| RECEIVED                              |         |
|---------------------------------------|---------|
| MAR 2 4 1999 Table of Contents        |         |
| Gold Commissioner's Office            |         |
| VANCOUVER, B.C.                       |         |
| SUMMARY                               | Page 1  |
| INTRODUCTION                          | Page 2  |
| PROPERTY                              | Page 2  |
| TABLE I PERTINENT CLAIM DATA          | Page 3  |
| LOCATION AND ACCESS                   | Page 3  |
| TOPOGRAPHY AND CLIMATE                | Page 3  |
| HISTORY                               | Page 4  |
| 1998 DIAMOND DRILL AND TRENCH PROGRAM | Page 4  |
| TABLE II DIAMOND DRILL HOLE DETAILS   | Page 5  |
| GEOLOGY                               | Page 6  |
| ROCK TYPES                            | Page 6  |
| DYKES                                 | Page 8  |
| ALTERATION                            | Page 9  |
|                                       | Page 10 |
|                                       | Page 11 |
|                                       | Page 11 |
|                                       | Page 11 |
|                                       | Page 12 |
|                                       | Page 13 |
|                                       | Page 13 |
|                                       | Page 15 |
| CERTIFICATE                           | Page 16 |
| APPENDIX                              |         |
| 1. COST STATEMENT                     |         |
| 2. CORE LOGS                          |         |
| 3. ASSAY CERTIFICATES                 |         |

# GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT



<u>.</u> . . .

1...

i

| <u>MAPS</u> |                                                                    | After Page |
|-------------|--------------------------------------------------------------------|------------|
| Figure 1    | Location Map                                                       | 2          |
| Figure 2    | Claim Map                                                          | 2          |
| •           | Geology (after Minequest May 1985) with photo                      |            |
| Figure 3    | lineaments (Livgard 1998)                                          | 5          |
| Figure 4    | Soil Anomalies (After Minequest 1988)                              | 9          |
| Figure 5    | Surface plan with pit (1994) and trenches 1985 - 1998              | 9          |
| Figure 6    | Diamond drill hole location map                                    | 14         |
| Figure 7    | Diamond drill hole #1, Section looking North                       | 14         |
| Figure 8    | Diamond drill hole #3, 4, 5, section looking north                 | 14         |
| Figure 9    | Diamond drill hole #6, 7, section looking north                    | 14         |
| Figure 10   | Diamond drill hole #8, section looking north                       | 14         |
| Figure 11   | Diamond drill hole #2, 9, section looking northwest and northeast  | 14         |
| Figure 12   | Diamond drill hole #10, section looking north                      | 14         |
| Figure 13   | Diamond drill hole #11, 14, section looking north                  | 14         |
| Figure 14   | Diamond drill hole #12, section looking north                      | 14         |
| Figure 15   | Diamond drill hole #15, 16, 17, section looking north              | 14         |
| Figure 16   | Diamond drill hole #18, section looking east                       | 14         |
| Figure 17   | Diamond drill hole #19, section looking north                      | 14         |
| Figure 18   | Diamond drill hole #21, 22, 23, section looking north              | 14         |
| Figure 19   | Longitudinal section of the Crow, Grey Jay, Nutcracker vein system | ı,         |
| 840 -7      | looking west                                                       | 14         |

£ ..

.

.

ü

# **SUMMARY**

Orko Gold Corporation's wholly owned Bonaparte gold property lies about 30 km due north of Kamloops, B.C. It consists of fifty-three contiguous claim units and two fractions which cover about 1,175 hectares on the Inland Plateau at gentle elevations about 1,700 m A.S.L. The property has been explored for gold since 1984 by several programs of mapping and surveys plus extensive trenching and diamond drillings. This work has located several auriferous quartz veins.

The veins occupy fractures, minor faults and shears in a Mesozoic quartz diorite which has intruded late Paleozoic argillites and Triassic volcanics. These rocks have been exposed by erosion of overlaying Tertiary basalt.

The main quartz vein system, the Crow vein system, consisting of several irregular branching veins has been exposed by trenching over about 200 m north-south along strike. Sampling values average out to 41.41 g gold/tonne over a width of 0.81 m and over a length of 63 m. In 1994, almost 4,000 tonnes grading over 24.0 g gold/tonne was mined in an open pit and shipped to Cominco. Diamond drilling to depth has given inconsistent values.

Orko Gold Corporation diamond drilling in 1998 gave some good values on the south extension of the Crow vein system.

About 120 m to the east the Raven vein has been intermittently exposed over a north-south strike length of 140 m. Trenching and drilling has shown it to be very irregular, generally narrow and low grade.

About 80 m further east the Chikadee vein has been exposed in a few trenches, it is narrow and low grade other than in isolated patches. A block field of mineralized angular blocks about 75 m to the north may indicate an extension of the Chikadee vein.

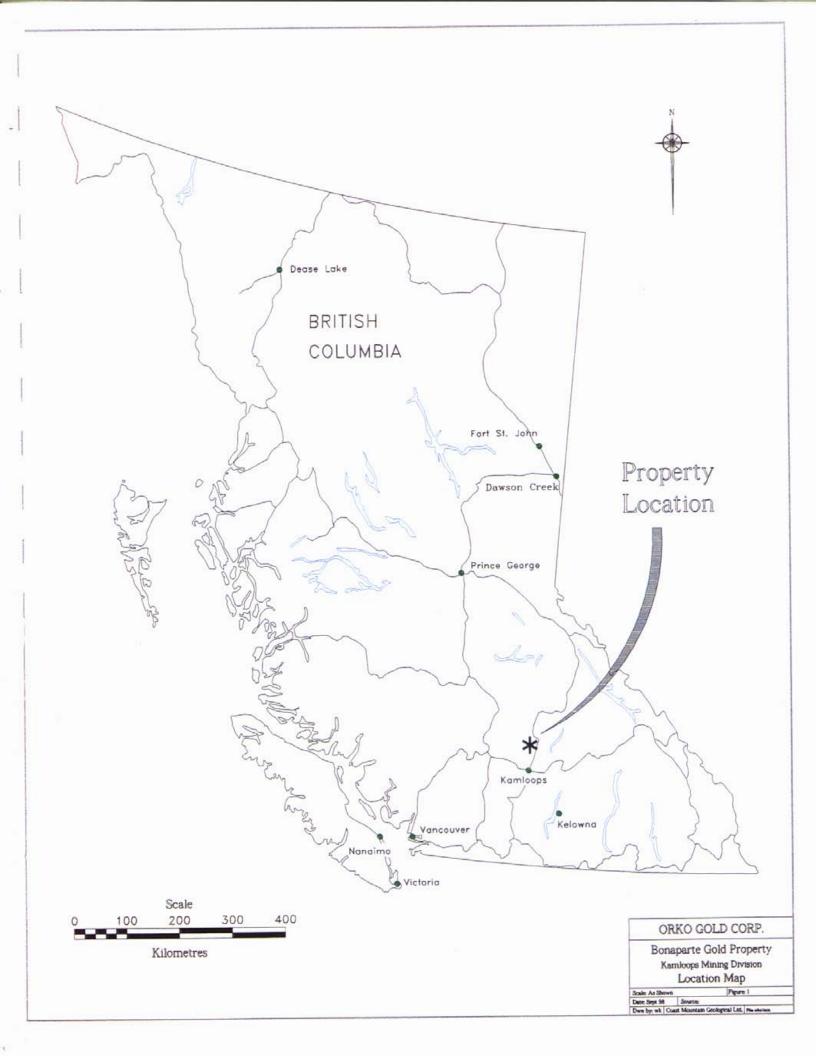
The Flicker vein, about 70 m further east again, has been partly exposed over about 30 m. This may be its total length as it pinches down both to the south and north. It is relatively well mineralized.

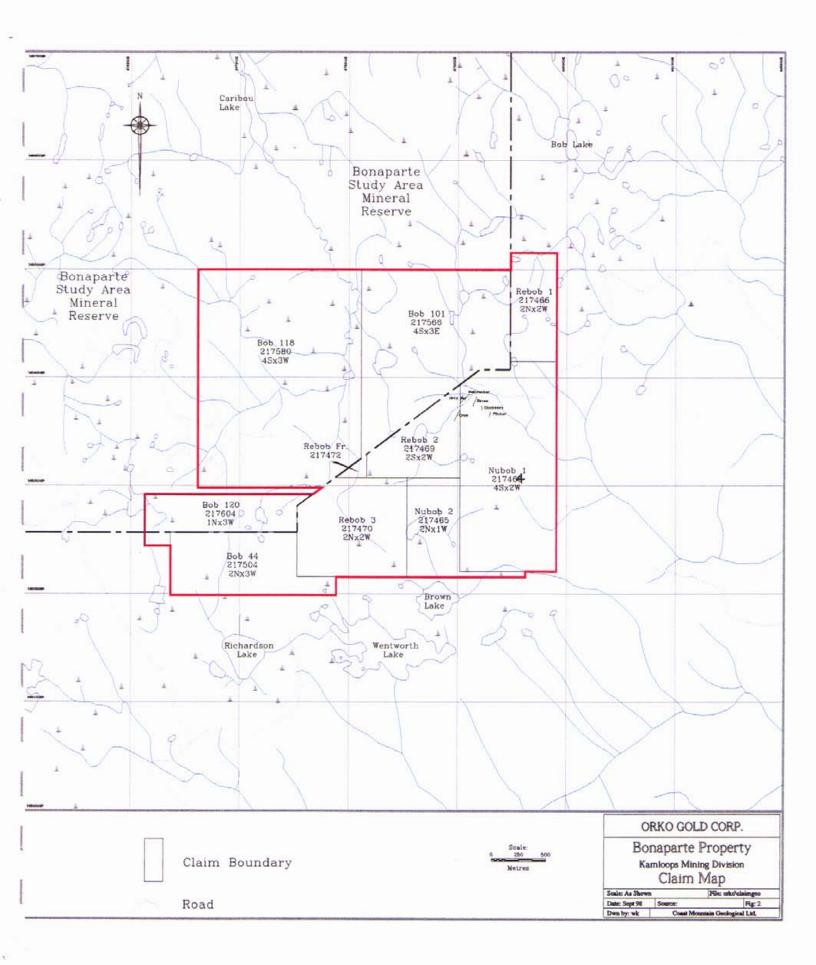
Orko Gold Corporation's drilling in 1998, consisted of 1,103 m in 21 diamond drill holes. The results were moderately successful and pointed to areas which warrant further exploration mainly the south extension of the Crow vein system. It is also suggested that altered sediments and volcanics on the periphery of the intrusion should be explored for gold deposition.

# **INTRODUCTION**

The writer was asked by the Directors of Orko Gold Corp. to arrange for and to carry out a diamond drill program on the Company's wholly owned Bonaparte Gold property. The writer worked on the property daily from June 7th to July 15th, 1998 (with the exception of four days). Excavator work such as road repair, drill pad construction, sumps, trenching and some reclamation work was carried out between June 9th and 20th. Diamond drilling commenced on June 14th and ended on July 13th, 1998.

This report is based on the results of the above work and on referenced as listed.


# **PROPERTY**


The Bonaparte Gold property consists of nine modified grid claims totalling 53 units and two fractions in a contiguous block which covers approximately 1,175 hectares.

"The property is 100% owned by Orko Gold Corporation, subject to a pre-existing 2% net smelter return (NSR) to Hughes-Lang Corporation and 3% NSR to Inter-Pacific Resources Corporation (now QPX Minerals Inc.). A Purchase Agreement was signed between the vendors, Beaton Engineering Ltd, (50%) and Cleveland Capital Corporation (50%) and the purchaser, Tarron Industries Corporation (name changed to Orko Gold Corporation as of June 3rd, 1997) on February 21, 1997." (From Peter Christopher, Ph.D., P.Eng., Report June 23, 1997.)

The purchase was completed in May 1998.

The writer has no personal knowledge of the above agreements.





| Claim    | Units | Record # | Tenure # | Recorded | Expiry Date       |
|----------|-------|----------|----------|----------|-------------------|
| NUBOB 1  | 8     | 6319     | 217464   | 1985     | July 23, 1999     |
| NUBOB 2  | 2     | 6230     | 217465   | 1985     | July 23, 1999     |
| NUBOB fr |       | 6342     | 217473   | 1985     | August 19, 1999   |
| REBOB 1  | 2     | 6321     | 217466   | 1985     | July 23, 1999     |
| REBOB 2  | 4     | 6330     | 217469   | 1985     | July 23, 1999     |
| REBOB 3  | 4     | 6331     | 217470   | 1985     | July 23, 1999     |
| REBOB fr |       | 6341     | 217472   | 1985     | August 19, 1999   |
| BOB 44   | 6     | 6434     | 217504   | 1985     | November 13, 1999 |
| BOB 101  | 12    | 6573     | 217566   | 1986     | March 27, 1999    |
| BOB 118  | 12    | 6587     | 217580   | 1986     | March 27, 1999    |
| BOB 120  | 3     | 6635     | 217604   | 1986     | April 28, 1999    |

# TABLE I PERTINENT CLAIM DATA

The writer examined the claim records at the Vancouver Mining Recorders Office and confirmed this information.

# LOCATION AND ACCESS

The property is located 38 km north of Kamloops B.C. in the Kamloops Mining Division on Mapsheets 92P/IW and 92I/16W. The center is about at 51 00'30" N and 120 28' W.

The property can be reached via the paved Westsyde road to the Jamieson Creek main haul logging road 30 km north of Kamloops and by following Jamieson Creek, Wentworth Creek and Bob Lake logging roads for 25 km to the 3 km mine road.

Weyerhauser Canada Ltd. plans to improve the last part of these roads next year with the intention of logging close to the claim area.

## **TOPOGRAPHY AND CLIMATE**

The Property lies on the Thompson Plateau at elevations between 1,600 and 1,780 m ASL. The area is forested mainly with fir but contains some open meadows and minor swampy areas.

The climate is relatively cool due to the elevation. Annual precipitation is over 100 cm which falls mainly as snow causing heavy spring run-off.

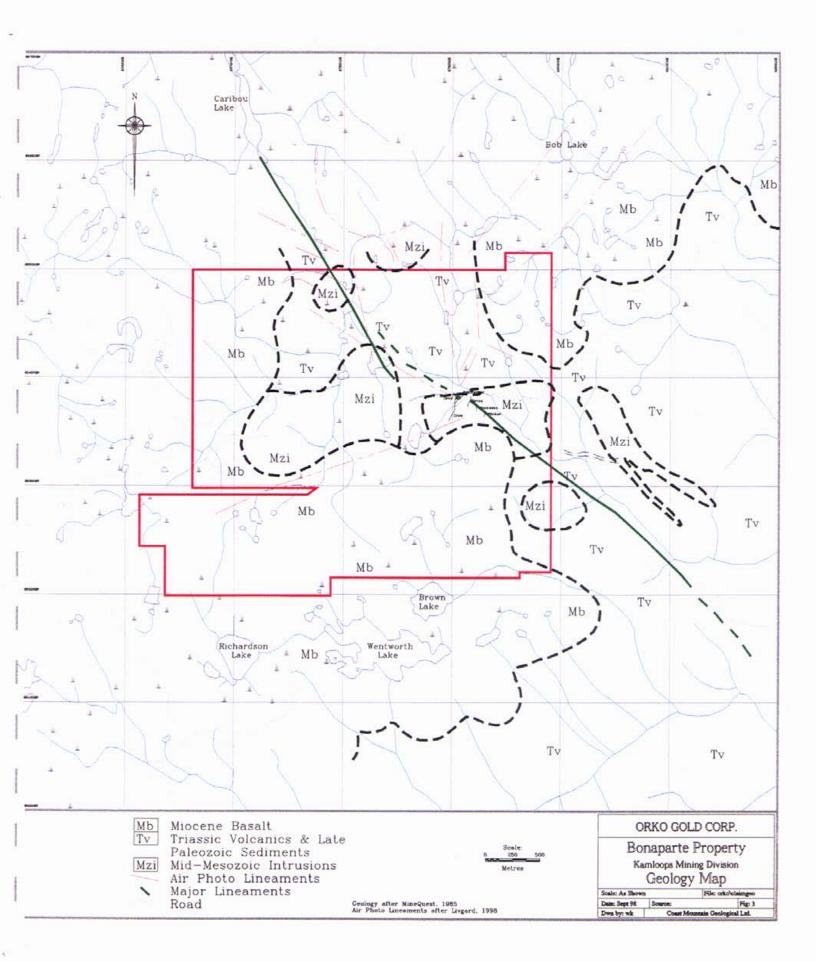
The ground will be largely free of snow from the last half of May to last half of October.

## **HISTORY**

Regional stream silt sampling by Minequest Exploration Assoc. Ltd. in 1984, resulted in the discovery of gold mineralization in quartz veins hosted by diorite intrusions on the present Bonaparte property. These intrusions had previously been explored for copper-molybdenum porphyry type mineralization.

Follow-up exploration in 1985 to 1989 consisted of geological mapping and surveys plus extensive trenching (1,683 m and 38 test pits) and a total of 4,674 m of diamond drilling in 62(?) holes. Further diamond drilling in 1994 and 1995 consisted of 25 holes totalling 1,185 m.

The above physical work has been concentrated in an area which extends about 300 m eastwest and 200 m north south. Six auriferous veins were located by surface trenching. The main vein system (the Crow, Grey-Jay and Nutcracker) has been most extensively drilled. A high grade zone of mineralization was outlined in the central and north part of the Crow, Grey Jay veins near surface. The upper part of this zone was mined by open cut in 1994. About 3,700 tonnes grading over 0.7 oz/tonne was shipped to Cominco.


Geological mapping, soil surveying and prospecting has indicated other areas on the claim ground which warrant further exploration.

## **1998 DIAMOND DRILL AND TRENCH PROGRAM**

1,103 metres of drilling was carried out by Connors Drilling, Kamloops, on behalf of Orko Gold Corp. between the 13th of June and 14th of July, 1998. Twenty-one (21) holes were drilled ranging in length from 15.2 to 97.5 metres. The drilling was designed to further examine auriferous quartz veins previously located in a body of intrusive diorite within the claim ground. H.Q. core (7.5 cm diametre) was drilled to maximize recovery.

# TABLE II DIAMOND DRILL HOLE DETAILS

|   |             |       |      |               |          | Main Intersections |      |                       |                                 |                                           |
|---|-------------|-------|------|---------------|----------|--------------------|------|-----------------------|---------------------------------|-------------------------------------------|
|   | Hole<br>98# | Azim  | Dip  | Length metres | Location | From               | То   | Est.<br>True<br>Width | -<br>Assay<br>Grams<br>Au/tonne | Comments                                  |
|   | 1           | W     | -60° | 84.5          |          | 44.6               | 48.6 | 3.0                   | 11.326                          | South end of south extension of Crow vein |
|   | 2           | 65°   | -45° | 29.9          |          | 16.4               | 17.2 | 0.5                   | 23.0                            | Flicker vein                              |
|   | 3           | W     | -45° | 33.5          |          | 9.5                | 10.4 | 0.7                   | 7.43                            | South Crow vein                           |
|   | 4           |       | -90° | 45.7          |          |                    |      |                       | Nil                             | South Crow vein                           |
|   | 5           |       | -90° | 70.1          |          | 54.9               | 55.8 | 0.7                   | Quartz                          | South Crow vein                           |
|   | б           | W     | -53  | 97.5          |          | 27.0               | 27.7 | 0.5                   | 2.86                            | Split from Crow vein                      |
|   |             |       |      |               |          | 33.2               | 34.1 | 0.7                   | 8.29                            | Crow vein - central                       |
|   |             |       |      |               |          | 92.8               | 95.6 |                       | Nil                             | New vein in F.W. of Crow vein             |
|   | .7          | W     | -80° | 60.4          |          | 39.0               | 40.0 | 0.7                   | 0.238                           | Crow vein                                 |
|   | 8           | W     | -50° | 74.7          |          | 35.3               | 36.3 | 0.7                   | 21.0                            | Crow vein - central (split)               |
|   | 9           | 1150  | -45° | 28.7          |          | 19.3               | 22.9 | 1.2                   | 0.851                           | Flicker vein                              |
|   | 10          | Ŵ     | -55° | 65.2          |          |                    |      |                       | Nil                             | Grey jay vein                             |
|   | 11          | W     | -45° | 15.9          |          |                    |      |                       | Quartz                          | Chikadee vein                             |
|   | 12          | Ŵ     | -55° | 77.7          |          | 23.8               | 24.6 | 0.5                   | 2.62                            | Nutcracker?                               |
|   | •           |       |      |               |          | 39.7               | 41.1 | 1.0                   | 6.22                            | Grey Jay vein                             |
|   |             |       |      |               |          | 53.1               | 53.8 | 0.5                   | 1.52                            | Shearing (footwall)                       |
| : | 14          | W     | -60° | 22.9          |          | 6.8                | 7.6  | 0.6                   | 4.35                            | Chikadee vein                             |
|   | 15          | Ŵ     | -70° | 66.2          |          | 14.9               | 16.5 |                       | Nil                             | Grey Jay vein                             |
| : | 2           |       |      | а.            |          | 31.7               | 33.2 | 1.4                   | 0.449                           | Vein in F.W. of Grey Jay vein             |
|   | 16          | W     | -55° | 44.5          |          | 42.7               | 43.9 | 0.9                   | 0.240                           | Grey Jay vein - no Nutcracker vein        |
|   | 17          | Ŵ     | -75° | 45.1          |          |                    |      |                       |                                 | Nutcracker vein cut by dyke               |
|   | 18          | North | -45° | 59,5          |          |                    |      |                       | Nil                             | Anomalous copper-moly at contact          |
|   | 19          | W     | -45° | 95.1          |          | 22.9               | 23.2 | 0.3                   | 2.22                            | Nutcracker vein                           |
|   |             |       |      |               |          | 30.5               | 31.6 | 1.0                   | 4.52                            | Grey Jay vein                             |
|   |             |       |      |               |          | 40.5               | 41.3 | 0.?                   | 3.15                            | Shearing (Footwall)                       |
|   | 21          | W     | -45° | 15.2          |          |                    |      |                       | Nil                             | Contact Zone                              |
|   | 22          | Ŵ     | -600 | 18.6          |          |                    |      |                       | Nil                             | Contact Zone                              |
|   | 23          | Ŵ     | -45° | 45.7          |          | 33.0               | 33.7 | 0.5                   | Nil                             | North Extension of Chikadee ?             |



Diamond drilling to depth, and on extensions north and south on the Crow - Grey Jay vein system and drilling on other veins gave highly variable values and no vein or vein segments of contiguous good gold grade was outlined. Some veins intersections can not be correlated with known veins.

Trenching was carried out exposing the south Crow vein over about 65 metres. The vein contains highly erratic patches of sulphides.

Trenching for the south extension of the Flicker vein encountered a fault and sedimentary rocks but no vein extension.

Trenching near Block field "B" exposed a quartz vein which gave moderate gold values. This may be the northern extension of the Chikadee vein.

The southern extension of the Crow vein has given some promising intersection such as 11.3 g over a true width of 3.0 m (D.D.H. 98#1). Other intersections in this area are also of interest (see longitunial section Fig 19). It is however, covered by Tertiary basalt not much further south.

## **GEOLOGY**

## ROCK TYPES

(After Minequest Report May 1985)

### Regional Geology

The North Thompson claims cover the boundary between two maps-sheets at 51°00'N. To the north, Bonaparte Lake map sheet was mapped by Campbell and Tipper (1965) who designated the rocks as Pennsylvanian to Permian volcanic arsenite, greenstone, argillite and phyllite with minor quartz-mica schist, limestone, and basalt and andesite flows. This sequence was intruded by granitic rocks similar to the early or mid-Mesozoic Thuya and Takomkane Batholiths, with compositions of hornblende-biotite quartz diorite and granodiorite, with minor hornblende diorite, monzonite, gabbro, and hornblendite. Miocene Plateau basalts are found at higher elevations and are predominantly olivine basalt and andesite with minor ash and breccia. Most recently, Monger and McMillan (1983) have mapped the Ashcroft Map-area and have classed the basement in the claims area as Paleozoic and Mesozoic, with volcanic rocks similar to the Triassic Nicola Group and sedimentary rocks are augite porphyry, bladed feldspar porphyry, chlorite schist, and metabasalt, whereas the sedimentary strata comprise of argillite, cherty

argillite, siltstone, volcanic and chert grain sandstone, chert pebble conglomerate, volcaniclastics of basic to acid composition and rare carbonate pods.

### Property Geology

The Bob (now Bonaparte E.L.) claim group is underlain by quartz diorite, and feldspar porphyry stocks, sills and dykes intruding meta-sedimentary and metavolcanic rocks. Capping the pre-Tertiary rocks are flat lying Miocene Plateau basalt flows which form an extensive plateau above 5,500' elevation.

### <u>UNIT 1:</u> Meta-sedimentary and Meta-volcanic Rocks

Meta-sedimentary and meta-volcanic rocks are well exposed in "Cooler" and Bob Creeks, and sub-divided into five mappable units.

#### Units 1A and 1B:

Shale, argillite and siltstone (Unit 1A) are black to dark grey with limonitic patches. Shaley phyllite and graphitic phyllite (Unit 1B) are the same composition but slightly more deformed and metamorphosed equivalents of Unit 1A. Both units are recessive.

### Unit 1C:

Meta-volcanic rocks are characterised by their pale green to green weathering. In the field these rocks were described as greenstone, green phyllite, and chloritic phyllite, and primary textures have been destroyed. Locally, these green phyllites are in contact with more massive porphyry, with 1 to 2 mm augite phenocrysts in a fine to aphanitic green groundmass.

#### <u>Unit 1D:</u>

Calcareous phyllite and calcareous chlorite phyllite are exposed in Bob Creek. The rocks consist of alternating layers and lenses of carbonate and chlorite rich material. The chlorite has a preferred orientation and hence imparts aphyllitic texture. The weathered surface is grey to green and the carbonate layers dissolve-out producing a rough, pitted surface.

#### <u>Unit 1E:</u>

Siliceous meta-sedimentary rocks with up to 5% pyrite, weather rusty brown and limonitic yellow, are foliated, and are well indurated to glassy. Intensity of silicification and pyrite mineralization are greatest near contacts with intrusive rocks.

Some exposures illustrate that the silicification can be selective to certain lithologies. The chlorite-rich Unit 1C does not appear receptive to the silica

but rocks believed to have been shales and argillite are completely silicified. There are a few outcrops at the diorite-shale contact with no apparent silicification.

#### <u>UNIT 2:</u> Mesozoic Intrusive Rocks

### Unit 2A:

A quartz diorite stock has intruded Unit 1. The quartz diorite is medium grained, massive and light grey weathering, with a quartz content varying from 5 to 20%. Hornblende and subordinate biotite phenocrysts constitute 3 to 10% of the rock. Alteration is minimal with chlorite locally replacing biotite and hornblende. White quartz veins up to 5 cm wide cut the diorite. One locality in "Cooler Creek" has a series of subparallel quartz veins all approximately 1 to 2 cm thick.

#### <u>Unit 2B:</u>

Feldspar porphyry dykes and sills cut the meta-sedimentary rocks. Feldspar phenocrysts up to 5 mm long, with interstitial hornblende and biotite, are set in a fine, dark grey to green groundmass. The pyrite content varies from 0% within the dykes to 5% at the contact with the altered sedimentary rocks. These porphyries are probably a late phase of the stock, although they have not been seen to cut the quartz diorites.

Intrusive contacts of both the diorite and feldspar porphyry with the metasedimentary rocks are sharp and distinct. They are commonly subparallel to foliation but locally truncate the foliation at a high angle. Chilled margins in the feldspar porphyry are rare. West of the claims a shaley phyllite at the diorite contact shows development of a weak biotite hornfels.

### <u>UNIT 3:</u> Rhyolite dykes and sills

Isolated outcrops of pale grey, fine-grained rhyolite have been mapped on the Bob claims. The rock is massive and appears to be unaltered.

## **DYKES**

Frequent dykes were noted within the quartz diorite body in diamond drill holes drilled in 1998. They consist of dykes of apparent quartz dioritic composition with very fine ground mass with feldspar phenocrysts from 1 to 3 mm. Other dykes are grey-green homogeneous very fine grained.

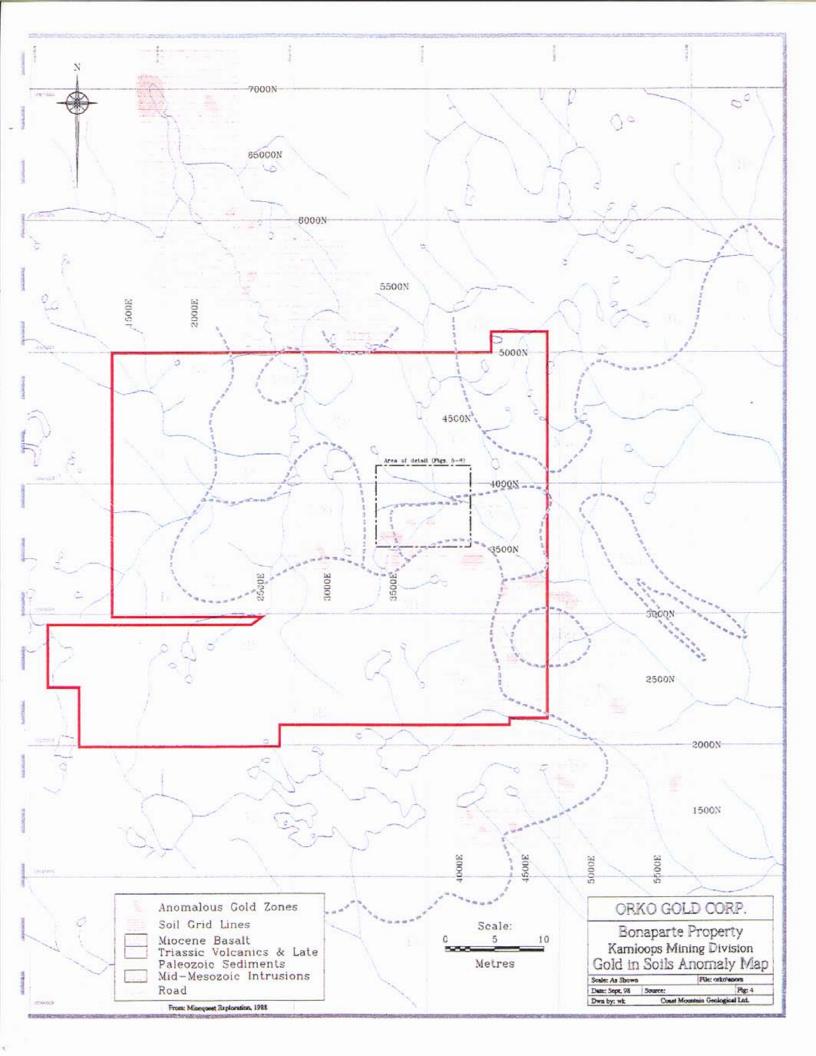
## <u>UNIT\_4:</u> Plateau basalts

Most of the Bob 21 and Bob 27 claims are covered by massive and vesicular subhorizontal flows of dark brown to grey basalt and andesite weathering. The basalts are olivine porphyritic, and feldspar laths less than 1 mm long are common in the andesitic units. Columnar jointing was observed on several cliff faces in the Wentworth Creek valley. Individual flows vary in thickness from 1 to 20 m, with numerous lenses of volcanic breccia.

### Structural Geology

The foliation present in the meta-sediments is subparallel to bedding except in the hinge zone of folds. Folds are tight to isoclinal with subangular to angular closures. The fold axes measured have variable trends and plunge from 0 to 50°. Microfolds on the millimetre and centimetre scale are common in the shales and phyllites. The phyllite foliation is locally crenelated. Since the fold orientations vary in the black shales and phyllite either inhomogeneous strain or at least 2 episodes of deformation are present.

Fractures are commonly parallel to the foliation. The foliation in Cooler Creek is consistently 035° to 060°, dipping moderately to the southeast.


Minor faults were noted in the 1998 drilling. Their strike and dip is unknown. Occasional shearing was indicated by well developed foliation over narrow widths.

An airphoto lineament study (1998) indicates persistent and extensive northwest striking structures from the property and along a northwest running creek into Caribou Lake and southeast from the property more or less along "Cooler" Creek, while a 10 - 20° change in strike appears to occur near the property. These structures are also indicated by an interpretation of geophysical, survey results (Minequest, Richard Gosse, January 1987). North striking airphoto lineaments suggests a possible northerly extension into sediments of structures which hosts some of the quartz veins, such as the Crow vein.

This is also indicated by a geological interpretation (Minequest, R. Grosse, January 1987).

# **ALTERATION**

The quartz diorite body has suffered little alteration. Some light sericitic alteration was noted particularly near the contact area. Silicification was noted in areas of frequent quartz stringers and penetrating into the walls beside quartz veins. Areas of fracturing and core fragmentation has considerable chlorite on fracture surfaces.



The sediment-intrusive contact is heavily altered and disturbed. The sediment and to a less degree intrusive rocks have been strongly to completely silicified. Development of brown biotite gives the rock a wavy, dirty and foliated look. Further away from the contact the sedimentary rocks have been hornfelsed and pyritized as seen in outcrops. Some drill holes (1998) show a gradual change from fresh diorite to total silicification with wavy bands of biotite.

## **MINERALIZATION**

The mineralization so far examined is largely confined to quartz veins. Eight of these have been names: The Crow, Grey jay, Owl, Nutcracker (these four are part of one vein system), Raven, Chikadee, Flicker and Woodpecker. The vein system (Crow - etc.) and veins strike north to north-northeast (N to NNE) and dip moderately to the east. They cover an area of about 300 m east-west, being 25 to 100 m apart and extend from 10 m to 200 m north-south.

The gold mineralization confined to quartz veins within the intrusive body is highly variable.

It is generally associated with sulphides, pyrite, chalcopyrite, and pyrhotitie which is found in irregular patches. Occasional very high grade zones exist but no logical explanation for their occurrence has been found.

The veins appear to be mesothermal and should extend to depth. They pinch and swell from a few centimetres to more than 3.0 metres in width and bifurcate irregularly along strike and also to depth as indicated by diamond drilling.

There is some indication in diamond drilling that the mineralization may diminishes with depth. A definite answer to that question may not be forthcoming without underground exploration.

"A scanning electron microscope study (Leitch 1988) was carried out recently to investigate the possibility of the gold being leached from soluble tellurides and reprecipitated at the water table. The study was inconclusive with respect to the possibility of the high grade areas being due to supergene enrichment" (Rosco Postle Associates Inc., February 15, 1988)

Mineralization not confined to quartz veins is of interest as it may be less erratic and more extensive. Diamond drill hole 98#12 intersected (true) 0.5 m of well foliated sheared diorite which graded 1.52 grams gold and hole 98#19 intersected 0.8 m (true width unknown) of foliation and shearing in diorite which graded 3.15 grams gold. A.T. Fisher (August 1989) reports a sample in trench #4 1989 which graded 0.612 ounces gold per tonne across a 1.5 m wide (true) shear zone with narrow quartz stringers. There is however, a large number of shears sampled in 1998 drilling which did not carry gold.

Page 10

The intrusive body occasionally has a weak stock work of quartz stringers which carries minor copper and molybdium mineralization.

The quartzdiorite infrequently carries 10 - 15 ppb gold but usually not more than 5 ppb. Strong silicification at the contact area is frequently highly anomalous in copper and molydenite and occasionally in arsenic, seldom in gold.

## <u>VEINS</u>

The trench grade information is from Minequest 1987. The sampling carried out by Minequest consisted of panel sampling in the Crow vein system and channel sampling in the other veins. The samples were analysed at Bondar Clegg, Vancouver. The writer believes that the sampling is of high quality. The grade values were averaged by the writer.

## **CROW VEIN SYSTEM**

Surface sampling gave good grades in the central and north part of this vein system:

| Central Crow: | 19 m | 19.54 g Au/tonne over 1.06 m width |
|---------------|------|------------------------------------|
| Grey Jay:     | 29 m | 51.49 g Au/tonne over 0.76 m width |
| Nutcracker:   | 15 m | 66.5 g Au/tonne over 0.58 m width  |

The south end of the Crow vein has little surface values. The only value noted down is a shear grading 21.6 g Au/tonne over a width of 1.5 m on section 8025N. The diamond drill holes along this southern extension (both 1998 and earlier drilling) are however, promising. Of twelve holes drilled three gave good grade, five low to moderate grade and four intersected quartz vein without values. The vein is open the south, but the Tertiary lava covers any vein only 20 to 25 m to the south. The vein system has little values from section 8050N to 8075N where it appears to start improving again. Occasional good grade intersections continue for about 100 m to section 8175N (approximately 25% good values, i.e., of economic grade in a normal underground mining operation - 40% low to moderate grade and 35% negative). Many of these intersections occur, however, in a vein in the footwall of the Crow vein system. This footwall vein has not been located on surface.

## **RAVEN VEIN**

The vein has been exposed intermittently over a strike length of 140 m. The trenches expose a very erratic vein with which is usually less than 0.5 metres in width and carries little sulphides. The best section is at the south end of the trenching where a 20 metre length has given 9.02 g gold/tonne over 1.36 m width. Past diamond drilling gave low values only.

The vein is open to the south. A soil anomaly lies on its south projection (oral communication with Bruce Perry, Ph.D., (Geol.))

## **CHIKADEE VEIN**

This vein has been intermittently exposed over 40 metres. The projection between trenches is, however, uncertain. Sampling in three trenches over 15 m length gave 4.48 g gold/tonne over a width of 0.48 metres. The vein pinches down to 10 cm to the south but due to frequent pinching and swelling it may well widen out again. About 50 m to 75 m to the north is an area where several well mineralized quartz blocks have been located. It is called the "B" block field. A trench (1998) located a quartz vein which on surface graded 2.07 g and 5.14 g gold/tonne over 1.6 m and 1.22 m widths. A diamond drill hole (98 #23) intersected a quart vein below the outcrop with no values. If this is the same vein it dips to the west contrary to all other known veins on the property. This may be the north extension of the Chikadee vein. Other drilling on this vein 98#11 and #14 gave 4.35 g gold/tonne over 0.6 metres

## THE FLICKER VEIN

The vein was sampled over a length of about 15 m and gave 7.27 g gold/tonne over a width of 0.65 metres. The vein appears to pinch out both to the north and south and a maximum length in indicated to be no more than 30 m. There is some faulting to the south, however, and it is possible that the vein extends on the south side of the fault.

Diamond drilling in 1998 gave in part good values ie., DDH#2 23.0 g gold/tonne over 0.5 metres and DDH#9 0.851 g gold/tonne over 1.2 m.

## WOODPECKER VEIN

This vein lies just (10 m?) east of the Flicker vein. Information about the vein is of uncertain quality.

## SOIL SURVEYING

(After Minequest 1988)

The soil survey consisted of 1,700 sample on the present Bonaparte gold property. The majority of the area was covered by sample grid lines 200 m apart and a sample spacing of

Page 12

20 m. The area due west of the quartz vein exposures (Discovery zone) was sampled along lines 50 m apart with sample spacing of 10 m.

The "B" Horizon was sampled and analyzed for gold. Several anomalous areas were located. Two areas were distinctly anomalous namely the area immediately west of the quartz vein exposures (Discovery zone) and an area about 600 m east and 200 m south of the Discovery area (see map figure 4). The area immediately due south, southwest and southeast of the Discovery area was not surveyed.

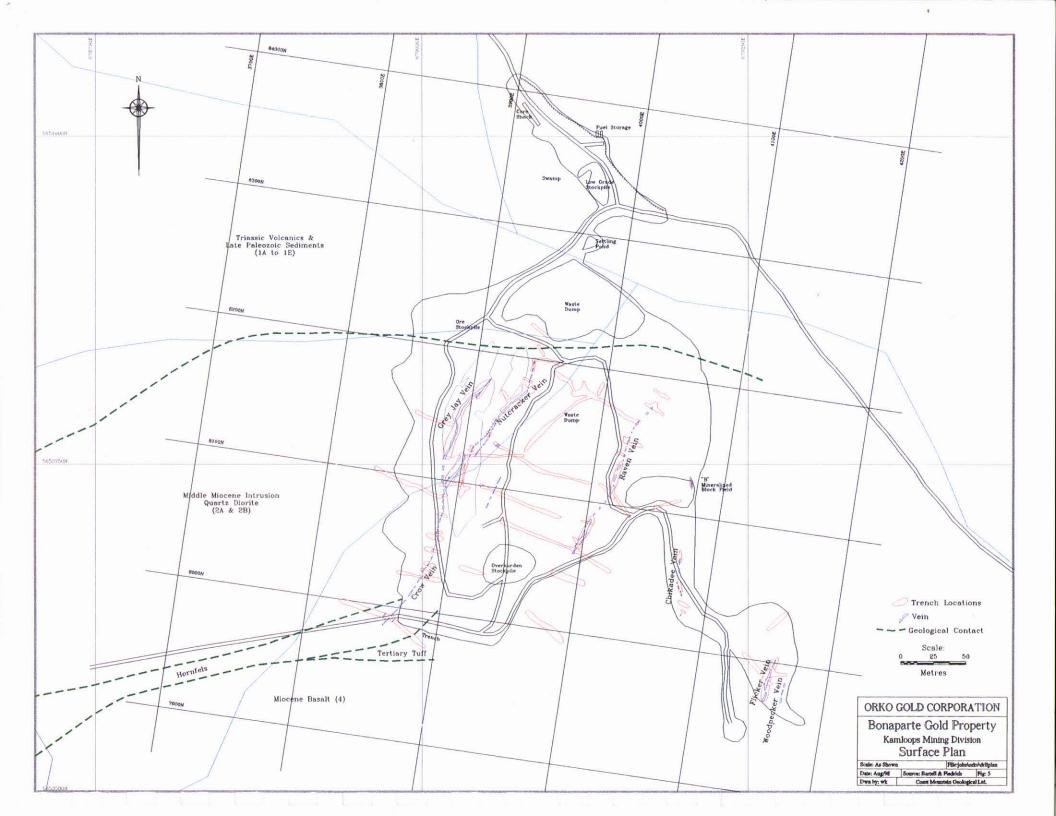
Another soil survey which is not available to the writer apparently covered the above mentioned areas which had not previously been surveyed. Anomalous values were obtained due south of the Raven vein and to the south west of the Discovery area (oral communication Bruce Perry, Ph.D.).

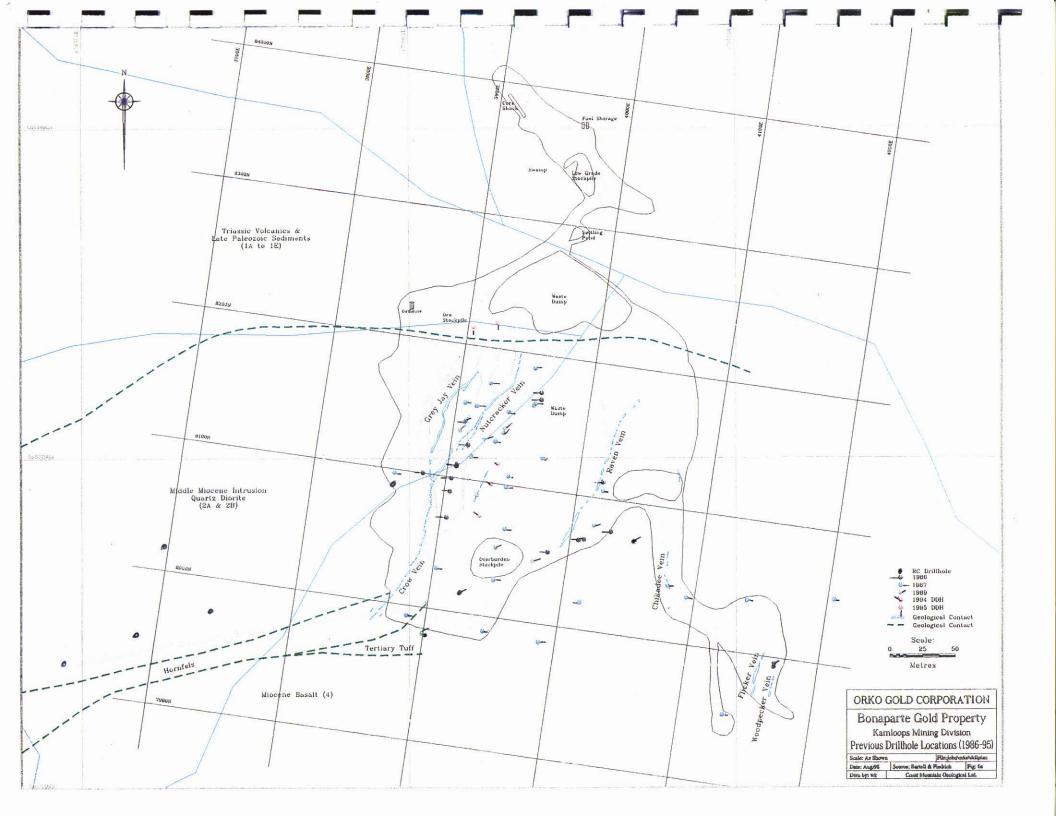
## **GEOPHYSICAL SURVEYING**

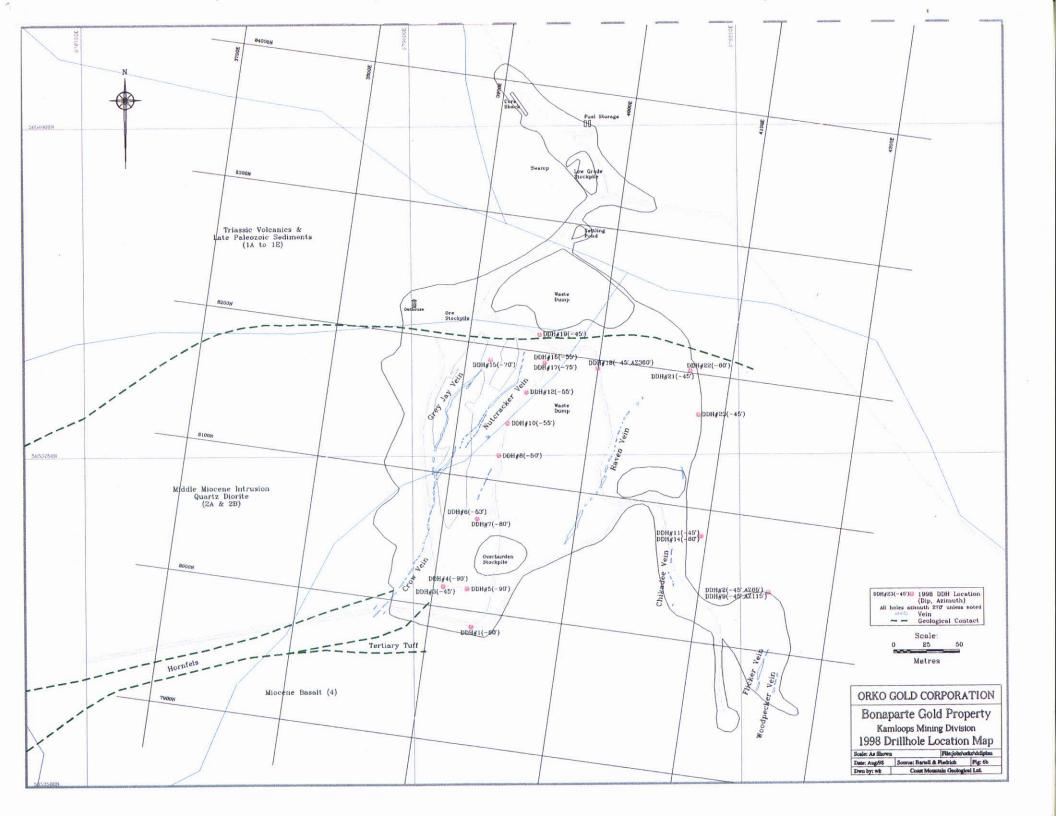
(After Minequest 1988)

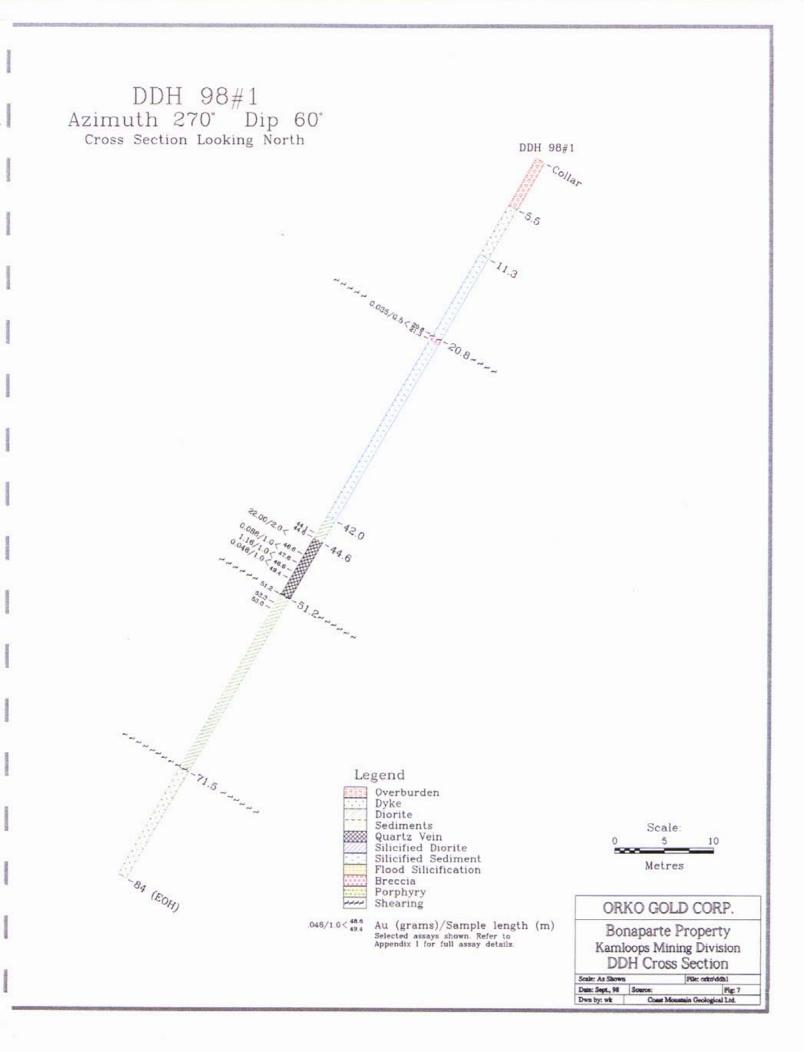
A magnetometre survey, as well as a VLF-electromagnetic survey, defined two northwest trending fractures. This is consistent with an airphoto lineament study which noted strong northwest lineaments following parts of Cooler Creek. Weak magnetic highs outline areas of intrusive rocks while some strong VLF-electromagnetic north-northeast features apparently reflect bedding in the sedimentary-volcanic rocks.

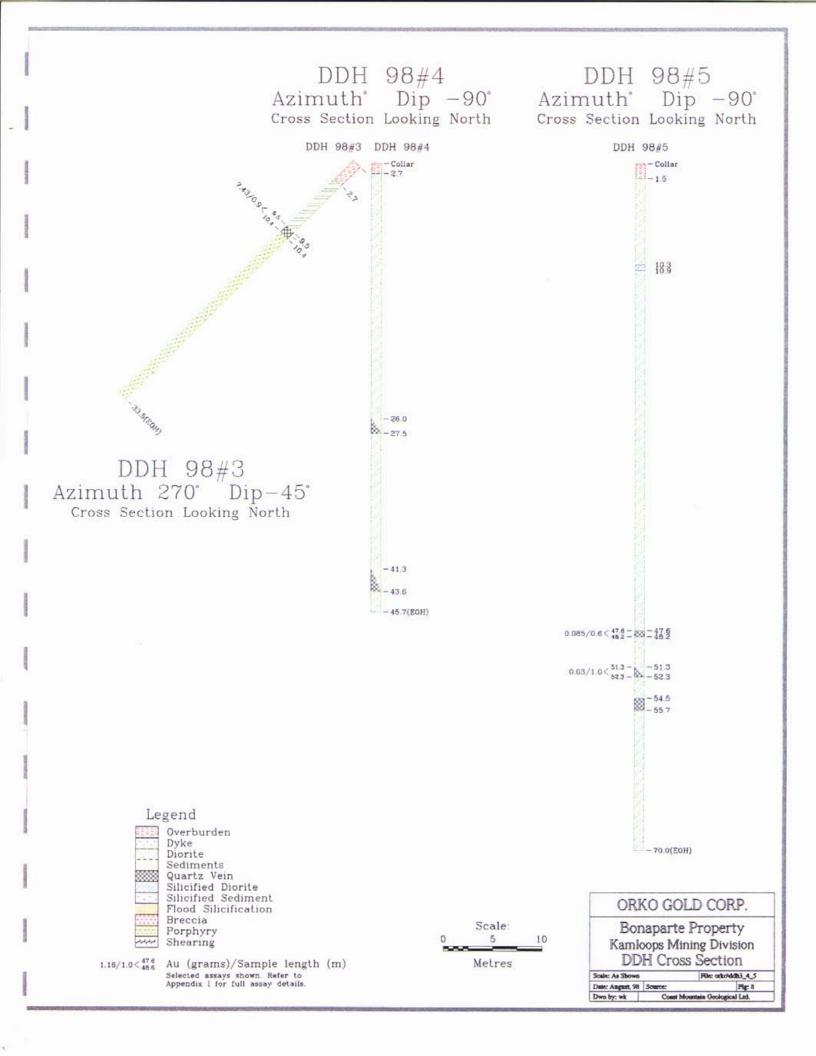
A distinct north-south VLF-EM lineament coincides with the anomalous soils immediately west of the discovery zone.

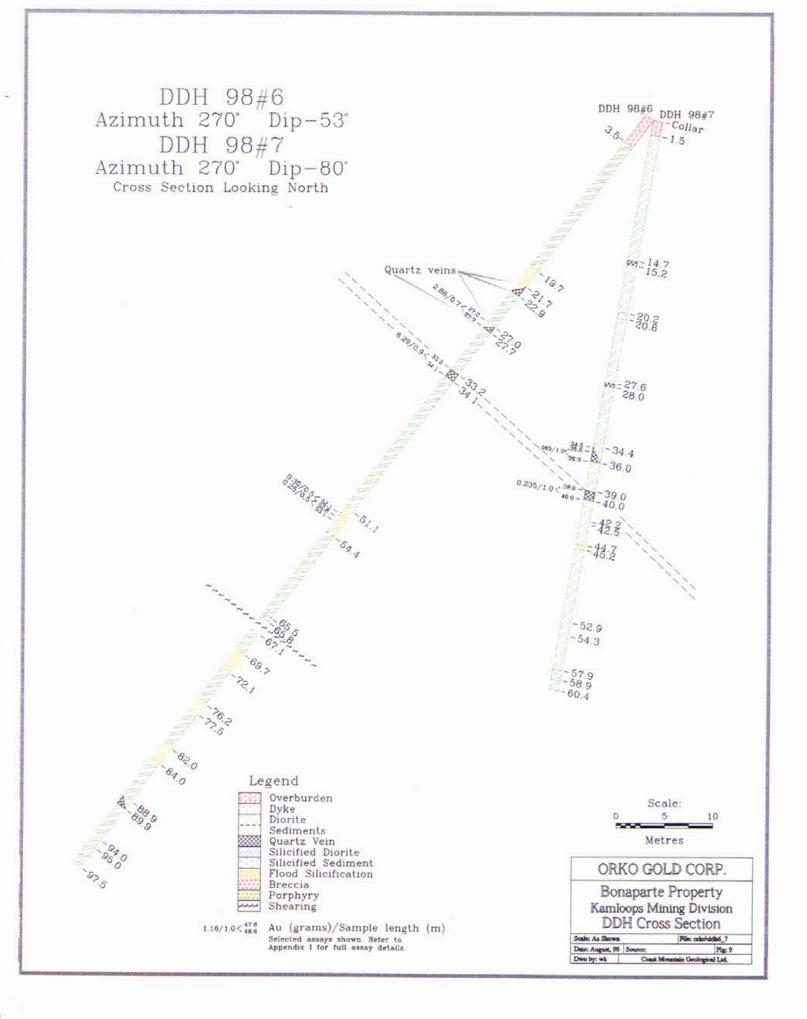

## EXPLORATION RECOMMENDATIONS

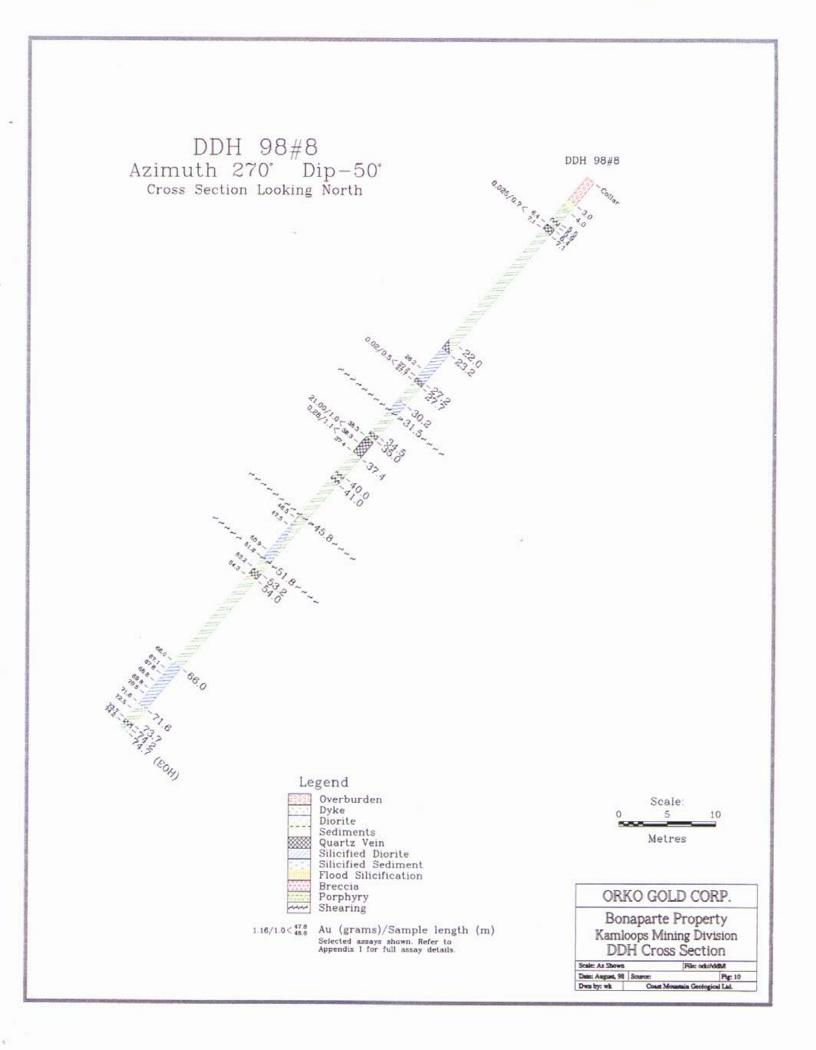

All exploration to date has been directed toward the quartz diorite intrusive, other than general property wide geological mapping and surveys. There appears to be a possibility for gold deposition in sedimentary-volcanic rocks surrounding the intrusion. It may be useful to examine the geological setting of the "QR" gold deposits at the Quesnel River near Likely B.C. There are three deposits at the QR which had mineable reserves of 1.3 million tonnes grading 4.7 g gold/tonne. These deposits are located near a "Front" of prophylitichornfelsed alteration halo approximately 100 m to 200 m away from an alkalic diorite stock. A hydrothermal system through structural and lithological controls deposited gold in a permeable lithology next to more impervious carbonaceous sediments within 50 m of the alteration front. A similar alteration halo surrounds the intrusive (diorite-quartz dioritegrandodiorite) stocks at the Bonaparte gold property. The composition of the intrusives is different but the surrounding volcanic rocks are part of the same Takla-Nicola group while the sediments are very similar but apparently older than those at the QR mine.

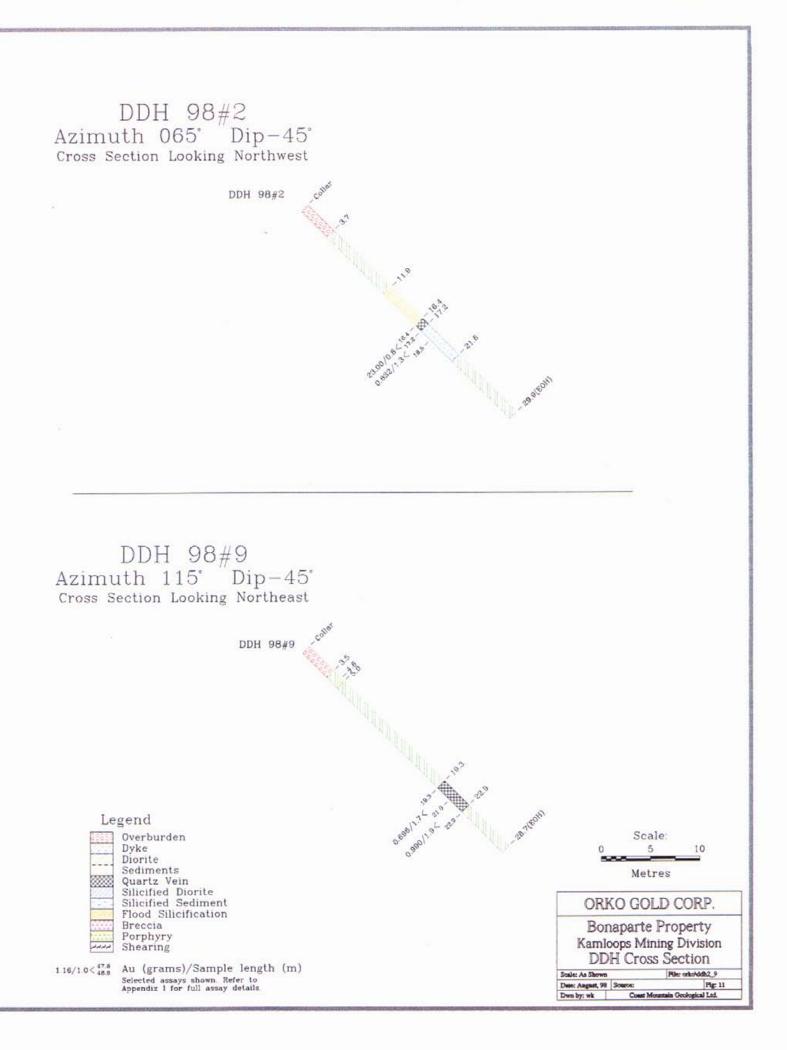

Exploration markers are porosity such as faults, fracture zones or breccias-near the alteration front, carbonaceous sediments and epidote-hornfels alteration.

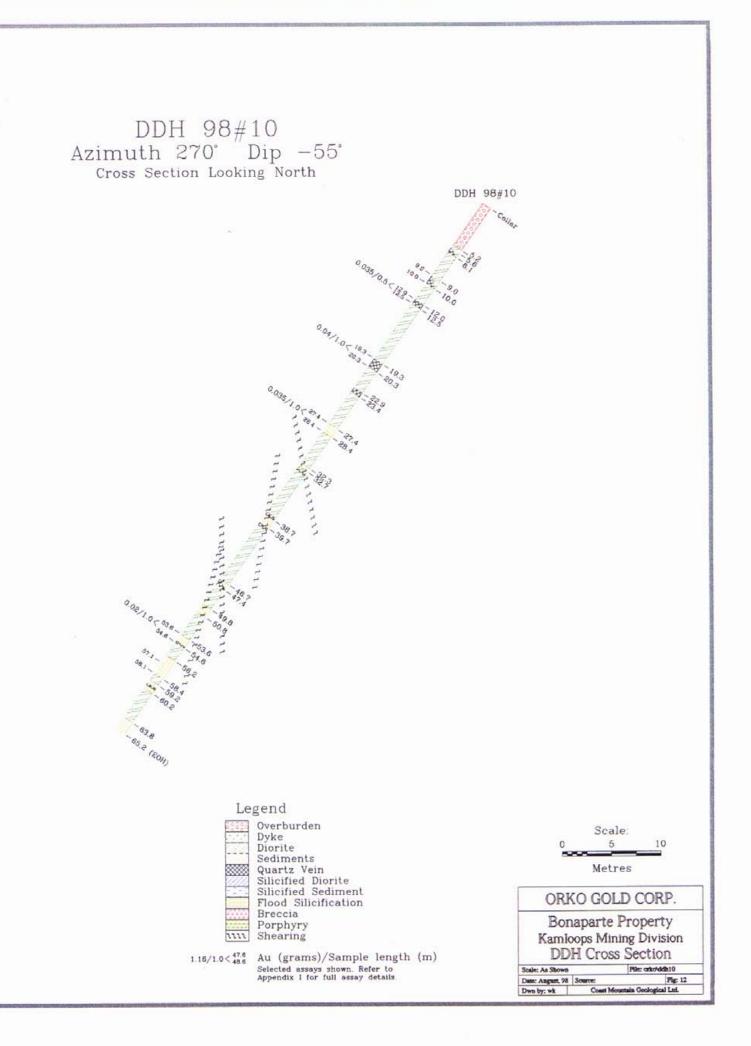

The southern extension of the quartz veins also warrant (further exploration.

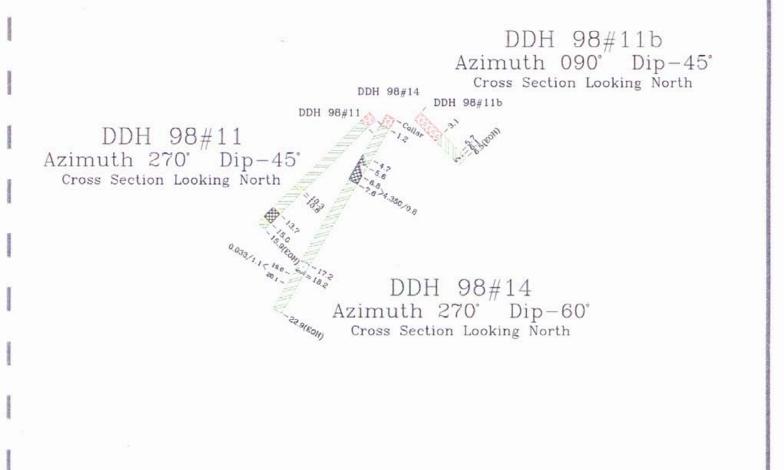

Respectfully submitted, Egil Livgard, P.Eng. September 2, 1998



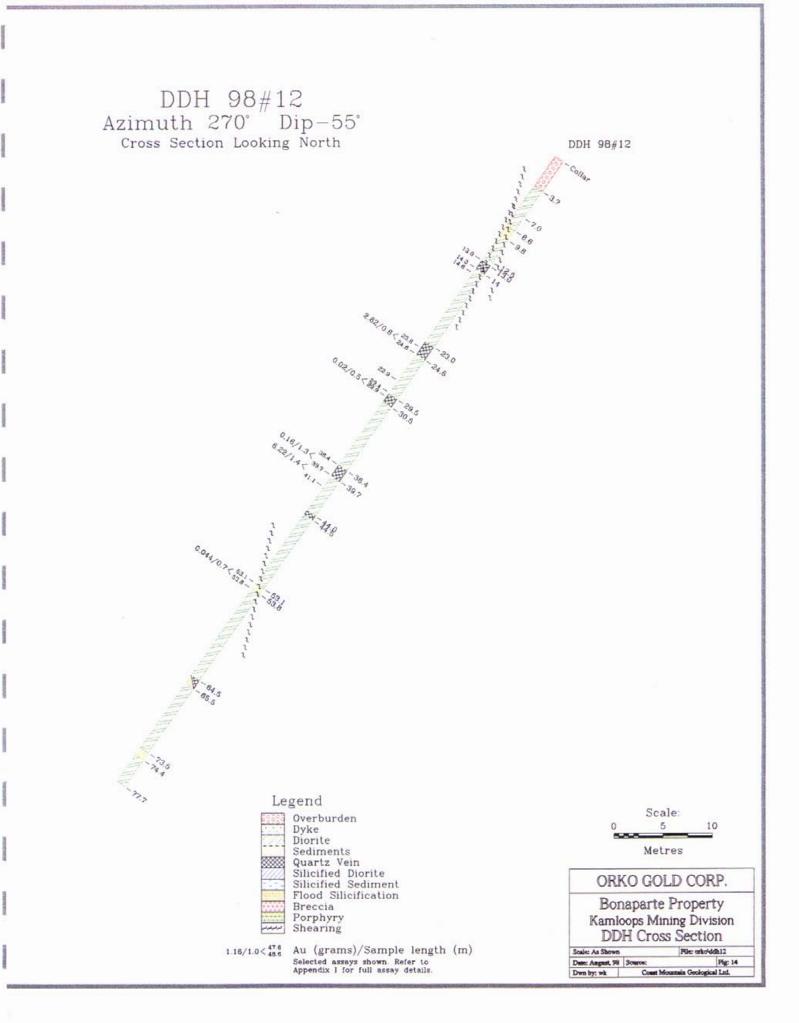



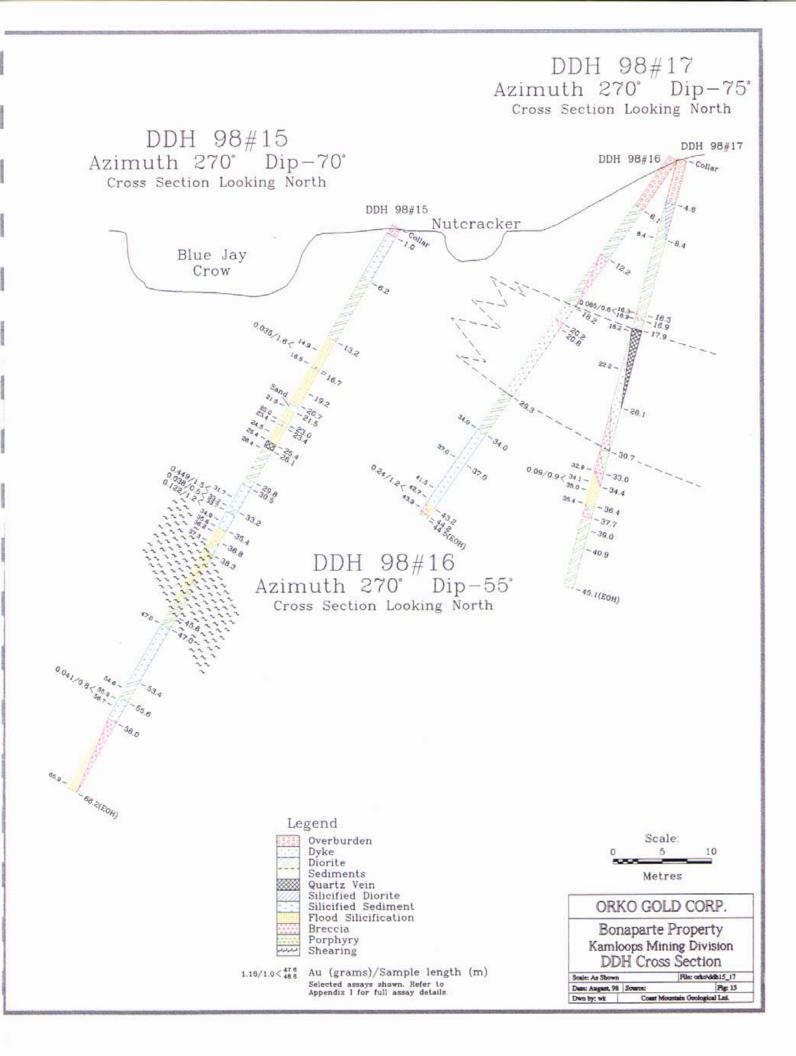










| Legend                                                                                                                           |                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Overburden<br>Dyke<br>Diorite<br>Sediments<br>Quartz Vein                                                                        | Scale:<br>0510<br>Metres                                                                                                                  |
| Silicified Diorite<br>Silicified Sediment<br>Flood Silicification<br>Breccia                                                     | ORKO GOLD CORP.                                                                                                                           |
| Shearing                                                                                                                         | Bonaparte Property<br>Kamloops Mining Division<br>DDH Cross Section                                                                       |
| 16/1.0< <sup>47.5</sup><br>Au (grams)/Sample length (m)<br>Selected assays shown. Refer to<br>Appendix I for full assay details. | Scale: As Shown     Pile: orkoldbi1_14       Date: Asgust. 98     Source:     Fig: 13       Dwn by: wk     Coast Mountain Goological Ltd. |





DDH 98#18 Azimuth 360° Dip-45° <sub>Cross Section Looking East</sub>

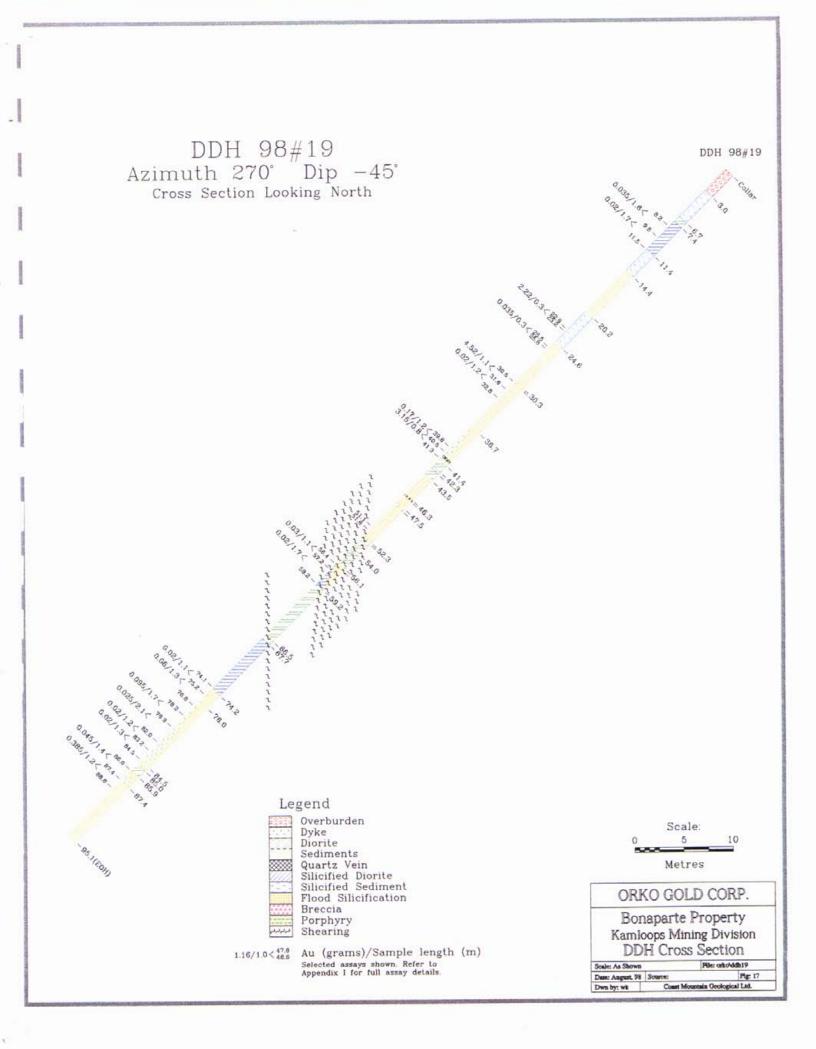
Legend

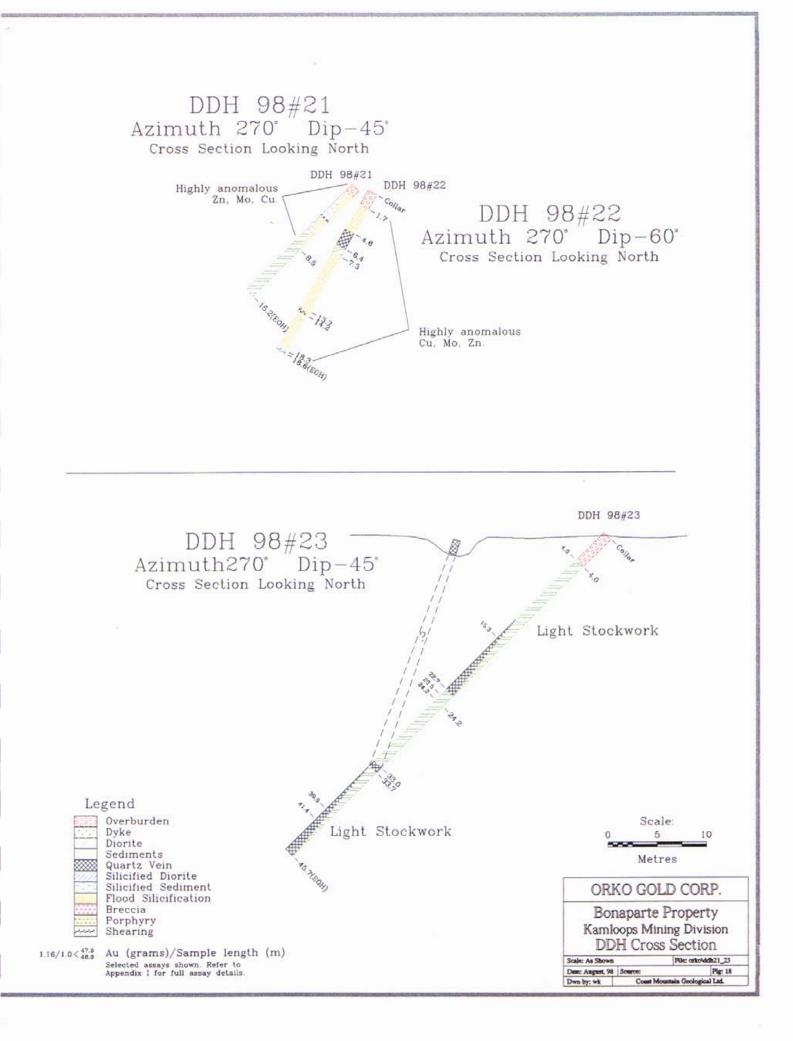
01010

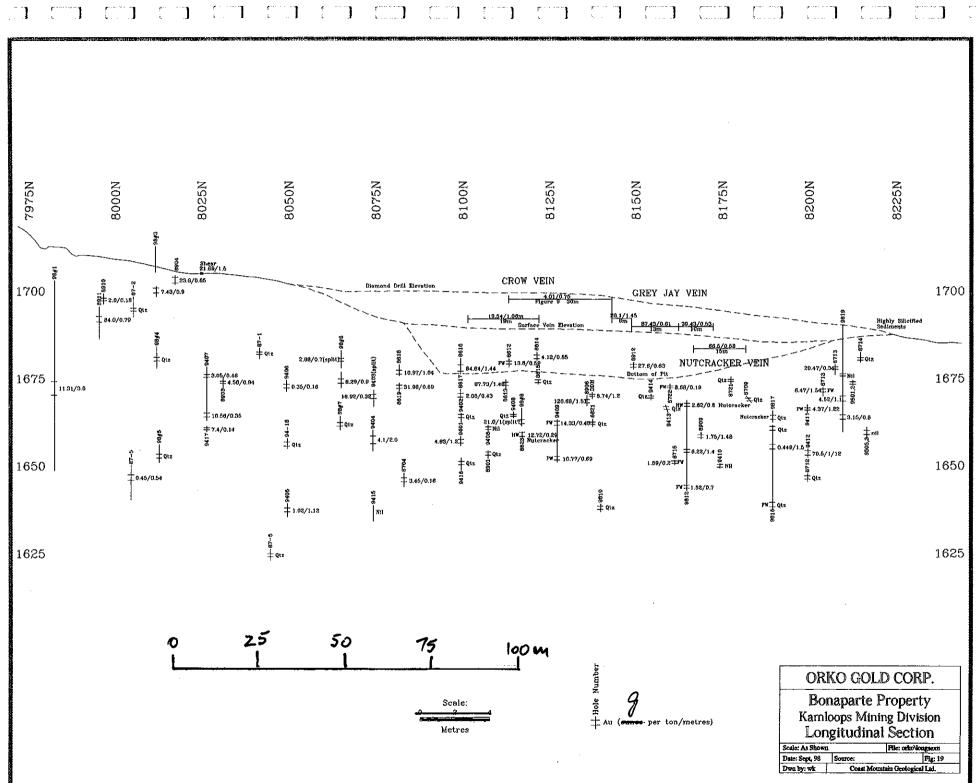
2

| 60000        | Overburden           |
|--------------|----------------------|
| 1.161        | Dyke                 |
| 14.5         | Diorite              |
| 1.10         | Sediments            |
|              | Quartz Vein          |
| 1111         | Silicified Diorite   |
| 1-1-         | Silicified Sediment  |
| CARLEN       | Flood Silicification |
| 44400        | Breccia              |
|              | Porphyry             |
| فيرفيرتيوفير | Shearing             |

59.5(601)


1.18/1.0<47.6 Au (grams)/Sample length (m) Selected assays shown. Refer to Appendix 1 for full assay details.


0.026/1.0


| <u></u>          | Jud     | ie.     | 10              |
|------------------|---------|---------|-----------------|
| 0                |         | _       | 10              |
| 1. T. T.         | Met     | res     |                 |
| ORM              | (O GO   | LD      | CORP.           |
| Bon              | aparte  | Pro     | perty           |
| Kamk             |         | ning    | Division        |
| Scale: As Shown  | 1.5     | 190     | e: orko\ddh18   |
| Date: August, 98 | Source: |         | Pig: 16         |
| Dwn by: wk       | Coast M | cuntain | Geological Ltd. |

Saale

DDH 98#18







### **REFERENCES**

### <u>GSC</u>

- O.F. 980, Bedrock Geology of Ashcroft Map Area, J.W.H. Monger and W.J. McMillian, B.C.D.M. 1983
- 363, Memoir, Geology of Bonaparte Lake Map-Area, 1965, H.W. Tipper and R.B. Campbell
- Report on the Bonaparte Gold Property, Peter A. Christofer, Ph.D., P.Eng., June 23, 1997,
- A Summary Review Report on the Bonaparte Gold Property, R.D. Westervelt, Msc., P.Eng., June 15, 1994
- A Review of the Bonaparte Mineral Property, A.T. Fisher, August 1989
- Report on the Bonaparte Property, Roscoe Postle Associates Inc., February 15, 1988

Minequest Exploration Association Ltd.

 North Thompson Claims, Geology and Geochemistry, A. W. Gourlay, May 1985

Geology, Rock and Soil Geochemistry, Geophysics and Diamond Drilling on the Bob
 1986 Group, 1986
 C. P. Postfield

G.R. Peatfield

- Bonaparte Property Diamond Drilling, Trenching and Geophysics, January 1987 Richard Gosse
- Bonaparte Discovery Belt 1988 Summer Field Program, September 1988
   A.W. Gourlay (Ass. Report 17904)

Bulletin 97

• B.C.D.M., Geology and Mineral Deposits of the Quesnel River-Horsefly Map Area, August 1996

A. Panteleyev, P.Eng., D.G. Bailey, P.Geol., M.A. Bloodgood, P.Geol and K.D. Hancock, P.Geol.

CERTIFICATE

ŝ

## I, EGIL LIVGARD, of 1990 King Albert Avenue, Coquitlam, B.C., do hereby certify:

- 1. I am a Consulting Geological Engineer, practicing from #436 470 Granville Street, Vancouver, B.C.
- 2. I am a graduate of the University of British Columbia, with a B.Sc., 1960 in Geological Sciences and have regularly updated and expanded my geological knowledge through numerous short courses given by MDRU, GAC and the Chamber of Mines.
- 3. I am a registered member in good standing of the Association of Professional Engineers of the Province of British Columbia, Registration No. 7236.
- 4. I have practiced my profession as a Geological Consultant for over 25 years.
- 5. This report dated September 2, 1998 is based on the references as listed and work on the property from June 7 to July 14, 1998.
- 6. I am a Director of Orko Gold Corp. and have a stock option of 50,000 common shares of the Company.

Dated at Vancouver, British Columbia this 2nd day of September, 1998.

Egil Livgard, B.Sc., P.Eng.

Page 16

## APPENDIX I

### Statement of Costs

# STATEMENT OF COSTS

## Before July 23, 1998

۰, w

Ŀ.

. . .

÷.,

| Diamond drilling, 1,103 m @ \$77/m+, Connors, Kamloops                                               | <b>\$</b> 1 | 11,663.00  |
|------------------------------------------------------------------------------------------------------|-------------|------------|
| Assaying, Eco-Tech & Acme Labs                                                                       |             | 6,525.00   |
| Geology, Supervision<br>E. Livgard, P.Eng. (36 days @ \$400) and<br>Ed Frey, Geol., (6 days @ \$300) |             | 16,200.00  |
| Excavator - Roads, Pads, Sumps                                                                       |             | 9,495.00   |
| Equipment rental, Vehicle, Diamond Saw                                                               |             | 2,908.00   |
| Surveying - Bartell & Fiedrich                                                                       |             | 2,888.00   |
| Accommodations and meals                                                                             |             | 2,868.00   |
| Labour - 140 hrs @ \$12.50/hr                                                                        |             | 1,750.00   |
|                                                                                                      | \$ 1        | 154,297.00 |
| <u>After July 23, 1998</u>                                                                           |             |            |
| Autocad Digitizing and Compilation Coast Mountain Geological                                         | \$          | 4,622.00   |
| Printing                                                                                             |             | 250.00     |
| Typing                                                                                               | -           | 200.00     |
| Report and Map preparation, 47 hrs @ \$50/hr                                                         |             | 2,350.00   |

\$ 7,422.00 Total \$ 161,719.00

## APPENDIX II

ς.

.

. .

~

**.** .

÷ X. a

<u>می</u>سم .

4

Ł.

. .

.....

.

. د

5

Core Logs

| MTS Map Number: 92/1    | Drilling by: CoNNORS                         | DRILL HOLE:                                                                              |
|-------------------------|----------------------------------------------|------------------------------------------------------------------------------------------|
| TRIM 92 POOS            |                                              | 98#I                                                                                     |
| KAMLOOPS                | Logged by:<br>E.L.V.G.A.R.D                  |                                                                                          |
| AZIMUTH: W<br>DIP: -60° |                                              |                                                                                          |
|                         | TRIM GZ POOS<br>Mining Division:<br>KAMLOOPS | TRIMG2POOSDate:July 841998CMining Division:Logged by:KAULOOPSE-LIVGARDAZIMUTH:ELEVATION: |

| MAIN DIV.       | MINOR DIV.      | DESCRIPTION                        | SAMPLE | INTE     | RVAL                                  | alb | ASS     | AYS &                                   | )pry |
|-----------------|-----------------|------------------------------------|--------|----------|---------------------------------------|-----|---------|-----------------------------------------|------|
| from (m) to (m) | from (m) to (m) |                                    | NUMBER | from (m) | to (m)                                | Au  | Ca      | MIS                                     | AS   |
| 0 5.5           |                 | CASING                             |        |          |                                       |     |         |                                         | 1    |
| 5.5 11.3        |                 | DYKE VERY FINE GRAINED             |        |          |                                       |     |         |                                         |      |
|                 | ·               | GREY WITH (IMM) WHITE              |        |          |                                       |     |         |                                         |      |
|                 |                 | Specks (FELDSPAn?) THROUGHOUT      |        |          |                                       |     |         |                                         |      |
| 11.3 42.0       | ·····           | ALTERED SEDIMENT (?)               |        |          |                                       | 4 % |         |                                         |      |
|                 |                 | VERY STRONG SILICIFICATION         |        |          |                                       |     |         |                                         | 1    |
|                 |                 | WITH SO% BROWN IBREGULAN           | 2      |          | [                                     |     |         |                                         |      |
|                 |                 | BANDS OF BIOTITE (?) 10 TO 30 TO ( |        |          |                                       |     |         |                                         |      |
| · ····          |                 | - GREY SILICA WITH BLACK AND       |        |          |                                       |     |         |                                         |      |
|                 |                 | TAN SECTIONS-OCCASIONAL            |        |          |                                       |     | ••••    |                                         |      |
|                 |                 | SERICITE MINOR PURITE              |        |          |                                       |     |         |                                         |      |
|                 | AT 16.5         | 15 cm PINK FELDSPAR AND            | 113727 | 16.5     | 16.7                                  | 8   | 499     | 25                                      | 58   |
|                 |                 | QuipATZ Dyk = (?) 50° AND 0-20°6   |        |          |                                       |     | ·/····/ |                                         |      |
|                 |                 | WITH 1% CHARCOPYRITE AND           |        |          | • • • • • • • • • • • • • • • • • • • |     |         |                                         |      |
|                 | 1 141 1         | MINOR PYRITE                       |        |          |                                       |     |         |                                         |      |
|                 |                 | 1/                                 |        |          |                                       |     |         |                                         |      |
| • • • •         | No.             |                                    |        |          |                                       |     |         |                                         |      |
|                 | 208 21.3        | FRAGMENTED SANDTO locur            | 113728 | 20.8     | 21.3                                  | 35  | 571     | -23                                     | 2657 |
|                 |                 | 2 cm PMup 30toc                    |        |          |                                       |     |         | · • • • • • • • • • • • • • • • • • • • |      |
|                 |                 | SomE DINK FELDSPAR AS ABOVE        |        |          |                                       |     |         |                                         |      |

 $\frac{1}{984} = \frac{1}{2462} = \frac{1}{24} = \frac{1}{2462} = \frac{1}{2$ 

| MAIN     | DIV.        | MINO     | r div. | DESCRIPTION                                                                        | SAMPLE  |          | RVAL   | arb            |     | AY S | M  | ]  |
|----------|-------------|----------|--------|------------------------------------------------------------------------------------|---------|----------|--------|----------------|-----|------|----|----|
| from (m) | to (m)      | from (m) | to (m) |                                                                                    | NUMBER  | from (m) | to (m) | Au             | au  | No   | As |    |
|          |             | Z4.6     | 24.7   | PINK FELDSPAR AS ABOVE                                                             |         |          |        |                |     |      |    |    |
|          |             | 31.5     | 31.9   | H u u u                                                                            |         |          |        |                |     |      |    |    |
|          |             |          |        | Some angriz ANO EPIDOTE AROUN                                                      | 2       |          |        |                |     |      |    |    |
|          |             |          |        | THE FELDSOAR FRAGMENTS (2)                                                         |         |          |        |                |     |      |    |    |
|          |             | 34.0     | 37.0   | FRAGMENTED Z-10 CM                                                                 |         |          |        |                |     |      |    |    |
|          |             | \$6.3    | 36.9   | 4 1/4-3 cm                                                                         |         |          |        |                |     |      |    |    |
| 42.0     | 44.6        | <b>_</b> |        | DIORITE - MEDILUM GRAINED                                                          |         |          |        |                |     |      |    |    |
|          |             |          |        | PORPHYRYTIC - CONTACT                                                              |         |          |        |                |     |      |    |    |
|          |             |          |        | iRREGULAR BUT ABRUPT.                                                              |         |          |        |                |     |      |    | ·  |
|          |             |          |        | FRACTURING 10, 40, 50° & C                                                         |         |          |        |                |     |      | ļ  |    |
|          |             |          |        | INCREASING SILICIFICATION TO                                                       |         |          |        |                |     |      |    |    |
|          |             |          |        | 44.6 .                                                                             |         |          |        | - <del>.</del> |     | ,    |    |    |
|          |             | 44.1     | 44.3   | antriz STRINGER                                                                    |         |          |        | :              |     |      |    |    |
| 44.6     | 51.2        |          |        | QUARTZ VEINS                                                                       | 113729  |          |        |                |     |      | 9  |    |
|          |             | 44.6     | 47.6   | MASSIVE QUARTZ UPPER                                                               | 30      | 44.6     | 46.6   | Tertor         | 764 | Z    | 23 | Į2 |
|          |             |          |        | CONTACT 50°50 LOWER                                                                |         |          |        | <b>8</b> 8/    |     |      | 6  | ]. |
|          | ·           |          |        | CONTACT APPEARS TO BE 70-80°.                                                      | 37      |          |        | ottory         | 27/ | 8    | 19 | 6/ |
|          |             |          |        | -pyRITE 1/28-ChALCOPYRITE /28?                                                     | 33      | 48.6     | 49.4   | 46/            | 1z  |      | 22 |    |
|          |             | 47.6     | 48.7   | -pyeite 1/2% - ChALCopyeite 1/2%.<br>FEAGMENTED 1/4-5 cm - 50% QUAR<br>50% GILICA. | 2 34    | 49.4     | 51.2   | 19             | 118 | 4    | 4  |    |
|          | <           | 48.7     |        | 50% GILICA.                                                                        | 35      | 51.2     | 52.3   | 8              | 87  | 6    | 22 |    |
|          |             | 48.7     | 49.4   | MASSIVE GUARIZ VEIN NITH                                                           | 36      | 52.3     | 53.0   | 3              | 53  | _1_  | 3  |    |
|          |             |          |        | LITTLE VISIBLE SuchPHOES.                                                          |         |          |        |                |     |      |    |    |
|          |             | 44.4     | 50.9   | FRAGMENTED 1/4-4 Cm                                                                | 4 4.0 m | 44.6     | 48.6   | 11.3/          | 20  | 1    |    |    |
|          |             |          |        | 10% QUARTZ - 40% BILICA                                                            |         | ļ        |        |                | 1   | ,    |    |    |
|          | ·····       | 50.9     | 51.2   | QUARTZ VEIN - LITTLE SugpHilles                                                    |         |          |        |                |     |      |    |    |
| 57.2     | <u>₽.</u> ≩ |          |        | DIOKITE FINE GRAINED                                                               | <u></u> |          |        |                |     |      |    |    |
|          |             |          |        | LIGHT SILICIFICATION                                                               |         | <b></b>  |        |                |     |      |    |    |
|          |             | 52.0     | 52.3   | ZO% QUARTZ FRAGMENTS - No Such                                                     | Froes   | L        |        |                |     |      |    |    |

 $\frac{1}{78} = \frac{1}{10} = \frac{1}{10}$ 

|       | · · · •      | 1        |          | <u> </u>                                            | 1 DHG   | <u> </u> | 2      |     |      |   |
|-------|--------------|----------|----------|-----------------------------------------------------|---------|----------|--------|-----|------|---|
| MAIN  |              |          | DR DIV,  | DESCRIPTION                                         | SAMPLE  | INTE     | RVAL   | AS  | SAYS |   |
|       |              | from (m  | ) to (m) |                                                     | NUMBER  | from (m) | to (m) |     |      |   |
| 52.3  | <u>53.</u>   | <u> </u> |          | BRECCIATED DIORITE                                  |         |          |        |     |      | 1 |
|       |              | <b>_</b> |          | FINE GRAINED.                                       |         |          |        |     |      |   |
|       | ·····        | <b>_</b> | ļ        | 30% GRAUNDMASS WITH                                 |         |          |        |     |      |   |
|       |              |          |          | 10-15% DYRITE - FRAGMENIS                           |         |          |        |     |      |   |
|       |              | ļ        | <u> </u> | 60% Diokite, 10% QUARTZ                             |         |          |        |     |      |   |
| 530   | 71.5         | <b> </b> |          | DIDRITE MEDILUTOFINE                                |         |          |        |     |      | 1 |
|       |              |          | <b></b>  | GRAINED - WELL FRACTURED                            |         |          |        |     |      | 1 |
|       | <u></u>      | L        |          | INCREASINGLY LIGHT -                                |         |          |        |     |      |   |
|       |              |          |          | OCCASIONAL COMARTE STRINGERS                        |         |          |        |     |      | 1 |
|       |              |          |          | 1-2 my 20° to C.                                    |         |          |        |     |      |   |
|       |              | 60.6     | 100.8    | WHITE FELDEPAR AND QUEARIE                          |         |          |        |     |      |   |
|       |              |          |          | 1-2 au 42 to c.                                     |         |          |        |     | ,    | 1 |
|       |              | 61.1     | 61.4     | AS ABOVE - LIGHT GREEN OF                           |         |          |        |     |      | 1 |
|       |              |          |          | FRACTURE SupPACES                                   |         |          |        |     |      |   |
|       |              |          |          | - WAHTER SECTIONS HAVE                              |         |          |        |     |      |   |
|       |              | <u> </u> |          | MORE QUARTZ STRINGERS                               |         |          |        |     |      |   |
|       |              |          |          | -VERY LITTLE PYRITE.<br>OCCASIONAL DENSE FRACTURINE |         |          |        | · · |      |   |
|       |              |          |          | OCCASIONAL DENSE FRACTURING                         |         |          |        |     |      |   |
|       |              |          |          | 35°, 48, 45° 6C                                     |         |          |        |     | ,    |   |
|       |              | 67.0     | 71.5     | WEAK FOLIATION TO-750 toc                           |         |          |        |     |      |   |
|       |              |          |          | CHANGING TO 450 THEN 60 6C.                         |         |          |        |     |      |   |
| 71.57 | 12.1         |          |          | FALLT ZOOVE - MUDAND SAND                           |         |          |        |     |      |   |
|       |              |          |          | 70° to C.                                           |         |          |        |     |      |   |
| 72.18 | 24.5         |          |          | DYKE - APHANITIC BLUE GREY                          | <u></u> |          |        |     |      |   |
|       | $\mathbf{A}$ |          | [        | GROUNDMASS WITH 1-2mm                               |         |          |        |     |      |   |
| (A)   | 1            |          |          | BIOTTE 20% - SUB ROWNOLD                            |         |          |        |     |      |   |
|       |              |          |          | BRURRED LIGHT FELDSPAR                              |         |          |        |     |      | { |
|       |              |          |          | TO 6 MM                                             |         |          |        |     |      |   |

| PROJECT: ORKE GOLD CORP | NTS Map Number: 92 P1        | Drilling by CONNORS      | DRILL HOLE: |
|-------------------------|------------------------------|--------------------------|-------------|
|                         | TRIM 92 POUR                 | Date:                    | 98          |
| TONAPART GOLD           | Mining Division:<br>KAML00PS | Logged by:<br>E. LIVGARD | #2          |
| COLLAR LOCATION:        | AZIMUTH: 650                 | ELEVATION:               | PAGE:       |
|                         | DIP: -450                    | TOTAL LENGTH: 29.9       | 1042        |

| MAIN DIV.                             | MINO     | R DIV.          | DESCRIPTION                                              | SAMPLE      | INTE     | RVAL   | epb     | ASS  | AYS A                   | pm     |        |
|---------------------------------------|----------|-----------------|----------------------------------------------------------|-------------|----------|--------|---------|------|-------------------------|--------|--------|
| from (m) to (m)                       | from (m) | ) to (m)        | DESCRIPTION                                              | NUMBER      | from (m) | to (m) | Au      | lu   | MD                      | A      | 1      |
| 0 3.7                                 | 7        |                 | CASING                                                   |             |          |        |         |      |                         |        | 1      |
| 3.7 11.9                              | 2        |                 | DIORITE - MEDIUM GRAINED                                 |             |          |        |         |      |                         |        | l<br>T |
|                                       |          |                 | MINOR HENOCRYSTS                                         |             |          |        |         | ·    |                         |        | i.     |
|                                       | 5.3      | 5.7             | FRAGMENTED SANDTO 200                                    |             |          |        | • • • • |      |                         |        | I      |
|                                       |          |                 | MINOR MUD-MINOR OXIDATION                                |             |          |        |         |      |                         |        | ł      |
|                                       | 6.8      | 10.1            | PARTLY STRONGLY FRAGMENTE                                | <u>p</u>    |          |        |         |      |                         |        |        |
|                                       |          | 7.9             |                                                          |             |          |        |         |      |                         |        | r      |
| · · · · · · · · · · · · · · · · · · · |          |                 | CHLORITE ALTERATION - SAND<br>SILICIFIED (70%) INCLUDED. |             |          |        | 3       |      | ,  <br>  <del> </del> - |        |        |
|                                       | 18.5     | 10.1            |                                                          |             |          | 127    |         |      |                         |        |        |
| 11.9 16.2                             | 4        |                 | ABRUPT CHANGE TO STROAKS                                 | 111 486     | 11.9     |        |         | 190  | 28                      | 5      |        |
|                                       |          |                 | SILICIFICATION + 15% QUARTZ                              |             |          | 13.6   | 3       | 134  |                         | 22     |        |
|                                       |          |                 | 10% PINK FELDSPAR AND                                    |             | 13.6     |        | 21      | 129  | 63                      | 3      |        |
|                                       |          | · <i>···</i> ·· | BROWN IRREGULAR BANDS OF                                 |             | 14.7     |        | 16      | ,145 |                         | 7_     | -      |
|                                       |          |                 | FIGTITE. 2% PYRITE AND                                   | 90          | 16-4     |        |         |      | 1 ( )//                 | 5<br>5 | 23     |
|                                       |          |                 | M. CHALCOPYRITE.                                         |             | 17.2     | 18.5   | 637     | 126  |                         |        | 1      |
|                                       |          |                 | - PROBABLE SEDIMENT-                                     |             | 18.5     |        | l       | 91   | 24                      | 10     | !<br>  |
| 6.4 16.2                              | 3        |                 | QUARTZ VEIN - 3% Charcopyri                              | <u>x 93</u> | 20.2     | 21.6   | 5       | 116  | 27                      | 47     |        |
|                                       |          |                 | MINOR PURITE                                             |             |          |        |         |      | ·                       |        |        |
| 16.8 17.05                            | <b>.</b> | <b></b>         | MINOR PURITE<br>SILICA - AND BROWN BANDS-BIDTIT          | L. TopyRit  | ₹        |        |         |      |                         |        |        |
| 7.0\$ 17.2                            |          |                 | RUARIZ VEIN 2% CHAUCOPYRITE, ,                           | '/          | <u> </u> |        |         |      |                         |        | l.     |
|                                       |          |                 | 5% PYRITE.                                               |             |          |        |         |      |                         |        |        |
|                                       |          |                 | //                                                       |             |          |        |         |      |                         |        |        |

 $\frac{1}{18} = \frac{1}{18} = \frac{1}{18}$ 

|        | N DIV.   |            | DR DIV.   | DESCRIPTION                                                                                                                                                     | SAMPLE                                |          | ERVAL       | · · · · · |          | SSAYS                                        |             |
|--------|----------|------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------|-------------|-----------|----------|----------------------------------------------|-------------|
| rom (m | ) to (m) | from (m    | 1) to (m) |                                                                                                                                                                 | NUMBER                                | from (m) | T           |           |          | 55AT5                                        | <del></del> |
| 7.2    | 21.6     | , <b> </b> |           | SILICA AND BLACK HORNIELS                                                                                                                                       |                                       |          |             | <u>'</u>  |          |                                              |             |
| ·      |          | <b> </b>   |           |                                                                                                                                                                 | · · · · · · · · · · · · · · · · · · · | -        | <u> </u>    |           |          |                                              |             |
|        |          | <b> </b>   |           | FOLIATION 80° DC GRADUARLY                                                                                                                                      |                                       |          | 1           |           |          | -                                            |             |
|        | <u> </u> | <b> </b>   | <u> </u>  | CHANGING TROUGH 45° to                                                                                                                                          |                                       |          |             |           |          |                                              |             |
| 7/1    | 29.9     | <b> </b>   |           | OTOLOO TOC SEDIMENT-                                                                                                                                            |                                       |          | [           | 1         |          |                                              |             |
| 19     | 61.7     | ·          | <u> </u>  | FOLIATION 80° to C GRADUARLY<br>CHANGING THROUGH 45° to<br>OTO 10° to C SEDIMENT -<br>DIORITE MEDIUM TO COARSE<br>GRAINED - DORPHYRYTTC<br>WEAK BILICIFICATION. |                                       |          |             |           |          |                                              |             |
|        |          | 7/1        |           | GRATINED - DORPHYRYTTC                                                                                                                                          |                                       |          |             |           |          |                                              | -           |
|        |          | <u> </u>   | 21.1      | WEAK BILICIFICATION.                                                                                                                                            |                                       |          |             |           |          |                                              | 1           |
| 7      | - 7      |            |           |                                                                                                                                                                 | ······                                |          | ļ           | <u> </u>  |          |                                              | 1           |
| 7      | ND       |            | ╎╴╍╴╺╿    |                                                                                                                                                                 |                                       |          | <del></del> | <u> </u>  | _        |                                              |             |
|        |          |            |           |                                                                                                                                                                 | ·····                                 | ·        |             | <u> </u>  | _        | _                                            |             |
|        |          |            |           |                                                                                                                                                                 | ······                                | <b> </b> | <u>_</u>    |           |          |                                              |             |
|        |          |            |           |                                                                                                                                                                 |                                       |          |             | ·         | -        |                                              |             |
|        |          |            |           |                                                                                                                                                                 |                                       | ┨───┤    |             |           |          | -                                            | <u> </u>    |
|        |          |            |           |                                                                                                                                                                 | ·····                                 |          |             |           | ļ        | <u> </u>                                     | <u> </u>    |
|        |          |            |           |                                                                                                                                                                 |                                       |          |             |           | <b> </b> |                                              | <u> </u>    |
|        |          |            |           |                                                                                                                                                                 | ·                                     |          |             |           | ┢───     | <u> </u>                                     |             |
|        |          |            |           |                                                                                                                                                                 |                                       |          |             | ·         |          |                                              | <u> </u>    |
| _      |          |            |           |                                                                                                                                                                 |                                       |          |             |           |          | <u>                                     </u> | <b> </b>    |
|        |          |            |           |                                                                                                                                                                 |                                       |          |             |           |          | <u> </u>                                     | <u> </u>    |
| -      |          |            |           |                                                                                                                                                                 |                                       |          |             |           | <b> </b> | <u> </u>                                     | <u> </u>    |
|        |          |            |           |                                                                                                                                                                 |                                       |          |             |           |          |                                              |             |
|        |          |            |           |                                                                                                                                                                 |                                       |          |             |           |          |                                              |             |
| ╇      | —        | <u> </u>   |           |                                                                                                                                                                 |                                       |          |             |           |          |                                              |             |
| ╋      |          |            |           |                                                                                                                                                                 |                                       |          |             |           |          |                                              |             |
| ╉      | [        |            |           | •                                                                                                                                                               |                                       |          |             |           |          |                                              |             |
|        | l        |            |           |                                                                                                                                                                 |                                       |          |             |           |          |                                              |             |

| PROJECT: ORKO GOLD CORP          | NTS Map Number: 92P/                        | Drilling by: CONNORS                                   | DRILL HOLE:    |
|----------------------------------|---------------------------------------------|--------------------------------------------------------|----------------|
| BONAPART GOLD MINE               | TRIM 928008<br>Mining Division:<br>KAMLOOPS | Date: $MN = 154/98$<br>Logged by:<br>$E \cdot LIVGARO$ | #98-3          |
| COLLAR LOCATION:<br>4004E, 8025N | AZIMUTH: W<br>DIP: -450                     | ELEVATION: 1695<br>TOTAL LENGTH: 33.5                  | PAGE:<br>10F S |

| MAIN       | DIV.        | MINO                  | r div.   | DECODICTION                                           | SAMPLE                                   | INTE     | RVAL        | An  | "Ass                                  | AYS  |             |   |
|------------|-------------|-----------------------|----------|-------------------------------------------------------|------------------------------------------|----------|-------------|-----|---------------------------------------|------|-------------|---|
| rom (m)    |             | from (m)              |          | DESCRIPTION                                           | NUMBER                                   | from (m) | to (m)      | ppb | AS                                    | cy   | Mo          | 1 |
| 0          | 2.7         |                       |          | CASING                                                |                                          |          |             |     |                                       |      | 10          | ] |
| 2.7        | 9.2         |                       |          | QUARTZ DIDRITE - FINE                                 |                                          | _        |             |     |                                       |      |             |   |
|            |             | · <b></b> · · · · · · |          | TO MEDIUM GRAINED WITH                                |                                          | -        |             |     |                                       |      |             |   |
|            | :           |                       |          | Some COARSE GRAINED                                   | •• • • • • • • • • • • • • • • • • • • • |          |             |     |                                       | -    |             |   |
|            |             |                       |          | FELDSPAR PHENDCRYSTS<br>INCRESINGLY PORPHYRITICTO STA | ·                                        |          |             |     |                                       |      |             | - |
| <b>.</b> . |             | <b></b>               | ,        | INCRESINGLY PORPHYRITTETO STATE                       |                                          | []       |             |     | · · · · · · · · · · · · · · · · · · · |      |             |   |
|            | • · · · · · | 5.8                   | 6.2      | FRAGMENTED 0.5 TO 4 CM                                |                                          |          |             |     |                                       | ·    | ·           | - |
|            |             |                       |          | FINE GRAINED PYRITE DISSEMINA<br>2. 1%, Some FRACTURE | ity                                      | _        |             |     |                                       |      | . <u></u> . |   |
|            |             |                       |          | 2 1%, some FRACTURE                                   |                                          |          |             |     |                                       |      |             | - |
|            |             |                       |          | SURFACES COATED WITH PYRIT                            |                                          |          |             |     |                                       |      |             |   |
|            |             |                       |          | A FEW BROWN FLECKS-                                   |                                          |          |             |     |                                       |      |             |   |
|            |             | ••                    |          | LEUCOSSENE (?)<br>RUITE BROKEN CORE / TO/ZC           |                                          |          |             |     | •••••                                 |      |             |   |
| ·          |             | 7.6                   | 4.2      | QUITE BROKEN CORE / TO /ZC                            | м                                        |          |             |     | 10                                    |      |             |   |
|            |             | 8.1                   | 9.1      | SEVERAL SEAMS CONSISTING                              | 11130/                                   | 8.1      | <u>q.</u> ] | 5   | 10                                    | 155  | 2           | 4 |
|            |             | ·                     | ·        | OF FRAGMENTS (0.170/cm) 802                           |                                          | -        | . <u></u>   |     |                                       | ···· | - <u></u> - |   |
|            |             |                       | ·        | ENCASED IN MUD 20%.                                   |                                          | -        |             |     |                                       | ···  | ·····       |   |
|            |             |                       |          | THE MMD SEAMS ARE                                     |                                          | -        |             |     |                                       | ·    |             |   |
|            | -           |                       |          | PARALLEL TO AND IRREGULA                              | ly                                       | - [ ]    |             |     |                                       | ·    |             |   |
|            |             |                       | <b>.</b> | SEAMS AR D. 540 San THICK.                            | r<br>                                    |          |             |     |                                       |      |             |   |
|            |             |                       |          | SEAMS AR D. 340 San THICK.                            |                                          |          |             |     |                                       |      |             | ] |

| I J LIG CI |  |
|------------|--|
|            |  |

|          | R DIV. |                              |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------|--------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| from (m) | to (m) | DESCRIPTION                  | SAMPLE                                                                                                                                                  | INTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RVAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Au                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AYS         | Pras                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|          |        |                              | NUMBER                                                                                                                                                  | from (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | to (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | As                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cu          | Mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.1      | -7, /  |                              |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |        | LAST 20-25 CM ALTERED CORE   |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| +        |        | DOFT FRIABLE . Some YELLOW   |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <u> </u> |        |                              |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| a.       |        | QUARTZ DIORITE - DORPHYRITTC | 111302                                                                                                                                                  | 9.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 775         | $\overline{\boldsymbol{c}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1.2      | 7.3    | WHILL 2 FRAGMENTS            |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6673        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <b>]</b> |        | XKARIZ VEIN                  | 11/303                                                                                                                                                  | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 111         | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|          |        | PARTLY FRASMENTED.           |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 146         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |        | CHALCOPERITE 1% AND PLANTE   | 9.59                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -1-4-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             | ·······                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          |        | MATINLY ALONG FRACTURES      | 70                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |        | ALSO DISSEMINATED - A FEW    |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |        | MINUTE CAVITIES WITH         |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | —— <u>†</u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |        | SupPrDES AND A GATING        |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |        | OF BLACK DOWDERG? MINIERAI   |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | [      | MnO?) - Some FRAGMENT        |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |        | Sunfaces HAVE A CATTALE      |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ——          | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          |        | AND THICKER) OF SILVERY      |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |        | WHITE SULPHIPE WITH          |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ——-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |        | ACCASIONAL DED TINGE         |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |        | DROBABLY ARSENDONDING        |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | — <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | —— <u> </u> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | /_     | BILLER FRALDENT SUPERICS     |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |        | HAVE COATINE OF REDUCIE      |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | 7      | BROWN AND MELL QUISH         |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |        | BROWN -DBO BAALL             |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | — <b> </b> _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |        | Scolo Ditte                  | <u> </u>                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |        | Parthere                     |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |        | Genunda des Angenas          | <u> </u>                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |        | ONSISTS - LIGHTEARS DANCK    |                                                                                                                                                         | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |        | 9.2 9.3                      | 2457 20-25CM ALTERED CORE<br>BOXT FRIABLE Some YELLOW<br>BROWN OXIDE.<br>QUARTZ DIORITE - DORDHYRITTC<br>9.2 9.3 QUARTZ FRAGMENTS<br>QUARTZ FRAGMENTED. | 8.1 P. 1 CONT<br>LAST ZO-ZSCH ALTERED CORE<br>SCAT FRIABLE. Some YELLOW<br>EROWN DXIDE.<br>QUARTZ DIDRITE - DRPHYRITTC III 302<br>P.2 9.3 QUARTZ FRAGMENTS<br>QUARTZ VEIN<br>111 303<br>PARTLY FRASMENTED.<br>CHALCOPPRITE ITO AND PHONE STO<br>MAINLY ALONG FRACTURES<br>ALSO DISSEMINATED - A FEW<br>MINUTE CANTRES NITH<br>SULPHIDES AND ADATING<br>OF BLACK POWDERS? MINERAL<br>(MNO?) - SOME FRAGMENT<br>SULPHIDES HAVE A COATING<br>AND THICKER OF SILVERY<br>WHITE SULPHIDE WITH<br>PECASIONAL RED TINGE -<br>PROBABLY ARSENDYPITE<br>- DTHER FRAGMENT SURFACES<br>HAVE ROATING OF REDDISH<br>BROWN AND YELLOWISH<br>BROWN PROBABLY<br>SCORDITE .<br>PORTHRRY - 1<br>GROWND MASS ADDEARS NAME | 8.1 9.1 CONT<br>LAST ZO-ZSCU ALTERED CORE<br>SERT FRIABLE. Server YELLOW<br>BROWN DXIDE.<br>QUARTZ DIRRITE - DRPHYRITIC 11/302 9.1<br>9.2 9.3 RUARTZ FRAGMENTS<br>IRUARTZ VEIN<br>III 303 9.5<br>PARTLY FRAGMENTED.<br>CHALCOPURITE 1% AND PHOTEDST<br>MAINLY ALONG FRACTURES<br>ALSO DISSEMINITED - A FEW<br>MINUTE CAVITIES MITH<br>SULPHIDES AND A DOATING<br>OK BLACK DOWDERST MICHAL<br>(MNO?) - SEME FRAGMENT<br>CUMPTERES HAVE A CONTING<br>AND THICKER OF SILVERY<br>WHITE SULPHIPE WITH<br>DCCASIONAL DED TINGE -<br>DROBABLY ARSENDYPITE<br>- STHER FRAGMENT SURFACES<br>HAVE CONTING OF REDDISH<br>BROWN AND YELLOWISH<br>BROWN PROBABLY<br>SCEPADITE:<br>- DROBABLY I<br>BROWN PROBABLY<br>SCEPADITE:<br>- DROBABLY I<br>BROWN PROBABLY | 8.1.9.1 CONT<br>LAST ZO-ZSCH ALTERED CORE<br>SORT FRIABLE. Some LYLLICH<br>FROWN DXIDE.<br>QUARTZ DIDRITE - DORPHYRITTIC III 302 9.1 9.5<br>9.2 9.3 RUMRTZ FRAGMENTS<br>RULARTZ VLIN. III 303 9.5 10.4<br>PARTLY KRASMENTED.<br>CHALCOPORITE 1% AND PRITOSS<br>MAINLY ALONG FRACTURES<br>ALSO DISSEMINITED - A FEW<br>MINUTE CANTIES WITH<br>SULPHIDES AND A CONTING<br>OK BLACK DOWDER 7 MINERAL<br>(MND 7) - SOME FRAGMENT<br>SULPHIDES HAVE A CONTING<br>OK BLACK DWDER 7 MINERAL<br>(MND 7) - SOME FRAGMENT<br>SULPHIDES HAVE A CONTING<br>MHITE SULPHIDE WITH<br>PROTOKER DE TINGE -<br>DROBABLY ARSENDYRITE<br>- 5THEN FRAMENT SURFACES<br>HAVE CONTING -<br>BROWN AND YELLOWISH<br>BROWN AND YELLOWISH<br>BROWN THE BLEVENSH<br>BROWN THE SULPHING<br>HAVE CONTING CONSEL<br>HAVE CONTING CONSEL<br>HAVE DONTON SUPPLIFE<br>- 5THEN FRAMENT SURFACES<br>HAVE CONTING CONSEL<br>HAVE CONTING CONSEL<br>HAVE CONTING CONSEL<br>HAVE CONTING CONSEL<br>HAVE CONTING CONSEL<br>HAVE DONTON SUPPLIFE<br>- 5THEN FRAMENT SURFACES<br>HAVE AND YELLOWISH<br>BROWN AND YELLOWISH<br>BROWN THEOREM AND | 8.1 9.1 CONT<br>LAST ZO-ZSEM ALTERED CORE<br>SERT FRIABLE. SAME VELLOW<br>FROM PRIDE.<br>QUARTZ DIRRITE - DERPHYRITTC 111302 9.1 9.5 2<br>9.2 9.3 RUMATZ FRAGMENTS<br>IRUCARTZ FRAGMENTS<br>IRUCARTZ FRAGMENTED.<br>CHALCOPHRITE 1% AND PRIMEDS<br>CHALCOPHRITE 1% AND PRIMEDS<br>MAINLY ALONG FRACTURES<br>MAINLY ALONG FRA |             | 8.1 9.1 CONT<br>LAST ZO-ZSEM ALTERED CORE<br>ERAT FRIABLE. SAME YELLOW<br>BROWN EXIDE.<br>QUARTZ DIRITE - DERPHYRITTC 11/302 9.1 9.5 2 35 2293<br>QUARTZ DIRITE - DERPHYRITTC 11/302 9.1 9.5 2 35 2293<br>QUARTZ FRAGMENTS<br>IN ARTZ VEIN<br>PARTLY RAFEMENTED.<br>CHALCOPRISE IN AND PRIMEDS<br>MAINLY ALENS FRACTURES<br>ALSO DISSEMINITED - A FEW<br>MINIETE CANTIES WITH<br>SUCHER DOUBLES MITH<br>SUCHER DOUBLES MINERAL<br>(Mn O?) - SEME FRACMENT<br>SUMALTES HAVE A CONTING<br>AMO THERES HAVE A CONTING<br>AMO THERE NAME A CONTING<br>AND THERE VEIN<br>MINIETE SULPHIDE WITH<br>DECASIONAL DED TINGS -<br>DROTABLY ARSENDYPITE<br>- ETHER FRACMENT<br>BROWN AND YELLOWISH<br>BROWN AND YELLOWISH<br>BROWN AND YELLOWISH<br>BROWN AND YELLOWISH<br>BROWN AND YELLOWISH<br>DERPHYRES MAIL<br>CORRELING TO ASS ADDEADS NAME |

|          | <br>1 1 1 22 |      |   | $\begin{pmatrix} \mathbf{z}_{1} & \mathbf{z}_{2} \\ \mathbf{z}_{1} & \mathbf{z}_{2} \end{pmatrix} = \begin{pmatrix} \mathbf{z}_{1} & \mathbf{z}_{2} \\ \mathbf{z}_{2} & \mathbf{z}_{2} \end{pmatrix} = \begin{pmatrix} \mathbf{z}_{1} & \mathbf{z}_{2} \\ \mathbf{z}_{2} & \mathbf{z}_{2} \end{pmatrix}$ |
|----------|--------------|------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MAIN DIV | # 98         | PAGE | 5 |                                                                                                                                                                                                                                                                                                          |

| MAIN DI<br>from (m) to |                  |          | DR DIV.            | DESCRIPTION                                                     | SAMPLE | IN     | TERVAL     | Pob          | TAS      | <del>ke</del><br>Says |          |
|------------------------|------------------|----------|--------------------|-----------------------------------------------------------------|--------|--------|------------|--------------|----------|-----------------------|----------|
| 10.4 3                 |                  |          | <u>,, io (iii)</u> |                                                                 | NUMBER | from ( | m) to (m)  |              | 1        | Cu                    | Ma       |
| <u>~~   2</u> ,        | <u>&gt;-&gt;</u> | <u> </u> | -}                 | CHARTE CONT.                                                    |        |        |            |              |          | tere                  | -  IV[Q  |
|                        |                  |          |                    | RUARTZ AND FELDSPAR-80%                                         | -      |        |            |              |          | +                     |          |
|                        |                  |          |                    | AND MARIC MINERAC (NEEDLLK                                      | 4      |        |            |              |          |                       |          |
|                        |                  |          | <del> </del>       | PR PLATES 209 - Auger A                                         |        |        |            |              |          |                       |          |
|                        | 7                |          | <u> </u>           | GRAPHIC Look - VERY FINE                                        |        |        | 1          | +            |          | <u> </u>              | <u> </u> |
|                        | 1                |          |                    | GRAINED. HENDERUSIS                                             |        |        |            |              |          |                       |          |
| $\overline{A}$         | 2                |          |                    | ARE WHITE MOSTLY 1762MM                                         |        |        |            | 1            | 1        | <u> </u>              | <u> </u> |
|                        | -+-              | ····     | <u> </u>           | BUT UP TO SMIM-MOSTLY                                           |        |        |            | 1            |          | <u> </u>              | <u> </u> |
| ×                      |                  | ·        |                    | FELDSPAR BUT SOME HAVE                                          |        |        |            | <b> </b>     | 1        |                       |          |
|                        |                  |          |                    | IF GLADSU QUARIZ CLAMPL                                         |        |        |            |              |          |                       |          |
|                        |                  |          |                    | RIMMED By WHITE FELDSPAR                                        |        |        |            |              | 1        |                       |          |
|                        | _ -              |          |                    | VERG FINZ GRAINED DURING                                        |        |        |            |              |          |                       |          |
|                        |                  |          |                    | 12 DISSEMINATED THROUGHOUT                                      | ·      |        |            |              |          |                       |          |
|                        | 17               | 50       | 11.0               | -1/2%                                                           |        |        |            |              |          |                       |          |
|                        | -14              | 2.0      | 0.0                | DEECLATED DORPHYRY                                              |        |        |            |              |          |                       |          |
|                        | 14               | <b>r</b> | 20.1               | BRECCIATED PORPHYRY<br>FRAGMENTS FROM MUDTO Sem                 |        |        |            | <del>.</del> |          |                       |          |
|                        | -112-            |          | <u>-u.</u>         | - ZEM WIDE FRAGMENTS AND                                        |        |        |            |              |          |                       |          |
|                        | 12               | 0.1 -    | 20.5               | MMD SEAM.                                                       |        |        |            |              |          |                       |          |
|                        | ち                |          | 20.3               | SHEARFOLIATION fortol                                           | 11304  | 20.0   | 21.4       | 5            | < 5      | 1/8                   | 5        |
|                        |                  |          | 2.8                | CUHZIONAL MINOR SHEM                                            | /      |        |            |              |          |                       |          |
|                        | 1                |          | <u> </u>           | FOLIATION - Some LIGTER                                         |        |        |            |              |          |                       | {        |
|                        | 4                |          | 9.6                | SILICIFIED ZONES.                                               |        |        |            |              |          |                       |          |
|                        | A                | - Z      | 50.2               | 10 cm wipt BREecit                                              |        |        |            |              |          |                       | [        |
|                        |                  |          |                    | 1-2 cm mup seam 40toc                                           |        |        |            |              |          |                       |          |
|                        |                  |          | E                  | ZENERAL FRACTURAL AT                                            |        |        | <u> </u>   |              |          |                       |          |
|                        | <b> </b>         |          |                    | THEOREMAN FRACTURENS AT<br>30°45°AND 60° 40 CORE<br>THEOREHOUT. |        |        | <u> </u> - |              |          |                       |          |
|                        | <u> </u>         |          |                    | Thoughout.                                                      |        |        |            | ——           | <u> </u> |                       |          |

-- -

| PROJECT: ORKO Gorp CORP.          | NTS Map Number: 92P1                         | Drilling by: CONNORS                         | DRILL HOLE: |
|-----------------------------------|----------------------------------------------|----------------------------------------------|-------------|
| BENAPARI GOLD MINE                | TRIM 92PECS<br>Mining Division:<br>KGM Longs | Date: MNE 100-98<br>Logged by:<br>E. LIVGARD | #98-4       |
| COLLAR LOCATION:<br>4006E - 8025N | AZIMUTH:<br>DIP: - 90°                       | ELEVATION: 1695<br>TOTAL LENGTH: 45.7        | PAGE:       |

| MAIN DIV.                              | INOR DIV.     | DESCRIPTION                                             | AMPLE  | INTE     | RVAL   | <br>ASSA | YS |         |
|----------------------------------------|---------------|---------------------------------------------------------|--------|----------|--------|----------|----|---------|
| from (m) to (m) fro                    | om (m) to (m) |                                                         | UMBER  | from (m) | to (m) | <br>     |    |         |
| 0.9                                    |               | CASING                                                  |        | _        |        | <br>     |    |         |
| .9 45.7                                |               | CRMARTZ DIORITE (PARTLY                                 |        |          |        | <br>     |    |         |
|                                        |               | PORPHYRITIC -                                           |        |          |        | <br>     |    |         |
|                                        |               | LINE TO MEDIUM GRAINED                                  |        |          |        |          |    |         |
|                                        |               | NITH 5-10% QOANSE                                       |        |          |        | <br>·    |    |         |
|                                        |               | FELDSPAR DHENOCRESS.                                    |        |          |        | <br>     |    | ·       |
|                                        |               | FELDSPACE PHENOCRESSTS.<br>FRACTURING 5-150TOR          |        |          |        | <br>     |    |         |
|                                        |               | MINOR QUARTZ ESTRINGERS                                 |        | _        |        | <br>     |    |         |
|                                        |               | 1/2-1 cm WIDE WITH MINOR                                |        |          |        | <br>     |    |         |
|                                        |               | IPREIGHLARKS 10° & 80° to C                             |        |          |        |          |    | <b></b> |
|                                        | 4.6 4.8       | IRREIGNIARY 10° & BO° to C<br>QUARTZ FELDSPAR MUSCOVITE |        |          |        | <br>     |    |         |
|                                        |               | (CHLORITE?) DYKE.                                       |        |          |        | <br>     |    |         |
|                                        | .5 8.8        | (CHLORITS?) DYKE.<br>10% QUARTZ STRINGERS AND BLEBS     |        |          |        |          |    |         |
|                                        |               | WITH OWRITE 30°t C                                      |        |          |        |          |    |         |
|                                        | 3.9 15.3      | WITH PYRITE 30°to C<br>WEAK SHEAR FOLIATION 40°5 C      |        | _        |        |          |    |         |
| ······································ |               | QUARTZ STRINGERS./TOZEMAT                               |        |          |        |          |    |         |
|                                        |               | 15-30°, 40,60° TO C - MINOR BLACH.                      | - SAND |          |        |          |    |         |
|                                        |               | LIGHTER DIORITE CRISS CROSSING                          |        |          |        |          |    |         |
| · · · · · · · · ·                      |               | QUARTZ STRINGERS (5%) 10°, 45, 60°2                     | TC .   |          |        |          |    |         |
|                                        |               | MINOR MUSCOVITE-BROWN WINERAL                           |        |          |        |          |    |         |
| , <b></b>                              |               | 1-2% PYRITE.                                            |        |          |        | <br>     |    |         |

| MAIN       | עוס           | MINC        | DR DIV.    | T 70 7                                     | partere  |            |        |         |                                             |      | 0        |                  |
|------------|---------------|-------------|------------|--------------------------------------------|----------|------------|--------|---------|---------------------------------------------|------|----------|------------------|
|            |               |             | ) to (m)   | DESCRIPTION /                              | SAMPLE   | INTE       | RVAL   | An      | ASS                                         | SAYS | pr       | 7                |
|            | 45.7          |             | , ()       | CONTI                                      | NUMBER   | from (m)   | to (m) | ppb     | A>                                          | cu   | Ma       | 2                |
|            |               |             | 28.3       | MINOL SHEARING FOLIATION SOTO              | <br>p    |            | ļ      | / '<br> |                                             | ļ    |          |                  |
|            |               |             |            | BROWN WINERAC 15%                          | <u> </u> |            |        |         |                                             |      | ļ        | 4                |
|            |               | 30.0        | 30.5       | LIGHT (LESS MAFIC) FILLED                  |          | - <u> </u> |        |         |                                             |      | <u> </u> | _                |
|            |               |             |            | FRACTURES OTO/0° to C                      | ·        |            |        |         |                                             |      |          | -                |
|            |               |             | ļ          | WITH QUARTZ EFFORITE AND                   |          | ·          |        |         |                                             |      |          | -                |
| _          |               |             |            | BROWN WINFRAL - WINDA DUD!                 | Z        | -          |        |         | ·                                           |      | [        | -                |
| <u> </u> - | ľ             | 32.4        | 33.5       | FRAGMENTS 1400 bouch                       | 111305   | 32.4       | \$3.5  | 5       | -                                           | 108  |          | 6                |
| -+         |               | ·           |            | SLEACHING - CHLORITE - TALC ON             |          |            | 202    |         | <u>ــــــــــــــــــــــــــــــــــــ</u> | 100  | >        | ſ                |
|            |               |             |            | OFC MOVEMENT SURFACE                       |          |            |        |         |                                             |      |          | $\left  \right $ |
| _          |               |             |            | 37. PYRITE MINOR BORNITE                   |          |            |        |         |                                             |      |          | 1                |
| +          |               |             | 2.12       | 10% QUAD 22                                | /        |            |        |         |                                             |      |          | 1                |
| -+         |               | \$.5        | 54.7       | AS ABOVE                                   | 111306   | 33.5       | 34.7   | 5       | 10                                          | 21   | 5        | 6                |
|            |               | 57.2        | \$7.8      | BRECHATEP QUARTZ DIONITE                   |          |            |        |         | <u> </u>                                    |      | 2        | ľ                |
|            |               |             |            | -SEALED, LIGHTERADO                        |          |            |        |         |                                             |      |          | ĺ                |
|            |               |             |            | DARKER FRAGMENTS AND                       |          |            |        |         |                                             |      |          |                  |
| +          |               |             |            | 10% QUARTZ FRAGMENTS                       |          |            |        |         |                                             |      |          |                  |
|            |               |             | <u> </u> - | 2-Jmm FRACTURES NITH MICRO                 |          |            |        |         |                                             |      |          |                  |
| +          |               | G           |            | BRECCIA.                                   |          |            |        |         |                                             |      | {        |                  |
| +-         | <del>د </del> | 7.0         | \$7.4      | FRAGMENTED 0. To 10 am                     |          |            |        |         |                                             |      |          |                  |
|            |               | 200         | 291        | CHLORETIZED                                |          |            |        |         |                                             |      |          |                  |
|            | ──┼╸          | <u>-7.7</u> | 27.6       | QUARTZ FRAGMENTS 0.5-4 Cm                  |          |            |        |         |                                             |      |          |                  |
| +          |               |             |            |                                            |          |            |        |         |                                             |      |          |                  |
| +-         | ²             |             | 10.6       | FRACTURING PARILEL TO                      |          |            |        |         |                                             |      |          |                  |
| +          | K             | 27-2        | Fact       | CORE AND 650 GC                            |          |            |        |         |                                             |      |          |                  |
| 1-         | 4             | 0.6         | 40.9       | LEACHING SANDY<br>QUANTZ FRAGMENTS- BARDEN |          |            |        |         |                                             |      |          |                  |
| +          |               |             |            | WMMAN C FILHEMENTS- BARDEN                 |          |            |        |         |                                             |      | 7        |                  |

 $\frac{1}{4} \frac{1}{78} \frac{1}{4} \frac{1}{78} \frac{1}{4} \frac{1}{78} \frac{1}$ 

| MAI             | n div.     | MINC     | R DIV.   |                                                                                                                                        | 1tto                                  | <u> </u>                                     |               |          |       |   |
|-----------------|------------|----------|----------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------|---------------|----------|-------|---|
|                 | )) to (m)  | from (m  | ) to (m) | DESCRIPTION                                                                                                                            | SAMPLE                                | INTE                                         | RVAL          |          | ASSAY | S |
|                 | 45.7       | Æ        | ,,       | CONT<br>FRACTURING PARALLEL TO C<br>1- X MM WIDE WITH PARITE<br>RUALTZ STRINGERS 1702 CM<br>AT 45°, 65° to C<br>LIGHT - CRISS-CROSSING | NUMBER                                | from (m)                                     | to (m)        |          |       |   |
| ·/              | 12.1       | 160      | 1/10     | CONS                                                                                                                                   |                                       |                                              |               |          |       |   |
|                 | +          | 70.0     | 77.5     | FRACTURING PARALLEL TO E                                                                                                               |                                       |                                              |               |          |       |   |
|                 | +          | <u> </u> |          | 1- 4 MM WIDE WITH PURITE                                                                                                               |                                       |                                              |               |          |       |   |
|                 | <u> </u>   | <u> </u> | <u> </u> | QUARTZ STRINGERS 1702 CM                                                                                                               |                                       |                                              |               |          |       |   |
| ·               | <u> </u>   | 111-     | 1/4      | Ar 45°, 65° to C                                                                                                                       |                                       |                                              |               |          |       |   |
|                 | <u> </u>   | 71.5     | 93.0     | AT 45°, 65° to C<br>LIGHT - CRISS CROSSING<br>QUARTZ STRINGERS (10%)<br>1/4TO / CM WIDE<br>IPANTZ CROSSING                             |                                       |                                              |               |          |       |   |
|                 |            |          |          | QUARTZ STRINGERS (10%)                                                                                                                 |                                       |                                              |               |          |       |   |
|                 |            |          |          | 1/4TO/CM WIDE                                                                                                                          |                                       | <u>†                                    </u> |               |          |       |   |
|                 |            | 44.6     | 44.9     | RUARTZ FRASMENTS                                                                                                                       |                                       | ┨                                            |               |          |       |   |
|                 |            |          |          | RUARTZ FRAGMENTS<br>MINOR OFFICITE - BARREN                                                                                            |                                       |                                              |               |          |       |   |
| 4               |            | >        |          |                                                                                                                                        | · · · · · · · · · · · · · · · · · · · | <u> </u>                                     |               |          | ····· |   |
| $\triangleleft$ |            |          | 7        |                                                                                                                                        |                                       |                                              | <u> </u>      |          |       |   |
|                 |            |          |          |                                                                                                                                        | ·······                               |                                              |               |          |       |   |
|                 |            |          |          |                                                                                                                                        |                                       |                                              |               | <b> </b> |       |   |
|                 |            |          |          |                                                                                                                                        |                                       |                                              |               |          |       |   |
|                 |            |          |          |                                                                                                                                        | · · · · · · · · · · · · · · · · · · · |                                              | —— <u> </u> _ |          |       |   |
|                 |            |          |          |                                                                                                                                        |                                       |                                              |               |          |       |   |
|                 |            |          |          |                                                                                                                                        |                                       |                                              |               |          |       |   |
| T               |            | t-       |          |                                                                                                                                        |                                       |                                              |               |          |       |   |
|                 |            |          |          |                                                                                                                                        | ·                                     |                                              |               |          |       |   |
| 1               |            |          |          |                                                                                                                                        |                                       |                                              |               |          |       |   |
| ╈               | <u> </u> - |          |          |                                                                                                                                        |                                       |                                              |               |          |       |   |
| ╀               |            |          |          |                                                                                                                                        |                                       |                                              |               |          |       |   |
| +               |            | —        |          |                                                                                                                                        |                                       |                                              |               |          |       |   |
|                 | <u> </u>   |          |          |                                                                                                                                        |                                       |                                              |               |          |       |   |
| +               |            |          |          |                                                                                                                                        |                                       |                                              |               |          |       |   |
| +               |            |          |          |                                                                                                                                        |                                       |                                              |               |          |       |   |
| +               |            |          |          |                                                                                                                                        |                                       |                                              |               |          |       |   |
|                 |            |          |          |                                                                                                                                        |                                       |                                              |               |          |       |   |

### ORKO GOLD CORPORATION BONAPARTE GOLD PROPERTY

#### DH 98-5

| CO-ORDS.: | 1998 Grid | 8025N / 4025E |
|-----------|-----------|---------------|
|-----------|-----------|---------------|

- AZIMUTH: n/a
- DIP: -90°
- ELEVATION: 1695 m
- LENGTH: 70.1 m
- PURPOSE: vein test
- DRILL TYPE & SIZE: track-mounted / HQ core
- DIP TEST: none
- SAMPLES: 111307 111322
- DATE STARTED: June 1998
- DATE COMPLETED: June 1998
- LOGGED BY: E.D. Frey
- DATE LOGGED: 20 21 June 1998
  - 0 1.5 overburden, casing
- 1.5 52.8 DIORITE PORPHYRY matrix: very fine grained to fine grained, grey-whiteblack; 60-70% subhedral to euhedral plagioclase & 30-40% hornblende> biotite; hornblende to 3 mm, commonly clustered; biotite fine grained, interstitial; phenocrysts: 5-10%, coarse grained to 1 cm, equant to subhedral (~10x4 mm) plagioclase, some albite twinned, few zoned with white rims; coarse phenocrysts are a small portion of a continuum; very fine grained to fine grained pyrite, disseminated and strings to 1% common in part; few very fine grained, black mafic volcanic(?) fragments, angular, 1-2 cm; matrix QUARTZ DIORITE in part, sparse vfg grey quartz eyes; SILICIFICATION is pervasive, the more intense sections (noted) obscure or obliterate the intrusive textures; thin clear to grey quartz seams to 3 mm common, few to 1 cm, all core angles (c/a); thin white calcite commonly coats fractures.
  - 1.5 2.2 finely broken core, in part
  - 6.3 6.5 QUARTZ VEIN(?); SILICEOUS ZONE very fine grained, recrystallized; 20° c/a, 3 cm
  - 10.3 10.9 SILICIFICATION very fine grained aphanitic; mottled pale green-grey; and thin seams and patches clear-grey quartz, cut by 1 cm white quartz

SAMPLE 111307 10.0 - 11.0 5ppb Au

11.3 - 11.6 SAND SEAM - light brown, weakly oxidized; lower contact sharp 70° c/a

12.1 - 12.5 BROKEN CORE - chlorite seams, low c/a

12.5 - 13.2 SILICIFICATION - pale, as 10.3; 1 cm gouge, 20° c/a

SAMPLE 111308 12.6 - 13.6 10 ppb Au

13.5 - 13.7 SILICIFICATION - as 10.3

14.6 - 15.5 QUARTZ VEINS(?) - 5% clear quartz; 90° c/a

16.9 -17.0 SILICIFICATION - pale, as 10.3

SAMPLE 111309 16.8 - 17.2 5 ppb Au

23.6 XENOLITHS - 1 bleached & 1 dark grey-green (volcanic?); 2x5 cm, subrounded

28.6 - 29.1 XENOLITHS - few coarse, as 23.6

31.8 - 33.0 minor flat clay seams; broken core

33.6 -34.0 SILICIFICATION - pale green-grey; as 10.3

SAMPLE 111310 32.8 - 33.8 5 ppb Au

39.1 - 40.3 SILICIFICATION - upper contact 30° c/a; pale grey-green; as 10.3; broken core, rare white quartz

SAMPLE 111311 39.1 - 40.0 10 ppb Au 59 ppm Cu 9 ppm Mo

40.5 - 43.3 SILICIFICATION - pale-dark grey, aphanitic

SAMPLE 111312 40.0 - 40.8 10 ppb Au 125 ppm Cu 7 ppm Mo

43.3 - 43.8 SILICIFICATION - two seams, 4 cm wide; 25° c/a; 5 mm white core, pale grey-dark grey-green borders; 1-2% very fine grained pyrite clots to 3 mm

SAMPLE 111313 43.3 - 43.8 10 ppb Au 52 ppm Cu 4 ppm Mo

44.2 - 45.7 coarse to finely broken core

45.4 - 45.6 grey-green gouge and finely broken white quartz

SAMPLE 111314 44.7 - 45.7 10 ppb Au 79 ppm Cu 41 ppm Mo

47.6 - 48.2 QUARTZ VEIN - white, finely broken; fine grained, recrystallized; rare fine grained, twinned arsenopyrite crystal

| SAMPLE | 111315 | 47. <del>6</del> - 48.2 | 85 ppb Au | 28 ppm Cu | 2ppm Mo |
|--------|--------|-------------------------|-----------|-----------|---------|
|--------|--------|-------------------------|-----------|-----------|---------|

49.3 - 49.5 SILICIFICATION - 2 cm wide, 15° c/a; thin white core, pale grey border

- 50.0 50.9 coarsely broken core; +/- chlorite-actinolite-calcite on fractures
- 51.3 52.8 SILICIFICATION >70% diorite texture obscured; also silicification alteration seams; 1-3% fine grained disseminated pyrite and minor chalcopyrite
  - 51.7 51.9 white QUARTZ VEIN, fine grained, recrystallized; broken core

| SAMPLE | 111316 | 51.3 - 52.3 | 30 ppb Au | 228 ppm Cu | 16 ppm Mo  |
|--------|--------|-------------|-----------|------------|------------|
| SAMPLE | 111317 | 52.3 - 52.8 | 5 ppb Au  | 48 ppm Cu  | 103 ppm Mo |

- 52.8 ~ 57.0 DIORITE grey, fine grained to coarse grained; and as described @ 1.5 m; rare megacryst =/> 1cm
  - 53.5 53.7 SILICIFICATION 1 cm wide, 20° c/a; very fine grained, white-grey; few chlorite clots
    - 54.2 patchy SILICIFICATION; 4 cm wide
  - 54.9 55.6 QUARTZ VEIN very fine grained, grey; 1 cm wide, 50° c/a; very fine grained to fine grained pyrite, 1-3% disseminated within vein and along contact
  - 55.6 55.8 QUARTZ VEIN white, massive; very fine grained to fine grained, recrystallized; 60° c/a upper contact; few chlorite seams; rare pyrite specks
- SAMPLE 111318 54.9 55.8 5 ppb Au 79 ppm Cu 109 ppm Mo

56.2 - 56.3 GOUGE - grey, in finely broken core

SAMPLE 111319 56.2 - 56.7 10 ppb Au 43 ppm Cu 9 ppm Mo

56.7 GOUGE - 5 cm wide, sharp 65° c/a lower contact

~57.0 - 63.7 DIORITE PORPHYRY - as @ 1.5 m

- 58.8 58.9 SILICIFICATION grey, diffuse
- 59.2 59.3 SILICIFICATION weak, grey, 20° c/a
  - 60.1 BRECCIA 2-4 cm wide, 90° c/a, wavy contacts; quartz/calcite healed breccia, flattened diorite(?) fragments to 12x3 mm
- 60.7 60.8 MAFIC DIKE 6-8 cm wide, 60° c/a; fine grained 90% black mafic, weakly magnetic; fine grained plagioclase; dike cuts porphyry (2 cm wide bleached contacts) and is cut by siliceous alteration seam(<1 cm wide)
- 61.1 61.2 SILICIFICATION grey, partly broken; 40° c/a lower contact

- 61.5 61.6 SILICIFICATION weak, light grey bleaching of the porphyry; 60° c/a upper contact
  - 61.7 SILICIFICATION as 61.5; 1 cm wide, 90° c/a

SAMPLE 111320 60.1 - 60.8 5 ppb Au 44 ppm Cu 19 ppm Mo

- 61.9 62.2 SILICIFICATION as 61.5; weak to strong; 90° c/a; few patches grey guartz, 1-4 cm wide
  - 62.3 GOUGE grey, 3 mm wide, 45° c/a
- 62.5 62.7 SILICIFICATION light grey; porphyry texture preserved
  - 63.3 SILICIFICATION dark grey; 7 cm wide, 75° c/a
- 63.6 63.7 QUARTZ FLOODING grey-white, streaky
- 63.7 ~65.0 DIORITE very crowded feldspar phyric, euhedral to subhedral, to 3 mm, rare to 5 mm; fine grained to medium grained interstitial biotite-hornblende; and as described @ 1.5 m; coarsely broken in part; few quartz clots/thin seams; sparse, very fine grained disseminated pyrite
- ~65.0 68.5 DIORITE PORPHYRY light-dark grey, speckled appearance; crowded plagioclase phyric; and as @ 1.5 m
  - 57.3 67.5 QUARTZ VEIN white, sharp contacts, 80° c/a; rare pyrite and feathered chlorite to 5 mm
- SAMPLE 111321 67.0 67.5 5 ppb Au 57 ppm Cu 10 ppm Mo
  - 67.8 rare mafic xenolith, 5x4 cm
- 68.5 70.1 QUARTZ DIORITE-DIORITE PORPHYRY to 10% quartz eyes to 3 mm, anhedrai, grey; and as @ 1.5 m

68.5 - 68.7 QUARTZ FLOODING - seams to 2 cm wide, 30° c/a

69.2 - 70.1 broken core, numerous flat (0° c/a) talc-chlorite seams +/- minor quartz; rare pyrite

2

SAMPLE 111322 69.1 - 70.1 5 ppb Au 124 ppm Cu 6 ppm Mo

70.1 END OF HOLE

### ORKO GOLD CORPORATION BONAPARTE GOLD PROPERTY

DH 98-6

- CO-ORDS.: 1998 Grid 8075N / 4025E
- AZIMUTH: 270°
- DIP: -53°
- ELEVATION: 1691 m
- LENGTH: 97.5 m
- PURPOSE: vein test
- DRILL TYPE & SIZE: track-mounted / HQ core
- DIP TEST: none
- SAMPLES: 111323 111334
- DATE STARTED: June 1998
- DATE COMPLETED: 22 June 1998
- LOGGED BY: E.D. Frey
- DATE LOGGED: 22 23 June 1998
  - 0-3.0 overburden, casing
  - 3.0 51.1 DIORITE PORPHYRY matrix: very fine grained to fine grained, grey-whiteblack; 60-70% subhedral to euhedral plagioclase & 30-40% hornblende>biotite; hornblende to 3 mm, commonly clustered; biotite fine grained, interstitial; phenocrysts: 5-10%, coarse grained to 1 cm, equant to subhedral (~10x4 mm) plagioclase, some albite twinned, few zoned with white rims; coarse phenocrysts are a small portion of a continuum; very fine grained to fine grained pyrite, disseminated and strings to 1% common in part; few very fine grained, black mafic volcanic(?) fragments, angular, 1-2 cm; matrix QUARTZ DIORITE in part, sparse vfg grey quartz eyes; SILICIFICATION is pervasive, the more intense sections (noted) obscure or obliterate the intrusive textures; thin clear to grey quartz seams to 3 mm common, few to 1 cm, all core angles (c/a); thin white calcite commonly coats fractures.
    - 7.5 8.0 SILICIFICATION paie grey-very pale green, diorite texture preserved
    - 8.6 8.7 GOUGE grey, broken core
    - 9.2 9.3 QUARTZ VEIN broken core; rare pyrite, pinhead to 3 mm
    - 10.2 10.3 GOUGE dark grey, chlorite and carbonate

13.4 - 13.9 SILICIFICATION - light grey, 10% diorite texture preserved; cut by few thin quartz seams with to 5% disseminated pyrite clots and strings

SAMPLE 111323 13.4 - 13.9 5 ppb Au

- 14.2 14.3 QUARTZ VEIN 1 cm wide, 20° c/a; 3% very fine grained pyrite, disseminated and clots
- 19.7 21.7 SILICIFICATION <30% diorite texture preserved; contains patchy to zoned veins, grey-pale grey, +/- very fine grained brown biotite

SAMPLE 111324 19.7 - 20.7 5 ppb Au

SAMPLE 111325 20.7 - 21.7 5 ppb Au

- 21.7 22.3 QUARTZ VEIN white, fine grained recrystallized; few seams, diffuse patches grey, very fine grained molybdenite(?), to 5%
  - 22.1 chlorite(?) inclusion(?); 5 cm mottled pale grey-green
- 22.3 22.7 SILICIFICATION mottled dark grey-pale grey-green, numerous chlorite seams and fractures
- 22.7 22.9 QUARTZ VEIN white, fine grained recrystallized; patchy dull grey clots
- 24.8 25.2 SILICIFICATION 10% diorite texture preserved; bleached
  - 25.1 25.2 BRECCIA healed seam, 1-2 cm wide, 50-55° c/a; angular mafic and diorite clasts to 15x3 mm
  - 26.3 mafic xenolith, angular, 4-3 cm
- 26.5 27.4 SILICIFICATION dark-light grey; 20% diorite texture preserved
- 27.4 27.7 QUARTZ VEIN white, very fine grained recrystallized, 65-70° c/a upper contact; disseminated fine grained muscovite-chlorite; few chlorite seams; fine grained pyrite-chalcopyrite strings near lower contact, locally 10% sulphides; lower contact sharp 55° c/a

SAMPLE 111327 27.0-27.7

2.8/0/ 0.083 oz.10n Au

0.27% Cu

- 33.2 34.0 QUARTZ VEIN white, weak grey mottling; fine grained recrystallized; sparse fine grained pyrite to 5% in fractures near lower contact
- 34.0 34.1 GOUGE grey, chloritic

SAMPLE 111328 33.2-34.1

8.24 Q

- 34.3 QUARTZ VEIN 2 cm
- 34.5 QUARTZ VEIN 4 cm, 75° c/a upper contact

36.9 - 37.2 SILICIFICATION - bleached, pale green-grey; 20% diorite texture preserved

37.4 QUARTZ VEIN - 1 cm, 80° c/a

- 40.1 40.3 SILICIFICATION dark grey, finely recrystallized, diffuse contacts, 65° c/a
- 40.9 41.0 QUARTZ VEIN white, 6 cm, 55° c/a; rare fine grained pyrite on contacts
  - 41.7 QUARTZ VEIN 5 cm, 90° c/a, broken
- 41.8 42.0 QUARTZ VEIN 4 cm, finely broken
- 43.8 44.0 QUARTZ FLOODING 90% quartz; 3% disseminated pyrite, minor chalcopyrite in seams and lower contact (70° c/a)
  - 44.2 QUARTZ CLOTS
- 44.3 44.4 QUARTZ VEIN 2 cm wide, 30° c/a; chlorite(?) molybdenite(?) seams within vein
- 45.1 45.2 SILICIFICATION dull pale grey-green, diorite texture preserved
  - 48.4 SILICIFICATION dark brown-grey, 5 cm
  - 48.7 SILICIFICATION as previous
  - 48.9 QUARTZ VEIN 1cm, 30° c/a
- 49.3 49.4 SILICIFIED SHEAR 80% c/a, very fine grained, extreme flattening; 5% very, very fine grained pyrite-chalcopyrite(?)
- SAMPLE 111329 49.1 49.6 20 ppb Au
  - 49.8 51.1 BIOTITE ALTERATION? 90% dark grey-brown plagioclase, brown-black fine grained, interstitial biotite; diffuse zones; some thin, bleached chlorite seams
- 51.1 54.4 MAFIC FELDSPAR PORPHYRY DIKE black-dark grey
  - 51.1 52.6 SILICIFIED UPPER CONTACT ZONE streaky, weakly bleached, 80-90° c/a: sparse, disseminated fine grained pyrite
- SAMPLE 111330 52.1 52.6 30 ppb Au
  - 52.6 54.4 CHLORITIC ZONE very fine grained biotite and dull grey-green to dull white plagioclase matrix; 5-15% waxy grey anhedral plagioclase and few biotite phenocrysts; weakly magnetic; 1-2% disseminated very fine grained pyrite
- SAMPLE 111331 52.6 53.1 25 ppb Au
- 54.4 62.1 DIORITE PORPHYRY 60% phenocrysts 2x3 to 3x5 mm, albite twins common; matrix dark grey-black-grey, plagioclase>>>biotite; weakly magnetic in part; rare coarse, angular matic fragments; few chlorite seams

55.8 - 56.2 GOUGE - black, chloritic; broken core

61.9 - 62.1 broken core and gouge; fault contact

62.1 - 65.5 DIORITE PORPHYRY - fewer coarse phenocrysts; as @ 3.0 m

63.1 - 63.6 GOUGE - 70% siliceous gouge and broken core; rare disseminated fine grained pyrite

63.6 - 64.1 broken core

64.5 - 65.5 SILICIFICATION - minor broken core

65-4 - 65-5 siliceous gouge

65.5 - 65.8 MAFIC FELDSPAR PORPHYRY DIKE - weak biotite alteration; broken core

65.8 - 67.1 CONTACT FAULT(?) - siliceous, carbonate, and chlorite gouge; 20% broken core; sparse very fine grained to fine grained disseminated pyrite

SAMPLE 111332 66.0 - 67.0 S ppb Au ppm Cu - ppm Mo -

67.1 - 97.5 DIORITE PORPHYRY - as @ 3.0

69.7 - 72.1 SILICIFICATION - pale grey, texture preserved

73.2 - 73.4 finely broken core

73.7 QUARTZ VEIN - 2 cm wide, 80° c/a; few pale-bright green (?) dots

75.0 QUARTZ VEIN - white, fine grained recrystallized; 4 cm wide, 65° c/a; coarsely mottled, grey-white

75.8 GOUGE - siliceous, 5 cm

76.2 BRECCIA - grey-white, siliceous

76.2 - 77.1 SILICIFICATION - numerous seams, all core angles

77.1 - 77.5 QUARTZ FLOODING - 20% gouge, broken core

78.7 - 80.8 GOUGE - siliceous and chloritic; broken core

80.4 - 80.5 BRECCIA - siliceous; crowded, coarse (to 2x3 cm), thinly matrix supported grey clasts of very fine grained guartz-feldspar

81.9 - 81.2 GOUGE - siliceous and chloritic, quartz fragments; broken core

81.9 - 82.0 GOUGE - chlorite

82.0 - ~84.0 SILICIFICATION - pale grey, texture preserved

82.0 - 82.3 broken core

82.8 - 82.9 GOUGE - chloritic, finely broken quartz vein

87.4 - 87.6 QUARTZ VEINS - white, coarsely recrystallized; 5 cm and 4 cm, 90° c/a

88.9 - 89.9 SILICIFICATION - grey, very, very fine grained; coarsely brecciated in part, e.g. 4x2 cm, 89.5

89.0 - 89.3 GOUGE - siliceous; broken quartz vein

SAMPLE 111333 88.9 - 89.9 5 ppb Au - ppm Cu - ppm Mo

92.8 - 93.0 QUARTZ VEIN - white, massive, rare pyrite; 6 cm, 20° c/a

93 0 - 95.1 SILICIFICATION - grey, very fine grained-aphanitic; no diorite texture preserved; 5-10% very, very fine grained disseminated pyrite

SAMPLE 111334 95.0 - 94.0 Z<sub>O</sub> ppb Au \_ ppm Cu \_ ppm Mo

95.4 - 95.8 SILICIFICATION - grey-brown (biotite); texture preserved

95.5 - 95.6 BRECCIA and GOUGE

95.8 - 97.5 SILICIFICATION - patchy, weak; minor chlorite-biotite seams, all core angles

97.3 - 97.5 QUARTZ FLOODING - white-grey, sparse very fine grained pyrite

97.5 END OF HOLE

| PROJECT: ORKO GOCD CORP.        | NTS Map Number: 92 F1                        | Drilling by: ONNORS                             | DRILL HOLE: |
|---------------------------------|----------------------------------------------|-------------------------------------------------|-------------|
| BONAPART GOLD MINE              | TPILL GEPORE<br>Mining Division:<br>KAMLOOPS | Date: / WN # 22-25/98<br>Logged by:<br>ELIVGARN | #98-7       |
| COLLAR LOCATION:<br>40256 8075N | AZIMUTH: N<br>DIP: - BO°                     | ELEVATION: 169/m<br>TOTAL LENGTH: 60.4 m        | PAGE:       |

| MAIN DIV.       | MINOR DIV.                            | DESCRIPTION                | SAMPLE   | INTE     | RVAL   | 796 | ASSA | AYS |   |
|-----------------|---------------------------------------|----------------------------|----------|----------|--------|-----|------|-----|---|
| from (m) to (m) | from (m) to (m)                       |                            | NUMBER   | from (m) | to (m) | Acc |      |     |   |
| 0 1.5           | <b>.</b>                              | CASING                     |          |          |        |     |      |     |   |
| 1.5 20.2        | · · · · · · · · · · · · · · · · · ·   | GRANODIORITE               |          |          |        |     |      |     |   |
|                 |                                       | LIGHT - MEDIUM GRAINED     |          |          |        |     |      |     |   |
|                 |                                       | OCCASIONAL QUARTZ STRING   | ERS      |          |        |     |      |     |   |
| · ·             |                                       | 1-4 em WIDE - IRREGULARCY  |          |          |        |     |      |     | • |
|                 | • • • • • • • • • • • • • • •         | 50 TO 60° to Cole .        |          |          |        |     |      |     |   |
|                 |                                       | FRACTURES ABOUT 30° AND    |          |          |        |     |      |     |   |
|                 |                                       | 45° AND OTO/0° TO CORE     |          |          |        |     |      |     |   |
|                 | 7.6 8.0                               | FRAGMENTED (2-10 cm)       |          |          |        |     |      |     |   |
|                 |                                       | FRACTURING 0-10° to Core   |          |          |        | -   |      |     |   |
|                 | • • • • • • • • • • • • • • • • • • • | - CHLORITE ON FRACTURE     |          |          |        |     |      |     |   |
|                 |                                       | Sunfaces                   |          |          |        |     |      |     |   |
|                 | 13.114.2                              | FRAGMENTER (1/2-10cm)      |          |          |        |     |      |     |   |
|                 |                                       | FRACTURING OTOSO, 40°, 70° |          |          |        |     |      |     |   |
|                 |                                       | TE CORE - CHLORITE         |          |          | ·      |     |      |     |   |
|                 | 14.214.6                              | MINOR QUADIZ STRINGERS     |          |          |        |     |      |     |   |
|                 |                                       | 50° AND 50° to CORE        | 111 \$42 | 9.4      | 9.8    | 5   |      |     |   |
|                 | 14.8 15.0                             | QUARTZ-IRREGULAR - = PECKS | 11/343   | 14.7     | 15.2   | 5   |      | -   |   |
|                 |                                       |                            |          |          |        |     |      |     |   |
|                 | •                                     | 9ND BORNITE                |          |          |        |     |      |     | 1 |

| MAIN     | DIV.        | MIN          | OR DIV       |             |                    | -7 PAG                                                    | z = c | 2                                      |            |              |          |             |              |              |
|----------|-------------|--------------|--------------|-------------|--------------------|-----------------------------------------------------------|-------|----------------------------------------|------------|--------------|----------|-------------|--------------|--------------|
| from (m) | to (m)      | from (       | m) to (m     |             | DESCRIPTION        | 1 1                                                       |       | AMPLE                                  | IN         | TERVA        | LA       | 10          | ASSAYS       |              |
| 20.2     | 20.8        |              |              | Diele       | 6 6 4 4            |                                                           |       | JMBER                                  | from (     | n) to (      | (m) A    | a           |              |              |
|          |             |              |              | - COL       | FINEE              | RAINE GR                                                  | 5     |                                        |            |              |          |             |              |              |
|          |             |              |              | Been        | NDMIASS            | WITH MIN                                                  | lon   |                                        |            |              |          |             |              |              |
|          |             |              |              | ======      | - puer             | Jery 575                                                  |       |                                        |            |              | ·        |             |              |              |
| 20.8     | 37.0        |              |              | min         | a or with          | TH LLIDEDA                                                | 2     |                                        |            |              |          |             |              |              |
|          | <del></del> |              |              | LE DRI      | TE met             | Sector above                                              | Ea 11 | 1344                                   | 279        | 328          | 1 2      |             |              |              |
|          |             |              | +            | (1)         | 7 forgu            | TRITTC                                                    |       |                                        |            |              | <u></u>  |             |              | -+-          |
|          |             |              | +            | FRACTE      | KING 60            | PRITIC<br>PLOP. THROUGH<br>REEN<br>MICOP. THROUGH<br>REEN |       |                                        | 1          | +            |          |             |              |              |
|          |             | -71          | 20           | MINDE PYRIT | ZX16 PCC. CH       | ALCOP. THRAL                                              | Hour  |                                        | †          |              |          |             |              |              |
|          |             | 6/.6         | 0.0          | Unin ?      | 2 VEIN-BA          | RLEN                                                      |       | ·····                                  | <u> </u>   |              |          |             |              |              |
|          |             | 4 V.         | 801          | H1- C/.6    | Sem GREG           | maco-Movery                                               | 417   |                                        | ┨────      | <u> </u>     |          |             |              |              |
|          |             | 50.7         | 20.6         |             |                    | MAD-MOVEN                                                 |       |                                        | <u> </u>   | +            |          |             |              |              |
|          |             | 37:5         | 39.0         | SURCHACE    | <u> </u>           |                                                           |       |                                        | <u> </u>   |              |          |             |              |              |
|          |             |              | 2mo          | LIGHT C     | depent             | 0-ALTERES                                                 |       | ······································ |            |              |          | -           |              |              |
|          |             |              |              | MINOR       | MARICS 11          | SIRIA -                                                   | 2     |                                        |            |              |          |             |              |              |
|          |             |              |              | SILICIFIC   | ATTON NEY          | TTO Some                                                  |       |                                        |            | ···          |          |             |              |              |
|          |             |              |              | FRACTUR     | ES. FRA            | TTO Perce                                                 |       | ·                                      |            |              |          | <u> </u>    |              |              |
|          |             |              |              | VV SO DAI   | 0 2 ~ 0 _/         |                                                           | -{    |                                        |            |              | <u> </u> | <u> </u>    |              |              |
|          | 3           | 4.4          | 36.0         | 10% 01      | APTZ               | IRREGULAR                                                 |       |                                        |            | _ <u>,</u>   | <u> </u> |             |              | 1            |
|          |             |              | ]            | STRING      | EDS 1-1            | IRREGULAR                                                 |       | 3.45                                   | 34.5       | <u> 35.0</u> | 5        |             |              | 1            |
|          |             | 380          | 38.4         | PARTIN      | E1115              | cm widt.<br>2ED - LEACH                                   | ╂──── | 46                                     | 35.0       | 36.0         | 65       |             |              | 1            |
|          |             |              |              | Game        | 274471EA           | ED - LEACH                                                | E     |                                        |            | <b></b>      |          |             | 1            | 1            |
| 0 40     | .0          | T            |              | Dunara      | MALD AND           | SAND                                                      | ļ     |                                        |            |              |          |             | +            | †            |
| 0 58     |             |              |              | Pico D      | NEIN E             | ARREN                                                     |       | 473                                    | 8.9        | 19.9         | 235      |             |              | <del> </del> |
|          |             |              |              |             | AS AZ              | 6VE                                                       |       |                                        |            |              |          |             | <del> </del> | <del> </del> |
|          | 1           |              |              | -unciul     | ING 50-            | 55° to Cont                                               |       | 48                                     | 12.20      | 12.5         | 5        | ·           | <del> </del> | <u> </u>     |
| 1        | 4           | 444          | 4.0          | C           |                    |                                                           |       |                                        | <u> </u> - |              |          | <del></del> | <del> </del> | <b> </b>     |
|          |             | • <u>·</u> [ | <u>ا ددن</u> | -           | 2-Brund<br>RES 550 | ED By                                                     |       |                                        |            |              |          | ······      | <del> </del> |              |
|          |             |              |              | FRACTU      | RES 550            | To Conf                                                   |       |                                        |            |              |          |             | <b> </b>     |              |

| MAIN     | DIV.      | MINC                                          | or div.                               | $\frac{1}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 78-1             | PA           | ge :      | 3          |   |            |
|----------|-----------|-----------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|-----------|------------|---|------------|
| from (m) | to (m)    | from (m                                       | ) to (m)                              | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SAMPLE<br>NUMBER |              | ERVAL     | pob        | _ | SAYS       |
|          | <u></u> . | 447                                           | 45-                                   | Contraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  | πom (n       | n) to (m) | A_         |   |            |
|          |           | <u>, , , , , , , , , , , , , , , , , , , </u> | 72.2                                  | FRAGMENTED 1/4 TO 4 CM<br>LEACHING -CHAND AND BAND<br>CROSS C. THE O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 111 349          | 44:          | 7457      | 1          |   | ┥───┤      |
|          |           | 45.4                                          | 459                                   | CASS C. THE AND SAND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |              | 12.0      |            |   | ┼──┼       |
|          |           |                                               |                                       | CROSS CUTTING QUARTZ STRINGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25               |              |           |            |   | ++         |
|          |           | 110                                           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |              | <u> </u>  |            |   |            |
|          |           | 4 <u>6</u> .9                                 | <u>47.2</u>                           | FRAGMENTED-DUE TO FRATUR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |              | <u> </u>  |            |   |            |
|          |           | 140                                           | 5 /                                   | ONITH CHLORITE ON SURFACES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15               |              | <u> </u>  | ┠───┤      |   | <u> </u>   |
|          | f         | 77.0                                          | <u>~~./</u>                           | CROSS CUTTING PULAD = CLA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                | <del> </del> | <u> </u>  | ┝───┼      |   |            |
|          |           | 50.6                                          | 50.7                                  | <u>0.2 TO 0.8 cm (6)</u><br><u>GEAR AT 70° to Core</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |              |           |            |   | ├ <b>-</b> |
|          |           | AT-                                           |                                       | 55.6, 55.7, 56.0, 56.2, 56.5<br>Direction of the state of th | <u> </u>         |              |           |            |   |            |
|          |           |                                               |                                       | KUMPOZ STRINKERE IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |              |           |            |   |            |
|          |           |                                               |                                       | VIE - SUCIEICASTON AS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  | 52.9         | 54.3      | 5          |   |            |
|          |           |                                               | · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |              |           | <u> </u> - |   |            |
| 8.05     | 9.0       | 2/1/2                                         | ×                                     | WITHIZ VEIN TOT AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |              |           |            |   |            |
|          |           |                                               | þæ                                    | YKE - AMORDIANE LAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |              |           | <u> </u>   |   |            |
|          |           |                                               |                                       | ELETITE -HOLNBLENDE AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |              |           |            |   |            |
|          |           |                                               | $-\Gamma$                             | I MM WHITE FELD SPAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |              |           |            |   |            |
| 3.0 60   | .4        | <u> </u>                                      | ]]                                    | DIORITE -ASABOVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  | <u> </u>     |           |            |   |            |
| 7        |           |                                               |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |              |           |            |   |            |
| 机        | 件         |                                               |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |              |           |            |   |            |
| Z        |           |                                               |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |              |           |            |   |            |
|          |           |                                               |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |              | ·         |            |   |            |
|          |           |                                               |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |              |           |            |   |            |
|          |           |                                               |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |              |           |            |   |            |

### ORKO GOLD CORPORATION BONAPARTE GOLD PROPERTY

DH 98-8

CO-ORDS.: 1998 Grid

AZIMUTH: سل

DIP:  $\sim 50$ 

**ELEVATION:** 

LENGTH: 74.7 m

PURPOSE: vein test

DRILL TYPE & SIZE: track-mounted / HQ core

DIP TEST: none

SAMPLES: 113664 - 113680

DATE STARTED: 1998

DATE COMPLETED: 1998

LOGGED BY: E.D. Frey

DATE LOGGED: 5 - 6 July 1998

- 0 3.0 overburden, casing
- 3.0 4.0 METASEDIMENTARY ARGILLITE? METAVOLCANIC MAFIC TUFF? very fine grained, black, siliceous; thinly "Jayered" (<5 mm) very fine grained white quartz (meta-chert?), crinkled and pygmatically folded; disseminated very fine grained pyrite <1%; broken core

3.4 - 3.5 MAFIC DIKE - diabase(?), fine grained, magnetic; diffuse aphanitic contacts

SAMPLE 113664

5 ppb Au 57 ppm Cu /> ppm Mo 3.0 - 4.0

4.0 - 51.8 DIORITE-DIORITE PORPHYRY matrix: very fine grained to fine grained, grey-white-black; 60-70% subhedral to euhedral plagioclase & 30-40% biotite>homblende; homblende to 3 mm, commonly clustered; biotite very fine-fine grained, interstitial; phenocrysts: 1-5%, coarse grained to 1 cm, equant to subhedral (10x4 mm) plagioclase, some albite twinned, few zoned with white nims; coarse phenocrysts are a small portion of a feldspar phyric continuum; very fine grained to fine grained pyrite, disseminated and strings to 1% common in part; few very fine grained, black mafic volcanic(?) fragments, angular, 1-2 cm; matrix QUARTZ DIORITE in part, sparse vfg grey quartz eyes; SILICIFICATION is pervasive, the more intense sections (noted) obscure or obliterate the intrusive textures; thin clear to grey quartz seams to 3 mm common, few to 1 cm, all core angles (c/a); thin white calcite commonly coats fractures.

- 4.6 ~5.5 ~60-80% lost core? few limonite coated fragments
- ~5.5 5.9 QUARTZ VEIN very fine grained, coarsely patchy grey-white; pale greygreen seams; 1-2% very fine-fine grained pyrite, disseminated & seams
- ~5.9 6.2 broken core, limonite oxidized fractures
- 6.4 7.1 QUARTZ VEIN upper contact 1 cm wide chloritic GOUGE, 50° c/a; limonite & minor hematite on fractures; sparse disseminated pyritechalcopyrite

SAMPLE 113665 6.4 - 7.1 2 Sppb Au 63 ppm Cu 44 ppm Mo

- 7.6 8.1 broken core; SILICIFICATION and 10% QUARTZ VEIN
- 8.2 8.3 SILICIFICATION grey-green (biotite-chlorite altered?) contacts; diffused 70° c/a lower contact
- 8.9 9.3 SILICIFICATION pale green-grey; diorite texture preserved
- 11.3 12.4 SILICIFICATION pale grey, 20% diorite texture preserved
- 14.2 14.4 SILICIFICATION pale grey-green, 7 cm wide, 30° c/a; central 1 cm wide quartz seam, bleached borders
- 14.7 14.9 SILICIFICATION & QUARTZ VEIN chlorite seams, 90° contact
  - 15.1 XENOLITHS? two diffuse clots, fine grained chlorite-biotite-feldspar; to 2x3 cm
- 15.6 16.1 SILICIFICATION thin chlorite-biotite seams
  - 15.9 16.0 GOUGE chloritic; quartz vein fragments
- 16.7 17.4 QUARTZ VEIN 1 cm wide, <5° c/a
- 17.4 18.0 SILICIFICATION pale green-bleached; sparse, fine grained pyrite on fractures
  - 19.0 numerous chlorite seams & thin gouge seams; 2 cm, 60-70° c/a
- 19.2 19.4 SILICIFICATION pale green-grey; porphyritic
- 19.5 19.9 SILICIFICATION pale grey; bleached borders; quartz eyes preserved
- 20.1 20.3 clay (GOUGE?)
- 20.2 20.7 XENOLITHS few coarse mafic, very fine grained biotite
- 21.3 21.6 SILICIFICATION pale grey; biotite-chlorite contacts, 70° c/a
- 21.6 22.0 BIOTITE ALTERATION interstitial and numerous seams; few quartz clots
- 22.0 23.2 broken core; chlorite seams; 50% QUARTZ VEIN
- 23.2 25.9 sand seam, width unknown; BIOTITE ALTERATION very fine grained, brown-black, numerous thin seams, all c/a

25.9 - 26.0 SILICIFICATION - pale green-grey

26.0 - 26.4 GOUGE - siliceous, bleached, broken core, guartz vein?

26.4 - 27.1 SILICIFICATION - strong; aphanitic, diffuse contacts; pseudobreccia of very fine grained biotite seams, all c/a; sparse very fine grained pyrite

SAMPLE 113666 26.2-27.2 ppb Au 5 ppm Cu 74 ppm Mo 31, 3i 75

27.1 - 27.2 QUARTZ VEIN - very fine grained, massive, patchy grey-white, bleached seams; upper contact 60° c/a, lower contact 70° c/a

27.3 - 27.6 QUARTZ VEINS - chlorite seams; lower contact 70° c/a

| SAMPLE                                                                      | 113667 | 27.2 - 27.7 20 ppb Au |  | B6ppm Cu | 7 ppm Mo |  |  |  |  |
|-----------------------------------------------------------------------------|--------|-----------------------|--|----------|----------|--|--|--|--|
| 28.0 - 28.5 SILICIFICATION - pale grey-green; 90% diorite texture preserved |        |                       |  |          |          |  |  |  |  |

28.1 bleached seam, 2 cm wide

29.3 - 29.6 SILICIFICATION - & QUARTZ VEIN (2 cm wide, 45° c/a, @ 29.6 m)

- 29.8 30.2 SILICIFICATION thin biotite-chlorite seams, high core angles; slickensided fractures
- 30.2 31.5 SILICEOUS SHEAR flat, wavy; truncated at sharp lower contact chloritic GOUGE & QUARTZ VEIN, 1 cm wide, 70° c/a
- 31.5 31.6 SILICIFICATION pale grey, >90% diorite texture preserved; diffuse lower contact
- 32.0 34.9 SILICIFICATION pale green-grey
  - 32.4 33.0 GOUGE chlorite-muscovite, broken core
  - 33.1 33.5 broken core
  - 34.6 34.9 bleached; QUARTZ VEIN (34.8 34.9) fine grained, massive, white; sparse fine grained pyrite, rare molybdenite specks

SAMPLE 113668 34.5 - 35.0 5 ppb Au 124 ppm Cu 50 ppm Mo

349 355 BIOTITE ALTERATION - very fine grained; weakly chloritic

- 35.3 37.4 QUARTZ VEIN very fine grained, grey-white; broken, chlorite-limonitepyrite on fractures; 1-5% clots, strings, seams very fine grained pyrite & rare chalcopyrite-bornite-pyrrhotite(?)
  - 36.2 broken core

|        | 36.6 - 36.9 | MAFIC DIKE - very fine grained, chloritic, magnetic |        |
|--------|-------------|-----------------------------------------------------|--------|
| SAMPLE | 113669      | 35.3 - 36.3 9.62/ppb Au 7,7 ppm Cu 8                | ppm Mo |
| SAMPLE | 113670      | 36.3-37.4 28 o ppb Au \$45 ppm Cu 19                | ppm Mo |

38.3 - 38.4 SILICIFICATION

- 39.3 39.4 SHEAR FOLIATION 70° c/a; strong SILICIFICATION & BIOTITE ALTERATION
- 40.0 40.5 QUARTZ VEIN few biotite seams in upper contact area

40.8 - 41.0 QUARTZ VEIN - massive, white; finely vuggy contacts, 1 cm wide, 90° c/a

SAMPLE 113671 40.0 - 41.0  $1 \leq ppb Au \geq \leq 4 ppm Cu = 7 ppm Mo$ 

- 41.0 45.8 BIOTITE ALTERATION thin biotite-chlorite seams common, all c/a
- 41.3 41.7 broken core
- 41.8 42.2 few biotite-chlorite seams, 1 cm wide, 70° c/a
- 42.5 42.7 SILICIFICATION dark grey upper third, lower part bleached; sharp 75° c/a lower contact; 1 cm wide siliceous GOUGE @ segment lower contact, 90° c/a
- ~43.0 51.8 MEGACRYSTIC-PORPHYRITIC DIORITE-QUARTZ DIORITE 5-10% phenocrysts; obscure texture in part
  - 43.3 43.4 SILICIFICATION grey-bleached; <5% diorite texture preserved
  - 43.8 43.9 QUARTZ VEIN fine grained, massive, grey-white; bleached fractures; 30° c/a lower contact
  - 45.2 45.9 broken core
    - 45.2 45.6 SILICIFICATION & QUARTZ VEIN grey-white; bleached lower contact, 80° c/a
- 45.8 51.8 SHEAR FOLIATION ZONES dark-light grey, 2-3 to >10 cm wide, 65-80° c/a; BIOTITE-CHLORITE-SILICIFICATION; strong flattening fabric, very fine grained biotite surrounds partly crushed, rotated quartz eyes, to 5 mm; sparse fine grained pyrite

47.1 - 47.5 broken core, minor GOUGE

SAMPLE 113672 46.5

46.5 - 47.5  $\sum$  ppb Au 28 ppm Cu  $\sum$  ppm Mo,  $A \le 10$ 

50.6 - 51.8 intense flattening

50.9 - 51.3 SILICIFICATION - thin quartz vein, 90° c/a upper contact; bleached; finely broken core, minor chloritic GOUGE

51.5 - 51.8 bleached, broken in part; biotite-healed quartz BRECCIA at lower contact

SAMPLE 113673 50.9-51.8 / S ppb Au 79 ppm Cu // ppm Mo

51.8 - 74.7 DIORITE-QUARTZ DIORITE-minor PORPHYRITIC DIORITE - speckled whiteblack-brown-grey; minor patchy SILICIFICATION, chlorite-biotite seams, bleached seams 51.8 - 52.0 SILICIFICATION - pale grey-brown

53.2 - 54.3 SILICIFICATION - chlorite fractures; <5% diorite texture preserved

53.2 - 53.2 QUARTZ VEIN - grey-white; bleached fractures; 25° c/a upper contact; <1% disseminated very fine grained pyrite

53.2-54.3 5 ppb Au & ppm Cu 2/ppm Mo, 4570 SAMPLE 113674 60.2 - 60.6 SILICIFICATION - broken core; pale grey-bleached; minor gauge seams 50-70° c/a; quartz eyes & ghost textures 61.7 QUARTZ VEIN - 3 cm wide, 45° c/a 62.8 SILICIFICATION - pale grey, 5 cm wide, 30° c/a 63.9 - 64.0 SILICIFICATION -. 20° c/a 64.4 - 64.6 SILICIFICATION - 3 cm wide QUARTZ VEIN @ lower contact, 45° c/a 65.3 - 67.1 SILICIFICATION - intense; minor bleached seams/patches; rare specks-2 mm blebs very fine grained pyrite 65.6 - 66.0 broken core 66.0 - 66.2 siliceous GOUGE 66.5 - 67.1 GOUGE - siliceous-chloritic, sharp 85° c/a lower contact 66.0 - 67.1 5 ppb Au Z/C ppm Cu / Z\_ppm Mo SAMPLE 113675 67.1 - 67.8 SILICIFICATION - weak, pale green-grey; diorite texture preserved 67.8 - 68.2 SILICIFICATION - 50% broken core & minor siliceous gouge; few zoned chlorite-quartz-chlorite seams; lower contact 30° c/a 68.5 - 68.8 GOUGE - finely broken silicified core; 80° c/a upper contact, sharp 60° c/a lower contact 67.8-68.8 5 ppb Au 37 ppm Cu 7 SAMPLE 113676 ppm Mo 69.0 - 69.3 GOUGE - as 68.5; upper contact 70° c/a, lower contact 90° c/a 90° c/a. 69.4 - 69.6 GOUGE - as 68.5: 70° c/a 5 ppb Au 24 ppm Cu & 68.8 - 69.8 SAMPLE 113677 ppm Mo 69.6 - 74.7 weak SILICIFICATION - pale grey +/- pale green 69.8 - 70.0 broken core 70.1 - 70.3 , siliceous GOUGE 70.4 - 70.8 , chloritic-siliceous GOUGE 69.8 - 70.5 5 ppb Au /7 ppm Cu > ppm Mo SAMPLE 113678

71.6 - 71.9 broken core, GOUGE - as 68.5

71.9 - 74.7 coarsely (to 2 cm) plagioclase phyric & prophyritic

71.9 - 72.5 broken core, minor chloritic-siliceous gouge

SAMPLE 113679 71.6 - 72.5 5 ppb Au ≤ 5 ppm Cu ♀ ppm Mo
72.5 - 73.0 broken core, numerous chlorite fractures
73.7 - 74.2 90% QUARTZ VEIN - very fine-fine grained white-grey, bleached searns; sharp 70° c/a upper contact; sparse fine grained pyrite, disseminated & rare clots; broken lower contact, chlorite fractures
SAMPLE 113680 73.7 - 74.2 5 ppb Au ♀ ppm Cu ≤ ppm

74.3 - 74.4 SILICIFICATION - bleached; sharp upper contact, 80° c/a

74.7 END OF HOLE

| PROJECT: ORKO GOLD CORP | NTS Map Number: 92P1 | Drilling by: CONNORS    | DRILL HOLE: |
|-------------------------|----------------------|-------------------------|-------------|
|                         | TRIM 928 OCE         | Date:                   | 98          |
| BONAPART GOLD           | Mining Division:     | Logged by:<br>E.LIVGARD | #9          |
| COLLAR LOCATION:        | AZIMUTH: //50        | ELEVATION:              | PAGE:       |
|                         | DIP: - 450           | TOTAL LENGTH: 28.7      | OF /        |

| MAIN     | I DIV. | MINO                    | R DIV.   | DESCRIPTION                       | SAMPLE  | INTE     | RVAL     | ppb   | ASS  | AYS | PM |
|----------|--------|-------------------------|----------|-----------------------------------|---------|----------|----------|-------|------|-----|----|
| from (m) | to (m) | from (m                 | ) to (m) |                                   | NUMBER  | from (m) | to (m)   | ba    | Cu   | Mo  | AS |
| 0        | 3.4    |                         |          | CASING                            |         |          |          |       |      |     |    |
| 3.4      | 19.3   |                         |          | DIORITE - FINE TO MEDIUM          |         |          |          |       |      |     |    |
|          |        |                         |          | GRAINED LIGHT - MINOR             |         |          |          |       |      |     |    |
|          |        |                         |          | EPIDOTE.                          |         |          |          |       |      |     |    |
|          |        | 4.6                     | 4.85     | Dyke - 45° TOC. FINE              |         |          |          |       |      |     |    |
|          |        |                         |          | GRAINED GREY WITH WHITE           |         |          |          |       |      |     |    |
|          |        |                         |          | Imm Speckd                        |         |          |          |       |      |     |    |
|          |        | 6.4                     | 7.0      | Imm Specked.<br>Bocm core Loss    |         |          |          |       |      |     |    |
|          |        |                         |          | SANDY-CLAY GRIABLE                |         |          |          |       |      |     |    |
|          |        | 11.6                    | 19.3     | INCREASE TO COARSE GRAINSD        |         |          |          |       |      |     |    |
| 14.3     | 22.9   |                         |          | QUARTZ VEIN - LOWER               | 111 494 | 19.3     | 21.0     | 696   | 1771 | 24  | 2  |
|          |        |                         |          | AND INTERNAL CONTACTS 30-35 40    | - 95    | 21.0     | 22.9     | 990.  | 86   | 2   | 22 |
|          | •••••  | 20.0                    | 20.4     | DIDRITE WITH PARACLEL             |         |          | <b>^</b> | ottea | · .  |     |    |
|          |        | · · · · · · · · · · · · |          | QUARTZ STRINGERS AND              |         |          |          |       |      |     |    |
| <u>ر</u> |        | •- ····                 |          | STRINGERS 35 to C                 | 1       |          |          |       |      |     |    |
| ·        |        | 21.0                    | 21.3     | DIORITE SILICIFIED-COARCE         |         |          |          |       |      |     |    |
|          |        |                         |          | GRAINED - 1% CHALCOPYRITE         |         | ·.       | ,.<br>   |       |      |     |    |
|          |        |                         | <b>.</b> | MAINLY IN QUARTZ VEINS            |         |          | •        |       |      |     |    |
|          |        | • ···                   |          | 19.3TO 22.9) NEAR CONTACT TO DIOR | ITE     |          |          |       |      |     |    |
| 22.9     | 28.7   |                         |          | DIDFITE - COARSE GRAINED,         |         |          |          |       |      |     | L] |

END

### ORKO GOLD CORPORATION BONAPARTE GOLD PROPERTY

DH 98-10

CO-ORDS.: 1998 Grid

AZIMUTH: کې

DIP: - 550

**ELEVATION:** 

LENGTH: 65.2 m

PURPOSE: vein test

DRILL TYPE & SIZE: track-mounted / HQ core

DIP TEST: none

SAMPLES: 111447 - 111450; 113651 - 113663

DATE STARTED: 1998

DATE COMPLETED: 1998

LOGGED BY: E.D. Frey

DATE LOGGED: 3 - 4 July 1998

- 0 5.2 overburden, casing
- 5.2 65.2 DIORITE-DIORITE PORPHYRY matrix: very fine grained to fine grained, grey-white-black; 60-70% subhedral to euhedral plagioclase & 30-40% biotite>homblende; homblende to 3 mm, commonly clustered; biotite very fine-fine grained, interstitial; phenocrysts: 1-5%, coarse grained to 1 cm, equant to subhedral (10x4 mm) plagioclase, some albite twinned, few zoned with white rims; coarse phenocrysts are a small portion of a feldspar phyric continuum; very fine grained to fine grained pyrite, disseminated and strings to 1% common in part; few very fine grained, black mafic volcanic(?) fragments, angular, 1-2 cm; matrix QUARTZ DIORITE in part, sparse vfg grey quartz eyes; SILICIFICATION is pervasive, the more intense sections (noted) obscure or obliterate the intrusive textures; thin clear to grey quartz seams to 3 mm common, few to 1 cm, all core angles (c/a); thin white calcite commonly coats fractures.
  - 5.4 5.5 SILICIFICATION bleached-pale grey, 20% diorite texture preserved; 65° c/a, wavy-diffuse dark grey contact zones, 1 cm wide; sparse, fine grained pyrite in contacts
  - 5.6 6.1 QUARTZ VEINS fine grained, recrystallized, dull white, 4-6 cm wide, 20° c/a; fine grained quartz-sericite+/-pyrite zones to 1 cm wide

|        |           |                      |                                                 |                    | J.           | 5.0                  |             | _            |              | 1.50              | 0 -  |
|--------|-----------|----------------------|-------------------------------------------------|--------------------|--------------|----------------------|-------------|--------------|--------------|-------------------|------|
| SAMPLE | 111       | 447                  | 5.6 - 6.1                                       | 15                 | ppb Au       | 518                  | ppm Cu      | 156          | ppm Mo       | , <sup>1</sup> 55 | #5   |
|        | 6.3 >     | quartz se            | ams commor                                      | i <b>, thin (t</b> | o 1 cm), l   | ow c/a,              | clear-gre   | әу           |              |                   |      |
|        | 7.5       | QUARTZ<br>c/a        | Z VEIN - very 1                                 | îne gra            | ined - fine  | e graine             | d, grey-v   | vhite, 5     | cm wide, t   | 90°               |      |
|        | 9.0       | SILICIFI             | CATION - pate                                   | shy, ble           | ached, 8     | cm, 90'              | ° c/a; dioi | rite text    | ture preser  | ved               |      |
|        | 9         | .1 - ~10.0           | few quartz vo<br>disseminated                   |                    |              |                      | •           | -            | :0 1%        |                   |      |
| SAMPLE | 111       | 448                  | 9.0 - 10.0                                      | 10                 | ppb Au       | 121                  | ppm Cu      | , 51         | ppm Mo       | 30                | >As  |
| 11.    | .3 - 12.1 | 90% coa              | arsely broken (                                 |                    |              |                      | ,           |              |              |                   |      |
| 12.    | .0 - 12.5 | SILICIFI             | CATION - pai                                    | e grey-l           | bleached;    | diorite              | texture w   | veakly (     | preserved    |                   |      |
|        | 12.1      | QUARTZ               | Z VEIN - fine g                                 | rained,            | white; 40    | ° c/a, 2             | cm          |              |              |                   |      |
|        | 12.3      | clots very           | VEIN - very f<br>fine grained<br>hite(?) specks |                    |              |                      |             |              |              |                   |      |
| SAMPLE | 111       | 449                  | 12.0 - 12.5                                     | 35                 | ppb Au       | 31                   | ppm Cu      | ,45          | ppm Mo       | 3                 | o As |
| 12.    | 7 - 13.3  | QUART                | Z VEINS - few                                   | flat (0°           | ' c/a), thin | , <mark>clear</mark> | 1           | ,            |              | ,                 |      |
|        | 13.1 -    | 13.2 spa<br>to 1     | arse clots very<br>2 mm                         | fine gra           | ained bori   | nite, aft            |             | dral ho<br>¥ | rnbiende (   | ] .               |      |
| 14.    | 2 - 14.4  | QUART.<br>biotite se | Z FLOODING<br>Barns                             | - coars            | e grained    | clots, v             |             |              | l quartz +/- | •                 |      |
| ~      | 15.1>     |                      | us segments v<br>fine grained bi                | •                  |              |                      | ase and     | 1% ver       | y fine       |                   |      |
| 15.    | 4 - 15.8  | GOUGE                | - siliceous, gi                                 | ey; 209            | % finely bi  | roken w              | hite quar   | rtz vein     |              |                   |      |
| ~17.   | .5 - 18.5 | SILICIF              | ICATION - fev                                   | v zoneć            | i seams to   | o 2 cm               | wide        |              |              |                   |      |
| 18.    | 7 - 18.9  | SILICIFI             | CATION - we                                     | akiy ble           | ached, di    | orite te:            | kture pre   | served       |              |                   |      |
| 19.    | 1 - 19.2  |                      | CATION & QU<br>tures, rare spe                  |                    |              |                      | oyrite to { | 5% on I      | numerous     |                   |      |
| 19.    | 3 - 19.8  | QUART                | Z VEIN - fine g                                 | <b>grained</b> ,   | , white; br  | oken c               | ore, fine f | to coar      | se           |                   |      |
| 19.    | 9 - 20.3  |                      | Z VEIN (50%)<br>biotite; very fir               |                    |              | -                    |             |              | -            | e                 |      |
| SAMPLE | 111       | 450                  | 19.3 - 20.3                                     | 40                 | ppb Au /     | 149                  | ppm Cu      | 149          | ppm Mo       | Ş                 | 5 As |
| 22     | 0 - 22 5  | SILICIE              | CATION - we                                     |                    |              |                      |             | •            |              |                   |      |

. .

•--- --•

r i

5

:

. ·

. . .

.

-

L. ...

њ. ,

5

--------- - - ,

22.0 - 22.5 SILICIFICATION - weakly bleached, diorite texture preserved; few thin

(<5 mm) seams very fine grained biotite, chlorite, all c/a

22.9 - 23.4 QUARTZ VEIN & SILICIFICATION (23.2 - 23.4) - white, fine grained recrystallized quartz; 1% very fine grained pyrite, rare chalcopyrite; silicification pale green-bleached, 90% diorite texture preserved

SAMPLE 113651 22.9-23.4 5 ppb Au /2/ ppm Cu 45 ppm Mo /0 >AS

23.6 - 23.8 broken core, few grey quartz veins

24.0 - 24.1 GOUGE - siliceous and chloritic; broken quartz vein

SAMPLE 113652 23.4-24.1 65 ppb Au 29 ppm Cu 14 ppm Mo # 5743

- 25.4 25.6 QUARTZ VEIN 90%; broken core
- 25.6 25.8 SILICIFICATION weak, pale grey-green; diorite texture preserved
  - 26.3 SILICIFICATION weak, 80° c/a, 3 cm wide
  - 26.5 few coarse clots (to 15 mm) veryfine grained biotite (after hornblende?)
  - 26.6 SILICIFICATION as 25.6 m; 70° c/a, 4 cm wide
- 26.7 26.8 BIOTITE-CHLORITE >70% very fine grained, brown-black biotite-chlorite, interstitial; enhanced porphyritic appearance of plagioclase-quartz phyric diorite
  - 26.7 > crowded feldspar phyric (finely porphyritic)
- 27.0 28.6 BIOTITE-CHLORITE >90% very fine grained, dark green-brown-black, soft; coating? some quartz-feldspar; diorite texture obscure; to 5% pyrite, disseminated very fine grained; broken core, fine to coarse
  - 27.0 QUARTZ VEIN very fine grained, grey-white; very fine grained biotite seams

SAMPLE

113653

- 27.4 28.4 35 ppb Au / ppm Cu 9 ppm Mo  $A \le 230$
- 28.8 28.9 SILICIFICATION very fine grained, grey-white, patchy; sparse fine grained pyrite
- 30.0 30.2 SILICIFICATION three zones, 4 cm wide, 35° c/a, 5-6 cm separation; grey, zoned: 5 mm quartz centre, feldspar-fine grained-medium grained muscovite
  - 31.5 few small clots very fine grained biotite; after hornblende?
- 32.3 32.4 SILICIIFICATION (QUARTZ VEIN?) grey, wavy 90° c/a upper contact; fine grained pyrite to 10% on broken surfaces
- 32.5 32.7 QUARTZ FLOODED grey-white, 90° c/a; numerous thin seams dendritic tourmaline(?) strings (very fine grained, black, acicular), 1% very fine grained pyrite, rare chalcopyrite; to 10% pyrite on fractures

32.3-32.7 10 ppb Au 156 ppm Cu 488 ppm Mo 45 35 SAMPLE 113654 33.0 - 33.1 SILICIFICATION-QUARTZ VEIN-BRECCIA - 45° c/a, central quartz vein 2 cm wide, strong shear foliation; very fine grained brown-black biotite seams and fractures; rare very fine grained chalcopyrite in biotite 33.4 - 33.5 broken core, patchy SILICIFICATION-QUARTZ VEIN 33.0-33.5 5 ppb Au B5 ppm Cu 6 ppm Mo A545 SAMPLE 113655 35.1 - 36.0 90% broken core; 2-3 QUARTZ VEINS (35.1 - 35.5 & 35.8 - 36.0); few very fine grained tourmaline needles on seams; rare chalcopyrite, minor GOUGE 35.1-36.0 5 ppb Au 54 ppm Cu 9 ppm Mo As 5 SAMPLE 113656 36.0 - 36.4 coarsely broken core 36.6 & 36.8 SILICIFICATION - 4-6 cm, grey-bleached; 10% diorite texture preserved 38.4 - 38.7 SILICIFICATION - pale grey-green "tapioca" (fine grained quartz eyes); 35° c/a upper contact, 75° c/a lower contact 38.7 - 38.8 QUARTZ VEIN - massive, very fine grained, white; to 1% fine grained pyrite in partly vuggy upper contact & on fractures; no visible sulphides 38.8 - 39.5 few white QUARTZ VEINS, 1-10 cm; +/- diorite inclusions 39.5 - 39.7 QUARTZ VEIN - very fine grained, white massive, sharp, 60-70° upper contact; shear foliation; few chlorite-biotite and white (albite?, sericite?) zoned fractures 38.7 - 39.7 5 ppb Au 230 ppm Cu & ppm Mo A= 5 SAMPLE 113657 40.6 - 41.2 GOUGE - chloritic, few thin guartz seams; sharp upper contact, 65° c/a 41.4 - 41.5 GOUGE - chloritic 41.7 - 42.1 broken core, chloritic fractures, some slickensides, all c/a 42.1 - 42.4 SILICIFICATION - pale grey-bleached; 90% diorite texture preserved; few 1 cm quartz veins 42.4 - 42.8 broken core, upper contact GOUGE: chloritic fractures 43.0 - 43.1 as previous 43.3 - 43.4 SILICIFICATION & BRECCIA - pale green, 2 cm wide upper & lower contacts, central silicified breccia, 70° c/a upper contact; white-pale grey subangular fragments, chloritic gouge at lower contact of breccia and

44.2 - 44.3 SILICIFICATION - pale grey, diorite texture preserved, diffuse contacts

interstitial

45.6 - 45.8 SILICIFICATION (as previous) & QUARTZ VEIN - in broken core

46.0 XENOLITH - black, 80% very fine grained biotite, 2x1 cm, subangular

46.5 - 46.7 XENOLITHS - few to 5 mm, as previous

- 46.8 SHEAR FOLIATION 1 cm wide, 80-90° c/a, quartz-calcite; 1% pyritechalcopyrite, very fine grained-fine grained, disseminated
- 47.1 47.4 SILICIFICATION grey, 55° c/a upper contact; pale brown sericite? (after biotite?); few thin calcite seams

46.7 - 47.4 5 ppb Au 25 ppm Cu 3 ppm Mo 113658 SAMPLE

48.9 SILICIFICATION - pale grey-green; quartz-chlorite shear; 2 cm wide,

80° c/a

49.8 - 50.8 BIOTITE ALTERATION - pervasive interstitial very fine grained biotite; dark grey-black-brown SILICIFIED biotite shear foliation to 10 cm wide, 60-80° c/a, sharp to diffuse contacts; rare fine grained pyrite; lower 10 cm swirled foliation

SAMPLE 113659 49.8 - 50.8 5 ppb Au 19 ppm Cu Z ppm Mo

- 51.0 51.3 broken core; QUARTZ VEIN & BIOTITIC SILICIFICATION to 2 cm wide, 70-80° c/a; rare disseminated fine grained pyrite & chalcopyrite(?)
- 52.4 54.3 SILICIFICATION weak, grey-pale green; few thin bleached seams, all c/a

SAMPLE 113660 53.6 - 54.6 Zo ppb Au ZS ppm Cu 76 ppm Mo

- 54.3 54.6 QUARTZ VEIN very fine grained, patchy white-grey; disseminated pyrite to 1%; upper contact 40° c/a, lower contact 80° c/a
  - 54.7 SILICIFICATION pale grey, 10% diorite texture preserved; 2 cm wide, 35° c/a; fine grained cubic pyrite on fractures
- 56.2 58.4 SILICIFICATION-CHLORITE ALTERATION pale green chlorite after biotite; diorite texture preserved; QUARTZ DIORITIC in part; patch vein quartz; rare pyrite specks
  - 56.2 57.0 broken core, low c/a quartz vein

57.2 - 57.6 60% patchy vein quartz

SAMPLE 113661 57.1-58.1 (0 ppb Au (20 ppm Cu (0 ppm Mo

- 58.0 58.7 numerous chlorite-biotite seams, few clots to 2x5 cm; 10% very fine grained pyrite; pyrite smears on fractures
- 59.0 60.3 SILICIFICATION-CHLORITE ALTERATION-QUARTZ VEINS -QUARTZ FLOODING - grey-white; veins all c/a, white zoned fractures; sparse very

fine grained pyrite

59.2 - 60.2 5 ppb Au 64 ppm Cu 29 ppm Mo SAMPLE 113662

61.4 - 62.9 CHLORITE ALTERATION-SILICIFICATION - weak, diffuse contacts; sparsely porphyritic

62.3 shear foliation, 2 cm wide, 55° c/a; pale green-grey

- 62.7 62.9 as previous; 5 cm wide, 2cm quartz core; 35° c/a
- 63.8 65.2 SILICIFICATION-BIOTITE-CHLORITE ALTERATION pale chloriticsiliceous GOUGE & broken core; sparse very fine grained pyrite; upper contact GOUGE, 90° c/a

65.1 - 65.2 BRECCIA? - angular-subangular fragments to 2 cm; broken core

SAMPLE 113663 63.8 - 65.2 5 ppb Au 22 ppm Cu 5 ppm Mo

65.2 END OF HOLE

 $(\mathbf{n} + \mathbf{n} +$ 

| PROJECT: ORKO GOLD CORY.         | NTS Map Number: 92P1                      | Drilling by: CONNORS                            | DRILL HOLE: |
|----------------------------------|-------------------------------------------|-------------------------------------------------|-------------|
| BONAPART GOLD.                   | 92 PDOE<br>Mining Division:<br>KAm Loop 5 | Date: Mey 124-1998<br>Logged by:<br>E. LIVESARD | 98#11       |
| COLLAR LOCATION:<br>4267E, 808/N | AZIMUTH: N<br>DIP: 450                    | ELEVATION:<br>TOTAL LENGTH: 15.9                | PAGE:       |
| 4261E, 808/N                     | DIP: 450                                  | TOTAL LENGTH: 15.9                              | 104         |

| MAIN       | DIV.   | MINO     | r div. | DESCRIPTION                   | SAMPLE | INTE     | RVAL                                  | eps  | ASS       | AYS      | <del>M</del> |
|------------|--------|----------|--------|-------------------------------|--------|----------|---------------------------------------|------|-----------|----------|--------------|
| from (m)   | to (m) | from (m) | to (m) |                               | NUMBER | from (m) | to (m)                                | pu   | Cu        | Mo       | As           |
| 0          | 1.2    |          |        | CASING                        |        |          |                                       |      |           |          |              |
| 1.2        | 13.7   | 1        |        | DIDRITE FINE GRAINED LIGHT    |        |          |                                       |      |           |          | · · ····     |
| í l        |        |          |        | SLIGHT SILICIFICATION         |        |          |                                       |      |           |          |              |
| ,          |        | 3.0      | 5.0    | PARTLY FRAGMENTED Sca         |        |          |                                       |      | · · ·     |          | -            |
|            |        |          |        | FRAGMENTED - MINOR QUARTZ     |        |          |                                       |      |           |          |              |
|            |        |          |        | SAND - DENDRITIC MANGANESE    |        |          |                                       |      |           |          |              |
|            |        |          |        | STAINING - FRACTURE 85° to    |        |          |                                       |      |           |          |              |
|            |        |          |        | CORE WITH SILICIFICATION      |        |          |                                       |      | . <u></u> |          |              |
|            |        |          |        | Zam DEEP ON EACH SIDE         |        |          |                                       |      |           |          |              |
|            |        | HQB      | 10.6   | STRONG SILICIFICATION MINOR   |        |          |                                       |      |           |          |              |
|            |        |          |        | QUARTZ MITH SYRITE            |        |          |                                       |      | · ·       |          |              |
|            |        | 11.1     |        | QUARTE FRAGMENTS-NO PERITE    |        |          |                                       |      | •· ••••   |          |              |
| 13.7       | 15.0   |          |        | QUARTZ VEIN 450 to C.         | 113699 | 13.7     | 15.0                                  | 2    | 96        | 11       | 22           |
| 1-1        |        |          |        | 10% of Quariz 15 Jul          | /      |          |                                       |      |           |          |              |
| P. 11-11-1 |        |          |        | - mINOR PYRITE AND CHALCOPYE  | 154    |          |                                       |      | <u>,.</u> |          |              |
|            |        |          |        | - SILICIFICATION ON EACH SIDE | ·      |          |                                       |      | <b></b>   |          |              |
|            |        |          |        | OF VEIN                       |        |          | · · · · · · · · · · · · · · · · · · · |      |           | <b></b>  |              |
| 15.0       | 15.9   |          |        | DUDRITE - LAST 30cm           |        |          |                                       | <br> |           |          | ļ            |
|            | - 11   | >        |        | SANDY-FRIADLE                 |        |          |                                       |      |           |          |              |
|            | :NY    |          |        | ONE BUDGEN SIDE               |        | <u> </u> |                                       | L    |           | <u> </u> | <u> </u>     |
| P          |        |          |        |                               |        |          |                                       |      |           |          |              |
|            | 1      | 1        |        |                               |        |          |                                       |      |           |          |              |

| 1.1 () (C.1 (T.1 |  |  |
|------------------|--|--|
|                  |  |  |

| PROJECT:     | NTS Map Number:                  | Drilling by: CONNORS            | DRILL HOLE: |
|--------------|----------------------------------|---------------------------------|-------------|
|              | Mining Division:                 | Date:<br>Logged by:             | 98#11B      |
|              | Ū                                | E. LIVE ARD                     | 70=110      |
|              | AZIMUTH: 140° AppRox<br>DIP: -45 | ÉLEVATION:<br>TOTAL LENGTH: 6-5 | PAGE:       |
| 4267 £,808/N |                                  | I TUTAL LENGTH: 0->             | 104/        |

| DESCRIPTION               | NUMBER                                                                      |                                                                    |                                                                                        | # F.                                                                                      |                                                                                               |                                                                                                  |                                                                                                       |
|---------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
|                           |                                                                             | from (m)                                                           | to (m)                                                                                 | Au                                                                                        | Cu                                                                                            | Mo                                                                                               | AS                                                                                                    |
| CASING                    |                                                                             |                                                                    |                                                                                        |                                                                                           |                                                                                               |                                                                                                  |                                                                                                       |
| PIPRITE FINE TO MEDIUM    |                                                                             |                                                                    |                                                                                        |                                                                                           |                                                                                               |                                                                                                  |                                                                                                       |
| GRAINED                   |                                                                             |                                                                    |                                                                                        |                                                                                           |                                                                                               |                                                                                                  |                                                                                                       |
| FRACTURING PARACLEL TO C  | 113698                                                                      | 5.7                                                                | 61                                                                                     | //                                                                                        | 150                                                                                           | 128                                                                                              | 5                                                                                                     |
| 2-3 QUARTZ STRINGERS      |                                                                             |                                                                    |                                                                                        |                                                                                           |                                                                                               |                                                                                                  |                                                                                                       |
|                           |                                                                             |                                                                    |                                                                                        |                                                                                           |                                                                                               |                                                                                                  |                                                                                                       |
|                           |                                                                             |                                                                    |                                                                                        | I                                                                                         |                                                                                               |                                                                                                  |                                                                                                       |
|                           |                                                                             |                                                                    |                                                                                        |                                                                                           |                                                                                               |                                                                                                  |                                                                                                       |
| - DRILLED WRONG DIRECTION | <u> </u>                                                                    |                                                                    |                                                                                        |                                                                                           |                                                                                               |                                                                                                  |                                                                                                       |
|                           |                                                                             |                                                                    |                                                                                        |                                                                                           |                                                                                               |                                                                                                  |                                                                                                       |
|                           |                                                                             |                                                                    |                                                                                        |                                                                                           |                                                                                               |                                                                                                  |                                                                                                       |
|                           |                                                                             |                                                                    |                                                                                        |                                                                                           |                                                                                               |                                                                                                  |                                                                                                       |
|                           |                                                                             |                                                                    |                                                                                        |                                                                                           |                                                                                               |                                                                                                  |                                                                                                       |
|                           |                                                                             |                                                                    |                                                                                        |                                                                                           |                                                                                               |                                                                                                  |                                                                                                       |
|                           |                                                                             |                                                                    |                                                                                        |                                                                                           |                                                                                               |                                                                                                  |                                                                                                       |
|                           |                                                                             |                                                                    |                                                                                        |                                                                                           |                                                                                               |                                                                                                  |                                                                                                       |
|                           | ······                                                                      |                                                                    |                                                                                        |                                                                                           |                                                                                               |                                                                                                  |                                                                                                       |
|                           |                                                                             |                                                                    |                                                                                        | <u> </u>                                                                                  |                                                                                               |                                                                                                  |                                                                                                       |
|                           |                                                                             |                                                                    |                                                                                        |                                                                                           |                                                                                               |                                                                                                  |                                                                                                       |
| 6                         |                                                                             |                                                                    |                                                                                        |                                                                                           |                                                                                               |                                                                                                  |                                                                                                       |
|                           |                                                                             |                                                                    |                                                                                        |                                                                                           |                                                                                               |                                                                                                  |                                                                                                       |
|                           | GRAINED<br>FRACTURING PARACLEL TO C<br>2.3 QUARTZ STRINGERS<br>WITH PYRITE. | GRAINED<br>FRACTURING PARACLEL TO C 113698<br>2.3 QUARTZ STRINGERS | GRAINED<br>FRACTURING PARACLEL TO C 113698 5.7<br>2.3 QUARTZ STRINGERS<br>WITH PYRITE. | GRAINED<br>FRACTURING PARACLEL TO C 113698 5.7 61<br>2.3 QUARTZ STRINGERS<br>WITH PYRITE. | GRAINED<br>FRACTURING PARACLEL TO C 113698 5.7 6.1 11<br>2.3 QUARTZ STRINKERS<br>WITH PYRITE. | GRAINED<br>FRACTURING PARACLEL TO C 113698 5.7 61 11 150<br>2.3 QUARTZ STRINKERS<br>WITH PYRITE. | GRAINED<br>FRACTURING PARACLEL TO C 113698 5.7 6.1 11 150 128<br>2.3 QUARTZ STRINGERS<br>WITH PYRITE. |

| PROJECT: ORKO GOLD CORP          | NTS Map Number: P2P1                       | Drilling by: CONNORS                          | DRILL HOLE: |
|----------------------------------|--------------------------------------------|-----------------------------------------------|-------------|
| BONAPARI GOLD MINE               | TRIMGZPOOE<br>Mining Division:<br>KANCOOPS | Date: July 471998<br>Logged by:<br>£. LIVEARP | 78 # 12     |
| COLLAR LOCATION:<br>4055E, 8175N | AZIMUTH: W<br>DIP: - 55°                   | 1                                             | PAGE:       |

| MAIN     | DIV.                                  | MINO        | R DIV.    | DESCRIPTION                                                                | SAMPLE   | INTE     | RVAL   | app | ASS      | AYS 🖌 | Dm   |
|----------|---------------------------------------|-------------|-----------|----------------------------------------------------------------------------|----------|----------|--------|-----|----------|-------|------|
| from (m) | to (m)                                | from (m)    | ) to (m)  |                                                                            | NUMBER   | from (m) | to (m) | Are | Cu       | Mo    | A    |
| 0        | 3.7                                   |             |           | CASING                                                                     |          |          |        |     |          |       |      |
| 3.7      | 12.5                                  |             |           | DIORITE DORPHYRYTC                                                         |          |          |        |     |          |       |      |
|          |                                       | 3.7         | 6.0       | DIORITE DORPHYRATTC<br>PHENORYSTS-FELDSP. 76 10000<br>QUADIZ STRINGERS 35% |          |          |        |     |          |       |      |
|          | /                                     | ····· ··    |           | PARALISL TO CORE - Sun WID                                                 | k<br>Jas |          |        |     | ·<br>·   |       |      |
| · ····   |                                       | 6.8         | 7.3       | RUARTZ STRINGERS (20%)                                                     | 113682   | 6.8      | 7.3    | 1   | ZJB      | 204   | 25   |
|          |                                       |             |           | 500 10° 5 C - 1 AND 2 cm                                                   |          |          |        |     |          |       | <br> |
|          | • • • • • • • • • • • • • • • • • • • | ·           |           | ALTERATION.                                                                |          |          |        |     |          |       |      |
| 175      | 13.0                                  | 11.6        |           | 4 en Movemen 48 to C                                                       |          |          |        |     | ,,       |       |      |
| <i></i>  | 12.0                                  | • · · • • • |           | DYKE 80° to C - NERY FINE<br>GRAINED DIORITE WITH                          |          |          |        |     |          |       |      |
| 20       | 14.0                                  |             | ········· | 4% PHENOCROPHIS<br>FAULT - MUDISAND AND<br>FRAGMENTZ TO 4 MU-30% QUA       | 113/07   | 138      | 114 0  |     | 9/       | 17    | 1    |
|          | 17.0                                  |             | ·· •···   | FRAGMENTZ TO 4 em - 30% QUA                                                | 112689   | 17.0     | 14.6   | 1   | 300      | \$78  | 10   |
|          |                                       | - <u>-</u>  |           | 3 cm muo AT 13.0 85 50                                                     |          |          |        |     |          |       |      |
|          |                                       |             | • • •     | <u>Suu 11 14.0</u>                                                         |          |          |        | ·   | <b>_</b> |       |      |
|          |                                       | • • •       |           | 6                                                                          |          |          |        |     |          |       |      |

 $\frac{1}{12} \left( \frac{1}{12} \right) \left( \frac{1}{12$ 

| MAIN         | I DIV.   | MINO     | R DIV. | DESCRIPTION                     | SAMPLE                                | T        | RVAL       | arb | ASS                                   | AYS D | PM       |
|--------------|----------|----------|--------|---------------------------------|---------------------------------------|----------|------------|-----|---------------------------------------|-------|----------|
|              | to (m)   | from (m) | to (m) | Descriminon                     | NUMBER                                | from (m) | to (m)     | an  | au                                    | Mo    | A        |
|              | 18.B     |          |        | DIDRITE - MEDIUM GRAINED        | · · · · · · · · · · · · · · · · · · · |          |            |     |                                       | -     |          |
|              |          |          | 15.5   | FRAGMENTS AND SAND              |                                       |          |            |     |                                       |       |          |
|              |          |          |        | FRACTURING 65°50C.              |                                       |          |            |     |                                       |       |          |
|              |          | 17.9     | 18.4   | FRACTURING 30-350 65-70 to C    | 113685                                | 17.9     | 18.4       | 5   | 116                                   | 38    | 10       |
|              |          |          |        | PURITE AND BLACK (BLUEISH)      |                                       |          |            |     | · · · · · · · · · · · · · · · · · · · |       |          |
|              |          |          |        | MINERAL (PYROLUCITE?)           |                                       |          |            |     |                                       |       |          |
| 18.8         | 23/      |          |        | DIORITE - FINE GRAINED          |                                       |          |            |     |                                       |       |          |
|              |          |          |        | LIGHT - MINOR PHENOCRESTS       |                                       |          |            |     |                                       |       |          |
| 23.1         | 24.4     |          |        | FRAGMENTED - 80% QUARTZ         | 113686                                | 23.8     | 24.6       |     |                                       | 96    | <u> </u> |
|              |          |          |        | MINOR OHALCOPYRITE AND PYRITE   |                                       |          |            | 2.6 | 3                                     |       |          |
| <u>z4:</u> + | 29.5     |          |        | DIORITE - MEDIUM GRATNED        |                                       |          |            |     | <u>//</u>                             |       |          |
|              |          |          | L      | actorporac 1-2 cm QUARTZ        |                                       |          |            |     |                                       | · · · |          |
|              |          |          |        | JIRINGERS AD-450 to C           |                                       |          | <br>       |     |                                       |       |          |
|              |          | 27.9     | 28.3   | Zow QUARETZ STRINGER            |                                       |          |            |     |                                       |       |          |
|              |          |          |        | PARALLEC DC.                    |                                       |          |            |     |                                       |       |          |
|              | <b>_</b> | 47       | 28.3   | IRREGULAR QUARTZ WITH CAVITY    |                                       |          |            |     |                                       |       |          |
|              |          |          |        | pERPENDICULAR TOCORE.           | 117687                                |          |            |     | 182                                   |       | 15       |
| <u> 29.5</u> | 30.5     |          |        | QUARTZVEIN 65°-70° to C.        | 88                                    | 29.4     | <u>299</u> | 20  | 223                                   | 8     | کک       |
|              |          |          |        | WITH CALORITE. ONE FRACMENT     |                                       |          | <u></u>    |     |                                       |       |          |
|              |          |          |        | WITH 10% charcopyRITE AND PYRIT | <u> </u>                              |          |            |     |                                       |       |          |
| 30.5         | 33.7     |          |        | DIORITE DARK COARSE!            |                                       |          | ·          |     |                                       |       |          |
|              |          |          |        | GRAINED DORDHYRYTTC             |                                       |          |            |     |                                       |       |          |
|              |          |          |        | FRACTURING 750 LC WITH          |                                       |          |            |     |                                       |       |          |
|              |          |          |        | 1-2 cm ALTERATION ON EACH       | ·····                                 |          |            |     |                                       |       |          |
|              |          |          |        | SIDE NITH BLURRING OF CRYSTALS  |                                       |          | <u></u>    |     |                                       |       |          |
| 3.7          | 34.3     |          |        | FELDSPAR CRYSTARS TO 1.0 CM     | · · · · · · · · · · · · · · · · · · · |          |            |     |                                       |       |          |
|              |          |          |        |                                 |                                       |          |            |     |                                       |       |          |
|              |          |          |        | XENOCREPSTE 1-10 cm             |                                       |          |            | l   |                                       |       |          |

|      | 98#12 | DAGE . | 3   |     |  |
|------|-------|--------|-----|-----|--|
| <br> |       | //     | T T | A / |  |

|          |        | r        |        |                                  | PTC -       | İ        |        | 0.01   |          |     |     |
|----------|--------|----------|--------|----------------------------------|-------------|----------|--------|--------|----------|-----|-----|
| MAIN     | I DIV. | MINO     | R DIV. | DESCRIPTION                      | SAMPLE      | INTE     | RVAL   | 20b    | ASS      | AYS | m   |
| from (m) | to (m) | from (m) | to (m) |                                  | NUMBER      | from (m) | to (m) | Au     | au       | No  | A3  |
| 34.3     | 35.0   |          |        | BICUSH QUARTZ 60-80%             |             | ļ        |        |        |          |     |     |
|          |        |          |        | REMAINDER BIOTTTE.               |             |          | ·      |        |          |     |     |
|          |        |          |        | -upper CONTACT TOO to C          |             |          |        | 1-391  | 4        |     |     |
| 35.0     | 35.7   |          |        | DIORITE - ADARSE GRAINED         |             |          |        | JX VC  | <u> </u> |     |     |
| 357      | 39.7   |          |        | DIORITE VARRYING BETWEEN         | 113689      | 1        |        |        | 144      | 7   | z S |
|          |        |          |        | DARK FINE GRAINED AND            |             | 37.3     |        |        | 84       | 5   | 5   |
|          |        |          |        | CORSE GRAINED. Some              |             | 38.4     |        |        |          |     |     |
|          |        |          |        | SILICIFIC ATTON                  | 1/1 QZ      | 39.7     | 41.1   | -18/0g | 1000     | 16  | <5  |
|          |        | 384      | 39.7   | FRAGMENTED-MND, SAND             | 93          | 41.1     | 41.7   | 51     | 33       | 15  | 10  |
|          |        |          |        | AND FRAGELENTS TO SCADO          |             |          |        |        |          | -7  | -   |
|          |        |          |        | RUARTZ 50%(?)                    | 44          | 44.0     | 44.5   | 5      | 55       |     | 2   |
| 39.7     | 44.3   |          |        | DIORITE - COARSE GRAINED         |             |          |        |        |          | ·   |     |
|          |        |          |        | DoppHy RyTTC                     |             | 51.9     |        |        |          | _   | 200 |
|          |        | AT       | 43.5   | 10 cm QUARTZ WITH ZE PYRI        | <u>× 96</u> | 53.1     | 53.8   | ·046   | 153      | 28  | 75  |
| 44.3     | 44.8   |          |        | MARTZ VEIN 1% PURITE             |             |          |        | 152    | 0        |     |     |
|          |        |          |        | MINOR CHALCOPERITE               |             |          |        |        | Ζ        |     |     |
| 44.B     | 45.4   |          |        | DIORITE - MERIUM GRAINED         |             |          |        |        |          |     |     |
|          |        |          |        | porphypeitre                     |             |          |        |        |          |     |     |
|          |        | Ar       | 45.4   | 10 cm QuARTZ VEIN-MINDE Cup      | Hross       |          |        |        |          |     |     |
| 45.4     | 57.7   |          |        | DORITE FINE GRAIND LIGHT         |             | ·        |        |        |          |     |     |
|          |        |          |        | actsIONAL QUARTZ STRINGERS       |             |          |        |        |          |     |     |
|          |        |          |        | 40°6 C                           |             |          |        |        |          |     |     |
| 51.7     | 53.1   |          |        | FRAGMENTED 1-15 cm \$5%          |             |          |        |        |          |     |     |
|          |        |          |        | QUARTZ - MINOR MOLYBOENITE       |             |          |        |        |          |     |     |
| 58.1     | 63.8   |          |        | SHEARING - SILICA, BIDTATE       |             |          |        |        |          |     |     |
|          |        |          |        | REMENANT DIDRITE. QUARTZ         |             |          |        |        |          |     |     |
|          |        |          |        | STRINGERS 65-70" tol IN FOLIDITO | W           |          |        |        |          |     |     |
|          |        |          |        |                                  |             |          |        |        |          |     |     |

 $\frac{1}{98 \pm 12} \frac{1}{96 \pm 4} \frac{1}{98 \pm 12} \frac{1}{96 \pm 4} \frac{1}{98 \pm 12} \frac{1}{96 \pm 4} \frac{1}{12} \frac$ 

|          |          |          |          | 10 # 12                                       |          | <u>, 7</u> |             |      |     |       |      |
|----------|----------|----------|----------|-----------------------------------------------|----------|------------|-------------|------|-----|-------|------|
| MAIN     | DIV.     | MINO     | R DIV.   | DESCRIPTION                                   | SAMPLE   | INTE       | RVAL        | all  | ASS | AYS D | PM   |
| from (m) | to (m)   | from (m) | ) to (m) |                                               | NUMBER   | from (m)   | to (m)      | 1 bu | la  | Mo    | As   |
| 53.8     | \$6.0    |          | j        | DIORITE - COARGE GRAINED                      |          |            |             |      |     |       |      |
|          |          |          |          | ZORPHYRYTTC                                   |          |            |             | ļ    |     |       | ļ    |
|          |          | 55.0     | 55.2     | RUARIZ-BLUISH                                 |          |            |             | ļ    |     |       |      |
| 56.0     | 56.B     |          | <u> </u> | DIORITE - FINE GRAINED                        |          |            |             |      |     |       |      |
|          |          |          |          | FELDEPARS SERICITIZED                         |          |            |             |      |     |       |      |
|          |          | AT       | 56.8     | -QAR QUARTZ STRINGER                          |          |            |             | · .  |     |       |      |
|          |          |          |          | 70° to e - TALC.                              |          |            |             |      |     |       |      |
| 5. B     | 689      |          |          | DIDRITE - COARSE GRAINED                      |          |            |             |      |     |       | <br> |
|          |          |          |          | PORPHYRYTTC - LOWER<br>CONTACT 40° to C-MINOR | · ·      |            |             |      |     |       |      |
|          |          | <b></b>  |          | contact to to C-MINOR                         |          |            |             |      |     |       |      |
|          |          |          |          | TALC - MOVEMENT SUCKENSIDE.                   |          |            |             |      |     |       |      |
|          |          | AT       | 62.3     | KINE GRAINED SLIGHTLY                         |          |            |             |      |     |       |      |
|          |          |          |          | FOR PHYREFTIC-AFTER Low                       |          |            |             |      |     |       |      |
|          |          |          |          | INCREAS TO MEDIUM GRAINER                     |          |            | ···         |      |     |       |      |
|          |          | AT       | 62.5     | 20 Cm BRECCIA - 10% QUARTS                    |          |            |             |      |     |       |      |
|          | ····     |          | 65.5     | DIOKITE NITH 20% IDREGULAR                    | ab tell. |            |             |      |     |       |      |
| 68.0     | 69.0     |          |          | QUARTE-FELDSPAR - LIGHT                       | 113697   | 64.5       | <u>65.5</u> | 10   | 69  | 60    | کا   |
|          |          |          |          | FINE GRAINED - SERICITIZED                    |          |            |             |      |     |       |      |
|          |          | Ąį       | 68       | FRACTURE 45050 Zem                            |          |            |             |      |     |       |      |
|          |          |          |          | QUARTE AT 75toC.                              |          |            |             |      |     |       |      |
| 69.0     | 71.6     |          |          | DIORITE - MEDIUM GRAINED                      |          |            |             |      |     |       |      |
|          |          |          |          | PORPYRYTIC                                    |          |            |             |      |     |       |      |
| 71.6     | 73.5     |          |          | DIORITE - FINE GRAINED SERICITIC              |          |            |             |      |     |       |      |
| 75.5     | 77.7     |          |          | DIORITE MEDIUM GRANED                         |          |            |             |      |     |       |      |
|          |          |          |          | PORPHYRETIC                                   |          |            |             |      |     |       |      |
|          | Y        | 735      | 74.4     | PORPHIRETIC<br>FRAGMENTED - MUD, SERVITIZED   | >        |            |             |      |     |       |      |
| 1/1      | <u> </u> | 76.2     | 76.4     | FRAGMENTED 20% Fink QUARD                     | 2        |            |             |      |     |       |      |
|          |          | 77.      |          | Sam Beut QuARTZ.                              |          |            |             |      |     |       |      |

| PROJECT: ORKO GOLD CORP | NTS Map Number: 92P1                        | Drilling by: CONNORS                           | DRILL HOLE: |
|-------------------------|---------------------------------------------|------------------------------------------------|-------------|
| BONAPARI GOLD MINE      | TRUC 92 Pares<br>Mining Division:           | Date:<br>Logged by:                            | 98#14       |
| COLLAR LOCATION:        | $\frac{KAMLeap}{AZIMUTH: W}$ DIP: $-60^{2}$ | E. LIVEARD<br>ELEVATION:<br>TOTAL LENGTH: 22,9 | PAGE:       |

| MAIN     | I DIV.   | MINO                                  | R DIV.   | DESCRIPTION                    | SAMPLE                                 | INTE     | RVAL     | Ppb  | ASS         | AYS P             | om  |
|----------|----------|---------------------------------------|----------|--------------------------------|----------------------------------------|----------|----------|------|-------------|-------------------|-----|
| from (m) | ) to (m) | from (m)                              | ) to (m) |                                | NUMBER                                 | from (m) | to (m)   | Au   | Cu          | MO                | As  |
|          | 1.2      |                                       |          | CASING                         |                                        |          |          |      |             |                   |     |
| 1.2      | 1.8      |                                       |          | DIORITE - FINE GRAINED         |                                        |          |          |      |             | • • • • • • • • • |     |
|          |          | · · · · · · · · · · · · · · · · · · · |          | SILICIFIED - SUB ROUNDED       |                                        |          |          |      |             |                   |     |
|          |          |                                       |          | FELDSPAR IN BLUE QUARTZ        |                                        |          |          |      |             |                   |     |
|          |          |                                       |          | MITH BIOTTE. OCCASIONAL        |                                        |          |          |      |             |                   | -   |
|          |          | <b></b> ,                             |          | FRACTURES 10,°35 AND 55 COC    | •                                      |          |          |      |             |                   |     |
|          |          |                                       |          | WITH QUARTZ 1/2-2 an WITH      |                                        |          |          |      |             |                   |     |
|          |          |                                       |          | MINOR PYRITE AND CHALCOPER.    | YE .                                   |          |          |      |             |                   |     |
| ·        |          |                                       |          | -DENORITIC MANGANESS STATINING |                                        |          |          |      |             |                   |     |
|          |          | 4.7                                   | 5.6      | FRAGMENTED-20% QUARTZ          |                                        |          | -        |      |             |                   |     |
|          |          |                                       |          | WITH 1.5% pypite, 0.5% &       | ······································ |          |          |      |             |                   |     |
|          |          |                                       |          | CHACCOPYRITE AND MINOR         | 113737                                 | 4.7      | 5.6      | 6    | 150         | 12                | 22  |
| • •      |          |                                       |          | a pall state                   | 38                                     | 5.6      | 6.8      | 2    | 92          | 10                | 4   |
|          |          | 5.6                                   | 6.8      | AFEW QUARTS STRINGERS          | 2A                                     | 6.8      | 7.6      | O.Za | 728         | 4                 | 240 |
|          |          |                                       | * *      | 112-2 cm 10° 70° to C. WITH    |                                        |          | <b>1</b> | 1 A  | · · · · · · |                   |     |
|          |          |                                       |          | 2% pyRITE.                     |                                        |          |          | 43   | Ser.        |                   |     |
| 68       | 7.6      |                                       |          | QUARTZ VEIN-IREGULAR TO TO     | C                                      |          |          | ]    | 8           |                   |     |
|          |          |                                       |          | 290 FEYRITE AND CHALCOPYRITE   |                                        |          |          | q    |             |                   |     |
|          |          |                                       |          | MINOR PYRRHOTTE                |                                        |          |          |      |             |                   |     |
|          |          |                                       |          | 1 /                            |                                        |          |          |      |             |                   |     |

| MAIN                                         |          | MINO    | R DIV. |                                     | SAMPLE                                        |          | RVAL | and | ASS       | AYS | <b>1</b> 2 |
|----------------------------------------------|----------|---------|--------|-------------------------------------|-----------------------------------------------|----------|------|-----|-----------|-----|------------|
|                                              |          | from (m |        | DESCRIPTION                         |                                               | from (m) | T    | An  | Cu        | Mo  | Ar         |
|                                              | 17.6     |         |        | DIORITE - MEDIUM GRAINED            |                                               |          |      |     |           | 10  | 10 3       |
| <u>/////////////////////////////////////</u> | 1        | ·       |        | SILICIFIED - SUBROUNDED             | , , , <u>, , , , , , , , , , , , , , , , </u> |          |      |     |           |     |            |
|                                              |          | 1       | 1      | FELDSPAR.                           |                                               | <u> </u> |      |     | ··· · ··· |     |            |
|                                              |          | AT      | 12.1   | 10 cm 1RRSGULAR QUARTZ              | ······································        | <b> </b> |      |     |           |     |            |
|                                              |          |         |        | WITH STREAKS OF PURITE AND          |                                               |          |      |     |           |     |            |
|                                              |          |         |        | CHALCOPYRITE (1%)                   |                                               |          | ·    |     |           |     |            |
| 17.6                                         | 18.7     |         |        | Dyk# 65° to C                       |                                               |          |      |     |           |     |            |
| -                                            |          |         |        | GRAY BLUE SUCA AND QUARTE           |                                               |          |      |     |           |     |            |
|                                              |          |         |        | GROUNDWASS CONTAINS                 |                                               |          |      |     |           |     |            |
|                                              |          |         |        | SHOSTLY REMENANTS of FELDSPAR?      | )                                             |          |      | -   |           |     |            |
|                                              |          |         |        | AND ALSO BIDTITE 1-3 May CHLOKETTE  | to                                            |          |      |     |           |     |            |
|                                              |          |         | VI.    | ALSO WHITE FELDSPAR DHENOCRYSIS     |                                               |          |      |     |           | ,   |            |
|                                              |          |         | â      | 1-3mm SUB RAWDED                    |                                               |          |      |     |           |     |            |
| 18.7                                         | 19.0     |         | 2      | DIDRITE CONTRET 55-60 GC            |                                               |          |      |     |           |     |            |
| 19.0                                         | 20.1     |         | E.     | FALLT ZONG -LOWER CONTACT 75%       | TC                                            |          |      |     |           |     |            |
|                                              | ·        |         |        | SAND TO SCHORMOSTLY DIORITE         | 113740                                        | P.2      | 201  | 33  | 71        | 12  | 5          |
|                                              |          |         | i ju   | MINOR QUARTZ - A FEW FRAGMENT       | 5                                             |          |      |     |           |     |            |
|                                              |          |         | 2      | OF BILICIFIED BREACH NHICH          |                                               |          |      |     |           |     | ,          |
|                                              |          |         | S      | CONTAINS MUCH TALK - ONE FRACMEN    | 5                                             |          |      |     |           |     |            |
|                                              |          |         |        | CONSISTS OF TALC GROUNDINASS AND    |                                               |          |      |     |           |     |            |
|                                              |          |         | U      | A PINK FRAGMENT WHICH CONTAINS      | ······                                        |          |      |     |           |     |            |
|                                              |          |         |        | WHITE (FELDSP.) AND BLACK (HORN BLE | ND)                                           |          |      |     |           |     |            |
|                                              |          |         |        | specks                              |                                               |          |      |     |           |     |            |
| 20.1                                         | 22.9     |         |        | DIORITE MEDIUM GRAINED              |                                               |          |      |     |           |     |            |
|                                              | 1        |         |        |                                     |                                               |          |      |     |           |     | <u> </u>   |
| $\zeta_{\mathbf{N}}$                         | <b>V</b> | Z/.4    | 2/.&   | LEACHED - SANDY AND FRAGMENTS       |                                               |          |      |     |           |     | <u></u>    |
|                                              |          |         |        | AFEW QUARTZ STRINGERS               |                                               |          |      |     |           |     | <u> </u>   |
| ·/                                           |          |         |        | WITH 1% PYRPEHOTITE.                |                                               |          |      |     |           |     |            |

|          |      |      | ~    |                       |                      |             |   |
|----------|------|------|------|-----------------------|----------------------|-------------|---|
| PROJECT: | opko | Gold | Copp | NTS Map Number: 92.F/ | Drilling by: CONNORS | DRILL HOLE: | ] |
|          |      | /    | ·    | TRIM 928008           | Date:                | an          |   |

| COLLAR LOCATION:<br>AZIMUTH: W ELEVATION: PAGE:<br>DIP: 7° TOTAL LENGTH | DONAPART GOLD                    | Mining Division:<br>KAMCOOPS   | Logged by:<br>E. LINGARD         | 178<br># 15 |
|-------------------------------------------------------------------------|----------------------------------|--------------------------------|----------------------------------|-------------|
| 10111 = 10 IUIAL LENGIH: (16.7)                                         | COLLAR LOCATION:<br>E4035E 82004 | AZIMUTH: $W$<br>DIP: $-76^{2}$ | ELEVATION:<br>TOTAL LENGTH: 66.2 | PAGE:       |

| MAIN     | DIV.     | MINO     | R DIV.   | DESCRIPTION                                                                                   | SAMPLE                                 | INTE     | RVAL     |         | ASS   | AYS |   |
|----------|----------|----------|----------|-----------------------------------------------------------------------------------------------|----------------------------------------|----------|----------|---------|-------|-----|---|
| from (m) | to (m)   | from (m) | ) to (m) |                                                                                               | NUMBER                                 | from (m) | to (m)   |         |       |     | T |
| 0        | 1.0      |          |          | CASING                                                                                        |                                        |          |          |         |       |     | 1 |
| 1.0      | 6.2      |          |          | ATERED SEDIMENT (?) HIGHLY                                                                    |                                        |          |          |         | •     |     | - |
|          |          |          |          | SILICIOUS - 20TO 30% BROWN                                                                    | · · · · · · · · · · · · · · · · · · ·  |          |          |         |       |     |   |
|          |          |          |          | WAVY AND IRREGULAR BANDS                                                                      |                                        |          |          |         |       |     |   |
|          |          |          |          | OF BIOTITE                                                                                    | ···· · · · · · · · · · · · · · · · · · |          | ···· ,   | • • •   |       |     | · |
|          | •••••••• | Z.1      | 2.2      | mio,                                                                                          | ······································ |          |          | · ····· |       |     | 1 |
|          | ····     | 1.0      | 4.0      | FRAGMENTED 1/4-10 Cm                                                                          |                                        |          |          |         |       |     |   |
| 6.2      | 13.5     |          |          | DIORITE FINE TO MEDIUM                                                                        |                                        |          |          |         |       |     |   |
|          |          |          |          | GRAINED DORDIND TU IN DLACES                                                                  |                                        |          |          |         |       |     |   |
|          |          | 10.4     | 11.0     | BLENCHED WHITE AND WEHT                                                                       |                                        |          |          |         | ····· |     |   |
|          |          | • • • •  |          | GREEN - BLUE PATCHES WITH                                                                     |                                        |          |          |         |       |     |   |
|          |          |          |          | MOLYBOENITE - MINOR PYRITE.                                                                   |                                        |          |          |         |       |     |   |
|          |          |          |          | RUARTZ STRINGERS WITH                                                                         |                                        |          |          |         |       | ·   |   |
|          |          |          | <u> </u> | 1/4 % MOLYBDENITE.                                                                            | ·····                                  |          |          |         |       |     |   |
| 3.5      | 6.5      |          |          | 10 em mino AT CONTACT                                                                         |                                        |          | <b>-</b> |         |       |     |   |
|          |          |          |          |                                                                                               |                                        |          |          |         |       |     |   |
|          |          |          |          | 1/4 mm wipt 1/2 cm AppART 386                                                                 | ,                                      |          | [        |         |       |     |   |
|          | [        | 14.9     | 16.5     | - SILICA WITH BLACK PARTINGS<br>1/4 MM NIPE 1/2 Cm AppART 3860<br>67 ROUNDED FRACMENTS 2-4 Cm |                                        |          |          |         |       |     |   |
| ·        | [        |          |          | INCORPORATED IN "DISTURDED" AREAS<br>OF SILICA - THESE PATCHES ARE,<br>MINK FELDSPAR          |                                        |          |          |         |       |     |   |
|          |          |          |          | OF SILICA - THESE PATCHES ARE                                                                 |                                        |          |          |         |       |     |   |

 $\frac{1}{78415} \frac{1}{78415} \frac{1}{78622} \frac{1}{78415} \frac{1}{78622} \frac{1}{78415} \frac{1}{78622} \frac{1}{7862}  

| ·        |             | 1        |        | / _ / /                                                    | <u>&gt; 46</u>                        |          |        |     |     |     |    |
|----------|-------------|----------|--------|------------------------------------------------------------|---------------------------------------|----------|--------|-----|-----|-----|----|
| MAIN     | I DIV.      | MINO     | r div. | DESCRIPTION                                                | SAMPLE                                | INTE     | RVAL   | PPO | ASS | AYS | m  |
| (rom (m) | to (m)      | from (m) | I      |                                                            | NUMBER                                | from (m) | to (m) | Au  | en  | Mo  | As |
|          | <br>        | 14.9     | 16.5   | CONT. THE FELDSPAR HAS                                     | 113741                                |          |        |     |     |     | 23 |
|          |             |          |        | SLIVERS OF BLUE QUARTZ 10%                                 |                                       | ļ        |        |     |     |     |    |
|          |             |          |        | SURROUND, NG THE PATCHES IS                                |                                       |          |        |     |     |     |    |
|          |             |          |        | RUALTZ AND Som & EPIDOTE                                   |                                       |          |        |     |     |     |    |
|          | ·           |          |        | PLUSS SPECKS OF MOLYDENITE                                 |                                       |          |        |     |     |     |    |
|          |             |          |        | 2-4% CharcopyRITE IN PINK                                  |                                       |          |        |     |     |     |    |
|          |             |          |        | FELDSPAR ADNO SURDOUNDIN                                   | 4                                     |          |        |     |     |     |    |
|          |             |          |        | AREA FRATURE SUNFALLS                                      |                                       |          |        |     |     |     |    |
|          |             |          |        | 40% COVERED WITH VERY FINE PYRIT<br>DYKE - GREY GROUNDMASS | ž                                     |          |        |     |     |     |    |
| 16.5     | 16.7        |          |        | Dyke - GREY GROCKNOMASS                                    | · · · · · · · · · · · · · · · · · · · |          |        |     |     |     |    |
|          |             |          |        | MITH GHOSTS OF FELDSPAR                                    |                                       |          |        |     |     |     | l  |
|          |             |          |        | (tum) AND BI-RTE (Smm)                                     |                                       | •        |        |     |     | •   |    |
| 16.1     | 19.2        |          |        | SILICA AS ABOVE (13.5-165)                                 |                                       |          |        |     |     |     |    |
| 19.2     | 20.7        |          |        | HORNFELS AND Some HIGHLY                                   |                                       |          |        |     |     |     |    |
|          |             |          |        | SILICIFIED PARTLy FRAGM.                                   |                                       |          |        |     |     |     |    |
|          |             |          |        | SECTIONS. 1% DISEEMINATED                                  |                                       |          |        |     |     |     |    |
|          |             |          |        | PURITE - MINOR OHALCOPYRITE                                |                                       |          |        |     |     |     |    |
| 20.7     | <u>Z1.0</u> |          |        | Dyke - Ban MUD uppER                                       |                                       |          |        |     |     |     |    |
|          |             |          |        | ODNTACT - GREY, VERY                                       |                                       |          |        |     |     | 1   |    |
|          |             |          |        | FINE GRAINED- BLOTCHAY.                                    |                                       |          |        |     |     |     |    |
| 21.0     | 21.5        |          |        | VERY FINE BROWN SAND (12-14-14)                            | n                                     |          |        |     |     |     |    |
|          |             |          |        | - MOSTLY ANGULAR GLASSY                                    |                                       |          |        |     |     |     |    |
|          |             |          |        | QUARTZ - 10% FELDSDAR                                      |                                       |          |        |     |     |     |    |
|          |             |          |        | QUARTZ - 10% FELDSPAR<br>Some of WHICH IS ALTERED.         |                                       |          |        |     |     |     |    |
|          |             |          |        | 3-4% BLACK FRAGMENTS                                       |                                       |          |        |     |     |     |    |
|          |             |          |        | - MINOR Supposs.                                           |                                       |          |        |     |     |     |    |
|          |             |          |        | (PYRITE AND CHALCOPYRITE)                                  |                                       |          |        |     |     |     |    |
|          |             |          |        |                                                            |                                       |          |        |     |     |     |    |

 $\frac{1}{78 + 15} = \frac{1}{78 + 15$ 

| MAIN         | DIV.         | MINO | R DIV. |                                                                            | SAMPLE   |            | RVAL | anh | ASS   | AYS a | 17/1 A |
|--------------|--------------|------|--------|----------------------------------------------------------------------------|----------|------------|------|-----|-------|-------|--------|
|              | to (m)       |      | 7      | DESCRIPTION                                                                | NUMBER   |            |      | Bu  | 11    | MA    | As     |
| 21.5         | Z3.0         |      |        | SILICA AS 13.5-16-5, ALSO                                                  | 113742   | 21.5       | 23.0 | 6   | 163   | 56    | 1/2    |
|              |              |      |        |                                                                            |          |            |      |     |       |       |        |
|              |              |      |        | BIOTITE PARTINGS AND BANDS<br>INCREASED (1/2%?) PYRITE                     | 43       | 23.4       | 24.5 | 7   | 165   | 31    | 47     |
|              |              |      |        | - MINOR CHALCOPYORITE                                                      | 44       | ź4.5       | 25.4 | 3   | 272   | 13    | 94     |
| 250          | 23.4         |      |        | DIDRIVE DYKE - IBREGULAR 756                                               | 6C 45    | 25.4       | 26.4 | (0  | 433   | 17    | 8      |
|              |              |      |        | MEDIUM GRAINED- PORPHYRYTTC                                                |          |            |      |     |       | ,     |        |
|              |              |      | <br>   | WITH HALT & OF PHENOCRYSTS.                                                |          |            |      |     |       |       |        |
| Z3.4         | 24.5         |      |        | SILICA AS ABOUE - Mameite                                                  | ·····    |            |      |     |       |       |        |
| 24.5         | 25.4         |      |        | SILICA AS ABOVE PLASS                                                      |          |            |      |     |       |       |        |
|              |              |      |        | 50% DEDDISH BROWN PATCHES                                                  |          |            |      |     |       |       |        |
|              |              |      |        | OF FELDSPAR AND QUARTZ                                                     |          |            |      |     |       |       |        |
|              |              |      |        | 1% PYRITE AND MINDR                                                        |          |            |      |     |       | ,     |        |
|              |              |      |        | CHALCOPYRITE                                                               |          |            |      |     |       |       |        |
| 25.4         | 26.1         |      |        | QUARTZ VEIN - VERY LITTLE                                                  |          |            |      |     |       |       |        |
|              |              |      |        | VISIBLE SULPHOES!                                                          |          |            |      |     |       |       |        |
| Zleil        | 29.8         |      |        | DIDRIFE - FINE GRAINED                                                     |          |            |      |     | · · · |       |        |
|              |              |      |        | - WGHT SILICIFICATION.                                                     |          |            |      |     |       |       |        |
|              |              |      | 50,1   | SHOUD. AND MILO                                                            |          |            |      |     |       |       |        |
| Z9.8         | 30.5         |      |        | Dyke - WHITE GREY APHANITIC                                                |          | . <u> </u> |      |     |       |       |        |
|              |              |      |        | GRONNAMASS - THENOCRASTS                                                   |          |            |      |     |       |       |        |
|              |              |      |        | OF FIGTIFE AND HORN FLENDE                                                 |          |            |      |     |       |       |        |
|              |              |      |        | up to burn in SIZE.                                                        |          |            |      |     |       |       |        |
| <u> 30.5</u> | <u> 33.2</u> |      |        | SILICA . BLACK PARTING (BIOTITE                                            | 2        |            |      |     |       |       |        |
|              |              |      |        | AT 10 GE PINK PATCHES                                                      | 111466   | 3/7        | 35.2 |     |       |       |        |
|              |              |      |        | OF WHITE AND PINK FEUSEPAR                                                 |          |            |      |     |       |       |        |
|              |              |      |        | -miNOR PYRITE                                                              |          |            |      |     |       |       |        |
|              |              | 30.7 | 3/.4   | FRAGMENTED -SANDMUD - To 4 aug                                             |          |            |      |     |       |       |        |
|              |              | 31.7 | 55.5   | PARTLY FRAGMENTED - GREY LILICA SUGA<br>CHUBRITE ON PARTTNES BO to C -INCL | IT GREEN | /          |      |     |       |       |        |

|          |        | r        |        |                               | <u> </u> |          |        | /   |     |     | 0  |
|----------|--------|----------|--------|-------------------------------|----------|----------|--------|-----|-----|-----|----|
| MAIN     | I DIV. | MINOF    | R DIV. | DESCRIPTION                   | SAMPLE   |          |        | ADD |     | AYS |    |
| from (m) | to (m) | from (m) | to (m) |                               | NUMBER   | from (m) | to (m) | qu  | Cu  | Mo  | 4  |
|          |        | \$1.7    | 33.2   | CONT MINOR CHALLOPYRITE       | 111466   | 31.7     | 33.2   | 449 | 320 | 48  | 1  |
| 33.2     | 33.5   |          |        | DIORITE - ALTERED SHEARED     | 67       | 33.Z     | 33.7   | 38  | 92  | 20  |    |
|          |        |          |        | FOLIATION 80° to C.           | 68       | 33.7     | 34.9   | 122 | 109 | 38  | 9  |
| 33.5     | 55.4   |          |        | SILICA - BROWN BIOTITE BAND   |          | 34.9     |        |     | 394 |     | 14 |
| -        |        |          |        | FOLIATION 450 tol.            |          | 35.6     | 36.Z   | 23  | 1(7 | 35  | 4  |
|          |        |          |        | SILICA 15 GREY, BLUE WITH     | 71       | 36.2     | 37.3   | Σ   | 123 | 17  |    |
|          |        |          |        | BLACK PARTINGS - DINK PATCHES |          |          |        |     | ••• |     |    |
|          |        |          |        | OF FELDSPAR WITH 2-3% DUPRITE |          |          |        |     |     |     |    |
|          |        |          |        | AND LESS OHALCOPYRITE (176?)  |          |          |        |     |     |     |    |
|          |        | Ar 1     | 35.2   | PATCH OF DINK FELDSPAR WITH   |          |          |        |     |     |     |    |
|          |        |          |        | 20% DISSEMINATED PYRITE       |          |          |        |     |     |     |    |
| 35.4     | 35.6   |          |        | DyK VERY FINE GRANED GREG     | p        |          |        |     |     | •   |    |
|          | 36.D   |          |        | AS ABOVE (33.5-35.4) WITH     |          |          |        |     |     |     |    |
|          |        |          |        | 30% IRREGULAR QUARTZ          |          |          |        |     |     |     |    |
|          |        |          |        | 50.55° to C.                  |          |          |        |     |     |     |    |
| 36.0     | 36.8   |          |        | AS 33.5-35.4 WITH MINOR QUAR  | z        |          |        |     |     |     |    |
|          | 38.3   |          |        | STRONG SILICIFICATION BUT     |          |          |        |     |     |     |    |
|          |        |          |        | RELATIVELY HOMOGENIOUS Rock   |          |          |        |     |     |     |    |
|          |        |          |        | VERY FINE GRAINED - PROBABLE  |          |          |        |     |     |     |    |
|          |        |          |        | GREY DUKE.                    |          |          |        |     |     |     |    |
| 20.3     | 45:6   |          |        | TABRITE - ALTERED             |          |          |        |     |     |     |    |
|          |        |          |        | SILLCIFIED - BROWN STREAKS    |          |          |        |     |     |     |    |
|          |        |          |        | AND PATCHES (FLOTTE?) 450     |          |          |        |     |     |     |    |
|          |        |          |        | to C. INDIGTINCT 1-3 mm       |          |          |        |     |     |     |    |
|          |        |          |        |                               |          |          |        |     |     |     |    |
| 45.6     | 47.0   |          |        | DIRITE MEDIUM GRAINED         |          |          |        |     |     |     |    |
|          |        |          |        | Sen QUARTZ BOTOC.             |          |          |        |     |     |     |    |
|          |        | Ar       | 47.0   | Ser QUARTZ 80 to C.           |          |          |        |     |     |     |    |

| <b></b>            |        | T    |        | 78-2                           |          | <u>465</u> |                     |             |     |     |     |
|--------------------|--------|------|--------|--------------------------------|----------|------------|---------------------|-------------|-----|-----|-----|
| MAIN               | 1      |      | R DIV. | DESCRIPTION                    | SAMPLE   | INTE       | RVAL                | ppb.        |     | AYS | PM_ |
| i                  | to (m) |      | to (m) |                                | NUMBER   | from (m)   | to (m) <sup>6</sup> | Au          | Ca  | No  | As  |
| 47.0               | 53.4   |      |        | SILICA AND BROWN BIOTTLE 60    | 2        |            |                     |             |     |     |     |
|                    |        |      |        | AT 80° to C - ALTERED SEDMEN   | 5 111472 | 47.0       | 48.4                | _//         | KH1 | 22  | 44  |
|                    |        |      |        | -MMCHFRACTURING 10, 90 to C.   | 73       | 48.4       | 50.0                | 1           | 120 | 8   | 23  |
|                    |        |      |        | STRIATIONS ON SEVERAL SURFACE  | -5 74    | 50.0       | 50.9                | M           | 163 | 19  | 11  |
|                    |        |      |        | Mup (1-2em) Boto - much        | 75       |            | 52.2                | 1           | 119 | ]]  | 4   |
|                    |        |      |        | FRACTURING - 2-TO 3% FYRIT     | 76       | 52.2       | 53.2                | 4           | 264 | 17  | 22  |
|                    |        |      |        | AND CHALCOPYRITE - ONE 1/2 em  |          |            | 54.6                |             | 90  | 6   | 12  |
|                    |        |      |        | STRINGER OF CHALCODURITE.      | •        |            |                     |             |     |     |     |
|                    |        | 49.1 | 49.4   | FRAGMENTER SANDTO /am          | 78       | 55.9       | 56.7                | 41          | 320 | 10  | 14  |
|                    |        | 50.2 | 50.3   | MNO AND GAND, FRAGMENTS        | 79       |            | 57.7                | 2           | 269 | 14  | 26  |
|                    |        |      |        | OF HORNFELS                    | 80       |            | 58.1                | Ð           | 222 | Ş   | 23  |
| 52.4               | 55.6   |      |        | DIORITE - MEDIUM GRANNED       | 8/       |            | 60.1                | 3           | 112 | 5   | 36  |
|                    |        | AT   | 55.6   | 2-3 cm QUARTZ 50° to C         |          |            | 61.7                |             | 125 | 10  | 30  |
|                    |        |      |        | LOWER CONTACT - A DRUPI OHANGE |          |            | 63.0                |             | 66  | 13  | 12  |
| 55.6               | 58.0   |      |        | SILLCA AS \$7.0-53.4 BUT       | 84       | 13.0       | 64.4                | 21          | 113 | 24  | -   |
|                    |        |      |        | BANDING OTO 30° to C.          | 111485   | 64.4       | 65.9                | 2           | 129 | 29  | 8   |
| 580                | 627    |      |        | FRAGMENTED SANDTO 4 CM         |          |            |                     |             |     |     |     |
|                    |        |      |        | FRAGMENTS ARE MOSTLY BRECHA    |          |            |                     |             |     |     | ·   |
|                    |        |      |        | RATTERED Pypite (2-3%?)        |          |            |                     |             |     |     |     |
|                    |        |      |        | MINOR CHALCOPURITE.            |          |            |                     |             |     |     |     |
|                    |        |      |        | INCREASING BIOTITE             |          |            |                     |             |     |     |     |
| 62.7               | 66.2   |      |        | BRECCIA OF SILICA AND BLOTTE   |          |            |                     |             |     |     |     |
|                    |        |      |        | INTERMITAL PURITE (2%?)        |          |            |                     |             |     |     |     |
| _                  | 10     |      |        | 1/                             |          |            |                     |             |     |     |     |
| $\left\{ \right\}$ | NУ     |      |        |                                |          |            |                     |             |     |     |     |
|                    |        |      |        |                                |          |            |                     |             |     |     |     |
|                    |        |      |        |                                |          |            |                     |             |     |     |     |
|                    |        |      |        |                                | · · · ·  |            |                     |             |     |     |     |
|                    |        |      |        |                                | L        |            |                     | <del></del> | l   | l   |     |

| PROJECT: ORKOGOLDCORP | NTS Map Number: タンディ       | Drilling by: CONNORS     | DRILL HOLE: |
|-----------------------|----------------------------|--------------------------|-------------|
| BONAPARI GOLD MINE    | 92POCE<br>Mining Division: | Date:<br>Logged by:      | 98#16       |
| COLLAR LOCATION:      | KAMLOOFS<br>AZIMUTH: W     | E. LIVSARD<br>ELEVATION: | PAGE:       |
| 4063E, 5200N          | DIP: -55°                  | TOTAL LENGTH: 44         | 104 3       |

| MAIN     | DIV.     | MINOF    | R DIV. | DESCRIPTION                   | SAMPLE   | INTE     | RVAL   |          | ASS      | AYS |    |
|----------|----------|----------|--------|-------------------------------|----------|----------|--------|----------|----------|-----|----|
| from (m) | to (m)   | from (m) | to (m) | DESCRIPTION                   | NUMBER   | from (m) | to (m) |          |          |     |    |
| 0        | 6.1      |          |        | CASING                        |          |          |        |          |          |     |    |
| 6.1      |          |          |        | DIORITE - ALTERED LEACHED     |          |          |        |          |          |     |    |
|          |          |          |        | AND FRIABLE IN DART AND       |          |          | · ·    |          |          |     |    |
|          |          |          |        | BRECCIATED - A FEW SILICIFIED |          |          |        |          |          |     |    |
|          |          |          |        | SECTIONS - CHEORITE OF        |          |          |        |          |          |     |    |
|          |          |          |        | FRACTURE Surfaces - Minde     |          |          |        |          |          |     |    |
|          |          |          |        | DISSEMINATER PERRITE.         |          |          |        |          |          |     |    |
|          |          | 6.6      | 10.9   | FRAGMENTED SANDTO SOM         |          |          |        |          |          |     |    |
| 10.9     | 11.0     | 6.6      |        | DIORITE - VERY LIGHT FINE     |          |          |        |          |          |     |    |
|          |          |          |        | GRAINED - GREENISH TINGE      |          |          |        |          |          |     |    |
|          |          |          |        | SERECITATION.                 |          |          |        |          |          |     |    |
| 11.8     | 12.2     |          |        | FACLET ? GAND AND FRAGMENTS   |          |          |        |          |          |     |    |
| 12.2     | 18.2     |          |        | BRECCIA OF PIDRITE, FRIABLE   |          |          |        |          |          |     |    |
|          |          |          |        | FRAGMENTS SANDTO Herry        |          |          |        |          |          |     |    |
|          |          | <b>.</b> |        | VERY MINOR PYRITE.            |          | -        |        |          |          |     |    |
|          |          | 15.5     | 17.3   | FRACTURE AT ZO TO CAT         |          |          |        |          |          |     |    |
|          | <b>.</b> |          |        | WHICH BRECCIA CHANGES FRAN    |          |          |        | ·        |          |     |    |
|          |          |          |        | DARK TO LIGHT COLOURED        |          |          |        |          |          |     |    |
|          |          | ••       |        | 10% OF FRAGMENTS ARE SILKA.   |          |          |        |          |          |     |    |
|          |          |          |        |                               | <u> </u> |          | 6      | <u> </u> | <u> </u> |     | _L |

 $\frac{1}{98 \pm 14} PA_{EE} = 2$ 

| MAIN     | DIV.   | MINO     | r div. | DESCRIPTION                   | SAMPLE                                 |           |          | PPb.       | ASS/     |          |          |
|----------|--------|----------|--------|-------------------------------|----------------------------------------|-----------|----------|------------|----------|----------|----------|
| from (m) | to (m) | from (m) | to (m) |                               | NUMBER                                 | from (m)  | to (m)   | An         | Cu       |          | <b> </b> |
| 18.2     | 293    |          |        | Dyke GREYGROUNDMASS           |                                        |           |          |            |          |          | <u> </u> |
|          |        |          |        | WITH 20%(2) BIDTITE AND       |                                        |           |          |            |          |          |          |
|          |        |          |        | NHITE FELDSPAR BUB ROUNDE     | 0                                      |           |          |            |          |          |          |
|          |        |          |        | AND PARTLY INDISTINCT OUTLINE |                                        |           |          |            |          |          |          |
|          |        | 20.2     | 20.7   | BRECCIA IS EIGRA FRAGMENTS    | 111428                                 | 2012      | 20.8     | 5          | 169      |          |          |
|          |        |          |        | AND ESSENTIALLY ?) DIDRITE    |                                        |           |          | [          |          |          | <u> </u> |
|          |        |          |        | GROUND MASS. /                |                                        |           |          |            |          |          | <b> </b> |
|          |        | 22.7     | 23.6   | 20% RUARTZ ICRY IRESGULAR     |                                        |           |          | ļ          |          |          |          |
|          |        |          |        | 45°to CANP FRAGMENTS          |                                        |           |          |            |          |          | <u> </u> |
|          |        | AT       | 236    | 1-2 cm Gouge ZONE 90to C      |                                        |           |          |            |          |          | <b> </b> |
|          |        |          |        | AND 55° to C.                 |                                        | <u></u>   |          | <u> </u>   | <b> </b> |          | _        |
|          |        | 24.3     |        | BREECIA MAINLY WHITE AND      |                                        |           | <u> </u> | <u> </u>   |          |          | <u> </u> |
|          |        |          |        | BLUE SILICA - 0.5% MOLY EDEN  | ×                                      | ┨────     |          | · · · ·    | <u> </u> |          |          |
|          |        |          |        | MINOR PARITE                  |                                        | <b>_</b>  |          |            |          |          |          |
|          |        | AB       | mī Z   | 5.7 FRACTURES 20° to C        |                                        | <u> </u>  |          | <u> </u>   | · · · ·  |          |          |
|          |        | <u>.</u> |        | ZMM WIDE DULE QUARTZ          |                                        |           |          |            |          |          |          |
|          |        |          |        | WITH MINOR MOLYTODENITE       |                                        | _ <u></u> |          |            |          |          |          |
|          |        |          |        | CHALCOPYRITE !                |                                        | _ <u></u> |          |            |          |          |          |
|          |        | AT-      | 4.3    | 5 am QUARTZ AND FRAGMENTS     |                                        | <u> </u>  |          | . <u> </u> | -        |          |          |
| 29.5     | 340    |          |        | DIODITE PORPHARYTIC FINE      | ······································ |           | ļ        |            | ļ        |          |          |
|          |        |          |        | GRAINED WITH ATENOCAYSIS      | <u> </u>                               | ·         | ļ        | ·          |          | <b> </b> |          |
|          |        |          |        | To O.4 Cm - RUARIZ STRINGS    | 5                                      |           | l        |            |          | l        | ┢━       |
|          |        |          |        | PARALLEL TO CORE 1/2- Zan     |                                        |           |          |            |          |          |          |
|          |        |          |        | MIDE.                         |                                        |           |          |            |          |          | ╋        |
|          |        | 47       | 30.1   |                               |                                        |           |          | ┨────      |          | <b> </b> | ┼╌       |
|          |        |          |        | SILICA SCUL ON EACH SIDE      |                                        | <u> </u>  |          | <b>{</b>   |          |          |          |
|          |        | 30.1     | 30.4   | PENSE FRACTURING-ALMOST       | ·····                                  |           |          |            |          |          |          |
|          |        |          |        | BRECCIATION.                  | l                                      |           | <u> </u> | <u></u>    |          | L        |          |

(1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1)

| MAIN | DIV.     | MINOF    | R DIV.     | DESCRIPTION                                                                                                | SAMPLE | INTE     | RVAL       | Ppb      | ASSAY | <u>s</u>    |          |
|------|----------|----------|------------|------------------------------------------------------------------------------------------------------------|--------|----------|------------|----------|-------|-------------|----------|
| T    |          | from (m) | to (m)     |                                                                                                            |        |          | to (m)     | Au       |       |             |          |
|      | 43.7     |          |            | STRONG SILICIFICATION WITH BROWN                                                                           | 111429 | 34.0     | 35.0       | 5        |       |             |          |
|      | <u> </u> |          |            | OGODISH BANDS-BIDTITE? AND/OR                                                                              |        | 31.0     | 33.4       | 5        |       |             |          |
|      |          |          | - <u> </u> | PINK FELDSPAR - UPPER CONTAC                                                                               | - 3/   |          | 36.4       |          |       |             |          |
|      | <u> </u> |          |            | PINK FELDSPAR - uppER CONTAC<br>4 am 6 puge ANO SANO 80 5 C                                                | 32     | 36.4     | 37.7       | Ś        |       |             |          |
|      |          |          |            | BLUE QUARTS WITH BOURITE                                                                                   |        |          |            |          |       |             |          |
|      |          | 34.0     | 35:0       | FRAGMENTS 14-5 cm DARK                                                                                     | 111433 | 41.5     | 42.7       | 5        |       |             |          |
|      |          |          |            | GREEN YO BLACK SupPACES of                                                                                 | 34     | 2.7      | 439        | 240      |       |             |          |
|      |          |          |            | attoRite - 1% pyRite.                                                                                      |        |          | ļ <u>.</u> |          |       |             |          |
|      |          | 35.4     | 37.7       | SILICA 60% 15 DARK Bent                                                                                    |        | <b>_</b> | ļ          |          |       |             |          |
|      |          |          |            | To ALMOST BLACK - Source                                                                                   |        | <b></b>  |            |          |       |             |          |
|      |          |          |            | GREY-YAN- 10% BROWN AND                                                                                    |        | <u> </u> | ļ          |          |       | <u> </u>    |          |
|      |          |          |            | EDDISH FLOTITE? AND/K FLISPAR?                                                                             |        | <b>_</b> |            |          |       | ]           |          |
|      |          | 37.7     | 43.7       | SINCA LIGHTER GREY-BULL                                                                                    |        |          |            |          |       |             |          |
|      |          |          |            | 10-20% REDRISH BANDS OF                                                                                    |        | <u> </u> | <u> </u>   |          |       |             |          |
|      |          |          |            | FELDERAR? VERY IRREGULAR<br>35° AND 60° to C-MINOR PYRITE                                                  |        |          | <u> </u>   |          |       |             |          |
|      |          |          |            | 35° AND 60° to C - MINOR PURITE                                                                            |        |          |            |          |       |             |          |
|      |          | 38.2     | 38.3       | Dyke Goto C-GREY GREEN                                                                                     |        |          |            |          |       |             |          |
|      |          |          |            | WITH GREEN FLECKS.                                                                                         |        |          |            |          |       |             |          |
|      |          | 40.3     | 40.5       | SILICA DARK BLUK                                                                                           |        |          |            |          |       |             |          |
|      | -        | 423      | 43.7       | INCREASING DARK BANG                                                                                       | ·      |          |            |          |       |             |          |
|      |          |          |            | SILKA SOB WITH REDDISH                                                                                     |        |          |            |          |       |             | <b> </b> |
|      |          |          | <b></b>    | BANDING TO-80° TO C INCREASI                                                                               | 6      |          |            |          |       |             | <b> </b> |
|      |          |          |            | BRECCIA - SILICA FRAGMENTE                                                                                 | Rite   |          |            |          |       | <del></del> | <u> </u> |
| 137  | 44.2     |          |            | BRECCIA - SILICA FRAGMENTE                                                                                 |        |          |            |          |       |             | <b> </b> |
|      |          |          |            | IN BROWN" DIRTY" GROUNDMASS                                                                                |        | <b></b>  |            |          |       |             |          |
|      |          |          | AT         | IN DROWN" DIRTY" GROUNDMASS<br>43:7 FALLT BOTOBSOTOC.<br>DIORITE MEDIUM LRANED<br>FRESH - CONTACT 450 TO C |        |          |            |          |       |             | <b> </b> |
| 14.2 | 44.      |          | <b></b>    | DIORITE MEDIUM GRANED                                                                                      |        |          |            |          |       |             | ┨        |
|      | L        |          |            | FRESH - CONTACT 45° to C                                                                                   | l      |          |            | <b>_</b> |       |             | L        |

Ì

| PROJECT: ORKO GOURDORP           | NTS Map Number: 9281<br>TEIM 928008 | Drilling by: Convors<br>Date:   | DRILL HOLE: |
|----------------------------------|-------------------------------------|---------------------------------|-------------|
| BONAPART GOLD MINE               | Mining Division:<br>KAMLOOPS        | Logged by:<br>E.LIVGARD         | 98#17       |
| COLLAR LOCATION:<br>4063E, 8200N | AZIMUTH: W<br>DIP: -750             | ELEVATION:<br>TOTAL LENGTH: 451 | PAGE:       |

| MAIN     | I DIV.            | MINC    | R DIV.          | DESCRIPTION                       | SAMPLE                                | INTE     | RVAL   | ab       | ASS      | ays P         | Pm  |
|----------|-------------------|---------|-----------------|-----------------------------------|---------------------------------------|----------|--------|----------|----------|---------------|-----|
| írom (m) | ) to (m)          | from (m | ) to (m)        |                                   | NUMBER                                | from (m) | to (m) | An       | cn       | Mo            | Ar  |
| 0        | 4.6               |         |                 | CASING                            |                                       |          |        |          |          |               | ۵   |
| 4.6      | 8.4               |         |                 | SILICA - GILICIFIED DIDRITE       |                                       |          |        |          |          |               |     |
|          |                   |         |                 | GREY BLUK NITH WANY FANDS         | 11435                                 | 4.6      | 2.2    |          | 149      | 54            |     |
|          |                   |         |                 | OF BROWN-RED BIDI, TE (MICROSC)   |                                       | 5.9      | 6.7    | 5        | 138      | 43            |     |
|          |                   |         |                 | AND/OR FELOSPAR.                  | 37                                    | 6.7      | 7.6    | 5        | 153      | 57            |     |
|          |                   |         |                 | FRACTURING 45060                  |                                       | 7.6      | 8.4    | 25       | 175      | 188           | 1.4 |
| a        | <b></b>           |         |                 | FOGATION 10º to CTENDING AT       |                                       |          |        |          |          |               |     |
|          |                   |         |                 | FRACTURES TO 450 to C.            | · · · · · · · · · · · · · · · · · · · |          |        |          |          |               |     |
|          |                   | ABau    | 7.6             |                                   | ·····                                 |          |        | •••···   |          |               |     |
|          |                   |         |                 | 10° to e-width 1-2 cm with pyrits |                                       |          |        |          |          |               |     |
|          |                   |         |                 | 1-2%, MINOR CHALCOPYRITE          |                                       |          |        |          |          | • • • • • • • |     |
|          | •                 |         |                 | - Same BLACK Soory inelauch       | ۷                                     |          | ····   |          |          |               |     |
|          |                   |         |                 | STAIN (MANGANESE?)                |                                       |          |        |          |          | ·             |     |
|          | •• <b>•••</b> ••• | AT      | / · · · · · · · | 15 cm mmo)                        |                                       |          |        |          |          | ·····         |     |
|          | <b></b>           |         | B               |                                   |                                       |          | ·      |          |          |               |     |
| 3.4      | <u>8.55</u>       |         |                 | QUARTZ VEIN 5506C- PYRIZ          |                                       |          |        | [        |          |               | j   |
|          | •• ••• •          |         | · ···· •        | AND EHALCOPYRITE 4%               | · · · · · · · · · · · · · · · · · · · |          |        |          |          |               |     |
|          | <b>.</b>          |         |                 | MINOR MOLYSPENITE                 |                                       |          |        |          |          |               |     |
|          | ••••              | ••••    |                 | /                                 |                                       | ·        |        |          |          |               |     |
|          |                   | L       | I               |                                   |                                       | I        | L      | <u> </u> | <u> </u> |               |     |

 $\frac{1}{484} \frac{1}{7} \frac{1}{\rho 484} \frac{1}{2} \frac{1}{\rho 4842} \frac{1}{2} \frac{1}{\rho 4842} \frac{1}{\rho 48$ 

| MAIN     | DIV.        | MINOF    | R DIV.   | DESCRIPTION                 | SAMPLE                                 | INTE     | RVAL     | ggb      | ASSAY       | s ØØ     | <u>m</u> |
|----------|-------------|----------|----------|-----------------------------|----------------------------------------|----------|----------|----------|-------------|----------|----------|
| rom (m)  | to (m)      | from (m) | to (m)   |                             | NUMBER                                 | from (m) | to (m)   | "Are     | <u>en</u>   | <u> </u> |          |
| 3.55     | 17.9        |          |          | DIORITE - MEDIUM GRAINED    |                                        |          |          |          |             |          |          |
|          | ···· /      |          |          | PHENOCREPSTE TO D.6CM       | ······································ |          |          |          |             |          |          |
|          |             | Q.5      | 12.0     | FRAGMENTED Z-10 cm          |                                        |          |          |          |             |          |          |
|          |             |          |          | Some LEACHED SLIGHTLY CANDY | ······                                 |          |          |          |             |          | <u>.</u> |
|          |             |          |          | PATCHES.                    |                                        |          |          |          |             |          |          |
|          |             |          |          | 1                           |                                        |          | ······   |          |             |          |          |
|          |             |          |          | MINOR SHEAR FOLIATION 456   | C                                      |          |          |          |             |          |          |
|          |             | 16.3     | 18.2     | FRAGMENTED 1-locu           |                                        |          | 110      |          | 204         |          |          |
|          |             | 16.3     | 16.9     | FRAGMENTS 5% BLEet QUARTZ   | 11/ 4 34                               | 16.3     | 6.9      | 45       | F78         |          |          |
| 7.9      | 241         |          |          | Dyke - GREY BLUE GlownowAs  | 111-                                   |          | 100      | ļ        |             |          |          |
|          |             | <b> </b> |          |                             | 111440                                 | 18.2     | 19.5     | 5        | 178         |          | <b> </b> |
|          |             |          |          | WHITE FELDSPAR PHENOCRYSIS  | 41                                     |          |          |          | 226         |          | <b> </b> |
|          |             |          |          | To O.bam - FREQUENT         | 42                                     | 20.7     | 22.2     | 5        | 207         |          |          |
|          |             |          |          | BLUE QUARTZ STRINGERS       |                                        |          | <b>[</b> |          |             |          |          |
|          |             |          |          | 12-2 an 0-10°, 45 to C      |                                        |          |          |          |             |          | <b> </b> |
|          |             |          | <b> </b> | DR BLEBS WITH 28 PURITE     |                                        |          |          |          |             |          |          |
|          |             |          |          | AND MINOR CHALCOPYRITE      |                                        | -        |          |          |             |          |          |
|          |             |          |          | AND POSSIGLY MOLY BOENITE   |                                        |          |          |          |             |          |          |
|          |             |          |          | ALSO BLACK SDOTY MINERAL (M | n                                      |          |          | <b>_</b> |             |          |          |
|          |             |          |          | FRACTURING 45° to C.        |                                        |          |          |          |             |          | <b> </b> |
|          |             | 18.2     | 26.1     | ABOUT 3-5 NARLOW QUANTZ     |                                        |          |          |          |             |          | <u> </u> |
|          | <b> </b>    | <b> </b> | ļ        | STRINGER PER METRE          |                                        |          | <u> </u> |          |             | <u> </u> | ┣—       |
| ·        | <b> </b>    | <b> </b> | ļ        | Sour CALCITE?               |                                        |          | <u> </u> |          | +           |          | ┨        |
| 261      | <u>30.7</u> | <b> </b> | ļ        | EINE TO HELL - MINOR        |                                        |          |          |          | <u> </u>  - |          | ┼        |
| <u> </u> |             | <b></b>  |          | FINE TO 4 en - MINOR        |                                        |          |          |          | <u> </u>    |          |          |
|          | <b> </b>    |          | <b> </b> | BCUE QUARTZ AND OCCASIONAL  |                                        |          |          | <u> </u> | ┨           |          | ┼──      |
|          | <b> </b>    | <u> </u> | <b> </b> | SILICA FRAGMENIZ - MIDOR    |                                        |          |          |          | ┨────┤·     |          | ╂        |
|          |             | <u> </u> | 1        | FYRITE.                     | <u> </u>                               |          | <u> </u> | <u> </u> |             |          | <u> </u> |

i

| MAIN        | DIV.    | MINO     | r div.   | DESCRIPTION                                               | SAMPLE   | INTE     | RVAL     | POI      | ASSA | YS (        | pu       |
|-------------|---------|----------|----------|-----------------------------------------------------------|----------|----------|----------|----------|------|-------------|----------|
| rom (m)     | to (m)  | from (m) | to (m)   |                                                           | NUMBER   | from (m) |          | Bu       | en   | r           |          |
| 307         | 33.0    |          |          | BRECCIA - DIORITE FRAGMEN                                 | <u> </u> |          |          |          |      |             |          |
|             |         |          |          | AND GROUNDMASS                                            |          | `        | ļ        |          |      |             |          |
| 33.0        | 34.4    |          |          | BRECCIA - MOSTLY BILICA                                   | 111493   | 32.9     | 341      |          | 183  |             | <u> </u> |
|             |         |          |          | AND A FEW JUKE FRAGMENTS                                  | 44       | 34.1     | 350      | 90       | 212  |             |          |
|             |         | 34.2     | 34.4     | MILO AND FRAGMENTS                                        | 45       | 350      | 36.0     | 5        | 206  |             | ļ        |
| 34.4        | 36.4    |          |          | SILICA - GREY MINOR WHITE QUAR                            | 2 46     | 360      | 36.4     | 5        | 81   |             |          |
|             |         |          |          | 1-2% VERY FINE GRAINED                                    |          |          |          |          |      |             |          |
|             |         |          |          | DISSEMINATED PYRITE AND                                   |          |          |          |          |      |             | <b></b>  |
|             |         |          |          | MINOR attacco purite.                                     |          |          |          |          |      |             | <u> </u> |
|             |         | 36.0     | 36.4     | LIGHT BLUE WHITE SILICA                                   |          |          |          |          |      |             |          |
| 36.4        | 37.7    |          |          | BRECCIA - DIORITE                                         |          |          |          |          |      |             | <b>_</b> |
|             | ,       |          |          | FRAGMENTS To ban                                          |          |          | ļ        |          |      |             | ļ        |
|             |         | 37.3     | 37.7     | 35% QUART- WHITE LESS BLUE                                |          |          |          |          |      |             | <u> </u> |
|             |         |          |          | MINOR PYRITE                                              |          |          | ļ        |          |      |             | <b>_</b> |
| 37.7        | 39.0    |          |          | DIORITE MEDIUM GRAIND                                     |          |          |          |          |      |             | <b>_</b> |
|             |         |          |          | 200 phylynic - NELL FRACTURED                             |          |          |          |          |      |             | <u> </u> |
| 39.0        | 40.9    |          |          | SILICIFIED SHEARED DIDRITE                                | ?        |          |          |          |      |             | <b></b>  |
|             |         |          |          | FOLIATION 450 to C Toto                                   |          |          |          |          |      |             | <u> </u> |
|             |         |          |          | BROWN-RED (STAINED?)-                                     |          |          |          |          |      |             |          |
|             |         |          |          | A FEW /2 en Blut aufaiz                                   |          |          |          | <u> </u> |      |             |          |
|             |         |          |          | STRINGERS IN FOLIATION.                                   |          |          |          |          |      |             |          |
|             |         | 409      | 41.0     | MnD.                                                      |          |          |          |          |      |             |          |
|             |         | 41.0     | 41.2     | QUARTZ WITH NOR PYRITE                                    |          |          | <u> </u> |          |      |             |          |
| <u>41.2</u> | 451     |          |          | QUARTZ WITH NOR PYRITE<br>DIORITE - SHEARINGAND BRECCIATI | m        | <b> </b> | <u> </u> |          |      | ·           |          |
| •           | $\beta$ |          |          | FRACTURING 4506C - SILICIFICATIO                          | N        | ļ        |          | <b> </b> |      |             | <b>_</b> |
| ·N          |         |          | <b> </b> | · · · · · · · · · · · · · · · · · · ·                     |          |          | <b> </b> | <u> </u> |      | <del></del> | <b>_</b> |
|             |         |          | <b></b>  |                                                           |          |          |          | <u> </u> |      | <i>u</i>    | <b>_</b> |
| _           |         |          |          |                                                           |          |          |          | <u> </u> |      |             |          |

|                            | 78#18                                   |                                   |                 |
|----------------------------|-----------------------------------------|-----------------------------------|-----------------|
| PROJECT: ORKO GOLD CORP    | NTS Map Number: 9281                    | Drilling by: CONNORS              | DRILL HOLE:     |
| BONAPART GOLD              | GZFOCES<br>Mining Division:<br>KAwloops | Date:<br>Logged by:<br>E. LIVGARD | 98 # 18         |
| COLLAR LOCATION:<br>8200 N | AZIMUTH: NORTH<br>DIP: -450             | ELEVATION:<br>TOTAL LENGTH: 59.5  | PAGE:<br>104 24 |

| MAI             | <u>N DIV.</u> | MINOF                                   | R DIV. | DESCRIPTION                      | SAMPLE | INTE                      | RVAL        | 200                                          | ASS | AYS A | om |
|-----------------|---------------|-----------------------------------------|--------|----------------------------------|--------|---------------------------|-------------|----------------------------------------------|-----|-------|----|
| from (m         | ) to (m)      | from (m)                                | to (m) |                                  | NUMBER | from (m)                  | to (m)      | An                                           | Cu  | Mo    | 45 |
| 0               | 3.1           |                                         |        | QASING                           |        |                           |             |                                              |     |       |    |
| 3.1             | 6.0           |                                         | •••    | DIODITE - MEDIUM GRANED          |        |                           |             |                                              |     |       |    |
|                 |               |                                         |        | POR PHYRYTIC                     |        |                           |             |                                              |     |       |    |
| 60              | 8.5           |                                         |        | SILICA + BROWN IEREGULAR         |        |                           |             |                                              |     |       |    |
|                 |               |                                         |        | BANDS OF BIOTIFE 550% C          |        |                           |             |                                              |     |       |    |
| ·               |               |                                         |        | ALTERED SEDIMENT?                |        |                           |             |                                              |     |       |    |
|                 |               | • •                                     |        | 1-2% PYRITE MINDE MOLYBUSHING    | ·      |                           |             | <u>.                                    </u> |     |       |    |
| •···· • • • • • |               |                                         |        | -Some FINE BANDING : BIETTE /MM  |        |                           |             |                                              |     |       |    |
|                 | •             |                                         |        | Bluck Quariz 2-3mm.              |        |                           |             | ·                                            |     |       |    |
|                 |               |                                         |        | Lower CONTACT 36°6C.             | 113701 | • • • • • • • • • • • • • | ··· ··· ··- | · · · · ·                                    | 151 | 73    | 20 |
|                 |               |                                         |        | - move meat slicken sides.       |        | 11.3                      |             | 5                                            | 165 | 141   | 25 |
| 8.5             | 9.B           |                                         |        | DERITE AS ADOVE                  | 03     | ~~~~                      | <u> 4.1</u> |                                              | 127 | 57    | 22 |
| -               |               | 9.2                                     | 4.3    | SHEARING - GILICA + OHLORITE     | 04     | 14.1                      | 15.4        |                                              | 124 | 60    | 10 |
| 7.B             | 21.4          |                                         |        | DIORITE - BILICIFIED             | 05     |                           | 16.9        |                                              | 63  | 120   | 5  |
|                 |               | ••••••••••••••••••••••••••••••••••••••• |        | RE CRYSTALLIZED - FINE GRAINE    |        | 16.9                      |             |                                              | 169 |       |    |
|                 |               |                                         |        | LIGHT GREY GREEN AND             | 07     |                           | <u>19.1</u> | 5                                            | 202 |       |    |
|                 |               |                                         |        | GREEN CORCLES MINOR              | 08     |                           | <u>20.2</u> |                                              | 224 |       |    |
|                 | ·····         |                                         |        | GOTTE IN FINE FANDS 36-40 to     |        | <u>ZaZ</u>                | <u>21.4</u> | 5                                            | 221 | 176   | 15 |
|                 |               |                                         |        | VERY FINE GRAINED PYRITE, PYRHO  | nite   |                           |             |                                              |     |       |    |
|                 |               |                                         | ŀ      | AND CHALCOPYRITE - TOTALING 1901 |        |                           |             |                                              |     |       |    |

 $\frac{1}{48448} \frac{1}{2448} \frac{1}{244$ 

|          |        |          |        | 10 210 ptton =                                    |        |          |        |     |     |       |    |
|----------|--------|----------|--------|---------------------------------------------------|--------|----------|--------|-----|-----|-------|----|
| MAIN     | I DIV. | MINO     | r div. | DESCRIPTION                                       | SAMPLE | INTE     | RVAL   | adb | ASS | AYS 🔗 | OM |
| from (m) | to (m) | from (m) | to (m) |                                                   | NUMBER | from (m) | to (m) |     |     | Mo    | As |
| 9.8      | 21.4   |          |        | CONT. ALSO SMALL SucpHIDE                         |        |          |        |     |     |       |    |
|          |        |          |        | LENSESIN FOLIATION.                               |        |          |        |     |     |       |    |
|          |        | Ar       | 120    | San Doring                                        |        |          |        |     |     |       |    |
|          |        |          | 12.6   |                                                   |        |          |        |     |     |       |    |
|          |        |          |        | SUCPHADE CONTENT INCREASES                        |        |          |        |     |     |       |    |
|          |        |          |        | DOWNWARD TO 2% MOSTLY                             |        |          |        |     |     |       |    |
|          |        |          |        | DYRITE - DARK BLUE BORNITE?                       |        |          |        |     |     |       |    |
|          |        | IS.B     | 16.2   | DIORITE REMENANT.                                 |        |          |        |     |     |       |    |
|          |        |          |        | SEVERAL FRACTURES 10toC.                          |        |          |        |     |     |       |    |
|          |        |          |        | SEVERAL MINERALIZED QUARTZ                        |        |          |        |     |     |       |    |
|          |        |          |        | STRINGERS 1/2-4 cm. 0-10° to 0                    |        |          |        |     |     |       |    |
|          |        |          |        | ANO SOTOC.                                        |        |          |        |     |     | 1 A   |    |
| 21.5     | 27.4   |          |        | QUARTZ VEIN 28°50C                                | 113710 | 21.4     | 2Z.4   | 10  | 538 | 48    | 5  |
|          |        |          |        | 85% QUARTE 1-2% PYRITE                            |        |          | 23.0   | 1   |     |       |    |
|          |        |          |        | MINER OHALOPYRITE                                 |        |          |        |     |     |       | •  |
| 224      | z7.9   |          |        | SILICA WITH 1/2 TO SYRITE                         | . 12   | 23.7     | 24.4   | 2   | 97  | 28    | 5  |
|          |        |          |        | MINOR EPIDOTE AT LOWER                            | 1,     |          |        |     |     |       |    |
|          |        |          |        | CONTACT.                                          |        |          |        |     |     |       |    |
| 22.9     | 23.8   |          |        | DIORITE - MERIUM GRANNED                          |        |          |        |     |     |       |    |
|          |        |          |        | DORPHERRYTIC - LIGHT                              |        |          |        |     |     |       |    |
|          |        |          |        | PORPHYRYTTC - LIGHT<br>SERECTIC ALTERATION        |        |          |        |     |     |       |    |
| 23.8     | z4.5   |          |        | QUARTZ NEIN 10°toc.                               |        |          |        |     |     |       |    |
|          |        |          |        |                                                   |        |          |        |     |     |       |    |
|          |        |          |        | MINOR Sucception S.<br>LAST Zoem QUARIZ-FELDSPAR- |        |          |        |     |     |       |    |
|          |        |          |        | muscolitt.                                        |        |          |        |     |     |       |    |
| 24.5     | 31.3   |          |        | DIORITE MEDIUM GRAINED                            |        |          |        |     |     |       | i  |
|          |        |          |        | LIGHT CHANGING TO DARK.                           |        |          |        |     |     |       |    |
|          |        |          |        | LIGHT CHANGING TO DATEL.                          |        |          |        |     |     |       |    |

 $\frac{1}{98 \pm 18} \xrightarrow{2} \frac{1}{265} = 3$ 

|          |        |          |        | 78#10                                                                                          | Mo          | <u> </u> | 2      |                                |     |             |          |
|----------|--------|----------|--------|------------------------------------------------------------------------------------------------|-------------|----------|--------|--------------------------------|-----|-------------|----------|
| MAIN     | DIV.   | MINO     | R DIV. | DESCRIPTION                                                                                    | SAMPLE      | INTE     | RVAL   | ppl                            | ASS | AYS         | mi.      |
| from (m) | to (m) | from (m) | to (m) |                                                                                                | NUMBER      | from (m) | to (m) | Qu                             | Cu  | Mo          | As       |
| 24.5     | 3/3    |          | 1      | CONT.                                                                                          |             |          |        |                                |     |             |          |
| <u> </u> |        |          | z7.1   | SILICA AND QUARTZ STRINGER                                                                     |             |          |        |                                |     |             |          |
| <u></u>  |        |          |        | 3 cm WITH 106 ChArcopyRITE                                                                     |             |          |        |                                |     |             |          |
|          | ·      | 27.5     | 27.7   | BILICIFIED                                                                                     |             |          |        |                                |     |             |          |
|          |        |          |        | LIGHT BILICIFICATION                                                                           |             |          |        |                                |     |             |          |
|          |        |          |        | FRAGMENTED SAND-MULD                                                                           |             |          |        |                                |     |             |          |
|          |        |          |        | MINOR FAULT 50° to C                                                                           |             |          |        |                                |     |             |          |
| 31.5     | 50.0   |          |        | SILICA (BIOTITE) BANDING - DINK                                                                | 113718      | 3/.3     | 32.6   | 10                             | 1z7 | 100         | 45       |
| ~/       |        |          |        | FELDSOAR 50° TOC.                                                                              | 14          | 32.6     | 34.0   | 10                             | 15Z | 86          | 25       |
|          |        |          |        | DARK BLUE BLACK PATCHES ("                                                                     | TRS 115     | 34.0     | 35.2   | 120                            | 181 | 46          | <u> </u> |
|          |        |          |        | LENSES OF QUARTZ DETWEEN                                                                       | 16          | 35.2     | 36.2   | 25                             | 168 | 77          | 15       |
|          |        | 1        |        | PINK ZANDS.                                                                                    | 17          | 26.2     | \$7.4  | 15                             | 140 | G           | 25       |
|          |        |          |        | 1% PURITE, MINOR ChacopyRite                                                                   | . 18        | 37.4     | 37.B   | $\hat{\boldsymbol{\varsigma}}$ | 125 | $\hat{q}_z$ | 30       |
|          |        |          |        | AND / PYRRHOTTE.                                                                               |             | 37.8     | 40.3   | 10                             | 157 | 114         | 65       |
|          |        | 32,0     | 32.6   | LARGE FRAGMENTS 10° AND 40 to C                                                                | 20          | 40.3     | 41.6   | 15                             | 153 | 9           | 10       |
|          |        |          |        | BLACK CHLORITE ON SURPACES                                                                     | 21          | 41.6     | 43.0   | 10                             | 139 | 54          | 5        |
|          |        | 34.7     | 36.    | ERAGMENTS Z-Sern, FRAcTURING                                                                   |             | 43.0     |        |                                | 184 | 91          | 25       |
|          | ·      |          |        | SARALLEL AND 5006C.                                                                            |             | 44.3     |        |                                | 141 | 94          | 23       |
|          |        |          |        | MUDANO SAND                                                                                    |             | 45.8     |        |                                | 214 | 148         | 53       |
|          |        | 350      | 35.1   | BLUE QUARTZ FRAGMENTS                                                                          | 25          | 47.2     | 48.5   | 10                             | 244 | 113         | 105      |
|          |        |          | 37.0   |                                                                                                | 113726      | 48.5     | 50.0   | 10                             | 170 | 88          | 13       |
|          |        |          |        | (SmALL FAULT)                                                                                  |             |          |        |                                |     |             |          |
|          |        | 37.2     | \$7.5  | WHATE LIGHT BLUE CARBONATE                                                                     |             |          |        |                                |     |             |          |
|          |        | 57.8     | \$9.0  | WHITE LIGHT BLUE CARBONATE<br>DIDRITE - BILICIFIED<br>FRACTURING 30°40° to C<br>BLACK ChEDRITE |             |          |        |                                |     |             |          |
|          |        | 48.7     | elfu   | FRACTURINE 30°40 to C                                                                          |             |          |        |                                |     |             |          |
|          | ·      | <u> </u> |        | BLACK CheoRITE                                                                                 |             |          |        |                                |     |             |          |
|          |        |          |        | na an a                                                       |             |          |        |                                |     |             |          |
|          |        |          |        |                                                                                                | · · · · · · |          |        |                                |     |             |          |
|          |        |          |        |                                                                                                |             |          |        |                                |     |             | L        |

 $\frac{1}{78 \pm 18} \xrightarrow{1} \frac{1}{78 \pm 18} \xrightarrow{1} \frac{1}{78 \pm 18}$ 

| MAIN             | DIV.          | MINOF    | R DIV. | DESCRIPTION                                                                                                                                                                                                             | SAMPLE     | INTE     | RVAL   |   | ASS | AYS      |          |
|------------------|---------------|----------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------|--------|---|-----|----------|----------|
| from (m)         |               | from (m) | to (m) |                                                                                                                                                                                                                         | NUMBER     | from (m) | to (m) |   |     |          |          |
|                  | 52.7          |          |        | DYKE - VERY 2,6HT GREY<br>APHANITIC<br>GROUNDMASS WITH 30-35%                                                                                                                                                           |            |          |        |   |     |          |          |
|                  |               |          |        | APHANITIC                                                                                                                                                                                                               |            |          |        |   |     |          | ļ        |
|                  |               |          |        | GROUNDMASS WITH 30-35%                                                                                                                                                                                                  |            |          |        |   |     |          | <b> </b> |
|                  |               |          |        | WHITE FELDSPAR DHENACRYSTS                                                                                                                                                                                              | 4 <b>.</b> |          |        |   |     |          | <b> </b> |
|                  |               |          |        | 1-5mm.                                                                                                                                                                                                                  |            |          |        |   |     |          |          |
| \$27             | 59.5          |          |        | DIDRITE VERY FINE GRAINED                                                                                                                                                                                               |            |          |        |   |     |          |          |
|                  |               |          |        | AND VERY 216HT.                                                                                                                                                                                                         |            | _        | ·      |   |     |          | <b> </b> |
| /                | $\mathcal{D}$ |          |        | BROWNDMASS WITH 20-3510<br>NHITE FELDSPAR PHENOCRYSTS<br>1-5 mm.<br>DIOPITE VERY FINE GRAINED<br>AND VERY 216HT.<br>BIOTTLE ADULATION 30-40°5 (<br>VERY SUGHTER DONPHYRYTIC<br>DYKE VERY FINE GRAINED<br>GREY 43° to C. |            |          |        |   |     |          | <b> </b> |
| $\mathbb{Z}^{n}$ | צ'ו           |          |        | VERY SUGHTELY PORPHYPYTIC                                                                                                                                                                                               |            |          |        |   |     |          | <b> </b> |
|                  |               | 70.3     | 56.4   | DYKE VERY FINE GRAINED'                                                                                                                                                                                                 |            |          |        |   |     |          | <b></b>  |
|                  |               |          |        | 6R=7 43° to C.                                                                                                                                                                                                          |            |          |        |   |     |          | <u> </u> |
|                  |               |          |        | /                                                                                                                                                                                                                       |            |          |        |   |     | ,        | ļ        |
|                  |               |          |        |                                                                                                                                                                                                                         |            |          |        |   |     | <i>,</i> |          |
|                  |               |          |        |                                                                                                                                                                                                                         |            |          |        |   |     |          | ļ        |
|                  |               |          |        |                                                                                                                                                                                                                         |            |          |        | - |     |          | ļ        |
|                  |               |          |        |                                                                                                                                                                                                                         | <u> </u>   |          |        |   |     |          | <b> </b> |
|                  |               |          |        |                                                                                                                                                                                                                         |            |          | ·      |   |     |          |          |
|                  |               |          |        |                                                                                                                                                                                                                         |            |          |        |   |     |          | <b></b>  |
|                  |               |          |        |                                                                                                                                                                                                                         |            |          |        |   |     |          | ļ        |
|                  |               |          |        |                                                                                                                                                                                                                         |            |          |        |   |     |          |          |
|                  |               |          |        |                                                                                                                                                                                                                         |            |          |        |   |     |          |          |
|                  |               |          |        |                                                                                                                                                                                                                         |            |          |        |   |     |          |          |
|                  |               |          |        |                                                                                                                                                                                                                         |            |          |        |   |     |          |          |
|                  |               |          |        |                                                                                                                                                                                                                         |            |          |        |   |     | <b></b>  |          |
|                  |               |          |        | ·,                                                                                                                                                                                                                      |            |          |        |   |     |          | <b></b>  |
|                  |               |          |        |                                                                                                                                                                                                                         |            |          |        |   |     |          | L        |
|                  |               |          |        |                                                                                                                                                                                                                         |            |          |        |   |     |          |          |
|                  |               |          |        |                                                                                                                                                                                                                         |            |          |        |   |     |          |          |

| PROJECT: ORKO EDUP Corp.         | NTS Map Number: 92 P1                   | Drilling by: CONNORS                                            | DRILL HOLE:     |
|----------------------------------|-----------------------------------------|-----------------------------------------------------------------|-----------------|
| BONAPART GOLD MINE               | 9290008<br>Mining Division:<br>KAMLOOPS | Date: $MN \leq 24 - 27/98$<br>Logged by:<br>$\leq \cdot 1/64RD$ | 98#19           |
| COLLAR LOCATION:<br>8225N, 4063E | AZIMUTH: LI<br>DIP: - 450               | ELEVATION:<br>TOTAL LENGTH: 95.1                                | page:<br>1 of 9 |

|          |        | Introl   | R DIV.   | DESCRIPTION                                    | SAMPLE   | INTE     | RVAL   | Ppb.     | ASSA | AYS      | <b></b> |
|----------|--------|----------|----------|------------------------------------------------|----------|----------|--------|----------|------|----------|---------|
| from (m) | to (m) | from (m) | to (m)   |                                                | NUMBER   | from (m) | to (m) | Au       |      |          |         |
| 0        | 3.0    |          | · · ·    | CASING                                         |          |          |        |          |      |          |         |
| 3.0      | 5.2    |          |          | FRAGMENTED - SANDTO Sam                        | 11/368   | 3.0      | 5.2    | 5        |      |          |         |
|          |        |          |          | HIGHLY OXIDIZED - APPEARS                      |          | 5.2      |        | 5        |      |          |         |
|          |        |          |          | TO BE BLACK SEDIMENTARY                        | 70       |          |        |          |      |          |         |
|          |        |          |          | - MUCH PYRITE - Some                           | 71       | 7.5      | 8.z    | 15       |      |          |         |
|          |        |          | <b>.</b> | FRAGMENTS ARE HIGHLY                           | 7z       | 12.2     | 9.8    | 35       |      |          |         |
|          |        |          |          | SILICIOUS WITH PEOPYRITE                       | 73       | 9.8      | 11.5   | 20       |      |          |         |
| 5.2      | 6.7    |          |          | FRAGMENTED-SANDTO Sam                          | 74       | 11.5     | 12.8   | 5        |      |          |         |
|          |        |          |          | BLACK FRAGMENTS-SEDIMENT                       | ARy 75   | 12.8     | 14.4   | 10       |      | <b>-</b> |         |
|          |        |          |          | - PYRITE AND OCCASIONAL                        | 111376   | 14.4     | 15.6   | 10       |      |          |         |
|          |        |          |          | - PYRITE AND OCCASIONAL<br>CHALCOPYRITE - 183. |          |          |        |          |      |          |         |
|          |        |          |          | ONE FRAGMENT OF ZLACK                          | ·        |          |        |          |      |          |         |
| 14444    |        |          |          | PIECES BEMENTED WITH                           | ·        |          |        |          | · `> | <b></b>  |         |
|          |        |          |          | CALCITE (TRAVERTINE?) A                        | ,        | <u> </u> |        |          |      |          | <br>    |
|          |        |          |          | FEN FRAGMENTS OF DIDLITE                       |          |          |        |          |      |          |         |
| 6.74     | 1.9    |          |          | Muo ~ FALLT?                                   |          |          |        |          |      |          |         |
|          |        |          |          | 6.7-8.2 0.3m CORE LOSS)                        | ······   |          |        |          |      |          |         |
| 6.9      | 7.4    |          |          | DIORITE - ALTERED INDISTING                    |          |          |        |          |      |          |         |
|          |        |          |          | CRYSTALS - FRACTURING 60°55                    |          |          |        |          |      |          |         |
|          |        |          |          |                                                | <u> </u> |          |        | <u> </u> |      |          |         |

| <u> </u>   | τ | (11) | et de la | ] | ) | • | 1 | • | 1 | († †) | • | っ | e sorte | ] [ | 1 | r | 1)_           |    |   | 1 | • • | } | : `} | , | 3 | • · · | ] ( | <b>[</b> ] |
|------------|---|------|----------|---|---|---|---|---|---|-------|---|---|---------|-----|---|---|---------------|----|---|---|-----|---|------|---|---|-------|-----|------------|
| , <b>)</b> |   |      |          |   |   |   |   |   |   |       |   | 9 | 3 ;     | μ,  | 9 |   | $\mathcal{O}$ | 46 | 5 | Z | •   |   |      |   |   |       |     |            |

| MAIN DIV. |        | MINOR DIV. |        | DESCRIPTION                                                                                                    | SAMPLE                                 | 1        |          | ASSAYS     |          |          |          |  |
|-----------|--------|------------|--------|----------------------------------------------------------------------------------------------------------------|----------------------------------------|----------|----------|------------|----------|----------|----------|--|
| m (m)     | to (m) | from (m)   | to (m) | DEGONA HON                                                                                                     | NUMBER                                 | from (m) | to (m)   |            |          |          |          |  |
|           |        | 7.4        | 7.5    | GRADUAL INCREASE IN                                                                                            |                                        |          |          | <u> </u>   |          |          |          |  |
|           |        |            |        | ALTXPATTON TO SILICA AND                                                                                       |                                        | _        |          |            |          |          |          |  |
|           |        |            |        | BROWN-RED MANY BANDS OF C                                                                                      | NTOC                                   |          |          |            |          |          |          |  |
|           |        |            |        | BIOTTIE - sourt 6Hosi                                                                                          |                                        |          |          |            |          |          |          |  |
|           |        |            |        | FELDSPAR- 1% PYRITE MINAL                                                                                      |                                        |          |          |            |          |          |          |  |
|           |        |            |        | FELDSPAR - 1% PYRITE MINAR<br>CHALCOPYRITE - DENSE                                                             |                                        |          |          | . <u>.</u> |          |          |          |  |
|           | 115    |            |        | FRACTURING CALMOST BREECIA                                                                                     | <u> </u>                               |          |          |            |          |          |          |  |
| 4         | ES:    |            |        | SILVER AND RED-BEOWN BANDS                                                                                     |                                        |          |          |            |          |          |          |  |
|           |        |            |        | AND Some GREENTINGED (CL                                                                                       | <u>e)</u>                              |          |          |            |          |          |          |  |
|           |        |            |        | ,SERICITIC (?) BANES POPUL                                                                                     | TE                                     |          |          |            |          |          |          |  |
|           |        |            |        | -ALTERE DIERITE ??? "                                                                                          |                                        |          |          |            | <b> </b> |          |          |  |
|           |        | 8.z        | 8.9    | FRAGMENTS-SANDTO Herry                                                                                         |                                        |          |          |            |          | · · · ·  | ·        |  |
|           |        |            |        | AS ABOVE - MUCHPYRITE ON                                                                                       |                                        |          |          |            | ļ        |          |          |  |
|           |        |            |        | AS ABOVE - MUCHPYRITE ON<br>FRACTURES. AS ABOVE                                                                |                                        |          |          |            | <b> </b> |          |          |  |
|           |        | 9.9        | 11.5   | KRAGMENTED-MOSTLY SAND                                                                                         |                                        |          |          |            | <u> </u> |          |          |  |
|           |        |            |        | TO Z-3 em - 3 pitches 12 cm                                                                                    |                                        |          |          |            |          |          |          |  |
|           |        |            |        | WHICH ARE A BRECCIA-                                                                                           | ······································ |          |          | . <u></u>  |          |          |          |  |
|           |        |            |        | MUNCH BLACK CHLORITE ON                                                                                        |                                        |          |          |            |          |          | <u> </u> |  |
|           |        |            |        | FRAGMENT SURFACES                                                                                              |                                        |          |          |            | <u> </u> | <b> </b> |          |  |
|           |        |            |        | AS ABOVE                                                                                                       |                                        |          |          |            | <u> </u> |          |          |  |
| 1.5       | 14.4   |            |        | SEDIMENTARY (?) BLACK                                                                                          |                                        |          |          |            |          |          | <u> </u> |  |
|           |        |            |        | PARTLY SILLEIOUS - FOLIATION                                                                                   |                                        |          |          |            |          |          | <b> </b> |  |
|           |        |            |        | 52° to C.                                                                                                      |                                        |          |          |            |          |          |          |  |
|           |        | 11.5       | 12.8   | FRAGMENTED 1-4 cm                                                                                              |                                        |          |          | Į          |          |          |          |  |
|           |        |            |        |                                                                                                                |                                        |          | ┨────    |            |          |          |          |  |
| 4.4       | 202    | <u> </u>   |        | Bem Muo.<br>Much Gilica LIGHT Cocour<br>MINER PARITE ADIO<br>CHALCO PARITE LIOG.<br>FRACTURING 15,º 28,550 Foc |                                        |          | <b> </b> |            |          |          |          |  |
|           |        |            |        | MINER PARTE AND                                                                                                |                                        |          |          | <b> </b>   |          |          | <b> </b> |  |
|           |        |            |        | applico ayrite 210%.                                                                                           |                                        |          | <u> </u> | <b>I</b>   | L        | <u> </u> |          |  |

 $\frac{1}{98 \pm 19} \frac{1}{946} \frac{1}{5}$ 

|      |         |          |         | 10 47                                                                          | <u> </u>                              |                                       |            |          |          |          |          |
|------|---------|----------|---------|--------------------------------------------------------------------------------|---------------------------------------|---------------------------------------|------------|----------|----------|----------|----------|
| MAIN | DIV.    | MINOF    | R DIV.  | DESCRIPTION                                                                    | SAMPLE                                | INTE                                  | RVAL       | Am       | ASS      | AYS      |          |
|      |         | from (m) | (m)     |                                                                                | NUMBER                                | from (m)                              | to (m)     | An       | As       | Aq_      |          |
|      | 24.6    |          |         | DARKER SOLOTOFO° BROWN<br>REDDIGH EQUICIOUSINPART)<br>Rock (BIOTITE) AND WHITE | 11/377                                | 20.2                                  | 21.5       | 15       | 10       | 2.2      |          |
|      |         |          |         | PEDDIGH ED(SILICIOUSINPART)                                                    | 78                                    | 21.5                                  | ZZ.9       | 5        | <u> </u> | <٠2      |          |
|      |         |          |         | Rock (BIOTITE) AND WHITE                                                       | 79                                    | 2/.5<br>27.9                          | 23.2       | .0650    | , 195    | 0.4      | 22       |
|      |         |          |         | GREY BLUEISH FILICA -                                                          | 60                                    | 123.6                                 | 24.6       | 51       | 130      | 2.2      |          |
|      |         |          |         | OTHEMATICALLY FOLDED                                                           | 111381                                | ,<br>                                 |            |          |          |          |          |
|      |         |          |         | I hum WIDE PHARTZ STRING                                                       | Rs                                    | <u> </u>                              |            | ļ        |          |          |          |
|      |         |          |         | HALCOPYRITE MINOR<br>CHALCOPYRITE.<br>- ALTERED BEDIMENT?-                     |                                       | <b>_</b>                              |            | ļ        |          | <b> </b> |          |
|      |         |          |         | CHALCOPURITE.                                                                  |                                       |                                       |            |          |          |          |          |
|      |         |          |         | - ALTERED BEDIMENT !-                                                          | ·                                     | <u> </u>                              | ļ          |          |          |          |          |
|      |         | 22.9     | 23.0    | QUARTZ VEIN 80° to C. NO                                                       |                                       | · · · · · · · · · · · · · · · · · · · |            |          |          |          |          |
|      |         |          |         | Sucptides VISIZLE.                                                             |                                       | <u> </u>                              | <u> </u>   |          |          |          | ·        |
|      |         | 23.0     | 23.2    | FRAZMENTED SANDTO HELY                                                         |                                       |                                       | <b> </b>   |          |          | · · ·    |          |
|      |         |          |         | SURFACE HAVE ELACK CHLORI                                                      | <u>k</u>                              |                                       |            |          |          |          | · · · ·  |
|      |         | 23.5     | 23.7    | ERAGMENTED- FRIABLE                                                            |                                       |                                       |            | <u> </u> |          |          | <b> </b> |
| Z4.( | \$ 30.3 |          |         | LIGHTER SILICA - 20-30%                                                        |                                       |                                       | <u> </u>   |          | <b> </b> |          |          |
|      |         |          |         | BIOTITIC 70-80% SILICA                                                         | · · · · · · · · · · · · · · · · · · · | -                                     | <u> </u>   |          |          |          | ļ        |
|      |         |          |         | MIN-R PYRITE - BANDING                                                         |                                       |                                       |            |          |          |          |          |
|      |         |          |         | VERY IRREGULAR - FRACTURE                                                      | <u>k</u>                              |                                       |            |          | <b> </b> |          |          |
|      |         |          |         | 45° to C. PYRITEON ALL                                                         |                                       |                                       |            |          | <b> </b> | <b> </b> |          |
|      |         |          |         | (BLACK) FRACTURE SURFACES                                                      |                                       |                                       | <b></b>    |          | <b> </b> |          |          |
|      |         |          |         | - WHETE CALCUTE? (TRAVERITINE                                                  | )                                     |                                       | <u> </u>   |          | 3.0      |          | <b> </b> |
|      |         | 25.5     | 25.8    | FRAGMENTED-SANDTO 4cm                                                          | <i>   38 </i>                         | 52.2                                  | 22.6       | 45       | 35       | 0.2      |          |
|      |         |          |         | LIGHT SILICA + Som QUAREZ                                                      | <u> </u>                              |                                       | <u> </u>   |          |          |          |          |
|      |         |          |         | 55-60°70 C.                                                                    |                                       |                                       |            |          |          |          |          |
|      |         | 262      | 265     | FS-60°TOC.<br>PACTLY "RECULAR" FOLLATION                                       | <u> </u>                              |                                       | . <u> </u> |          | <b> </b> |          |          |
|      |         |          | <b></b> | ABOUT 35° Z. C.                                                                |                                       |                                       | 1          |          |          |          |          |
|      |         | 24.5     | 26.8    | ABOUT 35° Zo C.<br>QUANTZ STRINGER - FOLDED                                    |                                       |                                       |            |          |          |          |          |
|      |         |          |         | FOLIATION                                                                      |                                       |                                       |            | <u> </u> | 1        | .l       | <u> </u> |
|      |         |          |         |                                                                                |                                       |                                       |            |          |          |          |          |

 $\mathcal{B} = \mathcal{B} = \mathcal{B} = \mathcal{A} =$ 

| MAIN DIV.     |              | MINOF    | NDIV.           | DESCRIPTION                                            | SAMPLE                                                                                                         | INTER                                                                                                          | RVAL         | al to    | ASS | AYS                                   | Plin |
|---------------|--------------|----------|-----------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------|----------|-----|---------------------------------------|------|
|               |              | from (m) |                 | DESCRIPTION                                            | NUMBER                                                                                                         | from (m)                                                                                                       | to (m)       | An       | As  | Ag                                    | <br> |
|               |              |          |                 |                                                        |                                                                                                                |                                                                                                                |              |          |     |                                       |      |
|               |              | AT       | 26.8            | FOLIATION VERY IRREGULAL                               |                                                                                                                |                                                                                                                |              |          |     |                                       |      |
|               |              |          |                 | PARALLEL TO C.                                         | <u>,</u>                                                                                                       |                                                                                                                |              | <u> </u> |     |                                       |      |
|               |              | Fee      | <u>~ 28</u>     | O INCREASING BIOTTIE                                   | , <u>, , , , , , , , , , , , , , , ,</u>                                                                       |                                                                                                                |              |          |     |                                       |      |
|               |              |          |                 | HCREASING FRACTURING AND                               | <u></u>                                                                                                        |                                                                                                                |              |          |     |                                       |      |
|               |              | ļ        |                 | FRAGMENTATION WITH BLACK                               |                                                                                                                |                                                                                                                |              |          |     | ·                                     |      |
|               |              | <b> </b> |                 | CHLORITE AND PYRITE ON                                 | <u> </u>                                                                                                       |                                                                                                                |              |          |     |                                       |      |
|               |              |          |                 | Send FACES - MINOR DISSEMINA                           |                                                                                                                |                                                                                                                |              |          |     |                                       |      |
|               |              |          |                 | MINOR FALLES MINOR GOUGE                               |                                                                                                                |                                                                                                                |              |          |     |                                       | 1    |
|               |              | 50.0     | <del>7</del> .5 |                                                        |                                                                                                                |                                                                                                                |              |          |     | · · · · · · · · · · · · · · · · · · · | 1    |
|               |              |          |                 | BRECCIATED SILICA AND 100                              |                                                                                                                |                                                                                                                |              | 4.52     | ē/  |                                       | 1    |
|               |              |          |                 | Dyke - GREY WHITE BLOTH                                | 11/207                                                                                                         | 225                                                                                                            | 31/2         | 0.122    | 25  | 1.6                                   | 1    |
| 50.3          | 30.5         |          |                 | Dyke - Gileg WHIE Store                                | 83                                                                                                             | 31.6                                                                                                           | 32.B         | 20       | 140 | 2.2                                   | 1    |
|               | 4 . 77       | ,        |                 | GROWNO MASS - BIOTITE 1-2m                             |                                                                                                                | 37.8                                                                                                           | 34.1         | 5        | 25  |                                       |      |
| 30.>          | <u> 36.7</u> |          |                 | SILICA AND BIGTTE (ANDOR REP                           | 8:                                                                                                             | 34.1                                                                                                           | 35.7         | 21       | 10  | ~                                     | 1    |
|               |              | <u> </u> |                 | BITHINED SILICA DCCASIONAL                             |                                                                                                                | 3.5.2                                                                                                          |              |          | 20  | v                                     | 1    |
|               |              |          |                 | QUARTZ STRINGERS AND<br>DISTURBED FOURTION - 2% pyrite |                                                                                                                | 367                                                                                                            | 38.0         | 5        | 85  | <u> </u>                              | 1    |
|               |              | <u> </u> | 2/5             | MINOR DISTURB - 5% IRREGULAR                           | 49                                                                                                             | 38.0                                                                                                           | 39.3         | 45       |     |                                       |      |
| ·             |              | 70.7     | 71.5            | MIDDIE DISIGRAF, - 5 /0 12/2 EDIELATE                  |                                                                                                                |                                                                                                                |              | 170      |     |                                       |      |
|               |              |          |                 | RUARTE 2% paperte MINER                                | the second s | the second s |              | .092     |     |                                       |      |
| 517           | 114          |          |                 | CHALCOPHRITE.<br>BRECCIA - MOSTLY BLUE                 |                                                                                                                | 1                                                                                                              |              | 3,15     | 1   | 1                                     |      |
| <u> 26. (</u> | 41.4         |          | <u> </u>        | SILICA 60-70% REDRISH                                  |                                                                                                                | 1                                                                                                              |              | 7.10     | 7   | *                                     |      |
|               |              | <u> </u> | <u> </u>        | BROWN COLOUR 15 MORE                                   | · · · · · · · · · · · · · · · · · · ·                                                                          | 1                                                                                                              |              | ,        | r   | 1                                     |      |
|               |              | <b> </b> |                 | DIFUSED Look LIKE A                                    | · · · · · · · ·                                                                                                | 1                                                                                                              | <sup>+</sup> |          |     |                                       |      |
|               |              |          |                 | DED CORN - 2-28/DUDITE                                 |                                                                                                                |                                                                                                                |              |          |     |                                       |      |
|               |              | 26 -     | du              | LIGHT - REQUISE TINKE                                  | 1                                                                                                              |                                                                                                                |              |          |     |                                       |      |
|               |              | 70.2     | <u> 7/. 7</u>   | mostly BILICA.                                         |                                                                                                                | 1                                                                                                              |              |          |     |                                       |      |

/

 $\frac{78\pm19}{78\pm19}$ 

| MAIN         | DIV.   | MINO     | r div. | DESCRIPTION                                                                                               | SAMPLE | /INTE    | RVAL     | ppb | ASS      | ays A | me       |
|--------------|--------|----------|--------|-----------------------------------------------------------------------------------------------------------|--------|----------|----------|-----|----------|-------|----------|
| rom (m)      | to (m) | from (m) | to (m) |                                                                                                           | NUMBER | from (m) | to (m)   | Aa  | As       | Ag    |          |
|              |        | 40.8     | 41.0   | QUARTZ NEIN - LOWER                                                                                       |        |          |          |     |          |       |          |
|              |        |          |        | CONTRET 50° to C-NOVISIBLE                                                                                |        |          |          |     |          |       |          |
|              |        |          |        | SupHOLS<br>DIGRITE - PREPHYRYTTC<br>PHENOCRYST TO O.BEAM<br>FRACTURING SO AND 65 TO C                     |        |          |          |     |          |       |          |
| <u>41. 4</u> | 42.3   |          |        | DIORITE - PORPHYRYTIC                                                                                     |        | _        |          |     |          |       |          |
|              |        |          |        | PHENOCRYST TO O.Beam                                                                                      |        | 4        |          |     |          |       |          |
|              |        | <b></b>  |        | FRACTURING 50°AND 65 6 C                                                                                  |        |          |          |     |          |       | <b> </b> |
| 12.3         | 42.6   |          |        | DYKE - GREY GROUND MASS                                                                                   |        | _        |          |     | <u> </u> | ·     | <u> </u> |
|              |        |          |        | Imm WHITE Sub RanNOLD                                                                                     |        |          |          |     |          |       |          |
|              |        | <b> </b> |        | FELDSPAR PHENOCRYSIZ<br>MINOR VERYFING GRAINED                                                            |        |          |          |     |          |       |          |
|              |        |          |        | miNOR VERY FING GRANNED                                                                                   |        |          |          |     |          |       | ļ        |
|              |        |          |        | PYRITE. 1                                                                                                 |        |          |          |     |          | ,     |          |
| 2%           | 43.5   |          |        | DIORITE - AS ABOVE                                                                                        |        |          |          |     |          | ·     |          |
| 13.5         | 52.3   |          |        | SILICIFICATION NITH WANY RED                                                                              | 111391 | 51.1     | 57.6     | 15  | 15       | 2.2   |          |
|              |        |          |        | -BOANN BATTH HOY VERY                                                                                     |        |          |          |     |          |       |          |
|              |        | <u> </u> |        | IRREGULAR TO to C, # 40%<br>DASSEMINATED PYRITE 196                                                       | C      |          |          |     |          |       |          |
|              |        |          |        | DISSEMINATED PUPRITE 196                                                                                  |        |          |          |     |          |       |          |
|              |        | 43.5     | 44.2   | QUARTZ STRINGER-IDREGULAR                                                                                 |        |          |          |     |          |       | <b> </b> |
|              |        |          |        | 10% - 30 to C                                                                                             |        |          |          |     |          |       |          |
|              |        | 461      | 46.3   | MMO                                                                                                       |        |          |          |     |          |       |          |
|              |        |          |        | 30% IRREGULAR QUARTZ                                                                                      |        |          |          |     |          |       |          |
|              |        |          |        | WHITE                                                                                                     |        |          |          |     |          |       |          |
|              |        | 47.5     | 47.8   | MAINLY HOMOGENians GREY                                                                                   |        |          |          |     |          |       | <u> </u> |
|              |        |          |        | VERY FINE GRAINSO - DUKE?                                                                                 |        |          | <b> </b> |     |          |       | <b></b>  |
|              |        | 49.0     | 49.6   | MAINLY HOMOGENIAUS GREY<br>VERY FINE GRAINED - DYKE?<br>10% IREEGULAR QUARTZ.<br>FRACTURE - SEM IRREGULAR |        | <u> </u> | .<br>    |     |          |       | <b></b>  |
|              |        | 51.1     | 51.5   | FRACTURE - SEM IRREGULAR                                                                                  |        | <u> </u> |          |     |          |       | <b> </b> |
|              |        | 1        |        | Rudetz                                                                                                    |        |          |          |     |          |       |          |
|              |        |          |        |                                                                                                           |        |          |          |     |          |       |          |

 $\frac{98 \pm 19}{98 \pm 19} pAGE b$ 

| MAIN     | DIV.   | MINOF    | R DIV.  | DESCRIPTION                                                                                  | SAMPLE   | INTE     | RVAL   | ppb      |    | avs P        | PM       |
|----------|--------|----------|---------|----------------------------------------------------------------------------------------------|----------|----------|--------|----------|----|--------------|----------|
| from (m) | to (m) | from (m) | to (m)  |                                                                                              | NUMBER   | from (m) | to (m) | Aa       | As | Ag           |          |
| 52.3     | 52.5   |          |         | Dyke-HomogENous                                                                              |          |          |        |          |    | ~            |          |
|          |        |          |         | GREY-REDDISH GTAIN                                                                           |          |          |        |          |    |              |          |
|          |        |          |         | VERY FINE GRAINED                                                                            |          |          |        |          |    |              |          |
| 52.5     | 56.1   |          |         | DIDRITE - FINE GRAINED                                                                       |          |          | ·      |          |    |              |          |
|          |        |          |         | PERPHYRYTTC - WHITE FELDSPAC<br>PHENOERYSIS /- 4 mm                                          |          |          |        |          |    | - <u>-</u> , |          |
|          |        |          |         | PHENOLAYSIS 1-4mm                                                                            |          |          |        |          |    |              |          |
|          |        |          |         | WEAK FOLLATION AJOGC                                                                         |          |          |        |          |    |              |          |
|          |        |          |         | BY ALIGNED BIOTTLE.                                                                          |          | ļ        |        | ļ        |    |              | <b></b>  |
|          |        | 54.2     | 54.5    | Dyke 47° to C (IN FOLIATION)<br>20% RUARTZ IN VEIN AND                                       |          |          |        |          |    |              | <b> </b> |
|          |        |          |         | 20 % RUARTZ IN VEIN AND                                                                      |          |          |        |          |    |              | <b> </b> |
|          |        |          |         | IRLEGULAR BLEBS                                                                              |          | <u> </u> |        | ļ        |    |              |          |
|          |        |          |         | 2-3% FINELY DISSEMINATED                                                                     | ····     | ļ        |        |          |    | · · ·        | ļ        |
|          |        |          |         | Pyrite.                                                                                      |          | <u> </u> |        | <u> </u> |    |              | <u> </u> |
|          |        | FRON     | - 54.5  | RED STRINED DIORITE - GRADUAS                                                                | <u> </u> |          |        | <u> </u> |    |              |          |
|          |        |          |         | GETTING FOLATION 38 TO 450 to                                                                | /        |          |        |          |    |              | <u> </u> |
| 561      | 56.4   |          |         | Dyke FINE GRAINED GREY                                                                       | 1118972  | 56.4     | 57.5   | 30       | 25 | <b>८·२</b>   |          |
| <u></u>  |        | 1        |         | BLOTCHY LIGHT AND DARKER.                                                                    | 93       | 57.5     | 59.2   | 20       | 40 | 4            |          |
| 56.4     | 59.2   |          |         | SILICA AND BROWN-RED                                                                         |          |          |        |          |    | ļ            |          |
|          |        | 1        |         | STREAKS PRONOUNCED FOLIATION                                                                 |          | <u> </u> |        |          |    |              |          |
|          |        |          |         | 38° to C DIORITE WITH 10-20%                                                                 |          |          | ļ      |          |    |              |          |
|          |        |          |         |                                                                                              |          |          |        |          |    |              |          |
|          |        | 567      | 57.3    | Sam QUARIZAANO PATCHY                                                                        |          |          |        | <u> </u> |    |              |          |
|          |        |          |         | BLUE GTREAKS OF MOLYBOENING                                                                  |          |          |        |          |    | ļ            |          |
|          |        | <u> </u> | · · · · | 2-3% OMRITE IN/0% MUMRIZ                                                                     |          |          |        |          |    |              |          |
|          |        | 57.2     | 575     | BLUE GTEEAKS OF MOLYBOENING<br>2-3% PYRITE IN/0% CRUARIZ<br>LEMENANT DIORITE WITH            |          |          |        |          |    |              |          |
|          |        |          |         | REMENTAL DIDISTE WITH<br>PHENOCRYSIS<br>DIORITE MEAN ARAINED<br>PORPHYRYTIC - SUBROUNDED GRA |          |          |        |          |    | <b></b>      |          |
| 597      | 64.6   | 1        |         | DIORITE MEANEM GRAINER                                                                       |          |          |        | <b> </b> |    | ļ            | <b></b>  |
| - /. •   |        |          |         | Oplainautic - SHEROWNOSO GRA                                                                 | n/s      |          |        |          |    |              |          |

 $\frac{48 \pm 19}{98 \pm 19} = 26 = 7$ 

| MAIN DIV.<br>om (m)DESCRIPTIONSAMPLE<br>NUMBERINTERNAL<br>ASSAYSASSAYS $(M, I)$ $I = 0$ (m) $(M, I)$ $I = 1$ $(M, I)$ $I = 1$ $(M, I)$ $I = 1$ $(M, I)$ $I = 1$ $(M, I)$ $I = 1$ $(M, I)$ $I = 1$ $(M, I)$ $I = 0$ $I = 0$ $I = 0$ $I = 1$ $I = 1$ $I = 1$ $(M, I)$ $I = 0$ $I = 0$ $I = 0$ $I = 1$ $I = 1$ $I = 1$ $(M, I)$ $I = 0$ $I = 0$ $I = 0$ $I = 1$ $I = 1$ $I = 1$ $(M, I)$ $I = 0$ $(M, I)$ $I = 0$ $(M, I)$ $I = 0$ $(M, I)$ $I = 0$ $(M, I)$ $I = 0$ $(M, I)$ $I = 0$ $I = 0$ $I = 0$ $I = 0$ <th></th> <th><u> </u></th> <th></th> <th></th> <th></th> <th>SAMPLE</th> <th></th> <th></th> <th></th> <th>CAVE</th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               | <u> </u> |        |        |                                  | SAMPLE                                       |            |             |          | CAVE |            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------|--------|--------|----------------------------------|----------------------------------------------|------------|-------------|----------|------|------------|
| and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MAIN DIV      | /. 1     | MINOR  | DIV.   | DESCRIPTION                      |                                              | 1          |             | A5       | 3A13 |            |
| IN Z VEINS - VEINS ARE<br>FRAGMENTER I-GRAM<br>416 625 GIVE ARAMED DIREITE<br>625 645 DIREITE MEDIUM REAMS<br>BUB REMNOED FELDERALS<br>BUB REMNOED FELDERALS<br>665 67.7 Dirk Very GIVE GRAMS<br>665 67.7 Dirk Very GIVE GRAMS<br>665 67.7 Dirk Very GIVE GRAMS<br>665 67.7 THIS SIGNAR PREMISE<br>FELDERAL PREMORENTS<br>67.9 74.2 SIGNAR PREMORENTS<br>10 Call.<br>74.2 SIGNAR SECONS PREMISE<br>10 Call.<br>10 Call | from (m) to ( | (m) fr   | om (m) | to (m) |                                  | NUMBER                                       | from (m)   | to (m)      |          |      |            |
| Image: Construction of the second of the                                                                                                                                                                                                                                                                                                                                                                                                             |               | 6        | 1.1    | 61.3   | DIORITE WITH 30% QUARTZ          |                                              | -          |             |          |      | · <u> </u> |
| 61.6 62.5 GIVE GRAINED DIDLITE<br>62.5 61.5 DIDLITE MEDIUM GRAINED<br>90.8 POUNCED FELDSARES.<br>64.5 67.7 Dyke Very Fixe GRAINED<br>65.6 BIDTITE AND WHATE<br>FELDSARD PHENOCRYSS /-6 MM<br>10.6 Kt for 147700 HD to C<br>10.6 Kt for 100 Kt for 10                                                                                                                                                                                                                                                                                                                                     |               |          |        |        | IN 3 VEINS-VEINS ARE             |                                              |            |             |          |      |            |
| LZSHS DIPRITE MEDIUM GRANDED<br>SUB ROWNOED FELOSPARS.<br>SUB ROWNOED FELOSPARS.<br>SUB ROWNOED FELOSPARS.<br>SUB ROWNOMAS WITH<br>SUB BIFTITE AND WHITE<br>FELOSPAN PHENORPOST /-CMMM<br>WEAK FOLIATION for to C<br>WEAK FOLIATION for to C<br>SOT 742<br>SUCCA AND BROWNED BANDSTER<br>AROWNO TOW FELATION 'S PARALLEL<br>TO CALE.<br>TO CALE.<br>TO TO 3 QUARTZ BULLAND WHITE<br>AND FINK FELOSPAR - STRINGER<br>THS SULCA - 20% SULL RUMATZ<br>IN VEIN 10° to C AND SULCIONS<br>TIP TO COLESS<br>TIP TO BULL SULCA BEOWN BANDS<br>IN VEIN 10° to C AND SULCIONS<br>IN VEIN 10° to C AND SULCING<br>IN VEIN 10° to C AND SULCING                                                                                                                                                                                                                                   |               |          |        |        | FRAGMENTED 1-6 cm                |                                              |            |             |          |      |            |
| Sub Bounder felosphes.       665 67.7       Dyk & VEEY FINE GRAINED       B% BIDTITE AND WHATE       B% BIDTITE AND WHATE       B% BIDTITE AND WHATE       B% BIDTITE AND WHATE       B% BIDTITE AND BEDWARD       B% BIDTITE AND BEDWARD       B% BIDTITE AND BEDWARD       B% EALDATION How So C       B% BIDTITE AND BEDWARD       B% BIDTITE AND BEDWARD       B% BOUNDED BANDS AND       B% BOUNDED BANDS AND       B% BOUND TOW FORTER       B% EC. 3-2% PYRITE       ARD TOW FORTER NO FORMUSE       TO CARE.       TO CARE.       TO CARE.       TO CARE.       TO CARE.       TO CARE.       TO TOW FORTER NO EFIDITE WITTE       AND FINK FELOSPAR - STRINGER       THE SULCA - 30% DULE BUDENER       THE SULCA - 30% DULE BUDENER       IN VEIN 10% C AND DLEDS       THE SULCA - 30% DULE BANDS       IN VEIN 10% C AND DLEDS       IN VEIN 10% C AND DLEDS       THE SULCA BEDWARDS       IN VEIN 10% DE C AND DLEDS       THE SULCA BEDWARDS       IN VEIN 10% DE AND BLEDS       THE SULCA BEDWARDS       IN VEIN 10% DE AND BLEDS       AND FLUE SWITH MOUNDOR SULL       AND FLUE SWITH MOUNDOR SULL       AND FLUE SWITH MOUNDOR SULL       BLE SULL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               | 6        | 1.6    | 62.5   | FINE GRAINED DIORITE             |                                              |            |             |          |      |            |
| bbs 67.7     Dyke VERY FINE GRAINED       BCLY - GROWNOMAS WITH       BCL BINTTIE AND WHITE       FELDSYAN PHENOCRESS /-GMMM       WEAK FOLLATION HD'S C       57.7       74.2       SIGE C. 3-2% PYRITE       ARGINO TOM FOLDATION YAD NOT       TO CARE.       70.0       71.0       71.0       71.0       71.0       71.0       71.0       71.0       71.0       71.0       71.0       71.0       71.0       71.0       71.0       71.0       71.0       71.0       71.0       71.0       71.0       71.0       71.0       71.0       71.0       71.0       71.0       71.0       71.0       71.0       71.0       71.0       71.0       71.0       71.0       71.0       71.0       71.0       71.0       71.0       71.0       71.0       71.0       71.0       71.0       71.0       71.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               | 6        | 2.5    | 6.5    | DIPRITE MEDIUM GRAINSO           |                                              |            |             |          |      |            |
| Image: Section of the section of t                                                                                                                                                                                                                                                                                                                                                                                              |               |          |        |        |                                  |                                              | _          | <b> </b>    |          |      | <u> </u>   |
| Image: State of the state o                                                                                                                                                                                                                                                                                                                                                                                              | 66.5 67.      | 2        |        |        | Dyke VERY FINE GRAINED           |                                              |            |             |          |      |            |
| B <sup>2</sup> C BIDTITE AND WHITE<br>FELDSYAN PHENOLOGYS3 /-CMMM<br>WEAK FOLIATION Ho"to C<br>57.7 74.2<br>30° to C. 3-2% PYRITE<br>AROUND TOM FOLIATION IS PARALLEL<br>TO CORE.<br>70.0 To.3 QUARTZ BULL AND NHITE<br>AND FINK FELDSYAR - STRINGER<br>71.0 71.9 CHLORITE AND EPIDOTE WITH<br>THE SILLEA - 30% DULE BULANTZ<br>IN VEIN 10° to C AND BLEDS<br>71.9 76.0 BULL SILLEA BEAM BANDS<br>IRREGULAR-ALSO QUARTZ<br>STRINGERS WITH MOUNDOENNE<br>ALSO PYRITE (% AND A<br>FLW CALGOTHES OF ARD A<br>ALSO PYRITE (% AND A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |          |        |        | GREY - GROWN OMAS WITH           |                                              | _ <b>_</b> | <b>_</b>    |          |      |            |
| 57.7 74.2<br>30° to C. 3-2% pyrite<br>ARONO TOW FOLIDATION IS PRANUEL<br>TO CORE.<br>70.0 TO.3 QUARTZ BULL AND WHITE<br>AND FINK FELOSPAR - STRINGER<br>71.0 71.9 CHLORITE AND EPIDOTE WITH<br>THE SILICA - 30% BULLE BULARTZ<br>IN VEIN 10° to C AND BLEBS<br>71.9 76.0 BLUE SILICA BROWN BANDS<br>71.9 76.0 BLUE SILICA BLUE SILICA BROWN BANDS<br>71.9 76.0 BL                                                                                                                                                                                                                                                     |               |          |        |        | BY BIDTTIE AND WHITE             |                                              |            |             |          |      |            |
| 57.7 74.2<br>30° to C. 3-2% pyrite<br>AROUND TOW FOLDATION IS PRAALLED<br>TO CORE.<br>70.0 TO.3 QUARTZ BULL AND NHITE<br>AND FINK FELD SPAR - STRINGER<br>71.0 71.9 CHLORITE AND EPIDOTE WITH<br>THE SILICA - 30% BULLE BULARTZ<br>IN VEIN 10° to CANO BLEBS<br>71.9 76.0 BLUE SILICA BROWN BANDS<br>71.9 76.0 BLUE SILICA BLUE SILICA BROWN BANDS<br>71.9 76.0 B                                                                                                                                                                                                                                                     |               |          |        |        | FELOSPAN PHENOCRYSS 1-6MM        |                                              |            |             |          |      | <u> </u>   |
| 57.7 74.2<br>30° to C. 3-2% pyrite<br>ARONO TOW FOLIDATION IS PRANUEL<br>TO CORE.<br>70.0 TO.3 QUARTZ BULLAND WHITE<br>AND FINK FELOSPAR - STRINGER<br>71.0 71.9 CHLORITE AND EPIDOTE WITH<br>THE SILICA - 30% BULLE RUARTZ<br>IN VEIN 10° to C AND BLEBS<br>71.9 76.0 BLUE SILICA BROWN BANDS<br>71.9 76.0 BLUE SILICA BLUE SILICA BROWN BANDS<br>71.9 76.0 BLUE                                                                                                                                                                                                                                                     |               |          |        |        | WEAK FOLIATION 40° to C          |                                              |            | <b>.</b>    |          |      | <b> </b>   |
| 30° to C. 3-2% pyrite       ARDINO TOW FRIATION'S PARAULE       TO CORE.       TO CORE.       70.070.3 QUARTZ BLUE AND WHITE       AND FINK FELOSPAR - GTTLINGER       71.071.9 CHEORITE AND EPIDOTE WITH       THE SILICA - 30% BLUE RUARTZ       IN VEIN /0° to C AND BLEDS       71.970.0 BLUE SILICA BEAUN BANDS       1000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 67.7 74       | 4.z      |        |        | SILICA AND BROWN RED RANDS 40    | <u>z                                    </u> |            | <b></b>     |          | ,    |            |
| To Carte.       10.070.3 QUARTZ BULL AND WHITE       AND FINK FELOSPAR - GTRINGER       11.071.9 CHLORITE AND EPIDOTE WITH       11.071.9 CHLORITE SILLEA BEAUN BANDS       11.19 To.0 BLUE SILLEA BEAUN BANDS <td></td> <td></td> <td></td> <td></td> <td>30° to C. 3-2% PYRITE</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><b> </b></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |          |        |        | 30° to C. 3-2% PYRITE            |                                              |            |             |          |      | <b> </b>   |
| To Carte.       10.070.3 QUARTZ BULL AND WHITE       AND FINK FELOSPAR - GTRINGER       11.071.9 CHLORITE AND EPIDOTE WITH       11.071.9 CHLORITE SILLA BEAUN BANDS       11.071.9 The SILLA BEAUN BANDS       11.19 The SILLA BEAUN BANDS       11.10 The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |          |        |        | AROUND TOM FOLIATION IS PARALLEL |                                              |            |             |          |      |            |
| AND FINK FELOSOMR - GITLINGER       71.071.9       THE GILLER AND EPIDOTE WITH       THE GILLER - 30% BLUE BURGETZ       IN VEIN 10° to C AND BLEBS       1N VEIN 10° to C AND BLEBS       71.970 BLUE SILLER BERNN BANDS       1RREGULAR-ALSO PURATZ       GTEINGERS WITH MOLYBOENNE       ALSD PYRITE 1% AND A       FEW CRYSTAS OF ARSENDPYRITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |          |        |        |                                  |                                              |            |             |          |      | ļ          |
| 71.071.9 CHLORITE AND EPIDOTE WITH<br>THE SILICA -30% BLUE RUARTZ<br>IN VEIN 10° to C AND BLEBS<br>71.976.0 BLUE SILICA BROWN BANDS<br>IPPEGULAR-ALSO QUARTZ<br>STRINGERS WITH MOLYBOENNE<br>ALSO PYRITE 1% AND A<br>FEW CRYSTAS OF ARSENOPYRIX<br>ME AROUND 73.5M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               | 1        | 10.0   | 70.3   | QUARTZ BLUE AND WHITE            | <u> </u>                                     |            | -           |          |      | ļ          |
| THE GILICA - 30% dive Rumaiz       IN VEIN 10° to CANO BLEBS       71.9 76.0 Blut SILICA BROWN BANDS       IRREGULAR-ALSO RUMETZ       BTRINGERS WITH MOLYBOENNE       ALSO PYRITE 1% AND A       FLW CRYSTNS OF HRSENOPYRIE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |          |        |        | AND FINK FELDSPAR - STRINGER     |                                              | <u></u>    | <b>  </b> _ |          |      | ļ          |
| IN VEIN 10° to C AND BLEBS       71.9 76.0 BLUE SILICA BEAUN BANDS       IRREGULAR-ALSO QUARTZ       IRREGULAR-ALSO QUARTZ       GTRINGERS WITH MOLYBOENNE       ALSO PYRITE 1% AND A       FEW CRYSTAS OF ARSENDPYRITE       ME AROUND 73.5 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |          | 71.0   | 71.9   | CHLORITE AND EPIDOTE WITH        |                                              |            |             |          |      |            |
| IN VEIN 10° to C AND BLEBS       71.9 76.0 BLUE SILICA BEAUN BANDS       IRREGULAR-ALSO QUARTZ       BTRINGERS WITH MOUGBOENNE       ALSO PYRITE 1% AND A       FEW CRYSTAS OF ARSENDPYRITE       ME AROUND 73.5 MM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |          |        |        | THE SILICA - 30% BULE QUARTZ     |                                              | -          |             |          |      |            |
| 71.9 76.0 BLUE SILICA BROWN BANDS<br>IRREGULAR-ALSO QUARTZ<br>STRINGERS WITH MOLYBOENNE<br>ALSO PYRITE 196 AND A<br>FEW CRYSTAS OF ARSENOPYRITE<br>ME AROUND 73.5 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |          |        |        |                                  |                                              |            | -           |          |      |            |
| IPPEGULAR-ALSOQUARTZ     IPPEGULAR-ALSOQUARTZ       GTRINGERS WITH MOLYBOENNE     Impegator       ALSO PYRITE 1% AND A     Impegator       FEW CRYSTAS OF ARSENOPYRITE     Impegator       ME AROUNO 73.5 M     Impegator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | 7        | 71.9   | 76.0   |                                  |                                              |            | -           |          |      |            |
| ALSO PYRITE 1% AND A<br>FEW CRYSTAS OF ARSENOPYRITE<br>MARONNO 73.5 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |          |        |        | 1205GULAR-ALSO DUARTZ            |                                              |            | -           |          |      | ļ          |
| ALSO PYRITE 1% AND A<br>FEW CRYSTAS OF ARSENOPYRITE<br>MARONNO 73.5 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |          |        |        | STRINGERS WITH MOLYBOENIE        | ·                                            |            | -           |          |      | ļ          |
| no ARONNO 73.5 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |          |        |        | ALSO PURITE 1% AND A             |                                              |            | <b> </b>    |          |      | <b> </b>   |
| no ARONNO 73.5 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |          |        |        | FEW CRYSTAS OF ARSENDARIT        | £                                            | _          | <b> </b>    |          |      | <u> </u>   |
| 74.2744 BRECCIATED - Rock AS ABOVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b> </b>      |          |        | ·····  | Acoulo 73.5m                     |                                              |            | <b></b>     |          |      | ļ          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 74 2 76       | 4.4      |        |        | BRECCIATED - Rock AS ABOVE       |                                              |            |             |          |      | <b> </b>   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | , , , = , (   |          |        |        |                                  |                                              |            |             | <u> </u> |      |            |

 $\frac{1}{48419} \frac{1}{24658} = \frac{1}{24658}$ 

|                 |      |        | 7B                                                     | #14 Pr     | 765=     | ଞ             |     |          |          |                     |                   |
|-----------------|------|--------|--------------------------------------------------------|------------|----------|---------------|-----|----------|----------|---------------------|-------------------|
| MAIN DIV.       | MINO |        | DESCRIPTION                                            | SAMPLE     | INTE     |               | PPD | ASS      |          | pni                 |                   |
| from (m) to (m) |      | to (m) |                                                        | NUMBER     | from (m) | to (m)        | su  | AS       | Ag       |                     | I                 |
| 74.4 760        |      |        | SILICA AND BIOTTLE AS 67.7TO 74.2                      | 111394     | 67.7     | 68.8          | 10  | 90       | 2.2      |                     | 1                 |
| 76.0 84         |      |        | BRECCIATED - ROCK AS ABOVE                             | 95         | 48.8     | 70.0          | 15  | 80       | Y        |                     |                   |
| 10.001.         | 77.1 | 82.0   | MORE RREGULAR WAVY BANDS                               | 96         | 70.0     | 71.4          |     | 785      |          | <u> </u>            |                   |
|                 |      |        | IN ZART BRECCHATED                                     | 91         | 71.4     | 729           | 15  |          |          | 31                  |                   |
|                 |      |        | - ALL FRAGMENTED (20 PIECES                            | <u> 48</u> | 72.9     |               | 1   | 350      |          |                     |                   |
|                 |      |        | 5-15 cm) MUD TO SAND AND                               | 111399     |          |               |     | 160      |          | <b>e</b> .          |                   |
|                 |      |        | MPTO 4 Cm - CHLORITE ON                                | 111414     |          | 76 <u>.</u> 8 |     |          | <u> </u> |                     | l                 |
|                 |      |        | Such FACKS - 1% PURITE                                 | 15         |          | 78.2          | 01  | 25       | <u> </u> |                     | A                 |
|                 | 820  | 82.9   |                                                        | 16         |          | 74.9          | 1   | 10       | ~        | Bett                | CIV7              |
|                 |      |        | FRACTURED - SILICA WITH                                | 17         |          | 82.0          |     |          |          | <u>-</u> Z          |                   |
|                 |      |        | A GREEN TINGE - 15% BIOTTIC                            | 18         | 820      | 83.2          | 20  | 10       | u.       | <b>.</b>            |                   |
|                 |      |        | MUD ANDFRAGMENTS.                                      | 17         |          |               | 20  |          | <u> </u> |                     |                   |
|                 | 83.0 | 85.0   | BRECCIA WITH ROUNDED                                   |            |          |               | 10  |          |          | - Chi               | ha                |
|                 |      |        | FRAGMENTS - FRACTURE 30 LOC                            | 51         |          |               | 45  |          |          |                     | F.                |
|                 |      |        | -GREY BLACK MUDDY LOOKING                              | 24         |          |               | 385 | 1        | ~        | <u>_</u> <u>S</u> 1 | $\left\{ \right.$ |
|                 |      |        | GROWNOMASS-BILLEA WHOTE                                |            | 88.6     |               |     | 125      |          |                     | 4                 |
|                 |      |        | AND RED TINGED                                         | 24         |          | 91.2          |     | 70       | <u> </u> |                     | {                 |
|                 | 83.2 | 84.4   | FIRST MOSTLY GROUND MASS                               | 25         |          | 972.9         |     | 35       |          |                     | -                 |
|                 |      |        | THEN INCREASING FRAGMEND                               |            | 97.4     |               |     | 70       | <u>~</u> |                     | -                 |
|                 |      |        | To 100% - CRACKLE BRECCIA.                             | 27         | 93.4     |               |     | 135      | <u> </u> |                     | -                 |
|                 | 84.4 | 84.55  | BRECCIA WITH POUNDED                                   |            | -E       | NO            |     |          |          |                     | 4                 |
|                 |      |        | FRAGMENTS AND 50%                                      |            | _        |               |     |          |          |                     | -                 |
|                 |      |        | BLACK DIETY GROUNDMASS-                                |            |          |               | -   |          |          |                     | 4                 |
| 24.55 85        | d    |        | DIORITE BRECCIA                                        |            |          |               |     | <u> </u> |          |                     | 1.                |
|                 | _    |        | FAINT COLOURS INDICATE                                 |            |          |               |     |          |          |                     | -                 |
|                 |      |        | SERECITIZATION - MINOR PYL<br>DIORITE- 60° TOC CONTACT | 414        |          |               |     | -        |          |                     | 1                 |
| 85.0 85.9       | 3    |        | DIDRITE- 60 TOC CONTACT                                | ·          |          |               |     |          | +        |                     | 1                 |
|                 |      |        | WELL FRACTURED                                         | L          |          | <u> </u>      | J   | 1        | 1        | <u></u>             | 1                 |

 $\frac{g_{8}}{48} \pm \frac{g_{8}}{29} \frac{g_{8}}{64} = \frac{g_{8}}{29}$ 

| MAIN     | DIV.                    | MINO     | R DIV.   | DESCRIPTION                                                                                                                                                                           | SAMPLE  | INTE                                  | RVAL   |          | ASS        | AYS | 1        |
|----------|-------------------------|----------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------------|--------|----------|------------|-----|----------|
| 1        |                         | from (m) | to (m)   |                                                                                                                                                                                       | NUMBER  | from (m)                              | to (m) |          |            |     | ļ        |
| 200      | 171                     |          |          | Para Luit Buch Add                                                                                                                                                                    |         | -                                     |        |          |            |     |          |
| 50.7     | 87.3                    |          |          | BRECCIA - GILICA, BLECKAND<br>WHITE AND REDTINGED                                                                                                                                     | ···     |                                       |        |          |            |     |          |
|          |                         |          |          |                                                                                                                                                                                       |         |                                       |        |          |            |     | <b></b>  |
|          |                         |          |          | 1.2% DISSEMINATED PYRITE                                                                                                                                                              |         | _                                     |        |          |            |     | <b> </b> |
| 27.3     | 95.1                    |          |          | SILICA Go & BROWN DED                                                                                                                                                                 |         |                                       |        | -        |            |     | ╂──      |
| 1        | $\overline{\mathbf{A}}$ |          |          | FRAGMENTS 1-5 CM<br>1.2% DISSEMINATED PYRITE<br>SILICA 60% BROWN RED<br>BANDS 40% - HIGH PYRITE<br>CONTENT TO GOM-3%?.<br>ABOUT 88M A FEW<br>STREAKES OF MOLYBOENITE<br>\$ 1% PYRITE. |         |                                       | ,      |          |            |     |          |
| N        | <u>/</u>                |          | <u> </u> | CONTENT TO GO M- 3%17.                                                                                                                                                                |         |                                       |        |          |            |     | ╂──      |
| $\leq$   |                         | <b> </b> | <u> </u> | ABOUT 88M AFEW                                                                                                                                                                        |         | _                                     |        |          | - <i>m</i> |     | ╞        |
|          |                         | a.       | ari      | STREAKES OF MICCIPLENIE                                                                                                                                                               |         |                                       |        |          |            |     |          |
|          |                         | 124      | 172.1    | B / pycite:                                                                                                                                                                           | <u></u> |                                       |        |          |            | ,   |          |
|          |                         |          |          |                                                                                                                                                                                       |         |                                       |        |          |            | ļ   |          |
|          |                         |          |          | A.                                                                                                                                                                                    |         |                                       |        |          |            | ,   |          |
|          |                         |          |          |                                                                                                                                                                                       |         |                                       |        |          |            |     |          |
|          |                         |          |          |                                                                                                                                                                                       |         |                                       |        |          |            | ·   |          |
|          |                         |          |          |                                                                                                                                                                                       |         |                                       |        |          |            |     | ╉─       |
|          |                         | <u> </u> |          |                                                                                                                                                                                       |         | · · · · · · · · · · · · · · · · · · · |        |          |            |     | ┿        |
|          |                         |          |          |                                                                                                                                                                                       |         |                                       |        |          |            |     | 1        |
|          |                         |          |          |                                                                                                                                                                                       | ·····   |                                       |        |          |            |     |          |
|          |                         |          |          |                                                                                                                                                                                       |         |                                       |        |          |            |     | 1_       |
|          |                         |          |          |                                                                                                                                                                                       |         |                                       |        |          | ļ          |     |          |
|          |                         | 1        |          |                                                                                                                                                                                       |         |                                       | ļ      |          |            |     |          |
|          |                         |          |          |                                                                                                                                                                                       |         |                                       |        | <b> </b> |            |     |          |
|          |                         |          |          |                                                                                                                                                                                       |         |                                       |        |          |            |     |          |
| <u> </u> |                         | 1        |          |                                                                                                                                                                                       |         | _                                     |        |          |            |     | +        |
|          |                         |          | <b>_</b> |                                                                                                                                                                                       | L       | <u></u>                               |        | 1        | J          | _L  |          |

The control of the control of the control of the statement of the statement

| PROJECT: Opke Gran Conf | NTS Map Number: $G2F1$<br>927008<br>Mining Division:<br>KAMCOOPS | Drilling by: $(e \wedge x \in k')$<br>Date: $(h \wedge z \neq h')/G \in$<br>Logged by:<br>$E = 1 + (h + k')/G \in$ | DRILL HOLE: |
|-------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------|
| COLLAR LOCATION:        | AZIMUTH: W<br>DIP:                                               | ELEVATION: 14-8-85<br>TOTAL LENGTH: 15-5                                                                           | PAGE:       |

| MAIN DIV. M                            | INOR DIV.    | DESCRIPTION                                          | SAMPLE                                | INTERVAL           | ASS                                   | SAYS MM                                |
|----------------------------------------|--------------|------------------------------------------------------|---------------------------------------|--------------------|---------------------------------------|----------------------------------------|
| from (m) to (m) from                   | m (m) to (m) |                                                      | NUMBER                                | from (m) to (m)    | An Ca                                 | En Ma                                  |
| 0 1.2                                  |              | CASING - FRAGULENT PYRITE ??                         | 11/341                                | CASING.            | 5 373                                 | 363 7                                  |
| 1.2 8.5                                | · ·····      | Cantact 20NE - Hechley                               | · · · · · · · · · · · · · · · · · · · |                    | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · ·  |
|                                        |              | SILICIFIED - CONSISTING OF<br>LIGHT GEGY GILICA AT   |                                       | •••••              |                                       |                                        |
| · · · · · · · · · · · · · · · · · · ·  |              | TIMES NITH ALLANT                                    | 11/335                                |                    |                                       |                                        |
| ···· · · · · · · · · · · · · · · · · · |              | EREIN CAST - AVIAVY FULLY Y<br>BROWN BANDS OF BUTTIF |                                       | 3246               | 5 216                                 | 368 77<br>430144                       |
|                                        |              | (VARPHING AMERICATS)<br>PURITE 1-202 IN STREAK       | <u> </u>                              | 4.6 S.8<br>S.9 7.3 | 10 237<br>5 254                       | 205 409                                |
|                                        |              | NOITH PREFERENCE FOR THE                             |                                       |                    | 5 223                                 | 149 68                                 |
| ·                                      | ·····        | CHAICEPURITE A METHICIC                              | · · · · · · · · · · · · · · · · · · · |                    |                                       |                                        |
| · · · · · · · · · · · · · · · · · · ·  | ·····        | GREEF GILVERY MINERAL                                |                                       |                    | ·····                                 | ······································ |
| ·                                      |              | MINOR SPECIES OF BURNIE!                             |                                       |                    |                                       |                                        |
|                                        | 8 z./        | FRACTURING DARACLELLO                                |                                       |                    |                                       |                                        |
| · · · · · · · · · · · · · · · · · · ·  |              | TOD OKINZED SHOW                                     |                                       |                    |                                       |                                        |
|                                        |              |                                                      |                                       |                    |                                       |                                        |
|                                        |              |                                                      |                                       |                    |                                       |                                        |

| MAIN          | DIV.     | MINOF    | r div. | DESCRIPTION                                   | SAMPLE                                | INTE     | RVAL   |   | ASSA       | YS       |            |
|---------------|----------|----------|--------|-----------------------------------------------|---------------------------------------|----------|--------|---|------------|----------|------------|
|               |          | from (m) |        | DESCRIPTION                                   | NUMBER                                | from (m) | to (m) |   |            |          |            |
|               |          |          |        | FRACTURE TO to Care . 2 cm                    |                                       |          |        |   |            |          | L          |
|               |          |          |        | WIDE WITH GRADIZ WITH                         |                                       |          |        |   |            |          |            |
|               |          |          |        | CAUTIES CONTAINING LIMINI                     | <u>2:</u>                             |          |        |   |            |          |            |
|               |          | 2,5      | 25     | FRAGMENTED 1-10 CM                            |                                       |          |        |   |            |          |            |
|               |          |          | 4.9    | INCOGASED BUTTTE BAND                         | <u> </u>                              |          |        |   |            |          |            |
|               |          |          |        | TO SUTE - 11212 - GIMLAN Co Tes               | <u> </u>                              |          |        |   |            |          |            |
|               |          | 4.5      | 5.2    | SUP QUARTZ - NECY IREG.<br>ABOUT SOUTE C.     |                                       |          |        |   |            |          |            |
|               |          |          |        | ABaur Sole C. 1                               |                                       |          |        |   |            |          | _          |
|               |          | 5.2      | 22     | FRAGMENIZO VERY IRREG.<br>BIOTITX - 5% PURITE |                                       |          |        |   |            |          |            |
|               | <u>_</u> |          |        | BIOTITX - Ste PUPLITE                         |                                       | _        |        |   |            |          |            |
|               |          | 6.6      | 6.9    |                                               | · · · · · · · · · · · · · · · · · · · |          |        |   |            |          | _          |
|               |          |          |        | PENIENT                                       |                                       | _        |        | ł |            |          |            |
|               |          | 5.2      | 8.2    |                                               | ·                                     |          |        |   |            |          |            |
|               |          |          |        | FOLIATION SOUTO C.                            |                                       |          |        |   |            |          | <b> </b> _ |
|               |          |          |        | God IREEGULAR BIDTIT                          |                                       |          |        |   | . <u> </u> |          |            |
|               | <u></u>  | 7.3      | 82     | FRAGMENTED - BLACK                            |                                       | _        |        |   |            | <b>-</b> |            |
|               |          |          |        | CHEUPITE ON SUPFACES                          |                                       |          |        |   |            |          |            |
|               |          |          |        | ZER PIPEITE                                   |                                       |          |        |   |            |          |            |
| 8.5           | 15.2     |          |        | DIOPITE MEDIUM                                |                                       |          |        |   |            |          | ╢          |
|               |          | 0        | ·····  | GRAINSO - PURPHARITIC                         |                                       |          |        |   |            |          |            |
|               |          | 97       | 10.7   |                                               | <u></u>                               | _        |        |   |            |          | <u> </u>   |
| $f_{i}$       |          |          |        | MIND AT 10.7 - MOUSMEN.                       |                                       |          |        |   |            |          |            |
| $\mathcal{V}$ | V/       | <b> </b> |        | 25° TO 4.                                     |                                       |          |        |   |            |          | ┼─         |
| $\angle$      |          |          |        |                                               |                                       |          |        |   |            | <u></u>  | ┢          |
|               |          |          |        |                                               |                                       |          |        |   |            |          | ┢          |
|               |          |          |        |                                               |                                       |          |        |   |            |          | ╀─         |
|               |          |          |        |                                               |                                       | _        | ╏───┤  |   |            |          | ╞──        |
| ł             |          | ļ        |        |                                               | L                                     |          | l      |   | <u> </u>   |          | <u></u>    |

+ ( + ( + )) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( ( + ) ( + ) ( + ) ( ( + ) ) ( ( + ) ( + ) ( + ) ( ( + ) ( + ) ( ( + ) ) ( ( + ) ) ( ( + ) ( ( + ) ) ( ( + ) ) ( ( + ) ( ( + ) ) ( ( + ) ) ( ( + ) ) ( ( + ) ( ( + ) ) ( ( + ) ) ( ( + ) ) ( ( + ) ) ( ( + )

| PROJECT: ORKOGOLD CORP.          | NTS Map Number: 92 P1                         | Drilling by: CONNORS                                  | DRILL HOLE:    |
|----------------------------------|-----------------------------------------------|-------------------------------------------------------|----------------|
| BONAPART GOLD MINE               | TDILL GZPOOE<br>Mining Division:<br>KAMLENCYS | Date: $MN \leq 24 / 98$<br>Logged by:<br>E. $LIVGARP$ | #98-22         |
| COLLAR LOCATION:<br>BZOON, 4250E | AZIMUTH: US<br>DIP: - 60°                     | ELEVATION: 1688M<br>TOTAL LENGTH: 18.6                | PAGE:<br>104 Z |

| MAIN | DIV.      | MINO               | R DIV. | OFSCRIPTION                    | SAMPLE   | INTE     | RVAL                              | 2Pb      | ASS | AYS      |    |
|------|-----------|--------------------|--------|--------------------------------|----------|----------|-----------------------------------|----------|-----|----------|----|
|      | to (m)    | from (m)           | 1      | DESCRIPTION                    | NUMBER   | from (m) | to (m)                            | Au       | cu  | ~~       | Mo |
| 0    | 1.5       |                    |        | CASING                         |          | <b>-</b> |                                   |          |     |          |    |
| 1.5  | 6.5       |                    |        | HIGHLY ALTERED - TOTAL         | 11/40/   | 1.5      | <u>Z./</u>                        | 5        |     |          |    |
|      |           |                    |        | SILICIFICATION WITH WHULY      | 50       | 2.1      | 3.6                               | 5        |     |          |    |
|      |           |                    |        | BANDS OF VFINE GRAINED         | 03       | 3.6      | 4. B                              | 5        |     |          |    |
|      |           |                    |        | BIOTTE (?)- Some SERICITE (?)  | 04       | 4.8      | 6.5                               |          |     |          |    |
|      | – .       |                    |        | PYRITE DISSEMINATED AND        | 05       | 4.5      | 7.3                               | 5        |     |          |    |
|      |           |                    |        | IN STREAKES THROUGHOUT (123?   | 06       | 7.3      | 8.2                               | 8        |     |          |    |
|      |           |                    |        | - Speckes of CHALCOPERITE      | 07       | 8.2      | <u>4.5</u>                        | S        |     |          |    |
|      |           | 1.5                | 2.1    | CORE FRAGMENTED 1-10 cm        | 08       | 9.5      | 11.0                              | 5        |     |          |    |
|      | ********* |                    |        | WAVY BIDTIE BANDS-SURFACES     | 09       | 11.0     |                                   |          | 205 |          |    |
|      |           |                    |        | LIMONITE COVERED - FOLIATION   | 10       | 12.5     | 14.0                              | S        | 195 | 140      | 20 |
|      | ••        |                    |        | DARK BROWN TO LIGHT - 1-4min   | <u> </u> |          | 14.9                              |          | 133 | 67       |    |
|      |           |                    |        | NIDE.                          |          | 14.9     | 16.2                              | 5        | 74  | 50       | 20 |
|      |           | 21                 | 4.8    | FOLIATION INDISTINCT BOUNDARIE | 5111415  | 16.2     | 18.3                              | 5        | 112 | 11       | 27 |
| ··•• |           | - <b>Gara</b> - fr | C      | 240 to C FRACIURING 45tot      | 2        |          |                                   |          |     |          |    |
|      |           | 4.8                |        |                                |          |          |                                   |          |     |          |    |
|      |           | y                  |        | CHERITIC DATCHES - Some        |          |          |                                   |          |     |          |    |
| ·    |           |                    |        | SERICITE. LOWER CONTACT        |          |          | · · · · · · · · · · · · · · · · · |          | ··· |          |    |
|      |           |                    |        | 35° 5 C - FRACTURE 65° 5 C.    |          |          |                                   |          |     |          |    |
|      |           |                    |        |                                |          |          |                                   | <u> </u> | ļ   | <u> </u> | L  |

| - E (1) - E (1) - B | 1 L++        | -18 27 |      |    | 1 1 | 0.0 |
|---------------------|--------------|--------|------|----|-----|-----|
|                     | <br><u> </u> | 10 22  | 2465 | 52 |     |     |

| MAIN I       | DIV,         | MINC       | DR DIV.     |                            | P467=                                 |          |          | <br>      |          |
|--------------|--------------|------------|-------------|----------------------------|---------------------------------------|----------|----------|-----------|----------|
| om (m)       | lo (m)       | from (m    | n) to (m)   | DESCRIPTION                | SAMPLE                                | · ·      | RVAL     | <br>SSAYS |          |
| .5           |              | 1          |             | DIODITE LIGHT              | NUMBER                                | from (m) | to (m)   |           |          |
|              |              |            |             | DIORITE - LIGHTLY ALTERED  |                                       |          |          | <br>      |          |
|              |              |            | 1           | SUB RAINDED CRYSTALS       |                                       |          |          | <br>      |          |
|              | ••• <u> </u> |            | 1           | LOWER CONTACT IRREGULARLY  | ·····                                 |          |          |           |          |
| . 3          | 18.3         |            | <u> </u>    | Asto C. Lowerton           | · · · · · · · · · · · · · · · · · · · |          |          |           |          |
|              | -12          |            | <u> </u>    | Higher SILICIOUS WITH      | ·                                     |          |          |           |          |
|              |              |            | <u> </u>    | BROWN BIOTITE BAND SO-70%  |                                       |          |          |           |          |
|              |              | <u>.</u>   | · ] ······· | VERY IRREGULAR 90 TO 30 60 | •                                     |          |          |           |          |
|              |              | ·          |             | 2% VERY FINE DISSEMINATED  | STI Study                             |          |          |           | _        |
|              |              |            |             | Itter GHONT MINOR          | '/                                    |          |          | <br>      | -1-      |
|              |              | 72         | 8.          | CHALCOPYRITE.              | ·                                     |          |          |           | -        |
|              |              | /. ?       | 0.2         | HIGHLY WHY FIOTTE BAND     |                                       |          |          |           |          |
|              |              |            | ·           | -2010 GREY GREEN SULCASK   | 2                                     |          |          | <br>      |          |
|              |              | 8.5        | 10.1        |                            |                                       |          |          | <br>      |          |
|              |              |            |             | FOLIATION 50° to C         |                                       |          |          | <br>{     | _        |
|              |              |            |             | 12 DISSEMINATED PARITE.    |                                       |          |          | <br>      | +        |
|              |              | <u>e.4</u> | 10.4        | 30% IN IRREGULAR           |                                       |          |          | <br>      | -}       |
|              |              |            |             | STREAKS p-35°t. C          |                                       |          |          | <br>      |          |
|              |              | /3:/       | 14.9        | 60% QUARIZ IN IRREGULAR    |                                       |          |          | <br>      | -{       |
|              |              |            |             | STREAKS AND BIERC          | ,                                     |          |          | <br>      |          |
|              |              | 6.7        | 18.6        | 0.4m Colt Loss             |                                       |          |          | <br>      |          |
| <u> </u>     | /            | 5.3        | 16.5        | 0.3m core Loss             |                                       |          |          | <br>      |          |
| <u>\$ /8</u> | 6            |            |             | DIDRITE - CONTACT AT 7204  |                                       |          |          | <br>      |          |
| 4            |              |            |             |                            | <u></u> _                             |          |          | <br>╂───  | ·}       |
| =NR          | <b>-</b>     |            |             | AT 720                     | ······                                |          |          | <br>      |          |
| $\checkmark$ |              |            |             |                            |                                       |          |          | <br>      | ┨────    |
| _            |              |            |             |                            |                                       |          |          | <br>      | ┨        |
|              |              |            |             |                            |                                       |          |          | <br>      | <b> </b> |
|              |              |            |             |                            |                                       |          | <u> </u> | <br>      | <b></b>  |

| PROJECT: ORKO GOLD CORP         | NTS Map Number: $92P1$       | Drilling by: CONNORS                     | DRILL HOL |
|---------------------------------|------------------------------|------------------------------------------|-----------|
|                                 | TRIM 92P008                  | Date: MUNE 25 498                        |           |
| BONAPHET GOD MINE               | Mining Division:<br>KAML00PS | Logged by:<br>E-LIVGARP                  | 98#23     |
| COLLAR LOCATION:<br>42626 8175N | AZIMUTH: W<br>DIP: - 4.50    | ELEVATION: 1690 MG<br>TOTAL LENGTH: 45.7 | PAGE:     |

|   | MAIN     | DIV.         | MINO      | R DIV.          | DESCRIPTION                | SAMPLE                                | INTE     | RVAL   | PPB | ASSAYS | ; |
|---|----------|--------------|-----------|-----------------|----------------------------|---------------------------------------|----------|--------|-----|--------|---|
|   | from (m) | to (m)       | from (m)  | to (m)          |                            | NUMBER                                | from (m) | to (m) | An  |        |   |
|   | 0        | 40           |           |                 | CASING                     | 111352                                | 4.0      | 4.7    | 5   |        |   |
|   | 4        | 24.2         |           | *** * * * * * * | DIDRITE MEDILLINGRATNED    |                                       |          | -      | 5   |        |   |
|   |          |              |           |                 | SLIGHT TENDENCY TO FOLIATO | v 54                                  | 5.5      | 6.3    | 5   |        |   |
|   |          |              |           |                 | PARALLEL TO CORE           | 55                                    | 6.3      | 6.9    | S   |        |   |
| • |          |              | 4.0       | 6.6             | QUADIE STRINGERS 0-10 to   | 2. 56                                 | 6.9      | 8.8    | 5   |        |   |
|   | · _·     |              |           |                 | BLUE QUARTZ 0.2 TO 2 cm    | 57                                    | 8.8      | 10.0   | 5   |        |   |
|   |          | ··· •···· ·· | - •···    |                 | MIDE WITH PYRITE AND       | 58                                    | 10.0     | 11.3   | 5   |        |   |
|   |          |              |           |                 | CHALCOPURITE (50-50) 1-3%  | 59                                    | 11.3     | 12.4   | 5   |        |   |
|   |          |              | 6.6       | 6.8             | COARSLY FRAGMENTED 1-10 cm | 60                                    | 12.4     | 13.0   | 5   |        |   |
|   |          |              |           |                 | 30% QUARTZ HEAVILY ALTERE  |                                       | 13.0     | 13.5   | 5   |        |   |
|   |          |              |           |                 | DIDRITE IN PART (CHEORITE) | 62                                    | 13.5     | 14.5   | 10  |        |   |
|   |          |              |           |                 | SIGGFIED                   | 111 363                               | 14.5     | 15.3   | 5   |        |   |
|   |          |              | 10.0      | 10.2            | GREY SILICA                |                                       |          |        |     |        |   |
|   |          |              | FROM      | 11.4            | INCREASE IN BLUE QUARTZ    |                                       |          |        | ;   |        |   |
|   |          |              |           | • •             | STRINGERS 0.20 TOC. WITH   |                                       |          |        |     |        |   |
|   |          |              |           |                 | PYRITE AND CHALCOPYRITE    |                                       |          |        |     |        |   |
|   |          |              |           |                 | 1-2% WIDITH 0.1 70/.0 em   | · · · · · · · · · · · · · · · · · · · |          |        |     |        |   |
|   |          |              | · · · · · |                 | A FEW AT 90° AND 40° 5 C   |                                       |          |        |     |        |   |
|   |          | •••• ••••    | 18.2      | 13.25           | QUADIZ 90° to C            |                                       |          |        |     |        |   |
|   |          |              |           |                 | s                          |                                       |          |        |     |        |   |

# $\frac{1}{498-23}p^{2}$

| MAIN DIV.     | MINO       | r div. | DESCRIPTION                                                                                                    | SAMPLE                                | INTE         | RVAL   | AS | SAYS | T        |
|---------------|------------|--------|----------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------|--------|----|------|----------|
| rom (m) to (m | ) from (m) | to (m) |                                                                                                                | NUMBER                                | from (m)     | to (m) |    |      | <u> </u> |
|               | /3.25      | 13.58  | BLUE (DUE TO MOLYBOENTE?)                                                                                      |                                       |              |        |    |      | <u> </u> |
|               |            |        | RUARTZ STRINGERS PARALLEL<br>TO CORE 1/2 TO 2 cm WIDE                                                          |                                       |              |        |    |      |          |
|               |            |        | To Colf 1/2 to 2 cm Widt                                                                                       |                                       |              |        |    | _    | <b>_</b> |
|               |            |        | WITH 3% PYRITE AND 2%                                                                                          |                                       |              |        |    |      |          |
|               |            |        | CHALCOPYRITE - ALSO A                                                                                          |                                       | -            |        |    |      | <b>_</b> |
|               |            |        | PARALLEL STRINGER-SPACING                                                                                      |                                       | - <u> </u> . | ······ |    |      |          |
|               |            |        | WITH 3% PYRITE AND 2%<br>CHALCOPYRITE - ALSO A<br>PARALLEL STRINGER-SPACING<br>BRM- ITO 2CM WIDE. THESE        |                                       |              |        |    |      | <b>_</b> |
|               |            |        | Cur off By Blue QUARTZ                                                                                         | ,,,,,,,,,,                            |              |        |    |      |          |
|               |            |        | STRINGER O.2 cm 650 to C.                                                                                      |                                       |              |        |    |      |          |
|               | 13.55      | 15.Z   | QUARTZ STRINGERS - BLUE                                                                                        |                                       |              |        |    |      |          |
|               |            |        | AND DARK 1-3 mm WIDE                                                                                           |                                       |              |        |    |      |          |
|               |            |        | 5-15 CM APPART WITH                                                                                            |                                       |              |        |    |      | <b>_</b> |
|               |            |        | CHALCOMPITE 2% PYRITE 12                                                                                       |                                       |              |        |    |      |          |
|               |            |        | AND A FEW SPECKS OF SUPPRESENTIN                                                                               | <u> </u>                              |              |        |    |      |          |
|               | 15.2       | 15.6   | 5-15 CM APPART WITH<br>CHALCOPYRITE 2% PYRITE 1%<br>ANO & FEW SPECKS OF SURRHOTH<br>INCREASING RUARTZ STRINGER | · · · · · · · · · · · · · · · · · · · | _            |        |    |      | <b>_</b> |
|               |            |        | TO 1070 of CORE - Some                                                                                         |                                       |              |        |    |      |          |
|               |            |        | SILICIFICATION                                                                                                 |                                       |              |        |    |      |          |
|               | 15.6       | 16.3   | QUARTZ STRINGERS WITH                                                                                          |                                       |              |        |    |      |          |
|               |            |        | 1/2-1 CM SILICIFIED WALLS                                                                                      |                                       |              |        |    |      |          |
|               |            |        | - ALSO CROSS CUTTING 1-2 MM                                                                                    | ·                                     |              |        |    |      |          |
|               |            |        | QUARTZ GTRINGERS.                                                                                              |                                       | _            |        |    |      |          |
|               | 16.8       | 17.6   | SILICIFIED- BLUE QUARTZ                                                                                        |                                       | _            |        |    |      |          |
|               |            |        | STRINGERS / MIM AND 3 CM                                                                                       |                                       |              |        |    |      |          |
|               |            |        | WITH PYRITE AND CHALCOPYRITE                                                                                   |                                       | _            |        |    |      | +        |
|               | 17:8       | 1.2.1  | STEINGERS / MM AND 3CM<br>WITH PURITE AND CHALCOPYRITE<br>1 DOZEN 1-2 MM BLUE                                  |                                       |              |        |    |      |          |
|               |            |        | QUARTZ STRINGERS WITH                                                                                          |                                       |              |        |    |      | <b></b>  |
|               |            |        | PYORITE AND CHALCOPYRITE.<br>CORE LOOKS "MICRO" BRECCIATE                                                      | <u> </u>                              | _            |        |    |      |          |
|               |            |        | CORE LOOKS "MICRO" BRECCIATE                                                                                   | P                                     |              | L      |    |      |          |

|          |        |          |        |                                                       | 70 # · | 12       | $\mathcal{O}$ | 7 / |       |          |  |
|----------|--------|----------|--------|-------------------------------------------------------|--------|----------|---------------|-----|-------|----------|--|
| MAIN     | DIV.   | MINO     | r div. | DESCRIPTION                                           | SAMPLE | INTE     |               | PP# | P ass | AYS      |  |
| from (m) | to (m) | from (m) | to (m) |                                                       | NUMBER | from (m) | to (m)        | Au  |       |          |  |
| 36.5     | 45.7   |          |        | CONT.                                                 |        |          |               |     |       |          |  |
|          | -      |          |        | NERY LIGHT - FELDSPARS                                |        |          | :             |     |       |          |  |
|          | 0/     |          |        | NERY LIGHT - FELDSPARS<br>MEDILUM GRAINED AND IN PART |        |          | <u> </u>      |     |       |          |  |
|          |        |          |        | INDISTINCT AND FAINTLY                                |        |          |               |     |       |          |  |
|          |        |          |        | COLOURED INDICATING                                   |        |          |               |     |       |          |  |
|          |        |          |        | SERICITIZATION - MINOR                                | ·<br>· |          |               |     |       |          |  |
|          |        |          |        | FINE DISSEMINATED PYRITEL                             | ץ<br>ה |          |               |     |       |          |  |
|          |        | 39.9     | 41.4   | 10% QUARTZ STRINGERS                                  | 111347 | 39.9     | 41.4          | 5   |       |          |  |
|          |        |          |        | 20° to C BLUE SILICIFIED                              |        |          |               |     |       |          |  |
|          |        |          |        | 1-2% PURITE - STREAKS                                 |        |          |               |     |       |          |  |
|          |        |          |        | 1-2% PURITE - STREAKS<br>OF MOLYBDENITE (MINOR)       |        |          |               |     |       |          |  |
|          |        | 44.1     | 44.5   | 5 cm QUARTZ VEIN WITH                                 |        |          |               |     |       | ,        |  |
|          |        |          |        | 3% purite - 70 to C.                                  |        |          |               |     |       |          |  |
|          |        |          |        | 3% pyrite - 70 GC.<br>ALSO 1/2 TO Gem DIORITE         |        |          | Ì             |     |       |          |  |
|          |        |          |        | FRAGMENTS WITH MINOR                                  |        |          |               |     |       |          |  |
|          |        |          |        | DISSEMINATED PYRITE.                                  |        |          |               |     |       |          |  |
|          |        |          |        |                                                       |        |          |               |     |       |          |  |
|          |        |          |        | $\bigcap$                                             |        |          |               |     |       |          |  |
|          |        |          | ł      | ND                                                    |        |          |               | •   |       | <u> </u> |  |
|          |        |          | /      |                                                       |        |          |               |     |       |          |  |
|          |        |          | /      |                                                       |        |          |               |     |       |          |  |
|          |        |          |        |                                                       |        |          | -             |     |       |          |  |
|          |        |          |        |                                                       |        |          |               |     | <br>  |          |  |
|          |        |          |        |                                                       |        |          |               |     |       |          |  |
|          |        |          |        |                                                       |        |          |               |     |       |          |  |
|          |        |          |        |                                                       |        |          |               |     |       |          |  |
|          |        |          |        |                                                       |        |          |               |     |       |          |  |
|          |        |          |        |                                                       |        |          |               |     |       |          |  |

 $\frac{1}{48} \frac{1}{423} \frac{1}{\rho 3}$ MAIN DIV. MINOR DIV. INTERVAL POB ASSAYS DESCRIPTION from (m) to (m) from (m) to (m) NUMBER from (m) to (m) Au 19.3 21.4 A FEW DARKER PATCHES (10% ?) WHERE CRIPSIALS ARE GHOST LIKE - Buch GROUNDMASS AND IRREGULAR BIDTITE - 2-3% PYRITE ANN MINOR CHALCOPYRITE. 21.7 22.7 FRAGMENTEDEORE 3-10 cm 111364 22.7 23.5 15 227 23.5 FRAGMENTED TO GEN AND 45 23.5 24.2 15 SANDY AND MUD BLACK, 1-2% PYRITE 23.5 24.2 QUART 2 STRINGERS - WHITE AND BLUE (BLUE QUETS) 10% - 15 cm SILICIFICATION - 1% PYRITE LESS CHALCOPYRITE. 24.2 33.0 DIORITE - QUITE LIGHT 20% MATIC -INDISTRUCT CRUSTALS - LEACHED AND EANDY IN PLACES - MINOR DIESEMINATED PURITES 1% 33.0 FRACTURING 1-4 CM FRAGMENTS 111366 320 337 5 BLACK CHEORITE ON SURFACES 33.0 33.7 DRARTZ VEIN - WHITE QUARTE 90% - BLEEK QUARTZ 10% WITH 1-2% SYRITE. 33.7 36.5 DIORITE FAINT FOLIATION OF BIOTITE 45-58 TOC 36.5 45.7 DIDRITE - ALTERED

# APPENDIX III

i. . .

. 4.1

 $\left[ \right]$ 

, **-**

**m** 

i

3

:

Analysis Certificates



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

# CERTIFICATE OF ASSAY AK 98-243

ORKO GOLD CORP. 436-470 GRANVILLE STREET VANCOUVER, BC V6C 1V5 29-Jun-98

# ATTENTION: E. LIVGARD

No. of samples received: 20 Sample type: Rock PROJECT #: Bonaparte SHIPMENT #: None Given Samples submitted by: Ed. Frey

|       | · · · ·      | Au            | Au     |       |                      |
|-------|--------------|---------------|--------|-------|----------------------|
| ET #. | Tag #        | ( <u>g/t)</u> | (oz/t) |       |                      |
| 18    | 111463 1.6 m | 2.07          | 0.060  | 1.6 m | NE GOZENE, CHINADEE? |
| 19    | 111464 1.2 m | 5.14          |        | 1.2m  | <b>~</b>             |

TECH LABORATORIES LTD. pank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/98



10041 E. Trans Canada Hwy., R.R. #2, Kamioops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

# CERTIFICATE OF ASSAY AK 98-211

ORKO GOLD CORP. 436-470 GRANVILLE STREET VANCOUVER, BC

19-Jun-98

TECH LABORATORIES LTD.

rank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

# ATTENTION: E. LIVGARD

No. of samples received: 3 Sample type: Chip PROJECT #: None Given SHIPMENT #: None Given Samples submitted by: E. Livgard

| ET #.                     | Tag #  | Au<br>(g/t) | Au<br>(oz/t) |                   |
|---------------------------|--------|-------------|--------------|-------------------|
| 1                         | 111451 | 3.91        | 0.114        | FLICKER VEIN O.4m |
|                           |        |             |              |                   |
|                           |        |             |              |                   |
|                           |        |             |              |                   |
| QC DATA:                  | •      |             |              |                   |
| <b>Resplit:</b><br>1      | 111451 | 4.21        | 0.123        |                   |
| <b>Standard:</b><br>STD-M |        | 1.72        | 0.050        |                   |
|                           |        |             |              |                   |
| . · · ·                   |        |             |              |                   |
|                           |        |             |              | 1.6-              |

18-Jun-98

SURFACE

ICP CERTIFICATE OF ANALYSIS AK 98-211

ORKO GOLD CORP. 436-470 GRANVILLE STREET VANCOUVER, BC

#### ATTENTION: E. LIVGARD

No. of samples received: 3 Sample type: Chip PROJECT #: None Given SHIPMENT #: None Given Samples submitted by: E. Livgard

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Values in ppm unless otherwise reported


Phone: 604-573-5700 Fax : 604-573-4557

Mo Na % Pb Sb Sr Ti% U V W Y Zn Ba Bi Ca % Cd Co Cr Cu Fe% La Mg % Mn Ni Ρ Sn Au(ppb) Ag Al% Et #. Tag # As <5 <20 7 0.04 <10 36 <10 <1 165 FL <2 13.8 0.69 25 45 <5 0.10 34 106 9065 4.69 <10 0.26 197 8 0.05 8 <10 111451 >1000 4 D.4 mg 1 2 32 NEW <20 39 0.07 <10 45 <10 85 337 2.43 <10 0.60 391 20 0.06 3 540 8 <5 111452 100 <0.2 1.30 10 160 <5 0.29 <1 11 2 1.04 47 <10 <1 21 390 10 <5 <20 47 0.07 <10 4 210 < 0.2 1.32 <5 205 <5 0.22 <1 5 83 340 2.40 <10 0.51 240 13 0.05 1 0.9m3 111453 معل QC DATA: 123 Resplit: 35 <10 169 >1000 0.68 30 8935 <10 0.25 178 8 0.05 <10 2 <5 <20 5 0.04 <10 <1 1 111451 13.4 45 <5 0.10 34 101 4.64 Repeat: 168 0.26 0.05 2 <5 <20 5 0.04 <10 36 <10 <1 9256 4.69 <10 187 8 <10 111451 >1000 14.4 0.70 35 0.10 33 104 8 1 45 <5 Standard: 73 68 0.11 <10 <10 5 65 150 1.90 66 3.90 <10 0.98 655 <1 0.03 23 640 26 <5 <20 54 GEO'98 135 1.2 1.66 <5 <1 18 81

**ECO-TECH LABORATORIES LTD.** Frank J. Pezzotti, A.Sc.T. Ner B.C. Certified Assayer

df/191

XLS/98



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

# **CERTIFICATE OF ASSAY AK 98-238**

3-Jul-98

ORKO GOLD CORP. 436 - 470 GRANVILLE STREET VANCOUVER, BC V6C 1V5

## **ATTENTION: E. LIVGARD**

No. of samples received: 7 Sample type: Rock PROJECT #: None given SHIPMENT #: None give Samples submitted by: Ed Frey

XLS/98

| ET #.                     | Tag #  | Au<br>(g/t) | Au<br>(oz/t) | Λ                             |
|---------------------------|--------|-------------|--------------|-------------------------------|
| 5                         | 111458 | 3.20        | 0.093        | SURPACE TRENCH<br>3994E 1.4mg |
|                           |        |             |              |                               |
| QC DATA:<br>Repeat:<br>5  | 111458 | 3.35        | 0.098        |                               |
| <i>Standard:</i><br>STD-M |        | 1.48        | 0.043        |                               |
|                           |        |             |              | ECO-TECH LABORATORIES LTD     |

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

#### Phone: 250-573-5700 Fax : 250-573-4557

ICP CERTIFICATE OF ANALYSIS AK 98-238

ORKO GOLD CORP. 436 - 470 GRANVILLE STREET VANCOUVER, BC V6C 1V5

#### **ATTENTION: E. LIVGARD**

No. of samples received: 7 Sample type: Rock PROJECT #: None given SHIPMENT #: None give Samples submitted by: Ed Frey

| .]            | Et #.       | Tag #      | Au(ppb)   | Ag   | AI % | As  | Ва  | Bi | Ca % | Cd | Co | Cr  | Cu  | Fe % | La  | Mg % | Mn  | Мо  | Na %  | Ni | P   | Pb | Sb | Sn  | Sr   | Ti %       | U     | v     | w      | Y  | Zn       |
|---------------|-------------|------------|-----------|------|------|-----|-----|----|------|----|----|-----|-----|------|-----|------|-----|-----|-------|----|-----|----|----|-----|------|------------|-------|-------|--------|----|----------|
| "he           | RF.1        |            | - 26m 5   | <0.2 |      | <5  | 155 | <5 | 0.25 | <1 | 4  | 96  | 22  | 1.34 | <10 | 0.34 | 209 | . 9 | 0.04  | 7  | 350 | 4  | <5 | <20 | 39   | 0.05       | <10   | 21    | <10    | 2  | 18       |
|               | 2           | 111455     | .30m 10   | <0.2 | 1.51 | 15  | 265 | <5 | 0.42 | <1 | 7  | 67  | 481 | 2.52 | <10 | 0.55 | 245 | 9   | 0.03  | 4  | 480 | 6  | <5 | <20 | 468  | 0.03       | <10   | 27    | <10    | <1 | 26       |
|               | 3           | 111456     | ·/\$ 195  | 1.0  | 0.31 | 70  | 65  | <5 | 0.05 | <1 | 4  | 133 | 251 | 1.85 | <10 | 0.09 | 62  | 63  | 0.01  | 4  | 200 | <2 | <5 | <20 |      | <0.01      | <10   | 14    | <10    | <1 | 4        |
| ~~ <b>`</b> } | 4           | 111457     | · Ý 125   | 0.4  | 1.53 | 10  | 115 | <5 | 0.31 | <1 | 10 | 54  | 721 | 2.37 | <10 | 0.57 | 254 | 5   | 0.05  | 5  | 480 | 6  | <5 | <20 | 30   | 0.05       | <10   | 31    | <10    | 2  | 26       |
|               | 5           |            | 1.4 >1000 | 1.4  | 0.11 | 25  | 15  | <5 | 0.02 | <1 | 10 | 184 | 725 | 1.53 | <10 | 0.01 | 54  |     | <0.01 | 5  | 30  | <2 | <5 | <20 |      | < 0.01     | <10   | 3     | <10    | <1 | 5        |
|               | 6           | 111459     |           | <0.2 | 2.16 | 70  | 50  | <5 | 0.25 | <1 | 17 | 98  | 117 | 4.29 | <10 | 1.36 | 808 | 31  | 0.05  | 35 | 390 | 6  | <5 | <20 | 9    | 0.19       | <10   | 102   | <10    | 4  | 74<br>50 |
|               | 7           | 111460     | ·¥ 10     | <0.2 | 1.71 | 650 | 105 | <5 | 0.22 | <1 | 11 | 78  | 78  | 3.54 | <10 | 1.05 | 720 | 47  | 0.05  | 13 | 270 | 10 | .5 | <20 | 6    | 0.17       | <10   | 48    | <10    | 10 | 58       |
| -             |             |            |           |      |      |     |     |    |      |    |    |     |     |      |     |      |     |     |       |    |     |    |    |     |      |            |       |       |        |    |          |
| 1             | QC DA       | TA:        |           |      |      |     |     |    |      |    |    |     |     |      |     |      |     |     |       |    |     |    |    |     |      |            |       |       |        |    |          |
| <u> </u>      | Deent       | L.         |           |      |      |     |     |    |      |    |    |     |     | ÷    |     |      |     |     |       |    |     |    |    |     |      |            |       |       |        |    |          |
| J             | Respli<br>1 | <br>111454 | 5         | 0.2  | 0.73 | <5  | 140 | <5 | 0.23 | <1 | 4  | 83  | 23  | 1.29 | <10 | 0.32 | 196 | 9   | 0.04  | 3  | 340 | 6  | <5 | <20 | 35   | 0.04       | <10   | 19    | <10    | 1  | 16       |
| 1             | Repeat      | 4          |           |      |      |     |     |    |      |    |    |     |     |      |     |      |     |     |       |    |     |    |    |     |      |            |       |       |        |    |          |
|               | 1           | 111454     | 5         | 0.2  | 0.75 | 5   | 155 | <5 | 0.25 | <1 | 4  | 92  | 22  | 1.35 | <10 | 0.34 | 228 | 8   | 0.04  | 4  | 350 | 4  | <5 | <20 | 36   | 0.05       | <10   | 20    | <10    | 2  | 18       |
| -             | Standa      | rd:        |           |      |      |     |     |    |      |    |    |     |     |      |     |      |     |     |       |    |     |    |    |     |      |            |       |       |        |    |          |
|               | GEO'98      |            | 125       | 1.4  | 1.66 | 55  | 155 | <5 | 1.67 | <1 | 19 | 57  | 77  | 3.84 | <10 | 0.91 | 658 | <1  | 0.02  | 26 | 640 | 24 | 5  | <20 | 56   | 0.11       | <10   | 73    | <10    | 4  | 65       |
|               |             |            |           |      |      |     |     |    |      |    |    |     |     |      |     |      |     |     |       |    |     |    |    |     |      |            |       |       |        |    |          |
| 1             |             |            |           |      |      |     |     |    |      |    |    |     |     |      |     |      |     |     |       |    |     |    |    |     | Ν.   |            |       |       |        |    |          |
| ł             |             |            |           |      |      |     |     |    |      |    |    |     |     |      |     |      |     |     |       |    |     |    |    |     | 4-6  | $\sim\sim$ |       |       |        |    |          |
| <b>.</b>      |             |            |           |      |      |     |     |    |      |    |    |     |     |      | · . |      |     |     |       |    |     |    |    | 7   | OO T | ECH LA     | ABORA | TORIE | S LTD. |    | ······   |

Page 1

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

df/250 XLS/98



26-Jun-98



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

# **CERTIFICATE OF ASSAY AK 98-230**

ORKO GOLD CORP. 436-470 GRANVILLE STREET VANCOUVER, BC V6C 1V5

#### ATTENTION: E LIVGARD

No. of samples received: 6 Sample type: Rock PROJECT #: Orok Gold Corp. SHIPMENT #:None given Samples submitted by: E. Livgard

|       |        | Au    | Au     |      |       |
|-------|--------|-------|--------|------|-------|
| ET #. | Tag #  | (g/t) | (oz/t) |      | -     |
| 3     | 111303 | 7.43  | 0.217  | 98#3 | 0.9 m |

#### QC DATA:

Repeat: 3 111303

3

0.217

7.43

ECO-TECH LABORATORIES LTD. pa Frank J. Pezzotti, A.Sc.T. **B.C. Certified Assayer** 

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

#### Phone: 604-573-5700 Fax : 604-573-4557

J

## ICP CERTIFICATE OF ANALYSIS AK 98-300

#### ORKO GOLD CORP. 436-470 GRANVILLE STREET VANCOUVER, BC

#### ATTENTION: E. LIVGARD

#### No. of samples received: 17 Sample type: Core PROJECT #: None Given SHIPMENT #: None Given Samples submitted by: Orko Gold

Values in ppm unless otherwise reported

| _ ] ·      | E4 #  | Tog #  | Au(nnb) | ۸a   | AI % | As       | Ba  | Bi ( | Ca % | Cd | Co | Cr  | Cu  | Fe % | La I | Mg %   | Mn   | Mo  | Na %  | Ni   | Р    | Pb | Sb | Sn  | Sr  | Ti % | U   | <u>v</u> | <u>w</u> | <u> </u> | Zn  |
|------------|-------|--------|---------|------|------|----------|-----|------|------|----|----|-----|-----|------|------|--------|------|-----|-------|------|------|----|----|-----|-----|------|-----|----------|----------|----------|-----|
|            | Et #. | Tag #  | Au(ppb) |      |      | 90       | 90  |      | 0.68 | <1 | 15 | 105 | 183 | 2.88 | <10  | 1.24   | 469  | 22  | 0.07  | 53   | 990  | 4  | 10 | <20 | 58  | 0.12 | <10 | 99       | <10      | 2        | 83  |
| <u>_</u>   | 1     | 111394 | 10      | <0.2 |      | 90<br>80 |     | -    | 0.70 | <1 | 12 | 100 | 150 | 2.63 | <10  | 1.27   | 492  | 10  | 0.13  | 49   | 650  | 6  | 10 | <20 | 55  | 0.11 | <10 | 73       | <10      | <1       | 112 |
|            | 2     | 111395 | 15      | <0.2 | 1.98 |          | 95  | _    | 4.41 | <1 | 12 | 64  | 141 | 2.85 | <10  |        | 1701 | 46  | 0.05  | 33   | 870  | 4  | 10 | <20 | 171 | 0.10 | <10 | 65       | <10      | 3        | 113 |
| Ain        | 3     | 111396 | 40      | 0.2  | 1.52 | 785      | 135 | -    |      | :  | 14 | 109 | 143 | 3.00 | <10  |        | 1711 | 60  | 0.06  | 67   | 850  | 10 | 15 | <20 | 87  | 0.10 | <10 | 79       | <10      | 2        | 147 |
| 013        | 4     | 111397 | 15      | <0.2 | 1.78 | 180      | 130 | <5   | 3.47 | <1 |    | 111 | 94  | 2.76 | <10  | 1.27   | 594  | 27  | 0.04  | 56   | 1250 | 6  | 10 | <20 | 33  | 0.10 | <10 | 109      | <10      | 4        | 100 |
| 1 1.1      | 5     | 111398 | 5       | <0.2 | 1.55 | 355      | 85  | <5   | 0.84 | <1 | 14 |     | 04  | 2.70 | -10  | 1.6. f | 004  |     | 0.0 . | •••  |      | -  |    |     |     |      |     |          |          |          |     |
|            | 1     |        |         |      |      |          |     |      | 4.04 |    | 47 | 105 | 470 | 3.38 | <10  | 1.21   | 634  | 16  | 0.04  | 50   | 1940 | 8  | 10 | <20 | 32  | 0.09 | <10 | 104      | <10      | 8        | 96  |
| Ý          | 6     | 111399 | 20      | <0.2 | 1.67 | 160      | 75  | <5   | 1.01 | <1 | 17 | 105 | 179 |      | <10  | 1.32   | 665  | 20  |       | 52   | 490  | 8  | 10 | <20 | 134 | 0.09 | <10 | 83       | <10      | 3        | 91  |
| £ 1        | 7     | 111417 | 25      | <0.2 | 1.94 | 25       | 120 | <5   | 1.38 | <1 | 13 | 89  | 121 | 3.10 |      |        |      | 128 | 0.04  | 62   | 740  | ž  | 5  | <20 | 223 | 0.04 | <10 | 97       | <10      | 3        | 143 |
|            | 8     | 111418 | 20      | <0.2 | 1.26 | 10       | 90  | <5   | 2.46 | <1 | 11 | 65  | 170 | 2.36 | <10  | 0.56   | 741  | 41  | 0.04  | 59   | 820  | 4  | <5 | <20 | 72  | 0.06 | <10 | 111      | <10      | 4        | 315 |
| ł          | 9     | 111419 | 20      | <0.2 | 1.19 | 30       | 55  | <5   | 1.72 | 3  | 12 | 73  | 163 | 2.71 | <10  | 0.57   | 589  | -+1 |       | - 55 | 660  | 6  | 10 | <20 | 67  | 0.05 | <10 | 57       | <10      | 3        | 41  |
|            | 10    | 111420 | 10      | <0.2 | 1.39 | 10       | 75  | <5   | 2.66 | <1 | 9  | 43  | 71  | 2.15 | <10  | 0.62   | 954  | 0   | 0.00  | I    | 000  | Ŭ  | 10 | -20 | 01  | 0.00 |     | •••      |          |          |     |
|            |       |        |         |      |      |          |     |      |      |    |    |     |     |      |      | 0.07   | 504  | CE. | 0.00  | 60   | 810  | e  | 10 | <20 | 149 | 0.06 | <10 | 155      | <10      | 4        | 147 |
|            | 11    | 111421 | 45      | <0.2 | 1.49 | 225      | 70  | <5   | 1.83 | <1 | 12 | 98  | 169 | 3.12 | <10  | 0.67   | 561  | 65  | 0.08  | 62   | -    | 0  | 5  | <20 | 55  | 0.07 | <10 | 137      | <10      | 3        | 231 |
|            | 12    | 111422 | 385     | 0.4  | 1.08 | 100      | 70  | <5   | 2.22 | 2  | 15 | 107 | 184 | 3.33 | <10  | 0.55   | 577  | 353 | 0.08  | 61   | 660  | 0  | -5 | <20 | 32  | 0.09 | <10 | 182      | <10      | 1        | 168 |
| • 1        | 13    | 111423 | 10      | <0.2 | 1.20 | 125      | 75  | <5   | 1.24 | <1 | 15 | 104 | 349 | 3.63 | <10  | 0.63   | 703  | 83  |       | 62   | 770  | 4  | <5 |     |     |      | <10 | 249      | <10      | 2        | 177 |
| \$         | 14    | 111424 | 5       | <0.2 | 1.71 | 70       | 90  | <5   | 1.76 | <1 | 14 | 115 | 157 | 3.53 | <10  | 1.02   | 693  | 56  |       | 70   | 710  | 10 | <5 | <20 | 44  |      |     | 182      | <10      | <u>,</u> | 125 |
|            | 15    | 111425 | 5       | <0.2 | 1.61 | 35       | 85  | <5   | 1.76 | <1 | 14 | 143 | 188 | 3.76 | <10  | 0.95   | 787  | 47  | 0.10  | 67   | 840  | 10 | 5  | <20 | 38  | 0.09 | <10 | 102      | <b>N</b> | -        | 120 |
|            | 10    |        | -       | ÷.=  |      |          |     |      |      |    |    |     |     |      |      |        |      |     | _     | _    |      | -  |    |     |     | 0.00 | -10 | 040      | -10      |          | 142 |
| <b>`</b> } | 16    | 111426 | 5       | <0.2 | 1.66 | 70       | 95  | <5   | 1.78 | <1 | 14 | 133 | 197 | 3.85 | <10  | 1.09   | 757  | 43  | 0.09  | 74   | 860  | 8  | 15 | <20 | 39  | -    | <10 | 210      | <10      | 4        | 143 |
|            | 17    | 111427 | 20      |      | 0.76 | 135      | 75  | <5   | 4.13 | <1 | 12 | 83  | 145 | 3.87 | <10  | 0.94   | 1130 | 52  | 0.04  | 63   | 750  | 4  | 45 | <20 | 102 | 0.02 | <10 | 95       | <10      | 8        | 170 |
| <b>`</b> * | 17    | 111947 | 20      | -0,2 | 0.10 |          |     | •    |      |    |    |     |     |      |      |        |      |     |       |      |      |    |    |     |     |      |     |          |          |          |     |

#### 30-Jun-98

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557

df/230

XLS/98

.

Values in ppm unless otherwise reported

## ICP CERTIFICATE OF ANALYSIS AK 98-230

ORKO GOLD CORP. 436-470 GRANVILLE STREET VANCOUVER, BC

#### ATTENTION: E. LIVGARD

SHIPMENT #:NONE GIVEN Samples submitted by: E. LIVGARD

|                      |                     |         |      | -    |    |     |    |      |    |    |     |      |      |      |      |     |         |    |      |    |    |     |     |             |     |          |          |          | _           |
|----------------------|---------------------|---------|------|------|----|-----|----|------|----|----|-----|------|------|------|------|-----|---------|----|------|----|----|-----|-----|-------------|-----|----------|----------|----------|-------------|
| <b>F</b> A #         | Tog #               | Au(nnh) | ۸a   | AI % | As | Ba  | Bi | Ca % | Cd | Co | Cr  | Cu   | Fe % | La l | Ng % | Mn_ | Mo Na % | Ni | P    | Pb | Sb | Sn  | Sr  | <u>Ti %</u> | U   | <u>V</u> | <u>W</u> | <u> </u> | Zn          |
| <u> </u>             | Tag #               | Au(ppb) |      |      |    |     |    | 0.57 | ~1 | 14 | 72  | 155  | 3.04 | <10  | 0.98 | 386 | 2 0.10  | 3  | 610  | 4  | 5  | <20 | 51  | 0.10        | <10 | 61       | <10      | 4        | 38<br>57 GB |
| 1                    | 111301              | 5       | <0.2 | 2.22 | 10 | 180 | -  |      |    | 17 | 120 | 2293 | 1.26 |      | 0.11 | 125 | 5 0.02  | <1 | 30   | <2 | <5 | <20 | 3   | 0.02        | <10 | 11       | <10      | <1       |             |
| 2                    | 111302              | 5       | 5.6  | 0.26 | 35 | 50  | <5 | 0.09 | 2  | 9  |     |      | -    | <10  | 1.08 | 688 | <1 0.07 | <1 | 1170 | 2  | <5 | <20 | 59  | 0.11        | <10 | 80       | <10      | 7        | 36          |
| 3                    | 111303              | >1000   | <0.2 | 1.36 | 20 | 75  | <5 | 2.48 | <1 | 14 | 50  | 166  | 3.59 |      |      |     | 5 0.06  | <1 | 630  | <2 | 5  | <20 | 150 | 0.01        | <10 | 26       | <10      | 5        | 23 X V      |
| 4                    | 111304              | 10      | <0.2 | 1.09 | <5 | 65  | <5 | 6.44 | <1 | 7  | 36  | 168  | 2.14 | <10  | 0.59 | 930 |         |    |      | <2 | 5  | <20 | 68  | 0.03        | <10 | 29       | <10      | 3        | 25          |
| 5                    | 111305              | . 5     | <0.2 | 1.35 | 5  | 115 | <5 | 3.16 | <1 | 7  | 59  | 108  | 2.16 | <10  | 0.54 | 617 | 5 0.07  | <1 | 650  | _  | 5  |     | 51  | 0.13        | <10 | 83       | <10      | 4        | 46          |
| 6                    | 111306              | -       | <0.2 |      | 10 | 240 | 5  | 1.16 | <1 | 12 | 52  | 94   | 3.88 | <10  | 1.27 | 747 | 5 0.06  | 2  | 680  | 6  | 5  | <20 | 51  | 0.15        | 10  | 00       |          | •        |             |
| 0                    | 111300              | U       |      |      |    |     |    |      |    |    |     |      |      |      |      |     |         |    |      |    | ·· |     |     |             |     |          |          |          |             |
| OC DA                | <b>TA:</b>          |         |      |      |    |     |    |      |    |    |     |      |      |      |      |     |         |    |      |    |    |     |     |             |     |          |          |          |             |
| <b>Respli</b> t<br>1 | t:<br>111301        | 5       | <0.2 | 2.21 | 10 | 245 | 10 | 1.13 | <1 | 11 | 53  | 91   | 3.78 | <10  | 1.24 | 728 | 5 0.05  | 2  | 690  | 4  | 10 | <20 | 50  | 0.13        | <10 | 81       | <10      | 3        | 44          |
| Repeat<br>1          | <b>t:</b><br>111301 | 5       | <0.2 | 2.27 | <5 | 250 | 10 | 1.15 | <1 | 11 | 52  | 91   | 3.84 | <10  | 1.27 | 741 | 4 0.06  | 4  | 670  | 4  | <5 | <20 | 53  | 0.14        | <10 | 83       | <10      | 4        | 46          |
| Standa<br>GEO'9      |                     | -       | 1.0  | 1.74 | 55 | 155 | 10 | 1.73 | <1 | 19 | 55  | 82   | 4.03 | <10  | 0.95 | 682 | <1 0.03 | 21 | 680  | 20 | 10 | <20 | 51  | 0.11        | <10 | 75       | <10      | 6        | 54          |

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

| ACME ANALYTICAL LABORATORIES I<br>(ISO 9002 Accredited Co.) | TD. 852 E. HASTINGS ST. VAN<br>ASSAY CERT      |                                      |                        | A.                           |
|-------------------------------------------------------------|------------------------------------------------|--------------------------------------|------------------------|------------------------------|
| <b>11</b>                                                   | Orko Gold Corp. F<br>c/o Livgard Consultant, 4 | , Vancouver BC V6C 1V5               |                        | Ľ                            |
|                                                             | SAMPLE#                                        | Au**<br>oz/t                         |                        |                              |
|                                                             | 111490<br>111495<br>113730<br>113732<br>113739 | .710<br>.046<br>.709<br>.046<br>.220 |                        |                              |
|                                                             | RE 113739<br>STANDARD A                        | AU-1 .096                            |                        |                              |
| DATE RECEIVED: JUL 24 1998 DAT                              | E REPORT MAILED: July 30/98                    | SIGNED BY                            | D. TOYE, C.LEONG, J. W | WANG; CERTIFIED B.C. ASSAYER |
|                                                             |                                                |                                      |                        |                              |
|                                                             |                                                |                                      |                        |                              |
|                                                             |                                                |                                      |                        | •                            |
|                                                             |                                                |                                      |                        |                              |
|                                                             |                                                |                                      |                        |                              |
|                                                             |                                                |                                      | ·<br>·                 |                              |
|                                                             |                                                |                                      |                        |                              |
|                                                             |                                                |                                      |                        |                              |

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data FA MIN

ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.) B COCHEMICAL ANALYSIS CERTIFICATE



## Orko Gold Corp. File # 9802894 Page 1 c/o Livgard Consultant, 4, Vancouver BC V6C 1V5 Submitted by: E. Livgard

PHONE (604) 253-3158 FAX (604) 253-1716

| l                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                              |                                           |                                       |                                               |                                   |                                       |                                             |                                 |                             |                            | a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TL                                                | <u> </u>                              | Cd                                                    | Sb                                                                                          | Bi                               | ٧                             | Ca                     | P                                    | La                     | Cr                         | Mg                                   | Ba                                        | Τi                              | В                        | AL                                   | Na                              | ĸ                                  | w                                               | Au*                         |
|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------|---------------------------------------|-----------------------------------------------|-----------------------------------|---------------------------------------|---------------------------------------------|---------------------------------|-----------------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------|-------------------------------|------------------------|--------------------------------------|------------------------|----------------------------|--------------------------------------|-------------------------------------------|---------------------------------|--------------------------|--------------------------------------|---------------------------------|------------------------------------|-------------------------------------------------|-----------------------------|
| SAMPLE#                                                                        | Mo<br>ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cu<br>ppm                                    | Pb<br>ppm                                 | Zn<br>ppm                             | Ag<br>ppm                                     | Ni<br>ppm                         | Co<br>ppm                             | Mn.<br>ppm                                  | Fe<br>%                         | As<br>ppm                   | U<br>ppm                   | Au<br>ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Th<br>ppm                                         | Sr<br>ppm                             | ppm                                                   | ppm                                                                                         | ррп                              | ppm                           | %                      | ۲<br>%                               | ppm                    | ppm                        | %                                    | ppm                                       | %                               | ppm                      | %                                    | %                               | %                                  | ррп                                             | ppb                         |
| 111466 ゴバ<br>111467<br>111468 ビバン<br>111468 ビバン<br>111469<br>111470            | 98<br>20<br>38<br>18<br>35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 320<br>92<br>169<br>394<br>117               | 5<br><3<br>4<br>7<br><3                   | 81<br>59<br>77<br>89<br>82            | .6<br><.3<br><.3<br>.3<br><.3                 | 34<br>14<br>55<br>63<br>47        | 13<br>13                              | 1122 3<br>862 3<br>583 2<br>1213 5<br>425 2 | 3.65<br>2.74<br>5.38            | 10<br>18<br>92<br>143<br>40 | <8<br><8<br><8<br><8<br><8 | <2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br><                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2<br><2<br><2<br><2<br><2<br><2                   | 62<br>54<br>32<br>39<br>66            | .5<br>.2<br><.2<br>.3<br><.2                          | <3<br><3<br><3<br><3<br><3                                                                  | <3<br><3<br><3<br><3<br><3       | 127<br>96                     | 2.02<br>.67<br>1.23    |                                      | 5<br>3<br>6<br>5<br>5  | 16<br>74                   | 1.27<br>1.22<br>1.22<br>1.16<br>.80  | 109<br>436<br>255<br>73<br>241            | .09<br>.18<br>.11<br>.13<br>.09 | ं <उ<br><उ<br><उ         | 1.85<br>2.41<br>1.81<br>1.91<br>1.50 | .09                             | 1.00<br>1.50<br>.97<br>1.15<br>.62 | 3<br><2<br>2<br><2<br>5                         | 449<br>38<br>122<br>4<br>23 |
| 111471<br>111472<br>111473<br>111474<br>111475                                 | 17<br>22<br>8<br>19<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 123<br>141<br>120<br>163<br>119              | 6<br><3<br>4<br>5<br>6                    | 90<br>112<br>95<br>89<br>91           | <.3<br><.3<br><.3<br><.3<br><.3               | 58<br>50<br>35<br>34<br>34        |                                       | 367<br>1156<br>718<br>717<br>571            | 3.30<br>3.49<br>3.94            | 8<br>44<br>23<br>11<br>4    | <8<br><8<br><8<br><8<br><8 | <<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><> </td <td>&lt;2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2</td> <td>47<br/>68<br/>66<br/>19<br/>16</td> <td>&lt;.2<br/>.3<br/>.2<br/>&lt;.2<br/>&lt;.2</td> <td>&lt;3<br/>&lt;3<br/>&lt;3<br/>&lt;3<br/>&lt;3<br/>&lt;3</td> <td>&lt;3<br/>&lt;3<br/>&lt;3<br/>&lt;3<br/>&lt;3</td> <td>82<br/>104<br/>81<br/>104<br/>100</td> <td>2.13<br/>.44<br/>.25</td> <td>.064<br/>.034<br/>.039<br/>.042<br/>.040</td> <td>6<br/>7<br/>6<br/>7</td> <td>63<br/>43<br/>46</td> <td>1.13<br/>1.26<br/>1.22<br/>1.19<br/>1.10</td> <td>260<br/>226<br/>198<br/>164<br/>227</td> <td>.10<br/>.14<br/>.11<br/>.17<br/>.13</td> <td>&lt;3<br/>&lt;3<br/>&lt;3</td> <td>1.92<br/>2.21<br/>2.25<br/>2.21<br/>1.98</td> <td>.03</td> <td>.86<br/>1.22<br/>.96<br/>1.19<br/>.90</td> <td>&lt;2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2</td> <td>2<br/>11<br/>1<br/>17<br/>1</td> | <2<br>2<br>2<br>2<br>2<br>2<br>2<br>2             | 47<br>68<br>66<br>19<br>16            | <.2<br>.3<br>.2<br><.2<br><.2                         | <3<br><3<br><3<br><3<br><3<br><3                                                            | <3<br><3<br><3<br><3<br><3       | 82<br>104<br>81<br>104<br>100 | 2.13<br>.44<br>.25     | .064<br>.034<br>.039<br>.042<br>.040 | 6<br>7<br>6<br>7       | 63<br>43<br>46             | 1.13<br>1.26<br>1.22<br>1.19<br>1.10 | 260<br>226<br>198<br>164<br>227           | .10<br>.14<br>.11<br>.17<br>.13 | <3<br><3<br><3           | 1.92<br>2.21<br>2.25<br>2.21<br>1.98 | .03                             | .86<br>1.22<br>.96<br>1.19<br>.90  | <2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 2<br>11<br>1<br>17<br>1     |
| RE-111475<br>RRE-111475<br>111476<br>111477<br>111478                          | <del>12</del><br>12<br>17<br>6<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 264<br>90                                    | <del></del>                               | <del>93</del><br>92<br>89<br>52<br>91 | <del>&lt;.3</del><br><.3<br><.3<br><.3<br><.3 | <u>34</u><br><u>-32</u><br>51<br> |                                       | 580<br>575<br>967<br>652<br>978             | <del>3:20</del><br>3.86<br>3.10 | 2<br>22<br>12<br>11         | <del></del>                | 2<br>√2<br>√2<br>√2<br>√2<br>√2<br>√2<br>√2<br>√2<br>√2<br>√2<br>√2<br>√2<br>√2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2<br><2<br><2<br><2<br><2                         | <del></del>                           | <.2<br><.2<br>.4<br>.3                                | - <del>3</del><br>-3<br>-3<br>-3<br>-3                                                      | <del>ও</del><br>ও<br>ও<br>ও<br>ও | <del>- 101</del><br>114       | .38<br>2.09            | <del>.040</del><br>.047              | 7<br>7<br>5<br>3<br>3  | 44<br>48<br>12             | 1.12<br>1.11<br>1.14<br>.77<br>1.31  | 236<br>243<br>139<br>222<br>150           | .15<br>.13<br>.19<br>.09<br>.24 | ব্য<br>ব্য<br>ব্য        | 2:01<br>1:98<br>2.11<br>2.06<br>2.29 | .05                             | .93<br>.91<br>1.16<br>.61<br>1.50  | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2  | 4<br>3<br><1                |
| 111479<br>111480<br>111481<br>111482<br>111482<br>111483                       | 14<br>5<br>5<br>10<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 269<br>222<br>112<br>125<br>66               | ও<br>ও<br>ও<br>ও<br>ও<br>ও<br>ও<br>ও<br>ও | 83<br>98<br>64<br>81<br>59            | .3<br>.4<br><.3<br><.3<br><.3                 | 32<br>15<br>16<br>26<br>16        | 11<br>8<br>10<br>12<br>7              | 930<br>847<br>683<br>945<br>726             | 4.23<br>3.29<br>3.51            | 16<br>22<br>35<br>30<br>12  | <8<br><8<br><8<br><8<br><8 | <2<br><2<br><2<br><2<br><2<br><2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br><2 | 113<br>148<br>39<br>43<br>71          | .2<br>.4<br>.2<br>.3<br><.2                           | ও<br>ও<br>ও<br>ও<br>ও<br>ও<br>ও<br>ও<br>ও<br>ও<br>ও<br>ও<br>ও<br>ও<br>ও<br>ও<br>ও<br>ও<br>ও | ८३<br>८३<br>८३<br>८३<br>८३       | 89                            | 1.49<br>1.17<br>1.51   | .051                                 | 4<br>4<br>6<br>4       | 20<br>22                   | 1.16<br>.86<br>.98<br>1.15<br>.77    | 226<br>139<br>253<br>238<br>236           | .18<br>.10<br>.12<br>.15<br>.12 | <3<br><3<br><3           | 2.09<br>2.28<br>1.95<br>2.20<br>1.45 | .07<br>.05                      | 1.21<br>.85<br>.94<br>1.15<br>.78  | 2<br><2<br>2<br>2<br>3                          | 2<br>5<br>3<br>2<br>2       |
| 111484<br>111485<br>111485<br>111486<br>111487<br>111488                       | 24<br>29<br>28<br>119<br>63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 129<br>190<br>134                            | ব্য<br>ব্য<br>ব্য<br>ব্য<br>ব্য<br>ব্য    | 91<br>75<br>84<br>245<br>150          | <.3<br><.3<br><.3<br><.3<br><.3<br>.3         | 62<br>67<br>58<br>56<br>66        | 11<br>10<br>12<br>10<br>11            | 686<br>665<br>335                           | 2.49                            | 210<br>8<br>5<br><2<br>3    | <8<br><8<br><8<br><8<br><8 | <2<br><2<br><2<br><2<br><2<br><2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <2<br><2<br><2<br>2<br><2<br><2                   | 56<br>90<br>75<br>53<br>66            | .2<br><.2<br>.5<br>3.5<br>1.5                         | <3<br><3<br><3<br><3<br><3                                                                  | ব্য<br>ব্য<br>ব্য<br>ব্য<br>ব্য  | 72                            |                        | .075                                 | 5<br>5<br>7<br>8<br>8  | 70<br>85<br>45<br>29<br>41 | .98<br>1.01<br>.56<br>.41<br>.62     | 108<br>127<br>142<br>44<br>74             | .07<br>.09<br>.12<br>.10<br>.11 | ব্য<br>ব্য<br>ব্য        | 2.00<br>2.00<br>1.45<br>1.20<br>1.68 | .05<br>.09<br>.11<br>.12<br>.18 |                                    | <2<br>3<br><2<br>3<br><2                        | <1<br><1<br><1<br>3<br><1   |
| RE 111488<br>RRE 111488<br>111489<br>111490 # 2<br>111491 # 2<br>111492 98 # 2 | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <del>131<br/>133</del><br>145<br>3617<br>126 | <3<br>6                                   |                                       | .3<br>10.4                                    | 62                                | <del>11</del><br>12<br>13<br>33<br>14 | <del>364</del><br>857<br>296                | 3.00<br>3.63<br>3.48<br>3.55    | 2<br>7<br>5<br>5            | *8<br>*8<br>*8<br>*8<br>*8 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2<br><2<br><2<br><2<br><2                         | <del>67</del><br>67<br>63<br>19<br>81 | <del>1.8</del><br>- <del>1.7</del><br>_9<br>3.3<br>_8 | <del>उ</del><br>उ<br>उ<br>उ                                                                 |                                  | 56                            | <del>.83</del><br>1.26 | .013                                 | 7<br>6<br>3<br>6       | 51                         | 1.31<br>55<br>1.16                   | <del>74<br/>72</del><br>178<br>101<br>225 | .11<br>.17<br>.07<br>.13        | <del>3</del><br>44<br><3 | 1:70<br>1:69<br>1.86<br>1.02<br>2.57 | .17<br>.18<br>.12<br>.06<br>.20 | .79<br>.40                         | <2<br><2<br>11<br><2                            |                             |
| 111493<br>111494 AB # CA                                                       | 27<br>34<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>116</u><br>1771<br>86                     |                                           | <u>87</u><br>76<br>7                  | <.3<br>2.2<br>.5                              | <u>49</u><br>10                   |                                       | 447<br>108                                  | 3.12<br>2.45<br>.55             | 10<br>47<br>2<br><2         | <8<br><8<br><8<br><8<br><8 | <2<br><2<br>7<br>2<br><2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <2<br><2<br><2<br><2<br><2                        | 85<br>55<br>35<br>10<br>58            | 1.4<br>3<br>1.4<br><.2<br><.2                         | ব্য<br>ব্য<br>ব্য<br>ব্য<br>ব্য                                                             | ব্য<br>ব্য<br>ব্য<br>ব্য<br>ব্য  | <u>108</u><br>72<br>11        | .91                    | 052.<br>042.<br>009.                 | 6<br>5<br>2<br><1<br>1 | 61<br>41<br>18<br>19<br>19 | 1.11<br>.96<br>.64<br>.09            | 241<br>198<br>216<br>46<br>111            | .16<br>.16<br>.08<br>.01        | <3                       |                                      | .26<br>.14<br>.07<br>.02<br>.07 | .54<br>.10                         | 4<br><2<br>5<br><2<br>6                         | 26<br>5<br>696<br>990<br>11 |
| 113698 48 #11 B<br>STANDARD C3/AU-R-<br>STANDARD G-2                           | 128<br>24<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>62</b><br>4                               | <del>- 37</del><br>4                      |                                       | <del>5.4</del><br><.3                         |                                   | <del>12</del><br>4                    | <del>762</del><br>518                       | <del>3.25</del><br>2.00         | -58<br><2                   | <u>-21</u><br><8           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <del>21</del><br>4                                | <del>30</del><br>76                   | <del>23.6</del><br><.2                                |                                                                                             | <u>-22</u><br><3                 | <del>- 79</del><br>40         | .62                    | .088<br>.094                         | 7                      | 77                         |                                      | 228                                       | .13                             | <3                       | -1,93<br>.99                         |                                 | <del>16</del><br>.47               | 17<br>2                                         | <del>- 509</del>            |
|                                                                                | ICP500 GRAM SAMPLE IS DIGESTED WITH 3ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER.<br>THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND MASSIVE SULFIDE AND LIMTED FOR NA K AND AL.<br>ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB<br>- SAMPLE TYPE: CORE AU* - IGNITED, AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED.(10 GM)<br>- SAMPLE TYPE: CORE AU* - IGNITED, AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED.(10 GM)<br>- SAMPLE TYPE: CORE AU* - IGNITED, AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED.(10 GM)<br>- SAMPLE TYPE: LORE AU* - IGNITED, AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED.(10 GM)<br>- SAMPLE TYPE: LORE AU* - IGNITED, AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED.(10 GM)<br>- SAMPLE TYPE: LORE AU* - IGNITED, AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED.(10 GM)<br>- SAMPLE TYPE: LORE AU* - IGNITED, AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED.(10 GM)<br>- SAMPLE TYPE: LORE AU* - IGNITED, AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED.(10 GM)<br>- SAMPLE TYPE: LORE AU* - IGNITED, AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED.(10 GM)<br>- SAMPLE TYPE: LORE AU* - IGNITED, AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED.(10 GM)<br>- SAMPLE TYPE: ULL 16 1998 DATE REPORT MAILED: MILLING SIGNED BYD. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS |                                              |                                           |                                       |                                               |                                   |                                       |                                             |                                 |                             |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                   |                                       |                                                       |                                                                                             |                                  |                               |                        |                                      |                        |                            |                                      |                                           |                                 |                          |                                      |                                 |                                    |                                                 |                             |
| All results                                                                    | are c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | onsid                                        | ered 1                                    | the c                                 | onfid                                         | entia                             | l pro                                 | perty                                       | of t                            | he clu                      | ent.                       | Acrile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                 | -                                     |                                                       |                                                                                             |                                  |                               |                        |                                      |                        |                            |                                      |                                           |                                 | -                        |                                      |                                 | ata 🗗                              |                                                 |                             |
| 1                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                              |                                           |                                       |                                               |                                   |                                       |                                             |                                 |                             |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                   |                                       |                                                       |                                                                                             |                                  |                               |                        |                                      |                        |                            |                                      |                                           |                                 |                          |                                      |                                 |                                    |                                                 |                             |



Orko Gold Corp. FILE # 9802894

Page 2

Data 🖁 FA

| ACME ANALYTICAL   |          |           |                  |         |               |            |          |            |      |                                         |                                         |                                         |                                         |                                         |       |      |            |      |      |      |       |      |      |     |      |     |        |      |      | <u> </u> |       |
|-------------------|----------|-----------|------------------|---------|---------------|------------|----------|------------|------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-------|------|------------|------|------|------|-------|------|------|-----|------|-----|--------|------|------|----------|-------|
| SAMPLE#           | Мо       | Cu        | Pb               | Zn      | Ag            | Ni         | Co       | Mn         | Fe   | As                                      | U                                       | Au                                      | Th                                      | Sr                                      | Cd    | Sb   | Bi         | ۷    | Ca   | Ρ    | La    | Cr   | Mg   | Ba  | Ti   | B   | AL     | Na   | K    | W        | Au*   |
|                   | maa      | ppm       | ppm              | ppm     | ppm           | ppm        | ppm      | ррп        | %    | ррт                                     | ppm                                     | ppm                                     | ррт                                     | ppm                                     | ррт   | ppm  | ррп        | ppm  | %    | %    | ppm   | ppm  | %    | ррт | %    | ррп | %      | %    | %    | ppm      | ppb   |
| 113699 918 ×11    |          |           |                  | 36      | <.3           | 4          | 5        | 411        | 1 62 | <2                                      | <8                                      | <2                                      | <2                                      | 26                                      | <.2   | <3   | <3         | 31   | .31  | .042 | 1     | 14   | .41  | 133 | .07  | <3  | .90    | .06  | .37  | 2        | 2     |
| 113699-77         | <u></u>  | 96<br>499 |                  | 57      | 1.0           | - 23       | -        | 3493       |      | 58                                      | - <8                                    | ~2                                      | ·····5··                                | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | - 3   | 5    |            |      |      | .079 | 10    | 23   | .18  | 43  | .07  | <3  | 1.18   | .01  | .15  | 5        | 8-    |
| 113/6/            | 25<br>33 | 571       | 11               | 70      | 1.5           | 21         |          | 1900       |      | 2657                                    | <8                                      | <2                                      | <2                                      | 21                                      | 1.0   | 9    | <3         | 85   | .95  | .110 | 10    | 21   | .50  | 74  | .08  | <3  | 1.59   | .03  | .46  | 3        | 35    |
| 113728            | 22       |           | <3               | 63      | .3            | 10         | 18       | 773        |      | 9                                       | <8                                      | <2                                      | <2                                      | 35                                      | .3    | <3   | <3         | 83   | .84  | .053 | 3     | 20   | 1.10 | 298 | .14  | <3  | 2.59   | .06  | 1.27 | 3        | 13    |
| 113729            | 2        | 229       | < <u>,</u>       | 15      |               | 7          | 15       |            | 1.51 | 23                                      | <8                                      | 25                                      | <2                                      | 1                                       | .2    | 12   | 62         | 1    | .03  | .001 | 1     | 20   | .01  | 13  | <.01 | <3  | .02    | <.01 | .01  | 57       | 22000 |
| 113730 生 /        |          | 764       | Ś                | 15      | 7.4           | <b>.</b> . |          |            |      | <u>.</u>                                | <b>-</b>                                |                                         |                                         |                                         |       |      |            |      |      |      |       |      |      |     |      |     |        |      |      |          |       |
|                   | 7        | 04        | .7               | 4       | <.3           | 4          | 2        | 42         | .43  | 6                                       | <8                                      | <2                                      | <2                                      | 1                                       | <.2   | <3   | <3         | <1   | .01< | .001 | <1    | 24   | <.01 | 22  | <.01 | <3  | .01    | <.01 | .01  | 4        | 88    |
| 113731            | 2        | 96        | <3               | 6<br>60 | .5            | 7          | 7        | 229        | 1.63 | 19                                      | <8                                      | 2                                       | <2                                      | 12                                      | 4     | <3   | 4          | 20   |      | .018 | 3     | 17   | . 19 | 144 | .03  | <3  | .75    | .02  | .20  | 3        | 1160  |
| 113732            | 8        | 271       | 27               |         | <.3           |            |          | 42         | .36  | <2                                      | <8                                      | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                                         | < 2   | <3   | ~~3        | 1    |      | .002 | <1    | 22   | .01  | 15  | <.01 | <3  | .03    | <.01 | .01  | 5        | 46    |
| 113733 JB         | 2        | 12        | <3               | 4       |               | 4 7        | ;        |            | 1.38 | 4                                       | <8                                      | <2                                      | <2                                      | 62                                      | .3    | <3   | <3         | 25   |      | .028 | 2     | 17   | .33  | 157 | .04  | <3  | .93    | .06  | .30  | 3        | 19    |
|                   | 4        | 118       | <3               | 24      | <.3           | 2          | 4        |            |      | <2                                      | <8                                      | <2                                      | <2                                      | 73                                      | .2    | <3   | <3         |      |      | .050 | 2     | 16   | .65  | 223 | .09  | 3   | 1.76   | .14  | .68  | <2       | 8     |
| 113735            | 6        | 87        | <3               | 35      | <.3           | 6          | 6        | 645        | 2.02 | 12                                      | 10                                      | ~2                                      | 16                                      | 13                                      |       | -3   |            | -12  |      |      | -     |      |      |     |      |     |        |      |      |          |       |
| -                 |          |           | ,                |         | . 7           | ,          | 5        | 777        | 2 00 | 7                                       | <8                                      | <2                                      | <2                                      | 82                                      | <.2   | <3   | <3         | 41   | 2.07 | .051 | 2     | 11   | .73  | 196 | .06  | <3  | 1.98   | .06  | .66  | <2       | 3     |
| 113 <u>736</u>    | 1        | 53        | <u>6</u>         | 45      | <u>&lt;.3</u> | <u> </u>   | <u> </u> |            | 1.92 | ~ 3                                     | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ~2                                      | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 67                                      | < 2   | - 3  | - 3        | 34   |      | .052 | 3     | 14   | .52  | 93  | .08  | 3   | 1.51   | .10  | .25  | 3        | 6     |
| 113737            | 12       | 150       | 3                | 31      | <.3           | 0          | 6<br>5   | 408<br>529 |      | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | <8                                      | <2                                      | <2                                      | 65                                      | <.2   | <3   | <3         |      | 1.18 |      | - Ā   | 14   | .65  | 91  | .09  | <3  | 1.60   | .10  | .30  | 2        | 2     |
| 113738            | 10       | 92        | <3               | 41      | <.3           | ,          | 2        | 570        |      |                                         |                                         | ~2                                      | ~2                                      |                                         | ~~2   | - 13 |            |      | 1.22 |      | - 7   |      |      |     |      | 7   | -1-66- |      |      | <u> </u> | - 3-  |
| RE-113738         | -10-     |           |                  |         |               |            |          | 550        |      |                                         |                                         |                                         | -2                                      |                                         |       |      | 7          |      | 1.22 |      |       |      |      |     |      |     | 4-67   |      |      |          | 2     |
| RRE 113738        | ·        | 93-       |                  |         |               |            |          |            |      |                                         |                                         | <u>-</u>                                |                                         |                                         |       |      |            | - 56 |      | .050 | •     |      |      |     |      | -   |        |      |      |          |       |
|                   |          |           | -                |         | ~ ~           | -          |          | 460        | 1 05 | 290                                     | <8                                      | 15                                      | <2                                      | 37                                      | ٦     | 4    | 6          | 33   | 1.40 | .035 | 3     | 13   | .36  | 97  | .05  | <3  | .89    | .06  | .31  | 3        | 4330  |
| 113739 HIL        | 4        | 728       | <3               | 36      |               |            | <u> </u> |            |      | 290                                     |                                         |                                         |                                         | 102                                     |       |      |            |      |      | 054  |       |      | - 69 |     | .03  | <3  | 1.87   | .04  | .40  | 2        | 33    |
| 113740            | 12.      |           | ····· <u>9</u> . | <u></u> | <u></u>       | 2          | 2        | 679        |      |                                         |                                         | <2                                      | <u>&gt;c</u><br><2                      | 10                                      | <.2   | <3   | <3         | 114  |      | .043 |       | 36   | 1.09 |     | . 19 | <3  | 1.88   | .05  | 1.16 | 2        | 35    |
| 113741            | 98       | 330       | 5                | 83      | .4            | 23         |          | 1053       |      | 23                                      | <8                                      |                                         | -                                       | 30                                      |       | 7    | <3         | 123  |      | .049 | ś     |      | 1.37 |     | ,13  |     | 1.98   |      | 1.16 | <2       | 6     |
| 113742            | 56       | 163       | <3               | 98      | <.3           | 86         | 13       | 571        |      | 112                                     | <8                                      | <2                                      | <2                                      |                                         |       | <3   | <3         | 92   | .62  | .057 | 5     | 69   |      |     | .13  |     | 2.16   |      | 1.06 | 2        | 5     |
| 113743            | 31       | 165       | <3               | 80      | <.3           | 58         | 12       | 470        | 2.68 | 47                                      | <8                                      | <2                                      | <2                                      | 43                                      | <.2   | <2   | < <u>-</u> | 72   | .02  | .057 | ر     | 09   |      | 200 |      |     | 2110   |      |      | -        | -     |
|                   |          |           |                  |         |               |            |          |            |      | ~                                       |                                         |                                         | ~                                       | 74                                      | 1.0   | .7   | .7         | 112  | .75  | .058 | ß     | 31   | 1.42 | 186 | .14  | <3  | 2.05   | 08   | 1.32 | <2       | 3     |
| 113744            | 13       |           | <3               | 81      | <.3           | 27         |          | 1012       |      |                                         | <8                                      | <2                                      | 2                                       | 31                                      | <.2   | <3   | <3         |      |      |      | 2     | 77   |      |     |      |     |        | .05  |      |          | 10    |
| 113745            | 17       | 433       | 4                | 48      | .5            | 67         | 8        |            | 3.22 | 8                                       | <8                                      | <2                                      | <2                                      | 30                                      |       | <3   | <3         |      | 1.23 |      | 17    | .147 |      |     |      |     |        |      |      |          |       |
| STANDARD-G3/AU-R- |          | 62        |                  | 169     |               | 35         |          | 760-       |      |                                         | 55                                      | -                                       |                                         |                                         | -23:4 |      | 23         |      |      |      | <br>7 | 72   |      |     | .12  |     |        | .07  | .47  | 2        | 2     |
| STANDARD G-2      | 1        | 5         | 3                | 42      | <.3           | 7          | 4        | 511        | 1.96 | <2                                      | <8                                      | <2                                      | 3                                       | 73                                      | <,2   | <3   | <3         | 39   | .00  | .093 | (     | 12   | .97  | 223 | . 12 |     | .73    | .07  | . 41 | <u> </u> |       |
|                   |          |           |                  |         |               |            |          |            |      |                                         |                                         | -                                       |                                         |                                         |       |      |            |      |      |      |       |      |      |     |      |     |        |      |      |          |       |

Sample type: CORE. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Assay in progress for gold > 1000 ppb.



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

# CERTIFICATE OF ASSAY AK 98-313

ORKO GOLD CORP. 436-470 GRANVILLE STREET VANCOUVER, BC V6C 1V5 20-Jul-98

## ATTENTION: E. LIVGARD

No. of samples received: 57 Sample type: Core PROJECT #: None Given SHIPMENT #: None Given Samples submitted by: Orko Gold

|       |        | Au    | Au     |               |
|-------|--------|-------|--------|---------------|
| ET #. | Tag #  | (g/t) | (oz/t) | ·             |
| 4     | 113669 | 21.30 | 0.621  | 98#8<br>98#12 |
| 20    | 113686 | 2.62  | 0.076  | 98 # 12       |
| 26    | 113692 | 6.22  | 0.181  | 4 4           |
| 30    | 113696 | 1.52  | 0.044  | 18 M          |

#### QC/DATA: Standard:

STD-M

1.62 0.047

TECH LABORATORIES LTD. nk J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/98

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

#### Phone: 250-573-5700 Fax : 250-573-4557

#### ICP CERTIFICATE OF ANALYSIS AK 98-313

ORKO GOLD CORP. 436-470 GRANVILLE STREET VANCOUVER, BC

07/24/98

11:37

**D**250

003

#### ATTENTION: E. LIVGARD

#### No. of samples received: 57 Sample type: Core PROJECT #: None Given SHIPMENT #: None Given Samples submitted by: Orko Gold

|          |                   |                |            |         |        |    |     |    |      |    |    |     |     |      |     |       |      |     |      |    |      |    |    | 5   | SHIPMENT    | #: Non | e Give | en     |      |    |       | 63             |
|----------|-------------------|----------------|------------|---------|--------|----|-----|----|------|----|----|-----|-----|------|-----|-------|------|-----|------|----|------|----|----|-----|-------------|--------|--------|--------|------|----|-------|----------------|
|          | Valu              | ies in ppm Ur  | less othen | vise re | norted |    |     |    |      |    |    |     |     |      |     |       |      |     |      |    |      |    |    | 5   | Samples sul | mittee | lby: ( | Orko ( | Gold |    |       | ນ<br>77<br>ເມ  |
|          |                   | an mana        |            |         |        |    |     |    |      |    |    |     |     |      |     |       |      |     |      |    |      |    |    |     |             |        |        |        |      | ς  |       | 1              |
|          | <b>Et</b> :       | #. Tag #       | Au(ppb)    | Aa      | AI %   | As | Ba  | Bi | Ca % | Cd | Co | Cr  | Cu  | Fe % | Lai | Mg %  | Mn   | Mo  | Na % | Ni | P    | Pb | Sb | Sn  | Sr Ti 🕯     | 0      | ບ      | ٧      | W    | Y  | Zn    | 4557           |
| []       | 1                 | 113666         | 5          | <0.2    |        | 15 | 160 | 75 |      | <1 | 8  | 72  | 74  | 1.99 | <10 | 0.45  | 443  | 31  | 0.04 | 3  | 450  | 6  | 5  | <20 | 117 0.0     | 2 <1   | 0      | 21     | <10  | 2  | 27    | 1              |
|          | $b^{\frac{1}{2}}$ | 113667         | 20         | <0.2    | 1.28   | 15 | 165 | <5 | 2.53 | <1 | 9  | 77  | 186 | 2.13 | <10 | 0.52  | 482  | 7   | 0.05 | 5  | 420  | 6  | <5 | <20 | 71 0.0      | 4 <1   | 0      | 24     | <10  | 2  | 34    | 1              |
|          | 0 a               | 113668         | 5          | <0.2    | 1.29   | 50 | 85  | <5 | 2.08 | <1 | 8  | 80  | 124 | 1.93 | <10 | 0.46  | 419  | 50  | 0.10 | 2  | 450  | 4  | <5 | <20 | 77 0.0      | 4 <1   | 0      | 23     | <10  | 1  | 23    | 0              |
| X        | ă                 | 113669         | >1000      | 4.4     | 0.03   | 35 | 20  | <5 | 0.05 | <1 | 36 | 143 | 717 | 3.77 | <10 | <0.01 | 259  |     | 0.01 | 5  | <10  | <2 | <5 | <20 | 3 < 0.0     | 1 <1   | 10     | 1 ່    | 10   | <1 | 11    | NO NO          |
| 10       | 5                 | 113670         | 280        | 0.4     | 0.15   | 25 | 20  | <5 | 0.17 | <1 | 21 | 133 | 345 | 1.90 |     | 0.04  | 249  |     | 0.02 | 2  | 70   | <2 | <5 | <20 | 5 <0.0      | 1 <1   | 0      | 3      | 10   | <1 | 8     | X              |
| l wh     |                   |                | 200        |         |        |    |     | -  |      | -  |    |     |     |      |     |       |      |     |      |    |      |    |    |     |             |        |        |        |      |    | r     | ίΩ m           |
| Ňζ,      | 6                 | 113671         | 15         | <0.2    | 0.92   | 30 | 85  | <5 | 0.98 | <1 | 8  | 105 | 234 | 1.81 | <10 | 0.42  | 433  | 7   | 0.06 | 4  | 320  | 4  | <5 | <20 | 28 0.0      | 5 <    | 0      | 27     | <10  | 2  | 28 J/ | NO E           |
| N        | 7                 | 113672         | 5          | <0.2    | 2.23   | 10 | 380 | 10 | 1.89 | <1 | 10 | 105 | 28  | 3.58 | 10  | 1.08  | 744  | 5   | 0.08 | 2  | 990  | 10 | <5 | <20 | 93 0.1      | 9 <'   | 0      | 82     | 10   | 8  | 56    | ۱ آ            |
| ÷        | Ŕ                 | 113673         | 15         | <0.2    | 1.47   | 20 | 90  | <5 | 2.91 | <1 | 11 | 46  | 79  | 3.42 | 10  | 0.67  | 845  | 11  | 0.04 | 4  | 1010 | 6  | <5 | <20 | 47 0.0      | 8 <'   | 10     | 61     | <10  | 11 | 46    | ECH            |
|          | ด้                | 113674         | 5          | <0.2    | 1.11   | 70 | 65  | <5 | 3.22 | <1 | 7  | 57  | 84  | 2.16 | <10 | 0.57  | 641  | 21  | 0.06 | 2  | 530  | 4  | 5  | <20 | 58 0.0      | 2 <    | 10     | 29     | <10  | 3  | 29 \  |                |
| 2.1      | 10                |                | 5          | 0.8     | 1.01   | 10 | 210 | <5 | 9.62 | <1 | 4  | 31  | 216 | 1.56 | <10 | 0.50  | 1784 | 12  | 0.03 | 1  | 600  | 4  | 15 | <20 | 106 <0.0    | 1 <    | 10     | 22     | <10  | 4  | 30    |                |
|          | 10                | 110070         | •          | 0.0     |        | •• |     | •  |      |    |    |     |     | -    |     |       |      |     |      |    |      |    |    |     |             |        |        |        |      |    |       | М.             |
| ۰. J     | 11                | <b>11</b> 3676 | 5          | <0.2    | 1.10   | 10 | 85  | <5 | 2.01 | <1 | 5  | 30  | 37  | 1.67 | <10 | 0.61  | 512  | 7   | 0.05 | 4  | 590  | 4  | <5 | <20 | 87 0.0      | 2 <    | 0      | 25     | <10  | <1 | 33 (  |                |
|          | 12                |                | 5          | <0.2    | 1.12   | <5 | 120 | <5 | 2.01 | <1 | 5  | 75  | 24  | 1.46 | <10 | 0.50  | 454  | 8   | 0.06 | 3  | 550  | 4  | <5 | <20 | 121 0.0     | 3 <    | 10     | 23     | <10  | 2  | 24 \  |                |
|          | 13                |                | 5          | <0.2    |        | <5 | 95  | <5 | 2.48 | <1 | 5  | 24  | 17  | 1.55 | <10 | 0.56  | 549  | 2   | 0.04 | 2  | 560  | 4  | <5 | <20 | 82 0.0      | 2 <    | 10     | 23     | <10  | 1  | 24    | l .            |
| e        | 14                |                | 5          | <0.2    | 1.19   | <5 | 165 | <5 | 3.96 | <1 | 5  | 44  | 35  | 1.58 | <10 | 0.50  | 847  | 4   | 0.06 | 1  | 630  | 4  | 5  | <20 | 374 0.0     | 4 <    | 10     | 30     | <10  | 2  | 34 /  |                |
|          | 15                |                | -          | <0.2    |        | <5 | 70  | <5 | 2.37 | <1 | 4  | 127 | 43  | 1.34 | <10 | 0.34  | 505  | 36  | 0.04 | 3  | 330  | 2  | 5  | <20 | 43 0.0      | 3 <    | 10     | 28     | <10  | 2  | 21 /  |                |
| · }      |                   |                | · · · · ·  |         |        |    |     | -  |      | -  | •  |     |     |      |     |       |      |     |      |    |      |    |    |     |             |        |        |        |      |    |       |                |
|          | 11/18             | 113682         | 5          | <0.2    | 1.16   | <5 | 40  | <5 | 1.13 | <1 | 13 | 61  | 258 | 2.82 | <10 | 0.51  | 382  | 204 | 0.06 | 5  | 560  | 6  | <5 | <20 | 37 0.0      | 6 <    | 10     | 35     | <10  | 1  | 31∕   | 47V            |
| 17. X    | <b>1</b> 16<br>17 | 113683         | -          | <0.2    |        | <5 | 165 | 5  | 3.52 | <1 | 17 | 85  | 81  | 3.73 | <10 | 1.43  | 954  | 17  | 0,05 | 15 | 740  | 6  | 5  | <20 | 96 0.1      | 1 <    | 10     | 84     | <10  | 4  | 55 🧃  |                |
| $\Omega$ | 18                |                | 5          | <0.2    | 2.53   | 10 | 110 | <5 | 6.91 | <1 | 18 | 38  | 300 | 4.65 | <10 | 1.67  | 1365 | 378 | 0.08 | 10 | 770  | 10 | 5  | <20 | 203 0.1     | 4 <    | 10 '   | 114    | <10  | 5  | 60 (J | N <sub>2</sub> |
| MB       | 19                |                | 5          |         | 0.99   | 10 | 70  | <5 | 6,29 | <1 | 8  | 66  | 116 | 2.02 | <10 | 0.56  | 994  | 38  | 0.04 | 3  | 510  | 2  | <5 | <20 | 96 0.0      | 5 <    | 10     | 36     | <10  | 4  | 26    | ١Ŭ             |
| <b>}</b> | 20                |                | >1000      | 1.8     | 0.93   | <5 | 60  | <5 | 1.65 | 1  | 15 | 107 | 852 | 2.53 | <10 | 0.40  | 434  | 96  | 0.05 | 4  | 370  | 4  | <5 | <20 | 48 0.0      |        | 10     | 38     | <10  | 1  | 40    | •              |
|          | 20                | 110000         | ~1000      | 1.0     | 0.00   | -0 | ýv, | -0 | 1.00 |    |    | 101 | 002 |      |     |       |      |     |      |    |      |    |    |     |             |        |        |        |      |    |       |                |

| DRKO (            | SOLD CO          | RP.    |     |               |              |          |            |         |             |    | H  | CP CEI | RTIFIC | ATE OF | FANAL            | Ysis / | ak 98-  | 313 |      |      |              |    |            |              | ĺ           | ECO-TE | CHLA | BORA <sup>-</sup> | FORIES   | LTD.     |     |
|-------------------|------------------|--------|-----|---------------|--------------|----------|------------|---------|-------------|----|----|--------|--------|--------|------------------|--------|---------|-----|------|------|--------------|----|------------|--------------|-------------|--------|------|-------------------|----------|----------|-----|
| Et #.             | Tag #            | Au(ppb | )   | Ag            | AI %         | As_      | Ba         | Bi      | <u>Ca %</u> | Cd | Co | Cr     | Cu     | Fe %   | La               | Mg %   | Mn      |     | Na % | Ni   | <u>р</u>     | Pb | Sb         | Sn           | Sr          | Tì %   | U    | <u>v</u>          | W        | <u>Y</u> | Zn  |
| 56                | 113725           | 11/2 1 | 0 . | <0.2          | 1.43         | 105      | 45         | <5      | 0.89        | 6  | 15 | 106    | 244    | 4.23   | <10              | 0.71   | 465     | 113 | 0.12 | 68   | 770          | 8  | <5         | <20          | 42          | 0.09   | <10  | 194               | <10      | 5        | 351 |
| 57                | 113726           | 11     | 0   | <0.2          | 1.36         | 135      | 50         | <5      | 1.23        | 1  | 14 | 113    | 170    | 3.35   | <10              | 0.71   | 416     | 88  | 0.08 | 64   | 690          | 10 | 5          | <20          | 53          | 0.09   | <10  | 201               | <10      | 5        | 113 |
|                   | -                |        |     |               |              |          |            |         |             |    |    |        |        |        |                  |        |         |     |      |      |              |    |            |              |             |        |      |                   |          |          |     |
|                   |                  |        |     |               |              |          |            |         |             |    |    |        |        |        |                  |        |         |     |      |      |              |    |            |              |             |        |      |                   |          |          |     |
| DC DA             | [A:              |        |     |               |              |          |            |         |             |    |    |        |        |        |                  |        |         |     |      |      |              |    |            |              |             |        |      | `                 |          |          |     |
| 17 184            |                  |        |     |               |              |          |            |         |             |    |    |        |        |        |                  |        |         |     |      |      |              |    |            |              |             |        |      |                   |          |          |     |
| Respiit           |                  |        | E   | <0.2          | 1.15         | <5       | 160        | 85      | 2.26        | <1 | я  | 78     | 72     | 2.03   | <10              | 0.45   | 425     | 31  | 0.05 | 5    | 470          | 6  | <5         | <20          | 1 <b>11</b> | 0.03   | <10  | 22                | <10      | 2        | 26  |
| 36                | 113666<br>113705 | 6      | -   | <0.2          | 1.65         | 15       | 60         | <5      | 1.71        | <1 | 17 | 175    | 167    | 3.40   | <10              | 0.68   | 465     | 123 | 0.16 | 63   | 104 <b>0</b> | 10 | <5         | <20          | 62          | 0.12   | <10  | 116               | <10      | 6        | 71  |
| - 30              | 113705           | U      | 0   | - <b>U.</b> 2 | 1.00         | 10       | 40         | •       |             |    | •• |        |        |        |                  |        |         |     |      |      |              |    |            |              |             |        |      |                   |          |          |     |
| Repeat            | •                |        |     |               |              |          |            |         |             |    |    |        |        |        |                  |        |         |     |      |      |              |    |            |              |             |        |      |                   |          |          |     |
| 1                 | 113666           |        | 5   | <0.2          | 1.16         | 10       | 160        | 45      | 2.39        | <1 | 8  | 72     | 71     | 2.00   | <10              | 0.46   | 437     | 31  | 0.04 | 3    | 480          | 6  | <5         | <20          | 115         | 0.02   | <10  | 21                | <10      | 2        | 28  |
| 10                | 113675           |        | 5   | 0.8           | 1.06         | 10       | 190        | <5      | 9.75        | <1 | 5  | 32     | 200    | 1.63   | <10              | 0.52   | 1814    | 15  | 0.03 | 2    | 620          | 4  | 10         | <20          |             | <0.01  | <10  | 23                | <10      | 4        | 28  |
| s <sub>1</sub> 19 | 113685           |        | 5   | <0.2          | 0.99         | 10       | 70         | <5      | 6.24        | <1 | 8  | 78     | 111    | 2.10   | <10              | 0.56   | 990     | 40  | 0.04 | 5    | 500          | 4  | 5          | <20          | 96          | 0.05   | <10  | 37                | 10       | 4        | 25  |
| 31                | 113697           | 1      | 0   | -             | -            | -        | -          | -       | -           | -  | -  | -      | -      | •      | <del>ب</del><br> | -      | -       | -   | •    | -    | -            | -  |            | -            | -           | -      | -    | -                 |          | 5        | -   |
| 36                | 113705           |        |     | <0.2          | 1.63         | 10       | 60         | <5      | 1.69        | <1 | 15 | 172    | 157    | 3.26   | <10              | 0.68   | 456     | 118 | 0.15 | 62   | 1020         | 8  | <5         | <20          | 63          | 0.11   | <10  | 114               | <10      | Ű        | 70  |
| 40                | 113709           |        | 5   | -             | -            | -        | -          |         | -           | -  | -  | •      | -      | -      |                  | -      | -       | -   | -    | - 70 | 790          |    | <5         | -<br><20     | 48          | 0.09   | <10  | <b>22</b> 1       | -<br><10 | 6        | 139 |
| 45                | 113714           |        | -   | <0.2          | 1.86         | 10       | 45         | <5      | 0.87        | 2  | 15 | 122    | 153    | 3.36   | <10              | 0.78   | 364     | 89  | 0.15 | 70   | 190          | 14 | <b>~</b> 0 | ~ <b>2</b> 0 | 40          | 0.09   | ~10  | <u>4</u> 21       | 10       | Ŭ        | 100 |
|                   |                  |        |     |               |              |          |            |         |             |    |    |        |        |        |                  |        |         |     |      |      |              |    |            |              |             |        |      |                   |          |          |     |
| Standa            |                  | 40     |     |               | 4.00         | 05       | 46E        | E       | 1.85        | <1 | 19 | 65     | 78     | 3.88   | <10              | 0.96   | 658     | <1  | 0.03 | 24   | 660          | 26 | 5          | <20          | 53          | 0.10   | <10  | 71                | <10      | 5        | 74  |
| • <b>GEO'98</b>   |                  | 12     |     | 1.0<br>₄ 0    | 1.80<br>1.70 | 65<br>65 | 165<br>160 | 5<br>10 | 1.90        | <1 | 20 | 61     | 78     | 4.07   | <10              |        | 670     | 1   | 0.02 | 22   | 710          | 22 | <5         | <20          | 56          |        | <10  | 77                | <10      | 6        | 79  |
| <b>βΕΟ'98</b>     |                  | 13     | U.  | 1.0           | 1.70         | υų       | 100        | IU.     | 1.30        |    | 20 |        |        | 1      |                  |        | <b></b> | •   |      |      |              |    | •          |              |             |        |      |                   |          |          |     |

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer Pr

07/24/98

11:38

**D**250

573 4557

Ø 005

#### ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4657

N

#### ICP CERTIFICATE OF ANALYSIS AK 98-310

 Post-it" Fax Note
 7671E
 Date
 1/1/1/24
 # of pages > 5

 To
 From
 Co.

 Co./Dept.
 Co.

 Phone #
 Phone #

 Fax #
 Fax #

#### ORKO GOLD CORP. 436-470 GRANVILLE STREET VANCOUVER, BC

#### ATTENTION: E. LIVGARD

No. of samples received:19 Sample type: CORE PROJECT #: None Given SHIPMENT #: None Given Samples submitted by: Orko Gold

#### Values in ppm unless otherwise reported

|                   | Et #.        | Tag #         | Au(ppb) | Ag    | AI % | As  | Ba  | Bi       | Ca %         | Cd  | Co     | Cr  | Cu  | Fe %  | La  | Mg % | Mn   | Mo  | Na % | Ni      | Р   | Pb | Sb | Sn  | Sr  | Ti %  | U   | <u>v</u> | W   | Y        | Zn | )<br>51<br>-1 |
|-------------------|--------------|---------------|---------|-------|------|-----|-----|----------|--------------|-----|--------|-----|-----|-------|-----|------|------|-----|------|---------|-----|----|----|-----|-----|-------|-----|----------|-----|----------|----|---------------|
|                   | 4            | 111447        | 15      | 0.6   | 0.30 | 155 | 35  | <5       | 1.13         | <1  | 16     | 114 | 318 | 2.87  | <10 | 0.12 | 225  | 156 | 0.03 | 4       | 110 | 14 | <5 | <20 | 21  | 0.01  | <10 | 12       | <10 | <1       | 19 |               |
| Re .              | .2           | 111448        | 10      | 0.2   | 1.08 | 300 | 60  | <5       | 1,79         | <1  | 8      | 93  | 121 | 2.00  | <10 | 0.55 | 467  | 51  | 0.07 | 3       | 480 | 24 | 15 | <20 | 41  | 0.05  | <10 | 31       | <10 | 2        | 34 |               |
| 2 ° %             | 3            | 111449        | 35      | <0.2  | 0.25 | 30  | 35  | <5       | 8.23         | <1  | 4      | 69  | 31  | 1.32  | <10 | 0.29 | 1051 | 95  | 0.03 | 2       | 490 | 4  | 5  | <20 | 219 | <0.01 | <10 | 5        | 10  | 7        | 24 |               |
| ··₁ · ≯           | 4            | 111450        | 40      | <0.2  | 0.96 | 55  | 65  | <5       | 1.40         | <1  | 10     | 69  | 149 | 1.86  | <10 | 0.33 | 310  | 19  | 80.0 | 3       | 420 | 8  | <5 | <20 | 50  | 0.03  | <10 | 20       | 10  | ſ        | 29 | _/            |
| -                 | - <u>-</u> - | 113651        | 5       | <0.2  | 0.99 | 10  | 55  | <5       | 1.79         | <1  | 7      | 86  | 121 | 1.88  | <10 | 0.40 | 356  | 45  | 0.07 | 4       | 520 | 8  | 5  | <20 | 49  | 0.03  | <10 | 21       | 10  | 1        | 28 |               |
|                   | Ų            | 110001        | Ŭ       |       | 0.00 |     |     | +        |              |     |        |     |     |       |     |      |      |     |      |         |     |    |    |     |     |       |     |          |     |          |    | 1 Mar         |
|                   | 6            | 113652        | 65      | <0.2  | 1.21 | <5  | 130 | 5        | 2.13         | <1  | 6      | 61  | 29  | 2.05  | <10 | 0.62 | 491  | 14  | 0.06 | 4       | 560 | 8  | 10 | <20 | 65  | 0.04  | <10 | 31       | 10  | 2        | 33 | L OPE         |
| X<br>X            | 7            | 113653        | 35      | <0.2  | 0.98 | 30  | 50  | <5       | 1.93         | <1  | 8      | 57  | 101 | 2.60  | <10 | 0.41 | 484  | 9   | 0,04 | 1       | 620 | 8  | 5  | <20 | 40  | 0.01  | <10 | 35       | 10  | 1        | 40 |               |
|                   | 0            | 113654        | 10      | <0.2  | 0.87 | 35  | 65  | <5       | 1.46         | <1  | 12     | 74  | 156 | 2.18  | <10 | 0.43 | 370  | 48  | 0.04 | 4       | 390 | 6  | <5 | <20 | 42  | 0.02  | <10 | 20       | 10  | 1        | 26 | TECH          |
| X                 | 0            | 113655        | 5       | <0.2  | 0.97 | <5  | 60  | <5       | 1.97         | <1  | 8      | 75  | 85  | 2.12  | <10 | 0.56 | 513  | 6   | 0.04 | 3       | 510 | 8  | <5 | <20 | 32  | 0.02  | <10 | 27       | 10  | 2        | 32 |               |
|                   | 9            |               | 15      | 0.2   | 0.98 | 5   | 75  | <5       | 2.16         | <1  | 8      | 95  | 54  | 2.04  | <10 |      | 488  | 9   |      | 4       | 470 | 6  | <5 | <20 | 44  | 0.02  | <10 | 20       | <10 | 2        | 29 |               |
| Ø                 | 10           | 113656        | UU IU   | 0.2   | 0.00 | J   |     | -0       | <b>2</b> .10 |     | U      | ••• |     |       |     |      | •    |     | -    |         |     |    |    |     |     |       |     |          |     |          |    | Y/ Z          |
| . N V             |              | 440057        | E       | <0.2  | 0.82 | 5   | 85  | <5       | 0.95         | <1  | 7      | 102 | 230 | 1.75  | <10 | 0.38 | 340  | 8   | 0.05 | 4       | 390 | 8  | <5 | <20 | 32  | 0.03  | <10 | 24       | 40  | 2        | 26 | <u> </u>      |
| •                 | 11           | 113657        | 5       |       |      | <5  | 125 | <5       | 2.52         | <1  | 6      | 84  | 25  | 1.92  | <10 |      | 605  | 3   |      | 4       | 580 | 10 | 5  | <20 | 77  | 0.05  | <10 | 26       | 10  | 2        | 31 |               |
| · ···}            | 12           | 113658        | 5       | <0,2  | 1.58 | _   |     | ~5<br><5 | 2.70         | <1  | e<br>e | 53  | 19  | 2.06  | <10 | 0.67 | 681  | 2   |      | 4       | 590 | 8  | 5  | <20 | 64  | 0.08  | <10 | 40       | 10  | 4        | 33 | /             |
| ĺ                 | 13           | 113659        | 5       | < 0.2 | 1.40 | <5  | 140 | -        |              |     | 5      | 96  | 28  | 1.57  | <10 |      | 542  | 76  | 0.10 | 3       | 500 | 10 | <5 | <20 | 61  | 0.06  | <10 | 24       | <10 | 2        | 22 | (             |
| ,                 | 14           | 113660        | 20      | <0.2  | 1.35 | 5   | 145 | <5<br>   | 2.21         | <1  | ະ<br>7 |     | 120 | 1.88  | <10 | 0.33 | 436  | 10  | 0.07 | 4       | 540 | 8  | <5 | <20 | 44  | 0.04  | <10 | 29       | 10  | <1       | 25 | $\backslash$  |
| · 1               | 15           | 113661        | 10      | <0.2  | 0.83 | 10  | 40  | <5       | 1. <b>58</b> | <1  | 1      | 65  | 120 | 1.00  | ~10 | 0.00 | 400  | 10  | 0.07 | 4       | 070 | v  | -0 | ~20 |     | 0.07  | 10  | 20       | 10  |          | 20 | $\backslash$  |
|                   |              |               | _       |       |      | _   |     |          |              | - 4 | -      | 040 | C A | 4 7 4 | <10 | 0.19 | 307  | 29  | 0.03 | 5       | 210 | 2  | <5 | <20 | 23  | 0.01  | <10 | 13       | 10  | <1       | 10 |               |
|                   | 16           | 113662        | 5       | •     | 0.41 | <5  | 60  | <5       | 2.01         | <1  | 5      | 242 | 64  | 1.24  |     |      |      | _   |      | С       |     | 4  | 10 | <20 | 57  | 0.03  | <10 | 30       | 10  | 3        | 32 |               |
|                   | 17           | <u>113663</u> | 5       | <0.2  |      | <5  | 125 | <5       | 3.69         | <1  | 6      | 32  | 22  | 1.99  | <10 | 0.65 | 687  | 5   | 0.04 | ა<br>იი | 630 | 0  | 10 |     |     |       |     |          |     | <u> </u> |    | <u> </u>      |
| 60                | 18           | 113664        | 5       | <0.2  |      | 15  | 165 | 10       | 0.38         | <1  | 18     | 98  | 57  | 3.77  | <10 |      | 785  | <1  | 0.06 | 36      | 570 | 16 | <5 | <20 | 19  | 0.22  | <10 | 86       | 10  | 5        | 87 | 1.0.12        |
| 78                | 19           | 113665        | 25      | <0.2  | 0.72 | 50  | 90  | <5       | 1.09         | <1  | 6      | 105 | 63  | 1.66  | <10 | 0.28 | 408  | 44  | 0.03 | 4       | 340 | 6  | <5 | <20 | 26  | 0.02  | <10 | 15       | 10  | 4        | 24 | 14.40         |
| ິ <sup>ທ</sup> ັດ | ז            |               |         |       |      |     |     |          |              |     |        |     |     |       |     |      |      |     |      |         |     |    |    |     |     | ,     |     |          |     |          | -  |               |
| <b>Q</b>          | /            |               |         |       |      |     |     |          |              |     |        |     |     |       |     |      |      |     |      |         |     | ,  |    |     |     | · ·   |     |          |     |          |    |               |

07/24/98

11:36

**B**250

573

4

Page 1

ORKO GOLD CORP.

ICP CERTIFICATE OF ANALYSIS AK 98-313

ECO-TECH LABORATORIES LTD.

|                           | Et #. | Tag #          | Au(ppb) | Ag   | AI % | As  | Ba  | Bi | Ca % | Cd | Co  | Cr         | Cu          | Fe % | La  | Mg %         | Mn   | Мо         | Na % | Nì | P    | Pb   | Sb | Sn   | Sr  | Ti % | U   | v   | W   | Ŷ      | Zn          |                     |
|---------------------------|-------|----------------|---------|------|------|-----|-----|----|------|----|-----|------------|-------------|------|-----|--------------|------|------------|------|----|------|------|----|------|-----|------|-----|-----|-----|--------|-------------|---------------------|
| 1                         | 21    | 113687         | 5       | <0.2 | 1.17 | 15  | 55  | <5 | 3.32 | <1 | 8   | 77         | 182         | 2.21 | <10 | 0.35         | 657  | 16         | 0.10 | 3  | 570  | 6    | <5 | <20  | 100 | 0.03 | <10 | 21  | 10  | 2      | 20          |                     |
|                           | 22    | 113688         | 20      | 0.2  | 0.76 | 55  | 65  |    | 4.26 | <1 | 11  | 76         | 223         | 2.25 | <10 | 0.44         | 798  | 8          | 0.04 | 5  | 470  | 4    | <5 | <20  | 151 | 0.03 | <10 | 18  | 10  | 3      | 28          |                     |
| J<br>•                    | 23    | 113689         | 5       | <0.2 | 2.08 | <5  | 100 | <5 | 0.74 | <1 | 19  | 98         | 164         | 4.67 | <10 | 1.42         | 765  | 7          | 0.05 | 24 | 540  | 10   | <5 | <20  | 19  | 0.20 | <10 | 127 | <10 | 8      | 85          | • 1                 |
| <u> </u>                  |       |                | -       |      |      |     | 75  |    | 0.28 | <1 | 16  | 95         | 84          |      | <10 | 1.10         | 652  | 5          | 0.05 | 20 | 480  | 10   | <5 | <20  | 6   | 0.17 | <10 | 107 | <10 | 7      | 77          | $\mathcal{N}$       |
|                           | 24    | 113690         | 5       | <0.2 | 1.61 | 5   |     | -  |      | -  |     | 67         |             | -    | <10 | 0.87         | 1235 | 20         | 0.03 | 30 | 460  | .2   | 10 | <20  |     |      |     | 33  | <10 | ,<br>8 |             | $\langle \rangle$   |
| X                         | 25    | 113691         | 160     | 0.2  | 0.69 | 25  | 95  | <5 | 2.77 | <1 | 12  | 07         | 163         | 3.96 | ~10 | Ų.07         | 1200 | 20         | 0.03 | 50 | 400  | . 6. | 10 | ~20  | 142 | 0.03 | <10 | 33  | 10  | 0      | 58          | $\langle X \rangle$ |
| ~ .                       | 26    | 113692         | >1000   | 2.8  | 0.92 | <5  | 60  | <5 | 1.35 | 1  | 15  | 68         | 1000        | 3.14 | <10 | 0.47         | 580  | 16         | 0.04 | 4  | 490  | 6    | <5 | <20  | 42  | 0.03 | <10 | 39  | <10 | 3      | 54          | 2                   |
| 1 On                      | 27    | 113693         | 5       | <0.2 | 1.82 | 10  | 85  | <5 | 3.11 | <1 | 17  | 57         | 328         | 3.88 | <10 | 1.18         | 874  | 15         | 0.05 | 7  | 810  | 8    | <5 | <20  | 60  | 0.09 | <10 | 87  | <10 | 4      | 50 ( )      | 9                   |
| Ro                        | 28    | 113694         | 5       | <0.2 | 0.75 | 5   | 50  | <5 | 1.29 | <1 | 5   | 109        | 55          | 1.32 | <10 | 0.29         | 319  | 7          | 0.07 | 5  | 290  | 4    | <5 | <20  | 42  | 0.03 | <10 | 22  | 10  | 2      | 15          | ΛV                  |
|                           | 29    | 113695         | 20      |      | 0.86 | 200 | 70  | <5 | 6.19 | <1 | 7   | 67         | 103         | 2.05 | <10 | 0.49         | 823  | .95        | 0.04 | 3  | 470  | 4    | 5  | <20  | 105 | 0.02 | <10 | 24  | 20  | 4      | 26 V        | $\square$           |
| F 14                      | 30    | 113696         | >1000   |      | 1.47 | 75  | 120 | <5 | 2.93 | <1 | 11  | 65         | 153         |      | <10 | 0.86         | 892  | 28         | 0.06 | 5  | 710  | 6    | <5 | <20  | 39  | 0.10 | <10 | 70  | 10  | 5      | 42          |                     |
|                           |       |                |         |      |      |     |     |    |      |    |     |            |             |      |     |              |      |            |      | e  | 570  | 6    | 5  | <20  |     |      |     |     |     |        |             |                     |
|                           | 31    | 113697         |         | <0.2 | 1.35 | 5   | 135 |    | 2.30 | <1 | 10  | 59         |             | 2.33 |     | 0.86         | 607  | 60         | 0.06 | 6  |      | •    | -  |      | 61  | 0.06 | <10 | 55  | <10 | 3      | 36          | /                   |
| -                         | 32    | 113701         |         | <0.2 | 0.71 | 20  | 45  | <5 | 0.92 | <1 | 13  | <b>9</b> 1 | 131         |      | <10 | 0.24         | 220  | 73         | 011  | 64 | 810  | 4    | <5 | <20  | 46  | 0.06 | <10 | 51  | <10 | 4      | 62          |                     |
|                           | 33    | 113702         | 5       | <0.2 | 0.55 | <5  | 35  | <5 | 0.67 | <1 | 14  | 76         | 165         | 2.90 | <10 |              | 179  | 141        | 0.08 | 62 | 730  | 2    | <5 | <20  | 19  | 0.06 | <10 | 57  | <10 | 3      | 58          |                     |
| r"1                       | 34    | 113703         | 5       | <0.2 | 1.71 | <5  | 65  | <5 | 0.85 | <1 | 14  | 158        | 127         | 3.16 | <10 | 0.92         | 390  | 51         | D.14 | 68 | 880  | 8    | <5 | <20  | 45  | 0.08 | <10 | 138 | <10 | 5      | 100         |                     |
|                           | 35    | 113704         | 5       | <0.2 | 0.82 | 10  | 45  | <5 | 0.72 | <1 | 14  | 163        | 134         | 2.90 | <10 | 0.58         | 319  | 66         | 0.07 | 69 | 710  | 6    | <5 | _<20 | 14  | 0.09 | <10 | 123 | <10 | 3      | 75          |                     |
| <b>*</b> ]                |       |                |         |      | •    |     |     |    |      |    |     |            |             |      |     |              |      |            |      |    |      |      |    |      |     |      |     |     |     |        |             |                     |
|                           | 36    | 113705         | 10      | <0.2 | 1.67 | 5   | 65  | <5 | 1.72 | <1 | 16  | 173        | 163         | 3.33 | <10 | 0.70         | 464  | 120        | 0.16 | 61 | 1020 | 8    | <5 | <20  | 67  | 0.11 | <10 | 117 | <10 | 6      | 67          |                     |
| L. J                      | 37    | 113706         | 25      | <0.2 | 1.58 | 455 | 45  | <5 | 1.48 | <1 | 14  | 119        | 169         | 3.09 | <10 | 0.71         | 395  | 154        | 0.11 | 64 | 740  | 10   | 5  | <20  | 101 | 0.09 | <10 | 159 | <10 | 4      | 91          | -                   |
|                           | 38    | 113707         | 5       | <0.2 | 1.35 | 25  | 45  | <5 | 1.20 | <1 | 14  | 107        | 200         | 2,96 | <10 | 0.46         | 304  | 154        | 0.11 | 61 | 800  | 8    | <5 | <20  | 85  | 0.08 | <10 | 110 | <10 | 5      | 67          | $-\Omega_{\ell}$    |
|                           | 39    | 113708         | 5       | <0.2 | 1.18 | 10  | 45  | <5 | 1.00 | <1 | 19  | 132        | 224         |      | <10 | 0.42         | 275  | 128        | 0.12 | 61 | 630  | 6    | <5 | <20  | 34  | 80.0 | <10 | 107 | <10 | 4      | 68          | 18                  |
|                           | 40    |                | 5       |      | 1.73 | 15  | 55  | <5 | 2.42 | <1 | 14  | 120        | 221         |      | <10 | 0.81         | 646  | 176        | 0.12 | 55 | 780  | 10   | <5 | <20  | 96  | 0.10 | <10 | 165 | 10  | 5      | 80          | NY I                |
| m                         | 40    | 113709         | J       | ~0.2 | 1.10 | 10  | 20  |    | 2.72 |    | 1-1 | 12.0       | ~~ •        | 0.01 |     | 0.01         | 010  |            | 0.,2 |    |      |      | Ĩ  |      |     | 0.10 |     |     |     | Ŷ      |             | X)                  |
| E NO                      | 41    | 113710         | 10      | 0.4  | 0.53 | <5  | 40  | <5 | 0.58 | <1 | 17  | 145        | 538         | 3.85 | <10 | 0.21         | 240  | 48         | 0.05 | 16 | 100  | <2   | <5 | <20  | 17  | 0.03 | <10 | 37  | 10  | <1     | 18          | •                   |
|                           | 42    | 113711         |         | <0.2 | 1.35 | 285 | 55  | <5 | 1.30 | 1  | 14  | 125        | 218         | 3.73 | <10 | 0.82         | 515  | 418        | 0.12 | 59 | 650  | 8    | 10 | <20  | 26  | 0.11 | <10 | 185 | <10 | 4      | 93 (        | 2                   |
| ыл                        | 43    | 113712         |         | <0.2 | 0.91 | 5   | 45  | <5 | 1.27 | <1 | 7   | 96         | 97          | 1.91 | <10 | 0.43         | 367  | 28         | 0.06 | 6  | 320  | . 6  | <5 | <20  | 29  | 0.05 | <10 | 33  | <10 | 2      | 23          | NT)                 |
| X.                        |       | 113713         |         | <0.2 | 2.33 | <5  | 60  | <5 | 1.45 | 2  | 13  | 105        | 127         | 3.04 | <10 | 0.92         | 479  | 100        | 0.18 | 57 | 900  | 12   | 10 | <20  | 150 | 0.08 | <10 | 169 | <10 | 5      | 125         | $\mathcal{N}$       |
| L IV                      | 44    |                | -       | -    |      |     | 45  | <5 | 0.87 | 2  | 14  | 120        | 152         |      |     | 0.79         | 361  | 86         | 0.16 | 68 | 760  | 12   | <5 | <20  | 49  | 0.09 | <10 | 221 | <10 | 6      | 137         | ι,                  |
| R                         | 45    | 113714         | 10      | <0.2 | 1.88 | <5  | 40  | -0 |      | Ľ  | 14  |            |             |      |     |              |      |            |      |    |      |      | -  |      |     |      |     |     |     | _      |             |                     |
| $\mathcal{O}'\mathcal{D}$ | 46    | 113715         | 120     | <0.2 | 1.54 | <5  | 70  | <5 | 9.76 | 1  | 14  | 99         | 181         | 3.27 |     | 0.96         | 1332 |            | 0.06 | 49 | 630  | 16   | 15 | <20  | 414 | 0.08 | <10 | 166 | <10 | 8      | 87          |                     |
| IN                        | 47    | 11 <b>3716</b> | 25      | <0.2 | 2.32 | 15  | 55  | <5 | 2.23 | 1  | 14  | 123        | 168         | 3.99 | <10 | 1.11         | 658  | 77         | 0.11 | 61 | 790  | 14   | <5 | <20  | 127 | 0.07 | <10 | 235 | <10 | 6      | 101         |                     |
|                           | 48    | 113717         | 15      | <0.2 | 1.09 | <5  | 60  | <5 | >10  | 1  | 12  | 83         | 140         | 3.14 | <10 | 0.77         | 1446 | 69         | 0.04 | 52 | 630  | 8    | 10 | <20  | 403 | 0.03 | <10 | 118 | <10 | 11     | 102         |                     |
|                           | 49    | 113718         |         | <0.2 |      | 30  | 45  | <5 | 1.16 | 1  | 18  | 123        | 165         | 3.90 | <10 | 1.03         | 585  | 92         | 0.07 | 66 | 850  | 8    | <5 | <20  | 21  | 0.08 | <10 | 148 | <10 | 4      | 117         |                     |
| · 1                       | 50    | 113719         | 10      |      | 0.84 | 65  | 35  | <5 | 1.53 | 1  | 15  | 136        | 157         |      | <10 | 0.59         | 433  | 114        | 0.08 | 67 | 810  | 4    | 5  | <20  | 22  | 80.0 | <10 | 99  | <10 | 3      | <b>1</b> 11 |                     |
|                           |       |                |         |      |      |     |     |    |      |    |     |            |             |      |     |              |      |            |      |    |      |      | -F |      |     |      |     |     |     | •      |             |                     |
|                           | 51    | 113720         | 15      | <0.2 |      | 10  | 40  |    | 1.29 | 2  | 15  | 126        | 153         |      |     | 0.46         | 546  | <b>9</b> 9 | 0.11 | 74 | 890  | 8    | <5 | <20  |     | 0.10 | <10 | 130 | <10 | 5      | 203         |                     |
| : 1                       | 52    | 113721         | 10      |      | 1.43 | 5   | 50  | <5 | 1.28 | 4  | 16  | 146        | 139         | 4.05 | <10 | 0.69         | 481  | 59         | 0.15 | 81 | 710  | 10   | <5 | <20  | 41  | 0.09 | <10 | 200 | <10 | 4      | 272         |                     |
| ĺ                         | 53    | 1 <b>13722</b> | 15      | <0.2 | 0.75 | <5  | 40  | <5 | 0.72 | 3  | 16  | 126        | 184         | 3.94 | <10 |              | 321  | 91         | 0.09 | 71 | 800  | 6    | <5 | <20  | 20  | 0.09 | <10 | 132 | <10 | 5      | 175         |                     |
|                           | 54    | 113723         | 5       | <0.2 | 0.79 | <5  | 30  | <5 | 1.09 | 3  | 14  | 109        | <b>1</b> 41 | 3.47 | <10 | 0.27         | 254  | 94         | 0.10 | 64 | 740  | 6    | <5 | <20  | 25  | 0.08 | <10 | 102 | <10 | 5      | 205         |                     |
|                           | 55    | 113724         | 10      | <0.2 |      | <5  | 40  | <5 | 1.20 | 2  | 13  | 109        | 214         | 3.47 | <10 | <b>0.1</b> 1 | 223  | 148        | 0.19 | 63 | 710  | 8    | <5 | <2.0 | 62  | 0.07 | <10 | 58  | <10 | 5      | 105         |                     |
| - 1                       |       |                |         |      |      |     |     |    |      |    |     |            |             |      |     |              |      |            |      |    |      |      |    |      |     |      |     |     |     |        |             |                     |

£00

07/24/98

11:37

**3**250 573

4557

ECO-TECH KAM.

1



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

# CERTIFICATE OF ANALYSIS AK 98-269

ORKO GOLD CORP. 436-470 GRANVILLE STREET VANCOUVER, BC V6C 1V5 3**-**Jul-98

#### ATTENTION: E. LIVGARD

No. of samples received: 21 Sample type: Core PROJECT #: None Given SHIPMENT #: None Given Samples submitted by: E. Livgard

B. ...

|       |         | est du <b>Au</b> lt |
|-------|---------|---------------------|
| ET #. | Tag #   | (ppb)               |
| 1     | 111350  | 5 98#7              |
| 2     | 111365  | 15 90 423           |
| 3     | 111366  | 15                  |
| 4     | 111367  | 5                   |
| 5     | 111368  | 5 98#19             |
| 6     | 111369  | 5 7 2 4 17          |
| 7     | 111370  | 10                  |
| 8     | 111371  | 15                  |
| 9     | 111372  | 35                  |
| 10    | 111373  | 20                  |
| 11    | 111374  |                     |
| 12    | 111375  | 10                  |
| 13    | 111376  | <u>10</u>           |
| 14    | 111401  | 5 98#22             |
| 15    | 111402  | 5 <b>5 5</b>        |
| 16    | 111403  | <b>5</b> 7          |
| 17    | 111404  | 15                  |
| 18    | 111405  | 5                   |
| 19    | 111406  | 5                   |
| 20    | 111407  | <b>5</b> 0          |
| 21    | 111408. | <b>5</b>            |

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557

# ICP CERTIFICATE OF ANALYSIS AK 98-285

ORKO GOLD CORP. 436-470 GRANVILLE STREET VANCOUVER, BC

#### ATTENTION: E. LIVGARD

#### No. of samples received: 19 Sample type: Core PROJECT #: None Given SHIPMENT #: None Given Samples submitted by: Orko Gold

Values in ppm unless otherwise reported

| 2 J          | <b>F4 4</b>  | Ton #              | Au(nnh) | ٨а    | AI %         | As   | Ba       | Bì (     | Ca % | Cd | Co     | Cr  | Cu  | Fe % | La M | /lg % | Mn         | Mo  | Na % | Ni | Ρ    | Pb | Sb | Sn  | Sr  | Ti % | U   | <u>v</u> | <u></u> | Y  | Zn                |   |
|--------------|--------------|--------------------|---------|-------|--------------|------|----------|----------|------|----|--------|-----|-----|------|------|-------|------------|-----|------|----|------|----|----|-----|-----|------|-----|----------|---------|----|-------------------|---|
| <u>:</u> ] = | <u>Et #.</u> | Tag #              | Au(ppb) |       |              | <5   | 105      |          | 2.05 | <1 | 6      | 44  | 41  | 2.49 |      | 0.71  | 570        | 5   | 0.09 | <1 | 610  | 4  | 10 | <20 | 53  | 0.08 | <10 | 40       | <10     | <1 | 30 M              |   |
| 30           | 1            | 111352             | 5       | <0.2  | 1.65<br>2.62 | -5   | 95       | <5       | 2.56 | <1 | 7      | 48  | 195 | 3.04 | <10  | 0.79  | 562        | 23  | 0.19 | <1 | 750  | 8  | <5 | <20 | 91  | 0.09 | <10 | 54       | <10     | <1 | 32                |   |
| $\sim \nu$   | 2            | 111353             | 5       | <0.2  |              | 30   | 50<br>50 | ~5<br><5 | 1.18 | <1 | י<br>א | 95  | 215 | 2.01 |      | 0.37  | 274        | 35  | 0.11 | <1 | 360  | 4  | <5 | <20 | 51  | 0.05 | <10 | 22       | <10     | <1 | 13 X              |   |
| 423          | 3            | 111354             | 5       | <0.2  | 1.27         |      |          | ~5<br><5 | 1.58 | <1 | 6      | 54  | 88  | 1.94 |      | 0.52  | 373        | 43  | 0.14 | <1 | 590  | 6  | <5 | <20 | 68  | 0.07 | <10 | 27       | <10     | <1 | 19<br>24          |   |
|              | 4            | 111355             | 5       | < 0.2 | 1.77         | <5   | 70       | _        | 1.34 | <1 | 7      | 51  | 145 | 2.41 |      | 0.58  | 355        |     | 0.13 | <1 | 580  | 6  | <5 | <20 | 64  | 0.07 | <10 | 34       | <10     | <1 | 241/\\\           |   |
|              | 5            | 111356             | 5       | <0.2  | 1.73         | D    | 80       | <5       | 1.34 | ~1 | 1      | 51  | 140 |      |      | 0.00  |            |     |      |    |      |    |    |     |     |      |     |          |         |    |                   | · |
|              | _            |                    | _       |       | 0.40         | -E   | 495      | E        | 1.73 | <1 | 7      | 53  | 47  | 2.29 | <10  | 0.76  | 502        | 4   | 0.14 | <1 | 630  | 6  | <5 | <20 | 70  | 0.11 | <10 | 39       | <10     | <1 | 27                |   |
| · 1          | 6            | 111357             | -       | -     | 2.10         | <5   | 135      | 5<br>-5  |      | -1 | Ŕ      | 76  | 98  | 2.07 |      | 0.47  | 407        | 26  | 0.07 | <1 | 450  | 2  | <5 | <20 | 39  | 0.04 | <10 | 26       | <10     | <1 |                   |   |
|              | 7            | 111358             | 5       | <0.2  | 1.14         | 10   | 100      | <5       | 1.78 | 2  | 19     | 125 | 205 | 4.61 | <10  | 1.24  | 610        | 100 | 0.14 | 62 | 730  | 6. | <5 | <20 | 42  | 0.15 | <10 | 190      | <10     | 3  | 246 JV            | , |
| NA.          | 8            | 111409             | 5.      | <0.2  | 2.03         | 5    | 70       | <5       | 1.04 | -1 |        | 125 | 195 | 4.74 | <10  | 1.47  | 709        | 20  | 0.12 | 48 | 620  | 6  | <5 | <20 | 29  | 0.18 | <10 | 183      | <10     | 3  |                   |   |
| 40           | <u> </u>     | 111410             | 5       | <0.2  | 2.25         | <5   | 70       | <5       | 0.78 | <1 | 19     | 125 | 138 | 3.79 | <10  | 0.94  | 747        | 95  | 0.05 | 29 | 440  | 4  | <5 | <20 | 18  | 0.16 | <10 | 84       | <10     | 4  | 67 ¥y             |   |
| 22           | 10           | 111411             | 5       | <0.2  | 1.48         | 10   | 65       | <5       | 0.72 | <1 | 16     | 114 | 100 | 5.78 | ~10  | 0.04  | 141        |     | 0.00 |    |      |    |    |     |     |      |     |          |         |    | 12h               | • |
| 100          |              |                    | _       |       |              |      | ~~       |          | 0 70 | -4 | 12     | 119 | 74  | 3.20 | <10  | 0.92  | 630        | 20  | 0.07 | 16 | 270  | 2  | <5 | <20 | 15  | 0.16 | <10 | 75       | <10     | 4  | 50 V\V            |   |
|              | 11           | 111412             | 5       | <0.2  | 1.55         | <5   | 90       | <5       | 0.73 | <1 | 14     |     | 112 | 1.80 | <10  | 0.32  | 682        | 27  | 0.03 | <1 | 400  | 2  | <5 | <20 | 116 | 0.05 | <10 | 32       | <10     | 3  | 11                |   |
| · • •        | 12           | 111413             | 5       | <0.2  | 0.77         | 65   | 70       | <5       | 2.90 | <1 | 47     | 100 | 169 | 3.75 | ×10  | 1.59  | 861        | 21  | 0.09 | 47 | 1000 | 6  | <5 | <20 | 37  | 0.14 | <10 | 103      | <10     | 3  | 87                |   |
|              | 13           | 111428             | 5       | <0.2  | 2.24         | 5    | 65       | <5       | 1.60 | <1 | 17     | 140 |     | 5.86 | <10  | 1.45  | 2920       | 21  | 0.03 | 33 | 970  | 4  | <5 | <20 | 111 | 0.04 | <10 | 79       | <10     | 11 | 118 🔥             |   |
| 48           | 14           | 11142 <del>9</del> | 5       | 0.8   | 1.66         | 45   | 95       | <5       | 3.90 | <1 | 12     | 88  | 100 | 3.50 | <10  | 1.34  | 589        | 67  | 0.07 | 57 | 920  | 6  | 5  | <20 | 24  | 0.08 | <10 | 134      | <10     | 5  | <sup>95</sup> 💃 🔟 |   |
|              | 15           | 111430             | 5       | <0.2  | 2.09         | 20   | 55       | <5       | 0.87 | <1 | 14     | 115 | 143 | 3.50 | 510  | 1.54  | 000        | 0,  | 0.07 | •  | v=0  | •  | -  |     |     |      |     |          |         |    | y 10              | • |
| W            | 7            |                    |         |       |              |      |          | _        |      | ~  | 40     | 440 | 404 | 2 00 | <10  | 0.92  | 628        | 72  | 0.11 | 62 | 810  | 4  | <5 | <20 | 39  | 0.07 | <10 | 166      | <10     | 5  | 128 🎧             |   |
| <u> </u>     | 16           | 111431             | 5       | <0.2  | 1.64         | . 10 | 40       | <5       | 1.23 | 2  | 16     | 116 | 184 | 3.80 | <10  | 1.31  | 670        | 52  | 0.10 | 56 | 860  | 6  | 15 | <20 | 53  |      | <10 | 210      | <10     | 6  | 128<br>129        |   |
|              | 17           | 111432             | . 5     | <0.2  |              | 35   | 75       | <5       | 1.38 | 1  | 15     | 138 | 174 | 3.55 |      |       |            | 14  | 0.06 | 38 | 360  | Ă  | <5 | <20 | 14  | 0.14 | <10 | 73       | <10     | 5  | 68 <sup>`</sup>   |   |
| "            | 18           | 111433             | 5       | <0.2  | 1.44         | <5   | 75       | <5       | 0.53 | <1 | 13     | 104 | 120 | 3.28 | <10  | 0.91  | 610<br>619 | -   | 0.00 | 62 | 860  | 8  | <5 | <20 | 59  | 0.09 | <10 | 213      | <10     | 6  | 150               |   |
|              | 19           | 111434             | 240     | <0.2  | 2.60         | 85   | 85       | <5       | 1.29 | 1  | 14     | 122 | 178 | 3.92 | <10  | 1.17  | 019        | 61  | 0.19 | 02 | 000  | U  | -0 | 20  |     |      |     |          |         |    |                   |   |
| 1t           |              | •                  |         |       |              |      |          |          |      |    |        |     |     |      |      |       |            |     |      |    |      |    |    |     |     |      |     |          |         |    |                   |   |

#### 30-Jun-98

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

#### Phone: 604-573-5700 Fax : 604-573-4557

Values in ppm unless otherwise reported

#### ICP CERTIFICATE OF ANALYSIS AK 98-259

ORKO GOLD CORP. 436-470 GRANVILLE STREET VANCOUVER, BC

#### ATTENTION: E. LIVGARD

No. of samples received: 14 Sample type: Core PROJECT #: None Given SHIPMENT #: None Given Samples submitted by: E. Livgard

| ]   |            |                |         |      |      |    |    |    |      |    |    |    |     |      |     |      |     |    |      |    |     |    |    |     |     |      |     |          |     |   | . (      |
|-----|------------|----------------|---------|------|------|----|----|----|------|----|----|----|-----|------|-----|------|-----|----|------|----|-----|----|----|-----|-----|------|-----|----------|-----|---|----------|
|     | Et #.      | Tag #          | Au(ppb) | Ag   | AI % | As | Ba | Bi | Ca % | Cd | Co | Cr | Cu  | Fe % | La  | Mg % | Mn  | Мо | Na % | Ni | Р   | Pb | Sb | Sn  | Sr  | Ti % | U   | <u>v</u> | W   | Y | <u></u>  |
| 3 ' | 1          | 111332         | 5       | -    | -    | -  | -  | -  | -    | -  | -  | -  | -   | -    |     | . –  | -   | -  | -    | -  | -   | -  | -  | -   |     | ~    | -   | -        | -   | - | <u> </u> |
|     | 2          | 111333         | 5       | -    | -    | -  | -  | -  | -    | -  | -  | -  | -   | -    | -   | -    | -   | -  | -    | -  | -   | -  | -  | -   | -   | -    | -   | -        | -   | - | - U U    |
| 6   | 3          | 111334         | 20      | -    | -    | -  | -  | -  | -    | -  | -  | -  | -   | -    | -   | -    | -   | -  | -    | -  | -   | -  | -  | -   | -   | -    | -   | -        | -   | - | -        |
| •   | 4          | 111342         | 5       | •    | -    | -  | -  | -  | -    | -  | -  | -  | -   | -    | -   | -    | -   | -  | -    | -  | -   | -  | -  | -   | ~   | -    | -   | -        |     | - |          |
|     | 5          | <b>1</b> 11343 | 5       | -    | -    | -  | -  | -  | -    | -  | -  | -  | -   | -    | -   | -    | -   |    | **   | -  | -   | -  | -  | -   | -   | -    | -   | -        | -   | - |          |
|     | 6          | 111344         | 5       | -    | -    | -  | -  | -  | -    | -  | -  | -  | -   | -    | -   | -    | -   | -  | -    | -  | -   | -  | -  | -   | -   | -    | -   | -        | -   | - | - /      |
| 3   | 7          | 111345         | 5       | -    | -    | -  | -  | -  | -    | -  | -  | -  | -   | -    | -   | -    | -   | -  | -    | -  | -   | -  | -  | -   | -   | -    | -   | -        | -   | - | -        |
|     | 8          | <b>1</b> 11346 | 65      | -    | -    | -  | -  | -  | -    | -  |    | -  | -   | -    | -   | -    | -   | -  | *    | -  | -   | -  | -  | -   | -   |      | •   | -        | -   | - |          |
| 1   | 9          | 111347         | 235     | -    | -    | -  | -  | -  | -    | -  | -  | -  | -   | -    | -   | -    | -   | -  | -    | -  | -   | -  |    | -   | -   | -    | •   | -        | -   | - | -00      |
| 1   | 10         | 111348         | 5       | -    | -    | -  | *  | -  | -    | -  | -  | -  | -   | -    | -   | -    | -   | -  | -    | ~  | -   | -  | -  | -   | -   | -    | -   | -        | -   | - | -W.O     |
|     | 11         | 111349         | 5       | -    | -    | -  | +  | -  | -    | -  | -  | -  | -   | -    | -   | -    | -   | -  | -    | -  | -   | -  | -  | -   | -   | -    | -   | -        | -   | - | -        |
| u z | 12         | 111351         | 5       | -    | -    | -  | -  | -  | -    | -  | -  | -  | -   | -    | -   | -    | -   | -  | -    | -  | -   | -  | -  | -   | -   | -    | -   | -        | •   | - | - 200    |
| t 2 | 13         | 111400         | 10      | 0.4  | 1.00 | 15 | 50 | <5 | 7.62 | <1 | 10 | 37 | 361 | 2.71 | <10 | 0.52 | 896 | 35 | 0.05 | 1  | 740 | 8  | 10 | <20 | 487 | 0.02 | <10 | 31       | <10 | 7 | 72       |
|     | <b>1</b> 4 | 98-23          | 5       | <0.2 | 1.62 | <5 | 80 | <5 | 2.35 | <1 | 7  | 76 | 108 | 2.07 | <10 | 0.55 | 446 | 14 | 0.14 | 4  | 520 | 4  | <5 | <20 | 84  | 0.06 | <10 | 28       | <10 | 1 | <1/**27  |
|     |            |                |         |      |      |    |    |    |      |    |    |    |     |      |     |      |     |    |      |    |     |    |    |     |     |      |     |          |     |   | i        |

Page 1

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

#### Phone: 604-573-5700 Fax : 604-573-4557

#### ICP CERTIFICATE OF ANALYSIS AK 98-296

## ORKO GOLD CORP. 436-470 GRANVILLE STREET VANCOUVER, BC

#### ATTENTION: E. LIVGARD

#### No. of samples received: 22 Sample type: Core PROJECT #: None Given SHIPMENT #: None Given Samples submitted by: Orko Gold

Values in ppm unless otherwise reported

|             | Et #. | Tag #  | Au(ppb) | Ag           | AI % | As  | Ва  | Bi        | Ca % | Cd | Co  | Cr  | Cu  | Fe % | La  | Mg % | Mn   | Mo  | Na % | Ni  | Р   | Pb     | Sb       | Sn  | Sr  | Ti % | U   | V   | W   | Y      | Zn  |     |
|-------------|-------|--------|---------|--------------|------|-----|-----|-----------|------|----|-----|-----|-----|------|-----|------|------|-----|------|-----|-----|--------|----------|-----|-----|------|-----|-----|-----|--------|-----|-----|
| 1           | 1     | 111377 | 15      | <0.2         | 2.28 | 10  | 205 | 10        | 0.49 | <1 | 15  | 121 | 77  | 3.73 | <10 | 1.32 | 789  | 11  | 0.07 | 24  | 430 | 6      | 5        | <20 | 14  | 0.17 | <10 | 97  | <10 | <1     | 86  |     |
| LA          | n 2   | 111378 | 5       | <0.2         | 2.39 | <5  | 230 | 5         | 0.44 | <1 | 16  | 122 | 70  | 4.12 | <10 | 1.38 | 761  | 9   | 0.06 | 25  | 530 | 8      | 10       | <20 | 14  | 0.15 | <10 | 103 | <10 | <1     | 88  |     |
| -49         |       | 111379 | >1000   | 0.4          | 2.12 | 195 | 220 | <5        | 1.25 | <1 | 12  | 78  | 132 | 3.59 | <10 | 1.03 | 772  | 6   | 0.03 | 21  | 400 | 2      | 15       | <20 | 37  | 0.09 | <10 | 68  | <10 | 1      | 72  |     |
| $r_1$       | .∩ 4  | 111380 | 5       | <0.2         | 2.55 | 130 | 230 | 5         | 0.61 | <1 | 16  | 93  | 85  | 4.23 | <10 | 1.41 | 852  | 15  | 0.06 | 30  | 460 | 6      | 10       | <20 | 28  | 0.18 | <10 | 108 | <10 | <1     | 91  |     |
|             | Y\5   | 111381 | 35      | 0.2          | 0.69 | 35  | 90  | <5        | 2.85 | <1 | 18  | 87  | 174 | 3.42 | <10 | 0.82 | 1333 | 22  | 0.02 | 57  | 770 | 6      | 15       | <20 | 107 | 0.01 | <10 | 28  | <10 | 5      | 53  |     |
|             | . 6   | 111382 | >1000   | 1.6          | 2.42 | <5  | 185 | <5        | 1.94 | <1 | 17  | 111 | 146 | 4.44 | <10 | 1.40 | 1124 | 12  | 0.11 | 37  | 410 | 4      | 15       | <20 | 56  | 0.14 | <10 | 120 | <10 | <1     | 80  |     |
| 1           | 7     | 111383 | 20      | <0.2         | 2.29 | 40  | 230 | 10        | 0.47 | <1 | 19  | 102 | 91  | 4.12 | <10 | 1.46 | 833  | 9   | 0.09 | 55  | 440 | 4      | 15       | <20 | 16  | 0.20 | <10 | 118 | <10 | <1     | 90  | Ω   |
|             | ģ     | 111384 | 5       | <0.2         | 1.97 | <5  | 170 | 10        | 0.62 | <1 | 12  | 117 | 67  | 3.03 | <10 | 1.16 | 744  | 16  | 0.05 | 42  | 320 | 6      | 10       | <20 | 70  | 0.15 | <10 | 67  | <10 | 2      | 78  | /N  |
| × .         | 0     | 111385 | 5       | <0.2         | 2.89 | 10  | 150 | <5        | 1.40 | <1 | 13  | 107 | 73  | 3.19 | <10 | 1.30 | 844  | 80  | 0.18 | 45  | 560 | 6      | <5       | <20 | 63  | 0.16 | <10 | 153 | <10 | 3      | 93  | ``  |
| , <b>1</b>  | 10    | 111386 | 5       | <0.2         | 3.64 | 30  | 160 | <5        | 1.88 | <1 | 17  | 129 | 95  | 3.59 | <10 | 1.53 | 967  | 43  | 0.30 | 63  | 810 | 12     | 10       | <20 | 78  | 0.16 | <10 | 216 | <10 | 1      | 108 | Ø4  |
|             | 10    | 111000 | 5       | -0.2         | 0.04 | 00  | 100 | -0        | 1.00 | •• |     | 120 | 00  | 0.00 |     |      |      |     |      |     |     |        |          |     |     |      |     |     |     |        |     | ñ   |
| e.]         | 11    | 111387 | 5       | <0.2         | 2.39 | 85  | 110 | <5        | 1.42 | <1 | .16 | 118 | 197 | 3.60 | <10 | 1.18 | 741  | 32  | 0.13 | 47  | 670 | 8      | 10       | <20 | 79  | 0.10 | <10 | 162 | <10 | 4      | 105 | UN. |
|             | 12    | 111388 | 45      | < 0.2        | 1.51 | <5  | 100 | <5        | 3.01 | <1 | 13  | 97  | 153 | 3.01 | <10 | 1.15 | 999  | 117 | 0.05 | 49  | 770 | 4      | 10       | <20 | 73  | 0.08 | <10 | 163 | <10 | 6      | 82  |     |
| ` ]         |       | 111389 | 170     | 0.6          | 1.60 | 10  | 110 | <5        | 1.82 | <1 | 15  | 108 | 502 | 3.44 | <10 | 1.00 | 642  | 54  | 0.05 | 53  | 660 | 8      | 10       | <20 | 78  | 0.08 | <10 | 144 | <10 | 6      | 85  |     |
|             | 13    |        | >1000   | 1.0          | 1.00 | 15  | 125 | <5        | 2.00 | <1 | 11  | 95  | 550 | 2.64 | <10 | 0.92 | 700  | 63  | 0.07 | 41  | 710 | <2     | 10       | <20 | 98  | 0.07 | <10 | 116 | <10 | 2      | 55  |     |
|             | 14    | 111390 |         | <0.2         | 2.14 | 15  | 105 | ~5<br><5  | 0.51 | <1 | 14  | 127 | 136 | 3.42 | <10 | 1.46 | 635  | 59  | 0.15 | 52  | 420 | 4      | <5       | <20 | 27  | 0.11 | <10 | 107 | <10 | <1     | 76  |     |
|             | 15    | 111391 | 15      | <b>~</b> 0.2 | 2.14 | 10  | 105 | -0        | 0.51 | ~1 | 17  | 121 | 100 | 0.74 | ~10 | 1.40 | 000  | 00  | 0.10 | .02 | 120 |        |          | 20  |     | 0    |     |     |     |        |     |     |
|             | 10    | 444000 | 30      | <0.2         | 1.76 | 25  | 165 | <5        | 1.12 | <1 | 14  | 181 | 173 | 3.03 | <10 | 1.44 | 653  | 220 | 0.07 | 82  | 620 | 4      | 15       | <20 | 42  | 0.13 | <10 | 166 | <10 | 2      | 91  |     |
| ъ. <b>ј</b> | 16    | 111392 |         |              |      |     |     | ~5<br><5  | 2.19 | <1 |     | 151 | 191 | 2.90 | <10 | 1.04 | 814  | 122 | 0.06 | 64  | 440 | 4      | 15       | <20 | 49  | 0.09 | <10 | 102 | <10 | <1     | 99  |     |
|             | 17    | 111393 | 20      | <0.2         | 1.31 | 40  | 135 | -         |      |    | 13  |     | 196 | 3.69 | <10 | 1.67 | 1042 | 25  | 0.05 | 47  | 580 | т<br>Л | 15       | <20 | 36  | 0.15 | <10 | 142 | <10 | 2      | 118 |     |
| · ]         | 18    | 111414 | 60      | <0.2         | 2.24 | 25  | 175 | <5        | 1.36 | <1 | 16  | 90  |     |      |     |      |      |     |      | 30  | 490 | т<br>А | <5       | <20 | 21  | 0.17 | <10 | 124 | <10 | <1     | 88  |     |
|             | 19    | 111415 | 5       | <0.2         | 2.41 | 25  | 225 | <5<br>- 5 | 0.34 | <1 | 15  | 95  | 125 | 4.17 | <10 | 1.36 | 725  | 26  | 0.05 |     |     | 4      | _        |     | 23  | 0.17 | <10 | 109 | <10 | - 1    | 72  |     |
| u           | 20    | 111416 | 95      | <0.2         | 2.20 | 10  | 155 | <5        | 0.40 | <1 | 16  | 87  | 149 |      | <10 | 1.29 | 531  |     | 0.04 | 32  | 500 | 4      | <5<br>40 | <20 |     | 0.10 | <10 | 96  | <10 | י<br>כ | 71  |     |
| ~ I         | 21    | 113681 | 10      | <0.2         | 1.84 | <5  | 125 | <5        | 0.32 | <1 | 13  | 78  | 140 | 3.70 | <10 | 1.50 | 922  | 44  | 0.10 | 21  | 250 | 6      | 10       | <20 | 17  | 0.15 | ~10 | 90  | ~10 | 2      | 73  |     |



10041 E. Trans Canada Hwy., R.R. #2, Kamioops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

# CERTIFICATE OF ASSAY AK 98-296

ORKO GOLD CORP. 436-470 GRANVILLE STREET VANCOUVER, BC 13-Jul-98

## ATTENTION: E. LIVGARD

XLS/98

No. of samples received: 22 Sample type: Core PROJECT #: None Given SHIPMENT #: None Given Samples submitted by: Orko Gold

| ET #.           | Tag #  | Au<br>(g/t) | Au<br>(oz/t) |                                                        |                     |
|-----------------|--------|-------------|--------------|--------------------------------------------------------|---------------------|
| 3               | 111379 | 2.22        | 0.065        | $\overline{\}$                                         |                     |
| 6               | 111382 | 4.52        | 0.132        | ) and un                                               |                     |
| <b>14</b>       | 111390 | 3.15        | 0.092        | 190019                                                 |                     |
| QC/DA<br>Repea  |        |             | ·            | na<br>1997 - Carlos Angelera<br>1997 - Carlos Angelera |                     |
| 3               | 111379 | 2.06        | 0.060        |                                                        | n<br>An an an an an |
| Standa<br>STD-N |        | 1.40        | 0.041        |                                                        |                     |

-TECH LABORATORIES LTD. k J. Pezzotti, A.Sc.T. B.C. Certified Assayer

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

#### Phone: 604-573-5700 Fax : 604-573-4557

ICP CERTIFICATE OF ANALYSIS AK 98-286

#### ORKO GOLD CORP. 436-470 GRANVILLE STREET VANCOUVER, BC

## ATTENTION: E. LIVGARD

No. of samples received: 17 Sample type: Core PROJECT #: None Given SHIPMENT #: None Given Samples submitted by: Orko Gold

|              | · V | alues i  | in ppm ur        | less other | wise n       | eported | 1   |     |          |      | · . |    |            |     |      |       |      |             |     |      |    |      |    |    | S   | ample          | s submi | itted by: | Orko     | Gold |    | n n               |
|--------------|-----|----------|------------------|------------|--------------|---------|-----|-----|----------|------|-----|----|------------|-----|------|-------|------|-------------|-----|------|----|------|----|----|-----|----------------|---------|-----------|----------|------|----|-------------------|
| .            |     | Et #.    | Tag #            | Au(ppb)    | Aq           | AI %    | As  | Ba  | Bi       | Ca % | Cd  | Co | Cr         | Cu  | Fe % | Lal   | Mg % | Mn          | Мо  | Na % | Ni | P    | Pb | Sb | Sn  | Sr             | Ti %    | U         | <u>v</u> | W    | Y  | Zn V              |
| A            | Ø=  | 1        | 111359           |            | <0.2         | 1.92    | 15  | 110 | <5       | 1.77 | <1  | 6  | 61         | 63  | 2.15 | <10   | 0.68 | 450         | 6   | 0.14 | <1 | 570  | 4  | 5  | <20 | 71             | 0.08    | <10       | 31       | <10  | <1 | 23                |
|              | •   | 2        | 111360           | _          | <0.2         | 1.55    | 15  | 75  | <5       | 1.08 | <1  | 6  | 69         | 99  | 2.00 | <10   | 0.54 | 359         | 17  | 0.13 | <1 | 380  | 6  | <5 | <20 | 58             | 0.07    | <10       | 30       | <10  | <1 | 21                |
| $h^{\prime}$ | 14  | 3        | 111361           | 5          | <0.2         | 1.42    | <5  | 70  | <5       | 1.34 | <1  | 6  | 49         | 67  | 1.95 | <10   | 0.56 | 364         | 25  | 0.10 | <1 | 590  | 4  | <5 | <20 | 45             | 0.08    | <10       | 28       | 10   | <1 | 20 NU             |
| PC           | 53  | 4        | 111362           | 10         | <0.2         | 1.65    | <5  | 75  | <5       | 1.47 | <1  | 7  | 75         | 74  | 2.05 | <10   | 0.56 | 396         | 14  | 0.13 | <1 | 550  | 6  | <5 | <20 | 55             | 0.08    | <10       | 30       | <10  | <1 | 20 \\             |
|              |     | 5        | 111363           | 5          | <0.2         | 1.48    | 10  | 80  | <5       | 2.80 | <1  | 7  | 46         | 145 | 2.43 | <10   | 0.65 | <b>5</b> 57 | 37  | 0.08 | <1 | 580  | 4  | 5  | <20 | 53             | 0.04    | <10       | 30       | 10   | 2  | 27                |
| nA           | 6   | 6        | 111435           | 5          | <0.2         | 1.41    | 10  | 60  | <5       | 1.41 | <1  | 12 | 73         | 149 | 2.62 | <10   | 0.67 | 527         | 54  | 0.06 | 35 | 770  | 4  | <5 | <20 | 19             | 0.09    | <10       | 79       | <10  | 3  | 56                |
| ΩŲ           |     | 7        | 111436           | -          | <0.2         | 2.74    | 5   | 65  | <5       | 1.43 | <1  | 14 | 126        | 138 | 3.24 | <10   | 1.46 | 558         | 43  | 0.18 | 63 | 1000 | 10 | <5 | <20 | 42             | 0.11    | <10       | 155      | <10  | 5  | 102               |
|              | 11  | 8        | 111437           |            | <0.2         | 2.62    | ·<5 | 65  | <5       | 1.59 | <1  | 14 | 125        | 150 | 2.85 | <10 ' | 0.93 | 437         | 51  | 0.22 | 63 | 900  | 10 | <5 | <20 | 100            | 0.08    | <10       | 118      | <10  | 3  | 90                |
| μr'          |     | 9        | 111438           | 25         | 1.4          | 1.21    | <5  | 45  | <5       | 3.27 | 1   | 11 | 82         | 175 | 2.52 | <10   | 0.39 | 752         | 188 | 0.09 | 38 | 780  | 14 | 15 | <20 | 86             | 0.07    | <10       | 65       | <10  | 3  | 74 X              |
| . ]          |     | 10       | 111439           | 65         | <0.2         | 1.29    | <5  | 100 | <5       | 1.90 | <1  | 10 | 6 <b>6</b> | 204 | 2.39 | <10   | 0.62 | 518         | 13  | 0.04 | <1 | 490  | 4  | <5 | <20 | 40             | 0.06    | <10       | 39       | <10  | 1  | 29 <sup>A</sup> ) |
|              |     | 11       | 111440           | 5          | <0.2         | 1.35    | <5  | 70  | <5       | 3.44 | <1  | 14 | 36         | 178 | 3.08 | <10   | 0.64 | 838         | 7   | 0.04 | 1  | 750  | 8  | <5 | <20 | 36             | 0.08    | <10       | 56       | <10  | 1  | 38   L U          |
|              |     | 12       | 111441           | -          | <0.2         | 1.35    | 10  | 65  | <5       | 1.96 | <1  | 15 | 48         | 226 | 3.54 | <10   | 0.70 | 703         | 14  | 0.05 | 2  | 820  | 8  | <5 | <20 | 2 <del>9</del> | 0.10    | <10       | 64       | <10  | <1 | 47 V \            |
| - 1          |     | 13       | 111442           | 5          | <0.2         | 1.49    | 10  | 60  | <5       | 1.71 | <1  | 17 | 34         | 207 | 3.60 | <10   | 0.72 | 668         | 24  | 0.07 | 2  | 790  | 6  | <5 | <20 | 30             | 0.10    | <10       | 65       | <10  | <1 | 42                |
|              |     | 14       | 111443           | 5          | <0.2         | 1.39    | 15  | 55  | <5       | 1.81 | <1  | 15 | 34         | 185 | 3.16 | <10   | 0.52 | 534         | 8   | 0.05 | 2  | 800  | 6  | <5 | <20 | 77             | 0.08    | <10       | 59       | <10  | 2  | 42                |
| ¢            |     | 15       | 111444           | 90         | <0.2         | 1.39    | 10  | 65  | <5       | 2.54 | <1  | 16 | 49         | 212 | 3.12 | <10   | 0.61 | 763         | 12  | 0.05 | 2  | 780  | 6  | 5  | <20 | 3 <del>9</del> | 0.08    | <10       | 66       | <10  | 2  | 46                |
| Ĩ            |     | 40       | 444445           | 5          | <0.2         | 1.30    | 10  | 60  | <5       | 3.05 | <1  | 13 | 44         | 206 | 3.24 | <10   | 0.66 | 725         | 18  | 0.05 | 3  | 730  | 6  | <5 | <20 | 36             | 0.07    | <10       | 68       | <10  | 1  | 39                |
|              |     | 16<br>17 | 111445<br>111446 | -          | <0.2<br><0.2 | 1.02    | 10  | 70  | <5<br><5 |      | 2   | 8  | 42         | 81  | 2.35 | <10   | 0.61 | 945         | 24  | 0.02 | <1 | 440  | 6  | <5 | <20 | 80             | 0.04    | <10       | 43       | <10  | 5  | 25                |

Page 1





10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

# CERTIFICATE OF ASSAY AK 98-248

29-Jun-98

46

ORKO GOLD CORP. 436-470 GRANVILLE STREET VANCOUVER, BC

## ATTENTION: E. LIVGARD

No. of samples received:13 Sample type:Core PROJECT #: Bonaparte SHIPMENT #:None given Samples submitted by: Bonaparte

|    | ET #. | Tag #  | Au Au<br>(g/t) (oz/t) |       |
|----|-------|--------|-----------------------|-------|
|    | 2     | 111327 | 2.86 0.083 4 98 46    | n7.   |
|    | 3     | 111328 | 8.29 0.242 / 6        | O. My |
| ** |       |        |                       | ·     |

#### QC/DATA:

Repeat:

2 111327

3.27 0.095

XLS/98

TECH LABORATORIES LTD. nk J. Pezzotti, A.Sc.T. **B.C. Certified Assayer** 



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

# **CERTIFICATE OF ANALYSIS AK 98-230**

ORKO GOLD CORP. 436-470 GRANVILLE STREET VANCOUVER, BC V6C 1V5

#### ATTENTION: E. LIVGARD

No. of samples received: 6 Sample type: Rock PROJECT #: Orko Gold Corp. SHIPMENT #:None given Samples submitted by: E. Livgard

| ET #. | Tag #  | Au<br>(ppb) |        |
|-------|--------|-------------|--------|
| 1     | 111301 | 5           | 5      |
| 2     | 111302 | 5           | 5 GB+3 |
| 3     | 111303 | >1000       | 570.0  |
| 4     | 111304 | 10          |        |
| 5     | 111305 | 5           | 2 48#4 |
| 6     | 111306 | 5           | 5 9049 |
| o     | 11300  |             |        |

5

5

<u>QC DATA:</u> Resplit:

R/S.1 111301

Repeat: 1 111301

XLS/98

TECH LABORATORIES LTD. nk J. Pezzotti, A.Sc.T. **B.C.** Certified Assayer

24-Jun-98



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

# **CERTIFICATE OF ANALYSIS AK 98-239**

ORKO GOLD

436 - 470 GRANVILLE STREET VANCOUVER, BC V2C 1V5 26-Jun-98

#### ATTENTION: E. LIVGARD

- No. of samples received:4 Sample type: ROCK
- PROJECT #: None given
- SHIPMENT #:None given Samples submitted by: ED FREY

| ET #. | Tag #  | Au<br>(ppb) | :<br>                                         |
|-------|--------|-------------|-----------------------------------------------|
| 1     | 111307 | 5           | · <u>····································</u> |
| 2     | 111308 | 10          | 1 00 5                                        |
| 3     | 111309 | 5           | #98-5                                         |
| 4     | 111310 | 5           | 7 -                                           |

QC DATA: Resplit:

R/S 1

Repeat:

1

Standard: GEO'98

5

5

160

EQO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

#### 29-Jun-98

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

#### Phone: 604-573-5700 Fax : 604-573-4557

# Values in ppm unless otherwise reported

|     | Et #.    | Tog #  | Au(ppb) | ۵a   | AI % | As | Ba  | Bi       | Ca %    | Cd            | Co     | Cr       | Cu          | Fe % | La  | Mg % | Mn  | Mo  | Na % | Ni         | P   | Pb | Sb      | Sn  |     | Ti %  | <u> </u> | V  | W   | Y  | Zn          |
|-----|----------|--------|---------|------|------|----|-----|----------|---------|---------------|--------|----------|-------------|------|-----|------|-----|-----|------|------------|-----|----|---------|-----|-----|-------|----------|----|-----|----|-------------|
|     | <u> </u> | Tag #  |         | <0.2 | 1.57 | 10 | 110 |          | 2.23    | <1            | 8      | 88       | 59          | 2.42 | <10 | 0.47 | 552 | 9   | 0.10 | 7          | 650 | 4  | 5       | <20 |     | 0.04  | <10      | 31 | 10  | <1 | 304         |
|     | 1        | 111311 | 10      |      |      | 20 | 65  | <5       | 3.49    | <1            | 8      | 43       | 125         | 2.25 | <10 | 0.32 | 715 | 7   | 0.06 | 5          | 390 | 4  | 15      | <20 |     | <0.01 | <10      | 19 | <10 | 1  | 29          |
|     | 2        | 111312 | 10      | 0.4  | 0.98 |    |     | -        | 2.97    | <1            | 8      | 40       | 52          | 2.39 | <10 | 0.39 | 592 | 4   | 0.09 | 5          | 670 | 4  | 10      | <20 | 117 | 0.02  | <10      | 26 | <10 | <1 | 26          |
|     | 3        | 111313 | 10      | 0.4  | 1.23 | 10 | 60  | <5<br>~5 |         | <1            | ŏ      | 62       | 79          | 2.73 | <10 | 0.65 | 585 |     | 0.06 | 7          | 620 | 6  | 5       | <20 | 55  | 0.03  | <10      | 35 | 10  | <1 | 33          |
|     | 4        | 111314 | 10      | <0.2 | 1.60 | <5 | 80  | <5<br><5 | 2.42    |               | 9<br>2 | 159      | 28          | 0.74 | <10 | 0.11 | 129 |     | 0.03 | 6          | 90  | <2 | <5      | <20 | 3   | 0.02  | <10      | 9  | <10 | <1 | 2           |
|     | 5        | 111315 | 85      | <0.2 | 0.33 | <5 | 35  | <5       | 0.28    | <1            | 4      | 159      | 20          | 0.74 | -10 | 0.11 | 140 | -   |      | -          |     |    |         |     |     |       |          |    |     |    | #5          |
|     |          |        |         |      |      | _  |     |          | 4 00    |               | 20     | 00       | 228         | 2.86 | <10 | 0.43 | 356 | 16  | 0.07 | 7          | 340 | 4  | <5      | <20 | 32  | 0.04  | <10      | 27 | 10  | <1 | 19          |
|     | 6        | 111316 |         | <0.2 |      | <5 | 35  | <5       | 1.20    | <1            | 20     | 88       |             |      | <10 | 0.43 | 575 | 103 | 0.07 | 3          | 510 | 6  | 10      | <20 | 112 | 0.04  | <10      | 31 | <10 | <1 | 26          |
|     | 7        | 111317 | 5       | <0.2 | 1.22 | <5 | 145 | <5       | 2.99    | <1            | 5      | 49       | 48          | 2.05 |     | 0.55 | 483 | 109 | 0.10 | 5          | 450 | Ř  | <5      | <20 | 63  | 0.07  | <10      | 32 | <10 | <1 | 24          |
|     | 8        | 111318 | 5       | <0.2 | 1.46 | <5 | 80  | ્ <5     | 1.41    | <1            | 7      | 72       | 79          | 2.13 | <10 |      |     | 9   | 0.06 | 5          | 490 | A  | <5      | <20 | 46  | 0.04  | <10      | 30 | 10  | 1  | 25          |
|     | 9        | 111319 | 10      | <0.2 | 1.36 | 5  | 115 | <5       | 1.79    | <1            | 6      | 71       | 43          | 2.01 | <10 | 0.61 | 444 | -   |      | 4          | 760 | 8  | 10      | <20 | 56  | 0.09  | <10      | 52 | <10 | 1  | 37          |
|     | 10       | 111320 | 5       | <0.2 | 1.63 | 5  | 130 | 5        | 1.83    | <1            | 9      | 56       | 44          | 2.50 | <10 | 0.78 | 672 | 10  | 0.11 | 4          | 700 | 0  | 10      | ~20 | 00  | 0.00  |          |    |     |    |             |
|     |          |        |         |      |      |    |     |          |         |               |        |          |             |      |     |      |     | 40  | 0.00 | c          | 380 |    | <5      | <20 | 100 | 0.06  | <10      | 36 | 10  | <1 | 19          |
| ÷ . | 11       | 111321 | 5       | <0.2 | 0.99 | <5 | 100 | <5       | 1.27    | <1            | 6      | 85       | 57          | 1.66 | <10 | 0.44 | 382 | 10  | 0.06 | - 0<br>- E |     | 4  | -5      | <20 |     | 0.04  | <10      | 26 | <10 | <1 | 181         |
|     | 12       | 111322 | 5       | <0.2 | 0.95 | 35 | 45  | <5       | 1.51    | <u> &lt;1</u> | 7      | <u> </u> | 124         | 1.68 | <10 | 0.34 | 389 |     | 0.07 |            | 470 | 4  | <u></u> | <20 | 113 | 0.02  | <10      | 27 | <10 | <1 | 28          |
|     | 13       | 111323 | 5       | 0.4  | 1.49 | 10 | 85  | <5       | 3.07    | <1            | 6      | 62       | 32          | 2.09 | <10 | 0.68 | 622 |     |      | 4          | 570 | 4  | +       |     | 63  | 0.02  | <10      | 33 | <10 | 1  | 31 #6       |
|     | 14       | 111324 | 5       | <0.2 | 1.53 | <5 | 140 | <5       | 2.32    | <1            | 6      | 51       | 34          | 2.22 | <10 | 0.71 | 633 |     | 0.07 | 4          | 610 | 6  | <5      | <20 |     | 0.05  | <10      | 30 | <10 | <1 | 31          |
|     | 15       | 111325 |         | <0.2 | 1.47 | <5 | 110 | <5       | 1.91    | <1            | 7      | 66       | 33          | 2.10 | <10 | 0.73 | 698 | 8   | 0.07 | 4          | 580 | 8  | <5      | <20 | 64  | 0.00  | ~10      |    |     |    |             |
|     |          |        |         |      |      |    |     |          | <u></u> |               |        |          |             |      |     |      |     |     |      |            |     |    |         | -00 |     | 0.06  | <10      | 30 | <10 | <1 | 32 · 3 m    |
|     | 16       | 111461 | 25      | 0.2  | 0.77 | 10 | 115 | <5       | 0.25    | <1            | 6      | 79       | 52          | 1.89 | <10 | 0.49 | 292 | _   | 0.06 | 5          | 470 | 14 | <5      | <20 | 32  |       | <10      | 37 | <10 | 1  | 201.2 m any |
| Q.  | 17/      | 111462 | 155     | 0.6  | 0.78 | 60 | 90  | <5       | 0.16    | <1            | 10     | 119      | 374         | 1.94 | <10 | 0.40 | 183 | 8   | 0.03 | 4          | 460 | 4  | <5      | <20 | 2   | 0.08  |          |    |     | -4 | 4 CHIKADER  |
| W.  | 4        | 111463 | >1000   | 1.2  | 0.50 | 25 | 35  | <5       | 0.16    | <1            | 8      | 119      | <b>19</b> 1 | 2.33 | <10 | 0.13 | 136 | 92  | 0.04 | 4          | 140 | <2 | <5      | <20 | 8   | 0.02  | <10      | 12 | 10  | <1 | •           |
| ų,  |          |        | >1000   | 1.4  | 0.63 | 65 | 80  | <5       | 0.12    | <1            | 15     | 131      | 308         | 3.11 | <10 | 0.23 | 341 | 38  | 0.03 | 10         | 280 | 4  | <5      | <20 | 3   | 0.10  | <10      | 23 | <10 | <1 |             |
| S   | 19 (     | 111464 |         | <0.2 | 1.12 | 10 | 75  | <5       | 0.30    | <1            | 6      | 65       | 66          | 2.13 | <10 | 0.59 | 276 | 5   | 0.07 | 5          | 550 | 8  | <5      | <20 | 39  | 0.07  | <10      | 36 | <10 | 1  | 24 NEWV     |
| 4   | 20)      | 111465 | 10      | ~v.z | 1.12 | 10 |     | -0       | 0.00    | •             | 5      |          |             |      |     |      |     |     |      |            |     |    |         |     |     |       |          |    |     |    |             |

## ICP CERTIFICATE OF ANALYSIS AK 98-243

~~~

#### ORKO GOLD CORP. 436-470 GRANVILLE STREET VANCOUVER, BC

#### ATTENTION: E. LIVGARD

No. of samples received: 20 Sample type: Rock PROJECT #: Bonaparte SHIPMENT #: None Given Samples submitted by: Ed. Frey

Page 1

#### 29-Jun-98

7 ° 1

.

....

i.

. 1

÷.,

....

٤.

df/234

XLS/98

#### ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

#### Phone: 250-573-5700 Fax : 250-573-4557

#### ICP CERTIFICATE OF ANALYSIS AK 98-248

ORKO GOLD CORP. 436-470 GRANVILLE STREET VANCOUVER, BC

#### ATTENTION: E. LIVGARD

No. of samples received:13 Sample type:Core PROJECT #: Bonaparte SHIPMENT #:None given Samples submitted by: Bonaparte

Values in ppm unless otherwise reported

| Et #.                                               | Tag #                                                                | Au(ppb)          | Ag                | AI %                 | As             | Ba              | Bi             | Ca %                 | Cd             | Co           | Cr              | Cu             | Fe %                 | La                | Mg %         | Mn                | Мо               | Na %                 | Ni           | P                 | Pb             | Sb            | Sn                | Sr       | Ti %           | U                 | <u>v</u>     | W                         | Y           | Zn             |
|-----------------------------------------------------|----------------------------------------------------------------------|------------------|-------------------|----------------------|----------------|-----------------|----------------|----------------------|----------------|--------------|-----------------|----------------|----------------------|-------------------|--------------|-------------------|------------------|----------------------|--------------|-------------------|----------------|---------------|-------------------|----------|----------------|-------------------|--------------|---------------------------|-------------|----------------|
| • 1                                                 | 111326                                                               | 15               | 0.2               | 0.46                 | 15             | 65              | <5             | 4.33                 | <1             | 8            | 107             | 68             | 1.17                 | <10               | 0.21         | 768               | 154              | 0.02                 | 5            | 270               | <2             | <5            | <20               | 79       | < 0.01         | <10               | 8            | 20                        | 2           | 15             |
| 12                                                  | 111327                                                               | >1000            | 6.6               | 0.34                 | 15             | 40              | <5             | 6.29                 | 3              | 24           | 114             | 2687           | 2.09                 | <10               | 0.12         | 760               | 12               | 0.02                 | 7            | 190               | <2             | <5            | <20               | 129      | <0.01          | <10               | 5            | <10                       | 3           | 56 /           |
| 3                                                   | 111328                                                               | >1000            | 1.6               | 0.33                 | 60             | 30              | <5             | 0.18                 | <1             | 18           | 136             | 162            | 1.79                 | <10               | 0.11         | 174               | 5                | 0.02                 | 7            | 90                | <2             | <5            | <20               | 9        | <0.01          | <10               | 5            | <10                       | <1          | 7 120          |
| / 4                                                 | 111329                                                               | 20               | <0.2              | 1.42                 | <5             | 95              | <5             | 3.11                 | <1             | 7            | 69              | 64             | 2.32                 | <10               | 0.74         | 782               | 16               | 0.09                 | 5            | 610               | 4              | 10            | <20               | 71       | 0.08           | <10               | 45           | <10                       | 3           | 34             |
| 1 5                                                 | 111330                                                               | 30               | <0.2              | 0.68                 | 10             | 50              | <5             | 2.45                 | <1             | 5            | 94              | 67             | 1.97                 | <10               | 0.54         | 510               | 8                | 0.06                 | 5            | 540               | 4              | 10            | <20               | 94       | 0.03           | <10               | 33           | 10                        | 1           | 39             |
| 6                                                   | _111331                                                              | 25               | <0.2              | 1.96                 | 10             | 110             | 15             | 2.01                 | <1             | 12           | 68              | 9              | 3.78                 | 10                | 1.22         | 722               | <1               | 0.09                 | 3            | 1130              | 4              | <5            | <20               | 66       | 0.22           | <10               | 101_         | <10                       | 4           | 61             |
| 1                                                   | 111335                                                               | 5                | <0.2              | 1.05                 | 10             | 50              | <5             | 0.59                 | 2              | 15           | 79              | 162            | 3.02                 | <10               | 0.56         | 282               | 48               | 0.10                 | 59           | 670               | <2             | <5            | <20               | 36       | 0.10           | <10               | 95           | <10                       | 2           | 187            |
| 8                                                   | 111336                                                               | 5                | <0.2              | 0.89                 | 10             | 35              | <5             | 0.67                 | 5              | 14           | 92              | 165            | 2.78                 | <10               | 0.26         | 241               | 79               | 0.12                 | 64           | 670               | <2             | <5            | <20               | 42       | 0.08           | <10               | 72           | <10                       | 3           | 308            |
| 9                                                   | 111337                                                               | 5                |                   |                      | 10             | 40              | <5             | 0.78                 | 7              | 15           | 82              | 216            | 3.06                 | <10               | 0.39         | 242               | 144              | 0.11                 | 72           | 770               | <2             | <5            | <20               | 38       | 0.08           | <10               | 105          | <10                       | 2           | 430<br>205 AU  |
| 10                                                  | 111338                                                               | 10               |                   |                      | 10             | 55              | <5             | 0.97                 | 2              | 14           | 122             | 237            | 3.33                 | <10               | 0.83         | 503               | 409              | 0.15                 | 60           | 700               | 2              | 5             | <20               | 48       | 0.12           | <10               | 147          | <10                       | 3           | 205            |
| 11                                                  | 111339                                                               | 5                |                   | 2.50                 | 15             | 50              | <5             | 1.37                 | <1             | 25           | 118             | 254            | 4.62                 | <10               | 1.56         | 727               | 102              | 0.18                 | 67           | 1230              | <2             | <5            | <20               | 55       | 0.16           | <10               | 181          | <10                       | 1           | 140 14 7.1     |
| 12                                                  | 111340                                                               | •                | <0.2              | 3.18                 | 10             | 65              | <5             | 1.28                 | <1             | 30           | 168             | 223            | 5.26                 | <10               | 2.30         | 839               | 68               | 0.18                 | 82           | 1400              | 4              | 5             | <20               | 54       | 0.19           | <10               | 212          | <10                       | <1          | 149 🗶 🖊        |
| 13                                                  | 111341                                                               |                  | <0.2              |                      | 20             | 45              | -<br>          | 0.54                 | 2              | 34           | 96              | 373            | 6.72                 | <10               | 2.77         | 1131              | 9                | 0.12                 | 71           | 600               | 6              | <5            | <20               | 20       | 0.24           | <10               | 287          | <10                       | <1          | 303            |
| QC D/<br>Respi<br>1<br>Repea<br>1<br>Stand<br>GEO'9 | ATA:<br><i>it:</i><br>111326<br><i>it:</i><br>111326<br><i>iard:</i> | <br>10<br>15<br> | 0.4<br>0.2<br>1.4 | 0.45<br>0.46<br>1.80 | 20<br>20<br>60 | 55<br>55<br>155 | <5<br><5<br><5 | 4.38<br>4.33<br>1.80 | <1<br><1<br><1 | 8<br>8<br>19 | 87<br>109<br>66 | 61<br>71<br>78 | 1.19<br>1.18<br>3.89 | <10<br><10<br><10 | 0.21<br>0.21 | 796<br>763<br>669 | 144<br>161<br><1 | 0.02<br>0.03<br>0.03 | 5<br>6<br>24 | 260<br>280<br>620 | <2<br><2<br>20 | <5<br>5<br>10 | <20<br><20<br><20 | 73<br>54 | <0.01<br><0.01 | <10<br><10<br><10 | 9<br>8<br>75 | 20<br>20<br><10<br>S LTD. | 3<br>2<br>5 | 16<br>16<br>69 |

ECD-TECH LABORATORIES LTD. Per Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

|     | ORKO    | GOLD COI | RP.     |      |      |     |     |      |      | ,  | le | CP CEI | RTIFIC | ATE OI |     | YSIS / | AK 98-3 | 313 |      |    |              |    |              | •   | I   | ECO-TE | CH LA | BORA <sup>-</sup> | TORIES | LTD. |     |
|-----|---------|----------|---------|------|------|-----|-----|------|------|----|----|--------|--------|--------|-----|--------|---------|-----|------|----|--------------|----|--------------|-----|-----|--------|-------|-------------------|--------|------|-----|
|     | Et #.   | Tag #    | Au(ppb) | Ag   | AI % | As  | Ba  | Bi   | Ca % | Cd | Co | Cr     | Cu     | Fe %   | La  | Mg %   | Mn      | Мо  | Na % | Ni | P            | Pb | Sb           | Sn  | Sr  | Ti %   | U     | v                 | w      | Y    | Zn  |
| . A |         | 113725   | 10      | <0.2 | 1.43 | 105 | 45  | <5   | 0.89 | 6  | 15 | 106    | 244    | 4.23   | <10 | 0.71   | 465     | 113 | 0.12 | 68 | 770          | 8  | <5           | <20 | 42  | 0.09   | <10   | 194               | <10    | 5    | 351 |
| 00  | 57      | 113726   | 10      | <0.2 | 1.36 | 135 | 50  | <5   | 1.23 | 1  | 14 | 113    | 170    | 3.35   | <10 | 0.71   | 416     | 88  | 0.08 | 64 | 690          | 10 | 5            | <20 | 53  | 0.09   | <10   | 201               | <10    | 5    | 113 |
|     |         | TA:      |         |      |      |     |     |      |      |    |    |        |        |        |     |        |         |     |      |    |              |    |              |     |     |        |       |                   |        |      |     |
|     | Resplit | :        |         |      |      |     |     |      |      |    |    |        |        |        |     |        |         |     |      |    |              |    |              |     |     |        |       |                   |        |      |     |
|     | 1       | 113666   | 5       | <0.2 | 1.15 | <5  | 160 | 85   | 2.26 | <1 | 8  | 78     | 72     | 2.03   | <10 | 0.45   | 425     | 31  | 0.05 | 5  | <b>470</b> ` | 6  | <5           | <20 | 111 | 0.03   | <10   | 22                | <10    | 2    | 26  |
|     | 36      | 113705   | 65      | <0.2 | 1.65 | 15  | 60  | <5   | 1.71 | <1 | 17 | 175    | 167    | 3.40   | <10 | 0.68   | 465     | 123 | 0.16 | 63 | 1040         | 10 | <5           | <20 | 62  | 0.12   | <10   | 116               | <10    | 6    | 71  |
|     | Repeat  | <b>:</b> |         |      |      |     |     |      |      |    |    |        |        |        |     |        |         |     |      |    |              |    |              |     |     |        |       |                   |        |      |     |
|     | 1       | 113666   | 5       | <0.2 | 1.16 | 10  | 160 | 45   | 2.39 | <1 | 8  | 72     | 71     | 2.00   | <10 | 0.46   | 437     | 31  | 0.04 | 3  | 480          | 6  | <5           | <20 | 115 | 0.02   | <10   | 21                | <10    | 2    | 28  |
|     | 10      | 113675   | 5       | 0.8  | 1.06 | 10  | 190 | <5   | 9.75 | <1 | 5  | 32     | 200    | 1.63   | <10 | 0.52   | 1814    | 15  | 0.03 | 2  | 620          | 4  | 10           | <20 | 107 | <0.01  | <10   | 23                | <10    | 4    | 28  |
|     | 19      | 113685   | 5       | <0.2 | 0.99 | 10  | 70  | <5   | 6.24 | <1 | 8  | 78     | 111    | 2.10   | <10 | 0.56   | 990     | 40  | 0.04 | 5  | 500          | 4  | 5            | <20 | 96  | 0.05   | <10   | 37                | 10     | 4    | 25  |
|     | 31      | 113697   | 10      | -    | -    | -   | -   | -    | -    | -  | -  | -      | -      | -      | -   | -      | -       | -   | -    | -  | -            | -  | -            | -   | -   | -      | -     |                   | -      | -    | -   |
|     | 36      | 113705   | -       | <0.2 | 1.63 | 10  | 60  | <5   | 1.69 | <1 | 15 | 172    | 157    | 3.26   | <10 | 0.68   | 456     | 118 | 0.15 | 62 | 1020         | 8  | <5           | <20 | 63  | 0.11   | <10   | 114               | <10    | - 5  | 70  |
|     | 40      | 113709   | 5       | -    |      | -   | -   | -    | -    | -  | -  | -      | -      | -      | -   | -      | -       | -   | -    | -  | -            | -  | -            | -   | -   | -      |       | -                 | ~      | -    | -   |
| •   | 45      | 113714   | •       | <0.2 | 1.86 | 10  | 45  | · <5 | 0.87 | 2  | 15 | 122    | 153    | 3.36   | <10 | 0.78   | 364     | 89  | 0.15 | 70 | 790          | 14 | <5           | <20 | 48  | 0.09   | <10   | 221               | <10    | 6    | 139 |
|     | Standa  | ard:     |         |      |      |     |     |      |      |    |    |        |        |        |     |        |         |     |      |    |              |    |              |     |     |        |       |                   |        |      |     |
|     | GEO'98  |          | 125     | 1.0  | 1.80 | 65  | 165 | 5    | 1.85 | <1 | 19 | 65     | 78     | 3.88   | <10 | 0.96   | 658     | <1  | 0.03 | 24 | 660          | 26 | 5            | <20 | 53  |        | <10   | 71                | <10    | 5    | 74  |
|     | GEO'98  |          | 130     | 1.0  | 1.70 | 65  | 160 | 10   | 1.90 | <1 | 20 | 61     | 78     | 4.07   | <10 | 0.98   | 670     | 1   | 0.02 | 22 | 710          | 22 | <b>&lt;5</b> | <20 | 56  | 0.12   | <10   | 77                | <10    | 6    | 79  |

df/307 XLS/98

、 I

.

k.....

- 10

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer DY

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

#### Phone: 250-573-5700 Fax : 250-573-4557

# ICP CERTIFICATE OF ANALYSIS AK 98-310

ORKO GOLD CORP. 436-470 GRANVILLE STREET VANCOUVER, BC

#### ATTENTION: E. LIVGARD

#### No. of samples received:19 Sample type: CORE PROJECT #: None Given SHIPMENT #: None Given Samples submitted by: Orko Gold

Values in ppm unless otherwise reported

|     | 11 A 44      | Tee #  | Au(mh)  | ٨٩    | AI %  | As           | Ba       | Bi C | a %  | Cd  | Co              | Cr  | Cu  | Fe % | La I | Vig % | Mn   | Mo N | Na % | Ni | P   | Pb | Sb_ | Sn    | Sr  | Ti %  | U   | <u>v</u> | W   | Y  | Zn |          |
|-----|--------------|--------|---------|-------|-------|--------------|----------|------|------|-----|-----------------|-----|-----|------|------|-------|------|------|------|----|-----|----|-----|-------|-----|-------|-----|----------|-----|----|----|----------|
| :   | <u>Et #.</u> | Tag #  | Au(ppb) |       |       | 155          | 35       | <5   |      | <1  | 16              | 114 | 318 | 2.87 |      | 0.12  | 225  | 156  | 0.03 | 4  | 110 | 14 | <5  | <20   | 21  | 0.01  | <10 | 12       | <10 | <1 | 19 |          |
| sh  | 1            | 111447 | 15      | 0.6   | 0.30  |              | 60       |      | 1.79 | <1  | 8               | 93  | 121 | 2.00 | <10  | 0.55  | 467  | 51   | 0.07 | 3  | 480 | 24 | 15  | <20   | 41  | 0.05  | <10 | 31       | <10 | 2  | 34 |          |
| 010 | 2            | 111448 | 10      | 0.2   | 1.08  | 300          | 35       |      | 8.23 | <1  | Ă               | 69  | 31  | 1.32 | <10  | 0.29  | 1051 | 95   | 0.03 | 2  | 490 | 4  | 5   | <20   | 219 | <0.01 | <10 | 5        | 10  | 7  | 24 |          |
|     | 3            | 111449 | 35      | <0.2  | 0.25  | 30           |          | •    | 1.40 | <1  | 10              | 69  | 149 | 1.86 | <10  | 0.33  | 310  | 19   | 0.08 | 3  | 420 | 8  | <5  | <20   | 50  | 0.03  | <10 | 20       | 10  | 1  | 29 | 10       |
| #10 | 4            | 111450 | 40      | <0.2  | 0.96  | 55           | 65<br>65 |      | 1.79 | <1  | 7               | 86  | 121 | 1.88 |      | 0.40  | 356  |      | 0.07 | 4  | 520 | 8  | 5   | <20   | 49  | 0.03  | <10 | 21       | 10  | 1  | 28 | 0/,      |
| •   | 5            | 113651 | 5       | <0.2  | 0.99  | 10           | 55       | -0   | 1.79 |     | ,               |     |     |      |      |       |      |      |      |    |     |    |     |       |     |       |     |          |     |    |    | ¥ `      |
|     | _            |        |         | .0.0  | 4.04  | -5           | 130      | 5    | 2.13 | <1  | 6               | 61  | 29  | 2.05 | <10  | 0.62  | 491  | 14   | 0.06 | 4  | 560 | 8  | 10  | <20   | 65  | 0.04  | <10 | 31       | 10  | 2  | 33 | 9        |
|     | 6            | 113652 | 65      | <0.2  | 1.21  | <5           |          |      | 1.93 | <1  | 8               | 57  | 101 | 2.60 | <10  | 0.41  | 484  |      | 0.04 | 1  | 620 | 8  | 5   | <20   | 40  | 0.01  | <10 | 35       | 10  | 1  | 40 | a        |
|     | 7            | 113653 | 35      | <0.2  | 0.98  | 30           | 50<br>65 |      | 1.46 | <1  | 12              | 74  | 156 | 2.18 | <10  | 0.43  | 370  | 48   | 0.04 | 4  | 390 | 6  | <5  | · <20 | 42  | 0.02  | <10 | 20       | 10  | 1  | 26 | 15       |
|     | 8            | 113654 | 10      | <0.2  | 0.87  | 35           | 65<br>60 |      | 1.97 | <1  | ۲ <u>د</u><br>۵ | 75  | 85  | 2.12 | <10  | 0.56  | 513  | 6    | 0.04 | 3  | 510 | 8  | <5  | <20   | 32  | 0.02  | <10 | 27       | 10  | 2  | 32 | u V      |
| ļ   | 9            | 113655 | 5       | <0.2  | 0.97  | <5           | 60       |      | 2.16 | <1  | 8               | 95  | 54  | 2.04 | <10  | 0.50  | 488  |      | 0.04 | 4  | 470 | 6  | <5  | <20   | 44  | 0.02  | <10 | 20       | <10 | 2  | 29 | X        |
|     | 10           | 113656 | 15      | 0.2   | 0.98  | 5            | 75       | <5   | 2.10 | ~ 1 | 0               | 55  | 04  | 2.01 |      |       |      | . –  |      |    |     |    |     |       |     |       |     |          |     |    | •  |          |
|     |              |        | -       | -0.0  | A 44  | =            | 85       | <5   | 0.95 | <1  | 7               | 102 | 230 | 1.75 | <10  | 0.38  | 340  | 8    | 0.05 | 4  | 390 | 8  | <5  | <20   | 32  | 0.03  | <10 | 24       | 40  | 2  | 26 |          |
|     | 11           | 113657 | -       | < 0.2 | 0.82  | 5<br>-5      | 125      |      | 2,52 | <1  | 6               | 84  | 25  | 1.92 | <10  | 0.64  | 605  | 3    | 0.10 | 4  | 580 | 10 | 5   | <20   | 77  | 0.05  | <10 | 26       | 10  | 2  | 31 |          |
|     | 12           | 113658 | 5       |       | 1.58  | <5<br><5     |          |      | 2.70 | <1  | e<br>e          | 53  | 19  | 2.06 | <10  | 0.67  | 681  | 2    | 0.08 | 4  | 590 | 8  | 5   | <20   | 64  | 0.08  | <10 | 40       | 10  | 4  | 33 |          |
|     | 13           | 113659 | 5       | <0.2  | 1.40  | <5           | 140      |      | 2.21 | <1  | 5               | 96  | 28  | 1.57 | <10  | 0.50  | 542  | 76   | 0.10 | 3  | 500 | 10 | <5  | <20   | 81  | 0.06  | <10 | 24       | <10 | 2  | 22 |          |
|     | 14           | 113660 | 20      | <0.2  | 1.35  | 5            | 145      |      |      |     | 7               | 65  | 120 | 1.88 | <10  | 0.33  | 436  |      | 0.07 | 4  | 540 | 6  | <5  | <20   | 44  | 0.04  | <10 | 29       | 10  | <1 | 25 |          |
| 1   | 15           | 113661 | 10      | <0.2  | 0.83  | 10           | 40       | <5   | 1.58 | <1  | 1               | 05  | 120 | 1.00 | 10   | 0.00  | .00  |      |      |    |     |    |     |       |     |       |     |          |     |    |    |          |
|     |              |        | -       |       | ~ ~ ~ | - <b>1</b> 7 | 20       | ~E   | 2.01 | <1  | 5               | 242 | 64  | 1.24 | <10  | 0.19  | 307  | 29   | 0.03 | 5  | 210 | 2  | <5  | <20   | 23  | 0.01  | <10 | 13       | 10  | <1 | 10 |          |
|     | 16           | 113662 | _       | <0.2  |       | <5           | 60       | -    |      | <1  | 6               | 32  | 22  | 1.99 | <10  | 0.65  | 687  |      | 0.04 | 3  | 630 | 8  | 10  | <20   | 57  | 0.03  | <10 | 30       | 10  | 3  | 32 |          |
|     | 17           | 113663 |         | <0.2  |       | <5           | 125      |      | 3.69 |     | 18              | 98  | 57  | 3.77 | <10  | 1.12  | 785  |      | 0.06 | 36 | 570 | 16 | <5  | <20   | 19  | 0.22  | <10 | 86       | 10  | 5  | 87 | 0.       |
| 100 | 18           | 113664 |         | <0.2  |       | 15           | 165      | _    | 0.38 | <1  | 6               | 105 | 63  | 1.66 | <10  | 0.28  | 408  | 44   | 0.03 | 4  | 340 | 6  | <5  | <20   | 26  | 0.02  | <10 | 15       | 10  | 2  | 24 | $\chi V$ |
| 1 1 | 19           | 113665 | 25      | <0.2  | 0.72  | 50           | 90       | <5   | 1.09 | <1  | 0               | 105 | ŲŪ  | 1.00 | -10  | 0.20  |      |      |      |    |     |    |     |       |     |       |     |          |     |    |    | .07      |
| #2  | )            |        |         |       |       |              |          |      |      |     |                 |     |     |      |      |       |      |      |      |    |     |    |     |       |     |       |     | -        |     |    |    | AV.      |

ECO-TECH LABORATORIES LTD.

.

ICP CERTIFICATE OF ANALYSIS AK 98-313

V

ORKO COL D CORP.

r \_\_\_}

|                  | ORKO                     | GOLD COI | RP.                                                                                                            |        |             |      |      |      |                  |    |     |     |      |        |       |        |                 |       |        |    | _        | -  | <b>0</b> 1- | <b>e</b> - | Sr 1 | ri %   | U   | v                  | W   | Y       | Zn       |            |
|------------------|--------------------------|----------|----------------------------------------------------------------------------------------------------------------|--------|-------------|------|------|------|------------------|----|-----|-----|------|--------|-------|--------|-----------------|-------|--------|----|----------|----|-------------|------------|------|--------|-----|--------------------|-----|---------|----------|------------|
| •                |                          |          |                                                                                                                |        |             |      | -    |      | <b>5- 8/</b>     | Cd | Co  | Cr  | Cu   | Fe %   | La M  | lg %   | Mn              | Mo N  | la %   | Ni | <u> </u> | Pb |             | Sn         |      |        |     | 21                 | 10  | 2       | 20       |            |
| 1                | Et #.                    | Tag #    | Au(ppb)                                                                                                        | Ag     | <u>AI %</u> | As   | Ba   | Bi ( |                  |    |     | 77  |      | 2.21   |       |        | 657             | 16    | 0.10   | 3  | 570      | 6  | -           |            |      |        | <10 |                    | 10  | 3       | 28       |            |
|                  | 202 21                   | 113687   | 5                                                                                                              | <0.2   | 1.17        | 15   | 55   |      | 3.32             | <1 | 8   |     |      |        |       | -      | 798             | 8     | 0.04   | 5  | 470      | 4  | <5 ·        | <20 ^      |      | 0.00   | <10 | 18                 |     |         | 85       |            |
| 11               | 26 21<br>22              | 113688   | 20                                                                                                             | 0.2    | 0.76        | 55   | 65   | <5   | 4.26             | <1 | 11  | 76  |      | 2.25   |       | ••••   | 765             | 7     | 0.05   | 24 | 540      | 10 | <5          | <20        | 19 ( | 0.20   |     |                    | <10 | 8.      | •        | <b>A</b> . |
|                  | LIV22                    | 113689   | 5                                                                                                              | <0.2   | 2.08        | <5   | 100  | <5   | 0.74             | <1 | 19  | 98  | 164  | 4.67   | • -   |        |                 |       | 0.05   | 20 | 480      | 10 | <5          | <20        | 6    | 0.17   | <10 |                    | <10 | 7       | 77       | V          |
|                  | 122<br>122<br>23         | 113009   | -                                                                                                              | <0.2   | 1.61        | 5    | 75   | 5    | 0.28             | <1 | 16  | 95  | 84   | 3.75   | • -   |        | 652             |       |        | 30 | 460      | 2  | 10          | <20        | 142  | 0.03   | <10 | 33                 | <10 | 8       | 58 J     |            |
|                  | 24                       | 112090   | 5                                                                                                              |        |             | 25   | 95   |      | 2.77             | <1 | 12  | 67  | 163  | 3.96   | <10   | 0.87 1 | 1235            | 20    | 0.03   | 30 | 400      | -  |             |            |      |        |     |                    |     |         | XX.      |            |
| . F              | 25                       | 113691   | 160                                                                                                            | 0.2    | 0.69        | 20   | 00   |      |                  |    |     |     |      |        |       |        |                 |       |        | _  |          | •  | ~E          | <20        | 42   | 0.03   | <10 | 39                 | <10 | 3       | 54 A     |            |
|                  |                          |          |                                                                                                                |        |             |      |      | ~E   | 1.35             | 1  | 15  | 68  | 1000 | 3.14   | <10   | 0.47   | 580             | 16    | 0.04   | 4  | 490      | 6  | -           |            |      | 0.09   | <10 |                    | <10 | 4       | 50 C.Y   |            |
| ή.               | 26                       | 113692   | >1000                                                                                                          | 2.8    | 0.92        | <5   | 60   |      |                  | <1 | 17  | 57  | 328  | 3.88   | <10   | 1.18   | 874             | 15    | 0.05   | 7  | 810      | 8  | -           | <20        |      |        | <10 | 22                 | 10  | 2       | 50<br>15 |            |
|                  | 27                       | 113693   | 5                                                                                                              | <0.2   | 1.82        | 10   | 85   | <5   | 3.11             | -  | _   | 109 | 55   | 1.32   | <10   | 0.29   | 319             | 7     | 0.07   | 5  | 290      | 4  | <5          | <20        |      | 0.03   |     |                    | 20  | 4       | 26       |            |
| . ;              | 28                       | 113694   | 5                                                                                                              | <0.2   | 0.75        | 5    | 50   |      | 1.29             | <1 | 5   |     |      | 2.05   | • -   | 0.49   | 823             | 95    | 0.04   | 3  | 470      | 4  | 5           | <20        |      | 0.02   | <10 | 24                 |     | 5       | 42       |            |
|                  | 29                       | 113695   | 20                                                                                                             | <0.2   | 0.86        | 200  | 70   | <5   | 6.1 <del>9</del> | <1 | ſ   | 67  | 103  |        | • -   | 0.86   | 892             |       | 0.06   | 5  | 710      | 6  | <5          | <20        | 39   | 0.10   | <10 | 70                 | 10  | 5       | 76       |            |
| · ]              |                          | 113696   | >1000                                                                                                          | <0.2   |             | 75   | 120  | <5   | 2.93             | <1 | 11  | 65  | 153  | 2.78   | ~10   | 0.00   | 004             | 20    | ••••   |    |          |    |             |            |      |        |     |                    |     | ~       | 00       |            |
|                  | 30                       | 112080   | - 1000                                                                                                         |        |             |      |      |      |                  |    |     |     |      |        | .40   | 0.00   | 607             | 60    | 0.06   | 6  | 570      | 6  | 5           | <20        | 61   | 0.06   | <10 | <u>    55     </u> | <10 |         | 36       |            |
| 2.1<br>:         |                          | 440007   | 10                                                                                                             | <0.2   | 1.35        | 5    | 135  | <5   | 2.30             | <1 | 10  | 59  |      | 2.33   |       | 0.86   | 607             | 73    | 0.00   | 64 | 810      | 4  | <5          | <20        | 46   | 0.06   | <10 | 51                 | <10 | 4       | 62       |            |
| 1 - L            | 31                       | 113697   | the second s |        |             | 20   | 45   | <5   | 0.92             | <1 | 13  | 91  | 131  | 2.60   | • -   | 0.24   | 220             |       |        | 62 | 730      | 2  | <5          | <20        | 19   | 0.06   | <10 | 57                 | <10 | 3       | 58       |            |
|                  | 32                       | 113701   | 10                                                                                                             |        | _           | <5   | 35   | <5   | 0.67             | <1 | 14  | 76  | 165  | 2.90   | <10   | 0.21   | 17 <del>9</del> | 141   | 0.08   |    |          | 8  | <5          | <20        |      | 0.08   | <10 | 138                | <10 | 5       | 100      |            |
|                  | 33                       | 113702   | 5                                                                                                              |        |             | -    |      | <5   | 0.85             | <1 | 14  | 158 | 127  | 3.16   | <10   | 0.92   | 390             | 51    | 0.14   | 68 | 880      | -  |             | <20        | 14   | 0.09   | <10 | 123                | <10 | 3       | 75       |            |
| • •              | Ab 34                    | 113703   | 5                                                                                                              | <0.2   |             | <5   | 65   |      | 0.72             | <1 | 14  | 163 | 134  | 2.90   | <10   | 0.58   | 319             | 66    | 0.07   | 69 | 710      | 6  | <5          | . ~20      | 14   | 0.00   |     |                    |     |         |          |            |
|                  | $\mathcal{A}^{433}_{34}$ | 113704   | 5                                                                                                              | <0.2   | 0.82        | 10   | 45   | <5   | 0.74             |    | ••  |     |      | •      |       |        |                 |       |        |    |          | •  |             | -00        | 67   | 0.11   | <10 | 117                | <10 | 6       | 67       |            |
|                  | 1~1                      |          |                                                                                                                |        |             | _    |      |      | 4 70             | -1 | 16  | 173 | 163  | 3.33   | <10   | 0.70   | 464             | 120   | 0.16   | 61 | 1020     | 8  | <5          | <20        | -    | -      | <10 | 159                | <10 | 4       | 91 🔿     |            |
| ь                | <u>10 36</u>             | 113705   | 10                                                                                                             | <0.2   | 1.67        | 5    | 65   | <5   | 1.72             | <1 | • - | 119 | 169  |        | <10   | 0.71   | 395             | 154   | 0.11   | 64 | 740      | 10 | 5           | <20        | 101  | 0.09   |     |                    | <10 | 5       | 67       | 1          |
|                  | (X)D37                   | 113706   | 25                                                                                                             | <0.2   | 1.58        | 455  | 45   | <5   | 1.48             | <1 | 14  |     |      | ·      | <10   | 0.46   | 304             | 154   | 0.11   | 61 | 800      | 8  | <5          | <20        | 85   | 0.08   | <10 | 110                |     | 4       | 68       | <u>v</u> . |
| e 1 /            | 18 36<br>37<br>38        | 113707   | 5                                                                                                              | <0.2   | 1.35        | 25   | 45   | <5   | 1.20             | <1 | 14  | 107 | 200  |        | <10   | 0.42   | 275             | 128   | 0.12   | 61 | 630      | 6  | <5          | <20        | 34   | 0.08   | <10 | 107                | <10 | 5       | 80 🕅     | <b>`</b>   |
|                  |                          | 113708   | 5                                                                                                              |        |             | 10   | 45   | <5   | 1.00             | <1 | 19  | 132 | 224  |        |       | 0.81   | 646             | 176   | 0.12   | 55 | 780      | 10 | <5          | <20        | 96   | 0.10   | <10 | 165                | 10  | 5       | 00 A     |            |
| ь.               | 39                       | 113709   |                                                                                                                |        |             | 15   | 55   | <5   | 2.42             | <1 | 14  | 120 | 221  | 3.37   | <10   | U.0 1  | 040             |       | 0.12   |    |          |    |             |            |      |        |     |                    |     |         | 40 0     |            |
|                  | / 40                     | 113/08   |                                                                                                                | -0.1   |             |      |      |      |                  |    |     |     |      |        |       | 0.04   | 040             | 48    | 0.05   | 16 | 100      | <2 | <5          | <20        | 17   | 0.03   | <10 | 37                 | 10  | <1      | 18       | •          |
| * 1 <sup>7</sup> |                          |          | 10                                                                                                             | 0.4    | 0.53        | <5   | 40   | <5   | 0.58             | <1 | 17  | 145 | 538  |        | <10   | 0.21   | 240             |       |        | 59 | 650      | 8  | 10          | <20        | 26   | 0.11   | <10 | 185                | <10 | 4       | 93 ( )   |            |
|                  | 41                       | 113710   |                                                                                                                |        |             | 285  |      | <5   |                  | 1  | 14  | 125 | 218  | 3.73   | <10   |        | 515             | 418   | 0.12   | 6  | 320      | ě  | <5          | <20        | 29   | 0.05   | <10 | 33                 | <10 | 2       | 23 🗸 🔪   |            |
| I                | 42                       | 113711   | -                                                                                                              |        |             | 200  |      | <5   |                  | <1 | 7   | 96  | 97   | 1.91   | <10   | 0.43   | 367             | 28    | 0.06   | -  |          | -  | 10          | <20        | 150  | 0.08   | <10 | 169                | <10 | 5       | 125      |            |
|                  | 43                       | 113712   |                                                                                                                |        |             | -    |      | <5   |                  | 2  | 13  | 105 | 127  | 3.04   | <10   | 0.92   | 479             | 100   |        | 57 | 900      | 12 |             | <20        | 49   | 0.09   | <10 | 221                | <10 | 6       | 137      |            |
| 1                | 44                       | 113713   | , 10                                                                                                           |        |             | <5   |      | -    |                  | 2  | 14  | 120 | 152  |        | <10   | 0.79   | 361             | 86    | 0.16   | 68 | 760      | 12 | <5          | ~20        | 40   | 0.00   |     |                    |     |         |          |            |
|                  | 45                       | 113714   | i 10                                                                                                           | ) <0.2 | 2 1.88      | <5   | 45   | <5   | 0.87             | 2  | 17  | 120 |      | •      |       |        |                 |       |        |    |          |    |             |            |      | 0.00   | <10 | 166                | <10 | 8       | 87       |            |
| <b>J</b>         | •-                       |          |                                                                                                                |        |             |      |      | _    |                  |    | 4.4 | 99  | 181  | 3.27   | <10   | 0.96   | 1332            | 46    | 0.06   | 49 | 630      | 16 | 15          | <20        | 414  |        | • * | 235                | <10 | 6       | 101      |            |
| •                | 46                       | 113715   | 5 120                                                                                                          | ) <0.2 | 2 1.54      | <5   |      |      | 9.76             | 1  | 14  |     |      |        | <10   |        | 658             | 77    | 0.11   | 61 | 790      | 14 | <5          | <20        | 127  | 0.07   | <10 |                    |     | 11      | 102      |            |
|                  | 47                       |          |                                                                                                                | 5 <0.3 | 2 2.32      | . 15 | 55   | <5   | 2.23             | 1  | 14  | 123 | 168  |        | <10   |        | 1446            |       |        | 52 | 630      | 8  | 10          | <20        | 403  |        | <10 | 118                | <10 | 11<br>A | 117      |            |
|                  | • -                      |          | -                                                                                                              | 5 <0.  |             |      |      | <5   | i >10            | 1  | 12  | 83  | 14(  |        |       |        | 585             |       |        | 66 |          | 8  | <5          | <20        | 21   | 0.08   | <10 | 148                | <10 | 4       |          |            |
| ¥1               | 48                       |          |                                                                                                                | 5 <0.  |             |      | 45   | <5   | 5 1.16           | 1  | 18  | 123 | 16   |        |       |        |                 |       |        | 67 |          | 4  | 5           | <20        | 22   | 0.08   | <10 | 99                 | <10 | 3       | 111      |            |
|                  | 49                       |          |                                                                                                                | _      |             |      |      | <5   | 5 1.53           | 1  | 15  | 136 | 15   | 7 3.63 | <10   | 0.59   | 433             |       | 0.00   |    | <b></b>  | •  | _           |            |      |        |     |                    |     |         |          |            |
|                  | 50                       | ) 113719 | 9 10                                                                                                           | ) <0.  | 2 0.04      |      |      | -    |                  |    |     |     |      |        |       |        |                 |       | 0.44   | 74 | 890      | 8  | <5          | <20        | 32   | 0.10   | <10 | 130                | <10 | 5       | 203      |            |
|                  |                          |          |                                                                                                                |        |             |      | ) 40 | <5   | 5 1.29           | 2  | 15  | 126 | 15   | 3 3.74 | <10   |        |                 |       |        | 74 |          | •  | <5          | <20        | 41   |        |     | 200                | <10 | 4       | 272      |            |
|                  | 51                       |          |                                                                                                                | 5 <0.  |             |      | ,    |      |                  | _  | 16  | 146 | 13   | 9 4.05 | i <10 | 0.69   | 481             |       |        |    |          | 10 | _           |            | 20   |        |     | 132                | <10 | 5       | 175      |            |
|                  | 52                       | 2 11372  | 1 1                                                                                                            | 0 <0.  |             | _    |      |      |                  | -  | 16  |     |      |        |       | 0.36   | 321             | l 91  | 0.09   |    |          | 6  | <5          |            |      |        |     | 102                |     | 5       | 205      |            |
|                  | 53                       | 3 11372  | 21                                                                                                             | 5 <0.  |             |      |      | _    |                  | -  | • • |     |      |        |       | 0.27   | 254             | \$ 94 | 0.10   | 64 |          |    | <5          |            | 25   |        |     | 58                 |     | 5       |          |            |
|                  | 54                       |          |                                                                                                                | 5 <0.  | 2 0.79      | ) <  |      |      | _                | -  | 14  |     |      |        |       |        |                 | 3 148 | 8 0.19 | 63 | 3 710    | 8  | <5          | <20        | 62   | 2 0.07 | ×10 | 00                 | -10 | 5       |          |            |
|                  | 55                       | · · · ·  |                                                                                                                | 0 <0.  | 2 1.17      | 7 <  | 5 40 | <    | 5 1.20           | 2  | 13  | 108 | 41   | - U.+/ | -10   |        |                 |       |        |    |          |    |             |            |      |        |     |                    |     |         |          |            |
| . :              | 0.                       | ·        |                                                                                                                |        |             |      |      |      |                  |    |     |     |      |        | E     | 2 ane  |                 |       |        |    |          |    |             |            |      |        |     |                    |     |         |          |            |

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

# ICP CERTIFICATE OF ANALYSIS AK 98-313

ORKO GOLD CORP. 436-470 GRANVILLE STREET VANCOUVER, BC

# ATTENTION: E. LIVGARD

# No. of samples received: 57 Sample type: Core PROJECT #: None Given SHIPMENT #: None Given Samples submitted by: Orko Gold

Y Zn

Values in ppm unless otherwise reported

|          | Valu                 | s in ppm u                                                           | less otherv      | vise rej             | oorted                       |                            |                       |                      |                              |                                 |                                |                             |                                |                              |                                 |                               |                                  |                              |                              | <b>61</b> 2             | P                         | Pb                     | Sb                       | Sn                              | Sr Ti%                                               | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V                           | <u></u>                | <u>Y</u>              | Zn                         |          |
|----------|----------------------|----------------------------------------------------------------------|------------------|----------------------|------------------------------|----------------------------|-----------------------|----------------------|------------------------------|---------------------------------|--------------------------------|-----------------------------|--------------------------------|------------------------------|---------------------------------|-------------------------------|----------------------------------|------------------------------|------------------------------|-------------------------|---------------------------|------------------------|--------------------------|---------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------|-----------------------|----------------------------|----------|
|          | Eti                  |                                                                      | Au(ppb)          |                      | Al %                         | As                         | Ва                    | Bi                   | Ca %                         | Cd                              | Co                             | Cr                          | <del>ستجنب ج</del>             | Fe %                         |                                 | <b>lg %</b><br>0.45           | <u>Mn</u><br>443                 |                              | Na %<br>0.04                 | <u>Ni</u>               | 450                       | 6                      | 5                        |                                 | 117 0.02                                             | <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | — ·                         | <10<br><10             | 2                     | 27<br>34                   |          |
| []<br>~~ | 1                    | 113666<br>113667<br>113668                                           | 5<br>20<br>5     | _                    | 1.13<br>1.28<br>1.29         | 15<br>15<br>50             | 160<br>165<br>85      | -75<br><5<br><5      | 2.37<br>2.53<br>2.08         | <1<br><1<br><1                  | 8<br>9<br>8<br>36              | 72<br>77<br>80<br>143       | 74<br>186<br>124<br>717        | 1.99<br>2.13<br>1.93<br>3.77 | <10<br><10                      | 0.45<br>0.52<br>0.46<br><0.01 | 482<br>419<br>259                |                              | 0.05<br>0.10<br>0.01         | 5<br>2<br>5             | 420<br>450<br><10         | 6<br>4<br><2           | <5<br><5<br><5           | <20<br><20<br><20               | 71 0.04<br>77 0.04<br>3 <0.01<br>5 <0.01             | <10<br><10<br><10<br><10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 24<br>23<br>1<br>3          | <10<br><10<br>10<br>10 | 1<br><1<br><1         | 23<br>11<br>8              |          |
| ]qe      | ) 4<br>5             | 113669<br>113670                                                     | >1000<br>280     | 4.4<br>0.4           | 0.03<br>0.15                 | 35<br>25                   | 20<br>20              | <5<br><5             | 0.05<br>0.17                 | <1<br><1                        | 21                             | 133                         | 345<br>234                     | 1.90                         | <10<br><10                      | 0.04<br>0.42                  | 249<br>433                       | 19<br>7                      | 0.02<br>0.06                 | 2<br>4                  | 70<br>320                 | <2<br>4                | <5<br><5                 | <20<br><20                      | 28 0.05                                              | <10<br><10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 27<br>82                    | <10<br>10              | 2<br>8                | 28<br>56                   | B        |
|          | 6<br>B 7<br>8        | 113671<br>113672<br>113673                                           | 15<br>5<br>15    | <0.2<br><0.2<br><0.2 | 0.92<br>2.23<br>1.47         | 30<br>10<br>20<br>70       | 85<br>380<br>90<br>65 | <5<br>10<br><5<br><5 | 0.98<br>1.89<br>2.91<br>3.22 | <1<br><1<br><1<br><1            | 8<br>10<br>11<br>7             | 105<br>105<br>46<br>57      | 234<br>28<br>79<br>84          | 3.58<br>3.42<br>2.16         | 10<br>10<br><10                 | 1.08<br>0.67<br>0.57          | 744<br>845<br>641                | 5<br>11<br>21                | 0.08<br>0.04<br>0.06         | 2<br>4<br>2             | 990<br>1010<br>530<br>600 | 10<br>6<br>4<br>4      | <5<br><5<br>5<br>15      | <20<br><20<br><20<br><20        | 93 0.19<br>47 0.08<br>58 0.02<br>106 <0.01           | <10<br><10<br><10<br><10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 61<br>29<br>22              | <10<br><10<br><10      | 11<br>3<br>4          | 46<br>29<br>30             | kk<br>Pl |
|          | 9<br>10              |                                                                      | 5                | <0.2<br>0.8          | 1.11<br>1.01<br>1.10         | 10<br>10                   | 210<br>85             | <5<br><5             | 9.62                         | <1<br><1                        | 4<br>5                         | 31<br>30                    | 216<br>37                      | 1.56<br>1.67                 | <10<br><10                      | 0.50<br>0.61                  | 1784<br>512                      | 12                           | 0.03                         | 4                       | 590<br>550                | 4<br>4                 | <5<br><5                 | <20<br><20                      | 87 0.02<br>121 0.03                                  | <10<br><10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25<br>23                    | <10<br><10             | <1<br>2               | 33<br>24<br>24<br>24       | N.       |
|          | 1*<br>12<br>13<br>14 | 113678                                                               | 5<br>5<br>5<br>5 | <0.2<br><0.2         | 1.12<br>1.16<br>1.19         | <5<br><5<br><5             | 120<br>95<br>165      | <5<br><5<br><5       | 2.01<br>2.48<br>3.96         | <1<br><1<br><1                  | 5<br>5<br>5                    | 75<br>24<br>44<br>127       | 24<br>17<br>35<br>43           | 1.46<br>1.55<br>1.58<br>1.34 | <10<br><10<br><10<br><10        | 0.50<br>0.56<br>0.50<br>0.34  | 454<br>549<br>847<br>505         | 8<br>2<br>4<br>36            | 0.06<br>0.04<br>0.06<br>0.04 | 2<br>1<br>3             | 560<br>630<br>330         | 4<br>4<br>2            | <5<br>5<br>5             | <20<br><20<br><20               | 82 0.02<br>374 0.04<br>43 0.03                       | <10<br><10<br><10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23<br>30<br>28              | <10<br><10<br><10      | 2                     | 34<br>21                   | /        |
|          |                      | i 113680<br>i 113682<br>i 113683<br>i 113684<br>i 113684<br>i 113685 | 5<br>5<br>5      | <0.2<br><0.2<br><0.2 | 1.16<br>2.10<br>2.53<br>0.99 | <5<br><5<br>10<br>10<br><5 | 70                    | 5<br><5<br><5        |                              | <1<br><1<br><1<br><1<br><1<br>1 | 4<br>13<br>17<br>18<br>8<br>15 | 61<br>85<br>38<br>66<br>107 | 258<br>81<br>300<br>116<br>852 | 2.82<br>3.73<br>4.65<br>2.02 | <10<br><10<br><10<br><10<br><10 | 0.51<br>1.43<br>1.67<br>0.56  | 382<br>954<br>1365<br>994<br>434 | 204<br>17<br>378<br>38<br>96 | 0.05<br>0.08<br>0.04         | 5<br>15<br>10<br>3<br>4 | 740<br>770<br>510         | 6<br>6<br>10<br>2<br>4 | <5<br>5<br>5<br><5<br><5 | <20<br><20<br><20<br><20<br><20 | 37 0.00<br>96 0.11<br>203 0.14<br>96 0.00<br>48 0.00 | <pre>&lt;10 </pre> <pre></pre> | 35<br>84<br>114<br>36<br>38 | <10<br><10<br><10      | 1<br>4<br>5<br>4<br>1 | 31<br>55<br>60<br>26<br>40 | x<br>Cfr |