GEOLOGICAL-GEOCHEMICAL ASSESSMENT REPORT

MINEI Rec'	RALTI J.	Ţļ	ES	BRAN	CH
	MAR	0	9	1999	والمنتخف ومجرو

VANCOUVER, B.C.

File

for the

FRAN PROPERTY OMINECA MINING DIVISION BRITISH COLUMBIA NTS 93K/16W

For

PLACER DOME NORTH AMERICA LTD P.O. BOX 49305 BENTALL STATION 600-1055 DUNSMUIR STREET VANCOUVER, B.C. V7X 1L3

By

R.C. Wells, P.Geo, FGAC Consulting Geologist Kamloops Geological Services Ltd. 910 Heatherton Court V1S 1P9

January 18, 1999

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

TABLE OF CONTENTS

. .

20

: «.

<u>د</u> .

. .

۰. .

. No - 1

......

÷.

4. .I

--

P	ag	e
---	----	---

SUMMARY			
 1.0 INTRODUCTI 1.1 LOCA 1.2 PHYSI 1.3 PROPI 1.4 EXPLO 1.5 REGIO 1.6 LOCA 2.0 1998 EXPLOR 2.1 INTRO 2.2 JULY H 2.3 OCTOH Surva Geol Soil of 	ION4TION AND ACCESS4IOGRAPHY4ERTY5DRATION HISTORY7DNAL GEOLOGY9L GEOLOGY AND MINERAL OCCURRENCES9ATION BY PLACER DOME14DUCTION14FIELD EXAMINATION14BER GEOCHEMICAL-GEOLOGICAL PROGRAM19ey Control Grid20ogical Mapping20Geochemical Survey25		
Heav	y Mineral Concentrate Sampling 30		
3.0 CONCLUSION	JS		
4.0 RECOMMENDATIONS			
5.0 REFERENCES			
6.0 STATEMENT OF COSTS			
7.0 STATEMENT OF QUALIFICATIONS			
LIST OF APPENDICES			
APPENDIX A	AT REAR Statement of Work		
APPENDIX B	July 1998 Property Examination. Sample Description and Analytical Results		
APPENDIX C	October 1998 Program. Sample Descriptions and Analytical Results		
APPENDIX D	Large Figure and Plans. October Program		

LIST OF FIGURES

: ; ;

Έ.,

•

. .

έ.,

: к. ,

t. An a

e... 1

2

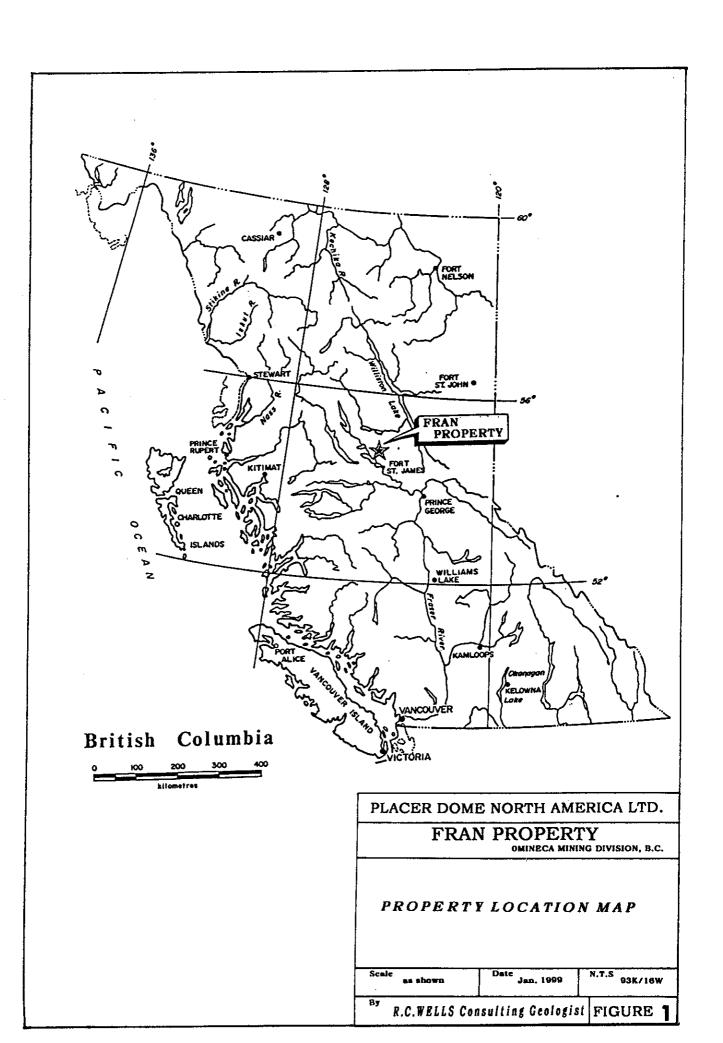
÷. .

e.

		Pa	ge No.
Figure 1	Property Location Map		3
Figure 2	Claim Location Map with Topography		6
Figure 3	Regional Geology		8
Figure 4	Local Geology		10
Figure 5	Inzana Lake Area with Mineral Occurrences		13
Figure 6	Sample Location and Geology Map, Clearing Area		16
Figure 7	Loacality 10 Road Cut		18
Figure 8	Grid and Geology Map	Appen	ıdix D
Figure 9	Fran Property, Intrusive Rocks - Lithogeochemistry		23
Figure 10	Fran Property, Intrusive Rocks - Lithogeochemistry		24
Figure 11A B C D E	Soil Geochemistry: Au Soil Geochemistry: Ag Soil Geochemistry: Cu Soil Geochemistry: As Soil Geochemistry: Zn	Appen " "	udix D "" ""
Figure 12	1998 Homestake Soil Grids		28

LIST OF TABLES

Table 1	The Fran Property	5
Table 2	July Property Examination. Sample Descriptions	Appendix B
Table 3	October 1998 Program. Sample Descriptions	Appendix C


SUMMARY

The Fran Property is located 4 kilometres north of Inzana Lake in north-central British Columbia and consists of 6 contiguous mineral claims totalling 120 units, approximately 3000 hectares. Several gold discoveries have been made on the property since 1997 by the owners sampling along new logging roads. This mineralization occurs in two areas 1 kilometre apart in the west central claims and is hosted by monzodiorite composition stocks and dykes within Takla Group (U. Triassic-Jurassic age) sedimentary rocks with minor tuffs.

Property examinations by Placer Dome in June and July 1998 involved a significant amount of sampling in the showing areas. Gold mineralization is hosted by monzodiorite intrusive rocks proximal to contacts with Takla sediments (hornfels). It is related to 1) quartz veinlet stockworks and pyritic shears with north to east trend, K. feldspar alteration/flooding. Gold values up to 3 g/t with associated Ag; 2) east trending quartz veins with wallrock veinlet stockworks and K.feldspar alteration. These vein zones are polymetallic with copper, lead, zinc, arsenic sulfide minerals and gold values up to 40 g/t. Type 1 mineralization suggested good potential for bulk tonnage gold zones in an intrusive setting on the property.

A following 9 day property evaluation by Placer Dome in October 1998 explored the size potential of the known mineralization. A field program involved installation of a kilometre scale control grid, soil geochemistry, geological mapping and prospecting. The latter were severely restricted by early snow conditions but did confirm an intrusive roof zone setting throughout the grid area. Whole rock chemistry for intrusive samples indicated high K., calc-alkaline affinity and monzodiorite to monzonite compositions. This intrusive suite is more transitional than (shoshonitic?) quartz-alkaline suites hosting Cu-Au porphyries in this part of Quesnellia like Mt. Milligan (north of property). The soil geochemical program was highly successful and outlined 3 gold anomalies coinciding with areas underlain by intrusions, contact zones and the known showings. The largest gold anomaly was east trending over a kilometre long by 200 metres wide.

The results from the October program supported the potential for large intrusive hosted gold zones on the property. A two phase geological-geochemical program including excavator trenching is recommended to further explore this property and possibly advance some targets to a drilling stage.

1.0 INTRODUCTION

This report presents the results from 1998 exploration by Placer Dome North America Ltd. on the Fran Property, Omineca Mining Division, British Columbia. The property is being explored for intrusion hosted, bulk tonnage gold zones.

Three visits were made to the property in 1998 involving preliminary property examinations in June and July followed by a longer more detailed evaluation in October. The two latter programs were supervised by the author and financed by Placer Dome North America Ltd. with offices at P.O. Box 49305 Bentall Station, 600-1055 Dunsmuir Street, Vancouver BC. V7Z 1L3. The total cost of the October program was \$15,582.07 of which \$12,000.00 is being applied for assessment work credits on the Fran Property.

1.1 LOCATION AND ACCESS

The Fran property is located in north-central British Columbia, 4 kilometres north of Inzana Lake and approximately 60 kilometres north of Fort St. James (Figure 1). It is centred at Latitude 55° 00' N and Longitude 124° 25' W. The property area lies in the northwestern part of NTS topographic map sheet 93K/16W just to the east of Benoit Lakes; Inzana Creek flows east across the southern claims.

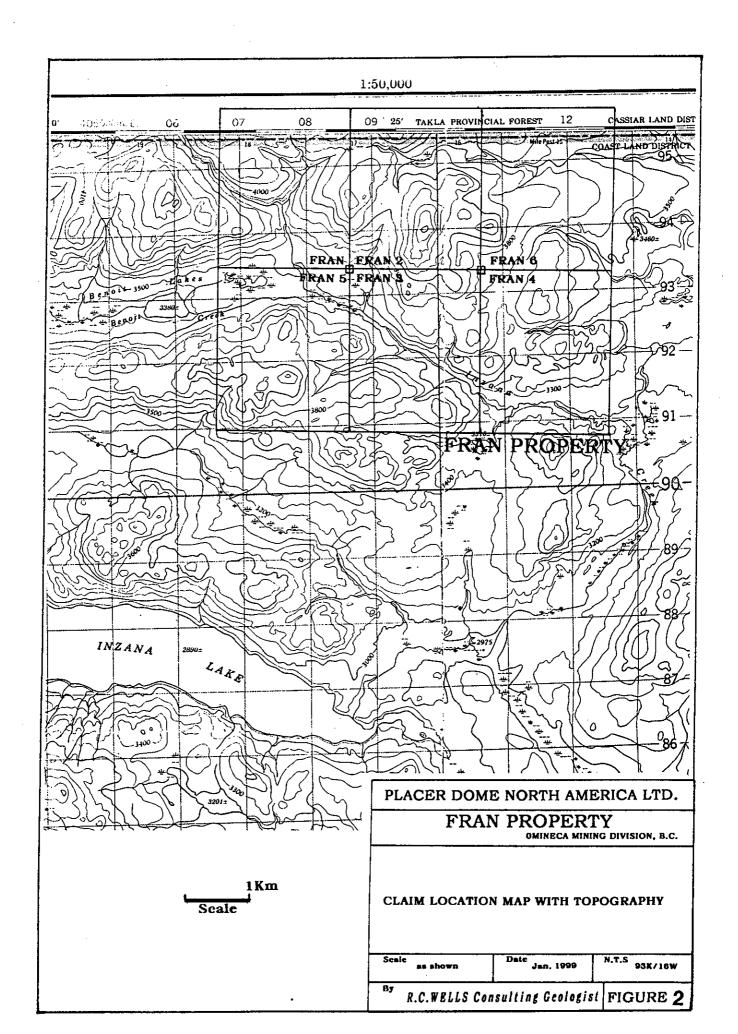
Access to the property area from Fort St. James is by the Germansen-Inzana road system, a distance close to 80 kilometres. These roads are unpaved but generally useable throughout the year. A network of new logging roads along Inzana Creek yields good access to the northern claims where there are several large clear-cuts.

1.2 PHYSIOGRAPHY

The property lies in a hilly area north of Inzana Lake (880m El.) with elevation ranging from 975 metres along Inzana Creek to over 1400 metres along the northern hill range (Figure 2).

This area has been glaciated with rounded hilltops that feature bedrock at or near the surface separated by broad valleys with thick till and, or fluvioglacial deposits. South facing hillsides tend to be more rugged with local cliffs.

The hill areas on the property until recently were covered by thick stands of mature fir and pine that are mixed with spruce at lower elevations. Recent logging has resulted in several clear cuts on the northern side of Inzana Creek. Extensive areas of poorly drained marsh occur along the valley east of Benoit Lakes.

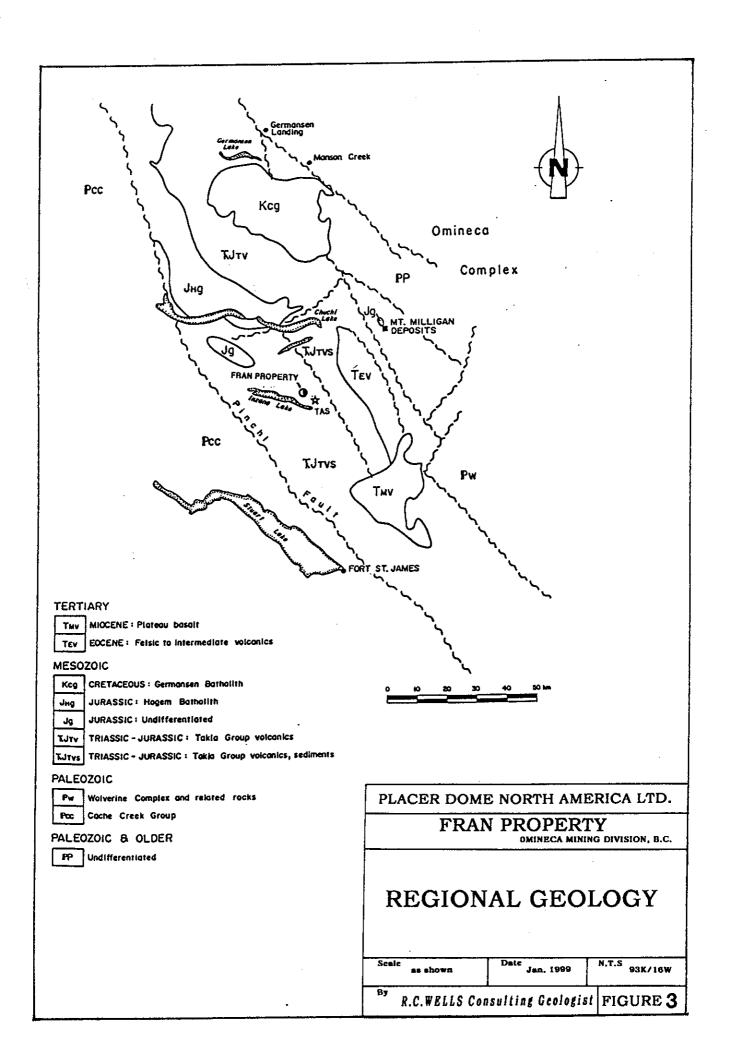

1.3 PROPERTY

The Fran Property consists of six contiguous mineral claims located in the Omineca Mining Division of Province of British Columbia. There are in total 120 units covering approximately 3000 hectares. Claim locations are shown on Figure 2, other relevant data occurs in Table 1.

The property is held by R.S. Haslinger. Placer Dome North America Ltd. is presently conducting a property evaluation of the Fran.

<u>Claim Name</u>	<u>Record No.</u>	<u>No. of Units</u>	Expiry Date
FRAN	356366	20	May 24, 2000
FRAN #2	363192	20	June 05, 1999
FRAN #4	363304	20	June 15, 1999
FRAN #3	363338	20	June 17, 1999
FRAN #5	363593	20	June 28, 1999
FRAN #6	364283	20	July 21, 1999
Total: 120 units			

Table 1: The Fran Property



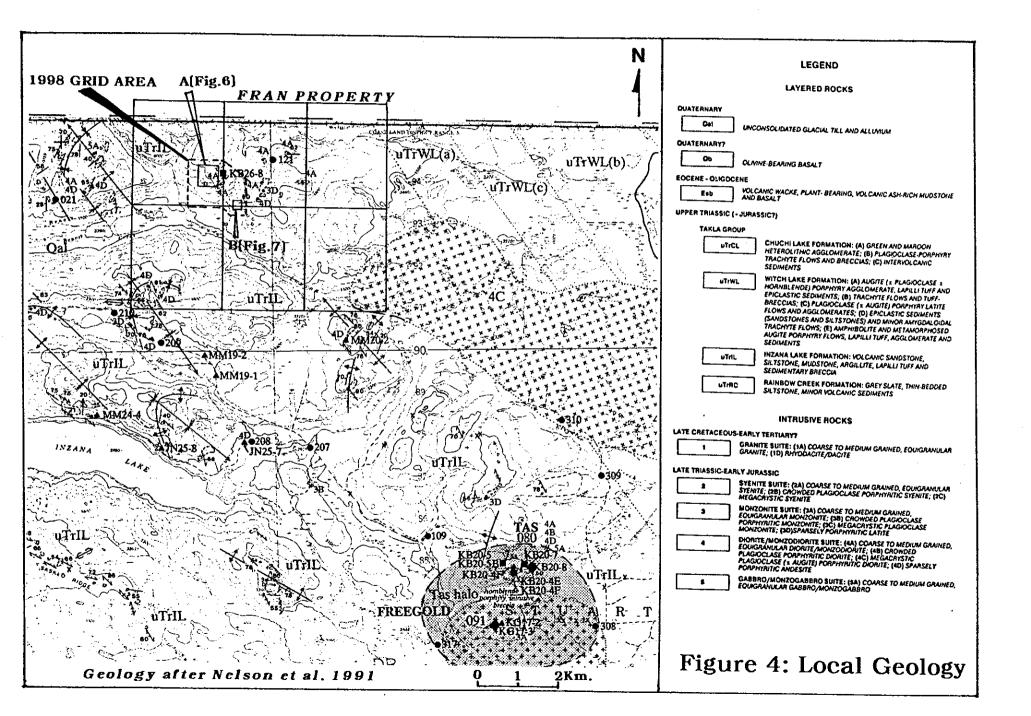
1.4 EXPLORATION HISTORY

The Fran property area up to the mid 1990's was difficult to access due to the heavy semicontinuous timber cover. Prior to very recent work by the property owners there was no recorded previous exploration. Tie-on claims to the Tas property located 6 kilometres to the southeast covered parts of the area in the 1980's during exploration by Noranda Ex., Black Swan and Gold Cap.

Access into the property area has changed dramatically over the last few years with widespread timber harvesting and construction of an access road on the northern side of Inzana Creek. Gold was recently (1996-1997) discovered by the property owners through sampling and panning gossans and pyritic exposures near the western end of the new logging road. This sampling returned highly anomalous gold values from several closely spaced localities in the northwestern clear-cut (A 45316). Altered monzonitic to dioritic intrusive rocks with oxidized stockwork zones returned gold values up to 3.27 g/t. A narrow quartz vein at locality #4 was exposed by hand pits and returned gold up to 41.7 g/t with associated silver, lead, zinc and high arsenic. A large road cut (locality #10), one kilometre to the southeast of the clearing featured several strong oxidized fracture zones in similar intrusive rocks. These were panned by R. Haslinger; one returned significant amounts of very fine visible gold. During and following these gold discoveries, six 20 unit claims were staked to cover the showings and intrusive trend. An interesting gold environment related to monzonitic to dioritic intrusive rocks within Takla Group sediments was identified and promoted by the property owners.

Several companies visited the Fran property in 1998 including Placer Dome and Homestake. The geological setting and presence of gold was confirmed during two property examinations by Placer Dome in June and July.

1.5 REGIONAL GEOLOGY


The Fran property lies within the Quesnellia Terrane which represents a Late Paleozoic to Mesozoic island arc assemblage (Monger et al., 1991) and is part of the Intermontane Belt of the Canadian Cordillera. The regional geology is illustrated in Figure 3; the Quesnellia Terrane comprises volcanic and sedimentary rocks of the Late Triassic to Early Jurassic Takla Group with coeval plutons. This assemblage is juxtaposed against the Cache Creek Terrane to the west along the Pinchi Fault and to the east the mainly Paleozoic wolverine and Omineca Complexes. The Quesnellia Terrane in British Columbia features both alkalic (Cu, Au) and Calc-alkalic (Cu, Mo) porphyry deposits. Mt. Milligan, a significant alkalic porphyry deposit (299 MT @0.45 g/t Au, 0.22% Cu) is located 30 kilometres to the northeast of the Fran (Figure 3). Several major northwesterly striking faults separate the Fran from the Milligan deposit area with thick sequences of Eocene volcanics overlying the Takla Group in the central area. This probably represents an interbasin graben (Nelson, 1990).

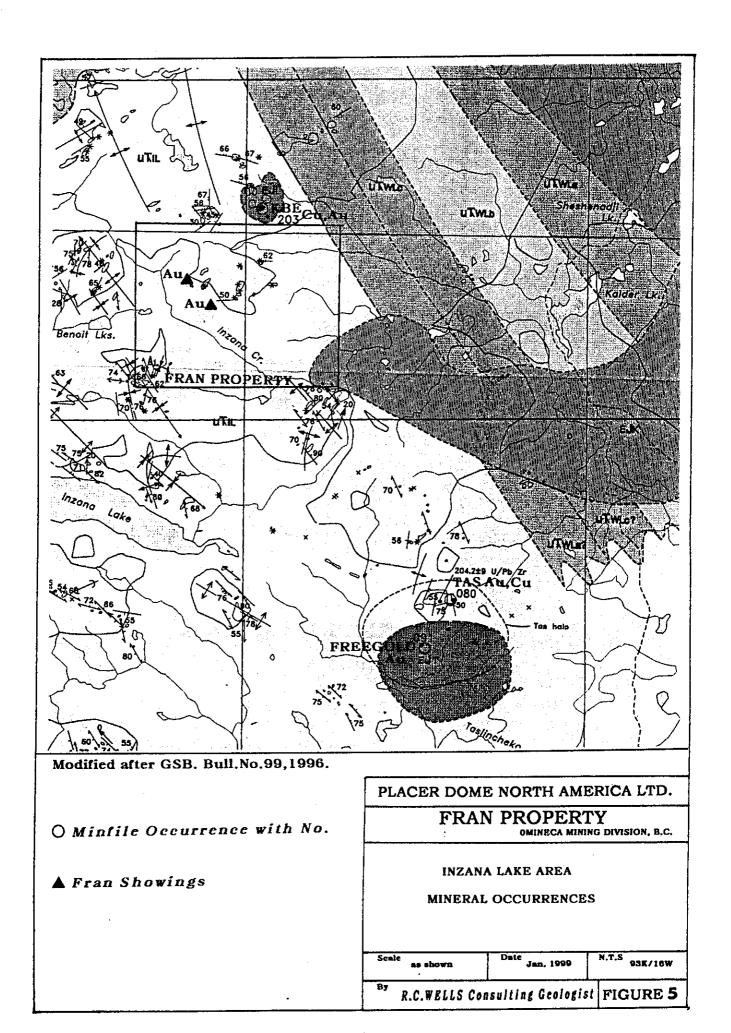
1.6 LOCAL GEOLOGY AND MINERAL OCCURRENCES

(a) Geology

Regional 1:50,000 scale geological mapping has taken place in the property area as part of the Nation Lakes project by the BC Geological Survey Branch, Nelson et al (1991). The mapping in the Inzana Lake area is illustrated in Figure 4 which features a small part of the 93 K/16 sheet (Open File 1991-3). Much of this mapping appears to have taken place along the better exposed ridge tops with little in between.

The Takla Group in the property area features the Inzana Lake Formation which consists of a northwest striking sequence of grey, green to black siliceous argillite, grey to green volcanic sandstones, siltstones and minor augite bearing crystal and lapilli tuffs. This sequence is transitionally overlain by Witch Lake Formation agglomerates, lapilli tuffs and epiclastic sediments east of the property.

Takla age intrusive rocks mainly belonging to the diorite/monzodiorite suite occur throughout the area and range from narrow dykes to kilometre scale stocks and local intrusion breccias (Tas breccia). Many of the larger bodies are elongate with west to northwest long axes; they commonly form the higher ground and correlate well with airborne magnetic (high) features. One of the main stocks is a porphyritic diorite (4C) body over 6 kilometres long that lies at the eastern edge of the Fran property and may extend well into the claims.


Nelson's mapping (1991) suggests two discrete phases of folding in the Inzana Formation sediments in the property area. F2 upright folds have northwest trending axial traces with tight refolded F1 hinges.

(b) Mineral Occurrences

During the 1980's a significant amount of alkalic porphyry Cu-Au exploration took place in this part of Quesnellia following the discovery of the Mt. Milligan deposit. Most of this exploration was to the north and northeast of the Inzana Lake area in Takla volcanic and Hogem intrusive settings. The Minfile occurrences in the property area are shown on Figure 5. The large Tas property southeast of Fran has by far received the most exploration, mainly by Noranda Exploration, Black Swan Gold Mines and Goldcap int he 1980's. This property features several gold zones in a propylitic to potassic altered and sheared multiphase diorite stock with extensive intrusion breccias within Inzana Lake Formation sediments and tuffs. Two main areas of gold ± copper mineralization have been identified on the property: the Freegold (091) and Tas Ridge Area (080). Five separate zones occur in the Ridge Area and feature north to northwest sulfide rich fracture zones with variable pyrite, pyrrhotite and minor chalcopyrite. The East Zone reported a weighted average grade of 9.7 g/t Au across 3 metres for 63 metres strike length in trenches. The Freegold Zone to the southeast features a poorly exposed area of intense quartzcarbonate alteration with up to 10% disseminated pyrite and local visible gold. The intrusion breccia south and east of Freegold has received a limited amount of exploration but has returned gold values from matrix sulfide mineralization (pyrite) during surface sampling by the author.

The KBE (203) showing is located just north of the Fran claims and can be related to a small felsic plug mapped as hornblende granodiorite by Nelson et al, (1991). Sampling of disseminated malachite mineralization reported 196 ppb Au and 0.2% Cu. There is a weak airborne magnetic feature (high) that corresponds with this intrusion that appears to extend to the south onto the northern Fran claims.

All of the mineralization on the Fran property involves new discoveries. These are described in later sections to this report.

2.0 1998 EXPLORATION BY PLACER DOME

2.1 INTRODUCTION

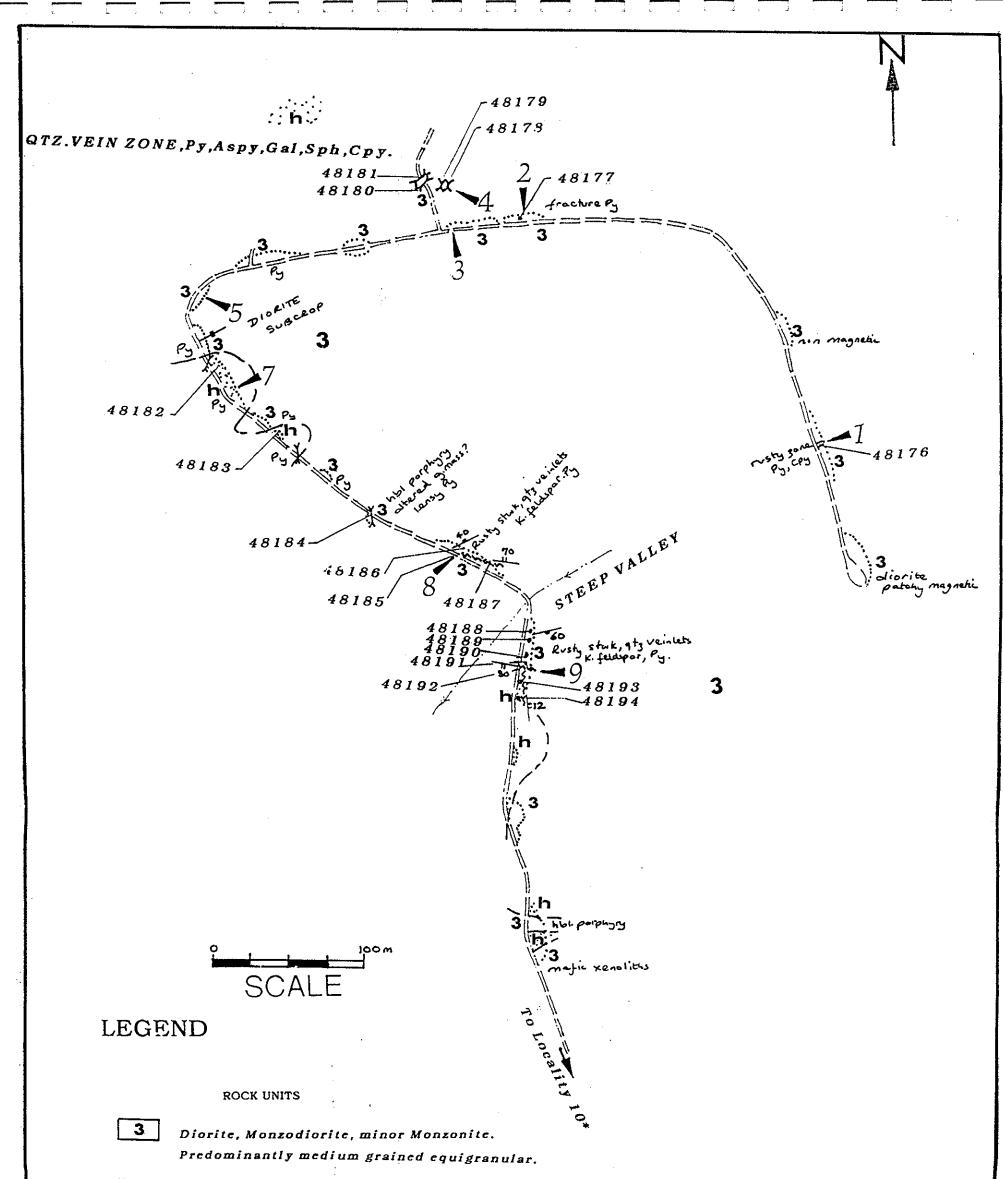
During the 1998 field season Placer Dome made 3 trips to the Fran property. The first of these was a preliminary evaluation by B. Fowler, senior geologist in June following a submittal by the owners. The results from this prompted a second more detailed evaluation with significant sampling by the author in early July. During this 4 day visit work focussed on the two showing areas on the Fran and Fran 2/3 mineral claims.

An evaluation/option agreement was made between the property owner and Placer Dome North America Ltd. on September 23, 1998. A 9 day geological-geochemical program was conducted on the western Fran claims during October 1998 by the author for Placer Dome. This was within the 6 months Evaluation Period of the September agreement. The July and October programs are outlined in the following sections of this report. All of the fieldwork was supervised by the author under the general direction of B. Fowler and was financed by Placer Dome with offices at 1440 Hugh Allan Drive, Kamloops, BC. The cost of the October program including this report was \$15,582.07

During August and September 1998 Homestake Canada Inc. completed a fairly detailed evaluation of the property involving two visits. This work focussed on the Upper (clearing) and Lower (locality #10) showings with 132 fairly close spaced soil and 40 rock samples. Soil sample results from these programs are included with those from Placer Dome's October program on several plots for completeness; gold results are also shown on Figure 10. No costs from any of Homestake's work are included in this report.

2.2 JULY FIELD EXAMINATION

This program took place between July 6 and 9 without any assistants. Following an orientation with R. Haslinger (property owner), a significant amount of time was spent


investigating the clearing (localities #1 to 9) and locality 10 areas. A total of 23 chip, panel and grab samples were taken from the two areas. These are located on Figure 4 as A and B respectively. A total of 23 chip, panel and grab samples were taken from the two areas: 19 from the clearing (Figure 6) and 4 from locality #10 (Figure 7). Most of the samples were chip/panels and where possible taken from normal to mineralized fractures or veins. All 23 samples are describe in Table 2 (Appendix B). A limited amount of other geological information has been incorporated into Figures 6 and 7.

All samples were sent to Eco-Tech Laboratories Ltd. In Kamloops BC. for 30 gram gold geochemical analysis and 23 element ICP. Seven of these were later checked with a second split. The results are comparable, other than sample 48157 which was 50% of the original value; this may represent a nugget effect. Eco Tech certificates of analysis (AK 98-314) can be found in Appendix B.

RESULTS

1. Clearing Area (Figure 6)

This area features dioritic to monzodioritic intrusive rocks with local roof pendants of hornfels after fine grained siliclastic rocks including local more feldspathic tuffs. Most of the intrusive rocks exposed in the clearing, away from known gold mineralization are fresh looking, weakly magnetic, medium grained, equigranular or plagioclase to hornblende porphyritic diorites to monzodiorites. Mafic minerals are commonly chloritized (hornblende) and K.feldspar occurs as finer grains in the groundmass (not alteration). Fine grained disseminated and fracture controlled pyrite is widespread frequently in the 1 to 3% range, locally more. The roof pendant rocks exposed on the hill tops to the north and locally along the logging road lie in the contact metamorphic aureole. Bedding is rare in these fine-grained siliceous rocks. Fine grained fracture controlled pyrite in the 1 to 7% range occurs near intrusive contacts with patchy fine magnetite and brown biotite?

Fine Siliclastic Sediments minor Lapilli Tuffs.

These are often Hornfels.

SYMBOLS

Logging road

Haslinger sample localities

Outcrop Prominent joint set, strike & dip Fault with strike & dip

-

48180

1998 RCW. sample site with No.

FRAN PROPERTY NTS: 93K/16W

Sample Location Map

CLEARING AREA.

LOCALITIES #1 TO 9.

PROPERTY EXAMINATION: R.C. WELLS for PLACER DOME

DATE 14 JULY 1998

FIGURE 6

نشر

Fresh looking diorite samples with fracture controlled fine grained pyrite (samples 48177, 48184) produced detection level gold (5ppb) even when minor quartz veining was evident (sample 48177). Sample 48176 from locality #1 contained patchy fine chalcopyrite on fractures with pyrite and returned anomalous gold (35 ppb) with copper (338 ppm). Previous sampling by the owners was possibly more selective (821 ppb Au, 2326 ppm Cu), both samples suggest a gold-copper relationship. Samples from fractured pyritic hornfels and diorite in contact areas produced detection level gold (5 ppb) with anomalous copper values close to 250 ppm (sample 48182, 48183).

Fractured diorite with gossany veinlet stockworks occur at localities #8 and #9, both are several metres in width. These road cuts are separated by a narrow, northwest trending valley (fault?). Previous grab sampling by the owners at these localities produced gold values from 250 ppb to over 3 g/t. Cut hand specimens taken from these areas by the author display intense K.feldspar alteration (flooding) related to fine quartz veinlet stockworks with wallrock and fracture pyrite. Both localities feature major fractures with clayey gouge: one north trending and shallow (loc. #9), the other east trending and steep north dipping (loc. #8). These appear to be late and either cross or offset mineralization and alteration. At locality #8 strong K.feldspar alteration and stockworks occur along the southern edge of the east trending fault. Samples 48185 and 48187 returned gold values of 200 and 825 respectively and close to 200 ppm copper. At locality #9 the better gold values came from 5 metre long panel samples close to the shallow dipping and late fault. The two best (adjacent) panel samples returned 475 and 235 ppb gold, low copper. A significant amount of dilution in these samples is probable from the 1 metre wide Localities #8 and #9 may represent a north and, or east trending stockwork clay gouge zone. alteration (displaced?) or less likely two unrelated zones within the monzodiorite close to a hornfels contact.

Locality #4 north of the road features four hand trenches that test a westerly trending quartz vein zone over a 20 metre strike length. The milky quartz vein exposed in these is

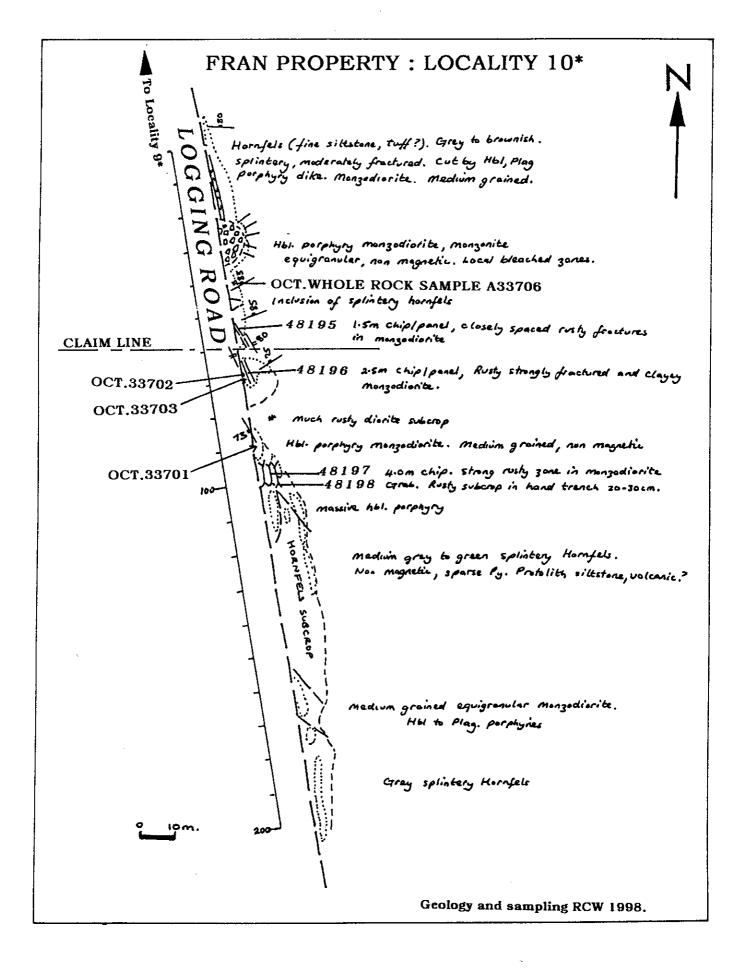


FIGURE 7: LOCALITY 10 ROAD-CUT

2

generally narrow, less than 50 cm wide with patchy, commonly fracture controlled, fine to medium grained arsenopyrite, pyrite, galena, chalcopyrite and sphalerite. Monzodiorite wallrocks are K.feldspar altered near the vein. Fine quartz veinlets, fracturing and pyrite however, extend for over 2 metres away from the vein. Gold values up to 19.4 g/t, Ag to 22.8 g/t, Zn to 0.5% and 2% As (plus Cu, Pb values) were returned from 1.4 to 3.0 metre sample widths.

2. Locality #10 Road Cut (Figure 7)

This north trending road cut is close to 200 metres long and features a contact zone between monzodiorite intrusive rocks and splintery hornfels (siliceous sediments). These rocks are very similar to those exposed in the clearing area to the northwest and feature predominant joint set with east to northeast strike and steep north dips. Several subvertical metre scale fracture zones in the monzodiorite have more southerly trend and are strongly oxidized. The more southerly of these produced fine visible gold during panning by R. Haslinger. Three of these zones were sampled (Figure 7) using a grub hoe and avoiding heavily oxidized surface material. The two narrower zones to the north (Samples 48195 and 48196) returned low anomalous gold values at 25 and 95 ppb respectively. The gold bearing gossany zone returned 315 ppb gold from a 4.5 metre long hand trench (small angle to zone). A check grab sample 48198 taken from a gossany boulder near this trench returned 227 g/t gold, 19.8 g/t silver and 1835 ppm. Considerable enrichment during surface weathering is clearly suggested.

2.3 OCTOBER GEOCHEMICAL-GEOLOGICAL PROGRAM

A nine day exploration program was conducted by a two man crew on the Fran property between October 6 and 14, 1998. The object of this program was to investigate the extent and continuity of gold mineralization within intrusive setting in the showings area using a combined geological-geochemical approach. On arrival to the Inzana Lake area heavy snowfall resulted in significant cuts to the geological part of the program. The modified program was as follows:

- 1. A 9 kilometre grid covering a 1.5 by 1.0 kilometre area over the known showings. This grid was tied to a central, common claim post and eastwest claim line. 200 metre spaced survey lines.
- 2. Soil coverage of the grid at 50 metre spacing. 25 metre spacings in areas of known mineralization and projections.
- 3. Reconnaissance geological mapping on the grid where snow permitted.
- 4. A limited number of rock samples from the showing #10 area as a follow up to previous sampling. Two representative intrusive rock samples for whole rock lithogeochemistry. One stream pan concentrate sample from the main drainage on the grid.

Survey Control Grid

sa a

 $\widehat{}$

The location of the 1998 grid relative to the mineral claims is shown in Figure 4. This grid was installed by P. Cox, Amex Exploration Ltd and provided control for the soil geochemical survey and mapping.

The central east-west claim line was used as a baseline @1000N with station 1000E located at the common claim post for the Fran, Fran 2, 3 and 5 mineral claims. 7.5 kilometres of 200 metre spaced perpendicular (north) survey lines were installed by compass and topofil. Because of the often steep and variable topography the 25m survey stations were slope corrected using a Sunto inclinometer. The lines were flagged with 25 metre stations identified by tyvex tags. The 1998 grid is shown on Figure 8.

Geological Mapping

Snow conditions during the October program severely restricted geological mapping. Some mapping was possible in the western grid area around the clearing. This complemented the earlier survey in July (Figure 6). The main geological observations are summarized in Figure 8 with interpreted geological contacts. These contacts in many cases should be regarded as preliminary.

The lower areas on the grid south of the access road and between the main hills feature extensive glacial till. Where examined in stream and road cuts this till was over 5 metres thick, frequently clayey with variable cobble/pebble content. No bedrock occurs in these areas. Cobble rich tills are evident in the southwestern grid area within the clearing.

A) Lithologies

The grid covers an area with intermediate composition intrusions as stocks and dykes into Inzana Lake Formation (Takla Group) country rocks.

The Inzana Lake Formation (unit 1) in the grid area consists predominantly of light coloured and fine grained siliclastic rocks with rare bedding. Siltstones and fine sandstones predominate with local darker coloured siliceous argillites.

Much of the higher ground north of the road is underlain by diorite to monzodiorite intrusive rocks (unit 2). Fine to fine medium grained equigranular to plagioclase (lesser hornblende) porphyries dominate. The groundmass is often fine grained with K.feldspar, plagioclase and generally less than 10% mafics (often chloritized). These rocks are rarely carbonated and non to weak magnetic. More distal to contacts there may be patchy weak to moderate magnetics which correlates with more medium grained varieties of monzodioritediorite. In the better exposed areas mapping indicated west to north west trending dykes rather than a continuous stock. Narrower dykes are either fine grained (andesitic) or crowded plagioclase porphyries with variable hornblende.

Hornblende porphyries (unit 3) with rare plagioclase phenocrysts occur as narrow dykes in the western clearing. These may trend north or east and crosscut (post date) both sediments and monzodiorite. Broader areas of hornblende porphyry occur at diorite/siltstone contacts or as inclusions within the monzodiorite. Some of these may represent a marginal intrusive phase

(contaminated), however others clearly represent hornblende hornfels (after siltstones) with isolated centimetre scale porphyroblasts.

B) Geological Environment, Metamorphism and Structure

The grid appears to cover the roof zone and possibly margins of a diorite to monzodiorite intrusive stock. At surface levels this may be more in the form of a dyke swarm with westerly trend. Where observed dyke contacts have steep north to subvertical dips. In the western clearing the siltstones are often converted to hornfels with patchy fracture controlled pyrite in contact areas. Where bedded the siltstone have northwesterly strike with north dips similar to the dykes.

The predominant joint sets in many outcrops throughout the grid area trend WSW with subvertical to north dips. Late fractures or shears with clay gouge have NNW to north trend with subvertical to steep east dips.

C) Intrusive Rocks - Chemical Composition

Two samples were taken from Unit 2 intrusives for whole rock (ICP) lithogeochemistry. One was from a feldspar porphyry (sample A 33705) in the western clearing, the other was from locality #10 monzodiorite dyke (sample A 33706). Both appeared relatively unaltered and are described in Table 3. The whole rock ICP data (Eco-Tech Laboratories) for both samples occurs in a table on Figure 9. A variety of standard discrimination diagrams were used to classify these intrusive samples, a few of these are shown in Figures 9 and 10. Both samples are sub alkaline (close to alkaline transition), metaluminous intermediate rocks with affinity to the high-K calcalkaline suite (Figure 9A) and quartz monzodiorite composition (Figure 10A and B).

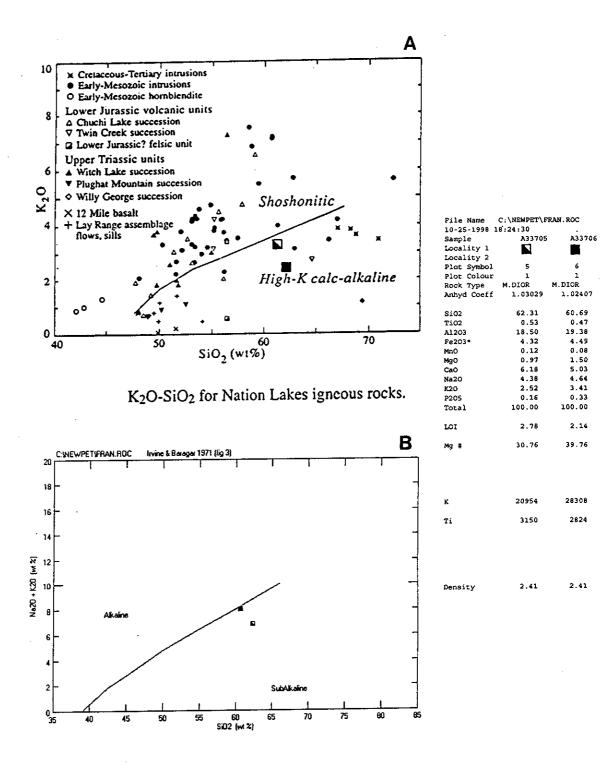
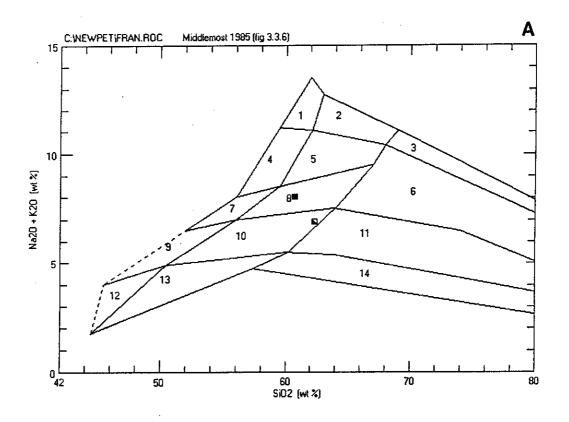
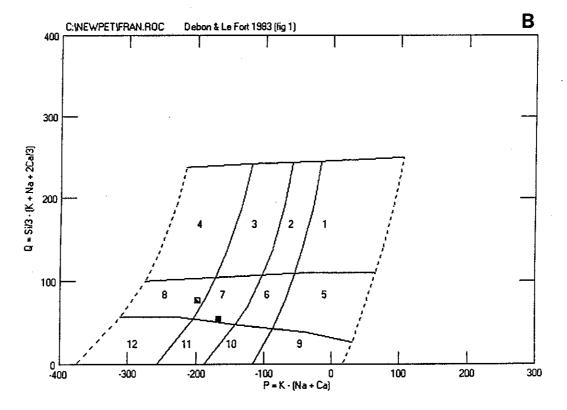




Figure 9: FRAN PROPERTY, Intrusive Rocks - Lithogeochemistry

7 - Qtz. Monzodiorite 8 - Qtz. Diorite

Figure 10: FRAN PROPERTY, Intrusive Rocks - Lithogeochemistry

The October program did not identify any new mineralized zones in bedrock. This was mainly due to the snow conditions. Some further sampling was possible in the locality #10 area adjacent to the gold mineralized NNW trending fracture zones in altered monzodiorite. The location of the three new (October) samples are shown in Figure 7, descriptions occur in Table 3 and certificate of analysis (Eco-Tech, AK98-639) in Appendix 3. Sampling focussed on bleached diorite with quartz veinlet stockworks. Very little pyrite was observed in these areas outside of the oxidized and clavey shear/fracture zones. The gold values returned from these samples were low, background at 10 or 20 ppb.

Soil Geochemical Survey

a) Method

A total of 193 soil samples were collected from the grid (Figure 8). There is quite variable soil development throughout the grid area. Lower areas in the south and in the eastern clearing (A45338) feature extensive and often thick clayey till cover. Sampling in these areas was considered to be of limited value consequently much of the base line area and southern parts of the grid were left tested. In the western clearing area bedrock is at or very close to surface especially on the upper slopes above the road. Soil sampling in these areas was from 'C' horizon, basically weathered bedrock. The same is true for the steeper hillsides north of the common claim post and east of the locality #10 road-cut. Elsewhere in well timbered areas horizons were generally well developed in sandy soils. 'B' soil horizon was sampled wherever possible. Samples were placed in standard brown kraft soil envelopes and labelled with a station number.

Closely spaced (20m) soil sampling by Homestake in 1998 took place on two small grids in the Locality #4 (Upper Showing) and Locality #10 (Lower Showing) areas.

b) Preparation and Analysis

All soil samples were sent to Eco Tech Laboratories in Kamloops BC where they were analysed for 30 elements by ICP. Gold was determined by atomic absorption following fire assay preconcentration (30 gram) and aqua regia digestion. All of this geochemical data is available from certificate of analysis AK98-635 located in Appendix C. The 1998 Homestake soils were analysed using basically the same procedures by International Plasma Laboratory, Vancouver.

c) Statistical Treatment of Data

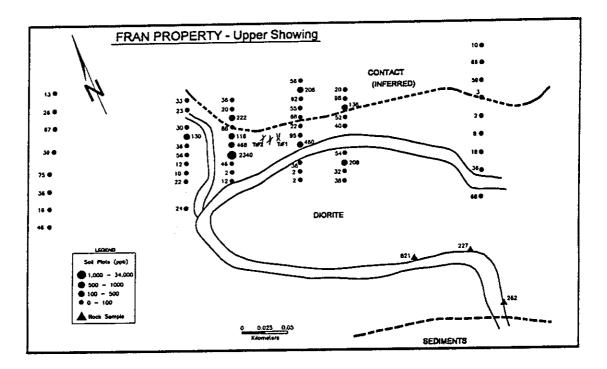
A statistical examination was made of 1998 Placer Dome (PDX) and Homestake soil geochemical data for the grid-showing area. The Homestake data for the Upper (locality #4) and Lower (locality #10) Showing areas were kept separate because of the observed differences in bedrock mineralization. For each of the three data sets there are descriptive statistics, scatter plot and correlation matrices. There are also gold frequency plots for the PDX (complete grid) soils, all statistical data occurs in Appendix C. Homestake gold in soils data for the Upper and Lower showing grids is shown in Figure 10.

d) Results

The combined PDX and Homestake soil data are presented in the form of grid bubble plots for each element. Bubble size is proportional to the calculated 75, 85, 95 and 99th percentile values for the entire population (n=311). Gold in soils data has also been contoured using a 50 ppb threshold. This contour is shown on all soil geochemical plans for visual correlation purposes with other elements. Geochemical plans are included for gold, silver, copper, arsenic and zinc (Figures 9A, 9B, 9C, 9D and 9E respectively). These were selected because of their correlation with known bedrock gold mineralization in the grid area.

The following observations were made on the distribution of anomalies for each of the elements, in particular spatial relationships with the known bedrock mineralization and gold in soils anomalies.

Gold (Figure 11A)

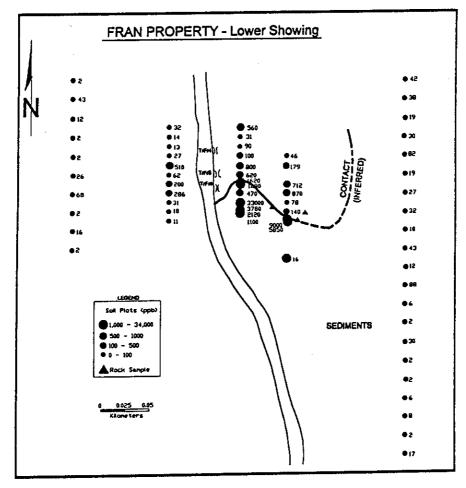

Anomalous gold values occur throughout the grid area, largely in areas with little till cover. The anomalies also visually correlate with areas underlain by dioritic intrusions, especially proximal to contact zones. Contouring of gold data suggests an easterly trend to the anomalies. This could in part be related to grid bias, however the same trend is clearly apparent in areas of closely spaced sampling at the Upper (anomaly A) and Lower (anomaly C) Showings. The main east trending soil anomaly B is over 1.2 kilometres long, and up to 200 metres wide. The western end of this anomaly correlates with known bedrock gold mineralization at clearing localities 8 and 9. Some very high gold in soil values occur proximal to the known showings with the highest close to 10 g/t above locality 10. Some gold anomalies in the central grid (anomaly B) with values in the 200 to 1930 ppb range occur in unexplored areas.

Silver (Figure 11B)

Anomalous silver values are spatially associated with the gold anomalies in the showing areas A, B and western C. Elsewhere, silver values are generally low background.

Copper (Figure 11C)

Like silver, copper is clearly spatially associated with gold anomalies and bedrock mineralization in the showing areas. Higher copper in soil values often occur downslope from the gold anomalies. In the eastern gold anomaly B area there is not a very good spatial correlation with copper.


ی**ندیر** ، ، ، ، . بر .

÷

.

~

ſ

Arsenic (Figure 11D)

Arsenic correlates spatially with gold in the showing areas. The arsenic anomalies are however broader than gold and some downslope dispersion is also suggested.

Zinc (Figure 11D)

Weak zinc in soil anomalies occur throughout the grid area. There is some spatial association with gold especially in the Upper Showing (Locality 4) area. Elsewhere there is no clear spatial relationship other than that the highest zinc values occur proximal to strong gold in soil anomalies. Many zinc anomalies at the 85th percentile do not correlate well with gold.

It is useful to compare statistical correlations for soils in the two showing areas with the known bedrock mineralization. This is possible for the Upper (Locality #4) and Lower (Locality #10) Showing areas where Homestake took closely spaced soils in order to trace bedrock mineralization along strike. Correlations for gold with the various elements are ranked as follows for the two showing area (see correlation matrix plots):

Upper Showing - Quartz vein zone with Au, Ag, As, Cu, Zn, Pb

Cu (0.91), Mo (0.85), As (0.65), Ag (0.64), Pb (0.17), Zn (-0.6)

Lower Showing - Fracture zones with quartz veinlets and pyrite. Au, Ag Ag (0.77), Mo (0.42), Cu (0.34), Pb (0.21), As (0.20), Zn (-0.3)

All Soil Data

Cu (0.43), Ag (0.35), Mo (0.34), As (0.29), Pb (0.39), Zn (0.12)

The correlation between known bedrock mineralization and soils in the two showing areas is excellent.

s. 7

There is only one main drainage with its source in the grid area. This creek has its origin near the northern end of grid line 1800E (Figure 8). A heavy mineral pan concentrate sample was taken from this creek above the logging road near grid line 16+00E. In this area the creek is fairly fast flowing and has incised a small steep sided valley into clayey till.

A 15 gram heavy mineral concentrate sample was panned from 10 to 15 kilograms of fine gravel and coarse sand taken from the creek bed over a 10 metre section. Very fine visible gold was observed in one pan fraction. The concentrate sample was run geochemically for gold (30 gram) by Eco-Tech's Laboratory in Kamloops, BC. Three splits were made, the results are recorded on certificate of Analysis AK98-639 in Appendix C. The three values returned at 1500, 225 and 880 ppb suggest a nugget effect; gold is clearly present. This sample confirms gold in the headwater regions to this creek which correlates with the eastern end of gold (soil) anomaly B (Figure 8).

3.0 CONCLUSIONS

The Fran Property features several recently discovered gold mineralized zones in bedrock in an area which has received no documented previous exploration. All of the gold occurrences were discovered by sampling or panning bedrock exposures along new logging roads.

On the property monzodiorite to monzonite composition stocks and dykes with west to northwest trend intrude Takla Group sediments and tuffs. An intrusive roof zone environment is indicated. The intrusions have chemical affinity with the high K. calc-alkaline suite rather than the quartz-alkaline and (probable) shoshonitic suite that hosts Cu-Au porphyry style mineralization within this part of Quesnellia, Mt. Milligan for example.

There is no evidence that the Fran intrusive system vented volcanic flows and proximal volcaniclastic facies have not been observed. Gold mineralization occurs in two areas approximately one kilometre apart. This mineralization is hosted by monzodiorite intrusive rocks proximal to contact zones with hornfels (sediments) and features: **1**) quartz veinlet stockwork zones with associated K.feldspar alteration in fractured and pyritic intrusive. Localities #8 and #9 yielded gold up to 825 ppb over 2 metres. **2**) Polymetallic easterly trending quartz veins with silica, K.feldspar altered wallrocks at Locality #4. Gold values up to 19.4 g/t, Ag to 22.8 g/t, Zn to 0.5% and 2% As plus Cu and Pb values over 1.4 to 3.0 metre widths. **3**) South trending fracture zones in patchy K.feldspar altered monzodiorite with some similarities to type 1. Gold values to 315 ppb over 4.5 metres at Locality #10. Pyritic diorite or hornfels without K.feldspar alteration did not return any significant gold values.

The 1998 soil geochemical program met its objectives by indicating large zones of gold mineralization in an intrusive setting. Three main gold in soils anomalies are underlain by intrusives and contact zones, the largest of these is east trending over 1.2 kilometres long by 200 metres in width. All three anomalies are in part coincident with known bedrock mineralization

and suggest potential for large intrusive hosted gold zones. Clayey till overburden limits the use of soils in lower hillside and valley settings.

Only a small part of the Fran property has received preliminary exploration to date with excellent results. The potential for gold dominant 'porphyries' in transitional calc-alkaline to alkaline settings in this part of Quesnellia has barely been touched. Intrusive hosted gold occurs in two other areas close to the Fran at the Tas and KBE.

4.0 RECOMMENDATIONS

The northern Fran claims have potential for bulk tonnage intrusion hosted gold zones. In this area dioritic intrusions have been crudely outlined by regional scale geological mapping and interpretations from airborne magnetic surveys. These intrusions basically form the main watershed. A two phase exploration program is recommended to advance the property, possible to a drilling stage.

During Phase 1 pan concentrate or mobile sluice sampling of drainages from this northern watershed could quickly determine areas (underlain by intrusive) with high gold potential in the northern claims. More complete geological mapping with prospecting is necessary in the 1998 grid area especially around gold in soil anomalies. Infill soil lines with closer spaced 25 metre sampling would be useful to better define these anomalies. These anomalies could possibly be expanded by adding grid-soil coverage to the northwest, northeast and southeast.

Phase 2 would involve preliminary excavator trenching on geological-geochemical targets in the grid area. The size of excavator to be used would be determined by access, forest cover and depth of overburden (observations made during Phase 1). A smaller more mobile machine may be more useful and environmentally friendly. Phase 2 would also include some grid, soil and geological coverage of anomalous drainage areas defined in Phase 1.

A cost estimate for this program follows:

COST ESTIMATE

PHASE 1: Stream sampling, geological mapping, in-fill soils.

2 man crew - 12 days	\$12,000.00
Analyses for rocks, soils, allow	3,000.00
Maps, interpretations, etc.	<u>2,000.00</u>
Tot	al \$17,000.00

PHASE 2: Trenching and exploration in new areas.

A) Trenching Program Excavator costs, allow
B) Grids and sampling in other areas Personnel
C) Maps, reports, filing fees
Contingencies @ 10% \$4,800.00
Total Program Cost\$52,800.00

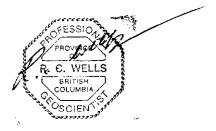
5.0 REFERENCES

- Bailey, D.G. (1990): A Geological Examination of the Tas Prospect, Omineca Mining Division, BC. Assessment Report.
- Nelson, J.L., Bellefontaine, K.A., Green, K.C. and MacLean, M. (1991a): Regional Geological Mapping Near the Mount Milligan Copper-Gold Deposit (93K/16, 93N/1) in Geological Fieldwork 1990, B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1991-1.
- Nelson, J.L., Bellefontaine, K.A., Green, K.C. and MacLean, M. (1991b): Geology and Mineral Potential of the Wittsichica Creek and Tezzeron Creek Map-areas (93N/1, 93K/16); B.C. Ministry of Energy, Mines and Petroleum Resources, Open File 1991-3.
- Nelson, J.L., Bellefontaine, K.A., Rees, C. and MacLean, M.E. (1992b): Regional Geological Mapping in the Nation Lakes Area (93N/2E, 7E); *in* Geological Fieldwork 1991, Grant, B. and Newell, J.M., Editors, B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1992-1.
- Nelson, J.L., Bellefontaine, K.A. (1996): The Geology and Mineral Deposits of North-Central Quesnellia; Tezzeron Lake to Discovery Creek, Central British Columbia. B.C. Ministry of Employment and Investment, Energy and Minerals Division, Geological Survey Branch, Bulletin 99.

6.0 STATEMENT OF COSTS

OCTOBER 1998 GEOCHEMICAL-GEOLOGICAL PROGRAM

Field Work R.C. Wells, P.Geo., FGAC Consulting Geologist \$4,675.00 Amex Exploration, P. Cox 3,197.34 Accommodation and food \$15.66 Travel 290.45 Sub Total \$8,978.45 Analytical Costs Eco Tech Laboratories, Kamloops, B.C. \$3,003.62 Report Costs Report Costs Report by R.C. Wells, maps, reproduction etc \$3,600.00


Total Cost of Program <u>\$15,582.07</u>

7.0 STATEMENT OF QUALIFICATIONS

I, Ronald C. Wells, of the City of Kamloops, British Columbia, hereby certify that:

- 1. I am a Fellow of the Geological Association of Canada
- 2. I am a member in good standing of the Association of Professional Engineers and Geoscientists of British Columbia.
- 3. I am a graduate of the University of Wales, U.K. with a B. Sc. Hons. in Geology (1974), did post graduate (M. Sc.) studies at Laurentian University, Sudbury, Ontario (1976-77) in Economic Geology.
- 4. I am presently employed as Consulting Geologist and President of Kamloops Geological Services Ltd., Kamloops, B.C.
- 5. I have practised continuously as a geologist for the last 19 years throughout Canada, USA and Latin America and have past experience and employment as a geologist in Europe.
- Ten of these years were in the capacity of Regional Geologist for Lacana Mining Corp., then Corona Corporation in both N. Ontario / Quebec and S. British Columbia.

R.C. Wells, P.Geo., FGAC

R. C. Wells, P.Geo., FGAC. Kamloops Geological Services Ltd.

APPENDIX B

1. 1.

.

6.2

: :

July 1998 Property Examination. Sample Descriptions and Analytical Results

R. C. Wells, P.Geo., FGAC. Kamloops Geological Services Ltd.

TABLE 2

FRAN PROPERTY: JULY 1998 PROPERTY EXAMINATION

.

SAMPLE DESCRIPTIONS

SAMPLE NO.	SAMPLE TYPE	BRIEF DESCRIPTION	Au g/t	Au ppb	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm
48176	1.5m chip/ panel Az. 345º N	Sample taken parallel to road above small pit Loc. #1. Medium grained diorite, local weak magnetic. Fine fracture controlled Py minor Cpy.		35	<0.2	338	6	29	165
48177	3.0m chip/ panel Az. 090º E	Sample starts 3m west of Loc. #2 pit. Medium grained, non-magnetic diorite with fine fracture controlled pyrite. Sparse quartz veinlets up to 5mm, local druse.		75	0.2	87	92	155	65
48178	1.4m chip/ panel Az. 020°N	Most easterly hand trench Loc. #4. Medium grained diorite and monzodiorite cut by 1m. Wide silicified zone with some quartz and Py. Overburden covers south side of zone.		50	0.6	98	14	52	105
48179	1.8m chip/ panel Az. 020º N	Second hand trench Loc. #4. 30 to 50cm wide brecciated quartz vein with patchy f/m grained Py, Aspy. To south rubbly diorite, monzodiorite, patchy silification and K. feldspar alteration.	19.40		22.8	794	632	5047	7015
48180	1.5m chip/ panel Az. 040º NE	Third hand trench Loc. #4. Similar to previous sample. 30 to 40cm wide vuggy quartz vein in weakly brecciated and altered diorite, monzodiorite. Quartz vein is sulfide poor, wallrocks have significant amounts of f/m grained fracture Py.	1.36		4.8	366	152	635	870

SAMPLE NO.	SAMPLE TYPE	BRIEF DESCRIPTION	Au g/t	Au ppb	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm
48181	3.0m chip/ panel Az. 040° NE	West trench Loc. #4. East end is diorite, monzodiorite with fracture Py. To west 20 to 30cm wide quartz vein in altered diorite (sil., K.feldspar) with patchy disseminated and fracture Py. Local finer Aspy.	1.30		5.0	203	326	2282	4810
48182	4.0m panel/ grab Az. 320° NW	Mixed diorite and fine grained siliceous and splintery hornfels. Patchy fine disseminated Py. Variable weak magnetism. Vague contact zone.		5	<0.2	258	12	49	65
48183	1.5m x 1.5m panel	40m SE of Loc. #7. Hard fine grained, siliceous hornfels, non-magnetic, no carbonate. Variable fine to fine-medium grained fracture and disseminated Py up to several percent.		5	<0.2	239	6	29	15
48184	2.0m chip/ panel Az. 350° N	Along road bar. Medium grained diorite- monzodiorite with weak alteration in groundmass. Patchy fine Py commonly along fractures, joints locally >5%.		5	<0.2	409	6	20	10
48185	2.8m chip Az 165° S	Loc. #8 across road. Strong K.feldspar altered diorite with fine rusty quartz veinlets and stockworks some recognizable fracture, veinlet Py.		200 *195	<0.2	216	8	25	<5
48186	2.8m x 1.0m chip/ panel	Vertical sample in road cut above previous sample. Moderately jointed, medium grained and relatively fresh diorite- monzodiorite with Az60/ 40 NW joints and local narrow concordant rusty zones 2-3mm wide.		10	<0.2	32	8	22	10

SAMPLE NO.	SAMPLE TYPE	BRIEF DESCRIPTION	Au g/t	Au ppb	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm
48187	2.0m x 1.0m chip/ panel	Vertical sample in road cut, east of Loc. #8. Strongly jointed and K.feldspar altered diorite-monzodiorite with concordant rusty zones, some stockworks, local Py. Similar but not as strong as Loc. #8.		825 *425	<0.2	190	8	30	10
<u></u> , ,	Locality #9 O. Station at creek.								•
48188	14.0- 20.0m. S 6.0m panel	Diorite-monzodiorite with coarse stockwork of rusty fractures 0.5m spacing. Main joints Az. 246/ 60 SE.		5	<0.2	63	8	36	5
48189	20.0- 25.0m. S 5.0m panel	Diorite-monzodiorite similar to above another important joint set Az 116/ 60 N.		5	<0.2	64	6	27	10
48190	35.0- 40.0m. S 5.0m panel	Strong fractured and jointed diorite- monzodiorite. Rusty stockworks, local close spacing variable angles.		55 *60	<0.2	177	8	32	10
48191	40.0- 45.0m. S 5.0m panel	Similar to above, wider rusty fracture zones commonly 10- 20cm wide separated by massive relatively unaltered diorite.		25 *25	<0.2	87	8	31	<5
48192	45.0- 50.0m. S 5.0m panel	Locality #9. North end features moderately jointed diorite. Rusty 1m wide fracture/joint zone Az 280/ 80 S. To south flat lying fault base of cliff Az 175/12 E. This fault is clayey (lote) crosses alteration in diorite.		475 *445	<0.2	130	10	32	25
48193	50.0-55.0m. S 5.0m panel	Flat fracture continues to south. Diorite above and below does not contain much vein stockwork or Py.		235 *180	<0.2	41	8	35	15

SAMPLE NO.	SAMPLE TYPE	BRIEF DESCRIPTION	Au g/t	Au ppb	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm
48194	65.0- 70.0m. S 5.0m panel	Fine grained siliceous hornfels. Hard, strong fractured with local Py.		140	<0.2	163	8	29	10
	Locality #10								
48195	53.0m- 55.5m chip/ panel	Closely spaced rusty fractures trending SSE, dip 80° E in monzodiorite.		25	<0.2	115	10	28	<5
48196	68.0m- 72.5m chip/ panel	As above zone is broader and locally clayey in monzodiorite.		95	<0.2	117	10	40	15
48197	95.3m- 99.3	Middle hand trench in bank. Rusty with little fresh bedrock, monzodiorite host rocks?		315	<0.2	317	10	33	10
48198	@ 99.3m grab	Upper trench grab from large highly oxidized boulder 30cm dia. Property owner panned gold from this area previously.	227.00		19.8	1835	<2	34	<5

Note*: Au checked- second run

16-Jul-98

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557

ICP CERTIFICATE OF ANALYSIS - AK98-314

ROCK SAMPLING, JULY EXAMINATION

1

PLACER DOME CANADA LTD. 1440 HUGH ALLEN DRIVE XAMLOOPS, B.C. V1S 1L8

ATTENTION: BRIAN FOWLER

No. of samples received: 23 Sample type: Rock PROJECT #: GENERATIVE SHIPMENT #: None Given Sample submitted by: Ron Wells

Values in ppm unless otherwise reported

				•																										_
Et #.	Tag #	Au(ppb)	Aa	Ai %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La !	Vig %	Mn	Mo	Na %	NI	P	Pb	Sb	Sn	Sr Ti		<u>U</u>	<u>V</u>	W	Y 2	Zn 29
4	48176	35	<0.2		165	170	<5	0.65	<1	12	15	338	6.39	<10	0.53	282	5	0.04	-	1450	6	<5	<20	69 0.1		10	+ -	<10	2	155
2	48177	75	0.2	1.69	65	85	<5	1.07	1	15	32	87	5.22	<10	0.73	599	7	0.04	1	1620	92	<5	<20	30 0.0		:10	83	10 10	Å	52
2	48178	50	0.6	1.25	105	90	<5	0.63	<1	13	53	98	3.22	<10	0.48	520	10	0.04	5	890	14	<5	<20	14 0.0		:10	46	<10	<1	5047
3	48179	>1000	22.8	0.73	7015	75	<5	0.15	32	35	39	794	8.15	<10	0.09	360	32	0.03	5	540	632	<5	<20	14 <0.0		<10	13 22	<10	<1	635
	48180	>1000	4.8	0.96	870	65	<5	0.29	3	16	70	366	5.55	<10	0.25	191	26	0.03	8	680	152	<5	<20	14 <0.0	ירכ	<10	~~	\$10	-1	000
5	40100	1000		0.00																		_		44 -0		-10	18	<10	<1	2282
8	48181	>1000	5.0	0.75	4810	75	<5	0.29	9	32	56	203	4.20	<10	0.25	170	14	0.02	3	660	326	<5	<20	14 <0.		<10 <10	90	10	6	49
7	48182	5	<0.2	1.65	65	45	<5	1.45	<1	23	59	258	4.56	<10	0.92	292	43	0.05			12	<5	<20	18 0.1 17 0.1		<10	88	10	7	29
, 8	48183	5	<0.2	1.12	15	65	<5	0.69	<1	24	59	239	4.01	<10	074	288	3	0.06	13	890	6	<5	<20	17 0. 22 0.		<10	47	10	6	20
· 9	48184	5	<0.2	1.24	10	35	<5	1.51	<1	28	41	409	3.22	<10	0.32	221	6	0.06	7	1560	6	<5	<20	48 0.		<10	114	10	2	25
10	48185	200	<0.2	2.72	<5	80	<5	1.33	<1	27	20	216	9.13	<10	0.76	391	13	0.04	2	1570	8	<5	<20	40 0.	14	~10	114		-	
																	_			4.400		~5	<20	39 0.	08	<10	76	10	4	22
11	48186	10	<0.2	2.05	10	40	10	1.75	<1	14	35	32		<10	0.65	521	3	0.05		1460	0	<5 <5	<20	87 0.		<10	129	10	4	30
12	48187	825	<0.2	2.44	10	105	<5	1.53	<1	32	17	190	7.34	<10	0.77	544	63	0.05	5	1550 1860	0 0	<5	<20	÷		<10	160	10	8	36
13	48188	5	<0.2	2.79	5	95	10	2.22	<1	25	13	63	5.79	<10		590	1	0.05	2	1950	6	<5	<20			<10	122	10	8	27
14	48189	5	<0.2	2.09	10	105	5		<1	19	14	64	4.87	<10		459	<1	0.04	-	1730	9	<5	<20			<10	131	10	7	32
15	48190	55	<0.2	2.92	10	90	5	1.98	<1	39	13	177	8.08	<10	0.99	757	36	0.04	0	1750	0	-0	-10							
									_				F 04	-10	0 77	514	8	0.04	3	1820	8	<5	<20	111 0	.14	<10	112	10	9	31
16	48191	25	<0.2	2.55	<5		10		<1	30	10	87		<10 <10		584	5		-	1710	10	<5	<20		.17	<10	127	10	6	32
17	48192	475	<0.2		25		10		<1	36	14	130		<10		640	<1	0.04	. 5			<5	<20	193 0	.15	<10	115	10 ⁻	- 4	35
18	48193	235			15		10		<1	24	19	41	5.38	<10		692	5		10		8	<5	<20	38 C	.24	<10	159	10	5	29
19	48154	140	-		10		10		<1	28	23	163		<10			3		<1		10	<5	<20	109 <0	.01	<10	47	10	2	28
20	48195	25	<0.2	1.89	<5	105	<5	0.70	<1	15	7	115	3.70	~10	0.70	047		0.04				_								
			_						- 4	25	11	117	5.71	<10	0.83	624	5	0.02	7	1600	10	<5	<20	38 <0	.01	<10	83	10	3	
21	48196						<5		<1	25		317		10			11				10	<5	<20	65 <0	.01	<10	91	<10	3	
22	48197						<		<1 2	40 150	<1	1835			<0.01					300	<2	<5	<20	16 <0	.01	10	166	<10	<1	
23	48198			- ·			<		2 <1	-	36	65					_				4	<5	<20	83 ().12	<10	143	10	4	36
24	48199	565	i <0.2	2 1.56	<5	55	10	2.56	~1	20	50	00	, <u>J.</u> r I		1,50	- 10	-													

Page 1

PLACER D	OME	CANADA L	.TD.			ICP CERTIFICATE OF ANALYSIS • AK98-314									ECO-TECH LABORATORIES LTD.															
_Et#. Ta	ıg#	Au(ppb)	Ag	A1 %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	<u> </u>	U	v		<u>Y</u>	Zn
e <u></u> -																														
QC/DATA: Resplit: R/S 1 48	176	35	<0.2	2.66	155	170	<5	0.71	<1	13	16	354	6.55	<10	0.54	288	6	0.04	<1	1480	10	<5	<20	69	0.12	<10	96	20	2	29
	3176 3185		<0.2 <0.2		170 5	170 75	<5 5	0.70 1.40	<1 <1	13 25	16 20	346 210				286 390	5 10	0.04 0.04	<1 2	1460 1560	10 10	<5 5	<20 <20	67 50	0.12 0.12	<10 <10	95 110	20 10	3 2	30 25
Standard: GEO'98		125	1.2	1.72	65	160	5	1.76	<1	21	61	81	4.29	<10	0.98	687	<1	0.03	24	710	22	<5	<20	60	0.12	<10	77	<10	5	74

ICP CERTIFICATE OF ANALYSIS - AK98-314

df/317 XLS/98Placer

ECD-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

ECO-TECH LABORATORIES LTD.

Page 2

ł

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 674 Phone (250) 573-5700 Fax (250) 573-4557

CERTIFICATE OF ANALYSIS AK 98- 314

Reruns Requested by Ron Wells

A ...

PLACER DOME CANADA LTD. 1440 HUGH ALLEN DRIVE KAMLOOPS, B.C. V1S 1L8

ATTENTION: BRIAN FOWLER

No. of samples received: 23 Sample type: Rock PROJECT #: GENERATIVE SHIPMENT #: None Given Sample submitted by: Ron Wells

20-Jul-98

U Bunner D

LU JUL 2 4 1998

ET #.	Tag #	Au (ppb)	
10	48185	195	
12	48187	425	
15	48190	60	
16	48191	25	
17	48192	445	
18	48193	180	
24	48199	410	

QC DATA:

<i>Repeat.</i> 18	48193	200
Standa GEO'98		135

-TECH LABORATORIES LTD. ECO Krank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/98

21-Jul-98 ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4	ICP CERTIFICATE OF ANALYSIS - AK98-314	PLACER DOME CANADA LTD. 1440 HUGH ALLEN DRIVE KAMLOOPS, B.C. V1S 1L8
Phone: 604-573-5700 Fax : 604-573-4557 Values in ppm unless otherwise reported		ATTENTION: BRIAN FOWLER No. of samples received: 23 Sample type: Rock PROJECT #: GENERATIVE SHIPMENT #: None Given Sample submitted by: Ron Wells
Et #. Tag # Au(ppb) Ag Al % 24 48199 410 <0.2 1.54	<u>As Ba BiCa% Cd Co Cr Cu Fe% La Mg% Mn Mo Na% Ni P Pb Si</u> <5 60 10 2.36 <1 22 23 53 5.17 <10 1.37 512 2 0.07 <1 3640 8 <	
<u>QC/DATA:</u> <i>Repeat:</i> 24 48199 - <0.2 1.52	<5 60 10 2.29 <1 21 22 51 5.02 <10 1.33 496 1 0.08 <1 3570 8 <	5 <20 68 0.09 <10 128 <10 3 34
Standard: GEO'98 135 1.2 1.75	65 155 10 1.86 <1 19 59 77 4.06 <10 0.96 671 <1 0.02 20 710 22 <	5 <20 59 0.10 <10 73 <10 4 73

df/328 XLS/98Placer ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

Page 1

1

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

16-Jul-98

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

CERTIFICATE OF ASSAY AK 98-314

PLACER DOME CANADA LTD. 1440 HUGH ALLEN DRIVE KAMLOOPS, B.C. V1S 1L8

ATTENTION: BRIAN FOWLER

No. of samples received: 23 Sample type: Rock PROJECT #: GENERATIVE SHIPMENT #: None Given Sample submitted by: Ron Wells

		Au	Au	
ET #.	Tag #	(<u>g/t</u>)	(oz/t)	
4	48179		0.566	
5	48180	1.36	0.040	
-	48181	1.30	0.038	
6 23	48198	227.00	6.620	
4			•	

<u>QC/DATA:</u> Standard:

STD-M

1.38 0.040

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/98

Page 1

APPENDIX C October 1998 Program. Sample Descriptions and Analytical Results

i. Ku di

. .

R2. 1

í.

; |-....

 R. C. Wells, P.Geo., FGAC. Kamloops Geological Services Ltd.

TABLE 3

The second se

FRAN PROPERTY: OCTOBER 1998 PROGRAM

SAMPLE DESCRIPTIONS

SAMPLE NO.	SAMPLE TYPE	BRIEF DESCRIPTION	AU PPB
33701	2.0m panel	Plagioclase porphyry. Micro-mozodiorite. Local plagioclase phenocrysts to 2.5m in a fine grained patchy altered groundmass. Some K.feldspar, chloritized fine mafic minerals, 1-2% fine fracture controlled pyrite.	10
33702	Grab	Narrow milky quartz veins, some up to 1.5 cm generally 1-3mm within bleached/altered monzodiorite. Alteration obscures textures.	20
33703	2.0m panel	Fine quartz veinlet stockworks within a fine to medium grained and greenish monzodiorite. The veinlets are irregular with individual veinlets rarely wider than 3mm. Density of veinlets is 2 to 5 per 10 cm.	10
A33705	Whole rock	Crowded plagioclase porphyry. Numerous 1 to 2 mm poor tabular plagioclase phenocrysts with finer dark coloured hornblende microphenocrysts (5%). Fine grained groundmass with some K.feldspar. Non carbonated, weak to non magnetic.	
A33706	Whole Rock	Monzodiorite. Mottled greens and greys, medium grained with tabular 1- 2mm plagioclase with finer groundmass mafics, K.feldspar, some plagioclase. Non carbonated, weak to non magnetic.	

R. C. Wells, P.Geo., FGAC. Kamloops Geological Services Ltd.

ASSAYIN(GEOCHEMISTR` ANALYTICAL CHEMISTR` ENVIRONMENTAL TESTIN(

10041 E. Trans Canada Hwy, R.R. #2, Kamloops, B.C. V2C 6T Phone (250) 573-5700 Fax (250) 573-455 email: ecotech@mail.wkpowerlink.cor

ECEI OCT 26

20-Oct-98

PLACER DOME CANADA LTD. 1440 HUGH ALLEN DRIVE KAMLOOPS, B.C. V1S 1L8

.

LABORATORIES LTD.

ROCK SAMPLING, OCT. EXAMINATION

ATTENTION: BRIAN FOWLER

No. of samples received: 3 Sample type: Rock PROJECT: # FRAN SHIPMENT: # 01 Samples submitted by: Ron Wells

		Au	
ET #.	Tag #	(ppb)	
1	33701	10	
2	33702	20	
3	33703	10	

QC DATA:

Respli	it:	
R/S 1	33701	55
Repea	t:	
1	33701	10
Standa	ard:	
GEO'9	8	130

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/98Placer Dome fax: 372-7784

10/23/98

15:55

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 ernail: ecotech@mail.wkpowerlink.com

WHOLE ROCK CERTIFICATE OF ANALYSIS AK98-636

ROCK SAMPLING, OCT. EXAMINATION 23-Oct-98

No.20

LOL

1000

PLACER DOME CANADA LTD. 1440 HUGH ALLEN DRIVE KAMLOOPS, B.C. V1S 1L8

ATTENTION: BRIAN FOWLER

No. of samples: 2 Sample Type: Rock PROJECT #: FRAN SHIPMENT #: 01 Samples Submitted by: Ron Wells

Values expressed in percent

ET #.	Tag #	BaO	P205	SIO2	MnO	Fe203	MgO	AI203	CaO	102	Nazu	<u>N20</u>	L.U.I.
	A33705	0.15	0.16	60.48	0.12	4.19	0.94	17.96	6.00	0.51	4.25	2.45	2.76
1						4.38	1.46	18.92	4.91	0.46	4.53	3.33	2.14
2	A33706	0.20	0.32	59.26	0.08	4,30	1.10	10.02					
QC/DATA: Repeat #:						~ ~ 7	0.04	18.16	5.96	0.45	4.18	2.07	2.70
1	A33705	0.12	0.19	61.28	0.12	3.97	0.81					3.31	2.09
2	A33706	0.18	0.30	59.74	0.08	4.25	1.27	18.96	4.85	0.45	4.54	3.31	2.05
Standard:		0.02	0.05	39.19	0.17	17.45	13.25	8.53	14.60	3.61	0.71	0.20	2.22
MRG1					0.32	6.06	2.56	12.02	8.09	0.14	4,30	4.53	1.84
SY2		0.06	0.42	59.67	0.32	0.00	2.44						

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/98Placer Dome df/wr636

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

26-Oct-98

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@mail.wkpowerlink.com

ECEIVE

NOV 0 2 1998

也以

CERTIFICATE OF ASSAY AK 98-635

SOIL SAMPLING, OCT. PROGRAM

PLACER DOME CANADA LTD. 1440 HUGH ALLEN DRIVE KAMLOOPS, B.C. V1S 1L8

ATTENTION: BRIAN FOWLER

No. of samples received: 193 Sample type: Soil PROJECT #: FRAN SHIPMENT #: 01 Samples submitted by: R. Wells

ET #. Tag #	Au (g/t)	Au (oz/t)	
87 L1200E 14+50N	1.93	0.056	
139 L1800E 9+00N	3.14	0.092	
<u>QC/DATA:</u> <i>Repeat:</i> 139 L1800E 9+00N	2.32	0.068	
Standard:			
STD-M	1.60	0.047	

TECH LABORATORIES LTD rank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/98

Page 1

۰.

.

SOIL SAMPLING, OCT. PROGRAM

26-Oct-98

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557 ICP CERTIFICATE OF ANALYSIS - AK98-635

PLACER DOME CANADA LTD. 1440 HUGH ALLEN DRIVE KAMLOOPS, B.C. V1S 1L8

ATTENTION: BRIAN FOWLER

No. of samples received: 193 Sample type: Soil PROJECT #: FRAN SHIPMENT #: 01 Samples submitted by: R. Wells

Values in ppm unless otherwise reported

Mesh

			mean																													
Ŧ	Et #.		Size	Au(ppb)		<u></u>	As	Ba		Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	v	W	Y	Zn
	1	L600E 13+00N		<5	<0.2		15	90	10	0.22	<1	19	33	46	5.84	<10	0.72	689	3	0.01	18	670	14	<5	<20	35	0.12	<10	139	<10	<1	128
	2	L600E 13+25N		5	0.2	3.12	10	130	<5	0.39	<1	24	41	72	5.60	<10	1.03	528	2	0.01	60	970	14	<5	<20	79	0.11	<10	129	<10	<1	123
	3	L600E 13+50N		5	<0.2	2.25	5	105	5	0.30	<1	16	39	35	4.93	<10	0.63	397	1	0.01	20	2090	10	<5	<20	42	0.08	<10	110	<10	<1	138
	4	L600E 13+75N		<5	<0.2	2.18	<5	145	10	0.33	<1	16	38	37	4.61	<10	0.62	502	2	0.01	20	1820	10		<20	41	0.07		98	<10	<1	126
	5	L600E 14+00N	-48	<5	<0.2	1.97	<5	120	15	0.30	<1	13	37	27	5.32	<10	0.59	646	3	0.01	16	2160	8		<20	37		<10	118	-	<1	120
																							-	-			0.00	10		10		120
	6	L600E 14+25N		<5	<0.2	1.67	<5	145	10	0.22	<1	11	30	23	3.96	<10	0.38	1194	1	0.01	11	1890	12	<5	<20	33	0.09	<10	97	<10	<1	89
	7	L600E 14+50N	-48	<5	0.2	2.63	20	195	10	0.34	1	21	49	51	6.66	<10	0.79	648	3	0.01	24	2880	10	-	<20	55	0.10		139	<10	<1	151
	8	L600E 14+75N		15	0.4	2.48	25	90	<5	0.69	<1	21	42	238	4.70	<10	0.98	1394	10		48	710	10	-	<20	73	0.06		106	<10	17	88
	9	L600E 15+00N		10	0.4	3.43	45	300	<5	0.73	2	31	14	149	6.96	<10	0.51	1200	7	0.02	28	1860	10		<20	392		<10	113	<10	<1	184
	10	L600E 15+25N		60	0.2	4.37	10	360	<5	0.80	1	17	17	96	6.44	<10	0.78	549	3	0.03		2750	12	<5	<20	125	0.10	10	122	<10		182
																			•			2.00		-0	-20	120	0.10		122	~10		102
	11	L600E 15+50N		135	0.6	4.21	45	390	<5	0.84	2	30	15	117	7.14	<10	0.39	797	6	0.02	16	3040	12	<5	<20	381	0.08	<10	123	<10	<1	181
	12	L600E 15+75N	-48	25	0.8	3.65	55	205	<5	0.77	1	22	18	135	5.93	<10	0.70	356	1	0.02	19	760	14	<5		198		<10	136	<10	<1	361
	13	L600E 16+00N		945	0.6	4.11	335	165	<5	0.74	<1	56	12	1120	>10	<10	0.70	352	22		19	1940	6	-		148	0.15	10	220	10	<1	253
	14	L600E 16+25N	-48	105	6.0	3.81	1780	125	<5	0.47	<1	57	<1	1343		<10	0.61	439	71	0.02	.5	1750	20	<5	<20	49	0.05	10	179	<10	<1	207
	15	L600E 16+50N	-48	825	19.0	1.94	2080	400	<5	0.29	<1	24	<1	545	>10	<10		277	59	0.03	Ă	2210	136	<5	<20	93	0.08	10	138	<10	<1	181
																			•••	0.00		LLIU	100		-20	00	0.00		100	~10		101
	16	L600E 16+75N		30	1.4	3.13	75	155	<5	0.34	<1	21	16	444	>10	<10	0.44	343	59	0.02	12	1710	8	<5	<20	101	0.16	10	150	<10	<1	100
	17	L600E 17+00N		260	0.4	3.70	15	105	<5	0.31	<1	19	5	154	6.17	<10	0.42	231	17		8	1360	10	<5	<20	62	0.03	10	82	<10	<1	80
	18	L600E 17+25N		30	<0.2	3.65	10	90	<5	0.28	<1	16	6	165	9.96	<10	0.43	326	19	0.01	8	2060	10	<5		23	0.09	10	168	<10	<1	82
	19	L600E 17+50N		10	<0.2	4.44	15	115	10	0.15	<1	14	20	78	6.84			306	.9	0.01	14	1410	14	<5		45	0.03	10	125	<10	<1	₀∠ 114
	20	L600E 17+75N		40	0.8	5.37	105	180	<5	0.35	<1	13	16	123	6.49			459	8	0.01		2160	18	<5	<20	151		<10	73	<10	<1	102
																	0.00	-00	v	0.01	.,	2100	10	~0	~20	101	0.05	~10	13	~10	N	102
	21	L600E 18+00N		60	0.2	2.14	5	140	10	0.27	<1	8	16	60	5,73	<10	0.39	163	17	0.01	9	1190	6	<5	<20	96	0.16	10	105	<10	~1	35
	22	L600E 18+25N	-48	30	<0.2	5.09	25	525	<5		<1	15	30	150	7.15			511	21	0.02	90	2180	10	<5		1899	0.12		103	<10	-	
	23	L600E 18+50N		150	0.4	1.24	<5	115	5	0.21	<1	5	<1	51	4.87			223	11	0.01	4	1200	6	<5	<20	51	0.03	10	80	<10	<1	64
	24	L600E 18+75N		40	1.0	4.24	35	315	<5	1.66	<1	32	12	165	7.32			1039	7	0.03	59	520	10	<5		812			155		•	45
	25	L600E 19+00N	-48		1.0	3.53	50	165	<5	0.96	<1	27	48	173	6.02			1732	3	0.03	50	600	16	~5 <5	<20	136	0.03				13	63
	-			•		2.20				0.00					Page		1.00			0.02	50	000	10	-0	~20	130	0.00	<10	136	<10	28	102

PLAC	ER DOME CANA	DA LTD Mesh).									ŀ	CP CE	RTIFIC	ATE (OF ANA	LYSIS	- AK98	-635						E	CO-TE		ABOR/	TORI	ES LTI	Э.
Et #.	Tag #		Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
26	L600E 19+25N		15	1.6	3.85	25	190	<5	1.46	1	29	56	276	6.39	<10	1.45	2520	4	0.03	53	950	12	<5	<20	100	0.07	<10	153	<10	23	170
27	L600E 19+50N		35	0.2	2.56	25	125	<5	0.88	<1	24	34	77	5.15	<10	1.20	1340	. 1	0.03	22	670	16	<5	<20	95	0.10	<10	132	<10	<1	104
28	L800E 12+75N		10	<0.2	2.75	<5	165	10	0.29	<1	16	47	43	6.19	<10	0.82	514	2	0.01	23	2740	12	<5	<20	54	0.08	<10	126	<10	<1	122
29	L800E 13+00N	-48	35	0.8	2.37	25	215	5	0.59	3	19	26	42	5.38	<10	0.52	1626	3	0.01	14	1730	12	<5	<20	263	0.08	<10	120	<10	<1	341
30	L800E 13+25N	-48	285	0.2	1.02	5	130	10	0.46	<1	9	5	22	2.86	<10	0.20	1061	<1	0.01	3	920	6	<5	<20	57	0.07	<10	76	<10	<1	54
	1 0005 40 - 501		070	• •		40												•					_								
31	L800E 13+50N		670	0.6	4.24	10	220	<5	0.72	1	34	15	235	>10		0.84	1002	21	0.02	-	1580	4		<20	188		<10		<10	<1	129
32	L800E 13+75N		20	0.4	4.11	10	470	<5	1.17	<1	22	10	98	6.52		0.62	999	4	0.02	10	2130	10		<20	2338		<10		<10	<1	137
33	L800E 14+00N		45	0.4	3.67	60	235	5	0.59	<1	25	27	97	5.96	<10	0.84	876	4	0.02	44	940	14	<5	<20	385		<10	100		<1	244
34	L800E 14+25N		170	2.2	3.06	70	175	<5	0.41	<1	24	12	138	7.01	<10	0.44	397	8	0.01		1370	12		<20	198	0.04		103	<10	<1	190
35	L800E 14+50N		60	0.6	1.88	25	140	<5	0.32	<1	8	11	27	4.37	<10	0.29	324	5	0.01	7	1130	8	<5	<20	89	0.03	<10	97	<10	<1	89
36	L800E 14+75N		135	0.8	2.65	65	110	<5	1.44	<1	23	15	116	5.46	<10	0.53	919	7	0.02	13	620	10	<5	<20	156	0.02	<10	103	<10	2	76
37	L800E 15+00N		95	0.4	1.90	20	165	<5	0.46	<1	10	8	41	4.81	<10	0.28	343	7	0.01	5	1110	10	<5	<20	189	0.04	<10	91	<10	<1	89
38	L800E 15+25N		215	0.2	3.13	50	210	<5	0.56	<1	18	13	172	8.57	<10	0.48	310	19	0.01	13	1090	10	<5	<20	322	0.05	<10	124	<10	<1	83
39	L800E 15+50N		5	<0.2	2.13	20	165	<5	1.01	<1	18	12	71	4.21	<10	0.36	802	5		11	1060	8	<5	<20	251	0.05		92		<1	101
40	L800E 15+75N		20	0.6	2.37	10	200	<5	0.45	<1	18	13	79	4.79	<10	0.38	1560		0.02	9	870	10	<5	<20	176	0.04		106		<1	82
41	L800E 16+00N		10	<0.2	4.06	20	285	10	1.08	<1	9	1	26	5.38	<10	0.24	244	8		<1	870	12	<5	<20	615	0.03	<10	111	<10	<1	26
42	L800E 16+25N	-48	5	1.0	1.84	<5	250	<5	1.03	2	25	3	92	3.49	<10	0.14	4291	8	0.01	5	2080	8	<5	<20	291	0.02	<10	73	<10	<1	69
43	L800E 16+50N		10	<0.2	3.73	50	175	<5	0.86	<1	22	22	83	5.61	<10	0.38	350	10	0.02	19	550	16	<5	<20	268	0.06	<10	137	<10	<1	39
44	L800E 16+75N		10	<0.2	2.31	10	105	5	0.41	<1	14	29	33	4.10	<10	0.74	399	1	0.02	22	1820	8	<5	<20	34	0.08	<10	93	<10	<1	71
45	L800E 17+00N		<5	0.4	2.41	10	105	10	0.29	<1	14	28	30	4.67	<10	0.56	355	2	0.01	13	1090	12	<5	<20	33	0.09	10	101	<10	<1	108
46	L800E 17+25N		80	0.8	2.66	30	185	<5	1.29	1	26	36	136	5.46	<10	0.77	1762	5	0.02	28	720	10	<5	<20	158	0.05	<10	95	<10	6	86
47	L800E 17+50N		205	1.2	2.73	55	140	<5	1.37	1	32	29	149	5.55		0.60	2237	-	0.02	24	990	14	<5	<20	120		<10	76		10	177
48	L800E 17+75N		20	0.6	2.36	45	145	<5	0.92	1	23	11	99	6.74			676		0.01	10	880	18	<5	<20	119		<10	95		<1	170
49	L800E 18+00N		20	0.6	2.63	40	115	10		<1	18	34	60	5.78			384		0.02	27	400	16	<5	<20	41		<10	113		<1	132
50	L800E 18+25N		35	0.8	2.50	40	150	<5		<1	20	39	124	4.61			1441	4		37	620	20	<5	<20	71	0.05		89		3	132
50	20002 10.2014			0.0	2.00	40	150	-0	0.04	~1	20	33	124	4.01	~10	0.71	1.444 1	**	0.02	31	020	20	~0	~20	/1	0.00	~10	09	~10	3	131
51	L800E 18+50N		15	<0.2		35	135	<5	0.25	<1	14	35	65	5.21	<10	0.70	568	4	0.01	28	1820	16	<5	<20	48	0.05	<10	98	<10	<1	140
52	L800E 18+75N		45	<0.2	2.50	20	125	<5	0.24	<1	12	31	62	5.87	<10	0.52	386	3	0.01	21	890	10	<5	<20	45	0.10	10	115	<10	<1	88
53	L800E 19+00N		260	0.2	3.17	140	160	15	0.30	<1	21	33	82	8.05	`<10	0.89	1011	3	0.02	27	860	12	<5	<20	51	0.15	<10	153	<10	<1	116
54	L800E 19+25N		<5	0.8	2.54	20	190	15	0.29	<1	24	29	57	6.73	<10	0.80	1073	5	0.02	18	1140	14	<5	<20	40	0.05	<10	158	<10	<1	134
55	L800E 19+50N		15	0.4	2.46	15	150	<5	0.93	<1	20	33	78	4.59	<10	0.78	1542	2	0.02	31	820	12	<5	<20	69	0.07	<10	99	<10	<1	88
56	L1000E 12+00N	,	110	0.6	2.81	90	270	<5	0.76	<1	22	13	122	6.65	<10	0.60	1162	7	0.01	14	1900	30	<5	<20	367	0.06	<10	117	<10	<1	184
57	L1000E 12+50N			1.6	2.08	35	245	15		2	30	29	71	8.16				8		24		12	<5		130	0.05		119		<1	266
58	L1000E 12+00N		20	<0.2		40	400	10		<1	18	15	83	6.43				6		37	2080	14	<5		798		<10	107	. –	<1	108
59	L1000E 13+50N					40 70					19	10				0.52		6			990 1280	14	-		163					•	
59	LIUUUE 13+50N		70	0.8	2.96	70	175	<5	0.93	<1	19		99	0.32	510	0.43	1949	6	0.01	9	1200	12	<5	<20	103	0.04	<10	112	<10	<1	109

58 4.67 <10 0.75 371

4 0.02

7 1200

12 <5 <20 727 0.04 <10

98 <10 <1

58

6

60 L1000E 14+00N

40 <0.2 4.08 20 220

<5 0.96 <1 13

PLACER DOME CANADA LTD.

L1200E 17+50N

94 L1200E 18+00N

95 L1200E 18+50N

93

<0.2 1.75

1.2 3.65

<5 <0.2 1.61

<5

<5

<5 130

15 350

<5 130

5 0.18

<5 0.32

5 0.28

.. .

ICP CERTIFICATE OF ANALYSIS - AK98-635

.

ECO-TECH LABORATORIES LTD.

47

158

52

227 <10 <1

112 <10 <1

<1

127 <10

		Mesh																													
Et#	Tag#	Size .	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr		Fe %		Mg %	Mn	Mo	Na %	Ni	P		Sb		_	Ti %	U	<u>v</u>	W	<u>Y</u>	Zn
61	L1000E 14+50N		195	0.8	3.23	25	190	5	0.58	<1	10	8	65	5.38	<10	0.43	353	6	0.01	5	1760	12	<5	<20	315	0.03	<10		<10		70
62	L1000E 15+00N		190	3.0	3.14	25	260	<5	0.21	<1	15	11	166	8.33	<10	0.48	416	9	0.01	9	1590	12	<5	<20	148	0.01	10	127		<1	60
63	L1000E 15+25N		50	1.2	3.04	10	130	<5	0.18	<1	12	28	59	4.47	<10	0.58	341	<1	0.01	24	690	14	<5	<20	36	0.10	10		<10	<1	82
64	L1000E 15+50N		5	0.4	2.88	10	125	10	0.18	<1	13	34	36	4.30	<10	0.52	335	<1	0.01	25	620	16	<5	<20	28	0.11	10	94	<10	<1	65
65	L1000E 15+75N		<5	0.2	2.05	5	160	10	0.39	<1	12	28	35	4.28	<10	0.40	1432	2	0.01	16	2390	10	<5	<20	48	0.07	<10	90	<10	<1	89
66	L1000E 16+00N		235	1.4	2.04	10	110	5	0.31	<1	13	21	48	5.04	<10	0.39	463	10	0.01	11	910	10	<5	<20	46	0.07	<10	100	<10	<1	100
67	L1000E 16+25N		80	0.4	2.96	20	110	5	0.22	<1	13	34	79	4.65	<10	0.67	346	2	0.01	24	640	14	<5	<20	34	0.08	10	99	<10	<1	78
68	L1000E 16+50N		15	0.4	2.01	15	85	10	0.14	<1	9	23	32	4.22	<10	0.37	226	5	0.01	13	520	10	<5	<20	24	0.06	10	98	<10	<1	43
69	L1000E 16+75N		150	3.8	2,53	90	100	<5	0.15	<1	10	25	54	4.97	<10	0.38	232	5	0.01	13	1050	12	<5	<20	30	0.03	10	94	<10	<1	95
70	L1000E 17+00N		35	0.8	3.33	15	185	<5	0.47	1	27	30	109	6.23	<10	0.73	1404	7	0.01	17	1020	14	<5	<20	144	0.02	<10	147	<10	<1	108
71	L1000E 17+25N		<5	0.8	2.00	30	70	<5	0.70	<1	25	15	136	6.69	<10	0.36	1074	9	0.01	18	640	10	<5	<20	24	<0.01	<10	95	<10	<1	115
72	L1000E 17+50N		<5	<0.2	2.57	10	65	5	0.13	<1	10	12	43	4.54	<10	0.13	247	3	<0.01	8	560	14	<5	<20	12	0.07	<10	93	<10	<1	45
73	L1000E 17+75N		<5	<0.2	2.67	15	170	5	0.40	<1	17	32	48	5.61	<10	0.61	351	2	0.01	23	650	12	<5	<20	226	0.11	<10	136	<10	<1	78
74	L1000E 18+00N		15	<0.2	1.80	5	85	10	0.30	<1	10	25	25	4.06	<10	0.39	372	<1	0.01	13	880	10	<5	<20	41	0.10	<10	99	<10	<1	66
75	L1000E 18+25N		<5	0.2	3.97	10	365	5	0.47	<1	16	29	64	5.63	<10	1.08	577	3	0.01	19	1630	12	<5	<20	647	0.06	<10	125	<10	<1	133
						_					_						• • •					40		-00	440	0.00	-10	400	-10	-1	106
76	L1000E 18+50N		10	0.4	2.11	<5	175	10		<1	9	18	29			0.38	641		0.01	10	940	10	<5	<20	140	0.03		135	<10 <10		100
77			220	<0.2	3.47	10	135	10		<1	16	33	61		<10		349		0.01		1100	12	<5	<20	198		<10			<1	
78	L1000E 19+00N		10	<0.2		<5	170	10		1	13	21	39		<10		446		0.01		1560	12	<5	<20	389	0.11			<10		152
79	L1000E 19+25N		5	<0.2		15	105		0.24	<1	13	34	46		<10		353		0.01		1070	14	<5	<20	51	0.09		133		<1	100
80	L1000E 19+50N		<5	<0.2	2.20	5	155	10	0.19	<1	11	26	39	5.96	<10	0.42	331	2	0.01	14	1760	14	<5	<20	134	0.11	<10	152	<10	<1	103
81	L1000E 19+75N		<5	0.4	3.05	<5	370	15	0.53	<1	18	28	61	5.84	<10	0.59	1411	2	0.02		2510	14	<5	<20	553		<10	151			132
82	L1200E 11+50N		5	<0.2	2.21	10	125	5	0.35	<1	15	36	41	3.59	<10	0.72	478	<1	0.01	29	1400	12	<5	<20	41		<10	81			74
83	L1200E 12+00N		<5	0.6	1.86	10	180	10	0.60	1	22	30	38	4.36	<10	0.43	2575	3	0.01	24	1040	10	<5	<20	48	0.08	<10	85			169
84	L1200E 13+00N		10	0.2	2.08	15	115	10	0.22	<1	12	34	22	4.95	<10	0.43	284	2	0.01	19	610	10	<5	<20	28	0.11	10	106			73
85	L1200E 13+50N		55	0.4	2.31	10	120	10	0.22	<1	11	33	27	3.98	<10	0.46	259	1	<0.01	22	1210	12	<5	<20	20	0.08	10	82	<10	<1	82
86	L1200E 14+00N	1	295	<0.2	3.29	15	120	10	0.25	<1	11	36	51	5.41	<10	0.50	256	3	0.01	20	4270	14	<5	<20	33	0.06	10	103	<10	<1	70
87	L1200E 14+50N		>1000	1.0		10	360	<5		<1	26	10	132	8.11	<10	0.40	1344	13	0.01	7	3250	10	<5	<20	542	0.04	<10	135	<10	<1	87
88	L1200E 15+00N		25	0.4		15	150	-5		<1	17	12	50	5.97	<10	0.41	1498		0.01	9	1010	10	<5	<20	83	0.01	<10	91	<10	<1	60
00 80	L1200E 15+50N		<5	0.4		395	145	<5		<1	29	24	182		<10			2		16		16	<5	<20	55	0.15	<10	186	<10	<1	244
90			<5	<0.2		15	155	20	• · · · ·	<1	27	24	60	• • •	<10					12		12	-	<20	21		<10	201	<10	<1	110
ب	1 40005 40 500			-0.0	o 77	70	450		0.40		20	20	404	0.40		1.39	1104	6	0.02	E0	1820	10	~	<20	77	0.15	<10	166	5 <10	<1	167
91	L1200E 16+50N		35		2.77	70	150	<5		1	38	28	191						0.02		2120	10		<20		0.10		121		<1	85
92	L1200E 17+00N	1	<5	<0.2	2.48	10	170	10	0.41	<1	16	27				0.77	512		0.02		2000	14		20		0.12			7 <10		47

Page 3

70 6.96 <10 0.26

81 5.86 <10 0.93

34 3.66 <10 0.26 228

226

624

34 0.01

5 0.01

1 0.01

11 2090

26 2230

10 540

14

16

10

<5 <20

<5 <20

<5 <20

28 0.16 10

10

302 0.06 <10

61 0.09

10

19

7 22

<1

<1

<1

34

35

.

PLAC	ER DOME CANA	DA LTI Mesh	D .									I	CP CE	RTIFIC	CATE	OF ANA	LYSIS	- AK98	8-635						I	ECO-T	ECH L/	ABORA	ATOR II	ES LT!	D.
Et #	Tag #	Size	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
96	L1200E 19+00N		<5	<0.2	3.24	10	160	20	0.44	<1	20	48	54	6.77	<10	1.11	767	<1	0.01		2050	10	<5	<20	105	0.16		179		<1	135
97	L1200E 19+50N		<5	<0.2	2.39	<5	90	10	0.21	<1	9	29	36	4.67	<10	0.48	301		0.01	14	1510	10	<5	<20	43	0.09	<10		<10	<1	53
98	L1200E 20+00N		10	0.6	2.63	20	110	5	0.84	<1	13	30	80	3.85		0.56	417	. –	0.01	22	670	12	<5	<20	73	0.07	<10	99	<10	3	72
99	L1400E 10+00N	-48	10	<0.2	2.71	10	170	10	0.44	<1	15	33	56	5.13	<10	0.94	626	4		20	3170	10	<5	<20	65	0.06	<10		<10	<1	129
100	L1400E 10+50N		<5	0.2	2.55	5	160	5	0.57	<1	20	32	45			0.85	1161		0.01	18	1880	12	<5	<20	68	0.08	<10	114	<10	<1	129
																		~	0.01		1000		.0	-20	00	0.00	-10	114	~10		124
101	L1400E 11+00N		<5	<0.2	1.71	5	130	<5	0.22	<1	11	36	19	2.90	<10	0.47	310	<1	0.01	27	750	10	<5	<20	17	0.07	10	58	<10	<1	70
102	L1400E 11+50N		<5	<0.2	2.06	10	120	10	0.29	<1	12	41	23	3.59		0.55	293	<1	0.01	30	1680	12	<5	<20	19	0.06	<10	68	<10	<1	114
103	L1400E 12+00N		40	<0.2	1.70	5	100	10	0.31	<1	10	30	19			0.48	262	<1	0.01	16		8	<5	<20	25	0.09	10	84	<10	<1	85
104	L1400E 12+50N		<5	0.2	1.39	<5	105 5 0.21 <1 10 28 13 2.98 <10 0.25 280 1 0.01 13 1190 10														-	<5	<20	18	0.06	10	66	<10	<1	60	
105	L1400E 13+00N		<5	0.2	2.06	10	130	130 <5 0.22 <1 8 36 22 3.84 <10 0.38 192 2 0.01 19 1620 10															<5	<20	21	0.00	10	72	<10	<1	58
							95 <5 0.71 <1 13 36 51 3.82 <10 0.47 770 4 0.01 23 860 8															~	-20	21	0.05	10	12	-10	~1	00	
106	L1400E 13+50N		5	<0.2	1.87	10	95 <5 0.71 <1 13 36 51 3.82 <10 0.47 770 4 0.01 23 860														8	<5	<20	30	0.04	<10	80	<10	<1	84	
107	L1400E 14+00N		25	<0.2	2.21	15	95 <5 0.71 <1 13 36 51 3.82 <10 0.47 770 4 0.01 23 860														12	<5	<20	21	0.07			<10	3	88	
108	L1400E 14+50N		85	<0.2	1.71	15	110	<5	0.18	<1	11	32	46	3.86	<10	0.43	354	<1		20	450	10	<5	<20	19	0.08		85	<10	<1	52
109	L1400E 15+00N		175	<0.2	2.42	30	130	<5	0.38	<1	16	30	135	4.58	<10	0.59	596	1		19	1330	12	<5	<20	41	0.08		97	<10	<1	78
110	L1400E 15+50N		400	1.2	3.62	55	105	<5	1.13	1	24	28	421	4.99	20	0.42	291	5		30	1010	16	<5	<20	76	0.07		88	<10	25	45
																								20		0.01	-10	00	10	20	-0
	L1400E 16+00N		125	<0.2	2.83	20	120	<5	1.73	1	23	27	149	5.11	<10	0.89	1046	3	0.02	25	1050	10	<5	<20	77	0.07	<10	102	<10	2	81
	L1400E 16+50N		235	<0.2	2.66	25	120	10	0.47	<1	19	31	101	5.43	<10	0.89	586	2	0.02	23	670	12	<5	<20	46	0.12		141	<10	<1	85
	L1400E 17+00N		25	<0.2	2.87	15	115	5	0.35	<1	18	33	68	5.27	<10	0.89	692	<1	0.02	27	820	14	<5	<20	44	0.13		127		<1	101
114	L1400E 17+50N		20	<0.2	2.51	5	135	10	0.46	1	19	28	34	5.52	<10	0.73	534	1	0.02	16	1180	10	<5	<20	101	0.15	<10	134	-	<1	197
115	L1400E 18+00N		20	<0.2	2.21	15	110	10	0.53	<1	17	25	50	5.14	<10	0.65	786	1	0.02	16	940	12	<5	<20	90	0.11		125		<1	78
	L1600E 8+00N		<5	<0.2	2.62	5	145	10	0.49	<1	16	40	34	5.46	<10	0.81	576	3	0.01	22	1640	12	<5	<20	49	0.11	<10	128	<10	<1	115
	L1600E 8+50N		<5	<0.2		<5	155	10	0.36	<1	12	31	23	4.49	<10	0.45	462	2	0.01	13	1390	10	<5	<20	35	0.08	<10	110		<1	107
	L1600E 9+00N		<5	<0.2		5	280	<5	0.59	1	15	37	26	4.92	<10	0.62	1755	2	0.01	18	4900	12	<5	<20	44	0.06		100		<1	132
	L1600E 9+50N	-48	•	<0.2	2.32	<5	155	10	0.43	<1	19	50	41	4.30	<10	1.14	1347	<1	0.01	36	2150	12	<5	<20	38	0.09	<10	102		<1	111
120	L1600E 10+00N		<5	<0.2	2.80	10	210	10	0.33	<1	16	46	34	5.14	<10	0.78	1589	1	0.01	23	3590	14	<5	<20	67	0.08	<10	118		<1	125
			_																												
	L1600E 10+50N		<5	<0.2		<5	150	10	0.30	1	14	44	28	4.23	<10	0.57	856	1	0.01	20	1620	12	<5	<20	35	0.09	<10	102	<10	<1	112
	L1600E 11+00N		<5	<0.2		<5	150	10	0.31	<1	10	35	37	3.62	<10	0.37	844	1	0.01	18	2670	10	<5	<20	26	0.05	<10	80	<10	<1	69
-	L1600E 11+50N		<5	<0.2		5	150	5	1.03	<1	15	41	57	3.77	<10	0.88	762	<1	0.02	30	900	10	<5	<20	46	0.08	<10	94	<10	8	77
	L1600E 12+00N		<5	<0.2		5	120	10	0.45	<1	20	39	48	4.39	<10	0.97	785	1	0.02	28	790	12	<5	<20	30	0.10	<10	105	<10	<1	70
125	L1600E 12+50N		<5	<0.2	1.48	<5	120	<5	0.48	<1	12	34	31	3.01	<10	0.65	430	<1	0.01	23	890	8	<5	<20	26	0.06	<10	71	<10	<1	65
400	1 40000 40.000		-			-																									
	L1600E 13+00N		<5	<0.2		<5	120	5		<1	14	40	49	3.18	<10	0.71	604	<1	0.02	31	750	10	<5	<20	41	0.10	<10	76	<10	6	57
127	L1600E 13+50N		<5	<0.2		5	125	<5	0.35	<1	13	36	40	3.66		0.67	411	<1	0.01	21	960	10	<5	<20	28	0.10	<10	89	<10	<1	63
	L1600E 14+00N		<5	<0.2		5	150	<5	0.38	<1	11	37	37	3.03	••	0.55	434	<1	0.01	27	570	8	<5	<20	25	0.07	<10	69	<10	<1	55
	L1600E 14+50N		5	<0.2		10	115	<5	0.70	<1	18	43	61	3.67		0.76	780	1	0.02	33	550	12	<5	<20	38	0.09	<10	86	<10	4	62
130	L1600E 15+00N		10	<0.2	1.98	5	145	<5	1.18	1	15	45	65	4.18	<10	0.62	1203	5	0.02	30	770	8	<5	<20	54	0.06	<10	84	<10	6	76

PLACER DOME CANADA LTD.

165 L2000E 9+25N

225 <0.2 3.20

10 135

<5 0.33 <1

26

22

		Mesh									1	CP CE	RTIFIC	CATE	of ana	LYSIS	- AK98	3-635						I	ECO-T	ECHL	ABOR	ATORIE	ES LTI	D.
Et #.	. Tag #	Size Au(ppb)	٨٩	AI %	As	Ва	D:	C- 1/	~	<u> </u>	<u> </u>	0	F - N							_			_							_
and the set	L1600E 15+50N		_	2.11	15	165	<5	Ca % 1.20	Cd	Co	Cr		Fe %			Mn		Na %	Ni	<u> </u>			Sn	·	Ti %	<u>U</u>	<u></u>		<u>Y</u>	Zn
	L1600E 16+00N	70		1.60	<5	130	<5	0.80	<1	16 13	48 42	75 36	4.19 3.02			1572		0.02	28	780	10		<20	56	0.06			<10	7	60
133	L1600E 16+50N	60	0.4	2.96	10	180	<5	0.49	1	20	40		3.02 4.44			616 927	6	0.02 0.02	21 35	550	8		<20	49	0.09			<10	3	47
134	L1600E 17+00N	55	<0.2		15	200	<5	0.42	1	15	33	70	4.70			564	2	0.02	35 26	630 1900	12 8	~⊃ <5	<20 <20	48 50	0.06 0.07		98		9	58
135	L1800E 8+00N	35	<0.2	2.29	5	130	5	0.44	<1	19	37	54	3.94		0.82	703	<1	0.01	20 29		10	-	<20 <20	50 50	0.07		97 91		<1 1	104 58
136	L1800E 8+25N	205	0.6	2.77	10	.155	<5	0.76	1	25	31	126	5.22	<10	0.60	1888	. 6	0.01	34	1000	10	-5	<20	51	0.02	~10	00	<10	13	100
137	L1800E 8+50N	5	<0.2		5	235	5	0.43	<1	21	35	73	5.64		0.77	581	4				14	<5	<20 <20	192	0.02		103		13 <1	100 97
138	L1800E 8+75N	210	<0.2	2.73	5	165	<5	0.49	1	26	26	70	5.33		0.76	1011		0.01	20		10	<5	<20	81	0.04		93		<1	121
139	L1800E 9+00N	>1000	<0.2	3.70	40	245	<5	0.40	<1	63	25	127			0.55	1705		0.01		2030	14	<5	<20	184	0.08		115		<1	111
140	L1800E 9+25N	75	<0.2		15	120	<5	0.21	<1	21	34	69			0.61	378		0.01		1860	16	<5		39	0.00				<1	100
141	L1800E 9+50N	760	0.2	3.03	5	110	c 5	0.22	<1	11	35	164	5.36	<10	0.47	329	7	0.01	40	2540	40	-5	-00	40	0.00			-10		
142	L1800E 9+75N	190	<0.2		10	125	<5	0.19	<1	15	33	104		<10	0.56	356		0.01	18 21		16 12	<5 <5		16 27	0.08 0.08		110			85
143	L1800E 10+00N	30	0.6		<5	110	-	0.52	<1	20	30	88	3.94		0.47	2106	-	0.01	27		8	<5		29	0.08			<10 <10	<1 7	101
144	L1800E 10+25N	25	1.0		10	180	-	1.16	<1	18	40	154	4.38	20	0.55	1124		0.02	37		10	~5 <5		29 49	0.04			<10	25	68 60
145	L1800E 10+50N	130	<0.2	2.47	10	110		0.85	<1	19	23	86			0.23	661		0.01	21		10		<20	62		<10		<10 <10	25	33
146	L1800E 10+75N	35	<0.2	2.18	5	105	<5	0.32	<1	24	25	202	7.21	<10	0.32	446	5	0.01	22	680	6	<5	<20	25	0.10	<10	129	<10	<1	57
147	L1800E 11+00N	30	<0.2	1.81	10	120		0.30	<1	16	26	69			0.37	472	4		20		8		<20	25		<10		<10		56
148	L1800E 11+50N	5	<0.2	2.03	10	130	<5	0.33	<1	14	30	46			0.50	548		0.01	21		10	-	<20	34		<10	101			70
149	L1800E 12+00N	5	<0.2	1.30	15	120	<5	0.41	<1	14	21	63	5.23	<10	0.28	613	3	0.01	14		8		<20	34		<10		<10	-	54
150	L1800E 12+50N	10	<0.2	1.70	5	65	<5	0.50	<1	9	34	53	4.03	<10	0.34	290	2	0.01	22		8	<5		21		<10		<10	-	41
151	L1800E 13+00N	540	<0.2	2.18	15	130	5	0.65	<1	19	52	50	3.83	<10	0.85	934	1	0.02	36	570	10	<5	<20	38	0.10	<10	94	<10	6	67
152	L1800E 13+50N	5	<0.2	1.96	10	85	<5	0.30	<1	11	41	38			0.55	416	2		30			<5		16				<10	<1	-54
153	L1800E 14+00N	<5	0.4	1.94	<5	125	<5	0.20	2	11	47	55	3.71	<10		784	2		37		10	-	<20		0.04			<10	3	80
154	L1800E 14+50N	<5	<0.2	1.81	10	95	<5	0.26	<1	11	42	37	3.40	<10	0.38	623	1	0.01	27		8	-	<20	18				<10	<1	61
155	L1800E 15+00N	<5	<0.2	1.98	10	110	<5	0.29	1	10	46	34	3.61	<10	0.53	329	2	0.02	39		8		<20	19		<10		<10	4	62
156	L1800E 15+50N	<5	<0.2	2.73	15	120	<5	0.50	<1	13	55	47	5 27	<10	0.62	415	3	0.01	46	1360	10	-5	<20	32	0.05	-10	02	<10	3	00
157	L1800E 16+00N	115		3.75	45	215		0.99	<1	27	49	137			1.42	954	4		37		10	-	<20	332		-		<10	4	80
158	L1800E 16+50N	5	<0.2		10	120		0.41	<1	16	41	59	-		0.74	721	2		34	- + -	8	-	<20	36				<10	3	81 63
159	L1800E 17+00N	50	<0.2	2.61	15	115	-	0.48	<1	22	49	91			0.91	995	<1		47		10		<20	25		<10		<10	-3 	81
160	L2000E 8+00N	<5	<0.2		5	110	-	0.22	-1	12	36	32			0.58	296	1		22		10		<20	23		<10		<10 <10		83
161	L2000E 8+25N	<5	<0.2	2.50	10	135	<5	0.24	<1	14	38	39	4.94	<10	0.69	412	<1	0.01	26	710	10	<5	<20	28	0.12	<10	119	<10	<1	86
162	L2000E 8+50N	10	<0.2	2.27	<5	115	5		<1	12	32	43			0.55	340	<1		23		10		<20		0.12		118			57
163	L2000E 8+75N	70	<0.2	2.36	<5	135	<5	0.32	<1	27	21	44			0.42		2		17		10		<20	50		<10	81		-	95
164	L2000E 9+00N	310	<0.2	3.15	10	145	<5	0.33	<1	31	23	152	7.65				11			1860	12		<20	41		<10		<10		96
165	1 2000E 0±25N	225	-0.0	0.00	40	400																			0.00		.00		-1	30

ICP CERTIFICATE OF ANALYSIS - AK98-635

ECO-TECH LABORATORIES LTD.

73 0.09 <10

115 <10 <1

95

98 6.39 <10 0.51 700

10 0.01

31 2120

10 <5 <20

PLAC	ER DOME CANA	DA LTI Mesh										ŀ	CP CE	RTIFIC	ATE (OF ANA	LYSIS	- AK98	-635						E	со-т	ECH LA	BOR	ATORI	ES LT	D.
Et #	Tag #		Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
166	L2000E 9+50N		10	<0.2	3.56	5	155	<5	0.29	<1	23	27	63		<10		619	1	0.02		1930	10	<5	<20	118		<10		<10	<1	91
167	L2000E 9+75N		10	<0.2	4.35	10	200	<5	0.22	<1	29	25	82				525	3	0.02		1780	12		<20	112		<10		<10	<1	103
168	L2000E 10+00N		75	<0.2	2.84	<5	185	5	0.42	<1	20	17	63	6.09	<10		772	4	0.02			10	<5	<20	105		<10		<10	<1	72
169	L2000E 10+25N		25	<0.2	2.68	<5	125	5	0.24	<1	13	23	40		<10	0.53	378	1	0.02		1290	10		<20	71		<10				
170	L2000E 10+50N		25	<0.2	3.42	<5	145	10	0.31	<1	16	21	49	5.98	<10	0.56	721	1	0.02		1680	10	<5	<20	91		<10		<10 <10	<1 <1	61 85
171	L2000E 10+75N		5	<0.2	4.28	15	150	<5	0.19	<1	16	29	96	6.56	<10	0.54	340	1	0.01	29	1870	12	-5	~20		0.42	-10		-40	- 4	62
172	L2000E 11+00N		20	<0.2	2.93	10	120	<5	0.20	<1	12	31	44	5.58	<10		312	2	0.01	-	1760	12		<20 <20	66 22		<10 <10		<10	<1	62
	L2000E 11+50N		15	<0.2	2.32	<5	120	<5	0.14	<1	11	31	34		<10		324	<1	0.01	23 19	990								<10	<1	60 50
	L2000E 12+00N		25	<0.2	1.98	<5	125	15	0.19	<1	11	28	39	5.18	<10	0.46	315	1				10		<20	21	0.12				<1	53
175			5	<0.2	1.47	<5	110	<5	0.25	<1	12	28	60	4.36		0.40	430	5	0.01 0.01		1590 1560	8 6		<20 <20	25	0.11 0.08			<10 <10	<1 <1	62
														1.00	-10	0.42	400	J	0.01		1000	0	~J	~20	22	0.00	10	100	<10	~1	74
176			5	<0.2	1.77	5	135	<5	0.42	<1	15	26	67	4.87	<10	0.44	908	4	0.01	18	2260	8	<5	<20	31	0.04	<10	91	<10	<1	97
177	L2000E 13+50N		<5	<0.2	1.58	<5	145	5	0.31	<1	18	29	36	4.00	<10	0.37	1707	2	0.01	16	1310	8	<5	<20	19		<10		<10	<1	88
178			<5	<0.2	2.69	5	225	<5	0.54	<1	29	33	102	6.27	<10	0.78	1862	<1	0.02	20	1850	8	<5	<20	120	0.13	<10		<10	<1	112
179			<5	<0.2	4.14	5	110	5	0.46	<1	26	31	114	6.15	<10	1.98	678	<1	0.05	24	660	12	<5	<20	41	0.32			<10	<1	115
180	L2000E 15+00N		5	<0.2	3.96	<5	135	10	0.62	<1	22	27	79	6.22	<10	1.5 9	695	<1	0.07	18	730	10	<5	<20		0.31	. –		<10	<1	100
181	L2000E 15+50N		<5	<0.2	2.92	5	135	<5	0.77	<1	23	25	67	5.13	<10	1.08	921	<1	0.04	16	530	10	<5	<20	75	0.23	~10	171	<10	<1	74
182	L2000E 16+00N		<5	<0.2	4.00	5	195	5	0.34	<1	24	30	101	6.00	<10	1.63	842	<1	0.02	20	1890	16	<5	<20	58	0.20	<10	154		•	
183	L2000E 16+50N		<5	<0.2	1.80	<5	80	<5	0.33	<1	13	35	86	5.91	<10		233	5	0.01	29	1410	6	<5	<20	26	0.20			<10	<1	117
184	L2000E 17+00N		<5	<0.2	1.82	35	120	<5	0.22	<1	8	29	21	4.42		0.36	352	2	0.01		2010	8	<5	<20	63	0.06	<10			<1	52
185	L900E 15+00N		5	<0.2	2.21	10	300	<5	0.52	<1	6	14	34	3.36	<10	0.33	234	2		10	970	8	<5	<20	882	0.00			<10 <10	<1 <1	74 79
186	L900E 15+25N		5	0.4	2.57	5	225	<5	0.49	<1	14	14	46	4.82	<10	0.33	400	E	0.01	40	4470	••	Æ	-00	00F		.40	~~			
	L900E 15+50N		<5	<0.2	4.73	10	565	~5 <5		<1	9	12	34	4.02 5.61	<10		489	5			1170	14	<5	<20	265	0.04		90		<1	125
188			5	<0.2	3.37	60	315	<5	0.60	<1	9 7	12	34 30		<10	0.58	387	1	0.01	8	3070	12	<5	<20	1353	0.07		122		<1	75
189	L900E 16+00N		20	<0.2	4.39	515	230	-5	0.00	<1	17	12					420	4	0.02	10	740	12	<5		892	0.02			<10	<1	57
190			140	0.6	2.46	100	245	<5		<1	20	21	53 111	5.56 6.50			354	12	0.01	24	920	16	<5		135	0.03	<10	68		<1	72
			740	0.0	2.40	100	240	-0	0.55	~1	20	21	111	0.00	<10	0.46	1045	9	0.01	12	1120	10	<5	<20	99	0.03	<10	115	<10	<1	148
191	L900E 16+50N		20	0.6	3.56	45	295	<5	1.00	<1	14	8	63	5.58	<10	0.38	529	3	0.01	8	1510	10	<5	<20	905	0.06	<10	114	<10	<1	128
192	L900E 16+75N		175	<0.2	3.78	25	170	<5	0.62	<1	20	22	256	7.40	<10	0.57	293	24	0.02	43	1970	6	<5		695	0.07	<10	96		<1	78
193	L900E 17+00N		490	<0.2	3.74	25	250	<5	0.52	<1	36	34	241	8.88	<10	0.97	839	11	0.02	28	910	8	<5		433	0.13			<10		124
000																															
QC/D Repe																															
1	L600E 13+00N		<5	<0.2	2.62	10	105	10	0.23	<1	20	35	47	6.02	<10	0.77	705	•	0.04	40	700					n 4 4					40-
10			65	<0.2		10	355	<5		1	17	- 35 16	97				705	2		18	760	14	<5		40	0.14		145		<1	135
19	L600E 17+50N		10	<0.2		15	120	10		י <1	15	-			<10		539	4		20	2720	10	<5		121	0.10	• •	120		<1	178
28	L800E 12+75N		40			15 5	165			-		21	79		<10		316	9			1340	16	<5		49	0.07	10	126		<1	114
30	L800E 12+75N	40		<0.2	2.71	5	100	<5	0.30	<1	16	48	41	0.20	<10	0.81	517	2	0.01	22	2830	12	<5	<20	53	0.08	10	128	<10	<1	124
50	LOUUE 13725N	-48	325	-	-	-	-	-	-	-	-	-	-	Page		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Page 6

.

PLAC	ER DOME CANAI	DA LTD. Mesh									ł	CP CE	RTIFIC	ATE (OF ANA	LYSIS	- AK98	-635						l	ECO-TI	ECH L/	BOR	TORI	ES LT	D.
Et #.	Tag #	Size Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	υ	v	w	Y	Zn
QC/D/	XTA.																													<u>.</u>
Repea																														
	L800E 14+75N	90	0.6	2.92	60	115	<5	1.48	<1	24	47	140	E 00	-10	0.50	000	•													• •
	L800E 17+00N	<5	<0.2		15	105	~0 5	0.29	<1	24 14	17 29	119 30	5.63	<10 <10	0.56 0.59	926 267	8	0.02	15	680	12	<5 - 7	<20	166		<10		<10	1	81
54	L800E 19+25N	<5	0.8		25	195	10	0.29	<1	23	29 29	30 59	4.82 6.75		0.59	367 1064	1	0.01	14	1140	10	<5	<20	32	0.10	-		<10	<1	112
63	L1000E 15+25N	85	1.0		15	125	<5	0.30	<1	13	29 30	- 59 - 63	0.75 4.59		0.79	358	4 <1	0.02	20	1130	12	<5	<20	42		<10	159	<10	<1	135
71	L1000E 17+25N	<5	0.6		25	65	<5	0.20	<1	25	30 15	136	4.59	<10	0.35	300 1058	-	0.01	25	720	16	<5	<20	35	0.10	20	95	<10	<1	84
••	210002 11 2011		0.0	2.01	20	05	~0	0.00	-1	20	15	130	0.07	510	0.35	1056	10	<0.01	18	680	10	~5	<20	25	<0.01	<10	96	<10	<1	114
80	L1000E 19+50N	<5	<0.2	2.33	5	160	10	0.20	<1	12	27	39	6.15	<10	0.45	352	3	0.01	14	1850	12	<5	<20	138	0.11	<10	157	<10	<1	107
89	L1200E 15+50N	<5	0.2		380	135	<5	0.39	<1	28	24	181	7.35	<10	0.87	706	4	0.01	17	1520	16	~5 <5	<20	52	0.11		187	<10	<1	107 244
98	L1200E 20+00N	15	0.8		10	110	<5	0.84	<1	13	30	76	3.77	<10	0.56	406	<1	0.02	20	660	14	<5	<20	73		<10	96	<10	3	∡44 68
106	L1400E 13+50N	5	<0.2		5	100	5	0.66	<1	13	33	48	3.78	<10	0.46	751	3	0.01	22	880	10	<5	<20	33		<10	80	<10	1	86
115	L1400E 18+00N	25	<0.2		10	115	5	0.55	1	18	26	51	5.23	<10	0.68	787	2	0.02	16	960	12	<5	<20	91	0.11	<10	129	<10	<1	79
							•		•				0.20		0.00	10.	~	0.02		500	, 2	-0	~40	01	0.11	~10	120	-10	~1	15
124	L1600E 12+00N	<5	<0.2	2.54	5	120	5	0.47	<1	20	41	49	4.39	<10	0.99	794	<1	0.01	28	800	12	<5	<20	31	0.11	<10	105	<10	<1	70
133	L1600E 16+50N	55	0.4	3.02	10	180	<5	0.48	<1	20	40	106	4.48		0.66	918	5	0.02	37	660	10	<5		48	0.06		98	<10	10	58
141	L1800E 9+50N	800	0.4	2.96	<5	115	<5	0.20	<1	11	33	160	5.39		0.44	321	7	0.01	16	3500	14	<5		18			110		<1	82
150	L1800E 12+50N	5	<0.2	1.64	5	65	<5	0.47	<1	8	32	48	3.69		0.31	279	1	0.01	19	590	8	<5	<20	23		<10	83	<10	<1	36
159	L1800E 17+00N	30	<0.2	2.62	10	120	5	0.45	<1	22	46	91	4.62	<10	0.90	980	2	0.02	46	930	10	<5	<20	27	0.08	<10	105	<10	<1	81
																	_					-							- •	•
168	L2000E 10+00N	105	<0.2	2.84	<5	185	5	0.41	<1	21	17	63	6.28	<10	0.43	747	4	0.02	17	1270	10	<5	<20	111	0.07	<10	118	<10	<1	73
176	L2000E 13+00N	5	<0.2	1.78	5	135	<5	0.38	1	15	26	65	4.81	<10	0.43	853	3	0.01	17	2220	8	<5	<20	34	0.05	<10	91	<10	<1	96
185	L900E 15+00N	5	<0.2	2.24	<5	300	<5	0.51	<1	7	15	39	3.46	<10	0.35	235	3	0.02	9	950	8	<5	<20	874	0.04	<10	69	-	<1	79
Stand																														
GEO'		130	1.4	1.72	65	160	<5	1.85	<1	18	64	80	4.02	<10	0.98	671	<1	0.02	22	670	20	<5	<20	59	0.09	<10	74	<10	5	70
GEO'		135	1.4			150	<5	1.85	<1	18	63	80	3.94	<10	0.96	674	<1	0.02	23	630	22	5	<20	55	0.10	<10	73	<10	5	69
GEO'		130	1.4			165	<5	1.83	<1	19	65	83	4.10	<10	0.95	681	<1	0.02	23	660	22	<5	<20	60	0.10	<10	77	<10	4	71
GEO'		135	1.0		65	170	<5	1.84	<1	19	63	83	4.00	<10	0.94	692	<1	0.02	25	680	18	<5	<20	58	0.10	<10	76	<10	5	70
GEO'		140	1.2		65	175	<5	1.73	<1	19	65	82	4.00		0.96	686	<1	0.02	22	690	20	<5	<20	59	0.10	<10	77	<10	5	69
GEO	98	135	1.2	1.68	70	165	<5	1.84	<1	17	62	80	3.76	<10	0.98	660	<1	0.02	24	640	18	<5	<20	62	0.10	<10	73	<10	5	66

NOTE: * Mesh size is -80 unless indicated otherwise.

df/635/635A XLS/98Placer

QO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@mail.wkpowerlink.com

CERTIFICATE OF ANALYSIS AK 98-639

22-Oct-98

PLACER DOME CANADA LTD. 1440 HUGH ALLEN DRIVE KAMLOOPS, B.C. V1S 1L8

PAN-CONCENTRATE, OCT. PROGRAM

ATTENTION: BRIAN FOWLER

No. of samples received: 1 Sample type: Concentrate PROJECT: # FRAN SHIPMENT: # 01 Samples submitted by: Ron Wells

		Au	
<u>ET #.</u>		(ppb)	
1	A33704	880	

QC DATA:

Repeat:								
1	A33704	1500						
1	A33704	225						
1	A33704	860*						

Standard: GEO'98

140

NOTE: * Avg. of 1500 & 225

O-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/98Placer Dome fax: 372-7784

SOIL SAMPLING OCTOBER 1998 : STATISTICAL DATA

¢

.

1

Descriptive Statistics Fran Property - PDX Soil Geochemical Survey

Field	Unit	Count	Mean	St Dev	Min	25%ile	Median	75%ile	Max
Au	ppb	193	77.71	167.35	2.5	2.5	15	60	1000
Ag	ppm	193	0.46	1.48	0.1	0.1	0.1	0.4	19
As	ppm	193	44.42	201.02	3	5	10	25	2080
Bi	ppm	193	5.42	3.66	3	3	3	10	20
Ça	%	193	0.50	0.31	0.13	0.29	0.41	0.6	1.73
Cu	ppm	193	93.54	136.19	13	39	61	99	1343
Fe	%	193	5.52	1.99	2.86	4.37	5.23	6.02	15
Mo	ppm	193	5.33	8.76	1	1	3	6	71
Pb	ppm	193	11.79	9.46	4	10	10	12	136
Sb	ppm	193	3.00	0.00	3	3	3	3	3
\mathbf{Sn}	ppm	193	10.00	0.00	10	10	10	10	10
Ti	%	193	0.08	0.05	0.01	0.06	0.08	0.1	0.4
W	ppm	193	5.03	0.36	5	5	5	5	10
Zn	ppm	193	99.24	49.39	26	66	87	115	361

Input File: P:\dataS\expligen_eval\\fran\Geochem\PDX\AK635I.csv Date Printed: 27_October-98

.1

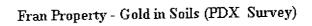
Scatter Plot Matrix

Fran Property - PDX Soil Geochemical Survey

Input File: P:VdataSlexpligen_evalVfran\Geochem\PDX\AK635Lcsv Date Printed: 27_October-98

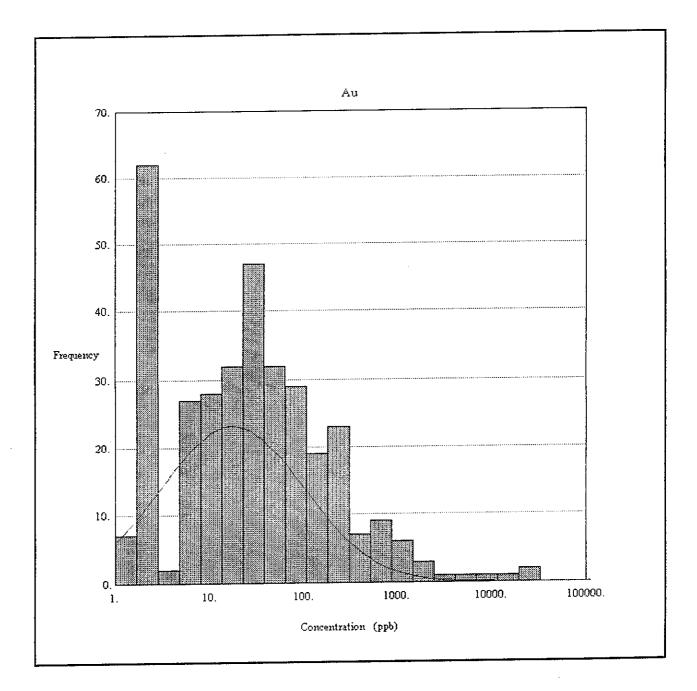
ć.

	Au	Ag	As	Bi	Ca	Cu	Fe	Mo	Pb	Sb	Sn	Ti	W	Zn
Au	1.00	.35	29	16	.04	.43	47	.34	.29	n/a	n/a	- 04	.37	.12
Åg	.35	1,00	85	10	.01	.46	.48	.61	.89	n/a	n⁄a	10	.01	.23
As	.29	.85	1.00	09	- 02	.68	.55	.71	.75	n'a	n/a	04	.10	.27
Bi	16	10	- 09	1.00	27	- 22	- 06	19	03	n/a	n/a	.35	05	.09
Ca	.04	.01	02	27	1.00	.18	05	.03	04	nva	n/a	15	.06	.11
Cu	.43	.46	.68	22	.18	1.00	.73	.73	.26	n'a	n⁄a	.04	.54	.32
Fe	.47	.48	55	06	.05	.73	1.00	,77	.35	n/a	nía	.17	.34	.42
Mo	.34	.61	.71	19	.03	.73	.77	1.00	.44	n/a	n'a	- 06	.14	.16
РЬ	.29	.89	75	03	04	.26	.35	.44	1.00	n⁄a	n/a	.00	04	.21
Sh	n⁄a	nla	n/a	n/a	n/a	n/a	n/a	n/a	n⁄a	n/a	n/a	n⁄a	n/a	n/a
Sn	n/a	n/a	n/a	ฟล	ฟา	n/a	n/a	nla	n/a	ฟล	n/a	n/a	n⁄a	ฟล
Fi.	04	10	04	.35	15	.04	.17	06	.00	nia	iva	1.00	.10	.12
W	.37	.01	.10	05	.06	.54	.34	.14	04	n/a	n/a	.10	1.00	.22
Zn	.12	.23	.27	.09	.11	.32	.42	.16	.21	ฟล	nta	.12	.22	1.00


Correlation Matrix

Correlation Matrix - Fran Property - PDX Soil Geochem Survey

constations > .6


correlations < -.6

Input File: P:VdataSVexpNgen_evaNfranVGeochem1PDX\AK63SLcsv Date Printed: 27_October-98

ï.

	_	
	٠	Au
Mean		77,71
25th ‰ile		2.5
Median		15
75th %-ile		60
Minimum		2.5
Maximum		1000
count		193
St Dev		167.35
Coef of Var		2.15

Fran Property - Gold in Soils (PDX Survey)

Descriptive Statistics

Aυ 77.71 Mean 25th %-ile 2.5 15 Median 7.5th %-ile 60 Minimum 2.5 1000 Maximum 193 count 167.35 St Dev Coef of Var 2.15357

i.

Linear correlation: 0.47 Rank correlation: 0.94 Relative Variance: 9.55

No upper bound No lower bound No Individual Points Removed

Input File: P:\dataS\expl\gen_eval\fran\Geochem\PDX\AK635I.csv Date Printed: 28 October-98

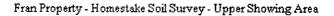
Descriptive Statistics Fran Property - Homestake Soil Survey - Upper Showing Area

Field	Unit	Count	Mean	St Dev	Min	25%ile	Median	75%ile	Max
Au	ppb	107	956.75	4768.07	1	16	38	88	33000
Ag	ppm	107	0.61	1.16	0.05	0.1	0.3	0.5	8
As	ppm	107	135.79	348.24	29	67	86	113	3601
Bi	թթա	107	1.82	8.47	1	1	1	1	89
Cu	ppm	107	1 <i>5</i> 7.03	308.81	18	54	85	129	2448
Mo	ppm	107	7.93	15.24	1	2	4	б	124
Рb	ppm	107	10.75	6.37	1	7	10	12	36
Sb	ppm	107	3.11	3.94	2.5	2.5	2.5	2.5	39
Zn	ppm	107	107.24	78.07	15	67	97	129	481

Input File: P:\data5\expl\gen_eval\fran\Geochem\Homestake\Uppershowing.csv Date Printed: 28_October-98

٤.

ί.,


i r

j kan i

ω.

HOMESTAKE SOILS U.SHOWIN

Bi Åu Cu Åg Ås Mo РЬ 5Ъ Zn 1.00 ;64 **6**65 .02 91 35 :0S 0.06 7 Åu 6 ΠŪ 袋 15 Ag .01 Ås 23 ₽02 .02 1.00 Ň3 . ÖS .01 00 Jī .04 Bi **0**3 ίΫΪ 68 73 .00 77 bš Dб Cu Мо .00 Πĩ ø FЬ υı SЪ 04 .00 Zn

Input File: P:Vlata5\expl\gen_eval\fran\Geochem\Homestake\Uppershowing.csv Date Printed: 28_October-98

.

1

1

Correlation Matrix

<u> </u>	Au	Ag	As	Bi	Cu	Mo	Рь	Sb	Zn
Au	1.00	.64	.65	02	.91	.85	.17	.05	06
Ag	.64	1.00	.61	05	.68	.55	.22	.16	.12
As	.65	.61	1.00	-01	.73	.36	.30	.28	.03
Bi	02	05	01	1.00	.03	04	.00	01	04
Cu	.91	.68	.73	.03	1.00	.77	.20	.06	05
Mo	,85	.55	.36	04	.77	1.00	.23	.00	.13
Pb	.17	.22	.30	.00	.20	.23	1.00	.06	.59
Sb	.05	.16	.28	01	.06	.00	.06	1.00	.03
Zn	06	.12	.03	04	05	.13	.59	.03	1.00

Fran Property - Homestake Soil Survey - Upper Showing Area

HOMESTAKE SOILS U.SHOWING

correlations > .6

correlations < -.6

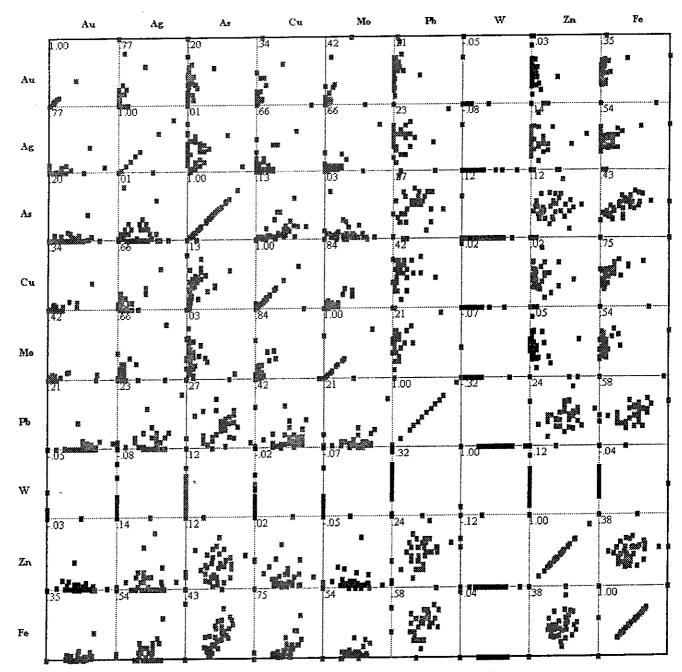
ξ....

÷....

Input File: P:MataSlexpl\gen_eval\fran\Geochem\Homestake\Uppershowing.csv Date Printed: 28_October-98

Descriptive Statistics Fran Property - Homestake Soil Survey - Lower Showing Area

Field	Unit	Count	Mean	St Dev	Min	25%ile	Median	75%ile	Max
Au	ppb	38	582.39	1666.67	1	16	65	510	9900
Ag	ppm	38	0.24	0.32	0.05	0.05	0.1	0.3	1.5
As	ppm	38	67.03	26.53	25	45	66	81	154
Cu	ppm	38	86.66	97.24	9	32	50	112	524
Mo	ppm	38	4.76	6.45	1	2	3	4	35
Pb	ppm	38	10.08	3.17	2	8	10.5	12	18
W	ppm	38	2.62	0.72	2.5	2.5	2.5	2.5	7
Zn	ppm	38	104.68	30.58	35	88	102.5	118	186
Fe	%	38	4.51	1.03	1.49	3.79	4.555	4.98	7.9


¥

Input File: P:WataSlexpl&gen_eval&fran&Geochem&Homestake&Lrshowing.csv Date Printed: 28_October-98

HOMESTAKE SOILS L.SHOWING

¥

Scatter Plot Matrix

Fran Property - Homestake Soil Survey - Lower Showing Area

Input File: P:\data5\expl\gen_eval\fran\Geochem\Homestake\Lrshowing.csv Date Printed: 28_October-98

. . .

<u>ن</u>

έ...

Correlation Matrix

	Au	Ag	As	Cu	Mo	Рь	W	Zn	Fe
Au	1.00	.77	.20	.34	.42	.21	05	03	.35
Åg	3717	1.00	.01	.66	.66	.23	08	.14	.54
As	.20	.01	1.00	.13	.03	.27	.12	.12	.43
Cu	.34	.66	.13	1.00	.84	.42	02	.02	.75
Mo	.42	.66	.03	.84	1.00	.21	07	05	.54
Pb	.21	.23	.27	.42	.21	1.00	32	.24	.58
W	05	08	.12	02	07	32	1.00	12	04
Zn	03	.14	.12	.02	05	.24	12	1.00	.38
Fe	.35	.54	.43	.75	.54	.58	04	.38	1.00

Fran Property - Homestake Soil Survey - Lower Showing Area

correlations > .6

correlations < -.6

Input File: P:MataStexpNgen_eval\fran\Geochem\Homestake\Lishowing.csv Date Printed: 28_October-98

HOMESTAKE SOILS L.SHOWING

APPENDIX D Large Figure and Plans. October Program

R. C. Wells, P.Geo., FGAC. Kamloops Geological Services Ltd.

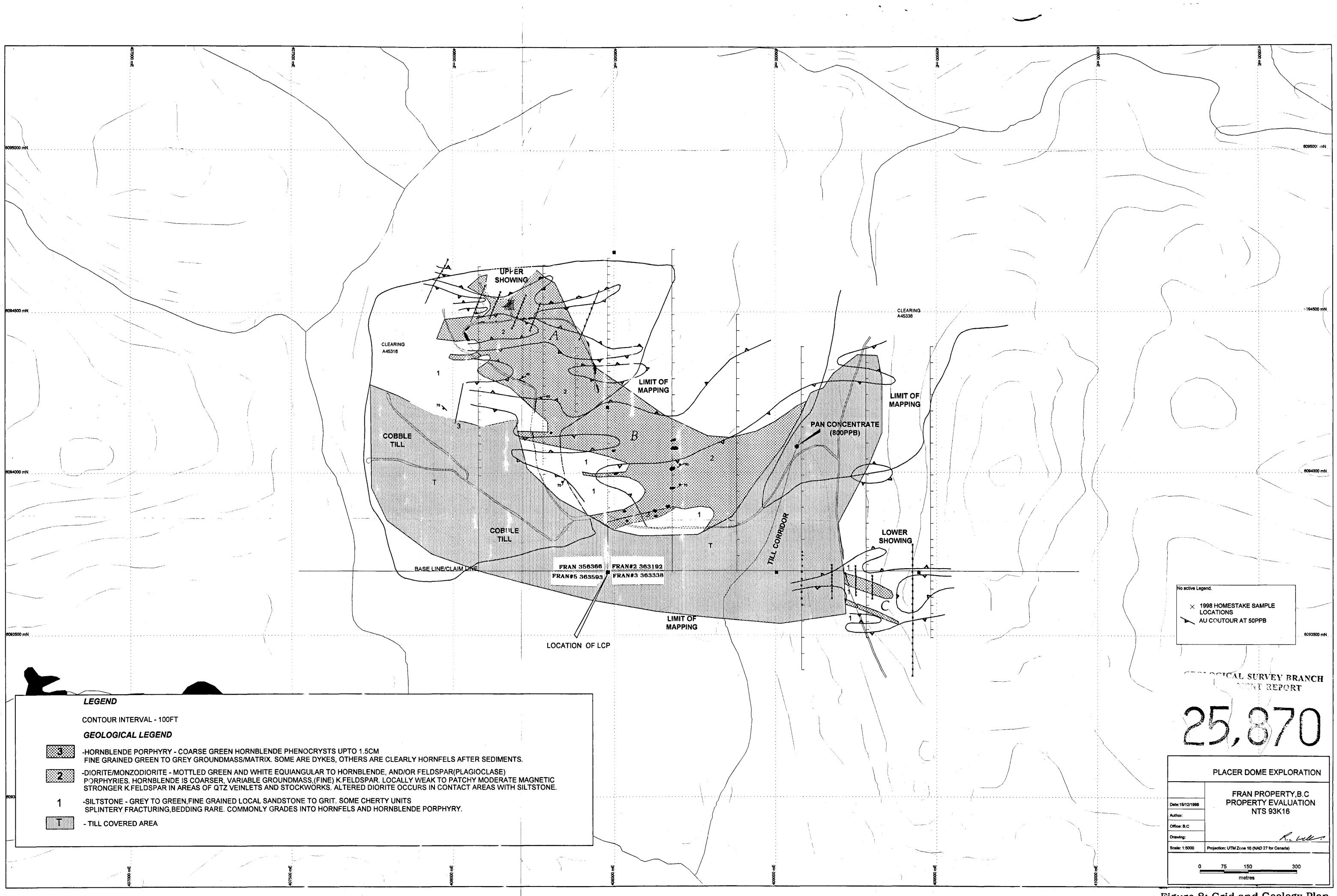
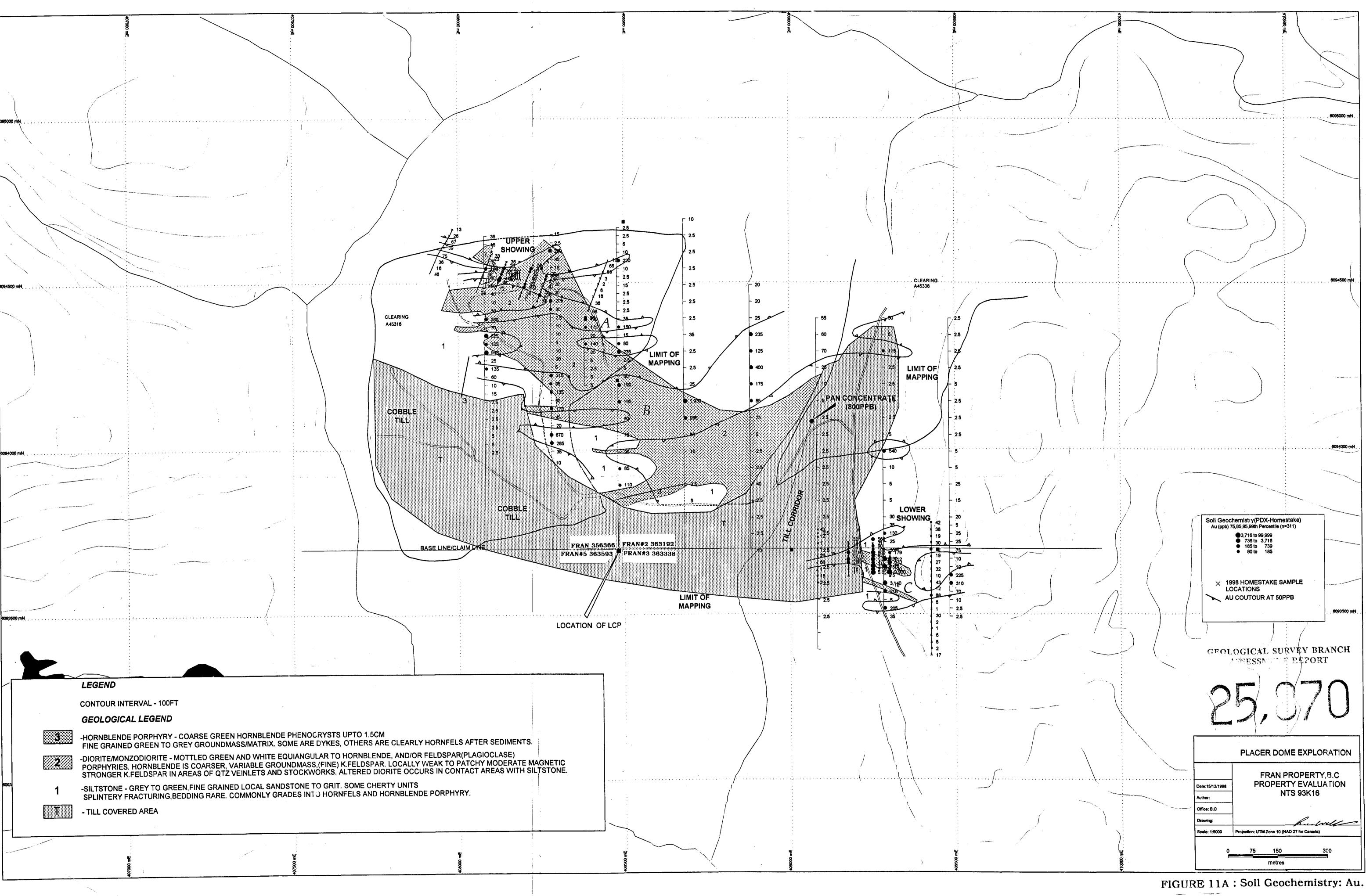
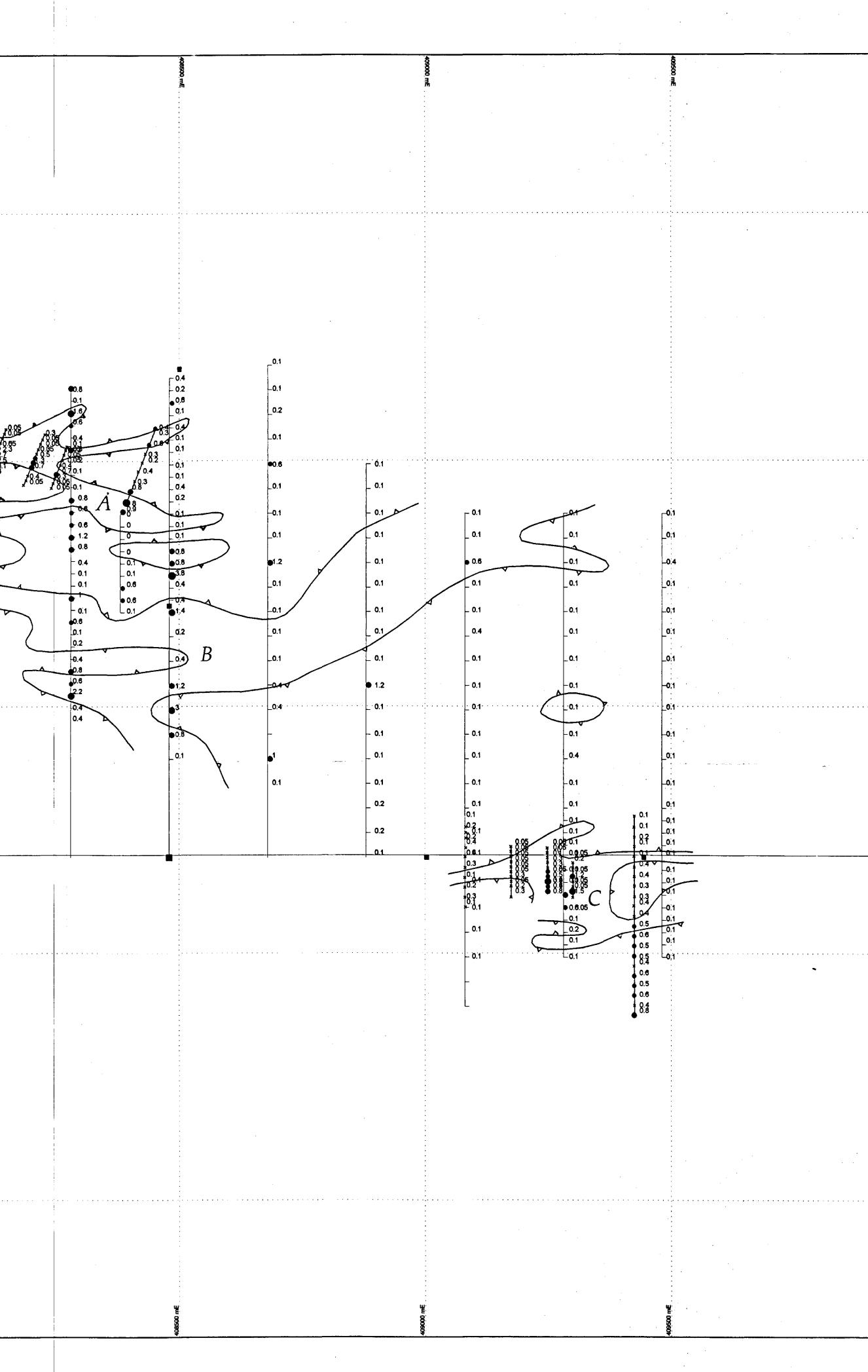
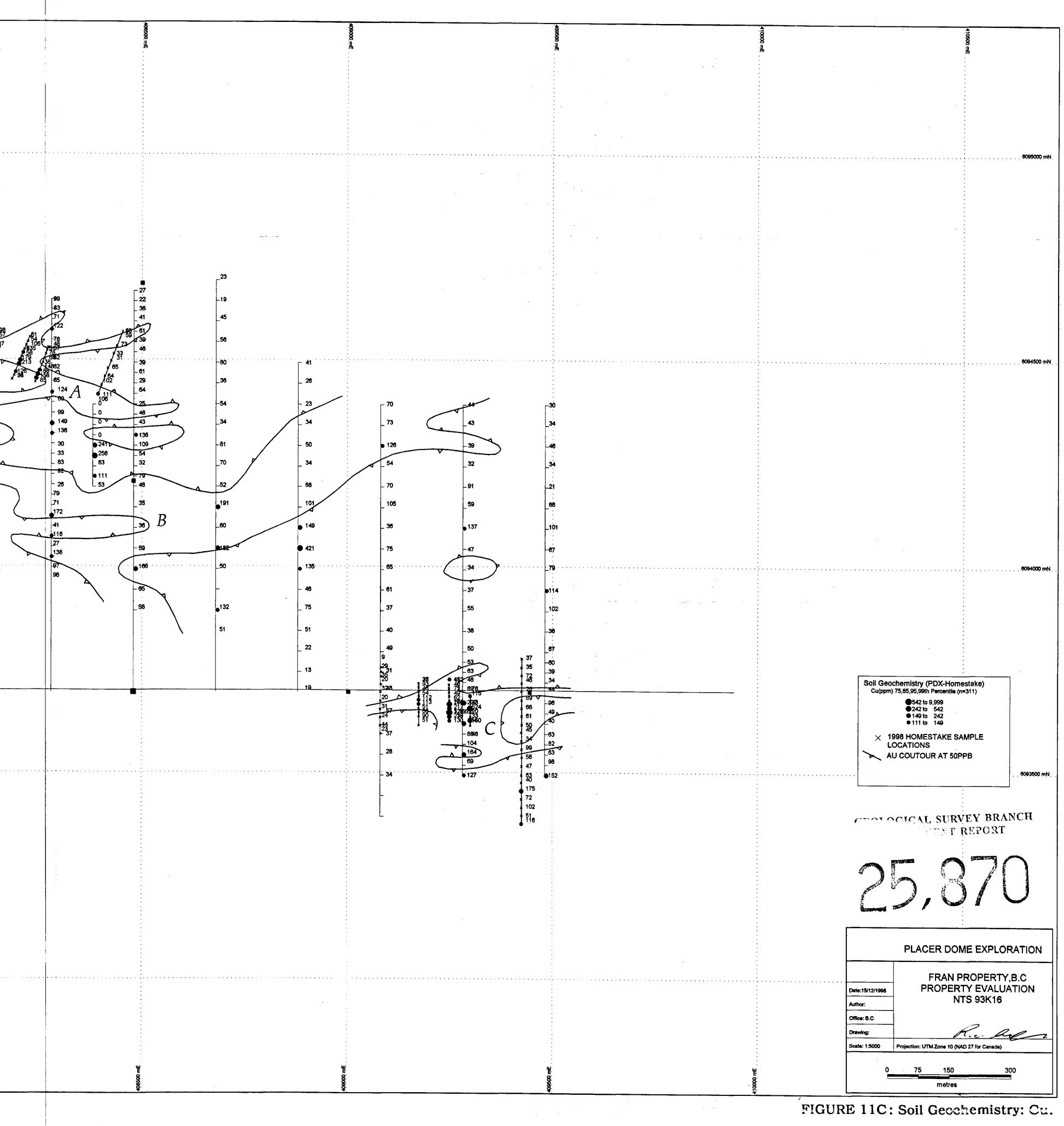




Figure 8: Grid and Geology Plan

	407000 m		408000
			- - - - - -
6095000 mN.			· • •
	· · · · · · · · · · · · · · · · · · ·	••••••	· · · · · · · · · · · · · · · · · · ·
			•
			· · · ·
			· · · ·
		408	0.05 05 • 0.6 _ 0.2
5094500 mN		/0.2 ³	
			0.9 10.4
			- 0.2
			0.1
			• 1.4 • 19
			• 0.6 • 0.8
			0.6 - 0.2 - 0.4
			0.4
609:4000 mN			. 0.1 0.1
	, т.,	n na ser en	
			· · ·
6093500 mN			
			- - - - -
			· · · ·
			· • • •
			· · · ·
6093000 mN	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · · ·
			· • • •


•

6094500 mN 6094000 mN Soil Geochemistry(PdX-Homestake) Ag(ppm) 75,85,95,99th Percentile (n=311) ●3.76 to 999 ●1.35 to 3.76 ●0.7 to 1.35 ●0.475 to 0.7 × 1998 HOMESTAKE SAMPLE LOCATIONS AU COUTOUR AT 50PPB 6093500 mN -CEOLOGICAL SURVEY BRANCH 25,870• PLACER DOME EXPLORATION FRAN PROPERTY, B.C PROPERTY EVALUATION NTS 93K16 Date:15/12/1998 Author: Office: B.C Drawing: Projection: UTM Zone 10 (NAD 27 for Canada) Scale: 1:5000 150 300 75 metres

FIGURE 11B : Soil Geochemistry: Ag.

	407000 mE	407500 mE	408000 mE
8095000 mN.			· · · · · · · · ·
			86
9094500 mN.		777 772 244 123 114	3 235 22 42 43 447 437 437 437 437 437 437 437 437
			- 51 - 50 - 60 - 123 - 78 - 165 - 154
			444 545 1,343 1,120 135 117 - 96
6094000 mN			• 149 238 - 51 - 23 - 27
8093500 mN			
6093000 mN			
407.000 mE		0000 mE	

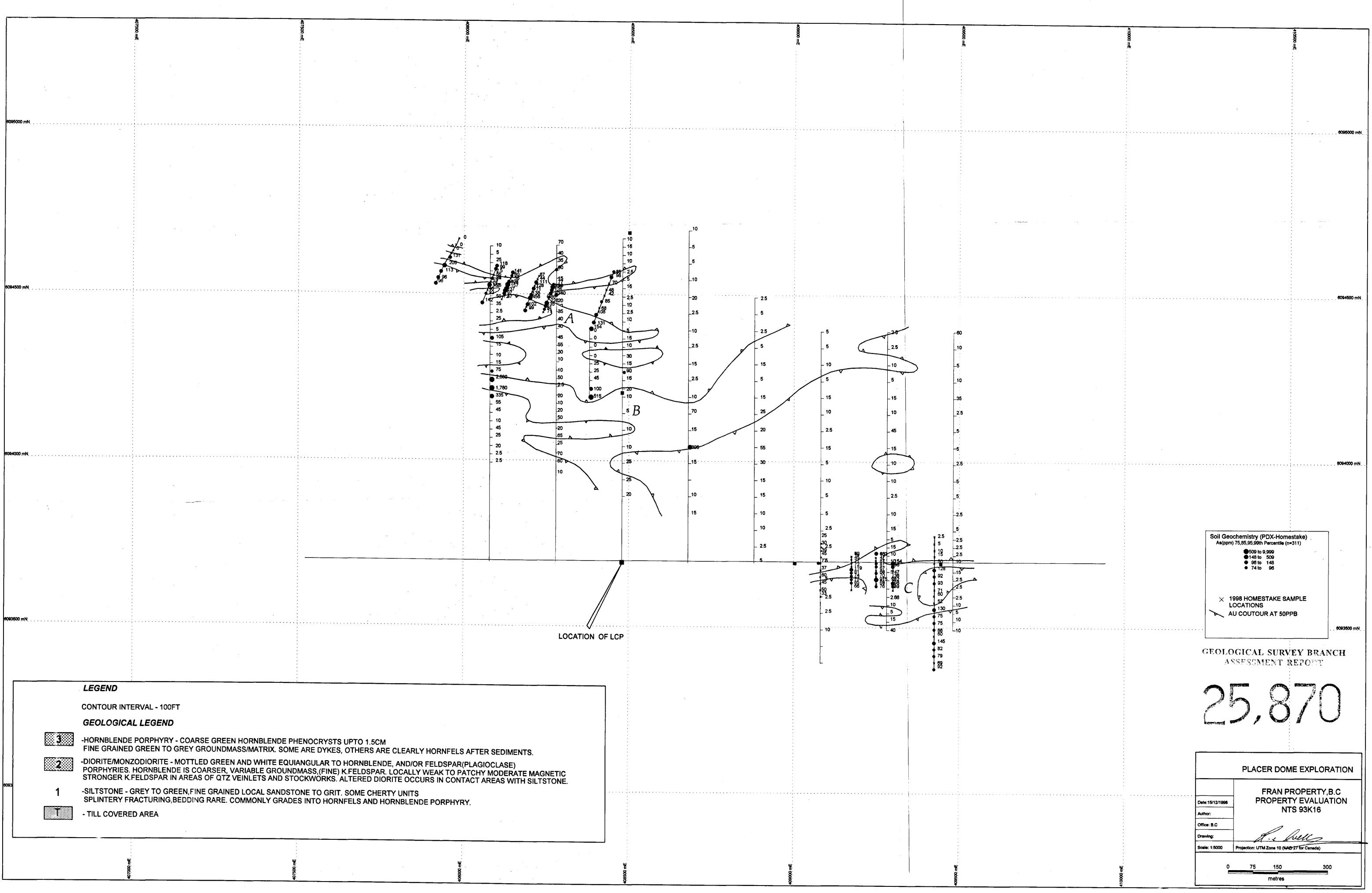
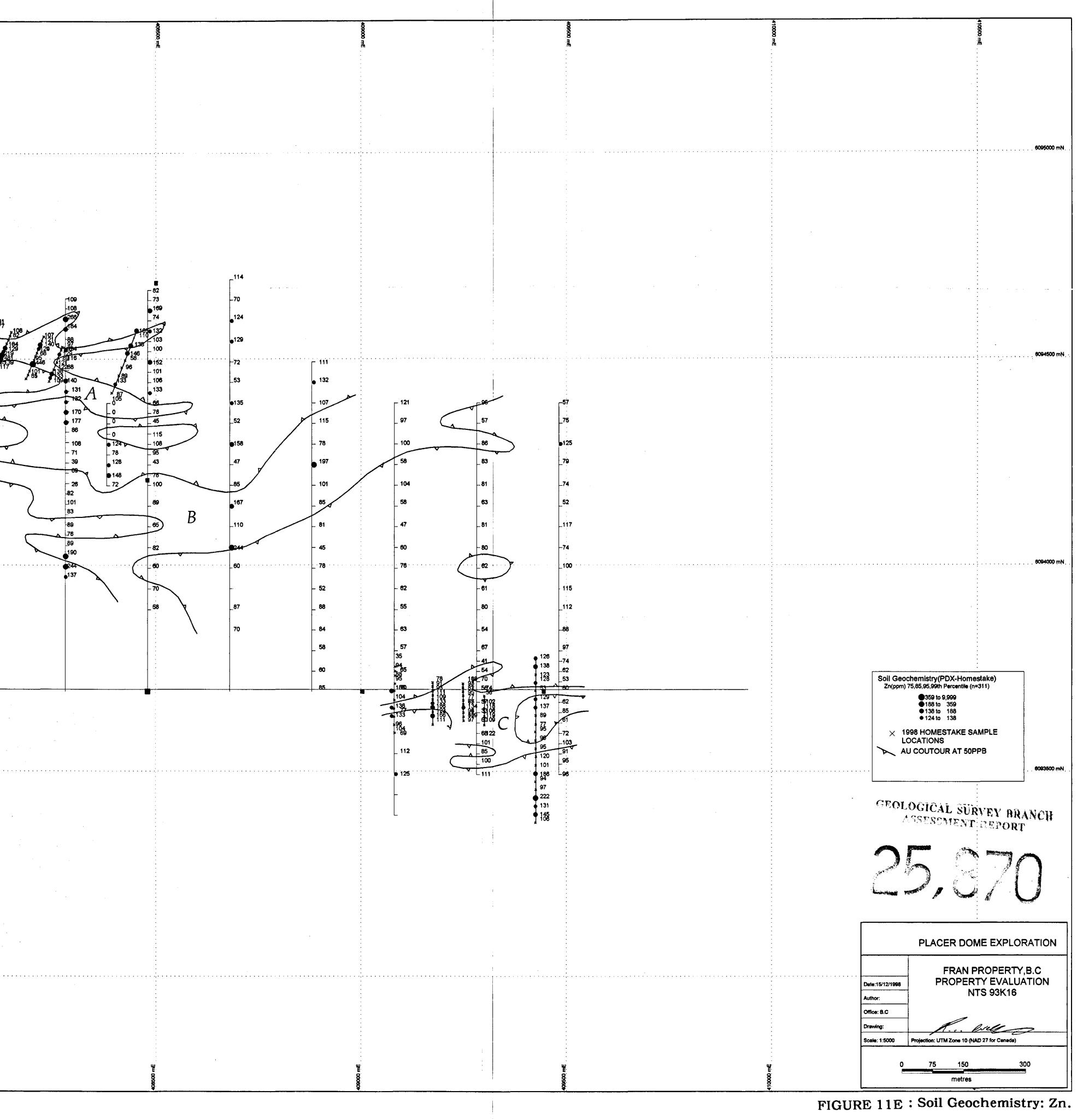



FIGURE 11D : Soil Geochemistry: As.

	107000 mE	407500 mE	4080000 71
			.m
6095000 mN		•••••••••••••••••••••••••••••••••••••••	· · · · ·
			· · · · · · · · · · · · · · · · · · ·
			8
		-10-17 2007	91 74 • 129 - 54
		113 78 1101 122	
6094500 mN	······································	•••••••••••••••••••••••••••••••••••••••	31 63 - 45 - 64
· · · · · ·			- 35 - 102 - 114
			- 82 - 80 - 100
			207 253 361 181
			• 182 • 184 _ 88
8094000 mN		•••••••••••••••••••••••••••••••••••••••	• 151 - 89 - 120 · ·
	· · · · · · · · · · · · · · · · · · ·		
6093500 mN			· · · · · · · · · · · · · · · · · · · ·
6093000 m N		· · · · · · · · · · · · · · · · · · · ·	
			· • • • •
[

