	1.0	10	21	0.1	14	10	41	3	1.04	0.22	0.12	710	200	14	40	-	1	4	0.2	09.0
202546	224	227	2	1.87	174		, ,	1	1.7	2.00	0.57	1	12	16	37	0.1	1.00	18	19	40.7	19	10	46	2	1 28	0.05	0.12	680	210	10	20	4	4	4	0.21	72 4
292540	229	228	2	2.23	158		1	1	1.5	3 37	0.87	1	7	17	113	0.1	0.92	17	10	0.2	12	18	34	2	1.20	0.13	0.00	700	200	16	24	4	1	1	0.10	020
202548	220	220	2	2.20	219		4	1	1.5	3.96	0.07	<b>`</b> i	6	18	107	0.1	0.32	16	20	0.1	21	22	65	2	1.10	0.13	0.2	700	220	15	24	1	1	1	0.23	32.5
202540	230	232	2	1.86	431		1	3	1.0	4 32	0.98	3	7	18	57	01	1.8	12	22	0.1	21	24	37	2	1 16	0.15	0.20	970	324	14	17	1	1	1	0.23	104.5
292550	232	234	2	2.05	77		1	ž	22	3 39	14	1	5	19	157	0.1	1 79	31	28	0.1	13	19	39	5	1.93	0,10	0.31	1650	370	22	34	1	1	4	0.23	126.6
202550	234	236	2	1.98	1584		1	ā	3.1	3.83	1 24	1	12	14	80	0.1	2 75	47	32	0.1	25	38	37	1	2 44	0.35	0.01	1800	385	21	58	1	1	1	0.0	102.3
292552	236	238	2	2 11	147		1	3	17	2.84	0.92	, 1	6	15	74	0.1	1 78	20	19	0.1	17	17	41	2	14	0.00	0.14	2380	257	15	35	1	1	i.	0.10	111
292553	238	240	2	1.91	77		1	5	2	2.94	1.62	1	1	10	104	0.1	18	30	26	0.1	43	19	113	3	1.81	0.26	0.21	1280	299	25	29	1	1	i	0.21	106.7
292554	240	242	2	2.02	43		1	3	2	2.61	2.05	1	1	3	90	0.1	1.31	39	28	0.1	58	18	137	ž	17	0.15	0.27	1070	298	20	26	1	1	1	0.23	90.3
292555	242	244	2	2 15	>10000	1 21	71	21	10.6	4.21	2.12	6	27	42	181	0.1	33	421	41	0.1	74	23	206	18	2 77	0.33	0.56	1110	434	20	101	1	1	i	0.20	107.7
292556	244	246	2	2.07	1199		1	6	2.9	3.4	2 45	1	13	10	454	0.1	2 17	67	25	0.1	73	21	239	5	3.97	0.47	1	1150	280	22	235	1	1	4	0.27	107.3
292557	246	248	2	2.04	463		1	2	27	3 28	2.17	1	10	10	440	0.1	1.69	57	24	0.1	64	20	192	4	3 13	0.38	0.75	1150	245	21	127	1	4	1	0.28	107.3
292558	248	250	2	2.04	307		1	3	27	3.3	2 36	1	1	8	399	0.1	1.34	44	25	0.1	60	21	251	6	2 17	0.13	0.96	1020	297	18	38	1	1	4	0.20	119.2
292559	250	252	2	2.94	638		21	9	3.3	3.22	2	1	1	16	299	0.1	1.28	36	22	0.1	45	19	154	4	18	0 11	0.62	1240	244	18	30	1	1	1	0.20	113.1
292560	252	254	2	2.02	390		2	6	2.3	2.29	1.28	1	4	14	152	0.1	1.3	29	23	0.1	32	14	135	4	1 38	0 16	0.34	1190	227	13	28	1	1	1	0.22	77.6
292561	254	256	2	2.58	526		1	6	2.5	3.05	1.81	1	1	12	282	0.1	1.41	35	33	0.1	51	18	176	4	1.65	0.09	0.67	1140	489	16	27	1	1	1	0.24	97.8
292562	256	258	2	1.70	61		1	1	2.8	4.67	3.39	1	1	5	627	0.1	1.33	52	51	0.1	82	28	342	6	3.03	0.14	1.33	1000	480	25	52	1	1	1	0.38	160
292563	258	260	2	1.95	1833		6	10	2.3	3.05	0.89	1	9	15	39	0.1	1.51	21	32	0.1	21	19	61	2	1.31	0.15	0.09	760	261	1	40	1	1	1	0.17	72.9
292564	260	262	2	1.80	3032		5	13	2.5	2.44	0.8	1	8	18	126	0.1	0.98	21	26	0.1	27	16	84	3	0.94	0.12	0.23	1000	184	2	24	1	1	1	0.16	61.7
292565	262	264	2	2.15	342		1	5	2	2.72	1.46	1	1	8	204	0.1	1	27	23	0.1	28	17	110	3	1.4	0.11	0.34	1470	239	5	33	1	1	1	0.26	99.1
292566	264	266	2	1.92	100		1	3	2.1	3.03	2.35	1	1	1	491	0.1	1.15	47	29	0.1	72	20	297	7	2,37	0.2	0.92	1200	284	8	69	1	1	1	0.3	108.3
292567	266	268	2	2.22	1731		1	7	3.2	3.62	2.8	1	1	4	411	0.1	1.73	50	31	0.1	70	21	287	5	2.53	0.16	0.84	1220	364	14	79	1	1	1	0.3	114.6
292568	268	270	2	2.07	297		1	4	2	2.35	1.54	1	3	4	154	0.1	1.3	34	20	0.1	45	14	122	3	1.66	0.14	0.31	1350	236	4	61	1	1	1	0.23	70.3
292569	270	272	2	2.13	544		1	6	2.3	3.05	1.8	1	4	6	167	0.1	2.18	43	27	0.1	66	26	200	5	2.32	0.39	0.37	1130	334	11	82	1	1	1	0.23	91.4
292570	272	274	2	1.99	218		1	2	1.2	2.6	1.66	1	9	1	89	0.1	2.78	54	38	0.1	63	15	175	4	2.87	0.37	0.11	1300	325	5	56	1	1	1	0.15	70.4
292571	274	276	2	2.05	265		1	2	1.5	2.18	1.34	1	2	1	150	0.1	1.49	30	25	0.1	64	15	162	4	1.44	0.2	0.3	1200	219	3	56	1	1	1	0.17	58.7
292572	276	278	2	2.09	135		1	2	1.5	2.04	1.18	1	4	4	101	0.1	2.08	29	24	0.1	55	15	112	3	1.48	0.14	0.18	1400	266	6	27	1	1	1	0.17	56.6
292573	278	280	2	2.01	243		1	4	1.5	2.14	1. <b>12</b>	1	7	5	100	0.1	2.16	31	24	0.1	47	22	117	4	1.76	0.36	0.12	1390	302	5	51	1	1	1	0.14	56
292574	280	282	2	2.00	314		1	3	1.6	1.64	0.92	1	9	2	64	0.1	2.22	32	23	0.1	38	11	86	3	1.67	0.34	0.08	1460	300	3	91	1	1	1	0.1	44.1
292575	282	284	2	2.08	183		1	3	1.5	1.24	0.76	1	4	2	165	0.1	1.52	23	16	0.1	24	8	72	2	1.05	0.16	0.11	1460	211	1	48	1	1	1	0.11	37.4
292576	284	286	2	2.31	28		1	2	1.8	2.58	1.82	1	1	4	391	0.1	1.15	36	28	0.1	62	18	227	6	1.83	0.16	0.5	1340	271	8	61	1	1	1	0.27	90.9
292577	286	288	2	2.04	13	•	1	3	1.7	2.81	2.51	1	4	1	734	0.1	1.48	61	32	0.1	81	21	352	9	3.34	0.3	0.94	1000	232	11	127	1	1	1	0.28	124.5
292578	288	290	2	2.14	12		1	3	2.2	3.2	2.92	1	6	5	965	0.1	1.7	70	36	0.1	81	25	348	8	4.19	0.4	1.17	730	239	22	159	1	1	1	0.32	165.6
292579	290	292	2	1.92	14		1	2	2.2	3.3	2.97	1	3	4	2951	0.1	1.34	65	36	0.1	91	25	358	8	3.69	0.28	1.17	970	278	25	129	1	1	1	0.3	130.5
292580	2 <del>9</del> 2	294	2	2.08	12		1	3	2	3.51	3.24	1	8	1	1081	0.1	2.17	78	41	0.1	97	27	426	9	4.96	0.4	1.13	760	258	26	181	1	1	1	0.32	165.8
292581	294	296	2	2.03	44		1	4	1	4.16	2.68	1	7	1	539	0.1	3.86	57	45	0.1	98	26	320	7	3.88	0.36	0.95	890	654	18	309	1	1	1	0.2	148.7
292582	296	298	2	2.04	742		6	7	0.1	3.98	1.05	1	10	1	225	0.1	4.75	17	50	0.1	16	16	42	2	1.66	<b>Ç</b> .15	0.23	720	808	8	374	1	1	1	0.05	115.2
292583	298	300	2	1.93	147		1	2	0.7	3.9	1.19	1	6	5	163	0.1	2.25	22	33	0.1	20	21	50	2	1.8	0.21	0.32	1020	470	12	115	1 .	1	1	0.15	101.2
292584	300	302	2	2.09	91		1	4	0.1	3.09	1	4	1	1	91	0.1	1.69	3	28	0.1	16	15	83	1	1.94	0.31	0,12	680	355	9	104	3	17	4	0.16	78.1
292585	302	304	2	2.13	87		1	5	0.2	3.87	1.36	2	1	1	280	0.1	1.21	9	41	0.1	19	19	95	1	1.98	0.25	0.32	580	384	13	75	3	21	5	0.22	117.4
292586	304	306	2	2.00	102		2	3	0.1	3.55	1.04	3	1	1	215	0.1	1.32	4	32	0.1	22	17	86	1	1.94	0.29	0.17	660	299	10	80	4	19	4	0.17	88.9
292587	306	308	2	2.20	222		3	5	0.1	3.82	1.05	6	1	1	91	0.1	1.39	7	38	0.1	22	17	110	1	1.31	0.17	0.1	650	388	9	57	3	20	5	0.13	93.3
292588	308	310	2	2.30	144		5	4	0.1	5.14	1.9	12	3	1	175	0.1	2.81	5	55	0.1	17	20	87	1	2.11	0.12	0.26	590	785	20	110	4	28	7	0.16	143.4
292589	310	312	2	2.21	298		10	5	0.1	5.38	1.91	6	2	1	138	0.1	2.55	6	58	0.1	25	20	115	1	2.14	0.17	0.21	610	751	21	104	4	29	7	0.18	160.6
292590	312	313.32	1.32	1.33	454		7	7	0.2	4.31	1.39	1	1	1	102	0.1	2,15	7	47	0.1	20	17	74	1	1.6	0.21	0.09	710	487	14	144	4 :	23	6	0.13	108.4

JEAN P	ROPERTY	( - CORE	RECOVE	ERY AND S	AMPLE A	NALYSES	3																											
J97-7	From	Τo	Length	Recov.	CU (	Cu MO	Au-fire	AG	FE	MG	AS	SB BI	BA	BE	CA	PB	ZN	CD	NI	co	CR	w	AL	NA	к	P	MN	LI	SR	GA 1	нц	ן נ	T1	V
Sample	metres	metres	metres	metres	PPM	% PPM	PPB	PPM	%	%	PPM P	PM PPN	PPM	РРМ	%	РРМ	PPM	PPM P	PPM	PPM	PPM	P	%	%	%	PPM	PPM	PPM	PPM	ΡI	? F	> (	%	РРМ
292591	2.13	10	2.5	2.5	345	1	21	0.2	2.61	0.64	9	2 1	40	0.1	3.58	6	38	0.1	52	17	102	1	3.46	0.6	0.18	1500	468	11	198	4	13	3 0	1.14	89.3
292592	10	12	2	1.45	153	2	23	0.1	2.88	0.49	14	3 1	54	0.1	4,33	5	25	0.1	56	18	84	1	3.7	0.61	0.24	1800	447	12	306	5	14	4 0	L <b>1</b> 1	107.5
292593	12	14	2	1.76	42	3	18	0.1	3.08	0.75	32	3 1	66	0.1	3,75	8	36	0.1	59	20	117	1	4.15	0.63	0.31	1520	452	16	338	5	15	4	0,1	142.6
292594	14	16	2	1,95	50	1	14	0.1	2.87	0.61	8	2 1	49	0.1	3.7	7	28	0.1	62	16	111	1	3.84	0.71	0.2	1560	399	10	252	5	14	4 0	1.13	132
292595	16	18	2	1.75	2719	1	18	7	5.45	0.95	12	2 3	30	0.1	4,57	9	93	1.3	74	26	139	4	3.18	0.37	0.15	1560	534	12	113	7	27	7 0	.16	178.9
292596	18	20	2	2.05	39	1	9	0.1	2.41	0.53	9	1 1	44	0.1	3.64	4	23	0.1	52	13	106	1	4.02	0.84	0.17	1460	327	8	268	4	12	3 0	.11	104.6
292597	20	22	2	2.03	299	1	21	0.1	2.95	0.37	8	3 1	31	0.1	3.84	2	18	0.1	85	29	102	1	4.55	0.72	0.1	1320	221	11	270	6	14	4 0	13	72.3
292598	22	24	2	1.97	443	1	38	0.1	5.28	0.41	3	3 1	41	0.1	4.01	4	22	0.1	123	47	134	1	4.58	0.38	0.16	1060	338	12	188	7	23	70	.13	77.9
292599	24	26	2	2.02	184	1	4/	0,1	5,52	0.86	5	3 1	68	0.1	3.89	5	33	0.1	84	33	204	1	4.19	0.46	0.28	960	531	13	144	6 3	27	7 0	.13	104.8
292600	26	28	2	1,96	34	1	33	0.1	2.97	0.63	6	2 1	42	0.1	3.82	1	21	0.1	51	13	143	1	4.09	0.59	0.17	1110	358	9	214	4	15	4	0.1	83.2
292601	28	30	2	1.91	48	1	11	0.1	3.3	0.74	<u>í</u>	2 1	35	0,1	4.51	1	21	0.1	65	17	176	1	4.45	0.51	0.16	1190	426	12	255	5	16	4 0	.12	103.1
292602	30	32	2	1.94	42	1	23	0.1	4.58	1.29		3 1	19	0.1	4.59	3	33	0.1	96	21	229	1	3.81	0,3	0.1	1080	616	18	134	6 3	24	6 0	.12	144.5
292603	32	34	2	1.9	62	1	22	0.1	3.07	0.95	14	2 1	28	0.1	2.93	1	20	0.1	86	21	168	1	3.13	0.54	0.14	890	358	13	139	4	16	4 0	.14	99,3
292604	34	36	2	2.07	4	1		0.1	3.12	1,19	14	1 1	45	0.1	2.17	1	25	0.1	74	18	210	1	2.39	0.33	0.32	990	329	15	68	4	17	4 0	.25	120.3
292605	36	38	2	1.95	24	1	5	0.1	2.89	0,99	13	2 1	36	0.1	2.2	1	22	0.1	70	17	168	1	2.02	0.18	0.23	960	295	12	38	4	16	4 0	.19	109.5
292606	38	40	2	1.97	21	1	6	0.1	3.43	1.28	13	3 1	40	0.1	2.2	1	25	0,1	49	19	157	1	2.48	0.34	0.24	880	359	15	58	5	19	4	0.2	103.8
292607	40	42	2	2.15	18	1	3	0.1	2.38	0.8	41	1 1	29	0.1	2.09	1	18	0.1	74	18	134	1	2:05	0.28	0.15	1180	239	10	74	3	13	3 0	.19	87.6
292608	42	44	2	1.93	0	1	4	0.1	2.72	1.02	49	1 1	37	0.1	2.17	1	22	0.1	95	24	157	1	2.29	0.23	0.16	840	263	15	72	4	15	3 0	.18	85,8
292609	44	46	2	1.95	23	1	4	0.1	3,08	1.1	14	1 1	83	0.1	1.94	2	22	0.1	100	19	160	1	2.16	0.3	0.27	1010	326	13	74	3	17	4	0.2	92.1
292010	40	48	2	1.9	190	1	9	0.1	3,49	1.11	_12	4 1	10	0.1	2,94	4	26	0.1	120	30	179	1	2.84	0.49	0.25	880	542	15	97	5 2	28	7 0	.13	85.3
292011	40 50	50	2	1.75	0104	1	20	14	4.30	1.07	10	2 117	101	0.1	2.20	35	70	1,1	49	22	118	1	4.4	0.35	0.44	930	427	12	/1	4 2	<u>/4</u>	6 0	.16	83.4
292012	50	02 54	2	1.03	60 50	1	0 7	0.1	3.17	1.40	4	2 1	104	0.1	1.48	2	23	0.1	30	19	143	4	1.83	0.21	0.36	670	314	11	55	3	18	4	0.2	86.2
202013	52	04 56	2	1.00	00	1		0.1	2.99	1.01	ې د	1 1	50	0.1	1.77	2	20	0.1	30	17	91	1	1.84	0.25	0.2	740	344	12	40	3	18	4 0	.17	80.4
202014	56	50	2	2.1	76	1	17	0.1	2.14	1.00	р 2	4 4	32	0.1	2.01	1	20	0.1	24	10	70	-	1.90	0.20	0.19	750	385	12	60	2	17	3 0	14	70.1
202010	20	50	2	4 72	170	1	10	0.1	2.04	1.07	2	4 4	40	0.1	1.79	3	21	0.1	24	14	(1		1.77	0.42	0.12	720	342	11	48	2	15	3	0.1	- 60
202010	50	60	2	1.73	76	1	10	0.1	3,10	1.0	3	2 1	10	0.1	2.40	2	30	0.1	20	14	70	1	∠.30 4 0	0.13	0.18	700	390	13	34	4	19	4 0	.13	76.1
202017	62	64	2	47	20	1	10	0.1	3.15	1.45	4	4 6	73	0.1	1.01	2	20	0.1	20	13	102	4	1.0	0.21	0.17	720	303	12	44	3	10	4 0	.14	67.9
202010	64	66	2	2.1	1135	1	16	17	3.82	1.40	-	2 95	73	0.1	1.07	5	20	0.1	35	22	102	4	1.00	0.14	0.20	730	342	13	30	3	19	4 0	.10	07.3
202010	88	83	2	2.1	4757	0 k	40	4.5	3.02	0.00	7	2 00	19	0.1	2.07	7	52	0.2	69	20	107	4	1.0	0.00	0.20	620	249	12	31	4 4	20	5 U ¢ A	.18	12.0
202020	68	70	2	2	97.57	43	21	2.6	1.03	1 /7	22	A 15	14	0.1	2.07 4 80	7 8	37	0.9	20	20	137	4	1.04	0.09	0.09	200	243	12	42	4 4	20 26	3 U 7	.15	50.4
202622	70	70	2	2	1564	ž	21	13	4.55	1.77	22	1 20	10	0.1	3 36	0 0	20	0.1	40	20	77	4	2.02	0.00	0.00	1040	992	10	40	5.	10 54	6 0	0.1	94.1 70.4
202623	72	74	2	1 80	452	1	20	0.1	5 10	0.7	5	1 23	13	0.1	1 56	6	16	0.1	97	52	04	4	1 70	0.40	0.03	1040	000	12	75	5 4	14 · 56	0 U 7 0	40	19.4
292624	74	76	2	2.1	432	1	20	0.1	3 33	1 /10	1	2 1	52	0.1	1.30	1	21	0.1	60	17	223	1	2.15	0.19	0.00	610	200	20	30	54	10 10	1 0	10	01.0
292625	76	78	2	2.1	62	1	28	0.1	3.68	1 13	8	3 1	30	0.1	2 23	1	21	0.1	67	25	223	4	2.15	0.14	0.23	400	204	17	29	э 4	10 ·	4 U 5 O	10	60.Z
292626	78	80	2	2.12	63	1	4	0.1	4 34	1 17	11	2 1	140	0.1	12		34	0.1	70	20	205	1	2.55	0.75	0.60	360	242	21	50	+ ,	:9 · 10	50	- 10	09.0
292627	80	82	2	2 12	59	, 1	2	0.1	5.81	1 4 8	11	2 1	308	0.1	0.89	5	37	0.1	70	26	401	1	2.00	0.27	1.08	350	3/1	24	30	6 2	20	0 V 0 A	.20	70.3
292628	82	84	2	2 02	27	1	2	0.1	6 14	1 26	5	3 1	428	0.1	1 28	1	41	0.1	56	18	337	1	3 52	03	1 10	230	358	21	53	7 4	20	8 0 8 0	35	55.2
292629	84	86	2	1 92	393	1	11	01	2.61	0.5	7	2 1	102	0.1	1 94	1	19	0.1	30	15	120	2	2 91	0.46	0.28	600	171	21	03		10	3 0	12	36.5
292630	86	88	2	2.05	53	. 1	2	0.1	3.05	1 28	1	1 1	151	0.1	1 21	1	23	0.1	25	15	78	1	2.01	0.40	0.55	740	240	13	53	4		3 0	0.0	00.0
292631	88	90	2	2.00	23	1	2	0.1	31	1.31	1	1 1	99	0.1	1 43	2	22	0.1	28	15	76	1	1.8	0.15	0.37	810	260	13	51				10	04 3
292632	90 .	92	2	2	65	1	6	01	24	0.91	6	3 1	26	0.1	2 16	1	18	0.1	27	12	68	1	1 98	0.17	0.07	1020	272	13	66	4	и. И	3 0	44	75 7
292633	92	94	2	2 25	32	1	3	0.1	1.67	0.68	3	1 1	26	0.1	1 27	÷	16	0.1	33	10	75	1	1 12	0.12	0.00	1000	171	7	40	2 4	 In	20	12	17.6
292634	94	96	2	1.91	4	2	4	0.1	2 19	1 12	3	1 1	66	0.1	1.27	ſ	23	0.1	34	9	152	1	1 33	0.15	0.00	980	208	10	44	2 1	14	20	16	71 2
292635	96	98	2	1.95	42	1	5	0.1	2.24	0.98	15	3 1	58	0.1	3 25	i	12	01	42	13	133	1	2 4 9	0.65	0.20	940	240	a	144	4 1	ан . : Л	30.	15	67
292636	98	100	2	1.92	56	2	8	0.1	1.32	0.48	4	1 1	21	0.1	1.61	i	10	0.1	25	8	61	1	1 28	0.00	0.06	1000	1/1	5	66	2	0	0 0. 0 0	.10 .00	21 /
292637	100	102	2	2.02	84	1	2	0.1	2.22	0.68	2	1 1	104	0.1	1.32	i	11	0.1	25	16	47	1	1.93	0.21	0.00	750	156	8	85	2 1	9 . 12 .	20. 30.	15	60.6
292638	102	104	2	1.91	189	1	3	0.1	3.38	1.08	3	2 1	95	0.1	2.4	1	22	0.1	20	21	38	1	3.17	0.36	0.22	460	299	15	130	5 1	7	3 0. ⊿ ∩	17 1	17.4
292639	104	106	2	1.92	221	1	3	0.1	4,22	1.39	8	2 1	73	0.1	2,97	2	26	0.1	24	28	42	1	4.58	1.02	0.17	480	387	21	301	6 2	 А	- V. 6 D	18 1	44.7
292640	106	108	2	2.04	194	1	3	0.1	2.47	0.85	6	1 1	65	0.1	2	1	17	0.1	19	13	26	2	3.87	1.62	0.12	490	270	2,	389	3 1	4	30	. 10 I N9	78.2
292641	108	110	2	2.07	461	1	6	0.2	3.07	1.3	9	2 1	117	0.1	2.42	2	22	0.1	22	14	43	1	3.44	0.45	0.26	560	327	15	145	4 1	8	4 n	14	94.9
292642	110	112	2	2.04	90	2	2	0.1	1.68	0.7	11	1 1	30	0.1	2.59	5	16	0.1	18	8	44	1	1,41	0.17	0.06	1140	205	6	49	2.1	4	. J. 2 A	08	48.5
292643	112	114	2	1.99	48	3	3	0.1	1.62	0.51	12	1 1	19	0.1	1.75	9	18	0.1	18	7	55	1	0.77	0.09	0.05	1440	162	5	36	3 1	6	_ 0. 2 0	05	38.5
292644	114	116	2	2.08	4	4	4	0.1	1.02	0.4	7	1 1	15	0,1	1.64	7	14	0.1	10	4	42	1	0.52	0.05	0.04	1040	133	4	27	2 1	3	1 0	04	28.9
																												-						

·

J

) (*

J97-7	From	То	Length	Recov.	cu	Cu	MO A	Au-fire	٨G	FF	MG	46	ев	DI			<i></i>		т.																	
Sample	metres	metres	metres	metres	PPM	%	PPM	PPR	PPM	%	9/6	DDM	30		BA	BF	CA	PB	ZN	CD	NI	co	CR	W	AL	NA	κ	P	MN	ы	SR	GA 1	л т	ı	τı	v
292645	116	118	2	1.67	3		5	4	01	0.85	033	- F IVL I		PPIVI	PPM	PPM	%	PPM	PPM	PPM	I PPM	I PPM	PPM	Ρ	%	%	%	PPM	PPM	PPM	PPM	P	PE	5	%	DDM.
292646	118	120	2	1.9	5		1		0.1	2.09	0.00	5 7		1	32	0.1	0.9	9	14	0.1	6	; 3	81	2	0.51	0.1	0.07	950	96	3	25	2	13 ່	1 (	0 0 06	24.9
292647	120	122	2	1.76	2350		1	12	1	2.00	1 50	, E		1	87	0.1	1.15	9	19	0.1	17	10	48	1	1.37	0.12	0.17	1030	182	11	45	2	17	3 1	0.00	62.0
292648	122	124	2	1.86	385			12	01	3.9	1.00	2	2	1	84	0.1	2.26	5	26	0.1	26	36	45	1	2.63	0.23	0,19	610	299	19	72	5	23	5 1	0.10	114 0
292649	124	126	2	1 95	820		2	7	0,1	2.79	100	3	1	1	76	0.1	1.52	2	18	0.1	23	15	38	1	2.11	0.25	0.14	600	246	12	59	ă.	17	3 I	0.10	70.0
292650	126	128	2	1 91	1681		ő	40	0.2	3.00	1.06	6	1	1	108	0.1	2.33	3	25	0.1	29	21	47	1	3.13	0.28	0.24	610	343	18	80	Š (	23	6 6	1.10	102.0
292651	128	130	2	1.86	1272		3	12	0.0	3.38	1.31	5	1	1	63	0.1	1.64	6	24	0.1	31	19	54	1	2.26	0.23	0.15	780	265	13	79	л. Л.	20		3.22	123.2
292652	130	132	2	1.00	886		1		1.1	3.79	1.6	3	1	1	63	0.1	2.1	3	27	0.1	31	19	46	1	2.59	0.18	0.16	640	317	16	68	5	23	4 ( E /	J.19 J.17	104.1
292653	132	134	2	10	141		2	0	0.3	3.00	1.49	5	2	1	48	0.1	1.46	5	26	0.1	26	13	68	1	1.76	0.08	0 11	940	248	13	38		20	3 (		114.0
292654	134	136	2	1 70	272		о 0	3	0.1	2.37	1.05	11	1	1	49	0.1	1.52	10	23	0.1	25	13	63	1	1.58	0.19	0 11	990	214	0	50	2 4	- I (0	4 ( 2 /	2.14	98
292655	136	138	2	1.72	213		~	2	0.1	3.48	2.1	5	2	1	103	0.1	2.71	4	- 33	0.1	60	16	190	1	3.01	0.26	0 44	860	346	14	166		10 10	3 U	1.12	76.9
292656	138	140	2	1.34	2200		2	9	0.5	4.55	1.43	37	5	1	37	0.1	2.56	6	28	0.1	33	30	56	1	1.73	0.13	0.00	1080	340	10	100	4 4	·2 ·	4 L 2	1.15	111
292657	140	140	2	1.90	4666		31	11	1.1	3.25	0.97	18	3	1	20	0.2	2.58	35	29	0.1	25	21	50	1	1 14	0.06	0.00	1200	260	0	100	4 4	.0 .4	0	0.1	116.8
202658	140	144	2	2	1000		6	5	0.5	1.37	0.74	7	2	1	30	0.1	1.37	7	15	0.1	19	8	74	1	0.61	0.00	0.00	1650	203	0	70	34	4	4 0	0.01	60.5
202000	144	144	2	4 07	841		1	6	0.2	3.38	1.54	3	2	1	75	0.1	1.79	3	25	0.1	125	25	229	1	1.93	0.00	0.00	1260	147	4	33	21	.6	20	0.07	35.8
202000	146	140	2	1.07	96		2	1	0.1	4.02	1.38	3	1	1	138	0.1	1.05	3	25	0.1	116	27	299	1	19	0.16	0.27	750	299	17	53	32	.0	4 0	0.17	112.6
202664	140	190	2	1.9	123		6	1	0.1	4.81	1.48	5	2	1	45	0.1	1.08	4	29	0.1	131	31	280	1	2.07	0.10	0.00	750	209	17	31	4 Z	.3	5 0	0.31	178.3
292001	150	100	2	2	182		1	3	0.1	3.93	1.05	2	2	1	31	0,1	1.3	5	22	0.1	106	29	181	1	1 59	0.10	0.20	300	313	20	27	4 2	.7 6	6	0.3	155.7
202662	150	102	2	1.93	242		2	2	0.1	3.36	1.18	3	2	1	34	0.1	1.35	4	24	0.1	41	23	54	1	1.50	0.10	0.17	1400	255	13	34	4 2	2	50	.24	102.3
202000	152	104	2	1.95	259		1	5	0.1	3.43	1.56	4	2	1	50	0.1	1.81	1	28	0.1	25	16	55	1	2 11	0.20	0.10	1120	282	13	32	4 2	.0 4	40	.19	88.1
202004	104	100	2	1.95	294		1	5	0.1	3.19	1.31	3	2	1	64	0,1	1.28	2	29	0.1	34	17	44	4	4.66	0.15	0.10	1160	380	18	35	4 2	2 5	50	.22 1	106.9
202000	100	158	2	2.02	1128		1	7	0.5	3.11	0.93	1	1	1	45	0.1	1.55	2	31	01	24	15	40	4	1.00	0.14	0.19	1260	333	15	27	4 2	0 4	10	.19 1	102.5
202000	100	160	2	2.06	1891		4	11	1	2.78	0.78	1	1	1	40	0.1	1.57	5	33	0.2	24	15	34	-	1.00	0.23	0.12	1280	326	11	30	4 1	8 4	40	.16	76.9
292007	100	162	2	2.16	59		1	3	0.1	3	1.26	3	2	1	45	0.1	1.87	ž	26	0.1	23	14	62	1	1.29	0.15	0.13	1490	287	10	39	3 1	7 4	4 0	.13	63.3
292000	162	164	2	2.03	759		3	6	0.4	3.2	0.87	3	1	1	20	0.1	2.51	4	28	0.1	24	15	30	4	4 70	0.15	0.15	1190	347	18	37	52	0 4	ŧ 0	.21	95.7
292009	104	166	2	2.1	460		1	11	0.1	3.51	0.96	3	3	1	33	0.1	2.61	2	27	0.1	46	20	66	-	1.70	0.22	0.07	1490	457	15	52	4 1	9 4	ŧ 0	.12	70.7
292670	166	168	2	2.03	127		3	3	0.1	3.98	1.11	5	3	1	69	0.1	1.57	5	27	0.1	90	20	446		1.94	0.53	0.1	1390	411	14	51	42	05	50	.15	90.1
292071	168	170	2	1.89	54		1	1	0.1	2.41	0.84	5	2	1	26	0.1	2.24	ĩ	17	0.1	45	20	110	1	1.89	0,3	0.13	1100	353	15	41	4 2	25	5 1	0.2 1	06.3
2820/2	170	172	2	1.96	97		1	2	0.1	3.33	1.22	4	2	1	34	0.1	2.03	3	24	0.1	66	10	140	1	1,99	0.34	0.08	1080	324	13	186	3 1	4 3	B 0.	.12	63
292073	172	1/4	2	1.98	82		1	3	0.1	3.67	1.26	7	2	1	53	0.1	1.68	2	31	0.1	71	22	100	4	2.19	0.28	0.11	1050	342	19	71	3 2	34	F 0.	.15	85.4
292074	174	176	2	2.1	45		1	1	0.1	3	1.08	8	3	1	61	0.1	24	1	23	0.1	76	20	109		2.22	0.43	0.15	840	321	18	49	4 2;	25	; O.	.26 1	04.3
2920/0	176	178	2	2.02	145		3	2	0.1	2.54	0.93	5	2	1	30	0.1	2 23	1	18	0.1	60	11	100	1	2.39	0.53	0.18	680	267	19	56	4 1	34	0.	24	77.2
292075	178	180	2	2.06	471		1	4	0.1	5.41	1.42	6	4	1	118	0.1	2 07	1	31	0.1	00	20	139	1	2.15	0.39	0.12	460	252	16	55	3 16	33	0.	17	65.5
292677	180	182	2	1.99	2676		5	18	1.4	5.58	1.23	7	4	1	67	0.1	2 13	4	32	0.1	04	20	3/0	1	3.65	0.35	0.67	480	309	20	83	7 30	ን 7	0.	35	72
292678	182	184	2	1.88	2931 .		1	15	1.2	6.06	1.38	3	6	1	68	0.1	1.81	A A	22	0.1	04 60	33	315	1	3.1	0.61	0.34	540	263	19	72	731	18	0.	33	76.7
292679	184	186	2	2.1	2094		5	10	1.2	4.3	1.74	6	2	1	58	01	2 72	1	28	0.1	00 56	22	339	2	3.58	0.66	0.31	380	286	23	81	9 33	38	0.	41	63.7
292680	186	188	2	1.99	1020		3	5	0.3	3.97	2.27	8	3	1	50	0.1	2 10	2	20	0.1	50	20	107	1	3.54	0.96	0.22	1010	288	19	52	7 27	/ 6	0.	28 1	12.3
292681	188	190	2	1.98	1593		16	6	0.6	3.3	1.55	5	2	1	54	0.1	1.88	2	50	0.1	50	21	135	1	3.45	0.62	0.19	1500	350	24	58	6 28	\$5	0.	23 1	03.8
292682	190	192	2	2	170		1	1	0.1	3.22	1.56	5	2	1	77	0 1	1.57	2	20	0.4	55	18	106	1	2.47	0.32	0.15	1290	281	16	68	5 23	\$ 4	0.	18 (	80.5
292683	192	194	2	1.92	331		12	2	0.1	2.23	0.74	4	1	i	39	0.1	1.62	5	45	0.1	50	20	96	1	2.07	0.23	0.22	1330	278	16	50	4 22	: 4	0.	19	84
292684	194	196	2	1.87	138		1	1	0.1	2.69	0.79	5	1	1	127	0.1	1 02	4	10	0.1	46	16	68	1	1.69	0.35	0.09	1220	195	9	62	3 15	i 3	0.1	14	57.8
292685	196	197.51	1,51	1.45	181		2	1	0.1	3.32	1.3	6	2	1	143	0.1	2 12	1	17	0.1	27	1/	52	1	2.9	0.53	0.17	850	228	9	85	4 15	3	0.1	15 8	86.8
•												-	-	•		5.1	2.16		42	0.1	26	20	51	1	3.48	0.44	0.21	590	321	13	133	5 20	4	0.2	21 10	09.7

 $\frown$ 

٦)

Sample	metres	metres	metres	metres	PPM	%	PPM	PPB	PPM	%	% F	PPM 4	РРМ (	PPM	PPM	PPM	%	PPM	PPM	PPM	PPM	PPM	PPM F	PPM	%	%	%	PPM	PPM P	РМ	PPM F	PM P		1 %	PPM
292686	4 88	6	1 12	1 70	416		10	5	14	1 59	0.62	1	4	11	59	0.1	0.96	15	11	0.1	10	8	74	3	0.74	0.06	0.07	1000	09	2	27	4	12 1	0 11	62.0
202000	4.00	°	0	1.70	500		14	ç	4.0	4 74	0.52		7	11	60	0.1	4.04	40	40	0.1	10		00	~	0.74	0.00	0.07	1050	30	0	21		12 1	0.11	33.0
292667	0	0	2	1.00	203		14	5	1.5	1.71	0.57			12	03	0.1	1.04	16	10	0.1	9	8	80	3	0.79	0.07	0.09	1150	98	6	27	1	10 1	0.13	59
292688	8	10	2	1.78	1942		123	11	2.1	1.69	0.67	1	9	16	54	0.1	1.2	23	12 -	0.1	10	8	70	2	0.73	0.04	0.07	1120	96	7	14	1	9 1	0.13	61.8
292689	10	12	2	1.50	2351		193	13	2.1	1.59	0.76	1	3	17	65	0.1	0.85	17	11	0.1	10	8	70	2	0.65	0.04	0.09	1130	90	8	18	1	6 1	0.13	61.2
292690	12	14	2	1.99	2694		427	10	2.5	1.86	1.01	4	6	15	41	0.1	1.35	22	13	0.1	12	9	76	1	0.76	0.03	0.09	1690	123	9	18	1	2 1	0.12	72.9
292691	14	16	2	1.99	5022		114	18	4.1	2.16	0.97	1	9	28	72	0.1	1.06	25	13	0.1	12	10	91	3	0.8	0.05	0.13	1500	118	9	25	1	4 1	0.14	75 1
292692	16	18	2	1.81	1337		320	10	19	1.66	0.67	2	3	12	54	0.1	12	14	10	0.1	8	8	77	2	0.64	0.04	0.07	1130	104	8	24	1	8 1	0.12	573
202002	18	20	2	1.40	2572		125	24	22	1 77	0.68	4	7	23	65	0.1	1 1 2	10	11	0.1	10	ŏ	90	5	0.65	0.04	0.00	1070	100	7	27	4	0 1	0.12	64.0
202000	10	20	2	1.40	540		450		4.2	1.17	0.00	4	~	25	00	0.1	1.12	00	45	0.1	10	5	00	9	0.05	0.03	0.05	1070	105		20		5 1	0.12	04.2
292694	20	22	2	1.01	218		130	3	1.0	1.05	0.96	1	0	5	62	0.1	1.34	28	15	0.1	9	â	41	1	1.06	0.04	0.08	1100	1/5	8	34	1	4 1	0.11	51.1
292695	22	24	2	1.95	773		50	3	1	2.02	0.87	3	12	4	82	0.1	3.23	31	17	0.1	12	10	48	1	1.67	0.05	0.13	1130	208	11	39	1	1 1	0.08	50.5
292696	24	26	2	2.02	2486		81	23	2.8	3.13	1.13	1	14	24	53	0.1	2.5	29	23	0.1	24	15	64	2	1.88	0.17	0.09	1140	256	15	84	1	1 1	0.14	107
292697	26	28	2	2.06	2849		54	39	2.4	3.36	0,95	1	34	26	40	0.1	4.85	50	31	0.1	30	15	90	4	3.63	0.47	0.07	1130	417	12	283	1	1 1	0.15	115.6
292698	28	30	2	1.83	1661		16	15	1.7	2.98	0.67	1	33	18	26	0.1	4.98	46	31	0.8	32	12	88	4	3,44	0.38	0.05	1050	497	7	291	1	1 1	0.11	92.6
292699	30	32	2	2.01	5189		26	33	3.8	4.36	0.62	1	39	65	32	0.1	4 89	46	25	12	45	16	60	3	3 54	0.54	0.09	1530	390	7	264	1	1 1	0.09	85.2
292700	32	34	2	1 78	5752		24	60	49	4 39	1.09	1	31	60	41	0.1	3 35	64	31	0.1	60	20	100	4	2.56	0.45	0.00	1270	336	13	102	1	4 1	0.13	177 6
202704	24	36	2	0 10	2020		20	64	4.0	2 47	1.04		20	44	47	0.1	0.00	50	20	0.1	50	40	100	7	2.00	0.40	0.03	1270	050	13	102	2	1 1	0.13	122.0
292/01	04	30	2	2.12	5323		30	04	4.0	0.47	1.04			44	47	0.1	2.0	50	20	0.1	20	10	100	4	3.22	0.36	0.12	1160	200	14	231	1	1 1	0.14	117.5
292702	30	38	2	1.91	5439		94	62	4.5	3.97	0.89	1	40	45	32	0.1	3,46	58	30	0.2	47	12	105	4	4.1	0.61	0.05	1230	280	9	302	1	1 1	0.1	100.7
292703	38	40	2	1.88	4365		84	57	3.5	2.96	0.45	1	50	49	45	0,1	3,49	63	29	1.7	31	10	89	5	4.44	0.97	0.04	1230	250	5	422	1	1 1	0.09	76.4
292704	40	42	2	1.99	5785		13	63	3	3.66	0.98	1	44	43	43	0.1	5.05	59	45	0.3	44	15	85	3	4.28	0.94	0,03	1080	480	10	322	1	1 1	0.06	83.9
292705	42	44	2	2.04	2785		13	47	2.2	2.83	0.46	1	40	31	43	0,1	3.4	55	28	2.3	29	10	83	4	3.93	0.87	0.04	1160	346	5	378	1	1 1	0.08	79.5
292706	44	46	2	2.14	4979		74	24	2.6	7.93	0.51	10	42	29	41	0.1	5.42	28	310	7.4	48	88	37	3	2.21	0.23	0.14	970	3324	4	100	7	1 1	0.04	49.9
292707	46	48	2	2.02	3126		23	41	2.5	2.45	0.55	1	36	36	42	0.1	3.42	55	32	1.8	20	12	89	4	37	0.73	0.05	1020	309	5	295	1	1 1	0.11	85.3
292708	AR	50	2	2.00	3085		20	57	25	3.05	0.00	1	37	24	36	0.1	5.05	50	47	17	25	14	87	~	3.85	0.00	0.00	050	464	ě	200	4	4 4	0.11	00.0
202700	50	50	2	1 71	2400		14	25	2.0	2 54	0.0		26	24	20	0.1	2.00	20	20	0.5	45	20	02	-	0.00	0.00	0.04	4200	440	5	201			0.1	0/
292109	50	52	2	1.71	0040		19	30	2.9	3.54	0.79	1	20	21	30	0.1	3.4	39	30	0.5	40	20	01	2	2.03	0,36	0.07	1300	416	1	165	1	1 1	0.1	79
292710	52	54	2	1.87	2310		14	19	2.6	4.02	0.94		22	50	35	0.1	3.39	65	31	0.1	56	21	63	2	2.48	0.36	0.08	1330	4/1	1	130	1	1 1	0.12	87.1
292711	54	56	2	2.00	1801		10	21	2.1	2.98	0.95	1	29	18	68	0.1	3.38	52	44	0.5	64	23	105	4	3.45	0.62	0.1	1210	440	7	273	1	1 1	0.17	97.1
292712	56	58	2	2.02	797		14	12	1.5	2.23	1.1	1	29	12	128	0.1	4.91 [.]	61	35	0.1	67	17	138	5	3.91	0.75	0.09	980	426	11	343	1	1 1	0.14	82.2
292713	58	60	2	1.95	58		4	7	1.3	1.9	0.87	1	4	6	156	0.1	1.04	23	28	0.1	10	10	90	3	0.92	0.07	0.09	1200	286	6	58	1	7 1	0.14	56
292714	60	62	2	2.19	1972		10	9	1.6	2.01	0.94	1	10	4	138	0,1	2.5	31	26	0.1	12	9	37	1	1.47	0.06	0.21	1100	420	5	130	1	1 1	0.05	50.3
292715	62	64	2	1.72	2412		15	17	1.9	2.62	1.13	1	11	9	100	0.1	5	29	37	0.1	28	14	106	3	1.89	0.15	0.15	1030	658	7	136	1	1 1	0.1	67.7
292716	64	66	2	1 54	4380		72	ġ	2.8	1.65	0.45	1	13	20	52	0.1	1 91	20	28	0.1	9		63	4	0.7	0.04	0.13	770	325	2	40	4	2 1	0.02	30.7
202710	88	69	2	1.04	605		4	11	10.6	1.00	0.70	4	21	15	176	0.1	2.01	272	270	6.6	ő	ő	64	2	0.1	0.04	0.15	1000	323	2	407	1.	0 4	0.03	44.5
202111	60	70	2	1.34	055		40		10.0	1.07	0.70	1	40	13	450	0.1	2.31	213	210	0.0	3	3	04	3	2.3	0.06	0.00	1020	280	3	127	1	2 1	0.1	44.5
292/18	68	70	2	1.66	261		10	4	4.1	1.73	0.84	1	10	5	150	0.1	1.97	3/	25	0.1	9	9	40	1	1.8	0.05	0.08	1040	347	4	104	1	2 1	0.12	48.5
292719	70	72	2	1.90	429		104	5	1	1.92	0.73	1	4	4	81	0.1	2.08	33	25	0.1	10.	9	73	2	0.87	0.05	0.11	1030	517	3	56	1	3 1	0.11	46.7
292720	72	74	2	1.83	2768		75	9	2.4	1.86	0.73	1	11	13	106	0.1	1.7	224	26	0.1	10	9	71	2	1.15	0.05	0.15	930	376	4	86	1	6 1	0.08	42.2
292721	74	76	2	1.75	7487		494	10	4.5	2.55	0.81	1	18	29	98	0.1	2	35	22	0.1	10	9	74	1	1.22	0.05	0.16	900	398	5	95	1	3 1	0.05	38
292722	76	78	2	1.68	6170		345	13	3.2	2,19	0.64	1	22	23	160	0.1	3.22	32	18	0.4	11	9	42	1	1.66	0.07	0.14	1130	386	4	154	1	2 1	0.02	30.8
292723	78	80	2	2,00	3545	2	232	27	2.8	1.7	0.86	1	14	14	115	0.1	1.89	30	15	0.1	11	8	94	2	1.19	0.05	0.22	950	271	6	111	1 1	1 1	0.04	51.1
292724	80	82	2	1.19	492		43	7	0.8	1.88	0.86	1	4	1	128	0.1	2 42	21	23	0.1	10	â	81	2	0.95	0.05	0.22	1000	358	5	115	1	1 1	0.06	50.9
292725	82	84	2	1.86	3041		300	11	23	2 22	1.06	1	8	13	164	0.1	2 47	26	22	0.1	11	10	60	ĩ	1 1 2	0.07	0.1	1120	363	š	112	4.		0.00	67.0
101710	04	00	2	1.00	4500		50		4.0	1.07	0.00			1.2	104	0.1	2.77	20	24	0.1		~	40	1	1.10	0.07	0.1	1100	303	0	110			0.11	57.0
292120	04	00	2	1.95	1209		700	0	1.5	1.97	0.00		•	4	159	0.1	2.36	30	41	0.1	11	9	42	-	1.26	0.06	0.21	1080	453	9	154	1	1 1	0.05	39.5
292121	86	88	2	2.03	2398		792	8	2.2	1.95	1,13	1	6	9	140	0.1	1.95	27	1/	0.1	10	9	85	2	1.07	0.06	0.14	1040	284	9	110	1	1 1	0.09	55.6
292728	88	90	2	1,96	2614		95	14	2.Z	1.98	1.11	1	5	11	120	0.1	1.65	25	20	0.1	11	10	71	1	1.05	0.06	0.14	1070	261	9	106	1	1 1	0.11	57.8
292729	90	92	2	1.68	1533	1	316	6	1.5	1.89	0.9	11	6	7	112	0.1	1.95	21	21	0.1	10	9	99	3	0.83	0.06	0.16	1110	255	7	81	1	21	0.09	58.4
292730	92	94	2	2.06	2610		817	11	2.3	1.9	0.91	1	11	11	108	0.1	2.01	25	20	0.1	11	9	69	48	0.98	0.06	0.14	1070	290	8	109	1	1 1	0.09	52.7
292731	94	96	2	2.12	717		478	3	1.2	1.85	1.01	1	4	1	110	0.1	2.87	25	22	0.1	9	8	73	1	1 1 1	0.07	0.15	1030	332	ġ.	115	1	1 1	0.08	51.4
292732	96	98	2	2.00	409		86	2	1	2.03	1 11	1	2	1	168	0.1	1 37	25	24	0.1	10	10	72	÷	1.04	0.06	0.15	1120	317	õ	112	4	1 1	0.00	64.6
202733	00	100	2	2.00	383		27	2	4	1 91	0.08	4	4		236	0.1	1.61	27	22	0.4	10	0	100	2	1.07	0.00	0.10	000	300	5	447	1		0.11	04.0
202100	400	100	<u>~</u>	2.00	000		204	~ ~	~ ~	1.01	0.00	4	4	1	200	0.1	1.01	21	2.3	0.1	10	0	109	3	1.10	0.00	0.2	900	292	0	117	1	1 1	0.1	50.2
232134	100	102	2	1.97	230		224	1	0.9	1.95	0.94	1	3	2	203	0.1	1.64	21	26	U.1	10	9	18	2	0.9	0.06	0.13	1110	327	8	124	1	1 1	0.11	54.2
292735	102	104	2	1.98	253	1	173	2	1.1	2.23	0.93	1	16	6	246	0.1	3.24	44	30	0.1	12	11	91	3	2.47	0.18	0,09	990	370	9	193	1	11	0.09	46.8
292736	104	106	2	2.01	131		391	1	1.3	1.71	0.86	1	23	8	458	0.2	3.5	50	29	0.1	10	10	47	2	3.04	0.16	0.09	1040	399	9	225	1	1 1	0.12	44.1
292737	106	108	2	1.97	25		405	2	1.3	1.77	0.79	1	1	4	121	0.1	1.4	19	24	0.1	11	9	98	3	0.77	0.07	0.12	1140	285	9	87	1	51	0.11	46.8
292738	108	110	2	2,10	44		49	1	1.3	1.95	1.12	1	9	4	206	0.1	2.05	39	29	0.1	12	10	71	2	1.94	0.13	0.1	1100	349	12	167	1	1 1	0.11	52.1
292739	110	112	2	2.10	27		15	2	1.1	1.97	0.84	1	5	4	138	0.1	1.66	20	27	0.1	11	9	115	3	0.86	0.07	0.16	1160	336	9	104	1	4 1	0.1	51.6
292740	112	114	2	1.97	36		16	1	1.5	1:78	0.75	1	1	9	219	0.1	0.98	17	24	0.1	10	9	110	4	0.75	0.07	0 11	1140	239	q	64	1	. 1 R 1	0.13	53.3
			-											-								-		•			~	* * * * V		~	<b>V</b> 7		~ (	0.10	vv.v

J97-8 From To Length Recov. CU Cu MO Au-fire AG FE MG AS SB BI BA BE CA PB ZN CD NI CO CR W AL NA K P MN LI SR GA TH U TI V

:

.

 $\left( \right)$ 

																	<i>.</i> .																			
J97-8	From	То	Length	Recov.	CU	Cu l	MO A	u-fire	AG	FE	MG	AS	SB	Bl	BA	BE	CA	PB	zŃ	CD	NI	co	CR	W	AL	NA	к	Ρ	MN	LI	\$R	GA	тн	U	ΤI	v
Sample	metres	metres	metres	metres	PPM	% F	РРМ	PPB	РРМ	%	%	РРМ	PPM	PPM	PPM	PPM	%	PPM	PPM	PPM	PPM	PPM	PPM	PPM	%	%	%	PPM	PPM	PPM	PPM	PPM I	PPM F	PM	%	PPM
292741	114	116	2	1.93	16		9	2	1.6	1.89	0.86	1	6	8	830	0.1	0.98	23	27	0.1	11	10	128	5	0,99	0.13	0.14	1120	247	11	91	1	7	2	0.13	56.1
292742	116	118	2	2.15	51		15	1	1.2	1.92	1.01	1	3	2	139	0.1	1.4	24	28	0,1	11	9	130	4	0.95	0.09	0.16	1060	326	12	95	1	3	1	0.09	50.3
292743	118	120	2	1.89	12		5	2	1.3	1.81	0.86	1	9	4	282	0.2	2	29	26	[•] 0.1	10	9	90	3	1.47	0.08	0.1	1100	247	12	123	1	5	1	0.1	53.4
292744	120	122	2	2.25	69		12	1	1.7	1.97	0.78	1	6	11	651	0.1	0.97	18	25	0.1	11	10	142	5	0.85	0.1	0.14	1150	209	10	70	1	10	2	0.14	58.5
292745	122	124	2	1.98	37		6	1	1.6	1.84	0.75	<u>` 1</u>	2	9	486	0.1	0.99	18	25	0.1	10	9	85	3	0.82	0.08	0.09	1150	207	11	69	1	10	2	0.14	56.4
292746	124	126	2	2.03	42		13	3	1.7	1.8	0.78	1	6	9	275	0.1	1.26	20	23	0.1	10	9	98	3	0.89	0.07	0.09	1110	218	11	77	1	9	1	0.14	55,3
292747	126	128	2	2.22	35		10	1	1.6	1.79	0.77	1	2	9	1075	0.1	0.99	17	24	0.1	11	10	81	3	0.8	0,07	0.07	1160	205	10	69	1	9	2	0.14	56.1
292748	128	130	2	1.68	127		16	1	1,6	1.83	0,79	1	1	8	235	0.1	0.99	18	22	0.1	11	9	108	4	0.76	0.07	0.1	1230	208	9	72	1	9	1	0,14	57.5
292749	130	132	2	1,98	76		25	6	1	1.87	0.94	2	3	2	272	0.1	2.04	18	24	0.1	12	9	92	2	0.93	0.07	0.24	1140	304	9	95	1	1	1	0.07	48.2
292750	132	134	2	2.06	72		46	1	0.3	1.66	0.62	1	4	1	206	0.1	5.36	10	23	.0.1	11	8	76	2	1.02	0.04	0.22	960	502	6	204	1	1	1	0.01	28
292751	134	136	2	1.92	144		58	2	1.2	2.03	1.52	1	1	1	311	0.1	1.46	28	29	0.1	11	11	80	1	1.16	0.06	0.25	1140	359	11	90	1	1	1	0.08	54.4
292752	136	138	2	1.86	149		95	3	1	1.94	0.62	1	8	1	130	0.1	2.72	46	44	0.3	13	9	83	3	0.89	0.05	0.25	1120	636	6	142	1	6	2	0.02	31.2
292753	138	140	2	2.02	112		32	4	1.6	1,98	0.77	1	7	1	145	0.1	3.54	572	231	3.2	13	9	49	2	0.86	0.04	0.21	1010	884	8	136	1	2	1	0.03	32.6
292754	140	142	2	2.05	22		29	1	1.2	1.95	1.01	1	4	1	351	0.1	2.56	23	28	0.1	11	10	97	2	1.06	0,06	0.29	1060	443	10	138	1	1	1	0.08	48.2
292755	142	144	2	1,86	28		13	1	1.1	1.98	1.05	1	3	1	356	0,1	1.75	24	27	0.1	12	10	89	2	1	0.06	0.27	1050	320	9	105	1	1	1	0.07	49
292756	144	146	2	2.14	25		9	1	1.1	1.83	0.91	1	6	1	317	0.1	2.62	22	27	0.1	12	9	96	2	1.16	0.06	0.29	1070	402	8	153	1	3	1	0.05	42.3
292757	146	148	2	2.01	31		13	1	0.9	1.7	0.73	1	1	1	754	0,1	2.71	16	25	0.1	11	9	65	2	0.95	0.06	0.25	1040	406	5	189	1	6	1	0.02	38.5
292758	148	150	2	2.03	56		6	2	0.1	1.95	0.95	1	1	1	693	0.1	1.51	17	25	0,1	11	10	86	2	0.81	0.05	0.29	1070	315	4	99	1	1	1	0.09	50.1
292759	150	152	2	1.93	29		327	3	0.1	1.85	1.06	1	1	1	301	0.1	1.34	21	26	0.1	9	9	65	1	0.83	0.06	0.26	1130	345	8	119	1	1	1	0.08	47.1
292760	152	154	2	2.00	50		61	3	0.1	1.87	1	1	2	1	366	0.1	1.52	23	25	0.1	8	9	70	1	1.04	0.05	0.26	1090	315	7	122	1	1	1	0.07	44.2
292761	154	156	2	2.03	43		14	1	0.3	1.84	0.91	1	1	2	320	0.1	0.87	14	25	0.1	10	9	97	3	0.72	0.07	0.25	1100	260	7	63	1	4	1	0.13	55.2
292762	156	158	2	1.89	562		12	2	0.2	1.74	0.89	1	3	1	350	0.1	2.15	17	23	0.1	8	8	66	1	1.07	0.05	0.21	1050	316	7	138	1	1	1	0.05	40.5
292763	158	160	2	1.95	431		72	2	0.1	1.74	0.92	1	1	1	211	0.1	2.7	18	21	0.1	9	8	85	2	0.9	0.06	0.19	980	366	5	126	1	1	1	0.07	44.3
292764	160	162	2	1.91	285		193	3	0.3	1.79	0.89	1	1	1	121	0.1	1.42	18	18	0.1	9	9	84	2	0.75	0.07	0.15	1030	245	6	82	1	1	1	0.1	46.7
292765	162	164	2	2.03	134		141	3	0.6	1.81	0.78	1	1	7	174	0.1	0.97	16	17	0.1	8	9	90	3	0.68	0.07	0.15	1080	194	7	56	1	4	1	0.15	55.6
292766	164	166	2	2.07	195		68	2	0.7	1.84	1.08	1	1	3	310	0.1	0.91	22	22	0.1	. 9	10	79	1	0.83	0.07	0.21	1090	220	10	68	1	1	1	0.15	58.2
292767	166	168	2	1.85	193		113	2	0.3	1.97	1.29	1	1	1	226	0.1	1.5	28	24	0.1	10	10	69	1	1.15	0.05	0.2	1160	278	9	102	1	1	1	0.09	51.1
292768	168	170	2	2.00	120		14	3	0.2	1.98	1.37	1	1	1	154	0.1	1.82	25	26	0.1	8	9	51	1	1.04	0.05	0.15	1200	435	9	123	1	1	1	0.05	46.8
292769	170	1/2	2	1.70	53		28	2	0.1	1.89	0.7	1	1	1	151	0.1	2.00	15	27	0.1	11	9	89	3	0.79	0.06	0.18	1050	603	5	100	1	2	1	0.04	40.5
292770	172	1/4	2	1.86	40		59	2	0.2	1.91	0.99	1	1	1	150	0.1	1.8	20	20	0.1	11	9 9	90	2	0.92	0.05	0.18	1090	441	8	/5	1	1	1	0.05	43.6
292771	1/4	1/6	2	2.11	65		55	1	0.1	1,97	1.10	1	1	1	140	0.1	1.78	24	20	0.1	10	à	69	1	1.01	0.07	0.09	1060	354	10	140	1	1	1	0.04	45.Z
292772	176	1/8	2	1.83	113		112	2	0.3	1.93	1.04	1	3	1	427	0.1	1.53	20	23	0.1	0	9	105	2	1.14	0.08	0.08	1050	255	10	137	1	1	1	0.08	49,4
292773	1/8	180	2	1.93	54		236	1	0.6	1.85	0.82	1	2	5 F	542	0.1	1.33	22	10	0.1	9	40	105	3	0.93	0.07	0.09	1080	206	44	99	1	2	1	0.12	55.6
292774	180	182	2	1.91	121		10	4	0.9	1.97	0.99	4	4	2	200	0.1	1.42	20	10	0.1	7	10	100	о 2	1.10	0.00	0.00	750	207	11	102	1	4	1	0.14	00,1 4E
292/75	182	184	2	2.01	113		01	4	0.9	1.92	0,94	1	4	ა ი	405	0.1	1.10	21	10	0.1	10	40	100	о С	1.03	0.07	0.07	100	1/1	11	84 70	1	1	3	0.11	43
292776	184	186	2 2 2 7	1.99	149		14/	2	1	1.66	0.84	1	2	d 7	442	0.1	1.15	22	10	0.1	10	10	110	4	0.09	0.00	0.08	1000	107	10	107	1	1	4	0.10	20
292777	186	188.3/	2.3/	2.20			130	1	1	- 2	0.96		5		513	U. I	1.02	20	17	0.1	9	11	110	4	1.13	0.13	0.1	1030	206	11	107	1	4	1	0.10	φŲ

.

*

•

• '	× .	
	· `\	
	1	

JEAN PROPERTY - CORE RECOVERY AND SAMPLE ANALYSES

•

J97-9	From	То	Length	Recov.	CU C	u MO	Au-fire	AG	FE	MG	AS	SB	BI	BA	BE	CA	PB	ZN	CD	NI	co	CR	W	AL	NA	к	P	MN	LI	SR G	A TH U	JT	1 V
Sample	metres	metres	metres	metres	PPM %	6 PPM	PPB	PPM	%	%	PPM	PPM P	РРМ	PPM	PPM	%	PPM	РРМ	PPM	PPM I	РРМ	PPM (	PPM	%	%	%	PPM	PPM 1	Mge	PPM PI	PM PPM PF	M %	PPM
292778	7.32	10	2.68	2.28	1109	1	6	2	3.72	1.81	1	4	11	279	0,1	1.29	32	28	0.1	47	19	183	5	1.98	0.15	0.7	960	320	17	18	1 1	1 0.3	27 114.8
292779	10	12	2	2.20	84	1	3	1.5	3.43	1.52	1	6	9	183	0.1	1.34	32	25 '	0.1	26	17	116	3	2,03	0.18	0.3	900	332	18	20	1 1	1 0.3	24 108.8
292780	12	14	2	1,20	443	1	6	1.6	2,95	1.01,	1	13	12	115	0,1	1.77	32	22	0.1	31	19	89	3	2.12	0,31	0.21	950	266	13	40	1 1	1 0.	17 84.8
292781	14	16	2	1.98	54	1	2	1.8	3,56	1.59	`1	5	11	231	0.1	1.42	30	25	0.1	37	18	133	3	1.98	0.17	0.47	970	325	17	19	1 1	1 0.3	27 108.9
292782	16	18	2	2.00	133	1	4	1.5	3 16	1 35	1	7	8	178	01	1.53	29	24	0.1	29	17	116	3	1 91	0.27	0.34	900	289	15	23	1 1	1 0	22 98.4
292783	18	20	2	1 70	1535	4	10	22	3.03	1.38	1	9	15	73	0.1	2.06	34	24	0.1	29	17	103	2	1.01	0.28	0.15	950	289	14	22	1 1	1 0	18 94 3
202784	20	22	2	2 00	1230	£	. 10	11	2 27	0.94		22	3	62	0.1	2 75	49	23	0.1	12	12	51	1	2.82	1 18	0.10	690	387	10	03	1 1	1 0	05 65 2
202704	20	24	<u>^</u>	1.80	783		20	12	2.08	1 02	4	30	ē	111	0.1	272	55	19	0.1	23	21	30	4	3.96	0.85	0.15	540	233	11	213	4 4	1 0.	1 945
202700	24	27	2	2.00	2154		20	). <u>2</u> 2	2.30	1.02	4	22	15	161	0.1	2.12	53	24	0.1	20	21	42	1	3.00	0.03	0.01	400	240	44	210	4 4	1 1	49 04.0
292700	24	20	2	2.00	2104		. 20	4.5	2.2	1.01	4	33	10	101	0.1	2.15	04	21	0.1	24	20	42	4	0.07	0.71	0.40	490	210	45	240	1 1	1 0.	13 91.1
292/8/	20	20	2	2.00	202	404	40	1.0	3.31	1.4		31	10	140	0.1	2.10	74	23	0.1	20	20	38		4.30	0.96	0.64	470	277	10	319	1 1	1 0.	17 109.1
292/88	28	30	2	1.70	3330	191	10	2.8	3.24	1.29	1	38	18	146	0.1	2.78	/1	29	0.1	17	22	41	1	4.68	0.95	0.41	440	2/4	12	252	1 1	1 0.	14 101.5
292789	30	32	2	1.95	1628		13	1.8	3.24	1.32	1	34	11	113	0.1	3.03	65	28	0.1	21	21	36	1	4,53	0.92	0.29	480	311	15	210	1 1	1 0.	12 100.6
292790	32	34	2	2.18	320		2	1.4	1.99	0.83	1	17	1	20	0.1	2.78	39	15	0.1	41	15	78	3	2,36	0.17	0.06	1150	210	9	48	1 1	1 0.	11 49.2
292791	34	36	2	2.09	133	1	2	1.2	2.2	1.01	1	16	9	22	0.1	2.15	41	14	0.1	37	15	75	2	2.4	0.2	0.06	1050	245	12	84	1 1	1 0.	15 61.6
292792	36	38	2	2.03	55	1	1	1,4	2,53	1.59	1	9	6	110	0.1	2.44	42	21	0.1	62	15	156	4	2.51	0.25	0.35	1160	268	15	74	1 1	1 0	).2 82.7
292793	38	40	2	1.92	46	1	1	1,8	2.7	1.79	1	11	9	253	0.1	1.53	52	23	0.1	89	20	275	8	2.82	0.26	0.68	1080	241	17	105	1 1	1 0.:	23 97.4
292794	40	42	2	2.02	68	1	2	1.6	2.34	1.39	1	21	8	165	0.1	2.15	53	19	0.1	73	18	170	6	3.29	0.35	0.43	1030	210	15	185	1 1	1 0.1	19 80.6
292795	42	44	2	2.03	14	1	2	1.7	2.35	1.48	1	17	8	225	0.1	1.84	50	20	0.1	63	17	247	8	3	0.29	0.68	1130	215	15	108	1 1	1 0	).2 78.3
292796	44	46	2	1.90	27	1	1	2.2	2.58	1.52	1	5	12	243	0.1	1.06	34	22	0.1	57	19	191	5	1.8	0.12	0.71	1420	222	16	39	1 1	1 0.3	25 85.2
292797	46	48	2	2.04	57	1	1	2.1	2.71	1.48	1	6	11	176	0.1	1.15	34	23	0.1	58	19	166	5	1.74	0.19	0.55	1240	238	16	33	1 1	1 0.3	23 88.8
292798	48	50	2	1.98	28	1	1	2.3	2.25	1.3	1	5	13	225	0.1	0.79	30	15	0.1	42	16	130	4	1.36	0.1	0.68	1490	206	14	33	1 1	1 0.3	24 84.5
292799	50	52	2	2.08	79	1	1	2.1	2.24	1.2	1	7	12	163	0.1	0.93	31	15	0.1	39	15	120	4	1.39	0.14	0.45	1470	194	13	41	1 1	1 0.3	21 74.9
292800	52	54	2	2.07	158	6	\$ 4	2.4	2.81	1.59	1	7	16	231	0.1	1.41	36	22	0.1	48	18	142	4	1,96	0.18	0,7	1450	272	14	55	1 1	1 0.3	27 96.7
292801	54	56	2	2.00	939	5	; 5	2.4	2.64	1.41	1	7	16	167	0.1	1.35	31	21	0.1	47	18	137	4	1.61	0.15	0.5	1410	259	13	44	1 1	1 0.3	24 87
292802	56	58	2	2.05	321	2	13	0.1	1.89	0.94	7	2	1	147	0.1	1.07	2	11	0.1	40	12	118	1	1.42	0.17	0.33	1430	167	10	54	4 13	5 0	19 60 2
292803	58	60	2	2.06	670	4	5	0.2	1 77	0.92	6	1	1	89	0.1	1.57	1	7	01	36	13	120	1	1 66	0.31	0.2	1470	176	10	64	4 13	5 0	19 58 9
292804	60	62	2	2 01	988	6	8	0.2	2 35	1.16	7	2	1	64	0.1	1.73	4	12	01	48	17	110	1	1.5	0.21	0 19	1460	221	11	46	4 16	7 0	18 62 2
292805	62	64	2	1 77	1262	31	7	0.4	2.02	0.83	5	2	i	26	0.1	1 27	2	10	0.1	34	12	90	1	0.88	0.12	0.10	1550	179	7	28	4 14	6 0.	10 02.2
202000	64	66	2	1 91	213	3		0.1	2 57	1.32	7	2	1	จัก	0.1	1.03	1	11	0.1	36	12	71		1 20	0.11	0.27	1500	237	12	20	5 10	7 0'	21 53 6
202000	66	69	2	2 10	101			0.1	2.07	0.04	7	1	i.	60	0.1	0.00	4	7	0.1	34	12	99	4	0.07	0.13	0.21	1560	177	10	20	4 15	6 0.1	17 44 0
202007	60	70	2	2.10	101			0.1	2.04	2 1	10	2	4	200	0.1	4.4	4	12	0.1	60	20	220	4	2.02	0.15	0.41	1000	1//	40	26	~ 10 c 03	0 0.	17 44.0
292000	20	70	2	2.03	140		·	0.1	1.00	2.1	10	5	4	325	0.1	1.1	1	12	0.1	00	20	239	4	2.03	0.14	0.07	1000	212	19	30	0 23	9 0.	31 103.5
292009	70	74	2	1.07	100		20	0.1	1.20	0.04	6	2	-	40	0.1	1.07	1	404	0.1	20	40	22		1,75	0.20	0.00	1020	104	<b>'</b>	447	3 0 2 7	4 U.	12 35.5
292010	72	74	2	2.07	100		30	0.1	1.21	0.43	0		2	24	0.1	3.00		101	2.4	37	10	33	4	2.04	0,55	0.06	1410	441	1	147	5 1	3 0.	11 31
292811	74	76	2	2.04	59	1		0.1	1.69	0.71	4	Z	1	132	0.1	2.52	1	3	0.1	20	9	37	4	3,58	0.52	0.29	1320	166	.9	230	5 11	5 0.1	14 63.1
292812	76	/8	2	2.05	23	1	1	0.1	1.84	1.02	a	z	1	105	0.1	1.03	1	4	0.1	33	12	96	Z	2.28	0.32	0.49	1540	163	11	101	5 13	5 0.1	18 61.9
292813	78	80	2	1,92	1/6	8	2	0.1	2.1	1.07	4	1	1	160	0.1	2.92	1	5	0.1	40	13	124	1	3.98	0.69	0.53	1320	211	9	217	6 13	6 0.1	17 66.4
292814	80	82	2	2.01	383	1	42	0.2	2.33	0.59	6	2	1	46	0.1	2.73	1	4	0.1	49	19	38	3	3.47	0.66	0.1	1320	179	8	253	5 12	7 0.1	11 44.4
292815	82	84	2	1.98	1827	7	76	0.6	2,13	0.66	4	2	1	54	0,1	2,86	1	10	0.2	34	13	35	1	2.95	0.57	0.11	1390	207	8	198	5 12	6 0.1	12 53.9
292816	84	86	2	2.02	481	2	3	0.2	1.73	0.58	5	1	1	52	0.1	3.04	1	5	0.1	21	9	47	2	3.73	0.65	0.1	1390	177	7	250	6 10	5 0.1	13 51.4
292817	86	88	2	2.03	81	1	4	0.1	1.98	0.75	4	1	1	51	0.1	2.55	1	4	0.1	25	11	40	3	3.13	0,57	0.09	1310	207	9	200	5 12	6 0,1	12 57.2
292818	88	90	2	2.03	152	11	4	0.1	2.4	0.66	2	1	1	66	0.1	2.86	1	2	0.1	18	10	51	1	1.57	0.22	0.14	860	171	6	93	4 15	7 0.0	07 44.6
292819	90	92	2	1.98	296	2	2	0.1	2.51	0.79	5	1	1	81	0.1	2.62	1	2	0,1	24	11	36	3	2.52	0.59	0.17	1110	171	9	153	5 15	7 0.1	12 65.4
292820	92	94	2	2.01	335	2	3	0.2	2.45	0.87	4	2	1	129	0.1	2.11	1	7	0.1	26	12	26	2	2.88	0.52	0.26	1250	220	9	193	5 14	7 0.1	13 74.1
292821	94	96	2	2.18	185	7	4	0.1	3,73	1.59	5	2	1	209	0.1	1.39	1	14	0.1	46	20	58	2	2.07	0.19	0.61	1260	326	12	70	5 22 1	1 0.2	23 114.5
292822	96	98	2	1.77	119	1	1	0.1	3.09	1.24	8	3	1	195	0.1	2.36	1	10	0.1	58	19	54	1	3.15	0.37	0.41	1300	290	12	187	6 18	9 0,1	18 104
292823	98	100	2	2.02	287	1	2	0.4	3.01	1.27	20	26	1	219	0.1	2.64	120	35	0.6	55	16	136	3	3.26	0.34	0.6	1220	322	11	173	5 18	9 0.1	17 84.1
292824	100	102	2	1.28	6022	13	15	2.8	2,88	0.7	12	3	6	43	0.1	1.35	13	10	0.2	67	17	103	1	1.09	0.16	0.15	1380	154	5	50	2 15	8 0.1	4 45
292825	102	104	2	1.83	2030	2	14	0.3	1.32	0.59	25	1	1	21	0.1	1.43	2	3	0.1	62	17	66	1	0.89	0.12	0.05	1370	133	4	47	29	4 0.0	07 24.1
292826	104	106	2	1.76	545	8	6	0.1	1.57	0.89	11	3	1	116	0.1	1.78	ť	9	0,1	58	12	144	12	2.24	0.37	0.22	1190	179	7	109	4 12	4 0 1	2 42.9
292827	106	108	2	2.10	385	3	5	0.1	1.01	0.44	5	1	1	46	0.1	1.77	2	6	0.1	18	4	47	1	0.67	0.06	0.1	1010	128	5	44	2 10	3 0 0	16.3
292828	108	110	2	2.07	7	1	2	0.1	1.19	0.5	2	1	3	35	0.1	2.25	4	6	0.1	6	2	61	1	0.71	0.07	0.14	500	166	š	55	2 13	3 0.0	11 16 1
292829	110	112	2	1.91	15	2	2	0.1	0.94	0.15	3	1	3	52	0.2	2.83	10	5	0.1	5	5	49	1	0.45	0.04	0.19	520	287	3	36	1 11	3 0.0	11 6
292830	112	114	2	1.96	2	3	2	0.1	1.09	0.23	3	1	ž	71	0.2	2.92	4	3	0.1	5	2	54	1	0.6	0.14	0.16	490	180	3	43	1 12	3 0.0	1 8
292831	114	116	2	2.08	377	2	5	0.2	1 86	0.75	6	2	1	23	01	2 13	1	10	0.1	49	11	98	1	0.0	0.08	0.07	1270	248	6	56	3 12 1	5 0.0 5 0.0	17 384
	+ + **	119	-			. 0	<i>.</i>	v	1.00	J., U	-	-		~ ~			•		÷. I					v.v	0.00	5.01	1410	470	v	00	ל יכו יי	v v.u	n 00.4

÷

•

J97-9	From	То	Length	Recov.	CU	Cu	MO	Au-fire	AG	FE	MG	AS	SB	BI	BA	BE	CA	РВ	zŃ	CD	NI	со	CR V	v	AL	NA	к	Р	MN	ι.	SR	GA 1	ΓH L	J	тι	v
Sample	metres	metres	metres	metres	PPM	%	PPM	PP8	PPM	%	%	PPM	PPM	PPM	РРМ	РРМ	%	₽₽М	РРМ	PPM	PPM	РРМ	PPM PP	РМ	%	%	%	PPM	PPM	РРМ	PPM	ррм р	PM PF	M	%	PPM
292832	116	118	2	2.10	79		3	3	0.1	1.86	1.15	8	2	1.	. 36	0.1	1.22	1	11	0.1	33	9	124	1	1.25	0.13	0.07	1490	218	9	50	4	16	5	0.14	39
292833	118	120	2	2.37	69		3	3	0.1	3.11	2.01	5	2	1	254	0.1	2.41	1	16	0.1	56	17	163	1	2.49	0.2	0.65	1390	383	15	94	6	23	9	0.26	98.8
292834	120	122	2	2.00	163		1	2	0.1	3.26	1.89	7	3	1	347	0.1	2.77	1	25	0.1	73	17	189	2	4.45	0.55	0.61	1360	388	18	253	7	22	9	0.23	91
292835	122	124	2	2.12	4865		12	46	4.1	3.08	0.7%	12	2	11	108	0.1	3.8	50	82	0.9	136	29	80	2	3.8	0.49	0.16	1390	385	8	205	5	16	9	0.1	38.9
292836	124	126	2	2.04	2195		5	17	0.7	2.54	0.94	<u> </u>	5	1	157	0.1	3.56	21	21	0.2	74	18	102	1	4.3	0.6	0.29	1260	341	8	277	6	15	7	0.13	47.3
292837	126	128	2	1.81	652		3	16	0.2	2.41	0.84	7	2	1	165	0.1	2,13	1	16	0.1	44	15	86	1	2,79	0.4	0.26	990	216	7	128	5	14	7	0.15	58,1
292838	128	130	2	1.44	404		1	10	0.2	3.59	1.47	8	4	1	276	0,1	1.76	1	23	0.1	45	20	121	1	3.11	0.45	0.69	950	268	12	87	7	22 1	0	0.28	130.6
292839	130	132	2	2.06	312		1	4	0.1	3.15	1.57	7	2	1	213	0.1	1.88	1	16	0.1	53	18	14 <b>1</b>	1	2.6	0.26	0.44	940	277	14	89	5	20	9	0.27	111.4
292840	132	134	2	2.50	954		2	21	0.3	2.84	1.3	14	3	1	126	0.1	1.38	1	20	0.1	41	17	140	2	2	0.23	0.24	1070	243	11	62	5	19	8	0.22	81.2
292841	134	136	2	2.17	115		3	3	0.1	3.45	2.29	7	4	1	500	0.1	2.6	4	20	.0.1	81	20	256	1	4.49	0.53	1,25	1070	259	14	132	7	23 1	0	0.22	117.8
292842	136	138	2	2.13	93		6	2	0.1	3.49	2.33	8	4	1	492	0.1	2.21	1	23	0.1	86	20	270	2	4.44	0.47	1.1	1100	226	16	157	7	23 1	0	0.22	118.6
292843	138	140	2	2.00	339		2	11	0.1	2.79	1.38	6	3	1	280	0.1	1.5	1	16	0.1	50	16	128	1	2.37	0.24	0.49	780	218	10	105	5	18	8 (	0.17	89.7
292844	140	142	2	2.01	232		2	3	0.1	3.51	2.14	2	3	1	476	0.1	1.75	1	21	0.1	70	21	211	2	3.37	0.31	0.93	1040	285	16	111	7	24 1	0	0.3	133.9
292845	142	144	2	1.96	664		3	5	0.2	2.63	1.31	6	2	1	240	0.1	1.42	1	13	0.1	50	16	118	1	2.08	0.25	0.48	1120	219	11	55	5	18	7 (	0.24	91.5
292846	144	146	2	2.06	3386		14	14	0.3	3.34	1.83	5	2	1	284	0.1	1.33	1	16	0.1	62	20	152	1	2.37	0.24	0.72	1060	242	15	60	6	22 1	0	0.28	116.1
292847	146	148	2	1.98	3943		7	17	0.3	2.68	1.14	1	2	1	61	0.1	2.28	5	13	0.1	48	16	119	1	1.86	0,2	0.14	870	210	10	43	5	17	7 (	0.21	87.7
292848	148	150	2	1.96	775		12	7	0.1	3.69	2.53	4	3	1	311	0.1	1.95	1	15	0.1	86	21	228	1	3.11	0.24	0.82	1100	307	20	84	7	26 1	1 (	0.29	115.8
292849	150	152	2	1.66	9665		270	13	1.7	3.21	1.17	7	1	1	133	0.1	4.01	16	15	0.3	55	13	122	1	1.67	0.18	0.34	1070	353	9	67	4	19	9 1	0,15	59
292850	152	154	2	1.83	930		2	7	0.1	3.02	1.94	2	2	1	405	0.1	1.04	2	15	0.1	62	17	137	2	1.85	0.11	0.83	1070	286	10	49	4	24	9 (	0.26	101.1
292851	154	156	2	2.30	674		2	5	0.1	2.47	1.59	3	1	1	222	0.1	1.16	2	12	0.1	55	15	96	2	1.65	0.11	0.39	1090	235	11	47	4	19	8	0.2	78.6
292852	156	158	2	1.98	4727		7	14	1.7	2.72	1.48	3	1	1	185	0.1	1.71	7	13	0.1	69	15	105 30	)6	1.82	0.16	0.56	1220	277	9	79	4	21	9 (	0.16	68.2
292853	158	160	2	1.95	457		3	5	0.1	3.61	2.44	2	2	1	622	0.1	0.58	1	14	0.1	66	20	152	5	2.13	0.07	1.36	1050	305	17	31	5 3	27 1	2 (	0.33	131.6
292854	160	162	2	2.06	1072		8	7	0.3	2.97	1.91	2	1	1	341	0.1	0.8	1	13	0.1	74	17	136	2	1.78	0.11	0.76	1010	270	12	42	4	22	9 (	0.24	92.6
292855	162	164	2	1,99	911		15	6	0.2	2.67	1.79	1	1	1	187	0.1	1.74	1	15	0.1	86	17	135	4	2.73	0.43	0.38	1210	270	15	156	5 3	20	8	0.2	67.7
292856	164	166	2	2.08	422		18	8	0,1	2.62	1.71	3	2	1	86	0.1	3.47	1	13	0.1	87	17	135	3	3.07	0.42	0.23	1130	297	16	215	5 3	20	9 (	0.18	65.7
292857	166	168	2	1.92	2697		17	12	0,8	2.84	1.85	1	2	1	127	0.1	2.71	1	15	0.1	83	18	135	2	3.65	0.94	0.37	1150	264	17	334	6 3	21	9	0.2	75.2
292858	168	170	2	1.94	289		1	4	0.2	2.37	1.66	2	1	1	151	0.1	1.87	1	16	0.1	79	18	109	2	2.92	0.35	0.31	1210	208	16	181	5	18	7 (	0.18	55.8
292859	170	172	2	1.98	202		13	4	0.1	2,55	1.82	3	2	1	104	0.1	2,19	1	14	0.1	90	18	115	3	3.52	0.93	0.24	1170	269	19	321	5	19	8 (	0.18	63
292860	172	174	2	2.09	201		2	6	0.1	2.76	1.88	4	1	1	119	0.1	2,31	1	16	0.1	99	21	126	2	3.02	0.36	0.3	1180	256	19	148	6 3	20	9	0.2	71.5
292861	174	176	2	2.05	324		1	7	0.2	2.52	1.59	3	3	1	154	0.1	2.5	1	10	0.1	80	16	109	2	3.72	1.01	0.34	1190	229	16	305	5	19	8 (	0.18	65.7
292862	176	178	2	1.98	2514		29	14	1.9	3,36	1.8	3	1	1	186	0.1	1.53	27	16	0.1	66	23	158	2	2.48	0.44	0.75	1040	264	14	121	5 ;	23 1	1 (	0.22	95.3
292863	178	180	2	2.01	500		2	7	0.3	2.43	1.15	2	1	1	181	0.1	1.27	1	8	0.1	36	12	123	2	1.2	80.0	0.34	1080	245	10	27	4	19	8 (	0.21	77.4
292864	180	182	2	1.96	98		19	5	0.1	3.27	1,85	1	1	1	454	0.1	0.75	1	17	0.1	60	18	214	1	1.85	0.1	0.86	1080	289	15	26	5 3	25 1	0 0	0.28	108.2
292865	182	184	2	2.01	27	•	5	3	0.1	3,33	1.83	2	1	1	496	0.1	0.76	1	27	0.1	52	18	169	2	1.98	0.1	0.84	1100	323	16	32	6 3	25 1	0 0	0.29	110.1
292866	184	186	2	1.86	73		1	3	0.1	2.87	1,13	9	2	1	103	0.1	1.66	1	14	0.1	39	16	100	1	2.08	0.23	0.19	930	229	14	69	6	19	9 (	0.23	86.7
292867	186	188	2	2.01	1		1	3	0.1	3.75	2.14	1	2	1	468	0.1	0.71	1	40	0.1	50	19	181	2	2.03	0.1	0.81	1190	397	20	31	6 2	28 1	2 (	0.32	126.6
292868	188	190	2	1.87	1		6	6	0.1	2.57	1.3	2	1	1	152	0.1	1.44	2	20	0.1	41	13	137	1	1.42	0.05	0.26	1160	251	16	28	4 2	20	8	0.2	78.8
292869	190	192	2	2.05	6		4	4	0.1	3.61	2.16	1	1	1	373	0,1	1.6	1	31	0.1	62	19	204	2	2.87	0.22	0.61	1110	368	21	74	7 2	27 1	1 (	0.31	122.6
292870	192	194.45	2.45	2.45	59		4	4	0.1	3.03	1.56	2	1	1	302	0.1	0.91	1	15	0.1	46	16	136	2	1.59	0.07	0.53	1200	261	14	24	6 2	23	9 0	1 29	103.6
			_,,_				•					-	•		**=	•••		•						-			2.20		20,		~~~			- (		

.....

.

JEAN P	ROPERTY	- CORE	RECOVE	RY AND S	SAMPLE AN	AL YSES	\$									·																		
J97-10	From	To	Length	Recov.	CU Cu	MO	Au-fire	AG	FE	MG	AS	SB	BI	BA	BE	CA	PB	ZN	CD	NI	co	CR	w	AL	NA	к	Р	MN	LI	SR	GA TH		TI	v
Sample	metres	metres	metres	metres	PPM %	PPM	PPB	PPM	%	%	PPM P	PM	PPM	PPM	PPM	%	PPM	PPM I	PPM	2PM	PPM	PPM F	PPM	%	%	%	PPM	PPM F	PM	PPM I	PPM PPM P	PM	% I	PPM
292871	16.48	18	1.52	1.50	11	9	1	0.1	1.19	0.15	1	1	17	44	0.3	2.54	8	15	0.1	5	3	30	1	0.42	0.03	0.13	540	134	1	44	1 13	4 (	01	73
292872	18	20	2	1.98	16	12	1	0.1	1.49	0.13	1	1	11	61	0.3	2.61	6	13	0.1	6	6	39	1	0.49	0.04	0.17	530	132	2	46	1 13	4 (	0.01	81
292873	20	22	2	1.97	59	4	3	0.1	2.78	2.19	2	4	5	373	0.1	2.05	5	20	0.1	87	15	284	2	3.07	0.2	1.23	640	242	10	146	5 23	9 (	) 17	83
292874	22	24	2	1 69	80	1	3	0.1	3.35	2.81	· 5	3	1	542	0.1	2.44	6	24	0.1	89	19	246	2	3.53	0.19	1.43	680	384	13	159	6 27	10	021	1117
292875	24	26	5	2 16	675	5	6	04	1.84	0.77	5	2	1	187	01	2.88	1	10	0.1	143	20	88	2	3.83	0.19	0.15	1000	111	12	353	4 12	6 0	0.06	22.8
292876	26	28	2	1 98	197	1	2	0.1	3.3	2 17	3	Ā	1	337	0.1	2.32	1	17	0.1	216	32	286	1	4 1	0.10	0.10	1040	209	18	341	5 24	10 0	) 15	76 1
202010	28	30	2	2 00	• 9	2	1	0.1	3.56	3 12	1	3	4	625	0.1	1.55	1	23	0.1	96	21	253	1	3.8	0.1	1.53	720	272	20	160	7 28	11 (	126 1	137 6
202071	30	32	5	1 91	997	3	7	0.1	3.03	2 47	2	ă	4	296	0.1	1.00	2	17	0.1	79	17	223	1	2 77	0.20	0.97	970	202	17	89	6 24	α <i>(</i>	126 1	121 7
202070	32	34	5	1.86	2611	ž	20	0.7	2.02	0.92	3	ž	i	60	0.1	1.52	2	18	0.1	57	14	01	4	1 81	0.21	0.16	1270	151	ä	04	5 14	å d	117	61.7
202010	34	36	2	1.80	487	5	5	0.1	2.02	1 13	Ă	2	4	87	0.1	0.98	2	15	0.1	57	13	121	1	1 23	0.11	0.10	1380	172	10	32	4 17	é í	110	68.8
202000	36	30	2	2.00	486	3	3	0.1	1.86	1.10	Ā	1	4	85	0.1	1 1 2	- 1	16	0.1	47	11	105	4	1.20	0.11	0.27	1360	176	11	JZ 41	~ 1/ A 1A	5 0	1.10	60.0 60.4
292001	30	40	2	2.00	400	17	5	0,1	3.10	1.13	4	्र	4	220	0.1	1.12	4	10	0.1	47 60	16	100	2	1.02	0.1	0.23	1400	170	45	41	4 14 7 02	10 C	1.10 1.17 4	09.4
292002	30	40	2	2.22	437	494	0	0.1	3.10	2.00	~	2	-	225	0.1	1.03	1	40	0.1	55	10	202	4	2.9	0.30	1 40	1000	202	10	444	0 20	10 0	).ZI I NDE 4	107.2
292000	40	42	2	1.87	4496	104	17	1.6	3.30	4.00	1	2	-	333	0.1	1.71	7	10	0.1	40	10	400	-	3.0	0.27	1.13	000	204	10	144	6 20 6 05	10 (	7.20 I	07.3
292004	42	44	2	2.02	4100	44	11	1.0	2.4	1.43	2	4	1	101	0.1	2.00	4	13	0.1	49	10	142	3 E	1.03	0.11	0.37	700	1/0	14	00	6 ZQ 5 D1	11 L	1.12	01.Z
292885	44	40	2	2.03	3106	3/	11	1.1	2.30	1.07	~	~	1	101	0.1	2.09		14	0.1	33	10	113	5	1.00	0.11	0.49	100	169	11	92	5 21	8 (	1.07	50.5
292886	40	40	2	1.50	4604	110	21	1.7	2.75	1.34	1	1	1	124	0.1	1.21	9	20	U.Z	40	10	12/	2	1.53	0.11	0.35	1070	223	11	5/	4 21	8 U	7,14 	58.8
292887	48	50	2	2.01	656	8	3	0.1	3.41	2.15	4	3	1	296	0.1	1,19	1	22	0.1	65	17	218	3	2.45	0.17	0.78	1300	2//	16	71	/ 25	10 0	0.28 1	00.1
292888	50	52	2	1.82	111	33	6	0.2	2.16	0.85	3	1	1	83	0.1	1,34	3	15	0.1	55	13	87	1	1.27	0.15	0.18	1590	1/4	8	42	4 15	6 (	0.15	44.3
292889	52	54	2	2.20	1009	29	5	0.2	2.46	1.16	5	2	1	94	0.1	1.08	3	17	0.1	50	16	79	1	1.33	0.14	0.23	1580	215	10	38	4 17	10	0.18	52.1
292890	54	56	2	2.05	823	35	10	0.1	3,12	1.84	3	3	1	331	0.1	1.34	1	18	0.1	60	17	194	2	2.51	0.25	0.73	1340	300	13	88	6 22	9 (	.24	80.8
292891	56	58	2	2.02	980	14	(	0.4	3,36	2,09	3	2	1	218	0.1	1.76	22	69	0.7	51	15	105	1	2.24	0.09	0.74	1540	3//	15	62	/ 25	10 0	.24	71.3
292892	58	60	2	2.12	934	19	4	0.3	2,39	0.84	4	2	1	62	0.1	0.92	2	14	0.1	55	15	92	1	0.92	0.1	0.18	1610	183	7	29	4 16	7 0	0.15	51.2
292893	60	62	2	2.03	898	2	6	0,3	2,98	1.31	2	2	1	55	0.1	1.21	3	21	0.1	57	18	90	2	1.47	0.12	0.16	1570	260	13	46	5 20	9	0.2	62.5
292894	62	64	2	2.05	1794	1	14	0.5	2.93	1.28	3	2	1	100	0.1	2.14	3	23	0.1	39	18	54	3	2.67	0.55	0.24	1350	350	11	221	5 20	9 (	0.18	86
292895	64	66	2	2.16	5661	71	23	1.5	4.05	1.77	7	1	1	173	0.1	2.39	8	29	0.1	38	20	46	1	2.87	0.37	0.63	1300	508	13	181	6 26 [·]	12 0	0.22 1	38.3
292896	66	68	2	1.80	6908	10	46	2,9	4.1	2,08	3	2	1	121	0.1	2.82	8	28	0.2	37	21	57	2	3.37	0.4	0.38	1360	317	21	258	9 27 1	13 0	0.28 1	68.8
292897	68	70	2	1.99	8123	9	106	2	3.73	1.6	2	1	1	101	0.1	2.24	8	23	0.2	31	17	37	3	2.88	0.53	0.29	1320	237	18	305	7 24	11 0	.21	129
292898	70	72	2	2.05	5981	67	47	2.2	3.6	1,12	1	1	1	82	0.1	2.6	7	22	0.1	35	17	31	2	3.01	0.67	0.21	1380	224	13	287	6 21	11 C	0.16 1	25.8
292899	72	74	2	2.02	5229	216	36	1.7	3.09	1.45	1	1	1	70	0.1	1.49	5	19	0.1	50	17	70	16	1.67	0.11	0.17	1460	194	13	62	5 21	9 0	.21	94.1
292900	74	76	2	2.17	2013	63	16	1.5	3	2.14	2	1	1	174	0.1	0.98	3	18	0.1	57	14	192	3	1.84	0.09	0.45	1320	261	18	45	6 24	9 C	.27	91.9
292901	76	78	2	1.95	2063	66	18	1	2.52	1.41	2	1	1	99	0.1	1.44	1	14	0.1	50	12	112	1	1.53	0.09	0.24	1310	198	12	65	5 19	7 C	.17	66.6
292902	78	80	2	2.01	3524	19	17	0.9	2.46	1.27	2	2	1	69	0.1	2.3	1	16	0.1	31	12	48	5	2.64	0.25	0.17	1370	185	14	162	6 16	7 0	.15	93.2
292903	80	82	2	1.96	4573	143	29	2.1	2.65	0.81	4	1	1	29	0.1	3.14	5	19	0.2	27	11	34	4	2.9	0.32	0.12	1290	170	9	233	5 15	8	0.1	85.7
292904	82	84	2	1.89	3133	19	26	1.3	2.76	1.25	2	1	1	110	0.1	2.18	2	19	0.1	37	17	59	10	2.77	0.31	0.29	1380	188	13	159	6 18	8	0.2	93.2
292905	84	86	2	2.00	1720	25	10	1	2.81	1.77	3	2	1	120	0.1	1.66	2	17	0.1	55	15	129	1	1.79	0.1	0.53	1510	208	15	54	6 21	8 0	.24	82.4
292906	86	88	2	2.08	2748	64	17	1	2.56	1.45	2	1	1	72	0.1	1.1	3	17	0.1	51	14	97	1	1.36	0.09	0.25	1550	157	12	40	5 19	7	0.2	68,6
292907	88	90	2	2.00	>10000 1.91	1 102	82	3.4	4.16	1.48	4	1	6	82	0.1	1.79	18	36	0.2	39	15	58	1	2.17	0.24	0.27	1540	174	13	122	6 25 f	3 0	.13 1	04.5
292908	90	92	2	1.88	9078	171	50	2.4	3.74	1.06	4	1	1	38	0.1	2.24	9	22	0.1	32	12	43	1	2.32	<b>D</b> .37	0.14	1470	176	11	135	6 22 1	2 0	.15 1:	23.9
292909	92	94	2	1.77	4860	22	29	1.2	3.08	0.68	5	1	1	32	0.1	2.41	6	17	0.1	25	11	30	1	2.76	0.42	0.11	1470	155	8	215	6 • 16	9 0	.11 1	11.9
292910	94	96	2	2.00	>10000 1.32	2 682	45	5,9	3,75	0.99	7	1	7	34	0.1	3.55	18	27	0.2	27	15	52	1	2.85	0.4	0.18	1530	257	11	213	5 21 1	1 0	.11 10	00.9
292911	96	98	2	2.05	4455	37	32	1.1	3.85	1.56	4	1	1	62	0.1	2.52	5	25	0.1	38	20	37	1	3.25	0.66	0.21	1370	241	18	185	7 24 1	1 0	.19 14	49.8
292912	98	100	2	1,96	1506	10	11	0.5	2.63	1.16	2	2	1	81	0.1	2.33	1	14	0.1	36	14	61	2	3.16	0.83	0.19	1250	206	12	217	5 17	8 0	.17 11	10.1
292913	100	102	2	1.93	1030	4	8	0.2	3.93	2.36	3	1	1	132	0.1	1.86	3	26	0,1	37	20	54	3	3.07	0.32	0.38	1300	346	24	97	8 28 1	2 0	.31 1	90.7
292914	102	104	2	1.98	167	4	2	0.1	3.17	1.78	1	3	1	176	0.1	1.84	1	20	0.1	36	18	67	1	2.54	0.43	0.47	1190	298	16	90	6 22	9 0	.26 14	43.1
292915	104	106	2	2.00	1716	9	9	0.3	3.56	2.12	1	2	1	198	0.1	2.08	2	24	0.1	77	21	199	2	3.07	0.59	0.58	1120	316	20	104	7 25 1	1 0	.28	145
292916	106	108	2	1.96	9480	46	50	2.4	3.78	1.9	4	2	1	81	0.1	2,36	9	29	0.2	41	17	69	1	2.31	0.25	0.29	1490	221	17	105	7 25 1	1 0	.23 14	43.5
292917	108	110	2	1.78	2422	10	17	0.8	2.92	1.14	2	2	1	32	0.1	2.41	2	22	0.2	35	16	55	1	2.05	0.36	0.09	1240	265	12	114	5 17	90	.17	110
292918	110	112	2	1.97	1230	5	8	0.3	2.75	0.8	2	3	1	37	0.1	2.12	2	19	0.1	45	16	54	1	2.12	0.32	0.09	1370	204	12	140	5 16	8 0	.15 9	91.3
292919	112	114	2	2.01	7500	156	41	1.4	2.84	0.79	6	1	1	22	0.1	2.1	8	39	0.3	46	18	71	3	1.47	0.16	0.08	1380	190	9	70	5 17	9 0	.15 7	76.2
292920	114	116	2	2.10	1396	10	5	0.3	3.28	1	4	1	1	27	0.1	1.72	2	25	0.1	54	21	73	2	1.53	0.11	0.08	1340	246	11	49	5 19 1	0 0	.18 10	02.9
292921	116	118	2	2.01	635	5	1	0.1	3.08	0.76	4	1	1	27	0.1	1.24	3	19	0.1	55	20	77	1	1.2	0.21	0.06	1440	215	8	46	4 17	90	.16 9	94.8
292922	118	120	2	1.98	1915	8	8	0,6	3.02	0.84	4	1	1	30	0.1	1.35	2	24	0.1	56	21	83	1	1.53	0.26	0.07	1400	206	9	74	4 18	90	.16 8	89.6
292923	120	122	2	1.98	2719	4	29	0.6	3.33	0.66	9	2	1	39	0.1	5.07	3	23	0.1	53	18	67	2	3	0.28	0.11	1320	271	10	201	5 18 1	0 0	14 8	86,6
292924	122	124	2	1.93	2623	25	11	0.6	2.54	0.64	4	1	1	26	0.1	1.59	5	20	0.1	38	13	61	1	1.32	0.23	0.06	1450	189	7	74	3 15	8 0	.12 8	80.9

.

í ) -

																	•														
J97-10	From	То	Length	Recov.	CU (	Cu MO	Au-fire	AG	FE	MG	AS SB	BI	BA	BE	CA	PB	ZN	CD	NI	co	CR	W	AL	NA	к	Р	MN LI	SR	GA TH	U	TI V
Sample	metres	metres	metres	metres	РРМ	% PPM	PPB	РРМ	%	%	ррм ррм	РРМ	PPM	PPM	%	PPM	PPM I	РРМ	РРМ	РРМ	PPM P	PM	%	%	%	PPM	PPM PPM	PPM	PPM PPM F	PM	% PPM
292925	124	126	2	1.92	1945	20	) 6	0,4	2,65	0.55	51	1	26	0.1	1.61	3	22	0.1	38	13	69	2	1,55	0.34	0.06	1440	187 7	140	4 15	8 (	0.14 95.2
292926	126	128	2	1.78	919	6	5 4	0.2	2.42	0.57	2 1	1	49	0.1	1.68	1	15	0.1	26	10	48	2	2.14	0.71	0.1	1400	190 6	241	4 13	7	0.1 91.2
292927	128	130	2	1.84	4431	202	2 14	1.7	3,65	0.87	61	1	55	0.1	3.61	11	28	0.1	37	14	74	3	2.6	0.53	0.15	1460	478 11	152	5 20	11 (	0.11 124.5
292928	130	132	2	2.01	1941	6	20	0.4	3,39	1.04	4 1	1	53	0.1	2.22	3	21	0.1	41	16	66	1	2.42	0.29	0,13	1260	328 17	126	6 20	10 (	0.16 126.3
292929	132	134	2	1.98	248	4	1	0,1	2.49	1.11	`42	1	138	0.1	1.81	1	16	0.1	46	14	123	3	2.31	0.32	0.33	1270	221 13	103	5 17	7 0	0.19 88
292930	134	136	2	1.94	1874	20	24	0.6	3.94	1.69	32	1	204	0.1	1.54	5	26	0.1	55	18	137	1	1.98	0.19	0.43	1350	329 19	85	6 26	12 (	0.29 121.9
292931	136	138	2	2.01	1677	16	8	0.4	3.32	0.59	4 1	1	118	0.1	1.9	3	18	0.1	33	14	69	2	2.08	0.4	0.09	1430	203 8	116	5 17	10 (	0.16 115.9
292932	138	140	2	2.05	1501	5	i 10	0.4	2.78	1.43	4 1	1	131	0.1	2	4	21	0.1	48	17	120	2	1.6	0.15	0.23	1520	255 18	72	5 21	9 (	0.24 73.5
292933	140	142	2	1,74	2668	23	53	0.7	2,11	1,05	3 1	1	57	0.1	1.46	4	18	0.1	37	11	63	1	1.03	0.1	0.11	1670	177 13	59	4 16	6 (	0.14 48.4
292934	142	144	2	1.91	482	4	3	0.1	1.98	0.91	4 1	1	73	0.1	0.92	1	15	-0.1	36	11	66	1	1.06	0.11	0.11	1590	184 13	52	4 16	6 (	0 15 43 2
292935	144	146	2	2.10	1292	4	16	0.3	2.02	1.15	6 1	1	135	0.1	1 46	3	15	01	42	13	75	1	1.31	0 11	0.11	1430	186 14	91	4 16	6 (	0 17 61
292936	146	148	2	1.80	1191	43	7	0.2	2.6	1 14	4 1	1	122	01	1 48	2	18	01	34	12	62	i	1.63	0.19	0.11	1370	247 14	92	5 17	8 1	0 19 117 7
292937	148	150	2	1 82	430	5		0.1	1.68	0.75	<u> </u>	1	66	0.1	0.9	2	14	0.1	29	ι. ο	80	2	0.81	0.1	0.06	1560	162 0	57	3 13	5	01 45
202038	150	152	2	2.16	220	, a	्य	0.1	1 70	0.10	5 1	1	73	0.1	1.5	2	18	0.1	30	11	89	4	1 02	0.1	0.00	1520	205 40	07	3 15	ŝ	0.1 44.3
202020	150	154	2	2.10	1530	12	, U	0.1	3.02	0.00	5 1	4	207	0.1	1.0	ŝ	20	0.1	20	12	00	47	2.00	0.1	0.00	1140	200 10	437	5 15	° '	0.1 44.0
202040	104	104	2	2.01	602	12	. 10	0.4	2.02	0,00	4 2	4	100	0.1	0.70	4	20	0.1	20	10	40	12	2.05	0.20	0.12	1140	210 12	107	5 25	9 (	0.10 104.3
292940	104	100	4	2,13	4002		, i	0.1	3.22	0.07	4 4		100	0.1	2.12		22	0.1	20	13	40	4	3.04	0.55	0.12	1340	202 10	232	/ 19	10 0	0.16 136.2
292941	100	100	4	1.79	100	1		0.1	3,54	1.10			755	0.1	3.07	1	23	0.1	31	16	59	<u>ى</u>	4.45	0.62	0.23	1360	336 75	299	8 21	11 U	0.16 138.3
292942	158	160	2	1.98	8515	12	58	3.5	3,88	0.64	0 1	2	104	0.1	2.72	9	51	0,3	76	32	48	4	2.85	0.37	0.07	1430	213 8	197	6 21	12 0	0.12 98
292943	160	161	1	0.93	8430	40	59	3	4.36	0.66	6 1	_ 2	147	0.1	3.31	7	41	0.3	67	31	41	9	3.39	0.46	0.09	1330	236 9	232	6 22	13 (	0.13 98.9
292996	161	162	1	1.02	4698	36	18	1.4	4.1	1.05	15 <5	<5	180 <	<.05	2.98	14	27 <	-1	30	13	29 <	:10	1.42	0.19	0.23	1370	490 n/a	310	n/an/an	/a (	0.03/ 86
292945	162	163	1	1.03	985	195	6	0.1	1.89	0.66	4 1	1	125	0.1	1.01	4	13	0.1	16	6	177	1	0.88	0.1	0.11	910	207 E	162	3 24	6 (	0.03 39.7
292946	163	164	1	0.97	491	3	i 6	0.1	1.86	0.87	1 1	1	180	0.1	1.9	4	15	0.1	13	6	86	2	0.73	0.06	0.16	900	308 E	153	3 25	6 (	0.04 37.4
292947	164	165	1	1.05	520	34	11	0.1	1.88	0.77	22	1	315	0.1	0.8	5	15	0.1	14	6	167	2	0.79	0.09	0.12	880	217 7	111	3 24	6 (	0.04 38.7
292948	165	166	1	0.96	287	11	5	0.1	1.74	0.7	32	1	111	0.2	2.01	4	16	0.1	13	6	93	3	0.72	0.06	0.09	930	302 4	174	3 22	5 (	0.02 34.7
292949	166	167	1	0.97	1182	196	5	0.1	1.96	0.64	41	1	140	0.3	2.05	7	12	0.1	15	7	94	3	0.71	0.06	0.07	960	217 3	188	2 24	6 (	0.01 34.6
292950	167	168	1	1.01	1011	41	7	0.1	2.18	0.79	32	1	106	0.2	1.07	7	17	0.1	15	7	87	3	0.89	0.06	0.09	970	165 €	145	4 26	7 (	0.02 42.1
292951	168	169	1	0.99	1501	183	8	0.1	1.9	0.71	3 1	1	99	0.2	1.45	6	13	0.1	14	7	61	3	0.72	0.05	0.08	1050	187 5	141	3 24	6 (	0.02 37.9
292952	169	170	1	0.96	6327	7842	45	4.9	1.48	0.42	135 1	5	30	0.1	2.12	24	23	0.1	11	1	132	10	0.17	0.02	0.05	400	393 1	74	1 16	5 (	0.01 0.1
292953	170	171	1	1.01	962	294	. 9	0.3	1.76	1.13	39 10	1	126	0.3	2,39	8	19	0.1	13	5	44	4	0.74	0.04	0.09	890	288 6	207	2 23	6 (	0.01 31.6
292954	171	172	1	1.02	972	135	6	0.1	2.1	0.84	4 1	1	276	0.1	1.41	5	17	0.1	16	6	108	3	1.04	0.07	0.13	1090	254 8	178	4 26	6 (	0.03 46.4
292955	172	173	1	1.00	655	492	8	0.2	2.08	1.07	82 24	1	135	0.4	3.13	9	33	0.1	12	6	32	3	0.49	0.04	0.09	870	420 3	186	1 24	7 (	0.01 30.8
292956	173	174	1	0.98	1196	760	18	0.3	1.76	0.84	55 3	2	111	0.5	2.41	13	24	0.1	12	5	96	2	0.77	0.04	0.18	960	309 4	167	1 24	6 0	0.01 18.6
292957	174	175	1	1.02	1244	631	9	0.4	1.85	0.61	67 2	1	269	0.4	1.83	12	21	0.1	14	7	45	3	0.47	0.03	0.14	990	245 3	119	1 21	6 (	0.01 12.3
292958	175	176	1	0.97	1117	252	6	0.2	1.93	0.88	64 6	1	308	0.5	2,41	7	22	0.1	12	6	88	3	0.69	0.04	0.18	950	291 3	157	2 23	6 0	0.01 26.7
292959	176	177	1	0.95	457	332	7	0.1	1.86	0.71	5 1	1	543	0.1	1.94	3	15	0.1	12	6	43	5	0.58	0.04	0.21	1070	283 4	155	2 23	6 (	0.03 32.8
292960	177	178	1	0.90	386	58	6	0.1	2.15	0.99	32	1	761	0.1	1.79	3	21	0.1	16	8	151	2	0.83	0.08	0.23	1040	323 7	158	3 26	7 0	0.06 45.6
292961	178	179	1	1.00	915	760	15	0.1	1.83	0.91	4 1	1	436	0.1	1.93	4	14	0.1	16	6	60	5	0.8	0.04	0.27	1050	235 8	201	2 23	6 0	0.05 38.2
292962	179	180	1	1.01	531	340	6	0.1	1.91	1.02	3 1	1	189	0,2	2.2	5	15	0.1	14	6	92	4	0,6	0.05	0.2	1070	299 4	196	2 25	6 0	0.02 34.7
292963	180	181	1	0.98	943	188	9	0.5	2.01	1.1	38 4	1	596	0.2	2.51	7	26	0.1	14	6	58	4	0.61	0.04	0.22	1050	335 4	177	2 25	6 0	03 34.5
292964	181	182	1	0.90	85	9	4	0,1	1.97	1.12	3 1	1	336	0.1	2.22	4	19	0.1	15	8	103	1	0.68	0.06	0.21	1030	335 6	151	3 26	6 0	06 43 5
292965	182	183	1	1.00	150	83	5	0.1	1.81	1.01	2 1	1	419	0.1	2	3	20	0.1	15	8	53	3	0.8	0.04	0.23	1010	352 10	164	3 25	5 0	108 43.5
292966	183	184	1	0.92	147	111	7	0.1	1.83	0.93	2 1	1	579	0.1	1 67	4	20	0.1	16	7	82	3	0.72	0.06	0.18	1040	319 7	154	3 25	6 0	0.06 43 2
292967	184	185	1	0.90	156	11	6	0.1	1 88	0.93	1 1	1	300	0.1	1 44	م	20	0.1	15	R	62	ž	0.72	0.00	0.21	1010	313 0	154	3 25	6 0	08 47 4
292968	185	186	1	0.98	51	378	3	0.1	1.93	0 77	3 1	1	270	0.1	1 4 9	5	22	0.1	16	7	104	2	0.69	0.06	0.18	1100	375 6	132	2 28	7 0	05 44 1
292969	186	187	1	0.98	81	8	4	0.1	2 14	1.01	1 1	1	367	0.1	1 16	1	27	0.1	16	á	69	Ā	0.85	0.00	0.10	1060	314 11	126	2 20	7 0	08 517
202000	197	107	4	0.00	170	156		0.1	1 90	0.87	4 4	4	366	0.1	1.10	2	21	0.1	17	0	02	-	0,00	0.07	0.24	1100	077 7	100	3 20	/ U	0.00 01.7
202071	199	100	1	1.01	07C	100	7	0.1	2 14	1.09	· · ·	4	274	0.1	1.740	5	24	0.1	16	7	60	3	0.72	0.07	0.10	1110	200 44	130	J ∠D	0 0	1.UD 40.9
<i>たぎんぎ(</i>   202072	100	107	1	1.01	210	301	, 0	0.1	2.11	1 15	4 4	1	211	0.1	1.00	2	24	0.1	10	<u>^</u>	00	4	0.09	0.00	0.10	1110	200 11	141	3 30	1 0	07 54.0
232312 202072	100	101	4	0.00	210	2577	9	0.1	4.10	4.4	14 4	4	001	0.1	1.29	4 50	20 64	0.1	10	9 F	90	4 c	0.99	0.08	0.22	1140	314 11	149	3 29	7 0	0.07 54.2
∠323/3 202074	104	100	1	4.04	130	3011	0	0.1	1.90	1.4 4 4	14 l	1	200	0.2	J.14 0 64	50	01	0.1	10	5	29	5	0.64	0.05	0.18	980	3/8 10	231	1 28	/ 0	1.04 26
292914	191	192	1	1.04	432	462	0	0.1	1.70	1.1	10 1		707	0.2	2.34	3	10	U.1	14	5	76	6	0,63	0.05	0.19	1030	303 5	221	1 2/	ь 0	0.02 35.6
292913	192	193	1	1.01	307	2005	о С	0.1	1.71	1.10	10 1	1	313	0.4	0.10	2	19	0.1	12	4	53	ŏ	0.54	0.05	0.17	980	344 2	208	1 27	6 0	0.01 23.7
292976	193	194	1	0.90	432	439	8	0.1	1.65	1.19	2 1	1	800	0.Z	∠.58	3	19	U.1	14	6	94	8	0.65	0.06	0.22	870	385 4	240	1 27	60	0.02 34.2
2929//	194	195	1	1.02	725	346	9	0.1	1.92	1.01	2 1	1	325	0.1	2.09	2	20	U.1	14	8	88	1	0.63	0.05	U,24	1010	337 5	211	2 27	6 0	0.05 42
292978	195	196	1	1.00	339	26		0.1	1.76	1.03	1 1	1	544	0.3	2.24	3	19	0.1	12	6	55	9	0.63	0.05	0.2	1090	344 4	272	2 25	6 0	.02 34.5
297818	196	197	1	0.88	54	815	3	U.1	1.73	0.94	3 1	1	270	<b>V</b> .1	1.58	1	22	U.1	14	6	80	4	0.65	0.06	0.21	960	313 6	199	1 27	6 0	.05 36.2

.

.

J97-10	From	То	Length	Recov.	CU	Cu	MQ	Au-fire	AG	FE	MG	AS	<b>SB</b>	BI	BA	BE	CA	PB	ZN	CD	NI	CQ	CR	W	AL.	NA	ĸ	P	MN	LI	SK	GA	EH	Ĵ	11	v
Sample	metres	metres	metres	metres	PPM	%	PPM	PPB	PPM	%	%	PPM	PPM	PPM	PPM	PPM	%	PPM	PPM	PPM	РРМ	PPM	PPM	PPM	%	%	%	PPM	PPM	PPM	РРМ	PPM F	PPM P	PM	%	РРМ
292980	197	198	1	0.91	56		54	2	0.1	2.02	0.81	1	1	1	291	0.1	1.18	2	23	0.1	14	7	82	2	0.69	0.06	0.21	1020	253	8	132	2	26	7 (	0.08	51.4
292981	198	199	1	1.03	133		270	3	0.1	2.16	1.03	1	1	1	503	0.1	2.01	2	26	0.1	16	8	74	3	0.88	0.06	0.2	1170	368	8	237	2	28	7 (	0.06	50.3
292982	199	200	1	0.96	480		273	5	0.1	2.02	1.02	9	3	1	859	0.1	2.77	5	23	• 0.1	14	7	47	2	0.93	0.06	0.17	1040	431	7	306	2	24	7 (	0.04	42.5
292983	200	201	1	1.00	181		35	3	0.1	1.79	0.94	3	1	1	2283	0.1	2.49	4	23	0.1	13	6	62	4	0.92	0.06	0.18	970	404	8	293	2	25	6 0	0.03	39.3
292984	201	202	1	0.99	219		1919	8	0.1	1.56	0.97	<ul> <li>&gt; 8</li> </ul>	1	1	241	0.2	2.16	2	19	0.1	14	5	54	3	0.86	0.05	0.15	940	314	7	226	1	27	5 (	0.02	29.9
292985	202	203	1	0.97	58		79	4	0.1	1.92	0.79	1	1	1	181	0.1	1.33	4	25	0.1	14	7	56	3	0.81	0.06	0.12	1000	242	8	161	3	28	6 (	0.04	43.8
292986	203	204	1	1.04	188		109	3	0.1	2,05	0.96	1	1	1	187	0.1	1.55	5	25	0.1	17	7	103	3	0.85	0.08	0.14	1010	296	9	130	3	31	7 (	0.05	49.3
292987	204	205	1	0.94	257		199	4	0.1	1.89	0.78	3	1	1	260	0.2	1.4	5	26	0.1	15	7	66	4	0.6	0.07	0.11	1030	280	5	148	2	30	6 (	0,02	43.7
292988	205	206	1	0.84	57		72	3	0.1	1.72	0.86	1	1	1	122	0.1	1.64	3	22	0.1	15	6	79	4	0.49	0.06	0.1	990	275	4	107	2	29	6 (	0.02	37.3
292989	206	207	1	1.10	3		4	1	0.1	1.75	1.04	1	1	1	482	0.3	2.37	2	24	0.1	13	6	48	3	0.43	0.05	0.08	940	332	3	144	2	29	6 (	0.01	31.6
292990	207	208	1	1.02	456		807	5	0.3	1.95	1.17	5	1	1	326	0.5	2.79	4	18	0.1	13	6	76	4	0.88	0.05	0.22	940	430	6	253	1	29	6 (	0.01	31
292991	208	209	1	0.97	247		177	3	0.1	2,25	0.87	1	1	1	345	0.1	0.92	2	19	0.1	16	8	79	3	0.97	0.07	0.32	1120	199	7	173	4	31	7 (	0.09	57,5
292992	209	210	1	0.92	245		1007	4	0.1	2,25	1.05	4	1	1	235	0.1	1.26	1	22	0.1	18	7	82	2	0.99	0.07	0.24	1170	261	10	121	2	30	7 (	0.07	50,2
292993	210	211	1	0.98	23		58	3	0.1	2.15	0.94	4	2	1	163	0,1	0.92	3	24	0.1	16	8	97	2	0.77	0.09	0.11	1180	233	8	129	3	27	7 (	0.04	51.9
292994	211	212	1	0.92	228		265	5	0.1	2.1	1.01	3	1	1	207	0,1	0.74	3	19	0.1	14	8	80	2	0.79	0.07	0.19	1170	214	10	76	3	27	7 (	0.09	56.1
292995	212	212.75	0.75	0.75	48		96	3	0.1	1.98	0.82	1	1	1	142	0.1	1.37	4	19	0.1	13	7	84	3	0.67	0.07	0.12	1200	277	10	115	3	25	6	0.1	55.4

.

. .

.

*

•

•

1

.

	ADCOTY	. CORE	RECOVE			ANAL	YSES																												••
JEAN FF	Eron	To	Longth	Recov	Cit	Cu	MO A	Au-fire	AG	FE	MG	AS	<b>S</b> 8	81	BA	BE	CA	PB	ZN	CD	NE (	co	CR 1	W	AL	NA	ĸ	P	MN I	LI	SR (	GA TI	4 U	Τi	v
397-11	From	motros	motree	metrice	DOM	94	PPM	PPB	PPM	%	%	РРМ	PPM	РРМ	РРМ	PPM	%	PPM	PPM	PPM	РРМ Р	PPM	PPM P	PM	%	%	%	PPM	РРМ Р	PM I	РРМ Р	PM PP	м ррм	%	PPM
Sample	metres	110005	110000	2 20	590	10		6	0.1	2 79	1.56	2	1	1	263	0.1	1.2	1	21	0.1	51	15	149	2	2.06	0.16	0.69	1190	228	12	60	52	08	0.23	88.4
292997	15.8	10	2.2	1.21	716		ă	8	0.3	1.87	0.74	1	1	1	53	0.1	1.04	1	15	0.1	33	10	83	1	0.89	0.11	0.16	1680	159	6	36	31	36	0.13	41.5
292998	18	20	2	1.65	1020		5	23	0.0	1 96	0.67	< 1	2	1	28	0.1	2.22	2	15	0.1	39	13	77	1	1.25	0.1	0.07	1450	176	6	76	41	26	0.11	47.4
292999	20	22	2	4 70	1710		2	22	11	2 43	0.53	2	1	1	33	0.1	2.53	6	22	0.3	45	24	49	3	2.41	0.33	0.06	1400	155	6	139	4 1	47	0.13	52.9
293000	22	24	2	1.76	4974		4	26	2.4	2.70	0.00	1	1	4	46	0.1	2.53	4	26	0.2	45	19	54	1	2.78	0.4	0.11	1450	187	6	163	51	79	0.13	82.9
293001	24	26	2	1.78	43/1		4	49	45.1	2.05	1 17	2	, 2	13	36	0.1	2.37	44	75	1.7	41	15	91	3	1.23	0.08	0.28	1550	190	9	49	62	5 13	0.11	66.2
293002	26	28	2	2.09	>10000	3.02	22	122	13.2	4.20	1.17	4	1	10	54	0.1	1 95	â	24	0.2	35	19	48	5	2.25	0.23	0.19	1450	141	10	96	61	88	0.18	111.6
293003	28	30	2	2.02	6382		2	/6	2.2	2.01	1.13		4	- 1	70	0.1	2.00	Ă	27	0.2	34	17	56	4	2.99	0.38	0.22	1320	184	9	154	6 1	9 10	0.17	122.6
293004	30	32	2	1.92	3457		3	42	1.7	3.24	0.92	~			10	0.1	2.5	-1	22	0.2	28	13	48	4	3 22	0.5	0.15	1300	193	7	195	51	69	0,14	105.1
293005	32	34	2	1.89	2760		4	19	1.1	2.85	0.82	2			40	0.1	2.55	2	20	0.1	36	18	30	7	3.07	0.43	0.08	1280	158	7	168	6 1	7 10	0.12	83.3
293006	34	36	2	1.71	4574		12	54	2.5	3.27	0.65	3	1	1	31	0.1	2.03	2	20	0.0	56	37	45	11	3.56	0.48	0.08	1400	154	7	198	7 1	9 11	0.12	74.1
293007	36	38	2	2.09	4090		11	49	2.9	3.76	0.62	4	2	1	44	0.1	2.12	3	39	0.4	24	10	26	1	2.94	0.54	0.00	1310	244	6	260	6 1	5 8	0.12	74.2
293008	38	40	2	2,00	374		5	7	0.2	2.61	0.78	3	1	1	50	0.1	3.15	1	19	0.2	31	10	33	-	2.04	0.45	0.03	1310	187	õ	188	5 1	4 8	0.12	69.2
293009	40	42	2	1.99	558		3	8	0.3	2,68	0.65	1	1	1	36	0.1	2.52	1	17	0.1	30	10	35	5	3.00	0.45	0.07	1210	201	5	250	7 1	τ Q	0.14	64 4
293010	42	44	2	2.06	588		8	8	0.1	2.83	0.54	3	2	1	30	0.1	3.69	1	16	0.1	39	19	34	5	4.74	0.64	0.00	4000	201	7	402	7 1	0 12	0.14	68
293011	44	46	2	2.00	542		1	6	0.1	3.75	0.46	5	1	1	32	0.1	3.11	1	15	0.1	67	31	32	3	3.56	0.48	0.06	1300	220	6	185	7 0	0 14 0 14	0.11	76.6
293012	46	48	2	2.06	873		1	7	0.1	4.63	0.4	4	2	1	31	0,1	3.33	2	18	0.1	88	38	35	4	4.15	0.59	0.04	1350	209	ç	220	1 4	2 14	0.10	70.0 E0.0
293013	48	50	2	2.01	6015		113	33	2.2	3.25	0.62	5	1	1	28	0.1	3.71	11	49	0.6	42	27	31	3	3,69	0.54	0.06	1370	252	6	220	0 1	7 10	0.09	09.0
200010	50	52	2	1.99	5895		2	37	2.2	3.69	0.62	7	2	1	25	0.1	3.45	4	29	0.1	55	30	39	3	4.65	0.67	0.05	1410	217	8	262	8 1	9 12	0.11	70.0
203014	52	54	2	1.82	1382		2	11	0.3	4.48	0.48	11	1	1	29	0.1	3.19	2	18	0.1	77	48	32	4	3.65	0,56	0.05	1380	214	9	254	62	1 13	0.09	78.9
200010	54	56	2	2.06	580		1	7	0.1	3.7	0,39	15	1	1	38	0.1	3.34	1	13	0.1	54	28	41	4	4.69	0.62	0.06	1310	164	8	275	7 1	8 11	0.11	81.1
202010	56	58	2	1 78	824		1	7	0.2	4.74	0.47	14	1	1	34	0.1	2.8	1	17	0.1	62	41	46	3	3.6	0.51	0.06	1350	194	9	202	72	2 15	0.11	102.7
293011	50	60	2	2.04	789		1	9	0.4	3.45	0.59	2	2	1	37	0.1	3.31	6	22	0.2	32	16	28	7	3.67	0.5	0.07	1250	361	6	211	61	8 11	0.09	87.8
233010	20	60	2	2.04	803		1	10	0.4	3.74	0.77	2	1	1	46	0.1	3.3	2	24	0.1	60	29	30	4	4.02	0.5	0.08	1240	323	9	243	62	0 12	0.1	78.8
293019	60	02	2	2.04	1267			12	0.7	2.56	0.91	3	1	2	63	0.1	2.7	1	20	0.1	27	13	30	8	3.53	0.49	0.16	1450	263	8	191	61	58	0.13	83.5
293020	62	04	2	2.00	2149		20	17	0.7	2.34	0.61	4	1	1	37	0.1	2.89	1	19	0.1	22	11	35	3	2.7	0.39	0.1	1380	226	5	174	4 1	27	0.09	74.4
293021	64	60	2	2.03	2110		20	10	0.7	2.04	0.74	. 3	- i	1	36	0.1	2.74	1	19	0.1	25	12	31	3	2.86	0.34	0.08	1210	243	8	146	51	37	0.1	82.9
293022	66	68	2	2.07	11/4		10	20	1 1	2.70	0.46	ž	1	1	34	0.1	2.32	1	19	0.1	33	14	31	4	2.94	0.41	0.06	1300	150	6	153	51	16	0.1	60.4
293023	68	70	2	2.14	3102			20	0.5	2.20	0.40	ž	2	1	40	0.1	2 19	1	20	0.1	27	14	35	3	2.68	0,35	0.07	1180	185	9	131	51	37	0.12	78,9
293024	70	72	2	1.94	1300		- <del>1</del>	20	0.5	2.02	0.41	2	1	. 1	29	0.1	2 48	1	16	0.1	34	15	31	1	3.01	0.39	0.06	1160	145	6	143	51	17	0.09	62.3
293025	72	74	2	2.06	1930		3	20	0.7	2,00	0.41	2	4		44	0.1	1 94	1	14	0.1	30	14	42	2	2.16	0.3	0.1	1250	169	7	105	4 1	37	0.1	65.6
293026	74	76	2	1.97	773		3	0	0.5	2.30	0.0	4			34	0.1	1 / 2	1	16	0.1	43	16	51	4	13	0.15	0.07	1200	159	7	49	4 1	27	0.11	57.5
293027	76	78	2	2.07	1371		5	11	0.0	2.27	0.69	2	4	-	64	0.1	1.72	1	13	0.1	45	14	60	2	2 05	0.23	0.12	1200	184	8	89	4 1	26	0.12	59.5
293028	78	80	2	1.93	334		1	8	0.1	2.06	0.79	3		-	470	0.1	2 4 2	4	15	0.1	47	13	âã	1	3.06	0.33	0.36	1110	243	12	145	5 1	57	0.14	74.2
293029	80	82	2	1.86	132		1	3	0.1	2.31	1.27	3	3		110	0.1	2.42	4	46	0.1	45	16	112	1	1	0.09	0.23	1050	203	9	32	3 1	68	0.13	78.5
293030	82	84	2	1.94	195		6	6	0.1	2.1	0.95	2			400	0.1	4.00	1	24	0.1	47	10	136	1	1 21	0.00	0.23	930	265	10	41	4 2	0 9	0.17	88.5
293031	84	86	2	1.92	135		1	5	0.1	3.11	1.22	2	2	1	123	0.1	1.00		47	0.1	-41 CE	17	100	4	1.21	0.00	0.55	1010	354	10	97	4 1	9 9	0.15	88
293032	86	88	2	2.10	50	1	1	4	0.1	2.91	1.31	2	2	1	270	0.1	2.35		47	0.1	60	46	100	2	2.52	0.14	0.00	900	254	13	101	5 1	8 8	0.18	87.9
293033	88	90	2	1.99	57		1	2	0,1	2.84	1.5	4	2	1	399	0.1	1.53			0.1	47	10	100	~	4.02	0.20 70.47	0.00	000	222	0	74	4 1	57	0.12	59.1
293034	90	92	2	1.99	798		2	7	0,3	2.23	1.11	2	2	1	165	0.1	1.63	1	10	0.1	47	12	445	4	1.01	0.17	0.20	1020	112	12	109	5.2	1 10	0.12	83.1
293035	92	94	2	1.98	1530	I.	9	17	0.5	3.1	1.76	3	2	1	188	0,1	2.29	2	22	0,1	40	10	140	4	1.00	0.09	0.41	1000	305	8	152	3 1	7 7	0.07	55
293036	94	96	2	2.00	742		3	9	0.2	2.4	1.53	3	2	1	160	0.1	2.54	1	17	0.1	43	11	110	1	1.20	0.12	0.2	070	393	12	157	5 2	3 10	0.01	84.5
293037	96	98	2	2.05	531		6	5	0.1	3.23	1.97	2	3	1	388	0.1	1.99	2	26	0.1	51	15	162	2	1.83	0.14	0.7	970	401	10	157	5 2	0 0	0.15	74.5
293038	98	100	2	1.99	1835		74	14	0.4	2.8	1.48	3	1	1	254	0.1	1.61	1	22	0.1	42	15	121	12	2,33	0.29	0.39	1080	215	10	100	5 2	0 0	0.17	79.5
293039	100	102	2	2.05	675		27	6	0.2	2.59	1.47	2	1	1	239	0.1	1.66	1	25	0.1	38	13	118	1	1.86	0.14	0.46	970	300	15	11	5 1	0 0	0.19	78.5
293040	102	104	2	1.64	506		4	5	0.1	3.11	1.21	2	2	1	168	0.1	1.4	1	27	0,1	39	18	106	3	2.17	0.22	0.31	740	282	14	108	6 1	9 10	0.21	91.4
203041	104	106	2	1.39	264		10	4	0.1	2.6	1.42	1	2	1	83	0.1	0.9	1	22	0.1	52	15	118	2	1.26	0.1	0.16	950	215	14	60	4 1	88	0.19	73.3
200041	106	108	2	1.92	139	1	16	2	0.1	2.36	1.42	1	1	1	122	0.1	0.89	1	16	0.1	73	19	148	1	1.25	0.08	0.37	1210	200	14	34	4 1	77	0,2	12.0
2000-12	108	110	2	1.95	638		8	6	0.2	2.36	1.21	3	1	1	116	0.1	1.09	1	18	0.1	49	15	131	3	1.8	0,18	0.27	920	179	13	54	5 1	( 7	0,18	(1.4
200040	110	112	2	1.94	1446		14	11	0.3	2.16	1.01	1	1	1	119	0.1	0.8	1	16	0.1	53	16	108	2	1.16	0,12	0.23	1100	161	11	44	31	5 7	0.17	63.2
200044	112	114	2	2.06	784		213	7	0.3	3.22	2.42	1	1	1	234	0.1	2	1	21	0.1	69	18	225	3	2.16	0.11	0.72	960	302	20	76	62	5 10	0.24	113.4
293043	112	116	2	2.00	280	ł	10	3	0.1	2,69	1.93	2	2	1	321	0.1	2.39	1	20	0.1	74	16	197	2	3.62	0.36	0.64	1000	267	17	171	62	0 9	0,17	95.5
293040	114	110	2	1.84	116		13	ĩ	0.1	2.54	1.74	2	1	1	434	0.1	1.42	1	22	0.1	64	15	176	1	2.61	0.23	0.44	1050	225	18	97	52	1 8	0.22	90.4
202040	110	120	2	1 10	241		20	. 4	0 1	2.54	1.34	3	1	1	261	0.1	1	1	22	0.1	50	14	130	2	1.74	0.17	0.35	1000	220	13	61	4 1	98	0.18	86.7
293048	116	120	۲ 2	2.10	3860		21	25	16	4.43	1.62	2	1	3	176	0.1	2.22	4	33	0.1	44	17	106	4	2.22	0.17	0.22	960	397	16	106	72	6 14	0.15	125.8
293049	120	122	2	2.20	3000	r :	28	2.5 F	0.1	3 25	1.61	2	1	1	157	0.1	2.93	2	33	0.1	40	14	111	2	1.86	0,12	0.22	710	406	14	95	52	3 10	0.08	96.4
293050	122	124	2	1.90	4/0	,	20		0.4	0.20		~	•																						

.

.

)

107-14	From	To	Lonath	Recov	Cu	Cu	MO	Au-firo	۸G	FF	MG	48	SR R		R۵	RF	CA.	₽B	<b>z</b> Ń	CD	NI	co		AI.	NA	к	Р	MN	ш	SR	GA TH	i u	τı	v
Comolo	motroe	motroe	motree	motrice	004	0/	004	000	004	•/.	P/-			 M D	DN	DDM	%	DDLL	DDM	PDM	DDM	DDM	DOM DOM	. %	•4	%	PPM	PPM	PPM	PPM (		 M. P.P.M.	%	PPM
202051	104	100	2	1 07	331	10	4		01	3 36	1 96		2	1	480	0.1	3 05	1	26	0.1	52	18	120 1	3 24	0.24	0.69	880	379	18	130	6 2	4 11	0.24	124.9
200001	124	100	2	1.02	1700		10	10	0.1	2.34	0.91	Š	4	1	08	0.1	1 02	Ś	20	0.1	26	13	76 /	1.05	D 14	0.06	880	152	8	57	4 1	6 7	0.13	74.5
293052	120	120	2	2.00	2000		15	10	0.4	2.34	1 4	2	1	1	140	0.1	1.02	4	20	0.1	20	13	03 0	1.05	0.14	0.00	990	275	13	117	5 2	3 9	0.10	88.8
293053	120	100	2	2.00	2000		274	14	0.0	10	0.547	2	4	-	105	0.1	2.03	3	16	0.1	16	7	86 /	88.0	0.06	0.1	1000	358	10	110	2 2	6 7	0.06	46.0
293054	130	132	2	2.02	020		274	2	0.1	1.00	0.7	<u> </u>	4	2	100	0.1	1 4 2	6	20	0.1	10	, ,	70 1	0.00	0.00	0.1	1040	277	7	102	2 2	5 6	0.00	40.5
293055	132	134	2	2.15	394		224	3	0.1	1.00	0.74	· Z	-	2	60	0.1	1.40	0	45	0.1	40	,	70 /	0.05	0.00	0.03	1130	207	2	133	1 2	0 0	0.04	39.5
293055	134	135	2	2.00	720		034	6	0,1	1.0	4.20	3	4	4	70	0.3	2.00	2	10	0.1	10	0	F1 1	0.00	0,00	0.07	090	307	5	176	1 2	0 0	0.01	30.5
293057	136	138	4	1,84	- 4504		10	5	0.1	1.00	1.32	2	1	1 0	72	0.3	3.39	ی د	14	0.1	10	0 6	01 A	0.40	0.00	0.05	1000	975	2	145	1 2	0 0	0.01	34.6
293058	138	140	2	2.00	4091		923	8	0.9	2.20	1.11	4	-	\$	12	0.3	2.09	2	10	0.1	10	6	01 0	0.01	0.00	0.00	1000	470	4	107	2 2	97 76	0.01	40.0
293059	140	142	2	1.98	1014		39	3	0.1	1.99	0.68	2	1	4	88	0.2	1.24	3	10	0.1	13	6	62 3	0.00	0.07	0.00	1090	000	4	14/	3 2	7 0	0.01	40.2
293060	142	144	2	2.10	916		107	3	0.1	1.93	0.88	6	1	1	19	0.3	1.76	3	10	. 0.1	14	6	93 4	0,62	0,07	0.09	990	223	4	123	2 2	/ b	0.01	35.3
293061	144	146	2	1.52	1136		109	/	0,1	1.81	1.03	8	1	1	103	0.3	2.57		1/	0.1	13	6	56 4	0.66	0,05	0.11	960	210	3	183	2 2	5 6	0.01	34.1
293062	146	148	2	1.92	1149		48	5	0.4	1.91	0.96		1	1	289	0.2	2.93	6	19	0.1	13		58 2	0.53	0.04	0.15	1060	361	3	181	22	6 6	0.02	33.7
293063	148	150	2	1.98	2261		141	17	0.9	2.37	0.87	11	1	9	304	0,4	3.11		21	0.1	14		51	0.55	0.05	0.16	940	3/6	3	200	12	5 8	0.01	32.5
293064	150	152	2	1.99	1235		15	8	0.2	4.2	1.55	9	1	1	464	0.1	3.31	2	46	0.1	28	17	59 2	1.89	0.08	0.63	1130	586	14	189	52	8 13	0.16	122.9
293065	152	154	2	2.05	1049		5	4	0.1	4.54	1.97	6	1	1	396	0.1	3.09	1	47	0,1	24	20	54 6	2.22	0.15	0.76	1420	609	16	114	63	0 15	0.28	169.2
293066	154	156	2	1.88	2051		7	14	0.3	3.79	1.37	7	1	1	172	0.1	1.06	2	46	0.1	34	18	101 1;	1,59	0.16	0.19	640	394	12	58	52	4 12	0.24	109.7
293067	156	158	2	1.75	1118		16	12	0,1	4.05	1.49	16	1	1	173	0.1	1.48	3	45	0.1	39	16	90 4	1.63	0.1	0.33	740	405	13	48	52	6 13	0.22	114.6
293068	158	160	2	2.04	2093		38	10	0.5	3.9	1.31	9	1	1	200	0.1	1.34	3	36	0.1	40	22	94 40	1:43	0.13	0.21	1340	403	11	67	42	6 13	0.22	125
293069	160	162	2	1.99	617		2	6	0.1	3.83	1.55	3	1	1	200	0.1	2.11	4	32	0.1	29	16	93 3	1.82	0.15	0.32	830	482	13	76	42	4 12	0.17	120.5
293070	162	164	2	1.91	1240		8	8	0.1	4.54	2.28	3	1	1	241	0.1	0.96	3	42	0.1	33	20	129 4	1.86	0.09	0.34	860	526	15	50	62	8 14	0.29	156,7
293071	164	166	2	2.05	1556		16	10	0.4	4.53	1.66	4	1	1	301	0.1	2.78	3	45	0.1	31	17	87 9	2.1	0.05	0.5	690	533	14	86	52	6 13	0.14	117.8
293072	166	168	2	1.99	1429		67	7	0.4	4.18	2.65	3	2	1	342	0.1	4.07	3	34	0.1	65	19	191 3	2.74	0.12	0.56	900	649	15	152	52	B 13	0.11	132.4
293073	168	170	2	2.07	569		9	3	0.1	4.15	3.73	2	2	1	494	0.1	2.04	1	31	0.1	76	21	213	3.08	0.17	0.8	1240	548	17	121	53	2 12	0.2	148.9
293074	170	172	2	2.00	560		4	3	0.2	3.3	2.01	2	1	1	289	0.1	2.31	3	30	0.1	50	14	142 5	1.86	0.08	0.48	1070	492	11	86	42	5 10	0.14	88.7
293075	172	174	2	1.77	1589		33	6	0.4	2.56	1.47	1	1	1	53	0.1	1.07	3	29	0.2	29	12	92 9	1.12	80.0	0.1	1160	350	10	48	42	18	0.14	64.9
293076	174	176	2	1.97	3618		21	28	1.2	3.35	1.4	5	2	1	46	0.1	2.05	6	29	0.2	29	13	89 31	1.01	0.06	0.13	1100	393	8	57	42	2 10	0.11	71.2
293077	176	178	2	1.99	795		51	6	0.2	3.14	1.75	1	1	1	88	0.1	1.07	2	32	0.1	41	13	120 3	1.41	0.08	0.17	1200	390	10	82	42	2 10	0.09	68.4
293078	178	180	2	1.89	666		85	5	0.5	2.63	1.71	1	1	1	236	0.1	3.92	1	23	0.1	57	13	114 3	1.99	0.19	0.39	990	644	8	238	32	08	0.07	57.6
293079	180	181	1	1.03	344		21	5	0.2	3.41	2.39	2	3	1	247	0.1	2.33	1	27	0.1	74	13	174 8	2.66	0.2	0.49	1030	461	14	142	5 2	4 10	0.1	77.8
293080	181	182	1	0.78	>10000	1,6	13	71	14.4	6.8	2.52	14	4	4	86	0.1	3.38	17	38	0.2	99	40	189 2	1.93	0.04	0.25	860	777	19	118	5 3	9 22	0.05	73.9
293081	182	183	1	1.07	>10000	1.73	8	50	10.4	5.78	2.16	1	3	3	62	0.1	1.74	15	43	0.5	86	32	217 69	1.82	0,06	0.29	1050	449	15	66	5 3	4 18	0.07	71.2
293082	183	184	1	0.99	2900		10	14	1.9	3.91	2.6	1	1	1	109	0.1	1.49	3	44	0.2	79	13	214 30	2	0.04	0.28	890	513	18	53	4 2	B 12	0.08	79
293083	184	185	1	0.93	6477		16	13	4.1	4.48	2.67	1	3	1	188	0.1	2,07	6	38	0.4	95	18	330 6	2,34	0,08	0.52	840	565	15	102	5 2	9 14	0.1	79.5
293084	185	186	1	0.97	6383	•	10	11	4.9	3.73	1.8	1	1	1	96	0,1	1.69	8	30	0.2	55	25	139 7	1.47	0,06	0.25	1030	430	11	66	4 2	4 11	0.06	57.2
293085	186	187	1	1.04	4113		14	14	2.6	3.76	1.76	1	2	1	112	0.1	2.42	6	29	0.3	54	17	212 9	1.58	0.05	0.4	720	555	11	94	3 2	4 12	0.07	57.9
293086	187	188	1	0.97	4205		7	26	3.8	5.74	1.82	2	2	3	66	0.1	2,23	7	36	0.3	81	67	137 18	1.8	0.06	0,3	1010	503	13	100	5 3	3 18	0.05	67
293087	188	189	1.	0.98	>10000	1.43	15	37	8.7	6.33	1.77	2	3	6	60	0.1	2.28	16	37	0.5	73	40	193 <del>(</del>	1.51	Ó.03	0.27	1050	493	12	66	5 3	5 20	0.04	55,3
293088	189	190	1	1,01	7274		93	42	6	7.04	1.63	3	1	8	65	0.1	3.1	15	43	0.3	75	55	128 146	1.44	0.02	0.28	910	773	9	71	4 3	9 23	0.02	44
293089	190	191	1	1.01	9612		10	21	6.2	5.07	1.68	2	1	2	79	0.1	2.26	12	40	0.5	58	26	187 6	1.69	,0.09	0.33	1160	471	9	85	5 3	) 15	0.07	74.6
293090	191	192	1	1.03	841		11	3	0.4	3.59	2.52	1	2	1	243	0.1	1.81	3	30	0.1	75	15	203 6	2	0.06	0.57	990	479	10	77	5~ 2	7 11	0.11	84
293091	192	193	1	1.03	2516		11	12	2.1	4.2	1.92	1	2	1	93	0.1	2.98	7	27	0.2	52	40	168 2	1,55	0.05	0.31	880	622	9	80	4 2	3 13	0.05	79.4
293092	193	194	1	0.94	3576		15	9	1.4	3.48	1.94	1	1	2	86	0.1	4.21	6	27	0.3	50	14	165 3	1.65	0.05	0.17	750	754	11	143	3 24	1 11	0.03	57.3
293093	194	195	1	0.98	2717		8	7	1.6	2.82	1.57	3	3	1	94	0.1	3,51	1	25	0.1	41	15	137 2	1.39	0.05	0.21	610	540	10	84	3 2	1 9	0.04	56.2
293094	195	196	1	1.06	>10000	3.94	9	12	12.9	6.26	1.83	6	3 1	3	105	0.1	2.49	31	58	1.8	57	14	191 41	1.57	0.06	0.39	1350	495	11	80	6 3	3 20	0.07	59.5
293095	196	197	1	0.97	2602		9	62	11.3	2.94	1.69	8	5 159	9	97	0.1	2.07	1104	28	0.2	38	11	133 57	1.39	0.05	0.21	1040	487	11	70	3 2	1 9	0.06	55.2
293096	197	198	1	1.00	2374		11	14	1.6	3 13	1.7	8	2 2	8	104	0.1	3.51	3	25	0.1	41	12	144 505	1.52	0.07	0.31	770	607	11	92	3 2	2 10	0.05	58.3
293097	198	199	1	0.95	1173		6	9	0.8	2 94	1.81	4	2 1	6	145	0.1	1.99	5	26	0.1	44	12	163 16	1.53	0.06	0.33	930	435	11	63	4 2	3 9	0.08	66.2
293098	199	200	1	1 05	8917		10	12	3.3	4.73	1.39	7	3 1	5	95	0.1	2.31	10	36	0.3	41	19	148 89	1.47	0.05	0.32	1050	441	11	77	5 29	9 15	0.04	53.4
293099	200	201	1	0.93	>10000	1.62	5	14	5.9	5.65	0.8	11	4 1	8	57	0.1	2.65	25	32	0.3	40	18	100 10	1.02	0.04	0.19	990	391	9	98	5 33	2 18	0.02	36.2
293100	201	202	1	0.87	4179		185	14	27	3.41	1.39	19	1	9	79	0.1	3,49	9	27	0.1	55	22	127 41	0.86	0.04	0.2	860	562	7	156	2 22	2 11	0.02	45.9
293101	202	203	1	0.96	1831			31	26	9.09	1.43	7	4 19	8	86	0.1	2,17	183	38	0,1	133	66	177 7	1.83	0.1	0.33	1100	482	11	185	8 48	3 31	0.04	70.4
293102	203	204	1	0.89	1383		48	10	2.6	3.96	2.05	5	3	3	254	01	2.52	3	38	0.1	77	14	170 93	1 78	0.05	0.67	1180	488	8	177	5 2	13	0 1	90.5
293103	204	206	2	1 97	7281		40	19	2.5	4 34	1 79	21	4 1	1	163	0.1	3.82	11	38	0.2	63	14	104 5	1 31	0.06	0.31	1370	630	8	251	5 28	3 14	0.03	84.9
293104	209	208	2	1.98	>10000	6 47	5094	89	20.2	7.66	1 29	121	1 5	8	68	0.1	3.72	118	86	0.2	68	7	140 724	0.86	0.05	0.23	1660	550	5	172	1 44	25	0.02	29.4
293105	200	210	2	2.04	690	<b>√</b> , <b>1</b> ) .	23	4	0.1	2 72	2.07	5	4	1 :	390	0 1	23	1	25	0 1	114	18	286 6	37	0.25	0.68	750	276	16	219	4 23	, a	0.17	71
200100	200	210	-	2.07	030		20	-	<b>.</b>			-	•			÷.,		•		÷.,				0.7	0.20	0.00								

•

J97-11	From	То	Length	Recov.	Cu	Cu	мо	Au-fire	AG	FE	MG	AS	\$B	ы	BA	BE	ĆA	PB	ZN	CD	NI	со	CR	w	AL	NA	к	Ρ	MN	Li	SR	GA 1	гн I	J	Ti	v
Sample	metres	metres	metres	metrtes	PPM	%	PPM	PPB	PPM	%	%	РРМ	PPM	PPM	PPM	РРМ	%	PPM	РРМ	PPM	PPM	PPM	PPM	PPM	%	%	%	PPM	РРМ	PPM	РРМ	PPM P	PM PF	PM	%	PPM
293106	210	212	2	1.92	447		21	5	0.3	1.63	0.94	5	1	2	100	0.1	1.52	1	19	0.1	56	13	86	4	1.16	0.14	0.09	1170	240	7	99	2	13	5	0.07	29.8
293107	212	214	2	2.00	241		2	. 3	0.1	1.5	0,97	3	2	1	110	0.1	1.41	1	18	0.1	51	10	114	2	1.14	0.12	0.12	1160	239	8	69	2	13	5	0.11	37.1
293108	214	216	2	1.91	608		5	5	0.3	1.72	1.09	4	2	1	107	0.1	1.53	1	19	10.1	51	10	136	28	1.22	0.12	0.13	1110	245	9	68	3	14	6	0.11	44.5
293109	216	218	2	2.04	547		1	4	0.2	1.62	0.85	4	2	1	134	0.1	1.92	1	19	0.1	42	9	110	6	0.98	0.15	0.14	1230	301	7	88	2	13	5	0.1	37
293110	218	220	2	2.05	1156		5	5	0.6	2.61	1.73	<u> </u>	2	1	365	0.1	1.77	1	21	0.1	64	16	203	16	1.93	0.16	0.5	960	273	13	88	4	21	8	0.19	77.8
293111	220	222	2	1.89	685		4	6	0.2	2.7	1.4	2	2	1	273	0.1	1.4	2	23	0.1	39	14	133	6	1.64	0.14	0.49	1620	266	12	62	4	20	8	0.18	83
293112	222	224	2	1.87	1710		2	11	1	3.02	0.89	2	1	1	119	0.1	1.55	2	25	0.1	9	12	21	5	1.12	0.12	0.16	2220	254	9	64	4	20	9	0.13	86.6
293113	224	226	2	1.92	3566		74	21	1.7	3.06	1.78	4	2	1	137	0.1	1.87	4	25	0.1	41	14	111	6	1.58	0.11	0.28	2000	298	16	113	5	23 1	10	0,15	95
293114	226	228	2	1.69	2352		6	9	2.3	2.86	2.43	4	3	1	323	0.1	2	1	24	0.1	100	16	273	18	3.21	0.18	0.69	980	274	25	152	6	24	9	0.21	92
293115	228	230	2	2,00	215		14	3	0.2	3.35	2.87	3	3	1	482	0.1	1.39	1	24	.0.1	108	20	310	3	2.85	0.19	1.27	860	315	20	103	5	27 :	11	0.26	120.5
293116	230	232	2	1.89	1060		10	11	0.4	2.12	1.17	2	1	1	172	0.1	1.28	3	21	0.1	42	11	89	3	0.99	0.09	0.21	1540	208	9	64	3	19	7	0.15	58,8
293117	232	234	2	1.77	1129		8	14	0.4	1.88	0.99	5	1	1	215	0.1	1	4	21	0.1	32	11	80	3	0,89	0.08	0.26	1700	157	8	56	3	18	6	0.18	56,1
293118	234	236	2	2.02	1420		29	17	0.4	2.03	0.78	3	1	1	133	0.1	0.9	5	13	0.1	17	8	78	33	0.76	0.07	0.19	1400	122	8	48	3	20	6	0.16	61.9
293119	236	238	2	2.09	1880		10	13	0,7	2,19	0,89	2	1	1	148	0.1	0.79	5	16	0.1	16	10	89	24	0.84	0.07	0.23	1330	141	9	45	4	23	7	0.17	61.5
293120	238	240	2	2.03	1107		17	10	0.2	2.22	0,84	3	1	1	155	0.1	0.92	4	14	0.1	14	9	75	3	0.75	0.07	0.23	1350	158	8	49	3	23	7	0.16	63.1
293121	240	242	2	1.93	296		5	4	0.1	1,88	0.71	4	1	3	88	0.1	1.26	3	12	0.1	11	11	80	1	0.72	0.06	0.15	990	141	8	49	3	19	6	80.0	40.8
293122	242	244	2	1.97	1627		154	9	0.7	2.1	0.8	5	1	5	78	0.1	1.24	4	14	0.1	12	28	63	2	0.81	0.06	0.16	900	130	8	76	3	20	6	0.03	34,4
293123	244	246	2	2.03	1756		16	9	0.3	2.19	1.01	5	1	1	163	0.1	0.99	6	19	0.1	15	8	90	2	0.91	0.09	0.23	1340	167	9	101	4	23	7	0.09	59,7
293124	246	248	2	1.97	1038		10	6	0.1	1.99	0.85	2	1	1	120	0.1	1.23	4	15	0.1	13	8	58	1	0.72	0.06	0.17	1260	170	8	71	4	22	6	0.08	54.4
293125	248	250	2	1.90	790		5	7	0.1	1.93	0.78	3	1	1	151	0.1	0.67	4	13	0.1	12	7	61	1	0,66	0.07	0.19	1320	131	7	54	3	21	6	0.12	56.3
293126	250	252	2	2.02	2750		35	11	0.7	2.04	1.18	3	1	1	131	0.1	1.48	5	17	0.1	16	9	72	2	0.96	0.06	0.27	1320	199	10	88	4	24	6	0.09	58
293127	252	254	2	2.07	1068		4	7	0.1	2.13	1.21	2	1	1	155	0.1	0.97	4	18	0.1	15	8	65	1	0.98	0.06	0.28	1270	192	9	81	4	25	7	0.1	62.7
293128	254	256	2	1.88	1676		149	8	0.4	2.1	1.22	7	1	1	145	0.1	2.63	5	15	0.1	13	7	49	1	0.86	0.06	0.22	1190	274	5	247	2	24	7	0.03	41.8
293129	256	258	2	2.02	309		3	6	0.1	2.01	0.94	5	1	1	581	0.1	2.17	7	16	0.1	12	8	54	1	0.76	0.05	0.25	1190	316	6	169	3	21	7 (	0.06	47.7
293130	258	260	2	2.06	209		3	5	0.1	2.2	0.98	3	1	1	178	0.1	1.19	3	16	0.1	13	9	81	1	0.88	0.06	0.22	1320	236	9	66	4	24	7 (	0.12	61.2
293131	260	262	2	1.65	91		4	3	0.1	2.04	0.89	2	1	1	136	0.1	0.77	5	13	0.1	11	8	66	1	0.78	0.06	0.17	1320	170	9	48	3	22	6	0.15	60
293132	262	264	2	1.68	1167		14	8	0.2	2.14	1.44	2	1	1	199	0.1	2.01	3	17	0.1	14	8	67	1	1.07	0.06	0.19	1270	326	12	92	4	25	7	80.0	60
293133	264	266	2	1.91	83		4	3	0.1	2.26	1.18	3	2	1	193	0.1	1.87	3	20	0.1	14	9	76	1	1	0.07	0.3	1290	376	11	110	3	25	7	0.1	60.9
293134	266	268	2	2.07	180		4	4	0.1	2.19	0.93	2	1	1	189	0.1	0.53	2	18	0.1	12	8	67	2	0.76	0.07	0.22	1300	184	9	62	4	24	7 (	0.09	58.5
293135	268	270	2	2.05	14		2	4	0.1	2.1	0.77	3	1	1	184	0.1	1.16	3	17	0.1	11	8	73	2	0.69	0.07	0.2	1290	281	10	100	3	24	7 (	0.09	59.2
293136	270	272	2	2.02	945		13	5	0.4	2.26	0.9	1	1	1	103	0.1	1.35	4	19	0.1	11	8	58	1	0.78	0.07	0.13	1420	287	10	103	3	24	7	0.06	57.5
293137	272	274	2	2.03	14		3	3	0.1	2.21	0.79	2	1	1	161	0.1	0.65	5	20	0.1	11	7	72	1	0.73	0.08	0.18	1390	186	10	78	3	23	7 (	80.0	62
293138	274	276,75	2.75	2.46	39		3	3	0,1	2.08	0.75	1	1	1	155	0.1	0,76	4	16	0.1	10	8	55	1	0.65	0.06	0.16	1450	192	10	50	3	22	7 (	0.13	64.3

*.* 

•

•

•

## DDH 297-1 Pld1 DDH 297-2 plo3

COMP: CONTINENTAL COPPER

PROJ: JEAN

ATTN: Gary Schell

### MIN-EN LABS - ICP REPORT

.

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423

- TILE NU: / 3-0243-KJI+2	FILE	NO:	7S-0245-RJ1+2
---------------------------	------	-----	---------------

DATE: 97/09/03

* * (ACT:F31)

m)	SAMPLE NUMBER	:	AG PPM	AL %	AS PPM	BA PPM	BE PPM	BI PPM	CA %	CD PPM	CO PPM	ČR PPM	CU I PPM	E GA % PPM	K %	LI PPM	MG %	MN PPM	MO PPM	NA %	NI PPM	P PPM	PB PPM	SB PPM F	SN SR PM PPM	TH PPM	T1 % F	U V PM PPM	W Z PPM PP	N Au-fire M PPB
12-4,00 4-6 1-8 8-10 10-12-	292001 292002 292003 292004 292005	1	.1	1.91 2.31 2.05 1.64 2.41	1 1. 1 1 1	96 66 72 65 144	.1 .1 .1 .1 .1		1.73 4.19 3.99 4.13 4.04	.1 .1 .1 .1 .1	24 24 25 29	92 92 88 100 157	171 4.1 71 5.3 114 5.1 79 5.8 117 5.2	5 1 1 1 4 1 1	.27 .21 .35 .23 .31	19 30 17 16 31	2.13 2.61 2.44 2.89 2.98	771 1232 1139 1328 1160	11111	.04 .04 .02 .03	21 7 8 14 66	1670 - 1430 - 1640 - 1490 - 800	32 34 27 21 39	1 1 1 1	1 41 1 136 1 94 1 160 1 81	1111	.11 .09 .11 .07 .14	1 122.1 1 172.1 1 153.1 1 147.4 1 146.4	1 5 1 5 1 6 1 6 1 27	5 31 9 11 1 7 3 9 9 4
10-14 19-16 16-18 18-20	292006 292007 292008 292009 292010		-1	1.40 2.13 2.42 .92 .87	8 54/ 1 33/ 34/	137 96 127 42 43	.1 .1 .1 .1		4.10 3.89 2.36 2.40 2.96	.1 .1 .1 .1	23 28 26 25 28	74 167 154 26 10	60 6.1 39 6.3 87 5.7 108 5.8 84 6.4	9 1 3 1 2 1 7 1	.25 .20 .15 .08 .13	16 20 26 25 20	2.69 4.36 4.42 2.36 2.56	1965 2408 1297 1189 1318	11111	.04 .01 .03 .03 .02	37 68 60 13 10	1130 710 550 560 410	25 40 37 13 13	1 1 1 1	1 114 1 94 1 111 1 118 1 126	1 1 1 1	.05 .01 .02 .01 .01	1 115.8 1 141.8 1 170.5 1 137.3 1 124.6	1 9 1 8 1 8 1 18 1 13	4 10 5 24 1 4 7 3 4 3
22-24 24-26 26-28 28-30 30-32	292011 292012 292013 292014 292015	 	.1 .1 .1 43.6 .4	.43 .35 .48 1.03 2.11	65/ 503/ 63/ 472/ 1	69 32 51 51 72	.1 .1 .1 .1		2.77 6.14 2.99 4.06 1.44	.1 .1 .1 .1	26 17 21 24 21	23 17 37 15 128	149 5.3 83 4.8 50 4.7 408 8.4 40 4.6	6 1 2 1 7 1 9 1 4 1	.16 .16 .18 .13 .41	7 1 2 7 21	1.95 2.75 1.73 2.20 2.52	1274 1857 1050 2370 576	11111	.01 .01 .02 .02 .04	19 15 51 28 49	560 610 1120 840 1240	13 38 457 37	13 / 1 160 / 1	1 93 1 135 1 109 1 79 1 53	11111	.01 .01 .01 .03 .14	1 73.9 1 36.4 1 42.8 1 80.3 1 105.5	1 12 1 9 1 13 1 24 1 4	7 6 0 132- 7 5 5 120- 2 15
37-34 34-36 36-36 38-40 40-42	292016 292017 292018 292019 292020	N	.1 .3 .4 1.0 .6	2.21 2.11 2.08 2.36 2.38	1 1 1 1	76 32 30 58 95	.1 .1 .1 .1	11131	1.44 1.43 1.88 2.00 1.94	11111	22 19 15 17 15	165 166 149 162 155	29 4.6 6 3.9 6 3.1 45 3.5 8 3.4	7 1 2 1 9 1 4 1 2 1	.31 .05 .09 .19 .30	30 45 44 42 40	2.72 2.66 2.42 2.57 2.50	666 631 522 530 507	1111	.05 .05 .06 .07 .06	64 62 46 53 47	1360 1270 1220 1220 1220 1160	39 38 40 43 44	1 1 1	1 72 1 57 1 36 1 47 1 49	1111	.09 .10 .13 .18 .14	1 95.9 1 86.3 1 79.7 1 93.5 1 89.1	1 4 1 3 1 4 1 5	1 16 5 26 3 6 0 12 7 15
42-44 44-46 46-98 48-50 50-52	292021 292022 292023 292024 292025	-76	.9 .7 .5 .7	2.14 2.09 2.15 2.15 2.40	1 1 1 7	50 46 74 43	.1	1 1 1 1	2.47 2.37 2.38 2.41 3.95	.1	40 37 23 32 24	64 9 57 21 37	312-5.6 269-4.5 69-4.5 201-4.5 110-4.8	2 1 3 1 1 1 4 1 2 1	.17 .07 .35 .07 .06	35 40 31 38 37	2.39 2.10 2.40 2.10 2.46	842 835 700 730 931	11111	.05 .06 .06 .05 .07	39 1 20 4	1000 160 130 160 1230	38 37 35 40 43	1	1 64 1 48 1 60 1 38 1 29	111	.14 .12 .13 .13 .16	1 152.8 1 151.9 1 127.6 1 122.4 1 165.1	1 21 1 17 1 8 1 7 1 5	3 37 7 41 6 47 8 172 2 87
52-54 54-55 58-58 58-60 60-62	292026 292027 292028 292029 292029 292030	2 HOQ	.1 .3 1.1 .4 .1	1.86 2.18 3.05 3.10 2.72	1 1 23	40 81 200 154 180	1	22315	2.36 2.39 1.93 2.37 3.09	.1 .1 .1 .1	15 18 28 28 27	24 126 150 117 88	33 3.0 32 4.1 141-4.8 92 4.8 166-4.3	4 1 1 1 8 1 2 1 1 1	.06 .45 1.50 .58 .29	30 23 18 28 18	1.85 2.45 3.76 2.95 1.98	656 623 603 622 667	1 1 1 1	.08 .11 .17 .26 .27	3 ' 41 61 39 17	1240 1210 960 880 950	31 35 48 47 40	1 1 1 5	1 33 1 64 1 68 1 111 1 145	1111	.17 .20 .30 .21 .17	1 126.3 1 122.3 1 160.2 1 127.3 1 113.9	1 3 1 3 1 4 1 4 1 4	5 139 6 92 0 10 2 70 0 232
67-64 64-66 66-63 - 69.50	292031 292032 292033 292034 292035	<u>}</u>	1.0 2.0 1.0 .3	2.25 1.75 1.96 1.81 2.02	1 1 2 1	97 54 73 71 65	.1 .1 .1 .1	15 14 19 9 9	2.45 2.38 1.69 1.66 1.47	.1 .1 .1 .1	22 21 19 21 25	123 86 129 104 57	114-4.1 151-5.0 118-5.2 169-5.2 122-4.7	1 1 0 1 4 1 3 1 8 1	.12 .09 .09 .08 .11	12 12 11 9 14	2.10 1.64 1.71 1.67 1.57	596 798 612 615 460	1 1 1 40	.26 .09 .17 .11 .18	18 37 44 48 30	870 680 830 670 690	35 26 28 23 28	1 4 5 5 4	1 101 1 43 1 52 1 44 1 82		.25 .21 .24 .17 .16	1 124.5 1 132.9 1 139.5 <u>1 128.4</u> 1 93.2	1 4 17~ 7 18~ 6 23~ 8 1 3	0 53 9 12 7 8 1 7 8 16
16-20 - 22 - 24 - 25 - 24 - 26	292036 292037 292038 292039 292040		.7 1.5 .7 .5	1.93 2.10 1.86 1.63 1.96	1 1 1 1	83 96 81 62 144	.1 .1 .1 .1 .1	8 12 12 10 16	1.54 1.44 1.67 1.95 1.67	.1 .1 .1 .1 .1	30 31 29 30 36	112 131 75 80 107	88 6.0 124 6.8 114 6.3 107 5.7 125 6.2	0 1 4 1 3 1 9 1 6 1	.32 .45 .28 .11 .28	16 19 15 12 11	2.91 3.12 2.55 2.13 2.35	748 834 800 787 680	3 1 3 1 1	.05 .05 .07 .08 .14	42 41 11 19 34	590 640 700 580 560	25 31 28 24 23	1 1 1 1 1 1	1 42 1 40 1 31 1 39 1 58	1 1 1 1	.26 .27 .27 .22 .22	1 182.2 1 216.2 1 216.5 1 216.5 1 153.5 1 178.5	1 4 1 5 1 5 1 5	8 16 7 331 6 18 9 20 2 12
8-30	292041 292042 292043 292044 292045	2-260	.6 .1 .1 .1 .1	2.20 2.72 2.66 2.44 .59	1 1 1 28	143 96 134 85 61	.1 .1 .1 .1	611	2.40 3.08 3.86 2.97 4.39	.1 .1 .1 .1 .1	31 31 30 31 21	116 73 17 8 1	129 5.7 120 7.1 87 6.8 65 7.7 17 7.2	5 1 6 1 4 1 7 1 5 1	.29 .20 .16 .28 .22	12 12 13 17 2	2.53 3.21 2.64 2.81 1.79	969 1506 1325 1804 3634	1 48 7 1	.11 .10 .10 .05 .01	34 8 2 1 10	730 520 600 520 510	33 42 31 27 11	11111	1 62 1 53 1 96 1 78 1 77	1 1 1 1	.22 .09 .12 .05 .01	1 154.7 1 216.2 1 194.4 1 179.1 1 58.8	1 7 1 11 1 6 1 11 1 10	4 9 2 13 2 8 8 22 1 21
38-40 40-42 42-44	292046 292047 292048	HOQ	.1 .1 .1	.49 .67 1.49	28 73 23	86 71 66	.1 .1 .1	1	4.29 4.17 3.02	.1 .1 .1	19 19 18	1 1 28	34 6.8 47 5.9 53 5.7	9 1 4 1 8 1	.26 .23 .27	1 1 9	2.07 2.08 1.40	4825 3410 1361	1 1 4	.01 .01 .04	8 11 3	490 520 960	14 17 12	1 1 3	1 75 1 67 1 74	1 1 1	.01 .01 .01	1 42.2 1 41.9 1 76.9	1 5 1 24 1 5	4 12 7 18 6 14
	<b></b>								·									i		•										· · · ·

# DDH 397-2 p2g

### COMP: CONTINENTAL COPPER

PROJ: JEAN

ATTN: Gary Schell

### MIN-EN LABS --- ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423

FILE NO: 78-0245-RJ3+4

DATE: 97/09/03 * * (ACT:F31)

B         2920           -84         2920           -84         2920           -86         2920           -87         2920           -80         2920           -80         2920           -90         2920           -90         2920           -91         2920           -92         2920           -94         2920           -97         2920           -98         2920           -99         2920           -99         2920           -99         2920           -99         2920           -99         2920           -99         2920           -99         2920           -16         2920           -116         2920           -114         2920           -114         2920
2069 2070 2071 2072 2073 2075 2076 2076 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2085 2086
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
6 6 6 1 18 36 19 6 19 6 19 6 19 218 245 317 416 42 260 79 35
83 118 162 114 104 155 135 79 68 121 138 338 156 150 161
47
8 69 99 92 99 92 8 59 99 92 8 103 8 103 8 101 8 355 8 43 8 101 8 355 8 43 8 43 8 43 8 43 8 43 8 43 8 43 8 43
8 2.66 5 2.37 13 2.60 6 2.47 6 2.37 6 2.37 17 2.49 26 3.10 54 3.56 60 2.77 57 2.86 11 2.47 51 2.47 20 3.10 54 3.56 60 2.77 57 2.86 11 2.47 51 2.47 53 2.63 11 2.47 54 3.56 60 2.77 57 2.86 11 2.47 57 2.86 11 2.47 57 2.86 11 2.47 57 2.86 11 2.47 57 2.86 11 2.47 57 2.86 11 2.47 57 2.86 12 2.57 57 2.86 12 2.57 57 2.86 57 2.87 57 2.87 57 2.85 57 2.87 57 2.85 57 2.87 57 2.85 57 2.87 57 2.85 57
.14 .08 .12 .14 .17 .15 .20 .18 .20 .17 .15 .11 .08 .11 .09
6 1.17 5 1.28 5 1.13 1 1.09 1 .92 1 1.04 1 .99 1 1.27 1 1.27 1 1.13 1 .92 4 1.08 1 .85 3 1.00
656 610 535 975 676 648 598 1028 929 945 719 509 480 453 502
41 21211
.05 .07 .03 .05 .05 .05 .02 .02 .02 .02 .02 .02 .02 .02 .03 .04 .04 .04
10 11 10 11 11 11 11 11 11 11 9 11 8 10 10 11 9 9 7 10 9 11 10 11 10 11 10 11 15 11
50 60 30 40 50 60 50 50 50 50 50 10 50 50 10 50 50 50 50 50 50 50 50 50 5
27 30 28 39 54 14 33 36 34 36 34 36 12 19 13 17
96 73 93 84 142 141 127 141 127 134 150 173 143
1.01 1.03 1.01 1.01 1.01 1.01 1.01 1.01
45.4 51.5 45.4 30.1 31.2 28.2 31.1 24.2 20.1 22.7 34.3 40.7 27.0 37.9
21 31212 1111
57 58 489 551 35 64 219 95 85 33 35 59 45
6 235 20 9 7 12 99 237 17 62 13 13 22 10

## DOH J97-2 ' P.3 93

COMP: CONTINENTAL COPPER

### ÷ MIN-EN LABS ---- ICP REPORT

.

.

PROJ: JEAN ATTN: Gary Schell 8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423

FILE NO: 7S-0245-RJ5+6

DATE: 97/09/03 * * (ACT:F31)

_/ [	SAMPLE	AG	AL	AS	BA	BE	BI	CA	CD	CO	'SR	ÇU	FE	GA	ĸ	ι	MG	MN	MO	NA	NT	Ð	PR	SR	SH	SR	тн т	1 1	1 1	. U	71 4	
	NUMBER	PPM	%	PPM	PPM	PPM	PPM	<u>%</u>	PPM	PPM	PPM	PPM	- 2	PPM	%	PPM	%	PPM	PPM	%	PPM	PPM	PPM	PPM	PPM P	PM P	PM 1	% PP		PPM P	ZN AL	PPB
ND-142 N2-144 141-141 146-144 N6-153	292097 292098 292099 292100 292101	.1 1 .1 2 .1 2 .1 2	.77 .22 .01 .01 .31	46 30 1 90	111 120 251 229 112	.1 .1 .1		2.99 6.16 3.05 2.42 3.09	.1 .1 .1 .1 .1	18 31 17 30 32	78 38 93 34 30	158 75 51 73 68	4.96 9.17 5.35 6.52 6.95	1 1 1 1	.18 .30 .23 .25 .12	8 1 19 2 14 2 8 2 14 2	.94 .29 .10 .20 .66	1109 4457 2122 1414 1828	10 3 18 1	.05 .03 .05 .12 .11	13 10 15 4 16	810 480 1220 610 450	23 34 38 26 41	1 1 1 1	1 1 1 1 1 1	68 81 32 09 17	1 .0 1 .1 1 .0 1 .1 1 .0	5	1 111.3 1 123.6 1 92.9 1 199.0 1 173.4	111	83 09 96 96 33	16 23 4 5 8
150-152 152-151 154-151 156-150 158-160	292102 292103 7 292104 7 292105 292105 292106	.1 3 .5 3 1.2 3 .2 3 .1 3	.36 .48 .21 .30 .20	49 1 117 1544 79	128 97 221 71 66	.1 .1 .1 .1	1 1 1 1	2.43 3.00 3.09 2.43 2.43	.1 .1 2.6 .1	39 31 35 34 31	61 37 77 70 75	138 114 113 85 96	6.98 5.45 5.47 7.18 5.91	1 1 1 1	.09 .06 .04 .04 .04	23 3 19 3 15 3 17 3 19 3	.37 .06 .18 .37 .24	1408 1167 1218 1276 1162	1 1 1 1	.18 .29 .21 .18 .20	24 10 29 16 19	400 370 370 430 390	57 60 94 240 53	2 1 1 18 1	1 1 1 1	79 57 57 63 62	1 .0 1 .2 1 .2 1 .2 1 .0		182.3 172.2 159.6 187.8	1 2 1 4 1 2 1 9 1 1	22 97 98 36 10	17 100 142 231 24
160 -162 162 -164 164 -166 166 -168 166 -168	292107 292108 292109 292110 292110 292111	.1 3 .1 3 .3 2 .2 3 .7 2	.51 .19 .71 .42 .99	146 40 233 6 72	72 46 47 141 79	.1 .1 .1 .1	1111	3.13 3.13 3.16 2.46 1.90	.1 .1 .1 .1 .1	33 34 29 33 33	71 71 42 37 36	119 79 83 90 80	7.23 6.29 5.56 5.42 5.48	1 1 1 1	.05 .03 .03 .04 .03	27 3 16 3 14 3 23 3 17 3	.56 .43 .17 .20 .48	1542 1423 1241 977 933	1 1 1 1 1 1 1	.11 .17 .16 .20 .18	24 18 11 18 10	320 380 420 390 400	153 95 67 62 86	1 1 1 1	1 1 1 1	58 62 57 49 45	1 .0. 1 .1. 1 .1. 1 .1. 1 .1.		188.8 188.1 166.9 159.2	1 3 1 1 1 1 1 1 1 1	11 53 07 82 34	52 14 14 8 20
170-172 172-174 174-174 176-178 176-178	292112 292113 292114 292115 292115 292116	.6 3 .7 2 1.0 3 1.1 2 1.1 3	.07 .64 .00 .98 .16	8 10 15 11 12	86 71 99 47 52	.1 .1 .1 .1 .1	1 3 5 1 2	1.72 2.01 2.17 1.52 1.98	-1 .1 .1 .1 .1	34 32 33 33 33	36 40 37 33 36	85 111 89 86 85	5.83 5.56 5.44 5.08 5.28	1 1 1 1	.03 .04 .12 .05 .04	17 3 15 3 17 3 16 3 19 3	.55 .25 .22 .58 .71	933 900 989 874 910	1 1 1 1	.17 .17 .24 .20 .19	11 5 9 9	420 780 590 410 360	60 47 49 55 82	1 1 1 1	1 1 1 1	45 43 48 33 29	1.2		178.7 170.2 176.2 156.5 159.7	1 2 1 1 1 1 2	55 80 68 70 01	10 10 7 3
180-182 182-184 184-186 184-186 184-186 184-188	292117 292118 292118 292119 292120 292120	1.03 1.32 1.12 .92	.17 .22 .97 .29 .99	14 1 1 1	77 119 49 42 63	.1 .1 .1 .1	1 15 9 6 19	1.68 2.54 1.73 2.02 1.69	.1 .1 .1 .1 .1	32 26 26 26 26 28	30 13 3 12 14	78 4 43 4 55 4 44 4 53 4	4.87 4.85 4.94 4.77 4.99	1 1 1 1	.04 .18 .05 .09 .22	23 3 16 3 20 3 17 3 21 3	.70 .13 .06 .04 .12	867 877 833 811 766	1 1 1 1	.20 .25 .18 .22 .16	5 1 1 1	330 410 380 400 540	95 61 75 63 47	1 1 1 1	1 1 1 1 1 1 1	49 51 38 42 33	1.20		145.1 157.1 145.9 129.3 150.1	11	06 65 92 75	1 2 1 2 3
190-192 192-194 194-196 196-198	292122 292123 292124 292125 292125 292126	1.0 3 1.2 3 .8 3 .9 3 .7 3	.05 .29 .13 .01 .18	1 1 1 1	41 87 54 28 35	.1 .1 .1 .1 .1	20 23 14 10 7	2.33 2.28 1.96 2.36 1.41	.1 .1 .1 .1	26 27 25 25 29	12 10 6 2	36 5 56 4 52 4 60 4 63 5	5.02 4.98 4.76 4.65 5.45	1 1 1	.06 .15 .15 .05	24 3 21 3 19 2 19 3 17 3	.15 .00 .87 .16 .49	795 795 771 840 729	1 1 1 1	.14 .24 .22 .17	1 1 1	560 540 470 360 440	44 66 47 48 55	1 1 1 1	1 1 1 1	37 59 44 32 37	1.34	1	146.6 158.4 135.6 127.2		81 02 66 83	1 1 1 1 2
₩0-202 103-203 E.O.H	292127 (1292128	.73 .93	.21 .18	1 1	41 40	.1 .1	6 11	1.66 1.92	.1 .1	29 30	3 9	74 5 50 5	5.72	1	.05 .09	18 3 18 3	.58 .52	810 868	1	.16 .15	1 1	440 350	48 57,	1 1 1	1	50 38	1.27	/ 1   1	156.3 150.8	1 4	69 84	1 3
												<del>.</del> ,			<u> </u>		••			<del>.</del>			,		<u></u>							
																				. <u> </u>												
																	•															
									.:						,					,				<u></u>							•	
ŀ	·												·· · ·			<u>.</u>							••••				·			<b></b>		

# DDH 797-3 ploz

### FILE NO: 78-0263-RJ1+2

DATE: 97/09/15 * * (ACT:ICP 31)

# COMP: CONTINENTAL COPPER CORP. PROJ: JEAN

## MIN-EN LABS - ICP REPORT 8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423

*.* 

Im)	ATTN: GAR	Y SCI	IELL								-	TEL:	(604)	327-3	3436	FAX:(60	4)327-	3423	420										*	* (A	CT:ICP 3
0.35	SAMPLE NUMBER		AG PPM	AL %	AS PPM	BA PPM	BE PPM	BI CA PPM %	CD PPM	CO PPM	, CR PPM	CU PPM	FE %	GA PPM	K %	LI MG PPM %	MN PPM	MO PPM	NA %	NI PPM	P PPM	PB PPM	SB PPM	SN PPM	SR PPM	TH PPM	TI %	U PPM F	V PM PP	W ZN M PPM	Au-fire PPB
175-12 12-14 12-14 18-10 18-20	292129 292130 292131 292132 292132 292133	4	1.1 .1 .4 .1	2.39 2.45 1.71 2.05 2.25	119 11 9 16 3	48 302 124 82 131	.1 .1 .1 .1	5 2.43 1 1.93 1 1.21 1 2.13 1 .89	.1 .1 .2 .1	23 19 24 31 30	46 38 37 34 42	97 7 173 4 270 5 358 5 206 5	.91 .87 .13 .59 .51	14223	- 19 - 13 - 08 - 16 - 47	20 1.56 12 1.61 12 1.99 15 1.93 17 2.60	6783 590 636 906 550	62 26 59 30 7	.03 .22 .10 .11 .17	16 13 15 18 18	490 590 610 570 480	24 8 15 9	321 21	1 1 1 1 1	38 47 38 60 47	40 26 28 30 31	.02 .17 .23 .14 .27	11 91 6 137 7 154 7 131 7 161	.2 .2 .9 .8	2 128 1 51 1 59 1 68 1 72	50 15 13 22 11
20-22 12-24 24-24 26-28 26-30	292134 292135 292136 292137 292138		.1 .1 .2 .1	1.95 1.67 1.94 2.00 1.86	7 9 24 22 20	79 164 231 164 61	.1 .1 .1 .1 .1	1 1.03 1 1.77 1 1.63 1 3.48 1 2.29	.1 .1 .2 .2	26 25 29 25 25	39 32 58 33 51	118 5 153 4 172 4 141 4 153 3	.56 .83 .81 .57 .83	33232	.17 .10 .10 .31 .06	16 2.12 15 1.84 12 1.69 12 1.79 12 1.51	497 444 465 481 403	11 35 9 14 13	.18 .15 .22 .16 .22	13 13 20 15 17	520 500 560 500 660	12 10 15 12 11	11121	1 1 1 1	38 47 56 69 51	31 27 26 25 21	.22 .18 .20 .19 .16	7 156 6 127 6 126 6 122 5 94	9 1 9 1 1	1 60 1 55 9 71 3 75 1 51	9 9 11 8 9
30-32 12-34 34-36 36-38 38-40	292139 292140 292141 292142 292143		.1 .4 .5 .4 .2	1.65 2.12 1.73 2.04 2.17	20 19 20 23 23	51 46 44 47 38	.1 .1 .1 .1 .1	1 2.75 1 2.15 1 2.67 1 2.54 1 2.41	.1 .4 .1 .2	21 31 27 32 25	90 54 33 62 41	154 2 339 4 154 4 246 4 126 4	.67 .75 .06 .52 .67	1 32 33	.07 .11 .04 .06 .06	13 1.45 16 2.02 12 1.58 15 1.63 14 1.83	297 413 526 438 498	30 25 10 22 12	.14 .14 .17 .19 .18	27 18 15 17 16	840 610 660 700 660	6 9 30 9 10	1 1 2 1 2	1 1 1 1	53 39 47 65 48	16 27 22 25 26	.11 .19 .14 .19 .18	3 60 6 109 5 91 6 95 6 110	.9 .1 .3 .0 .7	1 38 1 59 1 90 1 51 1 60	10 11 10 11 12
40-42 42-41 44-48 46-48 98-50	292144 292145 292146 292146 292147 292148	β	.1 .2 .1 .1	2.42 2.47 2.54 2.53 2.38	21 26 17 27 147	45 29 59 37 77	.1 .1 .1 .1	1 2.08 1 2.07 1 1.85 1 1.96 1 4.12	.2 .1 .2 .1 .1	29 28 24 29 21	53 44 43 38 75	114 4 154 4 94 5 81 5 104 3	.85 .88 .14 .08 .86	233322	.06 .05 .05 .05 .21	17 1.95 18 2.16 17 2.15 19 2.13 17 2.18	514 505 520 505 503	5 29 12 6 37	.20 .15 .17 .18 .22	19 18 18 16 25	640 650 590 570 690	10 10 9 11 7	~~~~~	1 1 1 1	66 45 57 43 83	27 28 29 29 29	.20 .16 .15 .14 .12	6 114 6 114 7 117 7 115 5 92	.5 .2 .1 .0	1 59 1 66 1 62 1 56 1 52	8 5 5 8 20
50-52 52-54 54-56 56-50 58-60	292149 292150 292151 292152 292153	ł	.2 .7 .1 .3	2.75 2.81 2.67 2.59 2.33	28 47 21 330 34	134 157 174 105 82	.1 .1 .1 .1	1 2.50 1 2.23 1 1.87 1 2.29 1 2.12	.2 8.6 .1 .1	25 31 24 27 29	32 28 27 44 34	201 4 179 5 137 4 170 5 173 4	.12 .30 .98 .16 .83	34443	.35 .53 .56 .42 .31	19 2.76 17 2.71 16 2.61 19 2.86 16 2.72	506 680 462 536 549	15 3 13 13 5	.16 .17 .15 .14 .13	13 12 12 16 14	550 560 610 570 580	17 475 8 9 9	29232	1 1 1 1 1	72 64 61 63 52	24 30 28 30 28	.19 .21 .21 .23 .23	5 145 7 146 7 137 7 140 6 132	.1 .8 10 .6 .2	64 1092 59 66 66	8 588 11 55 11
60-62 62-64 64-66 66-68 68-70	292154 292155 292156 292157 292157 292158	67	.5 16.6 .1 .1 .1	2.91 3.00 2.21 2.54 2.75	56 31 37 42 1670	51 48 20 30 52	.1 .1 .1 .1	1 3.33 1 2.65 1 3.08 1 3.14 1 2.73	.1 .1 .1 .1	29 29 32 34 30	29 28 23 23 22	167 5 136 5 66 5 97 5 148 5	.34 .53 .24 .91 .79	34344	.19 .08 .04 .05 .07	23 3.31 21 2.54 21 2.30 20 2.52 23 2.55	855 717 743 726 635	6 10 3 5 26	.20 .28 .18 .23 .21	15 23 18 16 13	530 610 640 520 560	17 9 9 11 20	22235	1 1 1 1	81 88 60 91 77	32 31 30 33 32	.20 .20 .11 .16 .12	7 156 7 135 7 119 8 143 8 135	.1 .9 20 .0 .5	83 70 50 56 72	20 13 14 13 13 138
70-72 72-74 7476 76-78 78-80	292159 292160 292161 292162 292163	Р	.1 .1 .1 .1	2.67 2.87 2.93 2.55 2.79	46 40 41 36 51	27 40 43 40 41	.1 .1 .1 .1	1 2.11 1 1.92 1 1.17 1 1.51 1 2.16	.1	33 27 32 29 34	23 29 32 37 44	88 5 52 5 91 5 81 5 108 5	.64 .22 .69 .66 .95	44344	.05 .04 .10 .07 .06	21 2.68 25 2.91 26 3.45 22 3.00 27 3.30	609 703 670 616 724	2 4 2 1 3	.21 .20 .17 .14 .17	16 18 18 18 20	660 480 490 850 640	8 10 10 8 9	33223	1111	60 59 49 39 54	32 30 34 34 35	.14 .12 .15 .16 .16	7 131 7 126 8 143 7 156 8 151	5 0 4 .1	52 53 63 60 65	17 15 11 34 61
80-82 82-84 84-86 86-88 88-90	292164 292165 292166 292167 292168	74	.1 .1 .1 .1 .1	2.83 2.90 2.35 2.46 2.39	173 1003 37 50 344	40 35 29 27 26	.1 .1 .1 .1 .1	1 1.53 1 1.76 1 1.76 1 1.98 1 1.61	.1 .1 .1 .1	26 31 28 26 27	35 27 31 44 28	73 5 76 5 66 5 49 5 43 5	.39 .72 .24 .28 .21	44333	.06 .06 .05 .04 .04	23 2.75 25 2.73 24 2.52 25 2.69 25 2.48	608 655 621 673 637	11111	.20 .25 .17 .19 .15	17 15 15 20 14	610 600 560 550 620	6 8 9 8 8	33332	1 1 1 1	64 86 53 63 46	31 32 30 31 30	.16 .13 .14 .12 .13	7 122 8 134 7 112 7 129 7 124	4.754	50 52 56 51 49	79 182 19 12 95
90-974 97-97 76-98 98-100	292169 292170 292171 292172 292172 292173	Q.C .	.1 .1 .1 .1	2.33 2.54 2.17 2.10 2.71	1389 240 65 62 37	18 26 44 55 38	.1 .1 .1 .1	1 1.41 1 1.41 1 1.55 1 1.56 1 1.81	.1 .1 .1 .1	26 36 29 32 26	29 21 54 26 25	45 5 59 6 67 4 84 5 59 5	.33 .10 .23 .07 .54	34234	.03 .05 .07 .05 .05	27 2.63 26 3.08 19 2.28 23 1.97 26 2.75	678 713 498 506 714	2 1 1 1	.13 .15 .17 .18 .16	13 15 27 18 14	610 620 720 820 680	10 10 10 9 10	33232	1 1 1 1	34 41 57 42 53	30 35 25 28 31	.10 .14 .10 .11 .17	7 126 8 147 5 91 7 109 7 154	3 1 1 1 2 1 6 1	48 60 43 43 60	184 55 28 24 8
102-102 102-109 104-106	292174 292175 292176	1	.1 .1 .1	2.70 2.47 2.74	51 147 47	25 18 33	.1 .1 .1	1 1.54 1 3.46 1 1.46	.1 .1 .1	30 31 27	19 18 25	48 5 50 5 52 5	.62 .79 .52	334	.03 .03 .04	29 2.89 28 2.87 30 3.16	814 1000 721	1 1 1	.18 .20 .17	12 12 14	480 500 590	9 11 9	233	1 1 1	41 54 39	33 33 33	.13 .14 .16	7 143 8 146 7 149	9 1 4 1 7 1	57 56 58	16 28 18
								· · · · · · · · · · · · · · · · · · ·		 - -									,							•					
									× .																						

# DDH J97-3 p201-2

COMP: CONTINENTAL COPPER CORP.

.

PROJ: JEAN

. MIN-EN LABS --- ICP REPORT

. ..

.

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423

FILE NO: 75-0263-RJ3+4

DATE: 97/09/15 * * (ACT:ICP 31)

ATTN: GARY SCHELL

	g.0.	16-168 68-170 70-172 72-174 72-174 1-178.]	156-156 5B-160 60-162 12-164 12-164	146-148 148-150 152-152 152-154 154-158	136-138 138-140 140-142 142-144 142-144	126-126 1365-130 130-132 132-134 132-134 134-136	4-118 18-120 20-122 122-129 122-129 124-126	66-108 108-110 110-112 112-114 112-114	
	<del>]</del> .	292207 292208 292209 292210 292210 292211	292202 292203 292204 292205 292205 292206	292197 292198 292199 292200 292201	292192 292193 292194 292195 292195 292196	292187 292188 292189 292190 292190 292191	292182 292183 292184 292185 292185 292186	292177 292178 292179 292180 292181	SAMPLE NUMBER
		+0 a →	U	97-	3			•	
		.1 .1 .1 .2	.1 .1 .1 .1	.2 .1 .1 .1	.1 .1 .1 .1	.1 .1 .1 .1	.1 .1 .1 .1	.1 .1 .1 .1	AG PPM
		2.85 2.90 2.58 1.68 2.38	3.05 2.92 2.72 2.51 2.25	2.16 2.54 2.22 2.76 3.23	2.27 2.38 2.42 2.72 2.49	2.39 2.56 2.81 1.98 1.96	2.21 2.44 2.36 2.29 2.38	2.45 2.34 2.54 2.49 2.47	AL %
		38 36 92 628 148	67 47 43 42 42	730 50 81 256 71	43 37 38 40 45	46 44 43 37 53	63 42 27 36 35	45 43 28 37 25	AS PPM
		25 27 33 13 29	14 18 24 34 45	23 17 23 31 23	74 19 30 17 13	26 27 54 63 60	16 24 27 14 12	22 16 18 28 26	BA PPM
		.1	.1 .1 .1	.1 .1 .1 .1	.1	.1 .1 .1 .1	.1 .1 .1 .1	.1 .1 .1 .1	BE PPM
		1111	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	11111	1 1 1	BI PPM
		2.57 1.24 3.34 5.33 4.21	2.33 2.46 2.17 3.02 4.23	5.60 3.50 5.53 2.06 1.68	1.95 2.29 2.74 2.33 4.31	4.73 1.70 1.81 1.88 2.25	1.77 1.46 1.73 1.72 1.66	1.84 1.85 3.46 1.28 1.28	CA %
		11111	.1 .1 .1	.1 .1 .1 .1		1 1 .1	.1 1 1 1	.1 .1 .1 .1	CD PPM
		27 27 30 24 26	38 33 29 29 27	27 28 26 31 38	27 27 27 30 30	21 25 30 24 26	29 23 24 26 33	29 30 19 27 22	CO PPM
		25 25 37 25 39	31 28 19 25 17	29 28 24 19 26	61 23 25 28 28	15 14 26 66 69	29 24 24 23 17	28 23 26 31 30	°CR PPM
		36 44 40 37 64	32 39 42 42 38	50 24 37 18 26	103 41 40 46 43	21 14 53 101 103	46 36 46 49 50	68 55 26 39 32	CU PPM
		5.91 5.60 5.50 4.22 5.13	6.13 5.37 4.84 5.28 4.99	4.76 5.19 5.55 5.80 6.12	3.90 4.05 4.20 4.90 5.02	4.35 4.18 4.83 3.43 3.15	5.03 4.69 4.92 5.42 5.83	5.57 5.48 4.38 4.97 4.67	FE %
		33322	43331	2 3 3 4 3	2 2 2 2 2 2 3	3 2 3 2 2 2	32333	4333333	GA PPM
		.02 .03 .03 .02 .03	.02 .04 .03 .03 .02	.03 .03 .03 .03 .03 .04	.41 .04 .03 .03 .03	.04 .04 .18 .53 .35	.03 .04 .05 .02 .03	.04 .03 .03 .04 .04	K %
		25 25 33 22 31	32 34 30 32 29	25 29 26 30 33	20 23 28 33 25	26 23 24 17 20	24 27 28 24 23	28 27 28 26 25	LI PPM
		3.65 3.57 2.70 1.72 2.27	3.61 3.16 2.97 2.84 2.48	2.34 2.82 2.51 3.20 3.86	1.90 2.24 2.48 2.94 2.74	2.07 2.37 2.19 1.64 1.61	2.61 2.67 2.52 2.51 2.59	2.62 2.65 2.71 2.71 2.92	MG %
		1040 869 945 900 971	899 876 790 955 1050	929 959 982 887 901	456 647 740 783 898	770 631 532 357 387	667 620 606 674 687	646 663 758 715 700	MN PPM
		1111	11111	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1	MO PPM
		.11 .10 .12 .06 .13	.12 .15 .14 .17 .19	.10 .13 .12 .12 .12 .13	.13 .16 .19 .17 .11	.20 .19 .23 .13 .10	.09 .10 .12 .08 .12	.19 .12 .17 .15 .11	NA %
		14 13 18 14 16	26 19 14 17 17	16 16 13 13 16	21 14 16 17 16	11 11 16 19 20	15 12 15 12 13	17 14 11 12 14	NI PPM
· · · ·		420 470 430 440 440	500 470 470 480 470	400 430 510 530 550	1380 430 440 430 450	490 490 750 1460 1560	500 510 610 600 560	640 560 500 510 510	P PPM
		7 7 6 11, 9	9 10 10 8 13	11 5 13 5 9	4 9 6 10	5 6 4 4	8 8 6 9 10	8 8 7 9 7	PB PPM
		22262	31234	33422	21212	2 1 2 1 2	2 2 1 3 2	33232	SB PPM
		1 7 1 3 1 4 1 4 1 4	1 3	1 8		1 2			SN S PPM Pi
		52738	50 3 53 5 55 5 52 5	56 53 50 50 50 50 50 50 50 50 50 50 50 50 50	58 57 57 57 55	93 48 71 51 51	33 32 43 32 32	51 40 77 45 35	SR PM Pi
		56 .16 54 .21 52 .23 23 .07 29 .18	36 .32 32 .28 29 .23 31 .13 29 .04	27 .15 50 .29 51 .13 53 .28 57 .39	22 .14 23 .22 25 .21 29 .27 30 .36	24 .25 24 .23 27 .20 20 .14 18 .12	28.11 28.13 29.15 31.15 33.21	31 .13 31 .11 26 .12 29 .14 28 .15	TH TI PM %
, <u> </u>		8 7 5 7	87 67 7	6 7 8 8 8	5 5 5 6 7	65 64 4	7 6 6 7 8	77666	U PPM
	·	143.8 156.4 151.4 123.1 140.4	173.2 153.1 132.4 119.7 97.1	135.0 150.2 144.9 164.9 196.3	98.9 110.2 115.4 133.0 162.6	121.7 114.2 113.9 91.2 83.3	114.1 114.9 124.2 115.9 134.5	137.5 129.6 117.8 117.4 127.8	V PPM
		1 1 1 1	1 1 1 1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1 1 1 1	1 1 1 1 1 1	11111	W PPM
		67 70 73 69 46	67 63 71 70 60	43 56 70 72 86	51 56 68 71 62	39 46 43 39 40	51 51 47 53 55	51 60 54 64 54	ZN A PPM
		8 9 38 514 152	15 6 7 6	109 9 43 94 11	4 4 5 6 8	20 14 17 5 6	13 34 11 19 11	17 12 11 42 8	u-fire PPB

## DDHJ97-4 P143

COMP: CONTINENTAL COPPER CORP.

.

### PROJ: JEAN

÷. MIN-EN LABS ---- ICP REPORT 8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423

FILE NO: 7S-0264-RJ1+2 DATE: 97/09/16

* * (ACT:ICP 31)

<i>(</i> m	ATTN: GA	RY SC	HELL										TEL	:(604	)327-1	3436	FAX	(:(604	)327-	3423										*	*	(ACT:	:ICP 31
43=0	NUMBER		AG PPM	AL %	AS PPM	BA PPM	BE PPM	BI PPM	CA %	CD PPM	CO PPM	-CR PPM	CU PPM	FE %	GA PPM	K %	LI PPM	MG %	MN PPM	MO PPM	NA %	N I PPM	P PPM	PB PPM	SB PPM	SN PPM P	SR T PM PF	TH TI	U PPM	V PPM	W PPM	ZN AL	J-fire PPB
143-41 9-1-6 810 8-10	292212 292213 292213 292214 292215 292216		1.7 .8 .7 .4 .1	4.18 3.28 3.02 2.89 3.00	45543	178 64 65 91 111		1 2. 1 1. 1 1. 1 1. 1 2.	10 89 98 67 17	.3 .2 .1 .1 .1	19 18 20 19 20	72 42 42 41 53	4392 2947 2286 1503 550	3.66 2.81 3.08 3.11 3.11	4 4 3 4 3	.80 .20 .18 .26 .30	17 13 13 12 12	1.82 1.17 1.18 1.25 1.35	209 190 212 247 299	3 1 2 1	.48 .38 .36 .38 .38 .37	31 34 39 38 37	580 680 670 590 570	2 2 3 2 1	11212	1 1 1 1 1 1 1 1	24 06 95 92 32	2 .25 6 .15 7 .17 8 .18 8 .17	5 4 4 4 4	151.7 89.2 91.8 98.6 92.3	1111	41 24 29 25 22	28 16 12 10 6
2-14 4-15 5-15 6-20 0-12	(m)292217 292218 292219 292220 292220 292221		.2 1.1 1.7 1.1 .5	2.85 3.18 3.12 3.30 3.43	2 3 2 4 5	106 98 75 160 132	1 1 1	1 1. 1 2. 1 2. 1 1. 1 2.	77 06 22 69 05	14.1	19 28 23 33 23	54 58 53 53 56	1250 3351 5148 3526 1804	3.03 3.74 3.77 4.35 3.40	3 4 4 4 4	.32 .33 .30 .75 .45	12 13 13 18 14	1.27 1.26 1.03 1.49 1.24	239 245 200 235 222	3 9 13 3 27	.38 .42 .35 .35 .42	28 34 33 44 38	580 570 580 580 600	23652	2 2 1 1	1 1 1 1 1 1 1 1 1 1	05 20 14 04 28 14	7 .18 21 .18 20 .16 24 .24 9 .20	45564	95.2 101.7 101.9 138.0 103.2	11511	23 26 37 33 22	7 17 25 16 8
12-24 14-26 16-28 18-30 28-30	292222 292223 292224 292225 292226		.1 .9 1.5 .2	3.15 1.70 1.86 1.64 1.68	2 4 6 4 4	98 52 54 39 42	1 1 1	1 2. 1 2. 1 3. 1 1. 1 1.	10 17 07 70 13	.1 .2 .1 .1	19 18 20 14 26	59 97 119 103 94	720 2490 3609 710 1330	2.98 3.05 3.63 2.41 3.75	43332	.34 .13 .24 .15 .17	14 13 17 13 13	1.25 1.32 1.97 1.29 1.35	235 233 318 187 186	3 12 25 3 21	-35 .17 .06 .13 .12	32 50 59 47 70	580 1260 1290 1280 1240	14624	12212	1 1 1 1 1 4	02 1 58 1 97 2 52 1 78 2	7 .21 9 .20 4 .19 7 .19 3 .18	44535	105.0 87.8 113.7 79.9 82.4	1 1 1 1 1	19 30 33 17 24	5 16 20 7 9
32-34 34-36 36-38 X8+40 10-45	292227 292228 292229 292230 292230 292231		.1 .1 .9 .1	2.05 1.08 1.10 1.14 1.43	57 1066	97 71 45 60 51	1 1 1	1 1 1 1 1 1 1	91 71 99 06 95	.1 .1 .1	23 15 16 19 21	132 96 84 90 79	189 156 2762 568 2447	3.97 2.49 2.73 2.71 3.04	3 1 2 2	.57 .18 .12 .12 .12	18 10 11 10 11	1.69 .98 1.18 1.06 1.10	227 181 242 188 247	2 30 4 15	.16 .11 .06 .12 .13	67 73 47 61 70	1290 1310 1500 1340 1360	22736	21222	1 1 1	74 2 47 1 38 2 76 1 11 1	5.24 6.18 1.10 8.14 9.12	53434	104.5 62.7 62.3 62.7 66.0	1 1 1 1	19 13 23 17 20	3 4 11 4 14
42-44 44-46 16-48 18-50 50-52	292232 292233 292234 292235 292236		.1 .2 .4 .2 2.0	1.93 1.82 .57 .58 .88	3 7 16 11 9	95 55 22 17 65	1 1 1	1 1. 1 1. 1 1. 2 1.	72 62 79 65 66	12213	20 22 4 6 5	96 106 62 49 43	383 669 456 605 7723	3.65 3.90 1.01 1.38 2.05	32111	.18 .16 .08 .05 .07	16 16 5 6	1.84 2.03 .47 .61 .62	363 390 460 243 356	52 52 8 3 149	.11 .08 .06 .06 .08	55 64 7 8 10	1380 1220 720 780 880	3 12 19 8 18	2 3 11 2 3	1 1 1 1 1	15 2 77 2 52 1 52 1 52 1	4 .16 6 .19 3 .03 5 .02 8 .02	5 5 1 2 3	95.6 103.8 19.2 28.1 22.8	1 5 1 4	21 37 21 15 21	3 7 6 8
53-54 54-58 53-58 58-60 10-60	292237 292238 292239 292240 292241	4	.2 .1 .1 .2	2.29 2.40 2.51 1.65 1.47	6 <u>35</u> 32	116 101 155 41 38	1111	1 1. 1 1. 1 1. 1 1.	71 73 66 89 08	1111	13 23 22 17 16	55 102 156 70 48	473 198 258 332 237	2.38 3.37 3.56 2.41 3.32	2 3 2 1 2	21 21 35 07 20	13 14 16 8 13	1.23 1.27 1.55 94 1.08	240 238 265 206 147	103546	.43 .34 .26 .31 .17	21 57 75 55 35	720 810 950 1040 1390	3 4 1 3	1 2 2 1 2	1 10 1 9 1 9 1 9	)3 1 )3 2 )4 2 )8 1 )5 1	7 .14 0 .16 2 .21 5 .10 9 .14	34434	74.7 82.0 95.2 53.5 71.1	4 1 2 1 1	19 17 19 15 12	53364
62-69 64-66 66-66 68-70 70-72	292242 292243 292244 292245 292246	<i>с</i> 26	.6 .4 .4 1.2 3.2	1.22 1.72 1.03 1.41 2.15	4 2 4 11	30 18 21 40 54	1 1 1	1 1. 1 2. 1 1. 1 1. 1 3.	23 67 33 67 49	.1 .1 .1 1.9	21 15 18 17 17	74 111 66 74 97	1103 728 863 3047 4773	3.16 3.21 2.41 2.78 3.62	2 1 1 2 3	.06 .05 .05 .10 .14	10 22 7 8 9	.75 1.55 .72 .91 1.05	176 331 175 204 320	6 2 3 16 154	.17 .20 .17 .23 .22	60 46 77 48 50	1510 1020 1050 1180 980	5 4 3 249	1 1 1 16	1 1	53 1 56 2 56 1 79 1 55 2	8 .13 0 .12 4 .11 7 .14 1 .13	44335	62.4 91.5 49.8 69.9 75.2	1 1 1 2	19 24 17 21 96	10 9 11 26 20
72-74 74-74 76-76 78-64 80-67	292247 292248 292248 292249 292250 292251	#0Q	1.4 1.5 .7 .8 1.0	3.37 3.29 2.18 2.74 2.15	46453	82 76 123 60 64	.1	123	98 43 88 12 57	22111	14 15 18 11 15	66 102 90 63 106	4353 4093 2221 2121 1994	2.39 2.63 3.65 1.91 2.42	43233	.07 .08 .28 .07 .11	9 12 16 8 9	1.08 1.40 1.73 .75 .96	216 306 583 184 198	25 63 7 13 19	.24 .28 .15 .39 .29	44 48 46 41 52	1000 970 740 1130 1030	4 4 5 3 1	1 2 3 1	1 22 1 24 1 29 1 14 1 9	27 1 7 1 76 2 4 1 98 1	5 .11 8 .11 2 .11 2 .10 5 .17	33533 3533	57.8 66.1 110.3 46.3 65.4	1 1 1 1 1 1	23 21 26 18 19	34 23 17 15 29
82-81 84-8 86-9 88-1 90-97	292252 292253 292254 292255 292255 292256		1.8 .4 1.1 2.0 1.9	3.06 1.49 1.19 1.15 1.69	3 3 8 4 3	64 42 38 63 94	.1 .1 .1	7 2. 1 1. 1 2. 2 1. 9 2.	72 11 71 97 9 16 12	0.0 1 9.7 .3	11 12 11 16 13	60 60 74 106 78	2502 1078 2027 6050 3879	1.75 1.72 2.04 3.16 2.41	3 2 1 1	.07 .06 .08 .10 .18	6 5 8 7 10	.53 .56 .72 .75 1.10	196 165 646 244 298	18 12 20 136 39	.45 .24 .19 .17 .23	37 47 41 53 35	1010 1000 980 990 820	144 2 434 9 11	1 1 2 1 1	1 17 1 7 1 7 1 6 1 10	78 1 79 1 77 1 60 1	1 .08 1 .11 2 .10 8 .14 6 .16	22243	35.4 39.1 47.0 55.9 81.0	4 5 1 7 6 1	i67 17 588 29 29	36 11 19 21 64
92-9 94-9 96 <b>-9</b> 9	292257 292258 292259 292259		.9 1.2 1.0	2.50 2.24 1.84	4 6 8	157 94 95	.1 .1 .1	1 1.1 1 1 1.1	73 69 24	.2 .2 .1	18 31 19	145 223 195	2112 3 3032 5 2305 3	3.56 5.65 3.57	3 4 3	.52 .70 .39	14 18 11	1.63 2.04 1.36	228 188 182	13 19 23	.34 .17 .22	42 84 63	1150 1160 1100	4 8 4	2 3 3	1 11 1 5 1 10	3 2 6 3 7 2	2 .21 4 .20 2 .17	4 7 5	98.4 130.1 88.7	1	25 35 27	19 27 30
				+																													
									-																								

## DDH 797-4 P2023-

COMP: CONTINENTAL COPPER CORP.

PROJ: JEAN

ATTN: GARY SCHELL

### MIN-EN LABS - ICP REPORT 8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8

### FILE NO: 78-0264-RJ3+4+5

DATE: 97/09/16

•	
TEL:(604)327-3436	FAX:(604)327-3423

*	*	(ACT	:1	CP	31	)
		(1101	•••		~ '	1

	SAMPLE	2	AG PPM	AL %	AS PPM	BA PPM	BE PPM	BI PPM	CA %	CD PPN	CO PPM	.,CR PPN.	CU PPM	FE %	GA PPM	K %	LI MO PPM \$	i MN PPM	MO PPM	NA %	NI PPM	P PPM	PB PPM	SB SI PPM PPI	I SR I PPM	TH PPM	TI %P	U PM	V PPM	W PPM	ZN / PPM	Au-fire PPB
98-100 10 - 102 102 - 104 104 - 104 104 - 106	292260 29226 292262 292263 292263 292264		.1 5.6 1.3 .9 .2	1.91 1.54 2.57 1.76 1.64	45741	120 82 225 97 92		1 1 1 1 1 1 1 1 1 1	.11 .81 .51 .31 .12	-1 -4 -1 -1	22 19 15 13 11	316 203 142 105 58	298 4314 3430 2577 867	3.26 3.26 3.22 3.02 2.60	1 2 3 3 3 3	.44 .20 .33 .31 .19	16 1.9 11 1.2 14 1.5 13 1.5 10 1.1	255 322 185 194 196	5 16 58 24 <b>3</b>	.14 .16 .30 .10 .20	83 73 41 34 19	1130 1150 1210 1190 1160	3 54 3 6 2	2 8 1 1	81 80 122 85 52	22 20 22 22 18	-28 -17 -21 -18 -18	44443	140.7 82.4 78.9 63.6 48.2	1 6 1 1	20 31 23 20 18	4 16 31 20 7
108_110 110 - 112- 112-114 14-116 14-116	29226 29226 29226 29226 29226 29226	5 7 8 9	.7 .9 .8 1.2 .8	1.36 1.05 1.14 1.65 1.15	21311	76 78 71 226 111	1 1 1 1	31 1 1 1	.21 .82 .73 .72 .52	.1 .1 .2	14 9 10 19 15	132 54 77 191 116	2193 2063 2088 3168 2018	2.89 2.55 2.59 3.34 2.98	122221	.16 .22 .22 .66 .26	12 1.3 9 1.1 10 1.1 15 1.9 11 1.2	256 193 161 250 249	29 29 50 31 44	.12 .06 .07 .10 .05	45 19 19 62 39	1280 1100 1170 1150 920	25124	1 1 1 1	60 27 38 41 40	20 18 19 23 19	.18 .17 .19 .25 .18	43344	71.3 39.4 49.3 116.6 75.2	1 2 1 1 1	22 17 17 24 19	14 9 16 13 16
118-120 120-122 122-129 124-126 126-126	29227 29227 29227 29227 29227 29227		.3 3.4 6.7 .1 1.3	.86 1.65 1.15 .57 1.06	ٹے لے لے لے ل	83 248 115 46 75	1 .1 .1	1 1 1 1 8 1 3 1 4 1	.95 .33 .93 .93 .93 .63	.1.2.3.1.1	11 16 18 5 9	90 114 75 43 109	950 >10000 >10000 261 2725	2.55 3.84 4.27 1.31 2.27	22211	.20 .24 .13 .12 .12	7 .73 17 1.83 10 1.09 5 .44 10 1.29	169 230 250 122 224	7 25 10 3 71	.05 .08 .09 .03 .07	25 41 37 7 36	700 1620 900 490 750	5 10 18 4 6	1 1 1	45 66 76 60 97	18 25 24 13 19	.10 .21 .12 .01 .04	35623	49.4 102.6 63.5 12.5 44.6	13111	11 25 23 10 15	8 32 101 2 18
128-190 130-192 132-194 134-196 134-196	29227 29227 29227 29227 29227 29227	4	.9 1.1 .3 1.1 8.0	.96 .76 .93 .82 .71	11553	148 128 120 150 87	1 2 3 2	11 12 13 32	.54 .83 .74 .49 .55	11113	98679	111 127 76 119 64	1760 3573 1016 3020 10000	2.27 2.29 2.04 2.17 3.42	1111	.09 .13 .14 .20 .12	9 1.2 7 8 7 7 5 4 6 5	247 167 222 221 221	219 409 252 142 1165	.07 .06 .05 .05 .04	28 18 15 17 22	1070 1040 990 1060 1150	5 5 7 17	1	102   61   149   183   125	25 25 22 22 20	.08 .07 .02 .01 .01	33335	58.7 48.1 33.8 27.8 23.0	1111	18 18 16 12 24	22 35 9 15 33
146-140 140-142 142-149 144-149 146-148	292280 29228 29228 29228 29228 29228		3.1 9.8 1.7 .1 .1	.80 .85 .86 1.03 .85	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	90 100 120 181 196	2 .1 .1 .1	1 1 2 1 1 1 1 2 1 1	.93 .38 .96 .41 .90	251.1	7 14 7 7 7	99 97 136 109 106	8088 10000 5378 964 776	2.56 4.34 2.02 1.83 1.97	1111	.13 .17 .16 .19 .17	7 68 9 9 8 96 7 87 8 96	157 144 151 218 235	62 756 1476 69 58	.04 .04 .05 .05	22 33 18 15 16	910 1400 1030 930 1030	10 26 4 2 8	1 1 1 2	118   65   83   124   96	29 35 24 23 25	.01 .05 .06 .03 .06	46888	24.7 41.2 41.8 37.8 48.5	1 130 1 1 1	16 34 14 12 17	73 90 31 7 12
148/50 150-152 52 - 154 54 - 156 56 - 156	29228 29228 29228 29228 29228 29228	N N N	.1 .5 .2	.81 .71 1.06 .86 .85	2 12 3 1	134 189 144 188 263	1 .1 .4 .1 .1	11 22 21 51	.04 .89 .14 .81 .24	.1.1.1.1	8 8 7 8	82 102 77 81 85	726 498 2125 1120 831	1.87 1.87 2.43 1.92 1.93	2 1 1 1	.11 .11 .17 .17 .21	8 1.17 7 .89 7 .74 7 .79 9 .84	224 185 202 190 167	73 107 1156 287 147	.06 .06 .05 .05 .06	15 14 19 15 15	1020 1020 970 940 920	8 8 11 6 5	1	73 61 129 99 86	27 25 27 25 24	.08 .09 .01 .04 .09	ろうろうろ	49.1 48.9 30.8 38.8 48.5	11111	19 19 15 13 13	7 5 14 10 14
58-160 160-162 162-169 162-169 168-166 166-168	292290 29229 292293 292293 292293 292293	2-215 V	.17.1.5.1	.83 .88 .92 .99 .86	7 6 1 18 4	223 229 205 190 279	1 1 2	1 2 1 2 1 1 1 3 1 2	2.33 2.18 .65 5.40 2.09		87787	66 89 82 89 79	1263 2912 833 1752 372	1.91 2.06 1.93 2.40 2.03	21111	.17 .16 .20 .21 .22	8 .80 7 .83 8 .98 7 .94 6 .92	216 208 222 340 236	36 385 9 799 28	.05 .06 .05 .05	15 15 26 15	990 980 950 1030 1070	8 11 7 8 5		117   103   88   183   138	24 25 24 24 24	-06 -05 -06 -03 -04	<b>MNNNN</b>	44.3 40.4 43.1 41.1 36.8	11111	12 14 14 16 14	10 12 7 11 6
168-170 170-172 172-174 172-174 174-174 174-178	29229 29229 29229 29229 29229 29229	5 5 7 3 9	.2 .4 .2 .9 .1	.79 .97 .89 1.18 3.55	1 67 2 1	239 245 215 116 319	.1 .2 .1	1 1 1 1 2 2 1 2	.72 .85 .30 .47 .28		7 9 7 12 20	71 82 71 91 213	1147 1413 1362 3342 459	1.89 2.35 1.89 3.44 3.59	1 1 2 2	-21 -28 -25 -16 -24	7 .78 8 .97 6 .59 11 1.24 22 2.71	235 249 230 430 392	346 1266 103 190 14	.05 .05 .06 .33	14 19 15 20 62	900 1220 940 900 1010	7 6 11 10 9	1 1	99 105 134 120 244	24 26 23 25 26	.06 .08 .03 .08 .17	23245	39.0 47.4 32.3 95.2 131.8	1111	14 20 13 30 33	12 8 9 21 9
78-180 60 -187 82- 181 84-186 36-186	29230 29230 29230 29230 29230 29230	~ + q	.2 .1 .6 .3 .2	1.97 1.82 1.76 1.77 1.97	11211	184 309 107 154 146	1 1 1 1	1 1 1 2 1 3 1 2 1 1	.82 .41 .00 .51 .53		15 17 14 14 14	159 155 99 98 111	1165 668 1919 823 662	2.64 3.30 3.14 2.94 2.28	21211	.21 .51 .15 .21 .19	10 1.40 15 1.98 11 1.47 11 1.50 9 1.40	231 410 354 366 244	25 47 35 11 13	.19 .15 .19 .14 .27	60 57 47 50 52	940 1030 970 1060 1080	5 7 5 7 5 7 5	2 1 2 1	121 123 131 114 104	17 23 19 19 16	.16 .20 .08 .07 .12	34443	96.2 125.8 91.0 77.6 71.4	1 1 1 1	20 26 27 25 18	11 5 15 9 8
65-190 12-192 12-194 14-196 61-198	292305 292306 292307 292308 292308 292309	0	.11.1.4.4	2.65 2.30 2.35 1.58 1.20	11132	472 488 320 281 117	.1 .1 .1 .1	13 11 11 11	.05 .83 .68 .45 .60	.1 .1 .1 .1	19 21 21 15 15	193 224 228 194 92	105 302 411 1684 1288	3.66 3.41 3.72 2.80 2.71	12223	.69 .78 .55 .29 .21	17 2.63 19 2.44 19 2.40 13 1.42 10 .93	448 335 344 192 162	10 31 13 55 18	-18 -20 -19 -13 -09	74 77 73 59 43	920 940 980 990 980	7 3 4 2 4	321	148 101 97 63 51	25 24 25 19 16	.15 .29 .32 .20 .15	54543	122.8 133.6 148.9 114.1 99.6	1 1 1 1 1	29 23 27 20 18	2 5 6 21 17
18-200 2003	292310 29231 729231 7292312		.3 .1 2.1	1.92 2.21_ 1.67	2 1 6	277 378 _ 64	.1 1_ .1	1 1 2 2	.09 .92 .87	.1 1 .3	20 23∠ 25	229 259 90	1034 281 5613	3.35 3.71 4.46	1 12	.80 .86 .14	17 1.92 23 2.81 990	274 	11 15 64	.14 .09 .25	92 98 77	900 910 720	8 1_ 19	2 2 3	50 - 58. 103	23 _26_ 24	.25 .30 .09	4 5_ 6	120.3 138.4 61.2	1 1 49	29 32 60	6 5 33
SL	1 DGE	- SA	MPLE	for	139.	6m	142	.6 m	in	DP	HJO	17-4																				



VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C., CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C., CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

Quality Assaying for over 25 Years

## Assay Certificate

7S-0264-RA1 Date: SEP-16-97

Company:	CONTINENTAL COPPER CORP.
Project:	JEAN
Attn:	GARY SCHELL

We hereby certify the following Assay of 4 Rock samples submitted SEP-08-97 by D.L. Cooke.

	Sample Number	Cu %	
120-127	292271	1.230	
122 - 124	292272	1.280	
136-138	292279	2.750	
140-142	292281	1.780	

Certified by

**MIN-EN LABORATORIES** 

1

# DDH J97-5 plof4

COMP: CONTINENTAL COPPER CORP.

PROJ: JEAN

42

n)...

ATTN: GARY SCHELL

## MIN-EN LABS - ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423

 $\chi^{(1)}_{ij} \in$ 

> FILE NO: 75-0279-RJ1+2 DATE: 97/09/21

			*	*	(A(	CT:ICP 3	1)
H	TI	U	۷	W	ZN	Au-fire	
	~ ~ ~						

1.5	SAMPLE NUMBER		AG PPM	AL %	AS PPM	BA PPM	BE PPM	BI ( PPM	CA % F	CD PPM 1	CO PPM	JCR PPM	CU PPM	FE %	GA PPM	K %	LI PPM	MG %	MN PPM	MO PPM	NA %	NI PPM	P PPM	PB PPM	SB PPM F	SN PPM F	SR PPM P	TH T Pm	IU %PPM	V PPM	W PPM	ZN / PPM	u-fire PPB
5-40 9-6 6-8 6-10 10-12	292313 292314 292315 292316 292317	\$	24111	2.17 1.82 2.03 3.17 2.73	6 5 4 6 10	43 23 21 28 30		1 2. 1 1. 1 1. 1 2. 1 2.	35 87 81 74 58	.1 .1 .1 .1	14 19 15 9 15	126 137 124 75 143	260 3 633 3 94 2 115 1 42 2	.11 .24 .96 .99 .61	33333	.11 .13 .14 .18 .18	10 13 13 8 10	.78 .70 .95 .40 .65	228 235 275 221 286	11 2 1 1	.12 .22 .21 .75 .46	61 1 81 1 66 1 48 1 72 1	240 540 400 610 380	9 12 9 9 17	1 2 1 2	1 1 1 2 1 1	49 74 75 235 159	15 .1 15 .1 15 .1 9 .0 13 .1	2 4 4 4 2 4 8 2 1 3	115.3 136.1 112.2 73.2 91.4	1 2 1 1	23 29 25 20 32	5 9 4 11 9
12-14- 14-16 16-18 10-20 20-72	292318 292319 292320 292321 292322		-1 -1 -1 -1 -1	2.40 2.57 2.41 2.38 2.45	8 10 16 15 12	35 37 15 12 17		1 1.9 1 3.0 1 4.0 1 4.0 1 3.0	90 08 80 68 64	.1 .1 .1 .1	27 27 14 10 18	178 208 95 83 151	69 4 192 3 96 2 135 2 155 2	.47 .65 .42 .02 .42	3 2 1 1	.17 .24 .08 .07 .11	19 14 12 10 15	1.36 1.43 1.09 .76 1.31	384 619 739 615 492	12212	10 13 01 07 13	128 1 86 36 1 41 1 94 1	360 940 150 160 040	5 10 12 10 6	23213	1 1 1 1	36 66 18 83 22	22 .2 18 .1 13 .0 10 .0 13 .0	1 6 5 5 7 3 8 3	143.1 90.1 57.0 49.2 55.8	1 2 1 1	34 37 31 30 39	44557
72-24 72-74 72-74 72-74 70-72 70-72	292323 292324 292325 292326 292327		.1 .1 .6 .1	2.68 4.12 2.49 3.26 2.05	16 4 2 4	13 37 44 29 37	.1	1 4. 1 3. 1 2. 1 2. 1 1.	81 58 07 65 60	.1 .1 .2 .1	20 15 24 23 31	156 152 117 100 103	71 3 52 2 130 3 943 2 333 4	.15 .27 .09 .80 .08	1 4 3 4 3	.07 .16 .22 .15 .15	16 8 12 11 13	1.45 .78 1.07 .74 1.01	783 277 281 197 227	3 1 19 1	-01 -48 -27 -40 -21	77 1 65 79 67 1 91 1	170 880 960 010 030	10 3 5 7 8	2 2 1 1 2	1 1 2 1 1 1 1	22 58 105 174 55	17 .0 11 .1 16 .1 13 .1 20 .2	9 4 1 3 6 4 5 5	59.2 97.2 100.3 79.3 98.3	1 1 1 1	35 18 22 28 22	5 2 9 10 4
77-76-95 77-76-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95 78-95	292328 292329 292330 292331 292332		.7 .6 5.1 .2 2.0	2.69 2.05 2.02 1.72 1.60	43822	22 19 19 21 11	1111	1 2.4 1 1.5 70 3. 1 1. 1 2.5	41 92 15 77 20	.1 .2 .1 .4	22 22 36 14 20	129 73 62 69 45	1021 4 1031 3 4697 5 490 3 3583 3	.01 .42 .24 .03 .59	53434	.15 .08 .10 .10 .06	15 13 12 11 11	1.22 1.09 1.27 1.09 .73	256 273 407 323 236	5 4 25 4 18	.10 .14 .07 .12 .09	64 51 1 51 1 40 1 43 1	720 070 060 100 460	7 10 78 3 7	1 2 1 1	1 1 1 1	35 46 29 40 39	20 .2 17 .1 25 .1 16 .1 17 .0	5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	112.4 107.3 113.8 83.1 68.1	4 1 1 1	34 28 38 23 48	10 20 22 6 46
2440	292333 292334 292335 292336 292336 292337		1.5 .8 1.5 1.7 .4	2.45 1.88 2.71 2.12 1.28	43456	12 59 47 43 25	1111	1 2. 1 1. 1 2. 3 2. 1 1.	55 75 53 57 87	.2 .1 .2 .3 .1	25 18 39 23 12	126 146 152 123 73	2329 4 669 2 2356 3 2618 3 1280 2	.14 .86 .95 .13 .58	3 3 4 3 1	.08 .17 .18 .12 .10	15 10 18 13 10	1.14 .78 1.03 .63 .93	331 192 257 205 264	13 2 8 30 2	.14 .19 .21 .18 .08	76 1 71 127 75 37 1	070 870 950 740 110	9 5 11 9 10	21221	11111	98 69 86 75 34	20 .1 14 .1 19 .1 14 .1 14 .1	1 545 545 543	82.3 74.8 90.6 62.6 64.2	1 1 1 1	36 21 41 37 38	24 9 104 400 15
52-74 59-53 58-60 6-60	292338 292339 292340 292341 292342		.5 .1 .2 .8 .7	1.70 1.32 1.93 1.78 1.28	7 4 5 4 5	16 30 23 88		1 1 1 1 1 1 2 1 1 1 1	90 37 19 78 42	.2 .1 .1 .1	12 11 16 12 17	83 57 137 95 139	1314 2 156 2 551 2 2046 1 2427 3	.18 .44 .70 .83 .34	22322	.07 .10 .08 .08 .27	10 11 11 7 11	.75 .91 .84 .49 .93	202 213 259 145 179	42324	.17 .09 .19 .24 .10	36 1 35 1 57 1 55 1 55 1	130 080 020 800 040	5 6 7 8 15	1121	1 1 1 1	59 26 68 90 80	11 .0 13 .1 14 .0 9 .0 17 .1	7 3 3 3 3 3 3 3 3 3 3 4	61.7 73.7 66.6 42.7 86.7	2 1 1 1	26 17 23 27 39	12 4 15 14
6214 64-66 66-68 68-70	292343 292344 292345 292346 292346 292347	0	.8 .2 .5 .1	1.07 1.49 1.41 2.63 4.04	33234	21 114 123 186 263			09 86 52 74 21	.2 .1 .1 .1	17 25 34 25 26	106 249 241 432 360	1734 2 779 3 1422 5 376 6 153 7	.69 .80 .03 .85 .07	1 2 3 6	-08 -40 -56 1.50 2.03	8 13 14 23 24	.61 1.03 1.00 1.77 1.94	153 182 165 307 318	27 18 3 1 2	.12 .08 .08 .10 .29	72 103 94 72 93	590 410 550 270 430	7 8 12 11 6	1 2 2 4 2	1 1 1 1	33 24 17 24 75	13 1 19 2 24 2 33 4 34 4	3569	45.3 58.5 63.3 64.2 98.6	11111	27 28 44 70 83	13 7 11 6 5
72-74 71-76 76-78 78-80 80-82	292348 292349 292350 292351 292352	U 17	.1 .1 .2 .3	4.88 3.16 3.30 3.22 .99	44422	200 167 394 154 59	.1 .1 .1 .1	1 2. 1 1. 1 1. 1 2.	50 90 49 27 88	.1.1.1.1	20 25 22 19 14	286 295 202 42 67	159 5 418 5 277 4 1076 3 870 1	.46 .83 .97 .81 .88	65541	1.28 .75 1.21 .57 .11	19 21 17 19 6	1.26 1.42 1.31 1.41 .56	283 327 285 244 130	18269	.37 .31 .31 .31 .14	79 81 60 27 44 1	350 550 730 550 320	46768	32111	11	19 79 82 81 32	26 .2 28 .2 24 .3 20 .1 10 .0	7 7 9 8 9 6 9 5 9 2	65.9 82.2 104.9 145.8 35.9	1 1 1 1	65 45 36 27 17	57 6 10 8
82-84 84-86 86-86 88-90 90-92	292353 292354 292355 292356 292356 292357	D0H	.2 .3 .1 .3	2.21 3.60 3.34 3.63 3.79	25132	188 63 86 140 58	.1 .1 .1 .1	1 1. 1 2. 1 2. 1 2.	43 95 56 24 01	.1 .1 .1 .1	19 16 11 16 15	74 22 36 38 39	704 3 676 2 224 2 398 2 918 2	.15 .11 .02 .83 .40	33344	.31 .11 .17 .35 .15	14 10 11 14 13	1.25 .62 .73 1.09 .75	241 186 186 215 204	12 34 3 2 5	25 58 62 42 49	44 23 16 20 22	870 550 440 500 550	53123	1 1 1 1	1 13 12 11	59 19 54 46 66	17 .1 10 .0 10 .0 14 .1 12 .0	4 3 3 3 4 3 3 4 3	89.2 57.3 63.7 96.2 67.2	1 1 1 1	26 16 12 19 17	9 11 6 7 10
9z-94 9y-96 96-98	292358 292359 292360		.1 .1 .1	2.33 3.23 2.48	2 3 2	114 101 75	.1 .1 .1	1 1.0 1 2.3 1 1.9	62 30 90	.1 .1 .1	16 13 15	44 32 31	483 2 199 2 292 2	.67 .42 .39	2 3 2	.40 .28 .16	13 14 15	1.06 1.06 1.01	200 233 223	10 2 47	.40 .57 .45	24 19 22	590 440 490	5 21 3	1 1	1 1 1 2 1 1	37 15 51	14 .15 13 .12 13 .13	333	81.6 76.0 77.0	1 1 1	20 20 19	5 5 6
									-	.*																							

## DDH 297-5 p2014

#### FILE NO: 7S-0279-RJ3+4

DATE: 97/09/21

* * (ACT:ICP 31)

COMP: CONTINENTAL COPPER CORP.

PROJ: JEAN

ATTN: GARY SCHELL

NA P PB SB SN SR ZN Au-fire SAMPLE AL AS BA ΒE Bİ CA % CD CO ÇR CU FE % GA 17 MG % ΜМ MO NI ТН TI u. AG K % PPM % NUMBER PPM % PPM PPM PPM PPM PPM PPM **PPM** PPM % PPM PPM PPM PPM PPB 78-100 1099 2.27 30 2 .08 10 .82 217 2 29 500 160 12 .07 3 62.5 20 30 10 292361 .5 3.10 2.50 16 .56 3 22224 2 61 .1 .1 5 111.3 33 7 ģ 21 13 100-102 3.2 3.53 Ā 81 2.76 .2 23 43 7047 3.88 .19 16 1.73 304 4 .31 620 183 .14 37 292362 .1 1 4 1 72 102-104 432 .90 ź 680 10 .04 25.3 12 .1 1.28 22 1.97 55 45 .04 121 3 .08 1 Ś 292363 4 .1 1 .1 4 4 .48 104-106 ... 7.5 36 12 25 21.3 25.4 556 .57 7 750 15 50 17 7 18 1 1.92 .78 .05 248 .05 .04 292364 ,60 .1 3 1 6 1 1 1 .1 4 71 > 10000 3.87 21 39 63 .01 5 .71 22 22 .3 9 2 .10 .54 380 69 .05 1250 40 44 292365 5 3.03 .8 1 106-108 108-110 .98 1 1003 2.30 8 1.14 36 1250 63 17 53.2 20 292366 -9 24 53 1 1.97 13 79 1 .09 355 5 -10 9 22222 .08 3 4 .1 ź 228 17.11 93.2 10-112 Ĩ9 207 1 3.01 1 2.39 23 31 797 3.15 .25 16 1.19 324 2 .53 29 500 19 292367 .4 4.41 .1 .1 4 4 1 0 12-14 23 21 269 2.87 560 5 204 62.3 .12 214 26 .09 292368 .1 3.58 6 93 .1 .1 28 4 12 .84 37 14 4 1 -14 3 .2 2.94 źĩ 47 897 3.08 3 2 12 1.23 3õ ž 165 17 .14 14-116 1 2.30 .13 268 610 84.9 17 292369 .46 4 2 .1 .1 1 .3 2.92 Ī 72 20 37 833 2.86 .13 12 1.23 256 2 .45 27 500 10 165 16 .12 74.4 3 21 Ś 292370 1 2.15 4 K-118 .1 .1 .14 .17 2 83 27 29 196 3.67 3 11 1.29 323 .27 27 27 680 8 22223 147 19.12 5 88.8 21 2 12-120 292371 .1 2.34 .1 1 1.96 1 .1 20-122 292372 1 2.27 .1 186 3.74 19 2 .1 2.91 6 91 .1 20 41 3 21 1.83 365 3 .41 480 4 119 20.14 5 107.7 1 662 3.44 1327 3.15 22-124 24 222 13 1.28 240 50 920 78 19.14 83.9 20 ö .3 2.31 2 85 .1 75 .41 5 292373 .1 .16 4 1 4 1 124-126 292374 .5 1.88 69 1 2.82 110 .12 13 1.42 415 30 .24 56 1090 10 102 18 .09 72.3 22 17 16 1 4 .1 .1 1 1289 3.22 73 1070 292375 4 2.06 5 112 .1 1 1.84 .1 22 173 .21 12 1.35 315 11 .30 8 1 130 18 .11 4 73.3 1 23 14 126-126 2609 3.19 4254 2.73 .25 .2 69 1160 223 67.7 21 128-130 292376 1.4 2.01 104 .1 8 2.92 17 157 1 .17 10 1.43 679 55 20 52232 18 .07 4 29 1.7 1.41 .7 1.60 .1 1.69 8 1.17 130-132 3 36 72 1 2.19 16 110 .08 399 60 53 1260 12 105 16.08 Ś 57.1 1 26 21 292377 .1 1 59.8 132-134 1 3.04 .1 21 95 1614 3.03 .07 8 1.14 430 6 .16 65 1230 8 129 18 .07 4 25 17 292378 6 .1 1 1 1 134-136 292379 1 2.00 . 19 93 .1 16 105 133 2.31 Ż .10 7.98 294 2 44 1100 5 1 124 14 .12 3 56.7 1 17 .1 4 6 136-58 42 1 1.22 20 79 411 2.82 2 .09 11 1.18 219 16 .20 46 880 7 58 16 .17 4 82.1 1 18 4 292380 .1 1.52 4 .1 .1 1 2232 2.83 1527 1.74 1 1.52 2 12 1.35 57 1040 7 22 71 17 92.6 18 35-140 292381 1.5 1.78 116 21 110 .18 233 12 .24 .17 16 2 .1 .1 .23 41 1120 <u>5</u>9 Ż 43.8 iŝ .6 1.15 1.7 1.25 .1 72 141 .08 140-142 292382 1 59 .1 12 .06 6 .69 10 4 10 14 11 3604 1.94 Ż 8 1 70 19 Ī żž 87 1 1.48 101 .09 .85 140 26 1150 10 .09 47.8 16 292383 4 .1 .1 166 1 1 142-144 3.9 .72 1 1.04 62 > 87 10000 2.51 1 .07 777 .76 111 368 .09 17 1160 20 1 50 26 .11 24 .13 43.0 21 36 292384 46 .1 .2 8 1 43 144-14 12 136 108 . 15 **5**9 53.1 8 Ź .08 15 1020 146-14 292385 .81 2 64 -1 .1 1164 1.86 6 1 92 222 221 24 25 .72 1 1.40 1546 1.98 777 .71 147 31 16 1020 5 62 .12 51.7 12 8 7 80 .08 .09 148-150 292386 .2 2 .1 .1 3 6 52 1.95 1218 2.08 . 59 127 14 1020 ž 18-152 .84 116 .13 10 .09 56 .12 55.1 11 292387 .1 .65 2 .1 1 .1 3 162-154 91 .11 292388 .77 169 1 1.41 89 8 237 886 .08 17 1070 5 69 25 .09 3 47.4 18 5 -1 .1 4 .1 154-54 2 1.56 3 26.10 12 292389 1.2 .81 2 359 .1 .1 8 106 1435 2.09 1 .15 9 .91 242 496 .07 17 1000 1 70 3 48.0 17 72 .91 16 1000 54 26 10 156-158 1 1.23 1811 1.98 2 .09 8 185 5 48.9 292390 .3 .84 3 743 .1 8 85 .08 1 .11 3 1 16 -1 158-160 2271 2.02 7 .87 960 12 .7 .80 5 339 .1 1 1.33 6 99 .09 163 777 .06 16 61 26 .10 3 44.2 16 292391 .1 160-162 158 442 4.48 6947 2.64 22 1000 2 52.3 292392 1 1.13 28 61 4 2 1 .08 9 1.02 180 18 .07 70 36 .09 16 .94 3 .1 -1 .1 6 162 14 292393 130 1 1.76 7 90 .10 9 1.03 251 223 17 1100 93 28.06 45.5 24 65 1.6 .89 .1 .2 .06 11 4 1 4 164-146 7 1089 1.87 .79 92 66 23 15 Ś .77 66 .09 263 .06 26.11 292394 .1 .2 396 .1 1 1.09 .1 6 14 1070 1 48.0 6 **9**1 .75 174 26 10 1074 1 1.52 8 1234 2.03 2 .08 7 56 .09 14 1060 6 67 .13 55.5 17 292395 .80 3 .1 .1 16-168 .2 6675 2.73 2701 2.15 292396 N -84 187 1 1.25 10 79 1 .10 9 1.04 185 898 .07 20 1130 9 1 68 29 .15 53.9 32 32 68-110 1.7 .1 292397 6 10-12 396 1 1.43 11 96 222 .10 ĝ. .96 161 28 .07 17 1110 6 2 60 26 . 15 3 59.8 15 48 .87 1 .1 1.1 92-174 .11 292398 62 55 83 6611 2.19 10 1.18 136 285 19 1130 65 26.10 3 59.0 25 2.2 .91 1 1.43 8 .04 8 1 16 22 .1 .1 4 174-176 5 87 13 2.6 9 1.77 18 4469 4.01 107 260 .04 22 820 57 29 33.3 12 292399 .70 .1 .12 8 .72 11 1 1 .01 6 1 89 94 6841 2.72 1 .11 8 .87 124 1296 .04 23 950 7 52 26 35.0 15 26 292400 .78 .1 2 1.43 11 1 1 .04 4 16-178 6 - 1 1 1 1.22 118 1491 2.09 2 .12 9 1.05 169 81 17 1080 59 26.13 57.0 14 7 178-180 292401 .92 1 266 .1 8 .07 6 3 .6 292402 20 .92 304 1 2.30 7 78 1295 1.92 2 .26 8 .85 211 60 .05 16 1010 5 1 98 24 .05 3 40.8 15 10 130-182 .3 2 .1 .1 1 2 .3 .1 292403 .1 .77 70 1 2.29 .1 3 69 74 1.35 1 .18 5 .51 .54 135 3 .04 7 530 5 1 1 82 15 .01 2 13.8 1 ୢଡ଼ 3 182-189 1 132 1.38 .17 8 530 292404 .72 169 1 1.88 1 49 1 4 132 11 .05 6 1 1 133 14 .01 23 10.4 10 3 181-186 .1 2 .1 1 89 ż 7 833 2.16 2 .20 5 .61 224 62 .05 15 1060 5 1 193 24 .02 37.0 15 5 292405 .1 .84 2 288 1 3.01 . 1 186-186 902 2.40 347 2.21 54.7 52.7 9 1.25 333 7 .4 1.03 205 .1 1 1.75 8 77 1 .16 298 251 .06 20 1190 6 105 27 .06 21 100-10 292406 3 .1 1 190-19Z ġ ž 2 228 1 108 29 292407 .1 .90 163 .1 1 1.13 .1 8 116 .10 8 1.08 29 .09 17 1090 4 1 .04 1 19 54.9 肋枞 292408 .95 2 185 .1 1 1.48 .1 8 85 191 2.30 .11 9 1.12 240 34 .07 17 1090 4 1 1 123 26 .06 1 18 6 - 1 ,

MIN-EN LABS - ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8

FAX: (604)327-3423

TEL:(604)327-3436

# DOH 297-5 p394

COMP: CONTINENTAL COPPER CORP.

PROJ: JEAN

ATTN. CARY SCUELL

## MIN-EN LABS - ICP REPORT 8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423

,

## FILE NO: 7S-0279-RJ5+6

DATE: 97/09/21 * * (ACT:ICP 31)

P	TIN: GAN	KT SU	IELL									IELS	1004	JJZ7-J	1430	FAA	11004	1321-	J423										(AUI	TUP 51,
	SAMPLE NUMBER		AG PPM	AL %	AS PPM	BA PPM	BE PPM	BI C PPM	A CD % PPN	CO 1 PPM	CR PRM	CU PPM	FE %	GA PPM	K %	LI PPM	MG %	MN PPM	MO PPM	NA %	NI P PPM PPM	PB PPM	SB PPM	SN SR PPM PPM	TH PPM	TI % P	U V PM PPM	W PPM	ZN A PPM	u-fire PPB
196-196 196-198 198-200 206-202 202-202	292409 292410 292411 292412 292413		.1 .1 .1 .1	.98 .66 .72 .70 .72	22243	262 142 251 231 216	.1 .1 .1	1 1.8 1 1.1 1 1.0 1 1.1 1 1.1	8 .1 2 .1 3 .1 4 .1 3 .1	7 6 7 6 7	88 64 113 78 93	752 1 145 1 674 1 592 1 794 1	.98 .76 .89 .71 .86	22212	.14 .09 .15 .11 .10	86676	1.01 .75 .72 .84 .77	247 180 157 173 165	60 20 124 653 86	.06 .06 .08 .05 .06	15 1030 13 1070 14 1060 15 1140 14 1110	76547	1 1 1 1	1 122 1 95 1 74 1 78 1 66	24 23 23 23 24	.05 .06 .08 .07 .09	3 44.9 2 47.6 2 49.7 2 43.3 3 49.7		15 13 12 12 14	5 3 5 10 6
204-208 206-208 208-210 210-212 212-212	292414 292415 292416 292417 292418	1	.1 .1 .3 .2 .4	.63 .83 1.05 .84 .89	2 4 8 3 3	237 275 247 253 182	1	1 1.2 1 1.6 1 1.4 1 2.2 1 1.2	5.1 5.1 2.1 0.1 6.1	6 8 5 1 7 8	75 96 68 93 83	346 1 495 1 1814 2 1039 1 1852 1	.70 .97 .13 .91 .95	2 2 1 1 2	.08 .17 .20 .20 .16	67869	.66 .91 1.14 .83 1.22	140 287 239 258 156	112 49 1675 210 221	.06 .05 .04 .05 .05	13 1110 16 1070 17 1060 15 1000 18 1110	6 6 3 6 6	1 1 1 1	1 65 1 88 1 86 1 196 1 83	22 23 26 22 25	.10 .07 .06 .05 .12	2 48.2 3 44.6 3 42.4 3 42.4 3 59.9	1111	11 16 21 12 14	5 5 8 7 12
214-216 116-220 220-222 220-222 220-222	292419 292420 292421 292422 292422 292423	ر م	.6 .1 .1 .1	.82 .77 .93 1.02 .85	6 2 1 3 4	199 179 171 347 771	.1	1 1.2 1 1.1 1 1.0 1 2.0 1 3.1	2 .1 3 .1 2 .1 3 .1 1 .1	8 8 7 8 6	109 67 109 65 96	2144 2 735 1 535 1 507 2 539 1	2.05 1.91 1.96 2.08 1.73	22221	.17 .11 .11 .18 .25	8 8 10 9 6	.91 1.01 .99 1.15 .73	138 142 125 250 308	107 57 97 18 48	.06 .05 .07 .05 .04	18 1070 15 1030 15 1070 17 1090 14 920	6 5 6 26 4	1 1 1 1	1 107 1 101 1 85 1 167 1 212	25 24 26 20	.09 .10 .11 .08 .05	3 57.5 3 54.3 3 54.1 3 51.3 2 41.6	1 1 1	13 12 11 19 13	15 7 5 5 5
274.221 274.228 274.228 274.251 274.251 274.271	292424 292425 292426 292427 292428	7 97	.1 .1 .1 .1	.85 .78 .80 .89 .78	13222	147 152 381 360 492	.1 .1 .1 .1 .1	1 .8 1 .9 1 1.3 1 1.0 <u>1 1.1</u>	7 .1 6 .1 8 .1 6 .1 9 .1	8 8 7 8 8	81 99 86 97 95	379 1 174 1 396 1 615 1 287 2	.94 .91 .87 .93 2.00	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	.12 .10 .07 .08 .10	9 8 10 9	1.15 .94 .79 .76 .72	202 180 178 149 174	18 18 11 18 3	.06 .07 .07 .07 .07	16 1110 16 1160 15 1110 15 1140 16 1170	5 6 7 5 5	1 1 1 1	1 68 1 66 1 123 1 87 1 90	25 25 24 24 24	.13 .10 .11 .13 .12	3 55.3 3 52.3 3 53.2 3 56.7 3 56.9	1 1 1 1	16 16 15 16	4 10 5 5
231-234 236-28 236-28 238-240 240 FU 240 FU 240 FU 240-244	292429 292430 292431 292432 292433	HOC	.1 .1 .1 .1 .1	.81 1.05 1.12 .87 .79	2 3 3 1 1	486 298 278 238 278	.1 .1 .1 .1	1 1.0 1 1.3 1 1.3 1 2.5 1 1.4	0 .1 5 .1 1 .1 4 .1 4 .1	8 7 9 7 8	120 80 120 91 111	164 1 52 1 118 2 376 1 195 1	.97 .87 .12 .86 .99	23222	.13 .14 .19 .19 .15	9 10 12 9 9	.77 1.10 1.39 .80 .80	186 236 285 247 214	9 3 12 56 48	.08 .05 .08 .05 .07	15 1040 17 1100 18 1080 16 1010 15 990	64574	1 2 1 1	1 80 1 81 1 92 1 120 1 79	24 24 24 21 24	.13 .11 .12 .07 .12	3 57.9 3 60.6 3 56.6 2 44.8 3 56.3	1	15 18 19 15 15	3 1 8 7 3
144-245 E.C	<b>⊭ 292434</b> . ↓i		.1	.84	1	165	<b>.</b> 1	1 1.2	5.1	8	108	293 1	.96	2	.12	8	.88	203	25	.07	15 1040	4	1	1 89	24	.13	3 55.5	1	13	6
-																						, ,								
																						2					•			
				-																										
	-											<u> </u>								+				<u>.</u>			<u> </u>			
·· . '						<u> </u>				<u> </u>			· · ·											······································				<u> </u>		



VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C., CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C., CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS + ASSAYERS + ANALYSTS + GEOCHEMISTS

Quality Assaying for over 25 Years

## Assay Certificate

7S-0279-RA1

Date: SEP-21-97

Company:	CONTINENTAL COPPER CORP.
Project:	JEAN
Attn:	GARY SCHELL

We hereby certify the following Assay of 2 Rock samples submitted SEP-11-97 by DL COOKE.

Sample Number	Cu %	
292365	2.710	
292384	1.230	

Certified by

**MIN-EN LABORATORIES** 

# DOH 297-6 PIA6

COMP: CONTINENTAL COPPER CORP.

### MIN-EN LABS - ICP REPORT

.

. . . .

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423

FILE	NO:	7S-02	283-RJ1+2
	1	DATE:	97/09/24

* * (ACT:F31)

PROJ: JEAN ATTN: Gary Schell / Ragnar Bruaset

.

.

j m	SAMPLE		AG PPM	AL %	AS PPM	BA PPM	BE PPM	B1 PPM	CA %	CD PPM	CO PPM	ČR. PPM	CU PPM	FE %	GA PPM	K %	L I PPM	MG %	MN PPM	MO PPM	NA %	N I PPM	P PPM	PB PPM	SB PPM	SN PPM F	SR PPM P	TH T PM	II % PPI	J Y I PPI	I PPN	ZN PPM	Au-fir PPI
1-4.0 4-6 6-B 8-10 N-12	292435 292436 292437 292438 292438 292439	1	1.4 1.5 1.7 1.4 1.2	3.15 2.24 2.44 3.77 3.55	1 1 1 1	36 21 22 36 23		24 19 20 22 17	2.82 2.18 2.17 2.86 3.92	1.4 .1 .3 1.3 1.1	17 31 20 20 22	107 161 124 122 112	1441 799 738 410 870	3.32 4.10 3.38 2.69 3.56	11111	.10 .11 .15 .23 .17	9 12 13 8 11	.55 .91 .82 .34 .70	256 273 262 241 563	7 14 6 7 16	.30 .16 .35 1.02 .50	68 102 67 69 56	1560 1300 1470 1420 1310	39 26 35 51 51	37 22 26 47 41	1 1 1 1	133 17 63 196 103	1.1	6 3 1 5	111. 151. 119. 93. 103.		39 29 35 22 38	1 1 1 1 1 1 1 1
12-14 14-16 16-18 18-20 20-22	292440 292441 292442 292443 292444	,	1.6 .7 1.7 1.4 1.6	3.22 3.03 3.78 2.72 3.52	1 1 1 1	12 10 28 14 36	.1 .1 .1	18 3 16 13 20	5.88 5.73 3.82 3.87 3.79	.1 .1 .4 2.1	45 21 21 13 16	128 91 138 74 79	1889 217 204 119 130	4.65 3.50 3.34 1.76 2.13	1111	.07 .05 .18 .08 .23	11 15 14 9	1.23 1.33 1.38 .55 .49	1116 930 505 432 337	94456	.02 .01 .36 .37 .86	68 58 59 35 38	1140 1210 1010 1290 1460	42 46 57 42 54	34 28 37 31 45	1 1 1	1 113 141 189	1 1 1 1 1 2 1 1	32747	87. 69. 123. 67. 89.		57 39 38 36 36 33	2° 10 10
22-29 24-26 26-28 28-30 30-92	292445 292446 292447 292448 292448 292449		2.0 1.3 1.0 1.7 1.4	3.07 3.74 3.48 3.54 2.89	1 1 1 1	34 18 17 27 19	.1	17 9 11 17 14	2.87 4.02 5.85 3.82 2.96	.1 .1 .1 .1	21 21 17 32 33	156 228 152 144 92	76 387 281 587 393	3.49 4.13 3.31 4.47 4.48	1 1 1 1	.18 .09 .07 .13 .11	15 15 12 17 17	1.19 1.52 .95 1.40 1.12	390 681 757 429 359	43434	.26 .05 .10 .20 .20	60 86 66 87 90	1150 1100 1040 970 1450	49 56 47 52 40	33 35 39 38 34	<b>لب لب لب لب لب</b>	78 4 23 121 66	1 .2 1 .1 1 .1 1 .2	67439	159. 139. 95. 123. 111.		3 36 44 3 30 7 34 5 23	1
72-34 74-36 76-87 78-4 40-	292450 292451 292452 292453 292453 292454		2.3 3.2 2.9 2.1 1.9	2.50 2.48 2.23 1.66 4.31	1 1 1 1	47 51 22 33 33	1	20 25 22 13 20	2.34 2.36 2.83 1.92 3.00	.1 .1 .1 2.2	20 28 23 12 18	181 239 81 57 91	463 963 832 43 263	3.43 4.43 3.67 2.28 1.94	11111	.17 .22 .09 .12 .12	15 18 13 10 8	1.24 1.57 1.27 .80 .30	289 402 390 318 177	3 63 27 5 6	.15 .09 .08 .17 .73	54 65 26 24 50	1020 700 970 1130 1070	37 40 48 29 62	24 26 22 19 57		21 20 26 217	1 2 1 3 1 2 1 1	63195	146. 150. 117. 81. 61.6		28 37 29 25 21	11 1 1 1
47-44 44-46 46-46 40-5 50-52	292455 292456 292457 292458 292458 292459	-	2.5 2.1 2.4 2.4 .6	2.78 3.49 2.91 2.68 2.46	1 1 1 1	29 57 21 24 31	.1	24 23 25 20 16	2.32 2.95 2.98 2.37 2.27	1.5 1.3 1.5 .1	14 23 24 20 24	98 152 225 257 237	752 888 893 318 267	1.62 3.91 3.75 2.99 3.74	1111	.10 .19 .11 .13 .18	8 12 11 14 12	.40 .57 .78 .93 .92	169 302 272 258 255	7 11 12 5 4	-45 -44 -21 -21	47 60 119 94 67	950 880 500 460 610	45 43 37 41 33	36 47 37 29 23	1 1 1 1 1	153 132 56 61 57	1 .1 1 .1 1 .2 1 .2	77255	69. 93. 92. 77. 66.		28 27 29 22 22	10 10 10
51-54 54.55 54.58 58-58 58-60	292460 292461 292462 292463 292464		2.0 2.2 2.2 2.4 2.1	1.80 2.12 2.10 1.64 1.87	16 25 18 2	149 157 195 201 130	11111	33 34 35 42 32	.85 1.30 .85 1.14 1.45	.1 .1 .1 .1	32 26 30 21 20	346 401 352 247 54	1024 766 263 2594 2283	5.65 6.31 6.34 4.10 3.41		.70 .78 1.02 .59 .45	16 19 21 13 12	1.31 1.55 1.44 1.16 1.38	252 299 312 261 254	2 4 21 6	.08 .07 .08 .12 .15	76 67 92 57 26	480 330 250 670 780	22 27 26 24 35	17 21 24 18 17	1 1 1 1	19 12 11 25 22	1 3 1 4 1 4 1 3 1 2	9694	79. 84.0 73.1 96.4 122.2	12	35 36 40 33 30	8 11 21
62-61 67-6 666-53 63-70 70-79	292465 292466 292467 292468 292468 292469	3-2	2.2 1.5 1.4 1.5 1.4	2.57 1.70 1.75 2.25 2.04	1 1 1 1	171 60 41 45 53		26 19 17 17 15	1.97 1.69 1.98 2.39 2.00	.1 .1 .1 .1	18 18 16 21 16	57 46 85 98 96	1696 984 496 681 736	2.98 2.52 2.05 2.76 2.73	11111	.46 .12 .10 .09 .11	13 7 6 8 10	1.37 .75 .78 .95 1.22	255 203 207 231 280	53 7 5 6 4	.25 .21 .20 .09 .13	25 42 43 59 37	790 1010 1020 1010 1170	45 28 32 34 36	22 18 17 22 17	1111	53 47 34 21 31	1 .1 1 .1 1 .2 1 .2	7 9 1 0	113. 72.0 64.7 78.3	P. P. W. W. W.	25 19 18 24 27	12
72-74 74-7 76-7 76-9 76-0	292470 6292471 292472 292472 292473 292474	0	1.6 1.6 2.0 1.7 2.5	1.51 1.75 1.86 2.52 2.15	1 1 1 1	57 181 273 211 165	1	15 14 16 13 22	1.48 1.29 1.20 1.70 1.69	.1 .1 .1 .1	15 18 20 19 23	74 53 75 151 100	330 313 469 328 1510	2.11 3.23 3.70 2.88 3.71	1 1 1 1	.12 .37 .63 .51 .45	10 12 14 13 11	.97 1.38 1.80 1.63 1.81	215 270 307 258 313	7 4 4 11 6	.13 .10 .13 .21 .17	30 23 27 46 43	1130 1230 1170 1020 1350	31 32 36 45 42	13 13 9 17 14	1 1 1 1	28 14 20 51 45	1 2 1 3 1 3 1 3	1 7 2 7 0	71.6 103.9 119. 107. 124.9	32243	18 26 30 24 25	
82-8 84-86 86-8 86-9 90-9	292475 292476 292477 292477 292478 292479	40Q	2.0 .8 1.4 1.3 1.8	3.34 3.31 3.44 4.37 3.63		276 36 110 332 252	.1 .1 .1 .1	13 14 17 3 9	1.95 3.69 2.82 2.40 1.92		22 24 19 27 25	251 36 80 293 278	201 344 71 46 157	3.50 3.31 3.28 3.76 3.72	1 1 1 1 1	.91 .07 .23 .79 .72	14 13 16 21 19	1.97 .98 1.26 2.29 2.29	277 302 285 340 306	34551	.30 .61 .42 .43 .34	72 65 51 108 86	1090 1430 1430 840 970	57 46 53 71 61	27 36 35 33 26	1 1 1 1 1 1 1 1 1	06 99 09 51 13	1 .3 1 .1 1 .2 1 .2 1 .3	2 1 9 1 9 1 1 9 1 1 1 1 1 1 1 1 1 1 1 1	124.9 80.0 97.4 103.7 127.2	82488	26 22 24 35 30	3 5 1 3 2
92-94 94-96 96-98	292480 292481 292482		1.6 2.1 1.7	2.07 3.02 2.02	1 3 1	88 80 121	.1 .1 .1	13 25 15	1.30 2.44 1.47	.1	24 38 24	215 214 185	527 2510 689	3.90 5.14 3.48	1 1 1	.23 .18 .24	17 20 12	1.72 1.98 1.44	235 407 327	4 91 4	.11 .37 .24	67 114 113	1060 940 1150	36 49 37	13 28 15	1 1 1	36 93 82	1 .2 1 .2 1 .2	8 1 6 1 5 1	121.4 150.6 90.7	7 6 6	23 38 30	3 14 9
						<b>%</b>		•		<b>.</b> .									· · ·			<u> </u>	-										

ø

## DOHJ97-6 p20-6

### COMP: CONTINENTAL COPPER CORP. PROJ: JEAN

## MIN-EN LABS - ICP REPORT 8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8

### FILE NO: 7S-0283-RJ3 DATE: 97/09/24

TEL:(604)327-3436 FAX:(604)327-3423 * * (ACT:F31) ATTN: Gary Schell / Ragnar Bruaset NI P PB SB SN SR ZN Au-fire CA CD CO CR CU FE GA LI MG % MN MO NA TH ΤI U v W SAMPLE AG AL AS BA BE BI % % 8 PPM % PPM PPM PPM PPM PPM PPM PPM PPM PPM % PPM % PPM PPM PPM PPM PPB NUMBER 83 1315 2.41 72 2444 1.72 32 348 .92 15-100 150 221 292483 1.0 1.34 112 .1 10 2.04 15 .24 7 1.18 276 40 .07 29 960 27 10 .12 67.5 18 9 3 .1 3 .76 3 .57 5 .83 16 1.73 100 +02 43 1.9 .83 .4 .50 8.1 1.76 33 13 34 19 1180 6 760 19 14 67 292484 26 1.45 11 .05 169 69 .11 6 1 .11 .02 .12 53.0 29.0 20 19 1 1 1 1 1 .1 .1 102-10 9 292485 .03 .17 . 1 _1 1 2.35 58 4.28 .2 4 1 .03 199 1 1 1 5 8 7 58 5 44 43 2.8 14 22 180 6593 2.82 .17 47 104-10 292486 661 194 870 120 81.2 7 122 .1 1 1 1 1 106-108 292487 1.9 2.34 126 18 2.38 .1 376 1112 3.55 .70 414 18 .17 60 880 ÃÒ. 17 .26 1 150.6 13 32 1 1 1 .1 23 1.13 30 1.96 12 1.94 32 1.97 82 770 76 880 88 690 78 990 13 5 2.5 2.16 2.3 2.30 1.7 2.40 28 35 28 24 19 345 645 4.07 152 2727 4.11 200 156 4.04 18 1.70 15 1.63 19 1.94 23 11 .71 .10 39 15 .37 177.6 330 7 42 108+10 292488 159 .1 .1 8 361 382 323 356 .25 .33 .24 .22 .18 .25 .19 .08 .08 .17 44 34 37 5 2 40 42 292489 48 1 .1 19 120.8 24 511-01 1 16 34 35 112-114 292490 61 .1 .1 .1 1 13 1 1 1 132.7 65 6 15 5 36 35 114-14 145 2624 3.46 14 1.44 10 7 19 292491 2.0 2.11 47 1 1 1 1 113.0 116-116 292492 1.3 2.19 25 12 2.33 .1 136 360 3.30 1 .13 11 1.22 .16 60 780 19 1 1 124.9 6 29 .1 1 19 29 41 48 720 32 1210 21 1210 27 1030 27 1230 23 38 29 10 5 26 2 30 2 32 3 25 3 46 243 254 316 34 30 30 150 2.96 .29 12 1.10 .14 16 .28 120.9 18-120 40 .1 18 1.67 .1 19 109 5 24 15 10 4 292493 1.8 1.83 2.3 1.52 1.2 1.61 1.3 1.73 1.3 1.48 33 1.69 21 1.72 13 1.95 13 1.39 .17 .16 .21 .18 10 .91 19 1.03 83.9 85.9 17 20-122 25 39 37 2838 2.73 .11 18 .18 292494 .1 .1 1 1 1 15 .18 41 1649 2.89 .11 17 22-124 292495 \0 .1 -1 1 1 1 1 29 28 .21 47 17 48 283 2.94 11 1.06 13 1.20 301 15 1 109.6 124-12 292496 .1 .1 1 .14 43 1 1 1 308 49 97 2.93 .16 11 13 126-28 292497 55 .1 .1 16 1 1 1 1 119.1 25 1230 32 1050 24 1140 27 1050 54 900 1 .20 1 .26 1 .22 1 .13 1 .26 128-130 335 327 299 354 283 .21 .13 .16 .53 2 73 3 30 2 28 3 26 7 27 1.7 1.65 1.6 1.72 21 1.93 16 1.47 30 33 28 31 43 .1 36 1341 2.73 .09 11 .99 8 16 27 97.8 12 292498 28 .1 16 1 1 292499 20-132 52 507 3.33 42 774 2.96 60 1895 2.47 14 1.39 10 1.09 7 .77 19 20 84 79 1 134 4 47 20 17 .14 6 11 8 1 1 .1 132-134 292500 × 292501 × 10 1 111.2 .1 17 1.69 .11 1.3 1.43 39 .1 11 1 1 134-136 32 22 21 25 11 7 22 2.99 .òż 18 13 1.4 1.93 .4 1 1 1 73.8 - 1 121-130 1.6 2.74 35 22 .97 19 172 989 3.15 .18 11 1.20 .41 1 103.8 292502 2. .1 1 1 . 1 63 650 76 570 62 690 2.6 1.55 4.4 2.69 2.0 1.78 38 1.86 60 1.98 23 1.70 12 12 2 17 42 18 1 .22 1 .27 1 .26 24 29 31 138- NO 140-142 211 22 67 30 17 227 3210 3.38 .14 9 1.00 211 .18 27 18 8 9 7 16 16 8 292503 .1 .1 1 1 79.0 1 280 5523 4.74 187 930 4.25 283 283 45 49 35 19 23 21 .33 .36 .11 73.5 73.2 292504 .1 :1 1 10 1.21 1 1 42-14 1 9 1.00 1 292505 1

,

1

## DDH297-6 P3A6

COMP: CONTINENTAL COPPER CORP. PROJ: JEAN

### MIN-EN LABS ---- ICP REPORT 8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423

.

FILE NO: 75-0291-RJ1+2

DATE: 97/09/26 * * (ACT:F31)

ATTN: GARY SCHELL	
-------------------	--

	SAMPLE		AG PPM	AL %	AS PPM	BA PPM	BE PPM	BI PPM	CA %	CD PPM	CO PPM	CR. PPM	CU PPM	FE %	GA PPM	K %	LI N PPM	IG I % Pi	MN PM	MO PPM	NA % F	N I PPM	P PPM	PB PPN 1	SB PPM P	SN S Pm pf	SR TH PM PPM	TI %P	U Pm pi	V W M PPM	ZN / PPM	Au-fire PPB
4-196 16-148 18-150 150-152 52-154	292506 292507 292508 292509 292510	1	2.7 1.3 1.5 2.6 2.1	2.67 3.07 1.98 3.69 3.23	1 1 1 1 1	60 38 61 99 96	.1 .1 .1 .1	16 5 8 17 9	2.40 3.77 1.75 2.70 2.70	.1 .1 .1 .1	22 14 14 21 20	86 90 73 47 40	2859 692 271 2667 1754	4.50 3.14 2.26 3.07 3.24	1 1 1 1	.23 .09 .10 .19 .24	15 1.9 8 1.3 12 1.0 11 1.0 12 1.4	2 3 57 3 52 2 56 2 5 3	85 60 69 75 07	5 6 7 10 26	.14 .39 .61 .83 .70	24 23 32 23 23	570 1140 1200 650 560	42 43 53 49	9 14 9 25 18	1 5 1 4 1 3 1 10 1 10	52 1 40 1 55 1 08 1	.28 .16 .17 .17 .15	1 155 1 105 1 71 1 106 1 102	7 1 3 3 0 2 7 2 8 1	37 27 21 28 22	7 6 4 14 10
54-156 56-158 158-160 160-162 162-164	292511 292512 292513 292513 292514 292515		2.6 2.2 1.4 1.9 1.6	2.81 2.42 3.38 3.16 2.55	1 1 1 1	75 78 79 64 59	.1 .1 .1 .1	13 10 8 7 8	2.76 1.75 2.70 3.63 2.71	1 1 1	21 24 19 31 23	56 35 40 35 109	1516 951 308 1116 420	4.63 3.33 2.75 3.55 3.57		.29 .15 .12 .16 .11	11 1.3 12 1.3 12 1.4 11 1.5 12 1.3	5 2 5 2 6 2 5 3	23 93 85 38 52	39 1 31	.84 .60 .94 .56 .36	20 23 20 30 59	490 530 500 530 1100	86 33 50 60 31	18 10 20 20 9	1 8 1 6 1 10 1 10 1 5	31 1 56 1 07 1 07 1 59 1	.13 .18 .15 .11 .17	1 97. 1 95. 1 84. 1 71. 1 82.	7 1 6 1 8 1 9 1 9 3	33 23 18 31 25	13 12 5 9 6
(4-166 16-170 16-170 172 172-171	292516 292517 292518 292519 292520		1.9 2.3 1.8 1.4 1.8	1.38 1.49 1.40 1.38 3.01	1 1 2 22	52 53 59 119 233	.1 .1 .1 .1	11 14 11 5 2	1.71 2.16 1.48 2.07 2.56	1 1 1 1	23 20 19 16 31	82 117 106 122 226	971 1679 659 438 104	3.04 3.04 2.99 2.88 3.23	11111	.08 .09 .11 .32 .47	9 1. 9 1. 10 1. 18 2.	20 20 20 20 20 20 20 20 20 20 20 20 20 2	67 46 97 00 50	9 12 4 7 1	.23 .19 .21 .10 .33	57 57 54 38 114	1150 1190 950 940 1070	19 23 21 23 47	7 42 1 3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1 5 1 50 1 59 1 16 1	.16 .20 .20 .18 .24	1 70. 1 88 1 83 1 78 1 92	7 3 1 4 6 3 4 3 0 4	23 29 23 23 38	7 11 10 6 2
14-176 76-176 78-180 80-182 82-184	292521 292522 292523 292523 292524 292525		2.2 1.7 2.9 3.1 9.1	3.03 3.29 2.49 2.21 1.72	1 18 1 1 1	236 1288 347 213 145	1	4 6 14 85	2.15 2.19 1.45 1.76 3.67	.1 .1 .1 30.5	26 25 27 21 20	240 223 238 143 74 >	703 485 1093 2581 10000	3.42 2.42 4.00 3.82 4.74	1 1 1 1	.66 .44 .91 .44 .30	16 2. 14 1. 17 3.0 15 2.4 10 1.	50 3 59 2 54 4 57 4 19 5	59 92 22 56 83	36 6 1 65 128	29 49 17 16 .09	102 108 76 51 48	1030 1170 1240 1270 1410	52 55 43 37 931	2 14 1 35	1 12 1 12 1 6 1 9 1 7	75 1 23 1 54 1 73 1 76 1	.27 .19 .34 .25 .09	1 104 1 65 1 130 1 126 1 78	3 4 4 6 3 3 6 1 0 4	29 27 36 36 1423	4 1 7 18 37
84-186 86-188 188-190 190-190 192-194	292526 292527 292528 292529 292530		.3 .6 2.1 1.5	.73 .57 1.25 2.51 2.70	1 1 1 1	198 103 76 163 148		1 52 8 1	2.60 1.79 2.75 2.16 3.67	.6 .8 .6 .1	8 8 7 18 24	98 37 70 62 78	157 292 155 879 1711	1.63 1.55 1.68 3.08 4.10	1 1 1 1	.29 .21 .25 .28 .27	2 3 4 14 1.0 15 2.1	51 2 19 2 19 2 19 2 19 2 19 2 19 2 19 2 1	84 99 96 85	4 5 33 28	.05 .04 .14 .25 .18	11 5 11 28 43	550 550 650 1310 1140	21 19 14 41 47	34752	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	51 1 44 3 74 1 04 1 58 1	.01 .01 .03 .19 .16	1 14 1 5 1 31 1 109 1 125	6 4 7 1 4 3 2 1 5 1	19 15 12 27 39	1 1 3 4 24
94-196 196-196 196-218 200-218 202-24	292531 292532 292533 292533 292534 292535		.5 1.1 1.3 2.5 3.8	2.22 1.45 1.29 1.38 1.72	1 1 4 2	235 126 122 49 59	1 1 1 1	1 12 11 22 29	1.79 .84 1.71 1.29 1.75	.1 .1 .3 .4	18 18 18 43 28	72 55 72 37 64	362 163 1427 3013 5184	3.54 3.34 2.88 4.55 3.78	11111	.14 .09 .05 .04 .10	9 1. 10 1. 6 7	7 4 2 2 38 2 54 1 56 2	08 54 45 65 13	11433	25 15 21 19 23	22 14 20 33 29	640 490 610 740 630	35 23 17 9 23	1 3 10 14 17	1 13	50 1 59 1 55 1 54 1 51 1	.12 .21 .11 .09 .12	1 88. 1 90. 1 52. 1 53. 1 67.	5 1 0 2 9 3 2 2 2 2	23 26 20 29 26	5 6 12 26 13
201-208 86-208 28-210 10-212 12-214	292536 292537 292538 292539 292540	6	1.4 1.3 1.1 1.6 2.4	1.51 1.54 1.74 2.98 2.56	1 1 1 1	139 75 90 156 153	.1 .1 .1 .1	18 16 13 16 20	1.03 1.15 1.32 2.48 1.74	1 .1 .1 .1	16 18 19 19 25	39 61 32 61 146	119 171 149 66 660	3.01 2.93 3.29 3.97 3.85	11111	.20 .10 .13 .21 .29	10 .4 10 .7 10 .8 15 1.4 18 1.6	34 2 75 2 38 3 51 3	33 32 74 97 46	12112	.13 .20 .18 .31 .24	12 14 22 8 47	560 500 600 560 890	22 21 22 48 41	8 9 15 10		40 1 54 1 72 1 17 1 55 1	.23 .20 .18 .28 .31	1 93 1 79 1 91 1 135 1 113	6 2 6 3 2 9 0 5	20 20 22 32 36	43 3 1 4
14-216 16-218 16-220 20-222 22-224	292541 292542 292543 292544 292544 292545	797-	2.1 2.0 1.5 1.4 1.7	2.95 3.28 1.54 1.54 1.11	1 1 1 1	168 143 76 74 78	.1 .1 .1 .1	14 14 18 16 16	2.75 2.17 1.34 1.80 1.08	.1 .1 .3 .1 .1	21 29 20 18 15	214 96 41 50 41	75 165 181 129 95	3.83 4.59 3.50 3.10 2.86	آت أنه أنه أنه أنه	.36 .25 .10 .10	21 2. 24 2.0 12 .4 14 .4	12 3 08 4 33 2 79 2 31 2	96 03 61 83 76		.17 .25 .15 .22 .09	59 45 16 14 11	970 960 730 690 710	47 47 21 20 18	7 10 10 9 6		59 1 74 1 56 1 56 1 56 1 26 1	.33 .33 .22 .20 .21	1 134 1 168 1 101 1 89 1 86	9 6 8 2 0 2 6 3 2 2	36 33 20 21 23	1 1 1 1
24-226 26-226 8-220 0-232 2-234	292546 292547 292548 292549 292550	- DØH	1.5 1.5 1.5 1.6 2.2	1.28 1.16 1.20 1.16 1.93	1 1 3 1	37 113 107 57 157	.1 .1 .1 .1	16 17 18 18 19	1.80 .92 .75 1.80 1.79	.2 .1 .1 .1 .1	19 18 22 24 19	45 34 65 37 39	174 158 219 431 77	2.90 3.37 3.96 4.32 3.39		.06 .20 .23 .11 .31	10 . 15 . 14 . 22 1.	7 2 37 2 28 3 28 3	38 26 36 24 70	31411	15 13 14 15 .27	18 12 21 21 13	680 700 700 970 1650	18 17 16 12 31	12 7 6 7 5		1 1 24 1 21 1 17 1 34 1	.16 .23 .23 .23 .30	1 73. 1 92. 1 104. 1 109. 1 126.	49 <u>3</u> 23 46	18 19 20 22 28	11132
4-236 6-238 8-238	292551 292552 292553		3.1 1.7 2.0	2.44 1.40 1.81	1 1 1	80 74 104	.1 .1 .1	14 15 10	2.75 1.78 1.80	.1 .1 .1	38 17 19	37 41 113	1584 147 77	3.83 2.84 2.94	1 1	.20 .14 .21	21 1.2 15 .9 25 1.6	24 3 22 2 22 2	85 57 99	1 1 1	.35 .27 .26	25 17 43	1800 2380 1280	47 20 30	12 6 1	1 5 1 3	58 1 55 1 29 1	.18 .21 .25	1 102. 1 111. 1 106.	3 1 0 2 7 3	32 19 26	9 3 5
									•																				<u> </u>		1-e .	· · · · · · · · · · · · · · · · · · ·

.

## DDHJ97-6 P426

COMP: CONTINENTAL COPPER CORP.

PROJ: JEAN

ATTN: GARY SCHELL

Ą

### MIN-EN LABS ---- ICP REPORT

. .

.

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423

FILE NO: 75-0291-RJ3+4 DATE: 97/09/26 * * (ACT:F31)

10-242 V2-244	SAMPLE NUMBER 292554 292555	AG A PPM 2.0 1.7 10.6 2.7	NL A <u>% PP</u> 70 77 77	S BA M PPM 1 90 6 181	8E PPM .1	BI PPM 3 42	CA % 1.31 3.30 2.17	CD PPM .1 .1	CO PPM 18 23 21	137 206	CU F PPM 43 2.6 >10000 4.2	E G/ % PPN 1 1 1 1	K K K K K K K K K K K K K K	LI MG PPM % 22 2.05 20 2.12 22 2.45	MN PPM 298 434 280	MO <u>PPM</u> 1 71	NA % .15 .33 .47	NI PPM 58 74 73	P PPM 1070 1110 1150	PB PPM 39 421 67	SB <u>PPM 1</u> 27 13	SN 9 PPM PI 1 1 1 10 1 27	SR T 2M PPi 26 01 55	H TI M <u>%</u> 1.23 1.22 1.27	U PPM 1 1	90.3 107.7	W PPM 2 18 5	ZN A <u>PPM</u> 28 41 25	,/ -
44-218 48-250 50-252 52-250	292556 292557 292558 292559 292559	2.9 5.9 2.7 3.1 2.7 2.1 3.3 1.8 2 3 1 7	3 17 30	1 454 1 440 1 399 1 299 1 152	.1	10 10 8 16 14	2.1/ 1.69 1.34 1.28 1.30	.1 .1 .1 .1	20 21 19 14	239 192 251 154 135	463 3.2 307 3.3 638 3.2 390 2.2	B 0 2	.96	22 2.45 21 2.17 18 2.36 18 2.00 13 1.28	245 245 297 244 227	1 1 21 2	.38 .13 .11	64 60 45 32	1150 1020 1240 1190	57 44 36 29	10 1 1 4	1 1	27 58 50 28	1 .28 1 .29 1 .30 1 .22	1	107.3 119.2 113.1 77.6		24 25 22 22	
54-256 56-260 60-262	292561 292562 292563 292564	2.5 1.6 2.8 3.0 2.3 1.3 2.5 .9	55 33 51 24	1 282 1 627 1 39 1 126	.1 .1 .1	12 5 15 18	1.41 1.33 1.51	.1 .1 .1 .1	18 28 19 16	176 342 61 84	526 3.0 61 4.6 1833 3.0 3032 2.4	575	67 1 1.33 1 .09 1 .23	16 1.81 25 3.39 1 .89 2 .80	489 480 261 184	1 1 5	.14 .15 .12	51 82 21 27	1140 1000 760 1000	35 52 21 21	1 1 9 8	1	27 22 40 24	1 .24 1 .38 <u>1 .17</u> 1 .16	i 1 1 1	97.8 160.0 72.9 61.7	4 6 2 3	33 51 32 26	
67-269 69-266 268-268 268-270 270-272	292565 292566 292567 292568 292569	2.0 1.4 2.1 2.3 3.2 2.5 2.0 1.6 2.3 2.3	40 57 53 56 52	1 204 1 491 1 411 <u>1 154</u> 1 167	.1 .1 .1 .1	8 1 4 4 6	1.00 1.15 1.73 1.30 2.18	.1 .1 .1 .1	17 20 21 14 26	110 297 287 122 200	342 2.7 100 3.0 1731 3.6 297 2.3 544 3.0	2325	1 .34 1 .92 1 .84 1 .31 1 .37	5 1.46 8 2.35 14 2.80 <u>4 1.54</u> 11 1.80	239 284 364 236 334	1 1 1 1	.11 .20 .16 .14 .39	28 72 70 45 66	1470 1200 1220 1350 1130	27 47 50 34 43	1 1 3 4		55 59 59 51 51 32	1.26 1.30 1.30 1.23 1.23	1 1 1 1 1	99.1 108.3 114.6 70.3 91.4	5 7 5 3 5	29 31 20 27	-
272-IN 174-276 76-278 178-280 140-387	292570 292571 292572 292573 292573	1.2 2.8 1.5 1.4 1.5 1.4 1.5 1.4	37 44 48 76	1 89 1 150 1 101 <u>1 100</u> 1 64	.1	1 1 4 5 2	2.78 1.49 2.08 2.16 2.22	.1 .1 .1	15 15 15 22	175 162 112 117 86	218 2.6 265 2.1 135 2.0 243 2.1 314 1.6	0 ² 8 ² 4 ² 4 ²	1 .11 1 .30 1 .18 1 .12	5 1.66 3 1.34 6 1.18 5 1.12 3 .92	325 219 266 302 300	1 1 1	.37 .20 .14 .36	63 64 55 47 38	1300 1200 1400 1390	54 30 29 31 32	9 2 4 7 9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	56 56 27 51 51	1 .15 1 .17 1 .17 <u>1 .17</u> <u>1 .14</u>	1 1 1 1	70.4 58.7 56.6 56.0 44.1	4434	38 25 24 24 24	_
201-284 284-284 201-288 2018-250	292575 292576 292576 292577 292578	1.5 1.0 1.5 1.0 1.8 1.8 1.7 3.3 2.2 4.	)5 33 34 19	1 165 1 391 1 734 1 965	.1	2415	1.52 1.15 1.48 1.70	.1 .1 .1	18 18 21 25	72 227 352 348	183 1.2 28 2.5 13 2.8 12 3.2	4 · 8 · 1 ·	.11 .50 .94 1.17	1 76 8 1 82 11 2 51 22 2 92	211 271 232 239		.16 .16 .30 .40	24 62 81 81 01	1460 1340 1000 730	23 36 61 70	4146	1 4 1 1 1 1 1 1	48 51 27 59	1 .11 1 .27 1 .28 1 .32	1 1 1 1	37.4 90.9 124.5 165.6	2 6 9 8	16 28 32 36	_
292-294 294-294 294-294 294-294 296-296	292579 292580 292581 292582 292583	2.2 3.6 2.0 4.9 1.0 3.8 .1 1.6 .7 1.8	99 96 38 56 a. 30	1 1081 1 539 1 225 1 163	.1	1 1 1 5	2.17 3.86 4.75 2.25	.1 .1 .1 .1	27 26 16 21	426 320 42 50	12 3.5 12 3.5 44 4.1 742 3.9 147 3.9	0 6 8 0	1.13 1.95 1.23 1.32	26 3.24 18 2.68 8 1.05 12 1.19	258 654 808 470	101	.40 .36 .15 .21	97 98 16 20	760 890 720 1020	78 57 17 22	8 7 10 6	1 18 1 30 1 31 1 1	81 09 74 15	1 .30 1 .32 1 .20 1 .05 1 .15	1 1 1	165.8 148.7 115.2 101.2	9 7 2 2	41 45 50 33	
								·																					_
							,								-														_
	· · · · · · · · · · · · · · · · · · ·																							<u></u>					-
									· ·								,												-
																										• •			

*	1												÷													D	DH	J97	6	; P
OMP: CONTINE ROJ: JEAN TTN: GARY SCI	ITAL COPPER	CORP.							1 8	MIN-EN 282 SHERBR TEL:(604	LA 00KE )327-	BS ST., 3436	VANCO FA)	ICP OUVER,	REI 8.C. )327-:	POR' v5x 3423	<b>T</b> 4E8										FILE	E NO: DA	: 7S-0 Ate: 9 (Act:	0301 97/1 :ICP
SAMPLE	AG AL PPM %	AS PPM	BA PPM	BE	BI PPM	CA %	CD PPM	CO PPM	°€R PPM	CU FE PPM %	GA PPM	K %	LI PPM	MG %	MN PPM	MO PPM	NA %	NI PPM	P PPM	PB PPM	SB PPM	SN PPM	SR PPM	TH PPM	TI % P	U PM	V PPM F	W PPM F	ZN AU	u-fi F
292584 292585 292586 292586 292587	.1 1.94 .2 1.98 .1 1.94 .1 1.31 .1 2.11	4 2 3 6 12	91 280 215 91 175	.1 .1 .1 .1	1 1 1 1	1.69 1.21 1.32 1.39 2.81	.1 .1 .1	15 19 17 17 20	83 95 86 110 87	91 3.09 87 3.87 102 3.55 222 3.82 144 5.14	3 3 4 3 4	.12 .32 .17 .10 .26	9 13 10 9 20	1.00 1.36 1.04 1.05 1.90	355 384 299 388 785	11235	.31 .25 .29 .17 .12	16 19 22 22 17	680 580 660 650 590	3 9 4 7 5		1 1 1 1	104 75 80 57 110	17 21 19 20 28	. 16 .22 .17 .13 .16	4 5 4 5 7 1	78.1 17.4 88.9 93.3 43.4	11111	28 41 32 38 55	
292589 292590 E.O.H.	.1 2.14 .2 1.60	6 1	138 102	.1 .1	1 1	2.55 2.15	.1 .1	20 17	115 74	298 5.38 454 4.31	4 4	.21 .09	21 14	1.91 1.39	751 487	10 7	.17 .21	25 20	610 710	6 7	2 1	1 1	104 144	29 23	.18 .13	7 1 6 1	60.6 08.4	1	58 47	
										-																				
<u></u>																	-													
																													**	
																											<u> </u>	•		
											<u>.</u>	<u></u>			·				-											
	 		·• ·														,												• • •	

• • • •

1



VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C., CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C., CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

Quality Assaying for over 25 Years

## Assay Certificate

D04;

7S-0291-RA3

Date: SEP-26-97

Company: CONTINENTAL COPPER CORP. Project: JEAN Attn: GARY SCHELL

We hereby certify the following Assay of 2 Rock samples submitted SEP-22-97 by DL COOKE.

Sample Number	Cu %	
292555	1.210	
292525	1.820	•

Certified by

**MIN-EN LABORATORIES** 

## DDH J97-7 page 1072

COMP: CONTINENTAL COPPER CORP.

.

PROJ: JEAN

### MIN-EN LABS - ICP REPORT

· ·

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423 FILE NO: 75-0302-RJ1+2

DATE: 97/10/07 * * (ACT:ICP 31)

ATTN: GARY SCHELL

3 m	SAMPLE	· · · ]	AG	AL	AS	BA	BE	81	CA	CD	CO	CR	CU F	E GA	Ķ	LI	MG	MN	MO	NA	NI	P	PB	SB	SN	SR	TH	TI	U	V	W	ZN A	u-fire
sing 2- 40	NUMBER		2	3 46	PPM 0		<u>PPM</u>	<u> </u>	<u>%</u> 3.58	<u>PPM</u>	PPM 17	PPM 102	PPM 345 2.6	<u>% PP№</u> 1 4	. 18	<u>PPM</u> 11	.64	<u>PPM</u> 468	<u>PPM</u>	<u>چ</u> 60ء	<u>PPM</u> 52	1500	6	2	<u>PPM 1</u>	<u>РРМ I</u> 198	13.	<u>76 P</u> 14	2 <u>19</u> 3	PPM 89.3	<u>PPM</u> 1	79M 38	 21
-12	292592		.1	3.70	14	54	1	1	4.33	.1	18	84	153 2.8	85	.24	12	49	447	23	.61	56	1800	5	33	1	306	14.	11 10	4 1	07.5	1	25 36	23
4-16	292594		1	3.84	8	49	.1	1	3.70	.1	16	111	50 2.8	7 5	20	10	.61	399	1	.71	62	1560	7	22	1	252	14.	13	4 1	32.0	1	28	14
4-20	292595		<u>7.0</u>	4.02	9	<u> </u>	1	1	3.64	.1	13	106	39 2.4	1 4	.17	8	.53	327	1	.84	52	1460	4	1	1	268	12 .	11	3 1	04.6	1	23	9
0-22	292597		.1	4.55	83	31 41	1	1:	3.84 4.01	.1	29 47	102 134	299 2.9	56	.10	11 12	.37	221 338	1 1	.72 .38	85 123	1320 1060	2	3	1	270 188	14 . 23 .	13 13	4	72.3	1	18 22	21 38
4-26	292599	1	.1	4.19	5	68	1	1	3.89	.1	33 13	204 143	184 5.5	2674	28	13	.86	531 358	1	.46	84 51	960 1110	5	32	1	144 214	27.	13 10	71	04.8	1	33 21	47 33
28-30	292601		.1	4.45	7	35	.1	1	4.51	.1	17	176	48 3.3	0 5	.16	12	.74	426	1	.51	65	1190	1	2	1	255	16.	12	4 1	03.1	1	21	11
いろ	292602 292603		:1	3.81 3.13	7 14	19 28	:1	1	4.59 2.93	.1	21	168	62 3.0	8 6	.10	13	.95	358	1	.50	86	890	. 1	2	1	139	16 .	14	4	99.3	1	20	22
34-36 36-38	292604 292605		.1 .1	2.39	14 13	45 36	-1	1	2.17	.1	18 17	210 168	43. 242.8	24	.32	15 12	1.19 	329 295	1 1	.33 .18	74 70	990 960	1 1	1	1 1	68 38	16	25 19	4 1	20.3	1	25	5
8-40	292606		.1	2.48	13	40	.1	1	2.20	.1	19	157	21 3.4	3 5	- 24	15	1.28	359	1	.34	49	880	1	3	1	58 74	19.	20	4 1	03.8	1	25 18	63
10-42 12-44	292608		.1	2.05	41	37	1	1	2.17	1	24	157	6 2.	2 4	.16	15	1.02	263	1	-23	95	840	1	1	1	72	15 .	18	3	85.8	.1	22	4
4-46 46-48	292609 292610		.1 .1	2.16 2.84	14 12	85 81	.1	1	1.94	.1	30	179	190 5.4	9 5	.25	15	1.10	542	1	.30	120	880	4	4	1	97	28 .	13	7	85.3	1	26	<u> </u>
19-50	292611		12.0	2.40	10	101 104	-1	117	2.25	1.1	22 19	118 143	6164 4.3 85 3.4	8 4	-44	12 11	1.67	427 314	1	.36	45 56	930 670	35 2	2	1	71 55	24.	16 20	6	83.4	1	70 23	25 6
52-54 54-54	292613		.1	1.84	3	56	.1	1	1.77	.1	17	91 70	50 2.9	9 3	.20	12	1.61	344	1	.25	30	740 750	2	1	1	40 60	18 . 17 .	17 14	4 3	80.4	1	25 25	7
56-98	292615			1.77	3	43	<u>.i</u>	1	1.79	.1	14	71	76 2.	4 2	12		1.37	342	<u>i</u>	.20	24	720	3	1	1	48	15	10	3	60.0	1	27	<u> </u>
58-60 60-62	292616 292617		.1 .1	2.36 1.80	3 4	51 60	:1	1 1	2.43	:1	14 15	89 79	170 3.	6 4 18 3	.18	13	1.60	390 383	1	.13 .21	26 28	700 820	23	2	1	54 44	19.	13 14	4	67.9	1	30 25	18
62-64 64-66	292618 292619		.1 1.7	1.68	· 1	73 74	· -1	6 86	1.44	.1 .2	17 23	102 167	34 3.1 1135 3.4	5 3	.23	13 12	1.45	342 249	1	-14 -08	39 81	730 710	3 5	1	1	36 37	19 20 .	16 18	5	67.3 72.6	1	25 32	16
6-68	292620		4.5	1.64	7	18	.1	4	2.07	.9	26	197	4757 3.9	5 4	.09	12	.94	243	<u>49</u>	.09	58	530	7	2	1	42	20.	<u>15</u> 10	5	56.4 0/ 1	1	68	40
10-72	292621		2.0	2.02	8	14	.]	29	3.36	.1	32	77	1564 4.	1 6	.03	12	1.07	333	3	.21	49	1040	8	ž	1	75	24.	08	6	79.4	1	36	33
72-74 74-76	292623		.1 .1	1.79	5	13 52	.1	1	1.71	.1	17	223	452 5.	3 5	.23	16	1.02	260	į	.19	60	610	1	2	1	39	18	19	4	60.2	1	21	27 8 28
76-70	292625	11	.1	2.35	<u>8</u> 11	39	<u>.1</u> 1	1	2.23	.1	25	210	62 5.0	4 5	14 59	<u>1/</u> 21	1.13	242	<u> </u>	.45	<u>67</u> 79	<u>490</u> 360	4	2	1	52	22 .	10 26	<u> </u>	<u>59.5</u> 60.9	1	34	<u></u>
50-02	292627	N		2.61	ij	308	1	i	1 28	.1	26	401	59 5.8		1.08	24	1.48	341	1	19	70	350	5	2	1	39 53	30 . 30	41 35	8	70.3	1	37	22
4-86	292629	6		2.91	7	102	1	1	1.94	.1	15	120	393 2.0		.28	9	1 28	171	1	.46	30	690	į	2	1	93 53	13.	13	3	36.5	ż	19	11
6-89 19,-90	292630	- 4-	.1	2.17	<u>1</u>	<u>151</u> 99	.1	1	1.43	.1	15	76	23 3.	0 4	.37	13	1.31	260	1	.15	25	810	2	1	1	51	18 .	<u>20</u> 19	4	94.3	1	22	2
70-42 12-94	292632	F	.1	1.98	63	26	1	1	2.16	.1	12 10	68 75	65 2.4 32 1.6	0 4	80. 80.	13 7	.91	272 171	1	.17	27 33	1020	1 1	3 1	1	66 40	14.	11 12	3	75.7	1	18 16	63
94-96	292634	2	.1	1.33	3	66	.1	i	1.00	.1	13	152	4 2.	9	.26	10	1.12	208	2	.15	34	980 940	1	1 3	1	44 144	14 .	16 15	3	71.2	1	23 12	4 5
98-10	292636	1	.1	1.28	4	21	.1	1	1.61	.1	8	61	56 1.3	2 2	.06	5	.48	141	2	.21	25	1090	1	1	1	66	9.	09	2 :	31.4	1	10	8
160-102 02-104	292637 292638	1	.1	1.93 3.17	23	104 95	.1 .1	1	1.32	-1 -1	16 21	38	84 2.2 189 3.3	8	.23	8 15	.68 1.08	156 299	1 1	.24	25 20	750 460	1	1	1 1	85 130	17:	15 17	4 1	69.6 17.4	1 1	11 22	3
		1		,																													
																				,													
## DDH 297-7p202

COMP: CONTINENTAL COPPER CORP.

PROJ: JEAN

ATTN: GARY SCHELL

#### MIN-EN LABS - ICP REPORT 8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8

2 I

TEL: (604)327-3436 FAX: (604)327-3423

FILE NO:	78-0302	-RJ3+4
----------	---------	--------

DATE: 97/10/07

* * (ACT:ICP 31)

	SAMPLE NUMBER		AG PPM	AL %	AS PPM	BA PPM	BE PPM	BI C PPM	A CD % PPM	CO PPM	ČR. PPM	CU FE PPM %	GA PPM	K %	LI PPM	MG %	MN PPM	MO PPM	NA %	NI PPM	P PPM	PB PPM	SB PPM	SN PPM (	SR PPM P	TH T Pm	IU % PPM	PPN	/ W 1 PPM	ZN AU PPM	J-fire PPB
1- 106 -108 -110 0-112 0-112	292639 292640 292641 292642 292643		.1	4.58 3.87 3.44 1.41 .77	8 6 9 11 12	73 65 117 30 19	1 1 1	1 2.9 1 2.0 1 2.4 1 2.5 1 1.7	7.1 10.1 2.1 2.1 9.1 5.1	28 13 14 8 7	42 26 43 44 55	221 4.22 194 2.47 461 3.07 90 1.68 48 1.62	6M42M	.17 .12 .26 .06	21 8 15 6 5	1.39 _85 1.30 _70 _51	387 270 327 205 162	11123	1.02 1.62 .45 .17 .09	24 19 22 18 18	480 490 560 1140 1440	2 1 2 5 9	21211	1 1 1 1	301 389 145 49 36	24 .14 14 .04 18 .14 14 .04 16 .05	63422 89485	144.7 78.2 94.9 48.5	12111	26 17 22 16 18	3 3 6 2 3
1-16 118 3-120 20-122 2-122	292644 292645 292646 292647 292648		.1 .1 .1 1.0 .1	.52 .51 1.37 2.63 2.11	7 5 7 5 3	15 32 87 84 76	.1 .1 .1 .1	1 1.6 1 .9 1 1.1 1 2.2 1 1.5	4 .1 90 .1 5 .1 86 .1	4 3 10 36 15	42 81 48 45 38	4 1.02 3 .85 5 2.08 2350 3.90 385 2.79	22253	.04 .07 .17 .19 .14	4 3 11 19 12	.40 .33 .91 1.58 1.13	133 96 182 299 246	4 5 1 1	.05 .10 .12 .23 .25	10 6 17 26 23	1040 950 1030 610 600	79952	1 1 2 1	1 1 1 1	27 25 45 72 59	13 .0 13 .0 17 .1 23 .1 17 .1	463954	28.9 24.8 62.2 114.2 79.8	12111	14 14 19 26 18	4 4 12 6
N-226 26-128 26-130 10-132 23-134	292649 292650 292651 292652 292653		.2 .6 1.1 .3 .1	3.13 2.26 2.59 1.76 1.58	6 5 3 5 11	108 63 63 48 49	.1 .1 .1 .1	1 2.3 1 1.6 1 2.1 1 1.4 1 1.5	3.1 4.1 0.1 6.1	21 19 19 13 13	47 54 68 63	820 3.86 1681 3.38 1272 3.79 886 3.06 141 2.37	5454 <b>3</b>	.24 .15 .16 .11 .11	18 13 16 13 9	1.66 1.31 1.60 1.49 1.06	343 265 317 248 214	39113	.28 .23 .18 .08 .19	29 31 26 25	610 780 640 940 990	3 6 3 5 10	1 1 2 1	1 1 1 1	80 79 68 38 59	23 .2 20 .1 23 .1 21 .1 18 .1	29742	123.2 104.1 114.5 98.0 76.9	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	25 24 27 26 23	7 12 11 6 3
59-136 56-138 38-No 140-112 N2-149	292654 292655 292656 292657 292658		.1 .5 1.1 .5 .2	3.01 1.73 1.14 .61 1.93	5 37 18 7 3	103 37 20 30 75	.1 .2 .1	1 2.7 1 2.7 1 2.7 1 2.7 1 1.7	1 .1 6 .1 8 .1 7 .1 9 .1	16 30 21 8 25	190 56 50 74 229	273 3.48 2268 4.55 2715 3.25 1555 1.37 841 3.38	44323	.44 .09 .09 .08 .27	14 10 8 4 17	2.10 1.43 .97 .74 1.54	346 348 269 147 299	2 2 31 6 1	.26 .13 .06 .08 .21	60 33 25 19 125	860 1080 1200 1650 1360	4 6 35 7 3	25322	1 1 1 1	166 100 70 33 53	22 .1 26 .1 24 .0 16 .0 20 .1	5 6 6 7 7 7	111.0 116.8 60.5 35.8 112.6		33 28 29 15 25	2 9 11 5 6
141-14 146-146 146-150 150-150 150-152	292659 292660 292661 292662 292663		.1 .1 .1 .1	1.90 2.07 1.58 1.58 2.11	35234	138 45 31 34 50	1	1 1.0 1 1.0 1 1.3 1 1.3 1 1.8	15 .1 18 .1 10 .1 15 .1 11 .1	27 31 29 23 16	299 280 181 54 55	96 4.02 123 4.81 182 3.93 242 3.36 259 3.43	44444	.68 .26 .17 .15 .18	17 20 13 13 18	1.38 1.48 1.05 1.18 1.56	269 313 255 282 380	26121	.16 .15 .16 .26 .19	116 131 106 41 25	750 900 730 1120 1180	3 4 5 4 1	12222	1 1 1 1	31 27 34 32 35	23 .3 27 .3 22 .2 20 .1 22 .2	1 5 0 5 4 5 2 5	178.3 155.7 102.3 88.1 106.9	5 1 7 1 5 1	25 29 22 24 28	1 1 3 2 5
154-156 156-158 156-169 160-162 162-16	292664 292665 292666 292667 y 292668		.1 .5 1.0 .1	1.65 1.55 1.29 2.00 1.78	31133	64 45 40 45 20	.1 .1 .1	1 1.2 1 1.5 1 1.5 1 1.8 1 2.5	28 .1 15 .1 17 .2 17 .1	17 15 15 14 15	44 49 34 62 30	294 3.19 1128 3.11 1891 2.78 59 3.00 759 3.20	44354	.19 .12 .13 .15 .07	15 11 10 18 15	1.31 .93 .78 1.26 .87	333 326 287 347 457	11413	14 23 15 15 22	34 24 23 24	1260 1280 1490 1190 1490	22524	2 1 1 2 1	1 1 1	27 30 39 37 52	20 .1 18 .1 17 .1 20 .2 19 .1	9 4 6 4 7 4 1 4 2 4	102.5 76.9 63.3 95.7	5 1 5 1 5 1 7 1 7 1	29 31 33 26 28	5 7 11 3 6
169-168 166-168 168-170 70-172 12-179	292669 292670 292671 292672 292673	97-2	.1 .1 .1 .1	1.94 1.89 1.99 2.19 2.22	3 5 5 4 7	33 69 26 34 53	.1 .1 .1 .1	1 2.0 1 1.5 1 2.2 1 2.0 1 1.0	51 .1 57 .1 24 .1 53 .1 58 .1	20 23 11 19 23	66 116 94 119 169	460 3.51 127 3.98 54 2.41 97 3.33 82 3.67	44334	.10 .13 .08 .11 .15	14 15 13 19 18	.96 1.11 .84 1.22 1.26	411 353 324 342 321	13111	.53 .30 .34 .28 .43	46 86 45 65 71	1390 1100 1080 1050 840	22132	ろろくえる		51 41 186 71 49	20 .1 22 .2 14 .1 20 .1 22 .2	55345	90.1 106.3 63.0 85.4 104.3		27 27 17 24 31	11 3 1 2 3
7 Y-1H H -178 H -180 V-182 V-182	292674 292675 292676 292677 292678	# ]	.1 .1 .1 1.4 1.2	2.39 2.15 3.65 3.10 3.58	8 5 6 7 3	61 30 118 67 68	.1 .1 .1 .1	1 2.4 1 2.2 1 2.0 1 2.1 1 1.8	0 .1 23 .1 27 .1 3 .1 31 .1	22 14 28 35 31	189 199 378 315 339	45 3.00 145 2.54 471 5.41 2676 5.58 2931 6.06	43779	.18 .12 .67 .34 .31	19 16 20 19 23	1.08 .93 1.42 1.23 1.38	267 252 309 263 286	13151	.53 .39 .35 .61 .66	75 60 95 84 68	680 460 480 540 380	1 1 1 4 6	32446	11111	56 55 83 72 81	18 .2 16 .1 30 .3 31 .3 33 .4	4 4 7 3 5 7 8 8	77.2 65.5 72.0 76.7 63.7		23 18 31 32 33	1 2 18 15
34-186 86-186 86-188 86-190 90-192 92-194	292679 292680 292681 292682 292682 292683	00	1.2 .3 .6 .1	3.54 3.45 2.47 2.07 1.69	68554	58 50 54 77 39	.1 .1 .1 .1	1 2.7 1 2.0 1 1.8 1 1.8 1 1.8	72 .1 199 .1 188 .2 157 .1	23 21 18 20 16	167 135 106 96 68	2094 4.30 1020 3.97 1593 3.30 170 3.22 331 2.23	7 6 5 4 3	.22 .19 .15 .22 .09	19 24 16 16 9	1.74 2.27 1.55 1.56 .74	288 350 281 278 195	5 3 16 1 12	.96 .62 .32 .23 .35	56 56 53 56 46	1010 1500 1290 1330 1220	1 3 2 2 2	2 3 2 2 1	1 1 1 1	52 58 68 50 62	27 .20 28 .2 23 .10 22 .10 15 .10	65443 6594	112.3 103.8 80.5 84.0 57.8	5 1 3 1 5 1 9 1 8 1	28 30 28 22 15	10 5 6 1 2
Ч-196 Љ-АД. €.0	51292684 292685 .H.		.1. .1	2.90 3.48	5 6	127 143	.1 .1	1 1.9 1 2.1	2.1 2.1	17 20	52 51	138 2.69 181 3.32	4 5	.17 .21	9 13	.79 1.30	228 321	1 2	.53 .44	27 26	850 590	1 1	1 2	1	85 133	15 .1! 20 .2	5 3	86.8 109.7	3 1 7 1	17 22	1
										2									,											·	·

38.1

## DDH- J97-8 Pld2

FILE NO: 75-0303-RJ1+2

DATE: 97/10/06 * * (ACT:F31)

COMP: CONTINENTAL COPPER CORP.

PROJ: JEAN

## MIN-EN LABS - ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423

1	ATTN: GA	RY SC	HELL									w,	TEL	:(604	)327-	3436	FAX	:(604	)327-3	3423										*	*	(ACT:F31
18 4.58 m	SAMPLE	1	AG	AL %	AS PPM	BA	BE PPM	B1 PPM	CA %	CD PPM	CO PPM	CR PPM	CU PPM	FE %	GA PPM	K %	LI PPM	MG %	MN PPM	MO	NA %	NI P PPM PPM	PB PPM	SB PPM	SN PPM P	SR PM P	TH TI PM %	U PPM	V PPM	₩ PPM	ZN PPM	Au-fire PPB
18-6.00 6-3 8-10 10-12 12-14	292686 292687 292688 292689 292689 292690		1.4 1.5 2.1 2.1 2.5	.74 .79 .73 .65 .76	1 1 1 4	59 63 54 65 41	.1 .1 .1 .1 .1	11 12 16 17 15	.96 1.04 1.20 .85 1.35	.1 .1 .1 .1 .1	8 8 8 8 9	74 80 70 70 76	416 509 1942 2351 2694	1.59 1.71 1.69 1.59 1.86	1 1 1 1	.07 .09 .07 .09 .09	6 6 7 8 9	.52 .57 .67 .76 1.01	98 98 96 90 123	10 14 123 193 427	.06 .07 .04 .04 .03	10 1090 9 1150 10 1120 10 1130 12 1690	15 16 23 17 22	4 7 9 3 6	1 1 1 1 1	27 27 14 18 18	12 .11 10 .13 9 .13 6 .13 2 .12	11111	53.8 59.0 61.8 61.2 72.9	33221	11 10 12 11 13	5 5 11 13 10
14-16 16-18 18-20 20-22 22-24	292691 292692 292693 292694 292695		4.1 1.9 2.2 1.6 1.0	.80 .64 .65 1.06 1.67	12111	72 54 65 62 82		28 12 23 5 4	1.06 1.20 1.12 1.34 3.23	.1 .1 .1 .1	10 8 9 9 10	91 77 88 41 48	5022 1337 2572 519 773	2.16 1.66 1.77 1.65 2.02	1111	.13 .07 .09 .08 .13	9 8 7 8 11	.97 .67 .68 .98 .87	118 104 109 175 208	114 320 125 156 50	.05 .04 .05 .04 .05	12 1500 8 1130 10 1070 9 1100 12 1130	25 14 19 28 31	9 3 7 6 12	1 1 1 1	25 24 26 34 39	4 .14 8 .12 9 .12 4 .11 1 .08		75.1 57.3 54.2 51.1 50.5	32311	13 10 11 15 17	18 10 24 3 3
24-26 26-25 28-30 -30-3 27-24	292696 292697 292698 292699 292699 292700		2.8 2.4 1.7 3.8 4.9	1.88 3.63 3.44 3.54 2.56	1 1 1 1	53 40 26 32 41	.1 .1 .1 .1	24 26 18 65 60	2.50 4.85 4.98 4.89 3.35	.1 .8 1.2 .1	15 15 12 16 20	64 90 88 60 100	2486 2849 1661 5189 5752	3.13 3.36 2.98 4.36 4.39	1 1 1 1	.09 .07 .05 .09 .09	15 12 7 13	1.13 .95 .67 .62 1.09	256 417 497 390 336	81 54 16 26 24	.17 .47 .38 .54 .45	24 1140 30 1130 32 1050 45 1530 60 1270	29 50 46 46 64	14 34 33 39 31	1 12 12 12	84 83 91 64 02	1 .14 1 .15 1 .11 1 .09 1 .13	1 1 1 1 1	107.0 115.6 92.6 85.2 122.6	24434	23 31 31 25 31	23 39 15 33 60
34-36 36-98 36-40 40-92 42-49	292701 292702 292703 292703 292704 292705		4.6 4.5 3.5 3.0 2.2	3.22 4.10 4.44 4.28 3.93	1 1 1 1	47 32 45 43 43	.1 .1 .1 .1 .1	44 45 49 43 31	2.80 3.46 3.49 5.05 3.40	.1 .2 1.7 .3 2.3	16 12 10 15 10	166 105 89 85 83	3929 5439 4365 5785 2785	3.47 3.97 2.96 3.66 2.83	1111	.12 .05 .04 .03 .04	14 9 5 10 5	1.04 .89 .45 .98 .46	256 280 250 480 346	30 94 84 13 13	.38 .61 .97 .94 .87	56 1180 47 1230 31 1230 44 1080 29 1160	50 58 63 59 55	30 46 50 44 40	1 2 1 3 1 4 1 3 1 3	31 02 22 22 78	1 .14 1 .10 1 .09 1 .06 1 .08	1 1 1 1	117.5 100.7 76.4 83.9 79.5	7 4 5 3 4	28 30 29 45 28	64 82 57 63 47
44-46 46-46 48-50 50-52 52-54	292706 292707 292708 292709 292709 292710		2.6 2.5 2.5 2.9 2.6	2.21 3.70 3.85 2.63 2.48	10 1 1 1	41 42 36 36 35	.1 .1 .1 .1	29 36 24 21 56	5.42 3.42 5.05 3.40 3.39	7.4 1.8 1.7 .5	88 12 14 20 21	37 89 82 61 63	4979 3126 3085 3199 2316	7.93 2.45 3.05 3.54 4.02	7 1 1 1	.14 .05 .04 .07 .08	45577	.51 .55 .60 .79 .94	3324 309 454 416 471	74 23 20 14 14	.23 .73 .83 .56 .36	48 970 20 1020 25 950 45 1300 56 1330	28 55 50 39 65	42 36 37 26 22	1 1 1 2 1 2 1 1 1 1	00 95 81 65 30	1 .04 1 .11 1 .10 1 .10 1 .12	1 1 1 1	49.9 85.3 87.0 79.0 87.1	34422	310 32 47 38 37	24 41 57 35 19
54-56 56-58 58-60 60-62 62-64	292711 292712 292713 292713 292714 292715		2.1 1.5 1.3 1.6 1.9	3.45 3.91 .92 1.47 1.89	1 	68 128 156 138 100	.1 .1 .1 .1	18 12 6 4 9	3.38 4.91 1.04 2.50 5.00	.5 .1 .1 .1	23 17 10 9 14	105 138 90 37 106	1801 797 58 1972 2412	2.98 2.23 1.90 2.01 2.62	1111	.10 .09 .09 .21 .15	7 11 65 7	.95 1.10 .87 .94 1.13	440 426 286 420 658	10 14 10 15	.62 .75 .07 .06 .15	64 1210 67 980 10 1200 12 1100 28 1030	52 61 23 31 29	29 29 4 10 11	1 2 1 3 1 1 1 1	73 43 58 30 36	1 .17 1 .14 7 .14 1 .05 1 .10	1 1 1 1	97.1 82.2 56.0 50.3 67.7	45313	44 35 28 26 37	21 12 7 9 17
66-68 66-70 70-72 72-74	292716 292717 292718 292718 292719 292720		2.8 10.5 1.1 1.0 2.4	.70 2.30 1.80 .87 1.15	1 1 1 1	52 176 150 81 106	.1 .1 .1 .1	20 15 5 4 13	1.91 2.91 1.97 2.08 1.70	.1 5.6 .1 .1	8999999	63 64 40 73 71	4380 695 261 429 2768	1.65 1.87 1.73 1.92 1.86	1 1 1 1	.13 .08 .08 .11 .15	23434	.45 .76 .84 .73 .73	325 390 347 517 376	72 4 10 104 75	.04 .08 .05 .05	9 770 9 1020 9 1040 10 1030 10 930	29 273 37 33 224	13 81 10 4 11	1 1 1 1 1 1	40 27 04 56 86	13 .03 2 .10 2 .12 3 .11 6 .08	1 1 1 1	22.7 44.5 48.5 46.7 42.2	13122	28 278 25 25 25 26	9 11 4 5 9
74-76 76-80 80-82 82-84	292721 292722 292723 292724 292724 292725	97-8	4.5 3.2 2.8 .8 2.3	1.22 1.66 1.19 .95 1.13	1 1 1 1	98 160 115 128 164	.1	29 23 14 13	2.00 3.22 1.89 2.42 2.47	.4111	9 9 8 8 10	74 42 94 81 69	7487 6170 3545 492 3041	2.55 2.19 1.70 1.88 2.22	1 1 1 1	.16 .14 .22 .22 .10	54658	.81 .64 .86 .86 1.06	398 386 271 358 363	494 345 2232 43 300	.05 .07 .05 .05 .07	10 900 11 1130 11 950 10 1000 11 1130	35 32 30 21 26	18 22 14 4 8	1 1 1 1 1 1 1 1 1	95 54 11 15 13	3.05 2.02 11.04 1.06 1.11	1 1 1 1	38.0 30.8 51.1 50.9 57.8	1 1 2 2 1	22 18 15 23 22	10 13 27 7 11
84-66 86-66 86-90 90-92 92-94	292726 292727 292728 292729 292730	- 2014 -	1.3 2.2 2.2 1.5 2.3	1.26 1.07 1.05 .83 .98	1 1 11 1	159 140 120 112 108	.1	4 9 11 7 11	2.56 1.95 1.65 1.95 2.01	.1 .1 .1 .1	9 9 10 9 9	42 85 71 99 69	1589 2398 2614 1533 2610	1.97 1.96 1.98 1.89 1.90	1 1 1 1	.21 .14 .14 .16 .16	9 9 9 7 8	.86 1.13 1.11 .90 .91	453 284 261 255 290	56 792 95 1316 817	-06 -06 -06 -06	11 1080 10 1040 11 1070 10 1110 11 1070	38 27 25 21 25	8 6 5 6 11	1 1 1 1 1 1 1 1 1 1	54 10 06 81 09	1 .05 1 .09 1 .11 2 .09 1 .09	<b>1</b> 1 1 1	39.5 55.6 57.8 58.4 52.7	1 2 1 3 48	27 17 20 21 20	8 8 14 6 11
94-96 96-98 98-100	292731 292732 292733		1.2 1.0 1.0	1.11 1.04 1.18	1 1 1	110 168 236	.1 .1 .1	1 1	2.87 1.37 1.61	.1 .1 .1	8 10 8	73 72 109	717 409 383	1.85 2.03 1.81	1 1 1	.15 .15 .20	9 9 8	1.01 1.11 .98	332 317 292	478 86 27	.07 .06 .08	9 1030 10 1120 10 980	25 25 27	4 2 4	1 1 1 1 1 1	15 13 17	1 .08 1 .11 1 .10	1 1 1	51.4 54.6 50.2	1 1 3	22 24 23	322
		1	1																													

DDH J97-8 2A2

FILE NO: 78-0303-RJ3+4

DATE: 97/10/06 * * (ACT:F31)

#### COMP: CONTINENTAL COPPER CORP. PROJ: JEAN

ATTN: GARY SCHELL

# MIN-EN LABS - ICP REPORT

1,

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423

[	SAMPLE NUMBER		AG PPM	AL %	AS PPM	BA PPM	BE PPM	BI PPM	CA %	CD PPM	CO PPM	, CR PPM	CU PPM	FE %	GA PPM	К %	LI PPM	MG %	MN PPM	MO PPM	NA %	NI PPM	₽ PPM	PB PPM	SB PPM	SN SF PPM PP	TH PPM	TI %	U PPM	V PPM F	W PPM P	ZN AU PM	ı-fir PP
20-189 102-104 104-106 106-106 108-110	292734 292735 292736 292737 292738		.9 1.1 1.3 1.3 1.3	.90 2.47 3.04 .77 1.94	1	203 246 458 121 206	11211	2 6 8 4 4	1.64 3.24 3.50 1.40 2.05	.1 .1 .1 .1	9 11 10 9 10	78 91 47 98 71	230 1 253 2 131 1 25 1 44 1	.95 .23 .71 .77 .95	1 1 1 1	.13 .09 .09 .12 .10	8 9 9 12	.94 .93 .86 .79 1.12	327 370 399 285 349	224 1173 391 405 49	.06 .18 .16 .07 .13	10 12 10 11 12	1110 990 1040 1140 1100	21 44 50 19 39	3 16 23 1 9	1 124 1 193 1 225 1 87 1 167	1 1 5 1	.11 .09 .12 .11 .11		54.2 46.8 44.1 46.8 52.1	23232	26 30 29 24 29	
0-112 2-114 14-116 116-118 116-118	292739 292740 292741 292742 292743		1.1 1.5 1.6 1.2 1.3	-86 .75 .99 .95 1.47	1 1 1 1	138 219 830 139 282	_1 _1 _1 _1 _1	4 9 8 2 4	1.66 .98 .98 1.40 2.00	.1 .1 .1 .1	9 9 10 9	115 110 128 130 90	27 1 36 1 16 1 51 1 12 1	.97 .78 .89 .92 .81	1 1 1 1 1	.16 .11 .14 .16 .10	9 9 11 12 12	.84 .75 .86 1.01 .86	336 239 247 326 247	15 16 9 15 5	.07 .07 .13 .09 .08	11 10 11 11	1160 1140 1120 1060 1100	20 17 23 24 29	5 1 6 3 9	1 104 1 64 1 97 1 95 1 123	4 8 7 3 5	.10 .13 .13 .09 .10	1121	51.6 53.3 56.1 50.3 53.4	34543	27 24 27 28 26	121
120-122 122-124 24-126 26128 28-130	292744 292745 292746 292747 292748		1.7 1.6 1.7 1.6 1.6	.85 .82 .89 .80 .76	1 1 1 1	651 486 275 1075 235	.1 .1 .1 .1	11 9 9 9 8	.97 .99 1.26 .99	.1	10 9 9 10 9	142 85 98 81 108	69 1 37 1 42 1 35 1 127 1	.97 .84 .80 .79 .83		.14 .09 .09 .07 .10	10 11 11 10 9	.78 .75 .78 .77 .79	209 207 218 205 208	12 6 13 10 16	.10 .08 .07 .07 .07	11 10 10 11 11	1150 1150 1110 1160 1230	18 18 20 17 18	6 2 6 2 1	1 70 1 69 1 71 1 69 1 70	10 10 9 9 9 9 9	-14 -14 -14 -14 -14	2 2 1 2	58.5 56.4 55.3 56.1 57.5	53334	25 25 23 24 22	1
30-132 2-134 34-136 136-138 138-140	292749 292750 292751 292752 292753		1.0 .3 1.2 1.0 1.6	.93 1.02 1.16 .89 .86	21111	272 206 311 130 145	1	2 1 1 1	2.04 5.36 1.46 2.72 3.54	.1 .1 .3 3.2	9 8 11 9 9	92 76 80 83 49	76 1 72 1 144 2 149 1 112 1	.87 .66 .03 .94 .98		24 22 25 25 21	9 6 11 6 8	.94 .62 1.52 .62 .77	304 502 359 636 884	25 46 58 95 32	07 04 06 05 04	12 11 13 13	1140 960 1140 1120 1010	18 10 28 46 572	3 4 1 8 7	1 95 1 204 1 90 1 142 1 136	1 1 6 2	.07 .01 .08 .02 .03	1 1 2 1	48.2 28.0 54.4 31.2 32.6	2 2 1 3 2	24 23 29 44 31	1234
10-142- 12-144 144-146 146-148 148-150	292754 292755 292756 292757 292758		1.2 1.1 1.1 .9 .1	1.06 1.00 1.16 .95 .81	11111	351 356 317 754 693	11111	1 1 1 1	2.56 1.75 2.62 2.71 1.51	.1	10 10 9 9 10	97 89 96 65 86	22 1 28 1 25 1 31 1 56 1	.95 .98 .83 .70 .95	1 1 1 1	.29 .27 .29 .25 .29	10 9 8 5 4	1.01 1.05 .91 .73 .95	443 320 402 406 315	29 13 9 13 6	.06 .06 .06 .06 .05	11 12 12 11 11	1060 1050 1070 1040 1070	23 24 22 16 17	4 3 1 1	1 138 1 105 1 155 1 189 1 99	3 1 1 3 6 1	.08 .07 .05 .02 .09	1 4	48.2 49.0 42.3 38.5 50.1	2222	28 27 27 25 25	1
158-152 152-154 154-156 156-150 158-160	292759 292760 292761 292762 292763	Ø	.1 .1 .3 .2 .1	.83 1.04 .72 1.07 .90	1 1 1	301 366 320 350 211	.1 .1 .1 .1	1 1 2 1 1	1.34 1.52 .87 2.15 2.70	.1 .1 .1 .1	9 9 8 8	65 70 97 66 85	29 1 50 1 43 1 562 1 431 1	.85 .87 .84 .74 .74	1 1 1 1	.26 .26 .25 .21 .19	8 7 7 5	1.06 1.00 .91 .89 .92	345 315 260 316 366	327 61 14 12 72	.06 .05 .07 .05 .06	9 8 10 8 9	1130 1090 1100 1050 980	21 23 14 17 18	1 2 1 3 1	1 119 1 122 1 63 1 138 1 138	2 1 2 1 4 4 3 1 5 1	.08 .07 .13 .05 .07	1 4	47.1 44.2 55.2 40.5 44.3	11312	26 25 25 23 21	
160 -162 162-164 167-166 166-168 168-170	292764 292765 292766 292767 292767 292768	197	.3 .6 .7 .3 2	.75 .68 .83 1.15 1.04	1 1 1 1	121 174 310 226 154	.1 .1 .1	1 7 3 1 1	1.42 .97 .91 1.50 1.82	.1 .1 .1 .1	9 9 10 10 9	84 90 79 69 51	285 1 134 1 195 1 193 1 120 1	.79 .81 .84 .97 .98	1 1 1 1	.15 .21 .20 .15	6 7 10 9	.89 .78 1.08 1.29 1.37	245 194 220 278 435	193 141 68 113 14	.07 .07 .07 .05 .05	9 8 9 10 8	1030 1080 1090 1160 1200	18 16 22 28 25	1 1 1	1 82 1 50 1 68 1 102 1 123	2 1 5 4 5 1 2 1 5 1	.10 .15 .15 .09 .05	1	46.7 55.6 58.2 51.1 46.8	23111	18 17 22 24 26	
170-172 172-174 174-176 176-178 176-178	292769 292770 292771 292772 292773	H00 -	.1 .2 .3 .6	.79 .92 1.01 1.14 .93	11111	151 150 146 427 542	.1 .1 .1 .1	1 1 1 5	2.66 1.80 1.78 1.53 1.33	.1 .1 .1 .1	9 9 9 9 9	89 90 89 87 105	53 1 40 1 65 1 113 1 54 1	.89 .91 .97 .93 .85	1 1 1	.18 .18 .09 .08 .09	5 8 10 10 9	.70 .99 1.16 1.04 .82	603 441 354 256 206	28 59 55 112 236	.06 .05 .07 .08 .07	11 11 10 8 9	1050 1090 1060 1050 1080	15 20 24 26 22	1 1 3 2	1 100 1 75 1 140 1 137 1 99	2 1 1 1 1 1 5	.04 .05 .04 .08 .12		40.5 43.6 45.2 49.4 55.6	32123	27 26 26 23 18	2212
1807122 182-184 184-186 186-1863	292774 292775 292776 292776 292777		.9 .9 1.0 1.0	1.16 1.03 .89 1.13	1 1 1	530 408 442 513	1 1 1	5 3 8 7	1.42 1.15 1.15 1.32	.1 .1 .1 .1	10 9 10 11	100 100 76 116	121 1 113 1 149 1 33 2	.97 .92 .88 .00	1 1 1	.08 .07 .08 .10	11 11 10 11	-99 -94 -84 -96	207 171 187 206	16 61 147 138	.08 .07 .08 .13	8 7 10 9	1010 750 1100 1090	26 27 22 26	4 4 2 5	1 102 1 94 1 78 1 107	1 1 7 4	.14 .11 .15 .16		56.1 45.0 58.0 60.0	3324	18 16 18 17	2 22 21 1
E.O.P																																	
																					,												

# DDH 397-9 Pld3

RJ1 /06 31) e

																			,	,										~	011-	11	/	• • 7 -
	COMP: CO	NTINE	NTAL	COPPE	ER CO	DRP.							:	MIN	-EN	LA	BS	— IC	CP	REI	PORT	C									FI	LE NO	): 7s-	-0304-8
	PROJ: JE	AN											8	3282 S	HERBR	OOKE	ST.,	VANCOUV	ER, I	B.C.	V5X 4	4E8										1	ATE:	97/10/
~) }	ATTN: GA	RY SC	HELL											TEL	.:(604	•)327•	3436	FAX:(	604).	527-3	5423			,									<b>*</b> (	(ACT:F3
1.32	SAMPLE NUMBER		A PP	G / M	AL % F	AS PPM	BA PPM	BE PPM	BI PPM	CA %	CD PPM	CO PPM	°CR PPM	CU PPM	FE %	GA PPM	K %	L1 PPM	MG % I	MN PPM	MO	NA %	NI PPM	P PPM	PB PPM	SB PPM	SN PPM F	SR PM P	TH T PM	I U <u>% PPM</u>	V PPM	W PPM	ZN / PPM	Au-fire PPB
12-10 5-12 12-19 19-16 16-18	292778 292779 292780 292781 292781 292782		2. 1. 1. 1.	0 1.9 5 2.0 6 2. 8 1.9 5 1.9	28 03 12 28 21	1 1 1 1	279 183 115 231 178	.1 .1 .1 .1	11 9 12 11 8	1.29 1.34 1.77 1.42 1.53	.1 .1 .1 .1	19 17 19 18 17	183 116 89 133 116	1109 84 443 54 133	3.72 3.43 2.95 3.56 3.16	1 1 1 1	.70 .30 .21 .47 .34	17 1. 18 1. 13 1. 17 1. 15 1.	81 52 01 59 35	320 332 266 325 289	1 1 1	.15 .18 .31 .17 .27	47 26 31 37 29	960 900 950 970 900	32 32 32 30 29	4 6 13 5 7	1 1 1 1	18 20 40 19 23	1.2 1.1 1.2 1.2	7 1 4 1 7 1 7 1 2 1	114.8 108.8 84.8 108.9 98.4	577777	28 25 22 25 25 24	63 36 24
16-20 20-22 22-24 24-24 24-24	292782 292784 292785 292785 292785 292785		2. 1. 1. 2.	2 1. 1 2. 2 3. 0 3. 3 4.	91 82 86 87 38	1 1 1 1 1	73 62 111 161 191	.1 .1 .1 .1	15 3 6 15 10	2.06 2.75 2.72 2.15 2.15 2.15	.1 .1 .1 .1	17 12 21 26 25	103 51 30 42 38	1535 1230 783 2154 262	3.03 2.27 2.98 3.20 3.31	11111	.15 .19 .31 .46 .64	14 1. 10 . 11 1. 14 1. 15 1.	38 94 02 01 40	289 387 233 213 277	45521	28 1.18 .85 .71 .96	29 12 23 24 20	950 690 540 490 470	34 49 55 54 66	9 22 30 33 31	11111	22 93 13 43	1 .1 1 .0 1 .1 1 .1	8 1 5 1 0 1 3 1 7 1	94.3 65.2 84.5 91.1 109.1	2 1 1 1	24 23 18 21 23	10 10 26 20 3
20-50 30-52 32-31 32-31 34-34 36-3	292788 292789 292790 292791 292791 292792	6-1	2. 1. 1. 1. 1.	84. 842. 422. 42.	68 53 36 40 51	1111	146 113 20 22 110	.1 .1 .1 .1	18 11 7 9 6	2.78 3.63 2.78 2.15 2.44	.1 .1 .1 .1	22 21 15 15 15	41 36 78 75 156	3330 1628 320 133 55	3.24 3.24 1.99 2.20 2.53	11111	.41 .29 .06 .06 .35	12 1. 15 1. 9 . 12 1. 15 1.	29 32 83 01 59	274 311 210 245 268	191 7 1 1	.95 .92 .17 .20 .25	17 21 41 37 62	440 480 1150 1050 1160	71 65 39 41 42	38 34 17 16 9	1 2 2 1 2 2	52 10 48 84 74	1 .1 1 .1 1 .1 1 .1 1 .2	4 1 2 1 1 1 5 1 0 1	101.5 100.6 49.2 61.6 82.7	1 1 3 2 4	29 28 15 14 21	10 13 2 2
3B-4 40-4 42-4 42-4 44-4	292792 292794 292794 292795 292795 292797	H 793	1. 1. 1. 2. 2.	8 2. 6 3. 7 3. 2 1. 1 1.	82 29 00 80 74	11111	253 165 225 243 176		9 8 12 11	1.53 2.15 1.84 1.06 1.15	.1 .1 .1 .1	20 18 17 19 19	275 170 247 191 166	46 68 14 27 57	2.70 2.34 2.35 2.58 2.71	1 1 1 1	.68 .43 .68 .71 .55	17 1. 15 1. 15 1. 16 1. 16 1.	79 39 48 52 48	241 210 215 222 238	~ ~ ~ ~ ~ ~ ~ ~	.26 .35 .29 .12 .19	89 73 63 57 58	1080 1030 1130 1420 1240	52 53 50 34 34	11 21 17 5 6		05 85 08 39 33	1 .2 1 .1 1 .2 1 .2 1 .2	3 1 9 1 5 1 3 1	97.4 80.6 78.3 85.2 88.8	8 6 8 5 5	23 19 20 22 23	1 2 2 1 1
48-5 50-5 52- 54-	292798 292799 292800 292801 292801	00	2. 2. 2. 2. 2.	3 1. 1 1. 4 1. 4 1.	36 39 96 61	1 1 1	225 163 231 167	1	13 12 16 16	.79 .93 1.41 1.35	.1 .1 .1 .1	16 15 18 18	130 120 142 137	28 79 158 939	2.25 2.24 2.81 2.64	1 1 1	.68 .45 .70 .50	14 1. 13 1. 14 1. 13 1.	30 20 59 41	206 194 272 259	1 6 5	10 14 18 15	42 39 48 47	1490 1470 1450 1410	30 31 36 31	5 7 7 7	1111	33 41 55 44	1 .2 1 .2 1 .2 1 .2	4 1 1 1 7 1 4 1	84.5 74.9 96.7 87.0	4444	15 15 22 21	1 1 4 5
		1			э.																													
																-			•															
	. <u>.</u>															<u> </u>																		
					<u> </u>																								<u> </u>					
			<u> </u>																															

÷

. *

.

# DOH 2977-9 P2073

COMP: CONTINENTAL COPPER CORP.

A

.

.

MIN-EN LABS - ICP REPORT

2

. .

.

FILE NO: 75-0315-RJ1+2 97/10/16

CT:ICP 31)

44234

	PROJ: JEAN	1								8	282 SH	IERBRO	DOKE \$	ST.,	VANCOUVER,	, B.C.	V5X	4E8										D	ATE: 97	//10/1
	ATTN: GAR	r sch	ELL							<i></i>	TEL:	(604)	)327-3	5436	FAX:(604	i)327·	3423										*	*	(ACT:I	CP 31
	SAMPLE NUMBER		AG AL PPM %	AS PPM	BA PPM	BE PPM	BI C/ PPM 2	CD PPM	CO PPM	CR PPM	CU PPM	FE %	GA PPM	K %	LI MG PPM %	MN PPM	MO PPM	NA %	NI PPM	P PPM	PB PPM	SB PPM P	SN SR Pm PPm	TH PPM	TI % [	U PPM	V PPM	W PPM	ZN Au- PPM	fire PPB
8-58 58-60 60-62 62-64 64-66	292802 292803 292804 292805 292805 292806		.1 1.42 .2 1.66 .2 1.50 .4 .88 .1 1.29	7 6 7 5 7	147 89 64 26 90	.1 .1 .1 .1	1 1.07 1 1.57 1 1.73 1 1.27 1 1.27		12 13 17 12 12	118 120 110 90 71	321 1 670 1 988 2 1262 2 213 2	.89 .77 .35 2.02 .57	44445	.33 .20 .19 .10 .27	10 .94 10 .92 11 1.16 7 .83 12 1.32	167 176 221 179 237	2 4 6 31 3	.17 .31 .21 .12 .11	40 36 48 34 36	1430 1470 1460 1550 1590	21421	21222	1 54 1 64 1 46 1 28 1 29	13 13 16 14	.19 .19 .18 .12 .21	5 5 7 6 7	60.2 58.9 62.2 38.5 53.6	11111	11 7 12 10 11	13 5 8 7 5
66-68 68-70 70-72 72-71 74-76	292807 292808 292809 292810 292811		.1 .97 .1 2.03 .1 1.75 .1 2.64 .1 3.58	7 10 3 6 4	69 329 40 24 132	.1 .1 .1 .1	1 .80 1 1.10 1 1.87 1 3.00 1 2.57	.1 .1 2.4	12 20 8 10 9	86 239 53 33 37	101 2 1 3 119 1 185 1 59 1	.04 .17 .26 .21 .69	46335	.21 .87 .08 .06 .29	10 .94 19 2.10 7 .54 7 .43 9 .71	177 272 134 221 166	23111	.13 .14 .26 .53 .52	34 69 26 37 20	1560 1350 1520 1410 1320	1 1 1 1	1 3 2 1 2	1 22 1 36 1 86 1 147 1 230	15 23 8 7 11	.17 .31 .12 .11 .14	69435	44.8 103.5 35.5 31.0 63.1	11124	7 12 1 101 3	3 3 6 30 1
76-76 76-80 80-51 62-84 84-81	292812 292813 292814 292815 292815 292816		.1 2.28 .1 3.98 .2 3.47 .6 2.95 .2 3.73	94645	165 160 46 54 52	.1 .1 .1 .1	1 1.63 1 2.92 1 2.73 1 2.80 1 3.04	.1	12 13 19 13 9	96 124 38 35 47	23 1 176 2 383 2 1827 2 481 1	.84 2.10 2.33 2.13 .73	5 6 5 5 6	.49 .53 .10 .11 .10	11 1.02 9 1.07 8 .59 8 .66 7 .58	163 211 179 207 177	1 8 1 7 2	.32 .69 .66 .57 .65	33 1 40 1 49 1 34 1 21 1	1540 1320 1320 1390 1390	1 1 1 1	2 1 2 2 1	1 101 1 217 1 253 1 198 1 250	13 13 12 12 10	.18 .17 .11 .12 .13	56765	61.9 66.4 44.4 53.9 51.4	21312	45 40 5	1 2 42 76 3
86-91 88-91 90-92 97-91 94-91	292817 292818 292819 292820 292821		.1 3.13 .1 1.57 .1 2.52 .2 2.88 .1 2.07	425 45	51 66 81 129 209	.1 .1 .1	1 2.5 1 2.8 1 2.6 1 2.6 1 2.1 1 2.1	.1	11 10 11 12 20	40 51 36 26 58	81 1 152 2 296 2 335 2 185 3	.98 .40 2.51 2.45 3.73	5 4 5 5 5 5	.09 .14 .17 .26 .61	9 .75 6 .66 9 .79 9 .87 12 1.59	207 171 171 220 326	1 11 2 7	.57 .22 .59 .52 .19	25 18 24 26 46	1310 860 1110 1250 1260	1 1 1 1	1 1 2 2	1 200 1 93 1 153 1 193 1 70	12 15 15 14 22	.12 .07 .12 .13 .23	6 7 7 7 11	57.2 44.6 65.4 74.1 114.5	31322	4 2 7 14	4423 4
96-98 100-10 102-10 102-10	292822 292823 292824 292824 292825 292825 292826		.1 3.15 .4 3.26 2.8 1.09 .3 .89 .1 2.24	8 20 12 25 11	195 219 43 21 116	.1 .1 .1 .1	1 2.3 1 2.6 6 1.3 1 1.4 1 1.7	.1	19 16 17 17 12	54 136 103 66 144	119 3 287 3 6022 2 2030 1 545 1	5.09 5.01 2.88 .32 .57	6 5 2 2 4	.41 .60 .15 .05 .22	12 1.24 11 1.27 5 .70 4 .59 7 .89	290 322 154 133 179	1 13 2 8	.37 .34 .16 .12 .37	58 55 67 62 58	1300 1220 1380 1370 1370	1 120 13 2 1	3 26 3 1 3	1 187 1 173 1 50 1 47 1 109	18 18 15 9 12	.18 .17 .14 .07 .12	99844	104.0 84.1 45.0 24.1 42.9	1 3 1 12	10 35 10 3 9	1 2 15 14 6
106-118 108-110 110-112 112-119 114-116	292827 292828 292829 292829 292830 292831	6-	.1 .67 .1 .71 .1 .45 .1 .60 .2 .90	5 2 3 3 6	46 35 52 71 23	.1	1 1.7 3 2.2 3 2.8 2 2.9 1 2.1	.1 .1 .1 .1	4 2 5 2 11	47 61 49 54 98	385 1 7 1 15 2 1 377 1	.01 .19 .94 .09 .86	2 2 1 1 3	.10 .14 .19 .16 .07	5 .44 5 .50 3 .15 3 .23 6 .75	128 166 287 180 248	3 1 2 3 3	.06 .07 .04 .14 .08	18 6 5 5 49	1010 500 520 490 1270	2 4 10 4 1	1 1 1 2	1 44 1 55 1 36 1 43 1 56	10 13 11 12 13	.04 .01 .01 .01 .01	3335	16.3 16.1 6.0 8.0 38.4	11111	6 6 5 3 10	52225
116-1/8 108-120 120-12 122-120 122-120	292832 292833 292834 292835 292835 292836	7 97	.1 1.25 .1 2.49 .1 4.45 4.1 3.80 .7 4.30	8 5 7 12 9	36 254 347 108 157	.1 .1 .1 .1	1 1.22 1 2.4 1 2.7 1 3.80 1 3.5	.1	9 17 17 29 18	124 163 189 80 102	79 1 69 3 163 3 4865 3 2195 2	.86 5.11 5.26 5.08 2.54	467 56	.07 .65 .61 .16 .29	9 1.15 15 2.01 18 1.89 8 .77 8 .94	218 383 388 385 341	3 3 1 12 5	.13 .20 .55 .49 .60	33 56 73 136 74	1490 1390 1360 1390 1260	1 1 50 21	22325	1 50 1 94 1 253 1 205 1 277	16 23 22 16 15	.14 .26 .23 .10 .13	59997	39.0 98.8 91.0 38.9 47.3	1 1 2 2 1	11 16 25 82 21	3 3 2 46 17
26- 28  28- 34  30-/32  32- 3  32- 3	292837 292838 292839 292840 292841	DH	.2 2.79 .2 3.11 .1 2.60 .3 2.00 .1 4.49	7 8 7 14 7	165 276 213 126 500	.1.1.1	1 2.13 1 1.70 1 1.80 1 1.30 1 2.60	· .1 · .1 · .1 · .1 · .1	15 20 18 17 20	86 121 141 140 256	652 2 404 3 312 3 954 2 115 3	2.41 5.59 5.15 -84 5.45	5 7 5 5 7	.26 .69 .44 .24 1.25	7 .84 12 1.47 14 1.57 11 1.30 14 2.29	216 268 277 243 259	31123	.40 .45 .26 .23 .53	44 45 53 41 81	990 950 940 1070 1070	1 1 1 4	24234	1 128 1 87 1 89 1 62 1 132	14 22 20 19 23	.15 .28 .27 .22 .22	7 10 9 8 10	58.1 130.6 111.4 81.2 117.8	1 1 1 2 1	16 23 16 20 20	16 10 4 21 3
136-136 138-170 190-142 42 -144 42-140	292842 292843 292844 292844 292845 292846	() ()	.1 4.44 .1 2.37 .1 3.37 .2 2.08 .3 2.37	8 6 2 6 5	492 280 476 240 284	.1	1 2.2 1 1.5 1 1.7 1 1.4 1 1.4	.1 .1 .1 .1 .1 .1	20 16 21 16 20	270 128 211 118 152	93 3 339 2 232 3 664 2 3386 3	.49 .79 .51 .63 .34	75756	1.10 .49 .93 .48 .72	16 2.33 10 1.38 16 2.14 11 1.31 15 1.83	226 218 285 219 242	6 2 2 3 14	.47 .24 .31 .25 .24	86 1 50 70 1 50 1 62 1	1100 780 1040 1120 1060	1 1 1 1	43322 2	1 157 1 105 1 111 1 55 1 60	23 18 24 18 22	.22 .17 .30 .24 .28	10 8 10 7 10	118.6 89.7 133.9 91.5 116.1	21211	23 16 21 13 16	2 11 3 5 14
146-148 148-150 150-152	292847 292848 292849		.3 1.86 .1 3.11 1.7 1.67	1 4 7	61 311 133	.1 .1 .1	1 2.20 1 1.9 1 4.0	3 .1 .1 .3	16 21 13	119 228 122	3943 2 775 3 9665 3	2.68 5.69 5.21	5 7 4	.14 .82 .34	10 1.14 20 2.53 9 1.17	210 307 353	7 12 270	.20 .24 .18	48 86 1 55 1	870 1100 1070	5 1 16	2 3 1	1 43 1 84 1 67	17 26 19	.21 .29 .15	7 11 9	87.7 115.8 59.0	1 1 1	13 15 15	17 7 13
		. ]																,											9. 1	

## PDH J97-9 P3A3

v

78.6 2 68.2 306 ž 12

9 101.1

12 131.6 9 92.6

67.7

65.7 75.2 55.8

PPM PPM PPM

2

52

4 15

3 13

22

3

22221

2 27

2

2 31

2 15

% PPM

8 9

8

õ.

ý 7

8 63.0

9 71.5

9 86.7

8 65.7 11 95.3 8 77.4 10 108.2

10 110.1

12 126.6 8 78.8

11 122.6

9 103.6

24 .26 19 .20 21 .16 27 .33 22 .24

20 .20 20 .18 21 .20

20 .20 19 .18 23 .22 19 .21 25 .28

25 .29 19 .23 28 .32 20 .20

27 .31

23 .29

18 .18

19 .18

20 .20

49

47 79 31

ŽŻ

156

215

334

181

1 321

1 148

74

1

1

1

1

1

1

1

1

1

1

1

1

1

SB SN SR TH ΤI U

2

1 1

1 1

ż

ī

1

221

2

1

3 1

1

1 1

1

22

1

1 1

1 1 24

227

1

1

1

1

1

1

1

1

Ź

1

1

FILE NO: 75-0315-RJ3

DATE: 97/10/16

15

13

14

15

16

14

16

10

16

17

14

40

20

8

* * (ACT: ICP 31) W ZN Au-fire

PPB

7

5

14

57

6

8

4

4

6

7

14 7 5

33

3

6

4

4

12

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 PROJ: JEAN TEL:(604)327-3436 FAX:(604)327-3423 ATTN: GARY SCHELL AL % CA % CR ΕĪ MG MN MO NA NI Ρ PΒ BI CD CO CU FE GA κ SAMPLE AG AS BA BE PPM PPM PPM PPM PPM PPM 8 PPM % PPM % PPM PPM % PPM PPM PPM PPM PPM PPM PPM NUMBER PPM PPM PPM 62 1070 137 930 3.02 .83 10 1.94 286 .11 292850 .1 1.85 405 1 1.04 17 2273 23322 .1 152-154 96 674 2.47 105 4727 2.72 152 457 3.61 136 1072 2.97 55 1090 69 1220 66 1050 .39 .56 1.36 .76 11 1.59 9 1.48 17 2.44 235 277 305 222 15 15 .11 156-156 1 1.16 4 292851 292852 .1 1.65 -1 .1 .16 1.7 1.82 185 1 1.71 .1 4 .1 156-150 158-160 160-162 162-164 164-166 166-168 166-170 170-172 .1 2.13 622 341 .58 -1 20 17 5 292853 .1 .1 1 12 1.91 270 8 74 1010 .1 ã. .11 292854 .3 1.78 
 135
 911
 2.67

 135
 422
 2.62

 135
 2697
 2.84

 109
 289
 2.37

 115
 202
 2.55
 .38 .23 .37 .31 .24 .43 .42 .94 .35 86 1210 87 1130 83 1150 79 1210 :1 270 .2 2.73 187 .1 1.74 17 5 15 1.79 15 292855 1 1 16 1.71 17 1.85 16 1.66 1 3.47 297 264 208 17 5 18 292856 .1 3.07 3 86 .1 17 127 151 .8 3.65 .1 .1 .1 18 18 ĩ 6 292857 5 292858 .2 2.92 23 1.87 5 90 1170 18 5 19 1.82 269 13 .93 292859 1 .1 3.52 104 .1 1 2.19 1 2.31 1 2.50 1 1.53 1 1.27 1 .75 .30 .34 .75 .34 .86 19 1.88 16 1.59 14 1.80 10 1.15 256 229 264 245 172-174 174-176 176-176 176-180 2 .36 99 1180 21 201 2.76 .1 3.02 119 .1 .1 126 6 292860 43321 N 16 23 12 18 109 324 2.52 158 2514 3.36 123 500 2.43 214 98 3.27 80 1190 66 1040 .2 3.72 1.9 2.48 5 292861 292862 154 .1 .1 .1 0 27 29 .44 .08 5 186 2 19 36 1080 45 292863 .3 1.20 181 .1 .1 2 15 1.85 289 .10 60 1080 180-182 292864 .1 1.85 454 .1 .1 182-184 184-186 186-188 188-190 190-192 27 3.33 73 2.87 1 3.75 1 2.57 16 1.83 14 1.13 20 2.14 16 1.30 .10 .23 .10 .05 52 1100 39 930 50 1190 496 103 .1. .84 .19 323 5 .76 18 169 292865 .1 1.98 .1 6 29121 Æ 1 1.66 16 19 13 229 397 251 292866 292867 .1 2.08 .1 2.03 .1 1.42 100 6 1 .1 468 181 137 .81 6 1 .1 Ą 41 1160 1.44 292868 .1 4 6 1 1.60 19 204 7 21 2.16 .22 62 1110 .61 368 4 373 .1 6 3.61 292869 .1 2.87 .1 92-11446 292870 2 302 .91 16 136 59 3.03 6 .53 14 1.56 261 4 .07 46 1200 .1 1.59 .1 .1 1 .0.Hε

MIN-EN LABS ---- ICP REPORT

COMP: CONTINENTAL COPPER CORP.

COMP: CONTINENTAL COPPER CORP.

#### MIN-EN LABS - ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423

DDHJ97-10 P/044 FILE NO: 78-0316-RJ1+2 DATE: 97/10/17

* * (ACT:ICP 31)

61YB	SAMPLE		AG PPM	AL %	AS PPM	BA PPM	BE PPM	BI PPM	CA %	CD PPM	CO PPM	CR PPM	CU PPM	FE %	GA PPM	K %	LI PPM	MG %	MN PPM	MO PPM	NA %	NI PPM	P PPM	PB PPM	SB PPM	SN PPM	SR PPM 1	TH P <b>PM</b>	TI %	U PPM	V PPM	₩ PPM	ZN A PPM	u-fire PPB
48-18 3- 20 0-22 2-24 2-24	292871 292872 292873 292874 292875		.1 .1 .1 .1	.42 .49 3.07 3.53 3.83	1 1 2 5 5	44 61 373 542 187	.3 .3 .1 .1	17 2. 11 2. 5 2. 1 2. 1 2.	54 61 05 44 88	.1 .1 .1 .1	3 6 15 19 20	30 39 284 246 88	11 16 59 80 675	1.19 1.49 2.78 3.35 1.84	1 1 5 6 4	.13 .17 1.23 1.43 .15	1 2 10 13 12	.15 .13 2.19 2.81 .77	134 132 242 384 111	9 12 4 1 5	.03 .04 .20 .19 .19	5 6 87 89 143	540 530 640 680 1000	8 6 5 6 1	1 1 4 3 2	1 1 1 1	44 46 146 159 353	13 13 23 27 12	.01 .01 .17 .20 .06	4 4 9 10 6	7.3 8.1 83.0 111.7 22.8	1 1 2 2 2	15 13 20 24 10	1 1 3 3 6
26-20	292876 292877 292878 292878 292879 292880		.1 .1 .7 .7	4.10 3.80 2.77 1.81 1.23	3 1 2 3 4	337 625 296 69 87	.1 .1 .1 .1	1 2. 1 1. 1 1. 1 1. 1 1.	32 55 30 52 98	.1 .1 .1 .1 .1	32 21 17 14 13	286 253 223 91 121	197 9 997 2611 487	3.30 3.56 3.03 2.02 2.11	576 54	.84 1.53 .97 .16 .27	18 20 17 9 10	2.17 3.12 2.47 .92 1.13	209 272 202 151 172	12335	.40 .28 .27 .21 .11	216 96 79 57 57	1040 720 970 1270 1380	11232	43322	11111	341 160 89 94 32	24 28 24 14 17	. 15 .26 .25 .12 .19	10 11 9 6 6	76.1 137.5 121.7 51.2 68.8	1 1 1 1	17 23 17 18 15	2 1 7 20 5
- 38 8-40 8-42 42-44 42-44	292881 292882 292883 292883 292884 292885		.1 .4 1.5 1.1	1.32 2.90 3.50 1.69 1.63	4 4 3 1 2	85 338 335 85 101	.1 .1 .1 .1	1 1. 1 1. 1 1. 1 1. 1 2.	12 83 71 51 09	11111	11 16 18 15 10	105 202 233 138 113	486 437 1132 4186 3108	1.86 3.18 3.35 3.40 2.58	47865	.23 .90 1.19 .37 .49	11 15 16 14 11	1.13 2.05 2.33 1.49 1.37	175 282 254 170 169	3 17 134 44 37	.10 .36 .27 .11 .11	47 59 67 49 33	1360 1190 1080 820 700	1 1 7 7	1 1 2 2 2	11111	41 118 144 63 92	14 23 25 25 21	.18 .27 .25 .12 .07	5 10 10 11 8	59.4 107.2 107.3 81.2 50.5	1 2 1 3 5	16 22 19 19 14	3 5 17 11
1 -40 48-50 52-52 52-54 54-56	292886 292887 292888 292888 292889 292890		1.7 .1 .2 .2	1.53 2.45 1.27 1.33 2.51	1 4 3 5 3	124 296 83 94 331	.1 .1 .1 .1 .1	1 1. 1 1. 1 1. 1 1. 1 1.	21 19 34 08 34	.2 .1 .1 .1	10 17 13 16 17	127 218 87 79 194	4604 656 777 1009 823	2.75 3.41 2.16 2.46 3.12	47446	.35 .78 .18 .23 .73	11 16 10 13	1.34 2.15 .85 1.16 1.84	223 277 174 215 300	110 8 33 29 35	.11 .17 .15 .14 .25	46 65 50 60	1070 1300 1590 1580 1340	9 1 3 3 1	1 3 1 2 3		57 71 42 38 88	21 25 15 17 22	.14 .28 .15 .18 .24	8 10 6 7 9	58.8 100.1 44.3 52.1 80.8	2 3 1 2	20 22 15 17 18	21 3 6 5 10
9-58 58-60 62-62 67-66	292891 292892 292893 292894 292895		.4 .3 .5 1.5	2.24 .92 1.47 2.67 2.87	3 4 2 3 7	218 62 55 100 173	.1 .1 .1 .1 .1	1 1. 1 1. 1 2. 1 2.	76 92 21 14 39	.7 .1 .1 .1	15 15 18 18 20	105 92 90 54 46	980 934 898 1794 5661	3.36 2.39 2.98 2.93 4.05	74556	.74 .18 .16 .24 .63	15 7 13 11 13	2.09 .84 1.31 1.28 1.77	377 183 260 350 508	14 19 2 71	.09 .10 .12 .55 .37	51 55 57 39 38	1540 1610 1570 1350 1300	22 2 3 3 8	2 2 2 2 2 1		62 29 46 221 181	25 16 20 20 26	.24 .15 .20 .18 .22	10 7 9 9 12	71.3 51.2 62.5 86.0 138.3	1 1 2 3 1	69 14 21 23 29	7 4 14 23
4-68 68-70 70-72 72-74 74-76	292896 292897 292898 292898 292899 292900	0/	2.9 2.0 2.2 1.7 1.5	3.37 2.88 3.01 1.67 1.84	3 2 1 :. 1 2	121 101 82 70 174	.1 .1 .1 .1 .1	1 2. 1 2. 1 2. 1 1. 1 1.	82 24 60 49 98	22111	21 17 17 17 14	57 37 31 70 192	6908 8123 5981 5229 2013	4.10 3.73 3.60 3.09 3.00	97656	.38 .29 .21 .17 .45	21 18 13 13 18	2.08 1.60 1.12 1.45 2.14	317 237 224 194 261	10 9 67 216 63	.40 .53 .67 .11 .09	37 31 35 50 57	1360 1320 1380 1460 1320	8 8 7 5 3	2 1 1 1	1111	258 305 287 62 45	27 24 21 21 21 24	.28 .21 .16 .21 .21	13 11 11 9 9	168.8 129.0 125.8 94.1 91.9	2 3 2 16 3	28 23 22 19 18	46 106 47 36 16
76-78 78-80 86-82 82-84 84-86	292901 292902 292903 292904 292905	 	1.0 .9 2.1 1.3 1.0	1.53 2.64 2.90 2.77 1.79	2 2 4 2 3	99 69 29 110 120	.1 .1 .1 .1	1 1. 1 2. 1 3. 1 2. 1 1.	44 30 14 18 66	.1 .2 .1 .1	12 12 11 17 15	112 48 34 59 129	2063 3524 4573 3133 1720	2.52 2.46 2.65 2.76 2.81	56566	.24 .17 .12 .29 .53	12 14 9 13 15	1.41 1.27 .81 1.25 1.77	198 185 170 188 208	66 19 143 19 25	.09 .25 .32 .31 .10	50 31 27 37 55	1310 1370 1290 1380 1510	<u></u>	1 2 1 2	1 1 1 1	65 162 233 159 54	19 16 15 18 21	.17 .15 .10 .20 .24	7 7 8 8 8	66.6 93.2 85.7 93.2 82.4	1 5 4 10 1	14 16 19 19 17	18 17 29 26 10
81-88 88-90 90-99 92-97 92-97 92-94	292906 292907 292908 292909 292910	2 9 F	1.0 3.4 2.4 1.2 5.9	1.36 2.17 2.32 2.76 2.85	24457	72 82 38 32 34	.1 .1 .1 .1	1 1. 6 1. 1 2. 1 2. 7 3.	10 79 24 41 55	.1 .2 .1 .1	14 15 12 11 15	97 58 43 30 52	2748 >10000 9078 4860 >10000	2.56 4.16 3.74 3.08 3.75	56665	.25 .27 .14 .11	12 13 11 8 11	1.45 1.48 1.06 .68 .99	157 174 176 155 257	64 102 171 22 682	.09 .24 .37 .42 .40	51 39 32 25 27	1550 1540 1470 1470 1530	3 18 9 6 18	1 1 1 1	1111	40 122 135 215 213	19 25 22 16 21	.20 .13 .15 .11	7 13 12 9 11	68.6 104.5 123.9 111.9 100.9	1111	17 36 22 17 27	17 82 50 29 45
96-98 98-100 100-101 102-104 104-106	292911 292912 292913 292914 292915	DD #	1.1 .5 .2 .1	3.25 3.16 3.07 2.54 3.07	4231	62 81 132 176 198	.1 .1 .1	1 2. 1 2. 1 1. 1 1. 1 2.	52 33 86 84 08	.1 .1 .1 .1 .1	20 14 20 18 21	37 61 54 67 199	4455 1506 1030 167 1716	3.85 2.63 3.93 3.17 3.56	7 5 8 6 7	.21 .19 .38 .47 .58	18 12 24 16 20	1.56 1.16 2.36 1.78 2.12	241 206 346 298 316	37 10 4 9	.66 .83 .32 .43 .59	38 36 37 36 77	1370 1250 1300 1190 1120	51 <u>3</u> 12	12132	1111	185 217 97 90 104	24 17 28 22 25	.19 .17 .31 .26 .28	11 8 12 9 11	149.8 110.1 190.7 143.1 145.0	1 2 3 1 2	25 14 26 20 24	32 11 8 2 9
106-108 168-116 110-112	292916 292917 292918		2.4 .8 .3	2.31 2.05 2.12	4 2 2	81 32 37	.1 .1 .1	1 2. 1 2. 1 2.	36 41 12	.2 .2 .1	17 16 16	69 55 54	9480 2422 1230	3.78 2.92 2.75	7 5 5	.29 .09 .09	17 12 12	1.90 1.14 .80	221 265 204	46 10 5	.25 .36 .32	41 35 45	1490 1240 1370	9 2 2	223	1 1 1	105 114 140	25 17 16	.23 .17 .15	11 9 8	143.5 110.0 91.3	1 1 1	29 22 19	50 17 8
	·	1																																

ć

m) PROJ: JEAN

ATTN: GARY SCHELL

# DDH-197-10 P214

FILE NO: 7S-0316-RJ3+4

. .

V

76.2

PPM PPM PPM

3 2 1

1

Ż

1 2231

3

1221

1

2

U

9

10 86.6

> 7 88.0

> 6 48.4

6

6 8 117.7

6

8 80.9 8 95.2 7 91.2 11 124.5 10 126.3

12 121.9

10 115.9 9 73.5

43.2 61.0

45.0 44.3 5

% PPM

19.18 10 102.9 17.16 9 94.8 18.16 9 89.6

17.15

46 17 .16 74 18 .16 201 18 .14

1 74 15 .12 1 140 15 .14 1 241 13 .10 1 152 20 .11 1 126 20 .16

1 103 17 .19 1 85 26 .29 1 116 17 .16 1 72 21 .24 1 59 16 .14

1

1

16 .15 16 .17 17 .19 13 .10 15 .10

1 137 25 .16 9 104.3 1 232 19 .16 10 136.2 1 299 21 .16 11 138.3 1 197 21 .12 12 98.0 1 232 22 .13 13 98.9

DATE: 97/10/17 * * (ACT:ICP 31)

W ZN Au-fire

PPB

41 5 1

8 29

1

316743

COMP: CONTINENTAL COPPER CORP. PROJ: JEAN ATTN: GARY SCHELL

· . .

#### MIN-EN LABS - ICP REPORT

. .

PB

8

2323

531

11 3

1

5 3 4

4

13223

6 1

1 9 7

2

ž

1

2

1

₽

SB SN SR TH TI

70

49

1 201

PPM PPM PPM PPM PPM

1

1

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423

1	SAMPLE	I	AG	AL	AS	BA	BE	BI	ÇĂ	CĐ	CO	CR	CU	FE	GA	K	_L1	MG	MN	MU	NA	NI	۲ ۲
	NUMBER		PPM	<u>%</u>	PPM	PPM	PPM	PPM	%	PPM	PPM	PPM	PPM	%	PPM	%	PPM	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	PPM	PPM	%	PPM	PPM
112-114	292919	Ť	1.4	1.47	6	22	.1	1	2.10	.3	18	71	7500	2.84	5	.08	9	.79	190	156	.16	46	1380
14-16	292920		.3	1.53	4.	27	.1	1	1.72	1	21	73	1396	3.28	5	-08	11	1.00	246	10	-11	54	1340
116-118	292921		-1	1.20	- 4	27	.1	1	1.24	1	20	77	635	3.08	- 4	.06	8	.76	215	5	.21	55	1440
18-120	292922	1	.6	1.53	4	30	-]	1	1.35	•]	21	85	1915	3.02	4	.07	, Y	.84	200	8 /	-20	29	1400
120-122	292923		.6	3.00	. 9	39	.1	1	5.07	• 1	18	0/	2/19	5.33	2	<u>. II</u>	10	.00	27.1	4	.20	- 22	1320
122-121	292924		.6	1.32	4	26	•1	1	1.59	-1	-13	61	2623	2.54	3	.06	<u>7</u>	.64	189	25	.23	38	1450
100-120	292925		.4	1.55	5	26	•1	1	1.61	• • •	15	- 69	1945	2.65	- 4	.06		.22	187	20	- 34	38	1440
129-12	292926		·	2.14	4	49	•]	1	1.00	- 1	10	48	4471	2.42	45	.10	11	.2/	190	202	• 6 4	20	1400
120-12	292927	1	1.1	2.00	2	57	-1	1	2 22	•	16	66	1041	3.00	6	17	17	1.04	328	6	- 20	41	1260
	272720			C.4L		470			6.04		- 10	437	2/0	2.0		77	47	1 11	224		72	14	1270
32-151	292929	$\mathcal{O}$	•]	2.31	4	138	•1		1.01	•	14	127	197/	2.49	5	. 22	10	1 60	320	20	10	40	1350
69-150	292930	$\geq$		2 08	2	204	•	- 1	1 00	-1	14	60	1677	3.32	Š	-45	8	50	203	16	46	33	1430
56 150	202032	1	-7	1 60	- 7	131	1	1	2.00		17	120	1501	2.78	5	.23	18	1.43	255	5	.15	48	1520
iyo-M	292933	X	.7	1.03	3	57	1	1	1.46	.1	11	63	2668	2.11	4	.11	13	1.05	177	23	.10	37	1670
42-14	202034	<u>``</u>	1	1.06	4	73	1	1	.92	.1	11	66	482	1.98	4	.11	13	.91	184	4	.11	36	1590
144-144	292935	いし	.3	1.31	6	135	- 11	1	1.46	.1	13	75	1292	2.02	4	.11	14	1.15	186	4	.11	42	1430
441-112	292936	$\cap  $	.2	1.63	- 4	122	.1	1	1.48	.1	12	62	1191	2.60	5	.11	- 14	1. <u>14</u>	247	43	.19	34	1370
180-15	292937	~	.1	.81	4	66	-1	1	.90	-1	. 9	80	430	1.68	3	-06		.75	162	5	.10	- 29	1560
150-15	2 292938	1	1	1.02	5	73	<u>.1</u>	1	1.50	.1	<u>    11                               </u>	68	229	1.79	5	-08	10	.89	205	4	.10		1520
52-15	292939	$\mathcal{O}$	.4	2.09	5	207	-1	1	1.61	-1	13	87	1530	3.02	5	.12	12	.95	216	12	.28	29	1140
154-15	292940	거	1	3.84	- 4	180	-1	1	2.72	-1	13	48	602	3.22	7	.12	13	.87	262	5	.53	28	1540
56-15	292941	$\gamma$	<u>1</u>	4.45	6	755	-1	1	5.07	-]	16	- 59	180	3.54	ଅ ∡	.25	15	1.18	217	12	.02	51	1/20
150-10	292942		2.5	2.87	2	14	-1	5	2.72	-3	32	40	8630	J.00 4 36	6	.07	8	-04	236	40	- 46	67	1330
160-19	1 272743		3.0	2.38	<u> </u>	147			3.31				0400	4.30		.07	, ,	.00		40	.+0		

161-16 to sample taken

(LATER ANALYSED BY

MIN-ENT ACME)

÷.,

			° r
			i i
	·		
·	tanan salah sa Salah salah sala	<b>,</b>	

## DDH 297-10 p304

#### COMP: CONTINENTAL COPPER CORP. PROJ: JEAN ATTN: GARY SCHELL

#### MIN-EN LABS — ICP REPORT 8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423

.

. .

FILE NO: 7S-0318-RJ1+2+3 DATE: 97/10/21

* * (ACT:ICP 31)

	SAMPLE NUMBER		AG	AL %	AS PPM	BA PPM	BE PPM	BI PPM	CA %	CD PPM	CO PPM	CR PPM	CU PPM	FE %P	GA PPM	К %	LI PPM	MG %	MN PPM	MO PPM	NA %	NI PPM	P PPM	PB PPM	SB PPM	SN SR PPM PPM	TH	TI % P	U PM PI	V N PM PPM	ZN PPM	Au-fire PPB
62-163 63-164 64-165 65-166 66-167	292945 292946 292947 292948 292948 292949		-1 -1 -1 -1	-88 .73 .79 .72 .71	41234	125 180 315 111 140	1 1 2 3	1 1 1 1 1 2 1 2	.01 .90 .80 2.01 2.05	.1 .1 .1 .1	66667	177 86 167 93 94	985 1. 491 1. 520 1. 287 1. 1182 1.	89 86 88 74 96	งกรรง	.11 .16 .12 .09 .07	66743	.66 .87 .77 .70 .64	207 308 217 302 217	195 34 11 196	.10 .06 .09 .06 .06	16 13 14 13 15	910 900 880 930 960	4 4 5 4 7	1 1 2 1	1 162 1 153 1 111 1 174 1 188	24 25 24 22 24	.03 .04 .04 .02 .01	6 39 6 37 6 38 5 34 6 34	7 1 4 2 7 3 7 3 6 3	13 15 15 16 12	6 6 11 5 5
67-168 168-169 169-170 10-171 71-172	292950 292951 292952 292953 292953 292954		.1 .1 4.9 .3 .1	.89 .72 .17 .74 1.04	3 135 39 4	106 99 30 126 276	22131	1112221	1.07 1.45 2.12 2.39 1.41	.1.1.1	77156	87 61 132 44 108	1011 2. 1501 1. 6327 1. 962 1. 972 2.	18 90 48 76 10	431 24	.09 .08 .05 .09 .13	6 5 1 6 8	.79 .71 .42 1.13 .84	165 187 393 288 254	41 183 7842 294 135	.06 .05 .02 .04 .07	15 14 11 13 16	970 1050 400 890 1090	7 6 24 5	2 1 10 1	1 145 1 141 1 74 1 207 1 178	26 24 16 23 26	.02 .02 .01 .01 .03	7 42. 6 37. 5 6 31. 6 46.	1 3 9 3 1 10 6 4 4 3	17 13 23 19 17	7 8 45 9 6
12-173 13-174 74-115 75-176 75-176	292955 292956 292957 292957 292958 292959		.2 .3 .4 .2 .1	.49 .77 .47 .69 .58	82 55 67 64 5	135 111 269 308 543	.4 .5 .5 .1	13 22 11 12 11	5.13 2.41 1.83 2.41 1.94	.1 .1 .1 .1	65766	32 96 45 88 43	655 2. 1196 1. 1244 1. 1117 1. 457 1.	08 76 85 93 86	1 1 2 2	.09 .18 .14 .18 .21	34334	1.07 .84 .61 .88 .71	420 309 245 291 283	492 760 631 252 332	.04 .04 .03 .04 .04	12 12 14 12 12	870 960 990 950 1070	9 13 12 · 7 3	24 3 2 6 1	1 186 1 167 1 119 1 157 1 155	24 24 21 23 23	.01 .01 .01 .01 .03	7 30. 6 18. 6 12. 6 26. 6 32.	8 3 6 2 7 3 8 5	33 24 21 22 15	8 18 9 6 7
9-170 8-179 9-180 80-181 81-182	292960 292961 292962 292963 292963 292964		.1 .1 .5 .1	.83 .80 .60 .61 .68	3 4 38 38 3	761 436 189 596 336	.1 .2 .2	1 1 1 1 1 2 2	1.79 1.93 2.20 2.51 2.22	.1.1.1.1.1.1	86668	151 60 92 58 103	386 2. 915 1. 531 1. 943 2. 85 1.	15 83 91 01 97	32223	.23 .27 .20 .22 .22	7 8 4 4 6	.99 .91 1.02 1.10 1.12	323 235 299 335 335	58 760 340 188 9	.08 .04 .05 .04 .06	16 16 14 14 15	1040 1050 1070 1050 1030	3 4 5 7 4	2 1 4 1	1 158 1 201 1 196 1 177 1 151	26 23 25 25 26	.06 .05 .02 .03 .06	7 45 6 38 6 34 6 34 6 43	6 2 2 5 7 4 5 1	21 14 15 26 19	6 15 6 9 4
182-183 83-184 184-195 85-186 85-186	292965 292966 292967 292968 292968 292969		.1 .1 .1 .1	.80 .72 .72 .69 .85	22131	419 579 300 270 367	1		2.00 1.67 1.44 1.49 1.16	.1 .1 .1 .1	8 7 8 7 9	53 82 62 104 69	150 1. 147 1. 156 1. 51 1. 81 2.	81 83 88 93 14	33323	.23 .18 .21 .18 .24	10 7 9 6 11	1.01 .93 .93 .77 1.01	352 319 313 325 314	83 111 11 378 8	.04 .06 .05 .06 .07	15 16 15 16 16	1010 1040 1010 1100 1060	3 4 5 1	1 1 1 1	1 164 1 154 1 154 1 154 1 132 1 136	25 25 25 28 28	-08 -06 -08 -05 -08	5 43 6 43 6 47 7 44 7 51	5 3 2 3 4 3 1 2 7 4	20 20 20 22 22 27	57 6 3 4
187-198 188-189 189-190 190-191 190-192	292970 292971 292972 292973 292973 292974		.1 .1 .1 .1	.72 .89 .99 .84 .63	1 2 14 9	366 271 357 253 787	11122		1.43 1.06 1.29 3.14 2.54	.1 .1 .1 .1	8 7 9 5 5	86 66 96 59 76	179 1. 275 2. 213 2. 130 1. 432 1.	89 11 16 96 78	3331 1	.17 .18 .22 .18 .19	7 11 11 10 5	.87 1.08 1.15 1.40 1.10	277 260 314 378 303	156 361 31 3577 482	.07 .06 .08 .05 .05	17 16 18 16 14	1100 1110 1140 980 1030	3 2 4 50 3	1 1 1 1	1 130 1 141 1 149 1 231 1 221	25 30 29 28 27	.05 .06 .07 .04 .02	6 45 7 51 7 54 7 26 6 35	9 5 2 4 0 5 6 6	24 24 26 61 16	5 7 9 8 8
192-18 193-194 194-18 195-196 196-197	292975 292976 292977 292978 292978 292979	7-10	.1 .1 .1 .1	.54 .65 .63 .63 .65	18 2 1 3	313 608 325 544 270	.4.21.3		3.15 2.68 2.09 2.24 1.58	.1 .1 .1 .1	4 6 8 6 6	53 94 88 55 80	387 1. 432 1. 725 1. 339 1. 54 1.	71 85 92 76 73	1 1 2 2 1	.17 .22 .24 .20 .21	24546	1.18 1.19 1.01 1.03 .94	344 385 337 344 313	2606 439 346 26 815	.05 .06 .06 .05 .06	12 14 12 14	980 870 1010 1090 960	2323	1 1 1	1 208 1 240 1 211 1 272 1 199	27 27 27 25 27	.01 .02 .05 .02 .02	6 23 6 34 6 42 6 34 6 36	7 8 2 8 0 7 5 9 2 4	19 19 20 19 22	5 8 9 7 3
197-198 198-19 198-19 200-201 200-201 201-202	292980 292981 292982 292983 292983 292984	96	.1 .1 .1 .1 .1	.69 .88 .93 .92 .86	1 1 9 3 8	291 503 859 2283 241	.1 .1 .1 .2	11222	1.18 2.01 2.77 2.49 2.16	.1 .1 .1 .1	78765	82 74 62 54	56 2. 133 2. 480 2. 181 1. 219 1.	02 16 02 79 56	2 2 2 2 1	.21 .20 .17 .18 .15	8 8 7 8 7	.81 1.03 1.02 .91 .97	253 368 431 404 314	54 270 273 35 1919	.06 .06 .06 .06 .05	14 16 13 14	1020 1170 1040 970 940	22542	1 1 3 1 1	1 132 1 237 1 306 1 293 1 226	26 28 24 25 27	.08 .06 .04 .03 .02	7 51. 7 50. 7 42. 6 39. 5 29.	4 23 5 2 3 5 3 9	23 26 23 23 19	2 3 5 3 8
202-202 203-20 204-205 205-20 206-204	292985 292986 292987 292988 292988 292989	HO 0	.1 .1 .1 .1	.81 .85 .60 .49 .43	1 1 3 1 1	181 187 260 122 482	.1 .1 .2 .1 .3	1 1 1 1 1 1 1 1 1 2	1.33 1.55 1.40 1.64 2.37	.1.1.1.1.1.1	7 7 7 6 6	56 103 66 79 48	58 1. 188 2. 257 1. 57 1. 3 1.	92 05 89 72 75	ろうろん	.12 .14 .11 .10 .08	89543	.79 .96 .78 .86 1.04	242 296 280 275 332	79 109 199 72 4	.06 .08 .07 .06 .05	14 17 15 15 13	1000 1010 1030 990 940	4 5 5 3 2	1 1 1 1	1 161 1 130 1 148 1 107 1 144	28 31 30 29 29	.04 .05 .02 .02 .02	6 43. 7 49. 6 43. 6 37. 6 31.	8 3 3 3 7 4 3 4 6 3	25 25 26 22 24	4 3 4 3
0 f~ 268 108~209 209-210 240-211 241-212	292990 292991 292992 292993 292993 292994		.3 .1 .1 .1 .1	.88 .97 .99 .77 .79	5 1 4 3	326 345 235 163 207	.5 .1 .1 .1	1 2 1 1 1 1 1 1	2.79 .92 1.26 .92 .74	.1 .1 .1	6 8 7 8 8	76 79 82 97 80	456 1. 247 2. 245 2. 23 2. 228 2.	95 25 25 15 10	1 4 2 3 3	.22 .32 .24 .11 .19	6 7 10 8 10	1.17 .87 1.05 .94 1.01	430 199 261 233 214	807 177 1007 58 265	.05 .07 .07 .09 .07	13 16 18 16 14	940 1120 1170 1180 1170	4 2 1 3 3	1 1 2 1	1 253 1 173 1 121 1 129 1 76	29 31 30 27 27	.01 .09 .07 .04 .09	6 31. 7 57. 7 50. 7 51. 7 56.	0 4 5 3 2 2 9 2 1 2	18 19 22 24 19	5 3 4 3 5
JZ-7/2	# <b>292995</b> _ E.O.H.		1	.67	1	142	.1	1 1	1.37	.1	7	84	48 1.	98	3	.12	10	<b>.</b> 82	277	96	_07 ,	13	1200	4	1	1 115	25	. 10	6 55.	43	19	3

¢



# MINERAL •ENVIRONMENTS LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

Quality Assaying for over 25 Years

## Assay Certificate

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C., CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C., CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Date: OCT-17-97

7S-0316-RA1

Company:	CONTINENTAL COPPER CORP.
Project:	JEAN
Attn:	GARY SCHELL

We hereby certify the following Assay of 2 Rock samples submitted OCT-09-97 by DL COOKE.

Sample Number	Cu %	
292907 292910	1.910 1.320	 •

Certified by

MIN-EN LABORATORIES

8____

# DOH197-11 PM4

COMP: CONTINENTAL COPPER CORP.

•

#### PROJ: JEAN

ATTN: GARY SCHELL

## MIN-EN LABS --- ICP REPORT

.

• · · · ·

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423

1.

FILE	NO:	7S-03	317-RJ1+2
	E	ATE:	97/10/21

* * (ACT:ICP 31)

45.8m 013	SAMPLE NUMBER	I	AG PPM	AL %	AS PPM	BA PPM	BE PPM	BI PPM	CA %	CD PPM	CO PPM	CR	CU PPM	FE %	GA PPM	K %	LI PPM	MG %	MN PPM	MO PPM	NA _%	NI PPM	P PPM	PB PPM	SB PPM	SN PPM	SR PPM I	TH TI PPM %	U PPM	PP	V V M PPM	ZN PPM	Au-fire PPE
15.8-8.0 18-20 20-22- 22-24 24-26	292997 292998 292999 293000 293001		.1 .3 .6 1.1 2.1	2.06 .89 1.25 2.41 2.78	2 1 1 2 1	263 53 28 33 46	.1 .1 .1 .1	1 1 1 1	1.20 1.04 2.22 2.53 2.53	.1 .1 .3 .2	15 10 13 24 19	149 83 77 49 54	589 2 716 1 1039 1 1710 2 4371 2	.79 .87 .96 .43 .83	53445	.69 .16 .07 .06 .11	12 6 6 6	1.56 .71 .67 .53 .85	228 159 176 155 187	36524	.16 .11 .10 .33 .40	51 33 39 45 45	1190 1680 1450 1400 1450	1 1 2 6 4	1 1 2 1 1		60 36 76 139 163	20 .23 13 .13 12 .11 14 .13 17 .13	8 6 7 9	88 41 47 52 82	45499	21 15 15 22 26	6 8 23 22 44
26-28 28-30 30-32 32-34 34-36	293002 293003 293004 293005 293005 293006		15.2 2.2 1.7 1.1 2.5	1.23 2.25 2.99 3.22 3.07	31223	36 54 70 48 37	.1 .1 .1 .1	13 1 1 1	2.37 1.95 2.30 2.55 2.63	1.7 .2 .1 .3	15 19 17 13 18	91 48 56 48 39	>10000 4 6382 2 3457 3 2760 2 4574 3	.28 .81 .24 .85 .27	66656	.28 .19 .22 .15 .08	9 10 9 7 7	1.17 1.13 .92 .82 .65	190 141 184 193 158	22 2 3 4 12	.08 .23 .38 .50 .43	41 35 34 28 36	1550 1450 1320 1300 1280	44 6 4 1 3	2 1 1 1	1 1 1 1	49 96 154 195 168	25 .11 18 .18 19 .17 16 .14 17 .12	13 8 10 9 10	66. 111. 122. 105. 83.		75 24 27 22 29	122 76 42 19 54
6-38 36-38 40-42 42-44 44-46	293007 293008 293009 293010 293011		2.9 .2 .3 .1 .1	3.56 3.84 3.08 4.74 3.56	43135	44 50 36 30 32	.1 .1 .1 .1 .1	1111	2.72 3.15 2.52 3.69 3.11	.4 .2 .1 .1	37 18 18 19 31	45 35 35 32 32	4090 3 374 2 558 2 588 2 542 3	.76 .61 .68 .83 .75	76577	.08 .09 .07 .06 .06	76657	.62 .78 .65 .54 .46	154 244 187 201 225	11 5 3 8 1	.48 .54 .45 .64 .48	56 31 30 39 67	1400 1310 1310 1310 1380	3 1 1 1	21121	1111	198 260 188 250 193	19 .12 15 .12 14 .12 15 .14 19 .11	11 8 9 12	74 74 69 64 58		39 19 17 16 15	49 7 8 8 6
16-48 50-57 52-54 54-56	293012 293013 293014 293015 293015 293016		.1 2.2 2.2 .3 .1	4.15 3.69 4.65 3.65 4.69	4 5 7 11 15	31 28 25 29 38	.1	11111	3.33 3.71 3.45 3.19 3.34	.1 .6 .1 .1	38 27 30 48 28	35 31 39 32 41	873 4 6015 3 5895 3 1382 4 580 3	.63 .25 .69 .48 .70	75867	.04 .06 .05 .05 .06	66898 898	.40 .62 .48 .39	209 252 217 214 164	1 113 2 1	.59 .54 .67 .56 .62	88 42 577 54	1350 1370 1410 1380 1310	2 11 4 2 1	21211	1 1 1 1 1	220 220 262 254 275	22 .13 17 .09 19 .11 21 .09 18 .11	14 10 12 13 11	76. 59. 65. 78. 81.	6 4 8 3 9 4 1 4	18 49 29 18 13	7 33 37 11 7
56954	293017 293018 293019 293020 293021		.2 .4 .4 .7 .7	3.60 3.67 4.02 3.53 2.70	14 22 34	34 37 46 63 37	.1 .1 .1 .1	11121	2.80 3.31 3.30 2.70 2.89	.1 .2 .1 .1 .1	41 16 29 13 11	46 28 30 30 35	824 4 789 3 893 3 1367 2 2118 2	.74 .45 .74 .56 .34	76664	.06 .07 .08 .16 .10	96985	.47 .59 .77 .91 .61	194 361 323 263 226	1 1 1 29	.51 .50 .50 .49 .39	62 32 60 27 22	1350 1250 1240 1450 1380	1 62 1 1	12111	11111	202 211 243 191 174	22 .11 18 .09 20 .10 15 .13 12 .09	15 11 12 8 7	102. 87. 78. 83. 74.	78854	17 22 24 20 19	7 9 10 12 17
66-68 68-70 70-72 72-74 14-76	293022 293023 293024 293025 293025 293026		.3 1.1 .5 .7 .3	2.86 2.94 2.68 3.01 2.16	33232	36 34 40 29 44	.1	1 1 1 1 1	2.74 2.32 2.19 2.48 1.94	.1 .1 .1 .1	12 14 15 14	31 31 35 31 42	1174 2 3182 2 1308 2 1930 2 773 2	.46 .26 .52 .33 .36	55554	.08 .06 .07 .06 .10	86967	.74 .46 .67 .41	243 150 185 145 169	3 10 4 3 3	.34 .41 .35 .39 .30	25 33 27 34 30	1210 1300 1180 1160 1250	1 1 1 1	1 1 2 1 1	11111	146 153 131 143 105	13 .10 11 .10 13 .12 11 .09 13 .10	7677	82. 60. 78. 62. 65.	94986	19 19 20 16	10 20 16 20 8
6-70 9-80 32-87 32-84 32-84 32-84	293027 293028 293029 293030 293030 293031	7-11	.6 .1 .1 .1	1.30 2.05 3.06 1.00 1.21	1 33 22	31 64 173 111 123		1 1 1 1 1	1.42 1.77 2.42 .83 1.08	.1 .1 .1 .1 .1	16 14 13 16 19	51 60 99 112 136	1371 2 334 2 132 2 195 2 135 3	.27 .08 .31 .70 .11	44534	.07 .12 .36 .23 .23	7 8 12 9 10	.69 .79 1.27 .95 1.22	159 184 243 203 265	5 1 6 1	.15 .23 .33 .09 .09	43 45 47 45 47	1200 1200 1110 1050 930		1 1 3 1 2	11111	49 89 145 32 41	12 .11 12 .12 15 .14 16 .13 20 .17	76789	57. 59. 74. 78. 88.		16 13 15 16 21	11 8 3 6 5
4-88 10-90 12-94 12-94	293032 293033 293034 293035 293035 293036	4 29	.1 .1 .3 .5 .2	1.71 2.52 1.61 1.66 1.26	24233	270 399 165 188 160	.1 .1 .1	1 1 1 1	2.35 1.53 1.63 2.29 2.54	.1 .1 .1 .1 .1	17 15 12 15 11	155 160 87 145 110	50 2 57 2 798 2 1530 3 742 2	.91 .84 .23 .10 .40	45453	.55 .66 .29 .41 .20	10 13 9 12 8	1.31 1.50 1.11 1.76 1.53	354 254 232 412 395	1 1 2 9 3	.14 .26 .17 .09 .12	65 68 47 48 43	1010 900 990 1030 1000	1 1 2 1	22222	1111	97 101 74 109 152	19 .15 18 .18 15 .12 21 .12 17 .07	9 8 7 10 7	88 87 59 83 55		17 17 16 22 17	4 2 7 17 9
96-98 18-100 10-102 104 104	293037 293038 293039 293040 293041	ad-	.1 .4 .2 .1	1.83 2.33 1.86 2.17 1.26	23221	388 254 239 168 83	.1 .1 .1	1 1 1 1	1.99 1.61 1.66 1.40 .90	.1 .1 .1 .1	15 15 13 18	162 121 118 106 118	531 3 1835 2 675 2 506 3 264 2	.23 .80 .59 .11 .60	55564	.70 .39 .46 .31 .16	13 13 15 14 14	1.97 1.48 1.47 1.21 1.42	401 275 300 282 215	6 74 27 4 10	.14 .29 .14 .22 .10	51 42 38 39 52	970 1080 970 740 950	2 1 1 1	3 1 2 2	1 1 1 1	157 150 77 108 60	23 .15 20 .17 18 .19 19 .21 18 .19	10 8 8 10 8	84. 74. 79. 97. 73.	5 125	26 22 25 27 22	5 14 5 4
106-108 108-110 10-12	293042 293043 293044		.1 .2 .3	1.25 1.80 1.16	1 3 1	122 116 119	.1 .1 .1	1 1 1	.89 1.09 .80	.1 .1 .1	19 15 16	148 131 108	139 2 638 2 1446 2	.36 .36 .16	4 5 3	.37 .27 .23	14 13 11	1.42 1.21 1.01	200 179 161	16 8 14	.08 .18 .12	73 49 53	1210 920 1100	1 1 1	1 1 1	1 1 1	34 54 44	17 .20 17 .18 15 .17	7 7 7	72.7 77.4 63.2	7 1	16 18 16	2 6 11
																			<u> </u>	,											• .		

COMP: CONTINENTAL COPPER CORP.

PROJ: JEAN

-----

ATTN: GARY SCHELL

#### ÷ MIN-EN LABS - ICP REPORT

.

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423

-.

DOH J97-11	r2074
------------	-------

FILE NO: 78-0317-RJ3+4

DATE: 97/10/21 * * (ACT:ICP 31)

ſ	SAMPLE NUMBER	AG PPM	AL %	AS PPM	BA PPM	BE PPM	BI PPM	CA %	CD PPM	CO PPM	.√CR PPM	CU PPM	FE %	GA PPM	K %	LI PPM	MG %	MN PPM	MO PPM	NA %	N I PPM	P PPM	PB PPM	SB PPM	SN PPM	SR PPM	TH PPM	TI %	U PPM	V PPM	W PPM	ZN / PPM	Au-fire PPB
hz -114 14-116 116-118 118-120 118-120	293045 293046 293047 293048 293048 293049	.3 .1 .1 .1 .1	2.16 3.62 2.61 1.74 2.22	12232	234 321 434 261 176	.1 .1 .1 .1		2.00 2.39 1.42 1.00 2.22	.1 .1 .1 .1 .1	18 16 15 14 17	225 197 176 130 106	784 3 289 2 116 2 341 2 3860 4	3.22 2.69 2.54 2.54 4.43	66547	.72 .64 .44 .35 .22	20 2. 17 1. 18 1. 13 1. 16 1.	42 93 74 34 62	302 267 225 220 397	213 10 13 20 21	.11 .36 .23 .17 .17	69 74 64 50 44	960 1000 1050 1000 960	11114	12111	1 1 1 1	76 171 97 61 106	25 20 21 19 26	.24 .17 .22 .18 .15	10 9 8 8 14	113.4 95.5 90.4 86.7 125.8	3 2 1 2 4	21 20 22 22 33	7 3 1 4 25
122-124 124-126 126-126 126-126 120-130 130-132	293050 293051 293052 293053 293053 293054	.1 .1 .4 .5 .1	1.86 3.24 1.05 1.40 .86	2 3 2 3 2 3 2	157 480 98 140 105	.1 .1 .1 .1	1 1 1 1 1	2.93 3.05 1.02 1.75 2.03	.1 .1 .1 .1	14 18 13 13 7	111 120 76 93 86	476 3 331 3 1799 2 2088 3 628 1	3.25 3.36 2.34 3.02 1.90	56452	.22 .69 .06 .10 .10	14 1 18 1 8 13 1 10	61 96 81 40 77	406 379 152 275 358	28 4 10 15 274	.12 .24 .14 .11 .06	40 52 26 28 16	710 880 880 990 1000	21543	12111	1 1 1 1	95 130 57 117 119	23 24 16 23 26	.08 .24 .13 .14 .06	10 11 7 9 7	96.4 124.9 74.5 88.8 46.9	23554	33 26 20 23 16	62 10 14 5
132-134 34-136 36-138 30-138 30-140 140-142	293055 293056 293057 293058 293058 293059	.1 .1 .9 .1	.69 .53 .46 .51 .66	23242	85 69 72 72 88	า้ม่ม่ม่ง	22182	1.43 2.35 3.39 2.69 1.24	.1 .1 .1	7 8 8 6 6	79 70 51 81 82	394 1 728 1 523 1 4591 2 1014 1	1.86 1.80 1.68 2.26 1.99	3 1 1 3	.09 .07 .05 .08 .08	7 3 1 2 1 4	.74 .91 .32 .11 .68	277 307 324 275 172	30 334 67 923 39	.06 .06 .05 .06 .07	14 19 15 16 13	1040 1130 980 1080 1090	6 2 3 5 3	1 1 1 1	1 1 1 1	102 133 176 145 127	25 26 26 29 27	.04 .01 .01 .01 .01	6 6 7 6	44.0 38.5 31.7 34.6 40.2	34463	20 15 14 18 15	3 6 5 8 3
142-199 194-196 196-150 198-150 150 152	293060 293061 293062 293063 293064	.1 .1 .4 .9 .2	.62 .66 .53 .55 1.89	6 8 7 11 9	74 103 289 304 464	33241	11191	1.76 2.57 2.93 3.11 3.31	.1 .1 .1 .1	6 6 7 7 17	93 56 58 51 59	916 1 1136 1 1149 1 2261 2 1235 4	1.93 1.81 1.91 2.37 4.20	22215	.09 .11 .15 .16 .63	4 1 3 1 3 1 14 1	.88 .03 .96 .87 .55	223 270 361 376 586	107 109 48 141 15	.07 .05 .04 .05 .08	14 13 13 14 28	990 960 1060 940 1130	3 7 6 7 2	1 1 1 1	1 1 1 1	123 183 181 200 189	27 25 26 25 28	.01 .01 .02 .01 .16	6 6 8 13	35.3 34.1 33.7 32.5 122.9	422 12	16 17 19 21 46	3 7 5 17 8
172-154 194-156 156-156 158-160 158-160	293065 293066 293067 293068 293068 293069	.1 .3 .1 .5 .1	2.22 1.59 1.63 1.43 1.82	6 7 16 9 3	396 172 173 200 200	.1 .1 .1 .1	11111	3.09 1.06 1.48 1.34 2.11	.1 .1 .1 .1	20 18 16 22 16	54 101 90 94 93	1049 4 2051 3 1118 4 2093 3 617 3	4.54 3.79 4.05 3.90 3.83	65544 4	.76 .19 .33 .21 .32	16 1 12 1 13 1 11 1 13 1	.97 .37 .49 .31 .55	609 394 405 403 482	5 7 16 38 2	.15 .16 .10 .13 .15	24 34 39 40 29	1420 640 740 1340 830	1 2 3 3 4	1 1 1 1	1 1 1	114 58 48 67 76	30 24 26 26 24	.28 .24 .22 .22 .22	15 12 13 13 12	169.2 109.7 114.6 125.0 120.5	6 12 4 40 3	47 46 45 36 32	4 14 12 10 6
62-164 64-166 68-170 68-170 70-172	293070 293071 293072 293073 293074	.1 .4 .4 .1 .2	1.86 2.10 2.74 3.08 1.86	343N2	241 301 342 494 289	.1		.96 2.78 4.07 2.04 2.31	.1 .1 .1 .1	20 17 19 21 14	129 87 191 213 142	1240 4 1556 4 1429 4 569 4 560 3	4.54 4.53 4.18 4.15 3.30	65554	.34 .50 .56 .80 .48	15 2 14 1 15 2 17 3 11 2	28 66 65 73	526 533 649 548 492	8 16 67 9 4	.09 .05 .12 .17 .08	33 31 65 76 50	860 690 900 1240 1070	3 3 3 1 3	1 2 2 1	1 1 1 1	50 86 152 121 86	28 26 28 32 25	.29 .14 .11 .20 .14	14 13 13 12 10	156.7 117.8 132.4 148.9 88.7	49355	42 45 34 31 30	8 10 7 3 3
72-114 174-176 176-178 176-180 80-181	293075 293076 / 293077 293078 / 293078 /	.4 1.2 .2 .5	1.12 1.01 1.41 1.99 2.66	15112	53 46 88 236 247	.1 .1 .1 .1	11111	1.07 2.05 1.07 3.92 2.33	.2 .2 .1 .1	12 13 13 13 13	92 89 120 114 174	1589 2 3618 3 795 3 666 2 344 3	2.56 3.35 3.14 2.63 3.41	44435	.10 .13 .17 .39 .49	10 1 8 1 10 1 8 1 14 2	47 40 75 71 39	350 393 390 644 461	33 21 51 85 21	.08 .06 .08 .19 .20	29 29 41 57 74	1160 1100 1200 990 1030	36214	1 2 1 3	1 1 1 1	48 57 82 238 142	21 22 22 20 24	-14 -11 -09 -07 -10	8 10 10 8 10	64.9 71.2 68.4 57.6 77.8	9 31 3 3 8	29 29 32 23 23 27	6 28 6 5 5
81-182 52-183 52-189 87-185 85-186	293080 293081 293082 293083 293083 293084	14.4 10.4 1.9 4.1 4.9	1.93 1.82 2.00 2.34 1.47	14 1 1 1	86 62 109 188 96	.1 .1 .1 .1	4 <u>3</u> 1 1	3.38 1.74 1.49 2.07 1.69	25242	40 32 13 18 25	189 217 214 330 139	>10000 6 >10000 5 2900 3 6477 4 6383 3	6.80 5.78 3.91 4.48 3.73	5 5 4 5 4	.25 .29 .28 .52 .25	19 2 15 2 18 2 15 2 11 1	.52 .16 .60 .67 .80	777 449 513 565 430	13 8 10 16 10	.04 .06 .04 .08 .06	99 86 79 95 55	860 1050 890 840 1030	17 15 3 6 8	43131		118 66 53 102 66	39 34 28 29 24	.05 .07 .08 .10 .06	22 18 12 14 11	73.9 71.2 79.0 79.5 57.2	2 69 30 6 7	38 43 44 38 30	71 50 14 13 11
82-187 187-188 88-189 189-190 189-191	293085 293086 293087 293087 293088 293089	2.6 3.8 8.7 6.0 6.2	1.58 1.80 1.51 1.44 1.69	1 2 2 3 2	112 66 60 65 79	.1 .1 .1 .1	1 3 6 8 2	2.42 2.23 2.28 3.10 2.26	.3.3.5.3.5	17 67 40 55 26	212 137 193 128 187	4113 3 4205 5 >10000 6 7274 7 9612 5	3.76 5.74 5.33 7.04 5.07	35545	.40 .30 .27 .28 .33	11 1 13 1 12 1 9 1	76 82 77 63 68	555 503 493 773 471	14 7 15 93 10	.05 .06 .03 .02 .09	54 81 73 75 58	720 1010 1050 910 1160	6 7 16 15 12	2 2 3 1 1	1 1 1 1	94 100 66 71 85	24 33 35 39 30	.07 .05 .04 .02 .07	12 18 20 23 15	57.9 67.0 55.3 44.0 74.6	9 18 6 146 6	29 36 37 43 40	14 26 37 42 21
191-192 191-193 193-194	293090 293091 293092	2.1 1.4	2.00 1.55 1.65	1 1 1	243 93 86	.1 .1 .1	1 1 2	1.81 2.98 4.21	.1 .2 .3	15 40 14	203 168 165	841 3 2516 4 3576 3	3.59 4.20 3.48	5 4 3	.57 .31 .17	10 2. 9 1. 11 1.	52 92 94	479 622 754	11 11 15	.06 .05 .05	75 52 50	990 880 750	3 7 6	2 2 1	1 1 1	77 80 143	27 26 24	.11 .05 .03	11 13 11	84.0 79.4 57.3	623 3	30 27 27	3 12 9
										•									3													· .	

# DDI+ J97-11P 3014

#### COMP: CONTINENTAL COPPER CORP. PROJ: JEAN

1

υ,

.

#### MIN-EN LABS - ICP REPORT 8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423

. .

#### FILE NO: 7S-0317-RJ5+6

DATE: 97/10/21 * * (ACT:ICP 31)

ATTN: GARY SCHELL

m	SAMPLE NUMBER	:	AG PPM	AL %	AS PPM	BA PPM	BE PPM	BI PPM	CA %	CD PPM	CO PPM	. CR PPM	CU PPM	FE %	GA PPM	К %	LI	MG %	MN PPM	MO PPM	NA %	N I PPM	P PPM	PB PPM	SB PPM P	SN PPM F	SR PPM F	TH Pm	TI % P	U PM	V PPM	W PPM	ZN . PPM	Au-fire PPB
17-195 15-196 16-197 17-198 18-199	293093 293094 293095 293096 293097		1.6 12.9 11.3 1.6 .8	1.39 1.57 1.39 1.52 1.53	36884	94 105 97 104 145	.1 .1 .1 .1	1 3 13 2 1599 2 28 3 16 1	5.51 2.49 2.07 5.51 1.99	.1 1.8 .2 .1 .1	15 14 11 12 12	137 191 133 144 163	2717 >10000 2602 2374 1173	2.82 6.26 2.94 3.13 2.94	36334	.21 .39 .21 .31 .33	10 1 11 1 11 1 11 1 11 1	.57 .83 .69 .70 .81	540 495 487 607 435	8 9 11 6	.05 .06 .05 .07 .06	41 57 38 41 44	610 1350 1040 770 930	1 31 1104 3 5	33522	1111	84 80 70 92 63	21 38 24 22 23	04 07 06 05 08	9 20 9 10 9	56.2 59.5 55.2 58.3 66.2	2 41 57 505 16	25 58 28 25 26	7 12 62 14 9
49-200 100-201 201-202 202- <b>2</b> 02 202- <b>2</b> 02	293098 293099 293100 293101 293102		3.3 5.9 2.7 2.6 2.6	1.47 1.02 .86 1.83 1.78	7 11 19 7 5	95 57 79 86 254	.1 .1 .1 .1	15 18 9 198 3	2.31 2.65 3.49 2.17 2.52	.3.3.1.1.1	19 18 22 66 14	148 100 127 177 170	8917 >10000 4179 1831 1383	4.73 5.65 3.41 9.09 3.96	55285	.32 .19 .20 .33 .67	11 1 9 7 1 11 1 8 2	.39 .80 .39 .43 .05	441 391 562 482 488	10 5 185 5 48	.05 .04 .04 .10 .05	41 40 55 133 77	1050 990 860 1100 1180	10 25 9 183 3	34143	1 1 1 1 1 1	77 98 56 85 77	29 32 22 48 28	.04 .02 .02 .04 .10	15 18 11 31 13	53.4 36.2 45.9 70.4 90.5	89 10 41 7 93	36 32 27 38 38	12 14 14 31 10
204-206 61-208 208-210 108-217 12-214	293103 293104 293105 293106 293107		2.5 20.2 .1 .3 .1	1.31 .86 3.70 1.16 1.14	21 121 5 3	163 68 390 100 110	11111	11 58 1 2	5.82 5.72 2.30 1.52 1.41	.2 .2 .1 .1	14 7 18 13 10	104 140 286 86 114	7281 >10000 690 447 241	4.34 7.66 2.72 1.63 1.50	5 1 4 2 2	.31 .23 .68 .09 .12	8 1 5 1 16 2 7 8	.79 .29 .07 .94 .97	630 550 276 240 239	40 5094 23 21 2	.06 .05 .25 .14 .12	63 68 114 56 51	1370 1660 750 1170 1160	11 118 1 1 1	41412	1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	51 72 19 99 69	28 44 22 13 13	.03 .02 .17 .07 .11	14 25 5 5	84.9 29.4 71.0 29.8 37.1	724 6 4 2	38 86 25 19 18	19 89 4 5 3
19-216 16-218 18-220 20-222 22-222	293108 293109 293110 293111 293111 293112		.3 .2 .6 .2 1.0	1.22 .98 1.93 1.64 1.12	44422	107 134 365 273 119	.1 .1 .1 .1	1 · 1 · 1 ·	1.53 1.92 1.77 1.40 1.55	-1 .1 .1 .1	10 9 16 14 12	136 110 203 133 21	608 547 1156 685 1710	1.72 1.62 2.61 2.70 3.02	3 2 4 4 4	.13 .14 .50 .49 .16	9 1 7 13 1 12 1 9	.09 .85 .73 .40 .89	245 301 273 266 254	5 1 5 4 2	.12 .15 .16 .14 .12	51 42 64 39 9	1110 1230 960 1620 2220	1 1 2 2	2222	1 1 1 1	68 88 88 62 64	14 13 21 20 20	.11 .10 .19 .18 .13	65889	44.5 37.0 77.8 83.0 86.6	28 6 16 6 5	19 19 21 23 25	5 4 5 6 11
by-226 26-226 26-220 106-232 232-234	293113 293114 293115 293116 293116 293117		1.7 2.3 .2 .4	1.58 3.21 2.85 .99 .89	44325	137 323 482 172 215	-1 .1 .1 .1	1 1 1 1	1.87 2.00 1.39 1.28 1.00	.1 .1 .1 .1	14 16 20 11 11	111 273 310 89 80	3566 2352 215 1060 1129	3.06 2.86 3.35 2.12 1.88	56533	.28 .69 1.27 .21 .26	16 1 25 2 20 2 9 1 8	.78 .43 .87 .17 .99	298 274 315 208 157	74 6 14 10 8	.11 .18 .19 .09 .08	41 100 108 42 32	2000 980 860 1540 1700	4 1 3 4	23311	1 1 1 1 1 1 1	13 52 63 64 56	23 24 27 19 18	15 21 26 15 18	10 9 11 1 7 6	95.0 92.0 120.5 58.8 56.1	6 18333 333	25 24 24 21 21	21 9 3 11 14
X81-731. 72-238 78-240 10-242 10-242 142-2444	293118 293119 293120 293121 293122	$\downarrow$	.4 .7 .2 .1 .7	.76 .84 .75 .72 .81	32345	133 148 155 88 78		11135	.90 .79 .92 1.26 1.24	.1 .1 .1 .1	8 10 9 11 28	78 89 75 80 63	1420 1880 1107 296 1627	2.03 2.19 2.22 1.88 2.10	34333	.19 .23 .23 .15 .16	8 9 8 8	.78 .89 .84 .71 .80	122 141 158 141 130	29 10 17 5 154	.07 .07 .07 .06 .06	17 16 14 11 12	1400 1330 1350 990 900	55434		1 1 1	48 45 49 49 76	20 23 23 19 20	.16 .17 .16 .08 .03	67766	61.9 61.5 63.1 40.8 34.4	33 24 3 1 2	13 16 14 12 14	17 13 10 4 9
44-246 16-248 16-250 50-252 52-254	293123 293124 293125 293126 293127	Ņ	.3 .1 .7 .7	.91 .72 .66 .96 .98	5 2 3 3 2	163 120 151 131 155	.1.1.1.1.1.1.1	1 1 1 1	.99 1.23 .67 1.48 .97	.1 .1 .1 .1	8 8 7 9 8	90 58 61 72 65	1756 1038 790 2750 1068	2.19 1.99 1.93 2.04 2.13	44344	.23 .17 .19 .27 .28	91 8 7 101 91	.01 .85 .78 .18 .21	167 170 131 199 192	16 10 5 35 4	.09 .06 .07 .06 .06	15 13 12 16 15	1340 1260 1320 1320 1270	6445 4	1 1 1 1	1 1 1 1 1	01 71 54 88 81	23 22 21 24 25	.09 .08 .12 .09 .10	76667	59.7 54.4 56.3 58.0 62.7	2 1 2 1 2 1	19 15 13 17 18	9 6 7 11 7
74.256 56-258 12-260 10-262 10-262	293128 293129 293130 293131 293132	DHJ	.4 .1 .1 .1	.86 .76 .88 .78 1.07	7 5 3 2 2	145 581 178 136 199	.1 .1 .1 .1 .1	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	2.63 2.17 1.19 .77 2.01	.1 .1 .1 .1 .1	7 8 9 8 8	49 54 81 66 67	1676 309 209 91 1167	2.10 2.01 2.20 2.04 2.14	23434	.22 .25 .22 .17 .19	5 1 6 9 12 1	.22 94 98 .89 .44	274 316 236 170 326	149 3 4 14	.06 .05 .06 .06	13 12 13 11 14	1190 1190 1320 1320 1270	57353	1 1 1 1		47 69 66 48 92	24 21 24 22 25	.03 .06 .12 .15 .08	77767	41.8 47.7 61.2 60.0 60.0	11,11	15 16 13 17	8 6 5 3 8
W-26 46 268 68 270 170-272 42-274	293133 293134 293135 293136 293137	0	.1 .1 .4 .1	1.00 .76 .69 .78 .73	3 2 3 1 2	193 189 184 103 161	.1 .1 .1 .1	1 1 1 1 1 1	1.87 .53 1.16 1.35 .65	.1 .1 .1 .1	9 8 8 7	76 67 73 58 72	83 180 14 945 14	2.26 2.19 2.10 2.26 2.21	34333	.30 .22 .20 .13 .18	11 1 9 10 10 10	.18 .93 .77 .90 .79	376 184 281 287 186	4 2 13 3	.07 .07 .07 .07 .08	14 12 11 11 11	1290 1300 1290 1420 1390	32345	2 1 1 1		10 62 00 03 78	25 24 24 24 24 23	.10 .09 .09 .06 .08	77777	60.9 58.5 59.2 57.5 62.0	12211	20 18 17 19 20	3 4 5 3
17Y-2767	5 <b>293138</b> E.O.H		.1	.65	1	155	.1	1	.76	.1	8	55	39	2.08	3	.16	10	.75	192	3	.06	10	1450	4	1	1	50	22 .	.13	7	64.3	1	16	3
																				,														

# MINERAL • ENVIRONMENTS LABORATORIES LTD.

# SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

Quality Assaying for over 25 Years

## Assay Certificate

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C., CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C., CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

7S-0317-RA1

Company: Project: Attn:	<b>CONTINENTAL COPPER CORP.</b> JEAN GARY SCHELL	Copy 1. 2.	Date: OCT-21-97
<i>We herel</i> submitte	by certify the following Assay of 7 Rock samples d OCT-09-97 by DL COOKE.	3. ~ ***	

Sample Number	Cu %	ς.
293002	3.020	
293080	1,600	
293081	1,730	
293087	1.430	
293094	. 3.940	
293099	1.620	
293104	6.470	

Certified by

6764-46CH09

**MIN-EN LABORATORIES** 



1

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS .. ASSAYERS . ANALYSTS . GEOCHEMISTS

IRONMENTS

ABORATORIES

(DIVISION OF ASSAYERS CORP.)

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C. CANADA VSX 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TEL (604) 847-3004 FAX (604) 847-3005

## ANALYTICAL PROCEDURE REPORT FOR ASSESSMENT WORK: PROCEDURE FOR TRACE ELEMENT ICP

Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sn, Sr, Th, Ti, U, W, Zn

0.50 grams fo the sample pulp is digested for 2 hours with an 1:3:4 HNO3:HCl:H2O mixture. After cooling, the sample is diluted to standard volume.

The solutions are analysed by computer operated Jarrell Ash 9000, Jarrell Ash 975 or Jobin Yvon 38, Inductively Coupled Plasma Spectrophotometers.



ΛΙΝΕR ΔΙ

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

RONMENTS

ABORATORIES

(DIVISION OF ASSAYERS CORP.)

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C. CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TEL (604) 847-3004 FAX (604) 847-3005

#### PROCEDURE FOR Au GEOCHEM FIRE ASSAY

Samples are dried @ 65 C and when dry the Rock & Core samples are crushed on a jaw crusher. The 1/4 inch output of the jaw crusher is put through a secondary roll crusher to reduce it to 1/8 inch. The whole sample is then riffled on a Jones Riffle down to a statistically representative 300 gram sub-sample. This sub-sample is then pulverized on a ring pulverizer to 95% - 150 mesh, rolled and bagged for analysis.
The remaining reject from the Jones Riffle is bagged and stored.

Soil and stream sediment samples are screened to - 80 mesh for analysis.

The samples are fluxed, a silver inquart added and mixed. The assays are fused in batches of 24 assays along with a natural standard and a blank. This batch of 26 assays is carried through the whole procedure as a set. After cupellation the precious metal beads are transferred into new glassware, dissolved with aqua regia solution, diluted to volume and mixed.

These resulting solutions are analyzed on an atomic absorption spectrometer using a suitable standard set. The natural standard fused along with this set must be within 2 standard deviations of its known or the whole set is re-assayed.

10% of all assay per page are rechecked, then reported in PPB. The detection limit is 1 PPB.



SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS . ASSAYERS . ANALYSTS . GEOCHEMISTS

RONMENTS

BORATORIES

(DIVISION OF ASSAYERS CORP.)

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C. CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TEL (604) 847-3004 FAX (604) 847-3005

### ANALYTICAL PROCEDURE REPORT FOR ASSESSMENT WORK: PROCEDURE FOR SAMPLE PREPARATION

a.). The soil and stream sediment samples are dried at 60 Celsius. The sample is then screened by 80 mesh sieve to obtain the -80 mesh fraction for analysis.

The rock and core samples are dried at 60 Celsius and when dry are crushed in b.) a jaw crusher. The 1/4 inch output of the jaw crusher is put through a secondary roll crusher to reduce it to -1/8 inch. The whole sample is then riffled on a Jones Riffle down to a statistically representative 300 gram sub-sample. This sub-sample is then pulverized on a ring pulverizer to 95% minus 150 mesh rolled and bagged for analysis. The remaining reject from the Jones Riffle is bagged and stored.

#### NOTES:

The attached letter dated April 24/97, and received from MinEn Labs. in April 1998, came in response to a request for clarification on major differences in detection limits for several ICP-determined elements in Report No 8V0136, dated April 01/98, as compared to those given for the corresponding elements in the case of DDH J 97-1 to 11. It had been specified that Sample No.292996 undergo the same preparation and analytical procedure used for the 1997 diamond drill samples, which included gold by FA on a 30g sub-sample.

Acme Lab File # 9801200 represents analyses on sample 292996A by ICP as well as Au by FA on a 30g sub-sample. Sample No. 292996A consisted of the REJECTS of sample 292996 PLUS the remaining PULP of that sample. These components were combined by Bruaset prior to submittal to Acme Labs. The Acme results for Cu constitute a good check on the corresponding MinEn analysis, and the checks on gold and molybdenum are satisfactory.



SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, BC, CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB:

3176 TATLOW ROAD SMITHERS, BC, CANADA VOJ 2NO TELEPHONE (250) 847-3004 FAX (250) 847-3005

Quality Assaying for over 25 Years

April 24,1997

Dear Mr. Bruaset,

At the end of each calendar year we evaluate our analysis packages and make changes to them in order to respond to changing industry needs. This year, this re-evaluation coincided with upgrades to several lab systems. Included in these upgrades was a new laboratory information management system (LIMS) and changes in ICP instrumentation. As a result of these changes we have modified the way in which we analyze and present the data to the customer.

New Perkin-Elmer ICP instrumentation was acquired in the summer of 1997 and the latter half of the year was spent developing analysis methods for them prior to putting them into production. This also gave us a chance to run the new instruments in parallel with our older ones to ensure that the results produced by both instruments were correct and consistent.

The newer instruments are substantially different in design than the older ones. A re-evaluation of our reporting detection limits was necessary prior to using them. Limits of detection for each element in each of our analysis packages were determined experimentally and used to establish our reporting limits. At the same time we altered several of our multi-element analysis packages. We dropped some elements that clients reported were of little use. We added other elements that were heavily requested. No changes were made to the sample preparation and digestion procedures for any of the analysis packages. The only changes that were made were instrumental. Any analyses conducted prior to 1998 will show a different set of elements and detection limits, however the analysis and detection limits are valid for those samples.

One of the affected packages was our multi-element aqua-regia leach package. The elements dropped or added were:

-elements dropped: Ga,Li,Th,U -elements added: Sc,Y,Zr

The second component to our changes in 1998 was the introduction of our new LIMS system. This allowed us great flexibility in reporting results as well as giving us consistent reporting format across all of our laboratory locations. The largest change was the ability to report 'less than detection' on analysis reports. Prior to this, our lower limits were reported as 'at or below detection'. This brings us more into line with industry standard reporting methods. The attached table summarizes the changes in the method.

If you have any other concerns, please feel free to contact me.

Yours Truly

Wilfred Tsang

WT/tn

# Element Comparison Multi Element ICP

# Aqua Regia Leach

		Lowe	r Limit	Uppe	r Limit
Element	Units	1997	1998	1997	1998
		at or below	below	above	above
Ag	ppm	0.1	0.2	200	200
Al	%	0.01	0.01	15	15
As	ppm	1	5	10000	10000
Ba	ppm	1	10	10000	10000
Ве	ppm	0.1	0.5	100	100
Bi	ppm	1	5	10000	10000
Ca	%	0.01	0.01	15	15
Cd	ppm	0.1	1.	100	100
Co	ppm	1	1 '	10000	10000
Cr	ppm	1	· 1	10000	10000
Cu	ppm	.1	1	10000	10000
Fe	%	0.01	0.01	15	15
Ga	ppm	1	n/a	10000	n/a
K	%	0.01	0.01	10	10
Li	ppm	1	n/a	10000	n/a
Mg	%	0.01	0.01	15	15
Mn	ppm	· 1	5,	10000	10000
Мо	ppm	1	· 2 ·	10000	10000
Na	%	0.01	0.01	5	5
Ni	ppm	1	1	10000	10000
Р	ppm	10	10	10000	10000
Pb	ppm	1	2	10000	10000
Sb	ppm	1	5	10000	10000
Sc	ppm	n/a	1	n/a	10000
Sn	ppm	1	10	1000	1000
Sr	ppm	1	1	10000	10000
র্শh	ppm	1	n/a	1000	n/a
Ti	%	1	0.01	10	10
U	ppm	5	n/a	10000	n/a
V	ppm	0.1	1	10000	10000
W	ppm	1	10	10000	10000
Υ	ppm	n/a and	1	n/a 👘	10000
Zn	ppm	1	1	10000	10000
Zr	ppm	n/a	1	n/a	10000

.

#### **RAGNAR U.BRUASET & ASSOCIATES**

Attention: RAGNAR U.BRUASET Project: Sample: CORE Mineral Environments Laboratories 8282 Sherbrooke St., Vancouver, B.C., V5X 4E8 Tel (604) 327-3436 Fax (604) 327-3423

Report No:8V0136Date:Apr-01-98

# MULTI-ELEMENT ICP ANALYSIS

Sample	Ag	Al As	Ba Be	Bi Ca	Cd Co	Cr Cu	Fe K	Mg Min	Mo Na	Ni P	Pb Sb	Sc Sn	Sr Ti	V W	Y Zn Zr	m
Number	ppm	% ppm	ppm ppm	ppm % I	ppm ppm	ppm ppm	% %	% ppm	ppm % p	ppm ppm	ppm ppm	ppm ppm	ppm %	ppm ppm p	pm ppm ppr	
292996	14	1.42	5 180 <b>≪0.5</b>	<5 2.98	<1 13	29 4698	4.10 0.23	1.05 490	36 0.19	30 <b>1370</b>	14	8 <10	310 0.03	86 <10	10 27	4

A .5 gm sample is digested with 10 ml 3:1 HCl/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

Page 1 of 1

Signed:



# MINERAL ·ENVIRONMENTS LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

Quality Assaying for over 25 Years

# Geochemical Analysis Certificate

VANCOUVER OFFICE:

8282 SHERBROOKE STREET VANCOUVER, BC, CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB:

3176 TATLOW ROAD SMITHERS, BC, CANADA VOJ 2NO TELEPHONE (250) 847-3004 FAX (250) 847-3005

Date: APR-06-98

8V-0136-RG1

Company: RAGNAR U.BRUASET & ASSOCIATES Project: Attn: RAGNAR U.BRUASET

We hereby certify the following Geochemical Analysis of 0 CORE-samples submitted APR-01-98 by RAGNAR U.BRUASET.

Sample Number	Au-fire PPB	 
292996	18	

Certified by

1011

MIN-EN LABORATORIES

RAX (604 PHONE (640) 253 HASTINGS ST. VANCOUVER BC V6A 1R6 ACME ANALYTICAL LABORATORIES 852 LTD. GEOCHEMICAL ANALYSIS CERTIFICATE F116 # 9801200 PROJECT JEAN Rachar ruaset 58517 Hallfan Still durhaby OC V58 294 Submitted by: Regnet U/ Brauget N Au** Na ĸ Αl Ĥ Ba T1 Мa Cr ίa Sb B Ca ۲ ppm ppb Cđ % Au τh Sr X Fe Ås 11 X ppm x Co Mn ЮOП Нŝ pp⊪ DOM Pb Zn Åβ SANPLE# Ho Cu ppm X x ppm ppm DC01 ppm ppn ppm ppill % ppm ppm ppm ppin ppm ppm npm ppm ppm <3 1.65 .20 .20 5 27 .03 33 1.02 195 <3 100 3.00 .116 25 <3 .3 6 268 -8 <2 16 555 3.98 10 29 2.1 35 4 27 4729 292996A

¥ ¥

. 002

PAGE.

TOTAL

* *

Date

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MH FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU P8 ZN AS > 1%, AG > 30 PPN & AU > 1000 PPB SAMPLE TYPE: ROCK AUA* ANALYSIS BY FA/ICP FROM 30 GM SAMPLE.

- SAMPLE TYPE: ROCK AUAN ANALYSIS BY PARTOF FROM JO OF SAMELE.



