RECEIVED Assessment Report

MAY 1 9 1999

Stage II

Gold Commissioner's Office VANCOUVER, B.C.

Diamond Drilling and

Geological Mapping

Mount Polley Mine

Cariboo Mining Division

N.T.S. 93A/12E Latitude 52^o 33' N Longitude 121^o 38' W

Owner: Mount Polley Holding Company Limited 420 – 355 Burrard Street Vancouver, B.C. V6C 2G8

Christopher J. Wild, P. Eng. Mine Geologist

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

May 20, 1999

Table of Contents

1.0	Summ	nary	1
2.0	Introd	uction	2
	2.1	Location and Access	2
	2.2	Physiography	2
	2.3	Claim Status	5
	2.4	Property History	5
	2.5	1998 Program (Stage II)	8
3.0	Geolo	gical Setting	9
	3.1	Regional Geology	9
	3.2	Deposit Geology	9
4.0	1998	Diamond Drilling Program (Stage II) 1	3
	4.1	Description1	3
	4.2	MP-98-4 1	
	4.3	MP-98-5 1	4
	4.4	MP-98-6	5
	4.5	MP-98-7 1	6
	4.6	MP-98-8	6
	4.7	MP-98-9 1	6
5.0	Geote	echnical Analysis 2	:4
6.0	Geolo	ogical Mapping2	25
7.0	Reco	mmendations2	
	7.1	Geological Mapping and Core Relogging2	28
	7.2	Drilling2	
8.0	Refe	rences	30

May 20, 1999

May 20, 1999

List of Figures

Figure 1	Property Location Map		3
Figure 2	Claim Map		4
Figure 3	Simplified Regional Geology		11
Figure 4	Drillhole Location Map		12
Figure 5	Section 3450 N	(in pocket)	18
Figure 6	Section 3250 N		
Figure 7	Section 3200 N		
Figure 8	Section 3150 N	<i></i> в	21
Figure 9	Section 3050 N	p	22
Figure 10	Section 2175 E		
Figure 11	Cariboo Pit Geology		

List of Tables

. 5
13
14
15
15
16
16
17
26

Appendices

Appendix 1	1998/99 Program Expenditures
Appendix 2	Statement of Qualifications
Appendix 3	Diamond Drillhole Logs
Appendix 4	Geotechnical Logs

1.0 Summary

A total of 1,200.8 metres of diamond drilling completed during December, 1998, targeted gaps in the geological and ore reserve models along the expected western and southern limits to mineralization within the Cariboo Pit. One hole tested the East Cariboo Zone to depth. The objectives of the program were to define mineable limits to the south and west, define the relationship between mineralization, alteration and rock type, test the location of the large Polley Fault at depth, and assess rock quality to assist in pit design. A program of detailed geological mapping and core relogging was also completed within the Cariboo Pit to define geological controls on mineralization.

MP-98-04 was drilled to the west at -55° to a total depth of 208.8m on section 3450N. The presence of ore-grade mineralization to 136.3 metres and of near ore-grades to 167.0 metres extends ore blocks further west and deeper, filling in a large void in the previous ore reserve model. MP-98-5 was drilled west at -55° to intersect the western breccia - Polley Fault contact and to test for ore below the current pit bottom and below the level of previous drilling. Total drilled was around 206.7 metres, including the last 9.5 metres in very high-grade, high-oxide mineralization within the Polley Fault breccia. MP-98-6 was drilled south into the southern breccia - porphyry contact to determine the location and possible orientation of the southern ore limit. Ore grades and associated potassic alteration end in a transition zone marked by abundant calcite veining, likely a healed fault zone. MP-98-7 was collared near the south end of the pit, on section 3050N, to test for ore in the immediate hangingwall of the Polley Fault and also provide geotechnical information on the fault and its footwall rocks. The main breccia, from 122.5 -180.5 metres, is very high grade and runs into the Polley Fault. MP-98-8 was collared on 1120 Bench to test the western contact of the breccia-monzonite near 3250N. Grades are highest over the top 61 metres. MP-98-9 was collared into the Cariboo East Zone to test for high-grade mineralization at depth. The hole was inclined at -55° to the west over a total length of 220.98 metres. Core consists of interlayered andesitic volcanics and monzonite with a strong hydrothermal breccia overprint. Mineralization appears to be quite strong and very lightly oxidized throughout though grades are low to marginal.

A program of detailed mapping and core relogging was initiated in August, 1998, to determine distribution of major rock units and their relationships to ore-grade mineralization within the Cariboo Pit. Hydrothermal brecciation of intrusion breccia, plagioclase porphyry, and monzonite is the main control on mineralization. Recommendations for further work include ongoing geological mapping both in-pit and out, relogging of core from holes outside the Cariboo Pit, and diamond drilling of targets identified by mapping, relogging, and geological modeling.

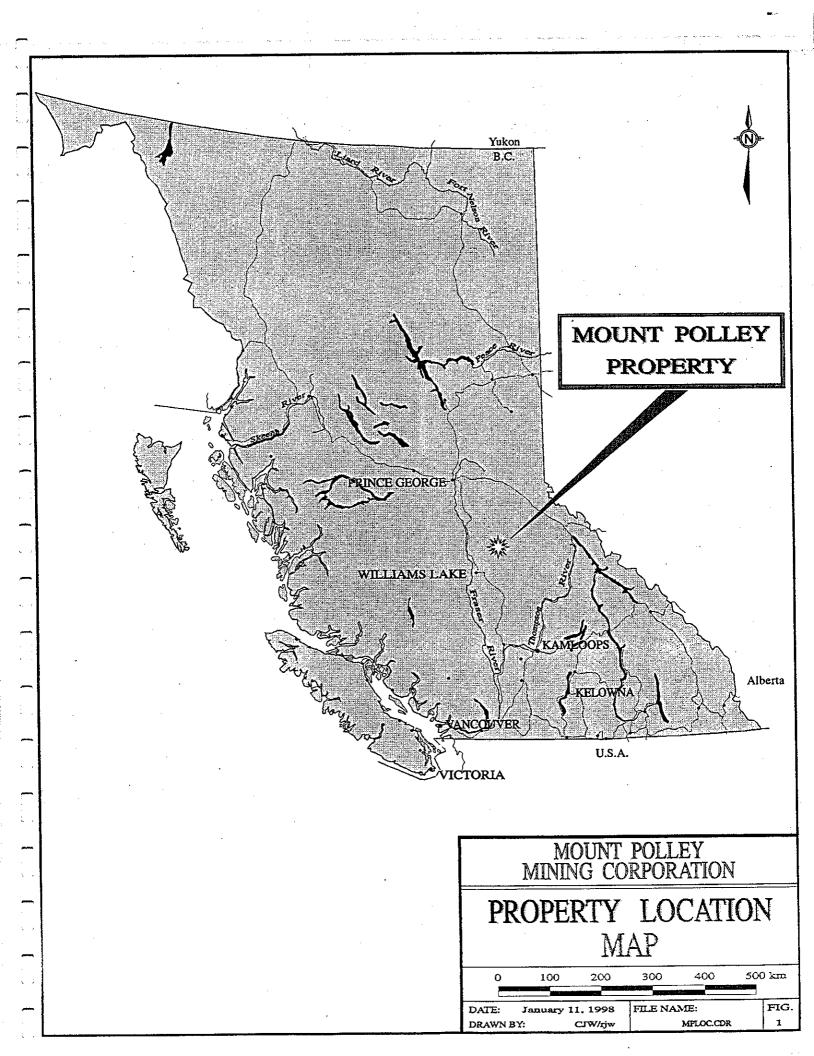
2.0 Introduction

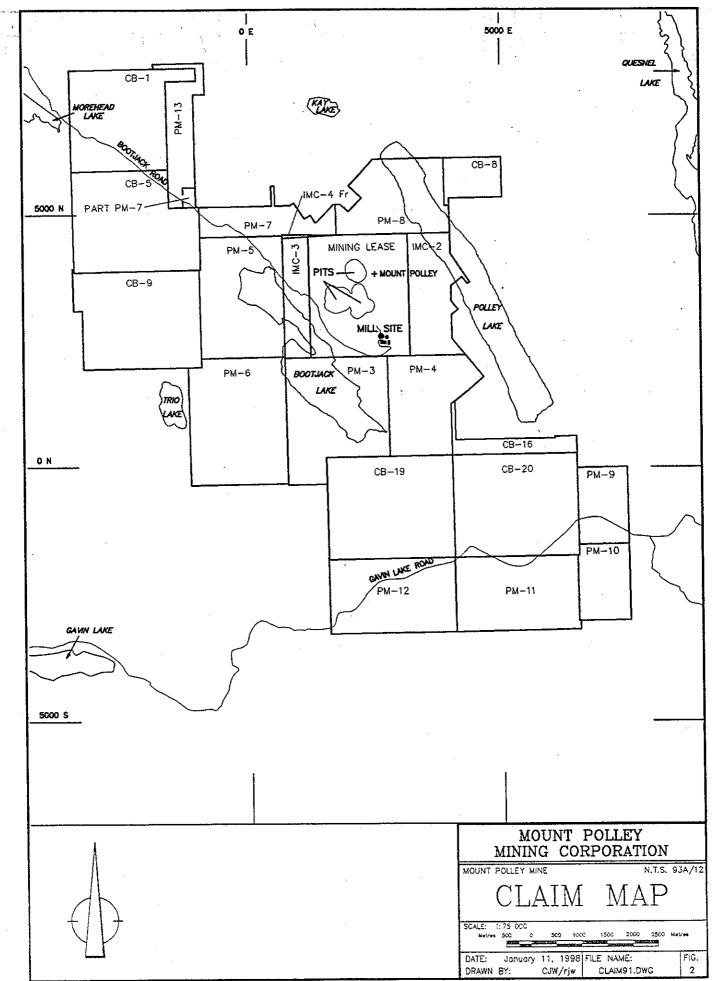
ξ...

The Mount Polley Mine in central B.C., is a low-grade, alkalic copper-gold porphyry deposit recently put into production by Mount Polley Mining Corporation at a capital cost of \$123.5 million. The operation consists of an 18,000 tonne per day mine and concentrator complex with a project life of 12 to 14 years in 1997. Reserves prior to production were published at 82.3 million tonnes at an average grade of 0.30% copper and 0.47% grams per tonne gold. The deposit will be mined sequentially from 3 pits; Cariboo, Bell, and Springer.

25

A total of 1,200.8 metres of diamond drilling completed during December, 1998, targeted gaps in the geological and ore reserve models along the expected western and southern limits to mineralization within the Cariboo Pit. One hole tested the East Cariboo Zone to depth. The objectives of the program were to define mineable limits to the south and west, define the relationship between mineralization, alteration and rock type, test the location of the large Polley Fault at depth, and assess rock quality to assist in pit design. A program of detailed geological mapping and core relogging was also completed within the Cariboo Pit to define geological controls on mineralization.


2.1 Location and Access


Mount Polley Mine is located in south-central British Columbia, 8 kilometers southwest of the village of Likely and 56 kilometers northeast of Williams Lake (Figure 1). There is excellent access to the property via the Likely Road from Highway 97 at 150 Mile House, 76 kilometers to Morehead Lake, and 14 kilometers along the Bootjack Forest Access Road to the minesite. Other forestry and mining roads afford good access to most parts of the property.

2.2 Physiography

The property sits near the eastern edge of the Fraser Plateau physiographic subdivision, characterized by rolling topography and moderate relief. Elevations range from 920 metres at Polley Lake to 1266 metres at the summit of Mount Polley. Forest cover consists of western red cedar, Douglas fir and sub-alpine fir, with lesser black cottonwood, trembling aspen and paper birch. Commercial logging has clear-cut much of the area over the last several years.

Mean monthly temperatures range from 13.7°C in July to –10.7°C in January. Precipitation averages 856 mm with around 350mm falling as snow.

-

2.3 Claim Status

The Mount Polley property consists of 21 mineral claims, one fractional claim, and one mining lease (Figure 2). Area covered totals approximately 8,575 hectares including 483.16 hectares covered by Mining Lease 345731. Table 1 lists claims currently in good standing by claim name, number, units, and expiry date. All these claims are owned by *Mount Polley Holding Company Limited*.

Table 1

с. 9

ι. .

Claim Name	Record No.	Units	Area (ha)	Expiry Date	NTS
CB 1	204470	20	500	04-May-04	93A/12E
CB 5	204472	20	500	04-May-04	93A/12E
CB 8	204473	8	200	04-May-04	93A/12E
СВ 9	204474	20	500	04-May-04	93A/12E
CB 16	204475	20	500	04-May-05	93A/12E
CB 19	204476	20	500	04-May-05	93A/12E
CB 20	204477	20	500	04-May-05	93A/12E
РМ-3	206448	20	500	17-Sep-05	93A/12E
PM-4	206449	20	500	14-Sep-05	93A/12E
PM-5	206450	20	500	29-Sep-05	93A/12E
РМ-6	206451	20	500	29-Sep-05	93A/12E
PM-7	206452	12	300	17-Sep-05	93A/12E
PM-8	206453	20	500	17-Sep-04	93A/12E
PM-9	206798	6	150	23-Feb-04	93A/12E
PM-10	206799	6	150	23-Feb-04	93A/12E
PM-11	206800	15	375	23-Feb-05	93A/12E
PM-12	206801	15	375	21-Feb-05	93A/12E
PM-13	207244	12	300	26-Sep-04	93A/12E
IMC 1*	340017	20	500	22-Aug-26	93A/12E
IMC 2	340018	15	375	21-Sep-04	93A/12E
IMC 3	340019	5	125	22-Sep-04	93A/12E
IMC 4 fr.	340020	1	25	22-Sep-09	93A/12E
ML 345731*	345731		483	22-Aug-99	93A/12E
	1	Total	8,558	На	1

Mount Polley Mining Claims

2.4 Property History

The Mount Polley Deposit was first discovered as a result of follow-up prospecting of an aeromagnetic anomaly highlighted on a government aeromagnetic map sheet issued in 1963. Claims were first staked in 1964 by Mastodon Highland Bell Mines Ltd. and Leitch Gold Mines. In 1966, the two companies formed Cariboo-Bell Copper Mines Ltd. The property was mapped, soil and rock geochemical surveys and airborne and ground-based geophysical surveys were conducted, followed by bulldozer trenching

. . .

. *.* .

ε.,

and drilling. A group of Japanese companies joined Cariboo Bell but later withdrew over concerns about the metallurgy. In 1969, Teck Corporation took over control of Cariboo Bell.

During the period from 1966 to 1972, a total of 18,341 metres of diamond drilling and 8,533 metres of percussion drilling were completed in 215 holes. In 1970, magnetic, seimic, and induced polarization (IP) surveys were conducted on the property. Teck continued to work the property in 1972, 73, and 75. In 1978, Highland Crow Resources, an affiliate of Teck, acquired control of Cariboo Bell. The following year, Teck completed 6 percussion holes totalling 354 metres.

In 1981, E&B Explorations Inc. optioned the property from Highland Crow and completed 1,746 metres of diamond drilling, 1,295 metres of rotary drilling, and soil geochemical and ground control surveys. The following year, E&B acquired 100% interest and continued to work on the property with joint venture partners Geomex Partnerships and Imperial Metals Corporation. From 1982 to 1987, E&B completed soil geochemistry, magnetic, VLF-EM and IP surveys; geological mapping; 3,585 metres of diamond drilling and 4,026 metres of reverse circulation drilling.

In 1987, Imperial Metals merged with Geomex Partnership and purchased the remaining interest in the property from Homestake Canada and others. (E&B had merged with Mascot Gold Mines which subsequently merged with Corona Corporation and finally became Homestake Canada).

During the period between 1988 and 1990, Imperial Metals Corporation conducted a comprehensive exploration program consisting of 238 NQ diamond drillholes totalling 27,566 metres, the collection of 6 bulk samples totalling 130 tonnes from surface trenches, geological mapping and IP surveys. A positive feasibility study incorporating new ore reserve calculations, metallurgical testing, geotechnical evaluations, and environmental impact assessments was completed in 1990 by Wright Engineers Ltd.

In 1993/94, Theresa Fraser from the University of British Columbia completed a Masters thesis on the geology, alteration, and origin of hydrothermal breccias on the deposit. The focus of the study was to document data important to aspects of the genesis of the deposit, particularly breccia distribution, breccia types, distinctive matrix minerals and alteration.

In 1994, Gibraltar Mines Ltd., under an option agreement with Imperial Metals, carried out 1,216 metres of diamond drilling in 7 holes on the deposit. Upon evaluation of the project, Gibraltar declined further participation. Following a merger with Bethlehem Resources Corporation in 1995, Imperial completed an in-house feasibility study and arranged financing with Sumitomo Corporation through a joint venture with SC Minerals Canada, culminating in the formation of Mount Polley Mining Corporation in April 1996.

In 1995, 5 HQ diamond drillholes totaling 883.92 metres were completed on the south end of the Cariboo Zone for metallurgical testing. An additional 11 NQ holes totaling 1,773.33 metres were completed on various targets around the property. Of the 11 holes, 2 were in the Kay Lake Basin area, 4 on the Road Zone, 1 immediately northwest of the design Springer Pit, and 4 south of the design Cariboo Pit. Seven 6" diameter rotary holes totalling 932.38 metres were also drilled. The primary purpose of the holes was to source and monitor groundwater, but cuttings were also collected, logged and sampled over 10 foot (3.05 metre) intervals. Sites included the southeast end of the design Cariboo Pit, three immediately southeast and southwest of the millsite, one immediately east of the north end of the Cariboo Pit, one between the East Rock Disposal Site and Polley Lake, and one between the proposed Springer Pit and Bootjack Lake. Also, a soil geochemical survey was conducted over 6.175 kilometers of grid between an old E&B grid and the north claim boundary. Lines were spaced at 100 metres, stations at 25 metres.

In 1996, 7 NQ diamond drillholes totalling 991.51 metres were completed peripheral to the Mount Polley orebody. Three holes totalling 483.11 metres were drilled on the Road Zone, three more totalling 369.72 metres were completed on the Northwest Zone, 800 metres northwest of the design Springer Pit, and a single inclined hole totalling 138.68 metres was completed on the S Zone west of the Road Zone. In addition, a very limited program of rock geochemistry was conducted on new rock exposures within the mine property, including the last 2 km of the mine access road, Southeast Sediment Pond, Perimeter Ditch, S Zone, and Gavin Lake.

The 1997 exploration program focussed on defining mineable limits on the east and south margins of the Cariboo Pit. Diamond drilling consisted of 15 NQ holes totalling 1,614.0 metres along the East and South Cariboo mineralized trends. Additionally, 17 short (average 40 metres) percussion holes totalling 702.1 metres were drilled along the East Cariboo Zone to better define mineralization for mine planning. To better understand and classify the geology, a short program of detailed (1:500 scale) geological mapping was initiated along this eastern trend (Read, 1997), in conjunction with ongoing wall mapping in the Cariboo Pit. Three percussion water well holes totalling 350.5 metres were drilled south of the mill complex, immediately south of the Cariboo Pit and at 10 kilometre on the Bootjack Road in an attempt to source groundwater for mining and milling operations. Drill cuttings were collected and inspected for each 30 foot interval. Miscellaneous exploration included rock chip samples collected from new blast exposed outcrops at 9.5 kilometre on the Bootjack Road.

During the summer of 1998, a total of 792.18 metres of diamond drilling were completed in three holes around the Cariboo Pit. The three holes tested three zones; Cariboo North, Southeast Zone, and Cariboo South to an elevation of 900 metres, approximately 230 metres below current mining. The objectives of the drill program were to test the continuity of the orebody to depth; to define the relationship between mineralization, alteration and rock type; to refine the current rock classification system to ensure

Γ	1998 Diamond Drilling and Geological Mapping (Stage II)	·!	May 20, 1999

consistency; and to assess rock quality to assist in pit design. A program of detailed geological mapping and core relogging was initiated to determine the distribution of major rock units and their relationship to ore mineralization within the Cariboo Pit.

2.5 1998 Program (Stage II)

. 2 - 2 In December of 1998, a second stage of diamond drilling consisting of 6 holes totaling 1,200.8 metres was completed along the west and south sides of the Cariboo Pit. Four holes were designed to fill significant gaps in the geological and ore reserve model along the southern half of the west side of the Cariboo Pit. One hole tested the orientation of the southern limit of mineralization, also on the west side. Finally, one hole tested the central part of the East Cariboo Zone to depth. Also, between September 1st and November 30th, geological mapping within the Cariboo Pit was completed. In conjunction with this mapping program, core from approximately 60 diamond drillholes completed within the Cariboo Pit, was relogged and re-interpreted.

.....

3.0 Geological Setting

3.1 Regional Geology

The Mount Polley deposit is hosted in an alkalic intrusive complex within the Central Quesnel Belt (CQB), a part of Quesnellia extending along the eastern margin of the Intermontane Belt in south-central British Columbia. The CQB is comprised of Upper Triassic to Lower Jurassic sedimentary and volcanic rocks of island arc and oceanic origin extending along the western margin of the Omineca Crystalline Belt. These Nicola Group rocks are thought to have formed in a Late Triassic volcanic arc, east of a subduction-accretion complex.

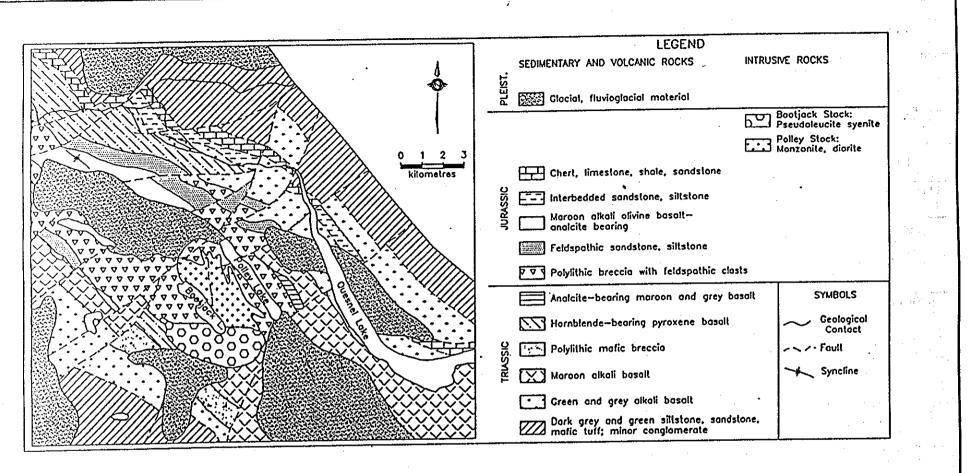
Stocks within the CQB are interpreted to be coeval with the more broadly distributed volcanic rocks, likely as volcanic centres. Northwest trending faults appear to control the emplacement of these centres. The Polley Stock is made up of syenite, monzonite, monzodiorite, and diorite, dated around 202 Ma, intruding polylithic volcanic breccia and alkali basalt of the Nicola Group.

3.1 Deposit Geology

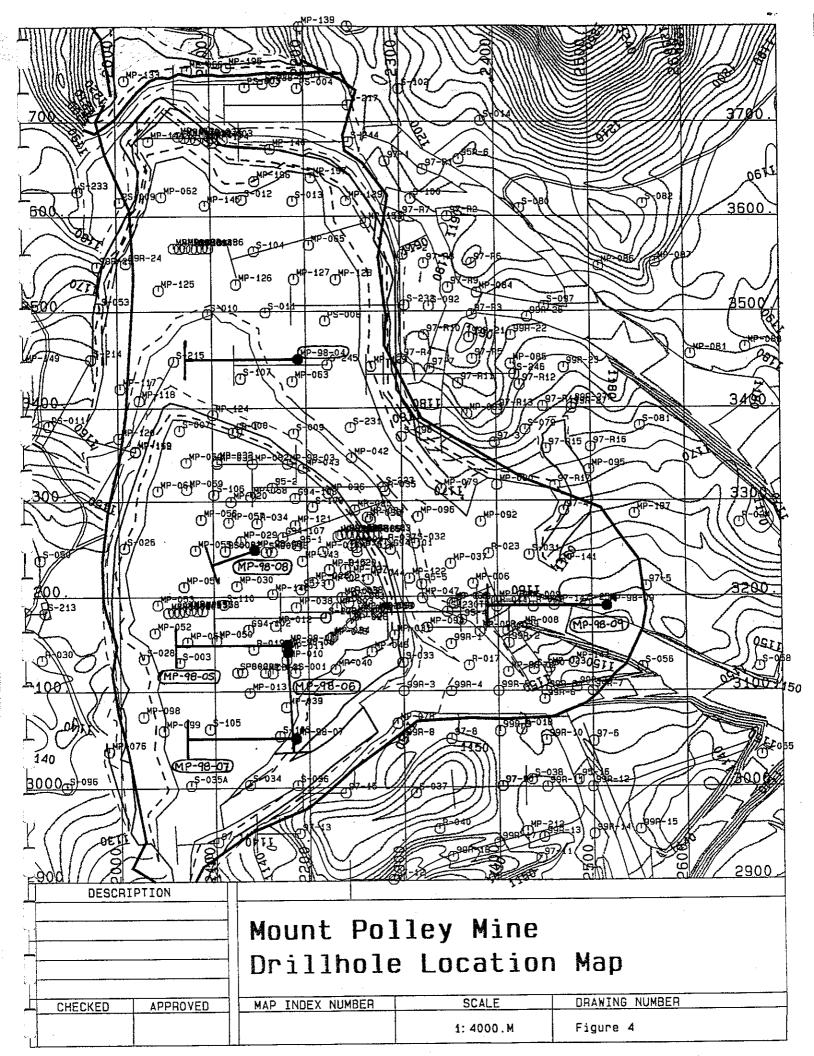
The Mount Polley deposit is hosted in the Polley Stock, a 5.5 by 4 kilometre intrusive body largely comprised of diorite. The orebody is hosted within intrusion and hydrothermal breccias related to the monzonite intrusions along the north-northwest striking Polley Fault. This fault separates the deposit into the Central Zone (Cariboo and Bell Pits) and the West Zone (Springer Pit), each with distinctive characteristics of mineralization, alteration and breccia types.

Deposit lithologies are chiefly diorite, monzonite, plagioclase porphyry, and intrusion breccia consisting of diorite clasts in a plagioclase porphyry or monzonite matrix. Other important lithologies include volcanic breccias and tuffs, common along the east side of the deposit, porphyritic augite monzodiorite, potassium feldspar phyric monzonite, augite porphyry, and biotite lamprophyre dykes. These units are interpreted as dykes, although a stock of phyric monzonite breccia also occupies the summit of Mount Polley.

The diorite host is fine grained, equigranular to weakly porphyritic, composed of plagioclase, minor pyroxene, and accessory minerals including magnetite, sphene and apatite. Plagioclase porphyry and monzonite intrude diorite and form the matrix of much of the intrusion breccia. The porphyry is crowded with plagioclase phencrysts up to 5 millimetres in length and variably sericitized. Mafics include primary biotite, hornblende and magnetite although the unit is commonly strongly altered.


Polymictic volcanic breccias and tuffs form part of the eastern margin of the central zone becoming more dominant to the south and east. Blocks of volcanics form xenoliths in the diorite and occasional clasts in intrusion and hydrothermal breccias. In the southeast part of the central zone, a unit of magnetite-rich rock, possibly skarn related, occupies an area up to 100 by 100 metres. This unit is in sharp contact with both diorite and plagioclase porphyry, and may replace volcanics. Locally, this unit appears to be well mineralized and coincident with possible supergene mineralization.

Hydrothermal brecciation is superimposed on diorite, plagioclase porphyry, monzonite, intrusion breccia and, more rarely, volcanic tuff/breccia. Fraser (1994) divided the hydrothermal breccias into four types based on matrix mineralogy, including actinolite, biotite, magnetite, and albite. Actinolite breccia, mapped in the central zone east of the Polley Fault, consists of subangular clasts in a matrix of fibrous dark green actinolite and potassically altered material. Biotite breccia is identified only in the southern part of the central zone by the presence of hydrothermal biotite flakes locally altered to chlorite. Magnetite breccia is much less abundant and localized. Albite breccia dominates the west zone and is identified by the presence of prismatic albite crystals in vugs in the breccia matrix commonly with secondary biotite. The effects of albitization make it difficult to distinguish clasts.


Alteration at Mount Polley, typical of alkalic porphyry systems, is dominated by a central potassic zone defined by potassium feldspar-albite, biotite, and actinolite, with little or no phyllic/argillic zone. The potassic core is coincident with hydrothermal and intrusive brecciation as well as copper-gold mineralization. The propylitic zone is characterized by albite, epidote, chlorite, carbonates, garnet, pyrite and zeolites. A pyrite halo has been identified northeast and southwest of the deposit within the propylitic zone.

The deposit contains chalcopyrite, pyrite, and bornite as primary sulphides. Concentrate polished grain mounts revealed rare tetrahedrite, galena, sphalerite, and molybdenite. Secondary or supergene sulphides are also rare but include chalcocite, covellite, and digenite. Oxides include malachite, azurite, magnetite, hematite, and limonites likely goethite and minor jarosite. Chrysocolla is a relatively rare secondary copper mineral. Native gold is present as 5 to 30 micron inclusions in chalcopyrite. Ore mineralogy is hosted primarily in hydrothermal and intrusion breccias, with lesser amounts in plagioclase porphyry, monzonite, diorite, and volcanics.

	MOUNT POI MINING CORPO	
	SIMPLIFI REGIONAL GI	/
	DATE: January 1998 FILE N DRAWN BY: CJW/rjw MPf	AME: FIG. REGGEO.DWG 3
-		

...

4.0 1998 Diamond Drilling Program (Stage II)

4.1 Description

The primary aim of the 1998 drill program was to test for high-grade mineralization along the western boundary of the pit at depth. Gaps in the ore reserve model were the result of insufficient drillhole density; geology suggested these gaps had good potential to host ore-grade mineralization. Secondly, the relationship between mineralization, protolith, and alteration continues to be examined. Thirdly, the location at depth of the Polley Fault, a large breccia and gouge structure on the southwest side of the Cariboo Pit, will have a large impact on pit wall design and recovery of ore adjacent to the fault. Lastly, geotechnical logging has added structural and rock quality data that will aid pit design.

Table 2

с. л

6.7

1998 Diamond Drillholes

Hole No.	Zone	Coordinates		Length	Target Length	Bottom	Az./Dip	
		Northing	Easting	Elevation	(m)	(m)	Elevation	(degree)
MP-98-04	Cariboo North	3449.62	2191.71	1169.33	208.8	200	998	270/55
MP-98-05	Cariboo South	3150.00	2177.83	1130.36	206.7	200	961	270/55
MP-98-06	Cariboo South	3145.99	2176.75	1130.49	187.5	150	978	180/55
MP-98-07	Cariboo South	3051.04	2185.79	1130.09	200.7	200	965	270/55
MP-98-08	Cariboo South	3248.46	2143.89	1120.23	176.3	200	950	252/72
MP-98-09	East Cariboo	3190.17	2516.19	1155.19	200.8	250	974	270/55

All core was logged and sampled; a total of 612 samples were taken over an average length of almost 2.0 metres. Samples were cut in half with a rock saw. One half of the core was submitted to the analytical lab at Mount Polley for assaying and the other half stored on the property for future reference. All samples were dried, crushed, split (250 grams) and pulverized (95% passing 100 mesh) before being analyzed for total copper, oxide copper, gold, and iron. Total copper and iron were determined with HNO₃/HCI digestion with atomic absorption (AA) finish. Gold was analyzed with a 20-gram Fire Assay and AA finish. Copper oxide was determined using a 2.5% H₂SO₄ leach for one hour with an AA finish.

4.2 MP-98-04

MP-98-04 was drilled to the west at -55° in the North Cariboo to fill a large hole in the ore reserve model along the west side of the pit. The hole bottomed at a total depth of 208.8m, at around 998m elevation.

Most of the hole, to 198.6 metres, is pink to grey hydrothermal and intrusion breccia cut by several narrow augite porphyry dykes and at least 2 faults. Higher-grade sections correspond with more intense potassic alteration, although strong alteration does not guarantee high grades. At 198.6 metres, breccia is in sharp contact with a grey, porphyritic monzonite displaying only minor K-spar alteration and no obvious mineralization. It is interesting to note that the last mineralized interval, from 151.0 – 167.0 metres, is strongly oxidized despite its depth. Oxidation may be controlled by certain structures, possibly with lithologic contacts.

ALC: N

Table 3	
MP-98-04 :	Significant Intersections

From	То	Length (m)	Cu (%)	Cu-ns (%)	Ox Ratio	Au (gpt)
3.0	15.0	12.0	0.381	0.022	5.90%	0.383
39.0	61.0	22.0	0.182	0.006	3.35%	0.256
77.0	136.3	59.3	0.220	0.006	2.65%	0.319
151.0	167.0	16.0	0.151	0.069	45.78%	0.275

The presence of ore-grade mineralization to 136.3 metres and of near ore-grades to 167.0 metres appears to have extended ore blocks further west and deeper, filling in a large void in the previous ore reserve model. While grades are relatively low, very low oxide ratios will likely push this material into mineable reserves.

4.3 MP-98-05

MP-98-5 was drilled west at -55° to intersect the western breccia – Polley Fault contact and to test for ore below the current pit bottom and below the level of previous drilling. Total drilled was around 206.7 metres, including the last 9.5 metres into the Polley Fault breccia. Breccia extends to 77 metres, giving way to a grey plagioclase porphyry, a propylitically-altered porphyry, monzonite, and finally the fault at 197.2 metres. Ore grades extend well into the porphyry, dying out around 111 metres. Table 4 shows that grades through much of this hole are well above deposit averages.

Unexpectedly, very high grades were encountered in the Polley Fault Zone, between 197.2 – 206.7 metres, averaging close to 1.0% total copper and 2.0 gpt gold with a 70% oxide ratio. Close inspection of the core reveals significant copper oxides and finely disseminated sulphides. Pulps from this zone were re-assayed and additional splits of the original samples were also assayed to confirm these high values. Results are included in the following table.

There are a couple of explanations for the presence of this mineralized zone within the Polley Fault Zone, apparently far removed from the main body of mineralization. It may be a splay of high-grade ore from the South Cariboo Zone that got caught in the fault and tectonically transported in a dip-slip sense down

fault. Ore has been identified within the fault zone on 1130 Bench and in MP-98-7 in close proximity to very high-grade ore. Alternatively, this zone may be a continuation of the Springer Zone, which appears to trend and plunge to the southeast. Future drilling will target this zone as part of the Springer Pit pushback into the Cariboo Pit.

Table 4	
MP-98-05 :	Significant Intersections

From	То	Length (m)	Cu (%)	Cu-ns (%)	Ox Ratio	Au (gpt)
3.00	87.00	84.00	0.292	0.016	5.5%	0.655
ncluding		I.				
5.00	20.20	15.20	0.322	0.028	8.7%	0.848
48.70	87.00	38.30	0.358	0.016	4.4%	0.734
99.00	111.00	12.00	0.291	0.007	2.3%	0.445
197.20	206.70	9.50	0.939	0.615	65.5%	2.345
	Re-assay	9.50	0.829	0.731	88.2%	2.227
	Re-split	9.50	0.804	0.755	94.0%	2.175

4.4 MP-98-06

MP-98-6 was drilled south into the southern breccia – porphyry contact to determine the location and possible orientation of the southern ore limit. The hole was planned to 150 metres, but continued to 187.5 metres to the end of a zone of conspicuous chalcopyrite in potassically-altered plagioclase porphyry and breccia. Ore grades and associated potassic alteration end in a transition zone marked by abundant calcite veining. This transition zone is likely a healed fault zone. The bottom 4.5 metres are in weakly altered, unmineralized, grey plagioclase porphyry.

The location of the lower ore-grade limit suggests that the ore limit dips steeply to the south. This intersection may be continuous with an intersection in the immediate hangingwall of the Polley Fault in MP-98-07. This zone extends deeper and further south that initially suspected but mining the zone will require that considerable waste stripping take place to widen the southwest corner of the Cariboo Pit. Pit optimization work will determine whether the zone can be mined profitably.

Table 5	
MP-98-06 :	Significant Intersections

From	То	Length (m)	Cu (%)	Cu-ns (%)	Ox Ratio	Au (gpt)
3.0	19.0	16.0	0.160	0.019	12.1%	0.385
30.5	53.3	22.8	0.296	0.006	2.2%	0.608
62.8	71.0	8.2	0.140	0.003	2.0%	0.365
91.0	130.7	39.7	0.193	0.007	3.7%	0.317
137.0	180.4	41.4	0.242	0.025	10.2%	0.410

4.5 MP-98-07

MP-98-7 was collared near the south end of the pit, on section 3050N, to test for ore in the immediate hangingwall of the Polley Fault and also provide geotechnical information on the fault and its footwall rocks. As expected, the top 86.0 metres of breccia and porphyry is very weakly mineralized. The top mineralized breccia, from 86.0m to 94.4m, is separated from the main mineralized breccia by 25 metres of grey porphyry. The main breccia, from 122.5 - 180.5 metres, is very high grade, more highly oxidized than the first interval, and runs into the Polley Fault. Grades at the fault contact peak at 0.98% copper and 3.14 gpt gold over 1.3 metres before dropping dramatically over the next 2.7m into the fault. Ore extends down to at least 980m level. When combined with high grades near the bottom of 98-6, a significant zone that likely extends further south becomes apparent.

-

Table 6	
MP-98-07 :	Significant Intersections

From	To	To Length (m) Cu (%		Cu-ns (%)	Ox Ratio	Au (gpt)
86.00	94.40	8.40	0.235	0.007	3.1%	0.311
125.00	181.00	56.00	0.409	0.124	30.2%	0.626

4.6 MP-98-08

MP-98-8 was collared on 1120 Bench, to test the western contact of the breccia-monzonite near 3250N. The hole was moved closer to the target, steepened to -75° , and shortened to 176.3 metres to fit the bench configuration at the time. Breccia, cut by a series of narrow fault zones, gives way to plagioclase porphyry between 95.0 - 103.2 metres, then extends down to 150.0 metres. Grades are highest over the top 61 metres. Only one interval below the porphyry returned ore grades as alteration within the lower half of the breccia diminishes. The bottom 26.3 metres of the hole are made up of a "dead-looking" variably porphyritic monzonite. This monzonite shows excellent rock quality characteristics.

Table 7MP-98-08 : Significant Intersections

From To		Length (m)	Cu (%)	Cu-ns (%)	Ox Ratio	Au (gpt)	
3.7	71.0	67.3	0.301	0.106	35.1%	0.661	
77.0	91.0	14.0	0,319	0.016	4.9%	0.320	
103.0	115.0	12.0	0.223	0.028	12.7%	0.335	

4.7 MP-98-09

τ.

MP-98-9 was collared into the Cariboo East Zone to test for high-grade mineralization at depth. The hole was inclined at -55° to the west over a total length of 220.98 metres. The hole is made up interlayered andesitic volcanics and monzonite with a strong hydrothermal breccia overprint. Mineralization appears

May 20, 1999

to be quite strong and very lightly oxidized throughout. A short section of magnetite was intersected at between 142.8 – 143.8 metres and correlates well with the East Zone magnetite seen on surface and in hole S-251. Grades within the magnetite zone are relatively low, although the highest grades in the hole are located immediately above the zone in "volcanic" breccia.

Marginal to ore-grade mineralization extends to the bottom of the hole. Highest grades are again found in "volcanic" breccia. Gold-copper ratios are very erratic but in general far lower than the deposit average. This has been noted throughout much of the East Cariboo. The presence of mineralization to the bottom of the hole confirms that the East Cariboo Zone extends below previous pit designs for that part of the pit.

From	То	Length (m)	Cu (%)	Cu-ns (%)	Ox Ratio	Au (gpt)
9.2	21.0	11.9	0.257	0.005	2.0%	0.346
39.0	45.0	6.0	0.389	0.005	1.3%	0.190
73.0	79.0	6.0	0.377	0.009	2.4%	0.325
91.2	107.0	15.8	0.270	0.010	3.7%	0.191
128.2	159.0	30.8	0.355	0.019	5.5%	0.285
195.0	220.0	25.0	0.218	0.005	2.1%	0.292

Table 8 MP-98-09 : Significant Intersections

_

5.0 Geotechnical Analysis

Geotechnical data, including core recovery, Rock Quality Designation (RQD), fracture density, strength index, and alteration index, were collected for each core run in all six holes.

MP-98-04, located on the west side of the Cariboo Pit at 3450N, showed a core recovery close to 100% throughout. RQD's range from 0% in a fault between 133.5 - 134.7 metres up to 100% in weakly altered and mineralized intrusion breccia. Much of the hole is greater than 80%. The number of fractures per metre ranges from less than 10^{10}_{A} mineralized intrusion breccia to > 100 in the fault. Strength index was mainly R3 (medium strong), increasing to R4 in the grey porphyry at the bottom of the hole. The entire hole is variably K-spar altered.

MP-98-05, located on the west side of the Cariboo Pit at 3150N, showed a core recovery close to 100% throughout and very high RQD's to 192.9 metres. The Polley Fault and immediate hangingwall rocks show a 0% RQD. The number of fractures per metre ranges from less than 10^{10}_{Λ} mineralized intrusion breccia to > 100 in the fault. Strength index was R3 (medium strong) throughout with moderate potassic alteration.

MP-98-06, located on the south side of the Cariboo Pit at 2175E, again shows excellent core recovery and RQD throughout. There are no significant faults so fracture density ranges to 20. Strength index was R3 (medium strong), increasing to R4 over the bottom 5 metres. Moderate potassic alteration characterizes the entire hole.

MP-98-07, located on the west side of the Cariboo Pit at 3050N, again shows excellent core recovery and RQD throughout. In the Polley Fault Zone, recovery dropped slightly, RQD's ranged from 16 – 46.7%. Strength index was R3 (medium strong), increasing to R4 over the bottom 5 metres. Strength index was R3 (medium strong) throughout with moderate potassic alteration.

MP-98-08, also located on the west side of the Cariboo Pit at 3250N, again shows excellent core recovery and RQD's, except through small fault zones near the top of the hole. Strength index was R3 (medium strong) through the breccia, increasing to R4 in the monzonite 25.6 metres. Alteration is very weak in the monzonite.

MP-98-09, located on section 3200N in the East Cariboo, again shows excellent core recoveries. RQD's are lower over the top 68.2 metres coincident with higher fracture densities. Strength index was R3 (medium strong) throughout with moderate potassic alteration. Faulting was minimal in the hole.

6.0 Geological Mapping

. . . .

Ç.,

_

: 4 4

_

<. 2

. .

. . .

ς.

۰.

ς. γ

1.

. U I

This report describes the pit mapping program carried out in the Cariboo Pit from September 1, 1998 to the end of the year. The program was initiated on August 24th and is reported in a previous assessment report (Wild, 1998). Most of this section was presented in that report although most of the mapping and the expenses accrued are applied to this report.

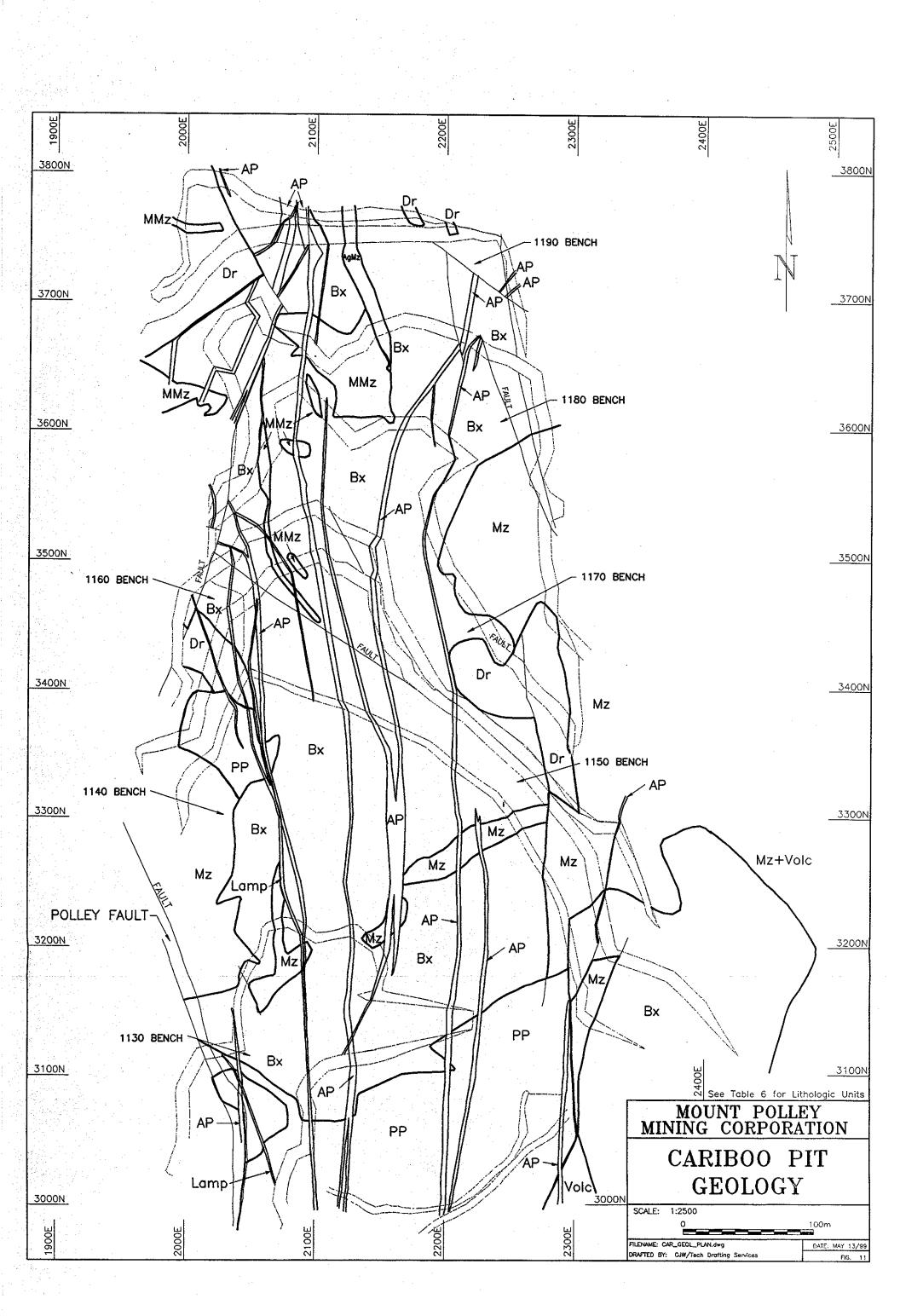
In the Cariboo Pit, the most important rock type is breccia, consisting of both intrusion breccia and superimposed hydrothermal breccia (see Fig 11). Strong potassium feldspar alteration is largely coincident with both breccia types, making identification of clast types, size, angularity, proportion to matrix, and matrix type difficult. To simplify mapping, all breccias were grouped together as a single map unit. Outstanding breccia features were noted, including the presence of hydrothermal minerals including actinolite, biotite, diopside – hedenbergite, magnetite, albite, epidote, chlorite, and carbonates. Generally, copper and gold grades are coincident with strong brecciation and alteration.

Breccias are hosted in diorite, plagioclase porphyry and monzonite, a non-porphyritic phase of the porphyry. These host rocks exhibit local brecciation, potassic alteration of variable intensity and spotty mineralization. Generally, mineralization is related to strong potassic alteration which, in turn, is best developed in breccia. The intensity of potassic alteration drops off sharply at breccia-monzonite (plagioclase porphyry, diorite) contacts. Based on blasthole assay data from the benches mapped, copper and gold grades also drop significantly in the plagioclase porphyry and monzonite units.

A number of late to post-mineralization dykes and intrusions have been mapped. The most significant is an unmineralized, pink, megacrystic monzonite. This massive unit forms a large plug and several irregular dykes in the centre of the north end of the pit. Megacrysts are much less abundant near contacts making it difficult to distinguish from pink plagioclase porphyry and monzonite. Blastholes within the megacrystic monzonite returned very low copper and gold grades. A north-trending, grey augite monzonite to monzodiorite dyke was mapped from the 1190 – 1210 Bench north wall, for 200 metres south where it forms the eastern contact of the central megacrystic monzonite plug. Like the plug, this dyke is post-mineral. It has not been identified anywhere else in the pit.

Two sets of mafic dykes crosscut all other rock types. Augite porphyry (AP) dykes are generally north trending, and range up to 10 metres in thickness, although 1 - 3 metres are typical. These dykes are very continuous, several have been mapped along the entire length of the pit. AP dykes are fine-grained, dark green, and contain black augite phenocrysts generally 1 - 3 millimetres in diameter. Often, the dykes are weathered and strongly sheared, exhibiting shallowly plunging slickensides. Lamprophyre dykes are also north trending and often coincident with AP dykes. Locally, they crosscut the AP dykes.

Lamprophyre dykes are always highly sheared and near surface are strongly weathered. Biotite is the most common constituent.


Table 6 Lithologic Units - Cariboo Pit

Unit	Abbr.	Description
Lamprophyre dykes	Lamp	Medium to dark green and grey, biotite-rich, sheared, weathered.
Augite porphyry dykes	AP	Dark green, fine-grained, black augite phencrysts, often sheared
Megacrystic monzonite	MMz	Pink, syenitic with Kspar megacrysts, blocky, weakly altered
Augite monzodiorite	AgMz	Pale grey with black augite phenocrysts, blocky, weakly altered
Monzonite	Mz	Equigranular to weakly porphyritic, variable potassic altn.
Plagioclase Porphyry	PP	Crowded porphyry, seriate plagioclase phenocrysts, variable potassic altn.
Diorite	Dr	Medium grey, fine to medium grained, equigranular to weakly porphyritic,
Volcanics	V	Polymictic breccia, crystal-lithic tuff

ι. . . ÷, i . k. r È, ξ. 2

. .

May 20, 1999

7.0 Recommendations

7.1 Geological Mapping and Core Relogging

Future work at Mount Polley will include more geological mapping and core relogging. For 1999, surface mapping will move to the East Cariboo Zone, the South Cariboo Zone, and the Bell Pit. Other targets such as the Northwest Extension, S Zone, Road Zone, and south and east toward Polley Lake and the tailings impoundment facility will be further explored beginning as early as next year.

In conjunction with geological mapping, existing drillcore from the Bell Pit area will be relogged. A total of 27 holes remain in the core racks, requiring 5 days to relog. A few drillholes from East Cariboo and the Southeast Extension also remain to be relogged. Similarly, 43 holes from the Springer Pit area remain to be relogged, requiring 8 days to relog. Geological interpretation would likely require 2 weeks to complete for a total of 1 month.

7.2 Diamond Drilling

i.

A significant amount of drilling is required in the Bell Pit to bring the reserve picture into focus. Clearly, the mineralization is open to depth (east) and to the north. Drillhole density is low particularly along the east side of the deposit. A minimum of 8 holes, each drilled at -55 toward the west and 250 metres in length, are required to firm up both the ore reserve picture and pit design criteria. Again, favourable results to the north and/or east would lead to follow-up drilling in the order of 1500 metres.

Two holes, totalling 400 metres, will target the "207 Zone" to the south, where a recent testhole confirmed very high copper and gold grades in diamond drillhole MP-207 and R-86-40. Associated with this zone are several very high grade copper intersections in X-series holes. Unfortunately, exact locations for these holes are not known although it appears likely that these holes are located near the 207 Zone. Both holes would be angled to fence across section 2750N to determine geological control on the 207 Zone mineralization.

Table 7Proposed Diamond Drilling – 1999Stage I

Priority	Target	Time Frame	Est. No. of Holes	Est. Footage (m)
1	Bell Pit	1999	8	2000
2	South Cariboo Zone	1999/00	2	400
<u> </u>	Total		10	2400 metres

May 20, 1999

Stage II

Priority	Target	Time Frame	Est. No. of Holes	Est. Footage (m)
3	Bell Pit	1999/00	6	1500
4	South Cariboo Zone	2000	4	800
	Total		10	2300 metres

÷....

شوه

Respectfully submitted,

. . .

× 4 -

Christopher J. Wild, P.Eng. Mine Geologist

8.0 References

Bailey, D.G. (1988): Geology of the Central Quesnel Belt, Hydraulic, South-Central British Columbia; in Geological Fieldwork 1987, B.C. Minisrtry of Energy, Mines and Petroleum Resources, Paper 1988-1, p.147-153.

· 470

чüи

Coe, J.E. (1996): Copper Oxide Occurrences in a Feed Sample from Mount Polley Mine, British Columbia; Cytec Industries Inc., unpublished report, 11 p.

Fraser, T.M. (1994): Geology, Alteration and Origin of Hydrothermal Breccias at the Mount Polley Alkalic Pophyry Copper-Gold Deposit, South-Central British Columbia; unpublished MSc thesis, the University of British Columbia, 261 p.

Fraser, T.M. (1994): Hydrothermal Breccias and Associated Alteration of the Mount Polley Copper-Gold Deposit; in Geological Fieldwork 1993, B.C. Minisrtry of Energy, Mines and Petroleum Resources, Paper 1994-1, p.259-267.

Fraser, T.M., Stanley, C.R., Nikic, Z.T., Pesalj, R. and Gorc, D. (1996): The Mount Polley Alkalic Porphyry Copper-Gold Deposit, South-Central British Columbia; in Porphyry Deposits of the Northwestern Cordillera of North America; Canadian Institute of Mining and Metallurgy, Special Volume 15, p. 388-396.

Harris J.F. (1989): A Petrographic Study of Mineralized Samples from the Mount Polley Property; Harris Exploration Services, unpublished report, 14 p.

Harris J.F. (1989): "Modified descriptions and rock names for suite previously described..."; Harris Exploration Services, unpublished report, 38 p.

Hodgson, C.J., Bailes, R.J. and Verzosa, R.S. (1976): Cariboo-Bell; in Porphyry Deposits of the Canadian Cordillera; Canadian Institute of Mining and Metallurgy, Special Volume 15, p. 388-396.

Imperial Metals Corporation (1988): Drill Logs for Holes MP-88-1 to MP-88-99; unpublished files.

McLeod, J.A. (1997): Microscopic study of polished grain mounts of 3 mineral concentrates; Westcoast Mineral Testing Inc., unpublished report 5 p.

McLeod, J.A. (1997): Microscopic study of polished grain mounts of 5 mineral concentrates; Westcoast Mineral Testing Inc., unpublished report 7 p.

Hawthorn G. (1997): Laboratory Evaluation of Mt. Polley Ores; Westcoast Mineral Testing Inc., unpublished report 8 p.

McMillan, W.J. (1991): Porphyry Deposits in the Canadian Cordillera; in Ore Deposits, Tectonics and Metallogeny in the Canadian Cordillera, B.C. Minisrtry of Energy, Mines and Petroleum Resources, Paper 1991-4, p.253-276.

McNaughton, K. (1990): Diamond Drilling and Bulk Sampling Report, Mount Polley Project; Imperial Metals Corporation, unpublished report, Volumes 1-3.

Pesalj, R. (1996): Mount Polley Project, 1996 Exploration Report; Imperial Metals Corporation, unpublished report, 17 p.

Pesalj, R. (1995): Report on 1995 Exploration on the Mount Polley Property, Likely B.C., Cariboo Mining Division; Imperial Metals Corporation, unpublished report, 18 p.

996 poi

: E CL

. . . Read, P.B. (1997): Surface Geology of the Area East of the Cariboo Pit, Mount Polley Mines, Cariboo Mining Division (93A/12E); Mount Polley Mining Corporation, unpublished report, 25 p.

2.5

Tindall, M. (1995): Mt. Polley – Proposed In-Pit Diamond Drilling; Tindall Geoservices Inc., unpublished report, 4 p.

Wild, C.J. (1999): Report on 1999 Percussion Testhole Program at Mount Polley Mine, Mount Polley Mining Corporation, unpublished report, 15 p.

Wild, C.J. (1998): 1998 Diamond Drilling and Geological Mapping at Mount Polley Mine, Mount Polley Mining Corporation; B.C. Ministry of Energy and Mines Assessment Report, 25 p.

Wild, C.J. (1997): Summary of 1997 Exploration, Diamond and Percussion Drilling, Geological Mapping at Mount Polley Mine, Mount Polley Mining Corporation, unpublished report, 22 p.

Wild, C.J. and Letwin, J.M. (1998): Report on 1998 Diamond Drilling, Mount Polley Mine, Mount Polley Mining Corporation, unpublished report, 12 p.

Wright Engineers Limited (1990): Mount Polley Project, Williams Lake B.C., Feasibility Study; Imperial Metals Corporation, unpublished report, Volumes 1-5.

1998 Diamond Drilling and Geological Mapping (Stage II) Appendix 1 1998/99 Program Expenditures Diamond Drilling

Diamond Drilling						
	1,200.5	metres @	\$ 54.49	per metre	\$	65,411.64
Assaying						
	623	samples @	\$ 6.00	per sample	\$	3,738.00
Personnel						
Supervision - C. Wild	5	days @	\$ 250.00	per day	·\$	1,250.00
Consultation - P. McAndless					\$	817.65
Geologist - G. Gillstrom	16	days @	\$ 250.00	per day	\$	4,000.00
Sampler - R. Ney	[`] 31	days @	\$ 154.00	per day	\$	4,774.00
Room and Board						
	29	days @	\$ 74.15	per day	\$	2,150.21
Transportation						
Airfare - Vancouver to William	s Lake, return				\$	450.00
Miscellaneous		-				
Supplies, saw blades, etc.					\$	712.93

Supplies, saw blades, etc. Travel expenses

				\$
	-			\$
Totals	 	 	_	\$

May 20, 1999

103.54

83,304.43

```
GST not included
```

Geological Mapping

Supervision							· · ·
Chris Wild	10	days @	\$	217.00	per day	· \$	2,170.00
Patrick McAndless						\$	2,747.96
Contract Personnel							
Janice Letwin	55	days @	\$	217.00	per day	\$	11,935.00
Richard Ney	30	days @	\$	154.00	per day	\$	4,620.00
Room and Board							
Neilson's Lakeshore	59	days @	\$	67.00	per day	\$	3,953.00
			8% room	i tax		\$	316.24
Morehead Lake Resort	30	days @	\$	67.33	per day	\$	2,019.97
			8% room	ı tax		\$	161.60

Transportation

Expenses

J. Letwin R. Ney

Truck

Total	\$	33,366.78
	\$	40.34
	. \$	1,557.71
	\$	3,844.96

GST not included

Program Total \$ 116,671.21

1998 Diamond Drilling and Geological Mapping

Appendix 2

Statement of Qualifications

I, Christopher J. Wild, do hereby certify that:

1 I am a geological engineer currently residing at 307 Lexington Road, Williams Lake, British Columbia.

Eq.

63.75

sed.

- 2 I am employed by Mount Polley Mining Corporation as Mine Geologist at the Mount Polley Mine.
- 3 I am a graduate of the University of British Columbia, Geological Engineering, Mineral Exploration Option (1984).
- 4 I have worked in mineral exploration and mine geology in Canada and Argentina on a full-time basis since 1985.
- 5 I am Registered Member of the Association of Professional Engineers and Geoscientists of the Province of British Columbia (1994), and am a member of the Canadian Institute of Mining and Metallurgy (CIM).
- 6 I supervised all exploration activity documented in this report.

Christopher J. Wild, P.Eng. Mine Geologist

May 20, 1999

÷

.

-

--5 12

May 20, 1999

а,

Appendix 3 Diamond Drillhole Logs

			MOUNT POLLEY MINE	Direct Direct	66.0	· · · · · · · · · · · · · · · · · · ·		Hole No. Page:	MP-98-4	of	5	
t: ole No: tarted nished: bjective:	MP-98-4 Dec-10-98 Dec-11-98		3449.62 2191.71 1169.33 NQ 208.8M	Correct Dip: True Azm. Survey at:	55.0 270.0 208.8M			Logged by Date: Core store Comments	: d at:	Greg Gillst Dec-12-98 mine site	rom	
est wester	rn edge of br	eccia	r	Recovery	From	То		Tag.	<u></u>	Anal	ysis	
From me	To eters	Syb	Description		mete	ers	Lgth.	Number	Cu-tot (%)	Cu-ns (%)	Au (g/t)	Fe-tòt (%)
		CASING			3.0	5.0	2.0	151851	0.645	0.035	0.55	4.59
	3.0	CASING			5.0	7.0	2.0	151852	0.356	0.023	0.25	3.29
	400.0	BX	BRECCIA: Pink to grey/pink to grey, K-spar		7.0	9.0	2.0	151853	0.518	0.025	0.88	4.10
3.0	198.6	ВА	altered breccia. Angular clasts of grey		9.0	11.0	2.0	151854	0.168	0.011	0.17	4.1
			intrusive, with dykes as noted. Diss. Cp in varying amounts throughout, rare Cp veins		11.0	13.0	2.0	151855	0.322	0.022	0.22	4.5
			and veinlets, green Cu oxide staining on		13.0	15.0	2.0	151856	0.279	0.019	0.23	4.4
			many surfaces.		15.0	17.0	2.0	151857	0.031	0.007	0.02	2.9
			Most sections are magnetic, with rare		17.0	19.0	2.0	151858	0.086	0.012	0.08	3:1
		_	sections being strongly magnetic. Minor		19.0	21.0	2.0	151859	0.215	0.009	0.23	3.6
			calcite veining found through out, degree of alteration is quite variable, leaving some		21.0	23.0	2.0	151860	0.185	0.057	0.22	3.4
			dsections intense pink, while others only have		23.0	25.0	2.0	151861	0.118	0.006	0.15	2.6
	<u> </u>		patches in a grey matrix, diss Cp noted in all		25.0	27.0	2.0	151862	0.150	0.004	0.13	3.1
			sections.	·····	27.0	29.0	2.0	151863	0.363	0.011	0.31	3.7
· · · · · · · · · · · · · · · · · · ·					29.0	31.0	2.0	151864	0.193	0.011	0.22	4.1
			(4-10) Abundant Cp veins (45deg)	_	31.0	33.0	2.0	151865	0.055	0.001	0.06	3.1
<u></u>		<u> </u>	(4-10) Abundant op tenna (4000g)		33.0	35.0	2.0	151866	0.086	0.010	0.09	3.5
			(20-26) Increase in calcite veining and K-spar	·	35.0	37.0	2.0	151867	0.183	0.013	0.19、	3.3
		-	alteration intensity.		37.0	39.0	2.0	151868	0.097	0.004	0.08	3.1
			· · · · · · · · · · · · · · · · · · ·		39.0	41.0	2.0	151869	0.228	0.011	0.27	3.5
		FAULT	(26-26.2) Small fault (68 deg) grey clay gouge	2	41.0	43.0	2.0	151870	0.223	0.010	0.29	3.6
	_	FAULT	filled.		43.0	45.0	2.0	151871	0.240	0.009	0.26	5.1
					45.0	47.0	2.0	151872	0.137	0.005	0.19	5.3
			(35-39) Decrease in Cp, less K-spar alt.		47.0	49.0	2.0	151873	0.143	0.005	0.19	2.7
<u></u>			(00-00) Decrease in op, iddo it oput die	· ·				H:\ENG	NDATA\Engd	locs\98_DRILL_	LOGSV[MP-98	J-4.xls]She

0 - I

		MOUNT POLLEY MINE					Hole No. Page:	MP-98-4 2	of	5	
			Recovery	From	То		Tag.		Analysis		
From To meters	Syb	Description	Recovery	meters		Lgth.	Number	Cu-tot (%)	Cu-ns (%)	Au (g/t)	Fe-tot (%)
		(51.8-54.8) Green/grey augite porphyry dyke,		49.0	51.8	2.8	151874	0.150	0.006	0.27	3.56
	DYKE	abundant dark green augite phenos., chlorite		51.8	53.0	1.2	151875	0.010	-	0.02	5.30
		and calcite along fractures, shattered at both		53.0	54.8	1.8	151876	0.018	0.001	0.03	5.0
		contacts.		54.8	57.0	2.2	151877	0.288	0.007	0.49	4.0
		(68.1-74.7) Green/grey augite porphyry dyk		57.0	59.0	2.0	151878	0.264	0.006	0.33	4.3
	DYKE	as above		59.0	61.0	2.0	151879	0.216	0.004	0.33	3.3
		-		61.0	63.0	2.0	151880	0.107	0.003	0.20	3.4
		(82.0-84.0) Increase in diss Cp, less K-spar		63.0	65.0	2.0	151881	0.190	0.008	0.30	3.5
		alteration, breccia is mostly grey.		65.0	67.0	2.0	151882	0.088	0.002	0.14	3.7
			1	67.0	68.1	1.1	151883	0.098	0.002	0.18	3.4
		(84.0-88.0) Back into intense pink K-spar		68.1	70.0	1.9	151884	0.017	0.001	0.02	4.9
		alteration, minor Cp veining.	······	70.0	72.0	2.0	151885	0.182	0.012	0.24	4.6
			-	72.0	74.7	2.7	151886	0.017	0.002	0.03	5.
		(101.0-128.2) Blotchy pink, intense K-spar		74.7	77.0	2.3	151887	0.176	0.001	0.25	3.1
		altered, zones, abundant calcite veining.		77.0	79.0	2.0	151888	0.238	0.003	0.41	:3.
		-		79.0	81.0	2.0	151889	0.116	0.001	0.24	4.(
	FAULT	(128.2-137.2) Big fault zone: zone starts with		81.0	83.0	2.0	151890	0.265	0.004	1.14	6.
	ZONE	white porphyry phenos, in fractured intrusive breccia, mixed with soft clay altered grey intrusive, no visible Cp, mostly sand and gravel size fragments. (136.25-137.20) Black, dense, fresh mafic dyke, very fine-grained, no		83.0	85.0	2.0	151891	0.190	0.003	0.29	4.
	(DYKE)			85.0	87.0	2.0	151892	0.172	0.003	0.24	4.
				87.0	89.0	2.0	151893	0.226	0.002	0.27	4.
			,	89.0	91.0	2.0	151894	0.319	0.003	0.37	- 5.
		Cp.		91.0	93.0	2.0	151895	0.267	0.003	0.33	5.
				93.0	95.0	2.0	151896	0.183	0.001	0.24	5.
<u> </u>										<u> </u>	- 1. Sec

 $(\mathbf{1}, \mathbf{0})$ $(\mathbf{1}, \mathbf{0})$ $(\mathbf{1}, \mathbf{1}, \mathbf{1})$ $(\mathbf{1}, \mathbf{0})$ $(\mathbf{1}, \mathbf{0})$

rom To meters	Syb DYKE	MOUNT POLLEY MINE Description (137.2-198.6) breccia cont. (146.3-148.7) Green/grey augite porphyry dyke, dense green matrix, with abundant dark green augite phenos, no Cp.	Recovery	From meta 95.0 97.0 99.0	97.0 99.0	Lgth. 2.0 2.0	Page: Tag. Number 151897 151898	3 Cu-tot (%) 0.280 0.183	of Analy Cu-ns (%) 0.015	Au (g/t) 0.38	Fe-tot (%) 4.64
	Syb	Description (137.2-198.6) breccia cont. (146.3-148.7) Green/grey augite porphyry dyke, dense green matrix, with abundant dark green		95.0 97.0 99.0	ers 97.0 99.0	2.0	Number 151897	(%) 0.280	Cu-ns (%) 0.015	Au (g/t) 0.38	<u>(%)</u> 4.64
	DYKE	(146.3-148.7) Green/grey augite porphyry dyke, dense green matrix, with abundant dark green		97.0 99.0	99.0						
	DYKE	(146.3-148.7) Green/grey augite porphyry dyke, dense green matrix, with abundant dark green		97.0 99.0	99.0		151898	0 183	0.040	1	
	DYKE	dense green matrix, with abundant dark green		99.0					0.010	0.24	4.3
	DYKE	dense green matrix, with abundant dark green			101.0	2.0	151899	0.138	0.007	0.19	2.5
		augite phenos, no Cp.		- 404 O I	101.0	2.0	151900	0.162	0.009	0.26	3.4
			1 . I	101.0 103.0	105.0	2.0	151901	0.298	0.011	0.39	3.3
	· ·			105.0	107.0	2.0	151902	0.156	0.009	0.22	3.5
		The sent of the se		105.0	107.0	2.0	151903	0.293	0.016	0.36	4.9
		(148.7-174.0) Breccia cont. as above, less K- spar more grey section.		107.0	111.0	2.0	151904	0.172	0.005	0.23	4.0
			·		111.0	2.0	151905	0.273	0.014	0.38	4.0
		in Koner elteration (all		111.0	115.0	2.0	151906	0.245	0.015	0.28	3.7
		(174.0-198.6) Increase in K-spar alteration (all pink) more clasts, less Cp.	ļ	113.0	117.0	2.0	151907	0.280	0.006	0.41	4.4
			<u> </u>	115.0	119.0	2.0	151908	0.186	0.003	0.27	4.4
			<u> </u>	117.0	119.0	2.0	151909	0.248	0.004	0.34	3.9
198.6 20	08.8 PP	Grey porphyry intrusive, abundant white plag phenos, no Cp, minor K-spar alteration along some fractures and in pink veins.	·	119.0	121.0	2.0	151910	0.306	0.004	0.45	3.
				121.0	125.0		151911	0.150	0.003	0.17	3.
				123.0	125.0		151912	0.193	0.002	0.26	4.
				125.0				0.263	+	0.33	4.
				127.0				0.108	0.001	0.09	5,
				128.2				0.190		0.21	3.
			<u></u>	129.0			<u> </u>	0.245		0.27	2.
			<u> </u>	133.2				0.018		0.01	3.
			<u> </u>	136.3				0.120		0.13	3
			_	137.2				0,159		0.16	
				139.0	141.0	<u></u>	101010		-		

]

.

]

		MOUNT POLLEY MINE	MINE				Hole No.	MP-98-4	of	5	1
							Page:	4	Analy		
From To meters Sy	Syb	Svb Description		From To meters		Lgth.	Tag. Number	Cu-tot (%)	Cu-ns (%)	Au (g/t)	Fe-tot (%)
			<u></u>	141.0	143.0	2.0	151920	0.236	0.104	0.25	3.74
				141.0	145.0	2.0	151921	0.163	0.112	0.21	3.71
				145.0	146.3	1.3	151922	0.165	0.116	0.20	4.02
	· ·		<u> </u>	146.3	148.7	2.4	151923	0.013	0.005	0.01	5.21
				148.7	149.0	0.3	151924	0.086	0.051	0.10	3.02
				149.0	151.0	2.0	151925	0.111	0.068	0.17	3.5
			_ <u>_</u>	143.0	153.0	2.0	151926	0.159	0.107	0.30	4.5
		· · · · · · · · · · · · · · · · · · ·		153.0	155.0	2.0	151927	0.144	0.106	0.27	5.9
				155.0	157.0	2.0	151928	0.109	0.074	0.16	5.1
				157.0	159.0	2.0	151929	0.154	0.100	0.24	5.1
			-	159.0	161.0	2.0	151930	0.203	0.100	0.42	4.5
				161.0	163.0	2.0	151931	0.178	0.028	0.37	4.4
				163.0	165.0	2.0	151932	0.134	0.005	0.22	4.3
			-	165.0	167.0	2.0	151933	0.127	0.033	0.22	4.3
			<u>_</u>	167.0	169.0	2.0	151934	0.080	0.007	0.12	5.8
				169.0	171.0		151935	0.059	0.013	0.14	4.4
				171.0	173.0		151936	0.066	-	0.15	6.5
				173.0	175.0		151937	0.053	-	0.08	4.9
				175.0	177.0		151938	0.071	0.003	0.11	3.6
				177.0	179.0	2.0	151939	0.057	0.011	0.09	6.
				179.0	181.0	2.0	151940	0.062	0.006	0.12	6.7
	<u> </u>			181.0	183.0	2.0	151941	0.042	0.014	0.06	3.0
				183.0	185.0	2.0	151942	0.063	0.026	0.16	5.0
				+				•			

K

<u> </u>		MOUNT POLLEY MINE					Hole No.	MP-98-4	of	5	
							Page:	5	Anal		
From To meters	Syb	Description	Recovery	From To meters		Lgth.	Tag. Number	Cu-tot (%)	Cu-ns (%)	Au (g/t)	Fe-to (%)
	 			185.0	187.0	2.0	151943	0.058	-	0.09	5.
	<u> </u>			187.0	189.0	2.0	151944	0.114	0.011	0.17	4
				189.0	191.0	2.0	151945	0.062	0.005	0.08	5.
				191.0	193.0	2.0	151946	0.069	0.015	0.12	5.
			<u></u>	193.0	195.0	2.0	151947	0.036	0.007	0.07	4
	1			195.0	197.0	2.0	151948	0.039	0.013	0.04	4
	<u> </u>			197.0	198.6	1.6	151949	0.074	0.014	0.12	3
				198.6	199.0	0.4	151950	0.064	0.009	0.04	3
				199.0	201.0	2.0	151951	0.020	0.004		2
			<u></u>	201.0	203.0	2.0	151952	0.071	0.014	0.07	3
				203.0	205.0	2.0	151953	0.036	0.001	0.03	2
				205.0	207.0	2.0	151954	0.039	0.001	0.03	2
· · · · · · · · · · · · · · · · · · ·				207.0	208.8	1.8	151955	0.015	0.001	0.03	. 2
		END OF HOLE									
				<u> </u>			1				
										<u> </u>	
				1							
				1		1				<u> </u>	<u> </u>
	_			· ·							
											<u> </u>
											<u> </u>
			<u></u>	<u></u>		<u></u>					i. Artic

			MOUNT POLLEY MINE					Hole No.	MP-98-5			10 (A. 1)
	MP-98-5	Northing: Easting: Elevation: Core Size: Length:		Correct Dip: True Azm. Survey at:	55.0 270.0 206.7m			Page: Logged by Date: Core store Comments	d at:	of Greg Gillst Dec-15-98 mine site	ĩ	
rom	То		1	Recovery	From	To		Tag.		Anal		
mete		Syb	Description		met	ers	Lgth.	Number	Cu-tot (%)	Cu-ns (%)	Au (g/t)	Fe-tot (%)
_	3.0	CASING			3.0	5.0	2.0	151956	0.132	0.015	0.44	6.98
					5.0	7.0	2.0	151957	0.466	0.014	1.47	10.35
3.0	77.0	вх	Pink to grey pink, intrusive breccia, variable		7.0	9.0	2.0	151958	0.243	0.019	0.63	12.27
			alteration intensity. Angular clasts of black to		9.0	11.0	2.0	151959	0.233	0.046	0.37	9.43
			light grey intrusive, diss. Cp through most sections with minor Cp veinlets, moderately		. 11.0	13.0	2.0	151960	0.396	0.009	0.75	6.44
			magnetic, clay-altered white plag phenos in		13.0	15.0	2.0	151961				
			most sections, minor calcite veining, calcite		15.0	17.0	2.0	151962	0.400	0.014	1.15	7.69
			along some fractures, green Cu oxide and red hematite staining along some fractures.		17.0	19.0	2.0	151963	0.153	0.015	0.33	7.4
			Exceptions as noted:		19.0	20.2	1.2	151964	0.394	0.113	1.49	7.02
			-	· ·	20.2	23.5	3.3	151965	0.026	0.003	0.01	5.87
					23.5	25.0	1.5	151966	0.169	0.007	0.53	5.19
			(8.8-14.9) Highly fractured (going through		25.0	26.7	1.7	151967	0.137	0.004	0.33	11.17
			bench blast)		26.7	27.5	0.8	151968	0.025	0.003	0.02	7.00
					27.5	30.0	2.5	151969	0.276	0.027	1.18	6.97
	······		(20.2-23.5) Green augite porphyry dyke.		30.0	33.0	3.0	151970	0.237	0.010	0.70	6.5
		DYKE	Standard Mt. Polley green dyke, with dark		33.0	35.0	2.0	151971	0.123	0.006	0.35	8.3
<u> </u>			green augite phenos, no Cu minerals.		35.0	37.0	2.0	151972	0.101	0.005	0.29	4.97
		DYKE	(26.7-27.5) Dense, black mafic dyke, fine-		37.0	39.0	2.0	151973	0.107	0.008	0.27	6.10
		DIKE	grained, no Cp, minor calcite veining.		39.0	41.0	2.0	151974	0.331	0.014	0.54	9.2
					41.0	43.0	2.0	151975	0.369	0.015	0.43	9.2
	<u> </u>		(27.5-39.0) Breccia continued, as above.		43.0	45.0	2.0	151976	0.612	0.028	0.66	7.3
	· <u> </u>	+	(27.3-33.0) Directia continueu, as above.		45.0	46.7	1.7	151977	0.219	0.009	0.93	5.2
				<u> </u>	46.7	48.7	2.0		0.018	0.002	0.01	5.4
									G\DATA\Engo	locs\98_DRILL	LOGS\[MP-98	3-5.xls]Shee

MOUNT POLLEY MINE Hole No. MP-98-5

								Page:	2	of	5	
rom	То			Recovery	From	То		Tag.		Anal		Fe-t
meter		Syb	Description		met	ers	Lgth.	Number	Cu-tot (%)	Cu-ns (%)	Au (g/t)	-e- (%
			(39.0-44.0) Breccia, loss of intense pink K-spar		48.7	51.0	2.3	151979	0.263	0.012	0.50	
			alteration, mostly grey with pink patches. Big		51.0	53.0	2.0	151980	0.338	0.011	0.97	1
			increase in magnetite (diss and in large blebs), lots of diss Cp (1-2%).		53.0	55.0	2.0	151981	0.258	0.010	0.57	2
					55.0	57.0	2.0	151982	0.170	0.013	0.42	
		<u>.</u>	4		57.0	59.0	2.0	151983	0.164	0.010	0.36	
		_,	(44.0-46.7) Pink breccia as at top of hole.		59.0	61.0	2.0	151984	0.196	0.006	0.41	
			(44.0-46.7) Pink breccia as at top of hole. (46.7-48.7) Green augite porphyry dyke as at 25.7m. (48.7-77.0) Pink breccia as above.		61.0	63.0	2.0	151985	0.305	0.013	0.79	
				·	63.0	65.0	2.0	151986	0.405	0.024	0.87	
	·				65.0	68.0	3.0	151987	0.354	0.015	0.78	
					68.0	71.0	3.0	151988	0.265	0.015	0.82	<u> </u>
					71.0	73.0	2.0	151989	1.259	0.038	2.00	
					73.0	75.0	2.0	151990	0.652	0.030	1.02	s
77.0	129.0	PP	Grey plagioclase porphyry, with minor		75.0	77.0	2.0	151991	0.568	0.033	1.02	
- 17.0	125.0	F 4	brecciated zones. No intense K-spar alt.,		77.0	80.0	3.0	151992	0.289	0.013	0.64	ļ
			visible Cp through zone, no Cp veining.		80.0	83.0	3.0	151993	0.200	0.011	0.42	ļ
					83.0	85.0	2.0	151994	0.276	0.009	0.49	ļ
		DYKE	(96.9-98.1) Green/ black fine grained dyke (no		85.0	87.0	2.0	151995	0.296	0.010	0.58	ļ
			- Cp).		87.0	89.0	2.0	151996	0.123	0.009	0.13	
					89.0	91.0	2.0	151997	0.040	0.004	0.06	
		DYKE	(101.4-101.7) Small, dense, mafic dyke, (no Cp)		91.0	93.0	2.0	151998	0.026	0.001	0.03	ļ
					93.0	95.0	2.0	151999	0.106	0.004	0.15	 :
					95.0	97.0	2.0	152000	0.110	0.005	0.09	·
					97.0	99.0	2.0	152001	0.059	0.002	0.07	╂
									<u> </u>		L	

			MOUNT POLLEY MINE					Hole No.	MP-98-5		·	
								Page:	3	of	5	
From	To ers	Syb	Description	Recovery	From met	To ers	Lgth.	Tag. Number	Cu-tot (%)	Anal Cu-ns (%)	ysis Au (g/t)	Fe-tot (%)
129.8	145.8	PP	Green/grey to green/pink porphyritic Intrusive		99.0	101.0	2.0	152002	0.189	0.007	0.23	5.23
129.0	140.0		(probably a propylitically altered version of the		101.0	103.0	2.0	152003	0.253	0.007	0.35	6.08
			PP as seen on the 1130 bench west side by the main fault. Med-grained, mostly white to		103.0	105.0	2.0	152004	0.296	0.008	0.53	6.28
			green/white plag. Phenos, with some minor		105.0	107.0	2.0	152005	0.201	0.004	0.30	6.08
		<u></u>	green and green/black phenos, calcite veins,		107.0	109.0	2.0	152006	0.258	0.003	0.40	6.01
r			(no visible Cp).		109.0	111.0	2.0	152007	0.549	0.011	0.86	8,12
145.8	163.0	DYKE	DYKE SWARM: Alternating color, mostly black		111.0	113.0	2.0	152008	0.093	0.003	0.19	3.00
145.6	103.0	DIRE	mafic, with interbedded green augite porphyry		113.0	115.0	2.0	152009	0.052	0.002	0.09	2,46
			dykes as described previously.		115.0	117.0	2.0	152010	0.049	0.002	0.06	2.48
					117.0	119.0	2.0	152011	0.079	0.003	0.08	2.49
162.0	163.0 165.8	вХ	Small section of pink breccia, intense K-spar		119.0	121.0	2.0	152012	0.111	0.004	0.09	2.50
105.0	100.0	ВЛ	alteration, chlorite/ser along fractures, (diss.		121.0	123.0	2.0	152013	0.086	0.002	0.08	2.53
		<u></u>	Cp visible through section.		123.0	125.0	2.0	152014	0.077	0.001	0.10	2,86
 					125.0	127.0	2.0	152015	0.049	0.002	0.05	3.28
165.8	197.2	MZ	Monzonite: Grey, med-grained monzo, no		127.0	129.0	2.0	152016	0.055	0.002	0.07	2.72
105.0	157.2		phenos, minor calcite veining, no visible Cp.		129.0	129.8	0.8	152017	0.022	0.003	0.05	4.41
			-		129.8	131.0	1.2	152018	0.044	0.002	0.06	2.60
197.2	206.7	FAULT	Fault Zone: Brown to pink/brown fault gouge		131.0	133.0	2.0	152019	0.056	0.002	0.06	2.79
131.4	2.00.1		with gravel, rare sections of intact breccia, minor green Cu oxide staining on fractures, no		133.0	135.0	2.0	152020	0.058	0.001	0.07	2.61
			winor green Cu oxide staining on nactures, no visible Cp, angular intrusive clasts, low	·	135.0	137.0	2.0	152021	0.067	0.002	0.10	2.25
		······································	recovery.		137.0	139.0	2.0	152022	0.043	0.001	0.09	2.77
					139.0	141.0	2.0	152023	0.046	0.009	0.05	2.56
					141.0	143.0	2.0	152024	0.033	0.008	0.03	2.32

÷ .

	<u></u>	MOUNT POLLEY N	NINE		<u></u>		Hole No. Page:	MP-98-5 4	of	5	
rom To	·····		Recovery	From	То	<u> </u>	Tag.		Analy		1 31 5
meters	Syb	Description		mete	ers	Lgth.	Number	Cu-tot (%)	Cu-ns (%)	Au (g/t)	Fe-tot (%)
				143.0	145.8	2.8	152025	0.056	0.005	0.04	2.14
	-			145.8	149.0	3.2	152026	0.018	0.002	0.01	4.80
		<u></u>		149.0	151.0	2.0	152027	0.017	0.006	0.02	4.58
		· · ·		151.0	153.0	2.0	152028	0.023	0.002	0.01	4.2
· · ·	1			153.0	155.0	2.0	152029	0.043	0.002	0.05	3.7
				155.0	157.0	2.0	152030	0.052	0.002	0.05	4.3
				157.0	159.0	2.0	152031	0.049	0.001	0.07	4.9
				159.0	161.0	2.0	152032	0.040	0.002	0.10	4.8
	-	· · · · · · · · · · · · · · · · · · ·		161.0	163.0	2.0	152033	0.030	0.002	0.04	4.7
	-			163.0	165.8	2.8	152034	0.078	0.005	0.08	1.9
	-			165.8	167.0	1.2	152035	0.013	0.001	0.01	4.5
	·			167.0	169.0	2.0	152036	0.019	0.002	0.01	5.0
				169.0	171.0	2.0	152037	0.019	0.001	0.01	5,1
				171.0	173.0	2.0	152038	0.015	0.002	0.01	4.9
······································				173.0	175.0	2.0	152039	0.012	0.001	0.01	5.3
	-	<u></u>		175.0	177.0	2.0	152040	0.011	0.002	0.01	4.9
				177.0	179.0	2.0	152041	0.012	0.002	0.01	4.9
·····				179.0	181.0	2.0	152042	0.010	0.001	0.01	5.0
				181.0	183.0	2.0	152043	0.013	0.001	0.01	4.7
				183.0	185.0	2.0	152044	0.015	0.002	0.01	4.9
				185.0	187.0	2.0	152045	0.011	0.002	0.01	5.0
				187.0	189.0	2.0	152046	0.019	0.004	0.01	5.6
	··		·····	189.0	191.0	2.0	152047	0.012	0.003	-	5.4

• •

는 1947 1947년 - 1947

		MOUNT POLLEY MINE					Hole No.	MP-98-5 5	of	5	* .
			Deserver	From	То		Page: Tag.		Analy		
From To meters	Syb	Description	Recovery	met		Lgth.	Number	Cu-tot (%)	Cu-ns (%)	Au (g/t)	Fe-tot (%)
<u> </u>				191.0	193.0	2.0	152048	0.010	0.002	-	5.43
				193.0	195.0	2.0	152049	0.023	0.008	0.03	5.23
	· .			195.0	197.2	2.2	152050	0.056	0.032	0.12	5.54
	_		low	197.2	199.0	1.8	152051	0.683	0.391	1.75	4.67
			low	199.0	201.0	2.0	152052	0.829	0.576	2.14	3.52
		· · · · · · · · · · · · · · · · · · ·		201.0	204.0	3.0	152053	1.223	0.723	2.88	4.52
				204.0	206.7	2.7	152054	0.876	0.674	2.30	4.74
		END OF HOLE									
		Reassays					152050	0.061	0.031	0.11	5.1
							152051	0.612	0.359	1.61	4.50
			· · · · · · · · · · · · · · · · · · ·		<u>,,,</u>		152052	0.723	0.486	1.98	3.2
							152053	1.060	1.060	2.83	4.0
			<u> </u>				152054	0.796	0.796	2.15	4.4
											4
		Assays on second splits					152051	0.607	0.395	1.78	4.3
				1. 1.			152052	0.671	0.631	1.73	3.2
· · · · · · · · · · · · · · · · · · ·							152053	1.001	1.001	2.30	4.00
			1				152054	0.814	0,814	2.63	4.48
			1			2	ļ	ļ			
								<u>`</u>			. s
		······································				<u> </u>		ļ	·		
		····				•		<u> </u>	· · · · · · · · · · · · · · · · · · ·	ļ	
						1			· · · · ·		

.

			MOUNT POLLEY MINE						MP-98-6			: * ***
Pit: Hole No: Started Finished:	Dec-14-98	Northing: Easting: Elevation: Core Size:	2176.75 1130.49	Correct Dip: True Azm. Survey at:	53.8 177.1 187.5			Page: Logged by Date: Core store	ed at:	of Greg Gillst Dec-16-98 mine site	rom	
Objective:		Length:	187.5m					Comments	5:			- 11 - A
From	То		I	Recovery	From	То		Tag.		Anal		
	ters	Syb	Description		mete	ers	Lgth.	Number	Cu-tot (%)	Cu-ns (%)	Au (g/t)	Fe-tot (%)
	3.0	CASING			3.0	4.6	1.6	11115	0.214	0.031	0.46	8.1
		0/10/110			4.6	7.0	2.4	11116	0.108	0.012	0.26	6.2
20	4.6	вх	Shattered breccia, drilling through bench		7.0	9.0	2.0	11117	0.114	0.003	0.33	5.3
3.0	4.0		floor, mostly gravel size recovery.		9.0	10.5	1.5	11118	0.111	0.014	0.34	9.4
					10.5	13.0	2.5	11119	0.236	0.021	0.49	7.8
	40.5	MZ	Grey monzonite, med grained, grey matrix, no)	13.0	15.0	2.0	11120	0.068	0.015	0.16	9.9
4.6	10.5	11/12	phenos, some minor breccia (pink) in spots.		15.0	17.0	2.0	11121	0.187	0.040	0.42	 ⇒ 3.4.
	<u> </u>	<u> </u>	No Visible Cp.		17.0	19.0	2.0	11122	0.229	0.020	0.62	5.0
		1			19.0	21.0	2.0	11123	0.071	0.012	0.14	5,9
			BRECCIA: Pink to pink/grey intrusive breccia,		21.0	23.0	2.0	11124	0.093	0.032	0.15	3.9
10.5	130.7	BX	angular grey intrusive clasts, abundant	·	23.0	25.0	2.0	11125	0.180	0.023	0.27	5.9
			calcite/chlorite veins, diss Cp visible	·····	25.0	27.0	2.0	11126	0.050	0.003	0.07	8.
<u> </u>			throughout, minor green Cu-oxides, with dykes as noted:	·····	23.0	29.0	2.0	11127	0.062	0.003	0.10	6.
			(29.9-30.5) Fresh light grey latite dyke, fine			29.9	0.9	11128	0.125	0.002	0.23	<u></u> 4.
	ļ. <u> </u>	DYKE	grained dense matrix, no Cp.		29.0	<u> </u>	0.5	11129	0.110	0.006	0.17	5.
					29.9	30.5	0.8	11130	0.480	0.000	0.51	4.
	ļ		(45.5-46.0) Fault zone, healed black graphitic		30.5		2.0	11130	0.400	0.007	0.48	2
	<u> </u>	FAULT	breccia, abundant healed fractures,		31.0	33.0		11132	0.602	0.001	1.10	5.
			_combination of pink/black breccia clasts, with	ı 	33.0	35.0	2.0	11132	0.802	0.013	0.35	4.
			some fine-grained mafic dyke clasts.		35.0	37.0	2.0			0.005	0.99	4.
					37.0	39.0	2.0	11134	0.289		1.37	5.
			(49-53.3) Increasing in K-spar alteration, mostly pink matrix, with abundant clasts.		39.0	41.0	2.0	11135	0.768	0.011	·····	4.
			mosuy pink maux, with abundant clasts.		41.0	43.0	2.0	11136	0.134	0.003	0.24	4.
					43.0	45.5	2.5		0.246	0.008	0.44	
							<u> </u>	H:\ENG	DATA\Engdo	cs\98_DRILL_I	_OGS\[MP-98	-6.xis]She

Hole No. MP-98-6 MOUNT POLLEY MINE 5 of Page: 2 Analysis Tag. From То Recovery То Number Cu-tot Cu-ns Au Fe-tot Lgth. Sub meters Description ----

From

meters	Syb	Description	met	ters	Lgtn.	Number	(%)	(%)	(g/t)	(%)
	DYKE	(53.3-62.8) Fresh green augite porphyry dyke	45.5	46.0	0.5	11138	0.198	0.006	0.44	5,54
		with abundant augite phenos.	46.0	47.0	1.0	11139	0.008	0.001	0.01	<u>.</u>
	DYKE	(80.3-81.1) Green augite porphyry dyke as	47.0	49.0	2.0	11140	0.156	0.004	0.40	4.79
		above.	49.0	51.0	2.0	11141	0.113	0.002	0.24	8.53
			51.0	53.5	2.5	11142	0.228	0.008	0.84	9.95
	FAULT	(94.7) High angle fault (10 deg to axis).	53.5	55.0	1.5	11143	0.015	0.002	0.01	5.34
			55.0	57.0	2.0	11144	0.015	0.003	0.01	5.49
		(81.1-130.9) Many nice Cp veins, diss Cp	57.0	59.0	2.0	11145	0.015	0.002	0.01	5.06
		through section.	59.0	61.0	2.0	11146	0.015	0.002	0.01	5.37
			61.0	62.8	1.8	11147	0.017	0.002	0.01	5.40
130.9 1	135.7 PP	Grey porphyry, med-grained grey matrix,	62.8	65.0	2.2	11148	0.097	0.003	0.25	5.37
		white plag phenos, no visible Cp, minor	65.0	67.0	2.0	11149	0.194	0.003	0.64	6.49
			67.0	69.0	2.0	11150	0.157	0.002	0.32	4.4(
			69.0	71.0	2.0	11151	0.117	0.003	0.26	3.63
135.7	159.2 BX	BRECCIA: Moderately K-spar altered, variable	71.0	73.0	2.0	11152	0.075	0.004	0.14	11.2
		matrix (pink to grey/pink) with abundant calcite/chlorite veins, diss Cp in most	73.0	75.0	2.0	11153	0.066	0.002	0.13	17.9
		sections.	75.0	77.0	2.0	11154	0.054	0.001	0.09	9.2
			77.0	79.0	2.0	11155	0.091	0.004	0.21	3.72
159.2	180.4 BX	BRECCIA: Big increase in K-spar alteration,	79.0	80.3	1.3	11156	0.640	0.028	0.46	11.4
		intense pink matrix, abundant Cp in diss and rare veins, (nice Cp vein at 174.2m). Abundant	80.3	81.1	0.8	11157	0.011	0.001	0.01	6.9
		chlorite/calcite veins.	81.1	83.0	1.9	11158	0.236	0.005	0.47	7.3
			83.0	85.0	2.0	11159	0.110	0.003	0.25	5.8
			85.0	87.0	2.0	11160	0.054	0.002	0.11	5.0

. . .

												~~ 14
			MOUNT POLLEY MINE					Hole No.	MP-98-6		_	
								Page:	3	of	5	ġt
rom	То			Recovery	From met	То	Lgth.	Tag. Number	Cu-tot	Analy Cu-ns	Au Au	Fe-tot
mete	ers	Syb	Description		meu	ers	Lgui.	Mulliber	(%)	(%)	(g/t)	(%)
		F/DYKE	(177.4-177.8) Fault filled with a small mafic		87.0	89.0	<u>`</u> 2.0	11161	0.094	0.005	0.16	6.58
			dyke, 2" of soft grey clay at top.	· · · ·	89.0	91.0	2.0	11162	0.082	0.005	0.11	5.32
		, _ _			91.0	93.0	2.0	11163	0.148	0.005	0.21	5.43
180.4	183.0	BX/PP	Transition Zone; mix of pink breccia and grey		93.0	95.0	2.0	11164	0.460	0.006	0.76	6.31
			plag porphyry, abundant calcite veining.		95.0	97.0	2.0	11165	0.108	0.004	0.17	6.98
			•		97.0	99.0	2.0	.11166	0.144	0.001	0.22	4.90
183.0	187.5	PP	Grey plagioclase porphyry (PP), no Cp, med-		99.0	101.0	2.0	11167	0.101	0.003	0.20	4.58
	grained grey matrix, long solid runs of DEAD core.		grained grey matrix, long solid runs of DEAD		101.0	103.0	2.0	11168	0.197	0.007	0.36	6.09
			103.0	105.0	2.0	11169	0.155	0.008	0.24	7.54		
					105.0	107.0	2.0	11170	0.077	0.004	0.13	6.15
					107.0	109.0	2.0	11171	0.095	0.004	0.18	3.30
	- ·				109.0	111.0	2.0	11172	0.119	0.005	0.21	3.61
					111.0	113.0	2.0	11173	0.128	0.005	0.21	3.60
					113.0	115.0	2.0	11174	0.199	0.005	0.33	2.80
					115.0	117.0	2.0	11175	0.207	0.010	0.21	2.61
					117.0	119.0	2.0	11176	0.517	0.014	0.92	2.4
					119.0	121.0	2.0	11177	0.247	0.015	0.51	2.74
					121.0	123.0	2.0	11178	0.191	0.013	0.33	3.5
]			123.0	125.0	2.0	11179	0.208	0.007	0.30	5.94
					125.0	127.0	2.0	11180	0.219	0.009	0.30	4.6
·····					127.0	129.0	2.0	11181	0.124	0.007	0.19	3.5
					129.0	130.7	1.7	11182	0.212	0.010	0.36	3.2
	<u></u>				130.7	133.0	2.3	11183	0.024	0.001	0.02	3.5
				1								

hr (

		MOUNT POLLEY MINE					Hole No. Page:	MP-98-6 4	of	5	8
From To meters	Syb	Description	Recovery	From mete	To ers	Lgth.	Tag. Number	Cu-tot (%)	Analy Cu-ns (%)	/sis Au (g/t)	Fe-tot (%)
<u> </u>			· · · ·	133.0	135.7	2.7	11184	0.017	0.001	0.01	3.60
······				135.7	137.0	1.3	11185	0.125	0.007	0.23	4.85
				137.0	139.0	2.0	11186	0.234	0.008	0.37	5.37
				139.0	141.0	2.0	11187	0.152	0.010	0.22	5.88
				141.0	143.0	2.0	11188	0.165	0.008	0.24	6.4
				143.0	145.0	2.0	11189	0.153	0.007	0.26	5.6
				145.0	147.0	2.0	11190	0.185	0.009	0.40	4.0
				147.0	149.0	2.0	11191	0.210	0.015	0.42	2.8
				149.0	151.0	2.0	11192	0.244	0.019	0.42	4.8
				151.0	153.0	2.0	11193	0.196	0.010	0.26	3.8
				153.0	155.0	2.0	11194	0.255	0.012	0.43	6.3
				155.0	157.0	2.0	11195	0.252	0.010	0.39	7.9
·				157.0	159.2	2.2	11196	0.390	0.024	0.60	8.2
				159.2	161.0	1.8	11197	0.341	0.026	0.67	2.7
·····		······································		161.0	163.0	2.0	11198	0.296	0.049	0.50	1.9
				163.0	165.0	2.0	11199	0.325	0.047	0.46	2.9
			_	165.0	167.0	2.0	11200	0.221	0.036	0.45	3.4
		······································		167.0	169.0	2.0	11201	0.404	0.061	0.92	4.4
		······································		169.0	171.0	2.0	11202	0.189	0.039	0.34	2.3
	┨───┤			171.0	173.0	2.0	11203	0.160	0.030	0.24	2.4
				173.0	175.0	2.0	11204	0.283	0.042	0.48	3.1
				175.0	177.0	2.0	11205	0.377	0.059	0.58	3.4
				177.0	179.0	2.0	11206	0.085	0.012	0.13	2.8
							1			_	

· · ·

ka ende a bord de de la contrate de de la contrate de de la contrate de la contrate de la contrate de la contrate de la kiel

48 g. 1 84 g $(\mathbf{1}, \mathbf{1}, \mathbf{1$

		MOUNT POLLEY N	AINE				Hole No. Page:	MP-98-6 5	of	5 - S	5. <u>†</u> 1
<u> </u>			Recovery	From	То		Tag.		Anal		
From To meters	Syb	Description	Recovery	met		Lgth.	Number	Cu-tot (%)	Cu-ns (%)	Au (g/t)	Fe-tot (%)
				179.0	180.4	1.4	11207	0.254	0.036	0.31	3.42
		· · · · · · · · · · · · · · · · · · ·		180.4	183.0	2.6	11208	0.107	0.014	0.17	4.82
				183.0	185.0	2.0	11209	0.034	0.004	0.05	3.33
				185.0	187.5	2.5	11210	0.092	0.021	0.14	3.46
		END OF HOLE									
							·			-	Į.
							<u></u>				- 1.
					·_		· · · · ·			<u></u>	·
						· · · · · · · · · · · · · · · · · · ·					3.0
							ļ				
								<u> </u>		<u> </u>	- 100 - 1 - 1 - 1
											
						ļ	<u> </u>				<u>e see sa</u>
							· ·				
				<u> . </u>					<u> </u>		
					L	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u>I</u>

ng sand s

inite Sector Sector

· .

			MOUNT POLLEY MINE					Hole No.	MP-98-7			
Pit: Hole No: Started Finished: Objective:	Dec-16-98	Northing: Easting: Elevation: Core Size: Length:		Correct Dip: True Azm. Survey at:	55.0 270.0 200.7m			Page: Logged by Date: Core store Comments	ed at:	of Greg Gills Dec-17-98 mine site		
From	То			Recovery	From	То		Tag.		Anal		
me	ters	Syb	Description		met	ters	Lgth.	Number	Cu-tot (%)	Cu-ns (%)	Au (g/t)	Fe-tot (%)
	3.0	CASING			3.0	5.0	2.0	152055	0.045	0.010	0.05	4.86
••••					5.0	7.0	2.0	152056	0.051	0.006	0.05	5.71
3.0	79.0	BX	Breccia: Grey/pink to pink to grey/black with		7.0	9.0	2.0	152057	0.045	0.012	0.05	5.87
			pink clasts, variable colour and clasts through zone, angular to subangular clasts		9.0	11.0	2.0	152058	0.088	0.040	0.19	5.78
			(pink, grey black), no visible Cp, minor calcite		11.0	13.0	2.0	152059	0.093	0.048	0.18	4.82
			veining, mod magnetic through zone, with		13.0	15.0	2.0	152060	0.103	0.028	0.14	5.39
		<u> </u>	dykes as noted:		15.0	17.0	2.0	152061	0.067	0.019	0.13	6.01
<u> </u>					17.0	19.0	2.0	152062	0.091	0.028	0.27	5.97
		DYKE	(32.5-33.5) Green Augite porphyry Dyke,		19.0	21.0	2.0	152063	0.090	0.022	0.19	5.84
			(32.5-33.5) Green Augite porphyry Dyke, abundant green augite phenos, small pink K- spar dyke included at (33.3-33.4).		21.0	23.0	2.0	152064	0.067	0.020	0.17	6.22
			_spar dyke included at (55.5-55.4).		23.0	25.0	2.0	152065	0.072	0.007	0.13	5.43
		DYKE	(32.5-33.5) Green augite porphyry dyke,		25.0	27.0	2.0	152066	0.152	0.018	0.45	4.60
	· · · ·	0/114	abundant green augite phenos, as above.		27.0	29.0	2.0	152067	0.060	0.001	0.12	4.12
			· · · · · · · · · · · · · · · · · · ·		29.0	31.0	2.0	152068	0.096	0.004	0.14	4,88
			(39.9-45.3) Intense K-spar altered pink matrix		31.0	32.5	1.5	152069	0.077	0.003	0.10	6.21
			with black clasts.		32.5	33.5	1.0	152070	0.019	0.002	0.01	5.60
				1	33.5	35.0	1.5	152071	0.110	0.016	0.20	4.94
	· · · · · · · · · · · · · · · · · · ·	DYKE	(32.5-33.5) Green augite porphyry dyke,	1	35.0	36.0	1.0	152072	0.051	0.012	0.15	4.35
			abundant green augite phenos, as above.		36.0	37.0	1.0	152073	0.066	0.020	0.07	6.01
			<u> </u>	1	37.0	39.0	2.0	152074	0.050	0.010	0.02	6.74
	· · · · · · · · · · · · · · · · · · ·		more grey section (70-79m)		39.0	41.0	2.0	152075	0.051	0.006	0.11	4.07
					41.0	43.0	2.0	152076	0.074	0.010	0.37	2.66
					43.0	45.3	2.3	152077	0.137	0.014	0.24	3.93
										s\98_DRILL_L	OCSUMP 09	7 vielSheef1

- 83 I

			MOUNT POLLEY MINE					Hole No.	MP-98-7			4. 7 (1
								Page:	2	of	5	
From	То			Recovery	From	То	ال مطالم	Tag. Number	Cu-tot	Analy Cu-ns	ysis Au	Fe-tot
mete	ers	Syb	Description		mete	ers	Lgth.	миниен	(%)	(%)	(g/t)	(%).
79.0	86.0	 PP	Grey porphyry (PP), white plag phenos dense		45.3	47.0	1.7	152078	0.036	0.002	0.01	5.9
- 10.0			med-grained grey matrix, no visible Cp, rare calcite veins, with dykes as noted:		47.0	48.3	1.3	152079	0.029	0.001	0.05	6.
			calcite veins, with dykes as hoted.		48.3	49.0	0.7	152080	0.047	0.001	0.06	2.
					49.0	51.0	2.0	152081	0.053	0.002	0.08	2.
		DYKE	(80.4-82.1) Dense black mafic dyke, no Cp.		51.0	53.0	2.0	152082	0.068	0.001	0.09	3.
					53.0	55.0	2.0	152083	0.046	0.001	0.10	4.
		DYKE	(82.6-83.2) Dense black mafic dyke, no Cp.		55.0	57.0	2.0	152084	0.032	0.002	0.07	4,
					57.0	59.0	2.0	152085	0.066	0.004	0.11	2.
86.0	94.4	BX	BRECCIA: Pink altered breccia, as 3-79m with		59.0	61.0	2.0	152086	0.065	0.002	0.10	3.
00.0			abundant chlorite veining.		61.0	63.0	2.0	152087	0.050	0.002	0.08	3.
					63.0	65.0	2.0	152088	0.082	0.002	0.13	4.
		DYKE	(89.3-89.8) Dense black mafic dyke, no Cp.		65.0	67.0	2.0	152089	0.080	0.002	0.14	3.
		DIRE			67.0	69.0	2.0	152090	0.098	0.003	0.15	3
94.4	119.4	PP	Grey Porphyry (PP), white plag phenos dense		69.0	71.0	2.0	152091	0.135	0.004	0.23	5
	313.4	• •	med-grained grey matrix, no visible Cp, rare		71.0	73.0	2.0	152092	0.086	0.002	0.12	<u>.</u> 5.
		<u></u>	calcite veins, as above.		73.0	75.0	2.0	152093	0.086	0.002	0.11	5
					75.0	77.0	2.0	152094	0.154	0.009	0.22	6.
		FAULT	(93.1-93.2) Small fault, clay gouge filled.		77.0	79.0	2.0	152095	0.171	0.017	0.17	·~5.
	· · -·	TAGET			79.0	80.4	1.4	152096	0.025	0.001	0.02	4
		DYKE	(104.6-105.2) Dense black mafic dyke.		80.4	82.1	1.7	152097	0.005	0.001	0.01	5
					82.1	82.6	0.5	152098	0.020	0.001	0.02	4
		DYKE	(110.0-112.6) Dense black mafic dyke, followed	1	82.6	83.2	0.6	152099	0.004	0.001	0.01	5
	· · · · · ·		by a green augite porphyry dyke.		83.2	85.0	1.8	152100	0.051	0.002	0.04	4

			MOUNT POLLEY MINE					Hole No. Page:	MP-98-7 3	of	5	2
				Recovery	From	To		Tag.		Anal		
rom meter	To s	Syb	Description	Recovery	met		Lgth.	Number	Cu-tot (%)	Cu-ns (%)	Au (g/t)	Fe-tot (%)
119.4	120.9	DYKE	Dense black mafic dyke.		85.0	86.0	1.0	152101	0.100	0.004	0.10	3.9
119.4	120.5	DIKE			86.0	87.0	1.0	152102	0.182	0.006	0.27	6.5
	122.5	BX/PP	Pink, K-spar altered breccia mixed with	i	87.0	89.3	2.3	152103	0.335	0.012	0.44	5.9
120.9	122.5	BAIPP	sections of dead-looking grey PP. Breccia is		89.3	89.8	0.5	152104	0.019	0.002	0.03	5.8
			pink/grey to intense pink with diss Cp in most sections, abundant calcite/chlorite veining,		89.8	91.0	1.2	152105	0.154	0.005	0.20	8.2
			magnetite through most sections, with angular		91.0	93.0	2.0	152106	0.197	0.007	0.27	6.7
			black clasts.		93.0	94.4	1.4	152107	0.311	0.005	0.38	5.9
			· · · · · · · · · · · · · · · · · · ·		94.4	97.0	2.6	152108	0.026	0.001	0.02	3.5
			Pink breccia as above with no PP sections,		97.0	99.0	2.0	152109	0.018	0.001	0.02	3.4
122.5	abundant Cu-oxides in addition to Cp; dykes		99.0	101.0	2.0	152110	0.028	0.001	0.02	3.		
			as noted:		101.0	103.0	2.0	152111	0.016	0.001	0.02	3.
			(174.4-175.9) Black dense mafic dyke as		103.0	104.6	1.6	152112	0.023	0.001	0.02	3.
		DYKE	above, 50° contact.		104.6	105.2	0.6	152113	0.004	0.001	0.01	5.
					105.2	107.0	1.8	152114	0.065	0.003	0.04	3.
			BIG FAULT ZONE: Clay/gravel with sections of		107.0	109.0	2.0	152115	0.035	0.001	0.03	3.
180.5	196.3	FAULT	fractured breccia as described:		109.0	110.0	1.0	152116	0.030	0.002	0.02	3.
				-	110.0	112.6	2.6	152117	0.018	0.001	0.01	5.
			(180.3-185.9) Orange/red breccia with clay		112.6	115.0	2.4	152118	0.026	0.001	0.02	3.
	· ·		zones, some gravel and clay-altered brown PP	·	115.0	117.0	2.0	152119	0.018	0.001	0.01	3.
<u> </u>	intrusive.		117.0	119.4	2.4	152120	0.059	0.004	0.11	. 3.		
· · · ·	<u></u>		(185.9-192.0) Black mafic, clay-altered dyke.		119.4	120.9	1.5	152121	0.037	0.003	0.05	4.
		·	-		120.9	122.5	1.6	152122	0.082	0.006	0.15	4
			(192.0-194.8) White/grey breccia with large		122.5	125.0	2.5	152123	0.097	0.006	0.16	5
			clasts of intrusive (PP).					1				

· .

· ·

1993) 17

<u></u>	<u></u>		MOUNT POLLEY MINE	· · · · · · ·				Hole No. Page:	MP-98-7 4	of	5	
				Recovery	From	То		Tag.		Anal	ysis	
From met	To ters	Syb	Description	Recovery	met		Lgth.	Number	Cu-tot (%)	Cu-ns (%)	Au (g/t)	Fe-tot (%)
1			(194.8-196.3) Grey/black clay altered mafic		125.0	127.0	2.0	152124	0.209	0.017	0.37	6.37
		FAULT	dyke, plus grey clay		127.0	129.0	2.0	152125	0.214	0.010	0.32	5.49
		cont.			129.0	131.0	2.0	152126	0.191	0.009	0.25	5.99
			Brown porphyry, dense, med-grained	·	131.0	133.0	2.0	152127	0.218	0.015	0.32	5.75
196.3	200.7	PP	intrusive, white plag phenos, no Cp, minor		131.0	135.0	2.0	152128	0.349	0.027	0.42	5.50
			calcite veining, no Cu-oxides or magnetite.		135.0	137.0	2.0	152129	0.293	0.026	0.38	5.5
					133.0	139.0	2.0	152130	0.409	0.024	0.44	5.7
					137.0	141.0	2.0	152131	0.694	0.429	0.53	6.1
					141.0	143.0	2.0	152132	0.273	0.210	0.36	4.5
					141.0	145.0	2.0	152133	0.312	0,162	0.35	4.1
				-		145.0	2.0	152134	0.281	0.174	0.32	4.6
					145.0	<u> </u>	2.0	152135	0.022	0.006	0.01	5.3
					147.0	149.8		152135	0.022	0.045	0.63	5.6
			· · ·		149.8	151.0	1.2	· · · · · · · · · · · · · · · · · · ·	0.470	0.045	0.59	5.9
					151.0	153.0	2.0	152137	0.462	0.108	0.53	4.6
					153.0	155.0	2.0	152138		0.353	0.36	5.1
					155.0	157.0	2.0	152139	0.614	0.353	0.57	6.6
					157.0	159.0	2.0	152140	0.464		1.42	5.5
					159.0	161.0	2.0	152141	0.857	0.187	0.74	6.4
					161.0	163.0	2.0	152142	0.518	0.229	0.74	6.3
					163.0	165.0		152143	0.491	0.277		5.3
					165.0	167.0		152144	0.480	0.209	0.76	
					167.0	169.0			0.644	0.372	1.05	5.4
					169.0	171.0	2.0	152146	0.585	0.270	1.02	3.8
······································		1							<u> </u>	<u> </u>	<u>L</u>	

•

· · ·

	****		MOUNT POLLEY MINE		<u>.</u>			Hole No.	MP-98-7			
								Page:	5	of	5	
From	То			Recovery	From	То		Tag.		Anal		
me	ters	Syb	Description		met	ers	Lgth.	Number	Cu-tot (%)	Cu-ns (%)	Au (g/t)	Fe-tot (%)
					171.0	173.0	2.0	152147	0.397	0.029	0.70	3.58
					173.0	174.4	1.4	152148	0.394	0.020	0.78	2.97
					174.4	175.9	1.5	152149	0.137	0.005	0.22	4.24
<u> </u>					175.9	177.0	1.1	152150	0.357	0.019	0.56	3.35
					177.0	179.0	2.0	11101	0.382	0.019	0.90	3.24
					179.0	180.3	1.3	11102	0.980	0.047	3.14	4.49
			· · · · · · · · · · · · · · · · · · ·		180.3	181.0	0.7	11103	0.153	0.022	0.25	2.18
					181.0	183.0	2.0	11104	0.115	0.043	0.21	2.41
· · · · · · · · · · · · · · · · · · ·					183.0	185.9	2.9	11105	0.059	0.020	0.05	3.11
					185.9	187.0	1.1	11106	0.063	0.023	0.04	3.14
					187.0	189.0	2.0	11107	0.005	0.002	0.01	0.74
					189.0	191.0	2.0	11108	0.005	0.001	0.01	4.57
					191.0	192.0	1.0	11109	0.005	0.001	0.09	4.31
					192.0	193.0	1.0	11110	0.063	0.014	0.05	3.14
					193.0	194.8	1.8	11111	0.038	0.007	0.01	2.45
	-				194.8	196.3	1.5	11112	0.005	0.001	0.01	4.72
					196.3	199.0	2.7	11113	0.056	0.008	0.04	2.32
					199.0	200.7	1.7	11114	0.041	0.006	0.01	2.33
												1
		-										3
					· · ·			ļ	ļ			
	_									:		
												*

ني د م مر

1.1

.

· . .

. .

MOUNT POLLEY MINE Hole No. MP-98-8 11 of 75.0 Page: 1 4 1. 1 Correct Dip: Pit: Northing: 3248.46 Cariboo **Grea Gillstrom** 252.3 Logged by: True Azm. Easting: 2143.89 Hole No: MP-98-8 32 Date: Dec--98 176.3 Survey at: Started Dec-18-98 Elevation: 1120.23 mine site Core stored at: Dec-19-98 Core Size: NQ Finished: Comments: ξ^{\dagger} 176.3m Objective: Lenath: Analysis Тο Tag. Recovery From То From Fe-tot Cu-ns meters Lath. Number Cu-tot Au Description Svb meters (q/t)(%) (%) (%) 5.16 3.7 5.0 1.3 11211 0.179 0.127 0.34 CASING 3.0 . 0.026 0.42 5.53 5.0 7.0 2.0 11212 0.203 Breccia: Pink grey/pink, K-spar altered 5.01 1.2 11213 0.108 0.026 0.27 8.2 7.0 95.0 BX 3.0 breccia, abundant calcite veinlets and vugs. 0.183 0.092 0.42 5.56 9.8 1.6 11214 8.2 diss Cp in most sections, large grey intrusive 6.01 0.889 0.039 1.88 clasts, (up to 0.1m), K-spar intensity varies 11.0 1.2 11215 9.8 through the breccia, dykes and exceptions as 6.81 1.11 13.0 2.0 11216 0.461 0.035 11.0 noted: 7.09 15.0 2.0 11217 0.324 0.190 0.79 13.0 7:98 11218 0.346 0.216 0.86 17.0 2.0 15.0 (3.7-8.2) Low K-spar intensity mostly grey PP 0.28 4.97 0.172 0.111 19.0 2.0 11219 17.0 with clasts. 7.63 0.202 0.138 0.56 20.4 1.4 11220 19.0 5.76 11221 0.177 0.112 0.49 20.4 21.5 1.1 (8.2-9.8) Fault Zone: gravel at top with 0.4m 5.92 23.0 1.5 11222 0.074 0.036 0.16 21.5 FAULT sections grey PP core in the middle and 0.2m 11223 0.290 0.112 1.09 8.30 25.0 2.0 23.0 of green/grey clay gouge at the bottom. 6.45 0.568 0.355 1.01 2.0 11224 25.0 27.0 8.66 11225 0.452 0.237 2.10 29.0 2.0 27.0 (20.4-21.3) Fault Zone: low recovery, mostly 8.08 0.094 1.12 29.0 31.0 2.0 11226 0.317 FAULT gravel and brown/grey clay. 9:01 11227 0.669 0.277 0.99 31.0 33.0 2.0 0.69 7.50 0.292 33.0 35.0 2.0 11228 0.356 0.296 7.49 35.0 37.0 2.0 11229 0.333 0.48 (47.6-47.8) Small fault, no gouge, shattered. 0.185 0.152 0.27 9.16 37.0 39.0 2.0 11230 FAULT 7.10 0.125 0.18 39.0 41.0 2.0 11231 0.163 (61,7-62.4) Grey/green augite porphyry dyke 0.137 0.30 6.70 0.256 43.0 2.0 11232 41.0 DYKE 0.179 0.34 4.44 2.0 11233 0.246 43.0 45.0 H:\ENG\DATA\Engdocs\98_DRILL_LOGS\IMP-98-8.xislSheet1

			MOUNT POLLEY MINE					Hole No. Page:	MP-98-8 2	of	4	
			r	Recovery	From	То		Tag.	<u> </u>	Anal	-	
From mete	To	Syb	Description	Necovery	met	1	Lgth.	Number	Cu-tot (%)	Cu-ns (%)	Au (g/t)	Fe-tot (%)
95.0	103.2	 PP	Grey plag porphyry intrusive, med-grained,		45.0	47.0	2.0	11234	0.232	0.062	0.52	7.40
			monz matrix, abundant white plag phenos, minor K-spar veining, also some minor cal		47.0	49.0	2.0	11235	0.476	0.137	1.62	8.1
			veining, no visible Cp.		49.0	51.0	2.0	11236	0.387	0.012	0.93	8.2
					51.0	53.0	2.0	11237	0.310	0.026	0.53	3.9
· · · · ·		DYKE	(100.7-101.3) Black, dense, fine-grained, mafic		53.0	55.0	2.0	11238	0.281	0.033	0.68	8.5
			dyke.		55.0	57.0	2.0	11239	0.294	0.027	0.62	6.8
			· · · · · · · · · · · · · · · · · · ·		57.0	59.0	2.0	11240	0.174	0.005	0.37	6.4
103.2	150.0	BX	Pink/grey mottled breccia, mod to intense K-		59.0	61.0	2.0	11241	0.381	0.008	0.73	7.2
			ar alteration, very clastic, abundant cite/chlorite veining & fractures, diss Cp		61.0	63.0	2.0	11242	0.021	0.001	0.01	5.6
			throughout zone, mostly grey intrusive clasts.		63.0	65.0	2.0	11243	0.200	0.007	0.33	6.3
					65.0	67.0	2.0	11244	0.407	0.007	0.68	7.6
					67.0	69.0	2.0	11245	0.260	0.006	0.29	6.2
			(118.6-122) Loss of intense K-spar alteration,		69.0	71.0	2.0	11246	0.195	0.006	0.26	6.9
			mostly grey PP, with pink patches and K-spar veining, matrix has visible porphyry texture.		71.0	73.0	2.0	11247	0.085	0.015	0.09	5.4
			vening, matrix has visible porphyry texture.		73.0	75.0	2.0	11248	0.125	0.024	0.14	6.0
					75.0	77.0	2.0	11249	0.117	0.015	0.12	5.8
150.0	176.3	PP/MZ	"Dead looking", grey, med-grained, intrusive,		77.0	79.0	2.0	11250	0.271	0.014	0.33	5.0
100.0			with monzonite matrix; white plag phenos		79.0	81.0	2.0	11251	0.328	0.011	0.32	- 7.1
· · · · · · · · · · · · · · · · · · ·			showing porphyry texture at the top of the section. It grades into flat grey monzonite after		81.0	83.0	2.0	11252	0.523	0.008	0.46	6.6
	155m, rare calcite veins, hard (R4) unit. No		83.0	85.0	2.0	11253	0.413	0.012	0.40	6.9		
			alteration except rare K-spar veins. No Cp.		85.0	87.0	2.0	11254	0.365	0.018	0.39	7.1
					87.0	89.0	2.0	11255	0.127	0.016	0.12	5.6
					89.0	91.0	2.0	11256	0.207	0.031	0.22	6.8
												Ц.,

· .

			MOUNT POLLEY MINE					Hole No.	MP-98-8			
								Page:	3	of	4	
From meter	To rs	Syb	Description	Recovery	From met	To ters	Lgth.	Tag. Number	Cu-tot (%)	Ana Cu-ns (%)	lysis Au (g/t)	Fe-tot (%)
· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		91.0	93.0	2.0	11257	0.125	0.094	0.16	3.3
					93.0	95.0	2.0	11258	0.058	0.032	0.05	3.0
				· .	95.0	97.0	2.0	11259	0.023	0.010	0.01	2.9
			n dyse		97.0	99.0	2.0	11260	0.043	0.012	0.08	2.9
					99.0	100.7	1.7	11261	0.032	0.003	0.04	2.9
					100.7	101.3	0.6	11262	0.027	0.002	0.01	4.2
					101.3	103.0	1.7	11263	0.023	0.001	0.01	2.5
					103.0	105.0	2.0	11264	0.182	0.017	0.21	7.4
					105.0	107.0	2.0	11265	0.264	0.012	0.37	5.8
			· · · · · · · · · · · · · · · · · · ·		107.0	109.0	2.0	11266	0.172	0.006	0.21	4.9
					109.0	111.0	2.0	11267	0.227	0.012	0.40	5.3
	<u> </u>				111.0	113.0	2.0	11268	0.273	0.036	0.47	6.4
					113.0	115.0	2.0	11269	0.219	0.087	0.35	6.7
		-	······································		115.0	117.0	2.0	11270	0.103	0.028	0.18	6.
		-	······································		117.0	119.0	2.0	11271	0.034	0.015	0.04	3.2
					119.0	121.0	2.0	11272	0.155	0.069	0.16	2.4
		· · · · · · · · · · · · · · · · · · ·			121.0	122.0	1.0	11273	0.083	0.023	0.05	2.7
					122.0	122.6	0.6	11274	0.004	0.001	0.01	- 5,1
					122.6	125.0	2.4	11275	0.025	0.008	0.03	2.6
					125.0	127.0	2.0	11276	0.028	0.018	0.03	2.7
		· · · · · · · · · · · · · · · · · · ·			127.0	129.0	2.0	11277	0.028	0.011	0.03	3.4
			· · · · · · · · · · · · · · · · · · ·		129.0	131.0	2.0	11278	0.018	0.006	0.03	3.4
					131.0	133.0	2.0	11279	0.093	0.036	0.16	3.9
		- <u> </u>										

•

1. ' yu'u 1. '

•

<u></u>	·····	MOUNT POLLEY MINE			<u> </u>	<u></u>	Hole No. Page:	MP-98-8 4	of	4	
From To	1	1	Recovery	From	То		Tag.		Anal	ysis	
meters	Syb	Description		met	ers	Lgth.	Number	Cu-tot (%)	Cu-ns (%)	Au (g/t)	Fe-tot (%)
				133.0	135.0	2.0	11280	0.097	0.023	0.29	3.39
				135.0	137.0	2.0	11281	0.051	0.003	0.15	3.58
				137.0	139.0	2.0	11282	0.075	0.002	0.14	3.6
				139.0	141.0	2.0	11283	0.062	0.014	0.11	3.0
· · · ·		· · · · · · · · · · · · · · · · · · ·		141.0	143.0	2.0	11284	0.020	0.003	0.03	3.0
				143.0	145.0	2.0	11285	0.018	0.003	0.03	3.8
				145.0	147.0	2.0	11286	0.020	0.006	0.03	3.4
				147.0	149.0	2.0	11287	0.018	0.005	0.03	4.1
	-			149.0	151.0	2.0	11288	0.012	0.001	0.02	4.1
				151.0	153.0	2.0	11289	0.008	0.001	0.01	4.9
				153.0	155.0	2.0	11290	0.009	0.001	0.01	4.8
				155.0	157.0	2.0	11291	0.004	0.001	0.02	4.6
				157.0	159.0	2.0	11292	0.004	0.001	0.01	4.6
				159.0	161.0	2.0	11293	0.036	0.002	0.01	4.5
				161.0	163.0	2.0	11294	0.009	0.001	0.02	4,4
				163.0	165.0	2.0	11295	0.002	0.001	0.01	4,1
				165.0	167.0	2.0	11296	0.011	0.001	0.03	4.3
				167.0	169.0	2.0	11297	0.013	0.001	0.03	4.4
				169.0	171.0	2.0	11298	0.018	0.001	0.04	4.3
				- 171.0	173.0	2.0	11299	0.009	0.001	0.03	4.3
				173.0	175.0	2.0	11300	0.011	0.003	0.02	4.8
				175.0	176.3	1.3	11301	0.008	0.002	0.02	4.6
		END OF HOLE						l			
								<u> </u>			

. . .

1.1

			MOUNT POLLEY MINE					Hole No.	MP-98-9			
itarted I inished: I bjective:	MP-98-9 Dec-17-98 Dec-18-98	Northing: Easting: Elevation: Core Size: Length: in East Car	Correct Dip: True Azm. Survey at:	55.0 270.0 110\220.8	· · · ·		Page: Logged by Date: Core store Comments	ed at:	of Pat McAnc Dec-23-98 mine site	6 Iless\Greg	Gillstrom	
From	То			Recovery	From	То		Tag.			lysis	
mete	ers	Syb	Description		met	ers	Lgth.	Number	Cu-tot (%)	Cu-ns (%)	Au (g/t)	Fe-tot (%)
-	9.2	CASING			9.2	12.0	2.9	11302	0.166	0.008	0.30	3.46
					12.0	13.0	1.0	11303	0.642	0.009	1.14	5.27
9.2	220.8	ΒХ	BRECCIA: Assorted interbedded intrusive		.13.0	15.0	2.0	11304	0.322	0.004	0.25	3.57
			and volcanic breccias, with rare dykes through the entire hole. Detailed descriptions		15.0	17.0	2.0	11305	0.261	0.003	0.28	3.65
			as follows:		17.0	19.0	2.0	11306	0.218	0.003	0.22	5.64
					19.0	21.0	2.0	11307	0.165	0.005	0.30	5.10
			(9.15-12.0) Green/brown volcanic breccia,		21.0	23.0	2.0	11308	0.128	0.002	0.17	6.36
			oxidized, limonitic, dark green matrix, angular volcanic clasts, no visible Cp.		23.0	25.0	2.0	11309	0.118	0.002	0.17	4.17
					25.0	27.0	2.0	11310	0.107	0.003	0.11	. 6.44
			(12.0-17.0) Intense pink K-spar altered		27.0	29.0	2.0	11311	0.077	0.001	0.06	5.67
			breccia, abundant chl/epidote/diopside in matrix, angular intrusive (grey/pink) clasts,		29.0	31.0	2.0	11312	0.097	0.001	0.04	5.40
			minor calcite veining, rare hematite/chlorite		31.0	33.0	2.0	11313	0.210	0.003	0.20	5.28
			slickensided surfaces.		33.0	35.0	2.0	11314	0.369	0.004	0.39	5.73
					35.0	37.0	2.0	11315	0.118	0.001	0.13	6.22
			(17.0-23.0) Weak K-spar altered intrusive		37.0	39.0	2.0	11316	0.051	0.001	0.02	6.45
			breccia, pink/grey, ghost-like frags of intrusive, pp matrix, minor epidote on		39.0	41.0	2.0	11317	0.328	0.004	0.17	6.18
	· · ·		fractures.		41.0	43.0	2.0	11318	0.531	0.005	0.25	4.96
]		43.0	45.0	2.0	11319	0.307	0.006	0.15	5.54
			(23.0-25.0) Increase in K-spar alth with some		45.0	46.5	1.5	11320	0.044	0.001	0.03	5.02
			green (diopside?) alteration starting to show up, minor calcite veining.		46.5	48.7	2.2	11321	0.206	0.001	0.04	5.49
		up, minor calcite veining.		48.7	51.0	2.3	11322	0.118	0.002	0.14	3.28	
					51.0	53.0	2.0	11323	0.042	0.001	0.04	3.42
					53.0	55.5	2.5	11324	0.119	0.002	0.13	3.76
								H:\ENG	S\DATA\Engd	ocs\98_DRILL_	LOGS\[MP-9	8-9.xls]Sheet1

.

אגן הייסיער הייסיער כיניס בייסיער כיניס בייסיער כיניס בייסיער כיניס בייסיער כיניס בייסיער כיניס בייסיער כי אני האיי

		MOUNT POLLEY MINE					Hole No. Page:	MP-98-9 2	of	6	с. 5
rom To		I	Recoverv	From	То		Tag.	-	Anal	-	<u> </u>
From To meters	Syb	Description		mete		Lgth.	Number	Cu-tot (%)	Cu-ns (%)	Au (g/t)	Fe-to (%)
-	· · · · ·	(25.0-46.5) Intrusive breccia, grey/pink plag	1	55.5	57.0	1.5	11325	0.150	0.002	0.16	4.
	-	(pp) matrix, pink intrusive clasts, blotchy pink	·	57.0	59.0	2.0	11326	0.248	0.004	0.31	5
		alteration, some green epidote /chlorite/calcite veining, vuggy in sections with calcite veins		59.0	61.5	2.5	11327	0.161	0.002	0.11	4
		up to 1/2 cm (horz to core).		61.5	63.0	1.5	11328	0.077	0.001	0.03	5
	-			63.0	65.0	2.0	11329	0.244	0.007	0.20	5
	FAULT	(46.5-48.7) Shear Zone, filled with clay-altered		65.0	67.0	2.0	11330	0.253	0.005	0.17	.4
	TAULI	black mafic dyke and chloritic gouge, frags of		67.0	69.0	2.0	11331	0.110	0.003	0.07	5
	_	volcanics, both contacts fractured.		69.0	71.0	2.0	11332	0.092	0.003	0.07	5
	_			71.0	73.0	2.0	11333	0.140	0.004	0.07	ŧ
		(48.7-55.5) Pink/grey PP breccia, intrusive		73.0	75.0	2.0	11334	0.243	0.005	0.35	E
	<u> </u>	clasts, CC veins, with K-spar envelopes.		75.0	77.0	2.0	11335	0.434	0.007	0.27	6
		- ·		77.0	79.0	2.0	11336	0.463	0.018	0.39	n soena Lisoena Liso
		(55.5-61.5) Grey/green fine-grained volcanic		79.0	81.0	2.0	11337	0.168	0.006	0.14	
		breccia. Pink K-spar blotches, angular frags		81.0	82.3	1.3	11338	0.153	0.002	0.07	
		of intrusive and volcanic, rare blebs of Cp, Cp and mag diss through zone, calcite veins.	· · · ·	82.3	83.0	0.7	11339	0.035	0.001	0.05	110
		and mag diss through zone, calche venis.		83.0	85.0	2.0	11340	0.145	0.002	0.06	
				85.0	87.7	2.7	11341	0.138	0.002	0.07	ŧ
·		(61.7-77.6) Loss of K-spar alteration, more		87.7	89.0	1.3	11342	0.061	0.001	0.06	
		grey volcanic-type breccia, rare K-spar veins,		89.0	91.2	2.2	11342	0.069	0.001	0.07	4
		fine-grained matrix (dark grey) minor Cp		91.2	93.0	1.8	11344	0.290	0.007	0.22	. (
		along fractures and diss. In matrix. (nice Cp at 68m).		93.0	95.0	2.0	11345	0.230	0.004	0.15	
				ł·	95.0	2.0	11345	0.217	0.004	0.10	
		-		95.0		2.0	11340	0.100	0.003	0.19	
		4		97.0	99.0	2.0	11347	0.240	0.004	0.13	

.

1 : (

•

		MOUNT POLLEY MINE					Hole No.	MP-98-9 3	of	6	
			Recovery	From	To		Page: Tag.		Analy		
rom To meters	Syb	Description	Kecovery	met		Lgth.	Number	Cu-tot (%)	Cu-ns (%)	Au (g/t)	Fe-tot (%)
		(77.6-82.3) Big increase in K-spar alteration,		99.0	101.0	2.0	11348	0.177	0.005	0.14	5.1
	<u> </u>	pink to grey/pink matrix, volcanic frags, Cp diss in matrix in fractures and minor veins,		101.0	103.0	2.0	11349	0.289	0.019	0.18	7.3
		uggy calcite veins with chl/epidote? (lots of		103.0	105.8	2.8	11350	0.390	0.016	0.24	7.
		Cp at 81.3m).		105.8	107.0	1.2	11351	0.392	0.024	0.34	3.
				107.0	109.0	2.0	11352	0.127	0.004	0.09	2.
		(82.3-87.7) Loss of intense pink K-spar,		109.0	111.0	2.0	11353	0.059	0.003	0.01	2
		grey/green, fine-grained volcanic breccia with		111.0	113.0	2.0	11354	0.118	0.007	0.10	3.
		_patches of pink alteration.		113.0	115.0	2.0	11355	0.365	0.021	0.67	3
				115.0	116.4	1.4	11356	0.058	0.001	0.11	2
		(87.7-91.2) Mixed PP/breccia, grey intrusive		116.4	117.8	1.4	11357	0.028	0.003	0.02	1
		matrix with pink patches, diss Cp through		117.8	119.0	1.2	11358	0.067	0.001	0.15	3
		_section.		119.0	121.0	2.0	11359	0.121	0.004	0.70	3
				121.0	123.0	2.0	11360	0.178	0.008	0.55	3
		(91.2-105.8) Volcanic Breccia, grey/green, fine	•	123.0	125.0	2.0	11361	0.078	0.003	0.04	24 3
	-	grained matrix, some pink patches, diss Cp		125.0	127.0	2.0	11362	0.066	0.002	0.01	3
		with some Cp veining, calcite/epidote in vuggy veins, large calcite veins at 101m.		127.0	128.2	1.2	11363	0.051	0.001	0.01	3
				128.2	129.0	0.8	11364	0.317	0.006	0.23	4
				129.0	131.0	2.0	11365	0.393	0.023	0.28	4
		(105.8-116.4) Intrusive breccia, pink intense K-	•	131.0	133.0	2.0	11366	0.313	0.024	0.23	5
		-spar alteration, well defined plag (PP) matrix,		131.0	135.0	2.0	11367	0.357	0.024	0.29	
		Cp in diss/blebs/infills/minor veins, calcite veins (40 deg to c.a.), chlor/diop along		135.0	137.0	2.0	11368	0.603	0.042	0.45	(
		fractures.		137.0	138.0	1.0	11369	0.374	0.014	0.32	Z
		-		138.0	139.0	1.0	11370	0.602	0.026	0.58	4
				130.0	133.0						<u>ن</u>

 $[\mathbf{n}, \mathbf{n}, \mathbf{n$

· .

		MOUNT POLLEY MINE					Hole No. Page:	MP-98-9 4	of	6	
	T		Recovery	From	To		Tag.		Anal	ysis	
From To meters	Syb	Description	Recovery	met	• •	Lgth.	Number	Cu-tot (%)	Cu-ns (%)	Au (g/t)	Fe-tot (%)
		116.4-117.8) Volcanic and intrusive breccia,	<u></u>	139.0	141.0	2.0	11371	0.663	0.014	0.54	5.36
		mottled pink/grey, mix of both intrusive and volcanic clasts.		141.0	142.8	1.8	11372	0.306	0.007	0.30	4.33
				142.8	143.8	1.0	11373	0.248	0.006	0.24	19.92
				143.8	145.0	1.2	11374	0.276	0.005	0.24	7.3
		(117.8-128.2) Back into intense pink K-spar altered breccia, with PP matrix as 105.8m,		145.0	147.0	2.0	11375	0.424	0.012	0.31	4.5
		 altered breccia, with PP matrix as 105.8m, with diss Cp, abundant calcite veinlets. 		147.0	149.0	2.0	11376	0.378	0.003	0.33	4.7
		with diss cp, abundant calche vernets.		149.0	151.0	2.0	11377	0.149	0.012	0.08	4.7
	-			151.0	153.0	2.0	11378	0.185	0.018	0.13	5.2
		(128.2-135.0) Well developed volcanic breccia, grey/green matrix, dark green volcanic frags, diss Cp noted.		153.0	155.0	2.0	11379	0.298	0.053	0.24	4.8
	-			155.0	157.0	2.0	11380	0.273	0.016	0.26	4.3
			······································	157.0	159.0	2.0	11381	0.247	0.022	0.18	4.7
				159.0	161.0	2.0	11382	0.110	0.008	0.07	5,1
	<u> </u>	(135.0-138.0) High Grade Ore section.		161.0	163.0	2.0	11383	0.094	0.008	0.09	4.6
		Increase in K-spar alteration, still a volcanic		163.0	165.0	2.0	11384	0.068	0.004	0.04	4.7
		breccia, abundant magnetite/epidote/calcite, with large calcite crystals in vugs, lots of Cp		165.0	167.7	2.7	11385	0.025	0.002	0.01	4.3
		in blebs, diss in matrix, in veins and vugs.	· ·	167.7	169.0	1.3	11386	0.074	0.006	0.11	4.0
		-		169.0	171.0	2.0	11387	0.114	0.006	0.16	5.6
		╡ .	·····	171.0	173.0	2.0	11388	0.080	0.005	0.10	4.3
		(138.0-142.8) Loss of intense Cp veining, back		173.0	175.0	2.0	11389	0.110	0.003	0.09	3.3
		into volcanic breccia as 128.2m.		175.0	177.5	2.5	11390	0.001	0.001	0.01	5.9
				177.5	179.0	1.5	11391	0.039	0.002	0.01	2.9
		(142.8-143.8) Black, massive magnetite skarn		179.0	181.5	2.5	11392	0.037	0.001	0.01	3.1
	-	zone, matrix is mostly magnetite with green/white phenos of chlorite/calcite/epidote		181.5	183.0	1.5	11393	0.065	0.007	0.02	2.1

1

		MOUNT POLLEY MINE					Hole No. Page:	MP-98-9 5	of	6	
		T ^M	Recovery	From	To		Tag.		Analy		<u> ! .</u>
rom To meters	Syb	Description	Recovery	mete		Lgth.	Number	Cu-tot (%)	Cu-ns (%)	Au (g/t)	Fe-to (%)
		(143.8-157.0) Light to dark grey, mottled		183.0	185.0	2.0	11394	0.054	0.002	0.02	3.
		volcanic breccia, fine grained dark green		185.0	187.0	2.0	11395	0.095	0.002	0.11	3
		matrix, Cp in diss and infilling (60deg to c.a.), abundant magnetite in blebs with		187.0	188.0	1.0	11396	0.098	0.002	0.10	6
	-	calcite/chl/epidote veins.		188.0	190.0	2.0	11397	0.023	0.002	0.01	4
·····		(157.0-167.7) Intrusive breccia with PP matrix,		190.0	191.0	1.0	11398	0.109	0.002	0.10	5
		med K-spar alteration.		191.0	193.0	2.0	11399	0.052	0.001	0.01	5
				193.0	195.0	2.0	11400	0.126	0.004	0.07	
		(167.7-168.9) Intrusive breccia increase in K-		195.0	197.0	2.0	11401	0.179	0.001	0.19	
		spar altn, mottles pink matrix.		197.0	199.0	2.0	11402	0.221	0.001	0.21	· · · •
				199.0	201.0	2.0	11403	0.292	0.006	0.34	
	DYKE			201.0	203.0	2.0	11404	0.145	0.002	0.15	4
	DIKE	(168.9-169.3) Augite porphyry dyke, augite phenos in dark green matrix, (your standard		203.0	205.0	2.0	11405	0.285	0.005	0.57	4
		Mt Polley green dyke), no Cp.		205.0	207.0	2.0	11406	0.116	0.001	0.12	
		(169.3-75.0) Intrusive breccia, mod K-spar		207.0	209.0	2.0	11407	0.234	0.005	0.41	
		alteration, PP matrix.		209.0	211.0	2.0	11408	0.276	0.005	0.50	
				211.0	213.0	2.0	11409	0.196	0.004	0.23	4
	DYKE	(175.0-177.5) Augite porphyry dyke as above.		213.0	215.0	2.0	11410	0.199	0.003	0.22	
	DYKE_	4		215.0	217.0	2.0	11411	0.247	0.012	0.27	
		(177.5-181.5) Intrusive breccia with PP matrix		217.0	219.0	2.0	11412	0.215	0.011	0.26	
		as at 169.3.		219.0	220.8	1.8	11413	0.223	0.003	0.35	
											ļ
		(181.5-183.0) Loss of K-spar altn, grey/green matrix (not as PP), probably volcanic.	EN	O OF SAMPL	ES			[
			<u> </u>								

		MOUNT POLLEY MINE					Hole No. Page:	MP-98-9 6	of	6	1 v v
om To		I	Recovery	From	То	Ι	Tag.		Anal		
meters	Syb	Description		met	ers	Lgth.	Number	Cu-tot (%)	Cu-ns (%)	Au (g/t)	Fe-to (%)
		(183.0187.0) Mod K-spar alteration breccia									
		with PP matrix.									·
		4				1	<u> </u>				
		(187.0-188.0) Transition zone with both									
		intrusive and volcanic breccia.			<u> </u>						
		-								· ·	1
	_	(188.0-190.0) Maroon porphyry dyke with		<u> </u>							
	DYKE	-green (epidote?) phenos, no Cp.									
			·	····							
								·	·		
		(190.0-209.0) Dark grey volcanic breccia, not mottled as before, fine-grained matrix, minor			<u> </u>	<u> </u>		<u> </u>			
		K-spar veinlets, breccia not as pronounced,		<u></u>			· · · · · · · · · · · · · · · · · · ·	<u> </u>			
		minor epidote, diss Cp with rare veins (large									
		Cp vein at 199.5m) and magnetite in blebs,						<u> </u>			
		calcite veinlets, brecciation more intense fron 203m.									- <u>r</u>
		(209.0-217.5) Mottled pink/grey med-grained									
		mix of volcanic and intrusive breccia, diss Cp									<u></u>
		noted.									
											<u>_</u>
		(217.5-220.8m) Grey volcanic breccia with									
		minor intrusive clasts, some diss Cp noted.			1						
						-	-	-			
										1	1

For the theorem the theorem the theorem the three theorem is $\mathcal{O}(\mathcal{O}(\mathcal{O}))$

. ;

.

— • •

. .

.

May 20, 1999

Appendix 4 Geotechnical Logs

٠.

	98-4			nt Polley		3001001		99.9	Page: 1 of 3		
lole:	DDH-99C	Logger:	G.G.	Elev.	1170					rage, ioio	
Drill date:	12-Dec	E :		Core size:	NQ						
og date:	13-Dec	N:						Otron oth	Alteration	Comments	
From	То	Length	Recovery	Percent	RQD		Fractures	Strength	Alteration	Commenta	
(m)	(m)	(m)	(m)	(%)	(m)	(%)	(per run)	NI/A	N/A	CASING	
0.00	3.05		N/A		N/A	N/A	N/A	N/A R3	K	BRECCIA	
3.05	5.49	2.44	2.10	86.1%	0.80	32.8%	>50	R3	ĸ	DILLOUIN	
5.49	8.53	3.04	3.04	100.0%	1.20	39.5%	20.00	R3	ĸ	-	
8.53	11.58	3.05	2,90	95.1%	1.80	59.0%	10.00		a second s		
11.58	14.63	3.05	3.05	100.0%	1.40	45.9%	12.00	R3	K		
14.63	17.68	3.05	3.05	100.0%	2.30	75.4%	12.00	R3	K		
17.68	20.40	2.72	2.72	100.0%	1.80	66.2%	20.00	R3	K		
20.40	23.72	3.32	3.32	100.0%	1.10	33,1%	40.00	R3	K		
23.72	26.82	3.10	3.10	100.0%	1.80	58.1%	40.00	R3	K	<u> </u>	
26.82	29.90	3.08	3.08	100.0%	2.40	77.9%	25.00	R3	K		
29.90	32.90	3.00	3.00	100.0%	2.80	93.3%	15.00	R3	K		
32.90	35.97	3.07	3.07	100.0%	2.50	81.4%	12.00	R3	K		
35.97	39.00	3.03	3.03	100.0%	3.00	99.0%	14.00	R3	K		
39.00	42.00	3.00	3.00	100.0%	2.90	96.7%	9.00	R3	К		
42.00	45.10	3.10	2.90	93.5%	2.70	87.1%	10.00	R3	K		
45.10	51.10	6.00	6.00	100.0%	6.00	100.0%	23.00	R3	К		
51.10	52.40	1.30	1.20	92.3%	0.60	46.2%	>50	R3	K	DYKE	
52.40	53,60	1.20	1.20	100.0%	0.00	0.0%	15.00	R3	K	DYKE	
53.60	56.70	3.10	3.10	100.0%	2.30	74.2%	6.00	R3	К		
56.70	59,70	3.00	3.00	100.0%	2.70	90.0%	8.00	R3	ĸ		
59.70	63.40	3.70	3.70	100.0%	1.30	35.1%	6.00	R3	K	· · · · · · · · · · · · · · · · · · ·	
63.40	66.50	3.10	3.10	100.0%	2.40	77.4%	8.00	R3	K		
66.50	69.50	3.00	3.00	100.0%	2.10	70.0%	10.00	R3	K	DYKE	
69.50	72.50	3.00	3.00	100.0%	2.90	96.7%	15.00	R3	К		
72.50	75.60	3.10	3.10	100.0%	1.40	45.2%	10.00	R3	К		
75.60	78.60	3.00	3.00	100.0%	2,20	73.3%	9.00	R3	K		
78.60	81.70	3.10	3.10	100.0%	2.50	80.6%	7.00	R3	К	· · · · · · · · · · · · · · · · · · ·	
81.70	84.70	3.00	3.00	100.0%	2.60	86.7%	3.00	R3	К	Į	
84.70	87.80	3.10	3.10	100.0%	2.50	80.6%	9.00	R3	К	Į	
87.80	90.80	3.00	3.00	100.0%	2.60	86.7%	5.00	R3	К	ļ	
90.80	93.90	3.10	2.90	93.5%	2,80	90.3%	6.00	R3	K	[
93.90	96.90	3.00	3.00	100.0%	2.20	73.3%	>50	R3	K	SMALL FAULT	
96.90	100.00	3.10	3.10	100.0%	2.60	83,9%	6.00	R3	K		
100.00	103.20	3.20	3.20	100.0%	2.50	78.1%	7.00	R3	K		
100.00	103.20	3.50	3.50	100.0%	2.70	77.1%	8.00	R3	К		

· .

		·····	Mou	nt Polley	/ Mine -	Geotec	hnical L	oaaina	<u>,</u>	
Hole:	99C	Logger:		Elev.				- 33 - 3		Page: 2
Drill date:		E:		Core size:						
Log date:		N:	<u> </u>		· · · · ·					
From	То	Length	Recovery	Percent	RQD	Percent	Fractures	Strength	Alteration	Comments
(m)	(m)	(m)	(m)	(%)	(m)	(%)	(per run)			
106.7	109.0	2.3	2.3	100.0%	2.8	121.7%	7.0	R3	К	
109.0	112.1	3.1	3.1	100.0%	2.7	87.1%	7.0	R3	K	
112.1	115.2	3.1	3.1	100.0%	2.8	90.3%	8.0	R3	K	
115.2	118.3	3.1	3.1	100.0%	2.5	80.6%	4.0	R3	K	
118.3	121.3	3.0	3.0	100.0%	2.6	86.7%	2.0	R3	K	
121.3	124.4	3.1	3.1	100.0%	2.7	87.1%	3.0	R3	K	
124.4	127.4	3.0	3.0	100.0%	2.4	80.0%	5.0	R3	K	
127.4	130.5	3.1	2.9	93.5%	2.6	83.9%	8.0	R3	K	
130.5	133.5	3.0	2.7	90,0%	0.6	20.0%	29.0	R11	K	
133.5	134,7	1.2	0.4	33.3%	0.0	0.0%	>100	R1	CLAY	FAULT
134.7	136.3	1.6	0.4	25.0%	0.0	0.0%	>100	R1	CLAY	FAULT
136.3	139.3	3.0	3.0	100.0%	2.6	86.7%	7.0	R3	K	
139.3	142.3	3.0	3.0	100.0%	2.6	86.7%	8.0	R3	K	
142.3	145.0	2.7	2.5	92.6%	2,4	88.9%	20.0	R3	K	
145.0	147.1	2.1	2.1	100.0%	2.5	122.0%	8.0	R3	K	
147.1	148.7	1.6	1.6	100.0%	2.6	157.6%	10.0	R3	K	
148.7	151.5	2.8	2.8	100.0%	2.4	85.7%	15.0	R3	K	
151.5	152.4	0.9	0.9	100.0%	2.6	288.9%	8.0	R3	K	
152.4	154.8	2.4	2.4	100.0%	2.8	116.7%	10.0	R3	ĸ	
154.8	157.9	3.1	3.1	100.0%	2.7	87.1%	8.0	R3	ĸ	
157.9	160.9	3.0	3.0	100.0%	2.8	93.3%	9.0	R3	К	
160.9	164.0	31	3.1	100.0%	2.8	90.3%	9.0	R3	К	
164.0	167.0	3.0	3.0	100.0%	2.6	86.7%	7.0	R3	К	
167.0	170.0	3.0	3.0	100.0%	2.7	90.0%	8.0	R3	K	
170.0	173.1	3.1	3.1	100.0%	2.8	90.3%	6.0	R3	ĸ	· · · · · · · · · · · · · · · · · · ·
173.1	176.1	3.0	3.0	100.0%	2.8	93.3%	4.0	R3	K	······································
176.1	179.2	3.1	3.1	100.0%	2.6	83.9%	10.0	R3	К	
179.2	182.2	3.0	3.0	100.0%	2.3	76.7%	10.0	R3	K	· · ·
182.2	185.3	3.1	3.1	100.0%	2.6	83.9%	20.0	R3	ĸ	· · · · · · · · · · · · · · · · · · ·
185.3	188.4	3.1	3.1	100.0%	2.1	67.7%	20.0	R3	K	
188.4	191.4	3.0	3.0	100.0%	2.6	86.7%	50.0	R3	K	
191.4	194.4	3.0	3.0	100.0%	2.2	73.3%	12.0	R3	K	
194.4	197.5	3.1	3.1	100.0%	2.8	90.3%	50.0	R3	K	
197.5	200.5	3.0	3.0	100.0%	2.7	90.0%	6.0	R4	K	PP
200.5	203.6	3.1	3.1	100.0%	2.6	83.9%	8.0	R4	K	<u> </u>

			Mou	nt Polley	Mine -	Geotec	nnical L	ogging		
ole:	99C	Logger:		Elev.						Page: 3
rill date:		E:		Core size:						······································
og date:		N:								
From	То	Length	Recovery	Percent	RQD		Fractures	Strength	Alteration	Comments
(m)	(m)	(m)	(m)	(%)	(m)	(%)	(per run)			
203.6	205.1	1.50	1.5	100.0%	0.5	33.3%	7	R4	MINOR K	
205.1	207.5	2.40	2.4	100.0%	0.9	37.5%	6	R4	MINOR K	
207.5	208.8	1.30	1.3	100.0%	0.9	69.2%	9	R4	MINOR K	
			<u> </u>							
			<u> </u>	 					<u> </u>	<u> </u>
					<u> </u>					
			<u> </u>	ļ			ļ			
		l				<u>_</u>				
									L	
										
			-							<u> </u>
		1							ļ	
							l			·····
		<u></u>	1							
			1							
			1							
		<u> </u>	1				-			
<u></u>		<u> </u>								
			1							
			1	1						
	<u></u>	<u> </u>	1	1		1				
			1	1						
		·	1	1		1		<i>.</i>		
<u></u>		<u> </u>	1	1		1				
·	·	<u> </u>		1		1				
•	. <u> </u>	+	1	1		1	1	1		
			+	+		1	1	<u> </u>	1	
<u></u>		·	<u> </u>		<u> </u>			<u>†</u>	1	

· .

				nt Polley		Geoleci	inical LC	yying		Deces 4 of 0
	DDH-98-5	Logger:	G.G.	Elev.	1130					Page: 1 of 2
Drill date:	12-Dec	E ;		Core size:	NQ	ļ				
.og date:	13-Dec	N:		Dip:	58					Commente.
From	To	Length	Recovery	Percent	RQD	Percent	Fractures	Strength	Alteration	Comments
(m)	(m)	(m)	(m)	(%)	(m)	(%)	(per run)			010110
0.00	3.00	3.00			<u></u>					CASING
3.00	8.80	5.80	3.80	65.5%	0.40	6.9%	>20	R3	K	
8.80	11.60	2.80	1.40	50.0%	0.00	0.0%	>50	R3	К	HIGHLY FRACTURED
11.60	14.90	3.30	1.60	48.5%	0.00	0.0%	>50	R3	K	GOING THRU BENCH
14.90	17.40	2.50	2.10	84.0%	0.60	24.0%	>20	R3	K	BLAST (8.8-14.9)
17.40	19.20	1.80	1.40	77.8%	0.80	44.4%	>20	R3	К	· · · · · · · · · · · · · · · · · · ·
19.20	20.70	1.50	1.50	100.0%	0.40	26.7%	5.00	R3	K	
20.70	23.80	3.10	3.00	96.8%	2.40	77.4%	9,00	R3	MINOR K	DYKE
23.80	26.80	3.00	3.00	100.0%	2.40	80.0%	10.00	R3	K	
26.80	29.90	3.10	3.00	96.8%	1.70	54.8%	6.00	R3	K/CLAY	DYKE
29,90	32.90	3,00	3.00	100.0%	2.80	93.3%	10.00	R3	К	
32.90	36.00	3.10	3.00	96.8%	2.90	93.5%	6.00	R3	К	
36.00	39.00	3.00	3.00	100.0%	2.80	93.3%	4.00	R3	K	
39.00	42.00	3.00	3.00	100.0%	2.69	89.7%	4.00	R3	К	
42.00	45.10	3.10	3.10	100.0%	2.80	90.3%	5.00	R3	К	
45.10	48.10	3.00	3.00	100.0%	2.90	96.7%	4.00	R3	K/SER	DYKE
48.10	51.50	3.40	3.30	97.1%	2.90	85.3%	6.00	R3	ĸ	
51.50	54.30	2.80	2.80	100.0%	2.80	100.0%	4.00	R3	K	
54.30	57.30	3.00	3.00	100.0%	2.60	86.7%	6.00	R3	K	
57.30	59.10	1.80	1.80	100.0%	1.40	77.8%	6.00	R3	ĸ	
59.10	62.80	3.70	3,60	97.3%	2.90	78.4%	5.00	R3	ĸ	
62.80	63.70	0.90	0.90	100.0%	0.75	83.3%	3.00	R3	К	
63.70	66.70	3.00	3.00	100.0%	2.60	86.7%	5.00	R3	ĸ	
66.70	69.80	3.10	3.00	96.8%	2.60	83.9%	5.00	R3	К	
69.80	70,70	0.90	0.90	100.0%	0,70	77.8%	8.00	R3	К	
70.70	74.70	4.00	4.00	100.0%	3,60	90.0%	6.00	R3	K	
74.70	78.20	3.50	3.50	100.0%	3.40	97.1%	6.00	R3	ĸ	
78.20	81.60	3.40	3.40	100.0%	2.90	85.3%	5.00	R3	K	
81.60	84.70	3.10	3.10	100.0%	2,80	90.3%	4.00	R3	К	
84.70	87.70	3.00	3.00	100.0%	2.60	86.7%	8.00	R3	K	
87.70	93.90	6.20	6.10	98.4%	5.20	83.9%	8.00	R3	К	
93.90	96.90	3.00	3.00	100.0%	2.70	90.0%	6.00	R3	К	
96.90	103.00	6.10	6.00	98.4%	5.30	86.9%	6.00	R3	K	DYKE
the second s	105.00	3.70	3.70	100.0%	3.10	83.8%	6.00	R3	K	
103.00	109.10	2.40	2.40	100.0%	2.10	87.5%	5.00	R3	K	·····

	S Mount Polley Mine - Geotechnical Logging												
lole:	98									Page: 2			
From	То	Length	Recovery	Percent	RQD	Percent	Fractures	Strength	Alteration	Comments			
(m)	(m)	(m)	(m)	(%)	(m)	(%)	(per run)						
109.1	112.2	3.1	3.1	100.0%	2.3	74.2%	6.0	R3	К				
112.2	115.2	3.0	3.0	100.0%	2.40	80.0%	>20	R3	К				
115.2	118.3	3.1	3.0	96.8%	1.80	58,1%	6.0	R3	К				
118.3	121.3	3.0	3.0	100.0%	2.60	86.7%	10.0	R3	К	······································			
121.3	124.4	3.1	3.0	96.8%	2.60	83.9%	15.0	R3	K				
124.4	127.4	3.0	3.0	100.0%	2.40	80.0%	17.0	R3	К				
127.4	130.4	3.0	3.0	100.0%	1.60	53.3%	12.0	R3	К	DYKE			
130.4	131.8	1.4	1.3	92.9%	0.80	57.1%	6.0	R3	K				
131.8	133.5	1.7	1.7	100.0%	1.10	64.7%	8.0	R3	K				
133.5	136.5	3.0	3.0	100.0%	2.50	83.3%	5.0	R3	K				
136.5	142.5	6.0	6.0	100.0%	5.40	90.0%	6.0	R3	K				
142.5	145.7	3.2	3.1	96.9%	2.70	84.4%	10.0	R3	К				
145.7	148.7	3.0	3.0	100.0%	2.60	86.7%	6.0	R3	K	DYKE			
148.7	151.8	3.1	3.0	96.8%	2.60	83.9%	6.0	R3	ĸ				
151.8	154.8	3,0	3.0	100.0%	2.70	90.0%	8.0	R3	к				
154.8	157.8	3.0	3.0	100.0%	2.60	86.7%	5.0	R3	К				
157.8	161.9	4.1	4.0	97.6%	3.40	82.9%	6.0	R3	K				
161.9	163.9	2.0	2.0	100.0%	1.60	80.0%	6.0	R3	К				
163.9	165.8	1.9	1.9	100.0%	0,60	31.6%	5.0	R3	К				
165.8	167.9	2.1	2.0	95.2%	1.50	71.4%	5.0	R3		START OF FRESH			
167.9	170.9	3.0	3.0	100.0%	2.70	90.0%	6.0	R3		MONZ.			
170.9	173.9	3,0	3.0	100.0%	2.60	86.7%	8.0	R3					
173.9	176.1	2.2	2.2	100.0%	1.80	81.8%	5.0	R3					
176.1	179.2	3.1	3,1	100.0%	2.70	87,1%	5.0	R3		· · · · · · · · · · · · · · · · · · ·			
179.2	182.3	3.1	3.1	100.0%	2.60	83.9%	4.0	R3					
182.3	185.3	3.0	3.0	100.0%	2.60	86.7%	6.0	R3					
185.3	187.6	2.3	2.3	100.0%	2.70	117.4%	5.0	R3					
187.6	189.9	2.3	2.3	100.0%	2.60	113.0%	6.0	R3					
189.9	192.9	3.0	3.0	100.0%	2.40	80.0%	8.0	R3					
192.9	194.9	2.0	1.9	95.0%	0.00	0.0%	>100	R3					
194.9	197.2	2.3	0.4	17.4%	0.00	0.0%	>100	R3		FAULT ZONE			
197.2	200.8	3,6	1.0	27.8%	0.00	0.0%	>100	R3		(197.2-206.7)			
200.8	203.6	2.8	1.1	39.3%	0.00	0.0%	>100	R3					
203.6	206.7	3.1	1.4	45.2%	0.2	6.5%	6.0	R3	1	END OF HOLE			

•

	Mount Polley Mine - Geotechnical Logging												
Hole:	DDH-98-6	Logger:	G,G,	Elev.	1130		Azm:	180		Page: 1 of 2			
Drill date:	15-Dec	E:		Core size:	NQ]							
og date:	16-Dec	N:		Dip:	55								
From	To	Length	Recovery	Percent	RQD	Percent	Fractures	Strength	Alteration	Comments			
(m)	(m)	(m)	(m)	(%)	(m)	(%)	(per run)						
0.0	3.0	3.0								CASING			
3.0	4.0	1.0	0.6	62.5%	0.2	20.8%	>50	R3	К	bench floor			
4.0	5.7	1.7	1,6	92.0%	1.0	57.5%	6.0	R3	К	·			
5.7	9.5	3.8	3.8	100.0%	2.4	63.2%	10.0	R3	K				
9.5	11.8	2.3	2.2	95.7%	1.5	65.2%	8.0	R3	K				
11.8	14.0	2.2	2.2	100.0%	1.8	81.8%	8.0	R3	К				
14.0	15.8	1.8	1.8	100.0%	1.2	66.7%	6.0	R3	К				
15.8	17.0	1.2	1.2	100.0%	0.8	66.7%	4.0	R3	К				
17.0	20.3	3.3	3.3	100.0%	2.6	78.8%	5.0	R3	K				
20.3	23.8	3.5	3.5	100.0%	2.5	71.4%	8.0	R3	К				
23.8	26.8	3.0	3.0	100.0%	2.4	80.0%	12.0	R3	ĸ				
26.8	29.7	2.9	2.9	100.0%	2.0	69.0%	5.0	R3	ĸ				
29.7	32.9	3.2	3.0	93.8%	2.6	81.3%	8.0	R3		dyke			
32.9	35.9	3.0	3.0	100.0%	2.4	80.0%	10.0	R3	K				
35,9	38,7	2.8	2.8	100.0%	2.2	78.6%	8.0	R3	К				
38.7	41.7	3.0	3.0	100.0%	2.1	70.0%	6.0	R3	К				
41.7	42.8	1,1	1.0	90.9%	0.6	54.5%	5.0	R3	К	· · · · · · · · · · · · · · · · · · ·			
42.8	45.1	2.3	1.8	78.3%	0.8	34.8%	>20	R3	K				
45.1	47.2	2.1	2.0	95.2%	1.0	47.6%	>20	R3	K	healed fault zone			
47.2	49.5	2.3	2.0	87.0%	1.2	52.2%	>20	R3	K				
49.5	53,4	3.9	3.2	82.1%	2.1	53.8%	8.0	R3	K				
53.4	56.0	2.6	2.5	96.2%	2.0	76.9%	10.0	R3	ĸ	dyke			
56.0	60.3	4.3	4.2	97.7%	3.8	88.4%	12.0	R3	K				
60.3	62.4	2.1	2.0	95.2%	1.8	85.7%	9.0	R3	K				
62.4	65.2	2.8	2.8	100.0%	2.4	85.7%	6.0	R3	ĸ	·			
65.2	67.6	2.4	2.4	100.0%	2.0	83.3%	8.0	R3	K				
67.6	69.5	1.9	1.8	94.7%	1.2	63.2%	5.0	R3	К				
69.5	77.4	7.9	7.9	100.0%	6.2	78,5%	18.0	R3	ĸ				
77.4	78.6	1.2	1.2	100.0%	0.8	66.7%	8.0	R3	K				
78.6	80.6	2.0	2.0	100.0%	1.4	70.0%	8.0	R3	ĸ				
80.6	83.6	3,0	2.5	83.3%	0.6	20.0%	>20	R3	K	dyke			
83.6	87.7	4,1	4.0	97.6%	3.2	78.0%	9.0	R3	К				
87.7	90.8	3.1	3.0	96.8%	2.4	77.4%	10.0	R3	K				
90.8	93.8	3.0	3.0	100.0%	2.1	70.0%	8.0	R3	K				
93.8	96.8	3,0	3.0	100.0%	2.3	76.7%	6.0	R3	K				

ogging		Page: 2
s Strength	Alteration	Comments
)		
R3	K	
R3	ĸ	
R3	K	
R3	K	
R3	K	
R3	К	
R3	K	
R3	K	
R3	К	
R3	ĸ	
R3	K	<u></u>
R3	К	
R3	K	pp
R3	K	pp
R3	K	
R3	K	
R3	K	
R3	ĸ	
R3	K	
R3	K	<u> </u>
R3	K	
R4	<u></u>	pp
R4		end of hole
•		

<u></u>	Mount Polley Mine - Geotechnical Logging												
Hole:	DDH-98-7	Logger:	G.G.	Elev.	1130					Page: 1 of 3			
Drill date:	12-Dec	E:		Core size:	NQ								
og date:	13-Dec	N:		Dip:									
From	То	Length	Recovery	Percent	RQD		Fractures	Strength	Alteration	Comments			
(m)	(m)	(m)	(m)	(%)	(m)	(%)	(per run)			·			
0.0	3.0	3.0								CASING			
3.0	5.5	2.5	2.1	84.3%	0.8	32.1%	>50	R3	K				
5.5	8.2	2.7	2.4	88.6%	1.9	70.1%	18.0	R3	ĸ	·			
8.2	11.2	3.0	3.0	100.0%	2.8	93.3%	15.0	R3	К				
11.2	14.6	3.4	3.1	91.2%	2.6	76.5%	15.0	R3	К				
14.6	16.8	2.2	2.2	100.0%	2.1	95.5%	>20	R3	K				
16.8	19.5	2.7	2.6	96.3%	2.4	88.9%	5.0	<u>R3</u>	K				
19.5	20.7	1.2	1.1	91.7%	0.9	75.0%	6.0	R3	К				
20.7	23.9	3.2	3.2	100.0%	3.1	96,9%	9.0	R3	К				
23.9	26.8	2.9	2.7	93.1%	2.5	86.2%	6.0	R3	K				
26.8	29.8	3.0	3.0	100.0%	2.6	86.7%	8.0	R3	K				
29.8	32.8	3.0	3.0	100.0%	2.6	86.7%	5.0	R3	К	DYKE			
32.8	35.9	3.1	3.0	96.8%	2.5	80.6%	5.0	R3	K	· · · · · · · · · · · · · · · · · · ·			
35.9	38.1	2.2	2.2	100.0%	2.0	90.9%	5.0	R3	ĸ	DYKE			
38.1	40.8	2.7	2.7	100.0%	2.4	88.9%	6.0	R3	К				
40.8	42.9	2.1	2.1	100.0%	2.0	95.2%	5.0	R3	K				
42.9	47.6	4.7	4.6	97.9%	2.2	46.8%	>20	R3	К	DYKE			
47.6	50.6	3.0	3.0	100.0%	2.6	86.7%	6.0	R3	ĸ				
50.6	52.7	2.1	2.0	95.2%	1.9	90.5%	5.0	R3	K				
52.7	54.2	1.5	1.5	100.0%	1.3	86.7%	4.0	R3	К	······································			
54.2	55.4	1.2	1.2	100.0%	1.1	91.7%	8.0	R3	К				
55.4	57.3	1.9	1.9	100.0%	1.2	63.2%	6.0	R3	K				
57.3	59.7	2.4	2.4	100.0%	2.0	83.3%	5.0	R3	К				
59.7	62.7	3.0	3.0	100.0%	1.8	60.0%	12,0	R3	ĸ				
62.7	64.9	2.2	2.2	100.0%	2.0	90.9%	8.0	R3	K				
64.9	66.7	1.8	1.8	100.0%	1.5	83.3%	5.0	R3	K				
66.7	68.8	2.1	2.1	100.0%	1.8	85.7%	6.0	R3	ĸ				
68.8	71.9	3.1	3.0	96.8%	2.4	77.4%	7.0	R3	K				
71.9	74.9	3.0	3.0	100.0%	0.7	23.3%	>20	R3	K				
74,9	77.7	2.8	2.8	100.0%	2.5	89.3%	5.0	R3	K	·			
77.7	80.4	2.7	2.7	100.0%	2.3	85.2%	6.0	R3	K				
80,4	84.7	4.3	4.3	100.0%	3.2	74.4%	8.0	R3	K	DYKE			
84.7	87.8	3.1	3.1	100.0%	2.5	80.6%	6.0	R3	K				
87.8	90.8	3.0	3.0	100.0%	2.4	80.0%	6.0	R3	K	DYKE			
90.8	93.9	3.1	3.0	96.8%	2.1	67.7%	>20	R3	K	SMALL FAULT			

ļ

			Mour	nt Polley	Mine -	Geoteci	nnical Lo	ogging		
ole:	98-7									Page: 2
Erom	То	Length	Recovery	Percent	RQD	Percent	Fractures	Strength	Alteration	Comments
From (m)	(m)	(m)	(m)	(%)	(m)	(%)	(per run)			
93.9	96.9	3.0	3.8	126.7%	0.4	13.3%	>20	R3	К	
96.9	99.9	3.0	3.0	100.0%	2.60	86.7%	8.0	R3	К	
99.9	103.0	3.1	3.0	96.8%	2.50	80.6%	6.0	R3	К	
103.0	106.0	3.0	3.0	100.0%	2.60	86.7%	5.0	R3	К	DYKE
106.0	112.0	6.0	5.3	88.3%	4.20	70.0%	12.0	R3	K	DYKE
112.0	115.0	3.0	3.0	100.0%	2.50	83.3%	5.0	R3	К	
115.0	121.3	6.3	6.2	98.4%	5.10	81.0%	8.0	R3	К	DYKE
121.3	124.3	3.0	3.0	100.0%	2.60	86.7%	5.0	R3	К	
124.3	128.9	4.6	4.2	91.3%	3.20	69.6%	>20	R3	K	
128.9	129.5	0.6	0.5	83.3%	0.20	33.3%	4.0	R3	K	
129.5	132.5	3.0	3.0	100.0%	2.60	86.7%	8.0	R3	К	
132.5	135.6	3.1	3.0	96,8%	2.50	80.6%	8.0	R3	K	
135.6	137.7	2.1	2.0	95.2%	1.80	85.7%	4.0	R3	K	
137.7	139,6	1.9	1.8	94.7%	0.90	47.4%	3.0	R3	K	
139.6	141.4	1.8	1.8	100.0%	1.20	66.7%	5.0	R3	K	
141.4	143.4	2.0	2.0	100.0%	1.40	70.0%	5.0	R3	K	
143.4	145.6	2.2	2.0	90.9%	1.50	68.2%	6.0	R3	K	
145.6	147.2	1.6	1.6	100.0%	1.30	81.3%	8.0	R3	ĸ	
147.2	150.2	3.0	3.0	100.0%	2.50	83.3%	6.0	R3	K	
150.2	153.3	3.1	3.0	96.8%	2.50	80.6%	6.0	R3	ĸ	
153.3	156.4	3.1	3.0	96.8%	2.60	83.9%	8.0	R3	К	
156.4	159.4	3.0	3.0	100.0%	2.60	86.7%	6.0	R3	К	
159.4	161.8	2.4	2.4	100.0%	2.10	87.5%	5.0	R3	К	
161.8	164.2	2.4	1.8	75.0%	1.40	58.3%	>20	R3	K	FAULT
164.2	167.2	3.0	3.0	100.0%	2.60	86.7%	6.0	R3	K	
167.2	169.8	2.6	2.0	76.9%	1.60	61.5%	4.0	R3	K	
169.8	171.6	1.8	1.8	100.0%	1.38	76.7%	0.9	R3	K	
171.6	174.6	3.0	3.0	100.0%	2.60	86.7%	5.0	R3	K	
174.6	177.6	3.0	3.0	100.0%	2.50	83.3%	8.0	R3	K	· · · · · · · · · · · · · · · · · · ·
177.6	179.2	1.6	1.5	93.8%	1.40	87.5%	12.0	R3	K	
179.2	181.2	2.0	1,6	80.0%	0.60	30.0%	6.0	R3	K	FAULT ZONE
181.2	185.9	4.7	3.8	80.9%	2.20	46.8%	>20	R3	K	(180.3-196.3)
185.9	187.9	2.0	1.6	80.0%	1.00	50.0%	>20	R3	K	
187.9	188.9	1.0	0.7	70.0%	0.2	20.0%	>20	R3	K	I

•

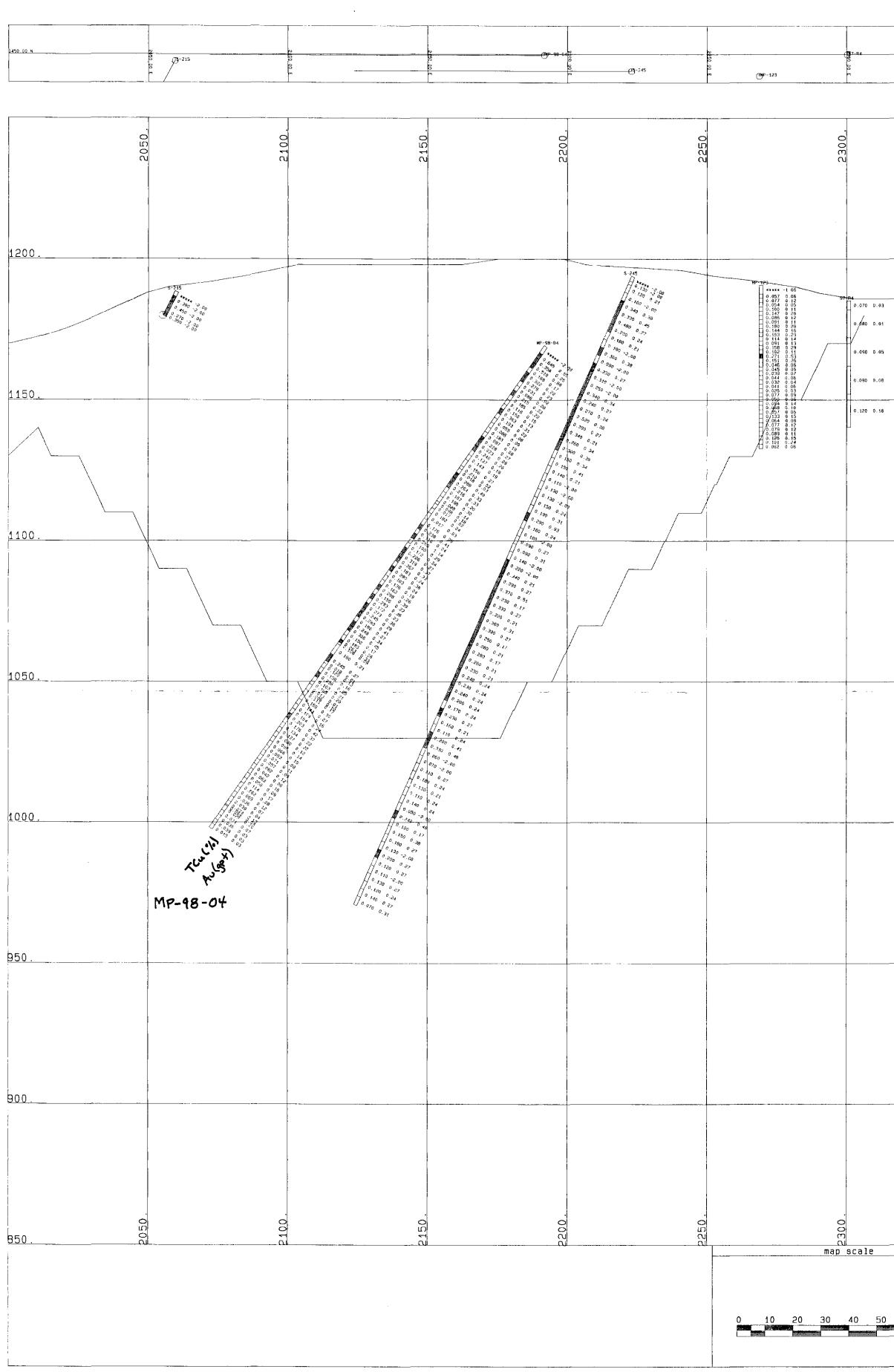
ļ

•

Hole:	98-7	Logace		t Polley Elev.						Page: 3
Drill date:	30-1	Logger: E:		Core size:						1 MJG: V
.og date:		<u> </u>		Core size.						
From	То	Length	Recovery	Percent	RQD	Porcent	Fractures	Strength	Alteration	Comments
(m)	(m)	(m)	(m)	(%)	(m)	(%)	(per run)	onengen	Anvianvii	
188.9	191.4	2.5	1.2	48.0%	0.4	16.0%	>20	R3		FAULT ZONE
191.4	191.4	3.0	2.4	80.0%	1.4	46.7%	>20	R3		180.3-196.3
191.4	194.4	1.6	1.1	68.8%	0.4	25.0%	>20	R3		100.0-100.0
	200.7	4.7	4.7	100.0%	4.1	87.2%	5.0	R3	· · · · · · · · · · · · · · · · · · ·	END OF HOLE
196.0	200.7	4.1	4.1	100.0%	4.1	01.270	5.0	1.3		
						<u> </u>		·		
<u></u>					· · · · · · · · · · · · · · · · · · ·		[
					······	 			· · · · ·	
						· · · · · · · · · · · · · · · · · · ·	[· · · · · · · · · · · · · · · · · · ·	
									·	
							· · · · · · · · · · · · · · · · · · ·	······		
						<u> </u>				
							1			
		·····			<u> </u>					
										· · · · · · · · · · · · · · · · · · ·
		· · · · ·			<u></u>					·····
						<u> </u>				· · · · · · · · · · · · · · · · · · ·
			·							
										<u></u>
									<u> </u>	·····
						ļ				· · · · · · · · · · · · · · · · · · ·
										· · · · · · · · · · · · · · · · · · ·
						ļ			· · · · · · · · · · · · · · · · · · ·	
			L			<u> </u>			ļ	
			<u> </u>			L			L	L
]	<u> </u>	-		
			·			1				
			1			1.	1		1	
						<u> </u>	t		l	

 $(\mathbf{m}, \mathbf{c}, \mathbf{c$

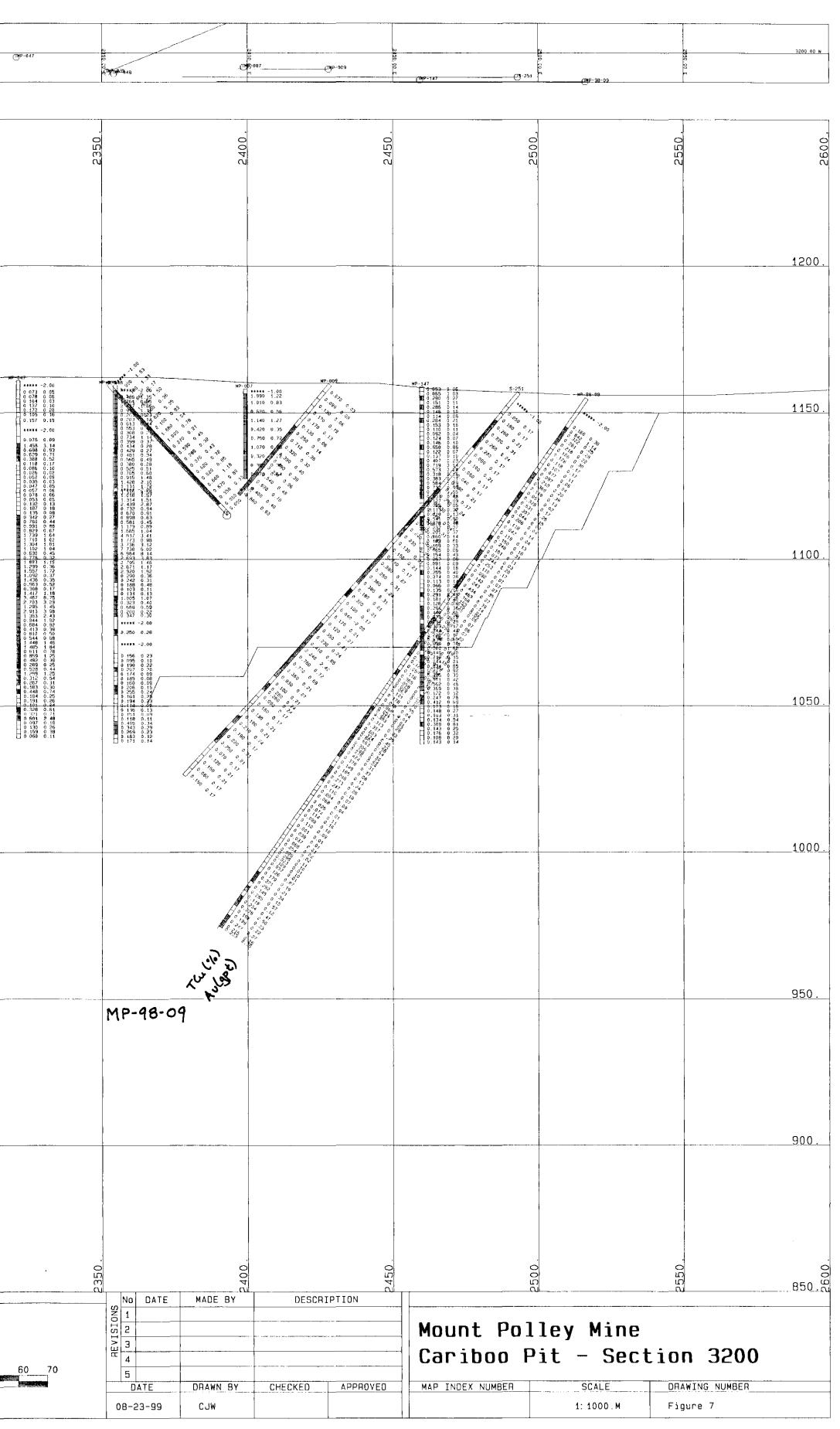
Mount Polley Mine - Geotechnical Logging												
Hole:	DDH-98-8	Logger:	G.G.	Elev.	1120		Azm:	270		Page: 1 of 2		
Drill date:	16-Dec	E:		Core size:	NQ							
og date:	22-Dec	N:		Dip:	75							
From	To	Length	Recovery	Percent	RQD		Fractures	Strength	Alteration	Comments		
(m)	(m)	(m)	(m)	(%)	(m)	(%)	(per run)					
0.0	3.7	3.7								CASING		
3.7	4.9	1.2	1.0	83.3%	0.6	50.0%	9.0	R3	K			
4.9	7.0	2.1	1.6	75.8%	0.8	37.9%	10.0	R3	К			
7.0	8.2	1.2	1.2	100.8%	1.1	92.4%	4.0	R3	K			
8.2	11.6	3.4	2.5	73.5%	1.1	32.4%	>50	R3	K	SMALL FAULT		
11.6	14.6	3.0	3.0	100.0%	1.7	56.7%	9.0	R3	К	· · · · · · · · · · · · · · · · · · ·		
14.6	17.6	3.0	3.0	100.0%	1.5	50.0%	10.0	R3	К			
17.6	20.4	2.8	2.6	92.9%	0.9	32.1%	>50	R3	К			
20.4	21.3	0.9	0.9	100.0%	0.1	11.1%	>50	R3	К	FAULT		
21.3	23.1	1.8	1.8	100.0%	0.4	22.2%	15.0	R3	К			
23.1	25.9	2.8	2.8	100.0%	2.4	85.7%	10.0	R3	К			
25.9	27.9	2.0	2.0	100.0%	1.9	95.0%	8.0	R3	К			
27.9	32.9	5.0	5.0	100.0%	1.9	38.0%	22.0	R3	K			
32.9	36.0	3.1	3.0	96.8%	2.5	80.6%	>20	R3	K	<u> </u>		
36.0	39.1	3.1	3.0	96.8%	1.1	35.5%	18.0	R3	ĸ	<u></u>		
39.1	44.5	5.4	5.4	100.0%	12.0	222.2%	9.0	R3	K			
44.5	47.5	3.0	2.5	83.3%	2.2	73.3%	8.0	R3	K			
47.5	51.2	3.7	3.0	81.1%	2.6	70.3%	10.0	R3	K			
51.2	54.2	3.0	3.0	100.0%	2.8	93.3%	10.0	R3	K	·····		
54.2	57.3	3.1	3.0	96.8%	2.6	83.9%	8.0	R3	K			
57.3	60.3	3.0	3.0	100.0%	2.8	93.3%	9.0	R3	K			
60.3	63.4	3.1	3.1	100.0%	2.7	87.1%	11.0	R3	K			
63.4	66.5	3.1	3.1	100.0%	2.7	87.1%	11.0	R3	K			
66.5	69.5	3.0	3.0	100.0%	2.8	93.3%	6.0	R3	K			
69.5	72.5	3.0	3.0	100.0%	2.7	90.0%	9.0	R3	K			
72.5	75.6	3.1	2.7	87.1%	1.7	54.8%	23.0	R3	K	FAULT		
75.6	78.6	3.0	2.8	93.3%	1.5	50.0%	18.0	R3	K	DYKE		
78.6	81.6	3.0	3.0	100.0%	2.0	66.7%	9.0	R3	K			
81.6	84.6	3.0	3.0	100.0%	2.0	66.7%	12.0	R3	ĸ	ļ		
84.6	87.8	3.2	3.0	93.7%	2.4	75.0%	8.0	R3	К			
87.8	90,8	3.0	3.0	100.0%	2.6	86.7%	9.0	R3	K	· · · · · · · · · · · · · · · · · · ·		
90.8	93.8	3.0	3.0	100.0%	2.2	73.3%	12.0	R3	K			
93.8	96.8	3.0	3.0	100.0%	2.4	80.0%	10.0	R3	K			
96.8	99.7	2.9	3.0	103.4%	2.4	82.8%	11.0	R3	K			
99.7	102.1	2.4	3.0	125.0%	2.3	95.8%	16.0	R3	K	DYKE		

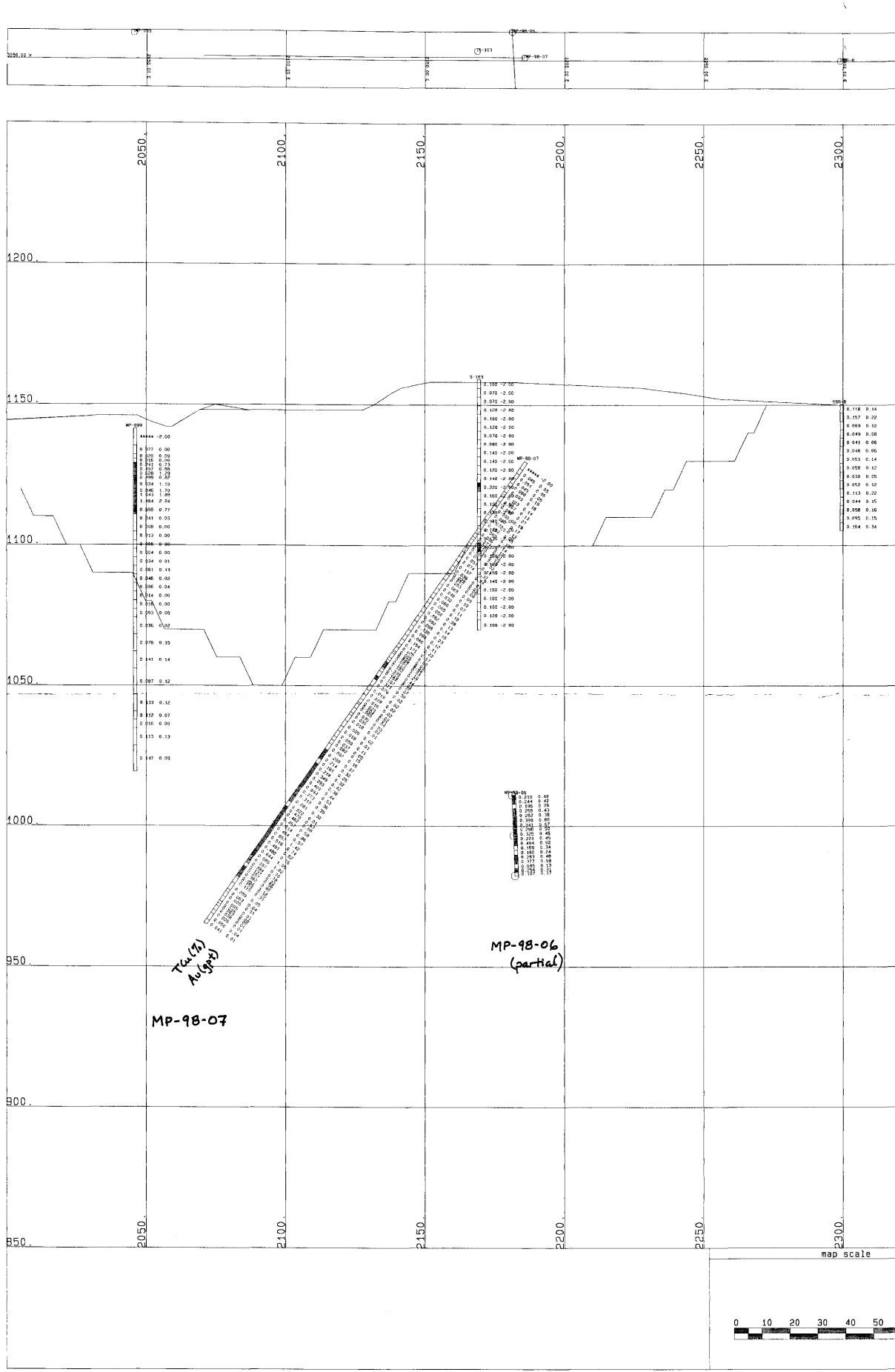

			Mour	nt Polley	Mine -	Geotec	nnical Lo	ogging		
ole:	98-8							· · · · · · · · · · · · · · · · · · ·		Page: 2
From	То	Length	Recovery	Percent	RQD	Percent	Fractures	Strength	Alteration	Comments
(m)	(m)	(m)	(m)	(%)	(m)	(%)	(per run)			
102.1	105.6	3.5	3.5	100.0%	2.7	77.1%	6.0	R3	K	
105.6	110.2	4.6	4.6	100.0%	2.60	56.5%	8.0	R3	К	
110.2	113.3	3.1	3.0	96.8%	2.50	80.6%	13.0	R3	K	
113.3	114.6	1.3	1.3	100.0%	1.00	76.9%	8.0	R3	K	
114.6	117.4	2.8	2.8	100.0%	1.80	64.3%	12.0	R3	K	·
117.4	118.8	1.4	1.4	100.0%	1.10	78.6%	22.0	R3	K	
118.8	121.3	2.5	2.5	100.0%	2.00	80.0%	8.0	R3	K	
121.3	125.9	4.6	4.6	100.0%	1.70	37.0%	8.0	R3	ĸ	DYKE
125.9	127.4	1.5	1.5	100.0%	0.80	53.3%	9.0	R3	ĸ	
127.4	130.5	3.1	3.1	100.0%	2.10	67.7%	15.0	R3	K	
130.5	132.3	1.8	1.8	100.0%	0.90	50.0%	6.0	R3	K	
132.3	135.5	3.2	3.2	100.0%	2,50	78.1%	7.0	R3	K	
135.5	138.6	3.1	3.1	100.0%	2.40	77.4%	7.0	R3	ĸ	
138.6	141.6	3.0	3.0	100.0%	2.30	76.7%	9.0	R3	ĸ	
141.6	144.6	3.0	3.0	100.0%	2.30	76.7%	12.0	R3	K	
144.6	148.5	3.9	3.9	100.0%	3.00	76.9%	6.0	R3	K	
148.5	151.8	3.3	3.3	100.0%	2.60	78.8%	3.0	R3	K	
151.8	154.8	3,0	3.0	100.0%	2.60	86.7%	8.0	R4		MONZ
154.8	157.8	3.0	3.0	100.0%	2.40	80.0%	6.0	R4		
157.8	163.9	6.1	6.0	98.4%	4.80	78.7%	4.0	R4		
163.9	167.0	3.1	3.1	100.0%	2.30	74.2%	5.0	R4		
167.0	170.0	3.0	3.0	100.0%	2.50	83.3%	6.0	R4		
170.0	173.4	3.4	3.4	100.0%	2.80	82.4%	8.0	R4		
173.4	176.4	3.0	3.0	100.0%	2.60	86.7%	5.0	R4		END OF HOLE
		 								
		<u> </u>				+				
		<u> </u>			· · · · · · · · · · · · · · · · · · ·	1				
							<u> </u>			
		ļ				<u> </u>	<u> </u>			
	l	I		L	L	<u></u>	<u>. </u>	L	<u> </u>	L

 $(\mathbf{r}, \mathbf{r}) \in \{\mathbf{r}, \mathbf{r}\} \in \{\mathbf{r}, \mathbf{r}\}$

				t Polley	winne -			ugging		D 4.70
lole:	DDH-98-9	Logger:	G.G.	Elev.		Dip:	55			Page: 1 of 2
Drill date:	16-Dec	E;	. <u> </u>	Core size:	NQ					
.og date:	19-Dec	N:		Azm:	270	<u>`</u>		01	A 14	Commonto
From	То		Recovery	Percent	RQD	Percent	Fractures	Strength	Alteration	Comments
(m)	(m)	(m)	(m)	(%)	(m)	(%)	(per run)			040840
0.0	9.2	9.2	N/A	N/A	N/A	N/A	N/A	N/A	N/A	CASING
9.2	11.8	2.7	1.8	67.9%	0.0	0.0%	>100	R3	K	
11.8	14.6	2.8	2.5	89.3%	0.8	28.6%	>20	R3	K	
14.6	16.7	2.1	2.0	95.2%	0.8	38.1%	>20	R3	К	
16.7	19.5	2.8	2,8	100.0%	0.6	21.4%	>20	R3	K	
19.5	20.1	0.6	0.5	83.3%	0.5	83.3%	>20	R3	K	
20.1	23.1	3.0	2.8	93.3%	0.8	26.7%	>20	R3	ĸ	
23.1	26.8	3.7	3.7	100.0%	0.4	10.8%	>20	R3	K	
26.8	28.0	1.2	1.2	100.0%	0.8	66.7%	9.0	R3	K .	
28.0	31.0	3.0	3.0	100.0%	0.9	30.0%	18.0	R3	K	
31.0	33.0	2.0	2.0	100.0%	0.6	30.0%	>20	R3	К	
33.0	35.0	2.0	2.0	100.0%	1.1	55.0%	>20	R3	К	
35.0	39.0	4.0	4.0	100.0%	1.4	35.0%	19.0	R3	К	
39.0	42.9	3.9	3.9	100.0%	1.8	46.2%	12.0	R3	К	
42.9	45.9	3.0	3.0	100.0%	1.7	56.7%	14.0	R3	К	
45.9	49.0	3.1	2.6	83.9%	1.2	38.7%	18.0	R3	К	FAULT ZONE
49.0	52.6	3.6	3.5	97.2%	0.8	22.2%	>50	R3	К	(46.5-48.7)
52.6	55.5	2.9	2.9	100.0%	0.6	20.7%	12.0	R3	К	
55.5	60.3	4.8	4.8	100.0%	2.7	56.3%	>20	R3	К	
60.3	68.2	7.9	7.9	100.0%	1.8	22.8%	>20	R3	K	
68.2	71.2	3.0	3.0	100.0%	2.8	93.3%	18.0	R3	K	
71.2	74.3	3.1	3.1	100.0%	2.4	77.4%	31.0	R3	K	<u></u>
74.3	77.6	3.3	3.3	100.0%	1.9	57.6%	10.0	R3	К	
77.6	82.6	5.0	5.0	100.0%	3.5	70.0%	28.0	R3	K	
82.6	86.5	3.9	3.9	100.0%	3.0	76.9%	9.0	R3	K	
86.5	89.9	3.4	3.4	100.0%	2.8	82.4%	8.0	R3	K	<u>.</u>
89.9	92.0	2.1	2.1	100.0%	1.6	76.2%	8.0	R3	K	
92.0	96.0	4.0	4.0	100.0%	2.9	72.5%	12.0	R3	K	
96.0	99.0	3.0	3.0	100.0%	2.6	86.7%	9.0	R3	К	· · · · · · · · · · · · · · · · · · ·
99.0	102.1	3.1	3.1	100.0%	2.6	83.9%	8.0	R3	ĸ	
102.1	105.1	3.0	3.0	100.0%	2.4	80.0%	11.0	R3 .	K	
105.1	109.1	4.0	4.0	100.0%	3.1	77.5%	15.0	- R3	K	
109.1	112.1	3.0	3.0	100.0%	2.6	86.7%	9.0	R3	К	
112.1	114.9	2.8	2.8	100.0%	2.0	71.4%	18.0	R3	К	
114.9	118.0	3.1	3.1	100.0%	2.5	80.6%	9.0	R3	К	

 ~~_				t Polley					P	age: 2 of 2
ole:	98-9		·	+				· · · · · ·		
					<u> </u>				A 44	Comments
From	То	Length	Recovery	Percent	RQD		Fractures	Strength	Alteration	Comments
(m)	(m)	(m)	(m)	(%)	(m)	(%)	(per run)		<u> </u>	
118.0	121.3	3.3	3.2	97.0%	2.6	78.8%	12.0	R3	K	
121.3	124.3	3.0	3.0	100.0%	0.4	13.3%	>20	R3	K	
124.3	127.3	3.0	3.0	100.0%	2.3	76.7%	15.0	R3	K	
127.3	130.0	2.7	2.7	100.0%	1.8	66.7%	18.0	R3	K K	· · · · · · · · · · · · · · · · · · ·
130.0	132.0	2.0	2.0	100.0%	1.1	55.0%	>20	R3	K K	
132.0	133.5	1.5	1.5	100.0%	1.0	66.7%	>20	R3	κ κ	
133.5	136.5	3.00	3.0	100.0%	2.6	86.7%	12.0	R3	K K	
136.5	142.6	6.10	6.0	98.4%	4.5	73.8%	>20	R3		
142.6	145.5	2.90	2.9	100.0%	2.0	69.0%	11.0	R3 R3	K K	
145.5	148.7	3.20	3.0	93.8%	2.4	75.0%	15.0		K	
148.7	151.8	3.10	3.0	96.8%	2.1	67.7%	9.0	R3	K	
151.8	153.3	1.50	1.5	100.0%	0.8	53.3%	8.0	R3 R3	K K	
153.3	154.8	1.50	1.5	100.0%	0.9	60.0%	7.0		K	
154.8	160.9	6.10	6.0	98.4%	5.1	83.6%	18.0	R3	K K	
160.9	163.9	3.00	3.0	100.0%	2.4	80.0%	9.0	R3	K K	
163.9	165.9	2.00	2.0	100.0%	1.3	65.0%	4.0	R3	K	
165.9	167.0	1.10	1.1	100.0%	0.6	54.5%	6.0	R3		
167.0	170.0	3.00	3.0	100.0%	1.2	40.0%	18.0	R3	ĸ	
170.0	176.0	6.00	6.0	100.0%	2.8	46.7%	>20	R3	К	<u></u>
176.0	179.0	3.00	3.0	100.0%	1.3	43.3%	>20	R3	К	<u></u>
179.0	181.0	2.00	2.0	100.0%	0.8	40.0%	>20	R3	К	
181.0	185.0	4.00	4.0	100.0%	2.0	50.0%	>20	R3	К	
185.0	186.0	1.00	1.0	100.0%	0.4	40.0%	>20	R3	К	· · · · · · · · · · · · · · · · · · ·
186.0	189.0	3.00	3.0	100.0%	2.0	66.7%	16.0	R3	К	
189.0	191.0	2.00	2.0	100.0%	1.2	60.0%	12.0	R3	K	<u>, , , , , , , , , , , , , , , , , , , </u>
191.0	195.0	4.00	4.0	100.0%	2.9	72.5%	19.0	R3	к К	
195.0	198.0	3.00	3.0	100.0%	2.5	83.3%	8.0	R3	<u>к</u> К	
198.0	201.0	3.00	3.0	100.0%	2.6	86.7%	10.0	R3	K K	
201.0	203.6	2.60	2.6	100.0%	2.1	80.8%	12.0	R3		· · · · · · · · · · · · · · · · · · ·
203.6	209.7	6.10	6.0	98.4%	5.3	86.9%	19.0	R3	K	
209.7	212.7	3.00	3.0	100.0%	2.3	76.7%	9.0	R3	K	
212.7	215.8	3.10	3.0	96.8%	2.3	74.2%	10.0	R3	К	<u></u>
215.8	218.8	3.00	3.0	100.0%	2.4	80.0%	9.0	R3	K	End of hole
218.8	220.9	2,10	2.1	100.0%	1.5	71.4%	10	r R3	К	End of hole


 \mathbb{C}) \mathbb


	N G G G G	ດີ ເງິງສະ23	(Thjp-085	N. (197: 115	(1 92-7
2600	2550.	2500.	2450.	2400.	2350.
1200.			M2-085	97-R5 0.060 0 01	97-7 97-7 97-7
1150.		997-23 0 051 0.06 0 047 0 07 0 076 0 22 0 085 0.12 0 086 0 11 0 078 0.11 0 078 0.11 0.050 0.10 0.094 0.11 0 115 0.17 0 112 0.12 0 092 0 14 0 079 0.13 0.073 0.13 0.072 0.11	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.950 0.00 0.040 0.08 0.040 0.08 0.040 0.08	$ \begin{array}{c} 0.010 & 0.01 \\ 0.010 & 0.00 \\ 0.000 & 0.09 \\ 0.000 & 0.09 \\ 0.000 & 0.09 \\ 0.000 & 0.09 \\ 0.000 & 0.09 \\ 0.000 & 0.09 \\ 0.000 & 0.09 \\ 0.000 & 0.09 \\ 0.000 & 0.09 \\ 0.000 & 0.09 \\ 0.000 & 0.09 \\ 0.000 & 0.09 \\ 0.000 & 0.09 \\ 0.000 & 0.000 \\ 0.000 & 0.000 \\ 0.0000 & 0.000 \\ 0.0000 & 0.000 \\ 0.000 & 0$
1100.			$ \begin{array}{c} 0.066 \\ 0.127 \\ 0.207 \\ 0.237 \\ 0.276 \\ 0.237 \\ 0.236 \\ 0.236 \\ 0.236 \\ 0.236 \\ 0.236 \\ 0.236 \\ 0.236 \\ 0.236 \\ 0.236 \\ 0.234 \\ 0.348 $		3 3 3 3 3 0 11 0 10 0 10 0 10 0 10 10 10 0 100 0 13 0 100 11 0 140 0 13 0 110 0 10 11 0 130 0 10 0 13 0 10 11 0 0.040 0.04 0 0 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0
1050.					
1000					
950.					
900.					
850. 8 50	/ Mine - Section 34	Mount Polle Cariboo Pit	DESCRIPTION	NO DATE MADE BY	5350
	SCALE DRAWING NUME 1: 1000.M Figure 5	MAP INDEX NUMBER	CHECKED APPROVED	4 5 DATE DRAWN BY 08-23-99 CJW	60 70

	020 .	2 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	100. ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹	ر¶۶-1 ۹ ۱۹۲۰-018 00		м со п п О С	(1994-101 8 9 m	Ū-032	2 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	400 	(J-031 20 20 20 20 20 20 20 20 20 20 20 20 20	<u>(J</u> ⊯-141	 220 F	
		n.	ч сч			2				ດັ 	ی ۲			120(
	-1.00 -2.00 -2.03 -2.03 -2.00 -2.00	0 3:00 0.57 0 4:00 0.57 0 4:00 0.53 0 4:70 1.53 0 4:70 1.53 0 4:70 1.53 0 4:70 1.53 0 4:70 1.53 0 5:00 6:67 0 5:00 0.667 0 5:00 0.66 0 5:00 0.64 0 0:70 0.65 0 0:00 0.25 1 0 3:00 0.84 0 0:200 0.55 0 0:50 0.55 0	0.460 1.43 0.540 1.25 0.540 1.25 0.560 1.09 0.560 5.31 0.440 1.09 0.430 1.16 0.420 0.92 0.350 0.95 0.370 0.88 0.370 1.25 0.370 1.26 0.360 1.02 0.380 1.28 0.370 1.26 0.360 1.02 0.560 0.56 0.400 1.13	0.420 0 B1 0 400 0.520 1 71 0 160 0.520 1 71 0 160 0.520 1 54 0 160 0.620 1 54 0 100 0.620 1 54 0 100 0.410 0 00 0 0 0 0 000 0.550 1 21 0 0.660 0 0.550 1 21 0 0.560 0.550 1 21 0 0.560 0.100 0 96 0 0.100 0.100 0 96 0 0.100 0.100 0 96 0 0.100 0.100 0 0.60 0 0 0.100 0.020 0.03 0 0 0.03 0 0.100 0.020 0.04 0 0.156 0 0.030 0 0.02 0 0.00 0	10 10 11 14 <th14< th=""> 14 14 14<!--</td--><td>0.440 0.52 1.500 1.85 0.960 1.73 0.510 0.85 1.400 1.77 0.870 4.01 0.70 0.59 0.360 0.42 0.550 1.55</td><td>***** -2.00 5 0.120 8.38 - 0.120 8.38 - 0.140 0.07 - 0.150 0.00 -</td><td>0.250 -2.00 0.290 -2.00 0.180 -2.00 0.140 -2.00 0.140 -2.00 0.140 -2.00 0.140 -2.00 0.140 -2.00 0.140 -2.00 0.140 -2.00 0.140 -2.00 0.140 -2.00 0.150 -2.00 0.160 -2.00 0.160 -2.00 0.100 -2.00</td><td>0.120 0.19 0.110 0.08 0.040 0.07 0.030 0.07 0.030 0.07 0.050 0.05 0.050 0.05 0.050 0.06 0.050 0.06 0.051 0.05</td><td>0.748 0.933 0.673 0.563 0.673 0.563 0.0344 0.213 0.344 0.213 0.946 0.213 0.946 0.213 0.944 0.213 0.944 0.213 0.944 0.213 0.944 0.213 0.944 0.23 0.196 0.23 0.174 0.21 0.119 0.19 0.120 0.19 0.120 0.19 0.120 0.19 0.130 0.19 0.130 0.19 0.130 0.19 0.130 0.19 0.130 0.19 0.177 0.64 0.173 0.29 0.044 0.09 0.044 0.09 0.044 0.09 0.044 0.09 0.044 0.09 0.045 0.25 0.162 0.19</td><td>S-031 0 270 0.69 0 470 0.69 0 420 0.69 0 220 0.17 0 230 0.17 0 220 0.17 0 250 0.17 0 17 0 250 0.17 0 250</td><td>***** -1.00 0 120 0.25 0.081 0.18 0.190 0.21 0.085 0.20 0.085 0.20 0.052 0.11 3.056 0.00 0.055 0.03 0.036 0.05 0.038 0.05 0.038 0.05 0.038 0.05 0.038 0.05 0.038 0.32 0.040 0.32 0.037 0.08</td><td></td><td>115</td></th14<>	0.440 0.52 1.500 1.85 0.960 1.73 0.510 0.85 1.400 1.77 0.870 4.01 0.70 0.59 0.360 0.42 0.550 1.55	***** -2.00 5 0.120 8.38 - 0.120 8.38 - 0.140 0.07 - 0.150 0.00 -	0.250 -2.00 0.290 -2.00 0.180 -2.00 0.140 -2.00 0.140 -2.00 0.140 -2.00 0.140 -2.00 0.140 -2.00 0.140 -2.00 0.140 -2.00 0.140 -2.00 0.140 -2.00 0.150 -2.00 0.160 -2.00 0.160 -2.00 0.100 -2.00	0.120 0.19 0.110 0.08 0.040 0.07 0.030 0.07 0.030 0.07 0.050 0.05 0.050 0.05 0.050 0.06 0.050 0.06 0.051 0.05	0.748 0.933 0.673 0.563 0.673 0.563 0.0344 0.213 0.344 0.213 0.946 0.213 0.946 0.213 0.944 0.213 0.944 0.213 0.944 0.213 0.944 0.213 0.944 0.23 0.196 0.23 0.174 0.21 0.119 0.19 0.120 0.19 0.120 0.19 0.120 0.19 0.130 0.19 0.130 0.19 0.130 0.19 0.130 0.19 0.130 0.19 0.177 0.64 0.173 0.29 0.044 0.09 0.044 0.09 0.044 0.09 0.044 0.09 0.044 0.09 0.045 0.25 0.162 0.19	S-031 0 270 0.69 0 470 0.69 0 420 0.69 0 220 0.17 0 230 0.17 0 220 0.17 0 250 0.17 0 17 0 250 0.17 0 250	***** -1.00 0 120 0.25 0.081 0.18 0.190 0.21 0.085 0.20 0.085 0.20 0.052 0.11 3.056 0.00 0.055 0.03 0.036 0.05 0.038 0.05 0.038 0.05 0.038 0.05 0.038 0.05 0.038 0.32 0.040 0.32 0.037 0.08		115
MP-18-og	-2 00 -2	•••••• -1.00 0.230 0.43 0.260 0.37 0.41 0.260 0.260 0.57 0.140 0.46 0.260 0.57 0.140 0.42 0.250 0.58 0.250 0.58 0.250 0.52 0.140 0.27 0.140 0.57 0.140 0.57 0.140 0.57 0.140 0.57 0.140 0.57 0.140 0.57 0.140 0.57 0.140 0.57 0.140 0.57 0.140 0.57 0.140 0.57 0.140 0.57 0.140 0.57 0.140 0.59 0.210 0.59 0.210 0.59 0.210 0.59 0.210 0.52 0.220 0.62	$ \begin{array}{c} 0 & 230 & 1 & 36 \\ 0 & 766 & 1 & 09 \\ 0 & 766 & 1 & 01 \\ 0 & 317 & 2 & 10 \\ 0 & 317 & 2 & 10 \\ 0 & 356 & 0 & 569 \\ 0 & 316 & 0 & 569 \\ 0 & 316 & 0 & 21 \\ 0 & 256 & 0 & 21 \\ 0 & 256 & 0 & 21 \\ 0 & 256 & 0 & 21 \\ 0 & 256 & 0 & 30 \\ 0 & 316 & 0 & 21 \\ 0 & 256 & 0 & 30 \\ 0 & 316 & 0 & 21 \\ 0 & 256 & 0 & 30 \\ 0 & 317 & 0 & 59 \\ 0 & 0 & 16 & 0 \\ 0 & 316 & 0 & 21 \\ 0 & 256 & 0 & 30 \\ 0 & 317 & 0 & 59 \\ 0 & 0 & 16 & 0 \\ 0 & 317 & 0 & 51 \\ 0 & 0 & 31 & 0 \\ 0 & 317 & 0 & 51 \\ 0 & 0 & 31 & 0 \\ 0 & 317 & 0 & 51 \\ 0 & 0 & 31 & 0 \\ 0 & 317 & 0 & 51 \\ 0 & 0 & 31 & 0 \\ 0 & 317 & 0 & 51 \\ 0 & 0 & 31 & 0 \\ 0 & 317 & 0 & 51 \\ 0 & 0 & 31 & 0 \\ 0 & 0 & 10 & 0 \\ 0 & 0 & 0 & 51 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$	00 00 10 10 10 10 10 10 10 10	577 75 75 75 72 45 72 47 72 72 72 72 72 72 72 72 72 7		$\begin{array}{c} 1.990 & 1.91 \\ 1.990 & 1.91 \\ 1.040 & 2.882 \\ 0 & 570 & 1 & 228 \\ 0 & 570 & 1 & 228 \\ 0 & 570 & 0 & 248 \\ 0 & 270 & 0 & 268 \\ 0 & 0 & 270 & 0 & 268 \\ 0 & 0 & 270 & 0 & 268 \\ 0 & 0 & 270 & 0 & 268 \\ 0 & 0 & 270 & 0 & 268 \\ 0 & 0 & 0 & 168 \\ 0 & 0 & 0 & 0 & 168 \\ 0 & 0 & 0 & 0 & 168 \\ 0 & 0 & 0 & 0 & 168 \\ 0 & 0 & 0 & 0 & 168 \\ 0 & 0 & 0 & 0 & 168 \\ 0 & 0 & 0 & 0 & 168 \\ 0 & 0 & 0 & 0 & 0 & 18 \\ 0 & 0 & 0 & 0 & 0 & 18 \\ 0 & 0 & 0 & 0 & 0 & 18 \\ 0 & 0 & 0 & 0 & 0 & 18 \\ 0 & 0 & 0 & 0 & 0 & 18 \\ 0 & 0 & 0 & 0 & 0 & 18 \\ 0 & 0 & 0 & 0 & 0 & 18 \\ 0 & 0 & 0 & 0 & 0 & 0 & 18 \\ 0 & 0 & 0 & 0 & 0 & 0 & 18 \\ 0 & 0 & 0 & 0 & 0 & 18 \\ 0 & 0 & 0 & 0 & 0 & 18 \\ 0 & 0 & 0 & 0 & 0 & 18 \\ 0 & 0 & 0 & 0 & 0 & 18 \\ 0 & 0 & 0 & 0 & 0 & 18 \\ 0 & 0 & 0 & 0 & 0 & 18 \\ 0 & 0 & 0 & 0 & 0 & 0 & 18 \\ 0 & 0 & 0 & 0 & 0 & 0 & 18 \\ 0 & 0 & 0 & 0 & 0 & 0 & 18 \\ 0 & 0 & 0 & 0 & 0 & 0 & 18 \\ 0 & 0 & 0 & 0 & 0 & 0 & 18 \\ 0 & 0 & 0 & 0 & 0 & 27 \\ 0 & 0 & 0 & 0 & 0 & 0 & 18 \\ 0 & 0 & 0 & 0 & 0 & 0 & 18 \\ 0 & 0 & 0 & 0 & 0 & 27 \\ 0 & 0 & 0 & 0 & 0 & 27 \\ 0 & 0 & 0 & 0 & 0 & 0 & 18 \\ 0 & 0 & 0 & 0 & 0 & 0 & 18 \\ 0 & 0 & 0 & 0 & 0 & 27 \\ 0 & 0 & 0 & 0 & 0 & 0 & 18 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0$	$ \begin{array}{c} \delta .100 & -2.00 \\ 0 .120 & -2.00 \\ 0 .140 & -2.00 \\ 0 .230 & 0.69 \\ 0 .250 & 0.69 \\ 0 .250 & 0.69 \\ 0 .250 & 0.69 \\ 1 .570 & 0.69 \\ 1 .570 & 0.69 \\ 1 .660 & 0.69 \\ 0 .210 & 0.69 \\ 0 .210 & 0.69 \\ 0 .220 & 0.69 \\ 0 .180 & 0.69 \\ 0 .220 & 0.69 \\ 0 .180 & 0.69 \\ 0 .180 & 0.69 \\ 0 .130 & -2.00 \\ 0 .130 & -2.00 \\ 0 .110 & -2.00 \\ 0 .130 & -2.00 \\ 0 .130 & -2.00 \\ 0 .080 & -2.00 \\ 0 .080 & -2.00 \\ \end{array} $		↓ 0 0 0.081 0.086 ↓ 0 0.062 0.066 0.067 ↓ 0 0.062 0.067 0.063 0.067 ↓ 0 0.043 0.063 0.053 0.051 ↓ 0 0.63 0.051 0.063 0.051 ↓ 0 0.63 0.051 0.063 0.051 ↓ 0 0.063 0.052 0.064 0.071 □ 0.050 0.052 0.066 0.044 □ 0.052 0.066 0.052 0.066 ↓ 0 0.052 0.066 0.052 0.066 ↓ 0 0.055 0.052 0.066 0.052 ↓ 0 0.055 0.052 0.066 0.052 ↓ 0 0.055 0.052 0.066 0.052 ↓ 0 0.055 0.052 0.066 0.052 ↓ 0 0.055 0.052 0.056 0.051 ↓ 0 0.055 0.052 0.056 0.051 <td>0 140 0.17 0.170 0.17 1 242 0.17 1 242 0.17 1 0 200 0.17 1 0 250 0.17 0 250 0.17 0 180 0.17 0 180 0.17 0 180 0.17 0 180 0.17 0 220 0.17 0 220 0.17 0 220 0.17 0 320 0.17 0 220 0.17 0 120 -2.00 0 130 -2.00 0 170 -2.00 0 170 -2.00</td> <td>0 045 0.05 0.122 0.17 0 055 0.14 0.124 0.13 0.095 0.08 0.205 0.18 0.549 0.63</td> <td></td> <td>110</td>	0 140 0.17 0.170 0.17 1 242 0.17 1 242 0.17 1 0 200 0.17 1 0 250 0.17 0 250 0.17 0 180 0.17 0 180 0.17 0 180 0.17 0 180 0.17 0 220 0.17 0 220 0.17 0 220 0.17 0 320 0.17 0 220 0.17 0 120 -2.00 0 130 -2.00 0 170 -2.00 0 170 -2.00	0 045 0.05 0.122 0.17 0 055 0.14 0.124 0.13 0.095 0.08 0.205 0.18 0.549 0.63		110
			$ \begin{array}{c} 1 0 \cdot 0.21 & 0 \cdot 73 \\ 0 \cdot 200 & 0 \cdot 03 \\ 0 \cdot 200 & 0 \cdot 03 \\ 0 \cdot 200 & 0 \cdot 03 \\ 0 \cdot 200 & 0 \cdot 09 \\ 0 \cdot 105 & 0 \cdot 09 \\ 0 \cdot 105 & 0 \cdot 09 \\ 0 \cdot 117 & 0 \cdot 14 \\ 0 \cdot 200 & 0 \cdot 23 \\ 0 \cdot 200 & 0 \cdot 20 \\ 0 \cdot 200 & 0 \cdot 200 \\ 0 $	1 0 530 0 1 0 160 0 1 0 210 0 1 0 210 0 1 0 210 0 1 0 210 0 1 0 210 0 1 0 210 0 1 0 210 0 1 0 260 0 1 0 320 0 1 0 320 0 1 0 320 0 1 0 320 0 1 0 320 0 1 0 320 0 1 0 320 0 1 0 140 0 1 0 130 0 1 0 130 0 1 0 130 0 1 0 130 0 1 0 130 0 <td></td> <td>· .</td> <td>$\begin{array}{c} \begin{array}{c} 0 & -2/0 & 0 & -3.2 \\ 0 & -2.2 & 0 & 0 & -6.6 \\ 0 & 0 & -2.2 & 0 & 0 & -3.2 \\ 0 & 0 & -2.2 & 0 & 0 & -3.2 \\ 0 & 0 & -2.2 & 0 & 0 & -3.2 \\ 0 & -1.5 & 0 & -3.2 \\ 0 &$</td> <td>Ø. 180 - 2.00 Ø. 170 - 2.00 Ø. 120 - 2.00 Ø. 130 - 2.00 Ø. 130 - 2.00 Ø. 120 - 2.00 Ø. 130 - 2.00 Ø. 120 - 2.00 Ø. 120 - 2.00</td> <td></td> <td>0.04</td> <td>0 130 -2.00 0 180 -2.00 0.070 -2.00 0 180 -2.00 0 050 -2.00 0 050 -2.00 0 120 -2.00 0 120 -2.00 0 120 -2.00 0 120 -2.00 0 580 -2.00</td> <td>0 070 0.42 0 078 0.56 0 065 0.29 0 0.80 0.80 0 485 0.91</td> <td></td> <td>10</td>		· .	$\begin{array}{c} \begin{array}{c} 0 & -2/0 & 0 & -3.2 \\ 0 & -2.2 & 0 & 0 & -6.6 \\ 0 & 0 & -2.2 & 0 & 0 & -3.2 \\ 0 & 0 & -2.2 & 0 & 0 & -3.2 \\ 0 & 0 & -2.2 & 0 & 0 & -3.2 \\ 0 & -1.5 & 0 & -3.2 \\ 0 & $	Ø. 180 - 2.00 Ø. 170 - 2.00 Ø. 120 - 2.00 Ø. 130 - 2.00 Ø. 130 - 2.00 Ø. 120 - 2.00 Ø. 130 - 2.00 Ø. 120 - 2.00 Ø. 120 - 2.00		0.04	0 130 -2.00 0 180 -2.00 0.070 -2.00 0 180 -2.00 0 050 -2.00 0 050 -2.00 0 120 -2.00 0 120 -2.00 0 120 -2.00 0 120 -2.00 0 580 -2.00	0 070 0.42 0 078 0.56 0 065 0.29 0 0.80 0.80 0 485 0.91		10
050 5150 520 52		($\begin{array}{c} H & 0, c_{22} & 0, f_{11} \\ H & 0, c_{22} & 0, c_{33} \\ H & 0, c_{23} & 0, c_{33} \\ H & 0, c_{33} & 0, c_{33} \\ \end{array}$	0.430 0.020 0 0.010 0 0.060 0 0.120 0 0.120 0 0.420 1 0 120 0 0.430 1 0 120 0			□ 0 1:40 0 20 □ 0 1:20 0 250 □ 0 0:50 0.21 □ 0 0:50 0.21 □ 0 0:50 0.21 □ 0:50 0.21 0 □ 0:70 0 0 □ 0:700 0 0 □ 0:050 0.11 0 □ 0:050 0.11 0 □ 0:050 0.11 0 □ 0:050 0.11 0 □ 0:070 0.02 0 □ 0:070 0.02 0							<u> </u>
00000000000000000000000000000000000000		MP-98-08	(Id) (Id) 											9
Image: Section	2050.	۲ ۲ ۲	2150.			2250.	O M map scale		SNO1SI	MADE BY D				E

N	۳ ۳ 02 02 02 02 02	2100. 3 ^{5 00}	(1§-110	7 2 2 7 2 7 2 7 2 7 2 7 7 7 7 7 7 7 7 7	2200 . E		2300 to F
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\begin{array}{c} 5-110 \\ \hline 1 & 0.100 & 0.69 \\ \hline 1 & 0.220 & 0.69 \\ \hline 2 & 0.240 & 0.69 \\ \hline 0 & 240 & 0.69 \\ \hline 0 & 240 & 0.69 \\ \hline 0 & 250 & 0.69 \\ \hline 0 & 260 & 0.69 \\ \hline 0 & 260 & 0.69 \\ \hline 0 & 2100 & 0.99 \\ \hline 0 & 2100 & 0.99 \\ \hline 0 & 2100 & 0.99 \\ \hline 0 & 220 & 0.59 \\ \hline 0 & 240 & 0.69 \\ \hline 0 & 120 & 0.69 \\ \hline 0 & 0.100 & 0.59 \\ \hline 0 & 0.600 & 0.69 \\ \hline 0 & 0.100 & 0.59 \\ \hline 0 & 0.200 & 0.59 \\ \hline 0 & 0.100 & 0.59 \\ \hline 0 & 0.100 & 0.59 \\ \hline 0 & 0.100 & 0.59 \\ \hline 0 & 0.200 & 0.59 \\ \hline 0 & 0.500 & 0.62 \\ \hline 0 & 0.430 & 0.82 \\ \hline 0 & 0.430 & 2.66 \\ \hline 0 &$	MP-146 2.09 0 0.234 0.211 0 0.250 0.78 0 0.267 0.66 0 154 0.37 0 0.161 0.39 0 141 0.39 0 141 0.39 0 341 0.67 0 341 0.67 0 345 0.68 0 0.353 0.40 0 345 0.69 0 345 0.62 0 353 0.40 0 345 0.92 0 0.361 0.62 0 345 0.92 0 0.361 0.62 0 0.43 1.66 0 0.443 1.62 0 0.301 0.62 0 0.301 0.29 0 0.301 0.29 0 0.301 0.29 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Å 32 36
•	C 0 000 0 00 C 0 000 0 02 C 0 000 0 04 C 0 000 0 03 C 0 000 0 03 C 0 000 0 03 C 0 000 0 02 C 0 000 0 01 C 0 000 0 01 C 0 000 0 01 C 0000 01		0,000 0,000 0,000 0,100 0,000	0 0.046 0.047 0 0.76 0.476 0 0.956 0.476 0 0.950 0.950 0 0.950 0.161 0 0.950 0.161 0 0.950 0.161 0 0.951 0.161 0 0.951 0.141 0 0.951 0.141 0 0.953 0.142 0 0.953 0.142 0 0.953 0.142 0 0.953 0.142 0 0.953 0.142 0 0.953 0.142 0 0.953 0.142 0 0.953 0.142 0 0.953 0.142 0 0.950 0.142 0 0.937 0.707 0 0.337 0.707 0 0.337 0.707 0 0.434 0.709 0 0.376 0.799 0 0.376 0.799 <tr< td=""><td>$\begin{bmatrix} 0 & 130 & 0 & 56 \\ 0 & 130 & 0 & 62 \\ 0 & 130 & 0 & 62 \\ 0 & 120 & 0 & 51 \\ 0 & 0 & 50 & 1 & 20 \\ 0 & 120 & 0 & 51 \\ 0 & 0 & 120 & 0 & 66 \\ 0 & 140 & 0 & 066 \\ 0 & 140 & 0 & 066 \\ 0 & 140 & 0 & 167 \\ 0 & 2260 & 0 & 69 \\ 0 & 2260 & 0 & 46 \\ 0 & 0 & 460 & 0 & 41 \\ 0 & 0 & 260 & 0 & 42 \\ 0 & 0 & 460 & 0 & 41 \\ 0 & 0 & 260 & 0 & 41 \\ 0 & 0 & 260 & 0 & 41 \\ 0 & 0 & 400 & 0 & 41 \\ 0 & 0 & 400 & 0 & 41 \\ 0 & 0 & 400 & 0 & 41 \\ 0 & 0 & 400 & 0 & 41 \\ 0 & 0 & 400 & 0 & 17 \\ 0 & 0 & 600 & 0 & 19 \\ 0 & 0 & 10 & 0 & 17 \\ 0 & 0 & 600 & 0 & 17 \\ 0 & 0 & 600 & 0 & 17 \\ 0 & 0 & 600 & 0 & 17 \\ 0 & 0 & 600 & 0 & 17 \\ 0 & 0 & 600 & 0 & 17 \\ 0 & 0 & 600 & 0 & 17 \\ 0 & 0 & 600 & 0 & 17 \\ 0 & 0 & 600 & 0 & 17 \\ 0 & 0 & 600 & 0 & 17 \\ 0 & 0 & 600 & 0 & 17 \\ 0 & 0 & 600 & 0 & 17 \\ 0 & 0 & 600 & 0 & 17 \\ 0 & 0 & 100 & 0 & 17 \\ 0 & 0 & 100 & 0 & 17 \\ 0 & 0 & 100 & 0 & 17 \\ 0 & 0 & 100 & 0 & 17 \\ 0 & 0 & 100 & 0 & 17 \\ 0 & 0 & 100 & 0 & 17 \\ 0 & 0 & 100 & 0 & 17 \\ 0 & 0 & 100 & 0 & 17 \\ 0 & 0 & 100 & 0 & 17 \\ 0 & 0 & 100 & 0 &$</td><td>$\begin{bmatrix} 0 & 4000 & 10 & 10 & 10 & 10 & 10 & 10$</td><td></td></tr<>	$ \begin{bmatrix} 0 & 130 & 0 & 56 \\ 0 & 130 & 0 & 62 \\ 0 & 130 & 0 & 62 \\ 0 & 120 & 0 & 51 \\ 0 & 0 & 50 & 1 & 20 \\ 0 & 120 & 0 & 51 \\ 0 & 0 & 120 & 0 & 66 \\ 0 & 140 & 0 & 066 \\ 0 & 140 & 0 & 066 \\ 0 & 140 & 0 & 167 \\ 0 & 2260 & 0 & 69 \\ 0 & 2260 & 0 & 69 \\ 0 & 2260 & 0 & 69 \\ 0 & 2260 & 0 & 69 \\ 0 & 2260 & 0 & 69 \\ 0 & 2260 & 0 & 69 \\ 0 & 2260 & 0 & 69 \\ 0 & 2260 & 0 & 69 \\ 0 & 2260 & 0 & 69 \\ 0 & 2260 & 0 & 69 \\ 0 & 2260 & 0 & 69 \\ 0 & 2260 & 0 & 69 \\ 0 & 2260 & 0 & 69 \\ 0 & 2260 & 0 & 69 \\ 0 & 2260 & 0 & 69 \\ 0 & 2260 & 0 & 69 \\ 0 & 2260 & 0 & 69 \\ 0 & 2260 & 0 & 69 \\ 0 & 2260 & 0 & 69 \\ 0 & 2260 & 0 & 46 \\ 0 & 2260 & 0 & 46 \\ 0 & 2260 & 0 & 46 \\ 0 & 2260 & 0 & 46 \\ 0 & 2260 & 0 & 46 \\ 0 & 2260 & 0 & 46 \\ 0 & 2260 & 0 & 46 \\ 0 & 2260 & 0 & 46 \\ 0 & 2260 & 0 & 46 \\ 0 & 0 & 460 & 0 & 41 \\ 0 & 0 & 260 & 0 & 42 \\ 0 & 0 & 460 & 0 & 41 \\ 0 & 0 & 260 & 0 & 41 \\ 0 & 0 & 260 & 0 & 41 \\ 0 & 0 & 400 & 0 & 41 \\ 0 & 0 & 400 & 0 & 41 \\ 0 & 0 & 400 & 0 & 41 \\ 0 & 0 & 400 & 0 & 41 \\ 0 & 0 & 400 & 0 & 17 \\ 0 & 0 & 600 & 0 & 19 \\ 0 & 0 & 10 & 0 & 17 \\ 0 & 0 & 600 & 0 & 17 \\ 0 & 0 & 600 & 0 & 17 \\ 0 & 0 & 600 & 0 & 17 \\ 0 & 0 & 600 & 0 & 17 \\ 0 & 0 & 600 & 0 & 17 \\ 0 & 0 & 600 & 0 & 17 \\ 0 & 0 & 600 & 0 & 17 \\ 0 & 0 & 600 & 0 & 17 \\ 0 & 0 & 600 & 0 & 17 \\ 0 & 0 & 600 & 0 & 17 \\ 0 & 0 & 600 & 0 & 17 \\ 0 & 0 & 600 & 0 & 17 \\ 0 & 0 & 100 & 0 & 17 \\ 0 & 0 & 100 & 0 & 17 \\ 0 & 0 & 100 & 0 & 17 \\ 0 & 0 & 100 & 0 & 17 \\ 0 & 0 & 100 & 0 & 17 \\ 0 & 0 & 100 & 0 & 17 \\ 0 & 0 & 100 & 0 & 17 \\ 0 & 0 & 100 & 0 & 17 \\ 0 & 0 & 100 & 0 & 17 \\ 0 & 0 & 100 & 0 &$	$ \begin{bmatrix} 0 & 4000 & 10 & 10 & 10 & 10 & 10 & 10 $	
-				$ \begin{bmatrix} 0 & 402 & 0.56 \\ 0 & 453 & 0.71 \\ 0 & 453 & 0.71 \\ 0 & 453 & 0.71 \\ 0 & 453 & 0.71 \\ 0 & 453 & 0.71 \\ 0 & 453 & 0.71 \\ 0 & 453 & 0.71 \\ 0 & 453 & 0.71 \\ 0 & 454 & 0.72 \\ 0 & 101 & 0.15 \\ 0 & 104 & 0.60 \\ 1 & 0 & 1475 & 0.374 \\ 0 & 1475 & 0.374 & 0.72 \\ 0 & 374 & 0.73 \\ 0 & 374 & 0.74 \\ 0 & 374 & 0.74 \\ 0 & 374 & 0.74 \\ 0 & 374 & 0.74 \\ 0 & 374 & 0.74 \\ 0 & 374 & 0.74 \\ 0 & 374 & 0.74 \\ 0 & 374 & 0.74 \\ 0 & 374 & 0.74 \\ 0 & 375 & 0.35 \\ 0 & 137 & 0.22 \\ 0 &$	$ \begin{array}{c} \textbf{m} & \textbf{0} & (710) & \textbf{0} & \textbf{0} & \textbf{0} \\ \hline \textbf{0} & (180) & \textbf{0} & 28 \\ \hline \textbf{0} & (180) & \textbf{0} & .79 \\ \hline \textbf{0} & (140) & \textbf{0} & 115 \\ \hline \textbf{0} & 0.980 & \textbf{0} & 103 \\ \hline \textbf{0} & 0.149 & \textbf{0} & 123 \\ \hline \textbf{0} & 0.149 & \textbf{0} & 123 \\ \hline \textbf{0} & 0.149 & \textbf{0} & 123 \\ \hline \textbf{0} & 0.149 & \textbf{0} & 123 \\ \hline \textbf{0} & 0.149 & \textbf{0} & 123 \\ \hline \textbf{0} & 0.140 & \textbf{0} & 18 \\ \hline \textbf{0} & 0.260 & \textbf{0} & 0.09 \\ \hline \textbf{0} & 0.260 & \textbf{0} & 0.09 \\ \hline \textbf{0} & 0.260 & \textbf{0} & 0.09 \\ \hline \textbf{0} & 0.260 & \textbf{0} & 0.09 \\ \hline \textbf{0} & 0.260 & \textbf{0} & 0.09 \\ \hline \textbf{0} & 0.260 & \textbf{0} & 0.09 \\ \hline \textbf{0} & 0.260 & \textbf{0} & 0.09 \\ \hline \textbf{0} & 0.260 & \textbf{0} & 0.09 \\ \hline \textbf{0} & 0.260 & \textbf{0} & 0.127 \\ \hline \textbf{0} & 0.150 & \textbf{0} & 127 \\ \hline \textbf{0} & 0.150 & \textbf{0} & 128 \\ \hline \textbf{0} & 0.260 & \textbf{0} & 0.82 \\ \hline \textbf{0} & 0.260 & \textbf{0} & 0.82 \\ \hline \textbf{0} & 0.260 & \textbf{0} & 0.82 \\ \hline \textbf{0} & 0.260 & \textbf{0} & 0.82 \\ \hline \textbf{0} & 0.260 & \textbf{0} & 0.82 \\ \hline \textbf{0} & 0.260 & \textbf{0} & 0.88 \\ \hline \textbf{0} & 0.260 & \textbf{0} & 0.88 \\ \hline \textbf{0} & 0.260 & \textbf{0} & 0.88 \\ \hline \textbf{0} & 0.150 & \textbf{0} & .23 \\ \hline \textbf{0} & 0.150 & \textbf{0} & .23 \\ \hline \textbf{0} & 0.150 & \textbf{0} & .15 \\ \hline \textbf{0} & 0.130 & \textbf{0} & 15 \\ \hline \textbf{0} & 0.390 & \textbf{0} & 18 \\ \hline \textbf{0} & 0.390 & \textbf{0} & 18 \\ \hline \textbf{0} & 0.130 & \textbf{0} & 15 \\ \hline \textbf{0} & 0.390 & \textbf{0} & 18 \\ \hline \textbf{0} & 0.130 & \textbf{0} & 15 \\ \hline \textbf{0} & 0.390 & \textbf{0} & 18 \\ \hline \textbf{0} & 0.130 & \textbf{0} & 15 \\ \hline \textbf{0} & 0.390 & \textbf{0} & 18 \\ \hline $		
				0.30 0.02 0.133 0.59 0.549 1.57 0.526 0.56			

3050.QQ.N.	9 99 90 F		ນ 9937-56 ອິອິກາ		H-10	2 (10) 100 F		дэл-д 		7-8 3 9	
C C U C	2550.					2450.			2400.		2350.
1200.											
1150.			×		0.175 0.14		R-018 0.123 0.27 0.345 0.65 0.525 0.96	(.g. 0.067 0.10 0.139 0.10		жэжж -2.00 0.020 0.03	97.
			•••••• -2 00 0.250 0.46 0.19 0.250 0.18 0.20 0.00 0.32 0.02 0.040 0.04 0.04 0.050 0.01 0.01 0.010 0.01 0.01 0.010 0.01 0.01 0.050 0.07 0.050 0.050 0.037 0.050 0.050 0.037 0.020 0.010 0.01 0.01 0.130 0.20 0.21 0.210 0.21 0.22 0.210 0.22 0.22 0.210 0.22 0.22 0.210 0.22 0.22 0.210 0.24 0.24		0 311 0.19 0.365 0.28 0 199 0 12 0.207 0.09		0 356 0 62 0 456 0.72 0 272 0.36 0 253 0.34 0 180 0.31 6 236 0.31 0 159 0 17 0 257 0 31 0.175 0.10 0 178 0.17 0.242 0.10 0 0.27 0.62 0.204 0.07	0.137 0 19 0.105 0.10 0.349 0 35 0.570 0.34 0.825 0.56 0.477 0.33 0.349 0.30 0.287 0.24 0.338 0.30 0.293 0.20 0.259 0.19 0.39 0.39 0.39 0.39 0.39 0.19 0.30 0.19 0.30 0.19 0.30 0.19 0.30 0.19 0.30 0.19 0.30 0.19 0.30 0.19 0.30 0.20 0.19 0.30 0.19 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.24 0.30 0.22 0.19 0.30 0.24 0.30 0.22 0.19 0.30 0.20 0.19 0.30 0.24 0.30 0.22 0.19 0.30 0.24 0.30 0.22 0.19 0.30 0.20 0.24 0.20 0.25 0.19 0.20 0.20 0.24 0.20 0.19		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
1100			$ \begin{array}{c} 0 \ 010 \ 0 \ 01 \\ 0 \ 070 \ 0.07 \\ 0 \ 0.07 \ 0.07 \\ 0 \ 0.08 \ 0.07 \\ 0 \ 0.08 \ 0.07 \\ 0 \ 0.08 \ 0.08 \\ 0 \ 0.01 \ 0.01 \ 0.01 \\ 0 \ 0.01 \ 0.01 \ 0.01 \\ 0 \ 0.01 \ 0.01 \ 0.01 \\ 0 \ 0.01 \ 0.01 \ 0.01 \\ 0 \ 0.01 \ 0.01 \ 0.01 \\ 0 \ 0.01 \ 0.01 \ 0.01 \ 0.01 \ 0.01 \\ 0 \ 0.01 $				0.215 0.07 0.215 0.07 0.182 0.10 0.146 0.07 0.190 0.24 0.215 0.24 0.215 0.24 0.173 0.14 0.173 0.10 0.270 0.31 0.173 0.10 0.164 0.10 0.161 0.07 0.093 0.07	uu		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
1050			$ \begin{array}{c} 0 & 130 & 0.12 \\ 0 & 060 & 0.10 \\ 0 & 050 & 0.05 \\ 0 & 030 & 0.09 \\ \hline 0 & 0140 & 0.04 \\ 0 & 020 & 0.02 \\ 0 & 040 & 0.03 \\ \hline 0 & 020 & 0.02 \\ 0 & 060 & 0.05 \\ \hline 0 & 050 & 0.04 \\ \hline 0 & 270 & 0.25 \\ \hline 0 & 050 & 0.04 \\ \hline 0 & 010 & 0.01 \\ \hline 0 & 040 & 0.02 \\ \hline 0 & 010 & 0.01 \\ \hline 0 & 040 & 0.02 \\ \hline 0 & 010 & 0.01 \\ \hline 0 & 040 & 0.02 \\ \hline 0 & 010 & 0.01 \\ \hline 0 & 040 & 0.02 \\ \hline 0 & 010 & 0.01 \\ \hline 0 & 040 & 0.02 \\ \hline 0 & 010 & 0.01 \\ \hline 0 & 040 & 0.02 \\ \hline 0 & 010 & 0.01 \\ \hline 0 & 040 & 0.02 \\ \hline 0 & 010 & 0.01 \\ \hline 0 & 040 & 0.02 \\ \hline 0 & 010 & 0.01 \\ \hline 0 & 040 & 0.26 \\ \hline 0 & 090 & 0 & 04 \\ \hline 0 & 090 & 0 & 04 \\ \hline \end{array} $				0 108 0.07 0 138 0.10 0 095 0.10 0 130 0.21 0 150 0.21 0 150 0.24 0 167 0.27 0 212 0.24 0 270 0.34 0.162 0.34 0.165 0.24 0.263 0.24 0.273 0.24			$\begin{array}{c} 0 & 1360 & 0 & 197 \\ 0 & 1370 & 0 & 191 \\ 0 & 1770 & 0 & 21 \\ 0 & 1710 & 0 & 287 \\ 0 & 3110 & 0 & 277 \\ 0 & 3100 & 0 & 774 \\ 0 & 3000 & 1 & 413 \\ 0 & 1000 & 0 & 774 \\ 0 & 3000 & 1 & 413 \\ 0 & 1000 & 0 & 174 \\ 0 & 3000 & 0 & 188 \\ 0 & 1000 & 0 & 174 \\ 0 & 1000 & 0 & 188 \\ 0 & 1000 & 0 & 188 \\ 0 & 1000 & 0 & 188 \\ 0 & 1000 & 0 & 188 \\ 0 & 1000 & 0 & 174 \\ 0 & 1000 & 0 & 188 \\ 0 & 1000 & 0 & 188 \\ 0 & 1000 & 0 & 188 \\ 0 & 1000 & 0 & 188 \\ 0 & 1000 & 0 & 188 \\ 0 & 1000 & 0 & 188 \\ 0 & 1000 & 0 & 188 \\ 0 & 1000 & 0 & 188 \\ 0 & 1000 & 0 & 189 \\ 0 & 1000 & 0 & 189 \\ 0 & 1000 & 0 & 189 \\ 0 & 1000 & 0 & 189 \\ 0 & 1000 & 0 & 189 \\ 0 & 1000 & 0 & 189 \\ 0 & 1000 & 0 & 189 \\ 0 & 1000 & 0 & 189 \\ 0 & 1000 & 0 & 188 \\ 0 & 1000 & 0 & 188 \\ 0 & 1000 & 0 & 188 \\ 0 & 1000 & 0 & 188 \\ 0 & 1000 & 0 & 188 \\ 0 & 1000 & 0 & 188 \\ 0 & 1000 & 0 & 188 \\ 0 & 1000 & 0 & 188 \\ 0 & 1000 & 0 & 188 \\ 0 & 1000 & 0 & 118 \\ 0 &$	
1000							0.157 0.21				
950.											
900.											
850. 0	e tion 305		ley M			5450	SCRIPTION	DE	MADE BY	NO DATE NO SVO S S S S S S S S S S S S S S S S S	60 70
}	DRAWING NUMBE Figure 9	CALE		NUMBER	MAP INDE	OVED) APPR	CHECKE	DRAWN BY CJW	5 DATE 08-23-99	

