

ARIS Summery Report

				• • • • • • • •						
Regional Geologist,	, Smithers			Date Approv	ed: 1999.	05.21		Off Confid	iential:	1999.11.13
ASSESSMENT RI	EPORT: 2586	8		Mining Divisi	on(s): S	keena				
Property Name:	Coulter									
ocation:	NAD 27	Latitude:	56 35 00	Longitude:	130 30 00	UTM:	09	6271800	407863	
	NAD 83		56 34 59	Longitude:	130 30 07	UTM:	09	6271985	407746	
	NTS:	104B09W								
amp: 051	Toodoggon	e Camp								
Claim(s):	Coulter 1									
Operator(s): Author(s):	Homestak Javorsky,	e Canada Inc. David								
Report Year:	1998									
lo. of Pages:	26 Pages									
Commodities Searched For:	Gold, Silve	ar, Lead, Cop	per, Zinc							
General Work Categories:	PROS									
Nark Done:	Prospectiv		g - (375.01	ia;)					14 ₂ - 1 -	
(eywords:	Dacites, H	azelton Grou	p, Jurassic, M	udstones, Rhyolit	85					
statement Nos.:	3127393									
AINFILE Nos.:										
Related Reports:	23226									

1998 Prospecting Report Coulter 1 Mineral Claim Northwestern British Columbia, Canada

Located at 56° 35' North Latitude And 130° 30' West Longitude On Mineral Claim Maps 104B/9W and 104B/10E In the Skeena Mining Division

> Prepared on behalf of Prime Resources Group Inc. Suite 1100, 1055 West Georgia Street P.O. Box 11115 Vancouver, British Columbia, Canada

> > David Javorsky Prospector, FMC #113058 P.O. Box 806 Stewart, British Columbia Canada, V6B 4W3

Dated November 16, 1998 CESCMENT REPORT

SUMMARY

The Coulter 1 mineral claim is situated 8 kilometres southwest of the Eskay Creek Mine in Northwestern British Columbia. The claim was staked for Prime Resources Group Inc. by contract staker Bruce Hobson on February 2, 1998.

During the 1998 summer field season, a prospecting program was done on the Coulter 1 mineral claim. The program included stream sediment sampling, rock sampling, a Self-Potential survey, and general rock pounding/prospecting, supplemented with hand trenching. A grid was also established on the claims.

Nineteen (14) stream sediment samples were collected with two samples, S-21 and S-29, returning values of 112 Au ppb and 212 Au ppb respectively.

Eleven (11) rock samples were collected as well as with all samples sent in for assay showing sulfide mineralization. Approximately 18 cubic metres of rock and overburden were hand-trenched in order to obtain the best samples possible. No significant precious or base metal values were returned from samples.

TABLE OF CONTENTS

Summary	i
Table of Contents	ii
List of Figures	ü
List of Tables	
List of Appendices	ii
1.0 Introduction	
2.0 Location, Access and Physiography	2
3.0 Claim Status	
4.0 History	6
5.0 Stream Sediment Sampling	7
6.0 Geophysical Prospecting	
7.0 Prospecting	11
	12
9.0 References	
10.0 Certificate of Qualifications	

LIST OF FIGURES

Figure 1:	Location Map	3
	Mineral Claim Map	
	Location of Stream Sediment Samples	
	1998 Self-Potential Survey	
•	Rock Sample Location Map	

LIST OF TABLES

Table 1:	Claim Status	4
----------	--------------	---

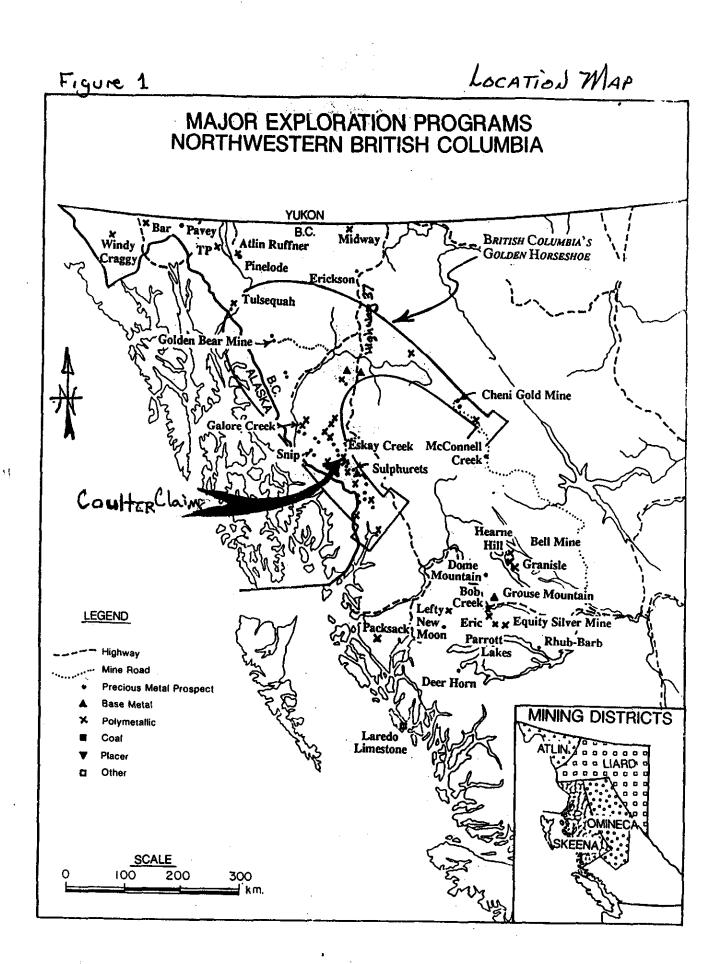
LIST OF APPENDICES

Appendix A: Statement of Expenditures Appendix B: Certificates of Analysis

1.0 INTRODUCTION

11

This report constitutes a summary of a prospecting program that was carried out on the Coulter 1 Mineral Claim by the author during the 1998 field season.

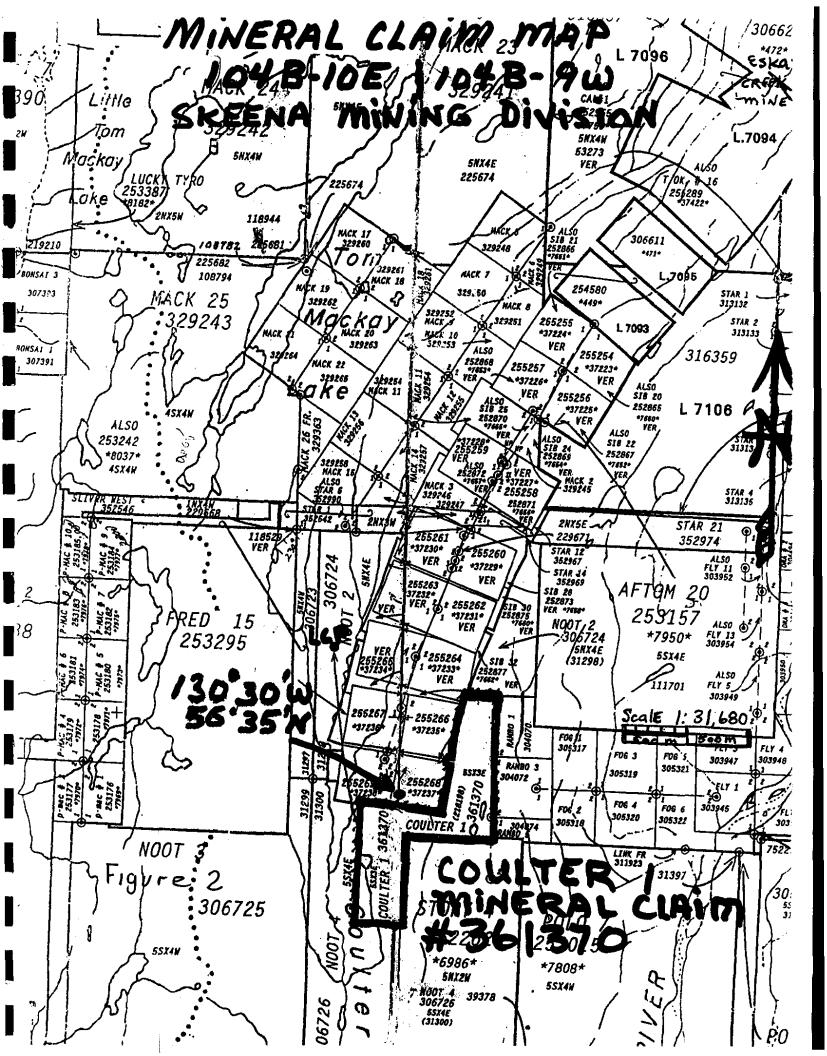

This report is being prepared for assessment purposes and covers the amount of \$9,016.50 in exploration expenditures.

2.0 LOCATION, ACCESS AND PHYSIOGRAPHY

The Coulter Property consists of one mineral claim and is located on Crown Land within the Skeena Mining Division of British Columbia (Figure 1). The center of the Coulter 1 mineral claim is located at 56° 35' north latitude and 130° 30' west longitude and extends onto both mineral maps 104B/10E and 104B/9W.

Access to the property from the Cassiar Highway (B.C. Highway #37) is by means of the main Eskay Creek Mine road to the exploration camp at Km 45 and then by helicopter to the property.

The area is covered by a mature spruce forest with heavy ground cover and is mountainous with ridges of volcanics and sediments running approximately north to south. Travelling along stratigraphy can be as easy as a stroll in the park while travelling east to west can be difficult to hazardous.



3.0 CLAIM STATUS

The Coulter 1 Mineral Claim is located in the Skeena Mining Division of British Columbia (Figure 2 and Table 1). The claim was staked for Prime Resources Group Inc. by contract staker Bruce Hobson on February 2, 1998. A portion of the Coulter 1 mineral claim covers the old Dup 7 and Dup 8 claims that were cancelled pursuant to a Section 50 complaint. Another portion of Coulter 1 replaces the old Sun 6, Rambo 2, Rambo 4, and Rambo 6 claims which were cancelled pursuant to a Section 35 complaint.

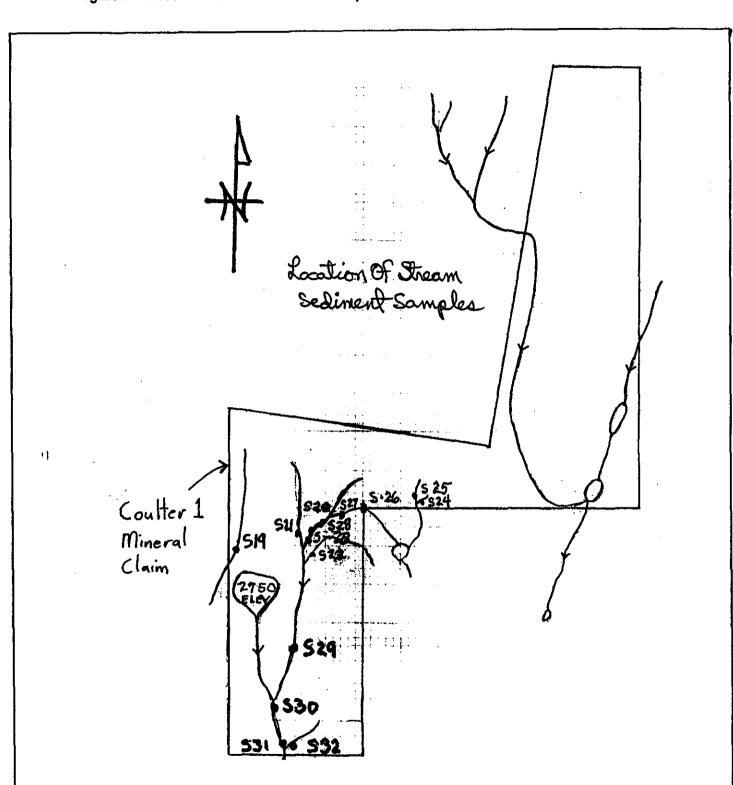
Table 1: Claim Status.

Record Number	Claim Name	Units	Record Date	Expiry Date
<u>361370</u>	Coulter 1	15	1998/02/07	1999/02/07
Total	1	15		

4.0 HISTORY

11

The Eskay Creek area has been the focus of many exploration programs dating back to 1932. Early prospectors seeking precious metals in the Iskut River Region were attracted by the line of gossanous bluffs extending for more than 7 kilometres beside Eskay and Coulter Creeks. Initial work focussed in the immediate vicinity of the bluffs and resulted in the discovery of 30 zones of surface mineralization. Exploration then continued sporadically over the next 57 years with the involvement of 19 different companies before the discovery of the main 21B orebody at the Eskay Creek.


In January 1995, Homestake Canada Inc./Prime Resources Group Inc. commenced production from the Eskay Creek Mine with a proven and probable mining reserve of 1.08 million tonnes grading 65.5 grams of gold per tonne and 2,930 grams of silver per tonne. The mine currently operates in the 300 to 500 tonne per day range with about half of the ore being milled on site and the other half directly shipped to smelters in Japan and Noranda, Quebec.

5.0 STREAM SEDIMENT SAMPLING

Q.

A total of 14 stream silt samples were taken from the active area of stream beds on the Coulter 1 Mineral Claim (Figure 3). The procedures used were those outlined in "Introduction to Prospecting", B.C. Dept. of Geological Survey, Paper 1986-4, by E.L. Faulkner. The dried samples were screened to minus 80 mesh and fine material was assayed by the ICP method.

Samples S-21 and S-29, taken along the same tributary, returned values of 112 Au ppb and 212 Au ppb respectively with all other samples returning less than 10 Au ppb.

Note – The stream silt samples were taken from the active area of the stream bed. The procedure outlined in "Introduction to Prospecting", B.C. Dept. of Geological Survey, Paper 1986-4, by E.L. Faulkner, were followed. The dried samples were screened to minus 80 mesh and fine material was assayed by the I.C.P. method.

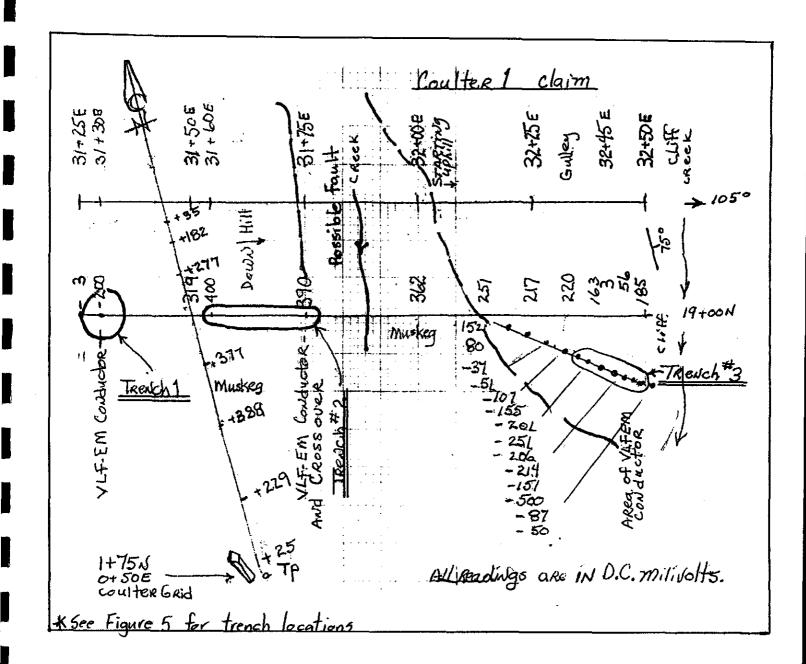
Figure 3: Location of Stream Sediment Samples

6.0 GEOPHYSICAL PROSPECTING

A Self-Potential survey was used to try and define mineralization during the 1998 field program (Figure 4).

The Spontaneous Polarization or Self-Potential method depends on the fact that small voltages exist between any two points on the earth's surface. Anomalous voltages are often found where sulfide mineralization is oxidizing. Anomalous voltages are also caused by rocks containing graphite and by certain underwater conditions. Most explanations of the S.P. phenomenon propose that a wet sulfide (or graphite) body develops negative and positive electrical potentials at its top and bottom. When in contact with groundwater electrolytes, these oxidizing sulfides (or graphite) induce a spontaneous D.C. flow of current that can be measured.

A Micronta, high impedance, L.C.D., auto-ranging, polarity reversing, digital, direct current voltmeter capable of measuring one millivolt was used during the course of the survey on the Coulter 1 claim.


The author was trained in the Schlumberger method of electrical S.P. prospecting by Mr. Sherwin Kelly and followed those procedures outlined in "A Guide to Prospecting by the Self Potential Method", by S.V. Burr, 1982, Ontario Geological Survey, Miscellaneous Paper #99 (MP 99).

For the S.P. survey, a grid was established and the old geophysical VLF-EM crossovers identified during a survey on Noot claim in 1983 were found (see Assessment Report #23226).

At 31+30E/19+00N at a the site of an old VLF-EM conductor, the S.P. survey showed a reading of minus 200 millivolts. Trenching through eight feet of mud and muskeg exposed mineralized volcaniclastic material. Samples 32875 and 32876 are from this pit. Also, small veinlets of barite were observed with the mineralization.

At 31+60E to 31+75E, there was an S.P. high of positive 400 millivolts. This corresponded with another VLF-EM conductor along with a VLF-EM crossover. The topography could have also influenced this anomaly as it was steep, however trenching into the hillside did produce mineralized sediments. It is possible that a major fault passes along the bottom of the hill at this point. Samples 32873 and 32874 came from this trench.

At 32+45E on line 19+00N, there was an anomalous low reading on the S.P. This was also the area of a VLF-EM conductor. Prospecting around with the S.P. unit produced a very anomalous zone at 32+40E and 18+90N. This area was trenched across eight metres and produced graphitic horizons and bands of sulfides in the steeply dipping sediments. Samples 32869, 70, 71, and 72 were taken from this trench. The sediments appear to strike a few degrees to the west of due north-south and they dip 75° to the east. The survey was done at 0.2 m intervals and produced anomalous spreadings from minus 100 to minus 500 millivolts, which is typical of pyritic shales that have some graphitic in them.

Note - The three VLF-EM conductors match the Self-Potential anomalies. The position of the tail pot was chosen because it was at the average elevation and had a neutral reading. Good contact with the earth was made and was checked by placing the front pot a metre from the tail pot. The reading was +2.5 mv. When the position of the front pot and tail pot was switched, the reading was -2.5 mv. All readings were stable; August 26, 1998 D.J.

7.0 PROSPECTING

Traditional "boots and hammer prospecting" (walking and breaking rocks) becomes a problem with ground like the Coulter 1 claim where there is less than 5% outcrop exposure. Stream silt sampling has proven to be a good method of locating an area for follow-up work. Also, the S.P. survey has the abitlity to sense through pockets of glacial mud, tree roots, moss, muskeg, and overburden.

In 1993, while the ground was held by others, a VLF-EM survey was run using an EDA Omni Plus combined VLF-EM and magnetometer. Part of that survey extended onto ground now covered by the Coulter 1 claim. Line 19+00N, now covered by Coulter 1, showed a conductor and a crossover at 31+75E. The topography of the area showed that this could easily be a fault in the rock, most likely a splay off the main Coulter Creek fault. The S.P. measurements showed an S.P. high over the VLF-EM crossover which could be explained as water and graphite in a fault.

Two other VLF-EM conductors produced S.P. measurements that were anomalously low. When trenched, both showed disseminations and veinlets of pyrite. At 31+30E, there were also veinlets of barite with the pyrite and at 31+45E, there was graphite with the pyrite.

Following up the VLF-EM survey with an S.P. survey proved to be a helpful method for making sense out of the VLF-EM readings.

Hand-trenching was the only method of obtaining good rock samples (Figure 5). A total of 11 rock samples were collected but no significant results were returned.

Figure 5: Rock Sample Location Map

TReuch 3. 8mx lmx.5m. Layers of sedimentary Rock with pyrite mineralization and graphic horizon. Samples 32869,70,71and72 Mature Forest Very Little outcroup TRench 2. Bm × 1m× .7m Coulter 1 Two bands of silicified miveralized sediments Mineral Seperated by broken up Roten Rock probably due to faulting. Claim Samples 32873 and 32874 Revich# 3m across 2m daep in muskey over mud. Bottomed in mineralized relastic rock. 32866 mineralized Talus. samples 32875 2750 and' 32876. 32867 Rusta sectiments adcropping in creek bed.

8.0 CONCLUSIONS AND RECOMMENDATIONS

11

1) There is a sediment-rhyolite contact horizon on the ground that appears to be similar to the sediment-rhyolite contact that hosts the Eskay Creek Mine to the north.

2) Both stream sediment sampling and the S.P. method of geophysical prospecting worked well to locate mineralization in this area.

3) A major fault crosses the Coulter 1 mineral claim from north to south and displays a VLF-EM conductor/ crossover along with a self-potential high and two anomalous stream sediment silt samples. This stream be followed up on with sampling at close intervals, especially in the area of silt samples 21 and 29.

4) The property is covered by a mature spruce forest with less than 5% rock exposure and is relatively unexplored. The ground should be maintained in good standing

James David Javorsky November 16, 1998

9.0 REFERENCES

	Anderson, R.G. Evenchich, C.A.	(1990)	Where is the next Eskay Creek? Mining Review, Nov/Dec 1990 Volume 10, No. 6, p.33
	Bartsch, R.D.	(1992)	Eskay Creek area, Stratigraphy Update 104B/9, 10 Geological Fieldwork 1991 Paper 1992-1 B.C. Ministry of Energy Mines and Petroleum Resources
	Bartsch, R.D.	(1992)	A Rhyolite Flow Dome in the Upper Hazelton Group Eskay Creek area, 104B/9, 10 Geological Fieldwork 1991 Paper 1992-1 B.C. Ministry of Energy Mines and Petroleum Resources
	Britton, J.M. Blackwell, J.D. Schroeter, T.G.	(1989)	#21 Zone Deposit, Eskay Creek, Northwestern B.C. Exploration in British Columbia, 1989 B.C. Ministry of Energy Mines and Petroleum Resources
. 1	Buddington, A.F.		(1929) Geology of Hyder and Vicinity, Southeastern Alaska Bulletin 807 United States Geological Survey
! [Burr, S.V.		(1982) A Guide to Prospecting by the Self Potential Method Ontario Geological Survey, Miscellaneous Paper #99
	Dandy, L. Resources		(1990) Iskut River Mining Camp Geological Survey Branch, B.C. Ministry of Energy Mines and Petroleum
	Gottesfeld, A.	(1985)	Geology of the Northwest Mainland Kitimat Centennial Museum Association
	Grove, E.W.	(1971)	Geology and Mineral Deposits of the Stewart area, B.C. Bulletin 58 B.C. Ministry of Energy Mines and Petroleum Resources
	Grunenberg, P.	(1994)	Geological, Geochemical and Geophysical Report on the Noot Claim Group, B.C.D.M. Assessment Report #23226
	Hanson, G.	(1929)	Bear River and Stewart Map Area, Cassiar District, B.C. Memoir 159 Geological Survey of Canada
	Instrumentation, G.D.D. Inc.	(1997)	Prospecting Manual for the Beep Mat Model BM4T

Kelly, Sherwin, F.	(1957)	Spontaneous Polarization or Self Potential Method, in Methods and Case Histories in Mining Geophysics, Section E – Electrical 6 th Commonwealth Mining and Metallurgical Congress p.53 to 59 C.I.M.M.
Kelly, Sherwin, F.	(1926)	The Schlumberger Method of Electrical Prospecting, from the 1926 Transactions of the Canadian Institute of Mining and Metallurgy, p.71 to 75 C.I.M.M.
Lewis, P.D.	(1992)	Structural Geology of the Prout Plateau Region Iskut River Map area, B.C. 104B/9, Geological Field Work 1992 Paper 1992-1 B.C. Ministry of Energy Mines and Petroleum Resources
MacDonald, J.A. Lewis, P.D. Ettlinger, A.D. Bartsch, R.D. Miller, B.D.	(1993)	Basaltic Rocks of the Middle Jurassic Salmon River Formation, NW B.C. 104A, B, G Geological Fieldwork 1992 Paper 1993-1 B.C. Ministry of Energy Mines and Petroleum Resources
Park, J.	(1906)	A Textbook of Mining Geology
Roth, T. Godwin, C.I.	(1992)	Preliminary Geology of the 21A zone, Eskay Creek, B.C. Geological Fieldwork 1991 Paper 1992-1 B.C. Ministry of Energy Mines and Petroleum Resources
Roth, T.	(1993)	Surface Geology of the 21A zone, Eskay Creek, B.C. 104B/9W Geological Fieldwork 1992 Paper 1993-1 B.C. Ministry of Energy Mines and Petroleum Resources
Roth, T. Thompson, J.F.H. Barrett, T.J.	(1996)	The Precious Metal-Rich Eskay Creek Deposit, Northwestern B.C.
Silltoe, R.H.	(1985)	Ore Related Breccias in Volcanic-Plutonic Arcs Economic Geology Volume 80, p.1467-1514
Spurr, J.E.	(1926)	Geology Applied to Mining

ļ

10.0 CERTIFICATE OF QUALIFICATIONS

I, David Javorsky state as follows:

That I personally did the prospecting work presented in this report during August of 1998.

That I hold valid Free Miner's Certificate #113058.

That I have worked as a Prospector, Miner, Mine Millwright or Mine Developer for the past 30 years.

That I am a graduate of the Advanced Prospecting School, sponsored by the British Columbia Ministry of Education and the B.C. Ministry of Energy, Mines and Petroleum Resources.

That I have completed the "Petrology and Alteration for Prospector's" course presented by the British Columbia Geological Survey Branch, Prospector's training program.

That I have received instruction in the field methods and interpretation of Self-Potential Surveying from Mr. Sherwin Kelly.

That I believe the contents of this report to be true and accurate.

Dated this November 16, 1998

4

David Javorsky, Prospector

APPENDIX A

1

11

STATEMENT OF EXPENDITURES

STATEMENT OF EXPENDITURES

Prospecting 11.5 days @ \$350 per day.	\$4,025.00
<u>Mob/Demob</u> 2.0 days @ \$350 per day.	\$700.00
Room and Board 11.5 days at Camp 45 @ \$50 per day.	\$575.00
Helicopter Charter 2.6 hours @ \$761.50 per hour.	\$1,979.90
<u>Assays</u> 14 silt samples @ \$14.40 per sample. 11 rock samples @ \$19.00 per sample.	\$201.60 \$209.00
<u>Report Preparation</u> 2 days @ \$250 per day.	\$500.00
<u>Geological Supervision</u> 2 days @ \$413 per day.	\$826.00

Total Field Expenditures

I

I

\$9,016.50

APPENDIX B

CERTIFICATES OF ANALYSIS

• {

ļ

. (()	ſ		
- 194 - 194				
	1 MART	ONIAL PLA	SHA LAI	ay 178
			-	-

CERTIFICATE OF ANALYSIS iPL 9810916

2036 Columbia Skreet Vancouver, B.C. Canada V5Y 3E1

INTERNATIONAL PLAS								·								Phot Fax	(604)	879-7878 879-7898		
lient : Homestake roject: Star & Cou	Canada Inc ulter Claim		40 Sam 40-Sil	t t						[0	91615:5	8:44:89	290898 }	Out: In :	Sep 04, Sep 01,	1998 1998		Page Section	1 of 2 1 of 2	
Sample Name	Туре	Au ppb	Au g/mt	Ag ppm	Cu ppm	Pb ppm	Zn ppn	As p pm	Sb ppm	Hg ppm	Ho ppm	T1 ppm	B1 ppn	Cd pp n	Co ppm	Nti ppm	Ba ppn	Vi ppm	Cr ppn	
).J.J. 1).J.J. 2).J.J. 3).J.J. 4).J.J. 5	Silt Silt Silt Silt. Silt. Silt	2 2 2 5 5 6		0.1 0.2 0.1 0.2 0.1	90 35 29 52 110	18 17 43 49 27	375 218 108 78 210	49 87 51 103 339	\$ \$ \$ \$ \$	0000	7 6 3 3 4	<10 <10 <10 <10 <10	~~~~~	9.6 6.9 6.5 6.8 9.7	37 27 27 14 36	162 86 21 24 17	81 62 119 59 335	\$\$\$\$\$\$	54 72 15 39 21	
).J.J. 6).J.J. 7).J.J. 8).J.J. 9).J.J. 10	Silt Silt Silt Silt Silt	2 8 57 20 360		1.8 1.1 0.4 0.5 1.8	84 106 22 33 125	63 61 25 84 529	83 261 141 327 476	65 134 64 56 212	জ জ জ জ জ জ জ জ জ জ জ জ জ জ জ জ জ জ	0000	5 5 3 5 2	<10 <10 <10 <10 <10	~~~~	13.4 19.6 8.5 7.8 0.9	24 45 38 24 30	22 29 31 47 39	67 105 105 118 78	6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	23 36 19 43 34	
).J.J.11 .J.J.12 .J.J.13 .J.J.14 .J.J.15	Silt Silt Silt Silt Silt Silt	<2 <2 2 2 5		1.2 0.5 0.3 0.4 0.2	89 45 58 41 57	20 12 16 16 16	1153 473 348 352 287	54 40 50 47 51	55555 5555 5555 5555 5555 5555 5555 5555	00000	18 14 8 9 6	<10 <10 <10 <10 <10	~~~~	26.1 10.6 9.5 8.5 8.5	29 13 27 19 33	134 65 120 49 133	100 142 113 101 104	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	23 22 47 25 52	
), J. J. 16 , J. J. 17 , J. J. 18 , J. J. 19 , J. J. 20	Silt Silt Silt Silt Silt	<2 5 2 10 4		0.1 9.4 9.3 4.6 0.5	42 43 41 33 42	13 16 22 25 28	169 253 261 670 462	33 57 48 93 63	৩ ৯৯৯৯	00000	6 8 7 5 7	<10 <10 <10 <10 <10	8088	7.1 8.0 9.0 20.7 12.2	15 21 25 32 22	48 58 72 63 76	133 121 95 220 107	\$\$\$\$\$	31 29 29 34 30	
).J.J.21).J.J.22).J.J.23),J.J.24),J.J.25	Sfit Silt Silt Silt Silt	112 ~2 10 ~2 ~2		0.5 0.6 0.5 0.1 0.2	25 21 24 33 62	43 30 16 13 12	323 173 162 93 153	77 102 . 181 . 52 . 90	\$\$\$\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	00000	7 3 5 2 3	<10 <19 <10 <10 <10	~~~~	8.9 8.2 9.2 6.1 10.4	27 22 32 17 27	56 14 35 21 20	197 120 205 81 114	ও ওওওও	30 10 17 13 15	
).J.J.26).J.J.27).J.J.28).J.J.29).J.J.30	\$11t 511t 511t 511t 511t	~~ ~~ 212 ~2		0.2 0.1 0.2 0.6 .0.7	48 34 23 104 33	12 13 12 24 27	170 163 133 403 463	77 01 57 134 72	জ জ জ জ জ জ জ জ জ জ জ জ জ জ জ জ জ জ	4444	4 2 4 4	<10 <10 <10 <10 <10	~ ~ ~ ~ ~ ~	9.6 9.5 7.3 13.0 12.4	36 43 23 90 37	69 56 39 77 52	251 590 154 205 276	ও ওও ১ ও	49 27 35 34 27	
), J. J. 31), J. J. 32), J. J. 33), J. J. 34), J. J. 35	Silt Silt Silt Silt Silt Silt	4 ~2 ~2 ~2 ~2		0.7 0.5 0.1 0.5 0.6	47 58 26 103 71	33 15 14 51 103	622 409 121 180 412	92 67 49 57 92	\$ \$ \$ 5 6 \$	00000	10 5 2 2 3	<10 <10 <10 <10 <10	262AA	17.0 12.5 7.4 12.3 11.5	29 19 33 46 30	73 73 60 31 27)14 291 85 7 248	৩ ৩ ৩ ৩ ৩ ৩ ৩ ৩	41 55 64 23 21	
D.J.J.36 D.J.J.37 D.J.J.30 D.J.J.39	Silt Silt Silt Silt	4 4 4 4 4		0.2 0.3 <0.1 0.1	60 55 43 39	28 33 15 13	211 409 137 129	55 68 30 32	<5 <5 <5 <5	2220	1 3 2 2	<10 <10 <10 <10	8008	7.0 8.8 7.2 6.9	20 27 18 18	27 39 38 47	191 107 133 121	6 <5 5 <5	28 49 27 35	ł

2003

CERTIFICATE OF ANALYSIS

iPL 9810916

2036 Columbia Street

use .	-14	Sugar Cont
HANA!	HRAL PLAS	IN LADONITORY LTD.

2b1

3

	IPL 981
	1
les	

Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7878

02/02/20

101	Client : Nomestake Canada I Project: Star & Coulter Ch	Inc	-		10 San 40-si							[0916]	15:58:44:	8909 08983	Out In	: Sep 04, : Sep 01,	Fax 1998 1998	(604) 879-78 Page Sectio	98 1 of n 2 of	
	Sample Name	y ppa	Hn ppm	La ppm	Sr ppn	Zr pp u	Sc ppm	Ti X	A1 *	Ca X	Fe T	Hg X	K X	Na X	P X					
	D.J.J. 1 D.J.J. 2 D.J.J. 3 D.J.J. 4 D.J.J. 5	48 56 83 59 55	973 1353 692 886 3086	6 20 12 8 9	40 25 119 21 31	1 5 16 5 <1	8 5 6 10	0.05 0.07 0.40 0.09 0.02	2.18 2.10 2.20 1.94 1.58	0.32 0.32 1.20 0.17 0.42	5.54 4.48 4.92 5.34 7.14	1.21 1.22 1.44 0.58 0.72	0.07 0.10 0.23 0.07 0.09	0.02 0.03 0.41 0.01 <0.01	0.08 0.08 0.11 0.10 0.18					
TODC	0.J.J. 6 0.J.J. 7 D.J.J. 8 D.J.J. 9 D.J.J.10	110 86 112 39 56	408 2995 1109 2143 1877	10 26 29 13 15	90 64 144 23 37	31 6 25 2 6	7 9 8 3 4	0.47 0.24 0.59 0.06 0.24	2.24 3.77 3.37 1.80 2.40	0.92 0.76 1.60 0.34 0.44	9.56 7.07 5.89 4.63 5.59	1.17 1.47 1.82 0.95 1.06	0.17 0.14 0.30 0.12 0.10	0.29 0.10 0.55 0.03 0.09	0.14 0.18 0.12 0.12 0.22					
	0.J.J.11 9.J.J.12 D.J.J.13 0.J.J.14 0.J.J.15	55 52 51 50 49	1691 909 1411 931 1586	9 10 8 15 10	52 40 48 39 39	1 1 3 2	7 6 6 . 6	0.03 0.02 0.07 0.87 0.07	1.44 1.52 2.19 1.64 2.23	0.46 0.41 0.44 0.47 0.39	5.52 4.29 4.96 4.14 5.04	0.46 0.63 1.08 0.78 1.20	0.09 0.11 0.10 0.11 0.11	<	0.16 0.12 0.10 \$.13 0.09					
ñ	D.J.J.16 D.J.J.17 D.J.J.18 D.J.J.19 D.J.J.20	41 50 66 37 43	702 1558 886 4432 1154	11 10 17 13 11	47 47 79 65 44	1 2 11 3 2	B 7 5 2 4	<pre><0.01 0.08 0.23 0.09 0.07</pre>	1.79 1.75 2.28 1.49 1.73	1.09 0.58 0.79 0.73 0.47	4.73 4.69 4.89 5.62 4. 9 4	0.94 0.71 0.86 0.67 0.84	0.12 8.13 9.12 0.16 0.08	<0.01 0.04 0.14 0.05 6.05	0.15 0.15 0.11 0.10 0.09					
	0.J.J.21 0.J.J.22 D.J.J.23 0.J.J.24 D.J.J.25	44 35 40 46 82	3379 2270 4238 668 552	13 14 17 12 7	32 39 68 29 23	2 4 3 1	3 4 5 8 22	0.07 0.09 0.09 0.03	1.91 1.81 2.13 1.26 0.62	8.58 0.53 0.88 0.32 0.28	5.13 5.09 6.29 4.02 7.64	0.93 0.55 0.65 9.30 0.14	0.09 0.10 0.07 0.08 0.05	0.03 0.03 0.04 0.03 <0.91	D.09 0.15 0.13 0.12 0.24					
171. 2035	D.J.J.26 D.J.J.27 D.J.J.28 O.J.J.29 D.J.J.30	57 52 44 42 39	4447 1.24 2311 8371 6116	13 12 12 18 17	49 56 45 42 66	5 4 3 6 5	5 5 3 4 2	0.09 0.11 0.08 0.11 0.10	2.21 2.25 2.05 3.54 1.77	0.58 0.65 0.57 0.52 0.99	6.63 6.47 5.28 5.09 4.83	1.06 1.00 0.86 0.81 0.55	0.10 6.19 0.09 0.10 0.18	0.04 0.07 0.04 0.07 0.05	0.13 0.13 0.11 0.10 0.13			·		
22:01	D.J.J.331 D.J.J.32 D.J.J.33 D.J.J.34 D.J.J.35	53 49 53 32 40	6235 3089 2527 3106 4717	15 13 9 2 3	34 28 40 50 52	2 2 6 2 1	3 4 3 5 6	0.02 0.02 0.11 0.02 0.04	2.00 2.19 2.06 0.89 1.11	0.43 0.35 0.39 0.48 0.36	7.04 5.96 5.40 8.75 7.65	0.74 1.10 1.27 0.42 0.53	0.09 0.11 0.10 0.06 0.07	<0.01 <0.01 0.07 <0.01 <0.01	0.15 0.12 0.06 0.23 0.16					
96/90/60	D.J.J.36 D.J.J.37 O.J.J.38 O.J.J.39	41 48 33 42	1913 1734 1729 1007	5 5 6 7	35 32 32 39	<1 2 1 1	5 6 7 6	0.01 0.04 0.01 0.04	1.50 1.62 1.56 1.68	0.32 0.48 0.34 0.39	5.06 5.71 5.16 5.00	0.73 0.96 0.67 0.85	0.06 0.12 0.09 0.10	<0.01 0.02 <0.01 0.03	0.13 0.14 0.09 0.09					ť
б В	Hiniaum Detection Naximm Detection	2	1 10000	2 10000	10000	1 10000 1	10000	0.01 1.00 109	0,01 10.00 10P	0.01 10.00 ICP	0.01 10.00 ICP	0.01 10.00 ICP	0.01 10.00 ICP	0.91 5.00 ICP	0.01 5.00 ICP		-		<u>. </u>	

			iPL 9810916 Ca Ph Fa 40 Samples Out: Sep 04, 1999												Vanc Cana Phon Fax					
fient : Nomestake (roject: Star & Coul Sample Name	Canada Inc Iter Claim Type			Au	Ag .	Cu	Pb	Žn	As		Mg	No	п	9090898] Bi	In : Cd	: Sep 01, Co	, 1998 Ni	Ba	Section N	2 of 1 of Cr
).J.J.40	Silt	p:	179b <2	9/mt	0.1	рр н 52	13	рря 133	ppn 24		ppa <3	ppa 1	рр м <10	<u>ррм</u> <2	рри 6.9	pp 17	ppat 28	ppm 117	рри <5	µµна 19
						_C1	ERTI		TE O) L 9810		ALY	(SIS				: Sep 04.	Vanco Canai Phon Fax	i Columbi couver, B. ndz VSY 3 be (604) 8 (604) 8	.C. 3E1	2 of
lient : Homestake (roject: Star & Cou		40 Samples 40-Silt									/1615:	58:44:8	9090898]	In :	: Sep 01.	1998		Section	2 of	
Sample Name	V ppm	Nn: ppm	La ppn	Sr ppm	2r ppa	Sc pp n	Ti ¥	A) X	Ca X	Fe X		Ng X	K X	Na 1	P X				<u>. </u>	. <u> </u>
		835	5	33	1	7	0.01		0.36	5.02	0.9	.50	0.19	0.92	0.08					
D.J.J.40	31							•												
	31							•												
	31			•				·												

. .

PRIME RESOURCES GROUP INC.

ESKAY CREEK MINE

EXPLORATION DRILL CORE SAMPLES

LOT #: X8-3270

and a state of the second s

DATE: 05-Sep 1998

	SAMPLE	Àu	Ag	AuEq	Pb	Zn	Cu	As	Hg	Sb	MgO	A1203	S.G.	Moistu	
	number	g/t	g/t	g/t	%	%	%	%	ppm	%	%	%		wt.9	
1	32866	-1.0	-10		0.02	0.01	-0.01	-0.01	-1	-0.01					
2	32867	-1.0	-10		0.01	0.02	-0.01	-0.01	-1	-0.01					
3	32868	-1.0	-10		-0.01	0.01	-0.01	-0.01	-1	-0.01					
4	32869	-1.0	-10		-0.01	0.03	-0.01	0.01	-1	-0.01					
5	32870	-1.0	-10		0.01	0.02	-0.01	-0.01	2	-0.01					
6	32871	-1.0	-10		0.01	0.01	-0.01	-0.01	-1	-0.01					
7	32872	-1.0	-10		-0.01	0.01	-0.01	-0.01	-1	-0.01					
8	32873	-1.0	-10		0.01	0.02	-0.01	0.01	2	-0.01					
9	32874	-1.0	-10		-0.01	0.02	-0.01	-0.01	-1	-0.01					
10	32875	-1.0	-10		-0.01	0.02	-0.01	-0.01	7	-0.01					
11	32876	-1.0	-10		-0.01	0.02	-0.01	-0.01	-1	-0.01					
12															
13															
14															
15															
16															
17															
18															
19															
20															
21				, , , , , , , , , , , , , , , , , , , ,											
22															
23							_								
24															
25															
26						· ·									
						samples		11		base metals	66				
						total Au, Ag		22		total determ	inations	88			
												merged xis. dele dbf. del			

4

X8-3270.XLS

CERTIFICATION:_