GEOCHEMICAL, GEOPHYSICAL AND GEOLOGICAL ASSESSMENT REPORT

on the

PATHFINDER PROPERTY

Greenwood Mining Division British Columbia

for

CASSIDY GOLD CORP. 220 - 141 Victoria Street Kamloops, B.C. V2C 1Z5

Field Work: Claims: Location:

- Field Work: August 1 September 23, 1998
 - 58 units
 - 18 km north of Grand Forks, B.C.
 - NTS Map No. 82E/1W
 - Latitude: 49°121 ' North
 - Longitude: 118°25' West

Prepared By

GEOQUEST CONSULTING LTD.

W. Gruenwald, P. Geo. October 21, 1998

TABLE OF CONTENTS

SIMMARY	. 1
	2
INTRODUCTION	. 2
LOCATION AND ACCESS	2
TERRAIN	.2
PROPERTY	.3
HISTORY	.3
GEOLOGY	
Regional	. 5
Property	.5
MINERALIZATION	.6
EXPLORATION PROGRAMS	
1997 Program	.8
1998 Program	.8
PROGRAM RESULTS	
1997 Program	.9
1998 Program	10
EXPLORATION POTENTIAL	11
CONCLUSIONS AND RECOMMENDATIONS	12

FIGURES

After Page ł Figure 1 Location Map 1:2,500,000 **Topographic Map** 1:50,000 2 Figure 2 Figure 3 **Claim Map** 1:31,680 3 Figure 4 **Regional Geology** 1:50,000 5 Figure 5 Mineral Occurrences in the Pathfinder Property Area 1:50,000 6 7 Figure 6 Geology, Mineral Showings and Anomalous Zones 1:7,500 Figure 7 Surface and Underground Sampling - Old Adit Area 1:250 9 Geochemical Plan (Gold) - South Grid Figure 8 1:2,500 Appendix E Figure 9 Geochemical Plan (Arsenic) - South Grid 1:2,500 Appendix E Geochemical Plan (Zinc) - South Grid 1:2,500 Appendix E Figure 10 Figure 11 Magnetometer Survey - South Grid 1:2,500 Appendix E

APPENDICES

Appendix A	Rock Sample Descriptions
Appendix B	Analytical Procedures
Appendix C	Geochemical Data
Appendix D	Geophysical Data
Appendix E	Maps
Appendix F	Personnel
Appendix G	Program Expenditures
Appendix H	References
Appendix I	Certificate

SUMMARY

The Pathfinder property is situated approximately 18 kilometres north of Grand Forks, B.C. and is easily road accessible. A total of 58 units comprise the Pathfinder property. Cassidy Gold Corporation may acquire by option a 100% interest in the claims from the owners, Mr. John Kemp and Mr. George Nakade.

The property lies within the Phoenix-Boundary mining camp which dates back to the late 1890's. Numerous precious and base metal mineral deposits are found in the region. Since it's discovery in the 1890's, the Pathfinder property has been worked by numerous individuals and several junior companies. Several shipments of ore totalling 1,230 tons were produced from the Pathfinder and Little Bertha deposits. Gold and silver, along with minor copper and lead were produced. Some shipments exceeded one ounce/ton gold.

The property is situated within a belt of weakly metamorphosed volcanic and sedimentary rocks west of and in fault contact with Precambrian gneisses of the Grand Forks Group. Faulting related to the Granby River Fault dissects areas of the property. Intruding the region are granitic rocks of the Nelson and Coryell intrusions.

Mineralization is present in many areas of the property as evidenced by numerous old trenches, small shafts and adits. Three historic areas of mineralization are documented and referred to as the Pathfinder, Diamond Hitch and Little Bertha Zones. The first two zones consist of massive sulphide bodies in altered volcanics and sediments. The Little Bertha Vein consists of north-north-easterly trending, gold bearing, mesothermal quartz vein(s) hosted by intrusive rocks. Another precious and base metal bearing vein near an old adit occurs some 800 metres southeast of the Little Bertha Vein. Previously unrecognized skarn zones have been delineated, some of which appear proximal to known mineral occurrences. In other skarns, erratic gold and tungsten values have been reported. The genesis of these deposits is not well understood, however the combination of intrusive activity and major fault zones in the area have likely played a significant role in localizing mineralization.

Recent exploration programs (1980 to present) have included geochemical, geophysical and geological surveys along with trenching and diamond drilling. Encouraging results have been obtained locally on the Pathfinder and Diamond Hitch showings, however no larger scale programs have been conducted to attempt to tie these zones together. The Little Bertha Vein was primarily explored in the early history of the property. This vein has by all accounts never been successfully drill intersected.

Exploration by Cassidy Gold Corp during 1996 resulted in the delineation of several skarn zones, a gold bearing metasedimentary unit and a sulphide zone. Geochemical and geophysical surveys outlined exploration targets believed to host precious and/or base metal mineralization. A two phase exploration program that included drilling was recommended. In 1997, two old exploration roads were reopened to allow access for trenching and/or drilling. Detailed sampling was conducted at a recently discovered old adit driven on vein hosted gold and base metal mineralization. Due to a recent downturn in the resource sector, no drilling has been conducted.

In 1998, work focussed on an area south of Hornet creek in an under explored area with geology thought to be similar to that in the historically known areas. Soil sampling and a magnetometer survey were conducted over a 600 x 800 metre grid. Several geochemical and geophysical anomalies were outlined.

INTRODUCTION

During 1997 and 1998 Cassidy Gold Corp. continued to explore the Pathfinder property north of Grand Forks, B.C. The 1997 program consisted of re-establishment of two old exploration roads to allow for trenching and drilling recommended in a 1996 report by the writer. An old, but only recently discovered adit was also explored. No drilling was conducted however due to poor market conditions. In 1998, exploration focused on an under explored area south of the historical showings and the 1996 grid work. The 1998 work is the subject of this report, however, results of the 1997 work are included to bring the exploration history of the property up to date.

LOCATION AND ACCESS

The Pathfinder property is favourably located in southern British Columbia approximately 18 kilometres north of Grand Forks (Figure 1). Geographic co-ordinates for the property are 49°121 ' north latitude and 118°25' west longitude on NTS Map No. 82E/1W.

The property is readily accessible from Grand Forks via a paved road along the east bank of the Granby River. Along the western margin of the claim block a gravel road heads uphill and easterly to a series of roads that provide good access to most of the historical workings. Travel time from Grand Forks is approximately ½ hour.

TERRAIN

The Pathfinder property is situated along the west flank of the Christina Range of the Columbia Mountains. The property is transected by three westerly flowing creeks that drain into the Granby River. These are from north to south, Pathfinder, Hornet and Volcanic Creeks (Figure 2). Slopes are generally moderate to the northwest except along creek gullies where slope directions are highly variable. Some steep slopes are present but no areas are in-accessible. Elevations range from 580 metres along the Granby River to 1,160 metres along the eastern boundary of the claim block. The uppermost workings (Pathfinder) are situated at the 1,000 to 1,050 metre elevations while the lowest (Little Bertha) range from 625 to 680 metres in elevation. The property is generally free of snow from early April until November.

The entire property is forested with moderate stands of fir, pine, cedar and assorted deciduous growth. Local patches of grassland are present on ridges and several steep, westerly facing slopes.

Overburden appears to be thin except in areas such as the lower portions of Hornet Creek. For the most part, the terrain should not prohibit the construction of roads or drill sites.

PROPERTY

Claim Name	Record No.	No of Units	Expiry Date*
Pathfinder	214128	1	Feb 17, 2000
Diamond Hitch	214221	1	Feb 28, 2000
Christina	214218	1	Feb 23, 2000
Derby	214219	1	Feb 23, 2000
Jasper Fraction	214216	1	Feb 23, 2000
Iron Bell Fraction	214215	1	Feb 21, 2000
London (Bannock)	214214	1	Feb 21, 2000
Little Bertha	214213	1	Feb 21, 2000
Lonestar Fraction	214217	1	Feb 23, 2000
Path #1 - #8	214429 -214436	8	Mar 04, 2000
Hike #1 - #2	214661 -214662	2	Mar 14, 2000
Lucky #1 - #4	214437 -214440	4	Mar 04, 2000
Finder #1 - #2	345447 -345448	2	Apr 19, 2000
Finder #3 - #6	345449-345452	4	Apr 20, 2000
Richmond	339162	1	Aug 09, 2000
Hornet #1 - #12	336554 -336565	12	May 25, 2000
Volcanic	345956	16	May 08, 2000

The Pathfinder property is comprised of a package of reverted crown grants, two post and modified grid claims totalling 58 units (Figure 3). The claims are located in the Greenwood Mining Division.

*Expiry date base on acceptance of 1998 assessment work.

The registered owners of the claims are Mr. George Nakade and Mr. John Kemp of Grand Forks, B.C. Cassidy Gold Corp. may acquire, by option, a 100% interest in the claims. With the exception of a small parcel of private land in the southwest, the vast majority of the property is situated on crown land.

HISTORY

The Greenwood - Grand Forks area has witnessed a long period of mining activity dating back to the late 1800's. Mining activity was directed primarily toward copper-gold deposits such as the Phoenix, Dentonia, Lexington and Oro Denoro. The bulk of mineral production came from copper "skarns" such as the Phoenix which between 1900 and 1978 produced 236,000 tonnes of copper and 28,083 kg of gold (816,326 oz).

The discovery of the Pathfinder property dates back to the 1890's. During this time, and into the 1930's, the property was extensively explored with the excavation of numerous hand trenches and several short adits and shafts. Shipments totalling 1,230 tons of material were made from the Little Bertha and Pathfinder claims.

Exploration activity recommenced on the property in the 1960's and since then the Pathfinder property has received sporadic attention from several companies and individuals.

HISTORICAL WORK ON THE PATHFINDER PROPERTY

YEARS	WORK BY	AREAS EXPLORED	SCOPE OF WORK	RESULTS	DOCUMENTATION
1895- 1920'S		Little Bertha Pathfinder Diamond Hitch	Open cuts, trenches, adits, shafts ,mining, ore shipments to Cominco.	Produced gold, silver, copper and lead from Little Bertha and Pathfinder Shipments to- talled 1,115 tonnes (1229 tons).	Minfile reports B.C. Gov't Minister of Mines Reports
1960's	Hecla Mining Co.?	Property	Trenching areas between Pathfinder and Little Bertha.	Exposed possible skarn and massive sulphide mineralization.	None
1960's	Alwin Mining Co. Ltd.	Little Bertha	Reopening adits, trenching, 12 diamond drill holes.	Unknown	No public information
1980	Aries Resources Inc.	Little Bertha	Geological, magnetometer surveys on western half of property, 3 diamond drill holes (284 m).	Holes terminated before encountering vein?	Assessment Report #8945
1980	Dolmage. Campbell and Associates (R. Saunders)	Property	Geological mapping	Lithologies/structures identified	Map only
1983	Nu-Lady Gold Mines	Diamond Hitch	Diamond Drilling (3 holes)	DDH 83-03 - 0.7 m1.4 oz/t Au	Assessment Report
1984	Nu-Lady Gold Mines Ltd.	Diamond Hitch	Diamond Drilling - 4 holes totalling 195 me- tres to follow-up 1983 drill intersections.	Did not expand on 1983 work. Best intersec- tion was 0.9 m of .028 oz/t Au.	Assessment Report
1985	Nu-Lady Gold Mines Ltd.	Pathfinder	Diamond Drilling - 13 holes totalling 921 metres. Centred around shaft and Adit	Massive sulphides intersected. Grades unknown.	Data not available
1987	Ber Resources Ltd. (H. Kim)	Pathfinder Diamond Hitch	Trenching, reconnaissance geochem, geo- physics and geology on eastern portion of property (Pathfinder zone)	Trench "A" on Pathfinder yielded 0.235 oz/t Au over a 5 m section. Trenching of anoma- lous zones revealed magnetite- pyrite mineralization, low gold-silver values	Assessment Report
1992	Niagara Developments (H. Kim)	Little Bertha Pathfinder	Grid & VLF on Little Bertha area. Prospecting and trench sampling on Pathfinder zone	Delineated Little Bertha vein and possible faulted sections. Magnetic signature suggests SE extension of Pathfinder sulphide zones.	Assessment Report
1994	Niagara Developments (R.E. Miller)	Pathfinder	Magnetometer survey over 500 x 1000 metre grid established primarily east- southeast of the Pathfinder shaft.	Delineated known and possible extensions of massive sulphide mineralization.	Assessment Report
1996	Cassidy Gold Corp.	Between Little Bertha and Path- finder	Established grid from Little Bertha to Path- finder showings. Extensive soil and rock sampling program. Geological mapping. Magnetometer and VLF-EM surveys.	Delineated large gold anomaly centred around metasediment roof pendant. Several coincident As-Zn geochem and geophysical anomalies. Mapped several areas of skarn.	Assessment Report
1997	Cassidy Gold Corp.	Between Little Bertha and Path- finder	Reopened two old exploration roads and sampled recently discovered old adit. Extended and sampled grid line toward south claim boundary	Locally high grade Au values from vein near old adit	Private report to Cassidy Gold Corp.

GEOLOGY

Regional:

The Pathfinder property is situated within a belt of Permian-Carboniferous rocks immediately west of the fault contact with a Precambrian gneiss complex (Grand Forks Group). The northerly trending Granby River Fault is inferred to be the eastern margin of the Republic Graben, a fault bounded package of rocks that extends north from Washington, USA (Figure 4). The Permian-Carboniferous rocks, commonly referred to as the Anarchist Group, consist primarily of greenstone, chert, argillite, and minor limestone. Recent mapping by Fyles (1990) has reclassified this sequence into the Attwood and Knob Hill Groups. Intruding the region are plutons of Jurassic/Cretaceous granitic rocks of the Nelson Batholith. The youngest rocks in the region consist of Tertiary dikes, sills and intrusions commonly referred to as the Coryell Intrusions.

Property:

Representatives of the aforementioned rocks are found on the Pathfinder property. Reconnaissance mapping by R. Saunders, P. Eng. (1980) identified three major map units. An assessment report by H. Kim (1993) outlined the geology of the property as follows:

UNIT 1 Anarchist Group (Attwood/Knob Hill)

- weathered (limonitic), bedded cherts containing disseminated pyrite.
- dacite and andesite flows, often finely porphyritic and commonly altered.

UNIT 2 Nelson Batholith

- intrusive complex underlies much of the property.
- includes quartz diorite, granodiorite, diorite, alaskite and finer grained variations.
- ranges from fine to medium grained, fresh to very altered (chlorite-epidote).
- zones of quartzitic rock inferred to be silicified dacite and diorite or may be roof pendants?

UNIT 3 Coryell Intrusions (Penticton Group - J.T. Fyles)

- primarily medium grained monzonite containing white and pink feldspars.
- rocks containing only pink feldspars mapped as syenite.
- fine grained, pink equivalents mapped as trachyte.
- contacts with Unit 2 are sharp.

Mapping, primarily during 1996, revealed a complex geological setting and identified seven distinct rock units, most of which represent the above three major map units. These are detailed in the writer's 1996 assessment report.

The structural fabric of the Pathfinder property is dominated by the north-northeast trending normal fault referred to as the Granby River Fault. This fault marks the boundary between the previously discussed lithologies and the Precambrian Grand Forks Group comprised of highly metamorphosed and deformed rocks (Figure 4).

Property mapping has identified faults, shears and topographic linears oriented in two basic directions. The more dominant and common direction is north-northeast to northeast. These are likely structures parallel to the Granby River Fault. The Little Bertha and several other veins appear to be at least partially controlled by such a fault. Several small scale faults, shears and topographic linear features show orientations of north-northwest to north-westerly. These may reflect conjugate tensional structures associated with the major regional trend. Such crosscutting structures could have a significant role in localizing mineralization and/or determining extensions to structures such as the Little Bertha Vein.

MINERALIZATION

Work to date has revealed the Pathfinder property to host numerous mineral showings that occur in several distinct environments. The historical occurrences are grouped into three areas known as the Pathfinder, Diamond Hitch and Little Bertha Zones (Figure 5).

The *Pathfinder* and *Diamond Hitch* showings are situated in the eastern and southern portions of the grid area respectively. Mineralization consists primarily of semi-massive to massive sulphides in altered (chlorite-epidote) metavolcanics and metasediments of the Anarchist Group. Evidence indicates these showings to be spatially related to the contact zones of the Coryell intrusives and likely formed as hydrothermal replacements and fracture fillings in the sheared host rocks. The two showings are approximately one kilometre apart and their full extent has not yet been determined. Sulphide mineralogy consists primarily of pyrrhotite, pyrite and chalcopyrite. Some reports indicate that crude banding was observed in the Pathfinder zone sulphides. During the writer's initial (1996) examination, a sample collected from the Pathfinder adit dump returned 0.029 oz/ton gold, 0.69 oz/ton silver and highly anomalous cobalt (628 ppm). Records indicate that in 1916, 263 tons of material were mined with recovered grades of 0.09 oz/ton gold, 0.49 oz/ton silver and 0.98% copper. Substantially higher grades were reported in some Minister of Mines Annual Reports. Mineralization within the Diamond Hitch showings occurs in sheared and altered andesitic rock. This showing was historically explored by several trenches and shallow shafts. More recently (1983), values of up to 1.40 oz/ton gold across 0.7 metres were obtained from a shallow

The *Little Bertha* showing consists of one or more north-northeasterly trending, east dipping veins in dioritic rocks of the Nelson intrusions. Evidence of faulting is seen in the uppermost workings (stope) where a slickensided fault plane marks the hanging wall of the vein. The vein ranges up to 2 metres in width and consists of milky quartz and quartz stockwork. The estimated strike length of the vein is approximately 100 metres and is considered open in both directions. Local concentrations of sulphides were noted near the hanging wall contact. Sampling by the writer in July, 1996 returned values of 0.782 oz/ton gold, 13.88 oz/ton silver and approximately 1.5% combined lead and zinc from a *selected* sample of sulphide rich vein. Scattered fragments of quartz collected from an upper adit dump returned a value of 0.362 oz/ton gold along with greater than 1.0 oz/ton silver and minor values for lead and zinc.

Based on the mineralogy and analytical results it would appear that the Little Bertha Vein(s) are "mesothermal" in nature, that is formed at moderate depth and pressure. Historical records from the Little Bertha Vein indicated a total of 966 tons were mined (1900 - 1939) from which 426 oz gold, 3,866 oz silver and minor copper and lead were produced. This yields an overall average of 0.44 oz/ton gold and 4.0 oz/ton silver. Production records for some years returned gold grades in excess of one ounce/ton. Situated uphill and southeast of the Bertha Vein is an old open cut where dump material returned values of 0.279 oz/ton gold and 3.34 oz/ton silver. This zone may represent a parallel vein structure and should be investigated in future programs.

Approximately 150 to 500 metres south-southwest of the Bertha Vein are a number of small adits that have exposed sulphide and/or vein mineralization (Figure 6). These poorly understood zones have locally returned gold values up to 0.160 oz/ton. Whether these zones are structures related to the Bertha Vein is not known.

In the central and northeastern portions of the grid are areas underlain by metasedimentary rocks. These rocks are typically quite limonitic as a result of the weathering of very fine grained pyrite and/or pyrrhotite. The presence of these rusty rocks led early prospectors to dig numerous hand trenches and drive small adits and shafts. Previous sampling of these old workings yielded very low gold and base metal values. An exception to the above is a band of metasediments south of the baseline in between L-6+00W and L-4+00W. This west-northwest trending band of siliceous, limonitic rock contains finely disseminated pyrite and pyrrhotite. Rock samples returned gold values up to 500 ppb. This area corresponds to the largest gold anomaly delineated during the 1996 program.

Located along an old road (lower) is a zone of sulphide mineralization. Judging by the vegetation cover, this area appears to have been excavated many years ago. Mineralization consists of semi-massive to massive pyrrhotite and pyrite in a gabbroic host rock. A sample of this material returned 135 ppb Au, 2.6 ppm Ag, 2,596 ppm Cu and 295 ppm Ni. Little is known of the geological setting or extent of this zone. The mineralization bears similarities with the Pathfinder and Diamond Hitch zones.

Another area of interest is located approximately 200 metres west-southwest of the sulphide zone. In this area a north-northeast trending, easterly dipping "epithermal" type vein and stockwork zone occurs within hornfelsed and skarn type rocks. Sampling did not return any anomalous gold values, however, a sample of skarn rock approximately 25 metres southwest of the vein returned a highly anomalous 480 ppm tungsten. Several other areas of skarn have been delineated and are more extensive than previously thought. Some of these contain disseminated to semi-massive magnetite and have yielded occasional sporadic gold values. A sample analyzed by Echo Bay in 1997 returned a value of 0.305 oz/t Au.

During a property examination in May, 1997 with Mr. M. Rasmussen (Echo Bay), an overgrown, decline adit was encountered (Figure 6, 7). It appeared to have been driven on a low angle "boudin" of quartz mineralized with pyrite and sphalerite. A grab sample analyzed by Echo Bay returned values of 2.584 oz/t Au, 16.20 oz/t Ag, 13.61% Zn and 0.15% Cu. Examination of a cut specimen of mineralized quartz from this occurrence revealed fine grained visible gold.

In the area south of Hornet Creek explored during 1998, mineralization consists primarily of disseminations of pyrrhotite and/or pyrite most often with metasedimentary rocks. One occurrence of very minor chalcopyrite was noted. Outcroppings in several areas of the eastern portion of the grid revealed metavolcanic and microdioritic rocks containing substantial amounts (3-4%) of disseminated magnetite. At L-5W;10+40S an outcropping was observed with 5% or more very fine grained hematite.

EXPLORATION PROGRAMS

1997 Program

During the period September 10 to November 13, 1997 a variety of work was carried out on the Pathfinder property. The first phase of work consisted of clearing and re-establishing two old mining exploration roads in order to allow for access to and potentially drill test several targets (Figure 6). The upper road (750 m) provides access to the old adit area and associated skarn, the metasediments and associated large gold anomaly as well as an area of coincident geochemical (As, Zn) and electromagnetic and magnetic anomalies. The lower road (675 m) allows access to the sulphide zone encountered in 1996 as well as skarn zones that occur south of the Little Bertha Vein. Once completed, these roads were geochemically sampled at 25 metre intervals. Samples were collected from the fresh upper bank of the re-established road from either "B" or "C" horizons. A total of 59 soils were collected and subjected to gold and 32 element ICP analysis by Chemex Labs of North Vancouver, B.C.

An "old adit" discovered during a May, 1997 examination was further examined in the fall. Dewatering of the adit was necessary as the portal had been blocked by debris built up over the years. No caving or timbering were present anywhere, indicating the competency of the rock. The adit was marked at three metre intervals over its entire length. Both ribs and the back were channel sampled using an electric powered drill. In all, 19 samples were collected from the adit which measures a total of 52.0 metres long. Surface rock sampling was also conducted above the old adit, in and around a short (<5m) decline adit that was driven on a narrow fault controlled vein. All samples were shipped to Chemex Labs for gold and 32 element ICP analysis.

In addition to the above work, grid line 3W from the 1996 program was extended south-southwest to 24+00S at the height of land near the southern claim boundary. This tight chained and picketed base line was established as a control for future grids south of the current area of work. Soil samples were collected at 25 metre intervals along this line and were also analyzed for gold and 32 element ICP.

1998 Program

During September, 1998 a small grid was established south of Hornet Creek utilizing the L-3W extension from the 1997 program. A "tie line" situated at co-ordinate 12+00S on L-3W was extended to 0+00W and 8+00W at an orientation of 110° or parallel to the 1996 grid baseline. Cross lines were established every 100 metres and extended from 9+00S near Hornet Creek to 15+00S. Stations were marked at 25 metre intervals throughout. Soil sampling was conducted at 50 metre intervals and usually consisted of "B" horizon material at depths averaging

30-35 cm. The sampling interval was reduced to 25 metres on lines 2W and 4W to follow up on several anomalous gold and base metal values encountered on the L-3W extension in 1997. In some areas of shallow overburden or rock outcroppings "C" horizon material was collected. Soil quality in general for the grid was good. Rock outcroppings were noted with occasional rock chip samples being collected. In all, a total of 143 soils and 5 rock samples were collected and sent to Ecotech Labs in Kamloops, B.C. for gold and ICP analysis. Contoured geochemical plans for gold, arsenic and zinc are presented on Figures 8, 9 and 10 (Appendix E) respectively. Analytical procedures and geochemical data are found in Appendix B and C respectively. In addition to the geochemical work, a magnetometer survey was conducted over the entire grid at 12.5 metre intervals using a Scintrex "ENVI" magnetometer. Contoured magnetic data is presented on Figure 11(Appendix E) while the raw data is found in Appendix D.

PROGRAM RESULTS

1997 Program

Road Sampling:

Sampling along the upper road returned anomalous gold values below the recently discovered old adits. Anomalous zinc values from near the end correspond well with the previously detected large zinc anomaly. The lower road returned anomalous gold values in areas consistent with previously defined anomalies.

Old Adit Area:

The underground sampling returned generally low gold and base metal values (Appendix C). Weakly anomalous gold values were returned from the portal area and from one sample at 33 metres (PUG-12). Examination of rock from sample PUG-12 revealed a fractured, finely quartz-calcite veined, altered intrusive(?) containing streaks and clots of hematite disseminated magnetite (Appendix A). The magnetic character of the rocks coincides well with the tunnel's location in a large magnetic high associated with a skarn zone (Figure 6). In general, the rocks from the tunnel are greenish, variably fractured and altered. Original lithologies are thought to be dioritic rocks (i.e. Nelson Batholith), metavolcanics and feldspar porphyry (Coryell syenite). Alteration of these rocks is pervasive, most commonly represented by chlorite-sericite and lesser, but variable degrees of carbonate, epidote, hematite and magnetite alteration. Pyrite is usually present as disseminations of up to 2%. In several areas quartz stockwork zones were observed. These zones did not yield anomalous results. A feldspar porphyry near the end of the adit may indicate the presence of the younger, less altered Coryell syenitic rocks. Faulting is common within the adit, trending most often west-northwesterly but quite variable in dip and direction. The lack of any crosscuts in the tunnel suggests that the early miners did not intersect any obvious vein or other mineralized structure. Given the amount of faulting, it is possible the mineralized vein in the decline adit above is offset or may have simply pinched down along a fault and had not been recognized.

Surface sampling centred around the short, decline adit above the main adit. The location of both the underground and surface samples are presented on Figure 7. Appendix A also contains descriptions of these samples.

The surface sampling results were highly variable with three samples returning in excess of 0.5 oz/ton gold. Two of these samples contained over 4 oz/ton silver. Anomalous lead, zinc and bismuth values were also encountered, usually in conjunction with elevated precious metal values. Sample OAR-2 taken across the "quartz boudin" originally (selectively) sampled by M. Rasmussen (May, 1997) yielded 0.107 oz/ton gold, 58.0 g/t silver and 2.82% zinc. Mineralized quartz vein samples span a strike length of 14 metres, although uncertainty exists as to whether these all represent the same structure. Faulting appears to be consistently present along one or more of the vein contacts suggesting strong structural control. The quartz vein(s) average approximately 0.3 metres wide. Sample OAR-6 located on the north side of the old adit (decline) returned 0.573 oz/ton gold across 1.30 metres, however only 0.30 metres of this was mapped as true quartz vein material. This suggests that the vein itself would be of much higher grade. Fine, visible gold was observed in a cut specimen collected from a pile of hand cobbed material found near the small decline above the main adit (Sample OAR-dump)

L-3W Extension:

Soil sampling yielded a few scattered anomalous values, the most notable of which is at 9+75S where a 120 ppb gold value was returned. Anomalous lead and zinc values of 110 and 256 ppm respectively were also returned from this area which is situated just south of Hornet Creek and at least 400 metres southeast of the Diamond Hitch zone. It was recommended that this area be examined in more detail.

1998 Program:

The south grid exploration program returned several geochemical and geophysical anomalies. Soil sampling yielded a number of geochemically anomalous areas. For the purposes of this discussion, gold, arsenic and zinc geochemistry are discussed. No statistical analysis was applied to the data.

The highest gold values occur in the east half of the grid where values ranged up to 120 ppb (Figure 8). Resampling of the L-3W;9+75S anomaly (1997) continued to demonstrate anomalous gold, lead and zinc values. Tightly spaced sampling in this area failed to explain or expand this anomaly. There does not appear to be an obvious geological explanation for this anomaly. Bedrock observed close to the anomaly consists primarily of syenitic intrusives along with a deformed altered mafic rock (?) of unknown origin. The remaining gold anomalies are one to three sample low order anomalies. There does not appear to be any coincidence with arsenic or zinc values.

Arsenic geochemistry revealed very low values with the exception of two areas in the west half of the grid (Figure 9). A broad low order anomaly is situated in the southwest corner of the grid. Contained within this anomaly is a sample site at L-7W;14+00S where both the soil and especially the rock returned anomalous values. No coincidence of any significance with other metal values is apparent. Geologically this area is underlain by pyrrhotite bearing metasediments intruded by granitic rocks. A second strong anomaly is situated at L-5W;10+00S. Interestingly, the nearest bedrock situated in a small creek at 5W;10+00S contains substantial amounts of fine grained hematite.

Zinc geochemistry yielded several broad, low order anomalies with values ranging up to 210 ppm (Figure 10). The highest values occur in the western and northern portions of the grid. A broad western anomaly coincides

with the arsenic anomaly and again likely reflects the weakly mineralized metasedimentary rocks. A two sample anomaly centred around L-5W;10+00S coincides quite well with a distinct zinc anomaly. Further examination of this area may be warranted.

The magnetometer survey revealed an area of moderate magnetic relief with "total field" values ranging from a low of 55,844 nT to a high of 57,592 nT. The overall magnetic trend is roughly oriented northwesterly. The magnetic plan (Figure 11) is dominated by a strong, large magnetic high in the northeast corner of the grid on lines 0 to 2W. A strong linear magnetic low marks the northern margin of this high and trends northwesterly parallel to Hornet Creek. The southwestern areas of the grid are magnetically flat with the exception of a magnetic high on L-6W and several scattered lows. The large magnetic high is supported by the field evidence of mafic volcanics and microdiorites containing substantial disseminated magnetite.

İ

ļ

The large "mag high" shows a coincidence with a few gold soil anomalies. The gold soil anomaly from the 1997 survey on L-3W;9+75S is situated within the northwesterly trending magnetic low along Hornet Creek. This orientation may reflect a structural feature and may therefore be of significance. The largest zinc soil anomaly also approximates the magnetic "low" trend along Hornet Creek. Further investigation of some of the magnetic features, especially with coincident geochemical signatures may warrant further investigation.

EXPLORATION POTENTIAL

The diverse geology and mineral environments on the Pathfinder property offer a number of worthy exploration targets. Potential targets include precious metal enriched vein and skarn and massive sulphide mineralization. Strong coincident geochemical and geophysical anomalies above the Little Bertha vein may reflect both a skarn and mesothermal vein target. Another exploration target includes a gold mineralized metasedimentary band (roof pendant). An old adit driven on precious and base metal vein mineralization proximal to a skarn zone and sporadic gold values associated with other skarn zones also offer exploration targets. None of the above targets have been tested by drilling.

The three massive sulphide zones recognized to date are not well understood and have been explored intermittently. The relationship between these sulphide zones and their genesis is not known suggesting further exploration potential in areas between them. Geophysical surveys such as I.P. may be useful in delineating these zones.

During 1998, the area south of Hornet Creek was examined. Several geochemical and geophysical anomalies were outlined. Since this area is geologically similar to areas to the north and with little evidence of work history, it suggests that further exploration potential exists.

The following is a list of exploration targets outlined from the 1996 to 1998 programs.

PATHFINDER PROPERTY - EXPLORATION TARGETS

1. Little Bertha Zone

- mesothermal quartz vein with historical gold/silver production.
- substantial width and considered open along strike and to depth.
- may be bounded to east by parallel veins and/or skarn.
- has not been drill tested

2. Gold Geochemical Anomaly

- · largest gold anomaly on the property
- situated between L-4+00W and L-7+00W and centred at 3+75S.
- associated with pyritic, siliceous metasedimentary "band" (roof pendant?) within intrusive rocks.

3. Coincident Geochemical/Geophysical Anomaly

- large arsenic/zinc soil anomaly underlain by metasediments and intrusive rocks.
- centred at L-8+00W;0+75N.
- possibly a contact (skarn?) related zone southeast of the Little Bertha Zone.

4. Skarn Environment

- outlined several new skarn areas, others possibly indicated by geophysical surveys.
- · some proximal to mineralized and/or geochemically anomalous zones.
- one skarn yielded a gold value of 0.305 oz/t (Echo Bay).
- another skarn yielded a highly anomalous tungsten value (480 ppm).

5. Sulphide Zone

- situated just west of L-7+00W at 2+75S.
- previously undocumented and not part of Diamond Hitch Zone.
- within coincident gold, arsenic and zinc geochemical soil anomaly.

6. Bertha Grid Geochemical/Geophysical Anomalies

- several smaller zones possibly reflective of the southerly extension of Little Bertha Zone or other related mineralized structures.
- Significant gold in soil anomalies along strike and south of Little Bertha vein.

7. Old Adit Area (1997)

- mesothermal, fault controlled vcin with significant precious and base metal values.
- adjacent to large skarn and associated magnetic anomaly.

8. South Grid Area(1998)

• Several geochemical and magnetic anomalies on grid south of Hornet Creek in geology similar to above areas.

Note: Targets 1-6 are detailed in March 10, 1997 Assessment report for Cassidy Gold Corp.

CONCLUSIONS AND RECOMMENDATIONS

Exploration programs by Cassidy Gold Corp. since 1996 have revealed a number of areas worthy of further work. Previously unrecognized skarn environments have been delineated, some of which are proximal to areas of known mineralization such as the Little Bertha Vein and the Old Adit zone. Some skarns have yielded erratic gold and tungsten values. Exploration has also led to the discovery of a zone of gold mineralization associated with metasediments. With the exception of two massive sulphide zones, namely the Pathfinder and Diamond Hitch, little exploration drilling has been conducted on the Pathfinder property.

It is therefore recommended that exploration continue on the property. The two old mining exploration roads are now useable allowing for access to many of the proposed target areas. Given the number of exploration targets, future work programs can be structured to test several combinations of these targets. Many of these zones are at the trench and/or drilling stage. Further geophysical surveys such as I.P. may be warranted such as between the sulphide zones.

Respectfully submitted, FESSION W ARUENWALDS W ARUENWALDS Warner CriffPhyraid, P. Geo.

October 21, 1998

201000

67. Jr. J.

1.

APPENDIX A

K

2. .

i

ROCK SAMPLE DESCRIPTIONS - OLD ADIT AREA

Rock Sample Descriptions - "Old Adit" Underground Sampling

October 1997

	Location	Sample								
Sample	from	Length	Description	Au	Ag	As	Bi	Cu	Pb	Zn
Number	portal	rib/back	·	oz/t	ppm	ppm	ppm	ppm	ppm	ppm
	(m)	(m)			••	••				**
PUG-1	0.0	1.10/1.40	Light gray, medium grained granitic rock. Trace disseminated pyrite.	.021	1.4	34	<2	271	16	44
PUG-2	3.0	1.80/1.25	Gray, fine grained intrusive? Disseminated pyrite 1-2%.	.007	1.0	8	<2	70	18	138
PUG-3	6.0	1.95/1.15	Green-gray, m. grained, sericite-chlorite altered intrusive. Pervasive, disseminated, f.	.005	0.6	2	2	30	34	158
<u></u>			grained, magnetite-hematite 5%. Mod. magnetic. Weak carbonate in matrix and veinlets.							
PUG-4	9.0	1.95/1.20	Gray, medium grained intrusive, ≤1% pyrite, trace hematite on fractures	<.001	<0.2	<2	2	11	8	56
PUG-5	12.0	2.15/1.10	Green, fine grained, siliceous metavolcanic (tuff?). Pervasive sericite alteration.	.002	<0.2	<2	<2	8	6	44
			Disseminated, fine grained pyrite 2%. Non magnetic. Weak carbonate. Minor hematite.							
PUG-6	15.0	2.10/1.20	Green, dense, f. grained, siliceous metavolcanic. Sericite-chlorite alteration. Very weak	.001	<0.2	<2	2	4	2	44
			carbonate alteration. Moderately magnetic. 3-5% disseminated magnetite-hematite.							
PUG-7	18.0	1.90/1.25	Similar to above except 1-2% magnetite, trace pyrite. Weakly magnetic.	<.001	<0.2	2	\triangleleft	36	2	58
PUG-8	21.0	2.10/1.60	Pinkish-green, fractured and altered, medium grained intrusive.	<.001	<0.2	2	2	12	6	72
			Wisps and clots of hematite. Pervasive weak to moderate carbonate alteration. Fine							
			grained, disseminated pyrite 3%+. Very weakly magnetic.							
PUG-9	24.0	1.90/1.20	Pale to m. green, dense, fine grained chlorite? -epidote-hematite altered, finely fractured	<.001	<0.2	<2	<2	25	6	80
			rock. Disseminated pyrite <0.5%. Magnetite clots 0.5-1.0%. Moderately magnetic.							
PUG-10	27.0	2.00/1.40	Green, chlorite-carbonate altered and fractured intrusive. Irregular qtz calcite veinlets.	<.001	4.0	<2	<2 ⊓	22	14	108
			Pyrite <1%. Distinct rounded clots of magnetite to 1 mm (~0.5%), variably magnetic							
PUG-11	30.0	1.90/1.30	Green-gray, finely fractured, altered intrusive? Disseminated, very fine grained pyrite	<.001	0.2	\$	4	30	6	82
			and minor hematite (~1-2%). Weak carbonate. Random quartz-calcite veinlets. Non							
			magnetic. Occasional epidote patches.							
PUG-12	33.0	2.00/1.25	Green, fractured, finely quartz-calcite veined, altered intrusive? Hematite streaks and	.013	0.4	2	<2	24	8	146
			clots. Pyrite <0.5%. Magnetite 1-2%. Rock quite magnetic.							
PUG-13	36.0	1.95/1.25	Specimen of barren looking quartz vein with very minor pyrite from right rib. Host rock	.001	0.2	2	<2	16	14	66
			is green, fine to medium grained altered intrusive.							
PUG-14	39.0	1.85/1.25	Pale gray-brown, fine grained feldspar ± quartz porphyry. Pervasive weak carbonate +	<.001	0.2	2	<2	23	6	58
			chlorite alteration. Disseminated pyrite 2-3%. Weakly magnetic.							
PUG-15	42.0	2.00/1.55	Similar to PUG-16. Possibly a felsic intrusive rock. Very weakly magnetic.	<.001	<0.2	2	0	27	10	46
PUG-16	45.0	2.00/1.35	Pale green, siliceous, chlorite altered intrusive. Pyrite 0.5%. Low carb., non-magnetic.	<.001	<0.2	2	2	49	6	38
PUG-17	48.0	2.10/1.40	Green-gray, finely fractured, chlorite altered intrusive. Disseminated, fine grained pyrite	<.001	0.2	2	2	30	10	68
			2%±. Pervasive carbonate in matrix. Non magnetic.							
PUG-18	51.0	2.00/1.15	Pinkish green, feldspar porphyry (Coryell syenite). Chlorite alteration of mafics.	<.001	<0.2	2	2	31	14	54
			Disseminated, very fine grained pyrite (<0.5%). Weak carbonate alteration of							
<u></u>			phenocrysts. Non magnetic.							
PUG-19	52.9	2.00/1.10	Pale green, fractured chlorite ± sericite altered intrusive (diorite?). Weakly magnetic.	<.001	<0.2	2	<2	15	12	64
			Trace rounded clots of magnetite (<0.5%). Trace pyrite. Weak carbonate.							

Rock Sample Descriptions - Surface

.....<u>×</u>

October 1997

Sample Number	Location	Sample Length (m)	Description	Au oz/t	Ag ppm	As ppm	Bi ppm	Cu ppm	Pb ppm	Zn ppm
OAR-1	South side old adit portal	0.57	Green, fine grained, altered <i>intrusive</i> . Hanging wall to quartz vein. Footwall fault at 045°/20°E	<.001	0.2	<2	<2	6	6	320
OAR-2	As above	0.27	Quartz boudin with semi-massive sulphides over bottom 3-5 cm. Selectively sampled by M. Rasmussen in May, 1997.	.107	58.0	196	82	371	2,300	>10,000 2.82%
OAR-3	As above	0.65	Green, fine grained, altered <i>intrusive</i> , local limonitic fractures. Footwall of quartz boudin (062°/20°E).	.004	2.8	10	2	29	112	1,050
OAR-4	As above	1.10	As above. Underlies a fault that separates OAR-3 and 4.	.001	0.6	<2	<2	21	20	278
OAR-5	North side of portal	0.95	Green, fine grained, altered intrusive with hematite/carbonate alteration. Contains a 15 cm quartz vein/stockwork zone.	.003	2.8	<2	2	65	114	586
OAR-6	As above	1.30	Below OAR-5. Rock as above. Contains 30 cm rusty, altered, <i>quartz vein</i> zone with 3-4% pyrite and minor galena, sphalerite.	.573	>100 5.01 oz/t	494	260	405	4,750	7,520
OAR-7	1 m SW of OAR-2	0.35	Quartz vein, fault contact.	.052	33.4	22	32	1,075	2,050	7,610
OAR-8	7 m SE of old adit	0.65	Hanging wall to quartz vein (OAR-9). Green, fine grained, pyroxine rich, altered <i>intrusive</i> . Vein at 010°/40°E.	<.001	0.4	4	<2	11	22	150
OAR-9	7 m SE of old adit	0.50	Weakly limonitic, pale green, <i>quartz vein</i> . Weak carbonate. Irregular clots and disseminations of pyrite, sphalerite, galena and grey sulphide(?) Total 2-3% sulphides.	.109	40.0	82	32	106	1,545	3,710
OAR-10	7 m SE of old adit	0.33	Pale green, altered <i>intrusive</i> with limonitic fractures. Footwall to quartz vein (OAR-9). Low carbonate.	<.001	0.4	2	<2	8	54	824
OAR-11	5 m NNW of old adit	0.35	Quartz vein. 3-4% pyrite, ^{1/2} -1% galena, trace chalcopyrite.	.512	>100 4.28 oz/t	94	214	217	7,870	5,310
OAR-12	8 m NNW of old adit	1.10	Green, pyroxine rich, fine grained altered intrusive (skarn).	.001	1.0	2	<2	3	42	102
OAR-13	6 m WNW of OAR-12	1.20	Green, fine grained, altered <i>intrusive</i> ? Carbonate-hematite on fractures.	<.001	0.2	<2	<2	3	12	84
OAR Dump	5 m NNW of old adit		Random grab of material found piled outside of small decline adit above main adit. Sulphides 5-20%. Noted visible gold	.502					-	

Note: These samples were collected from around the small decline adit situated approximately 10 metres ±above the main tunnel. See Figure 7

APPENDIX B

ANALYTICAL PROCEDURES

Chemex Labs

and the second second

Geochemical Procedure - G32 Package

Sample Decomposition:Nitric Aqua Regia DigestionAnalytical Method:Inductively Coupled Plasma - Atomic Emission Spectroscopy (ICP - AES)

A prepared sample (1.00 gram) is digested with concentrated nitric acid for at least one hour. After cooling, hydrochloric acid is added to produce aqua regia and the mixture is then digested for an additional hour and a half. The resulting solution is diluted to 25ml with demineralized water, mixed and analyzed by inductively coupled plasma-atomic emission spectrometry. The analytical results are corrected for inter-element spectral interferences.

Chemex		·		Detection	Upper
Code		Element	<u>Symbol</u>	<u>Limit</u>	<u>Limit</u>
229		ICP-AQ Digestion	n/a	n/a	n/a
2119	*	Aluminum	AI	0.01%	15 %
2141		Antimony	Sb	2 ppm	1 %
2120		Arsenic	As	2 ppm	1 %
2121	*	Barium	Ba	10 ppm	1 %
2122	*	Beryllium	Be	0.5 ppm	0.01 %
2123		Bismuth	Bi	2 ppm	1 %
2125		Cadmium	Cd	0.5 ppm	0.05 %
2124	*	Calcium	Ca	0.01%	15 %
2127	*	Chromium	Cr	1 ppm	1 %
2126		Cobalt	Со	1 ppm	1 %
2128		Copper	Cu	1 ppm	1 %
2130	*	Gallium	Ga	10 ppm	1 %
2150		Iron	Fe	0.01%	15 %
2151	*	Lanthanum	La	10 ppm	1 %
2140		Lead	Pb	2 ppm	1 %
2134	*	Magnesium	Mg	0.01%	15 %
2135		Manganese	Mn	5 ppm	1 %
2131		Mercury	Hg	1 ppm	1 %
2136		Molybdenum	Mo	1 ppm	1 %
2138		Nickel	Ni	1 ppm	1 %
2139		Phosphorus	Р	10 ppm	1 %
2132	*	Potassium	К	0.01%	10 %

Chemex Labs

100 C

2. v. v.

.

O

Geochemical Procedure - G32 Package (con't)

Chemex				Detection	Upper
Code		<u>Element</u>	<u>Symbol</u>	<u>Limit</u>	<u>Limit</u>
2142	*	Scandium	Sc	1 ppm	1 %
2118		Silver	Ag	0.2 ppm	0.01 %
2137	*	Sodium	Na	0.01%	10 %
2143	*	Strontium	Sr	1 ppm	1 %
2145	*	Thallium	TI	10 ppm	1 %
2144	*	Titanium	Ti	0.01%	10 %
2148	*	Tungsten	W	10 ppm	1 %
2146		Uranium	U	10 ppm	1 %
2147		Vanadium	v	1 ppm	1 %
2149		Zinc	Zn	2 ppm	1 %

*Elements for which the digestion is possibly incomplete.

Analytical Procedure Assessment Report

GEOCHEMICAL GOLD ANALYSIS

Samples are catalogued and dried. Soils are prepared by sieving through an 80 mesh screen to obtain a minus 80 mesh fraction. Rock samples are 2 stage crushed to minus 10 mesh and a 250 gram subsample is pulverized on a ring mill pulverizer to -140 mesh. The subsample is rolled, homogenized and bagged in a prenumbered bag.

The sample is weighed to 10 or 30 grams and fused along with proper fluxing materials. The bead is digested in aqua regia and analyzed on an atomic absorption instrument. Over-range values for rocks are re-analyzed using gold assay methods.

Appropriate reference materials accompany the samples through the process allowing for quality control assessment. Results are entered and printed along with quality control data (repeats and standards). The data is faxed and/or mailed to the client.

APPENDIX C

19 1

.

GEOCHEMICAL AND ASSAY DATA

LOWE'

Kppu Rosh

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assavers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: GEOQUEST CONSULTING LTD.

CERTIFICATE OF ANALYSIS

8055 ASPEN RD. VERNON, BC V1B 3M9

Page Number :1-A Total Pages :4 Certificate Date: 25-OCT-97 Invoice No. P.O. Number :19747268 Account :CYO

(1ppu)

Project : #56 Comments: ATTN:WARNER GRUENWALD

1 12Hr TORD TL 3" JOR(S.	laver road	+ 1-34	joils.	
--------------------------	------------	--------	--------	--

<u> </u>	Leppin/biver rord + L-34 joils.									CERTIFICATE OF ANALYSIS						/	49747			
SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi P P	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La pp=	Mg %	Mn ppm
L0+00 L0+25 L0+50 L0+75 L1+00	201 202 201 202 201 202 201 202 201 202 201 202	49 45 75 280 60	0.2 < 0.2 < 0.2 0.6 < 0.2	1.49 2.23 2.22 3.40 2.28	8 10 10 8 16	70 120 110 220 120	0.5 0.5 1.0 0.5	<pre>< 2 < 2</pre>	0.64 0.46 0.56 0.51 0.63	< 0.5 3.0 7.0 2.0 2.5	8 8 10 13 10	30 32 37 31 31	25 29 35 81 36	2.73 3.10 3.47 3.63 4.19	<pre>< 10 < 10 < 10 < 10 10 < 10 < 10</pre>	< 1 < 1 < 1 < 1 < 1 < 1	0.10 0.13 0.15 0.12 0.14	30 40 40 50 40	0.41 0.47 0.56 0.65 0.67	390 535 665 665 640
L1+25 L1+50 L1+75 L2+00 L2+25	201 202 201 202 201 202 201 202 201 202 201 202	35 20 30 15 20	< 0.2 < 0.2 0.2 < 0.2 < 0.2 < 0.2	1.87 3.16 3.22 2.35 1.97	8 6 8 10 10	90 180 160 170 90	0.5 0.5 0.5 0.5 0.5	<pre>< 2 < 2</pre>	0.44 0.42 0.52 0.54 0.61	< 0.5 0.5 2.0 2.0 < 0.5	8 10 12 8 10	42 41 39 23 42	27 40 48 29 36	2.94 3.31 4.10 2.28 3.00	< 10 < 10 10 < 10 < 10	<pre>< 1 < 1</pre>	0.17 0.13 0.26 0.14 0.09	40 40 30 10 30	0.46 0.62 0.75 0.50 0.63	415 670 890 770 585
L2+50 L2+75 L3+00 L3+25 L3+50	201 202 201 202 201 202 201 202 201 202 201 202	69 40 15 29 80	< 0.2 < 0.2 < 0.2 0.2 0.2 0.2	1.62 2.32 2.85 3.68 2.81	12 16 8 36 110	50 80 130 160 90	0.5 0.5 0.5 1.0 1.0	<pre>< 2 < 2</pre>	0.56 0.39 0.49 0.47 0.48	< 0.5 < 0.5 0.5 3.0 3.5	12 9 12 18 13	54 47 31 42 43	56 34 39 91 71	3.90 3.12 3.08 4.75 4.11	< 10 < 10 < 10 10 10	<pre>< 1 < 1</pre>	0.08 0.08 0.10 0.14 0.10	40 50 20 50 40	0.88 0.53 0.55 0.82 0.86	385 395 1310 1235 915
L3+75 L4+00 L4+25 L4+50 L4+75	201 202 201 202 201 202 201 202 201 202 201 202	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5</pre>	0.2 < 0.2 < 0.2 < 0.2 < 0.2 0.2	4.40 2.46 2.24 2.42 2.33	28 20 18 46 18	130 130 120 100 130	1.5 0.5 0.5 0.5 0.5	<pre>< 2 < 2</pre>	0.90 0.58 0.45 0.60 0.70	1.0 2.5 3.0 1.0 0.5	22 9 13 13 11	120 21 29 30 26	59 43 52 66 56	4.90 2.93 3.60 3.96 3.41	10 < 10 < 10 < 10 < 10	<pre>< 1 < 1</pre>	0.21 0.13 0.23 0.22 0.28	40 30 30 30 20	2.08 0.42 0.54 0.58 0.59	755 555 980 955 850
L5+00 L5+25 L5+50 L5+75 L6+00	201 202 201 202 201 202 201 202 201 202 201 202	15 < 5 < 5 < 5 10	0.2 0.2 < 0.2 0.2 < 0.2 < 0.2	1.69 1.90 2.08 1.59 1.04	20 14 8 22 20	60 150 90 40 90	0.5 0.5 1.0 0.5 0.5	<pre>< 2 < 2</pre>	0.59 0.93 0.45 0.42 0.92	0.5 < 0.5 < 0.5 0.5 1.0	11 7 10 8 8	30 16 23 21 10	80 47 54 55 38	3.62 2.06 3.50 3.56 2.01	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 1	0.11 0.08 0.15 0.06 0.09	20 10 50 50 40	0.55 0.28 0.53 0.50 0.27	570 745 725 490 1465
L6+25 L6+50 L6+75 U0+00 U0+25	201 202 201 202 201 202 201 202 201 202 201 202	< 5 40 30 < 5 < 5	< 0.2 0.4 0.8 < 0.2 < 0.2	2.47 2.96 2.27 1.82 2.04	22 50 140 2 6	90 80 40 70 120	1.5 1.5 1.0 0.5 0.5	<pre>< 2 < 2</pre>	0.55 0.64 0.67 0.55 0.47	1.0 1.5 3.0 < 0.5 < 0.5	12 19 29 6 7	23 30 30 19 28	48 104 <u>147</u> 33 21	3.96 5.14 6.56 2.14 2.50	< 10 < 10 < 10 < 10 < 10 < 10	1 < 1 < 1 1 < 1	0.13 0.08 0.05 0.08 0.12	80 60 30 30 30	0.58 0.71 0.83 0.28 0.36	815 635 850 355 415
U0+50 U0+75 U1+00 U1+25 U1+50	201 202 201 202 201 202 201 202 201 202 201 202	<pre>< 5 < 5 < 5 10 25</pre>	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 0.2	2.74 3.30 3.82 3.51 2.47	2 2 4 6 8	170 160 260 190 160	0.5 0.5 1.0 0.5 0.5	<pre> < 2 /pre>	0.45 0.59 0.62 0.49 0.78	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	10 11 11 13 16	38 59 45 57 46	35 26 28 35 39	3.12 3.34 3.39 3.83 3.74	<pre>< 10 < 10</pre>	1 < 1 < 1 1 < 1	0.12 0.23 0.17 0.22 0.25	40 30 40 30 30	0.60 1.03 0.78 1.01 0.99	420 510 590 785 590
U1+75 U2+00 U2+25 U2+50 U2+75	201 202 201 202 201 202 201 202 201 202 201 202	20 165 170 70 < 5	0.2 0.4 0.6 0.4 < 0.2	2.47 2.63 2.40 2.27 0.64	2 10 2 4 < 2	90 160 70 60 70	0.5 0.5 0.5 0.5 < 0.5	<pre> < 2 /pre>	0.75 0.52 1.10 2.64 0.65	< 0.5 < 0.5 < 0.5 3.0 0.5	15 18 17 12 3	83 33 83 28 6	34 51 77 67 16	4.33 4.56 4.98 3.53 0.89	<pre>< 10 < 10 < 10 < 10 < 10 < 10 < 10</pre>	1 < 1 < 1 < 1	0.13 0.13 0.09 0.13 0.05	40 20 30 10 < 10	1.46 1.01 1.64 0.96 0.14	835 1130 765 695 675

CERTIFICATION:_

ΞĘ. 1000 1 Ger 447

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver

PHONE: 604-984-0221 FAX: 604-984-0218

To: GEOQUEST CONSULTING LTD.

8055 ASPEN RD. VERNON, BC V1B 3M9 Page Number :1-B Total Pages :4 Certificate Date: 25-OCT-97 Invoice No. :19747268 P.O. Number : Account :CYO

Project : #56

Comments: ATTN:WARNER GRUENWALD

CERTIFICATE OF ANALYSIS A

A9747268

	SAMPLE	PREP CODE	Мо ррш	Na %	Ni ppm	P ppm	Pb ppm	Sb pp	Sc ppm	Sr pp∎	Ti %	T1 ppm	U PPm	V pp∎	W ppm	Zn ppm	
	L0+00 L0+25 L0+50 L0+75 L1+00	201 202 201 202 201 202 201 202 201 202 201 202	< 1 < 1 < 1 1 1	0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	16 17 20 19 19	490 750 1020 870 600	10 18 20 60 16	<pre>< 2 < 2</pre>	5 6 7 7	46 45 42 42 49	0.10 0.11 0.10 0.12 0.14	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	53 57 64 58 71	< 10 < 10 < 10 < 10 < 10 < 10	82 160 232 <u>166</u> 92	
	L1+25 E1+50 L1+75 L2+00 L2+25	201 202 201 202 201 202 201 202 201 202 201 202	1 < 1 1 1 1	<pre>< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01</pre>	21 27 31 27 27	580 590 770 1530 1190	10 10 8 6 10	<pre>< 2 < 2</pre>	6 8 7 4 5	41 64 64 71 68	0.10 0.14 0.14 0.10 0.10	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	63 70 75 36 62	< 10 < 10 < 10 < 10 < 10 < 10	70 102 152 124 66	
ond	L2+50 L2+75 L3+00 L3+25 L3+50	201 202 201 202 201 202 201 202 201 202 201 202	2 1 < 1 5 2	< 0.01 < 0.01 0.01 < 0.01 0.01	39 25 22 54 43	650 440 800 880 870	8 6 12 20 38	2 < 2 < 2 < 2 < 2 < 2	5 7 6 11 8	56 55 49 67 46	0.12 0.09 0.10 0.12 0.10	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	89 65 61 115 84	< 10 < 10 < 10 < 10 < 10 < 10	50 54 <u>106</u> <u>472</u> 574	
ower K	L3+75 L4+00 L4+25 L4+50 L4+75	201 202 201 202 201 202 201 202 201 202 201 202	1 1 3 3 1	< 0.01 0.03 0.01 0.01 < 0.01	118 32 36 33 26	1090 900 660 790 850	22 16 18 10 14	<pre>< 2 < 2</pre>	7 6 8 8 7	84 51 40 45 57	0.21 0.09 0.11 0.09 0.13	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	79 58 93 88 78	< 10 < 10 < 10 < 10 < 10 < 10	248 318 362 194 164	
Ý	L5+00 L5+25 L5+50 L5+75 L6+00	201 202 201 202 201 202 201 202 201 202 201 202	4 < 1 2 6 1	0.01 0.01 0.01 0.01 0.03	28 12 20 31 14	750 1820 830 490 910	10 12 16 16 14	<pre></pre>	9 5 7 7 4	43 96 57 34 100	0.08 0.07 0.06 0.05 0.03	< 10 < 10 < 10 < 10 < 10 < 10	<pre>< 10 < 10</pre>	93 33 55 80 35	< 10 < 10 < 10 < 10 < 10 < 10	166 86 104 234 150	
	L6+25 L6+50 L6+75 U0+00 U0+25	201 202 201 202 201 202 201 202 201 202 201 202	3 6 <u>12</u> (1 (1	0.01 0.02 0.01 0.02 0.01	31 76 111 11 15	710 610 1060 520 820	26 22 14 8 8	<pre>< 2 < 2</pre>	9 13 13 4 5	68 64 42 46 50	0.07 0.13 0.09 0.09 0.11	< 10 < 10 < 10 < 10 < 10 < 10	<pre>< 10 < 10</pre>	87 122 125 41 48	< 10 < 10 < 10 < 10 < 10 < 10	248 372 414 52 48	Mend and Profession
Rock	U0+50 U0+75 U1+00 U1+25 U1+50	201 202 201 202 201 202 201 202 201 202 201 202	<pre>< 1 < 1</pre>	0.01 0.02 0.03 0.02 0.07	21 31 30 44 18	530 2050 630 590 790	12 10 12 14 8	<pre>< 2 < 2</pre>	7 8 9 10 9	65 63 85 53 61	0.12 0.17 0.16 0.14 0.09	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	61 66 61 70 76	<pre>< 10 < 10</pre>	52 70 56 64 36	
ndd 17	U1+75 U2+00 U2+25 U2+50 U2+75	201 202 201 202 201 202 201 202 201 202 201 202	<pre>< 1 < 1</pre>	0.01 0.01 0.01 0.01 0.03	42 22 40 19 4	1240 820 1640 500 630	10 14 12 16 6	<pre> < 2 /pre>	9 9 9 1	69 44 77 97 57	0.14 0.06 0.13 0.07 0.04	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	89 75 105 77 21	< 10 < 10 < 10 < 10 < 10 < 10	68 84 78 <u>180</u> 42	
	L		<u></u>				<u> </u>										

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver

British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: GEOQUEST CONSULTING LTD.

Page Number :2-A Total Pages :4 Certificate Date: 25-OCT-97 Invoice No. : 19747268 P.O. Number : :CYO Account

8055 ASPEN RD. VERNON, BC V1B 3M9 Project : #56 Comments: ATTN:WARNER GRUENWALD

CERTIFICATE OF ANALYSIS

A9747268

	SAMPLE	PREP CODE	Au ppb FA+AA	Ag PP m	A1 %	As ppm	Ba p pa	Be ppm	Bi P P m	Ca %	Cd pp∎	Co ppm	Cr ppm	Cu ppa	Fe %	Ga ppm	Hg ppm	K S	La ppm	Mg %	Mn ppm
	U3+00 U3+25 U3+50 U3+75 U4+00	201 202 201 202 201 202 201 202 201 202 201 202	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5</pre>	0.2 0.2 < 0.2 < 0.2 < 0.2 < 0.2	3.22 2.40 2.89 2.30 2.45	6 8 4 2	230 140 110 130 150	1.0 0.5 0.5 0.5 0.5	< 2 < 2 < 2 < 2 < 2	0.84 0.75 0.33 0.31 0.38	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	10 9 6 7	29 22 19 21 28	36 36 18 15 22	3.28 2.70 2.28 2.18 2.56	< 10 < 10 < 10 < 10 < 10 < 10	<pre>< 1 1 1 < 1 < 1</pre>	0.11 0.13 0.18 0.08 0.09	40 20 30 20 30	0.64 0.37 0.31 0.28 0.35	905 1460 470 635 355
Or d	U4+25 U4+50 U4+75 U5+00 U5+25	201 202 201 202 201 202 201 202 201 202 201 202	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5</pre>	< 0.2 < 0.2 0.2 < 0.2 0.2	1.55 1.64 2.69 1.44 3.28	2 4 14 8 38	80 90 120 60 200	0.5 0.5 0.5 0.5 0.5	<pre></pre>	0.32 0.36 0.35 0.30 0.40	<pre>< 0.5 < 0.5 1.0 < 0.5 < 0.5 < 0.5</pre>	5 6 9 6 17	21 23 22 18 22	13 14 41 18 87	2.25 2.58 3.04 2.44 4.93	< 10 < 10 < 10 < 10 < 10 < 10	<pre>< 1 < 1 < 1 < 1 < 1 < 1 < 1</pre>	0.07 0.09 0.10 0.06 0.65	20 30 20 30 10	0.25 0.32 0.37 0.29 1.47	280 245 440 305 660
1 mddy	U5+50 U5+75 U6+00 U6+25 U6+50	201 202 201 202 201 202 201 202 201 202 201 202	20 < 5 < 5 10 < 5	0.2 < 0.2 < 0.2 <u>0.8</u> < 0.2	2.61 2.78 2.42 1.60 2.39	60 24 10 <u>136</u> 30	110 260 260 30 110	0.5 0.5 < 0.5 1.0 0.5	<pre>< 2 < 2</pre>	0.70 0.35 0.62 1.01 0.50	<pre>< 0.5 0.5 < 0.5 15.0 2.0</pre>	50 14 16 20 14	59 26 24 44 22	134 59 56 172 65	5.53 3.71 5.27 7.11 3.58	< 10 < 10 < 10 < 10 < 10 < 10	< 1 1 < 1 1 < 1	0.50 0.32 1.02 0.03 0.07	10 10 < 10 10 30	2.13 0.66 1.70 0.73 0.46	1685 590 665 950 1255
	U6+75 U7+00 U7+25 U7+50 B/L3+00W7+00S	201 202 201 202 201 202 201 202 201 202 201 202	60 15 10 10	< 0.2 0.4 0.2 0.2 < 0.2	1.77 2.65 2.17 2.24 2.13	42 48 34 30 4	40 80 60 70 140	0.5 0.5 0.5 0.5 0.5	<pre>< 2 < 2</pre>	0.84 0.61 0.53 0.40 0.39	9.0 2.0 0.5 < 0.5 < 0.5	16 17 13 14 5	39 37 32 41 15	155 126 76 71 15	6.28 5.76 3.89 4.29 1.86	< 10 < 10 < 10 < 10 < 10 < 10	<pre>< 1 1 1 4 < 1 < 1 < 1</pre>	0.03 0.07 0.07 0.07 0.11	10 10 10 20 10	0.96 0.85 0.55 0.75 0.22	695 510 470 540 395
	B/L3+00W7+25S B/L3+00W7+50S B/L3+00W7+75S B/L3+00W8+00S B/L3+00W8+25S	201 202 201 202 201 202 201 202 201 202 201 202		< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.92 1.05 1.25 1.38 1.90	2 2 8 6 8	110 50 70 120 90	0.5 0.5 0.5 0.5 0.5	<pre> < 2 /pre>	0.45 0.29 0.22 0.32 0.18	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	5 5 5 5 6	18 26 31 18 21	16 19 15 16 20	1.99 2.22 2.23 1.80 2.12	< 10 < 10 < 10 < 10 < 10 < 10	<pre>< 1 < 1</pre>	0.08 0.12 0.09 0.08 0.11	20 30 20 10 20	0.23 0.26 0.28 0.22 0.27	285 240 210 480 350
noifn	B/L3+00W8+50S B/L3+00W8+75S B/L3+00W9+00S B/L3+00W9+25S B/L3+00W9+50S	201 202 201 202 201 202 201 202 201 202 201 202	5 < 5 < 5 < 5 < 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.70 1.17 1.65 2.18 1.85	6 2 6 4 2	110 80 90 310 490	0.5 < 0.5 0.5 0.5 1.0	<pre> < 2 /pre>	0.27 0.23 0.28 0.30 0.49	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	5 5 6 5 6	21 23 28 23 17	16 11 19 17 20	2.01 1.95 2.52 2.42 2.13	< 10 < 10 < 10 < 10 < 10 < 10	1 < 1 < 1 < 1 1	0.09 0.07 0.15 0.15 0.16	10 20 30 40 60	0.26 0.25 0.36 0.32 0.38	350 220 255 725 780
w Estri	B/13+00W9+758 B/13+00W10+00S B/13+00W10+258 B/13+00W10+508 B/13+00W10+758	201 202 201 202 201 202 201 202 201 202 201 202	<u>120</u> < 5 < 5 < 5 < 5 < 5	0.4 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.93 1.40 1.75 1.08 1.89	8 6 2 2 6	200 150 120 140 110	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre></pre>	0.30 0.29 0.22 0.21 0.27	0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	5 4 3 4	12 15 16 20 15	23 10 12 8 16	1.71 1.65 1.68 1.66 1.66	<pre>< 10 < 10</pre>	1 < 1 < 1 1 < 1	0.09 0.07 0.06 0.08 0.06	10 10 10 10 10	0.22 0.16 0.20 0.16 0.16	550 385 180 345 425
6-7	B/L3+00W11+00S B/L3+00W11+25S B/L3+00W11+50S B/L3+00W11+75S B/L3+00W12+00S	201 202 201 202 201 202 201 202 201 202 201 202	(5 (5) (20) (5) (5)	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.97 1.10 0.80 0.64 1.81	6 4 4 4 2	60 140 70 30 110	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 0.5	<pre>< 2 < 2</pre>	0.21 0.24 0.21 0.19 0.21	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 4 3 4 4	22 21 12 24 21	10 9 10 10 12	1.75 1.73 1.19 1.95 1.85	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.05 0.07 0.04 0.05 0.05	10 10 < 10 10 10	0.17 0.18 0.12 0.21 0.25	185 385 210 115 235

CERTIFICATION:_

ta the shie

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 212 Brooksbank Ave.,

To: GEOQUEST CONSULTING LTD.

8055 ASPEN RD. VERNON, BC V1B 3M9

Page Number :2-B Total Pages :4 Certificate Date: 25-OCT-97 Invoice No. :19747268 P.O. Number : Account :cyo

Project : #56 Comments: ATTN:WARNER GRUENWALD

CERTIFICATE OF ANALYSIS

A9747268

	SAMPLE	PREP CODE	Mo ppm	Na %	Ni ppm	P PPm	Pb ppm	Sb ppm	Sc ppm	Sr P p n	Ti %	Tl PPm	U PPM	V ppm	W PPm	Zn ppm	
	U3+00 U3+25 U3+50 U3+75 U4+00	201 202 201 202 201 202 201 202 201 202 201 202	<pre>< 1 < 1</pre>	0.02 0.03 0.03 0.02 0.03	16 17 13 12 18	970 650 850 980 360	12 14 12 10 10	<pre>< 2 < 2</pre>	8 7 4 3 5	128 52 38 43 47	0.13 0.09 0.11 0.09 0.12	< 10 < 10 < 10 < 10 < 10 < 10	<pre>< 10 < 10 < 10 < 10 < 10 < 10 < 10</pre>	63 52 39 39 48	< 10 < 10 < 10 < 10 < 10 < 10	72 <u>100</u> 66 68 64	
Road	04+25 04+50 04+75 05+00 05+25	201 202 201 202 201 202 201 202 201 202 201 202	<pre>< 1 < 1 1 < 1 < 1 < 1 < 1 < 1 < 1</pre>	0.02 0.01 0.03 0.01 < 0.01	9 9 26 9 21	440 390 710 1160 1150	8 6 8 2	<pre></pre>	3 5 7 3 11	32 36 38 25 35	0.10 0.11 0.12 0.07 0.30	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	45 53 71 46 161	< 10 < 10 < 10 < 10 < 10 < 10	58 42 206 56 124	
id p.m.	05+50 05+75 06+00 06+25 06+50	201 202 201 202 201 202 201 202 201 202 201 202	3 1 (1) 10 6	0.01 0.01 < 0.01 < 0.01 < 0.01 0.02	62 36 27 98 34	1550 810 1420 930 1040	<pre>< 2 6 < 2 8 12</pre>	<pre>< 2 < 2</pre>	14 9 11 14 10	43 41 25 39 47	0.20 0.17 0.35 0.10 0.09	<pre>< 10 < 10</pre>	<pre>< 10 < 10</pre>	192 104 179 262 88	< 10 < 10 < 10 < 10 < 10 < 10	108 188 168 938 244	
	06+75 07+00 07+25 07+50 B/L3+00W7+00S	201 202 201 202 201 202 201 202 201 202 201 202	$ \begin{array}{c} 16\\ \underline{11}\\ 5\\ 5\\ 5\\ < 1 \end{array} $	0.01 0.01 0.02 0.01 0.04	108 98 53 49 9	940 840 610 640 550	6 6 2 10 6	<pre>< 2 < 2</pre>	15 14 11 14 4	37 61 38 38 39	0.10 0.11 0.10 0.12 0.09	<pre>< 10 < 10</pre>	<pre>< 10 < 10</pre>	242 144 106 133 29	< 10 < 10 < 10 < 10 < 10 < 10	1075 476 222 176 60	
	B/L3+00W7+25S B/L3+00W7+50S B/L3+00W7+75S B/L3+00W8+00S B/L3+00W8+25S	201 202 201 202 201 202 201 202 201 202 201 202	<pre>< 1 < 1</pre>	0.04 0.01 0.01 0.01 0.01	10 11 16 10 14	330 700 470 1330 930	8 6 8 8	<pre>< 2 < 2</pre>	4 3 4 3 3	45 31 28 50 25	0.09 0.07 0.08 0.06 0.08	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	32 47 47 32 39	< 10 < 10 < 10 < 10 < 10 < 10	46 34 40 52 60	
in 01 8	B/L3+00W8+50S B/L3+00W8+75S B/L3+00W9+00S B/L3+00W9+25S B/L3+00W9+50S	201 202 201 202 201 202 201 202 201 202 201 202	<pre></pre>	0.01 0.01 0.01 0.01 0.01 0.03	12 11 14 12 10	1030 450 410 800 2350	6 6 8 14 18	<pre>< 2 < 2</pre>	3 3 4 4 4	32 25 30 38 81	0.07 0.07 0.09 0.08 0.06	< 10 < 10 < 10 < 10 < 10 < 10	<pre>< 10 < 10</pre>	37 38 48 39 33	<pre>< 10 < 10</pre>	56 40 58 122 120	
Esten	B/L3+00W9+75S B/L3+00W10+00S B/L3+00W10+25S B/L3+00W10+50S B/L3+00W10+75S	201 202 201 202 201 202 201 202 201 202 201 202	<pre>< 1 < 1</pre>	0.04 0.01 0.03 < 0.01 0.02	8 10 12 10 11	1410 1860 1450 1270 1350	110 6 6 6 6	<pre></pre>	3 1 2 1 2	40 47 31 28 33	0.07 0.06 0.07 0.05 0.07	< 10 < 10 < 10 < 10 < 10 < 10	<pre>< 10 < 10</pre>	32 28 29 29 27	< 10 < 10 < 10 < 10 < 10 < 10	256 62 44 40 58	•••
MC.7	B/L3+00W11+00S B/L3+00W11+25S B/L3+00W11+50S B/L3+00W11+75S B/L3+00W12+00S	201 202 201 202 201 202 201 202 201 202 201 202	<pre></pre>	0.01 0.01 0.01 < 0.01 < 0.01 0.01	9 11 6 9 13	970 1290 290 620 430	6 4 6 4 6	<pre>< 2 < 2</pre>	1 1 2 3	23 38 24 17 36	0.06 0.06 0.05 0.04 0.08	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	34 31 25 40 31	< 10 < 10 < 10 < 10 < 10 < 10	42 72 30 24 48	
			I					·=	· · ·								

Т

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assavers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: GEOQUEST CONSULTING LTD.

P.O. Number

Page Number : 3-A Total Pages :4 Certificate Date: 25-OCT-97 Invoice No. : 19747268 . CYO Account

8055 ASPEN RD. VERNON, BC V1B 3M9

Project : #56 Comments: ATTN:WARNER GRUENWALD

CERTIFICATE OF ANALYSIS A9747268

SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm	Al %	As ppm	Ba pp a	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppn	Cu ppm	Fe %	Ga pp m	Hg pp n	K %	La. ppm	Mg %	Mn ppm
B/L3+00W12+25S B/L3+00W12+50S B/L3+00W12+75S B/L3+00W13+00S B/L3+00W13+25S	201 202 201 202 201 202 201 202 201 202 201 202	(5) (5) (5) (40) (5)	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.28 0.86 1.90 1.53 1.31	<pre> < 2 /pre>	120 100 140 110 240	0.5 < 0.5 0.5 0.5 < 0.5	<pre>< 2 < 2</pre>	0.28 0.32 0.33 0.26 0.37	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	5 5 8 5 5	27 12 46 30 27	11 26 14 14 13	2.16 1.26 2.56 2.18 1.37	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.07 0.07 0.16 0.08 0.07	10 < 10 30 20 < 10	0.29 0.12 0.47 0.29 0.26	280 675 600 285 530
B/L3+00W13+50S B/L3+00W13+75S B/L3+00W14+00S B/L3+00W14+25S B/L3+00W14+50S	201 202 201 202 201 202 201 202 201 202 201 202	<pre>< 5 < 5 < 5 < 5 < 5 < 5 </pre>	< 0.2 < 0.2 0.2 < 0.2 < 0.2 < 0.2	2.02 1.93 1.06 2.47 1.72	2 2 4 2 6 2	150 140 70 160 110	0.5 0.5 < 0.5 0.5 0.5	<pre> < 2 < 4 < 4 < 4 </pre> < 2 < 2 < 2 < 2 < 2 < 2 	0.18 0.34 0.55 0.24 0.22	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	5 4 3 4 4	29 14 10 10 18	11 13 25 10 10	1.91 1.65 1.05 1.55 1.82	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 1 < 1	0.05 0.07 0.05 0.05 0.06	< 10 10 30 < 10 10	0.30 0.19 0.13 0.13 0.17	425 570 365 400 240
B/L3+00W14+75S B/L3+00W15+00S B/L3+00W15+25S B/L3+00W15+50S B/L3+00W15+75S	201 202 201 202 201 202 201 202 201 202 201 202	(5 15 10 (5 5	< 0.2 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.11 1.76 1.51 0.92 1.10	<pre></pre>	70 150 160 80 80	< 0.5 < 0.5 0.5 < 0.5 < 0.5	<pre>< 2 < 2</pre>	0.19 0.23 0.39 0.25 0.23	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 4 4 5	23 17 22 13 25	11 10 12 11 12	2.00 1.85 2.00 1.38 2.18	< 10 < 10 < 10 < 10 < 10 < 10	<pre>< 1 < 1</pre>	0.06 0.06 0.07 0.05 0.04	10 10 40 < 10 20	0.21 0.17 0.24 0.14 0.19	265 450 425 235 340
B/L3+00W16+00S B/L3+00W16+25S B/L3+00W16+50S B/L3+00W16+75S B/L3+00W17+00S	201 202 201 202 201 202 201 202 201 202 201 202	<pre></pre>	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.24 1.44 2.25 1.80 1.99	2 6 8 2 2	330 270 130 90 110	0.5 < 0.5 0.5 < 0.5 < 0.5 < 0.5	<pre>< 2 < 2</pre>	0.34 0.56 0.26 0.22 0.14	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 5 4 4	15 18 18 17 15	10 14 13 10 11	1.91 2.01 2.03 1.92 1.79	< 10 < 10 < 10 < 10 < 10 < 10	1 < 1 < 1 < 1 < 1	0.09 0.08 0.06 0.06 0.05	10 10 10 10	0.18 0.19 0.18 0.16 0.14	605 595 335 255 295
B/L3+00W17+25S B/L3+00W17+50S B/L3+00W17+75S B/L3+00W18+00S B/L3+00W18+25S	201 202 201 202 201 202 201 202 201 202 201 202	10 < 5 < 5 < 5 < 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.10 1.07 2.32 1.95 1.59	<pre>< 2 < 4 4 < 4 < 2</pre>	50 170 180 170 180	<pre>< 0.5 < 0.5 0.5 0.5 < 0.5 < 0.5</pre>	<pre>< 2 < 2</pre>	0.22 0.20 0.20 0.24 0.19	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 3 4 4 4	25 14 14 17 18	10 8 11 10 10	2.06 1.55 1.76 1.86 1.82	< 10 < 10 < 10 < 10 < 10 < 10	<pre>< 1 < 1 < 1 < 1 < 1 < 1 < 1</pre>	0.06 0.06 0.06 0.07 0.07	20 < 10 10 10 10	0.22 0.11 0.15 0.19 0.18	145 415 405 250 245
B/L3+00W18+50S B/L3+00W18+75S B/L3+00W19+00S B/L3+00W19+25S B/L3+00W19+50S	201 202 201 202 201 202 201 202 201 202 201 202	<pre>< 5 < 5</pre>	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.85 1.39 1.41 1.87 1.97	4 2 < 2 6 2	130 140 80 150 160	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre></pre>	0.20 0.19 0.27 0.28 0.26	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 4 4 4	18 18 18 17 15	11 8 8 11 12	2.02 1.84 1.79 1.86 1.84	<pre>< 10 < 10</pre>	<pre>< 1 < 1</pre>	0.08 0.05 0.08 0.07 0.07	10 10 10 10 10	0.19 0.15 0.16 0.15 0.18	285 260 250 360 390
B/L3+00W19+75S B/L3+00W20+00S B/L3+00W20+25S B/L3+00W20+50S B/L3+00W20+75S	201 202 201 202 201 202 201 202 201 202 201 202	10 10 5 5 5 5 5 5 5 5 5 5 5 5 5	<pre>{ 0.2 { 0.2 { 0.2 { 0.2 { 0.2 { 0.2 { 0.2 { 0.2 { 0.2 } < 0.2 } < 0.2 } < 0.2 } < 0.2 }</pre>	2.59 1.66 2.08 2.12 1.72	<pre></pre>	140 110 90 100 240	0.5 0.5 0.5 0.5 < 0.5	<pre>< 2 < 2</pre>	0.22 0.35 0.46 0.25 0.34	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	5 5 4 5 4	14 23 19 25 17	14 14 22 13 13	1.85 2.44 1.74 2.42 1.86	<pre>< 10 < 10 < 10 < 10 < 10 < 10 < 10</pre>	<pre>< 1 < 1</pre>	0.06 0.04 0.05 0.04 0.04 0.06	10 10 20 10 10	0.19 0.24 0.21 0.28 0.20	415 310 440 435 725
B/L3+00W21+00S B/L3+00W21+25S B/L3+00W21+50S B/L3+00W21+75S B/L3+00W22+00S	201 202 201 202 201 202 201 202 201 202 201 202	<pre></pre>	< 0.2 < 0.2 < 0.2 < 0.2 0.2 0.2	2.23 3.15 1.35 1.58 4.72	<pre></pre>	120 130 170 110 60	0.5 0.5 < 0.5 < 0.5 0.5	<pre>< 2 < 2</pre>	0.38 0.37 0.33 0.46 0.26	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 6 7 14 9	26 15 8 12 18	16 21 11 35 41	2.41 2.15 1.43 2.41 3.02	< 10 < 10 < 10 < 10 < 10 10	<pre>< 1 < 1 < 1 < 1 < 1 < 1 < 1</pre>	0.08 0.08 0.07 0.05 0.05	20 10 < 10 < 10 10	0.35 0.25 0.17 0.23 0.35	515 475 565 1085 300

tainting-5 ..

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: GEOQUEST CONSULTING LTD.

CERTIFICATE OF ANALYSIS

Page Number : 3-B Total Pages :4 Certificate Date: 25-OCT-97 Invoice No. : 19747268 P.O. Number : Account :CYO

A0747268

: 3

8055 ASPEN RD. VERNON, BC V1B 3M9

Project : #56 Comments: ATTN:WARNER GRUENWALD

																0.0	A3147200
SAMPLE	PRE COI	ep De	Mo ppm	Na %	Ni pp m	P ppm	Pb ppm	Sb pp m	Sc ppm	Sr ppa	Ti S	Tl ppm	U ppm	V ppm	W	Zn ppm	
B/L3+00W12+25S B/L3+00W12+50S B/L3+00W12+75S B/L3+00W13+00S B/L3+00W13+25S	201 201 201 201 201 201	202 202 202 202 202 202	<pre>< 1 < 1</pre>	0.01 0.04 0.01 0.01 0.03	13 7 28 21 20	2170 1060 1730 1160 2110	8 6 10 8 6	<pre>< 2 < 2</pre>	2 1 4 3 2	54 32 36 33 46	0.06 0.06 0.09 0.09 0.07	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	38 25 43 40 25	< 10 < 10 < 10 < 10 < 10 < 10	60 42 92 62 90	
B/L3+00W13+50S B/L3+00W13+75S B/L3+00W14+00S B/L3+00W14+25S B/L3+00W14+25S B/L3+00W14+50S	201 201 201 201 201 201	202 202 202 202 202 202	<pre>< 1 < 1</pre>	0.01 0.01 0.04 0.02 0.01	25 11 14 10 12	2240 2620 220 1980 1880	6 B 2 8 6	<pre>< 2 < 2</pre>	2 1 1 2 1	24 40 54 31 25	0.08 0.07 0.05 0.09 0.07	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	31 25 19 23 30	<pre>< 10 < 10</pre>	76 86 42 50 52	
B/L3+00W14+75S B/L3+00W15+00S B/L3+00W15+25S B/L3+00W15+50S B/L3+00W15+75S	201 201 201 201 201 201	202 202 202 202 202 202	<pre>< 1 < 1</pre>	0.01 0.02 0.02 0.04 0.01	10 11 11 7 11	890 1580 680 320 710	8 6 12 6 6	<pre>< 2 < 2</pre>	2 2 3 1 3	21 34 56 27 20	0.06 0.07 0.08 0.07 0.07	<pre>< 10 < 10</pre>	<pre>< 10 < 10 < 10 < 10 < 10 < 10 < 10</pre>	41 32 37 30 45	<pre>< 10 < 10 < 10 < 10 < 10 < 10 < 10</pre>	38 66 44 36 36	
B/L3+00W16+00S B/L3+00W16+25S B/L3+00W16+50S B/L3+00W16+75S B/L3+00W17+00S	201 201 201 201 201 201	202 202 202 202 202 202	<pre>< 1 < 1</pre>	0.03 0.02 0.02 0.01 0.03	11 9 11 13 11	4050 2260 2240 1580 1690	8 8 8 6 6	<pre> < 2 /pre>	2 2 2 2 1	43 53 29 23 17	0.08 0.07 0.09 0.08 0.08	<pre>< 10 < 10 < 10 < 10 < 10 < 10 < 10</pre>	<pre>< 10 < 10</pre>	30 35 35 33 30	< 10 < 10 < 10 < 10 < 10 < 10	100 88 54 54 58	
B/L3+00W17+25S B/L3+00W17+50S B/L3+00W17+75S B/L3+00W18+00S B/L3+00W18+25S	201 201 201 201 201 201	202 202 202 202 202 202	<pre>< 1 < 1</pre>	0.01 0.02 0.02 0.02 0.02 0.01	10 7 12 13 10	440 1380 1620 960 1330	6 6 6 6 6	<pre></pre>	2 1 2 2 1	22 24 26 27 23	0.08 0.06 0.08 0.08 0.08	<pre>< 10 < 10 < 10 < 10 < 10 < 10 < 10</pre>	<pre>< 10 < 10</pre>	45 28 28 32 32	<pre>< 10 < 10</pre>	32 54 50 48 42	
B/L3+00W18+50S B/L3+00W18+75S B/L3+00W19+00S B/L3+00W19+25S B/L3+00W19+50S	201 201 201 201 201	202 202 202 202 202 202	<pre> < 1 /pre>	0.02 0.01 0.03 0.03 0.03	12 10 10 11 11	1530 1670 - 820 1400 1550	6 6 6 8	<pre> < 2 /pre>	2 1 2 2 2	28 22 25 28 28	0.08 0.07 0.08 0.08 0.08	< 10 < 10 < 10 < 10 < 10 < 10	<pre>< 10 < 10</pre>	37 33 35 33 31	<pre>< 10 < 10</pre>	66 74 46 38 52	
B/L3+00W19+75S B/L3+00W20+00S B/L3+00W20+25S B/L3+00W20+50S B/L3+00W20+75S	201 201 201 201 201	202 202 202 202 202 202	<pre>< 1 < 1</pre>	0.03 0.01 0.05 0.01 0.02	10 11 10 13 11	970 1890 490 1250 1650	8 8 8 8 8	<pre>< 2 < 2</pre>	3 2 3 3 1	31 36 32 22 30	0.10 0.08 0.10 0.10 0.08	< 10 < 10 < 10 < 10 < 10 < 10	<pre>< 10 < 10</pre>	32 49 32 47 32	< 10 < 10 < 10 < 10 < 10 < 10	34 62 34 50 62	
B/L3+00W21+00S B/L3+00W21+25S B/L3+00W21+50S B/L3+00W21+75S B/L3+00W22+00S	201 201 201 201 201	202 202 202 202 202 202	<pre> < 1 < 1 < 1 < 1</pre>	0.02 0.04 0.03 0.03 0.01	13 10 6 7 13	890 500 570 700 1360	8 10 6 10 10	<pre>< 2 < 2</pre>	3 4 1 4 5	27 28 28 39 21	0.11 0.12 0.08 0.09 0.16	<pre>< 10 < 10 < 10 < 10 < 10 < 10 < 10</pre>	< 10 < 10 < 10 < 10 < 10 < 10	46 32 24 37 48	< 10 < 10 < 10 < 10 < 10 < 10	48 34 50 72 48	

CERTIFICATION:_

<u>^ ^</u>

.

- en 1

.

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: GEOQUEST CONSULTING LTD.

8055 ASPEN RD. VERNON, BC V1B 3M9 Page Number :4-A Total Pages :4 Certificate Date: 25-OCT-97 Invoice No. :19747268 P.O. Number : Account :CYO

Project : #56 Comments: ATTN:WARNER GRUENWALD

			· · · · · ·								CE	RTIFI	CATE	OF A	NAL	SIS	/	49747	268		
SAMPLE	PR CO	EP DE	Au ppb FA+AA	Ag pp n	Al %	As ppm.	Ba ppm	Be	Bi ppm	Ca	Cđ ppm	Co ppm	Cr ppm	Cu pp	Fe %	Ga pp m	Hg pp m	X %	La pp n	Ng	Mn ppm
8/L3+00W22+25S 8/L3+00W22+50S 8/L3+00W22+50S 8/L3+00W22+75S 8/L3+00W23+00S 8/L3+00W23+25S	201 201 201 201 201 201	202 202 202 202 202 202	<pre></pre>	0.2 0.2 0.2 < 0.2 < 0.2 < 0.2	3.04 2.36 1.02 3.16 2.58	2 < 2 6 4 4	220 80 90 100 190	0.5 0.5 < 0.5 0.5 0.5	<pre>< 2 < 2</pre>	0.48 0.48 0.21 0.36 0.30	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	24 6 7 7 8	18 15 11 18 24	49 24 25 26 28	3.08 2.07 1.78 2.41 2.55	< 10 < 10 < 10 < 10 < 10 < 10	<pre>< 1 < 1</pre>	0.11 0.05 0.04 0.06 0.06	10 10 < 10 10 10	0.38 0.26 0.16 0.31 0.34	1030 360 905 320 820
3/L3+00W23+50S 3/L3+00W23+75S 8/L3+00W24+00S	201 201 201	202 202 202	< 5 < 5 < 5	< 0.2 0.2 < 0.2	3.20 3.50 2.97	< 2 2 2	350 110 150	0.5 0.5 0.5	< 2 < 2 < 2	0.38 0.27 0.25	< 0.5 < 0.5 < 0.5	14 10 9	88 36 30	36 33 31	3.63 3.24 2.73	< 10 < 10 < 10	< 1 < 1 < 1	0.17 0.07 0.09	20 10 10	1.29 0.54 0.47	765 745 630
							-														

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: GEOQUEST CONSULTING LTD.

8055 ASPEN RD. VERNON, BC V1B 3M9

Г

Page Number :4-B Total Pages :4 Certificate Date: 25-OCT-97 Invoice No. : 19747268 P.O. Number : Account :CYO

N -2

Project : #56 Comments: ATTN:WARNER GRUENWALD

r											CE	RTIF	CATE	OF A	NALY	'SIS	A9747268
SAMPLE	SAMPLE CODE			Na %	Ni ppm	P ppm	Pb - ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	Tl p pn	U PPm	V PP n	W ppm	Zn pp n	
B/L3+00W22+25S B/L3+00W22+50S B/L3+00W22+75S B/L3+00W23+00S B/L3+00W23+25S	201 201 201 201 201 201	202 202 202 202 202 202	<pre>< 1 < 1</pre>	0.02 0.03 0.04 0.02 0.02	14 9 6 12 15	530 490 420 1010 970	10 8 10 10 14	<pre>< 2 < 2</pre>	5 3 1 4 3	38 35 19 31 28	0.13 0.11 0.08 0.13 0.11	<pre>< 10 < 10 < 10 < 10 < 10 < 10 < 10</pre>	<pre>< 10 < 10</pre>	45 37 33 43 46	<pre>< 10 < 10</pre>	72 38 50 42 66	
B/L3+00W23+50S B/L3+00W23+75S B/L3+00W24+00S	201 201 201	202 202 202	< 1 < 1 < 1	0.02 0.01 0.03	35 22 18	1550 1170 930	10 10 10	< 2 < 2 < 2	5 4	37 22 23	0.19 0.15 0.14	< 10 < 10 < 10	< 10 < 10 < 10	72 58 50	< 10 < 10 < 10	64 60 50	
									-								

*

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: GEOQUEST CONSULTING LTD.

8055 ASPEN RD. VERNON, BC V1B 3M9

Page Number : 1-A Total Pages : 1 Certificate Date: 27-OCT-97 Invoice No. : 19746994 P.O. Number : Account :CYO

Project : #56 Comments: ATTN: WARNER GRUENWALD

SAMPLE UG-01 UG-02 UG-03 UG-04 UG-05	PRE: COD 208 208 208	P E 294	Au oz/T	Ag ppm	A1	λs	-	v													
0G-01 0G-02 0G-03 0G-04 0G-05	208 208 208	294			*	ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppa	Cr ppm	Cu ppm	Pe %	Ga ppa	Hg ppa	K X	La ppm	Mg %	Mn ppn
	208 208	294 294 294 294	0.007 0.005 < 0.001 0.002	<u>1.4</u> 1.0 0.6 < 0.2 < 0.2	2.04 2.43 2.35 2.18 2.39	34 8 < 2 < 2 < 2	50 70 90 70 100	0.5 < 0.5 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	3.36 3.93 3.64 2.23 2.38	< 0.5 2.0 3.0 < 0.5 < 0.5	18 10 11 13 8	82 45 42 48 47	271 70 30 11 8	5.82 4.52 4.34 4.70 4.48	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 1 < 1 1	0.11 0.34 0.54 0.33 0.50	20 10 < 10 < 10 10	1.68 1.41 1.04 1.32 1.13	455 885 755 635 615
06-06 06-07 06-08 06-09 06-10	208 208 208 208 208 208	294 294 294 294 294	0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 <u>4.0</u>	2.24 2.08 2.00 1.99 2.38	<pre>< 2 < 2</pre>	140 120 80 60 50	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	2.22 3.23 6.31 5.35 5.21	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 1.0	8 13 10 12 13	49 63 43 76 85	4 36 12 25 22	4.09 3.89 3.19 3.05 3.69	< 10 < 10 < 10 < 10 < 10 < 10	1 < 1 < 1 < 1 1	0.49 0.19 0.33 0.21 0.27	10 < 10 < 10 < 10 < 10 < 10	1.14 1.57 1.13 1.44 1.77	525 790 1205 1035 1020
30-11 30-12 30-13 30-14 30-15	208 208 208 208 208 208	294 294 294 294 294	< 0.001 0.013 0.001 < 0.001 < 0.001 < 0.001	0.2 0.4 0.2 0.2 < 0.2	2.14 1.93 1.53 2.00 1.43	< 2 2 < 2 < 2 < 2 < 2	50 40 50 40 50	< 0.5 < 0.5 0.5 < 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	4.90 6.42 5.87 5.18 2.83	< 0.5 2.0 0.5 < 0.5 < 0.5	14 13 9 12 7	60 51 72 129 92	30 24 16 23 27	3.80 3.65 2.24 3.09 2.04	< 10 < 10 < 10 < 10 < 10 < 10	< 1 1 < 1 < 1	0.17 0.13 0.26 0.17 0.26	< 10 < 10 10 < 10 10	1.55 1.57 0.83 1.72 0.88	980 945 790 750 440
70-16 70-17 70-18 70-19 78-01	208 208 208 208 208 208 208	294 294 294 294 294 294	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001	< 0.2 0.2 < 0.2 < 0.2 0.2	1.72 2.09 1.60 2.08 2.09	2 < 2 < 2 < 2 < 2 < 2	50 40 50 50 50	< 0.5 0.5 0.5 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	2.57 4.45 3.62 3.69 5.13	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 7.0	10 14 9 11 14	88 95 68 84 45	49 30 31 15 6	2.83 3.47 2.44 3.32 3.72	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 1 < 1	0.21 0.19 0.24 0.23 0.13	10 30 50 30 < 10	1.27 1.64 1.09 1.56 1.67	465 865 665 765 780
NR-02 NR-03 NR-04 NR-05 NR-06	208 2 208 2 208 2 208 2 208 2	294 294 294 294 294 294	0.107 0.004 0.001 0.003 0.573	58.0 2.8 0.6 2.8 >100.0	0.57 2.26 2.03 2.22 1.85	196 10 < 2 ~ < 2 494	20 90 70 60 50	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	82 2 < 2 2 260	4.42 5.15 5.02 7.22 5.18	>100.0 33.0 7.0 17.5 >100.0	23 13 11 11 13	114 59 53 42 51	371 29 21 65 405	5.51 3.86 3.06 3.77 6.62	< 10 < 10 < 10 < 10 < 10 < 10	1 < 1 < 1 1 1	0.09 0.36 0.27 0.34 0.28	< 10 < 10 < 10 < 10 < 10 < 10	0.31 1.27 1.23 1.15 1.03	470 745 860 575 730
R-07 R-08 R-09 R-10 R-11	208 2 208 2 208 2 208 2 208 2 208 2	294 194 194 194 194	0.052 < 0.001 0.109 < 0.001 0.512	33.4 0.4 40.0 0.4 ≻100.0	1.15 1.39 0.31 0.87 0.64	22 4 82 2 94	50 280 370 310 < 10	< 0.5 < 0.5 < 0.5 0.5 < 0.5 < 0.5	32 < 2 32 < 2 214	2.84 4.87 0.77 1.16 1.39	>100.0 2.5 >100.0 17.5 >100.0	16 9 4 3 6	132 49 196 46 199	1075 11 106 8 217	2.96 2.76 1.71 1.36 3.61	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 1	0.28 0.06 0.05 0.27 0.02	< 10 < 10 < 10 80 < 10	0.64 1.09 0.15 0.31 0.47	395 695 180 280 280
R-12 R-13 - DOMP	208 2 208 2 208 2	94 94 94	0.001 < 0.001 0.502	1.0 0.2	1.30 1.39	< 2	20 10	< 0.5 < 0.5	< 2 < 2	3.22 5.41	0.5 < 0.5	9 11	58 52	3	2.27 3.09	< 10 < 10	< 1 < 1	0.06	< 10 < 10	1.05 1.07	495 695
																	· · · · · · · · ·			<u> </u>	
	X2-15 X2-15 X2-17 X2-18 X2-17 X2-18 X2-19 R-01 R-02 R-03 R-03 R-04 R-05 R-05 R-05 R-06 R-07 R-08 R-09 R-10 R-11 R-12 R-13 -DOMP	X2-15 208 X2-16 208 X2-17 208 X2-17 208 X2-17 208 X2-18 208 X2-19 208 R-01 208 R-02 208 R-03 208 R-04 208 R-05 208 R-06 208 R-08 208 R-10 208 R-11 208 R-12 208 R-13 208 -DUMP 208	X2-15 208 294 X2-16 208 294 X2-17 208 294 X2-17 208 294 X2-18 208 294 X2-19 208 294 R-01 208 294 R-02 208 294 R-03 208 294 R-04 208 294 R-05 208 294 R-06 208 294 R-07 208 294 R-08 208 294 R-09 208 294 R-10 208 294 R-11 208 294 R-12 208 294 R-13 208 294 PDMP 208 294	X2-15 208 294 < 0.001	X2-15 208 294 < 0.001	X2-15 208 294 < 0.001	X2-15 208 294 < 0.001	X2-15 208 294 < 0.001	X2-15 208 294 < 0.001 < 0.2 1.43 < 2 50 0.5 X2-16 208 294 < 0.001 < 0.2 1.72 2 50 0.5 X2-17 208 294 < 0.001 0.2 2.09 < 2 40 0.5 X2-17 208 294 < 0.001 0.2 2.09 < 2 40 0.5 X2-18 208 294 < 0.001 < 0.2 2.09 < 2 50 0.5 X2-01 208 294 < 0.001 < 0.2 2.09 < 2 50 0.5 R-01 208 294 < 0.001 0.2 2.09 < 2 50 0.5 R-02 208 294 < 0.001 0.2 2.09 < 2 50 0.5 R-03 208 294 < 0.001 0.6 2.03 < 2 70 <0.5 R-04 208 294 < 0.001 0.4 1.39 4 280 <0.5 R-05 208 294	X2-15 208 294 < 0.001 < 0.2 1.43 < 2 50 0.5 < 2 X2-16 208 294 < 0.001 < 0.2 1.72 2 50 0.5 < 2 X2-17 208 294 < 0.001 0.2 2.09 < 2 40 0.5 < 2 X2-17 208 294 < 0.001 0.2 2.09 < 2 40 0.5 < 2 X2-19 208 294 < 0.001 0.2 2.09 < 2 50 0.5 < 2 X2-19 208 294 < 0.001 0.2 2.09 < 2 50 0.5 < 2 R-01 208 294 < 0.001 0.2 2.09 < 2 50 0.5 < 2 R-02 208 294 < 0.004 2.8 2.22 < 2 60 0.5 2 R-03 208 294 < 0.012 2.8 2.22 < 2 60 < 2.23 $< 0.5 < 2.20 <$	Re-15 208 294 < 0.001 < 0.2 1.43 < 2 50 0.5 < 2 2.83 Re-16 208 294 < 0.001 < 0.2 1.72 2 50 0.5 < 2 2.83 Re-17 208 294 < 0.001 0.2 2.09 < 2 40 0.5 < 2 2.57 Ge-18 208 294 < 0.001 < 0.2 2.09 < 2 40 0.5 < 2 3.62 Kg-19 208 294 < 0.001 < 0.2 2.09 < 2 50 0.5 < 2 3.63 Re-01 208 294 < 0.001 0.2 2.09 < 2 50 0.5 < 2 3.63 Re-02 208 294 < 0.001 0.6 2.03 < 2 7.0 < 2 5.2 4.42 Re-03 208 294 < 0.001 2.6 2.03 < 2 2.00 < 2 5.0 2.7 2.22 60 < 0.5 2.2 5.15 Re-04 208 <td>RC-15 208 294 < 0.001 < 0.2 1.43 < 2 50 0.5 < 2 2.83 < 0.5 RC-16 208 294 < 0.001 < 0.2 1.72 2 50 < 0.5 < 2 2.83 < 0.5 RC-17 208 294 < 0.001 < 0.2 2.09 < 2 40 0.5 < 2 2.57 < 0.5 G0-18 206 294 < 0.001 < 0.2 2.09 < 2 50 0.5 < 2 2.57 < 0.5 G0-19 208 294 < 0.001 < 0.2 2.09 < 2 50 0.5 < 2 3.62 < 0.5 R-01 208 294 < 0.001 < 2 2.09 < 2 50 0.5 < 2 3.62 < 0.5 R-02 208 294 < 0.001 0.2 2.09 < 2 50 0.5 2 5.15 33.0 R-03 208 294 < 0.001 2.6 2.7 2.7 2.5 2.7 2.2 1.75</td> <td>Re-15 208 294 0.011 < 0.2 1.43 < 2 50 0.5 < 2 2.83 < 0.5 7 N0-16 208 294 <</td> 0.001 0.2 1.72 2 50 0.5 < 2	RC-15 208 294 < 0.001 < 0.2 1.43 < 2 50 0.5 < 2 2.83 < 0.5 RC-16 208 294 < 0.001 < 0.2 1.72 2 50 < 0.5 < 2 2.83 < 0.5 RC-17 208 294 < 0.001 < 0.2 2.09 < 2 40 0.5 < 2 2.57 < 0.5 G0-18 206 294 < 0.001 < 0.2 2.09 < 2 50 0.5 < 2 2.57 < 0.5 G0-19 208 294 < 0.001 < 0.2 2.09 < 2 50 0.5 < 2 3.62 < 0.5 R-01 208 294 < 0.001 < 2 2.09 < 2 50 0.5 < 2 3.62 < 0.5 R-02 208 294 < 0.001 0.2 2.09 < 2 50 0.5 2 5.15 33.0 R-03 208 294 < 0.001 2.6 2.7 2.7 2.5 2.7 2.2 1.75	Re-15 208 294 0.011 < 0.2 1.43 < 2 50 0.5 < 2 2.83 < 0.5 7 N0-16 208 294 <	Re-15 208 294 < 0.001 < 0.2 1.43 < 2 50 0.5 < 2 2.83 < 0.5 7 92 NO-16 208 294 < 0.001	No-15 208 294 < 0.001 < 0.2 1.43 < 2 50 0.5 < 2 2.83 < 0.5 7 92 27 No-16 208 294 < 0.001	No-15 208 294 <td>Ma-15 208 294 <0.001 <0.2 1.43 <2 50 0.5 <2 2.83 <0.5 7 92 27 2.04 <10 Ma-16 208 294 <0.001 <0.2 1.72 2 50 <0.5 <2 2.83 <0.5 7 92 27 2.04 <10 Ma-17 208 294 <0.001 <0.2 2.09 <2 40 0.5 <2 2.57 <0.5 10 88 49 2.83 <10 Ma-18 208 294 <0.001 <0.2 2.09 <2 50 0.5 <2 3.62 <0.5 11 84 15 3.32 <10 B2-19 206 294 <0.001 <0.2 2.09 <50 0.5 <2 3.62 <0.5 11 84 15 3.32 <10 B2-02 206 0.57 196 20 <0.55 2 5.15 33.0 13 59 29 3.66 <10 3.77 <11</td> <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td> <td>Ma-15 208 294 <0.001 <0.2 1.43 <2 50 0.5 <2 2.83 <0.5 7 92 27 2.04 <10 <1 0.26 Ma-16 208 294 <0.001 <0.2 1.72 2 50 <0.5 <2 2.83 <0.5 7 92 27 2.04 <10 <1 0.26 Ma-17 208 294 <0.001 0.2 2.09 <2 40 0.5 <2 2.57 <0.5 10 88 49 2.83 <10 <1 0.21 Ma-18 206 294 <0.001 0.2 2.09 <2 50 0.5 <2 3.62 0.5 11 84 15 3.32 <10 1 0.24 R-01 206 294 <0.001 0.2 2.09 <2 50 0.5 2 3.62 0.55 11 84 15 3.32 <10 1 0.28 R-01 208 296 0.001 0.5 20</td> <td>M2-15 208 294 0.0 < 2 50 0.5 < 2 2.83 < 0.5 7 92 27 2.04 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10<</td> <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td>	Ma-15 208 294 <0.001 <0.2 1.43 <2 50 0.5 <2 2.83 <0.5 7 92 27 2.04 <10 Ma-16 208 294 <0.001 <0.2 1.72 2 50 <0.5 <2 2.83 <0.5 7 92 27 2.04 <10 Ma-17 208 294 <0.001 <0.2 2.09 <2 40 0.5 <2 2.57 <0.5 10 88 49 2.83 <10 Ma-18 208 294 <0.001 <0.2 2.09 <2 50 0.5 <2 3.62 <0.5 11 84 15 3.32 <10 B2-19 206 294 <0.001 <0.2 2.09 <50 0.5 <2 3.62 <0.5 11 84 15 3.32 <10 B2-02 206 0.57 196 20 <0.55 2 5.15 33.0 13 59 29 3.66 <10 3.77 <11	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ma-15 208 294 <0.001 <0.2 1.43 <2 50 0.5 <2 2.83 <0.5 7 92 27 2.04 <10 <1 0.26 Ma-16 208 294 <0.001 <0.2 1.72 2 50 <0.5 <2 2.83 <0.5 7 92 27 2.04 <10 <1 0.26 Ma-17 208 294 <0.001 0.2 2.09 <2 40 0.5 <2 2.57 <0.5 10 88 49 2.83 <10 <1 0.21 Ma-18 206 294 <0.001 0.2 2.09 <2 50 0.5 <2 3.62 0.5 11 84 15 3.32 <10 1 0.24 R-01 206 294 <0.001 0.2 2.09 <2 50 0.5 2 3.62 0.55 11 84 15 3.32 <10 1 0.28 R-01 208 296 0.001 0.5 20	M2-15 208 294 0.0 < 2 50 0.5 < 2 2.83 < 0.5 7 92 27 2.04 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10<	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

SAMPLE

PREP

No

Ma

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada

V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

Ni

₽

Рb

Sb

S¢

To: GEOQUEST CONSULTING LTD.

8055 ASPEN RD. VERNON, BC V1B 3M9

Tİ

Sr

Page Number : 1-B Total Pages :1 Certificate Date: 27-OCT-97 Invoice No. : 19746994 P.O. Number : Account :CYO

Project : #56 Comments: ATTN: WARNER GRUENWALD

71

CERTIFICATE OF ANALYSIS

A9746994 υ V N Zn

	SAMPLE	CODE	ppm	*	ppr	ppa	ppm	ppm	ppm	ppn	*	ppm	ppm	ppm	ppn	ppm	
	202-01 202-02 202-03 202-04 202-05	208 294 208 294 208 294 208 294 208 294	14 3 1 < 1 < 1	0.03 0.03 0.03 0.05 0.04	47 13 5 6 6	1160 900 850 880 860	16 18 34 8 6	2 < 2 < 2 < 2 < 2	13 9 7 8 8	116 144 142 105 98	0.11 0.01 0.03 0.04	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	294 100 71 112 92	< 10 < 10 < 10 < 10 < 10 < 10	44 138 158 56 44	
punos	₽02-06 ₽02-07 ₽02-08 ₽02-09 ₽02-10	208 294 208 294 208 294 208 294 208 294	< 1 < 1 < 1 < 1 < 1 < 1	0.05 0.06 0.03 0.03 0.03	9 22 12 35 46	810 780 860 720 740	2 2 6 14	< 2 < 2 < 2 < 2 < 2	7 10 9 8 8	94 171 262 226 206	0.01 0.12 0.04 0.06 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	83 103 83 86 87	< 10 < 10 < 10 < 10 < 10	44 58 72 80 <u>108</u>	
Undrg.	PUG-11 PUG-12 PUG-13 PUG-14 PUG-15	208 294 208 294 208 294 208 294 208 294 208 294	< 1 < 1 < 1 < 1 < 1 < 1	0.04 0.04 0.02 0.04 0.03	26 19 15 87 41	840 930 470 590 390	6 8 14 6 10	< 2 < 2 < 2 < 2 < 2 < 2	10 11 6 6 4	246 298 282 166 130	0.02 0.06 0.05 0.04 <0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	111 124 61 75 37	< 10 < 10 < 10 < 10 < 10 < 10	82 <u>146</u> 66 58 46	
	PUG-16 PUG-17 PUG-18 PUG-19 OAR-01	208 294 208 294 208 294 208 294 208 294 208 294	<pre>< 1 < 1</pre>	0.06 0.04 0.04 0.03 0.05	51 61 47 51 15	530 710 530 640 1130	6 10 14 12 6	< 2 < 2 < 2 < 2 2 2	6 9 5 6 13	120 215 198 187 260	<pre>< 0.01 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.12</pre>	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	65 94 52 70 124	< 10 < 10 < 10 < 10 < 10 < 10	38 68 54 64 320	
	OAR-02 OAR-03 OAR-04 OAR-05 OAR-06	208 294 208 294 208 294 208 294 208 294 208 294	< 1 < 1 < 1 < 1 6	< 0.01 < 0.01 0.01 0.01 < 0.01	13 45 43 13 35	140 730 620 680 610	2300 112 20 114 4750	< 2 < 2 < 2 < 2 < 2	1 7 6 5	145 243 340 198 223	0.01 0.01 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	17 40 39 45 34	< 10 < 10 < 10 < 10 < 10 < 10	>10000 1050 278 586 7520	
مور مور	OAR-07 OAR-08 OAR-09 OAR-10 OAR-11	208 294 208 294 208 294 208 294 208 294 208 294	1 < 1 < 1 < 1 2	< 0.01 0.06 < 0.01 0.03 < 0.01	27 10 11 6 15	370 1110 60 390 60	2050 22 1545 54 7870	< 2 < 2 < 2 < 2 < 2 < 2	2 9 < 1 1 < 1	87 - 153 36 - 72 63 -	<pre> 0.01 0.09 0.01 0.02 0.01 0.02 0.01 </pre>	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	20 112 7 7 13	< 10 < 10 < 10 < 10 < 10 < 10	7610 150 3710 824 5310	
Sarta	DAR-12 DAR-13 DA-DOMP	208 294 208 294 208 294	< 1 < 1	0.06	8 11 	1100 1130	42 12	< 2 < 2	6 11	143 241	0.09	< 10 < 10	< 10 < 10	79 117	< 10 < 10	102 84 	

CERTIFICATION:

ೆರೆಯ ಗಳಿಗೆ

7-Oct-98

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557 ICP CERTIFICATE OF ANALYSIS AK 98-580

GEOQUEST CONSULTING LTD. 8055 ASPEN ROAD VERNON, B.C. V1B 3M9

ATTENTION: WARNER GRUENWALD

in a second

No. of samples: 143 Sample type: Soil PROJECT #: 56 SHIPMENT #: None Given Samples submitted by: W. Gruenwald

Values in ppm unless otherwise reported

_ Et #	. Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	V	w	Y	Zn
1	L0+00W 9+00S	<5	<0.2	1.29	<5	140	<5	0.28	<1	7	14	18	1.78	<10	0.23	692	<1	0.02	10	1190	14	<5	<20	25	0.08	<10	35	<10	<1	55
2	L0+00W 9+50S	<5	<0.2	1.23	5	100	<5	0.25	<1	6	17	8	1.87	<10	0.23	181	<1	0.02	13	480	14	<5	<20	23	0.08	<10	32	<10	<1	43
3	L0+00W 10+00S	<5	<0.2	2.00	5	190	<5	0.28	<1	6	16	15	1.92	10	0.21	417	<1	0.02	13	1840	22	<5	<20	31	0.10	<10	31	<10	3	55
4	L0+00W 10+50S	40	<0.2	1.44	<5	140	<5	0.21	<1	6	16	11	1.76	<10	0.17	329	<1	0.02	11	1320	16	<5	<20	20	80.0	<10	29	<10	1	40
5	L0+00W 11+00S	5	<0.2	1.58	<5	125	<5	0.27	<1	7	17	13	1.98	10	0.19	261	<1	0.02	11	970	18	<5	<20	26	0.09	<10	34	<10	4	31
6	L0+00W 11+50S	5	<0.2	1,19	<5	130	<5	0.25	<1	6	18	10	1.92	10	0.17	307	<1	0.02	9	1580	14	<5	<20	27	0.07	<10	33	<10	1	37
7	L0+00W 12+50S	5	<0.2	1.59	10	145	<5	0.31	<1	6	15	11	1.92	<10	0.17	301	<1	0.02	11	1840	16	<5	<20	30	0.09	<10	33	<10	2	37
8	L0+00W 13+00S	10	<0.2	1.94	5	170	<5	0.25	<1	7	19	13	2.23	10	0.21	319	<1	0.02	15	1240	20	<5	<20	32	0.00	<10	39	<10	2	35
9	L0+00W 13+50S	5	<0.2	2.01	5	145	5	0.22	<1	7	15	14	1.96	10	0.17	354	<1	0.02	13	1450	22	<5	<20	23	0.11	<10	31	<10	3	A2
10	L0+00W 14+00S	5	<0.2	2.06	10	135	<5	0.21	<1	6	13	14	1.79	10	0.17	307	<1	0.02	12	1230	22	<5	<20	24	0.10	<10	28	<10	4	39
11	L0+00W 14+50S	10	<0.2	2.33	<5	90	<5	0.40	<1	9	24	40	2.34	20	0.28	359	<1	0.03	19	630	24	<5	<20	25	0.13	<10	30	<10	8	3(
12	L0+00W 15+00S	10	<0.2	1.65	10	110	<5	0.23	<1	7	18	13	2.09	10	0.19	262	<1	0.02	13	1420	18	<5	<20	24	0.09	<10	36	<10	ž	50
13	L-1W 9+50S	25	<0.2	2.47	<5	215	<5	0.54	<1	11	39	27	2.92	30	0.56	931	<1	0.03	26	950	36	<5	<20	63	0.00	<10	 	<10	7	70
14	L-1W 10+00S	5	<0.2	1.77	<5	165	5	0.28	<1	7	20	11	2.09	<10	0.26	441	<1	0.02	12	1090	20	<5	<20	28	0.11	<10	36	<10	-1	7 8 57
15	L-1W 10+50S	5	<0.2	3.83	<5	135	15	0.76	<1	28	112	48	5.65	40	1.92	534	<1	0.02	51	2230	40	<5	<20	75	0.33	<10	109	<10	<1	80
								••••								•••	-				<u> </u>				0.00				~•	
16	L-1W 11+00S	<5	<0.2	2.00	5	135	<5	0.26	<1	8	21	19	2.28	20	0.24	270	<1	0.02	13	2200	20	<5	<20	26	0.10	<10	39	<10	5	45
17	L-1W 11+50S	<5	<0.2	1.18	5	90	<5	0.28	<1	8	22	15	2.30	<10	0.25	275	<1	0.01	13	1290	16	<5	<20	24	0.08	<10	45	<10	<1	34
18	L-1W 12+50S	<5	<0.2	1.32	<5	85	<5	0.34	<1	9	20	12	2.15	10	0.19	257	<1	0.02	12	200	16	<5	<20	29	0.10	<10	41	<10	3	28
19	L-1W 13+00S	<5	<0.2	2.54	10	150	5	0.44	<1	10	21	21	2.54	20	0.31	380	<1	0.02	15	1220	28	<5	<20	42	0.14	<10	44	<10	4	41
20	L-1W 13+50S	<u>10</u>	<0.2	1.55	<5	90	<5	0.27	<1	9	27	17	2.55	20	0.31	241	<1	0.02	14	730	20	<5	<20	31	0.10	<10	51	<10	5	31
21	L-1W 14+00S	<5	<0.2	1.76	<5	110	<5	0.27	<1	7	19	16	2.11	10	0.22	290	<1	0.02	15	1270	18	<5	<20	26	0 10	<10	37	<10	4	45
22	L-1W 14+50S	110	<0.2	1.01	<5	85	<5	0.23	<1	7	24	12	2.32	<10	0.19	141	<1	0.02	10	420	14	<5	<20	23	0.08	<10	47	<10	2	20
23	L-1W 15+00S	20	<0.2	1.82	<5	115	<5	0.25	<1	7	17	15	2.08	10	0.19	264	<1	0.02	12	1040	20	<5	<20	29	0.10	<10	35	<10	-	3
24	L-2W 9+00S	5	<0.2	2.97	<5	355	5	0.69	<1	12	43	26	2.92	40	0.77	820	<1	0.04	42	1890	42	<5	<20	111	0.14	<10	49	<10	5	125
25	L-2W 9+25S	5	<0.2	3.07	10	250	<5	0.38	<1	12	25	32	3.32 Pa	10 10 10e 1	0.52	405	<1	0.02	16	1640	32	<5	<20	49	0.10	<10	65	<10	7	102

and the second

ICP CERTIFICATE OF ANALYSIS AK 98-580

The second s

- THE ARE

ECO-TECH LABORATORIES LTD.

Et f	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cď	Co	Cr	Cu	Fe %	إ ها	Mg %	Mn	Мо	Na %	Ni	<u> </u>	Pb	Sb	Sn	Sr	Ti %	U	<u>v</u>		Y	Zn
26	L-2W 9+50S	15	<0.2	2.26	<5	165	<5	0.27	<1	9	23	17	2.42	10	0.36	219	<1	0.02	14	1300	26	<5	<20	30	0.12	<10	42	<10	3	76
27	L-2W 9+75S		<0.2	2.56	5	205	5	0.33	<1	8	21	15	2.37	30	0.30	282	<1	0.02	13	1620	32	<5	<20	41	0.12	<10	38	<10	4	48
28	L-2W 10+00S	10	<0.2	2.56	5	175	5	0.32	<1	8	14	17	2.08	40	0.26	228	<1	0.03	13	890	34	<5	<20	38	0.13	<10	34	<10	7	57
29	L-2W 10+25S	<5	<0.2	2.43	<5	210	<5	0.30	<1	9	22	23	2.38	10	0.31	331	<1	0.03	13	1080	26	<5	<20	28	0.13	<10	44	<10	5	40
30	L-2W 10+50S	<5	<0.2	2.16	5	175	<5	0.29	<1	9	20	22	2.34	<10	0.32	258	<1	0.03	12	670	22	<5	<20	32	0.12	<10	43	<10	4	35
31	L-2W 10+75S	60	<0.2	2.04	5	185	<5	0.28	<1	9	20	20	2.41	20	0.25	362	<1	0.02	13	1280	22	<5	<20	29	0.11	<10	44	<10	6	76
32	L-2W 11+00S	10	<0.2	1.78	5	100	5	0.23	<1	7	17	17	2.05	10	0.20	179	<1	0.02	11	1730	20	<5	<20	23	0.09	<10	35	<10	4	40
33	L-2W 11+25S	5	<0.2	1.49	<5	105	<5	0.22	<1	7	21	14	2.23	10	0.22	179	<1	0.02	12	930	18	<5	<20	25	0.09	<10	42	<10	3	33
34	1-2W 11+50S	15	<0.2	1.83	10	105	<5	0.30	<1	9	24	21	2.56	20	0.26	263	<1	0.02	12	1450	22	<5	<20	31	0.10	<10	51	<10	6	39
35	1-2W 11+75S	5	<0.2	1.93	<5	195	<5	0.28	<1	9	24	20	2.47	10	0.31	230	<1	0.02	14	490	20	<5	<20	38	0.11	<10	46	<10	4	47
00	2.2.11 11 1.00	-			-		-			-																				
36	1-2W 12+25S	5	<0.2	1.45	5	125	<5	0.27	<1	6	15	13	1.90	<10	0.17	245	<1	0.02	11	1140	16	<5	<20	27	0.08	<10	33	<10	<1	31
37	L-2W 12+50S	5	<0.2	1.08	<5	80	<5	0.28	<1	6	14	9	1.70	<10	0.16	270	<1	0.02	9	760	14	<5	<20	27	0.07	<10	32	<10	<1	31
38	1 2W 12+75S	20	<0.2	1.34	5	150	<5	0.29	<1	7	18	11	2.16	<10	0.17	516	<1	0.02	11	2470	18	<5	<20	35	0.09	<10	40	<10	1	65
39	L-2W 13+00S	5	<0.2	0.90	<5	105	<5	0.21	<1	5	15	6	1.57	<10	0.18	247	· <1	0.02	10	710	12	<5	<20	23	0.07	<10	29	<10	<1	48
40	1-2W 13+25S	<5	<0.2	1.20	<5	160	<5	0.29	<1	6	17	10	1.78	10	0.19	440	<1	0.02	12	1750	14	<5	<20	31	0.08	<10	30	<10	2	61
	• • • • • • • • • • • • • • • • • • • •	-			_		-			-																				
41	1-2W 13+50S	<5	<0.2	1.08	<5	150	<5	0.20	<1	5	15	7	1.64	<10	0.16	565	<1	0.02	11	1560	12	<5	<20	24	0.07	<10	28	<10	<1	64
42	L-2W 13+75S	<5	<0.2	0.97	<5	115	<5	0.22	<1	5	18	6	1.68	<10	0.19	294	<1	0.02	12	770	12	<5	<20	28	0.07	<10	29	<10	<1	37
43	L-2W 14+00S	5	<0.2	1.98	5	135	<5	0.20	<1	8	21	13	2.24	<10	0.22	243	<1	0.02	15	1260	22	<5	<20	24	0.10	<10	41	<10	1	41
- 44	L-2W 14+25S	<5	<0.2	2.04	10	150	<5	0.20	<1	7	16	12	2.02	<10	0.19	342	<1	0.02	15	2010	22	<5	<20	20	0.10	<10	33	<10	2	48
45	L-2W/14+50S	<5	<0.2	1.57	<5	125	<5	0.24	<1	7	19	11	2.01	10	0.20	349	<1	0.02	14	560	16	<5	<20	26	0.10	<10	35	<10	2	30
		•			-		-		-	-	••					-														
46	1-2W 14+75S	<5	<0.2	1.78	5	110	<5	0.16	<1	6	14	11	1.85	<10	0.16	299	<1	0.02	12	1530	18	<5	<20	20	0.09	<10	31	<10	<1	42
47	1-2W 15+00S	5	<0.2	1.60	<5	145	<5	0.17	<1	6	17	11	1.84	<10	0.14	280	<1	0.02	12	1540	18	<5	<20	23	0.08	<10	31	<10	<1	- 34
48	1-4W 9+00S	<5	<0.2	0.94	<5	120	<5	0.28	<1	7	17	9	1.80	<10	0.20	632	<1	0.02	10	570	16	<5	<20	24	0.07	<10	33	<10	<1	47
49	L-4W 9+25S	<5	<0.2	1.40	10	240	<5	0.46	<1	7	19	19	2.10	10	0.24	1111	<1	0.02	11	920	20	<5	<20	50	0.09	<10	37	<10	2	98
50	L-4W 9+50S	<5	<0.2	1.55	<5	425	<5	0.76	<1	5	9	19	1.74	<10	0.24	1317	<1	0.02	7	2980	14	<5	<20	78	0.08	<10	27	<10	3	<u>140</u>
		•			-		•			-	-																			
51	L-4W 9+75S	<5	<0.2	2 1.20	<5	150	10	0.35	<1	6	19	11	1.78	10	0.23	387	<1	0.02	15	1470	14	<5	<20	48	0.08	<10	29	<10	2	61
52	L-4W 10+00S	5	<0.2	0.53	<5	65	<5	0.22	<1	6	21	7	1.83	<10	0.20	244	<1	0.01	10	650	8	<5	<20	19	0.08	<10	38	<10	<1	21
53	1-4W 10+25S	<5	<0.2	2 0.60	<5	65	<5	0.21	<1	5	18	6	1.58	<10	0.16	244	<1	0.01	6	330	10	<5	<20	22	0.07	<10	31	<10	<1	25
54	1-4W 10+50S	<5	<0.2	183	<5	140	<5	0.28	<1	7	17	12	1.92	10	0.21	391	<1	0.03	16	1610	20	<5	<20	30	0.10	<10	31	<10	2	68
54	L-4W 10+75S	5	<0.2	1 27	<5	155	<5	0.31	<1	7	22	12	2.13	10	0.24	523	<1	0.02	16	850	16	<5	<20	35	0.09	<10	38	<10	1	49
55	2-400 101100	Ű								•							•					-								
56	L-4W 11+00S	<5	<0 2	2 1.20	<5	130	<5	0.21	<1	6	16	8	1.81	<10	0.16	344	<1	0.02	11	1480	14	<5	<20	23	0.07	<10	32	<10	<1	44
57	L-4W 11+25S	-0	<0 2	2 0.73	<5	60	<5	0.21	<1	6	21	- 7	2.02	10	0.20	222	<1	0.01	9	430	10	<5	<20	18	0.07	<10	39	<10	<1	21
	1_4W 11+50S	20	<0.2	> 1 27	<5	190	<5	0.39	<1	5	7	22	1.68	10	0.16	733	<1	0.02	6	2240	16	<5	<20	42	0.06	<10	26	<10	9	74
50	1_4W/11+75C	~5	<0.2	2 1 67	<5	195	<5	0.28	<1	6	17	10	1.73	<10	0.23	337	<1	0.02	18	1620	18	<5	<20	34	0.09	<10	26	<10	2	57
60	L-4W 12+25S	<5	<0 :	2 1.24	<5	105	<5	0.18	<1	6	20		1.95	<10	0.20	176	<1	0.02	11	580	12	<5	<20	23	0.08	<10	35	<10	<1	30

....

.

- 12

ICP CERTIFICATE OF ANALYSIS AK 98-580

......

.

161 - LOUIS LANK

ECO-TECH LABORATORIES LTD.

7

_Et #	. Tag #	Au(ppb)	Ag	Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	TI %	U	v	w	Y	Zn
61	L-4W 12+50S	<5	<0.2	1.45	<5	110	<5	0.20	<1	7	22	11	2.08	10	0.23	198	<1	0.02	14	870	16	<5	<20	23	0.09	<10	38	<10	2	31
62	L-4W 12+75S	<u>10</u>	<0.2	1.64	<5	155	10	0.19	<1	7	23	13	2.31	10	0.25	140	<1	0.02	13	560	18	<5	<20	30	0.10	<10	44	<10	1	23
63	L-4W 13+00S	5	<0.2	1.60	<5	130	<5	0.18	<1	7	20	12	2.11	<10	0.20	192	<1	0.02	13	1200	18	<5	<20	19	0.09	<10	38	<10	1	32
64	L-4W 13+25S	<5	<0.2	1.32	<5	120	<5	0.17	<1	6	19	10	1.98	<10	0.17	177	<1	0.02	11	1140	14	<5	<20	21	0.07	<10	35	<10	1	21
65	L-4W 13+50S	15	<0.2	1.72	10	120	<5	0.21	<1	7	22	13	2.30	10	0.22	151	<1	0.02	11	1180	18	<5	<20	18	0.09	<10	43	<10	2	22
																						-							-	-
66	L-4W 13+75S	10	<0.2	1.97	10	100	<5	0.18	<1	8	20	13	2.31	<10	0.22	235	<1	0.02	12	1510	20	<5	<20	15	0.10	<10	45	<10	1	37
67	L-4W 14+00S	5	<0.2	1.45	<5	135	5	0.19	<1	7	23	13	2.38	10	0.23	242	<1	0.02	12	710	16	<5	<20	24	0.09	<10	48	<10	1	28
68	L-4W 14+25S	<5	<0.2	1.85	<5	105	5	0.24	<1	8	20	13	2.33	10	0.21	204	<1	0.02	12	1170	20	<5	<20	18	0.10	<10	44	<10	3	27
69	L-4W 14+50S	<5	<0.2	1.21	<5	115	<5	0.23	<1	7	23	12	2.49	10	0.20	334	<1	0.02	12	1530	16	<5	<20	21	0.08	<10	48	<10	<1	37
70	L-4W 14+75S	15	<0.2	1.80	<5	130	<5	0.33	<1	7	17	12	2.15	<10	0.18	310	<1	0.02	11	2410	16	<5	<20	32	0.09	<10	37	<10	2	 ⊿1
																			••					-	0.00		•••	-10	•	
71	L-4W 15+00S	5	<0.2	1.33	<5	110	<5	0.27	<1	7	19	12	2.08	<10	0.19	338	<1	0.02	11	1380	14	<5	<20	23	0.08	<10	38	<10	<1	37
72	L-5W 9+00S	20	<0.2	1.09	<5	75	<5	0.31	<1	9	29	17	2.66	20	0.31	287	<1	0.01	14	710	14	<5	<20	27	0.08	<10	55	<10	5	29
73	L-5W 9+50S	<5	<0.2	1.02	<5	85	<5	0.35	<1	10	38	11	3.79	20	0.31	232	<1	0.02	13	1200	10	<5	<20	26	0.08	<10	90	<10	1	33
74	L-5W 10+00S	25	<0.2	1.78	175	110	<5	0.28	<1	11	19	18	3.06	<10	0.33	545	<1	0.02	13	720	22	<5	<20	32	0.09	<10	56	<10	<1	130
75	L-5W 10+50S	5	<0.2	1.85	20	220	5	0.44	<1	10	22	19	2.68	10	0.30	659	<1	0.02	15	1570	24	<5	<20	47	0.09	<10	48	<10	3	106
																						-					•=		•	195
76	L-5W 11+00S	20	<0.2	1.00	10	70	<5	0.22	<1	7	22	14	2.35	10	0.23	273	<1	0.02	13	870	12	<5	<20	20	0.07	<10	50	<10	<1	36
77	L-5W 11+50S	15	<0.2	1.63	5	130	<5	0.33	<1	6	16	11	1.89	<10	0.19	446	<1	0.02	11	970	18	<5	<20	28	0.09	<10	33	<10	2	38
78	L-5W 12+50S	5	<0.2	2.05	10	170	<5	0.22	<1	7	19	14	2.23	10	0.24	208	<1	0.02	13	610	22	<5	<20	29	0.11	<10	37	<10	2	33
79	L-5W 13+00S	<5	<0.2	2.24	10	160	<u>10</u>	0.29	<1	8	19	12	2.27	<10	0.24	383	<1	0.02	13	1310	24	<5	<20	27	0.11	<10	38	<10	1	54
80	L-5W 13+50S	<5	<0.2	1.98	5	140	<5	0.27	<1	8	18	15	2.20	10	0.23	343	<1	0.02	12	1440	20	<5	<20	25	0.10	<10	38	<10	2	57
																												-	_	
81	L-5W 14+00S	<5	<0.2	1.91	10	145	<5	0.35	<1	8	18	17	2.20	10	0.25	464	<1	0.02	12	1470	22	<5	<20	32	0.10	<10	39	<10	2	56
82	L-5W 14+50S	<5	<0.2	1.59	10	115	<5	0.21	<1	7	20	12	2.13	10	0.21	303	<1	0.02	11	1480	18	<5	<20	19	0.09	<10	37	<10	2	37
83	L-5W 15+00S	<5	<0.2	1.62	10	205	<5	0.30	<1	7	16	13	1.91	<10	0.20	624	<1	0.02	10	1470	16	<5	<20	32	0.09	<10	33	<10	<1	56
84	L-6W 9+00S	<5	<0.2	1.69	<5	140	10	0.23	<1	10	22	15	3.24	<10	0.48	406	<1	0.02	10	770	16	<5	<20	23	0.09	<10	69	<10	<1	60
85	L-6W 9+50\$	<5	<0.2	1.42	<5	240	5	0.34	<1	7	22	11	2.62	<10	0.25	432	<1	0.02	11	1770	16	<5	<20	40	0.09	<10	54	<10	<1	66
86	L-6W 10+00S	<u>15</u>	<0.2	2.19	5	220	<5	0.23	<1	8	19	20	2.27	10	0.27	224	<1	0.02	15	980	22	<5	<20	36	0.12	<10	41	<10	4	48
87	L-6W 10+50S	<5	<0.2	2.02	5	175	<5	0.25	<1	8	19	16	2.20	10	0.23	283	<1	0.02	14	1370	22	<5	<20	30	0.10	<10	39	<10	3	55
88	L-6W 11+00S	<5	<0.2	2.36	10	135	<5	0.22	<1	8	16	18	2.11	10	0.24	215	<1	0.03	13	1000	26	<5	<20	29	0.12	<10	35	<10	3	33
89	L-6W 11+50S	<5	<0.2	1.93	10	135	<5	0.32	<1	8	18	14	2.32	10	0.22	513	<1	0.02	11	970	20	<5	<20	28	0.10	<10	39	<10	2	38
90	L-6W 12+50S	5	<0.2	2.01	10	135	<5	0.34	<1	9	19	17	2.39	10	0.32	336	<1	0.02	12	1050	20	<5	<20	28	0.11	<10	42	<10	4	50
																											_		-	
91	L-6W 13+00S	<5	<0.2	2.86	15	190	<5	0.34	<1	11	21	24	2.60	10	0.35	368	<1	0.03	16	830	30	<5	<20	36	0.15	<10	49	<10	5	85
92	L-6W 13+50S	<5	<0.2	2.14	10	175	5	0.30	<1	9	23	24	2.49	10	0.30	289	<1	0.02	18	690	24	<5	<20	33	0.12	<10	50	<10	3	63
93	L-6W 13+75S	<5	<0.2	2.86	15	120	5	0.25	<1	12	24	33	2.97	10	0.34	316	<1	0.02	14	1140	30	<5	<20	29	0.13	<10	62	<10	5	42
94	L-6W 14+00S	<5	<0.2	3.05	15	100	<5	0.33	<1	14	25	37	3.25	20	0.38	423	<1	0.02	20	1080	32	<5	<20	29	0.14	<10	62	<10	6	71
95	L-6W 14+50S	<5	<0.2	1.91	10	95	<5	0.25	<1	9	21	18	2.48	20	0.26	325	<1	0.02	13	850	20	<5	<20	21	0.10	<10	45	<10	3	46
																												· -	-	

Page 3

.

......

.....<u>.</u>

ICP CERTIFICATE OF ANALYSIS AK 98-580

100.075 Tutt 070

·······

-

ECO-TECH LABORATORIES LTD.

......

an the state of the

_ Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	لما	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	V	W	Y	Zn
96	L-6W 15+00S	5	<0.2	1.42	30	135	<5	0.47	<1	11	14	45	2.27	<10	0.24	659	<1	0.03	20	1040	18	<5	<20	33	0.08	<10	48	<10	<1	70
97	L-7W 9+00S	<5	<0.2	2.29	10	165	<5	0.37	<1	7	16	17	2.11	10	0.22	465	<1	0.03	11	1960	22	<5	<20	36	0.11	<10	35	<10	4	58
98	L-7W 9+50S	<5	<0.2	1.80	10	120	<5	0.38	<1	8	23	14	2.39	20	0.31	339	<1	0.02	12	1040	24	<5	<20	30	0.09	<10	40	<10	1	37
99	L-7W 10+00S	<5	<0.2	1.56	5	100	<5	0.57	<1	7	15	19	1.91	20	0.22	399	<1	0.03	9	420	16	<5	<20	40	0.09	<10	30	<10	6	53
100	L-7W 10+50S	<5	<0.2	1.87	10	140	5	0.34	<1	9	20	17	2.44	10	0.27	367	<1	0.02	11	940	20	<5	<20	27	0.10	<10	42	<10	3	35
																						_		_					-	
101	L-7W 11+00S	<5	<0.2	2.09	10	185	<5	0.38	<1	8	15	15	2.09	<10	0.20	462	<1	0.03	9	880	24	<5	<20	37	0.12	<10	34	<10	2	29
102	L-7W 11+50S	<5	<0.2	3.89	30	205	<5	0.50	<1	14	21	42	3.65	10	0.55	639	<1	0.02	15	4280	40	<5	<20	63	0.15	<10	65	<10	8	81
103	L-7W 12+50S	<5	<0.2	1.91	15	245	<5	0.48	<1	9	20	17	2.47	10	0.24	1788	<1	0.02	11	2830	24	<5	<20	53	0.09	<10	38	<10	<1	140
104	L-7W 13+00S	<5	<0.2	1.60	<5	175	<5	0.30	<1	7	20	12	2.13	10	0.25	456	<1	0.02	14	1520	20	<5	<20	36	0.09	<10	35	<10	1	83
105	L-7W 13+50S	10	0.2	2.72	20	125	<5	0.67	2	20	25	69	4.12	<10	0.37	586	<1	0.02	45	1180	38	<5	<20	49	0.12	<10	67	<10	6	101
		-					-		-			-					•				<u> </u>						Ψ.		-	
106	L-7W 14+00S	10	0.2	3.49	65	120	<5	0.62	<1	20	20	57	3.07	<10	0.39	577	<1	0.03	22	1430	42	<5	<20	47	0 16	<10	63	<10	3	74
107	L-7W 14+50S	<5	<0.2	2.39	15	130	<5	0.41	<1	11	24	24	2.84	20	0.33	357	<1	0.03	15	1010	26	<5	<20	39	0 13	<10	54	<10	5	63
108	L-7W 15+00S	<5	<0.2	2.06	15	170	<5	0.48	1	9	15	15	2.20	<10	0.23	1109	<1	0.03	9	2100	28	<5	<20	46	0 13	<10	39	<10	<1	124
109	L-8W 9+00S	<5	<0.2	2.57	10	140	<5	0.33	<1	9	22	20	2.52	20	0.23	426	<1	0.03	14	1650	26	<5	<20	29	0.13	<10	47	<10	4	51
110	L-8W 9+50S	<5	<0.2	2.26	10	150	10	0.34	<1	8	20	15	2.25	10	0.27	368	<1	0.03	13	1070	24	<5	<20	34	0.12	<10	39	<10	3	45
									-	-							-					-					•-		-	
111	L-8W 10+00S	<5	<0.2	1.59	<5	155	<5	0.35	<1	8	16	18	2.49	10	0.30	742	<1	0.03	8	1030	16	<5	<20	32	0.09	<10	43	<10	3	90
112	L-8W 10+50S	<5	<0.2	1.07	5	95	<5	1.60	<1	4	9	28	1.30	10	0.17	606	<1	0.04	6	820	22	<5	<20	84	0.05	<10	27	<10	4	47
113	L-8W 11+00S	<5	<0.2	1.37	5	95	<5	1.06	<1	6	13	15	1.61	20	0.19	309	<1	0.04	7	290	16	<5	<20	80	0.09	<10	27	<10	5	32
114	L-8W 11+50S	5	<0.2	2.22	10	165	<5	0.35	<1	8	18	15	2.27	10	0.22	382	<1	0.03	10	720	24	<5	<20	39	0.13	<10	38	<10	3	33
115	L-8W 12+50S	5	<0.2	1.53	15	90	<5	0.46	<1	7	16	17	1.91	20	0.20	241	<1	0.04	8	360	18	<5	<20	51	0.10	<10	33	<10	7	25
																			-			-		•						
116	L-8W 13+00S	<5	0.2	2.59	30	130	5	0.54	<1	11	23	36	2.64	10	0.36	334	<1	0.04	20	760	26	<5	<20	52	0.13	<10	47	<10	3	70
117	L-8W 13+50S	<5	<0.2	2.31	15	75	<5	0.44	<1	7	7	18	1.60	<10	0.13	174	<1	0.06	19	880	22	<5	<20	45	0.12	<10	22	<10	4	166
118	L-8W 14+00S	<5	<0.2	3.86	25	95	<5	0.38	<1	14	16	50	2.84	10	0.31	410	<1	0.04	16	1420	40	<5	<20	34	0.18	<10	57	<10	7	66
119	L-8W 15+00S	<5	<0.2	2.83	10	155	5	0.36	<1	9	17	20	2.42	20	0.26	437	<1	0.04	15	870	30	<5	<20	32	0.15	<10	42	<10	5	91
120	TL 125 0+00W	45	<0.2	1.33	<5	105	5	0.28	<1	7	22	14	2.13	10	0.20	176	<1	0.02	13	900	14	<5	<20	28	0.09	<10	40	<10	1	27
	•																													
121	TL 125 0+50W	15	<0.2	1.53	5	115	<5	0.25	<1	8	25	16	2.23	10	0.24	205	<1	0.02	15	1130	16	<5	<20	30	0.10	<10	43	<10	<1	40
122	TL 125 1+00W	10	<0.2	1.31	<5	105	<5	0.24	<1	6	17	11	1.84	10	0.17	252	<1	0.03	10	1110	14	<5	<20	28	0.09	<10	35	<10	<1	27
123	TL 125 1+50W	<5	<0.2	1.48	<5	150	<5	0.36	<1	7	21	13	2.07	10	0.22	347	<1	0.03	12	1570	16	<5	<20	41	0.10	<10	38	<10	3	57
124	TL 125 2+00W	<5	<0.2	1.41	<5	115	<5	0.29	<1	7	20	13	2.11	10	0.20	258	<1	0.02	11	1440	16	<5	<20	31	0.09	<10	40	<10	1	43
125	TL 125 2+50W	10	<0.2	0.90	<5	80	5	0.28	<1	7	22	9	1.99	10	0.17	210	<1	0.02	9	760	12	<5	<20	29	0.09	<10	40	<10	1	20
		يتنف	- / -		-					-						•	•		-			1							•	
126	TL 125 3+50W	20	<0.2	1.26	<5	110	<5	0.26	<1	8	27	17	2.39	10	0.23	181	<1	0.02	13	610	18	<5	<20	28	0.11	<10	51	<10	<1	38
127	TL 125 4+00W	<5	<0.2	0.95	<5	70	<5	0.33	<1	7	29	10	2.19	20	0.31	202	<1	0.02	14	520	14	<5	<20	29	0.11	<10	45	<10	<1	23
128	TL 125 4+50W	<5	<0.2	2.27	5	245	-<5	0.51	<1	11	35	25	2.78	20	0.44	1090	<1	0.02	27	1380	26	<5	<20	64	0.13	<10	46	<10	3	95
129	TL 125 5+00W	<5	<0.2	1.96	<5	135	<5	0.29	<1	7	18	16	2.07	10	0.24	279	<1	0.03	13	1210	20	<5	<20	35	0.11	<10	38	<10	4	45
130	TL 125 5+50W	5	<0.2	0.87	<5	90	<5	0.29	<1	7	22	9	2.13	10	0.24	204	<1	0.02	8	550	10	<5	<20	29	0.10	<10	46	<10	<1	22
		•			-					•		-		• •	·															

. . .

... ,,,,1

.

.

.

ICP CERTIFICATE OF ANALYSIS AK 98-580

ECO-TECH LABORATORIES LTD.

alassa hasa di asaya kata

Et #	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	РЬ	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
131	TL 125 6+00W	<5	<0.2	1.90	5	135	<5	0.30	<1	7	16	15	2.04	10	0.21	287	<1	0.04	9	830	20	<5	<20	29	0.11	<10	37	<10	2	31
132	TL 125 6+50W	5	<0.2	2.75	15	105	<5	0.48	<1	12	35	23	2.82	20	0.56	418	<1	0.04	16	590	28	<5	<20	40	0.16	<10	55	<10	13	54
133	TL 125 7+00W	<5	<0.2	1.86	10	105	<5	0.41	<1	7	12	12	1.63	<10	0.15	302	<1	0.04	11	500	18	<5	<20	42	0.11	<10	29	<10	2	33
134	TL 125 7+50W	10	<0.2	2.22	15	155	<u>10</u>	0.37	<1	7	17	14	2.12	. 10	0.24	515	<1	0.04	10	1240	24	<5	<20	41	0.11	<10	34	<10	3	44
135	TL 125 8+00W	10	<0.2	1.81	15	135	<5	0.31	<1	9	21	18	2.55	10	0.27	376	<1	0.02	12	780	22	<5	<20	32	0.11	<10	48	<10	<1	38
136	L-2+75W 9+80S	<5	<0.2	3.87	15	115	5	0.21	<1	10	20	22	3.15	50	0.34	211	<1	0.03	14	2810	42	<5	<20	28	0.17	<10	53	<10	4	78
137	L-2+87.5W 9+75S	<5	<0.2	3.60	20	235	<5	0.56	<1	9	20	21	3.00	100	0.33	419	<1	0.03	12	3380	48	<5	<20	71	0.13	<10	46	<10	12	75
138	L-3W 9+75S	95	<0.2	2.06	10	220	<5	0.35	<1	7	13	21	1.96	<10	0.22	533	<1	0.04	10	1760	108	<5	<20	44	0.11	<10	35	<10	2	210
139	L-3W 9+87.5S	<5	<0.2	1.77	<5	220	<5	0.25	<1	6	17	15	2.07	<10	0.21	246	<1	0.03	11	1120	22	<5	<20	33	0.10	<10	35	<10	<1	61
140	L-3W 9+62.5S	<5	<0.2	1.97	10	575	<5	0.96	<1	3	9	22	1.45	10	0.15	784	<1	0.04	7	6020	20	<5	<20	143	0.09	<10	20	<10	5	81
141	L-3W 11+50S	20	<0.2	1.01	<5	85	<5	0.24	<1	8	27	14	2.32	10	0.21	184	<1	0.02	13	650	12	<5	<20	26	0.09	<10	47	<10	<1	25
142	L-3+12.5W 9+75S	<5	<0.2	2.01	5	435	<5	0.45	<1	7	31	15	2.03	<10	0.33	500	<1	0.04	15	2600	18	<5	<20	58	0.11	<10	36	<10	3	78
143	L-3+25W 9+75S	<u>15</u>	<0.2	1.35	<5	75	<5	0.33	<1	10	31	30	3.44	20	0.58	256	<1	0.01	12	750	14	<5	<20	29	0.09	<10	76	<10	9	40
<u>0C/D</u>	ATA:																													
Repe	at																													
1	L0+00W 9+00S	<5	<0.2	1.37	<5	150	<5	0.27	<1	7	16	18	1.87	<10	0.23	703	<1	0.02	11	1250	16	<5	<20	28	0.09	<10	38	<10	2	57
10	L0+00W 14+00S	5	<0.2	2.05	10	125	<5	0.22	<1	7	14	14	1.82	10	0.17	290	<1	0.02	13	1200	22	<5	<20	22	0.10	<10	29	<10	4	38
19	L-1W 13+00S	20	<0.2	2.55	10	150	<5	0.45	<1	10	21	21	2.53	20	0.31	377	<1	0.02	15	1220	26	<5	<20	43	0.14	<10	- 44	<10	4	41
28	L-2W 10+00S	<5	<0.2	2.53	10	170	<5	0.32	<1	8	14	20	2.03	40	0.25	221	<1	0.03	12	870	34	<5	<20	35	0.14	<10	- 33	<10	7	65
36	L-2W 12+25S	5	<0.2	1.46	5	130	<5	0.24	<1	6	14	10	1.82	<10	0.15	239	<1	0.02	11	1220	16	<5	<20	27	0.08	<10	31	<10	<1	27
45	L-2W 14+50S	30	<0.2	1.53	<5	120	<5	0.23	<1	7	20	11	2.01	10	0.20	347	<1	0.02	14	500	16	<5	<20	26	0.10	<10	36	<10	2	30
54	L-4W 10+50S	<5	<0.2	1.81	<5	135	<5	0.27	<1	7	17	12	1.89	10	0.21	385	<1	0.02	15	1630	20	<5	<20	28	0.10	<10	30	<10	2	67
63	L-4W 13+00S	5	<0.2	1.61	<5	135	<5	0.18	<1	7	18	13	2.10	<10	0.20	191	<1	0.02	13	1230	18	<5	<20	20	0.09	<10	38	<10	1	32
71	L-4W 15+00S	5	<0.2	1.38	<5	115	<5	0.24	<1	7	19	11	2.04	<10	0.17	339	<1	0.02	11	1420	14	<5	<20	24	0.08	<10	37	<10	1	- 38
80	L-5W 13+50S	<5	<0.2	1.96	10	135	<5	0.26	<1	8	18	15	2.14	10	0.23	333	<1	0.02	13	1390	20	<5	<20	24	0.10	<10	37	<10	2	56
89	L-6W 11+50S	<5	<0.2	1.92	10	130	<5	0.32	<1	8	17	14	2.28	10	0.21	515	<1	0.02	10	960	20	<5	<20	28	0.10	<10	38	<10	3	38
98	L-7W 9+50S	<5	<0.2	1.87	<5	125	<5	0.39	<1	8	23	15	2.49	20	0.32	345	<1	0.02	12	1050	26	<5	<20	35	0.10	<10	42	<10	2	39
106	L-7W 14+00S	5	0.4	3.54	70	125	5	0.60	<1	20	19	57	3.08	10	0.38	582	<1	0.03	22	1470	42	<5	<20	47	0.16	<10	62	<10	3	73
115	L-8W 12+50S	5	<0.2	1.49	10	90	<5	0.45	<1	7	15	16	1.89	20	0.20	239	<1	0.04	8	370	16	<5	<20	48	0.09	<10	32	<10	7	25
124	TL 125 2+00W	<5	<0.2	1.42	<5	115	<5	0.28	<1	7	19	13	2.12	10	0.21	262	<1	0.02	12	1490	16	<5	<20	28	0.09	<10	40	<10	1	43
133	TL 125 7+00W	<5	<0.2	1.86	10	120	<5	0.42	<1	. 7	12	17	1.62	<10	0.15	315	<1	0.04	10	520	18	<5	<20	47	0.11	<10	28	<10	2	40
141	L-3W 11+50S	10	<0.2	1.01	<5	75	<5	0.24	<1	7	26	14	2.36	10	0.21	186	<1	0.02	13	630	12	<5	<20	24	0.09	<10	48	<10	<1	24

2-Oct-98

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557 ICP CERTIFICATE OF ANALYSIS AK 98-579

GEOQUEST CONSULTING LTD. 8055 ASPEN ROAD VERNON, B.C. V1B 3M9

ATTENTION: WARNER GRUENWALD

17 July 18 1

No. of samples: 5 Sample type: Rock PROJECT #: 56 SHIPMENT #: None Given Samples submitted by: W. Gruenweid

Values in ppm unless otherwise reported

. . . .

Et #	. Tag #	Au(ppb)	<u>Ag</u>	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Min	Mo	Na %	Ni	P	Pb	Sb	Sa	Sr	Ti %	ย	v	W	Y	Zn
1	DM-01	70	<0.2	1.33	<5	210	5	0.53	<1	22	90	67	5.33	<10	1.47	449	<1	0.07	14	560	<2	<5	<20	13	0.14	<10	196	<10	<1	42
2	DM-02	60	<0.2	2.71	<5	235	15	3.77	<1	28	227	27	5.72	40	3.80	982	3	0.07	69	2460	<2	<5	<20	343	0.08	<10	139	<10	12	58
3	MR-1	10	<0.2	1.33	10	95	-5	1.78	<1	11	79	17	3.55	70	1.00	691	6	0.04	11	1510	16	<5	<20	148	0.01	<10	52	<10	9	50
4	6W-14+18S (R)	20	0.2	4.61	35	120	<5	>10	<1	16	72	75	3.73	<10	0.97	833	3	0.17	19	1270	<2	<5	<20	650	0.07	<10	110	<10	6	50
5	7W-14+00S (R)	<u>60</u>	<u>1.4</u>	3.87	<u>355</u>	50	<5	4.65	<1	22	46	<u>80</u>	2.54	<10	0.63	334	<1	0.71	18	1130	40	5	<20	403	0.08	<10	54	<10	2	49

<u>QC/DATA:</u> Resplit: R/S 1 DM-01	80	<0.2	1.33	<5	220	<5	0.49	<1	23	89	67	5.31	<10	1.49	437	1	0.06	14	600	<2	<5	<20	11	0.13	<10	195	<10	<1	41
Repost: 1 DM-01	55	<0.2	1.39	<5	215	5	0.58	<1	23	93	67	5.45	<10	1.51	463	<1	0.08	13	590	2	<5	<20	13	0.15	<10	200	<10	<1	43
Standard: GEO'98	145	0.8	1.75	55	155	<5	1.70	<1	19	61	78	4.00	<10	0.94	680	<1	0.02	26	640	16	<5	<20	57	0.11	<10	78	<10	3	62

df/575

XLS/98Geoquest fax: 549-5262

ECO-TECH LABORATORIES LTD. Rrank J. Pezzotti, A.Sc.T. B.C. Certified Assayer pe,

APPENDIX D

8

÷

GEOPHYSICAL DATA

/----- SCINTREX -----4.3F /| Revision: 500.000 W /! Line : 98/09/22 /! Date /! Job 0 /! Operator: /! Serial : 0 /! Basefid : 0 /! Duration: 2.0 X/Y/TotFld/Noise/Hours/0=Uncor // Mag_Data: /------500 -900 56454.1 0.45 9.223333 0 ----- SCINTREX ------/-----4.3F / Revision: 0.00000 W /! Line 98/09/22 /! Date /! Job 0 /! Operator: /! Serial : 0 /! Basefid : 0 /! Duration: 2.0 X/Y/TotFld/Noise/Hours/0=Uncor /! Mag Data: _____ -900 55982.5 0.58 9.623333 0 0 -925 56451.8 0.34 9.642500 0 0 0 -937.5 56672.1 0.32 9.675000 0 0 -950 56868.9 0.29 9.686944 0 -962.5 56813.8 0.29 9.693333 0 0 -975 56977.5 0.26 9.701389 0 A -987.5 56945.2 0.27 9.707778 0 0 -1000 57211.6 0.26 9.712778 0 0 -1012.5 57482.5 0.23 9.718333 0 O -1025 57591.8 0.22 9.723056 0 0 -1037.5 57387.1 0.23 9.728333 0 0 -1050 57331.8 0.24 9.733056 0 0 -1062.5 57184.9 0.29 9.738333 0 0 -1075 57051.5 0.28 9.743889 0 0 0 -1087.5 56975.7 0.28 9.748889 0 -1100 56892.8 0.27 9.755000 0 0 -1112.5 56815.9 0.29 9.762222 0 0 -1125 56810.9 0.28 9.769722 0 n 0 -1137.5 57091.9 0.54 9.776667 0 -1150 56749.8 0.34 9,784444 0 0 -1162.5 56650.8 0.31 9.791944 0 0 -1175 56172.7 0.39 9.814444 0 0 -1187.5 56445.2 0.48 9.830000 0 0 -1200 56289.9 0.36 9.835833 0 0 -1212.5 56342.8 0.34 9.845000 0 A -1225 56296.6 0.38 9.857500 0 0 -1237.5 56290.0 0.35 9.868333 0 0 -1250 56283.6 0.35 9.878056 0 0

-1262.5 56198.4 0.41 9.885833 0 0 -1275 56246.9 0.37 9.897500 0 0 -1287.5 56246.7 0.37 9.905278 0 0 -1300 56300.4 0.40 9.915000 0 0 -1312.5 56347.9 0.36 9.923611 0 0 -1325 56316.1 0.43 9.929444 0 0 -1337.5 56379.1 0.41 9.936667 0 0 -1350 56388.3 0.34 9.966111 0 0 -1362.5 56366.9 0.36 9.976111 0 n -1375 56416.7 0.33 9.985833 0 0 -1387.5 56727.0 0.30 9.995000 0 0 -1400 56407.9 0.37 10.002778 0 0 -1412.5 56422.9 0.34 10.011389 0 A -1425 56487.0 0.34 10.017222 0 0 -1437.5 56471.0 0.34 10.024444 0 0 -1450 56258.2 0.36 10.031111 0 0 -1462.5 56260.8 0.38 10.041667 0 0 Λ -1475 56438.4 0.38 10.047222 0 -1487.5 56379.0 0.35 10.053056 0 0 -1500 56269.5 0.36 10.058056 0 0 --- SCINTREX 4.3F /! Revision: /! Line 100.000 W 98/09/22 / Date /! Job 0 /! Operator: /! Serial _: 0 /! Basefid : 0 /! Duration: 2.0 X/Y/TotFld/Noise/Hours/0=Uncor /! Mag Data: /------1500 56598.3 0.30 10.164167 0 -100-1487.5 56331.1 0.43 10.173333 0 -100 -1475 56303.7 0.51 10.180833 0 -100-1462.5 56523.6 0.49 10.187500 0 -100 -1450 56422.2 0.33 10.192778 0 -100-1437.5 56363.9 0.35 10.206389 0 -100-1425 56540.6 0.37 10.212500 0 -100 -1412.5 56609.9 0.35 10.218889 0 -100-100-1400 56505.3 0.38 10.225833 0 -1387.5 56576.4 0.34 10.231667 0 -100 -1375 56609.8 0.30 10.243611 0 -100-1362.5 56634.9 0.34 10.250278 0 -100 -1350 56755.3 0.39 10.256111 0 -100 -100-1337.5 56660.0 0.33 10.261667 0 -1325 56731.5 0.30 10.268611 0 -100 -1312.5 56662.7 0.34 10.274444 0 -100 -1300 56563.5 0.36 10.278889 0 -100 -1287.5 56546.6 0.33 10.289444 0 -100 -100 -1275 56686.1 0.50 10.296944 0 -1262.5 56694.6 0.31 10.305000 0 -100 -100 -1250 56592.9 0.39 10.310556 0 -1237.5 56616.5 0.33 10.315833 0 -100

-100	-1225 56551.7 0.38 10.323611 0
-100	-1212.5 56581.8 0.33 10.329167 0
-100	-1200 56606.7 0.33 10.335833 0
-100	-1187.5 56485.1 0.32 10.347500 0
-100	-1175 57019.9 0.35 10.358056 0
-100	-1162 5 57060 0 0.35 10 366111 0
-100	-1150 57030 5 0 32 10 371944 0
-100	-1137 5 56774 7 0 33 10 381944 0
-100	
-100	-1125 56975.5 0.50 10.5005555 0
-100	1100 56750 0 0 27 10 406044 0
-100	
-100	
-100	
-100	-1062.5 56828.9 0.32 10.428333 0
-100	-1050 57006.1 0.25 10.439167 0
-100	-1037.5 57162.6 0.39 10.444722 0
-100	-1025 56966.4 0.33 10.449167 0
-100	-1012.5 57131.3 0.26 10.452778 0
-100	-1000 57061.1 0.27 10.457222 0
-100	-987.5 57103.9 0.31 10.462778 0
-100	-975 56811.4 0.34 10.470278 0
-100	-962.5 56783.0 0.31 10.477778 0
-100	-950 56067.1 0.49 10.492500 0
-100	-937.5 55977.2 0.43 10.508056 0
-100	-925 55843.9 0.52 10.520000 0
-100	-912.5 56139.3 0.41 10.535278 0
-100	-900 57019.9 0.27 10.548889 0
/	SCINTREX
/ /! Revision:	SCINTREX
/ /! Revision: /! Line	SCINTREX 4.3F : 200.000 W
/ /! Revision: /! Line /! Date	SCINTREX 4.3F : 200.000 W : 98/09/22
/ /! Revision: /! Line /! Date /! Job	SCINTREX 4.3F 200.000 W 98/09/22 0
/ /! Revision: /! Line /! Date /! Job /! Operator:	SCINTREX 4.3F : 200.000 W : 98/09/22 : 0
/ /! Revision: /! Line /! Date /! Job /! Operator: /! Serial :	SCINTREX 4.3F : 200.000 W : 98/09/22 : 0 0
/ /! Revision: /! Line /! Date /! Job /! Operator: /! Serial: /! Basefld :	SCINTREX 4.3F : 200.000 W : 98/09/22 : 0 0 0
/ /! Revision: /! Line /! Date /! Job /! Operator: /! Serial: /! Basefid_: /! Duration:	SCINTREX 4.3F 200.000 W 98/09/22 0 0 0 2.0
/ /! Revision: /! Line /! Date /! Job /! Operator: /! Serial: /! Basefid_: /! Duration: /! Mag Data	SCINTREX 4.3F 200.000 W 98/09/22 0 0 0 0 2.0 a: X/Y/TotFld/Noise/Hours/0=Uncor
/ /! Revision: /! Line /! Date /! Job /! Operator: /! Serial: /! Basefid_: /! Duration: /! Mag_Data /	SCINTREX 4.3F 200.000 W 98/09/22 0 0 0 2.0 a: X/Y/TotFld/Noise/Hours/0=Uncor
/ /! Revision: /! Line /! Date /! Job /! Operator: /! Operator: /! Serial: /! Basefid_: /! Duration: /! Mag_Data 	
/ /! Revision: /! Line /! Date /! Job /! Operator: /! Serial: /! Basefld_: /! Duration: /! Mag_Data -200 -200 -200	
/	
/	
/	
/	
/ /! Revision: /! Line /! Date /! Job /! Operator: /! Serial: /! Basefid_: /! Duration: /! Mag_Data -200	SCINTREX 4.3F 200.000 W 98/09/22 0 0 2.0 X/Y/TotFld/Noise/Hours/0=Uncor -900 56080.4 0.14 10.680833 0 -912.5 55993.5 0.12 10.695833 0 -925 56219.0 0.14 10.712222 0 -937.5 56200.1 0.14 10.721944 0 -950 56251.4 0.12 10.737778 0 -962.5 56185.7 0.13 10.746389 0 -975 56269 9 0.15 10 764167 0
/	SCINTREX 4.3F 200.000 W 98/09/22 0 0 2.0 3: X/Y/TotFld/Noise/Hours/0=Uncor -900 56080.4 0.14 10.680833 0 -912.5 55993.5 0.12 10.695833 0 -925 56219.0 0.14 10.712222 0 -937.5 56200.1 0.14 10.721944 0 -950 56251.4 0.12 10.737778 0 -962.5 56185.7 0.13 10.746389 0 -975 56269.9 0.15 10.764167 0 -987.5 56519.8 0.17 10.774167 0
/	SCINTREX 4.3F 200.000 W 98/09/22 0 0 2.0 a: X/Y/TotFld/Noise/Hours/0=Uncor -900 56080.4 0.14 10.680833 0 -912.5 55993.5 0.12 10.695833 0 -912.5 56219.0 0.14 10.712222 0 -937.5 56200.1 0.14 10.712222 0 -937.5 56200.1 0.14 10.721944 0 -950 56251.4 0.12 10.737778 0 -962.5 56185.7 0.13 10.746389 0 -975 56269.9 0.15 10.764167 0 -987.5 56519.8 0.17 10.774167 0
/	SCINTREX 4.3F 200.000 W 98/09/22 0 0 2.0 a: X/Y/TotFld/Noise/Hours/0=Uncor -900 56080.4 0.14 10.680833 0 -912.5 55993.5 0.12 10.695833 0 -925 56219.0 0.14 10.712222 0 -937.5 56200.1 0.14 10.712222 0 -937.5 56200.1 0.14 10.721944 0 -950 56251.4 0.12 10.737778 0 -962.5 56185.7 0.13 10.746389 0 -975 56269.9 0.15 10.764167 0 -987.5 56519.8 0.17 10.774167 0 -1000 56395.5 0.12 10.783056 0
/	SCINTREX 4.3F 200.000 W 98/09/22 0 0 2.0 X/Y/TotFld/Noise/Hours/0=Uncor -900 56080.4 0.14 10.680833 0 -912.5 55993.5 0.12 10.695833 0 -925 56219.0 0.14 10.712222 0 -937.5 56200.1 0.14 10.712222 0 -937.5 56200.1 0.14 10.721944 0 -950 56251.4 0.12 10.737778 0 -962.5 56185.7 0.13 10.746389 0 -975 56269.9 0.15 10.764167 0 -987.5 56519.8 0.17 10.774167 0 -1000 56395.5 0.12 10.783056 0 -1012.5 56434.9 0.11 10.789444 0
/	SCINTREX 4.3F 200.000 W 98/09/22 0 0 2.0 a: X/Y/TotFid/Noise/Hours/0=Uncor -900 56080.4 0.14 10.680833 0 -912.5 55993.5 0.12 10.695833 0 -925 56219.0 0.14 10.712222 0 -937.5 56200.1 0.14 10.712222 0 -937.5 56200.1 0.14 10.721944 0 -950 56251.4 0.12 10.737778 0 -962.5 56185.7 0.13 10.746389 0 -975 56269.9 0.15 10.764167 0 -987.5 56519.8 0.17 10.774167 0 -1000 56395.5 0.12 10.783056 0 -1012.5 56434.9 0.11 10.789444 0 -1025 56622.4 0.12 10.794444 0
/	SCINTREX 4.3F 200.000 W 98/09/22 0 0 2.0 X/Y/TotFld/Noise/Hours/0=Uncor -900 56080.4 0.14 10.680833 0 -912.5 55993.5 0.12 10.695833 0 -925 56219.0 0.14 10.712222 0 -937.5 56200.1 0.14 10.712222 0 -937.5 56200.1 0.14 10.721944 0 -950 56251.4 0.12 10.737778 0 -962.5 56185.7 0.13 10.746389 0 -975 56269.9 0.15 10.764167 0 -987.5 56519.8 0.17 10.774167 0 -1000 56395.5 0.12 10.783056 0 -1012.5 56434.9 0.11 10.789444 0 -1025 56622.4 0.12 10.798889 0
/	SCINTREX 4.3F 200.000 W 98/09/22 0 0 2.0 X/Y/TotFld/Noise/Hours/0=Uncor -900 56080.4 0.14 10.680833 0 -912.5 55993.5 0.12 10.695833 0 -925 56219.0 0.14 10.712222 0 -937.5 56200.1 0.14 10.712222 0 -937.5 56200.1 0.14 10.721944 0 -950 56251.4 0.12 10.737778 0 -962.5 56185.7 0.13 10.746389 0 -975 56269.9 0.15 10.764167 0 -987.5 56519.8 0.17 10.774167 0 -1000 56395.5 0.12 10.783056 0 -1012.5 56434.9 0.11 10.789444 0 -1025 56622.4 0.12 10.798889 0 -1050 57083.3 0.16 10.806389 0
/	SCINTREX 4.3F 200.000 W 98/09/22 0 0 2.0 X/Y/TotFld/Noise/Hours/0=Uncor -900 56080.4 0.14 10.680833 0 -912.5 55993.5 0.12 10.695833 0 -925 56219.0 0.14 10.712222 0 -937.5 56200.1 0.14 10.712222 0 -937.5 56200.1 0.14 10.721944 0 -950 56251.4 0.12 10.737778 0 -962.5 56185.7 0.13 10.746389 0 -975 56269.9 0.15 10.764167 0 -987.5 56519.8 0.17 10.774167 0 -1000 56395.5 0.12 10.783056 0 -1012.5 56434.9 0.11 10.789444 0 -1025 56622.4 0.12 10.798889 0 -1050 57083.3 0.16 10.806389 0 -1062.5 56812.6 0.13 10.813611 0

-	200 -	1087.5	56783.5	0.13	10.82416	70
-	200	-1100	56788.1	0.14	10.833889	0
-	200 -	1112.5	56951.2	0.13	10.83916	70
-	200	-1125	56949.2	0.13	10.845278	0
-	200 -	1137.5	56659.3	0.13	10.851944	4 0
-	200	-1150	56648.8	0.12	10.857500	0
-	200 -	1162.5	56353.1	0.11	10.864444	4 0
-	200	-1175	55871.6	0.13	10.872222	0
-	200 -	1187.5	56074.7	0.13	10,884444	4 0
-	200	-1200	56321.3	0.14	10.891944	0
-;	200 -1	1212.5	56255.5	0.15	10.902500) ()
-	200	-1225	56508.4	0.17	10.909722	0
-	200 -	1237.5	56604.8	0.12	10,915000) ()
-	200	-1250	56572.9	0.12	10.921944	0
-2	200 -1	262.5	56530.9	0.15	10.930278	3 0
-	200	-1275	56542.1	0.11	10.938333	0
-;	200 -1	287.5	56371.4	0.11	10.943889	0
-;	200 -	-1300	56477.7	0.12	10.951667	0
-2	200 -1	312.5	56473.8	0.13	10,957500	0
-2	200	-1325	56147.8	0.12	10.968611	0.
-:	200 -1	337.5	55990.2	0.14	10.976944	0
-2	200 -	-1350	56015,7	0.13	10.985556	0
-2	200 -1	362.5	56082.7	0.14	10.999444	0
-2	200 ·	-1375	56312.9	0.15	11.018056	0
-2	200 -1	387.5	56387.2	0.14	11.029444	0
-2	200 -	1400	56386.8	0.11	11.038333	0
-2	200 -İ	412.5	56405.6	0.15	11.043889	0
-2	.00 -	1425	56419.1	0.12	11.049167	0
-2	200 -1	437.5	56504.7	0.12	11.055833	0
-2	200 -	1450	56455.2	0.13	11.060556	0
-2	-1	462.5	56338.9	0.14	11.072222	0
-2	- 00	1475	56488.8	0.14	11.081111	0
-2	200 -1	487.5	56466.6	0.12	11.089722	0
-2	- 00	1500	56441.3	0.11	11.098056	0
/			SCIN	TRE	εx	
/! Rev	ISION:	4.31	000 151			
/! Line		300.0	000 W			
/! Date	·:	98/0	9122			
/1 000_	:	U				
/! Ope	at	0				
/! Sen	al	0				
	ation:	้าก				
/ Maa	Data:	2.0 Y/V/	ToFId/No	nise/H		or
/						
-3	00 -	1500	56460.4	0.12	11.297222	0
-3	00 -1	487.5	56384.0	0.12	11.302222	0
-3	00 -	1475	56356.3	0.12	11,306389	0
-3	00 -14	462.5	56247.9	0.14	11.312500	0
-3	- 00	1450	56225.9	0.15	11,316944	0
-3	00 -14	437.5	56163.8	0.15	11.323056	0
-3	- 00	1425	56187.8	0.18	11.330278	0
-3	00 -14	412.5	56165.5	0.16	11.335556	0

-300	-1400 56189.0 0.15 11.340556 0
-300	-1387.5 56274.5 0.15 11.345833 0
-300	-1375 56225.1 0.15 11.350833 0
-300	-1362.5 56225.7 0.15 11.356667 0
-300	-1350 56193.9 0.15 11.362778 0
-300	-1337.5 56225.9 0.14 11.368056 0
-300	-1325 56196 2 0 14 11 373611 0
-300	-1312 5 56239 8 0 17 11 380000 0
-300	-1300 56289 9 0 16 11 385556 0
-300	-1287 5 56244 6 0.14 11 391944 0
-300	-1275 56297 1 0 15 11 396667 0
-300	-1262 5 56307 7 0 15 11 404444 0
-300	
-300	
-300	
-300	
-300	-1212.5 56226.2 0.16 11.431389 0
-300	
-300	-1187.5 56339.6 0.16 11.441389 0
-300	-1175 56452.5 0.16 11.446111 0
-300	-1162.5 56234.8 0.12 11.451944 0
-300	-1150 56269.8 0.18 11.460278 0
-300	-1137.5 56427.6 0.16 11.4666667 0
-300	-1125 56492.9 0.13 11.471667 0
-300	-1112.5 56444.3 0.13 11.477778 0
-300	-1100 56375.4 0.13 11.481944 0
-300	-1087.5 56243.1 0.14 11.486944 0
-300	-1075 56215.6 0.15 11.492222 0
-300	-1062.5 56192.2 0.18 11.496944 0
-300	-1050 56257.3 0.14 11.501667 0
-300	-1037.5 56578.8 0.16 11.509722 0
-300	-1025 56151.8 0.13 11,520000 0
-300	-1012.5 56231.5 0.15 11.526944 0
-300	-1000 56268.8 0.15 11.533889 0
-300	-987.5 56267.6 0.15 11.540278 0
-300	-975 56007.9 0.12 11.548056 0
-300	-962.5 56006.8 0.15 11.561389 0
-300	-950 56187.2 0.15 11.570278 0
-300	-937.5 56364.5 0.15 11.578056 0
-300	-925 56381.7 0.15 11.588889 0
-300	-912.5 56152.3 0.13 11.597500 0
-300	-900 56218.0 0.14 11.605556 0
	· · · · · · · · · · · · · · · · · · ·
/	SCINTREX
/ Revision	4 3F
/ Line :	400 000 W
/I Date	98/09/22
// Job	0
/t Operator:	v
/t Corial	0
	о О
/ Dascho_:	20
/ Duration:	2.V V/V/TaiEld/Naice#1//11
	A/ 1/ 1 OUT IO/ INOISE/ HOUTS/U= UNCOT
-400	-900 56428.8 0.12 11.778056 0
·	The second secon

ſ

.

-400	-912.5 56230.3 0.15 11.784444 0
-400	-925 56269.4 0.15 11.791944 0
-400	-937.5 56587.4 0.10 11.805833 0
-400	-950 56529.8 0.15 11.811667 0
-400	-962.5 56183.5 0.11 11.827778 0
-400	-975 56245.1 0.16 11.837222 0
-400	-987.5 56249.0 0.17 11.849167 0
-400	-1000 56276.2 0.16 11.859722 0
-400	-1012.5 56246.6 0.17 11.870833 0
-400	-1025 56458.7 0.17 11.883333 0
-400	-1037.5 56494.8 0.13 11.888056 0
-400	-1050 56171.1 0.14 11.894167 0
-400	-1062.5 56595.7 0.13 11.903056 0
-400	-1075 56512.7 0.13 11.910278 0
-400	-1087.5 56308.1 0.13 11.918056 0
-400	-1100 56383.7 0.11 11.928056 0
-400	-1112.5 56511.7 0.13 11.937222 0
-400	-1125 56618.5 0.13 11.943333 0
-400	-1137.5 56434.2 0.12 11.951667 0
-400	-1150 56211.7 0.14 11.963333 0
-400	-1162.5 56306.6 0.16 11.973611 0
-400	-1175 56355.1 0.15 11.984722 0
-400	-1187.5 56392.8 0.11 12.000278 0
-400	-1200 56341.0 0.12 12.010833 0
-400	-1212.5 56308.5 0.16 12.016944 0
-400	-1225 56325.6 0.16 12.025833 0
-400	-1237.5 56705.1 0.10 12.034444 0
-400	-1250 56487.2 0.16 12.042500 0
-400	-1262.5 56383.6 0.15 12.048889 0
-400	-1275 56479.7 0.10 12.059444 0
-400	-1287.5 56462.1 0.13 12.066944 0
-400	-1300 56488.0 0.12 12.073333 0
-400	-1312.5 56493.7 0.09 12.088056 0
-400	-1325 56341.1 0.13 12.093611 0
-400	-1337.5 56381.9 0.16 12.103889 0
-400	-1350 56420.5 0.19 12.125000 0
-400	-1362.5 56399.0 0.13 12.132222 0
-400	
-400	-1387.5 56431.3 0.12 12.148889 0
-400	
-400	
-400	-1425 56332.0 0.13 12.172500 0
-400	-1437.5 56328.1 0.13 12.183889 0
-400	-1450 56263.8 0.14 12.190000 0
-400	-1462.5 56189.2 0.15 12.196944 0
-400	-14/5 560//.1 0.14 12.203611 0
-400	-1487.0 06020.0 0.14 12.213333 0
-400	-1000 00196.3 0.15 12.220000 0
,	C () I N T D B V
/l Pavicion	43F
/ Tine	500 000 W
/i Date	98/09/22
/ Inh	0
······································	Ý

/! Operator:	
/! Serial:	0
/! Basefid_:	0
/! Duration:	2.0
/! Mag_Data:	X/Y/TotFld/Noise/Hours/0=Uncor
/	
-500	-1500 56192.2 0.16 12.320278 0
-500	-1487.5 56195.8 0.15 12.332778 0
-500	-1475 56242.7 0.15 12.339167 0
-500	-1462.5 56249.0 0.14 12.344722 0
-500	-1450 56213.9 0.14 12.350278 0
-500	-1437.5 56239.2 0.14 12.355278 0
-500	-1425 56289.8 0.15 12.361389 0
-500	-1412,5 56345.2 0.16 12.368333 0
-500	-1400 56383.5 0.16 12.375556 0
-500	-1387.5 56320.9 0.12 12.381667 0
-500	-1375 56296.3 0.15 12.387500 0
-500	-1362,5 56484.4 0.10 12.394722 0
-500	-1350 56393.9 0.12 12.399722 0
-500	-1337.5 56416.1 0.12 12.409167 0
-500	-1325 56427.9 0.12 12.413889 0
-500	-1312.5 56558.4 0.13 12.420278 0
-500	-1300 56380.8 0.12 12.427222 0
-500	-1287.5 56422.9 0.13 12.435278 0
-500	-1275 56554.5 0.13 12.440000 0
-500	-1262.5 56599.0 0.14 12.447778 0
-500	-1250 56602.6 0.13 12.452222 0
-500	-1237.5 56487.9 0.13 12.458611 0
-500	-1225 56492.5 0.12 12.464167 0
-500	-1212.5 56541.6 0.13 12.468611 0
-500	-1200 56502.3 0.12 12.479722 0
-500	-1187.5 56551.8 0.12 12.489444 0
-500	-1175 56319.1 0.13 12.496111 0
-500	-1162.5 56389.7 0.15 12.501111 0
-500	-1150 56463.6 0.13 12.506389 0
-500	-1137,5 .56443.1 0.12 12.510556 0
-500	-1125 56552.4 0.13 12.515556 0
-500	-1112.5 56732.2 0.13 12.520278 0
-500	-1100 56752.2 0.14 12.528056 0
-500	-1087,5 56425.5 0,12 12.537778 0
-500	-1075 56331.2 0.13 12.545556 0
-500	-1062.5 56098.5 0.14 12.555556 0
-500	
-500	-103/.5 562/2.1 0.12 12.58916/ 0
-500	
-500	
-500	-1000 30282.3 0.13 12.010111 0
-500	-987,5 50373.5 0.15 12.020833 0
-300	-973 J0300.3 0.14 12.029722 U
-300 _\$00	-902.9 50402.0 0.14 12.050009 0
-500	-937 5 56209 6 0 16 12 655833 0
-500	-925 56252.0 0.15 12.668056 0
-500	-912.5 56592.0 0.14 12.685000 0

1

×.

í.

in and the

.

-500 -900 56443.5 0.13 12.690833 0

1		SCINTREX
<i>'</i> л	Revision	4 3F
1	Line	· 600 000 W
1	Date	98/09/22
/	Joh	· 0
'n	Operator	
A	Scrial :	0
1	Basefid :	0
/	Duration:	2.0
/!	Mag Data	a: X/Y/TotFld/Noise/Hours/0=Uncor
1	~ _	
	-600	-900 56431.7 0.14 12.953056 0
	-600	-912.5 55979.4 0.13 12.973056 0
	-600	-925 56338.0 0.17 12.987222 0
	-600	-937.5 56053.5 0.14 13.016667 0
	-600	-950 55991.4 0.17 13.022778 0
	-600	-962.5 56447.5 0.12 13.036944 0
	-600	-975 56291.7 0.14 13.053333 0
	-600	-987.5 56431.1 0.13 13.066111 0
	-600	-1000 56612.1 0.13 13.076389 0
	-600	-1012.5 56596.5 0.14 13.085556 0
	-600	-1025 56515.8 0.13 13.094444 0
	-600	-1037.5 56481.7 0.13 13.100278 0
	-600	-1050 56562.1 0.13 13.105833 0
	-600	
	-600	
	-600	
	-600	-1100 56557.0 0.13 13.130000 0
	-000	-1112.5 50387.8 0.15 13,140000 0 1125 56451 2 0 12 12 145278 0
	-000	-1123 30431,3 0,13 13,143278 0
	-600	
	-600	-1162 5 56472 6 0 13 13 164722 0
	-600	-1175 56454 0 0 12 13 169167 0
	-600	-1187.5 56394.5 0.13 13.175556 0
	-600	-1200 56384.3 0.13 13.181111 0
	-600	-1212.5 56385.2 0.13 13.194444 0
	-600	-1225 56451.8 0.13 13.200833 0
	-600	-1237.5 56895.9 0.15 13.208611 0
	-600	-1250 56690.7 0.13 13.215278 0
	-600	-1262.5 56778.1 0.16 13.221667 0
	-600	-1275 56625.3 0.14 13.233056 0
	-600	-1287.5 56583.4 0.13 13.246389 0
	-600	-1300 56541.5 0.13 13.262222 0
	-600	-1312.5 56464.1 0.14 13.269444 0
•	-600	-1325 56486.8 0.13 13,277500 0
	-600	-1337.5 56475.9 0.15 13.285278 0
	-600	-1350 56423.0 0.14 13.298333 0
	-600	
	-000 -600	-1373 30401.7 0.13 13.310111 0 -1387 5 56388 0 0.13 13 334733 0
	-600	-1400 56367.7 0.13 13 331944 0

,

-600	-1412.5 56382.0 0.13 13.338333 0
-600	-1425 56259.7 0.16 13.349444 0
-600	-1437.5 56253.4 0.17 13.359722 0
-600	-1450 56263,6 0,16 13.366944 0
-600	-1462.5 56265.5 0.16 13.376667 0
-600	-1475 56316.7 0.12 13.385278 0
-600	-1487.5 56327.4 0.13 13.395000 0
-600	-1500 56325 4 0 14 13 407222 0
000	1000 0000000 0000 100000222 0
/	SCINTREX
/! Revision:	4.3F
// Line	: 700.000 W
/ Date	: 98/09/22
/t_Job	: 0
/! Operator:	
/! Serial :	0
/! Basefid :	0
/ Duration:	2.0
/ Mag Dat	a: X/Y/TotFld/Noise/Hours/0=Uncor
/	±۵۵۵٫٫٫٫٫٫٫٫۰۰۰۵۵۵۵٫٫٫٫۰۰۰۵۵۶۰٫٫۰۰۰۵۵۵۵۰۰۰۰۰۵۵۵۵۰۰۰۰۰۰۰۰
-700	-1500 56369.6 0.15 13.531944 0
-700	-1487.5 56370.2 0.13 13.540833 0
-700	-1475 56371.8 0.13 13.546111 0
-700	-1462.5 56381.1 0.13 13.553333 0
-700	-1450 56367.6 0.13 13.558889 0
-700	-1437.5 56430.1 0.15 13.565000 0
-700	-1425 56439.9 0.15 13.570556 0
-700	-1412.5 56405.0 0.15 13.575556 0
-700	-1400 56407.8 0.13 13.581944 0
-700	-1387.5 56431.1 0.13 13.590278 0
-700	-1375 56433.6 0.14 13.597500 0
-700	-1362.5 56406.6 0.13 13.605278 0
-700	-1350 56423.4 0.14 13.614167 0
-700	-1337.5 56511.2 0.13 13.623333 0
-700	-1325 56545.2 0.13 13.630833 0
-700	-1312.5 56543.0 0,13 13.640000 0
-700	-1300 56472.4 0.13 13.649722 0
-700	-1287.5 56588.4 0.14 13.656944 0
-700	-1275 56589.5 0.14 13.665278 0
-700	-1262.5 56387.3 0.13 13.671667 0
-700	-1250 56475.7 0.13 13.679722 0
-700	-1237.5 56443.4 0.13 13.691667 0
-700	-1225 56459.0 0.15 13.704444 0
-700	-1212.5 56419.8 0.13 13.711667 0
-700	-1200 56462.8 0.16 13.719444 0
-700	-1187.5 56470.4 0.11 14.149167 0
-700	-1175 56351.1 0.14 14.153889 0
-700	-1162.5 56201.9 0.15 14.161111 0
-700	-1150 56367.4 0.12 14.168611 0
-700	-1137.5 56391.2 0.14 14.175833 0
-700	-1125 56468.7 0.13 14.181667 0
-700	-1112.5 56470.6 0.14 14.187778 0
-700	-1100 56346.1 0.13 14.192500 0
-700	-1087.5 56379.7 0.16 14.196944 0

<u>____</u>

240 ····

-700	-1075 56378.2 0.13 14.203889 0
-700	-1062.5 56447.0 0.14 14.208889 0
-700	-1050 56465.9 0.13 14.214722 0
-700	-1037.5 56609.7 0.14 14.223611 0
-700	-1025 56566.6 0.14 14.229722 0
-700	-1012.5 56576.2 0.14 14.239722 0
-700	-1000 56603.1 0.14 14.248056 0
-700	-987.5 56578.1 0.13 14.256667 0
-700	-975 56522.7 0,14 14.283611 0
-700	-962.5 56677.1 0.15 14.293333 0
-700	-950 56633.8 0,15 14.301944 0
-700	-937.5 56407.1 0.13 14.310556 0
-700	-925 56357.3 0.14 14.318056 0
-700	-912.5 56512.1 0.11 14.325833 0
-700	-900 56474.6 0.14 14.333333 0
/	SCINTREX
/ Revision:	4.3F
/! Line:	500.000 W
/! Date:	98/09/22
/! Job;	0
/! Operator:	
/! Serial:	0
/! Basefid_:	0
/! Duration:	2.0
/! Mag_Data:	X/Y/TotFld/Noise/Hours/0=Uncor
-500	-900 56457.7 0.15 14.509167 0
_	
/	SCINTREX
/! Revision:	4.3F
/! Line:	500.000 W
/! Date:	98/09/23 A
/! J00:	V
// Operator:	0
/: Schal // Raseflat	о О
/ Duration	20
/I Mag Data	X/Y/TotFld/Noise/Houre/0=Uncor
/	
-500	-900 56457.0 0.11 8.436944 0
/	SCINTREX
/! Revision:	4.3F
/! Line:	800.000 W
/! Date:	98/09/23
/! Job:	0
/! Operator:	
/! Serial:	0
/! Basefid_:	0
/! Duration:	2.0
/! Mag_Data:	X/Y/TotFld/Noise/Hours/0=Uncor
-800	-1500 56370 9 0 14 9 676667 0
000	x200 00510,7 0.14 7,070007 V

-800	-1487,5 56451.6 0.13 9.838333 0
-800	-1475 56327.2 0.14 9.843333 0
-800	-1462.5 56337.6 0.16 9.849722 0
-800	-1450 56397.9 0.13 9.855833 0
-800	-1437,5 56383.0 0.13 9.866111 0
-800	-1425 56405.9 0.14 9.873056 0
-800	-1412,5 56496.8 0.14 9.879722 0
-800	-1400 56443.3 0.12 9.917222 0
-800	-1387,5 56522.0 0.12 9.927222 0
-800	-1375 56464.2 0.15 9.936389 0
-800	-1362,5 56418.1 0.15 9.948889 0
-800	-1350 56443.5 0.13 9.969167 0
-800	-1337,5 56421.3 0.13 9.975833 0
-800	-1325 56421.9 0.12 9.984444 0
-800	-1312,5 56428.6 0,13 9.995556 0
-800	-1300 56430.1 0.13 10.003889 0
-800	-1287.5 56386.7 0.13 10.011667 0
-800	-1275 56410.4 0.14 10.020000 0
-800	-1262.5 56492.1 0.14 10.025556 0
-800	-1250 56367.8 0.12 10.031944 0
-800	-1237,5 56348.2 0.14 10.040000 0
-800	-1225 56471.8 0.12 10.048889 0
-800	-1212,5 56746.7 0.15 10.059167 0
-800	-1200 56562.1 0.13 10.066111 0
-800	-1187,5 56329.3 0.13 10.075833 0
-800	-1175 56248.8 0.15 10.084444 0
-800	-1162.5 56249.0 0.16 10.089167 0
-800	-1150 56343.8 0.11 10.096667 0
-800	-1137.5 56362.2 0.15 10.103056 0
-800	-1125 56458.4 0.15 10.110278 0
-800	-1112.5 56454.9 0.12 10.120278 0
-800	-1100 56393.2 0.12 10.125278 0
-800	-1087.5 56376.8 0.13 10.137778 0
-800	-1075 56222.7 0.13 10.145278 0
-800	-1062.5 56154.0 0.15 10.152778 0
-800	-1050 56217.7 0.15 10.160556 0
-800	-1037.5 56283.9 0.15 10.166944 0
-800	-1025 56335.4 0.15 10.173889 0
-800	
-800	
-800	-987.5 56054.2 0.14 10.195556 0
-800	-975 50190.8 0.14 10.203011 0
-000	-702.3 30437.3 0.10 10.212222 U
-000	-730 30310.7 U.13 10.21/300 0 -037 5 56571 5 A 13 10 333000 A
-000 _8(M	-237.3 30371.3 0.12 10.223089 U _075 56217 5 0.13 10 320370 0
-000	-743 JUHI /.J U.12 10.2JU4 /0 U
-800	-214.5 50720.1 0.12 10.200000 U
-000	-700 50557.5 0.13 10.200944 0
	5.01 V = 5 = 7 V

/! Operator: /! Serial_: 0 /! Basefld_: 0 /! Duration: 2.0 /! Mag_Data: X/Y/TotFld/Noise/Hours/0=Uncor -500 -900 56443.8 0.11 10.522500 0

APPENDIX E

MAPS

APPENDIX F

PERSONNEL

FIELD:

W. Gruenwald, P. Geo.	
September 20-23, 1998	4 days
D. Mason, Field Assistant	
September 20-23, 1998	4 days
J. Kemp, Prospector	
September 15, 1998	l day
OFFICE:	
W Gruenwald P Geo	

September 6, 7, 8, 10, 11, 29, 1998 October 7, 11-14, 16-20, 1998

8¼ days

APPENDIX G

2

-

PROGRAM EXPENDITURES

1)	Consulting Fees: W. Gruenwald, P. Geo.	\$3,093.75	6 4 000 7 5
	D. Mason, Field Assistant	000,00	\$4,093.75
2)	Field Work:		275 00
	John Kemp, Grand Forks, B.C.		2/5,00
3)	Analytical Costs:		
	Eco Tech Laboratories, Kamloops, B.C.		2,235.53
4)	Travel Costs:		
	Geoquest Consulting Ltd., Vernon, B.C.		300.00
5)	Room and Board:		400.92
6)	Equipment Rental:		
	Magnetometer		250.00
7)	Supplies, Materials, Freight:		65.00
8)	Miscellaneous:		
	Telephone, Secretarial, Photocopying, Report		507.00
		TOTAL:	\$8,127,20

r

APPENDIX H

REFERENCES

Church, B.N. (1981)	Geology of the Mount Attwood - Phoenix Area, Greenwood (82E/2) Paper 1985-1
Schroeter, T.G. (1987)	Brief Studies in Selected Gold Deposits in Southern British Columbia - Geological Field Work Paper 1987-1, Ministry of Energy, Mines and Petro- leum Resources
Kim, H. (Jan, 1988)	Geological, Geochemical and Geophysical Exploration Report on the Path- finder Claim Group for Ber Resources Ltd.
Fyłes, J.T. (1990)	Geology of the Greenwood - Grand Forks Area, B.C Open File 1990-25, Ministry of Energy Mines and Petroleum Resources
Kim, H. (Jan, 1993)	Assessment Report for Pathfinder Claim Group for Niagara Developments
Miller, R.E. (Apr, 1995)	Assessment Report for Pathfinder Claim Group for Niagara Developments
Kemp, John (July, 1996)	Personal Communication
Nakade, George (Aug, 1996)	Personal Communication
Gruenwald, W. (July, 1996)	Summary Report on the Pathfinder Property for Cassidy Gold Corp.
Gruenwald, W. (Mar, 1997)	Geological, Geochemical and Geophysical Report. Assessment Report on the Pathfinder Property for Cassidy Gold Corp.
Gruenwald, W.	Summary Report and Exploration Proposal for the Pathfinder Property. Private report for Cassidy Gold Crop.

APPENDIX I

CERTIFICATE

I, WERNER GRUENWALD OF THE CITY OF VERNON, BRITISH COLUMBIA HEREBY CERTIFY THAT:

- 1. I am a graduate of the University of British Columbia with a B. Sc. degree in Geology (1972).
- 2. I am a registered member of the Professional Engineers and Geoscientists of British Columbia (#23202).
- 3. I am a fellow of the Geological Association of Canada (F2958)
- 4. I am employed as consulting geologist and president of Geoquest Consulting Ltd., Vernon, B.C.
- 5. I have practiced continuously as a Geologist for the past 26 years in western Canada and the US.
- 6. I personally supervised the work on the Pathfinder property.

ĺ