GEOLOGICAL, GEOCHEMICAL AND GEOPHYSICAL REPORT

on the

CAP 1 and 2 MINERAL CLAIMS

Hedley Area Similkameen Mining Division

92H-1E, 8E (49° 14' 50" North Latitude, 120° 13' 15" West Longitude)

for

GRANT F. CROOKER Box 404 Keremeos, B.C.

V0X 1N0 (Owner and Operator)

by

GRANT F. CROOKER, P.Geo., GFC CONSULTANTS INC.

August 1998

TABLE OF CONTENTS

1.0	SUMMARY	1
2.0	INTRODUCTION 2.1 GENERAL 2.2 LOCATION AND ACCESS 2.3 PHYSIOGRAPHY 2.4 PROPERTY AND CLAIM STATUS 2.5 AREA AND PROPERTY HISTORY	2 2 2 2 2 4
3.0	EXPLORATION PROCEDURE 3.1 GRID PARAMETERS 3.2 GEOCHEMICAL SURVEY PARAMETERS 3.3 GEOPHYSICAL SURVEY PARAMETERS 3.3.1 Total Field Magnetic Survey 3.3.2 VLF-EM Survey	7 7 8 8 8
4.0	GEOLOGY AND MINERALIZATION 4.1 REGIONAL GEOLOGY 4.2 HEDLEY DISTRICT GOLD DEPOSITS 4.3 CLAIM GEOLOGY 4.4 MINERALIZATION	9 10 10 12 13
5.0	GEOCHEMISTRY 5.1 SILT GEOCHEMISTRY 5.2 SOIL GEOCHEMISTRY	14 14 14
6.0	GEOPHYSICS 6.1 MAGNETIC SURVEY 6.2 VLF-EM SURVEY	17 17 18
7.0	EXPLORATION TARGET AREAS	19
8.0	CONCLUSIONS	20
9.0	RECOMMENDATIONS	21
10.0	REFERENCES	22
11.0	CERTIFICATE OF QUALIFICATIONS	23

. V TABLES

TABLE PAGE TABLE 1.0 CLAIM DATA 3 1983 ANOMALOUS SOIL GEOCHEMICAL VALUES TABLE 2.0 4 TABLE 3.0 HEDLEY DISTRICT GEOLOGICAL HISTORY 11 TABLE 4.0 ANOMALOUS SILT GEOCHEMICAL VALUES 14 TABLE 5.0 ANOMALOUS SOIL GEOCHEMICAL VALUES 14

 TABLE 5.0
 ANOMALOUS SUIL GEOCHEMICAL VALUES

 TABLE 6.0
 EXPLORATION TARGET AREAS

LIST OF FIGURES

FIGURE

FOLLOWS

19

FIGURE 1.0	LOCATION MAP	2
FIGURE 2.0	CLAIM MAP	3
FIGURE 3.0	COMPILATION OF PREVIOUS WORK	4
FIGURE 4.0	GEOLOGY	12
FIGURE 5.0	CLAIM GEOLOGY	Pocket
FIGURE 6.0	GEOLOGY RODGERS SHOWING	13
FIGURE 7.0	STREAM SEDIMENT SAMPLING	14
FIGURE 8.0	SOIL GEOCHEMISTRY - Au, Ag	Pocket
FIGURE 9.0	SOIL GEOCHEMISTRY - Pb, Zn	Pocket
FIGURE 10.0	SOIL GEOCHEMISTRY - Cu, As	Pocket
FIGURE 11.0	GROUND TOTAL FIELD MAGNETIC CONTOURS	pocket
FIGURE 12.0	GROUND VLF-EM PROFILES - SEATTLE WA	Pocket
FIGURE 13.0	COMPILATION OF 1998 WORK	Pocket

APPENDICES

APPENDIX I	CERTIFICATES OF ANALYSIS
APPENDIX II	MAGNETIC AND VLF-EM DATA
APPENDIX III	GEOPHYSICAL EQUIPMENT SPECIFICATIONS
APPENDIX IV	ROCK SAMPLE DESCRIPTIONS
APPENDIX V	COST STATEMENT

1.0 SUMMARY

The Cap property is located 15 kilometres southwest of Hedley BC in the Hedley Gold Camp (production 2.5 million ounces) of southern British Columbia. The property consists of two four-post mineral claims covering 40 units in the Similkameen Mining Division. Grant F. Crooker of Keremeos, BC is the owner and operator of the property.

Access to the claims is via Highway 3, turning west onto the Sterling Creek forest access road 8 kilometres west of Hedley and proceeding 18 kilometres to the property boundary. The Sterling Creek road is an all weather, two wheel drive road that passes along the eastern boundary of the property. A number of old roads and cat trails provide access to all areas of the property.

The Hedley Gold Camp has a long tradition of mining. Placer mining was first carried out in the Hedley area in the 1860's and 1870's. The interest in placer mining led to the discovery of gold on Nickel Plate Mountain in the 1890's, with the first claims being staked in 1896. The two major producers in the district were the Nickel Plate and Hedley Mascot mines. Production from the district up to 1986 was approximately 51 million grams (1.6 million ounces) of gold. Almost all of the production was from the period 1905 to 1955.

In the 1970's exploration renewed in the Hedley district. Most of the activity concentrated on properties on Nickel Plate Mountain, however exploration was carried out on the south side of the Similkameen River. The most important property in the camp is the Nickel Plate Mine (Homestake Mining). The gold mineralization is skarn hosted and ore reserves in 1987 were in the order of 9,900,000 tons grading 0.088 ounces gold per ton. The mine ceased production in July of 1986.

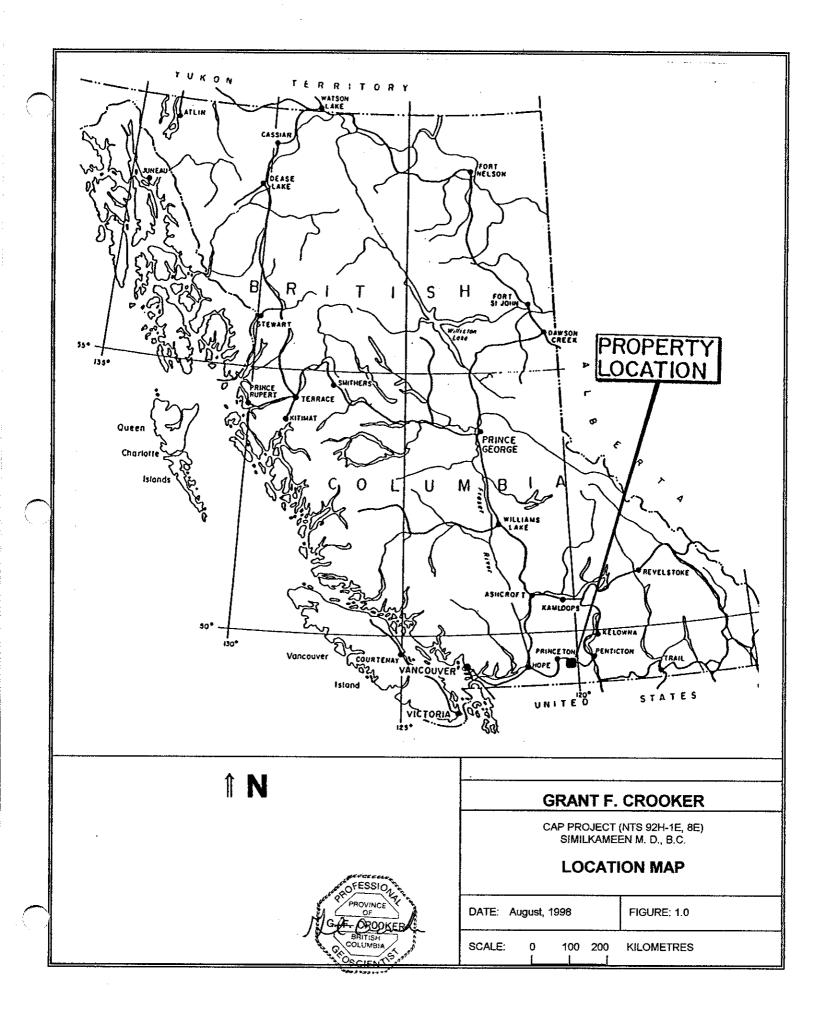
The Cap property is located on the south side of the Similkameen River. Historically, properties on the south side of the Similkameen River were related to carbonate vein systems and associated shear zones as opposed to skarn related mineralization at the Nickel Plate Mine. Recent geological data by Ray (1986/1987) have indicated that similar gold environments exist on the south side of the Similkameen River.

Golden Cadillac Resources Ltd. established a grid over the area of the Cap 2 claim during 1983 and 1984, and carried out soil geochemical sampling, magnetic surveying, prospecting and geological mapping over the grid. Nine multi-element soil geochemical anomalies (Ag, Pb, Zn, Cu, Au) and a number of north trending magnetic highs were delineated by the survey. The magnetic highs have been interpreted to be related to the Hedley intrusions, the most important mineralizing unit within the Hedley gold camp.

The work by Golden Cadillac also found one showing, named the Rodgers showing. Calc-silicate, "skarn" mineralization was found at two locations, with anomalous zinc (1.18%), lead (210 ppm), copper (1180 ppm) and silver (9.1 ppm) values. The highest gold value was 60 ppb.

The 1998 program consisted of extending grid lines south of the Golden Cadillac grid area, as well as reestablishing some grid lines on the Golden Cadillac grid area to confirm and relocate their geochemical and geophysical anomalies. Stream sediment sampling, soil geochemical sampling, magnetic and VLF-EM surveying, prospecting and geological mapping were carried out over the property.

The 1998 work program demonstrated favourable rock units for skarn type mineralization exist on the Cap property. Multi-element soil geochemical anomalies (Ag, Zn, Pb, Cu, As) were delineated, occurring coincidentally with narrow magnetic highs that have been interpreted as Hedley intrusive dykes. Rock sampling at the Rodgers showing confirmed the anomalous zinc, lead, copper and zinc values, and extended the mineralization over a strike length of 100 metres.


The skarn mineralization found on the Cap property to date is related to base metals with weakly anomalous silver. This is different than the gold found with the skarn mineralization at Nickel Plate Mountain, and the tungsten found with the skarn mineralization at Mount Riordan.

Four target areas (Targets 1 - 4, Figure 13.0) have been outlined on the Cap property, using a combination of geological, geochemical and geophysical parameters. Additional work is warranted on the property, with the following recommendations:

-complete the grid over the remainder of the property -conduct geological mapping, prospecting, soil sampling and Mag/VLF surveying over the grid -conduct an I.P. survey over the four target areas -conduct trenching over target areas and I.P. anomalies

pully subnitted, Respe PROVINCE OOKER

Grant Crooker, P.Geo., Consulting Geologist

2.0 INTRODUCTION

2.1 GENERAL

Field work was carried out on the Cap claims from September of 1997 through August of 1998. Grant F. Crooker, P.Geo., conducted the exploration program.

The work program consisted of stream sediment sampling, establishing and reestablishing flagged grid lines, magnetic and VLF-EM geophysical surveying, soil geochemical sampling, prospecting, geological mapping and rock sampling.

A \$ 7,500.00 Prospectors Assistance Grant provided the funding for the work program.

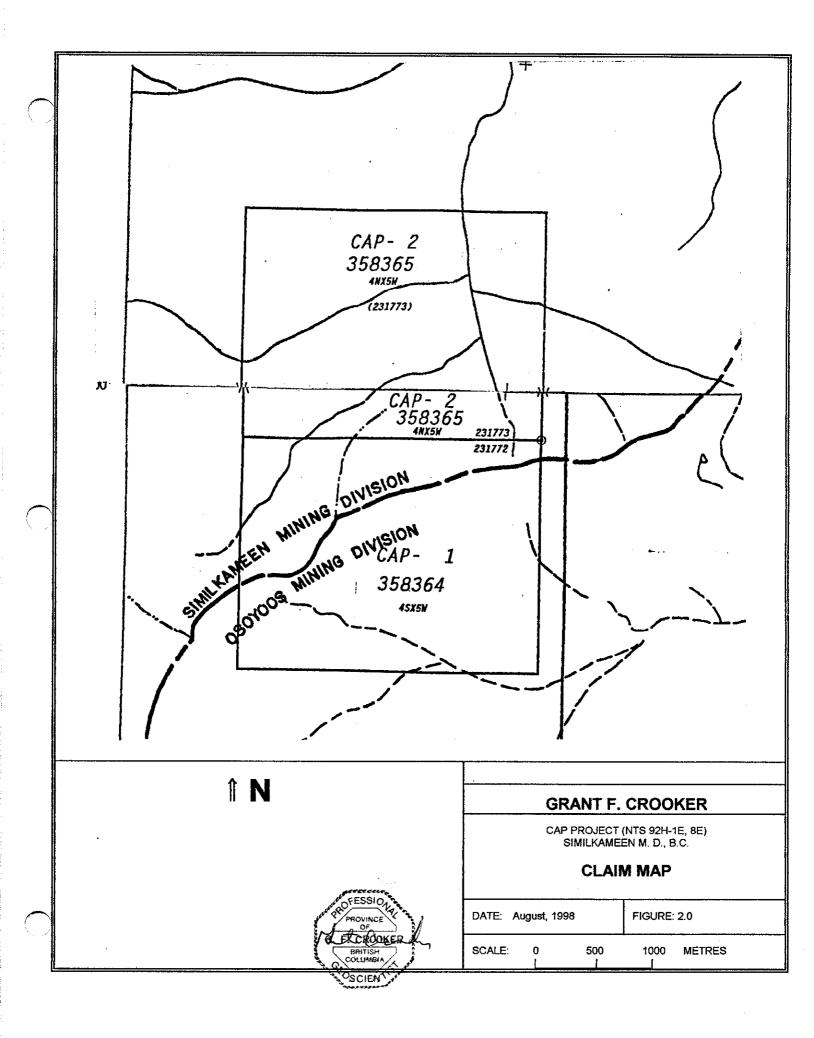
2.2 LOCATION AND ACCESS

The property (Figure 1.0) is located 15 kilometres southwest of Hedley in southern British Columbia. It lies between 49° 13' 35" and 49° 15' 45" north latitude and 120° 12' 10" and 120° 14' 20" west longitude (NTS 92H-1E, 8E).

Access to the claims is via Highway 3, turning west onto the Sterling Creek forest access road 8 kilometres west of Hedley and proceeding 18 kilometres to the property boundary. The Sterling Creek road is an all weather, two wheel drive road that passes along the eastern boundary of the property. A number of old roads and cat trails provide access to all areas.

2.3 PHYSIOGRAPHY

The property is located along the eastern edge of the Cascade Mountains. Elevation varies from 1615 to 1920 metres above sea level and topography varies from flat to steep. Outcrop is sparse over much of the property with the best exposures in the creek bottoms, ridges and along road cuts. Pettigrew Creek flows easterly through the central portion of the claims and then flows northerly along the eastern boundary. Pettigrew Creek contains a substantial flow of water all year round.


Vegetation consists of a forest cover of pine, fir, spruce and aspen trees. Large areas of the property were clear cut logged 20 or more years ago and many of these areas have been replanted, spaced and pruned. Some areas are covered by dead fall making traversing difficult and slow.

2.4 PROPERTY AND CLAIM STATUS

The Cap claims (Figure 2.0) are owned by Grant Crooker of Box 404, Keremeos, BC. The property consists of two four-post mineral claims covering 40 units in the Similkameen Mining Division.

		TABLE 1.0 - C	LAIM DATA	<u> </u>	
Claim	Units	Mining Division	Tenure Number	Record Date m/d/y	Expiry Date m/d/y
Cap 1	20	Similkameen	358364	08/08/97	08/08/04*
Cap 2	20	Similkameen	358365	08/09/97	08/09/04*

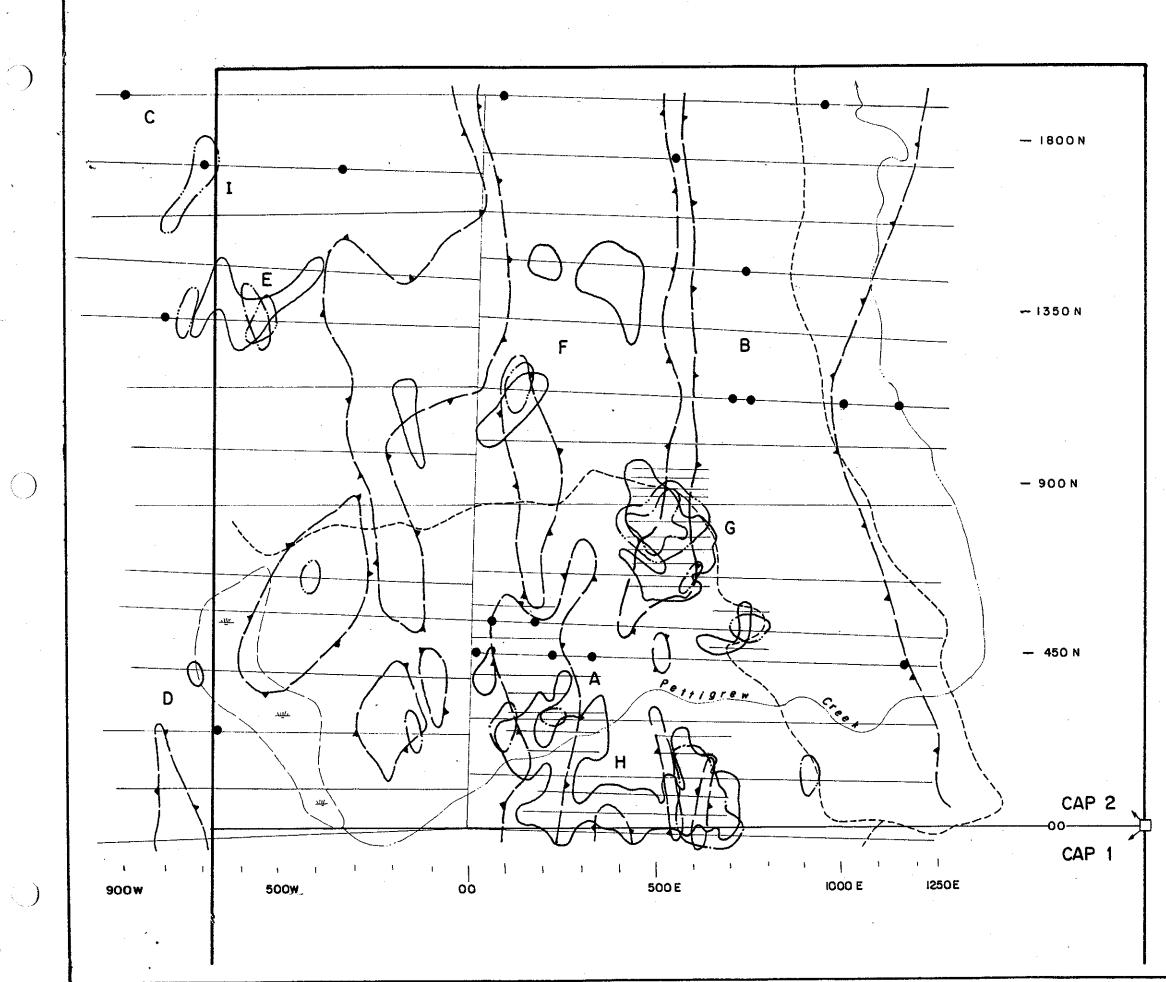
* Upon acceptance of this report

2.5 AREA AND PROPERTY HISTORY

Placer mining was first carried out in the Hedley area in the 1860's and 1870's. The interest in placer mining led to the discovery of gold on Nickel Plate Mountain in the 1890's, with the first claims being staked in 1896. Many showings were found within the Hedley Gold Camp, both on Nickel Plate Mountain and the surrounding area. The two major producers in the district were the Nickel Plate and Hedley Mascot mines. Production from the district up to 1986 was approximately 51 million grams (1.6 million ounces). Almost all of this production occurred in the period from 1905 to 1955.

In the 1970's exploration renewed in the Hedley district. Most of the activity concentrated on properties on Nickel Plate Mountain, however exploration was carried out on the south side of the Similkameen River.

The most important property in the camp is the Nickel Plate Mine (Homestake Mining). The gold mineralization is skarn hosted and ore reserves in 1987 were in the order of 9,900,000 tons grading 0.088 ounces gold per ton. The property commenced production in August 1987 with a milling rate of 2,700 tons per day using open pit mining methods. The mine ceased production in July of 1996,

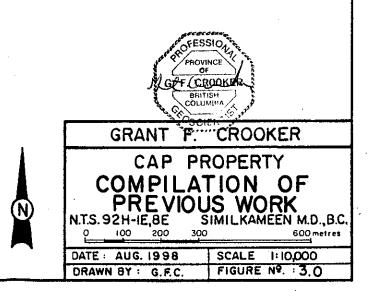

A number of gold properties are located on the south side of the Similkameen River, as is the Cap property. Properties on the south side of the Similkameen River have been traditionally thought of as related to quartzcarbonate vein systems and associated shear zones, as opposed to skarn-related mineralization at the Nickel Plate Mine. Recent geological data by Ray (1986/87) have indicated that similar gold environments exist on the south side of the Similkameen River.

The area covered by the Cap 2 mineral claim was formerly covered by the Rodgers 2 mineral claim (20 units). Golden Cadillac Resources Ltd. carried out exploration programs on the Rodgers 2 mineral claim in 1983 and 1984. A compilation of this work is presented on Figure 3.0. The 1983 work program consisted of establishing a north-south baseline through the centre of the claim and establishing cross lines at 150 metre intervals. Stations were established every 25 metres along the grid lines and magnetic surveying, soil geochemical sampling and geological mapping were carried out over the grid. Magnetic readings were taken every 25 metres (32.9 kilometres), with soil samples (636) collected every 50 metres. The soil samples were analysed for gold, lead, zinc, silver and copper.

The magnetic survey (Figure 3.0) indicated three long, narrow magnetic highs striking northerly across the property. Golden Cadillac interpreted these magnetic highs to be caused by basalt or andesite flows within the Nicola volcanic rocks. The 1998 work program indicates these magnetic highs are related to dykes that have been interpreted to be related to the Hedley intrusive suite.

The background and anomalous soil geochemical values were determined by statistical methods and are shown in Table 2.0.

ELEMENTS	VALU	ES		· ·····
		RANGE	BACKGROUND	ANOMALOUS
u	ppb	<5 - 90	5	13
g	ppm	<0.1 - 1.0	0.1	0.4
U	ppm	3 - 78	16	41
•	ppm	1 - 337	7	14
3	ppm	9 - 780	66	184


CHONG

.

 ρ _اللا

Anomalous Au soʻil values 13~49 , >50 ppb Anomalous Ag values >0.4 ppm Anomatous Zn values > 184 ppm Anomalous Pb values >14 ppm Magnetic high (>56100 nT) Grid line Legal corner post Road Stream

Swamp

Nine soil geochemical anomalies (labelled "A" through "I", Figure 3.0) were considered significant. The soil geochemical anomalies consisted of as few as one or two values. Gold values were generally low and sporadic, and did not correlate with the silver, lead, zinc or copper values. A brief description of each anomaly is given below. The anomalous values are arranged according to which element is most dominant and arranged in decreasing order of abundance.

A: Anomaly A covers an area 600 metres by 200 metres. The northern portion of the anomaly consists of five anomalous gold values ranging from 15 to 35 ppb with no other anomalous elements. The southern portion of the anomaly consists of scattered anomalous silver, lead and zinc values. The anomaly occurs over and adjacent to a north trending magnetic high within altered sedimentary rocks and is open to the south.

B: Anomaly B covers an area 100 metres by 350 metres and consists of three anomalous gold values ranging from 30 to 40 ppb. One silver value within the area of the anomaly gave a weakly anomalous value of 0.5 ppm. The anomaly occurs 100 to 150 metres down slope from a northerly trending magnetic high, in an area covered by glacial till.

C: Anomaly C consists of a single gold value of 90 ppb, and no other elements are anomalous. The anomaly occurs in an area of sedimentary rocks with thin glacial cover.

D: Anomaly D covers an area 150 metres by 100 metres and consists of a 20 ppb gold value on one line, and an anomalous silver value of 0.7 ppm on the next line to the north. The anomaly occurs on the west side of a swamp and is therefore open to the east. The anomaly is underlain by altered sedimentary rocks and glacial till.

E: Anomaly E covers an area 300 metres by 150 metres and consists of four anomalous silver values. Two lead values and one zinc value are also anomalous. The anomaly is underlain by altered sedimentary rocks.

F: Anomaly F covers an area 600 metres by 500 metres and consists of scattered, moderately anomalous silver values. Lead and zinc values are also weakly anomalous. The anomaly occurs over and adjacent to a northerly trending magnetic high and is underlain by glacial till.

G: Anomaly G covers an area 200 metres by 150 metres and consists of anomalous silver, lead and zinc values. The anomaly occurs over a northerly trending magnetic high and is underlain by altered sedimentary rocks.

H: Anomaly H covers an area approximately 400 metres by 200 metres and is open to the south. The anomaly consists of a large area of anomalous silver values, with a smaller area of anomalous lead and zinc values. This is the most interesting of the soil geochemical anomalies in terms of size and high values. It contains the highest silver (1.0 ppm), zinc (780 ppm) and copper (60 ppm) values. The anomaly is associated with two northerly trending magnetic highs and is underlain by altered sedimentary rocks.

I: Anomaly I covers an area 150 metres square and consists of anomalous lead values with one anomalous gold value of 15 ppb. The area is underlain by a porphyritic body.

During October of 1984 Golden Cadillac Resources conducted a follow-up exploration program on the Rodgers 2 mineral claim. This work consisted of establishing grid lines at 50 metre spacing on soil geochemical anomalies A and H, and 25 metre spacing on anomaly G. Soil samples were collected at 25 metre intervals on all lines, and the samples were analysed for gold, silver, lead, zinc, copper and arsenic.

Geological mapping and rock sampling were also carried out on anomaly G.

The results of the detailed soil geochemical sampling on anomalies A, G and H are discussed below using the same labelling system as the 1983 program.

A: The fill-in soil sampling did not yield any anomalous gold values. The southern portion of the anomaly consists of a broad silver anomaly with scattered zinc and copper values. The anomaly is open to the south.

G: The fill-in up soil sampling gave strongly anomalous lead, zinc and silver values, and minor copper and arsenic values. The prospecting located several small showings of calcsilicate rocks with weakly to moderately anomalous zinc, lead, copper and silver values. Zinc values ranged up to 1.18%. The skarn mineralization did not yield anomalous gold values, but two samples of argillite with pyrite gave 20 and 60 ppb gold. The skarn mineralization occurs adjacent to a mafic dyke.

H: The fill-in soil sampling gave moderately anomalous silver values over the entire anomaly, with strongly anomalous zinc values in the eastern portion. Copper and arsenic gave a few scattered anomalous values, while gold and lead gave no anomalous values. The anomaly is open to the south.

No additional documented work was found on the Golden Cadillac property. However the 1983 and 1984 work programs gave encouraging results. A number of single and multi-element soil geochemical anomalies were delineated. Silver, arsenic and lead gave the strongest geochemical responses, while gold and copper gave weak geochemical responses. Skarn mineralization was located at anomaly G, with weakly to moderately anomalous zinc, lead, silver and copper values. The skarn mineralisation appears to be related to mafic dykes that are related to the Hedley intrusive suite. These dykes are probably the cause of the northerly trending, relatively narrow magnetic highs.

The Rodgers 2 mineral claim is described under Minfile Number 092H-SE-173.

G.E. Ray et al of the Geological Survey Branch conducted geological mapping in the Hedley District during the period 1985 to 1987 (scale 1:20,000). This fieldwork included the area of the Cap mineral claims and showed this area to be partially underlain by the Stemwinder Formation and Copperfield breccia of the Whistle Formation. This is a unique package of rocks in the upper Pettigrew Creek area that is mainly underlain by Whistle Formation. While the lower portion of the Whistle Formation is considered to be favourable for skarn mineralization, the lower portion of the Stemwinder Formation is considered to be a more favourable host unit. Ray also noted scattered occurrences of skarn in the vicinity of the Cap mineral claims.

3.0 EXPLORATION PROCEDURE

The 1998 work program consisted of establishing grid lines, magnetic and VLF-EM geophysical surveying, soil geochemical sampling, prospecting, geological mapping and rock sampling. The grid established by Golden Cadillac Resources Ltd. In 1983 has been obliterated over the past 15 years and the grid must be reestablished.

3.1 GRID PARAMETERS

-baseline direction north-south

-survey lines perpendicular to baseline -survey line separation 25, 100 and 200 metres -survey station spacing 12.5 and 25 metres -stations marked with flagging and metal tags with grid coordinates -survey total - 13.65 kilometres flagged grid lines -declination 21 degrees

3.2 GEOCHEMICAL SURVEY PARAMETERS

-survey line separation 25, 100 and 200 metres -survey station spacing 25 metres -survey totals - 351 soil samples

divey totals - 001 soli sample

- 69 rock samples

- 34 silt samples

-304 soil samples analysed by 32 element ICP and for gold (30 gram pulp) -34 silt samples analysed by 32 element ICP and for gold (30 gram pulp) -69 rock samples analysed by 32 element ICP and for gold (30 gram pulp) -soil sample depth 10 to 25 centimetres -soil sample taken from brown or orange B horizon -silt samples collected from active portion of stream -silt samples sieved to -20 mesh in the field

All samples were sent to Chemex Labs Ltd., 212 Brooksbank Avenue, North Vancouver BC, V7J 2C1 for analysis. Laboratory technique for silt and soil samples consisted of preparing samples by drying at 95° C and sieving to minus 80 mesh. Rock samples were crushed and split, with one split ring ground to minus 150 mesh. Thirty-two element ICP and gold (fire assay, atomic adsorption finish) analyses were then carried out on all samples.

The silt geochemical data was plotted on Figure 7.0 and the soil geochemical data was plotted on Figures 8.0 (Au, Ag), 9.0 (Pb, Zn) and 10.0 (As, Cu). The rock geochemical data was plotted on Figures 5.0 and 6.0. All certificates of analysis are listed in appendix 1.

3.3 GEOPHYSICAL SURVEY PARAMETERS

3.3.1 TOTAL FIELD MAGNETIC SURVEY

-survey line separation 25, 100 and 200 metres -survey station spacing 12.5 and 25 metres -survey total - 12.8 kilometres -measured total magnetic field in nanoteslas -instrument - Scintrex MP-2 magnetometer -instrument accuracy ± 1 nanotesla -operator faced north for all readings

Readings were taken along the baseline to obtain standard readings for all baseline stations. All loops ran off the baseline were then corrected to these standard values by the straight line method.

The total field magnetic contours were plotted on Figure 11.0 and the data listed in Appendix II.

3.3.2 VLF-EM SURVEY

-survey line separation 25, 100 and 200 metres -survey station spacing 12.5 and 25 metres -survey total - 11.5 kilometres -transmitting station - Seattle - 24.8 KHz -direction faced - southeasterly -instrument - Geonics EM-16

-in-phase (dip angle) and-out-of-phase (quadrature) components measured in percent

The VLF-EM profiles are plotted on Figure 12.0 and the data listed in Appendix II.

4.0 GEOLOGY AND MINERALIZATION

4.1 REGIONAL GEOLOGY

The Hedley Gold Camp is located within the Intermontane Belt of the Canadian Cordillera. The oldest rocks in the area belong to the Apex Mountain Group and occur in the southeastern part of the camp. The Apex Mountain Group consists of a deformed package of cherts, argillites, greenstones, tuffaceous siltstones and minor limestones. The complex and supercrustal rocks further west are separated by either intrusive rocks or major faults. The area between Winters and Whistle creeks is largely underlain by sedimentary and volcaniclastic rocks of the Upper Triassic Nicola Group and the Lower Cretaceous Spences Bridge Group.

Mapping by Ray and Dawson divides the Nicola Group into three distinct stratigraphic packages. The oldest, the Peachland Creek Formation, comprises massive, mafic quartz-bearing andesitic to basaltic ash tuff and minor chert-pebble conglomerate. This previously unrecognized basal unit is poorly exposed in the Hedley district, but has been identified in several localities. The Peachland Creek Formation is stratigraphically overlain by a 100 to 700 metre thick sedimentary sequence in which a series of east-to-west facies changes are recognized. This sequence progressively thickens westward and the facies changes probably reflect deposition across the tectonically controlled margin of a northwesterly deepening Late Triassic marine basin.

The eastern most and most proximal facies, called the French Mine Formation has a maximum thickness of 150 metres and comprises massive to bedded limestone interlayered with thinner units of calcareous siltstone, chert-pebble conglomerate, tuff, limestone-boulder conglomerate and limestone breccia. This formation hosts the auriferous skarn mineralization at the French and Good Hope mines.

Further west, rocks stratigraphically equivalent to the French Mine Formation are represented by the Hedley Formation that hosts the gold-bearing skarn at the Nickel Plate mine. The Hedley Formation is 400 to 500 metres thick and characterized by thinly bedded, turbiditic calcareous siltstone and units of pure to gritty, massive to bedded limestone that reach 75 metres in thickness and several kilometres in strike length. The formation includes lesser amounts of argillite, conglomerate and bedded tuff; locally the lowermost portion includes minor chert-pebble conglomerate.

The western most, more distal facies is represented by the Stemwinder Formation that is at least 700 metres thick and characterized by a sequence of black, organic-rich, thinly bedded calcareous argillite and turbiditic siltstone, minor amounts of siliceous fine-grained tuff and impure limestone beds. The Stemwinder Formation hosts the gold occurrences at Banbury (vein) and Peggy (skarn).

The sedimentary rocks of the French Mine, Hedley and Stemwinder formations pass stratigraphically upward into the Whistle Formation that is probably Late Triassic in age. The formation is 700 to 1200 metres thick and distinguishable from the underlying rocks by a general lack of limestone and a predominance of andesitic volcaniclastic material. The Whistle Formation is host to the Canty (skarn and stock work) and Banbury/Gold Hill (vein) gold occurrences.

The base of the Whistle Formation is marked by the Copperfield breccia, a limestone-boulder conglomerate that forms the most distinctive and important stratigraphic marker horizon in the district. The breccia is well developed west of Hedley where it forms a northerly trending, steeply dipping unit that is traceable for over 15 kilometres along strike. The same breccia outcrops in small areas within up faulted slices along Pettigrew Creek to the south, and as outliers near Nickel Plate and Lookout Mountain to the east.

The Whistle Formation is overlain by volcaniclastic rocks that may belong to the Early Cretaceous Spences Bridge Group. These rocks are not recognized as being gold bearing in the district. Three suites of plutonic rocks are recognized in the area. The oldest, the Hedley intrusions is probably Early Jurassic in age and is economically important. It forms major stocks up to 1.5 kilometres in diameter and swarms of thin sills and dykes up to 200 metres in thickness and over 1 kilometre in length. The sills and dykes are coarse-grained and massive diorites and quartz diorites with minor gabbro, while the stocks range from gabbro through granodiorite to quartz monzonite. When unaltered they are dark coloured, commonly contain minor disseminations of pyrite and pyrrhotite and are often rusty weathered. In contrast, the skarn-altered diorite intrusions are usually pale coloured and bleached.

The Hedley intrusive suite intrudes the Upper Triassic rocks over a broad area. Varying degrees of sulphide bearing calcic skarn alteration are developed within and adjacent to many of these intrusions, particularly the dykes and sills. This plutonic suite is genetically related to the skarn-hosted gold mineralization in the district including that at the Nickel Plate, Hedley Mascot, French and Good Hope mines, and gold occurrences at Banbury, Gold Hill, Peggy and Canty. The Hedley intrusive suite consists of four stocks known as Toronto, Stemwinder, Banbury and Pettigrew.

The second plutonic suite is the Early Jurassic? Similkameen intrusions that comprises coarse-grained, massive, biotite homblende granodiorite to quartz monzodiorite. It generally forms large bodies, for example, the Bromley batholith, and Cahill Creek pluton that separates the Nicola Group rocks from the highly deformed Apex Mountain complex.

The third and youngest intrusive suite includes two rock types that are possibly coeval and related to the formation of the dacitic volcaniclastic rocks within the Spences Bridge Group. One of these, the Verde Creek stock comprises a fine to medium grained, massive leucocratic microgranite that contains minor biotite. The other type is represented by fine-grained, leucocratic, felsic guartz porphyry.

4.2 HEDLEY DISTRICT GOLD DEPOSITS

The gold occurrences and deposits within the Hedley area are spatially associated with dioritic bodies of the Hedley intrusions. The gold mineralization can be broadly divided into skarn-related and vein-related types.

The skam-related mineralization is the most widespread and economically important, and is characterized by the gold being intimately associated with variable quantities of sulphide bearing garnet-pyroxenecarbonate skarn alteration. The gold tends to be associated with sulphides, particularly arsenopyrite, pyrrhotite and chalcopyrite, and in lesser amounts with pyrite, gersdorffite (NiAsS), sphalerite, magnetite and cobalt minerals. Trace minerals include galena, native bismuth, electrum, tetrahedrite and molybdenite. This type of mineralization is found at the Nickel Plate, French, Good Hope, Peggy and Canty deposits.

Geochemical studies by Ray (1987) based on analyses of over 300 samples from various ore zones in the Nickel Plate deposits, showed the following correlation coefficients:

High	Medium	Low
Au:Bi 0.84	Au:Co 0.58	Au:Cu 0.17
Ag:Cu 0.84	Au:As 0:46	
Bi:Co 0.62	Au:Ag 0.46	

Ray states that the strong positive correlation between gold and bismuth reflects the close association of native gold with hedleytite, while the moderate positive correlation between gold, cobalt and arsenic confirms observed association of gold, arsenopyrite and gersdorffite. The high positive correlation between silver and copper may indicate that some silver occurs as a lattice constituent in the chalcopyrite and/or in association with tetrahedrite (Cu-Sb sulphide often contains Zn, Pd, Hg, Co, Ni and Ag replacing Cu). The gold and silver values are relatively independent of each other despite the presence of electrum, and there is generally a low correlation between gold and copper.

TABLE 3.0 HEDLEY DISTRICT GEOLOGICAL HISTORY (After Ray et al)

1.0 BASIN GEOLOGICAL DEVELOPMENT

- 1.1 Deposition of Triassic mafic extrusive rocks of the Peachland Creek Formation.
- 1.2 Late Triassic deposition of the Hedley and French Mine and Stemwinder formations (sedimentary rocks with calcareous units).
- 1.3 Sudden collapse of the basin resulting in the widespread deposition of the Whistle Formation (volcanic rocks with tuffaceous units) and the deposition of the Copperfield limestone conglomerate and breccia along the sedimentary basin margins.

2.0 GOLD MINERALIZING EVENTS

- 2.1 Following lithification of the Nicola Group rocks, two distinct phases of folding took place that are related to mineralization.
- 2.2 Phase one resulted in a major, north-northeasterly striking, easterly overturned asymmetric anticline which is the dominant structure in the Hedley district. The largest of these is the Cahill Creek fracture zone and Bradshaw fault.
- 2.3 Phase two is economically important as it took place during the emplacement of the Hedley intrusions and partly controlled the late-magmatic auriferous skarn mineralization. It produced the small-scale northwesterly striking, gently plunging fold structures that are an ore control at the Nickel Plate mine. They also controlled the emplacement of the Hedley intrusive dykes and the Banbury, Stemwinder, Toronto and Pettigrew stocks.

3.0 POST MINERALIZING EVENTS

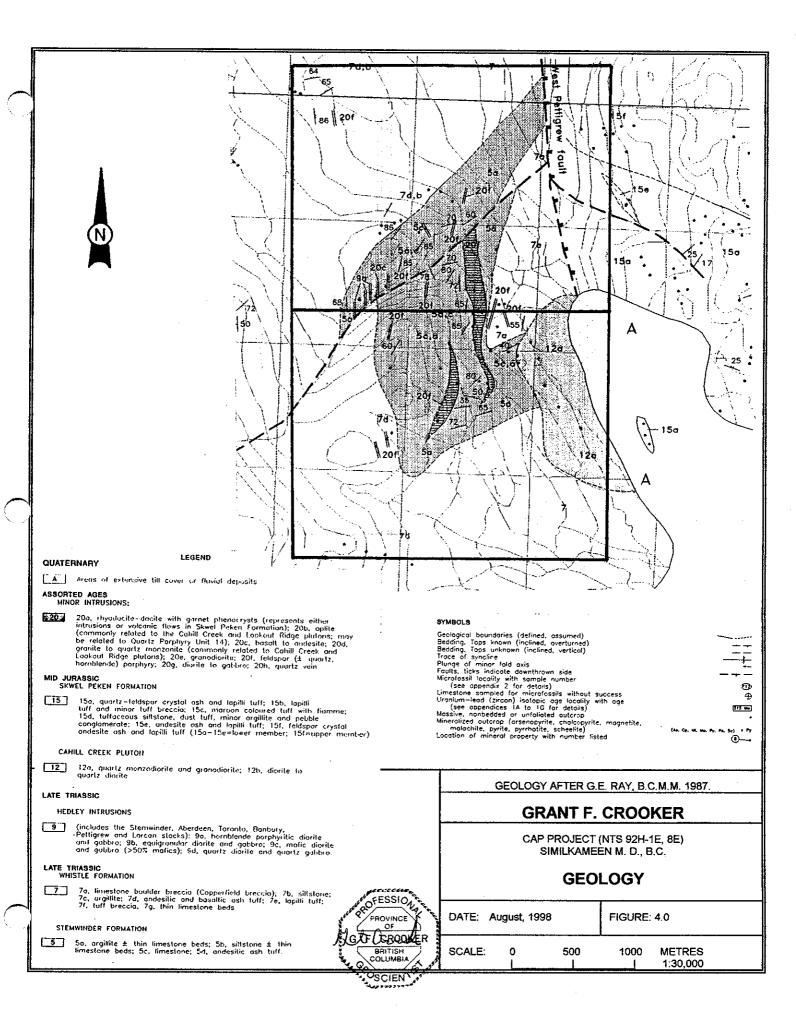
- 3.1 Emplacement of the Hedley intrusions was shortly followed by intrusion of the Cahill Creek pluton.
- 3.2 Deposition of the Early Cretaceous Spences Bridge Group and related quartz porphyries followed a period of uplift and erosion.
- 3.3 Post-Early Cretaceous phase of regional thrust faulting.
- 3.4 Re-activation of the Bradshaw fault and Cahill Creek fracture zone, as well as some faulting along Whistle and Pettigrew creeks occurred in more recent geological time.

The skarn-related mineralization is generally stratabound and follows calcareous tuffs, thinly-bedded limestones and limey argillites within the upper portions of the French Mine and Hedley formations and lower portions of the Stemwinder and Whistle formations. Swarms of diorite sills and dykes of the Hedley intrusions have intruded the favourable beds and altered them by contact hydrothermal contact to hornfels. Both the intrusions and sediments were subsequently overprinted with the skarn alteration.

The vein-related mineralization is characterized by gold and sulphides hosted in higher level, fracture-filled quartz-carbonate vein and stock work systems. This type of mineralization occurs at the Banbury and Gold Hill properties.

Table 3.0 after Ray et al summarizes the geological history of the Hedley District.

4.3 CLAIM GEOLOGY


The area of the Cap claims was mapped by Ray and Dawson of the Geological Survey Branch during the 1980's and the geology displayed in Bulletin 87, The Geology and Mineral Deposits of the Hedley Gold Skarn District, Southern British Columbia (January 1994). This geology is displayed on Figure 4.0. Geological mapping carried out during the 1998 field program is displayed on Figures 5.0 and 6.0. The rock units and nomenclature of Ray have been used to provide continuity of information.

The area mapped by the 1998 work program shows sedimentary rocks of the Stemwinder Formation to be the oldest on the property. This unit (Unit 5) occurs in the western portion of the grid area and consists of argillite (Unit 5a) and limestone (Unit 5c). The basal unit of the Whistle Formation, the Copperfield breccia (Unit 7a), lies to the east of the Stemwinder Formation. Numerous mafic dykes of the Hedley intrusions (Unit 9a) intrude the sedimentary rocks. A small stock of quartz diorite of the Cahill Creek Pluton (Unit 12a) intrudes the Whistle Formation along the eastern boundary of the claims. Dykes of feldspar porphyry (Unit 20f) intrude the older units. The structural relationships of the various sedimentary units are not known at this time. A brief description of each rock unit is given below.

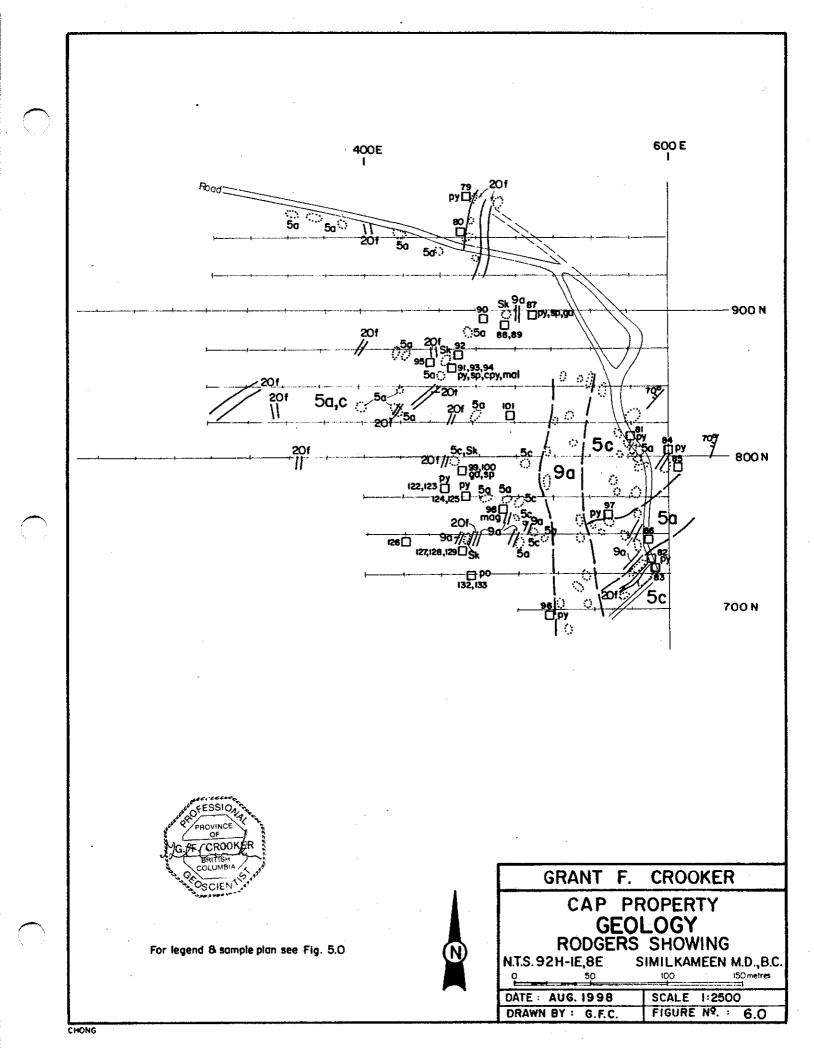
Unit 5 (Stemwinder Formation): The oldest unit consists of sedimentary rocks of the Stemwinder Formation that have been divided into argillite (Unit 5a) and limestone (Unit 5c). The argillite is generally black, thinly bedded and fractured with pyrite occurring along the fractures. Weathered surfaces are usually rusty due to weathering of the pyrite. The limestone is generally light blue in colour and forms beds from a few metres to 100 metres in thickness. In many locations the argillite and limestone form narrow, alternating interbeds a few centimetres thick.

Unit 7 (Whistle Formation): The Copperfield breccia (Unit 7a) forms the basal unit of the Whistle Formation and marks the boundary of the Stemwinder and Whistle sequences. This unit varies from clast to matrix supported and is composed of rounded to angular limestone clasts up to 1 metre in width.

Unit 9 (Hedley Intrusions): The Hedley intrusions (Unit 9a) occur as dykes and/or sills in a number of areas of the property. They generally have a north-south strike, are within a few degrees of vertical and vary from less than 1 metre to 25 metres in width. In several locations the dykes occur as a swarm over 25 to 100 metres. They are generally fine. grained, dark coloured and of dioritic or gabbroic composition. Fine grained, black homblende laths occur within a light coloured feldspar matrix.

Unit 12 (Cahill Creek Pluton): The Cahill Creek Pluton (Unit 12a) is a medium grained biotite<u>+</u>homblende granodiorite. Numerous narrow, irregular dykes and sills cut the country rock adjacent to the intrusion. The dykes and sills are generally less than 10 metres in width.

Unit 20 (Feldspar porphyry): The feldspar porphyry (Unit 20f) occurs as dykes over most of the property. Feldspar phenocrysts up to 1 centimetre in diameter occur in a fine grained, white or grey matrix with varying amounts of hornblende and quartz. The dykes generally strike north-south and vary from 1 metre to 25 metres in width.


4.4 MINERALIZATION

Sixty-nine rock samples were collected from various areas of the property during the 1998 work program. The most significant mineralization found to date is at the Rodgers showing (Figures 5.0 and 6.0), where two rubbly outcrops of calc-silicate skarn, limestone and calcite give strongly anomalous lead and zinc values, and weakly anomalous copper and silver values. The two largest outcrops are located at 900N and 510E and 865N and 470E, with scattered skarn float found as far south as 800N and 450E. To date the mineralization has been traced over a strike length of 100 metres, with the zone open to the north and south where it is covered by overburden. The Rogers showing is spatially related to a 25 metre wide dyke of Hedley intrusive that outcrops 25 to 50 metres east of the showing. Narrow dykes of Hedley intrusive also occur closer to the showing.

Varying concentrations of pyrite, sphalerite, galena, chalcopyrite and malachite occur as disseminations and along fractures with fine grained brown garnets in an indistinct grey and green, calc-silicate ground mass. A select sample of the material (sample 093) gave 1.57% zinc, 760 ppm lead, 879 ppm copper and 8.8 ppm silver. A number of other samples (088 - 091, 094, 095, 099-101) gave weakly to strongly anomalous zinc, lead, copper and silver values. Gold is not anomalous in any of the samples. The skarn mineralization at the Rodgers showing is anomalous in base metals, as opposed to that at Nickel Plate Mountain which is a gold skarn.

A number of rock samples of irregularly shaped, pyritic, silicified and/or homfels altered zones in Copperfield breccia were collected. Three of the samples (109, 136, 138) gave weakly anomalous gold values ranging from 50 to 70 ppb, and weakly anomalous silver values ranging from 1.8 to 3.0 ppm. A number of other samples gave weakly anomalous silver values ranging from 1.0 to 2.2 ppm, and weakly anomalous zinc values ranging from 250 to 458 ppm. This mineralization is spatially related to the Cahill Creek Pluton that intrudes the Copperfield breccia from the east.

Four rock samples 102 - 105) were collected from the area of coincidental silver, zinc and copper soil geochemical anomalies between 050S and 150S at 650E. These samples of weakly silicified limestone and/or hornfelsed argillite gave weakly anomalous silver (1.2 - 1.4 ppm), copper (73 - 106 ppm) and zinc values (220 - 698 ppm). The soil geochemical anomaly is related to a magnetic high, interpreted to be a Hedley intrusive dyke, that intrudes narrow interbeds of argillite and limestone.

5.0 GEOCHEMISTRY

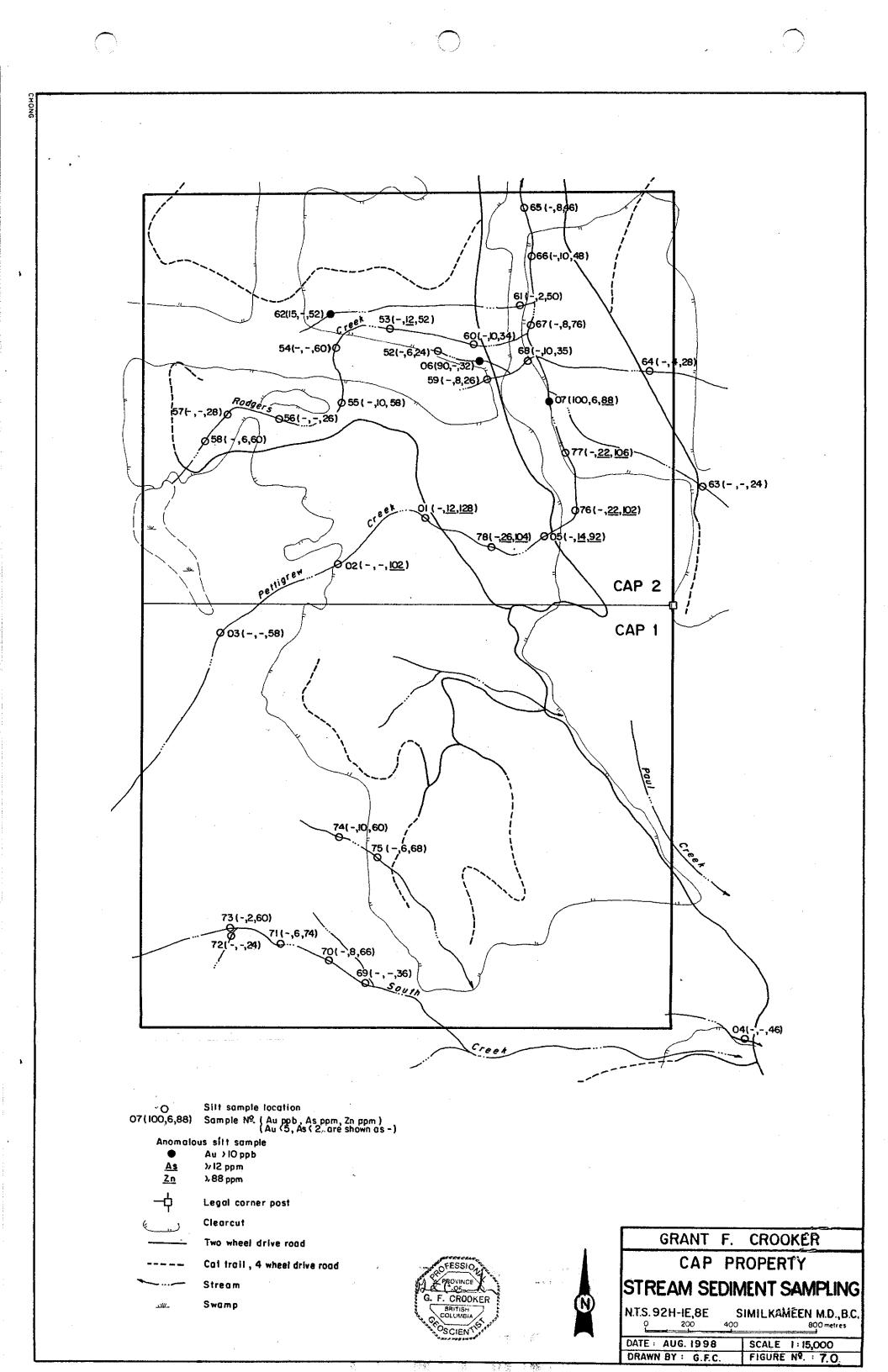
5.1 SILT GEOCHEMISTRY

Thirty-four stream sediment samples were collected from the major and minor drainages on the Cap property. The sample locations are shown on Figure 7.0, along with the geochemical results for gold, arsenic and zinc. Background and anomalous values are shown in Table 4.0.

ELEMENTS	VALU	ES		
		RANGE	BACKGROUND	ANOMALOUS
Au	ppb	<5 - 100	5	15
Ag	ppm	<0.2 - 0.2	0.2	0.4
Cu	ppm	4 - 25	11	17
As	ppm	<2 - 26	8	12
Pb	ppm	<2 - 50	5	8
Zn	ppm	24 - 106	59	88

Three of the samples gave weakly to moderately anomalous gold values (06 - 90 ppb, 07 - 100 ppb and 62 - 15 ppb). The three samples were all collected from the central portion of the Cap 2 claim, although they are from separate drainages. Samples 06 and 62 were taken from minor drainages while 07 was taken from Pettigrew Creek. This area is covered by thick accumulations of overburden and no cause is evident for the anomalous samples.

Five of the samples (01, 05, 76 - 78) collected from the upper reaches of Pettigrew Creek gave weakly anomalous arsenic and zinc values. This anomaly appears to be caused by the known showing and soil geochemical anomalies on the property.


5.2 SOIL GEOCHEMISTRY

ELEMENTS	VALUES												
		RANGE	BACKGROUND	ANOMALOUS									
Au	ddd	<5 - 80	5	15									
Ag	ppm	<0.2 -2.0	0.2	0.4									
Cu	ppm	2 - 105	16	24									
As	ppm	<2 - 158	8	12									
Pb	ppm	<2 - 80	9.5	14									
Zn	ppm	42 - 1225	163	243									

Background and anomalous values are given in Table 5.0.

Goid

Gold values ranged from <5 to 80 ppb (Figure 8.0) with background established at 5 ppb and anomalous values 15 ppb and greater. No broad gold soil geochemical anomalies were outlined by the survey. The highest gold values were single station anomalies at line 200S and 1025E (80 ppb) and line 100N and 675E (55 ppb). Clustering of gold values in the 10 to 20 ppb range occur at several locations on the grid.

Silver

Silver values ranged from <0.2 to 2.0 ppm (Figure 8.0) with background established at 0.2 ppm and anomalous values 0.4 ppm and greater. Four weak to moderate soil geochemical anomalies were outlined.

Anomaly Ag-1 is a strong, two sample anomaly occurring on line 900N at 475E and 500E. The value of 2.0 ppm was the highest value from the survey. The anomaly is located near the Rodgers showing and coincidental zinc and lead occur with the silver anomaly. A Hedley dyke (expressed magnetically by magnetic high E) occurs immediately east of the anomaly.

Anomaly Ag-2 consists of three small, weak to moderate anomalies occurring on line 100S between 950E and 1200E and line 200S between 950E and 1025E. Gold shows a clustering of 10 ppb values with one value of 80 ppb, but no other elements are anomalous.

Anomaly Ag-3 is a weak, five sample anomaly occurring on line 100S at 775E and line 200S between 750E and 825E. Gold shows a clustering on 10 to 15 ppb values, and arsenic is also weakly anomalous.

Anomaly Ag-4 is a weak to moderate anomaly extending from line 100S between 575E and 700E to line 400S at 625E. Zinc and copper are coincidentally anomalous with the silver. Northerly trending magnetic highs B and C that have been interpreted to be Hedley dykes occur coincidentally with the multi-element soil geochemical anomaly.

Lead

Lead values ranged from <2 to 50 ppm (Figure 9.0) with background established at 9.4 ppm and anomalous values 14 ppm and greater. Four weak to moderate soil geochemical anomalies were outlined.

Anomaly Pb-1 is a weak to moderate anomaly extending from line 900N and 500E to line 775N and 450E. The anomaly is the soil geochemical expression of the Rodgers showing and is associated with a Hedley dyke. Moderately anomalous silver and zinc occur coincidentally with the lead.

Anomaly Pb-2 is a moderate, three sample anomaly extending from line 100N between 950E and 975E to line 100S at 950E. Silver is coincidentally weakly to moderately anomalous at the south end of the anomaly.

Anomaly Pb-3 is a weak anomaly extending from line 300N at 525E to line 100N between 400E and 500E. No other elements are coincidentally anomalous with the lead, but three magnetic highs that have been interpreted to be Hedley dykes are associated with the anomaly.

Anomaly Pb-4 is a weak anomaly on line 300N between 000E and 225E. The anomaly is associated with a swarm of Hedley dykes that are expressed magnetically by magnetic high A. Silver, zinc, copper and arsenic are coincidentally anomalous with the lead.

Zinc

Zinc values ranged from 42 to 1225 ppm (Figure 9.0) with background established at 163 ppm and anomalous values 243 ppm and greater. Three, weak to moderate soil geochemical anomalies were outlined.

Anomaly Zn-1 is a moderate, three sample anomaly extending from line 900N at 500E to line 800N between 475E and 500E. The anomaly is the soil geochemical expression of the Rodgers showing and is associated with a Hedley dyke. Moderately anomalous silver and lead occur coincidentally with the zinc.

Anomaly Zn-2 is a weak to strong anomaly extending from line 100S between 575E and 675E to line 400S between 675E and 700E. The highest zinc value of 1225 ppm occurs within this anomaly. Silver and copper are coincidentally anomalous with zinc. Northerly trending magnetic highs B and C that have been interpreted to be Hedley dykes occur coincidentally with the multi-element soil geochemical anomaly.

Anomaly Zn-3 is a weak to moderate anomaly on line 300N between 000E and 225E. Silver, lead copper and arsenic are coincidentally anomalous with the zinc. The multi-element anomaly is associated with a swarm of Hedley dykes that are expressed magnetically by magnetic high A.

Arsenic

Arsenic values ranged from <2 to 158 ppm (Figure 10.0) with background established at 8 ppm and anomalous values 12 ppm and greater. Two weak to moderate soil geochemical values were outlined.

Anomaly As-1 is a weak, three sample anomaly extending from line 200S between 750E and 775E to line 300S at 800E. Gold shows a clustering of 10 to 15 ppb values, and silver is also weakly anomalous.

Anomaly As-2 is a weak to moderate anomaly extending from line 300N between 075E and 250E to line 100N between 075E and 175E. The anomaly is associated with a swarm of Hedley dykes that are expressed magnetically by magnetic high A. Silver, lead, zinc and copper are coincidentally anomalous with arsenic on line 300N, and copper is coincidentally anomalous with arsenic on line 100N.

Copper

Copper values ranged from 2 to 105 ppm (Figure 10.0) with background established at 16 ppm and anomalous values 24 ppm and greater. Two weak soil geochemical values were outlined.

Anomaly Cu-1 is a weak anomaly extending from line 100N between 550E and 650E to line 100S between 625E and 675E. Silver and zinc are coincidentally anomalous with the copper. Northerly trending magnetic highs B and C that have been interpreted to be Hedley dykes occur coincidentally with the multi-element soil geochemical anomaly.

Anomaly Cu-2 is a weak anomaly extending from line 300N between 050E and 250E to line 100N between 100E and 200E. Silver, lead, zinc and silver are coincidentally anomalous with copper on line 300N, and arsenic is coincidentally anomalous with copper on line 100N. The anomaly is associated with a swarm of Hedley dykes that are expressed magnetically by magnetic high A.

6.0 GEOPHYSICS

6.1 MAGNETIC SURVEY

A total of 12.8 kilometres of total field magnetic survey was carried out over the grid during 1998. Survey lines were spaced at 25, 100 and 200 metre intervals, with station spacing at 12.5 and 25 metre intervals. Total field magnetic contours are displayed on Figure 11.0, with significant magnetic features labelled on Figure 13.0.

The magnetic data can generally be divided into two zones of magnetism. The first is a zone of background magnetism with values ranging from 55,900 nT to 56,100 nT that covers the majority of the grid area. Rocks under laying these areas are believed to be intrusive rocks of the Cahill intrusion, as well as sedimentary rocks of the Stemwinder and Whistle formations.

The second zone of magnetism consists of magnetic highs with values ranging from 56,100 nT to 57,500 nT. The zones of high magnetism have two modes of occurrence, the first consists of a broad magnetic high labelled MH-E on Figure 13.0. The second consists of narrow, linear, northerly trending magnetic highs, the largest of which are labelled MH-A through MH-D on Figure 13.0.

The broad magnetic high labelled MH-E occurs in an area covered by a thick accumulation of glacial till cover and no cause is obvious for the magnetic high. It may be caused by volcanic rocks of the Skwel Peken Formation that have been mapped to the east of Pettigrew Creek. There is also a possibility that a small stock of Hedley intrusive rocks may be causing the magnetic high.

The four most prominent of the narrow, linear, northerly trending magnetic highs have been labelled MH-A through MH-D. Geological mapping has shown MH-A and MH-B to be caused by mafic dykes of the Hedley intrusive suite, and all of the magnetic highs have been interpreted to be caused by Hedley dykes.

Magnetic high MH-A has a strike length of 700 metres (from line 400S between 125E and 325E to line 300N between 100E and 200E) and varies in width from 100 to 200 metres. The same magnetic high probably extends to lines 800N and 900N, and is open to the north and south. It also occurs coincidentally with lead, zinc, copper and arsenic soil geochemical anomalies on lines 100N and 300N. A swarm of Hedley dykes have been mapped within the magnetic high and appear to be the causing the magnetic high.

Magnetic high MH-B has a strike length of 500 metres (from line 400S between 500E and 550E to line 100N at 525E) and varies in width from 25 metres to 75 metres. This magnetic high occurs along the east flank of coincidental silver, zinc and copper soil geochemical anomalies. Outcrop is sparse over the anomaly, but several narrow Hedley dykes were mapped within the magnetic high.

Magnetic high MH-C has a strike length of 450 metres (from line 200S between 625E and 650E to line 100N between 600E and 625E) and varies in width from 25 to 50 metres. Coincidental silver, zinc and copper soil geochemical anomalies occur over the magnetic high. Outcrop is sparse over the anomaly, but several narrow Hedley dykes were mapped within the magnetic high.

Magnetic high MH-D has a strike length of 150 metres (from line 800N between 525E and 550E to line 950E between 500E and 575E) and varies in width from 25 to 75 metres. The magnetic high is open to the north and south. Coincidental silver, lead and zinc soil geochemical anomalies occur along the western flank of the magnetic high, as does the Rodgers showing. A 25 metre wide Hedley dyke underlies the magnetic high and appears to be the cause of the anomaly.

18

6.2 VLF-EM SURVEY

A total of 11.5 kilometres of VLF-EM survey was carried out over the grid during 1998. Survey lines were spaced at 25, 100 and 200 metre intervals with station spacing at 12.5 and 25 metre intervals. VLF-EM profiles show a weak to strong response to conductivity as displayed on Figure 12.0. Topographic bias, due to up and down slope VLF instrument orientation is minimal on the survey grid. Topographic bias in rugged terrain can produce profile that resemble real conductors although they are usually broad and follow topographic contours.

A number of north to northeast trending conductors were delineated by the survey. The five most significant conductor systems have been labelled A through E on Figures 12.0 and 13.0.

Conductor system A is a moderate, northeast trending conductor system that extends from line 800N and 425E to 950N and 575E. No cause is apparent for the conductor, although it passes some 25 metres east of the Rodgers showing.

Conductor system B is a weak to moderate, northeast trending conductor system that extends from line 800N and 350E to line 925N at 400E. The conductor occurs coincidentally with a weak magnetic high and may be related to a Hedley dyke.

Conductor system C is a moderate to strong, northeast trending conductor system that extends from line 400S and 925E to line 100S and 1075E. The conductor approximates the mapped contact on the Cahill intrusion and Copperfield breccia, and may represent the change in rock type.

Conductor system D is a moderate to strong, north to northeasterly trending conductor system that extends from line 400S and 400E to line 300N and 675E. The conductor cuts across several magnetic highs and coincidental silver, zinc and copper soil geochemical anomalies occur along part of the conductor system. No cause is apparent for the conductor.

Conductor system E is a weak, north trending conductor system that extends from line 100N and 100E to line 300N and 100E. The conductor occurs along the western flank of magnetic high MH-E and occurs coincidentally with lead, zinc. copper and arsenic soil geochemical anomalies. The conductor appears to be delineating a swarm of Hedley dykes.

7.0 EXPLORATION TARGET AREAS

The development of the exploration target areas on the Cap property is an incorporation of geological, geochemical and geophysical data. Four exploration target areas have been developed (Figure 13.0) and classified in Table 6.0.

			TA	BLE 6	5.0 - EXPLORA	ATIO	N TAR	GET ARE	AS					
TAR	GETS			EXPL	ORATION INDICA	TORS	i			EXP	ORA	TION EVA	LUATION	
ID	AREA	GEOLOGY	GEOCHE	MISTRY		·		GEOPHYSIC	s	PROGR		RATING	PRIORITY	
	(KM²)		SILTS		SOILS	ROC	ĸs	RESPONSE	STAGE 1					
T-1	0175	Sternwinder Fm Hedley Intrusive			Au: W Au: N Ag: M Ag: W Pb, Zn: S Zn, Pt		N - M	MagH CS		G, GC, ⊮P, TR		High	First	
T-2	0.385	Copperfield Bx Stemwinder Fm Cahill Pluton	Au: N Ag: N As, Zn: W	Au: :W Au: V Ag: W - M Ag: V N As: W Zn, A				MagLo CS	G, GC, GP, IP		Medium	First		
T-3	0.21	Copperfield Bx Stemwinder Fm Hedley Intrusive	Au: N Ag: N As, Zn: W		Au: W Ag: W - M Zn: S As: W		N V V - M Pb: W	MagiH Cs	G, GC, IP, TR	GP,	High	Second		
T-4	0.14	Sternwinder Fm Hedley Intrusive	Au: N Ag: N As, Zn: W		Au: N Ag: W Zn: W - M As, Cu, Pb: W	Au: N Ag: N		MagH MagC MCS		G, GC, G 1P		Medium	Second	
GEOL	OGY	GEOCHEMI	STRY	GEOF	"HYSICS		PROGRAM			RATING		PRIORITY		
Sternw Hedley Cahill Skam Silicific cpy - c ga - ga	arfield breccia vinder Fm y Intrusive Pluton cation chalcopyrite alena ohalerite	W - Weak M - Moderate S - Strong N - None Au - gold Ag - silver Pb - lead Zrı - zinc Cu - copper As - arsenic P - Pathfinde		MagLo MagC MCS	- Magnetic High - Magnetic Low - Magnetic Conductor - Multi Conductor System Conductor System	G - Geolog GC - Geo GP - Mag IP - IP Sur TR - Tren RC - Rota CR - Core	i-High II-Medium III-Low		Firs Sec Thir	ond				

e de la companya de l

8.0 CONCLUSIONS

- 8.1 A number of positive conclusions can be drawn from the past and present work programs on the Cap claims. The 1998 program was successful in delineating four target areas with coincidental multielement soil geochemical anomalies, magnetic highs and favourable geological units for the formation of skarn mineralization.
- 8.2 The stream sediment sampling was successful with two areas yielding anomalous samples. The first area, in the central portion of the Cap 2 claim gave three samples (06 90 ppb, 07 100 ppb, 62 15 ppb) with weakly to moderately anomalous gold values. No other elements were anomalous with the gold. The area is covered by thick accumulations of overburden and no cause is evident for the anomaly. The second area, in the upper reaches of Pettigrew Creek gave five samples (01, 05, 76 78) with weakly anomalous arsenic and zinc values. This anomaly appears to be caused by the known showing and soil geochemical anomalies on the property.
- 8.3 The soil geochemical response was favourable with four areas (Targets 1 4) giving multi-element (Ag, Zn, Pb, Cu, As) soil geochemical anomalies. In all but one case (Target 2) the soil geochemical anomalies occur coincidentally with magnetic highs that have been interpreted to be Hedley intrusive dykes, or mapped as Hedley dykes. The small, weak to moderate multi-element soil geochemical anomaly at target 1 is related to the Rodgers showing.
- 8.4 The magnetic survey was successful in defining a number of significant magnetic features. A number of narrow, north trending magnetic highs occur over the property, and these have been interpreted to be dykes of the Hedley intrusive suite. Geological mapping has shown these magnetic highs to be individual Hedley dykes up to 25 metres in width, or swarms of Hedley dykes varying from 1 to 10 metres in width. Many of the magnetic highs occur coincidentally with multi-element soil geochemical anomalies, and one is spatially related to the Rodgers showing.
- 8.5 Geological mapping has shown the property to be underlain by rock units favourable for the formation of Hedley type gold deposits. The Stemwinder Formation is considered a favourable host unit, and the dykes of the Hedley intrusive suite are genetically and spatially related to the gold mineralization.
- 8.6 Prospecting has indicated the skarn mineralization at the Rodgers showing to be scattered over a strike length of 100 metres, and open to the north and south where it is covered by overburden. The mineralization consists of varying concentrations of pyrite, sphalerite, galena and chalcopyrite occurring along fractures and as disseminations in an indistinct, grey and green, calc-silicate ground mass.
- 8.7 Rock samples taken at the Rodgers showing yielded weakly to moderately anomalous zinc (1.57%), lead (5980 ppm), copper (679 ppm) and silver (8.8 ppm) values. None of the samples were anomalous for gold.
- 8.8 Three rock samples of pyritic, silicified and/or hornfelsed Copperfield breccia gave weakly anomalous gold (50 70 ppb) and silver (1.8 3.0 ppm) values. This type of mineralization may be similar to the uppermost alteration zone at the Nickel Plate Mine, referred to as the" upper siliceous beds". At the Nickel Plate, this type of alteration consists of mainly fine grained intergrowths of quartz and pyroxene, with lesser orthoclase, epidote, biotite and carbonate. Veins and vuggy masses of chalcedonic breccia are locally abundant, and many outcrops have a cherty appearance. This siliceous replacement alteration extends from the Hedley Formation up into the overlying Copperfield breccia. A somewhat similar situation may exist on the Cap claims, with the silicified Copperfield breccia representing a siliceous "cap" above the unexposed, main skarn envelope.

9.0 RECOMMENDATIONS

The 1998 exploration program yielded positive results and further work is warranted on the property. The exploration program should be conducted as follows:

-complete the grid over the remainder of the property

-conduct geological mapping, prospecting, soil sampling and Mag/VLF surveying over the grid -conduct an I.P. survey over the four target areas

-conduct trenching over target areas and I.P. anomalies

Respectfull submitted, AOVINCE

CROOKER Grant Crooker, P.Geo.,

Consalting Geologist October 13, 1998

10.0 REFERENCES

Billingsley, P. and Hume, C.B. (1941): The Ore Deposits of Nickel Plate Mountain, Hedley, B.C., The Canadian Institute of Mining and Metallurgy, Transactions, Volume XLIV, 1941, pp.524-590.

Crooker, G.F. (1997): Geological, Geochemical, Geophysical, Trenching and Core Drilling Report on the WP 1A, 2, 3, 5A, 9A and W 1 and 2 Mineral Claims, Hedley Area, Similkameen Mining Division for Northpoint Resources Ltd. AR# 25,269

Dolmage, V. and Brown, C.E. (1945): Contact Metamorphism at Nickel Plate Mountain, Hedley B.C., Canadian Institute of Mining and Metallurgy, Transactions, Volume XLVIII, 1945, pp 27-67.

Little, H.W. (1961): Geology Kettle River (West Half), B.C., Geological Survey of Canada Map 15-1961.

Mark, D.G. (1983): Geochemical/Geophysical Report on Soil Geochemistry and Magnetometer Surveys Over the Rodgers 2 Claim, Hedley Area, Similkameen Mining Division for Golden Cadillac Resources Ltd. AR# 12,464

Mark, D.G. (1985): Geological and Geochemical Report on the Rodgers 2 Claim, Hedley Area, Similkameen Mining Division for Golden Cadillac Resources Ltd. AR # 13,819

Northern Miner, Corona Corporation: December 19, 1988.

Ray, G.E., Simpson, R., Wilkinson, W. and Thomas, P. (1986): Preliminary Report on the Hedley Mapping Project, B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork, 1985, Paper 1986-1, Pages 101-105.

Ray, G.E., Dawson, G.L. and Simpson, R. (1986): The Geology and Controls of Skarn Mineralization in the Hedley Gold Camp, Southern British Columbia, B.C. Ministry of Energy, Mines and Petroleum Resources, 1985, Paper 1987-1, pages 65-79.

Ray, G.E., Dawson, G.L. and Simpson, R. (1987): Geology, Geochemistry and Metallogenic Zoning in the Hedley Gold-Skarn Camp (92H/08, 82E/05).

Ray, G.E. and Dawson, G.L. (1987): Geology and Mineral Occurrences in the Hedley Gold Camp, Southern British Columbia (92H-8E), B.C. Ministry of Energy Mines and Petroleum Resources, Open File Maps 1987-10 a, b, c.

Ray, G.E. and Dawson, G.L. (1988): Geology and Mineral Occurrences in the Hedley Gold Camp, Southern British Columbia, B.C. Ministry of Energy, Mines and Petroleum Resources, Open File Map 1986-6.

Rice, H.M.A. (1947): Geology and Mineral Deposits of the Princeton Map-Area B.C., Geological Survey of Canada Memoir 243.

Saleken, L.W. and Crooker, G.F. (1989): Exploration Report Phase I on the WP Property, Hedley Area, Similkameen Mining Division for Cannelle Exploration Ltd.

Saleken, L.W. (1997): Summary Report Stage I Drilling Program, The WP Property, Hedley Gold District for Northpoint Resources Ltd.

Seraphim, R.H., (1984): Report on Banbury Gold Mines Ltd Hedley, B.C.,

Vancouver Stock Watch, Banbury Gold Mines Ltd.: November 13, 1986, June 23, July 7, July 30, August 24 and September 29, 1987.

11.0 CERTIFICATE OF QUALIFICATIONS

I, Grant F. Crooker, of Upper Bench Road, PO Box 404, Keremeos, British Columbia, Canada, V0X 1N0 do certify that:

I am a Consulting Geologist registered with the Association of Professional Engineers and Geoscientists of the Province of British Columbia (Registration No. 18961);

I am a Fellow of the Geological Association of Canada (Registration No. 3758) and I am a Member of the Canadian Institute of Mining and Metallurgy and Petroleum;

I am a graduate (1972) of the University of British Columbia with a Bachelor of Science degree (B.Sc.) from the Faculty of Science having completed the Major program in geology;

I have practised my profession as a geologist for over 20 years, and since 1980, I have been practising as a consulting geologist and, in this capacity, have examined and reported on numerous mineral properties in North and South America;

I have based this report on field examinations within the area of interest and on a review of the available technical and geological data;

I am the owner of the Cap 1 and 2 mineral claims;

Respectfully submitted,

SSIO <u>5</u>800

Grant K. Creeker, P. Geo., GFC Consultantsunc.

APPENDIX I

CERTIFICATES OF ANALYSIS

.

٠.

. .

23

P.O. # :

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

A9821142

CERTIFICATE (LOY) -Project: CAP

Samples submitted to our lab in Vancouver, BC. This report was printed on 15-JUN-98.

SAMPLE PREPARATION CHEMEX CODE NUMBER SAMPLES DESCRIPTION 201 102 Dry, sieve to -80 mesh ICP - AQ Digestion charge 229 102 ICP - AQ Digestion charge

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, Tl, W.

A9821142

ANALYTICAL PROCEDURES CHEMEX NUMBER DETECTION UPPER CODE ISAMPLES DESCRIPTION METHOD LIMIT LIMIT 983 102 Au ppb: Fuse 30 g sample FA-AAS 5 10000 2118 102 Ag ppm: 32 element, soil & rock ICP-AES 0.2 100.0 2119 102 Al %: 32 element, soil & rock ICP-AES 0.01 15.00 2120 102 As ppm: 32 element, soil & rock ICP-AES 2 10000 2121 102 Ba ppm: 32 element, soil & rock ICP-ABS 10 10000 2122 102 Be ppm: 32 element, soil & rock ICP-AES 0.5 100.0 2123 Bi ppm: 32 element, soil & rock 102 ICP-ARS 2 10000 2124 102 Ca %: 32 element, soil & rock ICP-AES 0.01 15.00 2125 Cd ppm: 32 element, soil & rock 102 ICP-AES 0.5 500 2126 Co ppm: 32 element, soil & rock 102 ICP-AES 10000 1 2127 Cr ppm: 32 element, soil & rock 102 ICP-AES 1 10000 2128 Cu ppm: 32 element, soil & rock 102 ICP-AES 1 10000 2150 Fe %: 32 element, soil & rock 102 ICP-AES 0.01 15.00 2130 102 Ga ppm: 32 element, soil & rock ICP-ARS 10 10000 2131 102 Hg ppm: 32 element, soil & rock ICP-AES 1 10000 2132 102 K %: 32 element, soil & rock ICP-ABS 0.01 10.00 2151 102 La ppm: 32 element, soil & rock ICP-AES 10 10000 2134 102 Mg %: 32 element, soil & rock ICP-ABS 0.01 15.00 2135 102 Mn ppm: 32 element, soil & rock ICP-ARS 5 10000 2136 102 Mo ppm: 32 element, soil & rock ICP-AES 1 10000 2137 102 Na %: 32 element, soil & rock ICP-AES 0.01 10.00 2138 102 Ni ppm: 32 element, soil & rock ICP-ARS 10000 1 2139 102 P ppm: 32 element, soil & rock ICP-ARS 10000 10 2140 102 Pb ppm: 32 element, soil & rock ICP-ARS 10000 2 2141 Sb ppm: 32 element, soil & rock 102 ICP-AES 2 10000 2142 102 Sc ppm: 32 elements, soil & rock ICP-ARS 1 10000 2143 102 Sr ppm: 32 element, soil & rock ICP-AES 10000 1 2144 102 Ti %: 32 element, soil & rock ICP-ARS 0.01 10.00 2145 102 Ti ppm: 32 element, soil & rock ICP-ABS 10 10000 2146 102 U ppm: 32 element, soil & rock ICP-ABS 10 10000 V ppm: 32 element, soil & rock 2147 102 ICP-ABS 10000 1 W ppm: 32 element, soil & rock 2148 102 ICP-AES 10 10000 2149 Zn ppm: 32 element, soil & rock 102 ICP-AES 2 10000

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE; 604-984-0221 FAX: 604-984-0218

· Project : CAP

Page Number : 1-A Total Pages :1 Certificate Date: 23-SEP-97 Invoice No. :19742782 P.O. Number : Account :LOY

##

			FROME;	004-904-	VZZI FA	A: 004-9	04-0218	•		Con	ments	s: C	C:GRAN	IT CRO	OKER							
	_											CE	RTIFI	CATE	OF /	NAL	YSIS		A9742	782		
SAMPLE		EP	ли ррб Гл+лл	Ag pp e	A1 \	As ppm	Ba ppa	Be ppm	Bi ppm	Ca		Cđ P#	Co ppm	Cr ppn	Ca ppn	fe N	Ga ppm	Eg pp a	ĸ	La ppm	Mg N	На рра
230227058969001 230191458709002 230149358471003 230402556475004 230290058825005	201	229	\$	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.54 1.70 1.54 1.29 1.50	12 (2 (2 (2 (2 (4	70 66 80	<pre>< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5</pre>	<pre>< 2 < 2</pre>	0.98 0.57 0.48	< 0. < 0. < 0. < 0. < 0.	.5 .5	# 7 7 4 7	28 21 15 12 20	25 24 15 7 14	3.41 2.72 2.08 1.50 3.25	<pre>< 10 < 10 < 10 < 10 < 10 < 10 < 10</pre>	2 < 1 < 1 < 1 < 1	0.06 0.04 0.05 0.03 0.06	10 < 10 10 < 10 < 10 < 10	0.53 0.41 0.43 0.32 0.49	1405 1080 590 935 555
230271059650006 230295059510007	201 201	229 229	90 100	¢ 0.2 0.2	0.54 1.53	10 6	30 70	< 0.5 < 0.5	¢ 2 ¢ 2	0.32	< 0. < 0.	. 5 . 5	:	14 16	7 15	3.42 2.61	< 10 < 10	< 1 < 1	0.03	< 10 < 10	0.19 0.52	615 565
•																	· ·					

11. CERTIFICATION:_

##

CERTIFICATION:_

.

 \bigcirc

Chemex Labs Ltd. Analytical Chemists * Goochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V71 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

....

Project :	CAP
Comments:	CC:GRANT CROOKER

Page Number :1-B Total Pages :1 Certificate Date: 23-SEP-97 Invoice No. :19742782 P.O. Number : Account :LOY

			 								Com	ments:	CC:GRA	NT CRO	OKER				
												CE	RTIF	CATE	OF A	NAL.	(SIS	A9742782	
SAMPLE	PR CO		Мо рри	R		Ni PP m	P ppm	₽b ppa	Sb Ppm	Sc ppa	Sr pp a	TÍ S	T] pp	U PPM	V PP=	W ppm	Ze ppm		
230227058969001 230191858709002 230149158471003 230402556475004 230290058825005	201 201 201	229 229 229		0.03 0.03 0.03 0.03	2	25 22 12 13	770 640 530 290 620	12 8 10 2	<pre> { 2 < 2 < 2 < 2</pre>	4 3 3 2 3	168 134 60 39 74	0.09 0.09 0.09 0.07 0.13	< 10 < 10 < 10 < 10 < 10 < 10	<pre>< 10 < 10 < 10 < 10 < 10 < 10 < 10</pre>	75 56 57 32 84	< 10 < 10 < 10 < 10 < 10 < 10	128 102 58 46 92		
230271059650006 230295059510007	201 201	229 229		0.01	L L	11	460 570	4 6	(2 (2	1 4	19 71	0.08 0.10	< 10 < 10	< 10 < 10	89 60	< 10 < 10	32 88		
															-				
															•				
. I																			

Page Number :1-A Total Pages :1 Certificate Date: 14-JUN-98 Invoice No. :19821143 P.O. Number :23 Account :LOY

Chemex Labs Ltd. Analylical Chemists * Geochemists * Registered Assayers 212 Brocksbank Ave., Bridsh Columbia, Canada V7/2C1 PHONE: 604-994-0221 FAX: 604-984-0218

			Au ppb Fà+àà			ы х	As ppn	Ba ppn	Be ppm	Bi ppm		CE	RTIFI	CATE	OF /	NAL	YSIS	A9821143				
SAMPLE	PRE				1g ppa						Ca %	Cd ppm	Co ppa	Cr ppa	Сь ррв	Te X	Ga ppm	Bg ppa	K L	La. ppm	Ng X	Ma ppa
123-052 123-053 123-054 123-055 123-055	201 201 201 201 201	229 229 229	<		0.2	0.76 1.53 1.70 1.97 1.04	6 12 × 2 10 × 2	50 50 50 60	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.30 0.45 0.50 0.42 0.37	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	5 5 7 8 3	7 14 15 14 7	6 14 20 14 7	1.18 1.91 2.20 3.02 1.27	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.04 0.06 0.07 0.05 0.03	< 10 < 10 < 10 < 10 < 10 < 10	0.21 0.49 0.51 0.36 0.23	520 415 480 1085 655
23-057 23-058 23-059 23-060 23-061	201 201 201 201 201 201	229 229 229	< 5 < 5 < 5 < 5		0.2 0.2 0.2 0.2 0.2	0.99 1.41 0.75 1.04 0.82	< 2 6 10 2		< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 1 < 2 < 2 < 2 < 2 < 2	0.34 0.31 0.40 0.35 0.27	< 0.5 < 0.3 < 0.5 < 0.5 < 0.5	4 5 4 5 3	7 9 7 10	6 10 4 8 5	1.52 2.06 1.18 1.71 1.54	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.02 0.03 0.04 0.05 0.07	< 10 < 10 < 10 < 10 < 10	0.23 0.26 0.23 0.33 0.26	\$15 \$55 230 690 345
23-062 23-063 23-066 23-065 23-065 23-066	201 201 201 201 201 201	229 229 229	15 < 5 < 5 < 5 < 5		0.2 0.2 0.2 0.2 0.2	0.94 0.95 1.26 1.17 1.12	< 2 < 1 6 10	30 40 50 50 50	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.39 0.36 0.47 0.60 0.59	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	5 5 5	11 7 10 11 11	8 3 5 9	1.49 1.65 2.16 1.37 1.54	< 10 < 10 < 10 < 10 < 10 < 10	<1 <1 <1 <1 <1	0.04 0.04 0.05 0.05 0.05	< 10 < 10 < 10 < 10 < 10 < 10	0.33 0.26 0.30 0.37 0.38	265 260 340 215 360
23-069 23-070	201 201 201 201 201	229 229 229	< \$ < 5 < 5 < 5 < 5	4	0.2 0.2 0.2 0.2 0.2	1.49 0.95 1.15 1.41 1.62	8 10 < 2 8 6	60 40 80	< 0.\$ < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.69 0.44 0.42 0.39 0.45	< 0.5 < 0.5 < 0.5 < 0.5 0.5	6 3 4 6	15 10 13 19 34	13 \$ 7 \$ 12	2.36 1.79 1.20 1.33 1.76	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.08 0.06 0.03 0.03 0.04	< 10 < 10 < 10 < 10 < 10 < 10	0.49 0.31 0.27 0.37 0.57	610 585 250 380 450
23-073 23-074 23-075	201 201 201 201 201 201	229 229 229	* * * * *	~ ~ ~	0.2 0.2 0.2 0.2 0.2 0.2	0.72 1.23 1.44 1.91 1.75	< 2 2 10 6 22	90 50 70	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 1 < 1 < 2 < 2 < 2	0.25 0.33 0.78 0.84 0.85	< 0.3 < 0.5 0.5 0.5 < 0.5 < 0.5	1 6 7	7 13 18 27 20	4 16 13 21 15	0.59 1.80 2.07 2.32 3.14	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.02 0.05 0.05 0.08 0.08	< 10 < 10 < 10 < 10 < 10 10	0.19 0.34 0.35 0.52 0.55	135 475 385 340 615
	201		< 5 < 5		0.2	1.98 1.89	22 26		< 0.5 < 0.5	< 2 < 2	0.90 0.85	< 0.5 0.5	9 #	21 22	17 18	3.15 3.15	< 10 < 10	< 1 < 1	0.10 0.09	10 10	0.63 0.58	730 795
																	·					
																		1 \				

CERTIFICATION: Hank Bielle

#8

Ł

Page Number :1-B Total Pages :1 Certificate Date: 14-JUN-98 Invoice No. :19821143 P.O. Number :23 Account :LOY

Chemex Labs Ltd. Analytical Criemists * Geochemists * Registered Assayers 212 Brooksbank Ave., British Columbia; Canada V7/201 PHONE: 604-984-0221 FAX; 604-984-0218

	···•									CE	RTIF	CATE	A9821143			
Sample	PREP CODE	Жо ррж	Na. %	Ni PPM	p ppm	Pb ppm	SP Pom	8с ррв	Sr Ppm	ti X	71 ppa	U ppm	V Ppm	W Ppe	žn ppn	
23-052 23-053 23-054 23-055 23-055 23-055	201 229 201 239 201 229 201 229 201 229 201 229	1 2 4 1 3 1	0.01 0.01 0.01 0.01 0.01	4 9 10	290 280 370 320 230	4 2 4 6 2	2 2 2 2 2 2 2 2 2 2 2 2 2	2 4 4 3 3	24 45 45 34 26	0.07 0.12 0.13 0.13 0.13	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	33 51 54 84 34	< 10 < 10 < 10 < 10 < 10 < 10	24 52 60 58 26	· · · · · · · · · · · · · · · · · · ·
23-057 23-058 23-059 23-060 23-061	201 229 201 229 201 229 201 229 201 229 201 229 201 229	2 1 < 1 1 < 1	0.01 0.01 0.01 0.01 0.01 0.01	4 6 3 5 5	190 280 360 310 300	2 6 4 2 2 2 2	< 2 < 2 < 2 < 2	2 2 3 1	24 23 27 28 17	0.09 0.11 0.00 0.10 0.09	<pre>< 10 < 10 < 10 < 10 < 10 < 10 < 10</pre>	< 10 < 10 < 10 < 10 < 10 < 10	39 45 27 41 39	< 10 < 10 < 10 < 10 < 10 < 10	28 60 26 34 50	σ /πα · · · · · · · · · · · · · · · · · · ·
13-062 13-063 13-066 13-065 13-065	201 229 201 229 201 229 201 229 201 229 201 229 201 229	1 < 1 < 1 < 1 < 1 < 1	0.01 0.03 0.03 0.01 0.01	6 3 4 6 6	360 90 150 460 460	* 2 4 4 2	< 2 4 < 2 < 2	2 2 2 3	26 24 31 44 45	0.10 0.12 0.13 0.10 0.10	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	46 63 54 34 29	< 10 < 10 < 10 < 10 < 10 < 10	52 24 28 46 48	
13-067 13-068 13-069 3-070 3-071	201 229 201 229 201 229 201 229 201 229 201 229 202 229	1 1 1 1 1 1 1	0.01 0.01 0.02 0.03 0.04	10 5 7 31 10	540 420 120 310 290	6 6 2 6	< 2 2 4 < 2	4 3 2 3 3	65 34 26 26 25	0.11 0.09 0.10 0.08 0.09	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	54 42 32 35 47	< 10 < 10 < 10 < 10 < 10 < 10	76 36 50 66 74	· · · · · · · · · · · · · · · · · · ·
13-072 13-073 13-074 13-075 13-076	201 229 201 229 201 229 201 229 201 229 201 229 201 229	< 1 1 < 1 1 < 1	0.01 0.01 0.03 0.01 0.01 0.01	5 10 11 15 13	240 250 270 440 640	2 6 8 8	2 < 2 < 2 < 2 < 2	1 3 3 4	16 22 61 73 86	0.06 0.09 0.14 0.14 0.14	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	16 45 57 60 76	< 10 < 10 < 10 < 10 < 10 < 10	24 60 64 68 102	
3-077 3-078	201 229 201 229	1 1	0.01 0.01	13 16	700 680	10	< 2 < 2	:	102 96	0.14 0.12	< 10 < 10	< 10 < 10	73 76	< 10 < 10	106 104	
•																

CERTIFICATION: Han Bille

##

C

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers 212 Brocksbenk Ave., British Columbia, Canada V7/201 PHONE: 604-984-0221 FAX: 604-984-0218

Page Number :1-A Total Pages :3 Certificate Date: 15-JUN-98 Invoice No. :19821142 P.O. Number :23 Account :LOY

											CE	RTIFI	CATE	OF A	NAL	YSIS	1	49821	142		
	SAMPLE	PREP CODE	ли ррб Ул+дд		A1 \$	Ås ppn	Ba ppm	Be ppm	Bi ppn	Ca 3	Cđ ppm	Co ppm	Cr ppm	Cu ppa	7a X	Ga pps	Hg ppm	K X	La ррв	Mg	Mn ppn
	0005	201 22		0.4	2.33	< 2	80	< 0.5	< 2	0.27	1.5	6	16	11	1.87	< 10	< 1	0.04	< 10	0.16	305
1005	0252 0502	201 22 201 22		0.4	2.61 3.23		120 110	0.5	< 2	0.36	0.5		17	14	2.39	< 10 < 10	< 1 < 1	0.06	< 10 < 10	0.33 0.24	370 210
	075E	201 22	9 < 5	0.2	2.40	6	140	< 0.5	< 2	0.31	0.5	7	17	17	2.07	< 10	< 1	0.05	< 10	0.25	430
1008	1008	201 22		0.4	2.35	< 2	100	< 0.5	< 2	0.20	0.5	5	11	13	1.73	< 10	< 1	0.04	< 10	0.14	765
	125# 150#	201 22		0.2	2.64	ŝ	100	0.5	< 2	0.33	1.5	*	17	15 16	2.40	< 10 < 10	× 1 × 1	0.05	< 10 < 10	0.25	770 490
1008	175E	201 22	9 < 5	0.2	3.08		110	0.5		0.24	< 0.5	÷.	18	15	2.34	< 10		0.04	< 10	0.29	305
	200E 225E	201 22 201 22		< 0.2	2.75	1	90 70	0.5	< 2	0.28	< 0.5	1	18	16 12	2.39	< 10 < 10	< 1 < 1	0.04	< 10 < 10	0.31	555
									_							-					
	250± 2755	201 22 201 22	9 5	0.2	2.76	< 2	90 50	0.5	< 2	0.25	< 0.5	7	17 11	16	2.31	< 10 < 10	<1 <1	0.04	< 10 < 10	0.22	310 195
1008	300#	201 32	9Ì < 5	0.4	2.25	10	50	< 0.5	< 2	0.52	< 0.5	- Ā	12	10	1.41	< 10	< 1	0.03	< 10	0.13	450
	325E 350E	201 22	9 10 9 5	< 0.2	3.10	< 2	70 150	0.5	< 2	0.12	< 0.5	12	10 15	10	1.95	< 10 10	. 41	0.03	< 10 < 10	0.13	565 1255
	375E	201 22	·	0.2			120	0.5	4.2	0.37	< 0.5										
1005	400E	201 22	9 < 5	< 0.2	3.24	6	120	0.5	22	0.33	< 0.5	10	15	17	2.64 2.39	10 < 10	<1	0.04	< 10 < 10	0.26	740
	425E 450E	201 22		< 0.2	2.56 2.70	ć	110 150	< 0.5	< 2	0.69	0.5		18 15	13	2.48	< 10	< 1	0.05	< 10	0.44	925
	475E	201 22		0.2	2.80		110	0.5	< 2 < 2	0.28	< 0.5		16	15	2.21 2.29	< 10 < 10	< 1	0.06	< 10 < 10	0.27 0.23	1260 525
100.	500g	201 22	9 < 5	0.2	2.88	6	120	0.5	< 2	0.27	0.5		25	13	2.31	< 10	< 1	0.04	< 10	0.20	330
	525E 550E	201 22		0.2	2.50	< 2	110	< 0.5	< 2	0.21	0.5	É.	13	10	1.84	< 10	< 1	0.03	< 10	0.14	460
	575E	201 22		0.2	2.92		110	0.5	< 2	0.36	< 0.5 1.5		20	13 16	2.13	< 10 < 10	< 1 1	0.03	< 10 < 10	0.31 0.36	110 160
1005	500E	201 22		0.#	3.48	16	100	0.5	< 2	0.58	2.0	Ĵ.	19	16	3.07	< 10	ī	0.03	< 10	0.14	175
	625E	201 22		1.0	2.55	6	80	0.5	< 2	0.89	3.5	11	36	32	3.78	< 10	< 1	0.04	< 10	0.07	255
	650E 675E	201 22		1.0	3.83	6 22	210 140	0.5	< 2	0.40	3.5	21	18 31	30 103	3.05 5.20	10 10	< 1	0.05	< 10 < 10	0.18	145 785
1008	700x	201 22	9 < 5	0.8	3.39	< 2	40	0.5	22	0.10	0.5	4	1	7	1.92	< 10	21	0.03	< 10	0.06	115
1009	7252	201 32	9 < 5	0.2	2.75	< 2	40	< 0.5	< 2	0.10	< 0.5	4	,	5	1.92	< 10	< 1	0.03	< 10	0.09	210
005		201 22		0.2	3.97	< 2	80	0.5	< 2	0.06	< 0.5	· 4	7	7	1.67	< 10	< 1	0.02	< 10	0.05	315
1005		201 22 201 22		< 0.2	2.67	< 2		< 0.5	< 2	0.05	< 0.5	1	5	5	1.69	< 10 < 10	<1 <1	0.01 0.03	< 10 < 10	0.06	455 85
008	8258	201 22	9 10	0.4	3.80	< 2	50	0.5	< 2	0.11	< 0.5		10	ÿ	1.89	< 10	< 1	0.03	< 10	0.09	75
1004		201 22	<u> </u>	0.2	1.39	2	60	< 0.5	< 2	0.20	< 0.\$	3	7	5	1.34	< 10	< 1	0.03	< 10	0.02	260
005		201 22		0.1	3.82	< 2	40	0.5	< 2 A	0.16	< 0.5	3	31	7	3.00	< 10	< 1	0.04	< 10	0.10	100
005		201 22		0.2	2.51 2.81	< 1 6		< 0.5	< 2	0.16	< 0.5	- 1	10 11	7	1.67	< 10 < 10	< 1	0.04	< 10 < 10	0.14	150 130
00s		201 22		1.4	1.96	, i		< 0.5	< 2	0.24	< 0.5	10	15	17	2.31	< 10	< 1	0.03	< 10	0.29	140
003	373E	201 22	9 < 5	0.4	2.64	.	80	0.5	< 2	0.15	< 0.5	5	10		1.92	< 10	< 1	0.04	< 10	0.12	150
			J																•		

Hart Parchler CERTIFICATION:

##

 \mathbf{O}

 \bigcirc .

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers 212 Brocksbank Ave., British Columbia; Canada V7/22C1 PHONE: 604-984-0221 FAX: 604-984-0219

												CE	RTIF	CATE	OF A	NAL	rsis	A9821142
	SAMPLE	PRI COI		Мо ррж	Na. X	Ni Ppr	P PPR	PD ppm	Sb ppa	8c ppm	Sr ppm	Tİ 1	T1 ppm	ο D	V PPm	N ppm	žn ppn	
1005 1005 1005 1005	025E 050E 075E	201 201 201	229 229 229 229 229 229	3322	0.02 0.03 0.01 0.01 0.01	15 22 21 17 12	490 540 850 790 1180	86836	< 2 < 2 < 2 < 2 < 2 < 2 < 2	2 3 3 3	51 78 56 57 36	0.12 0.12 0.12 0.12 0.10 0.10	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	54 58 53 53 40	< 10 < 10 < 10 < 10 < 10 < 10	174 178 146 136 118	
100s 100s 100s 100s	125E 150E 175E 200E	201 201 201 201	229 229 229	2	0.01 0.01 0.01 0.01 0.01	20 22 16 18	800 610 810 1080 430	1	< 2 < 2 < 2 < 2 < 2 < 2	3	61 65 37 44 50	0.12 0.12 0.14 0.13 0.12	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	57 59 59 54 57	< 10 < 10 < 10 < 10 < 10 < 10	190 212 114 120 106	<u> </u>
1005 1005 1005 1005	250E 275E 300E 325E	201 201	229 229 229 229	2 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.01 0.01 0.05 0.01 0.02	20 9 12 44	540 920 270 930 810		< 2 < 2 < 2 < 2 < 2 < 2	3 1 2 3 3	44 32 80 17 101	0.14 0.12 0.10 0.13 0.13	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	57 46 35 43 53	< 10 < 10 < 10 < 10 < 10 < 10	124 128 86 80 186	
1005 1005 1005 1005	400E 435E 450E	201 201 201 201 201 201	229 229	1 1 1 1	0.03 0.03 0.03 0.02 0.02	24 19 17 17 23	680 890 910 840 660	10 10 10	< 3 < 2 < 2 < 2 < 2 < 2	3 3 4 3 3	\$9 98 121 131 83	0.14 0.12 0.11 0.11 0.12	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	53 50 53 43 49	< 10 < 10 < 10 < 10 < 10 < 10	124 128 110 108 104	
1005 1005 1005 1005	525± 550± 575±	201 201 201 201 201 201	229 229	1 1 3 3 3	0.01 0.02 0.01 0.01 0.03	24 14 19 29 37	\$50 900 270 740 \$60	1 6 1 1	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	2 3 3 3 3 3	87 35 54 134 165	0.12 0.11 0.13 0.11 0.11	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	46 41 50 55 56	< 10 < 10 < 10 < 10 < 10 < 10	198 148 114 314 330	
1005 1005 1005 1005	6502 6752 7002	201 201 201 201 201 201	229 229 229	6 5 9 3 1	0.02 0.03 0.02 0.01 0.02	62 56 102 7 6	520 390 680 830 1350	6 6 14 6 6	< 2 < 2 < 2 < 2 < 2 < 2 < 2	3 3 4 1 1	153 122 405 10 11	0.14 0.13 0.14 0.11 0.11	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	120 96 129 41 42	< 10 < 10 < 10 < 10 < 10 < 10	658 1225 872 130 126	
005 005 005 005	775E 800E 825E	201 201 201 201 201 201	229 229 229	1 4 1 1 1	0.01 0.01 0.01 0.01 0.01 0.01	7 4 2 8 5	1300 800 350 680 360	8 4 8 6	< 2 < 2 < 1 < 2 < 2 < 2	2 1 < 1 1 1	\$ 4 7 11 18	0.12 0.10 0.09 0.11 0.11	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	33 39 36 40 37	< 10 < 10 < 10 < 10 < 10	110 52 42 62 64	
008 005 005 005	900E 925E 950E	201 201 201 201 201 201	229 229 229	2 1 1 3 1	0.02 0.02 0.03 0.01 0.02	7 # 23 \$	1260 540 860 410 710	\$ 6 42 8	< 3 < 2 < 2 < 2 < 2 < 2	1 1 2 3 2	15 36 15 19 14	0.13 0.11 0.11 0.15 0.12	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	48 41 53 62 46	< 10 < 10 < 10 < 10 < 10	70 78 64 132 66	r - Andrewski alandow

Bart Parchila. CERTIFICATION:__

**

Page Number :2-A Total Pages :3 Certificate Date: 15-JUN-98 Invoice No. :19821142 P.O. Number :23 Account :LOY

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayors 212 Brocksbank Ave., British Columbia: Canada V7/201 PHONE: 604-984-0221 FAX: 604-984-0218

r				-			-			CE	RTIF	CATE	OF #	NAL	ysis		\9821	142		
SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm	A1 *	λs ppn	Ba ppm	Be ppm	Bİ ppm	Ca t	Cđ ppm	Co ppa	Cr pp=	Cu pps	Je ž	Ga jypai	Eg ppn	ĸ	La ppa	Mg t	Mn ppm
1008 10002 1008 10252 1008 10502 1008 10502 1008 10752 1008 11002	201 229 201 229 201 229 201 229 201 229 201 229	< \$ 10 10 10 5	< 0.2 0.4 0.6 0.3 0.3	2.31 2.49 2.35 2.27 2.21	20 6 6 4 2 2	90 100 70 40 50	< 0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.21 0.24 0.13 0.08 0.15	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 6 6 6	15 15 11 7 9	10 12 13 5 6	2.18 2.08 2.18 1.58 1.84	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.04 0.05 0.03 0.02 0.03	< 10 < 10 < 10 < 10 < 10 < 10	0.24 0.24 0.15 0.09 0.12	325 365 225 490 135
1005 1125x 1005 1150x 1005 1175x 1005 1175x 1005 1200x 1005 1225x	201 229 201 229 201 229 201 229 201 229 201 229	< 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	0.2 0.6 0.4 0.2 0.4	4.14 3.93 4.00 2.80 3.95	14 < 3 < 3 < 2 < 2	60 40 80 80 90	0.5 0.5 0.5 < 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.20 0.05 0.08 0.21 0.13	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 3 5 5 6	10 7 11 10	\$ 6 7 10 10	2.34 1.80 1.85 1.77 1.94	10 < 10 < 10 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.03 0.04 0.03 0.06 0.04	< 10 < 10 < 10 < 10 < 10 < 10	0.14 0.05 0.08 0.17 0.13	80 90 1130 1070 860
1005 12508 2005 0008 2005 0258 2005 0508 2005 0508 2005 0758	201 229 201 229 201 229 201 229 201 229 201 229	< 5 < 5 < 5 < 5 < 5	0.2 0.4 0.2 0.2 0.2	2.47 2.69 2.29 1.97 3.00	< 2 6 4 2 6	70 120 80 70 210	< 0.5 0.5 < 0.5 < 0.5 0.5	< 2 < 2 < 2 < 2	0.15 0.38 0.20 0.28 0.46	< 0.5 0.5 0.5 0.5 0.5	5 6 5 5	13 18 15 12 24	7 18 13 8 22	2.11 2.20 1.09 1.93 2.53	< 10 < 10 < 10 < 10 < 10 < 10	<1 <1 <1 <1 <1	0.04 0.05 0.04 0.04 0.08	< 10 < 10 < 10 < 10 < 10 < 10	0.17 0.22 0.15 0.14 0.37	615 310 300 180 345
2005 1008 2005 1252 2005 1502 2005 1502 2005 1752 2005 2002	201 229 201 229 201 229 201 229 201 229 201 229	10 < 5 5 5 5	0.2 < 0.3 0.2 0.2 0.2	3.17 2.96 3.91 1.97 4.15	6 22 2 10	180 150 180 70 110	0.5 0.5 < 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2	1.11 0.45 0.84 0.63 0.43	1.0 < 0.5 0.5 < 0.5 < 0.5	12 9 16 7 7	42 24 43 16 16	42 10 65 13 25	3.21 2.81 4.62 2.15 2.37	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 1	0.08 0.06 0.06 0.05	10 < 10 20 < 10 < 10	0.65 0.39 0.60 0.22 0.40	1170 375 785 875 340
2008 225E 2008 250E 2008 275E 2008 275E 2008 300E 2008 325E	201 229 201 229 201 229 201 229 201 229 201 229	15 10 5 10 < 5	0.2 < 0.2 0.2 0.2 0.2 0.2	3.04 2.49 1.89 1.97 2.27	6 14 6 12 4	90 70 40 50 60	0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.27 0.54 0.22 0.96 0.25	< 0.5 < 0.5 < 0.5 0.5 < 0.5 < 0.5	8 6 7 5	18 24 10 14 12	13 22 6 11 8	2.45 2.61 1.42 1.92 1.59	< 10 < 10 < 10 < 10 < 10 < 10	<1 <1 <1 <1 <1	0.03 0.04 0.03 0.03 0.03	< 10 < 10 < 10 < 10 < 10 < 10	0.32 0.34 0.10 0.13 0.14	615 630 125 410 215
2008 3508 2008 3758 2008 4008 2008 4258 2008 4508	201 229 201 229 201 229 201 229 201 229 201 229 201 229	< \$ 10 < \$ 10 < \$	0.2 0.2 0.2 0.2 0.4	2.54 3.88 2.56 2.78 3.32	# 2 6 8 10	70 90 70 100 150	< 0.5 0.5 0.5 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.35 0.31 0.21 0.34 0.56	0.\$ < 0.\$ < 0.\$ < 0.5 < 0.5 < 0.5	7 7 6 9 10	17 19 14 21 23	16 11 10 15 22	2.28 2.60 2.13 2.46 2.88	< 10 10 < 10 < 10 < 10 < 10	<1 <1 <1 1 <1	0.04 0.03 0.03 0.04 0.03	< 10 < 10 < 10 < 10 < 10 < 10	0.23 0.28 0.20 0.32 0.36	270 140 200 210 280
200# \$50#	201 229 301 229 201 229 201 229 201 229 201 229	< 5 5 20 5 < 5 < 5	0.2 0.2 1.0 0.4 0.4	2.60 2.93 4.02 3.68 3.11	10 12 8	90 130 100 110 130	0.5 0.5 0.5 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.41 0.56 0.36 0.40 0.69	< 0.5 1.0 0.5 0.5 1.5	12 11 15 11	17 25 24 21 26	16 24 26 21 28	2.44 3.02 3.15 3.81 3.02	< 10 < 10 10 10 < 10	<1 <1 1 <1 <1	0.04 0.04 0.03 0.04 0.04	< 10 < 10 < 10 < 10 < 10 < 10	0.20 0.35 0.28 0.26 0.33	465 370 205 495 300
2005 6252 2005 6505 2005 6755	201 229 201 229 201 229 201 229 201 229 201 229 201 229	< 5 < 5 < 5 < 5 < 5 < 5 < 5	0.2 0.2 0.4 0.6 0.8	2.70 1.87 2.84 1.68 2.70	2	40 80	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.36 0.27 0.60 0.17 0.25	1.\$ 0.5 4.0 0.5 2.0	10 4 7 3 5	21 10 22 9 13	15 6 15 6 11	2.63 1.68 2.39 1.63 2.15	10 < 10 < 10 < 10 < 10 < 10	<1 <1 <1 <1 <1 <1 <1	0.04 0.04 0.04 0.02 0.03	< 10 < 10 < 10 < 10 < 10 < 10	0.27 0.12 0.20 0.09 0.13	350 130 685 80 235

11-3-3-29 CERTIFICATION: .

##

 \bigcirc

Chemex Labs Ltd. Analylical Chemists * Geochemists * Registered Assayers 212 Brocksbank Ave., British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

				·									CE	RTIF	CATE	OF A	NAL	/SIS	A9821142
	SAMPLE	50 50	ep Oe	Мо ррш				p pm	Pb ppm	SD ppm	Sc ppm	Sr ppn	ti X	†1 ppm	U DDE	V ppn	W ррш	Za ppa	
	1000E		229					40	6	< 2	3	15	0,14	< 10	< 10	60	< 10	94	
	1025E 1050E		229		0.01			10	1	< 2 < 2	32	13 11	0.12	< 10 < 10	< 10 < 10	48	< 10 < 10	168 108	
005	10756	201	229	1	0.01			30	-	< 2	1	7	0.09	< 10	< 10	37	< 10	96	
005	1100#	201	229	1	0.02	2	1 4	40	6	4 2	ī	12	0.10	< 10	< 10	45	< 10	68	
	1125E		229		0.01		7 12		6	< 2	1	20	0.13	< 10	< 10	45	< 10	64	
	1150x 1175#		229		0.01		4 10 6 14		£	< 2 < 2	1 2		0.11	< 10	< 10	37	< 10	56	
	12008		229		0.01			20	:	22		10 22	0.12	< 10 < 10	< 10 < 10	38 40	< 10 < 10	86 105	
005	12258		229		0.03				6	< 2	Ĵ	15	0.14	< 10	< 10	41	< 10	101	
	1250E		229		0.01			70		< 2	2	14	0.13	< 10	< 10	54	< 10	114	
	0252		229 229		0.01			20 80		< 2	2	73	0.13	< 10	< 10	53	< 10	166	
	050E		229		0.01			20		< 2 < 2	2	40	0.11	< 10 < 10	< 10 < 10	44 50	< 10 < 10	116 114	
800	07 SK		229		0.01		i 3	70	Ť	< ā	4	95	0.14	< 10	< 10	68	< 10	126	
	100E		229					60	12	< 2	7	205	0.15	< 10	< 10	86	< 10	162	
	125m 150m		229		0.01			60 50		< 2	. 4	99	0.14	< 10	< 10	69	< 10	156	
	1751		229		0.01				10	< 2	14	364 83	0.16 0.10	< 10 < 10	< 10 < 10	94 47	< 10 < 10	166 132	
	2002		229		0.01			50	10	< 2	÷.	75	0.13	< 10	< 10	42	< 10	76	
	225E	201		1	0.01				10	< 2	э	59	0.12	< 10	< 10	49	< 10	104	
	250E 275E	201	229		0.03			80	•	< 2	4	116	0.12	< 10	< 10	52	< 10	104	
	300E		229		0.03			60 00	÷	< 2 < 2	1 3	35 166	0.09	< 10 < 10	< 10 < 10	31 36	< 10 < 10	9 8 16 8	
	325E		229		0.01			40	i	< 2	ž	40	0.10	< 10	< 10	39	< 10	116	
	350 x	201		i	0.01			60	ŧ	< 2	3	65	0.13	< 10	< 10	56	< 10	126	
	375E 400E		229		0.03			90		< 2	3	106	0.14	< 10	< 10	53	< 10	98	
	4252	201	229		0.02			80 50	1	< 2 < 2	2	48 85	0.12 0.13	< 10 < 10	< 10 < 10	49 58	< 10 < 10	90 126	
	4508		229		0.03			50	i	4 2	š	200	0.14	< 10	< 10	60	< 10	96	
	4758	201		1	0.03			80	•	< 2	. 1	160	0.12	< 10	< 10	50	< 10	100	
	5002 5252	201		2	0.02			80	10	< 2	5	221	0.13	< 10	< 10	ć.	< 10	174	
	550K	201		3	0.02			90 70		< 2	5	116 116	0.14	< 10 < 10	< 10 < 10	69 73	< 10 < 10	174	
	575K	201			0.04			70	i	< 2	i	173	0.16	< 10	< 10	74	< 10	234	
	600E	201		2	0.02	3	5 53	30		< 2	3	84	0.14	< 10	< 10	68	< 10	290	
	625E	201		1	0.02	- I	1 41	80		< 2	1	26	0.12	< 10	< 10	- 44	< 10	200	
	6502: 6752:		229	2	0.03				1	< 2	4	96	0.13	< 10	< 10	66	< 10	540	
	7002	201		2	0.01				12	< 2	1 2	28 19	0.10	< 10 < 10	< 10 < 10	49	< 10 < 10	216 210	
				-		-					-								

j.

Page Number :2-B Total Pages :3 Certificate Date: 15-JUN-98 Invoice No. :19821142 P.O. Number :23 Account :LOY

Mart Barry CERTIFICATION:_

Chemex Labs Ltd.

nalyfical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

**

Page Number :3-A Total Pages :3 Certificate Date: 15-JUN-98 Invoice No. :19821142 P.O. Number :23 Account :LOY

BAMPLS PREP CODE Au ppb Ag Al As Ba			÷								CE	RTIF	CATE	OF A	NAL	rsis	/	49821	142		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SAMPLE																				Mn ppm
2008 9758 201 225 5 0.2 5.77 2 0.0 5 2 0.07 0.5 4 8 1.83 1.63 1.63 1.63 1.63 1.63 1.63 1.63 1.63 1.63 1.63 1.63 1.63 1.00 <	2008 7508 2008 7758 2008 8008	201 229 201 229 201 229 201 229	15 5 10	0.4 0.6 0.6	4.24 3.36 3.19	12 16 < 2	190 50 50	0.5 < 0.5 < 0.5	< 2 < 2 < 2	0.99 0.28 0.13	2.0 3.0 < 0.5	19 6 4	13 15 10	23 13 6	3.30 2.99 1.65	< 10 < 10 < 10	<1 <1 <1	0.04 0.03 0.03	< 10 < 10 < 10	0.23 0.32 0.11	170 135 80 80 225
Cons Cons <th< td=""><td>2005 \$755 2008 9005 2008 9255</td><td>201 229 201 229 201 229</td><td>< 5 < 5 < 5</td><td>0.2 0.2 0.2</td><td>3.71 3.27 3.64</td><td>< 2 < 2 < 2</td><td>40 60 50</td><td>0.5 < 0.5 0.5</td><td>< 2 < 2 < 2</td><td>0.07</td><td>< 0.5 < 0.5 < 0.5</td><td>4</td><td>ł</td><td>- 1</td><td>1.83 1.73 1.70</td><td>< 10 < 10 < 10</td><td><1 <1 <1</td><td>0.02 0.03 0.01</td><td>< 10 < 10 < 19</td><td>0.10 0.12 0.11</td><td>160 120 555 360 140</td></th<>	2005 \$755 2008 9005 2008 9255	201 229 201 229 201 229	< 5 < 5 < 5	0.2 0.2 0.2	3.71 3.27 3.64	< 2 < 2 < 2	40 60 50	0.5 < 0.5 0.5	< 2 < 2 < 2	0.07	< 0.5 < 0.5 < 0.5	4	ł	- 1	1.83 1.73 1.70	< 10 < 10 < 10	<1 <1 <1	0.02 0.03 0.01	< 10 < 10 < 19	0.10 0.12 0.11	160 120 555 360 140
2008 1123E 201 229 40 0.2 2.07 40 0.05 <2	2005 1000E 2005 1025E 2005 1050E	201 229 201 229 201 229	10 #0 10	< 0.2 0.6 0.2	2.09 2.81 1.94	14	120 90 60	< 0.5 < 0.5 < 0.5	< 2 < 2 < 2	0.56 0.27 0.66	< 0.5 < 0.5 < 0.5	6 8 5	29 15	22 14 7	2.29 2.01 1.68	< 10 < 10 < 10	< 1 < 1 < 1	0.04 0.04 0.04	< 10 < 10 < 10	0.59 0.26 0.12 0.16	225 170 250 455 305
	2008 11258 2008 11508 2008 11758	201 229 201 229 201 229	< 5 < 5 20	0.2 < 0.2 < 0.2	2.07 3.02 2.04	< 1 12 < 2	40 30 30	< 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 < 4 2 <	0.06 0.07 0.05	< 0.5 < 0.5 < 0.5	4	9 1 6	5	1.44 1.77 1.80	< 10 < 10 < 10	< 1 < 1 < 1	0.02 0.02 0.01	< 10 < 10 < 10	0.08	240 125 60 90 545
																					60 105

**

.

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers 212 Brocksbank Ave., British Columbia: Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

-												CE	RTIF	CATE	OF A	NAL	(SIS	A9821142
	SAMPLE		e? De	Mo ppni	Na. L	Bi ppa	P PPM	Pb ppn	Sb ppa	Sc ppm	Sr ppa	Tİ X	T) ppm	U Dym	¥ ppn	W DDM	Za ppa	
800 800 800	7252 7502 7758 8002 8252	201 201 201	229 229 229 229 229 229	1	0.02 0.02 0.01 0.02 0.02	7 46 35 8 27	1330 220 1270 1470 3960	10 14 6 9	< 2 < 2 < 2 < 2 < 2 < 2	1 3 1 1 4	40 527 57 16 57	0.10 0.13 0.09 0.09 0.07	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	36 30 88 32 37	< 10 < 10 < 10 < 10 < 10 < 10	192 198 1035 150 68	19.49.49.49.49.49.49.49.49.49.49.49.49.49
005 005	850x 8752 9002 9252 950x	201 201 201 201	229 229 229 229 229 229		0.01 0.01 0.02 0.02 0.01	18 5 6 14	1040 1390 1070 990 450	6 1 6 4	< 2 < 2 < 2 < 2 < 2 < 2	3 1 1 2 3	30 7 9 10 26	0.10 0.11 0.12 0.11 0.12	< 10 < 10 < 10 < 10 < 10	< 10 < 20 < 10 < 10 < 10	44 33 36 34 42	< 10 < 10 < 10 < 10 < 10	82 114 88 88 96	
800 800 800	975E 1000E 1025E 1050E 1075E	201 201 201	229 229 229 229 229 229	<1 <1	0.01 < 0.01 0.01 0.01 0.01 0.01	12 16 18 9 9	1120 240 910 2120 910	10 8 6 4	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	2 6 3 1 1	17 60 23 46 15	0.12 0.15 0.11 0.09 0.09	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	45 70 43 35 38	< 10 < 10 < 10 < 10 < 10 < 10	116 66 159 114 102	
005 005 005	11008 11258 11508 11758 12008	201 201 201 201 201 201	229 229 229	* 2 1 1 1	0.01 0.01 0.02 0.01 0.01	9 4 5 3	690 920 710 710 1180	46846	< 2 < 2 < 2 < 2 < 2 < 2	2 1 1 1 1	18 7 9 5 8	0.09 0.09 0.10 0.09 0.09	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	37 32 37 41 33	< 10 < 10 < 10 < 10 < 10	90 92 46 56 88	
	1225 x 1250 x	201 201	229 229	1	0.01 0.01	4	950 990	6	< 1 < 2	1	11	0.10 0.11	< 10 < 10	< 10 < 10	37 38	< 10 < 10	48 54	
						,												

.

Page Number :3-8 Total Pages :3 Certificate Date: 15.JUN-98 Invoice No. :19821142 P.O. Number :23 Account :LOY

Page Number : 1-A Total Pages :2 Certificate Date: 14-JUL-98 Invoice No. : 19823853 P.O. Number :23 Account :LOY

Chemex Labs Ltd. Analytical Chevnists * Geochemists * Registered Assayers 212 Brocksbank Ave. British Columbia, Canada V7/22C1 PHONE: 604-984-0221 FAX: 604-984-0218

										CE	RTIF	CATE	OF A	NAL	rsis		49823	853		
SAMPLE	PREP	lu ppb 72+22	lg ppn	11 1	Хя ppa	Sa ppa	Ве ррн	Bi ppa	Ca. X	Cd ppn	Co ppa	Cr ppm	Cu	24 3	Ga ppn	Eg ope	к २	La. ppz	Ng X	Min ppa
3008 5508 3008 5758 3008 6008 3008 6258 3008 6258	201 229 201 229 201 229 201 229 201 229 201 229	< 5 < 5 < 5 < 5 10	0.2 0.4 0.6 < 0.3 0.6	3.23 2.27 2.45 2.25 3.68	22 10 24 16 14	60 60 60 230	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.61 0.25 0.55 0.48 0.58	< 0.8 1.5 4.5 1.5 2.5	10 6 7 9 15	25 12 13 17 25	15 10 22 13 39	3.31 2.03 1.95 2.07 3.28	< 10 < 10 < 10 < 10 20	<1 <1 <1 <1 <1	0.04 0.03 0.03 0.03 0.03	< 10 < 10 < 10 < 10 < 10	0.27 0.14 0.16 0.22 1.38	195 195 760 230 390
0005 6752 0005 7008 0005 7252 3005 7552 3002 7752	201 229 201 229 201 229 201 229 201 229 201 229	*****	< 0.2 0.6 0.2 0.2 < 0.2	1.69 2.06 2.14 2.32 1.42	10 10 10 10	50 60 70 50 50	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.20 0.37 0.63 0.25 0.71	0.5 1.0 0.5 0.5 1.0	4455	7 7 11 9 16	7 14 14 14 14	1.70 1.53 1.60 1.65 1.47	< 10 < 10 < 10 < 10 < 10 < 10	<1<1<1<1<1<1	0.04 0.04 0.07 0.04 0.05	< 10 < 10 < 10 < 10 < 10 < 10	0.15 0.12 0.16 0.11 0.20	170 405 345 235 365
300# 800E 300# 825E 300# 850E 400# 550E 400# 575E	201 229 201 229 201 229 201 229 201 229 201 229 201 229		0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.10 2.16 4.02 2.31 1.36	13 6 10 10 10	50 60 70 120 50	< 0.5 < 0.5 0.5 < 0.5 < 0.5	****	0.63 0.54 0.27 0.36 0.17	1.0 < 0.5 0.5 < 0.5 < 0.5	4 3 11 7 3	10 10 19 22 13	10 5 38 17 6	1.43 1.59 2.94 2.03 1.55	< 10 < 10 < 10 < 10 < 10 < 10	<1 <1 <1 <1 <1 <1	0.05 0.05 0.03 0.04 0.03	< 10 < 10 < 10 < 10 < 10 < 10	0.13 0.36 0.75 0.29 0.21	375 130 185 265 120
4008 4008 4008 4258 4008 4358 4008 4758 4008 4758 4008 7008	201 229 201 229 201 229 201 229 201 229 201 229	< 5 35 < 5 20 < 5	0.2 0.4 < 0.2 < 0.2 < 0.2	2.45 2.71 3.44 2.49 2.41	10 10 10 10	80	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre>4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 4 4 4</pre>	0.19 0.23 0.24 0.37 0.50	< 0.5 < 0.5 1.0 0.5	\$ 7 8 9 9	\$ 16 15 19 20	7 11 11 15 15	1.77 1.07 2.05 2.10 2.27	< 10 < 10 < 10 < 10 < 10 < 10	<1 <1 <1 <1	0.04 0.03 0.04 0.03 0.05	< 10 < 10 < 10 < 10 < 10 < 10	0.13 0.24 0.21 0.22 0.27 0.53	220 235 240 240 395
400# 725E 400# 750E 400# 775E 400# 800E 400# 800E	201 229 201 229 201 229 201 229 201 229 201 229		0.2 < 0.2 0.2 0.2 0.2	2.59 2.46 2.66 2.97 2.17	10 8 10 10	100 70 70 70 50	< 0.5 < 0.5 < 0.5 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.92 0.31 0.25 0.16 0.22	0.5 < 0.5 1.5 0.5 0.5	9 6 7 6 5	16 12 11 9 7	21 12 9 10 7	2.46 2.00 1.97 1.73 1.60	< 10 < 10 < 10 < 10 < 10	<1 <1 <1 <1 <1	0.04 0.04 0.03 0.03 0.02	< 10 < 10 < 10 < 10 < 10	0.23 0.14 0.10 0.09	340 245 275 180
400M 450E 800H 300E 800H 325E 800H 350E 800H 350E	201 229 201 239 201 229 201 229 201 229 201 229	<pre></pre>	0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.03 2.54 2.43 2.90	10	\$0 60 90 110	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.14 0.19 0.31 0.23 0.23	0.5 0.5 0.5 0.5	6 4 5 5	13 5 12 7 9	16 10 14	1.96 1.51 2.29 1.81 1.97	< 10 < 10 < 10 < 10 < 10	<1 <1 <1 <1 <1	0.04 0.03 0.04 0.04 0.04	< 10 < 10 < 10 < 10 < 10 < 10	0.17 0.11 0.19 0.15 0.19	105 390 210 405 370
800H 400H 800H 425H 800H 455H 800H 455H 800H 475H 800H 500H	201 229 201 229 201 229 201 229 201 229 201 229	<pre>< 5 < 5 < 5 < 5 </pre>	0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.54 2.12 2.03 3.86 3.27	6 10 10	130 80 100 60 90	< 0.5 < 0.5 < 0.5 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.35 0.21 0.30 0.32 0.27	0.5 < 0.5 < 0.5 3.0 1.5	7 6 9 10	14 10 14 10	18 11 12 10 14	1.99 1.69 1.67 2.16 2.11	< 10 < 10 < 10 < 10 < 10	<1 <1 <1 <1 <1	0.07 0.05 0.05 0.04 0.05	< 10 < 10 < 10 < 10 < 10	0.31 0.18 0.26 0.15 0.23	200 355 255 610 495
800N 525E 800K 550E 800N 575E 800N 600E 900H 600E 900H 600E	201 229 201 229 201 229 201 229 201 229 201 229	~ ~ ~ ~ ~ ~	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	3.43 3.10 2.37 3.14 2.52	14 8 10 10 6	150 120 90 50 50	0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 3 < 3 < 3 < 3 < 3	0.61 0.31 0.47 0.20 0.10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	10 7 7 7 6	13 22 # 7 \$	16 16 9 7	2.45 2.31 1.99 2.20 1.59	< 10 < 10 < 10 < 10 < 10 < 10	<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1	0.06 0.04 0.05 0.02 0.03	< 10 < 10 < 10 < 10 < 10 < 10	9.36 0.48 0.15 0.11 0.10	330 520 680 590 290
	- L	· · · · · ·												CERTIFI	CATION:	•	tan	5	li	L.

#4

,

2

Chemex Labs Ltd. Audytical Chamists * Geochemists * Registered Assayers 212 Brocksbank Ave., British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

.

										CE	RTIFI	CATE	OF A	NALY	/SIS	A9823853
SAMPLE	PREP	Mo ppa	Na K	ni ppn	P ppa	Pb ppa	Sb ppa	Sc ppm	Sr ppn	Tİ X	T1 ppm	U ppa	V ppa	W ppn	Sn ppn	
300# 550E 300# 575E 300# 600E 300# 625E 300# 625E	201 229 201 229 201 229 201 229 201 229 201 229	2 3 3 3 4	0.01 0.02 0.04 0.02 0.03	31 16 47 23 36	790 530 380 730 \$10	5 10 10 10	< 3 < 3 < 3 < 3	3 1 2 3 11	133 52 98 82 131	0.13 0.11 0.10 0.11 0.11	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	63 49 47 48 103	< 10 < 10 < 10 < 10 < 10 < 10	214 258 422 210 694	
3005 6752 3005 7002 3005 7252 3005 7252 3005 7552 3005 7752	201 229 201 229 201 229 201 229 201 229 201 229	3 2 3 2 1	0.02 0.03 0.03 0.02 0.04	14 11	720 610 840 930 210	2 10 6 8 6	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	1 1 2 1 3	20 45 87 38 88	0.10 0.08 0.09 0.09 0.09	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	40 31 38 38 31	< 10 < 10 < 10 < 10 < 10 < 10	122 206 152 118 86	
300# 800R 300# 8252 300# 850R 400# 5502 400# 5752	201 229 201 229 201 229 201 229 201 229 201 229		0.04 0.01 0.03 0.01 0.01	\$ 24 16 7	490 900 800 440 360	2 10 10	<pre>< 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</pre>	1 4 4 2	54 45 39 72 22	0.00 0.10 0.12 0.12 0.11	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	30 37 50 48 44	< 10 < 10 < 10 < 10 < 10 < 10	106 62 128 86 92	
4008 6008 4008 6252 4008 6502 4008 6502 4008 6752 4008 7002	201 229 201 229 201 229 201 229 201 229 201 229	3	0.01 0.02 0.03 0.02 0.02 0.01	7 21 17 24 28	970 680 670 770 610	1 5 6 6	< 2 < 2 < 2 2 < 2 < 2	1 2 2 3 3	29 37 49 68 67	0.11 0.12 0.11 0.12 0.13	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	42 47 53 55 68	< 10 < 10 < 10 < 10 < 10 < 10	100 140 132 244 266	
400# 7252 400# 7502 400# 7502 400# 7752 400# 8002 400# 8252	201 229 201 229 201 229 201 229 201 229 201 229 201 229	1 1 2 1	0.04 0.02 0.03 0.03 0.03	20 13 19 13 8	460 640 910 800 810	10 6 10 6 2	< 2 < 2 < 2 < 2 < 2 < 2	4 2 1 3	102 41 39 32 31	0.13 0.11 0.11 0.11 0.11	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 20 < 10	47 42 43 39 38	< 10 < 10 < 10 < 10 < 10 < 10	64 130 222 166 120	
4005 850E 800H 300E 800H 325E 800H 350E 800H 375E	201 229 201 229 201 229 201 229 201 229 201 229	2 1 1 2	0.01 0.01 0.03 0.03	14 21	740 540 340 360 420	1 1 16 1	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	2 1 2 1 2	21 18 43 29 24	0,11 0.09 0.11 0.13 0.12	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	43 32 43 37 36	< 10 < 10 < 10 < 10 < 10 < 10	130 62 70 90 198	
80081 4002 80081 4258 80081 4502 80081 4502 80081 4758 80081 5008	201 229 201 239 201 239 201 229 201 229 201 229	2 1 1 2 2	0.01 0.03 0.01 0.03 0.03	13 7 11 13 14	520 830 380 1310 670	6 6 80 46	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	4 3 3 3 3	28 20 27 20 22	0.14 0.11 0.13 0.12 0.12	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	64 37 40 36 39	< 10 < 10 < 10 < 10 < 10 < 10	194 88 112 360 312	· · · · · · · · · · · · · · · · · · ·
800N 525E 800N 550E 800M 575E 800M 600E 900M 300E	201 229 201 229 201 229 201 229 201 229 201 229	1 1 1 1 1	0.02 0.03 0.03 0.02 0.02	21 13 11 7 3	500 1060 860 650 740	16 10 6 4	<pre>< 2 < 2</pre>	3 4 1 1 1	102 38 45 19 10	0.12 0.12 0.11 0.11 0.11	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	36 \$1 37 40 36	< 10 < 10 < 10 < 10 < 10 < 10	110 12 90 106 46	

Page Number :1-B Total Pages :2 Certificate Date: 14-JUL-98 Invoice No. :19823853 P.O. Number :23 Account :LOY

**

**

Page Number :2-A Total Pages :2 Certificate Date: 14-JUL-98 Invoice No. :19823853 P.O. Number :23 Account :LOY

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers 212 Brocksbank Ave., North Vancouver Bridsh Columble, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

										CE	RTIF	CATE	OF A	NAL	YSIS	1	\982 3	853		
SUPLE	PREP	Au ppb FA+AA	Åg ppa	11 • •	λs ppm	Ва ррш	Be ppa	Bi ppn	Ca	Cd ppm	Co ppa	Cr ppm	Cu ppm	P= 3	Ga ppm	lig ppz	R X	La ppu	Ng N	Ma ppa
900N 325E 900N 350E 900N 375E 900N 400E 900N 425E	201 229 201 229 201 229 201 229 201 229 201 229		0.2 < 0.2 < 0.2 0.2 0.2 0.2	2.53 3.54 1.36 2.64 2.56	10 4 8	90 40 60 70 100	< 0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.15 0.05 0.22 0.16 0.23	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	# 5 4 9 7	9 7 8 10 9	12 7 5 15 17	1.75 1.85 1.30 2.08 1.91	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.03 0.03 0.05 0.05 0.04	< 10 < 10 < 10 < 10 < 10	0.16 0.09 0.11 0.20 0.29	120 100 135 230 395
900M 450E 900M 475E 900M 500E 900M 525E 575E 725M	201 229 201 229 201 229 201 229 201 229 201 229		< 0.2 0.6 2.0 < 0.2 < 0.2	1.66 2.69 3.26 2.96 1.95	4 8 5 20	50 60 80 80 70	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.10 0.13 0.20 0.30 1.71	< 0.5 0.5 3.0 < 0.5 < 0.5	7 6 6 20	7 7 7 9 10	7 8 17 7 29	2.01 1.89 1.75 2.16 6.87	< 10 < 10 < 10 10 < 10	2 < 1 < 1 < 1 < 1 < 1	0.02 0.03 0.03 0.03 0.03 0.04	< 10 < 10 < 10 < 10 10	0.10 0.11 0.14 0.14 0.23	730 840 540 260 780
575# 738# 575# 750# 575# 763# 575# 775#	201 229 201 229 201 229 201 229 201 229	, , , , , , , , , , , , , , , , , , , ,	0.4 0.2 0.2 0.4	3.81 2.23 1.62 2.83	34 10 12 12	80 90	< 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2	0.45 0.12 0.13 0.32	< 0.5 < 0.5 < 0.5 < 0.5	13 6 7 11	15 7 11 16	31 8 10 29	3.75 2.07 2.01 2.98	10 < 10 < 10 < 10	<1 <1 <1 <1	0.07 0.04 0.04 0.09	< 10 < 10 < 10 < 10	0.57 0.13 0.15 0.65	310 210 970 470
÷										1										
		~																		
:																				
	,																			
l	1 1																			

 \bigcirc

Chemex Labs Ltd. Analylical Chemiets * Geochemiets * Registered Assayers 212 Brooksbenk Ave. British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

CERTIFICATION:	, !		
	•		
**		Page Numbe	or :2·8

ber:2-8 as:2 Date:14-JUL-98 5.:19823853 ber:23 :LOY Total ----Certificate Da. Invoice No. P.O. Number Account

												CE	RTIF	CATE	OF A	NAL	/SIS	A9823853
SAMPLE		rep Ode	M DP		Na ¥	ni ppm	P ppm	₽b ppa	Sb ppa	Sc ppm	Sr ppm	ti t	Tl ppm	U ppm	V ppm	N PPR	2n pps	<u></u>
90H 325E 90H 350E 90H 350E 90H 400E 90H 400E	20 20 20	1 229 1 229 1 229 1 229 1 229 1 229		1 0. 1 0. 3 0.	01 01 01 01 01	9 5 6 21 18	530 1460 550 560 470	4 4 4 12	***	1 1 3 3	16 7 15 25 53	0.10 0.10 0.09 0.11 0.11	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	38 34 32 39 38	< 10 < 10 < 10 < 10 < 10	66 52 66 140 138	
00N 4502 00N 4752 00N 5002 00N 5252 752 7258	20 20 20	1 229 1 229 1 229 1 229 1 229 1 229		4 0. 3 0. 2 0.	03 03 03 02 01	10 5 9 10 17	350 590 530 630 390	6 6 76 12 < 2	< 2 < 2 < 2 < 2 < 2 < 2	1 1 3 1 6	9 15 19 21 110	0.12 0.10 0.11 0.11 0.13 0.15	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	48 39 32 44 61	< 10 < 10 < 10 < 10 < 10 < 10	98 134 778 92 112	
752 738N 752 7500 752 763N 752 763N 752 7750	20	1 229 1 229 1 229 1 229 1 229		4 0. 1 0.	01 02 01 02	29 12 19 27	320 370 350 460	12 10 6 4	< 2 < 2 < 2 2 2	4 1 1 7	77 37 44 97	0.11 0.10 0.09 0.15	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10	52 39 40 77	< 10 < 10 < 10 < 10 < 19	182 128 126 186	
			"															
			-															
		-																
		1	I													CERTIEN		HartBick

Chemex Labs Ltd.

:1-A ;2 e:03-AUG-98 :19826084 :23 :LOY

**

alytical Chemists * Geochemists * Registered Assayen 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

										CE	RTIFL	CATE	OF A	NAL	YSIS	1	\9826	084		
SIMPLE	PREP	hu ppb 72+22	λg ppa	ы ¥	ks ppn	Be ppu	Be ppn	Bİ ppm	Ca.	Cđ ppm	Со урж	Cr pp=	Cu ppm	70 3	Ga ppa	Eg ppa	к *	La ppm	Ng 1	Mn ppu
100M 000 100M 025E 100M 050E 100M 075E 100M 100E	201 229 201 229 201 229 201 229 201 229 201 229	5 < 5 < 5 < 5 < 5	< 0.2 < 0.2 < 0.1 < 0.2 < 0.2	2.57 3.06 2.57 2.38 3.21	16 4 10 20	70 70 90 90 140	0.5 0.5 0.5 < 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	1.44 0.31 0.31 0.39 0.47	0.5 0.5 0.5 < 0.5 0.5	12 10 \$ \$ 12	22 21 16 17 31	29 19 18 19 32	3.70 3.20 2.63 2.51 3.46	< 10 10 < 10 < 10 10	< 1 < 1 < 1 < 1 < 1	0.03 0.03 0.03 0.03 0.03 0.04	< 10 < 10 < 10 < 10 < 10 10	0.32 0.32 0.25 0.26 0.49	895 345 555 720 \$55
LOOM 1258 LOOM 1508 LOOM 1758 LOOM 2008 LOOM 2008	201 229 201 229 201 229 201 229 201 229 201 229	<pre>< 5 < 5 < 5 < 5 < 5 < 5 </pre>	0.2 < 0.2 < 0.3 < 0.2 < 0.2	2.85 2.56 3.63 2.60 2.17	14 22 28 8	100 90 70 110 90	0.5 0.5 0.5 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.61 0.30 0.30 0.43 0.28	0.5 < 0.5 0.5 0.5 0.5	8 9 10 13 7	21 19 24 20 16	19 20 24 28 19	2.42 2.76 3.11 3.79 2.15	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.04 0.03 0.03 0.04 0.03	< 10 < 10 < 10 < 10 < 10 < 10	0.29 0.26 0.22 0.22 0.21	455 575 645 1480 820
100m 250m 100m 275m 100m 300m 100m 325m 100m 350m	201 229 201 229 201 229 201 229 201 229 201 229	****** * * * * *	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.13 2.48 2.14 2.28 2.28 2.25	6 6 1 6 8	70 40 70 60 150	< 0.5 < 0.5 < 0.5 < 0.3 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.23 0.11 0.29 0.26 0.76	< 0.5 < 0.5 0.5 0.5 1.0	7 5 7 9	19 9 16 20 28	18 9 13 14 16	2.25 1.76 2.34 2.68 2.11	< 10 < 10 < 10 < 10 < 10 < 10	<1 <1 <1 <1 <1	0.04 0.02 0.03 0.02 0.05	< 10 < 10 < 10 < 10 < 10 < 10	0.25 0.09 0.24 0.11 0.21	\$45 205 190 150 740
100N 375E 100N 400E 100N 425E 100N 450E 100N 450E	201 229 201 229 201 229 201 229 201 229 201 229	<pre></pre>	< 0.2 0.6 0.6 < 0.2 < 0.2	2.91 2.54 3.45 3.14 3.95	14	120 80 130 120 140	0.5 < 0.5 0.5 0.5 0.5	< 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.56 0.64 1.04 0.60 0.66	0.5 0.8 < 0.5 < 0.5 0.5	14 6 15 7 10	16 9 16 9 13	31 11 44 17 25	3.40 2.11 3.24 2.39 3.35	< 10 < 10 < 10 < 10 < 10 < 10	<1 <1 <1 <1 <1 <1	0.03 0.03 0.05 0.04 0.03	< 10 < 10 10 < 10 10	0.18 0.16 0.23 0.24 0.19	1165 680 895 540 800
100N 500E 100N 525E 100N 550E 100N 575E 100N 600E	201 229 201 229 201 229 201 229 201 229 201 229	5 10 10 15 < 5	1.2 < 0.2 < 0.2 0.4 < 0.2	4.25 2.91 3.34 2.\$1 1.53	14	140 50 90 70 40	0.5 0.5 0.5 0.5 < 0.5	****	0.71 0.22 0.75 0.48 0.17	0.5 < 0.5 0.5 1.5 1.0	15 6 19 19 4, 5	17 11 12 16 \$	49 10 30 33 6	4.01 2.25 4.55 3.75 1.70	< 10 < 10 < 10 < 10 < 10 < 10	<1 <1 <1 <1 <1	0.06 0.04 0.03 0.03 0.01	10 < 10 < 10 < 10 < 10	0.21 0.17 0.14 0.14 0.07	555 300 480 375 515
1008 6252 1008 6508 1008 6752 1008 7002 1008 7258	201 229 201 229 201 229 201 229 201 229 201 229	< 5 < 5 < 5 < 5 < 5 < 5	0.4 0.2 < 0.2 1.3 < 0.2	3.65 2.88 2.78 2.80 2.68	22 12	100 90 120 120 130	0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.98 0.54 0.32 0.30 0.31	6.0 5.0 1.0 < 0.5 < 0.5	24 18 8 5 5	36 19 19 15 17	68 38 15 11 11	4.84 4.26 2.45 2.04 2.04	< 10 < 10 < 10 < 10 < 10	<1 <1 <1 <1 <1	0.04 0.04 0.05 0.04 0.04	< 10 < 10 < 10 < 10 < 10 < 10	2.21 0.19 0.28 0.27 0.27	540 900 220 160 250
100N 750E 100N 775E 100H 800E 100H 825E 100H 825E	201 229 201 229 201 229 201 229 201 229 201 229	<pre></pre>	< 0.3 < 0.2 0.2 0.2 < 0.2	3.40 3.58 3.16 3.55 2.11	\$ 14 16 4	100 80 200 160 60	0.5 0.5 < 0.5 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.10 0.14 0.19 0.24 0.13	< 0.5 0.5 < 0.5 1.5 0.5	6 7 9 25 6	14 12 34 39 9	10 8 17 58 7	2.10 2.10 2.59 3.69 1.78	< 10 < 10 < 10 < 10 < 10	<1 <1 <1 <1 <1	0.04 0.04 0.09 0.09	< 10 < 10 < 10 < 10 < 10 < 10	0.30 0.20 0.43 0.65 0.10	335 770 195 340 655
100M 875E 100M 900E 100M 925E 100M 950E 100M 975E	201 229 201 229 201 229 201 229 201 229 201 229	< 5 < 5	< 0.2 0.2 < 0.2 < 0.2 < 0.2 0.2	3.52 3.04 1.59 3.20 2.57	10 20 8 12 14	70 350 60 140	0.5 < 0.5 < 0.5 < 0.5 < 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.10 0.36 0.24 0.20 0.57	0.5 0.5 < 0.5 0.5 0.5	6 25 5 7 8	10 9 10 20	6 55 5 9 29	1.75 3.88 1.67 1.94 2.40	< 10 10 < 10 < 10 < 10	<1 <1 <1 <1 <1	0.01 0.12 0.03 0.03 0.04	< 10 < 10 < 10 < 10 10	0.09 1.14 0.11 0.15 0.52	220 365 230 130 395
<u> </u>			<u> </u>											CERTIFI	CATION:	• \	:Lt.	(S~	Ala	م

##

 \bigcirc .

Chemex Labs Ltd. Analylical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

										CE	RTIF	CATE	OF A	NAL	(SIS	A9826084
SANCPLE	PREP CODE	No ppu	Na N	ni ppm	P PPm	9b ppm	Sb 992	Sc ppa	Sr ppa	Tİ X	Ť1 ppm	U PPm	7 ppa	N DDM	Zn ppm	
05 000	201 229	2	0.15	55 35	890 470	12 12	< 2	3	453	0.09	< 10 < 10	< 10 < 10	50 \$1	< 10 < 10	150 146	
ON 075E	201 229 201 229 201 229 201 229	1 1 1	0.03 0.03 0.04	24 20 40	690 690 690	10 10 12	< 2 < 2 < 2	3 3 6	117 201	0.12 0.12 0.14	< 10 < 10 < 10	< 10 < 10 < 10	53 52 70	< 10 < 10 < 10	138 112 144	
ON 1258 ON 1508	201 229	2	0.02	21	820	12 10	< 2	3	104	0.14	< 10 < 10	< 10 < 10	59 55	< 10 < 10	138 124	
ON 175E ON 200E ON 225E	201 229 201 229 201 229	1	0.02 0.01 0.01	30 44 19	830 870 630	12 10	< 2 < 2 < 2	3 3 3	95 109 46	0.13 0.12 0.11	< 10 < 10 < 10	< 10 < 10 < 10	61 43 49	< 10 < 10 < 10	144 206 142	
ON 250E ON 275E ON 300E	201 229 201 229 201 229	1	< 0.01 0.01 < 0.01	21 10 21	910 980 640	10	< 2 < 3 < 2	3	19 16 56	0.09 0.11 0.11	< 10 < 10 < 10	< 10 < 10 < 10	49 38 52	< 10 < 10 < 10	108 92 206	
OM 3258 OM 3508	201 229 201 229	3	0.01 0.01	23 22	500 1120	ł	< 2	2	64 129	0.12	< 10 < 10	< 10 < 10	64 43	< 10 < 10	200	
03 375E	201 229 201 229 201 229 201 229	2 1 2	0.02 0.03 0.05	47 16 53	900 850 1270	10 14 20	< 2 2 2 < < < <	4	173 129 370	0.12 0.11 0.08	< 10 < 10 < 10	< 10 < 10 < 10	51 37 29	< 10 < 10 < 10	176 \$42 174	
1031 4252 1041 4502 3031 4752	201 229 201 229 201 229	1 1	0.04	22 38	870 1170	16 20	< 2	2	183 295	0.11 0.11	< 10 < 10	< 10 < 10	31 34	< 10 < 10	90 118	
ON 5008	201 229 201 229	3	0.02	60 12	1190 820	18	< 2	4	487 68 539	0.11 0.11 0.11	< 10 < 10 < 10	< 10 < 10 < 10	38 41 42	< 10 < 10 < 10	178 94 142	
00M 550M 00M 575E 00M 600E	201 229 201 229 201 229	3 3 1	0.02 0.01 0.01	50 53 9	960 830 620	12 10 6	< 2 < 2 < 2	2 3 < 1	115 20	0.11	< 10 < 10	< 10 < 10	54 44	< 10 < 10	258 132	
ON 625E	201 229	65	0.01 0.01	141 74	590 600	10 12	< 2 < 2	23	250 167	0.11	< 10 < 10	< 10 < 10	92 66 62	< 10 < 10 < 10	1080 540 384	
03 6752 03 7002 03 7252	201 229 201 229 201 229	3 1 1	0.01 0.01 0.01	30 13 14	250 150 260	10 12 14	< 2 < 2 < 2	3 3 3	70 37 47	0.13 0.14 0.14	< 10 < 10 < 10	< 10 < 10 < 10	51 52	< 10 < 10 < 10	80 60	
10H 750E	201 229 201 229	3	0.01	13 12	1550 1270	12 10	< 2	2	20 13	0.13	< 10 < 10	< 10 < 10	43 46	< 10 < 10	164 164	
102 8002 102 8252 102 8502	201 229 202 229 201 229	1 4 1	0.01 < 0.01 0.01	16 65 7	630 960 1460	10 18 10	< 2 < 2 < 2	5 8 1	27 45 11	0.15 0.21 0.10	< 10 < 10 < 10	< 10 < 10 < 10	66 132 39	< 10 < 10 < 10	96 216 130	
OK \$752 OK 900E	201 229 201 229 201 229	2 2 1	0.01 0.03 0.01	23 7	2020 510 1170	10 16	< 2 < 2 < 2 < 2	1 11 1	9 45 18	0.12 0.23 0.09	< 10 < 10 < 10	< 10 < 10 < 10	34 108 41	< 10 < 10 < 10	128 138 90	
ON 9508	201 229 201 229	ĩ	0.01	16 18	920 1040	50 16	< 2	1	19 90	0.12 0.11	< 10 < 10	< 10 < 10	40 58	< 10 < 10	100 120	

Page Number :1-8 Total Pages :2 Certificate Date: 03-AUG-98 Invoice No. :19826084 P.O. Number :23 Account :LOY

Chemex	Labs	Ltd.
Analylical Chemists " Geocher	nists * Registered A	ssayers
212 Brooksbank Ave	North Vanco	uver

	Accoun
	Invoice P.O. Nu

44

Page Number :2-A Total Pages :2 Certificate Date: 03-AUG-98 Invoice No. : 19825084 P.O. Number :23 Account :LOY

C	C _A	alylical Cher 212 Brook British Co PHONE: 0	mists " Ge (sbank At lumbia, C	ochemiste /e., i anada	* Registere North Var V	id Assays hCOLIVER /7J 2C1	td.	•		a st	-				**			Total Pa Certifica Invoice I P.O. Nur Account	ges :2 te Date:0 No. :1 mber :2	
										CE	RTIFI	CATE	OF A	NAL)	/SIS	1	\9826	084		
Sample	PREP CODE	Ац ррб Танаа	Ag ppa	41 4	ks ppn	ĝa ppn	Be ppn	Bi ppm	Ca t	Cd pps	Со ррв	Cr ppa	Cu ppa	70 X	Ga pps	Hg ppa	к *	La ppn	Ng N	Xn ppn
300N 000 300N 0258 300N 0508 300N 0758 300N 100E	201 229 201 229 201 229 201 229 201 229 201 229	<pre></pre>	0.2 < 0.2 1.0 < 0.2 < 0.2 < 0.2	3.67 3.34 3.82 2.75 2.57	44 22 6 10 8	100 130 250 170 110	0.5 0.5 0.5 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.43 0.49 0.37 0.82 1.83	2.0 2.5 3.0 33.5 2.0	8 7 8 13 15	32 21 18 23 25	33 22 35 50 66	3.96 2.60 2.50 3.40 3.76	10 < 10 < 10 < 10 < 10	<1 <1 <1 <1 <1	0.06 0.04 0.07 0.17 0.27	< 10 < 10 < 10 < 10 < 10 < 10	0.40 0.36 0.49 0.49	295 465 340 1430 1845
3008 1258 3008 1502 3008 1502 3008 1752 3008 2002 3008 2255	201 229 201 229 201 229 201 229 201 229 201 229	<pre></pre>	0.6 0.6 < 0.2 < 0.3 < 0.2	1.99 2.26 2.46 2.54 2.56	20 24 14 16 15	80 80 140 100 130	0.5 0.5 0.5 0.5 0.5	< 2 < 2 < 3 < 3 < 2 < 2	6.51 7.50 1.59 1.59 1.14	2.5 2.0 1.5 1.5 1.5	28 29 17 23 19	20 20 24 29 27	105 87 70 102 65	4.91 5.00 3.93 4.24 4.03	< 10 < 10 < 10 < 10 < 10	<1 <1 <1 <1 <1	0.19 0.11 0.14 0.19 0.20	< 10 10 10 < 10 10	0.47 0.58 0.43 0.67 0.36	2220 1860 2010 1890 2430
300H 250E 300H 275E 300H 200E 300H 325E 300H 325E 300H 350E	201 229 201 229 201 229 201 229 201 229 201 229		< 0.1 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.24 2.73 2.01 2.38 2.86	14		< 0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.56 0.35 0.25 0.40 0.29	0.5 0.5 < 0.5 0.5 0.5	13 8 6 9 11	14 18 12 18 17	34 22 11 20 16	2.71 2.21 2.00 2.76 2.94	< 10 < 10 < 10 < 10 < 10 < 10	<1 <1 <1 <1 <1	0.08 0.10 0.03 0.05 0.03	< 10 < 10 < 10 < 10 < 10 < 10	0.38 0.26 0.16 0.25 0.22	1160 700 520 980 535
300H 375E 300H 400E 300H 425E 300H 450E 300H 450E	201 229 201 229 201 229 201 229 201 229 201 229	<pre>< \$ 10 < 5 10 < 5 10 < 5 10 < 5</pre>	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.35 2.53 2.79 3.24 3.52	1 1 1 1 1	60 130 70 160 80	< 0.5 < 0.5 0.5 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.39 1.19 0.40 0.84 0.37	0.5 0.5 < 0.5 0.5 0.5	7 13 11 15 12	11 17 11 25 12	13 33 13 30 23	2.14 3.55 3.45 4.00 3.18	< 10 < 10 < 10 < 10 < 10	<1 <1 <1 <1	0.03 0.04 0.02 0.04 0.05	< 10 < 10 < 10 10 < 10	0.13 0.30 0.09 0.27 0.13	235 1080 360 1770 475
300M 500E 300M 525E 300M 550E 300M 575E 300M 600E	201 229 201 229 201 229 201 229 201 229 201 229	< 5 < 5 < 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.43 3.26 2.64 3.05 2.97	6 2 6 6 1	80 100 80 60 80	< 0.5 0.5 < 0.5 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.14 1.21 0.90 0.09 0.11	< 0.5 0.5 < 0.5 < 0.5 < 0.5	4 20 8 4 4	7 7 7 9	9 19 6 8 9	1.69 3.30 2.11 1.67 1.71	< 10 < 10 < 10 < 10 < 10 < 10	<1 <1 <1 <1 <1	0.03 6.03 0.04 0.93 0.04	< 10 10 < 10 < 10 < 10	0.09 0.52 0.10 0.10 0.18	890 470 600 210 425
300H 625E 300H 650E 300H 675E 300H 700E 300H 725E	201 229 201 229 201 229 201 229 201 229 201 229 201 229		< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.22 2.39 3.70 4.07 1.96	< 2 6 6 6	50 60 70 50 100	< 0.5 < 0.5 0.5 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.07 0.13 0.09 0.09 0.11	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	5 4 4 5 5	7 7 9 11	6 6 10 5 9	1.59 1.78 1.82 1.97 1.68	< 10 < 10 < 10 < 10 < 10	<1 <1 <1 <1 <1	0.03 0.03 0.03 0.02 0.03	< 10 < 10 < 10 < 10 < 10	0.10 0.10 0.12 0.03 0.17	280 180 130 225 110
300N 750E 300N 75E 300N 800E 300N 800E 300N 825E	201 229 201 229 201 229 201 229 201 229	< 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2	3.04 2.56 2.43 1.78	6 8 8	50 80 60 110	0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2	0.06 0.21 0.15 0.33	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	3 4 4 5	6 9 10 16	4 10 8 10	1.62 1.80 1.60 1.59	< 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1	0.02 0.03 0.03 0.03	< 10 < 10 < 10 < 10 < 10	0.06 0.14 0.10 0.24	210 300 245 140
																	<u> </u>	<u>.</u>	-cinika	

CERTIFICATION: Butter

##

.

Page Number :2-B Total Pages :2 Certificate Date: 03-AUG-98 Invoice No. :19826084 P.O. Number :23 Account :LOY

ł

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayen 212 Brooksbank Ave., North Vancouver British Columbia, Canada V71 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

SANPLE DN 000 DE 025E DE 050E DN 075E DN 075E	PRI COI 201 201 201 201	DE 229 229	No pps 7	Ka X	B1 DDM	P	Pb										
0H 025H DH 050E DH 075H	201 201 201	229	7			ppa	ppa	Sb ppa	Sc ppm	Sr 999	Tİ X	Tl ppm	U ppm	V ppn	N 992	Zn. Dym	
	201		4 6 11	0.01 < 0.01 0.01 < 0.01 0.03	16 31 13 59 65	660 420 390 540 930	14 16 14 32 12	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 3	3 4 3 6 5	70 52 45 130 343	0.13 0.14 0.15 0.12 0.09	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	100 96 71 161 58	< 10 < 10 < 10 < 10 < 10 < 10	456 640 510 1860 268	
DM 1252 DM 1502 DM 1752 DM 2002 DM 2002 DM 2252	201 201 201 201 201	229 229 229		0.01 0.04 0.05 0.02 0.03	110 101 65 72 68	1260 1160 1400 1520 1310	20 10 14 14 14	< 2 < 2 < 3 < 3	4	821 977 301 210 209	0.06 0.07 0.07 0.08 0.08	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	48 55 56 55 54	< 10 < 10 < 10 < 10 < 10 < 10	356 334 238 242 278	
DW 250% DW 275% DW 300% DW 325% DW 325%	201	229 229	1 1	0.03 0.01 0.02 0.02 0.02	32 23 17 32 28	710 1280 1510 1850 879	10 10 8 10 8	< 2 < 2 < 2 < 2 < 2 < 2 < 2	4 3 1 3	110 56 41 77 108	0.08 0.09 0.08 0.08 0.11	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	47 35 36 42 49	< 10 < 10 < 10 < 10 < 10 < 10	160 196 150 254 174	
DN 3758 DN 4008 DN 4258 DN 4508 DN 4508	201 201 201 201 201 201	229 229	1 3	0.03 0.03 0.03 0.03 0.01	20 45 34 60 54	500 720 650 800 980	6 10 10 12 12	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	1 3 1 4 1	78 383 146 416 111	0.10 0.09 0.11 0.12 0.11	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	38 44 38 61 38	< 10 < 10 < 10 < 10 < 10	130 126 126 172 218	
DN 500E DN 5258 DN 550E DN 575E DN 600E	201 201 201 201 201 201	229 229 229	1 1	0.03 0.03 0.03 0.02 0.01	9 24 17 1 8	1290 610 440 780 640	8 14 12 8	< 2 < 2 < 2 < 2 < 2 < 2 < 2	1 4 1 1	19 214 200 12 12	0.10 0.11 0.10 0.12 0.12	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	35 50 32 34 35	< 10 < 10 < 10 < 10 < 10 < 10	78 66 40 88 86	
01 6252 01 6502 01 6752 01 7702 01 7252	201 201 201 201 201 201	229 229 229	1	0.01 0.02 0.03 0.02 0.02	7 5 7 5 10	840 650 820 1610 330	\$ \$ 10 \$	< 2 < 2 < 2 < 3 < 3	1 1 2 2 1	9 10 12 8 17	0.11 0.11 0.12 0.11 0.11	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	32 41 35 36 40	< 10 < 10 < 10 < 10 < 10 < 10	96 62 68 96 88	
DN 7508 DN 7758 DN 8008 DN 8258	201 201 201 201 201	229 229	1	0.03 0.02 0.02 0.01	4 8 7 10	1090 950 1190 280	1 1 6 1	< 2 < 2 < 2 < 2	1 1 1 3	6 22 15 63	0.10 0.11 0.10 0.12	< 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10	34 39 36 42	< 10 < 10 < 10 < 10 < 10	66 72 98 76	

CERTIFICATION: 1. H.B.A.S.

**

Page Number :1-A Total Pages :2 Cartificate Date: 15-AUG-98 Invoice No. : 19827423 P.O. Number : Account :LOY

Page Number :1-B Total Pages :2 Certificate Date: 15-AUG-96 Invoice No. : 19827423 P.O. Number : Account :LOY

C

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers 212 Brocksbank Ave., British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

										CE	RTIF	CATE	OF A	NAL	rsis	1	49827	423		
SAMPLE	PREP CODE	lu ppb Fl+ll	Ag ppa	11 \$	As ppn	Ba ppm	Be	Bi ppm	Ca N	Cđ ppm	Co ppm	Cr ppm	Cu pps	Fe X	Ga. ppm	Eg ppn	K L	La ppm	Ng X	Mn ppn
3005 000K 3005 025K 3005 050E 3005 075E 3005 100E	201 229 201 229 201 229 201 229 201 229 201 229		< 0.2 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.96 2.63 2.49 3.13 2.52	< 2 < 2 < 2 < 2 < 2	100 90 70 110 90	< 0.5 < 0.5 < 0.5 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.32 0.36 0.26 0.34 0.35	0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 7 5 9 7	16 10 11 24 15	13 17 7 22 11	2.00 2.08 1.76 2.76 1.85	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 1 < 1	0.06 0.05 0.03 0.04 0.05	< 10 < 10 < 10 < 10 < 10 < 10	0.19 0.32 0.12 0.37 0.19	265 260 335 315 480
3008 1258 3008 1508 3008 1758 3008 2008 3008 2258	201 229 201 229 201 229 201 229 201 229 201 229	< 5 < 5 < 5	< 0.2 < 0.2 0.2 < 0.2 < 0.2 < 0.2	2.96 2.30 3.21 2.72 2.63	4 < 2 < 2 2 < 2	150 70 70 80	0.5 < 0.5 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.40 0.35 0.33 0.34 0.10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	9 7 12 9	21 19 15 17 14	18 14 19 17 10	2.28 2.32 2.61 2.62 2.20	< 10 < 10 < 10 < 10 < 10 < 10	1 < 1 < 1 < 1 < 1 < 1	0.04 0.04 0.03 0.03 0.03	< 10 < 10 < 10 < 10 < 10 < 10	0.34 0.30 0.18 0.28 0.21	455 630 795 605 500
0008 2508 0008 2758 3008 3008 3008 3258 3008 3258 3008 3508	201 229 201 229 201 229 201 229 201 229 201 229	< 5 < 5 < 5	< 0.2 < 0.2 < 0.3 < 0.2 < 0.2	3.20 2.73 2.28 2.58 3.04	< 2 8 < 2 < 2 4	100 80 80 70 50	0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.27 0.49 0.31 0.19 0.26	< 0.5 < 0.5 0.5 < 0.5 < 0.5	9 7 6 7	24 25 18 16 17	17 23 15 9 9	2.52 2.65 2.09 2.27 2.46	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.04 0.03 0.03 0.03 0.03	< 10 < 10 < 10 < 10 < 10 < 10	0.37 0.45 0.26 0.27 0.25	395 380 260 120 255
000# 375# 300# 400# 300# 425# 300# 425# 300# 450# 300# 475#	201 229 201 229 201 229 201 229 201 239	< 5 < 5 < 5	< 0.2 < 0.2 < 0.2 0.2 < 0.2 < 0.2	3.50 2.05 2.43 2.74 3.05	< 2 < 2 10 < 2	70 80 90 70	0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.38 0.20 0.34 0.37 0.22	0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 8 7 8	16 19 15 18 14	14 19 10 19 10	2.21 2.39 1.98 2.36 2.15	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.03 0.03 0.04 0.04 0.03	< 10 < 10 < 10 < 10 < 10	0.82 0.39 0.22 0.25 0.23	410 480 635 505 230
300# 500# 300# 525# 300# 675# 300# 900# 300# 925#	201 229 201 229 201 229 201 229 201 229 201 229	< 5 < 5 < 5	< 0.2 0.2 0.8 < 0.2 < 0.2	2.66 2.20 3.79 1.84 2.64	< 2 < 2 < 2 10	120 50 130 60 200	< 0.5 < 0.5 0.5 < 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.63 0.21 1.02 0.36 2.66	< 0.5 < 0.5 0.5 0.5 3.5	10 7 19 5 11	28 12 16 \$ 15	21 8 41 12 25	2.72 2.15 4.12 1.71 2.00	< 10 < 10 < 10 < 10 < 10 < 10	<1 <1 <1 <1 <1	0.05 0.04 0.05 0.03 0.12	< 10 < 10 < 10 < 10 < 10	0.33 0.13 0.60 0.12 1.38	195 465 475 110 885
0008 9502 3008 9752 3008 10002 3008 10252 3008 10252	201 229 201 229 201 229 201 229 201 229 201 229	< 5 < 5 < 5	<pre>< 0.2 0.2 0.2 0.2 0.2 0.2</pre>	2.16 2.06 1.63 2.19 1.57	< 2 < 2 < 2 < 2 < 2 < 2 < 2	160 130 110 50 \$0	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 2	0.40 0.45 0.14 0.18 0.45	0.5 0.5 < 0.5 < 0.5 < 0.5	7 6 6 6 6	10 14 10 9	13 13 7 . 5 7	1.88 1.92 1.57 1.76 1.26	< 10 < 10 < 10 < 10 < 10	<1 <1 <1 <1 <1 <1	0.04 0.07 0.03 0.03 0.03	< 10 < 10 < 10 < 10 < 10	0.29 0.57 0.15 0.15 0.11	1015 380 415 105 150
3008 1075E 3008 1106E 3008 1125E 3008 1125E 3008 1150E 3008 1175E	201 225 201 229 201 229 201 229 201 229 201 229	< 5 < 5 5	0.2 < 0.2 < 0.2 0.2 < 0.2 < 0.2	2.66 2.36 2.48 1.96 2.37	< 2 < 2 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4	70 70 40 30 80	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.18 0.22 0.11 0.06 0.15	0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 5 3 6	17 9 8 5 10	10 7 6 4 9	2.03 1.68 1.75 1.27 1.64	< 10 < 10 < 10 < 10 < 10 < 10	<1 <1 <1 1 <1	0.03 0.06 0.05 0.03 0.04	< 10 < 10 < 10 < 10 < 10 < 10	0.20 0.12 0.12 0.05 0.17	140 230 465 215 100
3008 12008 3008 12258 3008 12508 4008 2008 4008 2058	201 229 201 229 201 229 201 229 201 229 201 229	< 5 < 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.37 3.26 3.85 2.34 2.12	(15)	50 140 60 80 60	< 0.5 < 0.5 0.5 < 0.5 < 0.5	<pre>< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2</pre>	0.15 0.22 0.06 0.30 0.25	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 5 5 7 7	7 12 6 17 14	4 10 4 17 13	1.59 2.46 1.92 2.19 1.42	< 10 < 10 < 10 < 10 < 10 < 10	<1 <1 2 <1 <1	0.03 0.04 0.03 0.03 0.04	< 10 < 10 < 10 < 10 < 10 < 10	0.11 0.13 0.06 0.29 0.22	810 645 690 545 360
L		<u> </u>															. ·	172	Rai	3.

Hant Sicille CERTIFICATION:

**

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayors 212 Brooksbank Ave., British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

										CE	RTIFI	CATE	OF A	NALY	'SIS	A9827423
SAMPLE	PREP	No ppn	Na t	Ni ppm	P PPm	Pb pgm	Sb ppn	Sc ppm	Sr ppn	ti 4	71 99#	U ppa	V ppa	N Bôr	žn ppm	
00# 000# 00# 025E 00# 050# 00# 075E 00# 100E	201 239 201 239 201 239 201 239 201 239 201 239 201 239	1 2 1 1 1	0.02 0.01 0.02 0.03 0.03	15 14 12 29 16	1080 960 920 400 1270	10 8 8	< 2 < 1 < 2 < 2 < 2 < 2	3 3 1 6 3	53 61 42 104 56	0.11 0.11 0.10 0.14 0.10	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	43 51 40 61 40 50	< 10 < 10 < 10 < 10 < 10 < 10	126 108 114 114 128	
002 1255 003 1502 002 1755 002 2002 003 2256	201 229 201 229 201 229 201 229 201 229 201 229 201 229	4 1 4 1 1 4 1	0.03 0.02 0.03 0.02 0.01	22 17 28 25 14	750 1050 880 930 820	\$ \$ 10	4 4 2 4 2 4 2 4 2	4 3 3 2	91 72 86 69 33	0.12 0.11 0.11 0.11 0.11	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	50 45 47 45	< 10 < 10 < 10 < 10 < 10 < 10	104 124 112 94	
00# 250# 00# 275# 00# 300# 00# 335# 00# 350#	201 219 201 229 201 229 201 229 201 229 301 229	< 1 1 2 1	0.02 0.03 0.02 0.01 0.02	21 26 19 14 19	970 630 480 650 790	10 8 8 10	< 2 < 2 < 2 < 2 < 2	2	60 109 58 34 82	0.12 0.13 0.11 0.13 0.13 0.11	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	49 58 48 67 49	< 10 < 10 < 10 < 10 < 10	94 120 110 108 184	
00# 375E 00# 400E 00# 425E 00# 450E 00# 450E	201 229 201 229 201 229 201 229 201 229 201 229	< 1	0.04 0.03 0.02 0.03 0.03	15 25 16 21 18	990 1000 1040 690 590	6 6 6 6 6	< 2 < 2 < 2 < 2 < 2	1 2 4 2	82 70 50 132 43	0.13 0.12 0.11 0.12 0.12	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	43 51 44 50 49	< 10 < 10 < 10 < 10 < 10	124 124 122 116 128	
008 5001 008 5252 008 8752 008 9002 008 9252	201 229 201 229 201 229 201 229 201 229 201 229 201 229	1 < 1 1 < 1 < 1 < 1	0.01 0.03 0.03 0.03 0.03	34 13 26 10 11	250 890 1200 350 1390	8 4 12 6 24	< 2 < 2 < 2 < 2 < 2 2	4 1 1 5	180 36 175 39 236	0.15 0.11 0.12 0.08 0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	71 46 74 36 34	< 10 < 10 < 10 < 10 < 10 < 10	100 116 160 130 196	
008 9502 008 9752 008 10002 008 10252 008 10252	201 229 201 229 201 229 201 229 201 229 201 229 201 229	< 1 1 1 1 1	0.02 0.01 0.02 0.01 0.01	13 14 8 11 15	1000 350 490 530 660	10 6 6	< 2 2 3 3 3 4 2 4 2	3 3 1 1 1	68 60 16 17 25	0.06 0.09 0.10 0.10 0.07	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	37 43 37 42 26	< 10 < 10 < 10 < 10 < 10 < 10	164 128 102 120 92	
05 10752 05 11002 05 11252 05 11252 05 11502 05 11752	201 229 201 229 201 229 201 229 201 229 201 229 201 229	1 1 1 1 1 1	0.01 0.02 0.02 0.02 0.02 0.01	19 9 7 11	300 1040 1060 790 490	\$ 4 5 2	< 2 < 2 < 2 < 2 < 2 < 2 < 2	21111	27 17 12 5 18	0.11 0.10 0.09 0.08 0.09	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	57 38 38 21 26	< 10 < 10 < 10 < 10 < 10 < 10	142 126 116 58 62	
00\$ 1200E 00\$ 1225E 00\$ 1250E 00\$ 200E 00\$ 200E	201 229 201 229 201 229 201 229 201 229 201 229 201 229	1 2 1 < 1 < 1	0.01 0.02 0.01 0.01 0.01	5 10 4 17 14	830 290 1020 950 910	6 8 6 12	< 1 < 2 < 2 < 2 < 2	1 2 3 3	12 38 6 52 40	0.09 0.08 0.10 0.09 0.08	< 10 < 10 < 19 < 10 < 10	< 10 < 10 < 10 < 10 < 10	41 48 33 44 38	< 10 < 10 < 10 < 10 < 10	84 100 70 88 80	

CERTIFICATION: "Hant Bickle

Chemex Labs Ltd. Analytical Chemista * Geochemista * Registered Assayera 212 Brocksbank Ave., British Columbia: Canada V7J 2CT PHONE: 604-984-0221 FAX: 604-984-0218

Page Number	:2-A
Total Pages	2
Certificate Da	te: 15-AUG-98
Invoice No.	:19827423
P.O. Number	1
Account	LOY

##

LOY

													0	DTIC	0 A T -	or -	BLAS S	1010					
<u> </u>		1								· · ·				RTIFI	CATE	UF A	INAL	YSIS	-	A9827	423		
	SAMPLE	PR CO		Lu pph 71+11		Ag pşal	- 11	As ppu	Ba. ppm	Be ppm	Bi PDm	Ca.	Cđ.	Co ppm	Cr ppn	Са ррж	. 74 X	Ga ppm	Hg ppm	X X	La	Ng X	No. Ppa
4005 4005 4005 4005	2755 3008 3258	201 201 201	229 229 229 229 229 229	< 5 < 5 < 5 < 5 < 5	~ ~ ~	0.2 0.2 0.2 0.2 0.2	2.92 2.54 2.54 2.69 2.65	< 2 12 < 2 < 2		0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.20 0.18 0.29 0.21 0.11	< 0.5 0.5 0.5 0.5 < 0.5	7 6 7 7 5	17 14 18 16 9	11 11 10 9 5	2.12 1.87 1.87 1.90 1.70	< 10 < 10 < 10 < 10 < 10 < 10	< 1 3 < 1 < 1 < 1	0.02 0.03 0.03 0.03 0.03	< 10 < 10 < 10 < 10 < 10 < 10	0.31 0.20 0.21 0.22 0.10	235 320 450 460 245
	425E 425E	201 201 201 201 201 201	229 229 229	< \$ < \$ < \$ < \$ 10	~ ~	0.2 0.2 0.2 0.3 0.3	3.28 1.93 1.24 2.34 2.65	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 3	60 80	0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.20 0.11 0.33 0.16 0.10	0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 4 3 6	13 9 13 13 14	15 5 10 9 16	1.89 1.57 1.32 1.73 2.23	< 10 < 10 < 10 < 10 < 10 < 10	<1 <1 <1 <1 <1 <1	0.04 0.02 0.03 0.04 0.03	< 10 < 10 < 10 < 10 < 10 < 10	0.10 0.10 0.18 0.16 0.15	220 125 145 320 235
008 5 008 5 2531 4 2531 4 2531 4	525E 100E 125E	201 201 201 201 201	229 229 229	10 15 5 15 5	<		2.61 2.04 3.35 2.03 2.11	10 < 3 6 28 2	80 70	0.5 < 0.5 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	12 6 8 8	29 18 8 14 9	27 14 11 15 12	2.91 1.93 1.77 2.88 3.25	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.03 0.03 0.04 0.04 0.04 0.03	< 10 < 10 < 10 < 10 < 10 < 10	0.34 0.23 0.17 0.24 0.15	250 215 180 545 720
25# 4 25# 5 25# 5 25# 5 50# 4	00E 25E 50E	201 201 201 201 201	229 229 229	< 3 < 5 < 5 5 5		0.2 0.2 0.2 0.2 0.2	2.30 2.12 1.31 2.96 2.51	< 1 < 2 < 2 < 2 < 2 < 2	70 60 130	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.36	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 7 7 10 6	15 9 8 28 10	17 8 6 16 13	2.19 2.17 2.76 2.45 1.72	< 10 < 10 < 10 < 10 < 10 < 10	<1 <1 <1 1 <1	0.06 0.04 0.05 0.05 0.05	< 10 < 10 < 10 < 10 < 10 < 10	0.29 0.17 0.10 0.53 0.22	290 505 1375 595 555
50M 4 50M 4 50M 4 50M 5 50M 5 50M 5	502 752 002	201 201 201 201 201 201	229 229 229	\$ - 5 - 5 5 5	< 1	0.2 0.2 0.2 0.2	2.45 2.17 2.86 2.16 2.83	< 2 < 2 < 2 4 < 2	60 90	< 0.5 < 0.5 0.5 < 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.25	0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 6 12 9 7	10 \$ 17 12 11	11 6 13 15 11	1.87 1.73 2.41 2.34 2.10	< 10 < 10 < 10 < 10 < 10 < 10	<1 <1 <1 <1 <1	0.05 0.04 0.03 0.06 0.06	< 10 < 10 < 10 < 10 < 10 < 10	0.20 0.14 0.29 0.23 0.17	650 750 390 860 410
503 5 75N 4 75N 4 75N 4 75N 4	00E 25E 50E	201 201 201 201 201	229 229 229	10 5 10 10 5	~ ~ ~ ~ ~).2).2).2	2.57 2.28 2.82 2.91 2.50	< 2 < 2 < 2 < 2 < 2 < 2	80 · 70 · 210 ·	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.13 0.20 0.36	< 0.5 < 0.5 0.5 < 0.5 < 0.5	14 5 7 5	29 \$ 12 \$ 9	21 10 12 12 11	2.99 1.44 1.90 1.69 7.44	< 10 < 10 < 10 < 10 < 10 < 10	<1 <1 <1 <1 <1	0.05 0.04 0.05 0.03	< 10 < 10 < 10 < 10 < 10 < 10	0.50 0.14 0.21 0.41 0.15	345 195 345 695 680
7511 5 7511 5 7511 5 7511 5	25E 50E	201 201 201 201	229	< 5 < 5 < 5 < 5	< 0	1.2	2.74 2.58 2.16 2.17	< 2 < 2 < 2 < 6		0.5 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2	0.24	0.5 < 0.5 < 0.5 < 0.5	15 12 8 6	14 23 16 9	20 39 18 6	3.02 3.93 2.39 1.87	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1	0.05 0.01 0.05 0.03	< 10 10 < 10 < 10	0.23 0.37 0.30 0.13	1075 940 235 670

Hart Bielle CERTIFICATION:

##

.

Page Number :2-B Total Pages :2 Certificate Date: 15-AUG-98 Invoice No. :19827423 P.O. Number : Account :LOY

Chemex Labs Ltd. Analytical Chamists * Registered Assayers 212 Brocksbark Ave., British Columbia, Canada V7/2C1 PHONE: 604-984-0221 FAX: 604-984-0218

										CE	RTIF	ICATE	OF /	NAL	ysis	A9827423
SAIPLE	PREP CODE	Mo ppm	Na t	¥1 Şpu	P Ppm	Pb ppn	Sb ppm	Sc ppm	Sr ppn	Tİ X	T1 ppm	U ppm	V ppm	М ррж	Zn ppa	
1008 2508 1008 2752 1008 3008 1008 3258 1008 3508	201 229 201 229 201 229 201 229 201 229 201 229	< 1 < 1 2 1 < 1	0.03 0.02 0.03 0.02 0.02	14 16 18 17	540 820 470 900 2690	6 8 4 6 8	< 2 2 < 2 < 2 < 2 < 2 < 2	3 2 2 2	36 33 49 33 16	0.12 0.11 0.10 0.11 0.11	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	47 43 46 46 36	< 10 < 10 < 10 < 10 < 10 < 10	76 116 142 156 106	
00# 3752 00# 4002 00# 4252 00# 4252 00# 4502 00# 4755	201 229 201 229 201 229 201 229 201 229 201 229 201 229	< 1 1 1 1 1	0.02 0.01 0.01 0.01 0.01 0.02	14 7 7 12 20	1220 980 120 770 860	E 6 6 1 8	< 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 1 3 2 7	29 16 43 22 38	0.10 0.09 0.09 0.09 0.11	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	40 37 33 39 50	< 10 < 10 < 10 < 10 < 10 < 10	168 92 66 102 164	
00# 500# 00# 525# 25# 400# 25# 425# 25# 450#	201 229 201 229 201 229 201 229 201 229 201 229 201 229	1 1 1 1	0.01 0.01 0.01 0.01 0.01 0.01	30 16 10 15 12	910 480 590 680 590	10 6 10 8 20	<pre></pre>	4 3 2 3 2	52 39 17 14 14	0.12 0.00 0.11 0.10 0.11	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	64 45 30 61 55	< 10 < 10 < 10 < 10 < 10 < 10	136 94 74 146 158	
25H 475E 25H 500E 25H 525E 25H 525E 25H 550E 50H 400E	201 229 201 229 201 229 201 229 201 229 201 229	1 1 1 1 1	0.01 0.03 0.03 0.01 0.01	15 15 11 21 13	280 410 410 1290 620	6 6 13 10 20	< 2 < 2 < 2 < 2 < 2	4 1 1 4 3	41 26 26 47 30	0.12 0.11 0.09 0.13 0.10	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	47 42 37 57 36	< 10 < 10 < 10 < 10 < 10 < 10	100 146 130 168 132	
50N 425E 50M 450E 50M 475E 50M 500E 50M 525E	201 229 201 229 201 229 201 229 201 229 201 229 201 229	< 1 < 1 1 1 < 1	0.01 0.01 0.01 0.02 0.03	9 10 26 16 16	710 750 410 570 850	10 8 10 6	< 2 < 2 < 2 < 2 < 2	2 1 3 3	24 14 24 24 23	0.11 0.10 0.13 0.10 0.10	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	43 40 49 45 36	< 10 < 10 < 10 < 10 < 10 < 10	114 110 114 134 110	
50M 550E 75N 400E 75N 425E 75N 425E 75N 425E 75N 475E	201 229 201 229 201 229 201 229 201 229 201 229 201 229	< 1 1 1 1 1	0.01 0.02 0.01 0.01 0.01	30 8 11 9 11	\$50 \$30 930 450 630	8 4 12 8 6	< 2 < 2 < 2 < 2 < 2	4 2 2 2 1	70 12 18 31 13	0.14 0.09 0.10 0.10 0.11	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	67 29 43 29 65	< 10 < 10 < 10 < 10 < 10 < 10	114 82 122 98 104	
758 5002 758 5252 758 5505 758 5505 758 5752	201 229 201 229 201 229 201 229 201 229 201 229	1 < 1 1 1	0.02 0.03 0.01 0.01	27 45 19 13	730 590 480 520	8 14 12 10	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4 6 3 1	33 140 38 25	0.11 0.11 0.09 0.09	< 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	54 49 45 38	< 10 < 10 < 10 < 10 < 10	198 148 104 132	
				<u> </u>										EBTIER	ATION	tant Bichle

A9823855

Chemex Labs Ltd.	Analytical Chemists * Geochemists * Registered Assayers

Ċ

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

.

CERTIFICATE

A9823855

S CAP Project: P.O. # :

Samples submitted to our lab in Vancouver, BC. This report was printed on 14-JUL-98. ,

SAMPLE PREPARATION	DESCRIPTION	Geochem ring to approx 150 mesh 0-3 Kg orush and split Rock - save entire reject ICP - AQ Digestion charge	
SAMF	NUMBER	ត្តត្តត្ត ត្តត្តត្ត	
	CHEMEX	205 226 229 229	* NOTR

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, Tl, W.

ANALYTICAL PROCEDURES

							_		
CHEMEX CODE	NUMBER			DESCRIPTION	NOIL	METHOD	DETECTION	UPPER	
583	32		ing iqu	pph: Fuse 30 g sample	01e	FA-AAS	Ľ	0000	
2118	ត្ត		ppm: 32	32 element, soil		ICP-ARS	0.9	100.0	
2112	20	¥1 %	. 32 ej	32 element, soi	•••	ICP-AKS	10.01	15.00	
2121	4 0			32 element, soil 32 element - soil	-	ICP-AES	લ	10000	
2122	100			element,	soil à rock	TCP-ARS	- 10	10000	
2123	33		ppm: 32	32 element, a	4¥	ICP-AES		10000	
2124	22		32.01	%: 32 element, soil &		ICP-AES	0.01	15.00	
2125	21 C				ul i	ICP-AES	0.5	500	
2127	4 C1		100001 32	element, s	soll & rock soll & rock	ICP-AES	.	10000	
2128	32	8 5	32	ppm: 32 element, s		ICP-ARS	-1	00001	
2150	2	Fo %:	32 •1	<u>u</u>		ICP-AES	10.0	15.00	
1212						ICP-AES	11	10000	
2132	18	dd Sa		I ppus 32 element, soil & ro %: 32 element	soil & rock	ICP-ARS	₽¶ ,	10000	
2151	18			s ": Ja alwawne, soll & 1 La DDM: 32 alement, soil	k rock dile rock	ICP-AES	10.0	10.00	
2134	32		32 01	%: 32 element, goil E		ICP-ARS	5	10000	
2135	33		a: 32	ppm: 32 element, s		ICP-ARS	4 10	00001	
2136	M S		e : 32	element, s		ICP-AES) - -1	10000	
2120	1	Na X:	32 61	X: 32 element, soil &	1 & rock	ICP-AES	0.01	10.00	
2139	16			ni ppus 32 element, s Prime 33 element	BOIL & TOCK	ICP-AES	₽	10000	
2140	: e		m. 26		۰.	ICP-ARS	9	10000	
2141	32		33 33	element, s	soil & rock	TCP-AKS	N 6	10000	
2142	32	SC DDmr	32	۰.		TCP-ARG	4.	00001	
2143	8		m: 32		- 68	ICP-ARS	- - -	10000	
2144	(N) (M)	뷥	32 •1	%: 32 element, soi	l t rock	ICP-ARS	0.01	10.00	
2145	(1 (1) (1)		ш 33		oil £ rock	ICP-AES	9	10000	
	1 0			lement, so	soil E rock	ICP-AES	10	10000	
4140	1 6					ICP-ARS	-1	10000	
0110	4 6			w.	ч.	ICP-ARS	10	10000	
C#14	4		2	element, s	soil & rock	ICP-AES	(1	10000	
**									
<u></u>									
								:	
	<u>, </u>								

**

Page Number :1-A Total Pages :1 Certificate Date: 14-JUL-98 Invoice No. :19823855 P.O. Number :23 Account :LOY

Chemex Labs Ltd. Analytical Chemista * Geochemista * Registered Assayers 212 Brooksbank Ave., British Columbia, Carada V722C1 PHONE: 604-984-0221 FAX: 604-984-0218

										CE	RTIFI	CATE	OF A	ANAL	YSIS		A9823	855		
SAMPLE	PREP CODE	ли ppb Ул+лл	Ag ppm	11 *	да рра	3a. ppa	Be ppn	Bi ppm	Ca %	Cđ ppm	Со	Cr ppm	Cu ppe	Te X	Ga ppa	Eg ppm	я Х	La ppa	Ng S	Мо рра
121079 121080 123081 123082 123082 123083	205 226 205 226 205 226 205 226 205 226	* * * * * * * * * * * * * * * * * * *	0.4 0.2 0.6 0.2 < 0.2	2.59 3.33 2.76 3.92 1.34	26 < 3 < 1 < 2 12	230 300 120	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	1.31 2.09 4.09 5.14 \$.05	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	17 13 1 24 16	63 66 50 46 30	34 38 44 35 24	3.49 2.68 2.17 6.26 3.83	< 10 < 10 < 10 < 10 10 < 10	<1 <1 <1 <1 <1	0.40 0.20 0.34 0.43 0.11	< 10 < 10 < 10 < 10 < 10 < 10	1.00 0.45 1.50 0.86 0.37	270 205 115 400 415
123086 123085 123085 123086 123087 123089	205 226 205 226 205 226 205 226 205 226 205 226	<pre></pre>	< 0.2 0.2 0.2 0.2 0.2 2.6	2.19 2.72 0.95 1.73 0.91	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 3	4.06 12.85 2.85 11.20 7.35	< 0.5 < 0.5 < 0.5 0.5 53.5	9 6 3 2 5	49 14 66 42 21	25 15 9 205	2.28 1.96 0.95 2.41 4.39	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.09 0.09 0.04 0.01 0.02	< 10 < 10 < 10 < 10 < 10 < 10	0.21 0.21 0.39 0.71 0.37	350 500 205 3590 5970
123089 123099 223091 123093 123093	205 226 205 226 205 226 205 226 205 226 205 226		4.0 1.4 0.6 < 0.2 8.8	0.62 1.58 2.63 2.42 2.51	< 1 < 2 < 2 < 2 < 2 < 2 < 2 < 2	10 70 30 10 30	< 0.5 < 0.5 0.5 0.5 0.5	4 2 4 2 4 2 8	10.30 5.49 7.20 6.38 7.92	34.8 33.5 116.0 < 0.8 204	3 1 9 1 14	25 16 33 19 27	206 49 12 < 1 679	5.94 3.48 5.40 4.09 4.54	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.01 0.03 0.04 0.05 0.11	< 10 < 10 < 10 < 10 < 10 < 10	0.39 0.73 1.40 1.53 0.97	6780 9330 >10000 9540 7090
123094 123095 123095 123096 123097 123098	205 226 205 226 205 226 205 226 205 226 205 226		3.6 < 0.2 0.6 0.2 < 0.2	1.99 1.49 2.30 3.00 1.42	< 2 < 3 < 2 \$ \$ \$	30 110	0.5 < 0.5 < 0.5 < 0.5 < 0.5	* 2 * 2 * 2 * 2	7.24 1.83 2.94 0.59 0.83	\$.\$ 3.8 1.0 < 0.5 < 0.5	11 < 1 17 16 17	19 60 43 71 14	450 7 23 107 33	\$.62 1.57 3.76 3.73 6.98	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.04 0.19 0.11 0.66 0.07	< 10 < 10 < 10 < 10 < 10 < 10	1.07 0.56 0.58 2.38 0.92	7290 2550 265 375 365
123099 123100 123101 123102 123103	205 226 205 226 205 226 205 226 205 226 205 226	< \$	0.6 4.4 1.4 1.2 1.4	2.35 2.82 2.20 2.00 2.09	* 2 * 2 * 2 * 2 * 2		0.5 0.5 4 0.5 4 0.5	< 2 < 2 < 2 < 2 < 2 < 2	4.05 5.44 9.89 2.58 2.88	11.0 63.5 58.5 3.5 15.5	10 4 10 6 9	55 33 36 88 103	162 1 38 73 96	4.61 3.12 3.64 2.05 2.25	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.01 0.18 0.01 0.12 0.10	< 10 10 < 10 < 10 < 10 < 10	0.51 1.03 0.96 0.28 0.14	1030 4420 5870 135 90
123104 123105 123106 123107 123108	205 226 205 226 205 226 205 226 205 226 205 226	10 10 10 < 5 < 5	0.8 1.4 1.2 0.8 1.0	2.32 1.22 2.33 1.78 1.65	< 2 < 2 24 < 2 10	30 60 90	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	7.74 9.16 3.84 5.87 1.94	9.0 16.0 4.5 1.0 0.5	5 10 9 10 14	30 50 125 96 154	47 106 60 81 80	1.17 1.99 2.59 1.81 3.92	< 10 < 10 < 10 < 10 < 10 < 10	<1<1<1<1<1<1<1<1	0.06 0.03 0.13 0.26 0.13	< 10 10 10 10 < 10	0.06 0.03 0.20 0.47 0.66	255 205 80 115 125
233109 123310	205 226 205 226	70 \$	1.8	1.76	16 13		< 0.5 < 0.8	< 2 < 2	6.28 6.44	9,0 11.5	10 7	79 72	\$1 63	2.59 1.75	< 10 < 10	1 < 1	0.04 0.06	10 10	0.12 0.34	260

Hank Bille CERTIFICATION:

CERTIFICATION: Hant Bielle

Page Number : 1-B Total Pages : 1 Cartificate Date: 14-JUL-98 Invoice No. : 19823855 P.O. Number : 23 Account : LOY

.

**

123109

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave. British Columbia: Conada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

			PHONE:	604-964-0	221 FA	00: 604-1	84-0218			<u> </u>	CE	DTIC	ICATE			Veie	A9823855	
SAMPLE		REP ODE	Мо ррж	Na t	Ni ppm	9 PPa	Pb ppm	SD pps.	Sc ppn	Sr ppm	Î TI	T1 ppm	U ppa	v ppm	W ppa	ža ppa	A3023055	
079 080 081 082 083	20 20 20	5 226 5 226 5 226 5 226 5 226 5 226	() ()	0.22 0.30 0.15 0.10 0.07	13 12 30 23	900 950 630 1010 760	< 2 < 2 < 2 < 6 < 1	< 3 < 3 < 3 2 3 3	4 1 1 7 7	125 191 981 351 257	0.26 0.23 0.15 0.31 0.21	< 10 < 10 < 10 < 10 < 10	< 10 < 10 10 < 10 < 10 < 10	108 56 27 117 101	< 10 < 10 < 10 < 10 < 10 < 10	52 66 28 142 56	····································	
084 085 086 087 083	20 20 20	5 226 5 226 5 226 5 226 5 226		0.13 0.23 0.11 < 0.01 < 0.01	3 6 50 6	1000 780 210 390 140	< 2 < 2 6 126 376	< 2 < 2 2 1 2	< 1 1 2 1 1	180 780 225 502 105	0.12 0.09 0.07 0.08 0.06	< 10 < 10 < 10 < 10 < 10 < 10	10 10 < 10 10 < 10 < 10	30 12 12 23 15	< 10 < 10 < 10 < 10 < 19 < 10	40 28 62 132 4220		
089 090 091 092 093	201	226 226 226 226 226 226 226	· · · 1	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	1 3 42 5 17	90 180 280 210 500	\$68 230 44 < 2 760	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 4 4 4	123 111 297 196 430	0.03 0.07 0.09 0.10 0.14	< 10 < 10 < 10 < 10 < 10 < 10	10 10 10 < 10 10	12 \$ 118 22 27	< 10 < 10 < 10 < 10 < 10 < 10	2510 2070 7530 160 >10009		
094 095 094 097 092	201	226 226 226 226 226 226	1	< 0.01 0.08 0.04 0.06 0.06	24 3 12 11 1	\$70 150 930 \$50 \$30	76 6 6 2	2 2 4 2 4 2	1 5 22	220 111 62 118 47	0.17 0.03 0.23 0.21 0.34	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	63 10 85 190 111	< 10 < 10 < 10 < 10 < 10 < 10	468 388 94 60 68		
099 100 101 102 103	201	226 226 226 226 226 226	< 1 19	0.01 < 0.01 < 0.01 < 0.01 0.13 0.07	9 4 17 44 56	630 340 3130 670 730	444 \$710 2000 20 6	< 2 < 2 < 2 2 2 2	9 2 5 1 1	131 264 348 910 328	0.20 0.08 0.06 0.13 0.14	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 10 10 < 10	110 29 50 109 177	< 10 < 10 < 10 < 10 < 10 < 10	706 5960 3720 220 698		
104 105 106 107 108	205	226 226 226 226 226 226	11 . 34 16 \$ 1	0.29 0.14 0.05 0.09 0.05	34 90 58 41 47	620 1110 1620 1520 780	10 < 2 12 < 2 2 2	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 3	1 1 3 1 5	886 432 331 161 \$7	0.09 0.08 0.14 0.15 0.25	< 10 < 10 < 10 < 10 < 10 < 10	10 20 < 10 < 10 < 10 < 10	43 94 122 78 76	< 10 < 10 < 10 < 10 < 10 < 10	344 580 238 42 118		
10 9 110		226 226	17 13	0.09 0.11	66 47	1130 950	2	< 2 < 2	11	336 401	0.13 0.12	< 10 < 10	< 10 10	70 77	< 10 < 10	416 450		
	1																	

ţ

.

##

Page Number : 1-A Total Pages :1 Certificate Date: 03-AUG-98 Invoice No. :19826086 P.O. Number :23 Account :LOY

Chemex Labs Ltd. Analylical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave. British Colembia, Canada V712C1 PHONE: 604-984-0221 FAX: 604-984-0218

								·····				CE	RTIFI	CATE	OF /	NAL	YSIS		A9826	086		
	SAMPLE	PR CO		Au ppb FA+AA	λg ppm	A1 X	λs ppm	Ba ppm	Be ppm	Bi ppm	Ca ¥	Cđ ppm	Co	Cr PPE	Cu ppm	7e %	Ga ppu	Hg ppm	K ¥	La ppa	Жg	Mn ppm
123 123 123 123 123	112 113 114	205	226 226 226 226 226 226	< 5 < 5 < 5	0.6 0.4 < 0.2 0.8 2.0	1.72 0.61 3.88 2.53 3.47	10 2 92 6 26	30 20 180 90 30	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 0.5	< 2	4.70 >15.00 1.41 11.35 8.81	2.0 < 0.5 < 0.5 5.5 < 0.5	8 3 13 5 9	82 19 55 60 50	58 12 15 54 56	3.02 0.86 3.71 1.79 2.40	< 10 < 10 < 10 < 10 < 10 < 10	< 1 1 1 < 1 1	0.03 0.03 0.32 0.05 0.05	< 10 < 10 < 10 10 < 10	0.08 0.12 1.94 0.07 0.08	160 375 495 370 365
123 123 123 123 123	117 118 119 120	205 205 205 205	226 226 226 226 226	< 5 10 < 5	0.2 2.2 1.2 1.0 0.4	0.16 2.06 1.07 1.84 1.11	< 2 16 8 16 24	100 120	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 : < 2 < 2 < 2 < 2 < 2	15.00 5.02 2.27 2.74 1.27	< 0.5 5.5 0.5 < 0.5 1.5	1 9 3 3	10 70 93 85 109	7 89 39 61 55	1.20 2.42 1.32 1.29 2.59	< 10 < 10 < 10 < 10 < 10 < 10	1 < 1 < 1 < 1 < 1	< 0.01 0.04 0.13 0.25 0.16	< 10 < 10 < 10 < 10 10 < 10	0.26 0.05 0.13 0.47 0.65	885 215 115 140 180
123	121	205	226	10	0.8	2.30	26	50	< 0.5	< 2	1.03	1.5	11	163	93	4.11	< 10	< 1	0,17	< 10	0.76	370
											·											
																	•					

ilist Bride CERTIFICATION:

CERTIFICATION: Htat Breakly

•

**

 \bigcirc ,

Chemex Labs Ltd. Analytical Chemists ' Geochemists ' Registered Assayors 212 Brocksbark Ave., British Columbia, Canada V712C1 PHONE: 604-984-0221 FAX: 604-984-0218

Page Number :1-B Total Pages :1 Certificate Date:03-AUG-98 Invoice No. :19826086 P.O. Number :23 Account :LOY

I

									ſ	CE	RTIF	CATE	OF A	NALY	/SIS	A9826086	
SAMPLE	PREP CODE	Mo ppm	Kia L	ni Ppm	p ppm	Pb ppa	Sb ppm	Sc pps	Sr ppa	Tİ X	T1 ppm	U Ppe	V ppm	W Ppa	Zn ppa		
123 111 123 112 123 113 123 113 123 114 123 114	205 226 205 226 205 226 205 226 205 226 205 226	20 < 1 2 8 4	0.04 0.03 0.24 0.12 0.25	31 13 8 36 42	980 570 620 930 640	10 10 5 16 16	< 2 < 2 < 3 < 3 < 3	< 1 1 1	493 2680 210 1010 2260	0.13 0.03 0.15 0.10 0.10	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	112 11 86 56 30	< 10 < 10 < 10 < 10 < 10 < 10	162 42 68 250 40		
23 116 23 117 23 118 23 119 23 120	205 226 205 226 205 226 205 226 205 226 205 226	< 1 . 17 6 3 44	< 0.01 0.25 0.08 0.06 0.11	5 55 17 13 49	270 1050 720 1200 600	10 16 8 10 13	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	< 1 1 3 3 4	4160 559 220 140 43	0.01 0.10 0.12 0.12 0.12	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	7 48 37 42 178	< 10 < 10 < 10 < 10 < 10 < 10	40 286 44 30 112		
23 121	205 226	6	0.10	43	410	6	< 2	5	40	0.15	< 10	< 10	130	< 10	114		
												•					
,																	

Chemex Labs Ltd.

valytical Chemists ' Geochemists ' Registered Assayers 218 Brookbank Ava, North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

**

Page Number :1-A Total Pages :1 Certificate Date: 15-AUG-98 Invoice No. :19827422 P.O. Number : Account :LOY

Page Number :1-8 Total Pages :1 Certificate Date: 15-AUG-98 Invoice No. :19827422 P.O. Number : Account :LOY

											CATE			1313	/	49827	422		
PREP CODE	Au ppb FA+AA	Ag ppm	11 3	λs ppn	Ba Dpm 1	Be	BI ppm	Ca \$	Cđ ppm	Со рря	Cr pp=	Cu gym	Fa 3	Ga. ppn	Hg ppm	K X	La ppm	Ho	Ma ppm
205 226	< 5	< 0.2 < 0.2 < 0.2 0.2 0.2 < 0.2	1.99 2.55 4.59 5.06 0.55	< 2 < 2 < 2 < 2 < 2 < 2	130 < 1 30 < 1 20 < 1	0.5 0.5	2222	6.32 3.52 7.29 7.94 0.14	1.0 1.5 4.0 2.0 < 0.5	11 21 18 16 2	36 56 28 36 129	16 23 26 25 4	2.03 2.99 3.11 2.71 0.67	< 10 < 10 10 10 < 10	< 1 < 1 < 1 < 1	0.05 0.07 0.01 0.01 0.03	< 10 < 10 < 10 < 10 < 10	0.65 0.71 0.20 0.14 0.24	1565 1855 810 690 135
205 226 205 226 205 226 205 226 205 226 205 226	< 5 < 5 < 5 < 5 < 5 < 5	< 0.2 0.4 < 0.2 0.2 0.6	3.56 2.99 2.35 2.62 2.31	< 2 < 2 < 2 \$ 10	30 < 0 70 < 0 60 < 0).5).5).5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	6.64 1.96 1.88 5.66 1.70	2.5 < 0.5 < 0.5 < 0.5 < 0.5	10 12 24 6 7	54 93 208 95 129	19 63 26 66 61	1.61 3.12 3.36 2.14 3.21	< 10 < 10 < 10 < 10 < 10 < 10	<1 <1 <1 <1	0.06 0.21 0.09 0.23 0.29	< 10 10 10 < 10 < 10	0.38 0.63 2.28 0.37 0.46	615 190 400 245 170
205 226 205 226 205 226 205 226 205 226 205 226	10 5 5 10 60	0.8 0.2 0.4 0.6 2.4	3.98 2.25 3.65 2.36 2.12	< 2 < 2 12 10 66	10 < 0 110 0 360 < 0).5).5).5	< 1 > < 2 < 2		< 0.5 0.5 2.5 0.5 0.5	17 7 8 6 12	45 19 53 85 137	85 36 46 80 56	3.41 1.73 1.71 3.17 3.10	< 10 < 10 < 10 < 10 < 10 < 10	2 1 <1 <1 <1	0.01 0.05 0.14 0.53 0.43	10 < 10 10 10 < 10	0.05 0.04 0.17 0.76 0.95	750 1265 255 105 160
205 226 205 226 205 226 205 226 205 226 205 226	10 50 20 < 5 < 5	1.2 3.0 0.8 0.8 0.6	2.68 4.42 1.21 2.52 1.70	16 74 10 8 < 2	80 < 0 80 < 0).5).5).5	< 2 < 2 < 2	7.48 3.20 1.98 5.06 1.60	< 0.\$ < 0.5 0.5 5.3 0.5	8 23 7 8 7	54 45 110 54 100	\$6 12\$ 71 45 78	1.36 4.04 2.59 1.17 1.94	< 10 10 < 10 < 10 < 10 < 10	< 1 1 < 1 1 < 1	0.14 0.29 0.08 0.07 0.13	10 < 10 10 10 10	0.20 0.63 0.06 0.24 0.45	160 275 30 470 95
205 226 205 226 205 226 205 226 205 226 205 226	10 < 5 < 5 < 5 5	0.8 0.6 < 0.2 0.6 1.0	1.94 1.85 2.18 2.71 1.65	2 < 2 < 2 < 2 < 2 < 2	40 < 0 70 < 0 60 < 0	.5 .5 .5	< 2 < 2	1.54 8.35 8.75 10.80 2.03	< 0.\$ < 0.5 < 0.5 < 0.5 < 0.5	6 4 1 8 3	114 49 36 43 69	44 35 10 57 43	1.84 0.85 0.40 1.54 1.25	< 10 < 10 < 10 < 10 < 10 < 10	1 <1 <1 <1 <1	0.21 0.06 0.09 0.13 0.11	< 10 < 10 < 10 < 10 < 10 < 10	0.70 0.16 0.10 0.16 0.26	120 190 225 490 95
205 226	< 5	0.8	2.45	< 2	40 < t	5	< 2	12.60	0.5	2	35		0.26	< 10	< 1	0.03	10	0.04	645
	CODE 205 226	CODE PA/AL 205 226 5 205 226 4 205 226 4 205 226 4 205 226 4 205 226 5 205 226 5 205 226 5 205 226 5 205 226 10 205 226 10 205 226 10 205 226 10 205 226 5 205 226 5 205 226 5 205 226 5 205 226 5 205 226 5 205 226 5 205 226 5 205 226 5 205 226 5 205 226 5 205 226	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CODE PA+AA ppm X 205 226 < 5	CODE PAAA pps % ppa 205 226 < 5	CODE FAAL ppm % ppm h display="block">\begin{array}{c c c c c c c c c c c c c c c c c c c </math></td> <td>CODE PAAR ppm % ppm PAAAL ppm % ppm ppm ppm ppm ppm ppm ppm ppm % 205 226 < 5</td> < 0.2</td> 2.55 < 2	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CODE PAAR ppm % ppm PAAAL ppm % ppm ppm ppm ppm ppm ppm ppm ppm % 205 226 < 5</td> < 0.2	CODE PAAAL ppm % ppm ppm ppm ppm ppm ppm ppm ppm % 205 226 < 5	CODE PAAR ppm % ppm ppm ppm ppm ppm ppm ppm ppm % ppm % ppm ppm ppm ppm %	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	CODE PAAR ppm % ppm h display="block">\begin{array}{ c c c c c c c c c c c c c c c c c c c</math></td> <td>CODE PA+AA ppm t ppm t ppm ppm t ppm t ppm t ppm ppm ppm ppm ppm ppm t ppm ppm t ppm ppm t ppm ppm ppm t ppm ppm ppm t ppm >$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td> <td>CODE PAAAA ppm <td>CODE PA+AA ppm x ppm x ppm</td>	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	CODE PA+AA ppm t ppm t ppm ppm t ppm t ppm t ppm ppm ppm ppm ppm ppm t ppm ppm t ppm ppm t ppm ppm ppm t ppm ppm ppm t ppm n{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	CODE PAAAA ppm PA+AA ppm x ppm x ppm		

.

CERTIFICATION: Tank Suche.

##

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayors 212 Brocksbank Ave., Bridsh Columbia, Carada V7/3201 PHONE: 604-964-0221 FAX: 604-984-0218

<u></u>	······									CE	RTIF	CATE	OF A	NALY	rsis	A9827422
Sample	PREP CODE	Мо рра	Na X	Mi ppm	9 ppm	Pb ppn	Sb P pa	8с ррц	Sr ppa	ti t	Tì ppa	U PDM	V Dom	y Dom	2n pps	
23 122 23 123 23 124 23 124 23 125 23 125 23 126	205 226 205 226 205 226 205 226 205 226 205 226	2	< 0.01 < 0.01 < 0.01 < 0.01 0.01 0.06	7 11 10 10 3	780 990 1010 830 120	154 22 14 6	< 2 < 2 < 2 < 2 < 2 < 2	4 9 4 3	331 97 150 135	0.18 0.19 0.20 0.21	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	53 92 50 41	< 10 < 10 < 10 < 10 < 10	158 136 250 176	
23 127 23 128 23 129 23 130 23 130 23 131	205 226 205 226 205 226 205 226 205 226 205 226	<1 2 2 3 4	0.03 0.27 0.20 0.25 0.19	11 31 105 35 30	1060 620 1230 420 430	10 6 < 2 10 12	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	4	227 229 192 758 527	0.01 0.15 0.22 0.25 0.17 0.21	< 10 < 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10 < 10	46 56 83 67 118	< 10 < 10 < 10 < 10 < 10 < 10 < 10	18 198 76 54 126 100	
23 132 23 133 23 134 23 135 23 135 23 136	205 226 205 226 205 226 205 226 205 226 205 226	1	0.04 0.23 0.11 0.11 0.10	45 38 46 20 33	1270 1030 2690 1290 760	4 4 4 13	< 2 < 2 < 2 < 2 2	1 < 1 < 1 7 7	126 252 670 158 124	0.11 0.08 0.13 0.15 0.26	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	30 14 89 69 96	< 10 < 10 < 10 < 10 < 10 < 10	50 40 64 42 52	
23 137 23 138 23 139 23 140 23 141	205 226 205 226 205 226 205 226 205 226 205 226	8 2 9 7 5	0.21 0.24 0.03 0.13 0.11	34 9 33 49 41	1760 470 990 1310 690	2 18 6 6 6	***	1 7 1 1 4	577 186 39 389 110	0.15 0.20 0.18 0.10 0.15	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	44 114 57 32 31	< 10 < 10 < 10 < 10 < 10 < 10	36 30 26 250 64	
23 142 23 143 23 144 23 144 23 145 23 146	205 226 205 226 205 226 205 226 205 226 205 226	1 1 1 1 1 3	0.06 0.07 0.31 0.16 0.09	17 20 11 29 20	560 1360 1500 930 1050	2 6 5 2 8	< 2 < 2 < 2 < 2 < 2 < 2 < 2	7 1 4 1 1 1	44 617 1555 1130 137	0.11 0.07 0.06 0.11 0.10	< 10 < 10 < 10 < 10 < 10 < 10	< 10 10 < 10 10 < 10 < 10	48 19 9 20 21	< 10 < 10 < 10 < 10 < 10 < 10	42 33 26 28 28	
23 147	205 226	< 1	0,05	1\$	1700	< 2	< 2	< 1	470	0.05	< 10	< 10	7	< 10	16	

CERTIFICATION: Hart Bielle

Chemex Labs Ltd. Analylical Chemists * Glocohemists * Registered Assayers 212 Brooksberk Ave. British Columbia, Canada V71 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

A9824603

CERTIFICATE

Project: CAP P.O.#: 23

Sumples submitted to our lab in Vancouver, BC. This report was printed on 15-JUL-98.

PREPARATION	SAM	
DESCRIPTION	NUMBER SAMPLES	CHEMEX
); prev. prepared at Cheme	1	244

			ANALYTICAL	PROCEDURES	; .	
CHEMEX	NUMBER SAMPLES	na layot Pa	DESCRIPTION	METHOD	DETECTION	upper Limit
316	1	En %: Court.	Nitrig-HCL dig'a).).S	0.01	100.0
				·		

**

Chemex Labs Ltd.

212 Brocksbank Ave., North Vancouver British Columbia, Canada V7J2C1 PHONE: 604-984-0221 FAX: 604-984-0218

Certificate Date Invoice No. P.O. Number	:1 15-JUL-98 19824603 :23
	LOY

		· · ·		CERTIFICATE	OF ANALYSIS	A9824603
SAMPLE	PREP CODE	Zn %				
123093	244	1.57				
			i i			
-						
		4	l			S-1-1-
					CERTIFICATION:	Sato Tetrap

OVERLIMITS from A9823855

APPENDIX II

MAGNETIC AND VLF-EM DATA

Grant F. Crooker		Line and Station: +=Northing/Easting	925 587.5 925 600	56147 56019	7 -; 6 -;	<i>†</i> 7	
		-=Southing/Westing	line 900			er and a second s	
Area: Cap Claims		File Name: CPmavi01	900 000 900 025	56051 56042		4	
Grid: Cap			900 050	56058	5 0	6	
Date: July 1998			900 075	56123	3 3	2	
Instrument Type:	÷	Details:	900 100 900 125	56193 56208	3 - 2	2 3	
Scintrex MP-2:		Corrected Total Field Magnetic Values	900 125 900 150	56383	6 .	2	
Geonics EM-16:		In-Phase and Quadrature Values	900 175	56623	8 -6	2 8 5 6 7	
Station:	•	Seattle, Facing Easterly	900 200 900 225	56694 56193	13 - 11 -	5	
			900 225	56058	12 -	o .7	
Data Types: #1		Corrected Total Field Magnetic Values	900 275	56001	17 🚽	4	
#2		VLF-EM In Phase Values (percent)	900 300 900 312.5	56023 56027	20 -	-1	
#3		VLF-EM Quadrature Values (percent)	900 325	56010	21	1	
N/S E/W		#2 #3	900 337,5	56069			
tine 950	#1	#2 #3	900 350 900 362,5	56043 56036	18 - 2	2	
950 300	55983	7 -7	900 · 375	56047	14 .	5	
950 312.5 950 325	55984 55989	8 -5 13 -5	900 387.5	55995			
950 337.5	56005	13 -1	900 400 900 412.5	56123 55979	7 -9	9 8	
950 350	55010	18 1	900 425	56007	10 -	8	
950 362.5 950 375	56076 56084	17 -1 16 -6	900 437.5	56105	14 -	8	
950 387.5 🔇	56056	11 4	900 450 900 462.5	56092 55984	11 -) 15 -	·/ A	
950 400 950 950 412.5	56257 56093	9 -4	900 475	56027	16 -	3	
950 425 2	56142	8 -4 7 -6	900 487.5 900 500	56105 56283	15 - 16 -		
950 437.5	56113	6 4	900 512.5	56284	14 -		
950 450 950 462.5	56158 56128	16 -6 11 -4 9 -4 8 -4 7 -6 6 -4 10 -8 10 -6 13 -7	900 525	56233	0 - 4	8	
950 475	56077	13 -7	900 537.5 900 550	56171 56220	0 - 4	9 9	
950 487.5 950 500	56130	10 -S	900 562.5	56178	6 -{	8	
950 500 🔮 950 512.5 🕉	56226 56262	10 -5 7 -6	900 575 900 587,5	56007 55991		7 0	
950 525 🤄	56438	10 -6	900 600	55984	7 -12		
950 537.5 950 550	56388 56372	11 -5 11 -3	900 625	56057	6 - 6	8	
950 562.5	56332	12 4	900 650 900 675	55940 55947	8 -6 12 -6	8 5	
950 575 950 587.5	56209	7 -5	900 700	55976	12 🗳	4	
950 587.5 950 600	56081 56028	7 -7 5 -7	900 725 900 750	55972 56083	8 (-2 -3		
line 925			900 775	56057	1	3 2	
925 300 925 312.5	56080 56062	14 -5 16 -3	900 800	56048	0	2	
925 325	55995	17 -2	900 825 900 850	56019 56031	8 - 4 4	2 2 2 3 3 2 2	
925 337.5 925 350	55983	19 t	900 875	56063	3	3	
925 350 925 362.5	56011 56009	22 2 17 -2	900 900 900 925	56116 56123	7 -2 12 -2	2	
925 375	56036	12 -1	900 950	56123	-1 -2	2	
925 387.5 925 400	56030 56155	22 2 17 -2 12 -1 13 -3 9 -5 5 1	900 975	56145	1 (ō	
925 412.5	56089	5 1	900 1000 900 1025	56221 56254	5 1	1	
925 425	56063	6 -8	900 1050	56383	1 4	4	
925 437.5 925 450	56263 56079	5 -6 8 -8	900 1075 900 1100	56395 56485		2	
925 462.5	56008	7 -8	900 1125	56594	0 0		
925 475 925 487.5	56037 56075	12 -8	900 1150	56740		2	
925 500	56276	5 -6 8 -8 7 -8 12 -8 12 -7 13 -6 17 -8	900 1175 900 1200	56900 57046	7 2	2	
925 512.5	56571	17 -8	900 1225	57369	10 1	1	
925 525 925 537.5	56624 56451	17 -8 19 -4 17 -4 9 -7 7 -7	900 1250 line 875	57552	94		
925 550	56367	9 -7 7 -7	875 300	56034	22 1	1	
925 562.5 925 575	56311 56057	7 -7 7 -8	875 312.5	56055	20 2	2	
VEG UIG	30037	r 70	875 325	56077	18 C	0	

.

 \bigcirc

337.5 350 362.5 375 387.5 400 412.5 425 437.5 425 437.5 487.5 500 512.5 537.5 550 562.5 575 587.5 587.5 587.5 15 -2 -1 562.5 575 587.5 55957 55987 56023 56003 6 -11 -12 -11 -9 15 13 11 14 12 15 15 18 20 19 13 8 6 14 21 17 4-6-8-9-7 600 \$6001 58153 58156 58146 58168 58040 55782 56020 55782 56030 55857 56030 55857 55837 55837 55837 55837 55837 55837 55837 55837 55837 55835 55837 55835 558585 55856 55856 55856 55856 5585 10 12 17 18 22 77 22 1 35 24 24 22 22 24 22 20 20 13 16 4 5 8 8 *** õ -6 -8 3 -8 -7 3 -8 -7 -10 -10 5 5 5 7 56010 300 312.5 325 337.5 350 362.5 375 400 412.5 425 437.5 4452.6 4452.6 4452.6 4452.6 500 512.5 525 537.5 550 562.5 575 587.5 587.5 800 56019 56063 56074 56149 56179 56203 56133 56380 55951 55915 55984 55994 55984 55984 55984 55984 55984 55984 55984 55984 55984 55984 55985 55984 55985 55984 55985 55984 55985 56052 27 23 20 15 17 12 12 16 20 22 19 18 17 7 4 10114444919144449444449199 15 2 7 4 13 6 2 3 2 4 17 15 9 3 4 3 3 7 10 10 5 12 12 -1 8 14 14 6 8 0 3 1 300 312.5 325 337.5 350 362.5 375 387.5 400 412.5 425 437.5 450 462.5 475 500 512.5 537.5 537.5 550 56013 56015 56148 56538 56201 56034 56005 55005 55945 55944 55995 55957 55944 55995 55957 55957 55957 55957 55979 56099 56086 56098 56377 21 19 20 18 19 15 18 19 19 19 17 11 7 *********** 2 -5 -6 0 -2 -1 -1 1 42-1 1010 4100474 14 13 12 12 3 5 2 3 3 11 8 000 025 050 075 100 -6 -12 -5 -11 -10 55983 55987 55984 56061 56155 -12 -19 -15 -22 -24

-2 -6 -5 -4 -6 -3

1050 1075 1100 1125 1150 1175 1200 1225 1250 58185 55874 55827 55858 55924 55924 55948 55948 55982 55941 7 4 5 9 5 3 4 \$6384 \$6302 \$6302 \$5831 \$5831 \$5831 \$5831 \$5835 \$5855 \$5855 \$5855 \$5855 \$5857 \$5855 \$5857 \$5855 \$5857 \$5855 \$5857 \$5821 \$5855 \$5857 \$5855 \$58566 \$5856 \$5856 \$5856 \$5856 \$5856 \$5856 \$5856 \$5856 \$5856 \$5856 22 12 5 0 2 4 8 10 10 5 1 9 15 19 13 15 14 10 1 9 8 1 10 25 19 8 2 8 15 19 15 6 2 3 3 2444774747494949007869459tt459628224299949702222 55977 55022 55025 55251 55251 55251 55251 55025 55055 55055 55055 55055 55055 55055 55055 55055 55055 55055 55055 55052 550555 55055 025 050 075 100 125 250 275 250 225 250 325 350 325 350 375 400 425 450 425 550 555 550 575 600 55947 55993 55005 55759 56149 56180 56180 56180 56250 56130 56130 56130 56130 56250 56034 56009 56009 56009 56059 56059 56257 56354 56356 55959 55347 4 6 10 9 -2 -9 -25 -26 -21 9 0 4 7 8 55930 56051 55789 56052 56177 10 5 1 4 1 4 9 025 050 075 100 125 150 800-

-075 -100 -125 -150 -175 -200 -225 -250 -275 -300 -325 -350 -375 -400 650 770 726 750 775 800 800 826 850 976 950 990 900 900 900 900 1025 1050 1075 1150 1125 1220 55862 55894 558919 55884 55887 55877 55877 55877 55877 55873 55873 55873 55873 55873 55873 55874 55922 55925 55925 55926 55883 55884 55884 55884 55884 55884 55884 55884 55884 55884 55884 55884 55884 558972 55905 55905 55905 56041 56050 55975 55955 55934 55928 55929 55929 55929 55929 55929 3 1 -1 57254 57500 57651 57552 57099 57108 56837 56799 57048 56837 56799 56798 56799 56798 56837 56391 56336 56331 56331 56336 56331 56336 56353 56399 56384 56353 56399 56398 56394 56345 563657 56394 56365 563657 56321 563657 56321 563657 56321 56365 56321 563657 56321 56365 56321 563657 56321 56365 56321 563657 56321 563657 56321 563657 56321 563657 56321 563657 56321 563657 56321 563657 56321 563657 56325 56357 56325 563577 56357 56357 56357 563

()

APPENDIX III

GEOPHYSICAL EQUIPMENT SPECIFICATIONS

MP-2 PROTON PRECESSION MAGNETOMETER

Resolution: 1 gamma Total Field Accuracy: ± gamma over full operating range Range: 20,000 to 100,000 gammas in 25 overlapping steps. Internal Measuring Program: A reading appears 1.5 seconds after depression of Operate Switch & remains displayed for 2.2 secs. Recycling feature permits automatic repetitive readings at 3.7 sec. intervals. External Trigger: External trigger input permits use of sampling intervals longer than 3.7 seconds. Display: 5 digit LED readout displaying total magnetic field in gammas or normalized battery voltage. Data Output: Multiplied precession frequency and gate time outputs for base station recording using interfacing optionally available from Scintrex. Gradient Tolerance: Up to 5,000 gammas/meter. **Power Source:** 8 size D cells ≈25,000 readings at 25° C under reasonable conditions. Sensor: Omnidirectional, shielded, noisecancelling dual coil, optimized for high gradient tolerance. Harness: Complete for operation with staff or back pack sensor. Operating Temperature Range: -35 to +60° C. Size: Console, 8 x 16 x 25 cm; Sensor, 8 x 15 cm; Staff 30 x 66 cm; Console, 1.8 kg; Sensor, 1.3 kg; Weights: Staff, 0.6 kg; Manufacturer: Scintrex 222 Snidercroft Road Concord, Ontario

GEONICS LIMITED VLF EM 16

Source of Primary Field VLF transmitting stations Transmitting Stations Used: Any desired station frequency can be supplied with the instrument in the form of plug-in tuning units. Two tuning units can be plugged in at one time. A switch selects either station. **Operating Frequency Range:** About 15-25 Hz. Parameters Measured: 1- The vertical in-phase component (tangent of the tilt angle of the polarization ellipsoid). 2- The vertical out-of-phase (quad -rature) component (the short axis of the polarization ellipsoid compared to the long axis). In-phase from a mechanical inclinometer and quadrature from a calibrated dial. Nulling by audio tone In-phase ± 150%; guadrature ±40% Scale Range: Readability: ±1% Operating Temperature Range: -40 to 50° C. **Operating Controls:** ON-OFF switch, battery testing push button, station selector, switch, volume control, guadrature dial ±40%, inclinometer ± 150% 6 size AA alkaline cells ≈200 hrs. Power Supply: $42 \times 14 \times 9 \text{ cm}$ (16 x 5.5 x 3.5 in) 1.6 kg. (3.5 lbs)

> Monotonic speaker, carrying case, manual of operation, 3 station selector plug-in tuning units (additional frequencies are optional) set of batteries.

Geonics Limited 1745 Meyerside Drive/Unit 8 Mississauga, Ontatio L5T 1C5

Method of Reading:

Dimensions:

Weight:

Instrument Supplied With:

Manufacturer:

APPENDIX IV

ROCK SAMPLE DESCRIPTIONS

.

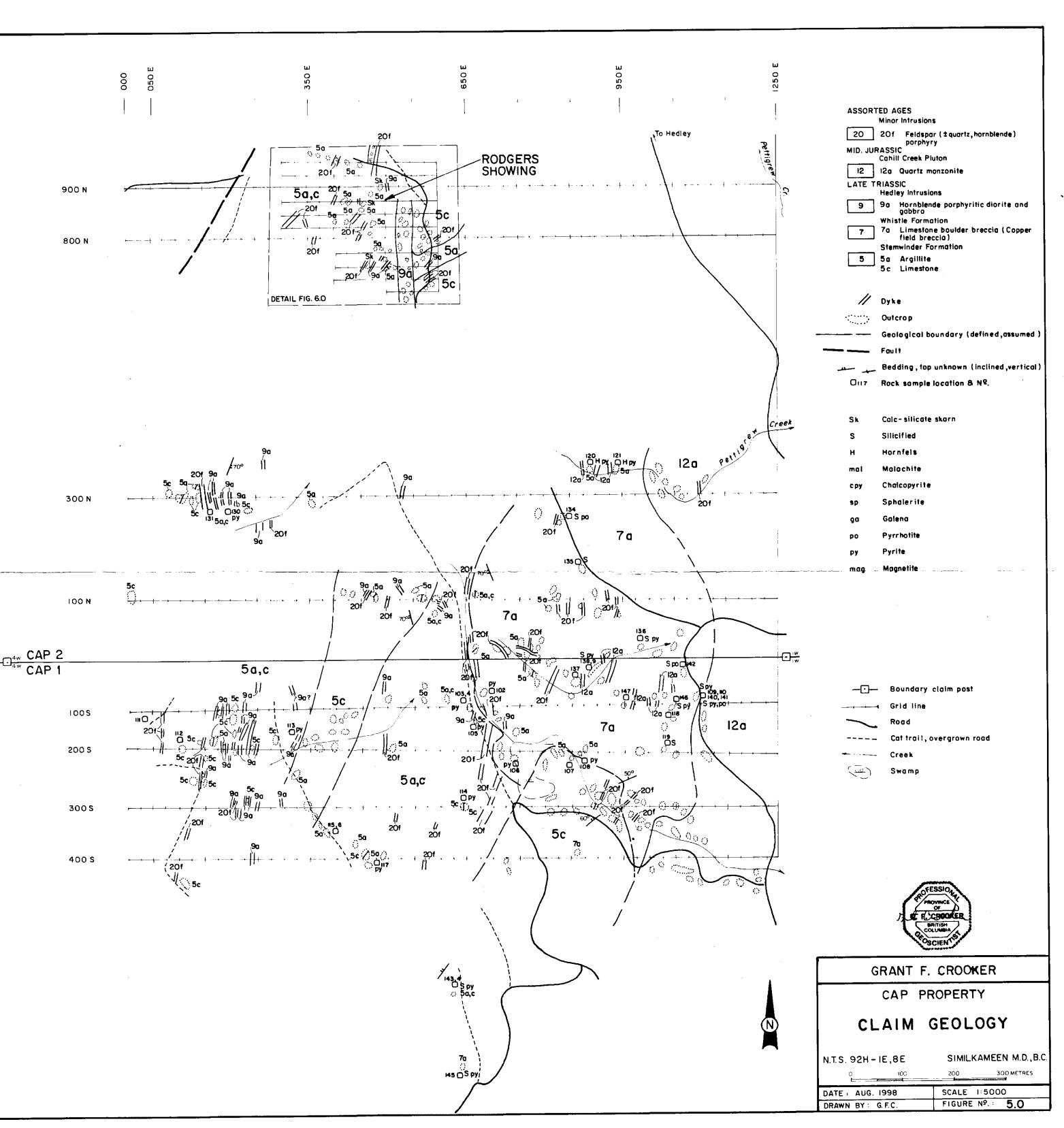
\frown			r	т.				1	
N	Sample No.	Width cm	Au ppb	Ag ppm	As ppm	Cu ppm	Pb ppm	Zn ppm	Description
	079	grab	<5	0.4	26	34	<2	52	grey-black, feldspar porphyry dyke? 1-5% pyrite
	080	grab	<5	0.2	<2	38	<2	64	light grey-black siliceous dyke? Locally to 20% pyrite
	081	grab	5	0.6	<2	44	<2	28	dark grey-green sugary textured dyke, 1% pyrite along margin
	082	grab	5	0.2	<2	35	6	142	grey siliceous dyke, 1-5% pyrite
	083	grab	<5	<0,2	12	24	<2	56	dark grey-green limestone, sugary textured, 5% pyrite, altered?
	084	grab	<5	<0.2	<2	25	<2	40	grey siliceous dyke, 1-5% pyrite
	085	grab	<5	0.2	<2	15	<2	28	reddish altered limestone, 1 mm fractures with calcite, near dyke
	086	grab	<5	<0.2	<2	9	6	62	grey-white hornfelsed argillite, silicified, 1% fine grained sulphides
	087	float	<5	0.2	<2	8	126	132	white, grey, green skarn, minor white calcite, limestone
	088	grab	<5	2.6	<2	205	376	4220	pale green, grey skarn, white calcite, black 1% sphalerite, pyrite,
	089	grab	<5	4.0	<2	206	568	2510	grey, green skarn, calcite, ½% sphalerite, trace galena, pyrite
	090	grab	<5	1.4	<2	49	230	2070	green skarn, brown garnet, white calcite, 1/2% sphalerite, limonite
	091 092	float	<5 <5	0.6	<2	12	44	7530	green skarn, brown garnet, white calcite, limonite along fractures
	092	float select	<5	<0.2 8.8	<2 <2	<1 679	<2 760	160 1.57%	green skarn, minor white calcite, no sulphides
	094	grab	<5	3.6	<2	450	76	468	grey, white skarn, 1% sphalerite, trace chalcopyrite, limonite boulders, grey, green skarn, 1% pyrite, trace chalcopyrite, limonite
	095	grab	<5	<0.2	<2	7	4	388	grey, bleached, hornfeled argillite, rusty fractures
	096	grab	<5	0.6	<2	23	6	94	grey siliceous dyke? 1-10% pyrite, minor, orange limestone
_	097	grab	<5	0.2	8	102	<2	40	grey, hornfelsed argillite, 1-5% pyrite on fractures, minor calcite
\square	098	grab	<5	<0.2	<2	33	2	48	grey, green, fine grained dyke, 3-5% magnetite, Hedley dyke
· ·	099	float	<5	0.6	2	102	444	706	weak skarn, white calcite, limonite, trace sphalerite on fractures
	100	select	<5	4.4	<2	1	5710	5960	light grey skam, white calcite, orange limonite
	101	float	<5	1.4	<2	38	2000	3720	dark grey, weak skarn, white calcite
	102	grab	10	1.2	2	73	20	220	rusty, glassy, hornfelsed argillite, 1-2% pyrite
	103	grab	10	1.4	<2	96	6	698	rusty, weakly hornfelsed argillite, calcite on fractures, trace pyrite
	104	float	10	0.8	?	47	18	344	silicified limestone, to 5% pyrite locally
	105	float	10	1.4	<2	106	2	580	silicified limestone, minor argillite, trace to 5% pyrite locally
	106	grab	10	1.2	24	60	12	238	rusty argillite, 2% pyrite
	107	grab	<5	0.8	<2	81	<2	42	silicified Copperfield breccia, minor argillite, 1% pyrite
	108	grab	<5	1.0	10	80	2	118	gey-black, hornfelsed argillite, silicified, to 5% pyrite locally
	109	grab	70	1.8	16	81	2	416	white, dark grey, rusty, Copperfield breccia, silicified, 2% pyrite
	110	grab	5	1.0	12	63	6	458	grey, white, rusty, Copperfield breccia, silicified, 2% pyrite
	111	grab	<5	0.4	18	58	10	162	black limestone, rusty argillite, 2-4 mm calcite veinlets, 2% pyrite
	112	grab	<5	0.4	2	12	10	42	grey-black limestone, 1-5 mm white calcite veinlets, rusty fractures
	113	grab	<5	<0.2	92	15	6	48	green, grey hornblende dyke, 1-2% pyrite, Hedley dyke?
	114	grab floot	<5	0,8	6	54 50	16	250	rusty argillite, silicified limestone, 1-10% pyrite
	115	float float	<5	2.0	26	56 7	16 10	40	silicified limestone, glassy argillite, fractures with calcite, pyrite
	116 117	float float	<5 15	0.2 2.2	<2 16	7 89	10 16	6 286	limestone cut by veinlets of black calcite
	117	grab	<5	1.2	8	39	8	286 44	hornfelsed argillite, limestone, calcite veinlets, 2-4% pyrite light-dark grey silicified? Copperfield breccia, trace pyrite
	118	grab	<5 10	1.2	。 16	- 39 - 61	° 10	30	light grey silicified? Copperfield breccia, rusty
		gian]	10	- 1.U	IQ.	01	IU II	30	ingin grey smomed r coppernera precora, rusty

120	grab	<5	0.4	24	55	12	112	glassy, hornfelsed argillite, rusty, 1-3% pyrite
121	grab	10	0.8	26	93	6	114	glassy, hornfelsed argillite, rusty, 1-3% pyrite
122	grab	<5	<0.2	<2	16	154	158	weak skarn, stronger on fractures, 1-4% pyrite black sulphide?
123	grab	<5	<0.2	<2	23	22	136	grey, green skarn, rusty fractures, brown garnet
124	grab	<5	<0.2	<2	26	14	250	minor grey skarn, 5-10% pyrite,
125	grab	<5	0.2	<2	25	6	176	grey skarn, silicification, 2-5% pyrite, weak green alteration
126	float	<5	<0.2	<2	4	4	18	argillite with quartz veinlets, rusty fractures
127	grab	<5	<0.2	<2	19	10	198	minor green skam, white calcite, to 5% pyrite
128	grab	<5	0.4	<2	63	6	76	hornfelsed argillite, some silicification, to 5% pyrite
129	grab	<5	<0.2	<2	26	<2	54	bleached, Hedley dyke, rusty on weathered surface
130	grab	<5	0.2	8	46	10	126	rusty argillite, 1-2% pyrite, minor unaltered limestone
131	grab	<5	0.6	10	61	12	100	rusty argillite, 1-3% pyrite, minor unaltered limestone
132	grab	10	0.8	<2	85	8	50	silicified limestone, trace to 5% pyrrhotite, trace of chalcopyrite?
133	grab	5	0.2	<2	36	6	40	selective silicification of limestone, 2-5% pyrrhotite on fractures
134	grab	5	0.4	12	46	<2	64	white, silicified Copperfield breccia, irregular, 1% pyrrhotite
135	grab	10	0.6	10	80	6	42	dark grey siloicified Copperfield breccia, rusty
136	grab	60	2.4	66	56	12	52	dark grey silicified Copperfield breccia, 1-4% pyrite, irregular
137	float	10	1.2	16	85	2	36	grey silicified skarn? minor green, 1-4% pyrite, white calcite
138	grab	50	3.0	74	128	18	38	grey silicified skarn? 2-4% pyrite, trace pale pink alteration
139	grab	20	0.8	10	71	6	26	grey-black silicified skarn? White calcite, 1-4% pyrite
140	grab	<5	0.8	8	45	6	250	grey silicified Copperfield breccia, calcite, trace pyrite, pyrrhotite
141	grab	<5	0.6	<2	78	6	64	grey-black silicified skarn? Copperfield breccia ,1-4% pyrrhotite
142	grab	10	0.8	2	44	2	42	grey silicified skarn, Copperfield breccia, 10% pyrrhotite
143	grab	<5	0.6	<2	35	6	32	grey skam? Narrow argillite beds, 1/2% pyrite
144	grab	<5	<0.2	<2	10	6	26	white calcite, grey silicified zones, trace sulphides
145	grab	<5	0.6	<2	57	2	28	minor argillite and white marble, grey silicification, trace sulphides
146	grab	5	1.0	<2	43	8	28	grey silicified skarn, Copperfield breccia, pyrite on fractures
147	grab	<5	0.8	<2	17	<2	16	grey silicified skarn, Copperfield breccia, pyrite on fractures

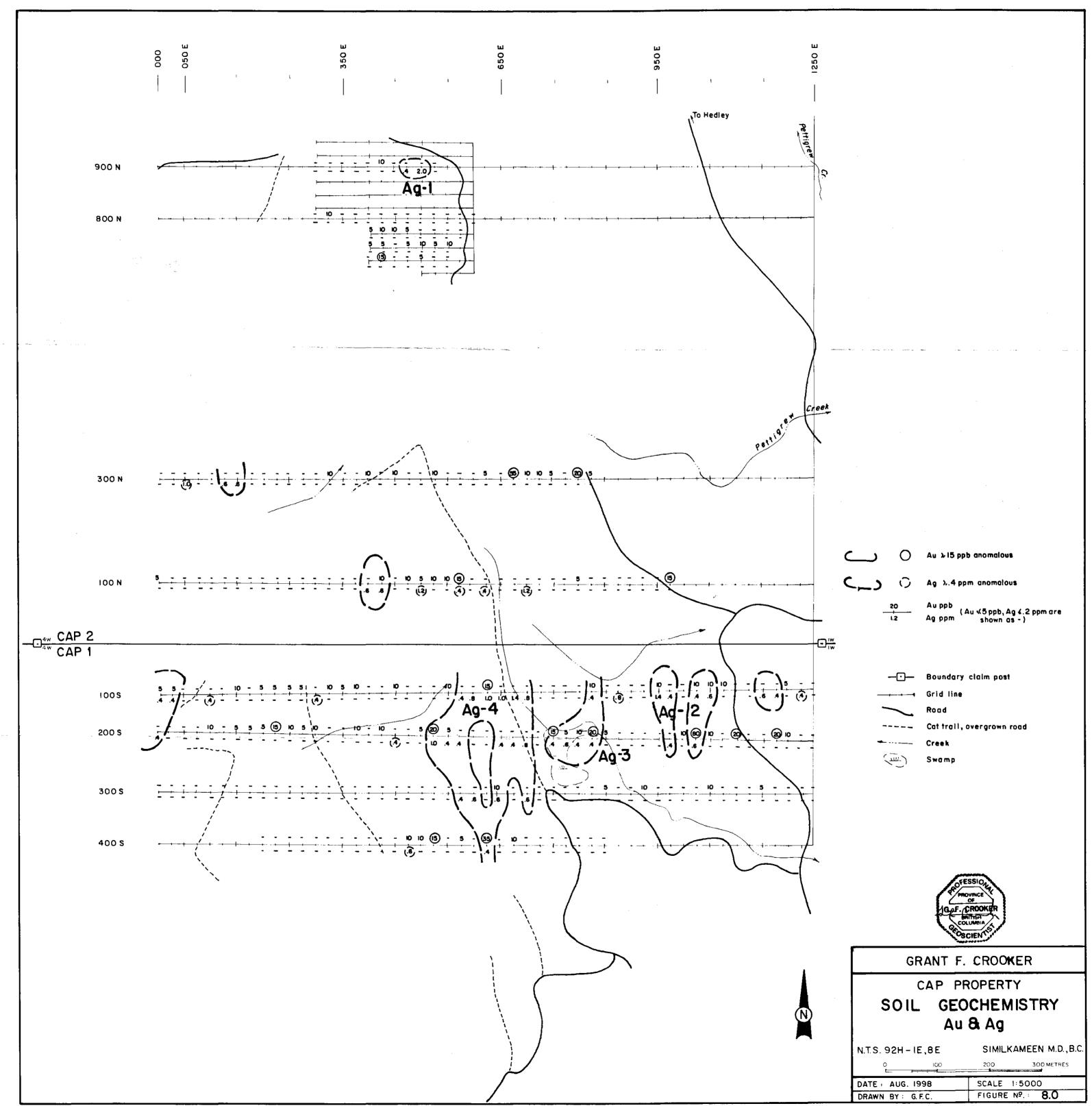
· · ·

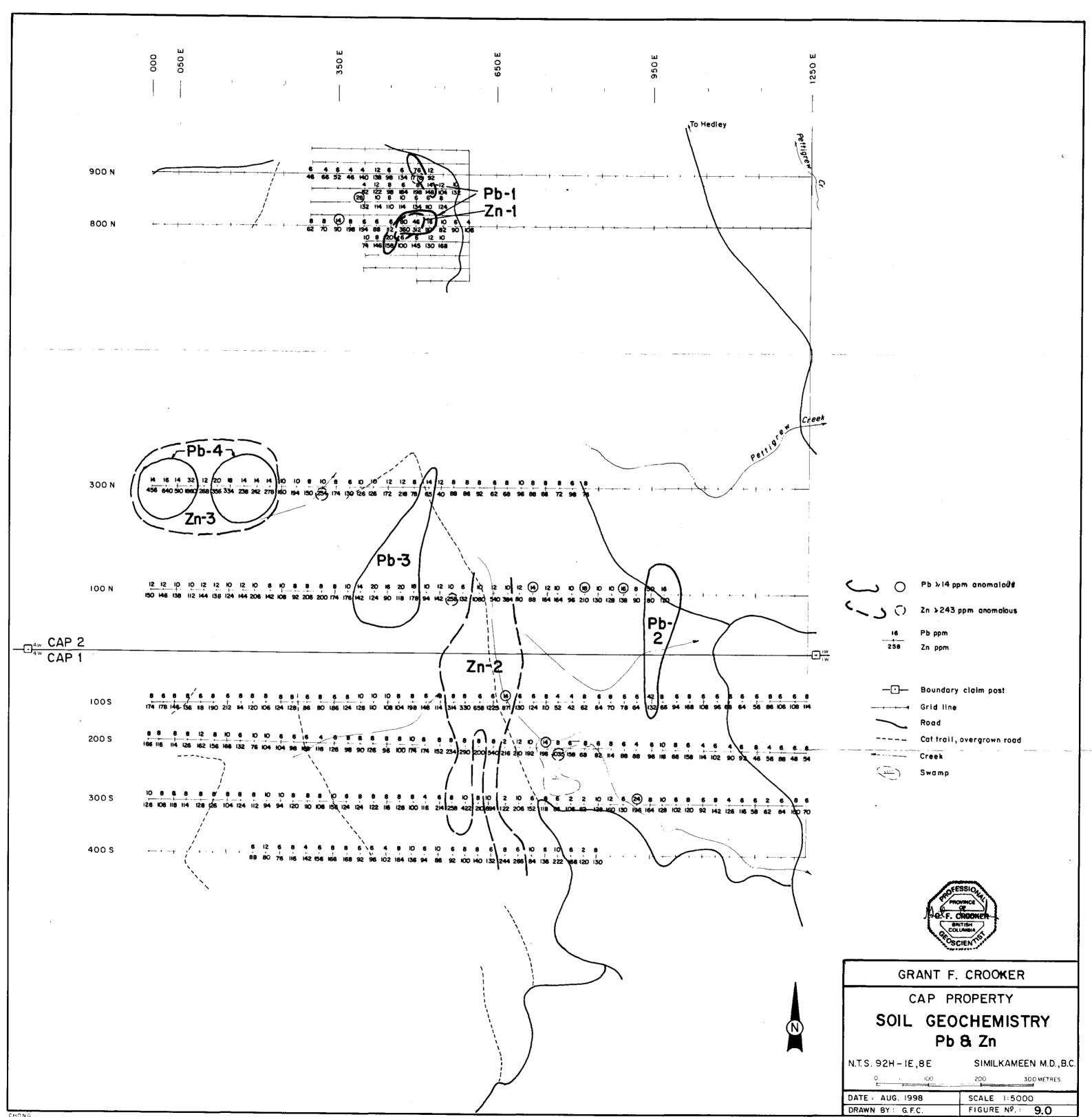
.

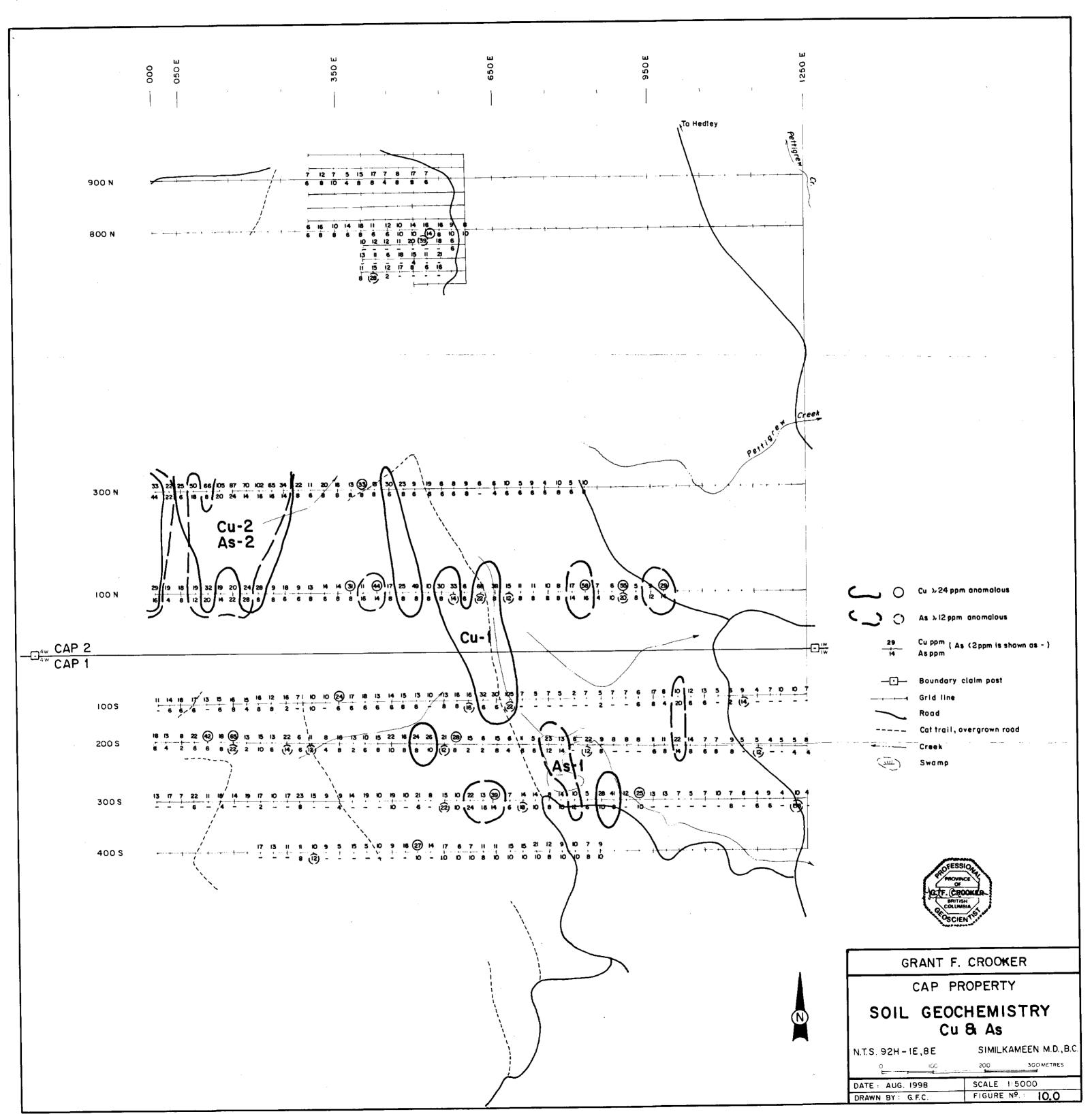
APPENDIX V

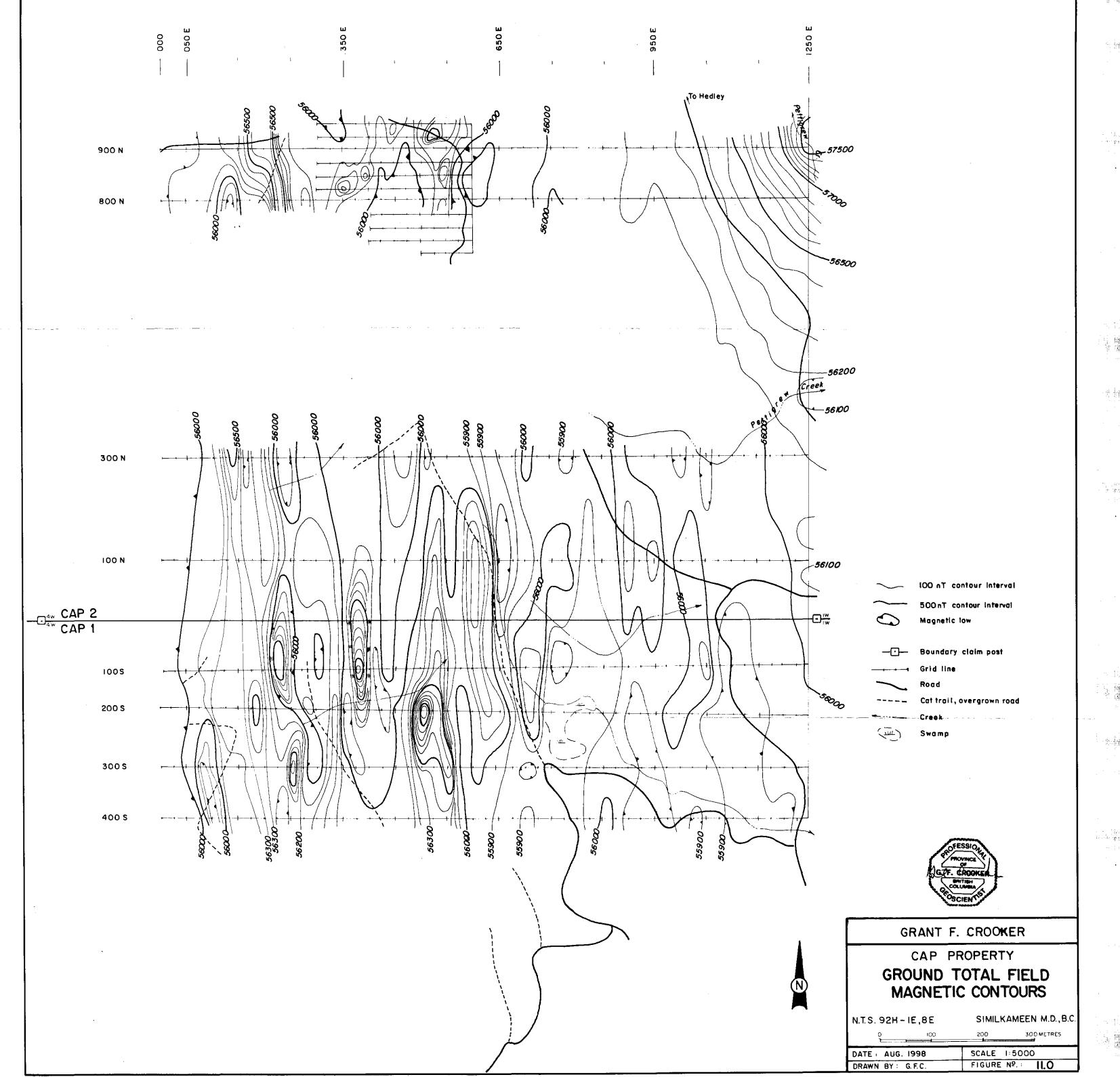

COST STATEMENT

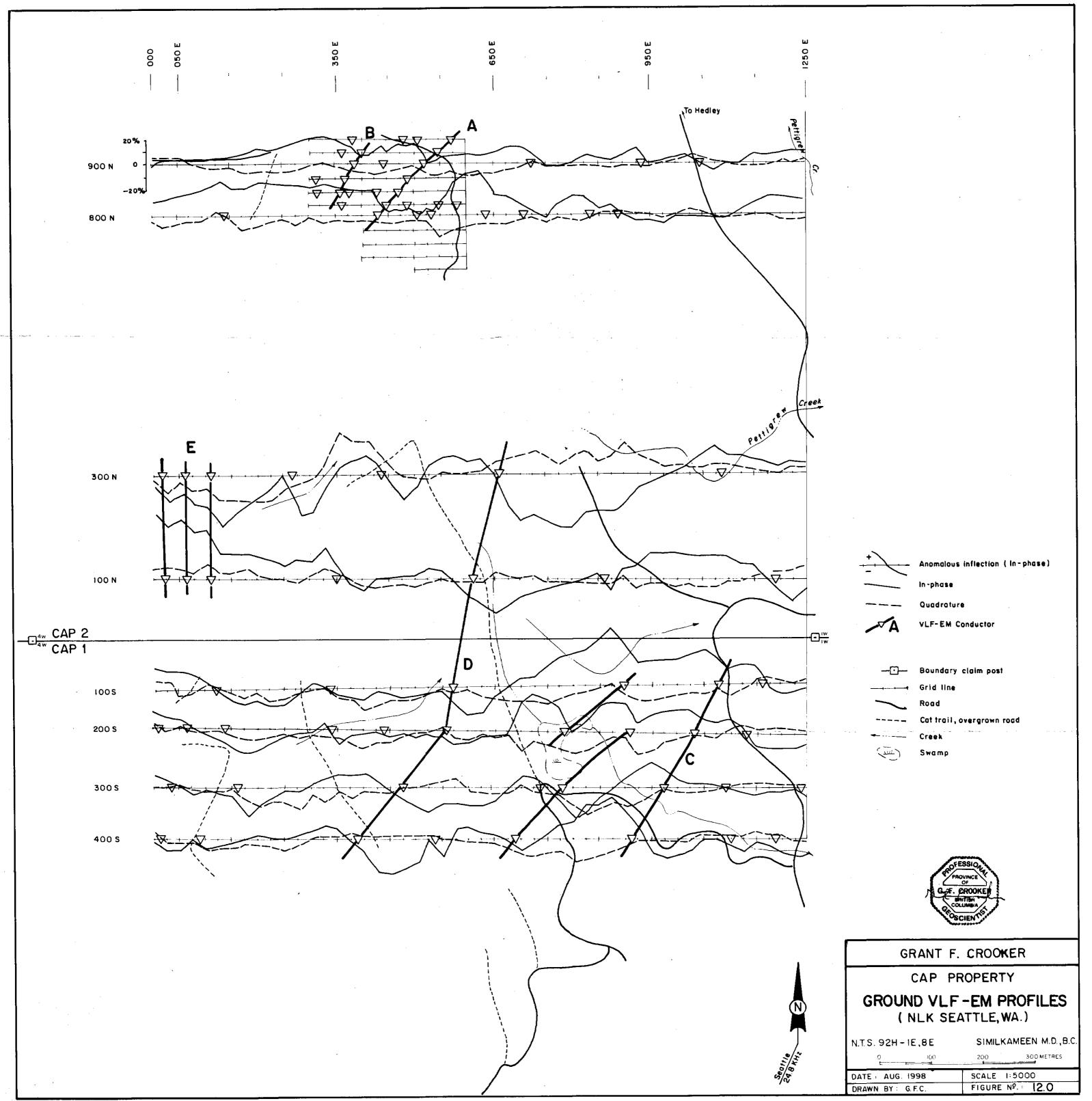
.


COST STATEMENT


SALARIES Grant Crooker, Geologist September 5, 1997 - August 5, 1998 39 days @ \$ 400.00/day \$ 15,600.00 MEALS AND ACCOMMODATION Grant Crooker - 32 days @ \$ 60.00/day 1,920.00 TRANSPORTATION Vehicle Rental (Blazer 4 x 4) September 5, 1997 - August 5, 1998 32 days @ \$ 60.00/day 1,920.00 Gasoline 350.00 EQUIPMENT RENTAL Magnetometer (Scintrex MP-2) July 1998 3 days @ \$ 25.00/day 75.00 VLF-EM (Geonics EM-16) July 1998 4 days @ \$ 25.00/day 100.00 **GEOCHEMICAL ANALYSIS** 34 silt samples - 32 element ICP, Au (30 gram) @ \$ 19.26 654.84 304 soil samples - 32 element ICP, Au (30 gram) @ \$ 19.26 69 rock samples - 32 element ICP, Au (30 gram) @ \$ 23.38 5,855.04 1.613.22 1 rock sample - zinc assay @ \$ 8.56 8.56 SUPPLIES 243.75 FREIGHT 137.78 DRAFTING 500.00 PREPARATION OF REPORT (Reproduction, copying, telephone, overhead) 250.00 TOTAL 29,228.19


Ag ppm As ppm Cu ppm Description Sample No. Width Pb Ζn Au ppb ppm çm ppm 079 26 52 grey-black, feldspar porphyry dyke? 1-5% pyrite grab <5 0.4 34 <2 080 grab <5 0.2 <2 38 <2 64 light grey-black siliceous dyke? Locally to 20% pyrite dark grey-green sugary textured dyke, 1% pyrite along margin 081 0.6 <2 44 <2 28 grab - 5 082 0.2 35 142 grey siliceous dyke, 1-5% pyrite grab 5 <2 6 dark grey-green limestone, sugary textured, 5% pyrite, altered? 083 <0,2 12 56 grab <5 24 <2 grey siliceous dyke, 1-5% pyrite 084 <0.2 <2 25 <2 40 grab <5 0.2 <2 15 <2 reddish altered limestone, 1 mm fractures with calcite, near dyke 085 grab <5 28 grey-white hornfelsed argillite, silicified, 1% fine grained sulphides <0.2 <2 9 6 62 086 <5 grab white, grey, green skarn, minor white calcite, limestone 087 <5 0.2 <2 8 128 132 float pale green, grey skarn, white calcite, black 1% sphalerite, pyrite, 880 2.6 <2 376 4220 <5 205 grab 089 4.0 <2 206 568 2510 grey, green skam, calcite, %% sphaterite, trace galena, pyrite <5 grab green skarn, brown garnet, white calcite, ½% sphalerite, limonite 1.4 <2 49 090 grab <5 230 2070 green skarn, brown garnet, white calcite, limonite along fractures <2 7530 091 float <5 0.6 12 44 092 4 <0.2 <2 <1 <2 160 green skarn, minor white catcite, no sulphides float grey, white skarn, 1% sphalerite, trace chalcopyrite, limonite 093 8.8 <2 679 760 1.57% select <5 boulders, grey, green skarn, 1% pyrite, trace chalcopyrite, limonite 094 <5 3.6 <2 450 76 468 grab 095 <5 <0.2 <2 7 4 368 grey, bleached, hornfeled argillite, rusty fractures grab 096 <5 0.6 <2 23 6 94 grey siliceous dyke? 1-10% pyrite, minor, orange limestone grab grey, hornfelsed argillite, 1-5% pyrite on fractures, minor calcite 02 102 40 097 grab <5 8 <2 grey, green, fine grained dyke, 3-5% magnetite, Hedley dyke 098 <5 <0.2 <2 33 2 48 grab weak skarn, white calcite, limonite, trace sphalerite on fractures 444 099 float <5 0.0 2 102 706 light grey skarn, white calcite, orange limonite 100 4.4 <2 5710 5960 <5 1 select dark grey, weak skarn, white calcite 101 3720 float <5 1.4 <2 38 2000 102 10 1.2 2 20 220 rusty, glassy, hornfelsed argillite, 1-2% pyrite grab 73 rusty, weakly hornfelsed argillite, calcite on fractures, trace pyrite 69**8** 103 10 1.4 <2 96 6 grab silicified limestone, to 5% pyrite locally 104 8.0 <2 47 18 344 float 10 106 silicified limestone, minor argillite, trace to 5% pyrite locally 105 10 1.4 <2 <2 580 float 1.2 238 rusty argillite, 2% pyrite 106 10 24 60 12 grab silicified Copperfield breccia, minor argillite, 1% pyrite 107 grab <5 0.8 <2 81 <2 42 gey-black, hornfelsed arglilite, silicified, to 5% pyrite locally 108 1.0 80 118 10 2 grab <5 white, dark grey, rusty, Copperfield breccia, silicified, 2% pyrite 109 416 70 1.8 81 2 grab 458 grey, white, rusty, Copperfield breccia, silicified, 2% pyrite 1.0 63 6 110 grab 5 12 black limestone, rusty argillite, 2-4 mm calcite veinlets, 2% pyrite 111 0.4 58 10 162 <5 18 grab grey black limestone, 1.5 mm white calcite veinlets, rusty fracture -112-0.4 -12-_ 42__ grab green, grey hornblende dyke, 1-2% pyrite, Hedley dyke? 15 113 <0.2 92 6 48 grab <5 rusty argillite, sllicified limestone, 1-10% pyrite 114 0.8 54 16 .250 <5 grab silicified limestone, glassy argillite, fractures with calcite, pyrite 115 2.0 16 40 56 float <5 26 116 float <5 0.2 <2 7 10 6 limestone cut by veinlets of black calcite hornfelsed argillite, limestone, calcite veinlets, 2-4% pyrite 117 float 22 286 16 89 16 15 light-dark grey silicified? Copperfield breccia, trace pyrite 118 1.2 39 44 grab <5 8 light grey sllicified? Copperfield breccia, rusty 1.0 119 grab 10 16 61 10 30 55 120 <5 0.4 24 12 112 glassy, hornfelsed argillite, rusty, 1-3% pyrite grab glassy, hornfelsed argillite, rusty, 1-3% pyrite 121 0.8 93 114 10 26 6 grab weak skarn, stronger on fractures, 1-4% pyrite black sulphide? <0.2 16 154 158 122 <5 <2 grab grey, green skarn, rusty fractures, brown garnel <5 <0.2 <2 23 22 136 123 grab minor grey skarn, 5-10% pyrite, <0.2 <2 26 14 250 124 grab <5 grey skarn, silicification, 2-5% pyrite, weak green alteration 0.2 25 176 125 <2 <5 6 grab argillite with quartz veinlets, rusty fractures 126 float <5 <0.2 <2 4 4 18 minor green skarn, white calcite, to 5% pyrite <0.2 19 10 198 127 <5 <2 grab hornfelsed argillite, some silicification, to 5% pyrite 63 0.4 <2 76 128 grab <5 6 bleached, Hedley dyke, rusty on weathered surface <02 <2 26 <2 54 129 grab <5 rusty argillite, 1-2% pyrite, minor unaltered limeston 02 130 <5 8 46 [10 126 grab rusty argilite, 1-3% pyrite, minor unaltered timestone 06 10 61 12 100 131 grab <5 silicified fimestone, trace to 5% pyrrhotite, trace of chalcopyrite? 50 132 10 08 <2 85 8 grab selective silicification of limestone, 2-5% pyrrhotite on fractures <2 36 40 133 5 0.2 6 grab white, silicified Copperfield breccia, irregular, 1% pyrrhotite 134 5 0.4 12 46 <2 64 grab 42 dark grey sitoicified Copperfield breccia, rusty 6 135 grab 10 0.6 10 80 dark grey silicified Copperfield breccla, 1-4% pyrite, Irregular 60 2.4 66 56 12 52 136 grab grey silicitied skarn? minor green, 1-4% pyrite, white calcite 137 float 10 1.2 16 85 2 36 grey silicified skarn? 2-4% pyrite, trace pale pink alteration grab 50 3.0 74 128 18 38 138 grey-black silicified skarn? White calcite, 1-4% pyrite 0.8 10 71 6 26 139 grab 20 grey silicified Copperfield breccia, calcite, trace pyrite, pyrrhofite 6 250 <5 0.8 8 45 140 grab grey-black silicified skarn? Copperfield breccla, 1-4% pyrrhotite 64 <5 0.6 <2 78 6 141 grab 42 grey silicified skarn, Copperfield breccia, 10% pyrrhotite 0.8 2 142 10 44 2 grab grey skarn? Narrow argililite beds, 1/2% pyrite 0.6 <2 35 6 32 143 grab <5 <2 26 white calcite, grey sillcified zones, trace sulphides <5 <0.2 10 6 144 grab minor argitilite and white marble, grey silicification, trace sulphides 145 grab <5 06 <2 57 2 28 28 grey silicified skarn, Copperfield breccia, pyrite on fractures <2 8 grab 5 1.0 43 146 17 <2 16 grey silicified skarn, Copperfield breccia, pyrite on fractures grab <5 0.8 <2 147




~

