

GEOLOGICAL & GEOCHEMICAL REPORT ON THE 1998 PROGRAM

KIT PROPERTY

NTS: 93L/13W Latitude 54° 54' N Longitude 127° 53' W Omineca Mining Division

Owner:

Teck Corporation 600 - 200 Burrard Street Vancouver, BC V6C 3L9

Operator: Teck Exploration Ltd. 350 - 272 Victoria Street Kamloops, BC V2C 2A2

GEOLOGICAL SURVEY BRANCH

Table of Contents

	Pag	e
Introduction		
Location and	Access1	
Property State	ıs1	
Physiography		
History		
Current Progr	ram2	
Geology		
a)	Regional2	
b)	Property	
c)	Alteration and Mineralization	
Geochemical	Results4	
Conclusions	and Recommendations5	
References	6	

LIST OF FIGURES

After Page

Figure 1	Location Map (1:2,000,000)	1
Figure 2	Claim Map (1:50,000)	1
Figure 3	Regional Geology Map (1:300,000)	2
Figure 4	Property Geology Map (1:5,000)	Back Pocket
Figure 5	Geochemistry Map (1:5,000)	Back Pocket

LIST OF TABLES

Page

APPENDICES

Appendix	Ι	Rock Sample Descriptions
Appendix	III	Analytical Procedures
Appendix	IV	Geochemical Results
Appendix	V	Statement of Costs
Appendix	VI	Statement of Qualifications

Introduction

The Kit property was staked for Teck Corp in August of 1997 after an initial data review suggested the ground was open over a potential precious-metal bearing porphyry system. This report summarises geological mapping and geochemical sampling work that was carried out in August and September of 1998.

Location and Access (Figure 1)

The Kit property is located approximately 45km's west of Smithers on NTS 93L/13W. The property is approximately 10 km's NW of Louise Lake at the headwaters of Kitsuns creek. The property is accessed by helicopter from Smithers with a number of existing logging roads within 5-10 km's of the property at this time. The closest roads to the property include logging spurs north of Louise Lake and roads to the north, up Kitseguecla and Kitsuns creeks.

Property Status (Figure 2)

The Kit group consists of the Kit 1 and Kit 2 claims (a total of 40 units). The Kit claims were staked on August 26, 1997 for Teck Corp. upon acceptance of this report, the property will be valid till August 26, 2004.

Claim Name	# of units	Record No.	Expiry Date
Kit 1	20	358555	August 26, 2004 *
Kit 2	20	358556	August 26, 2004 *

* Upon acceptance of this report

Physiography

The property covers an E-W trending alpine ridge separated by a steeply incised N-S trending tributary creeks to the Kitsuns creek. Alpine begins at elevations of 1200 metres and elevations on the property range from 1060-2000 metres. Forest cover below alpine consists of a mix of pine and spruce with areas of thick alder and devils club in wet seeps. The valleys contain recent hanging glaciers and are covered by extensive moraines. This area is transitional from the coastal Skeena climate into the more arid Bulkley valley weather pattern. Snowfall remains on the property from late September to early June and coastal weather affects the property during the summer.

History

The property was discovered and staked by Amax Exploration in 1964 and the ground was allowed to lapse. In 1967 Mastodon-Highland Bell Mines staked the property and from 1967-1969 conducted geological, geochemical, magnetic and IP surveys. They also conducted hand trenching and drilled a single diamond drill hole (182m). Pechiney optioned the property in 1970 and drilled an additional seven BQ diamond drill holes (791m) and then two additional BQ holes in 1971(671m) and then returned the property. Results of drilling and trenching indicated low grade copper and molybdenum values in a porphyry system. Results across 30 metres in an old trench averaged 0.58% Cu, 0.04% Mo and 0.22 ppm Au. In 1988/89 Kookaburra Gold Corp. conducted geological mapping, rock and soil sampling and identified precious metal values in a number of alteration styles and rock types.

The property remained dormant until Teck's 1997 program, which consisted of geological mapping and soil/silt sampling.

Current Program

From August 27 through September 9, 1998 a program of geological mapping and geochemical sampling was undertaken on the Kit Group of claims. An area covering 6 square kilometres was geologically mapped (1:10,000 scale) and 122 rock samples were collected for analysis.

Teck's staff working on the program were Paul Watt and Scott Smith. Accommodations were obtained in Telkwa. Access to the property was via daily helicopter set outs from the Canadian Helicopters base in Smithers.

The purpose of this program was to test for economic porphyry and/or high grade vein type mineralization.

Geology

a) Regional Geology (Figure 3)

The Kit claims lie along the southern boundary of the Late Jurassic to Early Tertiary Bowser basin. This shallow marine-lacustrine alluvial suite lies conformably on the Hazelton group. Intruding this sedimentary sequence is a number of Late Cretaceous Bulkley intrusives of granodiorite to diorite composition. Later Tertiary Kastberg and Babine intrusives also intrude the Bowser Basin as small isolated plugs throughout the area.

The structure in the area is dominated by block faulting with typical lower Bowser sediments and intrusives within domed portions as probable horsts (generally topographic highs). Upper Bowser sediments are more typically located in grabens within valley bottoms. A diverse number of Cu +/- Mo, Ag, Au, W porphyry systems are related to Bulkley intrusives including Huckleberry, Glacier Gulch, Ox Lake and Louise Lake. The Babine Cu-Au porphyries are well known with production from Bell and Granisle.

The Kit property is located only 13 kilometres NW of the Louise Lake Cu-Au porphyry system. This high level Bulkley stock has previously been called a Tertiary Nanika intrusive but recent dating by the BCGS has identified a Bulkley age. A present mineral resource of 50 million tonnes of 0.3% Cu and 0.3 g/t Au is estimated for this system. Previous mapping (Evans, 1997) shows the Kit property has a similar geological environment with an intrusion of an elongate east/west Bulkley stock along an east/west Bowser sediment and Hazelton volcanic contact.

b) Property Geology (Figure 4)

The property covers an elongate east/west trending Bulkley (Quartz Monzonite-Granodiorite) stock that has intruded along an east/west contact of Jurassic Hazelton volcanics to the south and Cretaceous Bowser (Skeena) sediments to the north. The stock is at least 3.0 kilometres long by 400 to 900 metres wide. It displays extensive carbonate/sericite alteration with varying amounts of disseminated sulphides, which forms a moderate gossan. Associated with the stock is a large hornfelsed aureole 250-400 metres wide, high sulphide content in the aureole has caused a prominent gossan. Faulting is common on the property and is important to mineralization. A series of north south trending faults and shears that were noted on the north and south side of the intrusive are associated with quartz veining that carry mineralization.

The Jurassic-Hazelton Volcanics, consist of brecciated andesite flows and tuffs which are generally plagioclase phyric. The Cretaceous Bowser Sediments consist of argillite, wacke and sandstone of the Skeena group, which is the upper Cretaceous portion of the lacustrine Bowser basin.

Late Cretaceous Bulkley Intrusives consists of a medium grained porphyritic quartzmonzonite to granodiorite (mapped as feldspar porphyry) which post-dates all other rock types. Mineralization on the property is related to this intrusive stock and the various alteration styles within and peripheral in the hornfelsed aureole.

c) Alteration & Mineralization

Within the Jurassic-Hazelton Volcanics, the most common and pervasive alteration consists of chlorite alteration with generally trace to 2% disseminated pyrite.

The Cretaceous Bowser Sediments within the claim group are pervasively hornfelsed to varying degrees. This normally consists of moderate to strong hornfelsing and moderate silicification with 1 to 3% disseminated pyrite, pyrrhotite +/- minor chalcopyrite. Occasionally pervasive biotite and chlorite hornfelsing is present with disseminated sulphides. Within this hornfelsing a number of vein occurrences are present, many appear fault/shear related and range from white milky quartz veins with trace to 30% sulphides (pyrite, arsenopyrite, chalcopyrite, sphalerite, galena, stibnite) to quartz-carbonate veins with similar sulphide content to occasional chalcedonic veining. Many of the veins appear related to north/south trending shears. Sampling has shown there is good Au potential for a number of these veins within the sediments and volcanics peripheral to the porphyry stock.

Generally the Late Cretaceous Bulkley Intrusive stock shows weak to pervasive sericite and carbonate alteration. Previous mapping (Evans, 1997) has shown that where sulphides appear disseminated and within quartz veinlets the rock becomes progressively more sericite altered. The central higher grade copper area (old trench area) shows pervasive potassic and carbonate alteration. This potassic core appears related to copper mineralization in zones associated with quartz veinlets/stockwork (up to 1cm wide and 10-20% volume) that have 5-10% disseminated magnetite with disseminated copper mineralization and variable amounts of disseminated and veinlet controlled molybdenite. The data to date is limited but suggests extensive quartz stockwork in several orientations from 070 to 360° within the potassic and carbonate altered core (Evans, 1997 & Nebocat, 1990). Peripheral to this core appears pervasive moderate to strong sericite alteration +/zones of moderate silicification but generally a lower sulphide content.

Geochemical Results (Figure 5)

One hundred and twenty two rock samples were collected on the Kit Property and sent to Eco-Tech Laboratories Ltd. in Kamloops, BC. The samples were analysed for Ag, Al, As, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, La, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sr, Ti, U, V, W, Y, Zn, and Au. Analytical procedures for geochemical gold analysis and multi-element ICP analysis are explained in Appendix II and all results are given in Appendix III.

Rock samples over the claim group were comprised of chip or grab samples where possible, due to the severe topography some samples are from proximal talus slopes where the cliffs didn't allow access to outcrop. Descriptions of rock samples are given in Appendix I.

Sampling of the central intrusive area returned a mix of generally low values. The exception and highest values were from sample # KS-98-04, where a small sulphide vein in a zone of strong quartz/sulphide stockwork in the intrusive returned 395 g/t Ag, 5.00% Zn, 0.61% Cu, 0.79% Pb and 590ppb Au. This sample appears to be associated with a small sulphide vein that may be limited in extent but still needs to be followed up on.

The sampling returned a number of high values from the north/south striking veins/shears peripheral to the intrusive stock. A variation in mineral content and textures was observed and reflected in the assays. A general association between elevated Au and As stands out as the strongest correlation in sampling to date. Additionally elevated Ag, Bi, Cu, Mn, P, Pb and Zn were also returned in qtz/carb/sulphide veins and shears. On the north and south side of the intrusive, sampling is difficult due to topography and some of the samples taken were from proximal float at the base of cliffs and draws.

On the south side of the intrusive contact the highest gold value (37.2 g/t Au) was from sample # KP-98-13, a quartz vein found in float at the base of a cliff. This sample was unusual in that no other elements were significantly elevated. Sampling on the south side also returned high Sb, in a quartz vein that ranged from 4-6m wide, values were from 2775ppm (KP-98-28) to 3.45% (KP-98-30). Although gold was not elevated, high As was associated with the Sb, up to 6355ppm in sample # KP-98-28.

A larger grouping of elevated gold samples was found in veins and shears peripheral to the north side of the intrusive stock, this may be partially due to access, as large portions of the south side are snow/glacier covered and not as accessible for sampling. The element association on the north side was more consistent than on the south, which had varied widely. Gold and arsenic generally showed a strong correlation. Sample # KP-98-50 returned 29.7 g/t Au with 23.5% As as well as 21.8 g/t Ag and 0.49% Cu. It was one of a grouping of eleven samples west of the central north/south valley on the property that returned gold values above 1.0 g/t Au and arsenic values above 0.90% As. The samples were from a group of north/south striking quartz vein/shears.

The highest gold value from sampling was from sample # KP-98-72, which was east of the central north/south valley and along the north side of the intrusive contact. It returned 40 g/t Au, 96.8 g/t Ag, but only 230ppm As. The sample was from float and appeared to be massive sulphide with little quartz.

More detailed mapping and sampling is needed to understand the veins and their orientation and size.

CONCLUSIONS & RECOMMENDATIONS

The Kit property covers an E-W trending Bulkley Granodiorite stock at the contact of Hazelton volcanics and sediments of the Bowser basin. Extensive alteration is present in a core porphyry system comprised of potassic and carbonate alteration with widespread quartz stockwork and related copper/gold mineralization. Sampling of this central core in 1998 also found high silver and zinc associated with a small sulphide vein in a zone of strong quartz/sulphide stockwork in the intrusive stock. This mineralization may be limited in extent but still needs to be followed up on. The area has extensive talus

and moraine cover and requires trenching or drilling possibly aided by a combination of grid soils, IP survey and detailed mapping with an emphasis on alteration and structure.

Of more immediate interest are areas of veining that appear peripheral to the intrusive stock. Several styles of veining are present in both volcanics and sediments. These veins and altered zones contain highly elevated Au, As +/- Ag, Bi, Cu, Sb, Pb, Zn values and require more detailed sampling and mapping to define promising targets and trends.

Detailed mapping and trenching of the area north of the intrusive contact and west of the central north/south valley, where the group of eleven samples returned +1.0 g/t Au from quartz veins/shears, is seen as the next logical stage of exploration. Once defined by mapping and sampling further trenching and/or drilling can test specific targets.

References

Berthault, B. (1970): Jan Property; Teck in House report.

- Berthault, B. (1971): Jan Property "Report on 1971 Drilling"; Teck in House Report.
- Carter N.C. and Kirkam R.V. BC Dept. Of Mines and Pet. Res. Map 69-1 Geological Compilation Map of the Smithers, Hazelton and Terrace areas.
- Evans, G. (1997): 1997 Geological & Geochemical Report on the Kit Property; Teck Annual Report
- Hansen, D.J. and Klassen, R.W.-The Louise Lake copper-molybdenum-gold-arsenic high level porphyry system, west central British Columbia. C.I.M. special volume 46 pp. 416.
- Nebocat, J. (1990): Geological and Geochemical Report on the Hidden Valley 1&2 Claims; A.R. # 19,799.
- Wozniak, E.R. (1967): Mastodon- Highland Bell Mines Ltd.-Jan Claim Group; Teck in House report.

Appendix I

Rock Sample Descriptions

Kit Property

·

1998 Rock Sampling

		Sample						
Sample #	Location	Туре	Width	Rock type	Alteration	Sulfides	Mineriization	Comments
KP-98-01	Central Area	Grab	3m	monzonite	breccia?	30%	ру	assoc with shear
KP-98-02	Central Area	Grab	3m	monzonite	albite?	10-15%	ру	str fractured
KP-98-03	Central Area	Grab	3m	shear zone	massive carb	10-15%	ру	minor Kspar
KP-98-04	Central Area	Grab	3m	monzonite		5-10%		str fractured
KP-98-05	Central Area	Grab	3m	quartz vein	silica	10-15%	ру	str oxidized
KP-98-06	Central Area	Grab	0.7m	quartz vein	silica	10-15%	ру	str oxidized
KP-98-07	Central Area	Grab	3m	diorite?	atz veins	20-30%	py/mt/cpy	
KP-98-08	Central Area	Grab	3m	quartz vein	sheared	15-20%	py/cpy	within volcanics
KP-98-09	Central Area	Grab	3m	feldspar porphyry	sheared	10-15%	ру	
KP-98-10	South side	Float		massive sulfide		40-50%	ру	appears proximal
KP-98-11	South side	Float		massive sulfide		40-50%	ру	appears proximal
KP-98-12	South side	Float		massive sulfide		40-50%	ру	appears proximal
KP-98-13	South side	Float		quartz vein	silica	10-15%	ру	appears proximal
KP-98-14	South side	Float		quartz vein	silica	10-15%	ру	appears proximal
KP-98-15	South side	Float		quartz vein	silica	10-15%	ру	appears proximal
KP-98-16	Central Area	Float		quartz vein	silica	minor	ру	appears proximal
KP-98-17	Central Area	Float		guartz vein	silica	minor	py/cpy	appears proximal
KP-98-18	Central Area	Grab	4m	intrusive		5-10%	py	
KP-98-19	Central Area	Grab	1.5m	andesite	silica	5-10%	py	str fractured
KP-98-20	Central Area	Float		sediment	carbonate	5-10%	DV	appears proximal
							.,	
KP-98-21	Central Area	Chip	2m	andesite	hornfels	10-15%	DV	str fractured
KP-98-22	Central Area	Chip	1m	andesite	hornfels	10-15%	py	str fractured
KP-98-23	Central Area	Float		intrusive	silica	5-10%	DV	appears proximal
KP-98-24	Central Area	Grab	1m	atz/carb vein		15-20%	py	
KP-98-25	Southwest side	Float	3m	volcanics	hornfels	20-30%	py	appears proximal
KP-98-26	Southwest side	Grab	1m	qtz/carb vein	sheared	minor		in volcanics
KP-98-27	South side	Chip	4m	quartz vein	brecciated	10-15%	asp/bi?	
KP-98-28	South side	Chip	4m	quartz vein	brecciated	10-15%	py/asp	
KP-98-29	South side	Grab	Зm	atz/carb vein	breccia	3-5%	py/asp	
KP-98-30	South side	Grab	0.5m	quartz vein		3-5%	ру	proximal float
				•				
KP-98-31	South side	Grab	3m	guartz vein	breccia	5-10%		in volcanics
KP-98-32	South side	Float		massive sulfide		30-40%	mt/py	vein?
KP-98-33	Central Area	Float		quartz vein		3-5%	ру	appears proximal
KP-98-34	Central Area	Chip	1m	quartz vein		3-5%	ру	appears proximal
KP-98-35	Central Area	Grab	0.5m	intrusive		5-10%	ру	
KP-98-36	Central Area	Grab	3m	qtz/carb vein	breccia	5-10%	ру	
KP-98-37	Central Area	Chip	1m	qtz/carb vein	barite	2-3%	ру	
KP-98-38	Central Area	Chip	1m	qtz/carb vein	barite	2-3%	ру	
KP-98-39	Central Area	Grab	0.5m	sulf vein		20-30%	py	mn stain
KP-98-40	South side	Float		atz/carb vein	barite	15-20%	py/sb	appears proximal
				· · · · · · · · · · · · · · · · · · ·				
KP-98-41	South side	Float		diorite?	kspar altered	15-20%	ру/сру	appears proximal
KP-98-42	South side	Float		massive sulfide	·	40-50%		boulder
KP-98-43	South side	Grab	3m	diorite?	propylitic	15-20%	ру	
KP-98-44	South side	Grab	0.5m	sulf vein	kspar altered	40-50%	py/argentite	
KP-98-45	South side	Float		qtz/carb vein	breccia	15-20%	ру	appears proximal
/-								
KP-98-46	South side	Grab	3m	monzonite	kspar altered	15-20%	ру/сру	
KP-98-47	North side	Grab	1m	qtz/carb vein	brecciated	15-20%	ру	
KP-98-48	North side	Grab	1m	quartz vein	brecciated	15-20%	ру	
KP-98-49	North side	Grab	1m	qtz/carb vein	brecciated	10-15%	ру	
KP-98-50	North side	Chip	0.4m	quartz vein	brecciated	20-30%	asp/bi?	
		•						

1

		Sampla						
Sample #	Location	Type	Width	Rock type	Alteration	Sulfides	Minerlization	Comments
KP-98-51	North side	Chip	0.4m	quartz vein	brecciated	20-30%	py/asp	
KP-98-52	North side	Grab	3m	diorite?	brecciated	10-15%	ру/сру	
KP-98-53	North side	Grab	0.4m	guartz vein	brecciated	3-5%	ру	
KP-98-54	North side	Grab	3m	quartz vein	breccia	20-30%	ру/сру	
KP-98-55	North side	Grab	0.4m	quartz vein		15-20%	ру	
KP-08-56	North side	Grab	1m	quartz vein	breccia	5-10%	ру	
KF-90-50	North side	Float		quartz vein		30-40%	py	semi-massive
KP-08-58	North side	Float		quartz vein	breccia	15-20%	ру	appears proximal
KP-98-59	North side	Float		atz/carb vein		3-5%	ру	appears proximal
KP-98-60	North side	Float		quartz vein		trace		appears proximal
KP-08-61	North side	Float	1m	massive sulfide		30-40%	py/asp/cpy	vein in boulder
KP 08 67	North side	Float		quartz vein		20-30%	py/asp	appears proximal
KP-90-02	North side	Grab	0.3m	quartz vein		3-5%	py/gal	
KP 08-64	North side	Grab	0.2m	quartz vein		5-10%	py/gal	
KP-98-65	North side	Grab	2m	qtz/carb vein		5-10%	native Ag?	
VD 00 66	North side	Grah	Зm	shear zone		10-15%	DV	
KP-90-00	North side	Grab	0.2m	massive sulfide		20-30%	DV/CDV	
KP-90-07	North side	Eloat	0.2.11	massive sulfide		60%	by va	appears proximal
KP-90-00	Fact side	Grah	0.3m	quartz vein	Fe carb	3-5%	pv/gal	
KP-96-69 KP-98-70	East side	Chip	0.4m	quartz vein	brecciated	5-10%	py/gal	
VD 09 71	East side	Chin	1m	quartz vein	brecciated	5-10%	ov/gai	
KP-90-71	East side	Elect		massive sulfide	sheared	30-40%	nv ·	
KP-90-72	East side	Grah	1 3m	nuartz voin	onduida	5-10%	py/tetrahedrite	?
KP-96-73	East side	Elost	1.501		hreccia	5-10%	py	appears proximal
KP-90-74	East side	Grah	2m	diorite?	sheared	3-5%	nv	
KP-90-75	East side	Giau	2111	ulonie :	Shearea	0011	P)	
KS-98-01	Central area	Grab	3m	feldspar porphyry	ankerite?	3-5%	ру +/-Мо	str qtz vein/stockwork
KS-98-02	Central area	Grab	3m	feldspar porphyry	silica	3-5%	mal	siliceous breccia
KS-98-03	Central area	Grab	3m	f gr intrusive/volcanic	propylitic	3-5%	ру	str frac & rusty
KS-98-04	Central area	Grab	3m	feldspar porphyry	tremolite?	5-10%	py/asp/cpy	qtz vein/stockwork
KS-98-05	Central area	Grab	3m	feldspar porphyry	propylitic	5-10%	ру	3-5% magnetite
KS-98-06	South side	Grab	3m	andesite	carbonate	1-2%	ру	may be dyke
KS-98-07	South side	Grab	3m	andesite	carbonate	3-5%	py +/-asp	near fault zone
KS-98-08	South side	Grab	3m	bedded sediments	hornfels	3-5%	ру	rare qtz veins
KS-98-09	North side	Grab	3m	bedded sediments	hornfels	1-3%	ру	rare CO3 veins
KS-98-10	Central area	Grab	3m	feldspar porphyry	strong argillic	10-15%	py +/-asp,cpy	local chlorite
KS-98-11	Central area	Grab	3m	feidspar porphyry	silica	5-10%	ру	near hornfeis
KS-98-12	Central area	Grab	3m	feldspar porphyry	strong argillic	5-10%	ру	rare qtz veins
KS-98-13	Central area	Grab	3m	feldspar porphyry	moderate argillic	: 10-15%	ру	rare qtz veins
KS-98-14	Central area	talus	3m	feldspar porphyry	strong argillic	5-10%	po?, gal	qtz veining
KS-98-15	Central area	Grab	3m	felsic dyke	str altered	5-10%	ру	rusty & weathered
KS-98-16	Central area	Grab	3m	feldspar porphyry	moderate argillio	5-10%	ру	str qtz veinlets
KS-98-17	Central area	Grab	3m	feldspar porphyry	moderate argillic	: 5-10%	ру	str qtz vein/stockwork
KS-98-18	Central area	Grab	3m	feldspar porphyry	moderate argillio	; 5-10%	ру	str qtz vein/stockwork
KS-98-19	Central area	Grab	3m	felsic intrusive	propylitic	3-5%	ру	may be fspar porph
KS-98-20	Central area	Grab	3m	f gr intrusive	str altered	10-15%	py +/-asp?	altered zone 10-15m wide
KS-08-21	Central area	Grab	3m	monzonite ?	breccia	3-5%	ру/ро	contains siliceous clasts
KS-08-27	Central area	Grab	3m	intrusive?	str altered	15-20%	py +/-asp?	shear zone
KS-08-22	Central area	Grah	3m	feldspar porphyry	propylitic	3-5%	py .	
KS-98-24	Central area	Grab	3m	feldspar porphyry	propylitic	5-10%	ру	rare qtz veinlets
KS-98-25	Central area	Grab	3m	feldspar porphyry	propylitic	5-10%	py +/-asp?	
KS-08-26	Central area	Grah	3m	feldspar porphyry	propylitic/silicifie	5-10%	py +/-asp	fault zone
KS-90-20	Central area	Grab	3m	feldspar porphyry	propylitic	5-10%	py +/-asp?	
KS-08-29	Central area	Grab	3m	feidspar norphyry	propylitic/silicifie	5-10%	py +/-asp?	qtz rich shear zone
10-30-20	, oomaanarda	0,00	01					-

· ·

(

		Sample						_
Sample #	Location	Туре	Width	Rock type	Alteration	Sulfides	Minerlization	Comments
KS-98-29	Central area	Grab	3m	andesite flow?	propylitic	10-15%	py trace cpy	near intr contact
KS-98-30	Central area	Grab	3m	feldspar porphyry		5-10%	py+/-/asp.cpy	hard and blocky
KS-98-31	North side	Grab	3m	qtz rich shear vein		10-15%		hosted in volcanics
KS-98-32	North side	Grab	3m	atz rich shear vein	brecciated	10-15%		hosted in volcanics
KS-98-33	North side	Grab	3m	atz vein	brecciated	10-15%		hosted in volcanics
KS-98-34	North side	talus		banded massive sulf.		30-40%	py/po/cpy/asp	hosted in volcanics
KS-98-35	Central area	Grab	3m	feldspar pophyry	strong argillic	5-10%	ру	locally sheared
KS-98-36	Central area	Grab	3m	gtz rich shear	locally CO3	5-10%		within fspar porph
KS-98-37	Central area	Grab	3m	sediments?	hornfels	3-5%	ру	siliceous zones
KS-98-38	Central area	Grab	3m	feldspar porphyry	propylitic	5-10%		near contact
KS-98-39	Central area	Grab	3m	fault zone	CO3/ankerite	10-15%	ру	locally silica rich
KS-98-40	Central area	Grab	3m	altered intr/volcanic?	propylitic	10-15%	ру	may be felsic volcanic
KS-98-41	Central area	Grab	3m	altered intr/volcanic?	propylitic	10-15%	ру	locally qtz veining
KS-98-42	Central area	talus		atz vein	brecciated	5-10%		
KS-98-43	Central area	Grab	3m	feldspar porphyry	propylitic	5-10%	ру	locally qtz veining
KS-98-44	Central area	Grab	3m	feldspar porphyry	wk phyllic	5-10%		str fractured
KS-98-45	Central area	Grab	3m	feldspar porphyry	propylitic	5-10%	ру	locally qtz veining
KS-98-46	Central area	Grab	3m	feldspar porphyry	propylitic	10-15%	py	
KS-98-47	Central area	talus	0	feldspar porphyry	propylitic	5-10%	ру	locally qtz veining

•

Appendix II

×.

Analytical Procedures

Analytical Procedure

GEOCHEMICAL GOLD ANALYSIS

Samples are catalogued and dried. Soils are prepared by sieving through an 80 mesh screen to obtain a minus 80 mesh fraction. Rock samples are 2 stage crushed to minus 10 mesh and a 250 gram subsample is pulverized on a ring mill pulverizer to -140 mesh. The subsample is rolled, homogenized and bagged in a prenumbered bag.

The sample is weighed to 10 grams and fused along with proper fluxing materials. The bead is digested in aqua regia and analyzed on an atomic absorption instrument. Over-range values (>1000 ppb) for rocks are re-analyzed using gold assay methods.

Appropriate reference materials accompany the samples through the process allowing for quality control assessment. Results are entered and printed along with quality control data (repeats and standards). The data is faxed and/or mailed to the client.

MULTI ELEMENT ICP ANALYSIS

Samples are catalogued and dried. Soil samples are screened to obtain an -80 mesh sample. Rock samples are 2 stage crushed to minus 10 mesh and pulverized on a ring mill pulverizer to minus 140 mesh, rolled and homogenized.

A 0.5 gram sample is digested with aqua regia, which contains beryllium, which acts as an internal standard. The sample is analyzed on a Jarrell Ash ICP unit. Over-range values (>30 ppm Ag, >10000ppm As/Pb/Sb/Zn) are re-analyzed using assay methods.

Results are collated by computer and are printed along with accompanying quality control data (repeats and standards). Results are printed on a laser printer and are faxed and/or mailed to the client.

Appendix III

Geochemical Results

18-Sep-98

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

ICP CERTIFICATE OF ANALYSIS AK 98-534

TECK EXPLORATION LTD. #350-272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2

ATTENTION: SCOTT SMITH

No. of samples received: 122 Sample Type: Rock PROJECT #: 1764 SHIPMENT #: None Given Samples submitted by: S. Smith

Values in ppm unless otherwise reported

Tag #	Au(ppb)	Aa	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	<u>Ti %</u>	U	<u>v</u>	W	Y	Zn
109 //	25	<0.2	1 26	-5	30	<5	0.74	1	289	44	116	9.80	<10	0.58	198	8	0.14	3	900	2	<5	160	42	0.08	<10	63	<10	<1	27
KF90-01	25	-0.2	0.01	-5	30	-5	0.34	<1	146	95	834	>10	<10	0.71	180	11	0.06	11	350	2	<5	160	12	0.10	10	109	<10	<1	23
KP98-02	40	0.0	0.91	110	35	-5	8 30	<1	23	29	754	6.87	<10	0.28	372	5	0.01	<1	560	<2	70	120	257	<0.01	<10	43	<10	3	43
KP98-03	25	-0.2	0.40	-5	20	~5	0.03	-1	21	30	474	7 21	<10	0.79	258	6	0.05	<1	840	12	<5	100	30	0.09	<10	106	<10	<1	31
KP98-04	20	<0.2	1.00	CC45	30	<5 -5	4 00	24	59	70	61	3.69	<10	0.60	658	6	0.01	<1	380	8	215	<20	101	<0.01	<10	12	<10	4	22
KP98-05	35	0.2	0.30	0212	40	<5	4.00	~1	50	15	0.	0.00	-10	0.00		-													
				000r	450	-	× 10	-1	4	73	22	4 08	<10	1 79	2246	4	0.02	<1	240	38	60	<20	183	<0.01	<10	8	<10	11	20
KP98-06	20	0.2	0.28	2865	450	5	>10			13	1015	~10	~10	0.01	1450	à	0.03	<1	550	<2	45	140	216	0.01	<10	57	<10	<1	56
KP98-07	45	2.2	0.95	890	45	<5	>10	<1	20	40	1045	4 20	~10	0.31	1/18	3	0.00	<1	910	190	2840	60	208	<0.01	<10	13	<10	14	307
KP98-08	75	>30	0.74	1435	85	<5	5.89	51	33	10	4020	4.23	~10	0,20	107	7	0.04	à	1360	6	5	100	21	<0.01	<10	20	<10	<1	72
KP98-09	140	3.0	0.32	15	15	<5	0.75	<1	18	31	4038	5.95	~10	0.10	016	30	<0.04	<1	<10	14	140	740	8	<0.01	30	2	<10	<1	98
KP98-10	5	4.2	0.04	5245	80	<5	0.38	<1	149	<1	2340	>10	<10	0.07	910	30	~0.01	~1	-10				-						
						_		-			4070		- 40	0.40	047	20	0.01	-1	340	48	<5	320	73	<0.01	<10	9	<10	<1	30
KP98-11	195	2.2	0.33	1835	45	<5	1.55	<1	102	78	1078	>10	<10	0.10	217	20	0.01	-1	360	36	<5	320	65	< 0.01	10	9	<10	<1	30
KP98-12	200	2.0	0.30	1770	40	<5	1.45	<1	102	62	1117	>10	<10	0.15	202	21	0.01	-1	200	104	10	280	2	<0.01	20	43	<10	<1	91
KP98-13	>1000	6.8	0.14	710	75	100	0.05	<1	19	120	256	>10	<10	<0.01	1/6	32	0.01		330	104	-5	180	15	<0.01	<10	52	<10	<1	38
KP98-14	40	0.6	1.49	150	40	<5	0.99	<1	84	43	761	>10	<10	0.72	383	23	0.04	4	730	4	-5	<20	79	<0.01	<10	10	<10	9	25
KP98-15	5	<0.2	0.37	15	30	<5	4.58	<1	<1	95	13	0.66	<10	0.09	447	12	0.01	<1	310	4	5	~20	15	-0.01	-10			-	
																			500		~E	260	-1	~0.01	c10	73	<10	<1	40
KP98-16	30	0.6	2.19	<5	40	<5	0.24	2	139	56	605	>10	<10	1.34	564	33	0.04	<1	580	0	5	200		<0.01	<10	64	<10	12	34
KP98-17	95	2.4	1.47	5	15	<5	1.76	<1	34	44	3291	4.79	<10	1.15	302	7	0.06	<1	1330	6	<0 ."	<20	44	NU.U1	<10	25	10	<1	15
KP98-18	5	<0.2	1.40	5	90	<5	0.76	<1	8	82	64	4.00	<10	0.76	129	5	0.07	<1	1370	8	<0	<20	30	0.00	~10	55	~10	-1	12
KP98-19	5	<0.2	1.40	10	35	<5	0.49	<1	16	83	362	5.12	<10	0.98	124	3	0.09	<1	610	4	<5	<20	29	0.13	<10	54	<10	~1	12
KP98-20	5	<0.2	1.58	20	35	10	>10	<1	18	67	17	3.26	<10	0.65	1825	<1	0.15	25	1570	<2	<5	<20	220	0.09	<10	60	~10	~1	10
11 00 20	-		•••																		_					400	-10	-1	22
KD08.21	5	<0.2	2 18	<5	40	<5	1.02	<1	25	98	414	8.84	<10	1.59	452	2	0.09	3	1310	6	<5	40	25	0.21	<10	123	<10	< 1	22
KD08-22	15	<0.2	2.05	<5	35	<5	1.02	1	43	62	609	>10	<10) 1.27	222	5	0.09	3	510	4	<5	120	23	0.18	<10	84	<10	51	19
KP 50-22	15	0.2	0.51	20	50	<5	0.08	<1	34	131	144	7.39	<10	0.14	81	78	0.03	<1	680	12	25	<20	42	0.02	<10	10	<10	<1	12
KP 90-23	105	5.0	1 99	160	150	<5	2 77	<1	33	30	577	>10	<10	0.57	611	16	0.02	<1	490	88	<5	300	43	<0.01	<10	68	<10	<1	114
KP90-24	105	1.0	2.14	~5	65	<5	1 74	i	68	57	533	>10	<10	0.75	438	11	0.05	22	6070	2	<5	240	15	0.07	10	41	<10	<1	27
KP98-25	5	1.0	2.14	-5	00	-0	1.74	•	00																				_
1/200 00	r		0.62	1105	~5	5	>10	د 1	з	32	8	1 84	10	0.23	1562	<1	0.02	<1	80	<2	10	<20	1355	<0.01	<10	9	<10	21	5
KP98-26	5	0.2	0.65	1100	4.40	-5	0.12	-1	6	210	69	1 12	<10	<0.01	119	9	<0.01	<1	210	4	6145	<20	18	<0.01	<10	4	<10	<1	15
KP98-27	5	<0.2	0.15	1040	75	-5	0.12	-1	10	190	151	2.26	<10	0.06	232	7	0.01	<1	260	6	2775	<20	13	<0.01	<10	4	<10	<1	25
KP98-28	55	0.8	0.17	6355	75	<5	0.40	-1	20	164	107	2.52	<10	0.00	161	7	< 0.01	4	410	6	5935	<20	11	<0.01	<10	18	<10	1	21
KP98-29	5	0.2	0.68	4525	95	<5 -5	0.07	-1	20	161	177	2.52	<10	<0.01	71	.3	0.01	<1	330	<2	>10000	<20	13	<0.01	<10	12	<10	2	11
KP98-30	5	0.2	0.20	85	40	<5	0.04	51	'	191	111	2.05	-10			Ŭ	0.01	•											
						45	-0.04		24	474	75	5 66	-10	~ ~ 0 01	70	10	<0.01	<1	130	4	555	<20	5	<0.01	<10	7	<10	<1	6
KP98-31	55	2.0	0.09	350	25	45	<0.01	<1	34		75	>10	-10		161	36	0.01	<1	<10	<2	<5	760	3	<0.01	80	265	210	<1	24
KP98-32	255	0.4	0.16	<5	110	80	0.06	3	17	450	22	>10	~10	0.01	35	27	0.00	<1	840	<2	<5	20	<1	<0.01	<10	37	20	<1	6
KP98-33	20	0.8	0.50	<5	40	<5	0.02	1	8	152	∡00 47	1 00	~10	0.04	25	10	0.01	<1	380	2	20	<20	2	<0.01	<10	2	<10	<1	1
KP98-34	5	<0.2	0.13	10	15	<5	0.04	<1	1	126	17	1.08	~10	0.01	450	10	0.01	<1	1380	10	10	<20	39	0.07	<10	63	<10	<1	18
KP98-35	15	0.2	1.55	15	50	<5	0.84	<1	17	95	641	4.73	510	J U./5	152	4	0.00	-1	1000			_•			-				
									• •			r		~ ~ 0 04	60	40	0.01	c 1	880	<2	<5	<20	6	<0.01	<10	7	<10	<1	21
KP98-36	20	0.2	0.33	145	50	<5	0.06	<1	21	88	316	5.22	<10	J <0.01	00	42	0.01	- 1	420	-2	20	<20	124	<0.01	<10	35	<10	<1	25
KP98-37	5	<0.2	0.36	275	60	<5	1.22	<1	14	167	78	3.61	<10	J U.46	305	0	y.ua	-1	420	-1	20	20		2.27					

Values in ppm unless otherwise reported

Samples submitted by: S. Smith

					-		•• • •	~ 1	C -	~	C 11	Ea 9/	1.5	Ma %	Mn	Mo	Na %	Ni	Р	Pb	Sb	Sn	Sr	TI %	U	V	W	Y	Zn
Tag #	Au(ppb)	Ag	AI %	As	Ba	BI	Ca %	Ca			Cu	re %	La	NIG /0	4904	6	0.01		250	<2	15	<20	642	<0.01	<10	3	<10	1	8
KP98-38	65	0.2	0.18	730	525	<5	3.08	<1	3	24	142	3,31	<10	0.07	1091	200	0.01	~1	4830	6	<5	320	29	<0.01	60	407	<10	<1	16
KP98-39	235	<0.2	0.70	115	330	<5	0.04	1	10	49	1130	>10	<10	<0.01	162	209	<0.01	<1	30	64	>10000	<20	329	<0.01	<10	з	<10	<1	2
KP98-40	5	0.2	0.02	170	35	<5	0.06	<1	<1	12	38	0.72	\$10	~0.01	102	•	-0.01	- 1		•••	10000								
					~~		0.57	-4	27	264	1000	6 86	<10	0.32	267	32	0.02	13	120	168	580	<20	38	<0.01	<10	37	<10	<1	9
KP98-41	20	<0.2	0.59	<5	30	<0 -5	2.57	1	269	104	424	>10	<10	0.25	85	23	0.01	53	<10	<2	<5	200	4	0.02	20	74	<10	<1	14
KP98-42	240	5.6	0.34	<5	55	<5 .//	0.06	-1	300	50	929	>10	<10	1 36	214	12	0.10	12	970	6	<5	80	36	0.18	<10	97	<10	<1	24
KP98-43	45	0.2	1.60	<5	30	<0	0.00	20	70	147	520	>10	<10	0.30	171	13	0.03	1	>10000	336	<5	140	14	<0.01	<10	21	<10	<1	2926
KP98-44	>1000	>30	0.74	35	55	<0	0.34	30	70 60	72	1007	6 45	<10	0.00	2352	8	0.01	<1	400	12	25	<20	85	<0.01	<10	7	<10	5	31
KP98-45	165	1.2	0.32	1215	40	<0	7.12	~1	09	12	1007	0.45	-10	0.00	2002	-	•.•.	•											
				405	40		2.44	-1	10	102	2226	3.07	<10	0 69	383	6	0.05	<1	1090	4	20	<20	60	<0.01	<10	16	<10	5	36
KP98-46	75	1.4	0.46	165	40	<5	3.11	-1	10	1100	164	5.05	<10	0.00	568	· 8	<0.01	<1	130	14	250	<20	11	<0.01	<10	8	<10	<1	35
KP98-47	>1000	0.8	0.18	>10000	65	~5	0.20	-1	10	144	120	6.00	<10	0.02	897	9	0.01	<1	150	20	380	<20	97	<0.01	<10	8	<10	<1	43
KP98-48	>1000	1.4	0.15	>10000	65	5	4,03	51	10	402	120	7 94	~10	<0.00	219	, a	<0.01	<1	190	20	375	20	3	<0.01	<10	17	<10	<1	38
KP98-49	>1000	2.0	0.21	>10000	140	<5	0.03	51	10	102	4964	>104	~10	<0.01	152	23	<0.01	<1	360	28	1200	340	7	<0.01	40	2	<10	<1	124
KP98-50	>1000	21.8	0.07	>10000	60	<0	0.04	51	1037	14	4004	-10	10	-0.01	102	20		•											
					-	-	0.57	-1	20	40	261	0 00	<10	0.07	697	12	0.01	<1	730	22	655	80	21	<0.01	<10	10	<10	<1	619
KP98-51	>1000	1.6	0.29	>10000	35	5	0.57	51	47	49	254	5.00	<10	0.07	368	47	0.04	<1	1200	14	<5	100	4	<0.01	<10	67	<10	<1	31
KP98-52	20	0.2	1.93	2/5	35	<0	0.20	51	47	60	204	>10	<10	0.04	324	33	0.01	<1	410	6	75	180	4	<0.01	20	21	<10	<1	22
KP98-53	490	1.4	0.61	6990	80	5	0.03	-1	25	95	294	>10	<10 <10	0.00	400	60	0.02	<1	830	14	<5	40	5	<0.01	<10	55	<10	<1	28
KP98-54	10	0.2	1.96	1/0	45	<0	0.19		35	63	201	7 82	<10	0.30	2835	17	0.01	<1	460	12	50	40	38	<0.01	<10	13	<10	4	31
KP98-55	170	1.4	0.29	3965	170	10	3.04	~1	24	03	210	1.02	10	0.00	2000		0.01	•											
				. 40000	70	4505	2 50	-1	240	54	082	>10	<10	0.27	543	24	0.01	3	<10	90	440	300	107	<0.01	30	9	<10	<1	59
KP98-56	>1000	10.2	0.12	>10000	/0	4000	3.39	-1	172	34	2500	>10	<10	<0.01	337	28	<0.01	30	<10	42	1360	440	24	<0.01	40	4	<10	<1	220
KP98-57	>1000	7.6	0.03	>10000	40	<5 -5	0.15	-1	20	95	686	>10	<10	0.46	656	13	0.01	<1	<10	34	305	100	56	<0.01	<10	5	<10	<1	101
KP98-58	>1000	5.4	0.07	>10000	40	<0 40	2.00	-1	- 00	25	10	206	<10	1 46	1117	2	0.01	<1	20	<2	60	<20	649	<0.01	<10	4	<10	9	7
KP98-59	105	0.2	0.04	/455	4/5	10	>10	-4	52	151	442	>10	<10	<0.01	440	26	0.01	7	<10	76	35	180	12	<0.01	20	4	<10	<1	115
KP98-60	>1000	19.0	0.06	9365	195	120	0.15	~1	55	151	442	- 10	~10	-0.01	110			-											
			0.00	0075	-	~5	0.57	-1	128	71	2910	>10	<10	0 19	413	29	0.01	66	<10	32	165	340	10	<0.01	50	3	<10	<1	283
KP98-61	>1000	9.0	0.03	09/0	40	120	0.57	21	27	213	791	9.51	<10	0.12	263	17	0.01	7	100	16	240	<20	21	<0.01	<10	5	<10	<1	79
KP98-62	>1000	3.2	0.08	200	40	120	0.01	62	16	87	433	>10	<10	2.32	>10000	10	0.02	1	40	2960	385	<20	340	0.06	<10	15	<10	<1	7973
KP98-63	6/5	9.0	0.15	200	20	<0 <5	9.70	22	35	162	1339	>10	<10	0 18	>10000	6	0.01	2	<10	>10000	9035	60	10	0.02	<10	4	<10	<1 3	>10000
KP98-64	>1000	>30	0.09	>10000	445	<5	510	-1	15	3	54	2.90	<10	0.17	1645	2	0.01	<1	160	184	2495	<20	689	<0.01	<10	6	<10	19	101
KP98-65	115	4.6	0.11	>10000	140	~ 0	210	~!	15		04	2.00		0.11		-													
	40	-0.0	4 05	220	25	5	0.34	e 1	18	34	37	4 49	<10	1.00	1072	4	0.05	<1	1090	24	10	<20	167	<0.01	<10	62	<10	17	81
KP98-66	10	<u.z< td=""><td>1.00</td><td>320</td><td>20</td><td>-5</td><td>3,34</td><td>21</td><td>64</td><td>20</td><td>3528</td><td>>10</td><td><10</td><td>0.45</td><td>3589</td><td>26</td><td>0.03</td><td>7</td><td><10</td><td>992</td><td><5</td><td>360</td><td>48</td><td><0.01</td><td><10</td><td>8</td><td><10</td><td><1</td><td>210</td></u.z<>	1.00	320	20	-5	3,34	21	64	20	3528	>10	<10	0.45	3589	26	0.03	7	<10	992	<5	360	48	<0.01	<10	8	<10	<1	210
KP98-67	525	~ 30	0.22	2010	75	2565	0.13	21	312	55	1638	>10	<10	< 0.01	208	26	0.01	13	<10	80	135	280	9	<0.01	50	з	<10	<1	78
KP98-68	>1000	0.0	0.03	125	120	2000	2.86	۲۱ ح1	5	206	460	3.01	<10	0.53	800	6	0.01	<1	140	1546	645	<20	185	<0.01	<10	10	<10	<1	92
KP90-09	20	25.6	0.00	275	50	-5	0.00	5	1	161	4178	0.67	<10	<0.01	105	6	<0.01	<1	360	>10000	5385	<20	302	<0.01	<10	2	<10	<1	561
KP98-70	20	20.0	0.05	215	50	-5	0.03	Ŭ	•																				
KD08-71	10	16	0 11	60	60	<5	0.85	<1	5	223	644	1.46	<10	0.11	254	6	<0.01	3	260	1996	860	<20	81	<0.01	<10	5	<10	<1	83
KP90-71	>100	>20	1.02	230	85	<5	0.12	<1	18	108	<1	>10	<10	0.23	393	21	0.01	<1	>10000	42	<5	100	5	<0.01	20	21	350	<1	1/1
KP90-12	~1000	16.4	0.02	200	390	<5	0.03	4	<1	128	1848	0.59	<10	<0.01	166	4	<0.01	<1	250	4128	3415	<20	23	<0.01	<10	2	<10	<1	344
KP90-73	10	0.4	0.03	150	580	<5	1 18	5	<1	289	1777	1.38	<10	0.01	395	7	<0.01	<1	340	2016	1055	<20	34	<0.01	<10	4	<10	<1	349
KP90-74	10	<0.4	1 39	30	30	-5	0.27	<1	15	55	33	7.38	<10	1.04	622	12	0.04	<1	830	32	<5	<20	20	<0.01	<10	35	<10	<1	55
KP98-75	10	~0. 2	1.30	5 30	50	5	0.27	- 1	,		•••																	_	
KC09 04	5	<0.2	n 92	30	60	<5	2 86	<1	22	76	668	3.62	<10	0.75	327	208	0.02	<1	900	12	10	<20	48	0.03	<10	38	<10	6	19
K590-01	40	-0.2	0.92		70	<5	2.83	<1	13	86	1788	3.34	<10	0.46	300	203	0.01	<1	840	10	10	<20	51	<0.01	<10	20	<10	10	21
K596-02	40	<0.2	1 34	1 5	80	<5	0.44	<1	13	48	172	4.51	<10	1.14	309	91	0.06	<1	1110	10	<5	<20	16	0.16	<10	84	<10	2	31
K590-03	500	>20.2	0.34	2480	20	<5	2.33	298	10	72	6158	4.78	<10	0.40	3165	26	0.02	<1	1260	7922	1175	<20	61	<0.01	<10	7	<10	<1	>10000
KS08.05	10	0.2	3.60	2400	50	<5	2.41	<1	22	41	443	6.59	<10	1.63	269	<1	0.34	<1	1360	40	5	<20	152	0.15	<10	141	<10	<1	132
N090-00	10	0.2	0.00					•																				~	70
K598-06	5	0.4	0.54	15	55	<5	3.55	<1	16	23	73	2.83	<10	0.35	289	Э	0.01	3	650	14	40	<20	84	<0.01	<10	15	<10 - 10	3 26	12
KS98-07	25	0.4	0.17	2810	590	20	>10	<1	3	6	14	>10	<10	5.67	5153	7	0.03	<1	100	<2	10	<20	265	<0.01	<10	23	<10 ~10	20	39
KS98-08	15	0.2	0.87	50	50	<5	4.01	<1	16	72	804	9.10	<10	0.69	663	10	0.09	5	1590	2	<5	<20	208	<0.01	<10	01	~10	24	43
KS98-09	80	<0.2	1.89) 10	40	<5	1.21	<1	22	61	537	4.58	<10	1.05	353	3	0.09	4	1140	18	<5	<20	26	0.12	<10 240	84 40	>10	21	44
KS98-10	10	<0.2	1.06	6 10	40	<5	0.37	<1	14	69	134	5.62	<10	0.77	117	7	0.09	<1	1090	12	<5	<20	30	0.06	<10	49	510	~1	20

Page 2

Values in ppm unless otherwise reported

Samples submitted by: S. Smith

_ "	• · · / · · · • •				Ba		C . %	Cd	Co	Cr	Cu	Fe %	La	Ma %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr 1	ri %	U	V	W	Y	Zn
Tag #	Au(ppb)	Ag	AI %	AS	Da	DI		Cu	00																				
	_			40	05	~E	0.11	1	6	48	1/3	6 58	<10	0.55	72	9	0.07	<1	1310	12	<5	<20	13 <	0.01	<10	40 •	<10	<1	19
KS98-11	5	<0.2	1.06	10	85	<5 ~E	0.11	-1	5	25	120	7 78	<10	0.32	44	6	0.03	<1	1280	8	<5	40	10 <	0.01	<10	19 ·	<10	<1	15
KS98-12	5	<0.2	1.07	40	35	~5	0.00	<1 <1	10	90	90	4 58	<10	0.72	69	11	0.10	<1	1560	10	<5	<20	36 <	0.01	<10	33 ·	<10	<1	14
K598-13	5 140	SU.2	0.30	170	85	10	0.25	<1	3	94	49	3.20	20	<0.01	28	10	0.02	<1	1340	1772	<5	<20	20 <	0.01	<10	7 -	<10	<1	58
K598-14	140	-0.2	0.39	5	25	<5	1.34	<1	7	15	124	5.08	<10	0.63	79	3	0.04	<1	930	28	<5	<20	72	0.01	<10	45 ·	<10	<1	16
K290-12	5	~U. 2	2.01	J	20		1.01	•	•																	. –			-
KS08-16	5	<0.2	0.94	10	65	<5	0.12	<1	З	96	113	3.75	<10	0.45	52	7	0.06	<1	1350	14	<5	<20	15 <	0.01	<10	17	<10	<1	10
KS98-17	5	<0.2	0.74	<5	70	<5	0.11	<1	5	66	140	4.52	<10	0.57	39	8	0.09	<1	1110	26	<5	<20	78 <	0.01	<10	20	<10	<1	10
KS98-18	25	0.4	0.90	10	55	<5	0.26	<1	2	68	382	1.72	<10	0.51	41	4	0.06	<1	1400	10	<5	<20	21 <	0.01	<10	18	<10	<1 2	22
KS98-19		<0.2	1.30	10	55	<5	0.90	<1	10	72	48	3.27	<10	0.64	338	<1	0.08	<1	1460	14	<5	<20	26	0.11	<10		< 10 ~10	-1	108
KS98-20	35	0.6	0.40	90	130	<5	0.06	<1	5	68	104	5.03	<10	0.01	325	9	0.01	<1	820	42	<5	<20	9 <	0.01	<10	0	~10	~1	100
																			4000	~	-	-20	107 -	0.01	~10	20	c10	7	61
KS98-21	5	<0.2	0.84	25	60	<5	2.71	<1	4	51	56	3.25	<10	0.81	598	3	0.02	<1	1060	6	5	<20	10/ 5	0.01	20	29	<10	<1	17
KS98-22	5	0.2	1.16	<5	60	5	0.15	<1	14	53	292	>10	<10	0.41	185	14	0.02	<1	1020	8	<5	<20	82	0.01	<10	86	<10	<1	44
KS98-23	5	<0.2	2.34	10	95	<5	1.26	<1	11	43	159	6.36	<10	1.28	436	5	0.16	<1	2090	24	~5	~20	24	0.02	<10	84	<10	<1	30
KS98-24	5	<0.2	1.81	<5	30	<5	1.02	<1	17	84	222	4.30	<10	1.14	236	3	0.12	<1	820	10	~5	<20	174	0.12	<10	98	<10	<1	31
KS98-25	5	<0.2	2.70	10	40	10	1.32	<1	18	33	17	5.37	<10	1.73	212	4	0.20	~1	020	10	-0	-20	114			•••	•-	-	
				_							40	E E0	-10	0.47	54	15	0.02	c 1	800	114	<5	<20	6 <	0.01	<10	23	<10	<1	50
KS98-26	10	0.4	0.52	5	40	15	0.03	<1	8	59	13	0.50	< 10	1 16	180	13	0.02	<1	1430	8	<5	<20	28	0.11	<10	76	<10	<1	27
KS98-27	5	<0.2	1.30	<5	35	20	0.73	<1	20	42	10	1.90	~10	0.12	202	22	0.07	<1	2030	632	<5	60	23 <	0.01	10	23	<10	<1	147
KS98-28	175	6.0	0.58	50	65	35	1.28	<1 -1	19	30	220	5 68	<10	0.12	168	5	0.14	5	1240	20	<5	20	59	0.12	<10	60	<10	<1	16
KS98-29	15	<0.2	1.42	<5	30	<5 <5	1.43	~1	12	88	179	4 40	<10	0.40	337	6	0.08	<1	1100	14	<5	<20	31	0.03	<10	54	<10	1	43
KS98-30	5	<0.2	1.25	15	45	-0	1.05	~!	12	00	175	7.70	10	0.00		•													
1/009 24	E	0.2	0.30	-5	015	<5	649	<1	6	90	159	7.23	<10	1.05	1637	8	0.02	5	690	<2	<5	<20	171 <	0.01	<10	35	<10	3	38
K598-31	5	0.2	0.30	120	410	10	4 90	<1	4	68	36	3.94	<10	0.72	1082	5	0.01	2	350	<2	<5	<20	93 <	0.01	<10	16	<10	5	26
K390-32	15	-0.2	0.27	5985	200	<5	1 24	<1	13	74	127	2.47	<10	0.14	298	6	0.01	4	440	6	155	<20	38 <	0.01	<10	9	<10	2	49
KS08-34	750	20.2	0.24	>10000	115	<5	0.13	<1	116	8	7106	>10	<10	0.30	478	31	0.01	71	<10	162	175	<20	9 <	0.01	70	9	<10	<1	299
KS98-35	35	0.0	1.33	180	365	<5	0.19	<1	6	55	449	3.57	10	0.54	81	28	0.04	2	1490	12	5	<20	43 <	:0.01	<10	43	<10	3	44
1000-00	00	•.=				-															_				~~	40	-40	-1	52
KS98-36	30	0.4	0.46	140	80	<5	0.47	<1	18	56	623	7.21	<10	<0.01	137	21	0.01	3	1020	10	<5	<20	11 <	0.01	20	13	<10	<1 A	15
KS98-37	65	0.4	0.19	1505	385	<5	4.28	<1	9	23	187	4.94	<10	0.88	2641	20	0.01	2	410	<2	15	<20	43/ 4	0.01	<10	76	<10	-	48
KS98-38	45	2.2	1.22	40	245	<5	0.31	<1	6	70	1404	4.20	<10	0.80	334	6	0.04	4	1200	10	<0 ~F	<20	21 5	0.01	<10	08	<10	<1	31
KS98-39	10	0.2	1.30	40	40	<5	0.33	<1	27	67	504	6.95	<10	0.68	276	8	0.05	8	990	14	<0	<20	14	0.03	<10	81	<10	1	25
KS98-40	30	<0.2	1.57	5	40	<5	1.25	<1	16	71	478	5.47	<10	0.78	202	4	0.04	1	1060	0	-0	~20	15	0.03	-10	01		•	
						_						C 44	-40	0.00	447	7	0.05	5	1060	6	<5	<20	14	0.01	10	66	<10	<1	19
KS98-41	35	0.4	0.89	<5	55	<5	0.18	<1	9	58	294	0.11	<10	0.00	262		0.03	5	160	4	210	<20	53 4	0.01	<10	3	<10	1	16
KS98-42	20	0.2	0.10	7340	130	<5	1.40	<1	4	151	33	1.47	<10	0.04	200	61	0.01	5	1000	8	<5	<20	94 -	0.01	<10	22	<10	<1	10
KS98-43	20	0.2	1.04	10	125	<5	0.04	<1	3 E	/0 06	01	4.47	<10	0.37	41	22	0.13	5	900	6	<5	<20	93 -	<0.01	<10	14	<10	<1	9
KS98-44	10	<0.2	0.65	<5	80	<5 ./5	0.05	~1	2	90	91 81	1 95	<10	0.42	33	11	0.04	5	560	6	<5	<20	16 •	<0.01	<10	12	<10	<1	4
KS98-45	30	<0.2	0.73	<5	80	<5	0.07	~1	3	90	01	1.55	-10	0.23		••	0.01	•	•	-									
1/000 40	40		A 99	~F	45	-5	0.53	د1	4	85	66	3.32	<10	0.40	58	5	0.06	3	1070	8	<5	<20	25	0.04	<10	30	<10	<1	8
KS98-46	10	1.2	0.00	<5	40	<5	0.00	<1	5	64	265	2.92	<10	0.05	42	7	0.03	3	620	2	<5	<20	11 •	<0.01	<10	3	<10	<1	4
K598-4/	50	1.0	0.00	-5	40	-0	0.11		Ū	•••																			
QC DATA:																													
Resplit:													.			_	0.47		1040	2	~E	100	46	0 00	<10	67	<10	<1	30
KP98-01	25	<0.2	1.42	<5	35	<5	0.83	<1	303	46	120	>10	<10	0,65	213	7	0.17	1	1010	0 2	~0	<20		<0.03	<10	7	<10	<1	22
KP98-36	20	0.2	0.30	135	50	<5	0.06	<1	20	87	289	4.93	<10	<0.01	00	41	<0.01	۱ - ۲	270	2016	875	<20	86	<0.01	<10	5	<10	<1	92
KP98-71	10	1.8	0.12	60	65	<5	0.84	<1	5	202	679	1.42	<10	0.12	249	57	~U.UI 0.03	2	600	<2010	<5	<20	173	<0.01	<10	35	<10	3	40
KS98-31	5	0.2	0.31	<5	880	<5	6.40	<1	6	85	146	7.14	<10	1.00	1004	'	0.03	3	030	-4	.0			31 - 1	• -				

Values in pp	om uniess o	therwi	ise repo	orted																	5	Sample	s subn	nitted by	/: S. S	mith			
Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	v	W	Y	Zn
QC DATA:																													
Repeat:																													
KP98-01	25	0.2	1.42	<5	30	<5	0.84	<1	313	47	120	>10	<10	0.64	204	8	0.16	3	1030	6	<5	160	45	0.09	<10	70	<10	<1	30
KP98-10	5	4.0	0.04	5605	80	<5	0.37	<1	152	<1	2331	>10	<10	0.07	923	28	0.01	<1	<10	12	125	740	8	<0.01	50	2	<10	<1	84
KP98-19	5	<0.2	1.52	5	40	<5	0.52	<1	17	89	370	5.20	<10	1.02	137	4	0.11	<1	680	6	<5	<20	32	0.15	<10	56	<10	<1	14
KP98-36	25	0.2	0.33	145	40	<5	0.06	<1	22	90	343	5.33	<10	<0.01	70	45	0.01	<1	930	4	<5	<20	4	<0.01	<10	7	<10	<1	23
KP98-45	175	1.2	0.32	1250	30	<5	7.44	<1	71	79	1004	6.66	<10	0.41	2453	7	0.01	<1	430	12	20	<20	86	<0.01	<10	7	<10	6	31
KP98-54	10	0.2	1.94	155	45	<5	0.17	<1	34	86	279	>10	<10	0.72	420	60	0.02	<1	800	16	<5	20	5	<0.01	<10	54	<10	<1	28
KP98-71	10	1.8	0.11	55	65	<5	0.83	1	5	213	633	1.43	<10	0.11	256	6	<0.01	5	250	1998	860	<20	80	<0.01	<10	5	<10	<1	92
KS98-05	5	0.2	3.34	20	50	<5	2.24	<1	21	38	417	6.34	<10	1.53	256	<1	0.31	<1	1340	38	<5	<20	140	0.14	<10	132	<10	<1	123
KS98-14	135	5.6	0.39	175	90	10	0.06	<1	3	96	49	3.27	20	<0.01	28	9	0.02	<1	1350	1812	<5	<20	22	<0.01	<10	7	<10	<1	60
KS98-31	5	0.2	0.30	<5	930	<5	6.40	<1	6	88	156	7.16	<10	1.05	1606	8	0.03	5	690	<2	<5	<20	171	<0.01	<10	35	<10	4	38
Standard:																												_	
GEO'98	130	1.2	1.75	65	165	<5	1.82	<1	20	59	80	4.14	<10	0.95	674	<1	0.03	20	650	20	15	<20	63	0.11	<10	77	<10	5	73
GEO'98	130	1.2	1.74	65	170	<5	1.81	<1	20	59	87	4.14	<10	0.96	675	<1	0.03	22	710	22	10	<20	57	0.11	<10	76	<10	6	76
GEO'98	145	1.0	1.79	65	165	10	1.76	<1	20	66	83	4.26	<10	1.00	685	<1	0.03	19	730	24	10	<20	58	0.11	<10	77	<10	5	85
GEO'98	130	1.2	1.76	65	175	<5	1.76	<1	19	61	81	4.07	<10	0.96	692	<1	0.03	22	650	22	<5	<20	64	0.11	<10	78	<10	5	72

df/534 XLS/98Teck fax: 372-1285

=

Sec. -

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer .

CERTIFICATE OF ASSAY AK 98-534

TECK EXPLORATION LTD. #350-272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2

ATTENTION: SCOTT SMITH

No. of samples received: 122 Sample Type: Rock PROJECT #: 1764 SHIPMENT #: None Given Samples submitted by: S. Smith

·		Au	Au	Ag	Ag	As	Pb	Sb	Zn
ET #.	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)	(%)	<u> (%) </u>	(%)	(%)
8	KP98-08			41.2	1.20				
- 13	KP98-13	37.20	1.085						
30	KP98-30							3.45	
40	KP98-40							3.23	
44	KP98-44	3.57	0.104	134.0	3.91				
47	KP98-47	1.19	0.035			1.22			
48	KP98-48	1.06	0.031			2.58			
49	KP98-49	1.43	0.042			1.83			
50	KP98-50	29.70	0.866			23.46			
51	KP98-51	1.32	0.038			3.12			
56	KP98-56	7.30	0.213			4.51			
57	KP98-57	9.49	0.277			6.47			
58	KP98-58	5.43	0.158			1.67			
60	KP98-60	15.00	0.437						
61	KP98-61	5.18	0.151						
62	KP98-62	1.21	0.035			1.33			
64	KP98-64	16.40	0.478	288.0	8.40	1.32	5.36		3.23
65	KP98-65					11.06			
67	KP98-67			61.2	1.79				
68	KP98-68	4.74	0.138			1.99			
70	KP98-70						1.08		
72	KP98-72	40.00	1.167	96.8	2.82				
79	KS98-04			395.0	11.52				5.00
109	KS98-34					1.83			

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

18-Sep-98

TECK EXPLORATION LTD. AK98-534

1

18-Sep-98

ET #.	Tag #	Au (g/t)	Au (oz/t)	Ag (g/t)	Ag (oz/t)	As (%)	Pb (%)	Sb (%)	Zn (%)
<u>QC/D</u>	ATA:								
44	KP98-44	3.84	0.112						

Appendix IV

Statement of Costs

Geological Mapping & Sampling (between August 27 and September 9, 1998)

Teck Personnel:		
Sampler – Paul Watt	14 days @ \$175/day2,450.00)
Geologist – Scott Smith	14 days @ \$270/day3,780.00)
Field Supplies)
Expeditor		5
Analytical Costs (Eco-Tech Labs):		
Rock Samples		
Geochemical analysis	122 @ \$18.26/sample2,227.72	2
Assay	41 @ \$8.50/sample348.50)
Helicopter (PWH Ltd.), 206 Jet Ranger	17.3 hrs @ \$759.00/hr13,130.70)
Food and Accommodation	26 man days @ \$85.00/day2,210.0)
Mobilization & Demobilization)
Report Writing and Drafting)

TOTAL	•••••••••••••••••••••••••••••••••••••••	•••••	\$27,	,21	1.8	6
-------	---	-------	-------	-----	-----	---

Appendix V

Statement of Qualifications

I, Scott William Smith, do hereby certify that:

- 1) I am a geologist and have worked in British Columbia in mineral exploration for ten years.
- 2) I am a graduate of the University of Alberta in Edmonton Alberta, with a B.Sc. degree Specialization, Geology (May 1988).
- 3) I am a Professional Geologist, registered with the Association of Professional Engineers, Geologists and Geophysicists of Alberta.
- 4) I supervised and conducted exploration on the Kit Claim Group between August 27 and September 9, 1998.

Senior Project Geologist

