

Gold Commissioner's Office 1998 SUMMARY REPORT VANCOUVER, B.C.

ON THE

SILVERTIP PROPERTY,

BRITISH COLUMBIA

Geochemistry, Geophysics, Geology, and Geotechnical Drilling

BULL 1, 2, 4Fr, 5, 7, 10, 11Fr, 15Fr, 16-23, 24Fr, 25Fr, 26Fr, 27Fr, 28Fr BETH 1, RENEE 1, TOOTS 4, STAR 2Fr CLIMAX 1, 2, 11, 12 WAY 8, 9, 11, 12

Liard Mining Division

59° 55' N, 130° 20' W NTS 104-0/16W

Volume 1

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

Text Appendix A, B, C

Owner: Silvertip Mining Corporation Operator: Silvertip Mining Corporation, Suite 420 - 355 Burrard Street, Vancouver, B.C. V6C 2G8

Submitted January 8, 1999

Chris Rees, P.Geo.

SUMMARY

Silvertip is a high grade, silver-lead-zinc, manto-type massive sulphide deposit, situated in the Cassiar Mountains just south of the British Columbia-Yukon border. It is owned and operated by Silvertip Mining Corporation, a subsidiary of Imperial Metals Corporation. Mineralization is hosted by middle Paleozoic carbonates, and consists of stratigraphically and structurally controlled bodies of pyrite-sphalerite-galena-sulphosalt massive sulphide, formed by carbonate replacement. The estimated geological resource (to January 1998) is 2.57 million tonnes grading 325 g/t silver, 6.4% lead, 8.8% zinc and 0.63 g/t gold.

The company is planning to develop a combined open pit and underground mining operation, and in the summer of 1998 entered the Environmental Assessment review process with the provincial government for project certification.

That part of the 1998 program documented in this report was carried out at a cost of \$438,390. It was primarily concerned with pre-feasibility development work, with some geophysical exploration and geological mapping. The main focus was the viability of on-site disposal of open pit and underground waste rock, with respect to environmental impact avoidance. This involved the assessment of the acid-generating and metal-leachate potential of the projected open pit waste; geotechnical drilling of the overburden and bedrock on the proposed disposal site; and the characterization of the main drainages in terms of hydrology, water quality and fish habitat.

A magnetotelluric (CSAMT) geophysical survey, covering 3.8 line-kilometres over 5 lines, was aimed at the potential for structurally-controlled mineralization deeper in the host stratigraphy, an aspect that has not been effectively investigated by past exploration drilling. The result was the detection of several strongly conductive anomalies at various depths, which are provisionally interpreted as massive sulphide in fault-controlled feeders and deeper-level stratabound mantos.

i

TABLE OF CONTENTS

1. .

.

~

. 4. .

ί.

. جي ڪ

. 5. 7

L

х. - а

. .

:

SUMMARY	i
TABLE OF CONTENTS	ii
LIST OF TABLES	iv
LIST OF FIGURES	iv
LIST OF MAPS	iv
 1.0 INTRODUCTION 1.1 Location and Access 1.2 Physiography 1.3 Land Tenure 1.4 Status of Project 1.5 This Report 1.6 Property History 1.7 Acknowledgements 	1 1 1 5 7
 2.0 GEOLOGY 2.1 Regional Geology 2.2 Property Geology 2.2.1 Stratigraphy 2.2.2 Structure 2.2.3 Mineralization and Alteration 2.3 1998 Geological mapping 	8 13 13 16 17 18
 3.0 GEOCHEMISTRY 3.1 Introduction 3.2 Selection of Drillholes for Re-Logging 3.3 Re-Logging Procedure 3.4 Sampling 3.5 Analysis 3.6 Reports 	20 20 23 24 24 25
 4.0 GEOPHYSICS 4.1 Introduction 4.2 Summary of Results 4.3 Conclusions 	27 27 27 28
 5.0 GEOTECHNICAL DRILLING 5.1 Introduction 5.2 Geological Setting 5.3 Implementation 5.4 Results 5.5 Conclusions 	29 29 29 31 31 31

ii

SELECTED BIBLIOG	RAPHY	35
PROJECT STATEME On-Site Perso Individual Per Statement of Statement Of Statement Of	onnel sonnel Expenditures Expenditures Work	36 37 38 39 40 41
APPENDIX A	ABA REPORTS - Main Logs and Summary Logs	(in Volume 1)
APPENDIX B	ACID ROCK DRAINAGE STUDIES - WASTE CHARACTERIZATION	(in Volume 1)

APPENDIX DHYDROLOGY AND WATER QUALITY REPORTS (in Volume 2)APPENDIX EFISHERIES ASSESSMENT(in Volume 2)

(in Volume 1)

GEOPHYSICS - CSAMT SURVEY

APPENDIX C

Ś. J

ι.

: Co

Į.,

LIST OF TABLES

Table 1.1	List of claims and status	3
Table 1.2	Summary of Silvertip property history	6
Table 5.1	Logs of overburden drilling samples, Silvertip Creek valley	32

LIST OF FIGURES

Fig. 1.1	Property location map	2
Fig. 2.1	Location of Silvertip in the Canadian Cordillera	9
Fig. 2.2	Main tectonic elements of northern B.C. and southern Yukon	10
Fig. 2.3	Regional geology of the Silvertip area	11
Fig. 2.4	Regional geology stratigraphic column	12
Fig. 2.5	Stratigraphic column of the Silvertip area	14
Fig. 3.1	Map of proposed open pit showing ABA drillhole and soil sampling	21
Fig. 5.1	Location of geotechnical drillholes in Silvertip Creek valley	30

LIST OF MAPS

Map 1	Silvertip property claim map	(in pocket)
Map 2	Geology	(in pocket)

persona,	
· .	
i. An a	
8. I	
1	
- i -	
1	
с. ,	
1	
: •	
x	
\frown	
•	
C. J	
/	
× ./	
<u> </u>	
_	
s. 1	
_	
· · ·	
1	
_	
_	
5.12	
6. Z	

1.0 INTRODUCTION

1.1 LOCATION AND ACCESS

The Silvertip property is situated in northern British Columbia, just south of the Yukon border, approximately 90 km west-southwest of Watson Lake, Yukon (Fig. 1.1). The property is accessible via a 25-km gravel road starting from Mile 701 (kilometre 1128) of the Alaska Highway, about 15 km east of Rancheria, Yukon.

1.2 PHYSIOGRAPHY

The property lies on the northeastern flank of the Cassiar Mountains. The terrain is moderately mountainous, with generally rounded peaks and ridges separated by U-shaped valleys. The highest peaks are about 1950 metres; topographic relief is typically about 300 to 500 metres. Roughly 35% of the property is above tree line, which is at approximately 1450 metres.

1.3 LAND TENURE

The Silvertip property is owned and operated by Silvertip Mining Corporation (SMC), a wholly owned subsidiary of Imperial Metals Corporation of Vancouver. The property currently comprises 889 units in 63 claims and 26 fractional claims, covering an area of approximately 200 square kilometres (Fig. 1.1). The claims and their current status, pending acceptance of this report, are listed in Table 1.1.

1.4 STATUS OF PROJECT

Silvertip (formerly Midway) is an epigenetic massive sulphide deposit, formed by carbonate replacement in limestone. A blind deposit, it is characterized by high grade silver-lead-zinc mineralization. The project is at the pre-feasibility stage, accompanied by advanced exploration.

Following the 1997 exploration program (reported in Silvertip Mining Corporation, 1998) and a comprehensive re-interpretation of data from earlier work, SMC calculated a total geological resource of 2.57 million tonnes grading 325 grams per tonne silver, 6.4% lead, 8.8% zinc, and 0.63 grams per tonne gold (Appendix E in Silvertip Mining Corporation, 1998).

i X i

1.1

. . .

0

ι.

÷.

Fig. 1.1: Property location map

Table 1.1: Lis	st of	claims	and	status
----------------	-------	--------	-----	--------

-

_

. .

. . .

:

n Ar v

• •

TITLE NAME	TITLE #	UNITS	RECORD DATE	EXPIRY DATE
BETH 1	222004	12	1980/08/08	2008/08/08
BETH 2	222005	20	1980/08/08	2008/08/08
ETH 3	222006	20	1980/08/08	2008/08/08
ETH 4	222007	20	1980/08/08	2008/08/08
IULL 7	222187	18	1982/08/24	2008/08/24
ULL 8	222244	15	1983/01/18	2008/01/18
ULL 1	222049	12	1980/11/12	2000/11/12
ULL 2	222050	20	1980/11/12	2000/11/12
ULL 4 FR	222064	1	1980/11/26	2000/11/26
ULL 5	222110	12	1981/07/21	2008/07/21
JLL 10	222245	2	1983/01/18	2008/01/18
JLL 11 FR	222246	1	1983/01/18	2008/01/18
ULL 12 FR	222247	1 1	1983/01/18	2008/01/18
JLL 15 FR	222272	1	1983/06/14	2008/06/14
JLL 16	222273	2	1983/06/14	2008/06/14
JLL 17	222274	2	1983/06/14	2008/06/14
JLL 18	222275	2	1983/06/14	2008/06/14
ILL 19	222276	2	1983/06/14	2008/06/14
ILL 20	222277	2	1983/06/14	2008/06/14
JLL 21	222278	2	1983/06/14	2008/06/14
ILL 22	222279	2	1983/06/14	2008/06/14
LL 23	222280	2	1983/06/14	2008/06/14
ILL 24 FR	222281		1983/06/14	2008/06/14
LL 25 FR	222282		1983/06/14	2008/06/14
LL 26 FR	222283		1983/06/14	2008/06/14
LL 27 FR	222333		1983/09/19	2008/09/19
LL 28 FR	306683		1986/10/14	2000/10/14
IMAX 1	222055	8	1980/11/26	2000/11/26
IMAX 2	222052	20	1980/11/12	2000/11/12
IMAX 3	222053	20	1980/11/12	2000/11/12
MAX 4	222056	20	1980/11/26	2000/11/26
IMAX 5	222050	20	1980/11/26	2000/11/26
IMAX 6	222058	15	1980/11/26	2000/11/26
IMAX 7	222059	15	1980/11/26	2000/11/26
IMAX 8	222039	15	1980/11/26	2000/11/26
IMAX 9	222000	15	1980/11/26	2000/11/26
IMAX 10	222061	20	1980/11/26	2000/11/26
IMAX 10	222062	6	1980/11/26	2000/11/26
IMAX 12	222063	12	1982/08/24	2008/08/24
IMAX 12	222183	12	1982/10/20	2008/08/24
LIMAX 14 FR	222234	1	1982/10/20	2000/10/20
IMAX 15 FR	222345	1	1983/10/17	2000/10/17
IMAX 16 FR	222346		1983/10/17	2000/10/17
OST 1	222051	4	1980/11/12	2000/11/12
DST 2	222155	9	1982/04/20	2008/04/20
OST 3	222156	20	1982/04/20	2008/04/20
	222284	1	1983/06/20	2008/06/20
OST 5 FR	222285	1	1983/06/20	2008/06/20
OST 11	222184	10	1982/08/24	2008/08/24
OST 12	222185	15	1982/08/24	2008/08/24

TITLE NAME	TITLE #	UNITS	RECORD DATE	EXPIRY DATE
POST 13	222186	18	1982/08/24	2000/08/24
POST 14	222235	2	1982/10/20	2000/10/20
POST 15	222332	20	1983/09/19	2008/09/19
POST 16	222336	2	1983/10/03	2000/10/03
RENEE 1	221908	12	1979/11/02	2000/11/02
STAR 2 FR	222271	1	1983/06/14	2008/06/14
STAR 3	222299	4	1983/07/06	2008/07/06
TOOTS 4	221837	20	1979/07/06	2008/07/06
WAY 1	222040	20	1980/10/20	2000/10/20
WAY 2	222041	20	1980/10/20	2000/10/20
WAY 3	222042	20	1980/10/20	2000/10/20
WAY 4	222043	20	1980/10/20	2000/10/20
WAY 5	222044	20	1980/10/20	2000/10/20
WAY 6	222065	20	1980/11/26	2000/11/26
WAY 7	222066	20	1980/11/26	2000/11/26
WAY 8	222067	15	1980/11/26	2000/11/26
WAY 9	222068	20	1980/11/26	2000/11/26
WAY 10	222069	20	1980/11/26	2000/11/26
WAY 11	222070	20	1980/11/26	2000/11/26
WAY 12	222071	15	1980/11/26	2000/11/26
WAY 16	222072	20	1980/11/26	2000/11/26
WAY 17	222073	20	1980/11/26	2000/11/26
WAY 18	222074	15	1980/11/26	2000/11/26
WAY 19	222075	20	1980/11/26	2000/11/26
WAY 20	222076	20	1980/11/26	2000/11/26
WAY 21	222077	20	1980/11/26	2000/11/26
WAY 22	222078	10	1980/11/26	2000/11/26
WAY 23	222079	18	1980/11/26	2000/11/26
WAY 24 FR	222260	1	1983/06/14	2008/06/14
WAY 25 FR	222261	1	1983/06/14	2008/06/14
WAY 26 FR	222262	1	1983/06/14	2008/06/14
WAY 27 FR	222263	1	1983/06/14	2008/06/14
WAY 29 FR	222264	1	1983/06/14	2008/06/14
WAY 30 FR	222265	1	1983/06/14	2008/06/14
WAY 31 FR	222266	1	1983/06/14	2008/06/14
WAY 32 FR	222267	1	1983/06/14	2008/06/14
WAY 33 FR	222268		1983/06/14	2008/06/14
WAY 34 FR	222269	1	1983/06/14	2008/06/14
WAY 35 FR	222270	1	1983/06/14	2008/06/14

Table 1.1: List of claims and status (cont'd.)

ξ.,

. .

2

1.7

ς.,

ξ.

ξ.,

8.1

ξ.

÷., .,

The company is undertaking to develop an open pit and underground mining operation for the deposit, and in August 1998 entered the Environmental Assessment process with the provincial government for project certification. The 1998 field program consisted of pre-feasibility assessment and some exploration, and was carried out between May 21 and October 23. The total cost incurred by the program was in excess of \$438,390. The work was performed on the following claims:

Bull 1, 2, 4Fr, 5, 7, 10, 11Fr, 15Fr, 16-23, 24Fr, 25Fr, 26Fr, 27Fr, 28Fr Beth 1, Renee 1, Toots 4, Star 2Fr Climax 1, 2, 11, 12 Way 8, 9, 11, 12

1.5 THIS REPORT

The majority of the 1998 program documented in this assessment report concerned the viability of on-site disposal of open pit and underground waste rock. A primary issue is the acid-basic drainage and metal leachate potential of this waste rock. This was addressed by the systematic re-logging and geochemical sampling of selected drillcore representing projected open pit waste. The re-logging procedure and sample descriptions are reported in Chapter 3 and Appendix A, and the interpretation of the analytical results is in Appendix B.

The upper part of the Silvertip Creek valley is the proposed site for the disposal of the combined mine waste and tailings. Geotechnical drilling of the overburden and bedrock in this location was done to test the ground conditions, and this is described in Chapter 5.

As part of the assessment of the environmental impact of mine development, studies of the hydrology, water quality and aquatic habitat of the drainage system were carried out in 1998. Appendix D contains the hydrology and water quality reports, and water analyses, and Appendix E comprises the fisheries assessment. Terrain ecosystem mapping was also done in 1998, though it is not submitted herein for assessment.

The main exploration project in the program was a magnetotelluric geophysical survey, covering 4.0 line-kilometres over 5 lines (Chapter 4 and Appendix C). This was aimed at the potential for structurally-controlled mineralization deeper in the stratigraphy, an aspect which has been neglected in the past. In addition, some geological mapping was done to the west and southwest of the area covered in 1997 (Chapter 2).

1.6 PROPERTY HISTORY

The history of exploration in the Silvertip area from 1955 through 1997 was documented in the 1997 summary report. A summary and update is given here in Table 1.2.

Table 1.2:	Summary	of Silvertip	Property History	
------------	---------	--------------	------------------	--

			Surface Drilling Diamond Other			Underground Diamond Drilling			Size	Aineral Resou Size Ag F		Zn	Au	
Year	Work	Amount/Type			Holes	Metres	Development	Holes	Metres	(mt)	(g/t)	(%)	(%)	(g/t)
	·		Holes	Wettes	UNIAS	14101102	· ·	9	HOLIOG		<u> (3'-/</u>			
1955	Discovery							ľ						
	Claim Staking									······				
1956	Claim Staking						Upper adit 155 m							
1957	Trenching						Lower adit 393 m							
1	Mapping						Fomet agit 2a2 tu		204					
	Drilling							6						
1958	Drilling							3	972					
1960	AFMAG													
1961/62	IP Survey	8.3 km									1	1		
	Drilling		4	495							 			
1963	Geochemistry (THM)	1650 samples												
	Mapping	-			ł									1
	Photogeology													
	Trenching				1									
1 1	Drilling		1	51								1		
1	Mercury Vapour Test	80 samples										ŀ		<u> </u>
1966	Drilling	Rotary			4	684		1						
1960	Airborne EM	Rotary								1.8	2778	50.3	1.22	1
1967			2	152	[1			
1000	Drilling			102				+				1		Γ
1968	Gravity		2	388				1	1			1		
	Drilling			300		<u> </u>						1		1
1973	Claim Staking		'					+						
1980	Geochemistry							1						
	Claim Staking										+	+		<u> </u>
1981	Drilling		6	857										I I
1 1	Geochemistry	8000 samples	1			ł					1			
	Line Cutting	435 km												1
	PEM, Gravity	8.5 km, 8.9 km												
1 1	Trenches	19	ł								1			
	Claim Staking			L		Į		4	ļ	<u> </u>	452	6.7	12.5	╅───
1982	Drilling		15	5,283				1	1	3.6	452	0.7	12.5	
•	Geochemistry											1		
	Geophysics											+	10.0	.
1983	Drilling		32	11,733						4.7	350	5.1	12.3	
	Petrography, Mineralogy,	Metallurav								<u> </u>			L	
1984/85	Drilling		50	10,981		1		170	12,383	5.4	390	6.4	12.3	0.
	Geophysics		1					1		1	1	1		1
	Development		1	1	1	1	Main adit 1,453 m		·				Į	ļ
1986	Drilling	RC	14	2,660	9	984	T			1.19	410	7	9.6	1
1300	PEM	74,8 km	1	_,		1				1	1		}	
	Downhole PEM	2,340 m	1	ļ	1	1				1	1		1	1
		182.7 km	1	1			1			ł				
1	Magnetometer	162.7 km	1	1				1		1			1	
	Geochemistry	100.2 KITI		<u> </u>		-t	765 m		·	†			1	
	Explor. Development		+	╂				68	9620	1.74	352	6.4	10	1
1990	Drilling		63	8594	4	844	+		1	2.57	325	6.4	8.8	0.
1997	Drilling		0.5	0084	1 *	044			1			1		1
1	Seismic	7 km, 12 lines	1			1			1					
L	Mapping	l							-h	+			+	
1998	ARD Geochemistry			1	1									1
1	CSAMT Geophysics	3.8 km, 5 lines	1			0.00	1	1	1	1		1	1	1
	Geotechnical Drilling		1	1	4	92.35]			1			1	
1	Environmental		1				1		1	1			_	1

•

1.7 ACKNOWLEDGEMENTS

The program was supervised by the project manager, Steve Robertson, and carried out in the field by the author and geologist Janice Letwin, with the assistance of lvor Saunders, the camp manager. Core splitting and some sample collection were done by Richard Ney.

2.0 GEOLOGY

The regional and property geology pertaining to the Silvertip project was given in some detail in the 1997 summary report (Silvertip Mining Corporation, 1998). Other sources of good information are Cordilleran Engineering (1985), Curtis (1986), and Bradford (1988). As reference is made to the geology in various parts of the present report, a shortened account of the stratigraphy, structure and mineralization is presented here.

2.1 REGIONAL GEOLOGY

The Silvertip property is situated in the northern Omineca Belt of the Canadian Cordillera (Fig. 2.1). The most important element of this region is the Cassiar terrane, composed of Upper Proterozoic through Middle Devonian carbonate and clastic sedimentary rocks formed on a marine platform on the ancient continental margin of western North America (Cassiar Platform), and overlying Devono-Mississippian rift-related clastics (Earn Assemblage). Structurally overlying the Cassiar terrane is a tectonic assemblage of marginal basin and island arc sediments and igneous rocks of the Upper Paleozoic Sylvester allochthon, representing the Slide Mountain terrane (Fig.2.2).

The region was moderately deformed by folding and thrust faulting in the Jurassic, and later by extensional and dextral transcurrent faulting in the Late Cretaceous to early Tertiary (Fig.2.3). The Cassiar Batholith, a large, granite to granodiorite intrusion of mid-Cretaceous age, lies west of the property. Small intrusions and related hydrothermal alteration of possibly Late Cretaceous age are minor but important features of the region.

The main mineral deposits are syngenetic barite +/- lead, zinc prospects in Paleozoic sediments, and skarn and replacement deposits related to Cretaceous intrusive and hydrothermal activity. An account of mineralization in the Rancheria district, including the Silvertip area, is in Abbott (1983).

The principal sources of regional geology data are Gabrielse (1963), Nelson and Bradford (1993), and Nelson and Bradford's (1987) open file map of the Tootsee Lake area, from which Fig. 2.3 is adapted. The regional stratigraphy is shown in the stratigraphic column in Fig. 2.4.

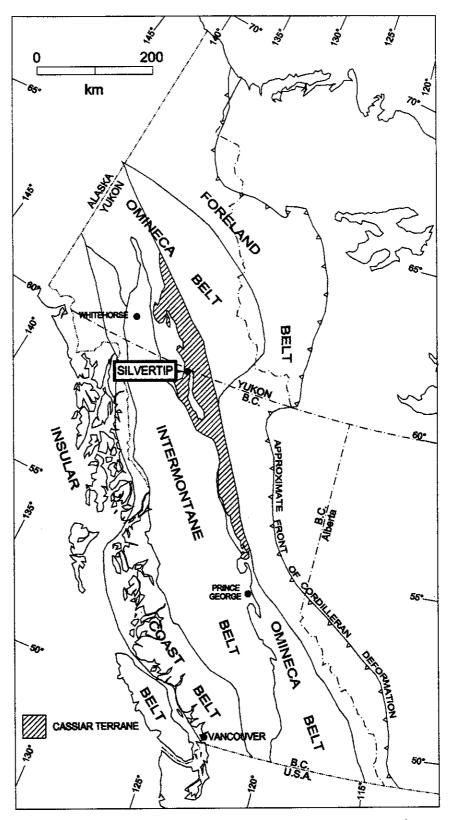


Fig. 2.1: Location of Silvertip with respect to Cassiar terrane and morphogeological belts of the Canadian Cordillera.

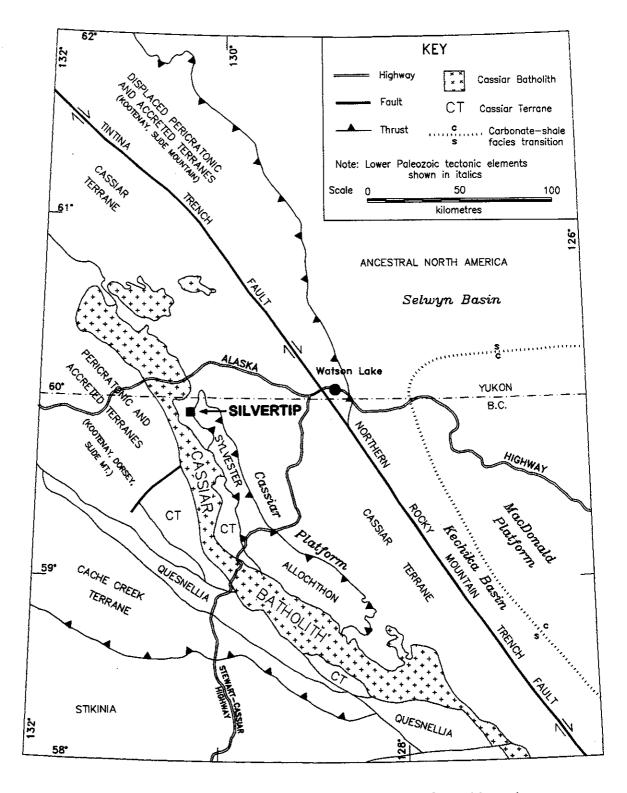


Fig. 2.2: Main tectonic elements of northern British Columbia and southern Yukon showing regional setting of Silvertip.

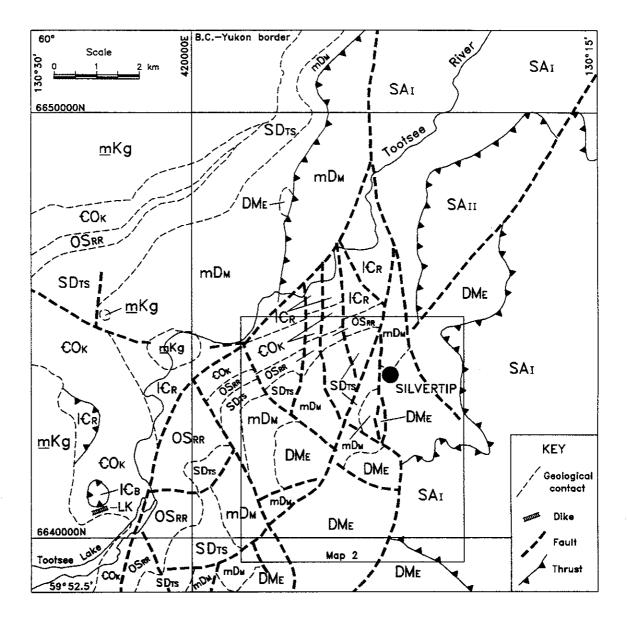


Fig. 2.3: Regional geological setting, showing location of Silvertip with respect to stratigraphic units of the Cassiar Platform, the eastern margin of the Cassiar Batholith, and the western margin of the Sylvester allochthon. Adapted from Nelson and Bradford (1987). Geology differs slightly from that in Map 2 (outlined). Array of faults are part of Tootsee River fault system. For Legend, see Fig. 2.4.

e ROCKS	Late Cretaceous		/	` - `	LK - \	felsic dykes
Inurusive	mid- Cretaceous	CASSIAR BATHOLITH) / \	x	mKg × ×	granite, granodiorite
L	ower Mississippian to Upper Permian	SYLVESTER ALLOCHTHON	/ - /	×	SAII	Division II: basalt, gabbro, serpentinite, cher
â	and Upper Triassic		/	×-	SAI	Division I: argillite, chert, Slate, greenstone
	Upper Devonian to Lower Mississippian	EARN GROUP		× × ×	DME	sandstone, conglomerate siltstone, shale carbonaceous argillite
	Middle (to Upper?) Devonian	McDAME GROUP	/ - \	×	mDм	fossiliferous limestone, dolostone
	Silurian to Lower Devonian	TAPIOCA SANDSTONE (informal)	-	×	SDTS	dolostone, quartzite dolomitic siltstone, sandston
C	Prdovician to Silurian	ROAD RIVER GROUP		×	OSRR	carbonaceous, partly calcar slate, siltstone, black limesto
	Middle? or Upper Cambrian to Lower Ordovician	KECHIKA GROUP	- /	×	€ОК	argillaceous limestone, calcareous slate, siltstone
	Lower Cambrian	ATAN GROUP	- - - -	×	ƘR	limestone, dolomitized limestone Archeocyathid-bearing
		Boya Formation	1		Ѥв	quartzite, argillite

Fig. 2.4: Regional geology stratigraphic column

. . l. No e <u>к</u>. . L. ii Ii Au a λ. .

2.2 PROPERTY GEOLOGY

2.2.1 Stratigraphy

The geology of the main part of the Silvertip property is shown in Map 2, and the stratigraphic column in Fig. 2.5. Essentially, the area comprises easterly to southeasterly-dipping Tapioca sandstone and McDame Group, overlain by the Earn Group. This package is structurally overlain by the Sylvester allochthon, outcropping in the eastern part of the property. All these rocks are deformed by generally north-trending faults related to the Tootsee River fault system (Nelson and Bradford, 1993).

Tapioca Sandstone

This is an informal unit, partly equivalent to the (formal) Sandpile Group. The Tapioca is Silurian to Lower Devonian in age, and roughly 475 metres thick. It consists of pale buff-grey dolomitic sandstone to quartzite, silty dolostone and dolostone. The characteristic texture is well-rounded sand grains in a dolomitic cement. Good cross-bedding is present locally.

McDame Group

This carbonate unit hosts the massive sulphide mineralization at Silvertip. It consists of a lower dolomitic unit, about 100 metres thick, and an upper limestone unit up to 260 metres thick. The McDame is mainly Middle Devonian, but may extend into the Upper Devonian.

The lower dolomitic unit consists of pale to dark buff-grey or blue-grey, very fine grained dolostone and silty dolostone, grading upwards into dolomitic limestone. The rocks are fairly well bedded, and locally have fine cryptalgal laminations. In contrast to the overlying limestone unit, this unit has a uniform, non-bioclastic texture. It is distinguished from the underlying Tapioca sandstone by the absence of sand grains or siliceous component, and by its colour and less blocky weathering.

The main, upper part of the McDame Group is composed of distinctive bioclastic limestone, noted for its rich fauna of stromatoporoids, corals and brachiopods. The limestone is pale to dark bluish-grey, and fine to medium grained with a crystalline texture. It is moderately to thickly bedded (up to 1 or 2 metres). Parts of the limestone have been hydrothermally altered to a buff-grey, medium-grained dolostone, or to a pink or white, crystalline 'marble'.

The stromatoporoid <u>Amphipora</u> is characteristic of the limestone, as are several forms of massive stromatoporoids. The stratigraphic distribution of these fossils and of solitary and colonial corals and thick- and thin-shelled brachiopods has been used to construct a detailed biostratigraphy of the McDame, resulting in its subdivision into 8 subunits (cf. Fig. 2.5). This scheme is the principal tool used in drillcore logging and the subsurface reconstruction of the McDame, although the bioclastic facies are generally not recognizable in surface outcrops because of weathering.

Brecciation is another important feature of the McDame limestone, again most conspicuous in drillcore. Some of these are primary depositional breccias related to

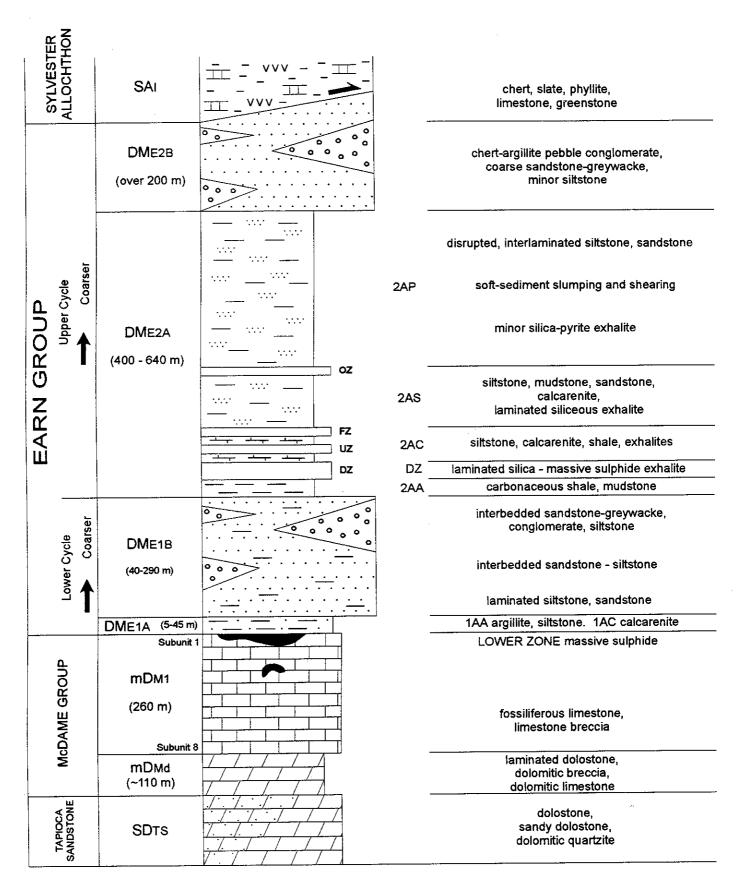


Fig. 2.5: Stratigraphic column of the Silvertip area

karst erosion (see below), and others were formed much later by solution collapse processes due to hydrothermal activity accompanying mineralization.

Earn Group

In the Late Devonian, the carbonate platform emerged above sea level for a time, and the McDame limestone was karst eroded. This episode ended with crustal extension, re-submergence, and the deposition of the succeeding Earn Group siliciclastics in the Late Devonian through Early Mississippian. The basal Earn was deposited disconformably on the McDame with little or no angular discordance, but stratigraphic relief due to dissection at the unconformity is up to 165 metres. The top of the Earn is not preserved; the known thickness in the area varies between 600 and 1000 metres.

The Earn comprises two coarsening-upward cycles (1 and 2) of distal to proximal turbiditic siliciclastics. In each sequence, the lower part is characterized by carbonaceous, siltstone-mudstone and lesser sandstone or greywacke (1A and 2A), and the coarser, upper part by sandstone-greywacke and conglomerate (1B and 2B). The rocks were deposited as intertonguing turbidite fans in extensional basins or half-grabens with restricted circulation.

Unit 1A

The basal Earn Group consists of very carbonaceous mudstone to siltstone (1AA), deposited directly on top of the McDame limestone, or in cavities at some depth below the unconformity, due to the muddy sediment infiltrating the karst features. The rocks are fine grained and finely laminated, and indicate low energy deposition under euxinic conditions. Syngenetic or diagenetic pyrite is present, generally less than 2%. The bottom few metres of 1A are commonly calcareous (1AC). Total thickness is up to 45 metres.

Unit 1B

The upper, coarser part of the lower cycle begins with interlaminated siltstone and sandstone, which becomes predominantly medium- to thickly bedded sandstone upsection. The sandstone is grey, medium- to coarse-grained greywacke, characterized by chert-rich detritus. Sandstone beds are generally centimetres to decimetres thick, separated by beds of siltstone or interlaminated sandstone-siltstone. These lithologies are only rarely calcareous. Pyrite, mainly syngenetic or diagenetic, typically varies between 1 and 3 %, and is more prominent in the more argillaceous beds or laminae than in the sandstones. Graded beds of chert-argillite pebble conglomerate are common; they may be two metres thick in the upper part of the unit.

The higher energy conditions implied by unit 1B suggest increasingly active, faultcontrolled block uplifts and erosion in the basin. This mode of formation probably contributes to the wide variation in the thickness of unit 1B, which ranges from as little as 60 metres to 200 to 300 metres.

Unit 2A

This is the lower, finer grained part of the upper cycle, and is the thickest and most inhomogeneous unit in the Earn Group. It is between 200 and 640 metres thick. Subunit 2AA at the base is recessive, dark grey to black carbonaceous mudstone to siltstone. Above it is the lowest and generally thickest and most important of the Unit 2B They are typically matrix supported, and the clasts are rounded to subrounded. Unit 2B is at least 200 metres thick. It is guite similar to unit 1B, but is distinguished by its coarser components, thicker bedding, and a lower amount of siltstone. Sylvester allochthon

broken up by faults.

The main regional ductile deformation resulted from crustal shortening in the Jurassic, when the Sylvester allochthon was tectonically emplaced onto the Cassiar stratigraphy and all units were subjected to folding, thrusting and foliation development, accompanied by very low grade metamorphism. The main foliation is generally parallel

2.2.2 Structure The basic structure of the Silvertip area is not complicated. Like the rest of the region, it is dominated by faulting rather than folding. Strata generally strike north to northeast and dip gently to moderately east to southeast. There are no fold closures affecting the local map pattern, which is characterized by a general younging of units eastwards,

Rocks of the Sylvester allochthon outcrop on the eastern part of the property. The base of the allochthon is a thrust which is paraconformable with the underlying Earn Group strata, and similarly dips gently to moderately east to southeast. The lithologies present are mainly argillaceous sediments and minor volcanics, which belong to Division I (Mississippian and Upper Pennsylvanian to Lower Permian) of the Sylvester assemblage (Nelson and Bradford, 1993). Thinly interbedded, grey to green-grey chert, argillite and 'phyllite', and minor lenses of limestone are most common, with local tuffaceous siltstone and meta-basaltic greenstone.

The highest unit of the Earn is 2B, which is marked by the abrupt appearance of coarse, chert- and argillite pebble conglomerates above subunit 2AP. It represents the upper coarse-grained component of the second cycle. These polymictic conglomerates are thickly bedded, and commonly grade into very well bedded greywacke-sandstone.

same stratigraphic horizons from place to place. The thickest (up to 450 metres) and most characteristic subunit of unit 2A is 2AP, which is composed of thinly to thickly interbedded and finely laminated slaty siltstone and fineto medium-grained sandstone. The main feature of 2AP is the disrupted structure of the sandstone laminae which have been broken into discrete, sheared and rotated lenses millimetres to centimetres in size, due to slumping and soft-sediment deformation of a semi-consolidated turbidite sequence.

several exhalite subunits that are diagnostic of Unit 2A: the D-zone exhalite. It consists of pale grey to buff, fine-grained, siliceous and pyritic, laminated exhalite. Above the Dzone is 2AC, a calcareous interval comprising interlaminated siltstone, calcarenite and locally impure limestone; it is 5 to 80 metres thick. This is followed by a more siliceous subunit up to 100 metres thick, 2AS, consisting of thinly laminated siliceous siltstone. slate and fine sandstone. In addition to the D-zone, several other minor exhalites occur within subunits 2AC and 2AS. They are typically no more than a few metres thick, and are probably not very laterally continuous. It is not clear if they occur consistently at the to bedding. A prominent extension lineation, trending north-northwest, is represented by elongated clasts in the Earn conglomerates, and is kinematically related to the foliation. A north-northwest-striking, moderately dipping crenulation of this foliation is discernible in argillaceous laminae. Drilling and mapping in the main Silvertip deposit area indicates that no significant folds or thrusts are present here, but thrusts are known to exist farther west towards the Cassiar Batholith and elsewhere in the Cassiar terrane.

Faults related to the Tootsee River fault system are Late Cretaceous through early Tertiary in age. The faults are mainly extensional with dominantly dip slip to oblique slip, east-side-down displacement. They strike predominantly north, ranging between northwest and northeast, and dip steeply. The most important fault in the deposit area is the Camp Creek fault, which in cross-section has a vertical separation in the order of several hundred metres, down to the east. Several other faults with the same general geometry are known in the area from drillhole information and surface mapping, but have much smaller, down-to-the-east displacements, in the range of metres to tens of metres.

2.2.3 Mineralization and Alteration

The Silvertip mineralization is manto-type, silver-lead-zinc massive sulphide, formed by hydrothermal replacement processes in McDame Group limestone. In Silvertip terminology it is known as "Lower Zone" (Fig. 2.5). Although gossans related to this mineralization are exposed in limestone on part of the property (and constituted the original discovery in 1955), the main mineralized zones are not exposed, lying between about 50 and several hundred metres beneath the surface, and covered by the Earn Group. These zones are mainly north of Silvertip Mountain and east of Camp Creek (Map 2). The 'Silver Creek' area is the shallowest zone and the target of the proposed open pit development. The 'Discovery' area lies farther east and at greater depth, and would be exclusively an underground mining operation. To the north, the 'Discovery' North' area has received relatively little attention to date, but is likely continuous with the other zones.

Another type of lead-zinc sulphide mineralization is present on the property, namely Early Mississippian syngenetic 'sedex' deposits associated with siliceous to baritic exhalite subunits in unit 2A of the Earn Group (see 2.2.1, above). These were the original exploration target on the property in 1980, but they are not considered economic, although they are of interest because they contain a sulphide overprint that may be related to the much younger hydrothermal event that mineralized the McDame carbonates structurally below.

The main, manto deposits formed by the interaction of magmatically-derived, metalenriched hydrothermal fluids with McDame carbonate rocks. The source of the fluids has not been found, but an area of quartz-sericite-pyrite alteration south and southeast of Silvertip Mountain might indicate a buried intrusion. This alteration has a fluorine signature, and has been dated at around 70 Ma (Late Cretaceous), the same age as felsic intrusions exposed elsewhere in the region. On this basis, the mineralization event is assumed to be Late Cretaceous. Most of the mineralization occurs at or near the unconformable contact with the Earn Group, although significant sulphides are also present much deeper in the McDame. The massive sulphide is in the form of anastomosing, stratabound tubes up to 20 metres thick and 30 metres wide, and extending for at least 200 metres in places. Contacts with the host limestone can be remarkably sharp, but transitional zones of alteration and recrystallization and brecciation are common. The mineralization consists of massive, early-formed pyrite, pyrrhotite and sphalerite and lesser galena, and a slightly younger, higher temperature, sulphosalt-sulphide suite of minerals. The latter contain the main silver-bearing phases including pyrargyrite-proustite, boulangerite-jamesonite and tetrahedrite (freibergite), as well as silver-rich galena. Quartz and calcite are the main gangue minerals and locally fill late-stage vugs and cavities. Brecciation of sulphides, mixed with limestone and vein quartz and calcite, attest to syn-mineral, solution collapse processes.

The main control on the mineralization so far defined is the Earn unconformity which formed a relatively impermeable cap to the upwelling fluids, concentrating the development of stratabound mantos. The mantos are believed to have been fed by structurally-controlled feeders or chimneys, probably channelled in faults such as the Camp Creek fault. Evidence for this includes strong brecciation and alteration and vertically oriented mineralization throughout much of the McDame stratigraphy, and even at the Tapioca sandstone contact at its base.

2.3 1998 Geological Mapping

A small amount of reconnaissance geological mapping was done to the south (south of Tour Ridge) and west (Tricorne Mountain) of the area mapped at 1:5,000 scale in 1997 (Map 2).

South of Tour Ridge

- To investigate the southern extension of the Camp Creek fault
- To see if the Earn Group has any quartz-sericite-pyrite alteration
- To see if outcrops of Earn Group exhalites contain the hydrothermal overprint present in equivalent exhalites above the Silver Creek deposit area

On the west flank of Tour Peak, south of Tour Ridge, is a fairly good section through unit 2A of the Earn Group, along with the bottom of 2B. The best exposures are in gullies cut into the slope. The 2A/2B contact north of Tour Peak (east of the Camp Creek fault) should project through to about half way up the western slope, but it does not outcrop until the 1700-metre contour. This apparent displacement is explained by movement on the southern extension of the Camp Creek fault, dropping the east side down. The vertical separation appears to be about 200 metres, which is not inconsistent with the amount of separation estimated on the fault to the north (Silvertip Mining Corporation, 1998).

None of the Earn Group mapped in this area exhibited any sign of quartz-sericite-pyrite alteration.

Previous mapping west of Tour Peak by Nelson and Bradford (1987) recorded baritic exhalite in the Earn Group, 850 metres west of the summit. These outcrops were checked and sampled. They occur at a fairly high stratigraphic position within unit 2A, above the base of subunit 2AP, and do not obviously correlate with any exhalite in the Silvertip Mountain area. The surrounding Earn rocks are bluish-grey weathering, fine-grained, thinly laminated siliceous siltstone and slate. The exhalites form small exposures comprising zones or beds at least a metre thick. The rocks are pale to mid-grey, siliceous and baritic in composition, and thinly to thickly laminated with micaceous partings. They weather rusty orange to buff or pinkish-buff. Disseminated pyrite has been oxidized to spotty limonite. Some pieces of bull quartz are present, and *in situ* thin vuggy quartz veinlets, locally with 1 to 3-mm long barite crystals. Neither the exhalites nor the siltstone host rocks are altered or hydrothermally overprinted. Analysis shows they contain only background values of base metals.

Tricorne Mountain

- To examine the Earn-McDame unconformity exposed west of the summit of Tricorne Mountain
- To see if the Earn Group showed any signs of quartz-sericite-pyrite alteration
- To see if the McDame in this area showed signs of replacement mineralization or alteration

The eastern slope and top of Tricorne Mountain are underlain by Earn Group comprising grey, medium- to coarse-grained greywacke, sandstone and siltstone, and minor pebbly sandstone to conglomerate, dipping gently to moderately eastwards. Overall, this appears to be a coarse lithofacies of the Earn, equivalent to 1B or 2B on Silvertip Mountain. No quartz-sericite-pyrite alteration was seen. West and downslope of the summit, these coarse and thickly bedded rocks change (down stratigraphic section) to slaty siltstone with sandstone laminae, resembling the 2B-2A or 1B-1A transition.

A little farther below this transition, on the saddle 500 metres northwest of Tricorne Mountain summit, the unconformity contact between the McDame Group and the Earn Group is poorly exposed. The limestone is grey, medium grained, and strongly crackleveined with calcite in places. It is locally dolomitized, and also recrystallized in blebby or fracture-controlled patches to sugary white, medium-grained calcite. Apart from these effects, and rare 0.5-mm thick limonitic stringers, no significant alteration or mineralization is present in the McDame here, nor on the ridge extending northwestwards.

The northwest-trending fault shown on Nelson and Bradford's (1987) map, 500 metres northeast of Tricorne Mountain, was examined. On the ridge crest, lower Earn Group slaty siltstone is present to the southwest of the fault, and McDame limestone to the northeast. The fault is marked by fault breccia, closely-spaced fracturing, and a 50-cm thick calcite vein, and the limestone is partly dolomitized. A sample of rusty weathering rock between the vein and altered limestone was not anomalous.

3.0 GEOCHEMISTRY - ACID-BASE ACCOUNTING

3.1 INTRODUCTION

As part of the development plan for the open pit mine of the Silvertip deposit, the potential for acid drainage in the waste rock must be assessed in order to devise a means of waste disposal that is both economically feasible and environmentally safe. This assessment is called acid-base accounting (ABA). Acid rock drainage potential is largely a function of the amount and form of sulphides in the Earn Group siliciclastics, which will form the bulk of the waste.

Systematic geochemical sampling of rocks in drillcore representing the proposed waste material is therefore necessary to determine its chemical composition, especially properties such as total sulphur and pH. Almost as important as this is the physical character of the rocks, including the mineralogy, form and grain size of the sulphides and the degree of fracturing in the rock, as these factors affect the kinetics of possible acid-forming reactions and rock decomposition.

Much of the sulphide in the Earn Group at Silvertip is fine-grained pyrite of syngenetic or diagenetic origin, and is probably no different in form or quantity from that in Earn rocks exposed elsewhere in the northern Cordillera. This pyrite is a minor component of the rock and of no direct economic importance, and consequently previous logging of the drillcore during exploration did not provide the textural details of its occurrence that are required for ABA purposes. Therefore, the sampling was accompanied by a detailed re-logging of the core for each sample interval to aid the interpretation of the associated chemical analysis.

3.2 SELECTION OF DRILLHOLES FOR RE-LOGGING

Within the outline of the proposed open pit, approximately 77 surface holes were drilled between 1981 and 1984 (by the previous operator), and in 1997 by SMC. Five were selected for re-logging (Fig. 3.1), based on the following criteria:

- a. Good geographic distribution, with a preference for the centre of the pit.
- b. Representative stratigraphy, including that in the zone of near-surface oxidation which affects rocks in the northern part of the pit footprint.

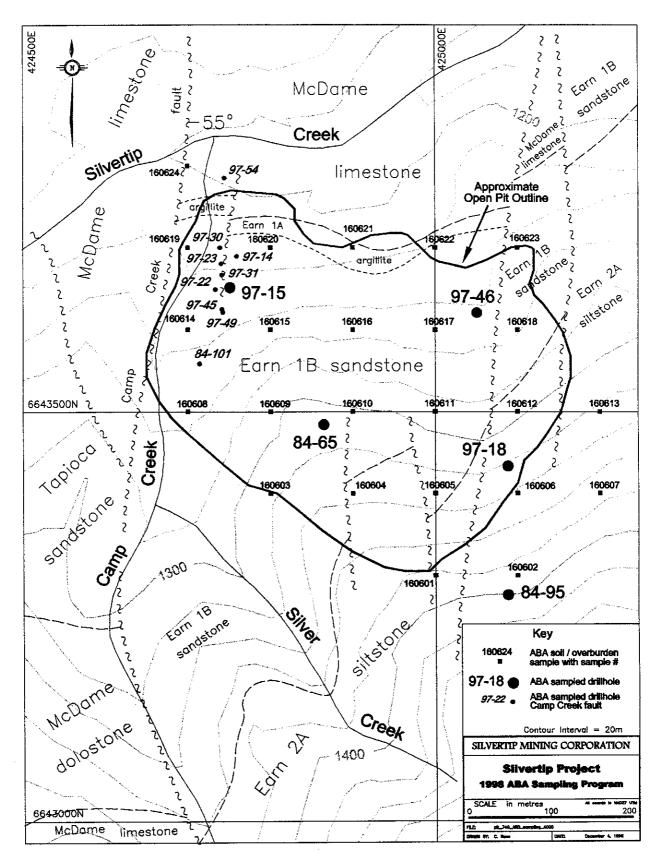


Fig. 3.1: Map of proposed open pit showing ABA drillhole and soil sampling.

- c. At least two sections through the sulphide-rich exhalite subunits, which will form the upper part of the high wall, towards the south and southeast of the pit.
- d. Good recovery and condition of the core (especially relevant to 1980s core).

Northwest: SSD-97-15

From the Silver Creek Extension zone. Not a long hole, but a representative section through Earn subunits 1B and 1A in this area. Has the thickest massive sulphide (Lower Zone or LZ) of the re-loaged holes.

Samples 160301 to 160318

Central: 84-65

A good, representative hole for 1B sandstone, the predominant waste rock, from near the centre of the pit. Core had very good recovery. No Lower Zone in this hole. Samples 160319 to 160350

Northeast: SSD-97-46

In the oxidized zone. All sulphides in Earn and in Lower Zone are oxidized to limonite and other iron/manganese oxides or hydroxides.

Samples 160401 to 160410

East: SSD-97-18

Another representative section through 1B, and overlying 2A including the D-zone exhalite.

Samples 160411 to 160447

South: 84-95

Actually outside the pit footprint, but representative. This hole also has a good exhalite section, very similar to that in 97-18. Sampled only a few metres into the underlying 1B sandstone.

Samples 160451 to 160486

In addition, 18 samples of the Camp Creek fault zone, which will form the western wall of the open pit, were taken from several holes that intersected the fault.

SSD-97-22: Samples 160351 to 160353 SSD-97-23: Samples 160354 to 160356 SSD-97-30: Samples 160357 to 160358 SSD-97-31: Samples 160359 to 160360 SSD-97-14: Sample 160361 SSD-97-45: Samples 160362 to 160363 SSD-97-49: Sample 160364 SSD-97-54: Samples 160365 to 160366 Samples 160367 to 160368 84-101:

3.3 RE-LOGGING PROCEDURE

In each of the holes, the entire core was re-logged and sampled (at least down to an appropriate depth). There were three main criteria for delimiting the sample intervals: lithology, sulphide content, and carbonate content. Reasonably significant changes in one or more of these features were used to subdivide the core. The maximum interval was 10 metres (the likely bench height in the pit), and the minimum about 1 metre. The average sample length was close to 5 metres.

It was generally not practical to define a sample length in the core directly on the basis of subtle changes in pyrite content or of patchy matrix calcite, although this was done if the variation was significant. Lithology was the most practical criterion, especially as changes in sulphide or carbonate content tended to correspond to the change from sandstone, for example, to siltstone/slate, anyway. If sulphide content overlapped a lithological change, it was given priority.

For simplicity, the sampled rock intervals were named according to general composition, e.g. sandstone, siltstone, limestone) rather than the less informative stratigraphic subunits otherwise used in exploration logging (i.e. 2AS, 1B etc.). The number of rock terms used was limited to seven basic lithologies:

Sandstone (± conglomerate and minor siltstone) Siltstone (± lesser sandstone, slate/mudstone) Slate/mudstone (± siltstone) Limestone High sulphide (applicable to replacement massive sulphides [LZ] or to exhalites) Exhalite (where sulphides are relatively low) Oxide (oxidized equivalent of exhalite or LZ massive sulphide)

plus a few other special cases like altered dike, and quartz vein.

(Except for very distinctive rocks such as the massive sulphide, exhalite or the thicker veins, sample intervals generally bare little relation to the divisions in the original exploration logs.)

The sampling in each hole began at the base of the overburden. Holes 84-65, 97-15, 97-18 and 97-46 were re-logged down to the Earn-McDame limestone contact, plus an additional 10 to 20 metres into the limestone. Hole 84-95 was logged from the top down to 10 metres below the 2A-1B contact within the Earn Group.

Camp Creek fault

In most places in the projected open pit, the Camp Creek fault zone is within the McDame Group carbonates, and is marked by foliaceous, calcareous gouge with limestone porphyroclasts. The immediate hangingwall in the pit area appears to be limestone as well, commonly strongly brecciated and crackle-veined with calcite. The footwall of the fault is either limestone or dolomitized limestone. It too is generally brecciated and veined by calcite. The hangingwall in the extreme southwest may be

Earn Group; however it could not be sampled as no drillholes in the open pit footprint intersect it.

The samples taken of the fault zone were of the gouge zone and, if present in the core, a few metres of the footwall also. The latter is necessary because the gouge is soft and would probably not withstand prolonged exposure in the pit, so that in time the footwall would effectively form the pit wall. In a couple of the holes, a hangingwall sample was also taken. Note that in hole SSD-97-14, the fault zone is in altered dike (known as 'YBR' rock), rather than McDame limestone.

<u>Soils</u>

The overburden in the pit footprint was sampled by collecting the B horizon of the soil. A total of 24 samples were taken, based on a 100-metre grid (Fig. 3.1). The typical depth in the soil was 50 cm. These soil samples are listed in the summary tables (see section 4.6, below), but obviously there are no detailed logs for them.

3.4 SAMPLING

Sample intervals were marked off with flagging tape in the core boxes. Most of them were split in half with the core splitter, taking care to avoid bias where sulphides or carbonate were unevenly distributed. Zones of rubble or fault gouge were halved by hand-picking. Any segments that were already split or sawn during previous logging/sampling were quartered. The splitter was cleaned by brushing and with an air hose after every sample, and special care was taken after a zone of high sulphide.

The larger samples required between 3 and 5 large plastic sample bags each. The sample bags were put into 'rice' sacks and shipped to Intertek Testing Services (Bondar Clegg) in Vancouver, by Points North Transportation.

No duplicates or blanks were submitted.

3.5 ANALYSIS

The analysis of the samples and interpretation of the results are provided in Appendix B. For the record, the analysis consists of

- Total sulphur
- Sulphate sulphur
- Neutralization potential
- Paste pH
- Elemental scan (32 elements) using ICP

In addition, every fifth sample was also analyzed for

- Total barium
- Selenium

- Total inorganic carbon
- Water soluble metals
- HCl soluble metals

In both the main logs and the summary tables (Appendix A), those samples that have the extra analyses are indicated by a double asterisk (**) after the sample number, e.g. 160302 **.

The soil samples were subjected to the same analysis as the drillcore samples, including the extra analyses of every fifth sample.

3.6 REPORTS

Main Logs

The main ABA logs are in Appendix A. Each sample is presented in the form of a template denoting the drillhole, interval in metres, sample number, and rock type. The basic mineralogy and texture of the main components is given in terms of mode of occurrence and grain size or thickness. The degree of fracturing of the core is also recorded. The chemical analysis of each sample is reported in Appendix B.

Locally, the Earn sediments contain very fine grained calcium carbonate in the matrix, most commonly as calcareous siltstone laminae, millimetres to centimetres thick. The percentage of carbonate in these laminae, or in the whole sample interval, is difficult to estimate, so instead it is generally presented in the main logs in the form of a numerical ranking from 1 to 5, based on the strength of the rock's reaction to dilute (10%) hydrochloric acid, as follows.

- 1. None
- 2. Very weak (audible, not visible)
- 3. Weak (just visible)
- 4. Moderate (visible but not rapid)
- 5. Rapid brief
- 6. Rapid sustained (as with pure carbonate, i.e. calcite crystals)

This "rank" is shown in the "matrix" column in the log tables, and is marked by an asterisk (*) to distinguish it from a 'percentage' number.

Notes:

- a. "Base Metal" refers to the minerals sphalerite and galena.
- b. Minerals evenly distributed in the rock can be denoted as 'disseminated' or as 'matrix'. The distinction was not applied rigorously, but such minerals judged to be primary and intrinsic to the rock were logged as 'matrix', and those that were likely secondary or a hydrothermal overprint were logged as 'disseminated'. However, fine-grained pyrite in the matrix was always logged as disseminated, even though much of it is probably primary.
- c. "Fe-carbonate" refers to brown or orange carbonate that may be iron-stained calcite or iron-dolomite. It should not be interpreted as siderite.

- d. The limestone is locally silicified. This is indicated in the detailed logs as 'disseminated quartz'.
- e. In the main, detailed logs, the calcium carbonate forming limestone rock is generally recorded under 'matrix'. 'Massive' calcite would indicate a calcite vein.

Summary Reports

For convenience, another set of tables has been provided for quick reference which summarizes the essential information in the main logs. These tables are also in Appendix A, and follow the main logs. The summary tables are the only place the soil samples are listed. In these 'Summary Tables':

Notes:

- a. "bm" means base metal, i.e. sphalerite and galena.
- b. "% Sulphides" and "py" (for pyrite) may include a small amount of pyrrhotite, but it is generally rare and negligible. Where pyrrhotite is more significant, it is noted in the Notes column.
- c. "% carbonate" can be read as calcite. A few per cent dolomite or Fe-carbonate occurs locally (quantified in detailed logs) but they are generally negligible except where noted.
- d. In the 'Strat. Unit' column (stratigraphic unit), the abbreviations correspond to the units described in Chapter 2 (Geology). MLS is McDame Group limestone; LZ is the Lower Zone mineralization; YBR is the name given to altered intrusive rock present very locally in both the Earn and McDame groups.

4.0 GEOPHYSICS - CSAMT SURVEY

4.1 INTRODUCTION

A CSAMT (controlled source audio magnetotellurics) survey was carried out on part of the property during August 7-27, 1998, by Whytecliff Geophysics of Vancouver. Past experience with seismic reflection in 1997 (Silvertip Mining Corporation, 1998) showed that while it is effective at imaging sub-horizontal bodies of massive sulphides (mantos), it is not so suitable for locating vertically-oriented bodies, i.e. the feeders or chimneys that may exist below and connect with the mantos. The CSAMT technique was considered to be more appropriate for the detection of such fault-controlled feeders, and five areas were selected for surveying (Map 2). Each of the five lines was oriented east-west, as the main structures strike approximately north-south. The total length surveyed was 4 kilometres. The theory, implementation, results and interpretation of the survey are reported in Appendix C. A summary follows.

4.2 SUMMARY OF RESULTS

Line 1 - A test line over known mantos in the Silver Creek deposit area.

<u>Result</u>: A strong conductive response over the larger unconformity manto massive sulphides, but not over smaller sulphide bodies. A fault, probably the YBR fault, shows up well. The Earn Group is resistive.

Line 2 - East of Tour Ridge, south of the area of QSP (quartz-sericite-pyrite) alteration, and crossing the Camp Creek fault.

<u>Result</u>: The Camp Creek fault is revealed at depth by the distinction between very resistive McDame limestone west of the fault and weakly conductive rocks to the east. The latter conductive zone is roughly vertical and its centre is in the lower half of the McDame limestone. Local conductivity within the Earn may be due to exhalite zones.

Line 3 - In Silvertip Creek valley, north of known deposits (Discovery North), in an area of convergence of major faults (Silvertip Creek, Camp Creek, YBR faults).

<u>Result</u>: Generally very resistive rocks. An area of stronger, but still weak, conductivity appears adjacent to the projected Camp Creek fault, over 500 metres below the surface.

Line 4 - Over the Silver Creek South deposit area, where previous drilling indicates southward plunging, steeply-oriented mineralization well below the Earn-McDame unconformity.

<u>Result</u>: A strong, vertically-oriented conductor in the immediate hangingwall of the Camp Creek fault, that may coincide with a splay of the fault. Tentatively interpreted as a structurally-controlled, massive sulphide feeder to nearby mineralization in Silver Creek South in the adjacent McDame limestone. The conductive zone expands at depth and to the east, towards the McDame-Tapioca sandstone contact, which may represent another prospective horizon for mantos.

Line 5 - Over the main QSP alteration on Silvertip Hill and the west flank of Silvertip Mountain, and crossing the Silvertip Hill and Camp Creek faults.

<u>Result</u>: Moderately conductive anomaly at about 1000 metres depth, crossing Camp Creek and other faults with a gentle apparent dip. Structurally lower (although stratigraphically higher) than the anomaly in Line 4, and may connect with it along north-south faults.

4.3 CONCLUSIONS

- The CSAMT method is capable of revealing electromagnetically conductive bodies
 of massive sulphides at depths of up to a thousand metres, and is thus an effective
 exploration tool for this deposit. The Earn Group is essentially resistive and
 'transparent', and its response is not enhanced by typical concentrations of
 disseminated pyrite and carbonaceous matter.
- Tested areas west of the Camp Creek fault are consistently lacking in conductive anomalies, whereas areas with identical stratigraphy east of the fault show zones of high conductivity of variable strength. This proves that the method does indeed discriminate between conductive (i.e. mineralized) and non-conductive rocks in the subsurface.
- The method is sufficiently 'coarse' that small sulphide bodies do not show up and exaggerate the degree of mineralization: this provides a form of filtering such that only significant conductors are revealed. However, the converse is not true: vague or apparently weak conductors should not be assumed to be insignificant, because in fact they may be major bodies of mineralization that are distant from the survey line and at the limit of detection.

28

5.0 GEOTECHNICAL DRILLING

5.1 INTRODUCTION

The present plan for the development of the open pit and underground mining of the Silvertip deposit calls for the disposal of waste rock and tailings in the Silvertip Creek valley (Fig. 5.1). Subject to the results of ongoing ARD studies, there is potential for exposed waste in this setting to leach metals and generate acidity, and contaminate the drainage system downstream. To limit these adverse effects, after mine closure the waste would be permanently immersed in water by impounding the natural drainage in the valley by a dam at the lower (downstream) end of the waste dump.

At the outset, another dam at the upper end of the waste dump would be required to feed the temporary creek diversion on the west side of the valley until the end of mining operations, and thereafter to supply a head of water above the surface of the waste rock.

Part of the preliminary work to test the feasibility of the wet impoundment concept was the drilling of four test holes in the creek valley towards the front of the impoundment (Fig. 5.1). The objectives were to:

- Determine the nature of the overburden, specifically the presence or absence of glacial till
- Determine the lithological composition, grain size and texture of the bedrock
- Test the stability of the ground
- Assess the groundwater flow and permeability to find out if the foundation of the Silvertip Creek valley would be sufficiently impervious to prevent seepage from the impoundment, and hence maintain saturation of the waste

5.2 GEOLOGICAL SETTING

There is no known rock exposure in the Silvertip Creek valley bottom, which is covered by colluvium and glacial sand and gravel. Previous geological mapping and structural projections indicate that the bedrock beneath this overburden is almost entirely Tapioca sandstone (informal), a Silurian-Devonian unit widespread in the region and consisting

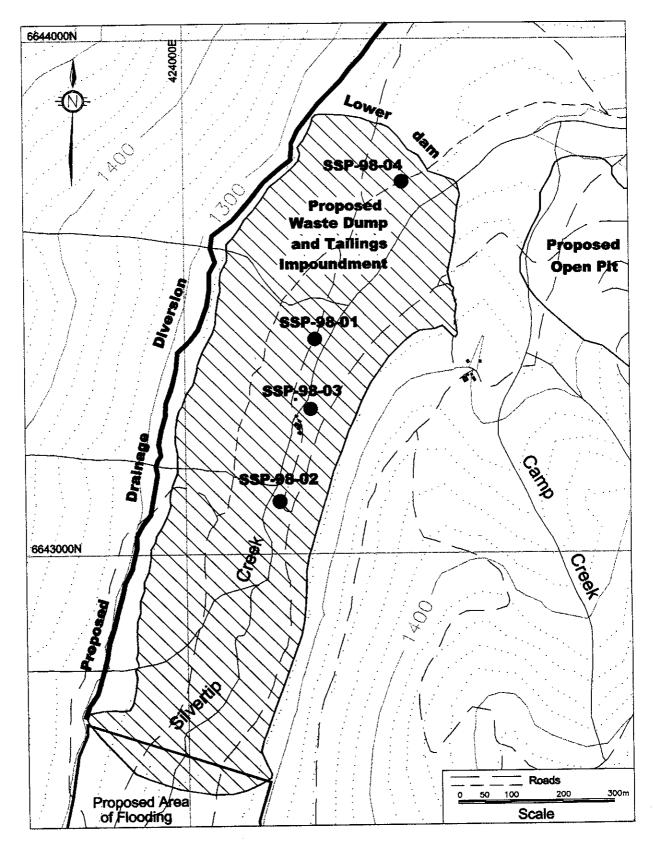


Fig. 5.1: Location of geotechnical drillholes in Silvertip Creek valley

of dolomitic sandstone and quartzite, and dolostone (see section 2.2 for more details). At the southern end of the impoundment area, however, the Tapioca sandstone may be overlain by a few metres or tens of metres of the lower McDame Group, consisting of fine-grained, massive and laminated dolostone.

A fault, the Silvertip Creek fault, has been postulated to run down the west side of the valley bottom. The fault is part of the Tootsee River fault system (Nelson and Bradford, 1993), and is probably an east-side-down extensional fault.

5.3 IMPLEMENTATION

Watson Lake Well Drilling was contracted to perform the work, which was carried out between July 16 and 28, 1998. A truck-mounted, 71 Star percussion drill was used, operated by two 2-man shifts of 10 hours each, over each 24 hours, seven days a week. Suitable sites for the test holes were found on existing property roads (Fig. 5.1). All holes were vertical. The diameters of the holes were 8 inches in overburden and 6 inches in bedrock. Sample cuttings were collected by the drillers or the geologist, and logged promptly by the geologist. The cuttings are stored on site. No geochemical analysis was performed on this material.

5.4 RESULTS

Drilling showed that there is no significant fine-grained glacial till in the Silvertip Creek valley bottom. Rather, the overburden is relatively pervious glaciofluvial sand and gravel. It varies in thickness from 14.3 feet (4.36 m) to 117 feet (35.66 m) in the four holes drilled, being thickest at the northern end of the impoundment area (test hole 4), and decreasing upstream to the south to around 15 feet (4.6 m). This is still near the northern end of the disposal area; the overburden thickness may thicken again to the south, so the overall depth profile of the valley still has to be determined.

The phreatic surface (water table) in the overburden generally coincides with the creek level.

Descriptions of the overburden samples recovered from the test holes are given below (Table 5.1). The dominant valley fill is sand, with minor components of silt and gravel. From visual classification, this material has a permeability on average of about 5×10^{-5} m/s, possibly rising to about 10^{-3} m/s in the coarsest sections.

Drilling confirmed that below the overburden the bedrock in the tested area is exclusively Tapioca sandstone. The bedrock is hard and the upper surface is irregular. This variable thickness of the overburden probably reflects erosional features in the paleo-topography. The bedrock chips recovered are typically angular chips of quartzite and sandstone up to a few millimetres across. Well-rounded quartz grains reworked from the original rock are common, as is a strong fetid smell. Colour varies from pale grey to dark grey to brown, and there is some orange or reddish iron oxide staining occasionally. The finer, powdery matrix is dolomitic and effervesces strongly with dilute hydrochloric acid.

Table 5.1: Logs of overburden drilling samples, Silvertip Creek

TYPE	DEPTH	LITHOLOGY	DESCRIPTION
	10 feet	Gravel	Fine, sandy, angular to subangular, grey. Some exotic rocks.
	20 feet	Sand	Medium to fine; trace silt, brown to black.
	25 feet	Sand	Silty, subangular, grey-brown.
	26 feet	Sand	Medium to coarse; trace fine gravel, silt, subangular, grey-brown.
OVERBURDEN	30 feet	Sand	Coarse; trace fine gravel, trace to some silt, subangular, brown- dark grey.
	35 feet	Sand	Trace fine gravel, trace silt, subangular, grey-brown.
	38 feet	Sand	Coarse; fine gravelly, some fine to medium sand, angular, grey.
	40 feet	Sand	Well-sorted; trace fine gravel, trace silt, subangular, grey-brown. Wood chips, bark.
	50 feet	Sand	Trace fine gravel, trace silt, subangular, grey-brown. Wood chips.
	57 feet		Tapioca sandstone; chips of beige and grey quartzite, sandstone.
BEDROCK		Sandstone	
	83 feet		End of Hole
Notes: Bedrock	at 57 feet	(17.4 m). Creel	k at approximately 15 feet (4.6 m).

SSP-98-01

SSP-98-02

TYPE	DEPTH	LITHOLOGY	DESCRIPTION
OVERBURDEN			Hard pack, boulders
BEDROCK	16.5 feet	Sandstone	Tapioca sandstone; angular chips of grey-brown quartzite, sandstone
	40 feet		End of Hole

SSP-98-03

TYPE	DEPTH	LITHOLOGY	DESCRIPTION
OVERBURDEN	10 feet	Sand	Medium to coarse; some fine gravel and silt, angular to subangular, grey-brown
	13 feet	Sand	Trace silt, trace fine gravel, subangular, grey
	14.3 feet		Tapioca sandstone; chips of beige and grey quartzite, round sand grains, limonite
BEDROCK		Sandstone	
	37 feet	l	End of Hole
Notes: Bedrock	at 14.3 fee	et (4.36 m). Cre	eek at approximately 10 feet (3.0 m).

Table 5.1: Summary logs of overburden drilling samples, Silvertip Creek (cont'd.)

TYPE	DEPTH	LITHOLOGY	DESCRIPTION
	10 feet	Sand	Coarse; some silt, trace fine gravel, subangular, grey.
	12 feet	Silt, fine sand	Some coarse sand, trace fine gravel, subangular, grey.
	15 feet	Sand	Fine to medium; some coarse sand, some coarse gravel, trace silt, subangular, grey.
	20 feet	Silt, fine sand	Trace to minor medium and coarse sand, grey.
	25 feet	Sand	Silty, trace fine gravel, subangular, grey-brown.
	30 feet	Sand	Coarse to medium; some fine sand, trace silt, angular to subangular, grey-brown.
	35 feet	Sand	Medium to fine; trace coarse sand, angular, grey.
	40 feet		Some coarse sand, some fine gravel, subangular, grey.
OVERBURDEN	45 feet	Silt, fine sand	Some medium to coarse sand, trace fine gravel, subangular, grey-brown.
	50 feet	Sand	Silty, trace fine gravel, subangular, grey-brown.
	55 feet	Sand	Medium; some silt, angular, grey-brown.
	60 feet	Sand	Medium; some silt, angular, grey-brown.
	65 feet 70 feet	Sand Gravel	Medium to coarse; some fine sand, trace to minor silt, angular to subangular, grey-brown. Fine, pebbly; coarse sand, some fine to medium sand, trace to some silt, subangular, grey.
	75 feet	Sand	Fine; trace medium sand; some silt, grey-brown.
	80 feet	Sand	Medium to fine; trace coarse sand; trace silt, brown.
	85 feet	Sand	Fine, silty, grey-brown. Somewhat cohesive.
	90 feet	Sand	Fine, silty, grey-brown. Somewhat cohesive.
	100 feet	Fine sand, silt	Trace coarse sand, trace fine gravel, brown.
	105 feet	Gravel	Some fine sand and silt, angular, grey; broken cobbles?
	110 feet	Gravel	Some coarse sand, angular, grey. Some exotic rocks.
	115 feet	Gravel	Some coarse sand; pebbly, angular, grey.
	117 feet		Tapioca sandstone; chips of beige and grey quartzite, sandstone.
BEDROCK		Sandstone	
	143 feet		End of Hole.
Notes: Bedrock	at 117 fee	t (35.7 m). Stat	tic level of water (creek) at approx. 80 feet (24.4 m).

SSP-98-04

A pump test could not be done because the drillers had difficulty establishing a seal at the bottom of the drill casing because of the hard, irregular bedrock surface. However, based on water level recovery measurements, the Tapioca sandstone appears to be inherently 'tight' and capable of supporting the proposed impoundment.

5.5 CONCLUSIONS

Provisional conclusions based on the 1998 work are:

- There is no significant fine-grained glacial till in the Silvertip Creek valley bottom. Rather, the overburden is relatively pervious glaciofluvial sand and gravel.
- The bedrock beneath the overburden is hard, competent and tight dolomitic sandstone (Tapioca sandstone), with very little potential for karst development. It is relatively impermeable. The Silvertip Creek fault does not appear to be a strong conduit of groundwater.
- The permeability in the bedrock should not represent any obstacle to the retention of water within the waste rock above it, permitting the construction of a dam.

SELECTED BIBLIOGRAPHY

- Abbott, G. (1983): Silver-bearing veins and replacement deposits of the Rancheria district; <u>in</u> Yukon Exploration and Geology 1983, Indian and Northern Affairs Canada, Exploration and Geological Services Division, Whitehorse, p. 34-44.
- Bradford, J.A. (1988): Geology and genesis of the Midway silver-lead-zinc deposit, north-central British Columbia; unpublished M.Sc. thesis, University of British Columbia, 285 pp.
- Bradford, J.A. and Godwin, C.I. (1988): Midway silver-lead-zinc manto deposit, northern British Columbia; <u>in</u> B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork, 1987, Paper 1988-1, p. 353-360.
- Cordilleran Engineering (1985): Midway 1984 Summary Report, Volume 1 (text), August 1985; SMC company files.
- Curtis, L.W. (1986): Report on an examination of the Midway property; Curtis and Associates Inc.; SMC company files.
- Gabrielse, H. (1963): McDame map-area, Cassiar District, British Columbia; Geological Survey of Canada, Memoir 319, 138 pp.
- Nelson, J.L. (1993): The Sylvester Allochthon: Upper Paleozoic marginal basin and island arc terranes in northern British Columbia; <u>in</u> Canadian Journal of Earth Sciences, Vol. 30, p. 631-643.
- Nelson, J.L. and Bradford, J.A. (1987): Geology of the Midway area, northern British Columbia (104O/16); B.C. Ministry of Energy, Mines and Petroleum Resources, Open File 1987-5.
- Nelson, J.L. and Bradford, J.A. (1993): Geology of the Midway-Cassiar area, northern British Columbia (104O, 104P); B.C. Ministry of Energy, Mines and Petroleum Resources, Bulletin 83, 94 pp.
- Silvertip Mining Corporation (1998): Silvertip Project, 1997 Summary Report: Geological mapping, seismic surveying and diamond drilling; SMC company files and B.C. Ministry of Energy and Mines Assessment Report.

PROJECT STATEMENTS FOR 1998

ç

÷

х х...

1

4.0

On-Site Personnel - Silvertip 1998

sa. .

ί.,

ί.

. . .

ι.

τ.,

	Name	Position	Days on site
Staff	Steve Robertson	Project Geologist - Manager	11
	Peter Campbell	Manager, Environmental Affairs	3
	Chris Rees	Geologist	74
	Janice Letwin	Geologist	34
	Ivor Saunders	Camp Manager	145
	Richard Ney	Core Splitter/Technician	33
	Gary Agar	Equipment Operator	12
Contract	Laurie Allen	Hydrology Technician	10
	Paul Amann	Equipment Operator	2
	James Carlick	Linecutter	7
	Everett Chief	Linecutter	7
	Albert Herzog	Equipment Operator	3
	Michael Kearney	GPS Surveyor	4
	Sandra Lussier	Camp Cook	46
	Ken Nordine	Hydrologist	40
	Linda Valade	Cook	3 10
	Peter Von Zuben		
	Stu Withers	Equipment Operator	3
		Hydrologist	3 2
	Larry	Equipment Operator	2
Consultants	Dan Royea	Hydrologist	13
	Steven Day	Geochemist	7
	Peter Megaw	Geologist	6
	John Jemmett	Fisheries Scientist	16
	Josie Turner	Fisheries Scientist	16
	Roy Mayfield	Engineer	4
	Ed Livingston	Hydrogeologist	5
	Jim Poriz	Terrain Mapping Scientist	10
	Joe Fitzpatrick	Terrain Mapping Scientist	10
	Clint Smyth	Terrain Mapping Scientist	10
	Irene Teske	Terrain Mapping Scientist	10
Vatson Lake	Don Stone Sr.	Drilling Foreman	15
Vell Drilling	Don Stone Jr.	Driller	15
	Shawn Stone	Driller	15
	George Frank	Helper	15
	Edward Frank	Helper	15
Whytecliff	David Butler	Geophysicist	21
Geophysics	Kevin Jarvis	Geophysicist	21
seopnysics	Greg Zembik	Geophysicist Geophysics Assistant	21
	Lanie McLachlan	Geophysics Assistant Geophysics Assistant	21
	·····	• •	
		Total Person-days on Site	678

	Name	Position	Days Worked in field	Rate (\$/day)	Cost (\$)
Staff	Steve Robertson	Project Geologist - Manager	11	345	3,795
	Peter Campbell	Manager, Environmental Affairs	3	406	1,218
	Chris Rees	Geologist	74	310	22,940
	Janice Letwin	Geologist	34	217	7,378
	Ivor Saunders	Camp Manager	145	185	26,825
	Richard Ney	Core Splitter/Technician	33	154	5,082
	Gary Agar	Equipment Operator	12	329	3,948
			Tota	l cost	71,186
Contract	Sandra Lussier	Camp Cook	46	180	8,280
00110200	Linda Valade	Cook	9	165	1,485
	Laurie Allen	Hydrology Technician	10	150	1,500
	James Carlick	Linecutter	6	200	1,200
	Everett Chief	Linecutter	6	200	1,200
	Albert Herzog	Equipment Operator	2	200	400
	Peter Von Zuben	Equipment Operator	2	200	400
			Tota	l cost	14,465

Expenditures - Silvertip 1998

Salaries				
	Staff		71,186	
	Contract		14,465	
				85,65
Camp Suppo	rt			
	Food		10,861	
	Accommodation	(678 person/days @ \$20/day)	13,560	
Transportatio	on and Travel			24,42
	Airfares		27,843	
	Vehicle Rental		10,587	
	Vehicle insurance		1,508	
	Fuel		7,767	
	Hotels		3,550	
	Meals in Transit		2,116	
	Shipping and Courier		11,540	
	Shipping and Council			64,91
Laboratory A				
	ARD Geochemistry	(175 samples @ 38.36)	6,713	
	Water Quality	(130 samples @ 150.80)	19,604	00.00
Current				26,31
Survey	CSAMT Geophysics	(5 lines, 4.0 km)		60,08
Drilling			· · · · · · · · · · · · · · · · · · ·	
9	Geotechnical Drilling	(4 holes, 92.35 metres)		39,52
Consulting S	ervices			
	ARD Assessment (Steffe	en, Robertson & Kirsten)	16,794	
	Fisheries Assessment (J	. Jemmett & Associates)	17,634	
	Hydrology and Water Qu	ality (Ecotech, Laberge Env. Serv.)	62,903	
Supplies and	Samicac		****	97,33
Supplies and	Field & Hardware supplie		15,815	
		.5	1,488	
	Repair & Maintenance		575	
	Construction Materials			
	Mechanical Labour		1,090	18,96
Communicat				10.0
	Satellite Phone, Radioph	one, Long Distance		10,63
Other Costs	Dormito and Liconosa		2,292	
	Permits and Licences		3,253	
	Drafting, Reproduction		3,203	5,5
Report Writir	ıg	······································		5,00
Subtotal	,			438,3
Amount filed	for Assessment			415,77
Filing Fees				27,0
-				
TOTAL				442,80

STATEMENT OF QUALIFICATIONS

I, Christopher John Rees, currently of Imperial Metals Corporation, Suite 420-355 Burrard Street, Vancouver, British Columbia, certify that

- I hold degrees in geology from Carleton University (Ph.D., 1987), University of Regina (M.Sc., 1980) and University College of Wales (B.Sc., 1976)
- I have been engaged in geological mapping and mineral exploration services in Canada since 1976
- I am a professional Geoscientist registered with the Association of Professional Engineers and Geoscientists of British Columbia

Signed

OFESSIO PROVINCE C. J. REES BRITISH COLUMBIA SCIEN

C. J. Rees January 1999

APPENDIX A

_

_

_

.....

æ

F

 \overline{c}

ABA REPORTS – MAIN LOGS

DRILLHOLE SSD-97-15

Ē

1

.

1

SAMPLES 160301 to 160318

HOLE: SSD-97-15 Interval From 9.14 To 17.7 m Sample Number: 160301 Proport'n Proportion of Major Forms (%) Dimensions of Forms (mm) MINERAL Prop'n ROCK of Condition Mineral Veinlet, Fracture Filling P'blast Nodule Clast Matrix (Rank*) Mineral of Laminae Massive of Rock Veinlet, Fracture Filling Pblast Nodule Clast Dissemin Dissemin Laminae Massive Matrix Group Mineral TYPE GROUP in Core (%) (%) 100 96 0 0 0 0.2 Pyrite 3 1 1 1.2 SULPHIDES 1 Pyrrhotite 0 Base Metal 0 Sandstone Calcite 97 100 0 0 0 0 4* 0.1 Weakly CARBONATES Dolomite 1 100 0 0 0 1 0 0 0.1 fractured Fe-Carb. 2 100 0 0 0 0 0 0.1 Quartz 75 0 0 0 100 0 0 0.3 SILICATES 98 Albite 15 0 0 0 0 100 0 0.2 Sericite 10 0 0 0 0 0 100 < 0.1

HOLE: SSD-	97-15	Interval	From 17.7	To	21.5 n	n	Sar	nple Nun	nber: 16	0302 *	•						
ROCK	MINERAL	Proport'n of		Prop'n	F	ropo	tion o	of Major F	Forms (%	6)		Dirr	nensio	ons of F	orms (mm))	Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin	Laminae	Massive	Veintet, Fracture	P'blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	100	97	0	0	3	0	0	0.1			0.2		1	
	SULPHIDES	2	Pyrrhotite	0						1				1			1
			Base Metal	0													1
Sandstone			Calcite	100	0	0	0	100	0	0				0.2		1	Highly
	CARBONATES	1	Dolomite	0									·			1	fractured
			Fe-Carb.	0						1					1	1	
			Quartz	80	0	0	0	4	0	96				2		0.1	1
	SILICATES	97	Albite	10	0	0	0	0	0	100						< 0.1	1
			Sericite	10	0	0	0	0	0	100				1		< 0.1	1

HOLE: SSD	-97-15	interval	From 21.5	То	25.0	m	Sai	mpie Nur	nber: 16	0303							
ROCK	MINERAL	Proport'n of		Prop'n	F	ropo	tion o	of Major I	Forms (%	6)		Dirr	ensio	ns of Fo	ms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin	Laminae	Massive	Veinlet, Fracture Filling	P ^r biast Nodule Clast	Matrix	of Rock in Core
			Pyrite	100	96	1	0	2	1	0	0.1	3		1	2		
	SULPHIDES	3	Pyrrhotite	0										[1		
			Base Metal	0										T			
Siltstone			Calcite	90	0	0	0	5	0	4*				0.4		< 0.1	Highly
	CARBONATES	2	Dolomite	0				1						1	1	1	fractured
			Fe-Carb.	10	0	0	0	100	0	0				0.4	1		
			Quartz	70	0	0	0	2	0	98				2	1	0.1	
	SILICATES	95	Albite	15	0	0	0	0	0	100						< 0.1	
			Sericite	15	0	0	0	0	0	100						< 0.1	

HOLE: SSD	-97-15	interval	From 25.0	То	28.0	m	Sar	mpie Nur	nber: 160	304							
ROCK	MINERAL	Proport'n of		Prop n	, F	ropor	tion o	of Major I	=orms (%))		Din	ensio	ns of Fo	ms (mm)		Condition
TYPE	GROUP	Minerai Group (%)	Mineral	of Minerai (%)	Dissemin	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin	Laminae	Massive	Veintet, Fracture Filling	Prblast Nodute Clast	Matrix	of Rock in Core
			Pyrite	100	88	5	0	5	2	O	< 0.1	3		1	2		
	SULPHIDES	3	Pyrrhotite	0											1	T	1
			Base Metal	0					1.					1	1		
Siltstone			Calcite	80	0	80	0	10	0	10		5		0.7	1	< 0.1	Fractured
	CARBONATES	3	Dolomite	0		1								1			platy
•			Fe-Carb.	20	0	0	0	100	0	0				0.7			
			Quartz	70	0	0	0	5	0	95				1	1	0.1	
	SILICATES	94	Albite	15	0	0	Ó	0	0	100				<u> </u>		< 0.1	
			Sericite	15	0	0	0	0	0	100				1	1	< 0.1	

×-- . ..

HOLE: SSD	-97-15	interval	From 28.0	То	33.5 r	n	Sa	mple Nu	mber: 16	0305							
ROCK	MINERAL	Proport'n of		Prop'n	I	Propo	rtion	of Major	Forms (%	6)		Dim	nensio	ns of Fo	mas (mm)	1	Conditio
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin	Laminae	Massive	Veintet, Fracture	P'blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	100	80	2	0	17	1	0	< 0.1	1		1	0.5	<u> </u>	†
	SULPHIDES	5	Pyrrhotite	0		1											1
			Base Metal	0		1				·				<u> </u>			Highly
Siltstone			Calcite	98	0	89	0	1	0	10		8		1	1	< 0.1	fractured
	CARBONATES	2	Dolomite	0				<u>;</u>						<u> </u>	-		minor
			Fe-Carb.	2	0	0	0	100	0	0				0.5			gouge
			Quartz	82	0	0	0	1	0	99				1	1	< 0.1	,,
	SILICATES	93	Albite	10	0	0	0	0	0	100				<u> </u>	1	< 0,1	1
			Sericite	8	0.	0	0	0	0	100						< 0.1	f

HOLE: SSD-	97-15	Intervai	From 33.5	To	36.8 г	n	Sar	nple Nur	nber: 160	0306								
ROCK	MINERAL	Proport'n of		Prop'n	F	Propor	tion o	of Major I	Forms (%	»)		Dim	ensio	ns of	For	ms (mm)		Conditio
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin	Laminae	Massive	Veinlet,	Filling	Prblast Nodute Clast	Matrix	of Rock in Core
			Pyrite	100	90	5	0	5	0	0	< 0.1	0.5		1	1			
	SULPHIDES	3	Pyrrhotite	0				1							-			
			Base Metal	0										1				1
Sandstone			Calcite	100	10	90	0	0	0	2*	< 0.1	5	-	1			< 0.1	1
	CARBONATES	3	Dolomite	0		1												Fracture
			Fe-Carb.	0		1										·		
			Quartz	75	0	0	0	1	0	99					1		0.2	
	SILICATES	94	Albite	15	0	0	0	0	0	100							< 0.1	
			Sericite	10	0	0	0	0	0	100				1			< 0.1	

HOLE: SSD	-97-15	Interval	From 36.8	t To	42.6	m	Sa	mple Nu	mber: 16	0307 *	•						
ROCK	MINERAL	Proport'n of		Prop'n	F	Propor	tion o	of Major I	Forms (%	6)		Dim	ensio	ns of Fo	rms (mm)	•	Conditio
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin	Laminae	Massive	Veinlet, Fracture Filling	P'btast Nodule Clast	Matrix (Rank*)	Dissemin	Laminae	Massive	Veinlet, Fracture Filting	P'blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	99	84	10	0	5	1 .	0	0.1	0.5		1	1		Î
	SULPHIDES	4	Pyrrhotite	0													1
			Base Metal	1	0	0	0	100	0	0				0.5	· .	1	
Siltstone			Calcite	99	9	90	0	1	0	4*	< 0.1	5		0.3		< 0.1	1
	CARBONATES	2	Dolomite	0												1	Platy,
			Fe-Carb.	1	0	0	0	100	0	0				0.5	1	1	fissile
			Quartz	80	0	0	0	10	0	90				2		< 0.1	1
	SILICATES	94	Albite	10	0	0	0	0	0	100				1	1	< 0.1	1
			Sericite	10	0	0	0	0	0	100				1		< 0.1	1

HOLE: SSD	-97-15	Interval	From 42.6	і То	47.55	5 m	Sa	mple Nu	nber: 1	60308							
ROCK	MINERAL	Proport'n of		Prop'n	f	Propo	rtion	of Major	Forms (%)		Dim	ensio	ns of For	ms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule	Matrix (Rank*)	Dissemin	Laminae	Massive	Veinlet, Fracture Filling	P [*] btast Nodule Clast	Matrix	of Rock in Core
			Pyrite	100	95	0	0	5	0	0	< 0.1			1		1	1
	SULPHIDES	2	Pyrrhotite	0													l .
			Base Metal	0												I	
Slate,			Calcite	100	0	0	5	3	5	4*			50	0.3	5	< 0.1	Rubble,
mudstone	CARBONATES	3	Dolomite	0						T							gouge
	1		. Fe-Carb.	0										1	T		
			Quartz	60	0	0	0	2	0	98				1	1	< 0.1	
	SILICATES	95	Albite	20	0	0	0	0	0	100				[< 0.1	
	1		Sericite	20	0	0	0	0	0	100				· · · · · · · · · · · · · · · · · · ·		< 0.1	

HOLE: SSD-	97-15	Interval	From 47.5	5 To	54.5	m	Sar	nple Nu	mber: 16	0309							
ROCK	MINERAL	Proport'n of		Prop'n	F	ropo	tion o	of Major	Forms (9	6)		Dim	ensio	ns of For	ms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	80	10	0	70	5	15	0	0.1	F	500	3	10	<u> </u>	
	SULPHIDES	40	Pyrrhotite	0													1
			Base Metal	20	50	0	15	25	10	0	0.5	-	30	3	10	—	1
High Sulphide			Calcite	100	30	0	20	40	10	0	0.1		75	20	10	<u> </u>	Fractured
	CARBONATES	35	Dolomite	0												1	
			Fe-Carb.	0						E.					1	†	1
			Quartz	90	10	0	0	30	15	45	0.1		· ·	3	8	< 0.1	1
	SILICATES	25	Albite	5	0	0	0	0	0	100			ļ			< 0.1	-
			Sericite	5	0	0	0	0	0	100						< 0.1	1

HOLE: SSD	-97-15	Interval	From 54.9	5 To	56.2	m	Sa	mple Nu	mber: 16	0310							
ROCK	MINERAL	Proport'n of		Prop'n	F	торо	tion o	of Major I	Forms (9	6)		Dim	ensio	ns of Fo	orms (mm)	Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodute Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture	P'blast Nodule Clast	Matrix	of Rock in Core
	I		Pyrite	100	10	0	0	10	80	0	< 0.1			0.5	1.5	-	Ĩ
	SULPHIDES	1	Pyrrhotite	0		1										1	1
			Base Metal	0				1						1		1	1
Slate			Calcite	100	20	0	0	80	0	5*	< 0.1			5		< 0.1	
	CARBONATES	29	Dolomite	0					1			1		1			Fractured
			Fe-Carb.	0				1						1			
			Quartz	80	0	0	0	5	0	95				1		< 0.1	
	SILICATES	70	Albite	10	0	0	0	0	0	100						< 0.1	
			Sericite	10	0	0	0	0	0	100		ľ		1	1	< 0.1	1

ROCK	MINERAL	Proport'n of		Prop'n	F	ropor	tion c	of Major F	forms (%	6)		Dim	ensior	ns of For	ms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Minerał	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P ^{blast} Nodu la Clast	Matrix	of Rock in Core
			Pyrite	70	25	0	25	25	25	0	0.1		15	2	5		
	SULPHIDES	35	Pyrrhotite	0			-]
			Base Metal	30	30	0	40	0	30	0	0.1		15		5		
ligh Sulphide			Calcite	100	100	0	0	0	0	0	< 0.1						Fractured,
	CARBONATES	3	Dolomite	0													rubble
			Fe-Carb.	0													1
			Quartz	92	10	0	0	10	10	70	0.1			1	5	< 0.1	1
	SILICATES	62	Albite	5	0	0	0	0	0	100						< 0.1	1
			Sericite	3	0	0	0	0	0	100						< 0.1	1

Mineral Mineral of E g g g g g g g g g g g g g g g g g g	HOLE: SSD-	97-15	interval	From 58.0	D To	60.8 r	n	San	npie Nu	nber: 160	0312 *	۲						
TYPE GROUP Group (%) Mineral (%) interal is is is is is is is is is is is is is is is is is is is is is is is is is is is is <	ROCK	MINERAL			Prop'n	F	ropor	tion o	if Major I	Forms (%	6)		Dim	ensio	ns of For	ms (mm)		Condition
SULPHIDES 1 Pyrrhotite 0	TYPE	GROUP	Group	Mineral	Mineral	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P ^r blast Nodule Clast	Matrix (Rank [*])	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix	of Rock in Core
Base Metal 0 <th0< td=""><td></td><td>i · · · ·</td><td></td><td></td><td>-</td><td>100</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>< 0.1</td><td></td><td></td><td></td><td></td><td></td><td></td></th0<>		i · · · ·			-	100	0	0	0	0	0	< 0.1						
Siltstone Calcite 100 0 0 0 50 1 < 0.1 CARBONATES 6 Dolornite 0 0 50 0 1 < 0.1		SULPHIDES	1				<u> </u>				ļ		ļ		.	ļ		
CARBONATES 6 Dolornite 0	Siltetono				_	-			- EQ	<u> </u>	50		ļ	4	<u> </u>		1 - 0.1	
Fe-Carb. 0 -<	Salsione	CARBONATES	6				<u> </u>				. 50			1			<u> </u>	Fractured
SILICATES 93 Albite 8 0 0 0 0 100 <0.1			Ť								<u> </u>					<u> </u>		
				Quartz	92	0	0	0	20	0	80			1			< 0.1	
Sericite 10 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0		SILICATES	93			0	0	0		*								
				Sericite	10	0	0	0	0	0	100						< 0.1	

τ.,

HOLE: SSD-	97-15	Interval	From 60.8	То	66.15	m	San	nple Nun	nber: 16	0313								
ROCK	MINERAL	Proport'n of		Prop'n	P	ropor	tion c	of Major F	orms (9	6)		Dim	nensio	ns o	For	ms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin	Laminae	Massive	Veinlet,	Filing	P'blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	100	100	0	0	0	0	0	< 0.1							
	SULPHIDES	1	Pyrrhotite	0														
			Base Metal	0														
Siltstone			Calcite	100	0	0	0	30	0	70				0	.5		< 0.1	
	CARBONATES	1	Dolomite	0														Rubble
			Fe-Carb.	0										-				chips
			Quartz	89	0	0	0	15	0	85					1		< 0.1	
	SILICATES	98	Albite	5	0	0	0	0	0	100							< 0,1	
			Sericite	6	0	0	0	0	0	100							< 0.1	

HOLE: SSD-	97-15	Interval	From 66.1	15 To	70.1	m	Sar	npie Nur	nber: 16	0314							
ROCK	MINERAL	Proport'n of		Prop'n	F	ropor	tion c	of Major F	Forms (%	5)		Din	nensio	ns of Fo	rms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin	Laminae	Massive	Veinlet, Fracture Filling	Prbfast Nodute Clast	Matrix (Rank*)	Dissemin	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix	of Rock in Core
	1		Pyrite	97	70	0	0	0	30	0	< 0.1				3		
	SULPHIDES	1	Pyrrhotite	0													
			Base Metal	3	100	0	0	0	0	0	0.1						
Slate to			Calcite	100	0	0	0	5	75	20				1	15	< 0.1	Fracture
mudstone	CARBONATES	30	Dolomite	0											[
(breccia)			Fe-Carb.	0													Some
. ,			Quartz	89	0	0	0	7	5	88				1	3	< 0.1	gouge
	SILICATES	69	Albite	5	0	0	0	0	0	100						< 0.1	
			Sericite	6	0	0	0	0	0	100					-	< 0.1	

HOLE: SSD-	97-15	Interval	From 70.1	To 7	74.5 m		Sar	nple Nur	nber: 16	0315							
ROCK	MINERAL	Proport'n of		Prop'n	F	ropo	rtion c	of Major I	Forms (%	6)		Din	nensio	ns of Fo	rms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veintet, Fracture Filling	P ¹ blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	85	25	0	0	45	30	0	0.1	[2	5		
	SULPHIDES	1	Pyrrhotite	0													
			Base Metal	15	10	0	0	90	0	0	0.1			2			
Limestone			Calcite	95	0	0	95	5	0	0			0.5	2			
	CARBONATES	84	Dolomite	0											ŀ		Competent
			Fe-Carb.	5	0	0	0	100	0	0				5			
			Quartz	100	100	0	0	0	0	0	0.1						
	SILICATES	15	Albite	0													
			Sericite	0											1		1

HOLE: SSD-	97-15	Interval	From 74.5	То	84.25	m	San	nple Nun	nber: 160	316							
ROCK	MINERAL	Proport'n of		Prop'n	P	ropor	tion o	f Major F	orms (%	5)		Din	nensio	ns of For	ms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filting	P'blast Nodute Clast	Matrix	of Rock in Core
· · ·			Pyrite	75	0	0	0	100	0	0				10	I		
	SULPHIDES	1	Pyrrhotite	0													}
			Base Metal	25	0	0	0	100	0	0				15			
Limestone			Calcite	90	Ö	0	90	10	0	0			1	2	<u> </u>]
	CARBONATES	95	Dolomite	5	0	0	0	0	100	0	ĺ .				3		Competent
			Fe-Carb.	5	0	0	0	0	100	0				1	3]
			Quartz	100	100	0	0	0	0	0	0.1			1	T		
	SILICATES	4	Albite	0									L		1		1
			Sericite	0				· ·			Į		1	l	<u> </u>		L

, **.** . -. 20

	07.47																	
HOLE: SSD	MINERAL	Proport'n of	From 84.2	25 io Prop'n	85.0 F		<u> </u>		nbor: 16 Forms (9			Din	nensio	ns of F	om	ıs (mm)	1	Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P ^r blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture	Filing	Polast Nodule Clast	Matrix	of Rock in Core
			Pyrite	100	100	0	0	0	0	0	< 0.1				Т			
	SULPHIDES	1	Pyrrhotite	0														
			Base Metal	0										[Ĺ			
Siltstone			Calcite	96	60	0	0	0	40	5*	< 0.1					5	< 0.1	
(breccia)	CARBONATES	20	Dolomite	1	0	0	0	0	100	0				[Τ	3		Quasi-
. ,			Fe-Carb.	3	0	0	0	0	100	0						3	[rubble
			Quartz	93	0	0	0	0	5	95						1	< 0.1	
	SILICATES	79	Albite	3	0	0	0	0	0	100				<u> </u>	T		< 0.1	
			Sericite	4	0	0	0	0	0	100							< 0.1	

2 13

: . .

: : • •

(____)

HOLE: SSD-	97-15	Interval	From 85.0	To 9	2.66 m	n	Sar	nple Nur	nber: 160	0318							
ROCK	MINERAL	Proport'n of		Prop'n	F	Propor	tion c	of Major F	Forms (%	6)		Dim	iensio	ns of F	orms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture	P'blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	100	0	0	0	100	0	0				0.8			
	SULPHIDES	1	Pyrrhotite	0												I	
			Base Metai	0					-								
Limestone			Calcite	100	0	0	0	10	0	90				3		< 0.1	
	CARBONATES	98	Dolomite	0		·											Competen
			Fe-Carb.	0				[
			Quartz	100	0	0	0	0	100	0					10		
	SILICATES	1	Albite	0													
	1	-	Sericite	0												1	

• •

DRILLHOLE 84-65

===

5.2

SAMPLES 160319 to 160350

HOLE: 84-65		Interval	From 4.8	To 1	3.0 m		Sar	nple Nur	nber: 16	035 0							
ROCK	MINERAL	Proport'n of		Prop'n	F	Propol	rtion c	of Major I	Forms (%	%)		Dim	ensio	ns of For	ms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Minerał	of Mineral (%)	Dissemin	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin	Laminae	Massive	Veinlet, Fracture Filling	P ^{blast} Nodule Clast	Matrix	of Rock in Core
			Pyrite	100	85	5	0	5.	5	0	< 0.1	1		2	2		
	SULPHIDES	1	Pyrrhotite	0													
			Base Metal	0													
Sandstone.			Calcite														Competent
conclomerate	CARBONATES	0	Dolomite	_		F	Γ										
			Fe-Carb.														
			Quartz	80	0	0	0	3	20	77				3	1	0.1	
i	SILICATES	99	Albite	10	0	0	0	0	0	100						< 0.1	
			Sericite	10	0	0	0	0	0	100						< 0.1	

HOLE: 84-65		Interval	From 13.0	То	21.0 m	n	Sar	nple Nu	mber: 16	60319								
ROCK	MINERAL	Proport'n of		Prop'n	F	Propor	tion o	of Major	Forms (%)		Dim	ensio	ns of F	oms	(mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	- Matrix (Rank*)	Dissemin	Laminae	Massive	Veintet, Fracture	Filling P'blast	Nodul e Clast	Matrix	of Rock in Core
· · · ·			Pyrite	100	85	5	0	5	5	0	< 0.1	1		2		2	[
	SULPHIDES	1	Pyrrhotite	0														
			Base Metal	0										1				
Sandstone.			Calcite				l –	1						I				
conglomerate	CARBONATES	0	Dolomite															Competen
Ŭ.			Fe-Carb.				T							ļ				
			Quartz	80	0	0	0	3	20	77				3		1	0.1	
	SILICATES	99	Albite	10	0	0	0	0	0	100		[I			0.1	
			Sericite	10	0	0	0	0	0	100	I	1					< 0.1	

HOLE: 84-65	i	Interval	From 21.0) То	28.0 m	ר	Sar	nple Nur	nber: 16	0320							
ROCK	MINERAL	Proport'n of		Prop'n	F	ropo	rtion c	of Major I	Forms (%	6)		Dim	ensio	ns of Foi	ms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	100	82	10	0	3	5	0	< 0.1	2		1	1		
	SULPHIDES	1.5	Pyrrhotite	0											{		
			Base Metal	0													
Sandstone,			Calcite				Γ	[Competent
congiomerate	CARBONATES	0	Dolomite					1							Ţ		
U			Fe-Carb.				1	Γ							}		
			Quartz	80	0	0	0	3	10	87			[5	1	0.1	
	SILICATES	98.5	Albite	10	0	0	0	0	0	100						0.1	1
		1	Sericite	10	0	0	0	0	0	100				1		0.1	

HOLE: 84-65		Interval	From 28.0	To	34.55	m	Sar	nple Nun	nber: 160	0321 *	•						
ROCK	MINERAL	Proport'n of		Prop'n	F	ropor	tion o	f Major F	Forms (%	6)		Dim	ensio	ns of Fo	ms (mm)		Condition
TYPE	GROUP	Minerat Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank")	Dissemin.	Laminae	Massive	Veinlet, Fracture Fitinn	P'blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	100	70	0	0	10	20	0	0.1			3	2	L	
	SULPHIDES	1.5	Pyrrhotite	0				Ι									
			Base Metal	0									l				
Sandstone,			Calcite	20	0	100	0	0	0	5*		5					Competent
conglomerate	CARBONATES	2	Dolomite	0		l .									1		
Ŭ			Fe-Carb.	80	10	0	0	90	0	0	0.1			4			
			Quartz	80	0	0	0	15	0	85				10		0.1	
	SILICATES	96.5	Albite	10	0	0	0	0	0	100						< 0.1	
			Sericite	10	0	0	0	0	0	100				Γ		< 0.1	

...

HOLE: 84-65		Interval	From 34.5	55 To	37.3 (m	Sar	nple Nur	nber: 16	0322								
ROCK	MINERAL	Proport'n of		Prop'n	P	горог	tion c	of Major F	forms (%	6)		Dim	ensio	ns of F	orms (i	mm)		Conditio
TYPE	GROUP ~	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture	P'blast	Clast	Matrix	of Rock in Core
			Pyrite	100	100	0	0	0	0	0	0.1							
	SULPHIDES	<1	Pyrrhotite	0														
			Base Metal	0														
Sandstone,			Calcite	0								1			1			
conglomerate	CARBONATES	1	Dolomite	0														Fracture
•			Fe-Carb.	100	0	0	0	100	0	0				1				
			Quartz	80	0	0	0	5	0	95			[6			0.1	
	SILICATES	98	Albite	10	0	0	0	0	0	100							0.1	
			Sericite	10	0	0	0	0	0	100			1				< 0.1	

HOLE: 84-65		interval	From 37.3	3 To	40.2 r	n	Sar	nple Nun	nber: 16	0323								
ROCK	MINERAL	Proport'n of		Prop'n	۴	ropor	tion c	f Major F	forms (%	6)		Dim	ensio	ns of I	Form	ns (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodute Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture	Filling	P'blast Nodute Clast	Matrix	of Rock in Core
			Pyrite	100	100	0	0	0	0	0	< 0.1			{				
	SULPHIDES	<1	Pyrrhotite	0														
			Base Metal	0														
Sandstone,			Calcite	100	Ó	100	0	0	0	5*		10					< 0.1	
conglomerate	CARBONATES	2	Dolomite	0						1		-						Competent
Ū.			Fe-Carb.	0														
:			Quartz	80	0	0	0	0	0	100							0.1	
	SILICATES	97	Albite	10	0	0	0	0	0	100							0.1	
			Sericite	10	0	0	0	0	0	100							< 0.1	

HOLE: 84-65		Interval	From 40.2	2 To	45.0 n	ſ	Sar	nple Nur	nber: 16	0324							
ROCK	MINERAL	Proport'n of		Prop'n	F	ropor	tion o	of Major F	Forms (9	6)		Dim	ensio	ns of Fo	rms (mm)		Condition
TYPE	GROUP	Minerał Group (%)	Min e ral	of Minerai (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemín.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	100	80	0	0	20	0	0	0,1			2			
	SULPHIDES	1	Pyrrhotite	0													
			Base Metal	0											T		
Sandstone,			Calcite														
conglomerate	CARBONATES	0	Dolomite														Competent
Ŭ			Fe-Carb.														
			Quartz	80	0	0	0	5	0	95				8	T	0.1	
	SILICATES	99	Albite	10	0	0	0	0	0	100						< 0.1	
			Sericite	10	0	0	0	0	0	100						< 0.1	

HOLE: 84-65		Interval	From 45.0) To	52.4 m	1	San	npie Nun	nber: 160	1325							
ROCK	MINERAL	Proport'n of		Prop'n	P	ropor	tion c	f Major F	Forms (%	6)		Dim	ensio	ns of For	ms (mm)		Condition
TYPE	GROUP	Minerai Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodute Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veintet, Fracture Filling	P'blast Nodute Clast	Matrix	of Rock in Core
			Pyrite	100	93	0	0	2	5	0	0.1			1	1		
	SULPHIDES	1	Pyrrhotite	0													
			Base Metal	0													
Sandstone,			Calcite	100	0	100	0	0	0	4*		10				< 0.1	Competent
conglomerate	CARBONATES	1	Dolomite	0										I.			to
-			Fe-Carb.	0		Ι											fractured
			Quartz	80	0	0	0	0	0	100						0.1	
	SILICATES	98	Albite	10	0	0	0	0	0	100						< 0.1	
			Sericite	10	0	0	0	0	0	100						< 0.1	

HOLE: 84-65		interval	From 52.4	То	58.15	m	San	nple Nur	nber: 16	326 *	•						
ROCK	MINERAL	Proport'n of		Prop'n	P	ropor	tion a	f Major I	orms (%	6)		Dim	ensio	ns of For	ms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Min e ral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P ^r blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	100	60	0	0	10	30	0	0.1			0.5	0.5		
	SULPHIDES	1	Pyrrhotite	0						T							
			Base Metal	0				ł									
Sandstone.			Calcite	90	100	0	0	0	0	0	< 0.1						Fractured
	CARBONATES	1	Dolomite	0					[[to
÷			Fe-Carb.	10	0	0	0	100	0	0				3	Γ		competen
	· · · · · · · · · · · · · · · · · · ·		Quartz	80	0	0	0	2	0	98				3		0.1	
	SILICATES	98	Albite	10	0	0	0	0	0	100						< 0.1	
- A.			Sericite	10	0	0	0	0	0	100						< 0.1	

HOLE: 84-65		Interval	From 58.	15 To	67.65	័កា	Şar	nple Nun	nber: 16	0327							
ROCK	MINERAL	Proport'n of		Prop'n	F	ropor	tion o	f Major F	'orms (%	5)		Dim	ensio	ns of F	orms (mn	1)	Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veintet, Fracture Fitting	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture	P'blast Nodule	Matrix	of Rock in Core
			Pyrite	100	80	0	0	10	10	0	0.1			1	1		
	SULPHIDES	<1	Pyrrhotite	0													
			Base Metal	0													
Sandstone,			Calcite	100	0	100	0	0	0	4*		20				< 0.1	Competent
conglomerate	CARBONATES	<1	Dolomite	0													to
_			Fe-Carb.	0													fractured
			Quartz	80	0	0	0	5	0	95				8		0.1]
	SILICATES	99	Albite	10	0	0	0	0	0	100		Ι]		< 0.1]
			Sericite	10	0	0	0	0	0	100						< 0.1	1

HOLE: 84-65		Interval	From 67.	65 To	70.1	m	Sar	nple Nur	nber: 16	0328							
ROCK	MINERAL	Proport'n of		Prop'n	F	Propor	tion c	of Major F	Forms (%	6)		Dim	ensio	ns of Fo	rms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodute Clast	Matrix (Rank*)	Díssemin.	Laminae	Massive	Veinlet, Fracture Filling	P blast Nodute Clast	Matrix	of Rock in Core
			Pyrite	100	80	0	0	10	10	0	0.1		:	1	1		
	SULPHIDES	1	Pyrrhotite	0													
			Base Metal	0												ł	
Sandstone,			Calcite	85	0	100	0	0	0	5*		10				< 0,1	Fractured
conglomerate	CARBONATES	<1	Dolomite	0												l	to
ÿ			Fe-Carb.	15	0	0	0	100	0	0				0.5			rubble
1			Quartz	80	0	0	0	15	0	85				5		0.1	
	SILICATES	98	Albite	10	0	0	0	0	0	100						< 0.1	
			Sericite	10	0	0	0	0	0	100						< 0.1	

IOLE: 84-6	5	Intervai	From 70.1	To 7	'9.4 m		San	nple Nur	nber: 16	0329							
ROCK	MINERAL	Proport'n of		Prop'n	F	Propor	tion o	f Major I	Forms (%	6)		Dim	ensio	ns of Fo	mms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture	P'blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	100	40	10	0	10	40	0	0.1	3		1	2		
	SULPHIDES	2	Pyrrhotite	0													
			Base Metal	0													
Siltstone			Calcite	97	0	100	0	0	0	5*		10		ŀ		< 0.1	Highly
	CARBONATES	2	Dolomite	0										<u> </u>			fractured
			Fe-Carb.	3	0	0	0	100	0	0				3			
			Quartz	75	0	0	0	6	0	94		ſ	•	2		0.1	
	SILICATES	96	Albite	10	0	0	0	0	0	100						< 0.1	
			Sericite	15	0	T o	0	0	0	100				l l		< 0.1	

HOLE: 84-65	5	Interval	From 79.	4 To 8	6.35 r	n	Sar	nple Nur	nber: 16	0330							
ROCK	MINERAL	Proport'n of		Prop'n	F	ropor	tion o	of Major F	Forms (%	6)		Dim	ensio	ns of Fo	rms (mr	1)	Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture	P'blast Nodule	Matrix	of Rock in Core
			Pyrite	100	50	0	0	10	40	0	0.1			1	10		
	SULPHIDES	1	Pyrrhotite	0													1
			Base Metal	0			[
Sandstone			Calcite	100	0	100	0	0	0	0		5					Fractured
	CARBONATES	< 1	Dolomite	0													to
			Fe-Carb.	0					l								competent
	-		Quartz	80	0	0	0	3	0	97				3		0.1	
	SILICATES	98	Albite	10	0	0	0	0	0	100				Γ	[< 0.1	
			Sericite	10	0	0	0	0	0	100						< 0.1	1

HOLE: 84-6	5	Interval	From 86.3	35 To	92.0	m	Sar	nple Nun	nber: 16	0331 *	*						
ROCK	MINERAL	Proport'n of		Prop'n	F	ropoi	tion c	of Major F	Forms (%	6)		Dim	ensio	ns of For	ms (mm)		Conditio
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P ^r blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	94	67	10	0	8	15	0	0.1	1		2	2		
	SULPHIDES	3	Pyrrhotite	6	100	0	0	0	0	0	< 0.1						
			Base Metal	0													
Siltstone			Calcite	100	30	68	0	2	0	5*	< 0.1	6		1		< 0.1	
	CARBONATES	4	Dolomite	0													Fracture
			Fe-Carb.	0													
			Quartz	80	0	0	0	0	0	100						0.1	
	SILICATES	93	Albite	10	0	0	0	0	0	100						< 0.1	
			Sericite	10	0	0	0	0	0	100						< 0.1	

HOLE: 84-6	5	interval	From 92.0) To	94.3 m		San	npie Nur	nber: 160	0332							
ROCK	MINERAL	Proport'n of		Prop'n	F	ropor	tion o	f Major I	Forms (%)		Dim	ensio	ns of Fo	rms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Minerat	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filting	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	100	80	0	0	0	20	0	0.1	ł			1		
	SULPHIDES	1	Pyrrhotite	0								1					
			Base Metal	0												į	
Siltstone			Calcite	100	0	100	0	0	0	4*		5				< 0.1	Highly
	CARBONATES	2	Dolomite	0						1							fractured
			Fe-Carb.	0													
			Quartz	80	0	0	0	0	0	100						0.1	
	SILICATES	97	Albite	10	0	0	0	0	0	100						< 0.1	1
	1		Sericite	10	0	0	0	0	0	100		T T		1	1	< 0.1	1

HOLE: 84-65		Interval	From 94.	3 To	98.7 n	n	Sar	npie Nur	nber: 16	0333							
ROCK	MINERAL	Proport'n of		Prop'n	F	ropoi	tion c	of Major F	Forms (%	b)		Dim	ensio	ns of For	ms (mm)		Condition
TYPE	GROUP	Minerat Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P [*] blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodute Clast	Matrix	of Rock in Core
			Pyrite	100	88	1	0	1	10	0	0.1	0.5		1	0.8		
	SULPHIDES	1	Pyrrhotite	0													
			Base Metal	0								1.1				1	
Sandstone			Calcite	100	5	95	0	0	0	5*	< 0.1	5				< 0.1	Highly
	CARBONATES	2	Dolomite	0					}	1				<u> </u>			fracture
			Fe-Carb.	0													
			Quartz	80	0	0	0	3	0	97				5		1	
	SILICATES	97	Albite	10	0	0	0	0	0	100				L	1	< 0.1	
			Sericite	10	0	0	0	0	0	100	1			1	1	< 0.1	

i Ni d **.** . -. .

•

HOLE: 84-6	5	Interval	From 98.7	To 1	103.3	m	Sai	nple Nur	nber: 16	0334							
ROCK	MINERAL	Proport'n of		Prop'n	F	Propor	tion o	of Major I	Forms (%	6)		Dim	ensio	ns of For	ms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P ^r blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	100	97	0	0	2	1	0	0.1			1	1		
	SULPHIDES	1.	Pyrrhotite	0				· · ·				Γ			Ι		
			Base Metal	0													
Siltstone			Calcite	99	0	100	0	0	0	5*		5			Γ	< 0.1	
	CARBONATES	10	Dolomite	0		1											Fractured
			Fe-Carb.	1	0	0	0	100	0	0				1			
			Quartz	80	0	0	0	5	0	95		{		4		0.1	
	SILICATES	89	Albite	10	0	0	0	0	0	100						< 0.1	
			Sericite	10	0	0	0	0	0	100						< 0.1	

HOLE: 84-65	5	Interval	From 103	.3 To	111.3	3 m	Sar	npie Nun	nber: 160	0335							
ROCK	MINERAL	Proport'n of		Prop'n	F	ropor	tion c	of Major F	Forms (%	5)		Dim	ensio	ns of Fo	rms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank")	Dissemin.	Laminae	Massive	Veinlet, Fracture Fittiag	P'blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	100	80	0	0	15	5	0	0.1	{		1	1		
	SULPHIDES	1	Pyrrhotite	0													
			Base Metal	0						1							
Sandstone			Calcite	80	0	100	0	0	0	5*		6				< 0.1	
	CARBONATES	1	Dolomite	0												Γ	Fractured
			Fe-Carb.	20	0	0	0	100	0	0				3		1	
			Quartz	80	0	0	0	10	0	90				5		0,1	
	SILICATES	98	Albite	10	0	0	0	0	0	100		-				< 0.1	
			Sericite	10	0	0	Ö	0	0	100					Т	< 0.1	

HOLE: 84-6	5	Interval	From 111	.3 To	116.9	m	Sar	n <mark>ple Nu</mark> n	nber: 160)336 **	•						
ROCK	MINERAL	Proport'n of		Prop'n	F	ropor	tion c	of Major F	orms (%	\$		Dim	ensio	ns of For	ms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Minerał	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix	of Rock in Core
	1		Pyrite	100	65	10	0	15	10	0	0.1	2		2	2		
	SULPHIDES	2	Pyrrhotite	0								ľ					
			Base Metal	0		}						Γ.					Fractured
Siltstone			Calcite	95	0	100	0	0	0	5*		8	Γ	[< 0.1	to
	CARBONATES	6	Dolomite	0				ł						<u> </u>			highiy
			Fe-Carb.	5	0	0	0	100	0	0				3			fractured
			Quartz	80	0	0	0	12	0	88				5		0.1	
	SILICATES	92	Albite	10	0	0	0	0	0	100						< 0.1	
		1	Sericite	10	0	0	0	0	0	100					1	< 0.1	

HOLE: 84-65	5	Interval	From 116	.9 To	127.0) m	Sar	nple Nur	nber: 160	0337							
ROCK	MINERAL	Proport'n of		Prop'n	F	ropor	tion c	of Major F	orms (%	b)		Dim	ensio	ns of Fo	rms (mm)		Condition
TYPE	GROUP	Minerał Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P ^{-blast} Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P ^t blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	98	85	0	0	10	5	0	0.1			2	0.5		
	SULPHIDES	1	Pyrrhotite	1	0	Ó	0	0	100	0					8	L	
			Base Metal	0										1			
Sandstone			Calcite	99	10	90	0	0	0	5*	< 0.1	6		1		< 0.1	
	CARBONATES	2	Dolomite	0													Fractured
			Fe-Carb.	1	0	0	0	100	0	0				1			
			Quartz	80	0	0	0	2	0	98				4		0.1	
	SILICATES	97	Albite	10	0	0	0	0	0	100						< 0.1	
	1		Sericite	10	0	0	0	0	0	100				-		< 0.1	

HOLE: 84-65	5	Interval	From 127	.0 To	133.1	m	Sar	nple Nur	nber: 16	0338							
ROCK	MINERAL	Proport'n of		Prop'n	F	ropor	tion c	of Major F	orms (%	6)		Dim	ensio	ns of Fo	rms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Díssemin.	Laminae	Massive	Veintet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture	P ^{blast} Nodule Clast	Matrix	of Rock in Core
			Pyrite	80	40	0	Ö	50	10	0	0.1			1	1		
	SULPHIDES	1	Pyrrhotite	20	75	0	0	0	25	0	0.1				8		
			Base Metal	0													
Sandstone			Calcite	30	0	100	0	0	0	4*		4				< 0.1	
	CARBONATES	1	Dolomite	0				I									Fracture
			Fe-Carb.	70	0	0	0	100	0	0				2	1		
			Quartz	80	0	0	0	5	0	95				1		0.4	
	SILICATES	98	Albite	10	0	0	0	0	0	100						< 0.1	
			Sericite	10	0	-0	0	0	0	100					T	< 0.1	

HOLE: 84-6	5	Interval	From 133	.1 To	137.7	m	Sar	npl e Nur	nber: 16	0339								
ROCK	MINERAL	Proport'n of		Prop'n	F	ropor	tion c	of Major f	forms (9	6)		Dim	ensio	ns of I	orm	is (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodufe Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture	Filling	P [*] blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	100	80	0	0	10	10	0	< 0.1	ł		1		1		
	SULPHIDES	1	Pyrrhotite	0										[
			Base Metal	0			1											
Siltstone			Calcite					1										Highly
	CARBONATES	0	Dolomite					ł										fractured
			Fe-Carb.															
			Quartz	85	0	0	0	3	0	97				1			0.1	
	SILICATES	99	Albite	10	0	0	0	0	0	100							< 0.1	
			Sericite	15	0	0	0	0	0	100	I				Т		< 0.1	

HOLE: 84-65	5	Interval	From 137	.7 То	140.5	m	Sar	nple Nur	nber: 160	0340							
ROCK	MINERAL	Proport'n of		Prop'n	F	ropo	rtion o	of Major F	forms (%	5)		Dim	ensio	ns of For	ms (mm)		Condition
TYPË	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	90	40	0	0	60	0	0	0.2	1		1			
	SULPHIDES	1	Pyrrhotite	10	0	0	0	0	100	0					8		
			Base Metai	0										[
Sandstone			Calcite	0		ł	ĺ .							[
	CARBONATES	1	Dolomite	0												[· · · ·	Fracture
			Fe-Carb.	100	0	0	0	100	0	0				2			
			Quartz	80	0	0	0	10	0	90		Γ		2		0.1	
	SILICATES	98	Albite	10	0	0	0	0	0	100				[<u> </u>		< 0.1	
			Sericite	10	0	0	0	0	0	100						< 0.1	

HOLE: 84-6	5	Interval	From 140.5	і То	144.0	m	Sar	npl e Nui	nber: 16	0341 *	•							
ROCK	MINERAL	Proport'n of		Prop'n	۶	opor	tion c	f Major	orms (6)		Dim	ensio	ns of F	orms	(mm)		Conditior
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture	Filling P'blast	Nodule Clast	Matrix	of Rock in Core
	<u> </u>		Pyrite	100	10	0	0	90	0	0	0.1			0.5				
	SULPHIDES	1	Pymhotite	0														
			Base Metal	0										[Fracture
Siltstone			Calcite							[to
	CARBONATES	0	Dolomite					ľ.										highly
		· ·	Fe-Carb.											I				fracture
			Quartz	80	0	0	0	5	0	95				3			0.1	
	SILICATES	99	Albite	10	0	0	0	0	0	100							< 0.1	
		ł	Sericite	10	0	0	0	0	0	100					ſ		< 0.1	

. .

HOLE: 84-65	5	Interval	From 144.0) To	154.0	m	Sa	mple Nu	nber: 16	60342							
ROCK	MINERAL	Proport'n of		Prop'n	F	ropor	tion c	of Major I	Forms (9	%)		Dim	ensio	ns of Fo	rms (mm)	1	Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodute Clast	Matrix	of Rock in Core
			Pyrite	100	36	2	0	60	2	0	0.1	0.3		1	2		
	SULPHIDES	1	Pyrrhotite	0													Variable.
			Base Metal	0										1	1		Competent
Siltstone			Calcite	80	0	100	0	0	0	5*		7		<u> </u>	1	< 0.1	to highly
	CARBONATES	1	Dotomite	0		[1		fractured
			Fe-Carb.	20	0	0	0	100	0	0				1		1	or fissile
			Quartz	80	0	Ō	0	2	0	98				2	1	0.1	
	SILICATES	98	Albite	10	0	0	0	0	0	100						< 0.1	
			Sericite	10	0	0	0	0	0	100						< 0.1	

HOLE: 84-6	5	Intervat	From 154.	0 To 1	158.35	m	Sar	nple Nur	nber: 16	60343							
ROCK	MINERAL	Proport'n of		Prop'n	F	ropor	tion c	f Major F	Forms (9	%)		Dim	ensio	ns of Fo	rms (mm))	Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix	of Rock in Core
	1		Pyrite	100	63	20	0	5	12	0	0.1	0.6		1	5		
	SULPHIDES	2	Pyrrhotite	0						[
			Base Metal	0				[
Siltstone			Calcite	100	0	100	0	0	0	5*		5				< 0.1	
	CARBONATES	5	Dolomite	0				r							1	Î	Fractured
	l i		Fe-Carb.	0											Î.		
			Quartz	78	0	Ó	0	5	0	95				2		0.1	
	SILICATES	93	Albite	10	0	0	0	0	0	100					T	< 0.1	
			Sericite	12	0	0	0	0	0	100					1	< 0.1	

HOLE: 84-65		Intervai	From 158.	35 To	165.5	m	Sar	nple Nur	nber: 16	0344	•••						
ROCK	MINERAL	Proport'n of		Prop'n	Ρ	ropor	tion o	f Major F	forms (%	6)		Dim	ensio	ns of Fo	rms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Fitling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	98	86	5	0	4	5	0	0.1	0.5		1	3	Ì	
	SULPHIDES	2	Pyrrhotite	2	0	0	0	0	100	0					5	[
			Base Metal	0													Highly
Sandstone			Calcite	90	0	0	0	0	0	4*						< 0.1	fractured.
	CARBONATES	< 1	Dolomite	0													Locally
			Fe-Carb.	10	0	0	0	100	0	0				1			fissile
			Quartz	78	0	0	0	3	0	97				2		0.1	
	SILICATES	97	Albite	10	0	0	0	0	0	100						< 0.1	
í .			Sericite	12	0	0	0	0	0	100						< 0,1	

HOLE: 84-6	5	Interval	From 165	. 5 To	172.5	m	Sar	nple Nu	nber: 10	0345							
ROCK	MINERAL	Proport'n of		Prop'n	F	ropor	lion a	f Major F	Forms (S	%)		Dim	ensio	ns of Fo	rms (mm))	Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P ^{blast} Nodule Clast	Matrix	of Rock in Core
			Pyrite	100	79	5	0	1	15	0	0.1	2		0.5	6	1	
	SULPHIDES	2	Pyrrhotite	0													
			Base Metal	0													Competent
Siltstone			Calcite	100	0	100	0	0	0	5*		4				< 0.1	to
	CARBONATES	4	Dolomite	0				Γ						ł			fractured
			Fe-Carb.	0						Γ			[
			Quartz	75	0	0	0	1	0	99				2	1	< 0.1	1
	SILICATES	94	Albite	10	0	0	0	0	0	100		1				< 0.1	1
			Sericite	15	0	0	0	0	0	100			<u> </u>		1	< 0.1	1

HOLE: 84-65	5	Intervat	From 172.	5 To 1	76.8 :	n	Sar	nple Nur	nber: 16	60346 [•]	**								
ROCK	MINERAL	Proport'n of		Prop'n	P	ropor	tion o	f Major F	orms (S	%)		Dim	ensio	ns of	For	ns (m	m)		Condition
TYPE	GROUP	Mineral Group (%)	Minerał	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Execture	Filing	P'blast Nodule	Clast	Maurix	of Rock in Core
			Pyrite	100	45	10	0	15	30	0	0.1	1		Ť.	1	2			
	SULPHIDES	1	Pyrrhotite	0															
			Base Metal	0															Fissile,
Slate,			Calcite	100	0	0	0	10	Ö	5*	< 0.1				2		<	0.1	rubble,
mudstone	CARBONATES	5	Dolomite	0										1					local
			Fe-Carb.	0						T									gouge
			Quartz	80	0	0	0	15	0	85					4			0.1	•••
	SILICATES	94	Albite	5	0	0	0	0	0	100		1					<	0.1	
			Sericite	15	0	0	0	0	0	100				1			<	0.1	

HOLE: 84-65	5	Interval	From 176.8	8 To 18	32.7 m		Sar	mple Nu	mber: 10	60347							
ROCK	MINERAL	Proport'n of		Prop'n	P	roper	tion o	f Major I	Forms ("	%)		Dim	ensio	ns of Fo	rms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P [*] blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	100	95	0	0	5	0	0	0.1			0.5			
	SULPHIDES	2	Pyrrhotite	0					1								
			Base Metal	0											T		Highty
Slate,			Calcite	100	0	0	0	5	0	5*				2		< 0.1	fractured,
mudstone	CARBONATES	12	Dolomite	0			:										rubble
			Fe-Carb.	0											1		
			Quartz	80	0	0	0	10	0	90		1		2	İ.	< 0.1	
	SILICATES	86	Albite	5	0	0	0	0	0	100				Γ	T	< 0.1	
			Sericite	15	0	0	0	0	0	100					1	< 0.1	

HOLE: 84-6	5	Interval	From 182.	7 To '	193.0	m	Sar	nple Nu	mber	: 16	0348							
ROCK	MINERAL	Proport'n of		Prop'n	F	ropor	tion o	f Major	Form	s (%	6)		Dim	ensio	ns of F	orms (mm)	Condition
TYPE	GROUP	M i neral Group (%)	Mineral	of Mineral (%)	DissemIn.	Laminae	Massive	Veinlet, Fracture	P'blast Nodule	Clast	Matrix (Rank*)	DissemIn.	Laminae	Massive	Veinlet, Fracture	P'blast Nodule Clast	Matrix	of Rock in Core
			Pyrite			}												
	SULPHIDES	0	Pyrrhotite]
			Base Metal															
Limestone			Calcite	100	0	0	0	12			88				3		< 0.1	
	CARBONATES	99	Dolomite	0	-													Competer
			Fe-Carb.	0		1												
			Quartz	100	0	0	0	100			0				10	}		
	SILICATES	1	Albite	0					T									
			Sericite	0					1									1

HOLE: 84-65		Interval	From 193.	0 To 2	203.3 r	n	Sar	nple Nur	nber: 16	0349								
ROCK	MINERAL	Proport'n of		Prop'n	P	ropor	tion o	f Major F	'orms (୨	6)		Dim	ensio	ns of I	Form	ns (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodute Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veintet, Fracture	Filling	P'blast Nodul e Clast	Matrix	of Rock in Core
			Pyrite	100	0	0	0	100	0	0				0.	5			
	SULPHIDES	tr	Pyrrhotite	0				-										
			Base Metal	0														
Limestone			Calcite	98	0	0	0	20	0	80				3			< 0.1	
	CARBONATES	99	Dolomite	2	0	0	0	0	0	100							0.4	Competent
			Fe-Carb.	0														
			Quartz	100	0	0	0	100	0	0				2				
	SILICATES	1	Albite	0								-						
			Sericite	0														

. . ι, s. . . . ~ : 1 - 2

DRILLHOLE SSD-97-46

1

;;;

ξ.

1

ι.,

Q. .

SAMPLES 160401 to 160410

IOLE: SSE	-97-46	Interval	From 20.43	2 To 27	7.0 m		Sa	mple Nur	nber: 16	0401 '	n e						
ROCK	MINERAL	Proport'n of		Prop'n	F	Propor	tion	of Major f	Forms (%	6)		Din	nensio	ns of For	ms (mm)		Conditio
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix	of Roci in Core
			Pyrite	99	80	0	0	20	0	0	< 0.1			0.5			
	SULPHIDES	2	Pyrrhotite	0													
			Base Metal	tr	0	0	0	100	0	0				1		1	
Siate			Calcite	100	0	100	0	0	Ö	4*		5				< 0.1	
	CARBONATES	tr	Dolomite	0													Rubble
			Fe-Carb.	0													fissile
			Quartz	55	0	0	0	2	0	98				0.5		< 0.1	
	SILICATES	98	Albite	10	0	0	Û	0	0	100						< 0.1	
			Sericite	35	0	0	0	0	0	100						< 0.1	

.

HOLE: SSD	-97-46	Interval	From 27.0	To 33	3.5 m		Sar	mple Nu	mber: 1	60402							
ROCK	MINERAL	Proport'n of		Prop'n	۶	ropor	tion o	of Major	Forms	(%)		Dim	nensio	ns of For	ms (mm)		Conditio
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filing	P'blast Nodule	Matrix (Rank")	Dissemin	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix	of Roc in Cor
			Pyrite	100	80	10	0	5	5	0	< 0.1	1		1	8		
	SULPHIDES	1	Pyrrhotite	0													
			Base Metal	0							1						
Siltstone			Calcite	100	0	100	Ö	0	0	4*		5				< 0.1	
	CARBONATES	tr	Dolomite	0				1							1		Rubbl
			Fe-Carb.	0													
			Quartz	75	0	0	Ò	1	0	99		Ì		1	i	< 0.1	
	SILICATES	98	Albite	10	0	0	0	0	0	100				1	1	< 0.1	
			Sericite	15	0	0	0	0	0	100	1	-		1		< 0.1	

HOLE: SSD-	97-46	Interval	From 33.5	To 39.	1 m		Sar	npie Nur	nber: 16	0403							
ROCK	MINERAL	Proport'n of		Prop'n	F	ropor	tion c	of Major H	orms (%	6)		Dim	ensio	ns of Fa	rms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Ctast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	100	80	0	0	20	0	0	< 0.1			1			
	SULPHIDES	2	Pyrrhotite	0													
		(ox.)	Base Metai	0				1		1							Highly
Siltstone			Calcite	100	0	0	0	0	0	100				[1	< 0.1	fractured.
(virtually all	CARBONATES	8	Dolomite	0											1	1	to
sulphides			Fe-Carb.	0											1	1	rubble
oxidized)			Quartz	70	0	0	0	2	0	98				0.5		< 0.1	
	SILICATÉS	90	Albite	10	0	0	0	0	0	100						< 0.1	1
			Sericite	20	0	0	0	0	0	100				T	1	< 0.1	1

HOLE: SSD-	97-46	Interval	From 39.1	To 44	.0 m		Sar	npie Nur	nber: 16	0404							
ROCK	MINERAL	Proport'n of		Prop'n	F	Propo	tion o	of Major I	Forms (%	6)		Dim	ensio	ns of Fo	ms (mm)		Condition
	GROUP	Mineral Group (%)	Mineral	of Minerat (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	100	40	0	0	60	0	0	0.1			2			
	SULPHIDES	2	Pyrrhotite	0					[
			Base Metal	0						1					[
Siltstone			Calcite											1	Γ		
(all sulphides	CARBONATES	tr	Dolomite														Fractured
oxidized)			Fe-Carb.														
,			Quartz	75	0	0	0	5	0	95				2		< 0.1	
	SILICATES	98	Albite	10	0	0	0	0	0	100						< 0.1	
			Sericite	15	0	0	0	0	0	100						< 0.1	

ς., S. 1 2 S. 1

HOLE: SSD-	97-46	interval	From 44.0	To 49	m 0.		Sar	np le Nur	nber: 16	0405							
ROCK	MINERAL	Proport'n of		Prop'n	F	ropor	tion c	of Major F	orms (%	6)		Din	nensio	ons of Fo	rms (mm)	1	Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	100	25	0	0	75	0	0	0.1			2		1	
	SULPHIDES	4	Pyrrhotite	0													
			Base Metal	0													
Siltstone			Calcite							Γ		ł		1	1		Highly
(all sulphides	CARBONATES	0	Dolomite													1	fractured
oxidized)			Fe-Carb.				-										
· ·			Quartz	80	0	0	0	10	0	90				2	1	< 0,1	
	SILICATES	96	Albite	10	0	0	0	0	0	100				1	1	< 0.1	1
			Sericite	10	0	0	0	0	0	100				1		< 0.1	1

HOLE: SSD-	97-46	Interval	From _49.0	To 5	6.6 m		Sai	mpie Nui	mber: 16	0406 *	*						
ROCK	MINERAL	Proport'n of		Prop'n	F	ropo	tion o	of Major I	Forms (%	6)		Din	iensio	ns of F	orms (mi	n)	Condition
TYPE	GROUP	Minerał Group (%)	Mineral	of Mineral (%)	Dissemin	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin	Laminae	Massive	Veintet, Fracture	Prblast Nodule	Clast Matrix	of Rock in Core
			Pyrite	100	35	0	35	30	0	0	0.2		100	2			
	SULPHIDES	40	Pyrrhotite	0													
			Base Metal	0						•							Rubble
Oxide			Calcite					1						l			to highly
(all sulphides	CARBONATES	0	Dolomite					1			-						fractured
oxidized			Fe-Carb.					-	1							1	1
			Quartz	94	0	0	0	30	10	60				5		< 0.1	1
	SILICATES	60	Albite	3	0	0	0	0	0	100						< 0.1	1.
			Sericite	3	0	0	0	0	0	100				[< 0.1	1

HOLE: SSD-	97-46	interval	From 56.6	To 59	.7 m		Sar	mple Nur	nber: 160	0407							
ROCK	MINERAL	Proport'n of		Prop'n	F	ropor	tion o	of Major F	orms (%	6)		Dim	nensio	ons of Fo	rms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	100	0	0	0	100	0	0				1	T		
	SULPHIDES	3	Pyrrhotite	0											1]
		(oxid.)	Base Metal	0]
Limestone			Calcite	100	0	0	0	5	0	95				4	T	0.1	1
(all sulphides	CARBONATES	97	Dolomite	0													Fractured
oxidized)			Fe-Carb.	0									_	Γ		-	1
-			Quartz														1
	SILICATES	0	Albite]
			Sericite											1			

HOLE: SSD-	97-46	Interval	From 59.7	To 65	5.2 m		Sar	nple Nur	nber: 160	0408							
ROCK	MINERAL	Proport'n of		Prop'n	F	ropor	tion c	of Major F	Forms (%	6)		Dim	iensio	ns of F	orms (mm))	Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'biast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture	P'blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	100	0	0	0	100	0	0		ļ		1		1	
	SULPHIDES	2	Pyrrhotite	0													
		(oxid.)	Base Metal	0													
Limestone			Calcite	100	0	0	0	5	0	95				2		0.1	Competent
(all sulphides	CARBONATES	98	Dolomite	0				I	{	[1			to
oxidized)			Fe-Carb.	0			-							T			fractured
			Quartz													ľ.	
	SILICATES	0	Albite														1
		[Sericite							Ι					I.		

•

HOLE: SSD-	97-46	Interval	From 65.2	To 66.	35 m		Sai	npie Nu	mber: 16	0409							
ROCK	MINERAL	Proport'n of		Prop'n	F	ropoi	rtion o	of Major	Forms (%	6)		Din	nensio	ns of F	orms (mm)		Condition
TYPE	GROUP	Minerał Group (%)	Mineral	of Minerał (%)	Dissemin	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin	Laminae	Massive	Veinlet, Fracture	P blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	100	10	10	20	10	50	0	0.1	3	20	1	2		i
	SULPHIDES	22	Pyrrhotite	0				1						1			1
			Base Metal	0											1		1
High sulphide			Calcite	100	0	0	0	0	0	100						1	
(about 10%	CARBONATES	78	Dolomite	0					· · · ·						1		Fractured
oxidized)			Fe-Carb.	0											1		
			Quartz														
	SILICATES	0	Albite														
			Sericite														

HOLE: SSD-	97-46	Interval	From 66.3	5 To	68.27	m	Sa	mpie Nu	mber: 1	60410								
ROCK	MINERAL	Proport'n of		Prop'n	F	ropoi	tion	of Major	Forms	(%)		Din	ensio	ons of	For	ms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin	Laminae	Massive	Veinlet, Fracture	P'blast Nodule	Matrix (Rank*)	Dissemin	Laminae	Massive	Veinlet, Frachtra	Filling	P'blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	100	0	0	0	100	0	0					2	· · · ·		
	SULPHIDES	5	Pyrrhotite	0				1			—			1				
			Base Metal	0			[1		1						<u> </u>		-
Limestone			Calcite	100	0	0	0	0	0	100	1	t –		1		1	1	
(sulphides	CARBONATES	95	Dolomite	0			1		1			1				f		Fractured
about 60%			Fe-Carb.	0				1	1					1			-	1
oxidized)			Quartz				[1	T	Ì	1						
	SILICATES	0	Albite					T	1		Ī	1						1
			Sericite								Γ	Ī		1				1

DRILLHOLE SSD-97-18

à. ..

i., 7

ξ.,

×. .

20

·

SAMPLES 160411 to 160447

IOLE: SSD-	97-18	interval	From 25.8	To 28	.4 m		Sar	nple Nun	nber: 160	X411 **	n						
ROCK	MINERAL	Proport'n of		Prop'n	F	ropor	tion c	of Major F	forms (%	5)		Dim	ension	is of For	ns (mm)		Conditio
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix	of Rock in Core
		<u>[</u>	Pyrite	100	50	0	0	50	0	0	< 0.1			1			
	SULPHIDES	2	Pyrrhotite	0												Į	
			Base Metal	0													Highly
Siltstone			Calcite	100	0	100	0	0	0	3*		4				< 0.1	fractured
(sulphides	CARBONATES	tr	Dolomite	0													to
oxidized)			Fe-Carb.	0													rubble
,			Quartz	82	0	0	0	5	0	95				1		< 0.1	
	SILICATES	98	Albite	8	0	0	0	0	0	100				1		< 0.1	
			Sericite	10	0	0	0	0	0	100						< 0.1	

HOLE: SSD-	97-18	Interval	From 28.4	4 _ To 3	13.7 m		Sar	np le Nur	nber: 16	0412							
ROCK	MINERAL	Proport'n of		Prop'n	F	ropor	tion c	f Major I	Forms ('	%)		Dim	ensio	s of For	ms (mm)		Conditio
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Ctast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix	of Roci in Core
			Pyrite	100	40	10	10	15	25	0	0.1	[1	20	2	1.5		
	SULPHIDES	5	Pyrrhotite	0													
			Base Metal	0													
Siltstone			Calcite									Į.	[
	CARBONATES	0	Dolomite								i						Rubbie
			Fe-Carb.									Γ					
			Quartz	84	0	0	0	5	0	95	ł		Τ			< 0.1	
	SILICATES	95	Albite	6	0	0	0	0	0	100						< 0.1	
			Sericite	10	0	0	0	0	0	100				1		< 0.1	

HOLE: SSD-	97-18	Interval	From 33.7	To 34	4.2 m		Sar	nple Nur	nber: 16	0413							
ROCK	MINERAL	Proport'n of		Prop'n	f	ropor	tion c	of Major F	Forms (%	6)		Dim	ensior	ns of For	ms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	100	0	0	50	0	50	0			35		4		
	SULPHIDES	40	Pyrrhotite	0			·									-	
			Base Metal	0													Highty
High			Calcite														fractured
sulphide	CARBONATES	0	Dolomite														to
(not oxidized)			Fe-Carb.														rubbie
, ,			Quartz	90	0	0	0	40	0	60				30		0.1	
	SILICATES	60	Albite	5	0	0	0	0	0	100						< 0.1	
			Sericite	5	ō	100	0	Ō	Ö	0		0.5					

HOLE: SSD-9	97-18	Interval	From 34.2	To 35	i.3 m		Sar	nple Nur	nber: 16	0414							
ROCK	MINERAL	Proport'n of		Prop'n	۴	ropor	tion c	f Major I	Forms (%	6)		Dim	ensio	ns of For	ms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veintet, Fracture Fitling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	100	35	0	0	15	50	0	< 0.1			0.5	1		
	SULPHIDES	6	Pyrrhotite	0				I			L						
Exhalite			Base Metal	0			1		L					1			
(N.B. Much			Calcite							Γ			[Rubble
of sample	CARBONATES	0	Dolomite			[
taken for			Fe-Carb.				I										
ARD sample			Quartz	96	0	0	0	10	0	90						0.1	
199734)	SILICATES	94	Albite	2	0	0	0	0	0	100						< 0.1	
,			Sericite	2	0	0	0	0	0	100						< 0.1	

N. ξ., s. ..

IOLE: SSD-	97-18	Interval	From 35.3	To 39.6	6 m		Sar	nple Nur	nber: 160)415					•		
ROCK	MINERAL	Proport'n of		Prop'n	F	ropor	tion o	of Major F	forms (%	5)		Dim	ensior	s of For	ms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filing	P ^{blast} Nodule Clast	Matrix	of Rock in Core
			Pyrite	90	15	20	5	10	50	0	0.1	2	8	2	2		
	SULPHIDES	20	Pyrrhotite	0													
			Base Metal	10	20	0	0	60	20	0	0.5			8	4		
High			Calcite	0												· ·	Fractured,
sulphide	CARBONATES	3	Dolomite	0				<u> </u>								1	with local
	[Fe-Carb.	100	50	50	0	0	0	0	0.1	1					rubble
			Quartz	95	0	0	0	[0_	0	100						0.1	
	SILICATES	75	Albite	2	0	0	0	0	0	100						< 0.1	
	1		Sericite	3	0	0	0	0	0	100					1	< 0.1	

HOLE: SSD	-97-18	Interval	From 39.6	i To-4	1.6 m		Sar	nple Nur	nber: 16)416 **	•						
ROCK	MINERAL	Proport'n of		Prop'n	F	ropoi	tion c	of Major F	forms (%	»)		Dim	ensio	ns of For	ms (mm)	Conditio
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	Prbiast Nodule	Matrix	of Rock in Core
			Pyrite	100	73	2	0	10	15	0	0.1	0.3		1.5	1.5		
	SULPHIDES	3	Pyrrhotite	0				1									
			Base Metal	0	ŀ									1]
Siltstone			Calcite							[Highly
	CARBONATES	0	Dolomite														fractured
		i 1	Fe-Carb.	r –				T.									to
		r	Quartz	90	0	0	0	5	0	95			T	1		< 0.1	rubbie
	SILICATES	97	Albite	5	0	0	0	0	0	100						< 0.1	
			Sericite	5	0	0	0	0	0	100		T				< 0.1	1

ROCK	MINERAL.	Proport'n of		Prop'n	F	ropor	tion o	f Major I	Forms (%)		Dim	ensior	ns of For	ms (mm)		Conditi
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veintet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix	of Roc in Cor
	1		Pyrite	90	15	0	15	5	65	0	0.1	[30	2	4		
	SULPHIDES	25	Pyrrhotite	0													
			Base Metal	10	60	0	0	40	0	0	1			8			
High			Calcite	0													Fractur
sulphide	CARBONATES	12	Dolomite	~ Q											<u> </u>		
•			Fe-Carb.	100	65	30	0	5	0	0	0.5	4		1			
			Quartz	92	0	0	0	5	0	95			[2		0.1	
	SILICATES	63	Albite	5	0	0	0	0	0	100						< 0.1	
			Sericite	3	0	0	0	0	0	100		I			ſ	< 0.1	

ROCK	MINERAL	Proport'n of		Prop'n	F	ropor	ion c	f Major F	orms (%)		Dime	ensior	is of For	ms (mm)		Conditio
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix	of Roc in Core
			Pyrite	100	40	10	0	20	30	0	0.1	0.8		1.5	1		
	SULPHIDES	5	Pyrrhotite	0													
			Base Metal	0													
Exhalite			Calcite	10	0	100	0	0	0	4*		< 0.1				< 0.1	
	CARBONATES	7	Dolomite	0				1									Fractu
			Fe-Carb.	90	50	50	0	0	0	0	0.1	2					1
			Quartz	95	0	Ö	0	10	0	90		<u> </u>		5		0.1	
	SILICATES	88	Albite	2	0	0	0	0	0	100		_			4	< 0.1	
			Sericite	3	0	0	0	0	0	100						< 0.1	1

. . . i Ki u

••

HOLE: SSD-	97-18	Interval	From 46.7	75 To 4	8.4 m		Sar	nple Nur	nber: 160	0419							
ROCK	MINERAL	Proport'n of		Prop'n	P	ropor	tion c	f Major F	orms (%	a)		Dim	ensior	is of For	ns (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P ^r blast Nodule Clast	Matrix	of Rock in Core
	1		Pyrite	95	25	0	0	25	50	0	0.1			2	2		
	SULPHIDES	4	Pyrrhotite	0			ł										
			Base Metal	5	Ö	.0	0	100	0	0				1			
Siltstone			Calcite	100	0	0	0	100	0	0				2			Rubbie
	CARBONATES	2	Dolomite	0				ľ	_				Ľ	L			
			Fe-Carb.	0													
			Quartz	89	0	0	0	4	0	96				1		0.1	
	SILICATES	94	Albite	3	0	0	0	0	0	100			L	ļ	1	< 0.1	
	1		Sericite	8	0	0	0	0	0	100		1	1		ł	< 0.1	

HOLE: SSD	-97-18	Interval	From 48.4	To 49	.2 m		Sar	nple Nur	nber: 16	0420							
ROCK	MINERAL	Proport'n of		Prop'n	F	торон	tion o	of Major F	Forms (%	6)		Dim	ensior	ns of For	ms (mm)		Conditio
TYPE	GROUP	Minerał Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veintet, Fracture Fitling	P'blast Nodule Clast	Matrix	of Roci in Core
			Pyrite	100	50	0	0	0	50	0	0.1				3	[
	SULPHIDES	20	Pyrrhotite	0													
			Base Metal	0													
Exhalite			Calcite											ł			Rubbl
	CARBONATES	0	Dolomite														
			Fe-Carb.														
			Quartz	94	0	0	0	0	0	100						< 0.1	
	SILICATES	80	Albite	1	0	0	0	0	0	100			<u> </u>			< 0.1	
	1		Sericite	5	0	0	0	0	0	100		1	l		1	< 0.1	

HOLE: SSD	-97-18	Interval	From 49.2	To 53	.7 m		Sar	npie Nun	nber: 160	0421 *	•						
ROCK	MINERAL	Proport'n of		Prop'n	F	ropo	tion c	of Major F	forms (%	6)		Dim	ensior	is of For	ms (mm)		Conditio
TYPE	GROUP	Minerał Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filting	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Cłast	Matrix	of Roci in Core
			Pyrite	100	80	5	0	5	10	0	0.1	0.8		0.5	0.8	I	
	SULPHIDES	7	Pyrrhotite	0		ľ											
			Base Metal	0				ł									
Siltstone			Calcite														Rubble
	CARBONATES	0	Dolomite														
			Fe-Carb.														
			Quartz	92	0	0	0	1	0	99				1		< 0.1	
	SILICATES	93	Albite	3	0	0	0	0	0	100						< 0.1	
	1		Sericite	5	0	0	0	0	0	100						< 0.1	

HOLE: SSD-	97-18	Interval	From 53.7	To 60).5 m		San	npie Nur	nber: 16	0422							
ROCK	MINERAL	Proport'n of		Prop'n	P	ropor	tion c	of Major F	Forms (%	6)		Dim	ensior	ns of For	ms (mm)		Conditio
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodute Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filting	P'blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	100	75	5	0	10	10	0	0.3	5		1	1		
	SULPHIDES	2	Pyrrhotite	0												L	
			Base Metal	0				[``		•					}		
Sandstone			Calcite										[Rubbi
	CARBONATES	0	Dolomite							L				1			to
			Fe-Carb.								-			1	<u> </u>	<u> </u>	gouge
			Quartz	82	0	0	0	5	0	95				5		< 0.1	
	SILICATES	98	Albite	3	0	0	0	0	0	100						< 0.1	
			Sericite	15	0	0	0	0	0	100						< 0.1	

۰. . n No 1 ъ. , τ.

[_____

HOLE: SSD-	97-18	Interval	From 60.5	To 67	′.15 m		Sar	nple Nur	nber: 16	0423							
ROCK	MINERAL	Proport'n of		Prop'n	F	ropor	tion c	f Major I	Forms (%	6)		Dim	ensio	ns of Fo	ms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Minerat	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	100	90	0	0	5	5	0	0.1			0.5	1		
	SULPHIDES	1.5	Pyrrhotite	0													
			Base Metal	0													
Sandstone			Calcite					[ſ			Gouge
	CARBONATES	0	Dolomite						Γ	1						L	(some
			Fe-Carb.														rubble)
			Quartz	90	0	0	0	1	0	99				1		0.5	
	SILICATES	98.5	Albite	2	0	0	0	0	0	100						< 0.1	
			Sericite	8	0	0	0	0	0	100						< 0.1	

HOLE: SSD-	97-18	Interval	From 67.1	5 To	72.85	m	Sar	nple Nu	mber: 16	0424							
ROCK	MINERAL	Proport'n of		Prop'n	F	ropor	tion c	of Major	Forms (9	6)		Din	ensio	ns of F	orms (mi	n)	Conditio
TYPE	GROUP	Mineral Group (%)	Minerał	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veintet, Fracture	P ^t blast Nodule	Matrix	of Rock in Core
			Pyrite	100	93	2	0	3	2	0	0.3	0.5		1	2		
	SULPHIDES	2	Pyrrhotite	Ö						{					I		
			Base Metal	0						1							
Sandstone			Calcite	100	0	100	0	0	0	5*		5				0.1]
	CARBONATES	3	Dolomite	0					1					1			Fracture
			Fe-Carb.	0						1						T	
			Quartz	90	0	0	0	1	0	99				1	·	0.5]
	SILICATES	95	Albite	5	0	0	0	0	0	100						< 0.1	
			Sericite	5	0	0	0	0	0	100						< 0.1	1

HOLE: SSD-	97-18	Interval	From 72.8	85 To 7	76.3 m	•	Sar	nple Nu	mber: 1	60425							
ROCK	MINERAL	Proport'n of		Prop'n	F	Propor	tion o	of Major	Forms	(%)		Dirr	iensio	ns of Fo	rms (mm))	Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture	P'blast Nodule	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	100	84	2	0	4	10	0	0.5	0.5		0.5	[1		
	SULPHIDES	1.5	Pyrrhotite	0													
			Base Metal	0												:	
Sandstone			Calcite	100	0	100	0	0	0	5*		8				< 0.1	
	CARBONATES	1	Dolomite	0													Fractured
	×		Fe-Carb.	0						1						[
			Quartz	90	0	0	0	1	0	99				1		0.2	
	SILICATES	97.5	Albite	3	0	0	0	0	0	100						< 0.1	
			Sericite	7	0	0	0	0	0	100	1			1		< 0.1	I

HOLE: SSD-	97-18	interval	From 76.3	To 8	2.0 m		Sar	nple Nun	nber: 160)426 **	•						
ROCK	MINERAL	Proport'n of		Prop'n	F	ropor	tion c	f Major F	orms (%)		Dim	ensio	ns of Fo	ms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank")	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P [*] blast Nodule Clast	Matrix	of Rock in Core
	1		Pyrite	100	93	2	0	3	2	0	0.3	1		1	5		
	SULPHIDES	2	Pyrrhotite	0						[
			Base Metal	0				1							1		Fractured
Siltstone			Calcite	100	0	100	0	0	0	5*		6				0.1	to
	CARBONATES	1	Dolomite	0													highly
			Fe-Carb.	0										1			fractured
			Quartz	89	0	0	0	0.5	0	99.5			[1		0.1	
	SILICATES	97	Albite	3	0	0	0	0	0	100			I		<u> </u>	< 0.1	1
			Sericite	8	0	0	0	0	0	100			1			< 0.1	

-_____ **.** . . . i. No e . . . ц. т

HOLE: SSD-	97-18	Interval	From 82.0	To 86	.0 m		Sar	npie Nu	mber:	160	427								
ROCK	MINERAL	Proport'n of		Prop'n	۶	ropor	tion c	of Major	Forms	s (%)		Dim	iensio	ns of F	orms ((mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture	P'blast Nodule	Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture	P'blast	Nodule Clast	Matrix	of Rock in Core
			Pyrite	100	93	2	0	2	3	3	0	0.1	0.5		0.5		1		
	SULPHIDES	1	Pyrrhotite	0															
			Base Metal	0															
Sandstone			Calcite	100	0	100	0	0)	5*		5					0.1	
	CARBONATES	0.5	Dolomite	0												[Fractured
			Fe-Carb.	0									<u> </u>		{				
			Quartz	91	0	0	0	0	0	¢	100		ľ.	L	L			0.3	
	SILICATES	98.5	Albite	3	0	0	0	0	(>	100							< 0.1	
			Sericite	6	0	0	0	0) כ	100							< 0.1	

HOLE: SSD-	97-18	Interval	From 86.0) To !	91.2 m	1	Sa	mple Nu	nber: 160	2428							
ROCK	MINERAL	Proport'n of		Prop'n	F	Propor	tion o	of Major	Forms (%	5)		Dim	ensio	ns of Fo	rms (m	m)	Conditio
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule	Clast Matrix	of Rock in Core
. <u>.</u>			Pyrite	100	97	2	0	1	0	0	0.2	1		1	[
	SULPHIDES	2	Pyrrhotite	0				I									
			Base Metal	0													Varies
Sandstone			Calcite	100	0	100	0	0	0	5*		5			Т	0.1	Fracture
	CARBONATES	0.5	Dolomite	0													highly
			Fe-Carb.	0													fracture
			Quartz	91	0	0	0	1	0	99				1	1	0.3	rubbie
	SILICATES	97.5	Albite	3	0	0	0	0	0	100						< 0.1	
			Sericite	6	0	0	0	0	0	100				1	T	< 0.1	

HOLE: SSD-	97-18	interval	From 91.2	Sample Number: 160429													
ROCK	MINERAL	Proport'n of		Prop'n	F	ropor	tion o	of Major	Forms (%	6))	Condition				
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veintet, Fracture Fillion	P'blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	100	92	1	0	7	0	0	0.3	0.5		2			
	SULPHIDES	3	Pyrrhotite	0													
			Base Metal	0										I			
Sandstone			Calcite	100	0	100	0	0	0	5*		6				0.1	Highly
	CARBONATES	1	Dolomite	0													fracture
			Fe-Carb.	0								·				1	
			Quartz	90	0	0	0	3	0	97				3		0.3	
	SILICATES	96	Albite	3	0	0	0	0	0	100						< 0,1	
			Sericite	7	0	0	0	0	0	100						< 0.1	

HOLE: SSD-	97-18	Interval	From 94.5	To 9	7.1 m		Sample Number: 160430											
ROCK	MINERAL	Proport'n of Mineral Group (%)		Prop'n	P	Proportion of Major Forms (%) Dimensions of Forms (mm)										Condition		
TYPE	GROUP		Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix	of Rock in Core	
			Pyrite	97	88	2	0	5	5	0	0.1	0.5		2	4			
	SULPHIDES	2	Pyrrhotite	3	0	0	0	0	100	0					5			
			Base Metal	0					-					<u> </u>				
Sandstone			Calcite	100	0	100	0	0	0	5*		5				0.1		
	CARBONATES	2	Dolomite	0								L			L		Fractured	
	·		Fe-Carb.	0											1		1	
			Quartz	89	0	0	0	2	0	98				7		0.1	1	
	SILICATES	96	Albite	5	0	0	0	0	0	100						< 0.1	1	
			Sericite	6	0	0	0	0	0	100				1		< 0.1	I	

; , 2 : 4.... . . t ar 5 - 5 U 13 :

HOLE: SSD-	97-18	Interval	From 97.1	To 10	1.65 m	n	Sar	nple Nur	nber: 160	0431 *	•						
ROCK	MINERAL	Proport'n of Mineral Group (%)		Prop'n	F	ropor	tion o	f Major I	6)			Condition					
ТҮРЕ	GROUP		Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veintet, Fracture Filling	P'blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	99	93	1	0	4	2	0	0.5	0.5		2	8		
	SULPHIDES	3.5	Pyrnotite	0													
			Base Metal	1	0	0	0	100	0	0				2			Competer
Sandstone			Calcite	100	0	100	0	<u> </u>	0	5*		6				0.1	to
	CARBONATES	1	Dolomite	0						1							fractured
			Fe-Carb.	0				[1	1		
			Quartz	92	0	0	0	1	0	99				2		0.3	
	SILICATES	TES 95.5		3	0	0	0	0	0	100		Ļ	i		" 	< 0.1	
		J	Sericite	5	0	0	0	0	0	100		1			1	< 0.1	1

HOLE: SSD-	97-18	Interval	From 101.	65 To	105.6	m	Sample Number: 160432											
ROCK	MINERAL	Proport'n of		Prop'n	F	ropor	tion o	of Major	6)		ł	Condition						
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P ^{blast} Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix	of Rock in Core	
			Pyrite	100	98	0	0	1	1	0	0.5			0.5	7	[
	SULPHIDES	2	Pyrrhotite	0					T									
			Base Metal	0						1							Competent with	
Sandstone			Calcite						1	[[
	CARBONATES	0	Dolomite			[local	
			Fe-Carb.				I		Ι								rubble	
			Quartz	92	0	0	0	2	0	98				1		0.3		
	SILICATES	98	Albite	4	0	0	0	0	0	100						0.1		
			Sericite	4	0	0	0	0	0	100						< 0.1		

HOLE: SSD-	97-18	Interval	From 105.6	5 To 1	11.0 n	n	Sample Number: 160433											
ROCK	MINERAL	Proport'n of Mineral Group (%)	Mineral	Prop'n	F	ropor	tion c	x Major F	5)			Condition						
TYPE	GROUP			of Mineral (%)	Dissemin.	Laminae	Massive	Veintet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P ^r biast Nodul a Clast	Matrix	of Rock in Core	
			Pyrite	98	89	0	0	10	1	0	0.3			2	4			
	SULPHIDES	2	Pyrrhotite	0											· ·			
			Base Metal	2	0	0	0	100	0	0				2				
Sandstone			Calcite	100	0	100	0	0	0	4*		8				0.1	Highly	
	CARBONATES	2	Dolomite	0													fractured	
		1.1.1	Fe-Carb.	0						1					<u> </u>			
			Quartz	92	0	0	0	2	0	98				2		0.3		
	SILICATES	96	Albite	3	0	0	0	0	0	100						< 0.1		
			Sericite	5	0	0	0	0	0	100					I	< 0.1		

HOLE: SSD-	97-18	Interval	From 111	.0 To	118.8	m	Sample Number: 160434											
ROCK	MINERAL	Proport'n of		Prop'n of Mineral (%)	f	Proportion of Major Forms (%) Dimensions of Forms (mm)											Condition	
TYPE	GROUP	Mineral Group (%)	Mineral		Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix	of Rock in Core	
	· · · · · · · · · · · · · · · · · · ·		Pyrite	100	85	0	0	10	5	0	0.3			1	3			
	SULPHIDES	1	Pyrrhotite	0												L		
			Base Metal	tr	0	0	0	100	Ö	0				0.5			Highly	
Sandstone			Calcite	100	0	100	0	0	0	5*		8				0,1	fracture	
	CARBONATES	1	Dolomite	0		I						[locally	
			Fe-Carb.	0													rubble	
	-		Quartz	91	0	0	0	3	0	97				3		0.1	ļ	
	SILICATES	98	Albite	3	0	0	0	0	0	100						< 0.1	1	
			Sericite	6	0	0	0	0	0	100					1	< 0,1		

HOLE: SSD	-97-18	Interval	From 118.	. <mark>8 T</mark> o 1	20.7 r	n	Sar	nple Nur	nber: 160	0435							
ROCK	MINERAL	Proport'n of		Prop'n	F	ropor	tion c	- of Major F	Forms (%	b)		Dim	ensio	ns of Fo	ന്നട (നന		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P [*] blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	98	78	0	0	20	2	0	0.4			1	5		
	SULPHIDES	2	Pyrrhotite	0										[
			Base Metal	2	0	0	0	100	0	0				1			
Siltstone			Calcite	99	0	100	0	0	0	5*		8				0.1	Highly
	CARBONATES	1	Dolomite	0													fractured
			Fe-Carb.	1	0	0	0	100	0	0				1			
			Quartz	91	0	0	0	5	0	95				20		0.1	
	SILICATES	97	Albite	3	0	0	0	0	0	100						< 0.1	
			Sericite	6	0	0	0	0	0	100						< 0.1	

HOLE: SSD	-97-18	Interval	From 120.	7 To 1	122.9	n	Sar	nple Nur	nber: 160	0436 *	*						
ROCK	MINERAL	Proport'n of		Prop'n	f	Propor	tion o	of Major I	Forms (%	6)		Dim	iensio	ons of Fo	ms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	Prblast Nodule Clast	Matrix	of Rock in Core
			Pyrite	98	80	2	0	15	3	0	0.5	0.5		1	2		
	SULPHIDES	5	Pyrrhotite	0													
	i i		Base Metal	2	0	0	0	100	0	0				1	[
Siltstone			Calcite	99	0	100	0	0	0	5*		8		ľ		0.1	Highly
	CARBONATES	1	Dolomite	0											[fracture
			Fe-Carb.	1	0	0	0	100	0	0				1			
			Quartz	98	0	0	0	5	0	95				6		0.1	
	SILICATES	94	Albite	3	0	0	0	0	0	100						< 0.1	
			Sericite	5	0	0	0	0	0	100						< 0.1	

HOLE: SSD-	97-18	Interval	From 122.	9 To 1	28.15	m	Sar	nple Nur	nber: 160	3437								
ROCK	MINERAL	Proport'n of		Prop'n	F	ropor	tion o	of Major F	Forms (%	»)		Dim	nensio	ns of	Fon	ms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veintet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture	Filling	P'blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	100	65	Ō	0	30	5	0	0.1			1		2		
	SULPHIDES	1	Pyrrhotite	0									Ľ					
			Base Metal	tr	0	0	0	0	100	0			·	<u> </u>		0.5		
Siltstone			Calcite	100	0	0	0	0	0	5*							0.1	Highly
	CARBONATES	5	Dolomite	0				Γ		<u> </u>			L			[fracture
			Fe-Carb.	0			Γ.											1
	<u> </u>		Quartz	91	0	0	0	2	0	98				2	2		0.1	
	SILICATES	94	Albite	3	0	0	Ô	0	0.	100							< 0.1	1
	1	1	Sericite	6	0	0	0	0	0	100							< 0.1	

HOLE: SSD	-97-18	Interval	From 128.	15 To	132.5	m	Sar	npie Nu	mber: 1	60438								
ROCK	MINERAL	Proport'n of		Prop'n	4	ropor	tion o	of Major	Forms (%)		Dim	ensio	ins of	For	ms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet,	Filling	P'blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	100	95	1	0	2	2	0	0.1	2			1	2		
	SULPHIDES	2.5	Pyrrhotite	0														
			Base Metal	0								Γ					1	
Siltstone			Calcite	100	0	0	0	Γo	0	100							0.1	Highly
	CARBONATES	5	Dolomite	0														fractured
			Fe-Carb.	0													1	
			Quartz	92	0	0	0	2	0	98					3		0.1	
	SILICATES	92.5	Albite	3	0	0	0	0	0	100							< 0.1	1
		1	Sericite	5	0	0	0	0	0	100		1					< 0.1	

•

HOLE: SSD	-97-18	Interval	From 132.	5 To 1	37.0 n	1	Sai	mple Nu	mber: 16	0439							
ROCK	MINERAL	Proport'n of		Prop'n	F	ropor	tion o	of Major	Forms (%	6)		Dim	nensia	ns of Fo	arms (mm))	Conditio
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Ctast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	100	76	15	0	6	3	0	0.1	1		1	2		
	SULPHIDES	1.5	Pyrrhotite	0													
			Base Metal	0													Highly
Siltstone			Calcite	100	0	0	0	0	0	100						0.1	fracture
	CARBONATES	5 :	Dolomite	0													(poker
			Fe-Carb.	0					{								chip,
			Quartz	9 1	0	0	0	0	0	100					T	0.1	mainly)
	SILICATES	93.5	Albite	3	0	0	0	0	0	100						< 0.1	
			Sericite	6	0	0	0	0	0	100						< 0.1	1

HOLE: SSD-	-97-18	Interval	From 137	.0 To 1	41.5 п	1	Sar	nple Nur	nber: 160)440							
ROCK	MINERAL	Proport'n of		Prop'n	F	ropor	tion c	x Major F	Forms (%	5)		Din	ensio	ns of Fo	rms (mm)	•	Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filting	Prblast Nodule Clast	Matrix	of Rock in Core
			Pyrite	100	96	3	0	1	0	0	0.1	2		1		Γ	
	SULPHIDES	1.5	Pyrrhotite	0		1										I]
			Base Metal	0													
Siltstone			Calcite	100	0	0	0	0	0	100		I			T	0.1	
	CARBONATES	5	Dolomite	0		Γ				Ι				Γ	[Fractured
		1 1	Fe-Carb.	0													
			Quartz	91	0	0	0	0	0	100						0.1]
	SILICATES	93.5	Albite	3	0	0	0	0	0	100						< 0.1	
			Sericite	6	0	0	0	0	0	100					T	< 0.1	F

HOLE: SSD-	97-18	Interval	From 141.	5 To 1	44.75	m	Sar	nple Nu	mber: 16	0441 *	•						
ROCK	MINERAL	Proport'n of		Prop'n	P	ropor	tion o	f Major	Forms (%	6)		Dim	ensio	ns of Fo	rms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture	P [*] blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	100	74	20	Ö	3	3	0	0.1	3		1	4		
	SULPHIDES	2	Pyrrhotite	0										<u>i</u>			
		i i	Base Metal	0													Fracture
Siltstone			Calcite	100	0	0	0	Ó	0	5*						0.1	to
	CARBONATES	5	Dolomite	0										[highly
			Fe-Carb.	0				1		ľ							fracture
			Quartz	89	0	0	0	1	0	99		Γ		2		0.1	
	SILICATES	93	Albite	3	0	0	0	0	0	100		T				< 0.1	
	1		Sericite	8	0	0	0	0	0	100						< 0.1	

HOLE: SSD	-97-18	Interval	From 144	. 75 To	148.	l m	Sa	nple Nu	mber: 16	0442							
ROCK	MINERAL	Proport'n of		Prop'n	F	Propo	tion o	of Major	Forms (%	6)		Dim	nensio	ons of Fo	rms (mm)	•	Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin,	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	100	91	5	0	3	1	0	0.2	3		5	2		
	SULPHIDES	2	Pyrrhotite	0				1									
			Base Metal	0				F				{					
Slate			Calcite	100	0	0	0	0	0	5*						0.1	Highly
	CARBONATES	5	Dolomite	0													fractured
			Fe-Carb.	0								1				<u> </u>	
			Quartz	85	0	0	0	3	0	97				2		0.1	
	SILICATES	93	Albite	3	0	0	0	0	0	100						< 0.1	
			Sericite	12	0	0	0	0	0	100						< 0.1	

-

IOLE: SSD	-97-18	Interval	From 148.	1 To 1	55.5 m		Sar	nple Nur	nber: 160)443							
ROCK	MINERAL	Proport'n of		Prop'n	F	ropor	tion o	of Major F	Forms (%)		Dirr	ensio	ns of Foi	ms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	100	95	2	0	1	2	0	0.1	2		1	4		
	SULPHIDES	1	Pyrrhotite	0											Γ		
			Base Metal	0													Fractured
Slate			Calcite	100	0	10	0	90	0	4*		5		2		0.1	to
	CARBONATES	1	Dolomite	0			Į										rubbie
			Fe-Carb.	0													
			Quartz	89	0	0	0	1	0	99				2		< 0.1]
	SILICATES	98	Albite	3	0	0	0	0	0	100						< 0.1	
			Sericite	8	0	0	0	0	0	100						< 0.1	1

HOLE: SSD	-97-18	Interval	From 155	.5 To	159.9	m	Sar	nple Nur	nber: 160)444							
ROCK	MINERAL	Proport'n of		Prop'n	F	ropor	tion o	of Major I	Forms (%	5)		Dim	nensio	ns of Fo	ms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P ¹ bfast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filting	P'blast Nodule Clast	Matrix	of Rock in Core
· · ·			Pyrite	100	50	0	0	50	0	0	0.1			0.5			
	SULPHIDES	1	Pyrrhotite	0												<u>i</u>	1
			Base Metal	0					1								Rubble
Slate			Calcite	100	0	0	0	60	0	4*40				1		0.1	to
	CARBONATES	2	Dolomite	0		[fracture
			Fe-Carb.	0				Ι							1	I	
		i	Quartz	89	0	0	2	3	0	95			10	2		< 0.1	1
	SILICATES	97	Albite	3	0	0	0	0	0	100				1		< 0.1]
	1		Sericite	8	0	0	0	0	0	100					T	< 0.1	

HOLE: SSD-	97-18	Interval	From 159	9 To 1	166.7 (n	Sar	nple Nur	nber: 160)445							
ROCK	MINERAL	Proport'n of		Prop'n	F	Роро	tion o	of Major I	Forms (%	6)		Din	nensio	ns of Fo	rms (mm))	Conditio
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	100	0	0	0	100	0	0				3			
	SULPHIDES	3	Pyrrhotite	0											· · ·		
			Base Metal	0				Γ									
Limestone			Calcite	100	0	0	0	2	0	98	•			2		0.4	Compete
	CARBONATES	92	Dolomite	0													to
			Fe-Carb.	0											1		fracture
			Quartz	90	0	0	0	0	0	100						< 0.1	
	SILICATES	5	Albite	0												L	
	1		Sericite	10	0	0	0	0	0	100				1	<u>i</u>	< 0.1	

HOLE: SSD-	97-18	Interval	From 166.	7 To	169.7	m	Sar	npie Nun	nber: 16	0446 *	•						
ROCK	MINERAL	Proport'n of		Prop'n	F	ropoi	tion o	of Major F	'orms (%	%)		Din	ensio	ns of Fo	ms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	100	30	0	0	70	0	0	0.3			1			
	SULPHIDES	2	Pyrrhotite	0													1
			Base Metal	0				{									
Limestone			Calcite	25	0	0	0	60	0	40				2		0.4	
	CARBONATES	98	Dolomite	75	0	0	0	0	0	100						0.5	Fractured
			Fe-Carb.	0				Γ									1
			Quartz										ł			1	1
	SILICATES	0	Albite													Į	1
		Į	Sericite					T									

.

HOLE: SSD-	97-18	Interval	From 169.	.7 To 1	176.78	m	Sar	nple Nur	nber: 160	0447							
ROCK	MINERAL	Proport'n of		Prop'n	F	Рторо	rtion c	of Major I	Forms (%	6)		Din	ensio	ns of For	ms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminæe	Massive	Veinlet, Fracture Filling	Pblast Nodule Clast	Matrix	of Rock in Core
			Pyrite	100	0	0	70	30	0	0			12	0.5			
	SULPHIDES	1.5	Pyrrhotite	0													
			Base Metal	0													
Limestone			Calcite	100	0	0	0	2	0	98				1		0.3	
	CARBONATES	98.5	Dolomite	0							-						Competen
			Fe-Carb.	0													
			Quartz														
	SILICATES	0	Albite			Γ											
	l i		Sericite			Γ	-										

DRILLHOLE 84-95

τ. .

i Lu

ί.

ί.,

SAMPLES 160451 to 160486

,

HOLE: 84-95	5	Interval	From 5.2	To 13.	5 m		Sa	nple Nur	nber: 16	0451							
ROCK	MINERAL	Proport'n of		Prop'n	F	popor	tion o	of Major I	Forms (9	6)		Dim	ensio	ns of Fo	rms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	100	50	0	0	50	0	0	0.1			0.4	1		
	SULPHIDES	1	Pyrrhotite	0													
Sandstone/			Base Metal	0													Highly
siltstone			Calcite														fractured
(sulphides	CARBONATES	0	Dolomite										:				to
partly			Fe-Carb.												-	1 · ·	rubble
oxidized)			Quartz	82	0	0	0	5	0	95				10		0.1	
	SILICATES	99	Albite	8	0	0	0	0	0	100						< 0.1	
			Sericite	10	0	0	0	0	0	100						< 0.1	

HOLE: 84-9	5	Interval	From 13.5	To 22	2.4 m		Sa	mple Nur	nber: 16	0452								
ROCK	MINERAL	Proport'n of	· . · ·	Prop'n	f	odou	tion o	of Major I	Forms (9	6)		Dim	iensio	ns of F	oms	(mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filting	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture	Filling P'blast	Nodule Clast	Matrix	of Rock in Core
			Pyrite	100	80	0	0	20	0	0	0.1	Î		0.3				
	SULPHIDES	1	Pyrrhotite	0						T				1				
			Base Metal	0														Highly
Siltstone/			Calcite	0														fractured
sandstone	CARBONATES	tr	Dolomite	0				1										to
			Fe-Carb.	100	0	0	0	100	0	0				1	····			rubbie
			Quartz	82	0	0	0	1	0	99				T T			0.1	
	SILICATES	99	Albite	8	0	0	0	0	0	100							< 0.1	
			Sericite	10	0	0	0	0	0	100							< 0.1	

HOLE: 84-9	5	Interval	From 22.4	To 26	i.6 m		Sar	nple Nur	nber: 16	3453								
ROCK	MINERAL	Proport'n of		Prop'n	F	ropor	tion o	of Major F	Forms (%	6)		Dim	ensio	ns of F	form	ns (mm)		Condition
TYPE	GROUP	Minerał Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veintet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture	Filling	P'blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	100	90	0	0	5	5	0	0.1			0.5	5	1		
	SULPHIDES	1.5	Pyrrhotite	0											-1			
			Base Metal	0														
Siltstone			Calcite	50	0	100	0	0	0	4*		1					< 0.1	Highly
	CARBONATES	tr	Dolomite	0						1								fractured
			F o -Carb.	50	0	0	0	100	0	0		1		0.5	5			
			Quartz	84	0	0	0	5	0	95		1		1			0.1	
	SILICATES	98.5	Albite	6	0	0	0	0	0	100							< 0.1	
			Sericite	10	0	0	0	0	0	100		Γ					< 0.1	

HOLE: 84-9	5	Interval	From 26.6	i To 32	2.5 m		Sar	nple Nur	nber: 16	0454 -	•						•
ROCK	MINERAL	Proport'n of		Prop'n	F	rapor	tion c	of Major F	°orms (%	6)		Dim	ensio	ns of For	ms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank")	Dissemin.	Laminae	Massive	Veintet, Fracture Filling	P'blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	100	93	0	0	2	5	0	0.1			0.5	1		
	SULPHIDES	1	Pyrrhotite	0													
			Base Metal	0													
Siltstone/			Calcite	20	0	100	0	0	0	4*		1			1	< 0.1	Highly
sandstone	CARBONATES	tr	Dolomite	0											1		fractured
			Fe-Carb.	80	0	0	0	100	0	0				0.5			
			Quartz	84	0	0	0	2	0	98				3		0.1	
	SILICATES	99	Albite	6	0	0	0	0	0	100			-	1	1	< 0.1	
			Sericite	10	0	0	0	0	0	100						< 0.1	

HOLE: 84-95	5	Interval	From 32.5	To 39	.1 m		Sai	nple Nur	nber: 16	0455								
ROCK	MINERAL	Proport'n of		Prop'n	F	ropo	tion o	of Major I	Forms (9	6)		Dim	ensio	ns of	Form	ns (mn	1)	Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	Prbtast Nodule Ctast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture	Filling	P [*] blast Nodule	Matrix	of Rock in Core
			Pyrite	100	85	0	0	10	5	0	0.1			0.	5	1	1	i
	SULPHIDES	1	Pyrrhotite	0	,									<u> </u>			- <u> </u>	1
			Base Metal	0											t			
Sandstone/			Calcite	0													1	Highly
siltstone	CARBONATES	tr	Dolomite	0													1	fractured
			Fe-Carb.	100	0	0	0	100	0	0				1			1	
			Quartz	87	0	0	1	2	0	97			60	1			0,1	
	SILICATES	99	Albite	5	0	0	0	0	0	100							< 0,1	
			Sericite	8	0	0	0	0	0	100				1			< 0.1	1

HOLE: 84-9	5	Interval	From 39.1	To 42	2.9 m		Sar	nple Nu	nber: 16	0456								
ROCK	MINERAL	Proport'n of		Prop'n	F	ropol	tion o	of Major	Forms (9	6)		Dim	ensio	ns of F	orm	s (mm)		Conditio
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture	Filling	r plast Nodule Clast	Matrix	of Rock in Core
	1		Pyrite	100	100	Ö	0	0	0	0	< 0.1			1				
	SULPHIDES	1	Pyrrhotite	0								[1				
			Base Metal	0			·							[
Siate/			Calcite											T				Fissile
siltstone	CARBONATES	0	Dolomite															to
			Fe-Carb.															gouge
			Quartz	87	0	0	0	0	0	100							< 0.1	UU-
	SILICATES	99	Albite	5	0	0	0	0	0	100							< 0.1	
			Sericite	8	Ó	0	0	0	0	100				1			< 0.1	

HOLE: 84-95		interval	From 42.9	To 52	2.7 m		Sar	nple Nur	nber: 16	0457							
ROCK	MINERAL	Proport'n of		Prop'n	P	ropor	tion c	of Major F	forms (%	6)		Dim	ensio	ns of For	ms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodute Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	95	87	0	0	8	5	0	0.2			1	1		
	SULPHIDES	2	Pyrrhotite	0											T		
			Base Metal	5	0	0	0	100	0	0				2			Highly
Sandstone/			Calcite	0													fractured
siltstone	CARBONATES	tr	Dolomite	0			[Ι								-	to
			Fe-Carb.	100	0	0	0	100	0	0		·		1	1		rubble
			Quartz	87	0	0	1	1	0	98			20	2	1	0.2	1
	SILICATES	98	Albite	5	0	Ó	0	0	0	100						< 0.1	
			Sericite	8	¢	0	0	0	0	100						< 0.1	

HOLE: 84-9	5	Interval	From 52.7	7 To 6;	2.7 m		Sa	nple Nu	nber: 16	0458							
ROCK	MINERAL	Proport'n of		Prop'n	F	ropoi	tion o	of Major I	Forms (%	%)		Dim	ensio	ns of Fo	orms (mm))	Con
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veintet, Fracture Filling	P ^r blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture	P [*] blast Nodule Clast	Matrix	ofi in (
			Pyrite	100	90	0	0	10	0	0	0.1			1			
	SULPHIDES	1.5	Pyrrhotite	0													
			Base Metal	0	í l												Hig
Siltstone			Calcite	0				[[fract
	CARBONATES	tr	Dolomite	0												1	l t
			Fe-Carb.	100	0	0	0	100	0	0				1			rut
			Quartz	85	0	0	0	1	0	99				2		0.2	
	SILICATES	98.5	Albite	5	0	0	0	0	0	100						< 0.1	
			Sericite	10	0	0	0	0	0	100						< 0.1	

·

n n Na s **.** .. : . . -----• • . • . . .

u...)

HOLE: 84-9	5	interval	From 62.7	To 69	9.1 m		Sa	mple Nui	mber: 16	0459 *	•							
ROCK	MINERAL	Proport'n of		Prop'n	F	ropo	rtion	of Major I	Forms (9	6)		Dim	ensio	ns of F	orms	(mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet. Fracture	Filing P'hlast	Nodule Clast	Matrix	of Rock in Core
			Pyrite	100	95	0	0	5	0	0	0.1	i i		1				
	SULPHIDES	1	Pyrrhotite	0					1									
			Base Metal	0				Γ										
Slate/			Calcite				I											Fissile
siltstone	CARBONATES	0	Dolomite						I									to
			Fe-Carb.			[gouge
			Quartz	84	0	0	0	1	0	99				2	1		< 0.1	
	SILICATES	9 9	Albite	6	0	0	0	0	0	100							< 0.1	
			Sericite	10	0	0	0	0	0	100							< 0.1	

HOLE: 84-95	5	Interval	From 69.1	To 75	5.5 m		Sar	nple Nun	nber: 160)460							
ROCK	MINERAL	Proport'n of		Prop'n	F	ropor	tion c	ıf Major F	Forms (%	5)		Dim	ensio	ns of Fo	ms (mm)		Conditio
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veintet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	98	48	2	0	25	25	0	0.3	1		2	2		
	SULPHIDES	3.5	Pyrrhotite	0											1		
			Base Metal	2	0	0	0	100	0	0				3			Fracture
Sandstone			Calcite	10	0	100	0	0	0	4*		5		Ĩ	1	< 0.1	to
	CARBONATES	1	Dolomite	0]	1	1	highly
			Fe-Carb.	90	0	0	0	100	0	0				2			fracture
			Quartz	87	0	0	0	8	0	92				6		0.1	
	SILICATES	95.5	Albite	5	0	0	0	0	0	100						< 0.1	
		1	Sericite	8	0	0	0	0	0	100						< 0.1	

HOLE: 84-95	5	Interval	From 75.5	To 8	.3		Sar	nple Nur	nber: 16	0461							
ROCK	MINERAL.	Proport'n of		Prop'n	ł	ropoi	tion o	of Major I	Forms (9	6)		Dim	ensio	ns of For	ms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Minerał	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	99	50	1	0	39	10	Û	0.1	1		1	1		
	SULPHIDES	1.5	Pyrrhotite	1	0	0	0	0	100	0					1		
1			Base Metal	tr	0	0	0	100	0	0				1	{		
Sandstone/			Calcite	50	0	100	0	0	0	4*		6				< 0.1	
siltstone	CARBONATES	1	Dolomite	0													Fractured
			Fe-Carb.	50	0	0	0	100	0	0				0.5			
			Quartz	85	0	0	0	5	0	95				3		0.1	
	SILICATES	97.5	Albite	5	0	0	0	0	0	100						< 0.1	
			Sericite	10	0	0	0	0	0	100						< 0.1	

HOLE: 84-95	;	interval	From 81.3	To 83	8.9 m		Sar	nple Nun	nber: 160)462								
ROCK	MINERAL	Proport'n of		Prop'n	P	ropor	tion c	f Major F	forms (%	b)		Dim	ensio	ns of	For	ms (mm)		Condition
TYPE	GROUP	Minerał Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture	Filling	P'blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	100	95	0	0	5	0	0	0.2			1				
	SULPHIDES	4	Pyrrhotite	0														
			Base Metal	0														
Sandstone/			Calcite	-80	50	50	0	0	0	5*	< 0.1	3					< 0.1	
slate	CARBONATES	1 、	Dolomite	0												•		Fractured
			Fe-Carb.	20	0	0	0	100	0	0	[1	1			
			Quartz	84	0	0	0	3	0	97	l –			6	5		0.1	
	SILICATES	95	Albite	6	0	0	0	0	0	100				Į			< 0.1	
			Sericite	10	0	0	0	0	0	100							< 0.1	

HOLE: 84-9	5	interval	From 83.9	To 86	6.7 5 m	•	Sar	nple Nur	nber: 16	0463							
ROCK	MINERAL	Proport'n of		Prop'n	F	^{>} ropo	tion o	of Major I	Forms (%	6)		Dia	iensio	ns of For	ms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veintet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrîx	of Rock in Core
			Pyrite	85	40	0	0	60	0	0	0.1			0.5			
	SULPHIDES	1	Pyrrhotite	0								<u> </u>			 		
			Base Metal	15	0	0	0	100	0	0				1		·	
Siltstone			Calcite	0											Ť		
	CARBONATES	tr	Dolomite	0								T			T		Fractured
			Fe-Carb.	100	0	0	0	100	0	0				1			
			Quartz	87	0	0	0	5	0	95				2	1	0.1	
	SILICATES	99	Albite	5	0	0	0	0	0	100						< 0.1	
	1		Sericite	8	0	0	0	0	0	100						< 0.1	

HOLE: 84-9	5	Interval	From 86.7	5 To 8	39.9 m		Sar	nple Nur	nber: 16	D464 *	*							
ROCK	MINERAL	Proport'n of		Prop'n	F	Propor	tion o	of Major I	Forms (%	6)		Din	nensio	ns of	Fon	ms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture	Filing	P'blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	95	40	5	0	50	5	0	0.1	1		1		1		
	SULPHIDES	1.5	Pyrrhotite	0														
			Base Metal	5	0	0	0	100	0	0				1				
Siltstone			Calcite	100	0	100	0	0	0	5*		20					0.2	
(cherty)	CARBONATES	1	Dolomite	0										<u> </u>	1			Fractured
			Fe-Carb.	0														
			Quartz	92	0	0	0	2	0	98				2			0.1	
	SILICATES	97.5	Albite	3	0	0	0	0	0	100							< 0.1	
		-	Sericite	5	0	0	0	0	0	100							< 0.1	

HOLE: 84-9	5	interval	From 89.9	To 91.	.4 m		Sar	nple Nun	nber: 160	0465							
ROCK	MINERAL	Proport'n of		Prop'n	F	Propo	tion c	f Major F	Forms (%	5)		Dim	ensio	ns of For	ms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Ctast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'bfast Nodule Clast	Matrix	of Rock in Core
			Pyrite	97	35	20	0	25	20	0	0.1	0.8		2	3	1	
	SULPHIDES	1	Pyrrhotite	0				<u> </u>							1	T	
			Base Metal	3	0	0	0	100	0	0				1	1		
Exhalite			Calcite											1	<u>†</u>	1	Competer
	CARBONATES	Q	Dolomite			<u></u>		·								1	
			Fe-Carb.			1									T	1	
			Quartz	94	0	0	0	2	0	98				3	1	0.1	
	SILICATES	99	Albite	1	0	0	0	0	Ö	100						< 0.1	
			Sericite	5	0	-0	0	0	0	100				[<u> </u>	< 0.1	

HOLE: 84-95	5	Interval	From 91.4	To 93	.8 m		Sar	npie Nur	nber: 16	0466							
ROCK	MINERAL	Proport'n of		Prop'n	F	ropor	tion a	f Major F	Forms (%	6)		Din	nensio	ns of Fo	rms (mm)		Condition
ΤΥΡΕ	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet Fracture Filling	P'blast Nodute Clast	Matrix	of Rock in Core
······································			Pyrite	95	40	40	0	10	10	0	0.1	2		1	2		
	SULPHIDES	1.5	Pyrrhotite	0						· ·			[1		
			Base Metal	5	0	0	0	100	0	0				1			
Siltstone			Calcite	100	0	100	0	0	0	5*		50				0.5	Competen
(siliceous)	CARBONATES	1	Dolomite	0									Î				to
			Fe-Carb.	0												ł	fractured
			Quartz	94	0	0	0	1	0	99				2	T	0.1	
	SILICATES	97.5	Albite	1	0	0	0	0	0	100				1	1	< 0.1	
			Sericite	5	0	0	0	0	0	100			Ι			< 0.1	1

ι. .

HOLE: 84-9	5	Interval	From 93.8	i To 9	6.1 m		Sa	mpie Nu	nber: 16	0467							
ROCK	MINERAL	Proport'n of		Prop'n	ş	Propol	tion o	of Major I	Forms (%	6)		Dim	nensio	ns of For	ms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	92	79	15	0	3	3	0	0.1	0.5		0.5	1		
	SULPHIDES	1	Pyrrhotite	0													
			Base Metal	8	0	0	0	100	0	0				3			
Siltstone	CARBONATES	0	Calcite Dolomite	· · · · ·											-		Fractured
			Fe-Carb.														
			Quartz	90	0	0	0	2	0	98				4		0.1	
	SILICATES	99	Albite	2	0	0	0	0	0	100						< 0.1	
			Sericite	8	0	0	0	0	0	100				1		< 0.1	

HOLE: 84-9	5	Interval	From 96.1	Ta 9	6.8 т		Sar	npie Nur	nber: 16	0468							
ROCK	MINERAL	Proport'n of		Prop'n	P	ropor	tion o	of Major I	forms (%	6)		Dim	nensio	ns of For	ms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix	of Rock in Core
	1		Pyrite	100	100	0	0	0	0	0	0.2						
	SULPHIDES	1	Pyrrhotite	0													
			Base Metal	0													
Siltstone/			Calcite	100	0	0	0	5	0	95				1		0.7	Fractured
limestone	CARBONATES	40	Dolomite	0													
			Fe-Carb.	0													
			Quartz	94	0	0	0	20	Ö	80				10		0.1	
	SILICATES	59	Albite	1	0	0	0	0	0	100						< 0.1	
			Sericite	5	0	0	0	0	0	100						< 0.1	

HOLE: 84-9	5	Interval	From 96.8	To 99	9.6 m		Sar	nple Nur	nber: 16)469 **	' .						
ROCK	MINERAL	Proport'n of		Prop'n	F	ropor	tion o	of Major I	Forms (%	5)		Dim	ensio	ns of For	ms (mm)		Condition
TYPE	GROUP	Minerat Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodute Clast	Matrix	of Rock in Core
			Pyrite	95	70	20	0	5	5	0	0.2	1		1	1		
	SULPHIDES	1.5	Pyrrhotite	0													
			Base Metal	5	0	0	0	100	0	0				1		1	
Siltstone		[Calcite	100	0	80	0	0	20	5*		8			4	0.2	Highly
	CARBONATES	tr	Dolomite	0					Ī						1		fracture
			Fe-Carb.	0											1		
			Quartz	93	0	0	6	2	0	92			200	4	İ 👘	0.1	
	SILICATES	98.5	Albite	1	0	0	0	0	0	100					1	< 0.1	
		1	Sericite	6	0	0	0	0	0	100					1	< 0.1	

HOLE: 84-9	5	Interval	From 99.	6 To 1	00.1 r	n	Sar	nple Nur	nber: 16	0470		•					
ROCK	MINERAL	Proport'n of		Prop'n	ſ	Propo	rtion c	of Major F	orms (9	6)		Dirr	nensio	ns of Fo	orms (mm))	Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture	P'blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	95	10	15	0	75	0	0	0.1	1		1.5	1		
	SULPHIDES	1	Pyrrhotite	0		1								1			
			Base Metal	5	0	0	0	100	0	0				1.5			
Exhalite			Calcite														Fracture
	CARBONATES	0	Dolomite														
			Fe-Carb.														,
			Quartz	99	0	0	0	5	0	95				1	1	0.1	
	SILICATES	99	Albite	0													
			Sericite	1	0	0	0	0	Ő	100				l l	1	< 0.1	

-

HOLE: 84-9	5	Interval	From 100	.1 To '	102.6	m	Sai	mple Nu	nber: 16	0471							
ROCK	MINERAL	Proport'n of		Prop'n	F	горо	tion o	of Major I	Forms (%	6)		Din	nensio	ns of Fo	rms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P [*] blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	100	91	3	0	1	5	0	0.1	0.5		0.5	2		
	SULPHIDES	1	Pyrrhotite	0													
			Base Metal	0										[
Siltstone			Calcite	100	0	85	0	15	0	5*		30		4	1	0.1	Highly
	CARBONATES	3	Dolomite	0				<u> </u>									fractured
			Fe-Carb.	0											1		
			Quartz	91	0	0	0	1	0	99				1	İ	0.1	
	SILICATES	96	Albite	3	0	0	0	0	0	100					1	< 0.1	
			Sericite	6	0	0	0	0	0	100					T	< 0.1	

HOLE: 84-9	5	interval	From 102.	6 To	105.5	m	Sar	npie Nur	nber: 16	0472							
ROCK	MINERAL	Proport'n of		Prop'n	F	ropor	tion o	of Major F	orms (%	6)		Dim	ensio	ns of Fo	ms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	95	68	25	0	5	2	0	0.1	2		0.7	2		
	SULPHIDES	1.5	Pyrrhotite	0								L		[
			Base Metal	5	0	0	0	100	0	0				2			
Exhalite			Calcite	100	0	100	0	0	0	5*		50				0.2	Competent
and	CARBONATES	5	Dolomite	0													to
siliceous			Fe-Carb.	0				L									fractured
siltstone			Quartz	96	0	0	0	1	0	99				5	1	0.1	
	SILICATES	93.5	Albite	1	0	0	0	0	0	100						< 0.1	
	1		Sericite	3	0	0	0	0	0	100						< 0.1	

HOLE: 84-9	5	Interval	From 105.	5 To	108.0	m	Sar	nple Nur	nber: 160	0473 *	•						
ROCK	MINERAL	Proport'n of		Prop'n	F	ropoi	tion c	of Major F	forms (%	b)		Din	ensio	ns of Fo	rms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Minerał	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	75	20	40	0	40	0	0	0.1	1		2			
	SULPHIDES	1	Pyrrhotite	0													
			Base Metal	25	0	0	0	100	0	0				8			
Siltstone			Calcite	50	0	0	0	100	0	4*				3		0.5	
	CARBONATES	1	Dolomite	0				1		l					<u> </u>		Fractured
			Fe-Carb.	50	0	0	0	100	0	4*				3	1	0.5	
			Quartz	93	0	0	0	1	0	99				3		0.1	
	SILICATES	98	Albite	2	0	0	0	0	0	100]	< 0.1	
			Sericite	5	0	0	0	0	0	100		· •				< 0.1	

HOLE: 84-95	5	interval	From 108	0 To 1	08.75	m	Sar	nple Nur	nber: 16	0474							
ROCK	MINERAL	Proport'n of		Prop'n	F	ropoi	tion o	of Major F	Forms (%	6)		Din	ensio	ns of Fo	ms (mm))	Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Ctast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	90	80	20	0	0	0	0	0,1	1					
	SULPHIDES	0.5	Pyrrhotite	0													
			Base Metal	10	0	0	0	100	0	0				1			
Limestone			Calcite	100	0	0	0	3	0	97				2		0.7	
	CARBONATES	84.5	Dolomite	0													Competent
			Fe-Carb.	0						T							
			Quartz	97	0	0	0	10	0	90				1		0.1	
	SILICATES	15	Albite	1	0	0	0	0	0	100						< 0.1	
			Sericite	2	0	0	0	0	0	100						< 0.1	

.

i Na a n i Niz κ. ...

HOLE: 84-9	5	Interval	From 108	75 To	115.0) m	Sa	mple Nur	nber: 16	0475							
ROCK	MINERAL	Proport'n of		Prop'n	F	ropol	tion o	of Major I	Forms (9	6)		Dim	ensio	ns of Fo	rms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture	P ^{blast} Nodule Clast	Matrix	of Rock in Core
	1		Pyrite	99	63	30	0	2	5	0	0.1	1		1	1		
	SULPHIDES	1	Pyrrhotite	0													
			Base Metal	1	0	Ō	0	100	0	0				1	1		
Siltstone			Calcite	100	0	88	0	12	0	5*		10		4		0.3	Highly
	CARBONATES	1	Dolomite	0				1									fractured
			Fe-Carb.	0							-						
			Quartz	90	0	0	0	1	0	99				1		0.1	
	SILICATES	98	Albite	2	0	0	0	0	0	100						< 0.1	
			Sericite	8	0	0	0	0	0	100				l		< 0.1	

HOLE: 84-95	5	Interval	From 115.	.0 To 1	21.1 r	n	Sar	nple Nur	nber: 16	0476							
ROCK	MINERAL	Proport'n of		Prop'n	P	ropor	tion c	of Major I	Forms (%	b)		Dim	ensio	ns of For	ms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veintet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	100	69	30	0	0	1	0	0.2	1			1		
	SULPHIDES	1	Pyrrhotite	0								1					
			Base Metal	tr	0	0	0	100	0	0				0.5			
Slate/			Calcite	100	0	0	0	100	0	0		-		5			Rubble
siltstone	CARBONATES	tr	Dolomite	0										I			. to
			Fe-Carb.	0													fissile
			Quartz	85	0	0	0	10	0	90				70		< 0.1	
	SILICATES	99	Albite	3	0	0	0	0	0	100						< 0.1	
	ł		Sericit e	12	0	0	0	0	0	100				1		< 0.1	

HOLE: 84-95		Interval	From 121.	1 To 1	26.3 r	n	San	nple Nun	nber: 160	0477							
ROCK	MINERAL	Proport'n of		Prop'n	F	ropor	tion o	f Major F	orms (%	»)		Dim	ensio	ns of Foi	ms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	100	97	1	0	1	1	0	0.2	1		1	2		
	SULPHIDES	1	Pyrrhotite	0													
			Base Metal	0												1	Fractured
Siltstone			Calcite	100	0	0	0	3	0	5*97				2		0.5	to
(calcareous)	CARBONATES	35	Dolomite	0													highly
			Fe-Carb.	0										·			fractured
			Quartz	93	0	0	0	12	0	88				10		0.1	
	SILICATES	64	Albite	1	0	0	0	0	0	100				Γ		< 0.1	
			Sericite	6	0	50	0	0	0	50		0,5			1	< 0.1	

HOLE: 84-9	5	Interval	From 126	3 To	132.3	m	Sar	nple Nur	nber: 160	0478 *	•							
ROCK	MINERAL	Proport'n of		Prop'n	F	Propor	tion c	of Major F	Forms (%	5)		Dim	ensio	ns o	f For	ms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet,	Fracture Filling	P'blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	90	70	5	0	10	15	-0	0.5	2			4	5		I
	SULPHIDES	7	Pyrrhotite	0														
			Base Metal	10	0	0	0	80	20	0					5	2		
Exhalite/			Calcite	20	50	0	0	50	0	0	0.3			1	5			Competer
High	CARBONATES	13	Dolomite	0														to
sulphide			Fe-Carb.	80	50	0	0	50	0	0	0.7			1	5			rubble
			Quartz	96	0	0	0	15	0	85				5	0		0.1	
	SILICATES	80	Albite	1	0	0	0	0	0	100							< 0.1	
			Sericite	3	0	100	0	0	0	0		-						

HOLE: 84-9	5	Interval	From 132.	3 To 1	133.9	m	Sar	nple Nur	nber: 16	0479							
ROCK	MINERAL	Proport'n of		Prop'n	F	oropo	rtion o	of Major I	Forms (9	6)		Dim	nensio	ns of For	ms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filting	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P [*] blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	90	0	0	0	80	20	0				3	2		· · · · · ·
	SULPHIDES	2	Pyrrhotite	0]
			Base Metal	10	0	0	0	50	50	0				1	2		
Quartz			Calcite	90	0	0	0	100	0	0				5			Competent
vein	CARBONATES	1.5	Dolomite	0]
			Fe-Carb.	10	0	0	0	100	0	0		[5			I
			Quartz	100	0	0	1.00	0	0	0			1000				
	SILICATES	96.5	Albite	0		ł											
			Sericite	0				1									I

HOLE: 84-9	5	Interval	From 133.9) To 1	37.5 m	•	Sar	nple Nur	nber: 160)480							
ROCK	MINERAL	Proport'n of		Prop'n	P	торо	tion c	of Major F	Forms (%	b)		Dim	ensio	ns of Fo	orms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture	P'blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	90	30	0	0	50	20	0	0.3			6	4	Ĩ	
	SULPHIDES	6	Pyrrhotite	0												1	
			Base Metal	10	0	0	0	100	0	0				8			
Exhalite/			Calcite	100	30	0	0	70	0	0	0.2			2			Fracture
quartz	CARBONATES	tr	Dolomite	0													
vein			Fe-Carb.	0													
		Ī	Quartz	99	0	0	65	0	0	35			300			0.2	
	SILICATES	94	Albite	0													1
			Sericite	1	100	0	0	0	0	0	< 0.1						

HOLE: 84-95		Interval	From 137.	5 Toʻ	141.9 r	n	Sar	nple Nur	nber: 160	0481						_	
ROCK	MINERAL	Proport'n of		Prop'n	F	ropoi	tion o	f Major F	forms (%	b)		Dim	ensio	ns of For	ms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix	of Rock in Core
			Pvrite	97	15	5	20	0	60	0	0.2	1	15		4		
	SULPHIDES	40	Pyrrhotite	0													
			Base Metai	3	0	0	0	0	100	0					3		
High			Calcite	100	50	0	0	0	50	0	1			[3		Fracture
sulphide	CARBONATES	5?	Dolomite	0													· ·
(mineralogy			Fe-Carb.	0				-				l					
tentative)			Quartz	75	0	0	0	20	0	80				50	<u> </u>	0.3	
•	SILICATES	55	Albite	0				[<u> </u>	L		
		1	Sericite	25	0	0	0	0	0	100		1	I			0.4	

HOLE: 84-95	i	Interval	From 141.	9 To 1	45.5 r	n	San	npie Nur	nber: 160	3482							
ROCK	MINERAL	Proport'n of		Prop'n	F	Propor	tion c	f Major F	Forms (%)		Dim	ensio	ns of For	ms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veintet, Fracture Filting	P'blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	85	45	15	0	0	40	0	0.5	2		[6		
	SULPHIDES	12	Pyrrhotite	0										<u> </u>	<u> </u>		
			Base Metal	15	20	0	0_	30	50	0	1			15	3		
Exhalite			Calcite	50	50	0	0	0	50	0	0.5			<u> </u>	2		Compete
(mineralogy	CARBONATES	2	Dolomite	0										L		Į	to
tentative)			Fe-Carb.	50	50	50	0	0	0	0	0.2	0.5					fracture
,			Quartz	97	0	0	15	5	0	80			40	10		0.3	
	SILICATES	86	Albite	0										L	ļ		4
			Sericite	3	0	100	0	0	0	0		0.8		[1		

. , **x** = 2 v V D , к.) ν. s. 1

HOLE: 84-95	5	Interval	From 145.	5 To 1	50.3 r	n	San	npl o Nun	nber: 160	1483 **	•						
ROCK	MINERAL	Proport'n of		Prop'n	F	ropor	tion a	f Major F	Forms (%	b)		Dim	ensio	ns of For	ms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'btast Nodule Clast	Matrix	of Rock in Core
			Pyrite	99	5	5	80	5	5	0	0.2	2	20	1	3		
	SULPHIDES	2.5	Pyrrhotite	0													
	ļ		Base Metal	1	0	50	0	50	0	0		1		1		1	
Slate/			Calcite			ŀ											Highly
mudstone	CARBONATES	tr	Dolomite														fractured
			Fe-Carb.													Ľ	
			Quartz	88	0	2	0	5	0	93		1		10		< 0.1	
	SILICATES	97.5	Albite	2	0	0	0	0	0	100						< 0.1	
			Sericite	10	0	0	0	0	0	100						< 0.1	ł

10LE: 84-9	5	Interval	From 150.3	3 To 1	54.9	n	Sar	nple Nur	nber: 160	0484							
ROCK	MINERAL	Proport'n of		Prop'n	F	ropor	tion o	f Major F	orms (%	6)		Dim	ensio	ns of For	ms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filting	P [*] blast Nodufe Clast	Matrix	of Rock in Core
			Pyrite	99	30	25	0	15	30	0	0.1	1		1	2		
	SULPHIDES	1	Pyrrhotite	0										[
		·	Base Metal	1	0	0	0	0	100	0					2		Highly
Slate/			Calcite	100	0	100	0	0	0	4*		5				0.1	fractured
mudstone	CARBONATES	1	Dolomite	0							·						to
	1		Fe-Carb.	0													rubble
			Quartz	88	0	5	0	0	0	95		1		[0.1	
	SILICATES	98	Albite	2	0	0	0	0	0	100						< 0.1	
			Sericite	10	0	0	0	0	0	100					1	< 0.1	

HOLE: 84-95		Interval	From 154.	.9 To 1	60.0 r	n	Sar	nple Nur	nber: 160)485							
ROCK	MINERAL	Proport'n of		Prop'n	F	ropor	tion c	of Major F	Forms (%	5)		Dim	ensio	ns of Fo	ms (mm)		Conditio
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P [*] blast Nodufe Clast	Matrix	of Rock in Core
			Pyrite	100	96	0	0	2	2	0	0.5			1	2		
	SULPHIDES	1	Pyrrhotite	0													
			Base Metal	0													
Sandstone			Calcite														Rubble
	CARBONATES	0	Dolomite														to
			Fe-Carb.												·		gouge
			Quartz	92	0	0	5	1	0	94			35	6		0.6	
	SILICATES	99	Albite	3	0	0	0	0	0	100						0.3	
			Sericite	5	0	0	0	0	0	100						0.1	

HOLE: 84-95		Interval	From 160.	0 To 1	65.4 n	n	Sar	nple Nun	nber: 16	J486								
ROCK	MINERAL	Proport'n of		Prop'n	P	ropor	tion c	of Major F	forms (%	6)		Dim	ensio	ns of	For	ns (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture	Filling	P'blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	100	95	2	0	1	2	Ö	0.5	1		0	5	2		
	SULPHIDES	2	Pyrrhotite	0														
			Base Metal	0														
Sandstone			Calcite	50	0	100	0	0	0	4*		5					< 0.1	Competent
	CARBONATES	1	Dolomite	0														to
			Fe-Carb.	50	0	0	0	100	0	0					1			fractured
			Quartz	91	0	0	0	0	0	100							0.8	ļ
	SILICATES	97	Albite	4	0	0	0	0	0	100						L	0.3	ł
			Sericite	5	0	0	0	0	0	100				1			0.1	i

CAMP CREEK FAULT

ı.

SAMPLES 160351 to 160368

HOLE: SSD-	97-22	Interval	From 98.3	5 To	104.0 i	n	Sar	nple Nur	nber: 16	0351								
ROCK	MINERAL	Proport'n of		Prop'n	F	Propo	tion o	of Major F	orms (%	6)		Dim	ensio	ns of F	orms	; (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture	P'blast	Nodule Clast	Matrix	of Rock in Core
			Pyrite	100	0	0	0	100	0	0				0.1				
	SULPHIDES	tr	Pyrrhotite	0						1	-			†				
·			Base Metal	0										<u> </u>				
Limestone			Calcite	90	0	0	0	10	0	90				2			0.1	
	CARBONATES	98	Dolomite	10	0	0	0	0	100	0					-	8		Competent
			Fe-Carb.	0									-		_			
			Quartz	95	100	0	0	0	0	0	0.1							
	SILICATES	2	Albite	0				1		-								
			Sericite	5	0	0	0	100	0	0				< 0.1	i I			

,

HOLE: SSD-	-97-22	Intervai	From 104	.0 To	10 5 .2 ı	n	Sa	mple Nur	nber: 16	0352 *	*			÷.,				
ROCK	MINERAL	Proport'n of		Prop'n	F	ropo	rtion o	of Major I	Forms (%	6)		Din	nensio	ons of F	orms	s (mm)		Conditio
TYPE	GROUP	Mineral Group (%)	Minerał	of Minerai (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture	P'blast	Nodule Clast	Matrix	of Rock in Core
			Pyrite	100	100	0	0	0	0	0	0.1	1						
	SULPHIDES	2	Pyrrhotite	0										1				
			Base Metal	0														
Limestone			Calcite	100	0	0	0	0	40	60				1		4	0.1	Gouge -
	CARBONATES	93	Dolomite	0														rubble
			Fe-Carb.	0														
			Quartz	0														
	SILICATES	5	Albite	0														
			Sericite	100	0	0	0	0	0	100					1		< 0.1	

HOLE: SSD-	97-22	interval	From 105.	2 To ²	109.73	m	Sar	nple Nur	nber: 160	0353							
ROCK	MINERAL	Proport'n of		Prop'n	P	ropor	tion o	of Major F	orms (%	5)		Dim	nensio	ns of Fo	rms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	100	0	0	0	100	0	0				0.1	1		1
	SULPHIDES	1	Pyrrhotite	0										1			1
			Base Metal	0				1									1
Limestone			Calcite	100	0	0	0	1	0	99				1		< 0.1	Competent
	CARBONATES	96	Dolomite	0												ŀ	to
			Fe-Carb.	0						-						1	fractured
			Quartz	100	100	0	0	0	0	0	0.1					[1
	SILICATES	3	Albite	0]
	·	(silicif.)	Sericite	0										ł			

HOLE: SSD-	97-23	Interval	From 93.0	To 96	6.0 m		Sar	nple Nun	nber: 160	0354							
ROCK	MINERAL	Proport'n of		Prop'n	F	ropor	tion o	of Major F	forms (%	»)		Dim	ensio	ns of Fo	ms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	94	30	0	0	5	65	0	0.2			0.2	2		
	SULPHIDES	1	Pyrrhotite	0													
			Base Metal	6	0	0	0	100	0	0				3			
Limestone/			Calcite	92	0	0	0	15	0	85				3		0.1	Fractured
slate	CARBONATES	87	Dolomite	3	0	0	0	0	100	0					3		to
breccia			Fe-Carb.	5	20	0	0	80	0	0	2			3			rubble
			Quartz	93	0	0	0	5	0	95				5		< 0.1	
	SILICATES	12	Albite	2	0	0	0	0	0	100						< 0.1	
			Sericite	5	0	0	0	0	0	100						< 0.1	

HOLE: SSD-	97-23	Interval	From 96.0	To 10	4.85 n	n	San	np le Nun	nber: 160	355							
ROCK	MINERAL	Proport'n of		Prop'n	P	ropor	tion c	f Major F	Forms (%)		Dim	ensio	ns of Fo	ms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodul e Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veintet, Fracture Filling	P'blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	100	90	0	0	5	5	0	0.1			1	2		ſ
	SULPHIDES	2	Pyrrhotite	0						Ī					·]
			Base Metal	0				Γ									
Limestone			Calcite	99	0	0	0	2	1	97				2	3	0.1	Gouge,
	CARBONATES	98	Dolomite	1	0	0	0	0	100	0					3		rubbie
			Fe-Carb.	0											1		
			Quartz							1		[.					
	SILICATES	0	Albite												L		
			Sericite														L

HOLE: SD-9	7-23	Interval	From 104.	85 To	109.5	m	Sar	nple Nun	nber: 160)356							
ROCK	MINERAL	Proport'n of		Prop'n	F	ropor	tion o	of Major F	forms (%	5)		Dim	nensio	ns of Fo	ms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	100	0	0	0	100	0	0				0.1			
	SULPHIDES	tr	Pyrrhotite	0													
			Base Metal	0													
Limestone			Calcite	95	0	0	0	30	0	70		[2		0.1	Rubble
	CARBONATES	99	Dolomite	5	0	0	0	0	Ū.	100						0.1	
	l i		Fe-Carb:	0		ŀ								1			
			Quartz	100	0	0	0	100	0	0				2			
	SILICATES	tr	Albite	0											ļ		l .
]		Sericite	0		<u> </u>											l

. •. ...

HOLE: SSD	-97-30	Interval	From 89.1	5 To 9)1.44 I	n	Sar	npie Nur	nber: 16	0357							
ROCK	MINERAL	Proport'n of		Prop'n	4	ropor	tion c	of Major I	Forms (9	%)		Dim	nensio	ns of For	ms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank")	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P ^r blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	100	50	0	0	30	20	0	0.2			0.2	1	<u> </u>	
	SULPHIDES	1	Pyrrhotite	0				1									
			Base Metal	tr	0	0	0	100	0	0				0.3	1		
Limestone			Calcite	92	0	0	0	8	0	92				3		0.1	Competent
	CARBONATES	99	Dolomite	6	0	0	0	0	0	100		1				0.2	to
			Fe-Carb.	2	0	0	0	100	0	0				1			fractured
			Quartz													· · ·	1
	SILICATES	0	Albite												1		1.
			Sericite			1		l · · · ·		1				<u>† </u>	<u> </u>		1

HOLE: SSD	-97-30	Interval	From 91.4	44 To 9	94.49	m	Sar	nple Nu	nber: 16	0358 '	*						
ROCK	MINERAL	Proport'n of		Prop'n	F	Propor	tion o	of Major I	Forms (%	6)		Din	ensio	ins of F	orms (п	m)	Conditio
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filting	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture	P'blast Nodule	Clast Matriv	of Rock in Core
			Pyrite	100	100	0	0	0	0	0	0.1			1			
	SULPHIDES	2	Pyrrhotite	0													
			Base Metal	0										T			Fractured
Limestone			Calcite	100	0	0	20	0	0	80			1			0.	1 to
	CARBONATES	96	Dolomite	0										1	1 - T		gouge
			Fe-Carb.	0													
			Quartz	100	0	100	Ó	0	0	0		100		i			
	SILICATES	2	Albite	0											1	· · · · · ·	-1
			Sericite	0													

HOLE: SSD	-97-31	Interval	From 103.	75 To 1	06.55	m	Sai	mple Nur	nber: 16	0359								
ROCK	MINERAL	Proport'n of		Prop'n	f	ropoi	tion o	of Major I	Forms (%	6)		Din	ensio	ns o	f For	ms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemìn.	Laminae	Massive	Veinlet,	Filling	Prblast Nodule Clast	Matrix	of Rock in Core
	1		Pyrite	100	90	0	0	10	0	0	< 0.1			C	.5	1		
	SULPHIDES	2	Pyrrhotite	0												1		
			Base Metal	0														
Limestone			Calcite	99	0	0	40	0	0	60			0.5			1	0.1	Fractured
	CARBONATES	98	Dolomite	1	0	0	0	0	100	0						0.2		to
			Fe-Carb.	0														gouge
			Quartz	2	0	0	0	0	100	0						0.1		- •
	SILICATES	5	Albite	0														
			Sericite	98	0	0	0	0	0	100							< 0.1	

HOLE: SSD-	97-31	Interval	From 106.5	55 To	109.73	3 m	Sar	nple Nun	nber: 160	0360								
ROCK	MINERAL	Proport'n of		Prop'n	H	ropor	tion o	of Major F	forms (%	6)		Dim	ensio	ns of I	Forn	ns (mm)		Condition
TYPE	GROUP	Minerał Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture	Filling	P'blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	100	100	0	0	0	0	0	0,1			İ				
	SULPHIDES	tr	Pyrrhotite	0														
			Base Metal	0	i													
Limestone			Calcite	70	0	0	Ō	65	0	35				1			0.1	Competent
	CARBONATES	99	Dolomite	30	0	0	0	0	Ö	100							0.1	to
			Fe-Carb.	0														rubble
			Quartz					ł							Ī			
	SILICATES	0	Albite															
			Sericite												Τ			

HOLE: SSE)-97-14	Interval	From 100	58 To	106.6	Bm	Sar	nple Nur	nber: 16	0361 *	•						
ROCK	MINERAL	Proport'n of		Prop'n	4	^{>} ropor	tion c	of Major I	Forms (%	6)		Dirr	iensio	ns of Fo	rms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	100	34	65	0	1	0	0	0.1	6		0.5		· · · ·	
	SULPHIDES	12	Pyrrhotite	0												[
			Base Metal	0				1							1	<u> </u>	
Altered			Calcite	100	0	0	0	1	99	0				0.5	120		Rubble/
dike	CARBONATES	2	Dolomite	0											1	1	highly
			Fe-Carb.	tr	0	0	0	100	0	0				0.5			fractured
			Quartz	15	0	0	0	0	0	100					T	< 0.1	
÷	SILICATES	86	Albite	tr										[
			Sericite	85	0	0	0	0	0	100				1		< 0.1	

HOLE: SSD-	-97-45	Interval	From 120.	D To	123.44	l m	Sar	n <mark>ple N</mark> ur	nber: 16	0362							
ROCK	MINERAL	Proport n of		Prop'n	f	Propor	tion o	of Major I	Forms (%	6)		Din	nensio	ns of Fo	rms (mm)		Conditio
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	100	5	0	0	40	0	55	0.1			0.8	-	0.2	
	SULPHIDES	1	Pyrrhotite	0	1			1	i						1		1
			Base Metal	0				-									Compete
Limestone			Calcite	92	0	0	0	25	0	75				4		0.3	to
	CARBONATES	96	Dolomite	8	0	0	0	0	100	0					5		fracture
			Fe-Carb.	0											T		to
			Quartz	0										}	1		gouge
	SILICATES	3	Albite	0													
			Sericite	100	0	0	0	0	0	100						< 0.1	1

HOLE: SSD-	97-45	Interval	From 123.4	44 To 1	126.49	m	Sar	nple Nur	nber: 160	0363								
ROCK	MINERAL	Proport'n of		Prop'n	F	ropor	tion c	of Major I	Forms (%	6)		Dim	ensio	ns of F	orm	s (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P ¹ blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture	Filling D'hlact	r plast Nodule Clast	Matrix	of Rock in Core
	[Pyrite	100	0	0	0	10	3	87				3		2	0.1	
	SULPHIDES	2	Pyrrhotite	0				[
			Base Metai	0														
Limestone			Calcite	97	0	0	0	4	0	96		l		3			0.2	Rubble
	CARBONATES	93	Dolomite	3	0	0	0	0	100	0						3		to
			Fe-Carb.	٥								{			Ţ			gouge
			Quartz	0														_
	SILICATES	5	Albite	0										<u>.</u>				
			Sericite	100	0	0	0	0	0	100		1					< 0.1	

.

.

HOLE: SSD-	97-49	Interval	From 111.	55 To	116.43	3 m	Sar	nple Nur	nber: 160	0364									
ROCK	MINERAL	Proport'n of		Prop'n	F	Propor	tion o	of Major F	orms (%	»)		Din	nensio	ns of I	=оп	ms (I	mm)		Condition
TYPE		Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture	Filling	P'blast Nodule	Clast	Matrix	of Rock in Core
	SULPHIDES	1.5	Pyrite Pyrrhotite	100 0	0	0	0	100	0	0				2					-
			Base Metal	0															1 i
Limestone			Calcite	97	0	0	0	15	0	85				5				0.2	Highly
	CARBONATES	98.5	Dolomite	3	0	0	0	0	100	0						6	3		fractured
			Fe-Carb.	0]
			Quartz]
	SILICATES	0	Albite]
			Sericite							•									

· · · ·

HOLE: SSD-	97-54	interval	From 64.8	5 To 6	8.8 m		Sar	nple Nun	nber: 16	0365							
ROCK	MINERAL	Proport'n of		Prop'n	F	ropoi	tion c	of Major F	forms (%	•}		Dim	ensio	ns of For	ms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filting	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veintet, Fracture Filling	P ¹ blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	100	3	0	0	2	0	95	0.2			0.5	[0.1	
	SULPHIDES	2	Pyrrhotite	0		1								1			
			Base Metal	0													
Limestone			Calcite	100	0	0	0	1	Ó	99				1		0.1	Gouge
	CARBONATES	97	Dolomite	tr	0	0	0	0	100	0					5		to
			Fe-Carb.	0													fractured
			Quartz	10	0	0	0	0	0	100						< 0.1	
	SILICATES	1	Albite	0													
			Sericite	90	0	0	0	0	0	100						< 0.1	

HOLE: SSD-	97-54	interval	From 68.8	To 72	2.8 m		Sar	nple Nur	nber: 160)366 **	ł						
ROCK	MINERAL	Proport'n of		Prop'n	P	ropor	tion o	of Major I	Forms (%	»)		Dim	ensio	ns of Fo	rms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	100	0	0	0	100	0	0				0.5			
	SULPHIDES	0.5	Pyrrhotite	0													
			Base Metal	0													
Limestone			Calcite	99	0	0	0	8	0	92				2		0.1	Competer
	CARBONATES	99,5	Dolomite	1	0	0	0	0	100	0					5		to
			Fe-Carb.	0							-	[[1		fractured
			Quartz	100	0	0	0	100	0	0				2			
	SILICATES	tr	Albite	0													
			Sericite	0										I	T		1

HOLE: 84-10)1	Interval	From 101.	4 To 1	05.65	m	Sar	nple Nur	nber: 160)367							
ROCK	MINERAL	Proport'n of		Prop'n	P	ropor	tion c	of Major F	forms (%)		Dim	ensio	ns of For	ms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	100	50	0	0	0	0	50	0.1					< 0.1	
	SULPHIDES	8	Pyrrhotite	0							•						
	(slightly ox.)		Base Metal	0					1					<u> </u>	[
Limestone			Calcite	95	0	0	3	1	0	96			5	2	1	< 0.1	Gouge
(plus	CARBONATES	67	Dolomite	0													to
altered			Fe-Carb.	5	100	0	0	0	0	0	< 0.1						highly
dike)			Quartz	5	0	0	0	0	0	100						0.1	fractured
	SILICATES	25	Albite	0										[[
	1		Sericite	95	0	0	0	0	0	100						< 0.1	

HOLE: 84-10	1	interval	From 105.6	55 To	109.4	m	Sar	nple Nur	nber: 160)368								
ROCK	MINERAL	Proport'n of		Prop'n	P	ropor	tion c	f Major I	forms (%)		Dim	ensio	ns o	f For	ms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Minerali (%)	Dissemin.	Laminae	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminae	Massive	Veinlet,	Fracture Filling	P [*] blast Nodule Clast	Matrix	of Rock in Core
			Pyrite	100	100	0	0	0	0	0	< 0.1						L	
	SULPHIDES	tr	Pyrrhotite	0								i						
			Base Metal	0						I								
Limestone			Calcite	25	0	0	0	20	0	80	I).5		< 0.1	Compete
(dolomitized)	CARBONATES	75	Dolomite	75	0	0	0	0	0	100		[Ì	0.2	to
````		1	Fe-Carb.	0								[						fracture
			Quartz	100	60	0	0	40	0	0	0.1				3			
	SILICATES	25	Albite	0					-	1								
			Sericite	0														

# APPENDIX A (cont'd.)

ί.

s...

λ.

## ABA REPORTS - SUMMARY LOGS

Sample #	Drillhole	Depth Interval			ABA Rock	% Sulph.	bm/bm+py	% Carb.	Notes
160301	97-15	9.14 - 17.7	8.56		sandstone	1	0	1	
160302**	97-15	17.7 - 21.5	3.8	1B	sandstone	2	0	1	**extra analyses: Total Ba, Se etc.
160303	97-15	21.5 - 25.0	3.5	1B	siltstone	3	0	2	
160304	97-15	25.0 - 28.0	3	1B	siltstone	3	0	3	
160305	97-15	28.0 - 33.5	5.5	1B	siltstone	5	0	2	
160306	97-15	33,5 - 36,8	3.3	1B	sandstone	3	0	3	
160307**	97-15	36.8 - 42.6	5.8	1B	siltstone	4	1	2	
160308	97-15	42.6 - 47.55	4,95	1AA	slate	2	0	3	
160309	97-15	47.55 - 54.5	6.95	LZ	hi sulphide	40	20	35	
160310	97-15	54.5 - 56.2	1.7	1AA	slate	1	0	29	
160311	97-15	56.2 - 58.0	1.8	LZ	hi sulphide	35	30	3	
160312**	97-15	58.0 - 60.8	2.8	1AA	siltstone	1	0	6	
160313	97-15	60.8 - 66.15	5.35	1AA	siltstone	1	0	1	
160314	97-15	66.15 - 70.1	3.95	1AA	slate	1	3	30	mudstone; carbonate breccia
160315	97-15	70.1 - 74.5	4.4	MLS	limestone	1	15	84	
160316	97-15	74.5 - 84.25	9.75	MLS	limestone	1	25	95	
160317**	97-15	84.25 - 85.0	0.75	1AA	siltstone	1	0	20	breccia, with limestone
160318	97-15	85.0 - 92.66	7.66	MLS	limestone	1	0	98	EOH
			······································						
160350	84-65	4.8 - 13.0	. 8.2		sandstone	1	0	0	
160319	84-65	13.0 - 21.0	8		sandstone	1	0	0	
160320	84-65	21.0 - 28.0	7		sandstone	1.5	0	0	
160321**	84-65	28.0 - 34.55	6.55		sandstone	1.5	0	2	
160322	84-65	34.55 - 37.3	2.75		sandstone	< 1.0	0	1	
160323	84-65	37.3 - 40.2	2.9		sandstone	< 1.0	0	2	
160324	84-65	40.2 - 45.0	4.8	1B	sandstone	1	0	0	
160325	84-65	45.0 - 52.4	7.4	1B	sandstone	1	0	1	
160326**	84-65	52.4 - 58.15	5.75		sandstone	1	0	1	
160327	84-65	58.15 - 67.65	9.5		sandstone	< 1.0	0	< 1.0	
160328	84-65	67.65 - 70.1	2.45		sandstone	1	0	< 1.0	
160329	84-65	70.1 - 79.4	9.3	1B	siltstone	2 1	0	2	
160330	84-65	79.4 - 86.35	· 6.95	1B	sandstone	1	0	< 1.0	
160331**	84-65	86.35 - 92.0	5.65	1B	siltstone	3	0	4	6% of sulphides = pyrrhotite
160332	84-65	92.0 - 94.3	2.3		siltstone	1	0	2	
160333	84-65	94.3 - 98.7	4.4	1B	sandstone	1	0	2	

Sample #		Depth Interval				% Sulph.	bm/bm+py		Notes
160334	84-65	98.7 - 103.3	4.6	1B	siltstone	1	0	10	
160335	84-65	103.3 - 111.3	8	1B	sandstone	1	0	1	
160336**	84-65	111.3 - 116.9	5.6	1B	siltstone	2	0	6	
160337	84-65	116.9 - 127.0	10.1	1B	sandstone	1	0	2	1% of sulphides = pyrrhotite
160338	84-65	127.0 - 133.1	6.1	1B	sandstone	1	0	1	75% of sulphides = pyrrhotite
160339	84-65	133.1 - 137.7	4.6	1B	siltstone	1	0	0	
160340	84-65	137.7 - 140.5	2.8	1B	sandstone	1	0	1	10% of sulphides = pyrrhotite
160341**	84-65	140.5 - 144.0	3.5	18	siltstone	1	0	0	
160342	84-65	144.0 - 154.0		18	siltstone	1	0	1	
160343	84-65	154.0 - 158.35	4.35	1B	siltstone	2	0	5 ·	
160344	84-65	158.35 - 165.5	7.15	1B	sandstone	2	0	< 1.0	2% of sulphides = pyrrhotite
160345	84-65	165.5 - 172.5	7	1BA	siltstone	2	0	4	
160346**	84-65	172.5 - 176.8	4.3	1AA	slate	1	0	5	
160347	84-65	176.8 - 182.7	5.9	1AA	slate	2	0	12	some limestone fragments.
160348	84-65	182.7 - 193.0	10.3	MLS	limestone	0	-	99	
160349	84-65	193.0 - 203.3	10.3	MLS	limestone	tr	0	99	•
160401**	97-46	20.42 - 27.0	6.58	1AA	slate	2	tr	tr	
160402	97-46	27.0 - 33.5	6.5	1AA	siltstone	1	0	tr	
160403	97-46	33.5 - 39.1	5.6	1AA	siltstone	2	0	8	% = original sulph. Now ~oxidiz.
160404	97-46	39.1 - 44.0	4.9	1AA	siltstone	2	0	tr	% = original sulph. Now oxidiz'd.
160405	97-46	44.0 - 49.0		1AA	siltstone	4	0	· 0	% = original sulph. Now oxidiz'd.
160406**	97-46	49.0 - 56.6		LZOX	oxide	40	0	0	% = estimated original sulphide
160407	97-46	56.6 - 59.7		MLS	limestone	3	0	97	% = original sulph. Now oxidiz'd.
160408	97-46	59.7 - 65.2		MLS	limestone	2	0	98	% = original sulph. Now oxidiz'd.
160409	97-46	65.2 - 66.35		MLS	hi sulphide	22	0	78	about 10% of sulphides oxidized
160410	97-46	66.35 - 68.27	1.92	MLS	limestone	5	0	95	about 60% of sulphides oxidized
160411**	97-18	25.8 - 28.4	2.6	2A	siltstone	2	0	tr	% = original sulph. Now oxidiz'd.
160412	97-18	28.4 - 33.7		2A	siltstone	5	0	0	
160412	97-18	33.7 - 34.2			hi sulphide	40	0	0	not oxidized
160414	97-18	34.2 - 35.3		D-ZONE	exhalite	6	0	0	sample depleted by ARD 199734
160414	97-18	35.3 - 39.6		D-ZONE	hi sulphide	20	10	3	mostly Fe-carbonate
160416**	97-18	39.6 - 41.6			siltstone	3	0	0	
			<u> </u>						I.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

•

Sample #	Drillhole	Depth Interval	Thickn.(m)	Strat.Unit	ABA Rock	% Sulph.	bm/bm+py	% Carb.	Notes
160417	97-18	41.6 - 45.25	3.65			25	10	12	mostly Fe-carbonate
160418	97-18	45.25 - 46.75	1.5	D-ZONE	exhalite	5	0	7	mostly Fe-carbonate
160419	97-18	46.75 - 48.4	1.65	2A	siltstone	4	5	2	
160420	97-18	48.4 - 49.2	0.8	D-ZONE	exhalite	20	0	0	
160421**	97-18	49.2 - 53.7	4.5	2AA	siltstone	7	0	0	
160422	97-18	53.7 - 60.5	6.8	1B	sandstone	2	0	0	
160423	97-18	60.5 - 67.15	6.65	1B	sandstone	1.5	0	0	fault zone, gouge
160424	97-18	67.15 - 72.85	5.7	1B	sandstone	2	0	3	
160425	97-18	72.85 - 76,3	3.45	1B	sandstone	1.5	0	1	
160426**	97-18	76.3 - 82.0	5.7	1B	siltstone	2	0	1	
160427	97-18	82.0 - 86.0	4	1B	sandstone	1	0	0.5	
160428	97-18	86.0 - 91.2	5.2	1B	sandstone	2	0	0.5	
160429	97-18	91.2 - 94.5	3.3	1B	sandstone	3	0	1	
160430	97-18	94:5 - 97.1	2.6	1B	sandstone	2	0	2	3% of sulphides = pyrrhotite
160431**	97-18	97.1 - 101.65	4.55		sandstone	3.5	1	1	
160432	97-18	101.65 - 105.6	3.95	1B	sandstone	2	0	0	
160433	97-18	105.6 - 111.0	5.4	1B	sandstone	2	2	2	
160434	97-18	111.0 - 118.8	7.8	1B	sandstone	1	tr	1	
160435	97-18	118.8 - 120.7	1.9	1B	siltstone	2	2	1	
160436**	97-18	120.7 - 122.9	2.2	1B	siltstone	5	2	1	
160437	97-18	122.9 - 128.15	5.25		siltstone	1	tr	5	
160438	97-18	128.15 - 132.5	4.35		siltstone	2.5	0	5	
160439	97-18	132.5 - 137.0			siltstone	1.5	0	5	
160440	97-18	137.0 - 141.5			siltstone	1.5	0	5	
160441**	97-18	141.5 - 144.75	3.25		siltstone	2	0	5	· · · · · · · · · · · · · · · · · · ·
160442	97-18	144.75 - 148.1	3.35		slate		0	5	
160443	97-18	148.1 - 155.5	7.4	1	slate	1	0	1	
160444	97-18	155.5 - 159.9	4.4		slate	1	0	2	
160445	97-18	159.9 - 166.7	6.8		limestone	3	0	92	
160446**	97-18	166.7 - 169.7	3		dol. Imst.	2	0	98	dolomitized Imst. (75% dolomite)
160447	97-18	169.7 - 176.78	7.08	MLS	limestone	1.5	0	98.5	
	·	· · · · · · · · · · · · · · · · · · ·							· · · · · · · · · · · · · · · · · · ·
160451	84-95	5.2 - 13.5			sand/siltst.	1	0	0	sulphides partly oxidized
160452	84-95	13.5 - 22.4			silt/sandst.	1	0	tr	trace Fe-carbonate
160453	84-95	22.4 - 26.6	4.2	2AP	siltstone	1.5	0	tr	

(m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (m) () (

Sample #	Drillhole	Depth Interval	Thickn.(m)	Strat.Unit	ABA Rock	% Sulph.	bm/bm+py	% Carb.	Notes
160454**	84-95	26.6 - 32.5			silt/sandst.	1	0	tr	
160455	84-95	32.5 - 39.1	6.6	2AP	sand/siltst.	1	0	tr	
160456	84-95	39.1 - 42.9	3.8	2AP	slate/siltst.	1	0	0	
160457	84-95	42.9 - 52.7	9.8	2AP	sand/siltst.	2	5	tr	
160458	84-95	52.7 - 62.7	10	2AP	siltstone	1.5	0	tr	
160459**	84-95	62.7 - 69.1	6.4	2AP	slate/siltst.	1	0	0	
160460	84-95	69.1 - 75.5	6.4	2AP	sandstone	3.5	2	1	
160461	84-95	75.5 - 81.3	5.8	2AP	sand/siltst.	1.5	tr	1	-
160462	84-95	81.3 - 83.9	2.6	2AP	sand/slate	4	0	1	
160463	84-95	83.9 - 86.75	2.85	2AS	siltstone	1	15	tr	
160464**	84-95	86.75 - 89.9	3.15	2AS	siltstone	1.5	5	1	cherty
160465	84-95	89.9 - 91.4		O-ZONE	exhalite	1	3	0	
160466	84-95	91.4 - 93.8	2.4	2AS	siltstone	1.5	5	1	siliceous
160467	84-95	93.8 - 96.1	2.3	2AS	siltstone	1	8	1	
160468	84-95	96.1 - 96.8	0.7	2AS	siltst./Imst	1	0	40	coarse, dark, crystalline Imst.
160469**	84-95	96.8 - 99.6	2.8	2AS	siltstone	1.5	5	tr	
160470	84-95	99.6 - 100.1	0.5	O-ZONE	exhalite	1	5	0	
160471	84-95	100.1 - 102.6	2.5	2AS	siltstone	1	0	3	
160472	84-95	102.6 - 105.5	2.9	I-ZONE	exhalite	1.5	5	5	+ siliceous siltstone
160473**	84-95	105.5 - 108.0	2.5	2AS	siltstone	1	25	1	
160474	84-95	108.0 - 108.75	0.75	2AS	limestone	0.5	10	84.5	
160475	84-95	108.75 - 115.0	6.25	2AS	siltstone	1	1	1	
160476	84-95	115.0 - 121.1	6.1	2AS	slate/siltst.	1	tr	tr	
160477	84-95	121.1 - 126.3	5.2	2AC	siltstone	1	0	35	
160478**	84-95	126.3 - 132.3	6	U-ZONE	ex/hi sulph		10	13	carbonate mostly Fe-carbonate
160479	84-95	132.3 - 133.9	1.6	YBR	quartz vein		10	1.5	
160480	84-95	133.9 - 137.5	3.6	YBR	exh/qz vei	6	10	tr	
160481	84-95	137.5 - 141.9	4.4	D-ZONE	hi sulphide		3	5?	mineralogy tentative
160482	84-95	141.9 - 145.5	3.6	D-ZONE	exhalite	12	15	2	mineralogy tentative
160483**	84-95	145.5 - 150.3		2AA	slate/mdst	2.5	1	tr	
160484	84-95	150.3 - 154.9	4.6	2AA	slate/mdst	1	1	1	
160485	84-95	154.9 - 160.0		1B	sandstone	1	0	0	
160486	84-95	160.0 - 165.4	5.4	1B	sandstone	2	0	1	

•

 $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$   $\frac{1}{12}$ 

Sample #	Drillhole	Depth Interval	Thickn.(m)	Strat.Unit	ABA Rock	% Sulph.	bm/bm+py	% Carb.	Notes
Camp Cree	k Fault sa	mples							
160351	97-22	98.35 - 104.0	5.65	MLS	limestone	tr	0	98	
160352**	97-22	104.0 - 105.2	1.2	MLS	limestone	2	0	93	gouge
160353	97-22	105.2 - 109.73	4.53	MLS	limestone	1	0	96	
160354	97-23	93.0 - 96.0	3	MLS	Imst/mudst	1	6	87	breccia
160355	97-23	96.0 - 104.85		MLS	limestone	2	0	98	gouge, rubble
160356	97-23	104.85 - 109.5			limestone	tr	0	99	
160357	97-30	89.15 - 91.44	2.29	MLS	limestone	1	tr	99	
160358**	97-30	91.44 - 94.49			limestone	2	0	96	
160359	97-31	103.75-106.55	2.8	MLS	limestone	2	0	98	· · · · · · · · · · · · · · · · · · ·
160360	97-31	106.55-109.73			limestone	tr	0	99	
160361**	97-14	100.58-106.68	6.1	YBR	alter'd dike	12	0	2	YBR rock
160362	97-45	120.0 - 123.44	3.44	MLS	limestone	1	0	96	
160363	97-45	123.44-126.49	3.05	MLS	limestone	2	0	93	
160364	97-49	111.65-116.43	4.78	MLS	limestone	1.5	0	98.5	
160365	97-54	64.85 - 68.8	3.95	MLS	limestone	2	0	97	fault zone
160366**	97-54	68.8 - 72.8	4	MLS	limestone	0.5	0	99.5	footwall
160367	84-101	101.4 - 105.65	4.25	MLS	Imst+dike?	8	0	67	sulphides slightly oxidzed
160368	84-101	105.65 - 109.4			dol. Imst.	tr	0	75	75% of carbonate = dolomite

### ABA Logging Summary - Soils

Sample #	Location	Depth	Strat.unit	Soil	Easting	Northing
160601	open pit	50 - 60 cm	OB	Soil	25000E	43300N
160602	open pit	50 - 60 cm	OB	Soil	25100E	43300N
160603	open pit	50 - 60 cm	OB	Soil	24800E	43400N
160604	open pit	50 cm	OB	Soil	24900E	43400N
160605**	open pit	60 cm	OB	Soil	25000E	43400N
160606	open pit	50 cm	OB	Soil	25100E	43400N
160607	open pit	50 cm	OB	Soil	25200E	43400N
160608	open pit	50 - 60 cm	OB	Soil	24700E	43500N
160609	open pit	45 cm	OB	Soil	24800E	43500N
160610**	open pit	45 - 50 cm	OB	Soil	24900E	43500N
160611	open pit	50 cm	OB	Soil	25000E	43500N
160612	open pit	50 cm	OB	Soil	25100E	43500N
160613	open pit	45 - 50 cm	OB	Soil	25200E	43500N
160614	open pit	50 - 55 cm	OB	Soil	24700E	43600N
160615**	open pit	55 - 60 cm	OB	Soil	24800E	43600N
160616	open pit	50 cm	OB	Soil	24900E	43600N
160617	open pit	50 - 60 cm	OB	Soil	25000E	43600N
160618	open pit	45 cm	OB	Soil	25100E	43600N
160619	open pit	50 cm	OB	Soil	24700E	43700N
160620**	open pit	50 - 55 cm	OB	Soil	24800E	43700N
160621	open pit	45 - 50 cm	OB	Soil	24900E	43700N
160622	open pit	50 cm	OB	Soil	25000E	43700N
160623	open pit	45 - 50 cm	OB	Soil	25100E	43700N
160624**	open pit	45 - 50 cm	OB	Soil	24700E	43800N

## **APPENDIX B**

.

÷.

### ACID ROCK DRAINAGE STUDIES WASTE CHARACTERIZATION

#### SILVERTIP MINING CORPORATION

# 1CS010.00

۔ دیک د

د. المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحم المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد

## 1998 ACID ROCK DRAINAGE STUDIES WASTE CHARACTERIZATION – PHASE 2

#### 1CS010.00

#### 1998 ACID ROCK DRAINAGE STUDIES WASTE CHARACTERIZATION – PHASE 2

Prepared for:

SILVERTIP MINING CORPORATION 420, 355 Burrard Street Vancouver, B.C. V6C 2G8

Prepared by:

STEFFEN ROBERTSON AND KIRSTEN (CANADA) INC. Suite 800, 580 Hornby Street Vancouver, B.C. V6C 3B6 Tel: (604) 681-4196 • Fax: (604) 687-5532 E-mail: vancouver@srk.com Web site: www.srk.com

DECEMBER, 1998

#### 1CS010.00

### 1998 ACID ROCK DRAINAGE STUDIES WASTE CHARACTERIZATION – PHASE 2

#### TABLE OF CONTENTS

1.0 INTRODUCTION					
1.2 GEOLOGY TERMINOLGY					
1.3 Chronology of ARD/ML Studies					
1.4 Structure of the Report					
1.5 Acknowledgements					
2.0 INITIAL (PHASE 1) ACID-BASE ACCOUNTING STUDY					
2.1 Methods and Results					
2.2 Conclusions					
3.0 FOLLOW-UP ARD/ML STUDY (Phase 2)					
3.1 Study Design	6				
3.1.1 Introduction	6				
3.1.2 Mineralogical Description	7				
3.1.3 Static Testing	7				
3.1.4 Laboratory Kinetic Tests	8				
3.1.5 On-site Kinetic Tests	8				
3.1.6 Excavation of Ore Pile	8				
3.1.7 Natural Surface and Groundwater	8				
3.1.8 Open Pit Area Soils	9				
3.2 Methods	9				
3.2.1 Static Testing					
3.2.1.1 Sample Selection	9				
3.2.1.2 Mineralogical Description	9				
3.2.1.3 Acid-Base Accounting					
3.2.1.4 Carbonate and Sulphur Speciation					
3.2.1.5 Total Elemental Concentrations					
3.2.1.6 Water and Weak-Acid Leachable Element Concentrations					
3.2.2 On-Site Kinetic Tests					
3.2.2.1 Sample Selection					

.

1CS010.00_SJD_ARD Rep-2.doc/12/7/98 12:42 PM/mm

<u>____</u>

_

-

**–** –

....

.

..

х. ў

<u>ایک</u> -

3.2.2.2 Construction
3.2.2.3 Monitoring12
3.2.3 Excavation of Ore Pile12
3.2.4 Natural Groundwater and Runoff Sampling13
3.2.5 Soils
3.3 Results
3.3.1 Static Tests – Rock Core14
3.3.1.1 Mineralogical Descriptions14
3.3.1.2 Sulphur Speciation
3.3.1.3 Carbonate Speciation
3.3.1.4 Water-Soluble Metals Content17
3.3.1.5 Results by Rock Type
3.3.1.6 Continuous Downhole Sampling18
3.3.1.6 Camp Creek Fault
3.3.2 Waste Rock Pads
3.3.2.1 Description of Sample Sites
3.3.2.2 Chemical Results for Test Samples
3.3.2.3 Chemical Results for First Leachate Samples
3.3.3 Excavation of Ore Pile
3.3.3.1Description of Pile
3.3.3.2 Analytical Results
3.3.3.3 Interpretation
3.3.4 Natural Groundwater and Runoff25
3.3.5 Soils
4.0 GEOCHEMICAL INTERPRETATION
5.0 CONCLUSIONS
6.0 REFERENCES

#### LIST OF TABLES

TABLE 1-1	Estimated Rock Volumes and Lithological Composition Of Sub-Units
TABLE 2-1	Phase 1 Rock Units and ABA Samples 1997
TABLE 2-2	Phase 2 Acid-Base Accounting Study – Statistics
TABLE 2-3	Phase 2 Acid-Base Accounting Study – Metal Concentration Statistics
TABLE 3-1	ARD/ML Leaching Issues – Studies and Methods
TABLE 3-2	As-Built Specifications for Individual Pads - Field Test Pads 1998
TABLE 3-3	Summary of Mineralogical Characteristics

1CS010.00_SJD_ARD Rep-2.doc/12/7/98 12:42 PM/ mm

SRK Consulting December, 1998

- Phase 2 Statistical Summary for Acid-Base Accounting Parameters By Rock Unit TABLE 3-4
- Statistical Summary for Metal Concentrations Determined Following Aqua Regia TABLE 3-5 Digestion - By Rock Unit - Phase 2
- Acid-Base Accounting for Tapioca Sandstone TABLE 3-6
- Waste Rock Pad Leachates Selected Results TABLE 3-7
- Observations from East and Northeast Trenches Ore Pile TABLE 3-8
- Acid-Base Accounting Ore Pile Excavation TABLE 3-9
- TABLE 3-10 Aqua Regia Digestible Element Scans Ore Pile Excavation
- TABLE 3-11 Water Leachable Element Scans Ore Pile Excavation
- TABLE 3-12 Natural Groundwater and Surface Water Chemistry

#### TABLE OF FIGURES

- FIGURE 1-1 Site Stratigraphy
- FIGURE 2-1 Total S vs Sulphide S Phase 2 ABA Study
- FIGURE 2-2 NP vs AP Phase 2 ABA Study
- FIGURE 3-1 Sampling Locations
- FIGURE 3-2 Waste Rock Pads
- FIGURE 3-3 Total S vs Sulphide S Rock Core
- FIGURE 3-4 Barium vs Sulphur
- FIGURE 3-5 Zinc and Lead vs Sulphur
- FIGURE 3-6 NP vs TIC, Ca+Mg in NP HCl Leachate
- FIGURE 3-7 TIC vs Ca+Mg in NP HCl Leachate
- FIGURE 3-8 NP vs Ca+Mg by Aqua Regia
- FIGURE 3-9 NP vs AP

- FIGURE 3-10 Downhole Profiles NP/AP
- FIGURE 3-11 Downhole Profiles AP
- FIGURE 3-12 Downhole Profiles AP
- FIGURE 3-13 Downhole Profiles Zn
- FIGURE 3-14 Downhole Profiles As
- FIGURE 3-15 OP and D Waste Rock Pad Sampling Locations
- FIGURE 3-16 HG Waste Rock Pad Sampling Location
- FIGURE 3-17 East Trench Ore Pile
- FIGURE 3-18 Perspective Schematic of North Trench Ore Pile

#### LIST OF APPENDICES

APPENDIX A Phase 1 ABA Study - Raw Data

APPENDIX B Phase 2 Rock Core Static Tests - Compiled Data

APPENDIX C Phase 2 Camp Creek Fault Static Tests – Compiled Data

APPENDIX D Phase 2 Waste Rock Pad Static Tests - Compiled Data

APPENDIX E Phase 2 Waste Rock Pad Leachate Data – Certificates of Analysis

APPENDIX F Phase 2 Soil Samples – Compiled Data

#### 1CS010.00

### ACID ROCK DRAINAGE STUDIES WASTE CHARACTERIZATION – PHASE 2

#### **1.0 INTRODUCTION**

0.0

_____,

#### 1.1 Project Background

The initial stages of mining of the Silvertip lead-zinc-silver deposit will involve a pit in the north flank of Silvertip Peak between Camp, Silver and Ferri creeks to remove shale, siltstone and sandstone overlying the orebodies primarily hosted in limestone. The bulk of this rock will be Earn Group, a predominantly weakly pyritic calcareous turbiditic sequence containing four thin sulphidic exhalite horizons.

#### **1.2 GEOLOGY TERMINOLGY**

The ore is contained in the McDame Limestone (MLS) (Figure 1-1). The ore is referred to as the Lower Zone (L Zone or LZ). The McDame Limestone is underlain by a dolomitic sandstone (Tapioca Sandstone).

The Earn Group rests unconformably on the McDame Limestone, indicating a period of erosion between deposition of the two units.

The Earn Group in the project area is divided into Units 1 and 2 (Figure 1-1). Both units are further sub-divided using letter descriptors to represent stratigraphic and lithological variations. Unit 1 overlies the McDame Limestone (MLS) and is divided into 1AA, 1AC, 1B and 1BA sub-units. 1A is the basal unit, followed by 1B. Unit 1B is dominantly sandstone and siltstone. Unit 2 is finer than Unit 1. The basal part of Unit 2 contains four "exhalite" horizons. These are believed to be formed by the discharge of dense metal-rich brines onto the sea floor environment. Reductive conditions resulted in precipitation of metal sulphides. The horizons are referred to as "zones". The lowest is the relatively thick Discovery Zone (DZ), followed by the U, F and O Zones. These zones are not laterally continuous as implied by Figure 1-1. Their position in the stratigraphy can be predicted but they vary in thickness. Minor silica-pyrite exhalite horizons are found above OZ in sub-unit 2AP.

Table 1-1 summarizes estimated volumes and rock composition of each sub-unit. As indicated, the largest sub-unit is 1b.

Silvertip (1997) is a detailed geological report for the project.

#### 1.3 Chronology of ARD/ML Studies

#### Phase 1

In 1997, Silvertip Mining Corporation (SMC) completed a preliminary acid-base accounting study as part of ongoing property development (Mine Drainage Assessment Group (MDAG)) (1998). The study involved collection of 77 discrete samples of Earn Group and McDame Group from drill core and lead-zinc-silver ore from a stockpile extracted from the underground workings in 1986. The core samples were collected from a variety of locations and were not continuous.

#### Phase 2

In 1998, following development of a preliminary mine plan, further studies were initiated, with consultation by this Author, to address waste management issues arising from the mine plan and the preliminary ABA study. These studies including detailed stratigraphic sampling of the Earn Group within the proposed open pit area to characterize variability of acid generation and metal leaching potential, construction of field test pads, examination of a 12-year old ore stockpile, sampling of soils in the open pit footprint, and sampling of surface and groundwater in the vicinity of the open pit.

#### 1.4 Structure of the Report

This report describes results of all studies completed to data.

Section 2 describes the results of the 1997 acid-base accounting program (referred to here as Phase 1.

Section 3 the design, methods and results of the subsequent phase of waste characterization.

Section 4 provides an initial geochemical interpretation of the results obtained to date.

Section 5 gives conclusions of the study.

#### 1.5 Acknowledgements

Phase 2 of this study was conducted with input of the following personnel at SMC:

- Steve Robertson, Project Manager Silvertip Project
- Peter Campbell, Manager, Environmental Affairs, Imperial Metals Corporation
- Chris Rees, Project Geologist Silvertip Project.

Bondar Clegg, North Vancouver, BC, completed most analytical work for the project. Chemex performed quality control checking.

#### 2.0 INITIAL (PHASE 1) ACID-BASE ACCOUNTING STUDY

#### 2.1 Methods and Results

An initial acid-base accounting study was conducted by Silvertip using samples collected in the summer of 1997. The results were reported by MDAG (1998). The samples were collected from a variety of sources including rock core, and the ore stockpile and waste dump located near the main portal (Table 2-1). The samples were not collected to specifically represent waste rock that would be included in the current proposed open pit plan, but were intended to provide an initial indication of the characteristics of all rock types at the project. Detailed conclusions from that study are provided in the above report.

Summary statistics for the acid-base accounting and metal analysis portions of the study are shown in Tables 2-2 and 2-3, and results classified according to rock type are plotted in Figures 2-1 and 2-2. Raw data are provided in Appendix A.

Comparison of total sulphur and sulphur as sulphide concentrations (Figure 2-1) indicated that most sulphur was in the form of sulphide. HCl-soluble sulphate (ie gypsum and sulphide weathering products) had a median value of 0.02%, which appeared to be typical of the bulk of the unweathered rock types. Unaccounted for sulphur ( $\Delta$ S) was calculated using:

 $\Delta S$ , % = Total S – Sulphide-S – Sulphate-S

.....

-

The median value of  $\Delta S$  was 0.05%, which may be accounted for by sulphur as resistate sulphates such as barite and anglesite. Total barium was not determined so the presence of barite could not be confirmed.

Comparison of neutralization potential (using the Sobek et al. 1978 method) and total inorganic carbon re-calculated as calcium carbonate equivalents (Figure 2-1) indicated in general that the two values were very similar. The exception was unit 1B in the Earn Group, which indicated TIC significantly greater than NP. This was most likely due to the presence of iron-based carbonates, which could include siderite, ankerite, and ferroan calcite and dolomite.

Comparison of NP and AP (calculated from S-sulphide +  $\Delta$ S) (Figure 2-2) using conventional classification regions of 1<NP/AP<2 (uncertain net acid generation potential) and NP/AP<1 (probable acid generators) showed that the majority of rock types in the Earn Group were classified as "uncertain" or "probable acid producers" though all values were very close to the NP/AP=1 boundary. Samples of exhalite (Dand O-Zone) indicated potential for acid generation. McDame Limestone samples are indicated to be acid consuming due to low sulphur concentrations and NP near 1000 kg CaCO₃/t (pure calcite). Ore samples (L-Zone) indicated high AP and NP, but with NP/AP<1 except for one sample. Samples indicated as "surface" in the plot legend are largely composed of McDame Limestone type materials.

The statistical summaries presented in Table 2-2 quantify these conclusions. The two well represented sub-units of the Earn Group (1AA and 1B) had median total S concentrations of 2.5 and 1.6%, respectively. Neutralization potentials were very similar (approximately 50 kg  $CaCO_3/t$ ) hence 1AA had a median NP/AP of 0.9 compared to 1.4 for 1B. 1B will be the main unit excavated during open pit development. The main exhalite zone (D) contained a wider range of acid sulphur concentrations than the rest of the Earn Group and comparable neutralization potential. Median NP/AP was low and indicated potential for acid generation.

Statistics for selected metal analyses are shown in Table 2-3. Metal concentrations are variable in the Earn Group. MDAG(1998) noted that concentrations of antimony, arsenic, cadmium, copper, lead, silver and zinc were elevated above typical crustal values. Metal concentrations are variable in the Earn Group and include median values of zinc, lead and arsenic above typical crustal values. Copper concentrations were low

and fairly typical of crustal values. The exhalite zones and ore-type materials contained elevated concentrations of all these elements.

The McDame Limestone generally had low concentrations of metals on average, but a wide range in metal concentrations indicating variable base metal mineralization throughout the unit.

#### 2.2 Conclusions

The principle conclusions of the Phase 1 study were as follows:

- The Earn Group, of which unit 1B will form the majority of waste rock from the open pit, has variable sulphur content due to the presence of disseminated finegrained pyrite. This unit is predicted to be of uncertain acid generation potential (1<NP/AP<2) though NP/AP is rarely less than 1. It contains variable but elevated concentrations of As, Pb and Zn. Due to the nature of the study, it is not known whether acid generation potential and heavy element content occurs randomly or as correlatable zones.
- The lower parts of unit 2A contain sulphide-rich exhalite horizons. These units have elevated sulphur concentrations and are predicted to be acid generating.
- The ore-host McDame limestone has low sulphur concentrations (<0.5%, with some exceptions) but contains locally elevated As, Pb and Zn concentrations.
- The ore has variable elevated sulphur content, including massive, and also has variable carbonate content.
- Massive sulphide ore stored on surface for over a decade has not become acidic despite having relatively low carbonate content (1%).

#### 3.0 FOLLOW-UP ARD/ML STUDY

#### 3.1 Study Design

#### 3.1.1 Introduction

Based on the acid generation/metal leaching database developed in 1997, and the project proposal, several issues relating to design for management of potential sources of poor quality water sources at Silvertip were identified:

- Construction material will be required for the impoundment and other structures. Waste rock used for this purpose will need to be non-acid generating and not significantly metal leaching with a very high degree of certainty. Construction material will originate from Earn Group waste rock stripped from the open pit. The Earn Group appears to contain suitable material but it is not known if this material occurs in contiguous mineable zones.
- Units 1A and 1B of the Earn Group may be non-acid generating on-balance but there is a potential for localized acid generation and leaching of zinc, arsenic and cadmium resulting in elevated concentrations of these elements in non-acidic drainage. The degree to which this occurs and results in unacceptable drainage quality needs to be quantified, as this will dictate the requirements for special handling of the entire unit or selected stratigraphic sections.
- The final exposed pit highwall will be composed principally of Unit 1 of the Earn Group, however, exhalite horizons in Unit 2A will be exposed at the very top of the wall. Primarily the weathering of the exhalite horizons would control the chemistry of runoff. Since these walls can not be flooded at final closure, the effect of these exposures will control any requirement for long term chemical treatment of water from the closed mine.

In order to focus subsequent waste characterization studies, Table 3-1 outlines potential waste management options for each facility, suggested studies and test methods to further develop the options. A detailed ARD/ML program will be formulated as mine planning progresses. The rationale for the various types of studies are summarized in the following sections.

#### 3.1.2 Mineralogical Description

Since much of the rock is weakly mineralized, and some rock is marginally acid generating, understanding the type and occurrence of the various mineral species will be critical to developing site specific criteria for management of waste rock. This includes determining the mineralogical form of sulphur (ferrous and non-ferrous reduced vs. oxidized), mineralogical form of acid neutralizers (calcium, magnesium and iron carbonate, and non-carbonate) and the mineralogical occurrence of the minerals (eg. disseminated, massive, fracture filling, degree of crystallinity, particle size).

#### 3.1.3 Static Testing

The Phase 1 study indicated that the Earn Group varies in its acid generation and metal leaching potential. The chemistry of leachate from the waste rock and mine highwall will largely be controlled by the spatial variation of sulphide and carbonate content. The static test program was designed to evaluate the detailed stratigraphic variation of mineralogy within the Earn Group.

Since the mineralogy at Silvertip possibly includes several minerals that may interfere with conventional acid-base accounting methods, additional testing is needed to understand how the tests respond to the mineralogy. Specific interferences designed to be addressed in Phase 2 included:

- Non-ferrous sulphides (principally sphalerite and galena) report to acid potential when determined by sulphide-sulphur but do not generate acid (though are a source of metals).
- Barite may be present and needs to be quantified to avoid including it in the sulphur as sulphide quantity.
- Iron carbonates are common at Silvertip. Evaluation of the types of carbonates reported as "neutralization potential" is needed. Iron carbonates do not consume acid under aerobic conditions.
- Effect of silicates on neutralization potential detminations.

#### 3.1.4 Laboratory Kinetic Tests

A program of kinetic test work will be initiated based on the interpretation of Phase 2 results and consultation with regulatory agencies through stage 1 of the BC EAA.

Laboratory kinetic tests will be used to develop site specific criteria for:

- Lag time to onset of acid generation in potentially acid generating rock (PAG); and
- Definition and possibly segregation of PAG rock.

Results from the MDAG (1998) study indicated that elevated concentrations of silver, antimony, arsenic, cadmium, lead, zinc and locally copper occur throughout the stratigraphy. Since zinc, arsenic and antimony can both be leached under non-acidic conditions and can persist in acidic waters neutralized by carbonate, kinetic tests will also indicate the degree to which these elements are released under non-acidic and acidic conditions.

No bench scale kinetic tests have been initiated.

3.1.5 On-site Kinetic Tests

Primarily due to the potential for leaching of heavy elements under non-acidic condition, field kinetic tests are needed to determine release of these elements under natural conditions, for comparison with laboratory tests.

#### 3.1.6 Excavation of Ore Pile

Approximately 9000 t of ore-type material excavated from the underground workings in 1987 is located in a stockpile, north of the portal in a large laydown area constructed from McDame Limestone. The pile provides an opportunity to evaluate long-term weathering under site conditions, primarily to assess on-set of acid generation and liberation of heavy metals under non-acidic conditions. The pile was placed on coarse crushed limestone, hence no seepage has been observed.

#### 3.1.7 Natural Surface and Groundwater

Monitoring of natural water chemistry provides indications of natural weathering controls and mechanisms likely to control long term water chemistry, particularly in open pit walls.

#### 3.1.8 Open Pit Area Soils

Soils will be stripped from the open pit area prior to mining rock. Soils are potentially a source of dissolved metals since they represent oxidized equivalents of the bed rock lithologies.

#### 3.2 Methods

#### 3.2.1 Static Testing

#### 3.2.1.1 Sample Selection

Four diamond drill holes within the open pit were selected to provide relatively complete cross-sections through the entire hangingwall stratigraphy (Figure 3-1). Sample selection was also guided by a need to sample several of the exhalite zones. Age and condition of core was also considered. The older core has been stored in wall-less but covered core racks. Much of the older core had been weathered and was not suitable for testing. More recent drilling had focussed on the McDame ore and did not intersect the whole Earn Group stratigraphy. Core selection was as a result constrained by several variables. The total number of samples was 116.

An additional nine samples were collected from drill holes piercing the Camp Creek Fault. The fault will form the west wall of the open pit.

Twenty-four samples were also collected from shallow hand-dug pits within the proposed open pit footprint, primarily to evaluate the presence of leachable metals in near surface weathered material which would be stripped prior to mining.

#### 3.2.1.2 Mineralogical Description

Each core interval sampled was described by project geologist Chris Rees using a template to characterize the minerals that typically control leachate chemistry.

#### 3.2.1.3 Acid-Base Accounting

Acid-base accounting was performed using the conventional Sobek et al. (1978) procedure to ensure consistency with the first round of sampling. The laboratory reported total sulphur, neutralization potential (NP), fizz rating, quantity and strength of acid used in the NP determination and paste pH.

#### 3.2.1.4 Carbonate and Sulphur Speciation

Carbonate speciation was evaluated directly on every 5th sample by determining total inorganic carbon (TIC) which is converted to equivalent units of neutralization potential (NP) using:

•  $TIC_{NP}$  (kg CaCO₃/t) =  $TIC(\%)^*(100/12)^*10$ 

Sulphur speciation was evaluated by determining total barium (by x-ray fluorescence) as a surrogate for sulphur associated with barite. Total sulphur as sulphide was determined by leaching the samples with hot sodium carbonate to remove all sulphates (includes both weak acid soluble and resistate phases) and then analyzing the residue for total sulphur (by Leco Furnace in most cases, or gravimetrically for sulphur greater than 10%). Barium was determined on every 5th sample. Sulphate present in water or weak-acid soluble forms was determined by subtracting S as BaSO₄ from total S as sulphate. The following data conversions were used:

- Maximum Potential Acidity, MPA (kg CaCO₃/t) = Total S(%) x 31.25.
- Sulphur as barite,  $S_{Ba}(\%) = \text{Total } Ba(\%)^*(32/137.3)$
- Sulphur as zinc sulphide,  $S_{Zn}(\%) =$  "Total"  $Zn(\%)^*(32/65.3)$
- Sulphide as lead sulphide,  $S_{Pb}$  (%) = "Total" Pb(%)*(32/207.2)
- Acid Potential,  $AP = (S \text{ as Sulphide}(\%), S_{S2} S_{Zn} S_{Pb}) \times 31.25$
- Other forms(%) = Total S S_{Ba} S_{S2}

The last step forms a check to determine the amount of sulphur unaccounted for by the other determinations. For this project, the amount was expected to be low because there are no other significant forms of sulphur. Sulphur as weak-acid soluble sulphate was not determined directly as these were found to be negligible in the Phase 1 study.

#### 3.2.1.5 Total Elemental Concentrations

All samples were analyzed for "total" element concentrations following digestion by aqua regia. This acid digestion completely digests metal sulphides and oxides but does not completely digest silicates. Hence concentrations for light elements primarily associated with silicates are not total. Barite is not completely digested by aqua regia, therefore, barium concentrations are also not total if barite is present. Barium was determined separately by XRF on a pressed pellet. Selenium was also determined by XRF.

#### 3.2.1.6 Water and Weak-Acid Leachable Element Concentrations

Water leachable element concentrations were determined using the procedure preferred by BC Ministry of Energy and Mines (Price 1997). The samples were leached for 24 hours in de-ionized water (3 parts water to one part solid, by weight). The leachate was analyzed for the same elements as the total element scan (above).

Weak-acid leachable elements were determined primarily to evaluate the minerals possibly contributing to neutralization potential. The hydrochloric acid leachate volume and strength was the same as that used to determine neutralization potential (ie determined based on the fizz rating). The leachate was analyzed as above. Specifically, calcium and magnesium concentrations were converted to equivalent units of NP using:

$$(Ca+Mg)_{NP} = (Ca(\%)/40 + Mg(\%)/24)*100*10$$

3.2.2 On-Site Kinetic Tests

#### 3.2.2.1 Sample Selection

 $1 \leq 1 \leq 1$ 

Three samples were selected for construction of small test piles at the site:

- Sample designated OP was obtained from a road cut in the Earn Group (Figure 3-1). This sample is intended to indicate leaching rates for typical waste from the Earn Group rock.
- Sample DZ was obtained from a trench in the Discovery Zone exhalite in the Earn Group. The trench had been exposed for several years and the exposure was deeply weathered.
- Sample HG was obtained from the ore stockpile removed from the underground mine in 1984.

Samples of the pile materials were submitted for analysis. The samples were sieved to three fractions using 10 mm and 2 mm screens. The coarse and fine fraction were analyzed for acid-base account and total metals. The fine fraction was also analyzed for water soluble element content using a shake flask.

#### 3.2.2.2 Construction

The pads were constructed over the period of July 24-26, 1998 using the design in MEND Report 1.19.1 (1994). The main adaptation of this design was that the large collection pipe was replaced with two smaller diameter pipes. Details of the construction are shown in Table 3-2.

Figure 3-2 shows the pads after construction. SMC constructed plywood barriers between the plots to further isolate pads from one another.

#### 3.2.2.3 Monitoring

The following guidelines are being used for monitoring

- 1. Record daily precipitation at site.
- 2. At least once a week and following heavy rainfall, remove the lid and check the bucket for water. Using pH paper (or clean meter) and clean electrical conductivity (EC) meter record pH and EC. Record the colour of the water and note presence or absence of suspended matter. Note any coatings on the inside of the collection bucket. Make the measurements from Earn (OP), then Ore (HG) and finally Discovery Zone (DZ). Do not empty the pails. Replace the lid.
- 3. Once a month (if sufficient water in pails), collect water samples. Collect one 500-mL sample for general parameters (pH, EC, sulphate, alkalinity, acidity) and one sample for element scan (ICP-MS). The latter sample is to be shipped immediately in a cold cooler unfiltered and unpreserved. Decant water. Replace the lid.

Three sets of leachate samples were collected in September 1998 before the site was decommissioned for the winter.

#### 3.2.3 Excavation of Ore Pile

On June 6, 1998, excavation of "box-cut" trenches was started in the ore pile. The backhoe broke down shortly after the first trench was started. Excavation was resumed on July 25, 1998. Three trenches were excavated.

The pile is elongate running approximately east to west and is accessible along the north side. The "East" trench was located at the far eastern end of the pile. The "North" trench was located in the middle of the north side, and the "Northeast" trench

was located approximately midway between these two trenches. The test pad sample "HG" (See section 3.2.2.1) was collected from the west-end of the pile.

The highwall profile in each trench was described according to grain size, rock type, colour, moisture content, reaction with hydrochloric acid and rinse pH. Samples were collected from distinct horizons. The North trench showed several distinct zones identified by colour and pH and was described in more detail than the other trenches.

Samples were sieved into size fractions using sieves at 10 mm and 2 mm. The fractions were weighed, and the coarsest (+10 mm) and finest (-2 mm) fractions were analyzed for acid-base account, total Ba, and aqua regia digestible elements. The finest fraction was also leached using deionized water (3 parts water to 1 part sample, by weight), and the leachate scanned for dissolved metals.

3.2.4 Natural Groundwater and Runoff Sampling

SMC is sampling water in cased diamond drill holes and surface streams as part of ongoing baseline studies for the project. Locations of particular relevance to understanding natural weathering conditions include (Figure 3-1):

- Hydrology wells drilled in 1984 TH-1 and TH-3.
- Cased 1981 diamond drill holes 81-05 and 81-06
- Silver Creek at monitoring location W-5 and two additional on Silver Creek (See Figure 3-1).

Silver Creek flows primarily over Earn Group stratigraphy including head water exposures of exhalite zones.

#### 3.2.5 Soils

Soils were collected from the locations shown in Figure 3-1 and tested using the same methods used for rocks including water-leachable metal concentrations (see Section 3.2.1).

#### 3.3 Results

_____

-

_

#### 3.3.1 Static Tests – Rock Core

Raw data listed by drill hole and analysis type are provided in Appendix B.

#### 3.3.1.1 Mineralogical Descriptions

Mineralogical descriptions for all core intervals are sampled are provided in a separate report (Silvertip Mining Corporation, 1998). Overall mineralogical characteristics of the major rock groups are provided in Table 3-3.

In the arenaceous and argillaceous waste rock types, the dominant minerals are silicates of which the main minerals are quartz, sericite and albite. These occur as rock-forming clasts. Quartz occasionally occurs as veinlets.

The main sulphide mineral is pyrite which occurs primarily in disseminated fine (<0.3 mm) grains. In the finer rock types (siltstone and mudstone/slate), pyrite also occurs as laminae, veinlets, fracture fillings and porphyroblasts. In the slate and mudstones, 30% of pyrite occurs in non-disseminated form. Both pyrrhotite and base metal sulphides (galena and sphalerite) occur in trace quantities in disseminated, fracture filling and porphyroblastic forms.

Both calcite and iron-bearing carbonates have been identified. The latter constitute less than 2% of the rock mass by volume and generally occur as veinlets and fracture fillings. Calcite occurs primarily as laminae. Manganese carbonates have not been identified but manganese might be expected to be associated with iron carbonates.

In limestone, the matrix is dominated by calcite with minor dolomite and trace iron carbonate. Pyrite is the main sulphide with minor base metal sulphides. The sulphide minerals occur dominantly as veinlets and fracture fillings.

In exhalite horizons ("high sulphide"), sulphide minerals constitute on average 30% by volume. Pyrite is the main sulphide (90%) but base metal sulphides are also abundant (10%) occurring in a wide variety of forms (Table 3-3). Iron carbonates are also relatively abundant compared to other rock types, probably representing a third of carbonate content. Quartz is the dominant silicate.

- Iron sulphides pyrrhotite (Fe, Co, Ni), marcasite (Fe, Co, Ni);
- Other sulphides chalcopyrite (Cu), arsenopyrite (As), argentite (Ag), bismuthinite (Bi), stibnite (Sb), stannite (Cu, Sn).
- Sulphosalts pyargyrite-proustite (Ag, As), boulangerite-jamesonite (Pb, Sb), tetrahedrite-tenantite (Cu, Sb, As), geocronite (Pb, As, Sb), franckeite (Pb, Sn, Sb).
- Native elements Silver (Ag), Bismuth (Bi)
- Oxides Cassiterite (Sn).

#### 3.3.1.2 Sulphur Speciation

Comparison of total sulphur and sulphur as sulphide indicates a strong correlation with a relatively constant fixed bias of 0.2%, varying to higher values of 0.5% (Figure 3-3). The bias does not appear to be related to total sulphur content, hence in relative terms it is lower at higher sulphur concentrations than at lower concentrations. The difference corresponds to HCl-soluble sulphate+ $\Delta$ S determined in Phase 1. In Phase 1, this bias was also uncorrelated with total sulphur content and averaged 0.2%, ranging up to 0.7% for oxidized rock types. The two databases appear equivalent for sulphur content and speciation.

Total barium analyses were greater than barium determined by aqua regia indicating that barite is present. Typical total barium concentrations are between 0.1 and 0.5% compared to between 0.01 and 0.05% by aqua regia (Figure 3-4). Calculated sulphur as barite concentrations are typically less than 0.1% and are weakly correlated with total sulphur concentrations (Figure 3-4). This amount of sulphur as barite does not contribute significantly to total sulphur though led to slight overestimation of AP in Phase 1.

Sulphur concentrations associated with zinc sulphide are low (typically much less than 0.1%) except at higher sulphur concentrations where higher sulphur as zinc sulphide concentrations are associated with higher total sulphur concentrations and the two concentrations are strongly correlated (Figure 3-5). Sulphur concentrations associated with lead sulphide are very low (<0.01%) (Figure 3-5) but correlated with total sulphur concentrations.

#### 3.3.1.3 Carbonate Speciation

Neutralization potential is positively correlated with TIC (Figure 3-6) but TIC is generally greater than NP. This observation is consistent with the observation of iron carbonate in the core. Generally, qualitative observation of iron carbonate amount does not correlate well with the difference between NP and TIC. This is probably due to variable solid solution of iron carbonate in calcite, which would not always be readily identifiable in core. As found in Phase 1, Unit 1B generally had more TIC than NP. 1AA was not sampled in Phase 1, but it also appears to contain iron carbonate.

Comparison of NP with calcium and magnesium in HCl leachates also indicates a positive correlation (Figure 3-6). For the large Unit 1B, the two measures are comparable suggesting that neutralization potential as reported reported reflects calcium and magnesium carbonates. Two samples of Unit 1AA yielded higher concentrations of Ca and Mg than expected. No explanation is readily apparent.

Aluminum in NP leachates implies some dissolution of silicates during the procedure. These are most likely micas and clays. Comparison of paste pH and NP (Figure 3-7) shows that even at low NP ( $<10 \text{ kg CaCO}_3/t$ ), paste pH remains above 6, implying that most measurable NP is in carbonate form. The mineralogy of the rock and origin of the mineralization indicates a lack of alteration minerals that commonly contribute to non-carbonate NP (eg. chlorite, epidote, Ca-plagioclase, etc.).

A similar comparison for TIC with Ca and Mg in HCl leachate (Figure 3-7) indicated that TIC is greater than equivalent Ca+Mg, again indicating that TIC reflects iron carbonate as well as dolomite and calcite.

Comparison of NP with Ca+Mg from aqua regia digestion indicated a strong near 1:1 correlation for Units 1AA, 1BA and 1B (Figure 3-8). The correlation was very poor for unit 2AP and at low NP. The correlation appears to be poor for MLS (McDame Limestone) but this is due to reporting limits on calcium concentrations. These results imply that the strong acid digestion is primarily leaching carbonates in Unit 1 and that calcium and magnesium-containing silicates are generally not contributing significantly to measured calcium and magnesium concentrations. Calcium and magnesium determined by acid digestion may be useful surrogates for carbonate determinations.

Manganese concentrations determined by aqua regia digestion and determined in the NP leachates were identical, which implies that Mn is in a relatively soluble form (possibly carbonates). Manganese concentrations are however very low and in  $CaCO_3$  equivalents for MnCO₃ represent less than 1 kg CaCO₃/t.

#### 3.3.1.4 Water-Soluble Metals Content

Water-soluble metals concentrations were generally undetectable (Appendix B). Heavy elements showing detectable concentrations were zinc, cadmium, antimony, manganese and barium. Elevated water soluble metals concentrations were associated with elevated total metal concentrations and elevated sulphur concentrations. These samples are in some cases exhalites, and in all cases either immediately in contact with exhalite horizons or within a few metres of an exhalite. No correlation with NP/AP was noted.

#### 3.3.1.5 Results by Rock Type

_____

Statistical summaries of ABA parameters and selected heavy elements are shown in Tables 3-4 and 3-5. Figure 3-9 compares NP and AP on a rock type basis.

The statistics for ABA (Table 3-4) illustrate the following:

- On average, and considering the range of variation, there is little statistical difference between the main units in the Earn Group.
- The exceptions are units 2A and 2AS which host the exhalite zones. These tend to have higher total S and AP than the other units.
- Unit 2AP which is above the exhalite zones may have lower total S and NP, though as noted below this may be due to surface weathering.
- Samples of the ore and exhalites indicated high sulphur content and NP/AP<1.

The statistics for metal content show elevated zinc and arsenic concentrations throughout the stratigraphy, and particularly the ore and exhalite horizons. The exception is the O-Zone exhalite which appears to have lower arsenic content than the D-Zone exhalite. The statistics for lead show that lead concentrations are elevated in Unit 1AA relative to the other unmineralized Earn Group units.

Selenium was analyzed every fifth sample since it is not included in the scan. It was generally not detected (<2 ppm) except in the vicinity of the exhalite zones where concentrations up to 25 ppm were noted (2AA immediately below the D-Zone).

The dolomitic Tapioca Sandstone is not in the open pit but one grab sample was collected from an outcrop in the valley of Silvertip Creek. Acid-base accounting results indicate very low sulphur concentration and high purity (Table 3-6).

# TABLE 3-6 Acid Base Accounting for Tapioca Sandstone

Sample ID	Fizz	Paste pH	S	MPA	NP	NP/MPA	NNP
	Rating		%	kg/t	kg/t		kg/t
40232SD006	3	9.1	< 0.02	0.6	976.8	1563	976

#### 3.3.1.6 Continuous Downhole Sampling

-

Continuous downhole sampling was completed to assess the variability in acid generation potential and heavy elements over narrow distances thereby providing an indication of the potential for narrow zones of reactive materials in waste rock and pit walls to influence leachate quality. Results are illustrated schematically in Figures 3-10 to 3-14. Stratigraphic units are shown using symbols.

Profiles for NP/AP (Figure 3-10) show that variations in overall acid generation potential are generally smooth and can be related to the presence of exhalite zones. Also, the L zone ore (DDH 95-15) noticeably depresses NP/AP below 1 in the surrounding unit 1AA due to increase in sulphur content (Figure 3-11). The L zone is also present in DDH 97-46 but is described as oxidized. AP and NP (Figure 3-12) are very high in the vicinity of the zone.

DDH 84-65 contained no logged exhalite. AP is greatest just above Unit 1AA (Figure 3-11), possibly suggesting an effect from the L zone. Smooth variation in AP is observed in this hole with no sharp increases or decrease. NP/AP is always greater than 1, and two "zones" of greater NP/AP (near 10) are apparent between 40 and 60 m and between 120 and 140 m. The upper of these two zones is due to lower AP, while the lower is due to NP almost double the average. Sulphur and NP both decrease toward the upper part of the hole, possibly due to the effect of surface weathering.

NP/AP increases at the same time implying the rock is naturally tending towards nonacid generation.

DDH 97-18 intersects the same stratigraphy as DDH 84-65 but the D-Zone Exhalite is intersected in the upper part of the hole. NP/AP rarely falls below 1 in Unit 1B though NP/AP is generally lower than DDH 84-65. AP is generally greater and NP is comparable. NP shows the same general variations in both holes and these occur in stratigraphically the same locations. The main feature is elevated NP in the lower part of both holes.

Rock immediately below (within 10 m) of the D-Zone exhalite contains elevated sulphur concentrations which depresses NP/AP. Units 2A and 2AA between the exhalite layers is potentially acid generating and contains low NP.

DDH 84-95 covers stratigraphy in Unit 2 above the exhalite layers. For about 20 m above the exhalite, the rock has NP/AP<1 and elevated AP and NP. Both AP and NP decrease above the exhalite though NP/AP remains relatively constant above 1. This trend may be due to the effect of weathering.

Zinc and arsenic concentrations (Figures 3-13 and 3-14, respectively) tend to follow the same general trend as AP, except that concentrations typically increase by one or two orders of magnitude near the exhalite layers. The exception is the O Zone exhalite in DDH 84-95 which contains lower arsenic concentrations than other unmineralized parts of the Earn group and unit 2AP immediately above it.

#### 3.3.1.6 Camp Creek Fault

Rock along the Camp Creek Fault which may form some or all of the West Wall of the open pit was sampled separately. Nine samples were collected from a variety of holes intercepting the trace of the wall. Results are provided in Appendix C. The samples were all dominantly carbonate. Neutralization potentials were high (median value of 770 kg  $CaCO_3/t$ ). Total sulphur concentrations were variable, from 0.11 to 12% and comparable to sulphide-sulphur concentrations. Metal concentrations, except for iron were very low and resemble background values. Molar ratios of sulphur to iron were very close to 2, indicating that pyrite is the dominant sulphide. Base metal sulphides were absent.

#### 3.3.2 Waste Rock Pads

#### 3.3.2.1 Description of Sample Sites

The OP sample was obtained from one of the few exposures of Earn Group in the proposed open pit footprint. The exposure is a road cut. Small bedrock outcrops were exposed using an excavator. The exposed siltstone was non-calcareous and non-pyritic. The rock is heavily fractured and iron stained. The overlying soil horizon contains a thin Bm horizon transitional to C and R horizons over about 0.5 m.

The exposure of the Discovery Zone is very strongly oxidized to a depth of at least one metre (Figure 3-15). The unoxidized exhalite zone is grey, friable and contains abundant fine-grained pyrite. No carbonate is present and both the oxidized and unoxidized rock had rinse pHs of less than 4. The sample for the pad was collected from the unoxidized part of the profile, as practical (Figure 3-15) though inevitably some oxidized rock was incorporated into the sample.

The HG sample was collected from the North-West End of the ore pile. The sample site is shown in Figure 3-16. Discussion of the characteristics of the pile is provided in Section 3.3.3.

#### 3.3.2.2 Chemical Results for Test Samples

Results for analysis of the rocks placed in the pads are summarized in Appendix D.

The Earn Group sample from the open pit area had lower sulphur concentrations which increased slightly in the finer fractions. NP, TIC and metal concentrations were substantially greater in the finer fraction. This sample contained less NP and significantly less sulphur than typical values for the Earn Group (see also Table 3-4) statistics). Metal concentrations were near typical or slightly lower than average. Water-leachable Zn, Fe, Mn and K were detected.

The DZ sample contained sulphur concentrations comparable to average for core samples (compare Table 3-4 and Table 2-2), and indicated the strong partitioning of sulphur into the fine fraction (Appendix D). The sample was acidic with the greatest acidity in the fines. Metal concentrations were much lower than measured in drill core, possibly indicating leaching of the outcrop. The exception was arsenic which was relatively stable in the fine fraction. Elevated water leachable concentrations of silver, copper, lead, zinc, arsenic, iron, manganese, aluminum, calcium and potassium were detected (Appendix D).

Sample HG contained elevated sulphur and neutralization potential typical of the ore. This was accompanied by elevated concentrations of silver, copper, lead, zinc, cadmium, arsenic, antimony and tin. The sample was non-acidic but contained elevated water leachable concentrations of zinc (Appendix D).

#### 3.3.2.3 Chemical Results for First Leachate Samples

Following construction of the pads in late July, no precipitation occured until late August, and the first leachate samples were obtained in early to mid-September. Certificates of analysis for samples collected on September 4, 10 and 13 are in Appendix E. Selected extracted results are provided in Table 3-7.

These results indicate the initial flush produced by the first precipitation event. The samples were not filtered hence interference of suspended matter can be expected. The OP samples indicated approximately pH neutral leachate with high suspended solids and aluminum concentrations produced by release of fines capable of passing through the geosock. The resulting concentrations for arsenic, copper, lead and zinc more likely reflect suspended matter rather than dissolved ions. The observed dissolved concentrations of aluminum and copper cannot be present at the indicated pHs.

The initial leachates from the DZ sample were extremely acidic (pH<2). The leachates were red-brown indicating high concentrations of dissolved ferric iron and contained elevated concentrations of several heavy elements (primarily zinc) which persisted after suspended matter stopped being produced. These results reflect leaching of weathering products accumulated in the outcrop and during storage prior to construction.

The HG sample produced pH neutral leachate with calcium and sulphate concentrations indicating control by gypsum. Zinc and cadmium concentrations were elevated due to leaching of sulphates primarily accumulated in the ore pile.

#### 3.3.3 Excavation of Ore Pile

#### 3.3.3.1 Description of Pile

**--**____

The pile contains approximately 9000 tonnes of ore-type material. The pile is approximately 5 m high, at angle of repose with no significant crest. Observed rock type on the surface include limestone, massive pyrite and sphalerite (with included galena and tetrahedrite and chalcopyrite) and massive calcite. Large boulders located on surface were visibly oxidized. During the summer, white crusts were observed on the underside of the boulders. The crusts were readily soluble, and nearby fines had rinse pHs of 2. However, most surface material contained abundant calcite and is non-acidic (pH>6).

The overall stratigraphy of the pile is illustrated by the East Trench (Table 3-8, Figure 3-17). The outer 30 cm was often brown and suggesting oxidation. The interior of the pile was typically composed of grey sandy gravel containing abundant fine-grained pyrite and calcite with larger clasts of massive sulphide. The pile overlies crushed cemented limestone gravel containing very little sand. This in turn rests on an olive brown loam layer that is presumably cleared native soil. The loam layer was not visible further west presumably because the cemented limestone fill thickens.

The North Trench shows some significant variations from the above stratigraphy (Figure 3-18). Below grade and near the margins of the pile, the entire profile was red-brown, moderately acidic (pH 5) and contained little field detectable carbonate. The contact between the grey and brown layers was sharp and slopes upwards into the pile. Occasional grey pyritic layers were noted within the brown material. Further back into the pile, the brown colouration graded into similar but non-acidic (pH 6.5) brown mottled grey/green material with no detectable carbonate.

The contact between the grey and brown layers also appeared to be marked on surface by a break in slope and the presence of efflorescent salts (Figure 3-18).

#### 3.3.3.2 Analytical Results

The acid-base accounting results (Table 3-9) indicate, as expected, that sulphur concentrations in the ore are very high (typically greater than 50% pyrite volume equivalent) but carbonate is generally present. As a result laboratory crushed pH's were generally slightly alkaline. In general, sulphur and metal concentrations (Table

3-10) are greater in the fine fraction than in the coarse fraction, but carbonate concentrations were greater in the coarse fractions.

The ore noted to be moderately acidic in the North Trench was also moderately acidic in the fine fraction (Table 3-9, Sample 105). This rock contained much less neutralization potential than the ore above it, or in the East Trench. However, nearby sample 107, also had low neutralization potential and low TIC. The fine fraction contained more carbonate than 105.

The underlying crushed limestone contained much lower total sulphur concentrations than the ore in the East Trench, but the fine fraction of the limestone contained comparable sulphate concentrations to the ore. The limestone sample from the North Trench showed similar characteristics for the coarse fraction but the fine fraction contained elevated total sulphur concentrations. Concentrations of most elements were lower in the limestone than in the ore but were significantly greater in the fine fraction. Total and aqua regia digestible barium concentrations were much greater in the limestone than in the ore (Table 3-10) in the East Trench. Barium concentrations were also elevated in the North Trench limestone compared to ore but the effect was less pronounced.

The loam sample beneath the limestone in the East Trench contained lower sulphur concentrations than the limestone or ore and low concentrations of sulphur in the form of sulphate. Carbonate concentrations were lower than in the ore and limestone but were significant. The coarser fraction of the loam contained much more carbonate than the fines. Elevated metal concentrations continued into the loam, including barium, lead and zinc.

Metals occurring in significant detectable water-leachable concentrations include silver, copper, lead, zinc, cadmium, manganese and calcium. Other detected metals are listed in Table 3-11. Within the ore, under non-acidic conditions, zinc, lead, and manganese appear to be mobile. In the two moderately acidic samples (105 and 107) from the North Trench, these elements become more mobile, with the addition of silver, copper and cadmium. Despite the elevated concentrations of the above elements, arsenic and antimony were not detected in the leachates. The main difference between the limestone and ore is that leachable concentrations generally decreases, the main exception being silver which was found in elevated leachable concentrations in both the limestone and loam. These samples also contained moderately elevated silver concentrations.

#### 3.3.3.3 Interpretation

The ore pile appears to contain a heterogeneous mixture of rock types including massive sulphide rock and host McDame Limestone. The variations observed in the North Trench also indicated that some ore-type materials contain lower concentrations of carbonate. If it is assumed that the coarser particles represent the original ore material and the fine particles are the effect of preferential mineral release and oxidation due to blasting and weathering, the material represented by samples 105 and 107 contained much less carbonate than other types of ore. Low NP (<10 kg CaCO₃/t) ore was sampled during Phase 1 (see Table 2-2 and Appendix A). This material was placed at the base of the pile. Since it is moderately acidic, it is apparent that low NP ore can become acidic in 12 years or less. The rock is not strongly acidic possibly due to residual carbonate. The lack of acidity toward the centre of the pile may reflect both lower oxygen concentrations further from the surface and downward leaching of alkalinity from the calcareous rock. At the margins, oxygen would be more available and the flow path through the overlying calcareous rock shorter. The pH levels imply buffering by iron carbonates rather than calcium and magnesium carbonates. Conditions were sufficiently acidic to allow accelerated oxidation of pyrite, and oxidation of sphalerite and galena. Water-leachable cadmium, zinc and lead concentrations were elevated in this material. Lead concentrations in the leachates were consistent with solubility control by secondary anglesite (lead sulphate). Copper concentrations were slightly elevated but pH conditions were not low enough to result in significant mobilization of copper.

Efflorescent salts along the toe of the pile where this rock is exposed are probably produced by evaporation of salt-rich waters during the summer.

The bulk of the ore-type material contains abundant though variable neutralization potential. It is apparent that NP has been available to maintain non-acidic conditions though localized oxidation of sulphides occurred resulting in production of soluble weathering products (for example, sample 101 contained elevated water-soluble zinc, cadmium and manganese concentrations). These conditions were shown in trenches by orange mottling. The elevated metal concentrations in the McDame limestone beneath the ore pile may be partly due to the use of rock from underground workings to construct the pad. However, metal concentrations are particularly elevated in the fines which implies that ore fines were transported down into the large voids in the limestone during placement, and possible afterwards due to water movement and settling. The elevated total barium concentrations may not have been produced by the same mechanism because the ore material does not appear to have comparable barium concentrations. The elevated barium concentrations were probably not produced by downward movement of barium and precipitation in the limestone and loam. Some form of barite-rich rock may have been mixed with the limestone and loam.

#### 3.3.4 Natural Groundwater and Runoff

Water chemistry for groundwater from four drill holes and surface water from Silver Creek is summarized in Table 3-12. These samples represent natural background water quality proximal to the open pit before the water has come into contact with Lower Zone mineralization. Concentrations are shown as "totals" so that a complete comparison is possible. Suspended solids are present as indicated by TSS, likely effecting measured concentrations of total metals. In cases where total and dissolved concentrations were measured, the concentrations were similar (ie within the same order-of-magnitude).

Hole 81-05 intersects the D-Zone exhalite. The water sample likely reflected groundwater in contact with the zone. The water was acidic with associated elevated concentrations of cadmium, zinc and copper. Sulphate concentrations were moderate and indicative of stable long term weathering and slow moving groundwater. Similar zinc and sulphate concentrations were observed in the other holes. Hole TH-1 showed similar acidity. Iron concentrations were elevated in all waters (including TH-3, 81-00). This indicates redox conditions allowing iron to remain in solution in ferrous form. It cannot be attributed directly to pyrite oxidation but could also be caused by rusting of drill casing.

The similarity of Zn chemistry in all four holes suggests that in situ weathering of the exhalite zones is probably an important control on groundwater chemistry.

Silver Creek water showed a similar effect. The water was acidic and contained elevated sulphate, cadmium, copper, iron, zinc and aluminum. These waters were probably fully oxidized but the pH was low enough to allow ferric iron to remain in

solution. Sulphate and metal concentrations were greater than in groundwater probably due to the more aggressive weathering conditions on surface and lack of dilution in the headwaters of Silver Creek. Downstream, orange precipitates were observed indicating precipitation of iron hydroxide. Near the confluence of Camp Creek with Silvertip Creek, the streambed was coated with white precipitate indicating increase of pH above pH 4.5 and precipitation of aluminum hydroxide.

#### 3.3.5 Soils

Soils in the open pit area are thin, formed on colluvium derived from weathering the Earn Group. Most soil profiles contain a thin brunisolic B-horizon. The sample was collected from below this horizon in weathered bedrock. This layer was typically 75 cm below surface.

Soil samples indicated fairly uniform chemical characteristics (Appendix F). Residual total sulphur concentrations had a median value of 0.18% and an isolated high value of 0.56%, whereas residual sulphide concentrations were near 0.01%. Barium concentrations were generally higher than the host rock reflecting stability of barite during weathering. The values correspond to baritic sulphur concentrations of between 0.05 and 0.1%. The balance of residual total sulphur (~0.1%) probably indicates the presence of soluble sulphates. Except for sample 160624, the samples had paste pHs less than 5.5 and corresponding negative NPs. For pHs between 4 and 5, it is likely that the soil is strongly weathered and had no buffering effect on the water. The pH of the water used in the test was 5.9. Two samples had paste pH less than 4, and one was associated with the highest total sulphur concentration, and significantly elevated concentrations of silver, lead, copper, arsenic and tin. This sample apparently represents bedrock associated with exhalite mineralization. Zinc and cadmium concentrations were uniformly low in all the samples reflecting its mobility in soils.

Deionized water leachates contained detectable lead, minor zinc, iron, manganese, aluminum, potassium and sodium. The relatively low pH of leachates increases the solubility of elements such as Fe, Mn, Al, K and Na associated with residual oxides and silicates.

#### 4.0 GEOCHEMICAL INTERPRETATION

The bulk of the waste stratigraphy at Silvertip is composed of weakly sulphidic layered clastic sedimentary rocks classified as shale (or slate) to siltstone and sandstones. Sulphidic exhalite horizons are located in the upper part of the stratigraphy which would be mined.

The weakly mineralized rocks contain disseminated pyrite and carbonate (primarily calcite with some iron carbonate) in laminae. Minor disseminated sphalerite and galena contribute to elevated background concentrations of zinc and lead. A significant volume of the rock is likely to be classified as being of "uncertain" acid generation potential due to NP/AP between 1 and 2. NP/AP is mostly greater than 1 in the large Unit 1, which will dominate the waste rock produced in the open pit. NP and AP do not vary widely, for example, zones containing locally elevated sulphur concentrations were not found. Outcrops and soils formed from this rock are not naturally acidic. Due to the near balance of NP and AP, and the tendency for carbonates to be partitioned into the fines (thereby raising the NP/AP in the reactive component) this rock is not expected be acid producing.

Since concentrations of heavy elements (primarily zinc and lead) are elevated in the weakly mineralized rock, metal leaching under non-acidic conditions could occur. The natural soils formed on this rock are depleted in zinc due to the relatively high solubility of sulphates and basic carbonates of zinc. Lead is not depleted because it remains as lead sulphate and carbonate. The rate of zinc leaching from these rock types cannot be determined using the current data and will need to be estimated using kinetic tests.

The natural water chemistry in the vicinity of the proposed open pit appears to be dominated by weathering of the exhalite horizons. The horizons are sulphidic and predicted to be acid generating, but rock a few metres below the horizons also contains high sulphur concentrations, lower NP and elevated metal concentrations (including zinc, lead, cadmium and arsenic). Since the exhalite horizons are located high in the stratigraphy in Unit 2 of the Earn Group, surface and groundwater coming into contact with the exhalites becomes acidic and dissolves oxidation products containing copper, zinc and cadmium. Although these waters are subsequently neutralized by contact with the lower parts of the Earn and by mixing with alkaline groundwater, elevated concentrations of zinc remain in both surface water and groundwater masking the effect of weathering the weakly mineralized parts of the Earn Group. The exhalite horizons are strongly reactive and capable of generating very low pH drainage (<2) containing elevated concentrations of numerous heavy metals.

The ore-type material (referred to as L-Zone) is mostly potentially acid generating. Lower NP ( $<10 \text{ kg CaCO}_3/t$ ) rock appears to become acidic in less than 12 years. This is a fairly typical rate and consistent with the elevated sulphur content. Leach pad results indicate that this material leaches zinc and cadmium under non-acidic conditions.

## 5.0 CONCLUSIONS

The following are concluded from the studies completed to date:

- The bulk of Earn group (Unit 1 and lower Unit 2) is composed of weakly pyritic shales, siltstones and sandstones classified as non-acid generating to uncertain acid generation potential. Sulphur content and neutralization potential vary uniformly within the units with no sharp changes. Sulphur occurs primarily as pyrite. Neutralization potential is due to calcite. Iron carbonate is present but it does not contribute to measured neutralization potential. Manganese probably occurs as carbonate but in very low concentrations.
- Natural weathering features indicate that most of the Earn Group is not likely to be acid generating, possibly partly due to NP/AP near 1 and preferential liberation of carbonate during physical degradation. However, the presence of disseminated sphalerite indicates that leaching of zinc under pH neutral conditions may be expected due to direct oxidation of sphalerite or galvanic processes.
- Exhalite Zones are potentially acid generating and very reactive. Rock immediately below the exhalites is also potentially acid generating due mainly to increased sulphur content.
- The L-Zone ore is potentially acid generating. Most of the ore pile has not generated acid but low NP rock located beneath part of the pile is moderately acidic after 12 years of exposure.
- The Camp Creek fault which may form all or a portion of the west wall of the pit would be composed of variably pyritic non-acid generating limestone. This rock

has low base metal concentrations suggesting that leaching under pH neutral conditions would not release metals at high rates.

• Thin brunisolic soils in the open pit footprint are uniformly leached with low residual sulphur concentrations representing residual barium, lead and other types of sulphates. The soils are weakly acidic but pH was only marginally less than the pH of the water used in the test.

This report, 1CS010.00 - Acid Rock Drainage Studies - Progress Report, has been prepared by:

STEFFEN, ROBERTSON AND KIRSTEN (CANADA) INC.

Stephen J. Day M.Sc., P.Geo. Principal Geochemist

-

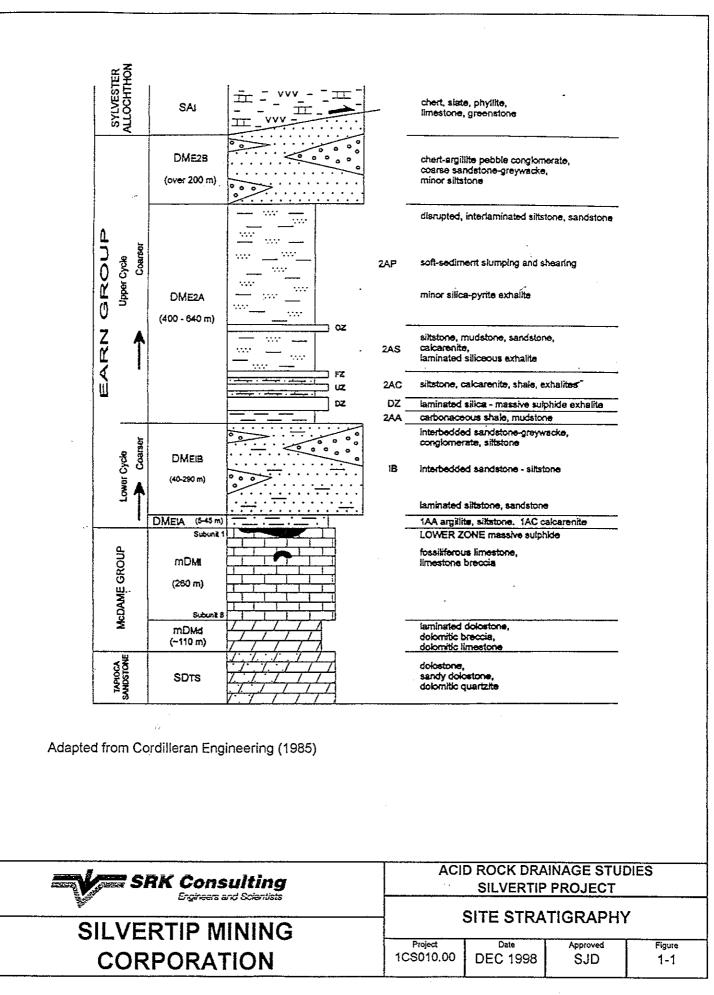
#### 6.0 **REFERENCES**

Cordilleran Engineering, 1985. Midway – 1984 Summary Report, Volume 1, August 1985.

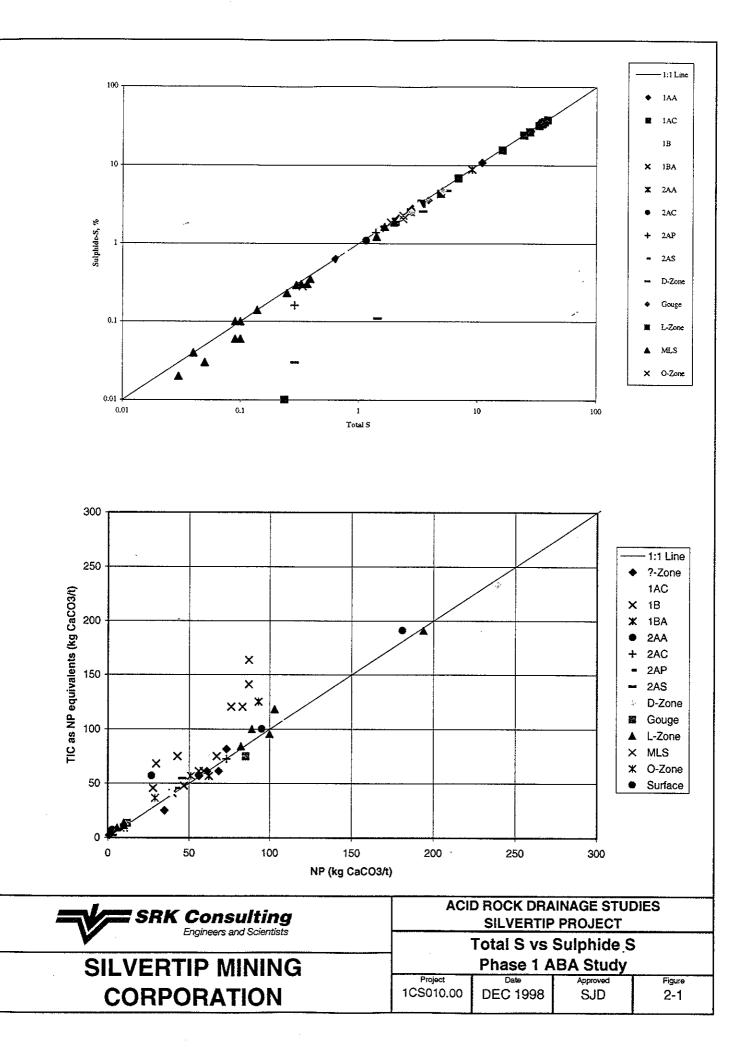
Mine-Environment Neutral Drainage Program. 1994. Long Term Acid Generation Studies: Cinola Project British Columbia, MEND Report No. 1.19.1

Minesite Drainage Assessment Group, 1998. Silvertip Project – Geochemical static test data for drainage chemistry predictions. Prepared for Silvertip Mining Corporation.

Price, W.A. 1997. Draft – Guidelines and recommended methods for the prediction of metal leaching and acid rock drainage at mine sites in British Columbia. Reclamation Section, Energy and Minerals Division, Ministry of Employment and Investment.


Silvertip Mining Corporation, 1987. 1997 Summary report – Geological Mapping, Seismic Surveying, and Diamond Drilling.

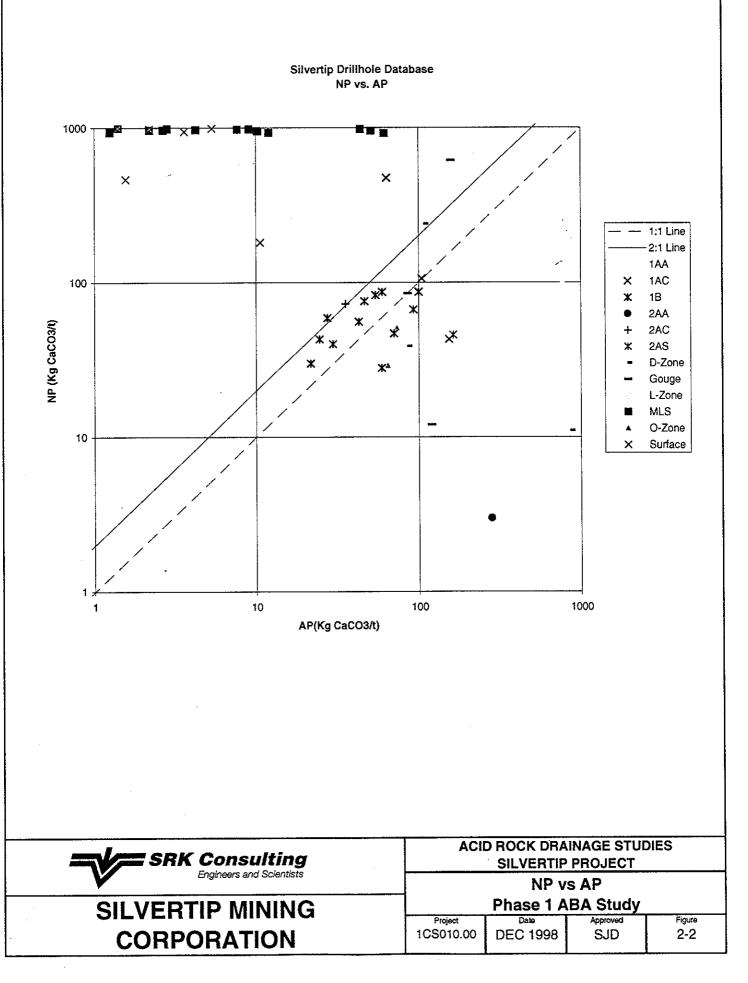
Silvertip Mining Corporation, 1998. 1998 Re-logging of Silvertip drill core for acidbase accounting. Internal company report.


Sobek A A, Schuller W A, Freeman J R, and Smith R M. 1978. Field and laboratory methods applicable to overburden and minesoils. USEPA Report No. 600/2-78-054, 203 pp.

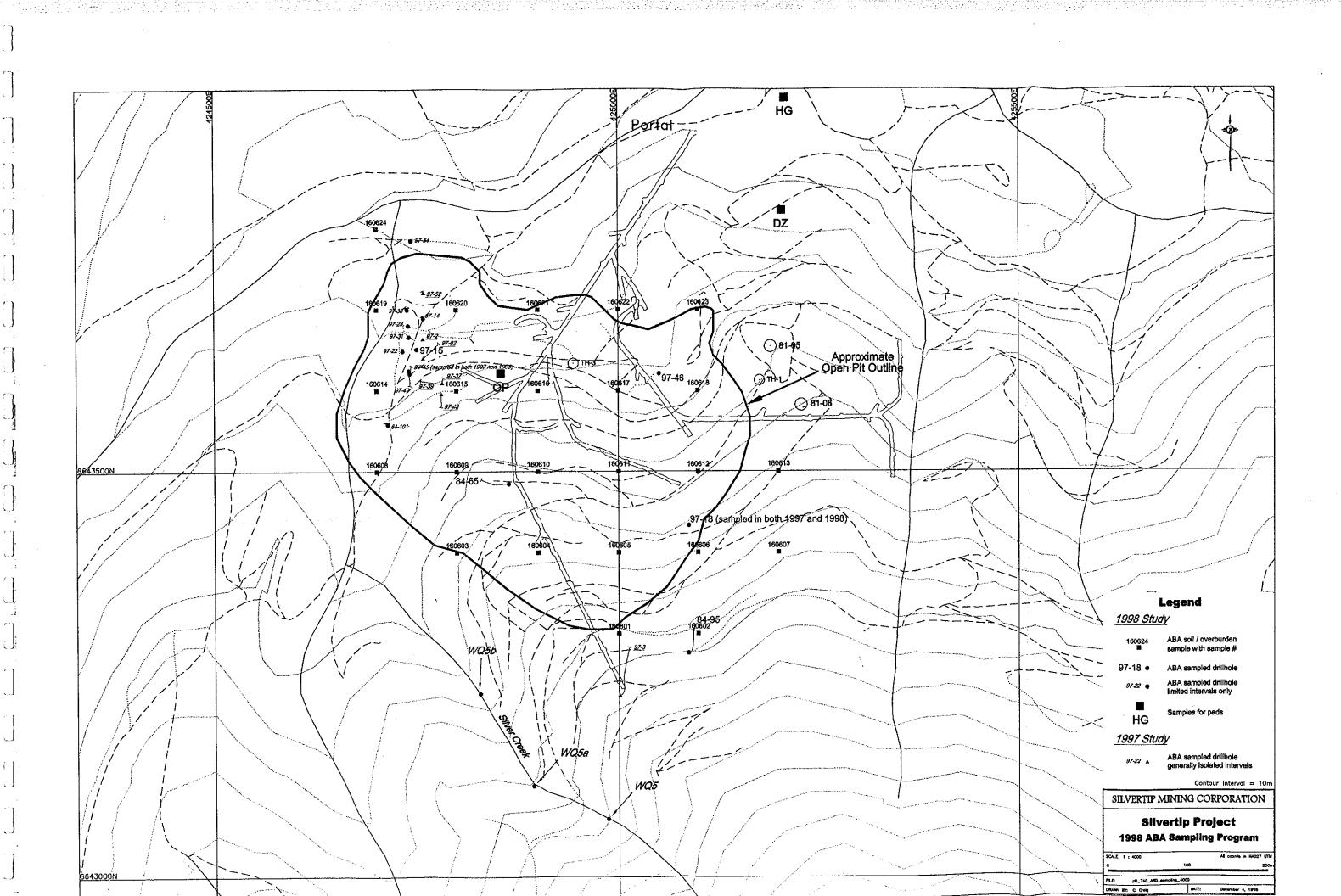
## FIGURES

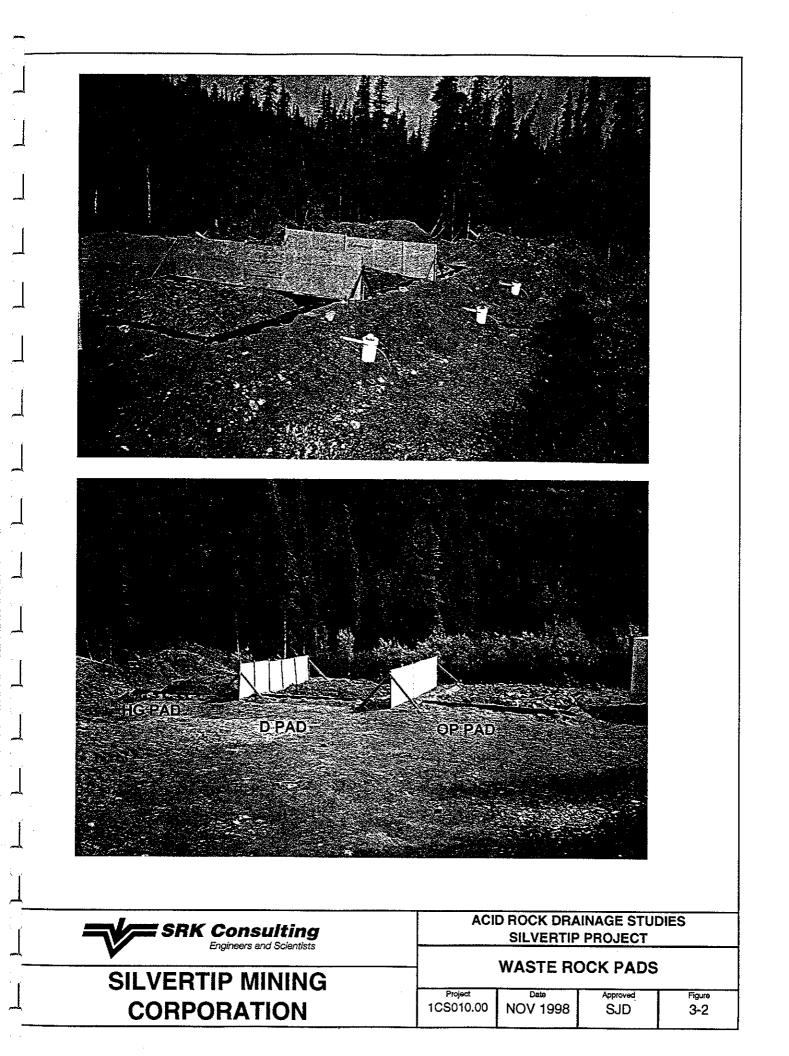
×...

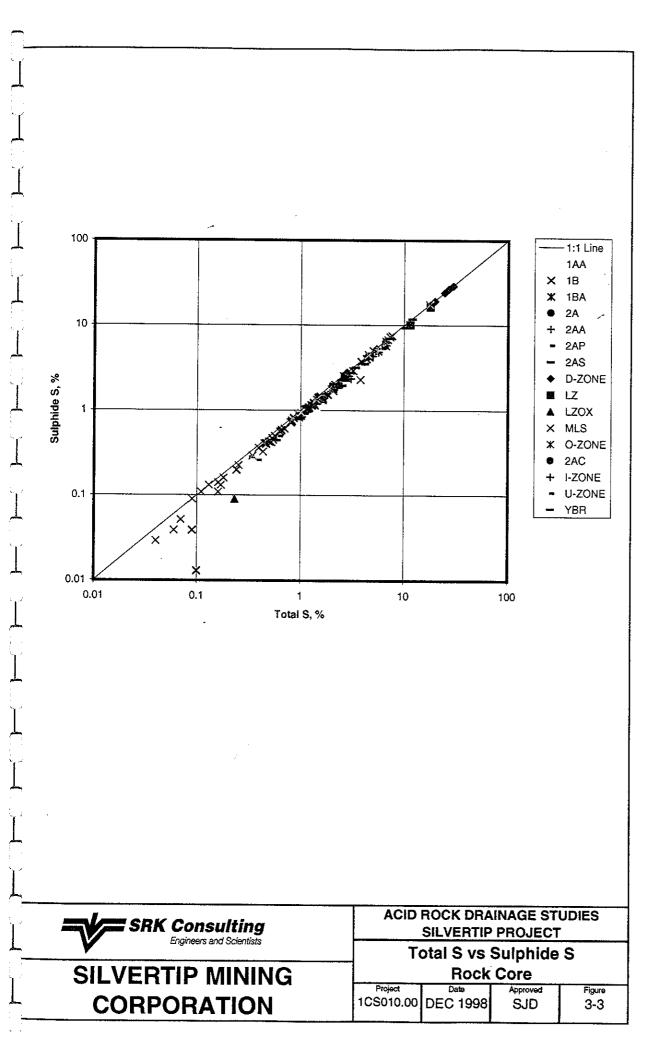


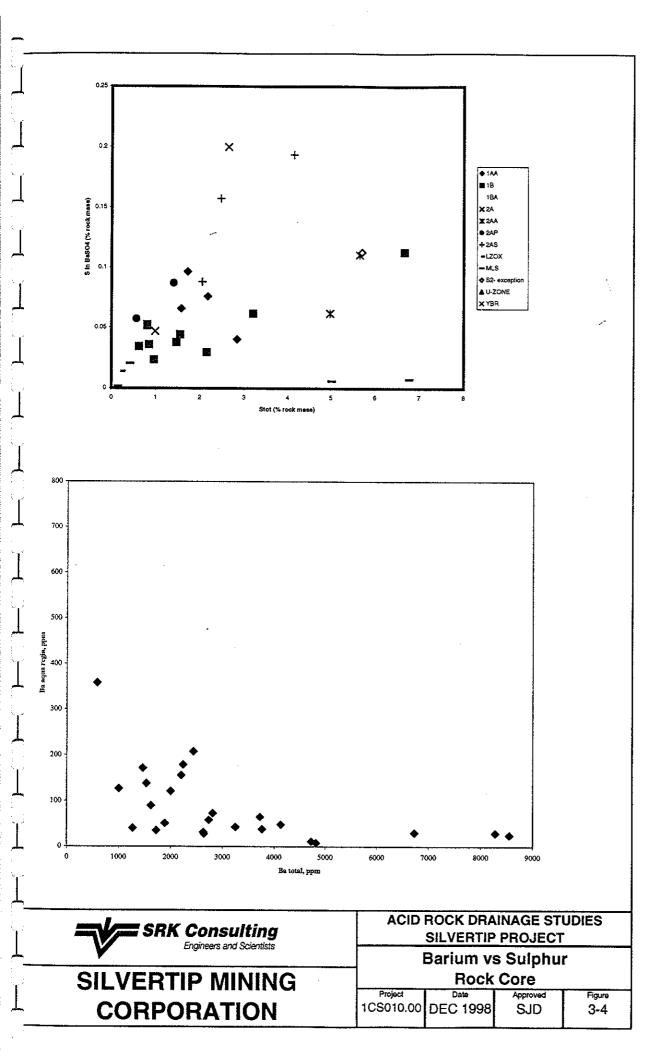

L L -97

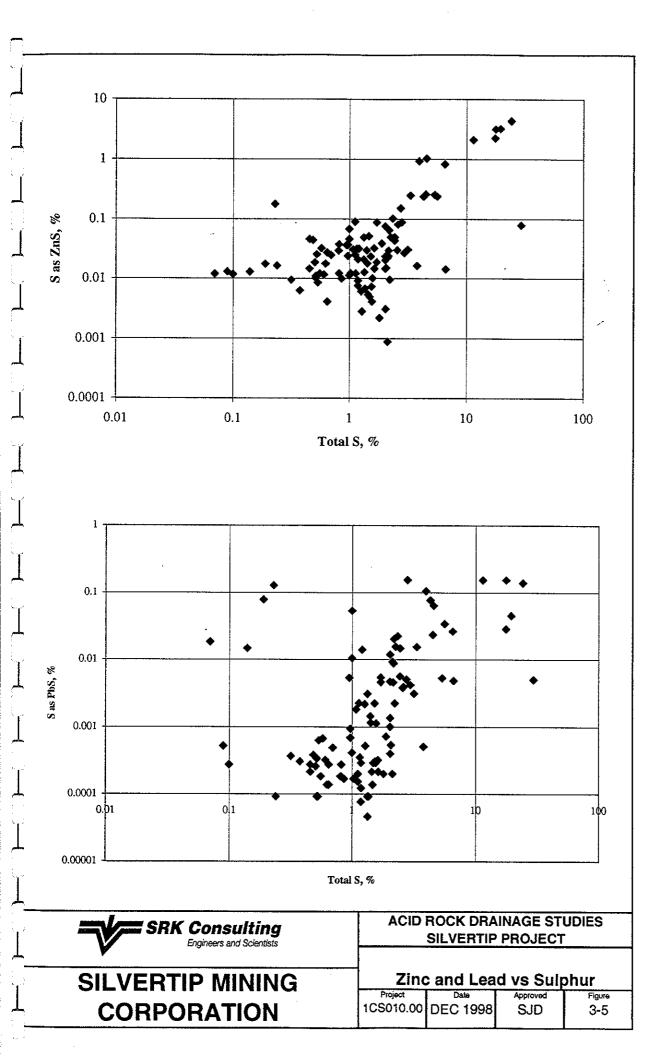




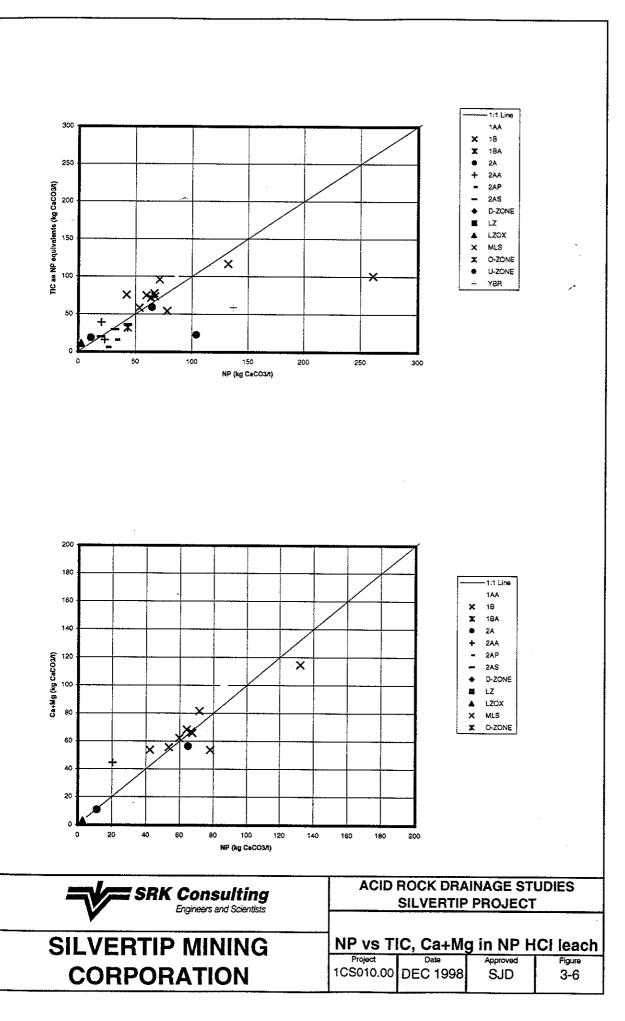


the second second second second second second second second second second second second second second second s

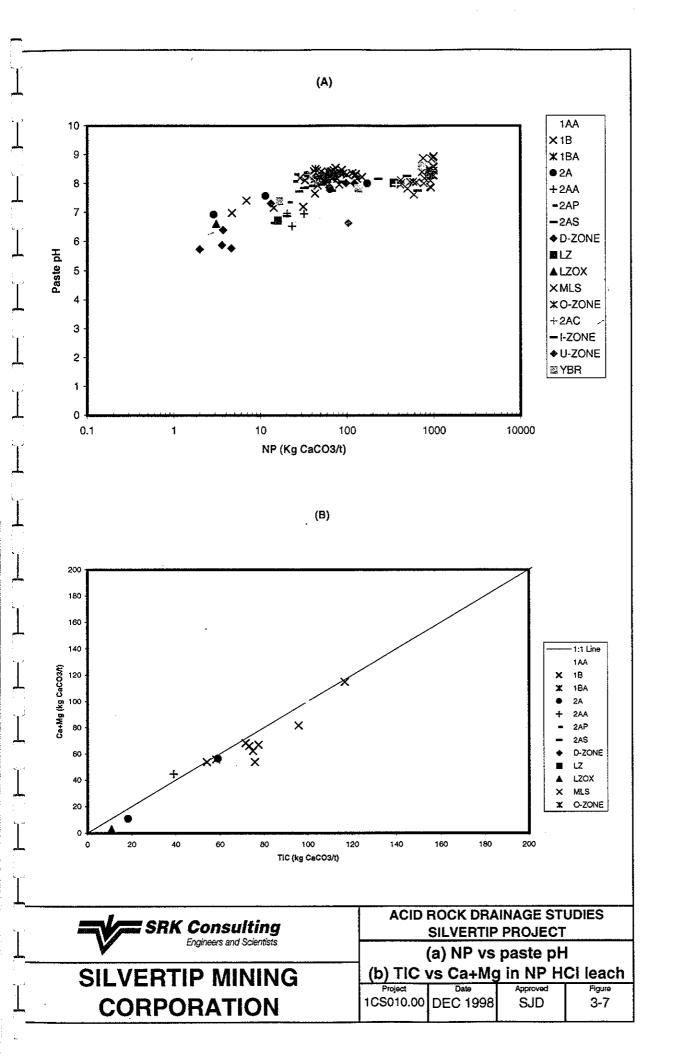

_____ - --1.13  $\overline{\left( \begin{array}{c} \end{array} \right)}$ 

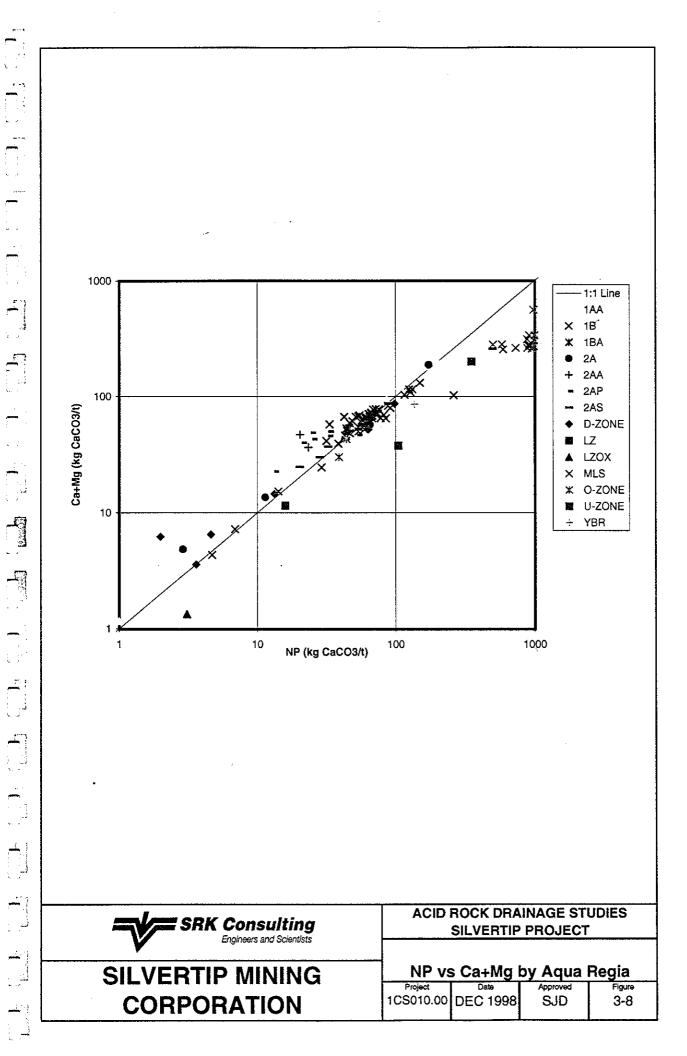




. . . .





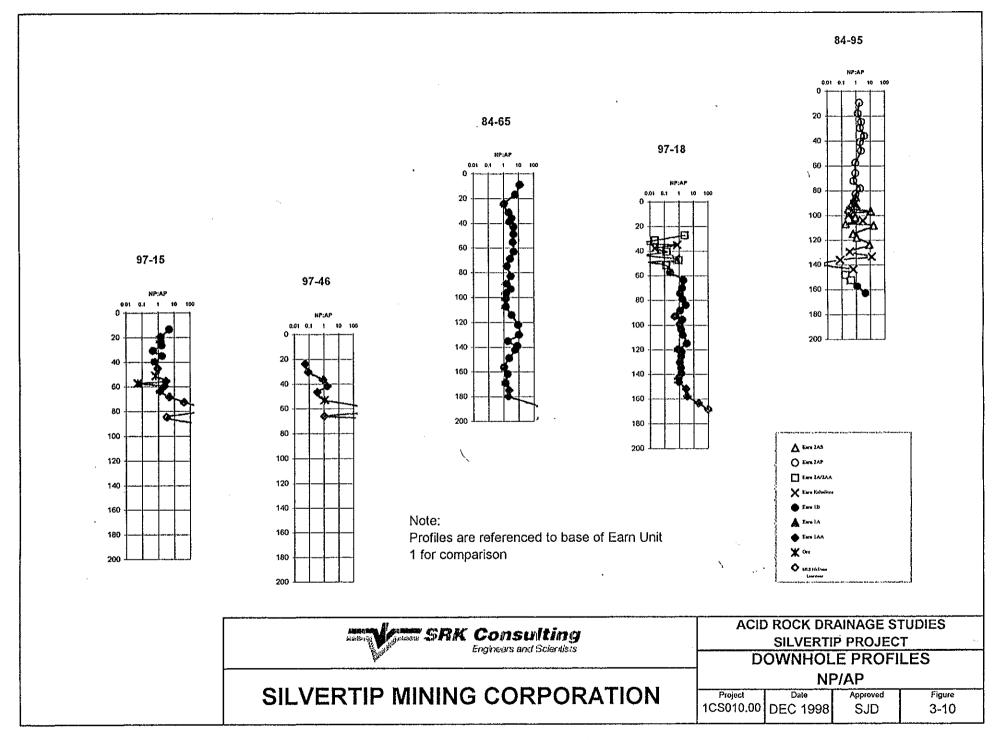





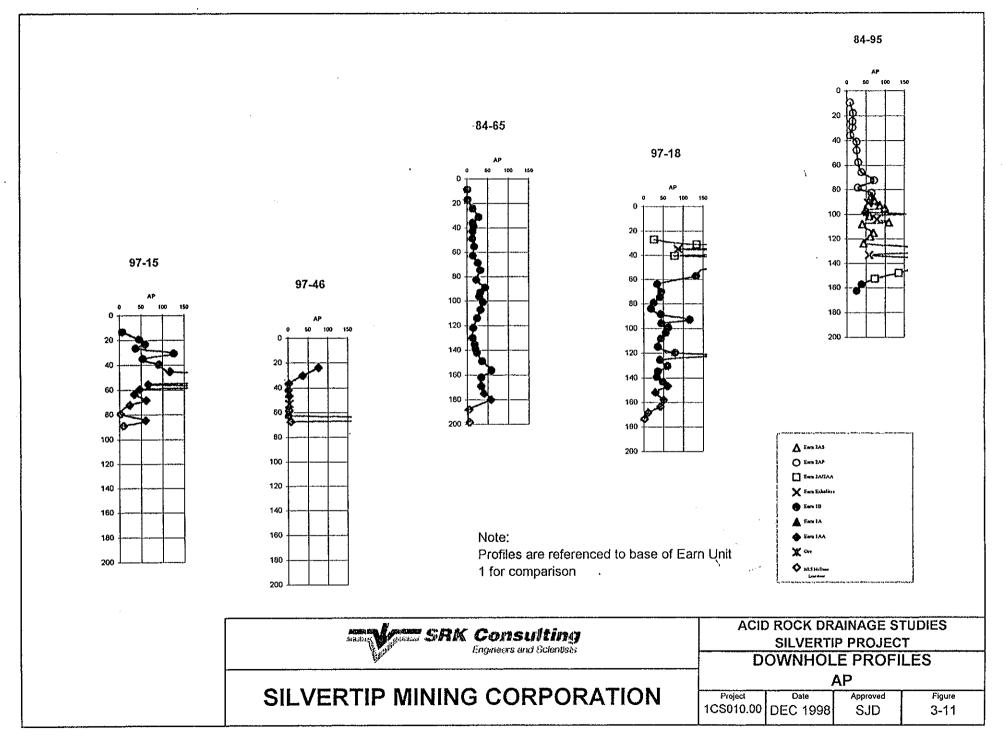

è, لمر



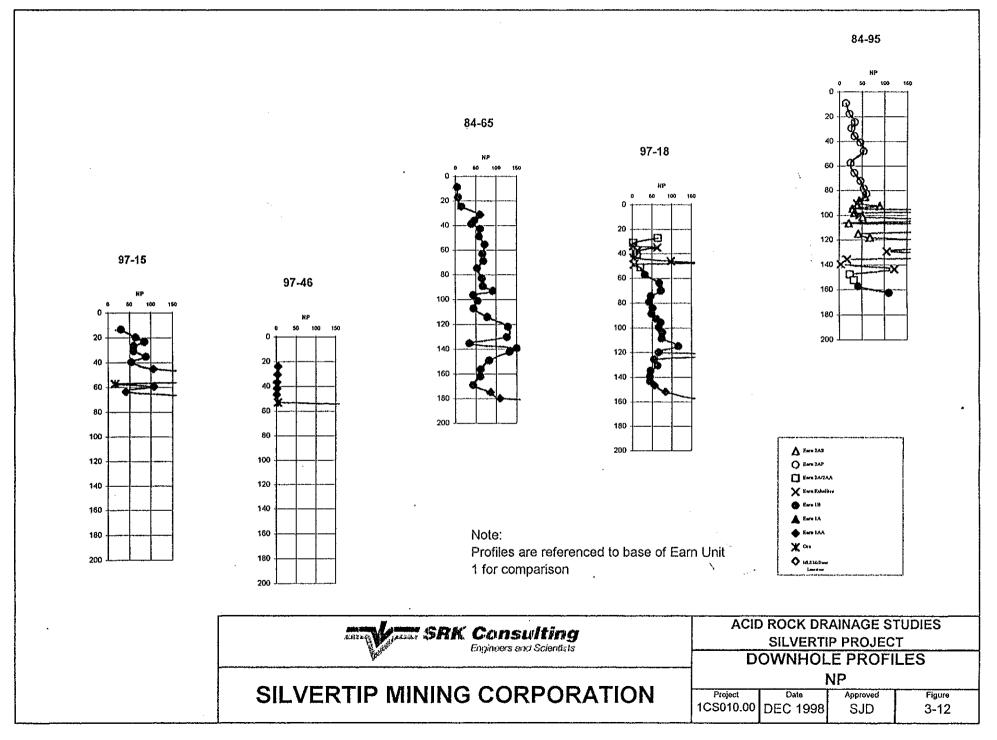


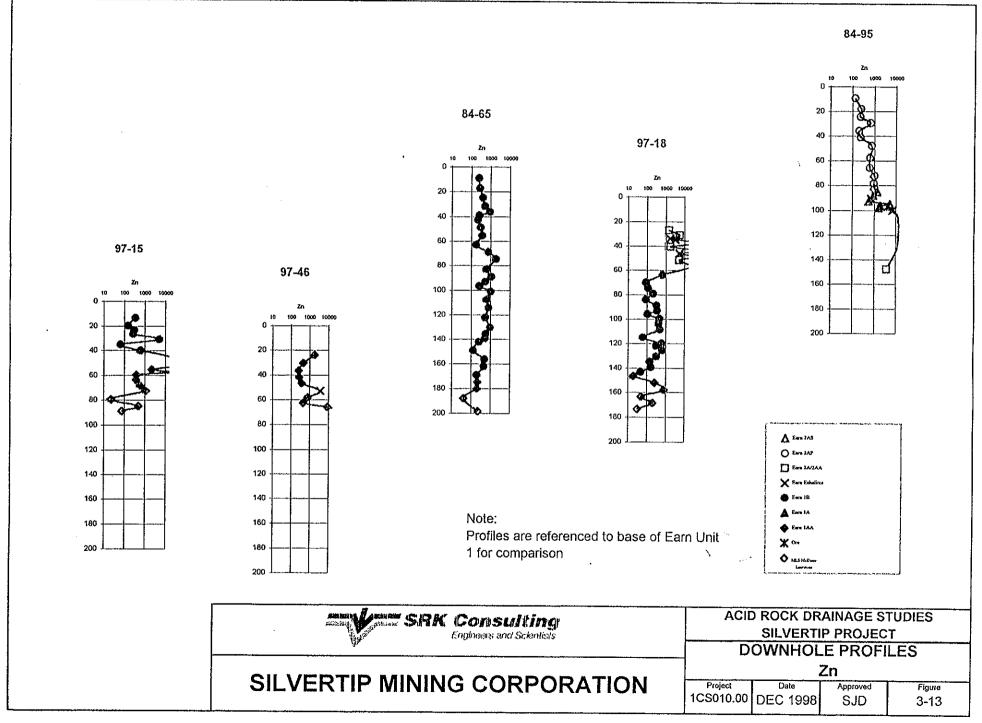


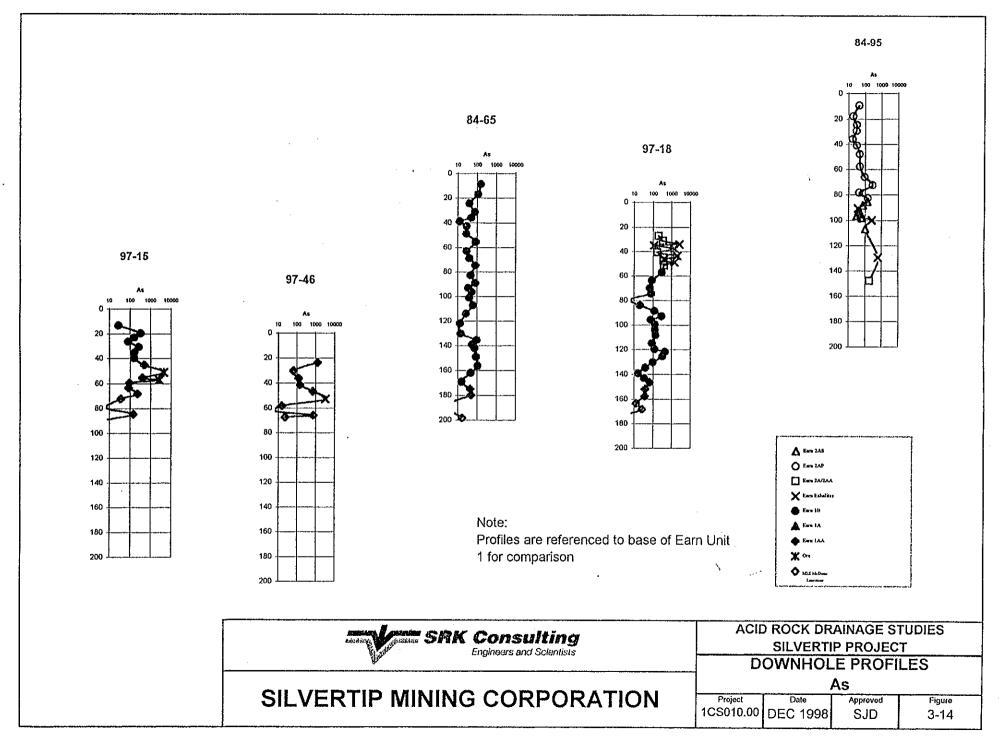

2:1 Line 1:1 Line ×××× 1ÁA 23 1B × 100 1BA x 2A ≫ 2AA NP (Kg CaCO3/I) 2AP ж 2AS × D-ZONE × ++++ L.Z. LZOX MLS × O-ZONE ж • 10 2AC ÷ I-ZONE × U-ZONE ٠ 53 YBR 10 100 1000 1 AP(Kg CaCO3/t) ACID ROCK DRAINAGE STUDIES SRK Consulting Engineers and Scientists SILVERTIP PROJECT SILVERTIP MINING NP vs AP Date Project Approved Figure CORPORATION 1CS010.00 DEC 1998 SJD 3-9


--

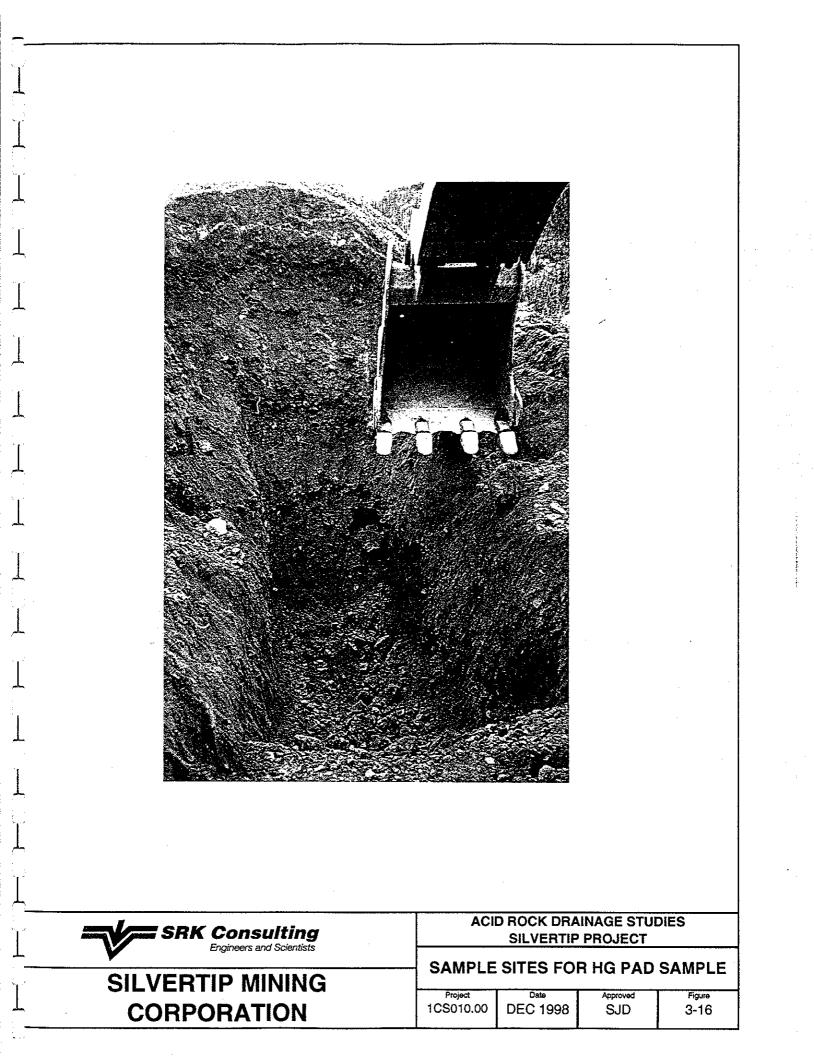
ы. v


____



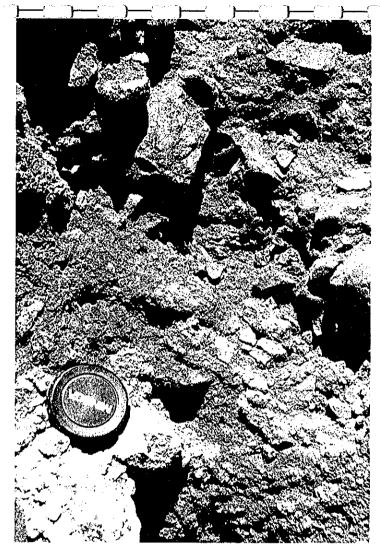


DITTINTINT, DITTINT, DITTI




That are are the the the shall the shall be and the shall be





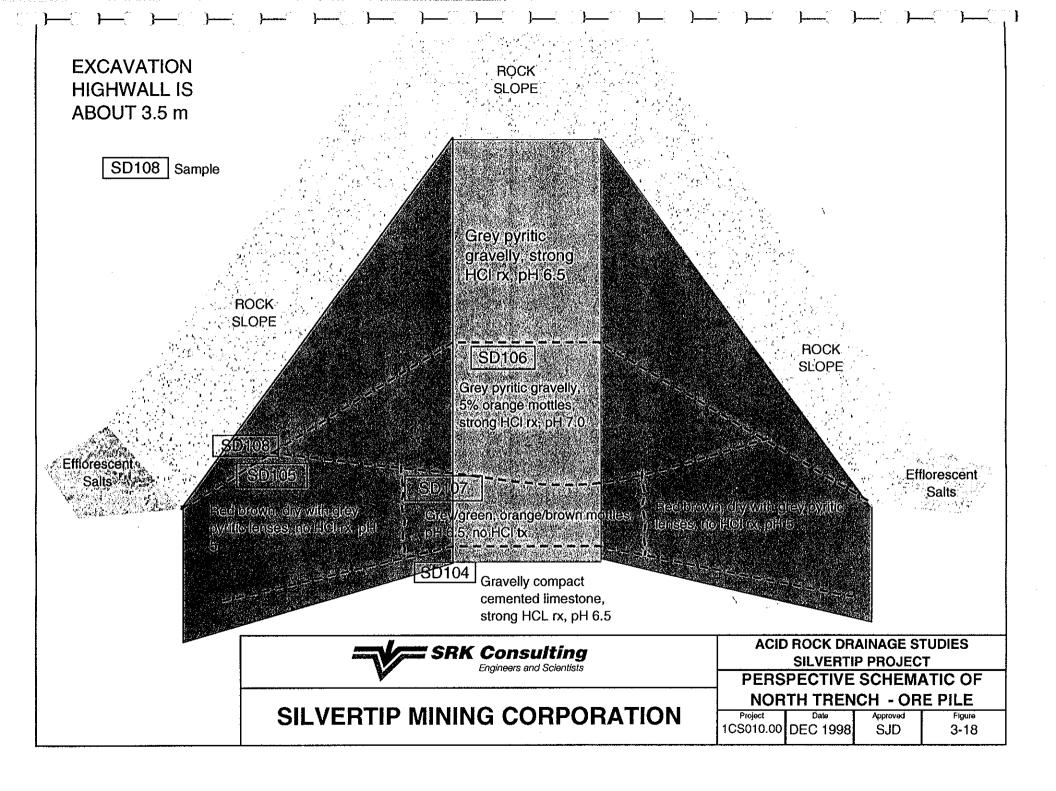

(A) OP SAMPLE SITE (B) D SAMPLE SITE ACID ROCK DRAINAGE STUDIES SRK Consulting Engineers and Scientists SILVERTIP PROJECT SAMPLE SITES FOR OP AND D PAD SILVERTIP MINING SAMPLES Project Date Approved Figure **CORPORATION** 1CS010.00 DEC 1998 SJD 3-15





(A) TRENCH VIEW




(B) CLOSE UP OF LOCALIZED OXIDATION

٢

.

SRK Consulting Engineers and Scientists	ACIE	D ROCK DR SILVERTI	AINAGE S P PROJEC	
	EA	ST TREN	CH - ORE	PILE
SILVERTIP MINING CORPORATION	Project 1CS010.00	Date DEC 1998	Approved SJD	Figure 3-17

-----



## TABLES

...

ι. .

. . . .

٤.,

ICS010.00 - Acid Rock Drainage Studies - Data Report

Approx Vert. Thickness (m) Approximate Volume (m³) **Estimated Lithology** Unit 8,038,000 Total Pit 75 14 1,715,000 Overburden Undiffer-entiated 2A 8 7,960 45% sltst, 15% ss, 35% shale, 5% calc 2AP 3 1,440 60% sltst, 25% ss, 15% shale 2AS 6 2.600 50% sltst, 20% ss, 20% shale, 10% calc 2AC 28 40% sltst, 15% ss, 30% shale, 15% calc. 238,500 30% sltst, 70% shale 8 12,840 2AA Siliccous exhalite, py 4 1,720 UZP Siliceous exhalite, py OZP 1 280 2,000 FZP 3 Siliceous exhalite, py . 23,720 DZP 5 Siliceous exhalite, py, gn, sp 1B 53 4,371,000 20% sltst, 65% ss, 5% shale, 10% congl 15 313,000 70% sltst, 15% ss, 15% shale 1BA 20 1AA 705,500 60% sltst, 5% ss, 35% shale 47,800 50% sltst, 50% calc 4 IAC 19 95% limestone, 5% shale McDame (Assuming Meas+Ind) 435,000 19 95% limestone, 5% shale McDame (Assuming Total 385,000 Resource) Lower Zone Massive py, sp, gn, gangue YBR 6 9,320 Altered rock

## TABLE 1-1 Estimated Rock Volumes And Lithological Composition Of Sub-Units

 $\mathbf{N}$ 

Tables

12/7/98 12:47 PM/mr

Group	Unit	Number of ABA Samples
Earn Group	Calcareous Rock	2
	Clastic	27
	Massive-Sulphide Exhalite	10
	Fault Gouge/Zone	3
McDame Group ¹	Limestone	16
	Massive Sulphide	5
	Fault Gouge/Zone	~ 1
	Oxidized Sludge	1
Mixed Rock	High Grade Stockpile	5
•	Waste Dump	7
	TOTAL	77

TABLE 2-1Rock Units and ABA Samples 1997

Extracted from MDAG (1998)

:

12/7/96 12:49 PM/mr

ICS010.00 - Acid Rock Drainage Studies - Data Report

 $\mathbf{l}_{i} \in \mathbb{C}$ 

**)**.

,

Tables

Rock Type			4	Total S						NP						AP		
	n	P ₁₀	P ₅₀	Mean	P ₉₀	St.Dev	n	P ₁₀	P ₅₀	Mean	P ₉₀	St.Dev	n	P ₁₀	P ₅₀	Mean	P ₉₀	St.Dev
1AA	6	1.10	2.48	3.50	6.92	3.77	6	46	65	178	423	292	6	35	78	110	217	118
1B	12	0.80	1.63	1.70	2.92	0.82	12	31	58	59	87	21	12	25	51	53	91	26
1BA	3	0.65	1.88	1.66	2.58	1.22	3	20	62	55	87	42	3	21	59	52	81	38
2AA	1	9.03	9.03	9.03	9.03	-	1	3	3	3	3	-	1	282	282	282	282	-
2AP	2	0.40	0.85	0.85	1.29	0.78	2	7	23	23	38	28	2	13	27	27	41	25
2AS	1	5.52	5.52	5.52	5.52	-	1	46	46	46	46	-	1	173	173	173	173	-
D-Zone	5	0.75	2.77	7.14	18.02	11.56	5	-2	11	57	159	103	5	23	87	223	563	361
L-Zone	11	6.93	33.00	26.25	36.50	12.99	11	6	89	158	447	220	11	217	1030	821	1140	406
MLS	16	0.05	0.20	0.46	1.54	0.63	16	933	969	968	994	26	16	2	6	14	48	20
O-Zonc	2	2.38	2.39	2.39	2.39	0.01	2	31	40	40	49	16	2	74	75	75	75	1
	,																	
Rock Type			·	NNP			L	r		<u>NP:AP</u>						Paste pF		
	n	P ₁₀	P ₅₀	Mcan	P ₉₀	St.Dev	n	P ₁₀	P ₅₀	Mean	P ₉₀	St.Dev	n	P ₁₀	P ₅₀	Mcan	P ₉₀	St.Dev
1AA	6	-171	-11	68	386	357	6	0.37	0.90	-	20.34	15.71	6	7.60	8.20	8.07	8.40	0.45
1B	12	-26	11	6	29	23	12	0.67	1.37	-	1.74	0.50	12	8.21	8.55	8.55	8.80	0.24
1BA	3	-19	-1	3	27	29	3	0.78	0.97	-	1.47	0.44	3	7.96	8.60	8.40	8.76	0.53
2AA	1	-279	-279	-279	-279	-	1	0.01	0.01	-	0.01	-	.1	7.50	7.50	7.50	7.50	-
2AP	2	-6	-4	-4	-2	3	2	0.47	0.69		0.91	0.39	2	6.78	7.50	7.50	8.22	1.27

0.28

0.01

0.09

0.57

178.82

0.28

0.00

0.47

0.28

1.50

3.22

728.84

0.67

TABLE 2-2 PHASE 1 ACID-BASE ACCOUNTING STUDY ABA STATISTICS

Note

2AS

D-Zone

L-Zone

O-Zone

MLS

Mean NP/AP cannot be calculated by arithmetic averaging.

-127

-48

-975

963

-35

-127

-532

-1143

911

-44

5

11

16

2

-127

-166

-663

953

-35

-127

74

2

993

-25

392 5 -0.63

16 2

557 11

39 16 20.34

7.60 7.60

6.84 8.44

7.41 8.40

8.56 8.75

8.53

·8.25

1.77

0.81

0.20

0.49

7.60

7.50

`8.25

4.94

3.22 11 7.00 7.40

2 7.97

406.04 16 8.35 8.60

5

1.16

0.17

ICS010.00 - Acid Rock Drainage Studies - Data Report

**)**.,

**)**. [_____

].

Tables

 $\{\underline{n}, \underline{n}, 
Rock Type			Z	n					Р	b		
	n	P ₁₀	P ₅₀	Mean	P ₉₀	St.Dev	n	P ₁₀	P ₅₀	Mean	· P ₉₀	St.Dev
1AA	6	76	640	2390	6455	3884	6	33	354	2182	6160	3931
IB	12	86	305	348	807	284	12	8	48	.77	173	83
1BA	3	23	58	771	1804	1273	3	8	· 16	129	296	205
2AA	I	10000	10000	10000	10000	-	1	10000	10000	10000	10000	-
2AP	2	110	173	173	236	112	2	25	31	31	37	10
2AS	1	1730	1730	1730	1730	-	1	670	670	670	670	-
D-Zone	5	394	1440	1214	1914	770	5	69	1755	3407	8048	4221
LZ	11	10000	10000	10000	10000	0	11	2490	10000	8372	10000	3119
MLS	16	13	116	542	1372	887	16	7	70	309	1091	548
O-Zone	2	1397	2723	2723	4049	2344	2	996	. 1374	1374	1751	667
									*****		ł.	
Rock Type			A	s					C	u		
	n	P ₁₀	P ₅₀	Mean	P ₉₀	St.Dev	n	P ₁₀	P ₅₀	Mcan	P ₉₀	St.Dev
IAA	6	50	94	498	1349	1016	6	26	32	96	231	142
IB	12	29	104	149	337	138	12	10	35	33	48	16
									40	44	62	23
1BA	3	22	72	65	104	51	3	26	42	44]		
1BA 2AA	3	22 582	72 582		104 582	51	3		1			-
	3 1 2		1	65 582 30	i	51 - 20	3 1 2	26 384 40	42 384 54	44 384 54	384	-
2AA	3 1 2 1	582	582	582	582	-	3 1 2 1	384	384 54	384 54	384 68	- 25 -
2AA 2AP 2AS	3 1 2 1 5	582 19	582 30	582 30	582 41	-	3 1 2 1 5	384 140	384 54 85	384 54 85	384 68 85	- 25 -
2AA 2AP 2AS D-Zone	1 2 1	582 19 122 65	582 30 122 1010	582 30 122 1088	582 41 122 2244	- 20 - 1097	3 1 2 1 5	384 - 40 - 85 - 35	384 54 85 101	384 54 85 176	384 68 85 395	- 25 - 221
2AA 2AP 2AS	1 2 1 5	582 19 122	582 30 122	582 30 122	582 41 122	- 20 -	3 1 2 1 5 11 16	384 140 85	384 54 85	384 54 85	384 68 85	- 25 -

# TABLE 2-3PHASE 1 ACID-BASE ACCOUNTING STUDYMETAL CONCENTRATION STATISTICS

**)**...,

SRK Consulting December, 1998

#### TABLE 3-2

#### As-Built Specifications for Individual Pads Field Test Pads 1998

PAD	APPROX. VOLUME PLACED (Tonnes)	DIMENSIONS (m)
Earn (OP)	17	4.0 x 4.8 x 0.32
Ore (HG)	20	4.1 x 4.6 x 0.25
Discovery Zone (D)	20	4.0 x 4.5 x 0.48

. د . ه

ROCK	MINERAL	Proport'n of		Prop'n		Рторс	nion	of Major I	Forms (%	)		D	imensi	ons of For	ms (mm)		Condition
TYPE	GROUP	Mineral Group (%)	Mineral	of Mineral (%)	Dissemin.	Laminac	Massive	Veinlet, Fracture Filling	P'blast Nodule Clast	Matrix (Rank*)	Dissemin.	Laminac	Massive .	Veinlet, Fracture Filling	P ^b last Nodule Clast	Matrix	of Rock in Core
SANDSTONE		2	Pyrite	99.5	93	1	0	3	3	0	0.3	1	-	1	2	-	
SANDSTONE	SULPHIDES	-	Pyrrhotite Base Metal	<1	0	0	0	0	100	0	-	-		· ·	5	<u> </u>	
Expected	· · · ·		Calcite	<1 98	0	0	0	100	0	4*	<u> </u>	-	<u>·</u>	2		[ <u>-</u>	Fractured
proportion	CARBONATES	1		90	<u> </u>				0			6	<u> </u>		<u> </u>	< 0.1	to
of waste rock	CARBONATES		Dolomite Fe-Carb.	2	-	-	•	-			-	<u> </u>	·		<u> </u>	<u> </u>	competent
				86	0		-	100	0	0	<u>·</u>	-	•	1	-	-	
38 per cent	SILICATES	97	Quartz	6		0	0	3	0	97	<u> </u>	-	•	4:		0.3	
bo per cent	SILICATES	97	Albite		0	0	0	0	0	100	-	•		•	•	0.1	
}			Sericite	8	0	0	0	0	0	100		-	-	· ·	<u> </u>	< 0.1	
SILTSTONE	SULPHIDES	2.5	Pyrite Pyrrhotite	99.5	78	8	0	10	4	0	0.1	1	<u>  ·</u>	1	2	-	
SIEIGIONE	SOLIMDES	2.0	Base Metal	۳ <1	100	0	0	0	0	0	< 0.1		· ·		-	-	
Expected			Calcite	99	0	0 95	0	99	1	0	-	-	-	2	0.5	-	
proportion	CARBONATES	3	Dolomite	- 77	<u> </u>	95	0	5	0	5	-	10	-	2		< 0.1	Highly
of waste rock	0,000,010,000	2	Fe-Carb.	1	0	0	0	-	•	-		•	<u>.</u>	•	•	-	fractured
-			Quartz	88	0	0	0	5	0	95			•	1	-	· ·	
23 per cent	SILICATES	94.5	Albite	3	0	0	0	0	0	100			•	3		< 0.1	
			Sericite	9	0	0	0	0	0	100		-			-	< 0.1	
			Pyrite	99.5	70	10	1	10	9	0	0.1	2	20			< 0.1	
SLATE/	SULPHIDES	1.5	Pytthotite	0		•					0.1	- 4	- 20	<u> </u>	2.5		
MUDSTONE			Base Metal	0.5	10	20	0	60	10	0	0.1	1		1	1		
Expected			Calcite	100	0	70	0	30	0	5*	-	5	-	2		< 0.1	Highly fractured
proportion	CARBONATES	10	Dolomite	0	•	•		•	-								to
of waste rock			Fe-Carb.	0	-	•	•	-		-	-	•	-		•	-	rubble
			Quartz	85	0	0	0	5	0	95	-	-	•	2		< 0.1	120010
12 per cent	SILICATES	88.5	Albite	3	0	0	0	0	0	100	-	-	•			< 0.1	1
			Sericite	12	0	0	0	0	0	100	•	-		- 1		< 0.1	1
			Pyrite	- 99	20	0	0	75	5	0	0.1	-	- 1	1	2		
LIMESTONE	SULPHIDES	2	Pyrrhotite	0		-	•	-	•	•	- 1	•	- 1		-		
·			Base Metal	1	0	0	0	100	_ 0	0	•	-	-	2	1	- 1	
Expected			Calcite	98	0	0	0	5	0	95	- 1	-	•	2	- 1	0.1	Competent
proportion	CARBONATES	97	Dolomíte	_ 2	0	0	0	0	0	100	· ·	•	• ]	-	-	0.5	to
of waste rock			Fe-Carb.	<u><u></u><u><u></u><u></u><u></u><u></u></u></u>	0	0 (	0	100		0		-	-	3	•	÷	fractured
-			Quartz	90	30	0	0	70	0	0	< 0.1	-		2	•	· 1	
5.5 per cent	SILICATES	1	Albite		-		•	-	· ·	· ·	•	-	-	<u> </u>	-	-	ļ
			Sericite	10	0	100	0	0	0	0		< 0.1	-	-	•	-	
нідн	SULPHIDES		Ρντικ	90	20	8	22	15	35	0	0.1	2	25	2.5	4	· ·	
SULPHIDE	SULFRIDES	30	Pyrrhotite Base Metal	0			<u>.</u>	-		•	<u>.</u>		-			<u> </u>	
Expected			Calcite	10	25	0	15	40	20	<u> </u>	0.2	<u> </u>	15	5	5	<u> </u>	
proportion	CARBONATES	8	Dolomite	65 0	58	0	_2	20	20	- 0	0.5	-	50	15	5	<u> </u>	
of waste rock	CARBOINTES	°	Fe-Carb.	35	65	25	-			-		÷	<u></u>				Fractured
=			Quartz	92	3	- <u>25</u> 8	0	20	5 -1	_	0.5	2	· -	15			
0.2 per cent	SILICATES	62	Albite	4	-	0	0	-20	0	72	.0.1	-		10	5	0.1	
·		~ F	Sericite	4	ŏ	15	ő		-	85		- 0.5			<u> </u>	< 0.1	i
Notes		[			<u> </u>	12	~ 1	<u> </u>	<u> </u>	دە	·	V.2	<u> </u>	<u> </u>	·	< 0.1	

TABLE 3-3 Summary of Mineralogical Characteristics

Notes

1. Balance of waste rock consists of overburden

Balance of waste rock consists of overburber
 The "rank" of carbonate form in the matrix is based on a detailed field "fizz rating", except for limestone
 I"None, 2"Audible, not visble, 3"Barely visble, 4=Visble, not rapid, 5=Rapid brief, 6=Rapid sustained.
 For further details, refer to Silvertip Report, "1998 Re-Logging of Silvertip Drill Core for Acid-Base Accounting (ABA)". Prepared by Chris Rees.

-

ICS010.00 - Acid Rock Drainage Studies - Data Report

ال آن ال المتعاديا .

.

유민 유민

Tables

1

N

.

TABLE 3-4
Statistical Summary for Acid-Base Accounting Parameters
by Rock Unit - Phase 2

...

Rock Type			Tola	15					N	9					٨	•		
	n	P10	P50	Mean	: P ₉₀	St,Dev	n	Pto	P ₃₀	Mean	P ₉₀	St.Dev	n	P ₁₀	P ₅₀	Mean	P90	St.Dev
IÁA	16	0.17	1.82	1.72	2.615	1.03	. 16	1.30	85.25	90.53	193.25	86.20	16	2.0	48.0	45.8	70.7	29.9
18 -	54	0.50	1.2	1.45	2.475	1.20	54	35.06	61,15	68.17	114.20	39.40	54	13.1	34.0	40.6	74.1	33.8
IBA	3	1.19	i.19	1,40	1,702	0.37	3	43.22	43.70	43.63	44.02	0.50	3	33.3	33.9	38.3	45.0	8.3
2A	4	1.50	3.59	3.68	5.937	2.39	4	5.48	38.35	63.25	140.94	78.44	4	42.5	106.5	104.7	165.4	66.0
274	3	5.65	4.98	4.56	5,516	1.35	3	21.20	23.60	25.53	30.64	6.13	3	85.8	135.3	119.8	147.5	40.9
2AC	1	1.66	1.66	1.66	1.66	NA	1	373.80	373.80	373.80	373.80	NA	1	43.1	43.1	43.1	43.1	NA
2AP	12	0.39	0.975	1.05	2.203	0.70	12	21,74	33.25	36.98	53.46	14.62	12	9.3	24.9	28.4	62.0	20.5
285	11	1.73	2.48	2.56	3.38	0.74	11	28.50	50.50	144.07	498.00	217,82	11	48.1	63.4	69.0	99.1	21.5
D-Zone	8	4.62	18.67	16.61	27.591	10.42	8	3.12	8,95	38.86	105.33	48.88	8	141.8	573.1	- 513.0	857.1	323.5
I-Zone	t	2.90	2.9	2.90	2.9	NA	1	231.50	231.50	231.50	231.50	NA	1	79.1	79.1	79.1	79.1	NA
U-Zone	t	9.54	9.54	9.54	9.54	NA	1	104.30	104.30	104.30	104.30	NA	1	292.2	292.2	292.2	292.2	NA
LZ	2	12,11	14.65	14.65	17.194	4.50	2	49.41	183.05	183.05	316.69	236.24	2	335.5	415.0	415.0	494.5	140.6
LZOX	1	0.23	0.23	0.23	0.23	NA	1	3,10	3.10	3.10	3.10	NA	1	2.8	2.8	2.8	2.8	NA
MLS	29	0.09	0.43	2.54	• 7.036	3.95	29	488.90	888.30	804.04	996.62	199.18	29	2.6	11.2	75.7	214.3	122.8
YBR	3	3.29	7.38	7.21	11.052	4.85	3	40.72	136.80	294.77	612.00	382.36	3	89.9	218.1	215.1	339.1	155.8
O-Zone	2	2.34	3.78	3.78	5.22	2.55	2	39.52	41.60	41.60	43.68	3.68	2	65.5	104.9	104.9	144.3	69.7

Rock Type			NN	IP					NP	AP		
	ກ	Pto	P30	Mean	P ₉₀	St.Dev	n	P ₁₀	P 50	Mean	P ₉₀	St.Dev
IAA	16	-21.65	26.90	44.73	130.75	76.57	16	0.22	1.79	1.87	3.36	1.35
1B	54	1.73	23,50	27.55	82,32	41.22	54	1.06	1.68	2.72	5.43	2.40
IBA	3	-1.44	9.20	5.37	10.64	8.25	3	0.99	1.27	1.17	1.32	0.23
2A	4	-112.03	-36.35	-41.40	25.19	73.90	4	0.06	0.56	0.89	1.99	1.11
2AA	3	-126.34	-111.70	-94.23	-55.14	47.00	3	0,14	0.17	0.25	0.39	0.17
2AC	· 1	330.70	330.70	330.70	330.70	NA	1	8.67	8.67	8.67	8.67	NA
2AP	12	-4.68	8.70	8.57	25.28	15.99	12	0.86	1.75	· 1.68	2.30	0.85
2AS	11	-70.60	-8.30	75.05	449.90	231.43	11	0.29	0.86	3.01	10.35	5.35
D-Zone	8	-853.86	-564.15	-474.14	-54.09	366.33	8	0.00	0.02	0.25	0.65	0.33
I-Zonc	1	152.40		152.40	152.40	NA	1	2.93	2.93	2.93	2.93	NA
U-Zonc	1	-187.90	3-187.90	-187.90	-187.90	NA	1	0.36	0.36	0.36	0.36	NA
LZ	2	-286.07	-231.95	-231.95	-177.83	95.67	2	0.11	0.37	0.37	0.62	0.45
LZOX	1	0,30	0.30	0.30	0.30	#DIV/01	1	1.11	1.11	L11	1,11	NΛ
MLS	29	211.68	882,40	728.36	987.04	303.08	29	2.03	89.06	171.27	379.20	253.97
YBR	3	-226.36	-201.40	79.67	498,12	514.08	3	0.14	0.37	4.36	10.19	7.17
O-Zone	2	-100.57	-63.25	-63.25	-25.93	65.97	2	0.33	0.49	0.49	0.66	0.29

12/7/98 12:49 PW/mrr

ICS010.00 - Acid Rock Drainage Studies - Data Report

Ĵ.,

.

•

٢. ٢

#### TABLE 3-5 Statistical Summary for Metai Concentrations Determined Following Aqua Regia Digestion by Rock Type- Phase 2

.

N

.

Rock Type			7,	1					٨	3		T			Pb	,			************		Cu			1
	· n	Pia	Pm	Mean	Pm	St.Dev	n	Pte	P _{ja}	Mean	Pw	St.Dev	n	Pre	Pso	Mcan	. P.,	St.Dev	n	P1.	Pro	Mcen	P _w	\$1.Dev
144	16	201	377	1717	1939	4644	16	39	102	239	574	321	16	60	297	1711	5951	2951	16	22	33	85	147	164
[IB	52	- 10	372	918	939	2923	52	26	78	99	247	90	52	6	19	249	296	892	52	25	41	48	66	37
IBA	3	67	155	130	182	•75	3	15	' 16	21	30	10	3	6	8	9	12	- 4	3	41	44	44	48	. 5
2A	4	1471	3499	6347	13503	7327	4	167	259	257	345	98	4	638	1630	1746	2946	1323	4	50	103	108	170	65
2AA	<u> </u>	3813	4295	4295	4778	855	2	201	280	280	358	139]	2	830	1449	1449	2068	1095	2	68	82	\$2	96	24
2AC	0	NA	NA	NA	- NA	NA	0]	NA	NA.	NA	NA	NA	0	NA	NA	NA	NA	NA	0	NA	NA	NA	NA	NA
2AP	12	196	620	552	1004	338	12	19	41	67	136	76	12	21	69	231	648	320	12	47	57	58	66	13
2AS	7	752	1544	3452	8234	4465	1	34	60	68	112	36	7	318	957	1001	1726	692	7	42	68	91	174	68
D-Zone	6	2359	25602	35154	77500	37464	6	246	1344	1271	2222	911]	6	326	1109	2479	6001	3401	6	33	52	247	658	352
I-Zone	0	NA	NA	NA	NA	NA	0	NA	NA.	NA	NA	NA	0	NA	NA	NA	NA	NA	0	NA	NA	NA	NA	NA
U-Zone	1 1	12000	12000	12000	12000	NA	4	612	612	612	612	NA	1	1913	1913	1913	1913	NA	- 4	189	189	189	189	NA
LZ I	2	45200	54000	\$4000	62800	15556	2	2702	3419	3419	4136	1267	2	10000	10000	10000	10000	0	2	372	542	542	712	301
LZOX		3620	3620	3620	3620	NA		3261	3261	3261	3261	NA	.!!	8293	8293	8293	8293	NA		175	· 175	175	175	NA
MLS	13	26	101	2908	5571	8334	13	-3	12	60	40	183	13	-2	12	29	67		15			13	38	15
YDR	!	66	66	66	66	NA		62	62	62	62	NA	1	20	20	20	20	NA		20	20	20	20	NA
O-Zone	2	1315	3756	3756	6197	4315[	21	57	142	142	227	150]	2	180	422	422	664	429	2	49	55	55	61	11

#### 12/7/96 12:49 PM/mr

SRK Consulting December, 1998

Date	pН	TSS	SO₄	As	Cd	Cu	Fe	Mn	РЬ	Zn	Ca	Al
OP												
Sept 4-98	6.66	19	<1	0.242	0.0286	0.503	54.6	0.425	0.397	1.64	1.55	15.4
Sept 10-98	6.6	96	5	0.135	0.0209	0.315	29.5	0.246	0.217	1.02	1.39	8.97
DZ											•	
Sept 4-98	1.93	- 39	4800	80	18.1	61.6	7580	208	1	3660	164	143
Sept 10-98	1.74	35	36000	117	25.9	88.2	10900	207	Q	5380	197	190
Sept 13-98	1.7	<1	40000	93	21.5	71.9	9410	230	1	4220	181	155
HG												
Sept 4-98	6.93	<1	1350	0.003	0.418	0.005	0.1	3.24	0.0993	43.7	509	0.03
Sept 10-98	6.89	226	1080	0.003	0.452	0.004	< 0.03	4.09	0.108	49.9	498	< 0.01
Sept 13-98	7.19	<1	1700	0.003	0.486	0.005	< 0.03	4.83	0.106	63.8	492	< 0.01

TABLE 3-7 Waste Rock Pad Leachates - Selected Results

All results in mg/L, except pH

No sample collected from OP on September 13.

.

.

.

٠

TABLE 3-8
Observations From East and Northeast Trenches
Ore Pile

nterval from Surface (m)	Description	HCl Reaction	Paste pH (su)	Sample
ST TRENCH	5. Contract (1997)			
Surface	Rubbly mixture of oxidized, massive py/sl, limestone, massive calcite	Strong in limestone.	Geberally 6, locally oxidized boulder fines 2	SD001*
0-0.3	Silty sand, brown fines	Strong	7.0	SD002
0.3-1.0	Grey sand, fresh sulphide grains	Strong	7.6	SD003
1.0-3.5	Grey sandy gravel, fresh sulphides throughout, ~1% orange mottles	Strong throughout	6.5	SD101 (2.5 m)*
3.5-4.2	Gravel, limestone, cemented, no fines	Strong throughout	Not measured	SD102 (4.0 m)*
4.2-4.5	Loam, olive brown, damp	None	····	SD103*
4.5	End of Pit			

#### NORTHEAST TRENCH

0.0-0.5	Rubbly mixture of oxidized, massive py/sl, limestone,			
	massive calcite			
0.5-0.6	Orange brown fines			SD109
0.6-2.5	Gravel, pyritic, dry grey, orange reaction rim between galena and pyrite noted.	Strong throughout	Not measured	SD110(2.2 m)
2.5-3.5	Gravel, limestone, cemented, no fines	Strong throughout	Not measured	SD111(2.8 m)
3.5	End of Pit			

Note

Samples analysed indicated by *

#### TABLE 3-9 ACID-BASE ACCOUNTING ORE PILE EXCAVATION

THE THE THE ALL CLUE CHERTER CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONT

.

 $X = \{ j \}$ 

٠

SAMPLE AND FRACTION	Description	pH	S _{total}	S _{Non-Sulphate}	S _{Sulphate}	TIC	TIC	NP	AP	NP/AP	NNP
		su	%	%	%	%C	kg CaCO ₃ /t	kg CaCO ₃ /t	kg CaCO ₃ /t	Ratio	kg CaCO ₃ /t
EAST TRENCH		•									
001 +10 mm	Ore	7.8	6.5	6.4	0.1	8.64	720	724	200	3.6	524
001 -2 mm	Ore	7.6	10.5	10.3	0.2	2.87	239	251	323	0.8	-72
101 +10 mm	Ore	7.1	32.3	31.9	0.3	0.84	70	83	998	0.1	-915
101 -2 mm	Ore	7.4	26.8	. 25.9	0.8	1.01	84	71	811	0.1	-739
102 +10 mm	Limestone	8.0	0.5	0.5	0.0	11.73	978	975	14	69.1	961
102 -2 mm	Limestone	7.9	1.2	0.7	0.5	10.91	909	897	22	40.4	875
103 +10 mm	Loam	8.2	0.2	0.1	0.1	2.35	196	184	3	59.4	181
103 -2 mm	Loam	• 7.8	0.6	0.5	0.1	1.04	87	65	14	4.6	51
NORTH TRENCH											
108 +10 mm	Ore	7.7	21.6	21.2	0.4	4.18	348	342	662	0.5	-320
108 -2 mm	Ore	7.7	30.5	28.9	1.6	1.13	94	· 102	904	0.1	-802
105 +10 mm	Ore	6.4	41.1	40.2	0.9	0.13	11	6	1255	0.0	-1249
105 -2 mm	Orc	5.3	41.3	39.3	2.0	0.02	2	16	1228	0.0	-1213
107 +10 mm	Ore	6.8	35.6	35.1	0.5	0.04	3	-6	1098	0.0	-1104
107 -2 mm	Ore	7.0	39.9	39.3	0.6	0.21	18	7	1228	0.0	-1221
104 +10 mm	Limestone	7.9	1.5	1.0	0.5	10.49	874	862	32	27.0	830
104 -2 mm	Limestone	7.8	16.3	13.9	2.4	5.31	443	403	435	0.9	-32

.

### 1CS010.00 - Acid Rock Drainage Studies - Data Report

. |.

Tables

#### TABLE 3-10 AQUA REGIA ELEMENT SCANS ORE PILE EXCAVATION

		TOTAL	1									· ·																	
SAMPLE AND	Description		<u> </u>			T				·				ICP A	<u>qua ri</u>	EGIA D	IGEST	IBLE							•				
FRACTION	Description	Ba	Ag	Cu	РЪ	Zn	Mo	Ni	Co	Cd	BI	As:	Sb	Fe	Mn	Te	Ba	Cr	۷	Sn	W	La	Al	Mg	Ca	Na	к	Sr	Ga
		[			İ .	J				۰.														, i					-
L		ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%													l		
EAST TRENCH	1					····	. <u></u>				1122	PPon J	. ppn	<u>~~</u>	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	<b>%</b>	%	%	%	%	ppm	ppm
001 +10 mm	Ore	54	196.4	287	10000	28000	5	4	<1	85.6	100	365	167	3.8	668	17	50	10		40.01									
001 -2 mm	Ore	<10	214	1159	10000		3	11		977	155	529	424	8.56	1732	80	<u>52</u> 10	10 50	3	133	57	<u>!</u>	0.03	0.86	10		0.01	_108	9
101 +10 mm	Oro	<10	488	1903	10000	108000	<1	8	- 4	450.1	14	5857	2000	10	THE OWNER AND	26	<1	12		271	848		0.09	0.12	5.21	< 0.01	0.03	22	125
101 -2 mm	Ore	23	500	3677	10000	145000	2	15		582.2	31		2000	10	757	64	9	. 12		2000	<u>256</u> 374		0.01	0.04	2.05	<0.01	<0.01	10	
	Limestone	227	4	8	184	938	1	7	2	3.7	ত	24	26	0.59	566	<10	80	~ <1		<20	<20		0.01	0.03		<0.01	<0.01	9	54
102 -2 mm	Limestone	8327	17.1	75	3325	5687	2	59	16	27.2	ব্য	87	170	1.95	2820	<10	133	;		57	<20	<u>  &gt; _</u>   >	0.01	0.34		<0.01	<0.01	132	
103 +10 mm	Loem	1747	6.5	70	1295	2147	3	26	10	10.8	ব	106	62	2.06	440	<10	419	205	32	28	<20		0.04	0.37		<0.01	<0.01	113	
103 -2 mm	Loam	2217	28.6	172	6360	5474	3	37	14	25.5	ত	217	237	2.74	551	<10	324	82	31	102	<20		0.83	0.38	6.51	0.02	0.29	56	3
NORTH TRENC																510		02		102	<20	11	0.88	0.28	2.51	0.02	0.18	42	4
108 +10 mm	Ore	140	143.2	667	10000	63000	7	15	3	272.3	10	4424	1227	10	837	27	8	25	6	566	150	3	0.001						
108 -2 mm	Ore	1048	328	1514	10000	126000	3	11	2	380.4	43	4203	1758	10	572	35		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		1121	243		0.02	0.66			<0.01	52	23
	Ore	<10	122.9	933	9920	116000	4	6	2	487.4	<5	9093	703	10	456	31	<1			620	258	16	0.01	0.09			< 0.01		37
	Ore	<10	148.6	817	10000	84000	6	7	2	<371.3	থ	10000	739	10	360	37	<1	17		615	197	- 10	<0.01	0.04			<0.01	- 5	39
	Ore	14	95.6	659		135000	6	18	<i< td=""><td>650.7</td><td>0</td><td>7190</td><td>1171</td><td>10</td><td>500</td><td>54</td><td>1</td><td>58</td><td>10</td><td>477</td><td>355</td><td>10</td><td>0.03</td><td>&lt;0.01</td><td></td><td></td><td>&lt;0.01</td><td></td><td>42</td></i<>	650.7	0	7190	1171	10	500	54	1	58	10	477	355	10	0.03	<0.01			<0.01		42
	Ore	<10	124.3	893	9914	108000	3	11	2	477.9	ৎ	9631	968	10	459	42		24	6	628	270	14	0.02	0.03		<0.01	0.01	4	49
104 +10 mm	Limestone	160	3.9	19	520	8467	<1	18	6	89.8	থ	244	35	1.34	1021	<10	76	4		<20	26	~ ~ 1	0.02	0.05			< 0.01	4	36
104 -2 mm 1	Limestone	715	66.6	356	10000	77000	3	56	18	410.9	থ	3234	441	01	1832	29	17	11	3	252	166		0.03	0.10			< 0.01	116	
•											-		1-		للتشعجب							<u> </u>	0.00	<u></u>	10	<0.01	<0.01	46	15

N

•

**)**.

J_C

. . . .

Tables

## TABLE 3-11 WATER LEACHABLE ELEMENTS ORE PILE EXCAVATION

N

ł

SAMPLE AND	Description	Ag	·Cu	Pb	Zn	Ni	Co	Cd	Fe	Mn	Ba	La	Mg	Ca	Na	К	Sr
FRACTION			·		••								-				
		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
EAST TRENCH		·* ,									X		·····	×		I <u></u> YI	
001 -2 mm	Ore	< 0.02	<0.1	<0.2	0.3	<0.1	<0.1	<0.02	<1	<0.1	0.2	<0.1	8	353	3	7	0.4
101 -2 mm	Ore	< 0.02	<0.1	1.4	24	<0.1	<0.1	0.12	<1	4.7	< 0.1	<0.1	<1	805	.2	2	<0.1
102 -2 mm	Limestone	0.68	< 0.1	<0.2	0.5	<0.1	<0.1	< 0.02	<1	<0.1	<0.1	<0.1	<1	220	-2	<1	0.2
103 -2 mm	Loam	0.25	<0.1	<0.2	0.3	<0.1	<0.1	< 0.02	<1	0.1	0.1	< 0.1	<1	137	3	6	0.1
NORTH TRENCH														·		L	
108 -2 mm	Ore	< 0.02	<0.1	0.3	6.6	<0.1	<0.1	0.05	<1	1.8	<0.1	<0.1	<1	745	2	1	0.3
105 -2 mm	Ore	0.02	0.5	3.7	701.7	0.4	< 0.1	4.78	2	7.9	<0.1	0.2	<1	611	2	<	< 0.1
107 -2 mm	Ore	0.18	<0.1	2.7	278.8	0.3	0.1	2.37	<1	6.3	< 0.1	<0.1	<1	713	3	1	<0.1
104 -2 mm	Limestone	0.17	<0.1	<0.2	7.7	<0.1	<0.1	< 0.02	<1	0.5	< 0.1	<0.1	<1	760	2	1	0.3

Note

Mo(0.1), Bi(0.5), As(0.5), Sb(0.5), Te(1), Cr(0.1), V(0.1), Sn(0.1), W(0.1), Al(1), Y(0.1), Ga(0.2), Li(0.1), Nb(0.1), Sc(0.5), Ta(1), Ti(1), Zr (0.1)

Date	Type	pН	TSS	SO,	As	Cd	Cu	Fe	Pb	Zn		
Groundwa <i>TH-1</i>	ter										Ca	Al
Aug 14-98	Total	3.47	9	202	<0.2	0.06	0.05	10.7	0.15	6.72	22.01	
TH-3		· · · · · · · · · · · · · · · · · · ·	······	l.				10.11	0.15	0.72	33.9	8
Aug 14-98	Total	7.97	21	218	<0.2	0.02	0.02	3.11	0.032	4.41	100	
81-05							0.021		0.052	4.41	138	0.
Aug 14-98	Total	3.76	9	180	<0.2	0.08	0.64	5.87	0.002	5.6		
31-06							0.0 1	5.07	0.0021	5.6	28.2	8.
Aug 14-98	Total	6.78	43	250	<0.2	0.002	<0.001	19.2	0.002	3.31	70.01	
Silver Cree	k - Headwat	ers							0.0021		78.2	. <0.
1385 m	Total	#N/A	<1	#N/A	#N/A	0.17	2.51	39.5	<0.001	22.1		
305 m	Total	#N/A	19	#N/A	#NVA	0.1	0.77	1.3	0.098	22.1	40	#N/A
Silver Cree	k - WQ-5						0.77	<u> </u>	0.0281	14.4	121	#N/A
une 28-98	Dissolved	2.98	#NVA	#N/A	#N/A	0.17	1.99	19.9	0.029			
Aug 6-98	Dissolved	2.76	7	770	<0.2	0.19	1.66	56.2	0.029	23.9	<u>55.7</u> 67.1	_#N/A 3

TABLE 3-12 NATURAL GROUNDWATER AND

All results in mg/L, except pH No sample collected from OP on September 13.

12/7/98 12:49 PM/mm

### APPENDIX A

**(**_____)

## Phase 1 ABA Study - Raw Data

Append	lix A

	1 ABA D	ata																																			
Sample	Linhology	Crushed	Sulfate	Sulfide	Totel	d+i	TAP	SAP	NP	CO, %	A	Sb	As	8. 10	e la	i loa	IC.	Cr	Co Cu	Ö	164	124	te b	40 13	An Mo	На	Ni P	·	• 12	- 1ú	Sc	10.00				- <u></u>	13-11
Description	1.000	(Paste)						-	P 2+20	Inorganic					pm pi	pm ppm			PPrn 2pr			ppm	ppm .		pris ppe		ppm p			- *	PP	Sr n ppm	20m 17		m ppm		20 00m
19965	Unknown	7.5	0.04	2.63	2.69	0.02	84	82.8	95	4.4	0.26			80			0 2.81			37		6 5310				3 0.5			0.09 2			11 123		0.005	6 19990	5 26	
19965	MLS	0.6	0.005	0.04	0.04	0	1	1.3	935	38.9	0,005	1	2	30	0.25	1 0.2	8 1	13	0.6	2	6 0.0	5 4	5		835 0		4			0,1 0		5 155	_	0.005		<u>_</u>	1773
19965	2AP	6.6	0,06	0.16	0.29	0.07	9	7.2	3	0.1	1.71	2	44	250	0.25	1 7.	5 0,18	58	4	72	5 2.9	8 30	10	0.69	115	3 0,5	29			0.2		4 75		0.005	10	5 78	252
19965	ZAS	7.6	0.31	4,76	5.52	0.45	173	162.0	46	2.4	0.27	14	122	20	0.25	2	5 1,96	71	10	85	5 4.5	670	5	0.15	465 0	5 0.5	04	470	0.14	8.2 0	005	1 40		0.005		5 12	
19965	O-Zone	7.9	0.32	2.07	2.39	0	75	64,7	29	1,6	0.31	8	40	50	0,25	1 2.	5 1.00	94	19	19	5 2.2	8 1845	5	0,26	550 0	5 0.5	69	120		8.6 0		3 41		0.005		5 11	1065
199656	2AA	7.5	0.07	6.56	9.03	0.08	282	280.0	3	0,3	0.29	56	582	5	0.25	30 10	0 0,11	74	22 3	44	10 5.7	2 10000	6	0.02	290 0	5 0.5	37			79 0	.005 0			0.005	5	5 0	10000
199657		8.2	0.07				32	29,7	40	1.8	0,17	4	28	130	0.25	1 1	5 1,10	121	8	9	5 1.1	0 132	5	0.43	330	1 0.5	39 1	310	0.08	0.6 0	.005 0	_		0.005	5	5 13	494
199658		8.6	0.02	0.79		0,09	28	27.5	59	2.7	1,67	1	38	170	0.25	1 0.2	5 1,69	45	.14	42	6 3.	5 44	5	1,10	320	1 0,5	48	660	0,17	0.2 0	.005	2 85		0.005	5	6 28	
199659		8.6	0,01	0.28			11	10.3	10	0.4	0.42	1	10	80	0.25	1 0.2	5 0,36	167	4	22	5 1.0	2 8	5	0,21	80 0	5 0.8	27	590	0.12	0.1 0	605 0.	5 26		0.005	5	5 10	14
199660	TAC	8.1	0.02				154	153.4	43	1.8	0.49	8	32	20	0.26	1 0.	5,14	60	11	38	5 4.1	1 24	8	0.33	96	1 0,6	61	730	0.19	0.8 0	.005	1 52		0.005	5	8 16	224
199661		8.6	0.04		0.37		12	10,3	949	40.5	0.006	1	2	760	0.26	1 0.2	6 18	100	0.8	3	6 0.61	9 4	5	0.45	340 0	5 0.6	8	5 0	.008	0,1 0	0 206	5 236	6	0.005	5	6 1	32
199662		0.0		3.28			106	104.7	108	4.9	0.58	1	18	30	0.25		6 3,24		7	30	5 2.0	8 10	5	0.85	210	1 0.6	36	760	9,17	0,1 0	.005	2 254	5	0.005	5	6 23	198
199663		8.2					89	88.1	56	2.5	0.4	2	34	_ 60		1 0.1	8 1,53	60		31	6 2.5	2 30	6	0,53	120	8 0.6	49	430	0.18	0.4 0	.005	1 82	6	0.005	5	6 21	200
199664		_8	0.02	1.88	2	0.1	63	61.9	922	39.2	0.16	24	291	10		14	2 16	14	0.5	81	5 1,71	1 182	5	1.68 1	225 2	4 0.6	8	30 0	.005	4.4 0.	.005 0.	5 105	10	0.005	5 1	0 5	586
	Unknown	7.5	0.04	29.65			953	951.9	27	2.5	0.01		912		0.25 2				0.5 19	15	10 14,30	5 10000	6	80.0	685 0.	5 0.5	0.5	40 0	.005 1	00 0	005 0	5 0,5	10	0.005	5 1	0 0.5	10000
	L-Zone	7,5	0.21	0.01			. 8	0.9	10	0.5	6,36	64	605		4,5	1 28.	6 0.39	14	23 10	65	6 10	5 2490	10	0.03	185 1	1 0.5	494	650	0.04 1	2,4 0	005	4 64	6	0.005	6 4	0 80	10000
199667		8.4	8,008		0.25		8	7,7	978	41.5	0,07	2	38	0		2	2 15	6	0,6	11	6 0,41	1 11	6	0.22	410	1 0.5	6	10 0	.005	1,2 0	008 0	8 186	6	0.005	6	6 0.6	640
199668		8.6	8.005	0.35			12	12,0	931	41.2	0.04	1	10	20	0.28	1 0.1			0,6	8	5 0.3	5 24	8	0.18	810 0.	5 0,6	. 6	5 0	.005	0.6 0	006 0.	5 178	8	0,005	5	6 1	758
109069		8.2	0.04	2.23		0.02	72	70.3		2,1	0.24	1	344	70	0,26		5 1,20		11	9	6 2,30	78	6	0.46	346 0.	5 0.5	33	150	0.12	0.6 0.	005	1 41	6	0.005	5	6 4	170
190670		8.0	0.01	1.67			59	58.4	- 93	6.5	0.28	1	72		0,26		5 3.28			42	8 2.48	5 18	. 6	1.05	390	8 0.8	40	60	0.17	0.8 0.	005	1 197	6	0.005	5	5 11	68
199671		6.6	0.02		1.58		49	48.1	68	2.7	0,22	_	114		0.26	1 1	5 2.16	49		27	8 1,4	670	6	0,31	140 1	5 0.5	55	310	0.09	2.6 0.	006 0.	5 60	8	9.005	5	6 27	1080
	L-Zone	8.6	0.02		6.93		217	215.9	695	29.3	0,02	256			.25	1 10			0.5 3	58 1	0 3.78	10000	8	1.85	000	6 0.5	13	160 0	.005 7	7.2 0.	005 0.	5 90	5	0.005	5	6 6	10000
199673		6,6	0,005		0.09		3	2.7	965	41	0.005	2	_14		25	1 0.7		· · · · · ·	0.6	2	8 0,11			_	415	0.6			.005	0.6 0.	005 0.	6 161	8	0.006	6 (	6 3	122
100074		8.3	0.01		7.09		52	51.0	055	40.3	0.28	}		130 1			2.00				8 1.24				846 0.		_10 1				005	4 70		0.006	10	5 11	110
190075		8,5	0.02		1.18		30	35.6	73	3.2	0.006	-	22	40 0		1 0.2		ال تحصير ا		10	<u>6 1.3</u>		_8		376 0.	5 0.5			005	1.4 0.	005 0	6 178	6 1	0.005	8 /	5 3	280
199676		0.5	0.01	1,33			43	43.1	56	2,7	0.27		188	_70_9			6 <u>1.89</u>			26	5_1,1	282			536	1 0.5	26 12			1.8 0		1 60		0.008	8 1	5 16	118
	L-Zone	5.5	0.2	36.06		- and the second second second second second second second second second second second second second second se	1140	1134.4	-2	0.1	0,005	380 1	_		.26 5		0.03		0.6 16	_		10000	_	0,005	05 0.	_		10 0		00 0.				0,005	5 10	0 0.5	10000
199678		8.6		0.29		0	9	9.1	978	40.7	0.005	38			25	2 3.0				19	8 0.33				130		_?	140 0		_	_	6 336		0.006	5_1	8 1	676
199679		8.7	the second second second second second second second second second second second second second second second s	0.03			2	1.4	998	41,4	0.04	1			.25	1 0.26			0.6	7	6 0.09			0.78	90 0.			5 0				6 310	_6 (	0.005	<u> </u>	5 1	
199680		8.4		1,39			44	43,4	42		0.58	_!	16	. 60 (		1 0.25	_			<u>.</u>	6 1.4	24		0.06	65 0.	_			A ROOM DOG TO A	.2 0.		67		0.005	6 1	5 9	84
	O-Zone	8.6		2.29			74	73.4	51	2.5	0,38	28	206	40 0			5 1.65	_		59	8 2.08				245 0.	- manie				2.2 0.		3 02		0.005	6 0	5 10	4360
	D-Zone	0.6		2.59			109	108.4	239	10,3	2,22		27	30 0		1 0.26		******	_	<u>12</u>	8 3.03			1,47 1		· · · · ·				2,6		5 177		0.005	6 !	<u>5 e</u>	152
199583		8.8		3.14			100	100.0	87	6.2	0.20	سانسمه	438	70 0		1 0.25				_	6 3.87				690					<u>,1 0</u>		4 76		0.005	5	8 11	10
199684		8.3	0.01	1.92			64	63.8	473	19.8	0,1			130 0		1 7.6			4 3	· · · · · · · · · · · · · · · · · · ·	6 1,62				405 1	_	<u> </u>	_		1.8 0.		1 409		0.005	<u> </u>	5 15	
199685		<u>8.7</u> 8.8		0,06			<u>3</u> 55	<u>-2.8</u> 54.4	<u>980</u> 83	43.2	0.005			370 0		1 11.8	2.68			0	6 0.11	1725			645	0.8	4			4 0		5 209		0.005	6	4-4	1880
199687		8.9		0.74			25	24.5	41	3.3	0.43		10	80 0			1.30			2	6 3.19	<b>*</b> }			800	0.6				2.1 0.		3 132		0,00S	.5	6 16	
199699		0.0	0.005		3.88		121	119.4	12	0.6	0.43		758		0.5		0,49			<u>4</u>	5 2.53	_	_		236 1	0,6	_			1 0/		45		0,005	<u> 6 </u>	6 20	
		8.8	0.06		1.92		60	59.7	87	7.2		_	· · · ·	130 0	_				_	-	5 3.6	1215			160 :	0.6				1 0		2 28	_	0,005	5	30	2440
199689		8.6		1.48			47	46.6	76	5.3	0,66					_	3,16	_		2	3,70	<u>-</u>			176	0.8				1 0.			_	0.005	<u> </u>	4_13	292
199690	10	0.6	0.01	1,48	1.5	0.01		-10,6		-2.3	0.07		6Z	150 0	20	1 0.25	1.91	39	17 4	16	4,10	. 64	6	1,12	556	0.6	68 0	50 (	0.19	4 0,	005[ :	140	6 0	0.006	5 5	5 23	338

199678/MLS 8.8 0.005 0.29 0.3 0 9 9.1 978 40.7 0.005 38 170 230 0.25 2 3.5 18 8 0.5 19 8 0.33 592 8 0.22 130 2 0.5 2 240 0. 199079/MLS 8.7 0.005 0.03 0.05 0.02 2 1.4 998 41.4 0.04 1 6 650 0.25 1 0.26 18 8 0.5 7 8 0.09 86 8 0.79 90 0.6 0.6 2 8 0.0	0.005 2.8 0.005 0.6 338 8 0.006 5 5 1 67
1000701015 [ 87   0.005   0.03   0.05   0.02 ] 2   14   909   414   0.04   1 8 850 0.351 10.05   18 41 0.5 10 41 0.5 10 10 10 10 10 10 10 10 10 10 10 10 10	
	0.005 0.6 0.005 0.6 318 6 0.005 5 5 1 8
199680/2AP 8.4 0.01 1.39 1.4 0 44 43.4 42 2 0.58 1 16 60 0.25 1 0.25 1.74 71 6 38 5 1.4 24 6 0.06 65 0.8 0.5 37 70 0	0.14 1.2 0.005 1 57 5 0.005 5 5 9 9
199081 O-Zone 8.6 0.03 2.29 2.38 0.06 74 73.4 51 2.5 0.36 28 206 40 0.26 1 17.5 1.65 79 4 59 5 2.05 902 5 0.29 245 0.5 0.5 35 100 0	0.13 9.2 0.005 3 92 5 0.005 6 6 10 436
199682 D-Zone 8.6 0.02 2.59 3.49 0.88 103 108.4 239 10.3 2.22 1 22 30 0.25 1 0.26 5.7 36 12 42 8 3.00 24 6 1.47 1055 0.6 0.5 30 600 0	0.20 0.6 0.01 5 177 5 0.005 5 5 8 15
199652 D-Zone 8.6 0.02 2.59 3.49 0.88 109 108.4 239 10.3 2.22 1 22 30 0.25 1 6.26 6.7 36 12 42 8 3.00 24 6 1.47 1055 0.6 6.6 39 600 0 199663 18 6.8 0.01 3.14 3.21 0.06 100 100.0 67 6.2 0.29 1 435 70 0.25 1 0.25 2.8 60 6 24 6 3.67 6 8 1.12 660 1 0.8 31 540 0	0.28 0.6 0.01 5 177 5 0.005 5 5 9 15 0.18 0.1 6.005 4 76 5 0.005 5 5 11 11
199684 IAC 8.3 0.01 1.92 2.05 0.12 64 83.8 473 19.8 0.1 19 20 130 0.25 1 7.6 14.9 22 4 3 6 1.67 60 6 0.13 405 16 0.5 6 0.13 405 16 0.5 6 0.13 405 16 0.5 6 0.13 405 16 0.5 6 0.13 405 16 0.5 6 0.13 405 16 0.5 6 0.13 405 16 0.5 6 0.13 405 16 0.5 6 0.13 405 16 0.5 6 0.13 405 16 0.5 6 0.13 405 16 0.5 6 0.13 405 16 0.5 6 0.13 405 16 0.5 6 0.13 405 16 0.5 6 0.13 405 16 0.5 6 0.13 405 16 0.5 6 0.13 405 16 0.5 6 0.13 405 16 0.5 6 0.13 405 16 0.5 6 0.13 405 16 0.5 6 0.13 405 16 0.5 6 0.13 405 16 0.5 6 0.13 405 16 0.5 6 0.13 405 16 0.5 6 0.13 405 16 0.5 6 0.13 405 16 0.5 6 0.13 405 16 0.5 6 0.13 405 16 0.5 6 0.13 405 16 0.5 6 0.13 405 16 0.5 6 0.13 405 16 0.5 6 0.13 405 16 0.5 6 0.13 405 16 0.5 6 0.13 405 16 0.5 6 0.13 405 16 0.5 6 0.13 405 16 0.5 6 0.13 405 16 0.5 6 0.13 405 16 0.5 6 0.13 405 16 0.5 6 0.13 405 16 0.5 6 0.13 405 16 0.5 6 0.13 405 16 0.5 6 0.13 405 16 0.5 6 0.13 405 16 0.5 6 0.13 405 16 0.5 6 0.13 405 16 0.5 6 0.13 405 16 0.5 6 0.13 405 16 0.5 6 0.13 405 16 0.5 6 0.13 405 16 0.5 6 0.13 405 16 0.5 6 0.5 6 0.13 405 16 0.5 6 0.13 405 16 0.5 6 0.13 405 16 0.5 6 0.13 405 16 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0.5 6 0	0,10 0,1 0,000 4 76 6 0.005 5 6 11 1
127000 1/102 0.0 0.0 1.022 0.00 1.022 0.0 0.00 0.0	0.04 4.8 0.005 1 489 5 0.005 5 5 16 151
199684 IAC 8.3 0.01 1.92 2.05 0.12 64 63.8 473 19.8 0.1 18 240 130 0.25 1 7.5 14.9 22 4 31 6 1.62 560 8 0.13 405 18 0.5 50 410 0 199685 MLS 8.7 0.01 0.06 0.1 0.03 3 2.8 980 43.2 0.005 9 38 370 0.25 1 11.5 15 0 0.5 10 6 0.11 1725 6 0.08 645 1 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 4 50 0.8 50 0.8 50 0.8 50 0.8 50 0.8 50 0.8 50 0.8 50 0.8 50 0.8 50 0.8 50 0.8 50 0.8 50 0.8 50 0.8 50 0.8 50 0.8 50 0.8 50 0.8 50 0.8 50 0.8 50 0.8 50 0.8 50 0.8 50 0.8 50 0.8 50 0.8 50 0.8 50 0.8 50 0.8 50 0.8 50 0.8 50 0.8 50 0.8 50 0.8 50 0.8 50 0.8 50 0.8 50 0	0.04 4.8 0.005 1 409 5 0.005 5 5 15 15 0.05 6,4 0.005 0.6 200 5 0.005 6 6 4 188 0.21 0.1 0.005 3 132 6 0.005 5 6 15 15
199686/18 8.8 0.02 1.72 1.76 0.02 55 54.4 83 5.3 0.57 1 76 150 0.28 1 0.26 2.59 36 12 82 6 3.19 8 6 1.18 800 2 0.6 56 650 0 19908718 8.9 0.005 0.74 0.79 0.05 25 24.5 43 3.3 0.43 6 16 80 0.25 1 3 1.36 86 12 34 6 2.53 32 6 0.63 235 2 0.6 55 780 0	0.21 0.1 0.006 3 132 8 0.005 5 6 16 8
199688 Gouge 6 0,06 3,63 3,88 0,19 121 119.4 12 0.6 0.56 18 758 30 0.5 1 9.5 0,49 50 18 55 5 3.6 1215 10 0,17 180 3 0.5 45 710 0	0.21 0.1 0.005 3 132 8 0.005 5 6 15 8 0.15 0.1 0.005 1 45 6 0.005 5 6 20 460 0.14 4.4 0.005 2 28 5 0.005 5 5 30 2440
199663 1B 6.8 0.01 1.8 1.92 0.11 60 59.7 87 7.2 0.88 1 132 130 0.25 1 0.8 3.16 88 12 17 8 3.78 6 8 1.42 476 1 0.5 41 820 0	0.18 0.1 0.005 2 207 5 0.005 5 8 13 293
199690 18 8.6 0.01 1,40 1.5 0.01 47 40.6 76 5.3 0.87 2 52 150 0.26 1 0.25 1.01 30 17 46 6 4.10 50 5 1.12 555 1 0.6 58 650 0	0.18 0.4 0.005 3 149 6 0.005 6 5 23 330
199688         0.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         <	0.17 5 0.006 1 87 5 0.005 5 8 24 2240
199692 1AA 7.2 0.06 10.8 11 0.14 344 341.9 35 1.1 0.12 470 2670 10 0.26 1 44 1.23 40 4 383 6 7.00 10000 6 0.06 740 14 0.6 42 240 0	0.06 100 0.006 0.8 10 5 0.005 5 5 7 10000
1996933L-Zone 7.1 0.04 38.09 38.7 0.57 1210 1208.1 6 0.4 0.005 5200 6520 5 0.25 1 100 0.17 18 0.5 4016 110 15 10000 10 0.005 715 3 0.8 e e0 0.0	006 100 0.005 0.5 0.5 10 0.005 5 10 0.6 10000
199694 MALS 8.6 0.000 1,22 1,42 0.2 44 44.2 980 39.2 0.000 68 172 60 0.25 1 15.6 16 14 0.6 59 5 1.04 1500 6 2.03 1735 3 0.8 6 50.00	005 9.6 0.005 0.5 150 6 0.005 5 6 3 3320
199696/MLS 6.8 6.00 0.02 0.01 0 1 0.8 990 41.6 0.005 1 2 10 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1 0 0.25 1	005 1.8 0.005 0.5 228 5 0.005 5 5 1 864
199697118 8.3 0.01 0.42 200 1 0.41 0.1 0.01 22 21.8 30 3 0.50 4 44 130 0.26 1 0.02 1 0.00 1 0.1 0 0.02 200 1 0.03 3 0.50 0 0 0.00 3 0 0.00 0 0 0 0 0 0 0 0 0 0	005 1.8 0.005 0.5 228 5 0.005 5 5 1 864 0.18 0.6 9.005 2 55 6 0.005 6 5 14 318
193657 18 8-2 0.01 0.62 0.7 0.07 22 21.6 30 3 0.50 4 42 130 0.26 1 1 0.00 78 14 35 5 3.0 52 10 0.62 265 1 0.6 38 000 0 1 0.6 2 265 1 0.6 38 000 0 0 1 0.6 2 26 1 0.6 38 000 0 0 1 0.6 2 26 1 0.6 38 000 0 0 1 0.6 2 26 1 0.6 36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2,18 0,8 0,005 2 55 6 0,005 6 5 14 318
1996991ML\$ 8.6 e.cos 0.02 0.03 0 1 0.6 990 41.8 0.025 12 10 0.255 16 6.5 8 1 0.05 100 10 100 100 100 100 100 100 100 10	0,11 1 0,005 1 72 8 0,006 6 6 12 122
197909701200 - 0.0 5.4 0.02 15.62 16.3 0.64 5.9 50.8 447 19.4 0.006 409 4300 19.25 1 10.0 1.6 30 4.6 420 8.0 1000 10 0 0.24 152 1 6.6 0.0	.006 0.1 0.005 0.5 169 8 0.006 6 6 1 12
199700 LZONE 6.4 0.02 15.62 16.3 0.66 509 500.8 447 19.4 0.005 406 4390 10 0.26 1 100 11.6 30 0.6 420 50 0.0 10 2.34 152 5 0 0.0 10 2.34 152 5 0 0.0 10 2.34 152 5 0 0.0 10 2.34 152 5 0 0.0 0 0 0 12 2.34 152 5 0 0.0 0 0 0 12 2.34 152 5 0 0.0 0 0 0 12 2.34 152 5 0 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.006 100 0.005 0.6 40 5 0.005 6 5 4 10000
1997/0110 0.7 0.00 1/10 1/3 0/11 00 33.7 2 0 2 0 0/1 00 10 10 10 10 10 10 10 10 10 10 10 10	0.22 0.4 0.006 2 60 5 0.006 6 5 17 842
199702 1B 9.5 0.02 2.76 2.99 0.21 93 92.8 67 3.3 0.38 6 276 60 0.25 1 4 1.62 46 15 46 5 2.97 178 5 0.69 516 2 0.6 47 780 0 199703 Gouge 7.7 0.07 2.54 2.8 0.19 88 85.3 85 3.3 0.38 10 138 50 0.28 1 4.6 2.73 P6 9 30 5 2.44 1185 5 0.48 470 15 0.67 75 310 0	0.21 1 0.005 2 65 6 0.005 5 5 11 898
199703 Oxna 77 0.07 2.54 2.8 0.19 88 85.3 85 3.3 0.3 19 138 10 0.28 1 4.8 2.73 10 0 39 15 2.34 1185 8 0.48 470 15 0.8 176 310 0	0.09 8 0.005 1 169 6 0.005 8 10 34 806 0.1 1.6 0.005 1 19 8 0.005 5 6 22 30
199704 1AA 8 0.04 2.57 2.78 0.17 87 85.6 61 2.7 0.23 10 56 60 0.25 1 0.25 2.09 62 6 33 5 2.59 30 6 6.3 230 14 0.5 78 340 0	0.1 1.6 0.005 1 19 5 0.005 5 6 22 30
199705 MLS 8.8 e.cos 0.3 0.33 0.03 10 10.2 955 41.4 0.02 1 32 100 0.28 1 0.28 16 7 0.6 6 6 0.25 22 8 0.38 560 1 0.6 13 70 0.0 199706 MLS 8.8 0.005 0.1 0.1 0.01 3 3.0 1024 43.2 0.005 1 1 60 0.25 1 0.25 15 13 0.8 0.6 5 0.12 12 6 3.86 1070 0.5 0.6 1 200 0.0	005 0.4 0.005 0.5 193 5 0.005 5 5 20 106
199706 MLS 0.8 0.005 0.1 0.1 0.01 3 3.0 1024 43.2 0.005 1 1 60 0.25 1 0.25 15 13 0.6 0.8 5 0.12 12 6 3.84 1070 0.8 0.8 1 200 0.0	005 0.1 0.005 0.5 100 6 0.005 6 5 3 14
199707 Gouge 8 0.06 4.79 5.14 0.28 161 150.0 014 26.7 0.35 1 10 40 0.25 1 0.28 16 10 9 7 6 3.59 26 5 0.58 670 0.6 0.8 6 1540 0. 199706 Surface 8.8 0.01 0.18 0.01 6 5.3 980 40.3 0.005 1 6 30 9.25 1 0.28 15 5 0.8 6 5 0.10 16 5 0.44 145 0.8 0.5 2 6 0.0	0.08 0.4 0.005 2 136 8 0.005 5 8 12 40
199706 Surface 8.8 0.01 0.18 0.01 6 5.3 990 40.3 0.005 1 6 3.0 0.25 1 0.28 15 5 0.5 5 0.18 14 5 0.4 145 0.5 0.5 2 6 0.0	005 0.1 0.005 0.6 185 6 0.005 6 6 1 104
199709 Surface 8.7 0.01 0.02 0.06 0.00 2 1.8 463 19.8 0.29 1 10 140 0.25 1 0.5 14.1 55 1 0 5 0.73 18 5 0.80 145 0.5 0.6 11 220 0.	0.09 0.2 0.005 0.5 105 5 0.005 5 5 8 152
199710 Surface 8.8 0.01 0.06 0.08 0.01 3 2.2 982 42.2 0.01 1 2 60 0.25 1 6.6 15 6 0.5 1 5 0.12 8 5 0.45 160 0.5 0.6 3 6 0.0	005 0.1 0.005 0.5 183 B 0.005 5 5 0.5 184
199711 Surface 7.7 0.06 0.3 0.4 0.04 13 10.6 181 8.4 0.64 e 42 170 0.26 1 22.6 6.88 61 11 27 6 2.88 192 6 0.55 1026 2 0.6 26 26 26 0.	0.14 1.2 0.005 0.5 01 5 0.005 5 6 14 5260
199712 Surface 8,7 2.005 0.11 0.13 0.07 6 5.5 1010 42.1 0.01 8 50 0.25 1 0.26 16 16 0.6 2 8 0.14 28 5 3.86 320 0.5 0.6 2 6 0.00	
19971304760 8.8 accor 0.02 0.03 0.03 0.00 2 1.4 992 42.5 0.005 1 1 30 0.25 1 0.26 10 0.01 10 0.05 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 0.00 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.05 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 1 0 0.06 0.5 0.	
	005 0.1 0.005 0.8 158 6 0.005 6 5 0.6 36
	005 0.1 0.005 0.5 154 5 0.005 5 6 0.5 102
	005 100 0.005 0.6 10 10 0.005 5 10 0.6 10000
199716 [L-Zone 7.4 0.3 26.52 27.6 0.71 863 653.1 184 8.4 0.005 1020 8770 5 0.25 22 100 5.25 21 0.5 1125 40 14.2 10000 30 0.1 645 4 0.6 3 100 0.00	005 100 0.005 0.8 27 10 0.005 5 10 0.5 10000
	005 100 0.005 0.5 6 10 0.005 5 10 0.5 10000
	01 100 0.005 0.5 0.6 10 0.006 6 10 0.8 10000
199720 7-Zone 6.4 0.52 0.62 1.28 0.14 40 23.8 1 0.1 1.24 39 130 250 0.25 1 8 0.00 151 3 00 6 2.77 1570 6 0.005 46 1 0.6 36 200 0	0.3 11.8 0.01 4 20 6 0.005 5 5 33 1240
1507(20) - 2010 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	21 22 0.005 3 25 6 0.005 5 6 11 968
199722 0-2016 4.9 1.32 0.11 1.45 0.02 45 4.1 -3 0.1 0.31 134 1420 140 0.24 48 2 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34	10 56.2 0.005 1 245 5 0.005 5 10 30 1440
190742 0-2019 5 0.22 0.03 0.20 0.04 9 2.2 11 0.7 0.24 021 010 400 0.25 0 0.25 0 0.5 1 145 6 0.40 1755 5 0.005 10 0.5 0 0.5 0 0.5 1 145 6 0.40 1755 5 0.005 10 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5	11 2.4 0.005 0.5 35 5 0.005 5 10 30 1440
150763 (7 AUT 9 4 AL 6 0.0 0.63 0.64 0.20 0.6 10 20 0.7 773 32.2 0.02 3 12 100 0.6 10 10 10 0.0 1 0.8 10 0.0 10 0.0 1 0.8 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0	<u>,11 2.4 0.005 0.5 35 5 0.005 5 5 17 756</u>
19976 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	005 13 0.005 0.5 112 8 0.005 5 6 4 2910
199720/m29 0.7 0.02 0.00 0.00 0.00 0.01 0 2.2.2 00 00.0 10 0.0 0.00 0.0	005 0,6 0.005 0,5 218 5 0,005 E 5 0.5 EE
	22 2 2 0,005 4 9 6 0.005 5 5 11 2130
199735[D-Zone 7.5 0.09 [27,30 27,7 0.23] 866 062.0 11 0.4 0.00 see 2660 81 0.25 254 e 0.41 69 10 101 8 15 5170 5 0.03 20 05 0.5 20 200 0.0	.07 17.8 0.005 0.5 9 8 0.005 5 10 7 1500

APPENDIX B

---

ſ

4

f)

**-**

Phase 2 - Rock Core Static Tests - Compiled Data

#### APPENDIX B GEOCHEMICAL CHARACTERIZATION OF WASTE ROCK DDH CONTINUOUS SAMPLING SILVERTIP PROJECT Page 1 of 20

.

۰.

11

÷.

÷

.

.

.

		Sample	Identificatio	n		1			ACID-B	ASE AC	COUNTI	NG		
DDH	Start	Finish	Thickness	Rock Code	Rock Type	Fizz	Normal	HCI	NP	AP	NNP	MPA	pH	S
	m	m	m				N	ml	kg/t	kg/t	kg/t	kg/t		%
84-65	4,8	13	8.2	1D	sandstone	1	0.1	40	4.7	0.4	4.3	3	6,98	0,1
84-65	13	21	8	1B .	sandstone	1	0,1	40	6.9	1.2	5.7	2.8	7,41	0.09
84-65	21	28	7	1B	sandstone	1	0.1	40	14.3	13.2	1.1	15.8	7,16	0.51
84-65	28	34.55	6.55	IB	sandstone	2	0.5	40	60.1	27.5	32,6	30,3	8.19	0.97
84-65	34.55	37.3	2.75	IB	sandstone	2	0.5	40	46.7	13.4	33.3	15.3	7,93	0.49
84-65	37.3	40.2	2.9	IB	sandstone	1	0.1	40	38.7	15.6	23.1	17.5	8.3	0.56
84-65	40.2	45	4.8	IB	sandstone	2	0.5	40	60.7	13.1	47.6	16.2	8,15	0.52
84-65	45	52.4	7.4	IB	sandstone	1	0,1	40	57.9	12.5	45.4	14.2	8.32	0.46
84-65	52,4	58,15	5.75		sandstone	1	0.1	40	71.8	17.5	54,3	19,7	8,36	0.63
84-65	58,15	67.65	9.5	t N	sandstone	1	0,1	4()	66,9	14.1	52.8	16.9	8.23	0.54
84-65	67.65	70.1	2.45		sandstone	2	0.5	4()	68,6	25.9	42.7	30.3	8.42	0,97
84-65	70.4	79.4	9.3	the second second	siltstone	1	0.1	40	53.R	32,2	21,6	35	8.23	1.12
84-65	79,4	86.35	6.95		sandstone	<u> </u>	0.1	40	64.7	22.6	42.1	25.3	8.23	0.81
84-65	86.35	92	5,65		siltstone	<u>Z</u>	0.5	40	67,7	43.8	23.9	46.2	8.18	1.48
84-65	92	94.3	2.3		siltstone	2	0.5	40	91.6	31.6	60	35	8.34	1.12
84-65	94.3	98.7	4,4		sandstone	2	0.5	40	43.7	28.8	14.9	32.2	7,65	1.03
84-65	98.7	103.3	4.6		silistone	2	0.5	40	54	38.4	15.6	41.9	8.24	1.34
84-65	103.3	111.3	8	18	sandstone	1	0,1	40	44,6	32.5	12.1	36.2	8.01	1,16
84-65	111.3	116.9	5.6	1B	silistone	2	0.5	40	78.3	23.8	54.5	25.6	8,16	0,82
84-65	116,9	127	10.1	18	sandstone	2	0.5	40	128	14.7	113.3	16.6	8,33	0.53
84-65	127	133.1			sandstone	2	0.5	40	125.6	12.8	112.8	14.4	8,28	0,46
84-65	133.1	137.7	4.6		siltstone		0.1		33.5	18.1	15.4	20.3	8.11	0.65
84-65	137.7	140.5	2.8		sandstone	2	0.5	40	149.9	18,9	131	21.9	8.22	0.7
84-65	140.5	144	3.5		siltstone	2	0.5		132.3	23.1	109.2	25.6	8.16	0,82
84-65	144	154	10		siltstone	2	0.5	40	82.5	35,9	46.6	39.7	7.96	1.27
84-65	154	158,35	4.35	IB	siltstone	2	0.5	40	61.3	58.1	3.2	64,4	8,05	2.06
84-65	165.5	172,5	7	IBA	siltstone	2	0.5	40	43.1	33.9	9,2	37	8.15	1.19
84-65	172.5	176.8	4.3	144	slate	2	0.5	40	86.2	40	46.2	49.7	8.1	1.59
84-65	176.8	182.7	5.9	IAA	slate	2	0.5	40	108.6	56,9	51,7	70.3	7.88	2.25
84-65	182.7	193	10.3	MLS	limestone	3	0,5	80	734.7	4.1	730.6	5.3	8.39	0,17
84-65	193	203,3	10,3	MLS	limestone	3	0,5	80	885.2	5	880,2	5.6	8,45	0,18
84-65	158.35	165.5	7.15	18	sandstone	2	0.5	40	60.1	33,8	26.3	37.2	8.2	1.19

١

.

۸.

,

....

#### APPENDIX B GEOCHEMICAL CHARACTERIZATION OF WASTE ROCK DDH CONTINUOUS SAMPLING SILVERTIP PROJECT Page 2 of 20

.

.

•

.

Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt         Junt <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>GIA</th><th>UA RE</th><th>ICP AC</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Assay</th><th>RF</th><th>X</th><th></th><th>1</th><th>dentification</th><th>Sample</th><th></th><th></th></th<>									GIA	UA RE	ICP AC										Assay	RF	X		1	dentification	Sample		
bit         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m	Ca K	Rel		and the second	La	Sn	v	Cr	Mn	Fe	Sb	As	Cd	Co	Ni	Mo	Zn	Pb	Cu	Ag	C NOrg	Se	Ba	Rock Type	Rock Code	Thickness	Finish	Start	DDH
bit 0         no	المال حديدة فالمستحد الما				րթու	ppm	ppm	opm	ррт	%	ppm	թթու	րրա	րթու	րրա	ppm	ppm	թրա	րրո	ppm	%	ppm	որո			m	m	m	
Bato         Districtione         Districtione <thdistrictione< th="">         Districtione</thdistrictione<>	designed and the second second second second second second second second second second second second second se			0.56	20	-20		the second second	34	2.18	15	149	2.1	2	21	9 S	239	18	64	0,8	•	•	•	sandstone	I B	8.2	13	4.8	84-65
0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<>			0.0	0.84	21	-20	71	206	32	1.71	2	109	2.1	2	30	5 5	260	34	119	-0,2	-	•	-	sandstone	IB	8	21	13	84-65
bit 03       24.3       23.2       00       4       80       9       17.6       48       9       1.6       22.2       211       64       -20       12       1.1       0.43       1.         84.65       37.3       40.2       25.9       18       standatione       -       -       0.3       42       12       244       5       44       8       4.6       12.1       1.6       22.2       211       64       -20       12       1.1       0.43       1.0       0.2       22.2       244       5       44       8       4.6       12.1       1.1       0.42       1.1       0.42       1.1       0.42       1.1       0.42       1.1       0.42       1.1       0.42       1.1       0.42       1.1       0.42       1.1       0.42       1.1       0.43       1.1       0.1       0.2       1.1       0.42       1.1       0.3       34       1.4       300       4       51       1.1       1.1       0.42       1.1       0.04       1.1       1.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       <	سساب منفعهم ونصب			0.57	11	-20	43	206	90	1.5	6	38	8.6	7	47	4	38	17	102	0.3	-		•	sandstone	IB	7	28	21	84-65
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.55 0,26			0.63						1.86	-5	74		8	46	2	49	61	66	0,2	0.9	-2	1006	sandstone	B	6.55	34.55	28	84-65
bit 30       37.5       40.2       42       10       induitive       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - <td></td> <td></td> <td></td> <td></td> <td>اعتبسهما</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>9</td> <td>48</td> <td>17.6</td> <td>9</td> <td>80</td> <td></td> <td></td> <td>25</td> <td>143</td> <td>-0.2</td> <td></td> <td>-</td> <td>•</td> <td>sandstone</td> <td>IB</td> <td>2.75</td> <td>37.3</td> <td>34.55</td> <td>84-65</td>					اعتبسهما						9	48	17.6	9	80			25	143	-0.2		-	•	sandstone	IB	2.75	37.3	34.55	84-65
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				_							-5	_		·	1			12	42	0.3	•	•	•	sandstone	iB	2.9	40.2	37.3	84-65
bit operation       constraint								-	the second second second second second second second second second second second second second second second s		6	28	17.6	7	52		20	6	32	-0.2	-	•	•	sandstone	IB	4.8	45	40.2	84-65
0         0.4         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.12         0.1					1	_	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se				5	27		7	51			14	41	0.3	•	•	•	sandstone	18	7.4	52.4	45	84-65
3         3         6         2.45         1B         3 andstone         -         0.4         39         45         752         4         50         8         13         38         6         2.42         314         455         42         200         12         0.76         0.76         1.7           84-65         70.1         79.4         9.3         1B         silistone         -         -0.3         49         13         183.4         4         58         10         17.1         78         9         2.81         370         122         44         0.91         0.74         1.8           84-65         79.4         86.35         592         5.65         1B         silistone         -         -         0.2         26         12         0.64         0.64         1.8           84-65         92         94.3         2.3         1B         silistone         -         -         0.2         37         10         515         4         53         9         2.2         34         5         2.92         348         10         33         -20         11         0.64         0.64         1.8         11         2.5											6			8	45			<del></del>	38	0.3	1.15	3	1467	sandstone	18	5,75	58.15	52.4	84-65
ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability       ability						_					6				· · · · · · · · · · · · · · · · · · ·						•	•	•	sandstone	18	9.5	67.65	58.15	84-65
001       17.2       2.0       10       standstone       .       0.2       20       12       604       3       40       6       1.9       45       5       1.82       200       130       22       -20       10       0.46       0.61       1.         84-65       92       565       1B       stiltstone       1625       -2       0.88       -0.2       37       10       515       45       5       1.82       200       130       22       -20       10       0.464       0.64       1.         84-65       92       94.3       2.2       34.4       5       1.82       20       10       0.66       0.82       1.         84-65       92       94.3       98.7       4.4       1B       standstone       -       -0.2       18       11       251       5       42       7       1.4       51       -55       1.03       1.03       46       10       0.66       0.82       1.1         84-65       103.3       111.3       8       18       standstone       -       -0.2       28       6       10.6       29       -5       2.01       2.02       10       0.45						_					6				1							•	-	sandsione	IB	2.45	70.1	67.65	84-65
0000       1000       0000       1000       0000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000					· · · · · · · · · · · · · · · · · · ·										·		سنضعب معا		<u> </u>			•	-	siltstone				70,1	84-65
68-65       92       94.3       2.2       34       5       2.92       366       110       32       -20       10       0.66       0.82       1         84-65       94.3       98.7       4.4       1B       sandstone       -       -       0.2       37       10       515       4       53       9       2.2       34       5       2.92       366       110       32       -20       10       0.66       0.82       1         84-65       98.7       103.3       4.6       1B       sandstone       -       -       -       0.2       23       66       1007       5       10       2       38       6       2.65       1.72       230       169       21       -20       11       0.43       0.44       1.         84-65       111.3       116.9       5.6 118       saldstone       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -<	+				\$												<u> </u>				<u>.</u>		-	sandstone			86.35	79.4	84-65
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$																					88.0	-2	1625	siltstone	IB	5.65	92	86.35	84-65
Bit Col         Join	the second second second second second second second second second second second second second second second s										5						1				•	•	-	siltatone			94.3	92	84-65
ph-10       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10. <th< td=""><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-5</td><td></td><td>1.4</td><td></td><td></td><td></td><td></td><td>11</td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>sandstone</td><td></td><td></td><td></td><td>94,3</td><td>84-65</td></th<>	•									-	-5		1.4					11			-	-	-	sandstone				94,3	84-65
100         100         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111 <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>6</td> <td></td> <td>2</td> <td></td> <td></td> <td>-</td> <td></td> <td>6</td> <td></td> <td></td> <td>-</td> <td>-</td> <td>•</td> <td>siltstone</td> <td></td> <td></td> <td>103.3</td> <td>98.7</td> <td>84-65</td>				_							6		2			-		6			-	-	•	siltstone			103.3	98.7	84-65
B4-65       113       113       13       5       4.42       502       85       25       -20       17       1.49       1.34       2         B4-65       113       113       13       13       13       5       4.42       502       85       25       -20       17       1.49       1.34       2         B4-65       127       133.1       6.1       1B       sandstone       -       -       -0.2       29       18       943       2       67       14       0.6       14       6       4.14       520       91       27       -20       15       1.42       1.41       2.         84-65       133.1       137.7       4.6       18       560       4.62       15       0.4       93       9       4.05       400       93       36       -20       20       1.6       0.91       0.2       2.0       11       8.28       14       51       1.47       500       93       36       -20       20       1.6       0.91       0.2       2.0       1.41       1.42       1.42       1.42       1.42       1.42       1.42       1.42       1.42       1.42       1.42       1.42					_			<u> </u>		غيبيت مسيمي				· · · · ·					· · · · · · · · · · · · · · · · · · ·			•	-					103.3	84-65
action         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.         10.<					_																0.65	3	2246	siltstone	_		116.9	111.3	84-65
ar-rots       12       131       137.7       4.6       1B       silistone       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -<								بأسمعه معاصده ا										6			·	-	-	sandstone					84-65
B4-65       137.7       140.5       2.8       1B       sandstone       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - </td <td></td> <td></td> <td></td> <td>1.42</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>6</td> <td>· · · · ·</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><u>.                                    </u></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>84-65</td>				1.42							6	· · · · ·										<u>.                                    </u>	•						84-65
act of B4-65       140       5.5 ID B445       siltstone       20.8       2       1.4       -0.2       51       18       248       3       63       14       0.4       74       11       4.82       486       66       34       -20       13       1.52       1.44       2.         84-65       144       154       10       1B       siltstone       -       -       0.4       48       141       124       5       56       13       0.7       87       9       4.13       326       57       29       -20       14       1.21       0.89       1.         84-65       154       158,35       4.35       10       siltstone       -       -       0.9       52       88       484       17       83       10       2.6       105       9       2.66       23       97       42       20       8       0.64       0.59       1.6         84-65       162.5       172.5       7       18       siltstone       -       -       0.2       44       8       18       8       54       9       1.1       15       2.17       135       58       29       2.0       8       0.64<				1.6	and the second				-		9											-	•	siltstone					
Ref         140         154         150         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100 <td>And the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec</td> <td></td> <td></td> <td>1.4</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>11</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>÷</td> <td></td> <td></td> <td></td> <td>•</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>84-65</td>	And the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec			1.4							11							÷				•	-						84-65
actor         134         158.35         4.35         110         silistone         -         -         0.9         52         88         484         17         83         10         2.6         105         9         2.66         229         97         42         -20         8         0.54         0.59         1.1         15         -5         2.17         135         58         29         -20         13         0.65         0.54         0.9         1.1         15         -5         2.17         135         58         29         -20         13         0.65         0.54         0.9         1.1         15         -5         2.17         135         58         29         -20         13         0.65         0.54         0.9         0.54         0.9         1.1         15         -5         2.17         135         58         29         -20         13         0.65         0.54         0.9           84-65         172.5         176.8         4.3         1AA         slate         2817         -2         1.19         0.5         28         73         206         18         55         6         1.1         42         11         1.7.3											· · · ·	······				·		_	ĭ.i		1.4	2	2208				1	140.5	84-65
B4-65         172.5         71 BA         silistone         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -	A second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s												_			*						·	•						84-65
42-65         172.5         176.8         43 [AA         siate         2817         -2         1.19         0.5         28         73         206         18         355         6         1.1         42         11         1.73         246         136         33         -20         3         0.35         0.75         2           84-65         176.8         182.7         5.9         1AA         slate         -         1.3         37         144         195         19         73         8         1.5         47         16         2.25         283         114         36         -20         3         0.38         0.62         3											9							88			-		•	silistone	10	4.35	158.35	154	84-65
64605 172.2 170.6 - 172. 170.6 - 172. 170.6 - 172. 170. 172. 172. 172. 172. 172. 172. 172. 172					1						-5																	165.5	84-65
	2.5 0.15			_			اختصرهما				- 11				فسيسب الم		ف نعيب ا			~	1.19	2	2817				the second second second second second second second second second second second second second second second s	172.5	84-65
$[a_4 c_{5}]$ (27) 103 103 103 103 104 104 104 104 104 104 104 104 104 104	a management of the second second second second second second second second second second second second second			_							16	47		8	73				37			•	-	slate	_				84-65
04-03 182.7 173 10.5 Mices ministration							<u> </u>				5	-5		-1	6	-			<u>1</u>			•	•	limestone				182.7	84-65
84-65 193 203.3 10.3 MLS limestone 1.4 8 122 224 2 3 -1 1.2 16 -5 0.18 1536 9 3 -20 3 0.02 1.52								<u>`</u>							3	-	-	ALC: NOT THE OWNER, OR OTHER				•		limestone				193	84-65
24-65 158.35 155.5 7.15 1B sandstone 0.2 40 19 430 5 41 8 2.3 46 -5 2.22 217 90 19 -20 11 0.58 0.62 1.	1.36 0.22	62 1.	0.6	0.58	ų <u>11</u>	-20	19	90	217	2.22		46	2.3	8	41	J	43	19	40	0.2	•	<u>.</u>	-	sandstone	1B	7.15	165.5	158.35	84-65

.

 $\mathbf{N}_{1} = \mathbf{v}^{1}$ 

#### APPENDIX B GEOCHEMICAL CHARACTERIZATION OF WASTE ROCK DDH CONTINUOUS SAMPLING SILVERTIP PROJECT Page 3 of 20

.

Ν

....

ſ			Sample	dentificatio	n		<u> </u>				•••••						IK	L. Leac	h										
ĥ	DDH	Start	Finish	Thickness	Rock Code	Rock Type	Ag	Cu	Pb	Zn	Mo	Ni	Co	Cd	As	Sb	Fc	Mn	Ba	Cr	v	Sn	W	La	AL	Mg	Ca	<u> </u>	Sr
ľ		m	m	m			opm	ppta	րրու	ppm	րբա	թթու	թթա	րրո	րրո	ppm	<b>%</b>	թթո	րրա	ppm	ppm	րթո	րթու	ppm	%	%	%	饧	ppm
1	34-65	4.8	13	8,2	18	sandstone	•	•	-	-	·	•	-	-	-	-	-	-		-	•	-	-	•		•	•		<u>i</u>
	14-65	13	21	8	1B	sandstone	·	-		•	-	ŀ	·		•	-		·	·	ŀ	-	-		•		•	-	·	<u>i                                    </u>
1	34-65	21	28	7	1B	sandstone		-	•		-	·	ŀ	ŀ	-		·	·			-		-		<b>:</b> ,		i	·	<u> </u>
1	34-65	28	34.55	6,55	1B	sandstone	-0,2	82	78	52.	1 3	28	<u> </u>	20.8	7	-5	1.07	350	68	135	24	-20	-20	¹	0:29	0.4	1.82	0.12	65
5	34-65	34.55	37.3	2.75		sandstone	-		-	ŀ	ŀ	<u> -</u>	<u>-</u>		·	•			<u> </u>	•	•	•	·	<u> </u>	·	<u>.</u>	<u> </u>	·	[]
1	34-65	37,3				sandstone	Ŀ	·	-	<u>.</u>		ŀ	·	·	-	<u>.</u>	•	ŀ	·	<u> -</u>	ŀ	•	•	ŀ			<u> </u>	<u> </u>	ii
	34-65	40.2				sandstone	. <u></u>	<u>.</u>	·	<u></u>		ŀ	ŀ	·		<u>.</u>	ŀ	[•	·		<u> </u>	-	••••••	·	İ	•	i	<u> </u>	il
- E	34-65	45				sandstone	-	•	·	<u></u>	<u> </u>	<u> </u>	<u>i</u>		-	•	·		·		·	•	· -20	ŀ,		-		0.08	- 128
	84-65	52.4		5.75		sandstone	0.2	22	6	329	<u> </u>	22	<u> </u>	17.4	22	17	1.34	378	68	70	16	-20	-20		0.18	0.62	2.23	0.08	120
	84-65	58,15		9.5		sandstone	·			ŀ	-	<u> </u>		·			ŀ	ŀ—	·	<u>i</u>	i		-	[	·	•	Ľ.	<u> </u>	[]
E E	14-65	67.65		2,45 9,3		sandstone		·	<u></u>		· · · ·	<u>[</u>	<u> </u>			•	<u>[</u>	<u> </u>	<u></u>			<u>.</u>		<u></u>	<u> </u>		<del>[</del>		<u>[ </u>
	\$4-65	70,1	79,4			Isandstone				· ·····	È	[	[		<u> </u>		t	[	[					l					
- F	14-65 34-65	86.35				siltstone	0.2	45	42	652	25	39		26.4	52	29	1.28	360	66	71	16	-20	-20	2	0.28	0.52	1,77	0.11	104
	14-65	92				silistone						1				-					•	•	-	-		-	1.		
- E	14-65	94,3				sandstone	[					<del> </del>			-	-	-					-					1.		
	34-65	98.7		4.6		siltstone			-	<u> </u>		<del>.                                    </del>	-		•	~		-	-						-	-	-	-	-
- H	\$4-65	103.3	111.3	_	18	sandstone	-	-			-		1.		-	-			-	-	-	-	-	ŀ	•			-	-
i i i i i i i i i i i i i i i i i i i	4-65	111.3	the second second second second second second second second second second second second second second second se	5.6		silustone	0,3	35	15	769	3	34	6	0.4	22	-5	2.38	419	82	37	13	-20	-20	3	0.66	0.57	1.2	0,11	97
	84-65	116.9	the second second second second second second second second second second second second second second second s	10.1	18	sandstone	-		-		•	-		-	•	•			-		•	•				-		•	-
	84-65	127			18	sandstone		•	-	ŀ	-	-	I			•	-	·	-	·	-	•	-		-			-	·
	34-65	133.1	137.7	4,6	19	siltstone	-	•	•	-	•	ŀ	ŀ	-			•	ŀ	-		-	·	-	·	·		<u>-</u>	:	i
Ĩ	34-65	137.7	140.5	2.8	1B	sandstone	•	•	-		•		<u> </u>		•	-	•	·	·	<u>-</u>	ŀ.	·	·	ŀ	·		ŀ	•	Ľ.
j.	14-65	140.5	144	3.5	B	silistone	-0.2	51	20	234	+1	39	7	-0,2	34	-5	3.07	519	124	41	19	-20	-20	-1	0.72	1.12	2.72	0.11	110
Į.	34-65	144	154	10	10	silistone	•	-		ŀ	-	ŀ	ŀ	·			·	<u>.</u>	•	ŀ	·		•	•	·	-	ŀ		<u>i</u>
Ĩ	84-65	154	158.35	4,35		siltstone	-	-	•		ŀ	<u> </u>	·	<u> </u>	:	-	-	·		<u> -</u>	•			<u>i</u>	·	•	ŀ	•	È
1	84-65	165.5	172.5		LBA	silistone	•	•		<u>.</u>	ŀ	ŀ	<u>.</u>	·			I	<u>.                                    </u>	·	·	-	-	•	ŀ	•	·	<u></u>		<u> </u>
	84-65	172,5			144	slate	0,6	19	76	100	<u>ا</u>	14	<b> </b> !	0.5	27		0.41	257	148	95	13	-20	-20	<u></u>	0.14	0.73	2.86	0.08	157
	84-65	176.8			IAA	slate	ŀ			ŀ	<u>+</u>	<u> </u>	<u>i</u>	Ŀ		·	<u></u>	ŀ		<u> </u>	<b></b>	· · · · · · · · ·	·	<b>i</b>	i	<u>-</u>	<u> </u>	<u> </u>	ř
	84-65	182.7			MLS	limestone		·	<u> </u>	ŀ	<u></u>	<u>ŀ</u>	<u>ŀ</u>			i	i	·	i	i		· · · ·	•	·	i		<u> </u>	'	Fl
	R4-65	193			MLS	limestone	ŀ	·		<u>.</u>	<u> </u>	<u> </u>	<u></u>	<u>  </u>	•	·	i	ŀ	İ	<del></del>		*	·	·	i		<u> </u>	i'	£
1	84-65	158.35	165.5	7.15	İB	sandstone	J	•	l-	ŀ	ŀ	ŀ.	ŀ	-	-	-	<u> -</u>	ŀ	t		·	-		r	î	-	ľ	<u>نــــــــــــــــــــــــــــــــــــ</u>	<u>ا</u>

#### APPENDIX B GEOCHEMICAL CHARACTERIZATION OF WASTE ROCK DDH CONTINUOUS SAMPLING SILVERTIP PROJECT Page 4 of 20

 $\mathbf{D} = \{\mathbf{U}, \mathbf{U}, 1

]

.

٠

		Sample	Identificatio	on .		1									DI Wa	ter Shak	e Flask									
DDH	Start	Finish			Rock Type	Ag	Cu	Pb	Zn	Mo	Ni	Co	Cd	As	Sb	Fe	Mn	Ba	Cr	Sn	AL	Mg	Ca	Na	K	Sr
	m	m	m		1	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L:	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L,
84-65	4,1	13	8.2	18	sandstone	•	•	-	-	ŀ	•	-	-	-	-		-	•	-	-	-	-	-	-	-	•
84-65	1	21	8	IB	sandstone	-	-	]	•		•	l	•	•	•		-	-		<u>-</u>	<u>-</u>	<u> </u>	<u> </u>	-	•	·
84-65	2	28	7	18	sandstone	-	-	•	-	-	•	•	-	-	-	-	-	-	ŀ		ŀ	ŀ	-	•		
84-65	21	34.55	6.55	18	sandstone	-0.02	-0,1	-0.2	-0.1	0,1	-0,1	-0.1	-0.02	-0.5	-0.5	-1	-0.1	-0.1	-0,1	-1	-1	7	48	5	61	-0.1
84-65	34.5	37.3	2.75	18	sandstone	-	•	-	-	-	•	ŀ	•	-	-	-	-	-	-	ŀ-	ŀ	•	•	•	-	il
84-65	. 37.3	40.2	2.9	18	sandstone	•	-	- •	-	•	-	-	-	-	-			•	-	-	-	-	-			·
84-65	40.2	45	4.8	lB	sandstone		•	-		-	-	•	-	-	-			-	•	ŀ	Ŀ	Ŀ	• •	·	-	
84-65	4	52,4	7.4	İB	sandstone	-	-	۰.		-	-	ŀ	•	-	-		-		<u> </u>	<u> -</u>	-	ŀ		ŀ	•	i
84-65	52.4	58.15	5.75	IB	sandstone	-0.02	-0.1	0.2	-0.1	0.2	-0.1	-0.1	-0.02	-0.5	-0.5	1	-0.1	-0,1	-0.1	-1	-1	13	36	7	55	0.1
84-65	58.1	67.65			sandstone	<u> </u>		-	•	•		<u> </u>	-	-	ŀ	ŀ	•		<u> </u>	<u> </u>	<u>-</u>	<u> </u>	<u> </u>		-	ŀ
84-65	67.6	70.1			sandstone	<u></u>	ŀ	ŀ	-	<u>-</u>		·	•	-	· .	-	-		<u> </u>	ŀ	<u> -</u>	<u> -</u>	ŀ	-	·	·
84-65	70.	79.4	9.3		siltstone	<u>}-</u>	Ŀ	<u>.</u>	·	-	•	·	•	<u>.</u>	<u>•</u>	·	:		-	-	ŀ	ŀ	-	•	•	<u> </u>
84-65	79.4		6.95		sandstone	<u>.</u>	<u>.</u>	<u> -</u>	-	•	•	-	-		<u>-</u>		-	-	:	ŀ	ŀ.	*	٠		·	·
84-65	86.3				silistone	-0.02	-0.1	-0.2	-0.1	0.3	-0,1	-0.1	-0.02	-0.5	-0.5	2	-0.1	-0,1	-0.1	<u> </u>	ļ	e	46	7	67	0.1
84-65	97				silistone	<u> -</u>	ŀ	•		<b>i</b>		-	•	· · · ·	•	•			ļ	ŀ		ļ <del>.</del>	<u> </u>		-	i d
84-65	94.1				sandstone	<u> </u>	<u>.</u>	<b>;</b>				<u>.</u>	·	•	ŀ	• • •	·		i	<u> </u>	<u></u>		<u> </u>	<u> </u>	-	i – I
84-65	98.			<u> </u>	silisione	<u> -</u>		ļ	·		-	ŀ	·	•	-	•	·		·	<u>i</u> —–	i	<u> -</u>	<u> -</u>		·	F
84-65	103.1			18	sandstone	ŀ	·	-	-	·	•	<u></u>	-	-	<u></u>	<u> </u>	-	-	·	· .	ŀ	r.	-		-	i al
84-65	111.				siltstone	-0.02	-0.1	-0.2	-0.1	-0,1	-0.1	-0.1	-0.02	-0.5	-0.5	-1	-0.1	-0.1	-0.1	<u>  · ·  </u>		17	49	9	73	0.1
84-65	116.9				sandstone	ŀ	<u>:                                    </u>	<u> </u>	·	· · · · · ·		·	•		·	·	-	•	•	·	ŕ	ŀ				F
84-65	12				sandstone	<u> </u>		<u>i</u>	<u></u>		•	·	•	-	·					ŀ	ŀ	<b>¦</b>	<b>i</b>	•	•	il
84-65	133.1	137.7			silitatione	<u> </u>	-	İ	·	<u>-</u>			-	•	·	•	•			<u> </u>	<u>-</u>	{ <b>-</b>	ŀ	<u>-</u>	·	l
84-65	137.		2.8		sandstone	<u> </u>	<u></u>			·	<u> </u>		-	-	-0.5			·	·	·	<u></u> ;	20			- 78	0.2
84-65	140.				siltstone	-0.02	-0.1	-0.2	-0,1	-0,1	-0.1	-0.1	-0.02	-0.5	-0.5	-1	-0.1	0.1	-0.1		<u>-</u> !	<u> </u>	116	- 6	/8	0.2
84-65	14			18	siltstone	ŀ	<u>i</u>	ł <u> </u>	·	<u> </u>	-	·			i	F	·	•	·	<u>۰</u>	-	ř	-		·	il
84-65		158.35	4.35		siltstone	<u></u>	<u>i</u>	·	·	ii		•	·	•	·	*	[		[	<u> </u>		F—	<b></b>		-	<u> </u>
84-65	165.			IBA	siltstone	1-000	<u></u>	-	i		· 	·	-		·	ľ	· -0.1	-0.1	• -0.1	-	ŀ	1 2	- 392	: 8	- 55	
84-65	172.			IAA	slate	-0.02	-0.1	-0.2	-0.1	0.3	-0.1	-0.1	-0.02	-0.5	-0.5		-0,1	-0,1	-0.1	{		64		8		
84-65	176.0				slate	ŀ	<u> </u>	<u> </u>	•	·	·	·			<b></b>	<b>i</b>	<u></u>		•	ŀ		r	<b>•</b> • • •	•		l
84-65	182.			MLS	limestone	<b>i</b>	<b>f</b>	·	<u> </u>	ii		i	<u>.</u>	•	••••	·				<u>-</u>	i	F	<u> </u>			il
84-65	19			MLS	limestone	<u> </u>	<u></u>	<b> </b>	· · · ·	<b>[</b>	•	<u></u>					·	•					[ [*]			l
84-65	158.35	165.5	7.15	118	sandstone	ŀ:	<u> </u>	ŀ	l	l:	•	<u>.</u>	•	i <b>.</b>	<u> </u>	<u>i-</u>	Ľ	t	-	ŀ	i*	Ľ.	<u>F </u>	<u>.</u>	•	<u> </u>

N

) ()) ()) ()) ()) ()) ()) ())

.....

#### APPENDIX B GEOCHEMICAL CHARACTERIZATION OF WASTE ROCK DDH CONTINUOUS SAMPLING ł SILVERTIP PROJECT Page 5 of 20

.

		Sample	Identificatio	)n					ACID-B.	ASĘ AC	COUNTI	NG		
DDH	Start	Finish	Thickness	Rock Cod	Rock Type	Fizz	Normal	HCI	NP	AP	NNP	MPA	pН	S
	m	m	m	l			N	ml	kg/t	kg/l	kg/t	kg/t		%
84-95	5.2	13.5	8,3	2AP	sand/siltst.	1	0.1	- 40		8.1	5.4	11,9	6.64	0.38
84-95	13.5	22.4	8.9	2AP	silt/sandst.	1	0.1	44	) 21.4	15.6	5.8	19.1	7.35	0.61
84-95	22.4	26.6	4.2	2AP	siltstone	1	0.1	4(	33.4	14.4	19	16.2	8.26	0.52
84-95	26.6	32.5	5.9	2AP	silt/sandst.	1	0.1	44		13.9		18	8.32	0.58
84-95	32.5	39.1	6,6	2AP	sand/siltst.	1	0.1	40	33	8.8	24.2	10	8.37	0.32
84-95	39.1	42.9	3.8	2AP,	slate/siltst.	1	0.1	- 41	45.8	25	20.8	31.2	8,2	1
84-95	42.9	52.7	9.8	2AP	sand/siltst.		0.1	- 40	53.1	24.7	28.4	29.7	8.03	0.95
84-95	52.7	62.7	10	2AP	silistone	1	0.1	4		28.8	-4	33.8	8.08	1.08
84-95	62.7	69.1	6.4	2AP	slate/siltst.	1	0,1	- 40	33.1	37.6	-4.5	44.6	7.86	1.42
84-95	69.1	75.5	6.4	2AP	sandstone	2	0.5	44	) 46.6	71.2	-24,6	77.5	8.24	2.48
84-95	75.5	81.3	5.8	2AP	sand/siltst.	2	0.5	- 44	53.5	28.1	25.4	31.2	8.07	1
84-95	81.3	83.9	2.6	2AP	sand/slate	2	0.5	41	60	64.7	-4.7	71.6	8.07	2,29
84-95	83.9	86.75	2.85	2AS	silistone	2	0.5	44		63.4	-6.4	69.4	8,12	2,22
84-95	86.75	89.9	3.15	2AS	siltstone	2		44				77.4	8.18	2,48
84-95	89.9	91.4	1.5	O ZONE	exhalite	2	0.5	- 41				61.9	8.26	1,98
84-95	91.4	93.8	2.4	2AS	siltstone	3	0.5	8		85.9		93.8	8.06	3
84-95	93.8	96.1	2.3	2AS	siltstone	2	0.5	41	28.5	99.1	-70.6	105.6	7.73	3.38
84-95	96.1	96.8	0.7	2AS	siltst/imst	3	0.5	8	) 498	48.1	449.9	54,1	8.26	1.73
84-95	96.8	99.6	2.8	2AS	silistone	2	0.5	4	32.6	52.6	-20	64.2	7.84	2.06
84-95	100.1	102.6	2.5	2AS	siltstone	1	0,1	- 41	50.5	58.8	-8.3	72.8	7.96	2.33
84-95	102.6	105.5	2.9	1-ZONE	exhalite	3	0.5	80	) 231.5	79.1	152.4	90,8	8.16	2.9
84-95	105.5	108	2.5	2AS	siltstone	1	0.1	- 41		109.7	-89.3	129.7	6.88	4,15
84-95	108	108.75	0.75	2AS	limestone	3	0.5	- 84		39.7	616.5	50.3	7.75	1.61
84-95	115	121.1	6,1	245	slate/siltst.	1	0.1	44			6.4	78.4	7,75	2.51
84-95	121.1	126.3	5.2	2AC	siltstone	3	0.5	8		43.1	330.7	51.9	7.96	1.66
B4-95	126.3	132.3		UZONE	ex/hi sulph	2	0.5	44	-	292.2	-187.9	298.1	6.63	9.54
84-95	132,3	133.9		YBR	quariz vein	3	0.5	8		57.8	673	70.9	8.62	2.27
84-95	133.9	137,5	3.6	YBR	exh/qz vein	1	0.1	- 41		218.1	-201,4	230.6	7,39	7.38
84-95	137.5	141.9			hi sulphide	1	0.1	- 44		834.1	-830.4	834,4	6.39	26.7
84-95	141.9	145.5			exhalite	2	0.5	- 44		200	-77.8	206.2	8	6.6
84-95	145.5	150.3	Les	2AA	slate/mdst		0.1	44		135,3	-111.7	155.6	6.52	4.98
84-95	150.3	154.9		2AA	slate/mdst	1	0.1	40		73.4	-41	95.3	6.95	3.05
84-95	154.9	160		1 <b>B</b>	sandstone	1	0.1	4		37.5	4.5	45.9	7.74	1.47
84-95	160	165.4	5.4		sandstone	2	0.5	. 40		25	84.3	30.2	8.2	0.96
84-95	108.75	115	6.25	285	silistone	1	0.1	4(	41.4	70	-28.6	84.4	7.92	2.7

and an an an and a second second second second second second second second second second second second second s

ï

1

•

....*

## APPENDIX B GEOCHEMICAL CHARACTERIZATION OF WASTE ROCK DDH CONTINUOUS SAMPLING SILVERTIP PROJECT Page 6 of 20

r 1 1

.

.

		Sample	Identification	<u></u>		x	RF	Assay										ICP AC	JUA RE	GIA									
DDH	Start	Finish	Thickness	Rock Code	Rock Type	Ba	Se	C NOrg	Ag	Cu	РЪ	Zn	Мо	Ni	Co	Cd	As	Sb	Fe	Mn	Cr	V	Sn	La	AL	Mg	Ca	_ К	Sr
	m	m	m			ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm		ррт	ppm	ppm	96	17	£		ppm
84-95	5.2	13.5	8.3	2AP	sand/siltst.		-	-	-0.2	62	20	128	3	30	4	0.5	41	6	2.75	53	79		-20	20			0.21	0.31	
84-95	13.5	22.4	8.9	2AP	silt/sandst.	-	•	•	-0.2	90	21	238	3	46	10	6.9	18	-5	3.3	125	59	43	-20	19	2.14	0.8	0.28	0.4	
84-95	22,4	26.6	4.2	2AP	siltstone	-	-	-	-0.2	42	22	224	2	43	10	4.1	30		3.14	361	50		-20	15			0.67	0.24	87
84-95	26.6	32.5	5,9	2AP	silt/sandst.	2442	-2	0.07	0.4	59	44	662	3	46	11	4	28		2.10	230	62	37	-20	18		0.78	0.43	0.36	63
84-95	32.5	39.1	6,6	2AP	sand/siltst.		-	•	-0.2	47	24		2		10	1,1	17		3.34	284	74	36	-20	20		0.87	0.56	0.34	81
84-95	39.1	42,9	3.8	2AP	slate/siltst.	-	-	-	-0.2	47	27	231	3	45	10	1.1	29		3.12	395	61	34	-20	14			0.91	0.29	
84-95	42.9	52.7	9.8	2AP	sand/siltst.	-		•	1.3	49	346	748	3	40	9	3.9	44	5	2.99	300	88	32	-20	14		0.79	0.79	0.32	
84-95	52.7	62.7	10	2AP	siltstone	-	-	-	0.5	57	117	631	3	42	. 9	3.3	46		3.17	268	79	35	-20	15		0.79	0.64	0.36	
84-95	62.7	69.1	6,4	2AP	slate/siltst.	3726	2	0.19	0.6	52	93	608	3	42	9	2.9	90		3.09	284	50		-20	12			0.69	0.27	
84-95	69.1	75.5	6.4	2AP	sandstone	-	•	-	2.2	57	364	1015	2	1 10	10	5.1	280		3.21	556	69		-20	8	0.8		1	0.35	38
84-95	75.5	81.3	5.8	2AP	sand/siltst.	•	•	-	3.4	64		940	2	38	10	4	41		2.84	358	55		-20	11	1,2	0.64	0.81	0.31	
84-95	81.3	83.9	2.6	2AP	sand/slate				5.7	66		1011	2	48	9	4.6	141		2.69	513	70		-20	7	0.55	0.59	1.39	0.3	
84-95	83.9	86.75			siltstone	-	-	·	7.5	75	1325	1335	. 2	48	9	5.7	132		2.01	492	87		22	. 8	0.6		1.35	0.32	105
84-95	86.75	89.9			siltstone	6736	2	0.43	5.3	68	957	888		53		3.6	69		2.64	319	85		30	5	0.58	0.22	1.42	0.24	72
84-95	89.9	91.4		0-ZONE	exhalite	·	-	·	2.8	47	119	705	1	45		2.8	36		2.1	204	89		-20	4	1.06	0.19	0.9	0.16	43
84-95	91.4	93.8			siltstone	ŀ		-	3	49	271	549	1	41	6	2.2	38		3.1	442	77		-20	3	0.72	0.26		0.24	80
84-95	93.8	96.1			siltstone	Ŀ	ŀ		6.6	143		5056	2	48	6	19	52		3.23	283	79	19	93	5	0.42	0.18	0.91	0.21	
84-95	96.1	96.8			siltst/imst	ŀ		•	3.1	31	350	1794	-1	16	3	8.1	29		1.79	1517	14	8	-20	5	0.27	0.22	10	0.15	
84-95	96.8	99.6		_	siltstone	3771	5	0.36	4.2	51	773	1544	1	44	5	6.3	60	65	2.08	293	117	21	-20	4	0.34	0.18	1.19	0.18	57
84-95	100.1	102.6			siltstone	ŀ	·	<u>.</u>	•		-			•	•	·	<u>.</u>	[·			-		-			·			;
84-95	102.6	105.5		ZONE	exhalite	-	·	·	-	•	•	•	-	<u> </u>		·	-	ŀ.	•	-				·	-	·	·	<u> </u>	<u> </u>
84-95	105.5	108			silisione	8287	3	0.24	13.2	221	2327	13000	2	. 75	10	47.9	99	73	3.76	381	105	20	112	3	0.45	0.12	0.8	0.18	26
84-95		108.75	0.75		limestone	ŀ.,		<u>-</u>	-			·	•	ŀ	•	-		<u> -</u>		<u> </u>		·	•	•	•	•		<u> </u>	<u> </u>
84-95	115	121.1			slate/siltst.	ŀ		<u>-</u>	•	<del>.</del>			-	ŀ	·		<u>.</u>	<u> </u>	·			-	•	<u>·</u>		•		<u> </u>	·
84-95	121.1	126.3			silistone	<u>-</u>	·	·	-	-	•	·		<u> </u>	•	·	-	-	•	·				<u>-</u>	-	•	-	<u> </u>	<u>.                                    </u>
84-95	126.3	132.3		U-ZONE	cx/hi sulph	5890	2	0.27	13.6	189	1913	12000	8	84	13	44.6	612	39	8.75	330	161	53	45	1	0.66	0.21	1,17	0.28	16
84-95	132.3	133.9		YBR	quartz vein		ŀ		-	-	•	-		•		·	-	-	-			-	-	-	-	-	-	<u>.</u>	·
84-95	133.9	137.5			exivgz vein	Ŀ			•	-		·	-	•				<u></u>	-	·	·	·	-				-	<u> </u>	
84-95	137.5	141.9		D-ZONE	hi sulphide	ŀ	<u></u>	ŀ	<u>.</u>	-	-			i	-	·	-					·			<u>i</u>	·	•	·	<u> </u>
84-95	141.9	145.5		D-ZONE	exhalite	<u>-</u>	<u>i                                     </u>	ŀ	î	-	·	•	•	·			•	ŀ	-	·		-							<u> </u>
84-95	145.5	150.3			slate/mdst	2649	25	0.19	7.3	. 99	675	3690	35	100	4	24.3	181	46	4.94	101	157	282	21	3	0.44	0.03	1.42	0,19	58
84-95	150.3	154.9			slate/mdst	ŀ		ŀ	·	<u>.</u>	•	-		<u>-</u>		·	-	ŀ	-		:			<u>i</u>	•	•		<u>.          </u> ¦	<u> </u>
84-95	154.9	160			sandstone	<u> </u>	<u>-</u>	·		-	•	•		İ		<u> </u>	•	ľ	<u>۰</u>	•		<u> </u>	-			i	<u> </u>	<u></u> f	l
84-95	160	165.4	5.4		sandstone	<u> </u>	ŀ	ŀ	-		-	•	•	•		<u> </u>	•	ŀ	ŀ	-	•	:	:		<u> </u>	: 		<u> </u>	<u></u>
84-95	108.75	115	6.25	ZAS	siltstone	ŀ	-	•	-	-	-	-	•	t	-	-		ŀ	-	•	·	•				• .	•	<u>·</u>	-

N

114 June 1

....

#### APPENDIX B GEOCHEMICAL CHARACTERIZATION OF WASTE ROCK DDH CONTINUOUS SAMPLING SILVERTIP PROJECT Page 7 of 20

. .

.

-E-----

المحمد ال

**]**-

(____)-, Land

ի

1

[		Sample	Identificatio	n		ľ````										H	CL Leac	h						••••				
DDH	Start	Finish	Thickness	Rock Cod	Rock Type	Ag	Cu	Pb	Zn	Mo	Ni	Co	Cd	As	Sb	Fe	Мл	Ba	Cr	V V	Sπ	W	La	AL	Mg	Ca	K	Sr
	m	m	m			ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	<b>%</b>	%	ppm
84-95	5.2	13.5	8.3	2AP	sand/siltst.	-	-	-		ŀ	•	ŀ	-	-	-	-					-	-	-	-	-		•	
84-95	13.5	22.4	8.9	2AP	silt/sandst.		-	-	-	-	-	-	-	-	-	-	-	-	-	-	•		-		-	-	-	
84-95	22,4	26.6	4.2	2AP	silitatione	•	•	•	•	ŀ	•	•		•	•			•	-	-	-		-	-	-	-	•	
84-95	26.6	32.5	5.9	2AP	silt/sandst.	•	•	-	- '	-	-	-	-	-	-	-	-	-	-	-	•			• ;	-	-	•	-
84-95	32.5	39.1	6.6	2AP	sand/siltst.	-	-	-	-			-	-	-	-	·		-		-	-	-	ŀ	-	-	·	-	•
84-95	39.1	42.9	3.8	2AP	slate/siltst.	-		•	•	-	-	-	-	ŀ	-	-	-	-	-	•	•	•	ŀ	÷	-	-	-	-
84-95	42.9	52.7	9.8	2AP	sand/siltst.			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
84-95	52.7	62.7	10	2AP	silistone		•	•	-	-	-	-	-		-	- ·	-	-	-	•	•	-	-	•	•	-	-	-
84-95	62,7	69.1	6.4	2AP	slate/siltst.	-		•	•	-	-	-	-	•	-	-	-	-	•	•	•	۰.	-		-	-	-	-
84-95	69.1	75.5	6.4	2AP	sandstone		-	-	+	•	-	•	•		•	*		•	+	-	-	-	-	-	-	-	-	-
84-95	75.5	81.3	5.8	2AP	sand/siltst.		-	-	•	•	•	•	•	+	• .	-	-	•		-	-	-	I	-	-	-	•	-
84-95	81.3	83.9	2,6	2AP	sand/slate	-	-		-	•		•	•	-	~	-		-	•	-	-	-	-	-	-	-	-	-
84-95	83.9	86.75		2AS	siltstone	-	-		•	•	•	•	-	-		•	-		•	~		•	-		-	-	•	•
84-95	86.75	89.9			siltstone	-	-	-		•	-		-	-	-	-	•	•	-	-	-	-	-	-	-	-	•	•
84-95	89.9	91,4	1,5	O-ZONE	exhalite	-	-	-	-	-		-	-	-	-		-	-	-		-	-	-		-	•		
84-95	91.4	93.8			siltstone		•	•	-	-	-	-	۰.	-	ŀ	-	-	•	•	<u>.</u>	-	٠	ŀ	-	-	-	-	-
84-95	93.8	96,1			siltstone	-	-	-	•	ŀ	•	•	•	-			-	-	-		-	-		-	-	•	•	
84-95	96,1	96.8			siltst/Imst	-	-	•	•	•	-	•	-	-		-	-	-		<u> </u>		-	-	-	-	•		-
84-95	96.8	99.6			siltstone	-			-	-	-		-		ŀ	-	-	-			-		·	-	•	•	-	-
84-95	100.1	102.6			siltstone	•	-	-	-	-	•	-	-	-	-	-	-	-					-		•		-	-
84-95	102.6	105.5			exhalite	-		-	-	•	•	·	-	-	-	•	-	-				<u>.                                    </u>	-	-		•	-	
84-95	105.5	108			silistone	-0,2	13	864	1276	•1	19	3	4.4	21	9	0.49	337	382	58	4	-20	-20	-1	0.13	0.01	•	0.07	62
84-95		108.75		2AS	limestone		•	-	-		-		-	-	<u>-</u>	-	-	-			-	·	ŀ	•	•	-	-	<u>.                                    </u>
84-95	115	121.1			slate/siltst.		•	•	•	<del>.</del>	<del>.</del>		•	<u>.</u>	Ŀ	·		•	•			-	·		-	-	•	
84-95	121.1	126.3			siltstone	•			·	•	•	·	-		·		-	<u>-</u>		-	-				•	·	<u> </u>	·
84-95	126.3	132.3			ex/hi sulph	-0.2	. 9	1070	2435	2	10	-1	10.5	20	-5	0.45	347	939	122	12	-20	-20	1	0.26	0.09	<del>.</del>	0.12	48
84-95	132.3	133.9		YBR	quartz vein	•	-	-	·	٠	•			·	•	-	•			-		-	•	•	•	•	-	
84-95	133.9	137.5			exh/qz vein	-	-	·	•	•	-	-	•	·	•	•	•	•	-	•	•	•	-	-	-		•	·
84-95	137.5	141.9			hi sulphide	-	-	-		•	•	•		•		-		-		-	-	-	-	-	•		1	-
84-95	141.9	145.5		D-ZONE		•	-	-	•		-	-		-	-	-	-	-	-		-	•	•	-	-	-	-	•
84-95	145.5	150.3			slate/mdst	-0.2	19	487	804	6	47	1	5.6	61	5	0.52	103	149	86	44	-20	-20	3	0.08	-0.01	-	0.05	76
84-95	150.3	154.9			slate/mdst	-	-	·	•	•		<del>.</del>	-	·	•	-	•	·	-	•		-	-		-	-	·	-
84-95	154.9	160			sandstone	·	-	·			-	·			-	-					-	-	•	-	•	·	-	-
84-95	160	165.4	5.4		sandstone	-	•		•	-	-				-	-	-		-	-	- ]	•	<u>-</u>	-	-	-	-	]
84-95	108.75	115	6.25	2AS	siltstone	-	-	-	•	-	-	-	-	-	-	-	-	-	. ]	-	-	-	•	•	•	•	- 1	. ]

N and

#### APPENDIX B GEOCHEMICAL CHARACTERIZATION OF WASTE ROCK DDH CONTINUOUS SAMPLING SILVERTIP PROJECT Page 8 of 20

.

84-95       32.5       39.1       4.6.02AP       isand/situt       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       . <td< th=""><th></th><th></th><th></th></td<>			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	a Na K	ĸ	
84-95       5.2       13.5       8.8       8.9       2AP       situ/sands.       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -		_	mg/
84-95       22.4       26.6       42       20.4       silistands.       0.02       0.1       0.02       0.3       0.02       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1 </td <td></td> <td></td> <td>1.</td>			1.
84-95       26.6       32.5       5.9       2AP       sill/standati.       40.2       0.1       0.2       0.1       0.02       0.5       1       0.1       0.1       0.1       1       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -			<u>t</u>
84-95       32.5       39.1       66.62AP       sandvillet </td <td></td> <td>t</td> <td>t-</td>		t	t-
84-95       32,5       39,1       46,6       AP       fiand/allist.       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -	19 11 65	65	;      .
84-95       42.9       52.7       9.8       2AP       sand/sitts.       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .<		<u> </u>	t
84-95       52.7       62.7       60.1       6.4 (2AP)       slitistone       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -	- <u> </u>	<u> </u>	<del>[</del>
84-95       62.7       69.1       6.4       2AP       slate/situt,       -0.0       0.1       0.1       0.0       0.0       0.1       0.1       0.0       0.0       0.1       0.1       0.0       0.0       0.1       0.1       0.0       0.0       0.1       0.1       0.1       0.0       0.0       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1 <td></td> <td></td> <td><del>[</del></td>			<del>[</del>
84-95       69:1       75.5       6.4       2AP       sandstone       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - <td>-<u>l. [</u></td> <td><del>[.</del></td> <td>f</td>	- <u>l. [</u>	<del>[.</del>	f
84-95       69.1       75.5       81.3       5.8       2AP       sand/sints       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -	65 7 56	56	
84-95       81.3       83.9       2.6       2AP       sand/slate       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - </td <td></td> <td></td> <td><u>t</u>.</td>			<u>t</u> .
84-95       83.9       86.75       2.85       2AS       silistone       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -<			t
84-95       86.75       89.9       3.15       2AS       silistone       -0.02       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -1       -1       10       77       44         84-95       93.8       94.1       93.8       2.4X       silistone       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -			
84-95       89.9       91.4       1.5       O-ZONE       exhalite       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -<			
84-95       89.9       91.4       1.5       O-ZONE       exhalite       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -<	79 4 63	63	[
84-95       93.8       96.1       2.3       2AS       siltstone       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - <td><u></u></td> <td></td> <td>-</td>	<u></u>		-
84-95         96.1         96.8         0.7         2AS         silts/Imst         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <td>-<u> .     .                              </u></td> <td><u> </u></td> <td><u>.</u></td>	- <u> .     .                              </u>	<u> </u>	<u>.</u>
84-95       96.8       99.6       2.8       2AS       silistone       -0.02       -0.1       -0.1       -0.1       -0.02       -0.5       0.7       -1       0.6       0.1       -1       -1       28       399       4         84-95       100.1       102.6       2.5/2AS       silistone       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -	-		<u> </u>
84-95       100.1       102.6       2.5 2AS       silistone       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -			
84-95       100.1       102.6       2.5/2AS       silistone       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .	399 4 60		
84-95       105.5       108       2.5       2AS       siltstone       -0.02       -0.1       -0.1       -0.1       -0.02       -0.5       -1       3.9       0.1       0.1       -1       1       306       696       5         84-95       108 108.75       0.75       2AS       limestone       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -		<u>-</u>	
84-95       108       108.108.75       0.75       2AS       limestone                                                                                                         <	- <u> </u>		
84-95       108 108.75       0.75 2AS       limestone       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - <t< td=""><td>96 5 78</td><td>78</td><td><u> </u></td></t<>	96 5 78	78	<u> </u>
84-95       121.1       126.3       5.2       2AC       siltsone       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - </td <td></td> <td></td> <td></td>			
84.95       126.3       132.3       6       U-ZONE       exhi sulph       -0.02       -0.1       -0.1       -0.1       -0.02       -0.5       0.5       -1       5       0.1       -1       1       39       672       5         84-95       133.9       1.6       YBR       quatt vein       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - <td< td=""><td>-<u> </u></td><td></td><td></td></td<>	- <u> </u>		
84-95       132.3       133.9       1.6       YBR       quartz vein       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -			
84-95       132,3       133,9       1.6 YBR       quartz vein       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - <t< td=""><td>72 5 105</td><td>105</td><td></td></t<>	72 5 105	105	
84-95       137.5       141.9       4.4       D-ZONE       hi sulphide       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       <	- <u> </u>  .		<u>`</u>
84-95         141.9         145.5         3.6         D-ZONE         exhalite         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -<			
84-95         143.5         150.3         4.8         2AA         slate/mdst         -0.02         -0.1         -0.1         -0.1         -0.1         -1         -1         -7         793         6           84-95         150.3         154.9         4.6         2AA         slate/mdst         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -	- <u> </u>	t	-
84-95         150.3         154.9         4.6         2AA         state/mdst         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - </td <td>-<u> </u></td> <td></td> <td>-</td>	- <u> </u>		-
84-95         150.3         154.9         4.6         2AA         slate/mdst         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - </td <td>93 6 57</td> <td>57</td> <td></td>	93 6 57	57	
	······································	<u> </u>	-
184.05 165 165 1 165 4 5 4 TB sandstone in the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second seco	- <u> </u>		
	-1		
84-95 108.75 115 6.25 2AS sillstone			

1

APPENDIX B GEOCHEMICAL CHARACTERIZATION OF WASTE ROCK DDH CONTINUOUS SAMPLING SILVERTIP PROJECT Page 9 of 20

		Sample	Identificatio	on					ACID-B.	ASE AC	COUNTI	NG		
DDH	Start	Finish	Thickness	Rock Code	Rock Type	Fizz	Normal	HCI	NP	AP	NNP	МРА	pH	S
	m	m	m				N	ml	kg/t	kg/t	kg/t	kg/t		%
97-15	9.14	17.7	8.56	1 <b>B</b>	sandstone	1	0.1	40	29.3	6.2	23.1	7.5	8.19	0.24
97-15	17.7	21.5	3,8	1B	sandstone	2	0.5	40	64.3	45.3	19	48.8	8.3	1.56
97-15	21.5	25	3.5	IB	siltstone	2	0.5	40	85	59.1	25.9	64,4	8.34	2.06
97-15	25	28	3	18	siltstone	1	0.1	40	59.7	37.2	22.5	42.2	8.28	1.35
97-15	28	33.5	5.5	1B	siltstone	t	0.1	40	59.1	125.6	-66.5	135.6	8.07	4,34
97-15	33.5	36.8	3.3	1B	sandstone	2	0,5	40	88	\$3.1	34,9	64.7	8,47	2.07
97-15	36.8	42.6	5.8	1B	siltstone	1	0.1	40	53.9	90.9	-37	100.3	8.25	3.21
97-15	42.6	47.55	4.95	IAA	slate	2	0.5	40	105	115.9	-10.9	124.7	7.79	3.99
97-15	47.55	54.5	6.95	LZ	hi sulphide	3	0.5	80	350,1	514.4	-164.3	557,2	8.02	17.83
97-15	54.5	56.2			slate	3	0,5	80	196	65.6	130.4	74,2	7.52	2.38
97-15	56,2	58	1.8	LZ	hi sulphide		0.1	40	16	315.6	-299,6	358.4	6,72	11.47
97-15	58	60.8	2.8	IAA	sillstone	3	0.5	80	106.2	45.6	60.6	54.1	7.59	1.73
97-15	60.8	66.15	5.35	IAA	silisione		0.5	40	40.7	33.1	7.6	44.7	6.85	1.43
97-15	66.15	70.1	3.95	IAA	slate	. 3	0.5	80	288.8	60.9	227.9	68.8	7.78	2.2
97-15	70.1	74.5	4.4	MLS	limestone	3	0.5	80	915	22.7	892.3	24.7	8.27	0,79
97-15	74.5	84.25	9.75	MLS	limestone	3	0.5	80	937.4	1.6	935.8	2.2	8.38	0.07
97-15	84,25	85	0.75	IAA	siltstone	3	0.5	80	190.5	59.4	131.1	68.4	7.85	2,19
97-15	85	92.66	7.66	MLS	limestone	3	0.5	80	986.6	9.1	977,5	10.6	8.26	0.34

.

.

.

١

÷

N

#### APPENDIX B GEOCHEMICAL CHARACTERIZATION OF WASTE ROCK DDH CONTINUOUS SAMPLING SILVERTIP PROJECT Page 10 of 20

SELECENE CERENCE CELENCE CELENCE

	· · · · ·																												
L		Sample	Identificatio	on		X	RF	Assay										ICP A	<b>DUA RE</b>	GIA							· ·		
DDH	Start	Finish	Thickness	Rock Coc	Rock Type	Ba	Se	C NOrg	Ag	Cu	Pb	Zn	Mo	Ni	Co	Cđ	As	Sb	Fe	Мл	Cr	v	Sn	La	Al	Mg	Ca	к	Sr
	m	m	m			ppm	ppm	%	ppm	ppm	ppm	ppm	րթու	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	%	%	%	ppm
97-15	9.1	_			sandstone	<u>-</u>		-	0.2	26	e	334	3	31	7	3.8	27	-5	1.88	169	151	16	-20	16	0.59	0.28	0.52	0.21	30
97-15	17	.7 21.5	3.8	1B	sandstone	1893	-2	0.86	0.4	18	20	149	2	33	7	3.1	313	-5	2.17	546	157	15	-20	9	0.49	0.53	1.48	0.23	55
97-15	21	5 25	3.5	1 <b>B</b>	siltstone	ŀ	•	-	0.7	43	65	299	2	69	16	1.5	151	6	3.35	495	63	18	-20	9	0.59	0.71	_	0.27	55
97-15	1 7	5 28	3	lB	siltstone	-	-		·-0.2	38	3	261	2	59	13	3.1	78	5	3.16	409	65	21	-20	15	0.68	0.69		0.29	46
97-15	2	8 33.5	5.5	1 <b>B</b>	siltstone	-	-	•	18.4	98	4975	4894	2	47	12	26.7	257	71	4.05	393	85	13	87	6	0.58	0.58		0.26	40
97-15	33	.5 36.8	3.3	l B	sandstone	•	•		0.6	23	26	63	1	40	10	1.5	156	-5	2.3	577	101	11	-20	7	0.49	0.86	ا م شعو	0.24	51
97-15	36	.8 42.6	5.8	1B	siltstone	2640	-2	0.7	1,9	35	200	625	5	52	11	3.1	151	10	3.38	474	73	17	28	10	0.62	0.57		0.31	
97-15	42	.6 47.55	4.95	IAA	slate	-	-	-	32.4	185	6823	19000	18	117	21	79.3	471	86	4.72	1224	148	35	_	6	0.46	0.67	-	0.15	47
97-15	47.5	5 54.5	6.95	ιz	hi sulphide	-	-	•	141,2	755	10000	65000	9	27	2	364.3	4315	655	10	1133	94	22	1024	11	0.18	0.22		0.04	38
97-15	54	5 56.2	1.7	IAA	slate	-	•		12.9	38	1462	2069	16	55	6	11.1	385	64	2.39	900	74	23		6	0.29	0.18		0.12	25
97-15	56	2 58	1.8	LZ	hi sulphide	<b>]</b> -	-	·	69	329	10000	43000	8	33	5	228	2523	290	8.98	394	189	16	460	14	0.17	0.02		0.06	
97-15		8 60.8		IAA	siltstone	4134	-2	1.68	3.3	30	298	385	17	60	7	2.4	88	20	1.8	626	105	28	-20	5	0.4	0.49		0.17	29
97-15	60			IAA	silistono		-		2.1	26	75	369	15	57	7	2.1	81	24	1.57	308	198	30	-20	Ż	0.4	0.05	1.9	0.14	12
97-15	66.1	5 70.1	3.95	1AA	slate	-	- -	-	5.3	38	567	601	15	55	6	4	217	21	2.1	692	91	28	-20	6	0.32	0.24	10	0.09	57
97-15	70			MLS	limestone	-	•	-	1.3	7	76	1085	4	7	-1	4.6	35	6	0,74	951	7	9	-20	5	0.05	2.1	10	0.01	369
97-15	74	5 84.25	9.75	MLS	limestone	-	-	·	0.8	-1	-2	23	1	1	-1	-0.2	7	-5	0.09	1533	3	2	-20	3	0.02	0.64	10	-0.01	191
97-15	84,2	5 85	0.75	IAA	siltstone	3252	2	2.67	4	35	296	488	18	64	7	2.8	141	23	2.26	609	116	32	-20	5	0.35	1.24	5.87	0.11	39
97-15	8	5 92.66	7.66	MLS	limestone	•		-	0.9	2	12	74	1	2	-1	0.3	8	-5	0.35	608	1	2	-20	3	0.02	0.53	10	-0.01	211

.....

#### APPENDIX B GEOCHEMICAL CHARACTERIZATION OF WASTE ROCK DDH CONTINUOUS SAMPLING SILVERTIP PROJECT Page 11 of 20

		Sample	Identificati	on										·		H	CL Leac	h								•		<u> </u>
DDH	Start	Finish	Thickness	Rock Cod	Rock Type	Ag	Cu	Pb	Zn	Mo	Ni	Co	Cd	As	Sb	Fe	Mn	Ba	Cr	v	Sn	W	La	AI	Me	Ca	К	Sr
	m	m	m			ppm	ррт	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	96	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	+ · · · · ·	%	<b>%</b>	ppm
97-15	9.1	4 17.3	8.56	IB	sandstone	•	-	•	•	ŀ	-	1-		-		-	1.				-		-					
97-15	17.	7 21.	3.8	1B	sandstone	0.4	22	48	129	-1	9	) 2	3.5	38	11	0.99	658	512	119	8	-20	-20	3	0.23	0.54	1.83	0.12	83
97-15	21.	5 2:	3.5	IB	siltstone	·	ŀ			1.	1.	-	İ.		•	-	1.	<u> </u>		•	-	-	•		1.			
97-15	2	5 28	3	IB	silistone					-	-			-		•		<u>.</u>				-						[]
97-15	2	8 33.5	5.5	IB	siltstone	ŀ	-		1.	1-	1.	-	-	-	•	-	<u> </u>	<u>.                                    </u>				-		<u>.</u>	<u> </u>			
97-15	33.	5 36.8	3.3	18	sandstone	ŀ		-		ŀ.			-		-	-					-	•		<u>.</u>	l	·····		
97-15	36.	8 42.6	5.8	1B	siltstone	0.4	11	142	187	2	6	-1	0.2	18	12	0.31	520	109	34	5	-20	-20	2	0.15	0.51	1.38	0.1	67
97-15	42.	47.5	4.95	IAA	slate		-	•	•		-	1.			-	-						-	-	-				
97-15	47.5	5 54.5	6.95	LZ	hi sulphide	-	-	-	-			-		-	-	•				-	-	-	-			-	-	
97-15	54.	5 56.2	1.7	144	slate	-	-	•			-	1.		-	-	•			-			-	-		-	-	-	
97-15	56.	2 58	1,8	LZ	hi sulphide	-	-	•		I	-	-			-	•			-	-	•	-		-	l	-	[]	
97-15	5	60.8	2.8	IAA	siltstone	1,1	16	316	150	5	18	2	1.2	40	8	0.25	658	195	65	8	-20	-20	3	0.1	0.39	4,46	0.06	35
97-15	60.	66.15	5.35	144	siltstone	•	•	-	-	-	ŀ.	•	-	-	-	-	-	-				-	-	-		-		
97-15	66.1	5 70.1	3.95	IAA	slate	-	,	-	-	•	-	-	-		•	-	-	-	•		-	-	•					-
97-15	70.	74.5	4.4	MLS	limestone	•	•		-	-	-	1.		-				-		-			-	-		-	•	
97-15	74.	84.25	9.75	MLS	limestone	-				•	-	-	•	-	-			-	-			•	-			-		
97-15	84.2	85	0.75	1AA	siltstone	1.1	13	288	114	10	16	-1	0.9	37	8	0.22	643	108	74	10	-20	-20	3	0.08	1.15	6.51	0.05	51
97-15	8	92.66	7.66	MLS	limestone	ŀ		-	-	-	-		-	-	-	-	-	-	-	-	•	-	-	-				

Υ....

.....

۰.

•

#### APPENDIX B GEOCHEMICAL CHARACTERIZATION OF WASTE ROCK DDH CONTINUOUS SAMPLING SILVERTIP PROJECT Page 12 of 20

.

.

· .

1.1.1.4

ų.

.

.

<b></b>		Sample	Identificatio	រវា		Γ									DI Wa	ter Shal	e Flask									
DDH	Start	Finish	Thickness	Rock Cod	Rock Type	Ag	Cu	Pb	Zn	Mo	Ni	Co	Cd	As	Sb	Fe	Mn	Ba	Сг	Sn	AI	Mg	Ca	Na	ĸ	Sr
	m	m	m			mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	nig/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg∕L	mg/L	mg/L	mg/L	mg/L	mg/L
97-15	9.14	17.7	8,56	1B	sandstone	<u> </u>	•		•	-	-	-	-	-	-	-	-	-	-	-	-	÷	•	•	-	-
97-15	17.7	21.5	3.8	1 <b>B</b>	sandstone	-0.02	-0.1	-0,2	-0.1	-0.1	-0.1	-0.1	-0.02	-0.5	-0.5	-1	-0.1	-0.1	-0.1	-1	-1	4	38	8	64	-0.1
97-15	21.5	25	3.5	1 <b>B</b>	siltstone	ŀ	-	-		•	•	-	·	-	•	-	-	-	-	-	ŀ	•	-	•	•	·
97-15	25	28	3	IB	siltstone	•			-	-	-				-	•	-	·		-	-		-	-		
97-15	28	33.5	5.5		siltstone	-	•	•	•		-	-	-	-	-	-	-	-	-	-	<del>.</del>	-	•		·	•
97-15	33.5	36.8	3.3		sandstone	-			-	-	<u> </u>		·	•	•	ŀ	ŀ		•	ŀ	-	ŀ		-		-
97-15	36.8		\$.8		siltstone	-0.02	-0.1	-0.2	-0,1	0.2	-0,1	-0.1	-0.02	-0.5	-0.5	-1	-0.1	-0.1	-0,1	-1		3	28	7	65	-0.1
97-15	42.6	47.55			slate	-	•	-	<u>.</u>	-	-	<u>-</u>	<u>-</u>	-	-				-			<u>-</u>	-	-	·	
97-15	47.55	54.5	6.95		hi sulphide	ŀ	·	-	-	-		<u>-</u>	<u>-</u>	-	-		<u>-</u>			<u>.</u>		<u>-</u>	-	-		·
97-15	-54.5	56.2			state	ŀ	•	•	•	•	-	-		-		-	<u> -</u>	-			-	<u>.</u>		-	·	·
97-15	56.2	58	1.8		hi sulphide	ŀ	•		-	-		<u>.</u>			-	-	ŀ	- ·		·		<u>-</u>	-	ī	·	·
97-15	58	60.8		IAA	siltstone	-0.02	•0,1	-0,2	-0.1	-0.1	-0,1	-0.1	-0.02	-0.5	-0.5	-	0.2	-0.1	-0.1	-1	-1	21	274	4	40	-0,1
97-15	60.8	66.15	5.35		siltstone	ŀ		•	-	-				-	-			-	-	·		<u>-</u>	-	·		:
97-15	66,15	70.1	3.95		state	<u>-</u>	<u>.</u>			-	-	-	-			· .		-	-	-	-	ŀ	-	-	Ŀ	-
97-15	70.1			MLS	limestone	-	-	-	-				·	-	-	-	-	-			-	<u> </u>			l	
97-15	74.5	84.25	9.75	MLS	limestone	<u> </u>	·		·	·	-	•	•	-	-	-	-	-	•	-	-	-	-	+	ŀ	Ŀ
97-15	84.25	85	0.75	IAA	siltstone	-0.02	-0.1	-0.2	-0.1	0.1	-0,1	-0.1	-0.02	-0.5	-0.5	-1	-0.1	-0.1	-0.1	-1	-1	39	173	4	25	-0.1
97-15	85	92.66	7.66	MLS	limestone	-	-	•	•	•	•	•	-	-	-	-	-	•	•	•	ŀ•	•	·	•	<u>-</u>	-

.

.

.

Υ

....

#### APPENDIX B GEOCHEMICAL CHARACTERIZATION OF WASTE ROCK DDH CONTINUOUS SAMPLING SILVERTIP PROJECT Page 13 of 20

		Sample	Identificati	on				·	ACID-B.	ASE AC	COUNTI	NG		
DDH	Start	Finish	Thickness	Rock Cod	Rock Type	Fizz	Normal	HCl	NP	AP	NNP	MPA	pН	S
	m	m	m				N	ml	kg/t	kg/t	kg/t	kg/t		%
97-18	25.8		2.6	2A	siltstone	2	0.5	40	65.2	26.9	38.3	31.2	7.8	1
97-18	28.4		5.3	2A	siltstone	1	0,1	40	2.9	134.1	-131.2	141.6	6.92	4.53
97-18	33.7	34.2	0.5	D-ZONE	hi sulphide	1	0.1	40	2	910.6	-908.6	927.2	5.73	29.67
97-18	34.2	35.3	1.1	D-ZONE	exhalite	3	0.5	80	63,4	86.9	-23.5	87.2	7.86	2,79
97-18	35.3	39.6	4,3	D-ZONE	hi sulphide	1	0.1	40	13.3	605.6	-592.3	613.2	7.31	19.63
97-18	39.6	41.6	2	2A	siltstone	1	0.1	40	11.5	78.8	-67.3	82.8	7.57	2.65
97-18	41.6	45.25	3.65	D-ZONE	hi sulphide	1	0.1	40	3.6	760.9	-757.3	762.5	5.87	24.4
97-18	45.25	46.75	1.5	D-ZONE	exhalite	2	0.5	40	98,1	165.3	-67.2	168.8	8.01	5,4
97-18	46.75	48.4	1.65	2A	silistone	2	0.5	40	173,4	178.8	-5.4	204.4	7.99	6.54
97-18	48.4	49.2	0.8	D-ZONE	exhafite	1	0.1	40	4.6	540.6	-536	553.4	5.76	17.71
97-18	49.2	53.7	4.5	2AA	siltstone	1	0.1	40	20.6	150.6	-130	176.6	6,96	5.65
97-18	53.7	60,5	6.8	18	sandstone	1	0.1	40	31.8	131.9	-100,1	143.8	7.19	4.6
97-18	60.5	67.15	6.65	1B	sandstone	2	0.5	40	68.2	34.1	34.1	37.8	8.28	1.21
97-18	67.15	72.85	5.7	1B	sandstone	2	0.5	40	72.4	44.4	28	49.1	8.26	1.57
97-18	72.85	76.3	3.45	1B	sandstone	1	0.1	40	46.7	41	5.7	45.4	8.14	1.46
97-18	76.3	82	5.7	1B	siltstone	1	0.1	40	42.6	25.3	17.3	26.9	8.43	0.86
97-18	82	86	4	18	sandstone	1	0.1	40	51.7	18.4	33.3	20.3	8.42	0.65
97-18	86	91.2	5.2	18	sandstone	1	0.1	40	48.9	43.1	5.8	51.6	8.24	1.65
97-18	91.2	94.5	3.3	18	sandstone	2	0.5	40	61	115.6	-54.6	120	8.04	3.84
97-18	94.5	97.1	2.6	1 <b>B</b>	sandstone	2	0.5	40	71.8	44.4	27,4	46.8	8.46	1.5
97-18	97.1	101.65	4.55	10	sandstone	2	0.5	40	67	62.5	4.5	67.5	8.4	2.16
97-18	105.6	- 111	5.4		sandstone	2	0.5	40	74.8	43.4	31.4	48.1	8,54	1.54
97-18	111	118.8	7.8		sandstone	2	0.5	40	116.3	35.8	80.5	40.2	8.35	1.29
97-18	118.8	120.7	1.9	1B	siltstone	2	0.5	40	66.4	79.1	-12,7	81.6	8.41	2.61
97-18	120.7	122,9	2.2	1 <b>B</b>	siltstone	2	0.5	40	100.5	178,4	83.1	208.8	8.3	6.68
97-18	122.9	128.15	5.25	1 <b>B</b>	siltstone	1	0.1	40	54.8	41.4	13,4	51.2	8.05	1.64
97-18	132.5	137.	4,5		siltstone	1	0.1	40	46.1	35.9	10.2	42.8	8.44	1.37
97-18	137	141.5	4.5	1BA	siltstone	1	0.1	40	44.1	33.1	11	37.2	8.5	1.19
97-18		144.75		1BA	siltstone	1	0.1	40	43.7	47.8	-4.1	57.2	8.37	1.83
97-18	148.1	155.5	7.4	1AA	slate	1	0.1	40	84.3	29.1	55.2	35.6	8,19	1.14
97-18	155.5	159.9	4.4	1AA	slate	2	0.5	40	176.3	50.3	126	59.7	8.01	1.91
97-18	159.9	166.7			limestone	3	0.5	80	888.3	41.9	846.4	44.7	8.37	1.43
97-18	166.7	169.7			dol. Imst.	3	0.5	80	985.4	10.2	975.2	13.4	8.9	0.43
97-18		176.78			limestone	3	0.5	80	991.2	1.2	990	1.9	8.59	0.06
97-18	101.65	105.6	3.95		sandstone	. 2	0.5	40	75.9	55.6	20.3	64.4	8.34	2.06
97-18	128.15	132.5	4.35		siltstone	t	0.i	40	63.9	59.7	4.2	65.6	8.37	2.1
97-18	144.75	148.1	3.35	1AA	slate	1	0.1	40	55.4	60	-4.6	67.5	8.17	2.16

.

۰.

.

N ......

1

#### APPENDIX B GEOCHEMICAL CHARACTERIZATION OF WASTE ROCK DDH CONTINUOUS SAMPLING SILVERTIP PROJECT Page 14 of 20

		Sample	Identificatio			x	RF	Assay	[									ICP AC	UA RE	GIA			· · · · · ·		· · · · · ·				
DDH	Start	Finish	Thickness	Rock Cod	Rock Type	Ba	Sc	C NOrg	Ag	Cu	Pb	Zn	Mo	Ni	Co	Cd	As	Sb	Fe	Mn	Cr	V	Sn	La	AI	Mg	Ca	К	Sr
	m	m	ma .			ppm	ppm	9%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	րրո		ppm	%	ppm	ppm	ppm	ppm	ppm	%	%	%	%	ppm
97-18	25.8	28,4			siltstone	2007	-2	0.71	26.1	184		1392	3	51	26	9.3	189	1.52		1558	74	20	-20	6	0.95	0.11	2.1	0.33	35
97-18	28.4	33.7			siltstone	<u> </u>	-	<u> </u>	6	137		5342	. 4	69	26		329	20	4.62	60	104	20	-20	5	0.63	0.05	0.11	0.33	13
97-18	33.7	34.2			hi sulphide	ŀ	ŀ	ŀ	1.8	18		1619	2	32	10		2526	17	10	72	134	12	-20	-1	0.38	0.03	0.2	0.16	5
97-18	34.2	35.3		D-ZONE	exhalite	•	-	ŀ	• 3.3	48	_		. 4	90	30		107	17	3.62	956	96		-20	3	0.77	0.19	1.77	0.34	27
97-18	35.3	39,6			hi sulphide	• •	·	-	26.4	417			1	49	14	250	1313	106	10	423	86	15	94	1	0.49	0.08	0.45	0.25	8
97-18	39.6	41.6		2A	siltstone	8558	-2	0.22	1.9	42		1655	2		13		158	13	2.8	178	110	25	-20	5	0,59	0.14	0.31	0.27	10
97-18	41.6	45.25			hl sulphide	-	·		39.6	898		89000	-]	37	27	314.3	1918	965	10	301	65	10	143	-1	0.25	0.02	0.11	0.13	7
97-18	45,25	46.75		D-ZONE	exhalite	-	•	-	3.6	49			. 9	70	11	23.4	384	14	5.28	625	87	31	-20	1	1.49	0,14	3,22	0.34	21
97-18	46.75	48.4			silistone		<u>-</u>		16.1	65			7	89	6	60.8	352	12	5.39	1835	137	20	23	7	0.62	0.07	7.38	0.18	93
97-18	48.4	49.2		D-ZONE	exhalite	<u>.</u>	-	<u> -</u>	24.5	54			1	53	8	174.4	1375	102	10	309	98	15	-20	-1	0.46	0.03	0.21	0.18	13
97-18	49.2	53.7		2AA	siltstone	4734	7	0.47	10.4	65		4899	25		10	68.1	378	41	5.38	152	108	138	29	5	I	0.13	1.67	0.34	
97-18	53.7	60.5	6.8		sandstone	-	•	•	16.5	244	-	21000	4	48	7	103.1	287	230	3.75	335	147	31	110	4	0.52	0.37	1.05	0.23	
97-18	60.5	67.15	6.65		sandstone	-	ŀ	•	4.3	41		648	4	43	7	3.2	85	7	1.86	349	176	29	-20	7	0.55	0.58	1.77	0.22	56 83
97-18	67.15	72.85	5.7		sandstone	-		<u>-</u>	0.3	35			7	52	7	0.6	66	-5	2.5	280	130	32	-20	9	0.49	0.68	1.77	0.25	83
97-18	72.85	76.3			sandstone	-	-	-	0.3	. 41		110	6	49	8	0.4	77	12	2.06	316	177	32	-20	11	0.53	0.55	1.44	0.28	57
97-18	76.3	82			siltstone	1537	2	0.91	0.2	- 46		205	. 5	43	8	0.8	6	-5	2.87	248	84	44	-20	16	0.78	0.8	1.34	0.28	58
97-18	82			IB	sandstone	-	-	ŀ	-0.2	27			9	47	6	-0.2	20	-5	2.04	230	214	31	-20	12	0.59	0.63	1.62	0.28	
97-18	86	91.2	5.2		sandstone	•	•	·	0.3	32		301		48	8	1.3	117	-5	2.16	342	173	24	-20	9	0.48	0.58	1.49	0.24	50
97-18	91.2	94.5			sandstone	•	•	•	0.6	25		335	5	51	8	2	283	-5	4.38	482	151	31	-20	7	0.62	0.56	1.75	0.32	40
97-18	94.5	97.1	2.6		sandstone	•	-	•	0.4	37		101		53	8	0.6	75	-5	2.39	369	151	30	-20	10	0.59	0.64	1.75	0,29	54
97-18		101.65	4.55		sandstone	1273	-2	0.93	2.3	45	001	460	4	45	7	2.1	125	22	2,78	368	173	28	-20	8	0.56	0.65	1.61	0.29	45
97-18	105.6	<u> </u>			sandstone	·	•	·	0.9	28		483	4	41	8	2.4	133	-5	2,41	362	244	23	-20	. 9	0.56	0.67	1.73	0.25	58
97-18	111	j 18.8	7.8		sandstone		·	·	0.5	41		58	8	48	12		85	. 11	3.52	454	205	28	-20	10	1.07	1.1	2.3	0.35	93
97-18	118.8	120.7	1.9		siltstone	-	-		1	51		613	4	49	13	2.8	115	-5	4.26	269	99	30	-20	8	1.15	0.91	1.36	0.33	40
97-18	120.7	122.9	2.2	. –	siltstone	4827	-2	1.21	l.4	46		295	3	59	12	1.5	440	5	7.68	296	105	27	-20	5	1.19	1.28	1.95	0.39	43
97-18		128.15	5.25		siltstone		·	•	-0.2	58	_	659	3	57	15	3.6	308	14	3.54	255	39	24	-20	11	1.22	0.87	1.3	0.26	48
97-18	132.5	137			siltstone	•		-	-0.2	37	· · · · · · · · ·	138	7	53		0.7	37	-5	2.42	196	62	39	-20	12	0.99	0.61	1,11	0.38	43
97-18	137	141.5			siltstone	•	•	•	-0.2	49		155		54	10	0.9	16	-5	2.24	154	34	31	-20	11	0.92	0.64	1.06	0.34	35
97-18		144.75	3.25		siltstone	2741	-2	0.38	0.2	40		45	8	50	9	0.3	33	6	2.09	103	31	23	-20	8	0.68	0.48	1.04	0.33	36
97-18	148.1	155.5		IAA	slate	•	-	-	1.1	28		249	15		. 4	1	36	12	1.25	307	83	37	-20	4	0.37	0.69	2.49	0.17	43
97-18	155.5	159.9		IAA	slate	·	-	·	1.4	109	47	796	27	. 87	9	4	35	13	1.8	275	78	56	49	5	0.49	0.26	6.37	0.2	43
97-18	159.9	166.7		MLS	limestone	•	•	·	0.9	4	6	47	8	9	-1	0.3	12	. 6	1.26	180	3	6	-20	3	0.05	0.32	10	0.02	184
97-18	166.7	169.7		MLS	dol, Imst.	869	-2	12.22	0.6	3	9	197	2	1	-1	1.1	25	5	0.54	1009	3	2	-20	3	0.02	7.46	10	-0.01	154
97-18	the second second second second second second second second second second second second second second second se	176.78	7.08		limestone	-	-		0.6	1	-2	30	-1	i	-1	0.2	-5	-5	0.07	283	2	3	-20	3	0.02	1.35	10	-0.01	152
97-18	101.65	105.6	3.95		sandstone		·	•	1.7	22		415	5	58	8	2	125	7	2.65	428	243	55	-20	7	0.5	0.69	1.95	0.25	37
97-18	128.15	132.5	4.35		siltstone	-	-	-	0.3	54		307	10		10	1.5	94	-5	2.94	216	50	30	-20	9	0.82	0.73	1.61	0.32	71
97-18	144.75	148.1	3.35	IAA	slate		-	•	0.3	37	13	18	22	67	8	-0.2	64	7	2.17	144	31	24	•20	4	0.43	0.57	1.29	0.22	35

Ν

. . .

#### CLA CED ( ) ( ) ( ) ( ) ( ) ( ) ( ) APPENDIX B GEOCHEMICAL CHARACTERIZATION OF WASTE ROCK DDH CONTINUOUS SAMPLING SILVERTIP PROJECT Page 15 of 20 .

.

-			Identificatio			I								<u> </u>			CL Leact						<b>.</b>			·		
DDH .	Start	Finish	Thickness	Rock Cod	Rock Type	Ag	Cu	Pb	Zn	Mo	Ni	Co	Cd	As	Sb	Fe	Mn	Ba	Cr	v	Sn	w	La	Al	Mg	Ca	K	Sr
	m	m	m			ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	րթու	ppm	ppm	ppm	ppm	ppm	ppm	%	9 <b>1</b> :	%	%	ppm
7-18	25.8	28.4	2.6	2A	siltstone	23.5	163	3676	1380	3	37	20	10.5	70	35	1.45	1708	113	42	4	-20	-20	) 3	0.52	0.01	2.27	0.1	
7-18	28,4	33.7	5.3	2A	siltstone	•		•	ŀ	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	·	•	-
7-18	33.7	34,2	0.5	D-ZONE	hi sulphide	-	-	-	]-	-	-	-	•	-		•	-	•	•	•		•	•	-		-	-	-
7-18	34,2	35.3	1.1	D-ZONE	exhalite	•	•		ŀ	•	-	-	-	-	-	-	-	-	-	-	-	-		-	•	•	-	-
7-18	35.3	39.6	4.3	D-ZONE	hi sulphide	-	-	-	Į.	-	•	-	-	•	•	•		•	•		•	•	•	-	-		-	
7-18	39.6	41.6	2	2A	siltstone	1.5	7	214	822	-	27	-1	6.8	26	11	0.22	179	443	53	6	-20	-20	) 2	0.2	0.04	0.36	0.1	
7-18	41.6	45.25	3.65	D-ZONE	hi sulphide	-	-	-	-	-	-	-	-	-	-	•	-	•	•	·	•	-	ŀ	- ``	-	-	-	-
17-18	45.25	46,75	1.5	D-ZONE	exhalite	-	-	•	-	-	-	ŀ	-		I	-	-	-	-	-	-	-	-	-	-	ŀ	-	-
7-18	46.75	48,4	1.65	2A	siltstone	•	-	-	-	-	-	-	-	-	-	-			-	ŀ	•		·	•		-	-	-
7-18	48.4	49.2	0.8	D-ZONE	exhalite	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-
7-18	49.2	53.7	4.5	2AA	siltstone	0.5	23	1017	1167	6	33	3	56.6	25	-5	0.31	153	392	53	19	-20	-20	3	0,26	-0.01	1.8	0.07	
7-18	53.7	60.5	6.8	1B	sandstone		-	-	•	-	-	•	-	•	-	-	-	-	-		-	-	-	-	-	-	·	ŀ
7-18	60.5	67.15	6.65	IB	sandstone	I	-	-	•	÷	-	•	-			-	-	-	-	-	•	-	-	•	•		-	
7-18	67.15	72,85	5.7	IB	sandstone	-	-	-		•	ŀ	-	•	•	-	-	ŀ-	•	-	-	-	-	ŀ	•	•	-	-	-
7-18	72.85	76.3	3.45	IB	sandstone	-	-	-			ŀ	•	ŀ	•	•	ŀ	-	•	-	•		<u>-</u>	-	•	r.		-	Ē
7-18	76.3	82	5.7	1 <b>B</b>	siltstone	0.3	15	13	28	-1	7	-1	-0.2	-5	9	1.27	236	47	31	10	-20	20	2	0.16	0.48	1.35	0.09	
7-18	82	86	4	1B	sandstone	•	•	•		-	-	<u>}</u>	-	-	-	-	-	-	-		-		-	-	-	-	-	-
7-18	86	91,2			sandstone	-	-	•	•		•	•		•	•	•	•	•	•	~	-	•	•	•	•	•		-
7-18	91.2	94.5	3.3	1B	sandstone	-	-	-	•	-	-		-		-	-	-	-	-	-	-	-	-	-	-	ŀ	-	ŀ
7-18	94.5	97.1	2.6	1B	sandstone	-		•		-	-		-		•	-		-	-	-	-	-			•	•		-
7-18	97.1	101.65	4.55	18	sandstone	1.6	22	588	217	2	7	-1	1.1	ļ	15	0.71	390	81	126	9	-20	-20	3	0.22	0.58	1.71	0,13	
7-18	105.6	111	5,4	18	sandstone	ŀ	ŀ	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-
7-18	111	118.8	7.8	18	sandstone	-	•			-	-	-	-				-		-	-		-	-	•		•		F
7-18	118.8	120.7	1.9	18	siltstone	ŀ	•	•		-	-	-		•	-	-	-	-	-		-	-		*		•	-	ŀ
7-18	120.7	122.9	2.2	18	siltstone		-		•	•	-	•	•	•		•		•	•	•	•	•		•	-	-	-	-
7-18	122.9	128.15	5.25	1B	silisione		•	-	-	-	-		-	-	-	-	-	-	-	-		-	ŀ-	-	•	•	•	ŀ
7-18	132.5	137	4.5	1B	siltstone	-	-	•		•	-	•	-	•	-	ŀ	-		•	•	-	•	•	•	-	-	-	ŀ.
7-18	137	141.5	4.5	1BA	siltstone	•	-	-	ŀ	-	-	-	-		-	ŀ-	-	-	-	-	-	-	-	-	•	-	•	ŀ
7-18	141.5	144.75	3.25	IBA	silistone	ŀ	-	•		•	-	•	•	•	-	•	-		•		•	•	ŀ	-	•	-	-	ŀ
7-18	148.1	155.5	7.4	IAA	slate	-	•		ŀ	-	-	I-	-	-	-	-	-	-	-	-	-	-	-	-	•		-	F
7-18	155.5	159.9	4,4	144	slate	•	-	-		÷ .	•	·	ŀ		-	•	•	•	•	•	•		*	-	-	-	-	Ē
7-18	159.9	166.7	6.8	MLS	limestone		•	-	-	-	-	-	-		-	-	-	-	-	-	-	-		-	-	•	^	·
7-18	166.7	169.7	3	MLS	dol. Imst.	-	-	•	-	-	-	-	-	-	•	-	-	-	-	-		-	-			-	-	
7-18	169.7	176.78	7.08	MLS	limestone	-	-	•	-	-	-	-	ŀ	•	•	•	·	-	-	•	-	-	•	+	-	-	-	F
7-18	101,65	105.6	3.95	1 <b>B</b>	sandstone	-	-		•	-	-	•	ŀ	-	-	-	•	•	•	•		•		-	-	-	-	-
7-18	128.15	132.5	4.35	1 <b>B</b>	siltstone		-	•	-	•	•		~	-	-	-	-	-	-	•		•		-	-	-	-	ŀ .
7-18	144.75	148.1	3.35	IAA	slate		-	-			-		-	-	Į.	-	-	-		-			-		-	-	•	<u>,</u>

Υ.

.....

#### APPENDIX B GEOCHEMICAL CHARACTERIZATION OF WASTE ROCK DDH CONTINUOUS SAMPLING SILVERTIP PROJECT Page 16 of 20

. ų

.

÷.,

.

. .

[		Sample I	dentificatio	on		T									DI Wa	ter Shak	e Flask									
DDH	Start	Finish	Thickness	Rock Cod	Rock Type	Ag	Cu	Pb	Zn	Mo	Ni	Co	Ca	As	Sb	Fe	Mn	Da	Cr	Sn	AI	Mg	Ca	Na	к	Sr
	m	m	m			mg/L	mg/L	mg/L	mg/L,	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	meL	mg/L			mg/L
97-18	25.8	28.4	2,6	2A	silisione	-0.02	-0.1	-0.2	-0.1	-0.1	-0.1	-0.1	-0.02	-0.5	-0,5	-1	0.6	-0.1	-0.1	- 1		-1	119	5	63	-0.1
97-18	28.4	33.7	5.3	2A	siltstone	•	-	-	-	-	-	i			•		-	-	-	-		-	-		-	
97-18	33.7	34,2	0.5	D-ZONE	hi sulphide	-		•	•	i.				-	-	-		-	-		-		-	•		
97-18	34.2	35.3	I.1	D-ZONE	exhalite	ŀ	•	- '	-	-		-		÷		-		-	-	-		-		-	-	-
97-18	35.3	39.6	4.3	D-ZONE	hi sulphide	-		-	•				-		-	-		-				-	-			-
97-18	39.6	41,6	2	2A	siltstone	-0.02	-0.1	-0,2	-0.1	-0.1	-0.1	-0.1	0.02	-0.5	-0.5	-1	0.3	-0.1	-0.1	-1	•	7	40	4	71	-0.1
97-18	41.6	45.25	3.65	D-ZONE	hi sulphide	-	-	-	•	•	ŀ	-			-	-			-		-	-		•		-
97-18	45.25	46.75	1.5	D-ZONE	exhalite		-		-	-		-		-		-	ŀ			-	-	-		•	-	-
97-18	46.75	48.4	1.65	2A	siltstone	I	•	-	-	-	-		-		-	•			÷	-	-	-		-	-	-
97-18	48.4	49.2	0,8	D-ZONE	exhalite	-	-	-	-	-	-	•	•	-	•	-	-	-	-	-	-			-	-	
97-18	49.2	53.7		2AA	silistone	-0.02	-0,1	-0.2	0.3	-0,1	-0.1	-0.1	0.94	-0.5	-0.5	-1	2.1	-0,1	-0.1	-1	-1	30	548	01	66	1.1
97-18	53.7	60.5	6.8	IB	sandstone	-	-	-		-	•	•		•	-	-	-	-	-	•	•	-	-	-		
97-18	60.5	67.15	6.65	1B	sandstone	-	-	•	•		·	-		-		-	-			•	•	-	•	•	-	-
97-18	67,15	72.85	5.7		sandstone	•		-	-	-	-	-	-			•	-		-	-	-	-		-	-	
97-18	72.85	76.3	3.45		sandstone	-	-	-	-	-		•	·			-	-	-	•	-	•	-	-	•	•	•
97-18	76.3	82	5.7	1 <b>B</b>	siltstone	-0.02	-0.1	-0.2	-0,1	0.2	-0,1	-0.1	-0.02	-0.5	-0.5	-1	0.1	-0.1	-0.1	-1	-1	-1	22	4	64	-0.1
97-18	82	86	4	18	sandstone		-	-		•.	•	÷	t.	-	-	-	-		·	•	-	-		•	-	-
97-18	86	91.2	5.2		sandstone	•	•	•	•	-	-	-	-	-	-	•	•		-	-	-		-	-	-	•
97-18	91.2	94.5	3.3		sandstone	•	1	-	-	-	•	-	•			-	-	-	-	•	•	-	-	-		-
97-18	94.5	97.1	2.6		sandstone	-	-	-		-	•			-	-	-	-	-	•	•	-	-	-	-	•	-
97-18	97.1	101.65	4.55		sandstone	-0.02	-0.1	-0.2	-0.1	0.1	-0.1	-0.1	-0.02	-0.5	0.8	-	-0,1	-0.1	-0.1	-1	-1	5	27	6	75	-0.1
97-18	105.6	111	5.4		sandstone	-	-	-	•	•	-		-	-	-	-	-		-	-	-		-	-	-	
97-18	111	118.8	7.8		sandstone	<u> </u>	-	-	-	-	-	-	•	•		-	-	-			+	-	-	-		
97-18	118.8	120.7	1.9		siltstone	·	-	+	•	-	-	-	-	-	•	-		•	-	-		•	-	-	-	
97-18	120.7	122.9	2.2		siltstone	-		-	-	-	-	•		-	-	-	-	+		•	+	-	-	•	-	-
97-18	122.9	128.15	5.25		siltstone	•	•	÷ .	•	-	-	-	-	+	•	•	•	•	-	-		•	-	-		
97-18	132.5	137	4.5		siltstone	-	-	-	-	•	•		-	-	-	-	-	-	•	•	-	-	•	-	-	
97-18	137	141.5		1BA	siltstone	-	-		•	•	-	-	-	-	•			-	-	-			-		.	
97-18	141.5	144.75	3.25		siltstone	-0.02	-0.1	-0.2	-0.1	0.1	-0.1	-0.1	-0.02	-0.5	-0.5	-]	-0.1	-0.1	-0.1	-1	-1	6	16	5	73	-0.1
97-18	148,1	155.5			slate	-	-			•	•	-	-	-	-	-	•	•	-	-	-	•	-	-		
97-18	155.5	159.9		IAA	slate		-	-	•	-	-	-		•	•	•	•	-	,	•		•	-	-	- 1	
97-18	159.9	166.7		MLS	limestone	•	-	•	•	•	-	-	-	-	•	•		-	-	•	•	•	-	-		
97-18	166.7	169.7			dol. lmst.	-0.02	-0.1	-0.2	-0.1	0.1	-0.1	-0.1	-0.02	-0.5	-0.5	-1	-0.1	0.2	-0.1	-1	-1	22	1	7	3	-0.1
97-18		176.78			limestone	·	•	-	-	-	-	-		•	-	-	-	-	-	-	-	-	-	- 1		
	101.65	105.6	3.95		sandstone	-	-	-	-	•	·		-	-	-	-	•	-	•	-	-	•	•	·	: 1	
	128.15	132,5	4.35		siltstone	•		•	•	-		-	-		·		-		-	-	•	-	-	•	-  -	
97-18	144.75	148.1	3.35	IAA	slate	-	-	-	-		•	•	•	-	-	•	-		-	-	-	•	-	-		

 $\Delta = 10^{-1}$ 

#### APPENDIX B GEOCHEMICAL CHARACTERIZATION OF WASTE ROCK DDH CONTINUOUS SAMPLING SILVERTIP PROJECT Page 17 of 20

.

.

• .

		Sample	Identificatio	อก					ACID-B.	ASE AC	COUNTI	NG		
DDH	Start	Finish	Thickness	Rock Cod	Rock Type	Fizz	Normal	HCI	NP	AP	NNP	MPA	pН	S
	ជា	ជា	m				N	ml	kg/L	kg/l	kg/i	kg/t		%
97-46	20.42	27	6.58	IAA	slate	0	0.1	20	3,9	75.8	-71.9	89	6.76	2.85
97-46	27	33.5	6.5	144	siltstone	1	0.1	40	2.9	35.3	-32.4	41,9	6.18	1.34
97-46	33.5	39.1	5.6	IAA	siltstone	1	0.1	40	1.1	1.2	-0.1	2.2	6.67	0.07
97-46	39.1	44	4.9	IAA	siltstone	1	0.1	40	1.5	0.9	0.6	4.4	6.42	0.14
97-46	44	49	5	144	siltstone	1	0.1	40	1	2.8	-1.8	5.9	6.63	0.19
97-46	49	56.6	7.6	LZOX	oxide	1	0.1	40	3.1	2.8	0.3	7.2	6.6	0.23
97-46	56.6	59.7	3.1	MLS	limestone	3	0.5	80	917.1	2.8	914.3	2.8	8.09	0.09
97-46	59.7	65.2	5.5	MLS	limestone	3	0.5	80	958.3	0.9	957,4	1.2	8.3	0.04
97-46	65.2	66.35	1.15	MLS	hi sulphide	3	0.5	80	596.1	552.5	43.6	548.1	7.61	17.54
97-46	66.35	68.27	1.92	MLS	limestone	3	0.5	80	911.7	7	904.7	7.8	7.88	0.25

 $X_{ij} = \omega^{*}$ 

١

.

.

•

+

#### APPENDIX B GEOCHEMICAL CHARACTERIZATION OF WASTE ROCK DDH CONTINUOUS SAMPLING SILVERTIP PROJECT Page 18 of 20

.

 $X_{i_1,\ldots,i_{m+1}}$ 

÷

THE ALLENDER OF THE ALLENDER OF THE OF THE OF THE OF THE

1

			Sample I	dentificatio	)n		x	RF	Assay										ICP AC	UA RE	GIA									
DDH	Start	h	Finish	Thickness	Rock Cox	Rock Type	Ba	Sc	C NOrg	Ag	Cu	Pb.	Zn	Mo	Ni	Co	Cd	As	Sb	Fe	Мл	Cr	v	Sn	La	AI	Mg	Ca	ĸ	Sr
	nt	h	F1)	m		1	ppm	ppm	%	ppm	ррт	ppm	ppm	ppm	ppm	ppm	ppm	քրու	թթո	96.	ppm	ppm	ppm	ppm	ppm	%	*	%	%	ppm [
97-46	2	0,42	27	6.58	IAA	slate	1728	-2	0.21	41.8	680	10000	1809	22	70	7	16.3	1227	1242	2.56	68	181	43	256	4	0.39	0.06	0.12	0.18	4
97-46	1	27	33.5	6.5	IAA	siltstone	ŀ		-	3.8	28	199	428	22	47	5	2.9	63	39	1.78	55	148	37	24	4	0.53	0.07	0.16	0.22	6
97-46	1	33.5	39.1	5.6	JAA	silustone	-	-	-	1.9	18	1200	244	12	27	2	1.1	116	71	1.54	50	138	50	-20	13	0.6	0.03	0.02	0.2	29
97-46	1	39.1	44	4.9	IAA	siltstone	1-		-	2.7	14	953	264	14	17	1	1.4	140	50	1.68	41	111	45	-20	13	0.51	0.02	0.02	0.21	32
97-46	1	44	49	5	IAA	siltstone	ŀ	-	-	62.4	26	5079	357	30	13		3.8	676	662	1.76	139	154	42	135	9	0.31	0.01	0.03	0.13	15
97-46	1	49	56,6	7.6	LZOX	oxide	585	3	0.13	57.4	175	8293	3620	32	. 34	6	52.9	3261	431	10	704	110	33	159	7	0.36	-0.01	0.07	0.03	11
97-46		56.6	59.7	3.1	MLS	limestone	ŀ-			1.7	. 3	45	750	1	3	-1	9.2	15	-5	0.17	306	4	1	-20	1	0.02	0.77	10	-0.01	169
97-46	1	59.7	65.2	5.5	MLS	limestone	ŀ	-	•	1.5	1	11	438	1	4	- 1	4.9	6	-5	0.1	489	2	2	2 -20	2	0.02	0.22	10	-0.01	202
97-46		65.2	66.35	1.15	MLS	hi sulphide	•		-	2.2	88	54	8562	2	2 35	10	36	719	7	10	1706	30	2	45	7	0.07	0.14	10	-0.01	50
97-46	6	6.35	68.27	1.92	MLS	limestone	-		ŀ	1.1	55	29	32000	-1	50	9	120.5	22	7	2.1	1720	4	3	-20	4	0.03	0.53	10	-0.01	158

#### APPENDIX B GEOCHEMICAL CHARACTERIZATION OF WASTE ROCK DDH CONTINUOUS SAMPLING SILVERTIP PROJECT Page 19 of 20

[]		Samp	e Identifica	ution	1		1										H	L Leach	1										
DDH	Start	Finish	Thickne	ss F	Rock Cod	Rock Type	Ag	Cu	Pb	Zn	Mo	Ni	Co	Cd	As	Sb	Fc	Mn	Ba	Cr	V	Sn	W	La	Al	Mg	Ca	ĸ	Sr
	m	m	m				ppm	ppm	ppm	ppm	pprä	ppm	ppm	ppm	opm	ррт	%	ppm	ppm	ppm	ppm	թթո	ppm	ppm	%	%	%	%	ppm
97-46	20.4	2	.7 6.	58 I	IAA	slaic	1	12	3528	142	2	16	5 <b></b> _I	3.7	158	93	0.3	46	137	103	9	-20	-20	2	0.12	-0.01	0.2	0.07	25
97-46	2	7 33	.5 (	5.5 I	AA	siltstone	ŀ	•	-	[-	-		<u>[.</u>	-	•	-	-	-	-		-			-	-	-	•		E.
97-46	33.	5 39	.1] !	5.6 1	IAA	siltstone	-	ŀ	-	[	-		-	•	•	-	-				•	-	-	•	-	-	•	-	
97-46	39.	1	14 4	1.9 1	AA	siltstone	•	•		- '	•	-	ŀ	-	-	-	-			•	ŀ	-	-	-	•	-	-	-	<u> </u>
97-46	4	4	19	51	IAA	siltstone	ŀ	-	-		•	-	<u> -</u>	-		-	-			-		-		-	-	·	-	<u>.                                    </u>	اا
97-46	4	9 56	.6	1.6 I.	ZOX	oxide	32.8	46	5796	1351	-1	1	3 5	56.2	19	13	0.59	772	463	45	4	-20	-20	4	0.23	-0.01	0.13	0.01	27
97-46	56.	6 59	.7	3.1 N	MLS	limestone	-	-	•	-	-	-	<u>ŀ</u>			-	-	-		·		-	•		•	•	•	-	ŀ
97-46	59.	7 65	.2	5.5 N	MLS	limestone	-	-	-		•	-	<u>-</u>	<u>-</u>	-	-	-	•	•	-			-	-		·	-	-	·
97-46	65.	2 66.	15 1.	15 N	MLS	hi sulphide	+	-		-		-	ŀ				-	-		-	ŀ	-			-				<u>i</u>
97-46	66.3	5 68.	17 1.	92 N	MLS	limestone	-	ŀ	ŀ	<u> </u>	Ŀ	Ŀ	<u> -</u>	ŀ	<u>-</u>	<u>-</u>	ŀ	<u>-</u>	li	ŀ	ŀ	•.	٠	+	÷ .	-	-	-	ŀ

.

1

...*

#### APPENDIX B GEOCHEMICAL CHARACTERIZATION OF WASTE ROCK DDH CONTINUOUS SAMPLING SILVERTIP PROJECT Page 20 of 20

,

.

-		Sample	Identification	n		1									DI Wa	tter Shak	e Flask									
DDH	Start				Rock Type	Ag	Cu	Pb	Zn	Mo	Ni	Co	Cd	As	Sb	Fc	Mn	Ba	Cr	Sn	Al	Mg	Ca	Na	ĸ	Sr
	m	m	m		1	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	_	mg/L
97-46	20.42	27	6.58	IAA	slate	-0.02	-0.1	-0.2	0.6	-0.1	0.1	-0,1	0.06	-0.5	2,1	-1	1.2	0.3	-0,1	-1		12	105	6	74	(
97-46	27	33.5	6.5	JAA	siltstone	-		ŀ	-		-	-	-	-	-	<u>-</u>	•	-		•	ŀ	<u>+</u>			ŀ	<u>ا</u> نسا
97-46	33.5	39.1	5.6	144	siltstone	-	l-	-	•	-	-	ŀ	-			ŀ		-	•	-	ŀ	<u> </u>	<u>-</u>	-	t	<u> </u>
97-46	39.1	44	4.9	IAA	siltstone	-	-	•	-	-	•	-	•	ŀ	-	ŀ		-	-	<u>-</u>	<u>.</u>	~	· · · ·	-		<u>i.                                    </u>
97-46	44	49	5	1AA	siltstone	-	ŀ		-	-	•	-		•	-	ŀ	-	-		·	ŀ	-	<u> </u>	•	-	<u> -</u>
97-46	49	56.0	5 7.6	LZOX	oxide	-0.02	-0.1	-0.2	0.2	-0.1	-0.1	-0.1	-0.02	-0.5	-0.5	-1	0.9	-0.1	-0.1	-1		-1	86	7	10	<u>q (</u>
97-46	56.6	59.7	3.1	MLS	limestone	ŀ	-	-	•	-	-	-		<u>.                                    </u>	•	-		•	-	-	<u>:</u>	<u>.</u>	<u>ŀ</u>	-		<u> </u>
97-46	59.7	65.2	2 5.5	MLS	limestone	-	•				-		•	ŀ		<u> -</u>	-			-	•	·			ŀ	÷
97-46	65.2	66.3	1.15	MLS	hi sulphide		ŀ	ŀ	•	-	-	•		<u> </u>	·	<u> -</u>	-	•			ŀ	ŀ	ŀ		ŀ	<u>انبا</u>
97-46	66.35	68.2	1.92	MLS .	limestone	•	ŀ	-	-	-	-	-		<u> </u>	-	1-		-	ŀ	-	<u>l</u>	l	-	ŀ	ŀ	Ŀ

÷

Υ

....

# APPENDIX C

. 5. . . .

1

Ţ

C

____

÷. .

~

# Camp Creek Fault Static Tests - Compiled Data

#### APPENDIX C GEOCHEMICAL CHARACTERIZATION OF WASTE ROCK CAMP CREEK FAULT SILVERTIP PROJECT Page 1 of 4

١

		Sample I	Identificatio	n					ACID-B/	ASE AC	COUNTIL	NG		
DDH	Start	Finish	Thickness	Rock Code	Rock Type	Fizz	Normal	HCI	NP	AP	NNP	MPA	pH	S
	អា	m	m				N	ml	kg/t	kg/t	kg/t	kg/t		%
97-22	98.35	104	5.65	MLS	limestone	3	0.5	80	1000.3	3.4	996.9	4.8	8.44	0.16
97-22	104	105.2	1.2	MLS	limestone	3	0.5	80	503.8	195	308.8	212.2	7.82	6.79
97-22	105.2	109.73	4.53	MLS	limestone	3	0.5	80	886.5	4.1	882.4	4.1	8.51	0.13
97-23	93	96	3	MLS	lmst/mudst	3	0.5	80	785.1	29.4	755.7	31.6	8.18	1.01
97-23	96	104.85	8.85	MLS	limestone	3	0.5	80	417.5	201.9	215.6	208.4	7.95	6.67
97-23	104.85	109.5	4.65	MĽS	limestone	3	0.5	80	997.5	11.2	986.3	12.2	8.94	0.39
97-30	89.15	91.44	2.29	MLS	limestone	3	0.5	80	929.1	12.8	916.3	13.8	7.85	0.44
97-30	91.44	94.49	3.05	MLS	limestone	3	0.5	80	584	156.6	427.4	156.9	8.06	5.02
97-31	103.75	106.55	2.8	MLS	limestone	3	0.5	80	635.5	140	495.5	140.9	8.04	4.51
97-31	106.55	109.73	3.18	MLS	limestone	3	0.5	80	949.8	5	944.9	5.6	8.85	0.18
97-14	100.58	106.68	6.1	YBR	alter'd dike	2	0.5	40	136.8	369.4	-232.6	374.1	7.83	11.97
97-45	120	123.44	3,44	MLS	limestone	3	0.5	80	772,2	71.6	700.6	117.5	8	3.76
97-45	123.44	126.49	3.05	MLS	limestone	3	0.5	80	541,4	211.2	330.2	217.5	8.05	6.96
97-49	111.65	116.43	4,78	MLS	limestone	3	0.5	80	996.3	25.3	971.1	26.6	8.28	0.85
97-54	64.85	68.8	3.95	MLS	limestone	3	0.5	80	422.6	226.6	196	229.5	8.12	7.34
97-54	68.8	72.8	4	MLS	limestone	3	0.5	80	999.7	4,4	995.3	5	8.56	0.16
84-101	101.4	105.65	4.25	MLS	Imst+dike?	3	0.5	80	429.3	233.8	195.5	239.7	8.02	7.67
84-101	105.65	109.4	3.75	MLS	dol. Imst.	3	0.5	80	759.3	3.4	755.9	3.4	8.88	0.11

.

.

.

 $\mathbf{N}$ 

#### APPENDIX C GEOCHEMICAL CHARACTERIZATION OF WASTE ROCK CAMP CREEK FAULT SILVERTIP PROJECT Page 2 of 4

[·····		Sample	Identification			X	RF	Assay					<u> </u>					ICP AC	UA RE	GIA									
DDH	Start			ock CodeRock	Турс	Ba	Se	C NOrg	Ag	Cu	Pb	Zn	Mo	Ni	Co	Cd	As	Sb	Fe	Mn	Cr	V	Sn	La	AL	Mg	Ca	ĸ	Sr
	m	m	m			ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ըթո	րրա	ppm	ppm	ըրո	%	ព្រគា	րթու	ppm	ppm	ppm	%	%	%	%	ppm
97-22	98.35	104	5.65 M	ILS limes	lone	•		-			-		<u> </u>	÷			•	·	-	-		-	•	-	•			<u>+</u>	·
97-22	104	105.2	1.2 M	ILS limes	tone	307	-2	4.85	1.2	12	42	2 37	2	8	16	-0.2	43	25	6.26	550	11	30	-20	10	0.97	0.77	10	0.16	72
97-22	105.2	109.73	4.53 M	ILS limes	lone	•	•	-	ŀ	ŀ	-	- ·	<u> </u>	ŀ	ŀ		ŀ	·		•			-	-	-		-	<u> </u>	·
97-23	93	96	3 M	1LS Imst/	mudst	-		·	ŀ	ŀ		<u>.</u>	ŀ		-	·	-	:		-	<u>-</u>	•				<u>.</u>	•	/	i
97-23	96	104.85	8.85 M	ILS limes	lone	-	•	ŀ	-		<u>.                                    </u>	ŀ	<u>-</u>	-	·	-	·	<u>.                                    </u>	·	•	•	-	-	-	·	•	•	<u> </u>	<u>i</u>
97-23	104.85	109.5	4.65 M	ILS limes	tone	•	-	•	- '	<u>.                                    </u>	ŀ	·	<u> </u>	-	· .		·	·	•	•	-	-		<u>· ·</u>	•	-	·	<u> </u>	<u>[</u> ]
97-30	89.15	91.44	2.29 M	ILS limes	топе	•	-	-	-	Ŀ	-	ŀ	-	•		<u> -</u>	·		-	·	·	•	-	-	:	·	•		<u> </u>
97-30	91.44	94.49	3.05 M	ILS limes	tone	245	-2	3.56	1	10	32	2 101	2	7	14	-0,2	9	8	4.9	255	15	21	-20	6	0.58	0.78	10	0.19	88
97-31	103.75	106.55	2.8 M	ILS limes	tone	-	-	-	<u> </u>	ŀ	[	ŀ	ŀ	÷		<u> -</u>		•		<u>.</u>			-	-	•		<u> </u>		·
97-31	106.55	109.73	3.18 M				-	•	<u> -</u>		<u> </u>	ŀ	<u> </u>		·			•	•	•	• • • • •			-	•	•		-	
97-14	100.58	106.68	6.1 X		l dike	3595	-2	0.71	0.7	20	20	0 66	5	12	24	-0.2	62	20	10	133	39	25	-20	6	0.66	0.22	3.06	0.26	
97-45	120	123.44	3,44 N		tone	•	ŀ	ŀ	ŀ	<u> </u>	<u> </u>	•	ŀ	<u> </u>	-		÷	i		·	:	•	-		<u>-</u>		•	<u></u> ł	<b>∔</b>
97-45	123.44	126.49	3.05 M		tone	·	ŀ	<u> -</u>	ŀ		ŀ	-	ŀ	<u> </u>	<u></u>	-	<u>i</u>	i		·	-	•	*	<b>*</b>	-	-	•	·	È
97-49	111.65	116.43	4.78 M		tone	•		<u> -</u>	•	<u> </u>	<u> </u>	-	ŀ	ļ		·	•			İ	-	-	5	·	I	-	-	<u> </u>	·~
97-54	64.85				tone	•	ŀ	<u>-</u>	•	ŀ	<u></u>	·	ŀ	ŀ	·	-	•	·	-	ŀ	<u> </u>		-	•	-	-		-	
97-54	68.8	72.8		ILS limes		56	-2	11.96	1.2	<u> </u>		5 14	42	2		-0.2	- <u>-</u> 5		0.13	163	-1	····· ²	-20		0.02	2.12	10	-0.01	143
84-101	101,4	105.65	4.25 M		dike?	•	ŀ	<u>-</u>	ŀ	ŀ	<u></u>		ŀ	<u> </u>	<u> </u>	i	<u>}</u>	<u> </u>	•••••	<del>-</del>	<u> </u>	<b>i</b>	÷	•	[·		<u> </u>		<u> </u>
84-101	105.65	109.4	3.75 N	ILS dol. li	mst.	-	<u>ŀ</u>	ŀ	ŀ	<u> -</u>	ŀ	<u> </u>	<u>l-</u>	<u>l</u>	Ŀ	ŀ.	1	i	<u>-</u>	Ŀ	ŀ	ŀ	-	I	ŀ	l	ŀ		<u>I</u>

Ν

1

APPENDIX C
GEOCHEMICAL CHARACTERIZATION OF WASTE ROCK
CAMP CREEK FAULT
SILVERTIP PROJECT
Deer 2 of 4

말 만 다 다 다 다 다 다 나 다 다 다 다 다, 다, 다, 다,

		Sample I	Identification	эл													ICL Lea											
DDH	Start	Finish	Thickness	Rock Cod	Rock Type	Ag	Cu	Pb	Zn	Mo	Ni	Co	Cd	As	Sb	Fc	<u>Mn</u>	Ba	Cr	<u>v</u>	<u>Sn</u>	W	La	AL	Mg	Ca	K	S
	m	m	m			ppta	ppm	ppm	ppm	ppm	թրո	ppm	ppm	ppm	ppm_	%	ppm	ppm	epm	ppm	ppm	ppm	ppm	%	%	%	%	ppm
97-22	98.35	104	5.65	MLS	limestone	-	-	•			· ·	-			ŀ .	ŀ	<u> </u>	-	•	-		-	•	•	*	-	-	<u></u>
97-22	104	105.2	1.2	MLS	limestone	-0.2	71	45	42	3	3	2	-0.2	30	-5	0.2	678	47	4	9	-20	-20		0.27	0.6	16.86	0.06	75
7-22	105.2	109.73	4.53	MLS	limestone	-	-	•	-	<u> </u>	•	•	ŀ		<u>-</u>	·	ŀ	- <u> </u>	•	-		<u>.                                    </u>	·	•	·	-	-	<u>  </u>
7-23	93	96	3	MLS	1mst/mudst	-	·	<u></u>	-	Ŀ	•	-		-	<u>-</u>	ŀ	<u>.</u>	ŀ		ŀ	-	•	•	-	<u></u>	-		<u>⊧</u>
7-23	96	104.85	8.85	MLS	limestone		-	ŀ		<u> -</u>	-		ŀ	•	<u> </u>	<u></u>	<u></u>	-	-	·	·	-	<u>-</u>			- -	-	<b>⊧</b> }
7-23	104.85	109.5	4.65	MLS	limestone	•	-	ŀ	-	-		-	ŀ	·	ŀ	ŀ				•	-		<u> </u>	· · ·			•	
7-30	89.15	91.44	2.29	MLS	limestone	-		<u>ŀ</u>	-	ŀ		-	<u> </u>	<u>-</u>	<u>ŀ</u>		<u> </u>	<u> </u>	·	•		•	ŀ	h	-	-	-	i
7-30	91.44	94,49	3.05	MLS	limestone	-0.2	17	25	75	1		<u> </u>	-0.2	5	-5	0.11	313	31	8	6	-20	-20	<u> </u>	0.14	0.81	20.05	0.06	91
7-31	103.75	106.55	2.8	MLS	limestone	·	<u>-</u>	ŀ	ŀ	<u> -</u>	٠	·		<u>-</u>	ŀ	ŀ	<u> </u>	-	•	•			· ·	•		-	•	İ
7-31	106.55	109.73			limestone	•	-	ŀ	•	<u> </u>		•	<u>i</u>	i	<u>i                                    </u>	•	<u> </u>	-	•	·		· 00	ŀ ,	·	i		- 0.11	· 20
97-14	100.58	106.68		YBR	alter'd dike	-0.2	18	22	61	4			-0.2	22	-5	0.19	155	171	27	0	-20	-20	· ?	0.2	0,14		0.11	<u>40</u>
97-45		123.44			limestone	•		<u> -</u>		<u> </u>	-	•	ŀ		<u> -</u>	ŀ	<u>†</u>		-	•			·	·	<u>;                                    </u>	<u>.</u>	-	ŀ
97-45	123.44	126.49			limestone	•	<u>:</u>	<u>-</u>	•	<u> </u>	-	·	<u><u></u></u>	<u> </u>	ŀ	· · · ·			•	ŀ			i	ŀ	·			ŀ—-∤
97-49	111.65	116.43			limestone	•	·	<u> </u>	•	ŀ		-	ŀ	<u> -</u>		ŀ	<u>├</u>			ŀ	•		<u> -</u>		r	•		<u>⊦</u> —_
97-54	64.85			MLS	limestone	-	·	<u>-</u>		·		<u>-</u>	<u> </u>	<u>.</u>	ŀ	F	·	ŀ	<u> </u>	i;	-20	-20	<u> </u>		2.53	- 34.64	-0.01	145
97-54	68,8			MLS	limestone	-0,2	16	10	22	2		<u>···</u>	-0.2		·	0.03	8 211	24			-20	-20	-1	0.01	2.33	34.04	-0.01	- 143
84-101		105.65		MLS	Imst+dike?		<u>:</u>	ŀ	<u> </u>	·	•	ŀ	<u> </u>	<u>-</u>	<u>†</u>	<u> -</u>	-[ <del>`</del>	-	<u> -</u>	<u> -</u>	·	r	[·	<del>-</del>	ľ		•	<u>  </u>
84-101	105.65	109.4	3.75	MLS	dol. Imst.	•		<u> -</u>	·	l:	ŀ	-	ŀ	ŀ	ŀ	ŀ	ŀ		-	<u>·</u>	•	[ ⁻	l	Ľ	ŀ	i .		<u> </u>

.

.

.

#### APPENDIX C GEOCHEMICAL CHARACTERIZATION OF WASTE ROCK CAMP CREEK FAULT SILVERTIP PROJECT Page 4 of 4

. .

.

같은 다 다 다 나 다 다 다 다 다 다 다 다 다 다.

		Sample	dentificatio	n		[					Q				DI Wa	ter Shal	e Flask									
DDH	Start	Finish	Thickness	Rock Cod	Rock Type	Ag	Cu	Pb	Zn	Mo	Ni	Co	Ca	As	Sb	Fe	Mn	Ba	Cr	Sn	AI	Mg	Ca	Na	К	Sr
	m	m	m			mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
97-22	98.35	104	5.65	MLS	limestone	•	•	-	-		-	-	-	•					•		-	<b>.</b>	<del>.</del>	<u>-</u>	<b> </b>	
97-22	104	105.2	1.2	MLS	limestone	-0.02	-0.1	-0.2	0.2	-0.1	-0.1	-0.1	0.03	-0.5	-0.5	<u></u>	-0.1	-0.1	-0,1	<u> </u>		77	513	7	30	0.5
97-22	105.2	109.73	4.53	MLS	limestone	-		•	-		<u> </u>	•		•	•	ŀ-	<u> </u>			-	<u>†                                    </u>	-			<u> </u>	i l
97-23	93	96	3	MLS	lmst/mudst	-	ŀ			ŀ	ŀ	-	•	-	-		<u> </u>	<u>.</u>	•	-		i		<u>-</u>	ŀ	<u>i</u>
97-23	96	104.85	8.85	MLS	limestone	-	-		•	·		-	-	-	•	-	·	•	•	-		·	•	<u>.</u>	·	<u>i                                     </u>
97-23	104.85	109.5	4,65	MLS	limestone	-	Ŀ	• •	-	·	•	•	-	-	·	•	•	·	-	-	<u>.</u>	ŀ	ŀ	•	[:	
97-30	89.15	91.44		MLS	limestone	·	·		·	ŀ	-		•	•	- ,		:	·	•	•	•	ŀ	•	<u>-</u>	-	·
97-30	91.44	94.49		MLS	limestone	-0.02	-0.1	-0.2	0,1	-0.1	-0,1	-0.1	-0.02	-0.5	-0.5		-0.1	-0.1	-0.1	!		27	146	13	34	0.3
97-31		106.55		MLS	limestone	ŀ	ŀ	-	<u>-</u>	<u> </u>	·	-		-	•	•	ŀ	ŀ		ŀ	-		-	<u>.</u>	İ	
97-31		109.73		MLS	limestone	[	<u>-</u>	-	• • • •	<u> </u>	<u> </u>	-	•	-	-	·	·	ŀ	•	ŀ	ŀ		-	<u> </u>		
97-14		106.68		YBR	alter'd dike	-0.02	-0.1	-0.2	0.1	0.3	-0.1	-0.1	-0.02	-0.5	-0.5		0.2	0.1	•0.1	<u>  !</u>		32	404	12	69	0.1
97-45		123.44		MLS	limestone	·	ŀ	-	ŀ	ŀ	<u> -</u>	<u>-</u>	• ·	•	•		<u> </u>	ŀ.	-	•	•	i	i	<u>i</u>	ŀ	•
97-45		126.49		MLS	limestone	•	<u>-</u>	-	·	ŀ	<u> </u>	<u> </u>	•	•	·	<u>-</u>	<u> </u>	-	-	-	·	ŀ	i	<u> </u>	·	·
97-49	And the second second	116.43		MLS	limestone	-	<u> -</u>		•	:	i	·		•		<u> </u>	<u> </u>	-	•	·	•	i	İ		·	· ·
97-54	64.85			MLS	limestone	Į	<u>-</u>	-	•	·	<u> </u>		-	•	-		<u> </u>	-	-	•	·	<u></u>	<u>i</u>		<u> </u>	·
97-54	68.8	72.8		MLS	limestone	-0.02	-0.1	-0.2	-0.1	-0.1	-0.1	-0.1	-0.02	-0.5	-0.5	!	-0.1	-0.1	-0.1		<u>ا</u> ا	<u> </u>	. 17	3	4	0.1
84-101		105.65		MLS	Imst+dike?	<u>ŀ</u>	-		<u>-</u>	<b></b>	<u>i</u>	•	<u> </u>		-	<u>•</u>	ŀ	r		<u> </u>	i	ŀ	·	ŀ	<u> </u>	<u>[</u> ]
84-101	105.65	109.4	3.75	MLS	dol. lmst.	i	ŀ	Ŀ	ŀ	ŀ	<u>-</u>	Ŀ	ŀ	-	<del>.</del>	<u> -</u>	l:	<u>i</u> i	ŀ	ŀ	•	ŀ	l	<u>ŀ</u>	Ŀ	<u>i                                    </u>

Υ

.....

# APPENDIX D

ε.;

ĺ.

-

ί...

ξ.

# Waste Rock Pad Static Tests - Compiled Data

#### APPENDIX D GEOCHEMICAL CHARACTERIZATION OF WASTE ROCK TEST PAD SAMPLES SILVERTIP PROJECT Page 1 of 4

.

.

	Sa	mpte Identi	fication							ACI	D-B/	ASE AC	COUNTI	NG		
DDH	Start	Finish	Thickness	Rock Cod	Rock Type	Sample ID	Fizz	Normal	HCI	NP		AP	NNP	MPA	pH	S
	in	m	m		1		1	Ň	ml	kg/t		kg/t	kg/t	kg/l		56
D Zone Pad Sample		-	•	D-ZONE	Exhalite	40232SD005 +10MM	1	0.1	4	0 .	-16.7	122.8	-121.8		5.86	
D Zone Pad Sample			-	D-ZONE	Exhalite	40232SD005 +2MM	1	0.1	4	0	18.3	176.6		-	5.15	
D Zone Pad Sample	-	•	· ·	D-ZONE	Exhalite	40232SD005 -2MM		0,1	4	o[ -	20.9	816.9	-815.9		3.7	
Neat 97-21		1.	- <u> </u>	-	Siltstone	OP +10MM	1	0.1	4	0	-12.4	1.9	-0.9	3.8	7.81	
Near 97-21		- <u> </u> .		-	Silisione	OP +2MM		0.1	4	0	-0.5	IS	IS	3.4		
Near 97-21		1.		-	Siltstone	OP -2MM	1	0.1	4	o -	-11.9	-1.6	-0.6	4.4	6.92	
Ore Pile Pad Sample		1.	-	٠	Ore	40232SD004 +10MM	3	0,5	8	0 2	202.3	863.1	-660.8	872.8	7,57	
Ore Pile Pad Sample	-	-		-	Ore	40232SD004 +2MM	3	0.5	8	0 2	234.5	823.4	-588.9	839.4	7.6	
Ore Pile Pad Sample		- <u> .</u>	-	1.	Ore	40232SD004 -2MM	3	0.5	8	0 1	165.6	839.1	-673.5	880.9	7.85	28,1

.

,

Ν

#### APPENDIX D GEOCHEMICAL CHARACTERIZATION OF WASTE ROCK TEST PAD SAMPLES SILVERTIP PROJECT Page 2 of 4

La Al Mg	
La Al Mg	Ca K
ppm 96 96 9	6 %
terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terror terr	0.04 0.26
	0.02 0.21
	0.07 0.15
	5.05 0.02
2 0.02 0.34	5.23 -0.01
4 0.01 0.11	3.05 -0.01
	0.43         0.04           1         0.32         0.03           -1         0.25         0.02           17         0.41         0.06           33         2.15         0.14           33         1.35         0.14           4         0.03         0.4           2         0.02         0.34

. .

• • • •

.

Υ

....

#### APPENDIX D GEOCHEMICAL CHARACTERIZATION OF WASTE ROCK TEST PAD SAMPLES SILVERTIP PROJECT Page 3 of 4

	S	ample Identi	fication			
DDH	Start	Finish	Thickness	Rock Cod	Rock Type	Sr
	m	m	m			րրո
D Zone Pad Sample	•	-	-	D-ZONE	Exhalite	1
D Zone Pad Sample	-	•		D-ZONE	Exhalite	1
D Zone Pad Sample	-	•	-	D-ZONE	Exhalite	
Near 97-21	•	-			Siltstone	13
Near 97-21	-	-	-	-	Silistone	49
Near 97-21		•	-	-	Silistone	6
Ore Pile Pad Sample	-	•	-	-	Orc	32
Ore Pile Pad Sample		-	-		Ore	34
Ore Pile Pad Sample	· ·	-	1-	ŀ	Ore	21

.

· · ·

.

. С. б.

X

Y

#### APPENDIX D GEOCHEMICAL CHARACTERIZATION OF WASTE ROCK TEST PAD SAMPLES SILVERTIP PROJECT Page 4 of 4

	Sai	mple Identi	fication			1									DI Wate	a Shake	Flask								
DDH	Start	Finish		Rock Cod	Rock Type	٨g			Zn					As	Şb	Fc			Cr	Sn	<u></u>	Mg	Ca		
	m	m	m			mg/L	mg/L	mg/L	mg/L	mg/L	ag/L	mg/L	mg/L	ing/L	mg/L	mg/L_	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	nig/L	mg/L	mg
D Zone Pad Sample	-	-	ŀ	D-ZONE	Exhalite	•	<u>}-</u>		-	ŀ	ŀ	<u>-</u>	-	-	•	-	<u> -</u>	ŀ	· · · · · · · · · · · · · · · · · · ·	<u></u>		<u> </u>	ŀ	<u>i</u>	÷
D Zone Pad Sample	•		'	D-ZONE		-	ŀ	ŀ	ŀ	ŀ	<u> </u>	-	•	*	-	-	r	l:	ŀ	<u>i</u>	ŀ	ŀ	<u>i</u>	<u> </u>	ŀ
D Zone Pad Sample	•	•	•	D ZONE	Exhalite •	0.11	0.9	2.4	8.9	-0.1	0,1	-0.1	0.04	2.5	-0.5	403	1.2	-0.1	I <u>[0.</u> ]	4	· · · ·	<u> </u>	48	4	4-
Near 97-21	•	•	•	ŀ	Silistone	ŀ		Ŀ	-	·	È	<u>-</u>		•••••	<u>i</u>		ŀ · · ·	<u> </u>	-{ <del></del>	ł	ŀ	· .	i	- <del> </del>	÷
Near 97-21	-	-	•	<u>-</u>	Siltstone	Ŀ	ŀ		<u>k                                    </u>	Ŀ	ŀ	·	<u></u>	-	·	<u>.                                    </u>	<u> </u>	ŀ	<u>i</u>	<u>, i</u>	<u>i</u>	<u>.                                    </u>	ŀ	÷	╬┈
Near 97-21	-	ŀ	·	•	Siltstone	0.05	-0.1	-0.2	0.6	-0.1	-0.1	-0,1	-0.02	-0.5	-0.5		0.2	0.2	2 -0.	· ·	4	<u>''</u>	<u> </u>	' <b>}</b> '	4
Ore Pile Pad Sample	-	•	-	ŀ	Ore	ŀ	ŀ	<u> </u>	ŀ	·	<u>i</u>	<u> -</u>		·	-	ŀ	·	£	ļ:	ŀ	•	ŀ	ļ	- <del> </del>	÷
Ore Pile Pad Sample	•			ŀ	Ore	<u> </u>		<u>i                                     </u>	ŀ.	·	<u>i</u>	ŀ	-	<u> </u>	i	ŀ	<u> </u>	<u>.</u>	1 0	<u> </u>	ŀ	ŀ.	1	. <del>[</del>	÷
Ore Pile Pad Sample	•	-	-	I	Ore	} -0.07	2 -0.1	0.3	9.7	-0.1	-0.1	0.1	0.12	0.5	-0.5		1.9	· <u>-0,</u> 1	<u>1 -0</u>	<u> </u>	· ·	- 1	1 /2	<u>"</u> '	4.

.

.

,

.

۲۰۰۰ _۱...

· · ·

# APPENDIX E

÷...

Ą

4

<u>_</u>]

ſ

Waste Rock Pad Leachate Data -Certificates of Analysis service

laboratories

ltd.



# CHEMICAL ANALYSIS REPORT

		. cc. S. Day
Date:	October 1, 1998	
ASL File No.	J8399	
Report On:	Silvertip Water Analysis	- ARD test pads
Report To:	<b>Silvertip Mining Corp.</b> 420 - 355 Burrard St. Vancouver, BC V6C 2G8	
Attention:	Mr. Peter Campbell	

ASL ANALYTICAL SERVICE LABORATORIES LTD. per:

September 8, 1998

Heather A. Ross, B.S. - Project Chemist

Received:

Miles Gropen, B.Sc. - Project Chemist



## REMARKS

File No. J8399

The detection limits for some of the trace metals have been increased for the samples reported in the following data tables due to either high concentrations of Zinc or Iron.



## **RESULTS OF ANALYSIS - Water**

File No. J8399

				OP	HG	DZ	
<u> </u>				· · · · ·			
a			·				
	<u>Physical Tests</u> Conductivity Hardness pH Total Suspend	(um CaC	uhos/cm) CO3	10 9.19 6.66 19	2330 1400 6.93 <1	16400 456 1.93 39	
	<u>Dissolved Anic</u> Sulphate	ons SO4		<1	1350	4800	
	<u>Total Metals</u> Aluminum Antimony Arsenic Barium Beryllium	T-Al T-Sb T-As T-Ba T-Be		15.4 0.0046 0.242 0.472 <0.005	0.03 0.0063 0.003 0.0140 <0.005	143 <4 80 <0.2 <0.1	
<b></b>	Bismuth Boron Cadmium Calcium Chromium	T-Bi T-B T-Cd T-Ca T-Cr		<0.005 0.05 0.0286 1.55 0.023	<0.005 0.02 0.418 509 <0.005	<2 <2 18.1 164 0.3	
	Cobalt Copper Iron Lead Lithium	T-Co T-Cu T-Fe T-Pb T-Li		0.019 0.503 54.6 0.397 <0.01	0.017 0.005 0.10 0.0993 0.02	6.1 61.6 7580 1 <0.2	
	Magnesium Manganese Molybdenum Nickel Phosphorus	T-Mg T-Mn T-Mo T-Ni T-P		1.3 0.425 0.0051 0.107 2.7	31.7 3.24 0.0011 0.019 <0.3	11 208 <0.6 8 31	
8 1. 8	Potassium Selenium Silicon Silver Sodium	T-K T-Se T-Si T-Ag T-Na	- -	3 <0.01 2.88 0.0024 <2	<2 0.02 0.29 <0.0001 78	<40 <4 61 <0.2 51	
	Strontium Thallium Tin Titanium Uranium	T-Sr T-TI T-Sn T-Ti T-U		0.110 0.0007 0.006 0.05 0.0138	0.571 0.0201 <0.001 <0.01 <0.0001	0.9 <4 <0.6 <0.2	

Remarks regarding the analyses appear at the beginning of this report. Results are expressed as milligrams per litre except where noted. < = Less than the detection limit indicated.

<b>N5</b> C	
-------------	--

# **RESULTS OF ANALYSIS - Water**

k.

. . .

.

£. .

1....

File No. J8399

<u>tal Metals</u> anadium inc	T-V T-Zn		0.09 1.64	<0.01 43.7	.<0.6 3660
				-	
					•
	-				
		<i>i</i> .			



## METHODOLOGY

Outlines of the methodologies utilized for the analysis of the samples submitted are as follows:

## **Conventional Parameters in Water**

These analyses are carried out in accordance with procedures described in "Methods for Chemical Analysis of Water and Wastes" (USEPA), "Manual for the Chemical Analysis of Water, Wastewaters, Sediments and Biological Tissues" (BCMOE), and/or "Standard Methods for the Examination of Water and Wastewater" (APHA). Further details are available on request.

### Metals in Water

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" 19th Edition 1995 published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotplate or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by atomic absorption/emission spectrophotometry (EPA Method 7000A), inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B), and/or inductively coupled plasma mass spectrometry (EPA Method 6020).

### End of Report

**VE** 

_____

_

ſ

APPENDIX

CHAIN OF CUSTODY FORMS

CLIENT: <u>F</u> <u>M</u> <u>Device</u> <u>Inclification</u> ADDRESS: <u>420-355</u> <u>Burrand</u> <u>5f</u> CONTACT: <u>5teve</u> <u>Rubertsom</u> TELEPHONE: <u>669-8959</u> FAX: <u>687-4030</u> PROJECT NAME/NO: <u>511vextip</u> QUOTE/PO.NO: <u>1000000000000000000000000000000000000</u>	- Specialists in Environmental Chemistry
SAMPLE IDENTIFICATION	DATE / TIME COLLECTED MATRIX NOTES
1 OP	X / No Priserv
OP	
<b>&gt;</b>	
N HG	
hG HG	
О Ш	
$\frac{HG}{DZ}$	
= 5 DZ	AM X /
й О	
	AM
	AM
TURN AROUND REQUIRED:	SAMPLE CONDITION RELINQUISHED BY: DATE TO THE RELINQUISHED BY: DATE TO THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINGUISHED BY: THE RELINQUISHED BY: THE RELINQUISHED BY: THE RELINGUISHED BY: THE RELINGUISHED BY: THE RELINGUISHED BY: THE RELINGUISHED BY: THE RELINGUISHED BY: THE RELINGUISHED BY: THE RELINGUISHED BY: THE RELINGUISHED BY: THE RELINGUISHED BY: THE RELINGUISHED BY: THE RELINGUISHED BY: THE RELINGUISHED BY: THE RELINGUISHED BY: T
ROUTINE (7 - 10 WORKING DAYS)	UPON RECEIPT:
	FROZEN     RELINQUISHED BY: DATE     RECEIVED BY: DATE
SPECIAL INSTRUCTIONS:	
	/hone/Jyps/qu/DOCS//FORMS/ChnCsidy r03 Gi P

analytical

service

laboratories

ltd.



# CHEMICAL ANALYSIS REPORT

Attention:	Mr. Peter Campbell
Report To:	<b>Silvertip Mining Corp.</b> 420 - 355 Burrard St. Vancouver, BC V6C 2G8
Report On:	Silvertip Water Analysis
ASL File No.	J8591
Date:	October 6, 1998

CC: S. Day F. Robertson

Received:

and and a

<u>ک</u>

ASL ANALYTICAL SERVICE LABORATORIES LTD. per:

September 15, 1998

de

Heather A. Ross, B.Sc. - Project Chemist Miles Gropen, B.Sc. - Project Chemist



#### REMARKS

File No. J8591

The detection limits for the trace metals have been increased for the samples reported in the following data tables due to high concentrations of certain metals in the samples.



### **RESULTS OF ANALYSIS - Water**

### File No. J8591

		OP	HG	DZ	HG	DZ
	· · · ·	98 09 10	98 09 10	98 09 10	98 09 13	98 09 13
<u>Physical Tests</u> Hardness pH Total Suspend	CaCO3	6.82 6.60 96	1390 6.89 226	529 1.74 35	1420 7.19 <1	501 1.70 <1
<u>Dissolved Ani</u> Sulphate	ons SO4	5	1080	36000	1700	40000
<u>Total Metals</u> Aluminum Antimony Arsenic Barium Beryllium	T-Al T-Sb T-As T-Ba T-Be	8.97 0.0035 0.135 0.315 <0.005	<0.01 0.0056 0.003 0.0061 <0.005	190 <10 117 <0.5 <0.3	<0.01 0.0060 0.003 0.0056 <0.005	155 <4 93 <0.2 <0.1
Bismuth Boron Cadmium Calcium Chromium	T-Bi T-B T-Cd T-Ca T-Cr	<0.005 0.01 0.0209 1.39 0.012	<0.005 0.02 0.452 498 <0.005	<5 <5 25.9 197 <0.5	<0.005 0.02 0.486 492 <0.005	<2 <2 21.5 181 0.2
Cobalt Copper Iron Lead Lithium	T-Co T-Cu T-Fe T-Pb T-Li	0.011 0.315 29.5 0.217 <0.01	0.021 0.004 <0.03 0.108 0.01	6.5 88.2 10900 <3 <0.5	0.025 0.005 <0.03 0.106 0.03	6.8 71.9 9410 1 <0.2
Magnesium Manganese Molybdenum Nickel Phosphorus	T-Mg T-Mn T-Mo T-Ni T-P	0.8 0.246 0.0032 0.062 1.5	36.3 4.09 0.0010 0.023 <0.3	9 207 <2 11 41	46.3 4.83 0.0011 0.031 <0.3	12 230 <0.6 10 32
Potassium Selenium Silicon Silver Sodium	T-K T-Se T-Si T-Ag T-Na	<2 <0.01 3.49 0.0015 <2	<2 0.02 0.28 <0.0001 25	<100 <10 71 <0.5 <100	<2 0.02 0.39 0.0002 103	<40 <4 72 <0.2 51
Strontium Thallium Tin Titanium Uranium	T-Sr T-TI T-Sn T-TI T-U	0.066 <0.0005 0.007 0.03 0.0089	0.570 0.0187 <0.001 <0.01 <0.0001	1.4 <10 <2 <0.5	0.653 0.0187 <0.001 <0.01 <0.0001	1.0 <4 <0.6 <0.2
Vanadium	T-V	0.05	<0.01	<2	<0.01	<0.6

Remarks regarding the analyses appear at the beginning of this report. Results are expressed as milligrams per litre except where noted. < = Less than the detection limit indicated.



### **RESULTS OF ANALYSIS - Water**

File No. J8591

		OP	HG	DZ	HG	DZ
	-	 98 09 10	98 09 10	98 09 10	98 09 13	98 09 13
<u>Total Metals</u> Zinc	T-Zn	1.02	49.9	5380	63.8	4220

Remarks regarding the analyses appear at the beginning of this report. Results are expressed as milligrams per litre except where noted. < = Less than the detection limit indicated.



# Appendix 1 - QUALITY CONTROL - Replicates

**-**

File No. J8591

Vater		·	DZ	DZ	
	· · · ·		98 09 10	QC # 133098	
Physical Tests Hardness pH Total Suspended	CaCO3		529 1.74	529 1.74	
	Solids		35	4 /	
<u>)issolved Anions</u> Sulphate	S04		36000	35800	
				· · · · ·	
					•
			·		
		•			
	g the analyses appear at th sed as milligrams per litre letection limit indicated.	· · · · · · · · · · · · · · · · · · ·			······



### Appendix 2 - METHODOLOGY

Outlines of the methodologies utilized for the analysis of the samples submitted are as follows:

#### Conventional Parameters in Water

These analyses are carried out in accordance with procedures described in "Methods for Chemical Analysis of Water and Wastes" (USEPA), "Manual for the Chemical Analysis of Water, Wastewaters, Sediments and Biological Tissues" (BCMOE), and/or "Standard Methods for the Examination of Water and Wastewater" (APHA). Further details are available on request.

#### Metals in Water

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" 19th Edition 1995 published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotplate or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by atomic absorption/emission spectrophotometry (EPA Method 7000A), inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B), and/or inductively coupled plasma mass spectrometry (EPA Method 6020).

#### End of Report



APPENDIX

H

Ċ

 $\left( \prod_{i=1}^{n} \right)$ 

CHAIN OF CUSTODY FORMS

CITAIN OF CUSTOUT / AWALYTICAL TE			1 T		Triumpir Street	San da	1	- 	) A	NAI	<u>}</u>	<u> S г</u>		UE	).) 51E	D	) 	PAGE	) / ( ) / OF
CLIENT Imp-rial Matules Mining Corp. 5 ADDRESS: 420-355 Burrard St. Van	ilve	rt.	ip -	Canad TEL: (	a VSL 1K5 604) 253-418 FREE: (800) 6					'./	'	/	/ /				'	'	
ADDRESS: 420-355 Burrard St. Van	-	-		TOLL FAX:	FREE: (800) 6 (604) 253-67	65-024 00	13 /							_//					
Stave Kabertson		-	S	pecialists in nvironmental Chemistry							/		1	ì	IL	1		/	
CONTACT: TELEPHONE: <u>6.6.9-8959</u> FAX: <u>687-4030</u> PROJECT NAME/NO.: <u>5.1/vevtip</u>	)	-	Ľ	nvironmental Chemistry			/ /	ו /י		/ ,			_	Å	ןן א	15	1		
PROJECT NAME/NO: SI Vertip	<b>.</b>	-				/	       	$\left  \frac{1}{x} \right $	' /	' /		8	/J	]	) び ト	🏹		' /	
QUOTE / PO. NO.:		-	È		a de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la		\$/.	Ξ 			ξ/	ر» ار	<u>ب</u> ر ک			9/			
DATE SUBMITTED: 5-37 14/48 ASL CONTACT:		-	a	nalytical s aboratorie:	ervice			//-	1		ין  ש	å		<del>ة</del> \(	$\mathbb{V}/\mathbb{V}$	י			/
LAB USE ONLY		ł	1		,		/೪	/ Hag	HEA	LEPH/HED.		Meta	Metals - ALL CL, IL	/ `	/	·/·		/	/
SAMPLE IDENTIFICATION	Y	DATE	TIM	E COLLECTED	MATRIX							S	W						NOTES
1 OP	98	9	10	AM										V					
1 OP		-	10	AM PM AM											V				
2 HG	-	-	10	PM AM											Ø				
HG hJ	-	-	10 10	PM										V					
DZ			10	PM AM										-	$\overline{\mathbf{v}}$	·			
<u> у 2</u>				AM								• • • • •							
D				AM										<b></b>					
SI, HG	15	9	13	AM										$\checkmark$					
HG HG	-		13	АМ РМ АМ											V				
× <u>D</u> Z	[	-	13	• PM AM										V	$\checkmark$				
·) DZ	<u> </u>	<u> </u>	13	PM						·									
				PM AM														<u></u>	
				PM AM PM															
				AM	<u>_</u>									20	Λ				
				LE CONDITION	RELINQUIS	SHED E	IY:	D/		T.	419	13	PEC	硕	$\Pi$			ATE	18.91/21
K ROUTINE (7 - 10 WORKING DAYS)				I RECEIPT: FROZEN	4	÷ ```		TI	ME				1	$\mathcal{V}_{\mathcal{T}}$	<u>H</u> -	<u> </u>		ME	16:40
RUSH (SPECIFY DATE):				COLD	RELINQUIS	SHED B	SY:		ATE				RECE	EIVEĎ	BY: V		L	ATE	
SPECIAL INSTRUCTIONS:				AMBIENT				I N	ME				L		···			ME 	
· · ·																			

-----

### APPENDIX F Soil Samples – Compiled Data

> : •. -

: ....

ŧ,

_

ξ.

с. 1997 г.

#### APPENDIX F GEOCHEMICAL CHARACTERIZATION OF OPEN PIT AREA SOILS SILVERTIP PROJECT Page 1 of 4

1

. .

.

·--

· .

•

ample Identification						COUNTI			
Sample ID	Fizz.	Normal	HCI	NP	AP	NNP	MPA	pH	S
		N	ml	kg/t	kg/t	kg/t	kg/t		%
160601	0	0.1	20	-3.5	0.3	-3.6	6.9	4.51	0.2
160602	0	0.1	20	-3.4	0.5	-3.9	7.8	4.65	0.2
160603	0	0.1	20	-4.6	0.5	-5.1	5	4.83	0.1
160604	0	0.1	20	-3.8	0.5	~4.2	4.4	4.62	0.
160605	0	0.1	20	-3.9	0.3	-4.2	5	4.4	0.
160606	0	0.1	20	-2.7	0.4	-3.1	8.1	4.58	0.2
160607	0	0,1	20	-4.2	0.3	-4.5	6.3	4.55	0
160608		0.1	20	-3.2	0.5	-3.5	8.1	4.78	0.1
160609	0	0.1	20	-2.8	0.3	-3.1	2.5	5.05	0.0
160610	0	0.1	20	-3.8	0.4	-3.8	5	4.68	0,1
160611	0	0.1	20	-3.1	1,4	-4.4	6.6	5.11	0.2
160612	0	0.1	20	-3.5	0.2	-3.7	5.6	4.53	0,1
160613	0	0.1	20	-6.1	0.3	-6.4	5.6	4.42	0,
160614	0	0,1	20	-2.3	2.8	-5.1	6.9	5.49	0.
160615	0	0,1	20	-3.3	0,3	-3.4	1.3	4.62	0.0
160616	Ó	0,1	20	-3,6	0.3	-3.9	3.4	4.14	0.
160617	0	0,1	20	-3.9	0.3	-4.2	5	3.96	0.
160618	0	0.1	20	-6	1.7	-7.7	17.5	3.71	0.
160619	0	0.1	20	-4.3	0.4	-4.7	4.1	4.38	0.
160620	0	0.1	20	-3	0.6	-3.7	5.6	4.82	0.
160621	0	0.1	20	-2.5	0.4	-2.9	1.6	4.85	0.0
160622	0	0.1	20	-8.4	0,3	-8.7	5.3	4.35	0.1
160623	0	0.1	20	-2.5	5.8	•8.3	9.1	5.15	0.2
160624	0	0.1	20	-1.9	0.8	-2.7	1.6	7.49	0.0

.

5

. . . .

#### APPENDIX F GEOCHEMICAL CHARACTERIZATION OF OPEN PIT AREA SOILS SILVERTIP PROJECT Page 2 of 4

.

. . . . . .

sample Identification	x	212	Assay										ICP AO	UA REC	JIA								•	
Sample ID	Ba	Se	C NOrg	Ag	Cu	РЪ	Zn	Mo	Ni	Co	Cd	As	Sb	Fe	Mn	Cr	v	Sn	La	AI	Mg	Ca	к	Sr
Sample ID		90 1000	96	×	ррт	ppm	ppm	ppm	pom	ppm	000	ດກະກ	ព្រះព	%	DDM	ppm	ppm	ppm	ppm	%	%	ъ	<b>%</b>	ppm
160601	ppm		~	2.3	55	· · · · · · · · · · · · · · · · · · ·	122		12	1	0.4	151	22	2.65	31	9	21	-20	27	0.69	0.16	-0.01	0.12	51
160607		-	[	2.4	75		198		17	2	0.5	189	_	3.47	51	10	23	-20	23	0.77	0.16	-0.01	0.13	68
160602		-	£	7.9	69		313		19	4	0.9	114		3.07	94	12	48	21	18	0.83	0.05	0.03	0.08	80
160604			<u>F</u>	5.3			265		14		0.9	135	38	2.68	58	11	47	21	24	0.54	0.05	0.06	0.09	98
160604	4316	- 2	1.08		65		155		12		0.5	149		2.43		5	16	-20	31	0.45	0.05	-0.01	0.1	46
160605	4,110	· ·····	1.00	2.6	72		214		16		0.7	274	farmen.	3.59		10	26	-20	25	0.71	0.13	-0.01	0.15	83
160607	F		[	2,3	47		152		8		0.4	136	10	2.46	31	7	21	-20	24	0.6	0.07	-0.01	0.13	66
160608	<u> </u>		[	5.5	74		269	<u> </u>	14	3	1.2	261		3.03	150	7	25	26	26	0.45	0.06	0.03	0.14	94
160609	<u> </u>		[	3.5	64	<b>.</b>			39	5	1.5	110	22	3.19	76	15	74	-20	22	1.09	0.12	0.11	0.08	68
160610	2540		0.8		62		293		18	3	1,1	112	28	2.93	72	12	70	-20	22	0.73	0.07	0.06	0.11	116
160611		-		9.3	37	3682	94	23	3	-1	1	422	226	2.33	18	4	45	54	16	0.22	-0.01	0.04	0.09	38
160612		-	1.	1.6	48	315	175	5	15	2	0,4	118	10	2.9	50	8	19	-20	25	0.75	0.17	-0.01	0.1	83
160613			<u>[.</u>	1.2		245	288	4	19	3	0.8	123	9	3.47	58	10	27	-20	23	0.93	0.11	0.01	0.12	60
160614	<u> </u>		<u> </u>	4.3	66	903	384	5	19	5	1.9	152	28	2.59	218	6	19	-20	22	0.44	0.07	0.09	0.09	50
160615	1597	-2	0.55	2.1	38	223	470	3	30	5	1.4	59	14	2.45	68	7	26	-20	27	0.48	0.07	0.08	0.04	79
160616			-	5.6	34	697	220	5	15	3	0,6	83	20	2.66	61	11	56	-20	18	0.52	0.04	0.05	0.07	44
160617	-			5.9	40	1230	198	9	12	3	0,6	125	40	2.68	90	. 11	41	21	18	0.54	0.07	0,08	0.1	46
160618	-		-	20.4	366	10000	392	4	7	-1	1.8	531	136	5.52	20	20	146		17		0.02	0.03	0.13	177
160619			-	2.8	42	728	242	4	13	3	0.6	148	32	2.53			17				0.05	0.03	0.09	40
160620	3151	3	0.42	3.8	54	920	231	5	12	4	1	191	32	2.21	226	5	20				0.04	0.03	0.09	59
160621		-	ŀ	2.3	70	350	430	4	24	3	2	140	14			5	25				0.03	0.07	0.05	43
160622			1-	4.2	56	807	174	4	13	2	0.6	145	21	2.74	1		21		_	0.64	0,1	0.04	0.1	
160623		-	1.	2.3	67	830	674	5	24	4	2,2	145	21	2.91		8	35			and the second second	0.08	0.03	0.08	38
160624	2660	-2	2.93	2,3	53	273	431	3	32	8	2.6	41	8	2.55	567	14	30	-20	17	1.05	2	3.47	0.08	43

ىرىيى ئى ئىلىن بىكىيىيە بىر **بەت كىلىكەن ئىكىلا**ر بىيىغ يېرىكى بىرى ب

N and

#### APPENDIX F GEOCHEMICAL CHARACTERIZATION OF OPEN PIT AREA SOILS SILVERTIP PROJECT Page 3 of 4

. •

.

THE THE THE PART OF THE PART OF CHEN THE

sample Identificatio											H	ICL Lea	ch										
Sample ID	Ag	Cu	Pb	Zn	Mo	Ni	Co	Cd	As	Sb	Fe	Mn	Ba	Cr	V	Sn	w	La	AI	Mg	Ca	к	Sr
	ppm	քթո	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	թթու	ppm	ppm	ppm	ppm	ក្រពា	ppm	%	%	%	% <b>`</b>	ppm
160601	-	-	-	•	•	-	-	-	-	-	•	•	-	-	-	-	-	<u> -</u>	-	-	-	-	<u> </u>
160602	-	•	•	-	-	-	-	•	ŀ	•	-	-	-			-	•	•	•	•	•	-	-
160603	-	-	•	-	•	-	-	-	-	-	•	•	-		-	-			-	-			-
160604	•	-	-	-			•	-		-	-		-	•	ŀ	·	-	-		-	-	-	ŀ
160605	1.7	26	25	4	-1	4	-1	-0,2	6	-5	0.32	5	76	- 1	1	-20	-20	-1	0.15	-0.01	-0.01	0.02	-
160606	•		-	-	-		•	•		-	-		-	ŀ	-	۰.		-	<u>-</u>	<u>.</u>			Ŀ
160607	•	ŀ	-	-	-	-	•	·	<u>-</u>	ŀ		·	ŀ	ŀ	·	<u>.</u>			-		-	<u> </u>	-
160608	-	-	-		-	ŀ	·				-		ŀ	ŀ	ŀ	۰.	÷	<u>.</u>	-	<u>ŀ</u>	-	<u></u>	- :
160609		•	-		-	•	•	•	<u> -</u>	-			<u> </u>	ŀ	<u>-</u>	Ŀ	~	-	ŀ	ŀ	-	•	۰
160610	6.1	26	116	53	-1	4	•1	0.7	-5		0.26	29	189	-1	6	24	-20	-1	0.27	-0.01	-0.01	0.02	2 .
160611		-		•	-	-	-		Ŀ	•	•	•	ŀ	F	-	ŀ	-	-	-		·	<u>-</u>	
160612		-	-	-	·	·	•	-	ŀ	-	•	-	<u> -</u>	ŀ	•	ŀ	•		-	-		<u>-</u>	ŀ
160613	-	-	·	-		•	-	٠.	•	-	-		ŀ	<u> -</u>	<u>-</u>	-	-		•	·	•.	·	ŀ
160614		•	•	-		-	<u>.</u>	•	·	•	-	-	<u>-</u>	È	<u>-</u>		-	-	ŀ	È	-	ŀ	ŀ
160615	2.9	24	21	20		5	-1	1.4	-5	-5	0.32	14	43	-1	4	-20	-20	-1	0.17	0.01	-0.01	0.01	i <b>l</b>
160616	-	ŀ	•	ŀ	<u>-</u>	<u> </u>	-	ŀ	<u>ار م</u>	·		ŀ	<u> </u>	<u></u>	<u> </u>	<u> -</u>		·	<u> </u>	<u>⊧         </u>		<u>i</u>	<u>├</u>
160617		ŀ	·	·	<u>-</u>		ŀ	•	·	•		<u></u>	<u> </u>	<u> </u>	ŀ	[		-	<u> </u>	ŀ	•	ŀ	<u> </u>
160618	-	ŀ	·	•		<u> </u>	•	<u>.</u>	·	•	-		ŀ	<u> </u>	<u>:</u>	<u> -</u>	•	:	•	<u>i</u>	:	<u> </u>	<u> </u>
160619		;	<u>-</u>	•	ŀ	-	-		-	·	•	·	•	k.	ŀ	<u> </u>	·	-	-	<u> </u>	ŀ	ŀ	<u> </u>
160620	1.8	36	137	13	-1	5	-1	-0.2	-5	20	0.16	212	135	· 1	-1	-20	-20	•1	0.08	-0.01	-0.01	0.01	
160621	-	·	<u>-</u>	<u>.                                    </u>	·	·	÷	<u></u>	ŀ	<u>:</u>	-	•	ŀ	ŀ	ŀ	ŀ	·	:	ŀ	<u>-</u>	-	<u> </u>	<u> </u>
160622	-	Ŀ	Ŀ	•	È	<u>.                                    </u>	ŀ.	·	1			-	i	<u>-</u>	<u> </u>	<u> </u>	ŀ	·	ŀ	li		<u> </u>	<u>-</u>
160623	<u> </u>	Ŀ	·	<u>-</u>	È	•	<b>:</b>	İ	<u> -</u>	<u>-</u>	<u>.</u>	<u>-</u>	<u>:</u>	<u> -</u>	ŀ	ŀ	-		ŀ	<u> </u>	-	<u> </u>	Ļ
160624	2.7	37	140	146	-1	7	-1	2.1	-5	10	0.27	468	437	<u> </u>	5	-20	-20	-1	0.23	1.19	2.45	0.02	<u> </u>

 $\sim$   $\sim$   $\sim$   $\sim$ 

#### APPENDIX F GEOCHEMICAL CHARACTERIZATION OF OPEN PIT AREA SOILS SILVERTIP PROJECT Page 4 of 4

.

.

,

.

:

,

ample Identificatio										<u>DI Wa</u>	ter Shak	e Flask							· · · · · ·		
Sample ID	Ag	Cu	Pb	Za	Mo	Ni	Co	Cd	As	Sb	Fc	Mn	Ba	Cr	Sn	AI	Mg		Na	<u>к</u>	Sr
			_		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
160601			[	-	-	-		-	-	-	•	-	•	-	•		ŀ	<u> -</u>	ŀ	<u> -</u>	-
160602				-		ŀ	-		-	-		•		•		ŀ.		-	ŀ	•	-
160603		<u>.                                    </u>	-	i		-	-	-	•	•	•	-	•	-	-	<u> -</u>	•	<u> </u>	ŀ		
160604	_			ŀ	-	-	•	-	ŀ	-	·	ŀ	•		ŀ	<u> </u>	ŀ	<u> </u>	-	-	-
160605	-0.02	-0.1	0.6	-0.1	-0.1	-0.1	-0.1	-0.02	-0.5	-0.5	20	-0.1	0,4	-0.	-1	4	!		3		<u>-0.</u>
160606		1.	-	-	-	-	•	-	•	-		-	<u>.</u>		·	ŀ	<u> </u>	·	· · ·		-
160607	-	1.		-	•	-	-		<u>-</u>	ŀ	<u> </u>	·		-	·	•		ŀ	+		· · ·
160608	-	-		-	•	-	-	ŀ	-	ŀ	<u>-</u>	·	<u> </u>	<u>;                                    </u>	i	•	<u>+</u>	<u>-</u>	<u>-</u>	<u> </u>	ŀ
160609	-	-	-		-		-	ŀ	<u> </u>	ŀ	<u> </u>	ŀ		+	ŀ	ŀ.	<u>i</u>	ŧ.	<u>.</u>		
160610	-0.02	-0.1	0.8	0.3	-0.1	-0.1	-0.1	-0.02	-0.5	-0.5	26	0.3	0.8	-0.1	-1	7	<u> </u>		<u> </u>	·	2 -0.
160611	-		•	-	-	•	-	ŀ	-	-	<u> -</u>			•	<u> -</u>	•	<u> </u>	ŀ	ŀ		-
160612	•	-	-	•	-	-	ŀ	-	ŀ	<u> </u>	-	<u>i</u>	ŀ	<u> </u>	ŀ	ŀ	<u> </u>	<u> </u>	·		· · · · · ·
160613	-	-	•	]-	-	•	-	<u> </u>	<u> </u>	<u> -</u>	<u> -</u>	<u>-</u>	-	ŀ	i	i		<u> </u>		•	
160614	-	•	•	-	-	ŀ		ŀ	<u> </u>	ŀ	-	ŀ	-	•	F	ŀ.	<u> </u> ;	<u> </u>		; <del>-</del>	2 -0.
160615	-0.02	-0.1	-0.2	-0.1	-0.1	-0.1	-0.1	0.02	-0.5	-0.5		i -0,1	0.1	-0.1			<u> </u>		· · · · · · · · · · · · · · · · · · ·	<u></u>	<u>u.</u>
160616	-	•			•			ŀ	<u> </u>	<u> </u>	<u> </u>	·	•	. <b> </b>	<u> </u>		ŀ	<u> </u>	· · · · ·		+ ·
160617	-		-	Ŀ	ŀ	-		ŀ	<u>-</u>	<u> </u>	<u> </u>	<u> </u>	•		·	i	ŀ		*		- <del> </del> -
160618	·	-			ŀ		-	ŀ	<u> :                                    </u>	È	F		•		ŀ	<u> </u>	·	ļ		î	-l
160619	-		ŀ	-	-	·	-	-	<u>;                                    </u>	i	·	•		·	ŀ	ŀ	<u> </u>	-			5 -0.
160620	-0.02	2 -0.1	0.8	0.2	2 <u>-0.1</u>	-0,	-0.1	-0.02	-0.5	-0.5	14	0.8	0.6	-0.1	<u>                                      </u>	i			<u> </u>		
160621	•	-		ŀ	·	<u> </u>	÷	<u>i</u>	ŀ	<u>ا</u>	r	t	<u> </u>	ŀ	<u>↓</u>	<u> -</u>		<u>-</u>	+	·	- <del> </del>
160622	-	ŀ	•	<u> -</u>	<u>.</u>	ŀ	<u>i</u>	ŀ	È	<u> </u>	<u> </u>	<u> </u>	<u>+</u>	<u>i</u>	<u> </u>	ł	<u> </u>	l	<u> </u>		
160623	-	<u>-</u>	ŀ	ŀ -	<u> </u>	ŀ		<u></u>	ļ	<u> </u>	<u>.</u>	<u> </u>	-	<u> </u>	ł	F	·	-	; <del></del> ;	; ⁻	-0,
160624	-0.0	2 -0.1	-0.3	2 -0.1	-0,1	-0,1	0.	-0.02	-0.5	-0.5	1	0.1	0.3	-0.1	· · · ·	<u>L</u>	6	5 2	<u>با</u>	2	<u>ii -0,</u>

Y

.....

# APPENDIX C

# **GEOPHYSICS – CSAMT SURVEY**

۱.

ί.

# Silvertip CSAMT Survey

# **Final Report**

#### ¢

# Whytecliff Geophysics

Partners: D. B. Butler and K. D. G. Jarvis

September 16, 1998

By Kevin D.G. Jarvis, P. Geo. David B. Butler, Ph. D.

Prepared for Silvertip Mining Corporation

6

Whytecliff Geophysics

٤.)

2. 1

ί.

ι.

ί.

## Table of Contents

Executive Summary
Introduction
Geologic Setting
Overview of the CSAMT technique
Field Procedures
Survey Location
Results and Interpretation
Discussion
Suggestions for Future Work10
Conclusions
References
Figures
Appendix: Station Coordinates

### **Executive Summary**

The CSAMT survey discussed in this report has provided Silvertip Mining Corporation with images of the electrical resistivity structure under five lines on the Silvertip Property. These images indicate that a very large, highly electrically conductive anomaly, which may represent a massive sulphide ore body, exists under Silver Creek South. The anomaly suggests that the ore body may extend from the top of the McDame Limestone, through the underlying McDame Dolostone, and into the Tapioca Sandstone. This is an important development, as it implies that two other horizons, in addition to the McDame limestone, are prospective exploration targets. The results also suggest that additional ore bodies may exist under Tour Ridge, and north of Discovery North. Whytecliff Geophysics

#### Introduction

This report describes a controlled-source audio-frequency magnetotelluric (CSAMT) survey carried out at the Silvertip property during August of 1998. The survey was designed to detect large, vertically oriented, massive sulphide deposits. These deposits, postulated to exist beneath, or far removed from the known ore deposits, may represent mineralized fluid pathways that acted as feeder channels for the known mineralization.

This report gives a brief description of the local geology, a summary of the CSAMT technique, and a description of the field techniques employed at Silvertip. It then summarizes the results of five lines of data, placing the results in context with the known geology.

The results suggest that a large, vertically oriented, electrically conductive body exists near the Camp Creek Fault. This conductor may represent a substantial massive sulphide ore body. Based on these results, we suggest that a small follow-up CSAMT survey be conducted, to detail the extent of the body. We further suggest that the conductor be drilled, to test whether it does represent massive sulphides.

#### **Geologic Setting**

The following geologic description is not intended to be exhaustive. More detailed descriptions are available from Silvertip Mining Corporation. In particular, work by Chris Rees, as well as a recent report by Peter Megaw (1998), provide in-depth descriptions and analyses of the geologic setting. The following brief summary enables the geophysical results to be placed in context with the local geology.

There are three formations of interest in this area: the Tapioca, the McDame, and the Earn. The Tapioca, at the base of the sequence, is a fine-grained siliceous sandstone. Above this is the McDame, which comprises 350 m of dolostone and overlying limestone. The Earn Group, whose thickness can be as much as 800 m, unconformably overlies the McDame, and consists of sandstones, siltstones, and conglomerates, as well as some syngenetic exhalites.

Rocks in the area dip moderately to the east. As well, there are a number of steeply dipping, north-south trending normal faults. These faults drop the section to the east, so that the McDame, which is exposed in the western part of the property, is as much as 800 m below surface in the east.

The known massive sulphide ore bodies at Silvertip exist as manto deposits in the McDame limestone. A large number of the mantos exist at or just below the unconformity at the top of the limestone. It has been suggested by Peter Megaw that these mantos represent fringing ore bodies at the edge of a potentially much larger ore system. The mantos may have been fed from below, through fractures or faults that at one time may have been highly permeable relative to the surrounding limestone. If this is

#### Whytecliff Geophysics

correct, then these feeder channels may also be mineralized, and may contain the bulk of the ore that exists on the property. It is probable that if these mineralized feeders exist, then they would be associated with the high-angle normal faults in the area. The goal of this survey, therefore, was to determine whether mineralized feeder channels exist on the Silvertip property.

#### Overview of the CSAMT technique

If mineralized feeders exist on the property, then, geophysically, they would appear as vertically oriented, electrically conductive bodies that extend from the top of the McDame to depth. CSAMT is well suited to the search for vertical conductors, and was therefore chosen as a reconnaissance-mapping tool.

Magnetotellurics (MT) makes use of time-varying electromagnetic (EM) waves that exist naturally in the atmosphere and magnetosphere. When these waves reach the surface, they penetrate the earth and induce the flow of electrical currents in the crust. These currents, which flow roughly parallel to the surface, flow through electrically resistive earth materials, thereby creating electric fields (voltage distributions in the ground). These electric fields can be measured at the surface; and their magnitudes depend on whether the currents flow though electrically resistive or electrically conductive rocks. Rocks such as limestones or sandstones, if they are devoid of metallic ores, range from mildly resistive to very resistive, and would create large electric fields. However, those same rocks, if they contained large quantities of metallic ores (such as massive sulphides), would not be very resistive at all (they would be electrically conductive), and would create very small electric fields. Thus the presence of electric fields that are very small in comparison to background fields indicates the possible presence of massive sulphide ore in the subsurface.

Naturally occurring EM waves are created by a wide variety of atmospheric and magnetospheric effects, and exist over a wide range of frequencies. All of these waves are attenuated as they penetrate the earth. The attenuation increases with increasing frequency, and decreases with increasing resistivity (decreasing electrical conductivity) of the ground. For ground of a constant resistivity, high frequency waves are rapidly attenuated, and cannot penetrate farther than a few metres (or tens of metres). Therefore these waves sense only the resistivity of the upper few metres (or tens of metres). Low frequency waves are attenuated very slowly, and can therefore penetrate hundreds or thousands of metres. These low frequency waves therefore provide information about resistivity over a very wide depth range. In addition, waves of a particular frequency will be rapidly attenuated in electrically conductive ground (the ground "shields" itself from the waves), and therefore will not penetrate as far as they would in electrically resistive ground.

MT measurements are made over a frequency band that ranges from less than 0.1 Hz to greater than 100 kHz. Natural fields exist over most of this range, but there is a gap between 500 Hz and 3 kHz, where few natural fields can be detected. This leads, as a

result of the different penetration depths of different frequency waves, to a gap in the depth range that can be investigated. To solve this problem, CSAMT (*controlled source audio-frequency* magnetotellurics) uses a transmitter that emits EM waves in the natural frequency gap. Thus CSAMT obtains a more continuous profile of the variation of electrical resistivity with depth.

#### Field Procedures

Figure 1 shows how CSAMT data are collected in the field. At each station, four measurements are made: two perpendicular electric field measurements, and two perpendicular magnetic field measurements. The station location is at the centre of the electrical probes. The magnetic fields are measured using highly sensitive cylindrical magnetic sensors, which consist of magnetic metal wrapped in many turns of electrical wire. These sensors are oriented horizontally, at right angles to one another, and are buried approximately six inches underground. They are placed within five metres of the station. The electric fields are measured by placing electrical probes in the ground, at a fixed distance apart, and measuring the voltage differences. These probes consist of either titanium spikes, or porous ceramic pots containing a copper wire and a saturated solution of copper sulphate. The probes are placed in holes that are approximately two feet in diameter by one foot deep. These holes are wetted with either fresh or saline water, in order to improve the electrical contact between the sensors and the ground. In rocky ground, thick mud is used in the hole, to provide a more diffuse electrical connection to the earth.

The four data streams collected are time-domain signals, measured over approximately 30 minutes. The data are then converted to the frequency domain using a Fourier transform. The results give the electric and magnetic field amplitudes, versus frequency, over the entire frequency range. These are then translated into estimates of resistivity at varying depths beneath the station. Since each estimate of resistivity requires a measurement of the magnetic field, and a perpendicular measurement of the electric field, the four measurements give two independent estimates of resistivity at each frequency, at every station.

After estimates of resistivity are obtained for all frequencies, the equipment is picked up and moved to the next station. The station spacing equals the separation distance between electrical probes. This leads to station spacings from 20 m for shallow, detailed investigations, to 100 m for deep, reconnaissance investigations. At each station, estimates of resistivity are obtained for a wide frequency range, and are then translated to profiles of resistivity over a wide depth range.

Two different sets of field sensors were used during the program at Silvertip. The first set is designed to investigate approximately the upper five hundred metres of the earth, and uses EM waves between 10 Hz and 92 kHz. The second gear set is designed to look much deeper, and uses waves from 0.1 Hz to 1 kHz. The first set was used for lines 1, 2, and 3. Both sets were used for lines 4 and 5.

#### Survey Location

Figure 2 shows the location of the five lines on a 1:20,000 UTM grid. The exact positions are given in the Appendix. Line 1, at a northing of 6,643560 m, was located to coincide with a known ore body. It served as a test of the CSAMT technique, to determine whether the technique could detect massive sulphides.

Lines 2 through 5 were exploration lines. Line 2, at a northing of 6,641,500 m, was located to test Tour Ridge, an area identified by Peter Megaw as being prospective for mineralization. Line 3, located between the camp and the shop at a northing of 6,644,440 m, was located to explore the area to the north of the known mineralization. Line 4, at an approximate northing of 6,643,300 m, was located to test the Silver Creek South area, where underground drilling had intersected some sulphides well below the Earn-McDame unconformity. Line 5, at a northing of 6,642,550 m, was located to test the region beneath Silvertip Hill and Silvertip Mountain.

#### **Results and Interpretation**

At each station along a line, estimates of resistivity are obtained at different depths. These profiles are then plotted side-by-side, and contoured to produce two-dimensional cross-sections. The results are presented twice: once by themselves, and once with independent geologic information superimposed. This geologic information was obtained from Silvertip Mining Corporation.

#### Line 1 - Seismic Line A

Line 1 was run to test the CSAMT method, to see whether it could detect known mineralization. The results are shown in Figures 3a and 3b. Figure 3a is a contour plot of resistivity versus easting and elevation. The station interval on the line was 20 m. Small crosses on the section represent positions where resistivity estimates were obtained. The cooler, blue colours represent relatively resistive materials, while the warmer, red colours represent relatively conductive materials.

Two major features are evident in Figure 3a. The first is a resistive layer between the surface and 1200 m elevation. This layer extends across most of the section, with slightly more conductive regions appearing at the east and west edges of the plot. The second feature is a very conductive region below 1180 m elevation, and west of easting 25025 m. Note that the data crosses do not appear in the lower, western part of the plot: this is indicative of a conductive layer shielding the earth from EM wave penetration.

Figure 3b shows the same results with independent geologic information superimposed. This information was obtained from Silvertip Mining Corporation in late fall of 1997. The section is broken into two layers: the McDame limestone and the overlying Earn. Dashed lines represent interpreted faults. The fault at the bottom left of the diagram is the Camp Creek Fault. The known massive sulphide ore bodies are shown as hatched

Whytecliff Geophysics

regions surrounded by thick black outlines. It is clear from the diagram that the largest ore body, between 24820 m and 24975 m, appears as a large, conductive anomaly. The boundaries of the anomaly do not exactly match the outline of the ore body, but this is to be expected, as CSAMT can only produce a smeared image of the subsurface. It is also clear that the Earn, which is devoid of ore in this area, appears resistive. Note as well that the large body appears to act as an EM shield, since only a few estimates were obtained below the ore. This implies that the EM waves were not able to penetrate far beneath the ore.

The smaller ore bodies east of 25000 m are not detected. From these results, it appears that only the larger bodies can be detected with CSAMT. This makes intuitive sense, since the technique obtains, at each frequency, a resistivity estimate that, although centred at a particular depth, is nevertheless the result of averaging over a large volume of earth. Therefore, small ore bodies may become electromagnetically invisible when they are incased in resistive host rock.

Two smaller, conductive anomalies appear in Figure 3a. The first is at the surface, between eastings 24925 m and 25075. This anomaly corresponds to a thick wet clay layer at the surface, and can be disregarded. The second is a vertical structure, approximately 30 m wide, that extends downwards from the surface at easting 25100 m. This corresponds to the YBR fault. There may be minor amounts of mineralization throughout the fault zone, or the fault may contain a higher proportion of water than the surrounding rocks, thereby making it marginally more conductive.

The very good correspondence between the conductive anomaly and the large ore body led us to conclude that CSAMT is capable of detecting large ore bodies in this area. This led us to use the technique in four exploration areas on the property.

#### Line 2 – Tour Ridge

The Line 2 results are shown in Figures 4a and 4b. Figure 4a shows that the upper 100 m of the line is resistive, aside from two small near-surface anomalies at eastings of 24525 m and 25050 m. The western third of the section is also resistive, from surface to 900 m elevation. A large, vertically oriented, mildly conductive region exists between 24750 m and 24950 m. Note that there are no data below approximately 1100 m elevation, between 24700 m and 24950. The closure of the 10 ohm-m contour is thus an artifact of the contouring; the conductive anomaly itself may extend below 900 m.

Figure 4b shows the data with the geologic information superimposed. The top of the conductive anomaly matches the contact between the Earn 1b and the Earn 2a. Exhalites, which are more conductive than Earn siliclastic rocks, exist at this boundary elsewhere on the property. Therefore the top of this conductive structure may correspond to exhalites on Tour Ridge. The most conductive part of the anomaly exists in the McDame Limestone, and is just east of the Camp Creek Fault. A reasonable explanation for these results is that metal-bearing fluids travelled up the Camp Creek Fault, or up a

Whytecliff Geophysics

nearby splay of the fault, and deposited sulphides in the limestone and dolostone. The fact that the resistivity is larger than those values corresponding to the known ore body under Line 1 leads to two possible interpretations. First, the line may have passed over a low-grade ore deposit. Second, a high-grade ore deposit may exist in the area, but the line passed just to the north or the south of it. In the latter case, the recorded resistivity would be an average of very low resistivity ore with higher resistivity host rock.

#### Line 3 – Discovery North

Figures 5a and 5b show the results of Line 3, without and with geologic information, respectively. The majority of the area under this line is resistive. However, Figure 5b shows that the Camp Creek Fault is again associated with a vertically oriented structure that is mildly more conductive than the surrounding rocks. This structure follows the fault, from 1050 m elevation to approximately 600 m. Here, as for Line 2, there are two interpretations. The anomaly may represent a low-grade ore deposit, or it may indicate that a high-grade deposit is nearby. The overall resistive appearance of the section, however, suggests that this region is slightly less prospective than is Tour Ridge.

#### Line 4 – Silver Creek South

The results for Line 4 are shown in Figures 6a and 6b. It is evident from Figure 6a that a large, vertically oriented ore body may exist under this line, between eastings 24750 m and 24950 m, extending from 1150 m elevation to depth. Figure 6b shows that this conductive body is associated with the top of the McDame Limestone, and is immediately east of the Camp Creek Fault. In addition, the anomaly broadens at the base of the limestone, and follows the structure of the limestone and the McDame Dolostone. The anomaly is also present in the Tapioca Sandstone.

These resistivity values match, or are less than the values that correspond to the major ore body under Line 1. It is highly unlikely that these values can be explained solely by water in the Camp Creek Fault. We therefore interpret this anomaly as a large massive sulphide body. This structure may represent a mineralized zone that acted as a feeder for the known mineralization to the north. Metal-bearing fluids may have travelled up the Camp Creek Fault, or up a nearby splay, and deposited ore along highly permeable pathways in the limestone and dolostone. The results also indicate that ore may be present in the Tapioca. Chris Rees, in a recent field mapping exercise, discovered massive-sulphide-bearing Tapioca Sandstone. This lends strong credence to the possibility that the conductive region in the Tapioca is mineralized.

These results are highly significant, in that they indicate that mineralization may occur not only at the unconformity at the top of the McDame, but also throughout the McDame Limestone and Dolostone, and in the Tapioca as well. This represents a new set of exploration targets for the Silvertip project.

#### Line 5 – Silvertip Mountain

The results for Line 5, shown in Figures 7a and 7b, indicate that no large sulphide bodies exist under this line in the upper 500 m of Silvertip Hill and Silvertip Mountain. However, a conductive anomaly exists at great depth east of the Camp Creek Fault, between 550 m and 700 m elevation. This anomaly may represent the deep, southward extension of the anomaly on Line 4. It is associated with the Camp Creek and two splay faults, and the anomaly resides in the McDame and the Tapioca. These resistivity values are comparable to those associated with the ore body in Line 1.

#### Discussion

The results of the test line (Line 1) indicate that CSAMT can detect large ore deposits, but not small ones. This can be viewed as an economic filter: the technique will not detect small, potentially uneconomic ore bodies.

The results from the exploration part of the survey indicate that the Camp Creek Fault played a major role in the placement of the massive sulphide ore. Known mineralization on the property occurs east of this fault. Mildly conductive anomalies on Lines 2 and 3 indicate that ore bodies may exist near these lines, east of the Camp Creek Fault. Line 4, over Silver Creek South, suggests that a major ore body exists immediately east of the fault. Line 5 suggests that a deep ore body may also exist under Silvertip Mountain, associated with the Camp Creek and two splay faults. On all of the lines, the areas west of the Camp Creek Fault do not appear prospective.

The results also suggest that ore exists far below the unconformity at the top of the McDame. This is most evident on Line 4, where the conductive anomaly broadens significantly at the base of the McDame, and extends into the Tapioca Sandstone.

#### **Suggestions for Future Work**

The results from this survey highlight one highly prospective and three prospective exploration areas. The large anomaly on Line 4 should be tested with drilling. However, since the drill holes will be expensive, it would be worthwhile, prior to drilling, to detail this area with a closely spaced CSAMT grid. This grid should have resistivity stations every 50 to 100 m. The results from this detailed survey will increase the chances for success with the drill holes.

Line 5 showed a conductive anomaly that may be connected with the highly prospective target on Line 4. It is therefore worthwhile to run approximately five reconnaissance lines between Lines 4 and 5, to determine whether these bodies represent the same large ore system.

Line 2 indicated that a massive sulphide might exist close to the line, either to the north or south. Therefore at least two more reconnaissance lines should be run in the area, one to the north of Line 2 and one to the south, to test whether a sulphide is nearby. If either of these lines show positive results, additional lines can be run to detail the anomaly. The same approach should be taken towards Line 3, to test whether the vertical anomaly associated with the Camp Creek Fault indicates a nearby ore body.

#### Conclusions

A test of the CSAMT method has shown that it can detect large massive sulphide bodies on the Silvertip property. This method was then used on four additional lines in an exploration mode. The results provide Silvertip Mining Corporation with images of the electrical resistivity structure under those lines. These images can be related directly to geologic structure and the presence of massive sulphide ore bodies.

The results of Line 4 indicate that a very large, electrically conductive anomaly, which may represent an ore body, exists under Silver Creek South. The anomaly indicates that the ore body may extend from the top of the McDame Limestone, through the underlying McDame Dolostone, and into the Tapioca Sandstone. This is a significant result, as it implies that two other horizons, in addition to the McDame limestone, are prospective exploration targets. Anomalies on Lines 2, 3, and 5 suggest the presence of additional sulphides.

The most prospective anomaly, under Line 4, should be drilled after being delineated by a detailed CSAMT in-fill survey. The other anomalies should be investigated with additional reconnaissance lines.

#### Reference

Megaw, P. K. M., 1998, Report on field visit to Silvertip Project, B. C.: memo from IMDEX Inc. to Imperial Metals, p. 1-29.



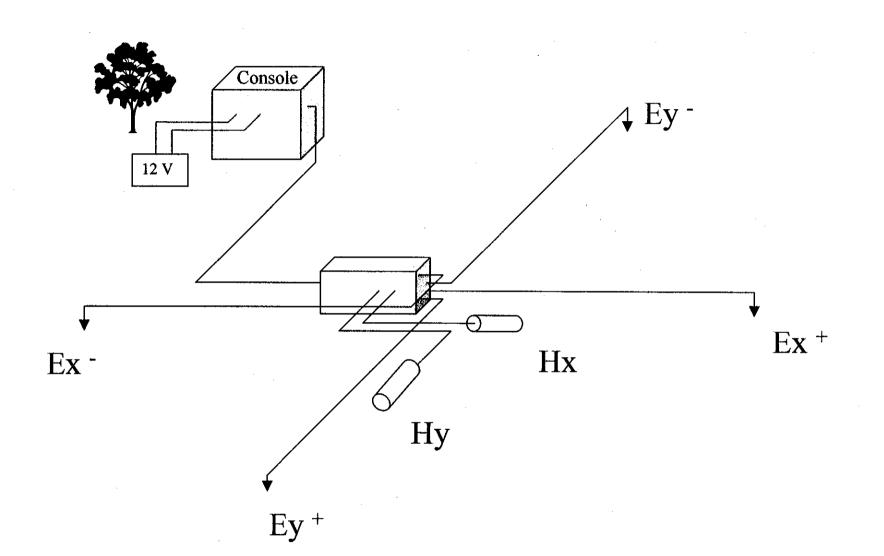
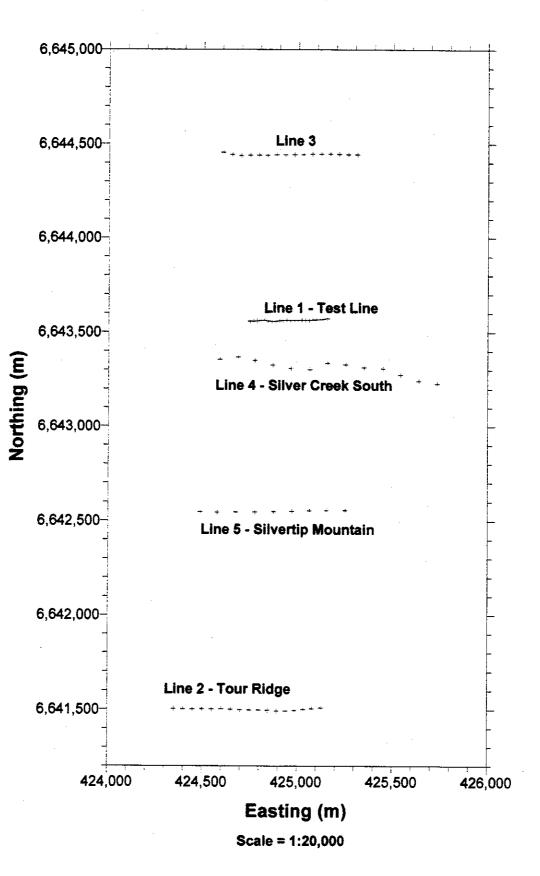
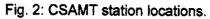





Fig. 1: Schematic of CSAMT data collection method. At each station, two estimates of resistivity are obtained per frequency: one from the ratio of Ex to Hy, and one from the ratio of Ey to Hx.





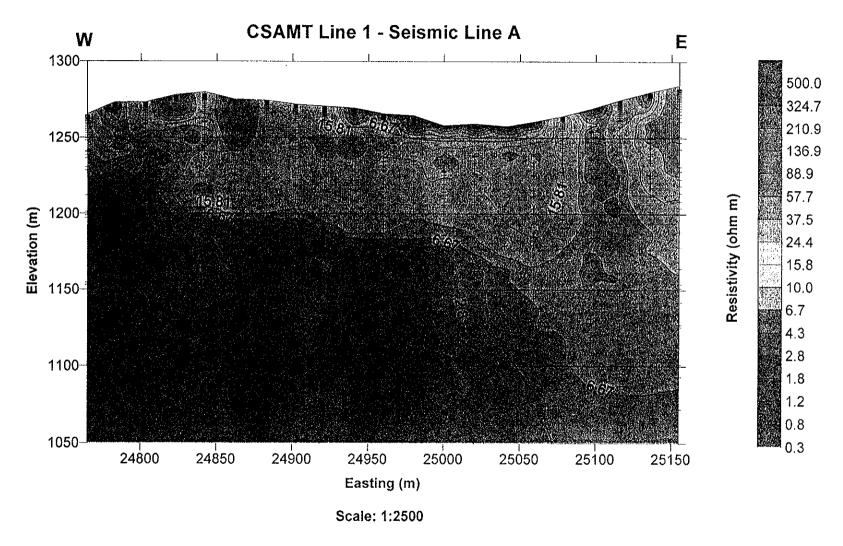



Fig. 3a: Electrical resistivity distribution beneath Line 1.



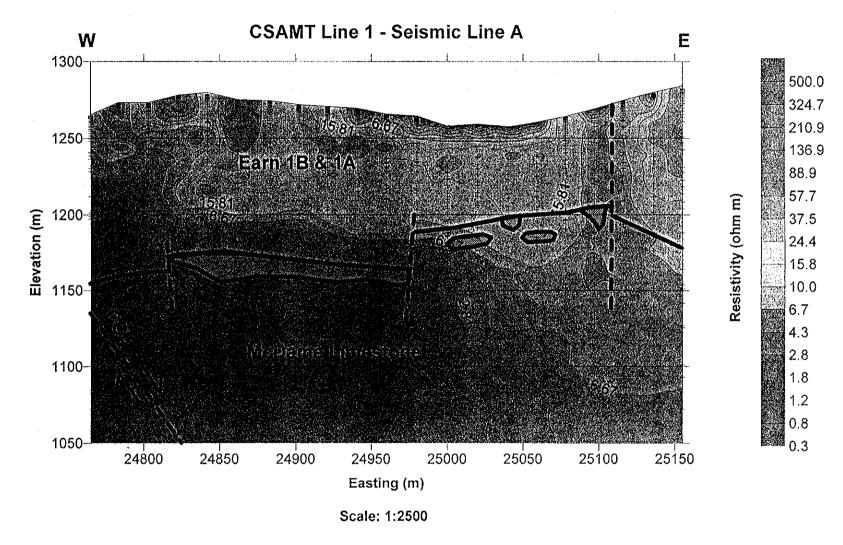



Fig. 3b: Electrical resistivity profile beneath Line 1. Geologic boundaries are shown in black.

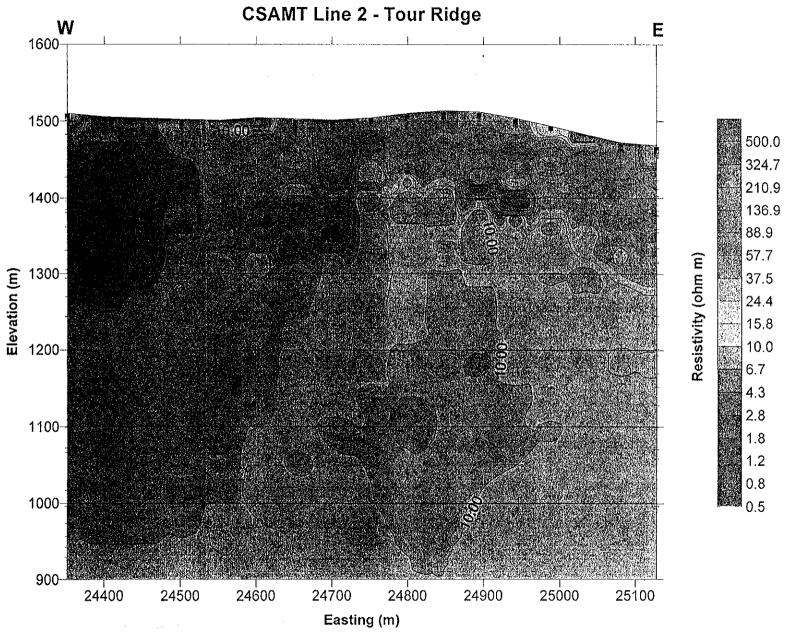
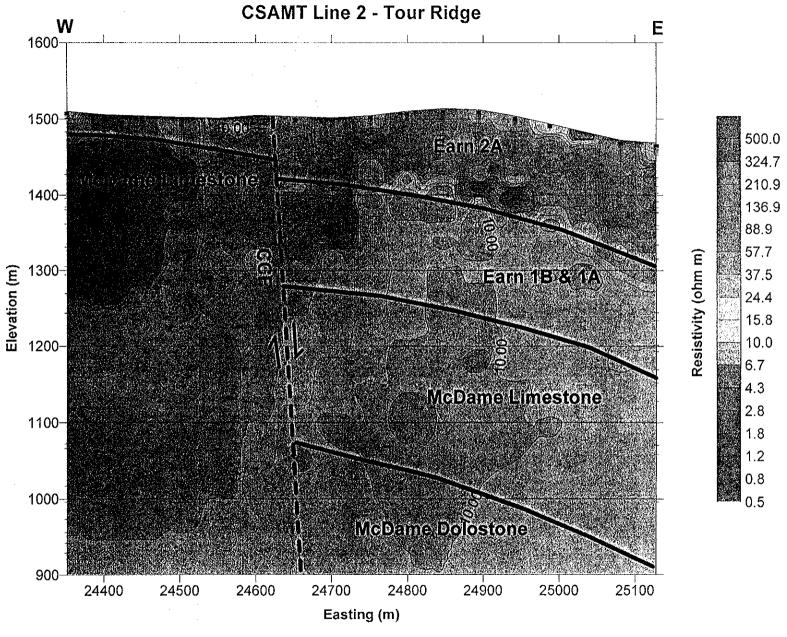
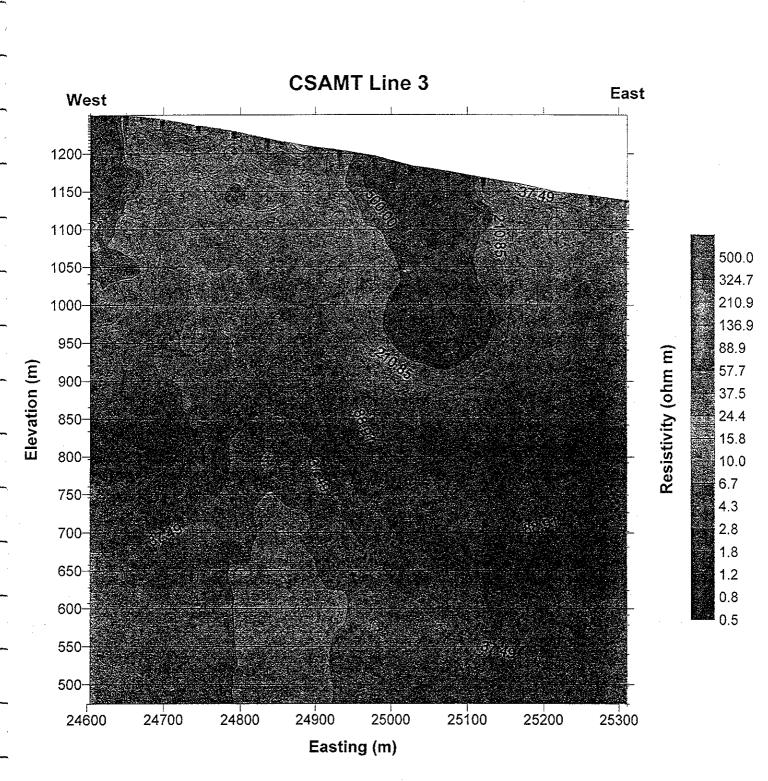





Fig. 4a: Electrical resistivity distribution beneath Line 2, at Tour Ridge.

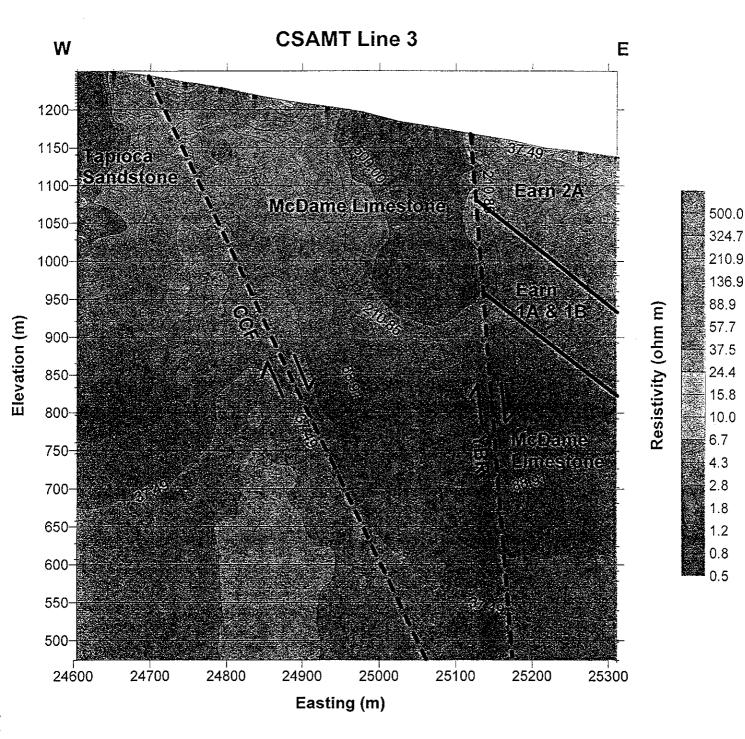
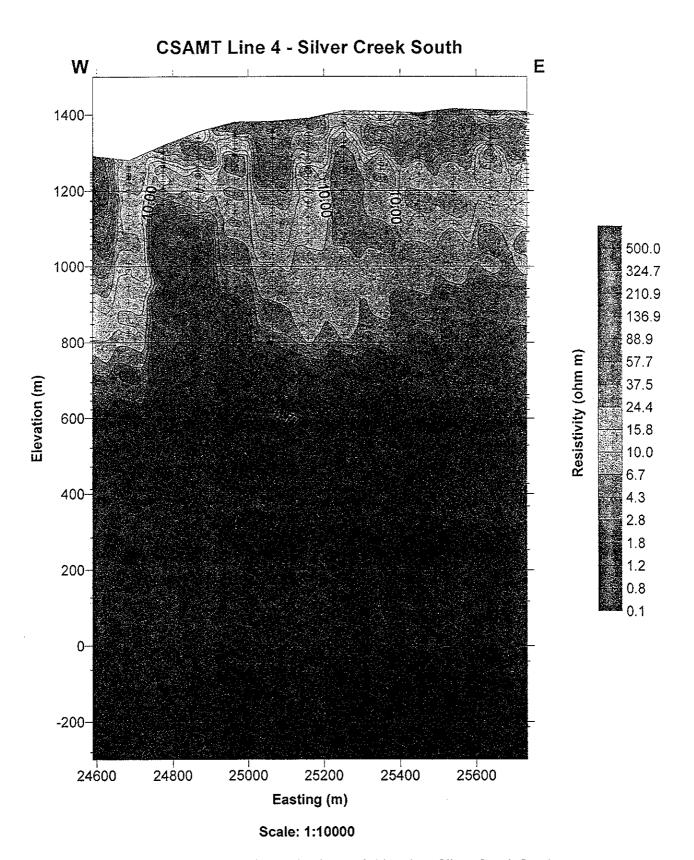
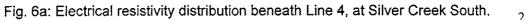
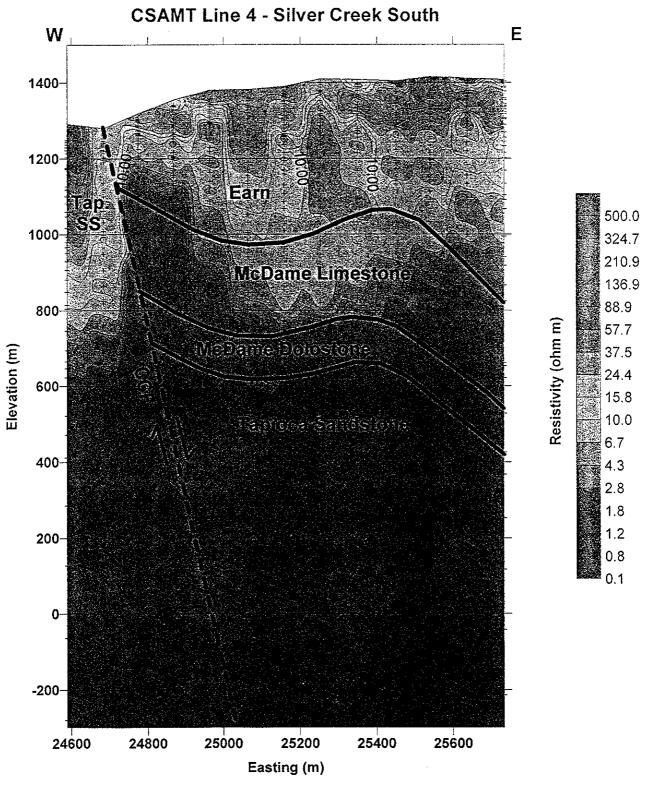




Fig. 4b: Electrical resistivity distribution beneath Line 2, at Tour Ridge. Geologic boundaries are shown in black.




Scale = 1:5000


Fig. 5a: Electrical resistivity distribution beneath line 3.



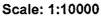
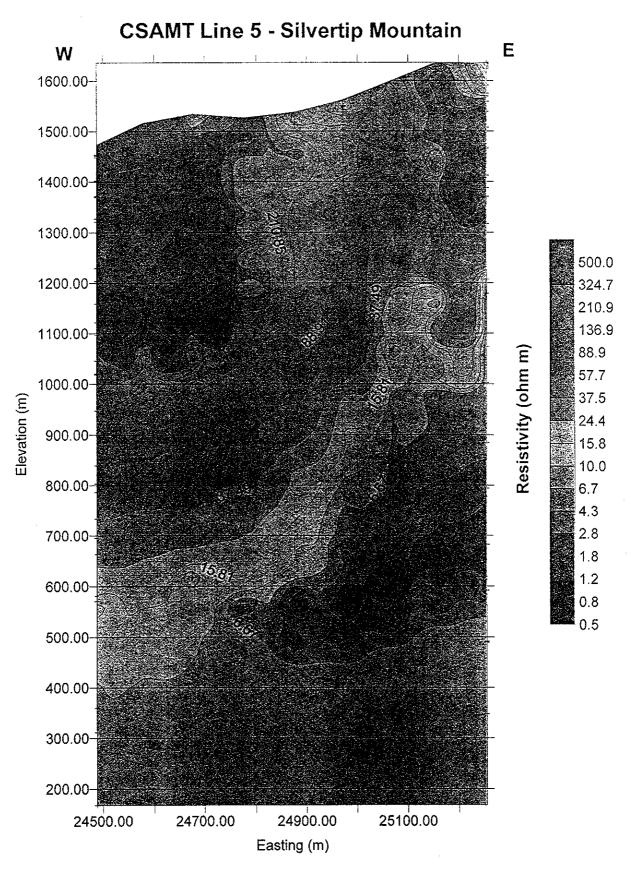

Scale = 1:5000

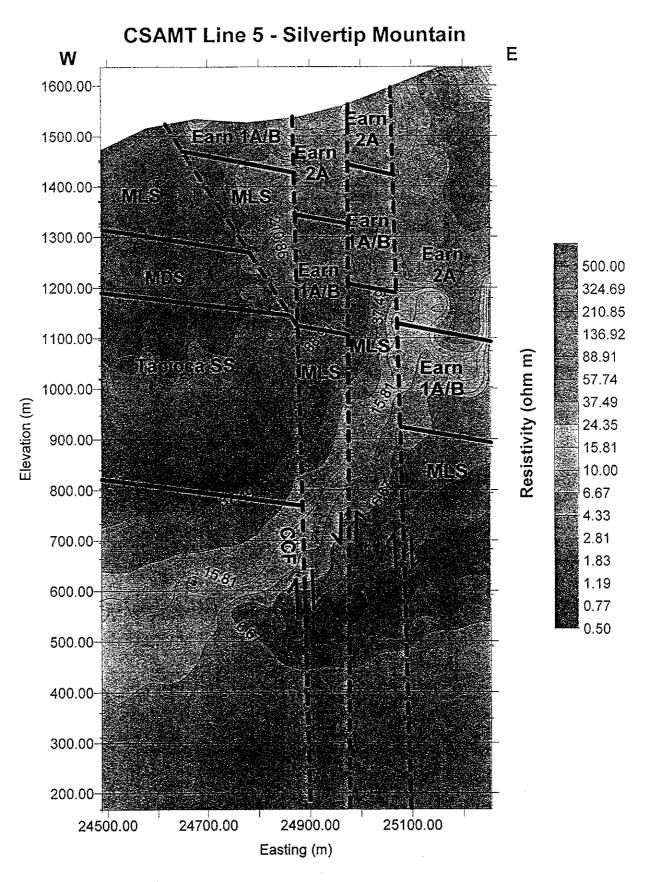










Fig. 6b: Electrical resistivity distribution beneath Line 4, at Silver Creek South. Geologic boundaries are shown in black.



#### Scale = 1:7500



22



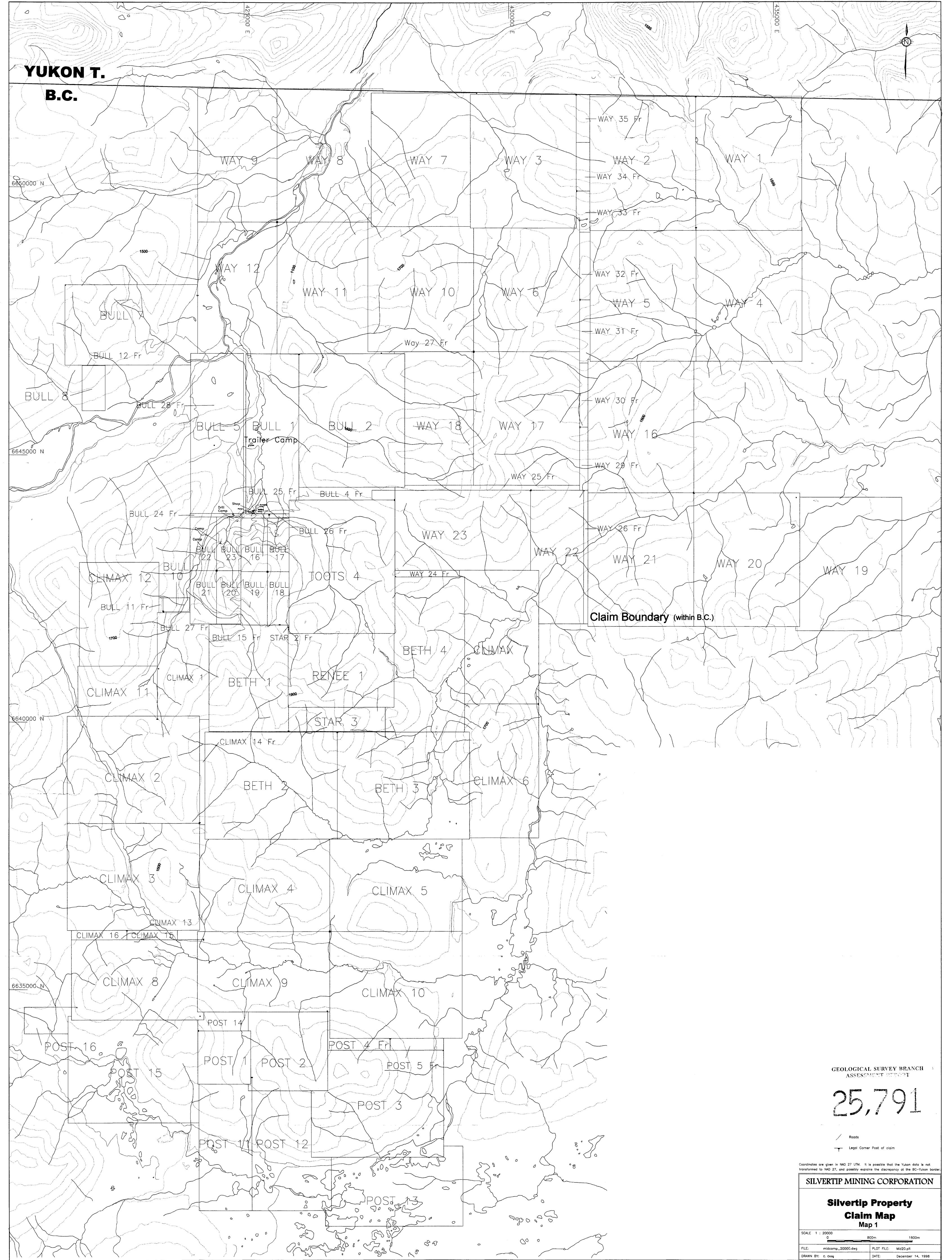

#### Scale = 1:7500

Fig. 7b: Electrical resistivity distribution beneath Line 5, across Silvertip Hill and Silvertip Mountain. Geologic boundaries are shown in black.

### Appendix: CSAMT Station Locations

The following are the locations of the CSAMT stations, as surveyed by Underhill Geomatics Ltd. These data are contained on the diskette marked "Whyte27.out".

Survey Con	trol:			Line 3:			
Station	Northing	Easting	Elevation	Station	Northing	Easting	Elevation
974	6643864.31	425209.18	1194.35	3001	6644443.02	424931.52	1205.83
975	6644003.59	425301.29	1172.23	3002	6644443.81	424979.34	1197.12
				3003	6644443.90	425026.40	1186.49
Line 1:				3004	6644445.44	425073.95	1177.74
Station	Northing	Easting	Elevation	3005	6644445.88	425121.09	1168.93
1001	6643573.17	425154.65	1284.47	3006	6644445.91	425167.61	1155.36
1002	6643568.63	425135.84	1279.58	3007	6644445.57	425214.79	1148.50
1003	6643567.28	425116.15	1276.74	3008	6644443.99	425262.52	1146.85
1004	6643566.14	425097.32	1269.91	3009	6644443.92	425310.50	1142.99
1005	6643565.13	425078.10	1265.85	3010	6644442.01	424884.20	1211.45
1006	6643564.13	425058.74	1261.23	3011	6644440.28	424837.12	1220.70
1007	6643563.53	425039.71	1259.88	3012	6644439.90	424792.19	1229.52
1008	6643563.31	425019.76	1259.57	3013	<b>6</b> 644439.76	424744.88	1237.10
1009	6643563.06	425000.02	1261.07	3014	6644437,65	424697.68	1245.44
1010	6643562.69	424980.31	1264.17	3015	6644443.73	424651.13	1251.81
1011	6643562.48	424960.48	1267.97	3016	6644454,47	424603.93	1255.72
1012	6643562.48	424940.97	1 <b>27</b> 0.92			<u> </u>	
1013	6643561.94	424921.16	1271.82	Line 4:			
1014	6643560.10	424901.59	1273.40	Station	Northing	Easting	Elevation
1015	6643556.52	424883.30	1275.85	4001	6643355.35	424589.09	1293.54
1016	6643558.01	424861.99	1276.79	4002	6643368.69	424684.91	1279.27
1017	6643559.47	424842.21	1280.40	4003	6643349.26	424775.16	1318.76
1018	<del>6</del> 643563.48	424822.71	1278.32	4004	6643326.42	424867.76	1354.81
1019	6643562.64	424803.32	1274.92	4005	6643309.24	424964.71	1379.71
1020	6643559.62	424783.57	1274.00	4006	6643302.62	425064.11	1381.75
1021	6643558.63	424765.28	1266.59	4007	6643336.05	425158.77	1390.57
1022	6643557.93	424747.53	1257.46	4008	6643330.02	425252.72	1409.63
				4009	6643314.04	425350.28	1406.50
Line 2:				4010	6643308.66	425450.59	1403.66
Station	Northing	Easting	Elevation	4011	6643275.30	425541.49	1413.90
2001	6641502.50	424351.01	1509.75	4012	6643242.92	425637.28	1412.39
2002	6641501.95	424401.02	1506.56	4013	6643227.28	425734.51	1409.07
2003	6641502.25	424451.65	1505.76				
2004	6641502.45	424501.77	1503.68	Line 5:			
2005	6641502.01	424551.56	1502.42	Station	Northing	Easting	Elevation
2006	6641502.66	424601.70	1504.92	5001	6642546.54	424488.17	1472.16
2007	6641500.30	424651.74	1503.82	5002	6642544.48	424577.66	1517.26
2008	6641498.07	424701.44	1502.10	5003	6642546.45	424676.44	1531.96
2009	6641496.93	424750.90	1505.64	5004	6642546.67	424776.28	1527.45
2010	6641497.02	424799.13	1510.90	5005	6642547.50	424875.56	1537.22
2011	6641495.39	424846.81	1514.10	5006	<b>6642549.9</b> 0	424971.65	1561.21
2012	6641492.37	424894.41	1512.84	5007	6642553.21	425064.22	1598.27
2013	6641492.14	424941.53	1504.48	5008	6642554.40	425155.56	1638.55
2014	6641495.34	424987.82	1493.51	5009	6642555.76	425253.60	1652.13
2015	6641501.13	425034.17	1481.58				
2016	6641504.77	425080.71	1472.50				
2017	6641509.65	425128.07	1467.68				



ALEOZOIC			
MISSISSIPPI	AN TO PERMIAN		
SYL	ESTER ALLOCHTH		6645000N
uPsa	slate-phyllite, chlo	grey, thinly interbedded chert, cherty argillite, pritic phyllite. Minor grey limestone lenses. Local	ja ja ja ja ja ja ja ja ja ja ja ja ja j
	sericitic alteration	on Brinco Hill.	
	ONIAN-MISSISSIPPI	AN	
EARI		aarada malahia da calahia siste of shard sus 1914.	
DME2B	massive to thickly	nerate, pebble to cobble clasts of chert, argillite; / bedded; mostly matrix-supported. Sandstone,	100 tee
	siltstone, slate inf	a-grained, well bedded, blocky, flaggy. Minor erbeds. Within alteration zone: speckled buff- portoitic matrix and "blocked" assilite shorts:	100
	sericitized sands	sericitic matrix and 'bleached' argillite clasts; one.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	Unit 2A: Siltstone	e, slate, shale, 'phyllite'. Dark grey, fine-grained, d, laminated, crenulated. Rusty brown	N. S. A. S. A.
DME2A	weathering. Sub	ordinate sandstone beds and laminae. andstone lenses in laminated silty slate-argillite	HER of 2
	matrix. 2AC: Ca	Icarenite, grey, platy to flaggy, brown-weathering. bale grey, fine-grained, laminated, siliceous. Local	
		galena; generally limonitic to strongly gossanous.	2
		one, greywacke, siltstone, slate. Mid- to dark grey, bedded, laminated, blocky to flaggy weathering.	6644000N 2
DME1B	Pebbly sandston	e to massive conglomerate locally. Within alteration ny-grey, very fine to medium grained, weakly to	2
	strongly sericitize	ny-grey, very line to medium grained, weakly to d phyllite. Rusty, buff-yellow weathering, with	ι ι
		ebala alterana Dade eras ta biasta se	ໄ ້ ໂ
DME1A	fine grained, lam	shale-slate, siltstone. Dark grey to black, very inated. Locally pyritic. Blue-grey weathering,	OSRR 2
	very recessive.		
MIDDLE (UPF	PER) DEVONIAN		
McD/	AME GROUP Limestone: Mid-	to dark grey, fine to medium-grained with	
тDмі	bioclastic texture	Highly fossiliferous with stromatoporoids, corals Moderately bedded to massive. Local off-white	
	to pink, recrystall	zed 'bleaching'. Locally buff-brown weathering ocal gossanous areas with residual silver-rich	
	galena.		
mDua		to dark buff-grey and mauve-grey, very fine and cryptalgal laminated; intraclast breccia.	SDTS
трма	Dolomitic limesto buff-brown, fine f	ne (secondary): mottled, streaky grey to pale pink, o coarse-grained, crystalline, vague sporadic	5643000N
	bioclasts; probat	ly transitional with mDMI.	
SILURIAN-DE	EVONIAN		
TAPI	OCA SANDSTONE ( Dolostone, sandy	(informal) 7 dolostone, dolomitic quartzite to sandstone to	
SDTS	siltstone, dolomit	c breccia. Pale creamy buff-grey, fine to medium- to moderately bedded to locally laminated or	$\left  \left( \left( \left( \left( \left( \left( \left( \left( \left( \left( \left( \left( \left( $
	cross-bedded.		• O 28
ORDOVICIAN	I-SILURIAN		
ROA	D RIVER GROUP		
OSRR		mestone. Black, carbonaceous, calcareous ous, locally graptolitic. Limestone thin-bedded.	
UPPER CAM	BRIAN TO LOWER (	DRDOVICIAN	XEIIMA
KEC	HIKA GROUP	siltstone. Grey, thinly interbedded argiliaceous	
€Ок	limestone and ca fossiliferous.	Icareous slate to siltstone. Monotonous, weakly	66420001
	21 3 W VI		
	N GROUP IOSELLA FORMATIC	N	
		nitized limestone, interbedded slate.	
ICR	Archeocyathid-be	paring.	SDTS
			And And And And And And And And And And
		SYMBOLS	1 22/11
			Le l'
		Geological contact, approximate	L So X / L
	(000000000000000000000000000000000	Geological contact, inferred	////
~~~~		Fault, approximate	Exposite 1
~ • ~ • ~		Fault, inferred	6641000N - X
▲		Thrust, approximate; teeth on upper plate	
ل		Relative movement indicator, tick on side moved down	
		Area of outcrop exposure	$\mathbb{K}$
$\sim$	I	Area of subsurface mineralization (deposit areas)	mDm
		Area of sericitic alteration	
• • • •		Limit of 1998 mapping	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Bedding, right way up, top unknown Foliation or cleavage, normally bedding-parallel	
		Crenulation plane	
		Elongation lineation	
4		Crenulation lineation	
2		Intersection lineation, bedding/follation	MACHERT
×		Fracture	6640000N
×		Fracture-controlled vein	
· · · · · · · · · · · · · · · · · · ·			
  Line 1		CSAMT (Magnetotelluric) survey line	
<u>Line 1</u>		CSAMT (Magnetotelluric) survey line	М М М М М М М М М М М М М М М М М М М
 Line 1			
 Line 1		CSAMT (Magnetotelluric) survey line	т <b>Р</b> м 00051

Map accompanies SMC 1998 Summary Report, January 1999.

·····



STREET, STREET BRANCH and and a second second second second second second second second second second second second second second se

25.791