

Compilation Report of the 1997 Exploration Program

on the

Kaza Property Omineca Mining Division British Columbia

N.T.S. 93M/16W Latitude 55°58'N Longitude 126°19'W

> for Everest Mines and Minerals Ltd. Suite 1473 – 595 Burrard St. Vancouver, B.C. V7X 1C4

by Sikanni Mine Development Ltd. July 23, 1998

A

CO CENT

GEOLOGICAL SURVEY BRANCH

ASPORT

Jim Miller-Tait, P.Geo.

['.'

FESSIO

PROVINCE

J. M. MILLER-TAIL

Frank Tail

Calvin Church, P.Geo.

0

1.3

Summary

This compilation report on the Kaza property was written at the request of Everest Mines and Minerals Ltd. of Vancouver, B.C. The company currently has an option agreement with the owner of the claims, Mr. R.M. Tait, the details of which are beyond the scope of this report. The main focus of the report is to document the results of the exploration program completed by Everest in the summer of 1997.

The property is comprised of a core block of contiguous two post claims and a 20 unit four post metric claim located in the Omineca Mining Division of north-central British Columbia. The property was originally staked by Mr. Tait in the 1960's to cover copper showings north of the junction of Kaza and Lion creek. Kaza Copper Ltd. carried out extensive exploration programs in the late 1960's including 2,164 feet of diamond drilling. Drill hole assays of AQ core from these early programs returned values of 1.17% Cu, 14.4 g/t Au and 120.0 g/t Ag over 1.2 metres (DDH #9).

The property is underlain by Lower Jurrasic Hazelton basalts and andesites. Pods and lenses of limestone occur as interbeds within the volcanic successions on the property Local outcrops of felsic Katsberg intrusions have been mapped just west of the main showings. The main showings are steeply dipping north-northwest striking linear zones of hornblende rich skarn. The mineralization consists of chalcopyrite, pyrite, bornite, sphalerite and magnetite occurring as disseminated to massive sulphides. The main zones range from 10 to 30 metres in width and 300 metres in length, forming topo-linear features.

Everest Mines and Minerals Ltd. contracted Geotronics Surveys Ltd. to conduct induced polarization (IP), resistivity, and magnetometer surveys over the main zones of mineralization. Geochemical soil sampling was carried out over the entire grid at 25 metre sample intervals and 100 metre line spacings. The ground work was the interpreted by J. Miller-Tait of Sikanni Mine Development Ltd. and a trenching program was completed on prospective targets identified in the soil geochemical survey. The results and interpretation of the geophysical surveys, soil geochemical sampling and trenching programs are presented in this report along with recommendations for future work.

i

TABLE OF CONTENTS

	Page
Summary	i
1.0 INTRODUCTION	1
2.0 LOCATION, ACCESS AND PHYSIOGRAPHY	1
3.0 CLAIM STATUS	1
4.0 HISTORY	2
5.0 REGIONAL GEOLOGY	3
6.0 PROPERTY GEOLOGY	4
6.1 Mineralization and Alteration	5
7.0 1997 EXPLORATION PROGRAM	5
7.1 Geophysical Surveys	6
7.2 Soil Geochemical Sampling	7
7.3 Trenching Program	8
8.0 CONCLUSIONS	9
9.0 RECOMMENDATIONS AND COST ESTIMATES	9
10.0 REFERENCES	11

List of Figures

		Page After
Figure 2.0:	Location Map	1
Figure 2.1:	Topographic Map	1
Figure 3.0:	Claim Map	2
Figure 5.0:	Regional Geology	3
Figure 6.0:	Property Geology	pocket
Figure 7.1:	IP and Resistivity Survey Pseudosections	pocket
Figure 7.21:	Soil Geochemical Map Cu-Au	pocket
Figure 7.22:	Soil Geochemical Map Ag-Pb-Zn	pocket
Figure 7.3:	Trench Plans	pocket
Figure 8.0:	Compilation Map	pocket

List of Tables

Kaza Trenching Summary	

List of Appendices

Appendix I:	Certificates	s of Oualifications
-------------	--------------	---------------------

Table 7.3 :

Appendix II: Certificates of Qualifications Appendix II: Assays and Geochemical Analysis Appendix III: Geophysical Survey Methods

STATEMENT OF COST

ATTACHED

<u>Page</u> 9

1.0 INTRODUCTION

The Kaza property is a copper-gold-silver prospect located west of the Caribou Heart Range about 30 kilometres north of Takla Lake. The property was initially staked in the 1960's to cover copper mineralization discovered on a broad knoll on the east side of Lion Creek. Subsequent exploration programs focused on base metal potential of the main showings. Recent evidence suggests precious metal bearing skarn and porphyry style mineralization may underlie the property.

Everest Mines and Minerals Ltd. completed soil geochemical sampling, geophysical surveys and trenching on the property in the summer of 1997. Geophysical work consisting of Induced Polarization, Resistivity and Magnetometer surveys were carried out by Geotronics Surveys Ltd. in June and July. This report documents the work program and makes recommendations for further exploration programs.

2.0 LOCATION, ACCESS AND PHYSIOGRAPHY

The property lies west of the Caribou Heart Range about 115 kilometres northeast of Hazelton, on the east side of Lion Creek, 6 kilometres south of Kaza Lake. The geographic coordinates are 55°58' north latitude and 126°19' west longitude (UTM: 6206700N, 666400E).

A network of well maintained logging roads follow the Driftwood river valley north of Lovell Cove on Takla Lake. Access to the property is from a 7 kilometre cat road which connects the property to the logging road and was upgraded in the spring of 1997. Alternative access may be gained by floatplane to nearby Kaza Lake or helicopter from the logging camp at Lovell Cove.

The main showings are on a broad hillside just east of Lion Creek and north of the confluence with Kaza Creek. The rivers meander in valleys of low relief where average elevation is about 1150 metres. The area was the site of a forest fire about 30 years ago and much of the vegetation grew back as low-lying scrub and poplar trees.

3.0 CLAIM STATUS

The Kaza property consists of a core block of 13 contiguous two post claims covering the main showings and a four post 20 unitmetric claim tied on to the south. The claims are located on NTS mapsheet 93M/16W in the Omineca Mining Division of British Columbia and are displayed in Figure 3. Mr. R.M. Tait is the registered owner of the claims and Everest Mines and Minerals Ltd. holds an option to earn an interest under an agreement dated August 29, 1996. Details of mineral tenure are listed below.

KAZA-CLM.DWG 10/26

Claim Name	Record No.	<u>Units</u>	Expiry Date
LOG 1	239014	1	Aug 23, 2006
LOG 3	328483	1	July 10, 2005
LOG 4	328484	1	July 10, 2005
LOG 5	328485	1	July 10, 2005
LOG 6	328486	1	July 10, 2005
LOG 7	328487	1	July 10, 2005
LOG #8	330456	1	Aug 26, 2005
LOG #9	330457	1	Aug 26, 2005
LOG #10	330458	1	Aug 26, 2005
LOG #11	340184	1	Sept 17, 2006
CAMP	340383	1	Sept 17, 2006
MONA 1	340381	1	Sept 17, 2006
MONA 2	340382	1	Sept 17, 2006
SKI	325848	20	May 13, 2000

4.0 HISTORY

The Kaza property was originally staked by R.M. Tait as the Fire claims in 1967. Mr. A.J. Sinclair visited the property on July 12th of that year and wrote a general geological report (AR #1191) describing property geology and mineralization. In 1968 the annual report of the B.C. Minister of Mines notes that twenty miles of access road was built from Bulkley House on Takla Lake and 10,000 lineal feet of trenching was bulldozed.

Kaza Copper Ltd., owned by Mr. Tait, carried out a five month exploration program in the summer of 1968 in conjunction with a program on the nearby Northstar property. Detailed geological mapping covered an area 1,500 by 2,000 feet in the area of the showings and six diamond drill holes totaling 1,500 feet were drilled on the main zone of mineralization. Subsequent programs by Kaza Copper Ltd. included four more holes of diamond drilling in the main mineralized zone bringing the total drilled footage to 2,164 feet. Results from these programs are incomplete, however drill hole assays from hole #9 report 1.2 metres (3.9 ft) of 1.17% copper, 14.4 g/tonne gold (0.46 oz/t Au) and 120.0 g/tonne silver (3.9 oz/t Ag). A surface chip sample was reported to contain 0.88% copper, 15.43 g/tonne gold (0.50 oz/t Au) and 12.7 g/tonne silver (0.41 oz/t Ag) across 4.0 metres (13 ft).

Dynasty Explorations Ltd. optioned the property in 1973 and completed a systematic soil geochemical grid over the mineralized area and noted anomalous copper and gold in soil. Stream sediment samples were taken from major creeks draining the property as part of a more regional prospecting program. Dome Exploration Ltd. completed rock chip and soil sampling program in 1980. The assessment report prepared for Asarco Exploration in 1984 recommends an I.P. survey over the area and examination of drilling data from the late 1960's drill programs.

The present report summarizes the exploration program carried out by Everest Mines and Minerals in the summer of 1997. Results of the soil geochemical survey, geophysical

KAZA-CLM.DWG 10/28

surveys and the trenching program are included and the mineralized zones/anomalies outlined. The geophysical surveys, completed by Geotronics Surveys Ltd., is interpreted by David Mark, P.Geo., and summarized in the geophysical section of the report.

5.0 REGIONAL GEOLOGY

The Kaza property is located in the northeast corner of the Hazelton mapsheet (93 M) which borders the McConnell Creek area (94D/E) to the north. The property is situated within the Intermontane Belt of the Canadian Cordillera and is underlain by rocks of the Cache Creek terrane which abut Quesnellia terrane rocks to the east.

Triassic-Jurassic aged Takla and Hazelton Group rocks underlie the Caribou Heart Range and much of the Lion Creek valley south of Kaza Lake. Upper Triassic Group Takla rocks west of the Ingenika-Pinchi fault (western facies) include well bedded argillite, siltstone, minor limestone and sandstones of the Dewar Formation overlain by a wide variety of augite porphyry volcanics and augite-bearing, volcanic-derived sediments of the Savage Mountain Formation. The western belt of Takla Group rocks commonly contain a bladed feldspar porphyry unit not seen in facies east of the Ingenika-Pinchi fault system.

The base of the Lower Jurassic Hazelton Group is mainly nonmarine volcanics and volcaniclastics. Richards (1976) notes that stratigraphically between the Takla and Hazelton groups lies a northwesterly trending belt of reddish fanglomerate, conglomerate, sandstone and minor contemporaneous volcanics. The upper part of this assemblage is transitional to units of the Hazelton Group and the lower part is conformable to Takla Group rocks which host Falconbridge's Sustut Copper deposit.

East of the property, at Kaza Peak, northwest trending reverse faults place Takla Group rocks in unconformable contact with Upper Cretaceous sediments of the Sustut Group. The Takla and Pinchi faults follow major northwest structural breaks parallel to river drainages in the area. A subparallel north trending fault follows the depression of Lion Creek and Nanitsch Lake.

The Jurassic aged Hogem Batholith is located east of the Ingenika-Pinchi fault system and intrudes mainly eastern facies Takla group rocks. The Axelgold layered gabbro intrusions (Late Cretaceous) are situated west of the Hogem batholith but are not considered genetically related to the eastern quartz monzonite and granodiorite bodies. Eocene Katsberg intrusions are mapped north and west of the property and consist of irregular masses of high level stocks and sills that are mainly rhyolitic in composition.

3

MJS MJS • LJT s. . Τĸ: 5500 Τĸ MUJA 8 57 1200 TERTIARY ×., -

6.0 PROPERTY GEOLOGY

The principle lithologic units were mapped at a scale of $1^{2}=400^{\circ}$ by Dean in 1973 and his geologic map is included as figure 6.0 in this report. The following description of the property geology is taken mainly from his assessment report (AR # 4477).

The oldest rock types occurring on the claims are volcanics and sediments of the Takla Formation of Upper Triassic to Jurassic age. Overlying the Takla Formation, probably unconformably, are conglomerates and sandstones of the Sustut Formation of Upper Cretaceous to Paleocene age. The youngest rocks encountered on the claims are acid intrusions, which include a great variety of small dikes and a possible rhyolite flow or large sill, and could be tentatively correlated with the Katsberg intrusions. These intrusive dikes, early Tertiary in age, were found cutting rocks of both the Sustut and the Takla Formations.

Rocks of the Takla Formation underlie most of the claim area and are host rocks for the mineral deposits. These rocks were divided into a lower, predominantly volcanic, unit consisting of andesite flows, tuffs and breccias and a upper sedimentary unit consisting of siltstones, sandstones and chert pebble conglomerate. Some of the sandstone members are clearly derived from the underlying volcanics.

Limestone lenses and pods occur between flows of the lower member of the Takla Formation. One such limestone lens, close to the main showing area, is weakly mineralized with chalcopyrite and abundantly stained with malachite.

At least four recognizable variations in rock type occur in the volcanic part of the Takla Formation. The most distinctive type of flow rock found on the claims is a porphyritic andesite with radiating clusters of plagioclase phenocrysts up to 12 mm long, set in a dark green matrix. This is the main rock type close to the showings and probably over the entire property. Nearly as abundant is a dark green andesite flow rock which typically contains phenocrysts of hornblende, pyroxene and small plagioclase lathes up to 5mm long. Other variations include fine-grained, aphanitic dark green tuffs, which outcrop in several places on the claims, and pyroclastic breccias and crystal tuffs which were found only south of Kaza Creek.

The sedimentary part of the Takla Formation appears to overly the volcanics conformably and is well exposed in a canyon of Kaza Creek. Limy and fossiliferous sandstones in 15 cm to 60 cm thick beds overly at least 30 metres of brown siltstone. Fossils occurring in the sandstone are pelecypods, gastropods, brachiopods and coral. One outcrop of red chert-pebble conglomerate occurs on the claims close to outcrops of andesite.

Outcrops of Sustut Formation were only found west of Lion Creek. Lithologies present include conglomerate with quartz and granite clasts and sandstone.

Dikes of felsic composition occur widely over the claims and in general are related to northwest trending faults. Most are one metre to several metres in thickness and appear to dip steeply. Compositions present include quartz porphyry, K-spar porphyry, and fine grained siliceous felsite. These dikes are abundant close to mineral showings but there is no obvious relationship between the dikes and mineralized veins. A rhyolite flow or large sill with poorly developed columnar jointing occurs on the west fringe of the claim group, west of Lion Creek.

The presence of N40°W shear zones on the property has been noted by various workers. Bedding in the volcanic rocks also trends northwest and dips shallowly east (\pm 30°). The step-like nature of outcrops within the main showings is consistent with flat northeast dipping shears parallel to bedding with a similar attitude. This implies that favourable mineralized horizons may be found west of the main mineralized showings and at depth to the northeast.

6.1 Mineralization and Alteration

The mineralization on the Kaza property is clearly epigenetic and related to north-south trending faults. The main mineralized showings occur as linear zones of hornblende-sulphide rock which align parallel to topographic depressions. These hornblende rocks are probably skarns developed in the volcanics along zones of fracturing. The sulphide component of these mineralized zones consists of pyrite, chalcopyrite, bornite, sphalerite and magnetite. Sulphide abundance varies from about 5% to nearly massive. The two main hornblende zones appear to dip vertical to steeply northeast and are a few metres in width and over one hundred metres in length.

Patchy exposures of an epidote-calcite skarn containing pyrite and chalcopyrite with minor pink garnet also occur in the vicinity of the main showings. They were probably developed in the more calcite rich beds of the volcanics. Minor amounts of chalcopyrite and bornite are present in quartz-orthoclase-epidote veinlets and are also found disseminated in a limestone lens near the main showing.

7.0 1997 EXPLORATION PROGRAM

A three component exploration program consisting of soil geochemical sampling, geophysical surveys, and mechanical trenching was designed by Everest's geological consultant Jim Miller-Tait. Road access to the property was improved during mobilization of the first phase of exploration and included construction and installation of a small bridge to enable crossing Lion Creek. An exploration camp was constructed on the east shore of Kaza lake.

A baseline was established parallel to the main structural features on the property (330°) and gridlines constructed perpendicular to the baseline at 100 metre intervals. Gridlines were surveyed and cut in preparation for the geophysical surveys by the geophysical contractor, Geotronics Surveys Ltd. The trenching program was initiated after coincident

5

geochemical and geophysical anomalies were identified from the first phase of the exploration program.

7.1 Geophysical Surveys

Geotronics Surveys Ltd. was contracted to conduct geophysical surveys over a portion of the Kaza property centered over the main showing. Induced Polarization (IP), resistivity and magnetometer surveys were conducted along cut gridlines oriented perpendicular to the main structures and known mineralized zones. The purpose of the three surveys was to determine the response of each to the known mineralization on the property and then if and where the known mineralization extends, as well as to locate any possible new zones. The secondary purpose, especially the resistivity and magnetic surveys, was to assist in the mapping of the geology of the property.

Pseudosections of IP and resistivity data were provided by Geotronics Surveys Ltd. and are shown with profile plots of selected elements (Au, Cu) from the soil geochemical survey. The geophysical anomalies are summarized below and taken from the geophysical report by David Mark, P.Geo. Details of the survey methods are included as Appendix III.

The IP survey has revealed a broadly anomalous zone that runs across the entire grid in a 330° northwest direction. This zone, as can be seen on the pseudosections, appears to be caused by up to 5 separate sources. The anomalous zone, therefore, has been divided into 5 different anomalies which have been labeled by the upper case letters A to E. A sixth one, labeled F, occurs to the northeast of the zone.

The causative source of each of the six anomalies is in all probability sulphides. This has been verified in the field at least for anomalies A and B which correlate with known mineralization. Also anomalies A to E have excellent correlation with soil geochemistry values anomalous in gold and copper. This would indicate that at least part of the causative source of the IP anomalies is copper sulphides associated with gold values.

<u>Anomaly A</u> correlates with the original main mineralized zone located at 0+00N, 0+00E. The anomaly has a minimum strike length of 1,000 metres, open to the north and the south, and has excellent correlation along its whole length with copper and gold soil geochemistry. For the most part the anomaly follows the edge of a resistivity low which appears to be reflecting the contact with fine grained andesite or tuff. The IP response is low over the main mineralized zone but stronger at other locations. Similarly there is no magnetic correlation over the main mineralized zone although magnetic values along the trace of anomaly A are generally high.

<u>Anomaly B</u> closely parallels A and is difficult to distinguish from it on a line by line basis. Correlation is very good with the strongest values of gold and copper soil geochemistry on the property. The anomaly is about 1000 metres long and is open to the northwest and southeast. Resistivity response is high in surface geology generally

mapped as feldspar porphyritic andesite. The northern part of the anomaly correlates with a magnetic contact defined by high magnetic response to the northeast and a magnetic low to the southwest.

<u>Anomaly C</u> occurs between line 500S and 500N at about 250E and has a minimum strike length of 900 metres open to the south and deepening in this direction. There is excellent correlation with gold and copper soil geochemistry values. The anomaly correlates with a resistivity high and a broad magnetic high.

<u>Anomaly D</u> occurs close to station 120 W, is the only anomaly delineated west of the baseline, and has a 1,000 metre strike length. The overburden is believed to be fairly deep in this area as there are no outcrops however the geophysical responses could be indicating a different rock type. Gold and copper soil geochemical values are anomalous although lower than other areas which may be a reflection of the depth to bedrock. Much of the reponse, which includes resistivity and magnetic lows, occurs at depth.

<u>Anomaly E</u> strikes 330° over a short distance between lines 400N and 500N at about 390E. The minimum strike length is 100 metres and it is open to the northwest. Soil geochemical anomalies are only slightly pronounced. Magnetic and resistivity highs help define this anomaly.

<u>Anomaly F</u> is seen at depth only on line 200N where deeper readings were taken. The causative source is northeast of the line and appears to correlate with a resistivity high. Soil geochemical and magnetic data were not taken in this area of the survey.

As mentioned above, both the resistivity and magnetic fields are higher on the northeastern half to two-thirds of the property. Here the topography is higher as well. Correlating with the known geology within the grid area, the resistivity and magnetic highs are reflecting various types of andesite. On the other hand, the resistivity and magnetic lows on the southwestern half to one-third of the property is probably reflecting a different rock type that is currently unknown. The rock type could be a sedimentary type or an acidic volcanic.

7.2 Soil Geochemical Sampling

Soil samples were taken from B horizon soils (10 - 25 cm depths), using a grubhoe, at 25 metre intervals along gridlines spaced 100 metres apart. Samples were then placed in kraft paper bags and shipped to Eco-Tech Laboratories Ltd. in Kamloops, B.C for analysis. Analytical Reports from Eco-Tech appear in Appendix II.

A total of 381 samples were collected over 1 square kilometre of gridded area in the main area of showings. Several gaps in coverage occur in swampy areas along Lion Creek in the southeast part of the grid. Anomalous threshold values for precious and base metal elements are listed below and appear in the Geochem Maps (Figure 7.21 and 7.22) and color coded Compilation Plan (Figure 8.0).

7

A major northwest trending (330°) soil geochemical anomaly, aligned parallel to the baseline axis, is outlined by highly elevated copper and gold values (Figure 8.0). The axis of the anomaly extends from line 4+00S to line 3+00N and runs approximately 75 metres northeast of the baseline varying in width from 50 metres to 150 metres. Contained within this anomalous zone seven samples returned values higher than 1.0 g/t Au and occur on all but two of the lines. One sample, located on 2+00S at 0+50E, returned values of 5.09 g/t Au and 1,610 ppm Cu and was later trenched (trench K-T-3).

Copper values within this trend show an equally consistent distribution from line to line along the trend of this major anomaly. Values range from 51ppm Cu to >10,000 ppm Cu (>1.0%) with the greater concentration of highly anomalous values (>300 ppm Cu) occurring along 300m of strike, from line 0+00 to line 3+00N. The elevated copper values in this area may be related to the contact of a limestone unit with feldspar porphyritic andesite.

Isolated highly anomalous soil geochemistry is noted 150 to 250 metres outside the main zone, to the northeast, along lines 0+00 and 1+00S. This area contains the highest number of second order gold anomalies (50 - 300 ppb) outside of the main zone. A slight drop in the order of anomalous soil geochemistry may be due to an increased thickness of overburden in this area.

7.3 Trenching Program

A total of eight trenches were excavated for a combined total of 350 lineal metres over areas of highly anomalous soil geochem. Some trenches were excavated to trace the subsurface trend of mineralization discovered in previous trenches. Trench positions relative to the grid are shown in the Compilation Plan (Figure 8.0).

Trenches K-T-7 and K-T-8 intersected massive sulphide bearing zones 10.5 to 23 metres wide aligned parallel to 120 degree shears. Shear orientation associated with the main mineralized zone is variable striking 110 degrees in trench K-T-2 and changing to 175 degrees in K-T-3 always with steep to vertical dips. Chalcopyrite-pyrite-magnetite mineralization approaches 60 to 80% sulphides in K-T-7 and is closely associated with a nearby limestone bed. A number of late felsic dykes have been identified cutting the host porphyritic andesite unit which may have displaced or redistributed mineralization along shears.

The best assays were returned from continuous chip samples taken in K-T-7 from within and adjacent to the magnetite bearing shear. A weighted average of assays from this trench returned 1.70 g/tonne gold and 7958 ppm copper across 7.5 metres. Plan views of the trenches complete with chip sample assay values are shown in Figure 7.3 and assay certificates are included in Appendix II. Significant assays of trench intersections are tabulated below.

Trench	Width (m)	Au g/tonne	Cu
K-T-1	3.0	1.36	247 ppm
K-T-1	1.0	2.47	1316 ppm
K-T-2	1.0	256	5377 ppm
K-T-2	3.0	2.04	219 ppm
K-T-3	1.5	1.34	2623 ppm
K-T-4	1.0	1.42	731 ppm
K-T-7	7.5	1.70	7859 ppm

Table 7.3 – Kaza Trenching Summary

2.0

8.0 CONCLUSIONS

K-T-8

• The soil sampling survey returned strongly anomalous results for gold and copper covering an area 750 metres by 500 metres. Seven soil samples returned values greater than 1.0 g/t in gold and as high as 5.09 g/t gold along 500 metres of the long axis of the anomalous zone.

1.57

1.73

%

- The trenching program discovered massive sulphide mineralization and anomalous Au-Ag-Cu values across widths up to 25 metres. Assays as high as 4.40 g/t Au, 2.03 %Cu and 29.0 g/t Ag over 1 metre were returned. Trenches KT-2, KT-7 and KT-8 give an inferred geological strike of 450 metres for the mineralized system.
- Coincident Induced Polarization anomalies and soil geochemical anomalies strengthens the certainty of the length and tenor of the mineralization.
- Several of the geophysical anomalies lacking anomalous soil geochemical values may represent good exploration targets depending on the depth to bedrock source of the anomaly.
- The mineralization occurs in feldspar porphyritic andesites of the Takla formation which are cut by mineralized shears and siliceous limey horizons interbedded with the volcanics. Similar volcanic and volcaniclastic units have been known to host base and precious metal deposits in the area.
- The Kaza property is located reasonably close to existing infrastructure should the property proceed to a development/ production phase. A road connects with the BCR railhead about 30 kilometres away at Lovell Cove.

9.0 RECOMMENDATIONS AND COST ESTIMATE

- The access road from the main logging road should be upgraded to facilitate the movement of crews and equipment to and from the site.
- Diamond drilling of at least 10 NQ sized holes (100 150 metres depth) is proposed on the east flank of the silicified knoll that hosts the main mineralized zone. The first

holes should be targeted at down dip extentions of mineralization in trenches KT-7 and KT-8. Drill setups should be targeted at a steeply east dipping ore body.

- At least one drill hole should be targeted for a deep intersection of the mineralized zone or detection of a possible mineralized porphyry. The setup for such a hole should be in the area of lowest relief, to the west of the main zone, and angled to the east.
- A second stage of drilling should be implemented contingent on successful results obtained in the first phase. Budgets for the proposed drilling programs are included in the section following.

Exploration Budgets

Phase I; Drilling

Item Description	Cost Estimate
Road/camp upgrade	\$ 10,000
Mob and Demob of Drill	10,000
Contract Drilling; (2000 metres NQ @ \$50/metre)	100,000
Geologist (30 days @ \$400/day)	12,000
Geo-technician; sample prep, layout (30 days @ \$250/day)	7,500
Assays (150 sample @ \$35/sample)	5,250
Room and Board including cook (6 men; 30 days)	30,000
Project Supervision and Consulting	3,000
Report Compilation, office	5,000
10% Contingency	18,295
Total Phase I	<u>\$ 201,245</u>

9.2 Budget - Phase II; Drilling

Item Description	Cost Estimate
Contract Drilling; (3000 metres NQ @ \$50/metre)	150,000
Geologist (40 days @ \$400/day)	16,000
Geo-technician; sample prep, layout (40 days @ \$250/day)	10,000
Assays (200 sample @ \$35/sample)	7,000
Room and Board including cook (6 men; 40 days)	40,000
Project Supervision and Consulting	3,000
Report Compilation, office	5,000
10% Contingency	23,100
Total Phase II	<u>\$ 254,100</u>

10.0 REFERENCES

- Dean, P.M. and Davis, R.E.G. (1973): Geological, Geochemical and Geophysical Investigations on the Kaza Copper Property; B.C. Ministry of Energy, Mines and Petroleum Resources Assessment Report #4477.
- Lord, C.S. (1947): McConnel Creek Map Area, Cassisr District, British Columbia; Geological Survey of Canada, Memoir 251.
- Mark, D.G. (1998): Geophysical Report on IP, Resistivity, and Magnetometer Surveys over the Kaza Property, Kaza Lake Area, Omineca Mining Division, B.C.

MINFILE : 093M 111; Kaza, Copper, Fire, Flame, Blue, Log.

- Monger, J.W.H (1976): Lower Mesozoic Rocks in the McConnell Creek Map-Area (94E), British Columbia *in* Report of Activities, Part A; Geological Survey of Canada Paper 76-1A, pp51-55.
- Sinclair, A.J. (1967): Report on the Fire Group of Claims; BCMEMPR Assessment Report #1191.
- Richards, T.A. (1976): Takla Project: McConnell Creek Map-Area (94D, East Half) British Columbia *in* Report of Activities, Part A; Geological Survey of Canada Paper 76-1A, pp43-50.
- Richards, T.A. (1990): Geology and Mineral Deposits of the Hazelton Map Area (93M), British Columbia; Geological Survey of Canada, Open File 2322, 1:250,000.

Richards, T.A. (1975): Geological Survey of Canada, Open File 342, 1:250,000.

Woodsworth, G.J. (1976): Plutonic Rocks of the McConnell Creek (94D West Half) and Aiken Lake (94C East Half) Map-Areas, British Columbia *in* Report of Activities Part A; Geological Survey of Canada 76-1A, pp.69-73.

Appendix I

.

:

. . . .

. .

C

.

.

Certificates of Qualifications

CERTIFICATE OF QUALIFICATIONS

I, Jim Miller-Tait, of 828 Whitchurch St., North Vancouver, British Columbia, V7L-2A4, do hereby certify that:

I hold a Bachelor of Sciences Degree in Geology (1986) from the University of British Columbia.

I am a registered Professional Geoscientist with the Association of Professional Engineers and Geoscientists of British Columbia.

I have been practicing my profession as a geologist since 1986.

I am a Consulting Geologist and President of Sikanni Mine Development Ltd., an independent firm specializing in mineral exploration and mine development.

This report is based upon the evaluation of the available data and supervision of the work completed.

I hereby give my permission to include this report, or the summary thereof, in any document to be filed with any appropriate regulatory authority.

Dated at Vancouver, British Columbia, this 22nd day of July, 1998.

PROVINCE M. MILLER-TAIT BRITISH COLUMBIA

Jim Miller-Tait, P.Geo. Sikanni Mine Development Ltd.

CERTIFICATE OF QUALIFICATIONS

I. Calvin Lawrence Church, do hereby certify that:

- 1. I am a consulting geologist with an office at 1733 Napier St., Vancouver, British Columbia, Canada, V5L 2N1.
- 2. I am a graduate of the University of British Columbia with a Bachelor of Sciences degree in Geology (1987).
- 3. I am a Fellow of the Geological Association of Canada and a registered Professional Geoscientist with the Association of Professional Engineers and Geoscientists of British Columbia.
- 4. I have practiced my profession since 1987 working as an employee and consultant for International Mining Companies and Junior Resource Companies.
- 5. This report is based in part on the study B.C. Ministry of Mines technical papers and published reports on the property. I also visited the property between Aug 26th and Aug 28th in 1997 and supervised some of the trenching program during that time.
- 6. I have not received nor expect to receive any interest in the properties of Everest Mines and Minerals Ltd. and do not beneficially own, directly or indirectly, any securities of the company.
- 7. I consent to the use of this report, or summary thereof, in a statement of material facts or for use in documents filed with any regulatory authority.

Dated at Vancouver, British Columbia, this 23th day of July, 1998.

FESSIO ROVINCE CHURCH

Calvin Church, P.Geo. Consulting Geologist

GEOPHYSICIST'S CERTIFICATE

I, DAVID G. MARK, of the City of Vancouver, in the Province of British Columbia, do hereby certify that:

I am registered as a Professional Geoscientist with the Association of Professional Engineers and Geoscientists of the Province of British Columbia.

I am a Consulting Geophysicist of Geotronics Surveys Ltd., with offices at #405 - 535 Howe Street, Vancouver, British Columbia.

I further certify that:

- 1. I am a graduate of the University of British Columbia (1968) and hold a B.Sc. degree in Geophysics.
- 2. I have been practicing my profession for the past 30 years, and have been active in the mining industry for the past 33 years.
- 3. This report is compiled from data obtained from IP, resistivity, and magnetic, surveys carried out over a portion of the Kaza Property from November 5 to 12, 1996, June 1 to 7, 1997, and from July 2 to 23, 1997. The surveys were carried out under my supervision and under the field supervision of Roger Mackenzie for the 1996 work and Michael Brindley for the 1997 work.
- 4. I do not hold any interest in Everest Mines and Minerals Ltd., nor in the properties discussed in this report, nor do I expect to receive any interest as a result of writing this report.

D.G. MARK COLUMBIA David G. Mark, P.Geo., SCIEN Geophysicist

June 23, 1998

Appendix II

-

2

مسعر . . . قرر 2

-

.

1....

1

1

—

Assays and Geochemical Analysis

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

4-Sep-97

10041 E. Trans Canada Hwy., R.R. #2, Kamioops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

CERTIFICATE OF ASSAY AK 97- 918

EVEREST 828 Whitchurch Street N. VANCOUVER ,BC V7L 2A4

ATTENTION: JIM MILLER-TAIT

No. of samples received: 93 Sample type: Rock PROJECT #: Everest SHIPMENT #: Not given Samples submitted by: Jim Miller-Talt

_				and the second second	, AU i	. A
	ET #.	Tag #	•••		(g/t)	(oz/
-	3	91803			1.36 .	
	15	91815			2.47	
	- 22	91822		. <u>.</u> 1977 -	2.56	
	25	91825	н н н		2.04	
	35	91835			1.34	
-	44	91844			1 42	
	73	91873			1.34	
	75	91875			1.11	
•	76	91876			1.03 🔍	
	77	91877			4.40	
	78	91878			1.83	
	87	91887			1.57	

XLS/97 fax: 604-984-4365 ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer 5-Sep-97

.

ICP CERTIFICATE OF ANALYSIS AK 97-918

the second ended by the build of the contraction of the track of the t

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557

EVEREST 828 Whitchurch Street N. VANCOUVER ,BC V7L 2A4

ATTENTION: JIM MILLER-TAIT

No. of samples received: 93 Sample lype: Rock 1/AZA PROJECT #: Everest SHIPMENT #: Not given Samples submitted by: Jim Miller-Tait

Values in ppm unless otherwise reported

Values in	ı ppm uniess	otherwise report	lêa																	-	-	A L	e -	e.,	Ti %		v	w	Y	Zn
		4		A1 1%	٨e	Ba	8i (Ca %	Cd	Co	Cr	Cu F	e %	La	Mg %	Mn	Mo	Na %	Ni	P	20	50	511	31	0.20	<10	118	<10	12	49
<u>Et #.</u>	Tag #	Au(ppb)	- <u>A</u> 9			50	-5	1 72	<1	21	41	90	4.31	<10	1.12	393	<1	0.07	12	2100	10	<5	<20	- 04 - 0	0.20	<10	107	<10	<1	122
1	91801	5	<0.2	2.12	35	20	-5	1.12		38	57	465	7.90	<10	2.64	716	<1	0.10	26	2260	12	10	<20	- 59	0.23	< 10 .40	191	~10	-1	134
2	91802	155	<0.2	3.53	25	10	<0	1.00		26	50	247	6 26	<10	2.74	643	<1	0.06	18	1380	8	15	<20	41	0.17	<10	154	× 10	24	167
3	91803	>1000	<0.2	2.48	20	45	<5	1.30		41	44	977	8 66	<10	2.50	755	4	0.03	18	1310	12	<5	<20	34	0.08	<10	213	<10		766
4	91804	180	1.8	3.20	70	60	<5	1.58	~1	41	75	904	>10	<10	1 39	808	13	0.02	22	1450	48	35	<20	34	0.02	<10	206	<10	51	190
5	91805	75	5.2	3.19	2040	75	<5	2.55	<1	40	55	0.54	- 10					•												470
•											27	744	~10	<10	3.65	580	12	0.08	20	1170	10	<5	<20	30	0.07	<10	296	<10	<1	1/2
6	91806	5	0.4	6.19	95	80	<5	1.56	<1	55	31	/ 14	~10	~10	2 21	314	24	<0.01	11	430	2	<5	<20	5	0.04	<10	138	<10	<1	109
7	91807	150	3.2	3.16	70	145	<5	0.25	2	111	33	2212	0.02	=0	2.21	1081	4	0.04	13	1120	12	<5	<20	6	0.08	<10	255	<10	2	/0
, a	01808	5	1.4	3.65	30	40	<5	0.67	<1	133	52	1678	0.03	-10	2.33	1303	2	0.07	23	910	4	<5	<20	30	0.17	<10	257	<10	<1	87
0	01900	20	0.4	3.80	<5	90	<5	0.95	<1	189	45	1294	>10	<10	2.99	1091	Ê	0.02	19	520	14	<5	<20	3	0.02	<10	121	<10	<1	115
9	01010	360	8.6	2.66	20	55	<5	0.28	<1	181	35	6409	8.33	<10	1.60	1001	0	0.02			• •									
10	91010			-														0.02	10	460	6	<5	<20	4	<0.01	<10	33	<10	<1	72
		5	02	1 73	<5	50	<5	0.33	<1	26	51	945	6.17	<10	1.23	194	5	0.04	10	510	iñ	<5	<20	4	0.02	<10	35	<10	<1	59
11	91811	, s	0.4	1 01	20	45	<5	0.31	<1	65	33	1313	5.67	<10	1.08	404	3	0.01	42	7/0	10	-5	<20	30	<0.01	<10	39	<10	4	68
12	91812	705	0.4	1.62	25	60	<5	0.74	<1	44	64	1132	6.96	<10	0.54	239	8	0.03	13	670	10	~	~20	18	<0.01	<10	9	<10	33	42
13	91813	/00	0.4	0.76	25	25	<5	4.39	<1	34	57	170	2.46	<10	0.30	330	4	0.01	5	5/0	4	-0	~20	38	<0.01	<10	84	<10	11	691
14	91814	5	0.2	4.60	0475	150	<5	0.73	<1	103	76	1316	>10	<10	0,70	2699	5	0.02	35	660	100	10	~20	50	-0,01		•			
15	91815	>1000	20.8	1.09	3410	100		•														4.5	.00	60	0.45	~10	197	<10	<1	176
					0.45	72	-6	1 04	<1	24	39	182	6.53	<10	2.78	597	<1	0,18	14	1260	18	15	<20	02	0.10	-10	27	<10	<1	38
16	91816	40	<0.2	3.55	215	75	~5	0.55	-1	10	81	87	2.38	<10	1.16	265	3	0.03	6	580	10	15	<20	0	<0.03	~10	21	<10	<1	88
17	91817	5	<0.2	1.70	35	50	~0	0.00	-1	53	35	683	6.84	<10	1.48	588	7	0.02	13	590	8	<5	<20	15	<0.01	×10	400	~10	~	78
18	91818	5	1.0	2.10	55	55	<>>	0.02	24	110	56	1542	>10	<10	2.71	741	8	0.06	35	970	14	<5	<20	24	0.10	<10	100	~10	1	87
19	91819	140	1.4	3.87	50	70	<5	1.00	-1	113	04	568	877	<10	3.60	737	2	0.06	22	960	10	5	<20	25	i 0.11	<10	1/6	×10	~1	0,
20	91820	55	<0.2	3.30	<5	65	<5	1.15	51	41	3-4	000	0		-															47
20										-		77	1.94	<10	0.91	330	<1	0.06	3	750	6	10	<20	13	8 0.09	<10	36	<10	14	41
24	91821	5	<0.2	0.93	5	50	<5	0.52	<1		120	- 21	~ 10	~10	2 00	703	11	0.03	36	140	10	<5	<20	13	3 0.06	20	103	<10		102
27	91822	>1000	3.8	3.12	<5	80	<5	0.91	2	220	23	2381	>10	~10	3.00	785	5	0.04	15	950	10	<5	<20	-68	3 0.15	<10	170	<10	<1	65
22	01823	675	<0.2	3.77	25	135	<5	1.45	<1	44	41	500	>10	~10	3.07	826	2	0.07	18	1260	12	10	<20	50	0.11	<10	177	<10	<1	74
23	01874	930	<0.2	4.10	25	145	<5	1.83	<1	31	36	278	8.05	<10	3.70	1020	<u></u>	0.01	14	1480	12	5	<20	6	3 0.02	<10	177	<10	<1	89
24	91024		0.6	2.87	35	145	<5	0.65	<1	28	65	219	8.21	<10	2.58	1029	3	Q.01												
25	91820	- 1000	÷																											

en in the columbian the columbian the type columbian the columbian t

ICP CERTIFICATE OF ANALYSIS AK 97-918

ECO-TECH LABORATORIES LTD.

EVEREST

			A	A 1 A/		Ba		Ca %	6d	Co	Cr	Cu	Fe %	La I	Ma %	Mn	Mo	Na %	Ni	Р	Рb	Sb	Sn	Sr T	1%	U	_٧_		<u>Y</u>	Zn
Et #.	Tag #	Au(ppb)	Ag	AI %	A5	110		0.57	1	10	45	159	4.35	<10	0.14	564	7	<0.01	10	760	10	<5	<20	9 <0	.01	<10	34	<10	14	173
26	91826	30	0.2	0.58	145	110	20	0.57	, ,	48	22	288	>10	<10	5.28	1256	19	0.01	23	470	4	<5	<20	11 0	.10	<10	202	<10	<1	141
27	91827	205	<0.2	4.39	<0 00	70	20	0.47	~1	28	18	300	6 26	<10	0 20	749	6	<0.01	16	2430	10	<5	<20	6 <0	.01	<10	75	<10	24	59
28	91828	20	0.2	0.91	00	10	<5	0.57	3	54	15	585	>10	<10	3.31	763	22	0.01	10	30	<2	<5	<20	21 0	04	<10	92	<10	<1	78
29	91829	310	<0.2	2 31	<0 <5	100	20	1 16	3	47	17	256	>10	<10	5.46	712	18	0.01	12	320	4	<5	<20	12 0	.07	<10	137	<10	<1	91
30	91830	115	<0.2	3.78	<0	135	20	1.10	5	-47		200																		
						100	75	4 20	-1	43	21	135	>10	<10	6 02	803	10	0.02	15	480	4	<5	<20	34 0	.09	<10	147	<10	<1	89
31	91831	10	<0.2	4.25	<5	100	∡0 ∡5	4.30	~1	73	47	228	6 75	<10	2.56	643	<1	0.07	23	1340	12	10	<20	92 0	.22	<10	225	<10	2	92
32	91832	5	<0.2	3.06	30	50	< D < E	1.10	-1	56	180	314	6 78	<10	3.00	710	<1	0.05	33	1450	10	10	<20	36 0).16	<10	150	<10	<1	80
33	91833	5	<0.2	2.92	15	45	<0 <5	1.33		11	87	36	2.54	<10	1 07	423	3	0.03	8	550	12	10	<20	12 <0	0.01	<10	26	<10	<1	52
34	91834	10	0.2	1.31	45	20	< 3 . e	0.69	7	202	66	2623	>10	<10	2 36	673	10	0.04	51	490	14	20	<20	11 0	0.03	<10	98	<10	<1	111
35	91835	>1000	3.8	3.01	705	90	<0	0.00	1	202	00	2020			2.00															
							-6	4 2 2	~1	185	570	1342	>10	<10	5 49	1127	4	0.03	104	1510	4	<5	<20	17 0).11	<10	200	<10	<1	132
36	91836	440	0.4	53/	145	15	<3	1.32	~1	46	215	284	4 14	<10	1.55	489	3	0.04	29	900	8	<5	<20	20 0).04	<10	60	<10	12	57
37	91837	140	< 0.2	2.00	45	22	<0 -4	1.23	~1	54	41	551	667	<10	1.11	466	7	0.01	15	900	12	<5	<20	9 <0).01	<10	82	<10	<1	73
38	91838	10	0.6	2.41	55	205	<5	0.12	~1		84	70	1 75	<10	0.97	212	2	0.05	8	600	12	10	<20	16 <0	0.01	<10	28	<10	<1	60
39	91839	5	<0.2	1.33	5	22	<0	1 73	~1	44	00	5707	7.66	<10	2.61	1008	5	0.03	12	640	32	5	<20	19 0	0.02	<10	135	<10	<1	177
40	91840	115	13.2	3.32	4/5	110	<0	1.73	~1	44	ψŪ	0.01	1.00													•				
		_				70	-5	1 34	-1	61	326	708	8 28	<10	3 97	1135	2	Ů.ÜÔ	60	1410	10	<5	<20	29 (0.09	<10	244	<10	<1	108
41	91841	5	0.2	4 06	130	10	<0 <5	1.34	~1	20	96	360	2.86	<10	0.9B	553	2	0.02	22	720	10	<5	<20	9 <(0.01	<10	53	<10	2	56
42	91842	5	0.6	1.41	70	45	<0 <5	1.20	-1	19	1/13	300	3.34	<10	1 09	659	4	0.04	14	1060	12	<5	<20	17 <(D.01	<10	53	<10	1	69
43	91843	230	0.6	1.69	65	85	<0	1.30	~1	66	206	731	9.65	<10	2.26	1453	8	0.01	83	1400	58	<5	<20	10 <(D. 01	<10	130	<10	<1	145
44	91844	>1000	2.8	3.51	180	125	<5	0.04	~1	03	173	1240	>10	<10	1 49	2818	16	<0.01	44	900	150	<5	<20	21 <(0.01	<10	182	<10	8	755
45	91845	905	12.0	3.27	3745	230	<0	1.41	~1		125	1240	. 10							-										
						406	~5	1 79	•	17	81	390	4 01	<10	0.91	752	1	0.03	23	770	16	10	<20	46 1	80.0	<10	86	<10	22	343
46	91846	15	Ð.6	1.50	105	425	<0	0.27	-1	7	71	67	1.54	<10	0.86	212	2	0.02	6	620	12	10	<20	4 <	0.01	<10	25	<10	<1	148
47	91847	5	0.2	1.16	35	40	<5 <5	1.20	1	18	68	104	4 19	<10	2.04	443	3	0.02	10	690	10	10	<20	12 <	0.01	<10	81	<10	<1	146
48	91848	5	<0.2	2.22	10	00	<0 <6	0.72	~1	45	93	291	8 18	<10	3.05	696	5	0.03	21	1300	14	<5	<20	12	0.02	<10	244	<10	<1	132
49	91849	5	<0.2	3.26	25	65	<5	4.15	2	118	159	1150	>10	<10	2.85	881	8	0.04	54	1040	10	<5	<20	. 27	0.04	<10	193	<10	<1	173
50	91850	30	1.0	3.32	15	00	-0	1.10			100																			
		_			20	95	-6	0.06	2	30	58	223	9.03	<10	2.44	682	5	0.02	23	1080	14	<5	<20	75	0.07	<10	215	<10	<1	138
51	91851	5	<0.2	4.02	20	406	~	2 70	<u>د</u>	67	256	385	>10	<10	3.57	1125	9	0.02	42	990	30	<5	<20	41	0.06	<10	218	<10	<1	153
52	91852	70	0.2	4.31	13	120	~5	3.75	4	116	586	864	>10	<10	4.37	1188	6	0.01	68	500	6	<5	<20	23	0.10	<10	216	10	<1	98
53	91853	15	1.0	5.00	10	95	~5	4.00		170	238	1456	>10	<10	3.21	795	19	0.03	43	630	10	<5	<20	19	0.03	20	258	<10	<1	97
54	91854	75	3.0	5.33	35	110	<5 <5	1.10	~1	57	60	415	6.07	<10	1.56	639	3	0.03	20	750	10	<5	<20	26	0.02	<10	113	<10	<1	58
55	91855	5	0.4	2.53	20	165	<0	1.02	~1	51	00	415	0.01				-					-								
					~~	405	-6	2 20		67	64	469	>10	<10	2 23	822	9	0.03	19	930	8	<5	<20	47	0.02	<10	176	<10	<1	130
5 6	91856	140	0.4	3.27	65	105	<0 - C	3.39	-1	202	264	3040	>10	<10	1 92	628	37	0.05	62	460	20	<5	<20	18	0.02	<10	150	<10	<1	79
57	91857	195	2.6	3.21	65	85	<u>ر></u>	1.10	~	151	204	2451	>10	<10	1 67	1010	25	<0.01	46	490	32	<5	<20	17 <	0.01	<10	97	<10	<1	323
58	91858	780	8.8	2.55	885	65	<5	1.20	~1	131	407	4377	510	<10	2 47	466	14	0.06	30	310	6	<5	<20	10	0.12	<10	204	<10	<1	115
59	91859	330	5.2	3.64	10	155	<5	1.11	3	00	200	40/4	>10	<10	2.70	862	7	0.07	46	590	6	<5	<20	13	0.17	<10	182	<10	<1	92
60	91860	95	2.4	4.51	15	95	<5	1.82	2	90	340	1341	~10	~10	5.51	0.02	,	4.47				-	_,	-						
											170	210	7 16	<10	2.25	470	,	0.00	19	790	10	5	<20	23	0.10	<10	116	<10	<1	54
61	91861	350	0.4	2,72	15	110	<5	1.30	<1	- 27	172	210	1.10	~10	4.43	410	-	. 0.00			.0	5								

ICP CERTIFICATE OF ANALYSIS AK 97-918

ECO-TECH LABORATORIES LTD.

										.	~	.	C	5. %	1.2.1	liter %	Ma	Mol	Na %	Ni	Р	Pb	Sb	Sn	Sr	TI %	<u>.</u>	V	W	Y	Zn
	Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi C	a %	Cd	<u> </u>			FC 76	<10	1 76	400	2	0.05	27	890	8	5	<20	9	0.03	<10	85	<10	<1	46
	62	91862	5	<0.2	2.01	20	45	<5 (0 77	<1	18	190	117	4.19	<10	1.75	9400	15	0.14	24	870	32	<5	<20	37	0,15	<10	197	<10	<1	336
	63	91863	80	2.8	4.54	140	100	<5	1.87	1	52	150	1019	>10	~10	2.02	775	11	0.18	19	970	6	<5	<20	19	0.18	20	162	<10	<1	285
	64	91864	215	0.4	4.20	35	120	<5	2.38	3	90	108	1017	104	~10	0.26	1470	6	0.01	2	800	6	<5	<20	11 <	0.01	<10	41	<10	17	81
	65	91865	5	0.2	1.06	35	290	<5	1 15	<1	12	26	120	4.04	~10	0.20	1410	Ũ	0.01	_											
	00	0.000-													-10	4 66	1902	18	0.02	45	660	18	<5	<20	21	0.04	<10	125	<10	3	252
	66	91866	580	7.0	3.65	530	140	<5	1.05	<1	106	226	5592	>10	< IU - 40	1.00	1002	20	<0.02	27	420	24	<5	<20	3 <	<0.01	<10	94	<10	<1	135
	67	91867	545	5.0	2.55	835	110	<5	0.23	<1	141	149	3491	210	<10	0.04	200	7	0.01	12	670	6	<5	<20	17 •	<0.01	<10	39	<10	<1	85
	68	91868	5	0.6	1.67	225	65	<5	1.73	<1	29	75	277	5.87	<10	1.01	460	37	0.03	35	960	12	<5	<20	16	0.01	<10	130	<10	<1	78
	69	91869	10	0.4	4.25	65	95	<5	1.48	<1	57	209	725	>10	<10	1.91	346	20	0.00	19	400	4	<5	<20	5	0.10	<10	120	<10	<1	54
	70	91870	55	1.0	2.26	<5	120	<5	1.12	2	369	103	3/13	>10	<10	1.24	340	20	0.00												
	10	01010														2.40	1071	e	0.11	30	890	6	<5	<20	33	0.18	<10	247	<10	<1	73
	71	01871	5	<0.2	4.92	25	65	<5	1.40	1	114	105	518	>10	<10	3.49	1071	2	0.05	23	1440	14	<5	<20	22	0.11	<10	224	<10	17	76
	79	91872	5	<0.2	1,92	35	55	<5	1.25	<1	26	6 9	211	6.51	<10	1.20	001	6	0.00	2.0 R	350	4	<5	<20	24	0.08	<10	116	<10	<1	104
÷.	72	01873	>1000	8.6	4.13	25	75	<5	1.67	1	64	49	6790	>10	<10	1.04	692	15	0.02	11	280	14	<5	<20	19	0.08	<10	122	<10	<1	102
KA	74	91874	780	22.8	3.83	205	115	<5	1.18	<1	83	37	4925	>10	<10	1.50	000	10	<0.02	21	270	10	<5	<20	3	0.03	<10	147	<10	<1	128
22	75	01875	>1000	23.2	3.05	435	140	<5	0.61	<1	342	38	4511	>10	<10	1.49	2600	~~~	-0.01	21	210		-								
23	13	31010														0.05	4050	10	0.03	٩	390	2	<5	<20	15	0.10	<10	99	<10	<1	53
Ę.	/1 2	9:876	>1000	8.8	1,98	135	80	<5	1.81	<1	113	35	1677	>10	<10	0.00	1205	10	0.00	12	<10	<2	<5	<20	7	0.05	<10	72	<10	<1	149
8	77	91977	>1000	29.0	1.43	60	160	<5	1.20	3	331	27	>10000	, >10	<10	0.40	4000	24	0.03	40	<10	<2	<5	<20	3	0.05	<10	98	<10	<1	117
æ	78	0197A	>1000	14.0	1.75	20	165	<5	0.89	3	339	16	>10000	> >10	<10	0.49	607	20	0.00	21	1080	R	<5	<20	25	0.22	<10	198	<10	<1	70
	70	91879	425	3.4	3.65	30	100	<5	1.34	<1	51	55	2298	>10	<10	1./4	697	1	0.00	32	1260	10	<5	<20	21	0.26	<10	191	<10	14	52
	10	91880	335	1.8	2.40	25	60	<5	1.33	<1	43	61	1320	6.32	<10	1.60	291	-1	0.00	~~	1200										
	00	31000															4046	12	0.07	10	420	6	<5	<20	47	0.08	<10	145	<10	<1	199
	94	Q1881	775	9.4	4.20	85	85	<5	3.81	2	103	49	6886	>10	<10	2.19	1040	20	0.07	10	710	10	<5	<20	32	0.08	<10	223	<10	<1	190
	87	01982	560	4.2	5.23	30	120	<5	2.17	2	67	56	3218	>10	<10	2.00	1000	20	0.00	14	580	8	<5	<20	5	0.02	<10	207	<10	<1	198
23	02	01883	775	8.6	5.85	90	110	<5	0.53	2	142	55	5630	>10	<10	2.21	1104	23	0.04	14	1840	172	<5	80	15	0.13	<10	200	<10	94	148
10	0.0	01884	805	3.2	4.16	330	55	95	2.41	<1	92	82	1644	>10	<10	2.41	1102	14	0.00	21	560	12	<5	<20	26	0.07	<10	216	<10	<1	227
~	04	01895	430	4.4	6.00	280	115	<5	1.57	2	79	87	2660	>10	<10	2.92	1004	15	Q.Q4	21	000										
12	03	31000																	0.06	14	660	24	<5	<20	34	0.09	<10	159	<10	<1	216
~	00	01996	710	13.8	3.05	500	165	<5	1.50	2	78	44	2769	>10	<10	1.14	669	24	0.00	22	<10	14	<5	<20	7	0.05	<10	112	<10	<1	1008
io i	80	01987	>1000	>30	4.07	1050	105	<5	0.38	8	214	53	>10000) >10	<10	1.66	890	24	0.01	40	590	,,, 8	<5	<20	18	0.11	<10	128	<10	<1	116
0	6/	91007	620	76	3.48	95	90	<5	0.65	<1	142	47	3984	>10	<10	1.99	896		0.03	10	1100	06	<5	<20	9	0.03	<10	188	<10	<1	199
	88	91800	810	9.0	2.13	555	100	<5	0.49	1	249	55	4504	+ >10	<10	0.89	914	16	0.03		1150	30 6	10	<20	28	0.21	<10	240	<10	8	81
	89	91669	270	1.9	2.71	20	55	<5	2.68	1	41	55	2477	7.79	<10	2.34	728	<1	0.08	10	2310	0	10	~20	2,0	0.27					
~	90	a10an	210																0.05	20	2140	12	6 5	<20	15	0.28	<10	261	<10	9	89
-		04004	670	26	2.92	65	55	<5	1.99	<1	62	67	1791	3 9.47	<10	2.64	805	<1	0.05	20 •7	2140	14	-5	-20	18	0.31	<10	298	<10	21	106
10	91	91691	256	1 A	343	40	60	<5	1.82	<1	49	63	194	9 >10	<10	2.35	988	<1	0.08	11	4330	14	~0 ~e	~20	24	0.26	<10	197	<10	<1	82
	92	91892	200	, 	271	105	65	<5	1.31	<1	64	64	247	7 >10	<10	1.98	670	2	0.05	21	1220	10	~3	~20	- JI	0.40	- 10			•	
	93	91893	240	, J.L	, 2.10								•																		

Page 3

ୟ୍ଲ 004 EVEREST

1

() |

10/17/97

i

	r									ł	CP CEF	TIFICAT	E OF A	NALY	SIS AK	(97- 91	8						E	CO-TI	CH LA	BORAT	ORIES	LTD.		
Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	<u>ta</u>	Mg %	Mn	Mo	Na %	NI	<u>P</u>	РЬ	Sb	Sn	Sr	<u>TI %</u>	U	V	W	Y	Zn
QC DATA Resplit: R/S 1 R/S 36	91801 91836	10 650	<0.2 0.4	2 14 5.3	50	50 70	<5 <5	1.71 1.46	4 <1	22 177	56 590	97 1329	4.31 >10	<10 <10	1.15 5.48 3.36	393 1076 989	5 5 3	0.08 0.03 0.12	28 106 29	2130 1660 950	8 10 12	5 <5 <5	<20 <20 <20	54 14 33	0.07 0.09 0.20	<10 <10 <10	119 205 241	<10 <10 <10	10 <1 <1	47 136 74
R/S 71	91871	5	<0.2	4.70	3 0	55	<5	1.46	<1	105	102	494	210	~10	5.50		ŭ	0.12				.6	-00	67	0.19	c10	119	<10	13	49
Repeat: 1 10 19 36	91801 91810 91819 91836	5 350 150 370	<0.2 8.6 1.6 0.8	2.1 2.8 4.2 5.3	3 45 2 15 4 55 2 125 7 3595	50 50 80 75 230	<5 <5 <5 <5 <5	1.70 0.27 1.72 1.30 1.40	<1 1 <1 <1 <1	23 179 127 184 93	40 35 59 568 119	102 6219 1634 1331 1214	4.36 8.25 >10 >10 >10	<10 <10 <10 <10 <10	1.16 1.83 2.97 5.46 1.45	402 1069 804 1131 2786	<1 6 5 16	0.07 0.02 0.07 0.03 <0.01	13 18 35 105 43	2100 500 1050 1530 870	12 12 12 2 152	<5 <5 <5 <5 <5	<20 <20 <20 <20 <20	52 4 28 18 20	0.19 0.02 0.11 0.09 ⊲0.01	<10 <10 <10 <10	118 194 197 160	<10 <10 <10 <10 <10	<1 <1 <1 10	114 84 134 744
45 54 71 80 89	91845 91854 91871 91880 91880	95 5 310 750	2.4 <0.2 2.0 7 8	5.3 2 4.7 2 2.4 3 2.1	1 15 7 35 7 20 0 575	105 60 60 95	<5 <5 <5 <5	1.14 1.41 1.36 0.50	2 <1 <1 1	167 111 43 249	235 104 62 56	1433 507 1385 4418	>10 >10 6.42 >10	<10 <10 <10 <10	3.19 3.36 1.65 0.88	777 1038 604 904	20 3 <1 18	0.03 0.11 0.08 0.03	47 28 32 49	640 900 1230 1270	6 10 8 100	<5 <5 <5 <5	<20 <20 <20 <20	18 31 23 7	0.03 0.20 0.27 0.04	<10 <10 <10 <10	256 242 195 186	<10 <10 <10 <10	<1 <1 14 <1	92 75 52 200
Standar GEO'97 GEO'97	d:	145 145	1.4 1.4	4 1.9 4 1.8	2 65 7 65	170 165	<5 <5	1.90 1.84	3 <1	21 20	66 64	84 68	4.39 4.28	<10 <10	1.03 0.97	714 682	<1 <1	0.02 0.02	22 25	710 720	22 24	5 10	<20 <20	66 60	0.09 0.13	<10 <10	85 83	<10 <10	8 8	75 76

df/915a XLS/97

ୟ୍ଲି 005 .

ECO-TECH KAM.

2250 573 4557

10/17/97 10:13

XLS/97 fax: 604-984-4365

3 ECO-TECH LABORATORIES LTD. Erank J. Pezzotti, A Sc.T. B.C. Certified Assayer

1-Jul-97

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

]

1

Phone: 604-573-5700 Fax : 604-573-4557 ICP CERTIFICATE OF ANALYSIS AK 97-542

- CEA - 1990)

i na secondaria de la composición de la composic

Ϋ

EVEREST MINES & MINERALS 828 Whilchurch Street N. VANCOUVER ,BC V7L 2A4

ATTENTION: JIM MILLER-TAIT

No. of samples received: 381 Semple type: SOIIL PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN Samples submitted by: NOT INDICATED

Values in ppm unless otherwise reported

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	NI	P	Pb	Sb	Sn	Şr	TI %	U	v	W	Y	Zn
1	BL LOON + 00	15	0.2	3.07	130	110	<5	0.18	<1	28	42	189	8.04	<10	0.65	328	5	0.02	23	750	14	<5	<20	14	0.08	<10	173	<10	<1	199
2	L00 + 025 W	<5	<0.2	2.86	35	115	<5	0.21	<1	17	34	158	5.57	<10	0.81	278	4	0.02	18	660	10	<5	<20	17	0.05	<10	131	<10	<1	69
3	L00 + 050 W	<5	0.2	3.08	65	175	<5	0.25	<1	29	58	122	7.38	<10	0.67	1385	6	0.03	16	1020	10	<5	<20	12	0.01	<10	183	<10	<1	124
4	L00 + 075 W	<5	<0.2	4.65	40	105	<5	0.81	<1	58	120	326	>10	<10	2.35	1163	<1	0.04	39	500	10	5	<20	30	0.33	<10	238	10	<1	153
5	L00 + 100 W	<5	<0.2	2.97	20	105	10	0.34	<1	24	50	116	6.77	<10	1.21	374	<1	0.02	22	480	22	<5	<20	24	0.20	<10	152	<10	<1	66
6	L00 + 125 W	20	<0.2	2.66	30	140	10	0.71	<1	30	56	108	6.93	<10	1.35	652	<1	0.03	23	400	14	10	<20	43	0.22	<10	183	· <10	<1	59
7	L00 + 150 W	70	<0.2	2.13	20	110	15	0.41	<1	27	49	72	7.70	<10	0.75	367	<1	0.02	18	570	10	<5	<20	33	0.28	<10	224	<10	<1	71
8	L00 + 175 W	<5	<0.2	1.97	35	185	10	0.39	<1	25	52	54	7.89	<10	0.78	823	2	0.02	16	1140	12	<5	<20	31	0.20	<10	230	<10	<1	80
9	L00 + 200 W	<5	<0.2	2.32	10	145	<5	0.35	<1	16	31	123	4.37	<10	0.71	407	4	0.01	18	280	14	<5	<20	19	0.05	<10	105	<10	1	59
10	L00 + 225 W	<5	0.6	3.13	5	255	<5	1.13	1	16	39	121	4.80	<10	0.91	813	4	0.02	22	710	8	<5	<20	35	0.03	<10	113	<10	14	84
11	L00 + 250 W	<5	0.4	2.27	<5	155	<5	0.43	<1	11	29	42	4.26	<10	0.63	333	5	0.01	16	450	10	<5	<20	23	0.02	<10	111	<10	<1	57
12	L00 + 400 W	<5	<0.2	1.93	<5	240	<5	0.44	<1	8	22	29	3.47	<10	0.44	475	3	0.01	.14	410	10	<5	<20	31	0.02	<10	90	<10	9	56
13	L00 + 425 W	<5	<0.2	2.69	<5	135	<5	0.19	<1	13	27	30	4.06	<10	0.61	302	3	0.01	19	600	10	<5	<20	20	0.05	<10	90	<10	<1	90
14	L00 + 450 W	<5	<0.2	2.36	<5	330	<5	0.57	<1	9	22	34	3.37	<10	0.57	551	2	0.01	17	500	8	<5	<20	44	0.02	<10	73	<10	17	56
15	L00 + 475 W	<5	<0.2	1.86	<5	180	<5	0.47	<1	15	28	30	3.87	<10	0.69	777	<1	0.02	25	260	10	<5	<20	43	0.08	<10	74	<10	8	59
16	LON + 000 E	400	5.4	1.85	100	210	<5	0.13	2	39	105	1824	>10	<10	0.41	196	42	0.04	7	950	10	<5	<20	8	0.12	90	128	40	<1	38
17	LON + 025 E	410	4.0	4.28	870	310	<5	0.35	<1	113	85	1991	>10	<10	1.42	1747	20	0.01	38	780	58	<5	<20	14	0.01	<10	146	<10	<1	228
18	LON + 050 E	<5	1.2	4.90	50	155	<5	0.13	<1	59	22	383	>10	<10	2.52	410	9	0.03	19	610	12	<5	<20	10	0.02	to	164	20	<1	140
19	LON + 075 E	690	1.0	4.61	65	155	<5	0.19	<1	28	38	233	8.44	<10	0.86	332	3	0.01	36	690	18	<5	<20	21	0.14	<10	199	<10	<1	153
20	LON + 100 E	460	30.0	1.27	220	175	<5	0.03	1	92	15	2279	>10	<10	0.35	212	30	<0.01	15	640	44	<5	<20	7	0.06	90	211	<10	<1	57
21	LON + 125 E	165	<0.2	4.47	95	145	10	0.22	<1	31	48	79	>10	<10	1.29	1121	4	0.01	23	2480	26	<5	<20	13	0.11	<10	297	<10	<1	129
22	LON + 150 E	145	26.2	1.13	225	170	<5	0.03	<1	91	14	2165	>10	<10	0.26	200	26	<0.01	8	740	50	<5	<20	2	0.06	80	196	60	<1	62
23	LON + 175 E	<5	0.6	3.65	410	125	<5	0.12	<1	20	33	206	>10	<10	0.46	328	13	<0.01	20	1550	16	<5	<20	8	<0.01	20	190	<10	<1	10 0
24	LON + 200 E	<5	2.4	3.34	50	120	<5	0.20	<1	20	39	380	8.57	<10	0.84	459	4	0.01	19	2310	26	<5	<20	13	0.11	<10	206	<10	<1	140
25	LON + 225 E	60	<0.2	3.43	60	85	<5	1.34	<1	45	31	182	8.16 Pag	<10 e 1	1.70	350	3	0.04	23	750	14	10	<20	102	0.17	<10	325	20	<1	44

EVEREST MINES & MINERALS

ICP CERTIFICATE OF ANALYSIS AK 97-542

ECO-TECH LABORATORIES LTD.

Et #.	Tag #		Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	NI	P	Pb	Sb	Sn	Sr	TI %	U	v	w	Y	Zn
26	LON + 250	Ë	90	2.2	4.73	70	125	<5	0.21	<1	32	42	440	9.53	<10	1.00	421	2	0.01	27	1260	24	<5	<20	15	0.18	<10	178	<10	<1	124
27	LON + 275	E	170	<0.2	2.25	25	130	<5	0.27	<1	18	30	166	7.27	<10	0.66	434	2	0.01	13	1320	16	<5	<20	14	0.15	<10	235	<10	<1	65
28	LON + 300	Ε	105	0.6	3.22	115	95	<5	0.19	<1	18	28	209	8.30	<10	0.79	267	3	0.02	13	1770	22	<5	<20	15	0.12	<10	238	<10	<1	73
29	LON + 325	Ε	215	2.2	2.05	30	130	<5	1.23	1	44	18	702	7.53	<10	0.27	793	7	0.01	12	560	16	<5	<20	44	0.07	<10	196	<10	<1	110
30	LON + 350	E	<5	0.4	2.59	40	170	10	0.40	1	21	33	77	9.36	<10	0.72	345	<1	0.02	15	1290	30	<5	<20	28	0.28	<10	305	<10	<1	83
31	LON + 375	E	<5	<0.2	2.37	10	105	10	0.16	<1	13	26	39	7.10	<10	0.49	234	4	0.01	11	1300	14	<5	<20	14	0.11	<10	178	<10	<1	72
32	LON + 400	Е	<5	<0.2	1.44	<5	100	<5	0.28	<1	6	15	16	2.08	<10	0.27	108	<1	0.01	4	360	12	<5	<20	20	0.08	<10	73	<10	2	46
33	LON + 425	E	<5	<0.2	4.31	5	145	10	0.15	<1	15	35	56	6.23	<10	0.62	317	2	0.01	20	1670	14	<5	<20	14	0.10	<10	118	<10	<1	111
34	LON + 450	E	<5	<0.2	1.80	<5	160	10	0.29	<1	16	28	30	5.56	<10	0.41	405	<1	0.01	9	1530	12	<5	<20	21	0.20	<10	179	<10	<1	67
35	LON + 475	Ε	<5	<0.2	1.39	5	110	5	0.21	<1	10	22	33	4.38	<10	0.21	212	<1	0.01	7	1350	8	<5	<20	16	0.17	<10	163	<10	<1	43
36	1.0N + 500	Е	<5	<0.2	3.52	<5	280	15	0.92	1	24	37	56	>10	<10	0.87	785	6	0.02	19	7710	14	<5	<20	60	0.15	<10	347	<10	<1	162
37	L1N + 000	W	25	<0.2	3.68	60	185	10	0.40	<1	27	36	87	7.02	<10	0.92	777	5	0.01	24	800	24	<5	<20	19	0.06	<10	161	<10	<1	196
38	L1N + 025	W	<5	<0.2	1.67	25	145	5	0.25	<1	12	44	29	3.90	<10	0.47	300	<1	0.01	12	380	14	<5	<20	14	0.10	<10	133	<10	<1	75
39	L1N + 025	E	75	0.2	3.40	2740	130	<5	0.17	<1	51	- 14	294	>10	<10	0.95	488	12	0.02	15	1000	28	<5	<20	- 11	0.02	20	309	<10	<1	302
40	L1N + 050	E	<5	1.2	4.81	75	160	<5	0.63	<1	36	39	243	8.96	<10	0.95	359	7	0.01	26	640	12	<5	<20	19	0.02	<10	194	<10	<1	123
41	L1N + 075	E	20	0.4	4.01	95	145	<5	0.26	<1	29	41	309	9.73	<10	0.73	476	7	0.01	25	480	14	<5	<20	15	0.09	<10	160	<10	<1	180
42	L1N + 100	Ε	715	4.0	5.15	80	125	<5	0.17	<1	64	44	2539	>10	<10	0.65	680	9	0.01	24	1450	8	<5	<20	11	0.06	<10	146	<10	<1	84
43	L1N + 125	Ε	130	1.6	4.27	110	135	<5	0.30	<1	39	43	740	8.94	<10	1.06	508	7	0.01	30	790	18	<5	<20	23	0.07	<10	175	<10	<1	165
44	L1N + 150	Е	165	0.8	3.01	75	115	<5	0.29	<1	42	37	795	>10	<10	0.82	855	10	0.01	19	1700	22	<5	<20	12	0.04	<10	268	20	<1	66
45	L1N + 175	Ε	>1000	0.8	2.49	375	90	<5	0.12	<1	46	23	1152	>10	<10	0.40	333	12	0.01	18	1290	42	<5	<20	- 11	0.05	10	199	<10	<1	121
46	L1N + 200	Е	430	0.8	4.02	195	120	<5	0.36	<1	39	61	743	>10	<10	1.26	862	9	<0.01	23	1710	14	<5	<20	14	0.03	<10	283	<10	<1	163
47	L1N + 225	E	90	<0.2	1.26	10	120	5	0.26	<1	13	43	35	4.22	<10	0.36	351	<1	0.01	9	500	14	<5	<20	11	0.23	<10	176	<10	3	38
48	L1N + 250	E	<5	0.8	4.18	60	90	<5	0.15	<1	19	40	157	8.36	<10	0.91	288	5	0.01	17	1540	26	<5	<20	9	0.09	<10	238	<10	<1	197
49	L1N + 275	E	10	<0.2	3.15	25	135	10	0.35	<1	19	36	80	6.89	<10	1.06	292	3	0.01	18	750	26	<5	<20	18	0.16	<10	276	<10	<1	69
50	L1N + 300	E	10	<0.2	3.88	45	155	<5	0.30	<1	23	40	127	7.88	<10	1.09	406	6	0.01	23	1630	18	<5	<20	18	0.03	<10	184	<10	<1	164
51	L1N + 325	E	<5	<0.2	1.34	<5	120	5	0.69	<1	6	4	16	4.15	<10	0.14	131	4	<0.01	3	410	10	<5	<20	20	<0.01	<10	105	10	<1	47
52	L1N + 350	E	40	<0.2	2.14	25	135	<5	0.33	<1	19	21	50	7.64	<10	0.43	310	4	0.01	13	1490	24	<5	<20	20	0.08	<10	258	<10	<1	88
53	L1N + 375	Ε	15	<0.2	2.16	15	155	<5	0.27	<1	15	25	154	6.52	<10	0.56	286	- 4	0.01	15	640	14	<5	<20	18	0.08	<10	169	<10	<1	84
54	L1N + 400	Ë	<5	1.8	1.58	15	145	15	0.23	<1	13	23	34	4.84	<10	0.42	697	1	0.01	10	1250	14	<5	<20	16	0.12	<10	163	<10	<1	62
55	L1N + 425	E	<5	<0.2	2.89	20	125	10	0.14	<1	14	28	61	6.96	<10	0.47	288	4	0.01	13	2680	20	<5	<20	11	0.07	<10	162	<10	<1	106
58	L1N + 450	E	<5	<0.2	2.88	15	115	10	0.15	<1	15	30	45	7.14	<10	0.54	316	5	0.01	13	1340	20	<5	<20	12	0.05	<10	158	<10	<1	81
57	L1N + 475	E	10	<0.2	1.50	5	130	10	0.16	<1	10	20	23	4.95	<10	0.26	239	<1	0.01	8	1000	14	<5	<20	14	0.11	<10	159	<10	<1	59
58	L1N + 500	Ε	<5	0.6	1.96	5	200	15	0.56	<1	14	25	49	5.41	<10	0.57	523	1	0.01	- 11	730	16	<5	<20	24	0.12	<10	182	20	<1	74
59	L1N + 50	W	<5	<0.2	2.74	160	140	<5	0.52	<1	22	38	81	6.37	<10	0.56	295	7	0.01	18	360	24	<5	<20	19	0.03	<10	127	<10	<1	117
60	L1N + 75	W	<5	<0.2	3.98	175	70	<5	1.01	<1	47	104	219	8.27	<10	2.77	500	<1	0.03	33	290	14	25	<20	30	0.33	<10	207	<10	<1	60

EVERE	ST MINES & MINER	ALS								te	CP CE	RTIFIC	ATE O	F ANAL	YSIS	AK 97-	542							t	ECO-T	ECH L	ABOR/	LTORIE	ES LT	D.
Et #.	Tag #	Au(ppb)	Ag	AI %	As Ba Bi Ca % Cd Co Cr Cu Fe % La Mg % Mn Mo Na % Ni P 905 130 5 0.40 <1 37 63 163 9.28 <10 1.49 535 4 0.02 24 670 25 105 10 0.28 <1 13 24 28 4.19 <10 0.52 291 2 0.01 14 660														Pb	Sb	Sn	Sr	Tł %	U	v	w	Y	Zn		
61	L1N + 100 W	10	1.0	3.33	905	130	5	0.40	<1	37	63	163	9.28	<10	1.49	535	4	0.02	24	670	14	<5	<20	22	0.12	<10	183	<10	<1	155
62	L1N + 125 W	<5	<0.2	1.79	25	105	10	0.26	<1	13	24	28	4.19	<10	0.52	291	2	0.01	14	660	10	<5	<20	18	0.07	<10	97	<10	<1	59
63	L1N + 150 W	<5	<0.2	1.53	10	135	10	0.24	<1	12	26	16	4.95	<10	0.44	446	<1	0.01	8	1380	12	<5	<20	16	0.09	<10	119	<10	<1	91
64	L1N + 175 W	<5	<0.2	1.53	20	130	5	0.26	<1	10	25	18	4.63	<10	0.41	293	3	0.01	8	1030	12	<5	<20	-18	0.06	<10	129	<10	<1	84
65	L1N + 200 W	<5	<0.2	1.88	<5	190	10	0.55	1	14	25	48	5.51	<10	0.53	519	<1	0.01	10	750	12	<5	<20	21	0.12	<10	182	20	2	78
66	L1N + 225 W	<5	<0.2	0.93	5	175	<5	0.35	<1	6	16	23	2.67	<10	0.25	236	1	<0.01	7	480	14	<5	<20	20	0.03	<10	66	<10	<1	66
67	L1N + 250 W	<5	1.0	3.66	15	485	<5	1.27	4	20	36	113	5.74	<10	0.88	1968	6	0.02	27	980	20	<5	<20	45	0.01	<10	110	<10	24	150
68	L1N + 325 W	<5	0.4	3.20	10	405	<5	1.48	2	14	31	123	4.73	<10	0.88	967	4	0.03	27	740	16	10	<20	52	0.02	<10	90	<10	28	97
69	L1N + 425 W	<5	<0.2	2.22	<5	185	10	0.26	<1	11	21	20	3.91	<10	0.59	307	3	0.01	16	230	8	5	<20	19	0.04	<10	81	<10	<1	60
70	L1N + 450 W	<5	<0.2	1.82	<5	205	10	0.32	<1	11	27	27	3.40	<10	0.58	557	<1	0.01	22	300	10	<5	<20	28	0.03	<10	62	<10	10	59
71	L1N + 475 W	<5	<0.2	1.69	<5	145	5	0.24	<1	12	26	23	3.52	<10	0.58	517	2	0.01	24	310	16	<5	<20	25	0.05	<10	63	<10	3	60
72	L1N + 500 W	<5	<0.2	1.86	10	195	10	0.29	<1	12	27	27	3.63	<10	0.55	566	3	0.01	25	300	20	<5	<20	26	0.03	<10	64	<10	9	77
73	L2N + 000	30	<0.2	3.77	20	130	25	0.42	3	28	46	26	>10	<10	1.28	416	11	0.01	18	760	16	<5	<20	10	0.06	<10	427	<10	<1	154
74	L2N + 025 E	440	11.2	2.91	500	180	<5	1.33	2	398	83	10000	>10	<10	1.46	1471	19	0.01	100	50	20	<5	<20	30	0.05	<10	106	<10	<1	298
75	L2N + 050 E	35	<0.2	1.88	15	75	5	0.12	<1	16	21	56	5.73	<10	0.35	194	3	<0.01	9	750	18	<5	<20	6	0.04	<10	152	20	<1	67
76	12N + 075 E	>1000	1.2	2.85	110	150	<5	0.78	1	53	36	1352	>10	<10	1.11	1110	4	0.01	31	1420	16	<5	<20	26	0.26	<10	384	<10	<1	117
77	L2N + 100 E	>1000	>30	2.56	540	135	<5	0.14	<1	197	35	7375	>10	<10	0.72	1403	19	<0.01	36	1080	16	<5	<20	8	0.07	<10	133	<10	<1	137
78	L2N + 125 E	110	0.2	3.80	35	180	<5	0.26	<1	30	33	122	7.21	<10	0.92	312	3	0.01	28	720	26	<5	<20	15	0.12	<10	149	<10	<1	20 6
79	L2N + 150 E	20	<0.2	2.48	10	125	15	0.16	<1	19	32	65	9.47	<10	0.75	465	2	0.01	14	1390	24	<5	<20	9	0.23	<10	334	<10	<1	89
80	L2N + 175 E	25	<0.2	3.45	15	105	<5	0.21	<1	23	33	401	6.77	<10	0.87	504	4	<0.01	25	910	26	<5	<20	15	0.04	<10	192	<10	<1	91
81	L2N + 200 E	25	<0.2	3.80	55	90	10	0.15	<1	19	74	126	8.69	<10	0.83	313	7	0.02	20	3540	28	<5	<20	13	0.04	<10	222	<10	<1	90
82	L2N + 225 E	<5	1.2	1.86	20	110	<5	0.19	<1	13	26	46	5.52	<10	0.38	384	2	0.01	13	1480	22	<5	<20	17	0.10	<10	157	<10	<1	63
83	L2N + 250 E	<5	<0.2	2.13	15	105	10	0.29	<1	18	24	45	7.75	<10	0.51	153	7	<0.01	10	540	22	<5	<20	16	0.15	<10	357	<10	<1	49
84	L2N + 275 E	<5	<0.2	2.52	10	125	<5	0.2 9	<1	16	27	56	5.52	<10	0.51	627	3	0.01	13	1720	24	<5	<20	16	0.07	<10	147	<10	<1	106
85	L2N + 300 E	<5	1.0	2.44	10	105	10	0.24	<1	17	25	58	6.79	<10	0.73	356	2	0.01	13	690	22	<5	<20	15	0.15	<10	251	<10	<1	104
88	12N + 325 E	<5	<0.2	1.60	<5	110	<5	0.24	<1	6	19	58	3.03	<10	0 13	166	<1	<0.01	4	1190	22	<5	<20	19	0.14	<10	114	<10	2	29
87	12N + 350 E	<5	< 1 2	2.85	10	110	<5	0.32	<1	17	21	186	5 15	<10	0.72	354	3	10.0	19	660	24	<5	<20	20	0.09	<10	148	<10	<1	87
88	12N + 375 E	<5	<12	1 34	<5	190	<5	0.34	<1	12	20	49	4 58	<10	0.37	413	2	0.01	10	900	14	<5	<20	18	0.09	<10	147	<10	<1	72
80	12N+ 400 E	<5	0.6	0.92	<5	250	<5	0.99	1	6	14	102	2.13	<10	0 11	94	<1	<0.01	7	370	12	<5	<20	33	0.05	<10	64	<10	4	42
on.	12N + 425 E	30	<12	1 82	15	175	5	1 22	<1	11	22	35	3.93	<10	0.37	209	2	0.01	10	530	24	<5	<20	27	0.06	<10	115	<10	<1	117
50	1211 · 720 C	50	-0.2	1.02				مة مت ر 1	••	••	46		0.00		5.01	200	~	0.01			<u> </u>	-0							•	
91	L2N + 450 E	10	0.4	1.71	5	170	<5	0.82	<1	13	34	54	3.41	<10	0.54	644	<1	0.01	15	320	22	<5	<20	23	0.04	<10	85	<10	3	76
92	L2N + 500 E	50	<0.2	1.07	<5	85	<5	0.17	<1	6	18	12	2.46	<10	0.24	142	<1	<0.01	5	510	18	<5	<20	12	0.10	<10	81	<10	<1	38
93	L2N + 025 W	<5	<0.2	2.19	120	145	10	1.08	<1	20	30	50	5.72	<10	0.60	524	4	0.01	19	500	28	<5	<20	26	0.06	<10	133	<10	<1	122
94	L2N + 050 W	10	<0.2	2.81	30	100	<5	0.15	<1	19	29	106	4.87	<10	0.59	618	4	<0.01	23	340	30	<5	<20	11	0.02	<10	106	<10	<1	127
95	L2N + 075 W	<5	0.4	1.88	5	195	- 5	0.50	<1	16	25	40	4.57	<10	0.38	1386	- 4	<0.01	12	990	24	<5	<20	21	0.02	<10	91	<10	<1	140

EVEREST MINES & MINERALS

ICP CERTIFICATE OF ANALYSIS AK 97-542

ECO-TECH LABORATORIES LTD.

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Сг	Cu	Fe %	La	Mg %	Mn	Мо	Na %	NI	Р	Pb	Sb	Sn	Sr	TI %	U	v	w	Y	Zn
96	L2N + 100 W	35	<0.2	1.53	5	130	<5	0.32	<1	10	21	22	3.82	<10	0.50	448	3	< 0.01	12	1170	18	<5	<20	14	0.04	<10	79	<10	<1	83
97	L2N + 125 W	<5	<0.2	0.94	5	110	5	0.19	<1	5	17	10	2.74	<10	0.12	260	1	<0.01	6	410	14	<5	<20	10	0.06	<10	78	<10	<†	41
98	L2N + 150 W	<5	<0.2	1.30	<5	125	5	0.24	<1	7	19	15	2.71	<10	0.36	206	2	0.01	9	380	14	<5	<20	15	0.04	<10	71	10	<†	66
99	L2N + 175 W	<5	<0.2	1.47	5	150	<5	0.31	<1	8	27	20	2.70	<10	0.40	388	2	0.01	15	410	16	5	<20	21	0.03	<10	69	<10	4	63
100	L2N + 200 W	<5	<0.2	1.61	<5	185	<5	0.43	<1	5	19	28	2.63	<10	0.29	341	3	<0.01	9	490	16	<5	<20	26	<0.01	<10	67	<10	6	56
101	L2N + 225 W	<5	0.8	2.73	10	310	<5	1.15	<1	9	23	65	3.78	10	0.52	474	4	0.02	17	1280	22	<5	<20	41	<0.01	<10	75	<10	30	80
102	L2N + 250 W	<5	0.6	3.57	10	475	<5	1.20	<1	14	32	78	4.83	<10	0.75	1010	6	0.03	23	760	28	<5	<20	41	<0.01	<10	96	<10	20	132
103	L2N + 275 W	<5	<0.2	2.01	5	205	<5	0.61	<1	10	26	27	3.50	<10	0.48	704	5	<0.01	17	350	24	<5	<20	32	0.01	<10	71	<10	<1	75
104	L2N + 300 W	<5	<0.2	2.31	5	190	5	0.19	<1	12	25	31	3.59	<10	0.50	426	3	0.01	23	390	20	<5	<20	15	0.02	<10	64	<10	3	75
105	L2N + 325 W	<5	<0.2	0.81	<5	85	<5	0.24	<1	4	10	6	1.71	<10	0.15	172	<1	<0.01	4	560	10	<5	<20	15	0.03	<10	44	<10	<1	25
108	L2N + 425 W	NO SA	MPLE																											
107	L2N + 450 W	<5	<0.2	0.97	5	110	<5	0.17	<1	5	13	9	2.02	<10	0.18	155	2	<0.01	6	370	14	<5	<20	13	0.02	<10	45	<10	<1	29
108	L2N + 475 W	<5	<0.2	1.40	10	150	<5	0.46	<1	10	19	22	3.11	<10	0.42	543	2	<0.01	16	330	18	<5	<20	18	0.03	<10	57	<10	4	58
109	L3N + 00	<5	0.8	2.08	80	145	<5	1.13	1	53	29	366	5.07	<10	0.81	701	1	0.02	23	510	28	<5	<20	36	0.09	<10	97	<10	11	266
110	L3N + 025 W	<5	0.8	2.11	135	105	<5	2.76	4	31	20	891	4.65	<10	0.48	875	3	0.02	25	620	24	<5	<20	54	0.05	<10	105	<10	33	491
		•		_,,,,			-			•.		•••			00	0.0	•					-		• ·						
111	L3N + 100 W	<5	<0.2	2.39	15	120	5	0.15	<1	13	25	30	5.16	<10	0.42	267	5	<0.01	15	1120	26	<5	<20	9	0.05	<10	93	<10	<1	115
112	L3N + 125 W	<5	<0.2	1.50	<5	155	<5	0.39	<1	8	19	19	3.09	<10	0.45	214	2	0.01	11	670	14	10	<20	24	0.08	<10	76	<10	<1	67
113	L3N + 150 W	<5	<0.2	0.89	<5	90	<5	0.23	<1	4	11	7	1.37	<10	0.17	94	<1	<0.01	4	230	14	<5	<20	17	0.05	<10	44	<10	2	22
114	13N + 175 W	<5	<0.2	1 74	<5	90	10	0.17	<1	8	19	18	3 99	<10	0.40	197	3	<0.01	11	620	20	<5	<20	11	0.05	<10	92	<10	<1	63
115	13N + 200 W	<5	<0.2	1 78	<5	155	5	0.23	<1	14	28	28	3.89	<10	0.59	677	3	0.01	24	360	28	<5	<20	19	0.04	<10	71	<10	<1	75
110		-0	-0.4	1.10	-0	100	Ŭ	0.20			20		0.00	.10	0.00	017	Ŭ	0.01	••• •	000	~~	Ť	20		0.01				•	••
116	L3N + 225 W	<5	0.4	3.23	5	485	<5	1.29	1	11	30	67	4.32	<10	0.72	642	3	0.02	30	1200	28	<5	<20	55	0.02	<10	77	<10	32	143
117	13N + 250 W	<5	<0.2	1.51	10	180	<5	0.74	<1	14	26	64	3.51	<10	0.59	832	Ť	0.01	18	640	20	10	<20	35	0.07	<10	74	<10	20	66
118	13N + 275 W	<5	<0.2	1.39	<5	140	<5	0.49	<1	13	25	33	3.26	<10	0.53	559	<1	0.01	17	290	20	<5	<20	25	0.08	<10	70	<10	8	59
110	13N + 300 W	<5	<0.2	2 15	15	120	<5	0.42	<1	15	27	41	3 49	<10	0.57	363	<1	0.01	18	370	24	<5	<20	18	0.08	<10	80	<10	2	50
120	13N + 325 W	<5	<0.2	1 41	<5	120	<5	0.40	<1	12	25	26	3 42	<10	0.49	481	2	0.01	20	320	22	<5	<20	20	0.04	<10	63	<10	2	71
120			-0.2			120		00			~~~		0.12		0.10		-	0.01	-•	020		•			••••			••	_	
121	13N + 350 W	<5	<02	1 98	5	210	<5	0.98	<1	11	27	64	3 33	<10	0.45	563	4	0.01	23	430	24	<5	<20	27	0.02	<10	61	<10	10	64
122	13N + 375 W	<5	<0.2	1.25	10	135	<5	0.47	<1	9	19	21	2 92	<10	0.46	351	<1	0.01	15	320	16	<5	<20	23	0.06	<10	58	<10	7	56
123	13N + 400 W	<5	<11.2	1 12	5	155	<5	0.67	<1	7	16	22	2 71	<10	0.28	302	2	0.01	9	310	24	5	<20	25	0.04	<10	87	<10	1	45
124	1311 + 00	-5	Π.4	2 02	ôn	140	<5	0.01	<1	52	30	359	5 11	<10	0.81	820	<1	0.01	23	510	40	<5	<20	34	0.10	<10	95	<10	14	230
125		00	9 A	2 10	115	145	< 5	2 32	21	R4	38	1348	4 65	<10	0.60	601	2	0.01	34	910	30	<5	<20	43	0.04	<10	83	<10	102	269
120		00	4.7	2.10	115	140	-0	2.02	••	•••	00	1010	4.00		0.00	001	-	0.04	0,	010	00		-20		0.01		•••			
128	13N + 050 E	<5	<0.2	0.72	<5	70	<5	0.32	<1	11	20	51	3.22	<10	0.12	154	<1	<0.01	6	270	20	<5	<20	19	0.22	<10	141	<10	5	48
127	13N + 075 F	~0	-0.2	2 59	30	410	<5	2 78	19	45	18	1138	4 99	<10	0.38	6519	3	0.03	27	2520	28	<5	<20	78	0.08	<10	156	<10	27	172
129	13N+ 100 E	~~. 28	0.4	2.00	85	180	<5	1 41	<1	22	33	1277	6 63	20	0.45	921	2	0.01	24	740	42	<5	<20	30	0.13	<10	125	<10	114	151
120	13N + 125 E	-0 -6	<0.0	2 14	25	165	<5	0.64	<1	23	35	117	6.03	<10	0.57	550	5	<0.01	19	1340	28	<5	<20	18	0.05	<10	177	<10	<1	114
130	13N + 150 E	-5	<0.2	1.68	20	150	10	0.04	<1	14	28	32	5.57	<10	0.07	351	3	<0.01	14	520	28	<5	<20	13	0.08	<10	118	<10	<1	175
100		-0	~	1.00	2.0	100		V.6.7		1.4	£.V	06	0.01	~ 10	0.71	001		0.01	1.1	VI.V	~~		-20		0.00				•	

EVEREST MINES & MINERALS

ICP CERTIFICATE OF ANALYSIS AK 97-542

ECO-TECH LABORATORIES LTD.

Sr TI% U V W Y Zn BICa% Cd Co Cr Cu Fe % La Mg % Mn Mo Na % Nł P Pb Sb Sn Ba Tag # Au(ppb) Ag Al% As: Et#. 142 17 0.03 <10 <10 <1 16 <5 <20 280 0.02 27 1230 131 45 5 0.38 2 34 48 56 8.52 <10 0.97 851 7 13N + 175 E <5 1.0 2.48 205 12 <5 <20 8 0.02 <10 213 <10 <1 76 10 41 23 5.48 <10 0.55 410 4 0.02 12 810 <5 240 5 0.24 <1 132 13N + 200 E <5 <0.2 2.03 <10 4 277 33 0.23 <10 209 91 23 354 8.62 <10 1.00 1229 <1 0.01 20 790 36 <5 <20 0.4 3.20 20 190 <5 0.80 2 133 L3N + 225 E <5 <10 <1 137 20 0.05 <10 137 652 5 0.03 28 420 18 <5 <20 219 6.07 <10 0.80 L3N + 250 E <5 0.6 3.24 10 235 <5 0.44 1 30 26 134 2 107 40 0.02 <10 125 <10 399 5.60 677 5 0.02 22 1520 20 <5 <20 25 <10 0.68 1.2 4.21 5 360 <5 1.04 1 26 135 L3N + 275 E <5 149 <5 <20 14 0.25 <10 188 <10 <1 21 4040 22 21 31 124 8.07 <10 0.52 428 <1 0.01 120 10 0.16 1 136 L3N + 300 E <5 <0.2 3.83 <5 60 15 0.17 <10 230 <10 <1 16 1320 14 <5 <20 0.22 <1 17 26 102 7.29 <10 0.73 283 <1 0.02 <5 <0.2 3.10 <5 105 <5 137 L3N + 325 E 13 0.08 <10 158 <10 <1 68 15 1230 16 <5 <20 <10 0.57 263 2 0.01 13 26 87 6.05 138 L3N + 350 E <5 <0.2 2.97 5 95 <5 0.15 <1 16 0.09 <10 34 114 <10 <1 24 3.01 <10 0.15 199 <1 <0.01 6 540 20 <5 <20 <5 0.16 <1 6 18 L3N + 375 E <5 <0.2 1.34 <5 75 139 <10 207 <10 <1 82 17 1790 18 <5 <20 12 0.05 6 < 0.01 <5 <0.2 2.90 16 25 102 7.59 <10 .0.65 303 L3N + 400 E 10 135 <5 0.16 <1 140 164 <10 <1 36 16 0.16 <10 <10 0.21 <1 0.02 7 450 14 <5 <20 L3N + 425 E <5 <0.2 1.07 <5 100 5 0.30 <1 10 19 21 3.81 289 141 <10 <1 49 340 14 <5 <20 16 0.08 <10 131 0.41 232 2 0.01 11 <5 0.27 <1 11 23 59 3.88 <10 L3N + 450 E <0.2 1.41 <5 110 142 10 <1 48 61 0.16 <10 219 <10 14 870 18 <5 <20 100 <5 0.36 <1 27 18 128 5.27 <10 0.84 421 <1 < 0.01 L3N + 475 E <5 <0.2 2.78 10 143 <10 <1 81 12 2950 16 <5 <20 21 0.11 <10 198 402 2 0.01 10 0.22 <1 17 23 51 6.35 <10 0.53 144 L3N + 500 E 15 < 0.2 2.61 <5 95 81 13 0.10 <10 170 <10 <1 354 3 0.02 14 890 20 <5 <20 <5 <0.2 2.10 10 0.26 14 34 26 5.82 <10 0.55 5 145 1 145 L3S + 025 W 13 0.07 <10 99 <10 <1 61 0.36 2 0.01 10 400 12 <5 <20 19 3.72 <10 238 L3S + 050 W 10 < 0.2 1.39 <5 85 5 0.22 <1 9 20 146 <10 <1 56 16 0.09 <10 102 380 12 <5 <20 8 19 17 3.34 <10 0.37 212 <1 0.01 10 L3S + 075 W <5 <0.2 1.31 <5 100 5 0.24 <1 147 57 25 0.04 <10 67 <10 4 <1 0.01 11 250 14 <5 <20 24 2.63 320 <5 170 <5 0.41 <1 8 18 <10 0.39 148 L3S + 100 W 80 < 0.2 1.51 79 <10 7 21 0.05 <10 82 <10 0.52 464 2 0.01 13 480 14 <5 <20 170 <5 0.32 <1 11 23 31 3.55 L3S + 125 W <5 <0.2 1.84 <5 149 <10 <1 32 <5 <20 6 0.04 <10 51 310 <10 0.12 1 < 0.01 5 4 <0.2 0.50 <5 60 <5 0.16 <1 3 11 6 1.75 94 150 L3S + 150 W <5 35 <1 <5 16 0.03 <10 66 <10 250 <20 <5 0.23 16 16 2.15 <10 0.18 217 1 < 0.01 5 8 151 L3S + 175 W <5 <0.2 0.80 <5 140 <1 5 72 10 <20 45 0.02 <10 87 <10 24 18 630 14 13 27 67 3.84 <10 0.74 923 2 0.03 0.83 152 L3S + 200 W <5 0.2 2.58 <5 240 <5 1 57 24 0.07 <10 67 <10 4 8 21 24 2.58 <10 0.57 265 <1 0.01 11 230 10 <5 <20 <5 125 <5 0.42 <1 L3S + 225 W <5 <0.2 1.41 153 20 0.04 <10 68 <10 <1 77 <5 <20 2 0.01 7 810 10 <10 0.28 407 <5 <0.2 1.16 <5 145 <5 0.37 <t 7 15 11 2.92 154 L3S + 250 W <10 9 101 87 3 0.01 15 820 18 <5 <20 24 0.02 <10 <10 0.50 465 <5 <0.2 2.30 5 375 <5 0.40 <1 8 23 29 3.83 L3S + 275 W 155 96 28 0.02 <10 84 <10 4 600 16 <5 <20 40 3.78 <10 0.61 610 3 0.01 16 0.39 10 24 158 L3S + 300 W <5 <0.2 2.32 <5 255 5 <1 43 22 0.04 <10 63 <10 5 <5 <20 5 14 15 2.58 <10 0.24 199 2 0.01 7 410 14 <5 180 5 0.31 <1 L3S + 325 W <5 <0.2 1.20 157 37 0.01 <10 78 <10 27 66 20 <5 <20 15 760 <10 0.46 421 4 0.01 <0.2 2.55 <5 300 <5 0.62 <1 9 21 44 3.61 158 L3S + 350 W <5 123 94 <10 54 33 1130 36 5 <20 75 < 0.01 < 10 950 6 0.03 10 640 <5 1.50 3 15 35 91 5.45 10 1.01 15.8 4.63 159 L3S + 375 W <5 <10 <1 286 126 17 0.06 <10 17 0.01 30 670 96 <5 <20 125 <5 0.39 1 116 24 3880 >10 <10 0.83 1200 6.6 2.87 530 160 L3S BL 00 E 670 6 0.37 <10 67 325 <10 <1 <10 0.54 176 <1 <0.01 7 390 10 <5 <20 32 12 105 5.60 >1000 < 0.2 1.01 45 45 5 0.12 <1 161 L3S + 025 E 14 0.09 <10 109 <10 <1 87 20 <5 <20 270 288 <10 0.73 383 3 0.01 24 2.70 75 115 <5 0.27 <1 17 32 4.85 L3S + 050 E <5 <0.2 162 57 62 <10 <1 5 < 0.01 5 290 12 <5 <20 4 0.01 <10 97 30 65 <5 0.14 <1 8 9 70 3.12 <10 0.36 L3S + 075 E <5 0.4 1.67 163 174 28 0.07 <10 201 <10 <1 10 0.01 13 650 18 <5 <20 >1000 45 215 <5 1.00 4 29 18 454 >10 <10 0.95 663 1.4 2.19 164 L3S + 100 E <10 <1 232 <5 <20 21 0.04 <10 132 5 0.01 11 470 46 2 60 5.35 <10 0.38 358 170 <5 0.47 13 26 165 L3S + 125 E 30 0.2 1.85 105

ECO-TECH LABORATORIES LTD.

ICP CERTIFICATE OF ANALYSIS AK 97-542

EVERES	T MINES & MINER	ALS								IC	P CE	RTIFIC	ATE OF	= ANAL	YSIS /	AK 97-!	542								:00-11		ABORO	IURE	3 L H	<i>.</i>
Ft #	Taci #	Au(onb)	Aα	Al %	As	Ba	BI	Ca %	Cđ	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	TI %	U	<u>v</u>	w	Y	Zn
168	135 + 150 F	50	<02	2.55	5	120	<5	0.24	<1	13	25	84	4.43	<10	0.55	335	3	0.01	18	560	18	<5	<20	16	0.05	<10	100	<10 /	<1	99
167	13S + 175 E	<5	<0.2	1.15	5	85	<5	0.52	<1	14	20	94	3.77	<10	0.19	149	1	0.01	8	290	14	<5	<20	18	80.0	<10	128	<10	<1	56
164	L3S + 200 E	<5	<0.2	2.55	20	185	<5	0.80	<1	18	34	120	5.87	<10	0.58	312	<1	0.01	22	470	26	<5	<20	24	0.16	<10	126	<10	<1	141
169	13S + 225 E	30	<0.2	1.41	5	165	5	0.53	<1	12	24	33	4.27	<10	0.44	440	3	0.01	11	680	14	<5	<20	20	0.07	<10	113	<10	<1	89
170	L3S + 250 E	65	0.2	1.70	15	110	5	0.15	<1	12	27	44	5.40	<10	0.37	368	3	0.01	12	1110	14	<5	<20	8	0.07	<10	136	<10	<1	63
171	L3S + 275 E	<5	<0.2	2.94	15	115	10	0.17	<1	13	33	28	6.90	<10	0.51	441	5	0.01	12	3440	20	<5	<20	8	0.08	<10	140	<10	<1	156
172	L3S + 300 E	<5	<0.2	1.74	20	130	10	0.28	1	14	30	31	6.28	<10	0.48	407	2	0.01	10	1930	18	<5	<20	14	0.14	<10	169	<10	<1	
173	L3S + 325 E	<5	<0.2	1.61	<5	135	5	0.22	<1	11	27	18	4.48	<10	0.31	372	<1	0.01	10	1060	14	<5	<20	12	0.14	<10	136	<10	<1	73
174	L3S + 350 E	<5	<0.2	1.71	10	115	5	0.22	<1	12	27	24	4.76	<10	0.35	674	2	0.01	10	1280	16	<5	<20	12	0.08	<10	129	<10	<1	60
175	L3S + 375 E	<5	<0.2	2.78	15	125	10	0.20	<1	14	34	32	6.84	<10	0.53	450	4	0.01	15	1800	22	<5	<20	11	0.07	<10	154	<10	<1	115
170	100 × 400 E	~ 5	×0.2	2 83	20	210	10	0.23	<1	19	45	68	8.11	<10	0.89	424	4	0.01	25	1770	26	<5	<20	13	0.09	<10	158	<10	<1	1 61
170	136 + 400 E	80	<0.2	2.60	20	120	<5	0.38	<1	22	37	113	5.32	<10	0.98	477	2	0.02	25	1110	18	<5	<20	17	0.09	<10	117	<10	<1	98
470	138 + 450 E	195	0.2	1.51	15	285	5	0.69	i.	11	27	52	4.37	<10	0.27	37.1	3	0.01	10	1090	20	<5	<20	30	0.03	<10	103	<10	<1	171
170	128 + 475 E	<5	<0.2	3 18	10	205	5	0.34	<1	14	31	40	7.18	<10	0.50	462	6	0.01	14	5110	20	<5	<20	14	0.02	<10	128	<10	<1	129
100	138 + 500 6	-5	14	3.07	<5	180	5	0.31	1	20	51	177	7.11	<10	0.97	588	2	0.01	- 24	1810	20	<5	<20	16	0.14	<10	178	<10	<1	215
100	103 + 000 L	-0	0.4	0.01			Ū		•																					
181	L4N + 025 W	<5	0.8	3.47	25	360	<5	1.38	3	15	29	204	5.12	10	0.65	1047	4	0.01	25	770	24	<5	<20	40	0.01	<10	92	<10	51	257
182	L4N + 050 W	15	<0.2	1.94	10	265	<5	0.60	<1	11	23	- 33	3.95	<10	0.60	374	3	0.01	13	340	18	<5	<20	21	0.03	<10	87	<10	12	13/
183	L4N + 075 W	<5	0.2	1.59	<5	255	<5	0.93	<1	9	17	39	3.08	<10	0.39	403	2	0.01	11	400	18	<5	<20	32	0.03	<10	68	<10	10	102
184	L4N + 125 W	<5	1.0	3.42	15	535	<5	1.66	4	14	29	131	5.09	-10	0.79	1520	4	0.01	27	1040	24	<5	<20	51	0.02	<10	89	<10	52	147
185	L4N + 175 W	<5	<0.2	2.52	<5	445	<5	1.48	2	13	25	51	4.04	<10	0.67	827	3	0.01	21	650	18	5	<20	53	0.02	<10	84	<10	15	128
																						_						-10	-	60
186	L4N + 200 W	<5	<0.2	1.62	<5	160	5	0.26	<1	7	17	17	2.82	<10	0.48	267	2	0.01	13	420	14	<5	<20	19	0.03	<10	64	<10	2	09
187	L4N + 225 W	<5	<0.2	1.98	5	150	<5	0.17	<1	9	20	22	3.54	<10	0.48	533	4	0.01	14	610	18	<5	<20	15	0.02	<10	80	<10		70
188	L4N + 250 W	<5	<0.2	2.27	5	120	10	0.37	<1	14	26	45	4.35	<10	0.6B	451	3	0.01	18	740	18	<5	<20	25	0.08	<10	90	< 10		10 E0
169	L4N + 275 W	<5	<0.2	1.68	<5	90	5	0.25	<1	11	23	29	3.75	<10	0.50	276	1	0.01	13	410	14	<5	<20	18	0.06	<10	93	<10		09 60
190	L4N + 300 W	<5	<0.2	1.88	<5	110	<5	0.21	<1	10	24	29	3.74	<10	0.44	238	2	0.01	11	560	14	<5	<20	15	0.07	<10	94	<10	~1	. 00
101	14N ± 325 W	<5	<11.2	2 15	<5	145	<5	0.23	<1	10	22	28	3.56	<10	0.57	324	3	0.01	15	600	16	5	<20	15	0.04	<10	81	<10	<1	77
102	LAN + 350 W		<0.2	1 57	<5	120	<5	0.18	<1	10	22	18	3.32	<10	0.49	400	1	0.01	16	520	16	<5	<20	14	0.04	<10	66	<10	<1	66
192	LAN + 376 W		<0.2	1.55	<5	125	<5	0.18	<1	9	21	19	3.20	<10	0.47	391	2	0.01	17	530	16	<5	<20	- 14	0.04	<10	64	<10	1	65
193	L4N 7 373 W	5	0.2	1.00	5	470	<5	1 02	i.	12	28	54	4.36	<10	0.64	1147	3	0.01	25	950	22	<5	<20	57	0.01	<10	79	<10	23	124
194	L4N + 400 W		<0.7	1 05	5	190	<5	0.40	<1	8	19	21	3.40	<10	0.53	395	3	0.01	15	550	16	<5	<20	27	0.02	<10	69	<10	4	77
195	L4N + 425 W	~5	-0.2	1.00		150		0.10	•	Ũ											~~			~	0.01	10	74	~10	g	82
196	L4N + 450 W	/ <5	<0.2	2.04	5	180	<5	0.30	<1	12	23	34	3.80	<10	0.61	615	2	0.01	21	420	20	<	<20	21	0.03	SIU 210	71	<10	0 #	90
197	L4N + 475 W	/ <5	<0.2	2.32	5	275	<5	0.40	<1	13	27	41	4.14	<10	0.67	708	3	0.01	21	560	20	<	<20	29	0.02	240	74	210	- 4	60
198	L4N + 000 E	<5	<0.2	1.40	<5	115	<5	0.13	<1	6	15	15	2.85	<10	0.27	332	3	0.01	8	430	18	<	20	10	0.03	- <u>>10</u> : ∠40	74	~10	24	00 85
199	L4N + 025 E	<5	<0.2	1.14	<5	90	<5	0.11	<1	6	15	10	2.66	<10	0.22	175	<1	0.01	6	360	14	<	> <20	9	0.03	· 510	/4 60	~10	21	00 88
200	L4N + 050 E	<5	<0.2	1.32	<5	85	5	0.16	<1	8	17	13	4.00	<10	0.25	204	2	0.01	7	800	18	<	<20	11	0.07	<10	90	~10	~1	00

EVEREST MINES & MINERALS

ICP CERTIFICATE OF ANALYSIS AK 97-542

ECO-TECH LABORATORIES LTD.

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bl	Ca %	Cđ	Co	Cr	Cu	Fe %	La	<u>Mg %</u>	Mn	Mo	Na %	NI	P	Pb	Sb	Sn	Sr	TI %	U	v	w	Y	Zn
201	L4N + 075 E	<5	<0.2	2.08	30	165	<5	0.26	1	45	26	117	5.25	<10	0.95	740	1	0.01	32	480	24	<5	<20	19	0.07	<10	97	<10	3	159
202	L4N + 100 E	<5	<0.2	2.67	15	195	<5	0.23	<1	12	24	34	4.26	<10	0.64	407	3	0.01	20	570	24	<5	<20	14	0.04	<10	83	<10	3	134
203	L4N + 125 E	<5	<0.2	2.43	10	345	<5	1.03	1	15	28	50	4.75	<10	0.79	1132	4	0.01	22	520	22	5	<20	27	0.03	<10	95	<10	21	134
204	L4N + 150 E	<5	<0.2	1.60	<5	125	<5	0.21	<1	9	21	23	3.78	<10	0.47	255	2	0.01	12	370	14	<5	<20	15	0.05	<10	89	<10	<1	64
205	1.4N + 175 E	<5	<0.2	1.00	5	105	<5	0.10	<1	5	15	9	2.67	<10	0.09	117	1	0.01	4	460	14	<5	<20	8	0.06	<10	80	<10	<1	39
																						-		•					·	
208	L4N + 200 E	<5	0.4	2.72	15	220	<5	0.27	1	15	24	52	4.49	<10	0.68	388	4	0.01	24	550	22	10	<20	15	0.05	<10	91	<10	<1	148
207	L4N + 225 E	<5	<0.2	1.67	<5	145	<5	0.20	<1	9	21	22	4.53	<10	0.40	203	3	0.01	11	270	12	<5	<20	13	0.06	<10	133	<10	<1	60
208	L4N + 250 E	<5	<0.2	2.54	5	115	<5	0.14	<1	20	26	155	5.29	<10	0.60	446	Ă	0.01	21	720	22	<5	<20	12	0.00	<10	120	<10	<1	108
209	L4N + 275 E	<5	<0.2	2.69	<5	115	5	0.11	<1	13	28	54	5.29	<10	0.52	279	4	0.01	15	830	20	<5	<20	9	0.00	<10	122	<10	<1	98
210	L4N + 300 E	<5	<0.2	5.23	75	165	10	0.07	<1	60	28	123	>10	<10	0.73	519	9	<0.01	18	3360	34	<5	<20	3	0.04	<10	246	<10	<1	130
															0.1.0	0.0	v	-0.01	10	0000			-20	v	0.01	-10	240	-10	- •	100
211	L4N + 325 E	5	<0.2	2.78	<5	240	10	0.15	1	8	19	30	4.99	<10	0.23	169	4	<0.01	10	690	36	<5	<20	10	0.04	<10	112	<10	1	99
212	L4N + 350 E	5	<0.2	2.90	<5	185	20	0.26	2	20	34	56	8.71	<10	0.73	568	4	0.01	19	2790	20	<5	<20	14	0.12	<10	249	<10	<1	148
213	L4N + 375 E	5	<0.2	0.90	<5	90	10	0.24	1	12	20	23	4.19	<10	0.13	276	<1	<0.01	9	620	10	<5	<20	to	0.11	<10	141	<10	<1	42
214	L4N + 400 E	10	<0.2	2.89	<5	240	10	0.19	2	15	28	53	6.07	<10	0.65	688	Ŕ	0.01	18	750	28	<5	<20	13	0.04	<10	167	<10	<1	130
215	L4N + 425 E	5	<0.2	1.08	<5	130	<5	0.26	<1	8	16	20	4.03	<10	0.16	173	ž	<0.01	7	470	14	<5	<20	15	0.04	<10	143	<10	<1	53
	-	-			_		+			•							-	0.01	•		• •		-20		0.00	10	1-0	-10		00
216	L4N + 450 E	5	<0.2	2.59	5	190	15	0.16	1	17	25	38	6.94	<10	0.60	370	4	0.01	14	760	24	<5	<20	10	0.11	<10	211	<10	<1	104
217	L4N + 475 E	15	0.4	1.29	<5	210	<5	0.34	<1	5	16	36	2.97	<10	0.21	305	2	0.01	7	510	20	<5	<20	20	0.04	<10		<10	<1	55
218	L4N + 500 E	10	<0.2	2.66	<5	120	<5	0.19	<1	12	28	40	5.34	<10	0.65	348	4	0.01	16	1090	18	<5	<20	12	0.05	<10	112	<10	<1	90
219	L4S + 000	5	0.4	1.83	30	200	<5	0.86	2	16	20	129	3.72	<10	0.57	988	3	0.01	15	450	20	5	<20	22	0.00	<10	77	<10	я	111
220	L4S + 050 W	10	<0.2	1.14	5	145	<5	0.53	1	9	21	28	3 14	<10	0.33	491	<1	0.01	11	230	18	<5	<20	10	nna	<10	88	<10	Ť	70
					-		-		•	-					0.00		.,	0.01	••	1,00		·V	-24	15	0.00	-10	00	~10	ſ	
221	L4S + 125 W	5	<0.2	2.36	<5	255	<5	0.97	<1	15	28	59	4.23	<10	0.67	786	3	0.01	18	510	16	<5	<20	32	0.04	<10	93	<10	12	118
222	L4S + 150 W	5	<0.2	2.24	<5	245	5	1.02	1	14	32	41	4.73	<10	0.50	731	3	0.01	17	490	22	<5	<20	28	0.03	<10	108	<10	<1	162
223	L45 + 175 W	5	0.6	4.12	10	475	<5	2.10	1	16	36	185	5.52	10	0.97	1359	5	0.01	32	1070	28	10	<20	48	0.00	<10	101	<10	20	127
224	L4S + 250 W	5	<0.2	0.93	<5	95	<5	0.21	<1	6	15	g	2.72	<10	0.18	140	Ť	0.01	5	260	12	<5	<20	11	0.05	<10	78	<10	<1	63
225	L4S + 275 W	5	<0.2	1.30	<5	170	5	0.21	<1	7	f6	14	3.48	<10	0.24	228	3	0.01	Ř	450	16	<5	<20	12	0.03	<10	83	<10	4	66
		-			-		•			•		• •	0.10			220	Ū	0.01	Ū	100			-20		0.00	-10		-10	-	00
226	L4S + 300 W	10	0.2	3.81	<5	495	<5	1.16	1	15	30	74	5.29	20	0.80	1349	5	0.01	25	920	28	<5	<20	36	0.01	<10	99	<10	43	118
227	L4S + 325 W	10	<0.2	2.56	10	330	<5	0.83	<1	13	30	58	4.33	<10	0.79	670	3	0.01	21	550	20	<5	<20	28	0.01	<10	92	<10	22	102
228	L4S + 350 W	5	<0.2	2.43	<5	325	<5	1 13	2	12	28	65	4 30	<10	0.72	675	จั	0.01	20	680	18	<5	<20	16	0.04	<10	80	<10	21	107
229	14S + 025 E	10	0.2	2.52	30	235	<5	0.88	2	15	28	225	4 27	<10	0.68	1228	Å	0.01	20	650	22	-5	<20	28	0.04	~10	97	<10	17	115
230	14S + 050 E	65	18	2 35	35	255	<5	1 01	2	25	22	815	5.27	<10	1 00	1410	1	0.01	20	670	22	40	~20	20	0.04	~10	07	~10	37	197
200	240 · 000 · 2		1.0	2.00	55	200	-0	1.00	4	20	00	015	0.4.1	•10	1.00	(415	3	0.02	50	570	24	10	~20	JZ	0.10	~10	92	~10	31	121
231	14S + 100 E	5	<0.2	0.80	<5	80	<5	0.20	<1	5	12	15	2.05	<10	0 14	214	د1	0.01	A	200	14	~5	<20	13	0.00	<10	85	~10	2	31
232	14S + 125 E	30	<0.2	1 29	<5	120	10	0.24	<1	Ř	18	17	3.65	<10	0.17	220	2	0.01	à	300	14 14	~5	<20	18	0.00	<10	RR	<10	-1	53
233	L4S + 150 F	10	<0.2	2.19	10	175	5	0.41	<1	14	25	38	4.52	<10	0.50	1181	2	0.01	17	1320	20		<20	10	0.00	<10	<u>pa</u>	<10	21	114
234	L4S + 175 E	10	<0.2	0.89	10	80	5	0.28	<1	5	15	17	2 77	<10	0.15	127	2	0.01	Â	270	18	~5	<20	17	0.00	<10	00	<10	21	42
235	14S + 200 E	, v R	<0.2	1.52	<5	115	10	0.37	<1	ă	20	16	3 78	<10	0.50	217	2	0.01	0	530	14	-5	<20	14	0.00	~10	109	~10	21	100
	1.0 · 600 · 6							0.01			20	1.4	0.10	- 10	9.00	a 10	4	0.01	3	000	10	-0	~ E.U	1.4	0.00	~ IV	r v o	~10	- 1	100

en én én én eti eti eti eti

EVEREST MINES & MINERALS

ICP CERTIFICATE OF ANALYSIS AK 97-542

ECO-TECH LABORATORIES LTD.

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	NI	P	Pb	Sb	Sn	Sr	TE%	U	v	w	Y	Zn
236	L4S + 225 E	5	<0.2	1.81	<5	90	<5	0.13	<1	9	22	28	4.24	<10	0.29	192	3	0.01	8	850	14	<5	<20	11	0.05	<10	100	<10	<1	71
237	L4S + 250 E	: 40	<0.2	1.84	10	135	5	0.20	1	13	30	24	5.85	<10	0.37	597	3	0.01	10	1550	18	<5	<20	12	0.09	<10	15B	<10		RA
238	L4S + 275 E	50	<0.2	2.52	15	170	<5	0.36	1	16	34	96	5.79	<10	0.77	454	4	0.01	18	1540	18	<5	<20	20	0.08	<10	123	<10	et.	73
239	L4S + 300 E	60	<0.2	2.28	30	120	15	0.21	<1	13	36	22	7.00	<10	0.47	350	4	0.01	13	1940	22	<5	<20	10	0.00	<10	165	<10	-1	04
240	L4S + 325 E	110	<0.2	2.05	<5	120	10	0.19	<1	12	28	22	5.29	<10	0.50	377	Í	0.01	12	1840	18	~5	<20	ä	0.11	210	140	~10		60
													0.20		0.00	0/1	•	0.01	12	1040	10		-20	9	0.11	~10	140	10	~1	00
241	L4S + 350 E	5	<0.2	2.33	<5	115	5	0.14	<1	10	25	25	5 84	<10	0.40	330	5	0.01	11	1480	16	-5	~20	44	0.05	~10	120	~10	-1	04
242	L4S + 375 E	5	<0.2	0.82	<5	160	<5	0.24	<1	5	22	18	2 27	<10	0.40	104	2	0.01		320	0	~5	~20	40	0.05	~10	130	<10		99
243	L4S + 425 E	5	<0.2	2.69	10	170	5	0.27	1	18	38	70	5.65	<10	0.10	443	2	0.01	21	600	19	~0	~20	10	0.04	~10	141	<10	51	420
244	L4S + 450 E	10	<0.2	1.66	<5	145	10	0.40	<1	13	40	42	139	~10	0.64	270	-1	0.01	14	470	10	<0 ∠£	~20	40	0.10	<10 	141	<10	<1 .4	128
245	L4S + 475 E	5	<0.2	2 19	<5	220	10	0.51	<1	13	21	32	7 77	~10	0.04	022	~1	0.02	40	970	40	<0 ~E	<20	10	0.15	<1U	104	<10	~1	- 71
				2.10	••	~~~		0.01	- 1	10	51	JŁ	1.22	10	V.47	924	5	0.01	13	2390	10	~ 0	<20	10	0.07	<10	173	<1Ų	<1	100
246	L4S + 500 E	<5	<0.2	2.75	<5	125	10	0.19	2	15	42	32	R 10	c10	0.47	509		0.04	12	1500	10	~5	-20	44	0.00	-10	4 4 7	-40		
247	L5N + 000 W	/ <5	<0.2	1 80	<5	165	fn	0.10	1	2	10	32	4.01	~10	0.47	310	4	0.01	13	1090	10	- 0	<20	11	0.09	<10	147	<10	<1	92
248	L5N + 025 W	/ <5	<0.2	1 47	<5	210	<5	0.00	<1	10	17	15	3.64	~10	0.34	210	4	0.01	40	290	22	50	<20	20	0.02	<10	87	<10	<1	101
249	1.5N + 150 W	,	<0.2	1 44	< 6	105	5	0.00	-1	7	47	10	0.01	~10	0.42	300		0.01	10	340	10	<0	<20	41	0.03	<10	82	<10	<1	133
250	15N + 175 W	, I <5	<0.2	2.05	-5	200	~5	0.20	-1	`	11	10	2.00	>10	0.42	231	4	0.01	11	410	14	<5	<20	15	0.05	<10	75	<10	1	60
400	2011 110 11	-0	·U.2	2.00	-0	200	-0	0.57		9	23	23	3.37	<10	0.56	511	3	0.01	16	430	16	<5	<20	26	0.02	<10	75	<10	<1	72
251	15N + 250 W	/ F	-0.2	1.04	-5	170	~E	0.00	4	7	10	20	0.70	-10	0.40	0.40									•				_	
252	15N + 275 W		-0.2 n 3	1.84	10	975	~0	0.22	-1		20	20	2.70	<10	0.49	248	2	0.01	14	410	14	<5	<20	17	0.02	<10	63	<10	5	77
252	15N - 200 W	/ J	-0.2	1.40		400	<0 <6	0.23			29	33	4.02	<10	0.58	5/1	5	0.01	22	630	22	<5	<20	22	0.01	<10	86	<10	2	83
255	LON + 300 W		~0.2	1.40	<0 ~#	120	~0 .e	0.19	~!	5	15	12	1.86	<10	0.27	193	1	0.01	6	290	14	<5	<20	16	0.02	<10	53	<10	3	36
257	15M + 325 W	/ ~j	~0.2	1.02	<0	130	~0 .F	0.23	4	9	21	22	3.03	<10	0.56	355	1	0.01	13	340	12	<5	<20	19	0.05	<10	74	<10	<1	57
200	CON + 319 44	5	0.2	1.00	<0	160	<0	0.20	5		18	25	2.52	<10	0.44	337	2	0.01	12	390	10	<5	<20	22	0.02	<10	60	<10	2	66
250			-0.0	4 67		400				-																				
200		< 5	<0.2	1.57	<0	180	<5	0.23	<1		18	17	2.70	<10	0.46	314	2	0.01	12	330	12	<5	<20	20	0.02	<10	63	<10	3	61
237	LOIN + 450 VV	<5	0.4	3.30	5	425	<5	0.35	2	10	25	49	4.62	<10	0.56	1009	5	0.01	19	1510	20	<5	<20	28	0.01	<10	84	<10	19	124
200	LON + 4/5 W	<5	<0.2	1.77	<5	180	5	0.20	<1	7	20	20	2.95	<10	0.40	358	2	0.01	14	480	12	<5	<20	17	0.02	<10	64	<10	4	64
209	L5N + 075 E	<5	0.4	2.46	5	485	<5	1.22	3	11	23	177	3.99	10	0.52	661	4	0.01	18	540	22	<5	<20	39	0.01	<10	86	<10	27	151
260	L5N + 100 E	<5	<0.2	2.22	5	160	<5	0.26	<1	13	25	101	5.04	<10	0.59	439	4	0.01	21	330	22	<5	<20	15	0.05	<10	109	<10	<1	121
	1.001.000	_			_		_																							
261	L5N + 125 E	5	0.4	1.90	5	235	<5	0.41	1	10	23	174	4.98	<10	0.42	371	3	0.01	16	440	20	<5	<20	17	0.05	<10	139	<10	<1	110
262	L5N + 150 E	<5	0.4	0.96	<5	175	<5	0.26	<1	6	14	39	3.03	<10	0.10	125	2	0.01	6	260	14	<5	<20	13	0.05	<10	94	<10	<1	45
263	L5N + 175 E	<5	<0.2	1.94	<5	130	10	0.38	<1	12	22	59	5.29	<10	0.47	268	- 4	0.01	13	370	18	<5	<20	16	0.08	<10	147	<10	<1	105
264	L5N + 200 E	<5	<0.2	1.32	<5	205	<5	0.26	<1	7	19	28	3.93	<10	0.17	179	3	0.01	8	480	18	<5	<20	13	0.06	<10	112	<10	<1	62
265	L5N + 225 E	40	<0.2	1.33	<5	120	<5	0.42	<1	28	22	102	4.95	<10	0.31	363	2	0.01	11	560	12	<5	<20	28	0,10	<10	166	<10	<1	72
266	L5N + 250 E	5	<0.2	1.25	<5	130	5	0.38	<1	7	15	15	3.60	<10	0.19	147	2	<0.01	6	270	12	<5	<20	14	0.05	<10	148	<10	<†	37
267	L5N + 275 E	25	<0.2	2.20	<5	230	5	0.90	1	23	22	115	7.67	<10	0.38	323	4	0.01	10	550	18	<5	<20	27	0.08	<10	343	<10	<1	73
268	L5N + 300 E	5	<0.2	2.19	<5	210	<5	0.19	<1	8	20	35	3.85	<10	0.44	331	3	0.01	11	460	20	<5	<20	16	0.04	<10	108	<10	<1	65
269	L5N + 325 E	<5	<0.2	1.73	<5	95	5	0.13	<1	10	23	19	5.49	<10	0.33	266	3	0.01	10	670	16	<5	<20	10	0.10	<10	123	<10	<1	71
270	L5N + 350 E	<5	0.6	3.25	<5	500	<5	1.08	<1	12	28	150	4.82	30	0.65	2212	6	0.01	22	810	22	5	<20	38	0.02	<10	89	<10	51	130

EVEREST MINES & MINERALS

ICP CERTIFICATE OF ANALYSIS AK 97-542

ECO-TECH LABORATORIES LTD.

Et #.	Tag #	Au(ppb)	Ag	Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	NI	P	Pb	Sb	Sn	Sr	TI %	U	v	w	Y	Zn
271	L5N + 375 E	<5	0.2	1.83	<5	285	5	0.73	<1	10	17	36	3.39	<10	0.48	1147	4	0.01	13	400	18	5	<20	29	0.02	<10	71	<10	Â	84
272	L5N + 400 E	<5	<0.2	2.14	<5	160	10	0.18	<1	11	24	35	4.17	<10	0.58	362	3	0.01	15	460	18	<5	<20	12	0.02	<10	08	<10	-1	88
273	L5N + 425 E	<5	<0.2	1.42	<5	100	<5	0.12	<1	5	15	20	2 47	<10	0.31	156	ž	0.01	7	410	12	~5	~20	10	0.00	<10	65	~10	-4	42
274	L5N + 450 E	<5	<0.2	1.64	<5	105	<5	0.17	<1	ò	10	22	3 62	~10	0.57	337	2	0.01	12	210	14	10	~20	40	0.03	~10	00	~10	24	42
275	L5N + 475 E	<5	<0.2	2.00	5	120	5	0.15	1	ŧŇ	24	24	2 80	~10	0.52	249	3	0.01	44	010	19	10	<20	10	0.05	510	93	< 10	51	00
			-0,1	2.00	Ŭ	120	5	0.15	•	.0	~ 1	2.4	3.09	10	0.55	312	3	0.01	14	610	10	0	<20	12	0.04	<10	80	<10	<1	80
278	L5N + 500 E	<5	0.2	1.48	<5	135	<5	0.16	<1	5	13	17	2 41	<10	0.32	193	2	0.01	q	520	14	<5	<20	14	0.02	~10	55	<10	4	47
277	L5S + 000	<5	0.2	1.20	<5	215	<5	0.54	<1	7	15	19	2 53	<10	0.38	476	2	0.01	Å	350	12	10	<20	24	0.02	<10	50	~10		67
278	L5S + 025 W	<5	1.6	3.21	10	465	<5	2.32	2	15	24	108	4 23	20	0.61	1632	- E	0.01	24	1070	20	10	~20	51	0.03	~10		~10	3 80	448
279	L5S + 050 W	5	<0.2	1.67	<5	145	<5	0.30	<1	, o	22	22	A A7	~10	0.42	280	3	0.01	12	200	10	10	~20	- 10	0.01	<10		<10	00	110
280	L5S + 075 W	5	04	3.04	<5	375	<5	П 98	<1	16	21	78	5.24	<10	0.42	1970		0.01	24	390	10	40	~20	10	0.05	510	91	<10	51	88
		•	0,1	0.04	-0	010	-0	0.00		10	31	70	J.J1	×10	0.05	1910	5	0.01	24	620	20	10	<20	35	0.01	<10	100	<10	Ģ	131
281	L5S + 100 W	<5	<0.2	1.04	<5	105	<5	0.25	<1	7	18	12	3.21	<10	0.28	191	2	0.01	9	500	12	5	<20	11	0.05	<10	89	<10	<1	62
282	L5S + 125 W	<5	<0.2	1.39	<5	140	5	0.25	<1	10	25	18	4.00	<10	0.54	283	2	0.01	13	730	12	<5	<20	11	0.05	<10	95	<10	<1	104
283	L5S + 150 W	10	0.4	2.00	<5	185	10	0.93	1	25	49	85	7.06	<10	0.80	832	5	0.03	19	1490	14	5	<20	31	0.06	<10	185	<10	<1	115
284	L5S + 175 W	20	<0.2	1.33	<5	190	<5	0.34	<1	5	18	27	2.58	<10	0.26	184	2	0.01	8	410	10	<5	<20	20	0.03	<10	68	<10	2	60
285	L5S + 200 W	<5	<0.2	1.61	<5	140	<5	0.32	<1	8	22	28	2.76	<10	0.55	258	2	0.01	15	320	14	10	<20	19	0.00	<10	85	<10	5	50
																	-	0.01		020	• •		-40		0.00	-10	. 00	~10	-	0.5
28 8	L5S + 225 W	<5	<0.2	1.02	<5	120	<5	0.51	<1	7	18	29	2.66	<10	0.33	199	2	0.01	8	190	10	<5	<20	20	0.05	<10	71	<10	<1	47
287	L5S + 275 W	<5	0.6	2.23	20	225	<5	1.20	1	19	28	168	4.53	<10	0.74	2049	8	0.01	23	580	16	10	<20	37	0.03	<10	90	<10	ġ	RA
288	L5S + 300 W	5	<0.2	2.31	10	230	<5	0.86	<1	15	32	116	4.34	<10	0.85	812	3	0.01	22	330	16	<5	<20	29	0.04	<10	RQ	<10	18	QQ
289	15S + 375 W	<5	<0.2	2.18	30	205	<5	0.72	<1	16	28	198	4 37	<10	0.73	574	4	0.01	24	410	18	10	<20	28	0.07	<10	00	~10	3	106
290	L5S + 100 E	<5	3.8	4.23	35	860	<5	2.84	4	19	34	236	5.91	30	0.74	5017	12	0.01	33	1390	19	-6	~20	20	0.02	~10	04	~10	104	100
							-		·		•	200	0.01	00	0,111	Q 011	12	0.01	55	1300	10	~0	~20	00	0.02	10	34	10	104	129
291	L5S + 125 E	<5	<0.2	1.76	25	120	10	0.28	<1	13	31	29	5.12	<10	0.65	267	2	0.01	14	1340	14	<5	<20	13	0.07	<10	108	<10	<1	87
292	L5S + 150 E	<5	<0.2	1.34	<5	120	5	0.20	<1	7	17	11	3.94	<10	0.25	195	2	0.01	B	850	18	<5	<20	12	0.07	<10	05	<10	-1	80
293	L5S + 175 E	<5	<0.2	0.90	10	125	10	0.19	<1	7	14	15	3.53	<10	0.15	152	2	<0.01	7	640	14	<5	<20	10	0.00	~10	08	<10	-1	51
294	L5S + 200 E	<5	1.4	4.66	50	410	<5	1.54	3	22	38	437	8 54	<10	1 00	2231	7	0.01	37	000	24	~5	~20	44	0.07	<10	110	<10	24	475
295	L5S + 225 E	<5	<11.2	0.88	10	95	5	0.21	<1	7	16	24	3 35	~10	0.14	147	,	<0.01		400	410	~0	~20	~~~	0.01	~10	404	~10	- 4	40
		-	•	0.00		••	~			•	.0	24	0.00	-10	0.14	147	2	-0.01	0	400	12	~5	~20	э	0.00	< 10	104	\$10	51	40
298	15S + 250 E	<5	0.2	1.44	5	115	5	0.19	<1	7	16	21	3.61	<10	0.26	283	2	<0.01	8	1000	18	~5	<20	14	0.04	~10	82	~10	-1	60
297	L5S + 275 E	10	0.2	1 37	<5	130	5	0.26	<1	8	17	32	3 37	~10	0.24	120	2	<0.01	10	260	4.4	~5	~20	40	0.04	~10	02	~10	24	60 60
298	15S + 300 E	<5	<0.2	1 27	<5	125	10	0.42	-1	Å	1.4	10	3 20	~10	0.44	140	2	~0.01		470	14	-0	~20	12	0.05	< 10 	34	<10		55
200	15S + 325 E	-6	~0.2	1 4 1	-5	05	~5	0.42	-1		40	10	3.23	~ (0	0.24	140	3	0.01		470	14	<0	<20		0.03	<10	78	<10	<1	40
300	168 ± 360 E	<5 <5	~0.2	1.99	-0	30	~0 e	0.11		40	10	17	4.37	<10	0.28	216	3	0.01	9	890	18	<5	<20	11	0.04	<10	102	<10	<1	83
300	L03 + 300 E	NO	~U.Z	1.02	ĨŲ	115	9	0.32	<1	10	23	33	4.99	<10	0.35	170	3	0.01	10	720	16	<5	<20	23	0.07	<10	132	<10	<1	66
301	L5S + 0375 E	<5	<0.2	1.22	<5	115	5	0.16	<1	6	17	13	3.71	<10	0.15	98	3	0.01	6	180	14	<5	<20	o	0.05	<10	102	<10	-1	52
302	15S + 450 E	10	<0.2	0.86	<5	90	<5	0.17	<1	4	11	8	1.93	<10	0.21	105	<1	0.01	5	350	12	<5	<20	10	0.05	<10	56	10	24	33
303	1.5S + 475 E	<5	<0.2	1.88	<5	200	5	0.52	<1	8	22	21	2.86	<10	0.64	380	2	0.01	12	210	16	10	~20	22	0.00	~10	76	~10		06
304	L5S + 500 F	<5	<0.2	1 82	5	160	5	0.57	<1	10	22	34	3.07	~10	0.04	469	2	0.01	16	200	10	10	~20	24	0.04	~10	70	~10	- 1	90
305	1100S + 025 W	170	0.6	2 35	385	165	5	0.10	1	35	70	262	5.07 510	~10	0.07	400	40	0.01	10	1420	10	10	<20	23	0.00	<10	61	<10	3	84
			0.0	2.00	000	100	0	0.10			14	3JC	~10	~10	0.00	303	10	0.01	10	1130	ZŲ	<5	<20	10	U. 15	20	280	<10	<1	ZU1

EVEREST MINES & MINERALS

ICP CERTIFICATE OF ANALYSIS AK 97-542

ECO-TECH LABORATORIES LTD.

Et #.	Tag #		Au(ppb)	Ag	A! %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	NI	Р	Pb	Sb	Sn	Sr	TI %	U	v	w	Y	7 11
306	L100S + 050	W	5	<0.2	3.23	20	235	10	0.72	<1	36	82	107	6.91	<10	1.73	1994	<1	0.02	28	820	16	15	<20	AR	0.34	<10	102	- 10		140
307	L100S + 075	W	275	0.2	4.02	955	120	<5	0.29	<1	84	94	574	>10	<10	1.71	901	18	0.02	32	1370	24	-6	~20	42	0.34	~10	200	~10		140
308	L100S + 100	W	5	<0.2	3.50	130	120	<5	0.37	<1	31	73	187	9.46	<10	1 42	452	2	0.01	28	700	18	~5	~20	20	0.23	~10	309	<10	24	100
309	L100S + 125	W	<5	<0.2	1.41	15	70	10	0.34	<1	11	29	30	4.58	<10	0.46	196	2	0.02	12	330	17	10	~20	20	0.19	~10	410	<10		109
310	L100S + 150	W	<5	<0.2	3.27	220	125	10	0.71	<1	28	106	34	9.64	<10	1.36	483	2 9	0.01	30	420	28	~5	~20	20	0.11	~10	130	<10		04 400
													•••	0.04	-10	1.00	400	Ŭ	0.01	53	-420	20	~0	~20	20	0.05	\$10	240	<10	<1	138
311	L100S + 175	w	155	<0.2	2.66	15	80	5	0.41	<1	19	55	52	4 94	<10	0.04	425	<1	0.01	20	500	10	10	~20	73	0 12	~10	120	-10	F	50
312	L100S + 225	w	260	<0.2	3.27	25	145	10	1.22	2	35	-55	134	9.28	<10	0.04	409	7	0.01	23	800	20	10 ~E	~20	23	0.12	<10	100	<10		59
313	L100S + 250	w	5	<0.2	1.55	<5	105	10	0.18	<1	7	18	16	3 76	<10	0.00	181		0.02	11	410	14		~20	44	0.05	<10	193	<10	<1 	113
314	L100S + 275	w	<5	<0.2	1.49	5	140	10	0.16	<1	8	20	19	3 93	<10	0.00	200	3	0.01		500	14	10 ~E	~20	40	0.05	<10	. 03	<10	51	09
315	L100S + 300	w	5	<0.2	1.80	<5	195	10	0.27	<1	ġ	22	28	4 38	<10	0.61	116	3	0.01	16	010	14	~0	~20	10	0.04	510	84	<10	<t </t 	01
						-				•	v			4.00	10	0.00	510	-	0.01	15	010	10	~9	~20 j	10	0.02	<10	80	<10	<1	- 71
316	L100S + 325	w	<5	<0.2	1.64	<5	165	10	0.28	<1	10	22	19	5.18	<10	0.43	240	2	0.01	12	080	14	-6	~20	16	0.07	~10	105	-40		65
317	L100S + 350	w	<5	<0.2	1.91	10	215	5	0.60	<1	12	22	33	3.97	<10	0.60	781	4	0.01	17	400	18		~20	24	0.07	~10	70	20	10	00 75
318	L100S + 375	W	<5	1.0	3.97	15	695	5	2.12	<1	13	29	81	5 19	30	0.00	1000	7	0.01	30	1220	22	10	~20	05	-0.02	~10	70	20	10	70
319	L100S + 400	W	<5	<0.2	1.42	<5	200	<5	0.56	<1	11	23	27	3.49	<10	0.51	580	2	0.01	21	310	18	10	~20	20	0.01	~10	60	-10	90	01 74
320	L100S + 425	W	<5	<0.2	2.23	5	315	5	0.76	<1	19	32	40	4 68	<10	0.69	1043	Ā	0.01	21	100	20	10	~20	20	0.03	~10	70	<10	, ,	60
								-		•					-10	0.00	1045	-7	0.01	21	450	20	10	~20	28	0.04	\$10	19	<10	'	63
321	L100S + 450	w	<5	0.6	1.38	5	260	<5	4.64	1	8	14	84	2 04	<10	0.31	821	2	0.01	18	1260	10	ĸ	~20	70	-0.01	<10	20	~10	24	35
322	L100S + 475	w	<5	<0.2	1.79	10	195	<5	0.86	<1	14	28	42	4 08	<10	0.66	713	2	0.01	26	440	18	10	~20	20	10.07	~10	29	<10	24	30 0E
323	L100S + 500	w	<5	<0.2	2.21	10	120	<5	0.88	1	21	24	33	4 58	<10.	0.60	1501	5	0.01	21	1320	24	~6	~20	20	0.00	~10	70	10	1	400
324	L100N + 025	E	30	0.4	2.21	410	170	<5	1.64	2	36	36	1469	631	<10	0.64	1228	3	0.01	48	510	24	~5	~20	31	0.02	~10	10	<10	33	724
325	L100N + 050	E	<5	1.0	1.67	55	105	<5	0.47	<1	12	28	237	4.70	<10	0.24	214	. 4	0.01	15	240	18	-5	<20	16	0.00	~10	147	<10	3Z 4	167
								-		-						U.L 7	214	7	0.01	10	640	10	-5	~20	15	0.00	10	142	~10	•	107
326	L100N + 075	Е	10	<0.2	3.24	<5	75	30	0.45	<1	39	73	63	8.59	<10	2 27	460	c1	6.03	12	700	30	20	~20	12	0.55	~10	250	20	44	495
327	L100N + 100	E	540	<0.2	1.81	30	70	15	0.23	<1	10	22	23	4.28	<10	0.35	148	<1	0.00	C	630	28	20 <5	<20	13	0.55	~10	172	~10	~1	130
328	L100N + 125	E	>1000	<0.2	3.22	35	85	<5	1.14	t	15	35	220	9 27	<10	0.00	320	7	0.01	10	1200	30	~5	~20	46	0.14	210	173	<10	24	375
329	L100N + 150	ε	<5	0.4	3.29	90	140	<5	0.28	1	19	32	153	8 48	<10	n 64	254	- 11	0.01	21	610	26	~5	~20	21	0.00	~10	212	<10	24	010
330	L100N + 175	ε	5	<0.2	2.20	55	95	10	0.18	<1	17	33	51	7 47	<10	0.54	386	2	0.01	14	1100	20	~5	~20	- 41	0.03	~10	100	<10		442
											• •		•••	••••	-10	0.00	000	2	0.01	14	1150	24	-0	~20	9	0.13	~10	190	10	NI.	82
331	L100N + 200	E	<5	1.0	1.60	20	135	<5	0.16	<1	11	24	61	4.72	<10	0.21	214	4	<0.01	a	530	14	c 5	<20	я	0.03	~10	121	~10		67
332	L100N + 225	E	<5	0.4	4.16	30	150	<5	0.17	<1	15	56	240	6.81	<10	0.62	382	Ŕ	0.01	25	1200	24	6	~20		0.03	210	101	<10		440
333	L100N + 250	E	<5	0.8	3.19	75	140	20	0.16	<1	17	36	84	9.54	<10	0.02	288	8	0.01	15	1620	24	-6	~20	0	0.00	~10	120	10		140
334	L100N + 275	Ε	<5	0.6	2.91	15	155	15	0.22	1	25	37	168	>10	<10	n 72	428	ő	0.01	17	3200	20	-5	~20	21	0.12	~10	230	<10		121
335	L100N + 300	E	20	0.2	3.38	40	180	<5	1.33	3	40	37	1555	7 21	<10	0.02	1630	3	0.01	40	5230	10	~5	~20	21	0.09	~10	400	<10		93
		-		•	0.00				1.00	v		51	1555	1.2.1	~10	0.92	1339	2	0.02	49	520	10	50	<20	30	0.13	<10	135	<10	28	239
336	L100N + 325	E	45	2.0	4.13	30	240	<5	0.51	<1	23	38	337	8 66	<10	0.69	282	2	0.01	25	500	160	-5	~20	22	0 12	~10	466	-10	-4	400
337	L100N + 350	E	<5	<0.2	2.26	125	105	20	0.17	<1	18	31	50	7 22	<10	0.00	107	-1	0.01	12	670	100	~5	~20	23	0.13	~10	100	<10		10/
338	L100N + 375	E	90	<0.2	2.27	45	100	10	0.24	<1	20	31	121	9.00	<10	0.01	100	2	0.01	12	020	10	~0	~20	17	0.25	S IV	20/	<10 <10	< 1 	12
339	L100N + 400	E	715	0.4	2.35	55	140	5	0.23	1	57	, o	320	>10	<10	0.02	620	12	0.01	24	1160	20	~0 ~E	~20	12	0.10	10	299	<10 20	< 1 	70
340	L100N + 425	E	<5	<0.2	1.16	<5	100	15	0.28	<1	13	27	223	4.78	<10	0.47	201	- 14	0.01	24 0	660	20	~0 ~#	~20	12	0.11	10	200	30	<1	12
-			-			-		•••				P. 1		4.20	~10	0.00	231	~ 1	0.01	0	000	1.4	~U	~40	10	ບ,ເປ	< IU	100	< IV		4:

EVEREST MINES & MINERALS

ICP CERTIFICATE OF ANALYSIS AK 97-542

ECO-TECH LABORATORIES LTD.

Et #.	Tag #		Au(ppb)	Ag	AI %	As	Ba	BI	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	NI	Р	РЬ	Sb	Sn	Sr	TI %	U.	v	w	Y	Zn
341	L100N + 450	E	<5	<0.2	1.94	<5	135	15	0.19	1	16	26	29	7.31	<10	0.50	331	1	0.01	12	1340	16	<5	<20	14	0.18	<10	244	<10	<1	92
342	L100N + 475	E	<5	0.4	2.23	<5	180	10	0.34	<1	19	31	49	7.42	<10	0.49	391	4	0.01	13	1050	18	<5	<20	21	0.12	<10	227	<10	<1	69
343	L100N + 500	E	<5	0.6	2.68	5	210	<5	0.71	<1	13	22	171	3.94	<10	0.56	461	4	0.01	18	680	20	5	<20	30	0.02	<10	93	<10	9	83
344	L200N + 025	W	<5	<0.2	2.44	<5	95	20	0.67	<1	29	97	37	7.57	<10	1.78	484	<1	0.03	20	530	14	20	<20	34	0.34	<10	257	<10	2	96
345	L200N + 050	W	265	1.0	2.82	55	155	<5	0,55	1	40	27	506	7.99	<10	1.01	1083	6	0.01	28	500	18	<5	<20	20	0.06	<10	151	<10	6	79
																							-							-	
346	L200N + 075	w	<5	<0.2	2.63	20	190	<5	0.63	<1	18	27	190	5.43	<10	0.62	495	3	0.01	23	360	22	<5	<20	20	0.07	<10	106	<10	8	156
347	L200N + 100	W	<5	<0.2	2.14	<5	155	5	0.32	<1	16	32	54	4.64	<10	0.80	433	2	0.01	19	330	8	<5	<20	19	0.07	<10	97	<10	<1	98
348	L200N + 125	W	<5	<0.2	1.06	<5	130	<5	0.21	1	8	17	25	3.63	<10	0.26	349	1	0.01	9	280	8	<5	<20	14	0.07	<10	93	<10	<1	69
349	L200N + 175	w	40	0.4	2.12	75	180	<5	1.18	<1	14	28	423	4.51	<10	0.48	583	3	0.01	24	300	20	5	<20	28	0.05	<10	90	<10	28	129
350	1.200N + 200	w	<5	<0.2	2.03	<5	135	15	0.53	1	17	52	31	7.01	<10	0.73	462	6	0.01	21	530	12	<5	<20	21	0.12	<10	219	<10	<1	109
351	L200N + 225	W	20	0.4	1.92	10	220	<5	1.59	<1	11	24	182	3.69	<10	0.65	761	3	0.01	17	830	14	15	<20	36	0.03	<10	70	<10	15	129
352	L200N + 250	W	<5	<0.2	1.49	<5	125	<5	0.37	<1	9	19	21	3.98	<10	0.35	237	3	0.01	10	380	16	5	<20	16	0.04	<10	94	<10	<1	61
353	L200N + 275	W	<5	<0.2	1.41	<5	150	5	0.66	<1	9	18	32	3.60	<10	0.29	256	3	0.01	10	330	16	<5	<20	19	0.03	<10	88	<10	8	61
354	L200N + 300	W	<5	1.0	3.51	15	390	<5	1.51	1	19	×37	164	5.55	20	0.91	1514	6	0.01	31	500	26	10	<20	38	0.02	<10	104	<10	44	109
355	L200N + 450	W	NO SA	MPLE																											
																				•											
356	L200 BLS	000	10	0.4	2.79	30	120	<5	0.14	<1	13	23	88	4.66	<10	0.41	273	4	0.01	14	760	22	<5	<20	8	0.03	<10	97	<10	<1	138
357	L200S + 025	E	15	<0.2	1.42	50	90	<5	0.23	<1	11	36	51	4.33	<10	0.25	114	4	0.01	8	220	20	<5	<20	8	0.05	<10	126	<10	<1	43
358	1200S + 050	E	>1000	4.0	2.76	110	120	<5	0.38	2	69	40	1610	>10	<10	1.77	631	15	0.01	17	810	10	<5	<20	11	0.07	10	192	<10	<1	136
359	L200S + 075	E	40	1.0	4.22	165	80	<5	0.32	<1	23	24	181	9.33	<10	0.71	304	9	<0.01	23	1070	16	<5	<20	17	0.02	10	213	<10	<1	90
360	L200S + 100	E	565	1.0	3.28	95	100	<5	0.26	2	52	34	280	>10	<10	0.77	520	12	0.01	52	2140	18	< 5	<20	16	0.16	<10	272	<10	<1	178
361	L200S + 125	Ε	5	<0.2	1.33	15	90	10	0.24	<1	13	28	41	4.89	<10	0.35	260	. 1	0.01	9	620	12	<5	<20	13	0.11	<10	181	10	<1	42
362	L200S + 150	ε	10	<0.2	2.80	40	190	<5	0.46	<1	24	42	111	7.79	<10	0.94	322	6	0.02	19	400	14	10	<20	18	0.08	<10	213	<10	<1	114
363	L200S + 175	E	160	<0.2	1.58	25	135	10	0.28	<1	14	30	39	5.57	<10	0.48	255	2	0.01	13	560	14	<5	<20	14	0.16	<10	187	<10	<1	57
364	L200S + 200	E	155	<0.2	2.38	35	100	10	0.14	<1	15	35	72	6.41	<10	0.44	284	4	0.01	13	1290	16	<5	<20	9	0.07	<10	145	<10	<1	63
365	L200S + 225	Е	10	0.4	2.68	65	120	t0	0.16	<1	17	39	64	8.18	<10	0.68	332	6	0.01	16	1970	20	<5	<20	12	0.04	<10	174	<10	<1	96
366	L200S + 250	ε	<5	<0.2	2.11	<5	150	15	0.31	<1	17	38	22	6.35	<10	0.93	425	3	0.02	21	1070	10	5	<20	13	0.10	<10	174	<10	<1	107
367	L200S + 275	E	<5	<0.2	2.86	20	190	20	0.24	<1	21	47	25	>10	<10	0.78	643	5	0.02	17	2190	34	<5	<20	10	0.14	<10	227	<10	<1	133
368	L200S + 300	E	10	0.4	2.48	35	120	<5	0.43	<1	30	39	138	5.14	<10	1.06	1130	2	0.01	24	940	24	15	<20	20	0.08	<10	103	<10	1	105
369	L200S + 325	E	5	<0.2	2.94	30	195	10	0.28	<1	18	41	35	8.06	<10	0.78	392	5	0.01	16	1640	22	<5	<20	15	0.08	<10	181	<10	<1	196
370	L200S + 350	E	80	1.4	2.29	25	190	<5	1.05	3	26	35	335	5.21	<10	0.66	5020	5	0.01	19	710	24	10	<20	28	0.05	<10	106	<10	8	217
371	L200S + 375	E	220	0.4	2.28	5	95	15	0.14	<1	12	26	59	6.09	<10	0.41	273	3	<0.01	13	1510	18	<5	<20	7	0.09	<10	139	<10	<1	77
372	L200S + 400	Ε	60	<0.2	2.03	5	110	<5	0.11	<1	11	27	28	5.33	<10	0.33	272	4	0.01	13	1260	18	<5	<20	8	0.07	<10	126	<10	<1	84
373	L200S + 425	E	50	<0.2	2.25	15	205	<5	0.92	<1	17	26	222	4.66	<10	0.58	328	4	0.01	18	700	18	10	<20	29	0.03	<10	117	<10	8	71
374	L200S + 450	E	10	<0.2	1.65	15	260	5	1.09	<1	12	25	50	5.52	<10	0.40	248	3	0.01	13	730	14	<5	<20	57	0.07	<10	150	<10	<1	9 3
375	L200S + 475	E	15	<0.2	2.09	40	190	<5	0.34	<1	12	33	108	5.90	<10	0.49	267	5	0.01	13	480	20	<5	<20	18	0.03	<10	147	<10	<1	129

.

EVERI	est mines & minei	RALS								ic	CP CE	RTIFIC	ATE O	F ANAI	LYSIS	AK 97-	542							ł	ECO-T	ECH L	ABOR	ATORI	ES LT	D.
Et #.	Tag #	Au(ppb)	Ag	AI %	As	As Ba Bi Ca % Cd Co Cr Cu Fe % La Mg % Mn Mo Na % Ni P P <5 160 5 0.34 <1 7 15 14 3.00 <10 0.34 202 3 0.01 10 200 1 5 115 5 0.34 <1 12 21 21 4.04 <10 0.51 499 4 0.01 16 720 2														Pb	Sb	Sn	Sr	TI %	U	v	W	Y_	Zr	
376	L200S + 450 W	5	<0.2	1.38	<5	160	5	0.34	<1	7	15	14	3.00	<10	0.34	202	3	0.01	10	200	12	10	<20	21	0.02	<10	67	<10	<1	50
377	L200S + 475 W	/ 5	<0.2	2.25	5	115	5	0.34	<1	12	21	21	4.04	<10	0.51	499	4	0.01	16	720	20	<5	<20	18	0.01	<10	75	20	1	83
378	L200S + 500 W	/ 10	<0.2	1.82	<5	105	5	0.34	<1	14	20	19	3.80	<10	0.61	429	3	0.01	20	820	16	<5	<20	20	0.03	<10	71	<10	7	103
379	L5S + 325 W	/ 10	0.8	2.33	<5	250	<5	1.69	2	13	29	137	4.16	<10	0.75	820	4	0.01	22	690	18	5	<20	49	0.03	<10	80	<10	11	96
380	L5S + 350 W	/ 5	0.2	2.27	<5	235	<5	1.15	1	13	30	87	4,22	<10	0.80	762	4	0.01	22	580	16	15	<20	37	0.03	<10	84	<10	16	86
381	L2N + 475 E	5	<0.2	1.67	<5	150	5	0.70	<1	14	25	38	3,78	<10	0.67	478	4	0.01	14	620	18	15	<20	21	0.05	<10	96	<10	2	73
	IA:																													
Repea	t					· .																								
1	BL LOON + 00	10	0.4	3.14	145	125	<5	0.21	<1	32	48	190	8.63	<10	0.68	342	6	0.02	27	830	16	<5	<20	14	0.09	<10	199	<10	<†	210
10	L00 + 225 W	<5	0.8	3.38	10	265	<5	1.18	<1	17	40	130	5.06	<10	0.98	866	4	0.02	23	710	6	5	<20	38	0.03	<10	120	<10	15	88
19	LON + 075 E	570	1.2	4.44	55	145	<5	0.19	<1	27	37	224	8.17	<10	0.83	319	2	0.01	35	660	14	<5	<20	18	0.14	<10	193	<10	<1	153
28	LON + 300 E	95	0.8	3.32	120	90	<5	0.20	<1	18	29	213	8.36	<10	0.81	270	3	0.02	14	1760	18	<5	<20	15	0.13	10	243	<10	<1	74
36	10N + 500 E	<5	<0.2	3.51	5	280	15	0.90	<1	26	36	59	>10	<10	0.88	784	4	0.01	17	7690	20	<5	<20	61	0.15	<10	343	<10	<1	157
45	L1N + 175 E	>1000	1.2	2.45	380	90	<5	0.12	<1	46	23	1151	>10	<10	0.40	334	11	0.01	20	1300	42	<5	<20	11	0.05	10	199	<10	<1	12
54	L1N + 400 E	<5	2.0	1.59	15	145	10	0.23	<1	12	23	30	4.85	<10	0.42	710	2	0.01	9	1210	12	<5	<20	13	0.11	<10	164	<10	<1	6(
63	L1N + 150 W	/ <5	<0.2	1.56	5	145	10	0.23	<1	12	26	16	4.95	<10	0.45	450	1	0.01	8	1380	12	<5	<20	19	0.08	<10	118	<10	<1	88
71	L1N + 475 W	/ <5	<0.2	1.59	<5	135	10	0.23	<1	12	25	23	3.55	<10	0.54	510	2	0.01	23	330	20	<5	<20	20	0.04	<10	62	<10	3	6!
80	L2N + 175 E	25	0.2	3.39	20	105	<5	0.20	<1	22	31	394	6.59	<10	0.87	494	5	<0.01	25	850	24	<5	<20	14	0.04	<10	188	<10	<1	8
89	L2N + 400 E	<5	0.8	0.89	<5	235	<5	0.98	1	6	10	95	1.93	<10	0.09	84	<1	0.02	6	360	12	<5	<20	29	0.04	<10	60	<10	4	3
98	L2N + 150 W	/ <5	<0.2	1.18	<5	120	5	0.23	<1	7	19	13	2.64	<10	0.33	198	1	<0.01	8	360	16	<5	<20	14	0.04	<10	68	<10	1	5
116	L3N + 225 W	/ <5	0.4	3.26	10	485	<5	1.30	1	11	31	67	4.36	<10	0.72	640	. 3	0.02	30	1230	30	<5	<20	54	0.02	<10	77	<10	32	148
124	L3N + 00	<5	0.2	2.00	85	135	<5	0.96	1	53	29	356	5.10	<10	0.81	808	2	0.01	24	520	38	5	<20	33	0.09	<10	95	<10	13	229
133	L3N + 225 E	•	0.4	2.86	15	195	<5	0.82	2	97	23	314	8.89	<10	1.01	1238	<1	0.02	22	870	52	<5	<20	31	0.24	<10	206	<10	7	306
137	L3N + 325 E	<5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	•	
140	L3N + 400 E	-	<0.2	3.05	10	135	<5	0.17	<1	17	26	107	7.75	<10	0.68	309	5	<0.01	18	1850	20	<5	<20	12	0.05	<10	213	<10	<1	8
143	L3N + 475 E	<5	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	•	
149	L3S + 125 W	/ -	<0.2	1.70	<5	155	<5	0.30	<1	10	21	28	3.27	<10	0.48	429	2	0.01	12	450	14	<5	<20	20	0.05	<10	78	<10	6	74
150	Ľ3S + 150 W	/ <5	-		-	-	-	-	-	-		-	-	•	-	-	-	-	-	-	-	-	-	-	-			-		
158	L3S + 350 W	, ,	<0.2	2.55	<5	300	<5	0.63	<1	8	21	44	3.63	<10	0.45	411	3	0.01	16	760	24	<5	<20	37	0.01	<10	78	<10	27	6
159	L3S + 375 W	/ <5	-	-	-	-	-	-	-	-	-		-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	
166	L3S + 150 E	-	<0.2	2.53	15	120	<5	0.24	<1	13	24	82	4.46	<10	0.55	334	3	0.01	16	570	20	<5	<20	13	0.05	<10	101	<10	<1	10
168	L3S + 200 E	<5	•	-	-	•	-	-	-	-	-		-	-	-	-	-	•	•	•	-	•		•	-		•	-	•	

EVEREST MINES & MINERALS				ICP CERTIFICATE OF ANALYSIS AK 97-542											I	ECO-TECH LABORATORIES LTD.															
<u> </u>	Tag #		Au(ppb)	Ag	AI %	As	Ba	81	Ca %	Cď	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	NI	Р	Pb	Sb	Sn	Sr	Π%	U	v	w	Y	Zn
QC D	TA:															*****															
Repe	lt:																														
175	L3S + 375	E	. ~	<0.2	2.84	20	135	<5	0.23	<1	19	40	38	7.12	<10	0.68	422	4	0.01	20	1760	26	<5	<20	13	0.08	<10	157	<10	<1	125
178	L3S + 400	E	<5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-		
184	L4N + 125	W	-	0.8	3.42	10	535	<5	1.68	3	14	29	130	5.10	10	0.79	1552	5	0.01	28	1040	24	<5	<20	49	0.02	<10	89	<10	52	149
186	L4N + 200	W	<5	-	•	-	-	-	-	-	-	-	-	-	-	+	-			+	-	-	-	-		•	-	-		-	•
193	L4N + 375	W	-	<0.2	1.52	<5	115	<5	0.17	<1	10	21	18	3.18	<10	0.46	382	2	0.01	17	520	16	<5	<20	12	0.04	<10	63	<10	2	66
194	L4N + 400	w	<5		-	-	-	-	-	-	-		-	•		-	-	-	-	-	-	-		_	-			-			-
201	L4N + 075	Ε	-	<0.2	2.06	35	170	<5	0.26	<1	42	26	111	5.18	<10	0.87	730	3	0.01	32	520	26	<5	<20	17	0.07	<10	93	<10	3	184
203	L4N + 125	E	<5	-	-	-	-	-	-	-	-	· -	-	-		-	-		-		-			-		0.07				ž	
210	L4N + 300	Е	-	<0.2	5.03	70	170	10	0.07	<1	59	28	118	>10	<10	0.70	507	10	<0.01	20	3280	32	<5	<20	5	0.01	<10	230	<10	c1	128
211	L4N + 325	E	5	*	-	-	-	-	-	-	-	•	-	•	-	-	-	-	-		-	-	-		-	-	-	-	-		
219	L4S + 000			0.4	1.92	35	205	<5	0.89	2	16	22	134	3.78	<10	0 59	1005	3	0.01	16	450	18	10	<20	24	0.04	<10	80	<10	8	118
220	L4S + 050	w	10	-	-	-	_	-	-	-	-			0.10		0.00	1000	Š	0.01	10	400	10	10	~20	24	0.04	510	00	~10	0	110
228	L4S + 350	W	-	<0.2	2.45	<5	325	<5	1.14	<1	12	28	66	4 31	<10	0 72	671	2	0.01	20	700	20	-5	~20	26	0.04	~10	-	-10	22	444
229	L4S + 025	E	10	•	-	-				-		20		4.51	- 10	0.72	0/1	3	0.01	20	100	20	~0	~20	30	Q.04	\$10	09	~10	32	111
238	L4S + 225	E	-	<0.2	1.88	<5	90	5	0.14	<1	9	23	27	4.30	<10	0.30	198	4	0.01	9	850	14	<5	<20	11	0.05	<10	103	<10	<1	72
238	145 + 275	F	25	_	_	_																									
245	145 + 475	Ē		-02	2.10	5	190	10	0.47		- 1E	20		7 10		-	-		-	-	-	-		-	-			-	-		
248	145 + 500	Ē	<5	-0.2	2.00		100	10	0.47	~!	15	20	33	7.10	10	0.47	199	3	0.01	14	2000	10	<0	<20	13	0.09	<10	167	<10	<1	93
254	15N + 325	w	-0	<02	1 63	<5	130	5	0.22	-1	å	20		2 00	-10		-		-	40	-	-	-	-					-		-
255	L5N + 375	w	<5	-0.2	-	-	-		-	-	-	-	-	5.00		0.50	349 -	-	0.01	13	340	-	<5	<20	18	0.05	<10	/4	<10 -	<1 -	- 55
263	L5N + 175	E	-	<0.2	1.95	<5	125	5	0.39	<1	12	23	59	5 20	<10	0.48	272	2	0.01	12	410	20	-6	~20	14	0.00	-10	147	~10		412
264	L5N + 200	Ē	<5	-					0.00			20		0.23	-10	0.40	212	3	0.01	15	410	20	~0	~20	14	0.00	\$10	147	×10	~1	112
273	15N + 425	Ē	<5	_		_	_	_	_	_		-	-	•	-	-	-	-	-	•	•	-	-	•	•	-	•	*	•	-	-
280	155 + 075	w	-0	0.6	3 17	-5	395	-5	+ 01		47	22	70	E 46	- 10	0.05	+202	-	-	-	-	-			-	-	-	400	-	-	-
284	155 + 100	101	-5	0.0	3.17	~0	303	×0	1.01	•	17	33	10	0.40	<1U	0.80	1393	5	0.01	25	640	20	<5	<20	34	0.02	<10	102	<10	6	137
201	100 - 100	¥¥	N 0	-	-	-	-	-	•	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-
289	L5S + 375	W	•	<0.2	2.28	30	215	<5	0.76	<1	16	29	211	4.43	<10	0.74	585	3	0.01	24	430	16	<5	<20	28	0.02	<10	93	<10	3	112
290	L5S + 100	Ε	<5	-	-	-	-	-	-		-	-	-	-	-	-		-	•	-			-				-		•		
299	L5S + 325	E	<5	-	-	-	-	-	-		-	-	-	-	-	•	-	-	-	-		-				-		_			-
306	1100S + 050	w	-	<0.2	3.32	20	235	10	0.74	2	37	83	109	6.96	<10	1.77	2014	<1	0.03	28	860	20	15	<20	48	0.35	<10	186	<10	3	140

EVERE	EVEREST MINES & MINERALS							ICP CERTIFICATE OF ANALYSIS AK 97-542										ECO-TECH LABORATORIES LTI							D.							
Et #.	Tag	#		Au(ppb)	Ag	AI %	As	Ba	BI	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	NI	Р	Pb	Sb	Sn	Sr	TI %	U	v	w	Y	Zn
QC DA	TA:						· · · · · · · · · · · · · · · · · · ·																							<u></u>		
Repeat	t:																															
308	L100S +	100	W	10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	•	-
315	L100S +	300	W	-	<0.2	1.62	<5	175	10	0.26	<1	9	21	24	4.81	<10	0.49	281	3	0.01	11	930	14	<5	<20	14	0.07	<10	94	<10	<1	60
316	L100S +	325	W	<5	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	•		-	-	
325	L100N +	050	ε	<5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
333	L100N +	250	E	-	0.8	3.01	65	135	15	0.15	1	16	34	73	9.04	<10	0.50	268	5	0.01	13	1430	26	<5	<20	10	0.12	<10	223	<10	<1	114
334	L100N +	275	Е	<5	-	-	-	-	-	•	-	-	-	•	• -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
341	L100N +	450	Ε	-	<0.2	2.08	5	145	15	0.20	<1	18	28	32	7.93	<10	0.54	360	<1	0.01	13	1480	20	<5	<20	15	0.19	<10	263	<10	<1	100
343	L100N +	500	Е	<5	-	-	-	-	-		•	-	-	•	-	-	-	-	-	-	-		· -	-	-	-	-	-	-	-	-	-
350	L200N +	200	W	-	<0.2	2.03	5	135	10	0.52	<1	18	51	35	7.00	<10	0.73	460	4	0.01	22	540	14	5	<20	20	0.11	<10	219	<10	<1	104
351	L200N +	225	W	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	· •	-	-	-		-	-	-	-	-	-	•	-	-
359	L200S +	075	E	-	1.0	4.00	170	75	<5	0.31	<1	22	23	170	9.09	<10	0.68	295	8	<0.01	23	1060	20	<5	<20	14	0.01	<10	205	10	<1	87
360	L200S +	100	E	565	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
368	L200S +	300	Ε	-	0.4	2.32	30	110	<5	0.40	<1	28	38	128	4.90	<10	1.04	1051	2	0.01	22	920	24	<5	<20	16	0.07	<10	99	10	2	103
369	L200S +	325	Ε	5	-	-	-	-	-	-	-	-	-	-	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
376	L200S +	450	W	-	<0,2	1.39	<5	160	<5	0.35	<1	7	° 15	14	2.99	<10	0.35	201	2	0.01	9	210	14	<5	<20	20	0.03	<10	67	<10	<1	6 6
Standa	rd:																															
GEO'97	,			120	1.6	2.04	60	180	<5	1.84	<1	20	64	82	4.18	<10	1.10	711	<1	0.03	22	630	18	5	<20	65	0.14	<10	87	<10	10	65
GEO'97	,			115	1.4	1.84	65	170	<5	1.73	<1	19	59	86	3.91	<10	1,12	674	<1	0.02	22	610	22	15	<20	66	0.12	<10	78	<10	10	64
GEO'97	,			120	1.0	1.75	70	145	<5	1.80	<1	20	62	70	3.64	<10	0.93	680	<1	0.02	25	680	20	10	<20	53	0.11	<10	70	<10	7	67
GEO'97	•			120	1.2	1.73	65	155	5	1.81	<1	19	59	75	3.85	<10	0.99	692	<1	0.02	24	620	24	15	<20	55	0.12	<10	74	<10	10	71
GEO'97	•			125	1.2	1.78	65	160	<5	1.76	<1	19	62	81	3.95	<10	1.05	669	<1	0.02	22	640	26	10	<20	61	0.13	<10	79	<10	9	69
GEO'97	,			125	. 1.2	1.74	70	160	<5	1.84	<1	19	60	79	3.89	<10	1.03	659	<1	0.02	22	630	22	5	<20	59	0.12	<10	76	<10	8	68
GEO'97	,			125	1.2	1.79	60	170	<5	1.79	<1	19	61	82	4.01	<10	1.06	676	<1	0.02	20	630	22	5	<20	61	0.13	<10	80	<10	11	70
GEO'97	,			125	1.2	1.89	65	175	<5	1.86	<1	20	65	87	4.13	<10	1.12	699	<1	0.02	22	630	22	5	<20	66	0.13	<10	84	<10	11	75
GEO'97	,			140	1.4	1.68	65	165	<5	1.80	<1	18	64	81	3.94	<10	1.03	660	<1	0.02	24	620	22	15	<20	56	0.11	<10	75	<10	10	70
GEO'97	•			140	. 1.4	1.69	60	165	<5	1.81	<1	19	62	82	3.94	<10	1.04	663	<1	0.02	22	610	22	5	<20	57	0.11	<10	75	<10	10	69
GEO'97	,			130	1.2	1.75	65	165	5	1.89	<1	18	64	81	3.90	<10	1.03	660	<1	0.02	24	630	22	10	<20	56	0.11	<10	74	<10	10	6 9
GEO'97	•			-	1.2	1.80	65	165	10	1.82	<1	18	62	79	3.84	<10	1.01	643	<1	0.02	22	630	22	5	<20	55	0.11	<10	73	<10	11	72

.

EVEREST MINES & MINERALS

df/542/542A/542B

fax: 604-984-4365

XLS/97

ECO-TECH LABORATORIES LTD. Flank J. Pezzotti, A.Sc.T. B.C. Certified Assaver

Appendix III

. . . .

Geophysical Survey Methods

INDUCED POLARIZATION AND RESISTIVITY SURVEYS

(a) Instrumentation

The transmitter used for the induced polarization/resistivity survey in November, 1996 was a Model IPT-1 manufactured by Phoenix Geophysics Ltd. of Markham, Ontario. It was powered by a 2.5 kw motor generator, Model MG-2, also manufactured by Phoenix. During July, 1997, the transmitter used was a BRGM model VIP 4000. It was powered by a Honda 6.5 kw motor generator. The receiver used during both times was a six-channel BRGM, model Elrec 6. This is state-of -the-art equipment, with software-controlled functions, programmable through a keyboard located on the front of the instrument. It can measure up to 10 chargeability windows and store up to 2,500 measurements within the internal memory.

(b) Theory

When a voltage is applied to the ground, electrical current flows, mainly in the electrolyte-filled capillaries within the rock. If the capillaries also contain certain mineral particles that transport current by electrons (mostly sulphides, some oxides and graphite), then the ionic charges build up at the particle-electrolyte interface, positive ones where the current enters the particle and negative ones where it leaves. This accumulation of charge creates a voltage that tends to oppose the current flow across the interface. When the current is switched off, the created voltage slowly decreases as the accumulated ions diffuse back into the electrolyte. This type of induced polarization phenomena is known as electrode polarization.

A similar effect occurs if clay particles are present in the conducting medium. Charged clay particles attract oppositely-charged ions from the surrounding electrolyte; when the current stops, the ions slowly diffuse back to their equilibrium state. This process is known as membrane polarization and gives rise to induced polarization effects even in the absence of metallic-type conductors.

Most IP surveys are carried out by taking measurements in the "time-domain" or the "frequency-domain".

Time-domain measurements involve sampling the waveform at intervals after the current is switched off, to derive a dimensionless parameter, the chargeability "M", which is a measure of the strength of the induced polarization effect. Measurements in the frequency domain are based on the fact that the resistance produced at the electrolyte-charged particle interface decreases with increasing frequency. The difference between apparent resistivity readings at a high and low frequency is expressed as the percentage frequency effect, or "PFE".

The quantity, apparent resistivity, ρ_a , computed from electrical survey results is only the true earth resistivity in a homogenous sub-surface. When vertical (and lateral) variations in electrical properties occur, as they almost always will, the apparent resistivity will be influenced by the various layers, depending on their depth relative to the electrode spacing. A single reading, therefore, cannot be attributed to a particular depth.

The ability of the ground to transmit electricity is, in the absence of metallic-type conductors, almost completely dependent on the volume, nature and content of the pore space. Empirical relationships can be derived linking the formation resistivity to the pore water resistivity, as a function of porosity. Such a formula is Archie's Law, which states (assuming complete saturation) in clean formations:

$$R_{o} = o^{-2} R_{w}$$

Where: R_o is formation resistivity R_w is pore water resistivity O is porosity

(c) Survey Procedure

Before the IP and resistivity surveys were started, the grid was compassed in and subsequently cut out by chainsaw. The base line was run in a 150°E-330°E direction and the survey lines were run in a 60°E-240°E direction with the line interval being 100 m.

The IP and resistivity measurements were taken in the time-domain mode using an 8second square wave charge cycle (2-seconds positive charge, 2-seconds off, 2-seconds negative charge, 2-seconds off). The delay time used after the charge shuts off was 240 milliseconds and the integration time used was 1,600 milliseconds divided into 10 windows. The array chosen was the dipole-dipole, shown as follows:

The reading interval and electrode separation chosen was 30 meters. Stainless steel stakes were used for current electrodes as well as for the potential electrodes.

The amount of IP and resistivity surveyed was 11,000 meters carried out on 11 lines.

(d) Compilation of Data

All the data were reduced by a computer software program developed by Geosoft Inc. of Toronto, Ontario. Parts of this program have been modified by Geotronics Surveys Inc. for its own applications. The computerized data reduction included the resistivity calculations, pseudosection plotting, survey plan plotting and contouring.

The chargeability (IP) values are read directly from the instrument and no data processing is therefore required prior to plotting. The resistivity values are derived from current and voltage readings taken in the field. These values are combined with the geometrical factor appropriate for the dipole-dipole array to compute the apparent resistivities.

All the data have been plotted in pseudosection form at a scale of 1:2,500. One map has been plotted for each of the 11 lines of the Kaza grid and are numbered KGP-1 to KGP-11, respectively. The pseudosection is formed by each value being plotted at a point formed from the intersection of a line drawn from the mid-point of each of the two dipoles. The result of this method of plotting is that the farther the dipoles are separated, the deeper the reading is plotted. The resistivity pseudosection is plotted on the upper part of the map for each of the lines, and the chargeability pseudosection is plotted on the lower part.

All pseudosections were contoured at an interval of 2 milliseconds for the chargeability results, and at an interval of logarithmic to the base 10 for the resistivity results.

The magnetic data was plotted and profiled on top of the two pseudosections with the plotting done by subtracting 56,000 nT from each value. The profiling was done at a vertical scale of 1 cm = 1000 nT with a base of 57,500 nT (For the plotted values the base therefore was 1 cm = 1500 nT).

The self-potential (SP) data from the IP and resistivity survey was plotted and profiled with the two pseudosections but above the magnetic profile for each line at a scale of 1 cm = 100 millivolts with a base of zero millivolts. It is not expected that the SP data will be important in the exploration of the two properties but considering that the data was taken anyway it was thought that it should be plotted and profiled to determine its usefulness as an exploration tool.

In addition to the geophysical surveys, gold and copper soil geochemistry data were plotted between the magnetic profile and the resistivity pseudosection. Gold and copper were chosen because these values are the most significant on the property being that the mineralization contains primarily gold and copper values. Gold was plotted at a vertical scale of 1 cm = 1/2 the logarithm of the gold value in parts per billion (ppb) and copper at 1 cm = the logarithm of the copper value in parts per million (ppm).

Also, plan maps were prepared for level 1 (n=1) and level 4 (n=4) each for IP and resistivity, each at a scale of 1:5,000. The data were plotted and contoured at the same contour interval as that of the pseudosections. The four plans were numbered KGP-12 to KGP-15, respectively.

MAGNETIC SURVEY

(e) Instrumentation

The magnetic survey was carried out with a model G-856 proton precession magnetometer, manufactured by Geometrics Inc. of Sunnyvale, California. This instrument reads out directly in gammas to an accuracy of ± 1 gammas, over a range of 20,000 - 100,000 gammas. The operating temperature range is -40° to +50° C, and its gradient tolerance is up to 3,000 gammas per meter.

(f) Theory

Only two commonly occurring minerals are strongly magnetic, magnetite and pyrrhotite; magnetic surveys are therefore used to detect the presence of these minerals in varying concentrations. Magnetics is also useful as a reconnaissance tool for mapping geologic lithology and structure since different rock types have different background amounts of magnetite and/or pyrrhotite.

(g) Survey Procedure

Readings of the earth's total magnetic field were taken at 25 m stations along the same lines as that for the IP and resistivity surveys. Therefore, the number of meters surveyed was 11,000.

The diurnal variation was monitored in the field by the closed loop method to enable the variation to be removed from the raw data prior to plotting.

(h) Data Reduction

· -----

.

-

-

The data was first input into a computer. Then using Geosoft software, it was plotted with 57,000 nT subtracted from each posted value and contoured at an interval of 100 nT on a base map, KGP-14, with a scale of 1:5,000.

х.

STATEMENT OF COSTS

٠,

Item Descrip	tion:	<u>Cost</u>
June 20 – 30:	Geological compilation (10 days @ \$350/day)	\$3,500.00
July 1 – 7:	Geological Compilation (7 days @ \$350/day)	\$2,450.00
	Drafting & Reproduction	\$115.00
TOTAT		\$6.065.00

TOTAL

20,002.00

ç

l ann a chuir lain - 1 chuimrid San - Ha - Gallin le Buile - Sanaintean a dh' a' an ann ann ann a' fh

OGICAL SURVEY BRANCH	
5,897	
LEGEND	
Gr. = feld. porph. And. ox. = oxide Py. = Pyrite CPY = Chalcopyrite born. = bornite Alt. = Altered - oxid. nalt = Unaltered Ank. = Ankerite st. = stringers diss. = disseminated Qtz. = Quartz calc. = Calcite Mal. = Malachite Az. = Azurite	
Estimated Contact Known Contact Shear Road	
Au in ppb, except where shown in brackets () values are in Au g/t. Cu in ppm, except where shown in brackets () values are in Cu % Ag in ppm, except where shown in brackets () values are in Ag g/t. 91859 Sample Number	
Au : <100 ppb = black : 100-300 ppb = blue : >300 ppb = red	
Cu : <1000 ppm = black : 1000-3000 ppm = blue : >3000 ppm = red	
Ag : <5 ppm = black 5-10 ppm = blue : >10 = red	
0 5 10 15 20 25 METRES	
T MINES AND MINERALS LTD.	
KAZA PROJECT INECA MINING DIVISION, B. C.	
ICH K-T-1 to K-T-8	
Au ,Cu and Ag	
ANNI MINE DEVELOPMENT LTD. 1998 SCALE: 1:500 FIGURE: 7.3	
File: KTALL-KE.dwg Printed: July 10, 1998	

Declination: 24

GEOLOGICAL SURVEY BRANCE ASSESSMENT REPORT

25,897

SURVEY LEGEND

Instrumentation: Geometrics Magnetometer Model G-856

Survey Date: July 1997

Contour Interval: 100 nT (gammas)

Note: 57,000 nT (gammas) has been deducted from each posted value. Trend Enhancement: None

	GEOTRO	NICS SUR	VEYS LTD.	
EVERES	T MINE	S AND	MINERALS	LTD.
(KAZ Lion Cre Mineca M	A PRO ek, Takl ining Di)JECT a Lake Area vision, B.C.	
	MAGNE	TIC	SURVEY	
Drawn by: DVO	Job No. 97-18	NTS 93M/1	Date July 97	Map No. GP-1

LEGEND

Contour Intervals: Resistivity : log base 10 chm-metres Chargeability: 5 millisecond

INSTRUMENTATION

Receiver: Transmitter/Generator: VIP-4000

BRGN IP-6 4 k#att

IP SURVEY PARAMETERS

Survey Node: Array: Dipole Length: Dipole separation: Deley Time: Integration Time: Charge Cycle:

Time Domain Dipole-Dipole 30 metres (100 feet) n=1 to 6 240 milliseconds 1600 milliseconds 8 second square wave

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

C	3	,8	9/	
	GEOTRON	ICS SURVE	YS LTD.	
EVERES	T MINES	S AND M	IINERAL	S LTD.
	KAZ Kaz Dmineca Mi	A PROJ a Lake Are ning Divis	ECT ea, sion, B.C.	
APPARENT	PL Charge/	LAN MA	NP (IP) - LE	VEL ONE
Drawn by: DVO	Job No. 97-18	NTS 93W/1	Date July 97	Map No. GP-12

LEGEND

Contour Intervals: Resistivity : log base 10 ohm-metres Chargeability: 5 millisecond

INSTRUMENTATION

Receiver: Transmitter/Generator: VIP-4000

BRGN IP-6 4 kWatt

IP SURVEY PARAMETERS

Survey Node: Arrey: Dipole Length: Dipole separation: Delay Time: Integration Time: Charge Cycle:

Time Domain Dipole-Dipole 30 metres (100 feet) n=1 to 6 240 milliseconds 1600 milliseconds 8 second square wave

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

2	25	,8	97	7							
GEOTRONICS SURVEYS LTD.											
EVEREST MINES AND MINERALS LTD.											
KAZA PROJECT Kaza Lake Area, Omineca Mining Division, B.C.											
PLAN MAP APPARENT CHARGEABILITY (IP) - LEVEL FOUR											
Drawn by: DVO	Job No. 97-18	NTS 93M/1	Date July 97	Map No. GP-14							