

Gold Commissioner's Office VANCOUVER, B.C. ASSESSMENT REPORT

.

GEOPHYSICAL AND SOIL GEOCHEMICAL REPORT ON THE

COPPER ACE PROPERTY CA1, CA2, CA3, CA4, CA5 and CA6 CLAIMS

> NTS 93 B/9 52° 33' NORTH LATITUDE 122° 18' WEST LONGITUDE CARIBOO MINING DIVISION BRITISH COLUMBIA

FOR UNITED GUNN RESOURCES LTD. 1016 - 1030 WEST GEORGIA STREELOGICAL SURVEY BRANCH VANCOUVER, BRITISH COLUMBIA V6E 2X3SESSMENT REPORT

BY

CREST GEOLOGICAL CONSULTANTS LTD 2197 PARK CRESCENT COQUITLAM, BRITISH COLUMBIA V3J 6T1

> Craig W. Payne M.Sc., P.Geo. January 10, 1999

2197 Park Crescent, Coquitlam, B.C. V3J 6T1 Telephone: (604)461-4138 Fax: (604)469-2642

TABLE OF CONTENTS

SUMMARY AND CONCLUSIONS	. i
INTRODUCTION	. 1
LOCATION AND ACCESS	. 1
CLAIMS STATUS	. 1
TOPOGRAPHY AND VEGETATION	. 4
HISTORY	. 4
REGIONAL GEOLOGY	. 4
1998 EXPLORATION PROGRAMS	. 6
Copper Ace South Grid	. 6
GENERAL PROPERTY GEOLOGY	6
Copper Ace South Grid – Geology	. 6
SOIL GEOCHEMICAL SURVEYS	. 6
Copper Ace South Grid – Soil Geochemical Results	. 6
GEOPHYSICAL SURVEYS	. 7
Copper Ace South Grid – Geophysical Survey Results	. 7
RECOMMENDATIONS	. 8
ITEMIZED COST STATEMENT	. 9
STATEMENT OF QUALIFICATIONS	10
REFERENCES	11

LIST OF TABLES

TABLE 1 - C	_AIMS DATA

LIST OF FIGURES

FIGURE 1 - LOCATION MAP	2
FIGURE 2 - CLAIM MAP	
FIGURE 3 - REGIONAL GEOLOGY	5
FIGURE 4 - COPPER ACE SOUTH GRID - SOIL SAMPLE NUMBER LOCATION MAP	back pocket
FIGURE 5 – COPPER ACE SOUTH GRID – SOIL GEOCHEMICAL RESULTS – COPPER ${\tt ppm}_{\ldots}$	back pocket
FIGURE 6 - COPPER ACE SOUTH GRID - SOIL GEOCHEMICAL RESULTS - ZINC ppm	back pocket

CORES GEOLOGICAL CONSULTANTS LIMITED 2197 Park Crescent, Coquittam, B.C. V3J 6T1 Telephone: (604)461-4138 Fax: (604)469-2642

APPENDICES

 \bigcirc

 \bigcirc

APPENDIX I – COPPER ACE SOUTH GRID – GENERAL STATISTICS, SOIL SAMPLE DESCRIPTION AND ANALYTICAL CERTIFICATES	NS 12
APPENDIX II - SOIL SAMPLE METHODOLOGY AND ANALYTICAL TECHNIQUES	. 13
APPENDIX VI – COPPER ACE NORTH AND SOUTH GRIDS –GEOPHYSICAL REPORT AND MAPS	14

CFCSC GEOLOGICAL CONSULTANTS LIMITED 2197 Park Crescent, Coquitlam, B.C. V3J 6T1 Telephone: (604)461-4138 Fax: (604)469-2642

N

SUMMARY AND CONCLUSIONS

During May to October, 1998 mineral exploration work was carried out on two separate grid areas covering selected base metal targets within the Copper Ace Property, which forms part of the Granite Mountain Project.

Selection of the grid area was based on compilation work carried out in 1997.

The Copper Ace Property comprises 148 units (3700ha) located along the western side of the Granite Mountain Pluton which hosts Gibraltar Mines, disseminated copper deposits.

The Copper Ace South Grid is located two kilometres northwest of the Gibraltar Mine plant site. Limited outcrop exposures have precluded detailed mapping in the grid area therefore lithology and geological contacts have been interpreted from the geophysical data, mainly magnetic and VLF-EM data.

The grid area is underlain by early Jurassic aged quartz diorite, part of the Granite Mountain pluton which hosts the Gibraltar Mines disseminated copper deposits. The quartz diorite can be subdivided into two main phases. The eastern and northwestern parts of the grid are underlain by a coarse grained, leucocratic, weakly chlorite-epidote altered quartz diorite. The remaining grid area is underlain by a moderately to strongly chlorite-sericite-epidote altered quartz diorite which is interleaved with highly deformed sericite-chlorite altered schist (host to the Gibraltar deposits). Locally discontinuous quartz feldspar porphyry late phase dykes? are present. In the south-central part of the grid disseminated fine grained pyrite and chalcopyrite and stingers of sphalerite have been discovered in highly deformed, altered and foliated quartz diorite and chlorite-sericite altered schist.

The magnetic data confirms the area is underlain by complexly folded and deformed phases of the Granite Mountain Pluton and suggests more complex structures than are indicated by surface geological mapping. Magnetic and VLF-EM data suggests two dominant geological strikes N-S possibly defining fault structures and NW-SE features which define the general strike of the different phases of the pluton.

In the east-central part of the grid is a large northwest trending oval shaped, coincident copper and zinc soil anomaly some 1300m long and up to 850m wide. This area is extensively overburden covered, however angular float boulders of highly altered quartz diorite were found containing disseminated chalcopyrite and malachite in the area. This anomaly is coincident with several VLF-EM conductive zones.

Further to the west is a large zinc soil anomaly which covers the western half of the grid area and remains open to the north, south and west. This area is coincident with a magnetic low and several VLF-EM conductive zones.

Further exploration work is recommended within the grid area.

INTRODUCTION

This report describes the exploration results of grid establishment, soil sampling and geophysical work carried out on the Copper Ace Property South grid which forms part of the Granite Mountain Project. Exploration work was carried out on behalf of United Gunn Resources Ltd., Vancouver, British Columbia. The above described surveys were used to investigate the property for signatures indicative of economic concentrations of disseminated base metal and bonanza style precious metal mineralization.

LOCATION AND ACCESS

The Copper Ace property is located in central British Columbia approximately 370 kilometres north of Vancouver, British Columbia (Figure 1).

Generally, road access is fairly good with Highway 97 following along the east side of the Fraser River with numerous secondary roads and trails throughout the area.

Copper Ace property is located on the western flank of Granite Mountain centred at 52°33' north latitude and 122°18' west longitude on NTS map sheets 93 B/9.

Road access to the Copper Ace Property south grid area is via highway 97 north from Williams Lake to McLeese Lake, then east on Beaver Creek road (Gibraltar Mine road) for approximately 10 kilometres and then west and north on forest access roads to the centre of the property.

CLAIMS STATUS

The Copper Ace property consists of two claim blocks located along the western side of Gibraltar Mines claims. The Copper Ace South grid claim block is comprised of six claims, totalling 98 units (2450ha) which forms the CA 98-1 Group. The claims are 100% owned by United Gunn Resources Ltd. Table 1 provides pertinent claims data for the property (Figure 2).

COPPER ACE PROPERTY												
CLAIM NAME	TENURE NO.	NO. OF UNITS	EXPIRY DATE									
CA 1	359909	20	October 18, 2002									
CA 2	359910	20	October 19, 2002									
CA 3	359911	20	October 19, 2002									
CA 4	359912	16	October 20, 2002									
CA 5	359913	16	October 21, 2002									
CA 6	359914	6	October 19, 2002									
Total Number of Units		98										

TABLE 1 CLAIMS DATA

*Subject to acceptance of 1998 assessment work.

TOPOGRAPHY AND VEGETATION

The property is located on the western slope of Granite Mountain and extends out into a broad northerly trending valley known as Cuisson valley.

The Copper Ace South grid is located on a west facing slope of Granite Mountain two kilometres northwest of Gibraltar Mines. Elevations range from 880m in the western part of the property in Cuisson valley to 1020m along the eastern part of the claims.

Vegetation on the properties consists of pine, fir, cedar and balsam with stands of poplar trees near lakes and stream courses. Locally, parts of the grid areas have been clear cut and logging is active in the area.

HISTORY

In 1997 limited silt sampling and prospecting was carried out by Crest Geological Consultants Ltd. on behalf of United Gunn Resources Ltd. during staking of the Copper Ace property.

Most exploration work in the area concentrated on the Gibraltar property which is located to the east of the Copper Ace property. The original discovery of copper mineralization was made in 1927. Later, in 1957 Kimaclo Mines Ltd. drove an adit in high grade shear zones in the Gibraltar West zone. The Gibraltar property was then sold to Major Mines Ltd. in 1958 and was allowed to lapse. In 1962, J. Hilton restaked the Gibraltar property and optioned it to Keevil Mines Ltd. During 1964, Gibraltar Mines Ltd. acquired the property from Hilton and optioned the claims to Cominco Ltd. and Mitsubishi Mining Co. who delineated the Gibraltar West zone before terminating the option in 1967. In 1969 Canex Placer Ltd. and Duval Corp. acquired an option on the ground from Gibraltar Mines Ltd. Duval Corp. optioned the adjoining Pollyanna ground and in 1969 the Duval interest was acquired by Canex Placer Ltd. In 1970 the Granite Lake zone was discovered. In 1972 the mine was put into production at a rate of approximately 36,000 tonnes per day (Drummond et al, 1976).

Cuisson Mines Ltd. owns the claims adjoining Gibraltar Mines Ltd. on the east. These claims cover the eastern part of the Granite Lake ore body. United Gunn Resources Ltd. is a 30% partner in Cuisson Mines Ltd. along with Placer Dome, Inc. and Gibraltar Mines Ltd. Currently, copper leaching operations are underway on the Granite Lake ore body from which United Gunn receives a royalty.

In the area of the Copper Ace property which is located to the northwest of Gibraltar Mines, limited exploration work has been carried out intermittently since the 1960s. In 1968 Morocco Mines carried out an IP survey just to the south of the Copper Ace south grid, on ground now owned by Gibraltar Mines. The survey outlined several chargeability anomalies which have not been drill tested to date. In 1982 Garth Johnson drilled a 152.4m drill hole two kilometres northwest of the Copper Ace south grid. The hole intersected foliated chlorite-sericite-epidote altered quartz diorite with trace to <1% disseminated pyrite. To the south and west of the Copper Ace south grid several different types of geophysical surveys have been carried out in the area of the Sawmill deposit. Most of the results have not been reported.

REGIONAL GEOLOGY

The claims are located within a wedge shaped segment of late Palaeozoic to Miocene volcanic and sedimentary rocks which are intruded by several stocks/batholiths ranging in composition from diorite to granodiorite. This wedge shaped segment is located between the northwest-southeast trending Quesnel Trough to the east and the Pinchi Geanticline on the west, all of which forms part of the Intermontane Tectonic Belt (Figure 3).

4

Within the area of the claims the oldest rocks are a sequence of Permian, Cache Creek Group sedimentary and volcanic rocks (Tipper, 1959; Drummond et al, 1976). The Cache Creek Group rocks have been intruded by early Jurassic aged diorite to quartz diorite in composition Granite Mountain pluton.

Gibraltar Mines disseminated copper/molybdenum deposits are located two kilometres to the southeast of the Copper Ace property. The mine consists of five deposits known as the Granite Lake, Pollyanna, Gibraltar East, Gibraltar West and Gibraltar West Extension. Original tonnage figures for the combined deposits are 326,000,000 tonnes grading 0.37% copper and 0.016% MoS₂ (Drummond et al, 1976).

Intrusion of the Granite Mountain pluton into Cache Creek Group volcanic and sedimentary rocks has metamorphosed the surrounding rocks forming skarn zones. Panteleyev, 1977 suggests that the presence of chalcopyrite, magnetite and hematite in some of the skarn zones indicate that economically significant mineral deposits may be found peripheral to the Granite Mountain pluton.

1998 EXPLORATION PROGRAMS

Copper Ace South Grid

Thirty two kilometres of northeast-southwest orientated flagged grid lines were established and the collection of 550 soil samples at 50m stations was completed. A total of 29km of magnetometer and VLF-EM surveying was completed at 12.5m stations along the grid lines.

GENERAL PROPERTY GEOLOGY

Copper Ace South Grid – Geology

Sparse outcrop has precluded detailed prospecting and geological mapping of the Copper Ace South grid area (Figure 4). Geological interpretation is based on limited outcrop and has relied heavily on geophysical surveys carried out over the grid area.

The grid area is underlain by three phases of the Granite Mountain pluton. The northeastern and western areas of the grid are believed to be underlain by relatively unaltered coarse grained quartz diorite. This interpretation is based on the premise that the more unaltered the quartz diorite the higher the magnetic response in comparison to the lower magnetic response throughout the remaining grid area. Peripheral to the relatively unaltered quartz diorite is a medium grained, leucocratic, moderately to strongly chlorite-sericite+/-epidote altered quartz diorite. Throughout the central part of the grid area is chlorite-sericite altered schist. Locally the rock is interfingered with the foliated quartz diorite. Generally the foliation trends to the northwest with a shallow to moderate dip to the southwest.

SOIL GEOCHEMICAL SURVEYS

The purpose of the soil geochemical survey was to define anomalous areas indicative of economic concentrations of base and or precious metals in the underlying rock.

Copper Ace South Grid – Soil Geochemical Results

A total of 550 soil samples were collected every 50m along northeast orientated grid lines spaced 100m or 200m apart. Soil sampling was offset by 25m on alternating grid lines. Depth of overburden in the grid area varies from <1m in the central part of the grid just west of the baseline to approximately 21m or greater throughout the rest of the grid area. Analytical certificates, sample descriptions and general statistical treatment of the data set are listed in Appendix I along with a grid map showing sample locations (Figure 4). Sample collection and analytical techniques are described in Appendix II.

CRESC GEOLOGICAL CONSULTANTS LIMITED 2197 Park Crescent, Coquitlam, B.C. V3J 6T1 Telephone: (604)461-4138 Fax: (604)469-2642 Soil sampling results on the Copper Ace South grid shows strong copper, zinc and weakly anomalous molybdenum soil anomalies.

Copper values range from 5.2ppm Cu to 1074.3ppm Cu. Two areas containing anomalous copper values stand out in the data (Figure 5).

The first copper soil anomaly is located in the northeast-central part of the grid. The copper soil anomaly is a large oval shaped feature some 1300m long (to the northwest) and up to 850m wide. The central part of the anomaly does not contain any anomalous copper values. This copper soil anomaly remains open to the northwest. This copper soil anomaly is believed to be underlain by chlorite-sericite schist and chlorite altered strongly foliated quartz diorite. It is also possible that the eastern side of the soil anomaly follows a north trending, mineralized fault system while the northwestern part of the anomaly is the down ice dispersion trail.

The second area of anomalous copper values in soils is located in the south central part of the grid at the baseline and extending some 450m to the northwest. Width of the soil anomaly is up to 300m. This area of the grid is underlain by sericite-chlorite schist and chlorite altered strongly foliated quartz diorite. Copper values in rock grab samples from this area contain up to 1.5% Cu and 1.1% Zn. Soils from this area are also anomalous in zinc and weakly anomalous in molybdenum.

Zinc values in soils range from 34.4ppm Zn to 1174.9ppm Zn. The main zinc soil anomaly is a large irregular feature extending from the baseline to the western edge of the grid and remains open to the south, northwest and west (Figure 6). Anomalous zinc values within this anomaly range up to 1174.3ppm Zn. Most of this area of the grid is underlain by chlorite altered strongly foliated quartz diorite and sericite schist. In the northeastern part of the soil anomaly zinc values in rock grab samples range up to 1.1% Zn and one angular float sample from the western part of the soil anomaly contains 1525ppm Zn.

The second zinc soil anomaly is located in the east-central part of the grid area and is in part coincident with the large oval shaped copper soil anomaly. However the zinc soil anomaly does show a strong down ice dispersion pattern.

GEOPHYSICAL SURVEYS

A total of 29km of magnetometer and VLF-EM surveying was carried out on the Copper Ace South grid. Readings were taken at 12.5m along grid lines spaced 100m or 200m apart. Total field magnetometer and inphase, quadrature and field strength measurements for two VLF-EM transmitters were recorded at each station along the grid lines.

Copper Ace South Grid – Geophysical Survey Results

The highly variable magnetic data suggests the grid is underlain by variably altered quartz diorite and sericite-chlorite schist. The northwestern part of the grid has a higher magnetic background suggesting the quartz diorite is only weakly altered. Locally quartz+/-feldspar porphyry dykes are also associated with linear magnetic highs.

Coincident VLF-EM conductive zones and magnetic lows have defined several north to northeasterly trending fault structures through the central part of the grid. Also coincident with this structure is anomalous values of copper and zinc in soils.

A complete interpretation of the magnetic and VLF-EM data was completed by Trent Pezzot of SJV Geophysics Ltd. The report and accompanying maps are presented in Appendix VI.

CRESC GEOLOGICAL CONSULTANTS LIMITED 2197 Park Crescent, Coquittam, B.C. V3J 6T1 Telephone: (604)461-4138 Fax: (604)469-2642

7

RECOMMENDATIONS

Based on the encouraging results from geological, geochemical and geophysical surveys carried out in 1998 the following two phase program is recommended for 1999.

Phase I will consist of diamond drill testing surface copper and zinc mineralization (Rick Showing) and geophysical targets. Five drill holes totalling 1525m are proposed to test the targets.

Contingent on the successful drilling results, the grid should be expanded to the west and northwest where more geological mapping/prospecting, geochemical and geophysical surveying should be carried out.

Respectfully Submitted,

CREST GEOLOGICAL CONSULTANTS LIMITED

Craig W. Payne, M.Sc., P.Geo.

Craig W. Payne, M.Sc., P.Ge January 10, 1999

CISSE GEOLOGICAL CONSULTANTS LIMITED 2197 Park Crescent, Coquittam, B.C. V3J 6T1 Telephone: (604)461-4138 Fax: (604)469-2642

ITEMIZED COST STATEMENT

Grid Establishment and soil sampling	A A A A A A A A A A
32 kilometres at \$275.00 per kilometre	\$8,800.00
Assays/Geochem	
550 samples at \$16.38 per sample	9,009.00
Truck Rental 26 days at \$65 per day (During period May 1 to August 31, 1998)	1,690.00
4Trax Rental 26 days at \$64.20 per day(2 4trax's) (During period May 1 to August 31, 1998)	1,669.20
Fuel	698.50
Salaries - 26 mandays each during the period May 1 to August 31, 1998	
R. Roe at \$176 per day	4,576.00
C. Roe at \$160 per day	4,160.00
C. Thorsen at \$170 per day	4,420.00
R. Bailey at \$160 per day	4,160.00
Room and Board - 26 days (4 men) (During period May 1 to August 31, 1998)	4,580.00
Mag/VLF Survey (Field) - 13 days at 600.00/day (During period May 1 to July 19, 1998)	7,800.00
Assessment and Geophysical Reports	4,937.30
TOTAL	<u>\$56,500.00</u>

CCCSC GEOLOGICAL CONSULTANTS LIMITED 2197 Park Crescent, Coquitiam, B.C. V3J 6T1 Telephone: (604)461-4138 Fax: (604)469-2642

9

STATEMENT OF QUALIFICATIONS

- I, Craig W. Payne of Coquitlam, British Columbia do hereby certify that I:
- 1. am a graduate of Brock University St. Catharines, Ontario with a Master of Science degree in Geological Sciences, 1979.
- 2. am a Fellow of the Geological Association of Canada.
- 3. am a member of the Association of Professional Engineers and Geoscientists of British Columbia.
- 4. have practiced my profession since 1972.
- 5. am consulting geologist with Crest Geological Consultants Limited.
- 6. am the author of the report entitled "Geophysical and Soil Geochemical Report on the Copper Ace Property"; Cariboo Mining Division, dated: January 10,1999.

Dated at Coquitlam, B.C. this 10th day of January, 1999.

Respectfully submitted,

CREST GEOLOGICAL CONSULTANTS LIMITED

Craig W. Payne M.Sc., P.Geo. January 10, 1999

CRESC GEOLOGICAL CONSULTANTS LIMITED 2197 Park Crescent, Coquitiam, B.C. V3J 6T1 Telephone: (604)461-4138 Fax: (604)469-2642

REFERENCES

Barker, G.E., 1990. A Report on Diamond Drilling Conducted on Cuisson Lake Claims by Gibraltar Mines Ltd - 1990; Company Report.

Bysouth, G.D., 1979. Diamond Drill Report on the Olive and Yellow Claim Groups, Cariboo Mining Division, 93 B/9W; British Columbia Assessment Report No. 7438.

Cannon, R.W., 1968. Geological Report, Percussion Drilling, Granite Mountain, McLeese Lake; British Columbia Assessment Report No. 1641.

Cannon, R.W., 1968. Geophysical Report, Magnetometer Survey for Gunn Mines Ltd. (NPL), Granite Mountain, McLeese Lake Area; British Columbia Assessment Report No. 1680, Parts 1 and 2.

Drummond, A.D., Sutherland Brown, A., Young, R.J. and Tennant, S.J., 1976. Regional Metamorphism, Mineralization, Hydrothermal Alteration and Structural Development; CIM, Special Vol. 15, Porphyry Deposits of the Canadian Cordillera.

McMillan, W.J., 1991. Mineral Deposits of the Canadian Cordillera Short Course; Paper 8, Porphyry Deposits in the Canadian Cordillera, British Columbia Geological Survey Branch, Draft Copy.

Panteleyev, A., 1977. Central British Columbia, Granite Mountain Project (93B/8); British Columbia Energy Mines and Petroleum Resources, Report of Activities.

Payne, C.W., 1997. Compilation Report Covering NTS 93B/8 and 9 and Granite Mountain Area, Internal Company Report for United Gunn Resources Ltd.

Payne, C.W., 1998. 1997 Summary Report on the Copper King, Copper Ace, Beedy Creek and Credge Creek Properties, Internal Company Report for United Gunn Resources Ltd.

Ramani, S.V., 1970. Geological & Geophysical Report on the Ellen-Keith Group, Cariboo Mining Division, 93 B/8E; British Columbia Assessment Report No. 3231.

Schaumberger, M.R., 1982. Diamond Drill Report on the Olive Claim Group, Cariboo Mining Division, 93B/8; British Columbia Assessment Report No. 10,548.

Thon, M.R., 1988. Cuisson Lake Mines, Diamond Drill Report, 1987 Drilling; Company Report.

Thon, M.R., 1984. Diamond Drill Report on the Yellow Group, Cariboo Mining Division, 93B/8,9W; British Columbia Assessment Report No. 13,117.

Tipper, H.W., 1959. Quesnel, British Columbia; Geological Survey of Canada, Map 12-1959.

Venkataramani, S., Chisholm, E. O., 1970. Geological Report, Citex Mines Ltd. (NPL), D, Sue, Noa, Barney, Acadian Group of Claims; British Columbia Assessment Report No. 2848.

Walcott, P.E., 1990, A Geophysical Report on an Induced Polarization Survey, McLeese Lake Area, British Columbia, for Cuisson Lake Mines, Company Report.

1973. Induced Polarization Surveys Compilation Map, Scale 1 inch to 1,000 feet, Cuisson Lake Mines Ltd. (NPL) Ground; Gibraltar Mines Ltd.

CRESC GEOLOGICAL CONSULTANTS LIMITED 2197 Park Crescent, Coquitiam, B.C. V3J 6T1 Telephone: (604)461-4138 Fax: (604)469-2642

APPENDIX I

COPPER ACE PROPERTY - SOUTH GRID

GENERAL STATISTICS SOIL SAMPLE DESCRIPTIONS ANALYTICAL CERTIFICATES

CRESC GEOLOGICAL CONSULTANTS LIMITED 2197 Park Crescent, Coquittam, B.C. V3J 6T1 Telephone: (604)461-4138 Fax: (604)469-2642

Crest Geological Consultants Ltd.													CC	OPPE	R A	CE	PRC	PE	RTY -	SOL	JTH	GRI	D		· · · ·									A	onendi	al Pol
													1								Ι.	Г	1						Γ.						T	
					-			r				G	ENE	RAL S	TATI	STIC	S F	OR S	SOIL G	EOCH	IEMI	CALE	ATA	SET								_				
No. of Samples		540		FAD	Zn	Ag	NI 640	Co	Mn	Fe	As	U	Th	Sr	Cd	Sb	BI	<u>v</u>	Ca	P	La	Cr	Mg	Ba	Ti	₿	AI	Na	K	W	TI	Hg	Se	T+	Ga	Au
Nay Value	-	11 7	1074 3	949	11740	1700	049	049	249	049	549	549	549	549	549	549	549	549	549	549	549	549	549	549	549	549	549	549	549	549	549	549	549 :	549	549	549
Min Value		03	52	0.4	34.4	30	133	21	1/00	0.17	0.0	10	4	461	2.30	0.0	1.8	11	30.44	0.344	38	114	1.08	542	0.08	22	5.99	0.03	0.35	2	0.5	138	1.8	0.3	11.8	221
Average	1	11	67.5	31	139.2	170 1	14.6	64	472.0	1.5	1.2	59	20	90.1	0.01	0.2	0.2	202	0.13	0.005		2014	0.19	32	0.01	3	0.24	0.01	0.01	2	0.2	10	0.3	0.2		1
Median		0.9	34.8	2.9	94.4	124	11	6	366	1 28	0.9	5	2.0	20	0.1	0.2	0.2	20.2	0.0	0.0	5.7	20.1	0.4	91.0	0.0	3.3	1.1	0.0		2.0	0.2	20.2	0.3	<u>0.2</u>	3.1	3.2
Variance	1	0.8	12326.0	0.9	18513.0	30896.9	145.3	7.0	181932.0	0.4	1.1	1.5	0.0	2511 3	01	0.0	00	67.0	84	0.020	11 4	110.6	0.08	9996.8	0.00	22	0.97	0.01	10.00	0.6		211.01	0.3	0.2	2.9	459.0
Standard deviation		0.9	111.0	1.0	136.1	175.8	12.1	2.7	426.5	0.6	1.0	1.2	0.1	50.1	0.2	0.1	0.2	8.2	2.9	00	34	10.9	0.0	57.8	0.0	15	0.5	0.0	0.0	0.0	-0.01	14 8	0.0	0.01		100.9
Mean+2STD'S		3.0	289.5	5.0	411.3	521.7	38.7	11.8	1325.0	2.7	3.3	7.8	2.2	130.4	0.7	0.4	0.6	44.6	6.6	0.1	12.5	42.0	0.7	206.6	0.0	63	21	0.0	01	20	0.2	49.3	0.5	0.0	52	28.4
Mean+3STD'S		3,9	400.6	6.0	547.4	697.4	50.7	14.4	1751.6	3.4	4.3	9.0	2.3	180.5	0.9	0.5	0.7	52.8	9.5	0.1	15.9	53.0	0.8	264.3	0.1	7.8	2.6	0.0	0.2	2.0	03	63.9	0.7	02	62	41.0
						L																	ľ –													
						İ																												-		
90th Percentile	<u> </u>	1.9	144.7	4.4	264.5	318.2	24.2	10.0	818.2	2.2	2.5	6.0	2.0	39.2	0.4	0.3	0.2	38.0	0.7	0.1	8.0	31.0	0.6	149.2	0.1	3.0	1.5	0.0	0.1	2.0	0.2	34.2	0.3	0.2	4.1	4.0
Sour Percentile	· · ·	2.4	234.4	5.0	394.0	472,2	33.6	12.0	1057.8	2.5	3.3	7.6	2.0	61.6	_0.6	0.4	0.4	43.0	1.2	0.1	12.0	38.6	0.6	195.0	0.1	5.0	1.8	0.0	0.1	2.0	0.2	44.2	0.4	0.2	4.8	6.0
Sour Percentile	I	3.6	416.1	5.8	631.4	691.5	52.0	14.0	1479.9	3.3	4.6	10.0	2.0	129.4	0.9	0.5	0.8	49.0	7.2	0.1	15.0	55.0	0.7	292.1	0.1	6.0	2.5	0.0	0.2	2.0	0.2	62.2	0.7	0.2	5.6	17.0
San Percentije	<u> </u>	4.6	6/6.1	6.6	/62.1	1013.2	62.6	15.5	1670.6	4.2	5.4	10.5	2.0	371.4	1.4	0.6	1.2	54.0	16.5	0.2	20.5	65.0	0.9	340.2	0.1	12.0	3.3	0.0	0.2	2.0	0.2	81.0	0.8	0.2	7.6	40.5
	-			$+ \cdots +$									<u> </u>						··· ·										I							
															-								-								\rightarrow					
	<u> </u>							<u> </u>													· ·							L								
		Mo	Cu	Pb	Zn	Åa	Ni	Co	Mn	Fa	Ac	н	Th	Sr	04	SP.	Đi	v			i a				7 1		41	No		141	_			<u>_</u> +-	_	
•·· · •	Mo	1.0		<u> </u>												05		-	Va	F	La		INI	BQ	11	B	AI	ma				мĝ	50	10	Ga	AU
	Cu	0.5	1.0																<u> </u>		· ··		_	•							\rightarrow	-+			\rightarrow	
	Pb	0.4	0.5	1.0							-1			•					1												-+		-+	+	+	
	Zn	0.1	0.1	0.3	1.0															•										┝╼╼╼╋	-+	+	-+			
	Ag	0.4	0.8	0.6	0.2	1.0		-																					<u> </u>		-+		-+	+		
	NI	0.5	0.9	0.7	0.2	0.8	1.0																	- 1						 -				+		
	Co	0.5	0.6	0.7	0.4	0.7	0.8	1.0																												
	Mn	0.7	0.4	0.5	0.4	0.5	0.6	0.6	1.0																					_		-				· ·
	re Ac	0.5	0.7	0.7	0.3	0.7	0.9	0.9	0.6	1.0																										
	- M3 - 11	-0.1	0.0	0.0	0.1	0.0	0.7	0.0	0,4	0.7	1.0(10							↓				.								\square					
	ТЬ	0.0	-0.1	0.1	0.0	-0.1	0.0	0.0	0.0	-0.1	0.1	1.0	10													ļ					<u> </u>		\perp			
	Sr	0.0	0.1	0.0	0.0	0.1	0.2	0.2	0.1	0.2	0.2	0.0	0.0	10					· -				-								\rightarrow				\rightarrow	
	Cd	0.3	0.4	0.4	0.7	0.5	0.3	0.4	0.5	0.3	0.2	00	0.0	0.5	10																		_	<u> </u>		
	Sb	0.4	0.6	0.5	0.0	0.6	0.7	0.6	0.3	0.7	0.7	-0.1	0.1	0.0	0.2	10															\rightarrow				\rightarrow	
	Bi	0.2	0.5	0.3	0.0	0,5	0.5	0.3	0.2	0.4	0.3	-0.1	0.0	0.2	0.2	0.3	1.0															+		+	-+	
	V	0.4	0.5	0.7	0.3	0.5	0.7	0.8	0.5	0.9	0.7	-0.1	0.2	-0.1	0.2	0.6	0.2	1.0	<u> </u>								·				+				-+	
	Ca	0.1	0.2	-0.1	0.0	0.2	0.1	0.0	0.3	-0.1	0.1	0.0	0.0	0.9	0.4	0.1	0.1	-0.2	1.0				1								+		-+	+	+	
	P	0.2	0.3	0.2	0.4	0.4	0.3	0.3	0.4	0.3	0.3	0.0	0.0	0.6	0.6	0.2	0.2	0.1	0.5	1.0											+	-+		-+-	+	
· · · · · · · · · · · · · · · · · · ·	La	0.4	0.8	0.6	0.0	0,7	0.9	0.7	0.5	0.8	0.6	-0.1	0.2	0.1	0.2	0.7	0.4	0.7	-0.1	0.2	1.0													+		
	Cr	0.4	0.8	0.7	0.2	0.8	0.9	0.8	0.5	0.9	0.7	0.0	0.2	0.2	0.3	0.7	0.4	0.8	0.0	0.3	0.9	1.0										·			-	
	Mg	0.3	0.5	0.4	0.2	0.5	0.6	0.7	0.3	0.7	0.5	-0.1	0.1	0.2	0.2	0.5	0.3	0.5	0.1	0.1	0.5	0.6	1.0													
	152	0.51	0.7	0.6	0.4	- 0.7	0.8	0.7	0.7	0.7	0.6	-0.1	0.1	. 0.4	0.6	0.5	0.4	0.6	0.3	0.6	0.7	0.7	0.4	1.0												
· · · · · · · · · · · · · · · · · · ·		-0.1	-0.4	0.0	0.0	-0.2	-0.1	0.0	-0.2	0.1	0.01	-0.1	0.0	-0.4	-0.3	0.0	-0.1	0.3	-0.4	-0.4	0.0	0.0	_0.0	-0.2	1.0						\square		$-\downarrow$			
		0.1	0.2	0.0	- 0.1	0.2		0.0	- 0.2	0.01	0.1	0.0	0.0	0.8	0.5	0.0	0.2	-0.1	0.8	0.6	0.0	0.1	0.0	0.3	-0.3	1.0								\perp		
	Na	0.2	80	0.1	0.5	0.0	0.8	0.0	0.5	0.8	0.0	-0.1	0.2	0.1	0.2	0.0	0.4	0.0		0.2	0.8	0.9	- 0./	0.8	0.0	-0.1	-1.0				\rightarrow	\rightarrow		<u> </u>	$ \rightarrow$	
	K	0.4	0.7	0.6	0.2	0.8	0.8	0.8	0.5	0.4	0.6	0.0	0.2	0.0	0.3	0.4	0.4	0.0	0.4	0.3	0.5	0.0	0.4	0.5	-4.1	0.3	0.5	1.0	-1.1				-+-	+	\rightarrow	
	W				<u></u>	5.0			0.0		5.0	0.0	0.2	<u>v.</u> 2	-0.0	0.0	0.4	<u>v.</u> ,	0.0	0.0	0.0	0.0	- 0.0	. 0.7	0.0		0.0	0.5	1.0	10	+	-+		-+-	+	
	TI	0.0	0.0	-0.1	0.0	0.0	0.0	0.0	0.01	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	-0.1	0.2	0.1	0.0	0.0	0.01	0.0	-0.1	0.2	0.0	0.0	-00	1.0	10			+		
	Hg	0.5	0.8	0.5	0.2	0.8	0.8	0.7	0.6	0.7	0.6	0.0	0.1	0.3	0.4	0.6	0.5	0.6	0.2	0.3	0.7	0.7	04	0.7	-01	0.2	- 6.7	0.5	0.0		ᇤ	10	+-	-+-	+	
	Se	0.2	0.6	0.2	0.1	0.5	0.4	0.3	0.3	0.3	0.3	-0.1	0.1	0.5	0.4	0.3	0.5	0.1	0.4	0.4	0.3	0.4	0.2	0.5	-0.3	0.4	0.3	04	0.3	-1	őit	05	10	-+-		
	Te	0.1	0.6	0.1	0.0	0.3	0.3	0.2	0.1	0.2	0.1	0.0	0.0	0.1	0.2	0.2	0.2	0.1	0.0	0.1	0.4	0.2	0.1	0.2	-0.1	0.0	0.2	0.2	0.2	-1	<u>.</u>	0.3	03	int-	+	
	Ga	0.4	0.6	0.7	0.3	0,7	0.8	0.8	0.5	0.9	0.6	-0.1	0.2	0.0	0.3	0.6	0.4	0.8	-0.1	0.2	0.8	0.8	0.7	0.7	0.0	-0.1	0.9	0.4	0.8		0.01	0.7	0.31	- اخ ز	1.0	
	Au	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		00	ont		10	<u></u>	10

Appendix I Pg 2

0.9

5.5 213.3 92.1

Crest Geological Consultants Ltd. Project 178

9000 TILL

в

BROWN

UNITED GUNN RESOURCES LTD. COPPER ACE SOUTH GRID - 1998 SOIL SAMPLE DESCRIPTIONS

SAMPLE NO.	GRID EAST	GRID NORTH	MATERIAL	HORIZON	COLOUR	TOPOGRAPHY	NOTES	Mo	Cu	Zn	As	Hg	Au
	· · · · · · · · · · · · · · · · · · ·							ppm	ppm	ppm	ppm	ppb	ppb
11500	9800	8800	TILL	В	BROWN	HILLSIDE NE		0.8	32.3	107.7	0.5	16	1
11499	9850	8800	TILL	В	BROWN	HILLSIDE NE		0.6	32.6	136.3	0.5	10	1
11498	9900	8800	TILL	В	BROWN	HILLSIDE SW		1.1	45.1	126.9	1	12	1
11497	9950	8800	TILL	В	BROWN	HILLSIDE SW		0.3	39.9	71.8	0.5	10	1
11496	10000	8800	TILL	В	BROWN	HILLSIDE SW		1	56.3	86.8	0.7	21	2
11495	10050	8800	TILL	В	BROWN	HILLSIDE SW		3.8	181.2	97.3	1.3	22	1
11494	10100	8800	TILL	В	BROWN	HILLSIDE W		1.6	71.6	94.1	1.1	20	4
11493	10150	8800	TILL	B	BROWN	HILLSIDE W		1.7	34.2	108.9	0.9	10	1
11492	10200	8800	TILL	В	BROWN	HILLSIDE SW		2.4	34.8	77.7	1.4	10	1
11491	10250	8800	TILL	В	BROWN	HILLSIDE SW		3.1	191.3	120.1	3	21	1
11490	10300	8800	TILL	в	BROWN	HILLSIDE SW		1.6	181.6	113.1	2.2	31	1
11489	10350	8800	TILL	В	BROWN	HILLSIDE SW		0.6	212.1	154.9	1.5	25	2
11488	10400	8800	TILL	В	BROWN	HILLSIDE SW		1.8	213.1	319.8	2.2	39	3
11487	10450	8800	TILL	В	BROWN	HILLSIDE SW		0.6	40.8	134.4	1.2	15	1
11486	10500	8800	TILL	В	BROWN	HILLSIDE SW		0.7	50.4	103.9	0.6	11	1
11485	10550	8800	TILL	В	BROWN	HILLSIDE SW		0.7	43.9	95.4	0.5	14	1
11484	10600	8800	TILL	В	BROWN	HILLSIDE SW		0.5	31.4	71.6	0.5	22	1
11483	10650	8800	TILL	в	BROWN	HILLSIDE SW		0.8	49.2	91	0.7	10	5
11482	10700	8800	TILL	В	BROWN	HILLSIDE SW	SAMPLE TAKEN 8M FROM STATION TO AVOID ROAD DISTURBANCE.	2.8	240.5	113.5	1.5	17	9
11481	10750	8800	TUI	B	BROWN		SAMPLE TAKEN 15M TO N OF STATION TO AVOID ROAD	24	227.0	111 7	27	25	1 .
11480	10800	8800		B	BROWN		DISTURBANCE.	2.4	50.9	452	0.5		
11479	10850	8800		B	BROWN	HILL SIDE SW		1.3	44.5	902	0.5	10	1
11966	10000	8850		B	BROWN	HULSIDEW		1.3	106.4	100.3	1.2	26	1
11967	10000	8900	- ΤÜ Ι	B	BROWN	HILL SIDE W		1.2	52.4	95.1	1.0	20	1
11968	10000	8950		8	BROWN	HILLSIDEW		27	132.4	00.1	1.2	20	
11747	9625	9000		8	BROWN	FLAT		4.1	70	125 4	1.4	21	
11748	9675	9000		B		FLAT		1.0	47.4	100.4	0.0	20	2
11749	9725	9000		B	BROWN	FLAT	<u> </u>	1.4	- 47.4	121.0	0.0	10	
11750	9775	9000		B	BROWN	ELAT		0.9	40.9	02.0	0.5	10	
11751	9825	9000		B	BROWN	FLAT	<u> </u>	2.0	49.0	105	0.7	10	<u> </u>
11746	9875	9000		8	BROWN			2.2	02.9	00.7	1.4	27	2
11745	9925	0000		<u>р</u>	BROWN			3.2	99.0	79.0	0.0		
11744	9975	0000		B	BROWN			1.7	102.2	70.9	2.0	00	
11743	10000	9000		B	BROWN		· · · · · · · · · · · · · · · · · · ·	1.5	E1 0	04.1	4 2	20	<u> </u>
11742	10025	0000	1111	D	DROWN			1.3	01.9	00.1	1.3	19	2
11742	10025	9000		D	DINOYVIN DROVA/NI	CLAT	· · · · · · · · · · · · · · · · · · ·	2.1	00.2	90.2	0.5	- 17	Z
11740	10175	0000			DOWN	FLAT		1.4	02.9	100.9	0.8	23	1
11740	10125	0000	דוו ו	0	DROMM			2.1	144.3	100.9	2.6	3/	1
11/39	10170	9000	TH 1	9			DAMIFLE TAKEN FROM UPROUTED TREE.	1.9	102	/6.5	1.3	31	1
41737	10220	9000		D D	DROWN DROWN		······································	1.9	100.6	82.7	2.3		2
11/3/	102/0	9000		D	BRUWIN	FLAT		5.1	176.8	153.5	1.8		1
11/30	10325	9000		в В	BROWN			5.1		93.7	3.5	32	1
11/30	103/5	9000		B	BROWN			8.3	466.6	100.1	3,4	35	1
11/34	10425	9000	I IIIL I	в	BROWN	IFLAT		2.6	82.1	72	0.8	10	2

FLAT

Appendix I Pg 3

Crest Geological Consultants Ltd. Project 178

UNITED GUNN RESOURCES LTD. COPPER ACE SOUTH GRID - 1998 SOIL SAMPLE DESCRIPTIONS

1

11712109569000ILL89400 MILATEAAPLE TAKEN BESDE DAIED UP CAREENBED.1641.860.860.770.7 <th< th=""><th>SAMPLE NO.</th><th>GRID EAST</th><th>GRID NORTH</th><th>MATERIAL</th><th>HORIZON</th><th>COLOUR</th><th>TOPOGRAPHY</th><th>NOTES</th><th>Mo</th><th>Cu</th><th>Zn</th><th>As</th><th>Hg</th><th>Au</th></th<>	SAMPLE NO.	GRID EAST	GRID NORTH	MATERIAL	HORIZON	COLOUR	TOPOGRAPHY	NOTES	Mo	Cu	Zn	As	Hg	Au
11731 16075 9600 FLA 9 BOOWA FLAT 9 60.2 62.2 62.4 6.2 62.4 6.2 62.4 6.2 62.4 62	11732	10525	9000	TILL	В	BROWN	FLAT	SAMPLE TAKEN BESIDE DRIED UP CREEKBED.	1	54.6	60.5	0.9	10	2
11720 10025 9000 ILL BROWN ILAT	11731	10575	9000	TILL	В	BROWN	FLAT		1.6	41.8	92	0.5	12	3
11720 10075 6000 FLA 8 BROWN FLAT 11 69 100 23.6 56.1 10.0 22.6 11727 10775 6900 FLA 8 BROWN FLAT 10.2 23.6 56.1 10.0 22.1 11726 10825 6900 FLA 8 BROWN FLAT 1.1 56.9 68.1 1.6 21.7 12.6 56.9 61.0 1.2 1.1 1.6 56.9 61.0 1.2 1.1 1.6 68.9 36.0 61.0 1.1 1.1 1.6 61.0 1.1 1.	11730	10625	9000	TILL	В	BROWN	FLAT		0.3	25.2	62.8	0.5	12	2
11725 19705 19900 11. 8 8600VM LAT 0.7 1.7 1.9 2.8 8.6 1.1 2.1 1.9 2.2 11726 10025 5000 FLL 8 BROWN LAT 0.0 1.3 3.9 9.6 1.1 2.1 2.0 1.6 1.1 2.0 1.6 1.1 2.0 1.0	11729	10675	9000	TILL	В	BROWN	FLAT		1.1	59	100.6	1.3	21	3
11727 10775 9000 TLL 8 9ROWN FLAT	11728	10725	9000	TILL	В	BROWN	FLAT		1	23.8	58	1.1	10	25
11726 10825 9000 TLL 8 BRCVM FLAT	11727	10775	9000	TILL	В	BROWN	FLAT		0.7	37.9	109	0.7	19	2
11725 19875 5000 TILL B BROWN FLAT	11726	10825	9000	TILL	В	BROWN	FLAT		1	35.9	95.8	1.1	21	2
11724 10925 0000 FLL 9 BROWN FLAT 0.8 40.8 93.7 0.6 10 71.2 11970 10000 9100 FLL 8 BROWN HILLSDE W 1.9 78.4 64.1 71.5 72.7 72.7 72.7 72.7 72.7 72.7 75.7 <t< td=""><td>11725</td><td>10875</td><td>9000</td><td>TILL</td><td>В</td><td>BROWN</td><td>FLAT</td><td></td><td>0.7</td><td>14</td><td>202.7</td><td>0.6</td><td>16</td><td>1</td></t<>	11725	10875	9000	TILL	В	BROWN	FLAT		0.7	14	202.7	0.6	16	1
11969 10000 9800 TLL B BROWN HILSDE W 11 17.6 6.6.7 1.1 11 12.2 13.6 15.6 15.6 15.6 15.6 15.6 15.6 15.6 15.6 15.6 15.6 15.6 15.6 15.6 16.6 15.6 16.6 15.6 16.6	11724	10925	9000	TILL	B	BROWN	FLAT		0.8	49.8	93.3	0.6	10	2
11970 10000 9100 TLL B BROWN PLAT SAMPLE TAKEN AT 91+400 DLE TO SWAMP 36 41 43. 31. 166 1 11846 0350 02200 TLL B BROWN PLAT 0.0 10.2 34.4 14.3 13.1 166 1 11847 9400 9200 TLL B BROWN PLAT 0.4 14.7 32.7 0.5 10	11969	10000	9050	TILL	В	BROWN	HILLSIDE W		1.1	76.8	66.7	1.1	11	221
11971 10000 6150 FLAT SAMPLE TAKEN AT 91+40N DUE TO SWAMP 3.6 414 41.3 3.1 9.6 1 111646 9350 9200 TILL B GREY FLAT 0.4 14.7 325.7 0.5 10 3 111646 9450 9200 TILL B GREY FLAT 0.7 3.2 213.1 0.5 10 1 111649 9500 9200 TILL B BROWN FLAT 0.7 3.2 213.1 0.5 10 1 111551 9900 9200 TILL B BROWN FLAT 0.6 10.8 10 1 11852 9700 9200 TILL B BROWN FLAT 0.6 13.1 28.0 0.6 10 1 11855 9700 9200 TILL B BROWN FLAT 0.6 13.7 16 1 1 11.6 1.6 1.7 1 1 11.1 1.8 1.6 1.7 1.7 1	11970	10000	9100	TILL	В	BROWN	HILLSIDE W		1.8	153,8	102.5	1.9	31	5
11846 9350 6200 TLL B BROWN FLAT 0.4 102 394.9 0.5 14 1 11848 9450 9200 TLL B BROWN FLAT 0.5 12 22.0 0.5 10 3 11848 9560 9200 TLL B BROWN FLAT 0.7 32 213.1 0.5 10 10 11849 9560 9200 TLL B BROWN FLAT 0.6 14.3 125.6 0.6 10 1 11850 9950 9200 TLL B BROWN FLAT 0.6 13.9 10.1 0.6 10.2 10 1 11855 9960 9200 TLL B BROWN FLAT 0.6 15.7 10 1 11856 9800 9200 TLL B BROWN FLAT 0.6 12.8 10.6 14 16 14 16 16 10.1 15.7 10.7 17 17 17 17	11971	10000	9150	TILL	В	BROWN	FLAT	SAMPLE TAKEN AT 91+40N DUE TO SWAMP.	3.8	414	184.3	3.1	96	1
11847 9400 9200 IILL B GREV FLAT 0.4 14.7 32.7 0.5 10 31 11848 9450 9200 IILL B BROWN FLAT 0.7 5.2 22.0 0.6 10 1 11849 9500 9200 IILL B BROWN FLAT 0.7 5.2 22.0 0.6 10.6 10.7 0.8 10.8 0.6 10.6 10.6 10.8 0.6 10.6 10.8 0.6 10.6 10.6 10.6 10.6 10.6 10.6 10.6 10.6 10.6 10.6 10.6 10.6 10.6 10.6 10.7 10.7 10 11 11655 90.0 20.0 IILL 8 BROWN FLAT 0.6 16.3 10.6 10.7 10.7 10.7 11 11 11655 90.0 92.00 IILL 8 BROWN FLAT 0.7 12.8 15.7 10.6 14.4 13.7 7.0 10.7 11 11 11657 99.0 92.00 IILL 8	11846	9350	9200	TILL	B	BROWN	FLAT		0.9	10.2	394.9	0.5	14	1
11846 9450 9200 TILL B BROWN FLAT 0.5 5.2 22.0.4 0.5 10 11 111805 9590 9200 TILL B BROWN FLAT 0.6 16.9 18.3 0.5 0.6 10 1 111805 9590 9200 TILL B BROWN FLAT 0.6 16.3 12.5 0.6 10 1 111851 9600 9200 TILL B BROWN FLAT 0.6 16.3 10.5 0.7 10 1 111865 9700 6200 TILL B BROWN FLAT 0.6 16.7 17.1 1 11 16.6 10.5 0.7 10 1 111865 9800 9200 TILL B BROWN FLAT 0.7 12.8 13.7 0.6 10.1 1 16.5 10.6 14 1 11 11.6 11.6 10.6 10.0 1.1 10.5 10.6 10.1 11.6 10.1 10.1 10.5 10.1 11.6 10.1 11.	11847	9400	9200	TILL	В	GREY	FLAT		0.4	14.7	325.7	0.5	10	3
11849 9500 9200 TILL B BROWN FLAT 0.7 9.3 213.1 0.5 10 11 111851 9900 9200 TILL B GREY FLAT 0.6 14.3 126.8 0.6 10 5 111851 9900 9200 TILL B GREY FLAT 0.6 14.3 126.8 0.6 10 5 111852 9700 9200 TILL B BROWN FLAT 0.6 14.3 10.7 10 1 111855 9700 9200 TILL B BROWN FLAT 0.9 16.7 151.0 0.7 10 1 111855 9800 9200 TILL B BROWN FLAT 0.9 12.4 10.5 14 15 111856 9860 9200 TILL B BROWN FLAT NEXT OROAD.DISTURBED STE 3.6 166.6 104.1 1 165.0 14 1 11 145.0 14.7 14.7 12.7 15.1 </td <td>11848</td> <td>9450</td> <td>9200</td> <td>TILL</td> <td>B</td> <td>BROWN</td> <td>FLAT</td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td>0.5</td> <td>5.2</td> <td>220.4</td> <td>0.5</td> <td>10</td> <td>1</td>	11848	9450	9200	TILL	B	BROWN	FLAT	· · · · · · · · · · · · · · · · · · ·	0.5	5.2	220.4	0.5	10	1
11850 9500 9200 ILL B BROWN FLAT 0.6 1.6.8 1.6.3 1.6.5 1.0 1 11852 9660 9200 ILL B BROWN FLAT 0.6 1.9 1.3 1.5.6 1.0 1 11853 9700 9200 ILL B BROWN FLAT 0.6 1.0 1 1.0 1 1.0 1 1.0 1 1.0 1 1.0 1 1.0 1 1.0 1 1.0 1 1.0 1 1.0 1 1.0 1 1.0 1 1.0 1 1.0 1 1.0 1 1.0	11849	9500	9200	TILL	B	BROWN	FLAT		0.7	9.3	213.1	0.5	10	1
11851 9600 9200 IILL B GREY FLAT 0.6 14.3 12.56 0.6 10 5 11852 9500 9200 IILL B BROWN FLAT 0.6 19.9 10.1 0.7 10 1 11854 9700 9200 IILL B BROWN FLAT 0.6 19.9 10.7 17 1 11855 9800 9200 IILL B BROWN HLISIDE SV 0.7 12.8 21.3 0.6 10 1 11856 9800 9200 IILL B BROWN FLAT 0.6 12.8 23.9 1.4 16 3.7 12 5 11856 9800 9200 IILL B BROWN FLAT NEXT TO ROAD.DISTURBED SITE 3.6 16.6.6 10.4 14 1 14.3 14.9 2.7 12.8 2.5 1 1 14.4 14.4 14.4 14.4 14.4 14.4 14.4 14.4 14.5 16.5 1 1.5	11850	9550	9200	TILL	B	BROWN	FLAT		0.6	18.9	183	0.5	10	1
11852 9600 9200 ILL B BROWN FLAT 0.6 0.9 0.1 6.1 0.1	11851	9600	9200		B	GREY	FLAT		0.6	14.3	125.6	0.6	10	5
11853 3700 9200 IILL B BROWN FLAT 0.6 19.5 10.1 0.7 10 11 11854 9700 9200 TILL B BROWN FLAT 0.9 15.7 7.1 11 11855 9800 9200 TILL B BROWN HILLSIDE SV 0.7 12.8 21.3.7 0.6 10 1 11856 9800 9200 TILL B BROWN FLAT 0.6 12.8 85.1 0.6 14 1 14 14 14 14 14 14 14 14 14 14 14 14 3.7 12.2 5 11845 10000 9200 TILL B BROWN FLAT NEXT TO ROAD.DISTURBED SITE 3.6 16.5.6 10.2.1 2.8 2.1 2.8 5.1 11 14.4 10.2.1 2.4 3.7 10.5 1.1 14.4 12.1 2.6 5.7 3.8 1.1 1.5 11 114.44 10.0.5 1.5 1.1	11852	9650	9200		B	BROWN	FLAT		0.8	9	93.1	0.5	10	1
11854 97:00 92:00 ILL B BROWN HILAIDE SV 0.0 15.7 15.7 17.0 1 11855 9800 92:00 TILL B BROWN HILLSIDE S 0.9 21 85.5 0.6 14 1 11856 9800 92:00 TILL B BROWN FLAT 0.6 22.2 9.8 1.4 18 3 11856 9800 92:00 TILL B BROWN FLAT NEXT TO ROAD.DISTURED SITE. 3.6 165.6 109.1 2.4 31 1 11844 10000 92:00 TILL B BROWN FLAT SANDY MATERIAL 3.7 260.5 2.1 2.8 2.5 1 11844 10000 92:00 TILL B BROWN HILLSIDE W 3.7 260.5 2.1 2.8 2.5 1 11844 10100 92:00 TILL B BROWN HILLSIDE W 3.4 4.0 5.5 1.5 1.5 1.5 1.5 1.5 1.5 <td>11853</td> <td>9700</td> <td>9200</td> <td></td> <td>В</td> <td>BROWN</td> <td>FLAT</td> <td></td> <td>0.6</td> <td>19.9</td> <td>101.8</td> <td>0.7</td> <td></td> <td>1</td>	11853	9700	9200		В	BROWN	FLAT		0.6	19.9	101.8	0.7		1
11855 9800 9200 IILL B BROWN GRANGE IILLSIDE SW 0.7 12.8 121.7 0.6 14 1 11856 9800 9200 IILL B BROWN GRANGE IILLSIDE SW 0.6 222.3 99.8 1.4 18 3 11856 9850 9200 IILL B BROWN FLAT IILA 0.6 222.3 99.8 1.4 18 3 11856 9850 9200 IILL B BROWN FLAT NEXT TO ROAD. DISTURBED SITE 3.6 166.5 10.9.1 2.4 3.7 280.5 92.1 2.8 2.5 1 11844 10050 9200 TILL B BROWN FLAT SANDY MATERIAL 3.7 280.5 92.1 2.8 2.5 1 11842 10100 9200 TILL B BROWN HILLSIDE W 3.4 14.4 2.1 16 1 1 1.6 1 1 1.6 1 1 1.6 1 1 1.6 1 <t< td=""><td>11854</td><td>9750</td><td>9200</td><td></td><td>В</td><td>BROWN</td><td></td><td></td><td>0.9</td><td>15.7</td><td>151</td><td>0.7</td><td>17</td><td>1</td></t<>	11854	9750	9200		В	BROWN			0.9	15.7	151	0.7	17	1
11856 3850 3200 ILL B BROWN ELAT 0.6 223 851 0.6 12.8 851 0.6 12.8 851 0.6 12.8 89.8 1.4 14 15 11856 9950 0200 IILL B BROWN FLAT NEXT TO ROAD. DISTURBED SITE. 3.6 165.6 10.1 2.4 3.1 1.4 14 1.1 1.4 1.5 1.1 1.4 1.4 1.4 1.5 1.1 1.4 1.5 1.5 1.1 1.6 1.5 1.1 1.5 1.5 1.1 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5	11855	9800	9200		В	BROWN	HILLSIDE SW		0.7	12.8	213.7	0.6		1
11657 9900 900 900 900 900 900 11.1 8 14.4 16 12 5 111845 19000 9200 TILL B BROWN FLAT NEXT TO ROAD. DISTURBED SITE. 3.6 165.6 100.1 2.4 31 1 111844 10050 9200 TILL B BROWN FLAT SANDY MATERIAL 3.7 200.5 92.1 2.8 2.5 9 1 2.4 31 1 111844 10050 9200 TILL B BROWN HILLSIDE W 3.4 149.4 27.1 2.1 8.8 1.1 15 111842 10150 9200 TILL B BROWN HILLSIDE W 2.6 58.7 8.8 1.1 15 1 111840 10205 9200 TILL B BROWN HILLSIDE W 2.6 58.7 8.8 1.1 15 1 111830 10300 9200 TILL B BROWN HILLSIDE W 2.5 53.8 8.0.8	11856	9850	9200	THE	в	BROWN/ORANGE	HILLSIDE S		0.9	21	855.1	0.6		1
11656 3950 200 ILL B BROWN FLAT NEXT TO ROAD DISTURBED SITE. 3.6 165.6 109.1 2.4 3.7 12 5 11844 10050 9200 TILL B BROWN FLAT SANDY MATERIAL. 3.7 260.5 92.1 2.8 2.5 1 11844 10050 9200 TILL B BROWN HILLSIDE W 3.4 149.4 271.1 2.1 2.9 1 11842 10150 9200 TILL B BROWN HILLSIDE W 1.4 42 216 0.5 1.3 15 15 15 15 15 11 16 0.5 1.3 1.5 15 15 15 16 16 0.5 1.3 1.5 15 15 15 16 16 16 0.5 1.6 16 0.5 1.6 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 14 <td< td=""><td>11857</td><td>9900</td><td>9200</td><td></td><td>В</td><td>BROWN</td><td></td><td></td><td>0.6</td><td>222.3</td><td>99.8</td><td>1.4</td><td>18</td><td>3</td></td<>	11857	9900	9200		В	BROWN			0.6	222.3	99.8	1.4	18	3
11845 10000 9200 IILL B BROWN FLAT NEAT OROMODISTREEDISTE. 3.6 1656 102,1 2.4 31 1 11844 10050 9200 IILL B BROWN FLAT SANDY MATERIAL. 3.7 2665 12.1 2.1 2.8 25 1 11843 10100 9200 IILL B BROWN HILLSIDE W	11858	9950	9200	11LL	в	BROWN			1.1	98	174.9	3.7	12	5
11844 10030 2200 ILL B BROWN FLAT SAND TWATERIAL 3.7 280.5 92.1 2.8 25 1 11843 10100 9200 TILL B BROWN HILSIDE W 3.4 149.2 211 2.1 2.9 1 11842 10150 9200 TILL B BROWN HILSIDE W 1.4 22 116 0.5 13 15 11841 10200 9200 TILL B BROWN HILSIDE W 2.6 53.8 89.8 1.0 2 13 18.8 10 2 13 8.8 10 2 14 14 14 14 14 14 14 14 14 14 14 15 1 1 14 15 1 1 14 15 1 1 1 14 16 1	11845	10000	9200		B	BROWN		NEXT TO ROAD, DISTORBED SITE.	3.6	165.6	109.1	2.4	31	1
11843 10100 9200 TILL B BROWN HILSIDE W 1,4 22 71, 2,1 2,1 1 11842 10150 9200 TILL B BROWN HILSIDE W 1,4 22 116 0,5 13 15 11841 10200 9200 TILL B BROWN HILSIDE W 2,6 53.8 8.9.8 0,8 10 2 11830 10200 9200 TILL B BROWN HILSIDE W 0,9 19.4 83.8 0,5 10 2 11830 10350 9200 TILL B BROWN HILSIDE W 1,3 38.3 18.4 0,5 10 2 11838 10450 9200 TILL B BROWN HLISIDE W 1,3 38.3 18.4 0,5 10 4 11837 10400 9200 TILL B BROWN FLAT 1,3 38.3 18.4 0,5 10 4 11836 10450 9200 TILL B<	11644	10000	9200		в	BROWN		SANDT MATERIAL.	3.7	260.5	92.1	2.8	25	1
11842 10130 2200 IIL. B BROWN IILSDE W 1.4 2.2 118 0.5 13 15 11841 10200 9200 IIL B BROWN HILSDE W 2.8 5.8 8.8 1.1 15 1 11841 10200 9200 IIL B BROWN HILSDE W 2.8 5.7 8.3.8 1.0 2 11839 10300 9200 IIL B BROWN HILSDE W 0.9 14.4 8.3.8 0.5 10 2 11838 10300 9200 IIL B BROWN HILSDE W 0.9 14.4 3.8.3 108.3 0.5 30 4 11836 10450 9200 IIL B BROWN HILSDE W 1 38.3 108.3 0.5 30 4 11836 10450 9200 IIL B BROWN HLSDE W 1 13 84 0.7 10 1 11836 10450 9200 IIL B <	11043	10100	9200	1112L	D	DROWN			3.4	149.4	271.1	-2.1	- 29	
11041 11200 3200 ILL B BROWN FILLSDE W 2.8 58.7 8.38 1.1 15 1 11840 10250 9200 TILL B GREY HILLSIDE W 2.5 53.8 89.8 0.8 10 2 11839 10300 9200 TILL B BROWN HILLSIDE W 0.9 19.4 83.8 0.5 10 2 11838 10350 9200 TILL B BROWN FLAT 0.9 14.4 8.8 0.5 10 2 11837 10400 9200 TILL B BROWN FLAT 0.9 64.9 90.2 1 29 2 11836 10450 9200 TILL B BROWN FLAT 0.9 64.9 90.2 1 29 2 11836 10550 9200 TILL B BROWN FLAT 0.6 22.1 7.4.4 0.6 1.1 1.6 3 11833 10600 9200 TILL <t< td=""><td>11042</td><td>10100</td><td>9200</td><td></td><td>D</td><td></td><td></td><td></td><td>1.4</td><td>22</td><td>116</td><td>- 0.5</td><td>13</td><td></td></t<>	11042	10100	9200		D				1.4	22	116	- 0.5	13	
11000 1000 2200 ILL B BROWN HILLSIDE W 2.5 3.5 89.6 0.8 10 2 11839 10300 9200 TILL B BROWN HILLSIDE W 1.3 38.3 108.3 0.5 30 4 11838 10350 9200 TILL B BROWN FLAT 1.3 38.3 108.3 0.5 30 4 11837 10400 9200 TILL B BROWN FLAT 1.3 38.4 0.7 10 1 11836 10450 9200 TILL B BROWN FLAT 0.9 64.9 90.2 1 29 2 11835 10500 9200 TILL B BROWN FLAT 0.6 22.1 74.4 0.6 10 85 11835 10500 9200 TILL B BROWN FLAT 1.3 63.9 12.7 1.8 10 3 11833 10600 9200 TILL B BROWN F	11840	10200	9200		B	CDEV			2.8	58.7	83.8	1.1	10	$-\frac{1}{2}$
11030 3200 ILL B BROWN FLAT 1.3 38.3 108.3 0.5 10 2 11838 10350 9200 ILL B BROWN FLAT 1.3 38.3 108.3 0.5 30 4 11837 10400 9200 TILL B BROWN HILLSIDE W 1.1 38.3 108.3 0.5 30 4 11837 10450 9200 TILL B BROWN HILLSIDE W 1.1 38.3 108.3 0.5 30 4 11836 10450 9200 TILL B BROWN FLAT 0.9 64.9 90.2 1 2.9 2 11835 10500 9200 TILL B BROWN FLAT 0.6 64.9 90.2 1 2.9 2 11835 10500 9200 TILL B BROWN FLAT 0.6 2.1 7.4 0.6 10 85 11833 10600 9200 TILL B BROWN F	11830	10200	9200	THI	D	BROWN		· · · · · · · · · · · · · · · · · · ·	2.5	03.8	89.8	0.8	10	2
11000 10000 3200 TLL B BROWN FLAT 1 38.5 108.5 0.3 30 4 11837 10400 9200 TILL B BROWN HILLSIDE W 1 38.1 84 0.7 10 1 11836 10450 9200 TILL B BROWN FLAT 0.9 64.9 90.2 1 29 2 11836 10500 9200 TILL B BROWN FLAT 0.6 22.1 7.4.4 0.6 10 85 11833 10600 9200 TILL B BROWN FLAT 0.6 22.1 7.4.4 0.6 0 85 11833 10600 9200 TILL B BROWN FLAT 1.3 63.9 12.2 7.1.8 10 3 11833 10600 9200 TILL B BROWN FLAT 1.4 14.4 13.7.8 1.2 33 1 11833 10700 9200 TILL B BROWN </td <td>11838</td> <td>10350</td> <td>9200</td> <td></td> <td>B</td> <td>BROWN</td> <td></td> <td></td> <td>0.9</td> <td>19.4</td> <td>83.8</td> <td>0.5</td> <td>- 10</td> <td></td>	11838	10350	9200		B	BROWN			0.9	19.4	83.8	0.5	- 10	
11030 10400 000 010 010 010 010 1 1 010 1 1 1000 100 1 1000 100 1 1000 100 1 1000 100 1 1000 100 1 10000 1000 10000	11830	10000	9200	ТИЕ	B	BROWN			1.3	30.3	100.3	0.5	- 10	4
11000 10000 10000	11836	10450	9200	ти	B	BROWN	FI AT		0.0	- 30.1 64.0	04		20	
11834 10550 9200 TILL B BROWN FLAT 0.6 22.1 74.4 0.6 10 85 11834 10550 9200 TILL B BROWN FLAT 0.6 22.1 74.4 0.6 10 85 11833 10600 9200 TILL B BROWN FLAT 1.3 63.9 122.7 1.8 10 3 11832 10650 9200 TILL B BROWN FLAT 1.1 104.4 137.8 1.2 33 1 11831 10700 9200 TILL B BROWN FLAT 0.6 33.3 75.9 0.8 16 3 11831 10700 9200 TILL B BROWN FLAT 0.9 166 33.3 75.9 0.8 16 3 11829 10800 9200 TILL B BROWN FLAT 0.9 106.6 202.8 1.8 31 1 11828 10850 9200 TILL B </td <td>11835</td> <td>10500</td> <td>9200</td> <td></td> <td>B</td> <td>BROWN</td> <td>HILLSIDEW</td> <td></td> <td>1.1</td> <td>04.9</td> <td>206 1</td> <td>11</td> <td>15</td> <td>- 4</td>	11835	10500	9200		B	BROWN	HILLSIDEW		1.1	04.9	206 1	11	15	- 4
11833 10600 9200 TILL B BROWN FLAT 1.3 63.9 122.7 1.8 10 3 11833 10600 9200 TILL B BROWN FLAT 1.3 63.9 122.7 1.8 10 3 11833 10650 9200 TILL B BROWN FLAT 1.1 104.4 137.8 1.2 33 1 11833 10700 9200 TILL B BROWN FLAT 0.6 33.3 75.9 0.8 16 3 11830 10700 9200 TILL B BROWN FLAT 0.9 10.6 33.3 75.9 0.8 16 3 11830 10750 9200 TILL B BROWN FLAT 0.9 106.6 202.8 1.8 23 1 11829 10800 9200 TILL B BROWN FLAT 0.9 106.6 202.8 1.8 31 1 11828 10850 9200 TILL B	11834	10550	9200	ти	B	BROWN	FLAT		0.6	22.0	74.4		10	0.5
11832 10650 9200 TILL B BROWN FLAT 1.1 104.4 137.8 1.2 33 1 11832 10650 9200 TILL B BROWN FLAT 0.6 33.3 75.9 0.8 16 3 11831 10700 9200 TILL B BROWN FLAT 0.6 33.3 75.9 0.8 16 3 11830 10750 9200 TILL B BROWN FLAT 0.9 62.9 92.3 1.8 23 1 11829 10800 9200 TILL B BROWN FLAT 0.9 106.6 202.8 1.8 31 1 11829 10800 9200 TILL B BROWN FLAT 0.9 106.6 202.8 1.8 31 1 11828 10850 9200 TILL B BROWN FLAT 0.9 41.5 54.4 0.9 10 1 11827 10900 9200 TILL B BROWN<	11833	10600	9200		B	BROWN	FLAT		1.3	63.0	122.7	1.0	10	
11831 10700 9200 TILL B BROWN FLAT 0.6 33.3 75.9 0.8 16 3 11831 10700 9200 TILL B BROWN FLAT 0.6 33.3 75.9 0.8 16 3 11830 10750 9200 TILL B BROWN FLAT 1.9 62.9 92.3 1.8 23 1 11829 10800 9200 TILL B BROWN FLAT 0.9 106.6 202.8 1.8 31 1 11828 10850 9200 TILL B BROWN FLAT 0.9 106.6 202.8 1.8 31 1 11828 10850 9200 TILL B BROWN FLAT 0.9 41.5 54.4 0.9 10 1 11827 10900 9200 TILL B BROWN HILLSIDE W 0.9 54.6 68.5 0.6 10 1 11826 10950 9200 TILL B BR	11832	10650	9200	TILL	B	BROWN	FLAT	· ····································	1.0	104.4	137.8	1.0	33	-1
Image: Constraint of the second sec	11831	10700	9200	TILL	В	BROWN	FLAT		 D.6	33.3	75.0	0.8	16	
11829 10800 9200 TILL B BROWN FLAT 0.9 106.6 202.8 1.8 31 1 11829 10800 9200 TILL B BROWN FLAT 0.9 106.6 202.8 1.8 31 1 11828 10850 9200 TILL B BROWN FLAT 0.9 41.5 54.4 0.9 10 1 11827 10900 9200 TILL B BROWN HILLSIDE W 0.6 32.7 53.9 0.6 10 1 11826 10950 9200 TILL B BROWN HILLSIDE W 0.9 54.6 68.5 0.6 10 1	11830	10750	9200	TILL	B	BROWN	FLAT		1.0	62.9	92.3	1.8	23	
11828 10850 9200 TILL B BROWN FLAT 0.9 41.5 54.4 0.9 10 1 11828 10900 9200 TILL B BROWN FLAT 0.9 41.5 54.4 0.9 10 1 11827 10900 9200 TILL B BROWN HILLSIDE W 0.6 32.7 53.9 0.6 10 1 11826 10950 9200 TILL B BROWN HILLSIDE W 0.9 54.6 68.5 0.6 10 1	11829	10800	9200	TILL	В	BROWN	FLAT	· · · · · · · · · · · · · · · · · · ·	0.0	106.6	202.8	1.0	31	
11827 10900 9200 TILL B BROWN HILLSIDE W 0.6 32.7 53.9 0.6 10 1 11826 10950 9200 TILL B BROWN HILLSIDE W 0.9 54.6 68.5 0.6 10 1	11828	10850	9200	TILL	В	BROWN	FLAT	· · · · · · · · · · · · · · · · · · ·	0.0	41.5	54 4		- 10	
11826 10950 9200 TILL B BROWN HILLSIDE W 0.9 54.6 68.5 0.6 10 1	11827	10900	9200	TILL	В	BROWN	HILLSIDEW		0.6	32.7	53.9	0.0	10	
	11826	10950	9200	TILL	В	BROWN	HILLSIDE W		0.9	54.6	68.5	0.6	10	
11825 11000 9200 TILL B BROWN HILLSIDE W 1.3 91 9 107 2 1 13 1	11825	11000	9200	TILL	В	BROWN	HILLSIDE W		1.3	91.9	107.2	1	13	

Crest Geological Consultants Ltd. Project 178

SAMPLE NO.	GRID EAST	GRID NORTH	MATERIAL	HORIZON	COLOUR	TOPOGRAPHY	NOTES	Mo	Cu	Zn	As	Hg	Au
11824	11050	9200	TILL	в	BROWN	FLAT		1.1	51.2	96.2	0.9	10	1
11070	40000	6.5.4 a		-			SAMPLE TAKEN AT EAST SIDE OF ROAD AT 100+15E						
119/2	10000	9250	TILL	B	BROWN	HILLSIDE W	DUE TO SWAMP,	1.1	110.1	67.6	4.4	33	3
10537	9500	9300	TILL	B	BROWN	FLAT	BESIDE ROAD.	0.6	24.9	102.9	0.7		1
10538	9550	9300	TILL	В	BROWN/GREY	HILLSIDE SW		0.7	22.7	280.1	0.5	13	2
10539	9600	9300	TILL	B	BROWN/GREY	HILLSIDE SW	······································	0.6	15.6	116.9	0.5	16	1
10540	9650	9300	TILL	B	BROWN/GREY	FLAT		0.5	17.4	122.3	0.5	10	1
10541	9700	9300	тн	R	BROWNIGREY	ELAT.	ABUNDANT FLOAT OF FOLIATED CHLORITE + SERICITE +	0.0	24.6	152.0	0.6		
10542	9750	9300		8			EPIDOTE ALTERED QUARTZ DIORITE.	0.9	24.0	102.9	0.0	- 14	
10543	9800	9300	THI	B	BROWN		· · · · · · · · · · · · · · · · · · ·	0.0	23.0	110.0	0.0	12	20
10544	0850	9300		в р	BROWN			0.0	20.6	119.1	0.5	13	
10545	0000	0200	70.	0	BROWN		NO CANOLE TAKEN AT 00-50 DUE TO CAMAND		17.2	294.2	-0.5	23	$-\frac{1}{2}$
10040	3500	9300	۱۱ ۲	B	BRUWIN/ORAINGE	HILLOIDE E	NO SAMPLE TAKEN AT 5950 DUE TO SWAMP.	1.2	37.5	448			1
11973	10000	9300	TILL	в	BROWN	FLAT	BASELINE ON ROAD.	0.6	53.7	54.2	3	29	1
10584	10050	9300	TILL.	В	BROWN	FLAT	GOOD B HORIZON.	1	14.3	47.1	1.1	10	1
10583	10100	9300	TILL	В	LIGHT BROWN	FLAT	ROCKY.	0.9	39.2	73.9	1.7	10	
10582	10150	9300	TILL	В	BROWN	FLAT		1.2	24.2	70.2	1	13	-1
10581	10200	9300	TILL	B	LIGHT BROWN	FLAT		2	66.1	60.9	19	17	
10580	10250	9300	TILL	В	BROWN	HILLSIDEW	GOOD B HORIZON	0.8	29.9	93.3	0.8	10	
10579	10300	9300	TILL	B	BROWN	HILLSIDEW		0.6	36.2	112.5	0.0	10	
10578	10350	9300	THI	- R	BROWN/GREY	HILLSIDEW	ROCKY	1.5	40.4	73.6		10	
10577	10400	9300	TH I	B	BROWN	HILLSIDE W		1.0	43.4	70.0		17	
10576	10450	9300	TIII	8	BROWN			1.4	42.0	56.0	0.5		_
10575	10500	9300		8	BROWN	HILLSIDE W	· · · · · · · · · · · · · · · · · · ·	4 7	59.0	06.7	0.0	- 20	
10574	10550	9300	TILL	8	LIGHT BROWN		POCKY	0.7	16.2	90.7	0.7	- 10	
	10000						OUTCROP QUARTZ FELDSPAR PORPHYRY FOLIATED		10.3	10.0			
10573	10600	9300	TILL	В	LIGHT BROWN	FLAT	QUARTZ DIORITE.	0.8	15	50	0.6	13	1
10572	10650	9300	TILL	В	BROWN	FLAT	FROM UPROOTED TREE,	1.1	39.4	62.7	1.2	20	1
10571	10700	9300	TILL	В	BROWN	FLAT	FROM UPROOTED TREE.	2.2	131.5	85.2	3.6	30	1
10570	10750	9300	TILL	В	BROWN	FLAT		1.1	22.7	52.9	1.5	12	1
10569	10800	9300	TILL	в	BROWN	FLAT	ROCKY.	1.6	84	69.6	2.3	27	1
10568	10850	9300	TILL	В	BROWN	FLAT		0.6	43	66.4	0.8	28	1
10567	10900	9300	TILL	В	BROWN/ORANGE	FLAT		0.8	44	70.5	0.9	10	3
10566	10950	9300	TILL	B	LIGHT BROWN	FLAT		0.8	57.5	74.6	0.9	18	
10565	11000	9300	TILL	В	LIGHT BROWN	FLAT		0.5	45.9	56.8	0.6	19	1
10564	11050	9300	TILL	B	LIGHT BROWN	HILLTOP W		1.4	91.8	82.5	1.9	18	
10563	11100	9300	TILL	в	BROWN	HILLSIDE W		19	177.6	173.9	2.8	25	
10562	11150	9300	TILL	B	BROWN/GREY	FLAT	ROCKY SOIL	1	30.5	74.0	1.6	22	
10561	11200	9300	TILL	- В	BROWN/GREY	FLAT	ROCKY SOIL	11	66.8	79.7	1 3	10	
11974	10000	9350	TILL	B	BROWN	FLAT			32.0	62.5	1.5	14	- 4
11965	9175	9400	SAND	B	BROWN	FLAT	FINE GRAINED SANDY SOIL	4	60.6	365 4	2.0	30	
11964	9225	9400	TILI	 R	BROWN	HILL SIDE W	15M W/ OF CLAIM LINE E-W		24.6	332 6	- 4	10	
11963	9275	9400	THI	R	BROWN	FI AT	TOTAL TO COLUMN LINE L'YY.	1 1	24.0 66 7	517.1	0.7	- 10	
11962	9325	0400 Q400		R	BROWN			4 7	40.0	160.2	0.9	40	
11061	0376	0400	THI	R I	BROWN			- 1./	19.8	100.3	0,0	10	
11060	0,05	0000	тес ТП 1	0	BROWN			0,9	24.0	107.5	0.9	- 11	
11050	3420 0.47#	0400			BROWN	FLAT		0.8	20.3	213		12	
11909	5470	9400			DITOWIN			0.4	15.7	187.8	<u>0.8</u>	18	1

Crest Geological Consultants Ltd. Project 178

SAMPLE NO.	GRID EAST	GRID NORTH	MATERIAL	HORIZON	COLOUR	TOPOGRAPHY	NOTES	Mo	Cu	Zn	As	Ha	Au
11958	9525	9400	TILL	В	BROWN	FLAT		0.8	29.9	199.4	0.6	23	1
11957	9575	9400	TILL	в	BROWN	FLAT	EAST SIDE OF ROAD.	1	16.1	117.7	0.7	12	1
11956	9625	9400	TILL	В	BROWN	HILLSIDE W	· · · · · · · · · · · · · · · · · · ·	0.8	16.2	268.3	0.8	17	3
11955	9675	9400	TILL	в	BROWN	HILLSIDE W		0.9	17.9	101.6	1.6	10	1
11954	9725	9400	TILL	B	BROWN	FLAT		1	22.3	114	1.5	10	1
11953	9775	9400	TILL	В	BROWN	FLAT		0.8	21.1	130.7	0,5	12	1
11952	9825	9400	TILL	в	BROWN	FLAT	QUARTZ FLOAT IN HOLE.	0.9	39,4	105.3	0.9	10	1
11951	9875	9400	TILL	B	BROWN	FLAT		0.8	31.7	120.3	0.9	22	1
11950	9925	9400	TILL	в	BROWN	HILLSIDE E		1	23.4	111.2	1.5	10	1
11949	9975	9400	ORGANIC	TOPSOIL	BLACK	GULLY	CREEK BOTTOM.	0.8	553.1	107.8	3.8	81	2
110.40	40000	0.400		_			BASE LINE AT ROAD. SOME DISTURBANCE AT SAMPLE						
11948	10000	9400		в	BROWN	HILLSIDE NW	SITE.	1.1	114.3	81.1	5.6	59	3
11947	10025	9400		в	BROWN	HILLSIDE SW		1.4	25.6	55.8	1.5	13	1
11946	10075	9400		в	BROWN	FLAT		0.6	22.7	87	1.1	25	1
11945	10125	9400		B	BROWN	FLAI		0.9	30.2	84.3	1	30	2
11944	10175	9400		В	BROWN	HILLSIDE W		0.9	25.3	71.5	1.3	12	1
11943	10225	9400		В	BROWN	HILLSIDE W		1.3	134.4	93.4	2.8	46	1
11942	10275	9400		В	BROWN	HILLSIDEW	· · · · · · · · · · · · · · · · · · ·	0.7	25.2	86.3	1.3	17	1
11941	10325	9400		В	BROWN	HILLSIDE W	· · · · · · · · · · · · · · · · · · ·	1.3	31.2	82.6	1.7	16	1
11940	10375	9400		В	BROWN	HILLSIDE W		1	28.3	86.1	1.1	15	1
11939	10425	9400		В	BROWN	HILLSIDE W		0.7	24.9	71.9	1	24	1
11938	104/5	9400		в	BROWN	HILLSIDE W		1	38.3	73	1.6	24	1
11937	10525	9400		B	BROWN	HILLSIDE W		1.1	90.4	77.5	2.2	21	1
11936	10575	9400		B	BROWN	HILLSIDEW	EAST EDGE OF 4 TRAX ROAD - RUNS N-S.	1.4	157.7	86.8	4.9	46	2
11935	10625	9400	TILL	В	BROWN	HILLSIDE W		0.7	19.3	66.9	1.3	25	1
11934	10675	9400	TILL	В	BROWN	HILLSIDE W		1.2	28	88.9	1.5	28	1
11933	10725	9400		в	BROWN	IFLAT		1.1	30	77.5	1.2	17	136
11932	10775	9400		В	BROWN	FLAT		1.9	175	160	2.7	62	1
11931	10825	9400	TILL	B	BROWN	HILLSIDEW		2.5	322	273.8	4	52	1
11930	10875	9400		B	BROWN	FLAT		0.6	41.3	59.6	0.9	19	2
11929	10925	9400	TILL	B	BROWN	FLAT		1.4	216	151.8	2.8	42	1
11928	10975	9400	TILL	В	BROWN	FLAT		1.1	74.4	64.6	1.8	26	1
11927	11025	9400	TILL	В	BROWN	HILLSIDEW		1.9	13.5	51.8	1	13	1
11926	11075	9400	TILL	В	BROWN	FLAT		1.1	95.2	89.6	1,9	18	1
11925	11125	9400	TILL	B	BROWN	HILLSIDE W		0.9	35.1	50.2	1.1	17	1
11924	11175	9400	TILL	B	BROWN	HILLSIDE W		1.3	75.9	68.7	1.1	26	1
11923	11225	9400	TILL	В	BROWN	HILLSIDE W	ROUNDED QUARTZ PEBBLES IN TILL.	0.7	34.7	46.8	0.9	47	1
11975	10000	9450	TILL	в	BROWN	FLAT	SAMPLE TAKEN ON EAST SIDE OF ROAD, BASELINE ON	0.9	41	72	27	12	4
11976	10000	9500	TILL	B	BROWN	HILLSIDEW	BASELINE BELOW ROAD	1.5	38.6	740	0.8	28	
11977	10000	9550	TILL	В	BROWN	FLAT	SAMPLE TAKEN AT 100+05E.	1.5	26.6	342 7	1 1	22	
11889	8900	9600	TILL	В	BROWN	FLAT		0.9	39.5	892.9	1.5	15	
11890	8950	9600	TILL.	В	BROWN	FLAT		0.8	18.7	642.1	1	20	
11891	9000	9600	TILL	В	BROWN	HILLSIDE N	SIDE OF GULLY.	0.7	61.2	392.6	14	22	
11892	9050	9600	TILL	В	BROWN	HILLSIDE S	SIDE OF GULLY.	1	65.4	283.3	12	25	
11893	9100	9600	TILL	В	BROWN	FLAT		0.4	8.9	140 7	12	11	
11894	9150	9600	TILL	В	BROWN	FLAT		0,5	11.7	147.4	0.5	23	2

Append	lix i	l Pg	6
--------	-------	------	---

SAMPLE NO.	GRID EAST	GRID NORTH	MATERIAL	HORIZON	COLOUR	TOPOGRAPHY	NOTES	Mo	Cu	Zn	As	Hg	Au
11895	9200	9600	TILL	В	BROWN	HILLSIDE NE		0.4	12.5	131	0.5	20	1
11896	9250	9600	TILL	в	BROWN	HILLSIDE E		0.7	13.4	143.1	0.8	10	1
11897	9300	9600	TILL	В	BROWN	FLAT		1.9	10.1	78.9	0.5	18	1
11898	9350	9600	TILL	B	BROWN	FLAT		2,2	163.8	465.2	1.4	51	2
11899	9400	9600	TILL	В	BROWN	HILLSIDE SW		1.1	17.4	485.3	1	22	1
11900	9450	9600	TILL	В	GREY	FLAT		0.6	13.7	196.3	0.5	11	14
12201	9500	9600	TILL	В	GREY	FLAT		0.8	17.8	149	0.7	10	3
12202	9550	9600	TILL	В	BROWN	FLAT		0.6	9.4	181.6	0.5	10	1
12203	9600	9600	TILL	В	BROWN	HILLSIDE NE		0.7	13.4	173	0.6	10	3
12204	9650	9600	TILL	В	BROWN	FLAT	NEXT TO OLD ROAD.	0.6	114.8	153.2	0.9	20	3
12205	9700	9600	TILL	В	BROWN	HILLSIDE SW	· · · · · · · · · · · · · · · · · · ·	0.6	22.5	58.3	1	14	2
12206	9750	9600	TILL	В	BROWN	FLAT		0.8	32.8	117	0.5	10	3
12207	9800	9600	TILL	B	BROWN	FLAT		0.9	16.3	142	0.5	10	2
12208	9850	9600	TILL	В	BROWN	FLAT		0.7	16.3	152.8	0.5	10	1
12209	9900	9600	TILL	В	GREY	FLAT		0.7	10,4	96.4	0.5	10	2
12210	9950	9600	TILL	В	BROWN	HILLSIDE E		0.9	76.6	88.9	1.4	10	3
11888	10000	9600	TILL	В	BROWN	HILLSIDE W		1.3	85.5	67.7	4.3	14	1
11887	10050	9600	TILL	В	BROWN	HILLSIDE W		1.3	58.5	109.1	2.8	15	
11886	10100	9600	TILL	В	BROWN	FLAT		0.9	12.7	74.5	0.5	10	1
11885	10150	9600		B	BROWN	FLAT		0,6	16.3	102.7	0.6	10	2
11884	10200	9600		В	BROWN	FLAT	· · · · · · · · · · · · · · · · · · ·	0.6	42.8	75.1	0.8	10	1
11883	10250	9600	TILL	B	BROWN	FLAT		0.6	31.8	71	1	10	1
11882	10300	9600		в	BROWN	FLAT		0.7	19.5	71.5	0.5	10	1
11881	10350	9600	TILL	В	BROWN	FLAT		0.6	29.3	63.7	8.0	10	4
11880	10400	9600		в	BROWN	HILLSIDE W		1.2	58.2	79.8	1.4	10	5
11879	10450	9600		В	BROWN	HILLSIDE W		0.7	32.2	83.2	0.5	10	1
11878	10500	9600		В	BROWN	HILLSIDE W		0.6	43.9	91.9	0.9	20	1
11877	10550	9600		в	BROWN	HILLSIDE W		0.5	30.8	81.1	0.5	10	1
11870	10600	9600	11LL	B	BROWN			0.7	38.1	73.3	1.3	13	2
11073	10600	9600		B	BROWN		EDGE OF ROAD.	1	84	70.6	4	10	- 5
11074	10700	9600		D	BROWN			0.8	73.5	65.4	2.6	21	- 2
11073	10750	9600		B				0.9	39.9	63.1	2,2	10	
11971	10850	0008		D	PROWIN		· · · · · · · · · · · · · · · · · · ·	1.0	172.9	220.0	0.7	29	
11870	10830	0006		D D	BROWN			1.4	100.5 67 0	91.0	4,8	20	
11869	10900	9000		R	BROWN			0.0	104.6	104.9	2.0	19	
11868	11000	0000		B	BROWN	FI AT		4.2	07.5	09.2	4.3	20	
11867	11050	9600	THE	B	BROWN			0.7	97.0	72.2	0.2	21	
11866	11100	9600	THI	~ B	BROWN	FLAT		0.7	1.00 14 A	68 /	12	20	
11865	11150	0000		В	BROWN	FLAT	······································	1.6	272.4	208.5	6.0	20	
11864	11200	0000	TILI	- B	BROWN	FLAT		1.0	116.8	89.0	0.0	36	
11863	11250	9600		- 8	BROWN	FLAT		07	66.2	82.8	1 /	10	
11862	11300	9608	TILL	B	BLACK	FLAT	ORGANIC RICH, ALDER, SWAMPY	22	760.2	184 6	7.9	70	
11861	11350	9600	TILL	- B	GREY	HILLSIDE W		<u>, 2</u>	4n 7	74.8	0.0	10	
11860	11400	9600	TILL	B	BROWN	HILLSIDEW		0.0	61 2	63.8	8.0	10	
11859	11450	9600	ΠLL	B	BROWN	FLAT		0.6	37.5	61.9	1.2	10	

SAMPLE NO.	GRID EAST	GRID NORTH	MATERIAL	HORIZON	COLOUR	TOPOGRAPHY	NOTES	Mo	Cu	Zn	As	Hg	Au
11978	10000	9650	TILL	В	BROWN	FLAT	SAMPLE TAKEN AT 99+90E. BASELINE AT CREEK.	1	27.8	301.5	1.5	23	1
11979	10000	9700	TILL	В	BROWN	FLAT	SAMPLE TAKEN AT 100+20E. BASELINE AT CREEK.	1.2	47.3	150.4	1.5	29	13
11980	10000	9750	TILL	в	BROWN	HILLSIDE S	OUTCROP.	0.5	18	104.5	0.9	12	1
12112	8625	9800	TILL	В	BROWN	FLAT	SAMPLE TAKEN 5M EAST OF ROAD.	0.9	39	95.7	3.1	14	1
12111	8675	9800	TILL	В	BROWN	FLAT		0.5	6	158.9	0.7	16	1
12110	8725	9800	TILL	В	BROWN	FLAT		0.4	10.6	127.1	0.9	10	1
12109	8775	9800	TILL	В	BROWN	FLAT		0.7	13.2	122.1	0.6	15	1
12108	8825	9800	TILL	В	BROWN	FLAT		2	40.5	743.5	0.6	29	2
12107	8875	9800	TILL	В	BROWN	FLAT		1.2	62.3	779.3	0.5	34	2
12106	8925	9800	TILL	В	BROWN	FLAT	· · · · · · · · · · · · · · · · · · ·	1.1	22.6	942.5	1.4	24	27
12105	8975	9800	TILL	В	BROWN	FLAT		1.1	32.3	1175	1	27	1
12104	9025	9800	TILL	В	BROWN	FLAT		1.4	45.8	723.6	0.9	43	1
12103	9075	9800	TILL	В	BROWN/GREY	FLAT		0.7	12.7	206.3	0.5	10	2
12102	9125	9800	TILL	В	BROWN	FLAT		0.8	16.9	234.8	0.6	21	1
12101	9175	9800	TILL	В	BROWN	FLAT		0.7	6.8	257.4	0.5	10	2
11800	9225	9800	TILL	В	BROWN	FLAT		1.1	11.8	305.9	1.2	25	2
11799	9275	9800	TILL	в	BROWN	FLAT		0.7	10.1	281.6	0.5	25	1
11798	9325	9800	TILL	В	BROWN	FLAT		1.9	42.1	483	1.4	40	2
11797	9375	9800	TILL	B	BROWN	FLAT		1.3	45.2	519.7	2.2	40	4
11796	9425	9800	TILL	В	BROWN	FLAT		1.5	35.3	564.3	2.2	30	41
11795	9475	9800	TILL	8	BROWN	FLAT		1.2	19.7	339	0.6	10	1
11794	9525	9800	TILL	B	BROWN	FLAT		3.2	53.2	183	1	30	1
11793	9575	9800		В	BROWN	FLAT		1.2	25.6	114.4	1	15	4
11792	9625	9800	TILL	B	BROWN	FLAT		1.2	14.7	119.5	0.5	10	. 1
11/91	9675	9800		B	BROWN	FLAT		1.3	20.5	117.4	0.7	30	2
11790	9725	9800	IILL .	В	BROWN	FLAT		0.9	79.2	94.1	1.2	25	1
11/89	9775	9800	TILL	B	BROWN	FLAT		0.7	8.8	91.3	0.5		8
11788	9825	9800	TILL	В	BROWN	FLAT	· · · · · · · · · · · · · · · · · · ·	1.3	28.9	127.4	0.5	15	1
11/8/	9875	9800	11LL	в	BROWN		·	1.6	34.9	221	0.8		2
11/86	9925	9800	TILL	В	BROWN/GREY			6.9	160.9	104.5	2.5	55	1
11782	9975	9800	TUL	.в Б	BROWN	FLAI		2.3	39.6	240.9	1.2	15	1
11784	10000	9800	TILL	B	BROWN			3.8	66.8	218.1	0.7	25	5
11/03	10020	9800		в	BROWN			1.2	33.1	120.7	0.6	25	8
11702	10175	9000	THL	B	BROWN			0.7	17.2	141.3	0.8	25	
11701	10120	9800		в	BROWN			0.9	22.2	83.2	0.6	20	1
11730	10175	9000		B	BROWN			0.5	32.9	100.2	0.6	15	
11779	10220	9000		8 0	BROWN			1.7	111.6	80.5	1.3	35	2
11777	10275	9000		B 0	BROWN			0.8	16.9	67.9	1.2	10	2
11776	10325	9000		8	BROWN			1.2	58.2	101.4	2.5		
11775	10375	9000		D	BROWN			1.2	52.3	/1.4	0.9	15	
11774	10425	0000	THE	D	DROWIN			0,9	19.1	121.5	0.5	- 15	
11773	10475	0000		р В	BROWN			0.9	18.7	99.4	0.5	-20	
11779	10575	0006		B	BROWN			1.4	100 7	10.8	0.8	-20	
11771	10075	0900		B	BROWN			3.2	123.7	115.9	0.8	15	
11770	10675	0000		р В	BROWN	ELAT		3.5	607	345.2	4.1	90	- 2
1170	10075	3000	11166	D D	DICOWN	I LAI		1.5	02.3	10.9	11	25	1

Crest Geological Consultants Ltd. Project 178

SAMPLE NO.	GRID EAST	GRID NORTH	MATERIAL	HORIZON	COLOUR	TOPOGRAPHY	NOTES	Mo	Cu	Zn	As	Hg	Au
11769	10725	9800	TILL	В	BROWN	FLAT		1.5	59.2	72.1	0.9	20	1
11768	10775	9800	TILL	В	BROWN	FLAT		1.2	26.8	50.6	0.8	20	1
11767	10825	9800	TILL	В	BROWN	FLAT		1.1	56.6	70.3	2.6	34	1
11766	10875	9800	TILL	В	BROWN	FLAT		0.9	21.6	75.1	1.1	16	1
11765	10925	9800	TILL	в	BROWN	FLAT		1.8	70.6	84.8	1.4	22	2
11764	10975	9800	TILL	В	BROWN	FLAT		0.8	30.5	75.7	1.2	14	1
11763	11025	9800	TILL	в	BROWN	FLAT		0.9	41.2	52.9	1.1	17	1
11762	11075	9800	TILL	8	BROWN	FLAT		0.6	38.6	91.4	1.4	16	1
11761	11125	9800	TILL	В	BROWN	FLAT		2.1	304.5	211.8	6.6	55	1
11760	11175	9800	TILL	В	BROWN	FLAT		0.7	12	88.4	0.8	10	2
11759	11225	9800	TILL	В	BROWN	FLAT		1.9	247.5	114.4	4.6	59	3
11758	11275	9800	TILL	В	BROWN	FLAT		1.7	312.3	80.6	4.9	40	2
11757	11325	9800	TILL	В	BLACK/BROWN	FLAT		2.6	669.4	137	1.9	85	1
11756	11375	9800	TILL	В	BROWN	FLAT		1.5	37.1	317.5	1.5	10	1
11755	11425	9800	TILL	В	BROWN	FLAT		1.2	28.4	120.2	0.9	12	1
11754	11475	9800	TILL	В	BROWN	FLAT		0.8	77.5	87.9	1.1	16	1
11753	11525	9800	TILL	В	BROWN	FLAT		0.8	23.6	73.5	0.5	15	16
11752	11575	9800	TILL	В	BROWN/GREY	FLAT		1.3	42.1	52.4	0.5	10	1
11981	10000	9850	TILL	В	BROWN	FLAT		1.2	30.6	200.8	1.4	22	1
11982	10000	9900	TILL	В	BROWN	HILLSIDE W		1	10.8	185.6	1.5	30	3
11983	10000	9950	TILL	В	BROWN	FLAT		0.6	15.8	176.2	1.1	15	1
12126	8600	10000	TILL	В	BROWN	FLAT		1.2	21	218.1	0.8	15	2
12125	8650	10000	TILL	В	BROWN	FLAT		1.8	168.1	589.7	3.3	51	4
12124	8700	10000	TILL	В	BROWN	FLAT	SAMPLE TAKEN 7M N OF STATION DUE TO SWAMP.	2.1	89	489.7	2.1	34	1
12123	8750	10000	TILL	В	BROWN	FLAT		0.5	10.1	116.5	1	10	1
12122	8800	10000	TILL	В	BROWN	FLAT		0.3	5.6	133.6	0.6	21	1
12121	8850	10000	TILL	в	BROWN	FLAT		0.5	6.8	86.1	0.5	10	1
12120	8900	10000	TILL	В	BROWN	FLAT		0.9	11.7	132.9	0.6	11	1
12119	8950	10000	TILL	В	BROWN	FLAT		1.8	20.7	251.2	0.6	21	1
12118	9000	10000	TILL	В	BROWN	FLAT	SAMPLE TAKEN 10M S OF STATION DUE TO SWAMP.	3.3	35.7	306.7	1.5	12	2
12117	9050	10000	TILL	В	BROWN	FLAT		3.2	36.7	720.8	1.9	23	1
12116	9100	10000	TILL	В	BROWN	FLAT		2.1	40.4	825.7	1.5	32	4
12115	9150	10000	TILL	В	BROWN	FLAT		1.4	53.2	537.9	1.1	19	1
12114	9200	10000	TILL	В	BROWN	FLAT		1	6.9	82.1	0.5	10	1
12113	9250	10000	TILL	B	BROWN/GREY	FLAT	SAMPLE TAKEN 5M W OF CREEK.	1.7	14.1	53.3	1.6	22	1
12038	9300	10000	TILL	В	BROWN	HILLSIDE SW		1.8	17.5	117.9	0.8	22	1
12039	9350	10000	TILL	В	BROWN	HILLSIDE SW		2.2	27.3	621.2	1.3	23	1
12040	9400	10000	TILL	В	BROWN	HILLSIDE NE		0.8	36.7	263.5	1.5	14	5
12041	9500	10000	TILL	8	GREY	HILLSIDE S	NO SAMPLE TAKEN AT 94+50E DUE TO BOG.	1.5	10.7	56	0.5	31	1
12042	9550	10000	TILL	В	GREY	HILLSIDE S		0.7	252.1	220.3	0.7	41	2
12043	9600	10000	TILL	В	GREY	HILLSIDE S		1.3	19.3	124	0.5	19	3
12044	9650	10000	TILL	В	BROWN	HILLSIDE S		0.4	11.9	220.2	0.6	10	1
12045	9700	10000	TILL	В	BROWN	HILLSIDE SW		0.8	15.2	214.1	0.6	10	4
12046	9750	10000	TILL	В	BROWN	HILLSIDE S		0.9	135.7	66.4	1.1	10	1
12047	9800	10000	TILL	В	BROWN	HILLSIDE SW		1.2	54.6	139	3.1	10	1
12048	9850	10000	TILL	В	GREY	HILLSIDE SW		1.9	373.3	631	2.1	27	2

Crest Geological Consultants Ltd. Project 178

SAMPLE NO.	GRID EAST	GRID NORTH	MATERIAL	HORIZON	COLOUR	TOPOGRAPHY	NOTES	Мо	Cu	Zn	As	Hg	Au
12049	9900	10000	TILL	В	GREY	HILLSIDE SW	· · · · · · · · · · · · · · · · · · ·	1.7	270.5	227.3	1.4	30	1
12050	9950	10000	TILL	в	BROWN	HILLSIDE S		1.5	63.4	103.4	1.5	10	4
12037	10000	10000	TILL	в	BROWN	HILLSIDE SW		0.9	17.9	126.8	0.5	25	2
12036	10050	10000	TILL	B	BROWN	HILLSIDE NE		0.6	15.4	152,4	0.5	13	1
12035	10100	10000	TILL	В	BROWN	HILLSIDE NE		0.5	13.1	377.5	0.5	10	3
12034	10150	10000	TILL	В	BROWN	HILLSIDE SW		0.6	28.6	150.3	0.5	10	2
12033	10200	10000	TILL	В	BROWN	HILLSIDE SW		0.9	21.1	94.6	0.5	10	1
12032	10250	10000	TILL	В	BROWN	HILLSIDE SW		0.4	37.7	98.2	0.5	12	2
12031	10300	10000	TILL	В	BROWN	HILLSIDE SW		0.9	36.4	63.7	0,6	15	4
12030	10350	10000	TILL	В	BROWN	HILLSIDE SW		0.7	38	70.2	2.2	33	6
12029	10400	10000	TILL	В	BROWN	HILLSIDE SW		0.7	15.2	63.6	0.5	14	6
12028	10450	10000	TILL	В	BROWN	HILLSIDE SW		1	71.7	73.3	1.1	16	3
12027	10500	10000	TILL	В	BROWN	HILLSIDE SW		1	20	81.7	0.5	10	1
12026	10550	10000	TILL	В	BROWN	HILLSIDE SW		1	80.1	97.9	1.5	27	1
12025	10600	10000	TILL	В	BROWN	HILLSIDE SW		2	272.6	172.4	2.3	53	1
12024	10650	10000	TILL	В	BROWN	HILLSIDE SW		0.8	19.8	56.9	1.3	11	1
12023	10700	10000	TILL	В	BROWN	HILLSIDE SW		1.5	235.7	140.4	1.6	68	2
12022	10750	10000	TILL	В	BROWN	HILLSIDE SW		1.2	28.2	69	0.8	14	1
12021	10800	10000	TILL	8	BROWN	HILLSIDE SW		2	132.9	91.1	3.6	46	2
12020	10850	10000	TILL	В	BROWN	HILLSIDE SW		0.9	39.2	69.3	0.6	10	2
12019	10900	10000	TILL	в	BROWN	HILLSIDE W		0.9	45	88.9	0.7	25	2
12018	10950	10000	TILL	в	BROWN	HILLSIDE W		1	58.5	86.3	1.1	32	1
12017	11000	10000	TILL	в	BROWN	HILLSIDE W		0.9	30.8	55.6	0.9	21	1
12016	11050	10000	TILL	В	BROWN	HILLSIDE W		1.1	130.7	148.4	2.3	28	2
12015	11100	10000	TILL	В	BROWN	GULLY		1.3	370.8	98.2	1.9	46	1
12014	11150	10000	TILL	В	BROWN	HILLSIDE SW		1,3	176.9	95.2	1.9	32	1
12013	11200	10000	TILL	в	BROWN	HILLSIDE SW		0.7	79.4	75,2	0.6	31	1
12012	11250	10000	TILL	В	BROWN	HILLSIDE SW		0.8	75.8	86.4	0.8	29	1
12011	11300	10000	TILL	В	BROWN	HILLSIDE SW		0.5	47.2	77.2	0.5	21	1
12010	11350	10000	TILL	В	BROWN	HILLSIDE SW		0.3	28.3	44.4	0.6	10	1
12009	11400	10000	TILL	в	BROWN	HILLSIDE SW		1.1	115.4	99.1	1.8	35	1
12008	11450	10000	TILL	в	BROWN	HILLSIDE SW		1.3	146.1	116.5	3.8	24	1
12007	11500	10000	TILL	В	BROWN	HILLSIDE N		0.7	52.2	73.9	0.6	12	
12006	11550	10000	TILL	В	BROWN	HILLSIDE N		0.5	58.5	66.1	0.7	20	
12005	11600	10000	TILL	В	BROWN	HILLSIDE N		0.5	44.2	51 7	1	23	
12004	11650	10000	TILL	В	BROWN	HILLSIDE N		0.7	74.9	72.7	1.5	15	
12003	11700	10000	TILL	В	BROWN	HILLSIDE N		0.3	43.7	58.6	0.6	13	
12002	11750	10000	TILL	В	BROWN	HILLSIDE N		0.5	41	55.8	0.5	10	3
12001	11800	10000	TILL	В	BROWN	HILLSIDEN		0.7	62.0	61.3	2.0	10	
11984	10000	10050	TILL	B	BROWN	FLAT		0.7	13.7	154.4	0.7	10	4
11985	10000	10100	TILL	В	BROWN	FLAT		0.0	0.7	50.4	0.5	10	
11986	10000	10150	TILL	B	BROWN	FLAT		0.5	10.0	104 3	0.7	18	
		.5100		-			NO SAMPLES TAKEN AT 88+25E AND 87+75E DUE TO		10.9	104.0	0.7	10	'
12187	8875	10200	TILL	В	BROWN	FLAT	LARGE SWAMP.	1.2	17.6	320.4	0.9	21	4
12186	8925	10200	TILL	В	BROWN	FLAT	SAMPLE TAKEN FROM UPROOTED TREE.	4.1	38.6	190.1	1.6	30	1
12185	8975	10200	TILL	В	BROWN	FLAT		0.9	11.4	160.2	0.5	10	1
12184	9025	10200	TILL	B	BROWN	FLAT		0.5	10.4	135.9	0.8	10	1

Crest Geological Consultants Ltd. Project 178

~

UNITED GUNN RESOURCES LTD. COPPER ACE SOUTH GRID - 1998 SOIL SAMPLE DESCRIPTIONS

SAMPLE NO.	GRID EAST	GRID NORTH	MATERIAL	HORIZON	COLOUR	TOPOGRAPHY	NOTES	Mo	Cu	Zn	As	Hg	Au
12183	9075	10200	TILL	В	BROWN	FLAT		0.6	7.8	224.7	0.5	10	3
12182	9125	10200	T U 1	Ð	BROWN	EI AT	NO SAMPLES TAKEN AT 92+75E, 92+25E AND 91+75E	1.2	44.0	474.0	0.5	40	
12182	9325	10200		B	BROWN	FLAT	SAMPLE TAKEN 10M N OF STATION	1.2	20.5	65.1	0.5	10	
12180	9375	10200	TILL	B	BROWN	FLAT		1.1	20.0	150.5	17	21	
12179	9425	10200	TILL	B	BROWN	FLAT		1.5	31.1	400.8	0.7	10	'
12178	9475	10200	TILL	B	BROWN	FLAT		1.3	39.1	130	0.5	14	
12177	9525	10200	TILL	В	BROWN	FLAT		0.5	12.4	83.2	0.5	10	
12176	9575	10200	TILL	В	BROWN	FLAT		0.5	14.5	148.2	0.5	10	4
12175	9625	10200	TILL	В	BROWN	FLAT		0.5	17.4	126.9	0.7	17	1
12174	9675	10200	TILL	В	BROWN	FLAT		0.6	10.2	118.5	0.5	10	18
12173	9725	10200	TILL	В	BROWN	FLAT		0.8	14.4	84	0.5	10	1
12172	9775	10200	TILL	В	BROWN/GREY	FLAT		1.5	118	98	1.2	36	2
12171	9825	10200	TILL	В	BROWN/GREY	FLAT	SAMPLE TAKEN 10M N OF STATION.	0.8	120.5	62.3	1.2	28	1
12170	9875	10200	TILL	В	BROWN	FLAT		1.4	18.4	57.9	0.5	18	1
12169	9925	10200	TILL	В	BROWN	FLAT		1.4	13.7	41.3	0.5	10	1
12168	9975	10200	TILL	В	BROWN	FLAT		1	11.8	41.5	1.4	10	1
12167	10000	10200	TILL	В	BROWN	FLAT		1	28.3	94.8	0.9	17	2
12166	10025	10200	TILL	В	BROWN	FLAT		0.8	26.5	108.3	0.5	10	3
12165	10075	10200	TILL	В	BROWN	FLAT	······································	0.7	10.6	79.7	0.5	10	1
12164	10125	10200	TILL	В	BROWN	FLAT	· · · · · · · · · · · · · · · · · · ·	1.5	37.2	181.3	0.5	17	1
12163	10175	10200	TILL	В	BROWN	FLAT		1.1	12.3	34.4	0.5	10	1
12162	10225	10200	TILL.	B	BROWN	FLAT	· · · · · · · · · · · · · · · · · · ·	0.5	12.2	81.4	0.5	10	1
12161	10275	10200		B	BROWN	FLAT		0.8	25.9	66.7	0.6	15	1
12160	10325	10200		B	BROWN	FLAT		0.6	25.3	63.4	1	10	1
12109	10375	10200		<u>в</u>	BROWN	FLAT		1	13	102.9	0.8	10	1
12150	10420	10200	11LL 7111	B	BROWN			0.6	10	54.4	0.6	10	1
12157	10475	10200		B D	BROWN	FLAT		0.9	15.5	77.6	0.6		
12155	10525	10200	TH	D D	BROWN	FLAT		0.9	13.9	/1.1	0.7	10	
12154	10675	10200	TUI	B	BROWN			1.7	30.9	84.3	0.6	- 1Z	
12153	10675	10200	TILL	B	BROWN	FLAT		21	32.0	42.4	1.5	10	
12152	10725	10200		B	BROWN	FLAT		4.1	32.9	40.4	1.0	10	
12151	10775	10200	TILI	B	BROWN	FLAT		1.1	21.7	55.6	0.0	10	
12150	10825	10200	TILL	B	BROWN	FLAT		1.8	1074.3	146.2	32	73	
12149	10875	10200	TILL	В	BROWN	FLAT		1.7	407.8	98.5	3.5	41	
12148	10925	10200	TILL	В	BROWN	FLAT		1.4	258.2	78.4	2.7	38	
12147	10975	10200	TILL	В	BROWN	FLAT		0,7	20,4	54.6	0.8	13	2
12146	11025	10200	TILL	В	BROWN	FLAT		2	27.6	120.8	1.4	27	1
12145	11075	10200	TILL.	В	BROWN	FLAT		1.5	99.4	87.2	2.2	27	
12144	11125	10200	TILL	B	BROWN	FLAT		1	83	165.9	0.5	18	-1
12143	11175	10200	TILL	В	BROWN	FLAT		1.1	76.8	95.8	1	18	1
12142	11225	10200	TILL	В	BROWN	FLAT		0.7	45.5	57.6	0.8	21	1
12141	11275	10200	TILL	В	BROWN	FLAT		0.6	52.2	72.8	0.9	20	2
12140	11325	10200	TILL	В	BROWN	FLAT		0.4	38.3	47	0.5	24	1
12139	11375	10200	TILL	В	BROWN	FLAT		0.5	45.8	53.8	0.7	10	1
12138	11425	10200	TILL	в	BROWN/GREY	FLAT		0.6	48.6	51.4	0.5	10	1

Crest Geological Consultants Ltd. Project 178

) Appendix I Pg 11

i = 3

SAMPLE NO.	GRID EAST	GRID NORTH	MATERIAL	HORIZON	COLOUR	TOPOGRAPHY	NOTES	Mo	Cu	Zn	As	Hg	Au
12137	11475	10200	TILL	В	BROWN	FLAT		0.6	105.1	81.4	1.1	14	1
12136	11525	10200	TILL	В	BROWN	FLAT		1.3	96,3	83	1.3	16	1
12135	11575	10200	TILL	В	BROWN	FLAT		1.1	194.6	128.7	1.4	19	1
12134	11625	10200	TILL	В	BROWN	FLAT		1.6	261.1	171.5	2.9	59	1
12133	11675	10200	TILL	В	BROWN	FLAT		1	127.6	98.4	1.3	35	2
12132	11725	10200	TILL	в	BROWN	FLAT		0.5	34.2	44.2	0.6	10	3
12131	11775	10200	TILL	В	BROWN	FLAT		0.9	67.5	95	0.9	28	1
12130	11825	10200	TILL	В	BROWN	FLAT		1.2	135	138.7	1.4	35	2
12129	11875	10200	TILL	В	BROWN	FLAT		0.9	100.9	100,5	1.6	31	1
12128	11925	10200	TILL	В	BROWN	FLAT		1.3	119.6	128.7	1.8	32	1
12127	11975	10200	TILL	В	BROWN	FLAT	· · · · · · · · · · · · · · · · · · ·	0.9	122.8	97.9	1.4	27	1
11987	10000	10250	TILL	В	BROWN	FLAT		0,7	12.1	65.6	0.7	19	1
11988	10000	10300	TILL	В	BROWN	FLAT	SAMPLE TAKEN AT 100+10E DUE TO SWAMP.	0.8	40	93.9	2,5	36	1
11989	10000	10350	TILL	В	BROWN	HILLSIDE S		0.5	13.7	77.3	1.5	10	1
12268	9050	10400	TILL	В	BROWN	FLAT	SAMPLE TAKEN AT 90+65E DUE TO SWAMP.	0.6	15.8	107.6	0.9	22	5
12267	9100	10400	TILL	В	BROWN	FLAT		0.7	9.5	96.5	0.5	10	2
12266	9150	10400	TILL	В	BROWN	FLAT		0.9	12.6	424.5	0.7	21	2
12265	9200	10400	TILL	В	BROWN	FLAT		0.9	10.8	353.2	0.5	10	4
12264	9250	10400	TILL	В	BROWN	HILLSIDE W		0.5	14.3	309	0.8	13	3
12263	9300	10400	TILL	В	BROWN	FLAT		0.9	17	361.4	0.5	18	40
12262	9350	10400	TILL	В	BROWN	FLAT		0.6	18.9	103.6	1.3	10	4
12261	9400	10400	TILL	В	GREY	FLAT		0.6	9.2	89.8	1.9	10	9
12260	9450	10400	TILL	В	GREY	FLAT		0.4	16.9	68.2	0.5	10	3
12259	9500	10400	TILL	В	BROWN	HILLSIDEE	BASE OF SLOPE.	0.5	18.1	100.2	0.5	18	1
12258	9550	10400	TILL	В	BROWN	HILLSIDE W	GULLY BANK.	0.4	18.5	112.2	0.5	10	1
12257	9600	10400	TILL	В	GREY	FLAT	NEXT TO ROAD.	0.4	7.9	109	0.5	10	2
12256	9650	10400	TILL	В	BROWN	FLAT		0.4	9.8	92.2	0.5	10	1
12255	9700	10400	TILL	В	BROWN	FLAT		0.4	12.8	89.9	0.5	12	1
12254	9750	10400	TILL	В	BROWN	FLAT		0.5	8.7	91.9	0.5	14	1
12253	9800	10400	TILL	В	GREY	FLAT		0.6	15.5	91.2	0.5	16	1
12252	9850	10400	TILL	В	GREY	FLAT		0.5	16.1	88	0.5	10	1
12251	9900	10400	TILL	В	BROWN	FLAT		0.5	23.2	107.2	0.5	35	1
12250	9950	10400	TILL	В	BROWN	FLAT		0.5	10.1	102.4	0.5	13	1
12249	10000	10400	TILL	В	BROWN	FLAT		0.8	20.8	106.4	0.6	11	1
12248	10050	10400		В	BROWN	FLAT		0.7	12.7	89.1	0.6	19	1
12247	10100	10400	TILL	в	BROWN	FLAT	NO SAMPLE TAKEN AT 103+00, 102+50, 102+00 AND 101+50 DUE TO SMAMP	04	27 4	39.3	0.6	12	- 1
12246	10350	10400	TILL	В	BROWN	FLAT	TO THE DOL TO SWAMP.	1.1	14.8	84.8	0.5	27	
12245	10400	10400	TILL	в	BROWN	FLAT		12	28.9	112.3	1	36	
12244	10450	10400	TILL	В	BROWN	FLAT		0.7	13.6	118.2	0.9	16	
12243	10500	10400	TILL	В	BROWN	FLAT	EDGE OF LANDING.	1	20.6	92.3	0.8	24	79
12242	10550	10400	TILL	В	BROWN	FLAT	EDGE OF LANDING. DISTURBED SITE.	2.4	152.6	123.4	2.2	36	
12241	10600	10400	TILL	В	BROWN	FLAT		0.7	10.5	68.8	0.5	10	
12240	10650	10400	TILL	В	ORANGE	FLAT		0.8	16.2	127 1	0.5	10	- 3
12239	10700	10400	TILL	В	BROWN/GREY	FLAT		0.9	19.1	80	0.6	10	
12238	10750	10400	TILL	В	BROWN	FLAT		0.9	32.2	174.4	0.9	10	
12237	10800	10400	TILL	В	BROWN	FLAT		1.4	682.2	115.5	2.4	42	

Crest Geological Consultants Ltd. Project 178

1228 10650 10440 NL P IRGWN PLAT ORGAMIC RECI DECIDUOUS STANC. 1.4 PS3. 117.5 28.6 109.0 12284 10650 11640 TLL P GRACK PLAT HUMUS RICK DECIDUOUS STANC. 1.4 PS3.6 2.6 129.0 5.1 139.0 1.6 81.0 6.6 2.6 129.0 5.1 1.6 81.0 6.0 1.6 81.0 0.0 2.6 129.0 1.6 81.0 0.0 1.6 80.0 9.0 0.7 1.6 81.0 0.0 1.6 80.0 1.6 80.0 1.6 80.0 1.6 80.0 1.6 80.0 1.6 80.0 1.2 1.2 1.6 1.4 80.0 1.2 1.2 1.6 1.4 80.0 1.2 1.2 1.6 1.2 1.2 1.6 1.2 1.6 1.2 1.6 1.2 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1	SAMPLE NO.	GRID EAST	GRID NORTH	MATERIAL	HORIZON	COLOUR	TOPOGRAPHY	NOTES	Mo	Сц	Zn	As	На	Διι
19280 19600 19607 11.1 P DLCK PLAT HUMUS PICH DECLODUCUS STATE. 2.4 1812 2055 81 1930 12234 11000 10400 TILL 0 GREY HLISDE SW HUMUS PICH DECLODUCUS STATE. 0.0 11.6 0.0 10.6 0.0 0.0 10.6 0.0 0.0 10.6 0.0 0.0 10.6 0.0 11.7 220.0 0.0 11.6 0.0 11.6 0.0 11.7 220.0 0.0 11.6 0.0 10.2 11.7 120.0 11.00 11.00 11.00 11.00 11.00 11.00 11.00 10.0 10.2 11.00 10.0 10.2 10.0 10.2 10.0 10.2 11.0 10.0	12236	10850	10400	TILL	В	BROWN	FLAT	ORGANIC RICH. DECIDUOUS STAND.	1.8	758.3	117.5	2.6	60	2
11224 11000 11000 1110 11100 1000 1110 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 <t< td=""><td>12235</td><td>10900</td><td>10400</td><td>TILL</td><td>В</td><td>BLACK</td><td>FLAT</td><td>HUMUS RICH. DECIDUOUS STAND.</td><td>2.4</td><td>810.2</td><td>305.5</td><td>5.1</td><td>138</td><td>4</td></t<>	12235	10900	10400	TILL	В	BLACK	FLAT	HUMUS RICH. DECIDUOUS STAND.	2.4	810.2	305.5	5.1	138	4
19233 19000 114.00 1900 114.00 1000 116 00.00 116 116 00.00 116 116 00.00 116 <td>12234</td> <td>10950</td> <td>10400</td> <td>JTILL</td> <td>В</td> <td>GREY</td> <td>HILLSIDE SW</td> <td>HUMUS RICH. DECIDUOUS STAND.</td> <td>11.7</td> <td>726.8</td> <td>242.2</td> <td>6.6</td> <td>127</td> <td>3</td>	12234	10950	10400	JTILL	В	GREY	HILLSIDE SW	HUMUS RICH. DECIDUOUS STAND.	11.7	726.8	242.2	6.6	127	3
11222 11960 10400 TIL 9 OF	12233	11000	10400	J TILL	в	GREY	HILLSIDE SW		0.8	36	69.6	0.7	16	1
	12232	11050	10400	J TILL	в	GREY	HILLSIDE S		0.5	11.6	81	0.5	10	
19220 11100 1100 1110 8 BCOWN HULSDE SW 0.0	12231	11100	10400	JTILL	В	BROWN	HILLSIDE SW	· · · · · · · · · · · · · · · · · · ·	1	68.8	114 1	1	25	1
12229 11200 114.00 TLL B GRCV HLISDE SW 0.0 12.0 0.0 12.0 0.0 12.0 0.0 12.0 12.0 0.0 12.0 12.0 0.0 12.0 11.0 0.0	12230	11150	10400) TILL	в	BROWN	HILLSIDE SW		0.6	31.8	87.2	0.7	24	
12229 112000 112000 11200 <	12229	11200	10400	TILL	B	GREY	HILLSIDE SW	····	0.6	17 1	86.1	0.7	12	<u>'</u>
12227 11300 10400 TILL 8 BROWN HLISDE SW 0.0 42.2 1.0 4.2 1.0 4.2 1.0 4.2 1.0 4.2 1.0 4.2 1.0 4.2 1.0 1.0 4.2 1.0 1.0 4.2 1.0 1.	12228	11250	10400	J TILL	B	BROWN	HILLSIDE SW		0.0	21.7	124.2	1 2	10	
12220 11300 TLL B HOWN HLLSDE SW 000 14.5 022 1.6 02 1.6 02 1.6 02 1.6 02 1.6 02 1.6 02 1.6 02 1.6 02 1.6 02 1.6 02 1.6 02 1.6 02 1.6 02 1.6 02 1.6 02 1.6 02 1.6 02 03 1.6 04 1.6 02 1.2 1.6 02 1.6 03 1.6 <t< td=""><td>12227</td><td>11300</td><td>10400</td><td>JTILL</td><td>В</td><td>BROWN</td><td>HILLSIDE SW</td><td></td><td>0.0</td><td>142.5</td><td>124.2</td><td>1</td><td>42</td><td>2</td></t<>	12227	11300	10400	JTILL	В	BROWN	HILLSIDE SW		0.0	142.5	124.2	1	42	2
12225 11400 11L B BROWN HILSDE SW 0.0 <	12226	11350	10400	TILL	в	BROWN	HILLSIDE SW		0.5	41.8	62.3	13	10	
12224 11400 11400 114 19 BROWN HILLSDE W 0.0 0.0 1.2 20 1.2 20 1.2 20 1.2 20 1.2 20 1.4 1.5 1.6 1.2 20 1.2 20 1.5 1.5 1.6 1.2 20 1.5 1.5 1.6 1.6 2.5 1.1 1.2 1.1 1.0	12225	11400	10400) TILL	в	BROWN	HILL SIDE SW		0.0	67.0	80	1.0	23	- 1
1222 11900 11400 R B BROWN HILSDE SW 1.0 1.0 1.0 1.2 2.0 1.0 1.4 2.0 1.0 1.4 2.0 1.0	12224	11450	10400	DITILL	8	BROWN	HILL SIDE W		0.0	- 01.5	004	1 2	20	
12222 11550 10000 TLL B OPANGE HLLSDE SW 11 14 <th14< <="" td=""><td>12223</td><td>11500</td><td>10400</td><td></td><td>R</td><td>BROWN</td><td>HULSIDE SW</td><td></td><td>1.5</td><td>1641</td><td>90.4</td><td>2.5</td><td>41</td><td></td></th14<>	12223	11500	10400		R	BROWN	HULSIDE SW		1.5	1641	90.4	2.5	41	
12221 11660 11000 111 80 1877 1 20 16 12220 11660 10400 TILL B BRCWN HILSDE SW 0.6 6.6 6.6 7.0 0.7 0.5 1.1 1.7 0.5 1.8 0.7 0.5 1.1 1.7 0.5 3.84 6.1.7 0.5 1.1 1.7 0.5 3.84 6.1.7 0.5 1.1 1.7 0.5 3.84 6.1.7 0.5 1.1 1.7 0.5 3.84 6.1.7 0.5 1.1 8.7 0.5 1.1 1.7 0.5 1.84 0.6	12222	11550	10400		R	ORANGE	HILL SIDE SW		1.0	104.1	140.0		- 41	0
1220 1100 1000 111 B BROWN HILSDE SW 0.6 <t< td=""><td>12221</td><td>11600</td><td>10400</td><td>1711</td><td>B</td><td>BROWN</td><td></td><td></td><td>1.1</td><td>43.0</td><td>149.7</td><td></td><td>- 28</td><td>۱ ۲</td></t<>	12221	11600	10400	1711	B	BROWN			1.1	43.0	149.7		- 28	۱ ۲
1220 1700 1040 ILL B BROWN HILLSDE SW 0.5 3.0 0.1 1 1 12216 11750 10400 ILL B BROWN HILLSDE SW 0.6 3.4 6.7 0.5 0.8 6.7 0.5 0.8 6.7 0.5 0.8 6.7 0.5 0.8 6.7 0.5 0.8 0.8 0.7 0.5 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.6 0.6 0.1 0.1 0.1 0.1 0.1 0.5 0.8 0.6 0.1	12220	11650	10400	1 TH	B	BROWN	LILLOIDE SW		0.0	58.4	12.4	-0.7	14	1
1210 1700 1000 1100 1000 1100 1000 <th< td=""><td>12219</td><td>11700</td><td>10400</td><td>1 7111</td><td></td><td></td><td>HILLOIDE OW</td><td></td><td>0.0</td><td>30.8</td><td>61.5</td><td>0.5</td><td>11</td><td>1</td></th<>	12219	11700	10400	1 7111			HILLOIDE OW		0.0	30.8	61.5	0.5	11	1
1120 11000 11000 11000 11000 110000 110000	12218	11750	10400	11LL 11TH					0.5	38,4	61.7	0.5	10	1
1211 11000 10400 ILL B BROWN PILSIDE S 0.0 20.4 08.2 0.8 0.5 10 1 12215 11900 10400 TILL B BROWN FLAT 0.3 25.8 40.3 0.5 10 4 12214 11900 10400 TILL B BROWN FLAT 0.4 25.8 40.3 0.5 10 4 12213 12000 10400 TILL B BROWN FLAT 0.4 26.4 21.1 1 121.1 91.0 0.6 0.2 92.3 45.6 0.5 10 1 12212 12000 10400 TILL B BROWN HILSIDE SW 0.5 32.3 45.6 0.5 10.5 12 12 1 11990 10000 10650 TILL B BROWN HILSIDE S 0.4 43.4 45.3 12 12 1 11991 10000 10650 TILL B BROWN HILSIDE SW 0.4 13.4<	12217	11800	10400		D D	BROWN	HILLOIDE O		0.6	37.1	52.5	0,9	10	1
1220 11600 10400 TILL B GRCM FLAT 0.0 3.2 3.3 9.5. 0.5 10 1 12215 11900 10400 TILL B GRCMN FLAT 0.4 26 42.1 0.5 10 1 12214 11950 10400 TILL B GRCWN FLAT 0.4 26 42.1 0.5 10 1 12212 12050 10400 TILL B BRCWN HILLSIDE SW 0.4 45.6 0.5 10 1 12211 12100 10400 TILL B BRCWN HILSIDE SW 0.4 42.2 68.0 1.1 11 11 11 12 1 11 12 1 11 12 1 11 12 1 1 11 12 1 1 11 11 11 11 12 1 1 11 12 1 1	12216	11850	10400		B	BROWN	HILLOIDE O		0.8	26.4	68.2	0.8	- 12	1
12213 11900 10000 ILL B BROWN FLAT 0.4 25.8 43.3 0.5 10 41 11213 12000 10400 TILL B BROWN FLAT 0.4 28.4 24.2 0.5 10 0.1 12213 12000 10400 TILL B BROWN FLAT 0.4 28.4 24.0 0.5 32.3 45.6 0.5 10 1 12211 12100 10400 TILL B BROWN HILLSIDE SW 0.4 44.2 68.3 0.1 12 1 11990 10000 10650 TILL B BROWN HILSIDE S 0.7 13.1 90 1.6 13 1 12 1 1 1492 10000 10650 TILL B BROWN HILSIDE SW 0.4 13.4 95.3 13 3 12066 9275 10600 TILL B BROWN <	12215	11900	10400	111	B	GRET			0.5	33.9	68.5	0.5	10	1
12214 11950 10400 ILL B GREY PLAI 0.4 25 42.1 0.5 10 1 112213 12050 10400 TILL B BROWN HILSIDE SW 0.5 32.3 45.6 5.1 1.1 9.2 6.0 5 10 1 12212 12050 10400 TILL B BROWN HILSIDE SW 0.4 48.5 63.1 0.5 12 2 11990 10000 10450 TILL B BROWN HILSIDE SW 0.4 48.5 63.1 0.5 12 2 11991 10000 10550 TILL B BROWN HILSIDE SW 0.4 13.4 95.3 1.2 12 1 11992 10000 10550 TILL B BROWN HILSIDE W 0.4 13.4 95.3 1.2 12 1 12067 9225 10600 TILL B BROWN HILSIDE SW 0.4 1.6 10.1 16 10.5 12 10 <td< td=""><td>12214</td><td>11950</td><td>10400</td><td></td><td>B</td><td>BROWN</td><td></td><td></td><td>0.3</td><td>25.8</td><td>49.3</td><td>0.5</td><td>10</td><td>4</td></td<>	12214	11950	10400		B	BROWN			0.3	25.8	49.3	0.5	10	4
12213 12000 10400 11.1 6'' BROWN HLLSIDE SW 0.4 1.1 6''.7 80.2 0.9 21 1 12211 12100 10400 11.L B BROWN HLLSIDE SW 0.4 40.5 63.6 0.5 12 2 11990 10000 10450 TILL B BROWN HILSIDE SW 0.7 13.1 90 1.6 13 11 11 11 91 1.6 13.1 12 1 11 11992 10000 10500 TILL B BROWN HILSIDE SW 0.4 4242 68.9 1.1 12 1 11992 10000 10500 TILL B BROWN HILSIDE SW 0.4 13.4 95.3 1.2 1 12068 9175 10600 TILL B BROWN HILSIDE SW 0.4 1.6 10.1 10.2 0.6 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 <td>12213</td> <td>12000</td> <td>10400</td> <td></td> <td>в</td> <td>GREY</td> <td>FLAI</td> <td></td> <td>0.4</td> <td>26</td> <td>42.1</td> <td>0.5</td> <td>10</td> <td>1</td>	12213	12000	10400		в	GREY	FLAI		0.4	26	42.1	0.5	10	1
1211 1200 1000 111. B BROWN HILLSIDE SW 0.5 32.3 45.6 0.5 10 1 11921 12100 110400 TILL B BROWN HILLSIDE SW 0.4 48.5 63.1 0.5 12 2 11990 10000 10400 TILL B BROWN HILLSIDE SW 0.4 48.5 63.1 0.5 12 12 11990 10000 10550 TILL B BROWN FLAT 0.4 48.5 68.9 1.1 12 1 11992 10000 10550 TILL B BROWN FLAT 0.4 13.4 95.3 1.6 10 10 12066 9175 10600 TILL B BROWN HILLSIDE SW 0.4 11.5 42.9 0.5 13 3 12066 9275 10600 TILL B BROWN HILLSIDE SW 0.5 10.8 174.3 0.5 10 1 12064 9375 10600 TILL <td>12210</td> <td>12000</td> <td>10400</td> <td></td> <td>B</td> <td>BROWN</td> <td>FLAT</td> <td></td> <td>1.1</td> <td>97.7</td> <td>80.2</td> <td>0.9</td> <td>21</td> <td>1</td>	12210	12000	10400		B	BROWN	FLAT		1.1	97.7	80.2	0.9	21	1
1211 12100 11400 11L B BKOWN HILLSIDE SW 0.4 48.5 63.1 0.6 12 2 11990 10000 10450 TILL B BROWN HILLSIDE S 0.4 48.5 63.1 1.1 12 1 11991 10000 10550 TILL B BROWN FLAT 0.4 43.4 95.3 1.2 12 1 12068 9175 10600 TILL B BROWN HILLSIDE SW 0.4 41.5 42.9 0.6 10 <td>12214</td> <td>12000</td> <td>10400</td> <td></td> <td>B</td> <td>BROWN</td> <td>HILLSIDE SW</td> <td></td> <td>0.5</td> <td>32.3</td> <td>45.6</td> <td>0.5</td> <td>10</td> <td>1</td>	12214	12000	10400		B	BROWN	HILLSIDE SW		0.5	32.3	45.6	0.5	10	1
11950 10000 10400 11L B BROWN HILLSIDE S 0.7 13.1 90 1.6 13 1 11991 10000 10500 TILL B BROWN HILLSIDE S 0.4 24.2 68.9 1.1 12 1 11992 10000 10550 TILL B BROWN HILLSIDE S 0.4 14.2 95.3 1.2 12 1 12068 9175 10600 TILL B BROWN HILLSIDE SW 1.6 10.1 102.9 0.6 10 10 12066 9275 10600 TILL B BROWN HILLSIDE SW 0.4 11.6 12.6 0.7 10 1 12065 9325 10600 TILL B BROWN HILLSIDE SW 0.5 10.9 174.3 0.5 10 1 12064 9375 10600 TILL B BROWN HILLSIDE SW 0.5 10.9 174.3 0.5 10 1 16.6 0.7 10 1 12.0 </td <td>11000</td> <td>12100</td> <td>10400</td> <td></td> <td>B</td> <td>BROWN</td> <td>HILLSIDE SW</td> <td></td> <td>0.4</td> <td>48.5</td> <td>63.1</td> <td>0.5</td> <td>12</td> <td>2</td>	11000	12100	10400		B	BROWN	HILLSIDE SW		0.4	48.5	63.1	0.5	12	2
11991 10000 10000 11L B BROWN HILLSIDE S 0.4 24.2 69.9 1.1 12 1 11992 10000 10500 TILL B BROWN FLAT 0.4 13.4 95.3 1.2 12 1 12066 9175 10600 TILL B BROWN HILLSIDE SW 0.4 11.5 42.9 0.5 13 3 12066 9275 10600 TILL B BROWN HILLSIDE SW 0.6 18.6 10.2 9.05 10 1 12066 9275 10600 TILL B BROWN HILLSIDE SW 0.5 10.7 17.3 0.5 10 1 12065 9325 10600 TILL B BROWN HILLSIDE SW 0.5 10.7 17.3 1.5 10 1 12063 9425 10600 TILL B BROWN HILLSIDE NW 0.7 37.1 23.7 1.2 17 3 12062 9475 10600 TILL </td <td>11001</td> <td>10000</td> <td>10450</td> <td></td> <td>B</td> <td>BROWN</td> <td>HILLSIDE S</td> <td></td> <td>0.7</td> <td>13.1</td> <td>90</td> <td>1.6</td> <td>13</td> <td>1</td>	11001	10000	10450		B	BROWN	HILLSIDE S		0.7	13.1	90	1.6	13	1
11992 1000 10550 IIL B BROWN FLAT 0.4 13.4 95.3 1.2 12 1 12068 9175 10600 TIL B BROWN HILSIDE SW 1.6 10.1 102.9 0.6 10 10 12066 9225 10600 TIL B BROWN HILSIDE SW 0.6 18.6 182.6 0.7 10 1 12066 9225 10600 TIL B BROWN HILSIDE SW 0.6 18.6 182.6 0.7 10 1 12064 9375 10600 TIL B BROWN HILSIDE SW 0.5 10.5 11.2 10 1 12064 9375 10600 TIL B BROWN HILSIDE W 0.5 10.5 10.8 174.3 0.5 10 1 12062 9425 10600 TIL B BROWN HILSIDE NW 0.7 37.0 23.3 1.2 17 12 12062 9425 10600 TIL	11000	10000	10500		B	BROWN	HILLSIDES		0.4	24.2	68.9	1.1	12	1
12068 9175 10600 IILL B BROWN HILLSIDE W 1.6 1.1.1 10.2.9 0.6 10 12067 9225 10600 TILL B BROWN HILLSIDE SW 0.4 11.5 429.9 0.5 13 33 12066 9275 10600 TILL B BROWN HILLSIDE SW 0.6 18.8 182.6 0.7 10 1 12065 9325 10600 TILL B BROWN HILLSIDE SW 0.5 10.9 17.4 30.5 10 1 12063 9425 10600 TILL B BROWN HILLSIDE W 0.5 10.9 17.4 20.5 10 8 12063 9425 10600 TILL B BROWN GULLY SAMPLE TAKEN 8M N OF STATION. 1.1 56.4 20.2 0.9 23 11 12 44 12061 9525 10600 TILL B BROWN HILLSIDE NW 1.7 78.8 31.7.7 12.5 44 41206 96.5	11992		10500		B	BROWN	FLAT		0.4	13.4	95.3	1.2	12	1
12067 3225 10600 TILL B BROWN HILLSIDE SW 0.4 11.5 429.9 0.5 13 3 12066 9275 10600 TILL B BROWN HILLSIDE SW 0.6 18.6 162.6 0.7 10 1 12065 9325 10600 TILL B BROWN HILLSIDE SW 0.5 10.7 17.2 237.9 0.5 10 1 12064 9375 10600 TILL B GREY HILLSIDE W 0.7 37.1 237.3 1.2 17 3 12062 9475 10600 TILL B BROWN GULLY SAMPLE TAKEN & N OF STATION. 1.1 56.4 201.2 0.9 23 1 12061 9525 10600 TILL B BROWN HILLSIDE NW 0.6 18.1 66.6 0.7 10 17 12061 9525 10600 TILL B BROWN HILLSIDE NW 0.6 18.1 66.6 0.7 10 17 <td< td=""><td>12000</td><td>9175</td><td>10600</td><td></td><td>В</td><td>BROWN</td><td>HILLSIDE W</td><td></td><td>1.6</td><td>10.1</td><td>102.9</td><td>0.6</td><td>10</td><td>10</td></td<>	12000	9175	10600		В	BROWN	HILLSIDE W		1.6	10.1	102.9	0.6	10	10
12066 9275 10600 TILL B BROWN HILLSIDE SW 0.6 18.6 162.6 0.7 10 1 12065 9325 10600 TILL B BROWN HILLSIDE SW 0.5 12.7 237.9 0.5 10 1 12064 9375 10600 TILL B GREY HILLSIDE W 0.5 10.9 174.3 0.5 10 8 12063 9425 10600 TILL B BROWN HILLSIDE NE 0.7 37.1 237.3 1.2 17 3 12062 9475 10600 TILL B BROWN GULLY SAMPLE TAKEN & N OF STATION. 1.1 66.4 0.7 10.9 12.0 23 1 12061 9525 10600 TILL B BROWN HILLSIDE NW 0.6 18.4 68.6 0.7 10 17 12059 9625 10600 TILL B BROWN HILLSIDE NW 0.6 18.4 68.6 0.7 10 6 14 4<	12067	9225	10600	TILL	B	BROWN	HILLSIDE SW		0.4	11.5	429.9	0.5	13	3
12065 9325 10600 TILL B BROWN HILLSIDE SW 0.5 12.7 237.9 0.5 10 1 12064 9375 10600 TILL B GREY HILLSIDE W 0.7 37.1 237.3 1.2 17 3 12063 9445 10600 TILL B BROWN HILLSIDE NE 0.7 37.1 237.3 1.2 17 3 12062 9475 10600 TILL B BROWN GULLY SAMPLE TAKEN &M N OF STATION. 1.1 56.4 201.2 0.9 23 1 12061 9525 10600 TILL B BROWN HILLSIDE NW 0.6 18.6 0.7 10 17 12069 9625 10600 TILL B BROWN HILLSIDE NW 0.6 18.8 0.5 11 4 12058 9625 10600 TILL B BROWN HILLSIDE NW 0.6 18.8 33.3 0.5 10 3 12058 9625 10600 <t< td=""><td>12066</td><td>9275</td><td>10600</td><td>THLL</td><td>В</td><td>BROWN</td><td>HILLSIDE SW</td><td></td><td>0.6</td><td>18.6</td><td>162.6</td><td>0.7</td><td>10</td><td>1</td></t<>	12066	9275	10600	THLL	В	BROWN	HILLSIDE SW		0.6	18.6	162.6	0.7	10	1
12064 9375 10600 TILL B GREY HILLSIDE W 0.5 10.9 174.3 0.5 10 8 12063 9425 10600 TILL B BROWN HILLSIDE NE 0.7 37.1 237.3 1.2 17 3 12062 9475 10600 TILL B BROWN GULLY SAMPLE TAKEN & N OF STATION. 1.1 56.4 201.2 0.8 23 1 12061 9525 10600 TILL B BROWN HILLSIDE NE 0.7 78.9 133 1.7 12 4 12060 9575 10600 TILL B BROWN HILLSIDE NW 0.6 18.1 68.6 0.7 10 17 12059 9625 10600 TILL B BROWN HILLSIDE NW 0.6 10.8 120.8 0.5 11 4 12058 9675 10600 TILL B BROWN HILLSIDE W 0.6 12.2 9.4 0.7 10 6 1205 9775 106	12065	9325	10600	TILL	В	BROWN	HILLSIDE SW		0.5	12.7	237.9	0.5	10	1
12063 9425 10600 TILL B BROWN HILLSIDE NE 0.7 37. 237.3 1.2 17 3 12062 9475 10600 TILL B BROWN GULLY SAMPLE TAKEN 8M N OF STATION. 1.1 56.4 201.2 0.9 23 1 12061 9525 10600 TILL B BROWN HILLSIDE NE 0.7 78.9 133 1.7 12 4 12060 9575 10600 TILL B BROWN HILLSIDE NW 0.6 18.1 68.6 0.7 10 17 12058 9675 10600 TILL B BROWN HILLSIDE NW 0.6 18.1 68.6 0.7 10 17 12058 9675 10600 TILL B BROWN HILLSIDE NW 0.6 10.8 12.0 10 3 12057 9725 10600 TILL B BROWN HILLSIDE W 0.6 21.2 94.4 0.7 10 6 12056 9775	12064	9375	10600	mu	В	GREY	HILLSIDE W		0.5	10.9	174.3	0.5	10	8
12062 9475 10600 TILL B BROWN GULLY SAMPLE TAKEN &M NOF STATION. 1.1 56.4 201.2 0.9 23 1 12061 9525 10600 TILL B BROWN HILLSIDE S 0.7 78.9 133 1.7 12 4 12060 9575 10600 TILL B BROWN HILLSIDE NW 0.6 18.1 68.6 0.7 10 17 12059 9625 10600 TILL B BROWN HILLSIDE NW 0.6 10.8 120.8 0.5 11 4 12058 9675 10600 TILL B BROWN HILLSIDE NW 0.6 10.8 120.8 0.5 11 4 12057 9725 10600 TILL B GREY HILLSIDE W 0.6 21.2 94.4 0.7 10 6 12056 9775 10600 TILL B GREY HILLSIDE W 0.3 12.2 94.8 0.6 10 12 12055 9825	12063		10600	TILL	В	BROWN	HILLSIDE NE		0.7	37.1	237.3	1.2	17	3
12061 9525 10600 TILL B BROWN HILLSIDE S 0.7 78.9 133 1.7 12 4 12060 9575 10600 TILL B BROWN HILLSIDE NW 0.6 18.1 68.6 0.7 10 17 12059 9625 10600 TILL B BROWN HILLSIDE NW 0.6 10.8 120.8 0.5 11 4 12058 9675 10600 TILL B BROWN HILLSIDE NW 0.6 10.8 120.8 0.5 11 4 12058 9675 10600 TILL B BROWN HILLSIDE W 0.4 13 83.3 0.5 10 3 12057 9725 10600 TILL B GREY HILLSIDE W 0.6 21.2 94.4 0.7 10 6 12056 9775 10600 TILL B BROWN HILLSIDE W 0.3 12.2 90.8 0.6 10 12 12053 9825 10600 TILL	12062	9475	10600	TILL	В	BROWN	GULLY	SAMPLE TAKEN 8M N OF STATION.	1.1	56.4	201.2	0.9	23	1
12060 9575 10600 TILL B BROWN HILLSIDE NW 0.6 18.1 68.6 0.7 10 17 12059 9625 10600 TILL B BROWN HILLSIDE NW 0.6 10.8 120.8 0.5 11 4 12058 9675 10600 TILL B BROWN HILLSIDE NW 0.4 13 83.3 0.5 10 3 12057 9675 10600 TILL B BROWN HILLSIDE W 0.6 21.2 94.4 0.7 10 6 12057 9725 10600 TILL B GREY HILLSIDE W 0.6 21.2 94.4 0.7 10 6 12056 9775 10600 TILL B BROWN HILLSIDE W 0.3 12.2 90.8 0.6 10 12 12056 9775 10600 TILL B GREY HILLSIDE N 0.6 18.8 111.5 0.8 10 1 12052 9875 10600 TILL	12061	9525	10600	TILL	В	BROWN	HILLSIDE S		0.7	78.9	133	1.7	12	4
12059 9625 10600 TILL B BROWN HILLSIDE NW 0.6 10.8 120.8 0.5 11 4 12058 9675 10600 TILL B BROWN HILLSIDE NW 0.4 13 83.3 0.5 10 3 12057 9725 10600 TILL B GREY HILLSIDE W 0.6 21.2 94.4 0.7 10 6 12056 9775 10600 TILL B BROWN HILLSIDE W 0.3 12.2 90.8 0.6 10 12 12056 9775 10600 TILL B BROWN HILLSIDE W 0.3 12.2 90.8 0.6 10 12 12056 9825 10600 TILL B GREY HILLSIDE N 0.6 18.8 111.5 0.8 10 1 12054 9875 10600 TILL B BROWN HILLSIDE N 0.5 12.5 149.2 0.5 10 3 12053 9925 10600 TILL	12060	9575	10600	TILL	В	BROWN	HILLSIDE NW		0.6	18.1	68.6	0.7	10	17
12058 9675 10600 TILL B BROWN HILLSIDE W 0.4 13 83.3 0.5 10 3 12057 9725 10600 TILL B GREY HILLSIDE W 0.6 21.2 94.4 0.7 10 6 12056 9775 10600 TILL B BROWN HILLSIDE W 0.3 12.2 90.8 0.6 10 12 12056 9775 10600 TILL B BROWN HILLSIDE W 0.3 12.2 90.8 0.6 10 12 12055 9825 10600 TILL B GREY HILLSIDE N 0.6 18.8 111.5 0.8 10 1 12054 9875 10600 TILL B BROWN HILLSIDE N 0.5 12.5 149.2 0.5 10 3 12053 9925 10600 TILL B BROWN HILLSIDE N 0.4 17.3 93.6 0.5 10 3 12052 9975 10600 TILL <td>12059</td> <td>9625</td> <td>10600</td> <td>TILL</td> <td>В</td> <td>BROWN</td> <td>HILLSIDE NW</td> <td></td> <td>0.6</td> <td>10.8</td> <td>120.8</td> <td>0.5</td> <td>11</td> <td>4</td>	12059	9625	10600	TILL	В	BROWN	HILLSIDE NW		0.6	10.8	120.8	0.5	11	4
12057 9725 10600 TILL B GREY HILLSIDE W 0.6 21.2 94.4 0.7 10 6 12056 9775 10600 TILL B BROWN HILLSIDE W 0.3 12.2 90.8 0.6 10 12 12055 9825 10600 TILL B GREY HILLSIDE N 0.6 18.8 111.5 0.8 10 1 12054 9875 10600 TILL B GREY HILLSIDE N 0.5 12.5 149.2 0.5 10 3 12054 9875 10600 TILL B BROWN HILLSIDE N 0.4 17.3 93.6 0.5 10 3 12053 9925 10600 TILL B BROWN HILLSIDE N 0.4 17.3 93.6 0.5 10 1 12052 9975 10600 TILL B BROWN HILLSIDE SW 0.4 21.1 70.4 0.5 10 51	12058	9675	10600	TILL	В	BROWN	HILLSIDE W		0.4	13	83.3	0.5	10	3
12056 9775 10600 TILL B BROWN HILLSDE W 0.3 12.2 90.8 0.6 10 12 12055 9825 10600 TILL B GREY HILLSIDE N 0.6 18.8 111.5 0.8 10 1 12054 9875 10600 TILL B BROWN HILLSIDE N 0.5 12.5 149.2 0.5 10 3 12053 9925 10600 TILL B BROWN HILLSIDE N 0.4 17.3 93.6 0.5 10 3 12053 9925 10600 TILL B BROWN HILLSIDE N 0.4 17.3 93.6 0.5 10 1 12052 9975 10600 TILL B BROWN HILLSIDE SW 0.4 21.1 70.4 0.5 10 51	12057	9725	10600	TILL	В	GREY	HILLSIDE W		0.6	21.2	94.4	0.7	10	6
12055 9825 10600 TILL B GREY HILLSIDE N 0.6 18.8 11.5 0.8 10 1 12054 9875 10600 TILL B BROWN HILLSIDE N 0.5 12.5 149.2 0.5 10 3 12053 9925 10600 TILL B BROWN HILLSIDE N 0.4 17.3 93.6 0.5 10 1 12052 9975 10600 TILL B BROWN HILLSIDE SW 0.4 21.1 70.4 0.5 10 51	12056	9775	10600	TILL	В	BROWN	HILLSIDE W		0.3	12.2	90.8	0.6	10	12
12054 9875 10600 TILL B BROWN HILLSIDE N 0.5 12.5 149.2 0.5 10 3 12053 9925 10600 TILL B BROWN HILLSIDE N 0.4 17.3 93.6 0.5 10 1 12052 9975 10600 TILL B BROWN HILLSIDE SW 0.4 21.1 70.1 0.5 10 51	12055	9825	10600	TILL	В	GREY	HILLSIDE N		0.6	18.8	111.5	0.8	10	1
12053 9925 10600 TILL B BROWN HILLSIDE N 0.4 17.3 93.6 0.5 10 1 12052 9975 10600 TILL B BROWN HILLSIDE SW 0.4 21.1 79.1 0.5 10 51	12054	9875	10600	TILL	В	BROWN	HILLSIDE N		0.5	12.5	149.2	0.5	10	3
12052 9975 10600 TILL B BROWN HILLSIDE SW 0.4 211 791 0.5 10 51	12053	9925	10600	TILL	B	BROWN	HILLSIDE N		0.4	17.3	93.6	0.5	10	 1
	12052	9975	10600	TILL	В	BROWN	HILLSIDE SW		0.4	21.1	79.1	0.5	10	51

SAMPLE NO.	GRID EAST	GRID NORTH MATERIA	HORIZON	COLOUR	TOPOGRAPHY	NOTES	Mo	Cu	Zn	As	Ha	Διι
12051	10000	10600 TILL	В	BROWN	HILLSIDE SW		0.6	19.3	83	0.8	10	3
12340	10025	10600 TILL	в	BROWN	FLAT		0.5	26.3	68.9	0.0	11	
12339	10075	10600 TILL	в	BROWN	FLAT		0.6	16.4	74.5	0.6	10	<u>'</u>
12338	10125	10600 TILL	В	BROWN	FLAT		0.8	16.2	74.1	0.9	16	<u>.</u>
12337	10175	10600 TILL	В	BROWN	FLAT		0.5	12.8	85.3	0.7	10	···· /
12336	10225	10600 TILL	в	BROWN	HILLSIDE E		0.5	9.7	74.4	0.7	12	2
12335	10275	10600 TILL	В	BROWN	FLAT		0.5	8.1	102.9	0.6	16	 1
12334	10325	10600 TILL	В	BROWN	HILLSIDE E	· · · · · · · · · · · · · · · · · · ·	0.7	14.4	86.5	1.1	10	 1
12333	10375	10600 TILL	в	BROWN	HILLSIDE E		0.8	11.1	64.4	0.9	10	2
12332	10425	10600 TILL	В	BROWN	FLAT		1.4	29.9	153.8	1.5	10	2
12331	10475	10600 TILL	в	BROWN	FLAT	SAMPLE TAKEN AT 104+70E - WEST EDGE OF SWAMP.	1	36	89.5	1.9	10	1
10000	10505	10000 781				SAMPLE TAKEN AT 106+20N/105+35E DUE TO						
12330	10525	10600 TILL	В	BROWN	IFLAT	SWAMP/CREEK.	0.6	10.6	73.6	1.1	10	1
12329	10070	10600 TILL	8	BROWN	FLAT	SAMPLE TAKEN AT 106+15N DUE TO CREEK/SWAMP.	0.7	12	53.4	1	10	1
12320	10625	10600 TILL	В	BROWN		SAMPLE TAKEN AT 105+85N DUE TO CREEK.	0.5	13.5	68	1	20	1
12321	10075		TODEOU	BROWN	HILLSIDE N		0.6	13.8	316.2	0.5	14	1
12320	10723	10600 CRGANIC	TOPSOIL	BLACK		EAST SIDE OF CREEK, SWAMPY,	1.3	517.1	100.3	2.3	45	3
12323	10775	10600 TH L	В	BROWN			0.4	6.5	70.6	0.5	10	1
12324	10825	10600 TILL		BROWN			0,3	16.1	70.6	0.6	10	1
12323	10075	10600 TH I	B	BROWN			0.5	62.4	50.5	3.2		1
12022	10925	10600 TH I	D D	BROWN	FILLOIDE OV		0.5	85.4	158.3	1.2	- 25	1
12321	11025	10600 TIEL	TOPSON	DLACK		CMANDY	0.5	83	69.8	0.8	24	1
12310	11025	10600 TU I	D	BROWN		SVVANPT.	1.3	210.1	110	3.1	81	4
12318	11125	10600 TILL	D	DROWIN DROM/N	HILLSIDE SW		0.7	54.2	70.3	1.1	18	1
12317	11125	10600 TILL	D	BROWN	HILLOIDE SW		0.5	9.7	73	0.5	10	1
12316	11225	10600 TILL	B	BROWN			0.4	36.5	71.7	0.5	- 29	1
12315	11225	10600 1111	B	BROWN			0.9	62.3	/5.6	0.6	- 25	1
12314	11325	10600 TILL	8	BROWN			0.4	32.4	48.6	0.5	10	1
12313	11375	10600 THE	B	BROWN	HILLSIDE W		0.7	44.4	80.0	0.6	19	1
12312	11425	10600 TILL	B	BROWN			0.7	70.1	103.1	0.5	23	
12311	11475	10600 TILL	В	BROWN	HILL SIDE W		0.5	30.1	00.2	0.0	- 11	0
12310	11525	10600 1122	B	BROWN			0.3	27.3	39.5	0.6	10	2
12309	11575	10600 TILL	В	BROWN	HILLSIDEW		0.7	20.0	40.0	0.5	- 10	
12308	11625	10600 TILL	8	BROWN	HILLSIDEW		0.3	30.9	50.4 £1	0.5	- 20	
12307	11675	10600 TILL	B	BROWN	FLAT		0.0	32.1	67.2	0.0	14	
12306	11725	10600 TILL	B	BROWN	HILLSIDEW	· · · · · · · · · · · · · · · · · · ·	0.0	20.4	15.2	0.0	10	
12305	11775	10600 TILL	в	BROWN	HILLSIDE W		0.5	42.9	55.4	0.5	10	- 4
12304	11825	10600 TILL	В	BROWN	HILLSIDEW		0.5	34.8	56.2	0.5	10	- 2
12303	11875	10600 TILL	В	BROWN	HILLSIDE W		0.0	28.6	71 7	0.5	10	
12302	11925	10600 TILL	В	BROWN	HILLSIDE W		0.3	55	54.6	0.5	31	
12301	11975	10600 TILL	В	BROWN	FLAT		0.0	29.3	50.7	1	17	
12000	12025	10600 TILL	В	BROWN	HILLSIDE W		0.3	13.2	66.8	0.6	16	
11999	12075	10600 TILL	В	BROWN	FLAT	······································	0.3	32.9	55.9	0.8	10	
11998	12125	10600 TILL	В	BROWN	FLAT		0.6	18.2	70	0.9	13	
11997	12175	10600 TILL	В	BROWN	HILLSIDE W		0.8	27.1	190.1	1.5	20	
11996	12225	10600 TILL	В	BROWN	FLAT		0.9	19.5	92.5	1.4	32	$-\frac{1}{1}$

Appendix I Pg 14

Crest Geological Consultants Ltd. Project 178

UNITED GUNN RESOURCES LTD. COPPER ACE SOUTH GRID - 1998 SOIL SAMPLE DESCRIPTIONS

11995 12275 10600 TILL B BROWN FLAT 0.6 26.8 54 0.6 10 11994 12325 10600 TILL B BROWN HILLSIDE W 0.9 27.3 74.6 1.7 28 11993 12375 10600 TILL B BROWN FLAT 0.9 27.3 74.6 1.7 28	SAMPLE NO.	GRID EAST	GRID NORTH	MATERIAL	HORIZON	COLOUR	TOPOGRAPHY	NOTES	Mo	Cu	Zn	As	На	Au
11994 12325 10600 TILL B BROWN HILLSIDE W 0.9 27.3 74.6 1.7 28 11993 12375 10600 TILL B BROWN HILLSIDE W 0.9 27.3 74.6 1.7 28	11995	12275	10600	TILL	в	BROWN	FLAT		0.6	26.8	54	0.6	10	1
	11994	12325	10600	TILL	в	BROWN	HILLSIDE W		0.9	27.3	74.6	17	- 10	
	11993	12375	10600	TILL	В	BROWN	FLAT		0.9	38.6	03	3.1	17	~

.....

					<u>c</u>	res	st.	G Geo	EOC <u>109</u> 219	HEM ica 7 Par	IIC: 1 (k Cr	AL Con esce	EX' 1 <u>su</u>	ΓRΑ <u>lti</u> Coqui	CT: <u>ng</u> tlan	PRC BC V	- AN DJE 31 6	IAL <u>CT</u> 1	YSI: <u>178</u> Subm	S C B itte	ER Fi d by:	FIF le R.	IC# # 9 Roe	YTE 980	454	15			1. 			·		Æ	Æ
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppb	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U mqq	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	Р %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	К %	W Imqq	TL ppm	Hg ppb	Se ppm	Te / ppm p	Ga A' pm p	u+ pb
10537 10538 10539 10540 10541	.6 .7 .6 .5 .9	24.9 22.7 15.6 17.4 24.6	2.4 2.1 2.2 2.3 2.5	102.9 280.1 116.9 122.3 152.9	120 123 89 64 42	8 10 8 9 10	6 7 4 6 4	391 485 253 268 393	1.27 1.37 1.13 1.50 1.21	.7 <.5 .5 <.5	<5 6 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	25 21 15 18 15	.07 .22 .13 .09 .15	.2 <.2 .2 <.2 <.2	.3 .2 .2 .3 .2	22 21 22 24 24	.35 .28 .22 .22 .24 .20	.018 .044 .028 .034 .045	3 3 4 5	10 10 12 10 13	.59 .66 .39 .65 .38	65 133 70 77 134	.04 .07 .05 .05 .05	८३ ८३ ८३ ८३ ८३	1.02 1.11 .84 1.16 1.01	.01 .01 .01 .01 .01	.04 .08 .04 .04 .04	<2 - <2 - <2 - <2 - <2 - <2 - <2 -	<.2 <.2 <.2 .2 <.2	10 13 16 <10 14	.3 <.3 <.3 <.3 <.3	<.2 2 <.2 3 <.2 2 <.2 3 <.2 3 <.2 2	.7 .0 .5 .7 .9	<1 2 <1 <1 <1
10542 10543 10544 10545 10561	.8 .6 1.0 1.2 1.1	23.8 26.6 17.2 37.5 66.8	2.4 2.5 2.8 2.9 2.9	106.6 119.1 294.2 448.0 79.7	<30 51 78 73 157	7 10 10 16 12	4 6 11 4	382 248 514 685 200	1.19 1.10 1.26 2.17 1.17	.6 .5 <.5 .8 1.3	<5 6 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2	16 16 13 22 25	.11 .07 .19 .34 .13	<.2 <.2 <.2 <.2 .3	.2 .3 .2 .3 .4	23 23 21 34 25	.23 .22 .20 .32 .42	.023 .014 .070 .104 .018	4 5 5 5 7	11 12 12 19 17	.46 .41 .43 .62 .30	81 75 126 126 80	.05 .06 .04 .06 .05	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	.93 .92 1.15 1.81 .88	.01 .02 .01 .01 .02	.03 .05 .06 .07 .04	<2 < <2 < <2 < <2 < <2 < <2 < <2 < 2 </p	<.2 <.2 <.2 <.2	12 13 23 20 10	<.3 <.3 <.3 <.3 <.3	<.2 2 <.2 2 <.2 3 <.2 5 <.2 2	.7 .4 .5 .1 .6	25 <1 <1 1 2
10562 10563 10564 10565 10566	1.0 1.9 1.4 .5 .8	39.5 177.6 91.8 45.9 57.5	2.9 5.1 3.1 3.6 3.2	74.9 173.9 82.5 56.8 74.6	74 321 33 87 60	10 31 19 12 14	5 10 8 3 6	224 1117 535 208 365	1.35 2.20 1.59 .99 1.22	1.6 2.8 1.9 .6 .9	7 <5 <5 <5	<2 <2 <2 <2 <2 2	23 36 28 25 22	.10 .54 .20 .10 .08	.2 .3 .2 .2 .2 .2	.3 1.0 .6 .4 .4	29 36 34 21 28	.33 .72 .42 .36 .30	.059 .026 .021 .016 .016	4 10 7 8 7	16 27 22 30 20	.39 .42 .39 .40 .35	63 143 86 67 87	.05 .06 .07 .08 .07	८३ ८३ ८३ ८३ ८३	.92 1.58 1.08 .93 1.00	.02 .02 .01 .02 .02	.05 .08 .05 .05 .05	<2 < <2 < <2 < <2 < <2 < <2 <	<.2 <.2 <.2 <.2	23 25 18 19 18	<.3 .4 .3 .6 .3	<.2 2 <.2 4 <.2 3 <.2 3 <.2 3	.8 .4 .4 .1	<1 1 · <1 <1 <1
10567 RE 10538 10568 10569 10570	.8 .9 .6 1.6 1.1	44.0 22.7 43.0 84.0 22.7	3.0 2.1 2.6 3.6 2.8	70.5 277.7 66.4 69.6 52.9	116 171 33 265 46	12 10 13 18 10	5 7 5 8 5	278 497 370 342 257	1.18 1.34 1.15 2.06 1.37	.9 <.5 .8 2.3 1.5	<5 <5 <5 5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	25 21 23 37 22	.09 .23 .08 .23 .11	.2 <.2 <.2 .3 .2	.4 .2 .3 .5	28 21 27 38 32	.31 .28 .30 .85 .35	.015 .043 .020 .022 .022	5 3 6 6	17 10 18 27 18	.39 .64 .37 .41 .35	71 137 79 108 53	.07 .07 .06 .07 .08	ব্য ব্য ব্য ব্য ব্য	1.03 1.10 .98 1.49 .88	.02 .01 .02 .02 .02	.05 .07 .04 .09 .05	<2 < <2 < <2 < <2 < <2 <	<.2 <.2 <.2 <.2 <.2	<10 <10 28 27 12	<.3 <.3 <.3 .5 .3	 .2 3 .2 3 .2 3 .2 3 .2 4 .2 2 	.6 .1 1 .3 · .1 .9 ·	3 17 <1 1 <1
10571 10572 10573 10574 10575	2.2 1.1 .8 .7 1.7	131.5 39.4 15.0 16.3 58.2	3.4 2.3 2.3 2.5 2.4	85.2 62.7 50.0 76.6 96.7	203 48 <30 66 141	24 10 7 7 10	8 4 3 4	545 246 195 300 464	2.13 1.24 1.06 .86 1.02	3.6 1.2 .6 .5 .7	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2	29 20 19 17 21	.20 .06 .06 .09 .17	.5 .2 .2 .2 .2 .2	.7 .2 <.2 .2 .4	39 28 26 21 22	.60 .26 .23 .23 .23	.036 .021 .013 .027 .034	7 4 4 5	28 15 12 10 14	.56 .37 .30 .24 .29	109 66 59 84 102	.06 .06 .07 .05 .05	ব্য 1 ব্য ব্য ব্য ব্য	.45 .87 .78 .72 .79	.02 .01 .01 .01 .01	.10 .05 .03 .03 .05	<2 < <2 < <2 < <2 < <2 <	<.2 <.2 <.2 <.2	30 20 < 13 < 28 - 16 <	.4 < <.3 < <.3 < <.3 <	(.2 4. (.2 2. (.2 2. (.2 2. (.2 2.)	.2 .4 .7 .4	1 <1 <1 <1 1
10576 10577 10578 10579 10580	1.0 1.4 1.5 .6 .8	15.5 42.5 49.4 36.2 29.9	2.4 3.0 2.7 2.3 2.5	56.2 78.0 73.6 112.5 93.3	70 68 203 54 70	6 11 9 12 11	3 5 4 4 4	241 304 313 268 243	.96 1.52 1.13 1.31 1.17	.5 1.0 1.1 .9 .8	<5 <5 <5 <5 <5	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	19 22 21 20 17	. 14 . 13 . 15 . 12 . 13	<.2 .2 .2 <.2 <.2	.2 .3 .4 .2 .2	22 31 26 27 25	.29 .38 .36 .35 .24	.020 .013 .024 .024 .029	3 5 4 5 5	11 19 14 18 15	.26 .40 .30 .31 .34	63 79 62 70 62	.06 .07 .06 .07 .07	<3 <3 <3 <3 <3	.67 .07 .78 .92 .78	.02 .01 .02 .01 .01	.05 .08 .06 .05 .06	<2 < <2 < <2 < <2 < <2 <	.2	25 < 17 < 18 < 19 < <10 <	<.3 < <.3 < <.3 < <.3 < <.3 <	.2 2. .2 3. .2 2. .2 2. .2 2.	.6 < .3 < .8 < .5 •	<1 <1 <1 <1 <1
10581 10582 10583 10584 STANDARD	2.0 1.2 .9 1.0 23.6	66.1 24.2 39.2 14.3 19.0	3.1 3.0 2.9 2.6 90.5	60.9 70.2 73.9 47.1 240.5	140 181 159 <30 1837	14 12 14 8 30	5 6 7 5 15	243 478 485 257 023	1.60 1.33 1.59 1.29 4.14	1.9 1.0 1.7 1.1 66.3	<5 <5 <5 <5 15	<2 <2 2 <2 2	25 23 25 17 56 2	.12 .19 .11 .09 2.17	.3 .2 .3 <.2 8.6	.4 .2 .3 <.2 19.9	36 29 35 33 69	.39 .36 .39 .27 .69	.038 .040 .021 .009 .107	6 5 5 4 18	22 17 21 19 51 1	.44 .33 .45 .28 .07	72 100 94 57 255	.08 .06 .07 .07 .07	<3 <3 <3 1 <3 29 2	.93 .90 .07 .80 .24	.01 .01 .02 .02 .02	.08 .09 .07 .04 .65	<2 < <2 < <2 < <2 < <15 1	2 2 2 2 9 10	17 < 13 < <10 < 10 < 073	 .3 < .3 < .3 < .3 < .6 1 	.2 3. .2 3. .2 3. .2 2. .9 6.	.2 < .1 < .2 < .4 5	(1 (1 (1 (1 (1)))

ICP - 15 GRAM SAMPLE IS DIGESTED WITH 90 ML 2-2-2 HCL-HNOS-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 300 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K GA AND AL. SOLUTION ANALYSED DIRECTLY BY ICP. MO CU PB ZN AG AS AU CD SB BI TL HG SE TE AND GA ARE EXTRACTED WITH MIBK-ALIQUAT 336 AND ANALYSED BY ICP. ELEVATED DETECTION LIMITS FOR SAMPLES CONTAIN CU,PB,ZN,AS>1500 PPM,Fe>20%. - SAMPLE TYPE: SOIL AU+ - AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED. <u>Samples beginning 'RE' arg/Reruns and 'RRE' are Reject Reruns.</u>

DATE RECEIVED: OCT 14 1998 DATE REPORT MAILED: Oct 14/98 SIGNED BY......D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only. Data FA

ACME	ANAL) YTIC/	L I.	ABOR	TOR	TES	ĿŦ	5.	5. chia	852	Ε.	HAS	TIN	IGS	ST.	- VAI		IVER	BC	V6	A 1	R.6	-19-275	PHC	NE	640	25	3-3	158	FA	X (6	04)	25	 ⊒ З-г	$)_{$	
A A	ISO	9002	Acc	redit	ed	Co.)			GEO	CHE	MIC	'AL	ЕХ	(TRI	ACT	ION	[-A]	VAL	sis	C	ERI	TFI	CA	TE										R	A	
TT				<u>C</u>	res	t G	<u>eo.</u>	log	<u>ica</u> 21	<u>1 C</u> 97 Pa	ons rk C	ul resci	<u>tir</u> Mt,	<u>tg]</u> Coqu	<u>PRO</u> itla	<u>JEC</u> m BC	<u>T</u> v3j (<u>178</u> 671	Fi Submi	le tted	# by:	980 r. r)17 oe	31		Pag	e	1						T	ľ	
SAMPLE#	Mo ppm	Cu ppn	Pb ppm	Zn ppm	Ag ppb	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	K %	W ppm j	Ti ppnij	Hg ppb	Se ppm	Te ppm	Ga ppm	Au* opb	
11479 11480 11481 11482 11483	1.3 .7 2.4 2.8 .8	44.5 50.8 227.8 240.5 49.2	2.7 2.3 4.5 4.1 2.7	274.2 452.0 111.7 113.5 91.0	64 <30 80 135 79	11 9 27 14 13	5 4 11 6 5	302 199 674 441 305	1.23 1.07 2.44 1.30 1.16	.6 <.5 3.7 1.5 .7	<5 <5 5 6 <5	<2 <2 <2 <2 <2 <2	16 18 38 25 21	.23 .32 .22 .17 .07	.2 <.2 .7 .3 <.2	<.2 <.2 <.2 <.2 <.2 <.2	29 29 40 29 27	.19 .22 .80 .42 .24	.029 .016 .076 .026 .021	5 5 8 6	17 16 32 18 17	.31 .28 .63 .38 .39	114 58 108 78 70	.05 .05 .05 .05 .05	3 3 3 3 3 3 3 3 3	1.04 .85 1.32 .95 .97	.01 .01 .01 .01 .01	.03 .03 .07 .07 .04	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<.2 <.2 <.2 <.2 <.2 <.2	<10 <10 35 17 <10	<.3 <.3 <.3 <.3 <.3	<.2 <.2 <.2 <.2 <.2 <.2 <.2	3.3 2.8 3.5 3.2 2.8	<1 6 1 9 5	
11484 11485 11486 11487 11488	.5 .7 .6 1.8	31.4 43.9 50.4 40.8 213.1	2.3 2.2 2.3 2.9 3.8	71.6 95.4 103.9 134.4 319.8	<30 55 139 155 358	10 13 14 15 36	4 6 6 12	227 301 330 300 937	.98 1.21 1.31 1.22 2.16	<.5 .5 .6 1.2 2.2	<5 6 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	18 20 21 18 39	.04 .06 .07 .10 .62	<.2 .2 .3 .2 .3	<.2 <.2 <.2 <.2 <.2	22 27 27 26 37	.22 .23 .25 .22 .59	.013 .016 .024 .020 .057	5 6 7 15	16 16 20 23 36	.36 .40 .45 .39 .60	58 77 69 68 143	.06 .06 .05 .06 .07	33333 3333 3	.83 .98 1.04 1.02 1.82	.01 .01 .01 .01 .02	.03 .04 .05 .05 .12	< < < < < < < < < < < < < < < < < < <	<.2 <.2 <.2 <.2 <.2	22 14 11 15 39	<.3 <.3 <.3 <.3 .3	<.2 <.2 <.2 <.2 <.2 <.2	2.3 2.6 3.2 3.0 4.9	<1 1 <1 <1 3	
11489 11490 11491 11492 11493	.6 1.6 3.1 2.4 1.7	212.1 181.6 191.3 34.8 34.2	1.7 3.9 3.4 2.8 3.0	154.9 113.1 120.1 77.7 108.9	272 445 307 175 162	12 22 25 10 11	3 9 11 7 6	229 942 976 531 580	.31 2.11 2.33 1.48 1.34	1.5 2.2 3.0 1.4 .9	<5 <5 <5 7	<2 <2 <2 <2 <2 <2 <2 <2	380 43 39 24 23	.87 .35 .33 .13 .16	.3 .3 .2 .2	<.2 <.2 <.2 <.2 <.2	6 27 37 32 29	25.89 1.23 .88 .36 .35	.164 .050 .030 .011 .011	1 7 8 5 5	5 21 23 17 17	.38 .47 .52 .38 .31	125 131 112 69 74	<.01 .03 .04 .06 .06	10 3 3 3 3 3	.33 1.41 1.48 .98 .96	.02 .01 .01 .01 .01	.02 .10 .10 .06 .06	<2 < <2 < <2 < < 2 < < 2 < < 2 <	<.2 <.2 <.2 <.2 <.2	25 31 21 <10 <10	.4 .3 <.3 <.3	<.2 <.2 <.2 <.2 <.2	1.0 4.0 4.6 3.3 3.1	2 <1 1 1	
11494 RE 11494 11495 11496 11497	1.6 1.3 3.8 1.0 .3	71.6 68.4 181.2 56.3 39.9	2.4 2.3 2.6 2.7 2.3	94.1 91.4 97.3 86.8 71.8	211 215 194 130 66	15 15 18 15 11	7 6 5 4	413 402 429 287 196	1.46 1.40 1.64 1.26 1.01	1.1 1.3 1.3 .7 .5	ও ও ও ও ও ও	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	24 21 27 21 18	.11 .10 .11 .08 .05	.2 .2 .2 .2 .2	<.2 <.2 <.2 <.2 <.2	29 28 27 27 22	.29 .26 .35 .27 .23	.023 .024 .045 .016 .011	6 6 7 6 5	22 20 20 20 15	.45 .44 .53 .38 .34	63 60 84 61 48	.06 .05 .05 .07 .07	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1.02 .97 1.23 .96 .81	.01 .01 .01 .01 .01	.06 .06 .08 .06 .04	<2 < <2 < <2 < <2 < <2 < <2 <	<.2 <.2 <.2 <.2 <.2	20 17 22 21 (10	<.3 <.3 <.3 <.3	<.2 <.2 <.2 <.2 <.2 <.2	3.2 2.9 3.5 3.4 2.0	4 1 2 1	
11498 11499 11500 11724 11725	1.1 .6 .8 .8 .7	45.1 32.6 32.3 49.8 14.0	2.6 2.2 2.6 2.2 3.0	126.9 136.3 107.7 93.3 202.7	153 41 159 92 120	12 9 7 13 9	6 4 4 5 4	329 251 245 267 408	1.35 1.04 .96 1.21 .94	1.0 .5 <.5 .6 .6	<5 <5 <5 <5 <5	~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~	20 16 17 21 19	.15 .08 .05 .09 .21	.2 <.2 <.2 .2 .2	<.2 <.2 <.2 <.2 <.2	30 21 22 28 23	.26 .22 .21 .26 .25	.041 .026 .018 .019 .057	6 5 4 6 5	17 11 13 17 14	.37 .41 .37 .37 .20	81 48 59 67 121	.06 .05 .04 .06 .05	3 3 3 3 3 3 3 3 3	.99 .87 .94 .93 .82	.01 .01 .01 .01 .01	.05 .03 .03 .04 .05	<2 <2 < < 2 <2 < < 2 <2 <	 .2 	12 10 16 10 16	<.3 <.3 <.3 <.3 <.3	<.2 <.2 <.2 <.2 <.2 <.2	3.5 2.9 3.3 2.8 2.9	1 <1 1 2 1	
11726 11727 11728 11729 11730	1.0 .7 1.0 1.1 .3	35.9 37.9 23.8 59.0 25.2	2.9 2.6 2.5 2.6 2.4	95.8 109.0 58.0 100.6 62.8	136 173 83 151 56	13 12 7 17 8	6 5 4 7 4	253 403 163 661 198	1.34 1.02 1.13 1.40 .85	1.1 .7 1.1 1.3 .5	ও ও ও ও ও	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	20 19 18 24 16	.18 .13 .13 .10 .05	.2 <.2 .2 .2	<.2 <.2 <.2 <.2 <.2 <.2	34 24 29 31 20	.27 .25 .23 .29 .21	.023 .016 .027 .033 .017	6 6 5 7 5	22 20 15 23 12	.39 .31 .28 .42 .34	68 64 57 86 40	.07 .05 .06 .05 .05	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	.89 .88 .71 1.15 .76	.01 .01 .01 .01 .01	.04 .04 .04 .05 .03	<2 < <2 < <2 < <2 < <2 < <2 <	:.2 :.2 :.2 :.2 :.2	21 19 10 21 12	<.3 <.3 <.3 <.3	<.2 <.2 <.2 <.2 <.2	5.0 2.8 2.8 3.5 2.4	2 2 25 3 2	
11731 11732 11733 11734 STANDARD	1.6 1.0 5.5 2.6 25.0	41.8 54.6 213.3 82.1 123.6	2.4 2.3 3.0 2.1 94.8	92.0 60.5 92.1 72.0 276.5	71 35 206 65 1949	11 10 15 10 32	4 5 6 5 18	280 259 606 362 031	.92 1.11 1.33 1.12 4.83	<.5 .9 .9 .8 79.7	<5 <5 <5 18	<2 <2 <2 <2 <2 20	19 18 24 23 60	.07 .05 .11 .08 1.98	<.2 <.2 .2 .2 9.3	<.2 <.2 <.2 <.2 <.2 20.1	21 24 25 23 73	.23 .26 .34 .29 .68	.019 .031 .030 .021 .112	5 5 6 17	16 14 20 12 59	.31 .41 .43 .40 1.16	62 39 95 51 276	.04 .06 .04 .06 .11	<3 <3 <3 <3 25	.87 .84 1.09 .83 2.35	.01 .01 .01 .01 .01	.04 .05 .05 .03 .71	<2 <2 <2 <2 18 2	:.2 :.2 < :.2 < :.2 <	12 10 22 10 28	<.3 <.3 <.3 <.3 .6	<.2 <.2 <.2 <.2 <.2	2.8 2.5 3.6 2.8 7.6	3 2 5 2 52	
Standard	is STA ICP - FOR M HG SE - SAM	NDARD 15 GR N FE S TE AN PLE TY	D2/C3 AM SA R CA D GA PE: S	/AU-S. MPLE I P LA C ARE EX OIL	S DIG R MG TRACT AU*	ESTEC BA TI ED WI - AC	D WI I B N I TH I NUA-I	TH 90 I AND I BK- REGIA	ML 3 LIMI ALIQU /MIBK	-1-2 TED F AT 33 EXTR	HCL- OR N/ 6 ANI ACT,	HNO3+ A K (D AN/ GF//	H2O GAAN NLYSE NAF1	AT 9 ND AL ED BY INISH	5 DEC . SOL ICP. ED.	G. C LUTIO . ELE <u>Samp</u>	FOR (N AN/ VATEL Les I	ONE HO ALYSED DETE Deginr	UR AN DIRE CTION	D IS CTLY LIM RE'	DILI BY ITS	UTED ICP. FOR S Rerun	TO 3 MO AMPL s an	00 MI CU PI ES CC d 'Rf	- WI 3 ZN DNTA <u>Re'</u>	TH WA AG AS IN CU Bre Ro	TER. S AU ,PB,⊒ ≘jec	THIS CD S ZN,AS <u>t Rer</u>	E LEA B BI >150 uns.	.CH 1 TL 10 PP	S P/ M,Fe	\RT∐ ≥>20%	4L %.			

AA

Crest Geological Consulting PROJECT 178 FILE # 9801731

ACHE ANALYTICAL																																		
SAMPLE#	Mo	Cu ppm	Pb ppm	Zn ppm	Ag ppb	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	8a ppm	Ti %	В ррпп	Al %	Na %	К %	pbu bb	rt H xnrpp	g Se bppr	e Te nppm	Ga A ppm p	\u* opb
11735 11736 11737 11738 11739	8.3 5.1 5.1 1.9 1.9	466.6 232.4 176.8 100.6 102.0	3.6 3.0 3.0 2.7 2.4	100.1 93.7 153.5 82.7 76.5	162 144 204 123 123	17 18 21 14 12	9 7 8 7 6	706 583 740 424 298	1.61 1.63 1.58 1.57 1.32	3.4 3.5 1.8 2.3 1.3	<5 <5 <5 <5 <5	2 2 2 2 2 2 2 2 2 2	25 25 26 21 17	.20 .15 .32 .09 .06	.3 .3 .2 .3 .2	.7 <.2 <.2 <.2 <.2 <.2	31 31 30 33 29	.40 .41 .42 .31 .24	.062 .050 .035 .945 .030	6 8 8 6 5	21 21 21 19 15	.48 .48 .44 .53 .45	86 91 118 50 42	.04 .04 .04 .05 .05	3 3 3 3 3 3 3 3 3 3	.99 1.10 1.15 1.00 .92	.01 .01 .01 .01 .01	.06 .06 .06 .05 .05	<2 < <2 < <2 < <2 < <2 <	.2 3 .2 3 .2 2 .2 2 .2 3	5 < 3 2 < 3 9 < 3 0 < 3 1 < 3	3 .2 5 <.2 5 <.2 5 <.2 5 <.2 5 <.2	3.1 3.1 3.4 3.1 2.7	1 1 2 1
11740 11741 11742 11743 11744	2.1 1.4 2.1 1.5 1.9	144.3 82.9 60.2 51.9 102.2	3.6 2.5 2.8 2.9 2.9	155.9 100.9 96.2 66.1 64.1	373 152 115 112 158	27 13 10 11 11	9 5 6 7 6	867 350 497 640 394	1.89 1.12 1.25 1.38 1.41	2.6 .8 .5 1.3 2.0	১ ১ ১ ১ ১ ১ ১	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	25 16 21 20 25	.20 .12 .18 .08 .08	.3 .2 .2 .2 .2	<.2 <.2 <.2 <.2 <.2	36 24 27 31 33	.38 .23 .29 .31 .40	.044 .021 .030 .034 .024	8 5 4 5 5	28 17 14 19 20	.47 .35 .35 .35 .38	126 61 80 94 68	.04 .05 .05 .05 .05	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	1.37 .84 .84 .89 .95	.01 .01 .01 .01 .01	.10 .06 .06 .06 .06	<2 <. <2 <. <2 <. <2 <. <2 <. <2 <.	.2 3 .2 2 .2 1 .2 1 .2 2	7 < 3 < 7 < 9 < 0 <	\$ <.2 3 <.2 3 <.2 3 <.2 3 <.2 3 <.2	3.8 2.3 2.7 2.6 2.6	1 <1 2 <1
11745 11746 11747 11748 11749	1.7 3.2 1.9 1.2 1.1	81.8 99.5 70.0 47.4 35.4	2.1 2.7 3.0 3.0 3.0	78.9 90.7 135.4 121.8 111.6	89 164 119 54 60	12 8 12 11 9	7 5 6 5 5	285 533 616 232 282	1.52 1.18 1.08 1.01 1.11	2.5 .8 .8 <.5 .5	ও ও ও ও ও ও ও	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	20 18 18 14 15	.08 .12 .14 .04 .09	.3 .2 <.2 <.2 <.2	<.2 <.2 <.2 <.2 <.2 <.2	34 28 25 23 26	.28 .26 .23 .20 .20	.035 .033 .022 .020 .022	5 4 5 5 5 5	17 16 13 10 14	.47 .32 .35 .39 .37	49 88 95 57 62	.05 .04 .04 .05 .06	33333	.95 .82 1.04 .97 .92	.01 .01 .01 .01 .01	.08 .03 .04 .03 .04	<2 <, <2 <, <2 <, <2 <, <2 <, <2 <,	.2 8 .2 3 .2 2 .2 2 .2 1	0 <. 7 < . 5 <. 2 <. 0 <.	3 <.2 3 <.2 3 <.2 3 <.2 3 <.2 3 <.2	2.6 2.8 3.2 2.7 2.7	1 2 1 <1
11750 11751 RE 11751 11752 11753	.8 2.2 2.2 1.3 .8	49.8 82.9 79.9 42.1 23.6	3.2 3.8 3.3 2.4 2.5	83.8 125.0 118.3 52.4 73.5	171 177 143 113 45	11 12 11 7 8	5 6 4 4	248 277 262 187 192	1.18 1.39 1.30 .93 .90	.7 1.4 .5 <.5 <.5	<5 <5 <5 5 6	~2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	21 21 20 14 18	.07 .10 .08 .20 .12	<.2 .2 .2 .2 .2 <.2	<.2 <.2 <.2 <.2 <.2 <.2	30 33 30 26 23	.23 .28 .26 .21 .24	.012 .022 .021 .018 .017	7 7 6 3 4	16 22 16 13 12	.35 .41 .39 .23 .27	81 80 75 50 42	.04 .05 .05 .04 .05	3 3 3 3 3 3 3 3 3 3	1.08 1.07 1.01 .58 .71	.01 .01 .01 .01 .01	.05 .05 .04 .04 .04	<2 <. <2 <. <2 <. <2 <. <2 <. <2 <.	.2 <1 .2 <1 .2 <1 .2 <1 .2 <1 .2 <1 .2 1	0 < 0 < 0 < 5 <	3 <.2 3 <.2 3 <.2 3 <.2 3 <.2 3 <.2	3.1 3.2 2.8 1.9 2.4	<1 2 3 1 16
11754 11755 11756 11757 11758	.8 1.2 1.5 2.6 1.7	77.5 28.4 37.1 669.4 312.3	3.0 2.9 3.9 3.1 3.5	87.9 120.2 317.5 137.0 80.6	139 72 244 690 284	18 9 12 51 32	7 6 9 8 10	455 395 1284 641 597	1.37 1.14 1.51 1.92 2.36	1.1 .9 1.5 1.9 4.9	ও ও ও ও ও ও ও ও	< 2 2 2 2 2 2 2 2 2	22 23 33 101 48	.09 .25 .67 .83 .23	.2 <.2 <.2 .5 .3	<.2 <.2 <.2 <.2 <.2	33 27 28 29 44	.31 .33 .53 2.34 .99	.023 .067 .154 .097 .046	6 4 5 13 10	23 18 20 32 40	.35 .26 .25 .43 .49	79 95 281 191 126	.04 .04 .04 .02 .04	33353	1.14 .82 1.06 1.51 1.74	.01 .01 .01 .01 .01	.06 .05 .10 .12 .10	<2 <, <2 <, <2 <, <2 <, <2 <, <2 <,	.2 1 .2 1 .2 <1 .2 8 .2 8	6 <. 2 <. 0 <. 5	3 <.2 3 <.2 3 <.2 9 .3 4 <.2	3.1 2.6 3.3 4.4 3.6	1 1 <1 1 2
11759 11760 11761 11762 11763	1.9 .7 2.1 .6 .9	247.5 12.0 304.5 38.6 41.2	4.4 3.0 5.4 2.7 2.6	114.4 88.4 211.8 91.4 52.9	319 102 635 126 67	34 61 13 12	11 4 18 7 7	1067 246 1324 396 400	2.37 .80 4.33 1.16 1.18	4.6 .8 6.6 1.4 1.1	১ ১ ১ ১ ১ ১ ১	3 2 4 2 2	43 18 62 24 20	.39 .15 .34 .06 .05	.3 .2 .6 .2 .2	<.2 <.2 .3 <.2 <.2	42 23 62 30 30	.73 .25 .94 .30 .28	.060 .024 .048 .022 .020	12 4 18 6 6	38 13 66 19 18	.55 .23 .87 .36 .40	128 47 312 68 49	.05 .05 .05 .05 .06	3 3 3 3 3 3 3 3 3 3 3 3	1.70 .72 3.62 1.05 .86	.01 .01 .02 .01 .01	.14 .03 .19 .05 .04	<2 <, <2 <, <2 <, <2 <, <2 <, <2 <,	.2 5 .2 <1 .2 5 .2 1 .2 1	9 (0 < . 5 (7 < .	4 <.2 3 <.2 6 .2 3 <.2 3 <.2	4.1 2.7 8.9 2.8 2.3	3 2 1 1 1
11764 11765 11766 11767 STANDARD	.8 1.8 .9 1.1 23.8	30.5 70.6 21.6 56.6 118.0	2.5 3.1 2.3 3.2 98.5	75.7 84.8 75.1 70.3 258.9	123 213 106 210 1987	12 13 9 14 31	5 6 5 7 17	228 517 389 566 1000	1.23 1.36 1.03 1.44 4.70	1.2 1.4 1.1 2.6 74.5	<5 <5 <5 6 25	2 2 <2 <2 20	18 21 19 24 58	.08 .18 .12 .15 1.98	.2 .3 .2 .3 8.5	<.2 <.2 <.2 <.2 18.0	33 33 27 38 76	.26 .32 .30 .42 .64	.017 .031 .028 .023 .107	6 6 4 6 17	19 21 15 21 52	.31 .38 .26 .32 1.09	54 69 66 75 269	.06 .05 .05 .05 .05 .11	3 3 3 3 25	-86 .92 .71 .95 2.33	.01 .01 .01 .01 .06	.05 .05 .05 .06 .69	<2 <. <2 <. <2 <. <2 <. 15 2.	.2 1 .2 2 .2 1 .2 3 .5 89	4 <. 2 <. 6 <. 8 .	3 <.2 3 <.2 3 <.2 3 <.2 5 2.1	2.2 2.6 1.8 2.5 7.0	1 2 1 <1 51

Standard is STANDARD D2/C3/AU-S. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ACHE ANALYTICAL

Crest Geological Consulting PROJECT 178 FILE # 9801731

ACHE ANALYTICA K W TI Hg Se Te Ga Au* P La Cr Mg Ba Ti B Al Na Cd Sb ٧ Са U Th Sr Bi Zn Ag Ni Co Mn Pb Fe As SAMPLE# Мо Cu daa maa maa daa maa maa % % % % % DOM DOM mqq% mqq% ppb opm ppm mag mag mag mag ppm ppm ppm ppm ppm ppm ppm ppm noa .34 53 .05 <3 .80 .01 .05 <2 .2 20 <.3 <.2 2.7 1 .26 .014 4 15 .06 .3 <.2 29 278 1.23 <5 <2 17 .8 11768 1.2 26.8 2.3 50.6 57 10 5 .33 58 .05 <3 .89 .01 .06 <2 .2 20 <.3 <.2 2.8 1 .36 .031 5 20 .13 .3 <.2 30 .9 <5 2 20 1.5 59.2 2.6 72.1 135 10 6 259 1.30 11769 3 .86 .01 .05 <2 <.2 25 <.3 <.2 2.7 <1 5 18 .28 75 .05 28 .54 .033 <5 2 26 .26 .3 <.2 1.5 62.3 2.9 76.9 280 11 6 462 1.17 1.0 11770 .89 363 .05 <3 4.05 .02 .26 <2 .2 95 .7 .2 9.3 2 1.52 .066 25 80 3.5 607.0 6.8 345.2 1326 87 18 1063 4.96 4.1 <5 2 74 .72 1.0 <.2 61 11771 9 18 .39 102 .05 <3 1.00 .01 .08 <2 <.2 15 <.3 <.2 3.6 1 .48 .040 <2 29 .8 <5 .23 .3 <.2 29 3.2 123.7 3.1 115.9 193 15 6 636 1.40 11772 .38 62 .06 <3 .91 .01 .06 <2 <.2 20 <.3 <.2 2.7 <1 .33 .027 .08 .2 <.2 31 5 18 .8 <5 <2 21 50 10 6 397 1.34 1.4 38.0 2.4 76.8 11773 .31 56 .06 <3 .75 .01 .05 <2 .2 20 <.3 <.2 2.7 <1 .5 <5 <2 17 .11 .2 <.2 24 .26 .023 4 16 5 330 1.10 73 11774 .9 18.7 2.1 99.4 8 .29 80 .05 <3 .86 .01 .07 <2 <.2 15 <.3 <.2 2.7 1 5 481 1.10 <.5 <5 <2 19 .12 <.2 <.2 25 .30 .026 5 17 56 8 .9 19.1 2.8 121.5 11775 .29 49 .05 3 .81 .01 .05 <2 <.2 15 <.3 <.2 2.4 2 5 24 .9 10 <2 22 .09 .2 <.2 30 .39 .026 6 481 1.25 1.2 52.3 2.4 71.4 124 12 11776 8 23 .35 105 .06 <3 1.12 .01 .06 <2 <.2 20 <.3 <.2 3.3 3 .41 .022 769 1.58 2.5 <5 <2 25 .18 .4 <.2 35 1.2 58.2 4.4 101.4 264 17 8 11777 5 14 .28 71 .05 <3 .89 .01 .06 <2 .2 <10 <.3 <.2 2.7 2 .27 .019 5 446 1.13 1.2 <5 <2 19 .07 .2 <.2 27 .8 16.9 3.6 67.9 54 11778 7 7 23 .34 72 .05 <3 1.08 .01 .05 <2 <.2 35 <.3 <.2 2.9 2 .43 .020 7 446 1.45 1.3 <5 <2 24 .11 .2 <.2 33 1.7 111.6 2.9 80.5 210 16 11779 5 16 .28 42 .06 <3 .76 .01 .04 <2 <.2 15 <.3 <.2 2.5 <1 .6 <5 <2 14 .09 <.2 <.2 20 .23 .017 165 .94 11780 .5 32.9 2.7 100.2 91 10 4 .26 57 .05 <3 .74 .01 .04 <2 .2 20 <.3 <.2 2.6 <1 .6 <5 <2 16 .11 <.2 <.2 21 .27 .023 4 14 4 294 .93 .9 22.2 2.6 83.2 115 8 11781 .26 57 .05 <3 .75 .01 .04 <2 <.2 20 <.3 <.2 2.7 <1 <2 17 .10 <.2 <.2 21 .28 .022 4 15 .7 <5 .9 22.4 2.6 84.1 98 8 4 291 .94 RE 11781 5 16 .29 84 .05 <3 .99 .01 .03 <2 .2 25 <.3 <.2 3.2 .8 <5 <2 14 .09 <.2 <.2 24 .23 .056 7 17.2 2.7 141.3 60 9 4 218 1.11 11782 3 12 .36 51 .03 <3 1.08 .01 .03 <2 <.2 25 <.3 <.2 3.6 8 .16 .025 <2 11 .10 .2 <.2 28 <5 1.2 33.1 2.8 120.7 <30 5 262 1.23 .6 8 11783 5 13 .34 112 .03 <3 1.02 .01 .05 <2 <.2 25 <.3 <.2 3.0 -5 .7 <5 <2 14 .19 <.2 <.2 24 .25 .037 805 1.65 3.8 66.8 2.4 218.1 <30 9 6 11784 .39 .098 7 18 .38 74 .03 <3 1.48 .01 .07 <2 .2 15 <.3 <.2 4.0 <1 9 528 3.40 1.2 <5 <2 19 .25 .2 <.2 31 2.3 39.6 3.0 240.9 <30 16 11785 2 14 .34 344 .01 9 .55 .02 .04 <2 .2 55 .7 <.2 1.7 1 2 362 .73 .2 <.2 15 29.80 .101 6.9 160.9 1.6 104.5 268 23 7 5006 .86 2.5 <5 11786 5 16 .36 102 .05 <3 1.07 .01 .05 <2 <.2 15 <.3 <.2 3.0 2 .8 <5 <2 19 .18 <.2 <.2 25 .56 .060 6 411 1.34 1.6 34.9 2.6 221.0 57 10 11787 .37 86 .05 <3 .87 .01 .07 <2 .2 15 <.3 <.2 2.6 <1 .5 <5 <2 16 .13 <.2 <.2 22 .25 .031 5 13 5 430 1.10 1.3 28.9 2.4 127.4 7 63 11788 <3 .80 .01 .07 <2 .2 <10 <.3 <.2 2.5 8 5 .33 69 .07 17 .5 <5 <2 17 .06 <.2 <.2 24 .25 .016 7 8.8 2.0 91.3 <30 7 5 368 1.14 11789 72 .04 3 .98 .01 .05 <2 <.2 25 .4 <.2 2.9 <1 5 19 .49 79.2 2.8 94.1 182 15 7 345 1.42 1.2 <5 <2 34 .13 .2 <.2 28 .72 .033 11790 .9 4 17 .37 79 .05 <3 .93 .01 .05 <2 <.2 30 <.3 <.2 2.8 2 .26 .022 5 <2 17 .08 <.2 <.2 28 .7 6 449 1.29 20.5 2.3 117.4 91 8 11791 1.3 4 17 .87 73 .07 <3 1.44 .01 .18 <2 .2 <10 <.3 <.2 4.2 9 10 458 1.88 <.5 <5 <2 24 .08 <.2 <.2 30 .41 .024 1.2 14.7 2.3 119.5 <30 11792 3 19 .52 54 .04 <3 1.02 .01 .04 <2 <.2 15 <.3 <.2 3.0 -4 7 476 1.58 1.0 <5 <2 20 .07 .2 <.2 27 .66 .021 1.2 25.6 2.0 114.4 64 10 11793 4 16 .33 115 .03 <3 .95 .01 .07 <2 <.2 30 <.3 <.2 3.2 <1 9 8 1655 1.36 1.0 <5 <2 38 .36 <.2 <.2 27 .77 .030 3.2 53.2 3.2 183.0 387 11794 4 12 .38 88 .04 3 .90 .01 .05 <2 .2 10 <.3 <.2 3.1 <1 .32 .052 1.2 19.7 2.2 339.0 162 7 6 754 1.23 .6 <5 <2 19 .30 <.2 <.2 21 11795 5 31 .37 176 .06 <3 1.54 .01 .05 <2 .2 30 <.3 <.2 4.9 41 1.5 35.3 4.0 564.3 133 21 11 1359 2.41 2.2 6 <2 15 .51 .2 <.2 43 .24 .113 11796 5 32 .37 261 .05 <3 1.67 .01 .05 <2 .2 40 <.3 <.2 4.9 4 8 550 2.23 2.2 <5 <2 15 .38 <.2 <.2 39 .27 .106 11797 1.3 45.2 3.6 519.7 272 25 3 1.29 .01 .06 <2 .2 40 <.3 <.2 4.2 2 5 26 .37 216 .05 .44 .2 <.2 35 .35 .069 9 1045 1.85 1.4 <5 <2 20 18 1.9 42.1 4.0 483.0 161 11798 5 15 .23 87 .05 3 .84 .01 .04 <2 .2 25 <.3 <.2 3.3 <1 5 577 1.04 .5 <5 <2 11 .19 <.2 <.2 23 .20 .033 7 84 10.1 3.4 281.6 11799 .7 4 23 .31 107 .05 <3 .97 .01 .05 <2 <.2 25 <.3 <.2 4.0 2 1.1 11.8 3.3 305.9 65 10 6 881 1.44 1.2 <5 <2 19 .58 <.2 <.2 33 .33 .051 11800 .72 .108 18 56 1.09 267 .11 26 2.35 .06 .69 15 2.5 940 .7 2.0 7.0 53 STANDARD 24.7 120.5 93.9 263.3 1960 31 18 1004 4.71 75.2 21 20 58 1.98 6.9 18.3 72

Standard is STANDARD D2/C3/AU-S. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data____ FA

ÉA

ACHE ANALYTICA

ACHE ANALYTICAL

Crest Geological Consulting PROJECT 178 FILE # 9801731

ACHE ANAL	TICAL																																		
SAMPLE	#	Mo	Cu	Pb	Zn	Ag ppb	î M pom p	Co	Mn ppm	Fe %	As ppm	U ppnti	Th ppm p	Sr opmi	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	8a ppm	Ti %	B ppm	Al %	Na %	к %	T W aprimaçi	l Hg mippl) Se oppm	Te ppm	Ga A ppm p	u* pb
11824 11825 11826 11827 11828		1.1 1.3 .9 .6 .9	51.2 91.9 54.6 32.7 41.5	2.3 2.9 2.3 3.0 2.4	96.2 107.2 68.5 53.9 54.4	128 150 104 138 76	12 19 12 9 10	5 8 5 4 6	312 626 331 223 425	1.21 1.54 .99 .97 1.13	.9 1.0 .6 .6 .9	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2	17 23 16 16 19	.14 .12 .06 .05 .13	.3 .3 <.2 .2 .2	<.2 <.2 <.2 <.2 <.2 <.2	27 30 22 23 25	.24 .31 .20 .19 .26	.018 .024 .020 .013 .026	5 7 4 5	18 27 16 15 15	.32 .44 .31 .32 .36	61 100 61 54 45	.05 .04 .04 .05 .05	ও ও 1 ও ও ও	.81 .22 .88 .78 .74	.01 .01 .01 .01 .01	.04 .06 .04 .03 .04	<2 <. <2 <. <2 <. <2 <. <2 <. <2 <.	2 <10 2 13 2 <10 2 <10 2 <10 2 <10) <.3 5 <.3 0 <.3 0 <.3 0 <.3	<.2 <.2 <.2 <.2 <.2 <.2	2.8 3.3 2.6 3.0 2.3	1 <1 <1 <1 <1
11829 11830 11831 11832 11833		.9 1.9 .6 1.1 1.3	106.6 62.9 33.3 104.4 63.9	2.1 4.5 3.0 3.6 4.1	202.8 92.3 75.9 137.8 122.7	531 169 162 236 171	15 16 12 25 14	5 10 5 8 6	467 630 231 558 531	.64 2.12 .99 1.88 1.25	1.8 1.8 .8 1.2 1.8	<5 <5 <5 9 <5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	416 24 16 28 26	1.69 .10 .08 .11 .24	.4 .3 .2 .3	<.2 <.2 <.2 <.2 <.2 <.2	9 35 22 35 25	21.11 .48 .21 .34 .34	.182 .013 .020 .038 .037	3 6 5 8 7	7 30 16 31 21	.31 .41 .32 .48 .40	150 83 62 129 80	.01 .05 .04 .04 .04	12 <3 1 <3 <3 1 <3 1	.52 .42 .85 .61 .00	.01 .01 .01 .01 .01	.04 .09 .04 .08 .06	<2 <. <2 <. <2 <. <2 <. <2 <.	2 3' 2 2: 2 1/ 2 3: 2 3: 2 41/	1 .7 5 <.3 6 <.3 3 <.3 0 <.3	<.2 <.2 <.2 <.2 <.2 <.2	2.3 3.1 3.0 4.1 2.8	<1 <1 3 1 3
RE 118 11834 11835 11836 11837	134	.6 .6 1.1 .9 1.0	22.1 22.1 92.8 64.9 38.1	2.1 2.3 3.2 2.7 2.8	75.7 74.4 206.1 90.2 84.0	105 129 320 268 209	10 9 28 16 12	4 4 7 6 5	177 174 800 441 239	.99 .98 1.85 1.27 1.30	.6 .6 1.1 1.0 .7	<5 <5 <5 <5	~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	15 13 35 19 21	.09 .10 .28 .12 .11	.2 .3 .3 .2	<.2 <.2 <.2 <.2 <.2 <.2	23 22 31 25 26	.19 .19 .41 .28 .30	.021 .022 .050 .027 .027	4 4 14 8 5	16 13 31 19 16	.28 .28 .42 .32 .37	41 41 152 67 58	.05 .04 .04 .04 .05	ব্য ব্য ব্য ব্য ব্য ব্য	.69 .66 .52 .00 .93	.01 .01 .01 .01 .01	.04 .03 .08 .06 .06	<2 <. <2 <. <2 <. <2 <. <2 <. <2 <.	2 <11 2 <11 2 1 2 2 2 2 .2 <1) <.3) <.3 5 <.3 9 <.3 0 <.3	<.2 <.2 <.2 <.2 <.2 <.2	2.0 2.5 4.2 2.8 2.9	28 85 3 2 1
11838 11839 11840 11841 11842		1.3 .9 2.5 2.8 1.4	38.3 19.4 53.8 58.7 22.0	2.6 2.1 2.9 2.8 2.8	108.3 83.8 89.8 83.8 116.0	193 147 112 161 183	13 9 9 11 11	5 4 5 5 6	300 235 457 400 361	1.26 1.06 1.17 1.24 1.37	.5 .5 .8 1.1 .5	<5 <5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2	17 18 22 23 20	. 14 . 12 . 18 . 18 . 13	.2 .2 .3 .4	<.2 <.2 <.2 <.2 <.2	25 22 23 26 29	.25 .24 .30 .35 .25	.019 .033 .027 .030 .023	5 4 5 5 5	17 14 18 19 19	.35 .30 .33 .33 .33 .37	65 66 89 74 78	.05 .05 .05 .06 .06	ও ও ও ও ও	.91 .74 .79 .81 .91	.01 .01 .01 .01 .01	.05 .05 .05 .05 .06	<2 <. <2 <. <2 <. <2 <. <2 <. <2 <.	2 3 2 <1 2 <1 2 <1 .2 1 .2 1	0 <.3 0 <.3 0 <.3 5 <.3 3 <.3	<.2 <.2 <.2 <.2 <.2 <.2	2.5 2.1 2.8 2.7 2.8	4 2 1 15
11843 11844 11845 11846 11846 11847		3.4 3.7 3.6 .9 .4	149.4 260.5 165.6 10.2 14.7	4.1 4.7 4.0 2.3 2.0	271.1 92.1 109.1 394.9 325.7	654 161 215 133 172	25 20 19 6 8	13 10 8 6 6	371 445 557 458 393	2.39 2.00 1.82 1.45 1.44	2.1 2.8 2.4 <.5 <.5	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	31 33 75 19 15	.47 .19 .63 .14 .12	.4 .6 .5 <.2 <.2	<.2 <.2 <.2 <.2 <.2	41 35 31 23 19	.54 .51 3.98 .23 .17	.031 .065 .038 .010 .044	7 7 3 3	43 23 30 13 11	.57 .49 .46 .54 .58	106 88 97 59 90	.05 .05 .04 .05 .04	3 1 3 1 3 1 3 1 3 1 3 1	.58 .10 .02 .06	.01 .01 .01 .01	.10 .06 .10 .07 .06	<2 <. <2 <. <2 <. <2 <. <2 <. <2 <.	.2 2 .2 2 .2 3 .2 1 .2 1	9 .4 5 <.3 1 .3 4 <.3 0 <.3	.2 .2 <.2 <.2 <.2	4.1 3.0 3.3 3.1 3.0	1 1 1 <1 3
11848 11849 11850 11851 11852		.5 .7 .6 .8	5.2 9.3 18.9 14.3 9.0	2.3 1.8 2.3 2.1 2.5	220.4 213.1 183.0 125.6 93.1	153 173 180 145 219	6 7 10 9 6	5 5 5 5 4	365 343 248 236 281	1.11 1.39 1.20 1.17 .89	<.5 .5 <.5 .6 .5	ゆうかい	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	17 16 18 18 14	.06 .08 .10 .09 .09	<.2 <.2 <.2 <.2 <.2	<.2 <.2 <.2 <.2 <.2	18 22 24 24 19	.20 .20 .23 .21 .18	.017 .018 .023 .027 .033	4 3 4 5 3	10 12 14 12 12	.47 .55 .35 .37 .26	55 53 66 73 80	.04 .04 .05 .05 .03	८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८	.92⁴ .04 .96 .93 .74⁴	.01 .01 .01 .01 .01	.05 .04 .05 .04 .04	<2 < <2 < <2 < <2 < <2 < <2 <	.2 <1 .2 <1 .2 <1 .2 <1 .2 <1 .2 <1 .2 <1	0 <.3 0 <.3 0 <.3 0 <.3 0 <.3	<.2 <.2 <.2 <.2 <.2 <.2	2.7 2.9 2.7 2.4 2.6	1 <1 1 5 1
11853 11854 11855 11856 STAND/	ARD 2	.6 .9 .7 .9 3.4	19.9 15.7 12.8 21.0 118.6	2.3 2.5 2.5 2.6 101.5	101.8 151.0 213.7 855.1 258.4	247 153 113 138 2066	8 9 12 30	4 5 7 17	212 241 368 353 1006	1.10 1.27 1.21 1.69 4.69	.7 .7 .6 .6 85.8	<5 <5 <5 27	<2 <2 <2 <2 17	15 14 18 18 59	.09 .23 .19 .45 2.03	.2 2 <.2 <.2 10.1	<.2 <.2 <.2 <.2 <.2 19.7	21 25 24 29 69	.17 .16 .24 .30 .66	.032 .034 .025 .049 .108	3 4 4 4 16	15 15 14 19 53	.36 .38 .33 .44 1.08	51 77 104 103 231	.04 .05 .05 .04 .10	<3 <3 <3 25 25	.87 .89 .00 .43 2.26	.01 .01 .01 .01 .04	.03 .04 .05 .05 .68	<2 < <2 < <2 < <2 < <2 < 15 2	.2 <1 .2 1 .2 <1 .2 1 .2 1 .4 99	0 <.3 7 <.3 0 <.3 4 <.3 0 .7	<.2 <.2 <.2 .2 2.0	2.8 3.2 2.8 3.6 6.9	<1 <1 <1 55
																			• []	2															

Standard is STANDARD D2/C3/AU-S. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data____FA

Crest Geological Consulting PROJECT 178 FILE # 9801731

Page 5

ACME ANALYTICAL

Data 🎵 FA

Standard is STANDARD D2/C3/AU-S. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Crest Geological Consulting PROJECT 178 FILE # 9801731

ACHE ANALYTICAL																																	ALMEAN	ALTICAL
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppb	Ni PPm F	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	8i ppm	V ppm	Ca %	P %	La ppm }	Cr opm	Mg %	Ba ppm	Ti % j	B opm	Al %	Na %	K %	ppm r	Tl opm p	Hg pbp	Se Te om ppm	Ga ppnt	Au* ppb
11890 11891 11892 11893 11894	.8 .7 1.0 .4 .5	18.7 61.2 65.4 8.9 11.7	3.5 3.4 3.3 1.8 2.1	642.1 392.6 283.3 140.7 147.4	237 164 55 <30 53	13 22 18 7 7	8 10 9 4 5	712 847 778 282 253	1.81 2.35 2.16 1.10 1.19	1.0 1.4 1.2 1.2 <.5	<5 <5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	19 28 21 18 19	.55 .65 .36 .11 .14	<.2 .4 .3 <.2 <.2	.2 <.2 <.2 <.2 <.2	37 40 39 22 23	.24 .35 .27 .21 .23	.037 .054 .029 .020 .051	4 6 7 3 4	20 28 28 11 11	.39 .57 .56 .37 .38	141 146 81 62 77	.05 .05 .05 .04 .04	८३ ८३ ८३ ८३ ८३ ८३	.25 .46 .26 .82 .92	.01 .01 .01 <.01 <.01	.05 .08 .13 .04 .05		<.2 <.2 <.2 <.2 <.2	20 < 22 < 25 < 11 < 23 <	.3 <.2 .3 <.2 .3 <.2 .3 <.2 .3 <.2 .3 <.2	4.3 4.1 3.7 2.8 2.7	2 1 <1 <1 2
11895 11896 11897 11898 11899	.4 .7 1.9 2.2 1.1	12.5 13.4 10.1 163.8 17.4	2.1 2.8 2.8 4.7 3.3	131.0 143.1 78.9 465.2 485.3	145 83 176 473 182	7 7 33 11	4 5 13 6	238 260 238 2634 970	1.15 1.22 1.38 2.56 1.49	<.5 .8 .5 1.4 1.0	<5 <5 <5 <5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	13 14 18 43 22	.09 .12 .07 .58 .56	<.2 <.2 <.2 .3 <.2	<.2 .2 <.2 <.2 <.2	21 25 34 49 25	.17 .17 .20 .48 .22	.042 .024 .009 .026 .064	4 4 10 4	11 13 14 27 19	.40 .44 .44 .56 .34	56 49 59 186 211	.04 .04 .04 .05 .05	ଏ ଏ ଏ ଏ ଏ ଏ	.91 .94 .07 .76	<.01 <.01 .01 .01 .01	.03 .03 .03 .07 .10	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	<.2 <.2 <.2 <.2 <.2	20 < 10 < 18 < 51 22 <	.3 <.2 .3 <.2 .3 <.2 .4 <.2 .3 <.2	3.1 3.1 3.5 4.7 3.6	<1 <1 1 2 1
11900 11923 11924 11925 11926	.6 .7 1.3 .9 1.1	13.7 34.7 75.9 35.1 95.2	2.4 3.1 2.7 2.4 4.5	196.3 46.8 68.7 50.2 89.6	121 50 106 72 325	8 10 15 9 18	5 4 6 4 7	339 266 452 247 453	1.25 1.12 1.33 1.09 1.70	<.5 9 1.1 1.1 1.9	<5 <5 <5 5 <5	<2 <2 <2 <2 <2 <2 <2	17 23 26 16 28	.17 .05 .13 .07 .24	<.2 .2 .3 .5	<.2 <.2 <.2 <.2 <.2 <.2	25 27 30 28 35	.20 .31 .37 .22 .50	.022 .028 .018 .012 .019	4 6 7 4 8	13 16 20 15 26	.42 .42 .37 .28 .33	66 43 76 50 81	.05 .06 .05 .05 .05	<3 <3 <3 <3 <3	.90 .87 1.05 .72 1.25	.01 .01 .01 .01 .01	.05 .04 .05 .04 .06	<2 < <2 < <2 < <2 < <2 < <2 < <2 < 2 </p	<.2 <.2 <.2 <.2 <.2	11 < 47 < 26 < 17 < 18 <	.3 <.2 .3 <.2 .3 <.2 .3 <.2 .3 <.2 .3 <.2	3.3 3.1 3.4 2.4 3.6	14 1 1 <1
RE 11927 11927 11928 11929 11930	1.9 1.9 1.1 1.4 .6	13.3 13.5 74.4 216.0 41.3	3.4 3.4 3.1 4.2 3.2	49.2 51.8 64.6 151.8 59.6	77 72 104 447 82	7 8 16 34 12	4 7 11 5	173 179 460 755 293	1.14 1.20 1.56 2.55 1.23	1.2 1.0 1.8 2.8 .9	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	<2 <2 <2 <2 <2 <2 <2	16 18 24 37 23	.08 .08 .11 .22 .05	.2 <.2 .4 .2	<.2 <.2 <.2 <.2 <.2 <.2	31 32 34 44 30	. 19 .21 .33 .56 .29	.025 .025 .018 .029 .015	4 5 7 10 6	15 15 24 38 19	.27 .28 .41 .54 .44	51 53 63 136 52	.05 .05 .06 .05 .07	८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८	.88 .94 1.05 1.79 .97	.01 .01 .01 .02 .01	.03 .03 .05 .11 .05	<2 <2 <> <2 <> <2 <> <2 <> <2 <> <2 <> <2 <> <2 <> <2 <> <2 <<2 <	<.2 <.2 <.2 <.2 <.2	10 < 13 < 26 < 42 < 19 <	.3 <.2 .3 <.2 .3 <.2 .3 <.2 .3 <.2 .3 <.2	3.9 3.9 3.4 4.4 3.0	3 1 1 2
11931 11932 11933 11934 11935	2.5 1.9 1.1 1.2 .7	322.0 175.0 30.0 28.0 19.3	6.5 4.1 3.0 3.1 2.2	273.8 160.0 77.5 88.9 66.9	530 616 173 154 56	64 48 14 12 10	17 11 6 5	1279 824 239 296 217	4.92 2.94 1.44 1.49 1.21	4.0 2.7 1.2 1.5 1.3	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	59 55 19 28 20	.17 .36 .14 .10 .07	.6 .6 .3 .2	.7 <.2 <.2 <.2 <.2	77 47 33 31 28	.67 .72 .30 .43 .25	.070 .035 .025 .117 .039	14 16 5 5	81 47 19 20 18	1.03 .57 .36 .32 .34	352 178 53 115 75	.05 .05 .05 .04 .05	८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८	4.07 2.52 .95 1.07 .87	.02 .01 .01 .01 .01	.22 .12 .04 .06 .04	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<.2 <.2 <.2 <.2 <.2	52 62 17 < 28 < 25 <	.3 <.2 .6 <.2 .3 <.2 .3 <.2 .3 <.2 .3 <.2	10.0 5.9 3.3 3.4 2.4	1 1 136 1 1
11936 11937 11938 11939 11940	1.4 1.1 1.0 .7 1.0	157.7 90.4 38.3 24.9 28.3	3.7 3.7 2.9 2.6 2.7	86.8 77.5 73.0 71.9 86.1	102 166 104 46 125	28 20 15 10 11	9 7 6 4 5	395 479 235 216 239	2.49 1.51 1.47 1.11 1.23	4.9 2.2 1.6 1.0 1.1		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	28 24 21 18 21	.05 .09 .09 .06 .11	.6 .4 .3 .2 <.2	<.2 <.2 <.2 <.2 <.2	49 35 35 26 29	.35 .31 .28 .22 .25	.045 .022 .022 .021 .021	8 8 7 5 5	37 27 22 16 18	.68 .46 .40 .35 .36	87 81 59 46 62	.06 .06 .07 .06 .06	८२ ८२ ८२ ८२ ८२ ८२	1.68 1.19 1.02 .84 .91	.01 .01 .01 .01 .01	.09 .07 .05 .04 .05	<2 <2 <2 <2 <2 <2 <2 <2	<.2 <.2 <.2 <.2 <.2	46 < 21 < 24 < 24 < 15 <	.3 <.2 .3 <.2 .3 <.2 .3 <.2 .3 <.2 .3 <.2	4.6 3.7 3.7 2.6 3.1	2 <1 1 <1 1
11941 11942 11943 11944 STANDARD	1.3 .7 1.3 .9 23.7	31.2 25.2 134.4 25.3 119.7	2.7 2.7 3.5 2.8 102.2	82.6 86.3 93.4 71.5 260.2	117 136 229 92 2055	13 10 23 11 31	6 4 8 5 17	334 210 618 345 1024	1.34 1.22 2.23 1.30 4.85	1.7 1.3 2.8 1.3 79.1	<5 <5 <5 <5 24	<2 <2 2 <2 <2 17	17 19 31 22 59	.14 .08 .16 .09 2.02	.2 <.2 .5 .2 10.1	<.2 <.2 <.2 <.2 <.2 20.1	33 27 38 30 76	.24 .25 .52 .31 .72	.027 .025 .040 .023 .110	6 5 12 5 16	23 17 32 19 56	.37 .36 .54 .36 1.10	69 63 102 71 234	.07 .06 .05 .06 .11	< < < 	.88 .88 1.48 .92 2.31	.01 .01 .01 .01 .01	.05 .05 .10 .06 .69	<2 <2 <2 <2 16	<.2 <.2 <.2 <.2 <.2 2.6 9	16 < 17 < 46 < 12 < 74	.3 <.2 .3 <.2 .3 <.2 .3 <.2 .5 2.2	3.0 2.9 4.4 3.0 7.9	<1 <1 1 <1 52

Standard is STANDARD D2/C3/AU-S. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data____FA

ACHE ANALYTICAL

Crest Geological Consulting PROJECT 178 FILE # 9801731

ACME ANALYTICAL																																		
SAMPLE#	Mo quinqq	Cu	Pb	Zn ppm	Ag ppb	Ni ppm p	Co opm	Mn ppm	Fe %	As ppm	U ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	8 opm	Al %	Na %	К % {	u Parana	rl н om pp	g Se bppn	e Te nppm	Ga A ppm p	u* pb
11945 11946 11947 11948 11949	.9 30 .6 22 1.4 25 1.1 114 .8 553	.2 .7 .6 .3 .1	2.8 2.6 3.1 4.1 3.9 1	84.3 87.0 55.8 81.1 107.8	75 48 33 282 608	11 12 12 32 36	5 5 6 11 8	267 231 217 493 495	1.23 1.29 1.42 2.62 1.89	1.0 1.1 1.5 5.6 3.8	<5 <5 <5 <5 <5	<2 <2 <2 <2 2 2 2	18 16 17 37 76	.10 .09 .08 .12 .39	<.2 .2 <.2 .6 .4	<.2 <.2 <.2 <.2 <.2 1.8	25 29 30 46 31	.30 .25 .25 .69 1.74	.020 .027 .046 .066 .067	5 5 4 9 7	16 22 20 41 33	.36 .33 .36 .73 .36	51 59 53 86 191	.06 .06 .05 .06 .02	उ उ उ उ उ उ र उ र उ	.84 .81 .87 1.40 1.26	.01 .01 .01 .02 .01	.05 .05 .07 .08 .06	<2 <2 <2 <2 <2 <2 <2 <2 <2	.2 3 .2 2 .2 1 .2 5 .2 8	0 <.3 5 <.3 3 <.3 9 <.3 1 1.8	<.2 <.2 <.2 <.2 <.2 <.2	2.3 2.0 2.3 3.5 3.0	2 1 1 3 2
11950 11951 11952 11953 11954	1.0 23 .8 31 .9 39 .8 21 1.0 22	.4 .7 .4 .1	3.8 1 3.0 1 2.8 1 2.7 1 3.4 1	11.2 20.3 105.3 130.7 114.0	80 213 95 137 148	8 10 10 9 9	5 5 6 5 6	398 353 328 483 293	1.18 1.18 1.30 1.21 1.45	1.5 .9 .9 .5 1.5	<5 <5 5 <5 <5	<2 <2 <2 <2 <2 <2	13 19 15 17 18	.18 .06 .04 .09 .08	<.2 <.2 <.2 <.2	<.2 <.2 <.2 <.2 <.2 <.2	25 21 25 24 26	.19 .29 .21 .22 .25	.038 .029 .020 .023 .040	4 4 5 5 5 5	18 14 14 16 15	.32 .43 .51 .42 .53	67 80 58 94 81	.05 .03 .04 .05 .05	ଏ ଏ ଏ ଏ ଏ ଏ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ	.82 .99 1.06 1.00 1.16	.01 .01 .01 .01 .01	.04 .05 .03 .05 .04	<2 < <2 < <2 < <2 <	.2 <1 .3 2 .2 <1 .2 1 .2 <1	0 <.3 2 <.3 0 <.3 2 <.3 0 <.3	s <.2 s <.2 s <.2 s <.2 s <.2 s <.2 s <.2	2.4 2.7 2.8 2.7 3.3	<1 <1 1 1
11955 11956 11957 RE 11957 11958	.9 17 .8 16 1.0 16 1.1 17 .8 29	.9 .2 .1 .5	2.9 1 2.9 2 2.2 1 2.2 1 2.9 1	01.6 268.3 17.7 19.8 199.4	140 224 81 91 195	8 10 7 7 9	6 6 6 5	311 408 496 508 366	1.33 1.35 1.34 1.39 1.19	1.6 .8 .7 .8 .6	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	18 18 20 21 17	.06 .14 .04 .03 .09	.2 <.2 <.2 <.2 <.2	<.2 <.2 <.2 <.2 <.2 <.2	25 23 24 25 23	.23 .26 .25 .26 .22	.020 .036 .016 .017 .025	4 5 4 5	14 14 13 12 13	.48 .44 .53 .54 .42	49 95 60 60 73	.05 .05 .05 .05 .05	3 3 3 3 3 3 3 3 3 3 3 3 3	.95 1.09 1.01 1.05 1.02	.01 .01 .01 .01 .01	.04 .05 .05 .06 .04	<<br <<br <<br <<br <</td <td>.2 <1 .3 1 .2 1 .2 1 .2 2</td> <td>0 <.3 7 <.3 2 <.3 4 <.3 3 <.3</td> <td><.2 <.2 <.2 <.2 <.2 <.2 <.2</td> <td>2.8 3.4 2.7 2.9 3.3</td> <td>1 3 <1 1 1</td>	.2 <1 .3 1 .2 1 .2 1 .2 2	0 <.3 7 <.3 2 <.3 4 <.3 3 <.3	<.2 <.2 <.2 <.2 <.2 <.2 <.2	2.8 3.4 2.7 2.9 3.3	1 3 <1 1 1
11959 11960 11961 11962 11963	.4 15 .8 25 .9 24 1.7 19 1.1 66	.7 .3 .6 .8 .7	2.4 1 2.4 2 2.6 1 2.3 1 3.0 5	87.8 213.0 157.5 160.3 517.1	240 203 133 128 582	9 10 11 8 11	5 6 7 6 9	343 369 418 405 712	1.17 1.40 1.68 1.50 1.89	.8 .6 .9 .6	<5 <5 <5 5 5	<2 <2 <2 <2 <2 <2 <2	19 21 24 19 33	.09 .16 .11 .07 .30	<.2 <.2 .2 <.2 <.2	<.2 <.2 <.2 <.2 <.2 <.2	21 25 31 29 29	.25 .26 .32 .24 .53	.034 .027 .020 .015 .024	4 5 5 4 4	13 18 20 15 15	.41 .48 .55 .47 .64	82 82 72 51 83	.04 .05 .07 .06 .05	3 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	.97 .99 1.13 .97 1.35	.01 .01 .01 .01	.04 .05 .08 .07 .08	<2 < <2 < <2 < <2 < <2 < <2 <	.2 1 .2 1 .2 1 .2 1 .2 1 .2 2	8 <.3 2 <.7 1 <.3 6 <.3 3 <.3	<.2 <.2 <.2 <.2 <.2 <.2 <.2	2.6 2.7 3.2 2.7 3.5	1 1 <1 <1
11964 11965 11966 11967 11968	.6 24 1.0 60 1.2 106 1.3 53 2.7 133	.6 .4 .1 .4	2.3 3 3.4 3 3.3 1 3.1 3.7	32.5 65.4 100.3 85.1 82.8	235 250 155 157 236	10 32 23 12 17	7 12 7 8 8	394 368 468 385 1159	1.56 2.44 1.84 1.75 1.75	.7 2.0 1.3 1.2 1.4		<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	20 22 25 25 26	.25 .32 .12 .07 .12	.2 .3 .2 .2	<.2 <.2 <.2 <.2 <.2 <.2	28 43 32 36 33	.26 .32 .35 .38 .43	.031 .087 .027 .015 .024	4 6 6 7	18 36 25 25 24	.50 .54 .40 .44 .39	57 121 98 74 105	.05 .06 .06 .07 .05	3 3 3 3 3 3	1.03 1.61 1.35 1.18 1.20	.01 .01 .01 .01 .01	.05 .06 .10 .06 .07	<2 < <2 < <2 < <2 < <2 < <2 <	.2 1 .2 3 .2 2 .2 2 .2 2	8 <.3 0 <.3 6 <.3 8 <.3 1 <.3	s <.2 s <.2 s <.2 s <.2 s <.2 s <.2	2.9 4.2 3.4 3.2 3.5	3 1 <1 <1 <1
11969 11970 11971 11972 11973	1.1 76 1.8 153 3.8 414 1.1 110 .6 53	.8 .0 .1 .7	2.5 3.3 1 4.8 1 2.6 2.0	66.7 102.5 184.3 67.6 54.2	207 557 1133 260 112	13 19 45 19 15	6 8 14 8 6	515 754 1184 346 272	1.41 1.88 3.26 1.65 1.50	1.1 1.9 3.1 4.4 3.0	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	21 29 54 139 122	.03 .12 .35 .34 .25	.2 .3 .4 .4 .3	<.2 .2 .2 <.2 <.2	30 35 43 29 24	.28 .40 .91 10.94 10.28	.033 .040 .059 .058 .059	6 9 11 7 5	21 28 55 23 19	.39 .47 .69 .60 .55	60 102 165 96 88	.05 .05 .05 .03 .03	<3 4 4 <3 <3	.97 1.28 2.29 .96 .83	.01 .01 .02 .02 .01	.06 .10 .18 .06 .05	<2 < <2 < <2 < <2 < <2 < <2 <	.2 1 .2 3 .2 9 .2 3 .2 2	1 <.3 1 <.3 6 .4 3 .3 9 .3	\$ <.2 \$ <.2 \$ <.2 \$ <.2 \$ <.2 \$ <.2	2.5 2 3.7 5.1 2.6 2.5	21 5 1 3 1
11974 11975 11976 11977 STANDARD	2.0 32 .9 41 1.5 38 1.5 26 25.3 125	.2 .0 .6 .6 .0 10	3.6 2.4 3.1 7 2.7 3 04.4 2	62.5 72.0 740.0 742.7 264.6	168 95 203 249 2020	10 15 11 8 31	7 8 9 6 18	681 345 670 326 1016	1.59 1.77 1.83 1.42 4.74	1.5 2.7 .8 1.1 72.6	<5 <5 <5 <5 28	<2 <2 <2 <2 <2 19	24 22 25 29 59	.09 .06 .68 .20 1.96	.2 .3 .2 <.2 9.7	<.2 <.2 <.2 <.2 <.2 20.2	36 38 33 30 70	.47 .35 .37 .48 .68	.019 .053 .068 .020 .110	5 6 4 17	24 25 25 20 57	.31 .52 .38 .31 1.11	99 33 96 60 245	.06 .06 .05 .05 .11	<3 <3 5 <3 31	1.04 .98 1.23 .98 2.30	.01 .01 .01 .01 .04	.07 .05 .08 .04 .68	<2 < <2 < <2 < <2 < 15 2	.2 1 .2 1 .2 2 .2 2 .5 99	4 <.3 2 <.3 8 <.3 2 .3 3 .7	5 <.2 5 <.2 5 <.2 5 <.2 5 <.2 7 2.0	3.2 2.6 2.6 2.7 6.9	<1 4 <1 1 55

Standard is STANDARD D2/C3/AU-S. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data____FA

Crest Geological Consulting PROJECT 178 FILE # 9801731

ALME ANALTTICAL																																		
SAMPLE#	Mo	Cu	Pb	Zn. DDM	Ag	Ni	Co	Min pogg	Fe %	As	U nag	nt mag	Sr	Cd ppm	Sb. ppm	Bi ppm	V Mqq	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	К %	W ppmp	τι H pom pp	g Se bppn	e Te 1 ppm	Ga / ppm	Au* ppb
11978 11979 11980 11981 11982	1.0 1.2 .5 1.2 1.0	27.8 47.3 18.0 30.6 10.8	3.5 3.8 2.3 2.7 3.4	301.5 150.4 104.5 200.8 185.6	185 138 51 127 210	10 10 7 10 6	10 9 4 6 4	681 265 290 337 386	1.64 1.71 1.09 1.73 .97	1.5 1.5 .9 1.4 1.5	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2	27 41 12 15 11	.28 .23 .06 .17 .15	<.2 <.2 <.2 <.2 <.2 <.2	<.2 <.2 <.2 <.2 <.2 <.2 <.2	26 22 21 28 17	.55 .88 .18 .20 .18	.030 .016 .033 .035 .026	4 4 4 6 4	18 15 14 16 9	.43 .51 .37 .54 .33	83 92 57 70 60	.04 .03 .04 .04 .03	3 3 3 3 3 3 3	1.18 1.40 .82< 1.19 .79	.01 .01 .01 .01 .01	.07 .05 .03 .04 .04	<2 < <2 < <2 < <2 < <2 <	.2 2 .2 2 .2 1 .2 2 .2 3	3 .7 9 1.2 2 <.3 2 <.3 0 <.3	<.2 <.2 <.2 <.2 <.2 <.2	2.8 3.4 2.1 3.3 2.0	<1 13 1 <1 3
11983 11984 11985 11986 RE 11986	.6 .6 .9 .5 .6	15.8 13.7 9.0 10.9 11.6	2.6 3.4 2.8 2.1 2.4	176.2 154.4 50.4 104.3 111.2	159 119 48 144 163	10 7 6 7 7	6 5 5 5 5	238 578 206 269 285	1.40 1.17 1.13 1.16 1.21	1.1 .7 <.5 .7 <.5	<5 <5 <5 <5 <5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	15 18 15 15 16	.08 .19 .02 .03 .05	<.2 <.2 <.2 <.2 <.2 <.2	<.2 <.2 <.2 <.2 <.2 <.2	23 19 22 20 21	.27 .29 .24 .21 .22	.092 .034 .005 .025 .025	4 4 3 3 3	15 9 14 12 13	.43 .45 .37 .43 .45	75 97 47 65 69	.04 .04 .04 .04 .04	3 3 3 3 3 3 3	1.14 .94 .91 .90 .96	.01 .01 .01 .01 .01	.05 .06 .04 .04 .05	<2 < <2 < <2 < <2 <	.2 1 .2 1 .2 <1 .2 <1 .2 1	5 <.3 9 <.3 0 <.3 8 <.3 7 <.3	5 <.2 5 <.2 5 <.2 5 <.2 5 <.2	2.9 2.4 2.5 2.0 2.6	<1 1 <1 1 1
11987 11988 11989 11990 11991	.7 .8 .5 .7 .4	12.1 40.0 13.7 13.1 24.2	2.5 2.7 2.3 2.4 2.2	65.6 93.9 77.3 90.0 68.9	54 276 92 123 <30	6 10 8 8 10	5 6 5 5 6	366 560 212 231 250	1.13 1.43 1.20 1.13 1.38	.7 2.5 1.5 1.6 1.1	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2	13 106 14 13 16	.05 .15 .05 .08 .04	<.2 <.2 <.2 <.2 <.2	<.2 <.2 <.2 <.2 <.2 <.2	22 20 22 21 26	.19 4.56 .23 .18 .24	.020 .046 .045 .041 .035	3 3 4 5	15 17 13 14 17	.38 .44 .41 .37 .48	58 117 82 101 65	.05 .02 .04 .04 .05	3 3 3 3 3 3 3 3 3 3 3 3	.82 1.06 .86 .86 .93	.01 .01 .01 .01 .01	.03 .03 .05 .04 .04	<2 < <2 < <2 < <2 < <2 <	.2 1 .2 3 .2 <1 .2 1	9 <.3 6 .3 0 <.3 3 <.3 2 <.3	s <.2 s <.2 s <.2 s <.2 s <.2 s <.2 s <.2	2.4 3.0 2.6 2.0 2.2	1 <1 1 1
11992 11993 11994 11995 11996	.4 .9 .9 .6 .9	13.4 38.6 27.3 26.8 19.5	2.8 2.7 3.3 3.3 3.3	95.3 60.0 74.6 54.0 92.5	65 36 <30 <30 <30	8 17 17 9 12	5 5 3 5	200 211 247 176 440	1.15 1.44 1.42 .90 1.17	1.2 3.1 1.7 .6 1.4	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	15 19 19 16 16	.05 .04 .05 .03 .08	<.2 <.2 <.2 <.2 <.2 <.2	<.2 <.2 <.2 <.2 <.2 <.2	21 30 29 22 25	.22 .25 .23 .22 .20	.041 .100 .089 .018 .088	4 5 5 5 4	14 19 19 11 14	.39 .33 .30 .29 .24	83 105 97 57 106	.04 .04 .05 .03	3 3 3 3 3 3 3 3	.94 1.27 1.38 .83 1.14	.01 .01 .01 .01 .01	.05 .05 .03 .03 .03	<2 < <2 < <2 < <2 < <2 < <2 < <2 <	.2 1 .2 1 .2 2 .2 4 .2 4 .2 3	2 <.3 7 <.3 8 <.3 0 <.3 2 <.3	3 <.2 3 <.2 3 <.2 3 <.2 3 <.2 5 <.2	2.6 2.8 3.8 2.7 3.2	1 1 1 1
11997 11998 11999 12000 12001	.8 .6 .3 .3 .7	27.1 18.2 32.9 13.2 62.9	3.1 2.8 2.8 2.0 2.5	190.1 70.0 55.9 66.8 61.3	<30 <30 <30 35 65	13 10 11 8 13	5 5 4 5 5	323 354 199 300 221	1.39 1.21 1.00 .98 1.24	1.5 .9 .8 .6 2.0	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2	18 23 17 26 20	.17 .09 .02 .15 .05	<.2 <.2 <.2 <.2 <.2 <.2	<.2 <.2 <.2 <.2 <.2 <.2	28 28 22 22 29	.26 .28 .22 .35 .26	.086 .051 .017 .041 .018	5 5 5 4 6	19 15 16 14 16	.33 .31 .37 .24 .38	84 66 56 102 66	.04 .04 .05 .04 .05	3 3 3 3 3 3 3 3	1.25 .92 .94 .64 1.06	.01 .01 .01 .01 .01	.04 .03 .03 .04 .05		 .2 2 .2 1 	0 <.3 3 <.3 0 <.3 6 <.3	3 <.2 3 <.2 3 <.2 3 <.2 3 <.2 3 <.2	3.2 2.9 2.5 1.6 2.7	1 3 2 8 4
12002 12003 12004 12005 12006	.5 .3 .7 .5 .5	41.0 43.7 74.9 44.2 58.5	3.0 3.3 2.5 4.8 3.1	55.8 58.6 72.7 51.7 66.1	<30 <30 54 70 91	11 13 17 12 14	5 5 6 5 6	247 223 438 333 335	1.12 1.15 1.27 1.07 1.14	.5 .6 1.5 1.0 .7	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	22 20 24 21 22	.03 .03 .05 .13 .05	<.2 <.2 <.2 <.2 <.2	<.2 <.2 <.2 <.2 <.2	24 25 26 23 25	.30 .26 .30 .28 .29	.018 .016 .028 .021 .024	6 6 7 6 7	18 17 21 20 19	.43 .43 .40 .41 .39	56 61 82 60 70	.06 .06 .04 .06 .05	<3 <3 3 3 4	1.03 1.06 1.26 1.01 1.02	.01 .01 .01 .01 .01	.04 .04 .05 .04 .04	<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2 <p< td=""><td> .2 <1 .2 1 .2 1 .2 2 .2 2 .2 2 </td><td>0 <.3 3 <.3 5 <.3 3 <.3</td><td>3 <.2 3 <.2 3 <.2 3 <.2 3 <.2 3 <.2</td><td>2.5 2.8 2.9 3.1 2.7</td><td>3 2 <1 1 <1</td></p<>	 .2 <1 .2 1 .2 1 .2 2 .2 2 .2 2 	0 <.3 3 <.3 5 <.3 3 <.3	3 <.2 3 <.2 3 <.2 3 <.2 3 <.2 3 <.2	2.5 2.8 2.9 3.1 2.7	3 2 <1 1 <1
12007 12008 12009 12010 Standard	.7 1.3 1.1 .3 23.3	52.2 146.1 115.4 28.3 118.9	2.0 3.4 3.0 1.5 101.1	73.9 116.5 99.1 44.4 260.2	66 217 208 <30 1915	12 32 23 8 30	5 11 8 3 17	226 718 547 147 1008	1.18 2.43 1.66 .77 4.69	.6 3.8 1.8 .6 72.0	<5 <5 <5 <5 26	<2 <2 <2 <2 <2 17	16 33 29 15 58	.05 .09 .09 .02 1.93	<.2 .3 .2 <.2 10.6	<.2 <.2 <.2 <.2 19.6	24 46 31 18 68	.21 .42 .39 .21 .69	.020 .043 .033 .015 .109	5 9 8 4 16	16 39 26 14 51	.36 .53 .44 .27 1.09	59 145 108 35 228	.04 .05 .04 .05 .10	<3 3 <3 <3 31	.90 1.88 1.48 .65 2.24	.01 .01 .01 .01 .04	.04 .10 .07 .03 .68	<2 <2 <2 <2 <2 16 2	.2 1 <.2 2 <.2 3 <.2 <1 2.4 98	2 <.3 4 <.3 5 <.3 0 <.3	3 <.2 3 <.2 3 <.2 3 <.2 4 1.8	2.4 4.5 4.0 1.6 6.1	1 1 1 52

Standard is STANDARD D2/C3/AU-S. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data____FA

22

Crest Geological Consulting PROJECT 178 FILE # 9801731

SAMPLE#	Мо	Cu	Pb	Zn	Ag	Ni	Со	Mn	Fe	As	U	Th ppm r	Sr	Çd	Sb	Bi	V	Ca %	P %	La	Cr DDM	Mg %	8a Dom	Ti %	B	Al %	Na %	K %	lT ₩	Hg	Se ppm	Te noon	Ga/	↓u* opb
12011 12012 12013 12014 12015	,5 .8 .7 1.3 1.3	47.2 75.8 79.4 176.9 370.8	3.0 3.6 3.6 4.4 4.5	77.2 86.4 75.2 95.2 98.2	69 221 171 231 423	12 20 17 28 49	4 7 8 11 12	202 425 465 1226 805	.95 1.70 1.88 2.28 3.12	 <.5 .8 .6 1.9 1.9 	<5 <5 <5 5 5	<2 <2 <2 <2 <2 <2 <2 <2	19 28 30 45 60	.03 .13 .09 .33 .32	<.2 .3 .4 .4 .3	<.2 <.2 <.2 <.2 <.2 <.2 <.2	21 35 33 37 44	.26 .42 .47 .99 .97	.016 .028 .031 .025 .029	5 7 7 11 13	16 24 26 26 55	.30 .40 .51 .48 .60	57 90 79 143 202	.05 .05 .06 .04 .04	4 <3 ' <3 ' 6 ' 4 2	.84 .23 .27 .49 2.60	.01 .01 .01 .01 .01	.05 .08 .07 .09 .11	<2 <.2 <2 <.2 <2 <.2 <2 <.1 <2 <.1 <2 <.1	21 29 31 32 46	<.3 <.3 <.3 .3 .4	<.2 <.2 <.2 <.2 <.2 <.2	2.4 3.4 3.3 3.5 5.3	1 1 1 <1 1
12016 12017 12018 12019 12020	1.1 .9 1.0 .9 .9	130.7 30.8 58.5 45.0 39.2	5.0 2.6 2.9 3.1 2.7	148.4 55.6 86.3 88.9 69.3	318 92 212 154 222	31 11 18 15 14	12 5 7 6 6	750 250 407 282 323	2.40 1.16 1.56 1.46 1.31	2.3 .9 1.1 .7 .6	<5 <5 <5 <5 <5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	38 22 26 22 21	.30 .07 .07 .08 .08	.4 .2 .2 .3 .2	<.2 <.2 <.2 <.2 <.2 <.2	41 26 33 33 30	.59 .31 .34 .31 .30	.035 .030 .039 .032 .022	10 6 8 7 7	35 15 22 21 18	.52 .38 .45 .37 .32	134 42 77 58 57	.06 .06 .05 .06 .06	3 <3 4 <3 3	.69 .81 .16 .98 .89	.02 .01 .01 .01 .01	.10 .04 .06 .05 .05	<2 <.2 <2 <2 < <2 < <2 < <2 <	28 21 32 25 <10	<.3 <.3 <.3 <.3 <.3	<.2 <.2 <.2 <.2 <.2 <.2	4.4 2.6 2.7 3.1 2.6	2 <1 1 2 2
12021 12022 12023 12024 12025	2.0 1.2 1.5 .8 2.0	132.9 28.2 235.7 19.8 272.6	5.8 3.4 5.6 4.0 6.8	91.1 69.0 140.4 56.9 172.4	166 125 469 115 728	27 8 31 10 36	11 5 12 6 15	627 325 1038 341 1685	2.39 1.11 2.43 1.53 2.73	3.6 .8 1.6 1.3 2.3	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	38 26 52 27 62	.18 .12 .29 .06 .51	.6 .3 .4 .3 .5	.2 <.2 1.3 <.2 1.0	40 25 32 36 41	.87 .46 1.09 .42 1.34	.065 .032 .036 .011 .052	8 4 12 5 14	33 13 28 20 34	.63 .30 .56 .39 .48	90 57 103 72 203	.05 .04 .04 .06 .04	<3 · <3 · 4 ·	.41 .76 .56 .07 .91	.01 .01 .02 .01 .02	.14 .04 .09 .04 .11	<2 <.2 <2 <.3 <2 <.3 <2 <.3 <2 <.3	46 14 68 11 53	<.3 <.3 <.3 <.3	<.2 <.2 <.2 <.2 <.2 <.2	4.1 2.3 4.0 3.7 4.9	2 <1 <1 <1 <1
12026 12027 12028 12029 RE 12029	1.0 1.0 1.0 .7 .7	80.1 20.0 71.7 15.2 13.4	4.7 3.3 4.3 4.3 3.5	97.9 81.7 73.3 63.6 60.0	237 105 87 89 87	18 10 16 9 8	8 6 10 5 5	568 293 467 209 195	1.90 1.49 2.38 1.31 1.24	1.5 .5 1.1 .5 <.5	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	31 28 45 24 21	.17 .05 .07 .06 .06	.3 <.2 .3 .3 .2	<.2 <.2 <.2 <.2 <.2 <.2	37 33 37 29 27	.43 .32 .58 .29 .27	.014 .014 .013 .040 .039	7 6 8 5 5	23 19 31 16 15	.45 .43 .66 .37 .35	89 81 113 71 68	.05 .05 .05 .05 .05	<3 <3 5 4 3	1.27 1.17 1.63 .96 .91	.01 .01 .01 .01 .01	.05 .04 .08 .04 .04	<2 <.: <2 <.: <2 <.: <2 <.: <2 <.: <2 <.:	27 <10 16 14 17	<.3 <.3 <.3 <.3 <.3	<.2 <.2 <.2 <.2 <.2 <.2	3.7 3.3 4.4 3.1 3.3	<1 1 3 6 4
12030 12031 12032 12033 12034	.7 .9 .4 .9 .6	38.0 36.4 37.7 21.1 28.6	3.0 2.8 3.1 3.1 2.4	70.2 63.7 98.2 94.6 150.3	111 130 120 65 118	15 11 11 7 11	6 7 4 5 7	309 285 187 234 284	1.90 1.61 1.01 1.19 1.47	2.2 .6 <.5 <.5 <.5	<5 <5 <5 <5 <5	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	27 24 15 16 20	.03 .03 .03 .05 .11	.3 .2 <.2 <.2 <.2	<.2 <.2 <.2 <.2 <.2	35 33 20 23 22	.37 .34 .24 .21 .27	.023 .014 .025 .031 .066	6 5 5 5 4	25 24 13 10 12	.58 .48 .33 .40 .57	72 48 54 68 121	.07 .07 .05 .05 .05	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	.24 .09 .97 .98	.01 .01 .01 .01 .01	.04 .05 .04 .04 .05	<2 <. <2 <. <2 <. <2 <. <2 <.	33 15 12 12 10 10 10	<.3 <.3 <.3 <.3 <.3	<.2 <.2 <.2 <.2 <.2 <.2	3.5 3.4 2.9 3.2 3.4	6 4 2 <1 2
12035 12036 12037 12038 12039	.5 .6 .9 1.8 2.2	13.1 15.4 17.9 17.5 27.3	3.1 2.1 2.6 3.8 5.3	377.5 152.4 126.8 117.9 621.2	46 63 113 67 355	7 9 8 13 20	5 7 5 7 13	339 277 240 281 822	1.20 1.68 1.28 1.76 2.77	<.5 <.5 <.5 .8 1.3	<5 <5 <5 5 5 5 5 5	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	18 16 17 61 23	.31 .06 .07 .22 .50	<.2 <.2 .2 .3 .2	<.2 <.2 <.2 <.2 <.2	22 23 22 36 46	.24 .20 .22 1.86 .34	.031 .018 .031 .012 .076	5446	10 11 10 22 31	.44 .73 .45 .43 .50	93 40 48 90 192	.05 .03 .05 .05 .05	3 3 3 3 3 3 3	1.06 1.29 .97 1.12 1.69	.01 .01 .01 .02 .01	.05 .03 .04 .04 .07	<2 <. <2 <. <2 <. <2 <. <2 <.	2 <10 2 13 2 25 2 22 2 23	<.3 <.3 <.3 <.3 <.3	<.2 <.2 <.2 <.2 <.2 <.2	3.5 4.0 3.4 4.0 5.2	3 1 2 <1 1
12040 12041 12042 12043 Standard	.8 1.5 .7 1.3 23.8	36.7 10.7 252.1 19.3 122.6	2.9 3.0 2.4 2.7 103.3	263.5 56.0 220.3 124.0 263.8	146 321 549 136 2001	18 5 18 8 31	10 4 5 8 17	425 216 389 593 1023	2.13 .89 1.15 1.74 4.78	1.5 <.5 .7 <.5 75.9	<5 <5 <5 <5 21	<2 <2 <2 <2 <2 19	19 61 354 21 59	.26 .10 .82 .07 1.91	.3 <.2 .2 <.2 11.1	<.2 <.2 1.4 <.2 17.4	42 15 12 25 69	.29 .76 12.81 .34 .69	.080 .012 .187 .023 .111	5 2 4 3 16	30 8 14 9 51	.49 .36 .54 .72 1.10	91 74 158 65 248	.05 .02 .02 .05 .11	<3 <3 14 <3 26	1.11 .74 .98 1.29 2.30	.01 .01 .02 .01 .04	.03 .04 .08 .06 .69	<2 < <2 < <2 < <2 < 15 2	2 14 31 41 986	<.3 <.3 .6 .3 .7	<.2 <.2 <.2 <.2 <.2 2.2	3.3 2.5 2.5 4.1 7.6	5 <1 2 3 53

Standard is STANDARD D2/C3/AU-S. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data<u> </u> FA

AA

ACHE ANALYTICA

ACHE ANALYTICAL

Crest Geological Consulting PROJECT 178 FILE # 9801731

ACHE ANALYTIC	VL.																																		
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppb	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Th ppm	Sr ppml	Cd : ppm p	Sb pm	Bi ppm	V ppm	Ca %	Р %	La ppm (Cr ppm	Mg %	8a ppm	Ti %	B ppm	Al %	Na %	K %	W ppm p	Tl pm	Hg ppb (Se ppm p	Te opm p	Ga A prnr	.u* opb
12044 12045 12046 12047 12048	.4 .8 .9 1.2 1.9	11.9 15.2 135.7 54.6 373.3	2.7 2.3 2.1 4.0 3.6	220.2 214.1 66.4 139.0 631.0	139 139 186 107 626	8 8 11 14 28	7 6 3 8 8	480 774 562 711 1126	1.40 1.56 .65 1.75 1.17	.6 .6 1.1 3.1 2.1	<5 <5 <5 5 <5	<2 <2 <2 <2 <2 <2 <2	14 20 428 22 432	.08 < .11 < .39 .14 1.55	.2 .2 .2 .4 .2	<.2 <.2 <.2 <.2 <.2 <.2	23 22 8 29 19	.19 .25 30.44 .37 16.62	.041 .033 .098 .068 .344	4 4 <1 6 4	16 17 46 24 24	.55 .57 .31 .57 .42	102 120 179 71 336	.04 .04 .01 .05 .02	<3 <3 15 <3 22	1.10 1.16 .33 1.10 1.02	.01 .01 .02 .01 .02	.04 .06 .04 .06 .11	<2 < <2 < <2 < <2 < <2 < <2 <	.2 .2 .4 .2	10 <10 <10 <10 <10 27	<.3 <.3 .6 <.3 <.3	<.2 3 <.2 3 <.2 3 <.2 3	5.3 5.1 5.1 5.2 2.0	1 4 1 1 2
12049 12050 12051 12052 12053	1.7 1.5 .6 .4 .4	270.5 63.4 19.3 21.1 17.3	2.7 2.3 2.8 2.8 2.6	227.3 103.4 83.0 79.1 93.6	753 177 128 101 56	25 12 9 10 10	5 8 5 5 5	703 349 227 247 332	1.10 1.97 1.23 1.22 1.20	1.4 1.5 .8 <.5 .5	<5 8 <5 <5 6	<2 2 2 2 2 2 2 2 2 2 2 2 2 2	276 19 18 19 17	1.71 .15 .06 .04 < .03 <	.2 .2 .2 .2	1.1 <.2 <.2 <.2 <.2	12 30 25 22 23	16.31 .32 .24 .25 .23	.115 .050 .033 .036 .033	3 5 5 5 4	35 21 19 17 15	.33 .69 .42 .52 .48	185 32 68 55 62	.01 .05 .05 .05 .05	12 ≺3 ≺3 ≺3	1.00 1.20 .97 1.01 .95	.02 .01 .01 .01 .01	.08 .04 .04 .04 .05	<2 < <2 < <2 < <2 < <2 <	.2.2.2.2.	30 <10 <10 <10 <10 <10	.8 <.3 <.3 <.3 <.3	<.2 2 <.2 3 <.2 3 <.2 3 <.2 3	2.4 5.7 5.1 2.8 2.8	1 4 3 51 1
12054 12055 12056 RE 12056 12057	.5 .6 .3 .5 .6	12.5 18.8 12.2 13.3 21.2	2.9 2.7 2.5 2.5 2.5	149.2 111.5 90.8 92.0 94.4	160 122 81 102 53	10 11 8 9 12	5 6 5 7 7	293 283 238 248 285	1.23 1.52 1.24 1.31 1.58	<.5 .8 .6 .5 .7	7 6 √5 √5 6	<2 <2 <2 <2 <2 <2	15 17 15 16 19	.12 .06 .06 < .06 .05	.2 .2 .2 .2 .2	<.2 <.2 <.2 <.2 <.2 <.2	24 30 23 25 30	.21 .22 .20 .22 .24	.032 .043 .027 .028 .047	4 4 3 4 5	17 17 15 15 20	.41 .55 .45 .48 .54	92 72 66 67 62	.05 .06 .05 .06 .06	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	.94 1.10 .92 .97 1.10	.01 .01 .01 .01 .01	.04 .04 .04 .04 .05	<2 < <2 < <2 < <2 < <2 < <2 <	.2 .2 .2 .2 .2	<10 <10 <10 16 <10	<.3 <.3 <.3 <.3 <.3	<.2 <.2 <.2 <.2 <.2	i.1 i.1 2.9 2.9 3.2	3 <1 12 6 6
12058 12059 12060 12061 12062	.4 .6 .7 1.1	13.0 10.8 18.1 78.9 56.4	2.3 2.8 2.3 3.6 4.1	83.3 120.8 68.6 133.0 201.2	45 85 93 61 417	10 9 10 23 27	6 5 6 11 12	234 302 234 500 688	1.34 1.26 1.33 2.35 2.74	.5 <.5 .7 1.7 .9	<5 <5 <5 <5 <5	2 <2 <2 2 2 2	15 15 14 24 105	.04 .06 < .04 .12 .29 <	.2 .2 .2 .4 .2	<.2 <.2 <.2 <.2 <.2	26 25 26 39 31	.18 .21 .18 .36 2.38	.046 .051 .039 .041 .027	4 4 7 9	19 19 17 29 35	.42 .37 .45 .70 .96	43 72 43 60 117	.05 .05 .05 .05 .05	उ उ उ उ उ उ उ उ उ उ उ उ	.95 .96 .93 1.46 1.68	.01 .01 .01 .01 .02	.04 .06 .03 .08 .13	<2 < <2 < <2 < <2 < <2 <	.2 .2 .2 .2	<10 11 10 12 23	<.3 <.3 <.3 <.3 4	<.2 <.2 <.2 <.2 <.2 <.2	2.6 2.9 5.2 4.0 4.3	3 4 17 4 1
12063 12064 12065 12066 12067	.7 .5 .6 .4	37.1 10.9 12.7 18.6 11.5	3.3 2.4 2.3 3.3 3.7	237.3 174.3 237.9 162.6 429.9	52 78 43 85 184	16 10 10 13 11	9 6 7 7 7	583 358 394 446 681	2.22 1.45 1.56 1.75 1.78	1.2 <.5 .5 .7	<5 10 <5 <5 <5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	24 18 17 23 18	.16 .14 < .15 < .12 .29	.2 .2 .2 .2	<.2 <.2 <.2 <.2 <.2	36 27 28 36 28	.32 .23 .21 .30 .25	.027 .025 .024 .016 .043	5 4 5 5	30 20 18 24 19	.59 .51 .58 .51 .61	67 70 46 59 93	.05 .06 .05 .07 .05	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.42 1.02 1.05 1.08 1.21	.01 .01 .01 .01 .01	.08 .05 .05 .09 .09	<2 < <2 < <2 < <2 < <2 <	.2 .2 .2 .2 .2	17 <10 <10 <10 13	<.3 <.3 <.3 <.3 <.3	<.2 <.2 <.2 <.2 <.2	5.6 5.3 5.0 5.1 5.4	3 8 1 1 3
12068 12101 12102 12103 12103 12104	1.6 .7 .8 .7 1.4	10.1 6.8 16.9 12.7 45.8	5.6 2.8 2.4 2.6 4.1	102.9 257.4 234.8 206.3 723.6	76 98 201 91 234	11 7 12 7 16	9 4 6 4 8	583 539 391 404 819	2.11 1.04 1.29 1.12 1.92	.6 <.5 .6 <.5	<5 6 5 10	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	17 11 12 12 23	.03 < .24 < .25 .24 < .63 <	.2 .2 .2 .2	<.2 <.2 <.2 <.2 <.2	30 23 29 25 33	.17 .15 .21 .17 .35	.012 .023 .057 .022 .064	3 4 4 6	13 16 22 13 21	1.05 .29 .30 .33 .42	35 78 92 65 173	.02 .05 .05 .06 .05	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	1.64 .82 .96 .79 1.37	.01 .01 .01 .01 .01	.02 .04 .04 .04 .04	<2 < <2 < <2 < <2 < <2 <	.2	<10 <10 21 <10 43	<.3 <.3 <.3 <.3 <.3	<.2 <.2 <.2 <.2 <.2 <.2	3.8 2.9 3.2 2.5 4.4	10 2 1 2 <1
12105 12106 12107 12108 STANDARD	1.1 1.1 1.2 2.0 25.2	32.3 22.6 62.3 40.5 124.3	4.4 3.8 4.6 6.0 104.0	1174.9 942.5 779.3 743.5 269.9	234 284 196 440 2075	19 14 23 12 32	9 9 11 10 18	1137 1571 401 640 1060	2.25 1.97 1.90 2.00 4.96	1.0 1.4 <.5 .6 78.6	7 <5 5 6 26	2 <2 <2 <2 21	20 21 24 16 61	.77 1.12 < 2.36 < 1.12 2.03 8	.2 .2 .2 .2 .2 .8 1	<.2 <.2 .2 <.2 9.5	38 36 34 38 71	.28 .25 .41 .23 .66	.052 .044 .023 .036 .115	5 5 4 18	24 23 19 21 58	.44 .38 .63 .46 1.14	284 294 75 70 284	.05 .05 .04 .05 .11	ଏ ଏ ଏ ଏ ଏ ଏ ଅ ଏ ଅ ଏ ଅ ଏ ଅ ଓ ଅ ଅ ଅ ଅ ଅ ଅ	1.64 1.33 1.25 1.38 2.40	.01 .01 .01 .01 .01	.07 .04 .05 .06 .72	<2 < <2 < <2 < <2 < 17 2	.2 .2 .2 .2 .5 1	27 24 34 29 1026	<.3 <.3 <.3 <.3 4	.2 .2 .2 .2 .2	1.9 5.9 1.2 1.5 7.3	1 27 2 2 52

Standard is STANDARD D2/C3/AU-S. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data____FA

Crest Geological Consulting PROJECT 178 FILE # 9801731

ACME ANALYTICAL																																			
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co DDM	Mn maa	Fe %	As mag	U I maa	Th pom	Sr ppm	Cd ppm r	Sb opm	Bi ppm	V	Ca %	P %	La ppm j	Cr ppm	Mg %	Ba ppm	ті % р	B Sport	Al %	Na %	к %	r W ppm pp	nt H xnipp	g Se bppr	e Te npprn	Ga ppn	Au* ppb	
 12109 12110 12111 12112 12113	.7 .4 .5 .9 1.7	13.2 10.6 6.0 39.0 14.1	2.5 3.6 3.0 6.4 4.1	122.1 127.1 158.9 95.7 53.3	58 89 79 121 100	8 10 8 23 6	5 5 4 9 4	576 517 540 424 169	1.03 1.19 1.02 2.20 1.00	.6 .9 .7 3.1 1.6	7 5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	11 14 14 21 32	.13 .15 .15 .15 .11 .06	<.2 <.2 <.2 <.2 .3 <.2	<.2 <.2 <.2 <.2 <.2 <.2	27 30 26 47 24	.18 .21 .22 .33 .35	.029 .036 .028 .052 .007	4 4 4 6 2	15 20 13 36 11	.27 .29 .26 .58 .46	84 96 87 52 45	.05 .05 .05 .07 .07	3 4 4 <3 1 <3	.71 .83 .75 .25 .95	.01 .01 .01 .01 .01	.03 .03 .04 .07 .01		.2 1 .2 <1 .2 1 .2 1 .2 2	5 <.3 0 <.3 6 <.3 2 <.3	<pre> <.2 <.2 </pre>	1.8 2.6 2.2 3.0 2.8	<1 <1 <1 <1 <1	
12114 12115 12116 12117 12118	1.0 1.4 2.1 3.2 3.3	6.9 53.2 40.4 36.7 35.7	2.4 3.9 5.0 5.8 4.5	82.1 537.9 825.7 720.8 306.7	35 182 305 274 94	5 21 17 17 12	4 10 11 14 10	273 1279 1525 1655 778	.90 2.21 2.18 2.61 2.11	<.5 1.1 1.5 1.9 1.5	<5 <5 6 <5 <5	<>> <> <> <> <> <> <> <> <> <> <> <> <>	11 28 31 32 25	.03 .72 1.73 1.06 .70	<.2 .2 .2 .2 .2	<.2 <.2 <.2 <.2 <.2 <.2	23 37 36 44 47	.15 .41 .51 .59 .53	.010 .082 .107 .085 .026	4 5 5 6 4	13 26 24 28 28	.32 .54 .41 .44 .43	33 203 197 149 60	.03 .04 .04 .04 .04 .05	3 <3 1 <3 1 <3 1 <3 1 3 1	.76 .34 .33 .45 .05	.01 .01 .01 .01 .01	.02 .04 .05 .06 .05	<2 <, <2 <, <2 <, <2 <, <2 <, <2 <,	.2 <1 .2 1 .2 3 .2 2 .2 1	0 < 3 9 < 3 2 < 3 2 < 3	s <.2 s <.2 s <.2 s <.2 s <.2 s <.2 s <.2	2.2 3.4 3.8 4.3 3.0	<1 4 <1 2	
12119 12120 12121 12122 12123	1.8 .9 .5 .3 .5	20.7 11.7 6.8 5.6 10.1	4.0 3.6 2.7 2.6 3.4	251.2 132.9 86.1 133.6 116.5	199 90 100 94 53	9 7 7 8 12	7 4 5 6	911 387 372 457 378	1.37 1.10 1.02 1.03 1.28	.6 .5 .6 1.0	<5 <5 <5 <5 5	<2 2 <2 <2 2 2 2	14 14 15 13 14	.27 .13 .07 .12 .12	<.2 <.2 <.2 <.2 <.2	<.2 <.2 <.2 <.2 <.2 <.2	33 24 26 26 30	.20 .20 .20 .20 .23	.022 .038 .033 .034 .059	4 4 4 4	21 17 16 14 23	.32 .37 .32 .30 .31	120 79 64 78 90	.04 .04 .05 .05 .05	3 4 3 3 5	.93 .86 .78 .86 .98	.01 .01 .01 .01 .01	.04 .03 .03 .03 .04	<2 <. <2 <. <2 <. <2 <. <2 <. <2 <.	.2 2 .2 1 .2 <1 .2 <1 .2 <1 .2 <1	1 < 1 < 1 < 1 < 0 <	5 <.2 5 <.2 5 <.2 5 <.2 5 <.2 5 <.2	3.0 2.9 2.5 2.2 2.8	1 1 1 <1	
12124 12125 12126 12127 12128	2.1 1.8 1.2 .9 1.3	89.0 168.1 21.0 122.8 119.6	5.1 5.5 5.7 4.7 5.0	489.7 589.7 218.1 97.9 128.7	154 369 184 287 298	22 25 13 23 28	11 16 7 12 13	915 2630 868 817 792	2.75 3.85 1.44 1.79 2.19	2.1 3.3 .8 1.4 1.8	5 6 5 5 5 5	2 <2 <2 <2 <2 <2 <2	41 138 24 32 36	.87 1.51 .33 .12 .12	.2 .2 .2 .2 .3	< 2 2 < 2 < 2 < 2 < 2	45 51 29 35 48	.82 3.20 .36 .37 .42	.061 .162 .052 .040 .052	5 7 6 13 12	38 29 21 31 35	.51 .42 .40 .46 .49	130 292 152 135 161	.05 .03 .05 .04 .04	5 1 15 1 5 1 <3 1 <3 1	.34 .26 .05 .73 .95	.01 .02 .01 .01 .01	.09 .13 .07 .07 .08	<2 < <2 < <2 < <2 < <2 < <2 <	.2 3 .2 5 .2 1 .2 2 .2 3	4 < 1 5 < 1 7 < 1 2 < 1	3 <.2 4 <.2 3 <.2 3 <.2 3 <.2 5 <.2	3.1 3.3 3.4 3.9 5.0	1 4 2 1 <1	
RE 12129 12129 12130 12131 12131 12132	1.0 .9 1.2 .9 .5	100.2 100.9 135.0 67.5 34.2	4.1 4.2 3.9 3.3 2.7	101.0 100.5 138.7 95.0 44.2	386 369 390 239 76	24 24 33 21 10	12 12 12 11 4	788 771 1034 691 245	1.85 1.85 2.32 1.48 .93	1.8 1.6 1.4 .9 .6	<5 <5 <5 <5 <5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	32 31 40 28 22	.08 .08 .16 .11 .04	.2 .2 .2 .2	<.2 <.2 <.2 <.2 <.2 <.2	41 41 48 35 23	.37 .37 .45 .35 .28	.042 .041 .047 .027 .019	11 11 12 9 5	34 33 39 28 17	.49 .49 .54 .44 .36	137 137 181 114 49	.04 .04 .04 .05 .05	<3 1 3 1 3 2 5 1 4	.77 .76 .11 .42 .88	.01 .01 .02 .01 .01	.08 .08 .10 .07 .04	<2 < <2 < <2 < <2 < <2 < <2 <	.2 4 .2 3 .2 3 .2 2 .2 7	2 <. 1 <. 5 <. 8 <. 0 <.	3 <.2 3 <.2 3 <.2 3 <.2 3 <.2 3 <.2	4.6 4.5 4.9 3.4 2.6	1 <1 2 1 3	
12133 12134 12135 12136 12137	1.0 1.6 1.1 1.3 .6	127.6 261.1 194.6 96.3 105.1	3.9 5.3 4.5 3.2 3.2	98.4 171.5 128.7 83.0 81.4	353 573 471 203 217	27 53 40 20 18	10 14 10 8 7	870 1049 587 516 426	1.87 3.65 2.56 1.62 1.35	1.3 2.9 1.4 1.3 1.1	<5 <5 <5 <5 <5	~? ~? ~? ~? ?	41 59 45 28 27	.17 .29 .24 .12 .09	.4 .5 .3 .2	.2 .5 1.3 .2 <.2	36 53 39 33 33	.53 .89 .59 .38 .36	.035 .069 .043 .029 .021	14 20 11 7 8	32 55 41 23 24	.51 .71 .61 .49 .35	144 290 182 93 96	.04 .04 .05 .04 .05	3 1 4 3 3 2 4 1 3 1	.63 .02 .25 .34 .20	.01 .02 .02 .01 .01	.09 .17 .15 .06 .06	<2 < <2 < <2 < <2 < <2 <	.2 3 .2 5 .2 1 .2 1	5 <. 9 <. 9 <. 6 <. 4 <.	3 <.2 3 <.2 3 <.2 3 <.2 3 <.2 3 <.2	4.1 7.2 5.6 3.9 3.3	2 <1 <1 <1 1	
12138 12139 12140 12141 STANDARD	.6 .5 .4 .6 24.1	48.6 45.8 38.3 52.2 120.3	2.3 2.2 3.0 2.9 102.2	51.4 53.8 47.0 72.8 259.7	62 100 65 125 1953	11 11 9 13 31	4 4 5 17	303 306 204 265 998	.85 .87 .78 1.08 4.69	.5 7. <.5 .9 71.3	9 7 6 5 25	2 3 2 2 17	20 19 19 24 57	.03 .04 .03 .07 1.85	.2 .2 <.2 .2 .2	<.2 <.2 <.2 <.2 <.2	20 22 19 27 76	.29 .26 .27 .35 .67	.025 .020 .021 .025 .107	5 6 5 17	16 15 16 20 56	.31 .28 .29 .32 1.09	50 54 44 77 212	.04 .05 .05 .04 .11	6 5 6 25 2	.82 .82 .78 .98 .27	.01 .01 .01 .01 .01 .05	04 04 04 05 69	<2 < <2 < <2 < <2 < 16 2	.2 1 .2 <1 .2 2 .2 2 .5 98	10 < . 10 < . 24 < . 20 < . 32	3 <.2 3 <.2 3 <.2 3 <.2 3 .2 3 .2	2.2 2.3 2.3 3.1 7.2	<1 <1 <1 2 54	

Standard is STANDARD D2/C3/AU-S. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ACHE ANALYTICAL

Crest Geological Consulting PROJECT 178 FILE # 9801731

Page 12

Data____FA

AUR: ANALTTICAL																																			
SAMPLE#	Mo	Cu	Pb	Zn	Aa	Ni	Co	Mn	Fe	As	U	Th	Sr	Cd	Sb	Bi	٧	Ca	P	La	Çr	Mg	8a	Ti	8	AL	Na	κ	W	τl	Hg	Se	Te	Ga	Au*
	DDM	maa	DDM	naa	ddd	DDM 1	DDm	ngg	%	mag	nqq	opm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	×.	ppm	%	ppm	%	%	%	ррт	ppm	ppb	ppm	ррп	ppm	ppb
		P.P													· · · · · · · · · · · · · · · · · · ·				·				<u> </u>		<u>· · · · · · · · · · · · · · · · · · · </u>								···-		
12162	7	45 5	29	57 6	57	12	5	350	1.08	-8	9	<2	19	.06	.2	<.2	27	.27	.025	6	20	.32	67	.04	<3	.88	.01	.05	<2	<.2	21	<.3	<.2	2.5	<1
121/2	1 1	76.9	z z	05.8	85	20	Â	607	1 50	1 0	7	2	23	14	2	< 2	35	30	031	7	24	39	91	05	<3	1.26	.01	.06	<2	<.2	18	<.3	<.2	3.2	<1
12142		07.0	7.1	145 0	122	25	7	1050	1 61	5	~5	2	28	70		~ 2	31		065	11	27	36	170	20	~3	1 78	01	10	ō	<2	18	< 3	<.2	3.3	<1
12144		00.0	2.4	07.7	240	10	' ,	4070	1.04		5	2	20	10	`·C 7	2.5	71		021	10	25	- 25	70	0/	~7	1 07	.01	30	5	22	27	23	22	3 1	1
12145	1.5	99.4	4.5	07.2	210	19		023	1.40	2.2	2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	20	- 10			34	.46	.021	10	40		17	.09	~5	72	.01	-00	~	~ 5	27	2.2	25	20	-1
12146	2.0	27.6	5.7	120.8	150	9	5	1027	1.07	1.4	<>	<2	21	.25	<.2	۲.2	22	.42	.090	4	10	- 41	101	.05	2	.10	.01	.00	12	`. 2	21		` • C	C.7	
	_				~~	~	~			~		~	20				20	70	070	,	40	40	= /	~	F	77	01	00	~?	- 2	17		12	26	2
12147	.7	20.4	5.6	54.6	93		2	397	1.06	.8	< <u>></u>	2	20	. 12	<.2	<.2	29	.32	.032	4	18	.19	24	.04	2	./3	.01	.00	~~		70	`	2.2	2.0	2
12148	1.4	258.2	3.7	78.4	252	32	8	590	2.17	2.7	\$	<2	49	.15	.2	.9	57	.90	.056	14	45	.40	139	.05	4	1.84	.01	.08	~~	<.4	20		·.2	5.1	,
12149	1.7	407.8	5.0	98.5	574	59	12	818	3.29	3.5	<5	2	69	.39	.4	<.2	41	1.15	.072	16	64	.63	298	.03	5	2.11	.02	.15	~2	<.2	41	•••	. 4	5.8	2
12150	1.8	1074.3	5.0	146.2	1111	68	15	1100	3.09	3.2	<5	<2	86	.96	.5	-4	39	1.76	.112	27	56	.58	334	.03	5	2.48	.03	.13	<2	<.2	75	.6	.5	5.0	2
12151	1.2	21.2	3.9	55.6	57	7	5	459	1.08	1.0	<5	<2	18	.08	<.2	<.2	26	.34	.015	4	17	.27	58	.04	<3	.79	.01	.05	<2	<.2	10	<.3	<.2	2.3	2
	1																								_					~				~ 7	-
12152	1.7	32.4	3.2	50.5	61	8	5	396	1.12	.6	<5	2	14	.07	.2	<.2	28	.22	.013	- 4	18	.30	54	,04	<3	.78	.01	.03	<2	<-2	<10	<.5	<.2	2.1	3
12153	2.1	33.9	3.1	43.4	106	9	5	240	1.19	1.5	<5	<2	16	.06	.2	<.2	29	.23	.015	- 4	17	-32	41	.04	<3	.80	.01	.05	<2	.2	<10	<.3	<.2	2.8	<1
12154 N.S.	- 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
12155	1.7	36.9	3,3	84.3	93	8	5	254	1.15	.6	10	<2	17	.14	.2	<.2	26	.26	.058	- 4	14	.34	55	.04	<3	.81	.01	.04	<2	<.2	12	<.3	<.2	2.5	<1
12156	.9	13.9	3.4	71.1	137	7	4	164	1.04	.7	11	<2	12	.08	<.2	<.2	26	.18	.060	- 4	16	.23	62	.04	<3	.85	.01	.03	<2	<.2	<10	<.3	<.2	2.7	<1
12157	.9	15.5	3.3	77.6	68	9	4	261	1.16	.6	<5	<2	16	.12	.2	<.2	28	.25	.047	5	19	.30	84	.05	<3	.84	.01	.05	<2	<.2	11	<.3	<.2	2.9	1
12158	.6	10.0	2.9	54.4	75	7	4	242	1.04	.6	<5	<2	14	.06	<.2	<.2	25	. 19	.023	4	14	.31	74	.05	<3	.83	.01	.04	<2	<.2	<10	<.3	<.2	2.5	<1
12159	1.0	13.0	3.2	102.9	169	7	5	501	.98	.8	<5	2	13	.11	<.2	<.2	26	.20	.057	4	18	.23	83	.04	<3	.89	.01	.04	<2	<.2	<10	<.3	<.2	2.9	<1
12160	6	25.3	2.7	63.4	106	11	5	226	1.24	1.0	5	2	15	.08	.2	<.2	27	.24	.040	5	19	.45	45	.05	4	.95	.01	.04	<2	<.2	<10	<.3	<.2	2.6	<1
12161	8	25.9	2.7	66.7	149	ö	5	209	1.14	.6	<5	~	14	15	<.2	<.2	25	.24	.060	- Ž	17	.33	57	.04	<3	.82	.01	.03	<2	<.2	15	<.3	<.2	2.5	<1
12:01							-						••							-			•••		-										
12162	.5	12.2	2.4	81.4	65	8	5	259	1.20	.5	<5	<2	16	.06	<.2	<.2	25	.23	.042	5	14	.40	62	.05	<3	.89	.01	.04	<2	<.2	<10	<.3	<.2	2.5	<1
12163	1 1	12.3	2.5	34.4	<30	5	5	261	1.08	<.5	5	<2	22	.02	<.2	<.2	22	.33	.009	4	8	.48	48	.05	<3	.87	.01	.05	<2	<.2	<10	<.3	<.2	3.0	<1
12164	15	37.2	2 6	181 3	185	5	Ā	413	.89	5	<5	<2	14	20	<.2	<.2	20	.21	.026	3	8	-28	69	.04	<3	.69	.01	.04	<2	<.2	17	<.3	<.2	2.5	<1
12165	7	10.6	2 0	70 7	73	ĩ	z	327	67	< 5	5	-2	11	10	<.2	<.2	15	.17	.016	3	õ	.23	38	.03	<3	.54	.01	.03	<2	<.2	<10	<.3	<.2	1.9	<1
12166	8	26.5	2 4	108 3	70	7	5	301	1 09	< 5	<5	<2	13	12	< 2	< 2	20	17	.020	Ā	ó	43	70	.03	<3	.90	.01	.04	<2	<.2	<10	<.3	<.2	2.3	3
12100	.0	2013	C. 7	100.5		•	2	271	1.07	•••								• • •							-			•••							
12167	1.0	28.3	2.6	94.8	137	10	6	404	1.39	.9	<5	<2	19	.11	.2	<.2	28	.26	.029	5	17	.47	77	.05	<3	1.03	.01	.05	<2	<.2	17	<.3	<.2	2.9	2
12168	10	11 8	1.9	41.5	47	6	ā	203		1.4	<5	<2	11	-02	<.2	<.2	23	. 16	.013	3	12	.30	33	.04	<3	.68	.01	.03	<2	<.2	<10	<.3	<.2	2.1	<1·
12169	1 4	13 7	3 1	41 3	00	5	4	186	. 07	5	10	<2	17	_04	<.2	< 2	21	.23	.010	3	13	.37	45	.04	<3	.76	.01	.05	<2	.2	<10	<.3	<.2	3.4	1.
12170	1 6	18.4	25	57 0	67	7	5	281	1 21	< 5	Ă	2	22	.02	< 2	<.2	25	.23	.007	4	15	.47	85	.04	3	.98	.01	.05	<2	<.2	18	<.3	<.2	2.7	<1
10171	1.4	120.4	1.3	62 7	2/2	16	8	201	1 84	1 2	~5	2	56	17		2.2	20	80	010	12	22	57	113	10	3	1.42	.02	-08	~2	<.2	28	.4	<.2	4.1	<1
14111		120.0	4.2	02.3	240	10	0	447		1.2	~		50	. 15	• 6		27	.07	.017	14					2										
12172	15	118 0	16	08.0	556	8	2	05/	26	12	<5	~2	481	1 28	. 4	<.2	6	26.68	184	2	5	-43	171	.01	14	.24	.03	.02	<2	<.2	36	1.1	.2	1.3	2
12173	2.1	16.6	77	86.0	100	7	ξ	218	1 13	2 5	Ř	2	18	08	< 2	< 2	23		022	4	12	40	71	.04	3	.95	.01	.04	<2	<.2	<10	<.3	<.2	3.0	<1
1217/	.0	10.0	2.2	110 0	70	'7	5	721	1 21	2.5	ŏ	.5	14	.00	~ 2	2.2	22		026	7	15	40	62	05	~3	- Qn	01	30	0	< 2	10	<.3	<.2	2.6	18
TETANDADD D	.0	110.0	100 7	110.3	1041	74	10	361	1.61	7/ 9	70	10	50	1 97	11 7	20.0	76	.23	110	17	57	1 12	277	11	20	2 72	-05	70	16	22	087	< 3	1.8	6.3	44
STANDAKU D	24.0	113.2	100.7	202.4	1001	31	10	1023	4.73	14.0	20	17	27	1.0/	11.5	20.0	10	.07		11	11	1.14	C.J.J	• • •	67		.05								

Standard is STANDARD D2/C3/AU-S.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ACHE ANALYTICAL

Crest Geological Consulting PROJECT 178 FILE # 9801731

ACHE ANALTTICAL																													-,						
SAMPLE#	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Th	Sr	Cd	Sb	Bi	v	Ca	Р	La	Cr	Mg	Ba	Ti	8	AL	Na	K	W	τl	Hg	Se T	e G	a Au	17 . L.
	ppm	ррт	ррп	ppm	ppb	ppm j	nqo	ppm	%	ppm	ppm	ppm	ррп	ppm	ppm	ppm	ngq	%	%	ррп	ppm	%	ppm	%	ppm	%	76	76	ppm	ppm	bbp t	ypm pp	m pp	a pp	U
12175 12176 12177 12178 12178 12179	.5 .5 1.3 1.5	17.4 14.5 12.4 39.1 31.1	2.0 2.7 1.9 1.8 4.7	126.9 148.2 83.2 130.0 400.8	104 92 79 149 141	7 8 6 7 16	5 5 5 6 11	360 349 400 424 1089	1.16 1.09 1.04 1.23 2.26	.7 <.5 <.5 .5 .7	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2	14 14 11 14 22	.04 .06 .01 .06 .46	<.2 <.2 <.2 <.2 <.2	<.2 <.2 <.2 <.2 <.2 <.2	20 20 15 18 43	.21 .22 .13 .19 .37	.041 .027 .015 .027 .054	3 4 2 3 5	11 12 9 10 25	.42 .40 .52 .54 .39	71 71 63 40 169	.03 .04 .02 .03 .05	८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८	.89 .80 .87 .83 1.27	.01 .01 .01 .01 .01	.05 .06 .05 .07 .08	~~ ~~ ~~ ~~ ~~	<.2 <.2 <.2 <.2 <.2	17 - <10 - <10 - 14 - 10 -	<.3 <. <.3 <. <.3 <. <.3 <. <.3 <. <.3 <.	2 2. 2 2. 2 2. 2 2. 2 3.	7 8 4 < 5 8 <	1 4 1 3
12180 12181 12182 12183 12183	1.2 1.1 1.2 .6 .5	33.5 20.5 11.6 7.8 10.4	3.2 2.6 4.2 3.7 3.8	159.5 65.1 171.2 224.7 135.9	202 225 165 158 105	13 8 7 6 8	11 6 5 4 5	583 218 308 443 559	1.81 1.30 1.11 .93 1.14	1.7 .6 <.5 <.5 .8	<5 5 5 5 5 5	<2 <2 <2 <2 <2 <2	14 129 13 10 11	.13 .17 .07 .16 .11	<.2 <.2 <.2 <.2 <.2	<.2 <.2 <.2 <.2 <.2 <.2	35 17 25 19 22	.22 2.78 .17 .15 .18	.044 .017 .012 .033 .042	4 3 3 3 4	23 11 10 12 16	.51 .62 .44 .31 .38	70 66 61 59 61	.04 .02 .02 .03 .03	3 3 3 3 3 3 3 3 3 3	1.05 .90 .98 .77 .82	.01 .03 .01 .01 .01	.04 .06 .01 .02 .03	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<.2 <.2 <.2 <.2 <.2	21 - 18 - <10 - <10 - <10 -	<.3 <. <.3 <. <.3 <. <.3 <. <.3 <. <.3 <.	2 3. 2 2 2 3 2 2 2 3 2 2 2 2	1 4 < 1 < 2 9	1 1 3 1
12185 RE 12185 12186 12187 12201	.9 .9 4.1 1.2 .8	11.4 12.4 38.6 17.6 17.8	3.6 3.8 4.7 6.6 2.2	160.2 168.5 190.1 320.4 149.0	130 150 152 133 113	9 10 17 12 9	6 7 10 8 5	591 589 1932 428 278	1.38 1.45 2.01 1.66 1.32	<.5 <.5 1.6 .9 .7	6 <5 7 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	19 20 37 19 13	.13 .13 .28 .21 .06	<.2 <.2 .2 <.2 <.2	<.2 <.2 <.2 <.2 <.2	26 27 37 32 24	.36 .37 .79 .31 .17	.054 .056 .065 .059 .022	4 4 5 4 4	18 18 31 22 14	.35 .36 .36 .35 .46	83 86 128 111 45	.03 .03 .04 .04 .05	<3 <3 <3 <3 <3	.95 1.00 1.17 1.08 .90	.01 .01 .01 .01 .01	.04 .04 .05 .05 .03	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<.2 <.2 <.2 <.2 <.2	<10 · <10 · 30 · 21 · <10 ·	<,3 <, <.3 <, <.3 <, <.3 <, <.3 <, <.3 <,	2 3. 2 3. 2 3. 2 3. 2 3. 2 3.	0 < 3 < 7 < 3	1 1 4 3
12202 12203 12204 12205 12206	.6 .7 .6 .8	9.4 13.4 114.8 22.5 32.8	2.2 2.4 3.1 2.9 2.4	181.6 173.0 153.2 58.3 117.0	85 183 314 62 99	6 8 13 13 11	4 5 7 8 6	386 306 342 400 316	.96 1.27 1.85 1.57 1.48	<.5 .6 .9 1.0 .5	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	15 18 31 20 16	.11 .08 .10 .06 .08	<.2 <.2 .2 .2 .2	<.2 <.2 <.2 <.2 <.2 <.2	18 23 23 33 26	.22 .27 .52 .27 .20	.038 .030 .025 .033 .050	3 4 5 6 5	10 16 24 23 18	.33 .44 .55 .42 .51	84 58 75 57 62	.03 .04 .04 .07 .04	⊲ ⊲ ⊲ ⊲ ⊲ ⊲ 3	.73 .93 1.23 .88 1.04	.01 .01 .01 .01 .01	.04 .05 .07 .09 .04	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<,2 <,2 <,2 <,2 <,2 <,2	<10 <10 20 14 <10	<.3 <. <.3 <. <.3 <. <.3 <. <.3 <.	2 2. 2 2. 2 3. 2 3. 2 2. 2 3.	3 9 5 8 0	1 3 3 2 3
12207 12208 12209 12210 12211	.9 .7 .7 .9 .4	16.3 16.3 10.4 76.6 48.5	2.4 3.0 2.6 2.5 2.3	142.0 152.8 96.4 88.9 63.1	123 183 155 111 114	7 9 6 15 12	5 5 7 4	387 258 247 409 213	1.04 1.10 1.12 1.74 1.03	<.5 <.5 1.4 .5	<5 <5 <5 6 5	<2 < 2 < 2 < <	14 15 13 20 17	.07 .09 .06 .06 .03	<.2 <.2 <.2 .3 .2	<.2 <.2 <.2 <.2 <.2	20 21 21 31 23	.20 .21 .16 .32 .21	.024 .029 .040 .052 .024	4 5 4 6 6	12 15 13 25 15	.37 .37 .36 .55 .30	73 88 72 58 77	.04 .04 .04 .05 .04	3 3 3 3 3 3 3	.84 .93 .90 1.10 .91	.01 .01 .01 .01 .01	.04 .05 .04 .05 .03	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<.2 <.2 <.2 <.2 <.2 <.2	<10 <10 <10 <10 <10 12	<.3 < <.3 < <.3 < <.3 < <.3 <	2 2. 2 3. 2 3. 2 3. 2 3. 2 3. 2 2.	8 2 0 1 3	2 1 2 3 2
12212 12213 12214 12215 12216	.5 1.1 .4 .3 .5	32.3 97.7 26.0 25.8 33.9	2.7 3.7 2.6 2.8 2.9	45.6 80.2 42.1 49.3 68.5	36 171 55 55 <30	9 18 7 8 11	4 9 3 5	205 523 194 161 201	.93 1.48 .86 .82 1.07	<.5 .9 <.5 <.5	<5 <5 <5 <5 <5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	18 24 16 16 17	.01 .04 <.01 .01 .03	.2 .2 <.2 <.2 <.2	<.2 <.2 <.2 <.2 <.2	22 34 21 21 26	.23 .30 .23 .19 .23	.015 .026 .021 .013 .018	6 8 5 5 5	13 27 14 11 14	.34 .39 .35 .25 .33	55 111 44 70 75	.05 .03 .04 .04 .05	3 3 3 3 3 3 3 3 3 3 3	.82 1.40 .75 .78 .95	.01 .01 .01 .01 .01	.03 .05 .02 .03 .04	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<.2 <.2 <.2 <.2 <.2 <.2	<10 21 <10 <10 <10	<.3 < <.3 < <.3 < <.3 < <.3 <	.2 2. .2 4. .2 2. .2 2. .2 2.	5 4 7 8	1 :1 :1 :1 :1
12217 12218 12219 12220 STANDARD	.8 .6 .5 .6 24.9	26.4 37.1 38.4 30.8 121.2	3.0 2.4 2.4 2.5 100.3	68.2 52.5 61.7 61.5 267.7	218 97 93 109 2054	12 10 11 10 31	5 4 4 5 18	171 175 193 231 1015	1.31 1.06 .98 .96 4.69	.8 .9 <.5 .5 78.0	5 <5 <5 <5 22	<2 2 <2 <2 2 19	16 14 16 14 59	.07 .04 .04 .04 2.00	.3 <.2 .2 .2 11.3	<.2 <.2 <.2 <.2 21.5	31 27 23 23 70	.23 .19 .21 .21 .68	.036 .021 .019 .023 .110	5 5 5 17	20 17 15 17 56	.29 .30 .30 .27 1.10	80 65 69 51 233	.04 .04 .04 .04 .11	3 3 3 3 26	.99 .83 .82 .73 2.27	.01 .01 .01 .01 .05	.04 .03 .03 .03 .70	<2 <2 <2 <2 17	<.2 <.2 <.2 <.2 2.5	12 <10 <10 11 965	<.3 < <.3 < <.3 < <.3 < .3 1	.2 3. .2 2. .2 2. .2 2. .2 2. .9 7.	4 · 5 · 6 · 3 ·	:1 1 1 :1 :6

Standard is STANDARD D2/C3/AU-S. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

AA

ACHE ANALYTICA

ACHE ANNI YIICA

Crest Geological Consulting PROJECT 178 FILE # 9801731

CAMDI E#	Mo	 Cu	Ph	 7n	Aa	มเ	Co	Mn	Fe	As	U	Th	Sr	Cd	Sb	Bi	V	Ca	P	La	Cr	Mg	Ba	Ti	В	Al	Na	ĸ	W	τι	Hg S	Se Te	Ga	Au*
Jruir CEm	ppm	ppm	ppm	ppm	ppb	ppm p	opm	ppm	%	ppm	ррп	ppm	ppm	ppm	ррп	ppm	ppm	%	%	ppn	ppm	%	ppm	%	ppm	%	%	%	b b u t	opm p	bb bl	m ppm	ppm	ppb
12221 12222 12223 12223 12224 12225	.6 1.1 1.5 .9 .8	58.4 43.8 154.1 70.0 67.9	3.3 3.6 4.6 3.3 3.6	72.4 149.7 140.6 90.4 89.0	165 133 385 137 144	14 18 43 20 20	6 7 15 8 9	295 358 1018 451 480	1.21 1.79 2.91 1.52 1.54	.7 1.0 2.5 1.2 1.0	<5 <5 9 5 8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	20 26 35 23 26	.04 .14 .12 .07 .06	.2 .2 .3 .2 .2	<.2 <.2 <.2 <.2 <.2	27 32 51 35 31	.25 .38 .40 .28 .32	.022 .178 .052 .025 .028	6 5 12 6 8	17 25 46 25 24	.38 .33 .63 .41 .44	72 146 190 89 96	.05 .04 .04 .05 .05	ব ব ব ব ব ব ব ব	1.08 1.36 2.49 1.33 1.41	.01 .01 .02 .01 .01	.04 .06 .12 .06 .07	<2 < <2 < <2 < <2 < <2 < <2 <	<.2 <.2 <.2 <.2 <.2	14 <. 28 <. 41 <. 28 < 23 <.	.3 <.2 .3 <.2 .3 <.2 .3 <.2 .3 <.2 .3 <.2	2.9 3.7 5.8 3.5 4.2	<1 1 6 <1 1
12226 12227 12228 12229 RE 12229	.7 .9 .7 .6 .7	41.8 142.5 21.7 17.1 17.5	3.7 3.9 4.6 2.9 2.9	62.3 124.3 124.2 86.1 82.1	128 322 170 104 100	12 36 11 11 11	6 11 5 5 5	300 788 512 214 209	1.14 2.27 1.12 1.24 1.18	1.3 1.0 1.2 .8 .8	<5 <5 8 <5 <5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	20 36 24 19 17	-06 .11 .25 .13 .12	.2 .3 .2 <.2 <.2	<.2 <.2 <.2 <.2 <.2 <.2	27 37 23 28 26	.26 .42 .35 .24 .22	.016 .042 .039 .029 .028	5 12 4 5	19 39 17 20 17	.35 .54 .22 .31 .30	62 175 136 77 74	.05 .03 .04 .05 .05	3 3 3 3 3 3 3 3 3	.96 2.18 .92 .93 .88	.01 .01 .01 .01 .01	.05 .11 .07 .05 .05	<2 < <2 < <2 < <2 < <2 < <2 < <2 < 2 </p	<.2 <.2 <.2 <.2 <.2	19 < 42 < 19 < 12 < 10 <	.3 <.2 .3 <.2 .3 <.2 .3 <.2 .3 <.2 .3 <.2	2.6 4.8 2.7 2.5 2.5	2 2 1 2 1
12230 12231 12232 12233 12233 12234	.6 1.0 .5 .8 11.7	31.8 68.8 11.6 36.0 726.8	2.9 3.3 2.3 2.3 8.4	87.2 114.1 81.0 69.6 242.2	201 208 53 84 1295	13 22 7 12 135	5 7 4 5 21	270 554 213 250 5758	1.18 1.75 1.06 1.23 5.69	.7 1.0 .5 .7 6.6	5 6 5 5 5 5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	20 25 19 20 82	.14 .14 .06 .04 .48	.2 .2 .2 .2 .7	<.2 <.2 <.2 <.2	25 35 20 27 77	.30 .36 .24 .27 1.21	.031 .029 .050 .016 .104	7 7 6 38	17 30 9 19 97	.30 .39 .32 .37 .94	67 95 62 57 542	.04 .05 .03 .05 .03	3 3 3 3 3 3	.89 1.30 .90 .90 4.80	.01 .01 .01 .01 .02	.06 .08 .04 .05 .29	<2 < <2 < <2 < <2 < <2 < <2 <	<.2 <.2 <.2 <.2 <.2	24 < 25 < <10 < 16 < 127	.3 <.2 .3 <.2 .3 <.2 .3 <.2 .3 <.2 .9 .2	2.4 3.5 2.5 2.2 10.1	<1 <1 <1 <1 3
12235 12236 12237 12238 12239	2.4 1.8 1.4 .9 .9	810.2 758.3 682.2 32.2 19.1	8.0 5.1 4.7 1.6 3.0	305.5 117.5 115.5 174.4 80.0	1722 1077 532 62 88	112 59 52 12 10	19 11 11 7 5	950 841 462 425 194	6.17 2.90 3.06 1.51 1.26	5.1 2.6 2.4 .9 .6	5 <5 7 5 7	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	90 50 52 24 15	. 34 . 75 . 35 . 17 . 08	.5 .5 .2 .2	1.7 1.2 .6 <.2 <.2	65 39 39 27 27	1.29 .79 .87 .37 .19	.078 .073 .066 .083 .047	26 18 25 5 5	114 52 55 14 10	1.08 .56 .64 .42 .38	437 208 190 85 76	.04 .04 .04 .04 .04	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	5.99 2.33 2.47 1.00 1.05	.03 .02 .02 .01 .01	.35 .14 .14 .08 .03	< 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<.2 <.2 <.2 .5 <.2	138 60 42 <10 <10 <	.7 .2 .7 .3 .7 .3 .5 <.2 .3 <.2	11.8 5.2 5.3 2.6 3.2	4 2 4 1 <1
12240 12241 12242 12243 12244	.8 .7 2.4 1.0 .7	16.2 10.5 152.6 20.6 13.6	3.0 2.4 3.4 3.2 2.7	127.1 68.8 123.4 92.3 118.2	92 57 177 160 143	13 7 21 12 9	6 5 9 7 5	330 220 556 236 251	1.36 1.20 2.25 1.48 1.23	.5 .5 2.2 .8 .9	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	16 14 30 22 15	.07 .08 .14 .09 .09	<.2 .2 .4 .2 .2	<.2 <.2 <.2 <.2 <.2	26 27 39 32 26	.22 .21 .44 .35 .23	.065 .064 .062 .051 .056	5 5 9 6	17 16 29 21 18	.35 .28 .67 .40 .36	134 61 83 102 82	.04 .05 .06 .05 .05	3 3 3 3 4	1.23 .83 1.40 1.14 1.04	.01 .01 .01 .01 .01	.05 .04 .06 .05 .04	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<.2 <.2 <.2 <.2 <.2 <.2	<10 < <10 < 36 24 < 16 <	.3 <.2 .3 <.2 .3 <.2 .3 <.2 .3 <.2 .3 <.2	3.1 2.5 3.8 3.0 2.7	3 <1 <1 79 <1
12245 12246 12247 12248 12248 12249	1.2 1.1 .4 .7 .8	28.9 14.8 27.4 12.7 20.8	2.7 2.8 1.6 2.6 2.5	112.3 84.8 39.3 89.1 106.4	260 137 117 118 108	10 8 10 9 9	6 6 5 6 5	310 311 313 264 315	1.47 1.23 .81 1.22 1.18	1.0 <.5 .6 .6	<5 <5 <5 <5	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	16 17 413 19 16	.12 .08 .10 .07 .08	<.2 <.2 <.2 <.2 <.2	<.2 <.2 <.2 <.2 <.2	29 29 10 23 23	.23 .23 13.18 .35 .24	.071 .021 .035 .058 .040	5 4 3 5 4	14 16 14 16 14	.40 .34 .84 .41 .42	82 65 161 78 100	.05 .05 .02 .04 .04		1.15 .91 .58 .95 .98	.01 .01 .02 .01 .01	.04 .04 .05 .06 .05	~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~	<.2 <.2 <.2 <.2 <.2	36 < 27 < 12 19 < 11 <	.3 <.2 .3 <.2 .3 <.2 .3 <.2 .3 <.2 .3 <.2	3.3 2.8 1.6 2.8 2.8 2.8	<1 <1 <1 <1 <1
12250 12251 12252 12253 STANDARD	.5 .5 .6 23.7	10.1 23.2 16.1 15.5 115.9	2.2 2.8 2.3 2.6 99.6	102.4 107.2 88.0 91.2 263.8	105 101 65 82 1888	9 8 10 11 31	5 4 6 7 18	220 193 296 290 1015	1.14 .99 1.40 1.46 4.74	.5 .5 .5 .5 77_0	<5 <5 <5 <5 33	<2 <2 <2 <2 <2 18	15 16 16 20 65	.08 .06 .04 .05 1.87	.2 <.2 .2 <.2 10.6	<.2 <.2 <.2 <.2 20.3	21 19 25 27 70	.20 .25 .22 .27 .73	.046 .037 .034 .020 .110	4 4 5 17	11 10 16 18 57	.36 .32 .55 .57 1.11	114 66 58 68 232	.05 .04 .05 .06 .11	ব্য ব্য ব্য ব্য 26	.94 .87 1.01 1.08 2.34	.01 .01 .01 .01 .06	.04 .05 .03 .06 .70	<2 <2 <2 <2 <2 15	<.2 <.2 <.2 .2 2.3	13 < 35 < 10 < 16 < 966	.3 <.2 .3 <.2 .3 <.2 .3 <.2 .3 <.2 .7 1.8	2.6 2.3 2.6 2.8 6.4	<1 <1 1 <1 47

Standard is STANDARD D2/C3/AU-S. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

##

ACHE ANALYTICAL

AA

Crest Geological Consulting PROJECT 178 FILE # 9801731

Page 15

Data

ACHE ANALY!	TICAL																															AUME P	WALYTICA	L
SAMPL	.E#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppb j	Ni ppm p	Co Mn ppm ppm	Fe %	As ppm	U ppm	Th ppm p	Sr xpm	Cd Sb ppm ppm	Bi ppm	V ppm	Ca %	P %	La ppm j	Сг ррм	Mg %	Ва ррпп	Ti % p	B opm	Al %	Na %	K %	W TU ppm ppm	Hg ppb	Se ppm	Te ppm	Ga / ppm	Au* ppb	
12254 12255 12256 12257 12258	5	.5 .4 .4 .4 .4	8.7 12.8 9.8 7.9 18.5	2.8 2.8 2.7 2.4 2.8	91.9 89.9 92.2 109.0 112.2	88 59 83 92 64	7 8 8 7 12	5 290 5 291 5 221 4 236 7 453	1.02 1.05 1.08 .98 1.49	<.5 .5 <.5 <.5 <.5	<5 <5 <5 <5 5	<2 <2 <2 <2 <2 <2 <2 <2	12 12 14 11 16	.06 <.2 .06 <.2 .09 <.2 .06 <.2 .11 <.2	<.2 <.2 <.2 <.2 <.2 <.2	19 20 20 18 27	.16 .20 .22 .16 .19	.015 .025 .037 .030 .019	3 3 3 5	7 9 10 8 16	.44 .41 .42 .38 .46	69 66 67 81 82	.04 .04 .04 .03 .06	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	.80 .81 .81 .79 .95	.01 .01 .01 .01 .01	.04 .06 .07 .03 .09	<2 <.2 <2 <.2 <2 .2 <2 .2 <2 <.2 <2 <.2	14 12 10 <10 <10	<.3 <.3 <.3 <.3 <.3	<.2 <.2 <.2 <.2 <.2 <.2	2.9 2.7 2.6 2.6 2.7	1 <1 <1 2 <1	
12259 12260 12267 12267 12263	2 5 5	.5 .4 .6 .9	18.1 16.9 9.2 18.9 17.0	3.1 2.9 4.1 3.4 3.4	100.2 68.2 89.8 103.6 361.4	80 103 121 85 186	13 10 9 12 8	8 559 6 245 5 225 7 350 5 538	1.61 1.30 1.22 1.54 1.16	<.5 <.5 1.9 1.3 <.5	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2	20 14 14 14 15	.12 <.2 .05 <.2 .10 .2 .08 <.2 .48 <.2	<.2 <.2 .2 <.2 <.2	27 24 25 30 21	.23 .19 .23 .23 .26	.025 .021 .024 .028 .032	4 3 4 3	20 15 12 19 11	.50 .43 .40 .53 .39	88 84 63 47 70	.05 .04 .05 .05 .03	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	1.09 .91 .83 1.02 .83	.01 .01 .01 .01 .01	.09 .04 .06 .05 .04	<pre><2 .2 <2 .2 <2 <.2 <2 <.2 <2 <.2 <2 <.2</pre>	18 <10 10 <10 18	<.3 <.3 <.3 <.3 <.3	<.2 <.2 <.2 <.2 <.2 <.2	3.5 2.9 2.8 2.7 2.7	1 3 9 4 40	
12264 12265 12266 RE 12 12267	5 5 2266 7	.5 .9 .9 .9 .9	14.3 10.8 12.6 12.3 9.5	3.6 4.0 3.7 3.7 2.8	309.0 353.2 424.5 398.4 96.5	88 142 290 293 154	10 8 7 8	7 666 5 542 6 725 5 694 6 417	1.43 1.18 1.24 1.16 1.21	.8 <.5 .7 <.5 .5	<5 6 8 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	12 13 17 16 10	.26 <.2 .36 <.2 .40 <.2 .41 <.2 .14 <.2	<.2 <.2 <.2 <.2	24 21 21 20 25	.19 .21 .31 .29 .18	.041 .036 .064 .063 .044	4 3 2 3 3	15 15 10 11 15	.45 .40 .39 .37 .32	60 58 79 77 45	.04 .03 .03 .03 .04	3 3 3 3 3 3 3 3 3 3 3 3 3	.91 .84 .86 .79 .71	.01 .01 .01 .01 .01	.05 .03 .06 .05 .03	<2 <.2 <2 <.2 <2 <.2 <2 <.2 <2 <.2	13 10 21 17 10	<.3 <.3 <.3 <.3 <.3	<.2 <.2 <.2 <.2 <.2	2.6 2.8 2.8 2.4 2.6	3 4 2 2 2	
12268 12301 12302 12303 12304	3	.6 .9 .3 .6 .5	15.8 29.3 55.0 28.6 34.8	3.0 2.7 2.7 2.9 3.0	107.6 50.7 54.6 71.7 56.2	98 119 83 76 65	13 12 13 11 10	8 464 5 178 5 296 4 194 4 215	1.51 1.21 .95 1.07 .91	.9 1.0 <.5 <.5 <.5	6 7 \$5 8 \$5	<2 <2 <2 <2 <2 <2 <2	33 19 16 17 16	.14 .2 .08 .2 .07 <.2 .10 <.2 .04 <.2	<.2 <.2 <.2 <.2 <.2	30 30 21 26 20	.75 .27 .22 .22 .24 .23	.031 .030 .018 .018 .018	4 5 6 5 5	21 16 15 15 14	.42 .31 .32 .34 .33	68 53 60 56 50	.04 .04 .03 .04 .04	33333 3333	.90 .87 .88 .87 .87	.01 .01 .01 .01 .01	.03 .03 .04 .04 .04	<2 <.2 <2 .2 <2 <.2 <2 <.2 <2 <.2	22 17 31 19 13	<.3 <.3 <.3 <.3 <.3	<.2 <.2 <.2 <.2 <.2	2.4 2.8 2.3 2.9 2.3	5 3 2 2 3	
12305 12307 12307 12308 12309	5 5 7 3	.5 .3 .6 .6 .3	42.9 31.0 20.4 32.1 38.9	2.6 2.5 1.9 2.1 2.6	55.4 45.3 67.3 51.0 56.4	132 67 31 39 32	12 9 7 8 10	5 255 4 202 4 193 4 193 4 158	.97 .84 .89 .97 .85	<.5 <.5 <.5 <.5 <.5	<5 12 9 <5 7	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	17 15 13 17 14	.03 <.2 .02 <.2 .04 <.2 .03 <.2 .02 <.2	<.2 <.2 <.2 <.2 <.2	21 19 22 22 20	.24 .21 .18 .22 .21	.019 .016 .013 .022 .016	5 4 4 5 5	16 10 12 12 13	.35 .34 .26 .34 .31	57 41 38 41 42	.04 .04 .05 .04 .05	33333 2525	.91 .77 .64 .79 .77	.01 .01 .01 .01 .01	.04 .03 .03 .04 .04	<2 <.2 <2 <.2 <2 <.2 <2 <.2 <2 <.2	16 <10 14 14 20	<.3 <.3 <.3 <.3 <.3	<.2 <.2 <.2 <.2 <.2	2.7 2.2 1.9 2.0 2.0	2 2 1 3	
12310 12311 12312 12313 12314) 2 5	.7 .3 .5 .7 .7	43.0 27.3 36.1 76.1 44.4	3.7 2.4 2.7 3.0 2.1	43.8 39.5 66.2 103.1 85.5	32 <30 131 197 123	11 9 12 21 16	5 267 4 199 5 227 7 563 5 559	1.17 .87 .96 1.47 1.19	1.3 .6 <.5 .5 .6	<5 <5 7 9 18	< < < < < < < < < < < < < < < < < < <	19 16 16 24 18	.04 <.2 .01 <.2 .04 <.2 .08 <.2 .09 <.2	<.2 <.2 <.2 <.2 <.2	28 20 22 27 27	.30 .25 .23 .32 .26	.048 .027 .019 .035 .041	6 4 5 7 5	15 13 15 22 21	.38 .32 .31 .40 .27	36 35 61 114 78	.06 .06 .04 .03 .03	33333 2525 25	.80 .69 .89 1.38 .99	.01 .01 .01 .01 .01	.04 .04 .04 .07 .06	<2 <.2 <2 <.2 <2 <.2 <2 <.2 <2 <.2	16 <10 11 23 19	<.3 <.3 <.3 <.3 <.3	<.2 <.2 <.2 <.2 <.2 <.2	2.2 1.9 2.5 3.6 2.3	3 2 5 1 1	
12315 12317 12317 12318 Stand	5 7 3 DARD	.4 .9 .4 .5 23.4	32.4 62.3 36.5 9.7 117.0 1	2.4 2.6 2.2 2.0 102.0	48.6 75.6 71.7 73.0 262.3	139 194 153 <30 2007	10 18 13 6 30	5 288 8 605 5 468 3 211 17 991	.93 1.40 1.06 .77 4.60	<.5 .6 <.5 <.5 73.5	11 12 16 9 26	2 <2 <2 <2 18	15 24 18 15 56	.03 <.2 .08 .2 .07 <.2 .07 <.2 .07 <.2	<.2 <.2 <.2 <.2 19.8	22 29 21 15 67	.22 .31 .22 .17 .68	.015 .024 .019 .042 .108	5 8 5 4 16	15 22 16 7 52	.31 .38 .30 .22 1.10	48 97 69 84 222	.04 .04 .04 .03 .10	<3 <3 <3 <3 24	.79 1.11 .88 .69 2.27	.01 .01 .01 .01 .04	.05 .07 .08 .04 .67	<2 <.2 <2 <.2 <2 <.2 <2 <.2 16 2.6	10 25 29 <10 984	<.3 <.3 <.3 <.3	<.2 <.2 <.2 <.2 <.2 1.9	2.4 2.7 2.5 2.0 7.2	1 <1 <1 <1 54	

Standard is STANDARD D2/C3/AU-S. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

##

Crest Geological Consulting PROJECT 178 FILE # 9801731

<u></u>	ACHE ANACTITICAL																																				
	SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppb	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	8i pprn	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	К %	W mqq	Tl ppm	Hg ppb	Se ppm	Te pprni	Ga / ppm /	Au* ppb	
	12319 12320 12321 12322 12323	.7 1.3 .5 .5 .5	54.2 210.1 83.0 85.4 62.4	3.0 4.2 3.6 5.8 3.8	70.3 110.0 69.8 158.3 50.5	182 750 219 239 221	13 54 23 34 12	5 9 8 13 4	453 1548 1019 1478 369	1.10 2.44 1.47 2.10 1.15	1.1 3.1 .8 1.2 3.2	৩ ৩ ৩ ৩ ৩ ৩ ৩	< 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	23 47 32 39 26	.05 .16 .20 .39 .10	.2 .3 .2 .2 .2 .2	<.2 .6 <.2 <.2 <.2	19 29 25 28 25	.33 .77 .48 .74 .47	.034 .059 .028 .056 .030	6 14 6 5	14 43 21 27 17	.33 .51 .37 .46 .26	73 214 117 220 76	.02 .03 .03 .03 .02	<3 4 <3 3 <3	.87 2.11 1.14 1.42 .93	.01 .01 .01 .01 .01	.08 .19 .11 .12 .07	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<.2 <.2 <.2 <.2 <.2	18 81 24 25 23	.3 .5 <.3 <.3 <.3	<.2 <.2 <.2 <.2 <.2	3.0 5.6 2.9 3.6 2.7	1 4 <1 1 <1	_
	12324 RE 12324 12325 12326 12327	.3 .5 .4 1.3 .6	16.1 14.9 6.5 517.1 13.8	7.6 8.5 3.2 4.6 3.9	70.6 67.5 70.6 100.3 316.2	101 134 53 891 221	8 8 4 42 7	8 7 4 9 5	715 679 281 719 472	1.13 1.06 .83 2.38 1.14	.6 <.5 <.5 2.3 <.5	<5 7 <5 <5 <5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	20 19 14 71 21	.12 .14 .06 .82 .40	<.2 <.2 <.2 .4 <.2	<.2 <.2 <.2 <.2 <.2	16 15 16 28 18	.42 .40 .23 1.27 .26	.035 .033 .029 .061 .151	3 3 3 11 4	14 10 10 47 13	.27 .26 .21 .51 .24	118 112 63 223 150	.02 .02 .03 .02 .03	3 2 2 2 2 3 3 3 3 3 3 3 3	.83 .80 .56< 1.90 .82	.01 .01 .01 .02 .01	.07 .07 .04 .13 .09	<2 <2 <2 <2 <2 <2 <2	<.2 <.2 <.2 <.2 <.2	<10 <10 10 45 14	<.3 <.3 <.3 .8 <.3	<.2 <.2 <.2 .2 .2 <.2	2.4 2.9 2.3 4.7 3.3	<1 1 3 1	
	12328 12329 12330 12331 12332	.5 .7 .6 1.0 1.4	13.5 12.0 10.6 36.0 29.9	2.3 3.0 2.3 3.5 5.0	68.0 53.4 73.6 89.5 153.8	106 83 113 165 197	5 6 7 14 11	5 5 8 6	387 168 286 301 294	.99 1.14 1.27 1.76 1.77	1.0 1.0 1.1 1.9 1.5	<5 <5 7 <5 <5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	13 14 16 24 17	.30 .07 .10 .12 .13	<.2 <.2 .3 .2	<.2 <.2 <.2 <.2 <.2	16 23 24 30 32	.15 .20 .21 .32 .22	.023 .035 .026 .080 .091	2 3 3 4 4	10 13 11 19 20	.33 .30 .41 .46 .38	49 55 59 78 116	.02 .03 .04 .04 .03	ব ব ব ব ব ব ব ব	.80< .74 .80< 1.07 1.26	.01 .01 .01 .01 .01	.04 .07 .07 .10 .05	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<.2 <.2 <.2 <.2 <.2	20 <10 <10 10 <10	<.3 <.3 <.3 <.3 <.3 <.3	<.2 <.2 <.2 <.2 <.2	2.5 2.8 2.5 3.4 4.2	1 <1 1 2	
	12333 12334 12335 12336 12337	.8 .7 .5 .5 .5	11.1 14.4 8.1 9.7 12.8	3.1 2.6 2.9 2.4 2.5	64.4 86.5 102.9 74.4 85.3	91 154 120 113 83	7 8 6 7 9	4 4 4 5	146 264 246 177 216	1.13 1.05 .82 1.04 1.15	.9 1.1 .6 .7 .7	<5 <5 <5 <5 10	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	12 11 10 12 14	.04 .06 .07 .05 .05	<.2 <.2 .2 .2	<.2 <.2 <.2 <.2 <.2 <.2	24 20 17 20 21	.17 .15 .14 .17 .21	.038 .067 .032 .036 .044	3 3 3 3 3 3 3	12 13 8 11 14	.32 .30 .26 .33 .41	49 76 79 82 69	.03 .03 .03 .04 .04	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	.77< .80< .67< .74<	.01 .01 .01 .01	.05 .04 .06 .04 .06	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<.2 <.2 <.2 <.2 <.2	<10 <10 16 12 <10	<.3 · <.3 · <.3 · <.3 ·	<.2 <.2 <.2 <.2 <.2	2.9 2.6 2.5 2.6 2.9	2 1 2 1	
	12338 12339 12340 STANDARD	.8 .6 .5 26.2	16.2 16.4 26.3 122.1	2.8 2.4 2.7 110.4	74.1 74.5 68.9 275.4	121 123 94 2096	8 8 9 32	5 5 5 17	274 229 296 1011	1.12 1.22 1.19 4.70	.9 .6 .6 74.0	<5 <5 <5 22	<2 <2 <2 17	14 13 15 59	.05 .05 .03 2.08	.2 .2 .2 10.8	<.2 <.2 <.2 20.6	20 21 21 71	.19 .17 .22 .74	.034 .053 .035 .109	3 3 4 16	12 12 15 53	.40 .40 .47 1.18	74 85 57 244	.03 .03 .04 .14	उ उ उ 24	.80< .84 .88 2.36	.01 .01 .01 .01	.05 .09 .05 .71	<2 <2 <2 17	.2 <.2 <.2 2.5	16 <10 11 931	<.3 < <.3 < <.3 < .7 2	<.2 3 <.2 7 <.2 7 2.1 7	3.0 2.7 2.6 7.5	<1 1 1 50	

Standard is STANDARD D2/C3/AU-S. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data____FA

APPENDIX II

SOIL SAMPLING METHODOLOGY ANALYTICAL TECHNIQUES

CFCSC GEOLOGICAL CONSULTANTS LIMITED 2197 Park Crescent, Coquitiam, B.C. V3J 6T1 Telephone: (604)461-4138 Fax: (604)469-2642

APPENDIX II

SOIL SAMPLING METHODOLOGY ANALYTICAL TECHNIQUES

CRESC GEOLOGICAL CONSULTANTS LIMITED 2197 Park Crescent, Coquitlam, B.C. V3J 6T1 Telephone: (604)461-4138 Fax: (604)469-2642

SOIL SAMPLING METHODOLOGY and ANALYTICAL TECHNIQUES

Soil sampling was carried out along grid lines with sampling at a 50m spacing. Alternate lines were sampled at 50m also except that sample stations are offset by 25m so that the "implied" sampling "screen" is approximately 25m when the data is contoured.

B horizon material was sampled where available and placed in kraft sample bags and given a unique sample number. All samples were analysed for 35 elements by ultratrace ICP methods, gold by GF/AA analysis and mercury by cold vapour A.A. at Acme Analytical Laboratories Ltd., Vancouver, B.C. A detailed description of analytical reagents and procedures are listed on the first page of the analytical certificates.

ROCK SAMPLE ANALYTICAL TECHNIQUES

All rock samples were analysed for 30 elements by ICP methods used a 30gm aliquot, gold by atomic absorption (AA) and mercury by flameless AA at Acme Analytical Laboratories Ltd., Vancouver, B.C. A detailed description of analytical reagents and procedures are listed on the first page of the analytical certificates.

APPENDIX III

COPPER ACE PROPERTY - SOUTH GRID

GEOPHYSICAL SURVEY REPORT AND MAPS

CISSE GEOLOGICAL CONSULTANTS LIMITED 2197 Park Crescent, Coquittam, B.C. V3J 6T1 Telephone: (604)461-4138 Fax: (604)469-2642

GEOPHYSICAL INTERPRETATION REPORT

on the

CA 1, CA 2 CLAIMS COPPER ACE SOUTH GRID PROJECT NO. 178

CARIBOO MINING DIVISION, B.C. N.T.S. 93B/8,9 Latitude: 52° 33' N, Longitude: 122° 19' W

Prepared for: UNITED GUNN RESOURCES LTD.

by

E. Trent Pezzot, B. Sc., P. Geo. S.J.V. Consultants Ltd.

Date of Work: June 23 - July 9, 1998 Date of Report: November 30, 1998

Interpretation Report - Copper Ace South Grid

Table of Contents

page

FABLE OF CONTENTS	I
LIST OF PLATES	II
INTRODUCTION	.1
LOCATION AND ACCESS	.1
PROPERTY	.1
GEOLOGY	.1
CEARING AL CURVENC AND BRACESSINC	2
GEUPHISICAL SURVEIS AND PROCESSING	• 44
GEOPHYSICAL SURVEYS AND PROCESSING	.2
GEOPHYSICAL SURVEYS AND PROCESSING DISCUSSION OF RESULTS MAGNETICS	.2 .2 .2
GEOPHYSICAL SURVEYS AND PROCESSING DISCUSSION OF RESULTS MAGNETICS VLF-EM	.2 .2 .3
GEOPHYSICAL SURVEYS AND PROCESSING DISCUSSION OF RESULTS MAGNETICS VLF-EM SUMMARY AND CONCLUSIONS	.2 .2 .3 .3
GEOPHYSICAL SURVEYS AND PROCESSING DISCUSSION OF RESULTS MAGNETICS VLF-EM SUMMARY AND CONCLUSIONS RECOMMENDATIONS	.2 .2 .3 .3
GEOPHYSICAL SURVEYS AND PROCESSING DISCUSSION OF RESULTS MAGNETICS VLF-EM SUMMARY AND CONCLUSIONS RECOMMENDATIONS APPENDIX 1	.2 .2 .3 .3 .4

SJ Geophysics Ltd/S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada tel (604) 582-1100 fax (604) 589-7466 E-mail: sydv@sjgeop.bc.ca

Page i

List of Plates

Location

Plate G-1a	TOTAL MAGNETIC FIELD INTENSITY (nT)	
	STACKED PROFILE MAP	pocket
Plate G-1b	TOTAL MAGNETIC FIELD INTENSITY (nT)	
	CONTOUR MAP	pocket
Plate G-2a	VLF-EM STACKED PROFILE MAP	
	IN PHASE, QUADRATURE, FIELD STRENGT	Ή
	SEATTLE NLK 24.8 kHz	pocket
Plate G-2b	VLF-EM SEATTLE NLK 24.8 kHz	
	FRASER FILTERED IN PHASE	
	CONTOUR MAP	pocket
Plate G-3a	MAGNETIC AND VLF-EM	
	COMPILATION MAP	pocket

Page ii

Introduction

S.J.V. Consultants Ltd. was commissioned to process and interpret geophysical data gathered across United Gunn Resources Ltd.'s Copper Ace South property in central B.C. The geophysical data was gathered by Crest Geological Consultants Ltd. and included some 28.8 line km of total field magnetic and vlf-em (Seattle and Hawaii frequencies) surveys. The geophysical surveys were completed as part of a larger exploration program that included geological mapping, geochemical sampling and induced polarization surveying on several properties in the area.

Targets are described as porphyry and shear hosted copper and zinc deposits. It was the intention of these surveys to assist in the general geological mapping of the area as well as to delineate magnetic and/or conductivity responses that may be related to exploration targets.

This report is intended to be used as an addendum to a more complete report being prepared by Crest Geological Consultants Ltd. Readers are referred to Crests' report for more detailed descriptions of the claims, their ownership, geology and previous and concurrent work.

Location and Access

The project area is located approximately midway between Quesnel and Williams Lake, B.C., in the Cariboo Mining Division and N.T.S. 93B/8,9. The approximate geographical co-ordinates near the centre of the claims are latitude 52° 33' N and longitude 122° 19' W.

The property is located some 10 km east of BC highway #2 and several logging roads provide direct access to various parts of the grid.

Property

The Copper Ace South (Project No 178) is comprised of the CA 1 & 2 claims as outlined on all of the maps included in this report.

Geology

The Geological Survey of Canada Map 12-1959 shows the claims area to lie along the western flank of the Granite Mountain - Dragon Mountain range. The area is mapped as undifferentiated granitic rocks. It falls along a linear feature extending up the Fraser River valley that appears to be a zone of faults and of tight folds. No single, large fault has, however, been traced along it.

A preliminary geological interpretation was provided on a hardcopy map. Four lithological units are mapped on the property: a quartz-feldspar porphyry, granite mountain phase (), mine phase schist and mine phase. Six rock sample locations showing anomalous Cu and Zn values are located in the mine phase and mine phase schist units. Seven faults are also mapped, oriented NW-SE, E-W and N-S.

Geophysical Surveys and Processing

A grid comprised of 13 NE-SW oriented lines, of variable length, spaced at 100 and 200 metre intervals was established. A total of some 28.8 line kilometres of grid were surveyed.

Total field magnetic and inphase, quadrature and field strength measurements for two vlf-em transmitters (Seattle: NLK 24.8 kHz and Hawaii: NPM 23.4 kHz) were recorded at 12.5 metre station increments along these lines. A GEM GSM-19 combination magnetometer and vlf-em instrument was used as a field unit. Diurnal variations were recorded on a second GEM GSM-19 magnetometer located in the grid area and appropriate corrections were applied to the field data.

Geophysical data was provided to S.J.V. Consultants Ltd. as a digital file with all appropriate corrections applied. All data was registered to the NAD 83, Zone 10 UTM co-ordinate system. An AutoCAD format drawing of the base map that shows the claims, topography, streams, roads and survey grid was also provided.

Final processing and maps were produced by S.J.V. Consultants Ltd. in Vancouver, using AutoCad, Geopak and RTICAD software.

Discussion of Results

The magnetic and vlf-em data are presented in both stacked profile and contour formats. All maps included in this report are registered to the NAD 83, Zone 10 UTM coordinate system. The survey grid, claim outlines, streams and roads also provide common reference points on all maps.

MAGNETICS

The magnetic data is presented in stacked profile format as Plate G-1a and in contour format as Plate G-1b. The magnetic amplitudes all fall within a relatively narrow

(229 nT) range however the station to station variations are quite high, with a standard deviation of some 14 nT. This "choppy" character is indicative of volcanic rocks. There are a few magnetic responses, evident in the stacked profile display that exhibit similar characteristics between lines and can be interpreted as showing linear trends. Seven such responses are flagged on the compilation map, plate G-3a.

There are some correlations between the total magnetic intensity and the preliminary geological map however the magnetic data suggests more complex patterns. Two of three areas mapped as quartz/feldspar porphyry are distinguishable as magnetic highs (>57040 nT). Two areas of mine phase schists dominate the south-eastern corner of the grid. This area exhibits relatively low (< 56990 nT) magnetic intensities.

VLF-EM

Inphase, quadrature and field strength data was recorded for both the Seattle (NLK - 24.8 kHz) and Hawaii (NPM - 23.4 kHz) stations. The Seattle data is presented in stacked profile format as Plate G-2a and the fraser filtered inphase data in contour format as Plate G-2b. The Hawaii data was analyzed but did not assist in the interpretation and is not presented here.

Forty-three conductivity type responses are identified in the vlf-em data. Sixteen of these are likely generated from streams and/or topographic breaks. Most of the inphase component responses are on the order of <25% peak to peak amplitude, although one instance of 73% peak to peak amplitude is observed. The majority of the conductors exhibit an inphase to quadrature ratio of greater than 1.0, indicating relatively good conductivity. Approximately one third of the responses flagged extend over multiple lines, suggesting continuity to the sources. The majority of these strike N-S (+/- 10°). There are also a couple of instances where the conductors align NW-SE.

Five of the seven magnetically defined lineations coincide with vlf-em anomalies. A number of the conductors are also parallel and adjacent to contacts drawn on the preliminary geology map. It is likely that these conductors are related to geological contacts or shear/fault zones.

Summary and Conclusions

An exploration program, including magnetic and vlf-em surveys, was conducted by Crest Geological Consultants Ltd. across the Copper Ace South Grid, on behalf of United Gunn Resources Ltd. Approximately 28.8 line kilometres of geophysical data was forwarded to S.J.V. Consultants Ltd. for plotting and analysis. The survey was completed as part of a larger exploration program that included geological mapping, geochemical sampling and induced polarization surveying. The results of these other exploration techniques are currently being reviewed.

The area is being explored for porphyry and/or shear hosted copper and zinc deposits. Preliminary geological data shows the area as being underlain by four different volcanic units.

The magnetic data confirms the area is underlain by volcanics and suggests more complex structures than are indicated on the preliminary geological map. There are indications that the magnetic amplitudes may be useful in delineating at least two of the geological units.

Magnetic and vlf-em data suggest two dominant geological strikes: N-S and NW-SE. There are also indications of some NE-SW structures however this angle parallels the survey grid lines and these trends are not clearly delineated in this data.

The vlf-em defined conductors likely trace geological contacts or fault/shear zones.

Recommendations

There are several magnetic and vlf-em trends that can be interpreted as shear or fault zones. However, at this time, I feel it is premature to provide specific recommendations for follow-up. The prioritisation of anomalies and recommendations for further work should completed after the rest of the geological, geochemical and induced polarization results have been compiled.

Respectfully submitted per S.J.V. Consultants Ltd.

E. Trent Pezzot Geo.

Geophysics, Geology

APPENDIX 1

Statement of Qualifications

I, E. Trent Pezzot, of the city of Surrey, Province of British Columbia, hereby certify:

- I graduated from the University of British Columbia in 1974 with a B.Sc. degree in the combined Honours Geology and Geophysics program.

- I have practised my profession continuously from that date.

- I am a registered member of the Association of Professional Engineers and Geoscientists of British Columbia.

- I hold no direct or indirect interest in, nor expect to receive any benefits from, the mineral property or properties described in this report.

November 30, 1998

E. Trent Pe Geo. CIEN

