GEOCHEMICAL REPORT

ON A

SOIL GEOCHEMICAL SURVEY OVER THE

COULTER CLAIM GROUP

ISLAND MOUNTAIN, WELLS AREA

CARIBOO MINING DISTRICT, BRITISH COLUMBIA

PROPERTY LOCATION

: On Island Mountain, 3 km west of village of

Wells, British Columbia

53° 06'N Latitude, 121° 39' W Longitude

N.T.S. - 93H/4E

U.T.M. - E591000 N5884000

WRITTEN FOR

: CONSOLIDATED GOLD CITY MINING

CORPORATION

#600 - 750 Cambie Street

Vancouver, British Columbia V6B 5E5

WRITTEN BY

: David G. Mark, P.Geo.,

GEOTRONICS SURVEYS LTD.

#6204 - 125th Street

Surrey, British Columbia V3X 2E1

DATED

: July 23, 1998

GEOLOGICAL SURVEY BRANCH
ASSESSMENT REPORT

TABLE OF CONTENTS

THE STATE OF THE S		:
SUMMARY AND CONCLUSIONS		
RECOMMENDATIONS		
INTRODUCTION AND GENERAL RE		
LOCATION AND ACCESS		-
PROPERTY AND OWNERSHIP		
PHYSIOGRAPHY AND VEGETATION		
HISTORY		3
GEOLOGY		3
SURVEY PROCEDURE	·	4
TESTING METHOD		4
COMPILATION OF DATA		4
DISCUSSION OF RESULTS		5
REFERENCES	***************************************	7
GEOSCIENTIST'S CERTIFICATE.		8
AFFIDAVIT OF EXPENSES		9
APPENDIX I		10
Soil Sample Results from Ac	me Analytical Laboratories Ltd. V	Vancouver, B.C.
	MAPS AT BACK	
MAPS - At Back	Scale	<u> Map #</u>
Location Map	1:9,375,000	1
Claim Map	1:50,000	2
•		
MAPS - In Pocket		
SOIL GEOCHEMICAL SU	JRVEY	
GOLD	1: 5000	GP-1
COPPER	1: 5000	GP-2
LEAD	1: 5000	GP-3
ZINC	1: 5000	GP-4
SILVER	1: 5000	GP-5

SUMMARY and CONCLUSIONS

Reconnaissance soil sampling was carried out from June 29th to July 4th, 1998, over a part of the Coulter Claim Group located on Island Mountain near Wells within the Cariboo Mining Division of B.C. The terrain of the property varies from moderate to steep. Access is easily gained by highway and/or a series of logging roads from Wells and Quesnel.

The purpose of the soil geochemical survey was to check out two airborne radiometric potassium anomalies that occur on the Coulter Claim Group since gold mines in the area are known to occur within potassium-rich rocks.

The soil sampling was carried out along four lines with a sample interval of 25 meters. A total of 156 samples were picked up and forwarded to a lab in Vancouver for testing. The samples were tested for 30 elements using an ICP process, and gold using a fire assay/AA process.

Five elements were then chosen, which were gold, copper, lead, zinc, and silver, and each plotted on a survey plan. Anomalous values were then shown with an open triangle.

Five anomalies were revealed to be of further exploration interest. These were labeled by the upper case letters A to E. All the anomalies were anomalous in lead and zinc. The anomaly of prime exploration interest is anomaly A because of its size, and the number of elements it is anomalous in. Also of strong exploration interest is anomaly D which is highly anomalous in gold at 240 ppb. This would indicate that the causative source is quite close.

RECOMMENDATIONS

The results warrant further work as follows:

- 1. The property should be prospected and geologically mapped in order to more accurately determine the exploration potential. Very little geology is known on the property.
- 2. The soil geochemical survey should be continued at least over the rest of the potassium airborne anomalies. The ideal line separation would be 100 meters with the sample location remaining at 25 meters.
- 3. IP and resistivity surveys should then be run over soil anomalies of interest. An abundance of pyrite with other sulphides occurs with the gold mineralization in the area and thus IP would be an ideal tool.

GEOCHEMICAL REPORT

ON A

SOIL GEOCHEMICAL SURVEY OVER THE

COULTER CLAIM GROUP

ISLAND MOUNTAIN, WELLS AREA

CARIBOO MINING DISTRICT, BRITISH COLUMBIA

INTRODUCTION and GENERAL REMARKS

This report discusses a recce soil geochemical survey carried out within the Coulter Claim Group which is located near Wells, B.C. The work was done for Consolidated Gold City Mining Corp. of Vancouver, B.C.

The field work was carried out from June 29 to July 4, 1998, under the supervision of the writer and under the direct field supervision of Andrew Molnar, geotechnician, who was assisted by one helper. A total of 156 samples were picked up.

The main purpose of the soil geochemical survey was to test two airborne potassium radiometric anomalies from an airborne geophysical survey carried out by Dighem of Toronto during 1995. A potassium anomaly had been noted over the Cariboo Gold Quartz mine which was attributed to alteration of rocks to potassium minerals.

LOCATION AND ACCESS

The property is located on Island Mountain to the immediate north of Highway #26. The center of the eastern border is 3 km due west of the village of Wells, British Columbia.

The geographical coordinates of the center of the property are 53° 06' north latitude and 121° 39' west longitude.

Access to the property is reached by traveling on Highway #26 about 77 km easterly from Highway #97 from Quesnel or 3.5 km along the same highway from the village of Wells. Logging roads occur throughout the property.

PROPERTY and OWNERSHIP

The property which consists of a total of 84 units occurring within the Cariboo Mining Division is shown on figure #2 as well as described below:

NAME	CLAIM TAG No.	TENURE No.	No. UNITS	EXPIRY DATE
Coulter 1	203601	337601	20	July 7, 1999
Coulter 2	203602	337602	20	July 7, 1999
Coulter 3	214699	337603	20	July 6, 1999
Coulter 4	214700	337604	20	July 5, 1999
Coulter 5	614935M	337605	1	July 5, 1999
Coulter 6	618459M	337606	1	July 5, 1999
Coulter 7	614704M	337607	1	July 4, 1999
Coulter 8	618458M	337608	1	July 4, 1999

The expiry dates shown, all of which are in the year 1999, assumes that the current work under discussion will be accepted for assessment credits.

The property was originally staked in 1995 and, therefore, since the claims after 1998 will be more than 3 years old, the assessment work that will have to be done before the 1999 expiry date will be \$200 per unit. As a result, \$16,800 worth of work must be done each year from now on in order to keep the claims in good standing.

The property is owned by Consolidated Gold City Mining Corporation of Vancouver, B.C.

PHYSIOGRAPHY and VEGETATION

The property is located within the Quesnel Highland, which is a physiographic division of the Interior Plateau System. The terrain consists of gentle slopes with rounded glaciated hills and wide, flat major valleys and steep -walled, incised minor drainages. The region lies within a rain belt in front of the Cariboo Mountains and supports a lush coniferous forest. The snow-free period extends from late April to November, however, snow may linger on north-facing slopes as late as June.

The elevations on the Coulter Claim Group vary from a low of about 1,100 meters within the Coulter 1 Claim along the northwest-flowing Slough Creek to a high of over 1,770

meters within the Coulter 3 Claim on the peak of Island Mountain resulting in a relief of 670 meters. The property is mainly drained by the west-flowing and southwest-flowing Coulter Creek.

HISTORY

For a general history of the area, the reader is referred to the Fox Geological Consultants report on the Gold City properties within the Wells area which is dated June, 1995.

The only previous work on the Coulter Claims is an airborne survey consisting of EM, VLF-EM, magnetometer, and radiometric surveys carried out by Dighem during 1995. Based on those results, specifically two radiometric potassium anomalies, the claims were staked. There may have been other work carried out by previous operators, but this is unknown to the writer.

GEOLOGY

The following is taken from the Fox report other than the non-quoted paragraph. There is little known about the geology of the property other than what is given below.

"The Wells Gold District lies within the Barkerville subterrane. This terrane is comprised of continental shelf and slope clastics, carbonates, and volcaniclastics of the North American orogen. It is more deformed and metamorphosed than the surrounding terranes. Structural elements are dominated by probable isoclinal F1 folds and subsequent tight to open F2 folds. Faulting is common and includes abundant northerly and northeasterly normal faults that disrupt the already complex fold patterns. Metamorphism is variable with chlorite grade metamorphism at Wells increasing to garnet and sillimanite grade to the northwest and southeast."

The soil geochemical crew noted on the survey lines quartz veining within what they thought was slates.

"Three gold mines occur within close proximity to the Coulter Claim Group. These are the Cariboo Gold Quartz Mine, the Island Mountain Mine, and the Mosquito Creek Mine. Two distinctly different styles of gold mineralization were mined; (1) gold-bearing pyritic quartz veins confined to the Rainbow Member which is a younger dark-coloured sequence of quartzite and phyllite, and (2) replacement bodies associated with limestone contacts in the Baker Member which consists of pale-coloured quartzite, phyllite, limestone and volcaniclastics."

"Quartz veins may contain up to 25% course pyrite with accessory ankerite, galena, sphalerite, scheelite, sericite, rare cosalite, argentite and chalcopyrite. Alteration effects are minimal with local bleaching of wall rocks accompanied by low level gold contents. Radiometric surveys over the Cariboo Gold Quartz Mine property has outlined high

potassium and thorium anomalies associated with quartz vein zones which suggests a form of potassic alteration may be present."

SURVEY PROCEDURE

A total of 17 soil samples were picked up along line 100N and along baseline 200W. This was not considered a complete survey but was only done as fill-in to the resistivity/IP work. Its purpose was to check the response over the Mist Vein and the other parallel structures as well as along the baseline.

The grid was first put in with compass and hip chain using 200W as the baseline. It was attempted to center the grid around line 100N from the previous 1994 work but the station markings had disappeared. As a result the stations on the present grid were put in every 25 m with a wooden stake and an aluminum tag stapled to it which had the grid coordinates marked thereon. The chosen line spacing was 25 meters.

TESTING METHOD

The samples were forwarded to Acme Analytical Laboratories Ltd. in Vancouver for analysis after they had dried. The samples were sieved to -80 mesh and a fraction of each was digested in hot aqua regia for one hour. Each sample solution was then aspirated into an ICP emission spectrograph for the determination of 30 elements.

Each sample was also analyzed for gold by digesting in hot aqua regia for one hour, but then after cooling, adding MIBK. The sample is then shaken to extract gold into the MIBK phase. An extract of the sample is then aspirated into a graphite furnace for the determination of gold.

The analysis for all elements for each sample is shown in the appendix.

COMPILATION OF DATA

The certificates were E-mailed to Geotronics which were then converted to XYZ files for the purpose of survey plan mapping by Geosoft. Five elements were chosen for mapping and these were gold, copper, lead, zinc, and silver. Though the exploration is primarily for gold mineralization, the other four elements are looked at because of their possible association with gold. Gold within soils can be very localized to the point that a sample may show no gold even though it may be only a few meters from gold mineralization. The ion mobility of the other elements is generally much greater than that of gold.

One map was drawn for each element all at a scale of 1:5,000 and number GP-1 through to GP-5, inclusive.

An anomalous threshold value for each element was determined as follows:

- 1. gold 20 ppb
- 2. copper 25 ppm
- 3. lead 30 ppm
- 4. zinc 80 ppm
- 5. silver 0.4 ppm

Each location containing values equal to and above the anomalous threshold values have been marked by a triangle since the lines are too far apart for contouring of the values.

DISCUSSION OF RESULTS

Five anomalous zones have been revealed that are considered to be of primary exploration interest at this point. These have been labeled by the upper case letters A to E, inclusive.

<u>Anomaly A</u> occurs on line 950N and is centered at about 150W within the western airborne potassium anomaly. It consists of anomalous values in lead, zinc, copper and one value in gold, and one value in silver. This anomaly is also anomalous in potassium within the soils and, thus because of its size and the number of elements it is anomalous in, it is considered to be a prime exploration target for gold mineralization. There is only one anomalous value in gold but this is probably due to the low mobility of gold.

<u>Anomaly B</u> occurs on line 1100N and is centered at about 100E. This anomaly occurs within the eastern airborne potassium anomaly. This anomaly is mainly anomalous in lead and zinc values with one value being anomalous in copper.

<u>Anomaly C</u> occurs on line 450N from about 775W to 1000W. It is anomalous in lead, zinc, and copper with one value anomalous in gold. This anomaly occurs to the west of the western airborne potassium anomaly.

<u>Anomaly D</u> consists of one value that is highly anomalous in gold at 240 ppb which is one quarter of a gram in gold. The anomaly occurs on line 450N at 550W. Nearby samples are anomalous in lead, zinc, and copper. The high anomalous value indicates a strong possibility that gold mineralization occurs nearby. It occurs within the southern part of the western anomaly.

<u>Anomaly E</u> occurs on line 200N centered at 700E. This anomaly is anomalous in gold as well as lead, zinc, and copper. It occurs to the immediate east of the southern part of the eastern potassium anomaly.

Other sample locations could become of interest for further exploration as knowledge is gained on the property. One of these occurs at 875E on line 200N.

The silver results were surprisingly flat with only three samples being anomalous. This would indicate that any mineralization that may occur on the property probably does not contain silver. However, it should also be considered that the chemistry of the soil may prevent any mobility of silver ions.

D.G. MARK

BRITISH COLUMBIA

OSCIEN

Respectfully submitted,

GEOTRONICS SURVEYS LTD

David G. Mark, P.Geo., Geophysicist

July 23, 1998

REFERENCES

Fox, Peter E., Cameron, Robert, <u>Summary Report on the Welbar Gold Project, Cariboo Gold District</u>, <u>Wells</u>, <u>British Columbia</u>, for Gold City Mining Corporation by Fox Geological Consultants Ltd., June 13, 1998

Garrie, Douglas G., <u>Dighem V Survey for Gold City Mining Corporation</u>, Welbar Gold Project, November 10, 1995

GEOSCIENTIST'S CERTIFICATE

I, DAVID G. MARK, of the City of Vancouver, in the Province of British Columbia, do hereby certify that:

I am a Consulting Geoscientist of Geotronics Surveys Ltd., with offices at #6204 - 125th Street, Surrey, British Columbia.

I further certify that:

- I am registered as a Professional Geoscientist with the Association of Professional Engineers and Geoscientists of the Province of British Columbia.
- 2. I am a graduate of the University of British Columbia (1968) and hold a B.Sc. degree in Geophysics.
- 3. I have been practicing my profession for the past 30 years, and have been active in the mining industry for the past 33 years.
- 4. This report is compiled from data obtained from a soil sampling survey carried out over a portion of the Coulter Claim Group from June 29 to July 4, 1998. The surveys were carried out under my supervision and under the direct field supervision of Andrew Molnar, geotechnician.
- 5. I do not hold any interest in Consolidated Gold City Mining Corporation, nor in the property discussed within this report, nor in any other property held by Consolidated Gold City Mining Corporation, nor do I expect to receive any interest as a result of writing this report.

Respectfully submitted,

GEOTRONIOS SURVEYS LTD.

PROVINCE D.G. MARK

BRITISH COLUMBIA

SCIENT

David G. Mark, P. Geo.,

Geophysicist

July 23, 1998

AFFIDAVIT OF EXPENSES

A reconnaissance soil geochemistry survey was carried out over a portion of the Coulter Claim Group, located on Island Mountain in the Wells area, B.C., from June 29 to July 4, 1996, to the value of the following:

Mob-demob,		
Wages, 22 hours @ \$60/hour	\$1,320.00	
Truck rental and gas	620.00	
Room and board	<u> 150.00</u>	\$ 2,090.00
Field:		
Wages, 42 hours @ \$60/hour	\$2,520.00	
Truck rental and gas, 4 days @ \$100/day	400.00	
Room and board	<u>480.00</u>	\$ 3,400.00
<u>Laboratory:</u>		
Testing of soil samples for gold and 30-mineral ICP 156 @ \$14/sample	2,184.00	2,184.00
Data Reduction & Report:		
Senior geophysicist, 10 hr. @ \$60/hr.	600.00	
Computer-aided data reduction & drafting, 7 hr. @ \$50/hr	350.00	
Printing, photocopying, compilation	<u>150.00</u>	1.100.00
GRAND TOTAL		\$8,774.00

Respectfully submitted, GEOTRONICS SURVEYS LTD.

David G. Mark, P.Geo.,

Geophysicist

PROVINCE
D.G. MARK
BRITISH
COLUMBIA
COLUMBIA

FESSION

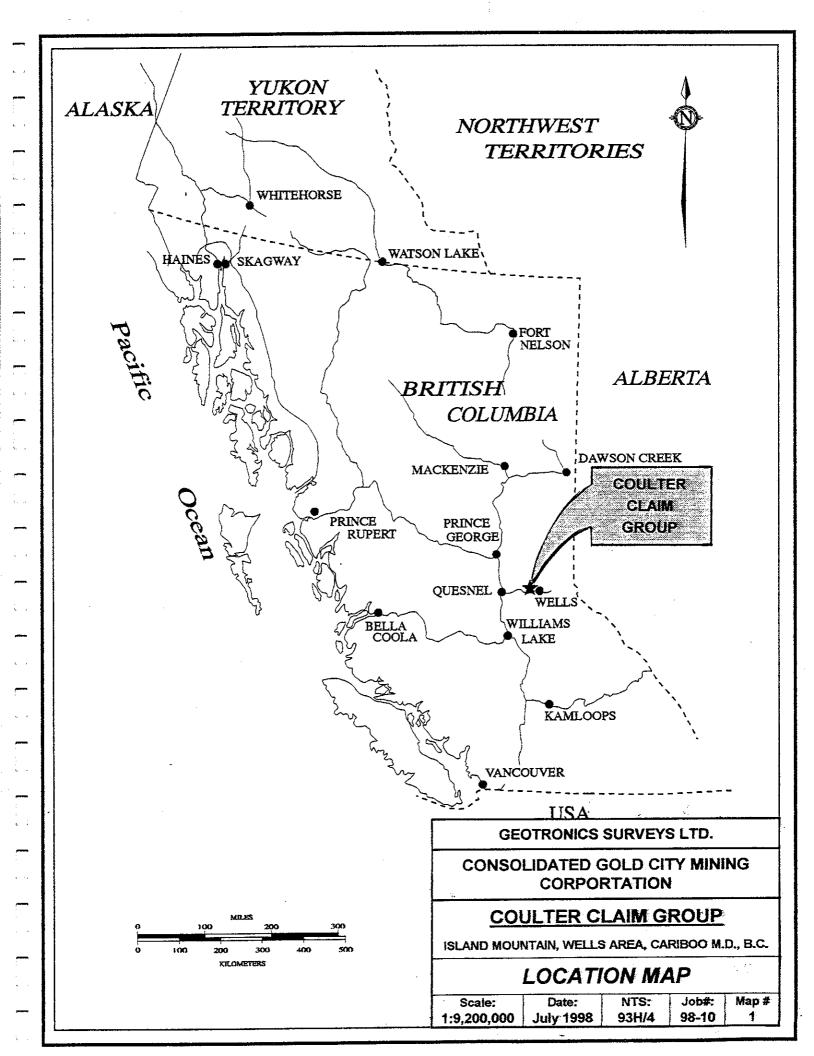
APPENDIX I

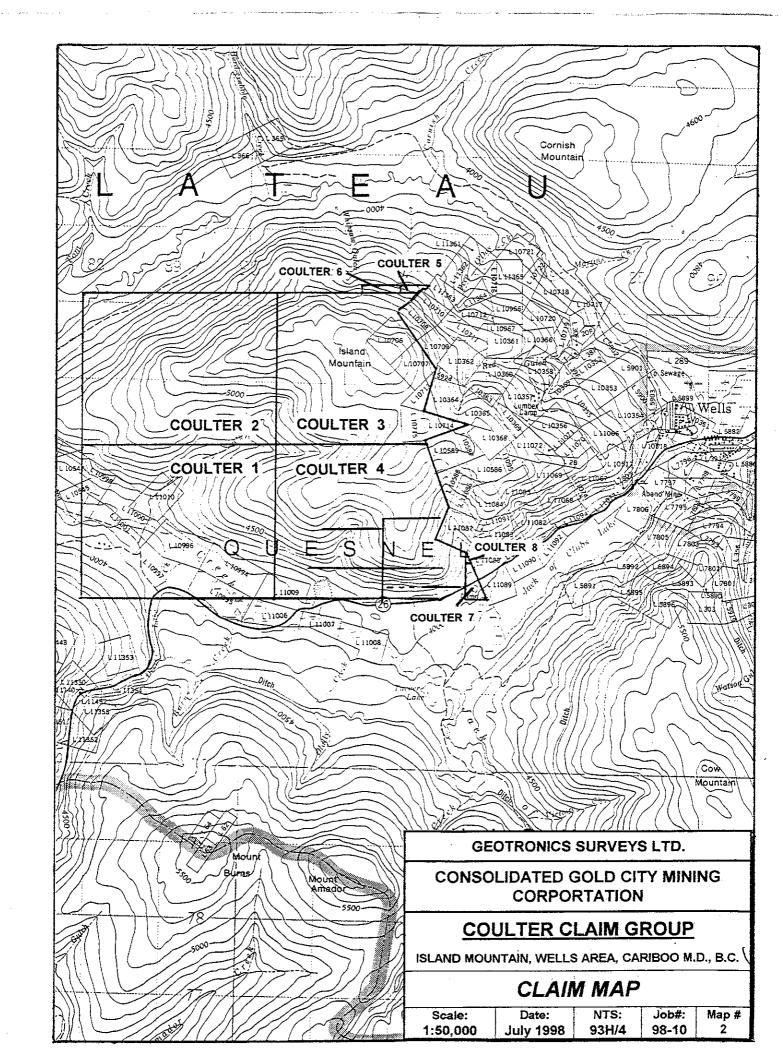
SOIL SAMPLE RESULTS FROM ACME ANALYTICAL LABORATORIES LTD. Vancouver, B.C.

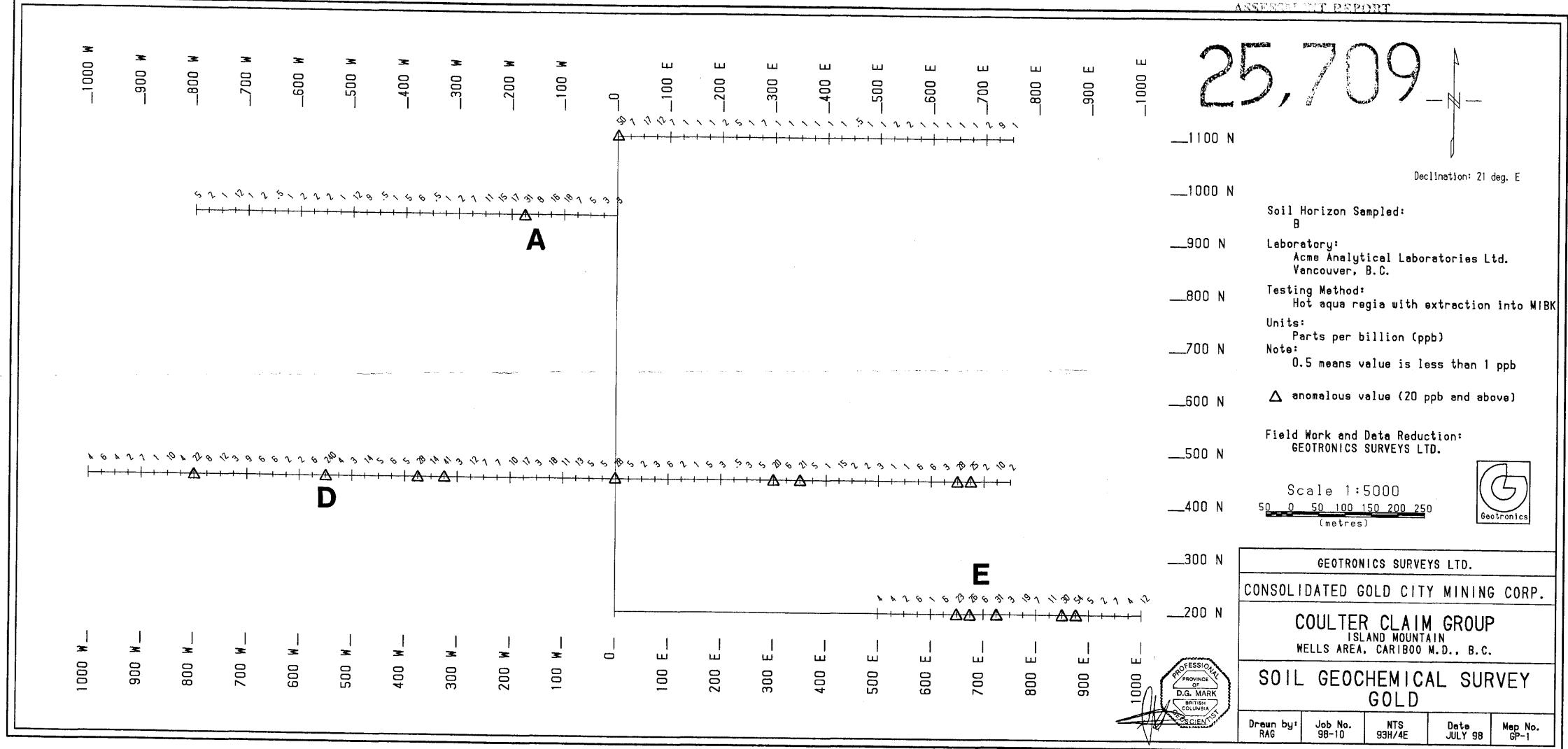
From ACME ANALY PH(604)253-3158 F		(60	AND!	UKA	IORI	FS [ID. 8	52 E	HAS	STING	S ST.	VVAN	CO	UVE	₹		T	T
/	· V / / \	$\cdot \cdot \cdot$	7 /Z \	J. J 1 f	10 11	1117	- 1	I I () I	G, J	.WAN	G, CEI	RTIFI	ED B	.C. A	SSA	YERS	 }	·
Acme file # A98026 ELEMENT		~9`	·	1100	SIVEU	. JUL	0 19	96		<u></u>				Ţ	Ţ		T	
SAMPLES				Cu	Pb	Zn		Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	K
L11N 0+00	_ pr	טט בס	ppn	ppm	ppm	ppm	ppm		ppm	ppm	%	ppm	ppm	ppn			ppm	%
L11N 0+25E		50	1	ļ			< .3	8	4	198	1.66	22	< 8	< 2	3			0.0
L11N 0+50E			< 1	6	·		< .3	6	2	178	1.18	7	< 8	< 2	-3		< .2	0.0
L11N 0+75E		17		9	29		< .3	11	6	234	1.76	17	< 8	< 2	3	17	< 2	0.0
L11N 1+00E		12	1		32	71	< .3	18	9	530	2.72	19	< 8	< 2	3	18	0.4	0.
L11N 1+25E		7	1	32	39	87	< .3	32	16	755	3.17	20	< 8	< 2	4	24	0.5	0.
L11N 1+50E		1	2	19	21		< .3	22	10	461	3.25	8	< 8	< 2	4	20	0.5	0.1
L11N 1+75E		1	_1	21	16		< .3	25	10	309	3.75	10	< 8	< 2	3	12	0.5	0.0
_11N 1+75E _11N 2+00E		1	1	17	41		< .3	18	8	294	3.93	·	< 8	< 2	7	7	0.6	
		2	1	10	12	37	< .3	10	4	116	2.25	··	< 8	< 2	3		< .2	0.0
11N 2+25E			: 1	10	7	28	< 3	7	3	146	1.81	10		< 2	6			0.0
-11N 2+50E			: 1	6	13	19	< .3	3	2	69	1.2		< 8	< 2	6		< .2	0.0
.11N 2+75E		7 <	: 1	4	14	17	< 3	1	1	61	1.09		< 8	< 2	4	4	0.3	0.0
11N 3+00E		1	1	10	11	38	< 3	7	4	117	2.63	10		< 2	~		< .2	0.1
.11N 3+25E		1 <	1	7	8	20 -	< .3	4	2	99	1.84			< 2	_ 6		< .2	0.0
.11N 3+50E		1 <	1	6	6	19 -	< .3	5	2	64	1.19				4		< .2	0.0
11N 3+75E	< 1	<	1	4	7	16 -	< .3	3	1	46	0.97		— <u>+</u>	< 2	4		:.2	0.0
11N 4+00E		1 <	1	7	7	25 <		7	2	93	2.18			< 2	4		: .2	0.0
11N 4+25E		1 <	1	4	7		.3	2	1	67	1.35			< 2	4		: .2	0.0
11N 4+50E	< 1	<	1	2	7		: 3	3	1	69			<u>-</u>	< 2	2		- j	0.04
E L11N 6+00E	() <	1	2 <		10 <			1	41	0.68			< 2	_2			0.0
11N 4+75E	1	<	1	6	10		.3	6	2	110			·		2			0.07
11N 5+00E	1	<	1	10	13		.3	8	3		1.84	2 <		< 2	3	4 <		0.00
11N 5+25E	2	٠.بــــــــــــــــــــــــــــــــــــ		6	5		.3	5		144	2.04	4 <	<u>-</u>	< 2	3	6 <	.2	0.08
11N 5+50E	2		1	10	20		.3	8	- 1	51	0.71		 +		2	5	0.2	0.06
11N 5+75E	1			4	11		.3	3	4	175	2.63			2	5	23	0.3	0.17
11N 6+00E	1	<		4	3		.3		2		0.95		⊢	2	3	3 <	.2	0.08
11N 6+25E	1	<	·	7	11		.3	1 <							2	3	0.2	0.07
1N 6+50E	1	<		3	8		.3	3	_1 _		1.27			2	7	4 <	.2 (0.06
1N 6+75E	1	+	1			65 <			1		0.75 <			2	3	5 <	.2 (0.06
1N 7+00E	2							13		· (4.04	7 <	8 <	2	7	8 (0.11
1N 7+25E	9		1			67 <		15			3.79	11 <	8 <	2	6	8 (0.07
1N 7+50E	1	-				36 <	•	6			2.16	4 <	8 <	2	5	14 <		0.08
+50N 8+00W	5					40 <		11	4	280	2	5 <	8 <	2		23 <		0.06
+50N 7+75W	2		1			34 <		9	3	92 :	2.25	13 <	8 <	2	5			0.03
+50N 7+50W						85 <		22	9 :	281 :	3.21	17	8 <	2	10			0.05
ANDARD C3/AU-S		< 1		3		10 <		3	1	50 (> 86.0	2 <	8 <	2	7			0.03
ANDARD G-2	54	2			34 10	62			11	748	3.05	55	13					.15
+50N 7+25W	1		1	5		44 <		7	4 :	528	1.9	2 < 8				0 <		.46
+50N 7+25W +50N 7+00W	12			4		17 < .		5	2	53 1	1.13	6 < 8		i		2 < .		.03
+50N 7+00W +50N 6+75W		< 1	. 1	<u>6</u> [15 < .		5	2	·).77	3 < 8			0			.03
CON O FOLL		< 1				31 < .		0				10 < 8					·	
+50N 6+50W		< 1		5		8 < .	3	7			.01	6 < 8	— i	·		4 0 2 < .		.05
+50N 6+25W		< 1		7	7 3	32 < .	3 1				.46	9 < 8				2 < . 3 <		.02
50N 6+00W		< 1		9 1	1 3	30 < .					.54	7 < 8						.02
-50N 5+75W	_ 2	1	1	0 1		7 < .:					1.2	7 < 8				6 < .:		04
-50N 5+50W	2 -	< 1	1	~~~ · 		8 < .		4			.87	6 < 8				4 < .: 5 < .:		02

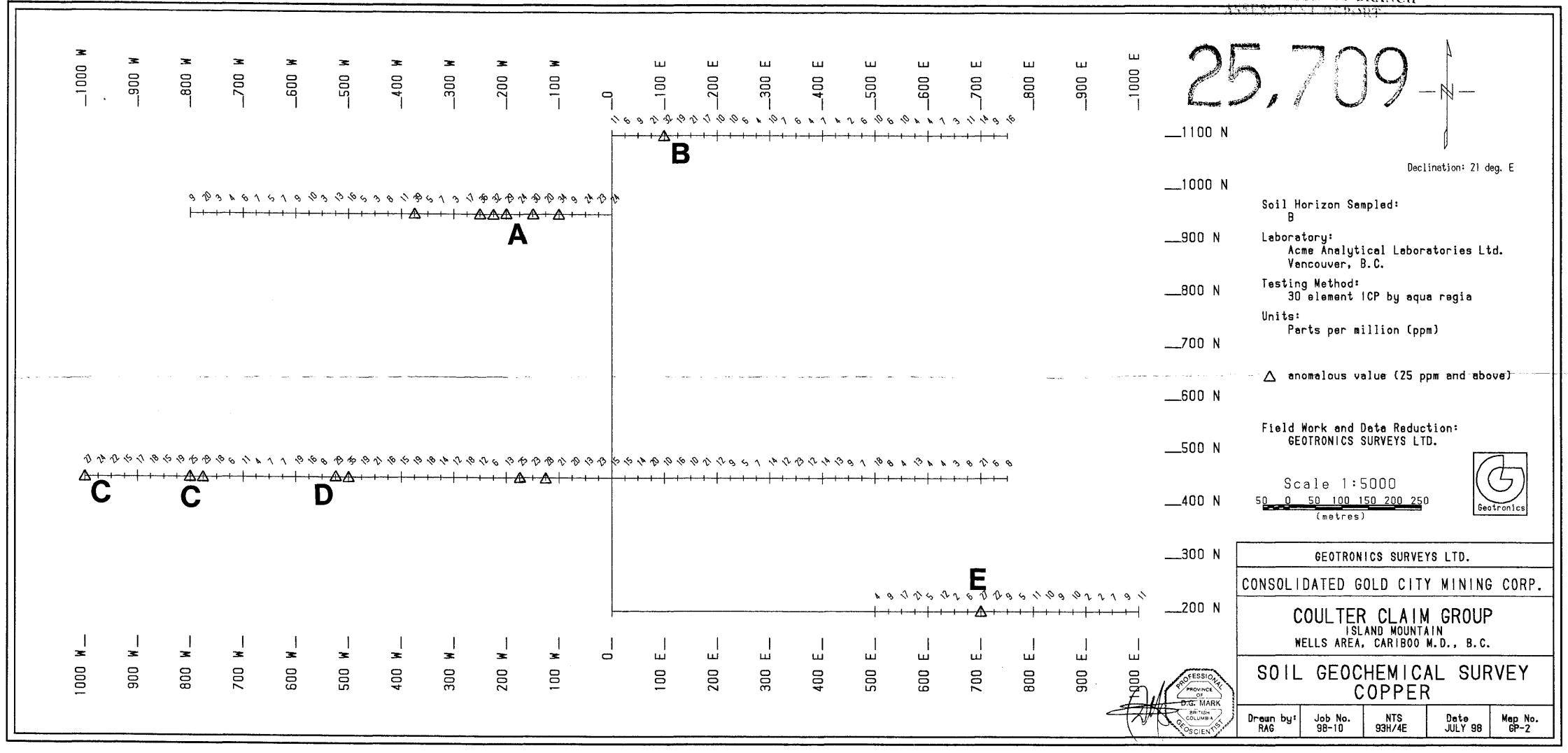
L9+50N 5+25W	ELEMENT		Α	u* l	Мо	Cu	Pb	Zn	Δ.	At:	10-	-			1 = -					_		
L9+50N 4+75W	L9+50N 5+2	5W	-	— <u>-</u> -										Fe	As	U			Sr	C	d	K
L9+50N 4+75W							·										< 2	2 1	O	7	0.2	
19-50N 4+50W							 							2.29	5	< 8	< 2	2 (3 1			
19+50N 4+25W														0.71	3	8 > 8	< 2	2 7	3 1		- h	
B-50N 4+00W											+		23	0.56	2	< 8	< 2					
RELEPHON AHOOW													59	1.81	7	< 8	< 2				_	
19-50N 3+75W													74	2.08	11	< 8	< 2					
Section 1.59			-								 		75	2.04	7	< 8	< 2		-			
L9+50N 3+25W											<u>, </u>		8	5.03	12	< 8	< 2			+		
L9+5ON 3+00W														1.14	9	< 8	< 2					
L9+50N 2+75W						(<u> </u>		1.59	8	< 8	< 2					
L9+50N 2+50W													_	0.61	7	12	< 2					
L9+50N 2+25W												+		2.88	12	< 8	< 2		<u> </u>			
L9+50N 2+00W													- 1	3.25	23	< 8	< 2		·			
L9+50N 1+75W										-			7	3.25	19	< 8	< 2			 		
Section Sect									ļ <u>-</u>	+				2.95	19	< 8	·	 		_		
Section Sect												39	4	2.51	18	< 8	< 2				_ +_	
Section Sect														2.95	16	8		 				
L9+SON 0+75W									·				[2.3	19	< 8	< 2	7		-		
L9+50N 0+50W					 -					 		633	3	3.07	18	< 8	< 2	·		_		
L9+50N 0+25W												125	5	1.48	9	< 8	< 2	 				{
L9+50N 0+00					- -						9	310) ;	3.22	11	< 8						
L4+50N 10+00W		, , , , , , , , , , , , , , , , , , ,									11	407	7	3.41	12	< 8						
L4+50N 9+75W		71//									—	527	' [3.42	9 .	< 8	< 2				-	——-i
L4+50N 9+50W					_ (_							463	2	2.99	12 <	< 8	< 2					
L4+50N 9+25W 2 < 1 15												687	3	3.36	9 <	< 8	< 2					
STANDARD C3/AU-S 51 24 66 36 174 5.2 37 12 803 3.29 58 19 3 21 29 24 0.16 STANDARD G-2 1 1 5 3 42 3 6 4 524 1.86 2 8 2 4 68 <.2												564		2.8	5 <	8	< 2	6				
STANDARD G-2												1202	2	2.52 <	2 <	8	< 2	·				
L4+50N 9+00W 7 1 17 30 78 < 3 19 7 724 2.46 15 < 8 < 2 4 68 < 2 0.44 L4+50N 8+75W 1 1 18 23 64 0.3 17 6 203 2.63 11 < 8 < 2 3 19 < 2 0.08 L4+50N 8+50W 10 < 1 15 19 68 < 3 20 8 247 2.66 16 11 < 2 4 19 0.2 0.1 L4+50N 8+25W 4 1 19 22 72 < 3 21 8 237 2.96 20 < 8 < 2 3 13 0.5 0.06 L4+50N 8+00W 22 1 25 36 74 < 3 26 9 275 3.17 26 < 8 < 2 5 13 0.9 0.07 L4+50N 7+75W 8 1 29 34 78 < 3 30 10 272 3.29 27 < 8 < 2 6 10 0.7 0.07 L4+50N 7+25W 3 < 1 6 26 46 0.3 7 4 132 1.95 15 < 8 < 2 4 14 0.5 0.08 L4+50N 7+00W 9 1 11 20 53 < 3 14 5 136 3.29 22 < 8 < 2 4 10 5 0.08 L4+50N 6+50W 6 < 1 4 8 19 < 3 3 2 61 0.93 6 < 8 < 2 4 7 < 2 0.06 L4+50N 6+50W 6 < 1 19 27 65 < 3 23 8 253 2.56 11 < 8 < 2 4 10 0.3 0.06 L4+50N 5+75W 4 < 1 19 27 65 < 3 23 8 253 2.56 11 < 8 < 2 4 10 0.3 0.06 L4+50N 5+75W 7+75W 6 1 16 29 68 < 3 17 7 179 4.65 30 < 8 < 2 4 10 0.3 0.06 L4+50N 5+75W 6 1 16 29 68 < 3 17 7 179 4.65 30 < 8 < 2 5 6 10 0.8 0.08 L4+50N 5+75W 6 1 1 16 29 68 < 3 17 7 179 4.65 30 < 8 < 2 6 10 0.8 0.08 L4+50N 5+75W 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1											12	803	3	3.29	58	19	3				+ -	
L4+50N 8+75W 1 1 1 8 23 64 0.3 17 6 203 2.63 11 < 8 < 2 2 2 3 0.2 0.09 L4+50N 8+50W 10 < 1 15 19 68 < 3 20 8 247 2.66 16 11 < 2 4 19 0.2 0.1 L4+50N 8+25W 4 1 19 22 72 < 3 21 8 237 2.96 20 < 8 < 2 3 13 0.5 0.06 L4+50N 8+00W 22 1 25 36 74 < 3 26 9 275 3.17 26 < 8 < 2 5 13 0.9 0.07 L4+50N 7+5W 8 1 29 34 78 < 3 30 10 272 3.29 27 < 8 < 2 6 10 0.7 0.07 L4+50N 7+5W 3 < 1 6 26 46 0.3 7 4 132 1.95 15 < 8 < 2 4 14 0.5 0.08 L4+50N 7+00W 9 1 11 20 53 < 3 14 5 136 3.29 22 < 8 < 2 5 7 < 2 0.08 L4+50N 6+5W 6 < 1 4 8 19 < 3 3 2 61 0.93 22 < 8 < 2 5 7 < 2 0.06 L4+50N 6+5W 6 < 1 7 11 36 < 3 9 3 107 1.79 9 < 8 < 2 4 10 < 2 0.05 L4+50N 6+25W 2 < 1 7 18 45 < 3 10 4 134 2.14 6 8 8 < 2 5 6 6 < 2 0.05 L4+50N 5+5W 6 1 16 29 68 < 3 17 7 179 4.65 30 < 8 < 2 6 10 0.3 0.06 L4+50N 5+5W 4 < 1 29 29 77 < 3 28 12 678 2.57 14 < 8 < 2 6 10 0.3 0.06 L4+50N 5+5W 3 1 19 27 65 < 3 23 8 12 678 2.57 14 < 8 < 2 6 10 0.3 0.06 L4+50N 5+5W 4 < 1 19 27 65 < 3 23 8 253 2.56 11 < 8 < 2 4 10 0.3 0.06 L4+5ON 5+5W 5 1 18 16 30 < 3 7 3 166 1.22 9 8 < 2 5 6 10 0.3 0.06 L4+5ON 5+5W 5 1 19 27 65 < 3 28 12 678 2.57 14 < 8 < 2 6 10 0.3 0.06 L4+5ON 5+5W 5 1 19 27 65 < 3 23 8 253 2.56 11 < 8 < 2 6 10 0.3 0.06 L4+5ON 5+5W 5 1 19 27 65 < 3 28 12 678 2.57 14 < 8 < 2 6 19 0.4 0.07 L4+5ON 5+5W 5 1 19 17 33 31 111 < 8 < 2 7 10 68 8 < 2 7 10 0.05 L4+5ON 5+5W 5 1 21 13 73 < 3 28 12 678 2.57 14 < 8 < 2 6 19 0.4 0.07 L4+5ON 4+5W 5 1 21 13 73 < 3 29 12 467 2.99 9 8 < 2 5 10 0.3 0.07				_	<u> </u>				-			524	1	.86	2 <	8						
L4+50N 8+50W 10 < 1 15 19 68 < 3 20 8 247 2.66 16 11 < 2 4 19 0.2 0.1 L4+50N 8+25W 4 1 19 22 72 < 3										<u>i</u>		724	2	.46	15 <	8	< 2					
L4+50N 8+25W					_							203	2	.63	11 <	8 <	< 2		- -			
L4+50N 8+00W 22 1 25 72 3 21 8 237 2.96 20 8 <2 3 13 0.5 0.06 L4+50N 7+75W 8 1 29 34 78 3 30 10 272 3.29 27 8 <2					 -			i				247	2	.66	16	11 <	< 2					
L4+50N 7+75W 8 1 29 34 78 3 30 10 272 3.29 27 8 2 5 13 0.9 0.07 L4+50N 7+50W 12 1 18 19 70 3 21 9 291 2.94 19 8 2 6 10 0.7 0.07 L4+50N 7+25W 3 1 6 26 46 0.3 7 4 132 1.95 15 8 2 4 14 0.5 0.08 L4+50N 7+00W 9 1 11 20 53 3 14 5 136 3.29 22 8 2 4 9 2 0.08 L4+50N 6+75W 6 1 4 8 19 3 3 2 61 0.93 6 8 2 4 7 2 0.06 L4+50N 6+50W 6 1 7 18 45 3 10 4 134 2.14 6 8 2 4															20 <							
L4+50N 7+50W 12 1 18 19 70 3 21 9 291 2.94 19 8 2 6 10 0.7 0.07 L4+50N 7+25W 3 1 6 26 46 0.3 7 4 132 1.95 15 8 2 4 14 0.5 0.08 L4+50N 7+00W 9 1 11 20 53 3 14 5 136 3.29 22 8 2 4 9 2 0.08 L4+50N 6+75W 6 1 4 8 19 3 3 2 61 0.93 6 8 2 4 7 2 0.06 L4+50N 6+50W 6 1 7 11 36 3 9 3 107 1.79 9 8 2 4 10 2 0.05 L4+50N 6+00W 2 1 7 18 45 3 10 4 134 2.14 6 8 2 5											~ ~~ -		3.	.17	26 <	_						
L4+50N 7+25W 3 < 1							- }						3.	29	27 <						_	
L4+50N 7+00W 9 1 11 20 53 < 3 14 5 136 3.29 22 < 8 < 2 4 9 < 2 0.08 L4+50N 6+75W 6 < 1 4 8 19 < 3 3 2 61 0.93 6 < 8 < 2 4 7 < 2 0.06 L4+50N 6+50W 6 < 1 7 11 36 < 3 9 3 107 1.79 9 < 8 < 2 4 10 < 2 0.05 L4+50N 6+25W 2 < 1 7 18 45 < 3 10 4 134 2.14 6 < 8 < 2 5 6 < 2 0.05 L4+50N 6+00W 2 < 1 19 27 65 < 3 23 8 253 2.56 11 < 8 < 2 4 10 < 2 0.05 L4+50N 5+75W 6 1 16 29 68 < 3 17 7 179 4.65 30 < 8 < 2 4 10 0.3 0.06 L4+50N 5+50W 240 1 8 16 30 < 3 7 3 166 1.22 9 < 8 < 2 3 7 < 2 0.05 L4+50N 5+25W 4 < 1 29 29 77 < 3 28 12 678 2.57 14 < 8 < 2 6 19 0.4 0.07 L4+50N 4+75W 14 1 19 14 63 < 3 24 9 698 2.69 10 < 8 < 2 11 17 0.7 0.09 L4+50N 4+50W 4+25W 6 1 16 13 64 < 3 22 10 357 3.68 0 9 < 8 < 2 5 10 0.3 0.07													2.									1
L4+50N 6+75W 6 < 1													_1.	95	15 <						 	
L4+50N 6+50W 6 < 1 7 11 36 < 3 9 3 107 1.79 9 < 8 < 2 4 7 < 2 0.05 L4+50N 6+25W 2 < 1 7 18 45 < 3 10 4 134 2.14 6 < 8 < 2 5 6 < 2 0.05 L4+50N 6+00W 2 < 1 19 27 65 < 3 23 8 253 2.56 11 < 8 < 2 4 10 0.3 0.06 L4+50N 5+75W 6 1 16 29 68 < 3 17 7 179 4.65 30 < 8 < 2 4 10 0.3 0.06 L4+50N 5+50W 240 1 8 16 30 < 3 7 3 166 1.22 9 < 8 < 2 3 7 < 2 0.05 L4+50N 5+25W 4 < 1 29 29 77 < 3 28 12 678 2.57 14 < 8 < 2 6 19 0.4 0.07 L4+50N 5+00W 3 1 35 31 111 < 3 49 24 278 3.77 15 < 8 < 2 11 17 0.7 0.09 L4+50N 4+50W 4+50W 5 1 21 13 73 < 3 29 12 467 2.99 9 < 8 < 2 5 10 0.3 0.07					_		 -					136	3.	29	22 <							
L4+50N 6+25W													0.	93	6 <	+	<u> </u>					\$
L4+50N 6+00W													1.	79				 -	~;			
L4+50N 5+75W 6 1 16 29 68 < .3 17 7 179 4.65 30 < 8 < 2 4 10 0.3 0.06 -4+50N 5+50W 240 1 8 16 30 < .3 7 3 166 1.22 9 < 8 < 2 6 10 0.8 0.08 -4+50N 5+25W 4 < 1 29 29 77 < .3 28 12 678 2.57 14 < 8 < 2 6 19 0.4 0.07 -4+50N 4+75W 14 1 19 14 63 < .3 24 9 698 2.69 10 < 8 < 2 3 7 0.4 0.08 -4+50N 4+50W 4-50W 5 1 21 13 73 < .3 29 12 467 2.99 9 < 8 < 2 5 10 0.3 0.07													2.	14	6 <	~ ~ +						
4+50N 5+50W 240 1 8 16 30 < 3 7 3 166 1.22 9 < 8 < 2 6 10 0.8 0.08 4+50N 5+25W 4 < 1 29 29 77 < 3 28 12 678 2.57 14 < 8 < 2 6 19 0.4 0.07 4+50N 4+75W 14 1 19 14 63 < 3 24 9 698 2.69 10 < 8 < 2 3 7 0.4 0.08 4+50N 4+25W 6 1 16 13 64 < 3 22 10 357 368 9 9 < 8 < 2 5 10 0.3 0.07						-+					8	253	2.	56					•			
4+50N 5+25W 4 < 1					·				i				4.6					-				 ∤
4 < 1 29 29 77 < 3 28 12 678 2.57 14 < 8 < 2 6 19 0.4 0.07 4+50N 5+00W 3 1 35 31 111 < 3 49 24 278 3.77 15 < 8 < 2 11 17 0.7 0.09 4+50N 4+50W 4+50W 5 1 21 13 73 < 3 29 12 467 2.99 9 < 8 < 2 5 10 0.3 0.07												166	1.2									
4+50N 4+75W													2.5	57 1	4 < 8							- -
4+50N 4+50W						~ }~~ ~~					24	278	3.7									
4+50N 4+25W 6 1 16 13 64 < 3 22 10 357 3 69 0 40 6 1 0 0.3 0.07					ř	~						398	2.6		· — +			-				—.i
0 1 10 13 64 < 3 22 10 357 269 0 0						·					~	467	2.9	9	9 < 8					 -	-	
			0		16	<u>) 1</u>	১ 6	4 <	.3 :	22 1	0 3	357	2.6	8	9 < 8					1-		[

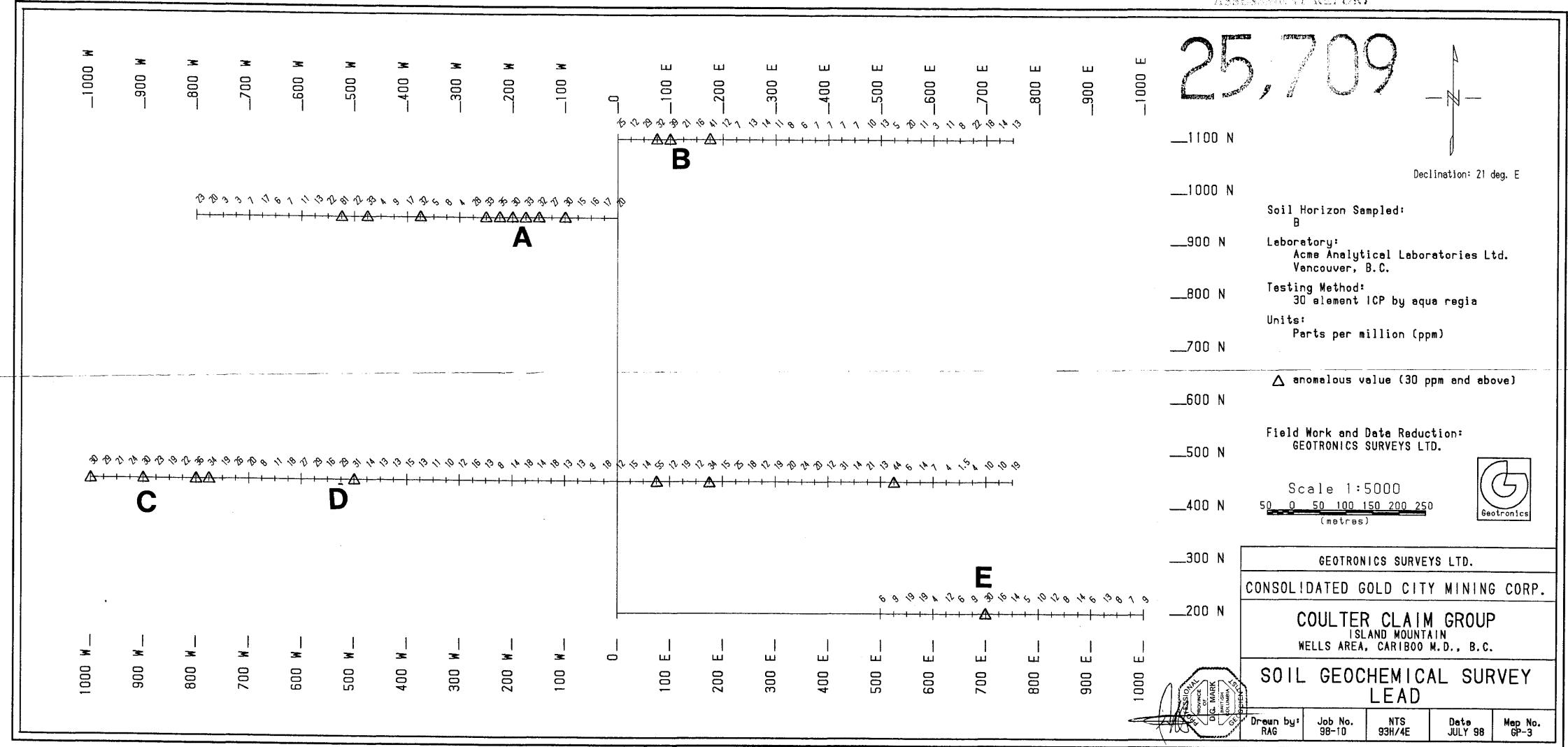
ELEMENT	Au		Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	C 4	· ·
L4+50N 4+00W		5	1: 15	15	55	< .3	18	7	246	· 		< 8	4 u	·		Cd	K
RE L4+50N 4+00W	9	9	1 16	16	53	0.5		7	232	2.54	7	< 8		6	ļ		0.06
L4+50N 3+75W	28	3	1 19	13	58	< .3	24	8	308			< 8	2	<u> </u>	7	<u> </u>	0.06
L4+50N 3+50W	14	4 < 1	18		63		21	8	252	3.08	11		< 2	4	12	·	0.08
L4+50N 3+25W	4	1 < 1	·		44	< .3	14	5	183	2.14		L 	< 2	5	7	0.6	0.06
L4+50N 3+00W	3			12	49	< .3	14	5	182	2.14	7	<u>< 8</u>	< 2	6	7	< 2	0.06
L4+50N 2+75W	12		1 18	16	65	< .3	21	7	182	·	6	10		6	7	< .2	0.05
L4+50N 2+50W	7		12	13	- 1	< .3	16	7	161	3.07		< 8	< 2	7	6	0.4	0.06
L4+50N 2+25W	7			8		< .3	5	2		3.02		< 8	< 2	6	8	0.3	0.06
L4+50N 2+00W	10		13	14		< .3	17	7	83	0.95		< 8	< 2	5	5	< .2	0.05
L4+50N 1+75W	17			18		< .3	27		142	2.77		< 8	< 2	6	_ 5	0.2	0.05
L4+50N 1+50W	3			14	59	0.9		11	265	3.05	13		< 2	6	12	0.3	0.07
L4+50N 1+25W	18		·				24	8	232	2.82		< 8	< 2	4	17	0.3	0.08
L4+50N 1+00W		+		18		< .3	29	10	311	3.2		< 8	< 2	6	10	0.4	0.06
L4+50N 0+75W	11	1		13		< .3	_22	8	215	2.86	10	< 8	< 2	6	8	0.2	0.06
	13			13		< .3	24	9	294	2.77	10 -	< 8	< 2	6	8	0.3	0.06
STANDARD C3/AU-S STANDARD G-2	·	24		34	175	5.1	39	13	802	3.36	57	15	3	21	29	24	0.16
	1	1		5		< .3	5	4	557	2.03 <	< 2 <	< 8 ·	< 2	4		< 2	0.46
L4+50N 0+50W	5	1	·	9		< .3	14	_ 5	148	1.93	7 <	8	< 2	5	8	0.2	0.06
L4+50N 0+25W	5	1		18		< .3	26	11	319	3.15	10 <		< 2	7	10	0.5	0.00
L4+50N 0+00		< 1	15	12	63 <	< .3	19	7	192	2.72	8 <		< 2	5		< .2	0.05
_4+50N 0+25E	5	1	15	15	71 <	3.3	17	6	160	3.02			<u>-</u>	6	6		
_4+50 N 0+50E	2	< 1	14	14	72 <	:.3	22	8	220	2.92	10 <		2	7			0.05
_4+50 N 0+75E	3	< 1	20	55	147 <	: .3	27	9		3.12			2	8	7		0.05
4+50N 1+00E	6	1	10	12	45 <	.3	11	4	130	1.87	10 <		2				0.05
.4+50N 1+25E	2	< 1	16	19	68 <	.3	18	8		3.32			2	6			0.05
.4+50N 1+50E	1	1	10	12	48 <	3	9		281	1.8			2	6			0.04
4+50N 1+75E	5	1	21	34		.3	24			2.62			<u></u>	5			0.06
RE L4+50N 1+75E	0	1	20	33			23			2.73	— - -		2	7			0.05
4+50N 2+00E	3	1	12	15		.3	13		144		18 <		2	7			0.05
4.500.0		< 1		25		.3	9			2 27	12 <		2	5		.2 (0.06
4+50N 2+50E		< 1	h	18	· [· · · · -	.3	8				28 <		2			.2 (0.06
4+50N 2+75E	5	1	!	12		.3	8		339		18 <		2	7	5 <	.2 (0.12
4+50N 3+00E	20	1		19	60 <						15 <		2	5	6 <	.2 (0.04
4+50N 3+25E	6	1			F		15		132		13 <	— i—	2	_7	8	0.2	0.06
4+50N 3+50E					57 <		16				11 <	~	2	7	6 (0.2	0.06
4+50N 3+75E	21	1			60 <					2.96	8 <		2	7	9 <		0.05
4+50N 4+00E	5 <			A.	61 <		21				17 <	8 <	2	8	6 <		.05
1+50N 4+25E		: 1			51 <	• •					22 < 3	8 <	2	5	4 <		.04
1+50N 4+50E	15	1			80 <_			5 1	79 2	2.47	8 < 8	3 <	2	8			07
	2 <				45 <	~~~	11	4 1	02 2	2.16	13 < 8	3 <	2	8	4 <		.06
1+50N 4+75E	2 <				26 < _			3	79	1.3	8 < 8			8	4 <		.04
1+50N 5+00E	3	1			64 < .		7 1	3 2	49 4	.32	16 < 8			5			.05
I+50N 5+25E	1	_1			52 < .	3 1	7	5	96 2		20 < 8				5 < .	·	.03
I+50N 5+50E	1 <		4	6	18 < .	3	3				6 < 8			•	3 < .	·	
+50N 5+75E	6 <	1	13 1	4 5	53 < .	3 1					7 < 8			 -			.03
+50N 6+00E	6 <	1			22 < .	_					5 < 8				4 < .		.05
+50N 6+25E	3 <	1			8 < .						9 < 8				6 < .		.04
+50N 6+50E	28 <		3 < 3	j	0 < .						5 < 8				3 < .	· Ļ	05
	25	1			21 < 3						5 < 8			**	2 0 3 < .:		02 04


ELEMENT	Au	* Mo	Cu	Pb	Zn	Ag	Ni	Со	Mn	TE-	1.	T	- p				
L4+50N 7+25E	1	0 < 1	6	ł		< .3				Fe	As	U	Au	Th	Sr	Cd	K
L4+50N 7+50E		2 < 1	8	19		< .3		3				< 8	< 2	7	L	< .2	0.04
L2N 5+00E		4 < 1	4	6		< .3	6					< 8	< 2	10		< .2	0.04
STANDARD C3/AU-S	5	25		33		5.1	35					< 8	< 2	6	<u> </u>		0.04
STANDARD G-2	< 1	1		4	42	< .3	5	3			L		-	21	30		0.17
L2N 5+25E	-	1 < 1	9	9	43	< .3	16	5				< 8	< 2	4			0.46
L2N 5+50E	2	1	17	19		< .3	25	9		2.18	8	< 8	< 2	7	6	0.2	0.04
L2N 5+75E	$-\epsilon$	1	21	19	61	< .3	28	8	186	2.99		< 8	< 2	12	4		0.04
L2N 6+00E	1	1	5	4		< .3	6	2	172	3.5		< 8	< 2	10	5	< .2	0.04
L2N 6+25E	6	1	12	12		< .3	17	6	58 120	1.43		< 8	< 2	8	4	< .2	0.04
RE L2N 7+25E	С	2	21	18		< .3	33	10	194	2.63		<u>< 8</u>	< 2	11		< .2	0.04
L2N 6+50E	23	< 1	2	6		< .3	4	10	51	4.13		< 8	< 2	9	8	0.2	0.04
L2N 6+75E	26	1	6	9		< .3	-8	'	86			<u>< 8</u>	< 2	6		< .2	0.03
L2N 7+00E	6	< 1	27	30		< .3	31	12	388	1.17		< 8	< 2	4	6	0.2	0.04
L2N 7+25E	31	1	22	16		< .3	29	10	192	3.24	18		< 2	8	15	0.3	0.04
L2N 7+50E	3	1	9	14		< .3	13	4		4.08	 -	< 8	< 2	10		< .2	0.04
L2N 7+75E	19	<1	5	5		< .3	6	3	148 73	2.57		< 8	< 2	6	6	0.4	0.04
L2N 8+00E	7	1	11	10		< .3	11	4	110	1.13		< 8	< 2	4	_5	< .2	0.03
L2N 8+25E	11	1	10	12		< .3	15	5	128	1.91		< 8	< 2	6	4	0.2	0.03
L2N 8+50E	30	1	9	8		< .3	5	3	199	2.75	18		< 2	6	6	0.2	0.04
L2N 8+75E	54	1	10	14		: 3	13	5	141	1.29			< 2	6	5	0.4	0.05
L2N 9+00E	5	< 1	2	6		.3	3	1	60	1.98 0.64			< 2	6	·· {-	< .2	0.04
L2N 9+25E	2	< 1	2	13		3	7	3	119				< 2	5		< .2	0.04
L2N 9+50E	7	< 1	7	8		3	8	4	106	1.03 <			< 2	4		< .2	0.04
L2N 9+75E	4	1	9	7		.3	8	3	100	1.93			< 2	_8_	 -	2.2	0.05
L2N 10+00E	12	1	11	9		0.3	12	3	242	2.11			< 2	6			0.04
STANDARD C3/AU-S	52	24				4.9	35	12		1.96		_	< 2	5			0.04
STANDARD G-2	1	1		3		.3	6	4	786 529	3.3	53	19	3		28		0.16
				-	1011	.5	<u> </u>	4	529	1.93 <	2 <	8	< 2	4	68 <	.2	0.45


	-												J			
ELEMENT	SI	b B	i V		Ca	Р										
SAMPLES		om p				%	L		Cr	Mg	Ba	Ti	В	Al	Na	W
L11N 0+00	<			24	0.09				ppm		ppm		ppn		%	ppm
L11N 0+25E	<			18	0.08			20	14	0.17				0.81		1 < 2
L11N 0+50E	<			24	0.24			22 23	9	0.15			< 3	0.69		< 2
L11N 0+75E	< :			30	0.23			23 38	14	0.29			1.	0.86		
L11N 1+00E	- <;			32	0.28	-		45	23	0.4			< 3	1.32		
L11N 1+25E	<:		—— — .	27	0.26			+5 16	30	0.45		0.04	.1.	1.53		1 < 2
L11N 1+50E	< 3			25	0.15	0.0		33	26	0.51		0.03	·	1.43		1 < 2
L11N 1+75E	< 3			30	0.09	0.0	 -	24	25	0.6		0.02		1.63		< 2
_11N 2+00E	<3			27	0.08	0.05		24	23	0.56		0.02	f	1.74	< .01	< 2
11N 2+25E		3 < 3		21	0.05	0.03		6	12	0.2		0.03	 	0.91	< .01	< 2
11N 2+50E	< 3			7	0.05	0.026	~ -		12	0.21	-	0.02	4	0.9		< 2
11N 2+75E	< 3			22	0.03	0.020		4	8	0.13	+	0.05		0.66		< 2
11N 3+00E	< 3				0.04	0.039		3	6	0.13		0.07	 ,	0.72	< .01	< 2
.11N 3+25E	< 3				0.02	0.05		3	15	0.24		0.03	3	1.17		< 2
.11N 3+50E	< 3				0.02	0.029			8	0.09		0.02		0.84		< 2
11N 3+75E	< 3				0.06	0.023				0.14	45	0.02		0.68	0.01	
11N 4+00E	< 3				0.03	0.045	 _			0.11	55	0.03			< .01	< 2
11N 4+25E	< 3			<u> </u>	0.04	0.036				0.18	37	0.03		0.95		< 2
11N 4+50E	< 3			~ - 	0.04	0.030			7	0.1	22	0.02		0.74		< 2
E L11N 6+00E	< 3				0.03	0.021				80.0	37	0.02		0.78		< 2
11N 4+75E	< 3	< 3			0.04	0.059				0.06	47	0.01		0.69		< 2
11N 5+00E	< 3	< 3	 -		0.07	0.039				0.13	42	0.02		0.79		< 2
11N 5+25E	< 3	< 3			0.07	0.033	2			0.17	65	0.03		0.8		< 2
11N 5+50E	< 3	< 3			0.35	0.045				0.09	36	- H-1	< 3	0.5		< 2
11N 5+75E	< 3	< 3			0.03	0.022	13			0.22		0.07		1.07		< 2
11N 6+00E	< 3	< 3			0.04	0.009	14	-		0.12		0.04				< 2
11N 6+25E	< 3	< 3	24			0.025	37		·	0.08		0.02		0.79		< 2
11N 6+50E	< 3	< 3	12			0.025	20			0.00		0.03		0.8	·	< 2
1N 6+75E	< 3	< 3	31			0.103	18		—- -	0.36		0.02		0.74 <		< 2
1N 7+00E	< 3	< 3	31		***************************************	0.054	25		7	0.3		0.04		1.66 <		< 2
1N 7+25E	< 3	< 3				0.026	23					0.04 <		1.29 <		< 2
1N 7+50E	< 3	< 3	27	_		0.044	_23 _24	1	4	0.14		0.09		0.69 <		< 2
+50N 8+00W	< 3	< 3	37	+	0.07	0.07	21	-		0.2		0.03 <		0.76		< 2
+50N 7+75W	< 3	< 3	21			0.064	35	· 				0.03 <		0.91 <		< 2
+50N 7+50W	< 3	< 3	8	f		0.012	31	·		.16		0.01 <).96 <	——————————————————————————————————————	< 2
ANDARD C3/AU-S	14	19	75	 -	~~~~~~	0.081	18				·	.01 <).62 <		< 2
	< 3	< 3	39	ļ		0.094	8	7				0.08		.83	0.04	16
		< 3	19			0.017	31			.03		0.13 <			0.07	2
		< 3	13	70140-	—	0.016	46			.03				95 <		2
	< 3	< 3	23			0.051	30			.02				.95 <		2
	< 3	< 3	15		•	0.019	31			.00		0.02 <		.68 <		2
		< 3	21			0.024	35			02		0.01 <		.53 <		2
							-	•	J U.	UZ	12 0).01 <	ა ∃ 0	.68 <	(11) <	2
	< 3 -	< 3	30	0.	09i d	0.033	27	10	1 0	NΩ	62 0					
		< 3 < 3	30 36	~	•••	0.033	27 28	1(08 05		0.02 <	3 0	.79 < .54 <	.01 <	2


ELEMENT	S	b E	3i V	Ca	-			_	T=	,	<u>, , , , , , , , , , , , , , , , , , , </u>			_		
L9+50N 5+25W							.a	Cr	Mg	Ba	Ti	В	Ai	Na	1	W
L9+50N 5+00W							36	16			0.0	1 < ;	3 1.2	7 < .0	1 <	< 2
L9+50N 4+75W							19	24	0.4	8 6	2 0.0	6 < 3	3 1.3	4 0.	01 <	< 2
L9+50N 4+50W				22 0.		01	31	6	0.0	5 6	4 0.0	3 < 3	3 0.4	3 < .0	1 <	< 2
L9+50N 4+25W			3	8 0.0			33	2	0.0	1	7 < .0	1 < 3		4 < 0		< 2
L9+50N 4+00W				12 0.0			58	8	0.14	4 2	1 < .0	< 3		3 < .0		· <u>2</u> · 2
				24 0.0		27	40	9	0.07	7 2				1 < .0		2
RE L9+50N 4+00\		3 <		23 0.0		27	38	8	0.07	7 2				< .0	·	: 2
L9+50N 3+75W		3		3 0.0		45	52	24	0.49	3 1				3 < .0		2
L9+50N 3+50W	<			6 0.0			44	2	0.01	1	7 < .01			< .0		2
L9+50N 3+25W	<			5 0.0		24	43	4	0.02	2 16		1 < 3		0. >		2
L9+50N 3+00W	<			2 0.0	1 0.01	16	32	3	0.01	_ 	·		_	< .01		2
L9+50N 2+75W	<			1 0.	1 0.03	36	19	27	0.33			< 3		·		2
L9+50N 2+50W	<				8 0.06	31 4	43	32	0.46	+		< 3				2
L9+50N 2+25W	<			7 0.2	6 0.04	17 :	37	31	0.44			< 3				
L9+50N 2+00W	< :			4 0.6	2 0.05	6 3	35	29	0.41		+	< 3	1.57	0.0		
L9+50N 1+75W	< :		3 3	1 0.5	7 0.04	4 2	26	22	0.35			< 3	1.22			2
L9+50N 1+50W	_ <:	3 < :	3 3	5 0.1	0.05		54	30	0.4			< 3	1.68	< .01		
L9+50N 1+25W	< ;	3 < 3	3 3	2 0.39	0.03		31	20	0.31	109				0.0		
L9+50N 1+00W	< 3	3 < 3	3 3	0.52	0.04		52		0.45		0.04		1.21		1 <	
L9+50N 0+75W	<3	3 < 3	3 35	0.30		~	22		0.16				1.77	0.0		
L9+50N 0+50W	< 3	3 < 3	3 30	0.2					0.38			"	0.82	< .01	_ < ;	J
L9+50N 0+25W	< 3	< 3	30	0.11					0.44	114	0.02			< .01	< :	
L9+50N 0+00	< 3	< 3	29	0.11					0.33	97	0.03	3	1.59	0.0	·—	
L4+50N 10+00W	< 3	< 3	30	0.52					0.43	73	0.02	L		< .01	< 2	~l
L4+50N 9+75W	< 3	< 3	34	0.44					0.47	85	0.02			< .01	< 2	
L4+50N 9+50W	< 3	< 3	27	0.38		- +			0.43	97		3		0.0		
L4+50N 9+25W	< 3	< 3	36						0.43	199	0.03		1.55	0.01		
STANDARD C3/AU	-S 1	5 19	80	+				72	0.6	156	0.02		1.53	0.01		
STANDARD G-2	< 3	< 3	38						0.56	212	0.09	19	1.92	0.04		8
L4+50N 9+00W	< 3	< 3	40						0.34	170	0.12		0.93	0.06		2
L4+50N 8+75W	< 3	3	44	 	0.058				0.34	113	0.05		1.33	0.01	··· j	f
L4+50N 8+50W	< 3	< 3	32	0.29	0.041				0.44	85	0.05		1.33	0.01		
L4+50N 8+25W	< 3	< 3	41	0.24	0.051				0.43	107		< 3	1.24	0.01		
L4+50N 8+00W	< 3	6	41			+			0.43	98		< 3	1.38	0.01	·	
L4+50N 7+75W	< 3	< 3	42).49		0.06		1.29	0.01	·	
L4+50N 7+50W	< 3	< 3	41).44	91	0.06		1.44 <		< 2	F
L4+50N 7+25W	< 3	< 3	37	0.17	0.054).24	100	0.06		1.28	0.01		!
L4+50N 7+00W	< 3	5	·	0.13	0.06					143	0.04		0.9 <		< 2	
L4+50N 6+75W	< 3	< 3	20		0.034	+			0.3	72	0.06		1.19 <		< 2	ŧ
L4+50N 6+50W	< 3	< 3	30	0.15	0.072	26	- {).11	41	0.02		0.65 <	-	< 2	
L4+50N 6+25W	< 3	< 3	27	0.09	0.052	23	~}~~~		.24		0.03		0.86 <		< 2	_]
L4+50N 6+00W	< 3	< 3	35	0.13	0.053	19			.27		0.02 <		1.05 <		< 2	
L4+50N 5+75W	< 3	< 3	39	0.17	0.141				.39		0.04 <		1.39 <		< 2	
L4+50N 5+50W	< 3	< 3	19	0.09	0.141	21 24			.33		0.03 <		1.61 <	(< 2	
L4+50N 5+25W	3	< 3	25	0.03	0.045		J				0.01 <		0.81 <	[< 2	
L4+50N 5+00W	< 3	< 3	19	0.27	0.078	24	 		.34		0.06		0.85 <		< 2	
L4+50N 4+75W	< 3	< 3	41	0.15		34	ļ		.47		0.03 <		1.26 <	*	< 2	
L4+50N 4+50W	< 3	< 3	39	0.13	0.05	29	28				0.04 <		1.39 <	<u>-</u>	< 2	
L4+50N 4+25W	- 	< 3	38	0.2		32	30				0.04 <		1.43 <		< 2]
	<u> </u>		<u> </u>	0.2	0.05	29	_28	o	46 1	28	0.03 <	3	1.35 <	.01	< 2]


ELEMENT	6	<u> </u>	- 1.		7												
L4+50N 4+00W	S						La	Cr	Mg	Ba	Ti	E	3 A	Į.	Na	W	_
RE L4+50N 4+00V		3 <	- <u>-</u>	37 0.		059	31	24	1 0.4	3 8	2 0.	04 <		1.22	< .01	< 2	
L4+50N 3+75W	·	3 <		36 0.		058	30	22	0.4	1 8	3 0.	04 <			< .01		
	<			37 0.:		046	27	26	0.4	2 14				.34	·	< 2	
L4+50N 3+50W	<	-		41 O.		061	28	27	0.4	7 12				.34		< 2	
L4+50N 3+25W		3 <		36 0.1	15 0.0	043	32	20	0.3					.98		< 2	
L4+50N 3+00W	<			35 0.1	16 0.0)57	29	19						.06			
L4+50N 2+75W	<		3 3	8 0.1	2 0.0	065	35									< 2	
L4+50N 2+50W	_ < :	3	4 4	0.1	6 0.0)72	31	26)2 <			< .01	< 2	
L4+50N 2+25W	_ <:	3 < 3	3 2	3 0		24	29	9							< .01	< 2	1
L4+50N 2+00W	< ;	3 < 3	3 3	6 0.1			32	24							< .01	< 2	
L4+50N 1+75W	<:	3 < 3	3 3	5 0.2			30	26	h						< .01	< 2	
L4+50N 1+50W	< 3	3 < 3		3 0.2			40	23				3 <			< .01	< 2	
L4+50N 1+25W	< 3			9 0.2			30		ļ				-		< .01	< 2	
L4+50N 1+00W	< 3					·		28	0.5						< .01	< 2	
L4+50N 0+75W	< 3						31	22	0.45						< .01	< 2	
STANDARD C3/AU							27	27	0.44				3 1.	28 ·	< .01	< 2	٦
STANDARD G-2	< 3				·	09	18	174	0.61			9 1	8 1.	89	0.04	15	5
L4+50N 0+50W	< 3						8	79	0.6			3 < 3	3 0.	98	0.07	2	2
L4+50N 0+25W	< 3						26	16	0.27	78	0.0	3 < 3	3 0.	86	0.01		1
L4+50N 0+00	< 3		4 3				32	30	0.54	121	0.0	4 < 3	3 1.	45	0.01	< 2	1
L4+50N 0+25E							28	25	0.35	146	0.0	2 < 3	3 1.3	33	0.01	< 2	1
L4+50N 0+50E	< 3						30	21	0.29	84	0.0	2			.01	< 2	1
L4+50N 0+75E	< 3	- f			- -	47	28	29	0.52	107	0.04				0.01	< 2	-
	< 3					37	31	21	0.34	68	 				0.01	< 2	-
L4+50N 1+00E	< 3	5			0.0)3	30	14	0.19	70	·	2 < 3			0.01	<2	1
L4+50N 1+25E	< 3	< 3	41		0.04	17	28	27	0.37	92	0.02				.01	<u> </u>	1
L4+50N 1+50E	< 3	< 3	33		0.03	32	30	12	0.18	131	0.02					< 2	1
L4+50N 1+75E	< 3	3	21	0.08	0.04	5	29	17	0.28	60	0.01)3 <			1
RE L4+50N 1+75E	< 3	< 3	_ 22	0.08	0.04	7	31	18	0.29	71	0.01			9 <		< 2	ł
L4+50N 2+00E	< 3	3	25	0.07	0.04	9	26	14	0.19	63	0.02		0.8	~		< 2	1
L4+50N 2+25E	< 3	< 3	23	0.05	0.12		29	11	0.1	83	0.02					< 2	
L4+50N 2+50E	< 3	4	25	0.08			25		0.09	95	0.01	< 3		9 <		< 2	
L4+50N 2+75E	< 3	4	30	0.07	0.02		29		0.09	42	0.01	·	1.1	— 	——————————————————————————————————————	< 2	
L4+50N 3+00E	< 3	< 3	40	0.12	0.05				0.25			< 3	0.6			< 2	l
L4+50N 3+25E	< 3	3	42	0.13						122	0.02		1.1			< 2	ļ.
L4+50N 3+50E	< 3	< 3	23	0.1		i			0.23	92	0.02		·	5 <		< 2	
L4+50N 3+75E	< 3	< 3	15	0.05	0.04	·			0.23	66	0.01	< 3	1.2	2 <	.01 <	< 2	
L4+50N 4+00E	< 3	< 3	18		0.04	+~		12	0.1		< .01	4	0.9	4 <	.01 <	٤2	
L4+50N 4+25E	< 3	3	18	0.03					0.08	62	0.01		0.9	B (0.01 <	2	
L4+50N 4+50E	< 3	< 3	17		0.046	····/		11	0.1	65	0.01	< 3	0.9	9 <	.01 <	2	
L4+50N 4+75E		< 3	14	0.07	0.034		32		0.08	25		< 3	0.8	1 (0.01 <	2	
L4+50N 5+00E	+	< 3		0.04	0.022		32		0.03	38	< .01	< 3	0.71	< .	01 <	2	
L4+50N 5+25E			24	0.05	0.078			18 (0.13	32	0.01	< 3	0.9) < .	01 <	2	
L4+50N 5+50E	·	< 3	17	0.05	0.034	-	24	6 (0.05	29	0.01	3	0.57		··	2	
L4+50N 5+75E	< 3	3	15	0.04	0.014		34	4 (0.03	44	0.01		0.55			2	
	·	< 3	18	0.05	0.034	3	2	11 ().15		0.01		0.95			2	
L4+50N 6+00E	< 3	4	12	0.05	0.022	2	6	4 0	0.03	31 <		3	0.57	- 		2	
L4+50N 6+25E	< 3	4	11	0.05	0.016	2	9		0.02		.01		0.49	··		2	
L4+50N 6+50E	< 3	3	·	0.02	0.014	2	9		.01	24 <		4	·	< (2	
L4+50N 6+75E		< 3	13	0.04	0.019				.03	27 <	·	< 3	0.61			·	
_4+50 N 7+00E	< 3	< 3	11	0.06	0.041	4			.06	43 <		< 3			0.01 <		
									<u> </u>		.51	- 0	0.0	< .(01 <	<u> </u>	


ELEMENT	Sb	Bi	V	Ca	Р	La	Cr	Mg	Ва	Ti		Tax -	T	
L4+50N 7+25E	< 3	< 3	10		0.025	31	4				В	Al	Na	W
L4+50N 7+50E	< 3	3		0.01	0.017	31				< .01	< 3			< 2
L2N 5+00E	< 3				0.014	36				< .01	< 3	0.00	-	< 2
STANDARD C3/AU-S	3 1	5 22	81	0.56	0.092	18		0.17			< 3	0.9		< 2
STANDARD G-2	< 3		39	0.61	0.093	7	76	0.58		0.09			<u> </u>	
L2N 5+25E	< 3	< 3	23	0.09	0.022	29	18	0.30		0.13		0.97		
L2N 5+50E	< 3	< 3	18	0.04	0.025	47	19	0.51	95	0.01		1,17	< .01	< 2
L2N 5+75E	< 3	< 3	25	0.08	0.027	35	22	0.37	 	< .01	< 3	1.52		< 2
L2N 6+00E	< 3	< 3	12	0.04	0.021	50	6	0.37	·	0.01		1.33		< 2
L2N 6+25E	< 3	< 3	18	0.04	0.034	43	12	0.15		< .01	< 3	0.84	ļ	< 2
RE L2N 7+25E	< 3	< 3	24	0.11	0.057	27	26	0.27	27	0.01	< 3	d		< 2
L2N 6+50E	< 3	< 3	11	0.04	0.012	35	4	0.47	75	0.01	< 3	1.62	< .01	< 2
L2N 6+75E	< 3	< 3	23	0.1	0.032	25	9	0.03	40	0.01			< .01	< 2
L2N 7+00E	< 3	< 3	16	0.18	0.035	30	16	0.13	54	0.01	< 3	·	< .01	< 2
L2N 7+25E	< 3	< 3	24	0.11	0.055	27	26	0.46	50				< .01	< 2
L2N 7+50E	< 3	< 3	20	0.05	0.039	32	14	0.46	77	0.01	< 3		< .01	< 2
L2N 7+75E	< 3	< 3	20	0.05	0.024	28	7		34	0.01		1.16		< 2
L2N 8+00E	< 3	< 3	23	0.07	0.029	27	12	0.13	31		< 3		< .01	< 2
L2N 8+25E	< 3	< 3	42	0.14	0.032	24		0.21	34	0.01		1.02		< 2
L2N 8+50E	< 3	< 3	27	0.08	0.022	29		0.25	102	0.04	3		< .01	< 2
L2N 8+75E	< 3	3	27		0.043	24			105		< 3		< .01	< 2
L2N 9+00E	< 3	< 3			0.013	25		0.25	39	0.03			< .01	< 2
L2N 9+25E	< 3	< 3			0.019	21		0.09		<u>_</u>	< 3	0.58		< 2
L2N 9+50E	< 3	< 3			0.033	27		0.18			< 3		< .01	< 2
L2N 9+75E	< 3	< 3	17		0.036	28		0.17			< 3	0.94		< 2
		< 3	14		0.030	27		0.29			< 3	0.94		< 2
STANDARD C3/AU-S	15	22			0.042			0.24				0.89		< 2
	< 3			0.59	0.003	7				0.09	18	1.88	0.04	16
				0.00	0.03	/	74	0.56	218	0.12 <	3	0.96	0.07	2

