Geological, Geophysical, and Geochemical Report

-- on the --

BOW Project

Cariboo Mining Division British Columbia

-- for --

Eureka Resources, Inc #1000 - 355 Burrard Street Vancouver, B.C. V6C 2G8

Located: - 53 21N; 121 36W, - 93H/5E, and - 25 km north of Wells, B.C.

Prepared By:

John R. Kerr, P. Fag. LOGICAL SURVEY BRANCH #1003 - 470 Granville Street Vancouver, B.C. V6C 1V5

SUMMARY

The Bow claims were staked during the period 1995 - 1997 to cover showings of massive sulphide boulders in a geological environment suitable to host volcanogenic massive sulphide deposits. Eureka Resources, Inc. entered an option-to-purchase agreement late in 1997 to earn a 100% interest in the property. Subsequent work has necessitated the staking of the additional Alpha, Bravo, and Charlie claims that now provides a claim block totalling 52 claims (approximately 12,500 hectares).

The claims are located in central British Columbia in the Cariboo Mining Division, approximately 25 km north of the village of Wells. Access is possible via a network of logging roads to the central portion of the claims. Limited upgrading will make good road access possible to all areas of the claims. The claims are located on the west side of the broad Bowron River valley, much of the area covered with deep glacial overburden. A large part of the claim area has been the subject of clear-cut logging, and is currently in various stages of secondary revegetation.

The entire claim area is underlain by volcanic rocks of the Mississippian Antler Formation. Rocks are mainly an intermediate to basic sequence of volcanic flows and tuffs, however one felsic volcanic unit has been identified on the claims. Chert horizons are commonly found in the rock sequence. Two main structures are interpreted from the results of airborne geophysical surveys being a N30W fault trending the full length of the central portion of the claims. An E-W trending structure has also been interpreted in the east-central portion of the claims.

Two areas of glacial boulders have been identified that contain economic contents of massive sulphides. The Bow area contains in excess of 50 boulders of massive pyrite and chalcopyrite, with up to 3% copper content, and only anomalous values of other metals. Three boulders have been found containing massive pyrite, chalcopyrite, and sphalerite in the Tow area. Assays indicate up to 7% copper, 5 g/t gold, 66 g/t silver, and .8% zinc from these rocks.

The 1998 field program consisted of a 377 km airborne magnetic and electromagnetic survey, 43 km of grid establishment in nine separate grid areas, 34 km of horizontal loop ground electromagnetic surveys, 2.5 km of ground magnetic surveys, 40 km of soil sampling, reconnaissance prospecting, geological mapping, and stream sediment sampling. In total, \$153,460.35 was expended on exploration during 1998.

Interpretation of all data has led to the conclusion that possible bedrock sources of the massive sulphide boulders has been located in two areas of the claims. Grid "A" contains three prominent electromagnetic conductors, interpreted over lengths of 400, 500, and 1600 meters, with associated copper, gold, silver, and zinc soil anomalies. The conductors are located 1500 - 2000 meters to the west of the Tow float area, and contain a metal suite similar in nature to the Tow float. The electromagnetic anomalies are described to have low conductivity, which is compatible with the conductivity of hand samples. Sufficient detail has been completed in this area to warrant a minimum of seven drill holes.

The stronger electromagnetic conductors were interpreted on grids "D", RD", and "RC", all located within 1000 meters of the Bow float area. The strength of the conductors is compatible with the conductivity measured in hand specimens. Copper soil anomalies are associated with the conductors on Gris "D", and "RC". It is believed that the float from the Bow area could have derived from any of these anomalies. A minimum of two drill holes is warranted on these targets.

The remaining five grid areas require further detailed ground surveys to refine drill targets. There are several other airborne conductors that have yet to be followed up with ground surveys. These ground surveys are included in ongoing work programs.

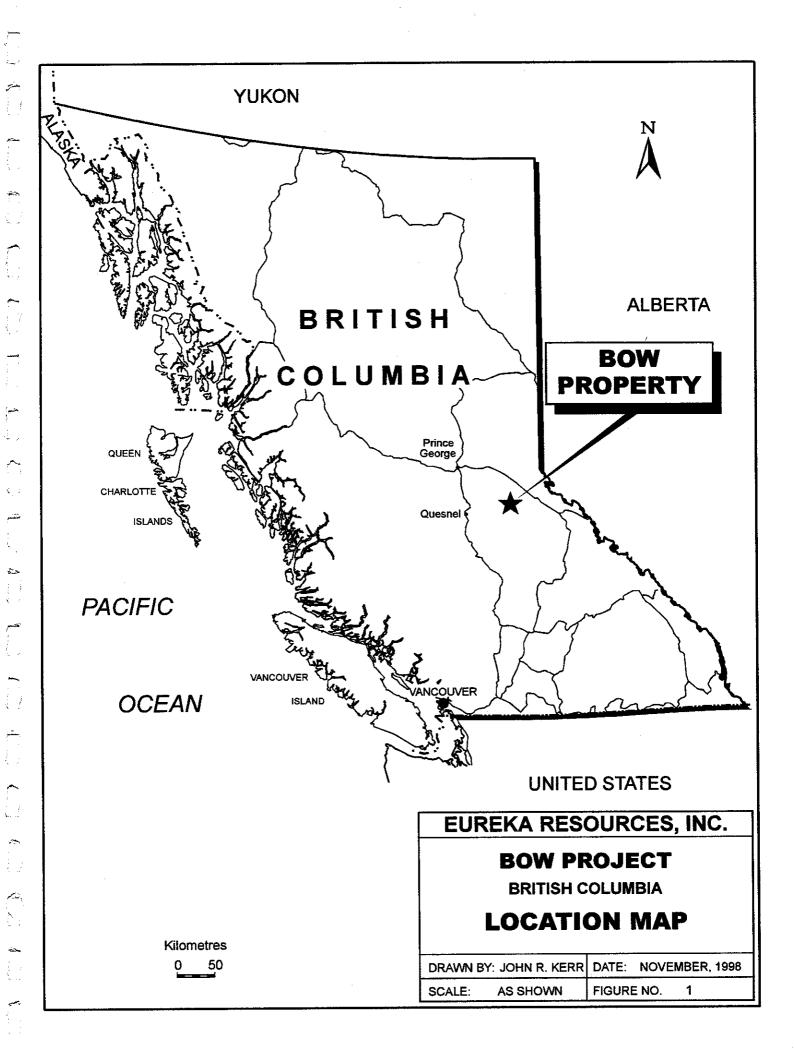
A 2000 meter diamond drill program, consisting of 12 - 15 holes, each hole to a depth of 125 - 150 meters is recommended as the next phase of exploration. Included with this work is additional surveys on existing grids to refine drill targets, and completing ground surveys over areas of untested airborne conductors. The cost of this program is estimated to be \$400,000.

Index

Page No.

SUMMARY:	Foreward
INTRODUCTION:	
General Statement	1
Location	2
Topography and Vegetation	2
Claims	3
History	4
1998 FIELD PROGRAM:	
Airborne Geophysical Survey	5
Grid Surveys	6
Ground Geophysical Surveys	6
Geochemical Surveys	7
GEOLOGY:	9
DISCUSSION OF RESULTS:	13
RECOMMENDATIONS:	15

List of Appendices


Appendix A - Cost Statement
Appendic B - Geophysical Report, Paul Cartwright, P. Geo.
Appendix C - Analytical Results
Appendix D - Writer's Certificate

List of Maps

Drawing #1	- Location Map
------------	----------------

- Drawing #2 Regional Geology
- Drawing #3 Claim Map
- Drawing #4 Compilation Plan

Drawings # 5 - 9 - Geochemical Plans (Grids A, B, C and D)

INTRODUCTION

<u>General Statement</u>

The Mississippian Antler Formation of rocks of central British Columbia has been regarded as a favourable rock type for the occurrence of volcanic massive sulphide (VMS) deposits for the past two decades. This interest was heightened in the early 1980s with the release of regional geochemical data. During the late 1980s and early 1990s several major mining companies embarked on grass-roots exploration programs in a 7500 square kilometer area east of Prince George and Quesnel attempting to trace the source of stream sediment geochemical anomalies to a bedrock source. Much of this early exploration was hampered by extensive and deep glacial overburden along the Bowron River valley, subsequently most activities had ended by 1994.

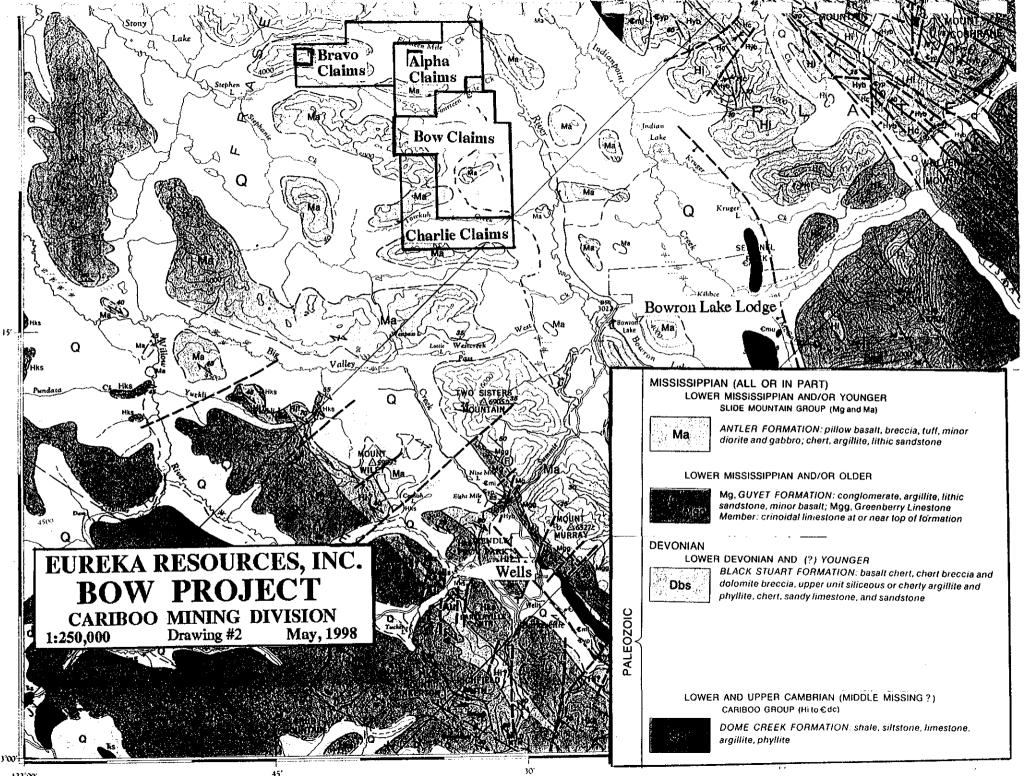
Logging activities increased during the late 1980s, opening road infrastructure into a large portion of the favourable area, and thereby exposing new outcrops and glacial strewn boulders along roadcuts that had previously been unnoticed. Continued prospecting along these logging roads led to the discovery of two areas of glacial boulders containing VMS style of mineralization, and evidence that major VMS types of mineral deposits may exist within a very short distance of the float occurrences. By late 1997, twenty claims were staked to cover both float areas and up-ice areas of potential bedrock sources.

Eureka Resources, Inc. had concluded an option-to-purchase agreement with the prospector, Martin Peter, by the end of 1997. Early in 1998, a 377 kilometer airborne magnetic and electromagnetic survey was completed over the claims and surrounding area. Interpretation of these results led to the conclusion that additional claims were required. Subsequent staking increased the total claim package to the existing fifty-two claims (522 claim units). The total land package covers some 12,500 hectares.

Nine target areas were selected from the results of the airborne survey for detailed ground surveys. During the period June 1 - July 15, grid lines were established on all targets, with detailed ground electromagnetic, magnetic and geochemical surveys conducted along all lines. In addition, geological mapping, prospecting, and reconnaissance stream sampling was completed in the general claim area. This report details the results and summarizes the costs.

The claims are located in the Bowron River valley of central British Columbia. Geographic coordinates place the north and south boundaries of the claims at $53_{\circ}25$ 'N and $53_{\circ}18$ 'N respectively; and the east and west boundaries at $121_{\circ}31$ 'W and $121_{\circ}42$ 'W respectively, the entire claim block falling within NTS 93H/5E.

The principle showing areas are located approximately 25 km north of the small community of Wells, B.C. Wells is located on Highway #26, 80 km east of Quesnel. From Wells, the property is road accessible along a network of logging roads to Towkuh Creek, a driving distance of 37 km to the boundary of the Quesnel and Prince George forestry districts, and within the southern portion of the claims. Road access connecting the districts currently does not exist on the claims, however roads from the Prince George district come within 200 meters of the southern access roads.

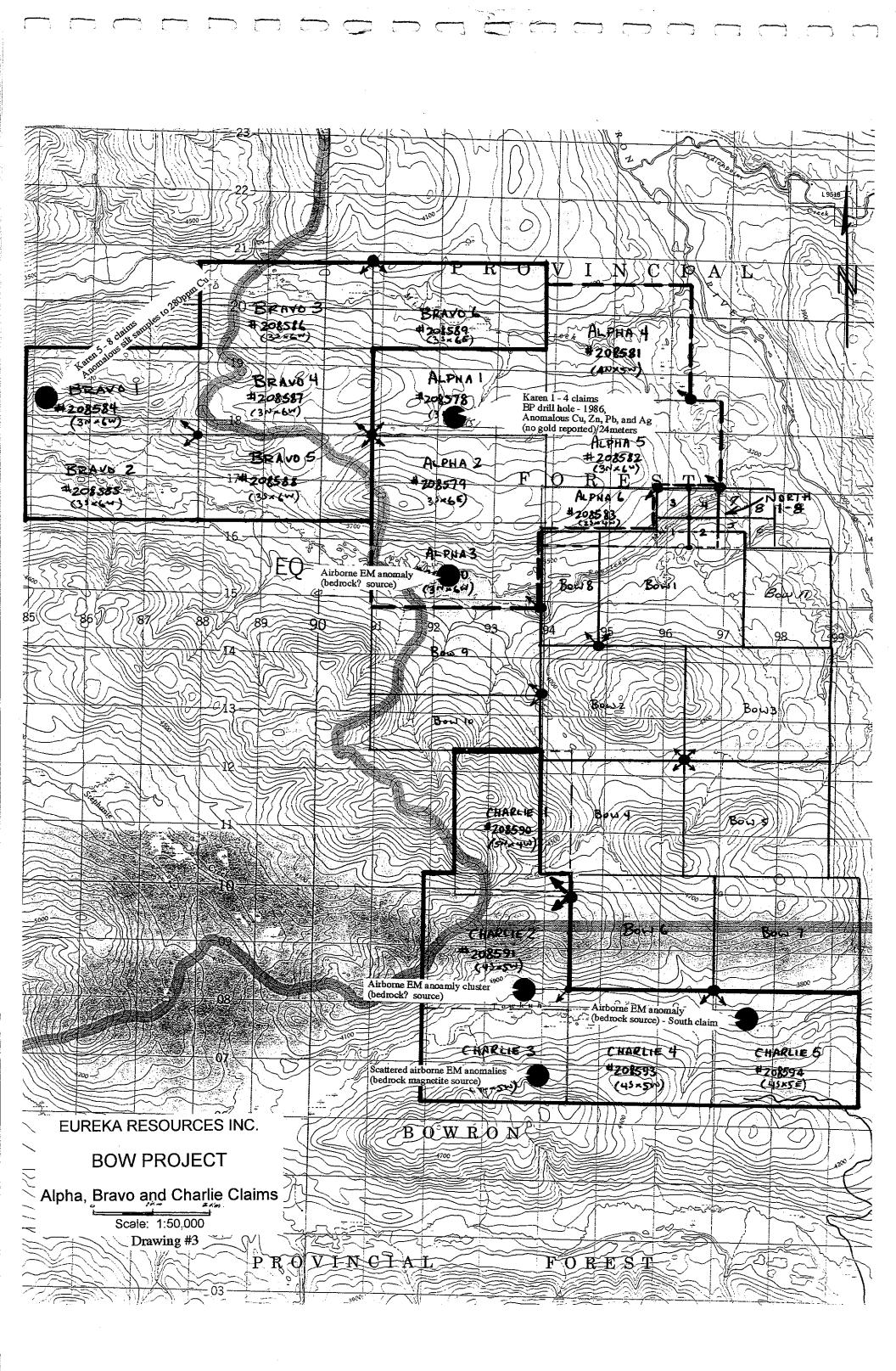

Application has been made to and approved by the Ministry of Energy and Mines to connect the roads of the two forest districts. This is required prior to a drill program, which has also been approved under the same application.

Topograpy and Vegetation

The claims lie along the western side of the broad, relatively flat, Bowron River valley, part of the Fraser Plateau. The western portion of the claims rise to an unnamed mountain range, with elevations exceeding 1600 meters (asl). The elevation of the Bowron River is 900 meters (asl), therefore total relief on the property is over 700 meters. Although evidence of glacial activity is widespread on the property, glaciers were not alpine in nature, and did not carve steep and jagged cirques in mountainous terraine. All evidence of glaciers were plateau and valley, the dominant glacial direction being from the west-southwest. A local valley glacier along the Bowron River valley was believed the last glacial activity, advancing from south to north.

Vegetation at one time was heavily forested, consisting of commercial stands of pine, spruce, cedar, hemlock and balsam. Groves of aspen and poplar are common near major rivers. Underbrush is moderate to thick alder and devil's club.

During the past two decades, the general area of the Bowron River valley was intensely logged. Large clear-cut areas exist on both sides of the river valley, and are at varying stages of secondary growth. All clear-cuts have been reforested. Approximately one third of the claimed area has been the subject of clear-cut logging practices.


<u>Claims</u>

The property consists of 52 (522 units) mineral claims, the details listed as follows:

<u>Claim Name</u>	Type of Claim	No. Units	Tenure No.	Expiry Date *
Bow 1	MGS	20	350849	September 17, 2002
Bow 2	MGS	20	360136	October 23, 2001
Bow 3	MGS	20	360137	October 23, 2001
Bow 4	MGS	20	360138	October 24, 2001
Bow 5	MGS	20	360139	October 24, 2001
Bow 6	MGS	20	360140	October 25, 2001
Bow 7	MGS	20	360141	October 25, 2001
Bow 8	MGS	8	360142	October 25, 2001
Bow 9	MGS	18	362313	April 30, 1999
Bow 10	MGS	12	362314	April 30, 2002
Bow 11	MGS	12	364208	July 15,1999
Alpha 1	MGS	18	362948	May 22, 1999
Alpha 2	MGS	18	362949	May 22, 1999
Alpha 3	MGS	18	362950	May 22, 1999
Alpha 4	MGS	20	362951	May 22, 1999
Alpha 5	MGS	18	362952	May 22, 1999
Alpha 6	MGS	8	362953	May 22, 1999
Bravo 1	MGS	18	362954	May 23, 1999
Bravo 2	MGS	18	362955	May 23, 1999
Bravo 3	MGS	18	362956	May 23, 1999
Bravo 4	MGS	18	362957	May 23, 1999
Bravo 5	MGS	18	362958	May 22, 1999
Bravo 6	MGS	18	362959	May 22, 1999
Charlie 1	MGS	20	362960	May 24, 1999
Charlie 2	MGS	20	362961	May 24, 1999
Charlie 3	MGS	20	362962	May 23, 1999
Charlie 4	MGS	20	362963	May 22, 1999
Charlie 5	MGS	20	362964	May 22, 1999
Karen 1-8	2-Post	8	360283-290	November 1, 2001
North 1-4	2-Post	4	362315-318	April 30, 2002
North 5-8	2-Post	4	364209-212	July 15, 1999
Ron 1-3	2-Post	3	350850-852	September 15, 2002
Ron 4	2-Post	1	351101	September 17, 2002
Bowron 1-4	2-Post	4	363528-531	June 18, 2002

* Expiry dates shown are current at Mining Recorder's Office. Sufficient work is available in this report to record two years of work on all Alpha, Bravo, and Charlie claims, and three years of work on the Bow 9 &11, and North 5-8 claims.

All claims are located in the Cariboo Mining Division, recorded in the name of Eureka Resources, Inc. The Bow, Ron, and Karen claims are subject to a option-topurchase agreement with Martin C. Peter, whereby Eureka can earn 100% interest in the claims subject to cash payments totalling \$160,000, share issuances totalling 200,000 shares, and work obligations totalling \$550,000 over a four year option period, and subject to a 2% NSR interest.

The Alpha, Bravo, and Charlie claims are subject to joint-venture agreements with ITL Capital Corp., Ivory Oil and Gas Ltd., and Gun-loc Capital Industries Ltd., whereby each joint-venture partner can earn a 50% interest in their respective property by spending a total of \$50,000 on exploration over a two year period.

All claims are a contiguous package of claimss, the general configuration shown on Drawing #2 (1:50,000).

History

Prior to 1980, the area of the Bow project was limited to prospecting ventures. Placer and lode gold mining in the Wells/Barkerville area has persisted since the placer gold discoveries of 1858. The only other mining activity of significance in the general area was development of the Bowron River coal/resin resource, 50 km to the northwest.

The release of the government geochemical data in the early 1980s sparked an interest in early stage exploration for volcanogenic massive sulphide deposits in the Mississippian Antler Formation. Several of the major mining companies, including Noranda, BP Resources, Esso Minerals, Shell Canada, Kennecott, and Cominco conducted grass-roots exploration programs during the period 1981 - 1994, staking large tracts of land, in attempt to trace geochemical anomalies to a bedrock source. Normal gridwork consisting of geophysical and geochemical surveys, geological mapping, and prospecting was completed over most of the area of the claims and surrounding area during this period. At least one airborne geophysical survey was completed on ground now covered by a portion of the Alpha and Bravo claims and to the north by BP Resources in the mid 1980s. Esso Minerals held claims covering the southern portion of the claims, and extending to the south. They advanced their work to a trenching phase, having completed some back-hoe trenches in the area of the Tow float.

The only evidence of drilling in the general area was a three-hole program completed by BP Resources completed to the north of the property and on the Karen 1-4 claims. Details regarding the drilling are not public, however are summarized, in later 1990 public data. The hole on the Karen 1-4 claims reports a felsic volcanic unit with a 24 meter intersection of anomalous zinc and copper. Kennecott completed a drill program on their Indianpoint claim block, ten km to the northwest, which is the only claim block of the 1980s era to survive.

1998 FIELD PROGRAM

The 1998 field program was completed during the period February 11 to July 15, 1998 at an overall cost of \$153,460.35 (see Appendix A for details). Reporting endured until November, 1998.

Airborne Geophysical Program

During the period February 11 - 15, 1998, a 377 km airborne survey was completed over a 60 square kilometer area of the Bow claims, lines spaced at 100 meter intervals in the immediate vicinity of the massive sulphide float areas, and at 200 meter intervals in the peripheral portions of the area. The survey was contracted to Geoterrex-Dighem, a division of CGG Canada Ltd., of Mississauga, Ontario. The survey data, instrumentation, and results are documented in a report by Jonathan Rudd, P. Eng., dated March, 1998, and is filed under separate cover.

The survey included two components: first electromagnetic readings were taken continuously along all lines at five various frequencies; and second magnetic readings were taken continuously along all lines. Survey control was the use of onboard GPS navigation equipment, with assistance of visual navigation aids. An Alouette AS-350B2 helicopter was chartered from Questral Helicopters Ltd. to fly the survey. Sensor height was estimated at 30 - 50 meters above ground level. Further details of procedures and equipment are found in the text of the Geoterrex report.

Products received from Geoterrex were a detailed and contoured magnetic and vertical field gradient magnetic plans, resistivity plans of two frequencies, and a surface plan indicating all interpreted ground conductors. Detailed line plots showing electromagnetic profiles of all frequencies were also provided in draft form. The electromagnetic conductor map is considered the most valuable for the ongoing work programs on the claims, however the magnetic and resistivity plots are useful for geological interpretation.

The electromagnetic conductor plots indicated a plot of the location of the conductors along each flight line. Interpretation of various parameters of each conductor provided an interpretation of source (bedrock or overburden), tilt (flat-lying or vertical), strength and depth. The strike orientation is best interpreted from connecting the "bullseye" dots on the surface plan.

To assist with interpretation of the airborne geophysical data, Eureka retained Paul Cartwright, P. Geo. along with the writer to priorize areas of interest within the surveyed area. In summary, all bedrock conductors interpreted from the airborne survey are of significance to ongoing work programs, and were classified as weak conductors. None of the conductors indicated were of a nature that is generally associated with major graphitic horizons, that tend to overprint the more subtle bedrock conductors attributed to massive sulphides.

A total of 64 individual bedrock conductors were interpreted from the survey. Clustering of these anomalies were considered the most important criteria for screening areas of continued work. Two anomalies on adjacent flight lines were considered of significance. The relative locations of the bedrock anomalies to the areas of float were the second most important criteria. Anomaly strength was considered a low rank criterion, as the massive sulphides located were of general low conductivity. Eight areas of airborne anomaly clustering were subsequently selected for ground follow-up surveys. In addition, the prominent magnetic anomaly in the central portion of the claims was selected for reconnaissance ground surveys.

Grid Surveys

Airborne anomaly clustering, and relative location to a bedrock source gave rise to two approaches of ground follow-up surveys. Four detailed grids consisting of cutand-chained lines were established on what was considered the most significant targets, as follows (location of grids are shown on Compilation Plan, Drawing #4):

· · · · · · · · · · · · · · · · ·		, ,
Grid "A"	- 22 airborne bedrock conductors	16.5 km
Grid "B"	- 5 airborne bedrock conductors	8.8 km
Grid "C"	- 11 airborne bedrock conductors	8.0 km
Grid "D"	- 2 airborne bedrock conductors	<u>3.6 km</u>
	Total	36.9 km

Four reconnaissance grids ("RA", "RB", "RC", and "RD") were established by chain and compass methods on the remaining areas. In addition a reconnaissance grid was established on the magnetometer anomaly in the central portion of the claim block. In total, 6.5 km of reconnaissance grids were established.

In total, 48 of the 64 airborne electromagnetic conductors related to bedrock were examined in detail by ground follow-up surveys.

Ground Geophysical Surveys

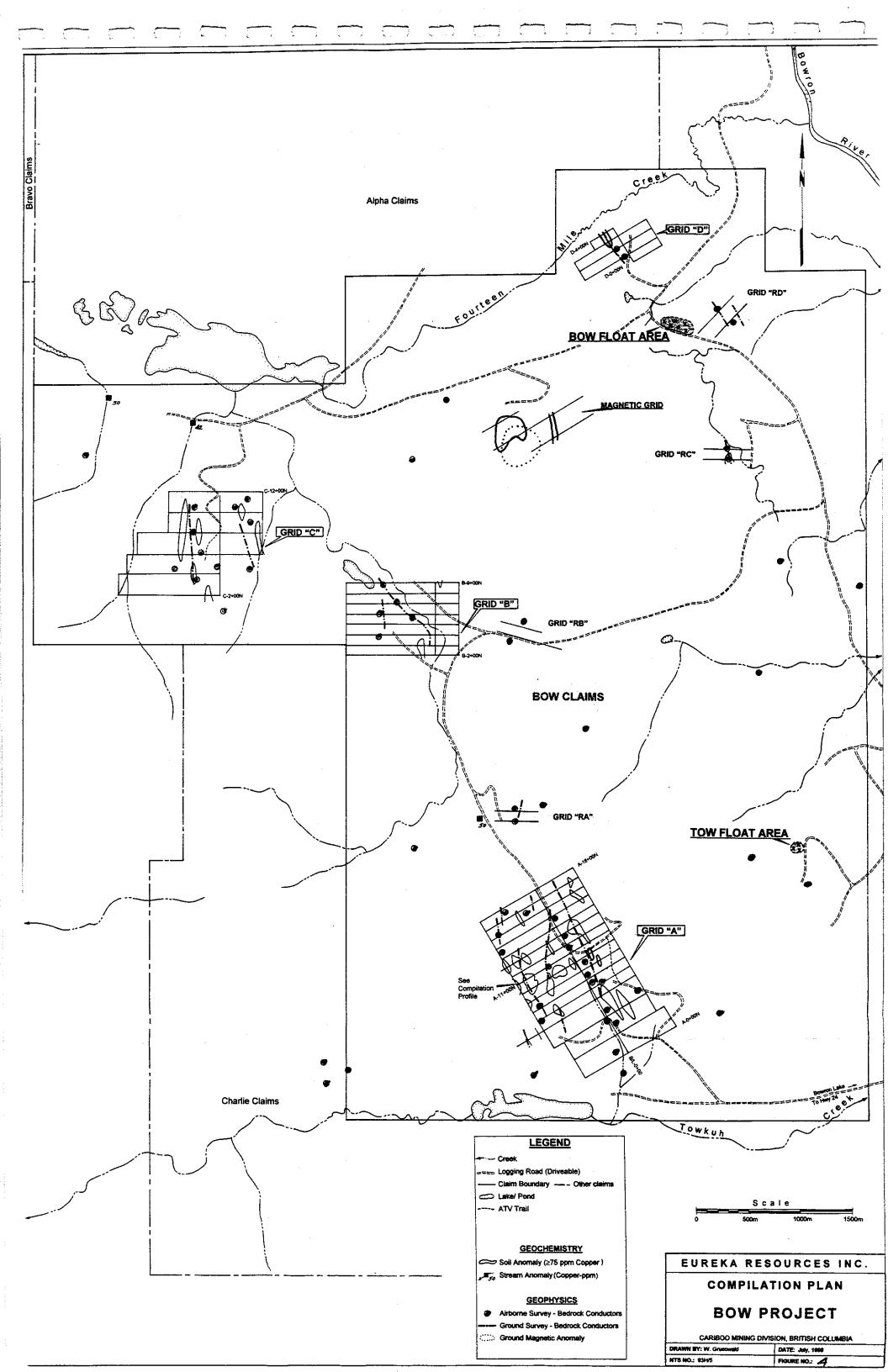
A ground horizontal loop max/min electromagnetic survey was contracted to Pacific Geophysical Ltd. to complete electromagnetic surveys along all cross-lines of each grid, with readings taken at 25 meter stations. Separation between transmitter and receiver was 100 meters, and readings were take at four various frequencies. Paul Cartwright, P. Geo., has provided a report detailing equipment, procedures and interpretation, which is attached to this report as Appendix B. In total, 34 km of electromagnetic surveys were completed. In addition, 2.5 km of magnetometer survey was completed on the magnetic grid, which is also described in Appendix B.

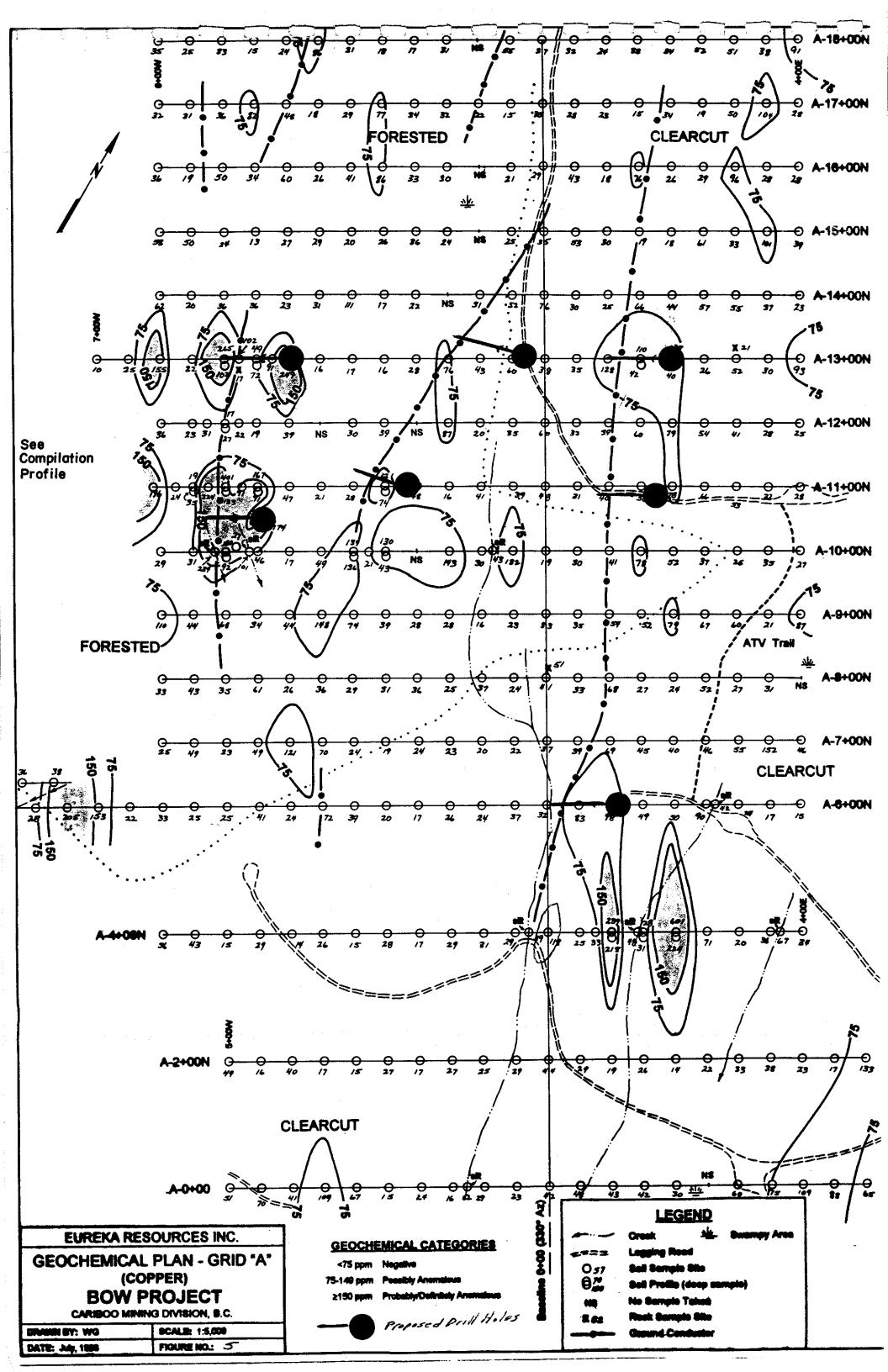
Anomalies on all grids were interpreted, and are discussed in detail in the geophysiacl report, with reference letters identifying each anomaly. These anomalies were somewhat simplified and transferred to the individual metal geochemical plans, and the property compilation plan (Drawing #4).

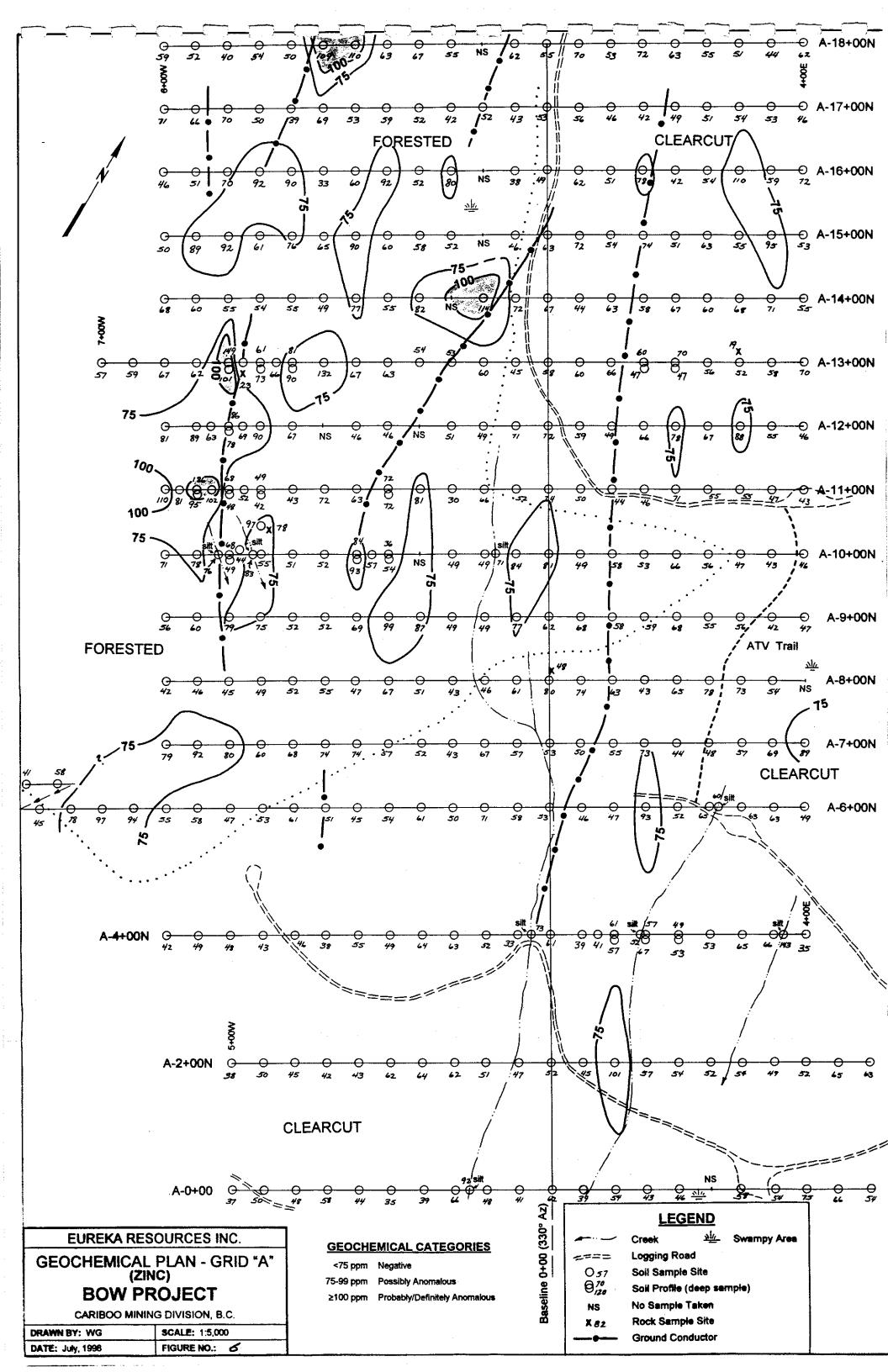
Geochemical Surveys

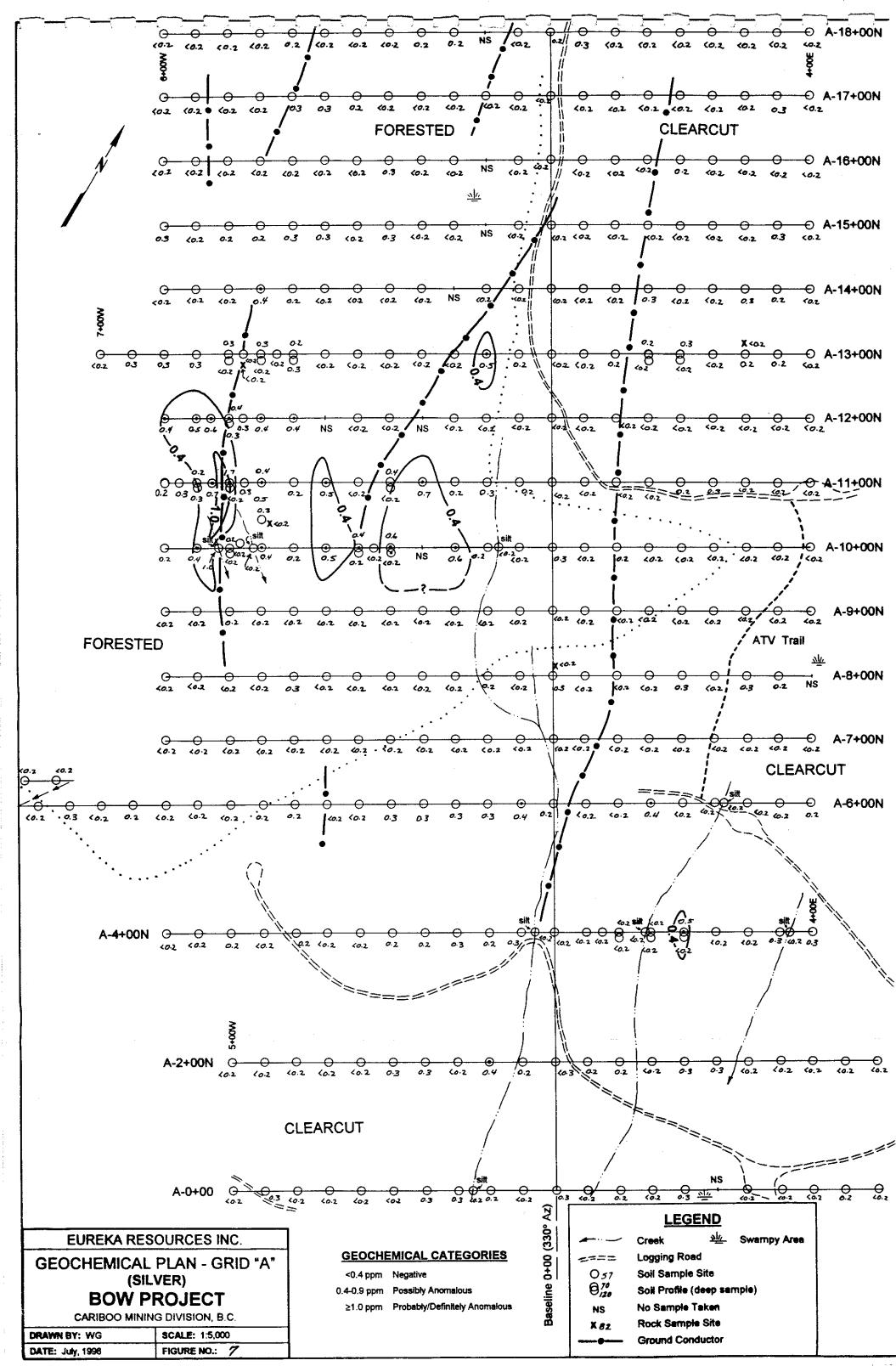
All grid cross-lines were soil sampled at 50 meter intervals, where possible. Samples were avoided in swampy areas, where normal "B" horizon samples could not be practically obtained. In total, 808 soil samples were collected into brown kraft envelopes, each sample weighing 0.2 - 0.4 kg from all grids. Samples were shipped to the laboratories of Bondar-Clegg (ITS) in North Vancouver, B.C. for analysis. The 31 soils from the magnetic grid were analyzed for copper only, while the remaining 777 soils were analyzed for 34 elements by ICP techniques. 62 soil samples were selected (mainly from Grid A) and geochemically analyzed for gold. Laboratory techniques and results are attached as Appendix C.

A total of 39 silt samples were collected from both grid areas and areas off of the grids. As the claim area had previously been silt sampled, this exercise was done mainly to follow-up anomalous results of previous surveys, as well as sample previously unsurveyed streams. Samples were collected in brown kraft envelopes, and as with the soil samples, shipped to the laboratories of Bondar-Clegg for 34 element ICP analysis.

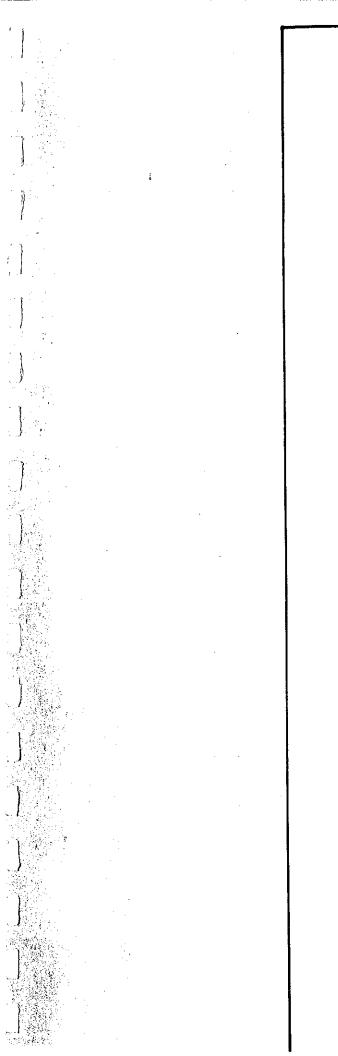

A total of 11 rock-chip samples were collected from outcrop areas encountered on grids. Due to lack of outcrop, only a few samples were collected. Most samples came from the "C" grid area, where most outcrop was encountered. Rock-chip samples were bagged and shipped to Bondar-Clegg for 34 element ICP analysis.

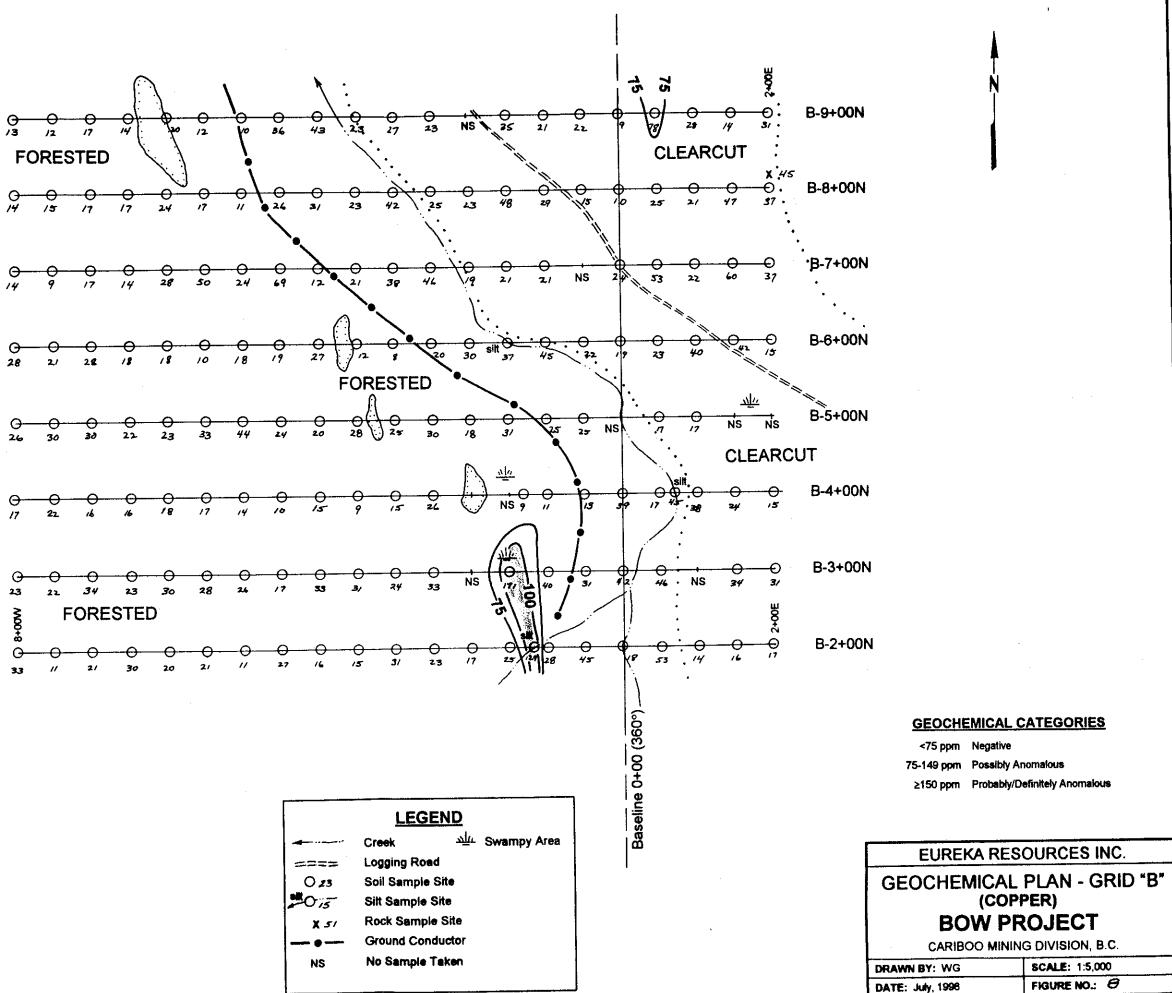

Individual metal maps were drawn for each of the four main grids, plotting copper, zinc, and silver values. Anomalous thresholds were derived for each element, and are shown and contoured as follows:

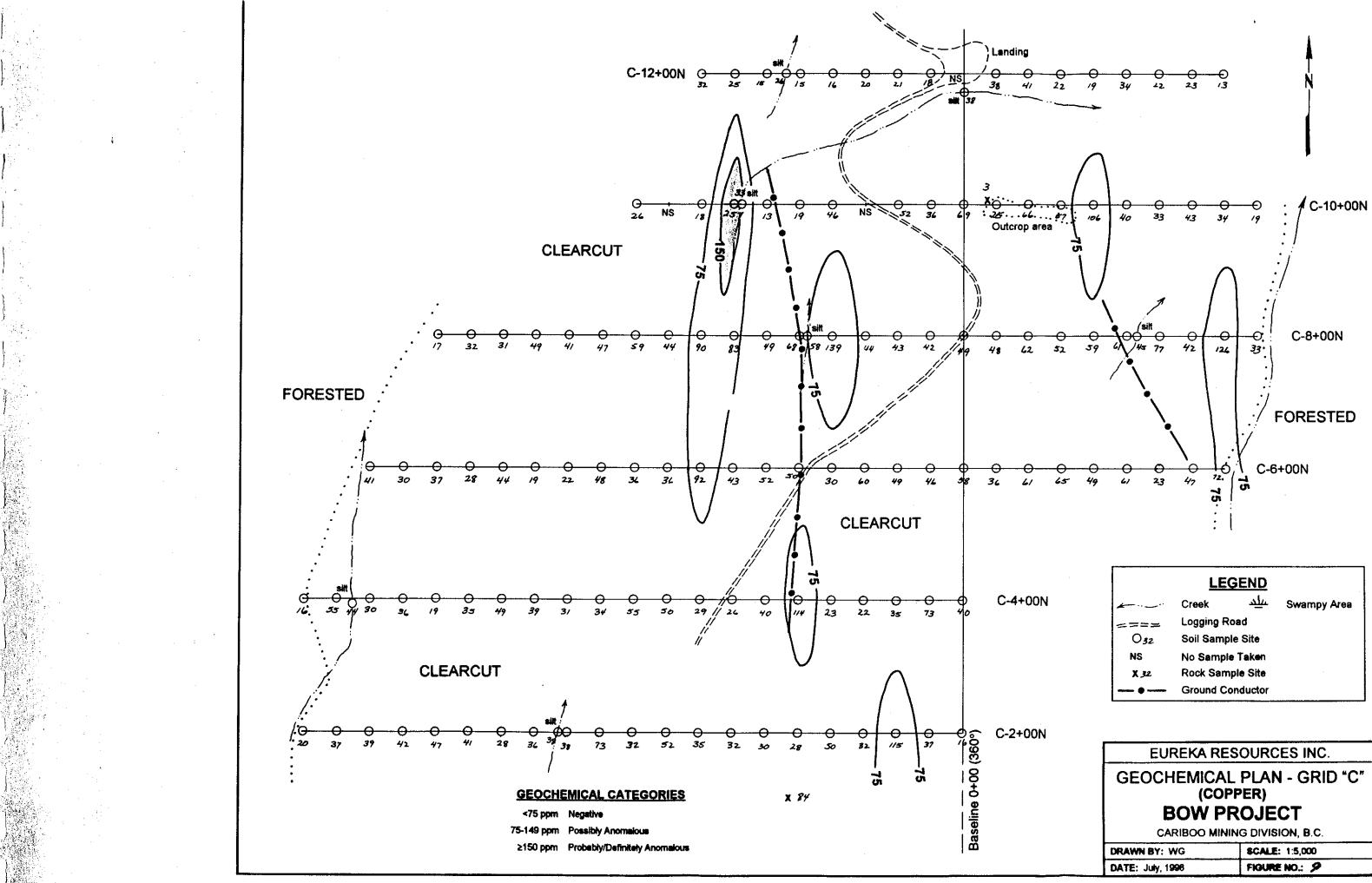

	Copper		Zinc	Silver
	Grids A, B, and C	Grid D	All Grids	All Grids
Negative	0 - 75 ppm	0 - 40ppm	0 - 75ppm	0 - 0.4ppm
Possibly Anomalous	75 - 150ppm	40 - 150ppm	75 - 100ppm	0.4 - 0.9ppm
Probably Anomalous	> 150ppm	>150ppm	>100ppm	>0.9ppm


Copper, zinc, and silver maps for Grid "A", and copper (only) maps for Grids "B", "C", and "D" are included with this report as Drawings # 5 through 10 respectively. Metal maps were not prepared for the reconnaissance grids, however anomalies are indicated on the compilation plan (Drawing # 4).

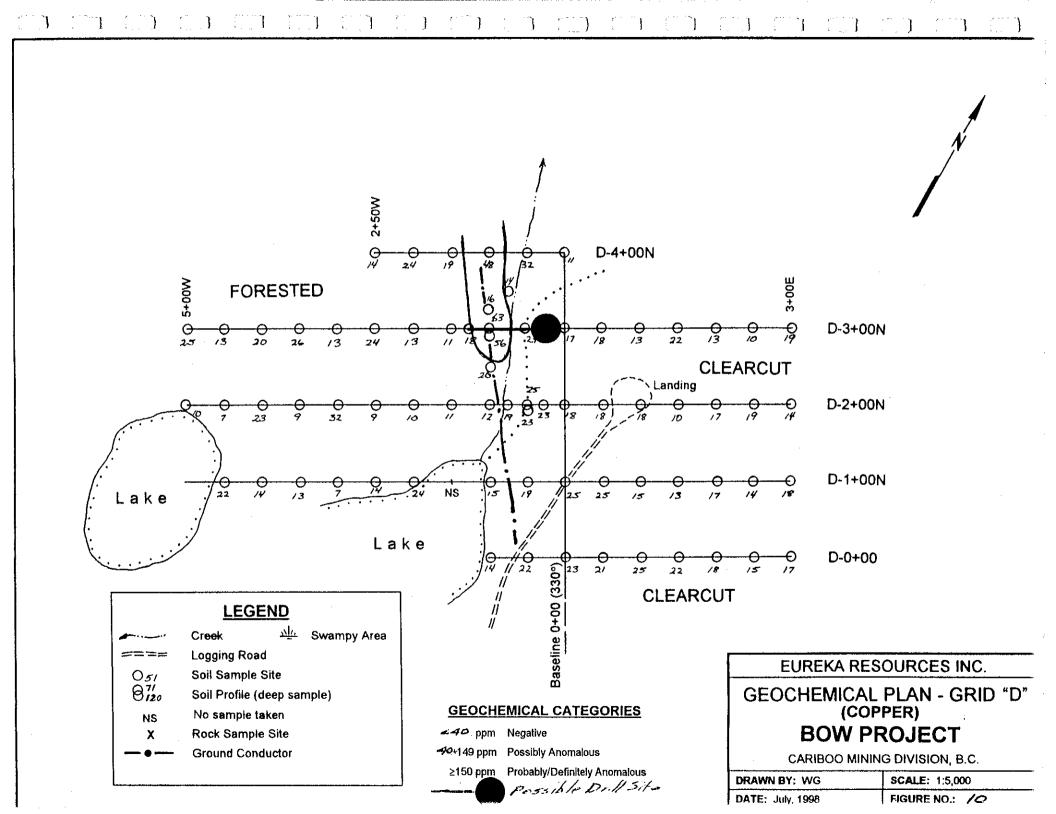
Silt and rock-chip samples are plotted on grid maps where applicable. Those silt samples collected off the grid are plotted on the compilation plan.







.



LEGEND			
£	Creek	علاد	Swampy Area
====	Logging R	oad	
032	Soil Sample Site		
NS	No Sample Taken		
X 32	Rock Sample Site		
•	Ground Co	onductor	

EUREKA R	RESOURCES INC.
	AL PLAN - GRID "C" OPPER)
BOW	PROJECT
CARIBOO M	INING DIVISION, B.C.
DRAWN BY: WG	SCALE: 1:5,000

GEOLOGY

Regional Geology

The geology of the general area is well-documented on the 1:250,000 scale McBride area map sheet (92H), by R. B. Campbell, 1966/67. The claim area and surrounding area is underlain by intermediate to basic volcanic rocks of the Mississippian Antler Formation. The rocks of the Antler Formation are described as pillow basalts, andesite to basalt flows, andesite tuffs, with minor dioritic-gabbroic near surface intrusive stocks and sills, cherts, argillitic cherts, and lithic sandstone. Covering much of the bedrock is a 5 - 100 meter thickness of unconsolidated glacial overburden.

Regional geology is reproduced from Campbell's map as Drawing #3.

Property Geology

Approximately 60% of the claim area is covered by a 5 - 100 meter thickness of glacial overburden. Outcrop areas are confined to mountainous terraine, prevalent in the western portion of the property. The mountain flanks are covered by a thin veneer of residual soil, with outcrops and sub/outcrops limited to only isolated areas, tha main exposures along recently constructed logging roads. The property does not lend itself to an extensive geological mapping program, therefore gridded areas were not systematically mapped. Any outcrop area was identified along grid lines only, and no attempt was made to produce a detailed outcrop map.

Outcrops examined on the property confirmed the underlying presence of the intermediate to basic volcanic rocks of the Antler Formation. Considerable chert was mapped, both as float and as outcrop. Chert, as rusty, altered, and pyrite bearing, such as associated with the Bow float area, however was not identified in outcrop. This is believed as a potential marker horizon for VMS deposits.

In the northern portion of the Bow 1 claim and on the North 3 and 4 claims, suboutcrop and float examined in road cuts is evidence of a very light coloured, felsic volcanic unit, plus/minus considerable abundance of pyrite. This unit is similar in nature to the description of felsic volcanics in the northern portion of the property, near the reported drill hole on the Karen 1-4 claims. It is therefore possible that a major felsic unit exists in the northern portion of the claims, having a general northwesterly strike direction. Any attempt to provide dimensions of this unit with the current data, would be pure conjecture. There have been no major structures mapped or clearly identified on the property. Samples of sheared and brecciated rock have been found as float, which probably relate to structures of some magnitude within the property confines. The only other evidence of structures are from airborne geophysical data interpretation.

Three major lineaments are interpreted from the results of airborne geophysics:

1) A N30W lineament, interpreted from both magnetic and resistivity data, transect the entire property area in the central portion of the property. This lineament passes through Grids "A" and "B", and is coincident with one of the conductive bodies interpreted on Grid"A". It is believed that this lineament is a major north-south trending fault that offsets all bedding and most other structures.

2) An E-W trending lineament, interpreted from both resistivity and magnetic data, is located in the east-central portion of the property. The lineament is coincident with an east-west valley, and the strong resistivity feature is believed due to the deep glacial overburden along this valley. The lineament is truncated to the west by the N30W lineament in the vicinity of Grid "B". The lineament may continue westward, approximately 1200 meters to the north, which suggests that the N30W fault has lateral displacement in the magnitude of 1200 meters. This lineament is also interpreted as structural.

3) A N60W lineament, interpreted mainly from magnetic data, is located in the northeast corner of the property. The lineament coincides with the mapped felsic volcanic unit, and may reflect this bedding feature.

Three magnetic features stand out on the airborne maps that are related to possible intrusive bodies. The southwestern anomaly is coincident with the regional airborne magnetic feature trending to the west of the property, which has been interpreted as gabbroic sills or near surface basic members of the Antler Formation. The two small, round, pronounced magnetic features in the east-central portion of the property are probably due to small later intrusive stocks. Detailed magnetic surveys on the central anomaly suggest a buried body, 75 - 150 meters deep. Except for felsic and basic dykes, there is no evidence of intrusive rock on the property.

Alteration and Mineralization

The only noted occurrences of mineralization of potential economic worth are the two locations of glacial boulders, referred to as the Bow and Tow float areas.

1) Bow Float Area: Located on the Bow 1 claim, an area 500 meters by 250 meters, in excess of 50 various boulders up to 0.5 meters diameter have been located that exhibit features typical of of volcanogenic massive sulphide (VMS) mineralization. The principle sulphide is pyrite, however some boulders contain up to 10% chalcopyrite. The rock is 90 - 95% sulphides, and shows well-banded lineations, typical of VMS mineralization. Assays indicate up to 3% copper, and only anomalous contents of other valuable metals. Discernible gangue is dominantly quartz, which may be primary chert. A very distinctive rusty chert, with minor sulphide content, is associated as boulders with the VMS boulders. Also apparent are several rusty zones of ferricrete, which obviously formed from the oxidation of the massive sulphide boulders in overburden.

The boulders are partially rounded, with angular features remaining in tact. The opinion of most examining the nature of the boulders is that maximum glacial transport was 2 km, and probably less than 1 km.

Although the sulphides dominate the rock, an ohmeter placed on hand samples indicate the conductivity of the rock to be weak. This was confirmed when a "Beep Mat", engaged to assist prospecting for more boulders, failed to recognize the presence of known boulders. It is concluded that the boulders, and therefore the potential bedrock sources should only be reflected as weak bedrock conductors.

2) Tow Float Area: Located on the Bow 5 claim, and confined to only a small area of 5 square meters, only three cobbles with appreciable massive sulphide content, up to 0.1 meter diameter, have been located. There is much ferricrete and chert associated with the float in this area. The nature of the sulphides is only 70 - 75% content, and appears to be well-banded. The nature of the banding is due to bedding, structural, or a combination of both. The dominant sulphide is again pyrite, however chalcopyrite can be up to 20% content, much higher than the Bow float. Assays indicate up to 7% copper, 5 g/t gold, 66 g/t silver, and 0.8% zinc. The worth of the float in this area is obviously much more significant.

The angularity of the sulphide boulders located at the Tow area is not easily discernible, however judging from other boulders in the area, a more rounded nature than the Bow area is apparent. It is concluded the source may be further than those at the Bow area, however still confined to 2 km. Testing the conductivity of hand specimens indicates the Tow float to be less conductive than the Bow float, which would classify any bedrock conductor to be weak to very weak in nature.

Prospecting the remaining areas of the claims has not located any other areas of massive sulphides. Within the grid areas, weakly mineralized suboutcrop containing pyrite and chalcopyrite has been found in the western portion of Grid "A", as well as considerable float of altered and rusty chert. Several chert bands were recognized in outcrop located on grid "C".

DISCUSSION OF RESULTS

1) The two noted float areas of massive sulphide boulders contain metal values of definite economic significance.

2) The occurrences are located in an area of British Columbia where economic mineral deposits have not been discovered to date, however the Antler Formation can be geologically related to similar geologic rocks of southern B.C that host the CC and Goldstream deposits, and of northern B.C. and the Yukon that host the Kutchko Creek and Wolverine deposits.

3) The Tow float area is immediately down-ice from the large cluster of airborne electromagnetic anomalies that make up the Grid "A" area. Ground surveys on Grid "A" have revealed three prominent conductors over strike lengths of 400, 500, and 1600 meters. The company's geophysical consultant, Paul Cartwright, P. Geol., describes the anomalies to exhibit conductivity-thickness in the range of 0.3 - 0.5 siemens, and to be near vertically dipping. If the bodies have, in fact, conductivity in the order of 0.1 mhos, mineralized widths may be as great as 5 meters. Two of the conductors have associated intermittant, subparallel conductors which could reflect two parallel zones or possibly reflect an even wider zone of mineralization. Coincidental and/or slightly down-ice from the conductors, associated soil anomalies reflect a similar copper, gold, silver, and zinc geochemistry to the Tow float. Overburden depths of 8 - 20 meters are expected to cover the conductors.

4) The nature of conductivity of the Grid "A" electromagnetic anomalies is compatible with the conductivity of the massive sulphides boulders located in the Tow float area, therefore the nature of mineralization is anticipated to be similar.

5) Grid "A" area is very likely the bedrock source of the Tow float, located 1500 - 2000 meters to the east. The three interpreted conductors become the principle drill targets of the project area. These conductors and the several smaller ones on grid "A" are typical of the clustering of VMS deposits in known camps. The metal content of the float samples range 100 - 220 per ton (at today's prices), therefore if sufficient volumes of rock were discovered, such a deposit would be very profitable. At least two diamond drill holes are recommended for each of the three conductors on Grid "A", each hole to 150 meter depth. As interpretation indicates near vertical anomalies, initial drill holes should be planned at angles of 40 -50 degrees, and drilling in a westerly direction.

6) Gold was only analyzed on a selected number of the soil samples, therefore gold geochemical plans are not produced. Gold values up to 32ppb are obtained in the few samples analyzed which is considered significantly anomalous, considering overburden may be as deep as 20 meters. Anomalous values are in part correlated to anomalous values of other metals.

Page 14

7) Three clusters of airborne anomalies are located to the northwest and southeast of the Bow float area. Three small grids were located on these conductors referred to as grids "D", "RC", and "RD". Resulting ground surveys indicate lineal conductors on all grids, described by the company's geophysicist to be stronger than those conductors on grid "A", and are also near vertically dipping. Soil samples collected on the grids revealed a weak copper anomaly associated with the conductors of grids "D" and "RC", with no values of gold, silver, and zinc. This is consistent with the metal values of the Bow float area, and all or one of these conductors is believed the source of the Bow float. Nearby roadcuts indicate that glacial overburden may be in excess of 5 meters, which could explain the low geochemistry of the area. The geophysical interpretation, however, comcludes the conductors as being shallow. At least two diamond drill holes to depths of 150 meters each are recommended for this area.

8) The grid "C" area revealed two weak to moderate lineal ground conductors associated with related soil values of copper, silver, and zinc. Further ground surveys are required in this area to define drill targets.

9) Ground surveys on grids "B", "RA", and "RB" revealed only weak conductors with little or no associated metal values in soil. All of these areas are currently considered low priority targets for future exploration.

10) Several other conductors interpreted as bedrock source from the airborne survey remain unexplored, and are worthy of further exploration, especially if the initial drilling proves successful.

11) Several unusual and distinct magnetic anomalies are interpreted from the airborne geophysical data. Those in the southwestern portion of the claim area are considered to be magnetite-rich basaltic units of the Antler volcanic rocks. The two in the central and eastern portion of the claims are characteristic of small buried intrusive stocks. A reconnaissance grid was established over the central anomaly to verify its existence, and establish a possible relationship to various metals. The company's geophysicist interprets the top of the magnetic body to be 75 - 150 meters deep, and soil analysis indicates a significant association with a copper soil anomaly along the northern contact. This suggests the possible presence of a porphyry or contact metasomatic copper deposit. Induced polarisation and continued soil sampling is recommended for this area, to define the depth of possible mineralization.

12) The Antler Formation of rocks lack the extensive sedimentary horizons of the other volcanic formations in central British Columbia. This reduces the possibility that the interpreted conductors are graphite horizons in argillaceous sediments. The interpreted anomalies do not display characteristics of graphitic beds.

RECOMMENDATIONS

Work completed to date on the Bow project warrants continued exploration. Recommendations are as follows:

1) A 2000 meter NQ diamond drill program consisting of 12 - 15 drill holes, each hole 125 - 150 meters deep.

2) Further detailed gound electromagnetic surveys and soil geochemistry on existing grids to refine drill targets.

3) Grid establishment, with ground electromagnetic surveys and soil geochemistry, on untested airborne electromagnetic conductors.

Costs for this program are estimated as follows:

Diamond Drilling - 2000 meters @ 120 per meter (all inclusive)	\$ 240,00
Road Building and Site Preparation	35,000
Further Ground Surveys	70,000
Contingency (~15%)	55,000

Total

\$ 400,000

Respectfully Submitted By:

Ver

John R. Kerr, P. Eng.,

APPENDIX A - Cost Statement

-

.

-----: .

. . .

1

.

Supervision and Interpretation: John R. Kerr, P. Eng. 8 days @375per day 3,000.00 Paul Cartwright, P. Geo. 1 day @ 400 per day 400.00	901.75
Travel, Room and Board	,152.00
	\$ 51,053.75
B Ground Surveys (June 1 - July 15, 1998): Project Supervision: John R. Kerr, P. Eng. 18 days @ 375 per day W. Gruenwald, P. Geo. 22 days @ 375 per day P. Cartwright, P. Geo. 8 days @ 350 per day	17,800.00
Linecutting: Saber Exploration Services 60 man days @ 250 per man per day	15,000.00
Labour: R. Montgomery, Geol. 26 days @ 300 per day 7,800.00 R. Lybarger, Asst 21 days @ 250 per day <u>5,250.00</u>	
Electromagnetic Survey: Pacific Geophysical Ltd. 17 days @ 1050 per day	17,850.00
Vehicle Rentals: 3 - 4X4s 18 days @ 75/d/vehicle 4,050.0 2 - ATVs 18 days @ 50/d/ATV 1,800.0	
Room and Board:188 man days @ 55/m/dEquipment Rentals:Power Saws - 48 days @ 25/d1200.00Beep Mat280,00Radios - 20 days @ 5/d100.00	10,340.00
Miscellaneous Travel: Purchase Supplies:	1,580.00 3,264.70 2,466.40
Analytical Costs:806 soils/silt ICP @ 7.60/sample6,125.6031 soils Cu only @ 4.50/sample139.5011 rocks ICP @ 9.20/sample101.2062 soils Au only @ 6.50/sample403.00	- -
Helicopter Charter: (1.7 hrs.)	7,172.30 <u>1,290.30</u> \$ 95,663.70
 C Report Preparation (August 1 - November 30, 1998) John R. Kerr, P. Eng 7 days @ 375/day Paul Cartwright, P. Geo. 4 days @ 400/day Drafting Printing, copying and binding 	2,625.00 1,600.00 2,062.50 <u>456.30</u> <u>\$ 6,743.80</u>
Total Costs:	\$ 153,460.35

ł

-_____ **[**____; **سر** : . . . ι. , ____ ; , ____ -. ندر . ت. . .

Appendix B - Geophysical Report Pacific Geophysical Ltd. By Paul Cartwright, P. Geo.

:

<u>ы</u>....

:

ξ.,

÷. .

÷.

.

. . . I

GEOPHYSICAL APPENDIX

. د. د

.

е *и*.

ί.....

ι.

I

Bow Project

Cariboo Mining Division, British Columbia

by

Paul A. Cartwright, P.Geo.

November 14, 1998

<u>Index</u>

<u>Text</u>	
Introduction	Page 1
Method and Equipment	Page 1
Discussion of Results	Page 2
Summary of Results	Page 7

Illustrations - Horizontal Loop Electro-Magnetic Profiles

Grid A (Dwgs. A-7040, -3520, -880, -220, -110, -150m)

Grid B (Dwgs. B-7040, -3520, -880, -220)

Grid C (Dwgs. C-7040, -3520, -880, -220)

Grid D (Dwgs. D-7040, -3520, -880, -220)

Reconnaissance Grid A (Dwgs. RA-7040, -3520, -880, -220)

Reconnaissance Grid B (Dwgs. RB-7040, -3520, -880, -220)

Reconnaissance Grid C (Dwgs. RC-7040, -3520, -880, -220)

Reconnaissance Grid D (Dwgs. RD-7040, -3520, -880, -220)

<u>Illustrations</u> - Total Field Ground Magnetometer Profiles Reconnaissance Magnetic Grid (Dwgs. Mag.)

Appendix on the Bow Project Ground Geophysical Surveys

This appendix is to accompany a report dated November 25, 1998, and titled "Geological, Geophysical, and Geochemical Report On The Bow Project", By J.R. Kerr, P.Eng.

Introduction

Horizontal Loop Electro-Magnetic (HLEM) surveys have been carried out on eight separate survey grids within the Bow Project area, together with another grid that has been evaluated using total field ground magnetics. Four of the HLEM grids consisted of cut and chained survey lines, while the remainder were classified as reconnaissance grids having uncut, flagged lines. All of the current ground geophysical work was completed to follow-up electro-magnetic and magnetic anomalies detected by an earlier airborne program. The original airborne survey was planned in order to locate the sources of very encouraging gold and copper float discovered by surface prospecting. The reader is referred to the Bow Project Compilation Plan map for the relative locations of all of the above features.

Method and Equipment

The horizontal loop electro-magnetic technique was employed using a 100 meter coil separation to measure all of the survey lines, with one of the lines (Line 600N) on Grid A also being evaluated using a 150 meter coil spacing. All lines were surveyed with at least four frequencies; 7040 hz, 3520 hz, 880 hz, and 220 hz. A number of lines on Grid A were also measured at 110 hz as well.

APEX MaxMin I-10 HLEM equipment, together with a Model MMC data logger, were utilized to collect the EM data at 25 meter intervals. The receiver operator, Ingo Jackisch, P.Geo., also used the data logger to enter terrain variations determined with a hand held inclinometer, in order to minimize the effect of uneven ground on the receiver-transmitter coil geometry. The HLEM crew used the receiver-transmitter reference cable to maintain a constant 100 meter, or 150 meter coil spacing.

The HLEM results are shown in the form of inphase and quadrature (out-of-phase) profiles, at a scale of 1:5000, with one frequency shown per drawing. Interpreted conductor axis have been marked on all frequencies; however, letters identifying the various conductors are only shown on the highest frequency (7040 hz) drawings. In those cases where two closely separated, parallel conductors are interpreted, the same letter identifier is assigned to each conductor axis, as a single , relatively wide conductor could be present. Discontinuous conductors are marked in a similar fashion.

A GEM Systems Model GSM-19 magnetometer, and an EDA Model PPM375 base station magnetometer, were used to survey three lines at 12.5 meter intervals across a prominent aeromagnetic anomaly. All of the ground magnetic data have been corrected for diurnal drift. Magnetic results are illustrated in profile form at a scale of 1:5000.

Discussion of Results

Results from each grid area are discussed in the following sub-sections. If the individual HLEM anomalies are of high enough intensity, and are fully delineated, an estimate can be made of the conductivity-thickness product and the depth to the top of the conductor being evaluated. It is not possible to ascertain the conductivity, or thickness of the EM source separately. The product of these two parameters, however, can be used to quantify individual HLEM responses. A particular conductivity-thickness can represent either a relatively thin conductor of higher conductivity, or a relatively thick structure of lesser conductivity. For example, a conductivity-thickness product of 0.5 siemens could be caused by a 1 meter thick conductor having a conductivity of 0.5 siemens per meter, or a 5 meter thick conductor having a conductivity of 0.1 siemens per meter.

2

Grid A (Dwgs. A-7040, -3520, -880, -220, -110, -150m)

Conductor A - This feature is seen in the data recorded on the extreme western ends of Lines 1700N and 1600N. While only part of the anomaly signature is present, it appears to be caused by a very weakly conducting source.

Conductors B1, B2 - Two closely spaced, roughly parallel striking conductors are marked on the northwestern part of Grid A. In the case of Line 1800N, a conductivity-thickness product of 0.3 siemens (mhos) is calculated, having a depth to the top of less than 5 meters.

Conductors C1, C2 - Again, two parallel conductors are thought to be present. A value of 0.6 siemens is estimated for C2 on Line 1800N. Depth to the top is calculated to be within 5 meters of the surface.

Conductors D1, D2 - The former trend (D1) displays the greatest strike length, at approximately 1600 meters, of any structure outlined on Grid A. Conductor D2 runs closely parallel to the southern end of D1, and may be a separate feature, or may indicate the presence of a single, wider structure, or a combination of both effects. Conductivity-thickness products are 0.5 siemens on both Line 1200N and 800N; however, burial depth increases from less than 5 meters in the case of the more northern line, to approximately 10 meters under the southern location.

Conductors E1, E2 - These are thought to be two parallel striking, discontinuous conductors interpreted along the western edge of the survey grid. Analysis of the data recorded on Line 1000 indicates a conductivity-thickness in the order of 0.4 siemens, within 5 meters of the surface. Total strike length of these structures could be 600 meters.

Conductor F - A conductivity-thickness product of approximately 0.3 siemens is estimated here, together with a depth of 10 to 15 meters sub-surface. It is quite possible that this zone is a deeper southern extension of Conductor C2, which would suggest a total strike length in excess of 700 meters.

3

Conductors G, H, I - These responses are all single line anomalies, with low inphase to quadrature ratios, thus pointing to the existence of very weak conductors.

Conductors J1, J2 - It is possible these closely parallel conductors that are the weaker southern extension of Conductors D1 and D2. A conductivity-thickness of 0.25 siemens is calculated, with a depth to the top of 5 to 10 meters under Line 0.

Grid B (Dwgs. B-7040, -3520, -880, -220)

All of the EM conductors indicated on this grid are interpreted to be striking at a somewhat oblique angle to the east-west grid lines.

Conductor A - Seen in the data on only one location, on Line 200N, this anomaly probably represents the northern extremity of a conductive zone that extends south of the existing grid.

Conductor B - This is the most prominent feature recorded in the HLEM data from Grid B, striking across all of the survey lines. At the point where the conductor crosses Line 700N, a conductivity-thickness product of 0.4 siemens is estimated. Depth to the top of the conductor is thought to be very shallow; i.e., less than 5 meters.

Conductor C - Conductivity-thickness is estimated to be in the range of 0.2 siemens, with the burial depth being less than 5 meters, where the conductor crosses Line 500N.

Conductors D1, D2 - This is thought to be a discontinuous zone, which is complicated by cultural responses due to buried wire ropes near the eastern ends of Lines 600N and 550N. A conductivity-thickness estimate of 0.15 siemens is obtained from the HLEM data recorded on Line 800N.

4

<u>Grid C</u> (Dwgs. C-7040, -3520, -880, -220)

Conductor A - A very weak conductor is outlined in the data from the extreme western end of Line 400N.

Conductor B - This is also a very weak, single line response, possibly the northern end of another feature extending to the south of the present grid.

Conductors C1, C2 - Data recorded on Line 600N yields a calculated conductivity-thickness product of approximately 0.2 siemens, together with a depth of burial of less than 5 meters below the ground surface. The zone may be fault offset between Line 600N and 400N.

Conductors D1, D2 - These two parallel conductors are marked as being less than 50 meters apart, and could be outlining the edges of a single, wider conductive zone. Analysis as separate, narrow conductors gives rise to an estimate of 0.1 siemens in the case of that data measured on Line 800N. Very shallow burial depths are indicated; i.e., less than 5 meters.

<u>Grid D</u> (Dwgs. D-7040, -3520, -880, -220)

This four line grid is dominated by a single, well defined conductor, which appears to be strengthening in a northerly direction off the existing grid lines. A shallow (less than 5 meters depth) conductor of approximately 0.4 siemens is evident in the data from the most northerly line surveyed, Line 300N.

Reconnaissance Grid A (Dwgs. RA-7040, -3520, -880, 220)

One marginally anomalous response is evident in the data recorded here. Only the quadrature component is deflected, which suggests a conductivity-thickness of less than 0.05 siemens.

One weakly anomalous trend is interpreted to be present in this data, recorded on two adjacent east-west lines. There may, in fact, be two additional, even weaker conductive zones on either side of the marked conductor. The central feature displays a conductivity-thickness in the range of 0.15 siemens, with a conductor depth of less than 5 meters.

<u>Reconnaissance Grid C</u> (Dwgs. RC-7040, -3520, -880, -220)

A single conductor axis is indicated in the HLEM data measured on this grid. Conductivitythickness product of the response on Line 100N is in the order of 0.3 siemens. The top of the conductive source is buried approximately 10 meters below the ground surface.

<u>Reconnaissance Grid D</u> (Dwgs. RD-7040, -3520, -880, -220)

Results from this area are the most anomalous of any of the HLEM reconnaissance grids. Two well defined conductors are seen in the data. The two responses are about 100 meters apart and are thought to be caused by two separate, and shallow structures, having conductivity-thickness products in the order of 0.5 siemens.

Reconnaissance Magnetics (Dwg. Mag.)

The ground magnetometer profiles surveyed over a pronounced aeromagnetic anomaly returned maximum values of 400 nano-teslas (gammas). It is thought that the magnetic source takes the approximate shape of a vertical cylinder, the bulk of which is buried in the order of 75 to 100 meters sub-surface.

Summary of Results

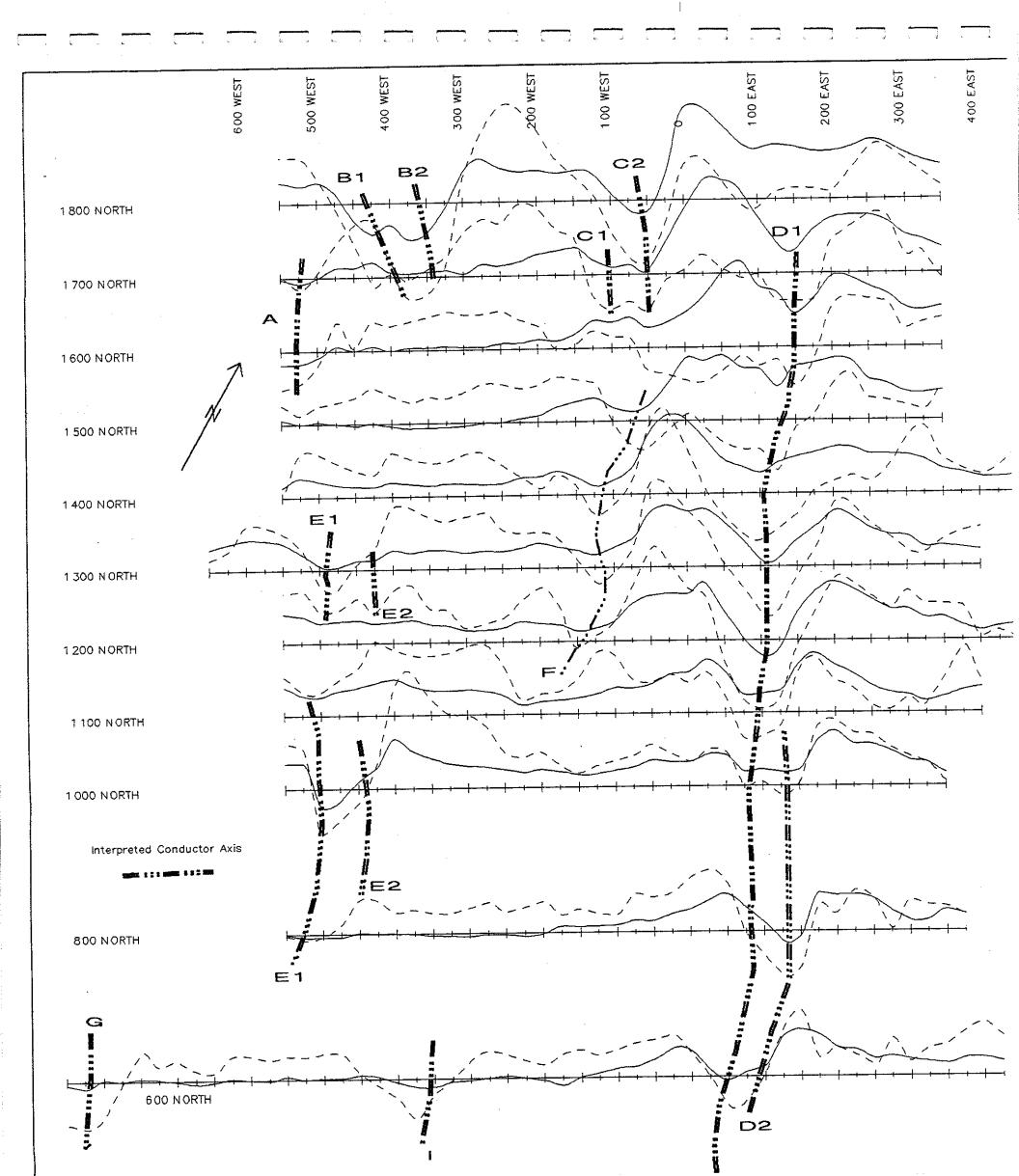
Eight separate grid areas within the Bow Project have been surveyed using the Horizontal Loop Electro-Magnetic (HLEM) method as a follow-up of previously outlined airborne EM anomalies. It would appear that the positions of the sources of the original airborne responses have been more accurately located by the ground HLEM data in all cases, with the possible exception of Grid B, where one probable airborne bedrock conductor was not detected by the ground survey.

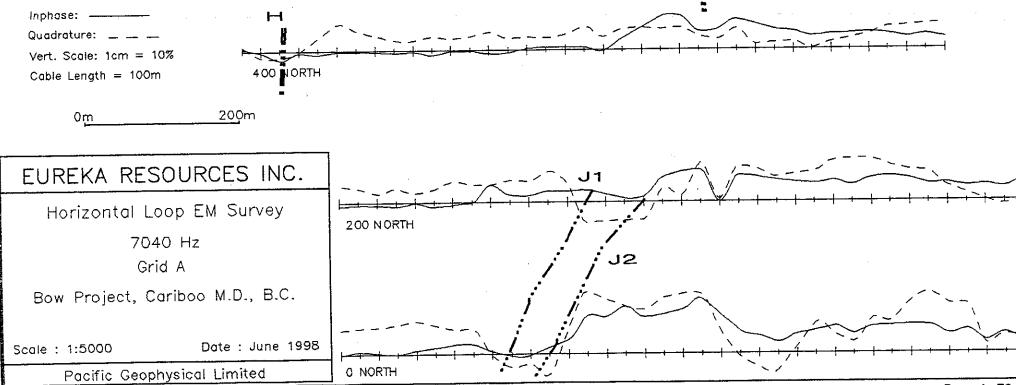
Although many of the HLEM grids are located in areas of steep and variable terrain, the use of an inclinometer to measure average slope angles, together with the coil reference cable as a fixed length chain, has minimized any terrain effects in the data. Background conductivities are quite low, with the result that the response of the inphase component at the lowest frequencies can be used to indicate the system noise level, which in this case is, at most, several percent of the primary transmitted field.

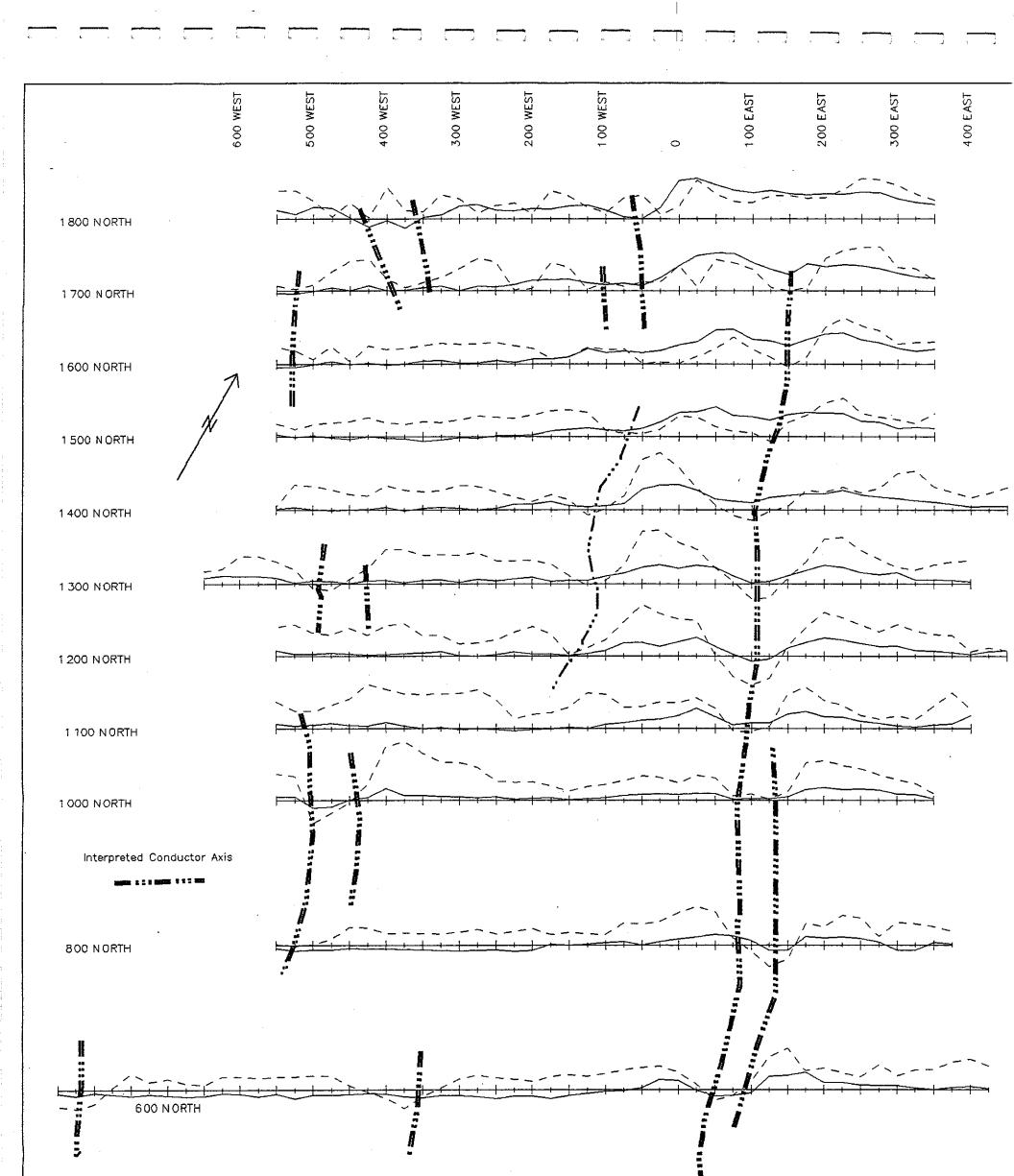
All of the conductors detected by the HLEM survey are judged to be near-vertical, and exhibit conductivity-thickness products in a relatively narrow range of approximately 0.6 to 0.15 siemens. While this is at the low end of any scale comparing conductors from other world regions, the Cordilleran is known for hosting massive sulphide deposits of very low conductivity. This was confirmed on the Bow Project when a "Beep Mat" electro-magnetic prospecting unit was brought into contact with samples of the massive sulphide float originally located by surface prospecting. This unit operates at a very high frequency, and is sensitive enough to detect small concentrations of metallic mineralization located within several meters of the surface. However, it only weakly detected a 20 centimeter diameter massive sulphide boulder even when the unit was placed in direct contact with the sample. The exact reasons for this low conductivity are unclear, but are apparently related to the mineral texture.

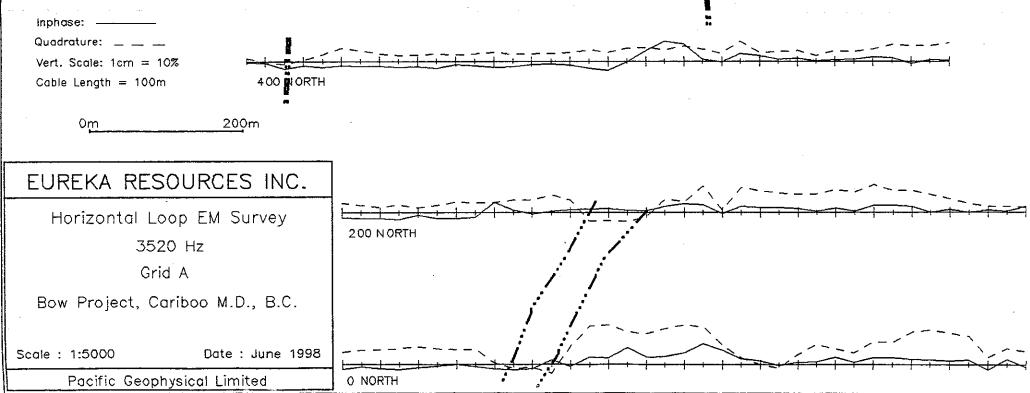
The low apparent conductivity of the mineralized float greatly enhances the potential of the HLEM conductors to be outlining the bedrock sources of the float. One should not expect this type of mineralization to be particularly conductive.

7

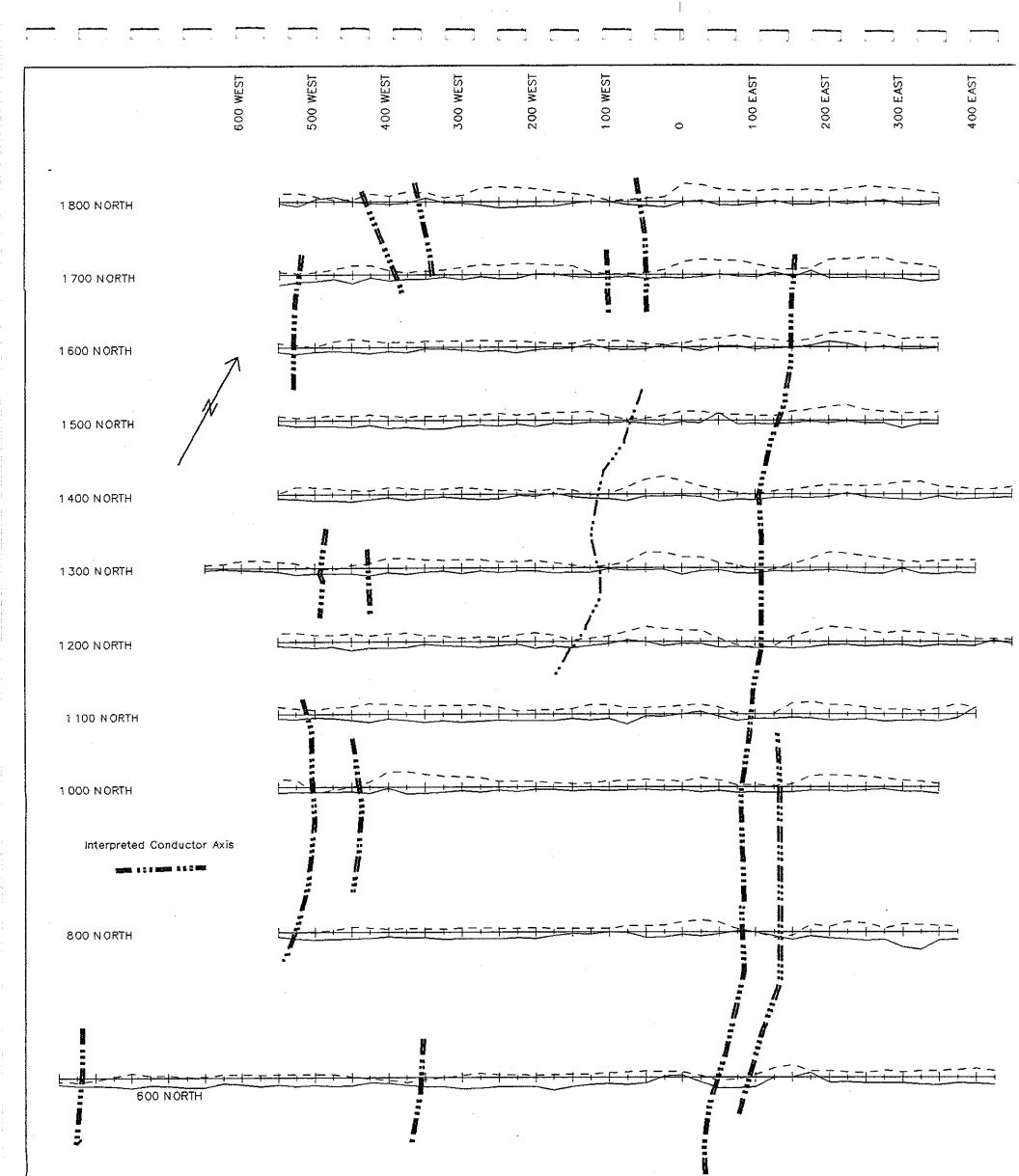

The ground magnetic work has confirmed the presence of what appears to be a buried magnetic body, possibly a small intrusive.

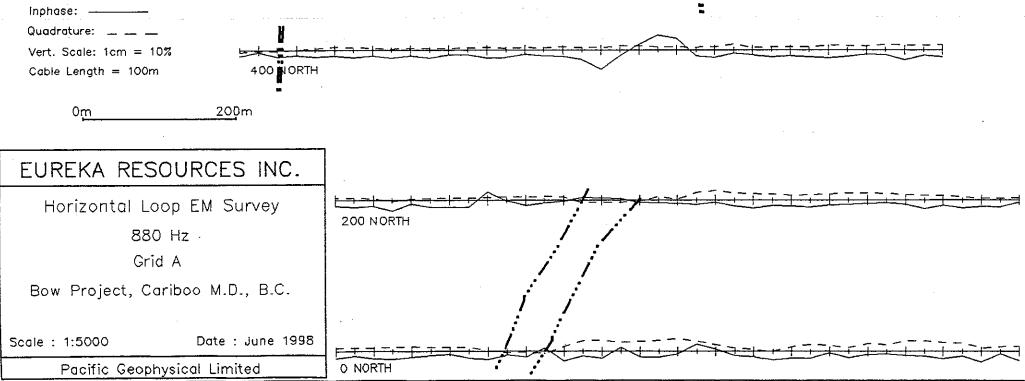

Therefore, it is recommended that the next course of action should take the form of correlating all other available data with the presently available geophysical data, in order to establish drilling priorities.

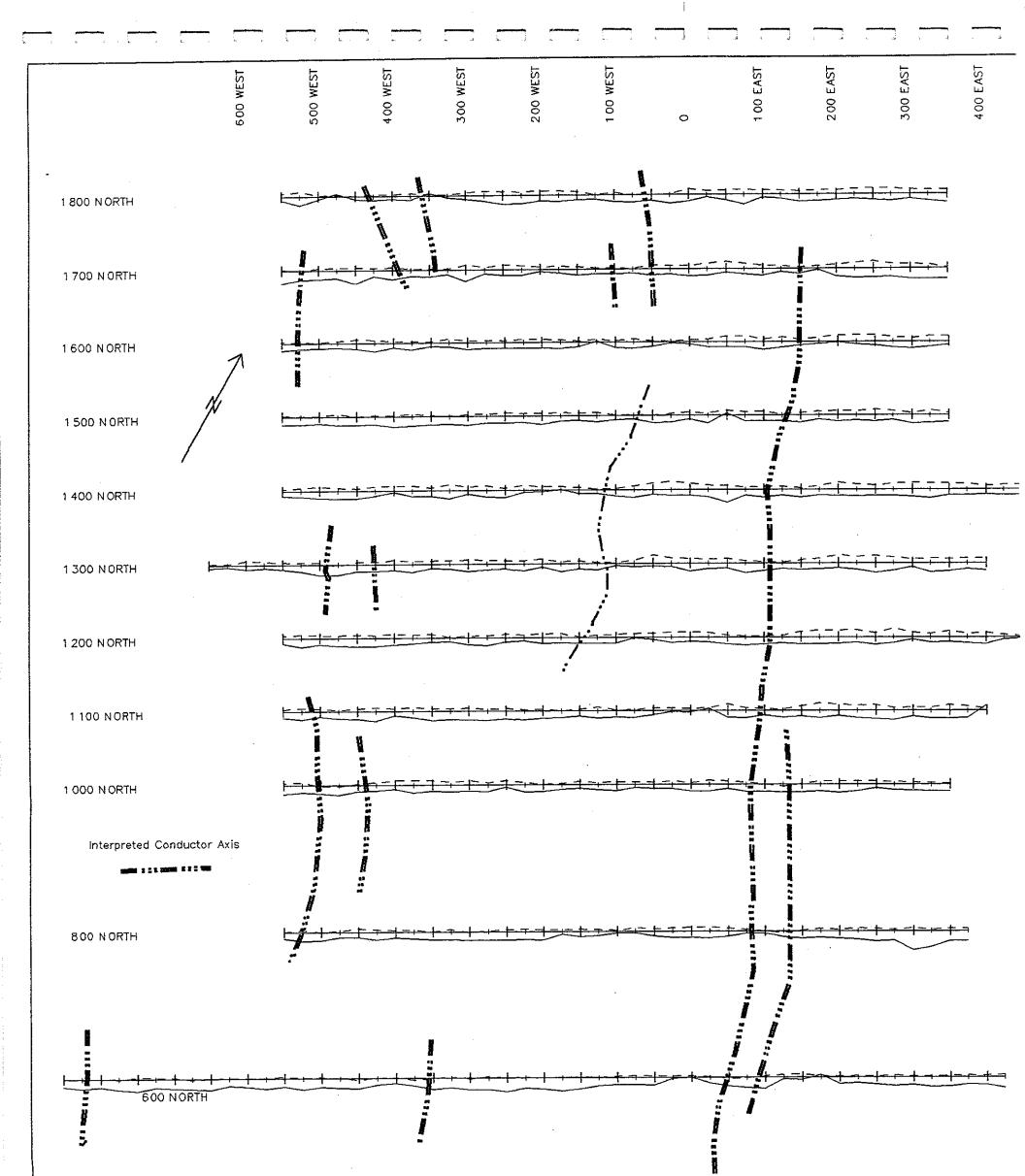

Pacific Geophysical Limited

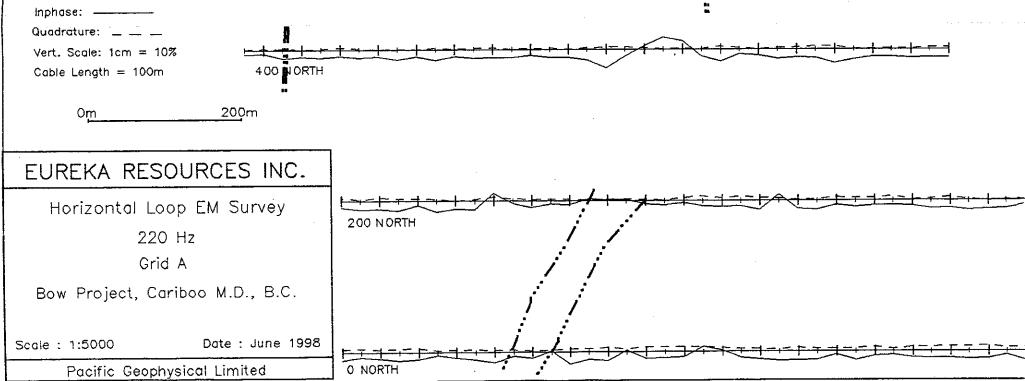

Paul Cartwright, P. Geo., Geophysicist

November 14, 1998









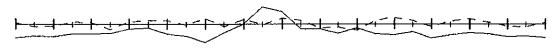
Dwg 4-2521

11

1

11

~~**1**


1 ___]

WEST WE S T WEST WEST WE S T WEST E AST E AST ৮-ហ S L EAST Ň Ň 3 00 00 8 00 00 00 4 0 0 0 0 00 00 2 00 2 00 10 0 ເດ 7 Q \sim -******** .

800 NORTH

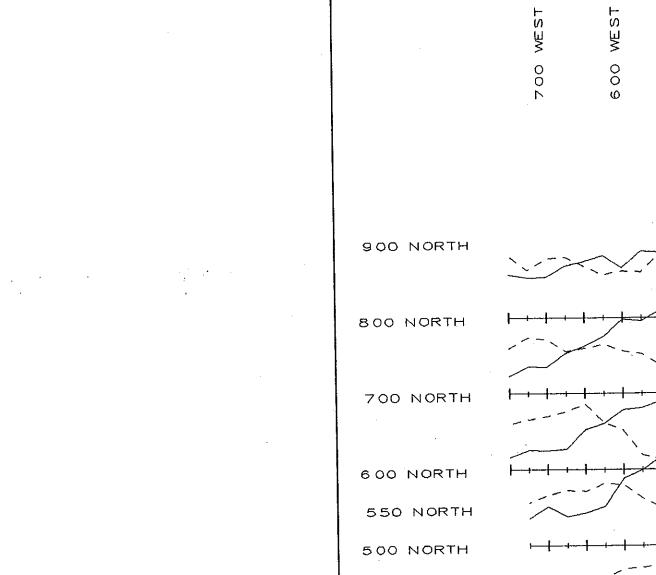
600 N ORTH

<u>-----</u>}--╶╺╕╶╍╏┈┼┈╍╞╍╌┥

200 NORTH

0 1

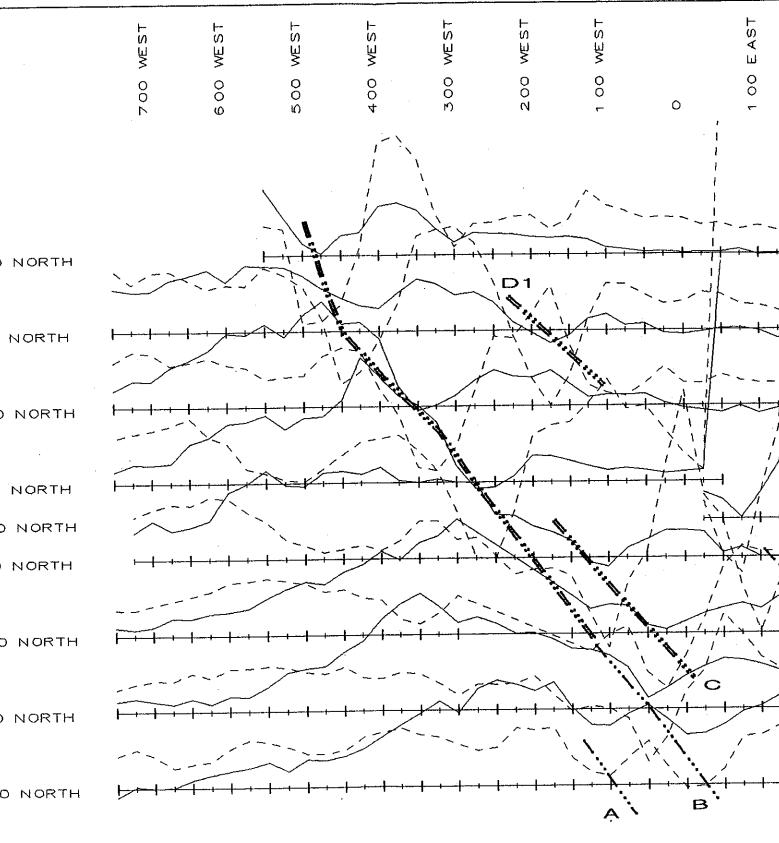
400 NORTH

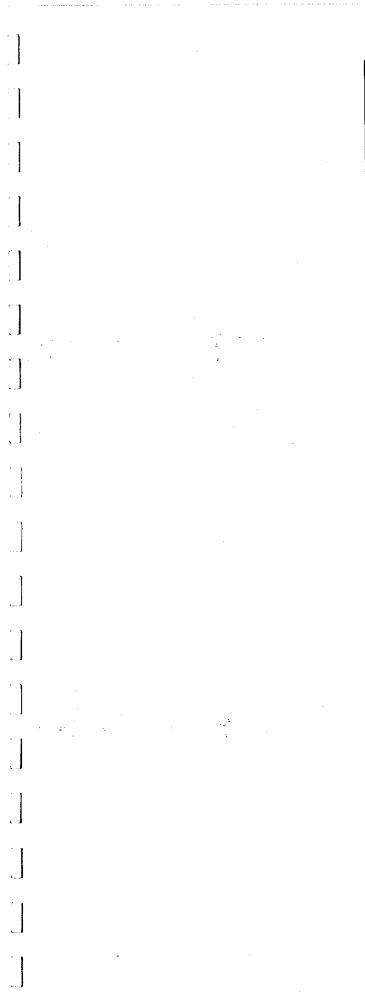

E AST

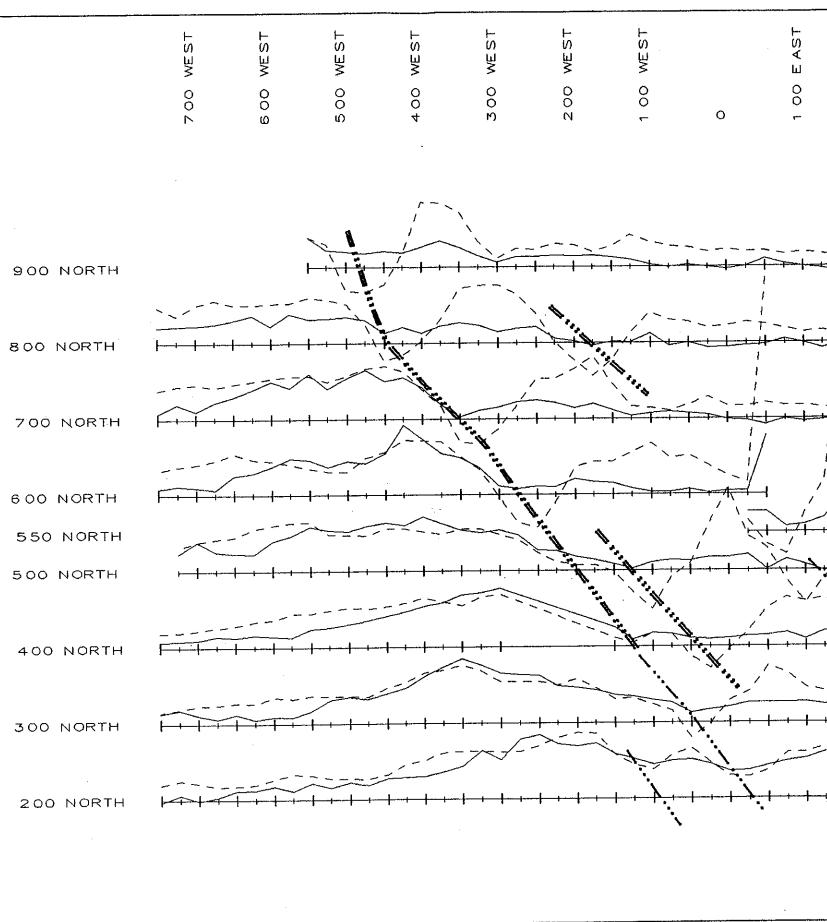
400,4

Scale

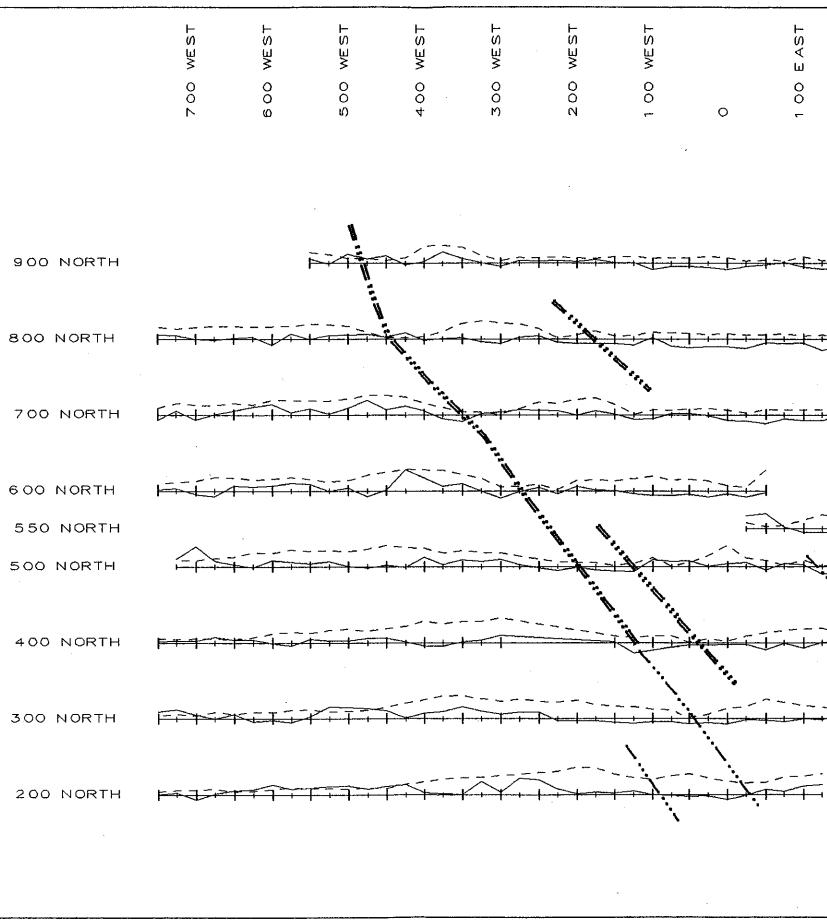
A
Inphase: Quadrature:
Vert. Scale: 1cm = 10% Cable Length = 100m
0 <u>m 200</u> m
EUREKA RESOURCES INC.
Horizontal Loop EM Survey
110 Hz Grid A
Bow Project, Cariboo M.D., B.C.
Scale : 1:5000 Date : June 1998

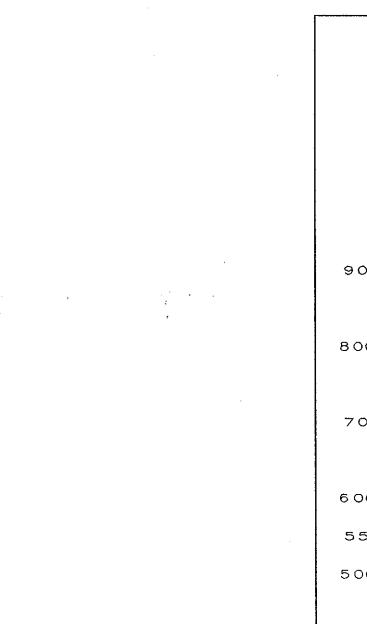



400 NORTH

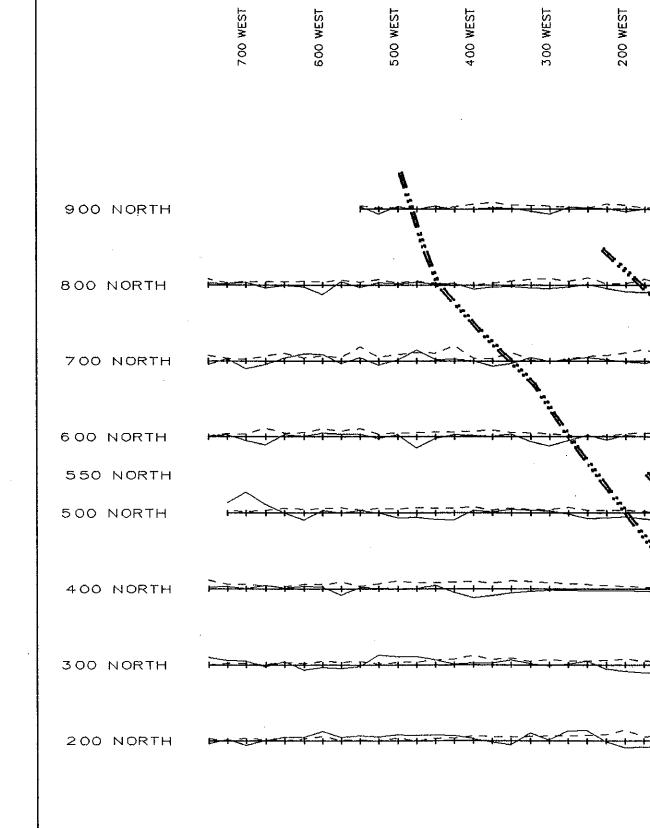

300 NORTH

200 NORTH

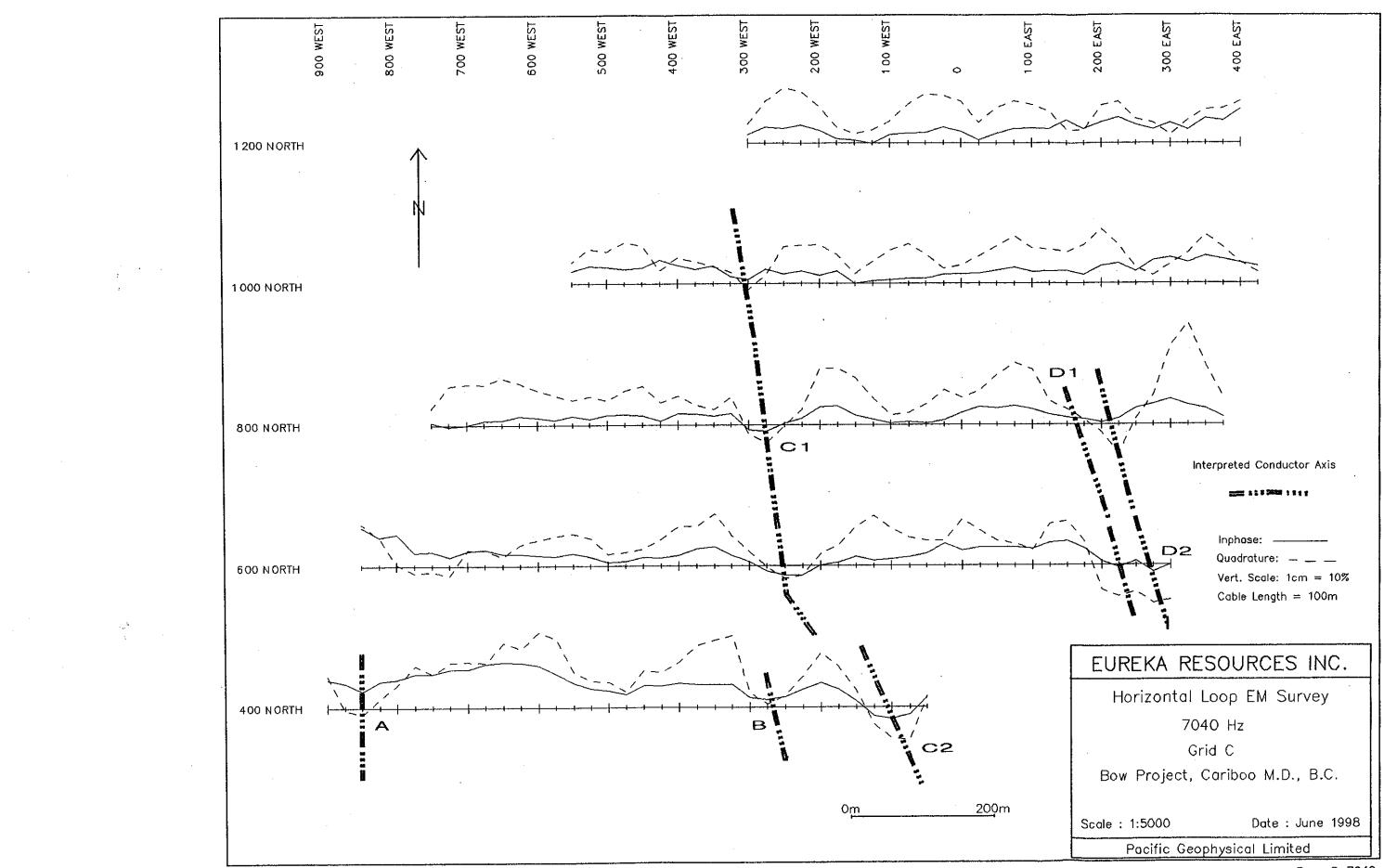

2005 F ∆ST	
	N
	Interpreted Conductor Axis
	Inphase: Quadrature: Vert. Scale: 1cm = 10% Cable Length = 100m
	0 <u>m</u> 200m
/ · · · · · · · · · · · · · · · · · · ·	EUREKA RESOURCES INC.
-	Horizontal Loop EM Survey
1	7040 Hz Grid B
	Bow Project, Cariboo M.D., B.C.
	Scale : 1:5000 Date : June 1998
	Pacific Geophysical Limited
	Dwg. B-7040


200 F AST	
Ţ	\uparrow
	N
+	Interpreted Conductor Axis
	Inphase: Quadrature: Vert. Scale: 1cm = 10% Cable Length = 100m
++++	0 <u>m 200</u> m
<u>``</u>	EUREKA RESOURCES INC.
-	Horizontal Loop EM Survey
-4	3520 Hz Grid B Bow Project, Cariboo M.D., B.C.
	Scole : 1:5000 Date : June 1998
	Pacific Geophysical Limited

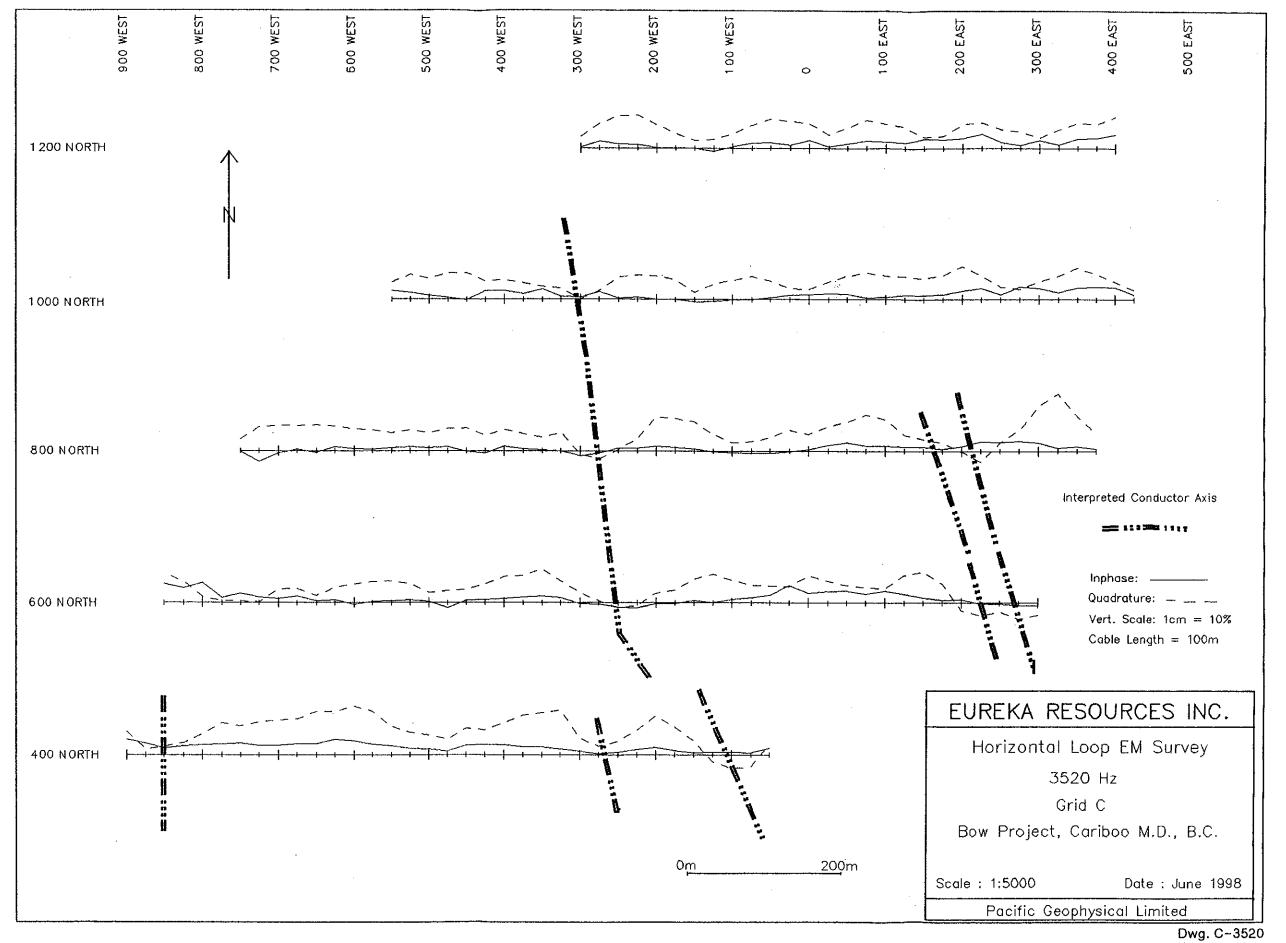
Dwg. B-3520


	200 E AST
1	
-	
F	\wedge
9	N
	Interpreted Conductor Axis
•	
~ ~ 1	Inphase:
	Quadrature: Vert. Scale: 1cm = 10%
ŗ,	Cable Length = 100m
<u>`</u> .	
\ { 	
	0 <u>m 200</u> m
	EUREKA RESOURCES INC.
	Horizontal Loop EM Survey
	880 Hz
	Grid B
	Bow Project, Cariboo M.D., B.C.
	Scale : 1:5000 Date : June 1998
	Pacific Geophysical Limited

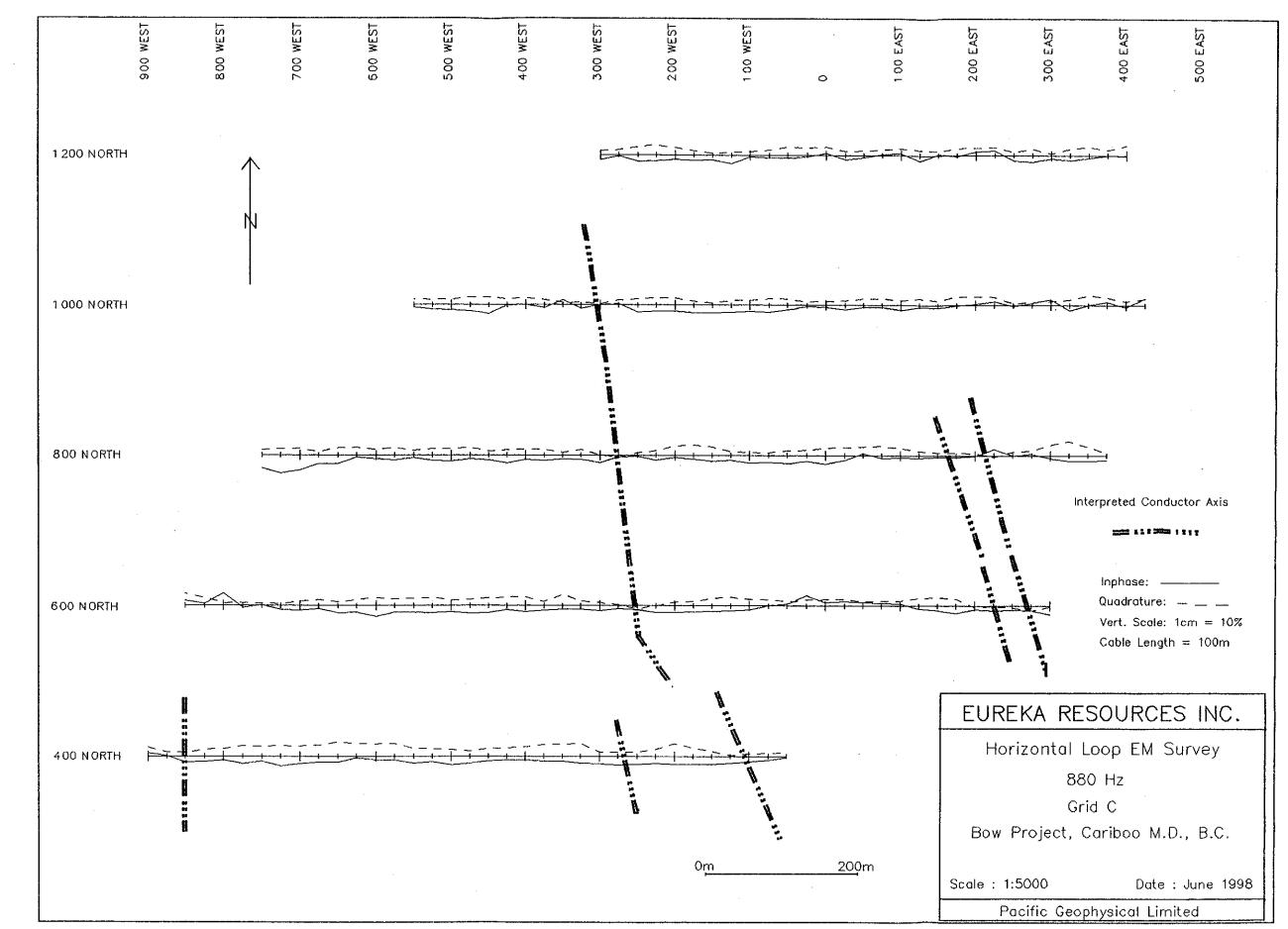
Dwg. B-880



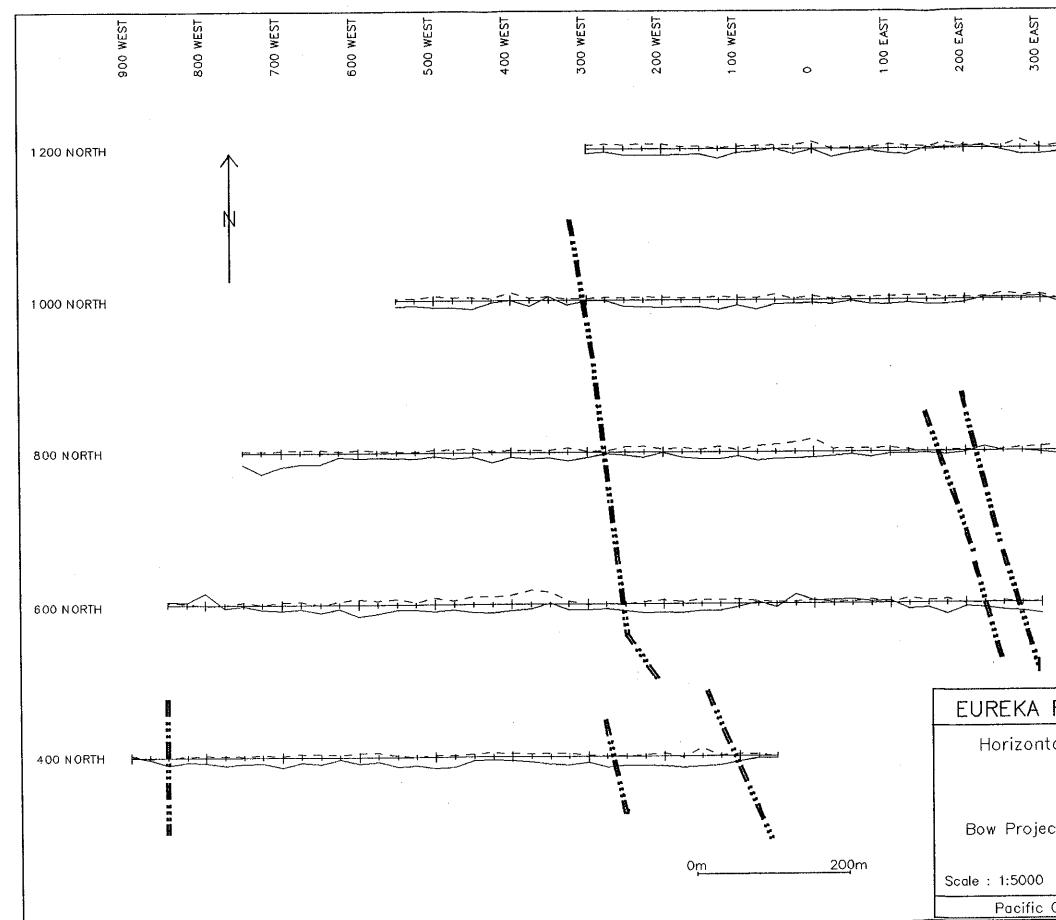
WEST


1 00 WEST

0


0 1 00 EAST	200 EAST	300 EAST	400 EAST					
		\uparrow	×.					
		μ						
		1						
	Interpreted Conductor Axis							
Frit	Inphase: Quadrature:							
	Vert. Scale: 1cm = 10% Cable Length = 100m							
		0 <u>m</u>		200m				
	EURE	KA RES	SOURCES	INC.				
\ \	Horizontal Loop EM Survey							
	220 Hz Grid B							
	Bow Project, Cariboo M.D., B.C.							
	Scale : 1:	5000	Date : Ju	une 1998				
	Pacific Geophysical Limited							
			Г	wa. B-220				

Dwg. C-7040


· · ·

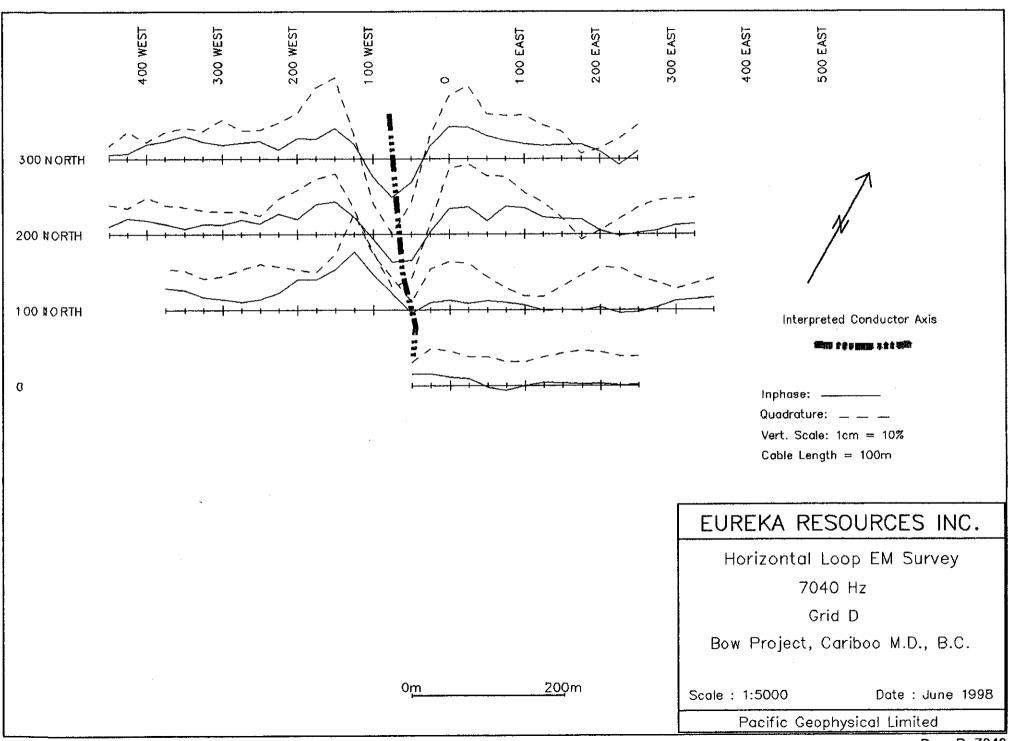
.


.

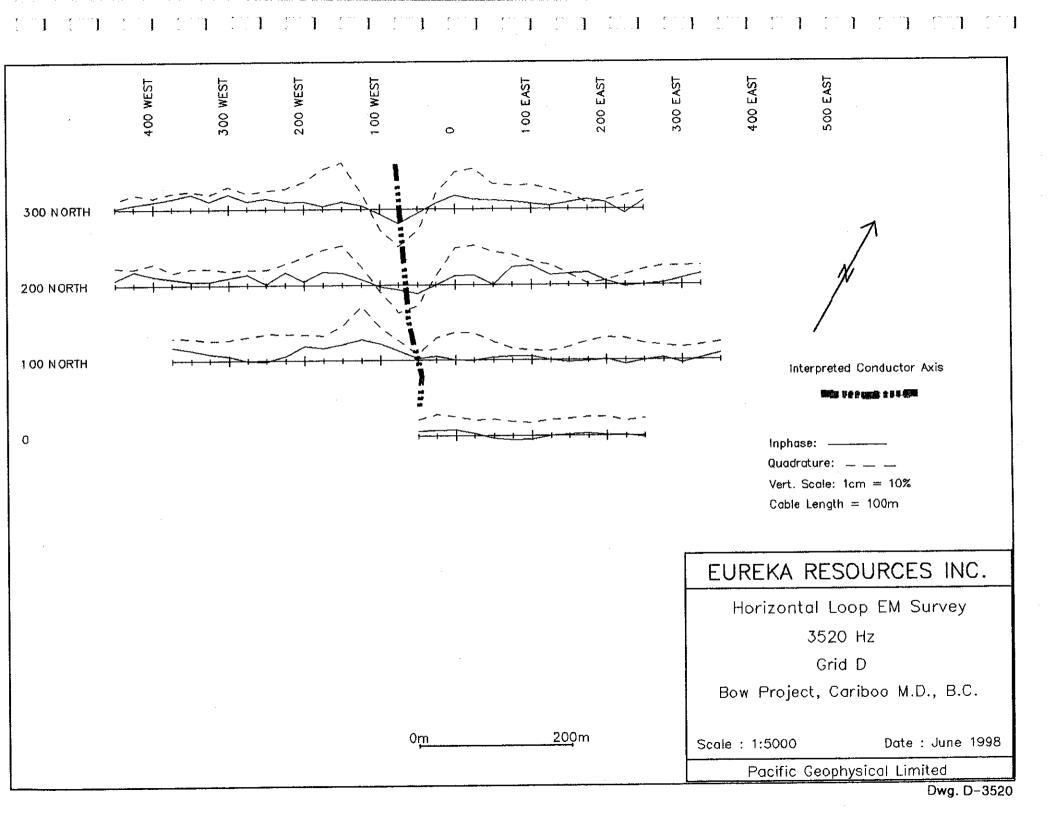
Dwg. C-880

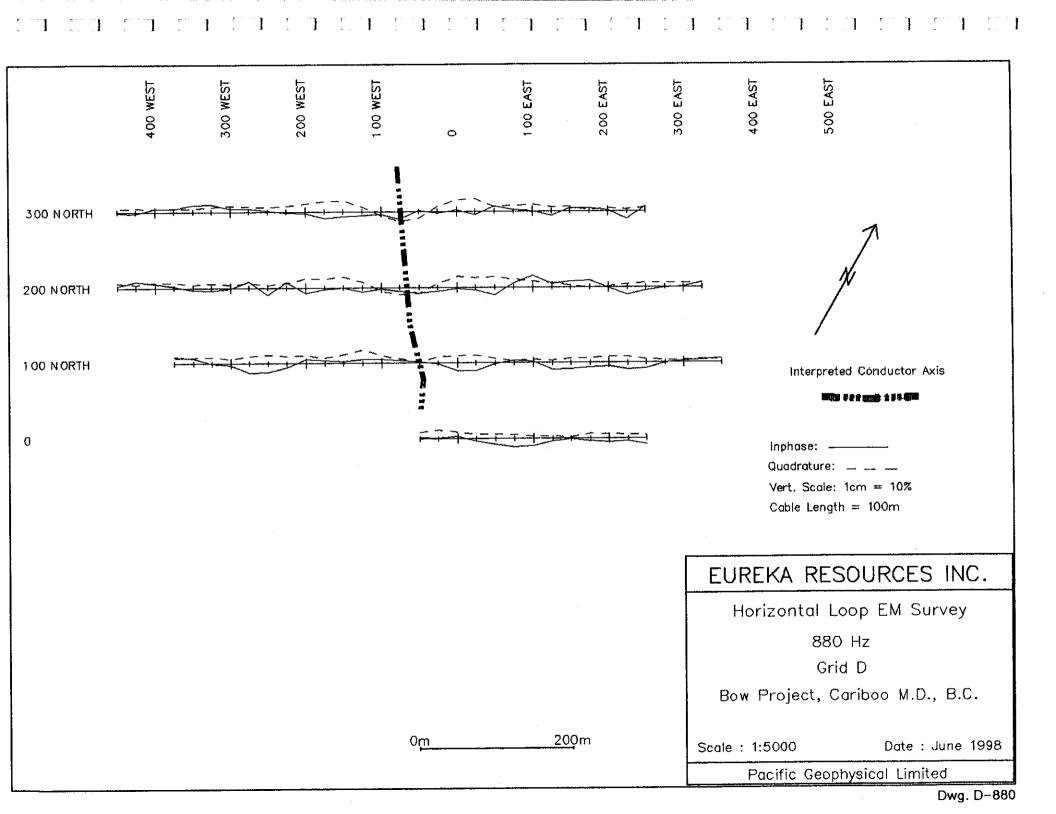
,Li

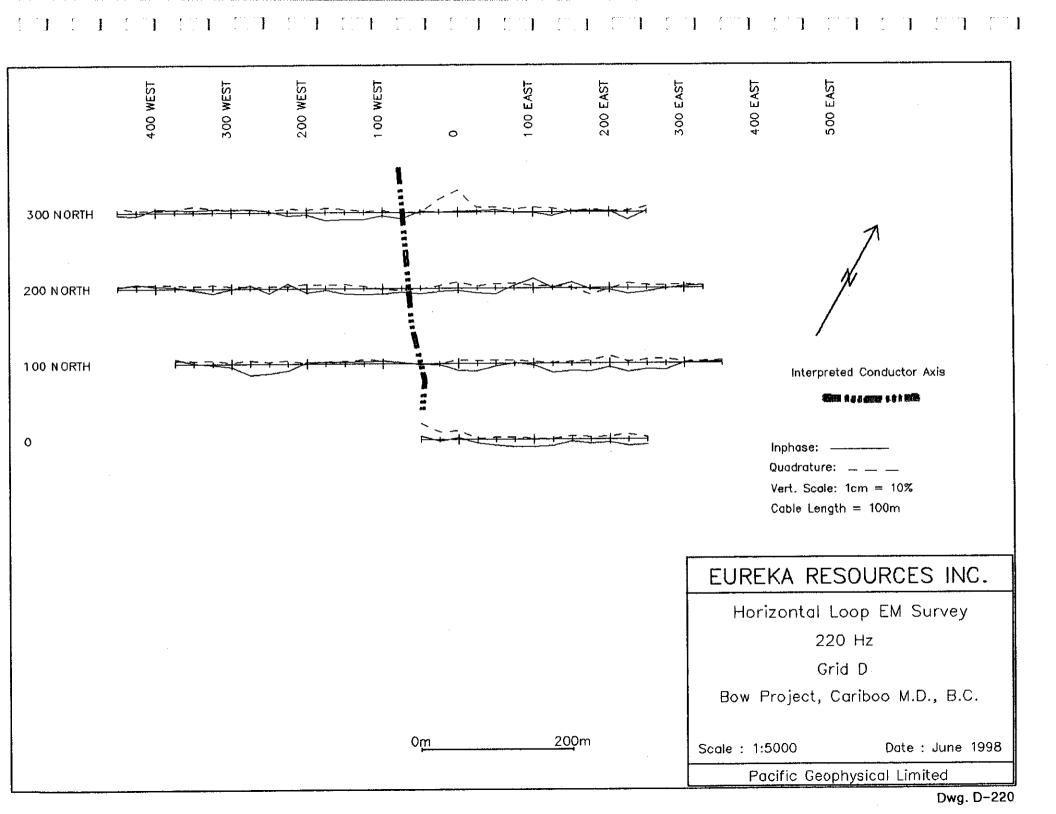
.

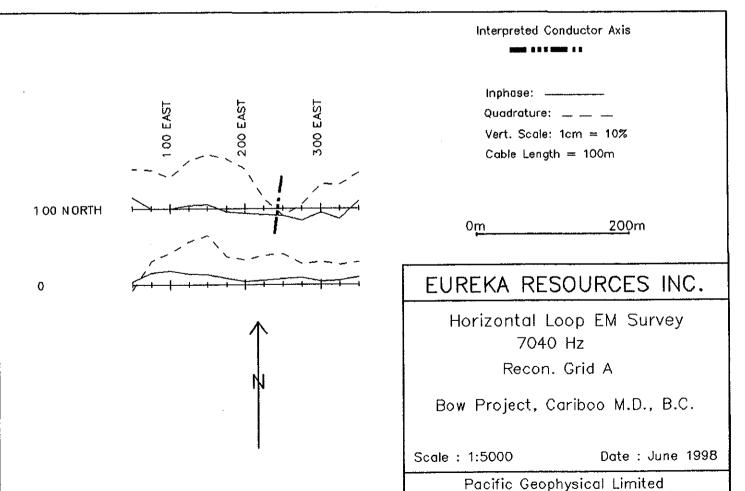


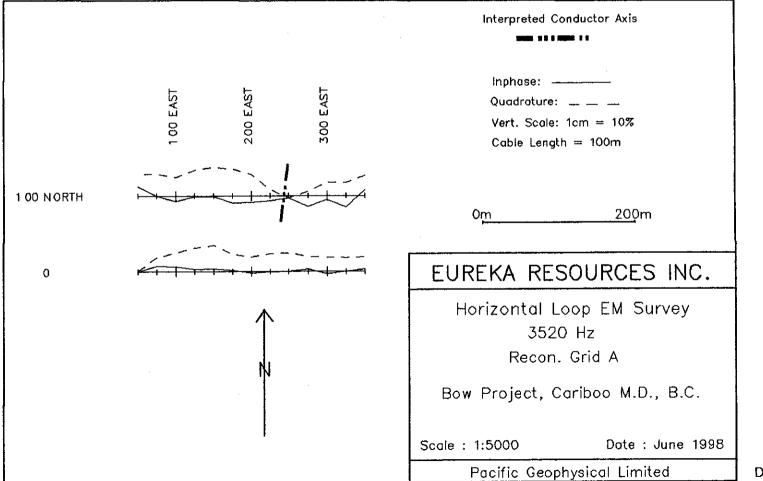
Inphase: _____ Quadrature: _ _ ___ Vert. Scale: 1cm = 10% Cable Length = 100m

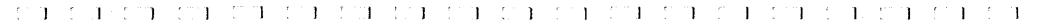

EUREKA RESOURCES INC. Horizontal Loop EM Survey 220 Hz Grid C Bow Project, Cariboo M.D., B.C. Scale : 1:5000 Date : June 1998 Pacific Geophysical Limited

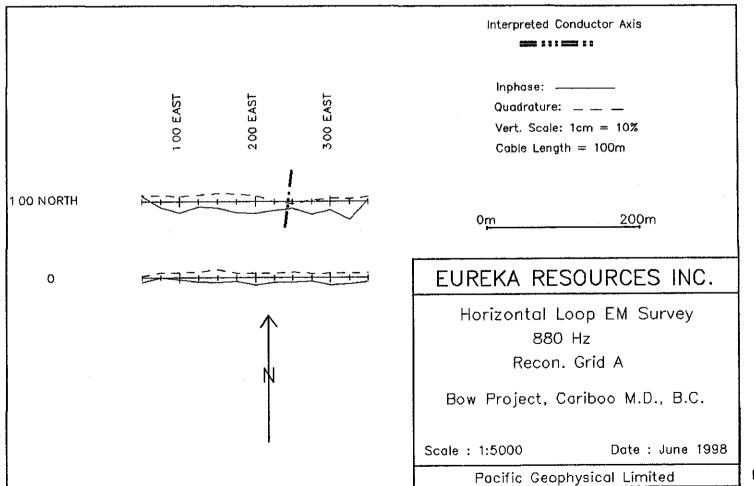

Dwg. C-220

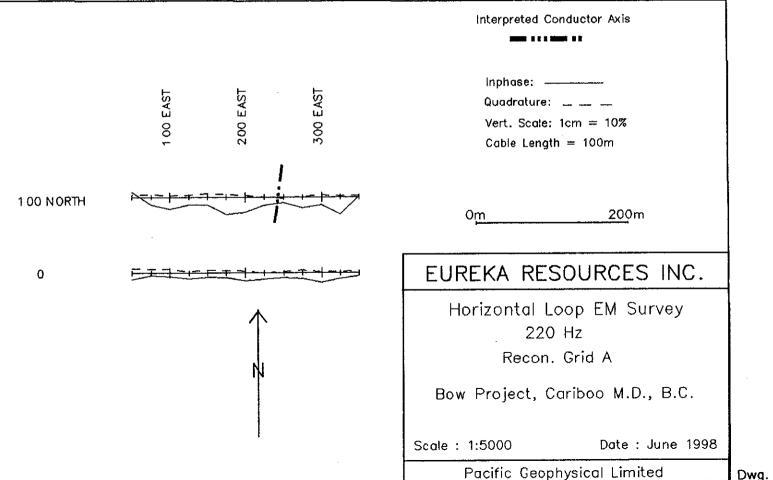

* ' -TTT CON 19 - 19 1 . * * * 1 ÿ (1 1 17 11 1 1 1 1.1 r ·

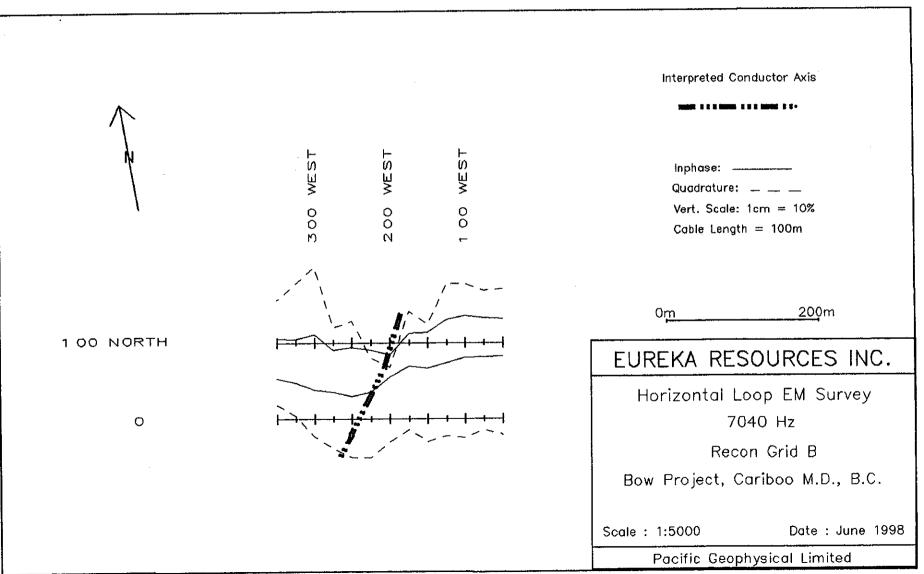


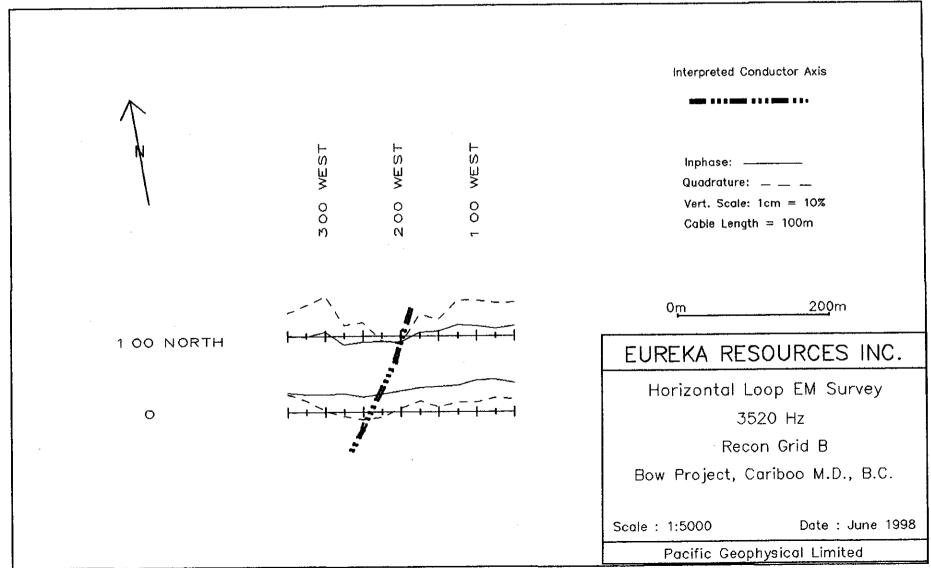

Dwg. D-7040





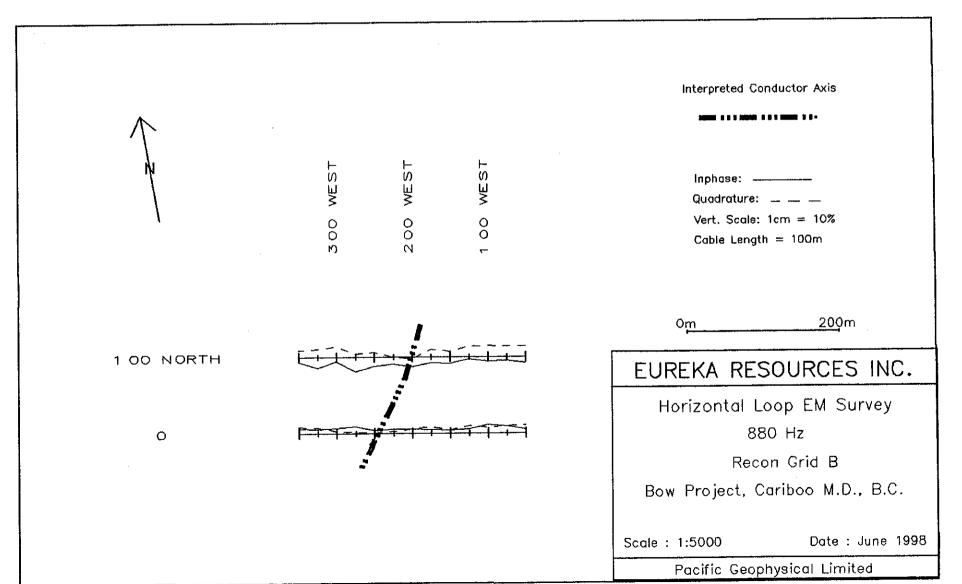


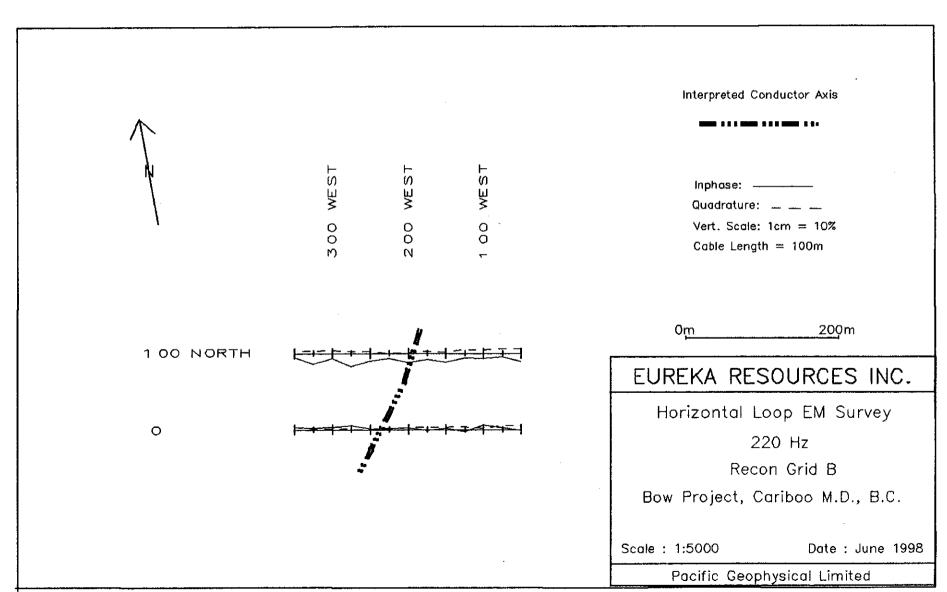




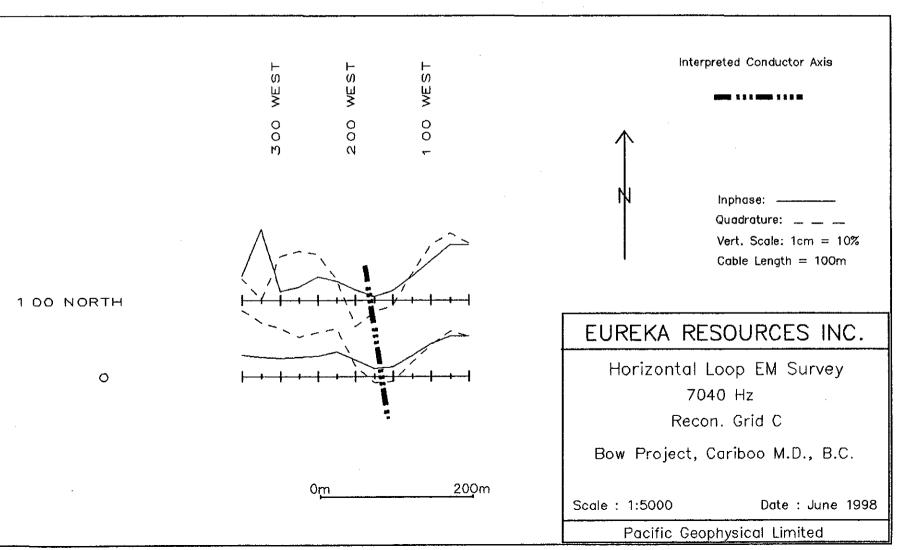
r:

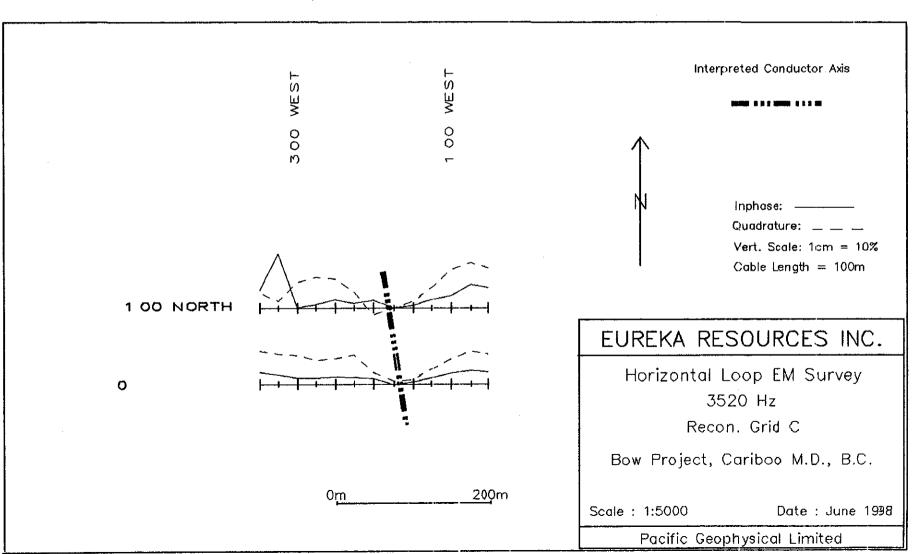
[]


5

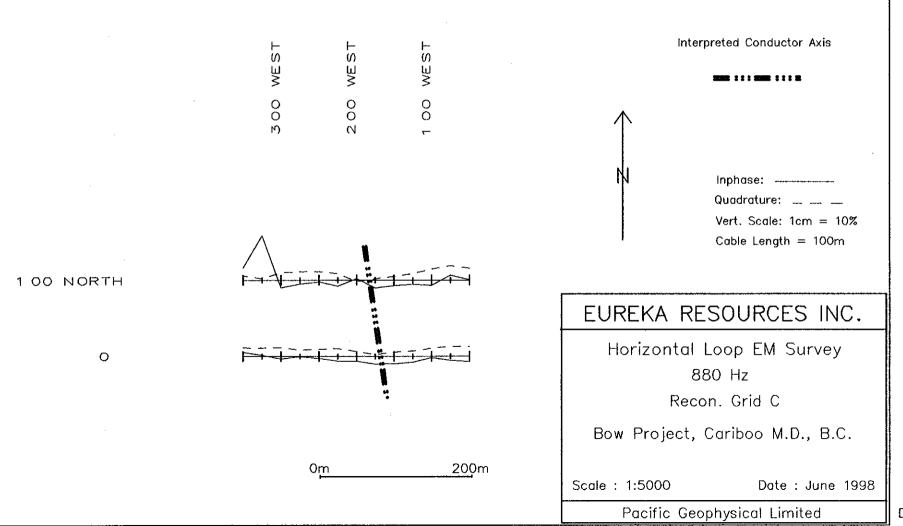


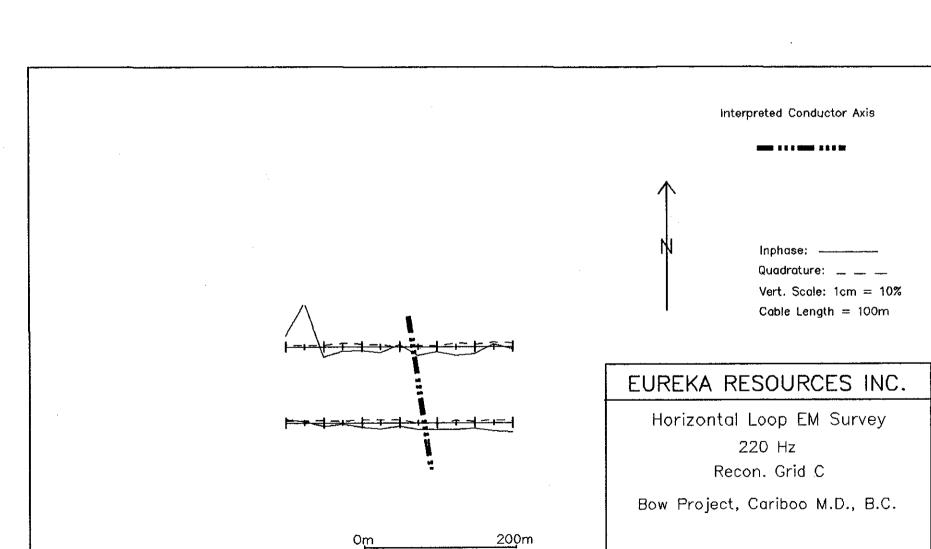
Dwg. RB-3520



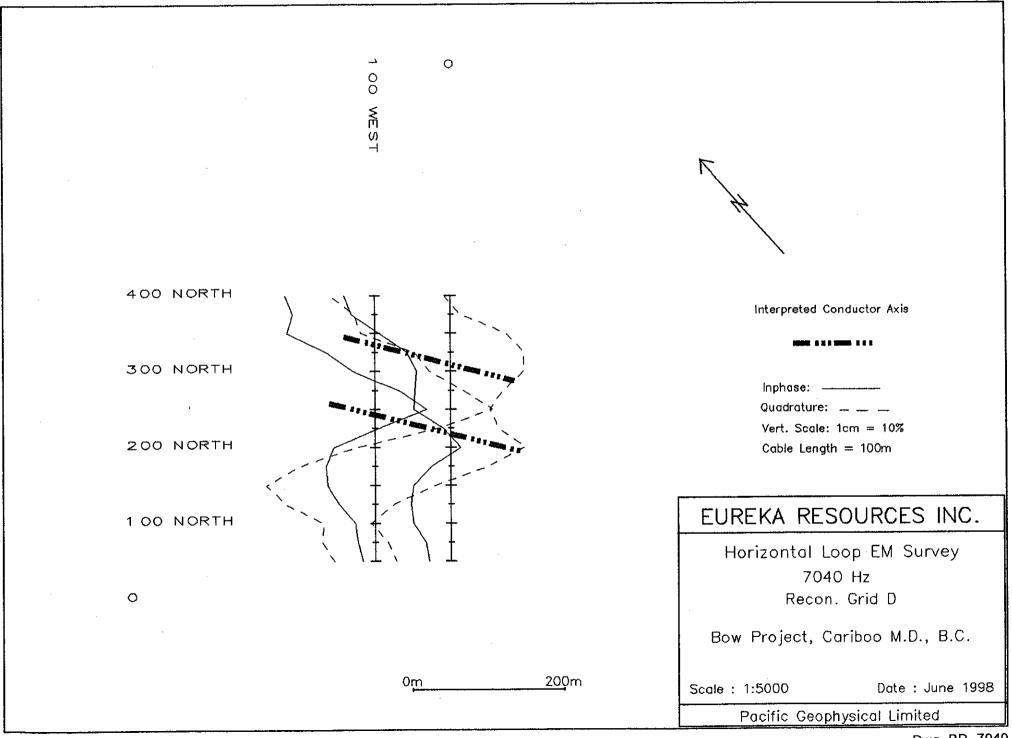

Dwg. RB-880

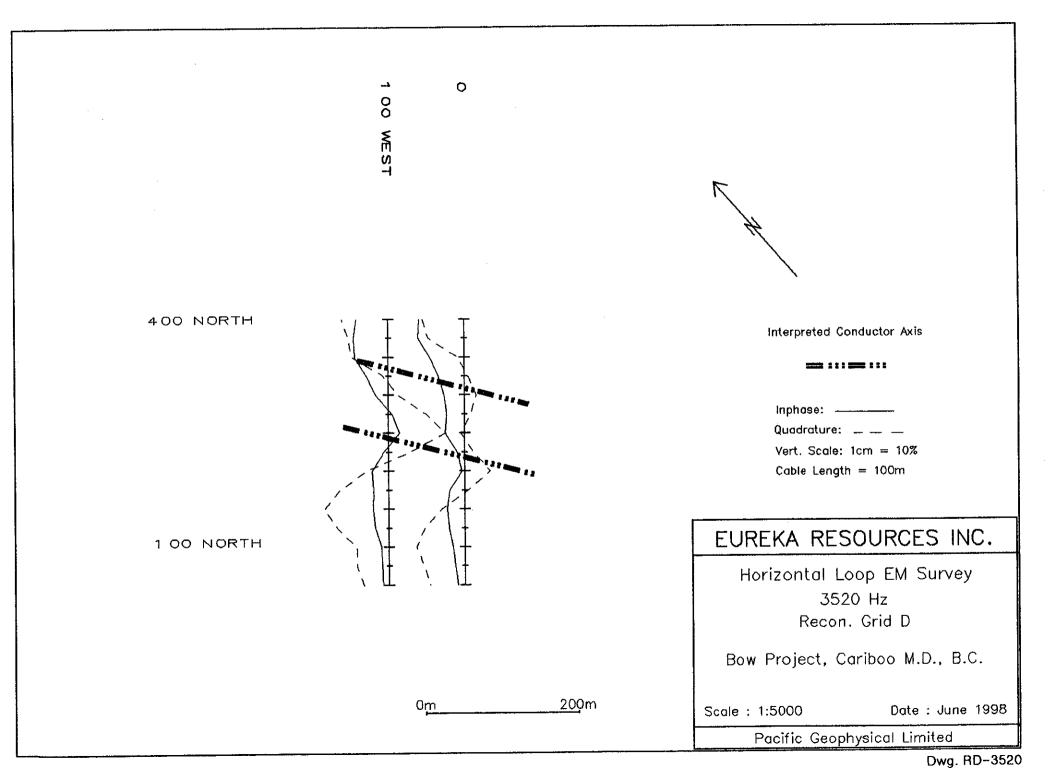
The content of the cost of the

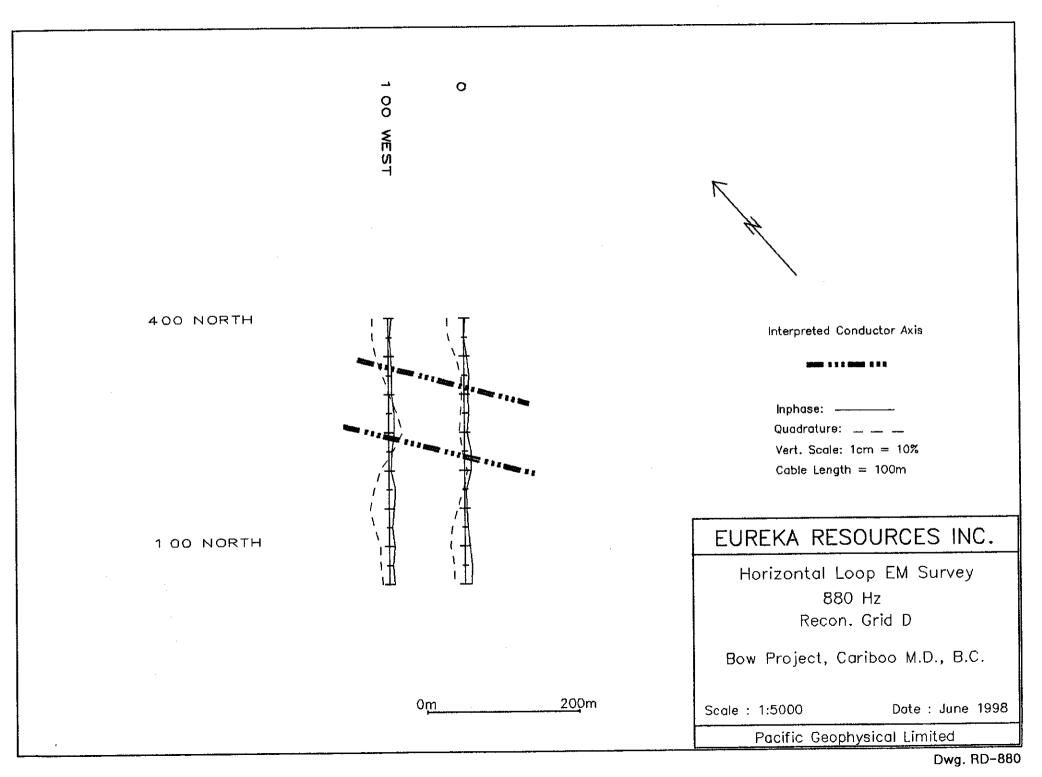


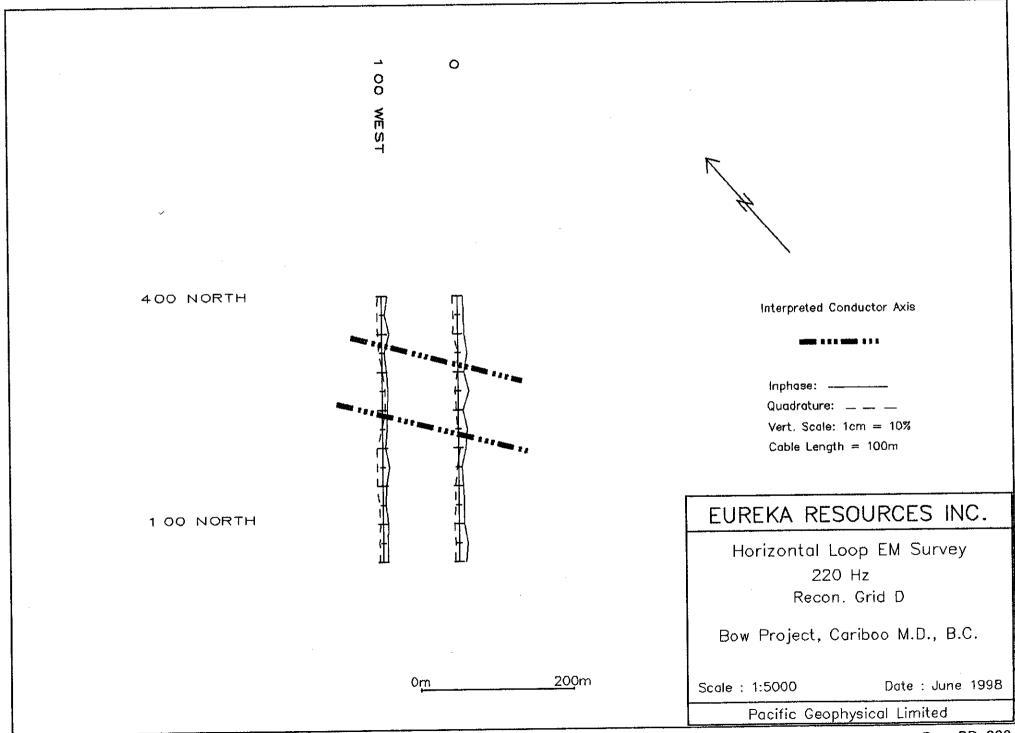

Dwg. RC-7040

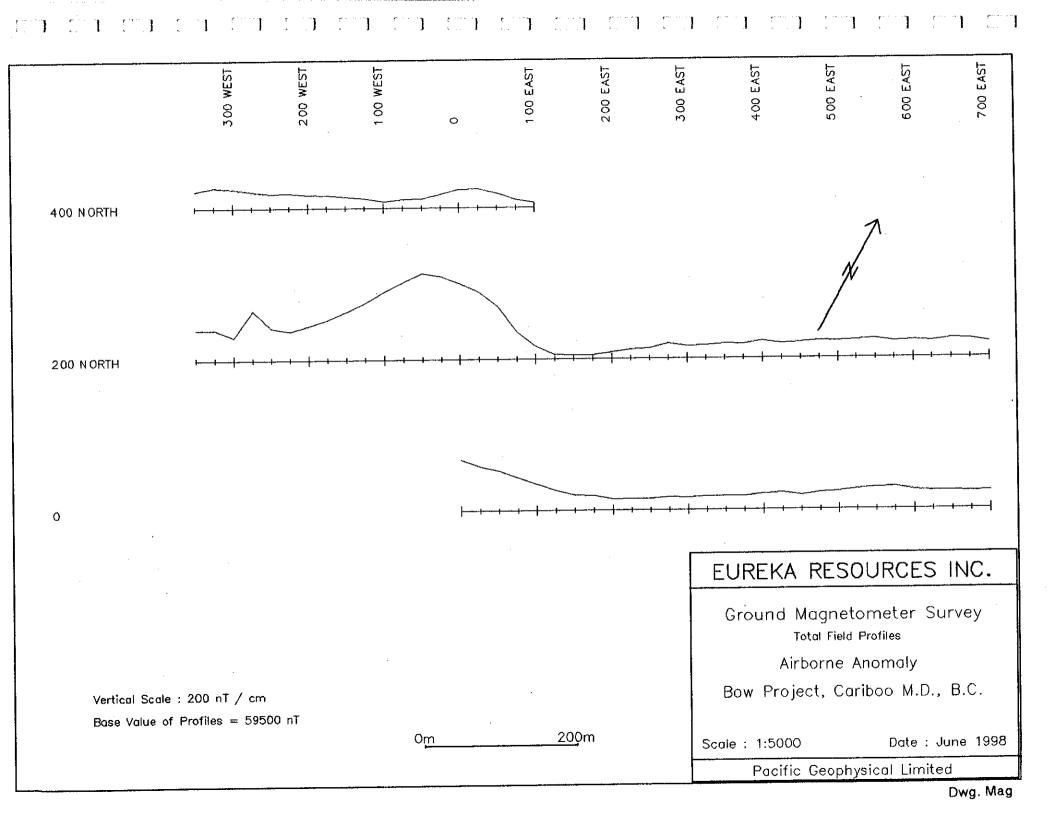
Dwg. RC-3520


.




Scale : 1:5000 Date : June 1998


Pacific Geophysical Limited


Dwg. RD-7040

Dwg. RD-220

Appendix C - Analytical Data

. . .

. .

. 1. .

ι.

.

	\mathbf{S}	ondar C	legg							Report	
EPORT: V98-009	64.0 (COMPLETE)				REFE	RENCE:				
ROJECT: NONE G	RESOURCES, INC. IVEN1					DATE RE	AITTED BY: UN ECEIVED: 23-		ED: 2-JUL-98		·····
ATE		NUMBER OF	LOWER	CVTDACTION	WETUOD	SAMPLE TYPES	NUMBER	SIZE FRACTIONS	NUMBER	SAMPLE PREPARATIC	
PPROVED EL	EMENT	ANALYSES	DETECTION	EXTRACTION	METHOD	S SOIL	276	1 -80	276	DRY, SIEVE -80	276
80629 1 Ag	Silver	276	0.2 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
80629 2 Cu	Copper	276	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						_
80629 3 Pb	Lead	276	2 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	REPORT COPIES TO: 1	¶R. JOHN R. ≱	KERR. P. ENG	INVOICE	TO: MR. JOHN R. KER	R. P. EN
80629 4 Zn	Zinc	276	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	وحله واله واله والحولة والحولة والح	فرحان مأوحات وأوجان وأوجان والرجان والرجان والرجان وال	*****			
80629 5 Mo	Molybdenum	276	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMÀ INDUC. COUP. PLASMÀ			be reproduced exce			
80629 6 Ni	Nickel	276	1 PPM	HCL:HNO3 (3:1)	INDOC. COOP. PLASMA			o those samples ide			
80629 7 Co	Cobalt	276	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	applicab	le only to the	he samples as receiv	ved expressed o	n a dry basis unles	s
80629 8 Cd	Cadmium	276	0.2 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	otherwise	e indicated				
80629 9 Bi	Bismuth	276	5 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMÀ	******	********	******	*****	*****	*****
80629 10 As	Arsenic	276	5 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
80629 11 Sb	Antimony	276	5 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
80629 12 Fe	Iron	276	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
80629 13 Mn	Manganese	276	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
280629 14 Te	Tellurium	276	10 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
280629 15 Ba	Barium	276	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
80629 16 Cr	Chromium	276	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
280629 17 V	Vanadium	276	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
980629 18 Sn	Tin	276	20 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
NO420 10 11	Tumastan	276	20 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
)80629 19 W)80629 20 La	Tungsten Lanthanum	276	20 PPM 1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
20029 20 La 280629 21 Al	Aluminum	276	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
780629 22 Mg	Magnesium	276	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
280629 23 Ca	Calcium	276	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
80629 24 Na	Sodium	276	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
00000 of #	Deterrit	276	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
980629 25 K 980629 26 Sr	Potassium Strontium	276	U.UT PCT 1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
780629 28 SF 780629 27 Y	Yttrium	276	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
280629 28 Ga	Gallium	276	2 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
80629 29 Li	Lithium	276	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMÁ						
80629 30 Nb	Niobium	276	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
	.	~~*	E DOM	101.007 /7-45							
980629 31 Sc	Scandium	276	5 PPM 10 ppm	HCL:HNO3 (3:1) HCL:HNO3 (3:1)	INDUC. COUP. PLASMA INDUC. COUP. PLASMA						
980629 32 Ta	Tantalum Titopium	276 276	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
980629 33 Ti 980629 34 Zr	Titanium Zirconium	276	1 PPM		INDUC. COUP. PLASMA						

e.

CLIENT: EUREKA RESOURCES, INC.

Intertek Testing Services Bondar Clegg

Geochemical Lab Report

PROJECT: NONE GIVEN1

REPORT: V98-	00964.0 (COM	PLET	E)														0	ATE	RECE	IVED): 23	JUN-9	78	DATI	E PRI	NTED:	2-	JUL-	98	PAG	E 1	OF 14	•	
SAMPLE	ELEMENT	-														Ba						AL	-		Na		Sr PPM		Ga					Ti PCT I	· .
Number	UNITS	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PUI	PPM	74U	PPM	PPM	PPM	PPM	PPA	rrn	PGI	PUI	PGI	PG1	FUI	FF	FFCI	FFP	FFPI	EEN 1	rrn g	'FP) F	-01	- 5 11
BL0+00-0+00		0.3	42	7	62	2	25	9	<.2	<5	6	<5	4.83	987	<10	265	55	134	<20	<20	4	2.01	0.52	0.73	<.01	0.05	14	3	6	14	2	<5 -	10 0.	.21	<1
A0+0-0+50E		<.2	48	3	39	<1	50	17	<.2	<5	6	<5	3.61	645	<10	240	54	103	<20	<20	6	2.73	1.09	1.07	0.02	0.04	17			12			<10 0.		7
A0+0-1+00E		0.2	43	-	54								4.73										0.86					9		20	1.1		<10 0.		1995
A0+0-1+50E		<.2	42	4	43	<1	35	16	<.2	<5	10	<5	3.04	593	<10	150	48	105	<20	<20	_						13		1				<10.0.		2
A0+0-2+00E		0.3	30	2	46	<1	47	12	<.2	<5	7	<5	3.61	312	<10	163	49	94	<20	<20	. 4	2.73	0.79	1.04	0.01	0.02	17	7	3	12	1	<5 ·	<10 0.	.23	6
A0+0-3+00E		<.2	60	6	58	1	50	19	<.2	<5	10	<5	4.16	1104	<10	268	73	114	<20	<20	. 9	2.86	1.11	1.20	0.01	0.08	20	19	4	17	<1	12	<10 0.	.23	<1
A0+0-3+50E		<.2	75	3	54	1	68	22	<.2	<5	11	<5	4.51	1052	<10	283	72	115	<20	<20	. 8	3.07	1.27	1.17	0.01	0.05	21	17	4	16	<1	10	<10 0.	.20	<1
A0+0-4+00E		<.2	109	20	75	2	73	25	<.2	<5	12	<5	6.03	2604	<10	310	113	141	<20	<20	18	5.03	1.27	1.19	0.01	0.15	29	36	7	24	<1	17	<10 0.	.13	<1
A0+0-4+50e		0.2	88	13	66				<.2														- 10 A A A A A A A A A A A A A A A A A A		10 C	· .	27						<10_0		1 A.U.
A0+0-5+00E		<.2	65	5	54	1	47	17	<.2	<5	9	<5	4.51	951	<10	. 199	85	122	<20	<20	10	3.09	1.02	1.27	0.01	0.08	21	20	5	20	<1	13	<10 0	. 19	<1
ADI 2400N		<.2	11	10	52	· 1	1.7	17	23	<5	14	<5	4.49	800	<10	255	65	120	<20	<20	: 6	2.82	0.97	0.86	0.01	0.04	14	13	5	17	<1	8	<10_0	.21	<1
ABL2+00N A2+00N-0+508		0.2		6	11								5.98										- f T		in a stand		18		1916		densel i		<10 0		2
A2+00N-0+00		0.2			101				<.2				6.46					-					a na an A		- 90 C 1		13			24	2	<5	<10 0.	.22	<1
A2+00N-1+50	-	<.2	1.5		57				<.2				4.40		11						9	2.70	0.84	1.06	0.01	0.03	14	27	6	16	<1	9	<10 0.	.28	<1
A2+00N-2+00		0.3	1.811		1.6		1.1						3.41								4	1.27	0.17	0.68	<.01	0.02	8	4	7	2	2	<5	<10 0.	.30	<1
12.0011 2.001	-						신문									2 12							- 18173 - 1966 - 19	4) 5.											n na se La Rise
A2+00N-2+50I	E	0.3	22	<2	52	1	34	14	<.2	<5	8	<5	5.17	523	<10	147	61	131	<20	<20	5	3.14	0.81	0.91	0.01	0.03	14	7	5	16	1	5	<10 0	.31	5
A2+00N-3+00I		<.2	33	3	54	1	40	18	<.2	<5	7	<5	4.86	861	<10	134	61	141	<20	<20	5	3.10	1.07	1.23	0,01	0.03	15	12	5	13	<1	7	<10 0	.33	2
A2+00N-3+50	E	<.2	38	3	49	1	41	18	<.2	<5	7	<5	4.01	843	<10	126	67	113	<20	<20	10	2.64	1.08	1.23	0.02	0.04	20	18	4	18	<1	11	<10_0	.27	3
A2+00N-4+00	E	<.2	23	2	52	1	35	15	<.2	<5	7	<5	3.99	673	<10	136	63	116	<20	<20	8	2.78	1.03	1.20	0.02	0.05	17	12	5	1 9	<1	7	<10 0	.28	2
A2+00N-4+50	E	<.2	17	5	65	1	28	11	<.2	<5	6	<5	4.31	345	<10	173	60	120	<20	<20	7	2.23	0.61	0.72	0.01	0.04	12	6	5	16	- 1 	<5	<10 0	.24	1
A2+00N-5+00	E	<.2	133	8	63	2	72	26	<.2	ব	20	<5	6.40	1475	<10	357	140	151	<20	<20	18		1.30	1.41	0.01	0.09	27	50	5	29	<1	25 ·	<10 0	. 19	<1
A0+00-0+50W		<.2	23	3	41	1	39	13	<.2	<5	7	<5	4.26	312	<10	161	58	114	<20	<20	6	2.86	0.68	0.60	0.01	0.03	i 9	5	5	16	1	<5	<10 0.	.24	5
A0+00-1+00W		0.2	29	2	48	1	43	15	<.2	<5	6	⁻ <5	4.26	397	<10	247	61	110	<20	<20	7	3.06	0.74	0.65	0.01	0.04	11	6	- 4	18	· 1	<5	<10 0.	.24	5
A0+00-1+50W		0.3	16	3	66	2	35	13	<.2	<5	8	. <5	5.95	352	<10	215	67	165	<20	<20	6	3.26	0.62	0.47	<.01	0.04	12	4	6	23	2	<5 ·	<10 0.	.28	3
A0+00-2+00W		0.3	24	<2	39	2	49	15	<.2	<5	10	<5	6.46	322	<10	132	81	145	<20	<20	4	3.42	0.89	0.68	0.01	0.02	11	5	5	23	1	6	<10 0	.28	5
A0+00-2+50W		<.2	15	4	35	1	27	9	<.2	<5	6	<5	4.09	329	<10	105	55	164	<20	<20	6	2.17	0.54	0.82	0.01	0.03	12	5	7	11	2	<5	<10 0	.33	2
A0+00-3+00W		<.2		÷	- 272	:			< 2		11.1.1.1.1.1.1				Sec. 1.						10 A.						16		5	24	<1	8	<10 0	.25	3
A0+00-3+50W		<.2	-1990).		1940	a [1.000		<.2	1	100		- NA 5-11		- 11 J. + 4												22						<10 0		×1
A0+00-4+00W		<.2	100		- 1926	3 T	1.05	- C	<.2				- 19 March 19										- 16 - 16 A.				16			16	<1	6	<10 0	.26	4
A0+00-4+50W		0.3			50	1.1		- C					4.95										2.7							18	2	11	<10 0	.26	3

Geochemic Lab Report

PROJECT: NONE GIVEN1

CLIENT: EURE		-																[ATE	RECE	IVE): 23·	- JUN-'	98	DAT	E PRII	NTED:	2-	JUL-	9 8	PAG	E 2	2 OF	JECT: 14	NONC
SAMPLE	ELEMENT												Fe			Ва							Мg			K PCT	Sr PDM		Ga PPM					• •	Zn. PPM
NUMBER	UNITS	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	የተጣ	rrn	PUI	rrm	ተተጠ	PPN	FFM	rrr	rrn	C.C.C.	rrm	FUI	FUI	FUI	rut	FUI	r r ri	F F F J				111		10,	
A0+00-5+00W		<.2	51	5	37	<1	50	16	<.2	<5	8	<5	3.44	596	<10	150	64	9 0	<20	<20						0.04				18	<1		199	0.20	2
A2+00-0+50W		<.2	29	4	47	1	34	13	<.2	<5	6	<5	4.37	457	<10	205	61	114	<20	<20	7	2.44	0.78	0.68	0.01	0.04	11	6	.4	16	1	<5	<10	0.26	3
A2+00-1+00W		0.4	25	5	51	2	31	13	<.2	<5	-		4.77								3	2.22	0.70	1.01	<.01	0.06	14	4		12	1	<5	<10	0.17	<1
A2+00-1+50W		<.2	27	11	62	1	38	16	<.2	<5			3.57								•					0.05	1.1	4	· · · · .	15	: 1	-		0.20	
A2+00-2+00W		0.3	17	. 3	64	. 2	33	14	<,2	<5	7	<5	5.89	719	<10	221	68	168	<20	<20	5	2.81	0.67	0.55	0.01	0.03	12	4	7	25	2	<5	<10	0.23	<1
A2+00-2+50W		0.3	27	3	62	1	60	20	<.2	<5	10	<5	4.49	503	<10	192	63	112	<20	<20	6	3.48	1.15	0.92	0.01	0.04	15	8	4	18	1	6	<10	0.22	6
A2+00-3+00W		<.2	15	6	43	1	26	10	<.2	<5	6	<5	4.57	414	<10	156	60	141	<20	<20	- 5	2.19	0.60	0.72	0.01	0.03	9	4	5	16	1	<5	<10	0.30	1
A2+00-3+50W		<.2	17	6	42	1	29	12	<.2	<5	<5	<5	4.04	374	<10	139	54	113	<20	<20	6	2.34	0.62	0.66	0.01	0.03	9	5	4	15	1	<5	<10	0.26	3
A2+00-4+00W		<.2	40	5	45	1	37	15	<.2	<5	5	<5	3.84	620	<10	193	58	109	<20	<20	- 8	2.48	0.79	0.94	0.01	0.04	14	11	4	19	1	5	<10	0.22	1
A2+00N-4+50W	,	<.2	1.16	3	50	<1	28	12	<,Ż	<5	<5	<5	3.76	363	<10	173	53	111	<20	<20	7	2.46	0.61	0.75	0.01	0.03	10	6	5	13	1	<5	<10	0.28	6
																	13										ard. The set								ine e. The part
A2+00N-5+00W	1	<.2	49	5	38	1	34	12	<.2	<5	6	<5	4.05	516	<10	188	63	117	<20	<20	15	2.43	0.73	1.07	0.01	0.04	18	36	4	16	2	9	<10	0.23	<1
A4+00N-0+50%		0.3	29	<2	. 33	1	48	19	<.2	<5	10	<5	5.16	456	<10	230	75	104	<20	<20	4	5.23	0.93	0.90	0.01	0.02	20	9	- 4	16	2	8	<10	0.19	6
A4+00N-1+00k	ł	0.2	31	<2	52	1	48	21	0.3	<5	9	<5	5.07	567	<10	112	86	133	<20	<20	ં 5	3.51	1.17	1.10	0.01	0.04	15	8	5	22	<1	7	<10	0.33	8
A4+00N-1+50%		0.3	29	<2	63	1	45	18	<.2	<5	8	<5	4.74	550	<10	110	82	128	<20	<20	5	3.49	1.07	1.04	0.02	0.03	15	8	4	20	<1	7	<10	0.32	8
A4+00N-2+006		0.2	17	4	64	1	30	11	<.2	<5	7	<5	4.96	363	<10	195	66	131	<20	<20	7	2.51	0.77	0.87	0.01	0.03	13	5	5	20	1	<5	<10	0.29	2
							• • •									. :				i.		2													
A4+00N-2+50	1	0.2	28	2	49	<u> </u>	42	. 16	<.2	<5	8	<5	4,54	440	<10	104	77	124	<20	<20	7	3.31	0.91	0.90	0.01	0.03	11	7			<1	7	<10	0.30	6
A4+00N-3+00%	i i	<.2	15	8	55	2	30	13	< . 2	<5	6	<5	5.14	342	<10	105	69	136	<20	:<20	- 7	2.75	0.72	0.58	<.01	0.03	9	5	5	23	1	<5	<10	0.33	6
A4+00N-3+50	1	<.2	26	3	38	i <1	37	: 16	<.2	<5	5	<5	3.19	405	<10	166	48	84	<20	<20	7	2.50	0.80	0.73	0.02	0.04	11	6	ે 3	: 14	<1	<5	<10	0.23	7
A4+00N-4+00%	I	0.2	14	5	46	8 1	25	10	<.2	<5	5	<5	4.18	391	<10	161	59	126	<20	<20	7	2.27	0.56	0.67	0.01	0.03	11	6	୍ର 5	14	: <1	<5	<10	0.27	2
A4+00N-4+50M	1	<.2	29	<2	43	ं 1	37	14	<.2	<5	6	<5	3.55	470	<10	149	52	· 97	<20	<20	8	2.66	0.80	0.82	0.02	0.03	11	10	3	14	<1	ຸ 5	<10	0.22	3
						a A								i.		h.	- A -	4				2 1			ing anti- tanà a	÷							÷.		•
A4+00N-5+00k	1	0.2	15	5	48	3 1	23	<u> </u>	<.2	<5	6	<5	3.85	393	<10	165	51	114	<20	<20	8	2.05	0.56	0.67	0.01	0.04	10	5	5	16	2	<5	<10	0.23	<1
A4+00N-5+504	i	<.2	43	4	49	<	43	16	<.2	· <5	6	<5	3.54	691	<10	189	62	102	<20	<20	. 9	2.80	0.89	0.97	0.02	0.04	15	15	- 4	15	1	8	<10	0.24	2
A4+00N-6+00%	1	<.2	56	. 4	42	2 1	33	15	0.2	<5	5	<5	3,80	834	<10	144	65	119	<20	.<20	12	2.48	0.68	1.03	0.01	0.04	18	23	4	15	<1	11	<10	0.22	<1
A4+00N-0+00E		<.2	118	i 7	61	2	60	. 23	0.3	<5	12	<5	5.37	866	<10	182	116	142	<20	<20	15	3.71	1.30	1.24	0.02	0.08	24	33	6	28	<1	20	<10	0.21	<1
A4+00N-0+50E	ļ	<.2	25	3	39) 1	42	19	<.2	<5	13	<5	3.70	564	<10	134	62	105	<20	<20	9	2.71	0.91	0.99	0.02	0.05	12	9	4	19	<1	6	<10	0.28	8
A4+00N-1+00E		<.2	239	5	61	2	2 22	22	0.3	<5	26	<5	5.38	1807	<10	286	45	95	<20	<20	7	2.68	0.75	0.38	< 01	0.05	14	5	5	27	2	5	<10	0.19	<1
A4+00N-1+50E		<,2	28	<2	57								5.67													0.02		8	5	21	1	6	<10	0.31	4
A4+00N-2+00E				14	- 5085																	3.22	0.97	1.72	0.01	0.04	34	118	5	20	1	33	<10	0.12	<1
A4+00N-2+50E		<.2	- 7334		- 2223																					0.03				22	<1	7	<10	0.19	<1
A4+00N-3+00E			20	d ²	65																					0.03		9	8	11	<1	<5	<10	0.33	<1
747-00H-0+00	-	·•£		e i	1999		-	1		- T	19		요리 전문	.) .)		• •																			

5 100 1 **``**}

CLIENT: EUREKA RESOURCES, INC.

Intertek Testing Services Bondar Clegg

Lab Report

PROJECT: NONE GIVEN1

CLIENT: EURE REPORT: V98-																			0	ATE	RECE	IVEC): 23·	JUN-9	8	DATE	E PRI	NTED	2.	JUL-	98	PAG	= 3	OF 14		
SAMPLE	ELEMENT														Mn								Al	Mg	Ca	Na	к	Sr	Y	Ga	Li	Nb	Sc	Ta	Ti	Zr
NUMBER	UNITS	PPM	PPM	PPM	PPM	PP	I PP	MI P	PM P	PM I	PPM	PPM	PPM	PCT	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PCT	PCT	РСТ	PCT	PPM	PPM	PPM	PPM	PPM	PPM	PPM P	CT F	PM
A4+00N-3+50E		0.3	36	4	66	-	-							6.90							<20	6	3.29	0.87	0.72	0.01	0.04	13	7	5	25	<1		<10 0.		2
A4+00N-4+00E		0.3	34	<2	35	1	4	1	18 <	. 2	<5	10	<5	4.37	554	<10	84	53	129	<20	<20	5	3.38	1.06	1.45	0.02	0.02	18	. 11	5	13	<1	7	<10 0.	36	8
BLA6+00N		0.2	32	4	53	1	4	0	18 0).2	<5	9	<5	4.64	726	<10	150	71	121	<20	<20	6	3.08	0 .9 4	0.99	0.01	0.03	13	7	4	18	<1	6	<10 0.	26	2
A6+00N-0+50E		<,2	83	2	46									5.42									3.44	0.91	1.12	0.01	0.04	21	35	5	24	2	16	<10 0.	22	<1
A6+00N-1+00E		<.2	98	6	.47	• •	13	59	17 •	:.2	<5	10	<5	4.75	852	<10	116	88	142	<20	<20	26	2.91	0.82	1.10	0.01	0.04	21	44	5	20	1	15	<10 0.	23	<1
A6+00N-1+50E		0.4	49	5	93		2 5	57	30 •	< . 2	<5			6.75								2	4.05	1.24	0.99	0.01	0.03	13	8	6	32	1	9	<10 0.	30	4
A6+00N-2+00E		<.2	50	<2	52	: '	1 é	58	25 <	<.2	<5	8	<5	5.02	1208	<10	188	97	122	<20	<20	; 7	3.07	2.19	1.18	0.01	0.07	29	15	5	19	1.1		<10 0.		-3
A6+00N-2+50E		<.2	90	4	65		2 7	79	33 <	<.2	<5	21	<5	6.39	1158	<10	347	133	143	<20	<20	13	4.09	1.58	1.40	0.01	0.05	28	34	6	27	<1	17	<10 0.	.22	<
A6+00N-3+00E		<.2	24	3	63		1 3	50	12 -	<.2	<5			4.67									2.43	0.81	0.96	0.01	0.03	15	7	5	17	<1	5	<10 0.	.28	<1
A6+00N-3+50E		<.2	17	6	63		1 2	20	11	<.2	<5	10	<5	5.05	1100	<10	161	63	162	<20	<20	6	2.24	0.52	0.88	<.01	0.03	13	5	7	15		<5	<10 0.	.32	<1
A6+00N-4+00E		0.2	15	6	49	, }	1	17	9	<.2	<5	7	<5	4.16	1108	<10	159	47	159	<20	<20	5	1.83	0.42	0.96	<.01	0.04	14	4	6	7	1	<5	<10 0.	.32	<1
A6+00N-0+50		0.4			58	j.	2 3	39	22 (0.3	<5	10	<5	6.28	809	<10	150	94	140	<20	<20	3	3.55	0.80	0.96	0.01	0.03	i 13	8	- 4	16	1	7	<10 0.	.21	<1
A6+00N-1+00		0.3	24	6	71	í i	2 3	35	15 (5.3	<5	8	<5	5.39	673	<10	109	86	152	<20	<20	4	2.96	0.92	1.13	0.01	0.04	14	ຸ 7	5	22	<1	6	<10 0.	.32	3
A6+00N-1+50		0.3	26	2	50)	1 3	31	12 (0.2	<5	5	<5	5.03	526	<10	115	74	130	<20	<20	4	2.68	0.79	0.86	0.01	0.03	8	6	5	16	<1	5	<10 0.	.29	2
A6+00N-2+00		0.3	17	3	61		1	27	12	<.2	<5	6	<5	6.02	425	<10	83	84	151	<20	<20	4	2.79	0.73	0.78	0.01	0.03	8	. 5	5	18	<1	5	<10 0.	.38	4
A6+00N-2+50	I	0.3	20	4	54		1 1	19	9	D.2	<5	6	<5	5.02	498	<10	120	68	168	<20	<20	6	2.20	0.45	0.64	<.01	0.03	5 9	5	6	16	<1	<5	<10_0.	.34	<1
A6+00N-3+00N	1	<.2	39	i <2	45	Î.	1	39	14 ·	<.2	<5			4.24) <20	1.12		1.01				<u>-</u>		- i - e	25	1	10	<10.0.	.26	2
A6+00N-3+50	ł	<.2	72	5	51				24 (S			e	4.43									2.72	1.03	1.57	0.02	0.04	22	41	1				<10_0.		
A6+00N-4+00	I	0.2	24	3	61									6.74										0.86		- J. C. W		1.21		- 12 E	29			<10.0.		4
A6+00N-4+50	1	0.2	41	<2	53		1	45	20	<.2	<5	9	<5	5.37	553	s <10	151	80	140	<20) <20	5	3.29	1.10	1.10	0.02	0.03	5 13	9	5	23	<1	7	<10 0.	.35	6
A6+00N-5+00	ł	<.2	25	∵ `_<2	47	7	1	39	17	<.2	<5	8	<5	5.04	549	> <10	154	68	3 142	<20	<20	5	3.21	1.03	1.11	0.02	0.0	11	9	5	19	<1	8	<10 0	.40	11
A6+00N-5+50		<.2	1.23		58				13	11.11				4.94									2.76	0.86	0,98	0.02	0.03	5 11	7	: 5	16	1	6	<10.0	.35	3
A6+00N-6+00		<.2	1.0		- 246	1.1	1	39	16	<.2	<5	7	· <5	4.42	1297	· <10	231	57	⁷ 121	<20) <20	3	2.71	1.10	1.15	0.01	0.05	5 10	6	4	15	1	6	<10_0.	.26	<1
A6+00N-6+50		0.2			94		1	25	15 ·	<.2	<5	ં વ્રં	<5	5.01	801	<10	230	62	148	<20	<20	6	2.38	0.58	0.73	0.01	0.03	5 10	. 6	5	18	1	5	<10_0.	.27	<1
A6+00N-7+00			153	÷.	97	7	1 j	55	19	0.4	<5	37	<5	4.48	1802	2 <10	312	101	135	<20) <20	15	2.66	0.81	0.93	0.01	0.05	5 15	61	4	32	1	41	<10_0.	. 16	<1
A6+00N-7+50	ł	0.3	205	는 5 11	78																			0.77						4	19	2	31	<10 0	.12	<1
A6+00N-8+00	ł	<.2	28	8 6	45	5	2	45	18	<.2	<5	15	<5	4.15	712	2 <10	255	69	i. 99	<20) <20	11	2.78	0.74	0.58	0.01	0.05	5 12	8	5	24	<1	6	<10 0	. 19	<1
A6+00N-8+50		<.2	3	3 7	· 58	3	1	41	18	<.2	S	6	<5	3.75	115	2 <10	221	72	2 113	<20) <20	. 9	2.57	0.97	1.17	0.02	0.0	5 18	16	5	17	′ < 1	11	<10 0	.22	<1
A6+00N-9+00		<.2	1.8	ý.	4		1		14					3.25										0.72						4	18	1	8	<10 0	. 19	2
A8+00N-0+00			11.2	 <2	្រុ	n n	2	54	28	<.2	<5	11	. <5	7.02	649	> <10	99	114	198	<20) <20	3	3.97	1.24	1.28	0.01	0.0	3 13	9	6	25	<1	8	<10 0	.44	12

ent content of the transformed and the transformed to the content of the transformed of transformed of the t

Geochemica Lab Report

LIENT: EUREN EPORT: V98-0																		C	DATE	RECE	IVED:	23-	JUN-9	8	DATE	E PRI	TED:	2-	JUL-'	98	PAGE	۲ ٤ 4 0		F: NON	ΕG
		•		••••	_			•		n:	• -	<u>c</u> 1-	···· ···			 D							Ma	Ca	Na	v	Sr	v			Nb	Sc 1	a T	ī 7 r	•••••
	ELEMENT UNITS																																		
MBER	UNITS	PPM	PPM F	PPM	PPM	PPM	PPM	PPM	PPM	PPM I	-1-14	PPM	PGI	PPM	PPM	ppm	PPPI	PPM	PPFI	rrn	rrn	FG1	PUI	ru	FUI	FUI	FFR 1	FFFI	r r ri	rrei		rn rr		i rrn	
8+00N-0+50E		<.2	33	3	74	1	60	23	<.2	<5	14	<5 !	5.37	438	<10	114	94	140	<20	<20	83	.42	1.07	0.91	0.01	0.03	12	13	5	24	<1	9 <1	0 0.3	4 15	
8+00N-1+00E		<.2	68	4	63	2	63	20	0.2	<5	29	<5 !	5.18	757	<10	220	104	130	<20	<20	93	5.27	1.13	1.34	0.01	0.06	24	25	4	33	<1	17 <1	0 0.2) <1	
8+00N-1+50E		<.2	27	<2	43	1	59	25	<.2	<5	17	<5 (6.49	786	<10	130	125	151	<20	<20	94	.01	1.95	1.48	0.01	0.03	19	30	5	25	1	17 <1	0 0.2	4 4	
8+00N-2+00E		0.3	24	<2	65	1	38	15	0.2	<5	9	<5	5.33	614	<10	137	87	146	<20	<20	4 2	2.99	0.99	0.94	0.01	0.03	8	7	6	27	1	7 <1	0 0.3	7 4	2
8+00N-2+50E		<.2	52	5	78	2	73	23	0.2	<5	23	<5 4	4.43	690	<10	227	76	105	<20	<20	63	5.69	1.10	0.84	0.02	0.03	8	7	3	24	<1	6 <1	0 0.2	5 9	
					1	·																					2.52								
8+00N-3+00E		0.3	27	4	73	1	28	11	0.3	<5	11	<5	4.94	755	<10	226	85	151	<20	<20	62	2.75	0.70	0.85	0.01	0.03	10	5	6	22	<1	6 <1	0.0.3	4 <1	•
8+00N-3+50E		0.2	31	<2	54	1	45	18	<.2	<5	12	<5	5.16	458	<10	143	82	132	<20	<20	63	3.33	1.03	0.93	0.02	0.03	12	9	. 4	25	2	7 <	0 0.3	1 11	
8+00N-0+50W		<.2	24	<2	61	1	37	15	0.2	<5	9	<5	5.16	382	<10	84	76	133	<20	<20	8 2	2.97	0.89	0.87	0,01	0.03	15	10	5	24	<1	7 <	0 0.2	9 5	
8+00N-1+00W		0.2	37	<2	46	1	47	20	<.2	<5	9	<5	4.89	569	<10	112	85	130	<20	<20	6.3	5.19	1.12	1.11	0.02	0.04	11	10	5	20	<1	7 <1	0 0.3	38	
48+00N-1+50W		<.2	25	<2	43	1	33	13	<,2	<5	7	<5	4.49	401	<10	116	72	129	<20	<20	63	5,05	0.79	0.95	0.01	0.03	11	7	4	15	<1	6 <1	0 0.3	26	à. T
							÷ .								:						2.3					1						Į.			
8+00N-2+00W		<.2	36	2	51	2	39	13	0.3	<5	18	<5	5.86	387	<10	123	83	171	<20	<20	7 2	2.99	0.74	0.81	0.01	0.04	16	14	6	24	<1	9 <	0.2	9 4	-
8+00N-2+50W		<.2	31	<2	67	1	47	22	<.2	<5	12	<5	5.08	774	<10	123	80	154	<20	<20	4 2	2.73	1.40	1.32	0.01	0.03	17	18	5	20	1	14 <1	0.2	5 <1	1
8+00N-3+00W		<.2	29	4	47	<1	35	15	<,2	<5	7	<5	3.48	655	<10	127	72	95	<20	<20	10, 2	2.29	1.02	1.00	0.02	0.04	18	13	4	22	1	8 <	0 0.2	22	
8+00N-3+50W		<.2	36		55			. 17															1.22								· · · ·		0 0.2		
18+00N-4+00W		0.3	26	3	52	1	25	10	0.3	<5	9	<5	5.22	356	<10	180	66	160	<20	<20	5 2	2.28	0.56	0.82	0.01	0.02	14	6	5	18	2	<5 <	0 0.3	6 4	
							1		1.1																	ł.						i. N	1935.		•
8+00N-4+50W	I.	<.2	61	4	49																												10 0.2		
8+00N-5+00W	I	<.2	35	3	45	1	47	: 17	< 2	<5	10	<5	4.35	696	<10	154	68	114	<20	<20	97	2.73	1.01	1.05	0.02	0.04	14	16	- 4	18	1	8 <	10 0.2	6 2	
8+00N-5+50W	I	<.2	43	3	46									878											- A, MAR		1 E 12				1.1.1		0.2	1	
\8+00N-6+00W	ł	<.2	33		42																								4	17	<1	10 <	10 0.2	3 <1	
10+00N-0+00	E	0.3	19	3	81	2	29	11	۲,2	<5	8	<5	5.81	490	<10	286	76	160	<20	<20	5	2.20	0.72	0.75	<.01	0.03	25	4	6	18	1	<5 <	10 0.2	7 <1	
								si A						t. v						¢ :						; ;			нн Н н		·			л. 	
10+00N-0+50	E	<.2	30	<2	49	े 1	51	22	<.2	<5	8	<5	3.67	500	<10	238	57	108	<20	<20	5	3.07	1.18	0.87	0.01	0.02	17	7	4	16	<1 ;	6 <	10 0.2	4 3	
10+00N-1+00	E	0.2	41	3	58	1	41	18	0.3	<5	15	<5	4.04	1772	<10	151	90	130	<20	<20	6	2.72	1.16	1.61	0.01	0.04	25	18	<u>]</u> 5	22	1	14 <	10 0.1	9 <1	
10+00N-1+50	E	<.2	78	2	53	1	49	25	0.4	< 5	19	<5	5.11	1324	<10	151	108	137	<20	<20	7	3.14	1.31	1.51	0.02	0.04	20	26	5	29	<1	16 <	10 0.2	3 <1	
10+00N-2+00	E	<,2	52	4	66									1072									1.42										10 0.2		
10+00N-2+50	E	<.2	37	<2	56	1	44	21	< 2	<5	11	<5	5.03	860	<10	161	95	146	<20	<20	7:	3.12	1.29	1.55	0.01	0.05	23	12	5	28	<1	10 <	10 0.2	6 <1	
								9	i ki lu Turri	· ·									: :	:	in de la Constantina La Constantina de la C														
10+00N-3+00	E	<.2	25	<2	47																									26	<1	8 <	10 0.3	1 3	
10+00N-3+50		<.2	35	<2	43																		1.54							34	<1	11 <	10 0.3	35	
10+00N-4+00		<.2	27	<2	46	1	39	20	<.2	<5	13	<5	4.21	847	<10	131	73	129	<20	<20	8	2.79	1.21	1.40	0.02	0.04	18	13	5	23	1	10 <	10 0.3	2 5	
A10+00N-0+50		<.2	1996		84																		0.76							29	1	9 <	10 0 .1	1 <1	
A10+00N-1+00		0.2		1.	49																						14			22	<1	7 <	10 0.2	7 <1	

	TS							ې د T legg				t Ig S]	F i	l					>		i.		:)		ł	L	leoch ab lepor	cal
CLIENT: EUREK								00	-								D	ATE RE	ECEIV	ED:	23-JI	JN-98	8	DAT	ie pr	INTE	D:	2- Jl	JL-9	8	PAGE	5			NONE G	IVEN1	
·····	ELEMENT		•••••			Ma			rd I		Λo	Sh Fa	Mn	Те	Ra	Cr	v	Sn	Wi	 a	 Al	Mg	Ca	3 Na	 3	ĸs	ir.	 Ү (à	Li	Nb	Sc	Ta	Ti	Zr		
SAMPLE NUMBER	UNITS	Ag PPM	PPM	PD	PPM I	PPM	PPM	PPM PF	PM P	PM P	PM P	PM PCT										•															
440,000 1,500		0 4	1/3		<i>٨</i> ٥	1	40	10.0	3	<5	6	<5 1.21	379	<10	231	111	41	<20 <	20 2	32.	890	.47	1.12	2 0.0	1 0.0)3 Z	4 6	62	: 3	11	<1	11 <	10 0	.04	<1		
A10+00N-1+50W			1			4	z /.	10 0		~5	13	<5 3.74	249	<10	167	75 '	117	<20 <	20 1	0 2.	45 0	.41	1.24	i <.0	1 0.0)2 2	1 2	28	6	17	2	11 <	10 0	.19	2		
A10+00N-2+50W			130	_								<5 3.22																									
A10+00N-3+00W		0.4										<5 6.12).19	-		
A10+00N-3+50W		0.2		4	51	1	30	11 <	.2	~5	8	<5 5.54	424	<10	164	100	155	<20 <	20	6 2.	40 0	.77	0.63	3 Ó.O	1 0.0	<u>4</u>	9	4	6	19	<1	<5 <	(10 (.29	<1		
A10+00N-4+00W		0.2	.,	4	51	1	37				•										,					· · ·	·	• • •					1. j.	:			
A10100N (450)		۸ ۵		z	55	2	53	15 <	2	<5	18	<5 5.02	531	<10	181	94	131	<20 <	20	73.	51 0	.95	0.7	5 0.0	1 0.0	03	9	11	4	23	<1	7	10 0	0.31	6		
A10+00N-4+50% A10+00N-5+00%			180	_	63	1	57	17 0	.3	<5	11	<5 4.61	665	<10	253	131	102	<20 <	20 Z	2 2.	20 0	.74	0.39	2 < 0	10.0	02 :	9	58	3	25	1	13 3	<10 (0.12	<1		
A10+00N-5+50h	-		31									<5 6.24																					- 1. <i>K</i> 1.	0.20	-		
A10+00N-5+00h	•		29	~2	71	2	36	14 <	.2	<5	10	<5 5.75	403	<10	333	79	153	<20 <	20	6 2.	74 0	.84	0.6	1 < 0	1 0.0	04 1	12	4	7	32	2	<5	<10 (0.19	<1		
A11+00N-0+00E			48		74	1	40	17 <	.2	<5	9	<5 3.42	951	<10	295	54	106	<20 <	20	4 2.	65 1	.25	1.4	9 0.0	1 0.0	08 ⁻ 2	22	11 🖉	4	17	1	8	<10	0.20	<1		
ATT-OON-OFOOL	•	~• F	Ψ	-		•	.,	••		-											1		•		÷.	:						:					
A11+00N-0+50E		< 2	31	0	50	1	39	21 ×	.2	<5	9	<5 4.38	671	<10	210	47	120	<20 <	20	5 3.	99 I	.17	1.0	7 0.0	1 0.0	03 2	21	10	5	15	<1	8 •	<10	0.22	2		
A11+00N-1+00E		<.2	40	0	44	1	49	20 <	.2	<5	8	<5 3.92	770	<10	185	68	120	<20 <	20	6 2.	77 1	.33	1.2	4 0.0	2 0.0	05 2	21	11	5	18	<1	10	<10 ().26	3		
A11+00N-1+50E		_	50									<5 4.10								7 2.	67 1	.39	1.6	3 0.0	2 0.0	04 ; 2	20	19	4	23	<1	15 -	<10	0.32	12		
A11+00N-2+00E			78	3	71	1	54	23 0	.3	<5	17	<5 4.81	1170	<10	140	91	133	<20 <	20	9.3.	08 1	.32	1.4	9 0.0	2 0.0	05	24	20	5	27	2	16	<10	0.23	<1		
A11+00N-2+50E			66	2	55	1	44	20 0	.3	<5	16	<5 5.20	639	<10	115	91	135	<20 <	20	73.	12 1	.05	1.3	9 0.0	10.0	04	22	20	5	33	<1	11	<10	0.26	2		
A11:000 E-500	-			-			12		· ·							ine i V			1. 1, 1,							1						:					
A11+00N-3+00E	=	<.2	53.	2	55	1	41	20 Ö	.2	<5	13	<5 4.21	899	<10	173	67	122	<20 <	20	7 2.	84 1	.17	1.3	2 0.0	2 0.0	05	21	14	5	23	<1	10	<10	0.27	<1		
A11+00N-3+50E			32	2	47	1	37	17 <	.2	<5	13	<5 3.95	640	10 <10	133	64	121	<20 <	20	6.2.	57 1	.00	1.0	3 0.0	1 0.0	04	15	9 ;	.4:	19 -	<1	7 •	<10	0.28	- 4		
A11+00N-4+008		_	28	<2	43	1	36	16 <	.2	<5	12	<5 4.12	571	<10	158	65	120	<20 <	20	6 2.	67 0	.91	1.0	3 0.0	1.0.0	03 🔅	16	8	4	20	<1	7 :	<10	0.30	5		
A11+00N-0+50			39	<2	52	1	45	19 <	.2	<5	14	<5 4.94	768	3 <10	159	83	159	<20 <	20	5 2	85 1	.17	1.1	3 0.0	1 0.0	04 di	14	10	6	20	<1	9.	<10	0.36	5		
A11+00N-1+00			41	3	66	1	63	18 0	.3	<5	19	<5 5.43	593	5 <10	172	93	121	<20 <	20	43	10	.06	0.7	3 0.0	1 0.0	03 讨	10	7	4	24	1	6	<10	0.21	<1		
	-							e i e				가 많다. 다양되									Ň		2						÷.,		 1						
A11+00N-1+50	J	0.2	16	3	30	2	27	8 <	.2	<5	11	<5 4.96	214	<10	179	72	156	<20 <	20	5 2	66 0	.49	0.6	1 < 0	1 0.0	04 _	10	3	6	13	2	<5 ·	<10	0.25	4		
A11+00N-2+00		0.7	48	4	81	2	35	10 0	.2	<5	16	<5 4.81	56'	<10	302	66	128	<20 <	20	7 2	58 0	1.69	0.8	2 0.0	1-0.0	03 🔅	18	12	7	22	2	6 ·	<10	0.19	<1		
A11+00N-2+50		0.4	121	6	72	2	50	18 0	3	<5	25	<5 3.82	1564	<10	302	93	89	<20 <	20 1	3 2	.62 0	.82	1.4	2 0.0	2.0.0	05 3	31	49 :	3	18	1	11 ·	<10	0.07	<1		
A11+00N-3+00		<.2	28	6	63	2	60	12 0	.3	<5	13	<5 4.09	55′	<10	269	93	106	<20 <	20	8 2	.23 1	.12	0,6	4 0.0	1.0.0	05	9	5	5	16	<1	<5 ·	<10	0.19	<1		
A11+00N-3+50		0.5	21	5	72	1	24	8 0	3	<5	9	<5 5.48	903	5 <10	264	55	138	<20 <	20 .	6 2	.14 0	.57	0.5	5 <.0	1.0.0	08	Ì1	3	6	16	<1	<5 ·	<10	0.16	<1		
													ai 1			al de e La se																					
A11+00N-4+00	u .	0.2	47	',	43	1	78	16 C	1.3	<5	7	<5 4.17	61.	3 <10	212	92	97	<20 <	20	4 2	.98 1	.49	0.9	4 0.0	2.0.0	05 ⁻	10	4	4	20	1	<5 ·	<10	0.15	<1		

 A11+00N-4+00W
 0.2
 47
 2
 43
 1
 78
 16
 0.3
 5
 7
 5
 4.17
 613
 c10
 212
 92
 97
 c20
 20
 4
 2.98
 1.49
 0.94
 0.02
 0.05
 10
 4
 4
 20
 1
 <5</td>
 <10</td>
 0.15
 <1</td>

 A11+00N-4+50W
 0.4
 167
 2
 49
 1
 246
 23
 0.3
 <5</td>
 12
 <5</td>
 4.58
 403
 <10</td>
 274
 138
 78
 <20</td>
 22
 34
 4
 37
 <1</td>
 9
 <10</td>
 0.08
 <1</td>

 A11+00N-5+00W
 1.7
 401
 5
 68
 2
 81
 20
 0.7
 <5</td>
 19
 <5</td>
 4.34
 1288
 <10</td>
 507
 127
 98
 <20</td>
 27
 3.42
 0.89
 1.49
 0.02
 0.05
 34
 87
 5
 27
 <1</td>
 0.10
 0.11
 <1</td>

 A11+00N-5+50W
 0.2
 16
 186
 1
 20
 11
 0.4

	ΓS							t To egg		sti	ng	5 5	Se	rv	ic	es	5																Geochem Lab Report	
LIENT: EUREK EPORT: V98-0		-															D	ATE REC	FIVED	. 23-		28	DA	TE PRI	NTE	1: 2	111	-98	PAC	ε 6	PROJE OF 14		ONE GIVEN1	
CPUK1; 990-0	0704.0 (60		r - ,										•••••																					•••••
ample Umber	ELEMENT Ag UNITS PPM																															TI ZI CT PPI		
12+00N-0+00E	<.2	60		27	2	1	52	23 0.4	. <	5 18	\$ <5	4.64	178	3 <10	165	93	132	<20 <20	7	3.14	1.23	1.60	0.0	1 0.05	5 20	5 23	5	24	<1	16 •	10 0.	.17 . <	1	
12+00N-0+50E	_	32	4	÷ 5	9 •	<1	41	14 <.2	2 <	58	<5	3.39	65	2 <10	148	54	98	<20 <20	8	2.28	1.16	1.03	5 0.07	2 0.03	3 2'	9	4	16	<1	8 -	10 0.	22	4	
12+00N-1+00E																		<20 <20								1								
12+00N-1+50E	<.2	60	. 5	56	6	1	62	21 0.4	. <	5 15	i <5	4.48	98	5 <10	123	100	113	<20 <20	8	2.80	1.40	1.33	5 0.0	1 0.05	5 2(0 14	5	i 31	1	10 -	(10.0.	21 <	1	
12+00N-2+00E	<.2	75	, e	5 7	8.	<1	56	24 0.5	5 <	5 21	. <5	5,35	156	3 <10	186	103	138	<20 <20	12	3.53	1.27	1.41	1 0.0	2 0 08	3 24	4 27	ć	5 30	<1	19	10 0.	23 <	1: 	
12+00N-2+50E	<.2	54		4 6	7	1	55 ·	20 0.3	3 <	5 15	i <5	4.57	92	7 <10	163	87	108	<20 <20	10	3.16	1.27	1.14	0.0	2 0.07	7 22	2 18	4	32	<1	14	10 0.	20 <	İ:	
12+00N-3+00E		41	5	5 8														<20 <20								1 A 1								
12+00N-3+50E		28		25	5	1.	34	12 0.3	5 <	5 17	7 <5	5.19	38	7 <10	90	71	125	<20 <20	10	2.94	0.86	1.04	0.0	1 0.03	3 2	1 18	4	. 31	<1	8	10 0.	29	4	
12+00N-4+00E	_	25	. 4	44	6 •	<1	40	16 <.2	<u>2</u> <	5 14	<5	3.48	44	9 <10	106	52	89	<20 <20	11	2.54	0.88	0.88	3 0.0	2 0.05	5 10	5 7	4	24	<1	6	(10 0.	20	4	
12+00 N-0+50 W	<.2	35	; <i>1</i>	4 19 7 220	1	1	35	15 <.2	2 <	5 9	<5	3.83	102	6 <10	222	50	119	<20 <20	1.4	2.46	0.95	1.19	9 0.0	1 0.08	B 19	8	5	15	<1	6	:10 0.	22 <		
12+00N-1+00%		20		4 4														<20 <20							20.00									
12+00N-1+50W	· <.2	87																<20 <20																
12+00N-2+50k	<.2	39	2	5.4														<20 <20													-			
12+00N-3+006	.2× ا	30		3 4														<20 <20			11.1				- 120						5 5		Sec. 2010	
12+00N-4+004	0.4	39		26	7	1	35	11 0.3	3 <	5 9) < 5	5.21	36	6 <10	259	53	111	<20 <20) 8	3.22	0.79	0.48	3 0,0	1 0.04	4	27	5	5 20	<1	5	<10 0.	.15 <	1	
12+00N-4+50k	0.4	19	2 3	3 9	0	2	20	10 0.3	3 <	5 : <i>6</i>	5 <5	6.70	5 47	4 <10	217	53	169	<20 <20	7	2.53	0.56	0.51	1 <.0	1 0.04	4 1	45	7	20	<1	<5	<10 0.	.22 <	1	
12+00N-5+00k	0.4	17	7 3	3 8	6	1	21	8 0.	2 <	5 è	5 <5	5.29	35	5 <10	211	54	124	<20 <20	8.	2.79	0.46	0.41	<.0	1 0.04	4 1	4 4	ť	5 19	1	<5	(10 0.	.19 <	1	
12+00N-5+50%	0.5	2		38									6 - C			- 1. A (1. A)		<20 <20					- 100 S.A.								· .			
12+00N-6+00h	0.4	30		4 8												1.12		<20 <20					1.1	de la companya de la		10 A A					- 1			
13+00N-0+00E	: < . 2	38	3.4	45	8	1	50	20 <	2 <	5 1'	l <5	4.37	7 74	4 <10	154	72	124	<20 <20	8	2.82	1.39	1.08	30.0	2 0.04	4 20	0 12	5	18	<1	9.	<10 0.	25 <	1	
13+00N-0+50E	<.2	35	; <	2 6	0	1	45	17 0.	2 <	5 16	5 <5	5.0	61	5 <10	124	78	126	<20 <20	8 (3.15	1.20	0.94	0.0	2 0.04	4 1!	5 12	5	28	<1	8	(10 0.	26	3	
13+00N-1+00E		128	3 - 1	7 6	6	2	43	21 0.0	5 <	5 20)) <5	4.2	5 211	9 <10	169	106	127	<20 <20	12	2.93	1.00	1.70	0.0	1 0.06	5 3!	5 37	5	5 18	<1	17	10 0.	11 <	1	
13+00N-1+50E																		<20 <20																
13+00N-2+00E																		<20 <20																
13+00N-2+50E				· · · ·														<20 <20																
								149		j.					e.						. :													
13+00N-3+00E	0.2	52	. 1	4 5	2	1	27	13 0.	4 <	5 1		5.2	\$ 47	5 <10	84	72	139	<20 <20	6	2.45	0.65	1.12	2 0.0	1 0.03	3 24	4. 15	- 5	22	1	8 ·	<10 0.	24 3	2	
13+00N-3+50E	0.2	30	5	3 5	8	2	28	10 0	5 <	5 1	<5	5.0	31	5 <10	167	68	128	<20 <20	7	2.78	0.63	0.72	2 0.0	1 0.03	3 12	26	5	i 23	2	6	<10 0,	29	6	
13+00N-4+00E	<.2	9	5	3 7	0	1	48	19 0.	4 <	5 2	<	6 4 50	76	2 <10	196	92	135	<20 <20	10	3.37	1.02	1.45	5 0.0	2 0.07	7 2	5 30	5	i 33	<1	17 ·	<10 0.	21 <	1	
14+00N-0+00E		70	Ś	2 6	7	1	58	24 0.	3 <	5 19	? <5	4.8	67	8 <10	155	89	122	<20 <20		3.51	1.22	0.85	5 0.0	2 0.05	5 14	4 18	5	22	<1	13 -	<10 0.	22	2	
14+00N-0+50E	.2	ु ३() <	2 4	4	1	44	17 0	3 <	5 18	3 <5	4.8	41	7 <10	92	69	121	<20 <20) 5	2.98	1.03	0.82	2 0.0	1 0.02	2 10	0 11	5	i 24	<1	7 -	(10 0.	33 1	0	

DTT	Intertek Testing Services
	Bondar Clegg

Lab Report

IENT: EUREK																		D	ATE	RECE	IVED	: 23-	JUN-S	8	DATE	E PRIM	ITED:	2-	JUL	98	PAGE	: 7 (JF 14		
							·····				•		.		т.		<u>^-</u>		¢n.			A1	Mg	Са	Na	ĸ	Sr	Y	Ga	11	Nb	Sc '	Ta T	Ti	7r
MPLE	ELEMENT UNITS	Ag	Çu	Pb	Zn	Mo	N1	Co	Ľđ	B1	AS	50	re	PILL	DDM	DO	וט	v Non	оли ром	MOC	DDM	DCT	DCT												
MBER	UNITS	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCI	PPM	PPM	PPM	PPFI	PPM	PP r i		rrn	FUI	FUI	rui	FUI	FCI									
14+00N-1+00E		<.2	25	2	63	1	34	13	0.3	<5	17	<5	5.07	398	<10	147	76	150	<20	<20	4 (2.82	0.81	0.89	0.01	0.02	13	8	5	21	2	7 <	10 0.3	35	8
14+00N-1+50E		_	66						0.5												6	1.67	0.68	2.60	<.01	0.03	45	17	3	10	<1	<5 <'	10 0.0	07	<1
14+00N-2+00E			44						0.2												7	2.69	1.11	1.08	0.01	0.03	16	13	5	24	<1	9 <	10 0.2	21 :	<1
4+00N-2+50E			57		60	1	39	17	0.4	<5	16	<5	4.43	757	<10	82	67	123	<20	<20	6	2.72	0.85	1.24	0.02	0.03	16	19	5.	21	1	9 <	10 0.2	23	1
14+00N-3+00E			55		68	_	24		0.4												6	2.17	0.38	1.03	<.01	0.02	22	13	4	22	2	7 <	10 0.2	21	2
14.00N 3.00L	-	•		•																			· ·		1				Ì.			. '	en.		
14+00N- 3+ 50E	=	0.2	37	4	71	1	31	19	0.3	<5	15	<5	6.22	918	<10	223	71	146	<20	<20	3	2.38	0.74	0.91	0.01	0.03	12	7	- 4	21	<1	6 <	10 0.3	26	<1
14+00N-4+00			23		55				0.2												6	2.23	0.67	0.85	0.01	0.03	13	7	5	18	<1	5 <	10 0.2	24	<1
14+00N-0+50N			52						0.3												8	2.10	0.82	1.17	0.02	0.04	20	13	4	17	1	9 <	10 0.	16	<1
14+00N-1+00			31						<.2														1. A.				17		2.12		- 14 June 1	15 <	10 0.	22	<1
14+00N-2+00		<.2	22	4	82	1	32	14	<.2	<5	14	<5	5.94	535	<10	238	67	150	<20	<20	3	2.47	0.92	0.59	<.01	0.02	10	3	5	25	2	<5 <	10 0.	21	<1
	•	•																			÷												1. 11 L 1		
4+00N-2+50	4	<.2	17	6	55	1	18	6	5 0.3	<5	9	<5	4.40	216	<10	185	52	127	<20	<20						e	6		- CH 24 V	e	- 1 - A - 1		10 0.		·. :
4+00N-3+00			111		77	· 1	84	32	2 0.3	<5	40	<5	5.37	928	<10	302	103	134	<20	<20													10 0.		
4+00N-3+50		<.2	31	2	49				0.2																								10 0.		
4+00N-4+00		0.2	23						2 0.2														- 100 C C C C C		1.1		1111 A.						10 0.		 1.5
14+00N-4+50		0.4	36	. 4	54	i 1	22	10	0.2	<5	9	<5	5.13	. 350	<10	222	62	136	<20	<20	4	2.25	0.39	0.57	<.01	0.02	12	8	6	14	2	<5 <	:10 0.	11	<1
								•		2 1			aan da Ariga ta							:			- 44- 44. - 1996 - 1			i.				:					
14+00N-5+00	W	<.2	36	<2	55	i. 1	31	10) < 2	<5	12	<5	5.24	233	<10	110	61	107	<20	<20			- 20 20 20		and the second	11	11. J. M. 1		1 1.00				(10 0.		 A. A. A.
14+00N-5+50		<.2	2 20	13 5	60) 1	1	ંદ	3 0.2	<5	<5	<5	3.25	748	<10	219	68	113	<20	<20	5	1.78	0.35	0.53	<.01	0.04	13	2					10 0.		
14+00N-6+00		<.2	2 62	4	68	: 3: 1	33	5 13	\$ 0.3	<5	10	. <5	4.55	560	<10	129	58	112	<20	<20	8	2.75	0.83	1.10	0.01	0.03	23	26	5	24	(1)	7 <	(10 0.	.09	<1
15+00N-0+00		<.2	2 35	÷.					5 0.3												6		- 1. C				14		÷.,		1.1		<10 0.		1.1
15+00N-0+50			2 53		72		43	5 20	0.5	<5	19	≺5	4.56	790	<10), 110	78	120	<20	<20	7	2.65	0.93	0.75	0.01	0.03	11	13	5	21	1	9 <	<10 0.	.19	<1
	-			ie F	1945 - 114	9								ŝ.	10					;				÷.				:	n en	•	1.1		•		· .
15+00N-1+00	E	<.2	2 30	4	54	ġ. I	39	2 16	5 <.2	<5	11	ঁ ব্য	3.42	511	<10	101	61	103	<20	<20	6	2.18	1.13	1.22	0.02	0.03	15	10	4	18	<1	8 <	<10 0.		7
15+00N-1+50		<.2	2 19	3	74		3 35	5 25	5 <.2	: ≺ 5	16	<5	4.37	827	<10	97	82	121	<20	<20	5	2.27	1.03	1.20	0.01	0.03	5 15	11	- 3	17	<1	10 <	<10 0.	.22	<1
15+00N-2+00		<.2	2 18						5 < 2													2.12	0.86	0.82	0.01	0.0	12	7	3	22	<1	5 <	<10 0.	.19	3
15+00N-2+50			2 6		63	5	42	2 2'	1 0.5	<5	14	: <5	4.28	. 804	<10) 97	69	105	<20	<20	10	3.12	0.94	0.82	0.01	0.04	13	20	4	23			<10 0.		1
15+00N-3+00			2 33		55	_ 5 <	1 36	5 17	7 <.2	່<5	13	- <5	3.77	829	<10	94	61	108	<20	<20	8	2.43	1.03	1.27	0.02	0.04	16	13	4	19	<1	9 <	<10 0.	.26	1
	-			Ê.						1		ė		1																					
15+00N-3+50	F	0.7	3 101	б Б. 5	9	5	1 4	5 2	3 0.6	<5	18	<5	4,83	2083	<1(139	89	139	<20	<20	10	3.07	0.92	1.37	0.01	0.05	5 22	27	5	22	<1	15 <	<10 0.	.17	<1
15+00N-4+00			2 39	2	5	3	1 42	2 20	0 0.2	 <5	13	ঁ	4.13	1135	<10) 119	74	117	<20	<20	7	2.85	1.20	1.47	0.02	0.04	19	15	5				<10 0.		
15+00N-0+50			2 2	2	5 4	6	1 2	B 11	0 < 2	<5	12	<5	4.61	349) <10	96	63	141	<20	<20	8	2.46	0.78	0.86	0.01	0.03	5 15	14	7	19	<1	8 •	<10 0.	.31	4
15+00N-1+50			2 24																					0.50				7		21	1	5 •	<10 0.	.24	2
15+00N-1+50			2 3																							0.03		6	3	27	i <1	6.	<10 0.	.21	6

Geochemical

Report

Lab

<.2 28 3 56 <1 32 12 0.2 <5

A17+00N-0+50E

LIENT: EUREK EPORT: V98-0																	ſ	DATE	RECE		: 23-	- JUN - '	98	DAT	e pri	NTED:	2.	JUL-	98	PAGE	_	PROJE OF 14		NONE
MPLE	ELEMENT																							Na								Ta		
MBER	UNITS	PPM	PPM	PPM	PPM	PPM	PPM	PPM PPM	PPM	PPM	PPM	PCT	PPM	PPM	I PPM	PPM	PPM	PPM	PPM	PPM	PCT	PCT	PCT	PCT	PCT	PPM F	PPM	PPM	PPM	PPM P	PM P	PPM P	CTI	PPM
5+00N-2+50k	ı –	0.3	26	4	60	2	25	14 0.3	<5	14	<5	8.10	505	<10	311	88	169	<20	<20	3 2	2.60	0.61	0.56	<.01	0.03	13	4	5	16	2	<5 <	<10 0.	25	1
5+00N-3+00%	1	<.2	20	7	9 0	1	28	13 0.2	<5	11	<5	6.63	2170	<10	386	72	146	<20	<20	2 7	2.50	0.74	0.78	<.01	0.08	16	3	. 6	27	. 1	<5 <	<10 0.	15	<1
5+00N-3+50	1	0.3	29	5	65	2	21	7 0.4	<5	9	<5	6.25	259	<10	354	71	176	<20	<20	3 '	1.98	0.51	0.68	<.01	0.04	13	3	- 7	14	2	<5 <	<10 0.	18	<1
5+00N-4+004	1	0.3	27	4	76	2	25	10 0.3	<5	14	<5	5.95	376	<10	278	67	128	<20	<20	8 2	2.84	0.51	0.37	<.01	0.03	10	8	5	24	2	<5 ×	<10 0.	18	<1
5+00N-4+504	i -	0.2	13	7	61	1	18	8 <.2	<5	13	<5	4.23	554	<10	274	42	172	<20	<20	7 '	1.47	0.38	0.46	<.01	0.05	7	2	8	7	2	<5 <	<10 0.	.14	<1
5+00N-5+00V	ł	0.2	24	4	92	2	29	11 <.2	<5	14	<5	6,48	555	<10	318	63	157	<20	<20											- i -		<10 0.		1.1.1
5+00N-5+50V	ł	<.2	50	3	89	_		19 0.3												9 ;	2.59	1.13	0.78	<.01	0.04	17	26	- 4	29	2	7 <	<10 0.	.09	<1
5+00N-6+00V	1	0.3	58	-	50			26 0 .2														and the second				6		14 E		1.1.1		<10 0.		- 91 -
5+00N-0+00E	:	<.2	29	3	49	<1	38	14 0.2	<5	14	<5	4.05	724	<10	89	68	111	<20	<20	6 i	2.52	1.03	0.91	0.01	0.03	9	12	4	19	<1	8 <	<10 0.	29	5
+00N-0+50E	I	<.2	43	4	62	1	40	18 0,2	<5	15	<5	3.77	869	<10	149	61	110	<20	<20	5 7	2.44	1.08	1.17	0.01	0.06	14	12	4	18	1	8	<10 0.	26	2
																		· ·						48	i.									
+00N-1+00E	1	<.2	18	4	51			10 0.3																		1 A A A A A A A A A A A A A A A A A A A		1.11		- O - C -		11 - C		1 N N
+00N-1+50E		<.2	76	4	78			24 0.5												- A														1.1.2
+00N-2+00E		0.2	26	6	42	1	22	9 0.2	<5	5	<5	2.17	409	<10	106	45	87	<20	<20	3	1.78	0.54	1.26	0.01	0.02	22	8	4	14	<1	<5 <	<10 0.	21	3
+00N-2+50E	÷	<.2	29	2	54			18 0.2														2.2.2.2.2.2		- A A M A				1.1.1						
5+00N-3+00E		<,2	96	6	110	1	53	23 0.6	<5	19	<5	5.15	1358	<10). 172	98	125	<20	<20	10 3	3.24	1.19	1.31	0.01	0.07	22	24	5	26	1	16 -	<10 0.	,19	<1
																	:			а — 27 1. – 4			j.											
5+00N- 3 +50E		<.2	28		Sec. 1. 1			18 <.2														111 111	N.,			8.52						<10 0.	22	<1
5+00N-4+00E		<.2	28	4	72	1	34	18 <.2	<5	13	<5	3.86	1300	10	135	58	105	<20	<20	4	2.33	0.84	1.44	0.01	0.03	22	9	4	19	1	6 <	<10 0.	.21	<
+00N-0+50V	ł	<.2	21	3	38	1	20	7 0.3	<5	10	<5	3.50	228	<10	62	66	115	<20	<20	5	2.71	0.54	0.47	<.01	0.02	4	4	6	19	2	<5 <	<10 0.	29	5
5+00N-1+50N	1	<.2	30	2	80	1	37	13 0.3	ं <5	18	. <5	4.59	462	<1(211	- 91	128	<20	<20	5.3	2.83	0.93	0.51	0.01	0.02	5.	5	5	28	1 1	7 <	<10.0.	.27	3
5+00N-2+00N	4	<.2	33	2	52	1	45	13 < 2	<5	18	<5	5.64	384	<10	276	90	123	<20	<20	5	2.96	1.03	0.51	0.01	0.02	5	5	4	34	2 1	6 <	<10.0.	.25	6
							di de					a a Antonio	- -			- 11 - F				- 14						1.1								
5+00N-2+50N	1	0.3	86	30	92	2	31	22 0.5	: <5	55	<5	6.98	1144	<10	486	76	:165	<20	<20	7	3.24	0.67	0.66	<.01	0.02	14	24	4	45	2	8 <	<10 0.	.11	<1
5+00N-3+00N	J	<.2	41	3	60	1	37	15 0.4	<5	21	<5	4.87	574	<10	380	79	130	<20	<20	4	2.95	0.97	0.42	<.01	0.02	4	7	5	28	2	7 <	<10 0.	.23	3
6+00N-3+501	J	<.2	26	8	33	2	18	6 0.3	<5	12	<5	3.21	281	<10	268	53	134	<20	<20	6	1.49	0.33	0.50	<.01	0.04	8	3	6	7	2	<5 <	<10 0.	17	<1
5+00N-4+00N	4	<.2	60	6	90	2	30	12 0.4	<5	24	. <5	5.33	988	<10	227	82	143	<20	<20	10	2.51	0.61	0.57	<.01	0.03	15	18	6	23	2	7 <	<10 0.	.16	<1
5+00N-4+50	J	<.2	34	6	92	1	29	90.4	<5	15	<5	4.95	924	<10	233	63	110	<20	<20	10	2.06	0.54	0.20	<_01	0.03	5	5	5	21	<1	<5 <	<10 0.	.08	<1
									.'				• •			2				<u>1</u>														
5+00N-5+00V	J	<.2	50	7	70	3	38	14 0.3	<5	16	<5	4.10	3280	10	302	91	127	<20	<20	10	2.68	0.63	0.78	0.01	0.04	18	23	4	17	1	5 <	<10 0.	.06	<1
+00N-5+50			19		1 N. W. M.		1 A A A A A A A A A A A A A A A A A A A	6 0.2					3									- 1 Q - 1												
5+00N-6+001								9 0.3																										
7+00N-0+00			1. Sec. 2. A 4. A		- COLUMN 11		10.000	11 0.2		2 V.																						<10 0.		
	-						- -																			_	_							

Bondar-Clegg & Company Ltd., 130 Pemberton Avenue, North Vancouver, B.C., V7P 2R5, (604) 985-0681

9 <5 3.13 479 <10 112 67 105 <20 <20 7 2.41 0.89 0.71 0.01 0.03 7 7 6 19 <1 6 <10 0.26 <1

TON CONTRACT AND AND A CONTRACT AND A CO 1 7 ``} C D 1 Ĩ. 7 Geochemical

· ···]

°°;

J.

Report

Lab

A18+00N-3+00W

LIENT: EUREK EPORT: V98-0			-														[DATE	RECE	IVED	: 23-	JUN-S	8	DATE	E PRIN	ITED:	2-	JUL -	98	PAG	E 9			: NONE GIVE
AMPLE	ELEMENT	Aa	Cu	Pb	Zn	Мо	Ni	Co C	d B	i As	S	b Fe	Mn	Te	ßa	Cr	v	Sn	W	La	AL	Mg	Ca	Na	к	Sг	Y	Ga	Li	Nb	Sc	Ta	Ti	Zr
UMBER	UNITS	PPM	PPM	PPM	PPM	PPM	PPM	PPM PP	m pp	м ррм	I PP	м рст	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PCT	PCT	РСТ	PCT	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PPM
17+00N-1+00E		<.2	23	3	46	1	28	90.	3 <	5 12		5 3.8 5	411	<10	109	54	108	<20	<20	7	2.56	0.66	0.60	0.01	0.03	8	6	4	18	2	5	<10	0.24	3
17+00N-1+50E		<.2	15	4	42	1	21	90.	3 <	5 13	. <	5 4.29	293	<10	132	51	114	<20	<20	6	2.03	0.56	0.61	0.01	0.02	10	5	4	16	<1	<5	<10	0.27	3
17+00N-2+00E		<.2	34	4	49	1	27	11 0.	3 <	5 34	,	5 4.38	361	<10	109	60	129	<20	<20	6	2.47	0.64	1.42	0.01	0.03	23	12	4	20	1	6	<10	0.26	4
17+00N-2+50E		<,2	19	5	51	1	22	10 0.	2 <	5 19) <	5 4.80	360	<10	110	57	146	<20	<20	6	2.20	0.62	0.99	0.01	0.03	17	4	6	20	2	<5	<10	0.30	2
17+00N-3+00E		<.2	50	4	54	1	39	19 0.	2 <	5 33	•	5 3.77	721	<10	160	63	109	<20	<20	5	2.36	1.09	1.60	0.01	0.05	23	14	. 4.	23	<1	10	<10	0.24	7
																					÷	1.1						an di jel Navida Navida						
17+00N-3+50E		0.3	104	6	53	1	37	17 0.	.6 <	5 29	•	5 4.71	584	<10	139	91	120	<20	<20	<u>ੇ</u> 9	2.49	0.72	1.53	0.01	0.03	28	33	- 4	24	2	14	<10	0.18	2
7+00N-4+00E		<.2	28	3	46	<1	34	15 0.	2 <	5 16	5 <	5 4.47	483	<10	90	61	117	<20	<20	5	2.59	0.96	0.90	0,01	0.04	13	. 7	4	25	<1	6	<10	0.27	5
7+00N-0+50	1	<.2	15	4	43	່ 1	22	9 0.	3 <	5 13	j .	5 5.15	264	<10	102	74	148	<20	<20	4	2.20	0.61	0.50	0.01	0.02	5	5	5	18	1	<5	<10	0.34	5
7+00N-1+00V		<.2	22	4	52	1	26	9 <	2 <	5 12	2	5 4.02	247	<10	160	73	: 9 4	<20	<20	7	3.11	0.64	0.39	0.01	0.02	4	8	4	25	1	6	<10	0.19	3
7+00N-1+50			32		42							5 3.73									2.86	0.90	0.72	0.02	0.02	6	9	3	24	<1	7	<10	0.24	5
	•				: : :			1							•										ý.					ту.,				
7+00N-2+00W	1	<.2	34	4	52	<1	35	13 <	2 .	5 12	į.	5 4.31	351	<10	160	63	99	<20	<20	8	2.62	0.85	0.49	0.01	0.03	7	7	4	25	<1	6	<10	0.23	3
7+00N-2+50V			\overline{n}									<5 4.26									2.13	0.40	0.86	0.01	0.02	19	10	ુ 5	31	2	<5	<10	0.11	<1
7+00N-3+00V			29									c5 3.75									3.15	0.84	0.46	<.01	0.02	5	5	4	22	<1	<5	<10	0.17	· <1
7+00N-3+50		0.3	18		69							<5 6.87									2.30	0.54	0.32	<.01	0.03	8	4	7	16	2	<5	<10	0 .15	<1
7+00N-4+00			48		39							5 4.11									2.98	1.19	0.69	0.01	0.02	10	9	. 4	27	<1	6	<10	i 0 .1 5	<1
	•	•••			191			· · ·			5				:			1							61_ 21							11.1 17.11		
7+00N-4+501	1	<.2	82	2	50	2	82	23 0	.3	<5 32	2	\$ 5.61	543	<10	305	80	129	<20	<20	8	3.74	0.90	0.73	0.01	0.03	16	17	4	26	1	9	<10	0.13	<1
BL18+00N	•		37		55	1	38	16 0	.2	5 10	s.	<5 4.14	1102	<10	141	76	120	<20	<20	8	2.94	0.98	1.06	0.02	0.05	15	13	5	26	1	10	<10	0.19) <1
8+00N-0+50i	F		32									<5 4.97													0.04									
8+00N-1+00			24									<5 4.05									2.04	0.60	0.62	2 0.01	0.04	16	. 4	5	16	<1	<5	<10	0.26	3
18+00N-1+50			38		72							<5 4.27									2.16	0.55	0.84	0.01	0.07	13	. 9	5	18	1	6	<10	0.24	<1
0.004 1.201	-			-			- 27			- er							į.		1.17 15															·
8+00N-2+00	=	12	34		63	<1	35	15 <	2	<5 19	,	<5 4.62	472	<10	122	68	120	<20	i <20	7	2.73	0.80	0.86	5 0.01	0.04	14	10	4	29	• 1	6	<10	0.25	2
8+00N-2+50			52									<5 4.57																						
			51									<5 4.64																						
8+00N-3+00		• •	38									<5 3.84																						
8+00N-3+50			1.428									<5 4.91																						
18+00N-4+00	E	<.2	? 91	3	UC C								:															,						
40.00. 0.5*			, ee	,			17	14 0	Z	ان . 19 ح	R	<5 4.13	170		157		121		. <20		2.92	1,10	1,39	0.02	0.05	21	22	5	25	1	15	<10	0.21	<1
18+00N-0+50			2 55		02		4.)	10 0		~5 10	7	<5 5.15	1071	,	, 133 1 170	01 70	154	220	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		2.27	0.65	0.45	5 < 01	0.04	11	4	6	13	. <1	<5	<10	1 0.21) <1
18+00N-1+50		0.2	2 31	5	לב –	: Z	28		.4	() .e .e	1 ' 2	<5 5.15 <5 5.37	405	10 - 240	, 110 , 250	10	150	1 -20	· ~20		2 11	0.05	0.45	5 e 01	0.04	5	7	8	17	2	<5	<10	1 0.1/	5 <1
18+00N-2+00			a de la composición d		67	1	19	8 <	.4	so ji	D	<)), j/ ,r =	000	2 ≤1U - Ar	1 220 1 4 4	• 4/ E/	לכו . 175 :	- ×c(r ∼α0 Σ∠20	7 1 2 6	2.10	0.42 14 0.5	0.20	2 - 101	0.04	12	7	4	14	-1	-5	<10	101/	
18+00N-2+50	W	<.2	2 18	. 6	63	ີ 2	2 21	70	-5	ာ	y .	<5 5.36	56	+ <1L	3 104	20		: < <u>/</u> [

Bondar-Clegg & Company Ltd., 130 Pemberton Avenue, North Vancouver, B.C., V7P 2R5, (604) 985-0681

<.2 21 7 110 2 28 9 0.3 <5 18 <5 5.81 579 <10 244 79 112 <20 <20 10 1.94 0.55 0.26 <.01 0.04 7 3 4 22 1 <5 <10 0.11 <1</p>

LIENT: EUREKA EPORT: V98-00			INC.				egg					DATE REC	EIVED: 2	3-jun-98	DATE PI	RINTED:	2-JUL-9	98 PAC	PROJEC E 10 OF 14	ET: NONE GIVEN1	
MPLE E Imber	LEMENT UNITS	Ag PPM		PID Zr PM PPN			Co Col PPM PPM I	Bi As PPM PPM I	Sb Fe PPM PCT	Mri Te Ba PPM PPM PPM	Сг У РРМ РРІ	V Sn W M PPM PPM	la A PPM PC	L Mg C I PCT PC	a Na It PCT PC	K Sr CT PPM F			SC TA T PPM PPM PC	T PPM	
18+00N-3+50W 18+00N-4+00W 18+00N-4+50W 18+00N-5+00W 18+00N-5+50W		<.2 0.2 <.2 <.2 <.2	86 24 15 33 25	27 109 4 50 6 54 4 40 2 52) 1 ; 2) 1	42 18 25	23 0.3 12 0.3 8 0.3 8 0.3 13 0.2	<5 12 <5 9 <5 7	<5 3.88 <5 5.24 <5 4.30	2589 <10 548 989 <10 249 363 <10 146 582 <10 97 395 <10 174	85 10 47 13 57 14	7 <20 <20 8 <20 <20 7 <20 <20	4 2.4 7 1.7 5 1.9	5 0.83 0.6 5 0.43 0.3 9 0.37 0.4	5 0.01 0.0 6 <.01 0.0 4 <.01 0.0)28))59)) 3 5	4 4	14 1 18 1 13 3 9 2 25 1	<5 <10 0.0 <5 <10 0.1 <5 <10 0.1 <5 <10 0.1 5 <10 0.1 5 <10 0.1	17 <1 14 <1 17 <1	
8+00N-6+00W		<.2	35	<2 59)	50	18 <.2	<57	<5 5.87	457 <10 128	132 16	2 <20 <20	2 3.6	8 1.32 0.6	9 0.01 0.1	02 15	68	34 1	7 <10 0.2	23 2	

 $(1) \quad (1)

1111

Lab

PROJECT: NONE GIVEN

Report

Geochemical

 \rightarrow \sim \sim

DATE RECEIVED: 20-JUL-98 DATE PRINTED: 27-JUL-98 PAGE 1 OF 4 REPORT: V98-01237.0 (COMPLETE) ELEMENT Ag Cu Pb Zn Mo Ni Co Cd Bi As Sb Fe Mn Te Ba Cr V Sn W La K Sr Y Ga Li Nb Sc Ta Ti Zr Na Αl Mg Са SAMPLE NUMBER <.2 33 3 41 <1 42 16 <.2 <5 11 <5 3.47 623 <10 139 60 106 <20 <20 9 2.92 1.04 1.11 0.02 0.06 16 12 8 <10 0.28 5. 6 17 <1 A4+00N 0+75E 5 57 <1 24 23 <.2 <5 30 <5 4.18 1976 <10 269 42 80 <20 <20 11 2.69 0.78 0.43 0.01 0.08 13 7 6 21 <1 6 <10 0.18 <1 A4+00N 1+00E <.2 218 <.2 31 <2 67 <1 53 24 <.2 <5 12 <5 6.22 890 <10 144 76 150 <20 <20 5 3.78 1.66 1.51 0.01 0.04 19 12 10 22 <1 9 <10 0.29 <1 A4+00N 1+50E 6 53 <1 47 20 <.2 <5 16 <5 4.45 1313 <10 318 103 105 <20 <20 25 2.93 1.12 1.22 0.02 0.06 28 46 6 25 <1 20 <10 0.16 <1 <.2 224 A4+00N 2+00E <.2 69 <2 55 1 57 24 0.3 <5 24 <5 5.96 924 <10 196 96 155 <20 <20 9 3.81 1.14 1.18 0.02 0.07 25 20 8 29 <1 13 <10 0.25 <1 A7+00N 1+00E 1 56 18 <.2 <5 29 <5 5.43 581 <10 185 82 138 <20 <20 13 3.42 1.03 0.85 0.02 0.07 18 19 8 34 <1 11 <10 0.20 <1 4 73 A7+00N 1+50E <.2 45 3 44 <1 44 21 <.2 <5 13 <5 4.03 964 <10 215 67 110 <20 <20 9 3.01 1.24 1.09 0.02 0.06 20 16 6 21 <1 11 <10 0.25 <1 A7+00N 2+00E <.2 40 <,2 46 <2 48 <1 81 30 <.2 <5 9 <5 5.41 1160 <10 255 111 134 <20 <20 6 3.96 2.80 1.26 0.02 0.04 26 14 8 32 <1 13 <10 0.26 <1 A7+00N 2+50E 3 57 <1 36 18 <.2 <5 10 <5 3.85 955 <10 212 59 104 <20 <20 10 2.57 0.94 1.04 0.01 0.05 23 10 7 26 <1 8 <10 0.19 <1 A7+00N 3+00E <.2 55 <.2 152 7 69 1 46 19 0.2 <5 13 <5 4.25 907 <10 209 87 123 <20 <20 18 3.19 1.03 1.14 0.02 0.06 25 30 7.27 <1 16 <10 0.21 <1</p> A7+00N 3+50E <.2 46 10 89 <1 27 13 <.2 <5 7 <5 4.18 2483 <10 452 63 135 <20 <20 7 2.38 0.59 0.91 0.01 0.04 23 7 8 13 <1</p> 6 <10 0.21 <1 A7+00N 4+00E <.2 43 <2 54 <1 47 20 <.2 <5 13 <5 4.82 572 <10 271 73 129 <20 <20 4 3.48 1.10 1.13 0.02 0.03 10 10 6 23</p> <1 8 <10 0.32 7 A10+00N 2+50W <.2 21 2 57 <1 32 8 <.2 <5 5 <5 4.57 283 <10 219 81 152 <20 <20 5 1.88 0.62 0.56 0.01 0.03 11 4 8 11 <1 <5 <10 0.17 <1</p> A10+00N 2+75W 5 93 <1 55 23 0.6 <5 17 <5 3.53 1448 <10 251 91 73 <20 <20 16 2.58 0.84 1.00 0.02 0.05 27 41 5 24 <1 14 <10 0.06 <1 A10+00N 3+00W 0.2 136 8 83 1 70 21 0.3 <5 21 <5 3.85 1980 <10 300 87 108 <20 <20 14 2.69 0.97 1.29 0.02 0.05 24 35 6 21 <1 14 <10 0.18 <1 A10+00N 4+55W 0.3 101 2 49 <1 90 22 0.2 <5 11 <5 4.91 594 <10 209 140 97 <20 <20 13 2.77 1.63 0.73 0.02 0.03 12 33 5 32 <1 11 <10 0.19 <1 <.2 92 A10+00N 5+00W <.2 27 <2 44 <1 95 23 <.2 <5 7 <5 4.29 563 <10 275 105 112 <20 <20 6 2.78 1.73 0.82 0.02 0.03 12 6 6 21 <1 <5 <10 0.26</p> 1 A10+05N 4+87W 0.3 58 36 97 2 29 20 0.2 <5 47 <5 6.33 1668 <10 475 61 80 <20 <20 16 1.99 0.24 0.36 <.01 0.09 15 10 4 22 <1 <5 <10 0.04 <1 A10+45N 4+50W <.2 74 4 72 <1 59 21 <.2 <5 22 <5 4.29 1085 <10 323 88 107 <20 <20 10 2.97 1.34 1.27 0.02 0.05 25 30 6 21 <1 15 <10 0.16 <1 A11+00N 2+50W 0.5 91 <2 42 <1 187 28 0.2 <5 <5 5.67 398 <10 112 192 75 <20 <20 8 3.15 1.87 0.62 0.01 0.02 14 24 5 37 <1 8 <10 0.11 <1 A11+00N 4+50W 8 3.23 3.13 0.92 0.02 0.03 21 28 4 36 <1 13 <10 0.11 <1 0.3 91 <2 52 <1 194 38 <.2 <5 20 <5 4.69 594 <10 306 191 73 <20 <20 A11+00N 4+75W 1 51 16 0.2 <5 15 <5 3.55 484 <10 317 75 103 <20 <20 19 2.70 0.89 1.01 0.02 0.04 20 34 6 30 <1 15 <10 0.22 3 <.2 133 3 48 A11+00N 5+00W 1 91 28 0.4 <5 22 <5 4.61 969 <10 427 77 93 <20 <20 19 3.64 0.96 1.29 0.01 0.07 31 51 6 27 <1 15 <10 0.10 <1 0.7 224 3 102 A11+00N 5+25W 6 3.40 0.88 0.92 0.01 0.03 22 9 8 21 <1 6 <10 0.20 <1 1 35 18 0.2 <5 9 <5 5.35 555 <10 276 57 127 <20 <20 0.3 35 <2.95 A11+00N 5+50W 7 2.64 0.58 0.54 0.01 0.03 13 5 8 19 <1 <5 <10 0.23 <1 6 <5 5.74 369 <10 248 49 154 <20 <20 0.3 24 <2 81 1 21 9 < 2 <5 A11+00N 5+75W 8 2.66 0.68 0.62 0.01 0.04 13 5 8 19 <1 <5 <10 0.18 <1 1 23 9 <.2 <5 6 <5 5.32 761 <10 305 53 142 <20 <20 0.3 22 <2 69 A12+00N 4+75W 9 3.63 0.73 0.55 0.01 0.04 16 9 7 20 <1 6 <10 0.17 <1 8 <5 5 10 407 <10 260 58 115 <20 <20 0.3 27 <2 78 <1 31 12 <.2 <5 A12+00N 5+00W 6 3.43 0.68 0.53 0.01 0.03 12 5 7 20 <1 5 <10 0.17 <1 0.6 31 <2 63 1 29 9 0.2 <5 8 <5 5.03 357 <10 275 57 119 <20 <20 A12+00N 5+25W 8 2.89 1.42 1.73 0.02 0.04 24 16 7 24 <1 14 <10 0.31 2 <.2 42 2 47 <1 45 21 <.2 <5 11 <5 3.74 1303 <10 151 95 121 <20 <20 A13+00N 1+50W

<.2 40 2 47 <1 41 21 <2 <5 16 <5 4.14 970 <10 141 71 121 <20 <20

A13+00N 2+00W

Bondar-Clegg & Company Ltd., 130 Pemberton Avenue, North Vancouver, B.C., V7P 2R5, (604) 985-0681

9 2.79 1.25 1.37 0.02 0.05 19 12 6 26 <1 11 <10 0.28 3

্ৰ Ŀ Geochemical **Intertek Testing Services** Lab Report Bondar Clegg PROJECT: NONE GIVEN CLIENT: GEOQUEST CONSULTING LTD. PAGE 2 OF 4 DATE RECEIVED: 20-JUL-98 DATE PRINTED: 27-JUL-98 REPORT: V98-01237.0 (COMPLETE) Na K Sr Y Ga Li Nb Sc Ta Ti Zr ELEMENT Ag CU Pb Zn Mo Ni Co Cd Bi As Sb Mn Te Ba Cr V Sn W La AL Са Fe Ma SAMPLE PCT PPM PPM PPM PPM PPM PPM PPM PCT PPM PCT PCT PCT PCT NUMBER <1 42 <10 0.11 <1 35 <5 4.22 1606 <10 283 139 90 <20 <20 19 4.48 0.89 0.79 0.01 0.05 5 36 23 60 91 21 0.5 A13+00N 4+00W 0.3 249 4 90 1 <5 15 <.2 <5 17 <5 3.25 352 <10 299 98 91 <20 <20 14 3.44 1.12 0.92 0.02 0.05 26 23 7 43 <1 14 <10 0.12 <1 <1 73 4 66 A13+00N 4+25W <.2 91 14 <5 4.70 844 <10 303 73 102 <20 <20 11 3.08 0.92 0.86 0.01 0.05 23 11 7 24 <1 7 <10 0.13 <1 <.2 72 4 73 1 55 26 <.2 <5 A13+00N 4+50W <1 52 21 0.4 <5 11 <5 3.69 2096 <10 381 77 98 <20 <20 9 2.86 1.12 1.52 0.02 0.06 35 22 6 22 <1 12 <10 0.13 <1 5 68 A13+00N 4+75W <.2 102 <1 58 21 0.3 <5 14 <5 3.99 2123 <10 363 83 100 <20 <20 10 3.07 1.24 1.30 0.02 0.06 33 26 5 28 <1 18 <10 0.14 <1 <.2 106 5 101 A13+00N 5+00W

Géochemical

Lab

Report

Intertek Testing Services Bondar Clegg

<.2 24 3 79 <1 33 17 <.2 <5

7 <5 6.03 601 <10

B3+00N-3+00W

CLIENT: EUREK		2						icg	U																							PROJE	CT: N	ONE G
	00971.0 (CC	-																DAT	ie re	CEIV	ED:	23 - Jl	UN-98	(DATE	PRINT	ED:	2- JU	L-98	5 P/	AGE	1 OF 17		
MPLE	ELEMENT AS	3	Cu	Pb	Zn	Mo	Ni	Co	Cd	Bi	As	Sb	Fe	Mn	Тe	Ba	Cr	v	Sn	W	La	Al	Mg	Ca	Na	к	Sг	Ŷ	Ga	Li	Nb	Sc Tá	Ti	Zr
MBER	UNITS PP	-											PCT	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PCT	PCT	PCT	РСТ	PPM	PPM	PPM	PPM	PPM	PPM PPM	PCT	PPM
L2+00N	<.2	2	48	4	65	<1	40	19	<.2	<5	14	<5	3.82	994	<10	176	58	116	<20	<20	9	2.65	1.06	1.20	0.02	0.04	25	20	Ś	20	6	12 <10	0.20	3
+00N-0+50E	0.2	2	53	4	66	<1	32	18	0.2	<5	11	<5	4.33	675	<10	148	66	132	<20	<20	9	2.76	0.69	0.79	0.02	0.03	20	9	7	22	8	7 <10	0.20	3
+00N-1+00E	<.;	2	14	6	67	<1	17	11	<.2	<5	5	<5	4.75	391	<10	85	51	162	<20	<20	9	2.13	0.51	0.47	0.01	0.03	10	3	9	16	10	<5 <10	0.30	3
+00N-1+50E	<	2	16	4	77	<1	24	11	<.2	<5	7	<5	4.83	305	<10	93	56	105	<20	<20	10	2.80	0.64	0.42	<:01	0.05	11	- 4	6	24	7	<5 <10	0.20	4
+00N-2+00E	<.;	2	17	4	48	<1	15	10	0.2	<5	<5	<5	4.52	246	<10	137	47	169	<20	<20	10	1.65	0.35	0.70	0.01	0.03	18	4	7	8	10	<5 <10	0.27	° 2
+00N-0+50W		2	45	7	75	-1	20	14	< 2	<5	12	<5	4 57	382	<10	158	66	136	<20	<20	9	2.78	0.67	0.72	0.01	0.05	19	8	8	22	8	6 <10	0.20	2
+00N-0+50W			28					13						386		118			<20					0.61			- 1 - E			: 14	12			5
+00N-1+50W			25		41			10							<10	196			<20					0.73					·· ·		1.567	<5 <10	0.24	2
+00N-1+00W			17	3			18		<.2				3.82		<10	222	47				1.1.1		a del s	0.68	1.1.1.1		10.0		7	18	: 7	<5 <10	0.17	11
+00N-2+50W			23	-	57	-		14					5.91		<10		56		- 2						10 a.C.		1.1.4.1	+	1 f		- 49°.	<5 <10		2
					1																						e e auri Referencia				ntari Galeria			an An taon
+00N-3+00W	<.	2	31	4	56	<1	22	11	0.2	<5	6	<5	4.63	391	<10	161	51	138	<20	<20	7	2.24	0.57	0.44	0.01	0.03	12	4	7	17	9	<5 <10	0.22	3
+00N-3+50W	<.	2 (15	7	51	<1	17	12	<.2	<5	5	<5	5.35	371	<10	60	50	241	<20	<20	. 7	2.20	0.51	0.50	<.01	0.03	7	· 3	12	8	14	<5 <10	0.38	3
+00N-4+00W	<.	2	16	7	58	<1	13	13	<.2	<5	<5	<5	4.38	533	<10	251	45	230	<20	<20	6	1.71	0.35	0.72	0.01	0.05	11	3	11	6	14	<5 <10	0.40	3
+00N-4+50W	<.	2	27	4	51	<1	21	17	<.2	<5	5	<5	4.62	1761	<10	182	51	157	<20	<20	411.		11 m	0.55	1. Sec.		1.11		1.3 1.4		10.0	<5 <10		2
2+00N-5+00W	<.	2	11	8	64	<1	14	12	<.2	<5	<5	<5	5.21	351	<10	284	56	242	<20	<20	9	2.30	0.42	0.52	0.01	0.03	9	3	13	10	14	<5 <10	0.37	3
		5 1						:		:																				: 			:	
2+00N-5+50W	0.	3	21	4	51	<1	26	. 13	<.2		S. 12.		1.13957	605	2.5.15		1.000		1255		 Q. 		State:		- 12 - 1877	1	1111	÷	da ga		- 9,5-	<5 <10		
2+00N-6+00W	<.	2	20		95		1.12.27	16		-	· · · ·		er end	754	a part d	245	3,840		<20		1.1.22		- Although		- 6.99						1.1.1	<5 <10		2
2+00N-6+50W	<.	2	30	6	65	<1	30		A. 187		1.1. A		1000 600	1888			63	÷	22.2			· ·	1.192.6-3	0.66	- 19 Marca				1997		- Pr	6 <10		
2+00N-7+00W	<.	2	21		57				0.2		1.1.1.1.1.1		- C. 10, 22,	522	- 1. C 1.		- N. 2.2 N		1.175	÷	1,017		i ja tee	÷		1.1	1910		1.1.1.1			<5 <10		2
2+00N-7+50W	<.	2	11	9	39	<1	9	8	0.2	<5	<5	<5	3.45	328	<10	150	39	158	<20	<20	10	1.17	' 0.18	0.42	<.01	0.04	10	2		: 3	10	<5 <10	0.26	<1
+00N-8+00W	· 0.	4	33	4	63	<1	26	12	0.2	ক	8	<5	5.48	719	<10	237	56	147	<20	<20	8	1.97	0.66	0.71	0.01	0.04	15	4	6	13	9	<5 <10	0.18	-1
L300+00N			42	3	45	<1	42	20	<.2	<5	6	<5	3.54	319	<10	160	52	101	<20	<20	11	2.89	0.84	0.78	0.02	0.03	. 14	8	5	17	6	6 <10	0.22	13
+00N-0+50E	-		46	-	3.2			17	승규는 등		5	<5	2.87	357	<10	170	74	111	<20	<20	10	2.94	1.04	0.86	0.02	0.04	19	14	7	23	7	12 <10	0.23	4
+00N-1+50E			34	2	55	<1	37	22	<.2	<5	10	<5	4.64	672	<10	111	61	124	<20	<20	9	2.78	1.01	.1.08	0.02	0.03	23	14	7	20	7	9 <10	0.24	5
+00N-2+00E		2	31	4	- 10 O O O O		10.00		- C - C - L - L		7	<5	5.55	862	<10	158	65	177	<20	<20	5	2.43	0.69	0.80	0.02	0.03	19	6	8	14	10	6 <10	0.28	3
5+00N-0+50W		2	31	3	69	<1	40	21	<.2	<5	9	<5	6,18	596	<10	135	71	180	<20	<20	5	3.22	1.12	0.85	0.02	0.04	12	5	8	26	10	7 <10	0.37	11
3+00N-1+00W			40	4	63	<1	44	23	<.2	<5	14	<5	5.46	533	<10	138	83	150	<20	<20	10	3.40	1.04	0.93	0.02	0.03	18	10	8	34	9	8 <10	0.26	4
3+00N-1+50W		4	171	8	69	- <1	41	21	0.3	<5	24	<5	4.27	2566	<10	192	143	162	<20	<20	20	2.46	0.64	1.07	0.01	0.05	26	60	7	25	10	18 <10	0.12	1
3+00N-2+50W			33	4	63	<1	39	20	<,2	<5	9	<5	5.00	770	<10	202	63	151	<20	<20	9	2.57	1.06	1.16	0.02	0.03	21	9	8	24	9	6 <10	0.26	3
	-				والمرجع والمراجع		1.000		21.1.21				S. 1997						- N C.															

Bondar-Clegg & Company Ltd., 130 Pemberton Avenue, North Vancouver, B.C., V7P 2R5, (604) 985-0681

243 64 179 <20 <20 6 2.77 0.94 0.65 0.01 0.03 13 5 9 26 10 5 <10 0.31 5

ENVERT AND ENVERT and the second Y Geochemical

Lab

8 <5 <10 0.20 <1

Report

<.2 17 6 52 <1 13 9 < 2 <5

SAMPLE

NUMBER

BBL4+00N

B4+00N-8+00W

PROJECT: NONE GIVEN1 CLIENT: EUREKA RESOURCES, INC. DATE RECEIVED: 23-JUN-98 DATE PRINTED: 2-JUL-98 PAGE 2 OF 17 REPORT: V98-00971.0 (COMPLETE) ELEMENT Ag Cu Pb Zn Mo Ni Co Cd Bi As Sb Fe Mn Te Ba Cr V Sn W La ΑĹ Mg Ca Na K Sr Y Ga Li Nb Sc Ta Ti Zr PCT PCT PCT PCT PPM PPM PPM PPM PPM PPM PPM PCT PPM PPM PPM PPM PPM PPM PPM PCT 6 3.49 0.86 0.56 0.01 0.04 11 7 30 6 <10 0.25 8 5 9 <.2 31 <2 86 <1 35 16 <.2 <5 8 <5 5.90 395 <10 169 70 139 <20 <20 B3+00N-3+50W 61 144 <20 <20 10 2.36 0.76 0.64 0.01 0.03 18 2 7 54 <1 34 16 <.2 <5 10 <5 4.78 588 <10 8 7 18 9 6 <10 0.19 199 B3+00N-4+00W <.2 33 7 2.07 0.46 0.52 0.01 0.03 10 5 10 11 <5 <10 0.24 <1 <.2 17 6 56 <1 19 13 <.2 <5 <5 <5 5.14 2298 <10 227 57 190 <20 <20 8 B3+00N-4+50W 51 113 <20 <20 6 2.53 0.99 0.85 0.01 0.02 13 6 6 20 6 6 <10 0.23 7 2 51 <1 47 18 <.2 <5 7 <5 3.91 381 <10 188 <.2 26 B3+00N-5+00W 9 2.66 1.02 0.75 0.01 0.03 13 6 5 21 6 <10 0.22 5 8 <5 4.10 437 <10 6 210 55 108 <20 <20 16 <.2 <5 B3+00N-5+50W <.2 28 3 74 <1 44 7 2.93 0.94 0.75 0.02 0.03 12 6 <10 0.24 190 57 123 <20 <20 7 6 17 . 7 6 3 53 <1 47 20 <.2 <5 9 <5 4.10 495 <10 <.2 30 83+00N-6+00W 113 58 103 <20 <20 11 2.50 0.76 0.53 0.01 0.04 12 5 6 16 6 <5 <10 0.21 3 7 59 <1 39 17 0.3 <5 7 <5 3.68 530 <10 B3+00N-6+50W <.2 23 231 56 113 <20 <20 7 2.52 1.04 0.73 0.01 0.03 14 8 5 15 6 6 <10 0.21 -4 3 63 <1 54 21 <.2 <5 8 <5 3.83 875 <10 <.2 34 B3+00N-7+00W 62 152 <20 <20 7 2.40 0.68 0.51 0.01 0.03 11 5 8 12 9 <5 <10 0.21 :1 6 58 <1 29 14 0.2 <5 6 <5 5.26 760 <10 185 B3+00N-7+50W <.2 22 233 63 116 <20 <20 10 3.20 0.81 0.55 0.01 0.03 13 6 6 20 7 6 <10 0.23 5 8 <5 4.37 434 <10 4 80 <1 43 18 <.2 <5 <.2 23 B3+00N-8+00W 172 61 140 <20 <20 6 2.60 0.92 0.89 0.02 0.04 18 6 7 15 9 6 <10 0.23 6 3 63 <1 35 16 0.3 <5 9 <5 4.98 497 <10 <.2 39 9 10 <5 <10 0.23 2 2 <1 17 12 <, 2 <5 <5 <5 3.95 605 <10 164 41 153 <20 <20 11 1.96 0.41 0.48 0.01 0.05 11 4 8 <.2 17 8 46 84+00N-0+50E 6 63 <1 35 15 <.2 <5 11 <5 4.20 1124 <10 64 98 <20 <20 19 2.93 0.76 0.66 0.02 0.06 20 28 5 20 6 11 <10 0.09 1 180 B4+00N-1+00E <.2 38 6 21 6 <10 0.11 2 54 90 <20 <20 14 2.60 0.69 0.68 0.01 0.09 27 8 7 77 <1 33 13 0.3 <5 <5 <5 3.62 377 <10 130 6. B4+00N-1+50E <.2 24 6 <5 <10 0.15 2 38 84 <20 <20 14 1.94 0.52 0.55 0.01 0.07 14 4 6 16 7 59 <1 23 10 < 2 <5 <5 <5 2.85 467 <10 119 B4+00N-2+00E <.2 15 6 2.29 0.42 0.60 0.01 0.03 11 3 12 9 12 <5 <10 0.42 3 7 43 <1 14 13 <.2 <5 <5 <5 5.03 369 <10 128 52 217 <20 <20 <.2 13 B4+00N-0+50W 50 204 <20 <20 8 1.95 0.38 0.36 <.01 0.03 7 2 10 8 12 <5 <10 0.31 3 81 36 <1 13 10 <.2 <5 <5 <5 5.35 358 <10 7 B4+00N-1+00W <.2 11 2 10 34 163 <20 <20 10 1.79 0.27 0.34 <.01 0.02 7 7 10 <5 <10 0.26 3 8 29 1 11 8 <.2 <5 <5 <5 2.20 162 <10 84 B4+00N-1+30W <.2 9 5 5 19 8 50 109 <20 <20 4 2.42 0.93 0.76 0.01 0.02 -10 6 <5 <10 0.24 <.2 26 2 40 <1 39 16 < 2 <5 8 <5 3.56 366 <10 121 B4+00N-2+50W 3 10 13 10 <5 <10 0.24 2 136 46 169 <20 <20 9 2.11 0.49 0.47 <.01 0.04 10 7 55 <1 19 10 4.2 <5 6 <5 4.43 413 <10 <.2 15 84+00N-3+00W 94 33 121 <20 <20 11 1.43 0.28 0.45 <.01 0.03 . 9 2 9 - 5 8 <5 <10 0.20 <1 9 35 <1 12 7 <.2 <5 <5 <5 2.47 373 <10 B4+00N-3+50W <.2 - 9 . 9 3 10 12 11 <5 <10 0.31 2 80 50 194 <20 <20 6 2.21 0.63 0.53 0.01 0.04 5 <5 5.83 698 <10 <.2 :15 6 61 <1 24 14 <.2 <5 B4+00N-4+00W 113 38 138 <20 <20 10 1.47 0.28 0.44 <.01 0.05 10 3 9 4 8 <5 <10 0.21 <1 8 40 <1 11 9 <.2 <5 <5 <5 2.58 660 <10 <.2 10 B4+00N-4+50W 46 141 <20 <20 10 2.06 0.58 0.60 0.01 0.07 12 3 8 15 8 <5 <10 0.19 <1 6 <5 4.55 564 <10 200 77 <1 20 11 <.2 <5 6 B4+00N-5+00W <.2 -14 6 <5 5.65 643 <10 138 57 187 <20 <20 9 2.43 0.55 0.44 0.01 0.04 11 4 10 16 11 <5 <10 0.31 2 4 70 <1 21 13 <.2 <5 <.2 17 B4+00N-5+50W 8 11 10 <5 <10 0.24 1 8 1.83 0.43 0.49 <.01 0.03 14 3 253 57 172 <20 <20 0.3 18 6 75 <1 18 11 0.3 <5 7 <5 5.94 703 <10 B4+00N-6+00W 8 2.01 0.44 0.39 <.01 0.02 10 3 10 8 11 <5 <10 0.27 2 6 55 <1 19 11 0.2 <5 5 <5 5.09 554 <10 191 48 184 <20 <20 16 B4+00N-6+50W <.2 133 57 111 <20 <20 9 2.19 0.50 0.40 <.01 0.02 10 3 6 16 7 <5 <10 0.21 3 4 52 <1 21 9 0.3 <5 6 <5 3.95 275 <10 B4+00N-7+00W <.2 16 4 8 10 10 <5 <10 0.26 2 6 57 <1 24 12 < 2 <5 7 <5 5,15 549 <10 216 50 173 <20 <20 8 2.09 0.64 0.55 0.01 0.03 11 84+00N-7+50W <.2 22

Bondar-Clegg & Company Ltd., 130 Pemberton Avenue, North Vancouver, B.C., V7P 2R5, (604) 985-0681

<5 <5 3.28 526 <10

234 45 140 <20 <20 10 1.36 0.29 0.53 <.01 0.04 14 3 8 4

(*****) Geochemical

Lab

PROJECT: NONE GIVEN1

Report

CLIENT: EURER REPORT: V98-0																		DAI	re r	ECEI	/ED:	23-JI	JN-98	l	DATE I	PRINTE	D:	2-JU	IL-98	P	AGE	3 (of 17	•		
SAMPLE	ELEMENT	Ag	Cu	Pb	Zn	Mo	Ni	Co	Cd	Bi	As	Sb	Fe	Mn	Те	Ba	Cr	٧	Sn	W	La	Al	Mg	Ca			Sr							Ti		
NUMBER	UNITS	PPM	PPM	PPM	PPM	PPM	PPM	PPM	I PPM	PPM	PPM	PPM	PCT	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PCT	PCT	PCT	PCT	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PPM	
B5+00N-0+50E		< 2	17	4	74	<1	35	16	5 <.2	<5	<5	<5	3.70	300	<10	111	52	105	<20	<20	12	2.89	0.71	0.63	0.02	0.05	11	6	6	21	6	5	<10	0.22	7	
B5+00N-1+00E		<.2												261		83	43	81	<20	<20	10	2.64	0.69	0.69	0.02	0.04	13	6	5	16	5	<5	<10	0.20	6	
B5+00N-0+50W		<.2	• •		63				; <,2					529	<10	102	41	73	<20	<20	19	2,02	0.79	0.74	0.02	0.07	24	9	5	20	5	6	<10	0.17	6	
B5+00N-1+00W		<.2							i <.2			<5	3.58	316	<10	128	56	118	<20	<20	10	2.99	0.72	0.72	0.01	0.05	12	5	° 7	16	7	6	<10	0.26	8	
B5+00N-1+50W		0.2							7 <.2		9	<5	5.32	527	<10	185	76	132	<20	<20	8	3.58	0.69	0.66	0.02	0.03	. 17	7	6	21	. 8	6	<10	0.22	6	
		-		_			~~				F	~	3.77	270	~10	101	55	138	<20	1 <20	10	2 51	0.55	0_48	0.01	0.03	12	7	9	18	8	5	<10	0.28	4	
B5+00N-2+00W			18			<1			5 <.2				4.00						· · · ·	, <20) <20			1.8.			0.03	1.1.1.1	·	1.11	17	- A. 21		<10	0.25	9	
B5+00N-2+50W			30	-	122	<1			4 <.2				5.36							, <20) <20	÷.,	1.00	- 1. A. Í			0.02	int ye	÷	1.49		11.1		<10	0.29	8	
85+00N-3+00W			25	-	45	-			5 <:2				5.57										15 Av			0.03	1.00		- 19 milio	21	2.1.5		- 15 di	0.20		
B5+00N-3+50W			28	-		<1			4 <.2				1 A A A A A A A A A A A A A A A A A A A													0.03						1		0.24		2
B5+00N-4+00W	ł	<,2	20	4	94	<1	23	5 14	4 <.2	: < >	·. (< >	5.21	519	~ 10	[0]	50	140			Ĭ			0.37						:						
85+00N-4+50w	,	< 2	24	3	66	: . <1	26	5 13	3 < .2	2 <5	. 8	<5	5.59	311	<10	115	59	140	<20) <20	8	3.17	0.55	0.40	0.01	0.03	9	5	7	21	9	5	i <10	0.24	6	
B5+00N-5+00h			44										5.50			159	68	122	<20) <20	7	3.29	0.83	0.55	5 0.01	0.03	10	6	5	22	7	່ 7	′ <10	0.20	6	
B5+00N-5+50M			33										6.45			145	64	-135	<20	<20	5	3.04	0.46	0.44	0.01	0.02	10	- 5	5	15	8	i <5	i <10	0.15	3	
B5+00N-6+00k			23						4 <.Z				5.58			219	60	156	<20) <20	9	2.35	6 0.55	0.4	5 0.01	0.03	15	6	7	13	9	5	5 <10	0.20	2	
B5+00N-6+50M			22						4 < 2			<5	4.54	546	5 <10	128	58	129) <2() <20	17	2.56	5 0.62	0.50	5 0.01	0.02	12	6	6	16	8	5	5 <10	0.27	5	
						å S		4 • •			i vi											ç. P				÷	1943 - 1945 - 1945							: 		
B5+00N-7+00V	1	<.2	30	3	69	∛; <1	4.	5 1	7 <.2	2 <5	9	<5	4.65	453	5 <10		- 17 I) <20					NO 19 1	0.03				22	- 4 Ng			0.21		
B5+00N-7+50V	ł	<.2	30										3.45					C			· · · · · ·			- V		2 0.03	· · · ·		12.121	- 16				0.23		
B5+00N-8+004	4	<.2	26										3.88													0.03			1 A A	18	÷			0.19		
BBL6+00N		<.2	19										5.34													2 0.04				: 16	- A 1	- ¹		0.29		
B6+00N-0+50E	-	0.3	23	2	106	5 <1	2	3 1	9 <.	2 <5	<5	S	6.45	570) <10	73	58	3 171	<2	0 <20) (7	2.7	9 0.67	7 1.1	2 0.02	2 0.05	29	<u>,</u> 9	. 9	13	10	3 1	<1U	0.30) 5	
	_					Č.	2			 > ∠5	я		4.57	017	3 <10	126	71	1.125	-∷ i ≺2	;; 0 <20) 13	3.19	2 1.20	0 1.1	4 0.0	3.0.09	28	3 11	6	20	- 7	7 1'	1 <10	0.27	7 - 12	
B6+00N-1+00E			40										5.64													2 0.07				17	' 11	ļ	9 <10	0.26	56	
B6+00N-1+50			42														1.1		· · ·	0 <20						1 0.04				14			5 <10	0.25	5 7	
B6+00N-2+00			! 15										4.54							0 <2(12					2 0.04			8	19	, ç	<i>,</i>	5 <10	0.26	5 4	
86+00N-0+50	ų		2 22										4.73													2 0.04						5 12	2 <10	0.19	3	
B6+00N-1+00	4	<.2	? 45	4	64	\$ <	14	0 2	0 <.;	2 <>	13	• •	4.01	୍ମଧ୍ୟ	4 < IU	. 173		2 1 1 6	+ ->6 	0 720					0 0.0					_,						
86+00N-1+50	W	<.2	2 37	6	5 8	3 <	14	32	0 0.	2 <5	12	<	4.32	98	0 <10											2 0.09				24				0.10		
B6+00N-2+00		<.2	2 30	. 7	7	8 <	1 4	3 1	7 <.	2 <	1	5. 5	4.10	<u>47</u>	1 <10											1 0.09				31				0.13		
B6+00N-2+50		<.2	2 20	3	5 5	4 <	12	5 1	2 <.	2 <	, (<u>ج</u> ج	5 3.89	28	2 <10	115	6	5 98	8 <2	0 <2	1					1 0.03					-	-		0.24		
B6+00N-3+00		<.2	1000										6 4 93			76				0 <2		2 C				1 0.03			? 11					0.2		
B6+00N-3+50			2 12										5 2.04				5 5!	5 8	9 <u><</u> 2	0 <2	D 10	0 2.2	5 0.6	3 0.9	5 0.0	1 0.07	' 19	7 5	i 11	26	5 6	5	5 <10	0.2	53	

· · · }. 5 } ĽĽ. J. 2 Geochemical

Lab

Report

DTT	Intertek Testing	Services
	Bondar Clegg	

2 58 <1 41 19 < 2 <5 <5 <5 4.24 436 <10

SAMPLE

NUMBER

BBL7+00N

BBL8+00N

88+00N-0+50E

<.2 25

PROJECT: NONE GIVEN1 CLIENT: EUREKA RESOURCES, INC. PAGE 4 OF 17 DATE RECEIVED: 23-JUN-98 DATE PRINTED: 2-JUL-98 REPORT: V98-00971.0 (COMPLETE) Y Ga Li Nb Sc Ta Ti Zr Ba Cr V Sn W La Αl Mg Сa Na K Sr ELEMENT AG CU PO ZN MO NÍ CO CƠ BÌ AS SO Fe Mn Te PCT PCT PCT PCT PPM PPM PPM PPM PPM PPM PPM PCT PPM PPM PPM PPM PPM PPM PPM PCT 5 <10.0.18 1 5 2.63 0.71 0.73 0.01 0.04 12 8 19 11 4 8 <5 6.71 720 <10 220 68 200 <20 <20 3 85 <1 28 14 <.2 <5 <,2 27 B6+00N-4+00W <5 <10 0.34 3 3 69 207 <20 <20 5 2.53 0.59 0.38 <.01 0.03 8 9 21 13 3 65 <1 22 13 <.2 <5 7 <5 7.93 428 <10 119 B6+00N-4+50W <.2 19 5 2.41 0.54 0.47 <.01 0.04 . 9 3 8 23 10 <5 <10 0.26 3 6 <5 6.33 666 <10 58 168 <20 <20 3 79 <1 20 13 <.2 <5 156 0.3 18 B6+00N-5+00W 37 150 <20 <20 9 1.44 0.37 0.60 <.01 0.08 13 2 . 8 8 9 <5 <10 0.20 <1 7 68 <1 14 11 <.2 <5 <5 <5 3.96 1255 <10 186 B6+00N-5+50W <.2 10 9 1.99 0.50 0.49 <.01 0.03 13 4 8 17 10 <5 <10 0.25 1 5 <5 4.91 544 <10 226 55 164 <20 <20 4 80 <1 19 12 <.2 <5 18 B6+00N-6+00W <.2 8 <5 <10 0.22 2 9 2.43 0.59 0.54 0.01 0.03 13 4 7 16 188 57 132 <20 <20 26 12 <.2 <5 7 <5 4,92 526 <10 4 73 <1 <.2 18 B6+00N-6+50W 2 9 2.75 0.66 0.52 0.01 0.03 11 6 6 17 9 5 <10 0.21 8 <5 4.98 713 <10 144 56 140 <20 <20 3 68 <1 31 14 <.2 <5 86+00N-7+00W <.2 28 - 4 7 <5 4.38 372 <10 62 109 <20 <20 12 2.47 0.70 0.49 0.01 0.03 13 4 6 19 7 <5 <10 0.22 152 6 61 <1 32 14 <.2 <5 B6+00N-7+50W <.2 21 216 57 121 <20 <20 9 2.97 0.46 0.44 <.01 0.03 11 -5 6 16 7 <5 <10 0.20 3 6 <5 4.10 438 <10 4 54 <1 25 10 < 2 <5 <.2 28 B6+00N-8+00W 45 145 <20 <20 10 2.03 0.36 0.86 0.01 0.05 29 8 10 9 5 <10 0.23 3 6 67 <1 18 11 0.2 <5 <5 <5 3.90 301 <10 6 138 <.2 24 111 71 173 <20 <20 9 3.30 0.49 1.11 0.02 0.06 38 22 7 13 10 10 <10 0.24 7 4 80 <1 35 18 0.4 <5 <5 <5 5.09 478 <10 7+00N-0+50E <.2 53 46 117 <20 <20 16 2.40 0.61 0.88 0.02 0.04 17 13 6 16 7 7 <10 0.18 4 4 64 <1 26 16 <.2 <5 <5 <5 3.63 616 <10 73 <.2 22 7+00N-1+00E 80 179 <20 <20 16 3.25 0.76 0.98 0.01 0.06 26 46 7 16 10 15 <10 0.23 6 4 67 <1 40 20 <.2 <5 <5 <5 4.96 875 <10 81 7+00N-1+50E <.2 60 9 3.38 0.85 1.01 0.03 0.05 36 11 7 13 9 <10 0.26 12 8 3 72 <1 41 22 < 2 <5 <5 <5 4.59 579 <10 59 129 <20 <20 7+00N-2+00E <.2 37 5 <10 0.19 5 119 47 91 <20 <20 14 2.30 0.80 0.76 0.02 0.06 18 6 5 20 6 4 61 <1 32 15 <.2 <5 <5 <5 3.38 390 <10 <.2 21 7+00N-1+00W 110 40 68 <20 <20 17 2.02 0.77 0.68 0.01 0.08 21 4. 22 5 5 <10 0.10 1 7 69 <1 31 13 <.2 <5 <5 <5 3.42 502 <10 9 <.2 21 7+00N-1+50W 5 <10 0.12 3 40 61 <20 <20 25 1.96 0.88 0.55 0.02 0.09 20 7 4 26 4 9 78 <1 32 15 <.2 <5 5 <5 3.58 533 <10 100 7+00N-2+00W <.2 19 5 19 7 12 <10 0.20 4 58 114 <20 <20 11 2.63 1.01 1.05 0.02 0.05 24 20 4 65 <1 41 20 <.2 <5 11 <5 3.71 699 <10 179 7+00N-2+50W <.2 46 8 <10 0.22 9 74 146 <20 <20 5 3.38 0.56 0.62 0.01 0.03 12 9 6.11 9 3 41 <1 28 22 0,2 <5 12 <5 6.79 696 <10 160 <.2 38 7+00N-3+00W 8 15 13 <5 <10 0.34 5 219 52 210 <20 <20 6 2.04 0.55 0.65 0.01 0.04 18 4 <.2 21 4 73 <1 21 12 <.2 <5 6 <5 5.30 266 <10 7+00N-3+50W 2 6 1.56 0.28 0.41 <.01 0.07 12 3 8 6 11 <5 <10 0.27 115 43 175 <20 <20 6 40 <1 12 9 <.2 <5 <5 <5 4.25 327 <10 7+00N-4+00W <.2 12 7 1.95 0.53 1.69 0.01 0.04 44 30 5 15 10 10 <10 0.09 2 163 463 165 <20 <20 4 47 <1 24 13 <.2 <5 75 <5 3.56 1936 <10 0.3 69 7+00N-4+50W 7 2.68 0.67 0.50 0.01 0.03 11 4 8 22 10 <5 <10 0.25 -4 <.2 24 4 85 <1 28 15 <.2 <5 7 <5 6.13 440 <10 172 61 160 <20 <20 7+00N-5+00W 7 2.39 0.93 0.93 0.01 0.02 14 10 4 12 6 6 < 10 0.19 - 6 8 <5 2.93 391 <10 147 44 94 <20 <20 4 43 <1 51 16 0.2 <5 50 7+00N-5+50W <.2 6 <5 <10 0.17 3 175 50 94 <20 <20 10 2.23 0.69 0.63 0.01 0.03 14 5 5 15 6 <5 3,65 443 <10 3 64 <1 33 13 < 2 <5 7+00N-6+00W <.2 28 - 3 9 2.29 0.49 0.42 < 01 0.04 11 3 9 21 10 <5 <10 0.28 172 51 171 <20 <20 <.2 14 6 81 <1 18 12 <.2 <5 5 <5 5.11 441 <10 7+00N-6+50W 126 58 174 <20 <20 8 2.30 0.46 0.41 <.01 0.04 11 - 3 4 8 13 10 <5 <10 0.28 3 66 <1 18 12 0.2 <5 5 <5 6.28 630 <10 7+00N-7+00W 0.4 17 3 136 63 113 <20 <20 12 2.52 0.63 0.45 0.01 0.03 11 4 7 21 7 <5 <10 0.24 6 64 <1 25 12 <.2 <5 6 <5 4.39 326 <10 7+00N-8+00W <.2 14 51 36 121 <20 <20 12 1.29 0.23 0.45 <.01 0.06 12 2 7 7 7 <5 <10 0.18 2 8 45 <1 13 8 <.2 <5 <5 <5 3.32 209 <10 10 <.2


Bondar-Clegg & Company Ltd., 130 Pemberton Avenue, North Vancouver, B.C., V7P 2R5, (604) 985-0681

68 54 121 <20 <20 7 2.99 0.81 0.86 0.02 0.05 22

5

6 13

7 5 <10 0.25 11

Lab Report

EPORT: V98-0																		DAT	e re	CEIVE	ED:	23-JL	IN-98	Γ	DATE I	RINTE	D:	2- JUL	98	S PA	AGE	5 0		CT: N ,	UNIC O
					_						•	0 h			т.	De			¢n.	₩	10	Al	Mg	Ca	Na	ĸ	Sr	Y	Ga	11	Nb	Sc	Та	Ti	7r
AMPLE	ELEMENT	-											Fe	Mn									-			PCT		•							
UMBER	UNITS	PPM	PPM I	P PM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PPM	PPM	PPM	PPM	PPM	PPM	PPM I	PPM	PUI	PUT	- PG1	FUI	FG1	rrn	F. F. F. F.	***14	FFF1		FEG F		FUI	e e e
8+00N-1+00E		<.2	21	3	69	<1	33	19	<.2	<5	<5	<5	5.42	362	<10	52	59	158	<20	<20	9	3.20	0.62	0.71	0.02	0.04	20							0.32	
B+00N-1+50E		<.2	41	<2	55	<1	43	23	<.2	<5	حه	<5	4.46	425	<10	70	56	127	<20	<20	6	3.70	0.93	0.94	0.02	0.04	41	6	7	12	8	6 ·	<10	0.27	14
8+00N-2+00E		<.2	37	3	99	<1	30	25	0.3	<5	<5	<5	6.26	2811	<10	109	60	179	<20	<20	5	2.92	0.76	1.34	0.01	0.08	28	6	9	9	10	7 -	<10	0.27	4
B+00N-0+50W		0.2	15	3	69	<1	28	16	<.2	<5	<5	<5	4.89	363	<10	67	55	153	<20	<20	8	2.66	0.64	0.73	0.02	0.05	16	5	8	17	9	5 ·	<10	0.30	. 7
3+00N-1+00W		<.2	29	4	66	<1	44	20	<.2	<5	5	<5	4.38	50 9	<10	104	61	119	<20	<20	13	3.27	0.83	0.78	0.02	0.05	19	15	6	16	7	8	<10	0.22	8
8+00n-1+50w		<.2	48	6	48	<1	34	16	0.2	<5	<5	<5	3.48	1231	<10	100	70	100	<20	<20	14	2.31	0.71	0.95	0.02	0.05	27	14	5	20	6	12	<10	0.15	3
+00N-2+00W		<.2	1.4	-									3.50			111	54	101	<20	<20	14	2.44	0.89	1.27	0.02	0.07	33	12	5	18	6	9	<10	0.22	6
3+00N-2+50W		<.2	÷		10			16					3.72			117	43	62	<20	<20	25	2.16	0.86	0.46	0.01	0.09	20	8	4	29	4	5	<10	0.09	11
8+00N-3+00W		<.2											3.88			165	63	113	<20	<20	11	2.73	1.02	1.00	0.02	0.05	21	17	5	21	6	12	<10	0.17	3
8+00N-3+50W		<.2			-					<5			3.51			126	41	62	<20	<20	22	1.96	0.76	0.41	0.01	0.08	16	5	4	24	4	<5	<10	0.09	1
O'CON D'DON			F _1.4	Ū			••			÷	-		2						14. 2				n an an Air. Taoinn an Airte					1		· .		÷		:	
8+00N-4+00W		<.2	31	6	63	<1	36	15	<.2	<5	<5	<5	2.96	422	<10	167	47	74	<20	<20	16	1.92	0.82	0.95	0.02	0.07	32	12	4	18	5	7	<10	0.15	3
3+00N-4+50W		<.2	2 T.A										4.84			216	50	138	<20	<20	7	1.86	0.43	0.71	0.01	0.04	15	4	6	9	8	<5	<10	0.15	(1 1)
3+00N-4+30W 3+00N-5+00W			11										4.68			137	47	171	<20	<20	8	1.71	0,32	0.54	<.01	0.06	. 11	3	9	6	10	<5	<10	0.20	<1
8+00N-5+50W		<.2	1.11		- 8 C					<5			5.72				56		11111		6	2.01	0.51	0.50	<.01	0.05	9	3	9	10	12	<5	<10	0.35	:4
8+00N-6+00W			24	-	100.00	: 1	1100		1.1	<5	9	<5	6.79	529	<10	157	. 70	216	<20	<20	7	2.76	0.72	0.68	0.01	0.03	13	5	9	19	13	6	<10	0.36	10
5+00N-0+00W		`• £		-					-			-			i de la cale La pración					1.				9 2	- angg Teshnik	5							: 9 2) (***)		1
8+00N-6+50W	1	~ >	17	6	60	: ⊢ <1	22	12	<.2	<5	7	<5	5.44	573	<10	159	55	199	<20	<20	7	2.17	0.59	0.54	0.01	0.04	11	3	9	11	11	<5	<10	0.22	່≺1
8+00N-8+90W 8+00N-7+00W			17	-				1					5.31			165	56	146	<20	<20	8	2.36	0.62	0.57	0.01	0.04	11	4	7	18	9	<5	<10	0.19	2
8+00N-7+00W			15		20.00	5. C	1999		- ee 1, Pr	<5			6.10		1.1	214	57	176	<20	<20	C1 10.1		- 20 - 20 C	19		0.05			- 1 A - A						1
8+00N-8+00W			14		- 12 C - L	2	1.000						3.87		- 1.5 C.A	142	50	101	<20	<20	10	2.27	0.67	0.51	0.01	0.03	14	4	6	22	6	<5	<10	0.20	3
819+00N	r		1 22.2										5.11		17 A. A. A. A.	63	51	144	<20	<20	6	2.67	0.69	0.97	0.02	0.06	31	5	8	14	9	5	<10	0.28	9
BLYTUUN		`. ¢	1977) 1977 - 1977			2															Nisi-						 		,		:				
9+00N-0+50E		~ >	78	<2	75	<1	55	36	<.2	<5	<5	<5	6.18	1325	<10	39	69	158	<20	<20	8	4.44	1.78	2.34	0.08	0.07	93	21	8	15	9	17	<10	0.36	28
		. –	28	_									5.05			71	50	132	<20	<20			- 14 A. B	1	- E. H	0.09	· · · ·			12				0.25	
9+00N-1+00E			14	_	 A. C. C. C. 		122.1						4.15				- E - Q		1.1		11	2.48	0.54	0.50	0.01	0.05	14	3	5	16	7	<5	<10	0.24	7
9+00N-1+50E			31	2									3.66								1.1		1.797.5			0.04			5	10	6	8	<10	0.30	18
9+00N-2+00E			1280										4.95						1.1.4	<20					- A - 1 - 1	0.02			7	14	9	6	<10	0.31	11
9+00N-0+50%	•	۲.2	22	<u> </u>		<u> </u>		è "				· ~									10		200												
0.001 4.00			34	7	47	8 8 24	- 7E	: 	< >	-5	~5	~5	4.50	270	<10	63	52	101	<20	<20	8	3.29	0.71	0.72	0.02	0.03	20	7	5	15	6	6	<10	0.22	12
9+00N-1+00			21		- 1. A A A A A A A A A A A A A A A A A A		1.00107		- 10 D L				4.72						10.0							0.09	-			20		12	<10	0.17	3
19+00N-1+50		-	35										3.97				- 1 o o e				- 5. 5.					0.04			7	20	7	<5	<10	0.16	4
19+00N-2+50			23	4															- 1 - L - L							. 0.08				22				0.17	
39+00N-3+004			27										3.76													0.08			-	24		_	• •	0.11	
89+00N-3+50	1	<.2	23	8	73	ୁ <1	- 33	12	<.2	ି ର	())	୍	2.02	44.5	i <10	; 11 7	40	02	~20	~£U	io	د.00	· v.u	0.00	. 0.01	0.00			-	64	-	-	.10		-

(1) (2 (1) (1 (2) (1 (2) (1 (2) (1) (2 (2) (2

Geochemical

Lab

Report

TTC	Intertek Testing Services
	Bondar Clegg

6 75 <1 46 20 0.3 <5 6 <5 5.25 896 <10

C4+00N-0+50H

<.2 73

CLIENT: EUREKA RESOURCES, INC. PROJECT: NONE GIVEN1 REPORT: V98-00971.0 (COMPLETE) DATE RECEIVED: 23-JUN-98 DATE PRINTED: 2-JUL-98 PAGE 6 OF 17 SAMPLE ELEMENT Ag Cu Pb Zn Mo Ni Co Cd Bi As Sb Fe Mn Te Ba Cr V Sn W La ΑL Mg Са Na K Sr Y Ga Li Nb Sc Ta Ti Zr PPM PPM PPM PPM PPM PPM PCT PCT PCT PCT PCT PPM PPM PPM PPM PPM PPM PPM NUMBER PCT PPM B9+00N-4+00W 7 65 <1 46 18 <.2 <5 11 <5 4.14 399 <10 169 66 111 <20 <20 12 3.02 1.06 0.76 0.02 0.06 17 12 6 22 9 <10 0.18 3 <.2 43 6 3 58 <1 42 16 <.2 <5 7 <5 4.39 436 <10 190 51 105 <20 <20 7 2.37 0.93 0.80 0.01 0.04 16 8 5 21 6 6 <10 0.18 5 B9+00N-4+50W <.2 36 4 52 <1 12 11 <.2 <5 <5 <5 4.13 766 <10 48 161 <20 <20 7 1.74 0.33 0.41 <.01 0.03 3 B9+00N-5+00W <.2 10 139 9 9 8 10 <5 <10 0.27 2 6 62 <1 13 10 <.2 <5 <5 <5 4.82 459 <10 135 48 154 <20 <20 7 1.83 0.34 0.34 < 01 0.03 .9 3 9 12 10 <5 <10 0.27 2 89+00N-5+50W <.2 12 8 <5 6.09 360 <10 63 187 <20 <20 5 2.31 0.61 0.46 < 01 0.03 3 89+00N-6+00W <.2 20 6 55 <1 24 14 <.2 <5 180 9 8 18 12 <5 <10 0.32 7 7 45 <1 15 11 <.2 <5 6 <5 5.88 272 <10 77 55 239 <20 <20 5 2.28 0.43 0.36 <.01 0.02 2 11 18 15 <5 <10 0.37 8 B9+00N-6+50W <.2 14 6 108 58 166 <20 <20 5 2.44 0.64 0.42 <.01 0.02 4 61 <1 21 13 <.2 <5 6 <5 6.29 545 <10 8 4 . 9 20 10 <5 <10 0.33 5 B9+00N-7+00W <.2 17 20 10 <.2 <5 5 <5 3.56 249 <10 126 43 107 <20 <20 7 1.99 0.56 0.47 0.01 0.02 11 3 6 19 7 <5 <10 0.21 3 B9+00N-7+50W <.2 12 6 56 <1 180 54 105 <20 <20 10 2.24 0.55 0.44 0.01 0.02 10 7 62 <1 21 11 < 2 <5 <5 <5 4.28 369 <10 3 6 16 7 <5 <10 0.20 2 B9+00N-8+00W <.2 13 7 55 <1 37 17 0.2 <5 5 <5 4.67 1152 <10 CBLC2+00N 0.4 -58 495 89 136 <20 <20 10 2.37 0.56 0.47 <.01 0.03 16 7 7 11 9 <5 <10.0.15 1 244 69 101 <20 <20 8 2.09 0.55 0.42 <.01 0.04 20 4 C2+00N-0+50W 7 57 <1 24 13 < 2 <5 <5 <5 4 10 1730 <10 5 9 6 <5 <10 0.11 <1 <.2 37 84 102 <20 <20 16 2.69 1.07 0.65 <.01 0.06 26 22 C2+00N-1+00W 0.3 115 8 88 <1 58 19 0.2 <5 7 <5 4.09 1486 <10 488 6 17 7 9 <10 0.12 2 9 105 <1 20 13 0.2 <5 <5 <5 4.50 1391 <10 60 144 <20 <20 9 1.37 0.31 0.52 <.01 0.06 21 3 7 5 10 <5 <10 0.17 <1 787 C2+00N-1+50W 0.5 32 50 113 <20 <20 11 1.79 0.57 0.25 <.01 0.04 13 C2+00N-2+00M 0.7 50 10 73 <1 28 12 0.4 <5 6 <5 5.66 1188 <10 488 4 * 5 7 7 <5 <10 0.13 1 <.2 28 <2 66 <1 13 12 0.2 <5 <5 <5 6.98 453 <10 987 39 178 <20 <20 3 4.16 0.58 1.15 0.06 0.03 266 6 6 7 11 6 <10 0.31 6 C2+00N-2+50W <,2 30 3 151 <1 37 23 < 2 <5 <5 <5 6.63 2178 <10 624 72 173 <20 <20 5 2.60 0.79 0.93 0.01 0.04 23 C2+00N-3+00W 5 8 10 10 6 <10 0.29 3 3 64 <1 32 12 0.2 <5 <5 <5 4.91 423 <10 178 63 114 <20 <20 6 2.55 0.66 0.53 0.01 0.03 : 14 5 8 <5 <10 0.18 C2+00N-3+50W <.2 32 6 10 - 4 68 109 <20 <20 5 3.01 1.06 0.89 0.01 0.04 26 C2+00N-4+00W < 2 35 <2 61 <1 44 15 < 2 <5 <5 <5 4 59 571 <10 183 6 6 13 7 5 <10 0.18 3 6 63 <1 51 18 <.2 <5 <5 <5 4.91 582 <10 208 74 123 <20 <20 11 2.97 1.07 0.74 0.01 0.04 20 11 7 16 8 6 <10 0.16 2 C2+00N-4+50W <.2 52 C2+00N-5+00W <.2 32 2 47 <1 46 21 <.2 <5 <5 <5 3.62 744 <10 203 65 106 <20 <20 8 2.61 1.22 1.06 0.02 0.04 24 8 5 11 6 7 <10 0.23 9 291 98 128 <20 <20 12 3.47 1.24 0.83 0.01 0.07 20 6 98 <1 55 22 0.2 <5 <5 <5 5.29 1199 <10 8 15 C2+00N-5+50W <.2 73 16 8 9 <10 0.12 1 C2+00N-6+00W <.2 38 6 53 <1 35 16 0.2 <5 <5 <5 3.69 505 <10 214 66 103 <20 <20 9 2.55 0.74 0.66 0.01 0.04 15 7 .6 11 7 <5 <10 0.16 3 3 61 <1 47 17 < 2 <5 <5 <5 3.43 580 <10 303 70 97 <20 <20 9 2.73 1.12 1.02 0.02 0.04 21 10 C2+00N-6+50M <.2 36 6 11 6 8 < 10 0.18 3 4 69 <1 37 13 < 2 <5 <5 <5 3.94 470 <10 279 66 101 <20 <20 9 2.50 0.81 0.53 0.01 0.03 5 15 5 14 6 <5 <10 0.17 2 C2+00N-7+00W <.2 28 7 63 <1 46 17 0.2 <5 <5 3.19 846 <10 389 70 92 <20 <20 9 2.59 0.89 0.71 0.01 0.04 18 12 5 11 C2+00N-7+50W 6 7 <10 0.13 2 <.2 - 41 4 57 <1 34 13 <.2 <5 <5 <5 4.29 415 <10 181 66 112 <20 <20 9 2.67 0.74 0.59 0.01 0.04 13 11 C2+00N-8+00W 0.3 47 6 12 - 7 6 <10 0.20 4 1 43 17 0.2 <5 <5 <5 3.53 1044 <10 317 77 102 <20 <20 11 2.96 0.88 0.69 0.01 0.05 17 14 12 6 7 <10 0.10 1 C2+00N-8+50W 0.2 42 4 81 6 6 68 <1 47 21 <.2 <5 7 <5 4.42 1173 <10 217 75 119 <20 <20 10 2.78 1.05 0.86 0.02 0.05 18 11 C2+00N-9+00W <.2 39 6 14 7 7 <10 0.20 3 5 <5 4.24 423 <10 291 69 102 <20 <20 6 3.32 1.11 0.71 0.02 0.02 26 2 66 <1 53 16 <.2 <5 8 5 14 6 <10 0.20 5 CBL4+00N <.2 40 6

Bondar-Clegg & Company Ltd., 130 Pemberton Avenue, North Vancouver, B.C., V7P 2R5, (604) 985-0681

324 92 109 <20 <20 16 3.77 0.92 0.41 0.01 0.04 15 24

6 16 7

8 < 10 0.15 3

Geochemi	C
Lab	
Report	

PROJECT: NONE GIVEN1

CLIENT: EUREK REPORT: V98-0																		DAT	'E RE	ECEIV	ÆD:	23-JU	in-98	D	ATE F	RINT	ED:	2- JL	JL-98	P	Age	7 OF	17		
SAMPLE	ELEMENT	Aa	Cu	Pb	Zn	Мо	Ni	Co	Cd	Bi	As	Sb	Fe	Mn	Те					W		AL	Mg		Na				Ga					Ti i	
NUMBER	UNITS	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PPM	PPM	PPM (PPM	PPM	PPM	PPM	PPM	PCT	PCT	PCT	PCT	PCT	PPM	PPM	PPM	PPM	PPM	PPM F	PPM P	CT P	PM
																													_			-		.	
C4+00N-1+00W		<.2	35	4	77	<1	48	15	0.2	<5	<5	<5	5.15	644	<10	522	87	124	<20	<20				0.71					. 8				<10 0.		1
C4+00N-1+50W		<.2	22	4	61	<1	23	10	<.2	<5	<5	<5	3,26	374	<10	406	58	124	<20	<20				0.85									<10 0.		1
C4+00N-2+00W		0.3	23										4.62			461								0.95						10			<10 0.		
C4+00N-2+50W		0.4	114	6	78	<1	56	24	0.3	<5	<5	<5	4.59	1797	<10	532	98	108	<20	<20				1.15						14	7	-	<10 0.		-3
C4+00N-3+00W		0.7	40	4	55	<1	32	13	0.2	<5	<5	<5	3.81	432	<10	289	65	112	<20	<20	9	2.61	0.66	0.69	0.01	0.04	17	8		13	7	5	<10 0.	. 18	3
																								~ //	0.01	0.05	12	E	· 4	. 11		~5	-10.0	18	2
C4+00N-3+50W		0.3	26										3.99																				<10 0. <10 0.		1
C4+00N-4+00W		<.2	29										4.53							<20				0.62			10.0		A - A		1.1		<10 0.		3
C4+00N-4+50W	l	<.2	50	9	89	<1	54	17	0.2	<5	6	<5	3.84	863	s <10	740	71	79	<20	<20	11	3,04	1.00	0.52	0.01	ີວຸດ	12	40	- 14 . 15 2.	10	2		19414		3
C4+00N-5+00W		0.7	55						<.2		-		4.06			766	96	114	<20	<20	12	3,55	0.58	0.40	0.01	0.00	13	19	D	21 ہ ::	- f.	. y .5	<10_0.	17	ana sa ƙasar 👘
C4+00N-5+50W	r	0.2	34	4	50	<1	21	8	\$ <.2	<5	<5	<5	3.80	616	5 <10	225	59	100	<20	<20	10	2.32	0.38	0.44	<.01	0.04	⊢ ::1 3	0	2	0		53	<10 0.	• 13	٤.
																						· · · · ·	0.07	0.44	0.02	0.05	ندي 15 :		. A	15	7	5	<10 0	21	6
C4+00N-6+00W	i i	<.2	- 31										4.18			198	65	107	<20) <20	. y	2.11	0.02	0.04	0,02		7 10	ں 10	ں ح	14	Å	8	<10 0	16	::2
C4+00N-6+50%	ł	<.2	39												5 <10																		<10 0		4
C4+00N-7+00	1	0.3	49												2 <10	403								0.65									<10 0		4
C4+00N-7+50%	1	<.2	35	4	64	<1	37	<u>7</u> 17	/ <.2	<5	<5	<5	3.1	640	5 <10	262	58	. 99	<20) <20	15	2.45	0.91	1.13	0.02		2 21	ा) टि	7	ି 11 11	7		<10 0		15,00
C4+00N-8+00k	4	<.2	19	4	59	}∶ <1	21	l 1'	<.2	- <5	<5	<5	3.8	710	0 <10	180	57	124	<20) <20	15	2.25	0,50	0.39	0.0	0.0	2 2 	6 6 72		2 1 1		5		• - 1	
				÷				•	- : . - : .	:									-		47	ີ ຳ 43	0.73	ິ ເດີ 7 3	0.03	i inni	ेः इ. १९	14	. <u> </u>	12	6	7	<10 0	.17	2
C4+00N-8+504	1	<.2	36												0 <10									0.81									<10 0		7
C4+00N-9+00	1	<.2	30												3 <10									0.97									<10 0		
C6+00N-0+50R	E	<.2	36	2	64	i; <1	1 43	<u>3</u> . 1'	7 < 2	_ <5	<5	<	5 5.0	5 49	6 <10									1.21								-	<10 0		1.1
C6+00N-1+008	Ē	<.2	2 61	2	54	<1	5	1 2	0 <.2	ु <5	<5	i_ <5	5 3.8	5 55	1 <10	2																	<10 0		3
C6+00N-1+50	E	<.2	? 65	7	87	7 1	48	B 2	3 0.2	¦ <5	6	> <	5 5.1	3 132	8 <10	412	109	1.1.18	s <21	J <2U	בו י י	ູວ, 12 :		0.02	0.0	. 0.0	. 20	9 14					10.0		
																· · · · · · · · ·	100				1 13	ິ ເວັດ7	7 1 17	1 01	0.0	200	6 74	15	5 8	15	10	9	<10 0	.38	6.
C6+00N-2+00	E	<,2	2 49												8 <10									5 1.34									<10 0		2
C6+00N-2+50	E	<.2	2 6												5 <10									5 0.60						21			<10 0		
C6+00N-3+00	E	0.2	2 2	ş: 2	6	1 <	1 30	0 1	2 0.2	<	i j	?: ₹	5 5.2	0 44	1 <10									1.11						12		-	<10 0		6
C6+00N-3+50	E	0.3	5 47	, L	5	1 <	1 4	0 3	1 <.2	! <5	5	2 <	5 5.5	4 104	9 <10															. 16			<10 0		5
C6+00N-4+00	E	<,2	2 7	2 6	5 6	7 <	15	4 2	3 <.2	}_<5	; ;	2 <	5 3.8	2 82	3 <10	491	.59	8	(<2(0 <20	J 11	2.8	5 1.0	0.60	0.0	1 0.0	5 ja	, (J 4	· n		0			-
				sa 6		н. С.С.	ii Alba	194 600		-	1. N 1963	j.	- 1940 - 1940	Å	ii. Liike	: •		ч С 1 ана,		i. A internet		1 0		5 4 4/	0.0		5 39	2 1·	1 7	· 1/		7	<10 0	1 25	5
CBL6+00N		0.2	2 58												3 <10																		<10 0		1
C6+00N-0+50	W	0.3	2 40												4 <10	÷								7 0.80									<10 0		
C6+00N-1+00		<.	2 4												0 <10									9 0.50									<10 0		<u>د</u> 1
C6+00N-1+50		<.	26										5 3.6		6 <10	••								5 0.73									<10 0		7
C6+00N-2+00		<.;	2 3	0	35	2 <	1 4	6 1	9 < 2	2 <	5 <	5 <	53.6	1 78	37 <10	312	59	2 10	2 <2	0<20	0 10	2.5	5 1.1	9 1.10	0.0	2 0.0	5 27	۲ ۱	1 5	0 16	: 0	0	10 0		'

ITS Intertek Testing Services Bondar Clegg

Geochemical Lab Report

EPORI: V98-	00971.0 (CO	MPLE	12)														UNI		CE I V	ευ,	23-JL	JN * 70			PRINTE		2 001		- FA		8 OF 1		
MPLE MBER	ELEMENT Ag UNITS PPM											Fe PCT	Mn PPM	Te PPM		Cr PPM 1		Sn PPM		La PPM	AL PCT	Mg PCT	Ca PCT								Sc Ta PPM PPM		Zr PPM
												: 00	45/	~10	700	01	131	~20	~20	11	2 92	1.04	0.05	0.01	0.06	25	9	7	15	8	6 <10	. n. 10	7
5+00N-2+50W	-	50							<5 -5																0.00					6			- E -
+00N-3+00W		52							<5 -5																0.05	· · ·			14	6	7 <10		
+00N-3+50W		43							<5 -				1084												0.05				20		13 <10		
+00N-4+00W	_	92						0.3	-	-	-				- · ·										0.04	1.1				7			· · · ·
+00N-4+50W	<.2	36	5	45	<	07	18	<.2	<5	< 5	<2 (+.22	210	< 10	100	ΥI	116	\ 20	N2U	łŪ	2.05	0.01	0.72	0.02	0.04		10			. .	0 10	0.22	
66. E. 66.			. ,	-		72	40	• •	، د	~5	~5 -	2 00	775	-10	222	70	100	~20	~20	12	2 69	0.7/	े 10 45	n n2	0.05	15	10		13	7	6 <10	10 10	्र स्टब्स् र
+00N-5+00W		36							<5 -5				811			- 14						1. 19 9		1114	0.05	1 E.				8	1 2 216		
+00N-5+50W		48						0.2														a tayta		- N. 1977	0.04		5	7		1.52	<5 <10		11
+00N-6+00W		22							ব্য ব্য					1.1	259									- 19 C - E	0.04	136 A.	6	8		- 47	<5 <10		1.5
+00N-6+50W	_	19				20							880									- Marcher			0.07	st di lu		- 9.5	14	7	1 7 1 8		- 194 T
+00N-7+00W		44	6	. 07	< I	42	10	<.2	< 5	'	10	4,21	000	10	212	OI.	110	120	140	14	2.71	0.70	0.90	0.02	0.01	. с т.	. U I				,		
100H 7-EO				47	-1	77	14	<.2	~5	6	~5	z oz	515	z10	102	54	00	220	<20	. 8	2 56	0.86	0.85	0.02	0.05	14	7	5	13	6	5 <10	1 0.22	6
+00N-7+50h	_	28	-						<5													문문		- 11 - 12 - 12 - 12 - 12 - 12 - 12 - 12	0.05	S 4 (.) 4	÷ (i skij	÷ .	7			- 문.
+00N-8+00%		37				37		<.2					707	10 A						1.1.1				- 13 - 53	0.05	1.123		in fre	· 7	7			
+00N-8+50%	-	30						<.2	-		<5		752		198	2.2				1 E.		- 24 M.S.	· ·		0.04	- 20 C - 2				6	7 <10		112.1
D LABEL		41			_ <1				`<5			1				- 19 A.				102.0				- isl hind	0.05	141.1		1.35		7	·		
3L8+00N	<.د	: 49	9 4	00	5	51	_ 25	N , 2	. ``	· f .	`	4.00	211	-10	2.30		120	-20			3.07	1.000		0.05	0.05				, " .			, VILO	
			,	00	<1	/.0	20	<.2	~5	Ö	~5	/ no	818	210	32/.	8/	110	<20	<20	11	3 28	1 23	1 23	n n2	0.06	32	18	7	10	7	11 <10	. n 24	5
3+00N-0+50E	-	4							<5													1.20	÷.	- 영국 문화	0.04	19. H		Ett.	19	1.55			
3+00N-1+00E	-	62				43							879					· · ·		1.1		a si shi ji s		- 61 D A		111			23	۱ ۱	1		
\$+00N-1+50E		52						0.2				. N.		1.1.1	329							توانيد ن		- en 11 (r	0.06	1.0		6		9			
3+00N-2+00E		2 59							<5 -5							1.5						- 이상 문		- Xi al-	0.05	1.1.2		- T		9			
3+00N-2+50E	. <	2 61	13	94	<	23	. 24	0.2	<5	22	0	J. 7J	נזגו	NIV	440	0	1.55	~20	~20		2.77	1.67	0.70	0.02	0.05		10		20			0.20	
				. : . : : : : :		/E	. 25		<5	47.	-5	/ 0Z	2027	~10	37/	86	11/	220	~20	20	2 06	1 01	0 68	0.01	0.06	17	23	4	16	7	11 <10) n 17	, z
3+00N-3+00E		2 7	·	111		1.1.1		0.4				1 A. A. M.	1032			12.2		1111		1.111		- 1. A S		- g + 4 b	0.03						<5 <10		
3+00N-3+50E		5 41		- 257					< √5		-	19 G.								11		- 14 g		1 a 1	0.05			1	16				
3+00N-4+00E		2 126		55											173							18 (B.	-		0.06			4		6	7 <10		
3+00N-4+50E		2 3						' <.2					606 500	1.1.1						1.1.2	s	- 80 H - 20			0.04					9			
+00N-0+50V	<	2 47	: S	6/	<1	39	10	<.2	<5	7	<2	5.00	229	\$10	212	00	142	~20	×20		9.10	1.10	:	0.02	0.04	"	,	'	24	,	7 10	0.20	
				20		- 	15	د ز	~5	4	~5	5 00	655	210	233	71	120	<20	<20	11	2 73	0.95	0.84	กก่	0.06	16	12	7	18	8	7 <10	0.25	र
3+00N-1+00V		4		183			÷	<.2	1	1.24												- NG 1, 10,			0.04			6		7			
3+00N-1+50V	-	2 44						<.2		· * ·		11. E	458	1.1	483	- C. T. L.	- ¹	· .							0.04				16				
3+00N-2+004		7 139	÷.,	- 000			1 a 👘	0.2				art die i	. 996 17.22	1.04		1, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,		1.1						· ·	0.07			5		6	7 <10		
8+00N-2+50N		5 68	1.0	- 675		1112-0		0.3		2.2X.			1422			77.														_			-
8+00N- 3 +00V	n <.2	2 48	3 4	· 73	i <1	51	. 19	<.2	<5	<>	<>	3.81	740	<10	050	0Y	107	<20	<20	11	2.15	1.15	0.04	0.02	0.04	21	11	ο	14	7	7 <10	. 0.22	. 🤉

	ΓS						с Т .egg		sti	ng	S	er	vi	ce	S																	Geocher Lab Report	
CLIENT: EURE REPORT: V98-																DATE	RECEI	VED: 23	- JUN-	98	D	ATE F	PRINTE	ED:	2-jui	-98	P#	\GE	PR 9 OF		: NO	NE GIVEN1	
SAMPLE NUMBER	ELEMENT Ag UNITS PPM																Sn ₩ ≥M PPM	La PPM F		Mg CT	Ca PCT									Ta PMI P			
C8+00N-3+50W										7 <5 4				669	88 1	07 <2	20 <20	173.	07 0.	86 0).56	0.01	0.08	- 17	16	6	16	6	9 <	10 0.	.12	2	
C8+00N-4+00W	0.5	90	8	125	1	61	17 0.	2 <	5 <5	5 <5 3	.32	677 <	<10	997	92	88 <2	20 <20	193.	43 0.	80 0	0.81	0.02	0.08	27	28	6	16	6	12 <	10 0.	09	2	
C8+00N-4+50W										5 <5 4				418	58 1	31 <2	20 <20	12 2.	15 0.	60 0),72	0.01	0.04	16	9	7	10	8	<5 <	10 0.	.22	3	
C8+00N-5+00W	0.4	59	7	- 72	<1	36	13 <.	2 <	5 <	5 <54	.90	486 <	<10	453	68 1	32 <2	20 <20	11 2.	37 0.	66 Q	0.70	0.01	0.04	19 .	8	7	14	8	6 <	10 0.	23	4 :	
C8+00N-5+50W	0.2	47	7	69	<1	36	14 <	2 <	5 <	5 <5 2	.50	500 <	<10	396	69 1	01 <2	20 <20	12 2.	70 0.	64 0	0.85	0.02	0.05	22	17	6	12	6	7 <	10 0.	.13	2	
																						t stig				i.		:					
C8+00N-6+00W	<.2	41								5 <5 4				462	69 1	30 <2	20 <20	12 2.	84 0.	99.0	0.85	0.02	0.05	16	14	6	14	8	9 <	10 0.	.27	7	
C8+00N-6+50W	<.2	49								5 <5 4				354	89 1	23 <2	20 <20	13 3.	59 1.	04 0	0.87	0.02	0.05	18	21	6	21	7	15 <	10.0.	.24	6	
C8+00N-7+00W	<.2	31								5 <5 3				182	48	95 <ą	20 <20	10 2.	12 0,	90 1	.06	0.02	0.03	23	12	4	10	6	8 <	10 0.	25	17	
C8+00N-7+50W	<.2	32	4	41	<1	24	12 <	2 4	5 <	5 <5 3	, 19	540			1.1	· · ·	15 M.	11.3.		1.12		8. S. M. S. M.				- 2001 -					· · · ·		
C8+00N-8+00W	<.2	17	8	39	<1	17	10 <,	2 <	5 <	5 <5 3	.96	336 <	<10	141	50 1	46 <	20 <20	91.	78 0.	41 0	.68	0.01	0.04	13	4	8	5	9	<5 <	10 0.	26	3	
				£1.		, stat s									n enti			a andar											i i				
CBL10+00N	<.2	69	6	96	<1	36	22 <.	2.	5 5	5 <5 6	.47	730 •	<10	359	76 1	69 <2	20: <20	7 3.	54 1.	30 0).59	0.01	0.03	14	7	9.	27	10	7 <	10 0.	.36	5	
C10+00N-0+50	E <.2	25	6	34	<1	11	8 <,	2 <u></u> •	5 <	5 <5 2	.36	267 <	<10	550	49 1	36 <2	20 <20	2 1.	59 0.	31,1	-44	0.01	0.03	221	- 4 :	6	<1	9	<5 <	10 0.	.23	2	
C10+00N-1+00	E 0.2	66	<2	91	<1	30	30 0.	3 -	5 <	5 <5 8	.33	1660 <	<10	126	70 2	32 <2	20 <20	32.	76 1.	70 0	0.68	<.01	0.03	12	6	8	14	14	6 <	10 0.	27	2	
C10+00N-1+50	E <.2	57	<2	63	. <1	61	38 <	2 <	5 <	5 <5 6	.93	1361 <	<10	128	69 1	91 <2	20 <20	44.	39 2.	53 1	.41	0.01	0.02	53	15	9	21	11	15 <	10 0.	45	15	
C10+00N-2+00	E 0.3	106	3	53	<1	33	20 0	2 <	5 (5 <5 6	.34	1313 -	<10	203	111 1	97 <	20 <20	15 3.	46 0.	68 1	.00	0.01	0.03	37	51	8	9	12	19 <	10 0.	33 -	8	
									: i.i .				· · · ·			13 - 13										46		÷.,		н. С			
C10+00N-2+50	e <.2	40	6	52	<1	35	16 <	2 -	5 8	3 <5 4	. 14	735 <	<10	218	58 1	18 <	20 <20	93.	05 0.	77 0	0.71	0.02	0.03	9	10	6	13	7	7 <	10 0.	26	8	
C10+00N-3+00	E 0.3	33	11	58	<1	17	9 <	2	5 9	> <5 3	.88	1166 <	<10	278	39.1	10 <	20 <20	11 1.	82 0.	40 0	.34	<.01	0.07	7	3	6	7	8	<5 <	10 0.	.15	1	
C10+00N-3+50	E <.2	43	6	50	<1	45	20 <	2	5 8	3 <5 3	.53	818 <	<10	163	43	96 <2	20 <20	10 2.	35 0.	97 0	.94	0.02	0.04	16	10	4	10	6	6 <	10 0.	.22	10	
C10+00N-4+00	E <.2	34	8	65	<1	33	17 <	2	5 8	3 < 5 4	.00	989	<10	199	47 1	05 <2	20 <20	12 2.	64 0.	68 0).51	0.01	0.04	11	9	5	14	7	5 <	10 0.	19	4	
C10+00N-4+50	E <.2	19	6	55	<1	22	11 <	2	5 <	5 <54	.31	394 ×	<10	129	49 1	19 <	20 <20	92.	61 0.	51 0).54	0.01	0.03	10	5	6	12	8	<5 <	10 0.	24	5	
C10+00N-0+50	w <.2	36	4	74	1	24	19 <	2	5.5	5 <5 5	.84	1338 🔾	<10	281	75 1	56 <2	20 <20	12 2.	13 0.	64 1	.10	0.01	0.04	24	19	7	10	10	8 <	10 0.	27	2	
C10+00N-1+00	W <.2	52	<2	69	<1	50	41 <	2	5 <	5 <5 6	.68	2897 <	<10 >2	000	125 2	15 <	20 <20	5 3.	79 2.	29:0	.86	0.03	0.06	42	11	9	21	13	17 ×	10 0.	29	3	
C10+00N-2+00	w <.2	46	7	83	<1	31	15 <	2	5 <	s <5 4	.37	1089 ×	<10	422	76 1	25 <2	20 <20	10 2.	35 0.	51 0	.54	<.01	0.04	12	5	7	12	8	<5 <	10 0.	17	2	
C10+00N-2+50	W 0.3	19	6	94	<1	17	11 0	2	5 <	5 <5 4	.46	839	<10	267	48 1	33 <	20 <20	61	84 0.	35 0	.43	<.01	0.02	10	5	6	12	8	<5 <	10 0.	22	2	
C10+00N-3+00	W 0.2	13	7	84	<1	14	10 0.	2	5 <	5 <53	.77	395 ×	<10	244	40 1	27 <7	20 <20	81.	68 0.	35 0).45	<.01	0.02	10	3	7	8	8	<5 <	10 0.	25	3	
C10+00N-3+50	₩ <.2	25	4	34	<1	28	16 <	2 .	5 <	5 <5 2	.88	579 <	10	172	46	91 <	20 <20	9 2.	14 0.	70 0	.74	0.01	0.02	9	12	4	8	6	7 <	10 0.	21	5	
C10+00N-4+00				10000000		1. S. S. S. S.		C.2. 1.			1.1.1						5.0	7 2.	1														
C10+00N-5+00		1. A M. A.		1. State 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975				· . · ·		în					1 A A			8 2.															
210-00M 2100			_ `	0.20		1		5			1752		12					. <u>2</u> -							-	,							

Bondar-Clegg & Company Ltd., 130 Pemberton Avenue, North Vancouver, B.C., V7P 2R5, (604) 985-0681

<.2 38 6 48 <1 42 19 <.2 <5 6 <5 4.06 596 <10 321 63 116 <20 <20 9 3.11 1.04 0.76 0.02 0.03 11 6 6 15 7 6 <10 0.26 9</p>

<.2 41 2 44 <1 35 17 <.2 <5 5 <5 4.14 510 <10 261 61 121 <20 <20 7 3.07 0.94 0.94 0.02 0.03 13 10 6 16 7 7 <10 0.30 8</p>

C12+00N-0+50E

C12+00N-1+00E

Intertek Testing Services Bondar Clegg

Geochemical Lab Report

EPORT: V98-C	00971.0	COM	PLET	E)														DAT	e re	CEIV	/ED:	23-J	UN-98		DATE	PRINTE	D:	2-JU	JL-98	B P	AGE	10 0)F 1	7		
ample Umber	ELEMENT UNITS	•															Сг РРМ					Al PCT	-	Ca PCT		K PCT				Li PPM					Zr PPM	
2+00N-1+50E	E	0.3	22	3	50	<1	30	14	· <.2	<5	<5	<5	4.45	406	<10	236	62	122	<20	<20	7	2.81	0.79	0.71	0.02	0.02	12	5	6	18	8	<5	<10	0.28	5.5	
12+00N-2+00E	1	<.2	19	4	78	<1	30	16	5 <.2	<5	5	<5	3.98	425	<10	164	59	99	<20	<20	8	3.11	0.69	0.59	0.01	0.02	11	5	5	15	6	<5	<10	0.22	2 6)
2+00N-2+50E	Ξ	<.2	34	4	45	<1	32	16	5 <.2	<5	<5	<5	3.69	789	<10	243	74	123	<20	<20	11	2.54	0.85	0.83	0.01	0.02	15	13	7	17	7	. 8	<10	0.26	5	
12+00N-3+00E	•	<.2	22	2	84	<1	26	13	5 <.2	<5	<5	<5	3.91	536	<10	175	52	112	<20	<20	6	2.50	0.71	0.81	0.01	0.03	13	6	÷ 5	14	7	<5	<10	0.23	s <u>5</u>	÷.,
2+00 n-3+50 e	-	<.2	23	2	45	<1	30	15	s <.2	<5	<5	<5	3.47	392	<10	127	49	103	<20	<20	7	2.83	0.68	0.83	0.02	0.02	10	7	5	11	6	5	<10	0.24	10	
2+00N-4+008	Ξ	<.2	13	6	72	<1	17	10) <,2	<5	<5	<5	5.27	320	<10	186	56	145	<20	<20	7	2.20	0.45	0.44	<.01	0.03	9	3	7	16	10	<5	<10	0.27	, 3	
2+00N-0+50V	1	<.2	18	3	48	<1	31	14	<.2	<5	<5	<5	3.13	418	<10	154	40	78	<20	<20	5	2.26	0.69	0.83	0.01	0.03	11	6	3	10	5	<5	<10	0.19	8	, . ,
12+00N-1+00V	4	0.3	21	3	64	<1	31	16	5 <.2	<5	5	<5	4.51	620	<10	195	47	118	<20	<20	7	2.58	0.75	0.79	0.01	0.03	11	7	5	13	7	<5	<10	0.23	; 5	
12+00N-1+50V	4	0.4	20	4	68	<1	29	16	5 0.2	<5	6	<5	4.01	528	<10	115	47	94	<20	<20	9	2.48	0.76	0.75	0.01	0.03	10	8	5	11	6	5	<10	0.22	7	ŝ.
12+00N-2+004	4	0.8	16	6	61	<1	20	11	0.2	<5	<5	<5	5.76	412	<10	178	92	147	<20	<20	7	2.14	0.45	0.53	<.01	0.03	12	3	7	10	9	<5	<10	0.23	i 2	
2+00N-2+50V	4	0.3	15	4	56	<1	20	11	<.2	<5	<5	<5	4.89	486	<10	146	50	138	<20	<20	8	2.29	0.49	0.52	0.01	0.03	9	4	7	11	9	<5	<10	0.25	2	
2+00N-3+006	4	0.3	15	6	79	<1	17	13	5 0.2	<5	<5	<5	5.73	1402	<10	171	54	152	<20	<20	8	2.03	0.42	0.50	0.01	0.03	10	3	7	10	9	<5	<10	0.15	i - <1	
2+00N-3+50V	4	0.2	25	4	62	<1	31	21	<,2	<5	6	<5	4.32	1119	<10	224	49	111	<20	<20	6	2.88	0.69	0.83	0.01	0.04	12	8	6	9 :	6	5	<10	0.19) :::3	
2+00N-4+004	1	<.2	32	4	50	<1	34	14	< 2	<5	5	<5	2.95	564	<10	213	37	78	<20	<20	9	1.71	0.82	0.82	0.01	0.04	17	11	4	8	5	7	<10	0.19	10	
3L0+00		<.2	23	3	56	<1	- 34	15	5 <.2	<5	<5	<5	3.17	471	<10	185	38	86	<20	<20	.6	1.98	0.76	0.83	0.01	0.03	10	6	4	10	5	<5	<10	0.20) ¹ 7	
											111		$[N_{i}]$										1108		n dia Tanàn						÷			÷.		
0+00-0+50E		<.2	21	4	44	<1	36	14	< 2	<5	<5	<5	2.87	320	<10	149	45	76	<20	<20	8	2.08	0.70	0.58	0.01	0.02	10	6	4	8	5	<5	<10	0.20	8] 8	
0+00-1+00E		<.2	25	4	50	<1	44	17	7 <.2	<5	<5	<5	2.85	316	<10	123	44	81	<20	<20	8	2.33	0.75	0.65	0.01	0.02	9	5	3	8	5	<5	<10	0.21	13	
0+00-1+50E		<.2	22	3	41	<1	37	15	s <.2	<5	<5	<5	2.83	402	<10	141	40	79	<20	<20	6	1.89	0.84	0.79	0.01	0.03	11	7	3	7	5	<5	<10	0.21	11	
)+00-2+00E		0.2	18	4	66	<1	25	13	5 < 2	<5	<5	<5	5.40	557	<10	214	54	132	<20	<20	8	2.62	0.60	0.49	0.01	0.03	8	4	7	17	8	<5	<10	0.21	3	
0+00-2+50E		<.2	15	4	56	<1	23	11	<.2	<5	<5	<5	3.39	316	<10	142	44	89	<20	<20	9	2.41	0.44	0,40	<.01	0.02	7	4	6	12	6	<5	<10	0.18	5	
)+00- 3+00 E		<.2	17	6	72	<1	30	11	< 2	<5	<5	<5	3.65	246	<10	135	47	80	<20	<20	10	2.79	0.45	0.28	< 01	0.03	6	4	5	17	6	<5	<10	0.14	5	
)+00-0+50W		<.2	22	3	45	<1	37	15	i <.2	<5	<5	<5	2.92	505	<10	178	36	81	<20	<20	- 5	1.95	0.80	0.82	0.01	0.03	9	6	. 4	8	5	<5	<10	0.20	· 7	
)+00-1+00W		<.2	14	4	69	<1	19	13	< 2	<5	<5	<5	5.73	386	<10	254	49	179	<20	<20	6	2.41	0.53	0.58	0.01	0.03	11	4	9	20	11	<5	<10	0.32	5	
3L1+00N		<.2	26	4	45	<1	36	14	< 2	<5	<5	ব	2.89	468	<10	123	45	74	<20	<20	10	1.78	0.73	0.64	0.01	0.03	13	6	3	9	5	<5	<10	0.19	6	
+00N-0+50E		<.2	25	3	44	<1	40	14	<.2	<5	<5	<5	2.77	433	<10	150	39	72	<20	<20	8	1.80	0.74	0.76	0.01	0.03	12	6	4	8	5	<5	<10	0.20	6	
+00N-1+00E		<.2	15	4	77	<1	44	15	i <.2	<5	5	<5	3.25	[°] 292	<10	117	49	79	<20	<20	9	2.33	0.64	0.58	0.01	0.03	9	4	4	14	5	<5	<10	0.20	7	
1+00N-1+50E		<.2	13	6	57	<1	17	10) <.2	<5	<5	<5	4.36	404	<10	199	43	135	<20	<20	7.	1.96	0.42	0.68	0.01	0.03	10	4	7	9	8	<5	<10	0.22	2	
+00N-2+00E		<.2	17	4	77	<1	31	i 15	i < 2	<5	<5	<5	3.72	468	<10	118	49	84	<20	<20	9	3.08	0.59	0.57	0.01	0.03	8	5	4	17	6	<5	<10	0.19	6	
1+00N-2+50E		<.2	14	4	101	<1	32	- 14	. <.2	<5	5	<5	4.24	354	<10	119	51	81	<20	<20	10	2,88	0.56	0.30	<.01	0.03	7	4	5	20	6	<5	<10	0.17	9	
1+00N-3+00E		<.2	18	7	95	<1	47	18	3 0.2	<5	6	<5	3.79	293	<10	93	60	66	<20	<20	14	2.88	0.66	0.25	< .01	0.04	7	4	4	23	5	<5	<10	0.13	6	

TTC	Intertek Testing Services
	Bondar Clegg

Lab Report

PROJECT: NONE GIVEN1

CLIENT: EUREN REPORT: V98-0		•																DA	te r	ECEIN	/ED:	23- Jl	JN-98	{	DATE	PRINT	ED:	2-JL	JL-98	P	AGE		PROJEC DF 17	:T: N	IONE C
SAMPLE	ELEMENT												Fe		Те					W			Mg	Ca			Sr							Ti	
NUMBER	UNITS	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	₽PM	PCT	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PCT	PCT	PCT	РСТ	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PPM
D1+00N-0+50W		<.2	19	4	56	<1	30	14	<.2	<5	5	<5	4.11	621	<10	192	47	109	<20	<20	7	2.38	0.67	0.69	0.01	0.03	10	6	6	14	6	<5	<10 0).22	4
D1+00N-1+00W		<.2	15	6	124	<1	22	13	0.2	<5	<5	<5	4.59	300	<10	150	45	100	<20	<20	10	2.02	0.48	0.49	<.01	0.05	16	3	6	21	7	<5	<10 0).19	4
D1+00N-2+00W		<.2	24	4	55	<1	44	19	<,2	<5	6	<5	4,36	253	<10	142	55	92	<20	<20	9	3.43	0.56	0.43	0.01	0.04	9	7	5	15	. 6	5	<10 0).21	14
D1+00N-2+50W	ł	<.2	14	6	64	<1	18	10	<.2	<5	<5	<5	4.08	342	<10	124	45	91	<20	<20	9	2.60	0.37	0.39	<.01	0.02	. 8	4	5	16	6	<5	<10 0).14	3
D1+00N-3+00W	ł	<.2	7	8	72	<1	11	8	<.2	<5	<5	<5	3.18	284	<10	98	35	87	<20	<20	13	1.94	0.28	0.36	<.01	0.04	7	3	7	14	6	<5	<10 0).15	3.
D1+00N-3+50W	l .	<.2	13	8	45	<1	15	11	<.2	<5	<5	<5	3,94	472	<10	207	40	119	<20	<20	9	1.54	0.35	0.54	<.01	0.05	12	3	. 7	8	8	<5	<10 0).19	2
D1+00N-4+00W		<.2											2.91			98	40	66	<20	<20	10	2.25	0.51	0.44	< 01	0.03	7	4	5	13	5	<5	<10.0).16	5
D1+00N-4+50W		<.2	22										4.14			152	49	103	<20	<20	6	2.72	0.67	0.60	0.01	0.02	9	7	ື 5	14		<5	<10 0).22	12
D2+00N-0+50E		<.2	18	4	58	. <1	22	11	<.2	<5	<5	<5	4.94	353	<10	154	54	111	<20	<20	7	2.80	0.54	0.61	0.01	0.02	11	5	5	18	7	<5	<10 0).19	6
D2+00N-1+00E		<.2	18	4	47	′ < 1	29	12	<.2	<5	<5	<5	2.97	457	<10	158	37	87	<20	<20	7	1.76	0.61	0.69	0.01	0.03	9	5	4	9	6	<5	<10 ().20	5
D2+00N-1+50E		<.2	10	7	52	<1	17	10	<:2	<5	<5	<5	4.26	354	<10	233	42	143	<20	<20	7	1.89	0.45	0.54	<.01	0.03	10	3	8	13	9	<5	<10 0	0.21	··· 2 ·
D2+00N-2+00E		<.2	7	8	57	<1	10	7	<.2	<5	<5	<5	3.76	335	<10	231	37	124	<20	<20	9	1.67	0.29	0.49	<.01	0.03	9	2	8	9	8	<5	<10 ().20	1. 1
D2+00N-2+50E			19	3	51	<1	45	18	<.2	<5	<5	<5	3.09	433	<10	134	39	77	<20	<20	8	2.19	0.74	0.77	0.01	0.03	10	6	4	12	5	<5	<10 0).20	9
D2+00N-3+00E		0.3	14	3	83								4.37			146	50	100	<20	<20	9	2.53	0.52	0.46	0.01	0.03	9	4	6	17	6	<5	<10 ().18	4
DBL2+00N		0.2	18										2.89			203	35	94	<20	<20	12	1.77	0,29	0.50	<.01	0.03	11	4	6	9	6	<5	<10 ().14	1
D2+00N-0+50W	1	<.2	25	4	52	<1	37	17	< 2	<5	6	<5	3.39	667	<10	184	41	84	<20	<20	7	2.36	0.69	0.81	0.01	0.03	12	່ 7	4	9	6	<5	<10 ().19	4
D2+00N-1+00W			12		- 1. A.				· · · · ·				3.13		- 1. March 199	111	48	76	<20	<20	9	2.24	0.53	0.55	0.01	0.03	9	4	-4	13	5	<5	<10 (0.19	4
D2+00N-1+50W		<.2	11						1.1				3.68		- 1 A.	132	45	98	<20	.<20	9	2.04	0.45	0.40	<.01	0.03	8	3	6	15	6	<5	<10 0	J. 19	2
D2+00N-2+00W		0.2	10	7	54	· <1	15	. 8	< 2	<5	<5	<5	3.60	259	<10	100	39	96	<20	<20	10	1.74	0.34	0.31	< .01	0.03	6	3	6	11	6	<5	<10 (J.18	3
D2+00N-2+50W		0.2	9								1		3.90			133	42	89	<20	<20	11	2.14	0.45	0.40	<.01	0.04	10	. 3	6	19	6	<5	<10 ().16	4
D2+00N-3+00W	1	<.2	32	. 4	52	े र <1	43	16	<.2	<5	6	<5	4.47	460	<10	213	51	106	<20	<20	6	3.08	0.77	0.75	0.01	0.05	10	6	6	18	7	5	<10 ().19	6
D2+00N-3+50W			9				- 1						3.42			172	. 37	134	<20	<20	7	1.56	0.32	0.68	0.01	0.03	÷9	3	8	5	8	<5	<10 (J.23	Ż
D2+00N-4+00W			23				- 1 - L -						6.46		- 4 ° 6.	219	56	140	<20	<20	8	2.53	0.59	0.61	0.01	0.03	10	5	6	25	9.	<5	<10 0	0.17	2
D2+00N-4+50W		<.2	100.84	e 1	1.777	-s				:	1.11		2.02		1.1	185	23	100	<20	<20	10	1.24	0.23	0.58	< .01	0.02	9	2	. 7	3	6	<5	<10 (J.18	<u>;</u> 1
D2+00N-5+00W			10		1. A. A.		1.11	·	111.0				4.03		1.1.1	119	39	123	<20	<20	9	1.70	0.45	0.57	<.01	0.02	9	3	6	10	8	<5	<10 (), 19.	3
D3+00N-0+50E		<.2	18	ं उ	81	े ि <1	36	15	<.2	<5	<5	<5	3.14	378	<10	128	44	77	<20	<20	8	2.19	0.62	0.55	0.01	0.03	8	5	4	11	5	<5	<10 (J.17	6
D3+00N-1+00E		<.2	13	<u> </u>	62	े <1	22	11	<.2	<5	<5	<5	4.08	396	<10	133	42	102	<20	<20	6	2.02	0.49	0.66	<.01	0.03	12	4	. 5	12	6	<5	<10 (J .17	3
D3+00N-1+50E		<.2	22		100 C 10	- X.		-					3.04			152	50	70	<20	<20	10	2.07	0.65	0.46	0.01	0.03	9	5	- 4	12	4	<5	<10 (J . 1 8	10
D3+00N-2+00E	-		13	1	1.5.22			- C		2 C	- 10 - 10 -		4.86		1.1	189	49	.141	<20	<20	7	1.98	0.39	0.57	<.01	0.05	11	3	8	12	9	<5	<10 ().21	2
D3+00N-2+50E			10										2.94			217	34	87	<20	<20	13	1.44	0.39	0.44	< 01	0.04	9	3	6	10	6	<5	<10 (J .1 7	2

Intertek Testing Services Bondar Clegg Geochemical Lab Report

PROJECT: NONE GIVEN1

CLIENT: EURE																		DA	te r	ECEIV	/ED:	23-JI	JN-98	l	DATE	PRINT	ED:	2-Jl	儿-98	3 F	PAGE		proje of 17		(ONE GI
SAMPLE	ELEMENT	Ag	Cu	Pb																W			-	Ca										Ti	
NUMBER	UNITS	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PCT	PCT	PCT	РСТ	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PPM
D3+00N-3+00E		<.2	19	4	74	<1	32	13	<.2	<5	<5	<5	4.34	404	<10											0.03									1.125
DBL3+00N		<.2	17	4	88	<1	25	12	<.2	<5	<5	<5	3.91	356	<10											0.03			1.1		~		i < 10.		
D3+00N-0+50W		<.2	24	4	50	<1	29	16	<.2	<5	<5	<5	3.67	613	<10										1	0.03							<10		
D3+00N-1+00W	ł	<.2	63	7	59	<1	30	19	0.3	<5	12	<5	4.20	1555	<10											0.04							' <10		21.2
D3+00N-1+50W	· .	<.2	11	4	67	<1	17	10	<.2	<5	<5	<5	2.79	322	<10	104	31	80	<20	<20	10	1.54	0.40	0.65	<.01	0.02	12	3		10	5	<5 ·	i <10	0.18	3
D3+00N-2+50W	,	<.2	24	3	83	<1	33	14	<,2	<5	5	<5	4.84	488	s <10	224	50	110	<20	<20	7	2.68	0.71	0.69	0.01	0.05	12	6	5	18	: 7	<5	<10	0.19	5
D3+00N-3+00W		<.2											4.68			124	50	.110	<20	<20	10	2.83	0.47	0.31	<,01	0.03	8	5	6	18	7	; < 5	<10	0.17	4
D3+00N-3+00		<.2	13										3.09			92	37	. 78	<20	<20	9	2.03	0.58	0.63	0.01	0.03	9	5	5	្ត៍ 11	5	<5	5 <10	0.20	5
D3+00N-3+50W			26										4.68													0.03						5	5 <10	0.18	3
D3+00N-4+00h			20										3.90			143	46	96	<20	<20	8	2.52	0.66	0.58	0.01	0.03	; 9	5	5	14	6	<5	5 <10	0.19	5
D3+00N-4+50k	1	<.2	13	4	66	<1	29	10	<.2	<5	<5	<5	3.75	284	÷ <10	105	45	76	<20	<20						0.03				14			5 <10		
D3+00N-5+00k		<.2	25	3									5,15			144	54	120) <20	I <20	7	2.65	0.64	0.68	3 0.01	0.03	10	6	6	16	7	ິ 5	i <10	0.22	7
DBL4+00N		<.2	11										3.27			136	39	102	20	<20	. 9	1.93	0.55	0.67	0.0	0.02	2 10			14	6	ં <5	5 <10	0.24	6
D4+00N-0+50k	1	0.4	. 32										4.31							<20		<i>C</i>		10	11 10.00	0.04			- 10 M B	14	6	5	5 <10	0.18	3
D4+00N-1+00V	i	<.2	48	3	48	<1	40	18	<.2	<5	. 6	<5	3.26	660) <10	176	42	9 1	<20) <20	9	2.01	0.96	1.06	5 0.02	2 0.04	16	5 11 :	5	9	6	7	7 <10	0.23	10
D4+00N-1+50%	J	< 2	19	6	74	<1	39	15	<.2	<5	5	<5	4.13	302	2 <10	129	49	98	3 <20) <20	5	2.61	0.64	0.64	0.0	0.03	5	6	5	14	6	ें < 5	5 <10	0.19	.9
D4+00N-2+00			24										4.32				47	119	> <20) <20	6	2.09	0.64	0.84	0.0	0.05	5 13	5 6	6	12	7	<5	5 <10	0.17	3
D4+00N-2+50			14										4.39				45	10	<20) <20	10	1.91	0.62	0.60	0.0	0.03	5 11	4	5	i 17	6	ં <5	5 <10	0.23	5
D4TOOR 2130	•			Ĩ														1						- -	- distri		1		de.						
			an Bhailte												÷.	c.	·.						dia.					•							
				•							÷.,,						3		. *			· .													
						· · .			1.1		:							•				ч. -			2										
																				•					10										
					- Ar		÷.,						inter La ca	۰.																					
			a da Ar Ar				dege (÷			- 1		÷		1.1										
			agay agay		1995) 1997 - 1997 1997 - 1997	er F	10 e		:					÷	÷.							:	· ·						·						
							1	2														• •													
				3		ý.	. 49 - 11		27 194						a kitus Astu			÷			÷.,	1													
						2					·			,	1	÷						· ·													
				-																		5	-												
					n di Al-	11 11.		a Ag									· .	:																	
						n. 136 - F							tij.	2																					

ĨE.

Lab

Report

Intertek Testing Services

						uu	aı		Uε	55																								000		
		A RESOUR 0976.0 (-																[DATE	RECE	IVED	: 23	-JUN-	98	DAT	E PRI	NTED:	30-	- JUN -	98	PAGE	: 1	OF 5		NONE GI
											- •	_		_		_	_	•		••••					<u>^</u> _	N		•••		•				~ _	÷:	
MPLE	I	ELEMENT																							Ca			Sr DDM I								
MBER		UNITS	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	РРМ	PPM	PCI	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PUI	PUI	PUI	PUI	PUI	PPM F	-614	PPP	rrn	PPM F	7779	rrm	PUI	PPM
	0.005			77	7	FF	-1	70	2/		~5	~5	~5	/ 71	781	~10	68	67	170	~20	<u>~20</u>	8	२ २८	1 57	2 14	0.05	0.05	45	15	R	21	12	11	<10.1	n 42	17
0+00N 0+00N			<.2 <.2					29																				27						<10 (
0+00N			<.2		-									4.32														27						<10 (
0+00N			<.2											5.52														25			26	1.5		<10 (9
0+00N	-													5.32														64						<10 (
0.004	2.000		·••	-					-		-																									
0+00N	2+50F	:	<.2	27	4	64	<1	30	16	<.2	<5	6	<5	5.33	375	<10	60	62	137	<20	<20	- 5	3.17	0.90	0.83	0.02	0.04	27	6	8	23	12	6	<10 (0.30	6
0+00N				22																								26					6	<10 (0.35	7
)+00N			•	35																								52					7	<10 (0.35	6
D+OON	4+00E		<.2	21	4	71	<1	21	15	<,2	<5	<5	<5	5.28	458	<10	63	67	146	<20	<20	6	2.94	0,65	0.71	0.02	0.04	17	5	9	22	13	5	<10 (0.36	8
1+00N	0+00E	i i	<.2	27	3	52	<1	31	18	<.2	<5	5	<5	4.61	469	<10	78	62	124	<20	<20	7	3.28	1.01	:0 .9 9	0.02	0.04	30	7	7	18	11	7	<10	0.31	9
				· . ·																				t k	e e											
1+00N	0+50E		<.2	64	3	84	<1	38	33	<.2	<5	5	<5	6.44	1477	<10	68	75	155	<20	<20	6	4.22	2.03	1.94	0.03	0.08	120	15	9	18	13	14	<10 (0.33	11
+00N	1+00E		<.2	24																								33		1.1.1.1.1.1				12.015		6
+00N	1+50E		<.2	20																								27								4
1+00N	2+00E	:	<.2	27																								24								2
1+00N	2+50E	ī	<.2	87	6	64	<1	41	21	<.2	् <5	12	<5	4.65	1239	<10	79	86	134	<20	<20	11	3.22	1.26	1.42	0.02	0.05	36	35	6	31	12	16	<10 (0.22	6
											4										м Ч		2				17 7.				-					
1+00N	3+00E		<.2	38																								36						<10 (4
1+00N	3+50E		<.2	52																								31						<10 (9
1+00N	4+00E		<.2	23																								30								2
0+00N	0+00	ł	<.2	24																								15						<10 (3
0+00N	0+50W	i i	<.2	19	6	46	<1	26	: 14	<.2	<5	<5	<5	3.15	499	<10	86	47	- 79	<20	<20	14	2.19	0.85	0.92	0.02	0.05	17	9	6	18	. 7	6	<10 (0.20	6
									:			1. X 36-31	:			-427 -0122			:					2005 100 - 200						_						
0+00N				32				1 A A A A A A A A A A A A A A A A A A A				- Y. L. Y.		2												2 2 2		24								
0+00N	1+50	1	<.2	25																								19						<10 (
0+00N	2+006	ł		36																								22								
0+00N	2+506	1		35																								23								1.1
0+00N	3+00	ł	<,2	19	5	47	् <1	26	j 15	<.2	<5	<5	<5	5.19	501	<10	; 70	48	82	<20	<20	14	2.10	0.75	0.95	0.02	0.05	21	10	5	14	1	1	<10 (J.22	Y
							2				š.		_			1.1.1. 2.11		22	- -				~			0.07		7/		,	47	~	~		~ ~/	
0+00N				30																								24								
0+00N	0+00%	ł		17																								8								
0+00N	0+50%	1		24																								10						<10 0		
:0+00N	1+50	1		- 1 (PAV)	<																							14						<10 (
CO+00N	2+00	4	<.2	- 48	5	90	<1	31	22	2 0.2	<5	7	∶ < 5	4.70	1317	<10	222	52	119	<20	<20	: 8	5.47	1.10	1.89	0.02	0.12	44	15	- 6	12	11	8	<10 (1.30	25

Geochemical Intertek Testing Services

Intertek Testing Services
Bondar Clegg

Report

LIENT: EU EPORT: V)																C	ATE	REC	eivei	D: 2	3-JUN	I-98		DATE	E PRI	NTED	: 30)- JUI	v-9	8 1	'AGE	E 2			: NU	DNE GIVEN1
AMPLE	E	LEMENT	Ag	Cu	Pb	> 2	2n	Мо	Ni	С	o C	d	Bi	As	Sb	Fe	Mn) T	e 8	3a I	Cr	v	Sn	W	La	A	t ۲	g	Ca	Na	ĸ	Sr	Y	/ Ga	a	Li I	۱b	Sc	Та	Ti	Zı	
UMBER		UNITS	PPM	PPM	PPM	I PF	PM F	PPM	PPM	ΡP	m pp	m P	PM I	PPM	PPM	PCT	PPM	PP	M PF	PM P	PM	PPM	PPM	PPM	PPM	PC	T PC	T F	ст	PCT	PCT	PPM	PPN	1 PPI	n Pi	PM PI	M F	PPM F	PM	PCT	PPI	Í
CO+00N 24	+50W		<.2	31	6	5 <u>5</u>	53	<1	18	1	3 <.	.2	<5	<5	<5	3.77	740	· <1	0 13	35	45	113	<20	<20	9	2.2	9 0.4	90.	.77	0.01	0.05	17	12	2	5	11 - ²	11	6 -	<10	0.22		• •
CO+00N 34	+50W		<.2	41	6	5 6	53	<1	27	1	2 <.	2	<5	<5	<5	4.89	440	<1	0 9	75 -	64	113	<20	<20	9	2.7	2 0.6	1 0.	63	0.01	0.04	14	11		7	14	0	6	<10	0.18	1°	
CO+00N 4-	+00W		<.2	22												5.01																										
C1+00N 04	+00W		<.2	19												4.56																							<10		- M.,	
C1+00N 0+	+50W		<.2													3.83																							 NO.0. 		2.4.4	¥.
					:				· . ·										:								in a suite Suite an suite	den. The			:		e R								nije Rođe	
C1+00N 1-	+00W		<.2	23	5	5 1	8	<1	29	1	7 <.	2	<5	<5	<5	4.25	319	1	0 5	54	51	104	<20	<20	- 9	3.4	9 0.7	50.	84	0.02	0.03	13	5) 🖗	5	15	9	6	<10	0.26	16	5
C1+00N 1+	+50W		<.2	26	4	5	1	<1	32	1	9 <.	2	<5	<5	<5	4.50	434	<1	0 5	59	55	123	<20	<20	7	3.5	8 0.9	81.	25	0.02	0.03	14	<u> </u>)	7 '	13 🗄	11	7	<10 /	0.35	14	
C1+00N 24	+00W		<.2	:14	5	; ŧ	6	<1	25	. 1	7 <.	2	<5	<5	<5	5.10	364	<1	Ö 7	76	59	126	<20	<20	7	3.3	3 0.6	9 0.	82	0.02	0.03	12	6	s 🗒	3	17 🖗	110	6	<10 /	0.37	1	ini. Nj
C1+00N 24	+50W		<.2	15	4	. 1	4	<1	20	<u> 1</u>	1 <.	2	<5	<5	<5	3.75	352	<1	Ó÷ é	58	47	108	<20	<20	8	2.4	5 0.5	7 0.	85	0.02	0.03	11	6	5	S '	12	0	<5	<10 /	0.27		5
C1+00N 34	+00₩		<.2	14	5	5 5	8	<1	15	1	1 <.	2	<5	<5	<5	3.98	581	<11	0 15	53 ()	38	111	<20	<20	9	1.6	6 0.4	60.	89	0.01	0.05	18	3	្រៀ	s ·	11	0	<5	<10 /	0.22		
						÷.,	15		· .											1	n yr Dallan		n de la composition a composition de la co												19 19 19	- 11 - 12	ġ.					
C1+00N 34	+50W		<.2	18	4	i. i	78	<1	24	1	6 <.	2	<5	<5	<5	6.07	398	<11	D∫ €	5 8 : !	56	157	<20	<20	6	3.0	1 0.8	0 1.	14	0.02	0.02	17	7	۲ () '	15	4	6	:10	0.35	12	
:1+00N 4+	+00W		<.2	25	5	i (52	<1	23	1	4 <.	2	<5	<5	<5	5.28	494	<1	0 12	?7 }	56	127	<20	<20	11	2.6	1 0.5	8 0.	64	0.02	0.03	14	9) (i	7 '	15 🔡	ù i	6	(10)	0.31	8	3
0+00W 0+	+00N		<.2	16	6	5	8	<1	19	1	0 <.	2	<5	<5	<5	4.92	208	<10	3 6	52 <u> </u>	57	98	<20	<20	8	3.0	6 0.5	2 0.	51 i	0.01	0.02	8	5		5 2	21 🗄	9	<5 ·	:10	0.22	11	
0 +00W 0 +	+50N		<.2	26	8	3	7	<1	32	1	5 <	2	<5	6	<5	3.90	425	<1(3 (4	52	70	<20	<20	16	2.8	3 0.7	60.	50	0.01	0.05	10	6		5 2	22	7	<5	:10 (0.16	6	
DO+00W 1+	+00N		0.2	24	3	5 8	31	<1	30	1	80.	2	<5	7	<5	5.56	722	<10) 11	9	66	127	<20	<20	5	3.4	2 0.9	60.	94	0.02	0.02	11	8	<u>ان ا</u>	3 2	25	1	7	:10 (0.28	1	
											÷.										an a Tha t																					
DO+00W 1-	+50N		<.2	10	9) [5	7	<1	13		5 0.	3	<5	<5	<5	3.32	153	<1(3 (C	32	33	39	<20	<20	21	1.8	1 0.3	8 0.	14	<.01	0.04	7	3	; iž	1	20	4	<5	:10 (0.05	<1	
D0+00W 24	+00N		<.2	18	5	i e	2	<1	16	(1	3 0.	3	<5	<5	<5	4.41	844	<1	<u>)</u> .11	12	49	88	<20	<20	10	2.2	7 0.4	6 0.	54 (0.01	0.03	10	3		5 1	14 🖓	8	<5	:10 (0.19	3	Ë.
00+00W 2+	+50N		<.2	16	. 9) (52	<1	28	; 1	2 <.	2	<5	<5	<5	3.20	549	<10	5	ю i	44	47	<20	<20	25	1.8	3 0.6	8 0.	35 (0.01	0.04	12	6	6	2	21 🔅	4	<5 -	:10 (0.08	ୀ 1	
DO+00W 34	+00N		<.2	11	6	54	6	<1	16	1	10.	3	<5	<5	<5	2.66	678	<1() 12	9	31	72	<20	<20	10	1.5	0 0.4	7 0.	74 İ	0.01	0.03	10	4		5	8	6	<5 ¥	:10 (0.18	2	
00+00W 34	+50N		<.2	8	7	1	0	<1	14		7 0.	3	<5	<5	<5	2.93	161	<1() 6	57 - 6	44	55	<20	<20	15	2.0	7 0.4	0 0.	37	<.01	0.03	10	4		i : 1	16	6	<5 <	10 (0.13	2	
)0+00¥ 4+	+00N		<.2	17	6		1	<1	39	1	5 <.	2	<5	حه	<5	2.78	273	<1() 12	5	41	63	<20	<20	10	2.0	6 0.6	30.	70 (0.01	0.03	11	6	3	5 1	10	6	<5 •	: 10 (D. 19	8	le F
01+00W 04	+00N		<.2	28		- 024	. A S		t eech	2		- COC -		25.1		3.32					1997 - E. B.		10.0007		1211122		12.125			YP ALD A		(1) + 1									- C. A.	
01+00W 04	+50N		<.2	14			: A. F.					12.1		·		4.80		1.1.1.1						·			10.16	S				1.4		1.1								
01+00W 1+	+00N		<.2	21			00 C		- 866 i			- 6		e esti		4.08		- 199	er.,		der der der				11 a.d.		- 14 M M	A. 14		provini su												
01+00W 1+			<.2	17	÷		88.3		112300 B		- N. 1	1971 - B		12.223		3.92		So.	1941 - E		9 Q - 1		cutter/				- 10 Yo	8 C				· · · · · ·									- 5	
)1+00W 24	+00N		0.2	19	8		5	<1	24	; 1:	4 0.	2	<5	<5	<5	3.14	625	<1() 11	3 4	43	67	<20	<20	16	1.9	5 0.6	0 0.	57 (0.01	0.05	14	7	: 5	; 1	3	6	<5 <	:10 (),15	Ż	
01+00W 2+	+50N		0.2	1 <u>- 1 -</u>			11.1.1		11.042					14		3.76		- s.C		1.11	:::/ f :		- 22				111			11 J. 14 M.								<5 <				
01+00W 3+			<.2	10		- 200	2.1				- da 1	·		- 241		3.22		1.19		- 12	2511		Set en	1	- i					1. Sec												
01+00W 3+			<.2	12			0000							- Congression		3.15							er eden i k		- 10 March					s - 15												
01+00W 4+			<.2	6139 i	c	20.00	606 P -		20.0000.00	·				2		3.62			- 1. 1 E		2 X X X X				1.1.1																	

ITS Intertek Testing Services Bondar Clegg

Geochemical Lab Report

2+00N +000N <2 2 3 3 <1 21 15 <2 <5 <5 <5 <1 12 10 <5 <10 <5 <10 <5 <10 <5 <10 <5 <10 <5 <10 <5 <10 <5 <10 <5 <10 <5 <10 <5 <10 <5 <10 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5	NHITS PPH PPH PPH PPH PPH PPH PPH PPH PPH PPH	EPORT: V98-	(A RESOUR)0976.0 (D	ATE	RECE	I VED :	23-	JUN-9	78	DAT	E PRII	NTED:	30-	JUN-	98	PAGE	30		T: NON			
NBER UNITS PPN PPN PPN PPN PPN PPN PPN PPN PPN PP	NHITS DHITS PAM PAM PAM PAM PAM PAM PAM PAM PAM PAM	MPLE	ELEMENT	Aq	Cu	Pb	Zn	Mo	Ní	Co	Cd	Bī	As	Sb	Fe	Mn	Te	Ba	Ըր	v	Sn	W	La	AL	Mg	Ca	Na	к	Sr	Y	Ga	Li	Nb	Sc ·	fa T	i Zr			
veron +000 <2	ADDN <2 27 3 43 1 15 2 5 5 5 5 5 5 2 35 2 13 200 14 14 400 14 400 14 400 14 400 14 400 14 400 14 400 14 400 14 400 14 400 14 400 14 10 10 10 11 11 10 6 10 0.33 13 4000 22000 2 5 5 13 24 25 5 5 13 24 10 23 25 12 23 20.03 0.02 14 8 6 5 10 11 11 10 10 10 10 10 11																							PCT	PCT	PCT	PCT	PCT	PPM	PPM	PPM	PPM	PPM P	'PM Pi	PM PC	T PPM			
2+001 +0001 <.2	2x001 1+0001 <2										_	_	_							407			47.4		A /7	0.07	0.04	0.07	2/	20	а. ¹ . •	•			40.0.4				
2+001 1+504 <2	22001 1+504 -2 2 5 1 1 1 6 10 33 13 24001 -2 2 5 1 2 1 1 1 6 10 33 13 24001 -2 2 1 2 1 2 1 1 2 1 1 1 6 10 33 13 24001 -2 14 4 1 2 1 2 5 5 5 1 </td <td>2+00N 0+50W</td> <td></td>	2+00N 0+50W																																					
2400N 2+00N <2 149	2200N -2, 149 4 54 -1 23 21 0.3 -5 -5 4, 54 0.0 125 14 200 15 2.61 0.71 1.00 0.03 0.02 21 45 7 8 13 14 10 0.23 7 2000 2000 2000 10 21 45 7 8 13 14 10 0.23 7 11 12 13 10 0.22 8 7 11 12 13 10 0.22 8 7 11 12 13 10 0.22 8 10 10 25 45 5 5 6 5 5 5 6 5 5 6 20 12 11 12 13 10 0.22 10 10 7 11 10 10 11 10 14 10 10 11 10 10 11 10 10 10 10 10 10 10 10 10 10 10 10 <	2+00N 1+00W																																	1 de la composición de la composición de la composición de la composición de la composición de la composición d	10.11			
2+00N 2 9 4 7 1 12 19 2 5 5 4.00 10 39 56 12 20 10 2.2 0.03 0.03 22 38 7 11 12 13 10 0.22 8 4400N 0+00W <2 36 2 19 10 2 5 5 5 5 5 5 5 5 5 5 5 5 6 2 10 2 8 8 6 5 5 6 10 10 10 11 12 13 10 12 10 2 5 5 5 5 12 10 2 2 5 5 2 2 10 10 10 10 10 11 10 10 11 11 12 13 10 11 11 12 13 10 11 11 12 13 10 11 11 10 10 10 10 10 10 <td>2200N 2.2 95 4 47 12 19 2.2 4.6 810 10 39 56 129 20 10 12.2 0.03 0.03 22 38 7 11 12 13<</td> 10 0.22 8 44000 1000E 2 24 3 63 1 19 15 0.3 5 5	2200N 2.2 95 4 47 12 19 2.2 4.6 810 10 39 56 129 20 10 12.2 0.03 0.03 22 38 7 11 12 13<																																1.1.1.1			1.13.			
44000 HOOM <.2	44000 0004 <.2	2+00N 2+00W			· .																											-	- A (1944)	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	4 1	1. P			
4+000 0+50E <.2	44000 0-50E <2	2+00N 2+50W		<.2	95	4	47	<1	29	19	<.2		<5	<5	4.04	810	<10	39	20	129	< <u>2</u> 0	<20	14 .0	2.01	0.00	1.22	0.05	0.05	22	30		11	12	13 2	10 0.2	د			
44000 0+50E <.2	44000 0-50E <2			_						~					7 07	774	-10	77		45	-20	~20			1 02	0.51	2 01	0.01	31	8	7	Q	4	~5 2	10 0 1	1 5			
4400N 1400E <2	4400N 1+00E <.2				- 19Ž																												a de la composición de la composición de la composición de la composición de la composición de la composición d	17.1					
4+00N $(-2, 25, 5, 68, (-1, 22, 12, (-2, 5, (-5, 3, 7, 4, 80, (-10, 57, 62, 118, (-2, 20, 20, 9, 2, 55, 0, 50, 0, 80, 0, 0, 1, 0, 0, 4, 25, 9, 6, 11, 9, (-5, (-10, 10, 10, 10, 10, 10, 10, 10, 10, 10, $	4+00N 1+00N <2				120																																		
4+00N 1+50N <.2	4+00N ++50N 2 82 5 57 1 2 5				4.557																																		
4+00N 2+00W <.2	4+00N 2+00W <.2				1922																												S. A. S. A.	100	÷1811	1 C 1 C 1 C 1			
4+00N + 2+50W < 2 38 4 53 < 1 32 18 < 2 < 5 < 5 < 5 < 4 10 < 58 < 10 58 < 10 50 109 < 20 < 20 10 2.82 0.89 1.12 0.03 22 14 6 11 10 $6 < 10$ 0.25 8 1.12 0.03 2.62 29 8 13 14 $9 < 10$ 0.18 4 $4+00N$ $3+50W$ < 2 24 4 33 < 1 22 < 5 < 5 < 5 < 4.32 41 45 48 102 < 20 < 20 </td <td>4+00N 2+50W <.2</td> 38 4 53 <1	4+00N 2+50W <.2	4+00N 1+50W		<.2	82	5	57	<1	21	11	<.2	. < 5	S	<5	4.37	201	< 10	57	02	110 :	~20	×20			0.00	0.00	0.01	0.04	c.u	10				0					
+400N 2+50W <2	x+000 x+250W <.2				90	F	2010 2010 2010		14	: n	0.2	- ~5	~	~ 5	7 79		<10	28	54	02	<20	<20	17	2 05	n 37	0 76	0 01	0 02	21	33	5	10	8	9 <	10 በ.ር	8 2			
$\begin{array}{c} 4400N \ 3+00N \\ <.2 \ 68 \ 6 \ 84 \ <1 \ 26 \ 24 \ 0.2 \ <5 \ <5 \ <5 \ <5 \ <5 \ <5 \ <5 \ <$	4400N 3400N <.2				ા હેલ્લા વ																												5.369		61 c	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
$\begin{array}{c} 4+00N \ 3+50N \\ (-2) \ 24 \ 4 \ 43 \ <1 \ 30 \ 19 \ <.2 \ <5 \ <5 \ <5 \ 4.32 \ 443 \ <10 \ 45 \ 48 \ 120 \ <20 \ 7 \ 2.65 \ 0.67 \ 1.02 \ 0.03 \ 0.03 \ 17 \ 12 \ 7 \ 11 \ 10 \ 6 \ <10 \ 0.28 \ 11 \\ (-2) \ 36 \ 4 \ 73 \ <1 \ 42 \ 23 \ <.2 \ <5 \ 18 \ <5 \ 4.69 \ 2532 \ <10 \ 172 \ 61 \ 136 \ <20 \ <20 \ 8 \ 2.97 \ 1.22 \ 1.60 \ 0.02 \ 0.04 \ 24 \ 15 \ 6 \ 23 \ 11 \ 11 \ <10 \ 0.27 \ 5 \\ (-2) \ 5 \ 73 \ <1 \ 42 \ 20 \ <.2 \ <5 \ 11 \ <5 \ 4.19 \ 960 \ <10 \ 157 \ 52 \ 120 \ <20 \ 9 \ 2.69 \ 1.33 \ 1.39 \ 0.02 \ 0.04 \ 24 \ 15 \ 6 \ 22 \ 10 \ 9 \ <10 \ 0.25 \ 5 \\ (-2) \ 11 \ 11 \ <10 \ 0.27 \ 5 \\ (-2) \ 11 \ 11 \ <10 \ 0.27 \ 5 \\ (-2) \ 11 \ 11 \ <10 \ 0.27 \ 5 \ (-2) \ 11 \ 11 \ <10 \ 0.27 \ 5 \ (-2) \ 11 \ .2 \ 1.60 \ 0.02 \ 0.04 \ 21 \ 15 \ 6 \ 22 \ 10 \ 9 \ <10 \ 0.25 \ 5 \\ (-2) \ 11 \ .2 \ 1.60 \ 0.22 \ .05 \ 1.02 \ 0.02 \ 0.04 \ 21 \ 15 \ 6 \ 22 \ 10 \ 9 \ <10 \ 0.25 \ 5 \ .2 \ 11 \ .2 \ .2 \ .2 \ .2 \ .2 \ .2$	4+00N 3+50N <.2				- 2626																												1000 LC		2010 1				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SL01 <2	<10				486																											11	10	6 <	10 0.2	8 11		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ISLO2 <2			-	- Gebre																												1.	12	2 W 1	10 A 10 A			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ISL03 < 2 29 7 63 < 1 35 18 < 2 < 5 6 < 5 3.60 684 < 10 22 < 20 11 2.37 0.99 1.20 0.02 0.05 18 12 6 17 8 8<	SLUT				-													- 49 19 (9)	-	.8													1					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SL03 <.2	SLO2		<.2	50	5	73	<1	42	20	<.2	<5	11	<5	4.19	960	<10	157	52	120	<20	<20	9 ;	2.69	1.33	1.39	0.02	0.04	21	15	6	22	10	9 <	10 0.2	5 5			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SL04 <.2	<10	<10	<5	SL03		<.2	29	7	63	<1	35	18	<.2	<5	6	<5	3.60	684	< 10	124	47	100	<20	<20	11	2.37	0.99	1.20	0.02	0.05	18	12	6	17	8	8 <	10 0.2	2 5
SL06 <.2	SL06 <.2			<.2	29	4	57	<1	30	18	<.2	<5	<5	<5	3.74	804	<10	64	54	128	<20	<20	10	2.81	0.95	1.56	0.02	0.03	24	22	6	12	10	12 <	10 0.2	4 6			
ISLO7 <.2	ISLO7 <.2	SL05		<.2	32	3	46	<1	31	19	<.2	<5	15	×5	3.48	726	<10	92	45	116	<20	<20	7	2.37	1.18	1.67	0.02	0.04	18	13	6	19	9	8 <	10 0.2	9 9			
ISL08 <.2	ISL08 <.2	<10	SL06		<.2	21	4	102	<1	34	22	<.2	<5	<5	<5	4.40	2676	<10	102	44	133	<20	<20	7	2.93	1.21	1.83	0.03	0.03	23	15	7	13	10	8 <	10.0.3	1 10		
SL08 <.2	SL08 <.2														napið Vita				nda nar Statistica	5		:													•				
ISL09 <.2 42 4 67 <1 37 20 <.2 <5 6 <5 4.59 870 <10 118 57 142 <20 <20 8 3.24 1.15 1.60 0.02 0.03 22 13 7 10 12 8 <10 0.31 7	(1) SL09 (2) 42 (4) 67 (1) 37 (2) (2) (2) (3) (3) (2) (3) (3) (2) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3	SL07		<.2	24																													<5 <	10 0.1	7 3			
SL09 <.2 42 4 67 <1 37 20 <.2 <5 6 <5 4.59 870 <10 118 57 142 <20 <20 8 3.24 1.15 1.60 0.02 0.03 22 13 7 10 12 8 <10 0.31 7	SL09 <.2			<.2	37	6	59	<1	35	17	<.2	<5																						8 <	10 0.2	1 4			
	ISL 10 <.2 50 5 62 <1 45 21 <.2 <5 6 <5 4.38 885 <10 252 62 132 <20 <20 7 3.21 1.36 1.57 0.03 0.04 20 13 7 11 11 9 <10 0.30 9			<.2	42																													8 <	10 0.3	1 7			
		SL10		<.2	50	5	62	<1	45	21	<.2	<5	6	<5	4.38	885	<10	252	62	132	<20	<20	i 7.	3.21	1.36	1.57	0.03	0.04	20	13	° 7	11	11	9 <	10 0.3	0 9			
	· 化化物合金 网络新闻 · · · · · · · · · · · · · · · · · · ·											i.											t iy					:											
에는 것은 것은 것은 것을 가지 않는 것을 하는 것을 하는 것을 알려요. 이 가장에 가지 않는 것은 것은 것은 것은 것을 가지 않는 것을 하는 것을 가지 않는 것을 하는 것을 하는 것을 하는 것을 하는 것은 것은	· 化化物合金 网络新闻 医鼻腔 化二甲基丙酮 化二甲基丙酮 化乙酰基苯乙酸 化乙酰基乙酸 化乙酰乙酸 化乙酰乙酸 化乙酰乙酸 化乙酰乙酸 化乙酰乙酸 化乙酰乙酸							i. N			- 1,461 - 1192					2					1						1												
에는 사람이 있는 것은 사람이 있는 것은 사람이 있는 것이 br>같은 것이 같은 것이 있는 것이 같은 것이 같은 것이 같은 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것								2															••				41.5												

	TS and the the test of test of tes	Geochemical Lab Report
	PROJEC -00893.2 (COMPLETE) DATE RECEIVED: 12-JUN-98 DATE PRINTED: 16-JUN-98 PAGE 1 OF 3	: BOW
SAMPLE Number	ELEMENT AU30 Ag Cu Pb Zn Mo Ni Co Cd Bi As Sb Fe Mn Te Ba Cr V Sn W La Al Mg Ca Na K Sr Y Ga Li Nb Sc Ta UNITS PPB PPM PPM PPM PPM PPM PPM PPM PPM PPM	
M-2N 0+00E M-2N 0+50E M-2N 1+00E		0.22 6 0.28 11 0.32 5

6 <.2 97 10 46 <1 34 28 0.2 <5 6 <5 4.63 1675 <10 54 75 157 <20 <20 16 2.83 0.91 1.49 0.03 0.03 32 68 6 13 <1 18 <10 0.19 5

M-2N 4+00E

. . . . <u>,</u> 1 Ì 1 7 Géochemical Lab

Report

	TC

Intertek Testing Services Bondar Clegg

ENT: EURE	KA RES	SOURCES	s,	INC.																																NONE GI
DRT: V98	-00982.	.0 (CC	MP	LETE)									••••••		•••••			D	ATE	RECE	IVED): 23-	JUN-9	98	DAT	e pri	NTED	: 29-	JUN	-98	PAG	E 1	OF	3	
۲E	ELEME	ENT Ag	a i	Cu	РЬ	Zn	Мо	Ni	Co	Cd	Bi	As	Sb	Fe	Mn	Те	8a	Сг	v	Sn	W	La	Al	Mg	Ca	Na	к	Sr	Y	Ga	Li	Nb	Sc	Ta	ti	Zr
ER		ITS PP																						PCT	PCT	PCT	PCT	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PPM
					_		-				-	4.0		~~~	507	.40		74	404	-30	~ 20		2 54	0 47	1 00	0.01	0.04	10	12	z	1/	. 7	ø	-10	0.21	
00N-0+50			2							0.2																									0.19	
)0N-1+00	O₩		5																								0.03							1.1		
DON-1+5	O₩		2							<.2																		2 A A						1.11	0.10	
00N-2+0	OW		2							<.2																	0.03			· · ·				± 1	0.20	4 Z
)0N-2+5	O₩	<.	2	16	7	63	<1	15	9	<.2	<5	<5	<5 5	.31	507	<10	125	45	155	<20	<20	п	2.51	0.47	0.48	<.01	0.04	CI	3	0	. 10	10	< 5	<10	0.24	3
ION-3+0	nu	<	2	17	7	67	<1	18	13	<.2	<5	<5	<57	. 12	374	<10	157	58	193	<20	<20	6	2.98	0.57	0.60	0.01	0.03	14	4	9	16	13	5	<10	0.33	3
ION-3+5		-	2																								0.03								0.20	4
)0N-4+0			- 21																								0.05						12	<10	0.14	2
)0N-4+5			3																								0.03				20	8	<5	<10	0.17	2
00N-5+0		0.	3 2	65	10	149	<1	51	19	0.6	<5	13	<5 3	.23	5842	<10	400	82	76	<20	<20	14	2.94	0.56	1.57	0.01	0.05	38	56	<2	17	4	19	<10	0.04	
				. •		inter La seconda																			-		an. Re									
)0N-5+5	OW	0.	3	22	7	62	<1	21	8	<.2	<5	6	<5 6	5.70	250	<10	172	82	136	<20	<20	- 7	2.41	0.51	.0.55	<.01	0.04	- 14	3	6	15	9	<5	<10	0.16	1
)0N-6+0		0.	31	55	7	. 67	<1	29	7	0,2																	0.04				10	3	5	<10	0.03	<1
DON-6+5	0W	0.	3 [:]	25	5	59	<1	20		<.2																	0.04							- (* 1899) 1	0.16	
DON-7+0	W	<.	2	10				13																							14	11	<5	<10	0.21	1
00 N -5+0	OW	<.	2	36	4	70	<1	35	14	<.2	<5	.14	<5 7	.67	426	<10	371	85	148	<20	<20	6	3.10	0.94	0.64	<.01	0.03	15	4	6	29	10	6	<10	0.14	
																									ļ.				8					af Lifes		
00N-5+5	0W	<.	2	31	6	66	<1	21																			0.04		8			1.1			0.17	
00N-6+0	0W	<.	2	32	8	71	<1	17	8	<.2	<5	20	<5 4	.77	320	<10	380	- 44	130	<20	<20	19	1.75	0.35	0.41	<.01	0.06	14	. 9	6	12	9	<5	<10	0.07	<1
														an an an an an an an an an an an an an a							i.						d.		í.					÷ .		•
							r 2		.:	n ta La ta							:								- 3		ili př		2							
																111		ere la Al-A					2	2	le -				· .	÷						1.1
						997			1								2	44			:			111					<u>.</u>	1						
							.:		1										:								i.	1944 1944 - 1944 1944 - 1944		÷.,			•			
			ł				6				-			in sais Thirt														, î		5						
																	: 							. M	e Sec		<i>4</i> .									
			2 2 2				le te		1. 1.										2		e	.:		1												
									с 9											- 11 201	e C	2.				- 44. 14.										
						32	2										•		:	л, s		ЪС,		19	1		2									
			-								1													÷ .		۰.										
							11 13		e S							44			2	n ar Tha an				. * :	•	-										
									i t				· .				:. 					Ś.													-	
				신문			24 		 ::		S.				-	39		A. 6		2		··· .														

	Inter Bondar		g Services			Geochemical Lab Report
CLIENT: EUREKA RESOURCES, REPORT: V98-00988.0 (COMF	INC.		DATE	RECEIVED: 23-JUN-98 DATE PRINTED: 30-	PROJECT: NOM JUN-98 PAGE 1 OF 3	ie given1
		lo Ni Co Cd Bi As S M PPM PPM PPM PPM PPM PPM PPM			Ga Li ND Sc Ta Ti Zr PPM PPM PPM PPM PPM PCT PPM	
B7+00N-7+50W 0.3 C2+00N-9+50W <.2 C2+00N-10+00W <.2 C4+00N-9+50W <.2 C4+00N-10+00W <.2 RB1+00N 0+50W RB1+00N 0+50W RB1+00N 1+50W RB1+00N 1+50W RB1+00N 2 RB1+00N 2	20 <2 38 55 <2 47 16 <2 45 14 <2 58 21 <2 47 13 3 55 10 <2 62 52 3 51 20 <2 75 10 <2 57 13 <2 44	1 39 15 0.3 <5 <5 1 24 10 0.3 <5 7 1 24 10 0.3 <5 7 1 24 10 0.3 <5 7 1 24 10 0.3 <5 7 1 47 22 <.2 <5 7 1 16 8 0.2 <5 7 1 28 12 <.2 <5 5 1 36 14 <.2 <5 5 1 22 11 <.2 <5 <5 1 39 15 <.2 <5 5 1 33 17 <.2 <5 <5 1 20 11 <.2 <5 <5 (1 28 11 <.2 <5 <5	5 3.57 814 <10 251 77 103 20 5 4.80 278 <10 119 71 141 20 5 4.80 278 <10 119 71 141 20 5 4.66 681 <10 75 62 144 20 5 5.62 252 <10 110 66 217 20 45 3.34 219 <10 74 45 86 <20 5 3.96 274 <10 79 53 95 <20 45 3.97 343< <10 97 51 120 <20 45 3.97 343<< <10 97 51 120 <20 45 3.71 269< <10 60 52 107 <20 45 5.25 601 <10 59 57 134 <20 45 3.54 194 <10 53 48 90 <20 45	4 20 5 2.69 0.59 0.67 0.01 0.02 14 5 4 20 2 3.40 1.42 1.60 0.03 0.02 30 12 4 20 7 2.40 0.42 0.60 0.01 0.03 12 4 4 20 10 2.58 0.53 0.54 0.01 0.04 11 5 5 20 10 2.58 0.53 0.54 0.01 0.04 13 6 5 20 10 2.85 0.62 0.52 0.01 0.04 13 6 5 20 10 2.19 0.53 0.65 0.01 0.04 14 5 6 20 10 2.19 0.53 0.65 0.01 0.04 14 5 6 20 16 3.10 0.80 1.32 0.02 0.05 20 5 6 2.77 0.47 0.53 0.01 0.03 12 4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

.

Intertek Testing Services Bondar Clegg

SMPLE MARCER ELEMENT ALSO AG CU UP 71 NO Bİ AS SD MB CU UNITS PPB PPM PPM PPM PPM PPM PPM PPM PPM NON 0-00E 22 NON 0-50E NON 1-00E 17 NON 1-00E NON 2-00E 31 NON 2-00E NON 2-00E 32 NON 3-50E NON 5-50E 32 NON 5-50E NON 5-50E 22 NON 5-50E NON 5-00E 42 NON 5-50E NON 5-00E 22 NON 5-50E NON 5-00E 24 NON 5-50E NON 5-00E 24 NON 5-50E NON 5-00E 42 NON 5-50E NON 5-00E 42 NON 5-50E NON 5-00E 26 NON 5-50E NON 5-00E 28 NON 5-50E NON 5-00E 61 NON 6-50E NON 7-00E 32 NON 3-50E NON 7-00E 33 NON 3-50E N-28 1-50E 32 NON 3-50E N-28 1-50E 32 NON 3-50E N-28 1-50E 32 NON 3-50E N-28 1-50E 34 NON 5-50E	BOW
Invanous 17 Moxi 1400E 15 Moxi 1400E 31 Moxi 2400E 42 Moxi 2400E 42 Moxi 3400E 32 Moxi 450E 32 Moxi 450E 32 Moxi 450E 42 Moxi 450E 42 Moxi 450E 42 Moxi 450E 42 Moxi 450E 43 Moxi 450E 44 Moxi 450E 31 Moxi 450E 34 Moxi 450E 37 Moxi 450E 77 Moxi 2450E 42 Moxi 2450E 32 Moxi 2450E 32 Moxi 2450E 32 Moxi 2450E 35 Moxi 2450E 35 Moxi 2450E	
Nox1 1400E 15 Nox1 1450E 31 Nox1 2400E 42 Nox1 2400E 52 Nox1 3450E 52 Nox1 3450E 52 Nox1 3450E 52 Nox1 4400E 52 Nox1 4400E 22 Nox1 4400E 22 Nox1 4400E 22 Nox1 4400E 26 Nox1 4400E 26 Nox1 4400E 31 Nox1 6400E 31 Nox1 6400E 31 Nox1 6400E 31 Nox1 7400E 26 Nox1 7400E 31 M-2N 0400E 80 M-2N 0400E 58 M-2N 0400E 37 M-2N 0400E 37 M-2N 2450E 32 M-2N 3450E 35 M-2N 5450E 35 M-2N 5450E 35 <td< td=""><td></td></td<>	
Non 1-50E 31 Non 2-00E 42 Non 2-00E 52 Non 3-00E 32 Non 3-50E 32 Non 4-50E 22 Non 4-50E 43 Non 5-00E 42 Non 5-50E 26 Non 6-50E 31 Non 7-00E 28 M-20 0-50E 80 M-20 0-50E 80 M-21 0-50E 80 M-22 0-50E 80 M-21 1-50E 17 M-22 0-50E 28 M-22 0-50E 37 M-22 0-50E 32 M-22 0-50E 35 M-23 0-50E 35 M-24 0-50E 35 M-24 0-50E 35 M-24 0-50E 35 M-24 0-50E <td></td>	
Non 2-50E 42 Non 2-50E 52 Non 3-00E 32 Non 3-50E 32 Non 3-50E 32 Non 3-50E 32 Non 4-50E 43 Non 5-50E 26 Non 5-50E 28 Non 5-50E 80 N-2N 1-50E 17 M-2N 1-50E 17 M-2N 1-50E 17 M-2N 1-50E 17 M-2N 2-50E 28 M-2N 3-50E 28 M-2N 3-50E 37 M-2N 3-50E 32 M-2N 3-50E 35 M-2N 3-50E 35 M-2N 3-50E	
MN 2+50E 52 MON 3+00E 32 MON 3+00E 32 MON 4+00E 22 MON 4+50E 43 MON 5+00E 42 MON 5+00E 43 MON 6+50E 26 MON 6+50E 34 MON 7+00E 61 MON 7+00E 61 MON 7+00E 58 M-2N 1+00E 58 M-2N 1+00E 37 M-2N 2+00E 37 M-2N 3+00E 42 M-2N 3+00E 35 M-2N 3+50E 35 M-2N 3+50E 35	
MXN 3400E 32 MXN 3400E 32 MXN 3400E 32 MXN 4400E 22 MXN 4400E 43 MXN 5400E 43 MXN 5400E 43 MXN 5400E 26 MXN 6400E 31 MXN 6400E 34 MXN 6400E 34 MXN 7400E 61 M-2N 0400E 61 M-2N 1400E 58 M-2N 1450E 37 M-2N 2450E 28 M-2N 2450E 28 M-2N 2450E 28 M-2N 3400E 55 M-2N 3400E 55 M-2N 3400E 55 M-2N 3450E 35 M-2N 5450E 24 M-2N 5450E 24	
NNN 3-50E 32 NON 4+00E 22 MON 4+00E 22 MON 5+00E 43 MON 5+50E 26 MON 5+50E 26 MON 6+00E 31 MON 6+00E 34 MON 7+00E 28 M-2N 0+50E 80 M-2N 0+50E 80 M-2N 0+50E 80 M-2N 1+50E 17 M-2N 1+50E 37 M-2N 2+50E 28 M-2N 3+50E 32 M-2N 3+50E 32 M-2N 3+50E 35 M-2N 5+50E 24	
Non 4-bote 22 Mon 4+50E 43 Mon 5+00E 42 Mon 5+50E 26 Mon 6+00E 31 Mon 6+50E 34 Mon 7+00E 61 M-2N 0+50E 80 M-2N 0+50E 80 M-2N 1+50E 17 M-2N 1+50E 17 M-2N 1+50E 37 M-2N 2+50E 28 M-2N 3+50E 32 M-2N 3+50E 32 M-2N 3+50E 32 M-2N 3+50E 32 M-2N 3+50E 35 M-2N 3+50E 35 M-2N 3+50E 24	
Mon 4-50E 43 Mon 5-00E 42 Mon 5-50E 26 Mon 5-50E 31 Mon 6-50E 34 Mon 7-00E 61 M-2N 0+00E 61 M-2N 0+00E 61 M-2N 0+50E 80 M-2N 1+00E 17 M-2N 1+00E 17 M-2N 1+50E 37 M-2N 2+50E 28 M-2N 2+50E 28 M-2N 2+50E 37 M-2N 2+50E 37 M-2N 2+50E 32 M-2N 2+50E 35 M-2N 5+50E 24	
Mon 5+00E 42 Mon 5+50E 26 Mon 5+50E 31 Mon 6+00E 31 Mon 7+00E 34 Mon 7+00E 61 M-2n 0+00E 61 M-2n 0+50E 80 M-2n 1+50E 17 M-2n 1+50E 17 M-2n 2+00E 37 M-2n 2+50E 28 M-2n 3+50E 28 M-2n 3+50E 32 M-2n 3+50E 32 M-2n 3+50E 35 M-2n 5+50E 24 M-2n 5+50E 24	
MoN 5-50E 26 MON 6+00E 31 MON 6+50E 34 MON 7+00E 28 M-2N 0+00E 61 M-2N 0+50E 80 M-2N 0+50E 80 M-2N 1+50E 17 M-2N 1+50E 17 M-2N 2+00E 37 M-2N 2+50E 28 M-2N 3+50E 28 M-2N 3+50E 35 M-2N 3+50E 35 M-2N 5+50E 24 M-2N 5+50E 24	
NON 6400E 31 MON 6450E 34 MON 7400E 28 M-2N 0400E 61 M-2N 0450E 80 M-2N 0450E 80 M-2N 1400E 58 M-2N 1450E 17 M-2N 2400E 37 M-2N 2400E 37 M-2N 2400E 28 M-2N 3450E 28 M-2N 3450E 32 M-2N 4400E 95 M-2N 5450E 24 M-2N 5450E 24	
NON 6450E 34 MON 7400E 28 M-2N 0400E 61 M-2N 0450E 80 M-2N 0450E 80 M-2N 1400E 58 M-2N 1450E 17 M-2N 2400E 37 M-2N 2400E 37 M-2N 2400E 28 M-2N 3450E 28 M-2N 3450E 32 M-2N 4400E 95 M-2N 4450E 35 M-2N 5450E 24 M-2N 5450E 24	
Hon 7+00E 28 M-2N 0+00E 61 M-2N 0+50E 80 M-2N 1+00E 58 M-2N 1+50E 17 M-2N 2+50E 37 M-2N 2+50E 28 M-2N 3+00E 32 M-2N 3+50E 32 M-2N 4+50E 35 M-2N 5+00E 24 M-2N 5+50E 24	
M-2N 0+00E 61 M-2N 0+50E 80 M-2N 1+00E 58 M-2N 1+50E 17 M-2N 2+50E 37 M-2N 2+50E 28 M-2N 3+00E 42 M-2N 3+50E 32 M-2N 4+50E 35 M-2N 5+00E 24 M-2N 5+50E 24 M-2N 5+50E 24 M-2N 5+50E 24	
M-2N 0+50E 80 M-2N 1+00E 58 M-2N 1+50E 17 M-2N 1+50E 37 M-2N 2+50E 28 M-2N 3+00E 42 M-2N 3+50E 32 M-2N 4+00E 95 M-2N 4+50E 35 M-2N 5+00E 24 M-2N 5+50E 24	
M-2N 1+00E 58 M-2N 1+50E 17 M-2N 2+00E 37 M-2N 2+50E 28 M-2N 3+00E 42 M-2N 3+50E 32 M-2N 4+00E 95 M-2N 4+50E 35 M-2N 5+00E 24 M-2N 5+50E 24	
M-2N 1+00E 58 M-2N 1+50E 17 M-2N 2+00E 37 M-2N 2+50E 28 M-2N 3+00E 42 M-2N 3+50E 32 M-2N 3+50E 32 M-2N 4+00E 95 M-2N 5+50E 24 M-2N 5+50E 24	
M-2N 2+00E 37 M-2N 2+50E 28 M-2N 3+00E 42 M-2N 3+50E 32 M-2N 3+50E 32 M-2N 4+00E 95 M-2N 4+50E 35 M-2N 5+00E 24 M-2N 5+50E 24	
M-2N 2+50E 28 M-2N 3+00E 42 M-2N 3+50E 32 M-2N 3+50E 95 M-2N 4+50E 35 M-2N 5+00E 24 M-2N 5+50E 24 M-2N 5+50E 24	
M-2N 3+00E 42 M-2N 3+50E 32 M-2N 3+50E 95 M-2N 4+50E 35	
M-2N 3+00E 42 M-2N 3+50E 32 M-2N 3+50E 95 M-2N 4+50E 35	
M-2N 3+50E 32 M-2N 3+50E 95 M-2N 4+50E 35	
M-2N 4+00E 95 M-2N 4+50E 35 M-2N 5+00E 24 M-2N 5+50E 24	
M-2N 4+50E 35 M-2N 5+00E 24 M-2N 5+50E 24	
M-2N 5+00E 24 M-2N 5+50E 24	
M-2N 5+50E 24	
M-2N 5+50E 24	
M-2N 6+50E 37 M-2N 7+00E 30	

Intertek Testing Services Lab Bondar Clegg

REPORT: V90	REKA RESOURCES, INC. 8-00893.0 (COMPLETE)	DATE RECEIVED: 08-JUN-98	DATE PRINTED: 16-JUN-98 PAG	
SAMPLE NUMBER	ELEMENT AU30 Ag CU Pb Zn Mo Bi As Sb Hg Cu UNITS PPB PPM PPM PPM PPM PPM PPM PPM PPM PPM			
TS-1 MEG ST-2R	30 <.2 94 11 63 1 <1 107.5 2.0 0.103 32 <.2 16 <2 28 2 <1 22.7 1.1 0.018			

 MEG ST-2R
 32 < 2</th>
 16 < 2</th>
 28
 2
 1
 1.1
 0.016

 TR-1
 22 < 2</td>
 143
 8
 65
 2
 <1</td>
 42.2
 2.2
 0.046

Bondar-Clegg & Company Ltd., 130 Pemberton Avenue, North Vancouver, B.C., V7P 2R5, (604) 985-0681

hemical rt		
Geoc Lab Repo		
IECT: NO		
PRO 1 OF	с Та м РРМ 5 <10 5 <10	
PAGE		
) JUL - 98	Ga Li PPM PPM 3 16 2 6	· · · · · · · · · · · · · · · · · · ·
ED: 27-	Sr Y PM PPM 21 10 3 1	
E PRINT	0.35	
] DA1		
- JUL - 98		
IVED: 2	24 1.6	
() DATE RECI		
es	32	
rvic	n Te Ba M PPM PPM 5 <10 646 3 <10 700	
Se	3.65 7	
ing	37 <5 3	
est		
	PPM P	
tek · Cl	• •••	
ter ndar		
G LTD.	Cu Po Pm PPM	· · · · · · · · · · · · · · · · · · ·
ST CONSULTIN	LEMENT Ag UNITS PPM F <.2 1	
IENT: GEOQUE PORT: V98-01		
	SA NU A1	

	TS Intertek Testin Bondar Clegg					Geochemical Lab Report
	EKA RESOURCES, INC. -00893.1 (COMPLETE)		DATE RECEIVED: 09-JUN-98	DATE PRINTED: 16-JUN-98	PROJECT: BOW PAGE 1 OF 2	J
SAMPLE NUMBER	ELEMENT AU3O Ag CU Pb Zn Mo Ni Co Cd Bi UNITS PPB PPM PPM PPM PPM PPM PPM PPM PPM PPM	As SID Hg Fe Min Te PM PPM PPM PCT PPM PPM	Ba Cr V Sn W La / PPM PPM PPM PPM PPM P0	•••••	Y Ga Li Nb Sc 1 M PPM PPM PPM PPM PF	

<5 <.2 79 7 68 <1 40 24 0.2 <5 6 <5 0.082 4.53 1095 <10 36 54 147 <20 <20 9 3.51 1.22 1.88 0.04 0.03 31 41 <2 9 2 13 <10 0.29 13 5 <.2 59 4 58 2 29 32 <.2 <5 <5 <5 0.136 4.02 2643 <10 40 50 146 <20 <20 10 2.69 0.79 1.52 0.02 0.02 27 40 <2 8 2 12 <10 0.15 4 <5 <.2 64 6 79 1 27 21 <.2 <5 14 <5 0.157 3.31 2630 <10 65 43 94 <20 <20 8 2.48 0.61 1.41 0.02 0.03 35 32 <2 9 1 9 <10 0.09 1</p>

2+10N 0+30E

MEG ST-1

MEG ST-2

			In Bor	ter	tek	Tes) : stin	ig S	ervi	ces	<u>و</u> ر د]	() ([*]	···) (10		y) (******		Geochemical Lab Report
CLIENT: EUREK REPORT: V98-0		S, IN	c.			00					DATE REC	EIVED: 23	5- JUN-98	DATE PRI	INTED: 2	9-jun-98	B PAGE	PROJECT E 1 OF 2	I: NONE	GIVEN1
SAMPLE NUMBER	ELEMENT A UNITS PP	ng Cu M PPM	Pb PPM	Zn M PPM PP	o Ni MPPMF	Co Cd B PPM PPM PP	i As MPPMP	Sb Fe PM PCT	Mn Te PPM PPM F	Ba Cr PM PPM PP	V Sn. 1 M PPM PPM	i la Al 1 PPM PC1	. Mg C I PCT PC	a Na I T PCT PC	(Sr (PPM PP	Y Ga L MPPMPF	.i Nb PM PPM F	Sc Ta Ti PPM PPM PCT	i Zr FPPM	
NUMBER A8+00N B/L A13+00N 3+00E C10+00N 0+40E RA R-01	<. E <. E <.	.2 51 .2 26 .2 45 .2 55 .2 55		48 < 19 < 73 < 17 < 62 <	1 39 3 23 1 60 3 19 1 39	22 <.2 < 9 <.2 < 5 <.2 < 25 <.2 <		<5 4.03 <5 1.48 <5 5.46 <5 1.37 <5 5.21	667 <10 672 <10 263 <10 641 <10	54 134 2 19 62 12 3 245 1 14 44 13	9 <20 <21	 4 0.9 3 3.44 < 1 0.64 3 2.64 	7 1.70 2.5 5 0.69 0.0 4 1.96 2.5 5 0.60 0.1 3 1.66 1.7	0 0.04 0.01 7 0.02 0.11 5 0.05 0.04 12 <.01 <.0 7 0.08 0.0 7 0.08 0.0	2 3 4 12 1 1 3 <			<5 <10 0.37 <5 <10 <.01 6 <10 0.37 <5 <10 <.01 6 <10 0.47 <7 <6 <10 0.47 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7	7 20 1 3 9 40 1 <1	
																			·	

Bondar-Clegg & Company Ltd., 130 Pemberton Avenue, North Vancouver, B.C., V7P 2R5, (604) 985-0681

Geochemical]

Lab

Report

ENT: EURER ORT: V98-0		-																D	ATE	RECE	I VED :	: 23-	JUN-9	98 	DAT	e pri	NTED:	29-	JUN-	98	PAGE	E 1 OF	: 3	
1PLE 1BER	ELEMENT UNITS 1																							Ca PCT	Na PCT				1		1.1	SC TE PPM PPM		
+00n 1+30W		<.2	62	5	97	1	52	22	<.2	<5	15	<5	4.22	2379	<10	194	76	112	<20	<20	92	2.75	1.37	1.50	0.01	0.04	27	21	5	20	10	12 <10) 0.2 0	3
-00N 0+30W		<.2																														9 <10		
00N 1+43E		<.2																														9 <10		
00N 3+62E		<.2	67	5	143	1	43	23	< . 2	<5	15	<5	3.80	2342	<10	223	67	107	<20	<20	11 2	2.36	1.06	1.53	0.01	0.03	28	22	5	18	9	10 <10	0.20	.4
)+00N 0+80		<.2		5	71	<1	46	25	< . 2	<5	23	<5	4,38	6279	<10	247	70	112	<20	<20	7 2	2.61	1.08	1.20	0.01	0.03	23	17	5	19	9	11 <1(0.16	3
+00N 5+12	1	1.0	234	6	76	1	119	23	0.5	<5	14	<5	3.08	1063	<10	376	95	64	<20	<20	17 2	2.38	0.73	1.61	0.01	0.03	35	48	3	22	6	15 <10	0.08	1
RID L2+00	1+10W	<.2	124	2	53	<1	41	16	<.2	<5	<5	<5	2.81	396	<10	152	90	90	<20	<20	16 2	2.35	1.14	1.63	0.02	0.03	26	74	5	16	8	29 <10	0.24	11
RID L4+00	N 0+75E	<.2	45	<2	64	<1	52	25	<.2	<5	8	<5	5.16	1063	<10	113	70	125	<20	<20	5 2	2.96	1.87	1.41	0.03	0.04	29	13	7	24	10	9 <10	0.32	15
00N 1+50W		<.2	42	3	60	<1	36	18	<.2	<5	11	<5	3.79	873	<10	172	57	104	<20	<20	9 2	2.61	1.08	1.17	0.02	0.04	22	19	6	19	9	12 <10	0.20	4
00n 6+10W		<.2	38	4	55	<1	42	20	<.2	<5	< 5	<5	3.90	763	<10	257	63	93	<20	<20	9 2	2.56	1.07	1.12	0.02	0.04	23	11	6	12	8	7 <10) 0.20	4
97N 9+30W		<.2	44	3	55	<1	39	21	<.2	<5	6	<5	3.86	732	<10	134	51	101	<20	<20	6 2	2.63	1.18	1.36	0.03	0.04	24	16	5	10	8	9 <10	0.25	7
00N 2+65E		<.2	45	5	76	<1	49	23	<.2	<5	12	<5	5.50	2009	<10	515	53	127	<20	<20	7 2	2.84	2.07	0.93	0.02	0.08	12	13	7	21	11	8 <10	0.31	18
00N 2+40W		0.2	58	5	74	<1	41	19	<.2	<5	<5	<5	3.64	1277	<10	425	65	89	<20	<20	12	2.33	0.93	0.98	0.01	0.05	25	14	6	13	8	7 <10	0 0.15	2
+00N 3+40		<.2	33	3	60	<1	36	27	<.2	<5	6	<5	4.04	4603	<10	481	46	90	<20	<20	9.7	2.13	0.74	0.88	0.01	0.03	18	12	4	9	8	6 <10	j 0.19	- 4
+70N B/L	1	<.2	38	4	81	<1	36	18	<,2	<5	6	<5	3.20	1356	<10	345	55	86	<20	<20	11	2.38	0.76	0.94	0.01	0.03	19	15	5	12	7	8 <10	0.16	2
+00N 2+65	H	<.2	26	3	41	<1	31	14	<.2	<5	<5	<5	2.70	462	<10	147	32	66	<20	<20	6	1.46	0.81	0.85	0.01	0.03	12	10	3	7	6	5 <10	0.19	10
0+00N 1+00		<.2	33	<2	77	<1	28	21	<.2	<5	<5	<5	3.87	2549	<10	81	42	110	<20	<20	5	2.53	0.95	1.67	0.02	0.02	26	24	5	10	9	11 <10	0.24	6
1+05N 2+75	W	<.2	31	<2	84	<1	43	26	<.2	<5	<5	<5	5.13	2429	<10	105	50	128	<20	<20	4 ;	2.78	1.53	1.62	0.03	0.03	20	18	7	12	11	9 <10	0.34	13
															Ţ,		· ·		. · .							· . ·								·
							anti Angla A		-						^л .,						Miller Providente				an i Stat								-	
			l, , ja										17						1		1				1.12.1		1.1.1							

S Intertek Testing Services Bondar Clegg

Geochemical Lab Report

	REKA RESOURCES, INC. 8-00964.1 (COMPLETE)	DATE RECEIVED	: 08-JUL-98	PROJECT: NONE G		PAGE	1 OF 3
SAMPLE	ELEMENT Au30		SAMPLE	ELEMENT J	Au30		
NUMBER	UNITS PPB		NUMBER	UNITS	PPB		
							·····
S1 A4+00N-	0+00E 13		S1 A13+00N-4		<5		
S1 A4+00N-	1+00E <5		S1 A14+00N-3		<5		
S1 A4+00N-	2+00E 32		S1 A15+00N-3		6		
S1 A6+00N-	7+00W 6		S1 A17+00N-3	3+50E	6		
S1 A6+00N-	7+50W 22						
S1 A10+00N	-0+50₩ <5						•••••
S1 A10+00N							
S1 A10+00N							
S1 A10+00N							
S1 A10+00N	_						
	0.00F -F				•••••		
S1 A11+00N							
S1 A11+00N							
S1 A11+00N							
S1 A11+00N							
S1 A11+00N	-2+UUE 5						
\$1 A11+00N	-2+50E 24						
S1 A11+00N							
S1 A11+00N							
S1 A11+00N							
S1 A11+00N							
						•••••	
S1 A11+00N	-1+00W 6						
S1 A11+00N	-1+50W <5						
S1 A11+00M	-2+00¥ 17						
S1 A11+00N	-2+50W 18						
S1 A11+00M	-3+00W 12						
	······				·····		
\$1 A11+00N							•
S1 A11+00N							
S1 A11+00N							
S1 A11+00							
S1 A11+00	I-5+50W <5						
S1 A11+00	l-6+00₩ 8						
S1 A12+00	I-6+00W <5						
S1 A13+00	1-0+00E <5						
S1 A13+00	I-0+50E <5						
S1 A13+00	N-1+00E 6)					
S1 A13+00	N-1+50E <5						
S1 A13+00							
\$1 A13+00							
s1 A13+00							
S1 A13+00	N-3+50E 6)					

Bondar-Clegg & Company Ltd. 130 Pemberton Avenue, North Vancouver, B.C., V7P 2R5, Canada Tel: (604) 985-0681, Fax: (604) 985-1071

ITS Intertek Testing Services Bondar Clegg

Geochemical Lab Report

	CLIENT: EUREKA R	ESOURCES, INC	2.			PROJECT: NONE GIVEN1		
	REPORT: V98-0097			DATE RECEIVED:	08-JUL-98	DATE PRINTED: 14-JUL	-98 PAGE	1 OF 3
	SAMPLE NUMBER		130 PPB					
	S1 B3+00N-1+50W		6		••••••••••••••••••••••••••••••••••••			
. : • :	\$1 C2+00N-1+00W		8					
_	S1 C4+00N-2+50W		5					
	S1 C8+00N-2+00W	_	8					
	S1 C10+00N-2+00E		<5					·····
<u> </u>	S1 D3+00N-1+00W		<5					
_								
<u>ا</u>								
	·····							
_								
• •								:
_	·						••••••	
L ./								
_								
-	······································							
_								
							, ,	
• •								
5								
	<pre>}</pre>							
1								
ب								
<u> </u>	<u></u>			D 1 (1)	O			
			120 Dombor	Bondar-Clegg &		2R5 Canada		

CLIENT: EUREKA RESOURCES, INC. DATE RECEIVED: 08-JUL-98 PROJECT: NONE GIVEN1 DATE RECEIVED: 17-JUL-98 PAGE 1 OF 3

	SAMPLE	ELEMENT	Au30	
-	NUMBER	UNITS	ррв	
-	S1 A13+00N-0+5	លម	<5	
	S1 A13+00N-1+0		7	
	S1 A13+00N-1+5	iow	<5	
	S1 A13+00N-2+0)OW	<5	
	S1 A13+00N-2+5	50W	<5	
	\$1 A13+00N-3+0		<5	
	S1 A13+00N-3+5		<5	
-	S1 A13+00N-4+0		<5	
	S1 A13+00N-4+	50W	<5	
	S1 A13+00N-5+0	WOO	<5	
-	S1 A13+00N-5+	50W	<5	······
	S1 A13+00N-6+0		<5	

Appendix D - Writer's Certificate

, ____, .

: : :

Writer's Certificate

I, John R. Kerr, of the City of Vancouver, B.C., hereby certify that:

1) I am a member of the Association of Professional Engineers of British Columbia (membership #6858).

2) I am a graduate of the University of British Columbia (1964) with a BASc degree in Geological Engineering. I have practised my profession continuously since graduation.

3) I supervised and assisted with the collection of data as discussed in this report. I am the author of this report, and verify the costs as reported to be true.

4) I am an officer and director of Eureka Resources, Inc., and hold a direct and indirect interest in the shares of the company.

Dated the 20th day of November, 1998

07 OHN R. KERR en

John R. Kerr, P. Eng