N ^{A15}	E LIERES BRANCH
1 Kt	
LI	
File	VANGOUVER, B.C.

Geophysical and Geochemical Report Doe-Ray Mineral Claims

NTS 82F/10W

UTM Zone 11 Easting: 509000 - 516000 UTM Zone 11 Northing: 5496000 - 5514000

For: Klondike Gold Corp. 1000 - 675 W.Hastings St., Vancouver, B.C. V6B 1N2

By; G.M.Rodgers, P.Eng. P.O. Box 63, Skookumchuck, B.C. V0B 2E0

Oct.26, 1998

GEOLOGICAL SURVEY BRANCH ASSESSMENT DEPORT

Table of Contents

(i)	summary			
1.0 Introdu		Page		
	1.1 Location and Access			1
	1.2 Claim Status			1
	1.3 History			1
	1.4 Objectives of exploration	n prog	ram	1
2.0 Geolog	Ŋ			
-	2.1 Regional Geology			5
	2.2 Property Geology	•		5
3.0 Geoche	emistry			
	3.1 Soil sampling program a	ind res	ults.	5
4.0 Gravity	Survey			6
5.0 Conclu	sions and Recommendations			38
6.0 Statem	ent of Qualifications			38
7.0 Statem	ent of Costs			39
Fig.1 (Lo	cation Map) (1:1,000,000)			2
Fig.2 (Cl	aim Map) (1:31,680)			3
Fig.3 (Ge	meral Geology) (1:250,000)	-		4
Fig.4A (Gr	avity plot with Pb Geochemistry	<i>i</i>)		In pocket
Fig.4B (Gr	avity Plot with Zn Geochemistry	1)	•	In pocket

.

1.0 INTRODUCTION

1.1 Location and Access

The property covers the Crawford Bay Peninsula as well as the area near the mouth of Sherredon Creek located 3-8km south of Riondel, B.C.. Access is via good paved roads from Creston, B.C. or via ferry from Nelson, B.C.

1.2 Claim Status

The property consists of 57 units in two blocks (Doe and Ray). The claims were considered as one property for the sake of the gravity survey.

Claim Name	Tenure #	# of units	Expiry Date
Doel	358996	9	Sept.6,1999
Doe2	358997	4	55 77 66
Rayl	358150	15	July 31,1999
Ray2	358151	12	Aug.1,1999
Ray3	358152	15	cc >> cc
Ray4	358153	2	CC 77 CC

1.3 History

The area is most famous for hosting the Bluebell deposit which produced over 5.3 million tons of 4.9%Pb, 5.2%Zn, 1.3oz/t Ag. Several large boulders of sulphide ore are found scattered on the claims including one large boulder on the Doe claims which was actually mined (450 tons Pb,Zn, Ag). Previous workers have conducted HLEM and other surveys over the area, drilled anomalies , but never found the source of the boulders or the Pb/Zn anomalies in soil and rock.

1.4 Objectives of the Present Program

The objectives of the 1997 program were to see if gravity would delineate any areas of density contrast that could be interpreted as massive sulphide. The geochemical program was designed to look for East-West and North-South structures that may be mineralized.

(1)

2.0 GEOLOGY

2.1 Regional Geology

The property area lies within the Pb,Zn metallogenic province known as the Kootenay Arc which consists of Late Proterozoic to Early Paleozoic age strataform and stratabound limestones and dolomites. Rocks on the property consist of north-trending and westdipping succession of Lower Cambrian quartzites, pelitic schists, calcareous schists, and marble.

Three kilometers north of the property lies the Bluebell deposit which produced over 5.3 million tons of 4.9%Pb, 5.2%Zn and 1.3oz/tAg.

2.2 Property Geology

The property is underlain by limestone and dolomite of the upper Proterozoic Badshot Formation as well as graphitic schist, chloritic schist quartzites and a gneissic package of the Lardeau Series. Occasional granodiorite intrusions are seen on the claims and these have locally altered the intruded limestones to marble.

The property contains several float boulders of massive sulphide float that could have either come down-ice from the Bluebell deposit or may have not traveled far from a buried local source.

3.0 GEOCHEMISTRY

3.1 Soil Sampling Program and Results

Soil sample sites were chosen to show any mineralized North-South or East-West structures. A total of 290 samples were taken but only samples were submitted to Bondar-Clegg (Intertek Testing) for 32 element geochemical analysis. Figure 4 (in pocket) shows soil sample locations (Lines A-D). Anomalous values in this area are known from previous work to be greater than 70 ppb for Pb and greater than 220 ppm for Zn. These values are higher than normal due to the carbonate terrain. Anomalous results are circled in fig.4 but are not contoured due to the large line spacing.

Results show that more than half the samples assayed were anomalous in Zinc and at least 25% of the samples were anomalous in Pb.(see fig.4)

Samples were taken from the "B" soil horizon at depths of 10-20cm from surface. Samples were sent to Chemex Labs Ltd. For analysis. Samples were sieved to -80 mesh and digested using aqua-regia solution. They were analyzed for ppm Pb,Zn and Ag using Atomic Absorption techniques.

4.0 Gravity Report

•

SUMMARY REPORT

on a

GRAVITY SURVEY

conducted on the

DOE RAY PROJECT

Near Nelson, British Columbia

PROPERTY	 Northeast of Cranbrook, British Columbia UTM Zone 11 Easting: 509000 - 516000 UTM Zone 11 Northing: 5496000 -5514000
SURVEY PERIOD	: October 24 to October 25, 1997
WRITTEN FOR	Klondike Gold Corporation 1000 – 675 West Hastings Street Vancouver, British Columbia, V6C 1S4
WRITTEN BY	 Tam Mitchell, AScT QUADRA SURVEYS 2-8640 Blundell Road Richmond, British Columbia, V6R 1K1
DATED	November 5, 1997

OUADRA SURVEYS

SUMMARY

A regional gravity survey was conducted in the Crawford Bay area. The property hosts a geological terrain known to be prospective for sedex type deposits. The purpose of the work was to define possible mineralized zones and geologic structures in the area.

The gravity survey was conducted with 4WD access on existing roads. Gravity measurements were carried out using a Scintrex gravity meter. The station locations were obtained with a real time Trimble double differential GPS survey system. Inclinometer readings were taken at every station to a distance of 170 meters for terrain corrections.

The gravity data were corrected for the various influences to yield partial Bouguer gravity anomaly values listed herein.

٠

TABLE OF CONTENTS

Introduction .	•			-	•			•	1
Location Map .	-		•					•	2
Location and Access		•							3
Survey Procedure				•		•	•		3
Instrumentation							-		5
Data Reduction and Fe	ormula	e				•		•	6
Results & Interpretation	on							•	8
Survey Precision							٠		8
References .	-					•	•	•	9
Statement of Qualifica	ations								10

Appendices

Gravity & GPS Base Stations .				Ι
Table of Field Notes, Calculations & Gravity Values	•	•	•	Π
Partial Bouguer Anomaly Plan Map				III

Illustrations

Figure 1 - Location Map	- Scale 1:	:1,000,0	000	•		•	•	2
Figure 2 – Gravity Base	Station						Appen	dix I
Figure 3 – GPS Base Sta	ations		•		•	•	Appen	dix I

MAPS

Location Map					
Figure 1	Scale 1:1,000,000	-	•	•	2
Partial Bouguer Anomaly	Plan Map				
Figure 5	Scale 1:100,000			Appen	dix III

INTRODUCTION

At the request of Klondike Gold Corporation a gravity survey was conducted in the Crawford Bay area, East-Northeast of Nelson BC. This report describes the instrumentation, theory, field procedure, data reduction and results of the 2 day survey which commenced October 24 and was completed October 25, 1997.

The survey was conducted by Tam Mitchell, AscT of Richmond, BC with the assistance of Zyoji Jackson of Cranbrook, BC. The crew was based at the Hastings Management field office at 3380 Wilks Road in Cranbrook, but stayed at Nelson, BC while acquiring data. The exploration program was carried out under the field supervision of Glen Rodgers of Klondike Gold Corporation.

The main purpose of the survey was to identify geologic structures in the area to locate possible zones of sedex type mineralization. Gravity surveying is a very effective tool in locating lead and zinc mineralization, particularly because of the high specific gravity of any sulphide mineralization especially that of lead.

٩.

____ 2 ___

LOCATION and ACCESS

The property is located 30 km. to the East-Northeast of Nelson approximately defined by UTM Zone 11; Easting: 509000 to 516000 and Northing: 5496000 to 5514000. See figure 1.

Access to the property was primarily on existing roads and logging roads accessible from Highway No. 3A at Crawford Bay.

SURVEY PROCEDURE

All gravity readings were tied to the National Gravity Net by a gravity base station established in a 1996 gravity survey. The base is located at the Cranbrook field office at 3380 Wilks Road and is marked by a steel spike and identified by a wooden stake with an aluminum tag reading: "Gravity Base -101". Geographic coordinates for the station were derived by GPS measurements as 49° 32' 48.07384" N and 115° 48' 44.86830" W (see figure 2). The station has a National Gravity Net value of 980688.13 ± 0.02 mgal. Field ties were also made to the nearest field base used for the GPS base station.

All Survey locations were referenced to a control point identified as -271. The coordinates for this station were obtained by an autonomous GPS fix. The station is further described as follows:

Nad 83 Northing	5501591.673 m	Approximate only
Nad 83 Easting	513300.825 m	Approximate only
CVD28 Elevation	523.045 m	Approximate only

ę

Tam Mitchell, AScT, of Richmond BC, with the assistance of Zyoji Jackson of Cranbrook BC acquired the field data. A total of 48 stations were acquired during the 2 days of the survey.

The gravity survey was conducted with 4WD on existing logging roads and public access roads.

Inclinometer readings were taken on each gravity station with a Suunto inclinometer to provide inner zone terrain corrections in accordance with the Hammer Chart method. Zone B inclinometer readings were taken at 0, 90, 180 and 270 at a distance of 9.3 meters from the station. Zones C and D were shot at 0, 60, 120, 180, 240, and 300 degrees at distances of 35 and 112 meters respectively. Distances and angles were estimated.

۹,

INSTRUMENTATION

GRAVITY

The gravity readings were taken with a Scintrex CG-3 gravity meter (serial no. 10345) manufactured in Concord Ontario. The instrument has a world wide calibration range of over 7,000 mgal and a reading resolution of 0.005 mgal. This instrument features a sensor based on a fused quartz elastic system. The proof mass is balanced by a spring and a relatively small electrostatic restoring force. The position of the mass, which is sensed by a capacitative displacement transducer, is altered by a change in gravity. The inherent strength and elastic properties of the fused quartz together with stop limits around the proof mass permit the instrument to be operated without clamping. Instrument drift is considerably reduced by precise thermostatic control of the unit and software correction for residual effects. The instrument's tilt sensors are analog as well as electronic with a resolution of 1 arc second. Real time corrections for tilt errors can be automatically made for a range of \pm 200 arc seconds. The entire gravity sensing mechanism is enclosed in a vacuum chamber to provide isolation from variations in atmospheric pressure. This extremely stable operating environment allows the long term drift of the sensor to be accurately predicted, and real time software correction reduces it to less than 0.02 mGals/day in theory. The unit can also automatically compensate for earth tides. The ETC is generated using the Longman formula (gravimetric factor 1.16).

SURVEYING

Station locations were surveyed using the Trimble Site Surveyor 4400 system with a Pacific Crest radio link. The system used was capable of post-processing rapid static measurements with an accuracy of ± 5 mm +1ppm horizontal and ± 1 cm + 1ppm vertical or real time data acquisition with an accuracy rating of ± 1 cm +2ppm horizontal and ± 2 cm + 2ppm vertical.

The Site Surveyor 4400 is based on Trimble's fourth generation real-time survey technology. Incorporating the latest Trimble real-time GPS engine code and solution alogrithms, the system provides very fast on-the-fly (OTF) initializations with the industry's most reliable position results. With this technology, average initialization times are cut in half. With advanced satellite signal acquisition and tracking, the ability to survey near trees is enhanced and downtime due to loss of signal minimized.

DATA REDUCTION and FORMULAE

The gravity data was processed by computer in the following manner:

- g_n Observed Gravity- field observations corrected for earth tides and long term instrument drift were downloaded from electronic storage in the gravity meter and corrections made for instrument height and residual instrument drift. These values were then tied to the National Gravity Net.
- g_{fa} Free Air Effect- Correction for relative distances of observation points from the centre of mass(earth). This calculation moves all stations to a common elevation datum and corrects for relative distances in distance from the source mass. The elevation datum used was CGVD 28 mean sea level. The formulae used was:

 g_{fa} = -0.3086 mgal/m

g_{bs} Bouger Slab Effect - Correction for the relative differences in amounts of surface rock below gravity stations. This calculation requires that a mean density or rock type between the lowest and highest grid elevations be established. All stations are shifted to a common datum as in the free air effect except that the vertical change is through an assumed slab of the derived density. The elevation datum used was CGVD 28 mean sea level.

 $g_{bs} = 2*PI*.00667*\sigma mgal/m$

Where $\sigma = \text{slab density (gm/cc)}$

g₁ Theoretical Gravity - Yields correction for change of observed gravity with change in latitude which is due primarily to the rotation of the earth and the difference in earth's radius between the poles and the equator.

۹

2

2

 $g_l = g_e(1 + \alpha \sin^2 \theta + \beta \sin^2 2\theta)$

Where $g_e =$ equatorial gravity = 978,031.85 mgal.

- $\alpha = 0.005278895$
- $\beta = -0.000023462$
- θ = Latitude

Terrain Correction- corrections for variations caused by local terrain. The vertical component of the gravitational effect exerted by nearby hills, or not exerted by nearby valleys or gullies, will effect the net reading obtained on any one station. The overall effect on a given line profile or area will be a function of the station spacing relative to the frequency of terrain undulations. Areas were segmented using circular sectors in zones developed by Hammer (1939). Corrections were made for zones B, C, and D (covering an area from 2 to 170 meters from the station).

g₁ was calculated from the following expression:

gt

$$g_{t} = \Sigma \Phi \tau \sigma [r_{o} - r_{i} + (r_{o}^{2} + z^{2})^{\frac{1}{2}} - (r_{o}^{2} + z^{2})^{\frac{1}{2}}]$$

Where Φ = Sector angle (B = 90°, C & D = 60 °)

 $\tau = \text{gravitational constant} = 0.00667$

- σ = average density (gm/cc)
- r_0 = outer sector radius (B=16.6, C=53.3, D=170)
- $r_i = inner sector radius (B=2, C=16.6, D=53.3)$
- z = elevation difference between sector and station.

٩

g_{fas} Free Air Anomaly: is derived from the following formulae:

 $g_{faa} = g_0 - (g_1 - 0.3086 * E) =$ Free Air Anomaly

Where g_0 = observed gravity g_1 = theoretical gravity E = CGVD 28 elevation

g_{ba} **Bouguer Anomaly:** was derived from the following formulae:

 $g_{ba} = g_b + g_{faa} + g_t = Bouguer Gravity$

Where $g_b =$ Bouguer gravity

 $g_{faa} = free air anomaly$

 $g_t = terrain \ corrections$

---- 7 -----

RESULTS & INTERPRETATION

The data was reduced to partial Bouguer gravity anomaly values. Terrain corrections have been applied to 170 meters. A density of 2.67 gm/cc was used throughout the survey. The partial Bouguer Gravity anomaly values spanned a range of 15.01 milligals from a low of -172.35 mgal to a high of -157.34 mgal. The mean partial Bouguer value was -163.93 ± 3.73 mgal. The survey identified a number of major and minor geologic trends and areas of interest.

SURVEY PRECISION

GRAVITY

Daily gravity loop ties were made to the base station -101 and to field base -271 as follows:

Station	Loop Tie in mgal	Notes
-101	0.01	Calculated 2 day closure
-271	0.06	
-271	0.07	

LOCATION

On every station location the GPS system was re-initialized to verify the accuracy of the recorded station location.

REFERENCES

LaCoste & Romberg Instruction Manual, Model G and D Gravity Meter, June 1989

Seigel, H.O.; A Guide to High Precision Land Gravimeter Surveys, August 1995

Telford, W. M., Geldart, L. P., Sheriff, R. E., Keys, D. A.; Applied Geophysics, 1982

Longman, I. M.; Journal of Geophysical Research, Volume 64, No. 12; Formulas for Computing the Tidal Accelerations Due to the Moon and Sun, December 1959

۹,

Hammer, 1939; (Terrain Correction Model)

STATEMENT OF QUALIFICATIONS

I Thomas L. Mitchell, AScT, of the city of Richmond, Province of British Columbia, DO HEREBY CERTIFY THAT:

- 1. I am the owner of Quadra Surveys with office at 2-8640 Blundell Road, Richmond, British Columbia, V6R 1K1.
- 2. 1 am a graduate of BCIT, with a diploma in Surveying Technology (1977).
- 3. 1 am a geophysical surveyor, registered with the Association of Applied Science Technologists and Technicians of British Columbia.
- 4. I have practiced my profession in Africa, Canada, Japan and USA for 19 years.
- 5. This report is based on a gravity survey which I conducted.
- 6. I have no direct or indirect interest in the property nor do I expect to receive any.

ę

Dated at Cranbrook, British Columbia, this 5th day of November, 1997.

APPENDIX I

Gravity & GPS Base Stations

APPENDIX II

Partial Bouguer Anomaly Gravity Data Listing

Real Time GPS Station Locations and Elevation Calculations

Observed Gravity Values – Electronic Notes from Gravity Meter

Observed Gravity Data Reduction and Calculations

Inner Zone Terrain Corrections

...

1997 Doe Ray Property Gravity Survey

Partial Bouguer Anomaly Gravity Data Listing Instrumentation: Scintrex CG3 Gravity Meter No.10345

Surveyed by: Quadra Surveys, October 1997

Operator: Tam Mitchell

Density 2.67

	NAD 83	NAD 83	NAD 83	NAD 83	CGVD28		Theoretical	Terrain	Free Air	Bouguer
Stn	Northing	Easting	Latitude	Longitude	Elev	Observed G	Gravity	to 170m	Anomaly	Anomaly
9711	5499818.956	514400.906	49.65074267	-116.80049971	540.747	980736.20	981038.30	0.96	-135.22	-194.77
9712	5498697.215	515075.753	49.64063663	-116.79119407	540.571	980733.24	981037.39	0.46	-137.34	-197.36
9713	5496617.843	515274.019	49.62192859	-116.78852900	536.580	980734.45	981035.72	0.34	-135.68	-195.38
9714	5502054.771	512232.483	49.67090066	-116.83046955	527.075	980749.33	981040.10	0.38	-128.12	-186.71
9715	5501333.603	512141.753	49.66441592	-116.83174935	568.312	980744.15	981039.52	0.12	-119.99	-183.46
9716	5500611.237	512509.959	49.65791105	-116.82667015	545.772	980746.74	981038.94	0.23	-123.77	-184.62
9717	5500625.529	512001.585	49.65804993	-116.83371339	637.299	980731.02	981038.95	0.23	-111.26	-182.34
9718	5500665.007	511528.079	49.65841425	-116.84027280	740.635	980712.19	981038.98	0.44	-98.23	-180.66
9719	5500841.449	511215,432	49.66000716	-116.84459962	787.846	980704.41	981039.12	0.23	-91.58	-179.50
9720	5501080.234	511246.013	49.66215435	-116.84416903	777.176	980706.95	981039.32	0.16	-92.52	-179.33
9721	5499737.531	511694.04	49.65006882	-116.83800104	821.415	980696.58	981038.23	0.15	-88.17	-179.93
9722	5499587 185	512079.931	49.64870892	-116.83265989	818.620	980695.56	981038.11	0.70	-89.93	-180.83
9723	5499337.65	512106.224	49.64646393	-116.83230338	830.255	980693.47	981037.91	0.30	-88.22	-180.83
9724	5498566.465	512059.691	49.63952838	-116.83297169	840.181	980692.04	981037.29	0.20	-85.97	-179.79
9725	5505508.435	509707.517	49.70201064	-116.86537729	623.706	980734.70	981042.88	0.22	-115.70	-185.27
9726	5506311.326	509648.859	49.70923318	-116.86617091	545.515	980747.84	981043.52	0.24	-127.34	-188.14
9727	5504867.146	509484.047	49.69624613	-116.86849190	593.515	980739.61	981042.36	0.35	-119.59	-185.66
9728	5504174.217	509522.637	49.69001296	-116.86797369	591.691	980739.97	981041.80	0.48	-119.24	-184.97
9729	5503023.421	509247.044	49.67966640	-116.87182185	548.729	980749.07	981040.88	0.07	-122.47	-183.80
9730	5502369.146	509161.138	49.67378281	-116.87302796	531.433	980751.19	981040.35	0.60	-125.16	-184.03
9731	5503904.246	510275.151	49.68757234	-116.85754761	663.052	980729.93	981041.59	0.22	-107.04	-181.01
9732	5503757.344	509569.583	49.68626265	-116.86733301	599.390	980739.93	981041.47	0.23	-116.57	-183.42

·

1997 Doe Ray Property Gravity Survey

Partial Bouguer Anomaly Gravity Data Listing

Instrumentation: Scintrex CG3 Gravity Meter No.10345

Surveyed by: Quadra Surveys, October 1997

Operator: Tam Mitchell

Density 2.67

	NAD 83	NAD 83	NAD 83	NAD 83	CGVD28		Theoretical	Terrain	Free Air	Bouguer
Stn	Northing	Easting	Latitude	Longitude	Elev	Observed G	Gravity	to 170m	Anomaly	Anomaly
-271	5501591.673	513300.825	49.66671269	-116.81567918	523.045	980745.14	981039.72	0.00	-133.17	-191.70
9601	5503715.66	511195.846	49.68585970	-116.84478874	645.916	980733.54	981041.43	0.06	-108.56	-180.78
9602	5505110.528	510063.459	49.69842583	-116.86045139	721.186	980717.92	981042.56	0.19	-102.08	-182.58
9603	5513216.989	510305.172	49.77133481	-116.85688534	525,935	980740.98	981049.07	0.07	-145.79	-204.57
9604	5512270.479	510264.619	49.76282223	-116.85747349	548.331	980739.72	981048.31	0.03	-139.37	-200.70
9605	5512133.841	510037.537	49.76159708	-116.86063009	546.813	980739.78	981048.20	0.10	-139.67	-200.76
9606	5512169.57	509849.161	49.76192157	-116.86324475	528.234	980742.14	981048.23	0.24	-143.08	-201.95
9607	5512039.715	510458. 49 4	49.76074330	-116.85478770	559,129	980737.45	981048.12	0.02	-138.13	-200.67
9608	5511017.22	510493.917	49.75154595	-116.85432342	589,747	980732.50	981047.30	0.31	-132.81	-198.49
9609	5509462.784	510399.678	49.73756633	-116.85567312	646.207	980725.40	981046.05	0.69	-121.23	-192.85
9610	5508753.385	510509.133	49.73118379	-116.85417324	661.817	980724.43	981045.48	0.19	-116.81	-190.68
9611	5508421.865	509936.362	49.72821168	-116.86212953	550.236	980743.99	981045.22	0.39	-131.43	-192.60
9612	5508773.847	511012.884	49.73135882	-116.84718253	732.845	980711.82	981045.50	0.22	-107.52	-189.31
9613	5507857.29	510526.921	49.72312359	-116.85395059	678.011	980722.34	981044.76	0.59	-113.19	-188.46
9614	5507122.001	509842.868	49.71652164	-116.86345958	594.825	980738.35	981044.17	0.28	-122.26	-188.53
9615	5506447.515	510119.449	49.71045040	-116.85964035	652.997	980728.77	981043.63	0.58	-113.35	-185.84
9701	5502292.652	513044.073	49.67302328	-116.81921383	529.557	980747.82	981040.29	0.00	-129.05	-188.30
9702	5502894.308	512564.653	49.67844506	-116.82583905	543.940	980748.88	981040.77	0.00	-124.03	-184.89
9703	5502111.988	513497.16	49.67138832	-116.81294047	539.669	980745.93	981040.14	0.12	-127.67	-187.93
9704	5502931.122	513499.307	49.67875598	-116.81288245	579.989	980741.64	981040.80	0.09	-120.17	-184.98
9705	5504602.169	514145.232	49.69377138	-116.80386869	615.343	980733.15	981042.14	0.22	-119.09	-187.73
9706	5506105.796	514694.543	49.70728255	-116.79619569	666.990	980722.32	981043.35	0.06	-115.19	-189.77
9707	5504788.291	513358.56	49.69546341	-116.81476991	602.938	980737.00	981042.29	0.00	-119.22	-186.69
9708	5504115.307	512827.944	49.68942180	-116.82214949	593.991	980740.80	981041.75	0.06	-117.65	-184.05
9709	5503435.83	512455.28	49.68331806	-116.82733784	570.866	980745.39	981041.21	0.03	-119.65	-183.49
9710	5501191.743	513922.609	49.66310148	-116.80707686	541.711	980742.08	981039.40	0.76	-1 30.15	-190.00

....

.

1997 Doe Ray Property Gravity Survey

Real Time Station Locations and Elevation Calculations

Instrumentation: Trimble RTK 4400 SSI Surveyor

Surveyed by: Quadra Surveys, October 1997

			Latit	tude		Long	itude \	Nest					Corrected
Name	Northing	Easting	dd	mm	85.85555	dd	mm	55.855 5 5	Elev	GSD95W	Lat	Long	Elev
9712	5498697.215	515075.753	49	38	26.29188	116	47	28.29864	540,631	-14.89	49,64	-116.79	540.571
9713	5496617.843	515274.019	49	37	18.94294	116	47	18.7044	536.65	-14.88	49.62	-116.7 9	536.580
9714	5502054.771	512232.483	49	40	15.24239	116	49	49.69039	527.025	-15	49.67	-116.83	527.075
9715	5501333.603	512141.753	49	39	51.89731	116	49	54.29767	568.232	-15.03	49.66	-116.83	568.312
9716	5500611.237	512509 959	49	39	28.47979	116	49	36.01255	545.702	-15.02	49.66	-116.83	545.772
9717	5500625.529	512001.585	49	39	28.97973	116	50	1.3682	637.189	-15.06	49.66	-116.83	637.299
9718	5500665.007	511528.079	49	39	30.29129	116	50	24.98208	740.505	-15.08	49.66	-116.84	740.635
9719	5500841.449	511215.432	49	39	36.02578	116	50	40.55862	787.696	-15.1	49.66	-116.84	787.846
9720	5501080.234	511246.013	49	39	43.75567	116	50	39.00852	777.036	-15.09	49.66	-116.84	777.176
9721	5499737.531	511694.04	49	39	0.24774	116	50	16.80375	821.285	-15,08	49.65	-116.84	821.415
9722	5499587.185	512079.931	49	38	55.3521	116	49	57.57562	818.53	-15.04	49,65	-116.83	818.620
9723	5499337.65	512106.224	49	38	47.27016	116	49	56.29218	830.165	-15.04	49.65	-116.83	830.255
9724	5498566.465	512059.691	49	38	22.30218	116	49	58.6981	840.091	-15.04	49.64	-116.83	840.181
9725	5505508.435	509707.517	49	42	7.23832	116	51	55.35824	623.556	-15.1	49.70	-116.87	623.706
9726	5506311.326	509648.859	49	42	33.23943	116	51	58.21527	545.375	-15.09	49.71	-116.87	545.515
9727	5504867.146	509484.047	49	41	46.48605	116	52	6.57083	593.365	-15,1	49.70	-116.87	593.515
9728	5504174.217	509522.637	49	41	24.04667	116	52	4.70528	591.541	-15.1	49.69	-116.87	591.691
9729	5503023.421	509247.044	49	40	46.79903	116	52	18.55865	548.569	-15,11	49.68	-116.87	548.729
9730	5502369.146	509161.138	49	40	25.61812	116	52	22.90065	531.263	-15.12	49.67	-116.87	531.433
9731	5503904.246	510275.151	49	41	15.26043	116	51	27.17141	662,912	-15.09	49.69	-116.86	663.052
9732	5503757.344	509569.583	49	41	10.54554	116	52	2.39885	599.23	-15.11	49.69	-116.87	599.390

1997 Doe Ray Property Gravity Survey

Real Time Station Locations and Elevation Calculations Instrumentation; Trimble RTK 4400 SSI Surveyor Surveyed by: Quadra Surveys, October 1997

			Latit	ude		Long	itude \	West					Corrected
Name	Northing	Easting	dd	mm	88,88888	dd	mm	55.55855	Elev	GSD95W	Lat	Long	Elev
-271	5501591.673	513300.825	49	4 0	0.1657	116	48	56.44504	523.045	-14.95	49.67	-116.82	523.045
9601	5503715.66	511195.846	49	41	9.09492	116	50	41.23947	645.796	-15.07	49.69	-116.84	645.916
9602	5505110.528	510063.459	49	41	54,33298	116	51	37,625	721.046	-15.09	49.70	-116.86	721.186
9603	5513216.989	510305.172	49	46	16.80533	116	51	24.78723	525.885	-15	4 9.77	-116.86	525.935
9604	5512270.479	510264.619	49	45	46.16001	116	51	26.90455	548,271	-15.01	49.76	-116.86	548.331
9605	5512133.841	510037.537	49	45	41.7495	116	51	38.26831	546,743	-15.02	49.76	-116.86	546.813
9606	5512169.57	509849.161	49	45	42.91764	116	51	47.681 11	528,154	-15.03	49.76	-116.86	528.234
9607	5512039.715	510458.494	49	45	38.67589	116	51	17.23571	559.069	-15.01	49 .76	-116.85	559.129
9608	5511017.22	510493.917	49	45	5.56542	116	51	15.56431	589.677	-15.02	49.75	-116.85	589.747
9609	5509462.784	510399.678	49	44	15.2388	116	51	20.42323	646,107	-15.05	49.74	-116.86	646.207
9610	5508753.385	510509.133	49	43	52.26163	116	51	15.02365	661.717	-15.05	49.73	-116.85	661.817
9611	5508421.865	509936.362	49	43	41.56205	116	51	43.66631	550,116	-15.07	49.73	-116.86	550.236
9612	5508773.847	511012.884	49	43	52.89174	116	50	49.8571	732.755	-15.04	49.73	-116.85	732.845
9613	5507857.29	510526.921	49	43	23.24492	116	51	14.22212	677.901	-15.06	49.72	-116.85	678.011
9614	5507122.001	509842.868	49	42	59.4779	116	51	48.45449	594.695	-15.08	49.72	-116.86	594.825
9615	5506447.515	510119.449	49	42	37.62144	116	51	34.70525	652.867	-15.08	49.71	-116.86	652.997
9701	5502292.652	513044.073	49	40	22.88379	116	49	9.16978	529.547	-14.96	49.67	-116.82	529.557
9702	5502894.308	512564.653	49	40	42.40223	116	49	33.02058	543.91	-14.98	49.68	-116.83	543.940
9703	5502111.988	513497.16	49	40	16.99794	116	48	46.58569	539.679	-14,94	49.67	-116.81	539.669
9704	5502931.122	513499.307	49	40	43.52152	116	48	46.37683	580,009	-14,93	49.68	-116.81	579.989
9705	5504602.169	514145.232	49	41	37.57696	116	48	13.9273	615.413	-14,88	49.69	-116.80	615.343
9706	5506105.796	514694.543	49	42	26.21717	116	47	46.30449	667.11	-14.83	49.71	-116.80	666.990
9707	5504788.291	513358.56	49	41	43.66828	116	48	53,17169	602,968	-14.92	49.70	-116.81	602.938
9708	5504115.307	512827.944	49	41	21.91847	116	49	19.73817	593.991	-14.95	49.69	-116.82	593.991
9709	5503435.83	512455.28	49	40	59.94501	116	49	38.41623	570.836	-14.98	49.68	-116.83	570.866
9710	5501191.743	513922.609	49	39	47.16532	116	48	25.47671	541.721	-14.94	49.66	-116.81	541.711
9711	5499818.956	514400.906	49	39	2.6736	116	48	1.79897	540.777	-14.92	49.65	-116.80	540.747

1997 Doe Ray Property Gravity Survey

ī irta

Instrumentation; Scintrex CG3 Gravity Meter No.10345 Surveyed by: Quadra Surveys, October 1997

Station	Grav.	SD.	Tilt	x	Tilt y	Temp	. E	T.C.	Dur	# Rej	Tin	ne
	-271	4265.	856	•	0	-19	6	-1.3	0	60	6	11:21:54
	9701	4268	526	*	0.1	-1	3	-1.3	0	60	0	11:28:56
	9702	4269.	598	*	0.1	-15	13	-1.4	0	60	1	11:34:12
	9703	4266.	.645	*	0	-4	8	-1.4	0	60	6	11:39:59
	9704	4262	354	*	0	3	12	-1.4	0	60	0	11:46:05
	9705	4253.	867	*	0	-5	6	-1.4	0	60	0	11:52:16
	9706	4243.	034	#	0	-6	5	-1.4	0	60	5	11:58:03
	9707	4257.	736	*	0.1	4	9	-1.3	-0	60	0	12:06:17
	9708	4261.	533	*	0	-12	4	-1.3	-0	60	2	12:16:31
	9709	4266.	116	*	0.1	-2	0	-1.3	-0	60	0	12:22:53
	9710	4262.	812	*	0	11	13	-1.3	-0	60	0	12:35:08
	9711	4256.	938	*	0.1	-12	7	-1.3	-0	60	0	12:40:35
	9712	4253.	974	*	0.1	1	7	-1.3	-0	60	0	12:51:50
	9713	4255.	198	*	0.1	-9	11	-1.3	-0	60	0	12:58:52
	9714	4270.	058	*	0.1	-20	12	-1.3	-0	60	0	13:12:44
	9715	4264	878	*	0.1	-13	-28	-13	-0	60	6	13:17:43
	9716	4267.	471	•	0	2	4	-1.3	-0	60	0	13:23:08
	9717	4251.	757	*	0.1	-22	17	-1.4	-0	60	0	13:33:22
	9718	4232	932	•	0.1	0	3	-1.3	-0	60	2	13:44:58
	9719	4225.	.154	*	0	-1	10	-1.3	-0	60	1	13:51:51
	9720	4227	707	¥	0	9	13	-1.3	-0	60	0	13:56:26
	9721	4217	.318	*	0	-9	1	-1.3	-0	60	3	14:09:18
	9722	4216.	303	*	0.1	4	4	-1.3	-0	60	0	14:22:09
	9723	4214	.228	*	0	-6	2	-1.3	-0.1	60	0	14:27:30
	9724	4212.	791	4	0	-12	2	-1.3	-0.1	60	3	14:43:25
	9725	4255.	453	ŧ	0	-18	17	-1.2	-0.1	60	1	15:32:43
	9726	4268.	603	*	0.1	-27	6	-1.2	-0.1	60	5	15:47:58
	9727	426	0.37	*	0	-10	- 7	-1.3	-0.1	60	0	15:54:54
	9728	4260.	748	*	0.1	-10	3	-1.3	-0.1	60	0	16:00:05
	9729	4269.	838	*	0.1	6	15	-1.3	-0.1	60	0	16:06:03
	9730	4271.	953	*	0	32	17	-1.3	-0.1	60	1	16:11:03
	9731	4250	.701	*	0	-2	26	-14	-0.1	60	1	16:45:38
	9732	4260.	69 8	•	0	-1	6	-1.3	-0.1	60	0	16:50:53
	-271	4265	936	*	0.1	-19	-1	-1.3	-0.1	60	5	17:19:54
	-101	4208.	857	1	0	-33	16	-1.2	-0	60	3	20:55:52

٩

1.1.1.1.1

۰

1997 Doe Ray Property Gravity Survey

Instrumentation; Scintrex CG3 Gravity Meter No.10345 Surveyed by: Quadra Surveys, October 1997

SCINTREX V5.	0 AUTOG	RAV / Fie	eld Mode	10'	R4.	4		
Line: 1024. G GREF.: GCAL.1: GCAL.2: TEMPCO:	irid: 0. Jot 0. mGa 5861.733 0. -0.1355	o: 1. l Is De	Date: 97/ Tilt x sen Tilt y se g.Latitud	10/24 nsit.: nsit.: e: e:	Ope	rator: 271.4 287.4 49.5 e [.]	777	5.7
Drift const.:	0.17	G	NT Differ	ence:	.9	6.hr		
Drift Correction	Start Time: 2 Date: 97/07/15	3:33:43 5 O	Cal In-Line Ti	.after ilt Cor	x san recte	nples: d = "*"	1	12
Station Grav.	SD. Tilt x 7	Filty Te	emp. E.	T.C.	Dur a	# Rej	Tim	е
-101	4208.877 *	0 -	11 0	09	0	60	0	9:08:09
-271	4265.799 *	0 -	22 19	-0.9	-0.1	60	5	14:09:47
9601	4254.22 *	0.1	-6 11	-1	-0,1	60	2	14:49:00
9602	4238.595 *	0	47 -11	-1	-0.1	60	3	15:13:27
9603	4261.668 *	0	17 -10	-1	-0.1	60	1	15:36:51
9604	4260.425 *	0.1	85	-1.1	-0.1	60	1	15:56:33
9605	4260.477 *	0	7 25	-1.1	-0.1	60	0	16:08:11
9606	4262.845 *	0	-2 14	-1.1	-0.1	60	0	16:11:51
9607	4258.142 *	0.1 -	23 44	-1.1	-0.1	60	0	16:18:46
9608	4253.203 *	0.1 -	19 -6	-1.2	-0.1	60	0	16:25:57
9609	4246.109 *	0.1	18 -5	-1.2	-0.1	60	0	16:38:38
9610	4245.136 *	0.1	-6 3	-1.1	-0.1	60	0	16:47:49
9611	4264.696 *	0.1	4 1	-1.1	-0.1	60	0	17:02:52
9612	4232.535 *	0	29 25	-1.2	-0.1	60	1	17:17:48
9613	4243.073 *	0.1 -	18 22	-1.2	-0,1	60	1	17:32:26
9614	4259.081 *	0	5 15	-1.2	-0.1	60	1	17:50:52
9615	4249.513 *	0.1	-8 8	-1.2	-0.1	60	1	18:01:34
-271	4265.875 *	0.2 -	22 -4	-1.1	-0.1	60	1	18:38:02
SCINTREX V5.	0 AUTOG	RAV / Fi	eld Mode Ser No:	10:	R4. 345.	4		
Line: 1025. G	arid: 0. Jol	x 1. I	Date: 97/	10/25	Ope	rator:	777	7 .
GREF.:	0. mGa	ls	Tilt x ser	sit.:		271.4		
GCAL.1:	5861,733		Tilt y se	nsit.:		287.4		
GCAL.2:	0.	De	g.Latitud	e:		49.5		
TEMPCO	-0.1355	mGal/mk	ζ De	a.Lor	ngitud	e:	11	5.7
Drift const.:	0.17	G	MT Differ	ence:	-	6.hr		
Drift Correction	Start Time: 2	3:33:43	Cal	after	x san	nples:	1	12
	Date: 97/07/15	5 0	n-Line Ti	ilt Cor	recte	d = "*"		

1997 Doe Ray Property Gravity Survey

Observed Gravity Data Reduction and Calculations Instrumentation; Scintrex CG3 Gravity Meter No.10345

Surveyed by: Quadra Surveys, October 1997

Operator: Tam Mitchell

	Meter			IH		Drift			
	Reading			Corr.		Corr.	Base	Observed	
Station	mGal	Time	Ħ	mGal	Drift	mGal	Shift	Gravity	Notes
9706	4243.034	11:58:03	0.59	4243.22	-0.01	4243.21	976479.11	980722.32	9706
9707	4257.736	12:06:17	0.53	4257.90	-0.01	4257.89	976479.11	980737.00	9707
9708	4261.533	12:16:31	0.53	4261.70	-0.01	4261.69	976479.11	980740.80	9708
9709	4266.116	12:22:53	0.57	4266.29	-0.01	4266.28	976479.11	980745.39	9709
9710	4262.812	12:35:08	0.56	4262.98	-0.01	4262.97	976479.11	980742.08	9710
9711	4256.938	12:40:35	0.53	4257.10	-0.01	4257.09	976479.11	980736.20	9711
9712	4253.974	12:51:50	0.54	4254.14	-0.02	4254.13	976479.11	980733.24	9712
9713	4255.198	12:58:52	0.51	4255.36	-0.02	4255.34	976479.11	980734.45	9713
9714	4270.058	13:12:44	0.57	4270.23	-0.02	4270.22	976479.11	980749.33	9714
9715	4264.878	13:17:43	0.58	4265.06	-0.02	4265.04	976479.11	980744.15	9715
9716	4267.471	13:23:08	0.57	4267.65	-0.02	4267.63	976479.11	980746.74	9716
9717	4251.757	13:33:22	0.57	4251.93	-0.02	4251.91	976479.11	980731.02	9717
9718	4232.932	13:44:58	0.57	4233.11	-0.02	4233.08	976479.11	980712.19	9718
9719	4225.154	13:51:51	0.57	4225.33	-0.03	4225.30	976479.11	980704.41	9719
9720	4227.707	13:56:26	0.53	4227.87	-0.03	4227.84	976479.11	980706.95	9720
9721	4217.318	14:09:18	0.58	4217.50	-0.03	4217.47	976479.11	980696.58	9721
9722	4216.303	14:22:09	0.57	4216.48	-0.03	4216.45	976479.11	980695.56	9722
9723	4214.228	14:27:30	0.54	4214.39	-0.03	4214.36	9 764 79.11	980693.47	9723
9724	4212.791	14:43:25	0.56	4212.96	-0.03	4212.93	976479.11	980692.04	9724
9725	4255.453	15:32:43	0.58	4255.63	-0.04	4255.59	976479.11	980734.70	9725
9726	4268.603	15:47:58	0.55	4268.77	-0.04	4268.73	976479.11	980747.84	9726
9727	4260.37	15:54:54	0.57	4260.55	-0.05	4260.50	976479.11	980739.61	9727
9728	4260.748	16:00:05	0.5	4260.90	-0.05	4260.86	976479.11	980739.97	9728
9729	4269.838	16:06:03	0.56	4270.01	-0.05	4269.96	976479.11	980749.07	9729
9730	4271.953	16:11:03	0.58	4272.13	-0.05	4272.08	976479.11	980751.19	9730
9731	4250.701	16:45:38	0.57	4250.88	-0.05	4250.82	976479.11	980729.93	9731
9732	4260.698	16:50:53	0.56	4260.87	-0.06	4260.82	976479.11	980739.93	9732
-271	4265.936	17:19:54	0.5	4266.09	-0.06	4266.03	976479.11	980745.14	-271
-101	4208.857	20:55:52	0.54	4209.02	0.00	4209.02	976479.11	980688.13	-101 Loop Tie 0.06

1997 Doe Ray Property Gravity Survey

Observed Gravity Data Reduction and Calculations Instrumentation; Scintrex CG3 Gravity Meter No.10345

Surveyed by: Quadra Surveys, October 1997

Operator: Tam Mitchell

	Meter			IH		Drift				
	Reading			Corr.		Corr.	Base	Observed		
Station	mGal	Time	IH	mGal	Drift	mGal	Shift	Gravity	Notes	
					-0.38					
-101	4208 877	9.08.09	0.54	4209.04	0.00	4209 04	976479 09	980688 13	-101	
-101	4265 799	14-09-47	0.54	4265.04	0.00	4266.05	976479.09	980745 14	-271	
9601	4254 22	14.00.47	0.56	4254 39	0.06	4254 45	976479.09	980733.54	9601	
9602	4238 595	15.13.27	0.59	4238 78	0.05	4238 83	976479.09	980717.92	9602	
9603	4261 668	15:36:51	0.57	4261.84	0.05	4261.89	976479.09	980740.98	9603	
9604	4260.425	15:56:33	0.53	4260.59	0.04	4260.63	976479.09	980739.72	9604	
9605	4260,477	16:08:11	0.57	4260.65	0.04	4260.69	976479.09	980739.78	9605	
9606	4262.845	16:11:51	0,53	4263.01	0.04	4263.05	976479.09	980742.14	9606	
9607	4258,142	16;18;46	0.58	4258.32	0.04	4258.36	976479.09	980737.45	9607	
9608	4253.203	16:25:57	0.55	4253.37	0.03	4253.41	976479.09	980732.50	9608	
9609	4246.109	16:38:38	0.56	4246.28	0.03	4246.31	976479.09	980725.40	9609	
9610	4245.136	16:47:49	0.58	4245.31	0.03	4245.34	976479.09	980724.43	9610	
9611	4264.696	17:02:52	0.58	4264.87	0.02	4264.90	976479.09	980743.99	9611	
9612	4232.535	17:17:48	0.56	4232.71	0.02	4232.73	976479.09	980711.82	9612	
9613	4243.073	17:32:26	0.53	4243.24	0.02	4243.25	976479.09	980722.34	9613	
9614	4259.081	17:50:52	0.55	4259,25	0.01	4259,26	976479.09	980738.35	9614	
9615	4249.513	18:01:34	0.5	4249.67	0.01	4249.68	976479.09	980728.77	9615	
-271	4265.875	18:38:02	0.57	4266.05	0.00	4266.05	976479.09	980745.14	-271	Loop Tie -0.07
674	1005 050		0.57	(000 00	-0.24	1000.00	07047044	00074644	0.74	
-271	4265.856	11:21:54	0,57	4266.03	0.00	4266.03	9/64/9.11	980/45.14	-2/1	
9701	4268,526	11:28:56	0.5	4268.71	0.00	4268.71	9/64/9.11	980/47.82	9701	
9/02	4269.598	11:34:12	0.57	4269.77	0.00	4269.77	9/64/9.11	980/48.88	9702	
9703	4266.645	11:39:59	0.58	4266.82	0.00	4200.82	9/64/9.11	980/45.93	9703	
9704	4262.354	11:46:05	0.59	4262.54	0.00	4262.53	9/64/9.11	980/41.64	9/04	
9705	4253.867	11:52:16	0,58	4254.05	-0.01	4254.04	9/64/9.11	980733.15	9705	

.....

1997 Doe Ray Property Gravity Survey

Inner Zone Terrain Corrections Surveyed by Quadra Surveys

	Inc	line	ome	ete	r R	ea	ding	gs i	n C)eg	j to) Te	erra	lin '	Cor	rec	tior	Zc	Zo	ne-B			Zon	e-C					Zon	e-D					B, C, & D	
Stn	B 1	B2	B3	B4	4 C	:1 (C2	Ċ3	C4	C5	5 C	6 C) 1	D2	D3	D4	D5	D6	81	B2	B 3	B4	C1	C2	C3	C4	C5	C6	D1	D2	D3	D4	D5	D6	Ter Cor	Stn
9716	0	0	0) (0	0	11	12	0	10	0 1	0	0	11	12	0	7	7	.000	.000	.000	.000	.000	.017	.020	.000	.014	.014	.000	.054	.063	.000	.022	.022	0.23	9716
9717	0	0) 11	10	D	Û	12	10	0	10	0 1	0	0	10	7	0	10	7	.000	.000	.017	.014	.000	.020	.014	.000	.014	.014	.000	.044	.022	.000	.044	.022	0.23	9717
9718	0	12	2 0	11	0	0	12	17	0	10)	9	0	17	17	0	10	9	,000,	.020	.000	.014	.000	.020	.039	.000	.014	.011	.000	.123	.123	.000	.044	.036	0.44	9718
9719	0	0) ()) (0	0	10	10	0	3	3	6	0	14	13	0	7	6	.000	.000	.000	.000	.000	.014	.014	.000	.001	.005	.000	.085	.074	.000	,022	,016	0.23	9719
9720	0	0) () (0	0	10	9	0	- 6	5	5	0	10	9	0	7	7	.000	.000	.000	.000	.000	.014	.011	,000	.004	.004	.000	.044	.036	.000	.022	.022	0.16	9720
9721	0	12	2 8	3	7	0	10	Ö	0	5	5	7	0	10	7	7	0	0	.000	,020	.009	.007	.000	.014	.000	.000	.004	.007	.000	.044	.022	.022	.000	.000	0.15	9721
9722	22	10) () (02	20	17	0	18	17	7	0	14	15	0	18	18	0	.052	.014	.000	.000	.052	.039	.000	.043	.039	,000	.085	.097	.000	.137	.137	.000	0.70	9722
9723	0	8	3 0) 1	7	0	6	4	0	1:	3 1	3	0	8	7	0	13	13	.000	.009	.000	.035	.000	.005	.002	.000	.023	.023	.000	.029	.022	.000	.074	.074	0.30	9723
9724	0	-14	0) (0	0	10	10	0	(D	0	0	13	13	0	0	0	.000	.025	.000	.000	.000	.014	.014	.000	.000	.000	.000	.074	.074	.000	.000	.000	0.20	9724
9725	7	C) ()	01	0	10	0	0	(0	0	0	15	12	0	5	5	.007	.000	.000	.000	.014	.014	.000	,000	.000	.000	.000	.097	.063	.000	.011	.011	0.22	9725
9726	0	10) ()	7	0	9	9	0	1	8	8	0	13	12	0	7	7	.000	.014	.000	.007	.000	.011	.011	.000	.009	.009	.000	.074	.063	.000	.022	.022	0.24	9726
9727	0	10) ()	7	0	13	13	0	10	D 1	0	0	12	12	0	12	12	.000	.014	.000	.007	.000	.023	.023	.000	.014	.014	.000	.063	.063	.000	.063	.063	0.35	9727
9728	0	Ç) (2	0	0	8	9	0	18	8 1	8	0	8	8	0	18	18	.000	.000	.000	.045	.000	.009	.011	.000	.043	.043	.000	.029	.029	.000	.137	.137	0.48	9728
9729	0	C) ()	0	0	6	6	0	E t	5	0	0	6	6	0	5	5	.000	.000	.000	.000	.000	.005	.005	.000	,004	.000	.000	.016	.016	.000	.011	.011	0.07	9729
9730	0	-20) () 1	3	0	17	17	0	23	3 2	20	0	10	10	0	17	17	.000	.045	.000	.022	.000	.039	.039	.000	.068	.052	.000	.044	.044	.000	.123	.123	0.60	9730
9731	0	5	5 C) 1	5	0	10	15	0) 7	7	5	0	7	12	0	- 7	-7	.000	.004	.000	.028	.000	.014	.031	.000	.007	.004	.000	.022	.063	.000	.022	.022	0.22	9731
9732	0	- 3	3 ()	0	0	14	10	0) 1(0 1	10	0	10	7	0	10	10	.000	.001	.000	.000	.000	.027	.014	.000	.014	.014	.000	.044	.022	.000	,044	.044	0.23	9732

1997 Doe Ray Property Gravity Survey

Inner Zone Terrain Corrections Surveyed by Quadra Surveys

	Inci	lino	mete	ər R	lead	ing	Is ir	۱De	ag t	o Te	erra	in (Cori	rect	lion	Zc	Zoi	ne-B			Zon	e-C					Zon	e-D					B, C, & D	
Stn	B1	B2	83 E	34 (21 C	2 Ĉ	3 (24 (25 (C6 [D1 E)2 I	D3	D4 1	D5	D6	B1	B2	B 3	B4	C1	Č2	C3	C4	C5	C6	D1	D2	D3	D4	D5	D6	Ter Cor	Stn
-271	0	0	0	0	0	0	0	0	0	0	0	0	0	θ	0	0	000.	000	.000	.000	.000	.000	.000	000.	.000	.000	.000	.000	.000	.000	000	000	0.00	-271
9601	0	0	0	0	0	0	0	0	0	0	0	0	0	8	8	0	. 0 00	000.	.000	000.	.000	.000	000	.000	.000	.000	.000	.000	.000	.029	.029	.000	0.06	9 601
9602	0	0	0	0	0	Ò	0	0	Ö	0	0	0	0	15	15	0	.000	,000,	.000	000.	.000	.000	.000	.000	.000	.000	.000	.000	.000	.097	.097	.000	0.19	9602
9603	0	0	0	0	0	0	7	7	5	5	0	7	7	0	0	0	.000	.000	.000	.000	.000	.000	.007	.007	.004	.004	.000	.022	.022	.000	.000	.000	0.07	9603
9604	0	0	0	0	0	0	0	0	0	0	0	0	5	6	0	0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.011	.016	.000	.000	0.03	9604
9605	0	0	0	0	0	0	0	0	0	0	0	0	13	7	0	0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.074	.022	.000	.000	0.10	9605
9606	0	0	0 1	12	0	5 °	10	0	7	7	0	0	17	12	0	0	000.	.000	.000	.020	.000	.004	.014	, 0 00,	.007	.007	.000	.000	.123	.063	.000	.000	0.24	9606
9607	0	0	0	0	0	0	0	0	0	0	0	Ò	5	5	0	0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.011	.011	.000	,000,	0.02	9607
9608	5	6	5	5	0	5	5	0	14	14	0	8	8	0	14	14	.004	.006	.004	.004	.000	.004	.004	.000	.027	.027	.000	.029	.029	.000	.085	.085	0.31	9608
9609	0	10	0 2	26	0 1	3	17	0	17	20	0	13	15	0	17	20	.000	.014	.000	.066	.000	.023	.039	.000	.039	.052	.000	.074	.097	.000	.123	.167	0.69	9609
9610	0	5	0	3	0	9	10	0	8	8	0	9	10	0	8	8	.000	.004	.000	.001	.000	.011	014	.000	.009	.009	.000	.036	.044	.000	.029	.029	0.19	9610
9611	0	17	0	7	0 1	9	18	0	9	9	0	15	15	0	7	7	.000	.035	.000	.007	.000	.048	.043	.000	011	.011	.000	.097	.097	.000	.022	.022	0.39	9611
9612	0	10	0 '	10	0 1	0	10	0	8	8	0	10	10	0	8	8	.000	.014	.000	.014	.000	.014	.014	.000	.009	.009	.000	.044	.044	.000	.029	.029	0.22	9612
9613	0	33	0	8	03	30 :	30	0	5	7	0	15	15	0	7	10	.000	.093	.000	.009	.000	.109	.109	.000	.004	.007	.000	.097	.097	.000	.022	.044	0.59	9613
9614	0	6	5	0	0 1	i 0 -	13	0	10	10	10	13	0	10	10	0	.000.	,006	.004	.000	.000	.014	.023	.000	.014	.014	.044	.074	.000	044	.044	.000	0.28	9614
9615	0	15	0 2	27	0 1	13	10	0	17	17	0	13	10	0	17	17	.000	.028	.000	.070	.000	.023	.014	.000	.039	.039	.000	.074	.044	.000	.123	.123	0.58	9615
9701	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	0.00	9701
9702	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	.000	.000	.000	.000	.000	.000	.000	.000	,000	,000	.000	.000	.000	.000	.000	.000	0.00	9702
9703	0	7	0	5	0	7	7	Q	8	5	0	0	0	12	7	0	.000	.007	.000	.004	.000	.007	.007	.000	.009	.004	.000	.000	.000	.063	.022	.000	0.12	9703
9704	0	7	0	5	0	7	7	0	5	5	0	7	5	0	5	5	.000	.007	.000	.004	.000	.007	.007	.000	.004	.004	.000	.022	.011	.000	.011	.011	0.09	9704
9705	0	0	0	0	0 ′	12	14	0	0	0	0	13	15	0	0	0	.000	.000	.000	.000	.000	.020	.027	,000,	.000	.000	.000	.074	.097	.000	.000	.000	0.22	9705
9706	0	0	0	0	0	0	0	0	0	0	0	0	8	8	0	0	.000	.000	000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.029	.029	.000	.000	0.06	9706
9707	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	0.00	9707
9708	0	0	0	0	0	5	5	5	5	0	0	5	5	5	5	0	.000	.000	.000	.000	.000	.004	.004	.004	.004	,000	.000	.011	.011	.011	.011	.000	0.06	9708
9709	0 (0	0	0	0	0	0	0	0	0	0	0	5	5	5	0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.011	.011	.011	.000	0.03	9709
9710	0 (0	0	0	0	17	15	0	25	25	0	25	22	0	10	10	.000	.000	.000	.000	.000	.039	031	.000	.079	.079	.000	.250	.199	.000	.044	.044	0.76	9710
9711	0	33	0	0	0	17	17	0	27	27	0	20	22	0	17	17	.000	.093	.000	.000	.000	.039	.039	.000	.090	.090	.000	.167	.199	.000	.123	.123	0.96	9711
9712	2 0	10	0	25	Q '	19	18	0	20	20	0	13	13	0	7	7	.000	.014	.000	.062	.000	.048	.043	.000	.052	.052	.000	.074	.074	.000	.022	.022	0.46	9712
971:	0	30	0	10	0	13	13	0	10	7	0	6	6	0	13	13	.000	.081	.000	.014	.000	.023	.023	.000	.014	.007	.000	.016	.016	.000	.074	.074	0.34	9713
9714	0	0	0	0	0	0	0	0	0	0	0	23	20	0	0	0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.215	.167	.000	.000	.000	0.38	9714
971	50	0	0	0	0	0	0	0	0	0	7	10	10	-5	0	0	.000	,000,	.000	.000	.000	.000	.000	.000	.000	.000	.022	.044	.044	.011	.000	.000	0.12	9715

APPENDIX III

Partial Bouguer Anomaly Plan Map

DOE RAY PROJECT

5.0 CONCLUSIONS AND RECOMMENDATIONS

Soil samples that were submitted for geochem analysis show areas of very anomalous Pb and Zn. Gravity results show a large anomalous area that underlies the northern half of the Crawford Bay Peninsula as well as a secondary anomaly north of the highway. Other soil samples collected should also be run for 32 element geochem.

Follow-up prospecting with rock sampling should be done over all anomalous area as well as geological mapping.

6.0 STATEMENT OF QUALIFICATIONS

This is to certify that I, Glen M. Rodgers, P.Eng.;

-am a graduate of the University of Manitoba with a Bsc. in Geological Engineering (1977).

-am a member in good standing of the British Columbia Association of Professional Engineers and Geoscientists (P.Eng.).

-have practiced my profession over the last 22 years working as a geologist and engineer in B.C., Yukon, NWT., Alaska and Central America.

-base this report on first hand experience on the Doe-Ray property and do not expect to receive any shares of Klondike Gold Corp. as a result of writing this report.

Statement of Costs

	\$ 100.\$ 500.\$ 240.
•	\$ 100.\$ 500.
•	\$ 100.
. <u>.</u>	\$ 220.
s @ \$10.ea	\$ 1,4 50.
	\$ 1,450.
· ·	\$ 3,350.
	s @ \$10.ea

-certified as a true estimate of costs incurred,

÷.

(39)

Intertek Testing Services Bondar Clegg

.

Geochemical Lab Report

CLIENT: REPORT:	KENNECOTT CANADA V98-00051.0 (COM	INC IPI E	TE)														DA	TER	ECEI	VED :	12	JAN-98	3	DATE	PRIN	TED:	19-J/	AN-98	F	PAGE	F 1 (PRÓJ DF 5	ECT:	CRAWFORD BA
SAMPLE NUMBER	ELEMENT Ag UNITS PPM	Cu PP M	i Pida I PPM	Zn PPM	Mo PPM	Ni PPM	Co PPM	Cd PPM	Bi PPM (As PPM	s6 PPM	Fe PCT	Mrs PPM	Te PPM	Ba PPM	Cr PPM F	V PPM	Sn PPM	W PPM I	La PPM	AL PCT	Mg PCT	Ca PCT	Na PCT	K PCT	Sr PPM	Y PPM I	Ga PPM P	Lİ PM F	Nd PPM I	Sc PPM (ta PPM	T i PCT	Zr PPM
IB OW	<.2	35	197	676	1	40	11	1.0	<5	53	<5	2.73	454	<10	94	34	40	<20	<20	10	2.92	0.61	0.36	0.02	0.10	13	4	2	27	6	-5	<10	0.14	9
18 504	0.9	21	80	532	<1	39	13	0.8	<5	17	4 5	2.28	341	<10	101	21	36	<20	<20	6	4.31	0.33	0,18	0,03	0,08	12	3	3	35	7	<5 ·	<10	0.18	35
LB 100W	<.2	31	77	221	<1	34	12	<.2	<5	10	<5	2.58	254	<10	154	30	42	<20	<20	10	3.00	0.68	0.28	0.02	0.13	15	4	3	35	5	<5	<10	0.16	12
18 150W	<.2	11	37	253	<1	11	9	0.5	<5	6	<5	2.05	2336	<10	357	14	35	<20	<20	9	2.03	0.34	0.36	0.02	0.1Z	50	3	6	25	4	<5	<10	0.12	<1
LB 2004	<.2	22	2 50	276	<1	57	12	0.3	<5	10	<5	2.60	445	<10	185	2 9	43	<20	<20	10	3.46	0.62	0,22	0.02	0.11	12	4	4	34	6	<5 ·	<10	0.18	17
LB 250W	0,3	25	79	177	<1	60	13	<.2	<5	9	~ 5	2.81	399	<10	184	28	46	<20	<20	14	3.07	0.50	0.24	0.03	0.12	14	9	5	44	6	<5	<10	0.22	12
LB 300W	0.3	27	7 27	270	<1	41	13	<.2	<5	7	45	3.19	472	<10	274	26	54	<20	<20	6	4.22	1.13	0.28	0.03	0.11	16	4	- 6	41	6	્ર્ડ	<10	0.22	12
18 350W	۰.×	44	96	207	<1	37	11	<.2	<5	16	<5	2.44	286	<10	110	35	37	<20	<20	17	2.29	0.69	0.32	0.02	0.11	22	- 7	<2	33	5	<5	<10,	0.12	5
LB 400M	0.3	18	3 42	\$35	<1	26	10	1.0	\$ 5	13	<5	2.20	847	<10	212	25	31	<20	<20	12	3.21	0.45	0.29	0.03	0.10	18	5	4	29	4	<5	<10	0.14	9
LB 450W	0.3	11	i 51	575	<1	34	11	0.4	<5	8	<5	2.47	917	<10	259	22	36	<20	<20	14	3.59	0.36	0.15	0.03	0.10) 16	5	3	29	5	<5	<10	0.17	18
18 500W	0.3	15	7 66	277	<1	26	10	0.3	\$	11	<5	2.43	324	<10	139	17	36	<20	<20	9	4.71	0.30	0,10	0.02	0.08	39	5	5	24	7	<5	<10	0.17	37
1.8 550M	i <.2	1	3 67	247	<1	55	11	0.3	<5	9	<5	2.30	821	< 1 0	266	28	35	<20	<20	12	2.98	0.43	0,20	0.02	0.10) 17	5	3	27	4	-5	<10	0.14	13
LB 600W	، ×.2	50	0 87	283	<1	51	12	<.2	<5	20	<5	2.74	364	<10	117	35	41	<20	<20	15	2.62	0.73	0.22	0.01	0.13	5 15	4	2	33	4	< 5	<10	0.10	7
LB 650W	×.2 (20	0 56	164	<1	17	8	<.2	<5	17	5	2.94	1741	<10	302	16	39	<20	<20	13	2.80	0.32	0.17	0.02	0.12	23	6	6	28	5	<5	<10	0.10	3
LB 700W	.> ۲	29	9 59	178	<1	40	11	0.3	-5	9	<5	2.42	252	<10	170	22	38	<20	<20	31	4.96	0.41	0.23	0.04	0,10) 22	28	5	29	6	9	<10	0.20	72
.B 750₩	د.2	1	1 38	294	<1	24	- 11	0.5	<5	15	<5	2.62	924	<10	242	22	37	<20	<20	10	3.03	0.43	0.22	0.02	0.10) 19	, 3	5	35	5	<5	<10	0,17	8
.B 800w	i <.2	1	1 178	292	<1	24	12	<،2	<5	6	<5	2.51	1516	<10	281	19	38	<20	<20	10	3.21	0.26	0.27	0.02	0.0	34	3	4	25	6	<5	<10	0.17	11
.B 850W	، <.2	13	2 27	171	<1	22	8	<.2	<5	6	< 5	2.30	1071	<10	192	22	34	<20	<20	13	2.19	0.42	0.24	0.02	0.09	23	4	3	26	5	<5	<10	0.12	3
.B 900in	J 0.4	1	5 30	266	<1	38	10	0.3	<5	7	<5	2.04	449	<10	208	19	33	<20	<20	11	3.17	0.32	0.23	6 0.03	6 0.10	21	5	3	25	4	<5	<10	0,17	22
-B 50E	2.0	7	6 302	1142	2	92	14	2.1	<5	43	ر ې	3.25	566	<10	151	51	51	<20	<20	22	3.68	8 0.73	0.49	0.03	0.13	3 22	31	<2	145	5	6	<10	0,17	20
. 8 1008	E 0.7	3	5 243	751	<1	33	11	1.1	<5	44	<5	2.65	223	<10	196	28	40	<20	<20	14	2.90	0.58	0.23	5 0.02	2 0.13	5 15	7	2	31	3	<5	<10	0.13	22
. B 150E	E 0.6	1	9 176	670	<1	31	11	2.3	<5	65	<5	2.43	1387	<10	177	18	34	<20	<20	8	4.32	2 0.37	0.17	0.03	0.0	9 12	4	3	27	5	<5	<10	0.16	13
.B 2006	= <.2	4	9 192	524	<1	37	7 14	0.4	-5	37	<5	2.99	808	<10	104	45	51	<20	<20	12	2.34	1.12	0.29	0.02	2 0.12	2 12	4	ຸ 2	46	5	<5	<10	0.17	2
8 2506	E 0.4	9	5 140	326	s <1	- 37	r 17	1.1	<5	30	<5	2.67	1823	<10	191	21	46	<20	<20	11	5,05	6 0.53	0.30	0.03	\$ 0.0	5 19	10	5	31	5	6	<10	0.21	32
.B 300E	. 0. 3	1	7 175	583	<1	41	11	1.0	<5	27	<5	2.52	878	<10	234	29	37	<20	<20	11	2.94	0.63	0.29	9 0.02	2 0.14	6 17	4	2	34	4	< 5	<10	0.16	8
.8 3506	E 1.2	: 1	5 281	952	2 <1	31	10	2.8	<5	31	<5	2.34	417	′ <10	192	: 19	36	<20	<20	10	3.29	0,38	0.24	0.03	5 0.1	1 13	5	2	24	5	<5	<10	0.16	21
в 400£	E 0.3	i 7	8 84	304	<1	131	20	0.5	<5	14	<5	2.74	485	<10	141	118	44	<20	<20	11	3.65	5 1.43	6 0.48	3 0.03	5 0.20	0 20	8	4	74	6	<5	<10	0.20	16
B 4508	E 0.2	! 1	5 28	713	5 1	43	5 16	1.0	<5	9	<5	2.49	157	' <1 0	73	41	42	<20	<20	9	3.07	7 1.12	0.41	0.03	5 0.04	6 15	5	3	74	9	<5	<10	0.26	8
.B 5008	E <,2	! 1	8 42	272	2 <1	- 30) 13	0.8	<5	12	<5	2,86	218	3 <10	148	20	42	<20	<20	9	5.61	0.70	0.32	0.03	5 0.1	0 17	7	5	62	7	<5	<10	0.23	41
B 5508	E <.2	2	7 47	391	<1	20	5 12	0.6	\$	6	<5	2.34	326	5 <10	199	23	36	<20	<20	8	3.10	1.08	3 0.32	2 0.03	5 0.1	0 17	6	4	66	5	<5	<10	0,18	20

Geochemical Lab Report

÷ i

CLIENT: KEN	NECOTT CANADA INC.							PROJECT; CRAWFORD BAY
REPORT: V98	00051.0 (COMPLETE)				DATE RECEIVED: 12	2-JAN-98 DATE PRINTED	: 19-JAN-98 PAGE	2 OF 5
SAMPLE NUMBER	ELEMENT Ag Cu PD UNITS PPM PPM PPM	Zn Mo Ni PPM PPM PPM	i Co Cci Bi As Sib 1 PPM PPM PPM PPM	Fe Mn Te Ba Cr PCT PPM PPM PPM F	V SN W La A PM PPM PPM PPM PC	AL Mg Ce Na K Si CT PCT PCT PCT PCT PPI	, r y Ga Li Nd A PPM PPM PPM I	Sc Ta Ti Zr PPM PPM PCT PPM
10.4005	05 17 72	776 <1 20	1022 <5 16 <5	2 36 281 <10 177 13	35 <20 <20 8 3.8	98 0.21 0.22 0.03 0.07 1	3 5 5 20 5	<5 <10 0.22 32
	2 30 151	B34 <1 20	5 16 2.2 -5 16 -5 5 16 0 5 -5 26 -5	3 45 429 410 161 39	54 <20 <20 11 3 0		1 4 4 44 6	<5 <10 0.20 4
	0.6 50 182	716 <1 53	3 13 1 3 <5 20 <5	2 72 277 <10 146 19	40 <20 <20 10 4.7	76 0.33 0.24 0.04 0.09 1	6 10 3 46 7	<5 <10 0.21 46
	0.0 0.02	327 <1 /9	2206 <5 15 <5	4 69 785 <10 245 52	89 <20 <20 9 3.4	46 2.21 0.57 0.03 0.36 2	0 11 2 53 6	6 <10 0.21 9
	0.2 00 110	255 ×1 47	2 12 0 9 45 17 45	2 23 435 <10 113 36	38 <20 <20 10 1 6	64 0.63 0.24 0.02 0.09 1	0 3 2 45 4	<5 <10 0.13 2
18 0000	< <u>,</u> 2 37 10							
LB 850F	< 2 37 114	599 <1 41	1 16 1.6 <5 16 <5	3,24 1057 <10 232 41	60 <20 <20 13 1.7	74 0.93 0.77 0.02 0.16 2	6 8 2 40 4	<5 <10 0.09 <1
18-900E	<.2 36 57	191 <1 36	6 13 <.2 <5 12 <5	2.63 207 <10 86 22	43 <20 <20 13 3.7	78 0.45 0.14 0.02 0.10	7 10 4 30 8	
LB 950E	0.3 25 20	151 1 31	1 16 <.2 <5 7 <5	3.93 440 <10 201 25	59 <20 <20 12 4.8	88 0.42 0.12 0.02 0.18 1	1 6 5 32 8	5 <10 0.24 30
LC OW	<.2 47 21	493 <1 44	4 18 0.7 <5 5 <5	2.98 662 <10 352 31	41 <20 <20 7 3.2	28 1.11 0.49 0.02 0.23 2	234665	<5 <10 0.17 4
IC SOW	<.2 48 19	119 <1 35	5 14 0.4 <5 <5 <5	2,24 1933 <10 385 32	33 <20 <20 6 2.5	58 1.45 0.96 0.03 0.21 3	1 4 2 90 5 `	<5 <10 0.15 1
					· ·			·•
LC 100W	<.2 91 8	85 <1 37	7 20 <.2 <5 <5 <5	2.35 540 <10 195 24	40 <20 <20 5 2.3	34 1.04 0.37 0.03 0.20 1	2 3 <2 65 4	<5 <10 0.15 2
IC 1500	0.4 25 18	171 <1 47	7 11 <.2 <5 5 <5	2.25 269 <10 273 24	33 <20 <20 14 3.6	64 0.56 0.27 0.03 0.14 2	0 7 3 38 5	<5 <10 0.17 20
LC 200W	<.2 19 11	212 <1 26	6 12 <.2 <5 <5 <5	1.88 690 <10 205 24	33 <20 <20 8 2.1	11 1.24 0.34 0.02 0.16 1	2 4 2 88 4	<5 <10 0.18 <1
LC 250W	<.2 55 15	90 <1 52	2 16 <.2 <5 <5 <5	2.59 259 <10 102 52	48 <20 <20 9 2.6	60 1.50 0.44 0.02 0.30 1	4 4 <2 111 8	<5 <10 0.21 1
EC 3000	<.2 24 3 2	228 <1 50	0 13 <.2 <5 7 <5	2.60 445 <10 238 26	37 <20 <20 12 3.8	84 0.54 0.32 0.03 0.17 1	7 5 3 52 6	<5 <10 0.18 18
LC 35DM	<.2 14 14	116 <1 38	8 9 <.2 <5 <5 <5	1.81 469 <10 275 27	27 <20 <20 14 2.0	04 0.59 0.22 0.02 0.20 1	5 4 <2 36 4	<5 <10 0.12 1
1C 400W	0.6 46 21	196 <1 47	7 12 <.2 <5 15 <5	2.75 264 <10 359 23	35 <20 <20 9 4.0	04 0.74 0.49 0.03 0.18 3	0 4 4 57 6	<5 <10 0.20 16
LC 450W	0.3 67 38	266 <1 46	6 13 <.2 <5 6 <5	2.56 336 <10 194 29	40 <20 <20 8 3. 0	07 0.93 0.42 0.02 0.23 1	4 6 3 49 5	<5 <10 0.17 7
LC 500W	<.2 54 78	351 <1 44	4 11 <.2 <5 24 <5	2,23 203 <10 113 41	38 <20 <20 13 1.5	54 0.80 0.35 0.02 0.24 1	2 5 <2 30 4	<5 <10 0.12 <1
IC 550W	0.4 25 128	713 1 58	8 14 1.1 <5 10 <5	2,78 393 <10 260 32	44 <20 <20 10 3.4	45 0.63 0.33 0.03 0.20 1	8 6 3 34 7	<5 <10 0.19 18
LC 600W	0.4 28 102	402 <1 39	9 12 0.7 <5 55 <5	2.60 465 <10 189 24	40 <20 <20 20 4.2	26 0.62 0.37 0.03 0.16 2	1 14 4 35 6	5 <10 0.20 34
LC 650W	<,2 24 30	169 <1 27	7 11 <.2 <5 9 <5	2.75 601 <10 325 18	44 <20 <20 8 5.5	58 0.55 0.39 0.03 0.08 1	8 7 6 36 7	<5 <10 0.20 33
LC 700W	0.3 52 47	239 <1 35	5 14 0.2 <5 15 <5	2.68 309 <10 196 20	42 <20 <20 7 5.7	74 0.46 0.41 0.03 0.08 2	0 7 6 31 6	<5 <10 0.21 28
LC 750V	<.2 22 158	8 199 <1 12	2 10 3.2 <5 9 <5	1.42 3419 <10 337 15	29 <20 <20 8 1.0	02 0.36 0.75 0.03 0.15 3	6 4 <2 14 2	<5 <10 0.10 <1
LC OF	<.2 20 30) 154 <1 42	2 14 <.2 <5 7 <5	2.81 244 <10 307 27	44 <20 <20 7 4.3	31 0.35 0.14 0.03 0.11 1	4 3 4 28 6	<5 <10 0.21 37
								F 40 0 01 1
LC SOE	<.2 43 18	3 234 1 82	2 22 <.2 <5 8 <5	3.87 636 <10 352 96	64 <20 <20 13 3.4	40 1.15 0.31 0.02 0.36 3	0 5 2 42 7	5 <10 0.24 4
1 C 100E	<.2 21 21	177 <1 39	9 12 <.2 <5 6 <5	2.47 580 <10 273 29	38 <20 <20 13 3.0	67 0.42 0.19 0.03 0.13 1	8 6 3 27 6	<5 <10 0.18 32
LC 150E	<.2 8 26	5 249 <1 10	690.3<57<5	1.54 2387 <10 238 15	28 <20 <20 9 1.0	60 0.21 0.10 0.02 0.08 1	0 2 <2 20 3	<> <10 0,15 4
LC 200E	<.2 17 26	5 135 <1 2	8 11 <.2 <5 8 <5	2,58 345 <10 156 15	38 <20 <20 6 5.5	51 0.25 0.22 0.02 0.08 1	7 5 6 21 7	<5 <10 0,19 49
LC 250E	<.2 52 75	5 278 2 88	88 19 0.2 <5 9 <5	3.74 2525 <10 321 50	53 <20 <20 38 5.	17 0.68 0.53 0.03 0.25	28 5 119 7	7 <10 0.18 6

Geochemical Lab Report

CLIENT:	KENNECOTT CANAL	DA	INC.															DA	TF R	FCET	VED :	12	JAN-98	3	DATE	PRIN	TED:	19-J	IAN-S	8	PAGE	3	PROJ OF 5	ECT:	CRAWFORD	BAY
REPORT:	AA9-0002110 (/	LOM											· · · · · · · · · ·													•••••	•	•••••••			••••••	•••••	• • • • • •	•••		•••••
SAMPLE	ELEMENT /	Ag	նս	Рb	Zń	Мо	Ni	Co	Cd	Bi	As	\$b	fe	Mn	Te	Ba	Cr	۷	\$n	W	La	AL	Mg	Ca	Na	κ	Sr	Y	Ga	Li	Nb	\$c	Ţa	τi	Zr	
NUMBER	UNITS P	PM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM :	PPM	PPN	PCT	РРМ	PPM	PPM	PPM	PPN	PPM	PPM	PPM	PCT	PCT	PCT	PCT	PCT	PPM	PPM	PPM	PPM	РРМ	PPM	PPN	PCT	PPM	
1.C. 300F		.2	21	31	133	<1	42	12	<,2	<5	6	~ 5	2.34	250	<10	219	27	38	<20	<20	18	3.71	0.48	0.23	0.03	0.11	17	9	3	28	5	<5	<10	0.17	34	
10 3506	<	2	31	38	122	<1	33	11	<.2	ر ج	7	<5	2.37	303	<10	185	29	37	<20	<20	17	3.65	0.49	0,26	0.03	0.13	22	10	3	27	7		<10	0.17	38	
		7	23	54	126	<1	27	10	<.2	<5	7	<5	2.18	187	<10	123	23	35	<20	<20	15	3.25	0.44	0,19	0.02	0.08	17	8	3	24	6	<5	<10	0.15	35	
10 4000	0		30	24	174	<1	20	10	<.2	<5	<5	<5	2.92	468	<10	212	15	38	<20	<20	17	3.07	0.37	0.13	0.02	0.11	23	6	4	29	5	<5	<10	0.13	10	
LC 500E	0	.3	60	36	35	<1	54	5	<.2	- <5	<5	<5	0.98	34	<10	320	17	26	<20	<20	93	5.15	0.21	0.39	0.05	0.06	57	82	8	74	6	6	<10	0.17	39	
1 C 550E	¢	.2	21	28	177	<1	32	12	<.2	<5	8	ر ج	2.56	791	<10	246	22	45	<20	<20	11	3.01	0.44	0.18	0.02	0.13	13	5		25	5	<5	<10	0.16	14	
LC 600E	0	.4	21	84	315	<1	47	14	0.2	<5	12	-5	2,55	337	<10	191	21	38	<20	<20	13	3.50	0.31	0,14	0.03	0.09	15	11	·· 5	38	6	્ડ્	<10	0.21	29	
LC 650E	<	z.z	25	34	171	<1	33	10	<.2	<5	11	<5	2.26	496	<10	125	28	38	<20	<20	11	2.65	0.53	0.13	0.02	0.10	9	3	<2	25	5	4 5	<10,	0.12	15	
LC 700E	~	4,2	24	35	355	<1	23	11	0.6	<5	10	<5	2.53	626	<10	173	19	36	<20	<20	10	2.12	0.43	0.23	0,02	0.13	15	3	<2	25	5 ~	·5	<10	0.15	8	

Bondru Clerg & Company 1.64 - 130 Pemberton Avenue, North Vancouver, B.C. - V7P 2R5, (604) 985 0681

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave. North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: KLONDIKE GOLD CORP

P.O. BOX 215 CRANBROOK, BC V1C 4H7 Page Number :2 Total Pages :6 Certificate Date:06-OCT-Invoice No. :1983225 P.O. Number : Account :QNA

Project : Comments: ATTN: GLEN RODGERS

CERTIFICATE OF ANALYSIS A98

...

A9832251

SAMPLE	PREP CODE	Ag ppm Aqua R	Pb ppm 109	Zn ppm 399							
CB LA 2050E	201 202		118	362							
CB LA 2150E	201 202		31	236							
CB LA 2200E	201 202		25	269							
CB LA 2250E	201 202		29	247							
CB LA 2300E			26	139			1				
CB LA 2400E	201 202		28	371							
CB LA 2450E	201 202		21	106							
CB LD 0400E	201 202		12	100					· · ·		
CB LD 0450g	201 202		23	84							
CB LD 0500K	201 202		10	95							
CB LD 0600E	201 202		9	41							
CB LD 0650E	201 202		37	65				i ·			
CB LD 0700E	201 202		18	95							
CB LD 0750E	201 202		13	122							
CB LD 0850K			16	114							
					·]				
CB LD 0900E			22	76							
CB LD 10008	201 202		20	67	1			1			
CB LD 1050g	201 202		16	53		1					
CB LD 1100E	201 202		24	152							
CB LD 1150E	201 202		25	172						1	
CB LD 1200E	201 202		26					1	1		l
CB LD 1300E	201 202			104			1			[
CB LD 1350E	201 202		18	141							
CB LD 1400E	201 202		15	84				1	-	1	
CB LD 1450E	201 202		16	83]	l	
CB LD 1500E	201 202		18	48						t	
CB LD 1600E	201 202		17	59	ļ		1	1			
	202 302					·	-				
	l enn HE	÷ .	1		l.					1	
'		2		•							·
	∎ sets bet L Spott		1	4						1	
· ·		1	1	· · ·			ł			1	
l		<u> </u>	1	L	1	I	<u> </u>	l	Part Personale	1 e 🛌	L

_

CERTIFICATION: How R 20

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: KLONDIKE GOLD CORP

**

P.O. BOX 215 CRANBROOK, BC V1C 4H7

Project : Comments: ATTN: GLEN RODGERS Page Number 11 Total Pages 16 Certificate Date: 06-OCT-199 ; 9832251 Invoice No. P.O. Number QNA Account

			CERTIFICATE OF ANALYSIS	A9832251		
SAMPLE	PREP Ag ppm Pb CODE Aqua R ppm	Zn ppm				
CB LA 000E CB LA 050E CB LA 100E CB LA 150E CB LA 200E	201 202 24 201 202 27 201 202 32 201 202 38 201 202 49	118 87 126 114 120				
CB LA 250E CB LA 300E CB LA 350E CB LA 400E CB LA 450E	201 202 78 201 202 85 201 202 33 201 202 47 201 202 47 201 202 105	226 108 92 182 112				
CB LA 500E CB LA 550E CB LA 600E CB LA 650E CB LA 700E	201 202 50 201 202 37 201 202 35 201 202 47 201 202 83	180 135 259 154 371				
CB LA 750E CB LA 800E CB LA 850E CB LA 900E CB LA 950E	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	271 132 213 141 140				
CB LA 1000E CB LA 1050E CB LA 1100E CB LA 1150E CB LA 1200E	201 202 81 201 202 74 201 202 23 201 202 26 201 202 489	197 33 242 49 1075				
CB LA 1250E CB LA 1300E CB LA 1350E CB LA 1350E CB LA 1400E CB LA 1450E	201 202 55 201 202 136 201 202 115 201 202 90 201 202 90 201 202 217	242 314 580 398 513				
CB LA 1500E CB LA 1550E CB LA 1600E CB LA 1650E CB LA 1650E CB LA 1700E	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	450 147 701 611 402				
CB LA 1750E CB LA 1800E CB LA 1850E CB LA 1850E CB LA 1900E CB LA 1950E	201 202 84 201 202 84 201 202 95 201 202 55 201 202 55 201 202 25	389 526 3885 405 5302		•		

1

CERTIFICATION:_

Harther Lo

