Assessment Report

1998 Diamond Drilling and Geological Mapping

MI Re	VE >C	RAL d.	ΠΤ	LE	S BRA	NCH
1.#	Mitting	DEC	1	7	1998	
File.	K-1-1 -1	Kang A Maril Inc				
	<u>V</u> /	ANCO)U\	/81	R, B.C.	[

at Mount Polley Mine

Cariboo Mining Division

N.T.S. 93A/12E Latitude 52^o 33' N Longitude 121^o 38' W

Owner: Mount Polley Holding Company Limited 420 – 355 Burrard Street Vancouver, B.C. V6C 2G8

GEOLOGICAL SURVEY BRANCH

Christopher J. Wild, P. Eng. Mine Geologist

December 10, 1998

2

ċ.

December 10, 1998

Table of Contents

1.0	Summ	nary 1	
2.0	Introd	uction 2	
2.0	2.1	Location and Access	,
	2.1	Physiography 2	,
	2.2	Claim Status	;
	2.5	Bronorty History	5
	2.4		7
	2.5		
3.0	Geolo	ogical Setting)
	3.1	Regional Geology	3
	3.2	Deposit Geology	9
4.0	1998	Diamond Drilling Program 12	2
	4.1	Description	2
	4.2	Rock Classification	4
	4.3	Alteration14	4
	4.4	MP-98-011	5
	4.5	MP-98-02	6
	4.6	MP-98-03 1	7
			~
5.0	Geot	echnical Analysis	a
6.0	Geol	ogical Mapping2	0
7.0	Reco	ommendations2	2
	7.1	Geological Mapping and Core Relogging2	2
	7.2	Diamond Drilling2	2
8.0	Refe	rences2	!4

December 10, 1998

List of Figures

Figure 1	Property Location Map	••••••	
Figure 2	Claim Map	•••••••••••••••••••••••••••••••••••••••	
Figure 3	Simplified Regional Geology	·····	11
Figure 4	Drillhole Location Map		13
Figure 5	Section 3750 N		in pocket
Figure 6	Section 3120 N		in pocket
Figure 7	Section 3340 N		in pocket

List of Tables

Table 1	Mount Polley Mineral Claims	. 5
Table 2	1998 Diamond Drillholes	12
Table 3	MP-98-1 : Significant Intersections	16
Table 4	MP-98-2 : Significant Intersections	17
Table 5	MP-98-3 : Significant Intersections	18
Table 6	Lithologic Units – Cariboo Pit	21
Table 7	Proposed Diamond Drilling - 1999	23

Appendices

- Appendix 11998 Program ExpendituresAppendix 2Proposed 1999 BudgetAppendix 3Statement of Qualifications
- Appendix 4 Diamond Drillhole Logs
- Appendix 5 Geotechnical Logs
- Appendix 6 Analytical Data

1.0 Summary

A total of 792.18 metres of diamond drilling were completed in three holes around the Cariboo Pit at Mount Polley Mine. The three holes tested three zones; Cariboo North, Southeast Zone, and Cariboo South to an elevation of 900 metres, approximately 230 metres below current mining. The objectives of the drill program were to test the continuity of the orebody to depth; to define the relationship between mineralization, alteration and rock type; to refine the current rock classification system to ensure consistency; and to assess rock quality to assist in pit design.

MP-98-1 encountered 8 zones of significant mineralization, hosted mainly in intrusion breccia. The best results include 0.287% copper, 0.548 gpt gold, and a copper oxide to total copper ratio of 15.6% between 123.3 – 132.2 metres and 0.225% copper, 0.380 gpt gold, and an oxide ratio of 15.1% between 258.3 – 280.0 metres. The latter intersection, just above the bounding diorite unit, demonstrates the potential for increasing mineable reserves along the central and east sides of the North Cariboo and Bell Pits at depth.

In MP-98-2, the top of the hole is leached, with an underlying zone of enrichment averaging 0.401% copper, 0.448 gpt gold and an oxide ratio of 15.1% over 25.5 metres. Underlying volcanics ran 0.243% copper, 0.22 gpt gold and an oxide ratio of 27.6% volcanics between 90.09 – 109.65 metres, and 0.272% copper and 0.264 gpt gold over 28.6 metres and 0.199% copper and 0.256 gpt gold over 23.0 metres, respectively, between 177.7 – 237.0 metres. MP-98-02 demonstrates the potential for developing reserves to the south and east of the Cariboo Pit.

The top 31.95 metres of MP-98-3 ran 0.280% copper and 0.449 gpt gold with an oxide ratio of 87.2% in broken and weathered intrusion breccia. Below a series of three augite porphyry dykes, oxidation drops dramatically, with good grades between 61.2 - 83.8 metres and 89.8 - 109.5 metres in moderately to strongly potassic intrusion breccia. Three more significant intersections were encountered below the dyke, including a 25.5 metre section assaying 0.195% copper and 0.281 gpt gold below 213.5 metres elevation.

A program of detailed mapping and core relogging was initiated to determine distribution of major rock units and their relationship to ore-grade mineralization within the Cariboo Pit. Hydrothermal brecciation of intrusion breccia, plagioclase porphyry, and monzonite is the main control on mineralization. Recommendations for further work include ongoing geological mapping both in-pit and out, relogging of core from holes outside the Cariboo Pit, and diamond drilling of targets identified by mapping, relogging, and geological modelling.

2.0 Introduction

The Mount Polley Mine in central B.C., is a low-grade, alkalic copper-gold porphyry deposit recently put into production by Mount Polley Mining Corporation at a capital cost of \$123.5 million. The operation consists of an 18,000 tonne per day mine and concentrator complex with a project life of 12 to 14 years. Reserves prior to production were published at 82.3 million tonnes at an average grade of 0.30% copper and 0.47% grams per tonne gold. The deposit will be mined sequentially from 3 pits; Cariboo, Bell, and Springer.

A total of 792.18 metres of diamond drilling completed during the summer of 1998 tested three targets at depth within the Cariboo Pit. The three holes tested three zones; Cariboo North, Southeast Zone, and Cariboo South to an elevation of 900 metres, approximately 230 metres below current mining. The objectives of the program were to test the continuity of the orebody to depth, define the relationship between mineralization, alteration and rock type, refine the current rock classification system to ensure consistency, and assess rock quality to assist in pit design. A program of detailed geological mapping and core relogging was initiated within the Cariboo Pit to define geological controls on mineralization.

2.1 Location and Access

Mount Polley Mine is located in south-central British Columbia, 8 kilometers southwest of the village of Likely and 56 kilometers northeast of Williams Lake (Figure 1). There is excellent access to the property via the Likely Road from Highway 97 at 150 Mile House, 76 kilometers to Morehead Lake, and 14 kilometers along the Bootjack Forest Access Road to the minesite. Other forestry and mining roads afford good access to most parts of the property.

2.2 Physiography

The property sits near the eastern edge of the Fraser Plateau physiographic subdivision, characterized by rolling topography and moderate relief. Elevations range from 920 metres at Polley Lake to 1266 metres at the summit of Mount Polley. Forest cover consists of western red cedar, Douglas fir and sub-alpine fir, with lesser black cottonwood, trembling aspen and paper birch. Commercial logging has clear-cut much of the area over the last several years.

Mean monthly temperatures range from 13.7°C in July to –10.7°C in January. Precipitation averages 856 mm with around 350mm falling as snow.

2.3 Claim Status

The Mount Polley property consists of 21 mineral claims, one fractional claim, and one mining lease (Figure 2). Area covered totals approximately 8,575 hectares including 483.16 hectares covered by Mining Lease 345731. Table 1 lists claims currently in good standing by claim name, number, units, and expiry date. All these claims are owned by *Mount Polley Holding Company Limited*.

Table 1

Mount Polley Mining Claims

Claim Name	Record No.	Units	Area (ha)	Expiry Date	NTS
CB 1	204470	20	500	04-May-01	93A/12E
CB 5	204472	20	500	04-May-02	93A/12E
CB 8	204473	8	200	04-May-03	93A/12E
CB 9	204474	20	500	04-May-02	93A/12E
CB 16	204475	20	500	04-May-03	93A/12E
CB 19	204476	20	500	04-May-02	93A/12E
CB 20	204477	20	500	04-May-03	93A/12E
PM-3	206448	20	500	17-Sep-03	93A/12E
PM-4	206449	20	500	14-Sep-03	93A/12E
PM-5	206450	20	500	29-Sep-03	93A/12E
PM-6	206451	20	500	29-Sep-03	93A/12E
PM-7	206452	12	300	29-Sep-04	93A/12E
PM-8	206453	20	500	17-Sep-03	93A/12E
PM-9	206798	6	150	23-Feb-03	93A/12E
PM-10	206799	6	150	23-Feb-03	93A/12E
PM-11	206800	15	375	23-Feb-03	93A/12E
PM-12	206801	15	375	21-Feb-02	93A/12E
PM-13	207244	12	300	26-Sep-03	93A/12E
IMC 1*	340017	20	500	22-Aug-26	93A/12E
IMC 2	340018	15	375	21-Sep-03	93A/12E
IMC 3	340019	5	125	22-Sep-03	93A/12E
IMC 4 fr.	340020	1	25	22-Sep-05	93A/12E
ML 345731*	345731	-	483	22-Aug-99	93A/12E
		Total	8,558	На	

2.4 Property History

The Mount Polley Deposit was first discovered as a result of follow-up prospecting of an aeromagnetic anomaly highlighted on a government aeromagnetic map sheet issued in 1963. Claims were first staked in 1964 by Mastodon Highland Bell Mines Ltd. and Leitch Gold Mines. In 1966, the two companies formed Cariboo-Bell Copper Mines Ltd. The property was mapped, soil and rock geochemical surveys and airborne and ground-based geophysical surveys were conducted, followed by bulldozer trenching

and drilling. A group of Japanese companies joined Cariboo Bell but later withdrew over concerns about the metallurgy. In 1969, Teck Corporation took over control of Cariboo Bell.

During the period from 1966 to 1972, a total of 18,341 metres of diamond drilling and 8,533 metres of percussion drilling were completed in 215 holes. In 1970, magnetic, seimic, and induced polarization (IP) surveys were conducted on the property. Teck continued to work the property in 1972, 73, and 75. In 1978, Highland Crow Resources, an affiliate of Teck, acquired control of Cariboo Bell. The following year, Teck completed 6 percussion holes totalling 354 metres.

In 1981, E&B Explorations Inc. optioned the property from Highland Crow and completed 1,746 metres of diamond drilling, 1,295 metres of rotary drilling, and soil geochemical and ground control surveys. The following year, E&B acquired 100% interest and continued to work on the property with joint venture partners Geomex Partnerships and Imperial Metals Corporation. From 1982 to 1987, E&B completed soil geochemistry, magnetic, VLF-EM and IP surveys; geological mapping; 3,585 metres of diamond drilling and 4,026 metres of reverse circulation drilling.

In 1987, Imperial Metals merged with Geomex Partnership and purchased the remaining interest in the property from Homestake Canada and others. (E&B had merged with Mascot Gold Mines which subsequently merged with Corona Corporation and finally became Homestake Canada).

During the period between 1988 and 1990, Imperial Metals Corporation conducted a comprehensive exploration program consisting of 238 NQ diamond drillholes totalling 27,566 metres, the collection of 6 bulk samples totalling 130 tonnes from surface trenches, geological mapping and IP surveys. A positive feasibility study incorporating new ore reserve calculations, metallurgical testing, geotechnical evaluations, and environmental impact assessments was completed in 1990 by Wright Engineers Ltd.

In 1993/94, Theresa Fraser from the University of British Columbia completed a Masters thesis on the geology, alteration, and origin of hydrothermal breccias on the deposit. The focus of the study was to document data important to aspects of the genesis of the deposit, particularly breccia distribution, breccia types, distinctive matrix minerals and alteration.

In 1994, Gibraltar Mines Ltd., under an option agreement with Imperial Metals, carried out 1,216 metres of diamond drilling in 7 holes on the deposit. Upon evaluation of the project, Gibraltar declined further participation. Following a merger with Bethlehem Resources Corporation in 1995, Imperial completed an in-house feasibility study and arranged financing with Sumitomo Corporation through a joint venture with SC Minerals Canada, culminating in the formation of Mount Polley Mining Corporation in April 1996.

December 10, 1998

In 1995, 5 HQ diamond drillholes totaling 883.92 metres were completed on the south end of the Cariboo Zone for metallurgical testing. An additional 11 NQ holes totaling 1,773.33 metres were completed on various targets around the property. Of the 11 holes, 2 were in the Kay Lake Basin area, 4 on the Road Zone, 1 immediately northwest of the design Springer Pit, and 4 south of the design Cariboo Pit. Seven 6" diameter rotary holes totalling 932.38 metres were also drilled. The primary purpose of the holes was to source and monitor groundwater, but cuttings were also collected, logged and sampled over 10 foot (3.05 metre) intervals. Sites included the southeast end of the design Cariboo Pit, three immediately southeast and southwest of the millsite, one immediately east of the north end of the Cariboo Pit, one between the East Rock Disposal Site and Polley Lake, and one between the proposed Springer Pit and Bootjack Lake. Also, a soil geochemical survey was conducted over 6.175 kilometers of grid between an old E&B grid and the north claim boundary. Lines were spaced at 100 metres, stations at 25 metres.

In 1996, 7 NQ diamond drillholes totalling 991.51 metres were completed peripheral to the Mount Polley orebody. Three holes totalling 483.11 metres were drilled on the Road Zone, three more totalling 369.72 metres were completed on the Northwest Zone, 800 metres northwest of the design Springer Pit, and a single inclined hole totalling 138.68 metres was completed on the S Zone west of the Road Zone. In addition, a very limited program of rock geochemistry was conducted on new rock exposures within the mine property, including the last 2 km of the mine access road, Southeast Sediment Pond, Perimeter Ditch, S Zone, and Gavin Lake.

The 1997 exploration program focussed on defining mineable limits on the east and south margins of the Cariboo Pit. Diamond drilling consisted of 15 NQ holes totalling 1,614.0 metres along the East and South Cariboo mineralized trends. Additionally, 17 short (average 40 metres) percussion holes totalling 702.1 metres were drilled along the East Cariboo Zone to better define mineralization for mine planning. To better understand and classify the geology, a short program of detailed (1:500 scale) geological mapping was initiated along this eastern trend (Read, 1997), in conjunction with ongoing wall mapping in the Cariboo Pit. Three percussion water well holes totalling 350.5 metres were drilled south of the mill complex, immediately south of the Cariboo Pit and at 10 kilometre on the Bootjack Road in an attempt to source groundwater for mining and milling operations. Drill cuttings were collected and inspected for each 30 foot interval. Miscellaneous exploration included rock chip samples collected from new blast exposed outcrops at 9.5 kilometre on the Bootjack Road.

2.5 1998 Program

A total of 792.18 metres of diamond drilling were completed in three holes around the Cariboo Pit at Mount Polley Mine. The three holes tested three zones; Cariboo North, Southeast Zone, and Cariboo South to an elevation of 900 metres, approximately 230 metres below current mining. The objectives of

the drill program were to test the continuity of the orebody to depth; to define the relationship between mineralization, alteration and rock type; to refine the current rock classification system to ensure consistency; and to assess rock quality to assist in pit design. A program of detailed geological mapping and core relogging was initiated to determine the distribution of major rock units and their relationship to ore mineralization within the Cariboo Pit.

3.0 Geological Setting

3.1 Regional Geology

The Mount Polley deposit is hosted in an alkalic intrusive complex within the Central Quesnel Belt (CQB), a part of Quesnellia extending along the eastern margin of the Intermontane Belt in south-central British Columbia. The CQB is comprised of Upper Triassic to Lower Jurassic sedimentary and volcanic rocks of island arc and oceanic origin extending along the western margin of the Omineca Crystalline Belt. These Nicola Group rocks are thought to have formed in a Late Triassic volcanic arc, east of a subduction-accretion complex.

Stocks within the CQB are interpreted to be coeval with the more broadly distributed volcanic rocks, likely as volcanic centres. Northwest trending faults appear to control the emplacement of these centres. The Polley Stock is made up of syenite, monzonite, monzodiorite, and diorite, dated around 202 Ma, intruding polylithic volcanic breccia and alkali basalt of the Nicola Group.

3.1 Deposit Geology

The Mount Polley deposit is hosted in the Polley Stock, a 5.5 by 4 kilometre intrusive body largely comprised of diorite. The orebody is hosted within intrusion and hydrothermal breccias related to the monzonite intrusions along the north-northwest striking Polley Fault. This fault separates the deposit into the Central Zone (Cariboo and Bell Pits) and the West Zone (Springer Pit), each with distinctive characteristics of mineralization, alteration and breccia types.

Deposit lithologies are chiefly diorite, monzonite, plagioclase porphyry, and intrusion breccia consisting of diorite clasts in a plagioclase porphyry or monzonite matrix. Other important lithologies include volcanic breccias and tuffs, common along the east side of the deposit, porphyritic augite monzodiorite, potassium feldspar phyric monzonite, augite porphyry, and biotite lamprophyre dykes. These units are interpreted as dykes, although a stock of phyric monzonite breccia also occupies the summit of Mount Polley.

The diorite host is fine grained, equigranular to weakly porphyritic, composed of plagioclase, minor pyroxene, and accessory minerals including magnetite, sphene and apatite. Plagioclase porphyry and monzonite intrude diorite and form the matrix of much of the intrusion breccia. The porphyry is crowded with plagioclase phencrysts up to 5 millimetres in length and variably sericitized. Mafics include primary biotite, hornblende and magnetite although the unit is commonly strongly altered.

Polymictic volcanic breccias and tuffs form part of the eastern margin of the central zone becoming more dominant to the south and east. Blocks of volcanics form xenoliths in the diorite and occasional clasts in intrusion and hydrothermal breccias. In the southeast part of the central zone, a unit of magnetite-rich rock, possibly skarn related, occupies an area up to 100 by 100 metres. This unit is in sharp contact with both diorite and plagioclase porphyry, and may replace volcanics. Locally, this unit appears to be well mineralized and coincident with possible supergene mineralization.

Hydrothermal brecciation is superimposed on diorite, plagioclase porphyry, monzonite, intrusion breccia and, more rarely, volcanic tuff/breccia. Fraser (1994) divided the hydrothermal breccias into four types based on matrix mineralogy, including actinolite, biotite, magnetite, and albite. Actinolite breccia, mapped in the central zone east of the Polley Fault, consists of subangular clasts in a matrix of fibrous dark green actinolite and potassically altered material. Biotite breccia is identified only in the southern part of the central zone by the presence of hydrothermal biotite flakes locally altered to chlorite. Magnetite breccia is much less abundant and localized. Albite breccia dominates the west zone and is identified by the presence of prismatic albite crystals in vugs in the breccia matrix commonly with secondary biotite. The effects of albitization make it difficult to distinguish clasts.

Alteration at Mount Polley, typical of alkalic porphyry systems, is dominated by a central potassic zone defined by potassium feldspar-albite, biotite, and actinolite, with little or no phyllic/argillic zone. The potassic core is coincident with hydrothermal and intrusive brecciation as well as copper-gold mineralization. The propylitic zone is characterized by albite, epidote, chlorite, carbonates, garnet, pyrite and zeolites. A pyrite halo has been identified northeast and southwest of the deposit within the propylitic zone.

The deposit contains chalcopyrite, pyrite, and bornite as primary sulphides. Concentrate polished grain mounts revealed rare tetrahedrite, galena, sphalerite, and molybdenite. Secondary or supergene sulphides are also rare but include chalcocite, covellite, and digenite. Oxides include malachite, azurite, magnetite, hematite, and limonites likely goethite and minor jarosite. Chrysocolla is a relatively rare secondary copper mineral. Native gold is present as 5 to 30 micron inclusions in chalcopyrite. Ore mineralogy is hosted primarily in hydrothermal and intrusion breccias, with lesser amounts in plagioclase porphyry, monzonite, diorite, and volcanics.

) ()) ()) ()) ())

)

) (

<u>}</u>

1 ()

)

ì

MOUNT PO	OLLEY
MINING CORP	ORATION
SIMPLIF	IED
REGIONAL G	EOLOGY
DATE: January 1998 FILE	NAME: FIG.
DRAWN BY: CJW/rjw M	IPREGGEO.DWG 3

) (

4.0 1998 Diamond Drilling Program

4.1 Description

The focus of the 1998 drill program was four-fold. The primary aim was test for high-grade mineralization at depth. The orebody has demonstrated strong vertical continuity in the upper benches of the Cariboo Pit, and there is excellent potential for continuation of high-grade mineralization beyond the depth of previous drilling. Secondly, the relationship between mineralization, protolith, and alteration continues to be examined. Thirdly, the 1997 rock classification (Read, 1997), designed for surface mapping, was tested and will likely be expanded to fit in-pit geological mapping and core re-logging. Continuity between surface and subsurface observations is critical for consistent geological modeling in the future. Results will help guide exploration locally and regionally. Lastly, geotechnical logging has added structural and rock quality data that will aid pit design.

Exploration in 1998 at the Mount Polley Mine consisted of 792.18 meters of diamond drilling (NQ-size core) in 3 vertical holes, completed during June and July of 1998 and all within the present open pit. One hole was drilled in each of the following areas: Cariboo North (MP-98-01), Southeast (MP-98-02), and Cariboo South (MP-98-03). Target depth and actual drilled depth of the holes are shown in Table 2.

Table 2

1998 Diamond Drillholes

Hole No.	Zone	Coordinate	Coordinates			Target Depth	Bottom	Az./Dip
		Northing	Easting	Elevation	(m)	(m)	Elevation	(degree)
98-01	Cariboo North	3742.59	2169.58	1189.57	289.56	240	900.01	-90
98-02	Southeast	3120.59	2410.31	1149.56	249.94	200	899.62	-90
98-03	Cariboo South	3340.14	2179.64	1150.34	252.68	200	897.66	-90

All core was logged and sampled; a total of 548 samples were taken over an average length of 1.5 metres. Samples were cut in half with a rock saw. One half of the core was shipped to Intertek Testing (Bondar Clegg) in North Vancouver for assaying and the other half stored on the property for future reference. All samples were dried, crushed (-10 mesh), split (1000 grams) and pulverized (-150 mesh) at Intertek before being analyzed for total copper, oxide copper, gold, and iron. Total copper and iron were determined with HNO₃/HCI/HF/HCIO₄ digestion with atomic absorption finish (0.01-15% detection limit). Copper oxide was determined using a 30% H_2SO_4 leach and atomic absorption finish (0.01% lower detection limit).

.

2

レ

4.2 Rock Classification

The following rock types dominate Cariboo Pit geology; plagioclase porphyry and monzonite, diorite, intrusion breccia, volcanic rocks, and augite porphyry dykes. Plagioclase porphyry occurs as discrete intrusions into diorite and forms the matrix of the intrusion breccia. The unit is light grey to pink and generally strongly porphyritic. Monzonite is a non-porphyritic phase of the plagioclase porphyry unit. Both phases can be strongly altered and host patchy ore-grade mineralization. Crosscutting relationships show that both phases intrude the diorite.

Intrusion breccia is a most dynamic rock type, locally exhibiting intense potassic flooding that obliterates much of the texture of the rock. In less altered areas, potassium feldspar is confined to vein envelopes, indicating a decrease in porosity of the rock. Clasts observed within the breccia vary in size from <2cm to 2m, and are dominantly diorite or volcanic, with some monzonitic clasts in MP-98-01. Clast-supported and matrix-supported breccia textures are both present. Breccia classification based on matrix mineralogy was discontinued, although trends noted by Fraser (1994) generally held true for the 3 holes. Also, albite is locally common throughout MP-98-03.

Dark grey volcanic rocks are abundant in MP-98-02. These rocks are very fine grained and massive. The matrix consists of plagioclase, biotite and occasional dark mafic 1mm clasts. Phyric plagioclase is present in low quantities. Alteration is generally confined to vein halos, but occasionally, the rock takes on a light pink tinge, indicating selective potassium alteration in the matrix. Mineralization in this unit is highly variable.

Augite porphyry dykes are intersected in all three drillholes. Dark green to pink in colour, the dykes commonly display chill margins and oxidation (hematite) at contacts. Augite phenocrysts (1-3 mm, 15-20%) are nestled in a massive biotite, pyroxene matrix. Alteration of these dykes is absent or weakly potassic. Mineralization is absent. Biotite lamprophyre dykes form the latest intrusive event, occupying steep north-trending fault zones.

4.3 Alteration

A preliminary breakdown of alteration type and intensity is being used to analyze the connection between alteration and mineralization. A description of differing intensities of potassic alteration was devised based on the following descriptions:

Extreme Potassic Alteration (sample from MP-98-01, 28.4 - 28.55 m)

Extreme potassic alteration can be characterized as a massive pink microgranular anhedral aggregate composed of up to 50% potassium feldspar. Clasts or remains of the host rock have been obliterated by alteration. Actinolite and calcite veins cut the matrix. Mineralization cannot be seen in this particular sample, however in other areas of extreme alteration, chalcopyrite occurs disseminated throughout and associated with late calcite veins.

Moderate Potassic Alteration (sample from MP-98-01, 35.84 - 36.08 m)

Moderate potassic alteration is typically displayed in plagioclase porphyry stockwork matrix hosting weakly altered, grey-pink subangular clasts of diorite. In this sample, albite is evident in both the matrix and clasts. Blebs of magnetite and diopside are present in the matrix, and are crosscut by potassium feldspar. Potassic alteration is pervasive, but strongest associated with veins.

Weak Potassic Alteration (sample from MP-98-01, 136.75 - 136.9 m)

Crowded plagioclase porphyry exhibiting weak potassic alteration displays a groundmass of fine-grained potassium feldspar, biotite, diopside and plagioclase with little or no brecciation evident. The groundmass is light grey to pink, depending on the amount of potassium feldspar flooding into the matrix. Albitization is rare. Mineralization usually confined to veins and fractures, but it is sometimes disseminated in the groundmass.

4.4 MP-98-01

MP-98-01 was drilled to determine the continuity of mineralization to depth at the north end of the Cariboo Pit, adjacent to the Bell (North) Pit. The hole bottomed at a total depth of 289.56m, at 900.0m elevation.

The top 49.2 metres consist of intrusion breccia hosting ore-grade mineralization and strong potassic alteration. Chalcopyrite occurs as disseminations, fracture fillings, and blebs. Rare bornite and pyrite are usually disseminated. From 49.2 – 82.4 metres, plagioclase porphyry displaying weak to moderate potassic alteration hosts much lower grades. Between 82.4 – 164.2 metres, post-ore augite porphyry dykes are common. Intervening intrusion breccia and plagioclase porphyry host ore-grade intervals (see Table 2). From 164.2 – 280.0 metres, intrusion breccia hosts a couple of near ore-grade intervals, but the bottom 21.7 metres are clearly ore-grade. Below 164m depth, evidence of early propylitic alteration with a potassic overprint, is found in volcanic clasts within intrusion breccia and plagioclase porphyry intervals. At 280.0 metres, intrusion breccia forms a sharp, unsheared contact with footwall diorite. Brecciation, alteration and mineralization drop off very quickly into the diorite.

MP-98-1 displays trends in lithology and alteration that correlate well with mineralization. Higher gold and copper values are often associated with veinlets of potassium feldspar 1 - 4mm thick. Brecciation

to an pt the fillen and Oral stand Manning	
1008 Diamond Drilling and Geological Wanning	

appears to be the most important control on degree of alteration and intensity of mineralization. Hydrothermal breccias are best developed in intrusion breccias and to a lesser degree in plagioclase porphyry, volcanic tuffs, and diorite. Fine-grained chalcopyrite, actinolite, magnetite and plagioclase occur as disseminations and 2–16mm pockets, coincident with strong potassic alteration.

From	То	Length	Cu (%)	Cu-ns (%)	Ox Ratio	Au (ppb)
17.98	27.00	9.02	0.206	0.052	25.4%	0.275
40.73	45.19	4.46	0.332	0.103	30.9%	0.432
108.12	114.13	6.01	0.283	0.051	17.8%	0.351
118.06	120.30	2.24	0.229	0.034	14.8%	0.239
123.32	132.18	8.86	0.287	0.045	15.6%	0.548
189.78	206.28	16.50	0.166	0.027	16.4%	0.276
234.50	249.30	14.80	0.158	0.032	20.1%	0.192
258.30	280.00	21.70	0.225	0.034	15.1%	0.380
	•	1	1			

MP-98-1	:	Significant Intersections	

The presence of ore-grade mineralization down to 910 metres elevation is very significant indeed. The north-end of the Cariboo Pit below 1050 metres north through the Bell Pit remains largely untested, representing a large, potentially mineable resource. A program of several deep diamond drillholes is strongly recommended for the east side of the North Cariboo - Bell Zone trend.

4.5 MP-98-02

Table 3

MP-98-02, situated in the southeast part of the Cariboo Pit, was drilled to a total depth of 249.94m, or 899.62 meters elevation, to test the continuity of Southeast Zone mineralization to depth.

The first 9.1 metres hosts low total copper and gold values, and displays textures consistent with a leaching of sulphides with fluctuating water tables. Immediately below, two intervals, from 10.6 to 16.6m and 21.1 to 34.6m, are possibly enriched by supergene processes, hosting copper grades up to 0.86% and gold to 1.52 gpt and a copper oxide to total copper ratio of less than 20%. Chalcopyrite and chrysocolla are common but a minor quantity of chalcocite is suspected.

Below 35.76 metres, leaching and enrichment textures in the intrusion breccia disappear with a coincident drop in copper and gold grades. Potassic alteration is weak but variable. Below 88.72m, four intervals of volcanic rocks, possibly andesites, were intersected, displaying weak potassic alteration with disseminated, vein-hosted and fracture-filling chalcopyrite. One near ore-grade interval between 90.09 – 109.65 metres runs through the upper volcanic member into the underlying intrusion breccia. Grades of 0.243% copper and 0.22 gpt gold are close to economic at an oxide ratio of 27.6%. A second low-grade

interval in volcanics lies below an augite porphyry dyke. Grades are very low in the third volcanic member.

Grades pick up again in a short interval of intrusion breccia at 166.9 metres. The bottom volcanic member hosts two intervals grading 0.272% copper and 0.264 gpt gold over 28.6 metres and 0.199% copper and 0.256 gpt gold over 23.0 metres, respectively, between 912 – 973 metres elevation.

From	То	Length	Cu (%)	Cu-ns (%)	Ox Ratio	Au (ppb)
9.10	34.60	25.50	0.401	0.060	15.1%	0.448
90.09	109.65	19.56	0.243	0.067	27.6%	0.220
119.00	126.60	7.60	0.168	0.030	17.8%	0.139
166.90	171.70	4.80	0.211	0.032	15.0%	0.198
177.70	206.30	28.60	0.272	0.042	15.5%	0.264
214.00	237.00	23.00	0.199	0.044	21.9%	0.256

Table 4	
MP-98-2 :	Significant Intersections

Mineralization is dominantly disseminated chalcopyrite, with minor amounts of pyrite, bornite and chrysocolla. Chalcopyrite is also found in late calcite veins. Augite porphyry dykes crosscut all rock types and are unmineralized. Within the Southeast Zone, gold to copper ratios are significantly lower than in the adjacent South Cariboo Zone. Also, high grades are generally associated with high iron, presumably magnetite.

Alteration is determined by host rock lithology. Intrusion breccia and plagioclase porphyry are moderately potassically altered. Volcanic rocks display potassium feldspar halos surrounding veins and possibly weak propylitic alteration throughout. Augite porphyry dykes are post-alteration.

Results from MP-98-02 demonstrate that economic grades are possible in volcanic rocks common along the east side of the deposit. The presence of near-economic grades below 1000 metres elevation also demonstrates the potential for developing reserves to the south and east of the Cariboo Pit. To test that potential, several deep (250 – 300 metre) drillholes are recommended for the Southeast Zone.

4.6 MP-98-03

MP-98-03, situated in the central part of the Cariboo Pit, was drilled to a total depth of 252.68m, or 897.66 metres elevation. Again, the target was deep mineralization in the centre of the developing Cariboo Pit.

Between 3.68 – 31.95 metres, grades are 0.280% copper and 0.449 gpt gold but with a very high copper oxide to total copper ratio of 87.2% in broken and weathered intrusion breccia. A series of three augite

porphyry dykes is dominant between 31.95 – 52.2 metres. One 3.55 metres zone of intervening intrusion breccia ran 0.249% copper and 0.330% gold with an oxide ratio of 86.2%. Oxidation drops dramatically below the dykes, indicating that area is below the permanent water table. Good grades were encountered between 61.2 – 83.8 metres and 89.8 – 109.5 metres in moderately to strongly potassic intrusion breccia. A 4.1 metre thick dyke of augite porphyry at 161.33 metres splits that intrusion breccia. Three more significant intersections were encountered below the dyke, including a 25.5 metre section assaying 0.195% copper and 0.281 gpt gold below 213.5 metres elevation.

		-					
	From	То	Length	Cu (%)	Cu-ns (%)	Ox Ratio	Au (ppb)
	3.68	31.95	28.27	0.280	0.245	87.2%	0.449
	44.47	48.02	3.55	0.249	0.214	86.2%	0.330
	61.20	83.80	22.60	0.248	0.052	20.9%	0.333
	89.80	109.50	19.70	0.228	0.034	15.0%	0.301
•	167.00	176.00	9.00	0.173	0.036	20.9%	0.231
	180.55	188.00	7.45	0.250	0.039	15.6%	0.247
	213.50	239.00	25.50	0.195	0.062	32.0%	0.281

Table 5MP-98-3 : Significant Intersections

The mineral assemblage in the upper 52.2 meters includes malachite, azurite, chrysocolla and chalcopyrite together with abundant magnetite. Below 52.2 metres, oxidation diminishes and chalcopyrite and pyrite are present. Malachite and rare chrysocolla appear again in conjunction with oxidation between 211 and 239 meters.

Potassic alteration is moderate to extreme in the top 161 meters, but becomes somewhat weaker and more sporadic with depth. Variable albitic alteration of plagioclase phenocrysts is a significant feature throughout the hole.

MP-98-03 is located in a significant structural break between low oxide ore of the North Cariboo and higher grade, higher oxide ore of the South Cariboo. Once again, reasonably good grades are found below 1000 metres elevation demonstrating the potential for developing reserves at depth within the Cariboo South Pit. To test that potential, several deep (250 – 300 metre) drillholes are recommended for the whole Cariboo South Zone.

5.0 Geotechnical Data

Geotechnical data, including core recovery, Rock Quality Designation (RQD), number of fractures, strength index, and alteration index, were collected for each core run in all three holes. Strength and alteration indices were not done on MP-98-1, but will be as part of a core-relogging program in September and October 1998.

MP-98-01, located at the north end of the Cariboo Pit, showed a core recovery close to 100% throughout. Recoveries drop as low as 44% over a single 1.4 metre run through narrow gougy fault zones. RQD's were 0% between 45.42 – 46.94 metres in highly altered and fractured intrusion breccia and 196.29 – 201.78 metres in fractured plagioclase porphyry ranging up to 100% in weakly altered and mineralized intrusion breccia. Much of the hole is greater than 80%. The number of fractures per metre ranges from approximately 20 in mineralized intrusion breccia to less than 1 in diorite at the bottom of the hole.

MP-98-02, located in the southeast corner of the Cariboo Pit, again showed a core recovery close to 100% throughout. RQD's were also high throughout, except for the top 35 metres of highly altered breccia. Fracture densities were generally lower than in 98-1. Strength index ranged from 1 (very weak) over the top 35 metres to 4 (strong) in plagioclase porphyry. Most of the intrusion breccia and volcanics have a strength index of 3 (medium strong). Similarly, qualitative alteration ranges from 5 (completely altered) near the top of the hole to 3 (moderately altered) for most of the rest of the hole.

MP-98-03, located in the centre of the Cariboo Pit, also showed excellent core recovery. RQD's were variable but generally lower over the top 65 metres than for the rest of the hole. Fracture densities are similar to 98-2. Strength index ranges from 1 - 2 (very weak to weak) to around 40 metres to 4 (strong) in intrusion breccia below around 160 metres. Alteration ranges from 4 (highly altered) to around 25 metres to 3 (moderately altered) over most of the rest of the hole.

6.0 Geological Mapping

To gain a better understanding of the distribution of various rock types, alteration and mineralization, a program of geological mapping was initiated on August 24th to complement ongoing geotechnical mapping of pit walls. Mapping started at the north end of the Cariboo Pit, concentrating on breccia – plagioclase porphryry (monzonite) contacts, style of brecciation, alteration and mineralization. Key to the program was distinguishing rock types and developing a rock classification scheme that could be easily implemented in the field.

In the Cariboo Pit, the most important rock type is breccia, both intrusion and super-imposed hydrothermal. Strong potassium feldspar alteration is largely coincident with both breccia types, making identification of clast types, size, angularity, proportion to matrix, and matrix type difficult. To simplify mapping, all breccias were grouped together as a single map unit. Outstanding breccia features were noted, including the presence of hydrothermal minerals including actinolite, biotite, diopside – hedenbergite, magnetite, albite, epidote, chlorite, and carbonates. Generally, copper and gold grades are coincident with strong brecciation and alteration.

Breccias are hosted in diorite, plagioclase porphyry and monzonite, a non-porphyritic phase of the porphyry. These host rocks exhibit local brecciation, potassic alteration of variable intensity and spotty mineralization. Generally, mineralization is related to strong potassic alteration which, in turn, is best developed in breccia. The intensity of potassic alteration drops off sharply at breccia-monzonite (plagioclase porphyry, diorite) contacts. Based on blasthole assay data from the benches mapped, copper and gold grades also drop significantly in the plagioclase porphyry and monzonite units.

A number of late to post-mineralization dykes and intrusions have been mapped. The most significant is an unmineralized, pink, megacrystic monzonite. This massive unit forms a large plug and several irregular dykes in the centre of the north end of the pit. Megacrysts are much less abundant near contacts making it difficult to distinguish from pink plagioclase porphyry and monzonite. Blastholes within the megacrystic monzonite returned very low copper and gold grades. A north-trending, grey augite monzonite to monzodiorite dyke was mapped from the 1190 - 1210 Bench north wall, for 200 metres south where it forms the eastern contact of the central megacrystic monzonite plug. Like the plug, this dyke is post-mineral. It has not been identified anywhere else in the pit.

Two sets of mafic dykes crosscut all other rock types. Augite porphyry (AP) dykes are generally northtrending, and range up to 10 metres in thickness, although 1 - 3 metres is typical. These dykes are very continuous, several have been mapped along the entire length of the pit. AP dykes are fine-grained, dark green, and contain black augite phenocrysts generally 1 - 3 millimetres in diameter. Often, the dykes are

1998 Diamond Drilling and Geological Mapping	December 10, 1998
weathered and strongly sheared, exhibiting shallowly-plunging slickensides	s. Lamprophyre dykes are also

weathered and strongly sheared, exhibiting shallowly-plunging slickensides. Lamprophyre dykes are also north-trending and often coincident with AP dykes. Locally, they crosscut the AP dykes. Lamprophyre dykes are always highly sheared and near surface are strongly weathered. Biotite is the most common constituent.

Table 6	
Lithologic Units - Cariboo	Pit

Unit	Abbr	Description
Lamprophyre dykes	Lamp	Medium to dark green and grey, biotite-rich, sheared, weathered.
Augite porphyry dykes	AP	Dark green, fine-grained, black augite phencrysts, often sheared
Megacrystic monzonite	Mzm	Pink, syenitic with Kspar megacrysts, blocky, weakly altered
Augite monzodiorite	AgMz	Pale grey with black augite phenocrysts, blocky, weakly altered
Monzonite	Mz	Equigranular to weakly porphyritic, variable potassic altn.
Plagioclase Porphyry	PP	Crowded porphyry, seriate plagioclase phenocrysts, variable potassic altn.
Diorite	Dr	Medium grey, fine to medium grained, equigranular to weakly porphyritic,
Volcanics	Volc	Polymictic breccia, crystal-lithic tuff

7.0 Recommendations

7.1 Geological Mapping and Core Relogging

An ongoing program of geological mapping and core relogging is proposed for Mount Polley Mine. For 1999, surface mapping will move to the East Cariboo Zone, the South Cariboo Zone, and the Bell Pit. Other targets such as the Northwest Extension, S Zone, Road Zone, and south and east toward Polley Lake and the tailings impoundment facility should be further explored beginning as early as next year.

In conjunction with geological mapping, existing drillcore from the Bell Pit area will be relogged. A total of 27 holes remain in the core racks, requiring 5 days to relog. Similarly, 43 holes from the Springer Pit area remain to be relogged, requiring 8 days to relog. Geological interpretation would likely require 2 weeks to complete for a total of 1 month.

7.2 Diamond Drilling

MP-98-1 through 3 tested three zones; Cariboo North, Southeast Zone, and Cariboo South to an elevation of 900 metres. The program achieved its main objective of confirming the continuity of the orebody to depth and defining a strong relationship between mineralization, alteration and rock type. All three holes discovered highly significant, if not economic grades throughout each hole, in breccias and, significantly, in volcanic rocks. These results suggest that higher-grade zones are likely at depth in the three areas tested.

Three holes, totalling 650 metres, are proposed for the <u>Polley Fault Zone</u> to assist in ore delineation. Three drillholes, totalling 650 metres, are suggested for three zones within the <u>Cariboo Pit</u>. The highest priority hole would test the southern limit of high-grade ore in the southwest corner of the pit. A second hole is proposed for the Southeast Zone to test high-grade mineralization to depth. The third hole would test for mineralization at depth between and to the west of 98-1 and 98-3. All three holes would be angled to maximize the geology intersected. Stage II may require a follow-up hole in each area, for a total of 650 metres.

A significant amount of drilling is required in the <u>Bell Pit</u> to bring the reserve picture into focus. Clearly, the mineralization is open to depth (east) and to the north. Drillhole density is low particularly along the east side of the deposit. A minimum of 8 holes, each drilled at -55 toward the west and 250 metres in length, are required to firm up both the ore reserve picture and pit design criteria. Again, favourable results to the north and/or east would lead to follow-up drilling in the order of 1500 metres.

1998 Diamond Drilling and Geological Mapping	
--	--

Two holes, totalling 400 metres, will target the <u>"X Zone"</u> to the south, where several X-series holes returned very high copper grades. Both holes would be angled to fence across section 2750N to determine geological control on the X Zone mineralization. Cariboo South is a lower priority target and any follow-up work would be delayed to 2000.

Table 7 Proposed Diamond Drilling - 1999 Stage I

Priority	Target	Time Frame	Est. No. of Holes	Est. Footage (m)
1	Polley Fault Zone	1998/99	3	650
2	Cariboo	1999	3	650
3	Bell Pit	1999	8	2000
4	South Cariboo Zone	1999/00	2	400
·	Total		16	3700 metres

Stage II

Priority	Target	Time Frame	Est. No. of Holes	Est. Footage (m)
1	Polley Fault Zone	1999	4	1000
2	Cariboo	1999/00	3	650
3	Bell Pit	1999/00	6	1500
4	South Cariboo Zone	2000	-	-
	Total		13	3150 metres

Respectfully submitted//

¢

Christopher J. Wild, P.Eng. Mine/Geologist

8.0 References

Bailey, D.G. (1988): Geology of the Central Quesnel Belt, Hydraulic, South-Central British Columbia; in Geological Fieldwork 1987, B.C. Minisrtry of Energy, Mines and Petroleum Resources, Paper 1988-1, p.147-153.

Coe, J.E. (1996): Copper Oxide Occurrences in a Feed Sample from Mount Polley Mine, British Columbia; Cytec Industries Inc., unpublished report, 11 p.

Fraser, T.M. (1994): Geology, Alteration and Origin of Hydrothermal Breccias at the Mount Polley Alkalic Pophyry Copper-Gold Deposit, South-Central British Columbia; unpublished MSc thesis, the University of British Columbia, 261 p.

Fraser, T.M. (1994): Hydrothermal Breccias and Associated Alteration of the Mount Polley Copper-Gold Deposit; in Geological Fieldwork 1993, B.C. Minisrtry of Energy, Mines and Petroleum Resources, Paper 1994-1, p.259-267.

Fraser, T.M., Stanley, C.R., Nikic, Z.T., Pesalj, R. and Gorc, D. (1996): The Mount Polley Alkalic Porphyry Copper-Gold Deposit, South-Central British Columbia; in Porphyry Deposits of the Northwestern Cordillera of North America; Canadian Institute of Mining and Metallurgy, Special Volume 15, p. 388-396.

Harris J.F. (1989): A Petrographic Study of Mineralized Samples from the Mount Polley Property; Harris Exploration Services, unpublished report, 14 p.

Harris J.F. (1989): "Modified descriptions and rock names for suite previously described..."; Harris Exploration Services, unpublished report, 38 p.

Hodgson, C.J., Bailes, R.J. and Verzosa, R.S. (1976): Cariboo-Bell; in Porphyry Deposits of the Canadian Cordillera; Canadian Institute of Mining and Metallurgy, Special Volume 15, p. 388-396.

Imperial Metals Corporation (1988): Drill Logs for Holes MP-88-1 to MP-88-99; unpublished files.

McLeod, J.A. (1997): Microscopic study of polished grain mounts of 3 mineral concentrates; Westcoast Mineral Testing Inc., unpublished report 5 p.

McLeod, J.A. (1997): Microscopic study of polished grain mounts of 5 mineral concentrates; Westcoast Mineral Testing Inc., unpublished report 7 p.

Hawthorn G. (1997): Laboratory Evaluation of Mt. Polley Ores; Westcoast Mineral Testing Inc., unpublished report 8 p.

McMillan, W.J. (1991): Porphyry Deposits in the Canadian Cordillera; in Ore Deposits, Tectonics and Metallogeny in the Canadian Cordillera, B.C. Minisrtry of Energy, Mines and Petroleum Resources, Paper 1991-4, p.253-276.

McNaughton, K. (1990): Diamond Drilling and Bulk Sampling Report, Mount Polley Project; Imperial Metals Corporation, unpublished report, Volumes 1-3.

Pesalj, R. (1996): Mount Polley Project, 1996 Exploration Report; Imperial Metals Corporation, unpublished report, 17 p.

Pesalj, R. (1995): Report on 1995 Exploration on the Mount Polley Property, Likely B.C., Cariboo Mining Division; Imperial Metals Corporation, unpublished report, 18 p.

Read, P.B. (1997): Surface Geology of the Area East of the Cariboo Pit, Mount Polley Mines, Cariboo Mining Division (93A/12E); Mount Polley Mining Corporation, unpublished report, 25 p.

Tindall, M. (1995): Mt. Polley - Proposed In-Pit Diamond Drilling; Tindall Geoservices Inc., unpublished report, 4 p.

Wild, C.J. (1997): Summary of 1997 Exploration, Diamond and Percussion Drilling, Geological Mapping at Mount Polley Mine, Mount Polley Mining Corporation, unpublished report, 22 p.

Wild, C.J. and Letwin, J.M. (1998): Report on 1998 Diamond Drilling, Mount Polley Mine, Mount Polley Mining Corporation, unpublished report, 12 p.

Wright Engineers Limited (1990): Mount Polley Project, Williams Lake B.C., Feasibility Study; Imperial Metals Corporation, unpublished report, Volumes 1-5.

Appendix 1 1998 Program Expenditures Diamond Drilling

Diamond Drilling						
-	792	metres @	\$	55.62	per metre	\$ 44,064
Assaying					•	
• -	548	samples @	\$	27.52	per sample	\$ 15,081
Personnel						
Geologist	26	days @	\$	172.73	per day	\$ 4,491
Sampler	18	days @	\$	162.56	per day	\$ 2,926
Accommodation						
	44	days @	\$	60.84	per day	\$ 2,677
Transportation					·	
Truck	26	days @	\$	62.31	per day	\$ 1,620
Miscellaneous						
Expenses						\$ 1,812
Supplies						\$ 491
			Tota	al		\$ 73,162

			Total	······································	\$ 4,137
,	9	days @	\$	67.00 per day	\$ 603
Geologist Accommodation	9	days @	\$	75.00 per day	\$ 1,575
Geotex Consultants					\$ 1,959
Geological Mapping					

Mapping expenses to Aug 31/98.

Program	Total	\$ 77,299

Appendix 2 Proposed 1999 Exploration Budget – Stage I

	••			To	tal		\$	325,681
5	Supplies, etc.						\$	6,277
Miscellaneou	JS							
Т	Truck	110	days @	\$	75.00	per day	\$	8,250
Transportation	on					_		
Accommoda	tion	110	days @	\$	75.00	per day	\$	8,200
Керопся апо	Studies						\$	3,000
S	ampler Studios	48	days @	\$	150.00	per day	φ	7,200
G	eologist	110	days @	\$	225.00	per day	\$	24,750
Personnel		2200 0	ampioo G	Ŧ		1		
Assaying		2200 .	amples @	\$	28.00	per sample	\$	62,160
Diamond Dril	ling	3700	metres @	\$	55.62	per metre	\$	205,794

December 10, 1998

Proposed 1999 Exploration Budget - Stage II

Diamond Drilling							
plationa primig	3150	metres @	\$	55.62	per metre	·\$	175,203
Assaying	1890	samples @	\$	28.00	per sample	\$	52,920
Personnel							
Geologist	42	days @	\$	225.00	per day	\$	9,450
Sampler	42	days @	\$	150.00	per day	\$.	6,300
Reports and Studies							
Accommodation							0.450
	42	days @	\$	75.00	per day	\$	3,150
Transportation							
Truck	42	days @	\$	75.00	per day	\$	3,150
Miscellaneous							
Supplies, etc.						\$	5,003
.,			Tot	al		\$	255,176

Appendix 3

Statement of Qualifications

I, Christopher J. Wild, do hereby certify that:

- 1 I am a geological engineer currently residing at 307 Lexington Road, Williams Lake, British Columbia.
- 2 I am employed by Mount Polley Mining Corporation as Mine Geologist at the Mount Polley Mine.
- 3 I am a graduate of the University of British Columbia, Geological Engineering, Mineral Exploration Option (1984).
- 4 I have worked in mineral exploration and mine geology in Canada and Argentina on a full-time basis since 1985.
- 5 I am Registered Member of the Association of Professional Engineers and Geoscientists of the Province of British Columbia (1994), and am a member of the Canadian Institute of Mining and Metallurgy (CIM).
- 6 I supervised all exploration activity documented in this report.

Christopher J. Wild, P.Eng. Mine Geologist December 10, 1998

December 10, 1998

Appendix 4 Diamond Drillhole Logs

	, , ,	ر 		()	<u> </u>)	<u>(</u>)	<u> </u>	<u> </u>	<u> </u>	()	() -
DRILL R	ECOND		IMPERIAL METALS CO	RPORAT	TION							1. A. 1.
PROPERTY:Mount TorleyLOCATION:CaribooNorthCORRECT DIP:HOLE NO.:MP-98-1LOC.:3742.59 N, 2164.58 ETRUE BRG:COMMENCED:June 19198ELEV.:1190m (1184.57)SURVEY AT:COMPLETED:June 24/98CORE SIZE:NQ% RECOVERY:OBJECTIVE:TESt minn at depthLENGTH:2						1P: PAGE: 1/20 LOGGED BY: Janice Lubin DATE: Juki 2/98-7 IV: CORE STORED: 289.56 m UNUSUAL FEAT.:						
From To		Syb	Camala	From	To				Ana	lysis	8 - C. S.	
			Description	No.		μοτ μή	Lgth.	Hec.	Total Cu	Oxide Cý ppm i	Fo %	Au ppb
	17.98-		Planseland Pershard Indension Br									
<u></u>	3.05		(asing 3 diopside									
3.05	7.88		Intrusion Breccia - pint + Okgray	145001	3.05	4.85	1.8		0.04	0.10	3.77	65
			matrix - TP. rempticke fire secondary bt. Green min	145002	4.85	6.91	2.05		0.07	0.017	3.67	90
			clasts dionite subrugular to coogular	145003	6.91	7.88	0.97		0.05	0.011	3.60	104
K W			-very fractured Magnetite common ~10% in				 				ļ	:
Ser A			nochules and fractives. 301 Quartz eyes for	 		· · · · · · · · · · · · · · · · · · ·						
			Vfg cpy-mostly in diorite clasts				 			·	* 	
			* augite por ph clast? 4cm, magnetic,									
1.88	8.84		Intrusion Biecrice (pink)	145004	1.88	8.84	0.96		0.06	0.027	2.20	90
			matrix - PP. ly-mg. good stock core.									n in Star Maria ang
			clasts-ingue divite. higher degree of alteration									
			quartz tilled fractures. ~ 1% magnetite (mt)									
				······		 						
<u>-3'84</u>	16.02		Intrusion Breicia - pinkt alk grey	45005	9.84	10.50	1.66		0.07	0.016	3.28	120
			Matrix - 12 fg-2mg 10% mt <5% cpy (in	145006	10.5	12.03	1.53		0.04	0.013	3,40	_59
	<u></u>		tractures and associa w/ diantr - 12605)	145007	12.03	13.76	1.73		0.13	0.023	1.86	
<u></u>	······		clasts angular to subangular diorite. 1-4cm 25%	145008	13.76	14.94	1.18		0.18	0.04-9	2.0	218
1.5. 1		k	@ 12.81- clasts are very light colored and 50%.	145009	14.94	16:02	1.08		0.05	0.012	2.94	_74_
			quaitz. Also Kic altoration									
											- 65	
1602	16.46		tault gouge zone - within 113x	14010	6.02	16.46	<u> </u>		0.01	0.013	3.55	112
<u> </u>						ll						

op Olimetinal imperial policy (di il 156

16 07-1646 (unit? goiox

DRILL P	ECORD		IMPERIAL METALS (ORPORAT	ION							e - 1 mm
PROPERTY: HOLE NO.: MP-98-1 COMMENCED: COMPLETED: OBJECTIVE:		98-1	LOCATION: CORREC LOC.: TRUE BF ELEV.: SURVEY CORE SIZE: % RECO LENGTH	T DIP: G: AT: VERY:	P: Y:			2 /90 D BY: 4 06 /20 TORED: AL FEAT.:	mu 98 :		- <u> </u>	3
From To Foot M		Svb	Syb Description * 34.37 brauvite?	Samula	From To		Lgth.	Bac	Analysis			
				No.				Noc.	Total Cu gom'/.	Oxido Cy	Fe %	Au .ppb
6,46	40.73		red metallic mineral (coverline)? seen in asso	in 145011	16.46	17.98	1.52		0.11	0.013	272	152
			with cpy in a volcanic clast.	145012	17.98	19.5	1.52		0.27	0.06	2.90	433
		-	Intrusion Preceda pink, gray		195	21.03	1.53		0.15	0.038	2.86	180
			Matrix- PP very altered Barris of anududp	2 145014	21.03	22.50	1.47		0.18	0.066	256	211
			almost unaltard (clasts).	145015	22.5	24.08	1.58		0.22	0.042	3.22	226
<u>. </u>			27.03 = 39.00 very block, and bistion care.	145016	2408	25.50	1.42		0.16	0.036	3.53	229
			ofterwise it's good strict-	145017	25.50	27.0	1.5		0.25	0.071	2.95	372
			15% int. 10% disported (mustly in fractures)	145018	27.0	28.5	1.5		0.06	0.017	3.22	100
			blebs and disseminated .	145019	28.5	30.0	1.5		0.08	0.017	3.39	130
			\$10% cpy = 5% bornite - Usually assoria w/ cpy	145020	30.0	31.5	1.5		0.07	0.010	3.25	157
			Undisside in clients by in clients	145021	DUPL	CATE	<u></u>		0.10	0.012	3.45	174
				145022	31.5	32.86	1.36		0.28	0.073	2.78	308
				145023	32.86	34.5	1.64		0.18	0.034	3,17	251
0.73	42.09		Valcanic Tufi - light - medium gray	145024	34.5	36.08	1.58		0.09	0.016	2.60	132
			TE nap contact with Int. Bx. Bettom contact	145025	36.08	37.49	1.41		0.14	0.028	D.83	17
			gradational	145026	37.49	38.98	1.49		0.15	0.03	2.86	193
			fine grained. faintly bedded	145027	38.98	40.73	1.75		0.14	0.029	2.73	187
			43 13-43 21 = bx subang lar volcanic clasts.	145028	40.73	42.08	1.35		0.38	0.15	4.23	554
			Calcute matrix <31 cpy. Minor pot all'r							· · ·		
(12.0)	117 57		1 10 77						A 11 - 1		0.07	
44.08	46.04		Int Breccia.	145029	42.08	42.52	0.44		0.44	0.113	23L	_525_
			matrix - potassically altered volcanic tutt.									
			(1057) - altreixer + semi allered volcanic futt							l		· · · · · ·

hit.K b/relog/aircomin.Moil.108

.

.

DRILL RE	CORD		IMPERIAL METALS C	ORPORAT	ION							:
PROPERTY: HOLE NO.: MP - 98 -1 COMMENCED: COMPLETED: OBJECTIVE:		98-I	LOCATION: CORREC LOC.: TRUE BR ELEV.: SURVEY CORE SIZE: % RECO LENGTH:	T DIP: IG: AT: VERY: :	PAG LOG DAT COF UNI			PAGE: 3 /20 LOGGED BY: JUL DATE: 06 /21/9 8 CORE STORED: UNUSUAL FEAT.:				
From To Fest M			Description		From To Foot M		Lgth.	Rec.	Analysis			
		Syb		Sample No.					Total Cu	Oxide Cu	Fo %	Au ppb
42.004	1.00 42.52 Contid		= 5%. Cpy. Calcite filled fractures (Z-3mm) DerDe	ndi.		<u></u>	 					
			to CA. 11. mt.		 							
			gradational contact into Intrusion Breccia Idiori	te								
	19.16		clasts.									
42.52			Intrusion Briccia (pink + grzy)	145030	42.52	43.52	1.0		0.47	0.132	1.85	594
			matrix - f.g. pink. K-alteration moderate to extreme	145031	43.52	44.66	1.14		0.15	0.026	251	151
			clasts- diorite. extreme K-alteration & submounded.	145032	44.66	45.19	0.5.3		0.25	0.083	2-19	269
			actual clast boundaries have been obliterated.	145033	45.19	46.02	0.83		0.08	0.014	3.16	86
			2% cpy. cc filled frets @~ 15° to CA (Zmm thick)	145034	46.02	47.46	1.44		0.12	0.022	2.95	154
			5% mt (dissid) nodules.	145035	41.46	49.16	1.70		0.17	0,025	2.59	185
<u>Sub</u>			Chloritize	2.0				l 				
44.66 0	15 . 1 9		Monzonite pink (dyke? or big [clast?]			. <u> </u>		····				
			Hydrothermally altered. Some secondary bt (10%)									5.1
			minor mt. (\$21.). atz-251. Plag 251. Feld 707.	·	·				· · · · · · · · · · · · · · · · · · ·	·		
			221. augite. (euhedral)									
			<21. diopside. CC on fracture planes.									
			Cut by qtz(3-8mm, anhedral) var filled veins (1-2c	m]								
	ub											
45.49	46.02		Breceiated Atz Monzonite.									
			-hydroflurmal chloritized bt (5-10%)									
												<u> </u>
						·						<u> </u>
		1			1				}			

.

.

•

DRILL RECORD IMPERIAL METALS CORPORATION													
PROPERTY: HOLE NO.: COMMENCED: COMPLETED: OBJECTIVE:			LOCATION: COARECT DI LOC.: TRUE BRG: ELEV.: SURVEY AT: CORE SIZE: % RECOVER LENGTH:			PAGE: 4/20 LOGGED BY: DATE: CORE STORED: UNUSUAL FEAT.:							
From To		<u></u>	Syb Description	Samola	From	- To	Lath	Bac	Analysis				
Fe	Feet Syb			No.		FOOL		1100,	Total Cu ppm	Oxide Cu ppm	Fe %	Au ppb	
49.16	82.40		Plagioclase Porphyry (pink)	145036	49.16	51.16	2.0		0.2	0.105	1.41	197	
			-Kalteration is pervasive.	145037	51.16	53.13	2.03		0.14	0.066	1.15	143	
			-occaisional zenolith (2-10cm) chloritized. Original	145038	53.13	5512	1.99		0.15	0.064	1.25	2.03	
			lithology difficult to discern.	145039	55.12	57.08	j.96		0.13	0.093	1.27	145	
			10-15% mt, in nodules and fractures and dissemid	145040	57.08	58.16	1.08		0.11	0.089	1.29	191	
			- extremly faulted (lots of comented, slickensider	145041	DUPL	ICATE			0.13	0.107	1.62	223	
			aouae)	145042	58.16	<u>.59.52</u>	1.38		0.12	0.07.3	1.63	165	
			- con hard to find. Extremly dissid.	145043	59.52	60.42	0.80		0.09	0.062	2.35	118	
			5-10%. Sometimes in blebs:	145044	60.42	62.40	2.02		0.15	0.055	1.35	191	
			- chlorite common on slickél fracture planes	145045	62.40	64.4	2.0		0.11	0.073	1.3	105	
				145046	64.4	66.4	2.0		0.00	0.043	1.58	52.	
			49.16 - 51.91									<u></u>	
			- extremely oxidized interval. Not only on fracture	14504-7	66.4	68.42	2.02		0.06	0.029	1.36	52	
			surfaces but into the rock matrix too.	145048	68.42	70.42	2.0		0.08	0.017.	1.32	85	
			· · · · · · · · · · · · · · · · · · ·	145049	70.42	72.42	2.0		0.08	0.018	1.74	9:1	
			51.91-5313	145050	72.42	74.42	2.0		0.08	0.062	1.62	105	
			- very law recovery. Fragmented care	145051	74.42	76.4	1.98_		0.06	0.028	1.9	58	
				145052	76.4	78.33	1.93		0.05	0.016	2.83	_55_	
			59 52-60.42	145053	7833	80.32	1.99		0.04	0.007	2.59	51	
			- hrecciated.	145054	80.32	82.4	1.92		0.06	0.011	3.66	68	
			- clasts are monzonitic, altered.	<u> </u>								i sta	
			-matrix - plagioclase porphyry	<u> </u>									
			diopside	<u>j</u>									

. *1* ,

web0. Internet and a state of the state of t
] 	* windt's the deep red thinkered		<u> シと'</u>	<u>e</u> (_	inm	α_{n}	<u></u>)]]
DRILL RE	ECORD		IMPERIAL METALS CO	RPORAT	ION	``````````````````````````````````````						
PROPER HOLE NO COMMEI COMPLE OBJECTI	TY: D.: f NCED: TED: IVE:	nP-9	LOCATION: CORRECT D B-1 LOC.: TRUE BAG: ELEV.: SURVEY AT CORE SIZE: % RECOVEN LENGTH: LENGTH:	91P: ": RY:			PAGE: LOGGEE DATE: CORE S UNUSU	5/2-0 BY: TORED: AL FEAT.				ς π. γ. κ. β
From	To			Gunda	From	· To	Lath	Pag		Апа	ysis	
Fe	ot	Syb	Description	No.			Lg.n.	Nec.	Total Cu ppm	Oxide Cý ppm	Fo %	Au ppb
. }			60.42-82.40 Fault Gouge.									2.1.82)
1			This whole interval (20m!) has intense slicks.									
			The agone has been comented so the recovery									
			is good. Often contains magnetite-filled fractures									
			and Fe-oxide (?) on some planes.				. <u> </u>					
			Chlorite on slick'd planes.			·				 		
			5% hydrothumal biofite mostly in nodules									
	-		-up to 50cm of Un-faulted PP in places									
			@ 73 16 - Int of malachite on hecture of .	<u> </u>								
82.40	89.49		Augite Porphyny Dike	145055	82.4	84.46	2.06		0.01	0.006	7.45	6
			augite, (1-8mm); enhedral to subredral	145056	84.46	86.46	2.0		0.01	0.008	7.4	<u> </u>
			groundmass is pink-ish (altered? No Too	145057	86.46	88.39	1.93		0.02	0.009	7.44	$<5^{-1}$
			late. Post-minin, post-altin.) and fine to	145058	8839	89.49	1.10		0.02_	0.01	7.43	6.2
			medium grained.		(·		
			- calcite filled fractures (1-3mm) at every angle,									
			dominantly~40-50° to CA.					·				
			* deep red mineral on slick'd fracture planes.			·						
			- upper and lower contacts are sharp. Top-30* to			<u> </u>		<u>,.,</u>				
			CA. Bottom - 25-30" to CA. Chill margin small to	 								
			absent.					<u> </u>				
9A.49	10662		Biolite Breccia - pink	145059	89.49	91.44	1.95		0.07	0. 0 11	4.18	118
			-variably K-altered. From extreme to moderate	145060	91.44	93.44	2.0		0.15	0.018	3.52	158

http://www.augurationalistance.com

.

.

.

Page6of20

• 2

/ <u>//</u>	7-90 T	57	1	From	To				Analy	/sit	
From 10	Syb	Description	Sampie No.	F	m M	Lgth.	Rec.	Total Cu ppm	Oxide Cu ppm	Fo %	Au ppb
		1-2mm placinglase round crustals :0-60%	145061	DUPL	CATE	2.0		0.15	0.014	3.66	174
		by flakes <05mm and pockets. Is more	145062	93.44	95.4	1.96		0.04	0005	402	40
	1	connected in divite? cleats.	145063	95.4	96.62	1.22		0.13	0.011	475	162
		· some reparts- punded Imm. Looks to	145064	96.62	97.66	1.04		0.03	0.003	35_	42
		he compared from clasts	145065	97.66	97.85	0.21		0.03	0.005	4.6	26
		imagnetite ~2011 Ufg, and in ballebs	145066	91.85	98.16	0.31		0.04	0.007	3.24	65
	1	· ralcite filled fractures - hroughout	145067	98.16	98.77	إحكار		0.05	0.007	6.47	56
			145068	98.77	99.97	1.2	·	0.29	0.039	3.48	272
	-	Inu - Vfa - acsocid w/ magnetik blebs	145069	99:71	101.03	1.26		0.07	0.008	4.86	69_
		~10-151	145070	101.03	101.76	0.73		0.05	0.007	6.47	58
	-	dispside - vfa + in blebs ~ 20% AND Fracture	145071	101.76	103.37	1.61		0.12	0.015	2.93	135
		filing	145072	103.37	104.92	1.55		0.02	0.004	7.02	45
	>	97. 166-97.85 - drill caught 1/2 bt bx 1/2 APayle	145073	104.92	106.62	1:70		0.09	0.011	4.07	1/0
98.16 93.77	1->	Augite Porphyry Dyke								ļ	19 T 28
1010 10 34		dark aren - areen.			<u> </u>						in staar d
		· augite 35 de"/ 3-5mm subhedral to			<u> </u>						
		lubidad						 	·		
		- dein red minical - 22%, 1-3mm annidral.			<u> </u>			ļ			
		are the soft (453), no effernescence HEMATITE		<u> </u>	<u> </u>			 		1	
		· magnetic			ļ						
 	1	· calcite filled fractures							<u> </u>		
		two contact - Sharp undulatory @30° to CA		<u> </u>	<u> </u>			ļ	ļ	· · ·	
		· bim contact - sharp, " to planar @30° to CA	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>

ewe80Jeinindimenterenterint.16

•

Page 7 of 20

From To	<u>r</u> (<u></u>	From	То				Anal	ysis	
Forst M	Sγb	Description	Sample No.	FI Y	not. N	Lgth.	Hec.	Total Cu ppm	Oxide Cu ppm	Fo %	Au ppb
		101.03-101.76 Quartz Moozocite Duke									1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
		mud to fine available							.•		<
		it - up 5-10% unhedral									1917
		· diancide (?) - fibrous - dark green (not chlorite)		1							a ser a s A ser a s
		5-10% fa antidral									
		· plan - 20%. Supto unbedral latha									
		· Kfeldspathized matrix									
		manaple 10% of a black subredral to only	nl						•		
		to contact - sharp, plan an 30° to CA	<u> </u>							:	
		Hom " - Sharp planar, sheared, 25° to CA	i i								
		<u>22111</u>									
		103 37- 104.97 Anaite Darph duke									
	 	same as above Matrix endes yes k-feld						[
		Cad managel practice (45%)									
		Fraction and Alteration									
		Alles AR STICKED									
101102 101 17		HID(to									
10432 106.62		claster the Deale K-eltand disside in									
	<u></u>	Curchiner proposition in Fractures Little to no									
		tractures, magnetife in tractures. Finte in the									
		Looks shared - Elicked fracture Surfaces									a serve
		muns pread pread that are the									
106 67 INT 13		Baralt duki?	145074	106.62	107.13	0.51		40.01	0.002	5.68	9

Page 8 of 20

Emm To			[From	To				Anal	ysis 👘 🤅 🖓	
Frot M	Syb	Description	Sampl o No.	J. n	あ で し	Lgth.	Rec.	Total Cu ppm	Oxide Cu ppm	Fe %	Au
611210213		Romant Duise? dark aven Sheared								•	
106.07 10.1.5		Divate Dyce - and E grey - nametric									38. S
		· yfg maaxve maanx								· ·	
		227. RCM bleps of remained the						1			
		Stringers of diopsial present + Shearea.						[·		
		top contact ~ 100 to C/4 _ planar			· · ·			1			1. N. 43
		btm contact. ~ 30° To UT pravas	<u> </u>						······		2.8
		gradational (incorps some host rock).			 						
		No zenolitho									
1 m 17 1 00 HS		Albita Braccia	145075	107.13	107.64	0.51		0.04	0.007	4.62	79
101.17 107.0		mone Diecola					1				
		maury - to N-telaspart									i yana
		Laors- articult to alstriguish - 11.									
		Myarothermal by + chiorite present							-		1.1
	[ht in tractures cpy ~ 2-51. Debs	,				·				
·		Swidiopside mt~107. in tractures smeared									
·		107111 10784 quaita duki	145076	107.64	167.84	0.20	<u> </u>	0.01	0.006	6.51	≈5
		101.64-107.07 augree dependently	1.50.75								
		autered to grownamics of acommunity	+			······	1				
		Kteld, meno's of augree subhearac.									
		epidote: in tractures (minor).									
		Part has a Prost date	145077	107.84	108.12	0.28		0.02	0.004	5.64	31
		107.04 - 108.12 - Dasait ayke	145578	108.12	109.45	1.33	1	0.36	0.04	5.73	448
[[]	<u>l</u>	IVIG GROUND MOSS, THEOREM. FURNITE ST.	1.100.0		<u></u>						

entedial plag lains

.

`,

	mρ	-98	3-1 Page Jot /	.) 								
From	To			Cample	From	To	Lath	Bec.		Analy	/518	20 C. C. C. A.
F2;	ά Υ	Syb	Description	No.		m			Total Cu ppm	Oxide Cu ppm	Fe %	Au ppb
		<u></u>									· · ·	
102115	114.15		Intraciula Breacia (Dink)	145079	109.45	111.45	2.0		0.39	0.084	3.9	516
101.92	117-12		dominantia monzonite zenolitho. 11. vfa COV	145080	111.45	113.04	1.59		0.17	0.037	3.99	205
	<u></u> .		21 yes by 21 dionerids yes.	145681	DUPU	CATE	1.59		0.21	0.052	4.07	205
			-matrix - ma kfeld W/~5-102 Cary blebs . calcik	145082	113.04	114.13	1.09		0.16	0.022	4.5	154
			Water too ~5% int along fractures.						<u> </u>	ļ	ļ	
			- 1 bt content closer to htm contact w							ļ	ļ	
			alla porchinal.								ļ	
			ung priprig.			<u></u>	ļ				ļ	
11/L 12	10 29		Anaita Pomphing	145083	114.13	116.16	2.03		0.02	0.01	7.4	10
1150	114.21		ma white ennedral arraite criticalsin a	145084	116.16	118.09	1.93		0.02	0.01	7.49	6
			For moundman (<1mm plag	145085	118.09	119.39	1.30		0.02	0.01	7.42	<u> </u>
			(Cold + bt) Minor bt. (m frats), Chill margin on									
		l	hettan constract (alapara #30° to (A)						<u> </u>		<u> </u>	
	121 72		interior By (and + organ)	145086	119.39	120.30	0.9		0.2	0.028	7.39	210
1(7.5)	121.72		Mirosion Dx Chine great	145087	120.3	121.32	1.02		0.27	0.035	5.83	278
			- Class- diorne ages sin a for the									1.11
			Int in tractives ~51. and the in fractives			ļ					·	
			(pu 22-57. Mostry in Diebs in machanes)									1 (g. 31)
			hydrothermae Diotik,									
1000	i An C		Dissila (or In Bx 7)	145088	121:32	122.32	1.0		0.07	0.011	7.3	86
121.54	<u>+ 174.</u> X	}	uporably aftered (K-) of times an hBx	145089	122.32	123.32	1.0		0.1	0.018	6.92	108
			but not often. Mustly see v 2mm alteration	145090	123.32	124.32	1.0		0.53	0.072	5	1684
L	1	<u> </u>										÷

والالماستان والماسة

Page/pf 20

x

		ന	0-98-	10 4									
From	То					From	To	Lath	Pao		Analy	sis	and the second
Eoot M	10	Syb		Description	Sample No.	مرا ا	γ	ւցւո.	HeC.	Total Cu ppm	Oxide Cu ppm	Fe %	Au 705
			2 ma	currounding a fracture	145091	124.32	12532	1.0		0.94	0.12	7014	Colth.
		<u></u>	Noui	harrown and a manual	145097	125.32	126.32	1.0		0.08	0.12	6.69	49
			very albit	PT 1007. but percent ~51.	145093	126.32	127:32	10		0.2	0.021	6.46	2322
				10% in block along fractures. mt. source	145094	121.32	128.32	1.0		0.08	0.1413	7.1	81
			aller.	- fractures ht also along fractures w/	145095	128.32	129-32	1.0		0.11	0.027	6.68	153
				eitd?)	145096	129.32	130 18	0.86		0.34	0.061	6.2	446
 			1 Con	i SINT disseminated for	145097	130.18	131.18	1.0		0.13	0.025	6.48	151
			0	which would - over use.	145098	131 18	132.18	1.0		0.18	0.054	7.02	254
			· in for	the looking diarte "Veins x'ing it are	145099	132.18	133.18	1.0		0.02	0.008	G.T	36
		- <u></u>		K-altered and host both cov + mt.	145100	133.18	134-18	1.D		011	0.017	7.13	180
				K and ea chis tox tox opj	145102	134.18	135 18	1.0		0.07	0.014	6.89	89
110058 1			Augite	Porchum Duke	145108	MARKAR .	DUPL	CATE		0.06	0.015	6.84	87
1750 1	00.00	· · · · · · ·	- nugrie	augury by and a curaite openo's	145103	135.18	136.12	0.94		0.16	0.022	5.8	200
			201	Au are (chloritized?) f.a. matrix.	145104	136.12	137.12	1.0		0.17	0.027	5.61	210
			Ina	ak gin contraction shows @20° to (A	145105	137.12	138.12	1.0		0.11	0.017	6.18	125
			upper	contact on and sharp C. V. off	145106	13812	139.12	10		0.18	0.028	6.32	169
	<u></u>		Lower	contact oralisation proof one post	145107	139.12	140.12	1.0		0.2	0.037	5.35	173
			105 07	- 1117 44 Valcanic Tull? med oreli- Groen	145108	140.12	141.12	1.0		0.23	0.049	4.71	216
			1115.05	print volume up integreg grees	ILLSING	IHI.B	142.12	1.0		0.12	0.087	6.59	139
			Vtg_	groundmass.	145110	142.12	143,38	1.26		0.14	0.051	4.87	152
			Lamina	mons present at the trining put to rest		143.38	144.58	1-20		0.11	0.026	5.55	129
 	<u></u> .	 		portorni (1000 scho up , succession bla there is									
 			mara	This on a budget acted. No, the mare b	145112	144.58	145.03	0.61		0.03	0.004	6.15	12
<u>l</u>		I	IN ZONE										en a la Calinda S
e*ve#Olisistnding	periol.polley\d	0.11 2	JULL.										

]

Page ||of 70

	r	n D.	-98-1	~								
From	To		10		From	To	Lath	Bra		Analy	/ sis	
fest m		Syb	Description	Sample No.	10	et V	ւցւո.	Nec.	Total Cu ppm	Oxide Cu ppm	Fe %	Au ppb
	ud.		clarup toot bottom contact. Planar @	145113	145.03	146.19	1.16		40.01	0.003	4.82	<5
CONTIN	ring		~ 05 . 90° K CA	145114	146.19	147.44	1.25		<0:01	0.002	5.07	- 6
				145115	147.44	148.69	1.25		<0.01	<0.001	5 95	<5
			149.25-150.28	145116	148.69	149.98	1.29		0.01	<0001	5.96	<5
			have into avoite porph. augite pheno's look	145117	149.98	150.28	0.30		0.02	0.005	5 11	26
			Chloritized + Chlorite on tractures									
<u> </u>	119			145118	150.28	151.28	10		0.1	0.02	4.12	149
50.78			Intrusive Bieccia	145119	151.28	152.28	1.0		0.2	0.047	3.39	215
	'-		dominantly diorite clasts. Hydrothermal bt	145120	152.28	153.31	1.03		0.25	0.058	6.63	245
			- biolite in diorite is chloritized	145121][UPUC	TE		0.16	0.057	6.27	185
			· cpy ~ 5% diss'd in calcite fractures.	145122	153.31	154:30	0.99		0.19	0.034	6.03	214
			Matrix - ma plaa K-feld bt chlorite	145123	154.3	155.33	1.03	·	0.15	0.045	3.82	179
			(? an fibrous) activalite	145124	155.33	156.36	1.03	ļ	0.15	0.039	4.42	182
				145125	156.36	157.36	1-0		0.17	0.031	5.9	208
				145126	157.36	158.4	1.04		0.12	0.035	6.16	14
11.1 69 11	.u. 191		Araite Brochumi Dike. AK areen	145127	158.4	159.52	1.12		0.21	0.041	5.42	192
101.01 10	<u>,,,,)</u>		Thenceusly quarter - 15-20% Sublo enhidral	145128	159.52	160.6	1.08		0.12	0.031	6.32	116
			- magnetite: 5-10% annedral	145129	160.6	161.69	1.09		0.12	0.023	5.72	122
			- he matile : 5-10:1. ashedral - some mt			ļ		<u> </u>				
			crustals are ringed what	145130	161.69	162.94	1.25	ļ	0.01	0.005	7.04	< 5
			-quartz 5% anhedral - bluish 2-3mm	145131	162.94	164.19	1.25	ļ	0.02	0.006	6.7	
			Tin quartz towards bottom.	·				ļ			<u> </u>	بېدىنى بېرۇرى د يا
			matrix - vfg Kfeld	<u> ·</u>		<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>
e.vo@Ojelsindinpe	اهارماريو اسار	L,tbl	upper contact - planar sharp 30° to CA									
			Cower contact " " 30° to CA					-				

١

Page/2 of 20

	<u>mp-</u>	98-			From	То			l	Analy	sis in the	al i a cara a
From To Fest M	Syb		Description	Sampl e No.	-Ea /	ส ก	Lgth.	Rec.	Total Cu ppm	Oxide Cu ppm	Fo %	Au ppb
11.00.05.57		Lat	rucio Bannia a nink and area	145132	164 19	165.69	1.5		0.11	0.024	5.78	123
107.19 193.32			TUSION DECLACE MILE O Certific (2)	145133	16519	167.19	1.5		0.17	0.041	5.06	197
		Class	15- alonnancy storte with a tree volumeer	145134	167.19	168.69	1.5		0.18	0.03	63	267
 		man	rix - mia gr. n faisaspar, mossine	145135	168.69	170.23	1.54		0.12	0.023	4.75	207
	 	mul	tiple <u>calcite in fractures</u>	145136	170.23	13	1.5		0.17	0.028	6.03	226
		<u> </u>	1-21-27 mosily vig obens, in tractions	145137	171.73	173.23	1.5		0.3	<u>0.035</u>	4.16	387
		mt_	- Vig, but rock is cut milely magnet to	145138	173.23	174.19	1.46		0.27	0.036	9.46	217
		aio_	psiae quite pervasive. Ig e	145139	174.19	175.14	0.95		0.19	0.022	4.48	168
	 		we want of the set the Big	145140	175.14	176.10	0.96		0.12	0.017	10.5	154
		1-15,1	$\frac{14-177\cdot21}{100} = 1000000000000000000000000000000000000$	145141	Den D	DPLICA	TFOR	9	0.11	0.014	10.68	126
		ma	trix turns extremely dask copies greg	1451117	176.10	177.27	1.17		0.1	0.017	14.11	168
	<u></u>	ma	anchite content 1, but shill vig.	illsul2	177.27	178.8	1.52	1	0.1	0.015	5.62	127
<u></u>	 		Idiopside present. cpy in tractures where	Internal	178.8	180.16	1.36		0.04	6.007	4.69	57
	<u> </u>	K-ai	lteration leaves a Icm envelope.	ULENUE	180.16	10178	1.62		012	0.016	5.62	156
	ļ	;	y 1-27.	140(4)	19179	1933	1 52		016	(2.027	5.19	188
	<u> </u>			145146	101.10	1848	10.06		0.08	0.13	3.96	117
		178.8	8-180.16 Volcanic Tuff	145141	103.7	1963	15			0.017	4.71	12.9
		meda	grained phenois in the to need grained providings	145148	107.0	188 0	1 1 72		0.1	0.015	9.14	160
	<u> </u>	<u> </u>	1. cpy associd w/ calc + K-feld = ht fractures	195149	106.)	100.01	1.72		10.13	0.014	7.95	166
		100	derate K-alteration	145150	188.04	107.12	1.12		0.77	0.079	4.94	398
	<u> </u>	.		145151	107.17	191.62	1.5		0.16	0.019	6.03	204
		186	30 - 189.75 - Chloritized 30ne - grey green	145152	191.d	102 57	177		0.12	0.05	8.68	128
		56	11 brecciated. Clasts of 19 mapie? rock	114515	5 14 d. 1)	113.52	<u>- / · / ·</u>		U.L			
		Perho	pps the volcanic tuff.	1		<u></u>		<u>_1</u>		<u></u>		

etwoordeneteroarieseefortertel

Page 13 of 20

		m	0-98-1 rageiou 2	<u> </u>	<u> </u>						-	
From	To	Syb	Description	Sample	From	To	Lath.	Bac.		Ana	lysis	and the second sec
	m			No.	7	n	Lyan	11001	Total Cu ppm	Oxide Cu ppm	Fo %	Au ppb
			30nes of up to 5%. cpy! in fractures + altered								1	
			reasts (should run a good grade). Mt									
			Closely associal w/ coy. Rare epidote? (pea-				7					
			oreen) also close to cpy, spatially.									
			· actinolite radiating out from colorite?							· · ·	1	
			filled fractures									ان نی در مرجع کرد ک
		ļ									-	
			189.75-193.79 More InBx							·.		
		 	(15-20% hydrolhermal bt vfg anhedral									
		(last	121. ufg coy									
		<u> </u>	L 30-50%. fg K-feldspar								1	
<u> </u>		 	10 °1. gtz anhedral.									ng series (
			- chloritization variable also k-alteration						ļ			
			-ht_on_fractures + calcite + disposide									
			193.79-194.06 augite Monzonite Dyke									
			- Chloritized									
			- 21:1. GDY			<u> </u>						
				i								- (- -
195.52	198.99		Plagisclase Porphysy ± bx Pink	14515	4 195.52	197.05	1.53		0.B	0.016	5.69	112
			* Gypson fracture infills!	145155	197.05	197.99	0.94		0.22	0.025	3.01	201
			- entenoive K-alteration.	145156	197.99	198.94	0.95		0.29	0.039	3.43	159
			- Quite Fractured + boken in places								-	

لزار كفرماه والموحل المارة المال المحمد

ະຕົ້ວ ແລະ ແລະ ແລະ ແລະ ແລະ ແ

Page 14 of 20

A CO CO CO A CO CO CO CO A A

×.

From To				From	То				Anal	ysis -	and the second
Heat M	ЅуЪ	Description	Sample No.	н И	N .	Lgtn.	Kec.	Total Cu ppm	Oxide Cu ppm	Fe %	Au
		fractures - tht = calcite = gypsum = cpy = dippside									
	- <u>-</u>	± mt ± bt			<u> </u>			· ·	· · · ·		
		· barriated in places						<u> </u>			
		(is this just a huge block? zenolith?)									
198.94 218.04		Intrusive Breccia, pink + grey mottled	145157	198.94	200.44	1.5		0.14	0.027	7.26	1133
		matrix - fine to coars: argined K-feldonar.	145158	200.44	2d.78	1.34		0.18	0.027	6.48	146
		Criss-crossed will fractures	145159	20178	203.28	1.5		0.09	0.022	5.98	78
		Fractures - calcity + mt = cpy + ht = diposide	145160	203.28	204.78	1.5		0,14	0.048	5.58	196
		$\pm bt$	145161	DUPU	CATE	1.5		0.13	0.029	5.85	125
	i.	repolitho- dominantly discite (tw PP)	145162	204.78	206.28	i 5		0.19	0.046	7.75	257
		Variably Kaltered chemitized. Where chlorite	145163	206.28	207 18	1.5		0.07	0.019	9.89	60
		alteration dominates, K-alteration looks	145/64	207.78	209.28	1.5		0.11	0.036	6.2	105
		secondary (not timewise but 7-wise)	145165	209.28	210.78	1.5		0.2	0.062	6.11	152
·····		- the magnetite content (esp in fractures) has	145166	210.78	212.28	15		0.11	0.027	6.44	81
· · · · · · · · · · · · · · · · · · ·		increased	145167	212.28	213.78	1.5		0.24	0.033	7.99	202
		- Some zones look 'blotchy' - Like at monadiorite	145168	21378	215.22	1.44		0.07	0.014	8.54	72-*
		being Kically altered	145169	215.22	216.89	1.67	<u> </u>	0.08	0.022	9.25	86
			145170	216.89	218.04	1.15		0.14	0.035	7.92	189
		20804-206.88					ļ				
		- chloritized zone (diopside, too)					· · · ·				
		1 is hydrothermal bt. Still envidence of		 	ļ		 	 			
		K-alteration ht on fractures w/ calcite		<u> </u>	<u> </u>		<u> </u>	<u> </u>	[<u> </u>	1.1.2.2.6

: %+\$0\leistinsingeristeriley\#11.tbi

Page Sof 20

) (

1)

())

(1) (

)

٨

) [

)

11.1

Emm To				From	Τo				Analy	/si#	Section of the Sectio
For in the second secon	Syb	Description	Sample No.	- Ξ α Υ	•** `\	Lgth.	Hec.	Total Cu ppm	Oxide Cu ppm	Fo %	Au /
	 										100
	<u> </u>										
	[<u> </u>										
	<u> </u>										
210-41-21102		1 trucius Brence a. (Pink + orem)	145171	218 04	219.54	1.5		0.32	0.083	8.02	474
XIAUTATIS	<u> </u>	TARUSIVE Directed (Mile gray) fa	145172	219.54	220.98	1.44		0.1	0.026	4.43	103
		Children - FF- and a mayne con yrighty	145173	220.98	222.5	1.52		0.19	0.052	7.81	313
		Critorichi de character de la mar	145174	222.5	2240	1.5		0.13	0.021	5.08	103
		manix - <u>R-actered</u> , <u>alastace</u> , <u>1g-mg</u> ,	145175	224.0	225.5	1.5	·	0.21	0.034	5.54	15D
		magrupte < resmon + 5-101.	145176	225.5	227.0	15		0.13	0.24	4.95	MS
		- higher aggree & a - altra find the higher white	1115171	2270	2285	15		0.09	0.016	6.22	99
	<u> </u>	intervale. Filso in their content of miky while	145.72	1295	230.0	15		0.1	0.019	5.72	142
	┨	30nes-plags 20-251.	145170	230.0	2315	1.5		0.09	0.03	3.79	107
	<u> </u>	221.82 - 222.18	145180	221.5	2330	15		0.(1	0.026	5.11	95
	<u> </u>	one large clast: & chiprisized milafue rock	145101	12.51	DUDLICA	IF15		0,11	0.025	5.7	95
	.	- vtg-ty, Vry magnine	11-10-	2220	224.5	i 5	[0.08	0.014	7.62	94
		- 1-2mm tractures w/ K-telaspar, aiopszice	115102	2345	236.0	1.5		0,012	0.025	7.46	250
		- narren. of visible upy.	145101	236.0	237.5	1.5		0.14	0.021	5.61	119
			145185	2375	2390	1.5		0.16	0.028	5.14	204

 $(\mathbf{r}) (\mathbf{r}) (\mathbf{r})$

۰.

	<u>mp</u>	- <u>70</u>			From	То				Analy	/sis	
From Lest M	10	Syb	Description	Sample No.	Es 1	ner N	Lgth.	Rec.	Total Cu ppm	Oxide Cu ppm	Fe %	Au ppb
 			222 73 - 228,0 1. By - and ceite flow?	145186	239.0	240.49	1.49		0.14	0.023	418	158
 			adarta an ila maine (dark man-okara).	145187	240.49	242.0	1.5)		0:12	0.024	4.1	125
			- chads and vig maple raden gray grand	145188	242.0	243.5	15		0.21	0.032	3.89	264
			Marine = 19 N- perception, pring.	145189	243.5	245.0	15		0.22	0.031	5.59	265
			Huith Soft, right green zimi pitrouges to con	145190	245.0	2465	15		0.11	0.03	4.5	129
			putal thank	145191	246.5	2.48.0	1.5		0.14	0.042	4.38	149
 			anysia shupe.	145192	248.0	249.3	1.3		0.23	0.066	2.42	266
			@ 231 19 - parnite on fracture dance w/row						<u> </u>	·		
			mit and accor pain (duch still - actuality?)									
		·	no and green ningausiy, sour active server	ļ					<u> </u>			
			922 11, 275 67 LaBx					<u> </u>			; 	
			and the and and site claste - dark group to				<u> </u>		·			
			black subjected to counded Magnetic									
			plack subiometric to ophicality magnetic									
			- matrix - mostly 19 with the pulpoint , bo, it integ									
			ht, cpy (1-27.7									
			- top boom has all more (30-301.) prime in spice								<u> </u>	
┠───╂──			manx with more peag	·								
			27801 - 22852									
		<u> </u>	230.06- 271.57								· · · ·	
 			a guid mare of political an and the spar (a bit					<u> </u>		ļ	· · · · · ·	, í , í
		<u></u>	(ash dol) share diaside			<u> </u>	_ <u></u>	<u> </u>		ļ	· · · ·	<u>لمرد المراجع</u> وروابعار المراجع
			- 5-10% malie (andeside?) clasto - magnetico],		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	

alwebbletendinewisterletit

1913 - S. 1

124124

.

Page¹⁷of 20

<u></u>	<u> 98-1</u>			From	То	<u></u>	_		Analy	sis	
From To	Syb	Description	Sample No.	F9 7	ት ጉ	Lgth.	Rec.	Total Cu ppm	Oxide Cu ppm	Fe %	Au ppb
		C is the initial standard $ ^{9}$. (÷≧)
		· tractures weins & calcite wipper 1							· •	-	
		· top 20cm is precriated by calcitevens.					<u> </u>				
	<u> </u>	little to no rotation of clasts	<u></u>								a caster
	ļ	· this same from geneous interval can be					<u> </u>				
	ļ	Deen at 247.70 - 249.3m			·						a e se
	ļ	0.0									
		241.86 - 241.99			<u> </u>		<u> </u>				
		- flaw banded black to grey green									
		- mands of ht + black material (? andesite?)	(·						
		- almost porphyrybic	. <u> </u>								
		- and is the clast?									
		- looky unaltered		ļ				<u> • • • • • • • • • • • • • • • • • • •</u>			<u>ر کې .</u> مېره کې د د د
				ļ	 		<u> </u>				
	-	243 65 -743.90.	,,			. <u>.</u>	<u> </u>	· · · · · · · · · · · · · · · · · · ·			ي کې د کې د د ورو د مې
		5-10 muthick win Slicks prevent. Actinolite							ļ		
		s contraining events intoes processing						 -			
		magnetite. e 0 5 to Ch						<u> </u>	ļ	 	
		Chlouberd Andrite Planis	145193	249.3	250.8	1.5		0.05	0.017	9.47	76
24932341	4	(norming + maine pick)	145194	250.8	252.3	1.5		0.09	0.03	921	20
		· miner to miderall N-alteration	145195	252.3	253.8	1.5		0.03	0.01	8.69	42
		-many - bt plag ispar, wis & morrie cone	145196	253.8	255.3	1.5		0.09	0.028	674	101
		activalite (dark grein)				1					
		+ tractures with ht, calcite, + N-span autorality		1						<u> </u>	
		halos 1-3mm 10%	·								t s hiter t

atwood selected in participation of the state

(° 1

Page 180f 20

]

ť.

()) ()) ())

)

(J

____)

<u> </u>	<u>1P - 9</u>	8-1		From	To				Analy	sis	
From To	Syb	Description	Sample No.	·Fo Y	st° Υ	Lgth.	Rec.	Total Cu ppm	Oxide Cu ppm	Fe %	Au
			145197	255 3	256.8	1.5		O.L	0.029	6.48	116
254.71 280.0		Intrusive Breccia (pint + grey multica)	ILLE OS	156.8	2583	15		2.1	0.028	5.63	131
		- moderate K-adteration over whole interval	1451-10 116.00	100 Z	159 8	1.5		073	0.047	3.32	276
	<u> </u>	- switch bitween man matic (and earth c:)ana	145199	25GQ	2, 28	158		0.57	0.077	4.24	1846
	<u> </u>	Monzenite claster, Monzenite more common	145/00	6.)7.0	CATE	158	<u></u>	0.47	0.062	4.7	1195
	<u> </u>	towards the bottom.	15/501	1000	2118	122		0.24	0.039	4.43	322
	<u> </u>	- medium grained bit (5-7mm) present	151502	ab De	241 3	15		.0.11	0.02	5.04	123
		(up to 2%) jouanas bollom (especially in	151507	262.0	LOT. J	1.5		0.09	0018	4.66	97
		moryonite intervals)	15 1504	264.3	100.0	1.5			0.051	5.25	213
		- fractures host mt. Ht, calcite, actinolite!	151505	266.8	12600	1·.) 1 C			0.053	551	191
		and cpy (upto 3%)	151500	268.5	269.8	1.5	<u> </u>	0.10	0.000	6 09	319
			151007	269.8	12/1.5	1.5		0.44	0.007	<u> </u>	394
		266.84 - 268.27 . Extreme K-alteration	151.508	271.3	273.19	1.44		0.23	0.05	<u>5.04</u>	513
	- <u> </u>	mappive man clasts almost totally	151509	273.79	275.3	1.51		0.34	0.002	<u>Ψ0</u>	212
	1	aboit-evoted.	151510	275 3	276.8	1.5		0.21	0.036	5.6T	1206
		Clasto - andentic? - 2-5cm.	151511	276.8	278.4	1.6	ļ	0.22	0.038	5.14	417
 		courding concentrated (vfg) and concentrated	151512	278.4	2,80.0	1.6		0.19	0.034	5.6	1219
 		in fraction (~2% over Whole interval)			<u></u>	ļ					43
		2n + 77ac + 702 + 2021 - 1521		<u> </u>				_ <u>_</u>	<u> </u>		
		1 plug -1 2min 201					<u> </u>		<u> </u>		
		Repar 2-3mm 00-051.				<u> </u>					
		· calcit tilled tractures, nul ear carring	1							<u> </u>	
		are 210 97 Million it Mark in ha Ry	1								
		126401-264 11- runzon (2 pours in prize					<u> </u>		1	<u> </u>	
	<u></u>	1. her is while the we would be to the									(
etwo80.5eletinatingerial.policy	varill, stal	Shin ty. weren / more									. s.ę.

ł

Page 9 of 20

١

<u> </u>	P-99	<u>8-0</u>			From	То				Analys	is -	
From Ee6	To E	Syb	Description	Sampl e No.	h h	**	Lgth.	Kec.	Total Cu ppm	Oxide Cu ppm	Fo %	Au ppb
					<u> </u>							i en ange
	<u></u>		· plag - 2mm 201.					<u>_</u>		· ·	• • •	
	<u></u>		Kspar vfg matrix 30-401.									
			· cover it be a monzonite dyle that was	<u> </u>								
			subsequently K-altered?						<u> </u>			
			- majic clasts present win the enterval		 	·					· · · ·	
			U									
			@ 271.11 -> lots (101.) cpy. In matrix	<u> </u> _				 .				
			and on a fracture plane	<u> </u>	┼							
						<u> </u>		<u> </u>				
			273.14-277.34	<u> </u>								
			·biopite increases to 20%. 1-3mm			 						
			"mt seems to decrease in content, butit's still	<u> </u>		<u> </u>						
		-	present and vfg			<u> </u>	<u> </u>					
	<u>`</u>		. K-spar mostly fa but increases in grain			<u> </u>		<u> </u>				
			aizer (the famm) around veins	<u> </u>			<u> </u>					
 			com shows which high amounts in	<u> </u>		<u> </u>	<u> </u>					
			- any more (@ 214.56m)		_ <u>_</u>		.		·			
			- france		_	·						1.1
 			277.34-280.0 Intrusive Breccia			<u> </u>						
			came as alwark			<u> </u>						
┣				_ _	_					0.000	1 01	119
10000	200 0	6	Diarite.	151513	280.0	282.t	$\frac{2.0}{0}$	<u> </u>	+0.04	0.000	6.70	14
1400	1204.0	<u>~</u>	contact, with InBx 0-40° to CA. Sharp,	151514	- 1282.0	1284.0	120	<u> </u>	10.02	1.0.004	1.0.0	<u></u>
<u> </u>			1 Dimary								•	1997 - 1997 -
e.wp80Jeletin	dimperial polle	¥vær#1,724	uninum of									•

 $(\mathbf{1} + \mathbf{1}) = (\mathbf{1} + \mathbf{1}) + (\mathbf{1} + \mathbf{1}$

Page²⁷⁰ of 20

) (<u>)</u> () () () ()

.

]

•	mp	-96	3-1		From	To				Analy	sl8 141 44	1. C. S. S
From Foot	То	Syb	Description	Sample No.	r r	et N	Lgth.	Rec.	Total Cu ppm	Oxide Cu ppm	Fo %	Au
(161515	1940	186.02	1.02		0.03	0.009	7.12	21
			•no chill margin on littur side. Doent		28602	2880	198		0.02	0.008	7.41	<u>~42</u> ~
			look faulted	1000	20002	189.4	1.56		0.03	0.009	7.18	24
			· equigranular - Kspar 30:1.	151517	1200.0	20100						
			plag 30%		<u> </u>		<u> </u>					
			pt 15-201		┨─────							
			diopside 5-10%.			1	<u>├</u> ───					
			· fractures host mt (2mm - 3cm); cpy	 		+		1	1	۰.		1957 24044
∦∤			(=1°1, anhedral, =1-2mm); dippside;	_								$(-\infty,T) = (-\infty)$
			calcite.	<u>↓</u>				<u> </u>				
			Really near veins - minor Kalteration	<u> </u> -				-			r.	
	<u> </u>	[envelope.	<u> </u>				┼───	+		· · ·	1414
	<u></u>	1				- <u> </u>		┤────				
		<u> </u>	EOH	<u> </u>							1	
		┼───		<u></u>							-	
		+		<u></u>						-		- 201X
												in Sec
 												ولايفيني وا
 	·											1. C. F.
	<u> </u>											
												· · · · · · · · · · · · · · · · · · ·
				<u> </u>				<u> </u>			سير الر	
		_!										÷

1)) (]	8 - 11 -) ())	ţ	J	r .)	•	J)	2 2])	~)	e 5)	<i>e</i>)	2000 - S)	e .	}	,	<u>}</u>
	 														 · · · · • · ·					<u></u>		·····				<u></u>	1

•

RILL R	ECORD		IMPERIAL METALS COI	RPORAT	ON							
ROPER OLE N OMME OMPLE BJECT	TY: Mour o.: mp. NCED: Ju ITED: Ju	NT PC 98-C ine 24 ne 28 Miner	IlingLOCATION:CaribooSECORRECT D2LOC.: $3120.59N, 240.31E$ TRUE BRG:798ELEV.: $1149.56m$ SURVEY AT193CORE SIZE:NQ% RECOVERalizationLENGTH:21	11P: : 249 :Y: :49.94m	n		PAGE: LOGGED DATE: CORE ST UNUSUA	1/H BY: JC JUNE 2 TORED: N NL FEAT.:	nice fe 7-June: Nt Polley	twin 20198		
mor	To			6	From	To	Lath	Rec		Analy	/sls	
лы р	•वर ^	Syb	Description	No.	بر ۱	ν γ	- cyon.	100.	Total Cu ppm	Oxide Cy ppm 1	Fo %	Au ppb
0	6.		Overburden									
6.1	35.76		Leached Zone (privingl - InBx)	151518	6.1	7.6	1.5		9.05	0.041	5.18	65
<u></u>			·arungy + rubbled in places	151519	7.6	9.1	15		0.04	0.026	4.72	48
			-chalky white	15.520	.91	10.6	15		0.13	0.071	7.49	203
			· high in sx (esp cpy, py), mt	151521	Dusiic	nti-	15		0.17	0.086	7.38	221
				151522	10.6	12.1	15		0.36	0.131	9.45	401
			6.1-9.52 pp protolith still evident - (White)	151523	12.1	13.6	1.5		0.82	0.100	9.59	778
			· clasts of PP present	151524	13.6	15.1	1.5		0.86	0.112	10.2.1	1519
			·oxidation follows existing fractures - halos	151525	15 1	166	1.5		0.81	0,142	10.38	1409
			· weak alteration	151526	16.6	181	15		0.15	0.029	9.97	151
			· black oxide (manganese2) on fractures - dendritic-	151527	18.1	19.6	1.5		0.19	0.020	9.29	165
	·		oxidized	151528	19.6	21.1	1.5		0.03	0.004	7:25	46
				151529	21.1	22.6	15		0.25	0.019	6.02	282
			9.52-35.76m Extremely Leached (Supergene?)	151520	22.6	24.03	1.48		0.32	0.020	6.78	309
			-not oxidation (like the above interval), this zone.	151531	24.08	25 6	152_		0.27	0.014	6.63	199.
			is leached.	151532	J.5.6	27.1	1.5		0.43	0,042	9.02	377
_			-claots ~15%	151533	27.1	286	15		0.56	0.076	15,16	292
			·mineralization-disseminated +in debs. cpy>py.	151534	236	30.1	1.5	· = - · -	0.36	0.036	13.79	380
			Chrysocolla	151535	30.1	31.6	15		0.26	0.045	12.64	210
			·epidate venis x cutting calcite veins. <2%.	151536	31.6	331	15		0.60	0,119	10.40	595
			· around 22.5.26.8 m the core gets a very white	151537	33.i	34.6	15		0.41	0.045	8.00	300
			(matrix) w/ mild effervegrance w/ brown cavities	151538	34.6	35 76	116		0.12	0.010	5.55	94
	dinpuidpoloy\d	nal and	where clasts of ? used to be									

MP-98-02

<u>)</u>

Page Lof 14

From To	Svh	Description	Sample	From	To	Loth	Bee		Ana	ysis	
ĥ	-10		No.	i	$\hat{\gamma}$	Lgm,	Nec.	Total Cu ppm	Oxide Cu ppm	Fe %	Au ppb
		· contact at base is gradational and picked								• •	
		at the lowest point of white leaching									
											:
35.76 88:12		Intrusion Breccia	151537	35,76	315	1.84		0.10	0.009	2.72	64
		· General	151540	375	391	1.5		0.17	0.013	3.32	108
		·PP w/ variable amounts of K-alteration and	15154	3710	plicate	1.5		0.14	0.020	3.53	137
		propulitic alteration	151542	39.1	40.6	<u> </u>		0.10	0.044	3.61	11
		· common - calcite veins w/ potassic alt'n halos	151543	40.6	4211	1.51		0.16	0.073	3.18	90
		· calcite veinlets also x-cut K. Speinlets. Calcite	151544	4.7.11	436	149		017	0.107	4.06	126
		veins then cut by wispy calcite = chlorite = ht rein	101545	436	45.1	1,5		0.141	0.056	4.17	86
		· Some oxidation along eator veins (@ 50.12m)	151546	45.1	46.6	4.5		0.11	0.016	4.73	100
		· epidote, common but <5%.	151547	46.6	48.1	1.5		0.14	0.047	3.28	84
		· actinolite x-cut by calcite verno	151548	48.1	49 6	15		0.00	0.039	3.93	150
		· clasts rare. (<10%) and usually matic landesite?	151549	49.6	51.1	1.5		0.18	0.030	5,38	195
		· weak albitization	151550	51.1	526	1.5		0.05	0.015	5.51	148
• •		· hudrothermal be throughout interval.	151551	52.6 ‡	54.1	15		0.10	0.018	5.07	139
		0 0	151552	54.1	55.6	1.5		0.06	0.014	4.14	.63
		71,55 - 73.57 m. Pink Plagic clase Porphyny	151553	55.b	57.1	1.5		0.103	0.016	4.02	94
		·35-501- white plag ponoha pheno's .	151554	<u>57.1</u>	58.6	1.5		0.04	0.015	3.74	38
	·	· Vfg pink Kspar matrix	151555	58.6	60.1	15		0.10	0.083	4.03	143
		· 1/5% bt - vfg to 3mm, euhedral (hydrothermal)	151556	60.1	61.6	1.5		0.06	0.030	4.48	73
		· blebs of plag w/ mt, epidote i-2 cm.	151557	61.6	63.	1.5		0.07	0.044	4.25	81
		· mineralization - pretty dead	151558	63.1	64.6	1.5	<u> </u>	0.09	0.075	467	72

stvp60.leistivelimperistpolisy\d=l.

)

()

e - 11 -

Page3of 14

mp	<u>-98</u>	- 03 Page3of	14						:		
From To	Syb	Description	Sample	From .E.	To	Lath.	Bec.		Ans	lysis	ويرجون والمراجع
m			No.		m			Total Cu ppm	Oxide Cu ppm	Fe %	Au
		73.57-76.87m Volcanic (andusite) (dk grey)	151559	64.6	66.1	1.5		0.08	0.039	4.25	87
	·	· high density of fractures	151560	66.1	67.51	1.41		0.02.	0.011	4.56	22
		· hydro-bt <21/., 2-3mm	151561	67.51	69.09	1.58		0.03	0.022	4.94	35
		fg disseminated opy = mineralisation	151562	69.09	20.6	1.51		0.09	0.042	4.32	91
		· epidote = last phase	151563	70.6	72.1	1.5		0.11	0.02.1	3.36	108
		. mt, 3-6 mm in blebs	151564	77.1	13.59	1.49	 	0.03	0.005	3.32	33
		· veins have 1= 8mm Kicalteration halos	151565	73.59	75.1	1.51		0.18	0021	3.22	137
		· pridization x cuts K-spar veins	151566	75.j	76.6	1.5		0.22	0.568	3.37	185
		<u> </u>	151567	766	78.1	1.5		0.13	0.058	2.71	96
		76.87-83.80m Plagioclase Porphyny (Pink)	151568	78.1	79.6	1.5		0.17	0.026	2.45	175
		vfg pink k-spar matrix w/ 1-3mm plag	151569	79.6	31-1	1.5		0.06	0.007	2.14	57
		ahenocrusts	151570	81.1-	82.6	1.5		0.26	0.218	2.65	<9
		· ~ 1%, malic closts (subrounded)	151571	82.6	84.1	1.5		D.26	0.01	2.58	193
		· hydroffermal bt	151572	84.1	85.1	1.0		0.24	0.107	3.82	123
		· mt bearing veins (som etimes oxidized) ie 79260	.151573	85.1	86.04	0.96		0.22	0-018	3.6)	112
-		here to no calcute vering	151574	86.04	87.47	1.43		0.20	0.092	3.20	159
		· mineralization - Chanocolla	151575	87.47	88.89	1.42		0.14	0.089	3.10	106
		* chrysprolla is all throughout this interval									
8872 101.50		Volcanic (Andesite) Dark Grey	151576	88.39	90.4	1.51		0.31	0.025	359	297
		· spidery anastamosing hiturcating system of	151577	90:4	91.9	1.5		0.12	0,000	2.95	127
		kspart plag veins => to the point of precciption	151578	91.9	93-4-	1.5		0.19	0.017	3.54	123

Page4of |4

		m)-98-02 Paged of	4								
From	To	Syb	Description	Sample	From	To	Lath	Bec		Anal	ysis 👘	
	m			No.		Ŷ	- State	1100.	Total Cu ppm	Oxide Cu ppm	Fo %	Au ppb
			· hipto bt <10%; <1-2mm; sub to enhedral	15 579	93.4	94.9	1.5		0.18	0.021	3.50	176
			· cpy associated w/ mt (=10%) => blebs and	151580	94.9	96.4	1.5		0.16	0.017	361	162
<u> </u>		. <u> </u>	for in matrix. Not abot of opy in with kspart	151581		Dudicate	1.5		0.23	0.026	3.69	20
 			calcite = plag veinsuster.	151592	96.4	97.9	1.5		0.18	0.015	3.11	168-
				151593	97.9	99.4	1.5		0.18	0.076	.3.63	164.
 				151584	99.4	100 9	1.5		0.26	0.224	5.70	243
				151535	100.9	102.4	J.5		0.56	0.351	7.31	534
101.5	112.92		Intrusion Braccia (Pink)	151586	102.4	103.93	153		0.14	0.019	6.97	112
			· moderate K-alteration	151587	103.93	105.4	1.47		0.33	0.052	5.85	326
ļ			· rare propulitic (green) zones	151583	105.4	106.9	15		<u>ò.20</u>	0.017	5.98	204
			· pp as matrix	151589	106.9	108.4	15		0.2.3	0.024	6.07	194
			· oxidation along fractures	151590	108.4	109.98	1-58		D.22	0.016	6.50	168
			· epidote associa w/ latest plag veins	151591	109.98	111-52	1.54-		0.13	0.009	7.90	10
· .		-	· hudro bt 10% : 1-3mm · Sub to enhedral	151592	111.52	11292	1.40		0.16	0.013	5.75	12.8
			-mineralization - vfg in matrix - cpy									3-5 3,458
			beits associated with epidote veins (cpy + py)									
			· · · · · · · · · · · · · · · · · · ·									
			@112.28m Contact between InBx and Andesite									· · ``.
											· .	· · · · · · · · · · · · · · · · · · ·
												i
L												19 (20

Page5 of 14

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	· .	<u>mp- 1</u>	18-02					· · · · · · · · · · · · · · · · · · ·				- Friday (
Internation Internation <thinternation< th=""> <thinternation< th=""></thinternation<></thinternation<>	From To) 0.4	Description	Sampla	From	То	Lath	Rea		Anal	yals	1
113.9 118.41 Augite Arphyry 151593 112.42 114.5 0.01 0.004 6.98 7 mad grained augite and humatite 151594 114.5 114.5 0.01 0.02 7.28 55 matrix	F000	Syb	Coscoption	No.	'n	n	Lgun	1100.	Total Cu ppm	Oxide Cu ppm	Fe %	Au s ppb
• Aread grained aughte and humatite 151544 1145 116.02 0.01 0.005 7.28 *5 • matrix vfg black 151595 116.02 1175 0.02 0.02 7.53 *5 • (ontains, clasts of PP at top 151596 1175 119.0 0.06 0.006 0.008 6.76 344 • top Contact 85.90° 5 CA; vavy; sharp; 0 0 0.06 0.006 0.008 6.76 344 • minuralized • minuralized • minuralized 0 0 0 0 0.06 0.008 6.76 344 • ontract • minuralized • minuralized 0 0 0 0 0 0 0.06 0.008 6.76 344 • ontract • minuralized • entract • entr	112.92 118.4		augite Porphyry	151593	112.92	114.5			0.01	0.004	6.98	7
Imatrix If black 151545 116.02 117.5 0.02 0.02 7.53 2.51 Imatrix If by Contact B5-90° 5.64 151594 117.5 119.0 0.06 0.008 6.78 3.44 Imatrix Imatrix Imatrix Imatrix Imatrix Imatrix Imatrix 0.02 0.008 0.008 6.78 3.44 Imatrix Imatrix <td< td=""><td></td><td></td><td>emed grained augite and hematite</td><td>151594</td><td>114.5</td><td>116.02</td><td>ļ</td><td></td><td>0.01</td><td>0.005</td><td>7.28</td><td>:45. s</td></td<>			emed grained augite and hematite	151594	114.5	116.02	ļ		0.01	0.005	7.28	:45. s
. contains clasts of PP at top 151594 1175 119.0 0.06 0.008 6.78 344 . top contact \$55.90° to Ch; wavy, sharp,			· matrix vfa black	151595	116.02	117.5			0.02	0.002.	7.53	-45
 top contact 85-90° to CA; navy; sharp, minuralized. minuralized hematite veins cross cut top contact minuralized hematite veins cross cut top contact ellttbun => vein system gypsum in open-space filling textures, xcuttra epidate and itself xcut by ralcite buttom contact - gradational chill margin vein structed to vein falses: 151597 119.0 1205 1.5 0.14 0.025 6.60 147 K-alteration restricted to vein halos: 151597 12.0 12.5 1.56 0.222 0.025 6.36 146 kydrothermal bt 151602 123.56 1.55 0.14 0.023 6.38 89 vein timinge?) O Kspar @ diapside \$\pimtut in cpy 151602 123.56 1.55 0.128 0.031 6.031 6.031 8.0 151602 123.51 154 0.17 0.024 6.58 99 0.186 0.031 6.031 6.031 8.0 151602 123.51 1264 151602 123.51 1264 0.17 0.024 6.58 99 0.186 0.031 6.031 8.0 151602 123.51 1264 0.17 0.024 6.58 99 0.180 0.031 6.031 8.0 151602 123.51 1264 0.18 0.031 6.03 180 151602 123.51 1264 0.17 0.024 6.58 99 151602 123.51 1264 151602 123.51 1264 0.17 0.024 6.58 99 151602 123.51 1264 0.18 0.031 6.03 180 151602 123.51 1264 0.18 0.031 6.03 180 			· contains clasts of PP at top	15 1594	117.5_	119.0			0.06	0.008	6.78	34
 minuralized. minuralized. hematite veins cross cut top contact <licontact< l<="" td=""><td></td><td>_[</td><td>· top contact 85-90° to CA; wavy; sharp;</td><td></td><td></td><td>·</td><td></td><td> </td><td></td><td> </td><td></td><td></td></licontact<>		_[· top contact 85-90° to CA; wavy; sharp;			·						
 minuralized hematite veins cross cut top contact @ 114.64m => Vein system gypsum in open-space filling textures, xcuthon epidote and itself xcut by ralcite. bottom contact - gradational chill margin chill margin diopsid. xcutting potacoic veins/sores 15,597 119.0 120.5 1.5 0.14 0.025 C.60 147 diopsid. xcutting potacoic veins/sores 15,598 120.5 120 1.5 0.16 0.046 5.65 126 2.20 0.025 6.36 146 bydrothermal bt 15,599 120 123.56 1.56 0.22 0.025 6.36 146 bydrothermal bt 15,500 123.56 1.55 0.14 0.023 6.38 89 vein timing?) O Kspar (3) diopside temt the copy 15,600 123.56 1.54 0.17 0.024 6.579 99 (3) Calcite mineralization - in veins (blebs) and fg 15,1603 120.6 128.1 128.1 1.5 0.07 0.011 7.36 31 			mineralized.									
contact @ 114.64m => Veinsystem @ 214.64m => Veinsystem			· mineralized hematite veins cross cut top	ļ			ļ	ļ				
 @ 114.64m => Vein system @ 114.64m => Vein system @ gypsum in open-space filling textures, xcuttring @ epidote and itself xcut. by calcite. @ hottom contact - gradational Chill margin Chill margin II84 28.71 Volcanic (Andusite) dark grey. Isis97 119.0 120.5 1.5 0.14 0.025 6.60 147 Accutting potassic veins/sories Isis99 12.0 123.56 1.56 0.22 0.025 6.36 146 Nydrothermal bt Isis90 123.56 1.54 0.14 0.023 6.38 89 Vein triningl) O Kspar (D dippide 2mt th coy Isis01 23.56 1.54 0.17 0.024 6.57 99 (D lacite Isis02 125.1 126 1.5 0.18 0.031 6.03 186 "mineralizator - in veins (blebs) and fg Isis01 128.1 1.5 0.07 0.011 7.36 315 			contact							·	-	
@ 114.64m => vein system												
gypsum in open-space filling textures, xcuttion			@114.64m => veinsustern									
epidate and itself xcut by calcite. - bottom contact - gradational			gupsum in open-space filling textures, xcutting	<u></u>							r e	
 bottom contact - gradational chill margin 11841 128.71 Volcanic (andesite) dark greys 151597 119.0 120.5 1.5 0.14 0.025 6.60 147 diopsid, xcutting potassic veins/zones 151598 120.5 122.0 1.5 0.16 0.046 5.65 126 .K-alteration restricted to vein halos: 151599 122.0 123.56 1.56 0.22 0.025 6.36 146 .kydrothermal bt 151600 123.56 1.54 0.14 0.023 6.38 89 vein timing?) O Kspar (2) diopside tumt the cpy 151602 123.51 126 0.18 0.031 6.03 186 "mineralization" in veins (blebs) and fg 151603 120.6 125 0.07 0.011 7.36 31 			epidote and itself xcut by calcite						• .		-	
chill margin 151597 119.0 120.5 1.5 0.14 0.025 0.60 147 11841 128.71 Volcanic (Andesite) dark grey. 151597 119.0 120.5 1.5 0.14 0.025 0.60 147 - diopsid, xcutting potassic veins/zones 151598 120.5 122.0 123.56 1.55 0.14 0.025 6.36 147 - diopsid, xcutting potassic veins/zones 151598 120.5 122.0 123.56 1.55 0.12 0.025 6.36 146 - K-alteration restricted to vein halos: 151599 122.0 123.56 1.56 0.22 0.025 6.36 146 - Nydiothermal bt 151600 123.56 1.54 0.14 0.023 6.38 89 - Vein timing? 0 Kspar @ diopside timt to cpy 151601 Duplicate 154 0.17 0.024 6.59 99 - (3) calcite - 151602 125.1 126 b 1.5 0.18 0.031 6.03 186 - mineralization - in veins (blebs) and fg 151603 126 b			- nottom contact - gradational									
11841 V8.71 Volcanic (Andesite) dark greys. 151597 119.0 120.5 1.5 0.14 0.025 6.60 147 - diopsid. xcutting potassic veins/zorus 151598 120.5 122.0 1.23.56 1.55 0.14 0.025 6.36 147 - diopsid. xcutting potassic veins/zorus 151598 120.5 122.0 1.55 0.16 0.026 6.36 146 - K-alteration vestricted to vein halos: 151599 122.0 123.56 1.56 0.22 0.025 6.36 146 - hydrothermal bt 151600 123.56 1.54 0.14 0.023 6.38 89 - vein trining?) 0 Kspar (2) diopside tamt th cpy 151601 Duplicate 154 0.17 0.024 6.59 99 - (3) calcite 151602 125.1 126 15 0.18 0.031 6.03 186 - mineralization - in veins (blebs) and fg 151603 126 128.1 1.55 0.07 0.011 7.36 31			chill marain					<u> </u>				
11841 128.77 Volcanic (Andesite) dark grey. 151597 119.0 120.5 1.5 0.14 0.025 0.60 147 - diopsid. xcutting potassic veins/zones 151598 120.5 122.0 123.56 1.55 0.14 0.025 0.60 147 - diopsid. xcutting potassic veins/zones 151598 120.5 122.0 123.56 1.55 0.16 0.025 6.36 146 - K-alteration restricted to vein halos: 151599 122.0 123.56 1.56 0.22 0.025 6.36 146 - hydrothermal bt 151600 123.56 1.54 0.17 0.024 6.38 89 - vein timing? 0 Kspar (3) dispoide time time cpy 151601 Duplicate 1.54 0.17 0.024 6.59 99 - (3) calcite 131602 125.1 126 1.55 0.18 0.031 6.03 186 - · · · 151602 125.1 126 1.5 0.07 0.011 7.36 31 - ·			0								,	
 diopsid, xcutting potassic veins/2000s K-alteration vestricted to vein halos: 151599 122.0 123.56 1.56 1.22 0.16 0.026 0.22 0.025 0.16 0.16 0.025 0.16 0.025 0.16 0.025 0.16 0.16 0.025 0.16 0.025 0.16 0.025 0.16 0.025 0.16 0.025 0.16 0.025 0.025 0.025 0.025 0.025 0.023 0.023 0.023 0.024 0.031 0.011 0.01	11841 128.7	1	Volcanic (andesite) dark greys	151597	119.0	1205	1.5	х 	0.14	0.025	6.60	147
. K-alteration restricted to vein halos: 151599 122.0 123.56 1.56 0.22 0.025 6.36 146 . hydrothermal bt 151600 123.56 125-1 154 0.14 0.023 6.38 89 . hydrothermal bt 151600 123.56 125-1 154 0.14 0.023 6.38 89 . vein triningl?) 0 Kspar (2) diopside time time cpy 151601 Duplicate 1.54 0.17 0.024 6.59 99 . (3) calcite 151602 125.1 126.6 1.5 0.18 0.031 6.03 186 . mineralization - in veins (blebs) and fg 151603 126.6 1.5 0.07 0.011 7.36 31 . disseminated - cpy + py . 0.07 0.011 7.36 31			- diopside xcutting potassic veins/zones	151598	120.5	122.0	1.5		0.16	0.046	5.65	126
· hydrothermal bt 151600 123.56 125.1 194 0.14 0.023 6.38 89 · vein troning?) O Kspar (3) diopside tumt tu cpy 151601 Duplicate 1.54 0.17 0.024 6.59 99 (3) calcite 151602 125.1 1266 1.5 0.18 0.031 6.03 186 · mineralization - in veins (blebs) and fg 151603 1266 128.1 1.55 0.07 0.011 7.36 31			- K-alteration restricted to vein halos:	151599	122.0	123.56	1.56		0.22	0.025	6.36	146
• vein timing?) 0 Kspar (2) diopside tomt to cpy 15/601 Duplicate 1.54 0.17 0.024 6.59 99 (3) calcite 15/602 125.1 1266 1.5 0.18 0.031 6.03 186 • mineralization - in veins (blebs) and fg 15/603 1266 128.1 1.55 0.07 0.011 7.36 31 disseminated - cpy + py .			· hydrothermal bt	151 600	123.56	125-1	1.554		0.14	0.023	6.38	89
(3) calcite "mineralization - in veins (blebs) and fg 151603 1266 1.5 0.07 0.011 7.36 31 disseminated - cpy + py			· vein timing?) O KSpar (3) diposide tumt to cou	151601	Dupli	cate	154		0.17	0.024	6.59	99
·mineralization - in veins (blebs) and fg 151603 1266 128.1 1.5 0.07 0.011 7.36 31 disseminated - cpy + py			(3) calcite	151602	125.1	1266	1.5		0.18	0.031	6.03	186
disseminated - cpy+py			·mineralization - in veins (blebs) and for	151603	266	128,1	1.5		0.07	0.011	7.36	31
			disseminated - cpy + py	,		L <u></u>						

< 04, 5,

1

1 1

Page 6 of 4

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	· · ·			mp-98-02 Page 6 01	T								-3-2-2-
Im Im <th< th=""><th>From</th><th>To</th><th>Svh</th><th>Description</th><th>Sample</th><th>From</th><th>To</th><th>Loth.</th><th>Bac</th><th>L</th><th>Anal</th><th>ysis</th><th>and the second</th></th<>	From	To	Svh	Description	Sample	From	To	Loth.	Bac	L	Anal	ysis	and the second
120.28-120.78m • Ovidiged gone broken, foundery • Fe-oxide on fractures • Fe-oxide on fractures • E 121.48m • Jarge vein system like that at 114.64m • Jarge ve	m		575		No.	T T	n	Ly cin		Total Cu ppm	Oxide Cu ppm	Fe	Au ppb
- ovidized zone broken purdery, I - ovidized zone broken purdery, I - consider on fractures. I - consistent on fractures. I - consistent on fract				120.28 - 120.7Bm									
1 Fe-oxide on fractures. Image: Interpret to the inte				- oxidized zone broken, cowdery									19 ¹⁴ - 199
Control of the text of				· Fe-oxide on fractures.									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$													
$\begin{array}{ c c c c c c c c } \hline & -large vein system like that at 114.64m. \\ \hline & -30ning - Kspar(autside) > plag (middle) - 7 \\ \hline & gypsum (inside). \\ \hline & gypsum (insi$				@ 121.48m.									
- 30ning - Kspal (outside) > plag (middle) -> - 30ning - Kspal (outside) > plag (middle) -> - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9				- large vein sustem like that at 114.64m.									
a gypsim (inside). a				- 20ning - Kspar (outside) -> plag (middle) ->									
1 000 151004 128.1 129.6 15 0.05 0.007 5.76 37 12871 13248 Plagin clase Porphyry 151/0 151/004 128.1 129.6 131.1 1.5 0.05 0.007 5.76 37 12871 13248 Plagin clase Porphyry 151/1 151/005 129.6 131.1 1.5 0.05 0.007 5.76 37 12871 129.6 131.1 1.5 0.06 0.008 s.10 141 12987 129.6 131.1 1.5 0.06 0.008 s.10 141 12987 129.6 131.1 132.48 1.38 0.098 0.014 5.09 522 101805 129.6 131.1 132.48 1.38 0.098 0.014 5.09 522 101806 1.406.6 1.5 1.51606 131.1 132.48 1.38 0.098 0.014 5.09 522 101806 1.5 0.001 1.5 1.5 1.5 1.5 1.5 1.5 1.5				gypsum (inside).									
10 10 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>													
19871 13248 Plagio clase Porphytry 151604 128.1 129.6 15 0.05 0.007 5.16 37					4								
. secondary, bt, - vig to 2mm, 15.1. 151605 129.6 131.1 1.5 0.06 0.008 5.10 441	12817 132	2.4.8		Plagio clase Porphyry	151604	128.1	129 6	1.5		0.05	0.007	5.16	37
plag phinos 41-3imman hedral to evhedral 151606 131.1 132.48 138 0.08 0.014 5.09. 52 loiths; 40-601. natrix kspa t diopside 10 10 10 10 10 matrix kspa t diopside 10 10 10 10 10 10 10 . matrix kspa t diopside 10 10 10 10 10 10 10 . mintraligation - cpy + mt in late calcifeveins 10 10 10 10 10 10 . hebs. Occaisionally there is cpy (vfg) in motrix 10				secondary bt - vrg to 2mm 15.1.	151605	129.6	131.1	1.5		0.06	0.008	3.10	44
Image: Contract of the second seco				plag phinos 41-3mm an hedral to enhedral	151606	131.1	132.48	1.38		0.08	0.014	5.09.	52
• matrix K=pa t diopside • mintralization - cpy + mt in late calcifeveins • in late c				laths: 40-601.									
 <i>e</i>.mineralization - cpy + mt in late calcitevents blobs. Occassionally there is cpy (vfg) in motrix <i>i</i> light green - yellow mineral on late verins <i>i</i> light of epidote) <i>i</i> light of the end of the				·matrix Kopa + diopside			-						
-blets. Occaisionally there is cpy (vfg) in motrix · light groen-yellow mineral on late verins (too yellow for epidote)				"mineralization - CAU + mt in late calcifeveins									
 light green-yellow inineral on late veins (Foo yellow for epidote) 				-blabs. Occaisionally there is cay (ufg) in matrix									
Image: Control of the state Image: Control of th				· light groep-yellow mineral on late verns									
				(too yellow for epidote)								1	
Image: State Stat													
					,								

1

Page7of 14

×.

)	MP-9	18-02								<u></u>	14 A 200
From To	Svh	Description	Sample	From	To	Lath.	Rec.		Anai	ysis	
m	040		No.	Ŷ	ή			Total Cu ppm	Oxide Cu ppm	Fe %	Au ppb
132.48 159.40		Volcanic (Andesite) dark grey	151607	132.48	134.0	1.52		0.10	0.027	5.91	140
		General	151608	1341.0	135 5	1.5		0.02	0.006	5 33	19 ⁻⁵
		· variably altered. None to KSpar Veris - a	151609	135.5	137.0	1.5		0.03	0.006	6.02	28
		little propykitic too.	151610	1370	138.5	1.5		0.02	0.004	6.08	18
		· mineralization - vfg blebs, dense	15/6/1	1385	140.0	15		0.11	0.017	5.82	70
		fills (1 mm) of wispy fractures Cpy.	151612	140.0	141.5	1.5		0.09	0.010	613	76-
		· dippside - utg and fracture filling	151613	1415	143.0	1.5		0.05	6.008	6.03	<u>28 '</u>
			151614	143.0	144.5	1.5		0.09	0.013	6.11	79
		145.19-145.72m Oxidation of Fe	151615	144.5	146.0	1.5		0.06	0.021	6.12	52
		-zone w/ deep rust red	151616	146.0	<u>j41.5</u>	1.5		0.03	0.010	6.11	21
	-	· some ht on fractures	15/617	147.5	149.0	15		0.02.	0.00%	5.92	18.
		· red overprints all else	51618	150.5	152.0	15		0.12	0.014	4.68	78
			151619	152.0	153,5	1.5		0.17	0.022	5.50	35
		151.98 - 153.21 m	1516:00	153.5	155.0	1:5		0.14	0.019	5.83	102
		· Spiden epidote (diposide veinlet: zone)	151621	Duplic	ate	1.5		0.12	0.019	5.77	92
		· weak potassic alteration	151622	155.0	156.74	1.74		0.16	0.024	4.87	212
		· hydro- bt present	151623	156 74	158.08	1.34		0.11	0.017	6.25	182
		· epidote overprints K-alteration -> veinlets	151624	158.08	159.40	1.32		0.14	0.023	5.54	198
		are zoned Kopar -> plag -> epidote + Cpy	*151634	- 149.0	150.5	1.5		0.06	0.010	4.61	47
		* see 153.42m (edge)									
		·mineralization - Cpy + pu for in matrix and									
		along fractures.									ton ton a
		@ 153. Bm - Icm wide epidote vein with	<u> </u>								
a.WeBOJeletindirgeristerStaff	,tbl	calcite-kepar zoning									

1) (n (n (n (n

.

()

Page 8of 14

Ta Ta		1-98-02.	, 	Emm	То	1			Anal	vals	
From 10	∘Sγb	Description	Sample No.	-#	pot pr	Lgth.	Rec.	Total Cu ppm	Oxide Cu ppm	. Fo . %	Au
1532 171.70	· · · · · · · · · · · · · · · · · · ·	Intrusion Breaccia	151625	159.4	160.9	1.5	_	0.11	0.019	447	140
159.40			151626	160.9	162.4	1.5		0.18	0.039	4.35	201
		154.28- 156.74m	151627	162.4	163.9	1.5		0.14	0.017	4.23	158
		· PP matrix	151.629	163.9	165.4	1.5		0.09	0.012	425	148
		· volcanic? clasts	15/629	165,4	166.9	1.5		0.07	0.008	4.45	75
		· indro bt common (15.20%)	151630	1669	168.4	1.5	·	0.2.1	0.034	4.06	204
		· calcite voins x cut all	151631	168.4	169.9	15		0.26	0.037	410	242
		· mineralization -> cpy-mostly for in motrix	151632	169.9	171.70	1.80		0.17	0.025	4.47	156
		·actualite? - not t dark oncen veins - almost					-				10 F
		a "tooth paste" bleb texture.									
		· moderate Potassic alteration w/moderate									· · .
		albitization						-			Ne ser
											م من الم الم الم الم
		* PP is intruding volcanic - Evidence									to an ann an
······		Stroping at 132, 48m + upper contact. at									
		156.74m									
											18 <u>2</u> 2
		15674-159 4m. Volcanic,									
		, dk arou to block									. 8 X .
		humanus vaios - 20 d W KSMr+mt->					·····				
		colorite, ~ onidate us								· · · ·	
		actinalite?									
		·minin - cher in veinlets apportid w/ Kspar + later	,								
Lung-Olisistical Inpariat policy della	, Hol	callite veins and fg. disseminated.									

Page) of 14

<u>/np</u>	<u>-90-</u>	02		From	To		[<u>_</u>	Analy	rsis	
From to Feet	ЅуЪ	Description	Sample No,		Foot	Lgth.	Rec.	. Total Cu ppm	Oxide Cu ppm	Fo %	Au ppb
		159 H- 17170 InBX								·	ی دو چندو مربعه محمد
		· orbert areas motiled									
		· moderate, K- alteration · The alteration									
		, more intense around verns				 	. 				2.747. 22.17.7
		·minin-> cpy-fg disseminated - it's everywhere	<u>]</u>			 					1 - 12 - 13 - 14 - 14
		cours along fractures what + calcute			-						
		- clippside in 2 Veine that xcut eachother									
		· hudro bt 15-201									
		· top contact - can see. PP "fingered" into									
		volcanics - almost vein - like						 			
		· bottom contact - 30° to CA. a little more		 				<u> </u>	 		ر بر مرکز میں مرکز میں
		planar									
									·		
											20
171.70 249.9	14	Volcanic - andesite dark grey	15/633	171.7	173.2	1.5		0.04	0.010	5.66	<u>50</u>
		General	151634	# OUT	-dtorder	144 0-	150.5	m	0.010	4.61	47
		· very fine grained	151635	173.0	(17.7.1	15		0.05	0.008	6.45	47 <u>)</u> 11.4
		· contains hydro - bt	151636	174.1	176.2	1.5		0.09	0.014	6.38	TI
		· must alteration is potassic - and it is	151637	176.2		1.5		0.10	0.015	5.15	
		selatively confined to vein + Vein envelopes	151638	170 2	1 19.2	1.5		0.17	0.023	5.05	17
 		· inidote is common (average ~151) alma	15/640	180.7	1 182.2	1.5		0.21	0.025	3.34 4.98	202

not the state and the second second

()) ()) ()) ()) ()) ()) ())

Page/Oof 14

140	1 00	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1								مرد رمنۍ د و
[/]	<u>P-98-</u>	1		From	То	1 - 41	0		Analy	sis	
From Eest M	Syb	Description	Sample No.	Fø F	م م	Lgtn.	HaC.	Total Cu ppm	Oxide Cu ppm	Fo %	Au ppb
			151641	Guffic	1007	1.5		0.31	0.030	5.12	345
		Yeins. in proportion to h-spar	151647	1027	1927	1.5		0.20	0.024	6.67	176
		both KSpar + epidote are cross- all by	151642	1927	1852	1.5		0.05	0.008	6.03	43
		thin planar calcule verno. often officiers	151114	1857	186 7	1.5		0.12.	0.019	5.78	18
<u> </u>		the only widence of these late veine logsel	151677	18:07	1882	1.5		0.22	0.036	6.25	215
		or Kspirand epidote veine	ISULUI	188.2	189.7	1.5		12.16	0.036	5.99	129
		<u>- some zones (esp in 18/23-206-1/m-> a liai istep</u>	101040	189.7	191.27	1.57		0.45	0.015	5.54	391
		are very cpy-rich and have 40-901. Ver	151677	161 77	1978	1.52		0.37	0.066	7.54	42
 		stochwork Really near rextures.	151116	1928	194.3	<u> </u>		0.29	0.039	5.88	395
 			151656	194.2	195.8	1.5		0.22	0.025	5.30	165
		<u>@ 80.65m</u>	13(0,00	111.							
		· vein that widens from 2mm70 Lim		·							6
		- 5tal. int 3mm									
		-10:1. bt <1mm	<u> </u>		<u> </u>			<u> </u>			
		· 60 1. dispudé									
		.<51. epidote			<u> </u>			<u> </u>			× 8.3 K
		· py cpy (8%. 5% respectively)	<u> </u>								1.000
		· little bit of Kapar balo	<u> </u>					. <u> </u>			
		v v						<u> </u>			02
		187.13 206:17.n Zebra Texture	151651	1958	197.3	1.5	P .	0.53	0.091	5.26	00-
		· frost = volcante	151652	197.3	198.9	1.5	 	0.29	0.038	5.62	290
		tis bid with Ispai + actinolite, where	151653	198.8	2.00.3	1.5		0.21	0.030	6.91	194
		present volcanic clasts are fresh and only	151654	2003	201.8	1.5	ļ	0.18	0.021	4.82	
		cut by late calcite veins	151655	201.8	203.3	1.5		10.52	0.048	7.40	<u> 40</u>
La contra de la co											

MapSO leistinalimparial policy label, 16

)

(

)

)

]

1

î.,]

***** - *****

Pagellof)4

mp-9	<u>9-0;</u>	2	1 	From	To	<u></u>	1		Analy	sis	
From To	Syb	Description	Sample No.	E. Y	h h	Lgth.	Rec.	Total Cu ppm	Oxide Cu ppm	Fo %	Au ppb
		is the device solution of ward	151656	263.3	204.8	1.5		0.33	0.034	6.65	153
		the top and withom of this interval and	151657	204.8	206.3	15		0.35	0.047	7.41	ag)2:
		picked at the pright + while have varia	151652	206.3	207.8	15		0.09	0.020	6:84	64
	 	of one of these veins the in-perputer varies	101000	1000							
	 	in density of the zerra veins thom a still)	1							
		Verns contain variable amounts of proprior to or	·								
		kipar (13-60 1.) mt (- vig) but o 10 1 - epidence									·
		(251.) Calcite (60.901.)		1							
		@ 190.79 there is a set trai meralul mineral									
		bornite: Vig a cog.									
		Cpy plips right to the that of the there the									
		N K			-						ry .
		196.38 199.16m XK					-	1			
		extreme potossiis alteration					-				1.1.1.1
		- almost no recognition of original rock									1
		in the top 45cm. Below this, maple land is			<u>. </u>	· ·					<u> </u>
		claster are visible but altered to a pink-grey			·						1
		· tin hydro bt									
		· 5-101. epicie					-				·
				-				-			
		@206.18m - a locm wide wein of kspar and									- Contraction of the second se
		epidote and cpy blebs. Kspar mostly on									+
		edges. No cross-cutting featurespresent					_				<u> </u>
		U U	<u> </u>		_ <u> </u>	1		<u> </u>	<u> </u>	<u> </u>	<u></u>

anythe property of the second s

Page/2 of 14

mp-a	<u>np-98-02</u>			From	To			Ī	Analy	sis	
From To Foot M	Syb	Description	Sample No.	Eo Yi	ot- 7	Lgth.	Rac.	Total Cu ppm	Oxide Cu ppm	Fo %	Au ppb
		la a az valancia alant ut azidate (anu	151659	207.8	210.01	2.21		0.23	0.077	7.14	208
	 	10 201 33m- Vellance class by spindlife, 192	101002								
		Veinlit cutting across. allen: a simmarice								·	19 - 19 - 1
		magnetite vein uplag (= 2mm)			· · · · · · · · · · · · · · · · · · ·						4 1 - 14
	ļ	ant by bay calcule veins las usual									
						<u> </u> -					
		209.22-209.35m "Vein"						· [······			
		sgrungy droking									
		· vesicular									1.12
		· epirate calcite, kspac, mt. Vig cpy									
		contacts - top. sheared 45"to cot, cut by	ļ				<u> </u>		· · · · · · · · · · · · · · · · · · ·		
	•	later calcité veins			 			- 	<u> </u>		<u></u>
		- bottom- gradational 145° to (A	ļ	ļ				· · · · ·			+
		<i>J</i>		ļ		<u> </u>					00
		210.66 - 210.83m -	151660	210.01	212.0	<u>1.99</u>		0.11	0.037	7.14	146
		- Same as above but where calcite + more korpa	151661	210.01	212.0	1.99		0.14	0.046	6.90	<u> 10k</u>
	_		15/667	2120	214.0	2.0		0.10	0.027	7.41	64
		221 06 221 800	151663	214.0	216.0	2.0		0.14	0.029	5.95	137
	_	hotely (nound (viginid)	151664	216.0	218.0	2.0	 	0.19	0.027	4.91	13
		(and the contract of with bige (100%)	151665	213.5	220.0	2.0		0.50	0.112	6.22	1038
		Penalte convente que source contration	15/666	220.0	222.0	2.0		0.12	0.037	5.81	87
}		- Dreccicius - April -	151667	2.22.0	225.0	3.0		0.19	0.035	6.57	244
		- matrix is green green and when the ast astrong	15/661	225.0	228.0	3.0		0.23	0.047	5.54	280
		$ \cdot \leq 51$ hypero by	15/66	3 2280	231.0	3.0		0.16	0.044	5.50	140

atup60.brietinalimperfet.polleytehil.tbi

1

Page |3of 14

	mp	<u>-98</u>	-07		From	То				Analy	sis	
From Fost W	To C	Syb	Description	Sample No.	F. P.	ot")	Lgth.	Rec.	Total Cu ppm	Oxide Cu ppm	Fe %	Au ppb
			Nov 12, 2449 allo Valcanic,									
 			226.12 sq11.17m Voltano									••• ••• • •••
			propulitic netteration - epidente									
			W varying Kaltera UGP									
			· epidate also comes in + out, but remaine									. ježna
 			most <u>constant isomer flue</u>									
		<u> </u>	<70cm) whereas of veneral all grey vollance							·		
<u> </u>			·mineral zation-rave and confined to vering	- <u> </u>								
		ļ		·								
		<u> </u>	@ 774.07m- a 5cm wide. zeprai ven				·			· · · · · · · · · · · · · · · · · · ·		
 		ļ	ont, cpy(blets), kspar actinelite, lighter				. <u></u>					140
			grienidigide?)						+	0 - 01	min	49
		<u> </u>	-banding is wavy	151670	231.0	134.0	3.0		0.12	0.046	3.96	221
			enelympic & vein is waily too	151671	2340	237.0	3.0		0.19	0.045	5.10	100
				151672	237.0	240.0	3.0		0.11	0.028	5.54	
			234.66 - 235.38m			·						
		1	1. tron 34 cm = KEmr "Vein" - InBe wit clasts of			ļ				ļ		12.54 No.
		1	admite matrix Aunnorfed									
			- "Grazes" of the plin x cut more altered									
			and initia plants but this is in turn xait					<u> </u>				
 			hu on plinter wit vero									
	<u></u>		Chill on highs on tsour winds							<u> </u>		<u> </u>
			- yey on arous or repart verices				· · · · ·			ļ		<u></u>
∦}								<u></u>		<u> </u>		

1

л.

3

Page/4of 14

mp-	<u>98-0</u>	2		From	To				Analy	/si\$	
From To	Syb	Description	Sample No.	.Ee	N	Lgth.	Rec.	Total Cu ppm	Oxide Cu ppm	Fo %	Au ppb
		214 Dill 2162 Oll La Re	151673	240.0	243.0	3.0		0.11	0.023	8.03	76
		at straight "Main"	151674	243.0	245.97	2.97		0.11	0.021	7.61	64
		- 4 fim where with	151675	245.97	249.02	3.05		0.08	0.016	7.57	63
		- aat currenter septence	151676	249.02	249.94	0.92		0.04	0.012	7.44	18
		acea app ducelops									
		. KSOUR X CULLS CLIOPSICLE VEIND.						ļ			
		both cut by wispy calcute veins								<u> </u>	×.
		Cpy plebs in kapar matrix	_					<u> </u>			1
							· · · ·				
					<u> </u>						
		EOH - 249 94m		<u> </u>			<u> </u>	· · · · · · · · · · · · · · · · · · ·		1	
											74
· ·									1		Į.
				:			-				
											a contraction
						1	1				
				-							• • • •
 											<u></u>
							ļ				
 						<u> </u>				<u> </u>	<u> </u>
				<u> </u>		<u> </u>	<u> ,.)</u>				

anothing indian interaction of the

LL RE	CORD			PURAII								
DPERT LE NO MMEN MPLET	Y: MOU .: MP- CED: Ju ED: July	NT PC 98-0 ~28/9 2/93	DLLEY LOCATION: Cariboo Central CORRECT DI 3 LOC: 3340.14N, 2179.64 E TRUE BAG: 8 ELEV.: 1150.34 SURVEY AT: CORE SIZE: NQ LENGTH: 25	r: 52.68m			PAGE: I LOGGED DATE: CORE ST UNUSUA	/13 BY: Jo Tuly : Tored: L FEAT.:	nice 198	etwin		
	P/C n	ninural	Maavar		From	То				An¢iy	'sie	
". 5 05 W	τ	Syb	Description	Sample No.	ла К	et N	Lgth.	Rec.	Total Cu ppm	Oxide Cý ppm	Fo %	Au ppb 3
	4.27		Overburden-casing	151677	3.68	5.2	1.52		0.17	0.139	5.54	183
				151678	\$5.2	6.7	1.5		0.19	0.164	3.07	274
\uparrow	21.95		Intrusion Bricera, (Rink)	191679	6.7	8.23	1.53	, i	0.39	0.385	6.59	506
+			Gonoral:	151680	8.23	9.7	<u>i.47</u>	1	CT: 24	0.178	5.21	342
╉			· Fo oxido stains on fractures throughout	15/68)	Oupli	iale.	1.47	1	0.3i	0.258	5.6Z	459
+			, looks very "grangy" in places due to high	151682	9.7	11.28	1 58	 	0.36	0.318	9.19	74
-			mt contrat	151683	11.28	12.8	1.42		0.24	0,173	<u>5.92</u>	52
┨			· clast - edger are K-altered	151684	12.8	14:33	1.53		0.26	0.230	6.78	594
-†			. a otoration varies from extreme to moderate	151685	14.33	16.15	1.82		0.19	0.166	4.00	38
-+			to 50cm blocks of upgetered, rock (diprite)	151686	16.15	17.68	1.53		0.46	0.459	3.86	68
╡	<u></u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		minaralization - malachite amonta COU	151687	17.68	19.2	1.52		0.41	0.315	10.22	150
-			cherpordia	151688	19.2	20:73	153	1	0.50	0.500	3.57	75
			· mattice PD w/ mt ht	151689	20.73	22.2	147	1	0.49	0.328	5,28	75
-	<u> </u>		- marcall this some is gridized + yery broken	151690	22.2	23.72	1.52	 	0.30	0.247	5.35	378
			1. 18 Into a mit + bt T. Fermide (deorditic	151691	23.72	25.16	1.44		0.14	0.112	4.06	210
-			WITH AND 9 Graphiles	151692	2516	26.7	1.54		0.13	0.113	2.61	141
			paular printikuuuu,	151693	267	28.2	1.5		0.16	0.142	3.78	19
			9.58-11.28m	151694	28.2	29.7	1.5		0.19	0.169	6.00	29
			2000 of 15:1. albitimition of plan	151695	29.7	31.95	1.25	Poor	0.25	0.238	5.84	37
		<u> </u>	guia of the construction of the state									
2	7170		Augite Porchurst asoon Dink-asoen	151696	31.95	33.5	1.55		0.06	0.057		2-2
2	76-07		unper contact: than at 15cm chill margin (oridized)	151697	33.5	35.0	1.5		0.05	0.047		2
		<u> </u>	when constact - undulatory ("stopping") @ 45° to CA	151 698	350	36.5	15	l	0.06	0.055		7(

Page 2 of 13

	mp	- 98	- 05		From	To	1			Analy	sis	
rom Foot		Syb	Description	Sample No.	Fo	n M	Lgth.	Rec.	Total Cu ppm	Oxide Cu ppm	Fa %	Au ppb
21 201	20 50		Latruin Porceaire (nink)	151699	365	38.0	1.5		0.27	0.254	5.31	429
<u>26.27 :</u>	<u>80 80</u>		interms intervie a lighting with high degree	151700	38.0	39.5	1.5	<u></u>	0.09	0.076	6.90	74
			also of all travition	151701	Oupli	cate	1.5		0.05	0,045	6.85	33
		·	• onidized on fractures and around mt		1							
			· mt stringers (< 1 mm thick) common and the		 							
			youngest									·
			· Superothermal bionte ~15% enhedral fg-Zm	h						<u> </u>		
_		ļ	- matrix -> Kspar, plag, albite, biotite, diopside									
			-mineralization -malachite, azurite									
		ļ	(can't see much cpy)						<u>. </u>			
	· .		· core is "pitted"							<u> </u>		
	<u> </u>	-										
7000	1110.117		Quait Pomphing Dullis (chech)	151707	39.5	41.0	1.5		0.03	0.027	8.13	6
20.20	41.11		angle ropping lyre quest	151703	41.0	42.48	1.48		0.01	0.012	8.37	5 .
	<u> </u>		· WIGAZED	151704	42.48	44.47	1.99		0.01	0.014	8.35	6
			- CALCALE VEINE CARDICATIONALING STORE CLEANING ST									· · · · · · · · · · · · · · · · · · ·
			- row actually 1-10 m						<u> </u>	ļ		
			- abassariate - ht + mt + agite			<u> </u>						
			- a ctopolite? in matrix							·		1 N N N
			: upper + lower contacts sharp @ ~30° to CA	<u> </u>		<u> </u>			<u> </u>	<u> </u>		
		1		<u> </u>	<u> </u>				<u> </u>		<u> </u>	
				<u> .</u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>				

wp80.lowinelengerialpolley.dril.tbl

Page3 of 13

Style Description Sample Description Sample Data Construction Total Construction <th>Fmm To</th> <th>- 90</th> <th>3-03</th> <th></th> <th>From</th> <th>To</th> <th></th> <th></th> <th></th> <th>Analy</th> <th>/sis</th> <th></th>	Fmm To	- 90	3-03		From	To				Analy	/sis		
4447 4803 Intrinsion Bruccia pink 151705 4447 46.5 2.03 0.24 0.233 5.56 262 • Matrian potassic al territion 151706 46.5 48.02 1.52 0.26 0.189 45.6 421 • Clasts - few mest are obliterated - <td< td=""><td>-Feet m</td><td>Syb</td><td>Description</td><td>Sample No.</td><td>E E E E E E E E E E E E E E E E E E E</td><td>194° 17</td><td>Lgth.</td><td>Hec.</td><td>Total Cu ppm</td><td>Oxide Cu ppm</td><td>Fo %</td><td>Au ppb</td></td<>	-Feet m	Syb	Description	Sample No.	E E E E E E E E E E E E E E E E E E E	194° 17	Lgth.	Hec.	Total Cu ppm	Oxide Cu ppm	Fo %	Au ppb	
1100 . Internet Visionic al teration 151706 44.5 48.02 1.52 0.26 0.189 4.56 42/ . (lasta few., meat ar obsitered	111017 11000		Portaunion, Broppin, punk	151705	44.47	46.5	2.03		0.24	0.233	5.56	262	
 Antilia function and obliterated Anatriy - PP Anatriy - PP Anivalization - Vig malachite biotite i mt quite common (30% total) oxidized oxidized oxidized isinone and preve description 15/707 48.02 5001 199 o.04 0.022 6.88 27 isame an preve description 15/707 48.02 5001 199 o.03 0.024 6.77 16 oxidized + pilted core int + augite + At int + augite + At int + augite + At int + augite + het 	20.01 10.00		Intrans actance alteration	151706	46.5	48.02	1.52		0.26	0.139	4.56	421	
Anatriy - PP Aniwardization - Vfg malachite			· clasta - Paus most an oppliterated									to shift an	
 Intervaligation - Vig malachite. Intrustingation - Vig malachite. Intrusting Breaction Isi709 52.2 53.7 1.5 Intrustion Breaction Isi709 52.2 53.7 1.5 Intrustion Breaction Isi709 52.2 53.7 1.5 Intrustion Breaction Isi709 52.2 55.2 1.5 Intrustion Breaction Isi701 55.7 55.2 1.5 Intrustion Breaction Isi701 55.7 55.2 1.5 Intrustion Intervent "Grungmings" - where the Isi711 55.3 56.7 1.5 	 		- and this - PP										
1. Intrusting with a monon (30% total) . biotite r mt quite ammon (30% total) . orxidized. . orrel. as prev. description. . ISI708 So 01 . orrel. as prev. description. . orrel. as prev. des			eminuralization - Vfa majachite < Chu										
• oridized oridized oridized oridized			high to the tent quite oppropping (30' total)									an an an a	
14802 52.20 Augite Porphyry Dyke 15/767 48.02 50.01 1.99 0.04 0.022 6.88 27 1802 52.20 Augite Porphyry Dyke 15/767 48.02 50.01 52.2 1.19 0.03 0.024 6.77 16 181708 50.01 52.2 1.19 0.03 0.024 6.77 16 181708 50.01 52.2 1.19 0.03 0.024 6.77 16 181708 50.01 52.2 1.19 0.03 0.024 6.77 16 181708 50.01 52.2 1.19 0.03 0.024 6.77 16 19 0.03 0.024 6.77 16 16 16 16 17 16 19 0.03 0.021 6.77 16 16 16 16 16 16 16 16 16 17 16 17 16 17 16 16 17 16 16 16 16 16 16 16 16 16 16 16			pridized									<u>`</u>	
4802 52.20 Augste Perphyny Dyte 15/107 48.02 50.01 1.99 0.04 0.022 6.88 27 · same as prev. description 15/108 50.01 52.20 1.19 0.03 0.024 6.77 16 · oxidized · piltal 'are -			O Aldrigon.										
1000 0000 - 5000 0000 - 5000 0000 - 522 1.19 0.03 0.024 6.77 16 - 0 xidized + pikkd core <	48.02 57.70		augite, Pornhibil Diffe	151707	48.02	50.01	1.99		0.04	0.022	6.88	27	
· oxidized + pilta 'are · mt + augite + ht 48.65-49.05m Vein breccia · undulatory contact with AP (10-15°T-CA) · matrix - calcite hydro-6t · clasto - PP (wicpy) - angular to subangular · clasto - PP (wicpy) - angular to subangular · annodem · angular, 2-30 mm - AP - angular, 2-30 mm - etta 5220 16133 Intrusion Breccia · sonce of extreme "grungmess" - where the 151710 53.7 55.2 1.5 0.14 0.133 4.26 163 · sonce of extreme "grungmess" - where the 151711 55.2 56.7 1.5 0.137 4.47 146	10.00000000		· same as prev. description	151708	50.01	52.2	1.19		0.03	0.024	6.77	16	
 nt + augite + ht 48.65-49.05n Vein brieccia undulatory contact with AP (10-15°To(A) matrix - calcite hydro-bt clasto - PP (w/cpy) - angular to subangular - 2mm2cm - AP - angular, 2-30 mm - etty 522 161.33 Intrusion Breccia 151709 52.2 53.7 1.5 2.07 0.000 3.33 87 Genural: "ISTRO 53.7 55.2 1.5 0.14 0.133 4.26 163 · 30000 et uxtreme "Grinoganess" - where the 151711 55.3 56.7 1.5 0.15 0.137 4.47 1465 		1	· pridized + "bitted" are									•	
48.65-49.05m Vein breccia · undulatory contact with AP (10-15°T.CA) · matrix - calcite hydrobt · claste - PP (wlcpy) - angular to subangular · claste - PP (wlcpy) - angular to subangular · angular , 2-30 mm - AP - angular , 2-30 mm - etty 522 16133 Intrusion Breccia General: · zonso of uxtreme "gringmess" - where the 151711 55.3 56.7 1.5 0.15 0.137 4.477 146		1	. nt + quarte + ht		·		-					· · ··· ·	
48.65-49.05m Vein preceia · undulatory contact with AP (10-15°ToCA) · matrix - calcite hydro-bt · clasts-PP (w(cpy)) - angular to subangular · clasts - PP (w(cpy)) - angular to subangular · angular, 2-30 mm - AP - angular, 2-30 mm - etty 5220 16133 Intrusion Breccia General: · zone of extreme "grungmess" - where the 151711 55.2 56.7 1.5 0.137 4.477 1.46											ļ	· · · · · ·	
· undulatory contact with AP (10-15°T.CA) · matrix - calcite. hydro-bt · clasto-PP (w(cpy)) - angular to subangular · angular, 2-30 mm - AP -			48.65-49.05m Vein preccia									28 - 11 18 - 12	
- matrix - calcite.hydro-bt . clasto-PP (w(cpy)) - angular to subangular - 2mmdcm - AP - angular, 2-30 mm - etty 5220 16133 Intrusion Breccia General: - - 30nus of extreme "grungmess" - where the 151711 55.3 56.7 1.5 0.15 0.137 4.47 146			· undulatory contact with AP (10-15°T.CA)	•									
- AP - angular, 2-30 mm - AP - angular, 2-30 mm - Etta 5220 161.33 Intrusion Breccia General: - 30nus of extreme "grungmess" - where the 151711 55.3 56.7 1.5 0.15 0.137 4.47 1.46			· matrix - calcite hude-bt										
-2mm2cm -AP - angular, 2-30 mm -AP - angular, 2-30 mm 5220 161.33 Intrusion Breccia General: -3010 of extreme "grungmess" - where the 151711 55.3 56.7 1.5 0.15 0.137 4.47 1.46			· chasts-PP (where)- angular to subangular								<u>_</u>		
-AP - angular, 2-30 mm -2016 5220 16133 Intrusion Breccia General: · 30000 of extreme "grungmess" - where the 151711 55.3 56.7 1.5 0.15 0.137 4.47 146			- 2mm2cm										
-ettp -ettp - - - <th -<="" td=""><td></td><td></td><td>-AP - angular, 2-30 mm</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th>	<td></td> <td></td> <td>-AP - angular, 2-30 mm</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			-AP - angular, 2-30 mm									
5220 16133 Intrusion Breccia 151709 52.2 53.7 1.5 0.07 0.060 3.33 87 General: " 151710 53.7 55.2 1.5 0.14 0.133 4.26 163 . 30010 of extreme "grungmess" - where the 151711 55.3 56.7 1.5 0.137 4.47 146			-etty									in include T	
General: " - 30nes of extreme "grungmess" - where the 151711 55.2 56.7 1.5 0.14 0.133 4.26 163 - 30nes of extreme "grungmess" - where the 151711 55.2 56.7 1.5 0.15 0.137 4.47 146	52.20 161.33		Intrusion Breccia	151709	52.2	53.7	1.5		0.07	0.060	3.33	87	
· zones of extreme "grungmess" - where the 151711 55.2 56.7 1.5 0.15 0.137 4.47 146			General: .	151710	53.7	55. A	1.5	<u> </u>	0.14	0.133	4.26	163	
			·zonis of extreme "gringmess" - where the	151711	55.2	56.7	1.5	<u> </u>	0.15	0.137	4.47	146	
anonomination of little to no epidote	a/wp80.lointind-sporidgallogid	-1,1bl	· little to no epidote									a (a. 1777) - 1	
· diopside actinolite vtg-matrix - <21.			· diopside actinolite vtg-matrix - <21.										

Page4of 13

		MOUNT POLLEY PR	OPERTY	•							, baar e
		Page4of [3								1. 1912
mp-9	8-0)3		From	To		_		Analy	/si\$	
	Syb	Description	Sample No.	ي ب ۲	η	Lgth.	Rec.	Total Cu ppm	Oxide Cu ppm	Fe %	Au ppb
		In By is cut by many wispy (1-4mm)	151712	56.7	58.2	15		0.15	0.137	5.43	172
		magnetite veins - some altered to hematite -	151713	58.2	59.7	1.5		0.11	0.095	5.03	117
		and the core is pitted. Also calcite veins	151714	59.7	61.2	1.5		0.10	0.090	2.95	103
		• oridation is in tout	151715	61.2	102.7	1.5	 	0.15	0.132	3.64	171
		· hudro-pt common + gets quife large	151716	62.7	642	1.5		0.17	0.156	5.48	316
		(up to # 3cm books-enhedral)	151717	64.2	65.7	1.5		0.19	0.063	3.09	238
		· it's avery pink-homogenous rock. Not	151718	65.7	67.2	1.5		0.14	0.019	4.73	196
		many stories told or questions answered	151719	67.2	68.7	1.5	t	0.24	0.038	3.98	306
		with this one.	151720	68.7	10.2	1.5	1	0.32	0.043	3.37	370
		mineralization - cpy-fg blebs	151721	Duplic	pte	1.5		0.31	0.046	3.40	387
		malachite - plebs on fractures.	151722	70.2	78.7	1.5	l	0.25	0.02.8	348	374
			151723	71.7	73.2	1.5	t	0.48	0.063	3.43	695
		60.13-61.98m Plagioclase Pomphyny	151724	73.2	7.4.7	1.5		0.18	0.021	3.26	2.70
	1	·unaltered (or weak) where interinets	151725	74.7	76.25	1.55		0.18	0.022	4.94	266
	1	·otenocruits of place and hidro-bt	151726	76.25	77.8	1.55	1 	0.53	0.064	4.72	682
	1	icare malic (and with) clasti - subargular	151727	77.8	79.3	1.5	1	0.13	0.017	5.14	169
		2 cm.	151728	79.3	80.8	15	1	0.22	0.038	5.04	277
		min'n - "cold" - some malachite on fractures	151729	80.8	82.3	1.5	1	0.30	0.039	4.74	381
			151730	823	83.8	15		0.2.3	0.033	3.38	278
		68.92-69.64m ? Vein Breccia	151731	83,8	85.3	1.5		0.08	0.012	3.03	97
	1	· clasta - PP altered (grey) PP. AP?	151732	85.3	86.8	1.5		0.13	0.030	3.32.	178
		·matrix - 3pp. or else its a second any InFlux	151733	868	88.26	1.46	<u> </u>	0.07	0.049	3.62	63
		of magma along this same weakness.	151734	88.26	89.8	154		0.14	0.031	4.61	160

wp60Jentinelingarial.pologlahil.(bi

Page5of 13

Guard	<u>mu</u>	<u>- 90</u>	<u>5- 05</u>		From	To				Analy	/sis	· · · ·
From Foot M	-	Syb	Description	Sample No.	, Ee Y	ب مر	Lgtn.	Hec.	Total Cu ppm	Oxide Cu ppm	Fe %	Au ppb
			Manager whole shot is yout by calcite	151735	89.8	91.3	1.5	[0.23	0.054	4.28	284
∦ ∤			Valor	151736	91.3	93.08	1.58	1	0.15	0.018	4.43	251
			Mainergliggting - Chy mt	151737	93.08	94.5	1.42	1	0.30	0.040	5.35	375
			- minia acquais qui, no	151738	94.5	96.01	1.51		0.18	0.023	3.80	228
			75 12 - 75.37m Quarte Porphyry	151739	96.01	97.5	1.49	1	0.45	0.063	5.27	457
		 	· sharp contacts	151740	97.5	99.0	1.5	1	0.15	0.07.8	4.60	206
			· cut by calcute veros	151741	9920D	uplicate	1.5		0.21	0.0.33	4.52	239
	<u></u>	1	" ht on fractures	151742	99.0	100.5	1.5		0.28	0.037	5,51	345
		1		151743	100.5	102.0	1.5	1	0.30	0.048	3.85	398
			89.7-90.02 m Small Dyke -PP	151744	102.0	103.49	1.49	1	0.18	0.025	4.95	203
			· KSpar alteration in natches so they look	151746	103.49	105.0	1.51	l	0.19	0.026	4.72	339
		-	like lance opena's (5-15mm)	151746	105.0	106.5	1.5		0.21	0.032	6.23	449
			· matrix - 12/2 f-margined plag	151747	106.5	108.0	1.5	1	0.2.1	0.0.30	4.19	244
			Vfg grey groundmass	151748	108.0	109.5	1.5		0.15	0.024	5.26	154
		1	: sharn contacts but no chill margins	15174	109.5_	110.0	1.5		0.02	0.005	1.33	14
	··	1		151750	111.0	112.47	1.47		0.01	0.003	1.34	7
-			92 67-93 DEm Maine Magnetite	151751	112.47	114.0	1.53		0.08	0.014	2.44	90
		1	; iniginal rock is reduced to clasts in a	15 1752	114.0	115.52	1.52		0.12	0.019	4.67	135
	·	1	magnette matrix ER	151753	115.52	117.0	1.48		0.09	0.013	3,48	93
	<u>_</u>		some (<2:1) pridation to hematite	15175	117.04	118.57	1.53		0.05	0.009	4.57	78
			$\cdot cpu = rich$	151755	118.57	120.0	1.47		0.25	0.028	5.74	310
	<i>u</i>	-		151750	120.0	121.5	1.5		0.08	0.010	5.68	94
 				151751	121.5	123.0	1.5		0.11	0.013	5.38	106

An pool in the international policy land, the

- A

ч. ў.: 4

and the state of t

-17--

1.1

Page6of 13

Page6 of []												
From To	<u> </u> To	<u> </u>			From To		Lath	Pro	Anaiysis			
Exot		Syb	Description	Sample No.	m Lg.		Lĝin.	Nec.	Total Cu ppm	Oxide Cu ppm	Fo %	Au ppb
			94.41 - 95.2 m Plagioclase Porphyry	151758	183.0	124.5	1.5		0.18	0.021	7.33	2/2_
			· not as much magnetite or precession	151759	124.5	1260	Į.5		0.15	0.022	3:49	185
			an surrounding InBx, I chose this	151760	126.0	127.5	1.5		0.06	0.015	2.94	68
			interval to demonstrate the patchings	151761	Dupli	cate	1.5		0.06	0.014	2.91	63
			of the magnetite reinlets mentioned	151762	127.5	129.0	1.5		0.18	0.026	4.65	219
			earlier. There are none here!	151763	129.0	130.5	1.5		0.13	0.019	6.36	127
			- by- biotite ~ 8%. VFg-lmm subhedral	151704	130.5	132.0	1.5		0.08	0.065	4.47	82
			the one magnetite vein (some altered to	151765	132.0	133.49	1.49		0.12	0.018	4.52	116
			himatite) has cpy. Otherwise, min's	151766	133.49	135.0	151		0.13	0.020	5.79	148
			looks prettry dry.	151767	135.0	136.5	1.5		0.19	0.027	7.32	197
				151768	136.5	j.38.0	1.5		0.20	0.028	5.93	201
			103.49-109.1m InBx	151769	138.0	139.5	1.5		0.10	0.015	4.58	124
			- this is Box 19 and the changes in it are all	151770	139.5	141·D_	1.5		0.10	0.016	5.07	123
			within the InBx designation, but the	151771	141.0	142.5	1.5		0.09	0.035	4.98	90
			spectrum of textures well, I had to	15:772	1425	<u>j44.0</u>	1.5		0.10	0.023	3.53	82
			break it down:	151773	144.0	145.5	1.5		0.08	0.013	5.17	.74
			first 2m -> obvious PPInBx with weak K-alteration	151774	145.5	146.99	1.49		0.09	0.015	4.85	124
			next 1m-> az above, but with weak prop, too	151775	146.99	148.5	1.51		0.13	0.018	5.20	130
			next In-> Very pink- rare to no clasts. PP. Decrease	151776	148.5	1500	1.5		0.07	0.013	4.68	91
			in hydrothermal bt and mt compared to	151777	150.0	151.5	15		0.08	0.016	4.26	<u> </u>
		 .	Aumunding rock	151778	151.5	153.0	1.5		0.05	0.010	3.04	61
			last -> propylitically altered volconic clasts,	151779	153.0	154.5	1.5		0.07	0.008	3.19	91
			cross-cut by K-veins and alteration with	151780	154.5	156.0	1.5		0.08	0.009	5.2.4	77
errosophiningeringeringering the lots of biofite.												

рана], 25

. - 1.17
Page7of 13

mp-	98-	03		From	To				Analy	sis	
From To	Syb	Description	Sample No.	, Es	が	Lgth.	Rec.	Total Cu ppm	Oxide Cu ppm	Fe %	Au ppb
		@ 172 59~	151781	Duplica 154.5	ie 156.0	1.5		510.0	7 0.008	5.49	-56
		- Couring Pata colorite vero cross-cuttora	151782	156.0	157.5	1.5		92.0.1	3 0015	4.65	92_
		- chi in rate cause very, every	151783	1575	159.i	1.6		0.06	0.012	6.00	60
		DO DUMPNARCY ALCONOMIC CONTRACTOR	151.784	159.1	1606	1.5		0.09	0.012	2.26	114
 		132 48- 133 99m PP loBx (nick)	151785	160.6	162.	1.5		0.07	0,008	5.17	53
		had deare of albitization (25%)								<u></u>	3
		* the amount of Ab varies, but it is				, ; , , , , ,					
		extremely constant throughout the hole.									
		Compared to 98-01, 98-02.									
	1	· lots of by-bt. mt. actipolite						ļ			
		· mineralization - WOW! cpy on fractures, but									
		have to see in matrix (VFg?)						· .			68511
	-	143.12-144.98m, PPIDBX (pink)									
		· moderate K-alteration						ļ			
	1	· a little more bt than the last PP l									···
	1	discribed (~30%)									
		· 15% albitization									
		mineralization: cpy in later mt, calcite.									
		veins and definitely on Fractures - LOTS		ļ				<u> </u>			
										<u></u>	
		# -> in between the above intervals is classic					 				
	<u> </u>	Page InBx w/moderate alteration				l	<u> </u>	<u> </u>			
alupd0.trictinalinparial.pclayt	F4'1Pi	(extreme, tao)									

Page8of 13

 $\mathbf{1} \quad (\mathbf{1} \quad \mathbf{1} \quad$

<u>(np-</u>	- 98-	03		From	То				Analy	sis	
rom 10 East M	Syb	Description	Sample No.	j Fo V	σ ⁻ η	Lgth.	Rec.	Total Cu ppm	Oxide Cu ppm	Fo %	Au ppb
		147 88-148,09m 10Bx (mey roink)									
	<u> </u>	arell-press PP (populitic) dasts cut by									
		ortaga a the alteration									
		porautic rate too									• • • • •
<u>_</u>	<u> </u>	he ht la Ford									
		• My = DU 10 001-									
		155 42-159 09m Lobx Wivolcanic clasta					<u></u>				
	- <u> </u>	alteration - moderate notcopic, w/ 101. Ab.			- -			 			
 -		iclosta - volcanic. " angular to subacquilar									
		15-35°1.									
		matrix - DP - cometime server area									
		· alteration - coopelled by veros									••.
	·	Were magnetic but not looking mt-rich.									
		econdary bi + f-mar: = 2mm: 10%.									· · · · · · · · · · · · · · · · · · ·
		· mineralization - CPU- follows reios - not	-								
		much in matrix									2
	-										
161331654	4	Augite Porchury Dute (green nick-green)	151786	162.1	163.8	1.7		0.02	0.011	<u>6.82</u>	5
	<u>۳</u>	top contact displain 'stopica' texture	151787	163.8	165.46	1.66		001	0.003	7.49	6
	1	undulation stars @40° C/9						<u> </u>			
]		- vfa dk grey to pink grey (kaltered?) matrix									
		- ohenocrysts - augite - 2-3mm: Subto enhedral 25%		ļ							•.
		ht.; 2-4mm; anhedral; 10%	<u> </u>	<u> </u>	<u> </u>		. <u></u>	1			at the st

atmp00.initialing.aristy.claylatil.th

) ()) (

a + 2

د. ادینو اوم دیم دارو مد

Pagegof 13

From Lever To Just Description Sample From Lever To Lath Rec. Total Co Oxder Out Free Analysis Prom Lever · yellow? and bed oxidation on fracturee ·	m	.98	R- 102									
Store Description Store Sto	From To	<u></u>		Cample	From	To	Loth.	Bac.		Analy	rsis	
• yellow? and sed oxidation on factures • otm contect: ~45° to CA, sharp, planar • otm contect: ~45° to CA, sharp, planar • otm contect: ~45° to CA, sharp, planar • otm contect: ~45° to CA, sharp, planar • otm contect: ~45° to CA, sharp, planar • 157493366 Intrusion Breccia w/ PP matrix 151789 165.46 167.0 154 0.12 0.022 4.67 13: • General: • 151789 160.0 168555 1.55 0.17 0.026 4.53 18 • PP is light grey ; have andeeith: clasts 151790 1.65.55 170.0 14.5 0.17 0.026 4.03 22 • pot alternation mostly stays to veins +bolos 151791 170.0 17.5 0.14 0.039 4.20 22 • sometimes moves into matrix, but no 151792 1712 1713 175 0.17 0.030 4.77 20 • more than moderate pot on matrix, but no 151791 1745 1.5 0.17 0.030 4.77 20 • more than moderate pot on matrix, but no 151791 1745 1.5 0.17 0.030 4.77 20 • more than moderate pot on matrix, but no<	Foot	Syb	Description	No.	هد. ا	<u>م</u>			Total Cu ppm	Oxide Cu ppm	Fa %	Au ppb
• ohm contact: ~45° to CA, sharp, planar	·	· · · · · · · · · · · · · · · · · · ·	· uellow? and red oxidation on fractures									
16546 39956 Intruction Breceia will PP matrix 151783 165.46 167.0 154 0.12 0.023 4467 13: 16546 39956 Intruction Breceia will PP matrix 151789 167.0 16855 155 0.12 0.024 453 18 General: 151789 167.0 16855 155 0.12 0.026 453 18 PP is light grey; rare andegitic clasts 151790 16855 170.0 145 0.19 0.040 5.07 28 PP is light grey; rare andegitic clasts 151790 16855 170.0 145 0.19 0.040 5.07 28 PP is light grey; nore into matrix, but no 151792 1715 173.0 1.5 0.14 0.039 430 22 Sometimes moves into matrix, but no 151792 1715 173.0 1.5 0.14 0.030 4.77 20 More than moderate pot on moverage 151793 173.0 1.45 1.5 0.17 0.032 5.55 144 • grungy magnetite gore are gore 151794 1745 1.5 0.28 0.020 5.09 34 • Augho-bt 15.201 Jfg-2mm 151795 176.0 177.5 1.5 0.28 0.027 483 10 • mt vfg, but rock is definitely magnetic - 151796 175. 1.5 0.28 0.027 483 10 • mt vfg, but rock is definitely magnetic - 151796 175. 1.5 0.28 0.027 483 10 • mt vfg, but rock is definitely magnetic - 151796 175. 1.5 0.28 0.027 483 10 • mt vfg, but rock is definitely magnetic - 151796 175. 1.5 0.24 0.038 4.54 318 • matralization cpy >> py • 151798 180.55 182.0 1.5 0.12 0.018 5.02 15 • miatralization cpy >> py • 151798 180.55 1.5 0.24 0.035 4.52 20 • fg in PP matrix will be + mt. 151800 183.5 185.0 1.5 1 0.23 0.037 4.60 22 • fg in PP matrix will be + mt. 151800 183.5 1.5 0.24 0.035 4.02 20 • mf actures - alot 1 151791 1580 136.5 1.5 1 0.23 0.037 4.60 26 • albitization - throughout interval - ranges 151802 185.0 1.5 1 0.23 0.037 4.60 26 • albitization - throughout interval - ranges 151802 185.0 1.5 1 0.23 0.037 4.60 26 • albitization - throughout interval - ranges 151802 185.0 1.5 1 0.23 0.037 4.60 26 • albitization - throughout interval - ranges 151802 185.0 1.5 1 0.23 0.037 4.60 26 • albitization - throughout interval - ranges 151802 185.0 1.5 1 0.24 0.034 4.75 24			· htm contact ~45° to CA share, planar	ļ								
115544 339.56 Intrusion Breeceia wf PP matrix 151798 165.46 161.0 154 0.12 0.023 467 133 115544 General: 151789 160.0 168.55 155 0.12 0.024 45.33 18 . PP is light grey; rare anderite clasts 151790 168.55 170.0 45 0.19 0.040 5.07 28 . pot alteration mostly stays to vains the los. 151791 170.0 175 1.5 0.14 0.039 4.80 22 Sometimes moves into matrix, but no 151792 1715 173.0 1.5 0.14 0.030 4.77 20 More than moderate pot on matrix, but no 151792 1715 173.0 1.5 0.17 0.032 5.55 144 . pringy magnetite gones are gone 151793 173.0 1.75 1.5 0.17 0.032 5.09 34 . more than moderate pot is definitely magnetic - 151794 174.5 1.70.0 1.5 0.022 4.83 10 . mt vfg, but rock is definitely magnetic - 151797 179.0 182.0 </td <td></td> <td><u> </u></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> </td> <td></td> <td></td> <td></td>		<u> </u>							 			
1027620120 151789 161.0 16855 155 0.12 0.226 4.53 18 PP is light grey; have andesite clasts 151790 18555 170.0 45 0.19 0.040 5.07 28 PP is light grey; have andesite clasts 151790 18555 170.0 45 0.19 0.040 5.07 28 Prot alteration massly stays to veins +bolos 151791 170.0 171.5 15 0.14 0.039 4.30 22 Sometimes_moves_into matrix, but no 151792 171.5 173.0 1.5 0.17 0.032 5.55 14 Moore than moderate pot - on maxing 151793 173.0 174.5 1.5 0.17 0.032 5.55 14 Moore than moderate pot - on maxing 151794 174.5 1.5 0.17 0.032 5.55 14 Motore than moderate pot - on maxing 151794 174.5 1.5 0.28 0.050 5.09 34 Mathematic the group and gro	115111 12051		Intrucion Breecia wipp matrix	151788	165.46	167.0	154		0.12	0.023	4.67	133
Opening 0.19 0.040 5.07 28 • PP is light grey; rare andesite clasts 151790 16555 170.0 14.5 0.19 0.040 5.07 28 • pot alteration mostly stays to veins tholos. 151791 170.0 171.5 1.5 0.14 0.039 4.30 22 Sometimes moves into matrix, but no 151792 171.5 173.0 1.5 0.17 0.032 5.55 14 more than moderate pot on matrix gene 151793 173.0 1.45 1.5 0.17 0.032 5.55 14 • grungy magnetife formes are gene 151794 174.5 1.760 1.5 0.28 0.027 483 10 • hydro-bt 15-201 yfg-2mm 151795 176.0 177.5 1.5 0.28 0.027 483 10 • mit vfg, but rock is definitely magnetic - 151796 177.0 1.5 0.28 0.027 483 10 • mt vfg, but rock is definitely magnetic - 151796 177.5 179.0 1.5 0.28 0.027 483 10 • otheleb	167.76 271.00	·	General:	151789	167.0	168.55	1.55		0.17_	0.026	4.53	182-
 pot alteration mostly stays to veris +bolos. 151791 170.0 171.5 1.5 0.14 0.039 4.30 22 Sometimes moves into matrix, but no 151792 171.5 173:0 1.5 0.14 0.030 4.77 20 More than moderate pot on matrix, but no 151793 173.0 1.5 0.17 0.032 5.55 1.4 opringy magnetite gones are gone. 151794 174.5 1.5 0.17 0.032 6.509 34 opringy magnetite gones are gone. hydro-bt 15-20! vlg-2mm 151795 176.0 177.5 1.5 0.28 0.050 5.09 34 opring but rock is definitely magnetic - 151796 177.5 1.5 0.028 0.027 4.83 10 omt vlg, but rock is definitely magnetic - 151796 177.5 1.5 0.026 0.012 4.46 7 aome blebs (5%) minimalization cpy >> py 151797 179.0 18055 1.5 0.12 0.018 5.02 15 opring in plebs - in calcute verins f51799 182.0 183.5 182.0 1.5 0.24 0.035 4.02 20 -fg in PP matrix w/pt + mt. 151800 183.5 185.0 1.5 1 0.23 0.037 4.60 22 -on fractures - alot! 151801 Duplicate 1.5 1.5 0.23 0.037 4.60 24 - albitization - throughout interval - canges 151802 185.0 1.5 1 0.23 0.037 4.60 24 - albitization - throughout interval - canges 151802 185.0 1.5 1 0.23 0.037 4.60 24 - albitization - throughout interval - canges 151802 185.0 1.5 1 0.23 0.037 4.60 24 	<u>}</u>	-	OP is light may have and with clasts	151790	168.55	170.0	14.5		0.19	0.040	5.07	289
Some times moves into matrix but no 151792 1715 173:0 1.5 0.14 0.030 4.77 20 More than moderate pot on matrix but no 151792 173:0 1.45 1.5 0.17 0.032 5.55 144 . Amore than moderate pot on moderate 151793 173:0 174.5 1.5 0.28 0.050 5.09 34 . Andreweit 15:20! definitely magnetic 151795 176:0 1.75 0.28 0.027 4.83 10 . hydro-bt 15:20! definitely magnetic 151795 177.0 1.5 0.028 0.027 4.83 10 . mt vfg, but rock is definitely magnetic 151796 177.5 179.0 1.5 0.028 0.027 4.83 10 . mt vfg, but rock is definitely magnetic 151796 177.5 179.0 1.5 0.028 0.0212 4.46 7 . admit pattor cpi bis definitely magnetic 151			. act a lteration mostly stays to veris theles.	151791	170.0	171.5	15	 	0.14	0.039	4.30	226
More than moderate pot on moverage 151793 173.0 174.5 1.5 0.17 0.032 5.55 14 • orrungy magnetite gone are gone 151794 174.5 1760 1.5 0.28 0.027 4.83 10 • hydro-bt 15-20! vfg-2mm 151795 176.0 177.5 1.5 0.28 0.027 4.83 10 • mt vfg, but rock is definitely magnetic - 151796 177.5 1.5 0.026 0.027 4.83 10 • mt vfg, but rock is definitely magnetic - 151796 177.5 1.79.0 1.5 0.026 0.027 4.83 10 • mt vfg, but rock is definitely magnetic - 151796 177.5 1.79.0 1.5 0.026 0.012 4.46 7 • oome helps (5%) 151797 179.0 180.55 182.0 1.5 0.12 0.018 5.02 15 • minuralignation cpy >> py 151798 180.55 182.0 1.5 0.23 0.037 4.60 22 • fg in PP matrix 151800 183.5 185.0		-	Sometimes moves into matrix, but no	151792	1715	173.0	1.5		0.14	0.030	4.77	205
 Orungy magnetite jones are gone Orungy magnetite jones are gone hydro-bt 15-20!. yfg-2mm 151795 176:0 177.5 1.5 O.28 0.027 4:83 10 Mt Vfg, but rock is definitely magnetic - 151796 175. 179.0 1.5 O.06 0.012 4:46 7 Aome blebs (5%) Mitralization cpy>-py 151797 179.0 180:55 1.5 O.21 0.018 5:02. 15 O.22 0.018 5:02. 15 Mitralization cpy>-py I51799 182.0 183.5 1.5 O.22 0.035 4:02 20 -fg in PP matrix w[bt + mt. 151800 183:5 185.0 1.5 1 O.23 0.037 4:60 22 -on fractures - alot! I51802 185.0 1.5 1 O.23 0.037 4:60 24 O.23 0.037 4:60 24 O.23 0.037 4:60 24 O.23 0.037 4:60 24 		+	more than moderate pot - on mo average	151793	173.0	174.5	1.5		0.17	0.032.	5.55	1462
 Augho-bt 15-201. Jfg. 2mm 151795 176.0 177.5 1.5 0.08 0.027 4.83 10 mt Vfg, but rock is definitely magnetic - 151796 177.5 1.5 0.06 0.012 4.46 151797 179.0 1.5 0.12 0.018 5.02. 15 0.12 0.043 4.54 151797 182.0 1.5 0.24 0.035 4.02 151797 182.0 1.5 0.24 0.035 4.02 0.024 0.035 4.02 0.024 0.035 4.02 0.035 4.02 0.024 0.035 4.02 0.035 4.02 0.035 182.0 0.15 0.23 0.034 4.60 151800 183.5 1.5 0.23 0.037 4.60 0.037 4.60 0.037 4.60 0.038 0.039 4.40 0.039 4.40 0.031 0.034 0.031 0.034 0.031 0.034 0.031 0.034 0.031 0.034 0.031 0.034 0.034 0.034<td></td><td>-</td><td>· mungu mametite somes are done</td><td>151794</td><td>174.5</td><td>1760</td><td>1.5</td><td></td><td>0.28</td><td>0.050</td><td>5.09</td><td>340</td>		-	· mungu mametite somes are done	151794	174.5	1760	1.5		0.28	0.050	5.09	340
• mt v(g, but rock is definitely magnetic - 151796 177.5 179.0 1.5 0.06 0.012 4.46 7 • mt v(g, but rock is definitely magnetic - 151796 177.5 179.0 1.5 0.12 0.018 5.02. 15 • ome blebs (5%) 151797 179.0 180.55 1.5 0.12 0.018 5.02. 15 • mineralization cpy>> py 151798 180.55 182.0 1.5 0.31 0.043 4.54 312 • mineralization cpy >> py 151799 182.0 183.5 1.5 0.224 0.035 4.62 20 • fg in PP matrix w/bt + mt. 151800 183.5 185.0 1.5 1 0.23 0.034 4.60 22 • on fractures - alot! 151801 Duplicate 1.5 1 0.23 0.037 4.60 26 • albitization - throughout interval - ranges 151802 185.0 136.5 1.5 1 0.23 0.034 4.75 24 • on fractures - alot! 151803 186.5 185.0 136.5 1.5 0.24 0.034 4.75 24 <			· hudro- bt. 15-20% Vfg-2mm	151795	176.0	<u>דרו.5</u>	1.5		0.08	0.027	4,83	103
AOME blebs (5*1-) 151797 179.0 180.55 1.5 0.12 0.018 5.02 15 • minuralization cpy >> py 151797 179.0 180.55 182.0 1.5 0.31 0.043 4.54 312 • minuralization cpy >> py 151799 182.0 1.5 0.24 0.035 4.62 20 • cpy - blebs - in calcute veins 151799 182.0 183.5 1.5 0.23 0.035 4.62 20 • fg in PP matrix w/ bt + mt. 151800 183.5 185.0 1.5 0.23 0.037 4.60 22 • on fractures - alot! 15/801 Dupriscate 1.5 0.23 0.037 4.60 26 • albitization - throughout interval - ranges 15/802 185.0 186.5 1.5 0.23 0.049 467 24 • from 2-20'1. 15/802 186.5 188.0 1.5 0.24 0.034 4.75 24		-	mt vfg but rock is definitely magnetic.	151796	177.5	179.0	1.5		0.06	0.012	4:46	73
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			$\int \frac{1}{\sqrt{2\pi}} \left(\frac{1}{\sqrt{2\pi}} \right) = \frac{1}{\sqrt{2\pi}} \int \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{2\pi}} \int \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{2\pi}} \int \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{2\pi}} \int \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{2\pi}} \int \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{2\pi}} \int \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{2\pi}} \int \frac{1}{\sqrt{2\pi}} \frac{1}$	151797	179.0	180.55	1.5		0.12	0.018	5.0Z.	154
Cpy_ blebs - in calcute veins 151799 182.0 183.5 1.5 0.24 0.035 4.02 20 - fg in PP matrix what + mt. 151800 183.5 185.0 1.5 1 0.23 0.034 4.60 22. - on fractures - alot! 151801 Duplicate 1.5 0.23 0.037 4.60 26. - on fractures - alot! 151801 Duplicate 1.5 0.23 0.037 4.60 26. - on fractures - alot! 151802 185.0 186.5 1.5 0.23 0.037 4.60 26. - on fractures - alot! 151802 185.0 186.5 1.5 0.23 0.037 4.60 26. - from 2-20'/. 151802 185.0 186.5 1.5 0.23 0.034 4.75 24.			· minuralization cou>> Du	151798	180.55	182.0	1.5		0.31	0.04.3	4.54	318
- <u>fg</u> <u>in</u> <u>PP</u> <u>matrix</u> <u>w</u> bt + mt. <u>151800</u> 183.5 <u>185.0</u> <u>1.5</u> <u>1</u> <u>0.23</u> <u>0.034</u> <u>4.60</u> <u>22</u> . - <u>on</u> <u>fractures</u> <u>- alot!</u> <u>151801</u> <u>Duplicate</u> <u>1.5</u> <u>1</u> <u>0.23</u> <u>0.037</u> <u>4.60</u> <u>26</u> - <u>albitization</u> <u>- throughout</u> <u>interval</u> <u>- ranges</u> <u>151802</u> <u>185.0</u> <u>186.5</u> <u>1.5</u> <u>1</u> <u>0.23</u> <u>0.049</u> <u>467</u> <u>24</u> <u>from</u> <u>2-201</u> . <u>151803</u> <u>1865</u> <u>188.0</u> <u>1.5</u> <u>1</u> <u>0.24</u> <u>0.034</u> <u>4.75</u> <u>24</u>			chu blebs - in calcute veins	151799	182.0	183.5	1.5		0.24	0.035	4.02	201
- on fractures - alot! · albitization - throughout interval - ranges 151802 185.0 186.5 1.5 1 0.23 0.037 4.60 26 · albitization - throughout interval - ranges 151802 185.0 186.5 1.5 1 0.23 0.049 467 24 from 2-201. 151803 186.5 188.0 1.5 1 0.24 0.034 4.75 24	· · · ·	-	-fa in PP matrix witht + mt.	151800	183.5	185.0	1.5	}	0.23	0.034	4.60	22.7
· albitization - throughout interval - ranges 151802 185.0 186.5 1.5 1 0.23 0.049 467 24 from 2-201. 151803 1865 188.0 1.5 1 0.24 0.034 4.75 24		-	- on foractures - alot!	15/801	Dupi	cate	1.5	1	0.23	0.037	4.60	268
from 2-20%. 151803 1865 188.0 1.5 1 0.24 0.034 4.75 24			· albitization - throughout interval - ranges	151802	185.0	186.5	1.5		0.23	0.049	467	2.47
			from 2-20:1	151803	1865	188.0	1.5		0.24	0.034	4.75	244
rare actionalite diopside 151804 1880 189.5 1.5 0.16 0.024 3.98 14.			a rare actionstite / diopside	151804	1880	189.5	1.5		0.16	0.024	3.98	143
151805 1895 191.04 1.5 0.07 0.037 4.19 7				15:305	1895	191.04	1.5		0.07	0.037	4.19	7?
195.61-196.69m albite 15/806 191.04 192.5 1.5 0.10 0.012 4.57 10			195.61 - 196.69m albite	151806	191.04	192.5	1.5	<u> </u>	0.10	0.012	4.57	102
· zone with ~20% albite 151807 1925 194.0 1.5 0.29 0.044 4.69 43			· zone with ~20%. albite	151807	192.5	194.0	1.5	<u> </u>	0.29	0.044	4.69	436

weblete interprint paley label. 16

16

)

المذير فيرب ا

 (γ,γ_{i})

)

Page 10 of 13

-fr-st-

<u> 70 -</u>	<u>()</u>									
Sub	Description	Sample	From	To	Lath.	Rec.		Anal	ysie	-
390		No.		η			Total Cu ppm	Oxide Cu ppm	Fe %	Au ppb
	· cpy in late calcite veins	151303	194.0	195.5	1.5		0.13	0.019	4.53	153
	. bot alteration mostly along verios (laker	151809	195.5	197.0	1.5		0.13	0.016	4.32-	137
	flied w/ calcite	151810	197.0	198510	1.5		0.19	0.026	4.74	202
	· bt + mt content looks average	151311	198.5	200.0	1.5		0.21	0.037	4.83	193
	· not much but albite content to distinguis	6151812	200.0	2015	1.5		0.12	0.013	4.79	447
	this interval.	151813	2015	2030	1.5		0.09	0.014	4.23	111
		151814	203.0	204.5	1.5		0.10	0.037	4.28	122
	201.59 - 202.47 m Breccia	151815	204.5	206.0	1.5		0.10	0.035	3.46	125
	·matrix - dark grey (mt?) veins - too	151816	2010.0	207.5	1.5		0.13	0.017	3,42	180
	clay-looking to be magnetite	151817	201.5	209.0	1.5		0.08	0.009	2.94	113
	· clasts - PP - Rounded to subrounded	151818	209.0	210.5	1.5		0.10	0.011	4.21	109
	- biopite - 20% - actinolite 5%.	151819	210.5	212.0	1.5		0.14	0.022	4.69	149
	· cut by late this calcite verifiets	151820	212.0	213.5	1.5		0.08	0.034	4.75	109
	· little to no cpy	151821	2018050	plicate	1.5		0.08	0.033	4.89	94
	1 0	151822	213.5	215.0	1.5		0.15	0.051	5.14	150
	211 02-215 2m InBx - PP (bink grey green	151823	215.0	216.5	1.5		0.27	0.238	3,53	378
	· propulitic alteration - weak	151824	216.5	218.0	1.5	1	0.11	6039	4.31	133
	potassic alteration - weak	151875	218.0	219.5	1.5	, ,	0.28	0.076	4.58	236
	. pp texture very obvious - it's just green-	151826	219.5	221.0	1.5	ر ان	0.25	0.047	3.87	318
	grey	15(827	221.0	222.5	1.5		0.10	0.017	3,72	129
	. pt. 201 2-3mm sub to unhedral	151828	222.5	224.0	1.5		0.15	0.079	3.84	260
	·mt. 15%. 1-2 mm Aup to an hedral - mostly	151829	274.0	225.5	1.5		0.16	0.106	4.39	261
	along veins.	151830	2 <i>25.</i> 5	227.0	1.5		0.08	0.060	4.38	150
,164	diopside 10% vfg + blebs									El La Sa La Santa
	Syb	syb Description .cpy in late calcite verno .pot alteration mostly along verios (loter filed w/ calcite) .bt + mt content looks average .not much but Olbite content to distinguis .fris interval. .201.59 - 202.47 m Breecia .matrix - dack grey (mt?) Veriss - tos .clay-looking to be magnetite .clasts - PP - Nouncled to subrounded .biopite - 201 actinolite 5%. .cut by late this calcite vernets .little to no cpy .propylite alteration - weak .potassic alteration - weak .mt 15% 1-2mm Sub to unhedral - mostly along verne . 	syb Description Sample No. syb Description IS/303 - cpy in late calcite verins [15/303 - pot alteration mostly along verins (later 15/809 - filed w] calcite) IS/810 - bt + mt centent looks average IS/811 - not much but Olbite content to distinguish 15/822 - files interval. IS/813 - not much but Olbite content to distinguish 15/822 - files interval. IS/813 - not much but Olbite content to distinguish 15/823 - files interval. IS/813 - 15/814 - 201.59 - 202.47 m Breecia. IS/815 - matrix - dark gray (mt?) Veriss - too IS/816 - clay - looking to be magnetife. IS/817 - clasts - PP - rounded to subrounded IS/818 - biopte - 201 actinolite 5%. IS/829 - cut by late this calcite verinlets IS/820 - little to no cpy. IS/824 - potensic alteration - weak IS/827 - cut 2-3mm sub to unhedral IS/827 - bt. 201.2-3mm sub to unhedral IS/829 - along verins - IS/829 - along verins - IS/824 - diopside 10/. vfg + blebs	10 0) Syb Description Syb No. : Cpy in late calcite veina 15/803 194.0 • pot alteration mostly along veina (later 15/809 195.5 </td <td>10 00 syb Description Sample From Ever To syb No. No. M M To . cpy in late calcite verice 15/803 194.0 195.5 197.0 . pot alteration mostly along verice (later 15/805, 197.0 1935/20 197.0 1935/20 . ht emt content looks average 15/81 197.0 1935/20 . ht emt content looks average 15/81 197.0 202.5 . ht emt content looks average 15/81 200.0 201.5 . ht emt content looks average 15/81 200.0 201.5 . ht emt content looks average 15/81 202.0 201.5 . ht emt content looks average 15/81 202.0 201.5 . ht ent content looks average 15/81 202.0 201.5 . dot much but Olbite content to distinguish 15/82 200.0 201.5 . dot for alterval 15/81 202.0 204.5 . inderval 15/81 202.0 204.5 . inderval 15/81 201.5 202.0 . inderval <</td> <td>10 000 Syte Description Sample No. Prom Level No. Prom Level No. : cpy in late calcite veins 15/803 194.0 195.5 1.5 . pot alteration mostly along veins (later 15/803 194.0 195.5 197.0 1.5 . pot alteration mostly along veins (later 15/803 197.0 195.5 197.0 1.5 . het + mt content looks average 15/101 198.5 200.0 2.01.5 . not much but Albite content to distinguish 15/182 200.0 2.01.5 1.5 . Materia 15/1814 20.0 2.02.5 1.5 . Not much but Albite content to distinguish 15/182 200.0 2.01.5 1.5 . Materia 15/1814 20.0 2.02.5 1.5 . Materia 15/1814 20.0 2.04.5 1.5 . Optime - ack gray (mt?) Veins - ton 15/1816 2.06.0 1.5 . Materix - dack gray (mt?) Veins - ton 15/1818 2.02.0 1.5 . (laots - PP - Nounded to Aubounded 15/1818 2.02.0 2.15 1.5 . (laots - PP - Nounded to Aubounded<!--</td--><td>10 Orientation Semple Prom Event To Loth. Rec. Syte Overdaption 15/803 194.0 195.5 1.5 . pot alteration mostly along verion (later 15/805 197.0 1.5 . pot alteration mostly along verion (later 15/805 197.0 1.5 . pot alteration mostly along verion (later 15/805 197.0 1.5 . hild w/ calrity 15/803 194.5 197.0 1.5 . hot much but Calpite content to distinguish 15/812 200.0 1.5 1.5 . this interval. 15/814 203.0 2.01.5 1.5 . pot much but Objet content to distinguish 15/812 200.0 1.5 1.5 . Mus interval. 15/814 203.0 2.01.5 1.5 . pot matrix - dack gray (mt?) Veris - ton 15/818 2.02.0 1.5 . (laota - PP - Nouncled to Aubrounded 15/818 2.02.0 1.5 . (laota - PP - Nouncled to Aubrounded 15/812 2.02.0 1.5 . (laota - PP - Nouncled to Structure verintets 15/82 2.02.0 1.5 . (laota - PP - Nouncled to Aubrounded 1</td><td>10 00 Description Sample From Lett To Lath. Rec. syb Late calcite veine 15/803 194.0 195.5 1.5 0.13 . pot. alteration mostly along veine (late 15/80, 197.0 1.5 0.13 0.13 0.13 0.13 . pot. alteration mostly along veine (late 15/80, 197.0 1.5 0.13 0.13 0.13 . pot. alteration mostly along veine (late 15/80, 197.0 1.5 0.13 0.13 . pot. alteration mostly along veine (late 15/80, 200.0 1.5 0.21 . pot. much but Othite content to distinguish 15/80, 200.0 201.5 0.21 . the interval 15/81, 201.5 203.0 1.5 0.12 . pot. matrix - dark gray (mt?) veins - to 15/81, 201.5 204.5 1.5 0.10 . 201.59 - 202.47 m Braecia 15/81, 201.5 204.0 1.5 0.10 . with the vale 15/81, 201.5 202.0 1.5 0.10 . indep-looking to be magnetite 15/81, 202.0 210.5 1.5 0.10 . (last PP - tounded to subrounded 15/81, 20.0 210.5 1.5 0.1</td><td>10 0 Description Sample here To least here To least here To least here Annu 3y0 Description Sample here 15/803 1944.0 1955 1.5 0.017 • pot alteration mostly along verioe (later 15/805 195.5 197.0 1.5 0.13 0.019 • pot alteration mostly along verioe (later 15/805 197.0 198.5 0.15 0.21 0.026 • pot alteration mostly along verioe (later 15/807 198.5 197.0 15 0.12 0.021 • hiled wij caleritio 15/807 198.5 2000 1.5 0.21 0.027 • hile with but Othite content to distinguish 15/80 200.0 201.5 0.21 0.037 • not much but Othite content to distinguish 15/80 200.0 201.5 0.00 0.037 • not much but Othite content 15/813 201.5 0.00 0.037 • not much but Othite content 15/818 201.5 0.00 0.037 • fliss interval 15/818 201.5 0.00 0.037 • (last PP - Nounded to Aubrounded 15/818 2060 1</td><td>10 00 Description Sample no. no.</td></td>	10 00 syb Description Sample From Ever To syb No. No. M M To . cpy in late calcite verice 15/803 194.0 195.5 197.0 . pot alteration mostly along verice (later 15/805, 197.0 1935/20 197.0 1935/20 . ht emt content looks average 15/81 197.0 1935/20 . ht emt content looks average 15/81 197.0 202.5 . ht emt content looks average 15/81 200.0 201.5 . ht emt content looks average 15/81 200.0 201.5 . ht emt content looks average 15/81 202.0 201.5 . ht emt content looks average 15/81 202.0 201.5 . ht ent content looks average 15/81 202.0 201.5 . dot much but Olbite content to distinguish 15/82 200.0 201.5 . dot for alterval 15/81 202.0 204.5 . inderval 15/81 202.0 204.5 . inderval 15/81 201.5 202.0 . inderval <	10 000 Syte Description Sample No. Prom Level No. Prom Level No. : cpy in late calcite veins 15/803 194.0 195.5 1.5 . pot alteration mostly along veins (later 15/803 194.0 195.5 197.0 1.5 . pot alteration mostly along veins (later 15/803 197.0 195.5 197.0 1.5 . het + mt content looks average 15/101 198.5 200.0 2.01.5 . not much but Albite content to distinguish 15/182 200.0 2.01.5 1.5 . Materia 15/1814 20.0 2.02.5 1.5 . Not much but Albite content to distinguish 15/182 200.0 2.01.5 1.5 . Materia 15/1814 20.0 2.02.5 1.5 . Materia 15/1814 20.0 2.04.5 1.5 . Optime - ack gray (mt?) Veins - ton 15/1816 2.06.0 1.5 . Materix - dack gray (mt?) Veins - ton 15/1818 2.02.0 1.5 . (laots - PP - Nounded to Aubounded 15/1818 2.02.0 2.15 1.5 . (laots - PP - Nounded to Aubounded </td <td>10 Orientation Semple Prom Event To Loth. Rec. Syte Overdaption 15/803 194.0 195.5 1.5 . pot alteration mostly along verion (later 15/805 197.0 1.5 . pot alteration mostly along verion (later 15/805 197.0 1.5 . pot alteration mostly along verion (later 15/805 197.0 1.5 . hild w/ calrity 15/803 194.5 197.0 1.5 . hot much but Calpite content to distinguish 15/812 200.0 1.5 1.5 . this interval. 15/814 203.0 2.01.5 1.5 . pot much but Objet content to distinguish 15/812 200.0 1.5 1.5 . Mus interval. 15/814 203.0 2.01.5 1.5 . pot matrix - dack gray (mt?) Veris - ton 15/818 2.02.0 1.5 . (laota - PP - Nouncled to Aubrounded 15/818 2.02.0 1.5 . (laota - PP - Nouncled to Aubrounded 15/812 2.02.0 1.5 . (laota - PP - Nouncled to Structure verintets 15/82 2.02.0 1.5 . (laota - PP - Nouncled to Aubrounded 1</td> <td>10 00 Description Sample From Lett To Lath. Rec. syb Late calcite veine 15/803 194.0 195.5 1.5 0.13 . pot. alteration mostly along veine (late 15/80, 197.0 1.5 0.13 0.13 0.13 0.13 . pot. alteration mostly along veine (late 15/80, 197.0 1.5 0.13 0.13 0.13 . pot. alteration mostly along veine (late 15/80, 197.0 1.5 0.13 0.13 . pot. alteration mostly along veine (late 15/80, 200.0 1.5 0.21 . pot. much but Othite content to distinguish 15/80, 200.0 201.5 0.21 . the interval 15/81, 201.5 203.0 1.5 0.12 . pot. matrix - dark gray (mt?) veins - to 15/81, 201.5 204.5 1.5 0.10 . 201.59 - 202.47 m Braecia 15/81, 201.5 204.0 1.5 0.10 . with the vale 15/81, 201.5 202.0 1.5 0.10 . indep-looking to be magnetite 15/81, 202.0 210.5 1.5 0.10 . (last PP - tounded to subrounded 15/81, 20.0 210.5 1.5 0.1</td> <td>10 0 Description Sample here To least here To least here To least here Annu 3y0 Description Sample here 15/803 1944.0 1955 1.5 0.017 • pot alteration mostly along verioe (later 15/805 195.5 197.0 1.5 0.13 0.019 • pot alteration mostly along verioe (later 15/805 197.0 198.5 0.15 0.21 0.026 • pot alteration mostly along verioe (later 15/807 198.5 197.0 15 0.12 0.021 • hiled wij caleritio 15/807 198.5 2000 1.5 0.21 0.027 • hile with but Othite content to distinguish 15/80 200.0 201.5 0.21 0.037 • not much but Othite content to distinguish 15/80 200.0 201.5 0.00 0.037 • not much but Othite content 15/813 201.5 0.00 0.037 • not much but Othite content 15/818 201.5 0.00 0.037 • fliss interval 15/818 201.5 0.00 0.037 • (last PP - Nounded to Aubrounded 15/818 2060 1</td> <td>10 00 Description Sample no. no.</td>	10 Orientation Semple Prom Event To Loth. Rec. Syte Overdaption 15/803 194.0 195.5 1.5 . pot alteration mostly along verion (later 15/805 197.0 1.5 . pot alteration mostly along verion (later 15/805 197.0 1.5 . pot alteration mostly along verion (later 15/805 197.0 1.5 . hild w/ calrity 15/803 194.5 197.0 1.5 . hot much but Calpite content to distinguish 15/812 200.0 1.5 1.5 . this interval. 15/814 203.0 2.01.5 1.5 . pot much but Objet content to distinguish 15/812 200.0 1.5 1.5 . Mus interval. 15/814 203.0 2.01.5 1.5 . pot matrix - dack gray (mt?) Veris - ton 15/818 2.02.0 1.5 . (laota - PP - Nouncled to Aubrounded 15/818 2.02.0 1.5 . (laota - PP - Nouncled to Aubrounded 15/812 2.02.0 1.5 . (laota - PP - Nouncled to Structure verintets 15/82 2.02.0 1.5 . (laota - PP - Nouncled to Aubrounded 1	10 00 Description Sample From Lett To Lath. Rec. syb Late calcite veine 15/803 194.0 195.5 1.5 0.13 . pot. alteration mostly along veine (late 15/80, 197.0 1.5 0.13 0.13 0.13 0.13 . pot. alteration mostly along veine (late 15/80, 197.0 1.5 0.13 0.13 0.13 . pot. alteration mostly along veine (late 15/80, 197.0 1.5 0.13 0.13 . pot. alteration mostly along veine (late 15/80, 200.0 1.5 0.21 . pot. much but Othite content to distinguish 15/80, 200.0 201.5 0.21 . the interval 15/81, 201.5 203.0 1.5 0.12 . pot. matrix - dark gray (mt?) veins - to 15/81, 201.5 204.5 1.5 0.10 . 201.59 - 202.47 m Braecia 15/81, 201.5 204.0 1.5 0.10 . with the vale 15/81, 201.5 202.0 1.5 0.10 . indep-looking to be magnetite 15/81, 202.0 210.5 1.5 0.10 . (last PP - tounded to subrounded 15/81, 20.0 210.5 1.5 0.1	10 0 Description Sample here To least here To least here To least here Annu 3y0 Description Sample here 15/803 1944.0 1955 1.5 0.017 • pot alteration mostly along verioe (later 15/805 195.5 197.0 1.5 0.13 0.019 • pot alteration mostly along verioe (later 15/805 197.0 198.5 0.15 0.21 0.026 • pot alteration mostly along verioe (later 15/807 198.5 197.0 15 0.12 0.021 • hiled wij caleritio 15/807 198.5 2000 1.5 0.21 0.027 • hile with but Othite content to distinguish 15/80 200.0 201.5 0.21 0.037 • not much but Othite content to distinguish 15/80 200.0 201.5 0.00 0.037 • not much but Othite content 15/813 201.5 0.00 0.037 • not much but Othite content 15/818 201.5 0.00 0.037 • fliss interval 15/818 201.5 0.00 0.037 • (last PP - Nounded to Aubrounded 15/818 2060 1	10 00 Description Sample no. no.

Pagell of 13

(r	<u>mp</u>	- 98	- 03		From	To				Analy	/si£	
From Feet	То	Syb	Description	Sample No.	Fc	ot	Lgth.	Rec.	Total Cu ppm	Oxide Cu ppm	Fo %	Au ppb
			some lateral avidation praver dolain	151831	227.0	228.5	1.5		6.18	0.025	4.00	225
			· son to and light in his in k-son r tones	151832	228.5	230.02	1.52	 l	0.23	0.031	4.23	294
┠────	<u> </u>		- mineral galder - den in a regree guess	151833	230.02	231.5	1.48	ŀ	0.46	0.071	4.56	647
			215.2-239.51cm, Infx	151834	231.5	233.0	1.5		0.13	0.068	4.56	219
			moderate to extreme K-alteration	151835	233.0	234.5	1.5	1	0.25	0.045	4.67	277
 			: cape volcanie claste. Mostly K-altered	151836	234.5	236.0	1.5		0.12	0.046	4.41	170
			Pp	151837	236.0	237.5	1.5	<u> </u>	0.14	0.023	4.13	2.42
			· mineralization => GREAT CDN >> DY.	151838	237.5	239.0	1.5	 	0.26	0.040	3.72	687
			- Some malachite + rare chrysocolla	151839	239.0	240.5	1.5		0.09	0.027	5,96	103
			- CPU: fa in matrix								 	
			- fracture filling				·	 				
			- blebs all over								·	^{ال} يەربىدى رومىرىدى
			·mt common plebs + fg	 			·					
			·bt 10-15%. <2mm		:		<u></u>		·[
									<u> </u>			
			235.79-227.4m Volcanic Clast? / Dyke?									
			· Sharp top + bottom contact						<u> </u>			<u> </u>
			· dark-grey to red grey (hematite)					 				
			· vfg matrix	 								<u></u>
			·pheno's of plag and augite			 						
			· cut by calcite veine - some vein bx present								<u> </u>	
]		wangular volcanic clasts - calcitement	hx		<u> </u>				· · · · · · · · · · · · · · · · · · ·		
	<u>.</u>		1226.09-126.3m > zone of sheared hematite.	<u> .</u>	<u>i</u>	<u> </u>	l	<u> </u>	<u></u>	I	<u>I</u>	<u>I</u>

etup601rintindirparintputayteril.16

Page Qof 13

____**]**

<u> </u>	1p-9	<u>5-0</u>	<u>5</u>		From	To				Anaiy	sis	· · · · · ·
From Foo γγ	10 st	Syb	Description	Sample No.	-Fa 1	τστ Υ.	Lgth.	Rec.	Total Cu ppm	Oxide Cu ppm	Fo %	Au ppb
atori			Dolo to 7 Pight gray to salt + pepper	151840	240.5	242.0	15		0.11	0.030	5.76	127
224.76	_242,17		PP/Diorne right greet to be PP but	15184	Dustic	ate	1.5		0.14	0.032	5.38	149
			there are valca pic clasts and kspar	151842	242.0	243.5	15		0.08	0.011	5.56	80
			Valos autora the cock.				<u>+</u>		<u> </u>			
			· confrite veine (mss cut kspar									
			· mineralization -? very little cpy in				<u></u>					
		 	· albitization of plag ~10%.	-								
21219	20010		Jatrician Pressie	151843	243.5	245.06	1.56		0.10	0.024	4.45	139
<u>~~7.7.1 j</u>	541.1-7	<u> </u>	· Same slot	151844	245.06	24658	1.52		0.10	0.016	5.00	144
				151845	246.58	247.91	1.33		0.20	9.036	5.01	250
247.19	248.25		Quaite Por phyry	151846	247.91	249.94	2.03		50.01	0.003	4.94	15
			· dark green		<u>.</u>	<u> </u>						<u>ः ः</u>
			· 2 mm augite phenocrypts in green vfg			<u> </u>						
			matrix	<u> </u>					·			1.122.3
			· no mineralization			<u> </u>			· [- [در مربع میں مربع مربعہ کچر
748,25	251.43	 	Volcanic (andesite?) dark grey	151847	249.94	251.34	1.40		10.01	0.003	4.86	<5
			·very fine grained								· · · · ·	
			· no mineralization & can see									
					<u> </u>	<u> </u>	<u>.</u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>

3.

.

Page|3of B

[Emm	<u>ηρ - </u> το Ι	<u>18 - (</u>	23		From	To				Analy	rsis	
Fee	t	ЅγЪ	Description	Sample No.	r r	₩ 4 \	Lgth.	нес.	Total Cu ppm	Oxide Cu ppm	Fe %	Au ppb
15142	15768		malia arter	151848	251.34	252.68	1.34		40.01	<0.001	5.36	<5
<u>au - 11</u>	FOL		·ven for arrived						· · · ·			
<u> </u>			·chloritized and sheared									
			openocrusta of chlorite? (altered augite						 			[
			marpe?)		ļ							
			· same calcite veing as those in the									
			above volcanic									
		ļ				<u> </u>			<u> </u>			
												<u> </u>
			END OF HOLE									
												<u> </u>
											·	30.14
				<u> </u>								
	. <u></u>			· ·	?				_{***}			
		<u> </u>							<u> </u>			
											<u> </u>	
	. <u></u>	ļ	· · · · · · · · · · · · · · · · · · ·									
									÷	· · · · · · · · · · · · · · · · · · ·		
						<u></u>						<u> </u>

1998 Diamond Drilling and Geological Mapping

с.

•--

· • Appendix 5 Geotechnical Logs

Hole:	MP-98-0	1		Logged by	: Janice L	etwin		Elevation:		Page 1 of 4	
Drill Dat	e:			E:				Core Size:	NQ		
Log Dat	e;			N:							
From	То	Length	Recovery	Percent	RQD	Percent	Fractures	Strength	Alteration	Comments	
(m)	(m)	(m)	(m)	(%)	(m)	(%)	(per run)			 	
3.05	5.79	2.74	2.83	103	0.77	28	21				
5.79	8.84	3.05	3.05	100	1.96	64	23				
8.84	11.89	3.05	3.05	100	1.32	43	25				
11.89	14.94	3.05	3.05	100	2.2	72	22				
14.94	17.98	3.04	3.00	99	2.12	70	27				
17.98	19.2	1.22	1.16	95	0.14	11	14			· · · · · · · · · · · · · · · · · · ·	
19.2	21.03	1.83	1.83	100	0.46	25	26				
21.03	24.08	3.05	3.05	100	3.02	99	6				
24.08	27.13	3.05	3.05	100	2.28	75	16				
27.13	28.65	1.52	1.52	100	0.24	16	15				•
28.65	30.18	1.53	1.53	100	0.56	37	13				
30.18	31.39	1.21	1.21	100	0.26	21	23			 	
31.39	33.22	1.83	1.83	100	0.82	45	22			 	
33.22	34.75	1.53	1.53	100	0.63	41	20				
34.75	36.27	1.52	1.46	96	0.75	49	13				
36.27	37.49	1.22	1.22	100	0.7	57	12			 	
37.49	39.32	1.83	1.77	97	0.32	17	20				
39.32	42.37	3.05	3.05	100	2.08	68	26				
42.37	45.42	3.05	3.05	100	1.47	48	25				
45.42	46.02	1.4	0.61	44	0	0	15	· · · · · · · · · · · · · · · · · · ·			
46.02	46.63	0.61	0.52	85	0	0	20				
46.63	46.94	0.31	0.18	58	0	0	10			 	
46.94	48.16	1.22	1.13	93	0.53	43	15				
48.16	49.38	1.22	1.2	98	0.32	26	18			 	
49.38	50.29	0.91	0.91	100	0	0	14				
50.29	51.51	1.22	1.22	100	0.44	36	18				
51.51	52.73	1.22	1.01	83	0.25	20	10				
52.73	54.56	1.83	1.38	75	0.16	9	18			 	
54,56	57.3	2.74	2.68	98	0.92	34	20				
57.3	58.83	1.53	1.4	92	0.29	19 _.	12				
58.83	60.06	1.23	1.22	99	0.93	76	6			 	
60.06	62.79	2.73	2.64	97	1.63	60	10			 	ii
62.79	65.84	3.05	3.05	100	2.05	67	7			 	
65.84	68.88	3.04	3.05	100	2.06	68	11			 	
68.88	71.93	3.05	2.99	98	2.46	81	8				

эсталата стала стала стала стала стала стала,

Hole: MP-98-01

ć

Page 2 of 4

.

From	То	Length	Recovery	Percent	RQD	Percent	Fractures	Strength	Alteration	Comments
(m)	(m)	(m)	(m)	(%)	(m)	(%)	(per run)			
71.93	74.07	2.14	1.60	75	0.33	15	8			
74.07	75.59	1.52	1.51	99	0.66	43	8			
75.59	78.33	2.74	2.60	95	1.36	50	11			
78.33	81.38	3.05	3.00	98	2.29	75	6			
81.38	83.21	1.83	1.83	100	1.28	70	9		,	
83.21	85.04	1.83	1.78	97	0.69	38	7			
85.04	86.56	1.52	1.52	100	0.96	63	8			
86.56	89.61	3.05	3.05	100	2.03	67	13			
89.61	90.83	1.22	1.17	96	0.55	45	6			
90.83	92.96	2.13	2.08	98	0.97	46	12			
92.96	94.49	1.53	1.53	100	0.48	31	10			
94.49	95.40	0.91	0.77	85	0.21	23	7			
95.40	97.23	1.83	1.14	62	0.44	24	7			
97.23	99.36	2.13	2.13	100	1.68	79	8			
99.36	102.11	2.75	2.75	100	0.95	35	13			
102.11	104.24	2.13	2.13	100	1.28	60	9			
104.24	106.38	2.14	2.14	100	1.61	75	10			
106.38	108.51	2.13	2.13	100	1.02	48	14			fault gouge
108.51	111.56	3.05	3.05	100	2.47	81	13			
111.56	112.17	0.61	0.56	92	0.10	16	7			
112.17	113.96	1.52	1.52	100	0.58	38	10			·
113.96	115.52	1.83	1.76	96	1.34	73	11			
115.52	118.57	3.05	3.05	100	2.54	83	14			
118.57	121.62	3.05	3.05	100	2.47	81	9			
121.62	124.66	3.04	3.05	100	2.80	92	10			
124.66	126.80	2.14	2.10	98	1.36	64	10			
126.80	129.84	3.04	3.04	100	2.57	85	12			
129.84	132.89	3.05	3.04	100	2.87	94	5			
132.89	135.94	3.05	3.05	100	3.00	98	4			
135.94	138.99	3.05	3.05	100	2.63	86	8			
138.99	142.04	3.05	3.05	100	1.83	60	12			
142.04	143.56	1.52	1.52	100	0.36	24	9			
143.56	146.00	2.44	2.30	94	1.63	67	6			
146.00	149.05	3.05	3.05	100	2.44	80	8			
149.05	150.88	1.83	1.76	96	0.65	36	16			

Mount Polley Mine - Geotechnical Logging

Hole: MP-98-01

Page 3 of 4

,

From	To	Length	Recovery	Percent	RQD	Percent	Fractures	Strength	Alteration	Comments
(m)	(m)	(m)	(m)	(%)	(m)	(%)	(per run)		İ	
150.88	151.79	0.91	0.91	100	0.37	41	18			
151.79	153.31	1.52	1.52	100	1.35	89	7			· · · · · · · · · · · · · · · · · · ·
153.31	156.36	3.05	3.05	100	2.50	82	7			
156.36	158.19	1.83	1.83	100	1.55	85	7			
158.19	161.24	3.05	3.05	100	2.61	86	11			
161.24	162.46	1.22	1.22	100	0.61	50	9			
162.46	164.29	1.83	1.83	100	1.37	75	9			
164.29	167.34	3.05	3.05	100	2.44	80	5			
167.34	170.38	3.04	3.04	100	2.33	77	6			· · · · · · · · · · · · · · · · · · ·
170.38	173.13	2.75	2.72	99	1.67	61	9			
173.13	176.17	3.04	3.04	100	2.80	92	9			
176.17	179.22	3.05	3.05	100	2.20	72	6			
179.22	182.27	3.05	3.05	100	3.05	100	6		·	
182.27	185.32	3.05	3.05	100	2.38	78	10			
185.32	188.37	3.05	3.05	100	2.12	70	11			first 16cm look like fault gouge
188.37	191.11	2.74	2.74	100	2.05	75	8			
191.11	192.94	1.83	1.83	100	1.03	56	10		l	
192.94	194.77	1.83	1.83	100	0.92	50	12			
194.77	196.29	1.52	1.52	100	0.57	38	15			
196.29	197.51	1.22	1.22	100	0.00	0	5		· .	fractures paralle to CA
197.51	199.64	2.13	1.93	91	0.62	29	10			
199.64	201.47	1.83	1.75	96	1.03	56	10			
201.47	201.78	0.31	0.23	74	0.00	0	5			rubble
201.78	203.00	1.22	0.73	60	0.59	48	5			·
203.00	203.61	0.61	0.91	149	0.72	118	4			· · · · · · · · · · · · · · · · · · ·
203.61	205.13	1.52	1.22	80	0.91	60	6			
205.13	206.35	1.22	1.04	85	0.60	49	8			
206.35	207.26	0.91	0.91	100	0.36	40	7			slicks on fractures with hematite and talc?
207.26	207.87	0.61	0.61	100	0.13	21	12			slicks on fractures with hematite and talc?
207.87	210.01	2.14	2.14	100	1.88	88	11		<u> </u>	
210.01	212.45	2.44	2.44	100	2.00	82	10	<u></u>		
212.45	215.49	3.04	3.04	100	2.47	81,	5			
215.49	218.54	3.05	3.05	100	2.54	83	8		ļ	
218.54	220.98	2.44	2.37	97	1.50	61	11			· · · · · · · · · · · · · · · · · · ·
220.98	222.50	1.52	1.52	100	0.79	52	8		<u> </u>	

Mount Polley Mine - Geotechnical Logging

TUE, MF-90-01	Hole:	MP-98-01	
---------------	-------	----------	--

Page 4 of 4

From	То	Lenath	Recoverv	Percent	RQD	Percent	Fractures	Strength	Alteration	Comments
(m)	(m)	(m)	(m)	(%)	(m)	(%)	(per run)	¥		
222.50	224.64	2.14	2.14	100	1.52	71	8			
224.64	226.77	2.13	2.13	100	0.83	39	13			
226.77	227.99	1.22	1.22	100	0.62	51	7			
227.99	229.82	1.83	1.83	100	1.34	73	12			
229.82	231.34	1.52	1.52	100	1.34	. 88	4			
231.34	234.39	3.05	3.05	100	2.75	90	7			
234.39	237.44	3.05	3.05	100	2.97	97	5			· · · · · · · · · · · · · · · · · · ·
237.44	240.49	3.05	3.05	100	2.39	78	6			
240.49	243.54	3.05	3.05	100	2.69	88	7			
243.54	246.58	3.04	3.04	100	2.97	98	7			·····
246.58	249.63	3.05	3.05	100	3.01	99	4			
249.63	252.68	3.05	2.69	88	2.49	82	7			
252.68	255.73	3.05	3.05	100	2.79	91	7			
255.73	258.78	3.05	3.05	100	3.01	99	4			
258.78	261.82	3.04	3.04	100	2.55	84	15			most fractures are @90 and 0 degrees to CA
261.82	264.87	3.05	2.98	98	2.90	95	5			· · · · · · · · · · · · · · · · · · ·
264.87	267.92	3.05	3.05	100	2.70	89	6			
267.92	270.97	3.05	3.05	100	2.98	98	5			
270.97	273.71	2.74	3.04	111	2.34	85	4			· · · · · · · · · · · · · · · · · · ·
273.71	276.76	3.05	3.05	100	3.02	99	3			
276.76	279.81	3.05	3.05	100	2.63	86	6			
279.81	282.86	3.05	3.05	100	2.95	97	4			· · · · · · · · · · · · · · · · · · ·
282.86	285.90	3.04	3.04	100	2.91	96	3			·
285.90	288.95	3.05	3.05	100	2.44	80	7			most fractures are healed
288.95	289.56	0.61	0.61	100	0.31	51	2			
				<u></u>					·	

			الكفاف المتعاد المتحدين والمراجع والمتعادي والمتعاد والمتع
Hole: MP-98-02	Logged by: Janice Letwin	Elevation: 1150 m	Page 1 of 3
Drill Date:	E: 2410	Core Size: NQ	
Log Date:	N: 3120	TD: 249.94 m	

From	То	Length	Recovery	Percent	RQD	Percent	Fractures	Strength	Alteration	Comments
(m)	(m)	(m)	(m)	(%)	(m)	(%)	(per run)			
6.10	6.71	0.61	0.61	100	0.00	0	lots	1	4	very broken - <1-3cm blocks. Oxidized.
6.71	7.32	0.61	0.42	69	0.00	0	10	1	4	very broken - <1-5cm blocks. Oxidized.
7.32	8.84	1.52	1.25	82	0.35	23	11	1	4	Very broken at end. Oxidized.
8.84	11.89	3.05	2.98	98	1.54	50	11	1	4	
11.89	14.94	3.05	3.05	100	2.95	97	10	1	4	
14.94	17.98	3.04	3.01	99	2.23	73	13	1	4	oxidized
17.98	19.87	1.89	1.51	80	0.17	9	7	1	4	bottom 30-40cm is <2cm clasts
19.87	22.25	2.38	2.18	92	0.92	39	9	1	5	mush in places
22.25	24.08	1.83	1.83	100	0.67	37	3	1	5	mushy
24.08	26.82	2.74	2.50	91	1.07	39	6	1	5	not very solid, competent rock
26.82	29.87	3.05	3.05	100	2.18	71	7	1	5	
29.87	31.39	1.52	1.10	72	0.37	24	5	1	4	low competence
31.39	33.22	1.83	1.40	77	1.14	62	4	1	4	·
33.22	35.66	2.44	2.20	90	1.40	57	7	1	4	
35.66	38.71	3.05	3.05	100	2.49	82	13	3	3	
38.71	40.54	1.83	1.83	100	1.48	81	7	3,2	3,4	crumbly
40.54	42.37	1.83	1.66	91	1.09	60	8	3	3	
42.37	42.98	0.61	0.31	51	0.29	48	4	3	3	· · · · · · · · · · · · · · · · · · ·
42.98	45.42	2.44	2.43	100	1.70	70	9	3	3	· · · · · · · · · · · · · · · · · · ·
45.42	48.46	3.04	3.04	100	2.81	92	7	3	3	
48.46	51.51	3.05	3.05	100	3.00	98	7	3	3	
51.51	54.66	3.15	3.02	96	2.84	90	8	4	3	· · · · · · · · · · · · · · · · · · ·
54.66	57.61	2.95	2.97	101	2.89	98	7	4	3	
57.61	60.66	3.05	3.05	100	2.66	87	9	4	3	
60.66	63.70	3.04	3.04	100	2.75	90	6	3	3	
63.70	66.75	3.05	3.05	100	3.03	99	9	3	3	
66.75	69.80	3.05	3.05	100	2.03	67	10	3	3	
69.80	71.93	2.13	2.13	100	2.00	94	7	3	3	
71.93	72.85	0.92	0.87	95	0.74	80	2	2	3	
72.85	73.46	0.61	0.58	95	0.50	82	4	3	3	
73.46	75.90	2.44	2.44	100	2.04	84	8	4	3	
75.90	77.11	1.21	0.98	81	0.70	58	65	4	3	
77.11	78.94	1.83	1.78	97	1.66	91	4	4	3	
78.94	81.99	3.05	2.89	95	2.81	92	4	4	3	
81.99	85.04	3.05	3.05	100	2.63	86	8	4	3	

Hole: MP-98-02

Page 2 of 3

From	To	Length	Recovery	Percent	RQD	Percent	Fractures	Strength	Alteration	Comments
(m)	(m)	. (m)	(m)	(%)	(m)	(%)	(per run)			
85.04	86.56	1.52	1.52	100	1.43	94	6	3	3	
86.56	87.88	1.32	1.32	100	0.73	55	9	2	3	
87.88	89.92	2.04	1.82		1.10	54	8	3	3	
89.92	91.14	1.22	1.01	83	0.83	68	4	3	3	
91.14	94.18	3.04	3.04	100	2.78	91	6	3	3	
94.18	97.23	3.05	3.05	100	2.95	97	5	3	3	
97.23	99.67	2.44	2.44	100	2.06	84	9	2	3	
99.67	101.50	1.83	1.50	82	0.82	45	7	2	2,3	fractured and oxidized
101.50	103.33	1.83	1.83	100	1.57	86	5	3	3	· · · · · · · · · · · · · · · · · · ·
103.33	106.38	3.05	3.05	100	2.87	94	5	3	3	
106.38	109.42	3.04	3.04	100	2.99	98	8	3	3	
109.42	112.47	3.05	3.05	100	3.05	100	7	3	3	-
112.47	115.52	3.05	3.05	100	2.89	95	4	3	3	
115.52	118.57	3.05	3.05	100	2.71	89	9	2	3	******
118.57	121.62	3.05	3.05	100	2.50	82	10	3	3	·
121.62	124.66	3.04	3.04	100	2.68	88	7	3	3	· · · · · · · · · · · · · · · · · · ·
124.66	127.71	3.05	3.05	100	2.91	95	6	3	3	
127.71	130.76	3.05	3.05	100	2.73	90	11	3	3	
130.76	133.81	3.05	3.05	100	2.96	97	6	3	3	
133.81	136.86	3.05	3.05	100	3.00	98	5	3	3	
136.86	139.90	3.04	3.04	100	3.02	99	4	3	3	
139.90	140.82	0.92	0.89	97	0.80	87	4	3	3	
140.82	142.92	2.10	1.87	89	0.97	46	8	2,3	3	
142.92	146.00	3.08	3.05	99	2,94	95	7	3	3	
146.00	148.13	2.13	2.13	100	2.02	95	5	3	3	
148.13	151.18	3.05	3.05	100	2.90	95	7	3	3	
151.18	154.23	3.05	3.05	100	2.78	91	5	3	3	· · · · · · · · · · · · · · · · · · ·
154.23	156.67	2.44	2.31	95	1.99	82	7	3	3	
156.67	157.58	0.91	0.91	100	0.73	80	6	3	3	
157.58	160.63	3.05	3.05	100	2.91	95.	6	3	3	
160.63	163.68	3.05	3.05	100	2:18	71	10	3	3	·
163.68	166.73	3.05	3.05	100	2.52	83	7	3	3	·
166.73	169.77	3.04	3.04	100	2.55	84	18	3	3	some fractures are oxidized
169.77	170.69	0.92	0.92	100	0.53	58	4	3	3	·
170.69	173.43	2.74	2.75	100	2.46	90	10	3	3	

Hole: MP-98-02

Page 3 of 3

			Deerst	Dorocat 1		Percent	Fractures	Strength	Alteration	Comments
From	To	Length	Kecovery	- rercent	(m)	(%)	(per run)	Chongai		
(m)	(m)	(m)	(m)	(%)	2.00	02	6	3	3	
173.43	176.48	3.05	2.93		2.90	90		3	3	
176.48	179.53	3.05	2.91	95	2.07	00		3	3	
179.53	182.58	3.05	3.05	100	2.81	92	5	3	3	
182.58	185.62	3.04	3.05	100	2.91	90		3	3	
185.62	188.67	3.05	3.05	100	2.88	94	7	3	3	
188.67	191.72	3.05	3.05	100	3.03	80	<u>├──</u>	3	3	· · · · · · · · · · · · · · · · · · ·
191.72	194.77	3.05	3.05	100	2.70	09 85	15	2	$\frac{1}{3}$	fractures parallel to CA
194.77	197.82	3.05	3.05		2.59	<u> </u>		3		
197.82	200.86	3.04	3.05	100	2.11	03	10	3	$\frac{1}{3}$	<u></u>
200.86	203.61	2.75	3.05		2.50	90		3	3	
203.61	206.96	3.35	3.05	91	2.01	04		3	$\frac{1}{3}$	
206.96	210.01	3.05	3.05	100	2.85	93	$\frac{1}{7}$	3	$\frac{3}{3}$	
210.01	213.06	3.05	3.05	100	2.91	95	7		+	
213.06	216.10	3.04	3.04	100	2.87	94			$\frac{3}{3}$	
216.10	217.63	1.53	1.53	100	1.34	00	<u>+</u> <u>+</u> <u>-</u>		$\frac{3}{2}$	
217.63	220.68	3.05	2.95	97	2.95	9/			+	
220.68	222.20	1.52	1.47	97	1.45	95	<u> </u>	$\frac{3}{2}$	$+\frac{3}{3}$	
222.20	225.25	3.05	3.05	100	2.71	89	<u>⊢ ×</u>	+		
225.25	228.30	3.05	3.05	100	3.05	100			$\frac{3}{2}$	· · · · · · · · · · · · · · · · · · ·
228.30	230.43	2.13	2.13	100	1.78	84		-		
230.43	233.48	3.05	2.98	98	2.80	92	8		+	
233.48	236.52	3.04	3.05	100	2.42	80	10			
236.52	238.66	2.14	2.14	100	1.71	80	9		+ 3	
238.66	239.88	1.22	1.15	94	1.00	82	4	4		
239.88	242.93	3.05	3.05	100	2.62	86	4	$\frac{3}{2}$	+	
242.93	245.97	3.04	3.04	100	2.76	91	6	<u> 3</u>		
245.97	249.02	3.05	2.97	97	2.83	93	5			Lobocked the lengths a few times and they are true
249.02	249.94	0.92	1.29	honest!	1.29	140	2	<u> </u>	+ 3	I CIECKEU ITE IEIGUIS à IEW UTIES, and utey are uter.
	1	1				<u> </u>		<u> </u>	_ <u>_</u>	
	1	1				<u> </u>		1		
<u> </u>	1	1				<u>. </u>	<u></u>		+	
	+	1			ļ	<u> </u>		<u></u>		
 						<u> </u>		<u></u>		
 		1				<u> </u>	_	- <u> </u>		
<u> </u>	•	1							1	

Mount Polley Mine - Geotechnical Logging

Hole: M	P-98-03			Logged by:	Janice Le	etwin		Elevation:	1150 m	Page 1 of 4
Drill Date	e:			E: 2180	***			Core Size:	NQ	
Log Date	e:			N: 3340				TD:252.68	m	
		,								
From	То	Length	Recovery	Percent	RQD	Percent	Fractures	Strength	Alteration	Comments
(m)	(m)	(m)	(m)	(%)	(m)	(%)	(per run)			
3.68	4.27	0.59	0.44	75	0.12	20	3	2	3	
4.27	5.49	1.22	1.22	100	0.59	48	7	2	2	
5.49	6.40	0.91	0.81	89	0.25	27	4	3	3	
6.40	7.62	1.22	1.22	100	0.59	48	7	3	3	
7.62	8.23	0.61	0.81	133	0.54	89	4	3	3	
8.23	9.14	0.91	0.85	93	0.31	34	4	2	4	bottom is all broken
9.14	10.06	0.92	0.92	100	0.58	63	9	3	3	
10.06	11.28	1.22	1.22	100	0.80	66	8	3	3	
11.28	12.80	1.52	1.48	97	0.89	59	9	3	3	
12.80	14.33	1.53	1.53	100	0.97	63	7	0-1	3	
14.33	14.95	0.62	0.30	48	0.00	0	2	1	4	rubble
14.95	16.15	1.20	0.90	75	0.00	0	??	0	5	nothing but grunge and pebbles
16.15	17.68	1.53	1.53	100	0.50	33	16	1	4	
17.68	20.73	3.05	2.80	92	2.17	71	8	2	4	
20.73	22.80	2.07	2.07	100	1.57	76	10	2	3	
22.80	24.08	1.28	1.28	100	1.01	79	4	3	3	
24.08	26.82	2.74	2.75	100	1.38	50	13	2	3-4	
26.82	29.26	2.44	2.44	100	1.07	44	15	3	3	
29.26	30.48	1.22	1.05	86	0.27	22	12	1	3	· · · · · · · · · · · · · · · · · · ·
30.48	31.70	1.22	0.35	29	0.00	0	??	2	3	rubble
31.70	32.61	0.91	0.87	96	0.00	0	12	2	3	rubble
32.61	33.22	0.61	0.62	102	0.00	0	4	2	3	rubbie
33.22	34.14	0.92	0.92	100	0.37	40	9	3	3	
34.14	36.27	2.13	2.00	94	1.26	59	9	3	3	
36.27	38.40	2.13	2.13	100	1.20	56	10	3	3	· · · · · · · · · · · · · · · · · · ·
38.40	40.23	1.83	1.83	100	1.14	62	8	2	3	
40.23	42.37	2.14	1.98	93	1.52	71	6	2	3	
42.37	44.81	2.44	2.28	93	1.68	69	9	3	3	
44.81	46.94	2.13	2.13	100	1.43	67	12	3	3	
46.94	49.99	3.05	3.05	100	2.49	82	9	3	3	
49.99	51.51	1.52	1.42	93	1.08	71	9	3	3	
51.51	54.56	3.05	3.05	100	2.38	78	10	3	3	
54.56	55.78	1.22	0.97	80	0.48	39	7	3	2	
55.78	56.39	0.61	0.61	100	0.00	0	6	2	2	rubble
56.39	57.91	1.52	1.52	100	0.99	65	10	3	2	rubble

Hole: MP-98-03

Page 2 of 4

From	То	Length	Recovery	Percent	RQD	Percent	Fractures	Strength	Alteration	Comments
(m)	(m)	(m)	(m)	(%)	(m)	(%)	(per run)			
57.91	60.05	2.14	2.05	96	0.63	29	9	2	4	rubble
60.05	62.18	2.13	2.13	100	0.20	9	10	3	4	rubble
62.18	63.70	1.52	1.52	100	0.84	55	6	3	4	rubble
63.70	65.84	2.14	2.01	94	1.00	47	9	2-3	3	
65.84	68.88	3.04	3.04	100	2.81	92	4	3	3	
68.88	71.93	3.05	2.87	94	2.37	78	4	3	3	
71.93	74.98	3.05	3.05	100	2.76	90	4	3	3	
74.98	75.29	0.31	0.31	100	0.31	100	1	3	3	· · · · · · · · · · · · · · · · · · ·
75.29	78.33	3.04	3.04	100	2.98	98	5	3	3	
78.33	81.38	3.05	3.05	100	2.86	94	6	3	3	
81.38	83.52	2.14	2.14	100	1.71	80	4	3	3	
83.52	85.04	1.52	1.52	100	1.45	95	5	3	3	
85.04	88.09	3.05	3.05	100	3.03	99	3	3	3	
88.09	89.92	1.83	1.83	100	0.72	39	7	3	3	
89.92	92.96	3.04	3.04	100	2.34	77	6	2-3	3	hematite on veins
92.96	96.01	3.05	3.05	100	2.88	94	6	2-3	3	hematite on veins
96.01	97.23	1.22	1.22	100	1.16	95	6	3-4	3	
97.23	100.28	3.05	3.05	100	2.63	86	6	3	3	
100.28	103.33	3.05	3.05	100	2.92	96	8	3	3	· · · · · · · · · · · · · · · · · · ·
103.33	106.33	3.00	3.05	102	2.65	88	5	3	3	
106.33	109.42	3.09	3.05	99	2.53	82	6	3	3	
109.42	111.86	2.44	2.43	100	1.98	81	5	2	3	
111.86	112.47	0.61	0.61	100	0.00	0	9	3	3	
112.47	115.52	3.05	3.05	100	1.95	64	13	3	3	
115.52	117.04	1.52	1.52	100	1.04	68	9	2	3	
117.04	118.57	1.53	1.53	100	1.40	92	6	3	3	
118.57	121.62	3.05	3.05	100	2.97	97	6	4	3	
121.62	123.75	2.13	2.09	98	1.15	54	6	4	3	
123.75	125.27	1.52	1.52	100	1.33	88	7	4	3	
125.27	127,71	2.44	2.44	100	2.34	96	4	3	3	
127.71	130.15	2.44	2.40	98	2.20	90	4	3	3	
130.15	132.28	2.13	1.98	93	1.77	83	7	4	3	
132.28	133.81	1.53	1.53	100	1.53	100	2	4	3	
133.81	136.86	3.05	3.05	100	2.94	96	3	4	3	
136.86	139.90	3.04	3.05	100	2.49	82	6	4	3	

Hole: MP-98-03

Page 3 of 4

.

From	To	Length	Recovery	Percent	RQD	Percent	Fractures	Strength	Alteration	Comments
(m)	(m)	(m)	(m)	(%)	(m)	(%)	(per run)			
139.90	142.34	2.44	2.44	100	2.12	87	6	3	3	
142.34	144.78	2.44	2.44	100	1.71	70	8	3	3	
144.78	147.52	2.74	2.74	100	2.55	93	5	3	3	
147.52	149.05	1.53	1.42	93	1.40	92	3	4	3	
149.05	152.10	3.05	3.05	100	2.98	98	5	4	3	
152.10	152.70	0.60	0.46	77	0.28	47	1	3	3	· · · · · · · · · · · · · · · · · · ·
152.70	154.23	1.53	1.53	100	1.35	88	5	3	3	
154.23	155.14	0.91	0.61	67	0.48	53	5	3	3	
155.14	158.19	3.05	3.05	100	2.43	80	7	4	3	
158.19	159.41	1.22	1.22	100	1.04	85	5	4	3	
159.41	161.24	1.83	1.83	100	1.63	89	4	3	3	· · · · · · · · · · · · · · · · · · ·
161.24	163.37	2.13	2.13	100	1.87	88	8	4	3	
163.37	166.42	3.05	3.05	100	283.00	9279	7	4	3	
166.42	168.55	2.13	2.13	100	2.06	97	5	3	3	
168.55	170.38	1.83	1.77	97	1.77	97	4	4	3	
170.38	173.43	3.05	3.05	100	2.90	95	6	3	3	
173.43	176.48	3.05	3.05	100	3.01	99	7	4	3	
176.48	179.53	3.05	3.05	100	2.97	97	3	4	3	
179.53	182.58	3.05	3.05	100	3.02	99	5	4	3	
182.58	185.62	3.04	3.04	100	2.61	86	10	4	3	· · ·
185.62	187.15	1.53	1.42	93	1.15	75	3	4	3	
187.15	188.67	1.52	1.52	100	1.52	100	2	4	3	
188.67	190.20	1.53	1.53	100	0.94	61	6	3	3	
190.20	192.02	1.82	1.75	96	1.59	87	4	4	3	
192.02	194.77	2.75	2.75	100	2.69	98	5	4	3	
194.77	197.82	3.05	3.05	100	2.70	89	6	4	3	
197.82	200.86	3.04	3.04	100	2.73	90	6	4	3	
200.86	203.91	3.05	3.05	100	2.78	91	5	4	3	
203.91	206.96	3.05	3.05	100	2.88	94	6	4	3	· · · · · · · · · · · · · · · · · · ·
206.96	210.01	3.05	3.05	100	3.01	99	4	4	3	
210.01	213.06	3.05	3.05	100	2.58	85	4	4	3	· · ·
213.06	216.10	3.04	3.04	100	2.74	90	7	3	3	
216.10	219.15	3.05	3.05	100	2.74	90	5	4	3	
219.15	222.20	3.05	3.05	100	2.68	88	4	4	3	
222.20	225.25	3.05	3.05	100	2.56	84	7	4	3.	

Hole: MP-98-03

))))))

() ()

Page 4 of 4

) (]

.

From	To	Length	Recovery	Percent	RQD	Percent	Fractures	Strength	Alteration	Comments
(m)	(m)	(m)	(m)	(%)	(m)	(%)	(per run)			
225.25	227.69	2.44	2.44	100	2.04	84	6	3-4	3	
227.69	230.73	3.04	3.04	100	2.96	97	6	5	3	
230.73	233.78	3.05	3.05	100	2.36	77	9	4-5	3	some oxidation
233.78	236.83	3.05	3.05	100	2.62	86	6	5	3	
236.83	239.88	3.05	3.05	100	2.62	86	5	4-5	3	
239.88	240.18	0.30	0.40	133	0.40	133	0	4-5	3	
240.18	243.23	3.05	3.05	100	2.66	87	7	4-5	3	
243.23	245.06	1.83	1.83	100	1.16	63	8	0,3	3	bottom 40cm are very broken
245.06	246.58	1.52	1.53	101	1.02	67	6	3-4	3	
246.58	248.11	1.53	1.46	95	1.17	76	6	1,5	3	
248.11	249.95	1.84	1.83	99	1.04	57	21	1,3	3	
249.95	250.55	0.60	0.61	102	0.43	72	3	2	3	top 53cm - healed fault gouge
250.55	252.68	2.13	2.13	100	0.91	43	5	2	3	
									ļ	
									<u> </u>	
										······
									<u> </u>	
									<u> </u>	
			<u> </u>							
			ļ							
							<u> </u>			
· · ·			ļ							
										
	· · · · · ·					·				
					ļ			<u> </u>	····	
ļ				ļ						
1								L	l	

December 10, 1998

Appendix 6 Analytical Data

	Canada			يب هين کا پندا ايندا کين کين کين اين کا پر	= 1	وراكا الواقات ومنتك وممتنا والمنا والمناك وبالك ووبك التركر المنتار ومشار ومنتا	
			"URGEN	T & CONFIDE	NTIAL	9	
To: Attent Refere Submit	MOUNT ion : nce : SHIPMF ter : C. WIL	POLLEY MINES ENT #1 .DE			Our You: Number o:	Fax No: (604) 985-1071 Fax No: 1-250-790-2268 f Pages : 2 including	this page
Report	: : V98-00995 :t Method	.0 Sta Tot	tus : COMPLE	TE .	Total r	number of samples: 49	
Au30 Fe	30g Fire A Atomic Abso	ssay - AA 4 ORPTION 4	9 Cu 9	ATOMIC ABSORPTION	Totl 49	Element Method Cusl ATOMIC ABSORPTION	Totl 49

mple Preparation	18 Totl S	ample Type	Totl	Size Fraction Tot	l Remar)		
mple Preparation JSE/SPLIT & PULA RWEIGHT/KG	ns Totl s - 7. 49 D 40	ample Type RILL CORE	Totl 49	Size Fraction Tot 	 l Remar) - 9 		
umple Preparation USH/SPLIT & PULN ERWEIGHT/KG	13 Totl S - 7. 49 D 40 	ample Type RILL CORE	Totl 49	Size Fraction Tot	l Remar) - 9 		
mple Freparation JSE/SPLIT & PULN SRWEIGHT/KG	as Totl s - - 49 D 40 	ample Type RILL CORE	Totl 49	Size Fraction Tot			
nple Freparation JSE/SPLIT & PUIN SRWEIGHT/KG	as Totl s - - 49 D 40 	ample Type RILL CORE	Totl 49	Size Fraction Tot	1 Remar) - 9 		

FAXSR: 604#985-1071 At 7-JUL-1998 13:29 Page 2

Intertek Testing Services Bondar Clegg

LIENT: MOUNT POLLEY MINES REPORT: V98-00995.0 (COMPLETE)

		METELE)		DATI	E RECEIVED : 29-TIM-00	I KOU	LCI: MIT	DRILLING			
AMDT.W							Di	ATE PRINI	ED: 7-J	0T-38	PAGE 1 OF	1
NIMBED	ELEMENT	Au30	Ci	ı Cusl	Fe	SAMPLE						
HUADER	UNITS	PPB	PCI	PCT	PCT	NUMBED	ELEMENT	Au30	Cu	CuSL	Fe	
2 145001							UNITS	PPB	PCT	PCT	PCT	
2 145002		65	0.04	0.010	3.77	D2 145041		• • •				
02 145002		90	0.07	0.017	3.67	D2 145042		223	0.13	0.107	1.62	
145003		104	0.05	0.011	3.60	D2 145042		165	0.12	0.073	1.63	
		90	0.06	0.027	2.20	D2 145043		118	0.09	0.062	2.35	
140000		120	0.07	0.016	3.28	D2 145044		191	0.15	0.055	1.35	
12 14500C					_	DF 140040		105	0.11	0.073	1.30	
145000		59	0.04	0.013	3.40	D2 145046						
145007		184	0.13	0.023	1.86	D2 145047		52	0.06	0.043	1.58	
32 145008		218	0.18	0.049	2.00	D2 145047		52	0.06	0.029	1.36	
2 145009		74	0,05	0.012	2.94	D2 145048		85	0.08	0.017	1.32	
142010		112	0.07	0.013	3.55	DC 143043		91	0.08	0.018	1.74	
3 145044					••••							
2 145011		152	0.11	0.013	2.72							
145012		433	0.27	0.060	2,90	1						
145013		180	0.15	0.038	2.86							
: 145014		211	0.18	0.066	2 56							
/ 145015		226	0.22	0.042	3 22							
					0.22							
145016		229	0.16	0.036	3 53							
145017		372	0.25	0.071	2 95							
145018		100	0.06	0.017	2 77							
145019		130	0.08	0.017	3 30						•	
145020		157	0.07	0.010	3,33							
					5.25							
.45021		174	0.10	0.012	3 45							
< ∡45022		308	0.28	0.073	2 70							
145023		251	0 18	0.034	3 17							
45024		132	0.09	0.016	2 50							
45025		177	0.14	0.028	2.00							
					2.63							
45026		193	0.15	0.030	2 05							
45027		187	0.14	0.029	2.00							
145028		554	0.38	0 150	4 23							
145029		525	0.44	0.113	9.20							
15030		594	0.47	0.132	2.52							
					T.63							
145031		151	0.15	0.026	2 51							
-45032		269	0.25	0.020	2.31							
5033		86	0.08	0.014	2.15							
45034		154	0.12	0.022	3.10 2.05							
<u>4</u> 5035		185	0.17	0.025	2,73 9 EA							
				0.023	2.59							
5036		197	0.20	0 105	1 41							
45037		143	0.14	0.065	1 4C				•			
5038		203	0.15	0.054	4.10							
5039		145	0.13	0.004	1.25							
45040		191	0.11	0.093	1.00							
	•		****	A + A 0 2	7.53							

PROJECT: PIT DRILLING

.%

	 H	RGENT & CONF	IDENTIAL	₽	
Attention : Reference : SHIP Submitter : C. W.	MENT #1 ILDE		Your Your Number of	Fax No: 1-250-790-2268 Pages : 2 includin	g this page
Report : V98-010	00.0 Status	: COMPLETE	Total i	umber of samples: 59	
Element Method	Totl	Element Method	Totl	Element Method	Totl
Au30 30g Fire Fe Atomic A	Assay - AA 59 BSORPTION 59	Cu ATOMIC ABSO	APTION 59	CUSL ATOMIC ABSORPTION	n 59
ole Preparations Totl	Sample Type	Totl Size Frac	tion Totl [Rem-	nr ka	
ple Preparations Totl BE/SPLIT & PULV. 59 RWEIGET/KG 37	Sample Type DRILL CORE 	Totl Size Frac 59 -150 	tion Totl Rem. 59 !	ar ks	
ple Preparations Totl SE/SPLIT & PULV. 59 RWEIGHT/KG 37	Sample Type DRILL CORE 	Totl Size Frac 59 -150 	tion Totl Rem. 59 1 1	ar ks	
ole Preparations Totl BE/SPLIT & PULV. 59 WEIGHT/KG 37	Sample Type DRILL CORE 	Totl Size Frac 59 -150 	tion Totl Rem. 59 1 1 1	ar ks	
ple Preparations Totl 3H/SPLIT & PULV. 59 RWEIGHT/KG 37	<pre>Sample Type DRILL CORE I I I I I I I I I I I I I I I I I I I</pre>	Totl Size Frac 59 -150 	tion Totl Rem. 59 	ar ks	
ele Preparations Totl BE/SPLIT & PULV. 59 WEIGHT/KG 37	<pre>Sample Type DRILL CORE I I I I I I I I I I I I I I I I I I</pre>	Totl Size Frac 59 -150 	tion Totl Rem 59 	nr ka	

ITS Intertek Testing Services Bondar Clegg

FAXSR: 604-985-1071 At 7-JUL-1998 12:50 Fage 2

CLIENT: MOUNT	POLLEY MINE	53					PROJI	SCT: PIT I	RILLING		
REPORT: V98-0	1000.0 (COM	(PLETE)			DATE R	ECEIVED: 28-JUN-98	נם	ATE PRINTI	10: 7-JU	L-98	PAGE 1 OF 1
MPLE	ELEMENT	Au30	Cu	CuSL	Fe	SAMPLE	ELEMENT	Au30	Сu	CuSL	Fe
NUMBER	UNITS	PPB	PCT	PCT	PCT	NUMBER	UNITS	PPB	PCT	PCT	PCT
145050		105	0.00	0 062	1 63	D2 145000		604	0 53	6 672	5.00.
145050		105	0.00	0.002	1.02	D2 145090		703	0.03	0.072	7 14
D2 145051		56	0.06	0.020	1.30	D2 143091		192	0.94	0.120	6 60
D2 145052		55	0.03	0.010	2.03	D2 143032		2222	0.05	0.012	6.05
2 145053		51	0.04	0.007	2.33	D2 145093		2322	0,20	0.021	7 10
2 145054		53	0.05	0.011	3,00	D2 145094		81	0.08	0.013	/.10
-2 145055		6	0.01	0.006	7.45	D2 145095		153	0.11	0.027	6.68
2 145056		<5	0.01	0.008	7.40	D2 145096		446	0.34	0.061	6.20
D2 145057		<5	0.02	0.009	7.44	D2 145097		151	0.13	0.025	6.48
<u>D</u> 2 145058		6	0.02	0.010	7,43	D2 145098		254	0,18	0.054	7.02
2 145059		118	0.07	0.011	4.18	D2 145099		36	0.02	0.008	7.00
D2 145060		159	0.15	0.018	3.52	D2 145100		180	0.11	0.017	7.13
145061		174	0.15	0.014	3 66	D2 145100		200 89	0.07	0.014	6.89
2 145062		40	0.10	0 005	4 02	D2 145102		87	0.06	0 015	6.84
D2 145063		162	0.04	0.000	4.75	D2 145102		200	0.16	0.022	5.80
D2 145064		42	0.03	0 003	3 50	D2 145104		210	0.17	0.027	5.61
130003			0100			20 110101					
-2 145065		26	0.03	0.005	4.60	D2 145105		125	0.11	0.017	6.18
D2 145066		65	0.04	0.007	3.24	D2 145106		169	0.18	0.028	6.32
2 145067		56	0.05	0.007	6.47	D2 145107		173	0.20	0.037	5.35
2 145068		272	0.29	0.039	3.48	D2 145108		216	0.23	0.049	4.71
D2 145069		69	0.07	0.008	4.86						
-		5.0	0.05	0 007	r 17						
2 1450/0		00 104	0.10	0.007	0:4/						
D2 145071		194	0.12	0.015	2.33						
D2 145072		110	0.02	0.004	7.VL A 07						
2 145075		110	<0.03	0.011	5 60						
2 143074			NO.01	0.002	5.00						
-2 145075		79	0.04	0.007	4.62						
2 145076		<5	0.01	0.006	6.51						
D2 145077		31	0.02	0.004	5.64						
<u>_D</u> 2 145078		448	0.36	0.040	5,73						
2 145079		510	0.39	0.084	3.90						
D2 145080		205	0.17	0.037	3.99						
145081		205	0.21	0.052	4.07						
2 145082		154	0.16	0.022	4.50						
D2 145083		10	0.02	0.010	7.40						
_D2 145084		6	0.02	0.010	7.49						
			2.00								
145085 2		9	0.02	0.010	7.42						
D2 145086		210	0.20	0.028	7.39						
2 145087		278	0.27	0.035	5.83						
2 145088		86	0.07	0.011	7.30						
D2 145089		108	0.10	0.018	6.92						

ang se sangan sebah s Tanan sebah seba

18

arte Arte

		"URGENT	& CONFIDE	NTIAL'	•	
To: MOUNT Attention : Reference : SHIPM Submitter : C. WI	POLLEY MINES INT #1 .DE			Our Your Number of	Fax No: (604) 985-1071 Fax No: 1-250-790-2268 Pages : 2 including	g this page.
Report : V98-01001	L.O Sta	cus : COMPLETE		Total nu	umber of samples: 48	
Element Method	Tot	l Element	Method	Totl	Element Method	Totl
Au30 30g Fire A Fe ATOMIC ABS	Assay - AA 4 Sorption 4	8 Cu 8	ATOMIC ABSORPTION	48	CUSL ATOMIC ABSORPTION	48
mple Preparations Totl	Sample Type	Totl	Size Fraction T	otl Rema	rks	
USH/SPLIT & PULV. 48	DRILL CORE	48	-150	48		
	1		1	I		
	1					
	r 					
			1			
			1			

. с,

-- - - TS Intertek Testing Services Bondar Clegg

CLIENT: MOUNT	POLLEY MINH	ES					Proji	CT: PIT	DRILLING		
_REPORT: V98-01	1001.0 (CON	MPLETE)			DATE R	ECEIVED: 28-JUN-98	גם	NTE PRINT	ED: 9-JU	T-38	PAGE 1 OF 1
AMPLE	ELEMENT	Au30	Cu	CuSL	Fe	SAMPLE	ELEMENT	Au30	Cu	CuSL	Fe
NUMBER	UNITS	PPB	PCT	PCT	PCT	NUMBER	UNITS	PPB	PCT	PCT	PCT
2 145109		139	0.12	0.037	6.59	D2 145149		160	0.10	0.015	9.14
D2 145110		152	0.14	0.051	4.87	D2 145150		166	0.13	0.014	7.95
-2 145111		129	0.11	0.026	5.55	D2 145151		398	0.27	0.029	4.84
2 145112		12	0.03	0.004	6.15	D2 145152		204	0.16	0.019	6.03
D2 145113		<5	<0.01	0.003	4.82	D2 145153		128	0.12	0.015	8.68
2 145114		6	<0.01	0.002	5.07	D2 145154		112	0.13	0.016	5.69
_2 145115		<5	<0.01	<0.001	5.95	D2 145155		201	0.22	0.025	3.01
D2 145116		<5	0.01	<0.001	5.96	D2 145156		259	0.29	0.020	3 43
2 145117		26	0.02	0.005	5.11	50 110100		200	0.25	0.005	5115
2 145118		149	0.10	0.020	4.12						
<u></u>		215	0.20	0 047	3 30						
		242	0.20	0.047	5.55						
2 145120		105	0.25	0.035	6.05						
D2 145121		202	0.10	0.034	6.27						
DZ 145122		214	0.13	0.034	0.03						
2 143123		1/9	0.15	0.045	3.82						
D2 145124		182	0.15	0.039	4.42						
2 145125		208	0.17	0.031	5.90						
2 145126		141	0.12	0.035	6.16						
D2 145127		192	0.21	0,041	5.42						
_D2 145128		116	0.12	0.031	6.32						
D 145100		100	0 10	0 023	5 77						
D2 143123		144	0.01	0.025	7.64						
D2 145130		~5	0.01	0.005	6 70						
2 143131		1 1 2	0.02	0.000	0./V E 70						
DZ 145133		197	0.17	U.041	5.06						
2 145135		207	0 12	0 023	6 75						
D2 145136		226	0.17	0.028	6.03						
D2 145107		307	0.00	0.005	4.16						
2 145138		217	0.27	0.036	9.46						
× .											
D2 145139		168	0.19	0.022	4.48						
~~2 145140		134	0.12	0.017	10.50						
2 145141		126	0.11	0.014	10.68						
D2 145142		168	0.10	0.017	14.11						
145143 2هـ		127	0.10	0.015	5.62						
2 145144		57	0.04	0.007	4.69						
D2 145145		156	0.12	0.016	5.62			-			
2 145146		188	0.16	0.027	5.19						
2 145147		117	0.08	0.013	3.96						
D2 145148		129	0.10	0.017	4.71						

FAXSR: 604-985-1071 At 8-JUL-1998 18:07 Page 2 1 192

	.C. 1	Canada		*****	RGENT	& CONFI	DENI	I A L		و بنا کے پینے کی ہے۔
To: Att Ref Sub	entic erence mitte	Mount 1 : 2 : Shipm : : C. Wi	F POLLEY MIN MENT #1 LIDE	ES		******	Nu	Our You mber of	Fax No: (604) 985-1071 Fax No: 1-250-790-2268 Pages : 2 including	this page.
Rej	port	V98-0100	3.0	Status :	Completi	2		Total r	number of samples: 44	18 ## # i i i i i i i i i i i i i i i i i i i
Ele	ement	Method		Totl	Element	Method	1	Totl	Element Method	Totl
	Fe	30g Fire . ATOMIC AB	Assay - AA Sorption	44	Ċu	ATOMIC ABSORP	TION	44	CUSL ATOMIC ABSORPTION	44
*********						************	*****	·		
mpie Prepar	ation:	5 Totl 	Sample Typ	e 	Totl	Size Fractio 	n Totl	Reman	:ka	
USH/SPLIT &	PULV	. 44 ¦ 	DRILL CORE		44	-150 	44	[
						l T				
		1						 		
		1 			1			1		
		1						ł 		

FAXSR: 604-985-1071 At 8-JUL-1998 17:52 Page 2

CLIENT: MOUNT	POLLEY MINI	ES					PROJ	ECT: PIT	DRILLING		
REPORT: V98-0	1003.0 (COI	(PLETE)			DATE R	ECEIVED: 28-JUN-98	D	ATE PRINT	ED: 8-л	JL-98	PAGE 1 OF 1
AMPLE	ELEMENT	Au30	Cu	CuSL	Fe	SAMPLE	ET. FMENTS	520			_
NUMBER	UNITS	PPB	PCT	PCT	PCT	NUMBER	UNITS	PPB	PCT	Cusl PCT	Ге РСТ
2 145157		1122	0 14	0 007							
D2 145158		1133	0.14	0.027	7.26	D2 145197		116	0.10	0.029	6.48
D2 145159		70	0,10	0.02/	6.48	D2 145198		131	0.10	0.028	5.63
2 145160		106	0.09	0.022	5.98	D2 145199		276	0.23	0.047	3.32
2 145161		190	0.14	0.048	5.58	D2 145200		1846	0.57	0.077	4.24
-21 140101		125	0.13	0.029	5.85						
~2 145162		257	0.19	0.046	7.75						
2 145163		66	0.07	0.019	9.89						
D2 145164		105	0.11	0.036	6.20						
_D2 145165		152	0.20	0.062	6.11						
2 145166		81	0.11	0.027	6.44						
• •											
D2 145167		202	0.24	0.033	7.99						
2 145168		72	0.07	0.014	8.54						
2 145169		86	0.08	0.022	9.25						
D2 145170		189	0.14	0.035	7.92						
145171 🗠		474	0.32	0.083	8.02						
					4102						
ັບ2 14517 2		103	0.10	0.026	4.43						
D2 145173		313	0.19	0.052	7.81						
2 145174		103	0.13	0.021	5 08						
2 145175		150	0.21	0.034	5 54						
D2 145176		145	0.13	0.024	á 55						•
~					1100						
2 145177		99	0.09	0.016	6 22						
D2 145178		142	0.10	0.019	5.72						
D2 145179		107	0.09	0.030	3 79						
2 145180		95	0.11	0.026	5 11						
-2 145181		95	0.11	0.025	5.70						
					01.0						
2 145182		94	0,08	0.014	7.62						
2 145183		250	0.12	0.025	7.46						
D2 145184		119	0.14	0.021	5.61						
D2 145185		204	0.16	0.028	5.14						
2 145186		158	0.14	0.023	4.18						
D2 145187		7.52									
2 1451 88		123	0.12	0.024	4.10						
2 145100		264	0.21	0.032	3.89						
2 145100		265	0.22	0.031	5.59						
D2 143190		129	0.11	0.030	4.50						
		149	0.14	0.042	4.38						
u2 145192		266	0.23	0.066	2.42						
D2 145193		76	0,05	0.017	9.47						
2 145194		120	0.09	0.030	9.21						
2 145195		42	0.03	0.010	8 60						
D2 145196		101	0.09	0.029	6 74						
				4.VE9	V 4 E 1						

COUVER, B.C		Canada		" U	RGENT	1 & CONFT		• • • • •	*	
					********				*	
To: Atten Refer Submi	tio ence tte:	Moun n: e: Seip) r: C. W	T POLLEY MIN MENT #1 ILDE	es			Nu	Our You: mber o:	Fax No: (604) 985-1071 r Fax No: 1-250-790-2268 f Pages : 2 includin	g this page.
Repo	rt	: V98-010;	19.0	Status	: COMPLET			Total :	number of samples: 17	**********
Elema	ent	Method		Totl	Element	Method	ļ	Totl	Element Method	Totl
Au: H	30 7e	30g Fire ATOMIC AN	Assay - AA BSORPTION	17 17	Cu	ATOMIC ABSORPTI	 0N	17	Cusl Atomic Absorption	17
من ج ج ج ک نت ک ج ج خ نک			* = = = = = = = = = =							
********							£ = = = = = =	78¥= # 21		
e Preparat	iona	s Totl	Sample Typ	e	Totl	Size Fraction	Totl	Remai	***************************************	
/SPLIT & PI	ULV.	. 17	DRILL CORE		17	-150	17			
						1		 1		
			 			1 . [1 		
		1				(
		• . [F [1		1 		
		1				1		l		

ITS Intertek Testing Services Bondar Clegg

CLIENT: MOUNT POLLEY MINES REPORT: V98-01019.0 (COMPLETE)

DATE RECEIVED: 26-JUN-98

PROJECT: PIT DRILLING

DATE PRINTED: 8-JUL-98 PAGE 1 OF 1

MPLE	ELEMENT	Au30	Cu	CuSL	Fe
NUMBER	UNITS	PPB	PCT	PCT	PCT
—				•••	
2 1515	01	1195	0.47	0.062	4.70
D2 1515	02	322	0.24	0.039	4.43
<u>D</u> 2 15150	33	123	0.11	0.020	5.04
? 1515()4	97	0.09	0.018	4.66
2 15150 2 -)5	213	0.16	0.051	5.25
. 15150	06	191	0.16	0.053	5.51
2 15150)7	319	0.24	0,069	6.09
D2 15150	8	394	0.23	0.050	5.62
_n? 15150	9	513	0.34	0.082	4.55
2 15151	.0	262	0.21	0.036	5.64
D2 15151	1	279	0.22	0.038	5.74
2 15151	.2	219	0.19	0.034	5.60
2 15151	3	119	0.04	0.009	6.96
D2 15151	4	14	0.02	0.004	6.80
- 15151	5	21	0.03	0.009	7.12
D2 15151	6	42	0.02	0.008	7.41
<u>D</u> 2 15151	7	24	0.03	0.009	7.18

		nte Bond	rtek ' ar Cle	Гest ^{gg}	ing	Servi	ces	· · · ·	MP 98-02	
Vancou	iver, B.C. C	anada	یدی کے حک کہ تا کک:	* U	R G E N (E & CONF	IDEN	TIAL		
	To: Attention Reference Submitter	Moun : : Ship : C. W	T POLLEY MI MENT #2 ILDE	ves			N	Our You umbar o	Fax No: (604) 985-1071 r Fax No: 1-250-790-2268 f Pages : 2 includin	g this page.
Ť	Report :	V98-010	62.0	Status	COMPLET	E		Total	number of samples: 80	
	Element M	ethod		Totl	Element	Method		Totl	Element Nethod	Totl
	Au30 3 Fe A	Og Fire	Assay - AA BSORPTION	80	Cu	ATOMIC ABSOR	RPTION	80	CUSL ATOMIC ABSORPTION	08 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Sample		Torl						******		
CRUSE/S	PLIT & PULV. GET/KG	80 87	 DRILL CORE 		80	-150	 80	Rema 		
			1 			, 1 1 1 1 1		: 		
Notes:										
	If you do	not red	ceive the en	tise tran	smission	in legible f	orm, plea	ase call	. us at (604) 985-0681.	*****

1.50

ITS Intertek Testing Services Bondar Clegg

LIENT: MOUN	T POLLEY MINI	ES					PROJI	CT: PIT	DRILLING		
REPORT: V98-1	01062.0 (CO)	APLETE)			DATE R	ECEIVED: 03-JUL-98	D?	TE PRINI	ED: 13-JU	JL-98	PAGE 1 OF 1
AMPLE	ELEMENT	Au30	Cu	CuSL	Fe	SAMPLE	FLEMENT	5:120	Č	AA .	_
NUMBER	UNITS	PPB	PCT	PCT	PCT	NUMBER	INTES	AUSU	Cu	CUSL	Fe
_							01210	220	fet.	PCT	5C1
2 151518		65	0.05	0.041	5.18	D2 151558		72	0 09	0 075	4 67
2 151519 Cu		48	0.04	0.026	4.72	D2 151559		87	0.09	0.075	4.07
_D2 151520		203	0.13	0.071	7.49	D2 151560		22	0.02	0.011	4.25
2 151521		221	0,17	0.086	7.38	D2 151561		35	0.03	0.011	4.55
2 151522		401	0.36	0.131	9.45	D2 151562		91	0.09	0.042	4.32
-2 151523		778	0.82	0.100	9.59	D2 151563		100	0 11	0 001	2.24
2 151524		1519	0,86	0,112	10.21	D2 151564		200 200	0.03	0.021	3.36
D2 151525		1409	0.81	0.142	10.38	D2 151565		127	0,03	0.005	3.32
<u>D</u> 2 151526		151	0.15	0.029	9.97	D2 151566		195	0.22	0.021	3.22
2 151527		165	0,19	0.020	9.29	D2 151567		200	0 1 2	0.002	3.37
v ×								20	0.13	0,038	2.71
D2 151528		46	0.03	0.004	7.25	D2 151568		175	0.17	0 026	2 45
2 151529		282	0.25	0.019	6.02	D2 151569		57	0.06	0 007	2 1 1
2 151530		309	0.32	0.020	6.78	D2 151570		237	0.26	0.218	2 65
D2 151531		199	0.27	0.014	6.63	D2 151571		193	0.26	0.091	2.00
_D2 151532		377	0.43	0.042	9.02	D2 151572		123	0.24	0.107	3,82
									VIL.	01107	3.02
S⊒2 151533		292	0.56	0.076	15,16	D2, 151573		112	0.22	0.018	3.61
D2 151534		380	0.36	0.036	13.79	D2 151574		159	0.20	0.092	3.20
2 151535		210	0.26	0.045	12.64	D2 151575		106	0.14	0.089	3.10
2 151536		595	0.60	0.119	10.40	D2 151576		297	0.31	0.025	3.59
D2 151537		300	0.41	0.045	8.00	D2 151577		127	0.12	0.010	2.95
-											
2 151538		94	0.12	0.010	5.55	D2 151578		123	0,19	0,017	3.54
2 151539		64	0.10	0.009	2.72	D2 151579		176	0.18	0.021	3.50
D2 151540		108	0.17	0.013	3.32	D2 151580		162	0.16	0.017	3.61
2 151541		137	0.19	0,020	3.53	D2 151581		214	0,23	0.026	3.69
i i 151542		71	0.10	0.044	3.61	D2 151582		168	0.18	0.015	3.11
151543		90	0.16	0,073	3.18	D2 151583		164	0.19	0 076	2 (2
2 151544		126	0.17	0.107	4.06	D2 151584		243	0.10	0.070	5.05
D2 151545		86	0.11	0.056	4.17	D2 151585		534	0.56	0.224	7 21
<u>D</u> 2 151546		100	0.11	0.016	4.73	D2 151586		112	0.14	0.551	6.97
2 151547		84	0.11	0.047	3.28	D2 151587		326	0.33	0.010	5.97
N 2								020	0.00	0.052	9.03
D2 151548		150	0.11	0.039	3.93	D2 151588		204	0.20	0:017	5.98
151549		195	0.14	0.030	5.38	D2 151589		194	0.23	0.024	6.07
្ត្រ 151550		148	0.11	0,015	5.51	D2 151590		168	0.22	0.016	6.50
D2 151551		139	0.10	0.018	5.07	D2 151591		117	0.13	0.009	7,90
151552 هم		63	0.06	0.014	4.14	D2 151592		128	0.16	0.013	5.75
151553 كر		94	0.10	0,016	4.02	D2 151542		-	0 01	0.004	C 00
D2 151554		38	0.04	0.015	3.74	D2 151593		/ E	0.01	0.004	6.98 7 00
151555		143	0.10	0.083	4.03	D2 151595		~ 5 ∠⊑	0.03	0.000	1.20
151556		73	0.06	0.030	4.48	D2 151596		24	0.02	0.002	1.53 6 70
D2 151557		81	0.07	0.044	4.25	D2 151597		147	0.00	0.008	6.10
_									¥:44	V:V20	0.00

Inter Bonda	rtek Testi ar Clegg	ng Sei	rvices		MP-98-02	2
Vancouver, B.C. Canada	" U R	GENT & C	ONFIDENT		ویب و هو چنا کی پیدانند و و دانند و و باند با	IR Càng dù àn an Càng da an Càng da an Càng da an Chuir C
To: MOUNT Attention : Reference : SHIPM Submitter : C. WI	Polley Mines Ent #2 Lde		Nu	Cur Fax Your Fax mber of Paç	: No: (504) 985-1071 : No: 1-250-790-2268 wes : 2 including	this page.
Report : V98-01063	3.0 Status : (Complete	1	Total numbe	r of samples: 79	
Element Method	Totl	Element Metho	d s	Totl El	ement Method	Totl
Au30 30g Fire A Fe Atomic Abs	Assay - AA 79 Sorption 79	Cu ATOMI	C ABSORPTION	79	CUSL ATOMIC ABSORPTION	79
*****						·
Sample Preparations Totl	Sample Type	Totl Size	Fraction Totl	Remarks		
CRUSH/SPLIT & PULV. 79 OVERWEIGHT/KG 69 	DRILL CORE	79 -150 	79	1 1 1 1 1 1 1 1 1		
·		1 		1		
Notes:		가 약 은 도 또 다 다 다 안 느 는 도		w = = = = = = =	H= b= == 0 b = = = = 1	
If you do not rece	eive the entire trans	nission in le	gible form, pleas	se call us	at (604) 985-0681.	
	ł			-		

ITS Intertek Testing Services Bondar Clegg

CLIENT: MOUN	T POLLEY MIN	ES		1							
REPORT: V98-	01063.0 (CO)	MPLETE)			ישייבת	PECETVER, D3 TH A	PROJ	ECT: PIT	DRILLING		
~		•				V9001400: 03-000-3	9 D	ATE PRIN	IED: 14-J	UL-98	PAGE 1 OF 1
AMPLE	ELEMENT	Au30	Cu	CuSL	Fe	SAMPLE	TT FMFNT	3 20	-		
NUMBER	UNITS	PPB	PCT	PCT	PCT	NUMBED	LULALNI	AUSU	Cu	CuSL	Fe
(•••	NAME OF	UNITS	· PPB	PCT	PCT	PCT
2 151598		126	0.16	0.046	5.65	D2 151638		74		• • • • •	-
D2 151599		146	0.22	0.025	6.36	D2 151638		14	0.17	0.023	5.05
_D2 151600		89	0.14	0.023	6.38	D2 151640		134	0.16	0.023	5,34
2 151601		99	0.17	0.024	6.59	D2 151640		202	0.21	0.025	4.98
× J2 151602		186	0.18	0.031	6.03	D2 151642		345	0.31	0.030	5.12
						DT 101041		1/6	0,20	0.024	6.67
2 151603		31	0.07	0.011	7.36	D2 151643					
2 151604		37	0.05	0.007	5 16	D2 151643		43	0.05	0.008	6.03
D2 151605		41	0.06	0.008	3 10	D2 151044		78	0,12	0.019	5.78
_D2 151606		52	0.08	0.014	5.10	D2 151645		215	0.22	0.036	6.25
2 151607		140	0.10	0 027	5.03 5.01	D2 151646		129	0,16	0.036	5.99
с			• • •	0:02/	0.91	NS TOTP4/		391	0,45	0.155	5.54
D2 151608		19	0.02	0.006	5 93	D1 151640					
2 151609		28	0.03	0.006	6.02	D2 151648		423	0.37	0.066	7.54
2 151610		18	0.02	0.004	6.02	D2 151649		395	0.29	0.039	5.88
D2 151611		70	0.11	0.004	0.05 5 00	DZ 151650		165	0.22	0.025	5.30
-D2 151612		76	0 69	0.010	0.8Z 6.19	DZ 151651		833	0.53	0.091	5.26
			0.09	0.010	0.13	DZ 151652		292	0.29	0.038	5.62
151613 2ير `		28	0.05	0 000	C 02						
D2 151614		79	0.00	0.008	6.03	D2 151653		194	0.21	0.030	6.91
2 151615		52	0.05	0.013	6.11	D2 151654		159	0.18	0.021	4.82
2 151616		52 21	0.00	0.021	6.12	D2 151655		457	0.52	0.048	7.40
D2 151617		10	0.03	0.010	6,11	D2 151656		153	0,33	0.034	6.65
~		10	0.02	0.006	5.92	D2 151657		225	0.35	0.047	7.41
2 151618		70	0.10								
ົກ2 151619		10	0.12	0.014	4.68	D2 151658		64	0,09	0.020	6,84
D2 151620		100	0.17	0.022	5.50	D2 151659		208	0.23	0.077	7.14
2 151521		102	0.14	0.019	5.83	D2 151660		96	0.11	0.037	7.14
2 151622		92	0:12	0.019	5.77	D2 151661		106	0.14	0.046	6.90
		212	0.16	0.024	4.87	D2 151662		66	0.10	0.027	7.41
2 151623		100	0.11	0.017	6.25	D2 151663		137	0.14	0.029	5.95
D2 151624		198	0.14	0.023	5.54	D2 151664		133	0.19	0.027	4.91
D2 131023 D2 151636		140	0.11	0.019	4.47	D2 151665		1038	0.50	0.112	6.22
151626 کیلئے		201	0.18	0.039	4.35	D2 151666		87	0.12	0.037	5.81
2 121051		158	0.14	0.017	4.23	D2 151667		244	0.19	0.035	6.57
82 151/200											
D2 151628		148	0.09	0.012	4.25	D2 151668		288	0.23	0.047	5.54
2 151629		75	0.07	0.008	4.45	D2 151669		140	0.16	0.044	5.50
		204	0.21	0.034	4.06	D2 151670		140	0,12	0,026	5.48
02 151631		242	0.26	0.037	4.10	D2 151671		221	0.19	0.045	5.18
-2 151632		156	0.17	0.025	4.47	D2 151672		100	0.11	0.028	5.54
				1					~		
UZ 151633		30	0.04	0.010	5.66	D2 151673		76	0.11	0.023	8.03
D2 151634		47	0.06	0.010	4,61	D2 151674		64	0.11	0,021	7.61
2 151635		43	0.05	0.008	6.45	D2 151675		63	0.08	0.016	7.57
2 151636		44	0.09	0.014	6.38	D2 151676		18	0.04	0.012	7.44
D2 151637		104	0,10	0.015	5.13						

07/16/98	THU	07:45	FAX	604	985	1071

_ BONDAR CLEGG

MP-98-03 DOOL

	Canada				·····································		RA	
				R.G.E.N.T.	&CO. N. F. I. D. E.	NTIA	L.!!	port
			5227:		*==222=====	35553255;	===	
	MQUNT		ies.		4) 68 - 1 - 1 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7	QU	C Fax No: (604) 985-1071	
Attentio	1; 	(F)) T 4(T				You	ur Fax No: 1-250-790-2268	
Submitte	ShiPP	LDE		••••••		Number (of Pages : 2 including	this page.
Report	• V98-0111	11.0	Status					
			Jiaius :	COMPLETE		Total	number of samples: 49	
Element	Method		τοτι	Element	Method	Totl	Element Method	Toti
Au30	30g Fire	Assay - AA	49	Cu	ATOMIC ABSORPTION			
Fe	ATOMIC AB	SORPTION	49				CUSE ATOMIC ABSORPTION	49
	••••••	••••••					· · · · · · · · · · · · · · · · · · ·	
			*					
• • • • • • • • • • • • • • • • • • •	••••••	and and the entropy of		. particulari				••••••
		••						
Sample Preparation	s Toti	i Sample Tv	222222223 De	======================================	Eito Essetion Ta			:=====================================
						Rem	87KS	
RUSH/SPLIT & PULV	. 48	DRILL COR	E	49	-150	49		
	49	1				1		
OVERWEIGHT/KG		,		:				
OVERWEIGHT/KG		i 						
OVERWEIGHT/KG		1						
WERWEIGHT/KG		 						
DVERWEIGHT/KG		 				 		
DVERWEIGHT/KG			· · · · ·					
DVERWEIGHT/KG								
DVERWEIGHT/KG								
DVERWEIGHT/KG								
DVERWEIGHT/KG								
DVERWEIGHT/KG								
DVERWEIGHT/KG Notes: If you	do not re	ceive the er	ntire tra		in legible form, p			
DVERWEIGHT/KG lotes: 	do not re	ceive the er			in legible form, p	l l l l l l l l l l l l l l l l l l l		

Tel: (604) 985-0681, Fax: (604) 985-1071

....

002

Geochemical Lab Report

• 1	CLIENT: MOUNT POLLEY MINES REPORT: V98-01111_0 (COMPLETE)												
•			TRAFIC J			DATE 1	RECEIVED: 07-JUL-98	DA	TE PRINT	ED: 15-J	JL-98	PAGE 1 OF	1
、 , ; ;	SAMPLE	ELEMENT	AU30	Cu	CuSL	Fe							
4	NUMBER	UNITS	PPB	PCT	PCT	PCT	NUMBER	LEMENT	AU30	Cu	CuSL	Fe	
			• • • • • •		····				FFB	PCT	PCT	PCT	
с <i>и</i>	D2 151678		183	0.17	Q.139	5.54	DZ 151717		238	0 10	0.077		
ا	D2 151670		274	0.19	0.164	3.07	D2 151718		196	0.14	0.005	3.09	
. (1	D2 151680		506	0.39	0.385	6.59	DZ 151719		306	0.14	0.079	4.73	
۰. آ	02 151681		342	0.24	0.178	5.21	DZ 151720		370	0.24	0.028	3.98	
:			479 	0.31	0.258	5.62	D2 151721		387	0.31	0.045	3.37	
·	02 151682		7/7	0.74				······································	·• ·•·•	·····		5,40	
	2 151683		522	0.00	0.318	9.19	D2 151722		374	0.25	0,028	3.48	•••••••
1	2 151684		594	Q.24	0.770	5.92	D2 151723		695	0.48	0.063	3 43	
Ļ,	2 151685		381	0.20	0.144	6.78	D2 151724		270	0.18	0.021	3.26	
ļ	2 151686		687	0.46	0.100	4.UU 7.04	D2 151725		266	0.18	0.022	4.94	:
	******	******	••••••			2.00							
<u> </u>	2 151687		756	0.41	0.345	A 22	······	••••••••••••••••		•••••••••••	••••••••••••••••••••••••••••••••••••••		
	2 151688		758	0.50	0.500	3.57							
۲.	2 151689		754	0.49	0,328	5.28							
	2 151690		378	0.30	0.247	5 35							
3	2 151691		Z 12	0.14	0.112	4.06							
ب		• • • • • • • • • • • • • • • • • • • •	••••••	···· ·· ······························	·····		·····						
Ð	2 151692		141	0.13	0.113	2.61	******		•••••••••••••••••••••••••••••••••••••••	• •••••			
)	2 151693		199	0.16	0.142	3.78							
) 	2 151694		293	0.19	0.169	6.00							ļ
D	2 151695		376	0.25	0.238	5.84							
<u>.</u>	< 151696		22	0.06	0.057	7.33							1
۰. آ	2 151607		·····			·····	·····		• ••••••••	• • • • • • • • • • • • • • • • • • • •	······		
, D	2 151608		21	0.05	0,047	7.12					••••••	·····	
	2 151690		/5	0.06	0.055	7.02							
	2 151700	-	62Y	0.27	0.254	5.31							
D	2 151701		77	0.09	0.076	6.90							
			دد. 	U.05	0,045	6.85							
2	2 151702		د ۲	0.07			****	······					
	2 151703		<5	0.05	0.027	8.13							
D	151704		6	0.01	0.012	8.37							
7	151705		262	0.24	0.014	0.33 5 E4							
, P	151706		421	0.26	0.189	J.JO / 54							
•••• •	** ************************************	·····	·····			00.7				•			
2	151707		27	0.84	0.022	6 88		••••••••	•••••••		·····	••••••••••••••••••	·····
Z	151708		16	0.03	0.024	6.77							
D2	151709		87	0.07	0.060	3.33							
<u>D</u> 2	151710		163	0.14	0.133	4.26							
2	151711		146	0,15	0.137	4.47							
. <.	······································		*****				·····						
D2	151712		172	0.15	0.137	5.43		••••••••••••••••••••••••	•••• • • • •	• •• •••			
2 2	151713		117	0.11	0,095	5.03							
2	157714		103	0.10	0.090	2.95							
ע2 היי	121715		171	0,15	0.132	3.64							
24	01710		316	0.17	0.156	5.48							

Bondar-Clegg & Company Ltd.

130 Pemberton Avenue, North Vancouver, B.C., V7P 2R5, Canada

Tel: (604) 985-0681, Fax: (604) 985-1071
ancouver, B.C. Canada	[₩] Ū	RGENT	& CONFIDE	NTIAL	₩ ••	
To: MOUNT Attention : Reference : SHIPM Submitter : C. WI	POLLEY MINES ENT #3 LDE			Our You Number ci	Fax No: (604) 985-1071 Fax No: 1-250-790-2268 f Pages : 2 including	this page.
Report : V98-0111	4.0 Status	: COMPLETE		Total :	number of samples: 61	
Element Method	Totl	Element 1	lethod	Totl	Element Method	Totl
Au30 30g Fire Fe AtoMIC AB	Assay - AA 61 Sorption 61	Cu J	ATOMIC ABSORPTION	61	CUSL ATOMIC ABSORPTION	61
ample Preparations Totl	! Sample Type	Totl	Size Fraction	Totl Rema	arks	
RUSE/SPLIT & PULV. 48 VERWEIGET/KG 71	DRILL CORE	61	 -150 	61 	M# 48 4- 4	
	1 1 1		6 	1		
	 		•	, 		
	í.		1			

FAXSR: 604-985-1071 At 16-JUL-1998 05:32 Page 2

S Intertek Testing Services Bondar Clegg

CLIENT: MOUNT POLLEY MINES PROJECT: PIT DRILLING REPORT: V98-01114.0 (COMPLETE) DATE RECEIVED: 08-JUL-98 DATE PRINTED: 16-JUL-98 PAGE 1 OF 1 MPLE ELEMENT Au30 Cu CuSL Fe SAMPLE ELEMENT Au30 Cu CuSL Fe NUMBER UNITS PPB PCT PCT PCT NUMBER UNITS PPB PCT PCT PCT 2 151726 682 0.53 0.064 4.72 D2 151766 148 0.13 0.020 5.79 ີນ2 **15172**7 169 0 13 0.017 5 14 D2 151767 197 0.19 0.027 7.32 D2 151728 277 0.22 0.038 5.04 D2 151768 201 0.20 0.028 5.93 2 151729 381 0,30 0.039 4.74 D2 151769 124 0.10 0.015 4.58 . 2 151730 278 0.23 0.033 3.38 D2 151770 123 0,10 0.016 5.07 ~? 151731 97 0.08 0.012 3.03 D2 151771 90 0.09 0.035 4.98 2 151732 178 0,13 0.030 3,32 D2 151772 82 0,10 0,023 3.53 D2 151733 63 0.07 0.049 3.62 D2 151773 74 0.08 0.013 5.17 D2 151734 160 0.14 0.031 4.61 D2 151774 0.09 124 0.015 4.85 ? 151735 284 0.23 0.054 4.28 D2 151775 180 0,13 0,018 5,20 . . >2 151736 251 0.15 0,018 4.43 D2 151776 0.07 91 0,013 4.68 2 151737 375 0.30 0.040 5.35 D2 151777 111 0.08 0.016 4.26 : ? 151738 228 0.18 0.023 3.80 D2 151778 0.05 61 0.010 3.04 >2 151739 457 0.45 0.063 5.27 D2 151779 91 0,07 0,008 3.19 151740 2د. 206 0.15 0.028 4.60 D2 151780 77 0.08 0.009 5.24 -2 151741 239 0.21 0.033 4.52 D2 151781 56 0.07 0.008 5.49 02 151742 345 0.28 0.037 5.51 D2 151782 92 0.13 0.015 4,65 2 151743 397 0.30 0.048 3.85 D2 151783 60 0.06 0.012 6.00 2 151744 203 0,18 0,025 4,95 D2 151784 114 0.09 0.012 2.26 >2 151745 339 0.19 0.026 4.72 D2 151785 53 0.07 0.008 5.17 151746 449 0.21 0.032 6.23 D2 151786 <5 0.02 0.011 6.82 >2 151747 244 0.21 0.030 4.19 2 151748 154 0.15 0.024 5.26 151749 14 0.02 0,005 1 33 . : 151750 7 0.01 0.003 1.34 151751 90 0.08 0.014 2.44 151752 135 0.12 0.019 4.67 52 151753 93 0.09 0.013 3.48 2 151754 78 0.05 0.009 4.57 : 151755 310 0.25 0.028 5.74 5. 2 >2 151756 94 0.08 0.010 5.68 151757 106 0.013 0.11 5.38 ; 151758 212 0.18 0.021 7.33 >2 151759 185 0.15 0.022 3.49 151760 بحم 68 0.06 0.015 2.94 52 151761 63 0.06 0.014 2.91 2 151762 219 0.18 0.026 4.65 i 151763 127 0.13 0.019 6.36 . ; 151764 82 0.08 0.065 4.47

02 151765

116

0.12

0,018

4.52

	30no	dar Cl	egg						
ancouver, B.C. (anada		۲ ت ×	GENT	5 CONFIDE	NTI	AL '		
To: Attention Reference Submitte:)) 1 : 9 : SE : : C,	UNT POLLEY IPMENT #3 WILDE	MINES			Nunio	Our Your er of	Fax No: (604) 985-1071 Fax No: 1-250-790-2268 Pages : 2 including	this page.
Report	: V98- 0	1115.0	Status	COMPLETE		To	tal nu	umber of samples: 62	
Element	Method		Totl	Element	Method	To	tl	Element Method	Totl
Au30 Fe	30g Fi ATOMIC	re Assay - Absorption	AA 62 N 62	Cu .	ATOMIC ABSORPTION	1	62	CUSL ATOMIC ABSORPTION	62
									•
ی می او او خوان به بین ای می ای									
ample Preparatio	ns Io	cl Sample	е Туре	Totl	Size Fraction	Totl	Rema	rks	
RUSE/SPLIT & PUL VERWEIGET/KG	v.	62 DRILL 73	CORE	62	-150 	 62 			
		1				1			
		l I			1	l			
		1 1.				 			
		 			1	1 1			
					وها و ه و و و و و و و و و و و و و و				

,

ITTS Intertek Testing Services Bondar Clegg

WLIENT: MOUNT POLLEY MINES					PROJECT: PIT DRILLING							
REPORT: V98-0	01115.0 (COD	(PLETE)			DATE RI	ECEIVED: 08-JUL-98	. D?	TE PRINT	D: 17-JU	L-98	PAGE 1 OF 1	
AMPLE	ELEMENT	Au30	Cu	CuSL	Fe	SAMPLE	ELEMENT	Au30	Cu	CuSL	Fe	
NUMBER	UNITS	PPB	PCT	PCT	PCT	NUMBER	UNITS	PPB	PCT	PCT	PCT	
2 151787		6	0.01	0.003	7.49	D2 151827		129	0.10	0.017	3.72	
D2 151788		133	0.12	0.023	4.67	D2 151828		260	0.15	0 079	3.84	
D2 151789		182	0.12	0.026	4.53	D2 151829		2 6 1	0.16	0.106	4.39	
2 151790		289	0.19	0.040	5.07	D2 151830		150	80,0	0.060	4.38	
2 151791		226	0.14	0.039	4.80	D2 151831		225	0.18	0.025	4.00	
-? 151792		205	0.14	0.030	4.77	D2 151832		294	0.23	0.031	4.23	
2 151793		146	0.17	0.032	5.55	D2 151833		647	0.46	0.071	4.56	
D2 151794		340	0.28	0.050	5.09	D2 151834		219	0.13	0.068	4.56	
D2 151795		103	0.08	0.027	4,83	D2 151835		277	0.25	0:045	4.67	
2 151796		73	0.06	0.012	4,46	D2 151836		170	0.12	0.046	4.41	
. / 		154	0 12	0.019	5 02	D2 151837		244	0.14	0.023	4.13	
DZ 151797		210	0:44	0.010	6 56	D2 151838		687	0.26	0.040	3.72	
1 101/98		201	0.31	0.043	1.02	D2 151030		103	0.09	0.027	5-96	
201799		201	0.24	0.035	4.02	D2 151839		100	0.11	0.030	5.76	
D2 151800		261	0.23	0.034	4 60	D2 151840		149	0.14	0.032	5.38	
101801 Star		200	0.23	01057	1.00	56 101011		2.12				
2 151802		247	0.23	0.049	4.67	D2 151842		86	0.09	0.011	5.56	
02 151803		244	0.24	0.034	4.75	D2 151843		139	0.10	0.024	4.45	
151804		143	0.16	0.024	3,98	D2 151844		144	0.10	0.016	5.00	
2 151805		79	0.07	0.037	4.19	D2 151845		250	0.20	0.036	• 5.01	
D2 151806		102	0.10	0.012	4.57	D2 151846		<5	<0.01	0.003	4.94	
1 151007		136	0.29	0 044	4 69	D2 151847		<5	<0.01	0.003	4.86	
10100/		430	0:29	0.010	4.03 A 52	D2 151848		<5	<0.01	<0.001	5.36	
JZ 151808		137	0.13	0.016	4.32	D2 131040		10				
151003	·	202	0,10	0.026	4 74							
: 101810		102	0.13	0.020	∆ A3							
(); 1919II		T 30	0.21	0.007	1.00							
<u> </u>		141	0.12	0.018	4.79							
2 151813		111	0.09	0.014	4.23							
02 151814		122	0.10	0.037	4.28							
151815 22 _		125	0.10	0.035	3.46						4	
2 151816		180	0.13	0.017	3.42							
D2 151817		113	0.08	0.009	2.94							
151818		109	0.10	0.011	4.21							
151819		149	0,14	0.022	4.69							
D2 151820		109	0.08	0.034	4.75							
151821 مح		94	0.08	0.033	4.89							
്ച2 151822		150	0.15	0.051	5.14							
D2 151823		378	0.27	0.238	3.53							
151824		133	0.11	0.039	4.31							
: 151825		236	0.28	0.076	4.58							
D2 151926		318	0.25	0.047	3.87							
_												

			ويرعيك بالبديد بالبدين وسيبها فالبد والبين الخاف فالمتكاف التكا		يقاف مجري الكالب مل الأرجيب معردين المحد مع بيوجيد بي الأوجيب معرفي في	ويبريه ففي سونون بجرهجة نتدفأ فأعصب الاتبات بالمجور النامب ورفيه
OUEC	2350.	2400.	24FD	2500	2550.	2600.
1200.						
1150.			MP- 98- 02			TCu Au Rock (%) (gpt) 1150.
		.395 .460 .177 .350 .179 .310 Volc .324 .420	50° leached .41 50° leached .41 50° lBX .33 50° 0.407.7Cu .23 50° 0.45 apt Au .23 50° 15.17. oxide .14	5 .609506 2.10.30 21. 9 .52206 2.1210 21. 1 .34708 2.1250 21. 5.340 10.		.058 ***** 21. .085 ***** 21. .127 ***** 21. .076 ***** 21.
1100.		.125 .300 .111 .280 16× .129 .250 .135 .230	50 19 50	0 ***** 10. 8 ***** 10. 5 ***** 10. 4 ***** 10.		.087 ***** 21. 1100. .110 ***** 21. .120 ***** 21. .124 ***** 21.
1050.		. 104 . 200 128 . 210 Volc + . 139 . 140 PP	10 .21 10 .247. The .21 10 .22 gpt Au .24 10 .22 gpt Au .24 10 .22 gpt Au .24 10 .22 gpt Au .24 10 .23 gpt Au .24 10 .24 .24 .24 10 .24 .24 .24 .24 .24 .24 .24 .24 .24 .24	6 ***** 10. 0 ***** 10. 5 .340 10. 2 ***** 10.		.187 ***** 21. .147 ***** 21. ທີ່ 1050.
1000.		18× .142 .240 .282 .490 .282 .490 .282 .490	N 0.14 μ 0.14 μ 10 AP 10 Volc .35 10 PP .15 10 Volc ω	6 ***** 10. 6 ***** 10. 6 ***** 10.		KOCK 10 - Breccia 21 - Diorite 50 - VOLCANICS 1000.
950		V Volc	0.217. Tau 0.20 pp+ Au VS.07. oxide. IBX 0.27% Tau 0.26 pp+ Au 15.5% oxide.			

5000.	-000- 0014	2150		2250.	2300 -
1200.		A30 10.	MP-98-03	0.28%TCu 0.45 gpt Au 87.2% oxide	1200.
1150.	.281 .49	288. ⁸⁰ .430 10 2 10,232 .400,310. 10,357 .640 10. 10 10,691 1.480 00.	247 290 10. 479 1.030 10. 265 9.230 10.	.337 .500 10. 10. 10. 10. 10. 10. 10. 10.	.186 .210 21. .166 .170 10. .270 .280 21 _{150.} .220 .280 21.
1100.	.391 .89 .071 .13 .079 .14 .006 .04 .008 .04	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	459 810 6 0. 60 0 384 .740 0. 60 0 337 .530 0 0 0 0	260 .410 10. .210 .390 10. .286 .490 10. 2° 0.25 $77Cu$ 3° 0.33 gp + Au 86.2 7° 0 xide	.312 .380 21. .219 .210 21. .148 .150 21. .109 .150 21. .109 .150 21.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.022 .00 .040 .00 .016 .00 .023 .00 .015 .00 046 .00	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	264 .540 10 .0.252 345 .730 0 .0.33 244 .410 0 394 .890 0 0.237 0.304	TCu pt Au oxide Cu t Au	.120 .140 21. .110 .130 21. 1050.
	Ш М Р - 060	-032 2	15.07. 8x	oxide	
1000.			AP 0.17% 0.23 gp 20.9% 0.25% 0.25%	TCu Av oxide TCu Av	1000.
950		· · · · · · · · · · · · · · · · · · ·	Bx 15.6%	xide	950.

