

K

Kennecott Canada Exploration Inc.

1998 GEOLOGICAL, GEOCHEMICAL, GEOPHYSICAL, AND DIAMOND DRILLING ASSESSMENT REPORT on the FINDLAY CREEK OPTION

VOLUME 4

APPENDICES VIII TO XI

- Prepared by: - **Kennecott Canada Exploration Inc.** 354 - 200 Granville Street Vancouver, British Columbia, Canada V6C 1S4 Phone: (604) 669-1880 Fax: (604) 669-5255

> - Authors - GEOLOGICAL SURVEY BRANCH Steven Coombes, P.Geo. ASSESSMENT REPORT Rick J. Zuran

File: 98findlay-asst-rpt b..doc

APPENDIX VIII

DIAMOND DRILL HOLE RQD LOGS

)

-

. ,

.

. .

k. .

Hole	From	То	Ind. Length	Meas. Length	% Recovery	# > 2.5 core d.	sum of pieces	RQD
F98-01	9.14	11.88	2.74	3.33	121.5	11	2.35	0.71
F98-01	11.88	14.94	3.06	3.01	98.4	8	2.42	0.80
F98-01	14.94	15.85	0.91	0.91	100.0	4	0.62	0.68
F98-01	15.85	17.98	2.13	2.45	115.0	9	1.99	0.81
F98-01	17.98	21.03	3.05	3.01	98.7	10	2.57	0.85
F98-01	21.03	24.08	3.05	3.12	102.3	8	2.39	0.77
F98-01	24.08	27.13	3.05	2.99	98.0	12	2.69	0.90
F98-01	27.13	30.18	3.05	3.19	104.6	10	2.12	0.66
F98-01	30.18	33.22	3.04	3.00	98.7	10	2.31	0.77
F98-01	36.27	39.32	3.05	3.01	98.7	12	1.26	0.42
F98-01	39.32	42.37	3.05	3.05	100.0	12	2.39	0.78
F98-01	42.37	44.65	2.28	2.37	103.9	9	1.77	0.75
F98-01	44.65	45.72	1.07	1.24	115.9	10	0.63	0.51
F98-01	45.72	48.46	2.74	2.76	100.7	7	2.26	0.82
F98-01	48.46	51.51	3.05	3.01	98.7	11	2.63	0.87
F98-01	51.51	52.73	1.22	1.50	123.0	1	0.26	0.17
F98-01	52.73	54.56	1.83	1.86	101.6	4	1.53	0.82
F98-01	54.56	57.30	2.74	2.62	95.6	8	2.52	0.96
F98-01	57.30	60.05	2.75	3.05	110.9	7	2.20	0.72
F98-01	60.05	60.66	0.61	0.46	75.4	2	0.46	1.00
F98-01	60.66	63.70	3.04	2.96	97.4	10	2.64	0.89
F98-01	63.70	66.75	3.05	3.01	98.7	9	2.60	0.86
F98-01	66.75	69.80	3.05	3.05	100.0	8	2.15	0.70
F98-01	69.80	72.39	2.59	2.80	108.1	6	2.15	0.77
F98-01	72.39	75,44	3.05	3.09	101.3	9	2.40	0.78
F98-01	75.44	76.89	1.45	1.73	119.3	4	1.50	0.87
F98-01	76.89	78.94	2.05	2.05	100.0	5	1.73	0.84
F98-01	78.94	80.92	1.98	2.00	101.0	5	1.80	0.90
F98-01	80.92	81.99	1.07	1.07	100.0	3	1.07	1.00
F98-01	81.99	85.04	3.05	3.05	100.0	6	2.70	0.89
F98-01	85.04	88.09	3.05	3.05	100.0	9	2.95	0.97
F98-01	88.09	91.14	3.05	2.94	96.4	8	2.42	0.82
F98-01	91.14	94.18	3 3.04	3.03	99.7	5	2.09	0.69
F98-01	94.18	97.73	3. 3.55	3.05	85.9	9	3.05	1.00
F98-01	97.73	100.2	8 2.55	3.00	117.6	9	2.20	0.73
F98-01	100.2	8 103.3	3 3.05	2.93	96.1	6	2.30	0.78
F98-01	103.3	3 106.3	8 3.05	3.05	100.0	7	2.90	0.95
F98-01	106.3	8 109.4	2 3.04	2.87	94.4	5	1.83	0.64
F98-01	109.4	2 111.4	0 1.98	2.19	110.6	7	1.17	0.53
F98-01	111.4	0 112.7	8 1.38	1.45	105.1	2	0.47	0.32
F98-01	112.7	8 115 5	2 2.74	2.61	95.3	10	2.11	0.81
F98-01	115.5	2 116 5	9 1.07	1.00	93.5	1	0.18	0.18
F98-01	116.5	9 119 4	8 2.89	3.03	104.8	6	2.86	0.94
F98-0	119.4	8 120.4	0 0.92	0.78	84.8	4	0.72	0.92
F98-0	120.4	0 123.1	4 2.74	2.66	97.1	5	2.17	0.82
F98-0	1 123.1	4 126.1	4 3.00	3.00	100.0	7	2.08	0.69
F98-0	1 126.1	4 129.2	24 3.10	3.10	100.0	4	2.06	0.66
F98-0	1 129.2	4 132.2	28 3.04	3.04	100.0	<u> </u>	2.60	0.86
F98-0	1 132.2	8 135.3	33 3.05	3.05	100.0	9	2.15	0.70
F98-0	1 135.3	3 138.3	38 3.05	2.91	95.4	6	2.20	0.76

	From	To	Ind Length	Meas, Length	% Recovery	# > 2.5 core d.	sum of pieces	RQD
	138 38	141 43	3.05	3.01	98.7	7	2.48	0.82
F08-01	141 43	142.64	1.21	1.37	113.2	5	1.12	0.82
E08-01	142.64	145.69	3.05	3.03	99.3	7	1.87	0.62
E08-01	145.69	148 74	3.05	3.05	100.0	9	2.55	0.84
F 90-01	148.00	151 79	3.05	3.10	101.6	6	2.77	0.89
F90-01	151 70	154 53	2 74	2.57	93.8	1	2.00	0.78
F90-01	154 53	157 58	3.05	3.10	101.6	9	2.00	0.65
F90-01	154.55	157.50	0.61	0.61	100.0	0	0.00	0.00
F90-01	159 10	161 24	3.05	2.86	93.8	6	2.15	0.75
F90-01	161 24	164 13	2.89	2.99	103.5	10	2.57	0.86
F90-01	101.24	166 73	2.50	2.83	110.1	5	2.14	0.76
F90-01	166 73	170 23	3.50	3.33	95.1	9	1.73	0.52
F90-01	170.73	172 21	1 98	2.05	103.5	4	0.86	0.42
F90-01	170.23	173 42	1.00	1.22	100.0	3	0.60	0.49
LA0-01	172 42	176 49	3 05	3.05	100.0	6	1.90	0.62
100-01	176 49	170.40	3 05	3.05	100.0	6	2.02	0.66
F30-01	170.40	182 59	3 05	3.05	100.0	6	1.00	0.33
F98-01	1/9.55	194.70	$\frac{3.33}{2.03}$	2 12	100.0	5	1.08	0.51
F98-01	102.50	104.70	1. 1.84	1 21	65.8	10	0.00	0.00
F98-01	184.70	100.54	7 2 12	2.80	131.5	10	1.69	0.60
F98-01	180.54	100.0	2.13	2.00	100.0	4	1.06	0.43
F98-01	100.07	191.1	2.44	3.05	100.0	10	1.15	0.38
F98-01	191.11	194.10	1 3.05	3.05	100.0	5	1.95	0.64
F98-01	194.10	200.2	5 3.03	2.96	97.4	2	1.09	0.37
F98-01	197.21	200.2	0 1.52	1.53	100.0	4	0.65	0.42
F98-01	200.25	201.7	1 2 1 2	2.09	98.1	7	1.29	0.62
F98-01	201.78	203.9	1 2.13	1.00	100.0	2	0.74	0.61
F98-01	203.91	205.1	<u>3 1.22</u>	1.22	95.6	3	0.55	0.31
F98-01	1 205.13	200.9	0 1.03	1.10	92.0	5	1.08	0.55
F98-01	1 206.90	209.0	9 2.13	2.67	95.4	5	0.98	0.37
F98-01	1 209.05	9 211.0	9 2.00	1.87	105.6	3	0.55	0.29
F98-0	1 211.8	9 213.0	0 1.11	2.44	100.0	8	1.82	0.75
F98-0	1 213.60		<u> </u>	3.05	100.0	9	2.07	0.68
F98-0	1 216.10	U 219.1	3 3.05	3.05	100.0	7	1.45	0.48
F98-0	1 219.1		U 3.05	3.05	100.0	8	1.53	0.50
F98-0	1 222.20	0 225.2	3.05	3.05	100.0	5	1.15	0.38
F98-0	1 225.2			3.03	100.0	5	1.79	0.59
<u> </u> +98-0	1 228.3	0 231.3	04 3.04	0.89	95.7	3	0.85	0.97
F98-0	1 231.3	4 232.2	0 0.92	2 34	95.9	7	1.55	0.66
F98-0	1 232.2	0 234.1	<u>U 2.44</u>	2.57	105 1	8	2.49	0.86
F98-0	1 234.7	U 237.4	4 2.74	1 65	90.7	4	1.13	0.68
F98-0	1 237.4	4 239.2	1.02	2.00	101.0	7	2.32	0.75
F98-0	1 239.2	0 242.	52 3.00	2.08	101.0	3	1.96	0.92
F98-0	1 242.3	2 244.4	2.13	0.70	131 7	2	0.32	0.41
F98-0	1 244.4	5 245.0	0.60	1 22	100.0	4	1.18	0.89
F98-0	1 245.0	5 246.	30 1.33	2.05	02.8	8	2.48	0.81
F98-0	1 246.3	8 249.	3.25	3.03	100.0	7	2.67	0.88
F98-0	1 249.6	3 252.	08 <u>3.05</u>	3.00	100.0		1.05	0.69
F98-0	1 252.6	8 254.	20 1.52	1.52	QA 8	3	1.07	0.74
F98-0)1 254.2	20 255.	/3 1.53	1.40	101 0		2.45	0.80
F98-0)1 255.7	73 258.	78 3.05_	3.08	101.0	1		

Hole	From	То	Ind. Length	Meas. Length	% Recovery	# > 2.5 core d.	sum of pieces	RQD
F98-01	258.78	261.82	3.04	3.04	100.0	8	2.63	0.87
F98-01	261.82	264.87	3.05	3.05	100.0	9	2.58	0.85
F98-01	264.87	267.92	3.05	3.05	100.0	10	2.40	0.79
F98-01	267.92	270.05	2.13	2.31	108.5	8	1.94	0.84
E98-01	270.05	273 10	3.05	2.91	95.4	8	2.61	0.90
F98-01	273 10	274 02	0.92	0.88	95.7	2	0.63	0.72
F98-01	274 02	277.06	3.04	3.04	100.0	11	2.31	0.76
F08-01	277.06	280 11	3.05	3.05	100.0	12	2.56	0.84
E08-01	280 11	282 55	2.44	2.44	100.0	4	1.29	0.53
F08-01	282 55	284.07	1.52	1.35	88.8	4	1.14	0.84
F08-01	284.07	284 99	0.92	0.92	100.0	4	0.71	0.77
F08-01	284 99	285.90	0.91	0.91	100.0	4	0.69	0.76
E08-01	285.90	287 73	1 83	1.39	76.0	4	0.65	0.47
E08_01	203.00	288.04	0.31	0.31	100.0	1	0.15	0.48
F08.01	288 04	200.04	3.04	3.04	100.0	6	2.33	0.77
E08 01	200.04	204 13	3.05	3.05	100.0	8	2.08	0.68
F 90-01	291.00	204.10	2 59	2.59	100.0	6	2.31	0.89
F 90-01	294.10	200.72	3.05	3.05	100.0	8	2.20	0.72
F 90-01	290.72	202 82	3.05	3.05	100.0	12	2.86	0.94
F90-01	202.82	302.02	3.05	3.02	99.0	9	2.87	0.95
F09-01	205.97	303.07	2.89	2.82	97.6	7	2.66	0.94
E09.01	209.76	311 81	3.05	3.05	100.0	10	2,48	0.81
E09.01	211 81	212 04	2 13	2.00	93.9	3	1.43	0.72
E09 01	212.04	316.60	2.10	2.74	99.6	5	2.68	0.98
E09 01	216.60	310.00	3.05	3.11	102.0	6	2.90	0.93
F90-01	210.03	372 78	3.05	3.04	100.0	9	2.77	0.91
F90-01	277 79	2 225 82	3 05	3.05	100.0	8	2.60	0.85
F90-01	225.70	2 2 2 8 8	3 3 05	3.05	100.0	6	2.90	0.95
F90-01	229.00	2 221 02	3 05	3.02	99.0	8	2.24	0.74
F90-0	320.00	2 224 09	3 3 05	3.02	99.0	11	2.75	0.91
F90-0	224.09	2 228 01	3.00	3.00	98.7	8	2.19	0.73
F90-0	234.50	2 2 4 1 0	7 3.05	3.05	100.0	6	1.96	0.64
F90-0	330.02	7 244 11	2 3.05	3.04	99.7	12	2.72	0.89
1-90-0	244.11	7 244.12	3 2 74	2 73	99.6	9	2.12	0.78
F90-0	1 344.14	2 340.00	$\frac{1}{2.77}$	2.65	96.4	8	1.75	0.66
F00-0	240.00	1 352 6	5 3.04	3.02	99.3	8	2.76	0.91
1-20-0	1 349.0	5 355 7	0 3.05	3.09	101.3	10	2.21	0.72
E09 0	1 255 7	0 367 9	<u> </u>	2 14	100.0	7	0.96	0.45
E08-0	1 257 0	1 250 2	<u> </u>	1 51	99.3	5	1.09	0.72
E00 0	1 250 2	- JJJ.J	8 1.52	1 48	97.4	1	0.12	0.08
F09-0	1 209.3	0.000 0	1 1 53	1.54	100.7	2	0.37	0.24
1200-0	1 262 4	1 364 5	4 2 13	2 11	99.1	7	1.47	0.70
E08 0	1 302.4	1 367 4	4 2.15	2.80	96.6	10	2.21	0.79
LA0-0	1 267 4	4 270 2	2 2.00	2.00	102.4	10	1.29	0.44
E00 0	1 307.4	3 372 0	8 2.05	2.68	97.5	8	1.68	0.63
E00 0	1 272 0	8 276 1	2 3.04	3.00	98.7	8	1.98	0.66
E00 0	1 373.0	2 378 8	7 2 75	2.74	99.6	7	0.82	0.30
E00 0	1 279 9	7 281 0	1 3.04	3.09	101.6	, 7	1.82	0.59
E09 0	1 391 0	1 382 6	8 0.77	0.71	92.2	2	0.45	0.63
E00-0	1 292 6	8 395 4	2 2 74	2 68	97.8	7	1.98	0.74
16.90-0	1 002.0	01000.4	2.17					

Sec. 14

FINDLAY CREEK PROJECT - 1998 Diamond Drill Hole RQD Logs

Hole Hole <th< th=""><th></th><th>From</th><th>το</th><th>Ind Length</th><th>Meas, Length</th><th>% Recovery</th><th># > 2.5 core d.</th><th>sum of pieces</th><th>RQD</th></th<>		From	το	Ind Length	Meas, Length	% Recovery	# > 2.5 core d.	sum of pieces	RQD
P38-01 307.5 2.89 2.80 96.9 4 0.87 F98-01 387.86 390.75 2.89 2.32 101.3 7 1.86 F98-01 393.80 390.75 2.89 2.32 101.3 7 1.86 F98-01 396.09 398.80 2.89 2.93 101.4 7 2.44 F98-01 380.90 305 3.10 101.6 6 2.22 F98-01 402.03 405.08 407.52 2.44 2.34 95.9 6 2.16 F98-01 407.52 410.57 3.05 3.09 101.3 9 2.12 F98-01 410.67 413.61 3.04 3.08 101.3 10 2.15 F98-01 418.80 2.14 2.16 100.9 6 1.35 F98-01 418.80 2.14 2.16 100.9 6 1.35 F98-01 422.15 1.37 1.42 103.6		285 42 2	187 86	2 44	2.36	96.7	5	1.63	0.69
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	E09 01	297 86 2	300 75	2.89	2.80	96.9	4	0.87	0.31
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	F90-01	200 75 2	303 80	3.05	2.97	97.4	7	2.16	0.73
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	F 90-01	203 80 1	206.00	2 29	2.32	101.3	7	1.86	0.80
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	F90-01	206.00 1	208 08	2.89	2.93	101.4	7	2.44	0.83
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	F90-01	208 08	402.03	3.05	3.10	101.6	6	2.22	0.72
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	F90-01	402 03	402.00	3.05	3.02	99.0	8	2.47	0.82
	F90-01	402.03	403.00	2 44	2.34	95.9	6	2.16	0.92
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	F90-01	403.00	407.52	3.05	3.09	101.3	9	2.12	0.69
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	F90-01	407.52	410.57	3.04	3.08	101.3	10	2.15	0.70
F98-01 410.01 5.00 0.10 0.9 6 1.35 F98-01 416.66 418.80 2.14 2.16 100.9 6 1.35 F98-01 420.78 422.15 1.37 1.42 103.6 3 0.81 F98-01 422.15 424.89 2.74 2.68 97.8 6 1.52 F98-01 424.89 425.50 0.61 0.45 73.8 1 0.12 F98-01 428.55 3.05 2.98 97.7 6 1.41 F98-01 428.55 429.46 0.91 0.75 82.4 1 0.20 F98-01 432.51 435.56 3.05 2.95 96.7 7 2.68 F98-01 432.51 435.56 3.05 2.99 98.0 8 2.657 F98-01 438.61 441.66 3.05 2.99 98.0 8 2.67 F98-01 443.61 3.05 3.03 <	F90-01	410.57	415.01	3.05	3.10	101.6	8	1.83	0.59
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	F98-01	413.01	410.00	2 14	2.16	100.9	6	1.35	0.63
F98-01418.30420.781.301.42103.630.81F98-01422.151.371.42103.630.81F98-01422.15424.892.742.6897.861.52F98-01424.89425.500.610.4573.810.12F98-01425.50428.553.052.9897.761.41F98-01428.55429.460.910.7582.410.20F98-01429.46432.513.052.9596.792.67F98-01432.51435.563.052.9596.772.68F98-01435.56438.613.053.07100.762.84F98-01441.663.052.9998.082.53F98-01441.66444.703.043.04100.082.67F98-01441.75450.803.053.0399.393.03F98-01447.75450.803.053.0399.393.03F98-01447.75450.803.052.9697.092.39F98-01450.80453.853.052.9697.092.39F98-01455.292.442.3897.581.98F98-01450.80453.853.052.9697.092.39F98-01450.80453.853.043.09101.6102.	F90-01	410.00	410.00	1.98	1.63	82.3	4	1.49	0.91
F98-01 422.13 1.01 1.01 1.01 F98-01 422.15 424.89 2.74 2.68 97.8 6 1.52 F98-01 424.89 425.50 0.61 0.45 73.8 1 0.12 F98-01 425.50 428.55 3.05 2.98 97.7 6 1.41 F98-01 425.50 428.55 429.46 0.91 0.75 82.4 1 0.20 F98-01 425.50 428.55 429.46 0.91 0.75 82.4 1 0.20 F98-01 425.51 3.05 2.95 96.7 7 2.68 F98-01 435.56 3.05 2.95 96.7 7 2.68 F98-01 438.61 441.66 3.05 2.99 98.0 8 2.53 F98-01 444.70 3.04 3.04 100.0 8 2.67 F98-01 447.75 45.80 3.05 2.99 98.0 10 2.26 F98-01 447.75 45.83 3.05 2.96 <td>F98-01</td> <td>410.00</td> <td>420.70</td> <td>1 37</td> <td>1.42</td> <td>103.6</td> <td>3</td> <td>0.81</td> <td>0.57</td>	F98-01	410.00	420.70	1 37	1.42	103.6	3	0.81	0.57
F98-01 424.83 425.50 0.61 0.45 73.8 1 0.12 F98-01 425.50 0.61 0.45 73.8 1 0.20 F98-01 425.50 425.50 0.61 0.75 82.4 1 0.20 F98-01 428.55 429.46 0.91 0.75 82.4 1 0.20 F98-01 429.46 432.51 3.05 2.95 96.7 9 2.67 F98-01 435.56 3.05 2.95 96.7 7 2.68 F98-01 435.56 438.61 3.05 3.07 100.7 6 2.84 F98-01 435.56 438.61 3.05 2.99 98.0 8 2.53 F98-01 441.66 444.70 3.04 3.04 100.0 8 2.67 F98-01 444.70 447.75 3.05 2.99 98.0 10 2.26 F98-01 447.75 450.80 3.05	F98-01	420.70	422.13	274	2.68	97.8	6	1.52	0.57
F98-01 423.03 423.03 0.01 1.41 F98-01 425.50 428.55 3.05 2.98 97.7 6 1.41 F98-01 428.55 429.46 0.91 0.75 82.4 1 0.20 F98-01 429.46 432.51 3.05 2.95 96.7 9 2.67 F98-01 432.56 438.61 3.05 2.95 96.7 7 2.68 F98-01 435.56 438.61 3.05 2.99 98.0 8 2.53 F98-01 441.66 3.05 2.99 98.0 8 2.67 F98-01 441.66 444.70 3.04 3.04 100.0 8 2.67 F98-01 444.70 447.75 3.05 2.99 98.0 10 2.26 F98-01 444.70 447.75 3.05 2.99 98.0 10 2.26 F98-01 450.80 453.85 3.05 2.96 97.0	F90-01	422.13	425.50	0.61	0.45	73.8	1	0.12	0.27
F98-01 428.55 429.46 0.91 0.75 82.4 1 0.20 F98-01 428.55 429.46 432.51 3.05 2.95 96.7 9 2.67 F98-01 432.51 435.56 3.05 2.95 96.7 7 2.68 F98-01 435.56 438.61 3.05 2.99 98.0 8 2.53 F98-01 435.56 441.66 3.05 2.99 98.0 8 2.53 F98-01 441.66 444.70 3.04 3.04 100.0 8 2.67 F98-01 444.66 444.70 3.04 3.04 100.0 8 2.67 F98-01 444.70 447.75 3.05 2.99 98.0 10 2.26 F98-01 444.70 447.75 3.05 2.99 98.0 10 2.26 F98-01 450.80 453.85 3.05 2.96 97.0 9 2.39 F98-01	F90-01	424.05	423.50	3.05	2.98	97.7	6	1.41	0.47
F98-01 420.33 423.40 0.01 2.95 96.7 9 2.67 F98-01 432.51 432.51 3.05 2.95 96.7 7 2.68 F98-01 435.56 438.61 3.05 3.07 100.7 6 2.84 F98-01 436.61 441.66 3.05 2.99 98.0 8 2.53 F98-01 443.61 441.66 3.05 2.99 98.0 8 2.53 F98-01 444.70 3.04 3.04 100.0 8 2.67 F98-01 444.70 3.04 3.04 100.0 8 2.67 F98-01 444.70 3.04 3.04 3.04 100.0 8 2.67 F98-01 450.80 453.85 3.05 2.99 98.0 10 2.26 F98-01 450.80 453.85 3.05 2.98 97.0 9 2.39 F98-01 456.29 2.44 2.38	F90-01	423.50	420.00	0.00	0.75	82.4	1	0.20	0.27
F98-01 432.51 5.55 96.7 7 2.68 F98-01 432.51 435.56 3.05 2.95 96.7 7 2.68 F98-01 435.56 438.61 3.05 3.07 100.7 6 2.84 F98-01 438.61 441.66 3.05 2.99 98.0 8 2.53 F98-01 441.66 444.70 3.04 3.04 100.0 8 2.67 F98-01 444.70 447.75 3.05 2.99 98.0 10 2.26 F98-01 444.70 447.75 450.80 3.05 3.03 99.3 9 3.03 F98-01 445.88 3.05 2.96 97.0 9 2.39 98.0 10 2.26 F98-01 450.80 453.85 3.05 2.96 97.0 9 2.39 2.39 F98-01 456.29 459.33 3.04 3.09 101.6 10 2.98 F98-01 456.29 459.33 3.04 3.08 101.3 9 2.98	F90-01	420.33	423.40	3.05	2.95	96.7	9	2.67	0.91
F98-01 432.31 433.30 3.03 3.03 100.7 6 2.84 F98-01 438.61 441.66 3.05 2.99 98.0 8 2.53 F98-01 438.61 441.66 3.05 2.99 98.0 8 2.53 F98-01 441.66 444.70 3.04 3.04 100.0 8 2.67 F98-01 444.70 447.75 3.05 2.99 98.0 10 2.26 F98-01 447.75 450.80 3.05 3.03 99.3 9 3.03 F98-01 447.75 450.80 3.05 2.96 97.0 9 2.39 F98-01 453.85 3.05 2.96 97.0 9 2.39 F98-01 456.29 2.44 2.38 97.5 8 1.98 F98-01 456.29 459.33 3.04 3.09 101.6 10 2.98 F98-01 455.12 3.04 3.08 101.3 9 2.98 F98-01 465.12 468.17 3.05 <td>F90-01</td> <td>429.40</td> <td>432.51</td> <td>3.05</td> <td>2.95</td> <td>96.7</td> <td>7</td> <td>2.68</td> <td>0.91</td>	F90-01	429.40	432.51	3.05	2.95	96.7	7	2.68	0.91
F98-01 433.30 436.01 5.05 2.99 98.0 8 2.53 F98-01 441.66 441.66 3.05 2.99 98.0 100.0 8 2.67 F98-01 444.70 447.75 3.04 3.04 100.0 8 2.67 F98-01 444.70 447.75 3.05 2.99 98.0 10 2.26 F98-01 447.75 450.80 3.05 3.03 99.3 9 3.03 F98-01 450.80 453.85 3.05 2.96 97.0 9 2.39 F98-01 450.80 453.85 3.05 2.96 97.0 9 2.39 F98-01 453.85 456.29 2.44 2.38 97.5 8 1.98 F98-01 456.29 459.33 3.04 3.09 101.6 10 2.98 F98-01 462.08 465.12 3.04 3.08 101.3 9 2.98 F98-01 465.12 468.17 3.05 3.08 101.0 9 2.89 <	F90-01	432.31	438.61	3.05	3.07	100.7	6	2.84	0.93
F98-01 441.05 3.04 3.04 100.0 8 2.67 F98-01 441.66 444.70 3.04 3.04 100.0 8 2.67 F98-01 444.70 447.75 3.05 2.99 98.0 10 2.26 F98-01 447.75 450.80 3.05 3.03 99.3 9 3.03 F98-01 450.80 453.85 3.05 2.96 97.0 9 2.39 F98-01 450.80 453.85 3.05 2.96 97.0 9 2.39 F98-01 456.29 2.44 2.38 97.5 8 1.98 F98-01 456.29 459.33 3.04 3.09 101.6 10 2.98 F98-01 456.29 465.12 3.04 3.08 101.3 9 2.98 F98-01 465.12 3.04 3.08 101.0 9 2.89 F98-01 465.12 468.17 3.05 3.08 101.0 9 2.89 F98-01 468.17 469.85 1.68<	F90-01	435.50	430.0	3.05	2.99	98.0	8	2.53	0.85
F98-01 441.00 441.00 5.04 2.99 98.0 10 2.26 F98-01 444.70 447.75 3.05 2.99 98.0 10 2.26 F98-01 447.75 450.80 3.05 3.03 99.3 9 3.03 F98-01 450.80 453.85 3.05 2.96 97.0 9 2.39 F98-01 453.85 456.29 2.44 2.38 97.5 8 1.98 F98-01 456.29 459.33 3.04 3.09 101.6 10 2.98 F98-01 456.29 459.33 3.04 3.09 101.6 10 2.98 F98-01 452.08 2.75 2.58 93.8 5 2.17 F98-01 462.08 465.12 3.04 3.08 101.3 9 2.98 F98-01 465.12 468.17 3.05 3.08 101.0 9 2.89 F98-01 468.17 469.85 1.68 1.43 85.1 5 0.80 F98-01 469.8	F90-0	430.01	441.00	3.04	3.04	100.0	8	2.67	0.88
F98-01 444.70 447.75 5.00 3.03 99.3 9 3.03 F98-01 450.80 453.85 3.05 2.96 97.0 9 2.39 F98-01 453.85 456.29 2.44 2.38 97.5 8 1.98 F98-01 456.29 459.33 3.04 3.09 101.6 10 2.98 F98-01 456.29 459.33 3.04 3.09 101.6 10 2.98 F98-01 456.29 459.33 3.04 3.09 101.6 10 2.98 F98-01 459.33 462.08 2.75 2.58 93.8 5 2.17 F98-01 465.12 3.04 3.08 101.3 9 2.98 F98-01 465.12 468.17 3.05 3.08 101.0 9 2.89 F98-01 465.17 469.85 1.68 1.43 85.1 5 0.80 F98-01 469.85 472.14 2.29 2.36 103.1 7 2.06 F98-01 472.	F90-0	441.00	444.10	5 3.04	2.99	98.0	10	2.26	0.76
F98-01 447.73 450.85 0.85 0.95 97.0 9 2.39 F98-01 450.80 453.85 3.05 2.96 97.0 9 2.39 F98-01 453.85 456.29 2.44 2.38 97.5 8 1.98 F98-01 456.29 459.33 3.04 3.09 101.6 10 2.98 F98-01 456.29 459.33 3.04 3.09 101.6 10 2.98 F98-01 456.29 459.33 3.04 3.09 101.6 10 2.98 F98-01 452.08 2.75 2.58 93.8 5 2.17 F98-01 465.12 3.04 3.08 101.3 9 2.98 F98-01 465.12 468.17 3.05 3.08 101.0 9 2.89 F98-01 468.17 469.85 1.68 1.43 85.1 5 0.80 F98-01 468.17 469.85 1.68 1.43 85.1 7 2.06 F98-01 472.14 475.1	F90-0	444.70	441.7	- <u>3.05</u>	3.03	99.3	9	3.03	1.00
F98-01 450.80 450.83 5.86 1.98 F98-01 453.85 456.29 2.44 2.38 97.5 8 1.98 F98-01 456.29 459.33 3.04 3.09 101.6 10 2.98 F98-01 459.33 462.08 2.75 2.58 93.8 5 2.17 F98-01 462.08 465.12 3.04 3.08 101.3 9 2.98 F98-01 465.12 468.17 3.05 3.08 101.0 9 2.89 F98-01 468.17 469.85 1.68 1.43 85.1 5 0.80 F98-01 468.17 469.85 1.68 1.43 85.1 5 0.80 F98-01 469.85 472.14 2.29 2.36 103.1 7 2.06 F98-01 472.14 475.18 3.04 2.97 97.7 9 2.44 F98-01 475.18 478.23 3.05 2.98 97.7 7 2.86 F98-01 475.18 478.23 <td< td=""><td>F90-0</td><td>441.13</td><td>450.00</td><td>5 3.05</td><td>2.96</td><td>97.0</td><td>9</td><td>2.39</td><td>0.81</td></td<>	F90-0	441.13	450.00	5 3.05	2.96	97.0	9	2.39	0.81
F98-01 433.03 430.23 2.44 3.09 101.6 10 2.98 F98-01 456.29 459.33 3.04 3.09 101.6 10 2.98 F98-01 459.33 462.08 2.75 2.58 93.8 5 2.17 F98-01 462.08 465.12 3.04 3.08 101.3 9 2.98 F98-01 465.12 468.17 3.05 3.08 101.0 9 2.89 F98-01 468.17 469.85 1.68 1.43 85.1 5 0.80 F98-01 468.17 469.85 1.68 1.43 85.1 5 0.80 F98-01 469.85 472.14 2.29 2.36 103.1 7 2.06 F98-01 472.14 475.18 3.04 2.97 97.7 9 2.44 F98-01 475.18 478.23 3.05 2.98 97.7 7 2.86 466.01 463.88 99.5 97.7 7 2.86	F90-0	450.00	455.0	2 44	2.38	97.5	8	1.98	0.83
F98-01 430.23 433.33 0.01 F98-01 459.33 462.08 2.75 2.58 93.8 5 2.17 F98-01 462.08 465.12 3.04 3.08 101.3 9 2.98 F98-01 465.12 468.17 3.05 3.08 101.0 9 2.89 F98-01 465.12 468.17 3.05 3.08 101.0 9 2.89 F98-01 468.17 469.85 1.68 1.43 85.1 5 0.80 F98-01 469.85 472.14 2.29 2.36 103.1 7 2.06 F98-01 472.14 475.18 3.04 2.97 97.7 9 2.44 F98-01 475.18 478.23 3.05 2.98 97.7 7 2.86 Her 466.01 463.88 99.5 97.7 7 2.86	F08 0	455.05	450.2	3 3.04	3.09	101.6	10	2.98	0.96
F98-01 435.33 402.06 2.10 3.08 101.3 9 2.98 F98-01 465.12 3.04 3.08 101.0 9 2.89 F98-01 465.12 468.17 3.05 3.08 101.0 9 2.89 F98-01 465.12 468.17 3.05 3.08 101.0 9 2.89 F98-01 468.17 469.85 1.68 1.43 85.1 5 0.80 F98-01 469.85 472.14 2.29 2.36 103.1 7 2.06 F98-01 472.14 475.18 3.04 2.97 97.7 9 2.44 F98-01 475.18 478.23 3.05 2.98 97.7 7 2.86 466.01 463.88 99.5	F 90-0	1 450.25	462.0	8 275	2.58	93.8	5	2.17	0.84
F98-01 462.06 463.12 0.01 9 2.89 F98-01 465.12 468.17 3.05 3.08 101.0 9 2.89 F98-01 468.17 469.85 1.68 1.43 85.1 5 0.80 F98-01 469.85 472.14 2.29 2.36 103.1 7 2.06 F98-01 472.14 475.18 3.04 2.97 97.7 9 2.44 F98-01 475.18 478.23 3.05 2.98 97.7 7 2.86 466.01 463.88 99.5	L 20-0	409.00	402.0	2 3.04	3.08	101.3	9	2.98	0.97
F98-01 463.12 469.85 1.68 1.43 85.1 5 0.80 F98-01 469.85 472.14 2.29 2.36 103.1 7 2.06 F98-01 472.14 475.18 3.04 2.97 97.7 9 2.44 F98-01 475.18 478.23 3.05 2.98 97.7 7 2.86 466.01 463.88 99.5 97.7 7 2.86	E08 0	1 465 12	468 1	7 3 05	3.08	101.0	9	2.89	0.94
F98-01 403.17 403.03 1.00 1.00 1.00 F98-01 469.85 472.14 2.29 2.36 103.1 7 2.06 F98-01 472.14 475.18 3.04 2.97 97.7 9 2.44 F98-01 475.18 478.23 3.05 2.98 97.7 7 2.86 466.01 463.88 99.5 97.7 7 2.86	1200-0	1 405.12	460.1	5 1.68	1.43	85.1	5	0.80	0.56
F98-01 472.14 475.18 3.04 2.97 97.7 9 2.44 F98-01 475.18 478.23 3.05 2.98 97.7 7 2.86	1-90-0	1 400.17	409.0	4 2.29	2.36	103.1	7	2.06	0.87
F98-01 475.18 478.23 3.05 2.98 97.7 7 2.86 466.01 463.88 99.5 97.7 7 2.86	F-98-0	1 409.00	475 1	8 3.04	2.97	97.7	9	2.44	0.82
<u>475.16</u> <u>475.25</u> <u>5.05</u> <u>1.00</u> <u>463.88</u> <u>99.5</u>	F98-0	1 412.14	413.1	2 3.04	2.98	97.7	7	2.86	0.96
400.01	<u> +98-0</u>	1 4/5.18	410.2	466.01	463.88	99.5			
	├			+00.01					

)

-

ι.,

1

ι.

A. 2

×. .

. .

1

i, s

1. v

	From	Το	Ind. Length	Meas. Length	% Recovery	# > 2.5 core d.	sum of pieces	RQD
	4 25	4.57	0.32	0.49	153.1	3	0.27	0.55
F08-02	4.57	7 47	2.90	2.40	82.8	10	2.08	0.87
E08.02	7.47	8.69	1.22	1.18	96.7	6	0.87	0.74
F08 02	8.69	10.36	1 67	1.52	91.0	2	0.72	0.47
F90-02	10.03	13 41	3.05	2.97	97.4	8	2.25	0.76
F 90-02	13.41	14 94	1 53	1.53	100.0	4	0.96	0.63
F90-02	14 94	16.61	1.67	1.60	95.8	5	0.70	0.44
F90-02	16 61	10.01	2 44	2.15	88.1	14	1.46	0.68
F90-02	10.01	21 03	1.98	1.93	97.5	7	1.67	0.87
F90-02	21.02	21.00	3.05	3.05	100.0	13	2.47	0.81
F90-02	21.03	27.00	3.05	3.05	100.0	11	2.92	0.96
F09-02	24.00	21.10	2.16	2.16	100.0	8	2.11	0.98
F90-02	27.13	20.20	3.02	3.02	100.0	13	3.02	1.00
F90-02	29.29	35.36	3.05	2.98	97.7	13	2.63	0.88
F90-02	35 36	38 10	2 74	2.50	91.2	11	2.46	0.98
E08.02	38.10	41 15	3.05	3.03	99.3	11	2.67	0.88
E09 02	41 15	44 20	3.05	2.75	90.2	7	2.50	0.91
F09 02	44.70	46 50	2.30	2.30	100.0	5	2.17	0.94
E09 02	46.50	40.50	3 18	3.08	96.9	12	2.86	0.93
F90-02	40.50	52 73	3.05	3.05	100.0	13	3.05	1.00
F90-02	52 73	55 47	2 74	2.48	90.5	7	2.48	1.00
F30-02	55 47	57.61	2 14	2.14	100.0	9	2.14	1.00
F90-02	57.61	60.66	3.05	2.75	90.2	12	2.72	0.99
F90-02	60.66	63 70	3.04	2.95	97.0	15	2.86	0.97
F09-02	63 70	65 53	1.83	1.83	100.0	5	1.67	0.91
F 90-02	65 53	66 75	1 22	1.22	100.0	9	1.03	0.84
F08-02	66 75	69.30	2.55	2.41	94.5	12	1.12	0.46
F08-02	69 30	71.93	2.63	2.18	82.9	13	1.69	0.78
F08-02	71 93	73 76	1.83	1.80	98.4	8	1.70	0.94
508-02	2 73 76	74 98	1.22	1.12	91.8	10	0.88	0.79
F08 02	74 08	76.51	1.53	1.41	92.2	8	1.17	0.83
E08-02	76 51	78.49	1.98	1.93	97.5	12	1.73	0.90
508 01	78.49	80.77	2.28	2.25	98.7	11	1.42	0.63
E08_0	2 80 77	82.30	1.53	1.53	100.0	6	0.83	0.54
E09 0	2 82 20	84 47	2.13	2.13	100.0	8	1.58	0.74
F08-0	2 84 43	87 48	3.05	2.84	93.1	16	2.42	0.85
E00 0	2 87 49	89.00	1.52	1.52	100.0	6	1.07	0.70
F08-0	2 89.00	92.05	3.05	1.91	62.6	5	0.98	0.51
E09-0	2 03.00	94 19	2.13	2.12	99.5	8	1.70	0.80
E08_0	2 94 18	97.2	3 3.05	2.98	97.7	9	2.85	0.96
E08 0	2 07 22	100 2	8 3.05	3.02	99.0	8	2.85	0.94
E08.0	2 100 2	8 103 1	7 2.89	2.87	99.3	9	2.33	0.81
E02 0	2 103.2	7 106 2	2 3.05	2.95	96.7	14	2.62	0.89
E00-0	2 100.1	2 108 2	0 1.98	1.98	100.0	13	1.74	0.88
E08.0	2 108.2	0 109 4	2 1.22	1.13	92.6	4	1.07	0.95
E08_0	2 109.4	2 110 9	4 1.52	1.51	99.3	9	1.11	0.74
E08-0	2 110 9	4 112 7	1.84	1.84	100.0	, 10	1.58	0.86
F08_0	2 112 7	8 115 2	2.43	2.35	96.7	10	1.98	0.84
F08-0	2 115 2	1 117 6	5 2.44	2.36	96.7	14	2.06	0.87
FOR	2 117 6	5 120 0	2.44	2.27	93.0	13	1.73	0.76
1.00-0				and the second se				

+ •

.

. .

÷. •

10

2 - 2 16 - 2

s. . ..

.

. تىرىغ

ί. α

			lad Longth	Meas Length	% Recovery	# > 2.5 core d.	sum of pieces	RQD
Hole j	From	10	ina. Lengui	Ineus, Longin	100.0	13	1.83	1.00
F98-02	120.091	121.92	1.83	1.83	100.0		1 00	0.67
F00 02	121 02	123.60	1.68	1.62	96.4	11	1.09	0.07
P90-02	121.92	120.00	2.90	2.89	100.0	17	2.58	0.89
F98-02	123.60	126.49	2.09	2.00	04.8	7	1.11	0.77
F98-02	126.49	128.02	1.53	1.45	94.0	1	2.40	0.88
F00 02	129.02	120 76	274	2.74	100.0	15	2.40	0.00
F98-02	120.02	130.10	0.49	2 12	100.0	15	1.86	0.87
F98-02	130.76	132.89	2.13	2.10	04.2	11	2.11	0.92
E98-02	132.89	135.33	2.44	2.30	94.3	<u> </u>		+
1 00 02			131.08	125.48	95.7			
	 _							<u> </u>

)

	From	To	Ind. Length	Meas, Length	% Recovery	# > 2.5 core d.	sum of pieces	RQD
	0.00	2 74	2 74	2.74	100.0	0	0.00	0.00
F 90-03	274	5 79	3.05	3.05	100.0	5	0.75	0.25
F08-03	5 79	7.01	1 22	2.30	188.5	6	0.67	0.29
F08 03	7.01	8.84	1.83	1.75	95.6	5	0.92	0.53
F90-03	8.84	11 58	2 74	1.73	63.1	4	0.55	0.32
F90-03	11 58	13.41	1.83	1.75	95.6	4	0.61	0.35
F90-03	13 41	14 48	1.00	0.99	92.5	1	0.17	0.17
F90-03	14 48	16.92	2 44	2.50	102.5	6	0.87	0.35
F90-03	16.02	17.92	1.06	1.00	94.3	4	0.51	0.51
F90-03	17.92	21.03	3.05	2.93	96.1	9	1.68	0.57
F90-03	21.02	24.08	3.05	2.96	97.0	9	1.90	0.64
F 90-03	24.08	25.91	1.83	1.91	104.4	7	0.98	0.51
F90-03	24.00	27.74	1.00	1 76	96.2	5	0.93	0.53
F90-03	23.91	20.18	244	2 40	98.4	6	1.06	0.44
F90-03	21.14	21.24	1.06	1.02	96.2	3	0.74	0.73
F98-03	30.10	31.24	0.61	0.70	114.8	0	0.00	0.00
F98-03	31.24	31.05	2.44	2.52	103.3	6	1.35	0.54
F98-03	31.05	34.29	1.68	1.51	89.9	4	0.80	0.53
F98-03	34.29	35.97	0.76	0.69	90.8	2	0.28	0.41
F98-03	35.97	30.73	0.70	0.00	84.6	2	0.41	0.53
F98-03	30.73	37.04	2.44	2 25	92.2	2	1.37	0.61
F98-03	37.04	40.00	1.09	2.25	105.6	6	1.32	0.63
F98-03	40.08	42.00	2.05	3.00	98.4	8	1.73	0.58
F98-03	42.00	45.11	3.05	1.66	98.8	7	1.30	0.78
F98-03	45.11	40.79	1.00	2.61	100.8	6	2.07	0.79
F98-03	46.79	49.38	2.59	2.01	98.6	4	2.15	0.75
F98-03	49.38	52.21	2.09	2.00	92.6	2	0.76	0.36
F98-03	52.27	54.50	2.29	2.12	112.0	6	1.36	0.67
F98-03	54.55	50.30	1.02	2.04	101.1	1	0.12	0.13
F98-03	56.38	57.30	0.92	2.23	91.4	8	1.30	0.58
F98-03	57.30	59.74	4.92	1 01	104 4	2	0.48	0.25
F98-03	59.74	01.5/	1.03	1.91	101.9	0	0.00	0.00
F98-03	61.57	02.04	0.76	0.67	88.2	1	0.23	0.34
F98-03	62.64	03.40	0.70	0.07	11.5	0	0.00	0.00
F98-03	63.40	04.02	1.22	0.14	27.9	0	0.00	0.00
F98-03	64.62	00.04	0.61	0.54	111.5	0	0.00	0.00
F98-03	05.84	00.43	1.00	1 15	108.5	2	0.22	0.19
F98-03	66.45	07.51	1.00	0.94	87.9	2	0.22	0.23
F98-03	67.51	08.50	0 1.07	2.72	99.6	7	1.44	0.53
F98-03	68.58	11.32	2.74	2.13	07.5	3	0.35	0.29
F98-03	71.32	72.54	1.22	0.26	78.3	1	0.10	0.28
F98-03	72.54	13.00	0.40	1.30	88.8		0.45	0.33
F98-03	3 73.00	/4.52	2 1.52	1.33	112.0		0.11	0.21
F98-03	5 74.52	/4.98	0.40	0.52	02.0	4	0.64	0.41
F98-03	3 74.98	76.60		2.45	04 2	7	1.12	0.52
F98-03	3 76.66	/8.94	2.28	2.13	02 /	- <u> </u>	0.70	0.55
F98-03	3 78.94	80.3	$\frac{1.37}{2}$	1.20	101 7	<u> </u>	0.86	0.37
F98-03	8 80.31	82.6	J 2.29	2.33	111.7	+	0.40	0.29
F98-03	3 82.60	83.8	2 1.22	1.30	80.5		0.40	0.29
F98-0	3 83.82	85.3	4 1.52	1.30	05.5		1.68	0.7
IF98-03	3 85.34	88.0	9 2.75	2.30	00.0			1

e Agi a

_

Hole	From	То	Ind. Length	Meas. Length	% Recovery	# > 2.5 core d.	sum of pieces	RQD
F98-03	88.09	90.22	2.13	2.46	115.5	6	1.28	0.52
F98-03	90.22	91.74	1.52	1.62	106.6	2	0.33	0.20
F98-03	91 74	92.96	1.22	1.22	100.0	0	0.00	0.00
F98-03	92.96	93.88	0.92	0.84	91.3	2	0.61	0.73
F98-03	93.88	95.10	1.22	1.08	88.5	4	0.65	0.60
E98-03	95 10	96.01	0.91	0.98	107.7	1	0.14	0.14
F98-03	96.01	97.23	1.22	0.77	63.1	1	0.15	0.19
F98-03	97.23	97.99	0.76	0.89	117.1	0	0.00	0.00
F98-03	97.99	99.67	1.68	0.97	57.7	2	0.41	0.42
F98-03	99.67	100.58	0.91	0.62	68.1	0	0.00	0.00
F98-03	100.58	102.57	1.99	2.25	113.1	1	0.11	0.05
F98-03	102.57	104.85	2.28	2.33	102.2	5	0.84	0.36
F98-03	104.85	107.38	2.53	2.46	97.2	6	1.53	0.62
F98-03	107.38	109.42	2.04	2.11	103.4	4	1.41	0.67
F98-03	109.42	112.47	3.05	3.00	98.4	3	3.00	1.00
F98-03	112.47	115.52	3.05	3.18	104.3	4	1.65	0.52
F98-03	115.52	118.57	3.05	3.11	102.0	7	2.64	0.85
F98-03	118.57	121.62	3.05	3.01	98.7	6	2.94	0.98
F98-03	121.62	124.66	3.04	3.03	99.7	7	2.84	0.94
F98-03	124.66	127.71	3.05	3.16	103.6	13	2.96	0.94
F98-03	127.71	130.76	3.05	2.95	96.7	7	2.65	0.90
F98-03	130.76	132.13	1.37	1.38	100.7	2	0.17	0.12
F98-03	132.13	133.05	0.92	1.18	128.3	0	0.00	0.00
F98-03	133.05	135.79	2.74	2.67	97.4	4	2.25	0.84
F98-03	135.79	136.25	0.46	0.24	52.2	0	0.00	0.00
F98-03	136.25	136.86	0.61	0.63	103.3	0	0.00	0.00
F98-03	136.86	139.90	3.04	3.04	100.0	5	2.78	0.91
F98-03	139.90	142.95	5 3.05	3.09	101.3	7	2.84	0.92
F98-03	142.95	145.39	2.44	2.29	93.9	5	1.4/	0.64
F98-03	145.39	147.52	2 2.13	1.84	86.4	3	1.14	0.62
F98-03	147.52	2 148.44	0.92	1.01	109.8	3	0.64	0.63
F98-03	148.44	149.0	5 0.61	0.56	91.8	1	0.12	0.21
F98-03	149.05	5 150.72	2 1.67	1.77	106.0	2	0.42	0.24
F98-03	3 150.72	2 151.3	3 0.61	0.62	101.6	0	0.00	0.00
F98-03	3 151.33	3 153.00	0 1.67	1.67	100.0	2	1.08	0.65
F98-03	3 153.00	0 155.14	4 2.14	2.11	98.6	3	1./3	0.82
F98-03	3 155.14	4 158.0	4 2.90	2.74	94.5	3	1.96	0.72
F98-0	3 158.04	4 159.3	6 1.32	1.35	102.3	3	0.91	0.67
F98-0	3 159.30	6 162.4	2 3.06	3.03	99.0	5	1.92	0.63
F98-0	3 162.42	2 164.2	9 1.87	1.36	72.7	1	0.55	0.40
F98-0	3 164.2	9 165.0	5 0.76	0.62	81.6	1	0.12	0.19
F98-0	3 165.0	5 167.3	4 2.29	2.37	103.5	2	2.22	0.94
F98-0	3 167.3	4 169.4	7 2.13	2.11	99.1	1	2.11	1.00
F98-0	3 169.4	7 172.5	2 3.05	3.02	99.0	5	2.35	0.78
F98-0	3 172.5	2 174.6	5 2.13	1.91	89.7	3	0.84	0.44
F98-0	3 174.6	5 176.4	8 1.83	2.10	114.8	3	1.44	0.69
F98-0	3 176.4	8 179.5	3 3.05	3.05	100.0	3	1.32	0.43
F98-0	3 179.5	3 180.7	5 1.22	1.41	115.6	4	0.89	0.63
F98-0	3 180.7	5 182.5	8 1.83	1.83	100.0	1	1.83	1.00
F98-0	3 182.5	8 185.6	3.04	3.03	99.7	2	2.93	0.97

-

_

-

____,

•

ι.

. . .

. .

ι.

:

	From	To	Ind. Length	Meas, Length	% Recovery	# > 2.5 core d.	sum of pieces	ROD
	185.62	188 67	3.05	2.99	98.0	3	1.84	0.62
F 90-03	188.67	100.07	3.05	2.94	96.4	4	2.15	0.73
E08-03	191 72	194 01	2.29	2.44	106.6	3	1.38	0.57
F 90-03	194.01	196.29	2 28	2.06	90.4	3	1.38	0.67
F09 03	106.20	197.82	1.53	1.56	102.0	2	0.53	0.34
F 90-03	190.29	200.86	3.04	3.04	100.0	4	1.61	0.53
F90-03	200.86	200.00	3.05	3.02	99.0	5	1.78	0.59
F90-03	200.00	205.91	3.05	2.99	98.0	4	2.03	0.68
F90-03	205.91	200.00	1.07	1.07	100.0	3	0.57	0.53
F90-03	200.90	200.03	2.89	2 85	98.6	9	2.17	0.76
F90-03	200.03	210.32	3.05	3.07	100.7	5	2.53	0.82
F90-03	210.92	213.97	3.05	3.07	100.7	1	3.07	1.00
F90-03	213.97	217.02	3.05	3.05	100.0	2	2.99	0.98
1-90-03	217.02	220.01	3.04	2 93	96.4	1	2.93	1.00
F90-03	220.07	225.11	2 14	2.32	108.4	2	2.28	0.98
1-90-03	225.11	223.23	3.05	2.81	92.1	2	2.79	0.99
1-98-03	223.23	220.30	3.04	3.05	100.3	2	2.90	0.95
F98-03	228.30	231.34	7' 1.83	1 79	97.8	2	1.57	0.88
F98-03	231.34	233.11	1.05	2.04	103.0	3	1.88	0.92
F98-03	233.17	235.10	1.90	2.04	90.8	4	1.72	0.83
F98-03	235.15	237.44	2.29	3.06	105.9	7	2.36	0.77
F98-03	237.44	240.3	2.09	1.65	98.2	3	1.47	0.89
F98-03	240.33	242.0	2.50	2.64	101.9	3	2.43	0.92
F98-03	242.01	244.0	2.59	2.04	101.5	4	2.35	0.89
F98-03	244.60	247.1	2.59	2.03	93.9	1	2.29	1.00
F98-03	247.19	1 249.0	<u>3 Z.44</u>	2.25	93.4	3	2.39	0.84
F98-03	249.6	3 252.0	8 3.05	2.05	112.8	4	3.00	0.97
F98-03	252.68	3 255.4	2 2.74	2.09	98.5	5	2.11	0.78
F98-03	255.4	2 258.1	/ 2.75	1.67	100.0	1	1.67	1.00
F98-03	258.1	1 259.8	4 1.07	1.07	0.60	4	1.72	0.91
F98-03	259.84	4 261.8	2 1.90	2.86	104.0	6	2.31	0.81
F98-03	261.8	2 264.5	7 2.75	2.00	97.6	6	1.74	0.62
F98-03	264.5	71267.4	6 2.89	2.02	104.6	4	0.66	0.41
F98-03	267.4	6 268.9	9 1.53	1.00	95.5	8	1.34	0.71
F98-03	268.9	9 270.9	7 1.98	1.09	101.0	8	2.47	0.80
F98-03	270.9	7 274.0	2 3.05	3.00	02.8	8	2.59	0.92
F98-03	3 274.0	2 277.0	6 3.04	2.02	107.4	5	1.12	0.85
F98-03	3 277.0	6 278.2	8 1.22	1.31	107.4	- 5	1.52	0.80
F98-03	3 278.2	8 280.1	1 1.83	1.89	07.2		1.11	0.62
F98-03	3 280.1	1 281.9	1.83	1./0	97.3		2.76	0.94
F98-03	3 281.9	4 284.9	3.05	2.95	90.7	7	1.99	0.73
F98-03	3 284.9	9 287.7	2.74	2./1	30.3	A	1.05	0.73
F98-0	3 287.7	3 289.2	1.56	1.43	102.0	12	2.58	0.83
F98-0	3 289.2	9 292.3	30 3.01	3.10	05.0	<u> </u>	1.46	0.65
F98-0	3 292.3	0 294.9	2.64	2.20	00.0		1.41	0.77
F98-0	3 294.9	4 296.2	27 1.33	1.83	131.0		1 65	0.77
F98-0	3 296.2	27 298.4	40 2.13	2.14	100.5	<u> </u>	1 69	0.67
F98-0	3 298.4	10 301.	14 2.74	2.54	92.1		0.81	0.47
F98-0	3 301.1	4 302.	82 1.68	1.74	103.0	- 4	0.56	0.40
F98-0	3 302.8	32 303.	89 1.07	1.15	107.5		1 70	0.70
F98-0	3 303.8	39 306.	02 2.13	2.08	97.7	0	1.70	0.02

.

Appendix VIII

FINDLAY CREEK PROJECT - 1998 Diamond Drill Hole RQD Logs

. # ..

......

_

د . بـــــ

. .

È.

	From	To	Ind. Length	Meas. Length	% Recovery	# > 2.5 core d.	sum of pieces	RQD
	306.02	308 46	2.44	2.57	105.3	8	2.26	0.88
F90-03	308.46	300.40	1.52	1.39	91.4	4	1.11	0.80
F90-03	300.40	312 12	2.14	2.07	96.7	5	1.66	0.80
F90-03	312 12	315 16	3.04	3.09	101.6	6	2.47	0.80
E09 03	312.12	317.30	2.14	2.08	97.2	5	1.55	0.75
F09-03	317 30	319 58	2.28	2.35	103.1	6	1.53	0.65
F90-03	319 58	320.95	1.37	1.37	100.0	4	1.06	0.77
E08-03	320.95	322 78	1.83	1.79	97.8	6	1.66	0.93
E08-03	322 78	325.83	3.05	2.82	92.5	10	2.31	0.82
F 90-03	325.83	327.81	1.98	2.15	108.6	5	1.83	0.85
E08-03	327.81	330 86	3.05	3.01	98.7	10	2.53	0.84
F08-03	330.86	332.84	1.98	1.87	94.4	6	1.38	0.74
F08-03	332.84	333.60	0.76	0.76	100.0	1	0.24	0.32
F08-03	333.60	334.82	1.22	1.31	107.4	3	0.67	0.51
F98-03	334 82	336.19	1.37	1.34	97.8	4	0.71	0.53
F98-03	336 19	338.02	1.83	1.84	100.5	3	1.42	0.77
F98-03	338.02	339.55	1.53	1.56	102.0	5	1.14	0.73
F98-03	339.55	341.83	2.28	2.25	98.7	6	1.54	0.68
F98-03	341 83	343.51	1.68	1.52	90.5	3	1.52	1.00
F98-03	343.51	345.03	1.52	1.67	109.9	3	0.49	0.29
F98-03	345.03	3 346.71	1.68	1.66	98.8	3	1.00	0.60
F98-03	346.71	349.91	3.20	3.01	94.1	7	1.69	0.55
F98-03	349.91	352.90	3.05	3.03	99.3	10	2.18	0.72
F98-03	352.96	3 354.79	1.83	1.74	95.1	4	0.84	0.48
F98-03	354.79	356.3	1 1.52	1.29	84.9	4	1.27	0.98
F98-03	3 356.3	1 359.30	3 3.05	3.25	106.6	5	2.60	0.80
F98-03	3 359.36	5 362.4	1 3.05	2.87	94.1	6	2.27	0.79
F98-03	3 362.4	1 365.40	3 3.05	3.09	101.3	8	2.61	0.84
F98-03	3 365.40	6 368.5	0 3.04	3.02	99.3	8	2.23	0.74
F98-0	3 368.5	0 371.5	5 3.05	3.08	101.0	4	2.11	0.90
F98-0	3 371.5	5 373.5	3 1.98	1.97	99.5	6	1.55	0.79
F98-0	3 373.5	3 374.7	5 1.22	1.24	101.6	2	0.54	0.44
F98-0	3 374.7	5 377.1	9i 2.44	2.30	94.3	4	1.97	0.86
F98-0	3 377.1	9 378.5	6 1.37	1.47	107.3	4	0.92	0.63
F98-0	3 378.5	6 380.8	5 2.29	2.29	100.0	5	1.47	0.04
F98-0	3 380.8	5 382.2	2 1.37	1.25	91.2	3	1.21	0.97
F98-0	3 382.2	2 383.9	0 1.68	1.81	107.7	5	1.31	0.72
F98-0	3 383.9	0 385.8	8 1.98	1.91	96.5	2	0.69	0.30
F98-0	3 385.8	8 387.2	5 1.37	1.20	87.6	0	0.00	
F98-0	3 387.2	5 388.9	1.67	1.55	92.8		0.89	0.5/
F98-0	3 388.9	2 391.6	2.75	2.63	95.6	5	1.92	0.73
F98-0	3 391.6	7 393.6	5 1.98	2.17	109.6	2	1.1/	0.54
F98-0	3 393.6	5 395.0	1.37	1.30	94.9	3	0.50	0.43
F98-0	3 395.0	2 395.9	0.92	0.96	104.3	2	0.09	0.12
F98-0	3 395.9	4 397.7	76 1.82	1.94	106.6	5	0.92	0.4/
F98-0	3 397.7	76 398.9	1.22	1.09	89.3	2	0.43	0.39
F98-0	3 398.9	8 402.0	3.05	3.15	103.3	<u>7</u>	1.20	0.40
F98-0	3 402.0	3 404.7	2.74	2.80	102.2		1.09	0.00
F98-0	3 404.	77 407.6	67 2.90	2.87	99.0	7	1./5	0.01
F98-0	3 407.0	67 410.	72 3.05	3.04	99.7	10	1.24	0.41

F98-03 4	410.72 412.09 415.14	412.09 415.14	1.37	1 41	102.0	^	0 4 1	0 20
F98-03 4	412.09	415.14			102.9	<u> </u>	U.41	0.29
E09 03	415.14		3.05	3.23	105.9	6	2.33	0.72
(CHO+U.) f		416.66	1.52	1.31	86.2	3	0.43	0.33
F98-03	416.66	419.71	3.05	3.06	100.3	4	2.79	0.91
E98-03	419.71	422.76	3.05	3.00	98.4	2	2.87	0.96
F98-03	422 76	425.81	3.05	2.96	97.0	3	2.54	0.86
E98-03 (425 81	428.40	2.59	2.52	97.3	2	2.24	0.89
F08-03	428 40	430.07	1.67	1.70	101.8	3	1.08	0.64
F98-03	430 07	431.90	1.83	1.82	99.5	2	1.01	0.55
E08-03	431 90	434 34	2.44	2.65	108.6	6	2.29	0.86
F98-03	434 34	437.39	3.05	2.90	95.1	5	1.86	0.64
F98-03	437 39	439.06	1.67	1.64	98.2	3	0.94	0.57
F08-03	439.06	441.66	2.60	2.57	98.8	5	2.25	0.88
F98-03	441 66	444.40	2.74	2.76	100.7	6	2.18	0.79
F98-03	444 40	445.62	1.22	1.25	102.5	2	0.95	0.76
F98-03	445 62	447.75	2.13	1.89	88.7	5	1.11	0.59
F98-03	447 75	450.34	2.59	2.73	105.4	5	2.01	0.74
F98-03	450.34	452 78	2.44	2.29	93.9	5	1.60	0.70
E08-03	452 78	455.07	2.29	2.29	100.0	5	2.03	0.89
F08-03	455 07	457 20	2 13	2.18	102.3	7	1.43	0.66
E08-03	457 20	459 49	2.29	2.26	98.7	6	1.67	0.74
F08-03	459 49	462 38	2.89	2.87	99.3	6	2.09	0.73
E08-03	462 38	463 75	1.37	1.48	108.0	2	1.17	0.79
E08-03	463 75	466.04	2.29	2.08	90.8	3	1.65	0.79
E08-03	466 04	468 78	2.74	2.28	83.2	3	1.71	0.75
1-30-03	400.04	1	468.78	460.86	98.3			

. عنيا

)

Appendix VIII

FINDLAY CREEK PROJECT - 1998 Diamond Drill Hole RQD Logs

L . .

:

.....

. .

.

ъ. - а

÷.,

2

L .

ι.

. .

÷...

ن ع

	Erom		Ind Length	Meas, Length	% Recovery	# > 2.5 core d.	sum of pieces	RQD
Hole	From	5 70	3.66	1 79	48.9	0	0.00	0.00
F98-04	5 70	9.73	2 44	2.36	96.7	5	0.95	0.40
F98-04	0.79	11 28 1	3.05	3.08	101.0	7	1.34	0.44
F98-04	0.23	13 72	2 44	1.28	52.5	3	0.69	0.54
F90-04	12 72	14 04	1.22	1.55	127.0	5	0.61	0.39
F98-04	14.04	17 37	2.43	2.47	101.6	6	1.10	0.45
F98-04	47.94	10.91	2.40	2 60	106.6	8	1.17	0.45
F90-04	10.91	21.64	1.83	1.84	100.5	5	0.95	0.52
F98-04	19.01	21.04	2.13	2.04	95.8	3	0.94	0.46
F90-04	21.04	23.11	0.61	0.97	159.0	1	0.12	0.12
1-98-04	23.11	24.50	2 14	1.84	86.0	1	0.29	0.16
F90-04	24.30	20.32	1.83	1.79	97.8	4	1.04	0.58
F90-04	20.52	20.00	0.91	0.74	81.3	0	0.00	0.00
F90-04	20.33	20.20	0.92	0.86	93.5	3	0.36	0.42
F90-04	29.20	31 55	1.37	1.41	102.9	1	0.28	0.20
F90-04	21 55	33.07	1.52	1.44	94.7	4	0.47	0.33
F90-04	33.07	34 90	1.82	1.86	101.6	5	0.79	0.42
E09 04	34.90	36.27	1 37	1.29	94.2	3	0.55	0.43
1508.04	36.27	37.64	1.37	1.43	104.4	4	0.73	0.51
E08 04	37.64	39 78	2.14	1.98	92.5	4	1.14	0.58
E08.04	39.78	40.39	0.61	0.58	95.1	3	0.42	0.72
E08-04	40.39	41 61	1.22	1.33	109.0	3	0.55	0.41
E08-04	41.61	43.28	1.67	1.51	90.4	3	0.58	0.38
E08-04	43.28	44 35	1.07	1.24	115.9	3	0.69	0.56
F08-04	44 35	45.11	0.76	0.61	80.3	0	0.00	0.00
E08-04	45 11	45.87	0.76	0.64	84.2	1	0.12	0.19
E08_04	45.87	47 09	1.22	1.02	83.6	1	0.11	0.11
F08_04	47.09	47.70	0.61	0.58	95.1	0	0.00	0.00
E08-04	47 70	50.29	2.59	2.60	100.4	6	0.74	0.28
F08-04	50.29	51 51	1.22	1.17	95.9	0	0.00	0.00
F08-04	51 51	53.65	2.14	2.03	94.9	2	0.21	0.10
E08-04	53.65	54 56	0.91	0.80	87.9	1	0.12	0.15
F98-04	54.56	55.78	1.22	1.32	108.2	2	0.26	0.20
F08-04	55 78	57.61	1.83	1.58	86.3	4	0.48	0.30
F98-04	57.61	59.89	2.28	1.96	86.0	5	0.72	0.37
F98-04	1 59.89	61.11	1.22	1.07	87.7	2	0.43	0.40
F98-04	1 61 11	63.55	2.44	2.26	92.6	7	1.51	0.67
F98_0	63 55	65.53	1.98	1.98	100.0	5	1.15	0.58
F98-0	4 65.53	67.21	1.68	1.70	101.2	3	0.74	0.44
F98-0	4 67.21	68.43	3 1.22	1.24	101.6	2	1.02	0.82
F98-0	4 68.43	69.80) 1.37	1.22	89.1	2	1.1/	0.90
F98-0	4 69.80) 71.78	3 1.98	1.91	96.5	5	1.14	0.60
F98-0	4 71.78	74.83	3 3.05	3.00	98.4	5	2.55	0.85
F98-0	4 74.83	3 77.2	7 2.44	2.54	104.1	5	1.09	0.43
F98-0	4 77.27	7 78.94	4 1.67	1.65	98.8	3	1.59	0.96
F98-0	4 78.94	1 81.9	9 3.05	3.04	99.7	8	2.10	0.65
F98-0	4 81.99	85.0	4 3.05	2.96	97.0	8	1.84	0.02
F98-0	4 85.04	4 86.5	6 1.52	1.46	96.1	8	1.15	0.7
F98-0	4 86.50	6 88.0	9 1.53	1.30	85.0	2	0.41	0.34
F98-0	4 88.0	9 90.3	7 2.28	2.62	114.9	4	1.31	<u> </u>

	From	То	Ind Length	Meas. Length	% Recovery	# > 2.5 core d.	sum of pieces	RQD
E08-04	00.37	93.42	3 05	3.04	99.7	5	2.60	0.86
E08-04	93.42	96.47	3.05	2.99	98.0	7	2.55	0.85
E08-04	96.47	98.45	1.98	2.24	113.1	4	1.55	0.69
F 90-04	08.45	100.40	1.83	1.70	92.9	3	1.37	0.81
E08 04	100 28	103.17	2 89	2.72	94.1	5	2.56	0.94
E09 04	103.17	105.00	1.83	1.86	101.6	4	1.32	0.71
E09 04	105.17	103.00	2 29	2.46	107.4	7	1.86	0.76
F 90-04	103.00	109.42	2 13	1.96	92.0	4	1.29	0.66
E09 04	107.23	112 01	2.59	2.37	91.5	7	1.55	0.65
F90-04	142 01	114 15	2.55	2.24	104.7	5	1.51	0.67
F90-04	112.01	115 52	1.37	1 30	94.9	3	0.46	0.35
F90-04	114.13	116.89	1.37	1.46	106.6	2	0.20	0.14
F90-04	115.52	118.26	1.37	1 35	98.5	3	0.45	0.33
F90-04	110.09	110.20	1.37	1.76	96.2	4	0.85	0.48
F98-04	110.20	120.09	1.65	1.70	111.3	3	0.52	0.28
F98-04	120.09	121.77	1.00	2.88	99.7	4	2.54	0.88
F98-04	121.77	124.00	2.05	2.00	99.1	4	1.14	0.54
F98-04	124.00	120.00	1.52	1.54	101.3	4	0.98	0.64
F98-04	120.00	120.32	1.52	1.51	99.3	4	0.76	0.50
F98-04	120.32	129.04	2.75	2.69	97.8	8	1.68	0.62
F98-04	129.84	132.59	2.15	3.08	101.0	6	2.10	0.68
F98-04	132.59	135.04	3.03	2.00	97.4	5	2.70	0.91
F98-04	135.64	138.68	3.04	1.30	103.3	4	0.93	0.74
F98-04	138.68	139.90	1.22	2.03	99.3	6	2.76	0.91
F98-04	139.90	142.9	3.05	1.94	100.5	7	1.51	0.82
F98-04	142.95	144.78	1.03	2.25	98.3	5	1.24	0.55
F98-04	144.78	3 147.07	2.29	1.25	93.4	3	1.69	0.91
F98-04	147.07	149.0:	1.98	2.07	100.7	6	2.53	0.82
F98-04	149.0	5 152.10	3.05	1 20	101.5	3	0.68	0.49
F98-04	152.10	153.4	1.37	1.39	89.5	4	0.99	0.73
F98-04	153.4	154.9	1.52	0.21	140.0	0	0.00	0.00
F98-04	154.99	9 155.14	4 0.15	0.21	09.3	7	2.22	0.73
F98-04	155.1	4 158.1	9 3.05	3.03	99.0	3	1.39	0.77
F98-04	158.1	9 160.0	2 1.83	1.00	101.4	6	1 87	0.64
F98-04	160.0	2 162.9	1 2.89	2.93	02.5	0	0.00	0.00
F98-04	162.9	1 163.9	8 1.07	1.00	93.5	8	1.83	0.61
F98-04	163.9	8 167.0	3 3.05	3.02	100.7	7	2 23	0.73
F98-04	167.0	3 170.0	8 3.05	3.07	07.4	6	2.34	0.79
F98-04	170.0	8 173.1	3 3.05	2.97	97.4	0	0.00	0.00
F98-04	173.1	3 173.7	4 0.61	0.51	03.0		0.44	0.52
F98-04	173.7	4 174.6	6 0.92	0.85	92.4		0.72	0.49
F98-04	174.6	6 176.1	7 1.51	1.48	90.0	8	2.45	0.81
F98-04	176.1	7 179.2	2 3.05	3.04	33.1		2.40	0.82
F98-04	179.2	2 182.2	7 3.05	3.02	99.0		2.5	0.85
F98-0-	182.2	7 185.4	7 3.20	3.10	90.9	9	2.00	0.00
F98-04	4 185.4	7 188.5	2 3.05	3.02	99.0		2.10	0.76
F98-0	4 188.5	2 191.1	1 2.59	2.77	106.9	0	2.10	0.71
F98-0	4 191.1	1 194.3	1 3.20	3.11	97.2		1 25	0.71
F98-0	4 194.3	1 196.9	0 2.59	1.77	68.3		0.58	0.60
F98-0	4 196.9	0 198.1	2 1.22	0.84	68.9	<u> </u>	1.00	0.03
F98-0	4 198.1	2 200.5	6 2.44	2.39	98.0	5	1.00	0.42

<u>____</u>

Hole	From	То	ind. Length	Meas. Length	% Recovery	# > 2.5 core d.	sum of pieces	RQD
F98-04	200.56	202.54	1.98	2.02	102.0	6	1.03	0.51
F98-04	202.54	204.37	1.83	1.79	97.8	2	0.49	0.27
F98-04	204.37	205.59	1.22	1.29	105.7	5	0.65	0.50
F98-04	205.59	208.64	3.05	3.03	99.3	6	1.71	0.56
F98-04	208.64	209.85	1.21	1.11	91.7	1	0.25	0.23
F98-04	209.85	210.62	0.77	0.81	105.2	0	0.00	0.00
F98-04	210.62	213.06	2.44	2.55	104.5	7	1.51	0.59
F98-04	213.06	215.04	1.98	2.05	103.5	8	1.19	0.58
F98-04	215.04	217.93	2.89	2.74	94.8	6	1.78	0.65
F98-04	217.93	219.76	1.83	1.75	95.6	4	0.84	0.48
F98-04	219.76	222.05	2.29	2.20	96.1	1	0.17	0.08
F98-04	222.05	223.42	1.37	1.29	94.2	1	0.18	0.14
F98-04	223.42	224.64	1.22	1.44	118.0	3	0.47	0.33
F98-04	224.64	227.08	2.44	2.36	96.7	3	0.71	0.30
F98-04	227.08	229.21	2.13	2.16	101.4	3	1.25	0.58
F98-04	229 21	231.19	1.98	1.97	99.5	3	0.68	0.35
F98-04	231 19	231.95	0.76	0.79	103.9	3	0.59	0.75
F98-04	231 95	232 87	0.92	1.01	109.8	0	0.00	0.00
F08-04	232.87	235.61	2.74	2.58	94.2	5	1.47	0.57
E98-04	235.61	237 44	1.83	1.94	106.0	3	0.92	0.47
F98-04	237 44	238.05	0.61	0.67	109.8	1	0.42	0.63
F08-04	238.05	240.49	2 44	2.52	103.3	6	1.21	0.48
F08-04	240 49	242 16	1 67	1.70	101.8	3	0.79	0.46
F98-04	242 16	245.06	2 90	2.79	96.2	9	1.77	0.63
E98-04	245.06	248 11	3.05	3.05	100.0	8	2.55	0.84
F98-04	248 11	251 16	3.05	3.01	98.7	8	2.74	0.91
F98-04	251 16	254.20	3.04	3.02	99.3	9	2.63	0.87
E98-04	254 20	257 25	3.05	3.02	99.0	7	2.36	0.78
F08-04	257 25	259 38	2 13	2.23	104.7	7	1.79	0.80
F08-04	259 38	261 67	2 29	2.26	98.7	5	1.18	0.52
F08-04	261.67	264 72	3.05	3.01	98.7	5	2.58	0.86
F08-04	264 72	267 16	2 44	2.42	99.2	5	1.44	0.60
F08-04	267.12	269 75	2.59	2.43	93.8	3	1.43	0.59
E08-04	269 75	272 19	2 44	2.53	103.7	6	1.40	0.55
F08-04	272 19	274 62	2 43	2.36	97.1	8	1.85	0.78
F98-04	274 62	276 45	1.83	1.85	101.1	1	0.13	0.07
F08-04	276 45	279.50	3.05	3.06	100.3	7	2.37	0.77
F08-04	279.50	282 55	3 05	3.03	99.3	5	2.70	0.89
F98-04	282 55	284 99	2 44	2.38	97.5	3	1.68	0.71
F08_04	284 90	288 04	3.05	3.05	100.0	5	2.71	0.89
F08.04	288.04	289 56	1.52	1 50	98.7	1	1.50	1.00
F08_04	280.04	292 30	2 74	2.57	93.8	3	2.33	0.91
F08 04	203.00	202.00	3.05	3.01	98.7	7	2.74	0.91
E02 04	202.30	200.00	2 29	2 33	101.7	4	2.03	0.87
E02.04	207 6/		3.05	3.08	101.0	3	2.82	0.92
E09 04	300 60	303 72	3 3 04	3.03	99.7	5	2.27	0.75
E09 04	300.0	3 306 01	3 3 20	3 13	97.8	2	2.81	0.90
E09 04	305.73	3 300.9	3 3.05	3.02	99.0		2.64	0.87
E09 04	300.90	3 313 07	3 3 05	3 12	102.3	4	2.72	0.87
E09 0/	312 01	2 316 0	3 05	3.08	101.0	4	2.60	0.84
11.20-04	1010.00	-j -j 10.00	J J.UJ	0.00				

Kennecott Canada Exploration Inc.

	From	To	Ind Length	Meas. Length	% Recovery	# > 2.5 core d.	sum of pieces	RQD
	316.08	318 97	2 89	2.80	96.9	5	2.17	0.78
F08 04	318.00	319 74	0.77	0.86	111.7	3	0.66	0.77
F09-04	210 74	322 78	3.04	2.78	91.4	5	1.63	0.59
F90-04	222 78	325.83	3.05	3.03	99.3	6	2.66	0.88
F90-04	225.92	328.88	3.05	2.99	98.0	5	2.75	0.92
F90-04	223.03	221 03	3.05	3.08	101.0	5	2.37	0.77
F98-04	320.00	224 08	3.05	3.05	100.0	4	2.58	0.85
F98-04	331.93	229.02	3.03	3.01	99.0	4	2.17	0.72
F98-04	334.90	220.70	1.68	1.68	100.0	5	1.35	0.80
F98-04	330.02	242 75	3.05	3.05	100.0	3	2.95	0.97
F98-04	339.70	245.90	3.05	3.07	100.7	5	2.41	0.79
F98-04	342.75	249.00	2.59	2 43	93.8	7	2.13	0.88
F98-04	345.00	250.22	1.83	1.80	98.4	2	1.70	0.94
F98-04	340.39	252 11	2 80	2.97	102.8	10	2.55	0.86
F98-04	350.22	353.11	2.09	3.12	99.7	4	2.77	0.89
F98-04	353.11	350.24		1 33	92.4	2	1.09	0.82
F98-04	355.24	357.00	2.05	3.03	99.3	6	2.32	0.77
F98-04	357.68	360.73	3.05	3.08	101.0	3	0.60	0.19
F98-04	360.73	303.70	3.03	1.52	90.5	6	0.68	0.45
F98-04	363.78	305.40	2.04	3.02	99.3	7	2.22	0.74
F98-04	365.40	308.50	3.04	2.41	98.8	10	2.57	1.07
F98-04	368.50	370.94	2.44	0.29	193.3	1	0.21	0.72
F98-04	370.94	1 3/1.0		2.38	91.5	9	2.25	0.95
F98-04	3/1.0	3/3.0	2.00	2.50	99.7	10	2.89	0.95
F98-04	373.6	3/0.7	3 3.04	2.03	96.2	5	1.89	0.83
F98-04	376.7	3 379.09	2.30	2.21	100.0	7	1.55	0.78
F98-04	1 379.0	2 381.00	1.90	1.90	104.4	11	2.86	1.00
F98-04	1 381.0	383.74	4 2.74	2.00	97 7	8	2.84	0.95
F98-04	4 383.7	4 386.7	9 3.05	2.90	99.7	9	3.04	1.00
F98-04	4 386.7	9 389.8	4 3.05	2.74	100.0	5	2.79	1.02
F98-04	4 389.8	4 392.5	8 2.74	2.14	88.2	6	2.69	1.00
F98-0	4 392.5	8 395.6	3 3.05	2.09	100.2	9	2.24	0.98
F98-0-	4 395.6	3 397.9	2 2.29	2.29	100.3	11	3.00	0.98
F98-0	4 397.9	2 400.9	6 3.04	3.05	100.0	11	3.05	1.00
F98-0	4 400.9	6 404.0	1 3.05	3.05	04.7		3.03	1.00
F98-0	4 404.0	1 407.2	1 3.20	3.03	100.0	7	3.05	1.00
F98-0	4 407.2	1 410.2	6 3.05	3.05	100.0		3.05	1.00
F98-0	4 410.2	6 413.3	3.05	3.05	100.0	7	2.12	0.70
F98-0	4 413.3	1 416.3	3.05	3.05	100.0	8	1.81	0.60
F98-0	4 416.3	6 419.4	0 3.04	3.04	00.0		0.79	0.74
F98-0	4 419.4	0 420.6	1.22	1.07	01.1	12	1.44	0.77
F98-0	4 420.6	2 422.6	1 1.99	1.07	100.0	7	1.43	0.86
F98-0	4 422.6	51 424.2	1.67	1.0/	100.0	12	2.13	0.87
F98-0	4 424.2	28 426.7	2 2.44	2.44	82.2	7	1.15	0.95
F98-0	4 426.7	/2 428.0	1.37	1.21	100.0	11	1.95	0.75
F98-0	4 428.0	9 430.6	2.59	2.59	100.0	10	3.03	1.00
F98-0	4 430.6	58 433.7	73 3.05	3.03	39.3	12	1.95	0.82
F98-0	4 433.	73 436.	78 3.05	2.38	/0.U	+ 12	0.27	0.44
F98-0	4 436.	78 437.6	<u> </u>	0.62	420.2		0.00	0.00
F98-0)4 437.0	59 438.3	30 0.61	0.85	139.3		0.00	0 43
F98-0	438.	30 438.	91 0.61	0.60	98.4			

, **1000**

	From	То	Ind. Length	Meas. Length	% Recovery	# > 2.5 core d.	sum of pieces	RQD
101E	138.01	440.39	1.48	1.48	100.0	6	0.91	0.61
- 90-04	430.31	440.00	2 18	1.97	90.4	8	1.62	0.82
-90-04	440.33	AAA AO	1.83	1.83	100.0	7	1.80	0.98
-90-04	442.37	447.45	3.05	2.96	97.0	11	2.87	0.97
-90-04	444.40	450 49	3.04	3.04	100.0	11	3.04	1.00
-90-04	447.43	451 10	0.61	0.57	93.4	3	0.57	1.00
509 04	451 10	451 71	0.61	0.61	100.0	4	0.60	0.98
F 90-04	451.10	152 03	1 22	1.21	99.2	2	0.64	0.53
F 90-04	457.02	455 08	3.05	3.05	100.0	16	2.56	0.84
-90-04	452.95	450.00	3 20	3.10	96.9	8	3.10	1.00
F90-04	455,90	462 23	3.05	3.05	100.0	10	3.05	1.00
F90-04	459.10	402.23	3.05	3.05	100.0	7	3.05	1.00
F90-04	402.23	403.20	3.05	3.05	100.0	9	3.05	1.00
F98-04	405.20	400.33	3.04	3.05	100.3	5	3.05	1.00
F98-04	400.33	471.37	3.04	3.05	100.0	9	2.92	0.96
F98-04	4/1.3/	414.42	3.05	3.05	100.0	10	2.65	0.87
F98-04	414.42	411.41	3.05	3.05	100.0	9	2.75	0.90
F98-04	4/1.4/	400.32	3.05	3.05	100.0	9	3.05	1.00
F98-04	480.52	403.57	3.00	3 20	100.0	14	3.20	1.00
F98-04	403.5/	400.11	<u> </u>	1 15	95.0	4	0.87	0.76
F98-04	480.//	401.90	485.92	475.64	97.9			
			+00.52					

è. I

•

)

	From	To	Ind Length	Meas, Length	% Recovery	# > 2.5 core d.	sum of pieces	RQD
	4 57	5 79	1 22	0.84	68.9	8	0.70	0.83
F90-05	5 70	8.08	2 29	2.22	96.9	15	1.39	0.63
F90-05	8.08	90.00	0.91	0.70	76.9	5	0.47	0.67
F90-05	8 00	10.50	1.53	0.93	60.8	5	0.39	0.42
F90-05	10.53	13 41	2.89	2.78	96.2	26	2.12	0.76
F90-05	12.41	15 30	1 98	1.78	89.9	15	1.34	0.75
F90-05	15.41	17.07	1.50	1.47	87.5	18	1.27	0.86
F90-05	17.07	20.12	3.05	1 58	51.8	25	1.26	0.80
F90-05	20.12	21.12	1.52	0.78	51.3	6	0.65	0.83
F98-05	20.12	27.04	1.32	0.84	68.9	4	0.39	0.46
F98-05	21.04	24.00	1.22	0.78	56,9	2	0.10	0.13
F98-05	22.00	24.23	1.37	0.30	21.9	0	0.00	0.00
F98-05	24.23	25.00	0.77	0.50	64.9	0	0.00	0.00
1-98-05	25.00	20.31	0.60	0.00	26.7	0	0.00	0.00
F98-05	20.37	20.97	1.53	0.62	40.5	0	0.00	0.00
F98-05	20.97	20.50	1.55	0.02	16.1	0	0.00	0.00
F98-05	28.50	30.10	0.01	0.75	82.4	2	0.11	0.15
F98-05	30.18	31.09	0.91	0.10	100.0	3	0.23	0.38
F98-05	31.09	31.70	1.07	1 33	72 7	6	0.66	0.50
F98-05	31.70	33.53	1.03	2 27	82.8	13	1.45	0.64
F98-05	33.53	36.27	2.74	1.83	63.1	13	1.19	0.65
F98-05	36.27	39.17	2.90	1.03	80.9	6	0.63	0.43
F98-05	39.17	41.00	1.03	0.61	100.0	5	0.64	1.05
F98-05	41.00	41.61	0.61	0.01	76.0	4	0.32	0.35
F98-05	41.61	42.82	1.21	0.92	145.7	3	0.22	0.33
F98-05	42.82	43.20	0.46	0.07	88.5	2	0.28	0.26
F98-05	43.28	44.50	1.22	0.76	100.0	3	0.35	0.46
F98-05	44.50	45.20	0.76	4.27	100.0	8	0.86	0.68
F98-05	45.26	47.8	2.59	0.62	68.5	0	0.00	0.00
F98-05	47.85	48.7	0.92	0.03	100.0	6	0.37	0.41
F98-05	48.77	49.60	<u> </u>	1.69	01.8	1	0.11	0.07
F98-05	49.68	51.5	1 1.83	1.00	91.0	5	0.38	0.28
F98-05	51.51	53.0	4 1.53	1.34	82.2	11	0.91	0.73
F98-05	53.04	54.5	6 1.52	1.25	02.2	7	0.37	0.21
F98-05	54.56	56.3	9 1.83	1.74	77.9	7	0.48	0.51
F98-05	5 56.39	57.6	1 1.22	0.95	92.0	8	0.72	0.72
F98-05	57.61	58.8	3 1.22	1.00	100.0	<u> </u>	0.60	0.39
F98-05	5 58.83	60.3	5 1.52	1.52	100.0		0.79	0.47
F98-05	5 60.35	62.1	8 1.83	1.69	92.3		0.62	0.53
F98-0	62.18	63.5	5 1.37	1.1/	03.4	16	1.75	0.68
F98-0	5 63.55	66.3	0 2.75	2.59	94.Z	10	0.80	0.54
F98-0	5 66.30	67.9	7 1.67	1.48	00.0		0.64	0.44
F98-0	5 67.97	69.8	0 1.83	1.44	10.1		1 34	0.54
F98-0	5 69.80	72.6	9 2.89	2.50	00.5	10	- 0.97	0.68
F98-0	5 72.69	74.2	2 1.53	1.43	93.5		0.67	0.40
F98-0	5 74.22	75.9	1.68	1.66	98.8			0.59
F98-0	5 75.90	76.8	0.91	0.91	100.0		0.04	0.00
F98-0	5 76.81	77.4	2 0.61	0.35	57.4		0.00	0.78
F98-0	5 77.42	78.3	0.91	0.91	100.0	15	2.03	0.81
F98-0	5 78.33	81.0	08 2.75	2.50	90.9	10	1 22	0.46
F98-0	5 81.08	84.1	12 3.04	2.68	88.2	13	1.44	0.40

i Na a

	From	To	Ind. Length	Meas, Length	% Recovery	# > 2.5 core d.	sum of pieces	RQD
	84 12	85.96	1.84	1.82	98.9	7	1.09	0.60
F08-05	85.96	88.09	2.13	2.01	94.4	15	1.67	0.83
E08-05	88.09	90.98	2.89	2.83	97.9	17	1.73	0.61
E08-05	90.00	92.20	1.22	1.11	91.0	6	0.47	0.42
F 90-03	90.90	93.27	1 07	0.99	92.5	8	0.54	0.55
F 90-03	92.20	94 49	1.22	1.01	82.8	6	0.46	0.46
F09 05	QA 4Q	96.01	1.52	1.52	100.0	15	0.85	0.56
F90-03	94.43	98.60	2.59	1.62	62.5	14	0.89	0.55
E08 05	98.60	99.90	1.37	1.15	83.9	5	0.31	0.27
F90-03	00.00	101 50	1 53	0.76	49.7	4	0.46	0.61
F 90-03	101 50	107.00	0.91	0.90	98.9	2	0.22	0.24
F90-05	102.41	102.41	1.22	0.70	57.4	6	0.37	0.53
F90-05	102.41	105.00	1.68	1.26	75.0	11	0.75	0.60
F90-05	105.05	130.01	34.59	core dropped by	helicopter			
F90-05	120.00	141 43	1 53	1.42	92.8	6	0.55	0.39
F90-05	139.90	141.40	1.00	0.95	89.6	8	0.56	0.59
F90-05	141.43	142.43	2 14	1.92	89.7	17	1.41	0.73
1-90-05	142.49	144.00	1.67	1 66	99.4	4	0.44	0.27
F98-05	144.03	140.30	1 99	1.00	96.0	12	0.86	0.45
F98-05	140.30	140.23	1.33	1 14	94.2	6	0.45	0.39
F98-05	140.29	149.50	7 1.07	1 07	100.0	0	0.00	0.00
F98-05	149.50	150.37	1.69	1.68	100.0	7	0.44	0.26
F98-05	150.57	152.2	1.00	0.93	87.7	1	0.13	0.14
0-86-15	152.25	153.5	1 1.00	1 22	100.0	10	0.62	0.51
F98-05	153.31	154.5	0.61	0.44	72.1	2	0.09	0.20
1-98-05	154.53	155.14	2.05	2.92	95.7	31	2.60	0.89
F98-05	155.14	100.1	2 2 44	2.32	97.1	19	1.18	0.50
F98-05	158.19	100.0	0 1.07	0.89	83.2	6	0.40	0.45
F98-05	100.03	101.7	0 2.69	2 41	93.1	15	0.98	0.41
F98-05	161.70	104.2	9 2.59	1 25	91.2	5	0.25	0.20
F98-05	104.25	105.0	2 1.37	1.25	100.0	8	0.67	0.49
F98-05	165.60	107.0	<u>3 1.37</u>	2 13	100.0	15	1.70	0.80
F98-05	167.0	109.1	0 153	1 43	93.5	6	0.40	0.28
F98-05	169.10	0 170.0	9 1.55	1.45	96.2	9	0.70	0.40
F98-05	1/0.6	9 172.5	2 1.03	2.03	95.3	10	1.30	0.64
F98-05	1/2.5	2 1/4.0	$\frac{5}{2.13}$	1.83	100.0	6	0.53	0.29
F98-05	1/4.6	5 1/6.4	8 1.03	1.03	92.6	6	0.32	0.28
F98-05	1/6.4			0.61	100.0	2	0.30	0.49
F98-0				1 16	84 7	2	0.19	0.16
F98-0		1 1/9.0	1.31	0.20	36.4	0	0.00	0.00
F98-0	179.6	0 180./	5 1.07	1 14	83.2	5	0.40	0.35
F98-0	5 180.7	5 182.1	2 1.37	0.76	100.0	3	0.29	0.38
F98-0	<u> 182.1</u>	2 182.8	0 0.70	1 24	72.2	8	0.74	0.55
F98-0	182.8	8 184.1	1 1.03	1.34	87.6	7	0.93	0.78
F98-0	<u>5 184.7</u>	1 186.0	1.31	0.02	86.9	1	0.23	0.25
F98-0	5 186.0	8 187.		1 62	97.0	12	1.24	0.77
F98-0	5 187.1	5 188.8	$\frac{1.07}{1.07}$	1.02	85.2	6	0.76	0.73
F98-0	5 188.8	2 190.0	1.22	1.04	05.2		2.22	0.89
F98-0	5 190.0	4 192.0	2.59	2.50		18	2.77	0.92
F98-0	5 192.6	3 195.0	<u>3.05</u>	3.00	06 7	13	1.77	0.86
F98-0	5 195.6	8 197.	62 2.14	2.07	30.1			

. Na di

_

Appendix VIII

FINDLAY CREEK PROJECT - 1998 Diamond Drill Hole RQD Logs

	From	To	Ind. Length	Meas. Length	% Recovery	# > 2.5 core d.	sum of pieces	RQU
	07 82 4	00 10	1.37	1.27	92.7	9	0.90	0.71
08-05 1	97.02 1	99.19	3.20	2.97	92.8	17	2.54	0.86
	199.19 2	02.35	0.76	0.76	100.0	5	0.58	0.76
	202.39 2	03.13	0.70	0.74	81.3	0	0.00	0.00
18-05 2	203.15 2	206 81	2 75	2.72	98.9	13	1.87	0.69
18-05 2	204.00 2	200.01	3.04	2.98	98.0	15	2.38	0.80
10-05 4	200.01 2	209.00	1.68	1.62	96.4	5	0.97	0.60
18-05 4	209.05 2	217.00	1.00	1.37	100.0	7	0.63	0.46
-05 A	211.53	212.90	1.07	1.78	89.9	11	0.99	0.56
98-05	212.90 4	214.00	1.00	0.80	74.8	3	0.31	0.39
98-05	214.00 4	210.90	3.05	2.90	95.1	13	2.49	0.86
98-05	215.95	219.00	1.03	1.98	100.0	9	1.62	0.82
98-05	219.00	220.90	2.44	2 36	96.7	6	1.51	0.64
98-05	220.90	223.42	2.44	2.00	97.4	12	2.56	0.86
98-05	223.42	220.41	1.83	1 77	96.7	12	1.48	0.84
98-05	220.47	220.30	3.04	3.04	100.0	14	2.98	0.98
98-05	228.30	231.34	3.04	2.04	89.1	13	1.02	0.50
98-05	231.34	233.03	1.52	1 14	75.0	3	0.22	0.19
98-05	233.63	235.15	1.52	1.14	94.4	1	0.10	0.10
98-05	235.15	230.22		0.90	98.9	3	0.32	0.36
98-05	236.22	237.13		0.67	54.9	4	0.25	0.37
98-05	237.13	230.35		1.07	100.0	7	1.06	0.99
98-05	238.35	239.44	2 1.07	2.78	95.9	10	2.44	0.88
98-05	239.42	242.34	2 2.90	1.87	94.4	9	1.14	0.61
98-05	242.32	244.30	J <u> </u>	2.98	97.7	21	2.64	0.89
-98-05	244.30	247.3	5 3.05	0.91	100.0	3	0.18	0.20
-98-05	247.35	248.20		2.08	97.7	15	2.65	0.89
-98-05	248.26	251.3	1 3.05	2.30	95.2	18	2.24	0.81
-98-05	251.31	254.2	0 2.69	2.75	95.1	21	1.82	0.78
-98-05	254.20	256.6	4 2.44	1.12	96.7	9	0.76	0.51
-98-05	256.64	258.1	1.53	1.40	96.4	12	1.00	0.76
=98-05	258.17	259.5	4 1.37	1.32	100.0	9	0.98	0.80
F98-05	259.54	260.7	6 1.22	1.22	89.5	8	0.58	0.43
F98-05	260.76	262.2	8 1.52	1.30	85.7	11	0.74	0.51
F98-05	262.28	263.9	6 1.68	1.44	100.0	27	2.10	0.81
F98-05	263.96	266.5	5 2.59	2.59	94.5		0.85	0.49
F98-05	266.55	268.3	8 1.83	1.73	100.0	11	0.73	0.48
F98-05	268.38	269.9	0 1.52	1.52	85.2	5	0.36	0.3
F98-05	269.90	271.1	2 1.22	1.04	05.2	12	0.82	0.5
F98-05	271.12	272.8	1.68	1.00	00.2	5	0.60	0.5
F98-05	272.80	274.0	1.22	1.21	100.0		0.45	1.0
F98-05	274.02	274.4	0.45	0.45	100.0	15	2.58	1.0
F98-05	274.47	277.0	2.59	2.59	100.0		2.64	0.9
F98-05	277.06	279.8	31 2.75	2.08	100.0		3.04	1.0
F98-05	279.81	282.8	35 3.04	3.04	100.0			
			243.69	214.48	00.U			
		·						
	1	1	1		ļ.			
								1

۰.

APPENDIX IX

DRILL CORE SAMPLE RESULTS

•

2.2

. . .

i. Line

> . 1. .

> > ъ.,

- - - -- - - -- - - -

> . N. ..

> > . . .

:

-

FINDLAY CREEK PROJECT - 1998 Drill Core Sample Results

. . r

1

SAMPLE		FROM	TO	WIDTH	AU PPB	AG PPM	AL PCT	AS PPM	BA_PPM	BE_PPM	BI_PPM	CA_PCT	CD_PPM	CO_PPM	CR_PPM	CU_PPM	FE_PCT	GA_PPM	HG_PPM	K_PCT
JANTLE	F08_01	40.50	45.72	5.22		-0.2	1.51	-2	230	-0.5	-2	0.4	0.5	9	67	29	2.57	-10	-1	0.8
VP 74302 A	F98_01	173 31	176 00	2.69		-0.2	3.59	6	100	-0.5	-2	1.81	-0.5	18	102	45	2.66	-10	-1	0.76
VR 74303 A	F98-01	176.00	179.00	3.00	<u> </u>	-0.2	1.02	-2	90	-0.5	-2	0.34	-0.5	6	53	21	1.71	-10	-1	0.59
VR 74304 A	F98-01	179.00	182.00	3.00		-0.2	1.51	-2	60	-0.5	-2	0.59	1	10	47	32	2.99	-10	-1	0.88
VP 74305 A	F98-01	182.00	185.00	3.00		-0,2	1.64	-2	90	-0.5	-2	1.07	6	9	62	34	2.93	-10	-1	0.98
VP 74306 A	F98_01	185.00	188.00	3.00	t	-0.2	1 79	-2	110	-0.5	-2	0.51	-0.5	10	59	26	2.97	-10	-1	1.04
VP 74307 A	F98-01	188.00	191.00	3.00		-0.2	1.86	10	130	-0.5	-2	0.64	1	9	61	34	2.95	-10	-1	1.14
VR 74308 4	F98-01	191 00	191.69	0.69	1	-0.2	1.85	-2	140	-0.5	-2	0.55	-0.5	12	48	36	3.26	-10	-1	1.11
VP 74300 A	F98_01	191 69	194.00	2 31	t	-0.2	1.58	-2	100	-0.5	-2	0.5	-0.5	9	48	23	2.78	-10	-1	0.87
VP 74310 A	F98-01	194.00	197.00	3.00	1	-0.2	1.71	4	110	-05	-2	0 4 1	-05	9	71	15	2.61	•10	-1	1.03
VR 74311 A	F98-01	197.00	200.00	3.00		-02	1.76	12	140	-0 5	-2	0 36	-05	10	92	19	2.78	-10	-1	1.12
VR 74312 A	F98-01	200.00	203 00	3.00	+	-0.2	1.89	6	170	-05	-2	0 29	-05	12	92	34	3.1	-10	-1	1.19
VR 74313 A	F98-01	203.00	205.00	2.00	<u> </u>	-0.2	1.85	-2	170	-05	•2	0 26	-05	10	74	30	3 02	-10	<u>-1</u>	1.25
VR 74314 A	F98-01	205.00	207.00	2.00		0.6	1 63	6	110	05	22	1 02	-05	21	60	269	4.73	-10	<u>·1</u>	0.79
VR 74315 A	F98-01	207.00	210.00	3.00	<u> </u>	-0.2	1.94	2	160	-05	-2	0 53	-05	8	91	7	2.88	-10	<u>-1</u>	1.19
VR 74316 A	F98-01	210.00	211.40	1.40	· •	-0.2	19	-2	180	-05	-2	07	-0.5	9	75	27	2.9	-10	-1	1.13
VR 74317 A	F98-01	211.40	212.00	0.60		0.4	2.57	28	100	0.5	2	0.97	-0.5	18	108	62	6.05	-10	-1	1.19
VR 74318 A	F98-01	212.00	215.00	3.00		-0.2	1.93	-2	160	-0.5	-2	0.47	-0.5	10	63	23	2.93	-10		1.09
VR 74319 A	F98-01	215.00	218.00	3.00	1	-0.2	2.04	-2	210	-0.5	-2	0.39	-0.5	9	86	17	3.14	-10	<u>-1</u>	1.41
VR 74320 A	F98-01	218.00	221.00	3.00		-0.2	1.61	-2	130	-0.5	-2	0.45	-0.5	8	67	15	2.8	-10	+ <u>-1</u>	1.01
VR 74321 A	F98-01	221.00	224.00	3.00	1	-0.2	1.74	2	140	-0.5	-2	0.64	0.5	8	78	19	2.82	-10	-1	1.16
VR 74322 A	F98-01	224.00	227.00	3.00		-0.2	1.66	2	150	-0.5	-2	0.61	-0.5	9	62	32	2.91	-10	↓	1.1
VR 74323 A	F98-01	227.00	230.00	3.00		-0.2	1.91	-2	170	-0.5	-2	0.5	-0.5	10	75	20	3.1	-10	+	1.25
VR 74324 A	F98-01	230.00	233.00	3.00		-0.2	1.87	2	130	-0.5	-2	0.57	-0.5	8	78	18	2.79	-10	-1	1.29
VR 74325 A	F98-01	233.00	236.00	3.00		-0.2	1.75	-2	110	-0.5	-2	0.33	-0.5	9	49	24	2.81	-10	-1	1.24
VR 74326 A	F98-01	236.00	239.00	3.00		-0.2	1.94	-2	130	-0.5	•2	0.28	-0.5	10	50	22	3.01	-10	+	1.30
VR 74327 A	F98-01	239.00	242.00	3.00		-0.2	2.11	-2	120	-0.5	-2	0.27	-0.5	9	58	28	3.08	-10	-1	1.49
VR 74328 A	F98-01	242.00	245.00	3.00		-0.2	2.05	-2	110	-0.5	-2	0.33	-0.5	9	61	22	3.14	-10	+ · ·	1.48
VR 74329 A	F98-01	245.00	248.00	3.00		-0.2	2.06	-2	130	-0.5	-2	0.29	-0.5	9	59	19	3.05	-10	·	1.46
VR 74330 A	F98-01	248.00	251.00	3.00		-0.2	1.81	-2	140	0.5	-2	0.71	-0.5	7	51	12	2.69	-10	+ -1	1.28
VR 74331 A	F98-01	251,00	254.00	3.00		-0.2	1.72	-2	110	-0.5	4	1.16	-0.5	9	52	27	3.2	-10	$\frac{1}{1} - \frac{1}{1} - \frac{1}{1}$	1.18
VR 74332 A	F98-01	254.00	257.00	3.00		-0.2	0.73	-2	60	-0.5	-2	0.82	-0.5	4	57	21	1.51		-1	0.41
VR 74333 A	F98-01	257.00	260.00	3.00		-0.2	0.76	-2	50	-0.5	-2	0.48	-0.5	5	58	8	1.45	-10	-1	0.45
VR 74334 A	F98-01	260.00	264.00	4.00		-0.2	0.5	-2	40	-0.5	-2	0.65	-0.5	4	46	21	1.49	-10		0.28
VR 74335 A	F98-01	264.00	266.75	2.75		-0.2	0.88	-2	70	-0.5	-2	0.38	-0.5	9	37	25	2.68	-10		0.54
VR 74336 A	F98-01	266.75	270.00	3.25		02	1.05	-2	80	-05	-2	0.49	-0.5	7	40	25	2.33	•10		0.07
VR 74337 A	F98-01	270.00	273.00	3.00		-0.2	1.17	-2	70	-0.5	-2	0.51	-0.5	8	42	22	2.3			0.11
VR 74338 A	F98-01	273.00	275.00	2.00		-0.2	0.76	-2	60	-0.5	2	0.42	-0.5	6	34	35	1.68	-10	-1	0.51
VR 74339 A	F98-01	275.00	276.00	1.00		-0.2	0.64	-2	50	-0.5	-2	0.48	-0.5	4	45	8	1.4	-10	-1	0.42
VR 74657 A	F98-01	276.00	280.00	4.00		-0.2	0.51	-2	60	-0.5	-2	1.32	-0.5	6	60	17	1.23	-10	-1	0.3
VR 74658 A	F98-01	280.00	283.00	3.00		-0.2	0.72	-2	60	-0.5	2	0.5	-0.5	4	90	2	1.13	-10	-1	0.39
VR 74659 A	F98-01	283.00	286.00	3.00		-0.2	0.85	2	60	-0.5	2	0.39	-0.5	5	93	3	1.18	<u> -10</u>	1	<u> </u>

FINDLAY CREEK PROJECT - 1998 Drill Core Sample Results

V PPM W PPM ZN PPM CERTIF ALT CERTIF TI PCT TL PPM U PPM PB PPM SB PPM SC PPM SR PPM P PPM LA PPM MG PCT MN PPM MO PPM NA PCT NI PPM SAMPLE 160 A9833239 0.13 -10 28 -10 •10 250 -2 6 VR 74301 A 0.76 340 3 0.03 14 6 4 10 A9833239 -10 52 -10 52 42 0.15 -10 -2 25 170 2' 4 VR 74302 A -10 1.23 345 1 0.28 A9833239 0.07 -10 -10 9 -10 46 7 170 10 -2 1 12 VR 74303 A 0.32 310 -1 0.02 20 260 A9833239 -2 -10 -10 19 -10 2 15 0.1 380 32 3 0.01 19 VR 74304 A 20 0.97 485 A9833239 140 1175 -10 -10 19 -2 18 0.1 20 360 36 2 2 0.01 VR 74305 A 10 1.04 670 A9833239 98 3 13 0.11 -10 -10 24 -10 36 -2 20 350 2 0.03 VR 74306 A 10 1.14 495 290 A9833239 -10 -2 2 10 0.14 -10 -10 18 17 360 26 1.02 460 4 0.01 VR 74307 A 10 126 A9833239 -10 -2 2 8 0.13 -10 -10 16 20 320 2 3 0.01 VR 74308 A 10 0.9 380 A9833239 -10 78 -10 -2 7 0.1 -10 14 0.01 19 320 10 1 365 VR 74309 A 10 0.71 1 48 A9833239 19 -10 -10 -10 280 -2 2 9 0.13 2 0.02 16 4 435 VR 74310 A 10 0.69 A9833753 -10 44 21 -2 3 10 0.15 -10 -10 0.02 17 300 455 +1 4 VR 74311 A 10 0.7 A9833753 -10 21 -10 52 0.14 -10 -2 3 6 440 4 0.02 18 350 4 20 0.73 VR 74312 A 48 A9833753 -10 -10 22 -10 0.17 310 -2 -2 3 4 0.73 445 3 0.02 18 VR 74313 A 10 A9833753 -10 14 -10 104 13 0.07 -10 -2 2 22 330 18 VR 74314 A 10 0.69 735 2 0.02 98 A9833753 0.17 -10 -10 26 -10 -2 8 330 2 4 535 0.04 13 VR 74315 A 10 0.9 1 A9833753 78 -10 9 0.13 -10 -10 23 370 22 -2 3 535 5 0.04 14 VR 74316 A 10 0.91 A9833753 76 -10 47 -10 18 -2 9 16 0.09 -10 33 280 2180 1 0.01 VR 74317 A 10 1.61 A9833753 -10 22 -10 116 -10 17 310 2 -2 3 9 0.13 1 0.03 VR 74318 A 0.86 445 20 158 A9833753 -10 -10 26 -10 -2 10 0.17 17 350 36 4 VR 74319 A 550 -1 0.04 10 1 102 A9833753 -10 0.11 -10 -10 24 -2 13 0.04 15 320 22 4 VR 74320 A 10 0.89 525 1 -10 140 A9833753 -10 24 12 0.14 -10 340 36 -2 4 655 -1 0.04 15 VR 74321 A 10 0.94 20 -10 130 A9833753 0.13 -10 -10 -2 3 12 320 10 575 1 0.03 14 VR 74322 A 10 0.85 A9833753 -10 27 -10 88 0.15 -10 -2 4 10 0.04 15 370 12 VR 74323 A 10 0.95 500 1 A9833753 -10 -10 32 -10 156 -2 5 10 0.16 370 64 -1 0.05 14 VR 74324 A 10 1.03 540 A9834124 30 -10 152 -2 5 0.15 -10 -10 380 24 4 13 VR 74325 A ~10 0.94 515 1 0.01 -10 136 A9834124 -10 -10 33 22 -2 5 5 0.16 15 390 555 1 0.01 VR 74326 A 10 1.11 A9834124 40 -10 132 7 4 0.17 -10 -10 360 24 -2 590 2 0.01 14 VR 74327 A 10 1.25 A9834124 35 -10 172 20 -2 6 6 0.17 -10 -10 15 390 615 -1 0.01 VR 74328 A 10 1.22 A9834124 34 -10 124 -10 380 12 -2 5 3 0.17 -10 1.18 15 VR 74329 A 10 560 1 0.01 A9834124 -10 146 -10 -10 23 9 0.15 2 13 330 6 -2 3 615 0.01 VR 74330 A 10 1.02 150 A9834124 22 -10 0.15 -10 -10 -2 3 12 -0.01 14 350 8 VR 74331 A 10 1.06 780 1 -10 134 A9834124 9 -2 8 0.06 -10 -10 2 VR 74332 A 0.32 410 1 0.02 9 110 10 A9834124 -10 11 -10 30 0.07 -10 -2 4 130 2 VR 74333 A 0.32 245 1 0.01 8 1 10 A9834124 -10 7 -10 20 7 0.03 -10 160 -2 -2 1 10 VR 74334 A 10 0.28 430 1 0.01 A9834124 38 0.07 -10 -10 11 -10 12 -2 7 15 210 1 VR 74335 A 0.57 420 -1 -0.01 10 A9834124 -10 38 -2 1 0.09 -10 -10 11 220 6 6 -0.01 12 310 1 VR 74336 A 10 0.51 A9834124 16 -10 40 -2 2 4 0.1 -10 -10 12 260 2 0.01 VR 74337 A -10 0.58 340 4 A9834124 -10 34 -10 8 -2 4 0.07 -10 0.01 10 120 6 1 270 1 VR 74338 A 10 0.32 38 A9834124 -10 0.06 -10 -10 9 110 8 -2 1 6 320 -1 8 VR 74339 A 10 0.3 0.01 A9837363 5 14 18 0.02 -10 -10 -10 10 110 8 -2 -1 0.03 VR 74657 A 0.23 785 -1 10 14 A9837363 -10 0.04 -10 -10 7 -1 0.03 6 170 6 -2 1 10 275 VR 74658 A 10 0.23 A9837363 7 -10 16 0.04 -10 -10 0.04 8 180 2 -2 1 8 215 1 VR 74659 A 20 0.23

FINDLAY CREEK PROJECT - 1998

Drill Core Sample Results

۲ .

SAMPLE	HOLE	FROM	то	WIDTH	AU PPB	AG_PPM	AL_PCT	AS_PPM	BA_PPM	BE_PPM	BI_PPM	CA_PCT	CD_PPM	CO_PPM	CR_PPM	CU_PPM	FE_PCT	GA_PPM	HG_PPM	K_PCT
VR 74660 A	F98-01	286.00	289.00	3.00	<u> </u>	-0.2	0.66	-2	50	-0.5	-2	0.31	-0.5	4	42	6	1.22	-10	-1	0.36
VR 74661 A	F98-01	289.00	292.00	3.00	t 1	-0.2	1.27	-2	120	-0.5	-2	0.33	-0.5	8	76	15	2.13	-10	-1	0.74
VR 74662 A	F98-01	292.00	295.00	3.00	†	-0.2	1.5	-2	140	-0.5	-2	0.4	-0.5	10	96	11	2.44	-10	-1	0.91
VR 74663 A	F98-01	295.00	298.00	3.00		-0.2	2.18	2	130	-0.5	2	0.33	-0.5	11	88	21	3.26	-10	-1	1.41
VR 74664 A	F98-01	298.00	301.00	3.00		-0.2	1.8	2	120	-0.5	-2	0.22	-0.5	10	82	17	2.86	-10	-1	1.18
VR 74665 A	F98-01	301.00	304.00	3.00	1 1	-0.2	2.1	-2	90	-0.5	-2	0.26	-0.5	11	82	23	3.25	-10	-1	1.44
VR 74666 A	F98-01	304.00	307.00	3.00		-0.2	1.04	6	70	-0.5	-2	0.35	-0.5	8	54	8	1.87	-10	1	0.62
VR 74667 A	F98-01	307.00	310.00	3.00	11	-0.2	1.3	-2	120	-0.5	-2	0.32	-0.5	9	76	25	2.39	-10	-1	0.8
VR 74668 A	F98-01	310.00	313.00	3.00		-0.2	1.37	-2	100	-0.5	•2	0.27	-05	8	84	9	2.28	-10	-1	0.79
VR 74669 A	F98-01	313.00	316.00	3.00	1	-0.2	1.06	-2	50	-05	-2	0.4	-05	4	89	1	1.46	-10	-1	0.56
VR 74670 A	F98-01	316.00	319.00	3.00		-0.2	1.07	-2	60	-05	-2	0 52	-05	5	96	8	1.69	-10	-1	0.6
VR 74671 A	F98-01	319.00	322.00	3.00	1	-0.2	1.19	2	70	-05	•2	0 78	-05	7	89	18	2.01	-10	•1	0.66
VR 74672 A	F98-01	322.00	324.00	2.00		-0.2	1.26	2	70	-05	-2	073	-05	7	54	24	2.21	-10	-1	0.69
VR 74673 A	F98-01	324.00	327.00	3.00		-0.2	1.96	2	70	-05	2	1 49	-05	8	103	22	19	-10	- <u></u>	0.65
VR 74674 A	F98-01	327.00	330.00	3.00		-0.2	1.45	-2	70	-05	-2	0.55	-05	11	49	25	281	-10		0.73
VR 74675 A	F98-01	330.00	333.00	3.00		-0.2	1.67	2	110	-0.5	2	0.43	-05	13	45	43	3.42	-10	↓ <u>··</u>]	0.95
VR 74676 A	F98-01	333.00	336.00	3.00		-0.2	1.76	2	130	-0.5	-2	0.5	-0.5	13	83	30	3.47	-10	<u>·1</u>	0.96
VR 74677 A	F98-01	336.00	339.00	3.00		-0.2	1.65	-2	130	-0.5	-2	0.34	-05	11	72	29	3.07	-10	<u>↓ ·1</u>	0.94
VR 74678 A	F98-01	339.00	342.00	3.00		-0.2	1.76	14	150	-0.5	-2	0.29	-0.5	12	41	39	3.02	-10	<u>↓</u>	0.99
VR 74679 A	F98-01	342.00	345.00	3.00		-0.2	1.85	-2	140	-0.5	-2	0.19	-0.5	12	44	24	3.29	-10	-1	$\frac{1.1}{0.00}$
VR 74680 A	F98-01	345.00	348.00	3.00	1	-0.2	1.58	-2	130	-0.5	2	0.22	-05	12	53	45	3.07	-10 -		1 02
VR 74681 A	F98-01	348.00	351.00	3.00	ļ	-0.2	1.71	-2	120	-0.5		0.37	-0.5	11	50	29	3.23	-10	+	0.07
VR 74682 A	F98-01	351.00	354.00	3.00		-0.2	1.55	-2	120	-0.5		0.27	-0.5	12	45	25	2.9	-10		0.97
VR 74683 A	F98-01	354.00	357.00	3.00		-0.2	1.34	2	110	-0.5	-2	0.28	-0.5	12	62	28	2.98	+	+1	0.0
VR 74684 A	F98-01	357.00	360.00	3.00		-0.2	1.24	2	80	-0.5	-2	0.33	-0.5	<u>11</u>	55	22	2.62	-10		0.09
VR 74685 A	F98-01	360.00	360.30	0.30		-0.2	1.25	10	70	-0.5	-2	0.33	-0.5	10	5/	22	2.07	10		0.71
VR 74686 A	F98-01	360.30	361.36	1.06		0.8	1.74	218	70	0.5	2	0.29	-0.5	$\frac{7}{10}$	69	25	3.05	+10	-1	0.0
VR 74687 A	F98-01	361.36	365.00	3.64	1	0.2	1.69	2	100	-0.5	-2	0.31	-0.5	13	64	28	2.99	+ -10		0.97
VR 74688 A	F98-01	365.00	368.00	3.00	1	-0.2	1.63	-2	90	-0.5	-2	0.3	-0.5	11	60	26	2.79			0.90
VR 74689 A	F98-01	368.00	371.00	3.00	1	-0.2	1.71	2	100	-0.5	-2	0.33	-0.5	11	61	38	3.4	-10		0.91
VR 74690 A	F98-01	371.00	374.00	3.00	1	-0.2	1.52	6	120	-0.5	6	0.37	-0.5	12	45	49	2.10	+ -10		0.00
VR 74691 A	F98-01	374.00	377.00	3.00		-0.2	1.62	-2	140	-05	2	0.35	-0.5	10	50	28	3.11	+ -10		0.92
VR 74692 A	F98-01	377.00	380.00	3.00		-0.2	1.54	12	110	0.5	-2	0.26	-0.5	12	60	28	3.22	+10	·	0.7
VR 74693 A	F98-01	380.00	383.00	3.00		-0.2	1.64	8	110	-0.5	-2	0.38	-0.5	11	5/	24	3.15	-10	-1	0.07
VR 74694 A	F98-01	383.00	385.25	2.25		-0.2	1.57	-2	150	-0.5	2	0.26	-0.5	12	59	29	2.99	-10		205
VR 74695 A	F98-01	385.25	388.10	2.85		0.6	3.05	8	210	1.5	2	6.34	0.5	32	264	55	D.40	1.10	+	2.55
VR 74696 A	F98-01	388.10	391.00	2.90	-	-0.2	1.04	-2	90	-0.5	-2	0.96	-0.5	17		14	1.//	-10		0.41
VR 74697 A	F98-01	391.00	394.00	3.00		-0.2	1.01	-2	100	-0.5	-2	0.53	-0.5	5	58	6	1.89	-10		0.52
VR 74698 A	F98-01	394.00	397.00	3.00		-0.2	0.77	148	60	-0.5	-2	0.41	-0.5	5	107	11	1.07	-10		0.33
VR 74699 A	F98-01	397.00	399.20	2.20	_	-0.2	1.26	-2	110	-0.5	<u>-2</u>	0.44	-0.5		69		C0.1	-10		0.00
VR 74700 A	F98-01	399.20	399.40	0.20	1	-0.2	0.79	14	70	0.5	-2	1.17	-0.5	15	70	35	1.0	-10		0.40
VR 74701 A	F98-01	399.40	1 403.00	3.60		-0.2	1.51	-2	140	-0.5	-2	0.28	-0.5	8	62	12	2.25	-10	-1	1 0.04

 γ , γ ,

FINDLAY CREEK PROJECT - 1998

Drill Core Sample Results

SAMPLE	LA PPM	MG PCT	MN PPM	MO_PPM	NA_PCT	NI_PPM	P_PPM	PB_PPM	SB_PPM	SC_PPM	SR_PPM	TI_PCT	TL_PPM	U_PPM	V_PPM	W_PPM	ZN_PPM	CERTIF	ALT_CERTIF
VR 74660 A	10	0.23	205	-1	0.03	5	160	14	-2	-1	5	0.04	-10	-10	6	-10	24	A9837363	
VR 74661 A	10	0.41	235	1	0.04	11	170	2	-2	1	6	0.09	-10	-10	12	-10	40	A9837363	
VR 74662 A	10	0.63	325	1	0.03	11	250	8	-2	3	7	0.12	-10	-10	19	-10	46	A9837363	
VR 74663 A	10	1.26	630	1	0.04	17	330	22	-2	5	8	0.17	-10	-10	30	-10	96	A9837363	
VR 74664 A	10	1.02	495	1	0.04	16	280	-2	-2	4	6	0.15	-10	-10	25	-10	40	A9837363	
VR 74665 A	10	1.5	635	1	0.05	16	330	20	-2	6	8	0.17	-10	-10	37	-10	148	A9837363	
VR 74666 A	10	0.39	240	•1	0.01	9	120	2	-2	1	4	0.09	-10	-10	11	-10	40	A9837363	
VR 74667 A	10	0.51	265	1	0.03	11	200	12	-2	2	4	0.11	-10	-10	13	-10	66	A9837363	
VR 74668 A	10	0.45	280	1	0.02	11	140	8	-2	1	4	0.1	-10	-10	13	-10	56	A9837363	
VR 74669 A	10	0.29	260	-1	0.04	7	90	8	-2	1	4	0 09	-10	-10	12	-10		A9837363	
VR 74670 A	10	0.32	350	-1	0.03	10	110	12	-2	1	6	0.08	-10	-10	11	-10	68	A9837363	
VR 74671 A	10	0.45	455	1	0.03	12	140	4	-2	1	10	0 09	-10	•10	12	-10	50	A9837363	
VR 74672 A	10	0.51	405	3	0.02	15	250	2	-2	1	10	0.09	-10	-10	11	-10	50	A9837363	
VR 74673 A	10	0.45	460	1	0 11	18	150	12	2	1	11	01	-10	-10	15	-10	62	A9837363	
VR 74674 A	10	0.61	305	1	0.03	17	220	2	-2	1	6	0 11	-10	-10	15	-10	36	A9837363	
VR 74675 A	10	0.93	355	6	0.01	18	320	-2	-2	3	7	0 13	-10	-10	19	-10	54	A9837363	
VR 74676 A	10	0.86	345	1	0.02	20	280	4	-2	3	9	0.13	-10	-10	19	-10	54	A9837363	
VR 74677 A	10	0,78	280	1	0.03	18	240	-2	-2	2	6	0.12	-10	-10	18	-10	70	A9837363	
VR 74678 A	10	0.7	270	1	0.02	18	270	-2	-2	2	6	0.11	-10	-10	16	-10	54	A9837362	
VR 74679 A	10	0.67	295	1	0.02	16	220	-2	-2	3	5	0.12	-10	-10	22	-10	42	A9837362	
VR 74680 A	20	0.61	245	2	0.02	19	230	-2	-2	2	7	0.1	-10	-10	15	-10	38	A9837362	
VR 74681 A	10	1.02	335	1	0.04	17	370	36	-2	3	12	0.12	-10	-10	25	-10	90	A9837362	
VR 74682 A	. 10	0.82	245	-1	0.05	15	340	6	-2	3	8	0.12	-10	-10	23	-10	42	A9837362	
VR 74683 A	10	0.85	230	2	0.04	16	350	30	-2	3	11	0.08	-10	-10	20	-10	46	A9837362	·
VR 74684 A	10	0.79	210	1	0.05	15	390	10	2	3	16	0.06	-10	-10	21	-10	22	A9837362	
VR 74685 A	20	0.81	295	2	0.05	16	350	10	-2	3	19	0.06	-10	-10	17	-10	30	A9837362	
VR 74686 A	10	0.77	1090	2	0.02	17	300	166	-2	3	19	0.05	-10	-10	18	-10	42	A9837362	
VR 74687 A	10	0.92	340	1	0.06	17	420	38	-2	4	13	0.11	-10	-10	29	10	50	A9837362	
VR 74688 A	10	0.93	255	1	0.06	16	350	18	-2	4	11	0.11	-10	-10	25	-10	34	A9837362	
VR 74689 A	10	0.95	405	1	0.05	15	350	30	-2	4	20	0.09	-10	-10	21	-10	66	A9837362	
VR 74690 A	10	0.77	275	3	0.05	15	310	10	-2	3	11	0.09	-10	-10	19	-10	34	A9837362	
VR 74691 A	10	0.8	260	1	0.06	16	360	4	-2	3	17	0.1	-10	+	19	-10	32	A9837362	
VR 74692 A	20	0.58	325	2	0.03	18	280	-2	2	2	17	0.05	-10	-10		-10	40	A9837362	
VR 74693 A	20	0.8	245	3	0.04	17	310	8	-2	2	23	0.08	-10	-10	16	-10	42	A9837362	· · · · · · · · · · · · · · · · · · ·
VR 74694 A	10	0.84	220	3	0.07	17	320	20	-2	4	15	0.13	-10	-10	27		44	A9837362	
VR 74695 A	40	3.6	1290	3	0.04	60	3550	266	-2	9	787	0.04	-10	-10	146	+	220	A983/362	· · · · · ·
VR 74696 A	30	0.66	290	3	0.05	14	650	62	2	3	81	0.03	-10	-10	15	-10	40	A9837362	
VR 74697 A	20	0.43	345	-1	0.04	11	230	2	-2	2	27	0.04	-10	-10		-10	32	A903/302	· · · · · · · · · · · · · · · · · · ·
VR 74698 A	20	0.22	195	-1	0.05	7	90	18	-2	1	13	0.05	-10	-10	9	-10	32	A9037302	
VR 74699 A	20	0.41	205	-1	0.05	13	150	6	-2	2	10	0.08	-10	-10	14	-10	30	A0027200	
VR 74700 A	30	0.4	550	1	0.04	23	320	6	6	2	35	-0.01	-10	-10	5	-10	0	A002726	·
VR 74701 A	20	0.53	230	1	0.03	12	170	2	-2	2	10	0.09	-10	-10	16	01-	34	A9637362	1

FINDLAY CREEK PROJECT - 1998

Drill Core Sample Results

!

SAMPLE	HOLE	FROM	TO	WIDTH	AU_PPB	AG_PPM	AL_PCT	AS_PPM	BA_PPM	BE_PPM	BI_PPM	CA_PCT	CD_PPM	CO_PPM	CR_PPM	CU_PPM	FE_PCT	GA_PPM	HG_PPM	K_PCT
VR 74702	A F98-01	403.00	406.00	3.00		-0.2	1.72	2	170	-0.5	-2	0.25	-0.5	12	44	32	3.05	-10	-1	
VR 74703	A F98-01	406.00	409.00	3.00		-0.2	1 47	2	130	-0.5	-2	0.29	-0.5	12	60	16	2.26	-10	-1	0.86
VR 74704	A F98-01	409.00	412.00	3.00		-0.2	1.69	6	160	-0.5	-2	0.19	-0.5	10	38	17	2.67	-10	-1	0.96
VR 74705	A F98-01	412.00	415.00	3.00		-0.2	1.97	56	120	-0.5	-2	0.3	0.5	15	64	30	3.82	-10	-1	1.15
VR 74706	A F98-01	415.00	418.00	3.00		-0.2	1.84	2	100	-05	2	0.3	-0.5	12	68	25	3.23	-10	-1	1.13
VR 74707	A F98-01	418.00	421.00	3.00		-0.2	2.05	-2	110	-0.5	2	0.54	-0.5	11	72	30	3.49	-10		1.23
VR 74708	A F98-01	421.00	424.00	3.00		-0.2	1.12	-2	70	-0.5	-2	0.49	-0.5	6	72	14	1.69	-10	-1	0.54
VR 74709	A F98-01	424.00	427.00	3.00		-0.2	1.41	-2	120	-0.5	-2	0.39	-0.5	9	67	19	2.26	-10	-1	0.74
VR 74710	A F98-01	427.00	428.70	1.70		-0.2	1.62	6	150	-0.5	-2	0 19	-0.5	17	60	18	2.71	-10	-1	0.9
VR 74711	A F98-01	428.70	428.90	0.20		-0.2	0.92	4	100	-05	-2	0 46	-0.5	5	58	-1	1.35	-10	-1	0.4
VR 74712	A F98-01	428.90	432.00	3.10		-02	1.59	-2	120	-05	•2	0 28	-0.5	9	83	14	24	-10	-1	0.78
VR 74713	A F98-01	432.00	435.00	3.00		-0.2	0.93	2	70	-05	-2	0 4 1	-05	4	98	12	1.47	-10	-1	0.54
VR 74714	A F98-01	435.00	438.00	3.00		-0.2	0 64	-2	50	-05	-2	0 37	-05	1	102	4	1.02	-10	-1	0.35
VR 74715	A F98-01	438.00	441.00	3.00		-0.2	0.65	-2	50	-05	-2	0 24	-05	1	87	1	1.01	-10	1	0.38
VR 74716	A F98-01	441.00	444.00	3.00		-0.2	0.68	2	70	-05	-2	0 35	-05	4	70	23	1.29	-10	-1	0.4
VR 74717	A F98-01	444.00	447.00	3.00		-0.2	1.41	4	150	-0.5	-2	0 31	-05	8	63	21	2.47	•10	-1	0.89
VR 74718	A F98-01	447.00	450.00	3.00	<u> </u>	-0.2	1.25	2	140	-0.5	-2	0 27	-0.5	5	69	15	2.07	-10	-1	0.79
VR 74719	A F98-01	450.00	453.00	3.00		-0.2	1.8	-2	190	-0.5	-2	0.29	-0.5	8	67	23	3.04	-10	1	1.19
VR 74720	A F98-01	453.00	456.00	3.00		-0.2	1.54	-2	170	-0.5	-2	0.29	-0.5	8	60	22	2.56	-10	-1	0.94
VR 74721	A F98-01	456.00	459.00	3.00		-0.2	0.97	-2	100	-0.5	-2	0.34	-0.5	5	76	9	1.54	-10	-1	0.54
VR 74722	A F98-01	459.00	462.00	3.00		-0.2	1.62	-2	180	-0.5	_2	0.21	-0.5	8	47	22	2.82	-10	1	1.04
VR 74723	A F98-01	462.00	465.00	3.00		-0.2	1.23	-2	140	-0,5	-2	0.26	-0.5	5	66	11	1.99	-10	-1	0.73
VR 74724	A F98-01	465.00	468.00	3.00		-0.2	1.81	4	160	-0.5	-2	0.23	-0.5	10	44	28	3.22	-10	-1	1.16
VR 74725	A F98-01	468.00	471.00	3.00		-0.2	1.17	2	140	-0.5	-2	0.28	-0.5	5	82	9	1.95	-10	1	0.66
VR 74726	A F98-01	471.00	474.00	3.00		-0.2	1.97	2	160	0.5	-2	0.22	-0.5	10	33	28	3.4	-10	-1	1.31
VR 74727	A F98-01	474.00	477.00	3.00		-0.2	1.28	6	140	-0.5	-2	0.24	-0.5	6	71	7	1.95	-10	-1	0.79
VR 74728	A F98-01	477.00	478.23	1.23		-0.2	1.44	-2	170	-0.5	-2	0.22	-0.5	6	58	12	2.4	-10	-1	0.93
VR 74590	A F98-04	2.13	6.00	3.87		-0.2	1.19	6	100	1.5	-2	0.21	0.5	7	49	41	2.13	-10	-1	0.67
VR 74591	A F98-04	6.00	9.00	3.00		-0.2	0.98	4	100	2	2	0.34	1.5	8	91	26	1.28	-10	-1	0.54
VR 74592	A F98-04	9.00	12.00	3.00		-0.2	1.13	6	100	2	-2	0.38	0.5	7	64	28	1.87	-10	-1	0.68
VR 74593	A F98-04	12.00	15.00	3.00		0.2	1.32	2	130	1.5	2	0.28	-0.5	6	75	20	2.12	-10	-1	0.76
VR 74594	A F98-04	15.00	15.50	0.50		-0.2	1.52	-2	160	1	-2	0.53	0.5	9	67	50	2.25	-10	-1	0.88
VR 74595	A F98-04	15.50	15.90	0.40	1	-0.2	5.25	6	360	2	-2	1.56	2	28	161	5	7.24	10	-1	3.98
VR 74596	A F98-04	15.90	18.00	2.10		-0.2	1.6	2	160	0.5	-2	0.3	0.5	13	53	93	2.91	-10	-1	0.93
VR 74597	A F98-04	18.00	21.00	3.00		-0.2	1.55	4	140	2	2	0.33	1	8	93	30	2.23	-10	-1	0.86
VR 74598	A F98-04	21.00	24.00	3.00		-0.2	1.39	2	110	2	-2	0.45	1.5	10	63	43	2	-10	-1	0.76
VR 74599	A F98-04	24.00	27.00	3.00	1	-0.2	1.54	-2	120	1.5	-2	0.55	1.5	12	59	94	2.73	-10	-1	0.91
VR 74600	A F98-04	27.00	30.00	3.00	1	-0.2	1.05	2	50	2.5	2	0.57	0.5	4	79	39	1.01	-10	-1	0.48
VR 74601	A F98-04	30.00	33.00	3.00		-0.2	1.48	2	90	2.5	2	0.65	0.5	8	44	51	1.87	-10	-1	0.78
VR 74602	A F98-04	33.00	36.00	3.00		-0.2	1.66	6	120	2	-2	0.65	1.5	15	61	87	2.63	-10	-1	0.91
VR 74603	A F98-04	36.00	39.00	3.00	1	-0.2	1,96	-2	160	1	-2	0.64	1.5	16	74	123	3.53	-10	-1	1.26
VR 74604	A F98-04	39.00	42.00	3.00		-0.2	1.35	4	100	1.5	-2	0.33	0.5	9	80	44	2.22	-10	-1	0.68

FINDLAY CREEK PROJECT - 1998

Drill Core Sample Results

S	AMPLE	LA_PPM	MG_PCT	MN_PPM	MO_PPM	NA_PCT	NI_PPM	P_PPM	PB_PPM	SB_PPM	SC_PPM	SR_PPM	TI_PCT	TL_PPM	U_PPM	V_PPM	W_PPM	ZN_PPM	CERTIF	ALT_CERTIF
VR	74702 A	10	0.7	200	3	0.05	16	300	6	-2	3	8	0.13	-10	-10	18	-10	26	A9837362	
VR	74703 A	10	0.59	205	-1	0.04	14	270	2	-2	2	7	0.11	-10	-10	16	-10	28	A9837362	
VR	74704 A	10	0.64	225	1	0.04	14	240	4	-2	3	9	0.11	·10	-10	16	-10	30	A9837362	
VR	74705 A	10	0.98	280	3	0.05	21	320	18	-2	3	13	0.13	-10	-10	24	-10	88	A9837362	
VR	74706 A	10	1.05	305	1	0.07	17	340	40	-2	4	12	0.15	-10	-10	27	-10	106	A9837362	
VR	74707 A	10	1.21	365	3	0.07	17	470	6	-2	5	16	0.16	-10	-10	34	-10	84	A9837362	
VR	74708 A	10	0.39	205	-1	0.03	11	140	2	-2	1	11	0.06	-10	-10	11	-10	24	A9837362	
VR	74709 A	20	0.47	195	1	0.03	16	190	-2	-2	1	10	0.09	-10	-10	14	-10	20	A9837362	
VR	74710 A	10	0.52	215	1	0.02	18	190	-2	-2	2	6	01	-10	-10	17	-10	32	A9837362	
VR	74711 A	10	0.14	200	1	0.03	7	190	-2	-2	1	18	-0.01	-10	-10	4	-10	2	A9837362	
VR	74712 A	30	0.48	225	1	0.03	16	240	-2	-2	3	11	0 09	•10	-10	16	-10	22	A9837362	
VR	74713 A	10	0.32	205	1	0.04	8	170	2	-2	1	7	01	-10	-10	14	-10	26	A9837568	
VR	74714 A	10	0.23	150	1	0.04	7	210	2	-2	1	6	0 07	-10	-10	12	-10	16	A9837568	
VR	74715 A	10	0.25	110	•1	0.05	7	130	2	-2	1	5	0 07	-10	-10	12	-10	12	A9837568	
VR	74716 A	10	0.27	230	-1	0.04	10	130	4	-2	1	7	0.05	-10	-10	11	-10	18	A9837568	
VR	74717 A	10	0.51	200	1	0.03	12	270	10	-2	2	8	0.1	-10	•10	16	-10	62	A9837568	
VR	74718 A	10	0.43	200	-1	0.03	13	170	6	-2	2	6	0.1	-10	-10	16	-10	46	A9837568	···· ··· ··· · · ·
VR	74719 A	10	0.72	285	1	0.03	13	270	16	-2	3	8	0.13	-10	-10	20	-10	60	A9837568	
VR	74720 A	10	0.5	240	-1	0.03	13	220	6	-2	3	8	0.11	-10	-10	16	<u>·10</u>	60	A9837568	
VR	74721 A	20	0.31	185	-1	0.04	9	120	6	-2	2	9	0.07	-10	-10	12	-10	30	A9837568	
VR	74722 A	10	0.52	240	-1	0.03	14	190	2	2	3	6	0.13	-10	-10	18	-10	52	A9837568	
VR	74723 A	10	0.39	210	-1	0.05	10	130	8	2	3	8	0.1	-10	-10	15	-10	38	A9837568	
VR	74724 A	20	0.75	345	1	0.03	16	230	6	-2	3	9	0.12	-10	-10	23	-10	52	A9837568	
VR	74725 A	10	0.41	245	1	0.04	10	120	2	-2	3	10	0.09	-10	-10	16	-10	30	A9837568	· ·
VR	74726 A	30	0.7	320	-1	0.01	19	270	2	-2	2	8	0.15	-10	-10	22	-10	48	A9837568	
VR	74727 A	10	0.43	240	1	0.04	11	160	2	2	3	7	0.1	-10	-10	17	-10	24	A9837568	
VR	74728 A	10	0.46	260	-1	0.04	12	140	4	-2	3	6	0.13	-10	-10	20	-10	30	A9837568	·
VR	74590 A	20	0.5	330	1	0.03	14	340	2	2	3	5	0.08	-10	-10	20	-10	194	A9836577	
VR	74591 A	20	0.22	385	2	0.03	12	160	10	-2	1	4	0.06	-10	-10	11	-10	326	A9836577	
VR	74592 A	10	0.31	465	1	0.02	12	170	8	2	1	5	0.08	-10	-10	12	-10	174	A9836577	
VR	74593 A	10	0.42	325	2	0.02	13	210	2	2	2	4	80.0	-10	-10	14	-10	86	A9836577	
VR	74594 A	10	0.51	570	-1	0.04	11	200	4	-2	1	9	0.12	-10	-10	14	10	222	A9836577	ļ
VR	74595 A	-10	3.19	3280	1	-0.01	47	200	-2	2	18	7	0.26	10	-10	163	-10	768	A9836577	
VR	74596 A	10	0.58	475	3	0.03	17	310	12	2	2	5	0.12	-10	-10	15	-10	246	A9836577	
VR	74597 A	10	0.39	425	3	0.03	12	190	8	-2	2	5	0.09	-10	-10	13	-10	304	A9836577	·
VR	74598 A	10	0.41	470	1	0.01	13	220	14	2	11	6	0.08	-10	-10	12	-10	286	A9836577	· · · · · · · · · · · · · · · · · · ·
VR	74599 A	10	0.52	455	4	0.02	17	330	10	2	1	5	0.11	-10	-10	14	-10	332	A9836577	
VR	74600 A	30	0.16	250	1	0.01	5	110	-2	2	1	5	0.05	-10	-10	9	-10	246	A9836577	·
VR	74601 A	20	0.33	445	1	0.01	15	230	2	-2	1	6	0.07	-10	-10	11	-10	226	A9836577	
VR	74602 A	20	0.53	480	2	0.01	15	320	8	-2	1	7	0.09	-10	-10	13	-10	328	A9836577	
VR	74603 A	20	0.97	575	3	0.03	16	430	18	-2	5	9	0.16	-10	-10	29	-10	374	A9836577	·
VR	74604 A	10	0.47	410	1	0.02	14	220	4	2	1	6	0.08	-10	-10	13	-10	182	A9836577	1

FINDLAY CREEK PROJECT - 1998 Drill Core Sample Results

	HOLE	FROM	то	WIDTH	AU PPB	AG PPM	AL PCT	AS PPM	BA PPM	BE PPM	BI_PPM	CA_PCT	CD_PPM	CO_PPM	CR_PPM	CU_PPM	FE_PCT	GA_PPM	HG_PPM	K_PCT
VR 74605 A	F98-04	42.00	45.00	3.00	···	-0.2	1.25	2	80	1.5	-2	0.45	0.5	6	82	38	1.9	-10	-1	0.52
VR 74606 A	F98-04	45.00	48.00	3.00		-0.2	1.21	14	30	1.5	-2	0.14	0.5	10	109	19	1.76	-10	-1	0.34
VR 74607 A	F98-04	48.00	50.00	2.00		-0.2	1.27	158	60	1.5	-2	0.3	3	85	81	53	3.44	-10	-1	0.46
VR 74608 A	F98-04	50.00	52.00	2.00		-0.2	1.57	6	70	2	-2	0.31	1.5	7	86	29	2.8	-10	-1	0.54
VR 74609 A	F98-04	52.00	53.00	1.00		1.6	1.74	18	110	3	4	0.54	4	21	54	209	4.43	-10	-1	0.6
VR 74610 A	F98-04	53.00	55.75	2.75		-0.2	2.21	4	190	4	8	1.25	1	15	70	192	4.74	-10	-1	0.89
VR 74611 A	F98-04	55.75	57.70	1.95		-0.2	4.72	8	510	6.5	-2	5.36	-0.5	26	258	11	6.98	10	-1	3.38
VR 74612 A	F98-04	57.70	60.00	2.30		-0.2	3.05	2	200	3	4	2.41	-0.5	24	49	256	7.75	-10	-1	1.36
VR 74613 A	F98-04	60.00	63.00	3.00	1	-0.2	3.08	2	140	2	6	2.47	-0.5	21	45	169	6.94	-10	-1	1.07
V8 74614 A	F98-04	65.50	66.70	1.20	<u>+</u>	08	2.07	-2	110	3	24	2 86	-05	54	57	675	8.3	-10	-1	0.82
VR 74615 A	F98-04	80.00	83.00	3.00	<u>+</u>	-0.2	3.07	10	110	2	-2	2 59	-05	31	40	85	6.23	-10	-1	0.74
VR 74616 A	F98-04	93 08	93.75	0.67	-5	1.4	1.76	-2	20	35	58	1 33	5	368	54	2720	15	-10	-1	0.62
VR 74617 A	F98-04	181.23	181.42	0.19	5	0.8	5.43	-2	200	55	22	2 57	175	35	621	434	5.85	-10	•1	3.96
VR 74618 A	F98-04	205.10	205 25	0.15	10	0.4	6 02	-2	240	12.5	84	5 67	95	42	254	664	6 28	-10	-1	3.32
VR 74619 A	F98-04	207.96	211.00	3.04	l	-0.2	1.85	-2	160	05	-2	0 75	-05	7	101	21	2 22	-10	-1	0.81
VR 74620 A	F98-04	211.00	214.00	3.00	····-	-0.2	1.66	4	130	05	-2	0.66	-0.5	10	85	30	2.81	-10	-1	0.75
VR 74621 A	F98-04	214.00	217.00	3.00	1	-0.2	0.83	2	90	0.5	-2	0.68	-0.5	3	121	13	1.16	-10	-1	0.39
VR 74622 A	F98-04	217.00	220.00	3.00		-0.2	1.55	2	140	1.5	-2	0.57	-0.5	8	65	40	1.95	-10	-1	0.82
VR 74623 A	F98-04	220.00	223.00	3.00		-0.2	0.96	-2	70	1	-2	0.82	-0.5	5	86	42	1.49	-10	-1	0.45
VR 74624 A	F98-04	223.00	226.00	3.00		-0.2	1.31	-2	80	0.5	-2	0.72	-0.5	7	87	21	2.26	-10	-1	0.5
VR 74625 A	F98-04	226.00	229.40	3.40		-0.2	1.42	2	100	0.5	-2	0.75	-0.5	11	100	37	2.18	-10	1	0.6
VR 74626 A	F98-04	229.40	232.00	2.60	1	-0.2	4.89	18	200	1.5	-2	2.35	2.5	26	144	30	4.68	-10	-1	2.15
VR 74627 A	F98-04	250.60	251.25	0.65	10	0.8	5.85	-2	160	21.5	44	5.43	44	38	95	580	5.77	-10	-1	2.99
VR 74628 A	F98-04	264.72	264.95	0.23	5	1	4.89	-2	130	6	10	3.67	12.5	29	114	639	4.64	-10	-1	2.75
VR 74629 A	F98-04	273.20	273.45	0.25	-5	-0.2	5.11	-2	140	100	-2	7.79	10	15	130	35	3.3	-10	-1	2.8
VR 74630 A	F98-04	411.55	412.84	1.29	10	-0.2	3.25	-2	180	3.5	78	1.49	105	45	279	235	6.04	-10	-1	2.45
VR 74631 A	F98-04	417.20	420.00	2.80	1	-0.2	1.65	-2	140	3	-2	0.53	0.5	8	85	47	2.16	-10	-1	0.89
VR 74632 A	F98-04	420.00	423.00	3.00		-0.2	1.19	4	70	0.5	4	0.6	-0.5	5	83	15	1.79	-10	-1	0.53
VR 74633 A	F98-04	423.00	426.00	3.00		-0.2	1.29	-2	80	0.5	-2	0.55	-0.5	5	96	13	1.72	-10	-1	0.66
VR 74634 A	F98-04	426.00	429.00	3.00		-0.2	1.56	8	130	0.5	-2	0.61	-0.5	8	91	25	2.55	-10	<u> </u>	0.87
VR 74635 A	F98-04	429.00	432.00	3.00		-0.2	1.59	-2	140	0.5	-2	0.41	1	8	81	24	2.39	-10	-1	0.84
VR 74636 A	F98-04	432.00	435.00	3.00		-0.2	1.22	-2	130	05	-2	0.41	-0.5	5	68	7	1.64	-10	-1	0.65
VR 74637 A	F98-04	435.00	438.00	3.00	1	0.6	1.63	18	120	0.5	-2	0.59	0.5	9	73	37	3.01	-10	-1	0.8
VR 74638 A	F98-04	438.00	439.00	1.00	1	1.2	0.99	22	70	0.5	-2	0.4	0.5	4	89	37	2.23	-10	-1	0.47
VR 74639 A	F98-04	439.00	439.34	0.34	-5	7.4	0.4	2	10	0.5	4	0.4	39	1	115	110	9.61	-10	-1	0.28
VR 74640 A	F98-04	439.34	442.00	2.66		1	0.87	12	70	05	-2	0.54	2	3	101	20	2.03	-10	-1	0.49
VR 74641 A	F98-04	442.00	445.00	3.00		-0.2	1.12	2	130	0.5	-2	0.34	-0.5	5	93	5	1.79	-10	<u> 1</u>	0.63
VR 74642 A	F98-04	445.00	448.00	3.00		-0.2	1.84	-2	190	0.5	-2	0.28	-0.5	9	51	18	2.74	-10	-1	1.12
VR 74643 A	F98-04	448.00	451.00	3.00		-0.2	1.75	-2	120	-0.5	-2	0.29	-0.5	10	70	31	3.11	-10	<u> ·1</u>	1.12
VR 74644 A	F98-04	451.00	454.00	3.00		-0.2	1.2	-2	120	0.5	-2	0.32	-0.5	5	88	15	1.82	-10	-1	0.67
VR 74645 A	F98-04	454.00	457.00	3.00		-0.2	1.21	2	120	1.5	2	0.36	-0.5	6	77	23	1.51	-10	<u> </u>	0.7
VR 74646 A	F98-04	457.00	460.00	3.00	1	-0.2	1.81	-2	160	-0.5	-2	0.35	-0.5	10	45	31	3.15		-1	1.08

FINDLAY CREEK PROJECT - 1998

Drill Core Sample Results

SAMPLE		MG PCT	MN PPM	MO PPM	NA PCT	NI PPM	P PPM	PB PPM	SB_PPM	SC_PPM	SR_PPM	TI_PCT	TL_PPM	U_PPM	V_PPM	W_PPM	ZN_PPM	CERTIF	ALT_CERTIF
VR 74605 A	20	0.28	385	1	0.04	10	200	-2	-2	1	7	0.05	-10	-10	12	10	196	A9837222	
VR 74606 A	20	0.21	345	-1	0.04	10	120	10	-2	1	5	0.04	-10	-10	10	-10	360	A9837222	
VR 74607 A	40	0.26	640	1	0.03	18	370	6	-2	1	5	0.04	-10	-10	10	10	838	A9837222	
VP 74608 A	10	0.32	620	1	0.03	7	180	14	-2	3	7	0.06	-10	-10	16	-10	514	A9837222	
VP 74609 A	30	0.02	505	1	0.01	4	770	220	2	5	7	0.05	-10	-10	4	30	530	A9837222	
VP 74610 A	10	0.26	580	1	0.03	2	730	6	-2	7	13	0.14	-10	-10	1	110	354	A9837222	
VP 74611 A	40	37	1985	-1	0.02	104	5150	2	2	15	140	0.03	-10	-10	118	20	350	A9837222	
VP 74612 A	-10	0.73	1405	1	0.08	1	610	-2	-2	20	18	0.27	-10	-10	14	80	166	A9837222	
VR 74012 A	-10	0.73	840	-1	0.15	1	470	•2	2	21	11	0 27	-10	-10	39	30	98	A9837222	
VR 74013 A	-10	0.68	1435	1	0.10	1	380	2	2	11	21	0 13	-10	+10	49	20	82	A9837222	
VR 74014 A	10	1.06	920		0.00		350	.2	2	19	14	0 31	-10	-10	305	10	126	A9837222	
VR 74015 A	10	0.62	490		0.15	149	60	2		7	15	0.08	-10	-10	64	120	1200	A9837222	
VR 74010 A	10	4.54	1710	.1	0.13	64	130	.2		7	18	0 14	10	-10	122	370	4340	A9837222	
VR 74017 A	10	4.04	1990		0.13	45	210	.2	2	9	57	0 15	-10	-10	109	590	2470	A9837222	
VR 74010 A	-10	0.69	335	1	0.02	13	210			5	15	0 12	-10	-10	29	10	54	A9837222	
VR 74019 A	20	0.00	535	4	0.04	16	200	.7		2	16	0.08	-10	-10	17	10	54	A9837222	
VR 74020 A	1 10	0.00	395	1 1	0.06	<u>a</u>	160	2		1	14	0 07	-10	-10	12	30	114	A9837222	
VR 74021 A		0.20	475		0.05	13	180			2	12	0.08	-10	-10	15	40	134	A9837222	[
VR 74022 A	20	0.40	595	1	0.05	10	130	6		1	15	0.03	-10	-10	10	110	62	A9837222	
VR 74023 A	30	0.29	550		0.00	14	190		-2		17	0.04	-10	-10	12	-10	52	A9837222	
VR 74024 A	10	0.40	565	1	0.06	15	260	-2	-2	4	15	0.08	-10	-10	23	20	56	A9837222	
VR 74025 A	10	2 43	<u> </u>		0.00	29	190		2	11	40	0.16	-10	-10	96	110	662	A9837222	
VR 74020 A	10	2.95	1245		0.66	25	230	.2	4	9	42	0.17	10	10	121	940	9440	A9837222	
VR 74027 A	10	3.00	1480		0.22	24	150	-2	2	8	23	0.1	-10	-10	94	500	3150	A9837222	
VR 74620 A	10	3.23	1695	.1	0.22	20	140		2	14	38	0 11	-10	-10	91	170	2440	A9837222	
VR 74629 A	+10	2.10	1225	1	0.45	81	140	.2		18	7	0 13	-10	10	109	340	25500	A9837222	A9837861
VR 74630 A	-10	2.57	410		0.03	14	180	-2		3	7	0.06	-10	-10	18	80	310	A9837222	
VR 74631 A	20	0.55	575		0.03	11	170	6	-2		8	0.05	-10	-10	12	10	100	A9837222	· · · ·
VR 74632 A	30	0.42	255		0.04	12	130		-2	2	5	0.09	-10	-10	16	-10	50	A9837222	
VK 74033 A		0,40	300 AEE		0.00	14	240			2	9	0 11	-10	-10	20	-10	52	A9837222	
VR /4034 A	10-	0.64	400	<u>├</u> ── <u>'</u> ──	0.05	14	100	- <u>-</u>	-2		7	0.09	-10	-10	17	200	302	A9837222	
VR 74030 A		0.03	320		0.05	10	170			2	10	0.08	-10	-10	15	-10	62	A9837222	
VR 74030 A		0.42	1105		0.03	22	360	154		2	13	0.05	-10	-10	15	20	194	A9837222	
VR 14031 A	20	0.07	195		0.03	<u> </u>	410	232	7	1	9	-0.01	-10	-10	6	-10	134	A9837222	
VR 74030 A	10	0.24	10000		0.02		410	3550		1	12	0.01	-10	-10	2	-10	7140	A9837222	
VR /4039 A	-10	0.03	1070		0.01		200	504		1 1	12	0.01	-10	-10	9	-10	406	A9837222	
VR 74040 A		0.33	400		0.05	10	150	18	.2	2	10	0.08	-10	-10	15	-10	88	A9837222	
VR 74041 A		0.4	290		0.03	14	300	<u> </u>		3	5	0 14	-10	-10	19	-10	92	A9837222	
VR 74042 A	10	0.02	250	1	0.05	14	400	10		4	8	0 14	-10	-10	26	-10	56	A9837222	
VR /4043 A	10	0.50	200		0.05	10	200	2	-2	3	8	0.1	-10	-10	18	-10	44	A9837222	
VR /4044 A	10	0.51	200	-1	0.00	12	140	2	-2	2	9	0.08	-10	-10	15	10	130	A9837222	
VIC /4045 /	10	0.4	290		0.05	16	320	6	-2	2	8	0.13	-10	-10	19	-10	56	A9837222	
VR 74628 A VR 74629 A VR 74629 A VR 74630 A VR 74631 A VR 74632 A VR 74632 A VR 74633 A VR 74635 A VR 74636 A VR 74638 A VR 74638 A VR 74638 A VR 74639 A VR 74641 A VR 74641 A VR 74643 A VR 74643 A VR 74644 A VR 74644 A VR 74645 A	-10 -10 -10 -10 -10 -10 -10 -10	3.23 3.23 2.15 2.57 0.55 0.42 0.45 0.64 0.64 0.64 0.67 0.24 0.67 0.24 0.63 0.33 0.41 0.62 0.96 0.51 0.4 0.72	1480 1685 1325 410 575 355 465 320 310 1195 1815 10000 1970 400 280 250 200 340 280	$ \begin{array}{c} $	0.22 0.49 0.03 0.04 0.05 0.05 0.05 0.05 0.05 0.03 0.02 -0.01 0.03 0.05 0.03 0.05 0.03 0.05 0.06 0.05	24 20 81 14 11 12 14 14 10 22 9 4 9 4 9 10 14 14 14 10 12 16	150 140 140 180 170 130 240 190 170 360 410 40 200 150 390 400 200 140 320	-2 -2 -2 -2 6 2 -2 4 2 154 232 3550 504 18 8 10 2 2 2 6	2 2 4 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2	8 14 18 3 2 2 2 2 2 2 2 2 2 1 1 1 1 2 3 4 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	23 38 7 7 8 5 9 7 10 13 9 12 12 10 5 8 8 9 9 8	0.1 0.11 0.13 0.06 0.05 0.09 0.11 0.09 0.08 0.05 -0.01 -0.01 0.01 0.08 0.14 0.14 0.13	-10 -10 -10 -10 -10 -10 -10 -10 -10 -10	-10 -10 -10 -10 -10 -10 -10 -10 -10 -10	94 91 109 18 12 16 20 17 15 15 6 2 9 15 19 26 18 15 19	500 170 340 80 -10 -10 200 -10 20 -10 -10 -10 -10 -10 -10 -10 -10 -10 -1	3150 2440 25500 310 100 50 52 302 62 194 134 7140 406 88 92 56 44 130 56	A9837222 A9837222 A9837222 A9837222 A9837222 A9837222 A9837222 A9837222 A9837222 A9837222 A9837222 A9837222 A9837222 A9837222 A9837222 A9837222 A9837222 A9837222 A9837222 A9837222	A98378

FINDLAY CREEK PROJECT - 1998

Drill Core Sample Results

SAMPLE	HOLE	FROM	TO	WIDTH	AU PPB	AG_PPM	AL_PCT	AS_PPM	BA_PPM	BE_PPM	BI_PPM	CA_PCT	CD_PPM	CO_PPM	CR_PPM	CU_PPM	FE_PCT	GA_PPM	HG_PPM	K_PCT
VR 74647	A F98-04	460.00	463.00	3.00		-0.2	0.82	2	70	0.5	2	0.41	-0.5	8	78	16	1.44	-10	-1	0.49
VR 74648	A F98-04	463.00	466.00	3.00		-0.2	1.17	2	130	0.5	-2	0.31	-0.5	8	131	11	1.71	-10	-1	0.68
VR 74649	A F98-04	466.00	469.00	3.00		-0.2	0.67	-2	50	-0.5	-2	0.31	-0.5	5	82	-1	1.05	-10	-1	0.36
VR 74650	A F98-04	469.00	472.00	3.00		-0.2	1.27	-2	120	0.5	-2	0.27	-0.5	11	96	28	2.29	-10	-1	0.79
VR 74651	A F98-04	472.00	475.00	3.00		-0.2	0.68	2	40	-0.5	-2	0.33	-0.5	5	75	-1	0.96	-10	-1	0.4
VR 74652	A F98-04	475.00	478.00	3.00		-0.2	1.42	2	150	1.5	2	0.36	0.5	9	125	32	1.83	-10	-1	0.8
VR 74653	A F98-04	478.00	481.00	3.00		-0.2	1.51	2	170	1.5	2	0.28	1	10	110	28	1.94	-10	-1	0.85
VR 74654	A F98-04	481.00	484.00	3.00	1	-0.2	1.64	-2	140	-0.5	-2	0.2	-0.5	12	84	25	2.75	-10	-1	0.96
VR 74655	A F98-04	484.00	486.00	2.00	1	-0.2	1.91	-2	140	-0.5	2	0.28	-0.5	16	68	49	3.77	-10	-1	1.14
VR 74656	A F98-04	486.00	487.98	1.98		-0.2	0.81	-2	70	-0.5	-2	0 36	-0.5	7	57	13	1.62	-10	-1	0.45
VR 74451	A F98-05	4.57	7.00	2.43		-0.2	0.8	6	70	-05	-2	0 44	-05	5	69	12	1.42	-10	-1	0.25
VR 74452	A F98-05	7.10	10.00	2.90	1	-0.2	0.93	8	80	-05	-2	0 34	-05	6	55	8	1 68	-10	-1	0.26
VR 74453	A F98-05	10.00	10.35	0.35	1	-0.2	0.88	8	60	-05	-2	0 07	-05	6	54	13	1.88	-10	-1	0.22
VR 74454	A F98-05	10.35	13.00	2.65	1	-0.2	1 15	6	80	-05	-2	0 42	-05	11	26	29	2.74	-10	-1	0.34
VR 74455	A F98-05	13.00	16.00	3.00	1	-0.2	1.07	26	70	-05	2	0 29	-05	11	22	29	26	-10	-1	0.33
VR 74456	A F98-05	16.00	19.00	3.00	1	0.2	1.12	12	60	-05	-2	0 42	-05	11	29	25	2.77	-10	-1	0.28
VR 74457	A F98-05	19.00	21.70	2.70	1	-0.2	1.26	6	80	-0.5	-2	0.37	-05	10	25	25	2.79	-10	-1	0.37
VR 74458	A F98-05	21.70	23.06	1.36	1	-0.2	1.43	10	60	-0.5	-2	0.57	-05	8	40	22	2.29	-10	-1	0.26
VR 74459	A F98-05	23.06	26.00	2.94		-0.2	0.96	12	70	-0.5	-2	0 83	-0.5	7	38	9	1.61	-10	-1	0.31
VR 74460	A F98-05	26.00	29.00	3.00		-0.2	0.9	12	60	-0.5	-2	0.47	-0.5	7	34	12	1.74	-10	-1	0.27
VR 74461	A F98-05	29.00	32.00	3.00		-0.2	0.88	10	70	-0.5	-2	0.9	-0.5	8	30	19	2.04	-10	-1	0.31
VR 74462	A F98-05	32.00	33.18	1.18		-0.2	0.97	12	80	-0.5	-2	0.56	-0.5	10	27	21	1.93	-10	<u> ·1</u>	0.36
VR 74463	A F98-05	33.18	36.00	2.82		-0.2	0.72	6	80	-0.5	-2	0.96	-0.5	77	27	18	1.68	-10	-1	0.31
VR 74464	A F98-05	36.00	38.16	2.16		-0.2	0.86	12	80	-0.5	-2	1.02	-0.5	8	21	15	1.77	-10	-1	0.31
VR 74465	A F98-05	38.16	38.25	0.09		-0.2	0.98	16	70	-0.5	-2	0.65	0.5	9	35	17	2.21	-10	-1	0.3
VR 74466	A F98-05	38.25	41.00	2.75		0.2	0.88	10	80	-0.5	-2	0.57	2	8	24	19	1.81	-10	-1	0.31
VR 74467	A F98-05	41.00	42.50	1.50		-0.2	0.58	10	70	-0.5	-2	0.82	-0.5	7	27	15	1.78	-10	-1	0.29
VR 74468	A F98-05	42.50	44.50	2.00	<u> </u>	-0.2	1.05	16	100	-0.5	-2	0.51	1	14	19	38	2.7	-10	-1	0.45
VR 74469	A F98-05	44.50	46.28	1.78		-0.2	0.6	10	80	-0.5	-2	0.59	-0.5	5	61	9	1.48	-10	-1	0.31
VR 74470	A F98-05	46.28	48.77	2.49	<u> </u>	-0.2	0.98	10	80	-0.5	-2	0.41	-0.5	8	25	22	2.11	-10	-1	0.35
VR 74471	A F98-05	48.77	51.00	2.23		-0.2	0.56	4	80	-0.5	-2	0.95	-0.5	5	35	9	1.33	-10	-1	0.26
VR 74472	A F98-05	51.00	53.00	2.00	I	-0.2	0.73	12	60	-0.5	-2	0.87	-0.5	6	24	16	1.53	-10	- <u></u> -1	0.23
VR 74473	A F98-05	53.00	54.80	1.80		-0.2	1	34	70	-0.5	-2	1.24	-0.5	8		23	2.25	-10		0.31
VR 74474	A F98-05	54.80	55.50	0.70		-0.2	0.8	10	60	-0.5	-2	0.66	0.5	7	40	20	1.8	-10	-1	0.24
VR 74475	A F98-05	55.50	57.75	2.25		0.4	0.78	164	70	-0.5	-2	0.94	0.5	17	17	44	2.76	-10	-1	0.34
VR 74476	A F98-05	57.75	60.60	2.85		-0.2	0.49	20	70	-0.5	-2	0.53	-0.5	5	37	12	1.29	-10	1	0.26
VR 74477	A F98-05	60.60	63.00	2.40		-0.2	0.42	8	70	-0.5	-2	0.89	-0.5	4	41	8	0.92	10	+	0.22
VR 74478	A F98-05	63.00	66.00	3.00	ļ	-0.2	0.66	8	90	-0.5	-2	0.34	-0.5	7	38	13	1.66	-10	-1	0.35
VR 74479	A F98-05	66.00	69.25	3.25		-0.2	0.61	18	90	-0.5	-2	0.45	-0.5	5	51	14	1.34	-10	<u> -1</u>	0.33
VR 74480	A F98-05	69.25	71.00	1.75		-0.2	1.17	34	90	-0.5	-2	0.68	-0.5	14	22	35	2.74	-10	<u> </u>	0.42
VR 74481	A F98-05	71.00	72.85	1.85		-0.2	0.5	2	60	-0.5	-2	0.62	-0.5	4	50	7	1.11	-10	<u> -1</u>	0.21
VR 74482	A F98-05	72.85	73.40	0.55		-0.2	1.25	-2	90	-0.5	-2	0.13	-0.5	14	21	35	2.85		<u> </u>	0.43

Appendix IX

FINDLAY CREEK PROJECT - 1998 Drill Core Sample Results

1 *

с : .

				NO PRI	NA POT		P PPM	PB PPM	SB PPM	SC PPM	SR PPM	TI_PCT	TL_PPM	U_PPM	V_PPM	W_PPM	ZN_PPM	CERTIF	ALT_CERTIF
SAMPLE	LA_PPM	MG_PCT	MN_PPM		0.02	11	140	6	-2	1	8	0.08	-10	-10	13	-10	104	A9837363	
VR 74647 A	10	0.35	205	+1	0.02	12	140	.2	-2	2	8	0.09	-10	-10	17	-10	148	A9837363	
VR 74648 A	10	0.39	345		0.03	נ <u>ז</u> פ	140		-2	1	5	0.08	-10	-10	14	-10	20	A9837363	
VR 74649 A	-10	0.28	140		0.02		200	-2	.2	1	5	0.1	-10	-10	15	20	54	A9837363	
VR 74650 A	10	0.53	305		0.01	10	140	6	-2	2	7	0.06	-10	-10	18	-10	32	A9837363	
VR 74651 A	-10	0.39	195	-1	0.03	14	180		.2	2	8	0.08	-10	-10	17	40	224	A9837363	
VR 74652 A	10	0.42	395		0.04	14	170		-2	2	7	0.05	-10	-10	13	240	314	A9837363	
VR 74653 A	20	0.37	315		0.04	14	250		.2	2	4	0.11	-10	-10	18	-10	54	A9837363	
VR 74654 A	10	0.57	270	1	0.01	22	230	-2	.2	2	6	0.13	-10	-10	19	-10	54	A9837363	
VR 74655 A	20	0.73	345	2	0.01	23	130			1	7	0.06	-10	-10	14	-10	32	A9837363	
VR 74656 A	10	0.33	320	-1	0.01		130			<u>├</u> ;	28	-0.01	+10	-10	5	-10	26	A9835790	
VR 74451 A	30	0.23	205	-1	0.04	8	160				28	-0.01	-10	-10	6	-10	36	A9835790	
VR 74452 A	40	0.25	225	-1	0.04	10	150				7	-0.01	•10	-10	5	-10	46	A9835790	
VR 74453 A	20	0.25	185	-1	0.04	11	140				25	-0.01	-10	-10	5	-10	104	A9835790	
VR 74454 A	10	0.48	290	5	001	20	290	200	<u>-</u>	+ - -	10	0.01	-10	-10	4	-10	56	A9835790	
VR 74455 A	10	0.49	230	2	0.01	18	210	30		·	26	201	.10	-10	5	-10	56	A9835790	1
VR 74456 A	10	0.5	265	1	0.01	16	180	38		+	20	1	-10	-10	6	-10	48	A9835790	· · · · · · · · · · · · · · · · · · ·
VR 74457 A	10	0.47	285	1	0.01	17	240	b			24	0.01	-10	-10	4	-10	38	A9835790	
VR 74458 A	10	0.66	245	1	0.01	15	200	b			45	0.01	-10	-10	4	-10	30	A9835790	
VR 74459 A	30	0.48	305	-1	0.01	12	170	16			26	-0.01	-10	-10	5	-10	28	A9835790	
VR 74460 A	20	0.41	225	-1	0.02	12	140	b			49	0.01	-10	-10	4	-10	58	A9835790	
VR 74461 A	10	0.44	345	-1	0.01	16	160	12			30	-0.01	-10	-10	4	-10	46	A9835790	······································
VR 74462 A	20	0.38	285	1	0.01	1/	180	4	-2		57	0.01	-10	-10	4	-10	48	A9835790	
VR 74463 A	20	0.3	420	11	0.02	13	150	10			61	0.01	-10	-10	4	-10	64	A9835790	
VR 74464 A	20	0.35	425	-1	0.01	13	180	16	-2		20	0.01		-10	4	-10	146	A9835790	
VR 74465 A	10	0.48	335	-1	0.01	14	190	34			39	0.01	-10	-10	5	10	592	A9835790	
VR 74466 A	20	0.36	295	1	0.02	13	160	214			32	0.01	-10	-10		-10	74	A9835790	,
VR 74467 A	20	0.34	360	2	0.02	13	170	18			40	-0.01	10	-10	5	-10	144	A9835790)
VR 74468 A	10	0.43	280	4	0.01	26	330	14	-2	1	33	-0.01	-10	10		-10	44	A9835790	
VR 74469	20	0.26	315	-1	0.03	9	190	20	-2	1	30	-0.01	-10	10			52	A9835790)
VR 74470	20	0.32	265	1	0.01	16	220	8	-2	<u> </u> !	28	-0.01	-10	10	1 3	-10	40	A9835790	
VR 74471	30	<u>0.32</u>	450	1	0,03	8	140	102	-2	-1	56		- 10	-10	- 3	-10	28	A983579))
VR 74472	10	0.38	310	-1	0.02	12	180	-2		- 	49	1-0.01		-10			32	A983579)
VR 74473	10	0.73	320	3	0.02	16	260	10		<u> 1</u>	64	-0.01	-10	-10	1		170	A983579)
VR 74474	10	0.39	285	3	0.01	14	190	14	-2	-1	41	-0.01	-10	-10	2		140	A983579	1
VR 74475	-10	0.46	415	10	-0.01	28	430	68	-2	-1	5/	-0.01	-10	-10		10	30	A983579	
VR 74476	A 10	0.2	270	-1	0.01	8	150	10		-1	28	-0.01	-10	-10		10	26	4983579	
VR 74477	A 20	0.15	375	-1	0.03	6	120	14	-2	-1	49	$+\frac{0.01}{0.01}$	-10		+ 4-		40	A983579	<u>,</u>
VR 74478	A 20	0.25	260	-1	0.03	11	170	16	-2	1	22	-0.01	-10	-10	+	-10	20	A983579	<u>-</u>
VR 74479	A 30	0.19	255	-1	0.03	9	150	14	-2	<u> -1</u>	25	-0.01	-10	-10		-	48	A983579	<u>-</u>
VR 74480	A 10	0.54	325	10	0.01	27	460	22	-2	1	40	-0.01	-10	-10	1 2	-10	18	4983579	<u>-</u>
VR 74481	A 20	0.24	250	-1	0.03	5	120	12	-2		30	-0.01		+10	+	10	56	4983570	- -
VR 74482	A 10	0.4	160	4	-0.01	23	310	-2	-2	<u> </u>	11	-0.01	-10		<u> </u>	<u>_i -iù</u>	1 30	1,2000010	<u> </u>

FINDLAY CREEK PROJECT - 1998

Drill Core Sample Results

SAMPLE	HOLE	FROM	то	WIDTH	AU_PPB	AG_PPM	AL_PCT	AS_PPM	BA_PPM	BE_PPM	BI_PPM	CA_PCT	CD_PPM	CO_PPM	CR_PPM	CU_PPM	FE_PCT	GA_PPM	HG_PPM	K_PCT
VR 74483	A F98-05	73.40	76.00	2.60		-0.2	0.57	24	80	-0.5	-2	0.65	-0.5	6	50	8	1.08	-10		0.29
VR 74484	A F98-05	76.00	79.00	3.00		-0.2	0.62	8	60	-0.5	-2	0.78	-0.5	6	37	10	1.28	-10	-1	0.26
VR 74485	A F98-05	79.00	82.00	3.00		-0.2	0.5	10	70	-0.5	•2	1.31	-0.5	5	46	9	1.34	-10	-1	0.26
VR 74486	A F98-05	82.00	83.50	1.50		-0.2	0.49	2	70	-0.5	-2	0.58	-0.5	11	36	31	2.66	-10	-1	0.33
VR 74487	A F98-05	83.50	86.75	3.25		-0.2	0.77	4	70	-0.5	-2	0.56	-0.5	7	27	18	1.88	-10	-1	0.28
VR 74488	A F98-05	86.75	88.25	1.50		-0.2	1.24	2	100	-0.5	-2	0.27	-0.5	17	21	39	3.29	-10	-1	0.44
VR 74489	A F98-05	88.25	91.00	2.75		-0.2	0.82	4	60	-0.5	-2	0.47	-0.5	5	50	9	1.47	-10	-1	0.23
VR 74490	A F98-05	91.00	94.00	3.00		-0.2	1.07	14	90	-0.5	-2	0.29	-0.5	7	45	11	1.74	-10	-1	0.34
VR 74491	A F98-05	94.00	97.00	3.00		-0.2	0.81	8	70	-0.5	-2	0 79	-0.5	5	43	10	1.74	-10	-1	0.28
VR 74492	A F98-05	97.00	98.10	1.10		-0.2	0.92	12	80	-0.5	-2	0 14	-0.5	9	40	18	2.09	-10	-1	0.36
VR 74493	A F98-05	98.10	100.00	1.90		-0.2	1.78	26	60	-05	-2	0 49	-05	8	54	18	26	-10	-1	0.26
VR 74494	A F98-05	100.00	103.00	3.00		0.2	1.15	66	30	-05	-2	1 78	-05	9	39	59	2.9	-10	-1	0.15
VR 74495	A F98-05	103.00	105.94	2.94		0.2	1.46	64	50	-05	-2	1 01	3	14	45	41	3 16	-10	-1	0.27
VR 74496	A F98-05	138.68	140.40	1.72		0.4	1.06	18	80	-05	-2	0 75	-05	13	29	71	29	-10	-1	0.35
VR 74497	A F98-05	140.40	143.00	2.60		0.2	1.16	40	90	-05	-2	0 98	-05	11	94	21	2 34	-10	-1	0.41
VR 74498	A F98-05	143.00	146.00	3.00		-0.2	0.86	22	80	-0.5	-2	0.63	-0.5	8	43	22	2 07	-10	-1	0.35
VR 74499	A F98-05	146.00	149.00	3.00		-0.2	0.56	54	60	-0.5	-2	06	-0.5	9	44	23	1.85	-10	-1	0.28
VR 74500	A F98-05	149.00	152.00	3.00		-0.2	0.82	96	50	-0.5	-2	0.59	-0.5	10	32	64	2.42	-10	-1	0.27
VR 74501	A F98-0	152.00	152.65	0.65		0.4	0.55	312	90	-0.5	-2	2.45	1	14	21	89	2.94	-10	-1	0.34
VR 74502	A F98-0	152.65	153.00	0.35		0.8	0.69	304	80	0.5	-2	2.32	-0.5	9	41	25	2.46	-10	-1	0.39
VR 74503	A F98-0	153.00	153.50	0.50		0.2	0.72	180	70	0.5	-2	3.01	-0.5	9	36	21	2.69	-10	-1	0.32
VR 74504	A F98-0	153.50	156.00	2.50		0.2	0.67	4	70	0.5	-2	2.84	-0.5	12	26	37	3.16	-10	-1	0.32
VR 74505	A F98-0	156.00	158.50	2.50		0.6	0.63	8	60	-0.5	-2	1.77	-0.5	16	26	43	3.13	-10	-1	0.29
VR 74506	A F98-0	5 158.50	161.00	2.50		0.2	0.89	40	60	-0.5	-2	0.82	-0.5	12	48	29	2.47	-10	-1	0.28
VR 74507	A F98-0	5 161.00	164.00	3.00		-0.2	1.11	22	60	-0.5	-2	1.08	-0.5	8	41	27	2.26	-10	-1	0.24
VR 74508	A F98-0	5 164.00	167.00	3.00		-0.2	1.09	84	70	-0.5	-2	0.64	-0.5	9	56	51	2.28	-10	-1	0.32
VR 74509	A F98-0	167.00	170.00	3.00		-0.2	0.68	98	60	-0.5	-2	0.72	-0.5	8	67	44	1.75	-10	-1	0.27
VR 74510	A F98-05	170.00	171.80	1.80		-0.2	0.86	186	90	-0.5	-2	0.26	-0.5	10	81	36	2.03	-10	-1	0.35
VR 74511	A F98-0	5 171.80	173.00	1.20		0.6	0.93	364	60	0.5	-2	0.36	-0.5	9	38	78	2.31	-10	-1	0.25
VR 74512	A F98-0	5 173.00	176.00	3.00		6.8	0.7	766	70	-0.5	2	1.2	3.5	10	73	. 243	2.04	-10	-1	0.26
VR 74513	A F98-0	5 176,00	176.48	0.48		14.4	0.48	2870	60	-0.5	10	2.12	5.5	12	60	275	2.49	-10	-1	0.2
VR 74514	A F98-0	5 176.48	179.00	2.52		7.8	0.56	1325	80	-0.5	6	0.7	5	12	66	140	2.3	-10	-1	0.25
VR 74515	A F98-0	5 179.00	182.00	3.00		5.2	0.65	1965	80	-0.5	-2	0.65	2	13	50	234	2.34	-10	-1	0.28
VR 74516	A F98-0	5 182.00	185.00	3.00		0.6	0.81	652	90	-0.5	-2	0.45	-0.5	8	60	79	1.81	-10	-1	0.31
VR 74517	A F98-0	185.00	188.00	3.00		0.6	0.73	252	90	-0.5	-2	0.51	-0.5	9	53	68	1.98	-10	-1	0.34
VR 74518	A F98-0	5 188.00	191.00	3.00		0.8	0.8	324	90	-0.5	-2	0.58	0.5	9	54	86	2.07	-10	-1	0.33
VR 74519	A F98-0	5 191.00	193.00	2.00		1.2	0.79	520	120	-0.5	-2	0.41	0.5	12	69	223	2.9	-10	-1	0.41
VR 74520	A F98-0	5 193.00	193.17	0.17		32.6	0.25	2580	50	-0.5	60	1.68	15.5	28	98	1065	3.83	-10	-1	0.15
VR 74521	A F98-0	5 193.17	194.00	0.83		-0.2	0.51	258	70	-0.5	-2	1.15	-0.5	6	84	59	1.55	-10	-1	0.24
VR 74522	A F98-0	5 194.00	194.20	0.20		0.6	1.03	836	100	-0.5	-2	0.47	1	11	69	143	2.9	-10	-1	0.33
VR 74523	A F98-0	5 194.20	195.26	1.06		-0.2	0.65	12	90	-0.5	-2	0.91	-0.5	4	73	42	1.78	-10	-1	0.32
VR 74524	A F98-0	5 195.26	195.36	0.10	1	0,6	0.79	8220	120	-0.5	-2	0.57	-0.5	44	46	304	3.27	-10	-1	0.41

FINDLAY CREEK PROJECT - 1998

Drill Core Sample Results

SAMPLE		PM	MG_PCT	MN_PPM	MO_PPM	NA_PCT	NI_PPM	P_PPM	PB_PPM	SB_PPM	SC_PPM	SR_PPM	TI_PCT	TL_PPM	U_PPM	V_PPM	W_PPM	ZN_PPM	CERTIF	ALT_CERTIF
VR 74483	A 10)	0.21	295	1	0.03	7	110	16	-2	-1	43	0.01	-10	-10	4	-10	66	A9835790	
VR 74484	A 10	5	0.25	275	1	0.02	9	140	10	-2	-1	49	-0.01	-10	-10	3	-10	30	A9835790	
VR 74485	A 1)	0.29	400	-1	0.03	8	120	24	-2	-1	73	-0.01	-10	-10	3	-10	32	A9835790	
VR 74486	A 10)	0.39	430	10	0.01	20	370	30	2	-1	36	-0.01	-10	-10	3	-10	36	A9835790	
VR 74487	A 10	D C	0.37	305	2	0.02	11	140	2	-2	-1	30	-0.01	-10	-10	4	-10	34	A9835790	
VR 74488	A 10	D I	0.47	220	10	0.01	27	420	16	-2	1	20	-0.01	-10	-10	6	-10	40	A9835790	
VR 74489	A 10	5	0.47	215	1	0.03	7	130	14	-2	-1	27	-0.01	-10	-10	4	-10	24	A9835790	
VR 74490	A 20	3	0.47	140	-1	0.02	11	160	2	4	1	17	-0.01	-10	-10	5	-10	22	A9835790	
VR 74491	A 2	C	0.56	320	1	0.03	8	140	16	-2	1	40	0.01	-10	-10	4	-10	24	A9835790	
VR 74492	A 20	D	0.45	180	1	0.01	14	190	2	-2	1	11	-0.01	-10	-10	4	-10	30	A9835790	
VR 74493	A 10	5	1.29	240	2	0.01	14	280	68	2	1	29	-0 01	-10	-10	7	-10	70	A9835790	
VR 74494	A -1	0	1.45	705	3	0.02	19	270	106	-2	2	75	-0 01	-10	-10	7	-10	90	A9836422	
VR 74495	A 10	2	1.07	510	4	0.01	28	400	198	-2	1	55	-0 01	-10	-10	8	-10	908	A9836422	
VR 74496	à 1	0	0.62	360	4	0.01	27	510	140	•2	1	61	-0.01	-10	-10	7	-10	50	A9836422	
VR 74497	A 34)	0.73	505	1	0.02	30	390	60	-2	3	85	0.01	-10	-10	14	-10	60	A9836422	
VR 74498	A 2	0	0.3	370	1	0.01	13	160	16	-2	1	43	0 01	-10	-10	5	-10	42	A9836422	
VR 74499	A 20	5 C	0.28	410	1	0.02	13	150	14	-2	-1	37	-0 01	-10	-10	3	-10	30	A9836422	
VR 74500	A 10	0	0.46	330	2	0.01	19	250	94	-2	1	35	-0 01	-10	-10	5	-10	44	A9836422	
VR 74501	A 10	0	0.94	730	1	0.01	24	480	382	-2	2	98	-0.01	-10	-10	5	-10	156	A9836422	
VR 74502	A 2	0	0.85	835	6	0.01	15	280	670	-2	3	101	-0.01	-10	-10	5	-10	62	A9836422	
VR 74503	A 20	2	1.04	920	1	0.01	17	380	142	-2	3	134	-0.01	-10	-10	6	-10	62	A9836422	
VR 74504	A 10	5	1.26	820	4	0.02	24	450	150	+2	3	123	-0.01	-10	-10	7	-10	80	A9836422	
VR 74505	A 10	0	1.09	555	5	0.02	25	410	214	-2	2	88	-0.01	-10	-10	7	-10	82	A9836422	
VR 74506	A 2	o l	0.42	400	1	0.01	16	200	294	-2	1	48	-0.01	-10	-10	5	-10	82	A9836422	
VR 74507	A 2	0	0.42	415	1	-0.01	16	220	60	-2	1	60	-0.01	-10	-10	5	-10	46	A9836422	
VR 74508	A 2	0	0.37	370	1	0.01	17	220	26	-2	1	39	-0.01	-10	-10	6	-10	48	A9836422	
VR 74509	A 1	D C	0.22	355	1	0.01	13	180	22	-2	-1	39	-0.01	-10	-10	4	-10	28	A9836422	
VR 74510	A 3	D	0.24	330	-1	0.01	16	240	16	-2	1	30	-0.01	-10	-10	5	-10	40	A9836422	
VR 74511	A 34	2	0.26	325	-1	-0.01	13	210	516	-2	1	55	-0.01	-10	-10	5	-10	38	A9836422	
VR 74512	A 2	D	0.22	440	1	-0.01	18	220	5590	2	1	63	-0.01	-10	-10	4	-10	30	A9836422	
VR 74513	A 1	D I	0.13	430	1	-0.01	21	180	17700	6	1	83	-0.01	-10	-10	4	-10	12	A9836422	A9836931
VR 74514	A 2	o l	0.2	360	3	0.01	14	250	7180	2	1	32	-0.01	-10	-10	4	-10	38	A9836422	
VR 74515	A 2	D	0.28	425	1	-0.01	17	250	4540	2	1	27	-0.01	-10	-10	4	-10	92	A9836422	
VR 74516	A 3	D C	0.26	330	-1	0.01	12	200	546	-2	1	24	-0.01	-10	-10	6	-10	32	A9836422	
VR 74517	A 3	5 C	0.28	375	1	0.01	14	200	538	-2	1	27	-0.01	-10	-10	5	-10	30	A9836422	
VR 74518	A 3	o C	0.32	395	-1	0.01	14	200	708	-2	1	26	-0.01	-10	-10	6	-10	34	A9836422	
VR 74519	A 3	2 C	0.33	370	1	-0.01	24	290	794	-2	1	21	-0.01	-10	-10	6	-10	38	A9836422	
VR 74520	A 1	2	0.06	555	5	-0.01	26	440	18800	2	-1	42	-0.01	-10	-10	3	-10	30	A9836422	A9836931
VR 74521	A 3	D	0.24	415	1	0.01	10	150	102	-2	1	38	-0.01	-10	-10	4	-10	26	A9836422	
VR 74522	A 1	D	0.4	360	-1	-0.01	17	220	324	-2	1	19	-0.01	-10	-10	5	-10	68	A9836422	
VR 74523	A 3	0	0.3	445	1	0.02	12	170	84	-2	1	35	-0.01	-10	-10	5	-10	36	A9836422	
VR 74524	A 1	0	0.26	365	1	-0.01	38	270	288	2	1	23	-0.01	-10	-10	5	-10	78	A9836422	

FINDLAY CREEK PROJECT - 1998

Drill Core Sample Results

ć

Ş/	AMPLE	HOLE	FROM	то	WIDTH	AU_PPB	AG_PPM	AL_PCT	AS_PPM	BA_PPM	BE_PPM	BI_PPM	CA_PCT	CD_PPM	CO_PPM	CR_PPM	CU_PPM	FE_PCT	GA_PPM	HG_PPM	K_PCT
VR	74525 A	F98-05	195.36	195.75	0.39		-0.2	0.58	202	70	-0.5	-2	0.55	-0.5	4	85	26	1.31	-10	-1	0.25
VR	74526 A	F98-05	195.75	196.00	0.25		5.8	1.07	400	110	-0.5	10	0.4	3	12	42	379	3.95	-10	-1	0.36
VR	74527 A	F98-05	196.00	196.75	0.75		0.2	0.89	422	100	-0.5	-2	0.54	-0.5	7	71	99	2.16	-10	-1	0.34
VR	74528 A	F98-05	196.75	196.85	0.10		2.4	1.05	1220	120	-0.5	-2	0.3	3	27	41	448	3.53	-10	-1	0.43
VR	74529 A	F98-05	196.85	198.80	1.95		0.4	0.72	118	100	-0.5	-2	0.62	-0.5	10	48	33	1.69	-10	-1	0.28
VR	74530 A	F98-05	198.80	198.90	0.10		9	0.68	5420	100	-0.5	14	0.95	3	23	57	291	2.45	-10	-1	0.32
VR	74531 A	F98-05	198.90	199.98	1.08		0.8	1.01	588	110	-0.5	-2	0.61	0.5	17	56	222	2.71	-10	-1	0.39
VR	74532 A	F98-05	199.98	200.15	0.17		62.2	0.19	1035	30	-0.5	118	0.31	23.5	8	119	592	7.12	-10	-1	0.07
VR	74533 A	F98-05	200.15	201.20	1.05		0.8	0.85	1590	120	-0.5	-2	0.61	-0.5	15	38	200	2.44	-10	-1	0.35
VR	74534 A	F98-05	201.20	202.35	1.15		3.8	0.58	1040	80	-0.5	6	0.43	1.5	15	86	360	2.69	-10	-1	0.24
VR	74535 A	F98-05	202.35	202.80	0.45		-0.2	0.55	68	60	-05	-2	1.86	-0.5	5	73	79	1.75	-10	-1	0.21
VR	74536 A	F98-05	202.80	202.88	0.08		16	0.41	16	30	-0.5	22	0.26	10	8	146	1530	10 1	-10	-1	0.29
VR	74537 A	F98-05	202.88	204.35	1.47		-0.2	0.51	120	70	-0.5	-2	0.55	-0.5	7	82	37	1.79	-10	-1	0.23
VR	74538 A	F98-05	204.35	204.55	0.20		7.4	0.38	732	50	-05	16	1.49	3.5	10	92	1165	5.29	-10	-1	0.15
VR	74539 A	F98-05	204.55	204.80	0.25		0.4	0.68	344	120	-0.5	-2	0.32	-0.5	5	77	202	2.01	-10	-1	0.35
VR	74540 A	F98-05	204.80	204.95	0.15		4.4	0.45	42	80	-0.5	10	0.8	2	4	92	619	4.87	-10	-1	0.33
VR	74541 A	F98-05	204.95	205.50	0.55		-0.2	0.68	44	80	-0.5	-2	0.59	-0.5	6	70	41	1.49	-10	-1	0.24
VR	74542 A	F98-05	205.50	206.05	0.55		1.4	0.89	666	110	-0.5	-2	0.56	1	13	70	300	2.93	-10	-1	0.39
VR	74543 A	F98-05	206.05	207.75	1.70		0.6	0.92	128	100	-0.5	-2	0.46	-0.5	6	44	83	2.22	-10	-1	0.38
VR	74544 A	F98-05	207.75	208.08	0.33		29.6	0.79	798	80	-0.5	54	1.8	11	15	82	372	4.62	-10	-1	0.27
VR	74545 A	F98-05	208.08	209.20	1.12		-0.2	0.77	102	80	-0.5	-2	0.83	-0.5	6	50	42	1.54	-10	-1	0.28
VR	74546 A	F98-05	209.20	209.30	0.10		14.4	0.82	3240	140	-0.5	30	0.85	5	19	81	205	2.64	-10	-1	0.41
VR	74547 A	F98-05	209.30	210.10	0.80		-0.2	0.85	140	90	-0.5	-2	0.6	-0.5	5	79	59	1.82	-10	-1	0.28
VR	74548 A	F98-05	210.10	210.30	0.20		5.8	1	750	110	-0.5	8	0.39	3	10	101	372	3.69	-10	-1	0.33
VR	74549 A	F98-05	210.30	210.80	0.50		0.8	0.53	382	70	-0.5	-2	1.5	-0.5	7	67	58	1.33	-10	-1	0.21
VR	74550 A	F98-05	210.80	211.00	0.20		7.4	0.65	634	60	-0.5	2	1.43	5.5	10	83	365	2.15	-10	-1	0.21
VR	74551 A	F98-05	211.00	212.97	1.97		0.2	0.8	428	100	-0.5	-2	0.69	-0.5	11	63	113	2.47	-10	-1	0.34
VR	74552 A	F98-05	212.97	213.30	0.33		57	0.49	2290	100	-0.5	116	0.57	21	21	86	2020	2.94	-10	-1	0.28
VR	74553 A	F98-05	213.30	215.03	1.73		-0.2	0.96	824	100	-0.5	-2	0.82	-0.5	13	59	102	2.26	-10	-1	0.32
VR	74554 A	F98-05	215.03	215.35	0.32		41.8	0.74	1150	100	-0.5	102	0.67	11.5	11	79	116	2.04	-10	-1	0.28
VR	74555 A	F98-05	215.35	216.16	0.81		1.8	0.8	1120	80	-0.5	2	0.87	0.5	24	50	211	2.56	-10	-1	0.27
VR	74556 A	F98-05	216.16	216.25	0.09		264	0.19	66	30	-0.5	708	1.25	101	6	107	2640	6.25	-10	-1	0.08
VR	74557 A	F98-05	216.25	217.00	0.75		1.6	0.78	514	90	-0.5	2	1.31	0.5	8	56	51	2.38	-10	-1	0 27
VR	74558 A	F98-05	217.00	219.35	2.35		10.4	0.32	2460	60	-0.5	24	2.74	0.5	16	59	145	2.42	-10	-1	0.15
VR	74559 A	F98-05	219.35	220.00	0.65		1.6	3.57	62	40	-0.5	6	2.34	-0.5	37	75	159	6.47	10	-1	0.39
VR	74560 A	F98-05	229.00	230.04	1.04		0.2	3.72	32	10	-0.5	-2	2.63	0.5	33	80	153	6.66	-10	-1	0.14
VR	74561 A	F98-05	230.04	231.34	1.30		7.6	0.78	2250	70	-0.5	20	0.63	0.5	25	43	411	4.85	-10	-1	0.21
VR	74562 A	F98-05	231.34	232.50	1.16		6	0.33	1035	60	-0.5	12	0.68	0.5	10	49	172	2.06	-10	-1	0.21
VR	74563 A	F98-05	232.50	233.50	1.00		3	0.56	490	60	-0.5	6	0.99	1	9	47	190	2.66	-10	-1	0.23
VR	74564 A	F98-05	233.50	236.00	2.50		1	0.61	468	60	-0.5	2	0.68	0.5	7	55	101	1.72	-10	-1	0.2
VR	74565 A	F98-05	236.00	239.00	3.00		1	0.57	54	60	-0.5	4	1.06	-0.5	4	62	55	1.48	-10	-1	0.18
VR	74566 A	F98-05	239.00	240.70	1.70		0.2	0.81	46	80	-0.5	-2	0.57	-0.5	6	56	44	1.6	-10	-1	0.32

FINDLAY CREEK PROJECT - 1998

Drill Core Sample Results

SAMPLE	LA_PPM	MG_PCT	MN_PPM	MO_PPM	NA_PCT	NI_PPM	P_PPM	PB_PPM	SB_PPM	SC_PPM	SR_PPM	TI_PCT	TL_PPM	U_PPM	V_PPM	W_PPM	ZN_PPM	CERTIF	ALT_CERTIF
VR 74525 A	30	0.21	285	1	0.03	8	120	28	-2	1	23	0.01	-10	-10	5	-10	26	A9836422	
VR 74526 A	10	0.39	400	5	-0.01	37	360	3720	-2	1	17	-0.01	-10	-10	7	-10	74	A9836422	
VR 74527 A	30	0.35	355	-1	0.01	15	180	266	-2	1	26	-0.01	-10	-10	6	-10	44	A9836422	
VR 74528 A	10	0.33	260	-1	-0.01	38	290	1860	-2	1	13	-0.01	-10	-10	7	-10	70	A9836422	
VR 74529 A	30	0.3	340	-1	0.01	12	170	286	-2	1	29	0.01	-10	-10	6	-10	32	A9836422	
VR 74530 A	10	0.15	290	1	-0.01	22	280	5940	6	1	39	-0.01	-10	-10	4	-10	18	A9836422	
VR 74531 A	20	0.38	345	2	-0.01	27	320	444	-2	1	31	-0.01	-10	-10	7	-10	42	A9836422	
VR 74532 A	10	0.07	265	6	-0.01	63	200	37500	6	-1	10	-0.01	-10	-10	2	-10	4	A9836422	A9836931
VR 74533 A	20	0.28	325	4	-0.01	22	410	410	-2	1	19	-0 01	-10	-10	5	-10	26	A9836422	I
VR 74534 A	10	0.18	260	3	-0.01	23	330	2170	-2	-1	17	-0.01	-10	-10	5	-10	26	A9836422	
VR 74535 A	20	0.26	595	1	0.01	12	190	92	-2	-1	59	-0.01	-10	-10	4	-10	28	A9836422	
VR 74536 A	-10	0.12	415	1	-0 01	135	320	12000	-2	•1	7	-0.01	-10	-10	5	-10	36	A9836422	A9836931
VR 74537 A	40	0.23	320	-1	0.01	11	180	44	-2	1	32	-0.01	-10	-10	4	-10	28	A9836422	
VR 74538 A	10	0.29	550	-1	-0.01	38	460	4090	-2	1	57	-0.01	-10	-10	3	-10	42	A9836422	
VR 74539 A	20	0.14	215	1	-0.01	15	270	186	-2	1	21	-0.01	-10	-10	4	-10	16	A9836422	
VR 74540 A	-10	0.15	335	1	-0.01	39	300	1725	4	-1	28	-0 01	-10	-10	4	-10	28	A9836422	
VR 74541 A	30	0.2	270	-1	0.02	9	190	28	-2	1	26	0.01	-10	-10	5	-10	24	A9836422	
VR 74542 A	10	0.3	460	-1	-0.01	22	260	1330	-2	1	23	-0.01	-10	-10	6	-10	34	A9836422	
VR 74543 A	30	0.33	395	-1	0.01	14	220	458	-2	1	21	0.01	-10	-10	7	-10	36	A9836422	
VR 74544 A	20	0.3	610	-1	-0.01	38	230	22200	4	1	62	-0.01	-10	-10	4	-10	32	A9836422	A9836931
VR 74545 A	30	0.23	310	1	0.01	10	160	82	-2	1	30	0.01	-10	-10	7	-10	26	A9836422	
VR 74546 A	20	0.16	285	1	-0.01	30	360	7460	-2	1	31	-0.01	-10	-10	5	-10	14	A9836422	· · · · · · · · · · · · · · · · · · ·
VR 74547 A	40	0.25	265	-1	0.01	11	190	196	-2	1	29	0.01	-10	-10	7	-10	26	A9836422	
VR 74548 A	30	0.3	285	-1	-0.01	25	220	4440	-2	1	18	-0.01	-10	-10	6	-10	34	A9836422	
VR 74549 A	40	0.15	400	1	0.03	8	150	654	-2	1	47	-0.01	-10	-10	4	-10	14	A9836422	
VR 74550 A	30	0.26	405	1	0.01	14	150	7380	2	1	44	-0.01	-10	-10	4	-10	34	A9836422	
VR 74551 A	30	0.34	405	-1	0.01	18	270	190	-2	1	33	-0.01	-10	-10	6	-10	38	A9836422	
VR 74552 A	20	0.1	270	-1	-0.01	23	270	24200	2	1	18	-0.01	-10	-10	4	-10	40	A9836422	A9836931
VR 74553 A	30	0.36	415	1	0.01	16	220	122	-2	1	30	-0.01	-10	-10	6	-10	36	A9836422	
VR 74554 A	10	0.26	315	1	-0.01	16	290	16200	-2	1	20	-0.01	-10	-10	4	-10	30	A9836422	A9836931
VR 74555 A	10	0.37	405	3	-0.01	20	300	626	-2	1	32	-0.01	-10	-10	5	-10	38	A9836422	
VR 74556 A	-10	0,12	375	1	-0.01	63	150	129500	10	-1	34	-0 01	-10	-10	2	-10	68	A9836422	A9836931
VR 74557 A	30	0.45	485	3	-0.01	13	260	590	-2	1	50	-0.01	-10	-10	5	-10	52	A9836422	
VR 74558 A	10	0.32	975	1	0.01	22	410	3430	-2	2	112	-0.01	-10	-10	5	-10	30	A9836422	<u></u>
VR 74559 A	-10	2.28	910	-1	-0.01	46	720	374	-2	9	50	0.41	-10	-10	146	-10	96	A9836422	
VR 74560 A	-10	2.27	1020	1	-0.01	46	720	70	-2	10	38	0.29	-10	-10	134	-10	102	A9836577	·
VR 74561 A	10	0.54	365	-1	-0.01	27	350	2590	6	3	21	-0.01	-10	-10	17	-10	70	A9836577	
VR 74562 A	10	0.26	400	-1	0.01	12	160	2200	2	1	20	-0.01	-10	-10	1	-10	112	A9836577	
VR 74563 A	10	0.35	420	3	0.01	16	310	938	2	1	37	-0.01	-10	-10	3	-10	138	A9836577	
VR 74564 A	20	0.27	325	1	0.01	11	200	446	-2	-1	27	-0.01	-10	-10	2	-10	52	A9836577	
VR 74565 A	30	0.25	425	1	0.02	7	140	376	-2	1	34	-0.01	-10	-10	3	-10	28	A9836577	
VR 74566 A	40	0.29	250	1	0.02	9	170	118	-2	1	20	0.03	-10	-10	7	-10	30	A9836577	<u> </u>
FINDLAY CREEK PROJECT - 1998 Drill Core Sample Results

AS PPM BA PPM BE PPM BI PPM CA PCT CD PPM CO PPM CR PPM CU PPM FE PCT GA PPM HG PPM K PCT SAMPLE HOLE FROM TO WIDTH AU PPB AG PPM AL PCT 2.57 -10 0.3 0.43 -0.5 65 145 -1 VR 74567 A F98-05 240.70 241.02 0.32 0.4 1.06 162 90 -0.5 -2 4 0.38 -1 74 1.73 -10 VR 74568 A F98-05 241.02 242.04 -0.2 0.95 310 80 -0.5 -2 1.08 -0.5 18 36 1.02 0.28 70 185 2.27 -10 -1 74569 A F98-05 242.04 242.35 510 90 -0.5 6 0.69 -0.5 11 1.8 0.84 VR 0.31 -1 0.32 -0.5 6 39 2.03 -10 74570 A F98-05 242.35 244.00 1.08 344 90 -0.5 -2 1.02 66 1.65 -0.2 VR 2.51 -1 0.05 4.5 5 126 352 -10 74571 A F98-05 244.00 244.30 0.30 23.8 0.21 2000 10 -0.5 74 2.07 VR 74572 A F98-05 244.30 246.00 12 65 87 2.96 -10 -1 0.33 -0.5 8 1.44 0.5 1.70 2.4 1.2 702 80 VR 1.5 10 87 155 2.85 -10 0.31 74573 A F98-05 246.00 246.90 0.87 858 100 -0.5 10 0.57 1 0.90 4.6 VR -0.5 8 38 38 1.83 -10 -1 0.15 74574 A F98-05 246.90 249.90 3.00 0.2 0.53 326 40 -0.5 -2 1.11 VR -0.5 -2 -0.5 11 73 184 2.09 -10 -1 0.25 74575 A F98-05 249.90 252.00 2.10 0.2 0.75 510 80 1 VR 0.33 74576 A F98-05 252.00 253.50 100 -0.5 -2 1.27 -0.5 12 83 209 2.84 -10 -1 1.50 0.8 0.92 302 VR 0.5 8 70 1.77 -10 -1 0.25 74577 A F98-05 253.50 256.00 2.50 0.8 0.48 550 80 -0.5 4 1.07 88 VR 0.23 -0.5 73 37 1.7 -10 -1 VR 74578 A F98-05 256.00 259.00 3.00 -0.2 0.51 282 70 -0.5 -2 0 87 6 0.2 7 47 1.59 -10 74579 A F98-05 259.00 260.98 304 -0.5 -2 0.82 -0.5 82 -1 VR 1 98 0.2 0.48 60 0.95 -1 0.09 0.5 6 122 36 -10 74580 A F98-05 260.98 261.20 10.2 0.2 398 30 -0.5 28 1.62 VR 0.22 132 2.14 0.22 16 72 -10 -1 74581 A F98-05 261.20 263.50 746 60 -0.5 2 1.17 2.30 2.4 0.4 1 VR -10 -1 0.27 2 14 60 133 2.48 74582 A F98-05 263.50 265.79 2.29 1.6 0.55 472 80 -0.5 0.69 0.5 VR 2 0.93 0.5 12 34 132 2.46 -10 -1 0.18 74583 A F98-05 265.79 269.00 0.52 290 60 -0.5 VR 3.21 08 74584 A F98-05 269.00 272.50 -1 0.29 0.57 122 90 -0.5 -2 0.77 -0.5 7 82 82 2.08 -10 -0.2 VR 3.50 0.24 -1 74585 A F98-05 272.50 274.00 1.50 205 0.63 60 70 -0.5 -2 1.38 -0.5 7 80 388 2.02 -10 VR 0.3 2.5 -1 74586 A F98-05 274.00 277.00 3.00 2 1.04 146 90 -0.5 6 0.57 -0.5 9 47 111 -10 VR -2 9 58 67 2.39 -10 -1 0.3 -0.5 -0.5 VR 74587 A F98-05 277.00 278.00 1.00 -0.2 1.24 46 80 0.35 1.83 0.4 -0.5 8 62 24 -10 -1 -0.5 -2 0.79 VR 74588 A F98-05 278.00 280.00 2.00 -0.2 1.1 10 80 0.27 8 41 37 1.88 -10 -1 VR 74589 A F98-05 280.00 282.85 2.85 -0.2 0.85 22 40 -0.5 -2 0.65 -0.5

Appendix IX

FINDLAY CREEK PROJECT - 1998 Drill Core Sample Results

SAMPLE	LA_PPM	MG_PCT	MN_PPM	MO_PPM	NA_PCT	NI_PPM	P_PPM	PB_PPM	SB_PPM	SC_PPM	SR_PPM	TI_PCT	TL_PPM	U_PPM	V_PPM	W_PPM	ZN_PPM	CERTIF	ALT_CERTIF
VR 74567 A	40	0.38	290	-1	-0.01	26	380	152	-2	1	16	-0.01	-10	-10	5	-10	38	A9836577	
VR 74568 A	40	0.34	335	1	0.02	13	190	24	-2	1	33	0.03	-10	-10	7	-10	36	A9836577	
VR 74569 A	40	0.33	330	1	0.01	16	210	652	-2	1	24	-0.01	-10	-10	3	-10	32	A9836577	
VR 74570 A	40	0.41	345	3	0.01	13	250	78	2	1	34	0.01	-10	-10	6	-10	40	A9836577	
VR 74571 A	20	0.09	450	3	0.02	25	310	8040	2	-1	60	-0.01	-10	-10	-1	-10	26	A9836577	
VR 74572 A	30	0.53	485	3	0.01	21	470	890	-2	1	46	0.01	-10	-10	8	-10	56	A9836577	
VR 74573 A	30	0.32	360	3	0.01	23	320	1670	4	1	21	-0.01	-10	-10	4	-10	36	A9836577	
VR 74574 A	30	0.32	385	1	0.01	10	210	176	-2	-1	38	-0.01	-10	-10	3	-10	44	A9836577	
VR 74575 A	20	0.22	365	-1	0.01	17	290	126	-2	1	32	-0.01	-10	-10	4	-10	26	A9836577	
VR 74576 A	20	0.28	470	1	0.01	21	350	302	2	1	35	-0.01	-10	-10	4	-10	30	A9836577	
VR 74577 A	30	0.25	405	3	0.03	12	240	314	-2	1	41	-0.01	-10	-10	3	-10	54	A9836577	
VR 74578 A	30	0.26	370	1	0.03	10	180	48	2	1	36	-0.01	-10	-10	3	-10	34	A9836577	
VR 74579 A	30	0.21	310	1	0.02	10	190	122	-2	1	35	-0.01	-10	-10	3	-10	32	A9836577	
VR 74580 A	10	0.1	355	2	-0.01	8	190	3120	-2	-1	52	-0.01	-10	-10	1	-10	30	A9836577	
VR 74581 A	10	0.27	495	-1	0.01	15	210	618	2	1	42	-0.01	-10	-10	2	-10	144	A9836577	
VR 74582 A	30	0.35	415	-1	0.01	14	270	512	6	1	29	-0.01	-10	-10	3	-10	104	A9836577	
VR 74583 A	30	0.34	385	3	0.01	18	320	314	-2	1	36	-0.01	-10	-10	3	-10	52	A9836577	
VR 74584 A	40	0.29	365	1	0.03	13	210	50	8	1	41	-0.01	-10	-10	4	-10	46	A9836577	
VR 74585 A	30	0.35	515	258	0.01	26	180	134	6	1	76	-0.01	-10	-10	3	60	34	A9836577	A9837095
VR 74586 A	10	0.43	325	3	0.01	17	260	542	-2	1	24	-0.01	-10	-10	5	-10	40	A9836577	
VR 74587 A	20	0.49	260	1	0.02	16	240	28	6	1	16	0.01	-10	-10	6	-10	44	A9836577	
VR 74588 A	30	0.34	270	1	0.03	13	190	10	-2	1	34	0.04	-10	-10	8	-10	40	A9836577	
VR 74589 A	30	0.31	240	1	0.01	14	210	8	-2	1	27	0.03	-10	-10	6	-10	40	A9836577	

...

APPENDIX X

:

.

. . .

.

бн. . **1**

. . .

è.,

SURFACE TEM GEOPHYSICS REPORT

)

Quantec Consulting Inc. P.O Box 580, 101 King Street Porcupine, ON P0N 1C0 Phone (705) 235-2166 Fax (705) 235-2255

Quantec Consulting Inc.

Geophysical Survey Logistical Report

Quantec

Regarding the TRANSIENT ELECTROMAGNETIC SURFACE PROFILING SURVEYS over the FINDLAY CREEK PROJECT near Cranbrook, BC on behalf of KENNECOTT CANADA EXPLORATION INC. Vancouver, BC

ACI-QCI QCI QCI QCI QCI

P.Plazek J.M.Legault Sept., 1998 Project C436

2. GENERAL SURVEY	DETAILS	
2.1. LOCATION		
2.2. ACCESS		
2.3. SURVEY GRID		
SURVEY WORK		
3.1. GENERALITIES		
3.2. SPECIFICATIONS		
3.3. PERSONNEL		
3.4. INSTRUMENTATIO	DN	
3.5. PARAMETERS		
3.6. MEASUREMENT		
3.7. DATA PRESENTA		
APPENDIX A:STAT APPENDIX B:SURV APPENDIX C:INST APPENDIX D:PROI APPENDIX E:OPEF APPENDIX F:LIST APPENDIX G:PROI	EMENT OF QUALIFICATIONS /EY PROCEDURES AND GENERAL THEORY RUMENT SPECIFICATIONS DUCTION SUMMARY &ATOR COMMENTS OF MAPS FILES AND MAPS	
APPENDIX A:STAT APPENDIX B:SUR APPENDIX C:INST APPENDIX D:PROI APPENDIX E:OPEF APPENDIX F:LIST APPENDIX G:PROI	EMENT OF QUALIFICATIONS /EY PROCEDURES AND GENERAL THEORY RUMENT SPECIFICATIONS DUCTION SUMMARY ATOR COMMENTS OF MAPS FILES AND MAPS DITABLES	
APPENDIX A:STAT APPENDIX B:SURV APPENDIX C:INST APPENDIX D:PROI APPENDIX E:OPEF APPENDIX F:LIST APPENDIX G:PROI ST OF FIGURES AN	EMENT OF QUALIFICATIONS /EY PROCEDURES AND GENERAL THEORY RUMENT SPECIFICATIONS DUCTION SUMMARY RATOR COMMENTS OF MAPS FILES AND MAPS DTABLES /ey Location of the Findlay Creek Project	
APPENDIX A:STAT APPENDIX B:SURV APPENDIX C:INST APPENDIX D:PROI APPENDIX E:OPEF APPENDIX F:LIST APPENDIX G:PROI STOF FIGURES AN	EMENT OF QUALIFICATIONS /EY PROCEDURES AND GENERAL THEORY RUMENT SPECIFICATIONS DUCTION SUMMARY RATOR COMMENTS OF MAPS FILES AND MAPS DTABLES /ey Location of the Findlay Creek Project	
APPENDIX A:STAT APPENDIX B:SURV APPENDIX C:INST APPENDIX C:INST APPENDIX D:PROI APPENDIX E:OPEF APPENDIX F:LIST APPENDIX G:PROI STOF FIGURES AN igure 1: General Sun igure 2: Surface TEM able I: Surface LPTEF able II: Size and Loca	EMENT OF QUALIFICATIONS /EY PROCEDURES AND GENERAL THEORY RUMENT SPECIFICATIONS DUCTION SUMMARY RATOR COMMENTS OF MAPS FILES AND MAPS DIABLES //ey Location of the Findlay Creek Project	
APPENDIX A:STAT APPENDIX B:SURV APPENDIX C:INST APPENDIX C:INST APPENDIX D:PROI APPENDIX E:OPEF APPENDIX F:LIST APPENDIX G:PROI IST OF FIGURES AN Figure 1: General Surv Figure 2: Surface TEM Table I: Surface LPTEN Table II: Size and Loca Table III: System Parar	EMENT OF QUALIFICATIONS /EY PROCEDURES AND GENERAL THEORY RUMENT SPECIFICATIONS DUCTION SUMMARY RATOR COMMENTS OF MAPS FILES AND MAPS FILES AND MAPS DIABLES //ey Location of the Findlay Creek Project	
APPENDIX A:STAT APPENDIX B:SURV APPENDIX C:INST APPENDIX C:INST APPENDIX D:PROI APPENDIX E:OPEF APPENDIX F:LIST APPENDIX G:PROI STOFFGURES AN igure 1: General Sun igure 2: Surface TEM able I: Surface LPTEM able I: Size and Loca able II: Size and Loca able II: Size m Parar able IV: Current and able V: Coil Conventio	EMENT OF QUALIFICATIONS /EY PROCEDURES AND GENERAL THEORY RUMENT SPECIFICATIONS DUCTION SUMMARY ATOR COMMENTS OF MAPS FILES AND MAPS DTABLES //ey Location of the Findlay Creek Project	
APPENDIX A:STAT APPENDIX B:SURV APPENDIX C:INST APPENDIX C:INST APPENDIX D:PROI APPENDIX E:OPEF APPENDIX F:LIST APPENDIX G:PROI SI OF FIGURES AN igure 1: General Sun igure 2: Surface TEM able I: Surface LPTEF able I: Size and Loca able II: System Parar able IV: Current and able VI: Coil Convention able VI: System Parar	EMENT OF QUALIFICATIONS /EY PROCEDURES AND GENERAL THEORY RUMENT SPECIFICATIONS DUCTION SUMMARY RATOR COMMENTS OF MAPS FILES AND MAPS DIABLES //ey Location of the Findlay Creek Project	
APPENDIX A:STAT APPENDIX B:SURV APPENDIX C:INST APPENDIX C:INST APPENDIX D:PROI APPENDIX E:OPEF APPENDIX F:LIST APPENDIX G:PROI IST OF FIGURES AN igure 1: General Surv igure 2: Surface TEM able I: Surface LPTEM able II: Size and Loca able II: System Param able IV: Coil Convention able V: Coil Convention able VI: System Param able VII: Surface TEM	EMENT OF QUALIFICATIONS /EY PROCEDURES AND GENERAL THEORY RUMENT SPECIFICATIONS DUCTION SUMMARY RATOR COMMENTS OF MAPS FILES AND MAPS DTABLES //ey Location of the Findlay Creek Project	

DURES AND GENERAL THEORY	
ECIFICATIONS	
ISAMA DV	

September, 1998

Here in 1912 (c) etc. (c) and in the second s

QCI Project No: C-436

Client Name: KENNECOTT CANADA EXPLORATION INC.

- Client Address: 354 200 Granville Street
 Vancouver BC V6C 1S4
- Project Name: Findlay Creek Project
- Survey Grids
- 1. <u>Clear Cut</u> 2. <u>Tourmalinite</u> 3. <u>Cassat</u> 4. <u>Pico</u>
- 5. Doctor Lake 6. Echo Lake
- Survey Period: August 27TH to September 15TH 1998
- Survey Types: LPTEM Fixed Loop Profiling and Moving Loop Sounding
- Client Representatives: Andrew Cole
- Objectives:
 - 1. Exploration objectives:

To detect and characterize large areas of massive sulphide mineralization associated with a possible Sullivan - type deposit, as ground follow - up to airborne FDEM anomalies and to correlate these with the geology in the area.

2. Geophysical objectives:

To utilize the LPTEM method, based on its deep penetration capabilities, to detect massive sulphide conductors and determine their characteristics. Also, to compare the capabilities of moving center loop soundings versus large fixed loop profiling in this area of mountainous terrain.

Report Type:

Logistical

2 General Survey Derails

2.1. LOCATION

- Province: British Colombia
- Country: Canada
- Nearest Settlement: Cranbrook, BC
- NTS Map Reference: 82 K/1

Figure 1: General Survey Location of the Findlay Creek Project.

2.2. ACCESS

General Location of Property: approx. 2 hours north of Cranbrook BC.
Base of Operations: Field camp near Findlay Creek, BC
Distance by Land to Grids: approx. 2-10 kilometres from camp.
Nearest Highway: Hwy. 93/95
Mode of Access to Property: 4x4 truck
Mode of Access to Grids: Helicopter and 4x4 truck

2.3. SURVEY GRID

- Coordinate Reference System: Local exploration grid (Non UTM referenced)
- Line Direction: Variable orientation EW or NS reconnaissance profiles (generally following creek beds or contour lines).
- Line Separation: <u>Tourmalinite and Doctor</u> (see Table I) = 200m
 <u>All other grids</u> = reconnaissance / orthogonal profiles
- Station Interval: 50 100m
- Base and Tie Lines: <u>Tourmalinite grid</u>: BL 2000E. <u>All other grids</u>: single line / orthogonal profiles
- Established: <u>Tourmalinite, Clear Cut, and Doctor grid</u>: Kennecott
 All other grids: Quantec (hip chained)
 - Method of Chaining:
 Tourmalinite, Clear Cut, Doctor grid: Secant chained (Kennecott)

 All other grids: Slope chained (Quantec)

ι, έ

3. SURVEY WORK

3.1. GENERALITIES

- Survey Dates: August 27TH September 15TH, 1998
- Survey Period: 20 days
- Survey/Loop Days: 16 days
- Mob Demob days: 3
- Total Survey Coverage: Surface TEM: 22.2km (see Table I)

GRID	SURVEY TYPE	SURVEY LINE	START	END	TOTAL(m)
1. Clear Cut	Moving loop	L 5000 N	5000 E	5600 E	600
2. Tourmalinite	Moving loop	L 2000 N	1100 E	2300 E	1200
2. Tourmalinite	Profiling	L 2050 N	1300 E	2600 E	1300
		L 2250 N	1500 E	2600 E	1100
		L 2450N	1600 E	2600 E	1000
		L 2650 N	2000 E	2600 E	600
		L 2850 N	1800 E	2600 E	800
		L 3050 N	2000 E	2600 E	600
3. Cassat - Loop1	Profiling	L 11	3150 E	4900 E	1750
		L 12	1000 E	1200 E	200
		LIIN	4900 E	6100 E	1200
		L 4500 E	1700 S	800 N	2500
3. Cassat - Loop2	Profiling	L21 N	4900 E	6300 E	1400
ويستعط فالمستو منصلا ومقاف فيشار فيتي		L 22 N	6400 E	7500 E	1100
4. Pico Grid (Cassat Loop 3)	Profiling	L 31 E	3500 E	5000 E	1500
5. Doctor Lake	Profiling	L 1000 N	1000 E	2300 E	1300
······································		L 1200 N	1000 E	2300 E	1300
6. Echo Lake	Profiling	L 1000 E	600 N	1000 S	1600
		L 300 S	400 E	700 W	1100

Table I: Surface LPTEM Coverage at the Findlay Creek Project

September, 1998

. _____

ι.

3.2. SPECIFICATIONS

3.2.1. TEM Profiling Survey

٠	Method:	Transient Electromagnetic
•	Technique:	Profiling
•	Configuration:	Both inside and outside loop measurements
•	Output Power Stage:	Low Power (2.8 kW)
٠	Dimension:	3-D (X, Y and Z components)
٠	Loop Locations:	See Table II and Appendix I
٠	Loop Sizes:	See Table II and Appendix I
٠	Line Interval:	200m

Sampling Interval: 50 - 100m

GRID	EW LOOP BOUNDARIES	NS LOOP BOUNDARIES	LOOP SIZE (mxm)
Tourmalinite	1100E - 2000E	1900N - 3100N	1200m x 900m
Cassat Loop1	3950E - 5000E	300N - 400N	oval shaped: approx. area = 750m x 750m
Cassat Loop 2	5100E - 6350E	approx. 600m	approx. area = 1000m x 600m
Pico	approx. 600m	4000N - 5000N	oval shape: approx. area = 700m x 700m
Doctor Lake	n/a	n/a	irregular shape: approx. area = 750m x 600m
Echo Lake	n/a	n/a	irregular shape: approx. area = 1000mx1000m

Table II: Size and Location of TEM Transmit Loops.

3.2.2. TEM Moving Loop Survey

- Method: Transient Electromagnetic
- Technique: Moving Loop
- Configuration: Moving center and 50m outside loop along line
- Output Power Stage: Low Power
- Dimension: 3-D (X, Y and Z components)
- Loop Locations: Center-Loop: centered on Rx
 Off-Loop: 100m away from loop center along survey line

- Moving Loop Sizes: 100m x 100m
- Line Interval: only 1 line read per grid
- Sampling Interval: 100m

3.3. PERSONNEL

- Field Supervisor: Sherwood T. Coulson, Porcupine, ON
- Field Project Manager: Paul Plazek, Porcupine, ON
- Field Assistants: Roch Michaud, North Bay, ON Up to 4 additional assistants supplied by Kennecott

3.4. INSTRUMENTATION

3.4.1. TEM Profiling Survey

- **Receiver:** Geonics Digital Protem (3 channel, 20 time gates)
- Receiver Coil: Geonics 3D, 200m² Ferro Magnetic coil
- Transmitter: Geonics EM-37 (7.5 Hz, 50% duty cycle)
- Power Supply: Honda 5.5HP with Geonics Generator alternator (2.8kVA @ 400Hz)

3.4.2 TEM Moving Loop Survey

- Receiver: Geonics Digital Protem (3 channel, 20 time gates)
- Receiver Coil: Geonics 3D, 200m² Ferro Magnetic coil
- Transmitter: Geonics EM-57 (7.5 Hz, 50% duty cycle)
- Power Supply: Portable Honda EX-650 Motor Generator (600W)

3.5. PARAMETERS

3.5.1. TEM Profiling Survey

Pulse repetition frequency:	7.5Hz
Gain:	3-6
Integration number:	30 sec (Protem Rx)
Approximate Loop Size:	see Table II
Current:	see Table IV
Turn-off time:	see Table IV
Gate positions	(see Appendix C)
Synchronization mode:	Crystal

Table III: System Parameters for Profiling TEM Survey.

Coil Conventions: (see Table V)

GRID	Current (amps)	Turn-off Time(micro- seconds)
1. Tourmalinite	7	265
2. Cassat Loop1	7.5	215
2. Cassat Loop 2	8	210
3. Pico	9	215
4. Doctor Lake	11	260
5. Echo Lake	7	255

Table IV: Current and Turn-off times for TEM Transmit Loops.

GRID	COMPONENT	COIL ORIENTATION
1. Tourmalinite	Z	Positive Vertical Up
	X	Positive Grid East
	Y	Positive Grid North
2.Cassat Loop 1	Z	Positive Vertical Up
	X	Positive Grid East
	Y	Positive Grid North
2.Cassat Loop 2	Z	Positive Vertical Up
	X	Positive Grid East
	Y	Positive Grid North
3. Pico	Ż	Positive Vertical Up
	X	Positive Grid North
	Ý	Positive Grid West
4. Doctor Lake	Z	Positive Vertical Up
	X	Positive Grid East
	Y	Positive Grid North
5. Echo Lake	Z	Positive Vertical Up
	X	Positive Grid North
Li	Y	Positive Grid West

Table V: Coil Conventions for TEM Surveys.

۰.

Data Reduction¹: nanoVolts/Ampere-metre²

3.5.2. TEM Moving Loop Survey

Pulse repetition frequency:	7.5Hz	
Gain:	3-6	··
Integration number:	30 sec (Protem Rx)	·
Loop Size:	100m x 100m	
Current:	10.5 - 11 Amps	
Turn-off time:	220 - 55 micro seconds	
Gate positions	(see Appendix C)	
Synchronization mode:	Reference Cable	

Table VI: System Parameters for Moving Loop TEM Survey.

Coil Conventions: (see Table VII)

COMPONENT	COIL ORIENTATION
Z	Positive Vertical Up
X	Positive Grid East
Y	Positive Grid North
Z	Positive Vertical Up
X	Positive Grid East
Y	Positive Grid North
	COMPONENT Z Y Z Z X Y

Table VII: Coil Conventions for Moving Loop TEM Survey.

Data Reduction²: nanoVolts/Ampere-metre²

3.6. MEASUREMENT ACCURACY AND REPEATABILITY

3.6.1 TEM Profiling Survey

- Number of Repeats per Station: 1-2
- Number of Repeats per Day: 20-40
- Number of Repeats per Grid: at least 1 per station
- Average Repeatability at Channel 1 and 20: 1-3%
- Worst Repeatability at Channel 1 and 20: 12%, 20%

3.6.2. TEM Moving Loop Survey

Number of Repeats per Station: 2-3

.

¹ Equivalent to Crone units of nanoTesla/second normalized to a unit current.

² Equivalent to Crone units of nanoTesla/second normalized to a unit current.

- Average Repeatability at Channel 1 and 20: 2-3%
- Worst Repeatability at Channel 1 and 20: 9%, 15%

3.7. DATA PRESENTATION

Profiles:

Profile Format	4-Axis (see Fig.3)
# of Profiles	68
Horizontal Map Scales:	1:5000
Vertical Profile Scales:	Early Channels: 5 - 100 nV/Am ² Late Channels: 2 - 0.05 nV/Am ²
Components:	X,Y,Z and Total Field

<u>Table</u>	VIII: Şurface	TEM Profile	Specifications.

Figure 2: Surface TEM 4-Axis Profile Format.

• Digital Data: Daily raw files and processed data (Geosoft .XYZ format) on 3.5 inch HD (1.44 Mbytes) diskette(s).

- a) raw data dump files, according to acquisition date (DDMMYY.RAW) Geonics Digital Protem format (refer to Protem manual)
- b) reduced XYZ ASCII data files, according to line number and component (i.e. 76wk.xyz where k=component - Z, X, Y or T for Total Field).
 - Column 1: NS Station number (m)
 - Column 2: EW Line number (m)
 - Column 3: Primary pulse (millivolts)
 - Column 4: Channel 1 secondary rate of decay of TEM field (nanoVolt/ampere*m²)
 - Column 5: Channel 2 ...
 - Column 23: Channel 20 secondary rate of decay of TEM field (nanoVolt/ampere*m²)

RESPECTFULLY SUBMITTED

J. M. Legault Senior Geophysicist

Paul Plazek

Crew Chief

Porcupine, ON September 1998

APPENDIQS

STATEMENT OF QUALIFICATIONS:

- I, Paul J. Plazek, declare that:
- 1. I am a geophysicist with residence in Porcupine, Ontario and am presently employed in this capacity with Quantec Consulting Inc. of Porcupine, Ontario.
- 2. I am a graduate of Queen's University, Kingston, Ont., in 1989, with an Honours Bachelor of Science Degree in Geological Engineering.
- 3. I have practiced my profession in Canada since graduation.
- 4. I have no interest nor do I expect to receive any interest, direct or indirect, in the properties or securities of Kennecott Canada Exploration Inc.
- 5. I am responsible for the data acquisition, validation, and plotting of the results for this survey. I am also the technical writer for this report. The statements made in this report represent my professional opinion based on my consideration of the information available to me at the time this report was written.

Porcupine, Ontario September, 1998

Paul J. Plazek, B.Sc. Geophysicist Quantec Consulting Inc.

C-436

STATEMENT OF QUALIFIATIONS

I, Jean M. Legault, declare that:

- 1. I am a consulting geophysicist with residence in Timmins, Ontario and am presently employed in this capacity with Quantec Consulting Inc. of Porcupine, Ontario.
- 2. I obtained a Bachelor's Degree, with Honours, in Applied Science (B.A.Sc.), Geological Engineering (Geophysics Option), from Queen's University at Kingston, Ontario, in Spring 1982.
- 3. I am a registered professional engineer, since 1985, with license to practice in the Province of Ontario.(Reg. # 90531542-09)
- 4. I have practiced my profession continuously, since May, 1982, in North-America, South-America and North-Africa.
- 5. I am a member of the Association of Professional Engineers of Ontario, the Quebec Prospectors Association, the Prospectors and Developers Association of Canada, and the Society of Exploration Geophysicists.
- 6. I have no interest, nor do I expect to receive any interest in the properties or securities of Kennecott Canada Exploration Inc.
- 7. I oversaw the report construction. The statements made in this report represent my professional opinion based on my consideration of the information available to me at the time of writing this report.

Porcupine, Ontario September, 1998

Jean M. Legault, P.Eng. (08) Dir. of Technical Services Chief Geophysicist Quantec Group

____ C-436

SURVEY PROCEDURES AND GENERAL THEORY

TEM Surface

TEM profiling is conducted on lines either adjacent to (Off-Loop mode) or surrounded by (In-Loop mode) a large fixed rectangular transmit loop. Current is passed through the loop which following the Tum-Off, produces a primary magnetic field (H) both inside and outside (Figure B1). This primary field induces a vortex current pattern, which energizes conductors and which in turn create their own secondary magnetic field (Bs). The rate of change of the decaying secondary magnetic flux (dBs/dt) is measured as the vertical (Hz), in-line horizontal (Hx) and/or cross line horizontal (Hy) vector components on surface using an air-core sensor coil. These measurements of the TEM decay (20 log-time slices) are taken during the "Off-Time", using a 30 cycle/sec, base repetition rate.

In keeping with the industry standard, the primary field is always considered positive up inside the loop and negative down outside. Similarly, for secondary EM fields, the receiver coil is oriented positive vertical up for the Hz component. The convention for In-Loop surveys, has the in-line component, Hx oriented either positive east (for grid EW lines) or north (for grid NS lines). The Off-Loop survey convention differs, with the receiver coil orientation for Hx pointing positive away from the transmit loop (for EW or NS lines). Finally, the sign convention in all cases, has the Hy component pointing positive orthogonal to the left of the Hx, according to the right-hand-rule.

Figure B1: Primary field sign convention for TEM surveys.

At the end of each survey day, the stored data are transferred to a microcomputer where they corrected for the tum-off time, loop area, system gain and current, and converted from millivolts to nanoVolts per ampere meter squared or nanoVolts per meter squared. The data are then transferred to disk for storage and processing. Report quality field plots are generated on site, using a 24-pin printer in order to monitor the data characteristics and to provide a preliminary interpretation capability.

The following equations govern the transient EM response for buried plate-like conductive bodies¹

Target Response to Transmitter Current Waveform:

$$emf = \frac{1}{\tau} e^{-t/\tau}$$

where: t = fixed time

e = exponential decay

$\tau = time constant of conductor$

The time constant of the response is alternatively defined as the slope of the lin-log decay curve (Geonics) or, more exactly, as the time channel where the amplitude of the decay collapses to 37% (1/e) of its maximum value. Both τ and the analogous decay strength (i.e., the number of anomalous channels above background), are commonly used as indicators of conductor quality. This relationship between decay-strength and the conductivity-thickness can easily be demonstrated in the following equation for a vertically dipping conductive sheet:

 $\tau = \frac{\sigma\mu th}{\pi^2}$ for a thin plate where σ = conductivity of target μ = magnetic susceptibility t = thickness of plate h = vertical extension of plate

thereby giving, for an infinite vertical sheet:

$$\sigma t = \frac{\pi^2}{\mu h} \tau \approx \frac{\tau}{0.31} \text{ mhos / metre (siemens)}$$

From these equations and relationships, it therefore becomes obvious of the common use of the anomaly strength of decay as a simple, rule-of thumb indicator of the relative conductivity-thickness product for TEM surveys.

In addition, the total secondary field is calculated using the three components (Hx, Hy and Hz) in the following formula

$$Htot = \sqrt{Hx^2 + Hy^2 + Hz^2} nanoVolt / Am^2.$$

¹ From Geonics Limited, <u>EM-37 TEM System Design Parameter</u>, Mississauga, Ont., 1982.

_ C-436

INSTRUMENT SPECIFICATIONS

GEONICS LIMITED

EM-37 Transmitter Technical Specifications

Current Wave form: bipolar square wave.

Repetition Rate:3Hz, 7.5Hz or 30Hz in countries using 60Hz power line frequency; 2.5Hz,
6.25Hz or 25Hz in countries using 50Hz power line frequency; all six base
frequencies are switch selectable.

Turn-off Time(t):fast linear turn-off maximum of 450 μsec. at 30 amps into a 300x600 meter loop.Decreases proportionally with current and the root of the loop area to a
maximum of 20 μsec. Actual value of t read on front panel meter.

Transmitter Loop: any dimensions from 40x40 meters to 300x600 meters maximum at 30 amps. Larger dimensions at reduced current. Transmitter output voltage switch adjustable for smaller loops. Value of loop resistance read from front panel meter; resistance must be greater than 1 ohm on lowest setting to prevent overload.

Protection: circuit breaker protection against input over voltage; instantaneous solid state protection against output short circuit; automatically resets on removal of short circuit. Input voltage output voltage and current indicated on front panel meter.

Output voltage: 24 to 160 volts (zero to peak) maximum

Output power: 2800 watt maximum

Motor generator:5 HP Honda gasoline engine coupled to a 120 volt, three phase, 400 Hzalternator. Approximately 8 hours continuous operation from built-in fuel tank.

Component Dimensions and Weights

Transmitter Console :	20 by 42 by 32 cm,	20 kg
GPU:	44 by 32 by 21 cm,	65 kg

C-436

INSTRUMENT SPECIFICATIONS

GEONICS LIMITED

Digital Protem Ground Transient Electromagnetic System Technical Specifications

Receiver

		VQCCIACI
	Measured Quantity:	Time rate of decay of magnetic flux along 3 axes
•	Sensors: 1. (L.F.): Air-core 2. (H.F.): 3. (3D-3): 4. (3D-1):	d coil of bandwidth 60 kHz; 100 cm diameter Air-cored coil of bandwidth 850 kHz; 100 cm diameter Three orthogonal component sensor, simultaneous operation Three orthogonal component sensor; sequential operation
	Time channels: 20 geor	netrically spaced time gates for each base frequency gives range from 6 μsec to 800 msec.
	Repetition Rate: 0.3 Hz, (Base Frequency)	0.75, 3, 7.4, 30, 75 or 285 Hz for 60 Hz power-line networks
٦.	Synchronization: (switch selectable):	 (1) reference cable (2) high stability (oven controlled) quartz crystals.
•	Integration time: 2, 4, 8,	15, 30, 60, 120, 240 sec.
;	Calibration:	Internal self calibration External Q coil calibration (optional)
-	Keyboards:	Two 3 x 4 matrix sealed key pads with positive tactile feedback
2	Gain:	Automatic or manual control
•	Dynamic Range: 23 bits ((132 dB)
- -	Display Quantity:	 Table of time rate of decay of magnetic flux (dB/dt) Curve of rate of decay of magnetic flux (dB/dt) Table of apparent resistivity (ρ_a) Curve of apparent resistivity (ρ_a) Curve of apparent resistivity (ρ_a) Profile of dB/dt Real time noise monitor Calibration curve Data acquisition statistics (real time)
•	Storage:	Solid state memory with capacity for over 3000 data sets
	Display: 8 lines t	y 40 character (240 x 64 dot) graphic LCD
	Data Transfer:	Standard RS-232 communications port.

KENNECOTT CANADA EXPLORATION INC. Findlay Creek Project

Processor:

CMOS 68HC000 8 MHz CPU

Receiver Battery: 12 volts rechargeable battery for 8 hours continuous operation. 6 hours in XTAL mode

Receiver Size: 34 x 38 x 27 cm

Receiver Weight:

Operating Temp.: -40^oC to +50^oC

Transmitters:

(1) Geonics TEM47 (2) Geonics TEM57

15 kg

(3) Geonics TEM37

Gate Locations

GATE 285/237.5 Hz		Z	75/62.5 Hz			30/25 Hz			GATE	
1	6.000	6.813	1.625	32.00	35.25	6.500	80.00	88.13	16.25	1
2	7.625	8.688	2.125	38.50	42.75	8.500	96.25	106.9	21.25	2
3	9.750	11.13	2.750	47.00	52.5	11.00	117.5	131.3	27.5	3
4	12.50	14.19	3.375	58.00	64.75	13.50	145.0	161.9	33.75	4
5	15.88	18.07	4.375	71.5	80.25	17.50	178.8	200.6	43.75	5
6	20.25	23.06	5.625	89.00	100.3	22.50	222.5	250.6	56.25	6
7	25.88	29.44	7.125	111.5	125.8	28.50	278.8	314.4	71.25	7
8	33.00	37.56	9.125	140.0	158.3	36.50	350.0	395.6	91.25	8
9	42.13	47.94	11.63	176.5	199.8	46.50	441.3	499,4	116,3	9
10	53.75	61.13	14.75	223.0	252.5	59.00	557.5	631.3	147.5	10
11	68.50	77.94	18.88	282.0	319.8	75.50	705.0	799.4	188.8	11
12	87.38	99.38	24.00	357.5	405.5	96.00	893.8	1014	240.0	12
13	111.4	126.7	30.63	453.5	514.8	122.5	1134	1287	306.3	13
14	151.7**	166.4	29.38	576.0	654.3	156.5	1440	1636	391.3	14
15	181.1	206.0	49.88	732.5	832.3	199.5	1831	2081	498.8	15
16	231.0	262.8	62.63	932.0	1059	254.5	2330	2648	636.3	16
17	294.6	335.2	81.25	1187	1349	325.0	2966	3373	812.5	17
18	375.9	427.7	103.6	1512	1719	414.5	3779	4297	1036	18
19	479.5	545.6	132.1	1926	2190	528.5	4815	5475	1321	19
20	611.6	695.9	168.5	2455	2792	674.0	6136	6978	1685	20
21*	780.1			3129			7821	1		21*

End of Gate 20

** A Gap of 9.7 µsec exists between Gate 13 and Gate 14 in the micro-frequency range/

This Table applies to both synchronization modes regardless of which of TEM37, TEM47 and TEM57 transmitters is used, provided that correct Tx model is selected in Header (2.4).

Note: 7.5/6.25 and 0.75/0.625 Hz proportional to 75/62.5 Hz 3/2.5 and 0.3/0.25 Hz proportional to 30/25 Hz × . . .

, -----

KENNECOTT CANADA EXPLORATION INC. Findlay Creek Project

:::

Approximite and the second sec

PRODUCTION SUMMARY

FINDLA	CREEK PROJECT - C436				
SURFAC	E TEM SURVEY				
DATE	DESCRIPTION	LINE	START (m)	END (m)	TOTAL (m)
27-Aug	Mob from Timmins to Invermere, BC.				
28-Aug	Mob from Invermere to camp and do moving loop survey over Clear Cut Anomaly (inside and outside loop readings)	5000N	5000E	5600E	600
29-Aug	Moving loop survey over Tourmalinite Anomaly (inside and outside loop readings)	2000N	1100E	2300E	1200
30-Aug	Lay loop for LPTEM survey and sling generator and transmitter into place.(Tourmalinite anomaly)				
21 4.10	I DTEM oursey on Tournelinite and	2050N	26005	1300E	1300
ST-Aug	LF I EWI Sulvey Off Tournamme grid.	2050N	2600E	1500E	1100
		2450N	2600E	2000E	600
		· <u> </u>			
1-Sep	LPTEM survey on Tourmalinite grid. Caught line cutters which slowed production	2450N	2000E	1600E	400
		2850N	1800E	2600E	800
		3050N	2000E	2600E	600
2-Sep	LPTEM survey on Tourmalinite grid. Pick up loop and move all equipment back to camp.	2650N	2000E	2600E	600
				<u> </u>	
3-Sep	LPTEM survey on Cassat Grid 1. Loop laid out and 2 riverbed lines(not cut or chained) read.	11, 12			1850
4-Sep	LPTEM survey on Cassat Grid 1. Two perpendicular lines read - one along a creek and the other bush crashed.	11N	4900E	6100E	1200
		4500E	1700\$	800N	2500
4-Sep	LPTEM survey on Cassat Grid 1. Two perpendicular lines read - one along a creek and the other bush crashed.	11N 4500E	4900E 1700S	800N	

÷

. .

LPTEM survey on Cassat Grid 2. Loop 1 picked up and loop 2 put in place. Inside loop line read.	21N	4900E	6300E	1400
Outside loop 2 read and loop 2 picked up.	22N	6400E	7500E	1100
All equipment moved to loop 3 and 700m x 1000m loop laid. One line read	31E	3500E	5000E	1500
All equipment moved to Doctor Lake grid and loop 4 laid out. No surveying done due to Tx malfunction. Replacement sent in from Geonics.	-			
Weather day - rain. Roch drove from camp to Calgary (5 hrs) and back to pickup rental Tx.	-			
	40001	10005	22005	1200
2 lines surveyed on Doctor Lake gru.	1200N	1000E	2300E	1300
1000m x 1000m Echo Lake loop laid in extremely mountainous terrain.				
Survey 2 perpendicular lines on Echo Lake Grid.	1000E	600N	10005	1600
	3005	400E	700W	1100
Pick up Echo Lake Loop and return all equipment to camp	-			
Mob - Camp to Calgary	<u> </u>			
	<u> </u>	1	1	
Mob - Calgary to Timmins				
		T	,	3
	LPTEM survey on Cassat Grid 2. Loop 1 picked up and loop 2 put in place. Inside loop line read. Outside loop 2 read and loop 2 picked up. All equipment moved to loop 3 and 700m x 1000m loop laid. One line read All equipment moved to Doctor Lake grid and loop 4 laid out. No surveying done due to Tx malfunction. Replacement sent in from Geonics. Weather day - rain. Roch drove from camp to Calgary (5 hrs) and back to pickup rental Tx. 2 lines surveyed on Doctor Lake grid. 1000m x 1000m Echo Lake loop laid in extremely mountainous terrain. Survey 2 perpendicular lines on Echo Lake Grid. Pick up Echo Lake Loop and return all equipment to camp Mob - Camp to Calgary Mob - Calgary to Timmins	LPTEM survey on Cassat Grid 2. Loop 1 21N picked up and loop 2 put in place. Inside 21N loop line read. 22N All equipment moved to loop 2 and 700m x 31E 1000m loop laid. One line read 31E All equipment moved to Doctor Lake grid and loop 4 laid out. No surveying done due to Tx malfunction. Replacement sent in from Geonics. 1000N Weather day - rain. Roch drove from camp to Calgary (5 hrs) and back to pickup rental Tx. 1000N 1000m x 1000m Echo Lake loop laid in extremely mountainous terrain. 1000E Survey 2 perpendicular lines on Echo Lake 1000E Grid. 300S Pick up Echo Lake Loop and return all equipment to camp 4000E Mob - Calgary to Timmins 4000E	LPTEM survey on Cassat Grid 2. Loop 1 21N 4900E picked up and loop 2 put in place. Inside 21N 4900E Outside loop 2 read and loop 2 picked up. 22N 6400E All equipment moved to loop 3 and 700m x 31E 3500E 1000m loop laid. One line read 31E 3500E All equipment moved to Doctor Lake grid and loop 4 laid out. No surveying done due to Tx malfunction. Replacement sent in from Geonics.	LPTEM survey on Cassat Grid 2. Loop 1 21N 4900E 6300E picked up and loop 2 put in place. Inside 21N 4900E 6300E Outside loop 2 read and loop 2 picked up. 22N 6400E 7500E All equipment moved to loop 3 and 700m x 31E 3500E 5000E 1000m loop laid. One line read 31E 3500E 5000E All equipment moved to Doctor Lake grid and loop 4 laid out. No surveying done due to Tx malfunction. Replacement sent in from Geonics.

APTNOXE

OPERATOR COMMENTS

TEM Surface Profiling

The extreme mountainous terrain was by far the most limiting factor with respect to types of surveys logistically possible, the production, and the man power required. Because of the reconnaissance nature of the project, a LPTEM profiling survey was used which allowed the read lines to follow paths of least resistance such as creeks and contour lines while the loop remained stationary. The lines for over half the grids (generally creek beds) were not picketed so a hip chain had to be used.

There were a limited number of unusual spikes in the Y component of the data but it was repeatable and no system source was detected. However, since no extra coil cable was available at the time the connections cannot be entirely ruled out as a possible source.

The EM-37 transmitter broke down on the Doctor Lake Grid but a replacement was received from Porcupine in just over 1 day and only a single day of surveying was lost.

Paul Plazek Project Manager pers.com., 09/98 ţ

سر .

_

Anglia (a) (d g

 LPTEM Surface Profiles: <u>Multi-Channel 4-Axis Profile Plots</u>: (time rate of decay of the secondary EM field, Total Field X, Y, and Z components, 1:5000, nanovolts per A*meter²)

LOOP	LINE	DRAWING # (K=X,Y,Z and TF)
2 Tourmalinite	L 2050 N	C436-4AXIS-K-2050N
Z. TOGATHOMATINE	L 2250 N	C436-4AXIS-K-2250N
	1.2450N	C436-4AXIS-K-2450N
	1.2650 N	C436-4AXIS-K-2650N
	1,2850 N	C436-4AXIS-K-2850N
	1 3050 N	C436-4AXIS-K-3050N
2 Concat Loop1	1 11	C436-4AXIS-K-11
5. Cassar - Luopi	1 12	C436-4AXIS-K-12
	1 11 N	C436-4AXIS-K-11N
	1 4500 E	C436-4AXIS-K-4500E
2 Const Loop2	1 21 N	C436-4AXIS-K-21N
3. Cassal - Loopa	1 22 N	C436-4AXIS-K-22N
4. Pico Grid (Cassat Loop 3)	L 31 E	C436-4AXIS-K-31E
5 Doctor Lake	L 1000 N	C436-4AXIS-K-1000N
J. DOWN BANC	L 1200 N	C436-4AXIS-K-1200N
6 Echo Lake	L 1000 E	C436-4AXIS-K-1000E
U. EGIN LAKE	L 300 S	C436-4AXIS-K-300S
	TOTAL	68

- TEM Loop Location Maps (field copies):
- 1) Tourmalinite Grid
- 2) Cassat Loop 1
- 3) Cassat Loop 2
- 4) Doctor Lake Grid
- 5) Pico Grid 6) Echo Lake Grid

KENNECOTT CANADA EXPLORATION INC. Finday Creek Project

MANAXO

PROFILES AND MAPS

C-436

ų.

- 500.	
Chs	Line 2050N – X Component
-0. <u> </u>	Tourmalinite Grid
. C1	Scale 1:5000
500.	50 0 50 100 150 200 (metres)
-	KENNECOTT CAN. EXPL. INC. Findlay Creek Project Cranbrook, BC
- 30. Chg	LPTEM FIXED-LOOP PROFILING SURVEY Secondary Electromagnetic Field (dB/dt)
- 0. 11 15	Transmitter Frequency:30 Hz (50% duty cycle)Tx Loop Size:1200m x 900mTx Loop Location:1900N, 1100E; 3100N, 2000ETransmitter Current:7 AmpsTransmitter Tum-Off Time:265 us
30.	Station Interval: 50m, 25m Profile Units: nanoVolt/A+m*2 Receiver Coil Orientation: Hz – positive up Hx – positive east Hy – positive north
	Survey Date:August 31, 1998Instrumentation:Rx = Digital Protem (3x20 Channels)& Geonics 3D Coil (3x200rm²)Tx = Geonics EM-37 (2.8 kW)
iUE	Surveyed & Processed by: QUANTEC CONSULTING INC. DWG. NO. C436-4AXIS-X-2050N

Plotted Fri 09-25-1998 @ 17:44:50.81

Plotted Fri 09-25-1998 @ 17:44:50.81

.

Chs

i Ch

Chs

11 - 15

ChsLine 2250N - Z Component 1-5 Tourmalinite Grid Scale 1:5000 50 100 150 200 50 0 (metres) KENNECOTT CAN. EXPL. INC. Findlay Creek Project Cranbrook, BC ChsLPTEM FIXED-LOOP PROFILING SURVEY 11-Secondary Electromagnetic Field (dB/dt) Transmitter Frequency: 30 Hz (50% duty cycle) 1 5 Tx Loop Size: 1200m x 900m Tx Loop Location: 1900N, 1100E; 3100N, 2000E Transmitter Current: 7 Amps Transmitter Turn-Off Time: 265 us Station Interval: 50m, 25m Profile Units: nanoVolt/A*m^2 Receiver Coil Orientation: Hz - positive up Hx - positive east Hy - positive north Survey Date: August 31, 1998 Instrumentation: Rx = Digital Protem (3x20 Channels)& Geonics 3D Coil (3x200mr2) Tx = Geonics EM-37 (2.8 kW) Surveyed & Processed by: QUANTEC CONSULTING INC. DWG. NO. C436-4AXIS-Z-2250N

÷....

.

÷....

Line 2250N - Y Component Tourmalinite Grid Scale 1:5000 50 50 100 150 200 0 (metres) KENNECOTT CAN. EXPL. INC. Findlay Creek Project Cranbrook, BC LPTEM FIXED-LOOP PROFILING SURVEY Secondary Electromagnetic Field (dB/dt) Transmitter Frequency: 30 Hz (50% duty cycle) Tx Loop Size: 1200m x 900m Tx Loop Location: 1900N, 1100E; 3100N, 2000E Transmitter Current: 7 Amps Transmitter Turn-Off Time: 265 us Station Interval: 50m, 25m Profile Units: naлoVolt/A*rm2 Receiver Coil Orientation: Hz - positive up Hx - positive east Hy – positive north Survey Date: August 31, 1998 Rx = Digital Protem (3x20 Channels) & Geonics 3D Coil (3x200rrr2) Instrumentation: $T_x = Geonics EM-37 (2.8 kW)$ Surveyed & Processed by: QUANTEC CONSULTING INC. DWG. NO. C436-4AXIS-Y-2250N

Line 2250N – Total Field Tourmalinite Grid Scale 1:5000 50 0 50 100 150 200 (metree)		
Findlay Creek Project Cranbrook, BC		
LPTEM FIXED-LOOP PROFILING SURVEY		
Secondary Electromagnetic Field (dB/dt)		
Transmitter Frequency:30 Hz (50% duty cycle)Tx Loop Size:1200m x 900mTx Loop Location:1900N, 1100E; 3100N, 2000ETransmitter Current:7 AmpsTransmitter Tum-Off Time:265 us		
Station Interval:50m, 25mProfile Units:nanoVolt/A+m*2Receiver Cail Orientation:Hz - positive upHx - positive eastHx - positive north		
Survey Date: August 31, 1998 Instrumentation: Rx = Digital Protem (3x20 Channels) & Geonics 3D Coil (3x200mr2) Tx = Geonics EM-37 (2.8 kW)		
Surveyed & Processed by: QUANTEC CONSULTING INC. DWG. NO. C436-4AXIS-TF-2250N		

L ..

à.

.

C Line 2450N - Z Component Tourmalinite Grid Scale 1:5000 50 0 50 100 150 200 (metres) KENNECOTT CAN. EXPL. INC. Findlay Creek Project Cranbrook, BC LPTEM FIXED-LOOP PROFILING SURVEY Secondary Electromagnetic Field (dB/dt) Transmitter Frequency: 30 Hz (50% duty cycle) Tx Loop Size: 1200m x 900m Tx Loop Lacation: 1900N, 1100E; 3100N, 2000E
 Tourmalinite Grid Scale 1:5000 Scale 1:5000 Scale 1:5000 (metres) KENNECOTT CAN. EXPL. INC. Findlay Creek Project Cranbrook, BC LPTEM FIXED-LOOP PROFILING SURVEY Secondary Electromagnetic Field (dB/dt) Transmitter Frequency: 30 Hz (50% duty cycle) Tx Loop Size: 1200m x 900m Tx Loop Lacation: 1900N, 1100E; 3100N, 2000E
 Scale 1:5000 Scale 1:5000 <u>Source</u> 1:5000 <u>Source</u> 1:50 200 (metres) KENNECOTT CAN. EXPL. INC. Findlay Creek Project Cranbrook, BC LPTEM FIXED-LOOP PROFILING SURVEY Secondary Electromagnetic Field (dB/dt) Transmitter Frequency: 30 Hz (50% duty cycle) Tx Loop Size: 1200m x 900m Tx Loop Lacation: 1900N, 1100E; 3100N, 2000E
0. Solution State
(metres) KENNECOTT CAN. EXPL. INC. Findlay Creek Project Cranbrook, BC LPTEM FIXED-LOOP PROFILING SURVEY Secondary Electromagnetic Field (dB/dt) Transmitter Frequency: 30 Hz (50% duty cycle) Tx Loop Size: 1200m x 900m Tx Loop Lacation: 1900N, 1100E; 3100N, 2000E Taxemitter Guaranter Comment
KENNECOTT CAN. EXPL. INC. Findlay Creek Project Cranbrook, BC LPTEM FIXED-LOOP PROFILING SURVEY Secondary Electromagnetic Field (dB/dt) Transmitter Frequency: 30 Hz (50% duty cycle) Tx Loop Size: 1200m x 900m Tx Loop Lacation: 1900N, 1100E; 3100N, 2000E
CP LPTEM FIXED-LOOP PROFILING SURVEY Secondary Electromagnetic Field (dB/dt) Transmitter Frequency: 30 Hz (50% duty cycle) Tx Loop Size: 1200m x 900m Tx Loop Lacation: 1900N, 1100E; 3100N, 2000E
Secondary Electromagnetic Field (dB/dt) Interpretation
Image: Transmitter Frequency:30 Hz (50% duty cycle)ITx Loop Size:1200m x 900mITx Loop Location:1900N, 1100E; 3100N, 2000EITransmitter Current7 Among
Transmitter Turn-Off Time: 265 us
Station Interval:50m, 25mProfile Units:nanoVolt/A+rm2Receiver Coil Orientation:Hz - positive upHx - positive eastHy - positive north
Survey Date: September 1, 1998 Instrumentation: Rx = Digital Protem (3x20 Channels) & Geonics 3D Coil (3x200rrr2) Tx = Geonics EM-37 (2.8 kW)
Surveyed & Processed by:

Line 2450N – X Component Tourmalinite Grid Scale 1:5000 50 0 50 100 150 200 (metrec)			
KENNECOTT CAN. EXPL. INC. Findlay Creek Project Cranbrook, BC			
LPTEM FIXED-LOOP PROFILING SURVEY Secondary Electromagnetic Field (dB/dt)			
Transmitter Frequency:30 Hz (50% duty cycle)Tx Loop Size:1200m x 900mTx Loop Lacation:1900N, 1100E; 3100N, 2000ETransmitter Current:7 AmpsTransmitter Tum-Off Time:265 us			
Station Interval:50m, 25mProfile Units:nanoVott/A*m*2Receiver Coil Orientation:Hz - positive upHx - positive eastHy - positive north			
Survey Date: September 1, 1998 Instrumentation: Rx = Digital Protem (3x20 Channels) & Georics 3D Coil (3x200mr2) Tx = Georics EM-37 (2.8 kW)			
Surveyed & Processed by: QUANTEC CONSULTING INC. DWG. NO. C436-44XIS-X-2450N			

Line 2450N - Y Component Tourmalinite Grid Scale 1:5000 50 50 100 150 200 0 (metres) KENNECOTT CAN. EXPL. INC. Findlay Creek Project Cranbrook, BC LPTEM FIXED-LOOP PROFILING SURVEY Secondary Electromagnetic Field (dB/dt) 30 Hz (50% duty cycle) 1200m x 900m Transmitter Frequency: Tx Loop Size: Tx Loop Location: 1900N, 1100E; 3100N, 2000E Transmitter Current: 7 Amps Transmitter Tum-Off Time: 265 us Station Interval: 50m, 25m Profile Units: nanoVolt/A*m*2 Receiver Coil Orientation: Hz - positive up Hx - positive east Hy - positive north Survey Date: September 1, 1998 Rx = Digital Protern (3x20 Channels) & Geonics 3D Coil (3x200rrr2) Tx = Geonics EM-37 (2.8 kW) Instrumentation: Surveyed & Processed by: QUANTEC CONSULTING INC. DWG. NO. C436-4AXIS-Y-2450N

17:44:50.81 ٢ 09-25-1998 Fri Plotted

Plotted Fri 09-25-1998 @ 17:44:50.81

Line 2650N – X Component Tourmalinite Grid

Scale 1:5000 50 0 50 100 150 200

(metres)

KENNECOTT CAN. EXPL. INC.

Findlay Creek Project Cranbrook, BC

LPTEM FIXED-LOOP PROFILING SURVEY Secondary Electromagnetic Field (dB/dt)

Transmitter Frequency: Tx Loop Size: Tx Loop Location: Transmitter Current: Transmitter Turn-Off Time:

Station Interval: Profile Units: Receiver Coil Orientation:

Survey Date: Instrumentation: Hy - positive north September 2, 1998 Rx = Digital Protem (3x20 Channels) & Geonics 3D Coil (3x200m*2) Tx = Geonics EM-37 (2.8 kW)

Surveyed & Processed by:

QUANTEC CONSULTING INC. DWG. NO. C436-4AXIS-X-2650N

30 Hz (50% duty cycle)

1900N, 1100E; 3100N, 2000E

1200m x 900m

7 Amps

265 us

50m, 25m

nanoVolt/A+m^2

Hz - positive up Hx - positive east

.

17:44:50.81

٢

09-25-1998

Plotted Fri

Line 2650N - Y Component Tourmalinite Grid Scale 1:5000 50 0 50 100 150 200 (metres) KENNECOTT CAN. EXPL. INC. Findlay Creek Project Cranbrook, BC LPTEM FIXED-LOOP PROFILING SURVEY Secondary Electromagnetic Field (dB/dt) 30 Hz (50% duty cycle) Transmitter Frequency: 1200m x 900m 1900N, 1100E; 3100N, 2000E Tx Loop Size: Tx Loop Location: 7 Amps Transmitter Current: Transmitter Turn-Off Time: 265 us Station Interval: 50m, 25m Profile Units: nanoVolt/A*m*2 Receiver Coil Orientation: Hz - positive up Hx - positive east Hy - positive north Survey Date: September 2, 1998 Rx = Digital Protem (3x20 Channels) Instrumentation: & Geonics 3D Coil (3x200mv2) Tx = Geonics EM - 37 (2.8 kW)Surveyed & Processed by: QUANTEC CONSULTING INC. DWG. NO. C436-4AXIS-Y-2650N

.

·

.

Plotted Fri 09-25-1998 @ 17:44:50.81

Line 3050N - Z Component Tourmalinite Grid Scale 1:5000 0 50 100 150 200 50 (metres) KENNECOTT CAN. EXPL. INC. Findlay Creek Project Cranbrook, BC LPTEM FIXED-LOOP PROFILING SURVEY Secondary Electromagnetic Field (dB/dt) 30 Hz (50% duty cycle) 1200m × 900m Transmitter Frequency: Tx Loop Size: 1900N, 1100E; 3100N, 2000E Tx Loop Location: 7 Amps Transmitter Current: 265 us Transmitter Tum-Off Time: 50m, 25m Station Interval: nanoVolt/A*m*2 Profile Units: Hz - positive up Receiver Coil Orientation: Hx - positive east Hy - positive north September 1, 1998 Survey Date: Rx = Digital Protern (3x20 Channels) & Geonics 3D Coil (3x200rrr2) Tx = Geonics EM-37 (2.8 kW) Instrumentation: Surveyed & Processed by: QUANTEC CONSULTING INC. DWG. NO. C436-4AXIS-Z-3050N

Plotted Fri 09-25-1998 @ 17:44:50.81

Line 3050N - X Component Tourmalinite Grid Scale 1:5000 50 100 150 200 50 0 (metres) KENNECOTT CAN. EXPL. INC. Findlay Creek Project Cranbrook, BC LPTEM FIXED-LOOP PROFILING SURVEY Secondary Electromagnetic Field (dB/dt) 30 Hz (50% duty cycle) Transmitter Frequency: 1200m x 900m Tx Loop Size: 1900N, 1100E; 3100N, 2000E Tx Loop Location: Transmitter Current: 7 Amps Transmitter Turn-Off Time: 265 us Station Interval: 50m, 25m Profile Units: nanoVolt/A*m^2 Receiver Coil Orientation: Hz - positive up Hx - positive east Hy - positive north September 1, 1998 Survey Date: Rx = Digital Protem (3x20 Channels) & Geonics 3D Coil (3x20Drrr2) instrumentation: Tx = Geonics EM-37 (2.8 kW) Surveyed & Processed by: QUANTÉC CONSULTING INC. DWG. NO. C436-4AXIS-X-3050N

:50.81 44 ... 17 ً 09-25-1998 Ϊ Plotted

Plotted Fri 09-25-1998 @ 17:44:50.81

81 50 G LO LO 0 ш Ba

 \neg

1

ر - - ا

-

 \sim

ted Fri 09-25-1998 @ 17:44:50.81

 \sim

~

 \square

 \square

 $\overline{}$

η

(TRIN)

 $\overline{}$

1945

-

1

630

· · · · · · · · · · · · · · · · · · ·		
		Line 11 - Total Field
-++++		Cassat Grid-Loop 1
· · · · · · · · · · · · · · · · · · ·		
· · · · · · · · ·		Scale 1:5000
n nanan nanan nanan nanan nanan nanan nang T	L −25.	
	· · · · · · · · · · · · · · · · · · ·	(metres)
		KENNECOTT CAN. EXPL. INC.
		Findlay Creek Project
		Cranbrook, BC
		LPTEM FIXED-LOOP PROFILING SURVEY
· · · · · · · · · · · · · · · · · · ·		Secondary Electromagnetic Field (dB/dt)
	=======================================	Transmitter Frequency: 7.5 Hz (50% duty cycle)
		Tx Loop Size: 750m x 750m Tx Loop Loottler: 0 val abare: Edger 7605 50005
· · · · · · · · · · · · · · · · · · ·	···· ·	Transmitter Current: 7.5 Amps
	\ldots	Transmitter Turn-Off Time: 215 us
		Station Interval: 100m
		Profile Units: nanoVolt/A+mr/2 Receiver Coil Orientation: Hz - positive up
		Hx - positive east
· · · · · · · · · · · · · · · · · · ·		Hy - positive north
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	Survey Date: September 3, 1998 Instrumentation: Rx = Diaital Protem (3x20 Channels)
		& Geanics 3D Coil (3x200mr2)
300E 4400E 4500E 4600I	C 4700E 4800E 4900E	Tx = Georics EM-37 (2.8 kW)
		OUANTEC CONSULTING INC.
		DWG. NO. C436-4AXIS-TF-11

Plotted Pri 09-25-1998 @ 17:44:50.81

.....

Plotted Fri 09-25-1998 @ 17:44:50.81

-25.

0.

-1.

[[

Plotted Fri 09-25-1998 @ 17:44:50.81

۰. .

ъ. .

L ...

. ا

h. ..

Chs 1-5

Chs 11-15

.

L....

i.

1

L....

...]

Ŧ

.

Chs 11-15

j.

c a

7.5 Hz (50% duty cycle) 750m x 750m Oval shape; Edges 300N, 400S 7.5 Amps 215 us 100m nanoVolt/A*m*2 Hz - positive up Hx - positive north Hy - positive west September 4, 1998 Rx = Digital Protem (3x20 Channels)& Geonics 3D Coil (3x2D0rrr2) Tx = Geonics EM-37 (2.8 kW) Surveyed & Processed by: **QUANTEC CONSULTING INC.** DWG. NO. C436-4AXIS-Z-4500E

otted Fri 09-25-1998 @ 17:44:50.81

·

17:44:50.81

.

. k....

:44:50.81

17

0

09-25-1998

Fri

Plotted

Line 22N - X Component Cassat Grid Scale 1:5000 50 100 150 200 (metres) KENNECOTT CAN. EXPL. INC. Findlay Creek Project Cranbrook, BC LPTEM FIXED-LOOP PROFILING SURVEY Secondary Electromagnetic Field (dB/dt) 7.5 Hz (50% duty cycle) 750m x 1000m Transmitter Frequency: Tx Loop Size: Tx Loop Location: Irregular Shape Transmitter Current: 8 Amps Transmitter Turn-Off Time: 210 us Station Interval: 100m Profile Units: nanoVolt/A*m^2 Receiver Coil Orientation: Hz - positive up Hx - positive east Hy - positive north September 6, 1998 Rx = Digital Protem (3x20 Channels) & Geonics 3D Coll (3x200m²) Tx = Geonics EM-37 (2.8 kW) Survey Date: Instrumentation: Surveyed & Processed by: **QUANTEC CONSULTING INC.** DWG. NO. C436-4AXIS-X-22N

Chs

1-5

Chs

11 - 15

Chs

Chs11 - 15

:50.81

44

...

17

۲

-1998

-25

-60

Fri

Plotted

 $\overline{}$

_

ł

-

Π,

 \square

103

P.20

 \square

1

:50.81 44 • • 17 ۲ -1998 ŵ 2 -60 Fri

Γ.,

100

 \square

1

17

, in the

5

<u>___</u>

~~~

 \square

19

17 -1998 09-25-Fri

81 :50 :44 -1998 r L

17

۲

ŝ

2

09

ted

Plot

:50.81 4 4 ... 17 ۲ 8 999 ŝ ^N -60 Fri Plotted

2	
ב ת	
	Line 300S – Z Component
	Echo Lake Grid-Loop 1
	Scale 1:5000
	Findlay Creek Project Cranbrook, BC
2	LPTEM FIXED-LOOP PROFILING SURVEY
.	Secondary Electromagnetic Field (dB/dt)
י ר ר	Transmitter Frequency:7.5 Hz (50% duty cycle)Tx Loop Size:Approx. 1000m x 1000m
•	Ix Loop Lacation: Irregular, Edges 525W, 600E Transmitter Current: 7 Amps Transmitter Turn-Off Time: 255 us
	Station Interval: 100m Profile Units: nanoVolt/A+m*2 Receiver Coil Orientation: Hz – positive up Hx – positive east Hy – positive north
	Survey Date: September 12, 1998 Instrumentation: Rx = Digital Protem (3x20 Channels) & Geonics 3D Coil (3x200rm²) Tx = Geonics EM-37 (2.8 kW)
	Surveyed & Processed by: QUANTEC CONSULTING INC. DWG. NO. C436-4AXIS-Z-300S

:44 17 0 09-25-1998 Fri Plotted

:50.81

Line 300S - X Component Echo Lake Grid-Loop 1

Scale 1:5000 50 0 50 100 150 200 (metres)

KENNECOTT CAN. EXPL. INC. Findlay Creek Project Cranbrook, BC

LPTEM FIXED-LOOP PROFILING SURVEY Secondary Electromagnetic Field (dB/dt)

Transmitter Frequency: Tx Loop Size: Tx Loop Location: Transmitter Current: Transmitter Turn-Off Time:

Station Interval: Profile Units: Receiver Coil Orientation: 7.5 Hz (50% duty cycle) Approx. 1000m x 1000m Irregular, Edges 525W, 600E 7 Amps 255 us

Tx = Geonics EM-37 (2.8 kW)

100m nanoVolt/A*m^2 Hz - positive up Hx - positive east Hy - positive north September 12, 1998

Survey Date: Instrumentation:

Rx = Digital Protem (3x20 Channels) & Geonics 3D Coil (3x200m/2)

Surveyed & Processed by: QUANTEC CONSULTING INC. DWG. NO. C436-4AXIS-X-300S

 \mathbf{Chs} 1-1ł

ΰ

Chs

Г Сл

17:44:50.81

6

-1998

-25-

. 60

FΓ

Plotted

Line 300S - Y Component Echo Lake Grid-Loop 1

Scale 1:5000 50 100 150 200 50 0 0

(metres)

KENNECOTT CAN. EXPL. INC. Findlay Creek Project Cranbrook, BC

LPTEM FIXED-LOOP PROFILING SURVEY Secondary Electromagnetic Field (dB/dt)

Transmitter Frequency: Tx Loop Size: Tx Loop Location: Transmitter Current: Transmitter Turn-Off Time:

Station Interval; Profile Units: Receiver Coil Orientation:

Survey Date: Instrumentation: 7.5 Hz (50% duty cycle) Approx. 1000m x 1000m Irregular, Edges 525W, 600E 7 Amps 255 us

100m nanaVolt/A*m*2 Hz - positive up Hx - positive east Hy - positive north

September 12, 1998 Rx = Digital Protem (3x20 Channels)& Geonics 3D Coil ($3x200m^2$) Tx = Geonics EM-37 (2.8 kW)

Surveyed & Processed by: **QUANTEC CONSULTING INC.** DWG. NO. C436-4AXIS-Y-300S

17 ٢ 09-25-1998

. .

APPENDIX XI

PETROGRAPHIC REPORTS

)

PETROGRAPHIC REPORT ON 15 SAMPLES FROM FINDLAY CREEK, B.C.

Report for: Rick Zuran

Kennecott Canada Exploration Inc. #354 - 200 Granville Street Vancouver, B.C. V6C 1S4

October 30, 1998

Invoice No. 980561

SUMMARY:

The samples submitted may be roughly divided into Moyie intrusives (gabbro, granophyre and altered equivalents: seven samples, including 55596, 55598, 55778, 55781, 55786-88) and altered meta-sediments (mostly siltstone, minor arenite; including 55595, 55777, 55780, 55782-85); one sample is a strongly altered fragmental rock (55779).

The Moyie intrusives are mostly granophyre altered or were likely granophyres before being overprinted by later phyllic (muscovite, sericite) alteration. The granophyre alteration includes major biotite after amphibole (the amphibole itself probably a product of hydrous alteration of original pyroxene during deuteric alteration of the gabbros) and development of quartz-alkali feldspar intergrowths that give the name to the alteration type (micrographic, or "granophyric" texture). However, later alteration to epidote, sericite, carbonate and chlorite has obscured this in several samples (e.g. 55598, 55778, 55781, 55786 and 55787). Only 55788 is a relatively unaltered gabbro (chloritized, epidotized; original accessory ?ilmenite altered to sphene). Sample 55596 contains significant clusters of garnet and is cut by veinlets of chlorite, calcite and K-feldspar; sample 55598 contains unusual quartz "eyes" that have an enigmatic origin (see comments in description). It seems likely that sample 55781 is similar to 55778 and 55786 in being a strongly phyllic (sericite, quartz +/-Fe carbonate) altered gabbro or granophyre. No galena, sphalerite, or silver oxide minerals could be identified in 55781.

The metasediments are mostly altered siltstones, composed of detrital quartz with variable amounts of interstitial relict alkali feldspar and mica (muscovite, biotite) and accessory Fe-Ti minerals such as sphene/rutile. However, several show significant tourmaline alteration (generally dark green to brown-coloured, Fe-rich schorl, in either irregular veins as in 55595, or layers in 55784). In the former, the wallrock appears to be moderately albitized, although there is minor K-feldspar (likely a remnant of primary mineralogy) present. In the latter, the interlayered white rock appears to be silicified; there is no evidence for albitization. Note that although considerably less in abundance, there is evidence the **fragments** in 55779 were partly tourmalinized before intense muscovite (sericite) alteration. Sample 55780 is cut by magnetite-quartz-albite veins and is thoroughly albitized. Sample55782 contains signifcant "clotty" alteration, with clots composed of ?galena-Fe sulfide-quartz-muscovite-chlorite-tourmaline in a silicified, albitized siltstone (+/- sericite, tourmaline).

Mineralized veins are significant in samples 55783 (Silver Key property) and 55785 (Good Boy), and in gabbro-granophyre samples 55786 and 55787. In 55783, the vein consists of quartz and Fe-carbonate plus a sulfosalt that could be ?miargyrite, as you suggest, but this cannot be confirmed without more detailed SEM or microprobe analysis. The wallrock is silicified and sericitized. In 55785, the vein consists of quartz-amphibole-garnet-arsenopyrite-sphalerite-pyrrhotite+/-chalcopyrite, trace ?sulfosalt (again, the latter is unidentifiable with certainty), in a quartz-biotite-garnet altered rock. It is unfortunately not obvious whether part of the sulfides in this sample belong to or are remobilized from an earlier ?sedex phase of mineralization. An unusual assemblage of muscovite-?beryl-?fluorite, +/- quartz, biotite and trace oxidized ?sulfide is present in the vein in sample 55786 cutting granophyritized gabbro (biotite-muscovite-quartz-limonite assemblage). The vein in 55787 is composed of quartz-amphibole-albite-arsenopyrite, cutting quartz-biotite-amhibole-sphene-?epidote altered ?granophyre. The reason for the anomalous zinc in sample 55788 is not obvious.

Craig H.B. Leitch, Ph.D P.Eng 492 Isabella Point Road, Saltspring Island, B.C. V8K 1V4 (250) 653-9158 Currently chez Levy, Hameau de Janoulie, 32360 GERS, France; 011-3356-264-5562 email Craig.Leitch@wanadoo.fr

VR55595A: FINE-GRAINED, PARTLY ALBITIZED METASEDIMENT (QUARTZ-ALBITE-BIOTITE-KSPAR-MUSCOVITE-SPHENE/RUTILE) CUT BY TOURMALINE-QUARTZ VEIN

From mapping station MB067, described as tournaline? in albitized (meta)sediments. The rock is greywhite, sucrosic, fine-grained, with small dark dots that could be tournaline or biotite; it is cut by an irregular black veinlet <1 cm thick that could be mainly tournaline. The sample is not magnetic and shows no reaction to cold dilute HCl; minute crystals of K-feldspar are indicated by yellow stain in the offcut except in and along the vein. Estimated mode in thin section is approximately:

Quartz (?largely primary)	45%
?Albite (?secondary)	25%
Biotite (rarely chloritized)	10%
Tourmaline	10%
K-feldspar (?likely primary)	5%
Muscovite	3%
Sphene, rutile	1%
Opaque	1%
Apatite	<1%

Wallrock is composed of very fine-grained quartz and alkali feldspar, containing clotty concentrations of biotite +/minor sphene/rutile. The quartz and feldspar is intimately intergrown, composed of subhedral to anhedral quartz crystals mostly <50 microns in diameter (probably largely detrital) and smaller, inter-stitial feldspar mainly <20 microns in diameter. The relief of the feldspar is distinctly negative compared to quartz; since only a portion of it stains yellow for K-feldspar, it is likely that the bulk of it is albite. Most of the small dark dots seen in hand specimen are composed of biotite, not tourmaline. The biotite forms subhedral flakes mostly <0.1 mm in diameter, commonly aggregating in clots up to about 0.35 mm in size. Minor sphene (sub- to euhedral crystals up to 50 microns in size, commonly containing tiny opaques that are likely rutile <15 microns in size) is common in the biotite clots. In places minor muscovite is associated with the biotite, as subhedral flakes up to 0.15 mm in diameter; also, some biotite is converted to chlorite in places. Minor opaques less than 0.1 mm in diameter could include ?sulfides but are usually associated with sphene and therefore more likely to be ?rutile. Tourmaline is rare in the wallrock, forming small (<50 micron) subhedral crystals. Rare apatite crystals are rounded to subhedral and <35 microns in diameter (likely primary).

The "vein" is actually a loose agglomeration of clotty tourmaline concentrations that are roughly circular in shape, up to almost 1 cm in diameter, and composed of subhedral schorl crystals mostly less than about 0.35 mm in size. Pleochroic colours are greenish-blue to dark brown, implying a high Fe:Fe+Mg (F:M) ratio, likely 0.8 to 0.9. The rest of the "vein" consists mostly of subhedral quartz (up to 0.3 mm in diameter), plus minor muscovite (to 0.1 mm) and rare apatite (to 75 microns). There are no opaques associated with the vein (i.e., no sulfides).

In summary, the field description appears to be accurate: a fine-grained metasediment that has been partly albitized (although K-feldspar is present, likely remnant primary), and is cut by a tourmaline-bearing irregular veinlet.

j

VR55596A: GRANOPHYRE (BIOTITE-QUARTZ-ALKALI FELDSPAR-CHLORITE-GARNET-EPIDOTE) ALTERED GABBRO; FRACTURES OF CHLORITE-CARBONATE-KSPAR

From mapping station SM087, described as ?garnet in gabbro; stained offcut shows a dark green-grey, medium-grained intrusive rock containing scattered clots of pink garnet up to 0.5 cm in diameter, and cut by rare narrow stringers that stain yellow for K-feldspar. The rock is weakly magnetic but shows no reaction to cold dilute HCl; estimated mode in thin section is approximately:

Biotite	45%
Quartz	25%
Chlorite	7%
Relict plagioclase	5%
K-feldspar (?mainly secondary)	5%
Amphibole	5%
Garnet	3%
Opaque (?ilmenite, magnetite)	1-2%
Epidote/clinozoisite	1-2%
Carbonate (veinlets)	1%
Apatite	<1%
Sphene	<1%

This sample should more properly be termed a granophyre than a gabbro; it retains the gabbroic intrusive texture, but the original pyroxene and amphibole is almost completely replaced by biotite and chlorite plus minor opaques and apatite, and the interstitial feldspars almost completely replaced by quartz and secondary feldspars plus minor epidote/trace carbonate. Garnets form irregular clusters up to almost 6 mm in diameter, composed of subhedral crystals mostly <0.5 mm in diameter, that in part appear to replace former mafic sites, but also locally contain abundant quartz that may be largely secondary.

Former mafic sites appear to have been subhedral, up to about 2.5 mm in size. Amphibole is relatively uncommon, forming sub- to euhedral dark green crystals up to 0.5 mm long preserverd either in the cores of biotite clusters, or else crystals <0.1 mm long in relict feldspar. Throughout much of the slide, amphibole is pseudomorphed by chlorite (subhedral flakes up to 0.3 mm in diameter, with moderate green pleochroism and length-fast birefringence indicating moderately high Fe content, F/M perhaps 0.5-0.6). Biotite forms subhedral dark brown flakes mostly <0.35 mm in diameter, in places altered to chlorite, carbonate, and epidote.

Opaques form rounded clusters up to about 0.35 mm in diameter, commonly associated with mafic sites. Traces of sphene around the margins of the opaque clusters suggest the opaques could be mostly ?ilmenite, with minor magnetite admixed as indicated by weak magnetism in hand specimen. Apatite is common in some areas, forming euhedral prisms up to 0.2 mm long.

Former feldspar sites with rounded to subhedral outlines up to 1.5 mm in size are mostly occupied by quartz (likely mostly secondary) as subhedral crystals up to 0.3 mm in diameter, in places mixed with lesser relict alkali feldspar (partly K-feldspar where near fractures, and partly relict ?plagioclase, likely albitic, as subhedral relics up to 0.35 mm long that contain minor fine-grained epidote to 0.1 mm and rare carbonate to 50 microns).

Narrow veinlets, mostly <0.1 mm thick, are composed of chlorite and carbonate as subhedra up to 0.1 mm in diameter, and in places K-feldspar of similar size.

In summary, this sample appears to represent a granophyre (biotite-quartz-alkali feldspar altered gabbro) that in addition contains coarse clots of garnet +/- quartz.

)

VR55598A: CARBONATE-CHLORITE-EPIDOTE ALTERED GRANOPHYRE (BIOTITE-QUARTZ-ALKALI FELDSPAR ALTERED FINE-GRAINED GABBRO) WITH RARE QUARTZ EYES

From mapping station MB013, described as dark grey, brown weathering, calcareous intrusive with quartz eye in fine-grained matrix). The sample reacts strongly to cold dilute HCl, but is not magnetic and shows only traces of yellow stain for K-feldspar in the etched slab (possibly along a fracture). Estimated mode in thin section is approximately as follows:

Carbonate (?mostly calcite)	
Biotite	25%
Chlorite	20%
Relict alkali feldspar (albitic: rare Kspar)	10%
Quartz (partly secondary)	10%
Epidote	3%
Sphene	<1%
Allanite	<1%
Apatite	<1%
Sphalerite	tr

As deduced in the field, this fine-grained gabbroic rock is extensively carbonatized; it likely was also a granophyre prior to this alteration. Amphibole is no longer present; all mafic sites are altered to biotite and chlorite, and lesser plagioclase feldspar sites are altered to alkali feldspar, carbonate and epidote. Rare quartz eyes are rounded in outline, composed of single clear crystals up to 2 mm in diameter, generally overgrown by finely crystalline carbonate. Thus they could be either phenocrystic or amygdular in origin; I have seen similar occurrences before in the gabbros at Sullivan, but could not conclusively determine their origin (although at Sullivan some contain highly saline fluid inclusions similar to those in the quartz vein stockwork underlying the orebody, suggesting they could be fragments of vein quartz).

Former mafic sites that made up over half of the rock are generally <1.5 mm in diameter, now pseeudomorphed by carbonate, biotite and chlorite plus very fine-grained sphene and /or epidote; in places, clusters or sprays of epidote crystals, possibly mixed with a little sphene, appear to mark the sites of former sphene (and likely before that, ilmenite) crystals up to 0.5 mm in diameter. Carbonate forms fine rounded subhedra mostly <0.1 mm in diameter, biotite mostly forms pale brown flakes up to 0.25 mm in diameter, and chlorite forms subhedral flakes up to almost 0.75 mm in diameter. Rarely, however, there are larger, subhedral, bent brown biotite flakes up to 1.25 mm in diameter with ragged terminations that could rrepresent former ?phenocrysts. Chlorite flakes are almost colourless and are length-fast, and with first-order grey birefringence indicating moderately Mgrich composition (F/M perhaps 0.3-0.4). Epidote in places forms crystals up to 0.2 mm in diameter with strong yellow pleochroism indicating high Fe content. Rare apatite crystals are sub- to euhedral prisms up to 0.15 mm long; brownish coloured "epidote" crystals to 0.15 mm diameter could be allanite (REE-bearing epidote commonly found in Aldridge rocks and gabbros). Extremely rare bright red crystals <20 microns in size could be sphalerite.

Former feldspar sites are harder to detect, possibly of 1 mm size or smaller, now replaced by ragged aggregates of carbonate, epidote, and quartz plus relict alkali feldspars, all mostly <0.1 mm (commonly <50 microns) in diameter. In these areas, epidote does not appear to be pleochroic and so may be of low Fe content (clinozoisite). Alkali feldspars are difficult to detect and identify, but are likely mostly albitic with minor to rare K-spar.

In summary, this appears to be a strongly carbonate-chlorite-epidote altered, fine-grained gabbro or more properly granophyre (biotite-quartz-alkali feldspar altered gabbro). The origin of the quartz eyes is enigmatic.

VR55777A: FINE SILTSTONE (DETRITAL QUARTZ, PLAGIOCLASE, WHITE MICA, RARE TOURMALINE) ALTERED TO CARBONATE AND WITH CLOTS OF LIMONITE-?SPHALERITE

From mapping station NT118 (VR55735A); described as containing hydrozincite in fine-grained, thick bedded calcareously altered siltstone. Stained offcut is a fine-grained, even-textured, relatively homogeneous rock except for lensed and disseminated specks of pale brownish material (that are slightly harder than the rest of the rock, i.e. not as easily scratched by steel). The rock is not magnetic and shows no reaction to cold dilute HCl, and no stain for K-feldspar, estimated mode in thin section is approximately:

Quartz	50%
Carbonate (?partly dolomitic)	20%
Plagioclase	15%
Muscovite, sericite	10%
Opaque (?sulfide, limonite)	1-2%
Sphalerite	1-2%
Sphene, rutile	1%
Tournaline	<1%

In the thin section, the pale brownish areas are evidenced by areas of more abundant limonite; thus they may merely represent more oxidized portions of the sample. In general, the slide consists of fine-grained quartz with intersitial carbonate, plagioclase and white mica, marked by common clotty concentrations of opaques and carbonate (+/- sphene, rutile) that make up about 5% of the rock.

Quartz forms mainly subhedral crystals, likely mostly detrital grains, up to about 0.15 mm in diameter separated by a "hash" of mainly finer-grained carbonate, plagioclase and white mica. The plagioclase is only separable from the quartz where it displays fine polysynthetic twinning; there is no appreciable relief difference from quartz. Thus the extinction angle on 010 of up to about 15 degrees may indicate a composition near oligoclase-andesine (not common, but not unheard of , particulary where associated with otherwise calcareous alteration, e.g. at the Fors property). Alternatively, but less likely, the composition could be albitic and the relief difference being masked by the ubiquituous presence of fine-grained sericite. The form of the plagioclase does not suggest a secondary origin; it looks like primary detrital feldspar. Carbonate crystals are generally sub- to euhedral, up to 0.15 mm in diameter, and could be partly dolomitic, especially in the clotty concentrations. Mica flakes are ragged to subhedral and rarely over 0.1 mm in diameter; some may represent former ?biotite, and some may be detrital. It is not clear whether some may replace former feldspar; in spite of the abundant carbonate, the overall appearance of the rock is not suggestive of muscovite alteration. Rare tourmaline crystals are euhedral, up to 0.15 mm long, and greenish to brownish (likely schorlitic, with F/M perhaps 0.7-0.8; most likely they are detrital as well, and not due to hydrothermal activity).

Opaques in the clots could be partly iron sulfide or their limonitized relics, but appear to also be partly ?sphalerite (red-brown, moderate Fe content) based on 1) presence of hydrozincite and 2) isotropic character under crossed polars, whereas the limonite is anisotropic. Both the relict ?Fe sulfides and the ?sphalerite form subhedral crystals up to about 0.2 mm in diameter, and are mainly interstitial to the detrital quartz grains. Carbonate crystals are also interstitial, and appear to have higher relief than carbonate outside the clots, suggesting it may be in part dolomitic (or be mixed with a little sphene and or rutile).

In summary, this sample appears to be a relatively unaltered sediment consisting of detrital quartz, plagioclase feldspar and mica plus rare tourmaline and containing significant clotty concentrations of iron and zinc sulfides (although part or most of the carbonate may well be secondary).

)

VR55778A: INTENSELY PHYLLIC (QUARTZ-SERICITE-SULFIDE) ALTERED ?GABBRO, CUT BY QUARTZ-SERICITE-?PYRRHOTITE-?SPHALERITE VEIN; SIGNIFICANTLY OXIDIZED

From mapping station NT200 (VR55761A); described as sphalerite vein with disseminated pyrite in gabbro in shear. Offcut shows a pale greenish-grey, altered fine-grained gabbro cut by a rusty, limonitic shear (vugs in places, possibly in secondary quartz). The rock is magnetic in places, shows no reaction to cold dilute HCl, and no stain for K-feldspar in the etched offcut. Estimated mode in thin section is approximately:

Quartz (?largely secondary)	45%
Muscovite (largely secondary)	35%
Opaques (limonite)	10%
(?pyrrhotite)	3%
(sphalerite)	1-2%
Carbonate (?ankerite or siderite)	5%
Amphibole (?)	1-2%
Sphene	<1%

Although the rock is strongly stained by limonite due to weathering of the sulfides and transport of the limonite, a strongly phyllic altered ?gabbro is distinguishable, composed now mostly of quartz and muscovite away from the central vein system.

The wallrock consists of an aggregate of quartz (subhedral to anhedral crystals up to 0.5 mm in diameter, commonly with a secondary appearance) and abundant muscovite (generally euhedral crystals up to 0.4 mm in diameter) plus intersitial limonite. Feldspar and relict matic sites are no longer distinguishable due to the strong alteration. In places there is minor carbonate, most of which has relatively high relief, is strongly altered to limonite, and since it does not react to HCl in the offcut, may be Fe/Mg rich (ankerite or ?siderite). Near the vein there are minor amounts of a bright green pleochroic mineral with tabular form that may be ?amphibole as subhedra to 0.15 mm long, commonly mixed with the muscovite.

The central vein system is poorly defined due to the shearing, weathering and oxidation (transported limonite blurs the boundaries) but appears to be composed mainly of oxidized sulfides and areas of quartz and finegrained sericite. Oxidized sulfides are not directly identifiable, lacking a polished surface to examine, but look to be mostly Fe-sulfides (likely partly oxidized pyrrhotite to judge by the magnetic character), largely coated and replaced by limonite. In places there are relicts at the center of limonitic areas that appear to be isotropic under crossed polars, suggesting the presence of minor sphalerite (?).

In summary, I would characterize this sample as an intensely sericite-quartz altered ?gabbro cut by a quartz-sericite-?pyrrhotite-?sphalerite vein that has been strongly oxidized to limonite. It is not clear whether any of the former sulfide (e.g. in the wallrock) was pyrite; pyrrhotite seems more likely.
VR55779A: INTENSELY MUSCOVITE (+/-TOURMALINE) ALTERED CLASTS IN COARSE-GRAINED MUSCOVITE-QUARTZ-BIOTITE-LIMONITE (?AFTER SULFIDE) MATRIX

From mapping station SM (559950mE, 5543275mN); described as meta fragmental? 60% subrounded clasts, muscovite matrix. The clasts are up to about 1 cm in diameter and are dark grey, in places containing elongated black needle-like crystals of ?tourmaline up to several mm long. The matrix stains pale yellow in the etched offcut, confirming muscovite; the rock is not magnetic and shows no reaction to cold dilute HCl. Estimated mode in thin section is approximately:

Muscovite, sericite	65%
Quartz (?partly secondary)	15%
Biotite	10%
Opaque (limonite)	5%
Tourmaline	5%

This slide is made up of about 40% clasts and 60% matrix. The clasts are rounded to subrounded in outline and are composed principally of very fine-grained muscovite (sericite) and slender prismatic crystals of tourmaline, plus scattered opaques. The matrix is mainly composed of coarser-grained muscovite with lesser, variable amounts of quartz and in places significant biotite or opaques (mainly limonite); minor tourmaline also occurs.

In the clasts, sericite forms fine flakes mostly <50 microns in diameter. Tourmaline crystals are up to 1.5 mm long and have very deep green to blackish pleochroism, suggesting very high Fe content (schorl, with F/M perhaps 0.9). The tourmaline crystals tend to be clustered in the center of the clasts, and the muscovite tends to be coarser at the margins of the clasts, in a sort of progression (or recrystallization) towards the matrix. Most of the opaques are pseudomorphs of limonite, but they have subhedral to euhedral outlines up to 0.4 mm in diameter, suggesting they are after former sulfides such as ?pyrrhotite.

In the matrix, muscovite flakes are subhedral, with ragged terminations, up to about 0.75 mm in diameter (rarely to 2.5 mm). Quartz is interstitial and forms subhedral to anhedral crystals up to 0.25 mm in diameter. Biotite forms mainly fine, sub- to euhedral flakes < 0.15 mm in diameter (rarely to 0.35 mm), with deep greenish brown to blackish pleochroism; in places biotite forms up to 25% of the matrix. Opaques are mostly discrete, pseudomorphic grains of limonite that could be after former significant quantites of sulfide such as ?pyrrhotite, but in places there azre also modest amounts of interstitial, transported limonite derived from the weathering of the sulfides.

In summary, this sample looks to be an intensely muscovite (sericite) altered fragmental rock, with significant tournaline (especially in the clasts) and possibly significant Fe-sulfide before weathering and oxidation. Certainly a "prospective" sample due to the tournaline content; it could come from the LMC as far as the lithology is concerned, although obviously I have not seen the field setting. It is possible (although not conclusive) that the muscovite, or sericite, alteration is due to the Cretaceous batholith, which is accompanied by sericitic alteration elsewhere in the district.

}

VR55780A: MAGNETITE-QUARTZ+/-ALBITE VEINS IN INTENSELY ALBITE-QUARTZ ALTERED ARENITE

From mapping station RZ (VR55984A); described as tan brown oxidized, bleached, quartz arenite with trace magnetite in stringers along fracture. The magnetite is partly associated with quartz veining sub-parallel to beddiing (aggregate veins up to about 6 mm thick); some irregular veinlets of quartz and ?feldspar are cross-cutting to bedding. The rock shows no yellow stain for K-feldspar in the etched offcut (and no reaction to cold dilute HCl). Estimated mode in thin section is approximately as follows:

Quartz (mainly detrital; minor secondary)	50%
Alkali feldspar (?albite)	40%
Magnetite (veins)	5%
Sericite	3%
Opaque (Fe-Ti oxides: wallrock)	2%
Zircon	tr

This is a thoroughly altered and veined (stockworked) rock, composed principally of quartz and albitic alkali feldspar that may both be largely secondary, cut by veins of magnetite and quartz plus minor alkali feldspar.

Typical wallrock consists of rounded to anhedral, likely originally detrital, grains of quartz up to about 0.2 mm in diameter, in a matrix of mainly finer-grained, anhedral, tightly interlocking crystals of alkali feldspar with distinctly negative relief compared to quartz, and minor fine-grained quartz, sericite, and opaques. The feldspar is not twinned, but the negative relief of the feldspar and lack of yellow stain in the offcut suggests it is mostly albite. Individual crystals are generally <25 microns in diameter. Interstitial sericite, or fine-grained muscovite, is generally <25 microns in diameter (<10 microns where present in feldspar), and is commonly intergrown with or in places stained by opaque (mainly limonite, or possibly Fe-Ti oxides such as rutile and leucoxene). Rare euhedral crystals of zircon are up to 45 microns long, probably relict detrital grains.

Veins are everywhere in this rock, ranging from the obvious 0.5 cm thick planar veins down to a network of fine (<0.1 mm thick) microveinlets or fractures that are barely distinguishable from the matrix. Most veins are composed mainly of quartz, forming subhedral to rounded crystals up to about 0.65 mm in diameter; in places, subhedral to anhedral, rarely polysynthetic twinned, crystals of plagioclase (?albite) are seen. Magnetite occurs as subhedral crystals or aggregates mostly <0.5 mm in diameter, partly oxidized at rims and along fractures to ?hematite.

This would appear to be classic albite-quartz-magnetite alteration, both vein controlled and (in the case of the albite and quartz) pervasive.

VR55781A: INTENSELY FE-CARBONATE, MUSCOVITE, QUARTZ ALTERED ?FINE-GRAINED GABBRO (POSSIBLY ORIGINALLY GRANOPHYRE ALTERED); FE-CARBONATE VEINED

From mapping station RZ044 (VR55891A); described as blue-black, strongly oxidized, phyllitic, quartz arenite with PbOx?, MnOx, galena, limonite and sphalerite; possible silver oxide minerals. The offcut appears to be a greyish, sheared, veined/stockworked, ?arenite rich in quartz and muscovite (sericite). It is weakly magnetic, but shows no stain for K-feldspar, and no reaction to cold dilute HCl (even after scratching), in the etched offcut. Estimated mode in thin section is approximately:

Carbonate (?ankerite, siderite)	40%
Muscovite	35%
Quartz (?partly secondary)	20%
Opaque (largely Fe-Ti oxides?; limonite)	3%
Sphene, rutile	1-2%
Apatite	<1%

In thin section, the overall texture and mineralogy, plus abundance and texture of opaques, suggest that this rock is actually a highly altered gabbro, not an arenite. The veins (which are buff-coloured in hand specimen) are carbonate, presumably Fe-carbonate such as ankerite or ?siderite to judge by the lack of reaction (although etching by HF does sometimes interfere with the subsequent ability to react to HCl). The bulk of the slide is composed of a fine-grained, heterogeneous aggregate of carbonate, muscovite (sericite) and quartz; relict alkali feldspar could also be present, but cannot be distinguished due to lack of twinning or relief difference against the quartz. The abundance of carbonate is not typical of arenites in the Aldridge, supporting the hypothesis of an altered Moyie intrusive as the precursor rock.

Carbonate forms mainly subhedral, interlocking crystals mostly <0.2 mm in diameter. Distribution of the carbonate, and intergrowth with muscovite, suggests the replacement of former mafic sites in a gabbro. Muscovite forms subhedral flakes and booklets up to 0.2 mm in diameter, containing minor interleaved ?sphene and rutile that suggest the muscovite could be after relict ?biotite crystals, i.e. the gabbro could have been granophyre altered. The presence of small (<0.1 mm long) euhedral prisms of apatite reinforces the possibility of an altered gabbro.

This hypothesis is supported by the abundance of quartz (rather high for the average gabbro), which normally accompanies biotite in granophyre alteration. Quartz occurs as mostly anhedral to subhedral, interlocking, ragged crystals commonly containing inclusions of muscovite, that could have been intergrown with alkali feldspar, together as a replacement of former feldspar sites.

Opaques are commonly confined to clusters or clots with (in places) subhedral outlines suggestive of former crystals of ?ilmenite or ilmeno-magnetite; the trace remnant magnetism supports this contention. The opaques appear to be mostly ?rutile or possibly ilmenite, and are commonly surrounded by a rim of transparent ?sphene. However, some clusters of opaques contain cubic-shaped crystals or pseudomorphs, possibly indicating limonite replacement of sulfides such as pyrite. At the margins of the sample, there is a weathered rind up to about 4 mm thick containing significant limonite and possibly Mn-oxides; I do not see any indications of galena, sphalerite or silver oxide minerals. Presumably you have geochemical indications to support those identifications; however, a polished thin section would be required, possibly accompanied by SEM (scanning electron microscope) analysis, to confirm their presence.

Veins, mostly less than 2.5 mm in thickness, are composed principally of coarse-grained, subhedral, interlocking Fe-carbonate crystals up to about 1 mm in diameter.

In summary, I believe this sample is best explained as an intensely carbonate-sericite altered and Fecarbonate veined, likely originally granophyre altered, fine-grained Moyie intrusive (gabbro). VR55782A: ALTERED (SILICIFIED, ?ALBITIZED, MINOR SERICITIZED) SILTSTONE; CLOTS OF OXIDIZED SULFIDE-MUSCOVITE-?CHLORITE-TOURMALINE

From mapping station NT210 (VR55774A); described as orange/white, strongly oxidized, moderately bleached (?argillic alteration), thick bedded siltstone with 5% galena. The offcut shows a grey-white, blotchy-textured, fine- to medium-grained, siliceous rock, with abundant red-brown limonite on weathered surfaces; there is no yellow stain for K-feldspar, and no reaction to cold dilute HCl, and the rock is not magnetic. Estimated mode in thin section is approximately:

Quartz (?partly secondary)	45%
Opaque (mainly limonite; some ?galena)	25%
Alkali feldspar (?albite)	20%
Muscovite, sericite	5%
Chlorite	2-3%
Tourmaline (schorl)	1%
?Pb-oxides or ?jarosite	<1%
Unidentified (?allanite)	<1%

This sample is so heavily overprinted with limonite that it is difficult to see the rock. However, it appears to be mostly composed of quartz, with interstitial, partly sericitized alkali feldspar.

Quartz forms subrounded to anhedral, likely mostly originally detrital, grains up to 0.25 mm in diameter that are separated by a "hash" of finer-grained (mostly <35 micron) anhedral, interlocking, variably altered alkali feldspar crystals. The feldspar has distinctly negative relief compared to the quartz and is therefore likely albitic. Rarely, polysynthetic twinning is visible, with extinction on 010 up to 12 degrees. In places the feldspar is replaced by up to 10% fine flakes of sericite (mostly <25 microns in diameter).

Scattered "clots" of opaque and limonite, plus muscovite, are similar to peripheral alteration and mineralization seen near Sullivan (for instance, on North Star Hill. near the base of the ski runs and on the ski slopes). Opaques consist of both ?sulfides (could be galena and/or iron sulfides, the former surrounded by narrow, generally <0.1 mm thick rims of ?Pb oxide or ?jarosite, but without a polished surface it is not possible to be sure). Limonite is bright red-brown and abundant; no sphalerite, which would be isotropic under crossed polars, is identifiable. Minor green-brown tourmaline (schorl, F/M perhaps 0.7) forms subhedral and in places ragged prisms up to 0.25 mm long, that commonly appear to be related to or more abundant in and near the clots. Muscovite flakes are subhedral to somewhat ragged, up to 0.25 mm in diameter; in places they are intergrown with a low birefringence, but length-fast, micaceous mineral that could be chlorite (fairly Fe-rich), but is also so Fe-stained that it is hard to be sure they are not Fe-stained muscovite. Aggregates up to 0.3 mm across composed of an unidentified, moderately high relief but low birefringence mineral are also found in some of the clots; I am not sure what this mineral is, but it could be ?allanite, but it usually shows radiation-damaged haloes around it if it is near chlorite, and these haloes are not evident in this sample.

In summary, this sample does appear to be an altered siltstone (possibly silicified and albitized, partly sericitized, and with minor but likely hydrothermal tournaline) that contains clotty concentrations of sulfidemuscovite-?chlorite-tournaline and sulfides (likely including ?galena but now mainly converted to limonite). This type of alteration is typical of the periphery of mineralized systems in the Aldreidge (such as North Star Hill -Sullivan).

VR55783A: SILICIFIED, SERICITIZED SILTSTONE CUT BY IRREGULAR VEINLETS OF QUARTZ FE-CARBONATE AND SULFOSALT; RARE ARSENOPYRITE

From Silver Key property, described as tan/brown, moderately silicified siltstone with miargyrite? in stringers along fractures. Offcut is grey to tan and fine-grained, composed mainly of quartz with minor interstitial feldspar (does not stain yellow for K-feldspar) and is cut by narrow stringers of quartz and later sulfides or sulfosalts. The rock is not magnetic and shows no reaction to cold dilute HCl; estimated mode in polished thin section is approximately as follows:

Quartz (partly secondary)	65%
Sericite (mainly after feldspar)	25%
Alkali feldspar (sericitized)	3-5%
Carbonate (?ankerite/siderite)	3-5%
Sulfosalt (could be miargyrite)	1-2%
Rutile	<1%
Arsenopyrite	tr

The bulk of this slide is composed of relatively fine-grained quartz and interstitial sericite (likely mostly after feldspar, but some could be after former ?biotite). However, there is a good deal of secondary silica, in the form of coarser overgrowths, finer pervasive material, and poorly organized veinlets (some with significant sulfide content). There are also veinlets of carbonate.

In general, former ?detrital grains of quartz are subhedral to subrounded in outline and up to about 0.35 mm in diameter. Interstices are filled by fine-grained sericite (ragged to subhedral flakes mainly < 20 microns in diameter) but there are also scattered flakes of muscovite up to 0.1 mm in diameter, that could be ?detrital. The distribution of the fine-grained sericite is clearly after former alkali feldspar that formed anhedral to subhedral crystals, <0.1 mm in diameter; traces of this feldspar remain in places, but most are completely sericitized. Traces of ?rutile form clusters of 10-25 micron crystals in some mica and carbonate clusters.

Carbonate is scattered throughout the rock, forming small subhedral crystals mostly <0.1 mm in diameter, also interstitial to the quartz and possibly replacing former ?mafic or feldspar crystals. The high relief of this carbonate and the lack of reaction in the offcut suggests it may be Mg- or Fe-carbonate (dolomite or ?ankerite).

Secondary quartz is generally coarser, forming subhedral crystals that range up to almost 2 mm in diameter and have ragged, scalloped borders along which they are intergrown with other quartz crystals or muscovite (ragged flakes up to 0.5 mm in diameter), minor carbonate (ragged subhedra to 0.25 mm diameter) or, in places, sulfides. However, there is a progression from carbonate-poor veins to those with abundant carbonate (euhedral crystals up to 2.2 mm long, possibly ankerite or ?siderite since they are commonly strongly altered along fractures and rims to limonite).

Opaques include sulfosalts similar in reflectance to galena but mainly anisotropic, forming sub- to euhedral crystals up to 0.5 mm in diameter and possibly containing rounded blebs of ?another sulfosalt up to 0.2 mm long (distinguished by more pronounced anisotropism, although this could be a function of the orientation of the crystals and there only be one sulfosalt present), and euhedral rhombs of arsenopyrite to 0.25 mm diameter (mainly scattered in the wallrock). The optical properties (reflectance, colour, anisotropic colours) and habit are certainly permissive for miargyrite, but this is not conclusive. In general, it is not possible to identify sulfosalts, particularly Ag-Sb-Pb sulfosalts, with certainty, without at least SEM and usually microprobe analysis.

ŧ

VR55784A: INTERLAYERED TOURMALINITE (SCHORL, QUARTZ, SERICITE) AND SILICIFIED SILTSTONE (QUARTZ, SERICITE, TOURMALINE) CUT BY QUARTZ-TOURMALINE-?PYRITE

From mapping station RZ036 (VR55867A); described as off-white, bleached siltstone with dark grey acicular tourmaline bands <1 cm thick. Offcut shows interbedded black ?tourmaline layers and white ?albite or silicified beds, cut by a black and white breccia or brecciated vein of similar but comminuted material. The vein or breccia is also distinguished by minor amounts of red-brown ?limonite (or partly oxidized Fe-carbonate). The rock is not magnetic, and shows no reaction to cold dilute HCl (even where powdered) and no stain for K-feldspar in the etched offcut. Estimated mode in thin section is approximately:

Quartz (partly secondary)	50%
Tourmaline (schorl)	35%
Sericite (muscovite)	13-15%
Opaque (limonite after ?pyrite)	1-2%
?Rutile	<1%

Pale-colured bands in this sample are composed primarily of quartz and minor interstitial sericite, with scattered tournaline crystals. The quartz crystals are very fine-grained (anhedral and average about 50 microns, but rarely up to 0.1 mm and subhedral). They may represent mainly detrital grains that have been partly recrystallized and overgrown by secondary silica. Sericite, or muscovite, forms subhedral to euhedral flakes mainly <30 microns in diameter. Tournaline "crystals" are mainly green to brown and consist of somewhat ragged aggregates of 20-30 micron crystals with subhedral outlines up to 0.15 mm long. Opaques look to be minute (10-20 micron) euhedral, dark brown (?Fe-rich) crystals of ?rutile.

Dark-coloured bands are composed primarily of tourmaline with minor interstitial quartz and sericite. Tourmaline crystals are subhedral to euhedral, up to 1 mm long, and dark brown to green in colour (indicating schorl with a relatively high F/M ratio possibly up to 0.8 or 0.9). They have the same recrystallized look as the disseminated crystals in the pale-coloured bands, but are coarser and less obviously composed of small sub-domains. Quartz forms subheddral interlocking crystals up to 0.15 mm in diameter; sericite forms interstitial flakes up to 30 microns in diameter that appear in places to ?replace tourmaline, but this may be an erroneous impression. Minor opaques appear to be mostly interstitial and largely limonite, although there may be traces of rutile also. The limonite appears to be after former ?sulfide such as ?pyrrhotite, or in one clot (see below) where coarser (up to 1.5 mm) pseudomorphs have cubic to rectangular outlines, could be after ?pyrite.

The brecciated portion of the sample is composed of coarse, sub- to euhedral crystals of quartz up to3.5 mm in size, containing euhedral limonite pseudomorphs and clots of needle-like to extremely fine (felted) tourmaline, similar in composition to that in the main body of the rock. This portion of the rock is clearly a vein when seen in thin section, cutting off the tourmalinite layers in the rock.

Thus this sample is confirmed as interbedded intensely tourmalinized ("tourmalinite") and ?silicified rock, with minor to possibly significant oxidized remnants of sulfide in some places.

¥

VR55785A: QUARTZ-AMPHIBOLE-GARNET-SPHALERITE-ARSENOPYRITE-PYRRHOTITE VEIN IN QUARTZ-BIOTITE-GARNET-SPHENE ALTERED SILTSTONE

From the Good Boy prospect, described as <2 cm widequartz vein with sphalerite, silver/arsenic sulfide on selvages, in light grey siltstone. Offcut shows 2-3 cm diameter pink (Mn-rich) clots of garnet in the dark grey, micaceous wallrock adjacent to and ?included in the vein. Both the vein and wallrock are slightly magnetic but show no reaction to cold dilute HCl and no stain for K-feldspar. Estimated mode in polished thin section is approximately:

Quartz (largely secondary, vein)	55%
Biotite (partly chloritized)	15%
Garnet	10%
Amphibole (?tremolite-actinolite)	10%
Sphalerite	3-5%
?Arsenopyrite	3-5%
Pyrrhotite	1-2%
Sphene	<1%
Chalcopyrite	tr

Wallrock consists mainly of a fine-grained aggregate of quartz and biotite, with minor sphene and sulfides, hosting scattered large clusters of garnet. In general, quartz occurs as subangular to anhedral grains mostly <0.1 mm in diameter and probably mostly relict detrital in origin, in a matrix of fine subhedral (25-75 micron) pale brown biotite flakes. However, in places the quartz is organized along narrow fractures or veinlets (mostly <0.5 mm thick), and in these the quartz forms subhedral to anhedral crystals up to 0.3 mm in diameter, mixed in places with minor amphibole; minor amphibole also occurs along the selvages of these veinlets, as for the major vein (see below). Garnet occurs as clusters up to 3 mm in diameter composed of sieve-like crystals that contain abundant inclusions (of amphibole, quartz and biotite, plus minor ?sphene). Amphibole cyrstals are subhedral to ragged and up to 0.25 mm long, with pale green pleochroism suggesting a member of the ?tremolite-actinolite series, and in places partly altered to fine flakes of secondary biotite. The garnet appears to be completely isotropic and unzoned.

The major vein is composed of coarse, subhedral to anhedral crystals of quartz that in places are optically continuous for up to almost 1 cm, although showing undulose extinction and other signs of strain. Most are smaller and subhedral, less than about 1.5 mm in maximum dimension, and relatively unstrained. The vein contains stringers and schlieren of sulfide and highly altered wallrock that mostly consist of amphibole (colourless subhedral crystals that may be more Mg-rich, less Fe-rich than in the wallrock) but in places also consist of abundant biotite and garnet plus scattered clusters of sphene or ?rutile. Garnet crystals are in general more euhedral and less sieved by inclusions than the crystals in the wallrock; they are however all isotropic and unzoned. In places the garnet crystals are set in a matrix of chlorite (subhedral flakes to 0.15 mm with optical characteristics (near-zero to length-fast birefringence, very pale green colour, non-pleochroic) suggestive of median F/M near ?0.4-0.5; the chlorite may be after biotite. Sphene forms ragged, shapeless clusters up to 0.5 mm across composed of subhedra mostly <50 microns in diameter.

Sulfides include bright red-brown sphalerite (with moderate Fe content indicated by the colour) forming mainly subhedral crystals up to 0.5 mm diameter but aggregating to 1.5 mm, and rhombic to needle-shaped crystals of arsenopyrite up to 0.5 mm long, plus minor pyrrhotite as subhedral to rounded crystals mostly <0.3 mm in diameter. Most of the pyrrhotite appears to be peripheral to the arsenopyrite (i.e., surrounds it as discontinuous layers) and is partly oxidized (shows lamellar to bird's-eye texture typical of weathering and replacement by pyrite/marcasite, but is still magnetic as indicated in hand specimen). The arsenopyrite contains rare subhedral chalcopyrite crystals up to 0.1 mm in diameter and traces of fresh pyrrhotite up to 20 microns in diameter, plus rare inclusions of a silvery mineral that could be galena or a silver sulfosalt (at 20 microns, too small to detect anisotropism).

Thus the vein contains zinc, iron, and arsenic; traces of silver could be present in the inclusions in the arsenopyrite. In response to your question about the origin of the various sulfides, I am sorry that there does not appear to be any obvious separation into a vein or remobilized, or pre-vein, ?sedex sulfide assemblage. Such questions are usually better defined with larger-scale features than with petrographic-scale observations. The presence of garnet both in the vein and the altered wallrock is interesting, especially if it could be analysed by SEM or probe and found to be manganiferous; this might suggest the observed vein mineralization is in part a remobilization of former sedex mineralization.

VR55786A: INTENSELY MUSCOVITE-BIOTITE+/-QUARTZ, ?SULFIDE ALTERED GRANOPHYRE OR GABBRO CUT BY MUSCOVITE-BIOTITE-?BERYL-?FLUORITE+/-?SULFIDE VEIN

From mapping station RZ052 (VR55957A); described as brown, micaceous, recrystallized and strongly oxidized gabbro, with small veinlets that seem to be anomalous in Zn and W, plus ?beryl, muscovite and quartz (similar veinlets occur as sheets in Lower Aldridge). The offcut shows a dark, strongly altered gabbro traversed by a 1-2 cm thick, coarse-grained quartz vein; the offcut is not magnetic and shows no reaction to cold dilute HCl or stain for K-feldspar. Estimated mode in thin section is approximately as follows:

Wallrock		Vein	
Biotite	40%	Muscovite	60%
Muscovite	40%	?Beryl	30%
Quartz (?secondary)	10%	?Fluorite	5%
Opaque (limonite, ?sulfide)	10%	Biotite	3%
		Opaques (limonite)	2%

Wallrock consists of sprays of intergrown, fine-grained pale brown (partly "bleached", or sericitized) biotite, forming subhedral flakes mostly <0.1 mm in diameter, and coarser, more euhedral crystals of muscovite (up to 0.35 mm in diameter), in places mixed with a little quartz (anhedral, likely secondary crystals up to 0.7 mm indiameter) plus minor opaques. The opaques are all basically limonite, with outlines that vary from subhedral, up to 0.7 mm in diameter (could be pseudomorphs after ?pyrrhotite; associated with the coarser quartz) to transported interstitial stains of mostly <25 microns in diameter. The overall impression is of an intensely altered gabbro that may have been granophyre altered initially and then been largely muscovitized (sericitized) adjacent to the vein.

The vein consists of an unusual mineralogy in that quartz is relatively rare (as in the wallrock) and instead is composed mainly of mica and what appears to be ?beryl and minor ?fluorite. The mineral tentatively identified as beryl has all the right optical characteristics: low birefringence (weak first-order grey, similar to apatite but slightly lower); positive relief compared to quartz; negative sign (length-fast), and forms slender elongated prismatic crystals up to 4 mm long that in places show minor 0001 parting, or in cross section have rounded to hexagonal outlines. Most of the mica is coarse, euhedral muscovite (up to about 1.5 mm in diameter) but in places there is also minor very pale, washed-out looking ("bleached") biotite to about 0.5 mm in diameter. Fluorite (?) forms subhedral crystals or masses up to 3 mm in diameter that are isotropic and have negative relief, and a moderately well-developed cleavage at somewhat more than right angles. Quartz forms relatively uncommon, large rounded to anhedral crystals up to 2 mm in diameter with positive optic sign distinguishing them from ?beryl.

The assemblage muscovite-beryl-quartz-?fluorite in veins, with Zn and W (and usually Sn) is something I would associate with Cretaceous granites (which are certainly known in the area, and on the other side of the ridge from your camp, early exploration was focussed on such vein mineralization in several large trenches in the cirques at the head of Greenland Creek). The critical question in sedex exploration in that area is, how much of the anomalous Zn is due to (remobilized) sedex mineralization and how much to introduction by the Cretaceous intrusives?

VR55787A: FOLIATED, GRANOPHYRE (QUARTZ-BIOTITE-AMPHIBOLE-SPHENE-?EPIDOTE) ALTERED GABBRO CUT BY QUARTZ-AMPHIBOLE-ALBITE-ARSENOPYRITE VEIN

From station VR55896A, described as brown, foliated, medium-grained, strongly oxidized gabbro with 3% blebby arsenopyrite, trace pyrite along a fracture plane. The offcut shows a dark green gabbro with an altered texture, cut by a <1 cm thick vein of quartz and sulfides (arsenopyrite, ?pyrrhotite that is weakly magnetic). There is no reaction to cold dilute HCl and no stain for K-feldspar; estimated mode in thin section is approximately:

Quartz (?partly secondary; vein)	45%
Biotite (brown and green)	35%
Amphibole (?hornblende)	7%
Plagioclase (?albite;vein)	5%
Opaques (?arsenopyrite, pyrrhotite)	5%
Sphene	1-2%
Unidentified (??allanite or epidote)	1%
Apatite	<1%

The bulk of this section consists of an intergrowth of quartz and biotite crystals with a somewhat layered texture; some of the ill-defined layers, which are generally less than about 1 mm in thickness, contain scattered amphibole, minor sphene and an unidentified mineral that could be ?allanite. Quartz forms small subhedral crystals mostly <0.1 mm in diameter, commonly in lensey to subrounded aggregates or domains up to about 1 mm in diameter, with a tendency to elongation parallel to the foliation of the rock; these domains are suggestive of the sites of former ?feldspar crystals. The foliation is mostly defined by alignment of biotite flakes, which are mostly pleochroic from pale yellow to dark brown and <0.25 mm in diameter, but in some layers are mixed with bright green pleochroic crystals up to 0.5 mm in diameter (probably distinctly Fe-rich to judge by their colour). Amphibole is generally not important in these layers except near the vein. Sphene is important in some layers, forming small sub- to euhedral crystals up to 0.25 mm in diameter; this abundance and distribution of sphene is typical of all gabbros in the Aldridge. In some layers, minor amounts of another mineral with lower relief and lower birefringence than sphene are difficult to identify with certainty, but could be ?allanite or merely epidote; they form rounded to subhedral crystals up to 0.1 mm in diameter, but lack obvious radiation-damaged haloes around them. Rare apatite forms subhedral crystals up to 0.1 mm long, concentrated in the mafic layers which probably represent sheared-out, altered former mafic minerals.

The vein consists of quartz, amphibole, biotite, plagioclase and sulfides. In the vein, irregular bunches or lenses of quartz consist of subhedral crystals up to 1.25 mm in diameter showing slight evidence of strain (undulose extinction, some sub-grain development). Amphibole forms very dark green subhedral crystals up to 1 mm long (could be hornblende) commonly intergrown with, but not obviously replaced by, the biotite. Biotite forms subhedral crystals up to 0.3 mm in diameter with pale yellow to dark brown pleochroism. Sulfides, based on hand sample examination only, appear to be mostly arsenopyrite but may also include minor ?pyrrhotite (no polished surface to examine). In places, the vein contains medium- to coarse-grained, subhedral to rounded crystals of ?plagioclase up to 1.5 mm in diameter, distinguished by hosts of fine (micron-sized) inclusions and relief apparently negative compared to quartz. This suggests that the composition is likely albitic (no yellow stain for K-feldspar in the etched slab). Twinning is only rarely seen and is very poorly defined.

This gabbro has probably been strongly granophyre altered, and has been foliated, but does not appear to me to be strongly oxidized (e.g. the fresh sulfide).

VR55788A: GABBRO (AMPHIBOLE-PLAGIOCLASE-?ILMENITE) ALTERED TO CHLORITE-EPIDOTE-SPHENE AND MINOR LIMONITE

From mapping station RZ025 (VR55854A); described as green, equigranular, medium-grained, strongly chloritized gabbro with anomalous zinc geochemistry. Offcut shows a fairly typical gabbro without obvious signs of mineralization except rare clots of red-brown ?limonite or sphalerite. The sample is not demonstrably magnetic and shows no reaction to cold dilute HCl and no stain for K-feldspar in the offcut; estimated mode in thin section is approximately:

Amphibole (?hornblende)	40%
Plagioclase (altered, relict)	35%
Chlorite (after amphibole)	10%
Epidote (after plagioclase)	10%
Sphene	3-5%
Opaques (?ilmenite: included in sphene)	<1%
Limonite	<1%

This is actually a fairly fresh (unaltered), non-granophyre altered gabbro which retains traces of its original igneous texture with subhedral amphibole and ragged, altered plagioclase relics both of around 1-2 mm size.

Amphibole crystals are generally subhedral, up to 1.5 mm in diameter, and have pale green pleochroism suggesting hornblende or ?actinolitic hornblende. Some of the better preserved crystals contain trails of micron-sized inclusions suggestive of former Schiller structure (a characteristic texture of pyroxenes that likely formed the precursor to most of the amphibole in the Moyie intrusives). The more altered crystals are attacked at the margins by fine, fibrous ?secondary amphibole (needles mainly <0.25 mm long) and then by surrounding or cross-cutting chlorite (subhedral flakes up to 0.2 mm diameter, with optical characteristics such as strong green pleochroism and length-slow birefringence indicating moderate Fe content, F/M perhaps 0.5).

Plagioclase crystals are only vaguely twinned or zoned and show moderate to strong alteration to fine epidote and lesser chlorite (both as subhedral crystals mostly <50 microns in diameter; the epidote is relatively colourless, implying low Fe content). The composition of the plagioclase is no longer determinable due to the alteration, and lack of quartz to compare refractive indices with, but the general appearance and abundance of epidote suggests a fairly calcic composition.

Accessory minerals are mainly euhedral to subhedral aggregates of sphene or sphene with cores of ?ilmenite, in places partly oxidized to limonite. It is likely these that are seen as red-brown aggregates in the offcut, as no iron sulfides, limonite pseudomorphs after sulfides, or sphalerite can be seen in the thin sectdion. The sphene crystals are subhedral and up to 1 mm across; ?ilmenite is corroded to rounded and generally <0.5 mm in size. Limonite mostly forms amorphous stains interstitial to silicates, presumably due to transport of material from oxidizing Fe-Ti oxides.