## RECEIVED DEC 181998 <br> Gold Commissioner's Office VANCOUVER, B.C.

Cascadia International Resources Inc.

## 1998 DRILLING PROGRAM ON THE FAWN 1-7 CLAIMS

Located on the Nechako Plateau<br>Omineca Mining Division NTS 93F/3E<br>$53^{\circ} 12^{\prime}$ North Latitude<br>$125^{\circ} 08^{\prime}$ West Longitude

-prepared for-
CASCADIA INTERNATIONAL RESOURCES INC.
1030-1130 West Pender Street
Vancouver, B.C., Canada
V6E 4A4
-prepared by-

Jim Lehtinen, P.Geo.
EQUITY ENGINEERING LTD.
207-675 West Hastings Street,
Vancouver, B.C., CqÐqDLOGICAL SURVEY BRANCH V6B 1N2

## TABLE OF CONTENTS

Page
1.0 INTRODUCTION .....  1.
2.0 LIST OF CLAIMS ..... 1.
3.0 LOCATION, ACCESS AND GEOGRAPHY .....  2.
4.0 REGIONAL AND PROPERTY EXPLORATION HISTORY
4.1 Previous Work .....  2.
4.2 1998 Diamond Drilling Program .....  4.
5.0 REGIONAL GEOLOGY ..... 4.
6.0 PROPERTY GEOLOGY ..... 6.
7.0 DIAMOND DRILLING .....  8.
8.0 DISCUSSION ..... 10.
APPENDICES
Appendix A Bibliography
Appendix B Statement of Expenditures Appendix C Diamond Drill Logs Appendix D Certificates of Analysis Appendix E Geologist's Certificate
LIST OF TABLES
Table 2.0.1 Claim Data
Page .....  1.
Table 6.0.1 Detailed Lithological Legend
Table 7.0.1 Drill Hole Survey Data .....  8.
LIST OF FIGURES Following
Page
Figure 1 Location Map .....  1.
Figure 2 Claim Map .....  1.
Figure 3 Regional Geology .....  4.
Figure 4 Malaput Showing-1998 Driling ..... 8.
Figure 5 MAL 98-01 Cross-Section .....  9.
Figure 6 MAL 98-02,03 Cross-Section .....  9.
Figure 7 MAL 97-04,05 Cross-Section .....  9.
Figure 8 MAL 97-06 Cross-Section ..... 10.
Figure 9 MAL 97-07 Cross-Section .....  10.

### 1.0 INTRODUCTION

The Fawn property is located on the Nechako Plateau, approximately 120 kilometres southwest of Vanderhoof in central British Columbia. It is underlain by felsic and andestic Hazelton Group volcanosedimentary rocks cut by the Late Cretaceous Capoose Lake Batholith and by feeder dykes to the Eocene Ootsa Lake Group felsic to andesitic volcanics. BP Minerals Lid. carried out geological mapping, soll sampling and backhoe trenching on the property from 1981 to 1984, defining coincident zinc-silver-lead soil anomalies over an area of $\mathbf{3 0 0 0}$ metres by 700 metres. It was restaked as the Fawn property and Western Keltic Mines Inc. conducted mapping, prospecting, soil sampling, geophysical surveys and 617 metres of diamond drilling from 1991 through 1994. Four open-ended, subparallel VLF-EM conductors, with a total strike length of 6,400 metres, were defined within the soil geochemical anomaly. Drilling on one of these, the Giver Zone, showed it to correspond to epithermal chaicedony stockwork/breccia within a 18-32 metre wide zone sericite-clay alteration; the best intersection assayed $2.0 \mathrm{~g} / \mathrm{A}$ Au across 8.1 metres.

A 620 metre diamond drilling program was carried out in March and April of 1997, to intersect the Giver Zone conductor along strike from the 1994 drilling and to test one of its splays which had yielded auriferous subcrop mineralization. The best intersection on the Giver Zone was from hole FWN97-06 which intersected $1.08 \mathrm{~g} A \mathrm{Au}$ across 10.2 metres. The Giver Zone splay was tested and determined to be a narrow zone that did not warrant further work. Limited mapping and soil sampling were carried out in conjunction with the drilisite reclamation.

The Malaput showing, first reported on in 1994 (Diakow and Webster, 1994) was soll sampled and mapped by Western Keltic Mines Inc. in 1994. Results indicated geochemically anomalous gold, lead, arsenic and zinc values from soil and rocks overlying the zone of silica, sericite and ankerte alteration with drusy quartz veinlets. A 744.0 metre diamond drilling program was carried out in August of 1998 to test the Malaput Showing. Equity Engineering Ltd. conducted this drill program for Cascadia International Resources Inc. and has been retained to report on the fieldwork.

### 2.0 LIST OF CLAIMS

The Fawn property comprises seven contiguous claims totalling 140 claim units (3,500 hectares), located in the Omineca Mining Division (Figure 2). Records of the British Columbia Energy and Minerals Division indicate that the Fawn 1-7 claims are owned by Western Keltic Mines Inc.. Separate documents indicate that Cascadia International Resources Inc. has an option to earn an interest in them. Claim data for the Fawn property is summarized in Table 2.0.1.

Table 2.0.1 CLAIM DATA

| Claim Name | Mineral Tenure <br> No. | No. of Units | Record Date | Expiry Year |
| :---: | :---: | :---: | :---: | :---: |
| Fawn 1 | 243221 | 20 | March 15, 1991 | $2008^{*}$ |
| Fawn 2 | 301430 | 20 | June 26, 1991 | $2008^{*}$ |
| Fawn 3 | 301431 | 20 | June 26, 1991 | $2008^{*}$ |
| Fawn 4 | 301432 | 20 | June 26, 1991 | $2008^{*}$ |
| Fawn 5 | 305450 | 20 | October 13, 1991 | 2007 |
| Fawn 6 | 322193 | 20 | October 28, 1993 | 2007 |
| Fawn 7 | 323869 | 20 | February 26, 1994 | $2008^{*}$ |

[^0]


### 3.0 LOCATION, ACCESS AND GEOGRAPHY

The Fawn property is situated on the Nechako Plateau of central British Columbia, approximately 120 kilometres southwest of Vanderhoof and 180 kilometres west of Quesnel (Figure 1). The claims are located within the Omineca Mining Division, centred at $53^{\circ} 12^{\prime}$ north latitude and $125^{\circ} 08^{\prime}$ west longitude.

The property is accessed by a major logging road, the Kluskus-Malaput Forest Road, which reaches the north side of the property 146 kilometres south of the Plateau Forest Products mill at Engen on Highway 16. The Kluskus-Malaput road angles through the southeastem comer of the property, while a major branch, the Van Tine Forest Road, provides good access through its northern part. The M-4000 Forest Road, another major branch, leaves the Kluskus-Malaput south of the property and angles northwesterly through the southwestern corner of the Fawn 6 claim. Spur roads provide four-wheel drive access throughout each of several recent clear-cuts on the property. The Capoose access road, on the north side of Van Tine Creek, is also accessible by four-wheel drive vehicle but has not been maintained for several years.

The claims cover the eastern portion of Entiako Spur, a range of rolling hills lying south of Van Tine Creek within the Nechako Plateau. Upland surfaces are generally well drained with few lakes or marshes. Lower creek valleys are broad and swampy. Topography is moderate, with elevations ranging from 1,100 metres in the Fawnie Creek valley to 1,739 metres at the highest point of Entiako Spur. Outcrop exposure is fairly good along the ridge top, but is increasingly masked by glacial till at lower elevations. Overall, the property would average less than 5\% outcrop. Road cuts along the Van Tine Road expose up to 30 metres of glacial till. Glacial striae trend $060^{\circ}$ on the Fawn 2 claim, and Tipper (1963) provides strong evidence regionally for a southwestern ice source.

The property is largely covered by spruce and lodgepole pine with a light undergrowth of huckleberry and alder. Recent clear-cuts at lower elevations on most of the claims have made the sparse outcrops easier to find and examine. The Fawn property is subject to a continental climatic regime, with warm summers and cold winters. Snowfall is moderate with an accumulation of one to two metres during the winter.

### 4.0 REGIONAL AND PROPERTY EXPLORATION HISTORY

### 4.1 Previous Work

The area around the Fawn property received little exploration until the late 1960's, when Rio Tinto Canadian Exploration Ltd. carried out stream and lake sediment sampling surveys throughout the Nechako Plateau, searching primarily for copper-molybdenum porphyry deposits (Hoffman, 1976). Follow-up work on one of their anomalies by Rio Canex (1969-71) and Granges Exploration Ltd./Cominco Ltd. (1976-present) led to the discovery in 1979 of the Capoose silver-lead-zinc deposit approximately seven kilometres north of the Fawn property. Reserves at Capoose have been estimated at 28 million tonnes grading 36 g/tonne silver and 0.9 g/tonne gold (Green and Diakow, 1993).

Following the recognition of a major silver resource at Capoose, BP Minerals Limited staked several other nearby high-priority silver-lead-zinc lake sediment anomalies from Rio Canex's data. Their Gran and Laid claims were staked in 1981 to cover the drainages surrounding Square Lake, a small lake at the head of Van Tine Creek near the northem boundary of the present Fawn 1 claim. Square Lake was extremely anomalous in lead, exceeding the values for the lakes which marked the Capoose deposit (Hoffman, 1976).

In 1982, BP Minerals carried out geological mapping over the area now covered by the Fawn
property and laid out a compass and hipchain geochemical grid which used three different numbering systems. An east-west baseline was blazed and numbered from $0+00 \mathrm{~W}$ to $\mathbf{2 8 + 0 0 W}$, just north of the present Fawn 2 southem boundary. Cross-lines were run to the south from this baseline, with station numbering up to $\mathbf{2 4 + 0 0 S}$. A second baseline was blazed to the north from station $\mathbf{2 8 + 0 0 W}$ on the first baseline, which was re-labelled $0+00 \mathrm{~N} 0+00 \mathrm{~W}$. Cross-lines were run to the east and west from this second baseline (and labelled accordingly), which extended north to $18+00 \mathrm{~N}$. A western tie line was blazed north-south $\mathbf{2 , 6 0 0}$ metres to the west of the second baseline, near the western boundary of the current Fawn 1 and 3 claims. This was used to tie in lines $0+00 \mathrm{~N}$ to $14+00 \mathrm{~N}$, which were run west from the second baseline. Lines were also run and numbered east (Lines 14+00N to 20+00N) and west from the western tie line (and labelled east or west relative to the western tie line). A total of 1,152 soil and stream sediment samples were taken in 1982 and a further 1,517 in 1983 from ground currently covered by the Fawn property (Hoffman and Smith, 1982; Smith and Hoffiman, 1983 and 1984). Samples were taken initially at 100 metre intervals on lines spaced 100 metres apart, with later infilling to 50 metre intervals in anomalous areas. The soil geochemistry delineated a northwesterly trend of coincident lead-zinc-silver anomalies measuring approximately 3,000 metres by 700 metres, centred on the Fawn 1 claim.

In 1983, limited trenching and a series of 40 backhoe test pits were excavated at 25 metre intervals near the eastern end of the lead-zinc-silver soil anomaly, exposing three or four "rhyodacite lapilli tuff" units with up to 94.5 ppm silver and 880 ppb gold (Smith and Hoffman, 1984). The following year, another grid was established for mapping purposes over the Fawn 1 soil anomaly. A 3,000 metre baseline oriented at $310^{\circ}$ was cut and numbered from $0+00 \mathrm{~N}$ to $30+00 \mathrm{~N}$. Cross-lines were run at $035^{\circ}$ from the baseline at 200 metre intervals. Further backhoe trenching was carried out in the area of the 1983 trenching and near the westem end of the soil anomaly, without encouraging results (Smith, 1985). BP Minerals allowed their claims to lapse in 1988.

The Fawn 1-4 claims were staked in 1991 over BP Minerals' soil geochemical anomaly. In September and October of that year, Western Keltic Mines Inc. carried out geological mapping, soil and rock geochemistry and geophysical surveying, taking 239 rock, 144 soil and 41 deep overburden samples. The 1984 cut baseline was re-established and extended at $130^{\circ}$ for 2,425 metres to the southeast. Cross-lines were run towards $040^{\circ}$ at 100 metre intervals from $4+00 \mathrm{~N}$ to $30+00 \mathrm{~N}$ and at 200 metre intervals from 4+00N to 24+00S, with stations marked every 25 metres. Cross-lines, 500 metres in length, were run at a bearing of $220^{\circ}$ from $5+00 \mathrm{~N}$ to $27+00 \mathrm{~N}$ at 100 metre intervals. Five widely-spaced lines were extended further to the southwest, in an area to the south of pre-existing coverage and soil samples were taken along them at 50 metre intervals. The BP Minerals soil anomalies were relocated relative to the new grid and verified by 41 soil samples taken from their most anomalous sample locations. Magnetometer and VLF-EM surveys were carried out over 31 linekilometres of the grid between $2+005$ and $30+00 N$. Deep overburden sampling and MaxMin EM were tested over the Giver Zone, a mineralized VLF-EM conductor (Awmack, 1991).

Four subparallel, easterly-trending VLF-EM conductors were defined along strike lengths of 700 to 2200 metres by the 1991 program, with each remaining open along strike in at least one direction. Each of the four VLF conductors is accompanied by silver+zinc+leadtarsenic soil geochemistry. Eocene(?) epithermal chalcedony-sulphide breccia was found in subcrop and float along one of the VLF conductors, with assays up to 12.9 ghtonne Au and 637 gtonne silver in separate samples from the "Giver Zone" and one of its splays, the "Giver Splay" (Awmack, 1991). The Fawn 5 and 6 claims were subsequently staked to cover the projected westward extension of these VLF structures.

Western Keltic performed a 20.7 line-kilometre induced polarization survey on lines spaced 200 metres apart from $3+00 \mathrm{~N}$ to $29+00 \mathrm{~N}$ in October and November, 1993. This showed low resistivity and weak chargeability along the Giver VLF-EM structure and outlined a strong chargeability anomaly at the eastern end of the survey. Moderate chargeability and low resistivity anomalies were indicated near the northwestern end of the grid, in an area of strong soil geochemistry and two VLF-EM structures (Ballantyne, 1993).

During the course of regional mapping in 1993, the BC Geological Survey discovered the Malaput Showing, a zone of silicification and sericitization located four kilometres southeast of the Giver Zone (Diakow and Webster, 1994). The Fawn 7 claim was subsequently staked over the Malaput Showing.

The BC Geological Survey undertook regional lake sediment (Cook and Jackaman, 1994) and basal till (Levson et al, 1994) sampling programs throughout portions of the 93F map sheet in 1993, taking three lake sediment samples and 18 till samples from the Fawn property. The lake sediment sample from Square Lake returned the highest lead, zinc and cobalt values for all 237 samples taken from the region, along with anomalous antimony, arsenic and gold. Six of the till samples exceeded the survey's 95th percentile for gold, lead, arsenic or antimony. Four of these anomalous till samples, including the sample with the survey's second highest gold value, were taken from the northeastern portion of the Fawn 7 claim, an area which has recelved no exploration. In 1994 Diakow and Webster reported on a new prospect, the Malaput occurrence, located on the Fawn 7 claim. The occurrence is located in a logging clear-cut of low topographic relief with very little outcrop. The occurrence is comprised of a series of outcrop and sub-outcrop of intensely silica and sericite alteration crosscut by thin quartz stringers. During Western Keltic's 1994 program, 55 soil samples were taken from a small grid over the Malaput Showing, returning up to $255 \mathrm{ppb} \mathrm{Au}, 336 \mathrm{ppm} \mathrm{As}$,226 ppm Pb and 1360 ppm Zn . Mapping showed it to be an easterly-trending, 25-30 metre wide zone of silicification which can be traced along strike for at least 300 metres (Baknes and Awmack, 1994a).

In 1994, Westem Keltic drilled 617 metres in six diamond drill holes on geophysical and geochemical targets on the Fawn 1 and Fawn 5 claims. Three of these were drilled across the V2 conductor (Giver Zone) showing it to be a steeply-dipping 18-32 metre wide zone of sericite-clay-pyrite alteration hosting epithermal chalcedony stockworks and breccias. The best intersections were 8.1 metres of $2.0 \mathrm{~g} /$ tonne Au in hole FWN94-02 and 4.4 metres of 1.5 g tonne Au and $63.8 \mathrm{~g} / \mathrm{tonne} \mathrm{Ag}$ in hole FWN94-03.

Cascadia International Ventures inc. conducted a drill program consisting of $\mathbf{6 2 0 . 0}$ metres in $\mathbf{7}$ drill holes on the Giver Zone and Giver Zone splay during March and April of 1997. Best result from the program was 10.2 metres of $1.08 \mathrm{~g} / \mathrm{Au}$ and 23.3 ppm Ag in hole FWN97-06. A small soil geochemistry survey as well as limited mapping and grid extension was carried out during the reclamation program in September 1997 (Awmack and Lehtinen, 1997).

### 4.2 1998 Diamond Drilling Program

During August of 1998, Cascadia International Resources Inc. carried out a third diamond drill program on the Fawn property, targeted at the Malaput Showing on the Fawn 7 claim. Seven holes, totalling 744.0 metres $\left(2441^{\prime}\right)$ of BTW core, were drilled by Falcon Drilling Ltd. of Prince George, using their F-1000 drill. Water was supplied to the drill by Gallant Trucking Ltd. of Kamloops, B.C.. Core was logged and split mechanically for geochemical analysis at a facility located on the adjoining Buck property and then stored on the Fawn Property at a storage facility located on the south-west side of the Van-Tine logging road at kilometer 3. Drill sites and access roads were constructed with a D5 cat accessed from the existing haul road and landing. A total of 177 core samples were analyzed geochemically for gold and by ICP for 28 elements by Eco-Tech Laboratories in Kamloops. Appendix D contains analytical certificates while drill logs are attached in Appendix C.

Reclamation of all drill sites and drill roads was carried out in September 1998 immediately following the drill program.

### 5.0 REGIONAL GEOLOGY

The British Columbia Geological Survey carried out 1:50,000 scale regional mapping over map-


## LEGEND

STRATIFIED ROCKS
MIOCENE TO PLIOCENE
Chilcotin Group
cv olivine basalt
EOCENE
Ootsa Lake Group
EO Rhyolite and andesite flows, quartz-
bearing lapilli tuffs, tuffaceous
slitstone
MIDDLE JURASSIC
Hazelton Group (Naglico Formation)
MJNe Fine to coarse-grained, fossiliferous
volcaniclastics
mJH2 Basalt and andesite flows and lapilli tuffs
MJN1 Rhyolite flows, ash-flow tuffs and lapilli tuffs

INTRUSIVE ROCKS
TERTIARY
Tf Felsite sills
LATE CRETACEOUS
Capoose Lake Batholith
Lxq: Equigranular quartz monzonite, with lesser
quartz diorite and quartz porphyry
MIDDLE JURAESIC
MJap Mafic augite-plagioclase porphyry plugs
Geology modified from Diakow and Webster (1994).


KILOMETRES
sheet 93F/6 in 1992 (Green and Diakow, 1993; Diakow and Green, 1993). In 1993, this mapping was extended to the south over map-sheet 93F/3, which covers the Fawn property (Diakow and Webster, 1994; Diakow et al, 1994). Their mapping shows Jurassic Hazelton Group volcanics and sediments intruded by the Late Cretaceous Capoose Lake batholith and unconformably overlain by Eocene Ootsa Lake Group subaerial volcanics and younger plateau basalts (Figure 3).

The Early to Middle Jurassic Hazelton Group rocks in the vicinity of the Fawn property have been assigned by Diakow and Webster (1994) to their informal Naglico Formation of silica-bimodal volcanic rocks and Bajocian intravolcanic sediments which are gradationally overiain by Callovian marine sediments. The lower division of this formation consists of "crudely layered fragmental and lesser flow rocks of ihyolitic composition, and local maroon and green andesitic tuffs deposited in a subaerial environment" (Unit MJN1). The upper division is dominated by mafic and intermediate lavas (Unit MJN2), interpreted by Diakow and Webster (1994, p. 19) to be deposited in a shallow marine environment with local subaerial condltions. Green and Diakow (1993) report that a section of the upper division exceeds 1,000 metres in thickness on Tutiai Mountain, 14 kilometres north of the Fawn property. Augite porphyry plugs (Unit MJap) mapped on the Fawn claims are thought to be cogenetic with upper division Naglico Formation augite-phyric volcanics.

Wide-spread, irregularly-distributed, marine sedimentary rocks (Unit MJNs) are intercalated with Naglico Formation volcanics, interpreted as basins between coalescing volcanic centres. The marine sediments become dominant in the stratigraphically highest Middle Jurassic exposures. Main lithologies include feldspathic sandstone and siltstone, tuffaceous argillite, locally prominent volcanic conglomerate and scarce limestone. Fossils are common in the sedimentary rocks, with most of indeterminate or probable Middle Jurassic age and at least one early Bajocian collection (Diakow and Webster, 1994).

The Jurassic stratigraphy was intruded by the Late Cretaceous Capoose Lake Batholith (Unit LKqm), a $250 \mathrm{~km}^{2}$ piuton which extends southwesterly for at least 20 kilometres from the Fawn property. The Hazelton volcanics of the southwestern portion of the Fawn property are thought to be underlain by the Capoose Lake Batholith at a fairly shallow depth. Its main phase consists of light coloured, mediumto coarse-grained, equigranular quartz monzonite, although its composition is locally granodioritic and a dioritic phase cuts northerly through the Fawn 2, 4 and 7 claims. Andrew (1988) reports a biotite K-Ar date of $64.3 \pm 2.4$ Ma for the batholith. Miarolytic quartz porphyry dykes and plugs cut Hazelton Group sediments on the Buck property, immediately east of the Fawn claims. These were interpreted by Diakow and Webster (1994) to be subvolcanic apophyses projecting from the Capoose Lake Batholith.

Flat-lying to moderately dipping, subaerial volcanics of the Ootsa Lake Group (Unit EO) unconformably overlie older Mesozoic rocks. Potassium-argon dating of Ootsa Lake rocks at the Wolf prospect gave an age of $48 \pm 2$ million years (mid-Eocene). The Ootsa Lake volcanics consist of calcalkaline andesite to myolite. North of the Natalkuz Fault, a northeasterly trending fault which passes twenty kilometres northwest of the Fawn claims, Ootsa Lake volcanics cover an extensive area, with a 750 metre stratigraphic section. South of the fault, the Ootsa Lake Group forms thin isolated cappings on older rocks.

Miocene plateau basalts of the Chilcotin Group (Unit Cv) unconformably overlie all other units.
Low grade regional metamorphism and weak deformation are pervasive on the Nechako Plateau. Contact metamorphism is pronounced around intrusives. Tipper (1959) observed that the overall lack of structural features may, in part, be attributed to the abundance of often structureless volcanics in the area. The Hazelton volcanics appear more strongly deformed in comparison to other rock types, with dips of up to $70^{\circ}$. At the Capoose deposit, eight kilometres north of the Fawn property, bedding dips moderately $\left(20-40^{\circ}\right)$ to the southwest, with a synclinal fold axis plunging at $10^{\circ}$ to the southeast (Andrew and Godwin, 1987). The Ootsa Lake Group volcanics were deposited in a period of extensional tectonism. Another period of deformation during the Oligocene produced broad open folds in the Ootsa Lake Group volcanics and sediments. The relatively undeformed Chilcotin Group consists of generally
flat-lying to gently easterly dipping plateau lavas (Tipper, 1963).
Several styles and ages of mineralization have been documented in the vicinity of the Fawn property (Figure 3). Teck Corp.'s Tommy epithermal gold-silver prospect, 17 kilometres south of the Fawn claims, consists of several north to northeast trending veins and silicified stockwork zones hosted by Naglico Formation quartz-phyric felsic crystal lithic and ash tuffs. The voins consist of milky quartz, chalcedony, sparry calcite, ankerite and adularia, with typical epithermal textures such as druse, colloform banding, cockscomb structures and multiple brecciation/veining episodes. Only trace amounts of sulphides, mainly pyrite, chalcopyrite, sphalerite and galena, are present. The Tommy Vein, which has received the most exploration, hosts a geological resource of 478,000 tonnes grading 8.7 gftonne Au and 82.3 ghtonne Ag across an average width of four metres (J. Pautler, pers. comm., 1997).

The Wolf epithermal gold-silver prospect, located twenty kilometres west of the Fawn property, is hosted by Eocene Ootsa Lake Group ihyolitic flows, tuffis and subvolcanic intrusives. Repeated lowsulphide silicification, brecciation and stockwork veining have been accompanied by up to 8.49 g/tonne gold and 42.2 g/tonne silver across 7.5 metres in trenching (Cann, 1984). It has been suggested that the Wolf deposit may have been related to maar (Andrew et al, 1986), collapse caldera (Andrew, 1988) or hot-spring (Androw, 1988) paleo-environments.

The Capoose silver deposit, located eight kilometres north of the Fawn property, is hosted by Naglico Formation mafic flows, rhyolite tuff, argillite and lithic wacke intruded by Late Cretaceous quartzgarnet rhyolite sills related to the Capoose Lake Batholith. Mineralization consists of pyrite, sphalerite, galena, chalcopyrite and arsenopyrite in disseminations, fracture-fillings and replacing garnets, and is thought to be Late Cretaceous in age (Androw, 1988). The Capoose deposit contains 28 million tonnes grading 36 g/tonne silver and 0.9 gftonne gold (Green and Diakow, 1993). The Capoose Lake Batholith itself has been explored for porphyry-style copper-molybdenum mineralization a fow kilometres west of the Capoose deposit.

Immediately east of the Fawn property, the Buck 1-4 claims cover a 3,000 metre long zinc-arsenic-lead soil geochemical anomaly overlying Naglico Formation rocks. Proximal (vent facies) felsic volcanics change laterally to distal felsic volcaniclastics and epiclastics along with marine sedimentary and intermediate volcanic lithologies. Stratabound sphalerite-pyrrhotite mineralization, grading up to 4.69\% zinc, is present in felsic ash tuffs. The Christmas Cake Showing, with a 45 centimetre chip sample grading $7.38 \% \mathrm{Zn}, 2.25 \% \mathrm{~Pb}$ and 542 g/tonne Au , consists of coarse sphalerite, iron carbonate, galena, minor chalcopyrite and sugary quartz forming a matrix which supports fragments composed entirely of very fine-grained pyrite and by variably altered, angular, felsic lithic clasts (Baknes and Awmack, 1994). A northeast-trending VLF-EM conductor corresponds to a recessive zone of clay alteration with quartz-calcite veining, accompanied by 2-10\% pyrite and lesser arsenopyrite and sphalerite. Although this zone returned only low gold and silver values, its similarities to the Fawn's Giver Zone suggest a genetic link (Caulfield, 1996).

Fifteen kilometres east of the Fawn property, the PEM prospect is underlain by Naglico Formation felsic to intermediate tuffs, lapilli tuffs, breccias and flows, intercalated with argillite, siltstone and sandstone. Disseminated and shear-hosted mineralization occurs in a steeply-dipping, structurallycontrolled zone of phyllic and argillic alteration at least 900 metres long, with introduction of 3-4\% sphalerite and 1-2\% pyrite (Schroeter and Lane, 1994). Zbitnoff (1988) reports drill intersections up to 6.3 metres grading 14.3 g/tonne gold, 27 ghtonne silver and $1.25 \%$ zinc. Textural evidence suggests that PEM mineralization may be genetically similar to that of Capoose.

### 6.0 PROPERTY GEOLOGY

The Fawn property is largely underlain by a sequence of Early to Middle Jurassic Hazelton Group (Naglico Formation) inyolitic and andesitic volcanics with lesser epiclastic sediments. These have been
intruded by a dioritic pluton, thought to form part of the Late Cretaceous Capoose Lake Batholith, and by later felsic dykes which are presumably feeders to the Tertiary Ootsa Lake ihyolites. No geological mapping was carried out on the Fawn property during the 1998 drill program; more detailed descriptions of geology and mineralization can be found in previous reports by Baknes and Awmack (1994a), Awmack (1991), Awmack and Lehtinen (1997). A detailed lithological legend adapted from a report on the Buck claims (Caulfield, 1996), is outlined in Table 6.0.1.

## TABLE 6.0.1

DETAILED LTTHOLOGICAL LEGEND

## JURASSIC-CRETACEOUS Subvolcanic Intrusions

QP/FP GRANITE - QUARTZ FELDSPAR PORPHYRY
Pink to flesh-coloured, variable from medium to coarse-grained, equigranular to crowded quartz-faldspar porphyry with pink aphanitic groundmass. Very minor chloritized mafics, minor muscovite and biotite and local fine-grained specular hematite. Porphyritic to aphanitic near contacts. Intrusive margins variably altered to muscovite/sericite, ankerite and rare epidote, associated with rare disseminated pyrite and sphalerite.

DI DIORTE
Medium to light green-grey to grey, fine to medium grained, grainy appearance. Weak chlorite and calcite alteration. Magnetic.

EARLY TO MIDDLE JURASSIC Hazetton Group (Naglico Formation)

AN ANDESITES

## ANa Augite Porphyry

Dark green, with $1-5 \mathrm{~mm}$ augite phenocrysts ( $7-15 \%$ ) in a dark green, often chloritic, fine to medium-grained groundmass. $\mathbf{1 - 2} \mathbf{~ m m}$ feldspar crystals (10-50\%) prevalent. In rare exposures, augite phenocrysts greater than 1 cm and up to $\mathbf{6 c m}$.

## ANb Amygdaloldal Andesite

Dark-medium green, brown weathering, fine grained with $<5 \%$ 0.1-1 mm zoned plagioclase phenocrysts and minor chloritized mafics. $1-5 \% 1-5 \mathrm{~mm}$ quartz $\pm$ calcite filled flattened amygdules. Also non-porphyritic and massive andesite equivalents.

## ANc Augite and Feldspar-Bearing Crystal-Lapilli Tuff

Dark to medium green, brown to grey-green weathering, variable tuff to lapilli and rare breccia tuff or flow breccia. Generally unsorted mixture of ANa and Anb angular to subangular clasts in a chloritic matrix containing feldspar and indistinct augite crystals and crystal fragments. Rarely contains belemnite fossils.

And Maroon Feldspar Porphyritic Andesite Flow
Aphanitic maroon to grey-green matrix with <5\% 0.5-1 mm anhedral feldspar phenocrysts. Locally flow-banded.

## TABLE 6.0.1 (cont'd.) DETALLED LITHOLOGICAL LEGEND

## Anf Maroon Andesite Crystal-Lapilli Tuff

Dark maroon. Dark maroon matrix with lapillt and crystals varying from white-pink to light green. Chlorite and calcite filled fractures.

RHYOLITE-DACITE
RDf Buff to pale greenish grey weathering, medium grey, finely bedded mm to cm thick beds of fine felsic to intermediate ash to coarser sand-sized feldspar crystals and less often lapilli.

## EPICLASTICS, TUFFS and SILTSTONES

## Etc Black Non-Sulphide-Bearing Siltetone and Argillite

Medium to dark grey weathering, black, noncalcareous to weakly calcareous, weakly carbonaceous, fine-grained sitstone and argillite with minor grit and chert pebble layers. Laminated to thin-bedded, wispy sandy layers locally present.

Ete Finely Laminated, Banded Grey Argilite-sittstone and Felsic Ash Tuff
Striped grey and black, rhythmic, laminated to thin bedded 0.1-2 cm (up to 10 cm ) beds of dark grey to black argillite-siltstone and felsic buff weathering ash tuff to crystal tuff and rarely felsic lapilli tuff.

### 7.0 DIAMOND DRILLING

Seven holes were drilled along the strike of the Malaput Zone from five drill sites. All drill holes were designed to test the strong alteration and to determine the nature and geometry of the alteration zone. Table 7.0 .1 summarizes location, orientation and drilling depths for the 1998 holes. The holes are located in plan on Figure 4, with vertical cross-sections in Figures 5-9. Drill logs are attached in Appendix C.

Table $7,0,1$
Drill Hole Survey Data

| HOLE | AZINUTH <br> $\left({ }^{\circ}\right)$ | DIP <br> $\left({ }^{\circ}\right)$ | DEPTH <br> (metres) | ELEV. <br> (metres) | COLLAR <br> COORDINATES |  |
| :--- | :---: | ---: | ---: | :---: | :---: | :---: |
|  |  |  |  |  | GRID SOUTH | GRID EAST |
|  |  |  |  |  | Metres | Metres |
| MAL98-01 | 183 | -45 | 139.0 | 1242 | $0+27$ | $1+99$ |
| MAL98-02 | 180 | -45 | 87.2 | 1245 | $0+13$ | $1+02$ |
| MAL98-03 | 180 | -65 | 103.3 | 1245 | $0+13$ | $1+02$ |
| MAL98-04 | 180 | -50 | 147.8 | 1250 | $0+08$ | $0+01.5$ |
| MAL98-05 | 360 | -50 | 108.2 | 1250 | $0+10.6$ | $0+001.5$ |
| MAL98-06 | 180 | -50 | 62.8 | 1240 | $0+29.3$ | $3+00.7$ |
| MAL98-07 | 180 | -45 | 95.7 | 1235 | $0+23$ | $4+01.5$ |
| TOTAL |  |  | 744.0 |  |  |  |



LEGEND
$\cdots$ OUTCROP


1998 DRILL hole a hole trace
float/outcrop of intense sericite QUARTZ + ALBITE (?) ALTERATION
geological contact

Drill hole MAL98-01 was collared on the west side of the landing at the terminus of the logging road. The hole was drilled at an azimuth of $183^{\circ}$ and a dip of $-45^{\circ}$ in an attempt to intersect the projected eastern strike of the Malaput showing. The hole cut rocks commonly light to dark green in colour predominated by andesite and/or ihyo-dacite lapilli, ash and crystal tuff (ANc, RDi) with minor intervals of silty argillite (Etc) and maroon andesite crystal-lapilli tuff (Anf). The Malaput alteration Zone, consisting of strong silica, sericite and albite(?) alteration with lesser calcite alteration of protolith(?) myo-dacite ash and crystal tuff, was intersected over 32.5 metres from 66.9 to 99.4 metres. The zone was intersected beneath the surface exposure of the strongly altered zone suggesting that the Malaput Zone is a vertical alteration zone in the area of drill hole MAL98-01. Minor sulphide mineralization, predominantly pyrite, and very low gold values were encountered throughout the hole. The highest silver value obtained was from a strongly fractured silica, sericite, albite(?) and calcite altered zone which returned 4.0 ppm silver from 38.0 to 39.5 metres.

## MAL 98-02803

Drill hole MAL98-02 was collared approximately 100 metres west of MAL98-01. The hole, drilled at an azimuth of $180^{\circ}$ and a dip of $-45^{\circ}$, was directed at the Malaput Showing and intersected a package of rocks similar to those encountered in MAL98-01, in which the predominant rock type is andesitie lapilli, ash and crystal tuff (ANc). The Malaput Zone was intersected from 54.0 to 76.6 metres and consisted of intense silica, sericite, albite(?) and lesser calcite alteration. The entire alteration zone was geochemically analyzed and the results indicate that there is no significant mineralization hosted within the alteration or in any other interval sampled. Mineralization throughout the hole is weak although trace galena and sphalerite occur in the weakly altered rocks away from the main alteration zone.

MAL98-03 was drilled at an azimuth of $180^{\circ}$ and a dip of $-65^{\circ}$ from the same site as the previous hole in an attempt to test the Malaput Zone at a greater depth and to determine the dip of the zone. The hole intersected the Malaput Zone from 38.4 to 91.8 metres which suggests that the zone does not have a tabular geometry. It appears that factors affecting alteration could be related to permeability/porosity of the lithologies, chemical composition of the lithologies and structural controls. No significant mineralization was encountered in MAL98-03.

## MAL 98-04805

MAL 98-04805 stepped out to the west side of the grid to check the strike extension of the Malaput Alteration Zone. MAL98-04, drilled at an azimuth of $180^{\circ}$ and $-45^{\circ}$, dip was collared in an intense alteration zone and also drilled through multiple alteration zones of varying intensity throughout the drill hole. Mineralization appears restricted to pyite, commonly with concentrations of 1-3\% with localized concentrations up to $5 \%$ pyrite. The width of the Malaput Zone on the west side of the grid appears to have increased significantly as the alteration zones are of significant width and alteration continues to the bottom of the drill hole at 147.8 metres. Alteration is typical for the Malaput Zone with the exception of minor potassic feldspar tentatively identified by the salmon-orange patchy zones within the silica, sericite and albite(?) altered core. No significant assays were returned from the samples submitted for analysis.

Drill hole MAL98-05 was drilled at an azimuth of $360^{\circ}$ and $-45^{\circ}$ dip to intersect the bedding at a perpendicular angle and to determine if the alteration is bedding controlled. Erratic, strong to moderate alteration occurs from the collar to 27.6 metres, then continues to 34.9 metres as strong alteration. Alteration throughout the rest of the hole remains as moderate to weak and is the typical alteration suite associated with the Malaput Zone, with the exception of minor patchy potassic feldspar alteration. No significant mineralization was encountered throughout the hole.

MAL 98-01

$$
\begin{aligned}
& 199 E, 27 S \text { e: } 1242 \\
& \text { Az: } 183 \\
& \text { Dip: }-45
\end{aligned}
$$

Looking $093^{\circ}$


Legend
lithologies
EARLY TO MIDDLE JURASSIC
Hazellon Group (Naglico Formation)
Andesites augite and feldapar porphyry
amygdaloldal andesita
augite and foldspar -bearing crysta-lapilis luff
maroon to grey-green, feldsper porphyrlic flow
marcoon fatdspar erystasi-iapilll tuff
Rhyostle-Dacis
butti, teldic to intermediale, bedded ash -feldspar cyystal tuff
Eolcipstlcs, Tuffs and Siltstones
black, non-sulphide-bearing, stltstone and argillite
grey, finaly laminated, banded argillite-silitatona and felstic ash tufi
EOCENE
Ootsa Lake Group:
FP salmon orange, white feldapar phenocrysts and minor quartz eyes
DI
in quartu felispar porphyry medium to light grey, ine grained, magnelic diorile



CASCADIA INTERNATIONAL RESOURCES INC

FAWN PROPERTY
DDH SECTION
MAL 98-01

| $\frac{3}{5}$ | Dete. NOV. 1988 | S60/6. 1:500 | figure. <br> 5 |
| :---: | :---: | :---: | :---: |
|  | U.T.M. Zone 10 | Mining Disiomineca |  |
|  | NT.S. $33 F / 3 \mathrm{E}$ | Store/Prov. Q.C. |  |

## MAL 98-03

$13 \mathrm{~S}, 101.6 \mathrm{E} \quad \mathrm{E}=1245$
Az: 180
Dip: -6s

MAL 98-02
Looking $090^{\circ}$
$13 \mathrm{~S}, 101.6 \mathrm{E} \quad e=1245 \mathrm{~m}$
A2: 180
Dips -45

ANd
augite and feldspar porphyr
amyodaloidal andest aughte and teldspar -bearing crystal-lapilll tuif And maroon to grey-green, feldispar porphyrilic flow


Rhyolite-Drcie
ROI butic asthisfedisper crystal fuff
ROI bulf, felsic to intermediale, beadded ash -feldspar crystal tuff
Eniclasics. Tulfikand Sillstones
Etc black, non-sulphide-bearing, siltstone and argllile
eocene
Ootsa Lake Group:
FP salmon orange, white feldspar phenocrysts and minor quartz eyes in quartz feldigpar porphyry
of medium to light grey, fine grained, magnetic diorite


| $\xrightarrow{10}{ }^{20}$ |  |  |  |
| :---: | :---: | :---: | :---: |
| METRES |  |  |  |
| CASCADIA INTERNATIONALRESOURCES INC |  |  |  |
| FAWN PROPERTY |  |  |  |
| DDH SECTION MAL 98-02, 98-03 |  |  |  |
| 洸旁: |  |  | FFUuEE <br> 6 |



## Looking $090^{\circ}$

MAL 98-06
$29.3 \mathrm{~S}, 300.7 \mathrm{E} \quad \mathrm{e}=1240$
$A_{z:} 180$
Dip: -50


## Legend

## Lithologies

EARLY TO MIDOLE JURASSIC
Hazelton Group (Naglico Formalion)
Anderites ing falcipar parphyry
augite and faldapar po
amygdaloddal andestle
aughte aind faldspar -bearing crysta-lapill tuff
And maroon to grey-green, feldspar porphyritic flow
Anf maroon faldspar crystal-laplll tuff
Pation Dacile
bult, falaic to intermediate, bedded ash -feldspar crystal tuff
duch ine. Tirs end eirione
brack, nor-sulphide-bearing, alltstone and argillite
any laminated, bended argilite-silstone and felatc ash tult
EOCENE
Ootsa Lake Group:
FP salman orange, whille feldspar phenocryats and minor quartz eyes
in quartz feldspar porphyry
in quartz tealispar porphyry
medium to light grey, fline grained, magnetic diorlie

$\xrightarrow[\text { METRES }]{510 \quad 30}$

CASCADIA INTERNATIONAL RESOURCES INC.
FAWN PROPERTY DDH SECTION MAL 98-06


MAL 98-06 was collared approximately 100 metres east of MAL98-01 and drilled at an azimuth of $180^{\circ}$ and a dip of $-50^{\circ}$ to test the eastem strike extension of the Malaput Zone. Three rock packages were encountered in the drill hole. The predominant rock type is andesite ash tuff (ANc) with lesser banded argillite and ash tuff (Etc) near the bottom of the hole. The andesite ash tuff has been intruded by a light green-grey, medium to fine grained diorite (DI). The Malaput Alteration Zone occurs from 23.7 to 30.1 metres and appears to be reduced in width compared to the intersections to the west. No significant mineralization was observed or results returned from MAL.98-06.

## MAL 98-07

The final hole was drilled at an azimuth of $180^{\circ}$ and a dip of $-45^{\circ}$ approximately 200 metres east of hole MAL 98-01. The drill hoie intersected two intrusive units, a narrow andesite porphyry dike (ANa) and a diorite (DI) similar to the diorite intersected in hole MAL98-06. These intrusive rocks are hosted in banded argillite and ash tuff similar to those rocks intersected in previous drill holes. The drill hole encountered only weak alteration and very minor mineralization.

### 8.0 DISCUSSION

The 1998 diamond drilling program focused on the Malaput Zone, an east-west trending zone of intense silica, sericite and albite(?) alteration with minor millimetre scale quartz-calcite stringers and stockworks. It is marked on surface by erratic outcrop and sub-outcrop exposure of these altered rocks and by spotty $\mathrm{Au}, \mathrm{As}, \mathrm{Pb}$ and Zn soil geochemistry.

Seven holes tested the Malaput Zone on five sections along 400 metres of its strike length. Each of these holes intersected varying widths and intensity of alteration with a general trend of increased width and intensity of alteration along strike to the west.

The alteration along the Malaput Zone is suggestive of a strong epithermal system. Other than surface anomalous gold results, no significant gold mineralization has yet been discovered along the 400 metres of the zone which has been drill tested. The strength of the alteration to the west is encouraging but the lack of anomalous precious or base metal values suggests that the interval tested at the Malaput showing may be at a non-mineralized vertical depth of an epithermal system or that the system may not be mineralized. Epithermal systems are characterised by strong vertical controls on mineralization. It may turn out that the drilled portion of Malaput Showing is too high (or too low) in the epithermal system.

The Tommy prospect, located 17 kilometres south of the Fawn property, consists of epithermal quartz veins in Hazelton Group (Naglico Formation) quartz-phyric rhyolite tuffs. Teck Corp. has developed a reserve of 478,000 tonnes grading 8.7 g/tonne Au over a width of four metres at Tommy in a geological setting which is very similar to the Fawn property's. Not only does this bode well for the possibility of discovering significant gold mineralization on the Fawn claims, but it suggests a possible theological control on mineralization. At Tommy, the rhyolite host forms brittle fractures, along which the quartz veins are emplaced. In the Malaput Zone as well as the Giver Zone, the less competent andesitic lapilli tuffis do not form discrete fractures, but rather wide zones of faulting, alteration and quartz stockworks, with more dispersed gold mineralization.

Although no significant mineralization was encountered, the substantial intersection width of the alteration on the west side of the Malaput grid indicates large epithermal alteration zones exist in the area. Combined with anomalous gold values returned from soil samples from the 1994 program, the possibility of a gold mineralized epithermal structure on the Fawn claims exists. Discovery of a mineralized structure on the property is hampered by extensive glacial till cover which limits outcrop exposure and would make soil geochemistry difficult or ineffective. Geophysics has proven partially effective in outlining VLF-EM fault controlled structures as displayed on the Giver Zone, but extensive

surveys would prove to be costly and are not warranted at this time.

Respectfully submitted, EQUITY ENGINEERING LTD.

Jim Lehtinen, P.Geo.

Vancouver, British Columbia<br>December, 1998

## APPENDIX A

## BIBLIOGRAPHY

## BIBLIOCRAPHY

Andrew, K.P.E. (1988): Geology and Genesis of the Wolf Precious Metal Epithermal Prospect and the Capoose Base and Precious Metal Porphyry-Style Prospect; MSc Thesis, University of British Columbia.

Andrew, K.P.E. and Godwin, C.I. (1987): Capoose Precious and Base Metal Prospect, Central British Columbia, in Geological Fieldwork 1986; British Columbia Energy and Minerals Division Paper 19871, p. 53-55.

Andrew, K.P.E., Godwin, C.I. and Cann, R.M. (1986): Wolf Epithermal Precious Metal Vein Prospect, Central British Columbia, in Geological Fieldwork 1985; British Columbia Energy and Minerals Division Paper 1986-1, p. 317-320.

Awmack, H.J. (1991): 1991 Geological, Geochemical and Geophysical Report on the Fawn Property; Report submitted for assessment credit to the British Columbia Energy and Minerals Division.

Awmack, H.J. and Lehtinen, J. (1997): 1997 Drilling Program on the Fawn 1-7 Claims; Report submitted for assessment credit to the British Columbia Energy and Minerals Division.

Bagby, W.C. and B.R. Berger (1986): Geologic Characteristics of Sediment-Hosted, Disseminated Precious-Metal Deposits in the Westem United States, in Geology and Geochemistry of Epithermal Systems; Reviews in Economic Geology Volume 2, p. 169-202.

Baknes, M.E. and H.J. Awmack (1994a): 1994 Geological, Geochemical and Diamond Drilling Report on the Fawn 1-7 Claims; Report submitted for assessment credit to the British Columbia Energy and Minerals Division.

Baknes, M.E. and H.J. Awmack (1994b): 1994 Geological, Geochemical and Geophysical Report on the Buck 1-4 Claims; Report submitted for assessment credit to the British Columbia Energy and Minerals Division.

Ballantyne, T.A. (1993): Induced Polarization Survey on the Fawn 1-5 Claims; Report submitted for assessment credit to the British Columbia Energy and Minerals Division.

Ballantyne T. and Visser, S. (1991): Magnetometer, VLF-EM, and Horizontal Loop Survey on the Fawn Property; attached to Awmack (1991) as Appendix H.

Cann, R. (1984): Geology, Geochemistry and Trenching, Wolf Claims; Brtish Columbia Energy and Minerals Division Assessment Report \#13,968.

Caulfield, D.A. (1996): 1996 Drilling Program on the Buck 1-4 Claims; Report submitted for assessment credit to the British Columbia Energy and Minerals Division.

Cook, S.J. and W. Jackaman (1994): Regional Lake Sediment and Water Geochemistry of Part of the Nechako River Map Area (93F/02, 03, 06, 11, 12, 13, 14); British Columbia Geological Survey Branch Open File 1994-19.

Diakow, L.J. and Webster, I.C.L (1994): Geology of the Fawnie Creek Map Area (93F/3) in Geological Fieldwork 1993; British Columbia Geological Survey Branch Paper 1994-1, p. 15-26.

Diakow, L.J, Green, K., Whittles, J. and Perry, A. (1993): Geology of the Natalkuz Lake Area, Central British Columbia (map at 1:50,000 scale); British Columbia Geological Survey Branch Open File 1993-14.

Diakow, L.J, Webster, I.C.L., Levson, V.M. and Giles, T.R. (1994): Bedrock and Surficial Geology of the Fawnie Creek Map Area (map at 1:50,000 scale); British Columbia Geological Survey Branch Open File 1994-2.

Green, K.C. and Diakow, L.J. (1993): The Fawnie Range Project - Geology of the Natalkuz Lake Map Area (93F/6) in Geological Fieldwork 1992; Brtish Columbia Geological Survey Branch Paper 19931, p. 57-67.

Hoffman, S.J. (1976): Mineral Exploration of the Nechako Plateau, Central British Columbia, Using Lake Sediment Geochemistry; Ph.D. Thesis, University of British Columbia, 338 p.

Hoffiman, S.J. and Smith, M.D. (1982): The 1982 Geochemical and Geological Survey on the Gran and Laid Claims; British Columbia Energy and Minerals Division Assessment Report \#10,832.

Levson, V.M., T.R. Giles, S.J. Cook and W. Jackaman (1994): Till Geochemistry of the Fawnie Creek Map Area (93F/03); British Columbia Geological Survey Branch Open File 1094-18.

Schroeter, T.G. and R.A. Lane (1994): Mineral Resources: Interior Plateau Project in Geological Fieldwork 1993; Brtish Columbia Geological Survey Branch Paper 1994-1, p. 45-58.

Schroeter, T.G. and A. Panteleyev (1988): Lode Gold-Silver Deposits, British Columbia, in Mineral Deposits of Northern Cordillera; CIM Special Volume 37, p. 178-190.

Smith, M. and S.J. Hoffinan (1983): Geological and Geochemical Report on the Gran 7 Claim; British Columbia Energy and Minerals Division Assessment Report \#12,032.

Smith, M. and S.J. Hoffman (1984): Geochemical Sampling and Test Pit Program, Gran 1-6 and Laid 1-4 Claims; Brtish Columbia Energy and Minerals Division Assessment Report \#12,668.

Smith, M. (1985): Assessment Report on the Gran 1-6 Claim Group, Trenching and Geochemical Sampling Program; British Columbia Energy and Minerals Division Assessment Report \#13,530.

Tipper, H.W. (1959): Revision of the Hazelton and Takla Groups of Central British Columbia; Geological Survey of Canada Bulletin 47, 51 pp.

Tipper, H.W. (1963): Nechako River Map-Area, British Columbia; Geological Survey of Canada Memoir 324, 59 pp.

Zbitnoff, G.W. (1988): Diamond Drilling Report on PEM Claim; British Columbia Energy and Minerals Division Assessment Report \#17,032.

## APPENDIX B

## STATEMENT OF EXPENDITURES <br> FAWN 1-7 CLAIMS

August 20 - September 2, 1998

## PROFESSIONAL FEES AND WAGES:

Dave Caulfield, P.Geo. 2.63 days © $\$ 425 /$ day $\$ 1,117.75$

Jim Lehtinen, P.Geo. 26.875 days © $\$ 425 /$ day $11,421.88$

Jason Weber, Geologist 1.25 days © $\$ 3350 /$ day 430

Matt Cleary, Sampler 14.75 days © $\$ 225 /$ day $3,318.75$

Matt Henry, Logistics Manager 0.5 days © \$350/day
175.00

Clerical
4.75Hr.@25/Hr 118.75
$16,589.63$
EQUIPMENT RENTAL: (Equity Engineering Ltd.)
Core Splitter
11 days @ \$5/day 55.00
Firefighting Equipment 12 days © \$10/day 120.00 175.00

EXPENSES:
Accommodation \$4,758.79
Airfare 322.25
Automotive Fuel 199.52
Automotive Expenses 59.27
Bulk Fuel 1,843.27
Camp Food 57.31
Chemical Analyses 2,876.25
Courier 19.13
Drafting 120.00
Ferries 36.45
Freight 2,273.42
Hardware and Lumber 2,090.03
Meals 30.68
Office supplies 6.89
Printing and Reproductions 167.32
Reclamation Seed 53.50
Taxis, Parking, Tolls 19.63
Telephone Distance Charges 46.92
Trucks (crewcab) 4.275 .71
19,256.34
SUBCONTRACTS:
Catwork
\$1,925.00
Drilling
Water truck
53,254.06
7,446.00

## STATEMENT OF EXPENDITURES

 (Continued)
## REPORT:

Report and Assessment Filing (estimated)
Assessment filing (Gov't fees)

$$
2,000.00
$$

1.610 .00
$3,610.00$
PROJECT SUPERVISION CHARGE:
$12 \%$ on expenditures up to $\$ 100,000$
$10 \%$ on expenditures $>\$ 100,000$
\$ 12,000.00
225.54 12,225.54

Subtotal: \$114,481.57

## GST:

Total:
8.013 .71

122,486.28

## APPENDIX C

## DIAMOND DRILLLOGS

## MINERALS AND ALTERATION TYPES

| AS | arsenopyrite | BI | biotite | CA | calcite |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CL | chlorite | CP | chaicopyrite | CY | clay |
| EP | epidote | GE | goethite | GL | galena |
| HE | hematite | JA | jarosite | MC | malachite |
| MG | magnetite | MN | Mn-oxides | MS | sericite |
| PO | pyrrhotite | PY | pyrte | QZ | quartz |
| SI | silica | $\mathbf{S P}$ | sphalerite | TT | tetrahedrite |

DRILL LOG








DRILL LOG




| PAGE |
| :--- | :--- |


| nem |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\cdots$ |  |  |  |  |  |
|  |  |  |  |  |  |
| aveners |  |  |  |  |  |
| 边 | \% | , | , |  |  |
|  |  |  | - | , |  |
|  | \%om | , | . | , |  |
|  |  | * | , | \% | , |
| \%y.tatex |  |  |  |  |  |
|  |  | . | . |  |  |
|  |  | 2, | . | , |  |
|  |  |  |  |  |  |
| 为 | \% | * | * | 23 | , |
|  |  |  | . |  |  |
| 2, |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |

COLLAR ELEVATION
1245 m
AZIMUTH
$180^{\circ}$
Dip
$-65$
LENGTH
103.3

HORIZONTAL PROJECTION
43.7

VERTICAL PROJECTION
93.6

traces only
< 1\%
$1 \%-3 \%$
$3 \%-10 \%$
$>10 \%$

SUMMARY LOG
0-4.6 - Casing








DRILL LOG










DRILL LOG





|  | OF 6 | Pravect | Мдевй |  | ${ }_{\text {Hote }}^{\text {Mac }} 18.0 \mathrm{~s}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Pation me |
|  |  |  |  |  |  |
|  |  | 98, $9 \times 2$ | Aataic |  | - |
|  | - |  |  |  | , |
|  |  |  | Weve $\frac{1 / 4}{}$ |  |  |
|  | - |  | - |  |  |
|  | \# | ${ }_{\text {2, } 2.2 .2}^{10.2}$ | cosbltur |  |  |
|  | - |  |  |  | 隹 |
| E 100 |  | )- |  |  |  |
|  |  | \% | PY cosat |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  | \# |
|  |  |  |  |  | , |
| 9 |  |  |  |  | \% |
|  | \% | m, er |  | \# | 1- |
|  | - |  | 100. 2 80.14 |  |  |
|  | - |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  | E |  |  |  |  |
|  | - |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| - |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  | $\because$ |  |  |  |  |
|  | H |  |  |  | $\# \# \#$ |



DRILL LOG


1

| PAGE |
| :--- | :--- |




| PAGE 4 OF 4 | PROECT MALAPUT |  |  |  |  | HOLE MAL 98－06 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| mineralization DESCRIPTION | 家蒿坒 | SAMPLES |  |  | SAMPLE NUMBER | ASSAYS |  |  |  |  |  |
|  |  | FROM | TO | 喜 |  | ppt | ppon Pg | $\begin{aligned} & p p_{m} \\ & P b_{0} \end{aligned}$ | $\begin{aligned} & \text { prom } \\ & z_{n} \end{aligned}$ |  |  |
| 46．1－47．5 T－1\％Pr dixs＋6．6．1／ |  | 46.1 | 47.5 | 1.4 | 278760． | 5 | Lo， 2 | 24 | 68 |  |  |
| T.P. P |  |  |  |  |  |  |  |  |  |  |  |
|  | \％ 1 | 47． 5 | K2．2 | 1.7 | 761 | 5 | 0.4 | 46. | 187 |  |  |
| －sechath in mo pelah．（theredin | $\square$ |  |  |  |  |  | － 0.4 |  | cez |  |  |
| ettalty zene) to CP wiPp | 7 |  |  |  |  |  |  |  |  |  |  |
| Etchinueris． |  |  |  |  |  |  |  |  |  |  |  |
| $\checkmark$ |  |  |  |  |  |  |  |  |  |  |  |
| $53.6-55$ |  | 53.6 | S5．1 | 1.5 | 72 | 5 | 20．2 | 18 | 57 |  |  |
| T－ico Prasef fill Pr |  |  |  |  |  |  |  |  |  |  |  |
| ss．i－sh． 7 b apomes A alustre in |  | 5s． 1 | 567 | 1.6 | 213 | 5 | 20．2 | 18 | 54 |  |  |
| chroch bunds． |  |  |  |  |  |  |  |  |  |  |  |
| $55.7-58.2$ |  | S67 | 58.2 | 1.5 | 764 | 5 | 20．2 | 22 | 70 |  |  |
| $\xrightarrow{-}$ |  |  |  |  |  |  |  |  |  |  |  |
| 58．z－57．7－1\％Py as fr．fyll inf |  | S8． 2 | 52.7 | 1.5 | ．74s | 5 | $\leq 0.2$ | 22 | 63 |  |  |
| ／／T．C．A． |  |  |  |  |  |  |  |  |  |  |  |
| SY．z－6r．1－T Pr．esthin f．．Ill |  | 59．7 | 61.1 | 1.4 | 26 | 5 | 0．6 | 136 | 176 |  |  |
| ： |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | ． |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  | 1 |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
| － |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  | $\square$ |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1 |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  | H＋ |  |  | － |  |  |  |  |  |  |  |


ENGINEERING LTD.

DRILL LOG


| PAGE |
| :--- | :--- |



| PAGE |
| :--- | :--- |




ECO-TECH LABORATOREES LTD. 10041 Eest Trume Cenada Hishway KAMLOOPS, B.C. V2C $6 T 4$

Phone: 250-573-6700 Fax : 250-573-4557

Values in ppoll undees offerwise reportied

| Ex. | Terin | Autpot | An | A \% | A | B4 | 目 | Ca \% | cd | Co | Cr | Cu | Fo\% |  |  | M | 0 | Ma \% | 1 | $P$ | Pb | 8 | 8 | 8 | 71\% | 0 | $V$ | w | $Y$ | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 298601 | 8 | 40.2 | 3.06 | $<$ | 35 | 5 | 2.69 | $<1$ | 23 | 154 | 27 | 4.21 | <10 | 2.78 | 571 | 2 | 0.20 | 3 | 60 | 4 | 5 | 20 | 8 | 0.00 | <10 | 100 | 410 | 4 | 6 |
| 2 | 288802 | 8 | 40.2 | 1.48 | 4 | 30 | $\leqslant$ | 2.29 | 4 | 10 | 69 | 18 | 3.38 | $<10$ | 1.43 | 351 | 7 | 0.08 | 9 | 400 | 2 | - | $<0$ | 44 | -0.01 | $<10$ | 41 | $<10$ | 1 | 47 |
| 3 | 298003 | 5 | 0.4 | 1.44 | 4 | 30 | 5 | 1.94 | 41 | 5 | 28 | 20 | 3.12 | $<10$ | 1.20 | 307 | 5 | 0.02 | 3 | 600 | 10 | 10 | <0 | 41 | ¢0.01 | 410 | 13 | $<10$ | 4 | 63 |
| 4 | 298604 | 5 | 40.2 | 1.74 | 5 | 40 | 10 | 0.88 | $\leqslant 1$ | 6 | 17 | 12 | 3.08 | <10 | 1.39 | 210 | 4 | 0.02 | 2 | 700 | 4 | 6 | $<0$ | 19 | -0.01 | $<10$ | 10 | <10 | 4 | 67 |
| 5 | 298005 | 5 | < 0.2 | 3.18 | 10 | 40 | 10 | 2.87 | $<1$ | 29 | 100 | 88 | 4.68 | <10 | 2.74 | 483 | 3 | 0.20 | 41 | 820 | 2 | 10 | 20 | 113 | 0.04 | $<10$ | 117 | $<10$ | 4 | 44 |
| 6 | 298808 | 5 | 4.2 | 1.71 | 4 | 25 | 4 | 2.41 | 4 | 23 | 74 | 30 | 2.93 | $<10$ | 1.14 | 301 | 2 | 0.16 | 31 | 1040 | 2 | 10 | $\infty$ | 00 | 0.04 | <10 | 48 | 410 | 4 | 32 |
| 7 | 298007 | 5 | 40.2 | 2.16 | 4 | 30 | 4 | 2.18 | 4 | 28 | 88 | 81 | $3.80^{\circ}$ | $<10$ | 1.84 | 480 | 2 | 0.17 | 46 | 900 | 2 | - | 20 | 60 | 0.05 | $<10$ | 75 | $<10$ | 4 | 80 |
| 8 | 298008 | 5 | 40.2 | 1.87 | < | 26 | 4 | 2.82 | 41 | 25 | 78 | 88 | 4.21 | $<10$ | 1.91 | 031 | 3 | 0.00 | 35 | 900 | 4 | 10 | 40 | 52 | 0.05 | $\leqslant 10$ | 0 | $<10$ | $<1$ | 68 |
| 8 | 290000 | 5 | 4.2 | 2.65 | < | 46 | 10 | 2.72 | 41 | 25 | 03 | 27 | 4.82 | $<10$ | 2.00 | 092 | 2 | 0.12 | 35 | 1000 | 4 | 10 | 20 | 34 | 0.07 | $<10$ | 99 | $<10$ | $\leqslant 1$ | 67 |
| 10 | 298810 | 5 | 40.2 | 4.72 | 4 | 35 | 10 | 4.66 | $<1$ | 13 | 86 | 13 | 4.47 | $<10$ | 1.91 | 1801 | 6 | 0.04 | 10 | 370 | 12 | 8 | $<0$ | 91 | -0.01 | $<10$ | 08 | $<10$ | 3 | 92 |
| 11 | 290811 | 5 | <0.2 | 0.75 | 30 | 30 | 4 | 2.92 | 4 | 12 | 30 | 77 | 4.93 | 410 | 1.46 | 831 | 7 | 0.03 | 8 | 470 | 0 | 10 | 20 | 94 | -0.01 | $<10$ | 08 | $<10$ | 2 | 6 |
| 12 | 298012 | 5 | 4.0 | 0.24 | 150 | 45 | 4 | 7.22 | 2 | 8 | 46 | 103 | 3.49 | $<10$ | 1.10 | 1409 | 12 | 0.02 | 10 | 440 | $\omega$ | 15 | 20 | 171 | ¢0.01 | $<10$ | 13 | 410 | 8 | 185 |
| 43 | 298813 | 5 | 1.6 | 1.04 | 845 | 40 | 5 | 4.63 | 41 | 20 | 75 | 71 | 4.80 | $<10$ | 1.01 | 841 | 47 | 0.02 | 19 | 000 | 18 | 4 | 20 | 130 | $\infty 0.01$ | $<10$ | 51 | 410 | 2 | 81 |
| 14 | 290014 | 5 | 0.4 | 1.20 | 10 | 40 | 5 | 3.36 | 1 | 13 | 78 | 61 | 3.82 | <10 | 1.44 | 2811 | 8 | 0.65 | 11 | 610 | 80 | 10 | 20 | 82 | -0.01 | <10 | 61 | $<10$ | 4 | 120 |
| 15 | 298615 | 8 | 0.4 | 0.65 | $<8$ | 85 | $<$ | 4.01 | 4 | 6 | 51 | 3 | 200 | $<10$ | 1.34 | 1333 | - | 0.05 | 2 | 410 | 10 | 10 | 20 | 113 | ¢0.01 | $<10$ | 10 | $<10$ | 8 | 82 |
| 16 | 290618 | 5 | 40.2 | 0.19 | $<$ | 140 | $\leqslant$ | 2.10 | 41 | $<1$ | 78 | $<1$ | 0.32 | 10 | 0.16 | 318 | 5 | 0.03 | 1 | 170 | 8 | 4 | 20 | 58 | ¢0.01 | $<10$ | $<1$ | $<10$ | 3 | 9 |
| 17 | 298817 | 6 | 0.2 | 0.21 | 35 | 05 | 4 | 0.67 | 3 | 1 | 68 | 3 | 0.80 | <10 | 0.10 | 393 | 8 | 0.02 | 2 | 160 | 108 | - | 20 | 16 | -0.01 | $<10$ | 4 | $<10$ | 3 | 155 |
| 18 | 290618 | 5 | 0.8 | 0.17 | < | 65 | 4 | 2.75 | 2 | 2 | 88 | 8 | 1.02 | $<10$ | 0.38 | 18\% | 7 | 0.12 | 4 | 140 | 98 | 8 | 20 | 45 | -0.01 | $<10$ | 4 | 410 | 2 | 208 |
| 19 | 298819 | 5 | 1.0 | 0.21 | $<8$ | 45 | $\leqslant$ | 2.77 | 2 | 4 | 89 | 4 | 1.52 | $<10$ | 0.65 | 2912 | 4 | 0.02 | 3 | 100 | 132 | 5 | 20 | 41 | 40.01 | 410 | 1 | $<10$ | 1 | 189 |
| 20 | 288820 | 5 | 3.2 | 0.21 | 4 | 45 | $\leqslant$ | 4.50 | 7 | 9 | 09 | 98 | 2.64 | $\leqslant 10$ | 1.28 | 8200 | 7 | 0.02 | 3 | 400 | 318 | 15 | $\infty$ | 50 | ¢0.01 | $<10$ | 5 | $\leqslant 10$ | 4 | 827 |


| Et. | Tere | Autpie) | A. | A\% | As | 8 | B | Ca\% | Cd | Co | Cr | Cu | F\% \% |  |  | mn | 10 | Na\% | M | $P$ | Pb | 86 | 8 \% | 8 | 1\% | 0 | $V$ | W | $\gamma$ | 20 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 21 | 290021 | 5 | 2.4 | 0.34 | 6 | 50 | 4 | 2.63 | 2 | 8 | 24 | 167 | 3.48 | <10 | 0.77 | 7828 | 8 | 0.02 | 4 | 910 | 54 | 10 | 20 | 4 | 0.01 | $<10$ | 6 | $<10$ | 8 | 212 |
| 22 | 280622 | 5 | 0.8 | 0.38 | - | 45 | 4 | 2.02 | 3 | 6 | 27 | 53 | 2.79 | $<10$ | 0.63 | 420 | 7 | 0.02 | 7 | 200 | 18 | . 8 | 20 | 45 | 40.01 | $\leqslant 10$ | 6 | $<10$ | 4 | 312 |
| 23 | 290623 | 5 | 1.6 | 1.28 | < | 55 | 4 | 3.80 | 6 | 17 | 35 | 67 | 5.06 | $<10$ | 1.57 | 6097 | 5 | 0.02 | 6 | 870 | 120 | ¢ | 20 | 98 | 0.01 | 410 | 35 | $<10$ | 4 | 838 |
| 24 | 290624 | 5 | 4.2 | 3.25 | S | 53 | 4 | 2.81 | 4 | 22 | 185 | 120 | 4.43 | $<10$ | 3.04 | 1214 | 2 | 0.16 | 64 | 1003 | 34 | 10 | $\infty$ | 103 | 0.06 | 410 | 127 | 410 | 4 | 83 |
| 25 | 290625 | 5 | 0.8 | 2.93 | - | 35 | 5 | 4.77 | 1 | 28 | 147 | 83 | 5.57 | $<10$ | 2.70 | 2186 | 4 | 0.12 | 31 | 800 | 26 | < | 80 | 86 | 0.02 | $<10$ | 138 | $<10$ | 2 | 130 |
| 28 | 290628 | 5 | 0.2 | 4.04 | < | 50 | $<$ | 4.34 | $<1$ | 31 | 175 | 248 | 8.05 | $<10$ | 2.88 | 1301 | 3 | 0.27 | $3{ }^{\circ}$ | 1180 | 20 | 10 | 20 | 143 | 0.04 | $<10$ | 174 | $<10$ | 4 | 71 |
| 27 | 290827 | 8 | 0.2 | 1.06 | 10 | 30 | 8 | 2.08 | 41 | 15 | 71 | 43 | 4.46 | $<10$ | 1.76 | 038 | - | 0.08 | : 12 | 800 | 10 | 4 | $\infty$ | 57 | -0.04 | <10 | 06 | 40 | 1 | 58 |
| 28 | 290628 | 5 | 0.6 | 1.78 | 4 | 30 | 8 | 2.84 | <1 | 13 | 101 | 24 | 4.78 | $<10$ | 1.78 | 800 | 9 | 0.07 | 15 | 600 | 22 | 4 | 20 | 67 | 0.01 | $<10$ | 0 | $<10$ | 4 | 8 |
| 29 | 290820 | 5 | 0.6 | 0.88 | 8 | 20 | 5 | 2.44 | 2 | 7 | 80 | - | 3.15 | <10 | 1.14 | 763 | 5 | 0.04 | 7 | 360 | 78 | 5 | $\infty$ | 41 | -0.01 | $<10$ | 17 | $<10$ | 4 | 187 |
| 30 | 290030 | 5 | 0.8 | 1.45 | 10 | 36 | 5 | 1.51 | 2 | 9 | 78 | 16 | 4.41 | $<10$ | 1.20 | 1211 | 8 | 0.04 | 7 | 800 | 38 | $\otimes$ | 20 | 29 | 4.01 | 410 | 20 | 410 | $<1$ | 270 |
| 31 | 290831 | 5 | 0.6 | 1.78 | 8 | 40 | 10 | 2.07 | $<1$ | 8 | 49 | 10 | 4.50 | $<10$ | 1.38 | 2615 | 8 | 0.03 | 7 | 870 | 24 | 4 | <20 | 33 | 40.01 | 410 | 20 | 410 | 2 | 177 |
| 32 | 290832 | 8 | 0.4 | 1.42 | 4 | 36 | 5 | 2.36 | $<1$ | 7 | 46 | 21 | 3.04 | <10 | 122 | 1046 | 6 | 0.03 | 4 | 1090 | 40 | 10 | 20 | 44 | -0.01 | $<10$ | 12 | 410 | 8 | 124 |
| 33 | 290033 | 8 | 0.4 | 1.07 | $<$ | 36 | -6 | 3.15 | 4 | 9 | 84 | 23 | 2.81 | $<10$ | 1.17 | 781 | - | 0.04 | 9 | 320 | 8 | 10 | 20 | 78 | -0.01 | < 10 | 30 | 410 | 3 | 67 |
| 34 | 280034 | 8 | 0.6 | 1.80 | 10 | 40 | 10 | 4.74 | 4 | 18 | 98 | 18 | 4.28 | $<10$ | 2.15 | 1276 | 5 | 0.05 | 47 | 780 | 22 | 10 | 20 | 108 | 40.01 | 40 | 70 | $<10$ | 2 | 84 |
| 35 | 296055 | 5 | 1.2 | 2.12 | < | 35 | 10 | 4.58 | 2 | 41 | 188 | 63 | 8.88 | $<40$ | 2.03 | 1448 | 7 | 0.04 | 75 | 510 | 14 | 5 | $\pm 0$ | 118 | 0.01 | $<10$ | 87 | 410 | 4 | 134 |
| 38 | 298038 | 20 | 40.2 | 2.41 | 4 | 40 | 10 | 3.88 | $<1$ | 22 | 118 | 32 | 6.38 | $\leqslant 10$ | 2.85 | 734 | 7 | 0.08 | 42 | 710 | 4 | 6 | 20 | 104 | 0.02 | $<10$ | 90 | 410 | 4 | 74 |
| 37 | 288887 | 5 | 40.2 | 2.51 | 10 | 50 | 5 | 3.08 | 4 | 28 | 109 | 37 | 4.14 | <10 | 2.35 | 083 | 2 | 0.16 | 46 | 1040 | 10 | 5 | 20 | 95 | 0.05 | $<10$ | 110 | $<10$ | 4 | 54 |
| 38 | 290638 | 5 | 40.2 | 1.84 | 10 | 35 | 4 | 3.80 | 1 | 17 | 79 | 38 | 4.24 | $<10$ | 1.84 | 604 | 6 | 0.10 | 17 | 300 | 28 | 90 | $\infty$ | 100 | 0.02 | <10 | 70 | 40 | 3 | 82 |
| 39 | 250039 | 10 | 40.2 | 2.50 | 10 | 40 | 4 | 3.83 | $<1$ | 32 | 131 | 111 | 6.18 | $<10$ | 2.67 | 751 | 6 | 0.13 | 42 | 430 | 10 | ¢ | $\infty$ | 123 | 0.02 | $<10$ | 127 | $<10$ | $\leqslant 1$ | 63 |
| 40 | 250840 | 5 | 0.8 | 3.06 | 5 | 85 | 4 | 8.77 | $<1$ | 32 | 129 | 100 | 8.38 | <10 | 3.33 | 180\% | 8 | 0.13 | 82 | 800 | 28 | 20 | 4 | 180 | 0.02 | <10 | 134 | 410 | 1 | 151 |
| 41 | 290341 | 5 | 40.2 | 2.86 | 10 | 55 | 8 | 5.07 | 4 | 33 | 104 | 38 | 6.15 | $<10$ | 3.37 | 1478 | 4 | 0.08 | 61 | 800 | 00 | 5 | 20 | 120 | 0.01 | $<10$ | 97 | 410 | 1 | 247 |
| 42 | 290642 | 5 | 0.2 | 3.38 | < | 85 | 10 | 6.77 | 4 | 29 | 107 | 78 | 6.79 | <10 | 4.20 | 1818 | 8 | 0.08 | 45 | 860 | 82 | 10 | 20 | 187 | 0.02 | $<10$ | 135 | 410 | 4 | 281 |
| 43 | 298843 | 5 | 4.2 | 3.50 | 5 | 60 | 5 | 5.27 | $<1$ | 39 | 88 | 71 | 6.78 | $<10$ | 4.24 | 1088 | 5 | 0.05 | 46 | 970 | 22 | 10 | 20 | 143 | 0.01 | $<10$ | 130 | $<10$ | 4 | 122 |
| 44 | 290044 | 5 | 40.2 | 3.17 | < | 6 | 10 | 5.32 | $<1$ | 32 | 86 | 58 | 5.87 | $<10$ | 3.82 | 1209 | 5 | 0.07 | 42 | 1010 | 34 | 10 | 20 | 138 | 0.01 | $<10$ | 120 | $<10$ | 4 | 103 |
| 45 | 298045 | 8 | 0.2 | 3.14 | 5 | 70 | 10 | 6.44 | $<1$ | 38 | 84 | 78 | 6.34 | $<10$ | 4.17 | 1130 | 5 | 0.05 | 44 | 1000 | 20 | 15 | 20 | 180 | $\infty$ ¢ 01 | $<10$ | 112 | $<10$ | 4 | 134 |
| 46 | 290840 | 5 | 0.2 | 3.20 | 10 | 60 | $\leqslant$ | 4.80 | $<1$ | 37 | 78 | 112 | 7.03 | $<10$ | 3.68 | 1122 | 6 | 0.06 | 49 | 1180 | 18 | 8 | $<0$ | 131 | -0.01 | $<10$ | 105 | $<10$ | 4 | 171 |
| 47 | 298047 | 6 | 40.2 | 3.24 | 25 | 75 | < | 5.39 | 1 | 39 | 88 | 108 | 6.99 | $<10$ | 4.09 | 1104 | 4 | 0.08 | 39 | 1020 | 18 | 15 | 20 | 153 | <0.01 | $<10$ | 114 | $<10$ | 4 | 120 |
| 48 | 289848 | 8 | 0.4 | 3.50 | 10 | 65 | 8 | 4.84 | 1 | 34 | 103 | 70 | 0.67 | $<10$ | 4.35 | 1412 | 5 | 0.05 | 45 | 1100 | 42 | 15 | 4 | 133 | ¢0.01 | <10 | 119 | 40 | 4 | 233 |
| 40 | 290049 | 6 | 0.6 | 1.38 | 4 | 70 | $\leqslant$ | 8.31 | 2 | 27 | 44 | 42 | 5.62 | $<10$ | 3.48 | 2630 | 8 | 0.04 | 27 | 950 | 64 | 15 | 80 | 108 | <0.01 | $<40$ | 47 | $<10$ | 3 | 128 |
| 50 | 288050 | 5 | 40.2 | 1.33 | < | 70 | 4 | 8.83 | 1 | 22 | 47 | 08 | 4.55 | $<10$ | 2.81 | 1002 | 4 | 0.06 | 29 | 1070 | 30 | 10 | 20 | 131 | <0.01 | $<10$ | 84 | $<10$ | 3 | 88 |
| 81 | 298081 | 5 | 0.2 | 2.13 | 10 | 60 | $\leqslant$ | 6.31 | $<1$ | 30 | 70 | 68 | 6.42 | $<10$ | 3.27 | 1334 | 8 | 0.04 | 42 | 1180 | 42 | 5 | 20 | 140 | 40.01 | 410 | 91 | 410 | 2 | 140 |
| 52 | 290052 | 5 | 0.6 | 1.24 | 50 | 05 | 4 | 8.50 | $<1$ | 54 | 50 | 100 | 7.20 | $<10$ | 3.24 | 2150 | 8 | 0.06 | 47 | 1240 | 20 | 10 | 20 | 151 | ¢0.01 | <10 | 68 | 410 | 2 | 190 |
| 53 | 280063 | 5 | 0.6 | 0.68 | 4 | 53 | 4 | 4.22 | $<1$ | 19 | 68 | 30 | 3.71 | $<10$ | 1.38 | 1420 | 6 | 0.03 | 17 | 830 | 24 | 10 | 20 | 78 | ¢0.01 | $<10$ | 27 | $<10$ | 2 | 143 |
| 54 | 298084 | 5 | 0.8 | 0.29 | 5 | 250 | $\bigcirc$ | 2.50 | 3 | 10 | 62 | 8 | 2.36 | $<10$ | 0.34 | 2174 | 11 | 0.02 | 14 | 260 | 402 | 4 | $<20$ | 26 | $<0.01$ | $<10$ | 8 | $<10$ | 3 | 291 |
| 58 | 290055 | 5 | 0.4 | 0.23 | < | 90 | $<$ | 0.88 | 2 | 2 | 89 | 3 | 0.91 | $<10$ | 0.04 | 603 | 8 | 0.62 | 2 | 160 | 70 | $\infty$ | $<0$ | 15 | -0.01 | $<10$ | 2 | $<10$ | 2 | 161 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | Pag | 2 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |


| Ets. | Te\% | Auspep) | A. | A \% | As | B | E | Ca\% | Cd | Co | cr | Cu | Fo \% |  | [4\% | \%n | 0 | N\% | $\cdots$ | P | Pb | $8 \%$ | 8 | $8 \% 7 \%$ | 0 | $\mathbf{v}$ | W | $\gamma$ | 2 n |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 58 | 296038 | 5 | 40.2 | 0.20 | 4 | 60 | $<$ | 7.80 | 1 | 1 | 61 | $<1$ | 0.47 | <10 | 0.03 | 429 | 2 | 0.02 | 2 | f50 | 48 | < | 20 | $40 \times 0.01$ | $<10$ | $\leqslant 1$ | 40 | 2 | 71 |
| 57 | 290667 | 5 | 0.4 | 0.22 | 4 | 40 | 4 | 2.03 | $<1$ | <1 | 63 | $<1$ | 0.49 | $<10$ | 0.03 | 490 | - | 0.02 | 8 | 110 | 32 | 4 | 20 | $40 \times 0.01$ | <10 | 4 | 40 | 2 | 8 |
| 58 | 298068 | 5 | 0.8 | 0.18 | $<$ | 65 | $<$ | 1.45 | 1 | 1 | 65 | 1 | 0.63 | $<10$ | 0.08 | 493 | 2 | 0.02 | 3 | 100 | 88 | * | 20 | $27<0.01$ | $<10$ | 4 | $<10$ | 2 | 80 |
| 59 | 298969 | 5 | 0.6 | 0.19 | 4 | 50 | ¢ | 1.44 | 2 | 2 | 72 | 1 | 0.68 | <10 | 0.08 | 407 | 5 | 0.02 | 3 | 130 | 68 | \& | 20 | $30-0.01$ | $<10$ | 4 | $<10$ | 2 | 4 |
| 60 | 290600 | 5 | 0.6 | 0.21 | 4 | 55 | < | 2.21 | 2 | 3 | 60 | 1 | 0.94 | $<10$ | 0.07 | 454 | 2 | 0.03 | 2 | 160 | 62 | 4 | 20 | $83<0.01$ | $\leqslant 10$ | 4 | $\leqslant 10$ | 2 | 127 |
| 61 | 290081 | 6 | 0.8 | 0.20 | 4 | 60 | 6 | 3.04 | 4 | 3 | 63 | 1 | 0.80 | $<10$ | 0.10 | 775 | 4 | 0.02 | 2 | 220 | 84 | $\leqslant$ | 20 | $84<0.01$ | $<10$ | 41 | $<10$ | 3 | 211 |
| 62 | 290062 | 5 | 0.2 | 0.23 | 4 | 75 | $\leqslant$ | 1.72 | 3 | 2 | 62 | 1 | 0.87 | <10 | 0.04 | 486 | 3 | 0.02 | - 2 | 210 | 46 | 4 | 20 | $49<0.01$ | 410 | 4 | $<10$ | 2 | 483 |
| 63 | 290063 | 5 | 0.2 | 0.20 | $\leqslant$ | 135 | 4 | 0.10 | $<1$ | 2 | 71 | 1 | 0.69 | $<10$ | -0.01 | 300 | 6 | 0.02 | 3 | 100 | 118 | < | 20 | 8 $<0.01$ | $<10$ | 4 | 410 | 2 | 177 |
| 64 | 298984 | 5 | 40.2 | 0.20 | -6 | 105 | 4 | 0.13 | 1 | $<1$ | 68 | 4 | 0.38 | $<10$ | -0.04 | 254 | 3 | 0.02 | 4 | 190 | 42 | 4 | 20 | $7 \times 0.01$ | <10 | 4 | $<10$ | 2 | 122 |
| 68 | 290685 | 5 | 0.4 . | 0.24 | 8 | 8 | $<$ | 0.01 | 2 | 1 | 65 | 2 | 0.61 | <10 | 0.02 | 372 | 5 | 0.02 | 2 | 150 | 02 | 8 | <0 | \% 4.01 | $\leqslant 10$ | 4 | $<10$ | 2 | 114 |
| 68 | 200038 | 5 | 0.2 | 0.25 | 4 | 140 | 4 | 2.00 | 1 | 3 | 39 | 11 | 1.00 | $<10$ | 0.07 | 1015 | 5 | 0.02 | 1 | 350 | 18 | 4 | 20 | $20<0.01$ | $<10$ | 3 | 410 | 4 | 111 |
| 67 | 290687 | 15 | 3.2 | 0.30 | 4 | 40 | 4 | 3.00 | 14 | 9 | 30 | 295 | 3.00 | $<10$ | 0.98 | 8585 | 4 | 0.02 | 4 | 430 | 140 | 15 | 20 | $67<0.01$ | $<10$ | 14 | 410 | 7 | 1338 |
| 68 | 280068 | 20 | 3.8 | 0.31 | 4 | 45 | 4 | 2.71 | 13 | 8 | 19 | 254 | 3.29 | $<10$ | 0.09 | 3108 | 3 | 0.02 | 4 | 200 | 224 | 10 | 40 | $64<0.01$ | 40 | 10 | $<10$ | 2 | 1484 |
| 60 | 280009 | 5 | 2.2 | 0.36 | 15 | 85 | 4 | 3.81 | 2 | 10 | 30 | 86 | 3.36 | $<10$ | 1.00 | 3670 | 6 | 0.02 | 7 | 960 | 144 | 25 | <20 | 87 c0.01 | $<10$ | 18 | 410 | 8 | 215 |
| 70 | 280070 | 10 | 1.8 | 0.21 | 25 | 45 | $\leqslant$ | 4.30 | 11. | 12 | 25 | 40 | 2.90 | $<10$ | 1.20 | 3672 | 10 | 0.02 | 6 | 760 | 340 | 20 | 20 | $\infty<0.01$ | $<10$ | 8 | $<10$ | 6 | 80 |
| 71 | 208971 | 5 | 0.8 | 0.57 | 6 | 40 | 6 | 2.46 | 2 | 10 | 80 | 22 | 2.84 | $<10$ | 0.80 | 830 | 7 | 0.05 | 7 | 630 | 124 | 6 | 20 | 4340.01 | 40 | 20 | 410 | 1 | 584 |
| 72 | 298872 | 5 | 4.2 | 3.16 | 10 | 50 | 15 | 4.50 | $<1$ | 31 | 149 | 20 | 5.48 | $<10$ | 3.25 | 1000 | 4 | 0.12 | 62 | 810 | 10 | 5 | 20 | 080.06 | $<10$ | 141 | 410 | $<1$ | 77 |
| 73 | 290873 | 5 | 0.4 | 0.88 | 4 | 40 | $\leqslant$ | 1.77 | 2 | 8 | 57 | 20 | 2.57. | $<10$ | 0.88 | 867 | 6 | 0.04 | 3 | 440 | 60 | 10 | 20 | $30-0.01$ | $<10$ | 10 | 410 | 1 | 180 |
| 74 | 290674 | 15 | 1.0 | 0.71 | < | 40 | 10 | 3.13 | $<1$ | 10 | 68 | 28 | 3.74 | $<10$ | 1.08 | 1004 | 6 | 0.03 | 7 | 450 | $\infty$ | - | 20 | $49 \times 0.01$ | $<10$ | 15 | $<10$ | 2 | 78 |
| 75 | 290875 | 5 | 0.6 | $1 . \% 6$ | 5 | 50 | 10 | 4.32 | 41 | 18 | 65 | 50 | 6.25 | $<10$ | 1.72 | 2208 | 16 | 0.04 | 8 | 600 | 18 | 4 | 20 | 77 -0.01 | $<10$ | 67 | $<10$ | 1 | 118 |
| 78 | 290676 | 6 | 0.4 | 1.04 | 5 | 50 | ¢ | 2.82 | 41 | 19 | 63 | 34 | 3.55 | $<10$ | 1.15 | 1037 | 29 | 0.03 | 17 | 720 | 10 | < | $<20$ | 8140.01 | $<10$ | 48 | $<10$ | 2 | 78 |
| 77 | 298677 | 5 | 0.8 | 1.03 | $\leqslant$ | 45 | 10 | 3.18 | 41 | 14 | 75 | 14 | 3.87 | $<10$ | 1.22 | 2153 | 29 | 0.03 | 18 | 780 | 20 | - | $<20$ | 8240.01 | 410 | 81 | $\leqslant 10$ | 3 | 91 |
| 78 | 280878 | 10 | 1.4 | 0.23 | $<$ | 50 | 10 | 3.84 | 2 | 12 | 59 | 11 | 3.08 | $<10$ | 1.12 | 3790 | 17 | 0.02 | 5 | 400 | 78 | 5 | 20 | $48<0.01$ | 40 | 6 | $<10$ | 4 | 123 |
| 78 | 298879 | 5 | 0.4 | 0.19 | 4 | 46 | 5 | 2.62 | 4 | 3 | 97 | 3 | 4.74 | $<10$ | 0.70 | 4804 | 12 | 0.02 | 2 | 130 | 178 | 10 | 20 | $39<0.01$ | <10 | 2 | $<10$ | 2 | 303 |
| 80 | 298000 | 5 | 0.6 | 0.20 | 4 | 275 | 4 | 3.45 | $<1$ | 4 | 57 | $\bigcirc$ | 1.20 | <10 | 0.82 | 3034 | 15 | 0.02 | 2 | 240 | 44 | 15 | 80 | $40 ¢ 0.01$ | $<10$ | 2 | <10 | 8 | 71 |
| 81 | 290881 | 5 | 0.6 | 0.23 | 4 | 180 | $\leqslant$ | 2.74 | 41 | 2 | 88 | 9 | 1.04 | $<10$ | 0.41 | 1609 | 3 | 0.02 | 4 | 180 | 24 | 8 | 20 | $00<0.01$ | $<10$ | 4 | $<10$ | 2 | 41 |
| 82 | 290082 | 8 | 1.0 | 0.18 | $<$ | 85 | 4 | 1.34 | 2 | 2 | 69 | 10 | 0.84 | $<10$ | 0.14 | 795 | 9 | 0.01 | 1 | 120 | 184 | 10 | 80 | $22<0.01$ | 40 | 4 | $<10$ | 2 | 188 |
| 83 | 290883 | 5 | 0.4 | 0.18 | 4 | 30 | $<$ | 0.85 | 2 | 4 | 65 | 2 | 0.58 | $<10$ | 0.22 | 845 | 6 | 0.01 | $<1$ | 130 | 130 | 4 | 20 | $13<0.01$ | $\leqslant 10$ | 4 | $\leqslant 10$ | 2 | 232 |
| 84 | 298084 | 5 | <0.2 | 0.25 | 4 | 118 | $\leqslant$ | 2.14 | 2 | 2 | 55 | 7 | 0.91 | $<10$ | 0.14 | 022 | 4 | 0.02 | 41 | 320 | 42 | 4 | 20 | $53-0.01$ | <10 | 4 | <10 | 3 | 151 |
| 85 | 290685 | 5 | 0.4 | 0.40 | 4 | 220 | $<$ | 2.53 | 1 | 4 | 48 | 2 | 0.65 | 20 | 0.05 | 1007 | 4 | 0.02 | 41 | 190 | 6 | 4 | 20 | $15<0.01$ | $<10$ | 41 | <10 | 3 | 100 |
| 88 | 200088 | 5 | 0.2 | 0.21 | 8 | 185 | 4 | 1.81 | $\leqslant 1$ | 4 | 61 | 2 | 0.44 | 410 | 0.00 | 437 | 3 | 0.03 | 1 | 400 | 18 | < | $<20$ | $49<0.04$ | 410 | 4 | $<10$ | 2 | 33 |
| 87 | 290007 | 5 | 2.2 | 0.25 | 5 | 45 | 5 | 2.71 | 1 | 7 | 68 | 384 | 2.60 | $<10$ | 0.40 | 1453 | 5 | 0.08 | 41 | 150 | 184 | 4 | 20 | $38<0.01$ | $\leqslant 10$ | 2 | $<10$ | 1 | 117 |
| 88 | 298088 | 10 | 4.6 | 0.34 | 4 | 50 | 4 | 3.69 | 1 | 13 | 50 | 478 | 3.28 | $<10$ | 0.00 | 1873 | 8 | 0.03 | 2 | 160 | 38 | 4 | $\infty$ | 080.01 | $\leqslant 10$ | 3 | 410 | 4 | 109 |
| 69 | 290009 | 5 | 40.2 | 0.96 | 4 | 45 | 5 | 1.42 | $<1$ | 12 | 25 | 3 | 3.81 | $<10$ | 0.08 | 887 | 2 | 0.02 | 8 | 840 | 20 | - | $<20$ | 470.04 | $<10$ | 27 | 410 | 4 | 00 |
| 60 | 290090 | 5 | 0.4 | 0.38 | 4 | 40 | 10 | 4.61 | 1 | 16 | 60 | 14 | 4.70 | $<10$ | 0.80 | 944 | 9 | 0.03 | 15 | 770 | 22 | 6 | $<0$ | $71<0.01$ | $<10$ | 18 | $<10$ | 1 | 124 |


| EQUI | ENGMVEI | 6 LTD． |  |  | ICP CERTIFICATE OF ANALYSAS AK 90－617 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | ECO－TECH LABORATONES LTD． |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Etit． | T的整 | Aupab） | A． | A\％ | As | 8. | B | C．\％ | Cd | Co | Cr | Cu | Fe\％ |  | ＊）\％ | Mn | 0 | 戉\％ | 4 | P | Pb | 86 | 8 m ． | 8 | 11\％ | 1 | $V$ | W | $Y$ | 2 n |
| 91 | 290601 | 5 | 402 | 0.32 | 8 | 20 | 5 | 1.85 | $<1$ | 12 | 43 | 32 | 3.04 | $<10$ | 0.42 | 384 | 8 | 0.04 | 13 | 0 | 8 | 10 | 2 | 20 | 4.01 | ＜10 | 9 | $<10$ | 4 | 83 |
| 92 | 290982 | 5 | 0.2 | 0.23 | 4 | 60 | 5 | 7.28 | 2 | 5 | 39 | 8 | 3.53 | ＜10 | 2.42 | 228 | 7 | 0.03 | 4 | 200 | 18 | 48 | 20 | 4 | $\bigcirc 0.01$ | $<10$ | 5 | $<10$ | 6 | 146 |
| 93 | 290093 | 5 | 0.4 | 0.33 | ＜ | 25 | 10. | 2.85 | 2 | 14 | 45 | 29 | 4.19 | $<10$ | 0.79 | 631 | 8 | 0.06 | 11 | 710 | 58 | 10 | 80 | 42 | 40.01 | $<10$ | 13 | $<10$ | $<1$ | 127 |
| 94 | 298004 | 18 | 0.2 | 1.14 | 5 | 40 | 10 | 6.85 | 1 | 31 | 08 | 80 | 7.02 | $<10$ | 1.87 | 1387 | 7 | 0.05 | 35 | 1000 | 18 | ＊ | 20 | 112 | 40.01 | $<10$ | 71 | $<10$ | 4 | 6 |
| 95 | 298085 | 5 | 0.2 | 0.77 | 15 | 40 | 4 | 8.92 | $<1$ | 28 | 42 | 81 | 6.37 | $\leqslant 10$ | 1.81 | 1500 | － | 0.05 | 31 | 1140 | 12 | 10 | 20 | 150 | ¢0．01 | $<10$ | 31 | $<10$ | 1 | 00 |
| 98 | 298088 | 20 | 1.0 | 0.67 | 15 | 40 | ＜ | 6.86 | 2 | 34 | 39 | 103 | 8.57 | $<10$ | 1.91 | 1437 | 11 | 0.05 | $2 \dot{8}$ | 870 | 18 | 15 | 20 | 113 | 40.01 | $<10$ | 48 | $<10$ | $\leqslant 1$ | 120 |
| 97 | 298008 | 5 | 0.4 | 0.39 | 10 | 40 | 4 | 6.47 | 4 | 22 | 40 | 72 | 5.82 | $<10$ | 1.78 | 1181 | 7 | 0.08 | ： 12 | 760 | 12 | 6 | 20 | 94 | 4.01 | $<10$ | 28 | ＜10 | 2 | 83 |
| 88 | 290898 | 5 | 0.4 | 0.31 | 4 | 30 | 5 | 3.78 | 41 | 14 | 48 | 32 | 4.14 | 410 | 1.07 | 848 | 8 | 0.05 | 13 | 800 | 10 | 10 | 20 | 47 | －0．01 | $<10$ | 17 | $<10$ | 1 | 57 |
| 99 | 298089 | 30 | 0.2 | 0.30 | 6 | 20 | 15 | 3.56 | 1 | 14 | 57 | 20 | 4.03 | $<10$ | 1.20 | 879 | 8 | 0.05 | 11 | 540 | 8 | 10 | 20 | 38 | ¢0．01 | $<10$ | 18 | 410 | 4 | 78 |
| 100 | 288700 | 6 | 0.8 | 0.30 | ＜ | 36 | 10 | 6.74 | 1 | 15 | 43 | 40 | 4.58 | $<10$ | 2.28 | 2132 | 6 | 0.04 | 13 | 50 | 22 | 25 | 20 | 68 | ＋0．01 | $<10$ | 18 | $<10$ | 3 | 120 |
| 101 | 298704 | 5 | 1.2 | 1.06 | 8 | 40 | 25 | 8.48 | 1 | 45 | 82 | 82 | 8.42 | 410 | 2.46 | 2008 | 8 | 0.04 | 68 | 700 | 48 | 6 | 20 | ${ }^{6}$ | $\infty .01$ | 410 | 77 | 410 | 41 | 183 |
| 102 | 298702 | 5 | 0.6 | 0.41 | 35 | 35 | 4 | 4.74 | $<1$ | 36 | 37 | 131 | 5.28 | $<10$ | 1.52 | 1507 | B | 0.05 | 44 | 1020 | 14 | 18 | 20 | 52 | ¢0．01 | $<10$ | 38 | $<10$ | 4 | 87 |
| 103 | 298703 | 5 | 0.8 | 0.24 | 8 | 45 | 5 | 8.07 | 2 | 11 | 38 | 20 | 3.39 | $<10$ | 2.04 | 3504 | 6 | 0.08 | 13 | 510 | 22 | 20 | $<0$ | 51 | ¢0．01 | $<10$ | 10 | $<10$ | 5 | 130 |
| 104 | 290704 | 5 | 1.2 | 0.23 | ＜ | 40 | 10 | 8.41 | $\leqslant 1$ | 12 | 64 | 30 | 4.31 | $<10$ | 2.15 | 3031 | 10 | 0.03 | 19 | 60 | 18 | 20 | 20 | 56 | ＜0．01 | $<10$ | 15 | ＜10 | 3 | 72 |
| 105 | 298705 | 6 | 1.2 | 0.27 | 5 | 38 | 15 | 6.10 | 1 | 16 | 48 | 11 | 4.57 | $<10$ | 2.05 | 5022 | 7 | 0.03 | 18 | 700 | 78 | 15 | ＜0 | 53 | ¢0．01 | $<10$ | 10 | $<10$ | 2 | 115 |
| 108 | 298708 | 6 | 1.4 | 0.18 | $\leqslant$ | 30 | 5 | 7.16 | 2 | 17 | 54 | 13 | 4.57 | $<10$ | 2.38 | 8048 | 9 | 0.02 | 22 | 600 | 110 | 20 | 20 | 68 | 0.07 | $<10$ | 27 | 410 | 4 | 192 |
| 107 | 298707 | 5 | 1.2 | 0.25 | 4 | 35 | 15 | 8.17 | 2 | 15 | 33 | 14 | 4.12 | $\leqslant 10$ | 2.60 | 4957 | 8 | 0.03 | 12 | 570 | 20 | 15 | 20 | 89 | ＜0．01 | $<10$ | 18 | $<10$ | 3 | 190 |
| 108 | 299708 | 5 | 0.4 | 0.33 | 4 | 35 | 10 | 9.07 | 10 | 18 | 33 | 29 | 4.38 | $<10$ | 3.01 | 2000 | 3 | 0.04 | 22 | 540 | 30 | 20 | 20 | 119 | ＜0．01 | $<10$ | 33 | $<10$ | 2 | 007 |
| 109 | 288709 | 5 | 0.6 | 0.28 | 8 | 30 | 5 | 4.83 | $<1$ | 16 | 55 | 19 | 4.00 | $<10$ | 1.74 | 1284 | 8 | 0.03 | 14 | 490 | 32 | 5 | 40 | 06 | 40.01 | $<10$ | 11 | $<10$ | 1 | 82 |
| 110 | 298710 | 5 | 0.4 | 0.27 | 4 | 30 | 15 | 5.03 | 1 | 11 | 39 | 13 | 3.78 | ＜10 | 1.74 | 1092 | 7 | 0.03 | 7 | 430 | 12 | 15 | 20 | 63 | 40.01 | $<10$ | 7 | $<10$ | 3 | 8 |
| 111 | 298711 | 5 | 0.4 | 0.35 | $<$ | 30 | 15 | 2.84 | $<1$ | 9 | 58 | 17 | 3.28 | $<10$ | 0.83 | 001 | 6 | 0.04 | 7 | 490 | 6 | ＜ | 20 | 34 | 40.01 | $<10$ | 7 | 210 | $<1$ | 40 |
| 112 | 298712 | 5 | 40.2 | 0.29 | ＊ | 80 | 5 | 4.37 | $<1$ | 6 | 39 | 6 | 2.70 | $<10$ | 1.40 | 1094 | 4 | 0.03 | 3 | 820 | － | 10 | 20 | 9 | ¢0．01 | $<10$ | 5 | $<10$ | 3 | 00 |
| 113 | 229713 | 8 | 0.8 | 0.37 | 4 | 30 | 10 | 8.50 | 4 | 49 | 40 | 35 | 4.81 | $\leqslant 10$ | 2.13 | 2048 | 3 | 0.04 | 42 | 820 | 10 | 10 | $<0$ | 87 | －0．01 | $<10$ | 18 | $<10$ | 2 | 85 |
| 114 | 290714 | 8 | 0.8 | 1.46 | 5 | 45 | 40 | 6.04 | $<1$ | 36 | 88 | 97 | 6.64 | $<10$ | 2.71 | 1843 | 6 | 0.05 | 63 | 510 | 18 | ＊ 5 | 80 | 123 | 40.01 | $<10$ | 84 | $\leqslant 10$ | 4 | 138 |
| 115 | 298715 | 5 | 1.6 | 0.81 | $<$ | 35 | 10 | 6.23 | 1 | 30 | 49 | 25 | 5.70 | 410 | 2.94 | 4481 | 8 | 0.02 | 36 | 820 | 22 | 15 | 20 | 184 | ＜0．01 | $<10$ | 41 | $<10$ | 1 | 180 |
| 116 | 298718 | 5 | 1.8 | 0.28 | ＜ | 48 | 10 | 7.03 | 2 | 22 | 44 | 36 | 4.94 | $<10$ | 2.79 | 0308 | 6 | 0.02 | 22 | 510 | 24 | 25 | 20 | 184 | 0.01 | $<10$ | 20 | $<10$ | 3 | 135 |
| 117 | 298717 | 5 | 0.2 | 0.19 | $\leqslant$ | 25 | 10 | 1.83 | 1 | 8 | 59 | 11 | 2.04 | $<10$ | 0.49 | 778 | 16 | 0.02 | 2 | 150 | 30 | 10 | 20 | 20 | ＜0．01 | 40 | 2 | $<40$ | 2 | 80 |
| 118 | 298718 | 10 | 1.2 | 0.28 | 4 | 60 | ＜ | 1.00 | 2 | 2 | 82 | 5 | 1.52 | $<10$ | 0.31 | 471 | 4 | 0.02 | 4 | 100 | 112 | 4 | $<0$ | 23 | 40.01 | $<10$ | 1 | $<10$ | 1 | 118 |
| 119 | 288718 | 20 | 0.6 | 0.22 | ¢ | 108 | ¢ | 1.70 | 5 | 2 | 75 | 6 | 0.77 | $<10$ | 0.13 | 404 | 5 | 0.02 | 2 | 190 | 300 | 5 | 20 | 35 | －0．01 | $<10$ | 4 | $<10$ | 2 | 402 |
| 120 | 298720 | 10 | －0．2 | 0.25 | 4 | 125 | 10 | 0.72 | 1 | 2 | 57 | 3 | 0.74 | $<10$ | 0.20 | 430 | － | 0.02 | 1 | 170 | 182 | $\leqslant$ | 20 | 13 | ＜0．01 | ＜10 | $<1$ | 410 | 2 | 90 |
| 121 | 298721 | 5 | 40.2 | 0.22 | ＜ | 68 | 4 | 1.60 | 2 | 1 | 04 | 2 | 0.60 | $<10$ | 0.11 | 477 | 4 | 0.02 | 4 | 100 | 170 | 4 | $<20$ | 41 | 40.01 | $<10$ | $<1$ | $<10$ | 2 | 111 |
| 122 | 298722 | 25 | 40.2 | 0.27 | ＜ | 250 | $<6$ | 3.07 | $<1$ | 4 | 57 | 8 | 1.54 | $<10$ | 0.57 | 751 | 6 | 0.03 | 1 | 700 | 8 | 10 | 20 | 87 | ¢0．01 | 40 | 10 | $<10$ | 6 | 20 |
| 123 | 298723 | 5 | 40.2 | 0.24 | 4 | 80 | 4 | 1.77 | 1 | 1 | 70 | 4 | 0.48 | $<10$ | 0.15 | 518 | 4 | 0.01 | 41 | 180 | 22 | 6 | 20 | 29 | ¢0．01 | $<10$ | 4 | $<10$ | 3 | 0 |
| 124 | 298724 | 8 | 0.4 | 3.33 | ¢ | 105 | 10 | 5.38 | $<1$ | 20 | 46 | 83 | 8.00 | $<10$ | 1.85 | 2170 | 4 | 0.20 | 7 | 1140 | 80 | 5 | 20 | 265 | 0.02 | $<10$ | 114 | $<10$ | 6 | 120 |
| 125 | 298725 | 5 | 40.2 | 0.27 | $\leqslant$ | 100 | 4 | 2.58 | 4 | 2 | 77 | 5 | 0.85 | $<10$ | 0.28 | 720 | 5 | 0.02 | $<1$ | 180 | 22 | \＆ | 20 | 74 | ¢0．01 | $\leqslant 10$ | 2 | $<10$ | 2 | 24 |

EQUITY ENGMNEERNG LTD.
ICP CERTIFICATE OF ANALYSIS AK 90-617
ECO.TECH LADORATORES LTD.


ICP CERTIFICATE OF ANALYSIS AK 9e-617
ECO-TECH LABORATORES LTD.

|  | T- ${ }^{\text {年 }}$ | Al(peb) | 1 | N\% | Ae | B | E | Ca\% | Cd | Co | cr | Cu | Fo\% |  | 管\% | In | no | M \% | M | $\mathbf{P}$ | Pb | $2{ }^{2}$ | 80 | 8 | 7\% \% | 4 | $V$ | W | $\boldsymbol{Y}$ | 21 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 181 | 298781 | 5 | 0.4 | 2.04 | 30 | 56 | 4 | 4.11 | 1 | 27 | 68 | 174 | 4.84 | <10 | 1.58 | 1332 | 11 | 0.11 | 38 | 770 | 48 | 10 | 20 | 424 | 0.03 | $<10$ | 04 | $<10$ | 4 | 187 |
| 182 | 298762 | 5 | 4.2 | 2.21 | 25 | 45 | 4 | 2.63 | $<1$ | 20 | 57 | 80 | 5.18 | $<10$ | 1.67 | 952 | 5 | 0.13 | 18 | 600 | 18 | 6 | $<2$ | 93 | 0.08 | <10 | 184 | $\leqslant 10$ | 2 | 8 |
| 163 | 288783 | 5 | <0.2 | 1.95 | 10 | 45 | 4 | 2.37 | <1 | 17 | 80 | 87 | 4.67 | $<10$ | 1.27 | 847 | 7 | 0.15 | 14 | 000 | 18 | 4 | 20 | 80 | 0.07 | $<10$ | 122 | 10 | 4 | 84 |
| 164 | 298784 | 5 | 40.2 | 2.13 | 25 | 35 | 10 | 3.06 | <1 | 19 | 78 | 90 | 5.46 | $<10$ | 1.88 | 844 | 5 | 0.00 | 10 | 700 | 22 | 4 | 20 | 78 | 0.06 | $\leqslant 10$ | 131 | $\leqslant 10$ | 4 | 70 |
| 185 | 298785 | 5 | -0.2 | 1.93 | 45 | 35 | 10 | 3.15 | $<1$ | 34 | 59 | 82 | 5.97 | $<10$ | 1.76 | 830 | 5 | 0.08 | 12 | 760 | 22 | 4 | $<0$ | 00 | 0.0s | $<10$ | 130 | $<10$ | 4 | 6 |
| 168 | 290788 | 5 | 0.6 | 1.88 | 30 | 45 | < | 2.42 | 2 | 8 | 91 | 28 | 2.85 | $<10$ | 1.23 | 701 | 6 | 0.65 | 11 | 600 | 130 | 10 | 20 | 78 | 4.01 | $<10$ | 88 | 410 | 8 | 178 |
| 167 | 298767 | 5 | 1.0 | 2.83 | 90 | 65 | 10 | 8.13 | 4 | 24 | 104 | 32 | 6.45 | $<10$ | 1.88 | 1215 | 4 | 0.02 | : 48 | 1130 | 18 | - | 20 | 197 | 0.01 | 410 | 88 | $\leqslant 10$ | 4 | 73 |
| 168 | 288788 | 5 | 2.0 | 4.97 | 40 | 36 | 10 | $>10$ | $<1$ | 12 | 63 | 17 | 3.74 | $<10$ | 1.38 | 1510 | 6 | 0.02 | 14 | 810 | 48 | 10 | 20 | 193 | -0.01 | $\leqslant 10$ | 40 | $<10$ | 8 | 110 |
| 189 | 298709 | 10 | 3.4 | 2.13 | 90 | 70 | 15 | 4.79 | $<1$ | 42 | 40 | 29 | 3.6 | $<10$ | 1.10 | 520 | 6 | 0.04 | 8 | 600 | 74 | \& | 20 | 82 | 0.02 | 40 | 42 | <10 | 4 | 114 |
| 170 | 298770 | 8 | $<0.2$ | 1.88 | 25 | 50 | 15 | 8.10 | $<1$ | 10 | 37 | 30 | 3.81 | $<10$ | 1.10 | 800 | 6 | 0.04 | 7 | 790 | 34 | ¢ | 20 | 73 | 0.04 | $<10$ | 24 | 10 | 7 | 64 |
| 171 | 299771 | 5 | 40.2 | 2.33 | 5 | 60 | 10 | 4.23 | $<1$ | 22 | 61 | 55 | 4.84 | $<10$ | 1.89 | 779 | 5 | 0.05 | 24 | 2210 | 22 | 8 | 20 | 88 | 0.01 | 410 | 84 | $<10$ | 2 | 107 |
| 172 | 298772 | 5 | 0.4 | 1.85 | 15 | 60 | 5 | 3.53 | $<1$ | 10 | 65 | 44 | 3.00 | $<10$ | 1.04 | 487 | 6 | 0.04 | 10 | 970 | 138 | 10 | <20 | 85 | 0.05 | $<10$ | 33 | 40 | 5 | 80 |
| 173 | 298773 | 5 | <0.2 | 1.71 | 30 | 30 | 10 | 3.27 | $<1$ | 14 | 84 | 45 | 4.84 | $<10$ | 1.07 | 925 | 13 | 0.08 | 21 | 600 | 30 | 4 | 20 | 74 | 0.03 | $<10$ | 112 | 40 | 4 | 76 |
| 174 | 298774 | 10 | ¢ 0.2 | 1.68 | 45 | 25 | 4 | 2.32 | $\leqslant 1$ | 15 | 60 | 46 | 4.80 | $<10$ | 1.08 | 755 | 12 | 0.07 | 20 | 60 | 22 | - 6 | 20 | 55 | 0.04 | 410 | 117 | 410 | 4 | 0 |
| 175 | 298775 | 5 | 0.4 | 1.87 | 55 | 35 | 10 | 2.72 | 3 | 14 | 63 | 37 | 4.85 | $<10$ | 1.31 | 767 | 7 | 0.08 | 13 | 810 | 94 | 10 | 20 | 109 | 0.02 | $<10$ | 6 | 410 | 6 | 198 |
| 178 | 298776 | 5 | 0.2 | 2.03 | 30 | 30 | 6 | 1.81 | $<1$ | 18 | 60 | 66 | 8.38 | $<10$ | 1.37 | 688 | 12 | 0.11 | 21 | 860 | 18 | < | 20 | 69 | 0.08 | $<10$ | 123 | 410 | 3 | 63 |
| 177 | 280777 | 5 | 0.2 | 1.90 | 45 | 56 | 6 | 2.22 | <1 | 14 | 85 | 63 | 4.57 | $\leqslant 10$ | 1.42 | 609 | 9 | 0.05 | 14 | 740 | 34 | 8 | 20 | 110 | <0.01 | $\leqslant 10$ | 80 | 410 | 4 | 83 |

## marata:

Ruspifi:

| 1 | 290601 | 5 | 4.2 | 3.10 | 4 | 30 | 10 | 2.77 | 4 | 24 | 145 | 29 | 4.27 | $<10$ | 2.80 | 570 | 2 | 0.21 | 41 | 010 | 2 | 10 | 20 | 100 | 0.08 | $<10$ | 100 | $<10$ | 41 | 61 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 38 | 290038 | 20 | 40.2 | 2.21 | $<$ | 40 | - 6 | 3.74 | $<1$ | 22 | 107 | 31 | 5.15 | $<10$ | 2.37 | 701 | 6 | 0.07 | 38 | 710 | 40 | < | 20 | 98 | 0.62 | $<10$ | 91 | $<10$ | 4 | 78 |
| 71 | 288071 | 6 | 0.4 | 0.80 | 5 | 30 | 10 | 2.08 | 2 | 10 | 82 | 18 | 2.63 | $<10$ | 0.87 | 857 | 8 | 0.04 | 9 | 800 | 134 | 10 | 20 | 40 | 4.01 | <10 | 18 | <10 | 2 | 172 |
| 108 | 298708 | 6 | 1.4 | 0.23 | * | 30 | 15 | 7.13 | 2 | 18 | 50 | 18 | 4.57 | $<40$ | 2.37 | 9042 | 7 | 0.02 | 20 | 800 | 122 | 18 | <20 | 88 | 0.01 | 40 | 27 | 40 | 4 | 193 |
| 141 | 298741 | 5 | 0.6 | 0.38 | 10 | 55 | 10 | 8.21 | 2 | 20 | 34 | 27 | 4.53 | $<10$ | 2.77 | 2508 | 8 | 0.04 | 21 | 810 | 14 | 20 | 20 | 95 | ¢0.01 | <10 | 17 | $<10$ | 2 | 142 |
| 178 | 293778 | 5 | 40.2 | 2.00 | 30 | 30 | 15 | 1.78 | 41 | 48 | 88 | 64 | 5.38 | <10 | 1.37 | 683 | 11 | 0.10 | 19 | 80 | 18 | * | $<0$ | 68 | 0.05 | $<10$ | 121 | 410 | 3 | 38 |
| Repeat: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 | 280001 | 6 | 40.2 | 3.15 | 4 | 35 | 6 | 2.74 | 41 | 24 | 158 | 31 | 4.34 | $<10$ | 2.05 | 572 | 2 | 0.20 | 41 | 920 | 2 | 15 | 20 | 88 | 0.08 | $<10$ | 112 | $\leqslant 10$ | 4 | 84 |
| 10 | 290310 | 5 | -0.2 | 1.78 | $<8$ | 40 | 4 | 4.67 | $<1$ | 13 | 58 | 15 | 4.58 | $<10$ | 1.88 | 4554 | 5 | 0.04 | 9 | 370 | 12 | 10 | 20 | 94 | 4.01 | $<10$ | 70 | $<10$ | 3 | 8 |
| 19 | 290619 | 5 | 0.8 | 0.22 | \& | 50 | 4 | 2.85 | 3 | 4 | 92 | 4 | 1.58 | $<10$ | 0.67 | 2988 | 4 | 0.02 | 3 | 180 | 134 | 10 | $<20$ | 42 | <0.01 | $<10$ | 1 | $\leqslant 10$ | 2 | 207 |
| 38 | 289336 | 20 | 4.2 | 2.43 | es | 40 | 10 | 4.06 | $<1$ | 24 | 117 | 33 | 8.43 | $<10$ | 2.58 | 737 | - | 0.08 | 30 | 760 | 8 | 5 | <20 | 102 | 0.02 | 410 | 9 | <10 | 4 | 78 |
| 45 | 298645 | 5 | 0.2 | 3.13 | 4 | 70 | 5 | 5.42 | 1 | 36 | 84 | 74 | 6.33 | <10 | 4.16 | 1137 | 4 | 0.05 | 43 | 1090 | 20 | 10 | 20 | 149 | <0.01 | $\leqslant 10$ | 111 | <10 | $\leqslant 1$ | 137 |



## c.nata

 Repent:|  |  |
| :---: | :---: |
| 54 | 29 |
| 71 | 29 |
| 80 | 298800 |
| 89 | 28 |
| 108 | 298700 |
| 115 | 288716 |
| 124 | 298724 |
| 141 | 298741 |
| 150 | 296750 |
| 159 | 9 |


| 5 | 0.4 | 0.27 | < 6 | 225 |
| :---: | :---: | :---: | :---: | :---: |
| 5 | 0.4 | 0.58 | 4 | 40 |
| 5 | 0.6 | 0.20 | 4 | 275 |
| 5 | <0.2 | 0.97 | 4 | 45 |
| 5 | 1.8 | 0.20 | 8 | 25 |
| 8 | 1.4 | 0.87 | 4 | 35 |
| 6 | 0.4 | 3.34 | 4 | 108 |
| 6 | 08 | 0.34 | 4 | 55 |
| 5 | 1.0 | 0.81 | 10 | 45 |
| 5 | 1.4 | 1.82 | 200 | 50 |
| 130 | 1.2 | 1.80 | 65 | 160 |
| 125 | 1.4 | 1.79 | 86 | 185 |
| 138 | 1.0 | 1.70 | 88 | 160 |
| 130 | 0.8 | 1.00 | 65 | 160 |
| 130 | 0.8 | 1.76 | 65 | 168 |
| - | 12 | 1.00 | 70 | 185 |


| 5 | 2.52 | 3 | 10 | 72 | 9 | 2.41 | $<10$ | 0.34 | 2208 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | 2.50 | 2 | 10 | 80 | 21 | 2.08 | $<10$ | 0.88 | 251 |
| 4 | 3.50 | $\leqslant 1$ | 1 | 56 | - | 1.22 | $<10$ | 0.83 | 3074 |
| 15 | 1.48 | 41 | 12 | 25 | 3 | 3.85 | $<10$ | 0.67 | 816 |
| 15 | 6.85 | 2 | 17 | 49 | 11 | 4.37 | $<10$ | 227 | 8040 |
| 10 | 6.66 | 2 | 32 | 52 | 25 | 8.03 | $<10$ | 3.00 | 4007 |
| 15 | 8.32 | $<1$ | 20 | 42 | 63 | 8.50 | <10 | 1.94 | 2184 |
| 4 | 8.08 | 2 | 19 | 63 | 28 | 4.30 | $<10$ | 2.71 | 2687 |
| 4 | 3.78 | 4 | 17 | 58 | 57 | 4.06 | $<10$ | 1.12 | 162\% |
| \& | 4.34 | $\leqslant 1$ | 13 | 48 | 91 | 4.03 | $<10$ | 1.40 | 1132 |
| 4 | 1.82 | $<1$ | 20 | 82 | 79 | 3.82 | $<10$ | 0.98 | 00 |
| - | 1.68 | 4 | 19 | $\theta$ | 80 | 3.82 | $<10$ | 0.94 | 689 |
| ¢ | 1.78 | $<1$ | 20 | 59 | 00 | 4.04 | $<10$ | 0.84 | 703 |
| 5 | 1.86 | $<1$ | 18 | 08 | 78 | 3.05 | $<10$ | 0.88 | 681 |
| 5 | 1.78 | 4 | 19 | 64 | 78 | 3.90 | $<10$ | 0.96 | 095 |
| 16 | 1.73 | $<1$ | 10 | 68 | 60 | 4.04 | $<10$ | 0.88 | 687 |


| 13 | 0.02 | 16 | 200 | 410 |  |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 6 | 0.05 | 5 | 840 | 130 | 10 |
| 15 | 0.02 | 1 | 200 | 48 | 1 |
| 2 | 0.02 | 8 | 670 | 20 |  |
| 7 | 0.02 | $:$ | 20 | 800 | 108 |
|  |  |  |  |  |  |
| 6 | 0.02 | 37 | 060 | 22 | 1 |
| 4 | 0.20 | 7 | 1110 | 40 |  |
| 6 | 0.04 | 21 | 700 | 10 | 1 |
| 10 | 0.04 | 13 | 670 | 00 |  |
| 8 | 0.04 | 7 | 800 | 04 |  |


| - | 40 | $23 \times 0.01$ | 410 |
| :---: | :---: | :---: | :---: |
| 10 | $<0$ | 41 40.01 | $<10$ |
| 18 | 40 | $45 \times 0.01$ | $<10$ |
| ¢ | 40 | 450.04 | $<80$ |
| 15 | 40 | 020.01 | <10 |
| 15 | 20 | 17t 0.01 | 410 |
| * | $<0$ | 2670.03 | $<10$ |
| 18 | 20 | 9740.01 | 40 |
| 5 | 20 | $106-0.01$ | $<10$ |
| 4 | $<0$ | 1 | <10 |


| 8 | $<10$ | 3 | 207 |
| ---: | ---: | ---: | ---: |
| 10 | $<10$ | 2 | 175 |
| 2 | $<10$ | 5 | 74 |
| 20 | $<10$ | 4 | 93 |
| 20 | $<10$ | 4 | 170 |
| 44 | $<10$ | 4 | 107 |
| 114 | $<10$ | 5 | 110 |
| 16 | $<10$ | 1 | 143 |
| 20 | $<10$ | 8 | 206 |
| 74 | $<10$ | 3 | 106 |

## Stunderd:

GEO\%
GEOM
CEOPA
GEOY
GEOr8
GEO98
ceores

## dirs17 <br> XLSM8

oc: Whetom Kintic Aline me

A.<br>ped Fund J. Perente, ASe.T.

Page 7

## APPENDIX E

## CEOLOGIST'S CERTIFICATE

## CEOLOGIST'S CERTIFICATE

I, Jim Lehtinen, of 4317 Briardale Road, Royston in the Province of British Columbia, DO HEREBY CERTIFY:

1. THAT I am a Consulting Geologist with Equity Engineering Litd. with offices at Suite 207, 675 West Hastings Street, Vancouver, British Columbia.
2. THAT I am a graduate of the University of British Columbia with a Bachelor of Science degree in Geology.
3. THAT I am a Professional Geoscientist registered in good standing with the Association of Professional Engineers and Geoscientists of the Province of British Columbia.
4. THAT this report is based on a diamond drilling program I supervised in August and September of 1998, and on publicty available reports.

DATED at Vancouver, British Columbia, this $\qquad$ day of $\qquad$ 1998.

Jim Lehtinen, P.Geo.


[^0]:    * Subject to approval of assessment work covered by this report.

