

100

AND CONTRACTOR OF A DESCRIPTION OF A DESCRIPANTE A DESCRIPANTE A DESCRIPANTE A DESCRIPTION OF A DESCRIPTIONO

LIK REWER

GEOLOGICAL & GEOCHEMICAL REPORT ON THE 1998 PROGRAM

JAKE PROPERTY

NTS: 94D/3W Latitude 56° 15' N Longitude 127° 20' W Omineca Mining Division

Owner:

Teck Corporation 600 - 200 Burrard Street Vancouver, BC V6C 3L9

Operator:

Teck Exploration Ltd. 350 - 272 Victoria Street Kamloops, BC V2C 2A2

199

Scott W Smith January, 1999

TABLE OF CONTENTS

D

D

O

D

D

B

0

O

Doommond	ations	
Cecommenua		
ntroduction		•••••
a da anti-		
ocation and	Access	•••••
Proporta Sta		
Toperty Sta		
hysiograph	Y	
listory		
History		
History Current Prog	gram	
Listory Current Prog	gram	• • • • • •
Iistory Current Prog Geology	gram	
History Current Prog Geology a) b)	gram Regional Property	
Iistory Current Prog Geology a) b) c)	Regional Property Alteration and Mineralization.	
listory Current Prog Geology a) b) c)	gram Regional Property Alteration and Mineralization.	
Iistory Current Prog Geology a) b) c) Geochemist	Regional Property Alteration and Mineralization	
Iistory Current Prog Geology a) b) c) Geochemisti a)	gram Regional Property Alteration and Mineralization.	
Iistory Current Prog Geology a) b) c) Geochemistr a) b)	Regional Property Alteration and Mineralization ry Rock Geochemistry Soil Geochemistry	
Iistory Current Prog Geology a) b) c) Geochemistr a) b)	gram Regional Property Alteration and Mineralization Ty Rock Geochemistry Soil Geochemistry	

Page

LIST OF FIGURES

ß

P

 \square

Π

Ω

Π

		After Page
Figure 1	Location Map (1:2,000,000)	1
Figure 2	Claim Map (1:50,000)	1
Figure 3	Regional Geology Map (1:250,000)	2
Figure 4	1998 North & South Grid Location Map (1:50,000)	2
Figure 5	Property Geology Map, North Grid (1:2,500)	Back Pocket
Figure 6	Property Geology Map, South Grid (1:2,500)	Back Pocket
Figure 7	North Grid, Au Soil Geochemistry Map (1:2,500)	Back Pocket
Figure 8	North Grid, Ag Soil Geochemistry Map (1:2,500)	Back Pocket
Figure 9	North Grid, As Soil Geochemistry Map (1:2,500)	Back Pocket
Figure 10	North Grid, Cu Soil Geochemistry Map (1:2,500)	Back Pocket
Figure 11	North Grid, Mo Soil Geochemistry Map (1:2,500)	Back Pocket
Figure 12	North Grid, Pb Soil Geochemistry Map (1:2,500)	Back Pocket
Figure 13	North Grid, Zn Soil Geochemistry Map (1:2,500)	Back Pocket
Figure 14	South Grid, Au Soil Geochemistry Map (1:2,500)	Back Pocket
Figure 15	South Grid, Ag Soil Geochemistry Map (1:2,500)	Back Pocket
Figure 16	South Grid. As Soil Geochemistry Map (1:2,500)	Back Pocket
Figure 17	South Grid, Bi Soil Geochemistry Map (1:2,500)	Back Pocket
Figure 18	South Grid, Cu Soil Geochemistry Map (1:2,500)	Back Pocket

LIST OF TABLES

Page

Table 1: Claim Data......1

APPENDICES

Rock Sample Descriptions Appendix Ι Petrographic Descriptions Appendix Π Analytical Procedures III Appendix Geochemical Results Appendix IV Statement of Costs Appendix V Statement of Qualifications VI Appendix

The Jake property was staked for Teck Corp in May of 1997. It is located approximately 160km's north of Smithers on NTS 94D/3W.

i

The property covers a large north trending series of Kastberg dyke swarms and possible intrusive stock or plug. This system has intruded and warped Bowser sediments and volcaniclastics with local hornfelsing.

The property has seen a number of programs over the years. Canadian Superior originally staked the ground in 1968. Large programs were carried out in 1972, 1973, 1976 and 1977 and included soil and rock sampling, geological mapping and magnetometer surveys, trenching, road building and diamond drilling. To this point work concentrated on the porphyry Cu potential and very little Au sampling had been conducted. In 1986 Placer Dome conducted stream sediment, rock and soil sampling and then staked the area. This was followed up with mapping, soil sampling and test VLF survey. The property remained dormant until Teck's 1997 program.

From July 11 to August 5 a program of geological mapping and geochemical sampling was undertaken on the Jake Group of claims. A north and south grid totalling 25.25 line km were established by hipchain and compass, the stations were slope corrected and flagged in. The 2 grids were geologically mapped (1:2,500 scale) and 88 rock and 550 soil samples were collected for analysis. Twenty hand samples were also collected for petrographic descriptions.

Results from soil sampling showed that two stages of mineralization are present in the area examined to date. The lower (maybe earlier) stage consists of Ag/Cu/Mo/Pb/Zn +/- Au as seen within the north grid and the higher (maybe later) stage Au/Bi/As/Cu +/- Ag mineralization outlined in the south grid. Argillic alteration and intrusive contacts appear to have the greatest control over mineralization.

Recommendations

Further work should target the strong coincidental gold and associated bismuth, arsenic and copper anomalies seen on the south grid. Detailed geological mapping of the anomalous zones and possible hand trenching should allow the establishment of shallow drill targets.

Areas of recessive argillic alteration in the center of the north grid also remain generally untested and should be mechanically trenched to test actual bedrock. An IP survey would be effective both with sulphide chargeability response and the various resistivity contrasts between alteration styles. The Jake property was staked for Teck Corp in May of 1997 after an initial data review suggested the ground was open over a potential precious-metal-bearing porphyry system. This report summarises geological mapping and geochemical sampling work that was carried out in July and August of 1998.

Location and Access (Figure 1)

The Jake property is located approximately 160km's north of Smithers on NTS 94D/3W. The property is approximately 5km's southeast of where the Squingula River joins the Skeena River. The property is only accessible by helicopter. Fixed wing access from Smithers to the Minaret airstrip 10km's northeast of the property was used during the 1998 program. The airstrip is maintained by Northwood Logging, to service their Minaret logging camp. The Minaret camp is also accessible by rail on BC Rail's line from Fort Saint James.

Property Status (Figure 2)

The Jake group consists of the Jake 1 through Jake 5 claims (total of 57 units). The Jake 1-4 claims were staked on May 19, 1997 for Teck Corp. The Jake 5 claim was staked during the 1998 work program on July 29. Upon acceptance of this report, the property will be valid as listed below.

Claim Name	# of units	Record No.	Expiry Date	
Jake 1	10	356028	May 19, 2004	*
Jake 2	20	356029	May 19, 2004	*
Jake 3	6	356030	May 19, 2004	*
Jake 4	9	356031	May 19, 2004	*
Jake 5	12	364674	July 29, 2005	*

* upon acceptance of this report

Physiography

The property covers two alpine ridges/plateaus separated by a steeply incised east-west trending tributary creek to the Squingula River. The southern ridge/plateau is quite large and unusually flat, at approximately 1800m elevation. The northern ridge/plateau is not as large or as flat and reaches an elevation of just over 1400m, which is the transition point to alpine on the property. Elevations on the property range from 900-1800 meters. Forest

1

cover below alpine consists of a mix of pine and spruce with areas of thick alder and devils club in wet seeps. The property appears influenced by a moderate semi coastal climate due to proximity to the Skeena River. The property receives moderate precipitation comparable to Smithers and Hazelton with snow cover from late September to late May.

History

The property has seen a number of programs over the years and is one of the more explored properties in this SW corner of NTS - 94D (Minfile # 94D/ 061). Kennco discovered the property in 1965 and conducted stream sediment sampling, rock sampling and drilled two Ax holes (55.5 m's).

Canadian Superior staked the ground in 1968 and conducted stream sediment sampling and rock sampling before allowing the ground to lapse. In 1971 Canadian Superior restaked the ground after discovering copper mineralization. Large programs were carried out in 1972, 1973 and 1976 and included soil and rock sampling, geological mapping and magnetometer surveys, trenching, road building and diamond drilling. Drilling consisted of 3 X-ray holes (94.5 m's), 7 NQ holes (900.5 m's) and two BQ holes (305 m's). Cities Services Minerals optioned the property in 1977 and conducted additional soil sampling, geological mapping and drilled two diamond drill holes (437 m's). Drilling and trenching resulted in grades up to 0.39% Cu and 27.4g/t Ag over 27.5 m's.

To this point work concentrated on the porphyry Cu potential and very little Au sampling had been conducted. In 1986 Placer Dome conducted stream sediment, rock and soil sampling and then staked the area. In 1987 QPX optioned the property and conducted recce silt, soil and rock sampling with regional mapping and sampling over a 40 square kilometre area. This was followed up with a limited mapping, soil sampling and test VLF survey by Placer Dome in 1990.

The property remained dormant until Teck's 1997 program which consisted of geological mapping and rock and soil sampling, as well as re-logging most of the 1973 diamond drill core.

Current Program

From July 11 to August 5 a program of geological mapping and geochemical sampling was undertaken on the Jake Group of claims. Teck staff working on the program included Andy Betmanis, Jeremy Marlow, Paul Watt and Scott Smith. Accommodations were obtained at the Valhalla Steelhead Lodge, located on the Sustut River near the Minaret logging camp. A north and south grid totalling 25.25 line km were established by hipchain and compass, the stations were slope corrected and flagged in. Locations of both grids are shown in Figure 4. The north-south baseline used on both grids was oriented at 356.5° (due to an incorrect declination being used).

魏李瓒 Î 1:00

SYMBOLS

- RIVER CREEK GEOLOGICAL "ONTAFT OUT CROP BOUNDARY MARY CLAIM GROUP MINERAL OCCURRENCE
- ROCK UNITS
- TERTIARY I BABINE/KASTBERG INTRUSIONS CRETACEOUS 2 BULKLEY INTRUSIONS 3 SUSTUT GROUP JURASSIC 4 BOWSER LAKE GROUP
 - 5 HAZELTON GROUP

MINERAL OCCURRENCE

- I TOMMY JACK Au, Ag, Pb, Zn
- 2/3 JAN Cu, Mo
- 4/5 ATNA Me, Cu
- 5 ATNA + Au, Aq, Pb, Zn
- 7 PEAK Mo, Cu
- 8 MOTASE A. Cu
- 9 RED · Cu, Ag
- 10 PAT-Cu, Ag
- 11 QUIN Cu, Mo
- 12 SUN Cu, Me
- 13 HORN Cu, Me
- 14 RIM -Cu, Mo
- 15 FC/HM Aq, Au

A deeply incised east/west valley that runs through the middle of the claim group separates the north and south grid. The south grid is higher in elevation and covers the north end of the large generally flat plateau, at approximately 1800m elevation, as well as its northeast trending ridge and its north facing slope down to the creek. The north grid covers the south facing slope north of the creek up to another ridge and plateau that is just over 1400m in elevation.

The 2 grids were geologically mapped (1:2,500 scale) and 88 rock and 550 soil samples were collected for analysis. Twenty hand samples were also collected for petrographic descriptions and the report is in Appendix II.

Geology

a) Regional Geology (Figure 3)

The Jake claims and the surrounding area is underlain by the Middle to Upper Jurassic Bowser Lake Group (and Cretaceous Skeena Group?). This shallow marine-lacustrine alluvial suite lies conformably on the sedimentary and volcanic rocks of the Lower to Middle Jurassic Hazelton group. Intruding this sedimentary sequence is a number of Late Cretaceous Bulkley intrusives of granodiorite to quartz diorite composition. Later Tertiary Kastberg and Babine intrusives also intrude the Bowser Basin as small isolated plugs throughout the area (Richards, 1980).

The structure in the area is dominated by block faulting with typical lower Bowser sediments and intrusives within domed portions as probable horsts (generally topographic highs). Upper Bowser sediments are more typically located in grabens within valley bottoms. A diverse number of Cu +/- Mo, Ag, Au, W porphyry systems are related to Bulkley intrusives including Huckleberry, Glacier Gulch, Ox Lake and Louise Lake. The Babine Cu-Au porphyries are well known with production from Bell and Granisle.

Several Cu +/- Ag, Au systems related to Kastberg dykes are located east and southeast of Jake (i.e. Red). Two other Au/Ag systems to the south of Jake related to intrusive dykes and stocks within the Bowser sediments are the Mot and Tommy Jack occurrences.

b) Property Geology (Figure 5 & 6)

The property covers a prominent gossan along a north/northeast trending series of Kastberg (?) dyke swarms and associated stock or plug. The gossan continues across a deeply incised east/west valley that runs through the middle of the claim group and separates the 1998 north and south grids. These intrusive rocks were emplaced within a sequence of volcaniclastics (Skeena Group?) and sediments of the Bowser Lake Group. The sediments are hornfelsed for 200-300 meters, which suggests the dykes merge into a larger intrusive body at depth. Sediments are generally sub-vertical near the intrusives while gently folded and more flat lying elsewhere on the property. Suggesting the sediments have been influenced by the intrusive dykes in a doming effect. Contacts from the generally vertical drill holes and surface mapping suggests steep westerly dipping contacts with northwest to northeast strikes (Evans, 1997).

Petrographic work appears to show the volcaniclastics (crystal lithic tuffs) to be water lain. The clasts show weak orientation with local bedding. Generally fine crystal-lithic tuffs consisting mainly of tuffaceous lithic fragments with lesser plagioclase and quartz crystal fragments. Carbonate and quartz are commonly present in small microveins near the intrusives.

The sediments appear to overlie the tuffs but no contacts between the two were noted on the property. The sediments were not separated in any detail but consist of argillites, siltstone with lesser sandstone and conglomerate formed in a deltaic environment belonging to the Ashman Formation. This was demonstrated on the property by the presence of occasional carbonaceous leaf fossils (Evans, 1997).

The sediments and tuffs were grouped together in mapping. The sediments appear on the outer margins of the intrusive units with the crystal-lithic tuffs being more central. This could be a factor of the doming effect of the intrusives bringing the tuffs to a higher level or the tuffs may have just been caught up as blocks within the intrusives.

Intrusive rocks on the property appear to be Kastberg (T.G. Schroeter, personal communication, 1998). Field mapping broke down the intrusives into three porphyritic phases (from oldest to youngest): diorite (or quart diorite), feldspar porphyry and monzonite. Petrographic work on the intrusive rocks found them all to be of a latite to quartz latite composition with hypabyssal textures. They are thought to be separate phases of the same intrusive event, but may be more alteration related. Rock descriptions of hand samples and petrographic descriptions are in Appendix I and II.

The diorite (mapped only in the northeast section of the North Grid) was based partly on texture and partly on alteration, but was not that dissimilar from the monzonite and feldspar porphyry that appeared to intrude it. It was medium to fine grained and quite often had a siliceous groundmass. The phenocrysts were generally altered plagioclase (20-25%), biotite (3-5%) and hornblende (2-3%). Clay and sericite alteration was common within the groundmass. Sericite alteration of the plagioclase phenocrysts along with manganese staining was also common. The alteration of the diorite was generally less than the other intrusives and it usually had a fresher appearance.

The feldspar porphyry and the monzonite are quite similar as noted by the petrographic descriptions. They are medium to fine grained and were generally broken out separately by field relationships and the differences in alteration. They are both porphyritic and the phenocrysts were generally 20-25% (feldspar porphyry contained up to 35% locally) plagioclase, along with 2-5% biotite and 1-3% altered hornblende and 0-3% quartz. The groundmass is feldspathic with lesser quartz and plagioclase.

In general the strongly argillic altered feldspar porphyry forms a buff coloured soft rock (generally recessive zones) which contains variable amounts of Mn oxides and hematite. The monzonite is more prominent in outcrop and appeared more related to potassic alteration, it weathers out as a blocky competent unit, depending on the degree of alteration.

The monzonite was observed at a number of contacts to intrude into the porphyry feldspar and appeared more dyke-like in nature, especially in the north grid. In the south grid the distinction was not as obvious. This may not fit with the sequence of alteration that is proposed, with argillic alteration overprinting earlier potassic alteration. More geological mapping and interpretation needs to be done to answer these questions.

c) Alteration and Mineralization

Proximal to the dyke swarms the volcaniclastics and sediments have been extensively hornfelsed. The sediments typically show pervasive bleaching and hardening, which develops a conchoidal fracture. The volcaniclastic tuffs show abundant fine secondary biotite alteration. Occasional chlorite and biotite growth is also present on fracture planes. Chlorite and varying degrees of clay alteration are also common near contacts. The tuffs mapped around the north end of the north grid were magnetic. This could be alteration or a particular tuff bed.

Mineralization has been noted in areas within the hornfelsed sediments that are adjacent to mineralized intrusives (Evans, 1997). The mineralization consists of sulphide +/- quartz veinlets and fractures displaying bleached selvages. These veinlets range in width from 1mm to 10 cm in thickness and consist of pyrite, arsenopyrite +/- chalcopyrite and lesser sphalerite and galena. These rocks contain mineralization related to both potassic altered monzonites and the argillic altered zones of the feldspar porphyry and reflect contact zones which are favourable fluid pathways.

Both the feldspar porphyry and the monzonite have altered biotite and exhibit zones of quartz sericite alteration. The feldspar porphyry is generally associated with stronger argillic alteration, while the monzonite with stronger potassic alteration.

Within the strongly altered potassic zones (generally associated with monzonite), the development of secondary biotite is also present. Mineralization is generally fracture controlled, although disseminated mineralization is present. Sulphides are not related to quartz veinlets and generally have selvages of Mn and hematite.

The argillic alteration phase, associated most strongly with the feldspar porphyry unit appears late in the porphyry system and overprints the potassic phase. This alteration is complex, showing diversity from quartz/chalcedony veins with only narrow argillic selvages to widespread argillic zones with only occasional quartz veining. In general both veins and alteration are closely related and contain sulphide veinlets and disseminations (215% sulphide content). In portions of this alteration (more common in the higher south grid) a high-energy matrix of clay alteration and quartz stockwork develops a "crackle breccia" with highly angular potassic altered intrusive fragments (1-20cm) within a milled and siliceous matrix.

Of the 88 rock samples taken, only 7 were from the south grid, the different mineral associations between the two grids were not apparent until the soil results (550 samples) were also studied. There is a strong difference between the two grids and it appears that the south grid is much higher in the system giving rise to a Au/Bi/As +/- Cu/Ag association, while the north grid has a strong Ag/Cu/Mo/Pb/Zn +/-Au association.

Geochemistry

P

A total of 88 rock samples (grab/chip) and 550 soil samples were collected within two grids (north and south) on the Jake Property and sent to Eco-Tech Laboratories Ltd. in Kamloops, BC. The samples were analysed for Ag, Al, As, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, La, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sr, Ti, U, V, W, Y, Zn, and Au. Analytical procedures for geochemical gold analysis and multi-element ICP analysis are explained in Appendix III and all results are given in Appendix IV.

a) Rock Geochemistry

Surface rock sampling (chip and grab) were taken on both north and south grids, but concentrated on the north grid along road cuts with outcrop and subcrop exposure. The road cut sampling was to test across zones of anomalous gold in soils that Teck had outlined in 1997 (Evans, 1997). Sample locations are shown on Figures 5 and 6, which covers the north and south grids respectively. Descriptions of rock (chip/grab) samples are given in Appendix I.

Of the 88 surface samples taken, thirteen samples returned greater than 100ppb Au. The highest value, 620ppb Au, was from JR-13 a feldspar porphyry with strong argillic alteration. This sample only returned 4.4ppm Ag, 80ppm As, 380ppm Cu, and 66ppm Pb.

Seven samples returned values greater than 10ppm Ag. The highest (SS-102) was over the ICP limit (<30ppm) and assayed 110.0 g/t from a sulphide rich vein (<0.2m wide) within a strong argillic altered feldspar porphyry. This sample also returned the highest lead value (2888ppm) from surface sampling and was elevated in gold (515ppb). The next highest silver sample (JR-28) returned 28ppm (28.0 g/t) Ag and 155ppb Au (Pb was not elevated).

The highest arsenic value returned was only 375ppm with 110ppb Au (SS-105) from a siliceous breccia zone on the south grid.

The gold values were disappointing from sampling across the area of anomalous soils taken in 1997. This may be explained by the fact that the gold mineralization is thought to be associated with the strong argillic alteration and the areas of strong argillic alteration are recessive and weathered. When sampling outcrops of this material it is hard to obtain fresh samples from outcrop, so that outcrop sampling may have not have been able to adequately test across these zones.

b) Soil Geochemistry

Soil lines were run across the east-west lines of the north and south grids (north-south baselines were also sampled), samples were collected every 50m, for a total of 500 soil samples (260 north grid, 240 south grid). Another 50 soil samples were collected parallel to the upper road on the North grid.

Soil samples collected consisted of a mixture of B and C horizons. The soils varied with better developed soils on the north grid and at lower elevations on the south grid. The south grid had a number of cliff areas and scree slopes that could not be sampled.

Anomalous values were calculated by using all sample values. The values of some of the elements varied greatly between the north and south grids and so max/min values for both grids are presented below.

Element	North Grid (Maximum)	South Grid (Maximum)	North Grid (Minimum)	South Grid (Minimum)	Weakly Anomalous	Strongly Anomalous
Au (ppb)	>1000 (2)*	>1000 (8)*	<5	<5	100	500
Ag (ppm)	>30 (6)*	12.6	<0.2	<0.2	3	10
As (ppm)	1180	2760	10	10	100	500
Bi (ppm)	135**	125	<5	<5	15	40
Cu (ppm)	2030	1553	17	16	200	600
Mo (ppm)	465	88	3	3	16	100
Pb (ppm)	5112	1150	14	8	150	1000
Zn (ppm)	4083	1276	38	14	250	800

* (2) shows number of samples over bounds

** Unique value (only 3 values, out of 310 samples, above 15ppm Bi in north grid, the other two were 40 and 20ppm)

Using these elements and the threshold values selected above, contoured plots were made to observe apparent trends. Due to varying background values between the north and south grids, different contour intervals were used between the grids. The soil lines from 1997 work, following roads in the north grid were added as well. A strong difference between the north and south grids became apparent. The value of the anomalous elements and their association with other elements changed between the two grids.

7

The north grid results shown on Figures 7 to 13 show a clear relationship between Ag/Cu/Mo/Pb/Zn +/-Au. Silver values (Figure 8) show strong anomalies that generally correlate to the north, northwest trending anomalies of copper, molybdenum, lead and zinc that cover the west and center portions of the grid. These anomalies appear to trend the same as the contact zones between the feldspar porphyry and monzonite intrusives on the west side of the grid. Anomalous gold values (Figure 7) show a weak correlation to the above anomalies but do not extend as far to the south. Arsenic (Figure 9) shows a weak to moderate north south trending anomaly near the center of the grid, which is associated with gold but does not appear related to the silver and its associated trends. Bismuth (not plotted) was only anomalous in three samples and appears to be unrelated to the majority of mineralization on the north grid.

R

The south grid results show a different picture from the north. A strong Au/Bi/As/Cu +/-Ag relationship shows up in the results plotted on Figures 14 to 18. They show north, northwest and northeast trending anomalies. Gold (Figure 14) and bismuth (Figure 17), both with a larger number of anomalous values than in the north grid, show a strong correlation across the grid. A narrow northwest/north trending anomaly on the east side of the grid may be partially due to down slope dispersion in a gully but it generally follows the intrusive contacts down the slope from where it first appeared over a breccia zone on the top of the ridge. Northwest trending anomalies on the west side of the grid follow the contacts between the intrusives whose contacts appear shifted from the east side of the grid. Arsenic (Figure 16) which also shows a large increase in anomalous values from the north grid has anomalies that follow those of gold and bismuth very closely. An additional arsenic anomaly that is not associated with other elements is approximately 200m further east of the northwest/north trending Au/Bi/As/Cu anomaly on the east side of the grid, it trends north and appears to cross cut inferred contacts between the intrusives and tuffs. Copper anomalies (Figure 18), which are generally smaller in value than on the north grid, show strong correlation to the gold anomalies on the east side of the grid and moderate correlation to those on the west side. Silver values (Figure 15) in the south grid are sharply lower than in the north but do show weak anomalies that correlate to the strong Au/Bi/As/Cu anomalies. Lead and zinc (not plotted) only show a weak anomaly on the very northwest corner of the grid. Molybdenum (not plotted) only has a few isolated anomalous values that do not appear to follow any trend.

The results of the north and south grid highlight the intrusive complex and generally show that the contacts between the feldspar porphyry and monzonite are very important to mineralization. The north and south grids appear to be different levels of the same system. This shows up in the changes seen between anomalous elements and related anomalous elements between the two grids. The related anomalies of Ag/Cu/Mo/Pb/Zn +/- Au in the north grid versus the Au/Bi/As/Cu +/- Ag in the south show a difference that may be attributed to the elevation or depth of the system seen across each grid. Both groups of anomalies are related to porphyry style alteration associated with the intrusive rocks especially the contact between the feldspar porphyry and monzonite units. The argillic alteration appears to be more important and a better host to the gold mineralization.

8

Conclusions

The Jake property covers a large north trending series of Kastberg dyke swarms and possible intrusive stock or plug. This system has intruded and warped Bowser sediments with local hornfelsing. Two stages of mineralization are present in the area examined to date. The lower (maybe earlier) stage consists of Ag/Cu/Mo/Pb/Zn +/- Au within an argillic (+/- potassic) alteration zone associated with an intrusive and its related contacts as seen within the north grid. While on the south grid the higher (maybe later) stage Au/Bi/As/Cu +/- Ag mineralization is also within an argillic alteration zone associated with an intrusive and its related contacts.

The higher gold values from the soils in the south grid and the related element association appear to point to a priority target for further work. Work in 1997 and in 1998 on the more recessive argillic alteration seen within the north grid suggests a higher precious metal content is possible within this area of alteration, but a lack of outcrop has hindered testing the bedrock in this area to date.

References

- Baker, J.F. (1972): 1972 Geophysical and Linecutting Report on the In Group of Mineral Claims; A.R. 3868.
- Carter, N.C. and Kirkam, R.V. BC Dept. Of Mines and Pet. Res. Map 69-1 Geological Compilation Map of the Smithers, Hazelton and Terrace areas.
- Evans, G. (1997): 1997 Geological & Geochemical Report on the Jake Property; Teck Annual Report
- Price S. (1990): A Geological, Geochemical and Geophysical Report on the Jake Claims. A.R. 20,607

Richards, T.A. (1980): Geology of Hazelton (93M) Map Area; Geological Survey of Canada, Open File 720.

Richards T.A. and Jeletzky O.L.-Geol. Surv. Can., Paper 75-1, Part A, pp.31-36, A preliminary study of the upper Jurassic Bowser Assemblage in the Hazelton West half map-area.

Sketchley, D.C. (1988): Jake Mineral Claims, Geochemistry and Geology; A.R. 16,838 Silversides, D.A. (1977): Report on Diamond Drilling, In Copper Prospect; A.R. 6,492

Appendix I

Π

C

D

Rock Sample Descriptions

Jake Property

P

B

0

0

Ø

8

B

D

D

D

0

1998 Rock Sampling

			Sample					
Sample #	Locat	tion	Туре	Width	Rock type	Alteration	Sulfides	Comments
SS-101	1795N/985E	North Grid	Grab	3m	monzonite	weak argillic	5-10%	
SS-102	2300N/845E	North Grid	Chip	0.5m	feldspar porphyry	silica	10-15%	vein <0.5m wide
SS-103	Road Cut	North Grid	Grab	3m	feldspar porphyry	strong argillic	10-15%	
SS-104	830N/300E	South Grid	Grab	1m	feldspar porphyry	strong argillic	5-10%	
SS-105	830N/700E	South Grid	Grab	3m	breccia	silica	10-15%	breccia zone
SS-106	800N/900E	South Grid	Grab	3m	lithic tuff	silica	10-15%	near contact
SS-107	900N/700E	South Grid	Grab	3m	breccia	strong argillic	10-15%	breccia/shear
SS-108	530N/650E	South Grid	Grab	3m	feldspar porphyry	strong argillic	3-5%	
SS-109	630N/755E	South Grid	Grab	2m	breccia	strong argillic	10-15%	breccia zone
SS-110	255N/500E	South Grid	Grab	3m	feldspar porphyry	silica	10-15%	silica flooded/vein
			an a		na como como los caracterios			
SS-111	190N/620E	South Grid	Grab	2m	feldspar porphyry	silica	5-10%	silica flooded/vein
SS-112	060N/975E	South Grid	Grab	2m	monzonite	potassic	3-5%	
SS-113	100N/850E	South Grid	Grab	2m	feldspar porphyry	silica	3-5%	breccia locally
SS-114	125N/575E	South Grid	Grab	3m	feldspar porphyry	strong argillic	5-10%	breccia/shear
RRX-1	Road Cut	North Grid	Grab	2m	lithic tuff	magnetite?	1-2%	py concentrated on frac.
RRX-2	Road Cut	North Grid	Grab	2m	lithic tuff	magnetite?	minor	py concentrated on frac.
BBX-3	Road Cut	North Grid	Grab	2m	lithic tuff	magnetite?	minor	py concentrated on frac.
PPY_4	Road Cut	North Grid	Grab	2m	lithic tuff	magnetite?	minor	py concentrated on frac.
PPY-5	Road Cut	North Grid	Grab	2m	lithic tuff	magnetite?	minor	py concentrated on frac.
NIV-5	ribad out	North One	0.01		· · · · · · · · ·			
RRX-6	Road Cut	North Grid	Grab	2m	lithic tuff	magnetite?	minor	py concentrated on frac.
RRX-7	Road Cut	North Grid	Grab	2m	lithic tuff	magnetite?	minor	py concentrated on frac.
RRX-8	Road Cut	North Grid	Grab	2m	lithic tuff	magnetite?	minor	py concentrated on frac.
RRX-9	Road Cut	North Grid	Grab	2m	lithic tuff	magnetite?	minor	py concentrated on frac.
RRX-10	Road Cut	North Grid	Grab	2m	lithic tuff	magnetite?	minor	py concentrated on frac.
DDY 11	Road Cut	North Grid	Grah	2m	monzonite	potassic	2-3%	
DDY 12	Road Cut	North Grid	Grah	2m	feldsnar porphyry	moderate argillic	3-5%	
DDV 12	Road Cut	North Grid	Grab	2m	feldsnar nornhvrv	moderate argillic	3-5%	
	Road Cut	North Grid	Grah	2m	feldsnar nornhvrv	moderate argillic	3-5%	
RRX-14	Road Cut	North Grid	Grab	2m	feidspar porphyry	strong argillic	3-5%	
RRA-15	Road Cut	Notar Ghu	Giab	210		oliong algino		
RRX-16	Road Cut	North Grid	Grab	2m	feldspar porphyry	strong argillic	5-10%	
RRX-17	Road Cut	North Grid	Grab	2m	monzonite	weak argulic	2-3%	
RRX-18	Road Cut	North Grid	Grab	2m	monzonite	potassic	minor	
RRX-19	Road Cut	North Grid	Grab	2m	monzonite	moderate argillic	2-3%	
RRX-20	Road Cut	North Grid	Grab	2m	lithic tuff	moderate argillic	2-3%	
JR-01	Road Cut	North Grid	Grab	3m	monzonite	potassic	minor	
JR-02	Road Cut	North Grid	Grab	3m	monzonite	potassic	2-3%	
JR-03	Road Cut	North Grid	Grab	3m	feldspar porphyry	strong argillic	3-5%	subcrop
JR-04	Road Cut	North Grid	Chip	5m	feldspar porphyry	strong argillic	3-5%	
JR-05	Road Cut	North Grid	Chip	5m	feldspar porphyry	strong argillic	3-5%	
	Road Cut	North Grid	Chin	5m	feldspar porphyry	strong argillic	3-5%	
10 07	Road Cut	North Grid	Grah	3m	feldspar porphyry	strong argillic	3-5%	subcrop
	Road Cut	North Grid	Chin	5m	feldspar nornhvrv	strong argillic	3-5%	•
00-7L	Bood Cut	North Grid	Chin	5m	feldspar porphyry	strong argillic	3-5%	
JR-10	Road Cut	North Grid	Grab	3m	feldspar porphyry	strong argillic	3-5%	subcrop
		a shi ya	ini y pari d	j. Li passi		al georgener	- <u>-</u> - <u>-</u>	
JR-11	Road Cut	North Grid	l Grab	3m	feldspar porphyry	strong argillic	3-5%	subcrop
			and the set of the	and a set of the set	en an an an an an gegeer de les ster			

Sample #	Local	tion	Type	Width	Rock type	Alteration	Sulfides	Comments
IB-12	Road Cut	North Grid	Grab	3m	feldspar porphyry	strong argillic	3-5%	subcrop
JR-13	Road Cut	North Grid	Grab	3m	feldspar porphyry	strong argillic	3-5%	subcrop
IR-14	Road Cut	North Grid	Grab	3m	feldspar porphyry	strong argillic	3-5%	
JR-15	Road Cut	North Grid	Chip	5m	feldspar porphyry	strong argillic	3-5%	
JR-16	Road Cut	North Grid	Chip	5m	feldspar porphyry	strong argillic	3-5%	
IR-17	Road Cut	North Grid	Chip	5m	feldspar porphyry	strong argillic	3-5%	
IR-18	Road Cut	North Grid	Chip	5m	feldspar porphyry	strong argillic	3-5%	
IR-19	Road Cut	North Grid	Chip	5m	feldspar porphyry	strong argillic	3-5%	
JR-20	Road Cut	North Grid	Chip	5m	feldspar porphyry	strong argillic	3-5%	
IR-21	Road Cut	North Grid	Chip	5m	feldspar porphyry	strong argillic	3-5%	
IR-22	Road Cut	North Grid	Chip	5m	monzonite	weak argillic	minor	
IR-23	Road Cut	North Grid	Chip	5m	monzonite	potassic	minor	
IR-24	Road Cut	North Grid	Grab	3m	monzonite	potassic	minor	subcrop
JR-25	Road Cut	North Grid	Grab	3m	feldspar porphyry	moderate argillic	minor	subcrop
IR-26	Road Cut	North Grid	Grab	3m	feldspar porphyry	moderate argillic	minor	subcrop
JR-20	Road Cut	North Grid	Grab	3m	feldspar porphyry	moderate argillic	minor	subcrop
JIN-28	Road Cut	North Grid	Grab	3m	feldspar porphyry	strong argillic	3-5%	subcrop
JR-20	Road Cut	North Grid	Grab	3m	feldspar porphyry	strong argillic	3-5%	subcrop
JR-30	Road Cut	North Grid	Grab	3m	feldspar porphyry	strong argillic	3-5%	subcrop
IR-31	Road Cut	North Grid	Grab	3m	feldspar porphyry	strong argillic	3-5%	subcrop
18-32	Road Cut	North Grid	Grab	3m	feldspar porphyry	strong argillic	3-5%	subcrop
IR-33	Road Cut	North Grid	Grab	3m	monzonite	weak argillic	3-5%	subcrop
IR-34	Road Cut	North Grid	Chip	5m	monzonite	potassic	2-3%	
JR-35	Road Cut	North Grid	Chip	5m	monzonite	potassic	2-3%	
JR-36	Road Cut	North Grid	Grab	3m	monzonite	weak argillic	3-5%	
JR-37	Road Cut	North Grid	Grab	3m	feldspar porphyry	strong argillic	3-5%	
JR-38	Road Cut	North Grid	Grab	3m	feldspar porphyry	strong argillic	3-5%	
JR-39	Road Cut	North Grid	Grab	3m	feldspar porphyry	strong argillic	3-5%	
JR-40	Road Cut	North Grid	Grab	3m	feldspar porphyry	strong argillic	3-5%	
IR-41	Road Cut	North Grid	Grab	3m	feldspar porphyry	strong argillic	3-5%	
JR-42	Road Cut	North Grid	Grab	3m	feldspar porphyry	moderate argillic	minor	
JR-43	Road Cut	North Grid	Grab	3m	feldspar porphyry	moderate argillic	minor	
IR-44	Road Cut	North Grid	Chip	5m	feldspar porphyry	moderate argillic	minor	
JR-45	Road Cut	North Grid	Chip	5m	feldspar porphyry	moderate argillic	minor	
IR-46	Road Cut	North Grid	Grab	3m	feldspar porphyry	strong argillic	5-10%	malachite & azurite
JC-01	Road Cut	North Grid	Chip	5m	feldspar porphyry	moderate argillic	3-5%	
10-02	Road Cut	North Grid	Grab	3m	feldspar porphyry	moderate argillic	minor	
JC-02	Road Cut	North Grid	Chip	5m	feldspar porphyry	moderate argillic	minor	
JC-04	Road Cut	North Grid	Chip	5m	feldspar porphyry	moderate argillic	minor	
JC-05	Road Cut	North Grid	Chip	5m	monzonite	potassic	minor	
JC-06	Road Cut	North Grid	Chip	5m	feldspar porphyry	moderate argillic	: minor	
00.00	Deed Out	North Grid	Grah	3m	feidsnar nornhvrv	moderate argillio	: minor	
JC-07	Road Cut	North Ghu	Olab	0	icidoput porpriyry			

B

0

D

0

D

D

8

Ø

8

D

D

0

D

Petrographic Samples

Sample # (Field)	Sample # (Lab)	Location	Field Name	Lab Name	Comments
1/2-3	(1)	South Grid	Feldspar Porphyry	Altered Quartz Latite Porphyry	
0-1	(2)	South Grid	Quartz Diorite (?)	Quartz Latite Porphyry	
1-4	(3)	South Grid	Feldspar Porphyry	(Quartz) Latite Porphyry	
1-9	(4)	South Grid	Siltstone	Bedded Tuff	hornfelsed?
5-3	(5)	South Grid	Monzonite	Quartz Latite Porphyry	
NR-3	(6)	South Grid	Andesite	Bedded Tuff	hornfelsed?
NR-18	(7)	South Grid	Feldspar Porphyry	Quartz Latite Porphyry	
NR-21	(8)	South Grid	Sandstone (?)	Immature Volcanic Sediment	
NR-13	(9)	South Grid	Siltstone	Siltstone	
NR-23	(10)	South Grid	?, med-f gr, med gray,?	Crystal Lithic Tuff/Immature Volcaniclastic	c Sediment
R3	(11)	North Grid	Andesite	Altered Crystal Lithic Tuff	hornfelsed?
R18	(12)	North Grid	Siltstone	Strongly Clay Altered Porphyry	
R29	(13)	North Grid	Andesite	Altered Crystal Lithic Tuff	
R30	(14)	North Grid	Rhyolite	Altered Tuff	
R38	(15)	North Grid	Diorite	Altered Quartz Latite Porphyry	
R41	(16)	North Grid	Diorite	Quartz Latite Porphyry	
R59	(17)	North Grid	Monzonite	Quartz Latite/Quartz Monzonite Porphyry	
R63FP	(18)	North Grid	Feldspar Porphyry	Quartz Latite Porphyry	
R63M	(19)	North Grid	Monzonite	Latite/Quartz Latite Porphyry	
R64M	(20)	North Grid	Monzonite	Latite/Quartz Latite Porphyry	
R04IVI	(20)	North Ghu	Monzonite	Latter Quartz Latter orphyry	

B D

D

0

0

P

0 8

B

0

D

D

0

	Appendix II
	Petrographic Descriptions
E	an an an taona an ann an an an ann an taonachta ann an ann an taointe ann an ann an ann ann ann an ann ann a
0	
0	
0	
B	
B	

F

Vancouver Petrographics Ltd.

8080 GLOVER ROAD, LANGLEY, B.C. V1M 3S3 PHONE (604) 888-1323 • FAX (604) 888-3642 email: vanpetro@vancouver.net

September 8, 1998

Teck Exploration Ltd. 600 - 200 Burrard Street Vancouver, BC V6C 3L9 Attention: Andy Betmanis, Senior Geologist

Dear Mr. Betmanis;

RE: Our job number 980433 20 petrographic descriptions

Please find enclosed the report for the above-noted samples. Your rock samples accompany this report.

Jim Vinnell included a note with your samples indicating that you wish to determine whether they include intrusives and whether there is more than one type represented.

Samples I have named "quartz latite porphyry" in the reports have textures consistent with hypabyssal intrusives, but I do not believe they are plutonic rocks. I Have included some photomicrographs to illustrate the textures. Sample R-59 is slightly coarser than the others, but I still suspect that it represents a minor intrusive.

The porphyries differ in the amount of original quartz recognized. For example, guartz phenocrysts were not observed in every case.

In addition to the porphyries, the sample suite includes tuffaceous rocks and volcaniclastic sediments. Several of the tuffs contain fine secondary biotite suggesting hornfels type contact metamorphism.

Should you have any questions, please do not hesitate to contact me.

Sincerely

Bruce Northcote, LL.B., M.Sc. (Geol.) K.E. Northcote & Associates

Tel. (604) 859-4618

Nga (gina) shararan

BKN/slc Encl.

[1] ½ - 3 Altered quartz latite porphyry

Summary description

Strongly altered porphyry, consisting of abundant clay-altered plagioclase phenocrysts, altered mafics (biotite and possibly amphibole) and minor quartz phenocrysts in a silicified, potassic groundmass.

Textures are consistent with either a volcanic, or a hypabyssal intrusive (sample may well represent a minor sill or dyke).

A tuffaceous origin was also considered, but this is unlikely as most of the pseudomorphs after plagioclase phenocrysts and glomerocrysts remain intact, inconsistent with typical crystal tuff.

Potassic groundmass and presence of quartz phenocrysts make the name "quartz latite" or "rhyodacite" appropriate, depending on the proportion of original quartz.

Microscopic description Transmitted light

Phenocrysts:

- Clays after plagioclase; 30-35%, euhedral pseudomorphs (0.5 to 2.0 mm). Strongly clay-altered phenocrysts. Forms suggesting glomerocrysts are common.
- Altered biotite / hornblende (?); 3-5%, euhedral to anhedral (0.5 to 2.0 mm). Rectangular pseudomorphs with Fe oxides, clays or chlorite group minerals masked by Fe staining. Altered biotite present, lesser altered hornblende may also be present, but is unconfirmed.

Quartz phenocrysts; 1-2%, anhedral (~0.5 mm). Rounded, possibly partially resorbed phenocrysts.

Groundmass: 60-65%

Very fine (aphanitic) siliceous groundmass with significant K-feldspar indicated in the stained offcut. Dusty brown appearance indicates a clay component. Apparently consists of fine crystalline quartz, K-feldspar, clays and minor plagioclase (in that order of abundance).

Alteration:

1.1.1

As noted, there is strong clay alteration of feldspars, particularly the plagioclase

[1] Continued

ſ

Π

A

Π

Π

phenocrysts. Introduced quartz pervades groundmass, as indicated by fine discontinuous quartz veining and uneven distribution of groundmass quartz. Sample has weak, patchy limonitic staining.

Unknown; traces, anhedral (<0.01 to 0.05 mm). Fibrous, feathery habit, with low birefringence and low relief. Occurs locally in small aggregates. Possibly a clay mineral.

Epidote; trace, subhedral (0.05 to 0.2 mm). Sparsely scattered.

[2] 0 - 1 Quartz latite porphyry

N

 \square

D

D

Π

0

Photomicrographs 98R XVIII 16 and 17 Plane polarized and Cross polarized light Scale 0.1 mm

Summary description

Porphyritic volcanic or hypabyssal intrusive (minor sill or dyke) with phenocrysts of plagioclase, hornblende, biotite, and very minor quartz in a fine, interlocking potassic feldspathic groundmass.

Biotite is chlorite-altered, plagioclase is weakly sericite-altered, and groundmass feldspars are dusted with clay alteration.

Sample contains disseminated magnetite and attracts a pencil magnet.

[2] Continued

Microscopic description Transmitted light

Phenocrysts:

- Plagioclase; 25-30%, euhedral (0.5 mm to 5.0 mm). Normal and oscillatorilyzoned. Albite twinned. Some glomerocrysts present. Maximum extinction angles indicate andesine (to oligoclase) core compositions.
- Hornblende; 2-3%, subhedral (0.1 to 1.0 mm). Dark green pleochroic. Most is partially altered to chlorite and epidote, stained with Fe oxide. Biaxial(-), 2V 75-80°.

Altered biotite; 2-3%, euhedral, subhedral (0.3 to 1.2 mm). Chlorite-altered biotite phenocrysts. Commonly with Fe staining.

Quartz; traces, anhedral (~0.4 mm). Very sparse rounded quartz phenocrysts.

Sodic feldspar 2; single grain, subhedral (~8.0 mm). Large glomerocryst of sodic feldspar with weak normal zoning. Contains inclusions of green hornblende and more calcic, normally-zoned plagioclase. Rimmed with groundmass K-feldspar.

Groundmass: 60-65% (0.01 to 0.2 mm).

Groundmass is predominantly interlocking anhedral to subhedral K-feldspar, with lesser subhedral to euhedral plagioclase and minor anhedral quartz, at least some of which appears introduced.

Alteration:

Biotite is chloritized, hornblende is partly altered to epidote, chlorite and Fe oxides, plagioclase phenocrysts are weakly sericite-altered, groundmass feldspars are dusted with clay alteration. Minor introduced quartz is present in the groundmass in scattered aggregates.

Epidote; traces, anhedral (<0.01 to 0.1 mm). Small aggregates with chlorite, apparently after mafic phenocrysts.

Unknown; fine transparent granular material locally overprinting groundmass -pitted, speckled appearance - possibly a contaminant rather than an alteration feature.

[2] Continued

1000

Π

Accessories:

Apatite; $\leq 0.5\%$, euhedral (0.05 to 0.2 mm).

Zircon; traces, subhedral (~0.1 mm).

Reflected light

Magnetite; 1-3%, anhedral, subhedral (<0.01 to 2.0 mm). Disseminated magnetite in groundmass. Sample is magnetic.

Sphene; traces(+), euhedral (0.1 to 0.2 mm).

Hematite; traces, anhedral (<0.01 to 0.1 mm). Irregular aggregates associated with sphene. Some alteration of magnetite.

[3] 1 - 4 (Quartz) latite porphyry

Summary description

Porphyritic volcanic or hypabyssal intrusive (minor sill or dyke) with carbonate- and sericite-altered plagioclase and biotite (?) phenocrysts now altered to muscovite and chlorite, and partially replaced by carbonate. Groundmass is potassic, consisting of interlocking K-feldspar, plagioclase, and minor quartz. Quartz phenocrysts not positively identified.

Introduced quartz is present in discontinuous veinlets and scattered aggregates, commonly surrounding pyrite.

Microscopic description Transmitted light

Phenocrysts:

- Plagioclase; 20-25%, euhedral (0.4 to 3.0 mm). Sericite and carbonate alteration obscures zoning, twinning. A few glomerocrysts are present.
- Altered biotite (muscovite); ≤1%, subhedral (0.5 to 1.0 mm). Colourless mica with intergrown chlorite and carbonate. Probably pseudomorphs after biotite.
- Carbonate pseudomorphs; <1%, euhedral, subhedral (0.5 to 2.0 mm). Elongate prismatic mineral replaced by carbonate. Possibly after hornblende.
- Quartz (phenocrysts?); <0.5%, anhedral (0.2 to 1.0 mm). Aggregates to 1.0 mm have subrounded, although somewhat irregular outlines -- may represent recrystallized original phenocrysts.

Groundmass: 60-65%

Fine, anhedral to subhedral interlocking feldspathic groundmass is predominately potassic, with lesser quartz and plagioclase. Patchy carbonate alteration and weak clay alteration throughout.

Accessories:

Apatite; <0.5%, euhedral (0.1 to 0.4 mm)

Zircon; trace, subhedral (0.1 mm). Crystal form, high relief, high birefringence consistent with zircon.

[3] Continued

Alteration / veining:

Carbonate; 10-15%, anhedral (<0.01 to 0.2 mm). Patchy strong alteration of plagioclase in both phenocrysts and groundmass.

Sericite; 3-5%, anhedral (<0.01 to 0.1 mm). Alteration of both groundmass and phenocryst plagioclase, occurs with more abundant carbonate.

Quartz; 3-5%, anhedral (0.01 to 0.5 mm). Minor discontinuous veining and scattered aggregates of apparently introduced quartz.

Chlorite; <0.5%, anhedral (<0.01 to 0.1 mm). Locally with carbonate and muscovite, apparently replacing original biotite and suspected hornblende phenocrysts.

Epidote (?); <0.5%, subhedral (<0.01 mm). Fine, pale greenish crystals with moderately high positive relief are disseminated throughout groundmass.

Reflected light

Π

Pyrite; 2-5%, anhedral (0.01 to 0.5 mm). Disseminated irregular grains, possibly after pyrrhotite. Contains minute blebs of pyrrhotite.

Leucoxene; traces(+) anhedral (microcrystalline). Aggregates of secondary TiO₂ with bright, sugary yellow internal reflections.

Pyrrhotite; traces, anhedral (<0.01 to 0.1 mm). Inclusions / remnants in pyrite.

Sphalerite(?), trace, anhedral (0.05 mm). Single grain with intergrown chalcopyrite.

[4] 1 - 9 Bedded tuff (hornfelsed?)

Photomicrographs 98R XVIII 18 and 19 Plane polarized and Cross polarized light Scale 0.1 mm____ Pictured: Sericite "cloud" along bedding

Summary description

Fine-grained feldspathic, clay-altered rock. Thinly-bedded (laminated), with weak preferred orientation of the larger elongate clasts. Interpreted as an altered water lain tuff. Some altered remnants of what appear to be lithic fragments are visible. Sample is probably a fine crystal-lithic tuff.

Contains fine secondary biotite alteration (suspect hornfelsed, but this requires confirmation on the basis of field relations). Sericite alteration roughly follows bedding planes, and a sodic feldspar microvein.

Π 0 0 Ω

[4] Continued

Microscopic description Transmitted light

Identifiable Clasts:

Sodic feldspar; ~50%, angular, anhedral to subhedral (<0.01 to 0.1 mm). Fresh to various stages of clay alteration.

Quartz; 7-10%, angular, anhedral (0.01 to 0.1 mm). Quartz clasts are much less abundant than plagioclase.

Aphanitic material:

Clays / undifferentiated clay-size material; 20-25%, (microcrystalline / microgranular). Sample has a brown dusty appearance throughout -- in part the result of clay alteration of plagioclase and lithic fragments less than 0.1 mm in diameter. Fine material is apparently partly recrystallized to form fine secondary biotite.

Veins:

Minor sodic feldspar microveins with sericite, surrounded by clouds of sericite cut across bedding planes.

Alteration:

- Biotite; 10-15%, anhedral (microcrystalline). Fine secondary biotite in small aggregates disseminated throughout.
- Sericite; 10-15%, anhedral (microcrystalline). Sericite-rich "clouds" roughly follow what appear to be bedding planes and microveins.

Epidote; 3-5%, anhedral (<0.01 to 0.05 mm). Disseminated aggregates with moderately high positive relief. Pale yellowish green colour. Anomalous blue birefringence.

Chlorite; 1-2%, anhedral (<0.01 to 0.05 mm). Very fine chlorite associated with epidote.

[5] 5 - 3 Quartz latite porphyry

0

 \square

C

B

0

0

0

0

P

Π

Photomicrographs 98R XVIII 20 and 21 Plane polarized and Cross polarized light Scale 0.1 mm

Summary description

Porphyritic volcanic or hypabyssal intrusive with weakly carbonate- and sericite-altered plagioclase phenocrysts, less abundant carbonate-altered biotite (±hornblende) phenocrysts. A few rounded quartz phenocrysts are noted.

Fine groundmass consists of anhedral interlocking K-feldspar, lesser plagioclase and minor quartz.

Apatite is conspicuous as an accessory, disseminated magnetite is largely altered to hematite. Contains sparse disseminated pyrite.

[5] Continued

Microscopic description Transmitted light

Phenocrysts:

- Plagioclase; 25-30%, euhedral (0.5 to 6.0 mm). Normally zoned, with weak sericite and carbonate alteration. Maximum extinction angles indicate oligoclase compositions. Some glomerocrysts.
- Biotite; 2-3%, euhedral, subhedral (0.4 to 2.0 mm). Various stages of alteration to Fe oxides, chlorite, carbonate. Dark greenish brown pleochroic.

Carbonate pseudomorphs (after amphibole ?); 1-2%. Rectangular outlines, commonly elongate prismatic appearance. Possibly after hornblende.

Apatite; $\leq 0.5\%$, euhedral (0.1 to 0.5 mm). Sparse.

Quartz; <0.5%, anhedral (0.4 mm). Very sparse, rounded grains interpreted as phenocrysts.

Groundmass: 60-65%

Fine, anhedral interlocking feldspathic, clay altered. Stained offcut indicates a significant K-feldspar component. Minor plagioclase in groundmass. Quartz is present but is a minor constituent.

Alteration:

Carbonate alteration is weak in plagioclase phenocrysts, but completely replaces some suspected mafic phenocrysts. Plagioclase also displays weak sericite alteration. Patchy carbonate replacement occurs in groundmass. Groundmass is dusted with fine clay alteration. Altered biotite phenocrysts are commonly Fe stained, chlorite and carbonate altered.

Carbonate; 5-7%, anhedral (<0.01 to 1.0 mm).

Chlorite; \leq 1%, anhedral (<0.01 to 0.1 mm).

Sericite; <0.5%, anhedral (microcrystalline). Weak alteration of plagioclase phenocrysts, groundmass plagioclase.

Reflected light

Hematite; $\leq 1\%$, anhedral (<0.01 to 0.2 mm). Alteration of magnetite.

[5] Continued

Magnetite; traces, subhedral (<0.01 to 0.2 mm). Disseminated, partially altered to hematite.

Pyrite; traces, euhedral, subhedral (<0.01 to 0.1 mm). Disseminated.

[6] NR - 3 Bedded tuff (hornfelsed?)

Summary description

Fine clastic rock with angular volcanic lithic fragments, plagioclase, and quartz crystal fragments. Tuffaceous with sedimentary characteristics. Thinly, somewhat irregularly bedded. Streaks of very fine biotite alteration appear to roughly follow bedding planes, and there is a weak preferred orientation of elongate clasts subparallel to suspected bedding planes. Probably water-lain tuffaceous, or possibly immature volcanic-derived sediment.

Similar to [4] but coarser, appears more siliceous, contains more identifiable quartz, and has stronger secondary biotite alteration. Fine secondary biotite is consistent with hornfels – although this should be verified on the basis of field relations. In addition to biotite, there is fine sericite alteration throughout and minor carbonate.

Microscopic description Transmitted light

Lithic clasts / microcrystalline undifferentiated; 40-45%. Material too fine for rigorous identification. Low birefringence, colourless with low relief. Probably mostly feldspars, quartz, and minor clays, devitrified material in volcanic lithic fragments.

Plagioclase clasts; 25-30%, subhedral, angular (0.05 to 0.3 mm). Clasts identifiable as broken plagioclase / albite crystals. Commonly with polysynthetic twinning. Some with weak clay alteration.

Quartz clasts; 10-12%, anhedral, subhedral angular (0.05 to 0.3 mm). Fragments of quartz crystals.

Accessories:

Zircon; trace, anhedral (≤ 0.05 mm).

Alteration:

Biotite; 12-17%, anhedral (microcrystalline). Patches of fine secondary biotite throughout, roughly following bedding planes. Biotite also occurs in sparse microveins cutting across bedding.

Sericite; 5-7% (microcrystalline). Sericite-altered clasts, fine sericite disseminated throughout.

Opaques; 1-2%. Fine disseminated and in irregular aggregates. Unidentified in
[6] Continued

Π

Ô

covered thin section.

Carbonate; <0.5%, anhedral (microcrystalline). Small, scattered aggregates of microcrystalline carbonate.

Limonite / Fe staining; <0.5%. Weak limonite, Fe staining commonly associated with secondary biotite.

[7] NR - 18 Quartz latite porphyry

Summary description

Porphyritic volcanic or hypabyssal intrusive (minor dyke or sill) with plagioclase, biotite, minor quartz, and tentatively identified carbonate-altered hornblende phenocrysts. Groundmass is very fine, consisting of interlocking potassic feldspathic material.

Apatite is a prominent accessory. Traces of pyrite, pyrrhotite, and chalcopyrite are also present.

Mafic phenocrysts are largely replaced by carbonate and chlorite, plagioclase is weakly carbonate- and sericite-altered. Potassic groundmass is weakly dusted with clay alteration.

Microscopic description Transmitted light

Phenocrysts:

Plagioclase; 20-25%, euhedral, subhedral (0.5 to 4.0 mm). Dusted with sericite and clay alteration – strongest around rims. Rounded forms suggest that some crystals have undergone resorption. Normal-oscillatory zoning remains visible in many cases. Some glomerocrysts present. Estimate oligoclase compositions, based on maximum extinction angles.

Altered biotite (chlorite and carbonate); 7-10%, euhedral (0.4 mm to 1.5 mm). Carbonate+chlorite pseudomorphs apparently after biotite, based on crystal forms.

Carbonate after hornblende; 2-3%. Commonly with chlorite. Carbonate can be seen in some places partially replacing biotite, as noted above, but may also replace hornblende.

Quartz; 1-2%, anhedral (0.5 to 3.0 mm). Rounded quartz phenocrysts.

Accessories:

Apatite; <1%, euhedral (0.1 to 0.2 mm). Sparsely scattered.

Groundmass: 60-65%

Fine, weakly clay-altered feldspathic groundmass has a significant K-feldspar content, based on examination of stained offcut. Quartz is not abundant. Plagioclase is a minor constituent. Patchy carbonate alteration occurs in groundmass.

[7] Continued

Alteration:

Carbonate; 10-15%, anhedral (<0.01 to 1.0 mm). Weak alteration of plagioclase, stronger replacement of mafic phenocrysts.

Chlorite; 2-4%, anhedral (<0.01 to 0.1 mm). Chlorite replaces mafic phenocrysts, with carbonate.

Epidote; <0.5%, anhedral (<0.01 to 0.3 mm). Aggregates of epidote grains with carbonate. Probably after unidentified mafic phenocryst.

Sericite; <0.5%, anhedral (microcrystalline). Weak alteration of both phenocryst and groundmass plagioclase.

Clays; anhedral (microcrystalline). Dusting of alteration in groundmass feldspar.

Reflected light

Pyrite; traces, subhedral (0.1 to 0.6 mm). Weakly disseminated.

Rutile / anatase; traces, euhedral to anhedral (microcrystalline to 0.2 mm). Common in altered biotite phenocrysts.

Pyrrhotite; traces, anhedral (0.01 to 0.1 mm). In carbonate+chlorite pseudomorphs after unknown mafic(?).

Chalcopyrite; trace, anhedral (≤0.01 mm). Associated with pyrrhotite.

[8] NR - 21 Immature volcanic sediment / water-lain crystal lithic tuff

Photomicrograph 98R XVIII 22 Plane polarized light Scale 0.1 mm

Summary description

9

Π

Polymictic volcaniclastic rock, with fragments of varying volcanic textures. Both tuffaceous and flow textures are represented. Potassic material is present among the lithic clasts, visible in the stained offcut, but clasts with potassic components are clearly in the minority. Crystal fragments, consisting of plagioclase and minor quartz, are less abundant than lithic fragments. Rock is clast-supported with a high clast / matrix ratio. Chlorite occurs interstitially. Clasts are generally well-sorted and the sample appears to display graded bedding although clasts are generally angular to subangular -- suspect either a water-lain tuff or perhaps an immature volcanic sediment. Overall composition would probably be dacite.

A few late carbonate veinlets containing minor pyrite cut across both clasts and interstitial chlorite. Minor pyrite, pyrrhotite, and chalcopyrite are weakly disseminated in selected lithic fragments.

[8] Continued

Microscopic description Transmitted light

Volcanic lithic fragments: 60-65%

- Tuffaceous; 30-35%, angular (0.4 to 2.0 mm). Mainly fine tuffaceous, includes some crystal tuffs with plagioclase and minor quartz crystal fragments. A few spherulitic volcanic fragments are observed.
- Flow; 20-25%, angular (0.4 to 2.0 mm). Many consisting of oriented plagioclase laths in a devitrified, clay-dusted matrix.

Crystal Fragments:

Plagioclase; 12-17%, angular (0.2 to 1.0 mm). Weak sericite and clay alteration.

Quartz; 1-2%, subrounded, subangular (0.5 to 0.8 mm).

Alteration and veining:

- Chlorite; 7-10%, anhedral, subhedral (microcrystalline to 0.1 mm). Fine bladed, in aggregates interstitial to clasts.
- Carbonate; 3-5%, anhedral (<0.01 to 0.4 mm). Occurs in discontinuous microveins. Patchy replacement of selected volcanic clasts.
- Epidote; 2-3%, anhedral (<0.01 to 0.2 mm). Patchy alteration of plagioclase clasts, plagioclase-rich volcanic clasts.

Limonite; <1% (amorphous). Fe staining commonly surrounds sulphides.

Reflected light

- Pyrite; \leq 1%, anhedral (<0.01 to 0.3 mm). Disseminated. At least some appears to replace pyrrhotite.
- Pyrrhotite;≤1%, anhedral (<0.01 to 0.3 mm). Associated with carbonate. Incipient alteration to marcasite along fractures.
- Hematite, <0.5%, anhedral (<0.01 to 0.1 mm). Some apparent pseudomorphs after pyrite.
- Marcasite; traces, anhedral (<0.01 to 0.05 mm). As noted, occurs along fractures in pyrrhotite.

[8] Continued

Π

Π

Sphene; traces, anhedral (microcrystalline). Sparse aggregates.

Chalcopyrite; trace, anhedral (<0.01 to 0.05 mm). Very weakly disseminated.

[9] NR - 13 Siltstone

Summary description

Thinly and irregularly bedded fine siltstone, with a few slightly coarser interbeds. Appears likely to be derived from a volcanic source, based on a high proportion of angular feldspar clasts, and a relatively minor proportion of angular quartz clasts. Siltsize particles are not readily identifiable, but appear to represent mainly clay-altered feldspathic lithic and sodic feldspar clasts.

Sericite is disseminated throughout, but is strongest in microveins and in "clouds" surrounding these, and concentrated along bedding planes. Minor epidote and carbonate is also noted, disseminated and in microveins.

Microscopic description Transmitted light

- "Silt"; ~50-70%, unidentified material with a brown, clay-dusted appearance under plane polarized light. Appears to consist of very fine ash or clayaltered feldspathic lithic fragments and feldspar.
- Plagioclase clasts; 12-17%, angular (<0.01 to 0.1 mm). Fresh to various stages of clay alteration.

Quartz clasts; 7-12%, angular (<0.01 to 0.1 mm). Quartz clasts are less abundant than plagioclase.

Alteration:

Sericite; 7-10%, anhedral (microcrystalline to 0.1 mm). Sericite occurs in veins and is disseminated throughout. "Clouds" of sericite occur locally, surrounding microveins.

Epidote group; 3-5%, anhedral (<0.01 to 0.1 mm). Fine epidote disseminated throughout. Also observed in microveins. Identified on basis of high relief, pale yellowish colour, and anomalous blue birefringence. Proportion of epidote difficult to estimate accurately because of fine grain size.

Carbonate; 3-5%, anhedral (<0.01 to 0.1 mm). Small aggregates of carbonate are disseminated throughout.

Veining:

Discontinuous microveins of epidote, carbonate, and sericite cut across bedding planes. Very fine epidote, lesser chlorite occurs along anastomosing fractures parallel to, and subparallel to bedding planes.

[10] NR - 23 Crystal lithic tuff / immature volcaniclastic sediment

Summary description

Volcaniclastic rock similar to [8], but without obvious grading or bedding. Consists primarily of volcanic lithic fragments with interstitial carbonate. Moderately well-sorted, suggesting water-lain origin. Clasts consist of angular crystal fragments and angular to subangular lithic clasts. Polymictic, with volcanic fragments of varying textures, both flow and tuff, although they all appear compositionally similar. Potassic fragments are not observed. Finer groundmass is largely absent or obscured, but calcite occurs interstitially, locally replacing clasts and occupying crosscutting veins. Minor chlorite also occurs interstitially.

Microscopic description Transmitted light

Volcanic lithic fragments: 60-70%

Lithic fragments are all volcanic and generally sodic feldspathic – potassic clasts are virtually absent. A variety of textures are present, indicating both tuffaceous and flow origins.

Tuffaceous; angular (0.3 to 1.5 mm). Fine tuffaceous texture -- clay-altered. More abundant than clasts with flow texture.

Flow; angular (0.3 to 1.5 mm). Consist of lath-shaped feldspar crystals, commonly with preferred orientation.

Crystal fragments:

Plagioclase; 10-15%, subhedral (0.1 to 0.6 mm). Albite-twinned with dusting of clay alteration.

Quartz; <1%, anhedral (0.1 to 0.5 mm). Sparse monocrystalline quartz grains.

Alteration:

Carbonate (calcite); 20-25%, anhedral (microcrystalline to 0.5 mm). Patchy interstitial and in veinlets throughout. Occupies a similar position to the chlorite in [8], but calcite is in this case more abundant. Carbonate is verified calcic – it reacts with cold, dilute HCI.

Opaques; 2-4%.

Chlorite; <0.5%, anhedral (<0.01 to 0.05 mm). Scattered, small, interstitial

P

A

Π

0

0

0

aggregates of bladed chlorite. Also appears to be pseudomorphously replacing mafic crystal fragments. Occurs with carbonate.

Fe oxides; <0.5%. Local amorphous Fe staining.

[11] R - 3 Altered crystal lithic tuff (hornfelsed?)

Summary description

Crystal lithic tuff (or possibly immature volcanic sediment), consisting primarily of fine, apparently tuffaceous lithic fragments with lesser plagioclase and quartz crystal fragments. Although original textures are largely preserved, the abundant fine, secondary biotite alteration visible in thin section is consistent with shallow contact metamorphism, as is dense, strongly indurated character (note: "hornfels" requires confirmation on basis of field relations).

Carbonate is present in small, disseminated aggregates and in microveins. A fine, disseminated high relief mineral is tentatively identified as epidote. Very minor introduced K-feldspar is noted, associated with microveins.

Microscopic description Transmitted light

Lithic fragments: 60-65% (0.2 to 0.5 mm).

Original textures obscured by alteration. Sample appears to consist mainly of fine tuffaceous fragments.

Crystal fragments:

Plagioclase; 10-15%, angular (0.05 to 0.3 mm). Albite-twinned, dusted with fine alteration products.

Quartz; 5-7%, angular to rounded (0.05 to 0.3 mm).

Alteration, microveins:

Π

Biotite; 10-15%, anhedral (microcrystalline to 0.2 mm). Diffuse fine-grained biotite is present throughout, locally concentrated in interstices between volcanic lithic clasts preserving some of original texture of the rock. Majority of biotite is typical reddish-brown in colour, but some green biotite is also tentatively identified.

Carbonate; 3-5%, anhedral (microcrystalline to 0.1 mm). Weakly and unevenly disseminated and in veinlets, the largest of which also contains opaques.

Epidote (?); 3-5%, anhedral (microcrystalline). Very fine, higher relief greenish mineral disseminated among secondary biotite. Suspect epidote.

Opaques; 1-3%, anhedral (<0.01 to 0.2 mm). Unidentified in covered slide.

B Π Π Π 0 ſ P 0 0 0 B 0

[11] Continued

Introduced K-feldspar; <0.5%, anhedral (<0.01 to 0.1 mm). Patchy K-feldspar occurs along carbonate microveins.

Chlorite / chlorite group mineral; traces(+), anhedral (microcrystalline to 0.1 mm). Small felted aggregates of bladed chlorite. Typically with carbonate.

Fe oxides; traces. Weak Fe staining occurs locally along microfractures.

[12] R - 18 Strongly clay-altered porphyry (/crystal tuff?)

Summary description

- Maria

Original textures largely obscured, but those textures weakly preserved are consistent with argillic alteration of a protolith similar to the porphyries of this suite. Ghost-like rectangular forms up to approximately 1.5 mm in long dimension with stronger sericite alteration are suggestive of the plagioclase phenocrysts observed in other samples of this suite. Quartz phenocrysts are absent, however, and very little quartz is present in "groundmass". Original feldspar is strongly clay-altered. Sample hosts a weak crackle breccia, with microveins filled with secondary K-feldspar.

Cloudy, microcrystalline material masking portions of section appears to be leucoxene. Limonitic staining occurs along fractures.

Microscopic description Transmitted light

- Clays (clay-altered feldspar); 60-70%, anhedral (microcrystalline). Strong clay alteration throughout. Fine clay minerals are not reliably identified with the petrographic microscope, and X-ray diffraction is recommended if more specific identification is required.
- K-feldspar; 15-20%, anhedral (<0.01 to 0.2 mm). Introduced K-feldspar is present in a network of microveins, and in scattered aggregates. Fine K-feldspar is also present in groundmass.
- Sericite; 7-10%, anhedral (microcrystalline). Disseminated throughout, concentrated in patches. Sericitic patches 1-3 mm in diameter probably represent original plagioclase phenocrysts (or crystal fragments if tuffaceous). Original textures no longer visible. Note: pyrophyllite and sericite are often not reliably distinguished in thin section – pyrophyllite could also be present.

Quartz; 5-7%(?), anhedral (<0.01 to 0.05 mm). Minor, fine quartz appears to be present.

Leucoxene (?); 5-7% (microcrystalline). Appears to be fairly abundant, but difficult to identify reliably in covered thin section.

Limonite; 1-2% (microcrystalline). Fe oxides / staining in and surrounding fractures.

[13] R - 29 Altered crystal lithic tuff (hornfels?)

ſ

ſ

 \bigcap

Π

Π

Π

Π

0

0

0

0

Photomicrograph 98R XVIII 24 Plane polarized light Scale 0.1 mm

Summary description

Crystal lithic tuff, consisting primarily of fine, apparently tuffaceous lithic fragments with lesser plagioclase and quartz crystal fragments. Crystal and lithic fragments are typically angular and appear broken, consistent with a crystal lithic tuff, as opposed to a sediment. Fine biotite alteration is pervasive, similar to [11]. Although original textures are largely preserved, the abundant fine secondary biotite alteration visible in thin section is consistent with shallow contact metamorphism, as is dense, strongly indurated character -- note that "hornfels" requires confirmation on basis of field relations.

Pyrite is both disseminated and in quartz, carbonate microveins. Traces of chalcopyrite are associated with the pyrite.

[13] Continued

Microscopic description Transmitted light

Crystal fragments:

Plagioclase; 15-20%, angular (0.1 to 0.5 mm). With dusting of clay alteration.

Quartz; 5-7%, angular to rounded (0.1 to 0.5 mm). Quartz clasts in addition to minor introduced quartz.

Apatite; traces, angular (0.05 to 0.2 mm). Sparse apatite crystal fragments.

<u>Lithic fragments</u>: 65-70%, angular to subangular (0.1 to 1.0 mm). Polymictic volcanic, compositionally similar, but with varying textures. All with a dusting of clay alteration.

Tuffaceous; angular (0.1 to 0.5 mm). Majority of lithic fragments have finegrained tuffaceous textures.

Flow textures; angular (0.1 to 0.5 mm). A minority of lithic clasts consist of plagioclase laths, commonly aligned.

Groundmass:

Similar to [8] and [10], appears to have little groundmass -- displays a clast-supported texture. Interstices occupied by fine biotite and biotite-altered material.

Alteration / microveins:

Clays; dusting of clay alteration in feldspar fragments and in lithic fragments.

Biotite; 7-10%, anhedral (microcrystalline). Aggregates of fine biotite interstitial to lithic and crystal clasts, and disseminated throughout.

Chlorite; traces, anhedral (<0.01 to 0.1 mm). Bladed, in microveins with carbonate, guartz, pyrite.

Carbonate; traces, anhedral (<0.01 to 0.1 mm). Microveins with quartz and pyrite.

Epidote; traces, anhedral (<0.01 to 0.1 mm). Associated with quartz-carbonate microvein.

Quartz; subhedral (<0.01 to 0.1 mm). Introduced quartz occurs in microveins with carbonate.

[13] Continued

Π

Π

Reflected light

- Pyrite; 3-4%, anhedral (<0.01 to 0.5 mm). Irregular grains disseminated throughout.
- Chalcopyrite; traces, anhedral (<0.01 to 0.1 mm). Weakly disseminated and commonly associated with pyrite, as inclusions or rimming pyrite grains.

Pyrrhotite; traces, anhedral (<0.01 to 0.1 mm). Rounded anisotropic grains with pink tint, included in the pyrite.

Secondary TiO₂; traces (microcrystalline). Scattered aggregates in selected clasts.

[14] R - 30 Altered tuff (covered thin section)

Summary description

Fine, altered, with tuffaceous texture and ghost-like forms apparently representing fine to coarse lapilli.

Dusted with clay alteration and fine patchy carbonate replacement. Fine disseminated epidote is also tentatively identified. Contains disseminated opaques and cut by veinlets containing fine K-feldspar, ±quartz (?), minor chlorite, and opaques.

A streaky fabric is observed, possibly attributable to welding -- original textures are largely obscured by alteration, however, and this fabric is better observed in the hand specimen.

Patches in which carbonate alteration is weak, and epidote and chlorite alteration stronger appear to represent original fragments differing compositionally from the matrix.

Microscopic description Transmitted light

Clays, clay-altered feldspars; ~60%. Very fine, with tuffaceous texture. Majority of feldspars appear to be sodic, based on the stained offcut.

K-feldspar, <20%. Patchy, uneven K-feldspar staining is visible in stained offcut. K-feldspar-bearing microveins are evidence that at least some K-feldspar is introduced.

Quartz clasts; 15-20%, angular (<0.01 to 0.1 mm). Crystal fragments identifiable as quartz.

Alteration:

Microcrystalline quartz; sample appears more siliceous than recognizable quartz would suggest.

Carbonate; 10-15%, anhedral (microcrystalline). Patchy microcrystalline calcite pervades sample. Sample reacts weakly with cold, dilute HCI.

Epidote (?); 3-5%, anhedral (<0.01 to 0.05 mm). Disseminated pale green mineral with moderately high positive relief is tentatively identified as epidote.

Sericite; 2-3%, anhedral (microcrystalline). Fine disseminated sericite

[14] Continued

D

0

Π

Π

Π

Π

throughout.

Opaques; 1-4%, anhedral (<0.01 to 0.3 mm). Disseminated and in veins. Sample is cut by microveins containing unidentified opaques, K-feldspar, quartz, and minor chlorite.

Chlorite; traces, anhedral (<0.01 to 0.05 mm). Fine bladed chlorite in scattered aggregates and associated with K-feldspar ±quartz microveins.

[15] R - 38 Altered quartz latite porphyry

Summary description

Altered porphyritic volcanic or hypabyssal intrusive. Some original textures are obscured by alteration, however pseudomorphs after plagioclase are euhedral, unbroken, suggesting a porphyry rather than a crystal tuff. Sparse quartz phenocrysts are present, and fine groundmass is potassic, as observed in the samples labelled "quartz latite" in this suite.

Plagioclase is completely replaced by sericite, biotite (suspected biotite) by sericite and Fe oxides. Clays, quartz and Fe, Mn oxides replace an unidentified phenocryst phase, possibly hornblende.

Contains disseminated hematite after pyrite. Sample is coated with a dark purplish-grey staining consistent with Mn oxide minerals, tentatively identified in the polished thin section.

Microscopic description Transmitted light

Phenocrysts:

Altered plagioclase; 20-25%, subhedral, euhedral (0.5 to 3.0 mm). Strongly sericite- altered. Patchy Fe, Mn staining. A few appear to have originally been glomerocrysts.

Altered biotite (?); 3-5%, euhedral (0.3 to 1.0 mm). Completely replaced by sericite and Fe oxides. Probably pseudomorphs after biotite.

Unknown pseudomorphs (after hornblende?); 2-3%, subhedral (0.2 to 1.0 mm). Elongate prismatic phenocrysts, most with rectangular outlines, are replaced by clays, non-reflective opaques

Quartz; <1%, anhedral (0.3 to 0.5 mm). Sparse, rounded quartz phenocrysts.

Accessories:

Apatite; ≤1%, euhedral (0.1 to 0.5 mm). Apatite is a conspicuous accessory, as in the other porphyries of this suite.

Zircon; trace, anhedral (0.01 to 0.05 mm).

[15] Continued

Groundmass: 60-65%

Aphanitic groundmass is dominated by K-feldspar, clay alteration, and quartz. Minor plagioclase feldspar is present.

Alteration:

As noted, plagioclase and suspected biotite phenocrysts are almost completely altered to sericite and Fe oxides. Groundmass quartz is at least partly secondary – a few quartz microveins noted. Prismatic pseudomorphs altered to quartz, clays, epidote, opaques, and apatite replace an unidentified phenocrystic phase, possibly hornblende.

Reflected light

Hematite; 1-2%, anhedral, euhedral pseudomorphs (<0.01 to 0.1 mm). Hematite after pyrite, earthy hematite with suspected Mn oxides / hydroxides.

Manganite (?); 1-2%, anhedral (microcrystalline). Brownish grey in reflective light, with low reflectivity, strong anisotropy. Reflectivity of most of this material is too low for pyrolusite, but suspect another Mn oxide / hydroxide, probably manganite. Bluish dark grey staining in hand specimen. Recommend confirmation by SEM if geochemistry suggests unusual mineralogy. Manganese staining commonly comprises several secondary Mn minerals.

Rutile; traces(+), anhedral (<0.01 to 0.1 mm). In pseudomorphs after mafic phenocrysts.

Pyrite; traces(+) anhedral (<0.01 to 0.2 mm). Irregular remnants surrounded by hematite.

[16] R - 41 Quartz latite porphyry

Summary description

Porphyritic volcanic or hypabyssal intrusive, with strongly altered plagioclase, biotite, and suspected hornblende phenocrysts. Fine interlocking clay- and sericite-altered groundmass is not strongly potassic, as are other similar specimens of this suite. No guartz phenocrysts are observed.

Plagioclase is replaced by sericite, Fe oxides, and microcrystalline carbonate. Suspected original biotite is replaced by muscovite and Fe oxides. Elongate prismatic phenocrysts with rectangular outlines replaced by Fe oxides and clay minerals may represent original hornblende.

A few quartz microveins noted.

Microscopic description Transmitted light

Phenocrysts:

- Altered plagioclase; 20-25%, subhedral (0.5 to 3.0 mm).Strongly sericite-altered -- almost completely replaced by sericite and microcrystalline carbonate. Patchy Fe oxides in phenocrysts.
- Altered biotite (?); 2-3%, euhedral (0.5 to 1.0 mm). Muscovite intergrown with Fe oxides. Probably pseudomorphs after biotite.
- Unknown (altered hornblende?); 2-3%, euhedral to subhedral (0.5 to 1.5 mm). Elongate mineral with rectangular outlines is replaced by clays, opaques, and sericite. Possibly originally hornblende, based on comparison with less-altered samples of this suite.

Accessories:

Apatite; traces, euhedral (0.1 to 0.5 mm). Sparse.

Zircon; trace, anhedral (0.01 to 0.05 mm). High relief, high birefringence colourless. Probably zircon.

Groundmass: 65-70%

Fine, interlocking sericite- and clay-altered feldspathic. Appears to be largely (clay / sericite altered) plagioclase -- stained offcut indicates that groundmass is less potassic than similar samples of this suite. Some quartz present in groundmass, but less abundant than feldspars.

[16] Continued

Alteration:

 $\sim 1^{-1}$

As noted, plagioclase phenocrysts are almost completely altered to sericite. Groundmass is also strongly sericite- and clay-altered.

Carbonate; 2-3%, anhedral (microcrystalline). Patchy replacement of plagioclase.

Introduced quartz; traces. Some discontinuous microveins observed. Groundmass is not strongly silicified.

[17] R - 59 Quartz latite / quartz monzonite porphyry

Summary description

Probable hypabyssal intrusive. Porphyritic, with coarser groundmass than that of other, similar specimens in this suite.

Strongly sericite-altered plagioclase phenocrysts are identified, K-feldspar phenocrysts are sparse. Biotite phenocrysts, largely replaced by Fe oxides, are tentatively identified. Interlocking sericite- and clay-altered groundmass consists of K-feldspar, plagioclase and quartz, in the order of abundance listed. Opaques surrounded by Fe oxide staining are abundant, and partially replace phenocrysts. Some quartz is introduced, and minor discontinuous quartz veinlets are recognized.

Apatite is a conspicuous accessory, as in other similar but finer grained samples of this suite. Opaques and associated Fe oxides are abundant.

Microscopic description Transmitted light

Phenocrysts:

Plagioclase; 20-25%, euhedral to subhedral (0.5 to 3.0 mm). Strongly sericitealtered, partially replaced by opaques and Fe oxide staining.

Altered biotite (?); 2-3%, subhedral to anhedral (0.5 to 1.5 mm). Ragged pseudomorphs consisting of Fe oxides, sericite, and what appears to be a chlorite group mineral.

K-feldspar; <1%, euhedral (1.0 to 2.0 mm).

Unknown; <1%, subhedral (0.5 to 1.0 mm). Roughly rectangular outline, largely replaced by microcrystalline clays. Possibly originally hornblende.

Accessories:

Apatite; $\leq 1\%$, euhedral (0.3 to 0.8 mm).

Zircon; traces, subhedral (0.01 to 0.1 mm). High relief, high birefringence grains with crystal forms suggesting zircon.

Groundmass: 60-70%

Sericite- and weakly clay-altered interlocking groundmass consists of, in estimated order of abundance: K-feldspar, plagioclase, and quartz. At least some of the quartz appears to be introduced.

Π Π Π

[17] Continued

Alteration:

Feldspathic groundmass is dusted with sericite (\pm clay) alteration.

Quartz; introduced quartz is present, indicated by minor, typically discontinuous quartz veinlets.

Opaques; 1-3%, unidentified in covered thin section, but pyrite noted in hand specimen.

Fe oxides; (limonite). Strong staining throughout. Surrounds opaques, partially replaces phenocrysts.

Chlorite, chlorite group (?); anhedral (<0.01 to 0.1 mm). Alteration product of what appear to be mafic phenocrysts. Not positively identified.

[18] R - 63FP Quartz latite porphyry

Summary description

Porphyritic volcanic or hypabyssal intrusive with strongly sericite-altered plagioclase phenocrysts, suspected biotite replaced by muscovite and opaques. Suspected hornblende phenocrysts are replaced by a fibrous unknown. Sparse sanidine phenocrysts present. Quartz phenocrysts were not recognized, however, felsic potassic groundmass contains some (probably original) quartz, making the name "quartz latite" appropriate. Groundmass is dusted with clay and sericite alteration.

Microscopic description Transmitted light

Phenocrysts:

- Altered plagioclase; 30-35%, euhedral (0.3 to 4.0 mm). Strongly sericite-altered. Original features obscured. Commonly with patchy Fe staining.
- Muscovite / altered biotite; 3-5%, euhedral to subhedral (0.2 to 1.0 mm). Suspect originally altered biotite, although replaced by fibrous sericite, opaques, and leucoxene.

Unknown phenocrysts; 1-2%, subhedral (0.1 to 0.5 mm). Replaced by fibrous, feathery mineral – unidentified.

Sanidine; <0.5%, euhedral (0.5 to 1.0 mm). Sparse.

Groundmass: 60-65%

Aphanitic sericite- and clay-altered feldspathic groundmass is rich in K-feldspar, with lesser quartz. Plagioclase was not recognized, but may be represented by sericite-altered material.

Accessories:

Apatite; <1%, euhedral (.0.05 to 0.2 mm).

Zircon; trace, subhedral (0.1 mm).

Alteration:

Plagioclase phenocrysts are strongly sericite-altered, as are suspected biotite phenocrysts. Groundmass is sericite- and clay-altered, and appears to be weakly silicified. Limonite partly replaces phenocrysts near weathered surface.

[18] Continued

Fibrous unknown; 1-2%, anhedral (<0.01 to 0.1 mm). Fibrous, colourless to very pale green mineral with low (first order grey) birefringence and moderate positive relief. Displays weak anomalous blue birefringence. Suspect prehnite or chlorite group mineral.

a sense and a sense of the sense The sense of the sense

n en la general de la construction de la final de la construction de la construction de la construction de la La construction de la construction d La construction de la construction d

[19] R - 63M Latite / quartz latite porphyry

Summary description

Strongly altered porphyritic volcanic or hypabyssal intrusive with abundant altered plagioclase phenocrysts, suspected muscovite-replaced biotite in a potassic feldspathic groundmass. Lacks quartz phenocrysts as observed in otherwise similar rocks of this suite. Apatite is a conspicuous accessory.

Plagioclase phenocrysts are strongly sericite-altered, and partially replaced by microcrystalline carbonate. Phenocrysts replaced by muscovite, carbonate, chlorite, and opaques are probably after biotite. Groundmass is strongly clay- and sericite-altered with patchy carbonate replacement.

Sample has a limonitic, Fe stained weathering rind.

Microscopic description Transmitted light

Phenocrysts:

- Altered plagioclase; 20-25%, euhedral (0.3 to 4.0 mm). Strong sericite alteration, weaker, patchy carbonate alteration. Glomerocrysts are common.
- Altered biotite; 2-5%, euhedral, subhedral (0.2 to 1.0 mm). Pseudomorphs of colourless mica, chlorite, Fe oxides, apparently after biotite. Commonly partly replaced by carbonate.
- Altered amphibole (?); 1-2%, subhedral (0.2 to 1.0 mm). Pseudomorphs with rectangular outlines consist almost entirely of carbonate. Possibly replaces original hornblende.

K-feldspar, traces, euhedral (0.5 to 1.0 mm). Very sparse.

Accessories:

Apatite; ~1%, euhedral (0.1 to 0.3 mm). Scattered elongate prismatic crystals.

Groundmass: 55-60%

Fine interlocking feldspathic groundmass is rich in K-feldspar and strongly dusted with clay, sericite, and patchy carbonate alteration. Contains minor quartz.

[19] Continued

Alteration:

Clays; clay alteration gives groundmass a dusty brown appearance in plane polarized light.

Sericite; 5-7%, anhedral (microcrystalline to 0.1 mm). Strong alteration of plagioclase. Coarser colourless mica replaces what appear to have originally been biotite phenocrysts.

- Carbonate; 3-5%, anhedral (<0.01 to 0.5 mm). Patchy irregular replacement of phenocrysts and groundmass.
- Chlorite / chlorite group mineral; traces(+), anhedral (0.01 to 0.2 mm). Bladed, radiating aggregates. Strong green pleochroic with anomalous blue birefringence. Near-parallel extinction, length slow. Associated with unknown, below.
- Unknown; traces, anhedral (0.01 to 0.2 mm). Occurs with chlorite, and has similar habit, but relief is lower and this mineral is colourless.

Quartz; traces of introduced quartz not confirmed (possibly original).

Fe oxides; phenocrysts are masked by Fe staining where they occur near weathered surface.

Opaques; <1%, euhedral to anhedral (<0.01 to 0.1 mm). Unidentified in covered slide.

[20] R - 64M Latite / quartz latite porphyry

Summary description

Porphyritic volcanic or hypabyssal intrusive (minor dyke or sill) with abundant plagioclase phenocrysts and lesser biotite phenocrysts in an interlocking feldspathic, potassic groundmass. Quartz phenocrysts were not recognized, although quartz is present in the groundmass.

Plagioclase phenocrysts have strong sericite and carbonate alteration, biotite is commonly partly replaced by carbonate. Groundmass has a weak dusting of clay alteration, and contains some apparently introduced quartz in addition to original quartz.

Contains disseminated pyrite and lesser chalcopyrite. Quartz, hematite, and pyrite occur in a microvein.

Microscopic description Transmitted light

Phenocrysts:

Plagioclase; 25-30%, euhedral (0.5 to 7.0 mm). Sericite-altered, with weaker patchy carbonate replacement. Some glomerocrysts.

Altered biotite; 3-5%, euhedral to subhedral (0.3 to 1.0 mm). Dark reddish-brown biotite phenocrysts partly replaced by carbonate.

Sanidine; traces(+), euhedral (0.3 to 1.0 mm). Sparse K-feldspar phenocrysts. Nearly uniaxial (-), crystal forms consistent with sanidine.

Groundmass: 60-65%

Fine anhedral interlocking potassic, feldspathic groundmass. Consists mainly of K-feldspar with lesser quartz and minor plagioclase. Quartz is at least partly introduced.

Accessories:

Apatite; \leq 1%, euhedral, subhedral (0.1 to 0.5 mm).

Zircon; traces, subhedral (0.01 to 0.2 mm).

Alteration:

Carbonate; 7-10%, anhedral (microcrystalline to 0.1 mm). Patchy replacement of plagioclase and biotite phenocrysts. Weaker in groundmass. Some

[20] Continued

veinlets observed cutting plagioclase, discontinuous, consisting of carbonate and quartz.

Quartz; 5-7%, anhedral (<0.01 to 0.2 mm). Scattered throughout groundmass. Some small aggregates, discontinuous veinlets of quartz with carbonate, indicating presence of introduced quartz.

- Sericite; anhedral (microcrystalline).Moderately strong sericite alteration in plagioclase phenocrysts.
- Chlorite / chlorite group; <0.5%, subhedral (0.01 to 0.1 mm). Bladed, in radiating aggregates. Pale green colour, low, faint anomalous blue birefringence.

Clays; weak dusting of alteration in both groundmass and phenocryst feldspars.

Reflected light

- Pyrite; 2-5%, anhedral (<0.01 to 0.5 mm). Disseminated irregular aggregates. Lesser associated chalcopyrite and pyrrhotite.
- Chalcopyrite; ≤1%, anhedral (<0.01 to 0.1 mm). Irregularly disseminated, commonly associated with the pyrite.

Hematite; ≤1%, anhedral (<0.01 to 0.1 mm). Aggregates, commonly with pyrite, apparently after pyrite.

Leucoxene / rutile; traces (+), anhedral (microcrystalline). Aggregates with bright yellow internal reflections.

Pyrrhotite; traces, anhedral (<0.01 to 0.02 mm). Rounded blebs within pyrite.

D	
-	Appendix III
	Analytical Procedures
B	
D	
B	
0	a second a second a second second a second secon A second secon
C	
0	
	n en

Analytical Procedure

GEOCHEMICAL GOLD ANALYSIS

a local de

Samples are catalogued and dried. Soils are prepared by sieving through an 80 mesh screen to obtain a minus 80 mesh fraction. Rock samples are 2 stage crushed to minus 10 mesh and a 250 gram subsample is pulverized on a ring mill pulverizer to -140 mesh. The subsample is rolled, homogenized and bagged in a prenumbered bag.

The sample is weighed to 10 grams and fused along with proper fluxing materials. The bead is digested in aqua regia and analyzed on an atomic absorption instrument. Over-range values (>1000 ppb) for rocks are re-analyzed using gold assay methods.

Appropriate reference materials accompany the samples through the process allowing for quality control assessment. Results are entered and printed along with quality control data (repeats and standards). The data is faxed and/or mailed to the client.

MULTI ELEMENT ICP ANALYSIS

Samples are catalogued and dried. Soil samples are screened to obtain an -80 mesh sample. Rock samples are 2 stage crushed to minus 10 mesh and pulverized on a ring mill pulverizer to minus 140 mesh, rolled and homogenized.

A 0.5 gram sample is digested with aqua regia, which contains beryllium, which acts as an internal standard. The sample is analyzed on a Jarrell Ash ICP unit.

Results are collated by computer and are printed along with accompanying quality control data (repeats and standards). Results are printed on a laser printer and are faxed and/or mailed to the client.

Analytical Procedure

-

Π

Π

Π

A STREET

and the second

METALLIC GOLD ASSAY

Samples are catalogued and dried. Rock samples are two stage crushed to minus 10 mesh, then split to achieve a 250 gram (approximate) sub sample. The sample is pulverized to 95% -140 mesh. The sample is weighed, then rolled and homogenized and screened at 140 mesh.

The -140 mesh fraction is homogenized and 2 samples are fire assayed for Au. The +140 mesh material is assayed entirely. The resultant fire assay bead is digested with acid and after parting is analyzed on a Perkin Elmer atomic absorption machine using air-acetylene flame to .03 grams/t detection limit.

The entire set of samples is redone if the quality control standard is outside 2 standard deviations or if the blank is greater than .015 g/t.

The values are calculated back to the original sample weight providing a net gold value as well as 2 -140 values and a single +140 mesh value.

Results are collated by computer and are printed along with accompanying quality control data (repeats and standards). Results are printed on a laser printer and are faxed and/or mailed to the client.

Appendix IV

0

Geochemical Results

0 Ω Π Î Ω 1.00

10-Aug-98

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

A CONTRACTOR OF A CONTRACTOR OF

ICP CERTIFICATE OF ANALYSIS

TECK EXPLORATION LTD. #350-272 VICTORIA STREET

KAMLOOPS, B.C. V2C 2A2

ATTENTION: SCOTT SMITH

No. of samples received: 557 Sample Type: Soil PROJECT #: 1763 SHIPMENT #: None Given Sample submitted by: Teck

Values in ppm unless otherwise reported

m . #	Automb		A1 0/	Ac	- Ba	Bi Ca %	Cd	Co	Cr	Сц	Fe %	La Mo	1% 1	Mn	Mo I	Na %	Ni	P	Pb	Sb	Sn	Sr T	1%	<u>u</u>	<u>v w</u>	Y	<u>Zn</u>
iag #	Au(ppb)	Ag	A1 70	<u> </u>	000	15 0 10	~ ~ ~	22	- 21	50	>10	70 0	26 8	19	16	0.14	8 4	4740	26	<5	<20	196 0	0.02 <	:10	86 <10	<1	71
B/L 5+00E 0+00N	25	0.6	2.24	40	200	15 0.10	1	23	-1	68	>10	20 <0	01	94	88	0.10	<1 2	2530	34	<5	<20	223 <0).01 <	:10	40 <10	<1	30
B/L 5+00E 0+50N	100	0.8	0.74	60	70	20 0.02		26		00	>10	50 <0	01 9	55	26	0.20	10	2150	56	<5	<20	725 <0).01 <	:10	23 <10	<1	65
B/L 5+00E 1+00N	230	1.6	1.17	180	65	15 0.35	51	20	-1	100	×10	30 0	08 3	138	20	0.19	<1	2200	26	<5	<20	131 <0).01 <	<10	76 <10	<1	56
B/L 5+00E 1+50N	60	1.0	1.02	165	80	<5 0.04	<1	12	< 	109	>10	-10 -0	00 0	81	10	0.14	<1 !	5430	60	<5	<20	159 <0	0.01 <	<10	93 <10	<1	42
B/L 5+00E 2+00N	105	1.4	0.76	285	85	25 0.01	<1	10	<1	100	>10	~10 ~0	01	20	63	0.14	<1 /	8780	104	<5	<20	253 <0	0.01 <	<10	65 <10	<1	38
B/L 5+00E 2+50N	135	3.8	0.43	655	100	30 0.01	<1	9	<1	143	>10	10 0	02 1	23	20	0.10	<1	2080	60	<5	<20	147 <0	0.01 <	<10	49 <10	<1	58
B/L 5+00E 3+00N	825	1.6	0.80	170	110	20 0.01	<1	10	<1	()	>10	20 40	01 0		17	0.20	7	2000	120	<5	<20	108 <	0.01 <	<10	50 <10	<1	137
B/L 5+00E 3+50N	85	1.4	1.28	95	400	10 0.02	<1	18	<1	86	>10	30 <0	01 17	794 704	15	0.00	23	3050	36	<5	<20	19 <	0.01 <	<10	74 <10	<1	109
B/L 5+00E 4+00N	45	1.4	2.37	15	140	20 0.24	<1	46	<1	22	>10	40 \0		94	26	0.00	1	2000	134	<5	<20	99 <	0.01 <	<10	48 <10	<1	107
B/L 5+00E 4+50N	160	1.2	1.49	275	115	10 0.02	<1	15	<1	87	>10	40 0	04 23	107	10	0.04	48	2470	58	<5	<20	25 <	01 •	<10	70 <10	30	330
B/L 5+00E 5+00N	145	2.0	1.41	335	575	<5 0.27	<1	78	<1	361	>10	40 0	1.04 33	200	10	0.02	13	3000	116	<5	<20	111 <	0.01 <	<10	134 <10	<1	194
B/L 5+00E 5+50N	340	2.2	2.27	475	275	45 0.03	<1	26	9	299	>10	20 0	1,30 0	020	10	0.15	14	2810	106	<5	<20	77 <	0.01 <	<10	87 <10	<1	201
B/L 5+00E 6+00N	130	1.6	1.89	280	290	20 0.04	<1	25	<1	218	>10	20 0	0.19 0	101	10	0.00	13	3180	44	<5	<20	70 <	0.01 -	<10	56 <10	4	121
B/L 5+00E 6+50N	60	1.0	1.37	110	400	20 0.13	<1	19	<1	79	>10	50 0	0.04 10	142 165	10	0.03	15	2010	90	۰. ح5	<20	92 <	0.01	<10	52 <10	2	149
B/L 5+00E 7+00N	160	2.6	0.86	75	375	10 0.10	<1	30	<1	125	>10	50 <0	101 14	100	10	0.03	21	2310	134	<5	<20	95 <	0.01	<10	65 <10	14	229
B/L 5+00E 7+50N	>1000	6.8	1.44	265	435	10 0.21	<1	50	<1	989	>10	110 0	J. 14 22	213	24	0.05	21	1/30	448	<5	<20	58 <	0.01	10	145 <10	<1	418
B/L 5+00E 8+00N	160	9.2	1.06	410	150	10 0.01	<1	21	<1	451	>10	<10 <0	0.01 6	5/0	24	0.11	16	2690	260	~5	<20	70 <	0.01	<10	70 <10	<1	408
B/L 5+00E 8+50N	380	8.0	1.43	590	275	75 0.08	<1	47	<1	311	>10	<10 0	0.04 ZC		20	0.03	10	2000	15/	-5	<20	83 <	0.01 -	<10	111 <10	<1	315
B/L 5+00E 9+00N	150	6.6	2.49	285	450	35 0.06	<1	24	5	226	>10	<10 0	1.32 11	160	1/	0.10	10	2000	0/	~5	<20	103 <	0.01	<10	68 <10	<1	200
B/L 5+00E 9+50N	30	1.6	1.34	175	240	25 0.02	<1	9	<1	107	>10	10 <0).01 ∠	283	15	0.11	42	4620	106	~5	20	<u>41 <</u>	0.01	<10	82 <10	<1	265
B/L 5+00E 10+00N	375	1.0	1.83	240	175	25 0.05	<1	17	<1	74	>10	<10 ().18 5	285	22	0.07	13	1550	100	~5	~20	01 <	0.01	<10	63 <10	<1	203
B/L 5+00E 10+50N	150	1.4	1.68	165	285	20 0.02	<1	11	<1	96	8.90	30 <0	0.01 2	264	10	0.09	4	2000	102	-5	~20	31 -	0.01				
B/L 5+00E 11+00N		NO SA	MPLE												~	0.00		000	46	~5	~20	32 <	0.01	<10	60 <10	<1	106
B/L 5+00E 11+50N	415	0.6	0.93	125	170	10 0.03	<1	7	<1	30	5,12	<10 <0	0.01 1	1/1	8	0.02	<1	900	24	~5	~20	8 <	0.01	<10	61 <10	<1	86
B/L 5+00E 12+00N	15	0.4	0.83	40	70	<5 0.02	<1	6	<1	19	3,19	<10 (0.02	139	4 7	0.01	<1	1600	24	~5	~20	6	0.01	<10	64 <10	<1	140
B/L 5+00E 12+50N	5	0.4	2.20	60	120	10 0.09	<1	15	<1	39	6.74	<10 0	0.27 8	205	1	0.01	2	2280	54	<5	<20	7 <	0.01	<10	62 <10	<1	141
B/L 5+00E 13+00N	10	1.0	1.50	60	95	10 0.10	<1	11	<1	28	5.81	<10 t	1.19 8	327	D A	0.01	-1	12200	36	~5	<20	6 <	0.01	<10	68 <10	<1	102
B/L 5+00E 13+50N	10	0.4	1.05	50	80	5 0.04	<1	7	<1	25	4.08	<10 (J.U7 3	3/8	4	0.01	44	1330	140	~5	~20	30 <	0.01	<10	64 <10	11	396
B/L 5+00E 14+00N	5	1.0	1.78	135	265	<5 0.53	1	18	<1	74	5.77	30 0	0.38 14	458	6	0.01		1220	256	~5	<20	23 <	0.01	<10	47 <10	<1	484
B/L 10+00E 18+00N	50	2.4	1.31	80	180	<5 0.07	<1	13	<1	256	6.25	<10 ().1/ 10	J10	23	0.02	0	1320	200	~5	~20	20 <	0.01	<10	44 < 10	4	863
B/L 10+00E 18+50N	80	5.2	1.56	75	230	<5 0.06	3	12	<1	275	6.22	20 (0.12 20	J92	11	0.01	0	1140	392	~5	~20	20 -	0.01	<10	44 <10	<1	680
B/L 10+00E 19+00N	35	5.2	1.27	80	200	<5 0.15	2	9	<1	207	5.88	10 0	3.09 1	159	10	0.01	2	1600	402	~5	~20	17 2	0.01	210	45 <10	<1	775
B/L 10+00E 19+50N	40	2.4	1.46	70	220	<5 0.09	3	13	<1	253	5.55	20 0	0.18 20	091	8	0.01	9	900	522	<5	~20	65 4	0.01	<10	45 <10	<1	440
B/L 10+00E 20+00N	85	5.0	1.33	90	325	<5 0.02	1	7	<1	209	8.02	<10 (0.10 3	349	14	0.03	<1	1670	176	~5	~20	26	0.01	<10	51 <10	<1	353
B/L 10+00E 20+50N	25	2.0	1.53	50	230	<5 0.21	2	9	<1	74	5.22	<10 (0.30 2	295	8	0.02	9	1200	1/0	<0 ~5	<20	20	0.01	210	53 <10	<1	320
B/L 10+00E 21+00N	135	2.8	1.69	40	170	<5 0.10	1	9	1	81	5.71	<10 (0.29	275	11	0.02	9	810	100	<5 .5	<20	76	0.01	~10	48 <10	<1	360
B/L 10+00E 21+50N	155	3.0	1.56	75	260	<5 0.08	1	10	<1	250	7.44	<10 (0.20	435	21	0.03	8	1010	492	<0 .E	<20	20	0.01	~10	45 <10	- 21	161
B/L 10+00E 22+00N	350	2.4	1.16	45	400	<5 0.18	<1	4	<1	50	4.17	<10 (0.09 5	596	9	0.02	<1	940	218	<0	<20	30 5	0.01	<10	59 <10	21	270
B/L 10+00E 22+50N	265	2.6	1.65	80	255	<5 0.29	<1	11	<1	148	5.22	<10 (0.15	752	22	0.02	2	1140	292	<5	<20	30 5	0.01	~10	103 <10	21	273
B/L 10+00E 23+00N	75	3.6	2.36	35	205	<5 0.07	1	11	2	282	7.62	<10 (0.25	299	22	0.07	4	1450	52	<5	<20	24	0.01	~10	75 <10	21	158
B/L 10+00E 23+50N	115	3.8	2.92	35	235	<5 0.07	<1	13	4	287	7.22	<10 (0.44 3	323	22	0.06	13	800	50	<5 .r	<20	477	0.02	<10	80 <10	37	1131
B/L 10+00E 24+00N	195	3.0	2.24	65	835	<5 1.01	6	' 31	6	257	>10	130 (0.35 53	326	12	0.06	33	2290	296	<0	<20	10	0.01	<10	72 <10	<1	146
B/L 10+00E 24+50N	80	1.2	2.56	45	135	5 0.03	<1	12	6	76	7.31	<10 (0.40	394	17	0.02	14	1030	124	<0 ~F	<20	120 -	0.01	10	76 <10	21	47
1-0 - 5+50E	55	0.6	1.83	50	295	20 0.04	1	11	3	63	>10	40 (0.20	253	19	0.08	2	3370	20	<0 ~F	<20	110 -	0.01	10	84 <10	<1	47
1-0-6+00E	35	1.0	3.74	25	340	20 0.04	1	13	4	105	>10	10 (0.16	213	22	0.09	3	3240	10	<0 25	<20	01 4	0.01	10	85 < 10	<1	55
1-0 - 6+50E	40	0.6	1.81	65	340	25 0.02	1	9	1	63	>10	10 (0.08	125	16	0.11	3	2610	28	<0	<20	315	0.01	10	44 <10	<1	⊿0
L-0 - 7+00E	465	1.8	0.95	95	365	20 0.03	<1	8	<1	74	>10	30 (0.02	113	31	0.05	3	1900	52	~3	~20	32 1	0.01	10		- •	

Tao #	Au(ppb)	Ag	AI %	As	Ba	Bi Ca %	Cd	Co	Cr	Cu	Fe %	La Mg %	Mn	Mo Na%	NI P	Pb	Sb Sn	Sr Ti S	<u>6 U</u>	V W	Y	Zn
1-0-7+50E	30	1.2	1.56	80	255	5 0.03	<1	7	2	95	9.48	20 0.08	102	14 0.10	3 2320	38	<5 <20	114 <0.0	1 10	58 < 10 63 < 10	<1 <1	40 51
L-0 - 8+00E	25	2.6	2.40	60	355	<5 0.06	<1	7	3	178	7.33	20 0.15	120	16 0.06	6 2730	44	<0 <20		1 10	117 10	<1	46
L-0 - 8+50E	150	1.4	0.74	615	130	25 0.01	<1	12	9	150	>10	20 < 0.01	44 669	20 0.00	2 0090 6 2740	58	<5 <20	123 < 0.0	1 <10	75 <10	<1	85
L-0 - 9+00E	85	12.6	1.89	105	295	5 0.14	<1	17	4	230	>10	20 0.10	1004	23 0.04	14 3220	70	<5 <20	65 < 0.0	1 <10	63 <10	<1	149
L-0 - 9+50E	100	3.4	2.01	310	235	<5 0.11	<1	34	5 /1	904	>10	<10 0.20	818	15 0.04	19 1650	130	<5 <20	42 < 0.0	1 <10	52 <10	<1	428
L-0 - 10+00E	60	2.6	2.02	590	260	<5 0.13	21	42	4	179	6.57	20 0.15	346	8 0.02	8 1810	72	<5 <20) 17 0.0	1 <10	59 <10	<1	155
L-1N - 0+00E	30	2.0	1.74	290	135	30 0.03	<1	10	4	235	6.77	20 0.13	327	9 0.01	8 1760	66	<5 <20) 15 <0.0	1 <10	61 <10	<1	187
L-1N - U+50E	30	1.0	1.20	1080	225	10 0.05	<1	41	1	216	>10	40 0.08	1905	10 0.02	15 2550	214	<5 <20) 25 0.0	1 <10	52 <10	<1	413
	85	1.8	1.01	220	345	15 0.14	<1	33	2	79	>10	40 0.08 1	1303	18 0.05	17 3030	106	<5 <20) 89 < 0.0	1 <10	/3 <10	<1	1/5
1.1N - 2+00E	200	1.2	0.53	190	80	25 0.02	<1	12	<1	31	>10	60 < 0.01	339	39 0.27	3 2410	42	<5 <20) 251 < 0.0	1 <10	40 < 10	21	70
L-1N - 2+50E	170	2.4	2.54	360	180	20 0.07	<1	22	12	348	>10	50 0.42	352	45 0.23	10 4960	18	<5 <20	J 214 0.0	o 10 o ∠10	110 < 10	<1	187
L-1N - 3+00E	230	3.2	2.76	315	205	<5 0.05	<1	29	12	445	>10	20 0.51	818	24 0.07	9 3140	42	<5 <21	13 0.0 1 67 00	2 10	140 <10	<1	85
L-1N - 3+50E	335	2.6	2.90	235	270	5 0.03	<1	21	16	329	>10	20 0.62	570	27 0.11	8 2900	56	~5 <20) 07 0.0	1 10	112 <10	<1	101
L-1N - 4+50E	175	2.8	2.99	290	285	10 0.05	<1	21	12	322	>10	40 0.54	620 77	23 0.13	21 5090	122	<5 <21	390 < 0.0	1 <10	76 <10	<1	31
L-1N - 5+50E	85	1.6	0.81	340	85	20 0.03	<1	8	4	89	>10	50 0.01	113	14 0 14	3 3250	18	<5 <20	166 < 0.0	1 <10	72 <10	<1	35
L-1N - 6+00E	35	0.6	1.34	90	125	10 0.01	<1	10		111	>10	30 0.12	211	14 0.14	5 3400	46	<5 <2) 164 < 0.0	1 10	66 <10	<1	84
L-1N - 6+50E	55	1,8	1.38	130	100	5 0.02	<1 -1	14	4	277	>10	120 0.00	274	43 0.22	9 3820	934	<5 <2	299 0.0	3 <10	93 <10	<1	134
L-1N - 7+50E	80	4.4	1.55	60 60	105	<5 0.02	<1 1	10	, В	155	>10	60 0.14	169	25 0.12	5 2590	170	<5 <2	0 155 < 0.0	1 <10	99 <10	<1	76
L-1N - 8+00E	45	1.8	2.29	60 65	230	10 0.02	ł	17	1	161	>10	30 0.10	264	16 0.17	8 2350	34	<5 <2	0 175 < 0.0)1 <10	64 <10	<1	126
L-1N - 8+50E	30	0.0	0.14	45	140	<5 0.02	1	20	4	379	>10	90 0.27	265	23 0.23	8 4270	34	<5 <2	0 348 <0.0)1 <10	75 <10	<1	79
L-1N - 9+00E	40	1.4	1 13	45	230	<5 0.03	<1	7	<1	77	5.34	30 0.01	102	7 0.09	2 1850	36	<5 <2	0 68 < 0.0)1 10	58 <10	<1	54
L-IN - 9+30E	5	2.8	1 45	60	215	<5 0.08	<1	9	<1	115	7.01	20 0.07	190	10 0.04	4 2180	26	<5 <2	0 65 < 0.0	01 10	63 <10	<1	12
L-1N - 10+50E	5	0.6	1.95	45	110	5 0.07	<1	11	7	34	5.92	<10 0.32	290	6 0.02	9 1200	52	<5 <2	0 14 0.0	11 10	69 <10 92 <10	21	84
L-1N - 11+00E	20	1.0	1.41	70	105	10 0.03	<1	9	<1	36	5.32	<10 0.08	175	7 0.02	6 8/0	34	<5 <2	0 19 < 0.0	1 <10	62 < 10	2	317
L-2N - 2+50E	45	2.8	2.14	125	140	15 0.32	1	38	7	147	9.29	70 0.85	1738	17 0.02	15 3000	330	~5 <2	0 48 04	11 <10	77 <10	<1	112
L-2N - 3+00E	10	1.2	2.17	60	315	<5 0.13	1	32	5	452	9.22	40 0.26	2240	22 0.03	14 2620	70	<5 <2	0 51 < 0.0)1 <10	67 <10	3	113
L-2N - 3+50E	30	1.4	1.64	100	355	<5 0.04	<1	16	6	591	>10	80 0.14 40 0.07	800	18 0.03	9 1980	30	<5 <2	0 94 <0.0	01 <10	57 <10	<1	55
L-2N - 4+50E	110	1.4	1.16	50	140	10 0.05	<1	10	10	412	>10	20 0.35	531	18 0.15	12 3120	50	<5 <2	0 117 0.0	02 10	135 <10	<1	167
L-2N - 6+50E	235	4.6	2.15	490	220	10 0.03	×1 4	21	- 12 - 1	16	5 49	50 <0.00	21	18 0.03	10 1100	286	50 <2	0 187 <0.0	01 <10	16 < 1 0	<1	14
L-2N - 7+00E	55	<0.2	0.45	35	140	<5 0.02	4 <1	11	6	116	7 64	30 0.17	355	10 0.05	9 1930	108	<5 <2	0 65 0.	01 <10	84 <10	<1	85
L-2N - 7+50E	35	0.8	1.93	40	300	5 0.03	1		4	92	7.91	40 0.09	175	13 0.06	6 1730	104	<5 <2	0 77 <0.	01 10	80 <10	<1	68
L-2N - 8+00E	15	0.0	0.86	85	90	5 0.02	<1	14	<1	83	7.43	40 < 0.01	287	7 0.02	4 430	38	<5 <2	0 30 <0.	01 <10	23 <10	6	231
	65	22	2.33	75	300	<5 0.03	<1	12	4	182	>10	50 0.13	277	15 0.13	6 2350	44	<5 <2	0 127 <0.	01 10	// <10	<1	11
1-2N - 9+50E	75	14	3.13	65	265	<5 0.04	<1	12	4	138	9.04	20 0.16	205	11 0.07	7 1740	30	<5 <2	0 71 <0.	01 10	58 <10 70 <10	<1	/0 9/
L-2N - 10+00E	35	1.2	1.38	140	130	<5 0.05	<1	13	3	123	6.77	10 0.03	231	9 0.03	8 1540	32	<5 <2	0 37 < 0.	J1 ≤10 01 ∠10	70 < 10	21	113
L-2N - 10+50E	10	0.8	1.67	60	140	5 0.11	<1	11	5	49	6.35	10 0.25	434	6 0.02	8 2860	46	<0 <2	0 20 0.	01 \10 01 10	79 <10	<1	88
L-2N - 11+00E	5	1.6	1.30	80	115	10 0.04	1	10	<1	46	5.81	10 0.08	181	6 0.02	12 2050	40	5 27	0 20 <0. n 98 <0.	01 <10	48 <10	5	144
L-3N - 4+00E	<5	0.6	0.81	505	200	5 0.06	<1	16	4	153	9.23	70 0.03	1093	17 0.03	6 2720	92	<5 <2	0 130 <0.	01 <10	62 <10	<1	123
L-3N - 4+50E	185	0.8	0.76	240	140	15 0.01	<1	14	4	105	>10	40 < 0.01	1234	24 0.04	18 1590	168	<5 <2	0 66 <0.	01 <10	46 <10	<1	211
L-5N - 5+50E	170	1.8	1.23	265	435	<5 0.07	<1	28	<1	230	2 70	10 0.07	283	11 0.05	7 3080	26	<5 <2	0 55 <0.	01 <10	103 <10	<1	71
L-5N - 6+00E	80	6.0	2.39	200	270	<5 0.07	< I 21	22	2	525	>10	40 0.06	1152	16 0.12	13 3570	58	<5 <2	0 133 <0.	01 <10	57 <10	<1	113
L-5N - 6+50E	/5	1.4	1.73	90	205	15 0.03	<1	25	3	111	>10	70 0.04	852	15 0.12	15 3130	54	<5 <2	0 181 <0.	01 <10	64 <10	<1	112
L-5N - 7+00E	195	1.4	1.22	165	00	15 0.03	<1	17	<1	263	>10	40 < 0.01	660	16 0.10	9 2470	102	<5 <2	0 174 <0.	01 <10	39 <10	<1	117
L-5N - 7+50E	470	4.4	0.03	95	355	<5 0.10	1	21	<1	454	>10	50 0.02	885	10 0.03	25 1590	54	<5 <2	0 46 <0.	01 <10	47 <10	10	384
	125	2.9	1.95	305	505	10 0.18	<1	41	5	315	>10	30 0.29	2413	14 0.05	21 1930	108	<5 <2	20 85 <0.	01 <10	103 <10	9	250
1.5N - 9+50E	95	2.0	1 70	80	90	30 0.02	1	16	10	77	>10	30 <0.01	266	14 0.13	9 2970	52	<5 <2	220 < 0.	01 <10	52 <10	<1	130
L-5N - 10+00F	90	1.6	3.33	180	305	20 0.02	<1	12	4	65	9.95	30 0.07	296	10 0.04	7 1610	70	<5 <2	20 50 <0.	01 10	73 <10	~1	13/
L-5N - 10+50E	115	1.8	1.23	145	265	20 0.02	<1	12	<1	52	9.71	20 < 0.01	361	10 0.03	7 1580	120	<5 <2	<u>10</u> 37 < 0.	01 10	73 < 10 P2 < 10	21	69
L-5N - 11+00E	45	1.8	1.53	180	160	15 0.03	<1	8	1	37	6.94	<10 0.04	162	8 0.02	3 1040	48	<5 <4	29 < 0.	01 10	63 <10	<1	152
L-5N - 11+50E	10	1.0	1.19	205	245	5 0.01	<1	9	<1	55	7.40	10 0.04	19/	8 0.02	5 1390	3/	~5 <2	20 23 <0	01 10	79 <10	<1	93
L-5N - 12+00E	5	0.8	1.17	140	150	10 0.03	<1	11	2	38	7.45	<10 0.07	233	10 0.02	28 1010	107	<5 <	20 20 0	02 10	82 <10	<1	496
L-6N - 1+00E	180	6.2	3.59	2760	170	<5 0.36	<1	60	6	668	>10	<10 0.5/	5/Z	20 0.07	15 2420	136	<5 <	20 42 <0	01 <10	72 <10	<1	400
L-6N - 2+00E	120	5.0	0.98	255	245	20 0.05	<1	39	3	263	>10	30 0.17	10/7	18 0.03	12 2860	84	<5 <	20 66 <0	01 <10	57 <10	<1	140
L-6N - 2+50E	165	1.6	1.15	145	270	10 0.04	<1	28	ు స	194	>10	20 0.14	1288	26 0.03	25 2770	68	<5 <	20 67 <0	01 <10	64 <10	<1	159
L-6N - 3+00E	185	3.2	1.89	240	325	25 0.03	<1	49	5	127	>10	30 0.04	1019	17 0.02	25 3080	90	<5 <	20 71 <0	01 <10	59 <10	<1	202
L-6N - 3+50E	185	2.0	0.88	190	265	20 0.01	~1	30 15	15	210	>10	30 0.47	462	24 0.04	10 2780	68	<5 <	20 60 <0	01 10	77 <10	<1	111
L-6N - 4+00E	345	3.2	1.48	1/5	290	25 0.03	~1	15	13	213	- 10	00 0.47										

Construction of the

Grouped

	Tao #	Au(ppb)	Aa	AI %	As	Ba	Bi Ca %	Cd	Co	Cr	Cu	Fe %	La Mg %	Mn	Mo Na %	NI P	Pb	Sb Sn	Sr Ti % U	V W	<u>(Zn</u> 1 116
	L-6NL- 4+50E	180	1.2	2.35	130	175	10 0.03	<1	16	3	217	>10	20 0.17	603	14 0.02	12 2480	36	<5 <20	128 <0.01 <10	46 < 10 <	1 128
	L-6N - 6+00E	80	1.4	1.23	155	440	<5 0.04	<1	12	2	432	>10	50 < 0.01	373	18 0.06	10 3770	34	<5 <20	115 <0.01 <10	61 <10 <	1 125
	1-6N - 6+50E	145	0.8	1.55	170	395	20 0.03	<1	21	2	139	>10	40 0.02	/24	18 0.06	22 2020	104	<5 <20	78 < 0.01 < 10	88 <10 <	1 221
	1-6N - 7+00E	705	4.2	1.89	350	310	25 0.04	<1	61	6	562	>10	50 0.17	2694	24 0.03	32 3920	256	<5 <20	60 0.01 <10	67 <10 2	8 343
	L-6N - 7+50E	>1000	5.6	3.39	1225	295	45 2.34	<1	70	2	736	>10	70 0.31	2883	19 0.04	0 3070	64	<5 <20	67 < 0.01 10	73 <10 <	1 112
	L-6N - 8+00E	250	2.2	2.41	445	365	20 0.06	<1	10	4	161	9.79	20 0.15	308	11 0.14	7 2020	64	<5 <20	66 < 0.01 10	72 <10 <	1 113
	L-6N - 8+50E	>1000	2.0	1.78	365	240	20 0.03	<1	11	2	156	>10	20 0.06	390	14 0.07	11 2050	106	<5 <20	71 <0.01 <10	73 <10 <	1 163
	L-6N - 9+00E	170	2.4	1.50	205	340	20 0.02	<1	12	<1	130	>10	30 < 0.01	222	12 0.04	5 2540	92	<5 <20	94 <0.01 10	70 <10 <	1 114
	L-6N - 9+50E	100	1.8	0.85	170	175	15 0.10	<1	9	<1	90	>10	20 0.01	233	13 0.07	4 2500	68	<5 <20	87 <0.01 10	66 <10 <	1 115
	L-6N - 10+00E	>1000	1.4	1.61	150	120	20 0.03	<1	10	<1	80	210	40 0.10	357	8 0.05	10 2260	102	<5 <20	115 <0.01 <10	73 <10 <	1 177
	L-6N - 11+00E	30	1.4	1.56	85	420	15 0.15	<1	11	2	20	0.91	40 0.10	202	8 0.06	4 1970	56	<5 <20	138 <0.01 <10	57 <10 <	1 116
	L-6N - 11+50E	30	1.4	1.28	80	315	15 0.10	<1		<1	30	0.04	30 0.17	202	12 0.06	8 1980	102	<5 <20	126 <0.01 10	80 <10 <	1 199
	L-6N - 12+00E	50	1.0	2.32	840	405	20 0.03	<1	11	5	40	P 70	<10 0.17	350	7 0.04	8 1030	24	<5 <20	50 <0.01 10	98 <10 <	1 121
	L-6N - 12+50E	<5	1.2	2.15	450	230	15 0.09	<	14	2	-1-5	5 30	<10 0.10	287	5 0.02	7 650	8	<5 <20	19 <0.01 <10	68 <10 <	1 198
	L-6N - 13+00E	<5	0.8	1.89	115	170	<5 0.04	<1	12	3	235	5.55	30 0.12	984	21 0.03	13 2310	104	<5 <20	48 <0.01 <10	67 <10 <	1 290
	L-7N - 2+00E	60	3.4	0.93	195	245	10 0.04	- 4	20	4	233	>10	40 0.15	1629	16 0.03	16 2750	170	<5 <20	51 <0.01 <10	62 <10 <	1 265
	L-7N - 2+50E	140	6.2	1.27	260	270	20 0.10	<1	25	4	205	>10	30 0.07	669	20 0.02	16 2960	234	<5 <20	75 <0.01 10	61 <10 <	1 311
	L-7N - 3+00E	365	3.6	1.04	355	285	40 0.02	~1	2J 68	-1	355	>10	80 0.12	1872	24 0.03	27 2280	188	<5 <20	59 <0.01 <10	55 <10 <	1 311
	L-7N - 3+50E	>1000	5.2	1.45	445	200	120 0.00	<1	26	5	285	>10	40 0.07	1167	18 0.03	21 3050	120	<5 <20	57 <0.01 <10	78 <10 <	1 262
	L-7N - 4+00E	285	1.8	1.85	340	343	10 0.04	<1	- 0	ž	119	8.05	20 0.06	487	10 0.03	6 3060	28	<5 <20	30 < 0.01 < 10	54 <10 <	1 89
	L-7N - 4+50E	90	2.2	4.52	120	350	<5 0.03	<1	42	2	1553	>10	<10 0.26	1303	31 0.02	17 2750	76	<5 <20	38 < 0.01 < 10	95 < 10 <	1 192
	L-7N - 5+50E	330	5.4 4 0	1.00	240	505	5 0 25	<1	22	3	489	>10	40 0.17	1183	31 0.02	16 3240	110	<5 <20	66 < 0.01 < 10	69 <10 <	4 420
	L-/N - 6+00E	100	4.0	0.03	175	285	10 0.06	<1	20	2	144	9.87	40 0.08	992	14 0.05	12 2580	70	<5 <20	111 < 0.01 < 10	77 <10 <	4 123
	L-/N - 6+50E	75	1.0	2.08	170	110	25 0.03	<1	23	7	120	>10	60 0.11	702	16 0.13	16 3430	60	<5 <20	212 < 0.01 < 10	11 < 10 <	1 123
	L-/N - /+00E	233	0.9	1 64	140	495	10 0.11	<1	19	1	102	8.94	40 0.08	1570	10 0.05	14 2500	62	<5 <20	92 < 0.01 < 10	40 10	1 236
	L-/N - /+30E	635	4.0	1.04	370	210	30 0.04	<1	42	<1	466	>10	40 <0.01	2138	19 0.04	28 3410	154	<5 <20	84 < 0.01 < 10	64 <10	-1 171
	L-/N - 0100E	370	1.0	1.00	100	555	<5 0.15	<1	20	2	146	9.53	40 0.12	1074	9 0.03	20 2520	32	<5 <20	62 <0.01 <10	12 <10	1 142
	1 7N 9+00E	440	3.6	0.94	325	145	10 <0.01	<1	10	<1	399	>10	<10 <0.01	228	12 0.12	3 560	96	<0 <20	20 <0.01 10	134 <10	<1 178
	1-7N - 9+50E	135	0.8	1.37	215	175	10 < 0.01	<1	25	4	295	>10	20 < 0.01	1305	14 0.02	11 1340	20	<5 <20	29 < 0.01 < 10	81 <10	<1 95
	L-7N - 10+00E	45	1.0	2.17	95	445	15 0.03	<1	7	4	80	8.27	20 0.11	257	9 0.05	8 1/90	32	<5 <20	51 <0.01 <10	72 <10	<1 158
	L-7N - 10+50E	40	5.2	3.15	105	335	20 0.04	<1	17	9	66	>10	20 0.32	688	13 0.03	16 3060	32	<5 <20	59 <0.01 <10	69 < 10	<1 263
	1-7N - 11+00E	20	2.2	2.62	65	485	10 0.05	2	17	5	36	8.48	30 0.12	1364	10 0.03	14 4000	20	<5 <20	246 <0.01 <10	62 <10	<1 117
	L-7N - 11+50E	40	2.8	1.75	110	235	15 0.03	<1	10	3	24	9.98	60 0.04	342	10 0.12	7 2270	72	<5 <20	97 <0.01 <10	58 <10	<1 195
	1-7N - 12+00E	25	2.6	2.81	200	400	15 0.02	2	9	3	38	8.72	30 0.08	290	9 0.03	0 1780	12	<5 <20	40 <0.01 10	57 <10	<1 120
	L-7N - 12+50E	<5	1.8	1.20	125	165	10 0.03	<1	10	<1	42	7.02	10 0.08	231	7 0.02	6 3130	104	<5 <20	31 < 0.01 < 10	67 <10	<1 185
	L-7N - 13+00E	<5	3.0	2.15	85	180	10 0.05	<1	9	5	40	6.99	10 0.17	220	7 0.02	8 2110	40	<5 <20	18 < 0.01 < 10	69 <10	<1 204
	L-7N - 13+50E	5	2.0	2.36	65	180	10 0.05	2	10	5	32	6.79	10 0.19	240	5 0.02	9 1660	38	<5 <20	15 <0.01 <10	62 <10	<1 238
	L-7N - 14+00E	<5	3.0	2.23	85	185	5 0.08	<1	10	6	30	0.00	40 0.23	230	9 0.02	30 780	24	<5 <20	18 <0.01 <10	79 <10	13 189
	L-8N - 0+C0E	10	1.2	2 1.45	175	585	5 0.43	1	45	9	105	0.00	20 0.09	2102	13 0.02	20 1370	60	<5 <20	32 <0.01 <10	71 <10	7 252
	L-8N - 0+50E	<5	1.0) 1.54	225	490	<5 0.30	<1	39	0	100	5.41	20 0.40	1108	18 0.03	10 2250	98	<5 <20	43 <0.01 <10	66 <10	<1 290
	L-8N - 1+00E	70	3.6	5 0.91	195	255	<5 0.05	<1	27	2	229	>10	30 0.10	1025	24 0.03	14 2930	108	<5 <20	55 <0.01 <10	60 <10	<1 163
	L-8N - 2+00E	110	2.2	2 1.29	155	270	5 0.07	<1	29	ວ ຮ	200	>10	50 0.24	1255	18 0.05	22 2680	262	<5 <20	100 <0.01 <10	67 <10	<1 390
	L-8N - 2+50E	370	3.4	1.65	250	340	90 0.07	-1	17	5	174	>10	50 0.27	423	17 0.03	18 1740	208	<5 <20	53 <0.01 10	74 <10	<1 314
	L-8N - 3+00E	400	3.6	5 2.22	195	2/0	35 0.04	~1	20	7	178	>10	60 0.31	965	19 0.04	29 3040	210	<5 <20	80 <0.01 <10	74 <10	<1 358
	L-8N - 3+50E	2/5	3.4	1 2.24	210	200	20 0.07	- 21	17	2	166	>10	20 0.05	920	12 0.03	11 2570	114	<5 <20	32 <0.01 <10	62 <10	<1 187
	L-8N - 4+00E	145	2.0	1.48	270	305	20 0.04	- 1	26	1	450	>10	50 0.05	1393	14 0.02	12 2310	120	<5 <20	57 <0.01 <10	56 <10	<1 1/9
	L-8N - 4+50E	335	5.8	3 1.38	2/0	390	20 0.03	<1	10	1	245	8 92	20 0.06	350	18 0.02	8 2120	66	<5 <20	34 <0.01 <10	66 <10	<1 134
	L-8N - 5+50E	270	2.4	2 1.24	140	170	20 0.02	1	59	4	421	>10	30 0.06	1995	20 0.05	17 3550	236	<5 <20	158 < 0.01 < 10	53 <10	<1 195
	L-8N - 6+00E	905	10.0	J 1.10	290	365	10 0.02	<1	20	3	156	9,94	50 0.02	1080	13 0.03	16 2450	118	<5 <20	71 < 0.01 < 10	50 < 10	<1 184
	L-8N - 6+50E	135	1.0	D 1.12 D 2.11	100	355	15 0.09	<1	96	4	155	>10	90 0.12	4699	16 0.03	47 1970	90	<5 <20	62 < 0.01 < 10	54 <10	10 2/9
	L-8N - 7+00E	200	3.1	J J.II 9 165	85	615	20 0.21	<1	37	5	59	>10	90 0.08	3144	13 0.02	27 2790	72	<5 <20	53 < 0.01 < 10	70 <10	13 203
	L-8N - (+5UE	100	1.0 1.1	5 1.00 n 1.22	105	215	15 0.03	<1	8	<1	61	7.48	20 0.03	246	10 0.03	7 2850	36	<5 <20	55 < 0.01 < 10	64 -10	~1 135
		200	1.1 Q	0 1.22	350	170	20 0.03	<1	28	2	267	>10	30 0.03	852	14 0.04	15 2270	104	<5 <20	93 < 0.01 < 10	72 -10	21 1/1
			7	<u> </u>	1430	240	100 0.06	<1	91	4	824	>10	<10 0.25	5529	29 0.03	23 2250	182	<5 <20	J 4U U.U1 <1U	73 -10	<1 190
	L-ON - 9+UUE	2 1000 60	1	- <u>2</u> 2 2/ 1.29	225	290	25 0.01	<1	12	<1	218	>10	20 0.01	284	12 0.05	9 2240	110	<5 <20	J 85 < 0.01 10	13 510	<1 02
		110	1. 1	6 2 33	115	180	15 0.05	<1	10	3	78	9,47	10 0.07	' 454	9 0.09	5 2830	32	<5 <20) 33 < 0.01 10 > 35 < 0.01 10	72 -10	<1 154
		15	1	0 1.58	55	190	10 0.06	1	9	<1	36	6.72	10 0.08	3 300	8 0.03	9 1920	20	<5 <20) 35 <0.01 10) 35 <0.01 10	117 <10	<1 110
	1-8N - 11+50E	5	3	6 3.00	400	170	10 0.08	<1	10	5	88	8.45	<10 0.39	329	7 0.02	/ 2410	18	<5 <20	01 10.07 10	83 <10	<1 129
	L-8N - 12+00E	40	1.	0 1.85	90	165	5 0.03	<1	9	2	26	5.63	<10 0.17	192	5 0.02	o 640	30	~ J ~ 20	21 -0.01 10		20

COMPRESSION

and the second sec

NEWSON (

STREET.

Contraction of the second
									_	•	A	m- 0/	La Ma 9/	Mn	Mo Na %	Ni P	Pb	Sb Sn	Sr Ti% U	<u>v w y</u>	Zn
	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi Ca %	Cd	Co	Cr	Cu	Fe %		407	6 0.03	4 1580	38	<5 <20	46 < 0.01 < 10	60 <10 <1	94
	L-8N - 12+50E	<5	1.2	1.34	80	235	10 0.03	<1	10	2	30	0.21	20 0.07	302	6 0.02	10 2590	134	<5 <20	12 <0.01 <10	63 <10 <1	431
	L-8N - 13+00E	<5	1.6	3.33	95	145	5 0.06	2	13	2	40	5.51	10 0.15	315	5 0.02	6 1210	50	<5 <20	10 <0.01 <10	59 <10 <1	250
	L-8N - 13+50E	<5	3.2	1.89	65	110	10 0.02	2	17	28	39	7.52	<10 1.10	907	6 0.02	14 1800	22	<5 <20	11 0.01 <10	143 <10 <1	273
	L-8N - 14+00E	5	0.8	3.73	40	120	<5 0.09	<u>د</u>	26	4	268	>10	30 0.28	988	38 0.03	9 2510	106	<5 <20	53 < 0.01 < 10	59 <10 <1	143
	L-9N - 0+50E	60	2.0	1.17	1000	425	30 0.00	<1	48	9	177	>10	30 0.27	2205	15 0.03	23 1700	620	<5 <20	79 < 0.01 < 10	92 <10 6	1076
	L-9N - 1+50E	50 > 1000	4.0	0.86	1260	420	25 0.33	<1	23	2	103	>10	90 0.07	1317	12 0.03	20 1510	1150	<5 <20	173 < 0.01 < 10	52 < 10 20	720
	L-9N - 2+00E	21000	1.0 1.1	1 15	900	455	15 0.08	<1	21	3	90	>10	50 0.03	1065	11 0.02	16 2060	484	<5 <20	78 < 0.01 < 10	07 <10 <1	303
	L-9N - 2+00E	100	2.8	1 47	385	230	40 0.03	<1	15	4	110	>10	20 0.07	446	14 0.04	12 2120	230	<5 <20	82 <0.01 <10 61 <0.01 10	69 <10 <1	332
	L-9N - 3+50E	70	2.4	1.05	220	160	30 0.01	<1	12	<1	99	>10	10 0.03	451	12 0.03	9 2290	204	<5 <20	32 <0.01 <10	71 <10 <1	152
	L-9N - 4+00F	90	0.8	1.08	175	155	25 0.02	<1	9	<1	126	8.66	10 0.02	245	10 0.02	6 2070 10 2200	252	<5 <20	226 <0.01 <10	73 <10 <1	424
	1-9N - 4+50E	205	6.6	1.74	405	160	125 0.03	<1	39	6	329	>10	70 0.11	1584	19 0.07	6 1040	232	<5 <20	36 <0.01 10	65 <10 <1	161
	L-9N - 5+50E	45	1.0	0.67	160	155	15 0.05	<1	8	<1	144	7.13	<10 0.01	210	9 0.09	10 2610	148	<5 <20	50 <0.01 <10	87 <10 <1	224
	L-9N - 6+00E	305	3.4	1.68	285	330	20 0.04	<1	18	2	282	>10	10 0.08	1100	10 0.04	7 1400	56	<5 <20	31 < 0.01 < 10	63 <10 <1	110
	L-9N - 6+50E	48	1.4	1.59	120	175	25 0.01	<1	10	3	87	9,30	<10 0.14	410	10 0.02	19 2280	86	<5 <20	42 < 0.01 < 10	62 <10 <1	166
	L-9N - 7+00E	510	2.8	1.64	365	260	40 0.04	<1	44	3	384	>10	30 0.10	1552	24 0.02	14 2230	102	<5 <20	43 <0.01 <10	51 <10 <1	196
	L-9N - 7+50E	530	2.0	1.72	300	225	30 0.03	<1	29	<1	440	>10	30 0.07	1050	15 0.02	19 2360	36	<5 <20	43 <0.01 <10	67 <10 <1	135
	L-9N - 8+00E	135	0.8	2.21	85	270	25 0.06	<1	23	10	121	0 12	20 <0.01	258	11 0.01	14 2040	32	15 <20	58 <0.01 <10	61 <10 <1	102
	L-9N - 8+50E	10	0.2	0.94	240	2/5	15 0.02	<1	22	5	350	510	80 < 0.01	679	19 0.11	23 1440	36	<5 <20	133 <0.01 <10	68 <10 16	182
	L-9N - 9+00E	810	2.8	1.22	390	140	25 0.24	~1	22	2	78	6.93	<10 < 0.01	189	9 0.02	5 1010	40	<5 <20	30 <0.01 <10	70 <10 <1	85
	L-9N - 9+50E	120	0.8	0.91	130	230	25 0.01	~1	14	3	356	>10	30 < 0.01	201	14 0.06	12 2590	54	<5 <20	334 < 0.01 < 10	33 <10 <1	140
	L-9N - 10+00E	65	1.0	1.42	240	145	20 <0.02	<1	9	3	38	6.82	20 < 0.01	173	8 0.01	9 2070	50	<5 <20	27 < 0.01 < 10	61 <10 <1	
	L-9N - 10+50E	<0	20.2	0.87	50	120	10 0.03	<1	9	2	35	4.86	20 <0.01	455	5 0.02	8 1830	38	<5 <20	22 <0.01 <10	53 <10 <1	199
	L-9N - 11+00E	10	18	1.58	320	155	15 0.01	<1	10	4	64	7.28	10 0.04	320	8 0.02	9 1730	112	<5 <20	26 < 0.01 < 10	85 < 10 < 1	1 123
•	L-9N - 11+JOE	25	0.4	1.22	190	155	20 0.03	<1	9	3	53	7.39	<10 0.01	253	8 0.01	7 1840	(4	<5 <20	20 <0.01 <10	52 <10 <1	86
	1-9N - 12+50F	<5	0.6	1.31	85	130	10 0.03	<1	7	4	25	5.65	10 0.04	186	6 0.01	5 3140	30 42	<5 <20	10 <0.01 <10	69 <10 <1	86
	L-9N - 13+00E	<5	0.6	1.36	50	140	10 0.02	<1	7	5	18	5.30	<10 0.07	186	5 0.01	7 2060	46	<5 <20	11 < 0.01 < 10	67 <10 <1	1 142
	L-9N - 13+50E	<5	1.4	2.08	45	130	10 0.05	<1	8	8	19	6.55	<10 0.13	160	6 0.01	10 2570	40	<5 <20	9 <0.01 <10	64 <10 <1	504
	L-9N - 14+00E	<5	4.2	2.51	95	120	10 0.14	1	12	8	41	5.09		206	12 0.03	6 1980	104	<5 <20	55 <0.01 <10	105 <10 <1	1 235
	L-10N - 5+50E	55	0.4	1.18	230	220	35 < 0.01	<1	11	10	129	>10	<10 0.01	362	13 0.01	13 1260	88	<5 <20	19 <0.01 <10	114 <10 <1	1 261
	L-10N - 6+00E	50	2.2	2.46	1/0	135	25 0.02	~1	22	6	246	>10	10 0.08	675	14 0.02	20 1220	264	<5 <20	40 <0.01 <10	52 <10 <1	1 350
	L-10N - 6+50E	545	2.4	2.42	340	240	30 0.04	<1	26	7	203	>10	20 0.09	1224	15 0.03	14 2510	78	<5 <20	53 < 0.01 < 10	65 <10 <	1 131
	L-10N - 7+00E	400	2.0	1.00	305	280	40 0.03	<1	16	7	273	>10	<10 0.05	516	12 0.03	10 2490	76	<5 <20	68 < 0.01 < 10	56 < 10 <	1 101
	L-10N - 8+00E	130	0.2	2.02	85	220	20 0.02	<1	11	8	55	9.07	<10 0.13	313	8 0.02	8 1170	48	<5 <20	36 < 0.01 < 10	60 < 10 <	1 101
	1-10N - 9+50E	>1000	1.8	2.45	205	235	35 0.06	<1	27	6	309	>10	20 0.08	1099	16 0.03	15 2210	55	<5 <20	25 <0.01 <10	65 < 10 <	1 83
	L-10N - 10+00E	45	1.0	1.09	70	165	15 0.05	<1	9	3	91	6.50	<10 <0.01	222	8 0.01	40 1440	40	<5 <20	32 <0.01 <10	58 < 10 <	1 118
	L-10N - 10+50E	80	4.4	1.72	275	155	70 0.01	<1	13	3	247	>10	<10 0.01	493	7 0.02	6 1610	48	<5 <20	25 < 0.01 < 10	70 <10 <1	1 91
	L-10N - 11+00E	30	0.8	1.25	110	120	15 0.05	<1	9	4	63	5.70	<10 0.05	200	12 0.02	13 2070	126	<5 <20	49 < 0.01 < 10	79 <10 <	1 185
	L-10N - 11+50E	15	4.0	1.73	630	210	25 0.04	<1	1/	2	115	7 19	10 <0.01	444	7 0 02	8 1630	54	<5 <20	34 <0.01 <10	67 <10 <	1 153
	L-10N - 12+00E	5	0.6	1.13	140	155	15 0.02	~1	10	5	43	7 13	<10 0.22	470	7 0.01	8 1450	68	<5 <20	24 <0.01 <10	73 <10 <	1 108
	L-10N - 12+50E	60	2.2	1.88	445	135	10 0.09	21	14 Q	4	47	7 01	10 0.06	224	8 0.02	7 1760	90	<5 <20	45 < 0.01 < 10	58 <10 <	1 150
	L-10N - 13+50E	10	0.8	1.41	120	175	15 0.03	<1	10	2	37	5.65	<10 <0.01	270	6 0.01	7 1250	54	<5 <20	30 < 0.01 < 10	/1 <10 <	1 119
	L-10N - 14+00E	<0	1.4	0.79	120	75	15 0.04	<1	11	3	33	5.92	<10 0.03	197	6 0.01	7 1410	32	<5 <20	13 < 0.01 < 10	82 <10 <	1 170
	L-10N - 14+00E	<5	0.0	2 21	150	120	15 0.03	<1	16	9	47	7.31	<10 0.21	337	7 0.01	11 980	54	<5 <20	11 < 0.01 < 10	09 < 10 <	1 129
	L-10N - 10+00E	20	1.8	3 15	225	195	35 0.01	<1	12	11	81	>10	<10 0.14	160	12 0.05	6 1000	/8	<5 <20	23 0.01 10	71 <10 <	1 139
	L-11N - 6+00E	425	0.6	1.28	155	175	20 0.02	<1	11	4	72	7.97	10 0.02	304	9 0.02	8 1890	108	<5 <20	46 <0.01 <10	63 <10 <	1 201
	L-11N - 6+50E	135	2.8	1.34	210	305	15 0.04	<1	28	7	370	>10	20 0.11	1413	20 0.02	13 21/0	180	<5 <20	49 <0.01 <10	41 <10	3 177
	L-11N - 7+00E	485	4.4	2.85	415	220	25 0.12	<1	20	4	294	9.91	10 0.14	527	14 0.02	7 4580	88	<5 <20	35 < 0.01 < 10	54 <10 <	1 111
	L-11N - 7+50E	20	5.6	2.26	115	155	10 0.05	<1	10	1	4/	8.4/	<10 0.12	310	11 0.02	7 1670	54	<5 <20	46 < 0.01 < 10	75 <10 <	1 109
	L-11N - 8+00E	275	1.0	1.41	180	140	15 0.04	<1	11	4	163	9.11	20 <0.01	478	9 0.03	10 2080	68	<5 <20	86 <0.01 <10	61 <10 <	1 98
	L-11N - 9+00E	645	0.6	0,89	120	205	25 < 0.01	<1	10	4	566	9.00	40 0.09	4827	19 0.04	52 1960	52	<5 <20	167 <0.01 <10	55 <10	5 175
	L-11N - 9+50E	880	3.8	1.13	305	330	5 0.39	< _1	44 p	0 A	50	8 21	20 0.08	268	7 0.03	6 3100) 68	<5 <20	134 <0.01 <10	47 <10 <	1 119
	L-11N - 11+00E	25	2.8	1.01	320	300	15 0.03	<1	8	ž	22	7.36	20 0.03	662	8 0.01	7 1820) 90	<5 <20	22 < 0.01 < 10	45 < 10 <	1 148
	L-11N - 12+00E	20	1.4	. 1.43 1.179	345	110	15 0.08	<1	13	5	39	8.55	<10 0.07	482	8 0.01	7 1000) 78	<5 <20	22 <0.01 <10	99 < 10 <	1 129
	L-11N - 12+50E	5 20	0.9	1 39	105	255	10 0.01	<1	10	6	46	7.26	20 0.07	283	7 0.03	7 1770	56	<5 <20	4/ <0.01 <10	41 210 5	1 179
	L-11N - 13+50E	25	0.6	5 1.19	150	310	10 0.28	<1	11	3	42	7.36	20 0.02	750	9 0.03	7 2910	94	<5 <20	28 20 01 210	66 < 10 <	1 99
	L-11N - 14+00E	5	<0.2	1.08	100	130	5 0.06	<1	8	3	27	5.42	<10 <0.01	172	6 0.02	5 1930	, 44	<5 <20	20 50.01 510		

and a second second

		4- D-		d Co	Cr Cu Fe %	La Mot%, Mn	Mo Na %	NI P	Pb Sb Sn	Sr Ti% U	VWYZn
	AU(ppb) Ag AI %	AS Da	5 0.04 <	1 10	4 30 5.74	<10 0.04 198	6 0.02	8 1430	32 <5 <20	17 <0.01 <10	74 <10 <1 106
L-11N - 14+50E	5 04 088	115 75	5 0 07 <	1 9	3 22 5.2	<10 0.04 157	6 0.01	5 1050	36 <5 <20	17 <0.01 <10	73 <10 <1 89
L-11N - 13-00E	10 0.4 1.55	100 125	10 0.03 <	1 9	8 33 6.05	i <10 0.13 285	6 0.01	7 1930	50 <5 <20	14 0.01 <10	67 <10 <1 109
L-12N - 7+00E	15 1.6 1.95	265 285	<5 0.08 <	:1 19	7 193 5.93	<10 0.19 539	5 0.02	12 1240	120 <5 <20	24 < 0.01 < 10	4/ <10 0 130
L-12N - 7+50E	35 0.4 0.85	300 140	5 0.08 <	:1 8	7 40 5.70	<10 0.03 226	7 0.01	5 1190	58 <5 <20	4/ <0.01 <10	69 < 10 < 1 120
L-12N - 8+00E	20 1.0 1.33	125 100	10 0.02 <	:1 9	5 35 6.8	<10 0.04 383	6 0.01	5 1260	62 <3 <20	43 <0.01 <10	61 <10 <1 108
L-12N - 8+50E	60 1.2 1.54	100 170	5 0.08 <	1 9	6 98 6.97	<10 0.09 348	7 0.02	9 2380	42 <5 <20	55 < 0.01 < 10	70 <10 <1 145
L-12N - 9+00E	20 2.0 1.63	75 195	10 0.42 <	1 10	10 42 6.1	<10 0.25 452	15 0.03	23 2130	74 <5 <20	91 < 0.01 < 10	62 <10 <1 161
L-12N - 9+50E	630 3.0 1.66	295 365	30 0.22 <	(1 30 (1 8	8 25 4.8	<pre>/ 20 0.12 2707 / <10 0.13 199</pre>	4 0.01	7 970	34 <5 <20	5 < 0.01 < 10	63 <10 <1 78
L-12N - 10+00E	15 < 0.2 1.64	30 100	35 0.02 <	1 17	7 52 >10	<10 < 0.01 164	17 0.01	4 3090	86 <5 <20	24 <0.01 10	75 <10 <1 101
L-12N - 11+00E	10 0.4 1.90 6 0.6 1.38	120 233	15 0.02 <	1 9	7 25 6.3	<10 0.10 251	6 0.01	7 1540	60 <5 <20	27 0.01 <10	64 <10 <1 110
L-12N - 11+00E	10 06 193	190 195	10 0.02 <	1 11	8 27 8.3	<10 0.08 399	8 0.02	11 1580	62 <5 <20	57 <0.01 <10	64 <10 <1 187
1-12N - 12+00E	10 <0.2 1.80	65 90	10 0.13 <	1 11	10 33 6.4	<10 0.22 460	6 0.01	8 3170	48 <5 <20	10 0.01 <10	62 <10 <1 122
L-13N - 6+00E	15 1.0 2.14	120 135	5 0.09 <	:1 12	11 40 6.1	5 <10 0.28 416	6 0.01	11 1590	52 <5 <20	18 < 0.01 < 10	51 <10 <1 134
L-13N - 7+00E	5 0.8 1.34	90 120	<5 0.01 <	:1 9	6 35 5.7	<pre><10 0.06 255</pre>	6 0.01	7 940	52 <5 <20	11 0.01 <10	61 <10 <1 115
L-13N - 8+00E	5 0.2 1.26	65 145	5 0.26 <	(1 11	7 30 5.1	2 <10 0.16 714	4 0.01	8 2600	40 <5 <20	37 <0.01 <10	59 <10 <1 136
L-13N - 8+50E	60 0.6 1.47	70 140	<5 0.16 <	(1 11	8 38 5.8	3 <10 0.18 54/	5 0.01	9 1920	46 <5 <20	37 <0.01 <10	63 <10 <1 209
L-13N - 9+00E	25 0.4 1.50	115 210	10 0.25 <	1 15	13 54 6.1	2 <10 0.26 1856	12 0.03	12 2110	120 <5 <20	105 < 0.01 < 10	58 <10 <1 216
L-13N - 9+50E	550 3.6 1.49	365 330	25 0.14 <	(1 28	9 208 >1	2000.10 2000	4 0.01	5 1580	34 <5 <20	14 0.01 <10	60 <10 <1 92
L-13N - 10+00E	50 0.8 1.22	40 100	10 0.09 <	-1 12	7 47 64	1 <10 0.03 272	7 0.01	7 2380	54 <5 <20	21 0.01 <10	67 <10 <1 115
L-13N - 10+50E	90 3.6 1.35	140 120	<pre>15 0.09 </pre>	1 12	5 30 43	<10 0.07 430	4 0.01	5 1420	36 <5 <20	30 0.01 <10	63 <10 <1 103
L-13N - 11+00E	0 <0.2 1.01 15 1.4 1.33	43 120	<5 0.04 <	<1 8	7 35 5.0	<10 0.06 284	5 0.01	5 2380	42 <5 <20	9 0.01 <10	61 <10 <1 106
L-13N - 11+50E	10 06 175	75 115	10 0.08 <	<1 9	10 32 6.1	3 <10 0.12 575	6 0.01	7 4080	52 <5 <20	12 <0.01 <10	64 <10 <1 120
L-13N - 12+00E	10 <0.2 0.75	30 95	5 0.05 <	<1 5	4 18 3.4	6 <10 0.03 163	3 0.02	4 870	26 <5 <20	15 0.01 <10	61 <10 <1 60
1-13N - 13+50E	10 1.4 1.70	140 210	15 0.41	2 38	9 44 9.2	4 <10 0.16 3207	9 0.01	12 1230	62 <5 <20	79 < 0.01 < 10	64 <10 <1 412
L 18+00N 5+00E	35 3.0 1.72	220 300	<5 0.23	1 17	<1 93 6.3	6 <10 0.14 1923	15 0.05	6 1740	582 <5 <20	18 < 0.01 < 10	64 <10 <1 302
L 18+00N 5+50E	330 1.0 1.52	130 195	5 0.15	1 12	<1 85 6.3	4 <10 0.13 469	13 0.01	3 1010	222 <5 <20	20 < 0.01 < 10	65 <10 <1 277
L 18+00N 6+00E	155 2.0 1.58	75 205	<5 0.27	2 11	<1 75 5.5	3 <10 0.11 533	14 0.06	2 1240	150 <5 <20	62 0.01 <10	86 <10 <1 138
L 18+00N 6+50E	55 2.8 1.50	70 285	<5 0.42 <	<1 10	<1 272 7.6	1 <10 0.30 341	40 0.07	4 1700	110 <5 <20	57 0.02 <10	49 <10 <1 398
L 18+00N 7+00E	25 1.8 1.04	35 510	<5 0.65	/ 18	<1 90 4.0	1 <10 0.10 4022	14 0.06	11 1360	178 <5 <20	24 0.01 <10	65 <10 <1 485
L 18+00N 7+50E	15 1.6 1.77	60 320 65 300	<5 0.25	3 15	<1 306 77	4 <10 0.22 1675	44 0.06	6 2070	222 <5 <20	41 0.01 <10	72 <10 <1 430
L 18+00N 8+00E	70 3.0 1.79	50 390	<5 0.41	5 19	<1 1123 5.7	1 30 0.31 1984	15 0.05	18 2050	168 <5 <20	27 0.02 <10	49 <10 11 708
	185 7 4 1 26	100 200	<5 0.12 <	<1 26	<1 872 8.1	4 20 0.07 1681	29 0.07	2 3180	584 <5 <20	36 < 0.01 < 10	41 <10 9 271
1 18+00N 9+50E	75 82 1.28	95 270	<5 0.60 1	13 13	<1 2030 5.7	5 30 0.18 2673	10 0.06	12 1400	422 <5 <20	69 < 0.01 < 10	38 <10 28 11/9
L 18+00N 10+50E	115 26.2 2.11	500 310	<5 0.05 <	<1 14	<1 559 >1	0 <10 0.10 499	94 0.03	4 2480	338 <5 <20	54 < 0.01 < 10	67 <10 <1 701
L 18+00N 11+00E	280 4.6 1.35	115 200	<5 0.25	4 18	<1 164 7.2	1 20 0.30 2205	11 0.01	13 1610	408 <5 <20	21 0.02 < 10	49 < 10 8 1037
L 18+00N 11+50E	50 5.8 1.59	60 245	<5 0.20	2 10	<1 99 5.5	2 <10 0.24 762	10 0.01	11 1150	196 <5 <20	23 <0.01 <10	66 <10 <1 611
L 18+00N 12+00E	25 1.8 1.82	65 255	5 0.35	2 13	1 62 6.6	4 <10 0.25 853	9 0.01	8 2200 9 2570	170 <5 <20	19 <0.01 <10	60 <10 <1 450
L 18+00N 12+50E	265 3.2 2.43	170 235	<5 0.20	2 19	<1 822 >1	J < 10 0.20 1330	40 0.01	8 1980	124 <5 <20	22 < 0.01 < 10	73 <10 <1 370
L 18+00N 13+00E	95 1.8 2.35	100 220	<5 0.16	<1 14	2 169 6 4	5 <10 0.20 730	12 0.01	15 1020	148 <5 <20	15 0.02 <10	56 <10 2 314
L 18+00N 13+50E	50 1.0 1.64	00 100	<5 0.25	2 26	<1 117 67	9 <10 0.38 1777	9 0.02	22 1340	252 <5 <20	39 0.01 <10	57 <10 4 405
L 18+00N 14+00E	180 2.2 1.22	400 145	<5 0.01	<1 16	<1 231 6.2	2 <10 0.31 828	18 0.02	12 1070	254 <5 <20	17 0.01 <10	54 <10 <1 454
L 19+00N 5+00E	100 2.2 1.02	155 190	<5 0.39	6 9	<1 459 5.9	1 50 0.06 363	14 0.07	66 1970	296 <5 <20	56 <0.01 <10	43 <10 21 599
L 19+00N 6+00E	95 36 160	395 155	<5 0.03 <	<1 12	<1 195 6.7	2 <10 0.09 278	17 0.02	4 1310	398 <5 <20	21 <0.01 <10	79 <10 <1 379
1 19+00N 6+50E	20 3.4 2.14	185 180	<5 0.14	<1 16	<1 242 8.4	7 <10 0.24 321	25 0.02	6 1820	202 <5 <20	27 < 0.01 < 10	83 <10 <1 430
L 19+00N 7+00E	125 11.4 3.25	275 355	<5 0.06	1 65	<1 1196 >1	0 <10 0.13 2331	101 0.06	12 1910	720 <5 <20	12 < 0.01 < 10	68 < 10 < 1 509
L 19+00N 7+50E	70 4.0 1.72	205 135	<5 0.02 <	<1 14	<1 411 >1	0 <10 0.05 273	49 0.02	4 1190	408 <5 <20	11 < 0.01 < 10	68 <10 <1 410
L 19+00N 8+00E	50 2.6 2.12	80 285	<5 0.13	<1 14	4 146 7.7	6 <10 0.29 568	17 0.01	12 1950	184 <5 <20	8 < 0.01 < 10	64 < 10 < 1 194
L 19+00N 8+50E	40 5.4 2.05	70 115	<5 0.05	<1 9	<1 459 6.4	0 <10 0.11 239	40 0.01	<1 1000 0 1/170	424 <5 <20	17 < 0.01 < 10	58 <10 <1 634
L 19+00N 9+00E	45 8.6 2.00	65 300	<5 0.20	4 17	<1 36/ 6.4	/ <10 0.17 10/0 0 <10 0.13 /321	30 0.03	11 1390	178 <5 <20	26 < 0.01 < 10	52 <10 <1 288
L 19+00N 9+50E	10 2.4 1.99	35 225	<5 0.23	3 9 ~1 7	3 /10 67	8 10 0.13 431	11 0.02	6 1380	656 <5 <20	55 < 0.01 < 10	50 <10 <1 297
L 19+00N 10+50E		05 210	<5 0.00	~i / 7 7	<1 195 5.9	4 <10 0.05 443	10 0.01	3 1450	746 <5 <20	28 <0.01 <10	44 <10 <1 591
L 19+00N 11+00E	100 4.4 1.61 30 3.4 1.73	90 200 80 170	<5 0.00	3 11	7 144 5.5	5 <10 0.24 933	8 0.01	14 1180	360 <5 <20	19 <0.01 <10	48 <10 <1 1055
	15 1 1 1 1	40 205	10 0.24	3 10	7 54 5.2	8 <10 0.28 608	6 0.01	11 1230	162 <5 <20	24 <0.01 <10	52 <10 <1 612
1 19+00N 12+00E	10 14 159	40 285	5 0.37	2 11	6 100 5.5	8 <10 0.21 865	11 0.01	10 1560	104 <5 <20	33 < 0.01 < 10	56 <10 <1 626
L 19+00N 13+00E	60 2.0 0.98	110 460	15 0.28	1 8	1 103 8.9	2 <10 0.10 787	28 0.02	5 1910	90 <5 <20	57 <0.01 <10	50 <10 <1 221

(2)

 \square

 \square

 (\Box)

CED

					/.		D 1 D - 01	~		<u> </u>	C 11	5o %	la Mri%	Mn	Mo Na%	Ni P	Pb	Sb Sn	Sr Ti <u>%</u> U	<u>v w y</u>	<u>Zn</u>
	Tag #	Au(ppb)	Ag	<u>AI %</u>	As	Ba	Bi Ca %	Ca	00	Gr	<u> </u>	re 70		7 001	6 0.01	12 1480	134	<5 <20	23 < 0.01 < 10	47 <10 <1	258
	L 19+00N 13+50E	5	1,0	1.16	30	260	10 0.23	3	9	6	45	4.24	<10 0.2	2427	6 0.07	17 2080	164	<5 <20	46 0.01 <10	54 <10 <1	511
	L 19+00N 14+00E	15	3.2	1.57	55	585	<5 0.57	3	1/	9	14	0.10	40 0.20	1 1210	8 0.02	15 990	162	<5 <20	35 0.01 <10	49 <10 4	341
	L 19+00N 14+50E	20	5.0	1.38	40	270	<5 0.33	1	12	8	101	4.80	-10 0.3	1560	4 0.01	11 1670	52	<5 <20	49 0.01 <10	44 <10 <1	403
	L 19+00N 15+00E	5	1.8	1.03	10	295	10 0.65	4	10	5	25	3.1Z	10 0.2	2 2017	6 0.01	13 1390	330	<5 <20	15 0.01 <10	49 <10 3	500
	L 19+00N 15+50E	30	6.8	1.34	60	155	5 0.20	2	13		262	0.17 7 10	20 0.2	7 1337	14 0.02	14 1230	334	<5 <20	66 <0.01 <10	44 <10 10) 394
	L 19+00N 16+00E	105	10.6	1.47	75	235	<5 0.56	<1	16	4	202	1.20 E 17	10 0.2	1 1/82	6 0.01	19 880	236	<5 <20	30 0.01 <10	54 <10 12	2 547
	L 19+00N 16+50E	25	5.4	1.63	50	170	<5 0.37	<1	14	11	110	5.47	<10 0.4	4 589	12 0.01	11 920	156	<5 <20	33 <0.01 <10	72 <10 <1	355
	L 20+00N 5+00E	15	2.0	1.82	130	235	<5 0.39	1	14	5	600	7 90	<10 0.2	7 1420	29 0.02	9 2100	528	<5 <20	49 0.01 <10	51 <10 <1	391
	L 20+00N 5+50E	150	5.6	1.37	105	295	<5 0.23	1	10	21	114	5.24	10 0.1	7 301	16 0.01	2 980	360	<5 <20	30 <0.01 <10	47 <10 <1	310
	L 20+00N 6+00E	30	2.8	1.12	55	175	<5 0.16	1	47	7	114	6.00	<10 0.0	623	22 0.01	15 1220	316	<5 <20	16 <0.01 <10	58 <10 <1	l 311 ·
	L 20+00N 6+50E	80	4.4	2.67	135	195	<5 0.06	< 1 - 1	1/	4	101	631	<10 0.2	7 592	25 0.01	6 1160	160	<5 <20	24 <0.01 <10	64 <10 <1	200
	L 20+00N 7+00E	55	3.0	1.92	55	205	<5 0.11	<1	10	4	1164	510	<10 0.1	R 797	71 0.03	10 2390	120	<5 <20	43 0.01 <10	102 <10 7	7 206
	L 20+00N 7+50E	155	6.8	3.73	140	340	<5 0.08	< 1 - 1	20	4	197	6.26	<10 0.0	1 324	34 0.02	8 1370	188	<5 <20	32 <0.01 <10	65 <10 <1	200
	L 20+00N 8+00E	60	1.4	1.67	55	205	<5 0.15	<1	10	4	10/	7 10	<10 0.2	0 686	24 0.01	17 1100	522	<5 <20	18 0.01 <10	54 <10 1	1 290
	L 20+00N 8+50E	180	3,8	2.44	90	175	<5 0.03	<1	20	10	4544	1.15 >10	20 0.0	e 1750	41 0.02	8 2610	1270	<5 <20	42 0.01 <10	69 <10 <1	1 558
	L 20+00N 9+00E	390	14.6	1.52	155	340	<5 0.05	<1	25	2	1544	210	20 0.1	7 218	8 0.01	2 1140	264	<5 <20	16 <0.01 <10	45 <10 <1	1 240
	L 20+00N 9+50E	15	6.2	1.14	40	130	<5 0.13	1	5	<1	74	4.10	10 0.0	n 642	12 0.02	14 1080	354	<5 <20	28 0.01 <10	47 <10 3	3 333
	L 20+00N 10+50E	85	2.4	1.34	65	175	<5 0.09	1	12	6	231	5.74	10 0.3	6 6617	17 0.01	24 1640	440	<5 <20	26 0.02 <10	56 <10 16	6 1435
	L 20+00N 11+00E	85	8,8	2.34	85	420	<5 0.12	12	25	13	1088	1.01	10 0.2	6 0017 6 057	6 0.01	7 720	128	<5 <20	26 < 0.01 < 10	51 <10 < 1	1 472
	L 20+00N 11+50E	115	1.0	1.23	30	160	<5 0.15	2	6	2	108	3.82	<10 0.1	7 200	6 0.01	7 690	64	<5 <20	9 <0.01 <10	51 <10 <1	1 228
	L 20+00N 12+00E	35	0.2	1.17	20	115	5 0.10	<1		3	40	3,98	<10 0.1	1 223	0 0.01	13 1170	188	<5 <20	15 < 0.01 < 10	59 <10 <1	1 382
	L 20+00N 12+50E	95	1.2	1.92	45	175	<5 0.11	1	11	9	109	5.37	<10 0.2	0 334	4 0.01	11 1050	50	<5 <20	18 0.01 <10	62 <10 <1	1 199
	L 20+00N 13+00E	15	0.8	1.53	20	190	<5 0.18	<1	9	(40	4.50	<10 0.2	9 402	8 <0.01	7 910	156	<5 <20	17 <0.01 <10	59 <10 <1	1 274
	L 20+00N 13+50E	40	0.8	1.21	50	220	<5 0.19	<1	10	2	78	5,43	<10 0.1	0 049	20 0.01	13 1330	144	<5 <20	56 0.02 <10	28 <10 12	2 356
	L 20+00N 14+00E	210	5.8	0.71	80	615	<5 0.64	<1	14	3	3/6	6.40	40 0.1	0 2500	7 0.01	10 1160	320	<5 <20	21 < 0.01 < 10	37 <10	8 672
·	L 20+00N 14+50E	45	3.6	0.86	85	305	<5 0.31	2	12	<1	102	5.30	40 0.1	0 2000	5 0.01	17 1110	58	<5 <20	30 0.02 <10	59 <10 <	1 200
	L 20+00N 15+00E	20	0.6	1.75	25	130	<5 0.29	<1	12	12	40	4.75	<10 0.4	6 1022	4 0.01	17 1330	86	<5 <20	19 < 0.01 < 10	57 <10	3 401
	L 20+00N 15+50E	15	3.8	1.94	20	90	<5 0.29	<1	11	12	110	4.10	<10 0.5	6 1136	7 0.01	22 940	314	<5 <20	20 0.02 <10	55 <10	3 264
	L 20+00N 16+00E	70	1.2	1.68	45	160	10 0.24	<1	14	12	20	0.00	<10 0.4	4 1004	5 0.01	13 2700	102	<5 <20	17 0.02 <10	59 <10 <	1 324
	L 20+00N 16+50E	10	1.0	1.52	20	220	10 0.30	2	12	8	29	0.21	<10 0.0	0 791	4 0.01	9 1490	64	<5 <20	20 0.01 <10	50 <10 <	1 171
	L 20+00N 17+00E	5	0.8	1.07	15	190	10 0.25	1	8	4	20	4.11	<10 0.2	7 1455	6 0.01	12 1740	152	<5 <20	20 0.01 <10	53 <10 <	1 285
	L 20+00N 17+50E	35	1.2	1.25	45	200	<5 0.20	2	12	5	01	0.00	<10 0.2	0 540	4 <0.01	12 1100	50	<5 <20	15 0.01 <10	57 <10 <	1 244
	L 20+00N 18+00E	5	1.8	1.49	25	130	10 0.20	1	9		24	4.04	<10 0.2	040	7 <0.01	4 1530	484	<5 <20	7 <0.01 <10	45 <10 <	1 748
	L 20+00N 18+50E	30	2.2	1.30	255	130	10 0.12	<1	8	<1	19	6.23	<10 0.0	11 940	6 <0.01	7 1550	318	<5 <20	13 <0.01 <10	49 <10 <	1 702
	L 20+00N 19+00E	40	<0.2	0.96	115	125	10 0.13	<1	9	<1	22	5.31	<10 0.0	2 2233	6 <0.01	7 1880	318	<5 <20	16 <0.01 <10	50 <10 <	1 686
	L 20+00N 19+50E	15	1.2	1.19	80	195	10 0.25	3	12	3	40	5.25	<10 0.	N 600	5 <0.01	5 960	262	<5 <20	19 <0.01 <10	56 <10 <	1 372
	L 20+00N 20+00E	300	0.6	0.99	50	175	5 0.23	2	8	<1	10	5.05	<10 0.0	01 003	13 0.02	11 1080	180	<5 <20	29 <0.01 <10	93 <10 <	1 346
	L 21+00N 5+00E	35	1.2	2.13	140	255	15 0.07	<1	14	4 7	130	1.01	<10 0.2	A 270	20 0.02	18 1510	316	<5 <20	36 <0.01 <10	79 <10 <	1 270
-	L 21+00N 5+50E	30	3.8	3.29	165	400	<5 0.09	<1	15	1	301	9.23	<10 0.	12 165	36 0.02	12 2290	188	<5 <20	37 <0.01 <10	93 <10 <	:1 187
	L 21+00N 6+00E	40	6.6	3.33	235	295	<5 0.13	<1	-21	8	407	>10	<10 0	12 400	67 0.03	11 2310	190	<5 <20	49 <0.01 <10	88 <10 <	1 209
	L 21+00N 6+50E	270	8.0	3.42	210	260	<5 0.07	<1	19	5	609	>10	<10 0.	01 251	71 0.03	8 1790	358	<5 <20	35 < 0.01 10	74 <10 <	1 289
	L 21+00N 7+00E	215	5.2	2.55	95	265	<5 0.02	<1	13	10	1077	>10	<10 0.4	11 718	86 0.04	11 2540	252	<5 <20	88 0.03 <10	124 <10 <	:1 145
	L 21+00N 7+50E	285	6.8	2.78	130	4/0	<5 0.08	<1	19	12	574	>10	<10 0.4	10 381	60 0.02	5 2270	426	<5 <20	37 <0.01 <10	84 <10 <	:1 351
	L 21+00N 8+00E	255	6.0	2.14	90	300	<5 0.09	1	11	<1	107	- 10 E 44	<10 0.0	17 270	12 0.01	5 1220	302	<5 <20	26 <0.01 <10	50 <10 <	:1 268
	L 21+00N 8+50E	60	3.4	1.52	55	230	<5 0.08	<1		- 4	127	9.00	10 0.	11 270	28 0.03	4 2110	608	<5 <20	130 <0.01 <10	46 <10	1 426
	L 21+00N 9+00E	190	3.4	1.00	120	180	<5 0.10	<1	14		330	5.99	<10 0.0	13 310	100 0.04	3 2310	296	<5 <20	114 <0.01 <10	55 <10 <	:1 339
	L 21+00N 9+50E	260	3.0	1.22	80	200	<5 0.02	<1	10	<1	300	>10	<10 0.0	DJ JJO DA ARR	59 0.05	16 1930	232	<5 <20	119 0.01 <10	66 <10 <	<1 330
	L 21+00N 10+50E	255	3.4	1.76	85	215	<5 0.07	<1	15	7	402	5 02	<10 0.1	23 300	10 0.01	14 1390	182	<5 <20	25 <0.01 <10	50 <10 <	<1 330
	L 21+00N 11+00E	15	2.6	1.68	40	220	<5 0.15	2	11		102	3,02	<10 0.	16 344	14 0.01	6 1060	160	<5 <20	27 <0.01 <10	50 <10 <	<1 262
	L 21+00N 11+50E	25	1.8	1.41	40	280	<5 0.10	1		<1	149	4.70	<10 0.	0 344	16 0.01	9 1050	172	<5 <20	14 <0.01 <10	55 <10 <	<1 359
	L 21+00N 12+00E	65	3.6	1.75	50	195	<5 0.08	1	11		159	4.97	<10 0.	24 131	6 0.01	13 1100	160	<5 <20	12 <0.01 <10	53 <10 <	<1 267
	L 21+00N 12+50E	20	1.6	1.59	30	125	10 0.09	<1	10		67	5.09	<10 0.	14 JOZ	12 0.01	6 980	776	<5 <20	31 < 0.01 < 10	37 <10 <	<1 486
-	L 21+00N 13+00E	75	4.0	0.93	80	190	<5 0.04	<1	8	<1	183	5.17	20 0.	11 009		8 1620	166	<5 <20	26 < 0.01 < 10	55 <10 <	<1 383
	L 21+00N 13+50E	240	1.2	1.61	40	305	10 0.28	2	12	4	33	5.49	<10 0.	10 1000		8 1640	167	<5 <20	16 < 0.01 < 10	56 <10 <	<1 397
	L 21+00N 14+00E	15	3.2	1.88	40	240	15 0.07	1	11	5	28	0.67	<10 0.	10 009		10 1/60	202	<5 <20	12 < 0.01 < 10	70 <10 <	<1 474
	L 21+00N 14+50E	10	0.6	1.73	35	175	15 0.15	1	11	6	24	6.07	<10 0.	10 010		11 1520	, <u>2</u> 02 1 82	<5 <20	10 0.01 <10	52 <10 <	<1 325
	L 21+00N 15+00E	10	1.8	1.50	25	205	5 0.11	1	9	6	20	4.56	<10 0.	20 1109	7 4 U.UI	11 1000	176	<5 <20	16 <0.01 <10	60 < 10 <	<1 570
	L 21+00N 15+50E	10	1.0	1.59	45	135	15 0.19	2	10	6	33	5.24	<10 0.	20 483		g 1020	200	<5 <20	10 0.01 <10	61 <10 <	<1 448
	L 21+00N 16+00E	5	1.2	1.37	80	80	10 0.12	1	9	3	26	4.96	<10 0.	21 292		7 1050	, 220	<5 <20	8 0.01 <10	60 < 10 <	<1 409
	L 21+00N 16+50E	25	1.0	1.19	80	70	15 0.11	1	8	1	22	4.56	<10 0.	14 23/	5 0.01	10 01	, 222	<5 <20	12 < 0.01 < 10	49 <10 <	<1 706
	L 21+00N 17+00E	15	5.8	1.54	70	165	10 0.16	1	10	3	31	4.14	<10 0.	20 11/9	5 5 40.01	10 310	, 200				

CT

an make

Cara and

Caller,

THE PARTY OF

CIID

(1)

 (\Box)

Casher

and the second

									Ľ.		C.	12)	Ei		EB	IJ		دعتيني	J			an a		ينين (L ateria
																			_			о- ті		V W		Zn
	Tag	#	Au(ppb)	Ag	AI %	As	Ba	Bi Ca %	Cd	Co	Cr	Cu	Fe %	La M	<u>g %</u>	Mn	Mo Na %	NI 46	P	108	<u>5 <20</u>	17 <01	$\frac{70}{1} < 10$	45 <10	<1	347
	L 21+00N 17	+50E	35	1.6	0.75	50	155	5 0.20	3	10	<1	28	5.25	10 (0.04 n ng	821 602	7 <0.01 5 <0.01	4 10	40	152	<5 <20	16 < 0.0	01 <10	51 <10	<1	279
	L 21+00N 18	+00E	25	1.0	0.84	30 25	190	10 0.19	4 3	9	<1 7	26	4.12	<10	0.29 1	1441	4 0.01	12 15	90	74	<5 <20	23 0.0)1 <10	50 <10	<1	330
	L 21+00N 18	8+50E	<5 <5	1.2	1.30	20 35	330	<5 0.29	3	7	<1	26	3.62	20	0.09	823	3 0.01	68	90	134	<5 <20	29 <0.	01 <10	45 <10	4	34/
	L 21+00N 19	+50E	~5 <5	0.4	1.40	30	190	10 0.20	<1	9	4	28	4.76	<10	0.29	348	4 < 0.01	10 18	50	58	<5 <20	16 0.1	J1 <10 11 <10	59 < 10	<1	206
	L 21+00N 20)+00E	<5	0.4	1.11	25	220	10 0.16	<1	8	2	20	4.70	<10	0.18	455	5 0.01	8 11	80 30	62 64	<5 <20	24 <0.	01 <10	111 <10	<1	118
	L 22+00N 5+	-00E	5	1.6	2.75	115	215	15 0.06	<1	15	7	115	>10	<10 <10	0.29	248 410	16 0.02	10 13	50	124	<5 <20	31 < 0.	01 <10	73 <10	<1	184
	L 22+00N 5+	-50E	25	1.8	2.18	75	165	<5 0.18	<1	13	10 10	960	7.84	<10	0.22	485	23 0.02	17 12	60	362	<5 <20	44 0.	01 <10	66 <10	<1	156
	L 22+00N 6+	HOOE	140	4.0	2.37	135	255	<5 0.03	<1	15	10	955	7.65	<10	0.41	498	21 0.02	16 12	00	364	<5 <20	46 0.	01 <10	64 <10	<1	154
	L 22+00N 6+	+00E	165	17.8	4.81	115	255	<5 0.04	1	17	31	1067	>10	<10	1.12	215	56 0.04	8 15	80	82	<5 <20	111 U.	14 10	132 <10	<1	62
	L 22+00N 7+	+50E	85	2.2	2.55	30	205	<5 0.02	<1	11	10	358	9.02	<10	0.58	124	44 0.03	3 12	270	44 564	<5 <20	40 0.	01 <10	95 <10	<1	135
	L 22+00N 8+	+00E	330	7.2	2.43	120	240	<5 0.03	<1	13	5	512	>10	<10	0.18	236	119 0.03	7 23	900	170	<5 <20	42 < 0.	01 <10	65 <10	<1	217
	L 22+00N 8+	+50E	100	6.8	2.19	85	305	<5 0.03	<1	13	<1 ~1	308	>10	<10	0.00	552	17 0.02	4 22	30	806	<5 <20	60 <0.	01 <10	55 <10	<1	251
	L 22+00N 9+	+00E	110	8.2	2.01	120	415	<5 0.02	1	11	<1	329	8.49	<10	0.08	1047	23 0.04	5 21	80	548	<5 <20	100 <0.	01 <10	46 <10	<1	288
	L 22+00N 94	+505	365 365	4.0	0.93	130	110	15 < 0.01	<1	6	<1	132	>10	<10 <	0.01	47	13 0.06	<1 14	60	1710	<5 <20	254 <0.	01 <10	/6 <10	<1	132
	L 22+00N 10	1+00E	785	5.8	1.97	85	425	<5 0.04	<1	7	2	256	>10	<10	0.11	357	13 0.03	5 25	510	690	<5 <20	88 <u.< td=""><td>01 <10</td><td>76 <10</td><td><1</td><td>531</td></u.<>	01 <10	76 <10	<1	531
	L 22+00N 1	1+50E	650	18.0	2.91	135	390	<5 0.04	<1	13	6	808	>10	<10	0.16	782	116 0.03	10 23	900 ·	1528	<5 <20	58 <0	01 <10	52 < 10	<1	219
	L 22+00N 12	2+00E	210	9.0	1.26	105	300	<5 0.11	<1	4	<1	180	6.44	<10	0.09	233	40 0.02	6 14	160 160	324	<5 <20	26 < 0	01 <10	46 <10	<1	253
	L 22+00N 12	2+50E	40	3.6	1.30	60	220	5 0.07	<1	1	2	118	5.41 739	<10	0.10	502	14 0.02	5 1	560	454	<5 <20	77 <0	01 <10	49 <10	<1	329
	L 22+00N 1	3+00E	70	5.2	1.08	95	310	<5 0.09	<1	12	4	59	4 50	<10	0.26	1193	5 0.01	10	300	188	<5 <20	36 0.	02 <10	46 <10	<1	293
	L 22+00N 1	3+501	10	1.2	1.04	35 40	235	10 0.45	<1	14	11	60	6.02	<10	0.50	1044	10 0.01	17 1	570	124	<5 <20	25 0	01 <10	61 <10	<1	2/5
	L 22+00N 1	4+00E 4+50F	5	2.6	2.11	20	175	10 0.17	1	10	15	31	5.76	<10	0.40	367	6 0.01	18 2	570	64	<5 <20	11 <0 35 0	01 < 10	48 <10	<1	347
	L 22+00N 1	5+00E	65	1.6	1.82	60	170	<5 0.06	<1	12	10	100	6.31	<10	0.38	631	9 0.01	20	300	234 282	<5 <20	27 <0	01 <10	53 <10	<1	298
	L 22+00N 1	5+50E	25	2.6	1.68	65	155	5 0.07	<1	13	3	61 60	6.44 5.42	<10	0.17	320	8 < 0.01	5 1	110	216	<5 <20	9 <0	01 <10	58 <10	<1	236
	L 22+00N 1	6+00E	<5	2.2	1.50	45	95 115	<5 0.05	<1 2	7	<1	31	4.39	<10	0.09	400	5 < 0.01	5 1	380	136	<5 <20	14 0	.01 <10	55 <10	<1	205
	L 22+00N 1	6+50E	45	1.0	1.00	25 25	140	5 0.09	<1	8	3	22	4.36	<10	0.17	507	5 <0.01	8 1	410	116	<5 <20	8 0	.01 <10	52 <10	<1	1/0
1. 4	L 22+00N 1	7+00E 7+50E	<5	2.0	1.18	55	260	5 0.04	1	6	<1	70	6.95	10	0.01	525	9 0.01	<1 2	160	240	<5 <20	22 <0	01 < 10	47 <10	<1	350
	L 22+00N 1	8+00E	30	1.4	1.33	90	255	<5 0.16	1	6	<1	51	5.44	<10	0.06	393	/ <0.01	3 1	200	250	<5 <20	33 <0	01 <10	56 <10	<1	675
	L 22+00N 1	8+50E	5	3.0	1.25	65	175	10 0.32	4	9	<1	33	5.05	<10	0.15	583	5 < 0.01	13 1	200	102	<5 <20	9 0	.01 <10	51 <10	<1	290
	L 22+00N 1	9+00E	<5	0.6	1.42	35	115	10 0.18	<1 2	10	7	37	5.08	<10	0.33	803	5 < 0.01	12	930	210	<5 <20	15 <0	.01 <10	52 <10	<1	712
	L 22+00N 1	9+50E	25	0.2 6.8	1.94	150	210	15 0.12	<1	11	<1	88	9.47	<10	<0.01	1881	14 0.01	42	520	752	<5 <20	17 <0	.01 <10	60 <10	<1	65U 172
	L 22+00N 2	0+00E	5	2.4	3.21	90	285	15 0.05	<1	13	7	80	>10	<10	0.30	254	37 0.03	52	560	150	<5 <20	41 <0	.01 10	99 < 10	<1	222
	L 23+00N 5	5+50E	115	3.8	1.43	335	190	135 0.07	<1	29	4	208	>10	<10	< 0.01	306	465 0.03	12 2	050	54	<5 <20		01 <10	74 <10	<1	162
	L 23+00N 6	6+00E	15	2.2	2.59	310	295	<5 0.04	<1	30	10	369	>10	<10	0.16	543	34 0.00	14 2	410	76	<5 <20	33 <0	.01 <10	96 <10	<1	217
	L 23+00N 6	6+50E	45	2.2	2.38	240	250	<5 0.07	<1	24	6	322	>10	<10	0.14	420	44 0.01	18 2	360	110	<5 <20	9 <0	.01 10	104 <10	<1	189
	L 23+00N 7	+00E	230	4.6	2.89	235	145	<5 0.05	<1 <1	15	5	127	8.29	<10	0.23	414	14 0.02	11 1	690	134	<5 <20	33 <0	.01 <10	74 <10	<1	162
	L 23+00N 7	+50E	385	9.Z	1.00	310	370	<5 0.04	<1	30	2	440	>10	<10	0.09	2869	17 0.01	83	230	290	<5 <20	50 <0	01 <10	49 <10	<1	323
	1 23+00N 8	3+50E	760	>30	0.51	330	175	40 0.01	<1	22	<1	341	>10	<10	<0.01	2418	19 0.03	44	440	1916	85 <20	139 <0	01 10	66 <10	<1	166
	L 23+00N 9	9+00E	410	12.8	0.70	170	130	20 <0.01	<1	12	<1	298	>10	<10	<0.01	233	90 0.08	<1 3	200	10/0	<5 <20	27 <0	01 <10	67 <10	<1	135
	L 23+00N 9	9+50E	60	2.8	2.50	45	245	10 0.02	<1	11	8	130	9.54	<10	0.20	490 269	31 0.02	6 1	840	84	<5 <20	39 <0	.01 <10	73 <10	<1	204
	L 23+00N 1	0+50E	35	2.2	1.79	55	215	<5 0.15	<1	9	- 1 - 1	200	7.00	<10	0.10	87	70 0.04	<1 1	200	54	<5 <20	97 <0	.01 <10	67 <10	<1	84
	L 23+00N 1	11+00E	540	1.8	1.06	40	350	<5 0.02	<1	10	3	374	7.33	<10	0.12	1045	57 0.01	6 1	350	432	<5 <20	54 <0	0.01 <10	59 <10	<1	403
	L 23+00N 1	11+50E	435	13.0	1.80	95	205	<5 0.02	<1	7	<1	866	>10	<10	0.02	208	142 0.05	<1 2	030	1030	<5 <20	126 <0	0.01 <10	27 <10	<1 	330
	L 23+00N 1	12+00E	-50	4.2	1.15	160	540	<5 0.60	12	9	<1	158	6.18	<10	0.12	1944	13 0.01	5 1	250	688	<5 <20	105 <0	0.01 <10	36 <10	1 <1	516
	L 23+00N 1	13+00E	50	4.8	1.16	50	675	5 0.05	3	4	<1	60	4.65	<10	0.08	794	8 0.01	12 1	450	132	<5 <20	53 <	0.01 <10	47 <10	, <1	176
	L 23+00N	13+50E	40	3.0	1.68	40	350	<5 0.06	<1	8	6	131	5.93	<10 <10	U.∠8 ∩ 13	213	4 < 0.01	4	400	30	<5 <20	4 <	0.01 <10	51 <10	<1	64
	L 23+00N 1	14+00E	20	0.6	5 1.07	15	65	<5 0.08	<1 ~1	а С	<1 21	34 17	3 40	<10	0.13	835	3 < 0.01	2	960	78	<5 <20	7 <).01 <10	49 <10) <1	107
	L 23+00N 1	14+50E	<5 405	2.0	0.91	10 50	135	<5 0.03	<1	6	3	139	7.00	<10	0.08	321	10 0.01	3 ′	630	844	<5 <20	11 <	0.01 <10	59 <10) <1 +	168
	L 23+00N	15+50E	5	2.2	2.1	15	100	10 0.08	<1	8	9	24	6.24	<10	0.20	246	6 0.01	9	290	36	<5 <20	9<	JUT <10	12 <10 20 -10	/ 51 } <1	1294
	L 23+00N	16+00E	>1000	13.2	2.01	230	105	<5 0.03	<1	10	<1	447	>10	<10	<0.01	2566	15 0.01	<12	230	1982	<5 <20	40 <	01 <10	71 <10) <1	113
	L 23+00N	16+50E	<5	3.6	6 1.57	35	190	<5 0.04	<1	7	<1	234	8.52	<10	0.11	332	9 U.U1 8 <0.01	4 4 9 1	3570	146	<5 <20	2	0.01 <10	59 <10) 4	277
	L 23+00N	17+00E	5	3.6	2.86	40	75	<5 0.04	<1	15	16	141	1.04	<10	0.23	351	6 < 0.01	7	890	88	<5 <20	3 <	0.01 <10	61 <10) <1	256
	L 23+00N	17+50E	<5	0.8	3 1.53	35	70	<5 0.05	51	d	5	141	0,00	-10	0.20											

()

ard	ay de sent		American	1	3	C						ED		Ð		ſ	BIEAS)				(initial)		C 3	D		
		Contraction and the	- Constanting																							
																	; 	ы: В	Dh	6 h 61	n Sr	τi%, U	vw	Y	Zn	
· ·	Taj	g #	Au(ppb)	Ag	AI %	As	Ba	Bi Ca %	Cd	Co	Cr	<u>Cu</u>	Fe %	<u>La Mg 9</u>	<u>6 Mn</u> 1 593	MO	<u>o Na%</u> 6 0.01	5 1130	262	<5 <20	0 15	<0.01 <10	54 <10	<1	254	
	L 23+00N 1	8+00E	<5	2.2	1.28	40 50	175 255	<5 0.10 <5 0.24	1 2	ь 10	<1 7	70 78	4.94 5.68	<10 0.1	4 1783	s e	6 0.01	11 870	276	<5 <2	0 21	<0.01 <10	53 <10	1	811	
	L 23+00N 1	8+50E 9+00E	20 75	4.4	1.45	70	150	10 0.08	1	5	<1	46	5.72	<10 0.0	2 345	5 6	6 0.01	<1 1430	858	<5 <2	09	<0.01 <10	58 < 10	<1	549	
	L 23+00N 1	9+50E	<5	2.0	1.94	30	90	<5 0.09	1	7	5	50	4.67	<10 0.2	3 533 0 3080	5 E	6 < 0.01	6 1880	3526	<5 <2	0 15	<0.01 <10	56 <10	<1	845	
	L 23+00N 2	0+00E	50	8.4	1.57	65	130	5 0.14	4 ~1	11 7	1 10	97 17	5.18	<10 0.1	6 210	, ; :	5 < 0.01	10 1760	40	<5 <2	0 2	0.01 <10	83 <10	<1	63	
	L 24+00N 5	+00E	<5	0.2 <0.2	1.61	15 35	90 90	5 0.04	<1	9	11	33	5.69	<10 0.3	6 299)	7 0.01	12 1700	46	<5 <2	0 7	<0.01 <10	64 <10	<1 <1	80	
	1 24+00N 6	+00E	<5	0.6	2.31	25	75	10 0.09	<1	9	16	27	6.42	<10 0.3	8 262	2	7 0.01	15 2810	30	<5 <2	0 3 0 13	<0.01 <10	57 < 10	<1	114	
	L 24+00N 6	+50E	<5	5.2	1.83	130	130	15 0.01	<1	7	<1	47	7.39	<10 0.0	9 206		9 0.01	1 1620	90	<5 <2	0 15	<0.01 <10	63 <10	<1	91	
	L 24+00N 7	+00E	5	1.6	1.47	75 40	155	10 0.02	<1 <1	7	<1	33	5.82	<10 0.0	3 214	í i	8 0.01	1 1340	74	<5 <2	0 29	<0.01 <10	59 <10	<1	83	
	L 24+00N 7	+50E	<5 5	1.0	1.30	40 60	370	15 0.03	<1	10	<1	29	7.91	20 < 0.0	1 432	2 1	0 0.02	2 1600	60	<5 <2	0 88	<0.01 <10	38 <10	<1 <1	/4 190	
	L 24+00N 8	+50E	405	6.0	0.97	530	210	<5 0.02	<1	17	<1	408	>10	<10 <0.0	1 521	1 3	6 0.02	2 1770	4/6 576	<5 <2	0 110	<0.01 <10	46 < 10	<1	210	
	L 24+00N 9	+00E	135	4.6	0.76	185	260	<5 0.02	<1	11	<1	272	>10	<10 <0.0	1 446 3 231	5 4 1 7	18 0.02 14 0.18	3 3070	1886	<5 <2	0 163	<0.01 10	85 <10	<1	180	
	L 24+00N S	+50E	190	16.6	1.70	235	155	<5 0.02	<1	13	5 11	465	5.19	<10 0.4	5 403	3	6 0.01	20 1010	58	<5 <2	0 17	0.01 <10	60 <10	<1	121	
	L 24+00N 1	0+50E	<> /60	2.0	1.90	30 80	100	<5 0.03	<1	4	<1	235	4.00	<10 0.0	8 110) 4	6 0.01	<1 1160	1646	<5 <2	0 14	<0.01 <10	53 <10	<1	81	
	1 24+00N 1	1+50E		2.2	1.73	15	75	15 0.04	<1	9	5	38	5.89	<10 0.2	4 281	1	9 0.01	8 1170	40	<5 <2	0 45	<0.01 <10	41 <10	<1	64	
	L 24+00N	2+00E	100	14.6	0.99	260	60	15 0.01	<1	4	<1	56	7.30	<10 <0.0)1 41 01 30	14 131	0 0.09	<1 1000	876	<5 <2	20 50	<0.01 <10	70 <10	<1	92	
	L 24+00N 1	2+50E	410	8.0	0.72	120	85	10 0.03	<1	3	<1 <1	91	5.99	<10 0.1	0 229	9.	6 < 0.01	3 1460	96	<5 <2	20 18	<0.01 <10	50 <10	<1	105	
	L 24+00N 1	13+00E	205	0.6 11 4	1.54	265	130	10 0.03	<1	7	<1	205	>10	<10 <0.	01 86	61	0.02	<1 1940	636	<5 <2	20 37	<0.01 10	72 <10	<1 <1	89 207	
	L 24+00N	14+00E	200	3.0	2.04	55	135	<5 0.05	<1	11	9	140	5.82	<10 0.3	32 674	4	7 0.01	14 1120	902 50	<5 <2	20 9	<0.01 <10	59 <10	<1	117	
	L 24+00N	14+50E	10	2.4	2.92	30	105	10 0.03	<1	10	13	45	5.67	<10 0.1	26 263	3 8	7 0.01	12 1000	38	<5 <2	20 6	<0.01 <10	58 <10	<1	130	
	L 24+00N	15+00E	20	8.4	2.61	25	80 125	5 0.05	<1	10	11	71	5.92 6.76	<10 0.	16 462	2	8 0.01	7 1080	308	<5 <2	20 11	<0.01 <10	58 <10	<1	236	
	L 24+00N	15+25E	15 15	4.0	2.03	30 35	125	<5 0.03	<1	7	<1	93	6.76	<10 0.	07 279	9	9 0.01	1 1990	152	<5 <2	20 6	<0.01 <10	66 <10 55 <10	<1 <1	129	
	1 24+00N	16+00E	5	2.2	2.08	20	110	<5 0.03	<1	9	9	27	4.87	<10 0.	25 267	7	5 0.01	11 1050	44	<5 <4	20 5	<0.01 <10	41 <10	<1	303	
	L 24+00N	16+50E	335	0.6	1.14	50	85	<5 0.05	<1	6	<1 42	26	4,15	<10 0.	JG 472 14 595	2 5	4 < 0.01	21 1070	52	<5 <	20 3	<0.01 <10	54 <10	<1	264	
	L 24+00N	17+00E	<5	0.6	2.35	25	135	<5 0.05	<1	5	<1	19	3.92	<10 0.	05 389	9	6 < 0.01	1 540	74	<5 <2	20 18	<0.01 <10	55 <10	<1	141	
	L 24+00N	17+50E 18+00E	20	1.2	1.22	55	125	10 0.14	1	9	<1	51	5.49	<10 0.	11 566	6	7 0.01	4 800	234	<5 <2	20 10	<0.01 <10	60 < 10	<1	137	
	L 24+00N	18+50E	45	0.8	0.82	40	80	5 0.02	<1	5	<1	23	4.37	<10 0.	01 327	7	6 0.01	<1 940 61 1900	1182	<5 <	20 57	0.02 <10	32 <10	35	4083	
	L 24+00N	19+00E	105	8.8	2.93	60	270	<5 0.64	30	20	5	347	4.95	<10 0.	23 10000	5	7 < 0.01	8 2380	490	<5 <	20 15	<0.01 <10	53 <10	<1	1419	
	L 24+00N	19+50E	25	5.6	1.72	125	305	10 0.20	<1	6	<1	20	4.86	<10 0.	15 395	5	6 < 0.01	3 920	474	<5 <	20 11	<0.01 <10	52 <10	<1	339	
	L 24+00N	20+00E	<5	<0.2	1.47	15	55	10 0.04	<1	7	7	17	4.99	<10 0.	21 283	3	6 < 0.01	9 770	20	<5 <	20 <1	0.01 <10	50 <10	<1	114	
	L 25+00N	5+50E	5	<0.2	1.94	15	90	<5 0.04	<1	7	13	45	3.62	<10 0.	47 302 11 167	2	6 0.01 3 <0.01	1/ 590	1 10	<>	20 1 20 <1	<0.01 <10	51 <10	<1	45	
	L 25+00N	6+00E	<5	0.4	1.16	10	85	<5 0.05	<1	4	2	1/	3.15	<10 0.	28 479	9 9	5 <0.01 6 0.01	11 1830	44	<5 <	20 18	<0.01 <10	57 <10	3	86	
	L 25+00N	6+50E	<5	0.4	1.83	35	125	<5 0.14	<1	9	8	24	5.52	<10 0.	25 279	9	5 0.01	11 2300) 30	<5 <	20 6	0.01 <10	76 <10	<1	85 208	
	L 25+00N	7+00E 7+50E	85	4.0	1.58	125	480	5 1.22	<1	15	7	174	9.94	60 0.	24 167	7	11 0.01	24 2540) 78	<5 <	20 89	<pre>1 < 0.01 < 10 1 < 0.01 < 10 1 < 0.01 < 10 </pre>	42 < 10 66 < 10	10	199	
	L 25+00N	8+00E	105	2.8	1.96	110	185	<5 0.04	<1	24	2	570	8.21	<10 0.	24 1071 02 127	7 6	65 0.02	10 1130) 318) 818	<>> < 15 <	20 40	<0.01 <10	41 <10	<1	282	
	L 25+00N	8+50E	245	9.4	1.33	250	290	<5 0.03	<1	15	<1	355	>10	<10 0	02 137	1 0	64 0.02	2 1300	396	<5 <	20 99	<0.01 <10	57 <10	<1	127	
	L 25+00N	9+00E	435	7.4	0.83	110	135	<5 < 0.01	<1	10	8	317	>10	<10 0	28 379	9	38 0.09	10 2160) 180	<5 <	20 111	<0.01 <10	86 <10	<1	163	
	L 25+00N	9+50E	20	2.0	2.40	20	90	<5 0.00	<1	7	<1	83	7.04	<10 0	12 14	13 2	21 0.02	<1 1490) 88	<5 <	20 17	<0.01 <10	73 <10	. <1 <1	73	
	L 25+00N	11+00E	<5	0.6	2.33	20	65	10 0.02	<1	9	9	28	6.67	<10 0	32 279	'9 `0 '	9 0.01	10 1200	30	<>> < <5 <	20 1	<0.01 <10	71 <10	<1	147	
	L 25+00N	11+50E	75	16.0	1.78	275	170	<5 0.01	<1	8	2	318	>10	<10 0	07 193 52 319	19. 19.	9 0.02	22 86) 2330	<5 <	20 2	< 0.01 < 10	68 <10	<1	110	
	L 25+00N	12+00E	5	0.2	3.07	25	95 70	10 0.04	<1	12	5	34	6.46	<10 0	19 23	30	8 0.01	5 142) 36	<5 <	20 4	<0.01 <10	71 <10	<1	70	
	L 25+00N	12+50E	<5 <5	0.8	1 12	10	70	<5 0.04	<1	5	<1	23	3.50	<10 0	06 12	24	6 0.01	1 117	0 40	<5 <	20 E	S 0.01 <10	62 <10	<1 <1	127	
	L 25+00N	13+50E	10	5.2	3.26	30	110	10 0.04	<1	11	13	46	6.50	<10 0	36 31	18	14 0.04	15 80	אר ר 1 אר	<>> < <5	.20 11 :20 4	1 0.02 <10	62 <10	<1 <1	81	
	L 25+00N	14+00E	<5	0.6	1.74	10	90	10 0.04	<1	7	6	21	4.57	<10 0	12 21	วย 16	5 0.01	4 102) 64	<5 <	20 4	4 0.01 <10	68 <10	<1	81	
	L 25+00N	14+50E	<5	1.0	1.42	20	55 125	10 0.02	<1 ~1	/ 7	2	32 18	4.57	<10 0	18 20	00	7 0.01	6 125	D 30	<5 <	:20	3 0.01 <10	62 <10	<1	121	
	L 25+00N	15+00E 15+50⊑	<5 <5	2.6	2.63	25	85	15 0.03	<1	, 10	17	34	6.69	<10 0	42 26	53	7 0.01	18 128	0 38	<5 <	20	2 0.01 <10	58 <10	· <1 · <1	90 146	
	L 25+00N	16+00E	20	5.4	2.97	35	95	<5 0.03	<1	16	15	295	6.91	<10 0	32 83	34	8 0.01	16 180	u 82. n. 276.	<	20 1	3 < 0.01 < 10	62 <10	5	132	
	L 25+00N	16+50E	75	11.6	2.11	45	135	<5 0.03	<1	12	6 12	248	6.63	<10 0 20 0	.14 91	92	8 0.01	15 153	0 174	<5 <	20 0	s <0.01 <10	63 <10	27	257	
	L 25+00N	17+00E	45	12.4 / A	2.74	30	100	<5 0.07	<1	10	13	370	5.55	10 0	35 64	40	6 0.01	16 147	0 98	<5 <	:20	5 <0.01 <10	56 <10	13	266	
	L 25+00N	1/TOUE	20	4.0	£.£U	50		- 0.00	•				•													

A STATE OF A STATE OF

	- #	Au(nnh)	A a A	N 9/.	Ac.	Ra	Bi Ca %	Cd	Co	Cr	Cu	Fe %	La Mg %	Mn	Mo Na %	Ni P	Pb S	ib Sn	Sr Ti% U	<u>v w v</u>	Zn
	Tag #	Au(ppo)		41 70	25	100	5 0.26	1	8	3	36	4.54	<10 0.18	801	5 0.01	7 1110	98 <	<5 <20	27 <0.01 <10	57 <10 <1	296
	L 25+00N 18+00E	<0 25	6.0 1	1.24	23 55	135	<5 0.03	<1	13	9	57	6.44	<10 0.17	783	7 0.01	6 1550	322 <	<5 <20	6 < 0.01 < 10	57 <10 <1	359
	L 20+00N 10+00E	95	36	2 15	60	165	5 0.07	<1	11	7	57	6.80	<10 0.25	508	8 0.01	9 1230	228 <	<5 <20	6 < 0.01 < 10	54 <10 <1	3/1
	L 25+00N 19+50E	205	5.2	1.44	90	150	10 0.07	<1	8	1	48	7.01	<10 0.12	824	7 0.01	3 2370	852 <	<5 <20	10 < 0.01 < 10	61 <10 <1	761
	1 25+00N 20+00E	175	7.8	0.97	155	125	<5 0.04	<1	7	<1	212	9.27	<10 <0.01	1156	10 0.01	<1 1800	1824	<5 <20	1 <0.01 <10	67 <10 <1	51
	L 26+00N 5+00E	<5	0.2	1.35	15	65	5 0.02	<1	6	3	19	4.58	<10 0.13	249	5 0.01	5 1060	20 .	<5 <20	4 <0.01 <10	56 <10 <1	63
	L 26+00N 5+50E	<5	0.2	1.84	20	65	5 0.05	<1	7	11	20	4.46	<10 0.33	263	5 0.01	6 1370	22 -	<5 <20	5 <0.01 <10	67 <10 <1	64
	L 26+00N 6+00E	<5	0.2	1.50	15	80	10 0.03	<1	7	6	19	5.28	<10 0.19	200	5 0.01	12 10/0	32	<5 <20	16 < 0.01 < 10	62 <10 <1	73
	L 26+00N 6+50E	<5	0.4	1.76	20	115	<5 0.04	<1	8	11	83	5.89	<10 0.31	195	5 0.01	17 1110	22 .	<5 <20	3 0.01 <10	62 <10 <1	74
	L 26+00N 7+00E	<5	0.4	2.03	20	75	<5 0.04	<1	10	1/	33	0.70	<10 0.40	169	4 0.01	11 1750	14	<5 <20	<1 <0.01 <10	51 <10 <1	44
	L 26+00N 7+50E	<5	<0.2	1.58	15	60	5 0.05	<1	44	10	17	5.05	<10 0.50	349	7 0.01	21 1370	24 ·	<5 <20	<1 0.01 <10	70 <10 <1	80
	L 26+00N 8+00E	<5	0.6	2.16	15	65	15 0.04	<1	11	19	20	430	<10 0.45	138	27 0.01	<1 1100	34	<5 <20	11 <0.01 <10	64 <10 <1	41
	L 26+00N 8+50E	80	1.0	1.13	15	115	<5 0.02	~1	4	12	220	4.37	<10 0.36	303	5 0.01	16 1610	18 ·	<5 <20	<1 0.01 <10	50 <10 <1	59
	L 26+00N 9+00E	<5	0.4	1.85	10	55 70	10 0.00	21	10	16	39	5.83	<10 0.39	360	7 0.01	17 1300	22 ·	<5 <20	<1 <0.01 <10	60 <10 <1	81
	L 26+00N 9+50E	<5 5 40	0.0	2.01	20	00	<pre>/0 0.03 /6 0.11</pre>	21	ä	13	437	7.01	<10 0.25	420	25 0.01	9 3080	4272	5 <20	18 <0.01 <10	51 < 10 7	93
	L 26+00N 10+00E	540	>30	1.00	10	90 60	<5 0.11	<1	4	<1	57	3.81	<10 0.07	122	10 0.01	<1 710	54 ·	<5 <20	3 <0.01 <10	46 < 10 < 1	41
	L 26+00N 10+50E	ວ 5	1.4	0.94	20	40	<5 <0.01	<1	4	<1	37	3.75	<10 0.06	107	14 <0.01	<1 570	38 -	<5 <20	<1 <0.01 <10	46 < 10 < 1	38
	L 26+00N 11+00E	5	0.4	0.90	10	65	10 0.02	<1	8	9	30	5.30	<10 0.25	242	10 0.01	9 1120	34	<5 <20	<1 <0.01 <10	61 <10 <1	65
	L 26+00N 11+50E	<5	4.0	1.61	15	75	<5 0.02	<1	6	4	26	4.81	<10 0.10	130	9 0.01	4 1200	28	<5 <20	5 < 0.01 < 10	64 <10 <1	52
	L 20+00N 12+00E	20	32	1 78	20	105	<5 0.02	<1	7	3	161	7.53	<10 0.12	202	29 0.02	4 1040	72	<5 <20	10 < 0.01 < 10	70 <10 <1	42
	1 26+00N 12+00E	5	16	1.21	15	50	5 0.01	<1	5	<1	36	4.49	<10 0.07	148	11 0.01	<1 860	32	<5 <20	2 0.02 <10	68 <10 <1	53
	L 26+00N 13+50E	<5	2.0	1.16	25	120	<5 0.02	<1	5	<1	90	4.60	<10 0.06	129	9 0.01	2 1780	60	<5 <20	5 0.01 <10	64 < 10 < 1	79
	1 26+00N 14+00E	30	1.4	2.51	20	95	<5 0.02	<1	9	15	105	8.94	<10 0.24	240	11 0.01	9 1900	52 22	<5 <20	7 0.01 <10	69 <10 <1	61
	L 26+00N 14+50E	<5	<0.2	1.25	15	105	<5 0.05	<1	6	1	32	4.67	<10 0.12	182	6 0.01	4 1100 6 1220	22	~5 ~20	2 0.01 <10	69 <10 <1	75
·	L 26+00N 15+00E	<5	0.8	1.69	10	110	10 0.04	<1	7	5	33	5.69	<10 0.17	166	6 < 0.01	4 1340	22	<5 <20	4 < 0.01 < 10	60 <10 <1	72
	L 26+00N 15+50E	<5	2.4	1.27	10	100	5 0.05	1	6	<1	24	3.60	<10 0.10	219	4 < 0.01	4 1040	78	<5 <20	7 < 0.01 < 10	66 <10 <1	118
	L 26+00N 16+00E	<5	1.8	1.36	20	130	5 0.08	<1	6	1	34	4.12	<10 0.09	207	5 <0.01	11 1440	60	<5 <20	5 < 0.01 < 10	59 <10 <1	118
	L 26+00N 16+50E	<5	5.4	1.44	20	90	<5 0.08	<1	1	4	30 76	4.19	<10 0.27	304	4 < 0.01	2 580	68	<5 <20	8 <0.01 <10	44 <10 3	3 235
	L 26+00N 17+00E	10	2.8	1.30	20	125	<5 0.04	-1	3	5	48	5 19	<10 0.23	414	7 0.01	10 880	98	<5 <20	12 <0.01 <10	58 <10 <1	249
	L 26+00N 17+50E	<5	1.8	1.41	45	130	-5 0.00	- 21	13	12	145	6 10	<10 0.41	932	7 0.01	15 1210	120	<5 <20	9 0.01 <10	61 <10 <1	299
	L 26+00N 18+00E	40	2.0	1.00	25	200	<5 0.13	2	8	3	92	5.14	<10 0.18	1214	6 0.01	6 1080	188	<5 <20	15 <0.01 <10	57 <10 <1	297
	L 26+00N 18+50E	5	2.4	1.08	£0	240	<5 0.24	2	8	<1	38	5.22	<10 0.14	881	6 0.01	5 1880	218	<5 <20	25 < 0.01 < 10	57 <10 <1	287
· .	L 20+00N 19+00E	<5	0.2	2.38	25	100	10 0.04	<1	11	25	64	7.65	<10 0.43	389	8 0.02	22 910	42	<5 <20	14 0.02 <10	/5 <10 <1	54
	R3-0 R5-1	<5	0.2	1.79	20	90	5 0.04	<1	7	17	26	5.33	<10 0.24	186	11 0.01	12 1380	50	<5 <20	7 0.01 <10	79 < 10 <	1 170
	RS+2	100	1.0	4.18	75	240	<5 0.02	<1	17	24	364	>10	<10 0.35	322	18 0.06	20 1600	46	<5 <20	42 < 0.01 < 10	84 <10 <1	1 81
	RS-3	<5	<0.2	2.99	25	85	<5 0.03	<1	10	22	84	7.57	<10 0.31	295	13 0.01	16 1190	30	<5 <20	7 0.01 <10	61 <10 <	1 135
	RS - 4	25	1.8	4.23	25	120	<5 0.04	<1	56	20	635	>10	<10 0.34	1129	23 0.01	23 11/0	90	<5 <20	4 0.02 <10	71 <10 <	92
	RS - 5	10	0.8	2.76	30	90	<5 0.02	<1	11	27	44	7.08	<10 0.42	340	9 0.01	7 830	70	<5 <20	3 0.01 <10	64 <10 <	1 47
	RS - 6	25	0.2	1.41	25	60	5 0.03	<1	6	9	27	4.04	<10 0.13	205	15 0.05	9 1830	80	<5 <20	8 0.01 10	101 <10 <1	1 98
	RS - 7	20	0.6	2.84	25	105	10 0.02	<1	11	47	210	210	<10 0.24	169	18 0.04	8 1220	24	<5 <20	4 < 0.01 20	111 <10 <	1 110
	RS - 8	15	1.4	3.81	45	/5	<5 0.01	<1 - 1	7	1/	322	5.05	<10 0.21	205	40 0.02	4 1400	44	<5 <20	9 <0.01 <10	104 <10 <1	1 129
	RS - 9	20	3.0	2.83	25	405	<5 0.02	-1	26	22	634	>10	<10 0.05	1106	39 0.04	15 1570	44	<5 <20	26 <0.01 <10	91 <10 <1	1 170
	RS - 10	25	2.0	3.31	35	100	<5 0.02	21	13	28	178	672	<10 0.48	400	17 0.02	26 780	54	<5 <20	5 0.01 <10	61 <10 <	1 167
	RS - 11	20	1.2	3.14	30	230	<5 0.02	1	18	27	463	>10	<10 0.34	304	74 0.06	14 1260	92	<5 <20	40 < 0.01 10	134 <10 <	1 180
	RS - 12	90	2.4	2.09	70	215	<5 <0.01	1	10	23	489	>10	<10 0.04	145	74 0.05	7 1960	76	<5 <20	43 < 0.01 20	144 <10 <	1 18/
	RS - 13	>1000	>30	2.05	1180	175	<5 < 0.01	<1	11	16	255	>10	<10 0.22	220	31 0.03	12 990	5112	.10 <20	33 < 0.01 < 10	63 <10 <	1 317.
	RO-14 DC 15	30	30	2.41	110	100	<5 0.01	<1	10	16	106	8.48	<10 0.17	893	12 0.01	11 1950	148	<5 <20	8 0.01 <10	74 < 10 <	1 100
	R0 - 15 PS - 16	15	0.4	3 68	25	115	<5 0.04	<1	12	27	179	6.90	<10 0.48	358	12 0.02	24 1020	34	<5 <20	9 < 0.01 < 10	64 <10 <	1 132
	RS - 17	45	1.8	3.48	45	160	<5 0.04	<1	13	26	200	8.12	<10 0.43	379	27 0.02	21 1590	112	<5 <20	10 0.01 <10	69 <10 <	1 107
	RS - 18	30	0.8	3.17	30	100	<5 0.03	<1	11	20	82	7.60	<10 0.36	294	13 0.02	15 1270	30	<5 <20	8 0.03 ~10	62 < 10 <	1 246
	RS - 19	20	2.2	2.46	30	180	<5 0.08	1	12	21	138	5.33	<10 0.51	326	7 0.01	2/ /50	32	<20	91 <0.03 <10	40 < 10 <	1 273
	RS - 20	405	6.2	1.44	360	50	<5 0.01	<1	8	5	267	>10	<10 <0.01	109	115 0.29	2 1340	110	~5 ~20	21 0.02 <10	68 < 10 <	1 139
	RS - 21	35	4.4	2.20	65	130	<5 0.03	<1	14	18	112	6.06	<10 0.47	394	13 0.03	20 030	802	<5 <20	268 <0.01 <10	23 < 10 <	1 73
	RS - 22	840	>30	0.95	140	80	10 <0.01	<1	4	2	191	7.19	<10 <0.01	33	54 U.UZ	27 850	190	<5 <20	11 0.01 <10	68 <10 <	1 143
	RS - 23	35	0.8	3.18	60	195	<5 0.02	<1	15	29	192	7.20	<10 0.53	331	8 0.02	27 690	52	<5 <20	7 0.02 <10	66 <10 <	1 169
	RS - 24	40	2.0	2.54	30	180	<5 0.03	1	13	21	54	00.0	<10 -0.04	210	127 0.04	<1 800	1118	<5 <20	153 <0.01 <10	51 <10 <	1 106
	RS - 25	150	8.4	0.82	190	80	<5 0.02	<1	5 45	8	213	0.42 5.00	<10 0.01	27 778	18 0.04	25 670	74	<5 <20	13 0.02 <10	64 <10 <	1 281
	RS - 26	40	3.0	2.40	50	165	<5 0.03	T	10	21	223	2.90	NU 0.43	440	10 0.01						

(ZZ)

(Second P

EE

 $\mathbf{C}\mathbf{D}$

 \square

Tag #	Au(ppb)	Aq	AI %	As	Ba	Bi Ca %	Cd	Co	Cr	Cu	Fe %	LaM	lg %	Mn_	Mo	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	<u>v w</u>	Y	Zn
RS - 27	90	6.2	2.68	30	100	<5 0.03	<1	11	18	170	7.83	<10 (0.27	296	12	0.02	15	1040	120	<5	<20	12	0.01	<10	70 <10	<1	14/
RS - 28	125	5.6	3.24	75	170	<5 0.01	1	10	27	669	>10	<10 (0.03	113	82	0.29	9 .	1800	114	<5	<20	99 <	0.01	<10	149 <10	<1	1/3
RS - 29	5	1.2	2.42	20	120	<5 0.03	1	20	20	75	5.69	<10 (0.55	528	7	0.02	26	390	30	<5	<20	5	0.03	<10	04 410	< 1 - 1	242
RS - 30	15	9.2	1.83	70	165	<5 0.01	1	6	10	149	7.40	<10 (0.11	137	17	0.03	7	1160	632	<5	<20	39 <	0.01	<10	64 <10	<1	242
RS - 31	280	25.4	1.38	170	90	<5 <0.01	<1	5	8	631	7.75	<10	0.06	59	16	0.07	2 .	1420	4726	<5	<20	87 <	0.01	<10	54 <10	<1	101
RS - 32	50	13.2	2 93	85	120	<5 0.03	<1	8	18	109	7.26	<10	0.23	236	10	0.02	13	1570	798	<5	<20	14 <	0.01	<10	68 <10	<1	130
RS - 33	10	0.6	2.77	20	130	<5 0.06	<1	16	22	57	5.92	<10	0.48	398	8	0.01	26	1060	60	<5	<20	6	0.02	<10	65 <10	51	147
RS - 34	70	36	2.56	30	230	<5 0.03	1	9	17	385	9.00	<10	0.24	204	12	0.02	13	1870	108	<5	<20	36 <	:0.01	<10	62 <10	<1	230
RS - 35	60	>30	0.80	95	70	15 0.01	1	9	1	214	>10	<10 <	0.01	36	331	1.16	3	930	1890	<5	<20	173 <	:0.01	20	45 <10	< 1	202
RG - 36	<5	34	2.85	30	165	<5 0.07	<1	12	21	44	6.67	<10	0.31	366	14	0.04	17	1920	92	<5	<20	10	0.01	<10	68 <10	<1	148
PS - 37	20	2.0	3.31	30	135	<5 0.04	1	11	24	142	7.17	<10	0.35	308	32	0.02	20	900	60	<5	<20	9	0.02	<10	72 <10	<1	1/0
PS - 38	5	0.6	3.29	45	145	<5 0.06	<1	13	24	88	8.92	<10	0.36	425	11	0.02	17 :	2670	32	<5	<20	18	0.02	<10	/3 <10	<1	143
PS - 30	<5	10	2.96	15	110	5 0.06	<1	13	27	73	6.27	<10	0.58	474	18	0.02	26	700	22	<5	<20	5	0.02	<10	66 < 10	<1	140
RS - 39	<5	0.8	3 27	20	165	10 0.08	<1	11	24	37	6.53	<10	0.45	283	9	0.02	21	1740	44	<5	<20	6	0.02	<10	73 <10	<1	152
RS - 40 DC 41	10	3.4	3.26	25	230	15 0.02	1	9	20	58	9.25	<10	0.27	206	52	0.13	12	1460	156	<5	<20	70	0.01	<10	71 <10	<1	82
RS-41	10	1.7	2.20	25	105	5 0.04	<1	11	23	40	7.33	<10	0.34	382	9	0.02	16	2360	58	<5	<20	5	0.01	<10	78 <10	<1	203
R5 - 42	225	5.8	3.57	45	125	<5 0.01	1	16	29	937	>10	<10	0.15	250	15	0.02	14	1700	360	<5	<20	11 <	<0.01	<10	76 <10	<1	265
R5-43	200	2.0	2 00	15	110	10 0.03	1	9	21	40	7.31	<10	0.22	239	13	0.03	13	1730	66	<5	<20	6	0.01	<10	71 <10	<1	142
RS - 44	205	5.5	2.80	95	195	<5 0.02	1	15	22	553	>10	<10	0.32	391	20	0.06	19	1420	216	<5	<20	32	0.01	<10	77 <10	<1	211
RS - 45	295	5.0	2.00	35	195	5 0.03	<1	8	18	55	6.75	<10	0.27	225	8	0.02	15	1470	64	<5	<20	16	0.01	<10	57 <10	<1	143
RS - 46	400	110	4 22	05	60	15 0.02	<1	7	.0	162	>10	<10	0.01	68	33	0.24	2	1460	178	<5	<20	75 •	<0.01	10	56 <10	<1	44
RS - 47	490	F1.0	2.44	115	400	<5 0.04	<1	8	20	419	7.43	<10	0.18	370	8	0.03	14	2100	214	<5	<20	82 •	<0.01	<10	63 <10) <1	327
RS - 48	30	4.2	2.41	20	100	<5 0.03	<1	13	25	82	5.31	<10	0.55	326	5	0.02	28	740	36	<5	<20	6	0.03	<10	60 <10) <1	131
KS - 49	20	1.2	2.02	20	,00	40 0,00	•																				
QC DATA: Repeat:																	<u>,</u>	40.40	20	-5	-20	100	0.02	<10	<u>97 <10</u>	1 <1	70
B/L 5+00E 0+00N	65	0.6	2.27	50	145	20 0.08	<1	24	<1	60	>10	70	0.26	843	16	0.08	9	4840	30	<5	<20	190	0.02	<10	40 <10		114
B/L 5+00E 4+50N	165	1.2	1.52	280	100	15 0.02	<1	15	<1	94	>10	30	0.02	508	27	0.04	4	2900	142	<5	<20	102 -	<0.01	< 10	49 10		305
B/L 5+00E 9+00N	185	6.6	2.41	265	415	40 0.05	<1	23	4	220	>10	<10	0.31	1113	16	0.11	8	2720	144	<5	<20	10 .	<0.01	<10	67 210	1 -1	105
B/L 5+00E 13+50N	10	0.4	1.03	50	80	<5 0.04	<1	7	<1	24	3.93	<10	0.07	363	5	0.01	<1	1270	40	<0	<20		<0.01	<10	52 240		324
B/L 10+00E 21+00N	40	2.8	1.67	55	165	5 0.09	1	9	<1	80	5.69	<10	0.29	291	11	0.02	10	830	1/6	<5	<20	21	0.01	<10	52 10	, .,	321
	50	0.6	1 71	55	335	25 0.03	<1	11	3	62	>10	30	0.19	256	22	0.06	3	3470	22	<5	<20	124	<0.01	10	76 <10) <1	51
L-0 - 5+50E	50	0.0	2.16	575	260	25 0.03	<1	43	<1	460	>10	10	0.06	842	16	0.04	20	1680	124	<5	<20	48 ·	<0.01	<10	55 <10) <1	414
L-0 - 10+00E	100	2.0	2.10	205	200	20 0.05	<1	22	12	344	>10	40	0.57	633	25	0.13	8	3280	58	<5	<20	115	0.01	<10	117 <10) <1	100
L-1N - 4+50E	180	3.0	3,09	290	200	20 0.00	1	4	<1	119	7 16	20	0.06	195	10	0.04	5	2160	26	<5	<20	64	<0.01	<10	63 <10) <1	74
L-1N - 10+00E	5	2.0	1.40	25	125	5 0.00	2	ă	<1	19	5.21	50 <	<0.01	24	16	0.04	8	1060	258	40	<20	198	<0.01	<10	15 <10) <1	15
L-2N - 7+00E	55	1.0	0.42	35	120	5 0.01	2	5		10	0.21			-			_			-			.0.04	40	100 -10	1 -1	70
L-5N - 6+00E	85	6.0	2.48	225	280	<5 0.07	<1	12	12	339	9.48	10	0.22	303	13	0.10	(3250	28	<0	<20	20	<0.01	10	93 -10	1 21	70
L-5N - 11+00E	35	1.8	1.55	190	165	10 0.03	<1	9	1	39	7.29	<10	0.05	170	7	0.03	3	1090	48	<0	<20	32	<0.01	10	60 ×10		118
1-6N - 4+50E	145	1.4	2.25	130	175	10 0.03	<1	16	3	211	>10	20	0.15	605	13	0.02	10	2470	38	<5	<20	20	<0.01	10	74 -40	1 1	440
I-6N - 9+50E	90	1.4	0.86	175	175	20 0.08	<1	9	<1	97	>10	20	0.02	237	12	0.08	6	2600	94	<5	<20	104	<0.01	<10	61 240	1 -1	212
L-7N - 3+00E	615	3.6	1.01	350	290	55 0.02	<1	25	3	290	>10	30	0.05	689	21	0.02	15	2940	240	<5	<20	60	<0.01	10	01 510		512
1 71 8,005	840	3.8	1 10	375	225	30 0.04	<1	42	<1	470	>10	40 <	<0.01	2094	19	0.04	29	3380	146	<5	<20	93	<0.01	<10	64 <10) <1	226
L-/N - 8+00E	640	3.0	1.10	135	170	15 0.04	<1	11	1	45	7 41	10	0.09	240	8	0.02	9	1860	42	<5	<20	42	<0.01	<10	61 <10) <1	124
L-7N - 12+50E	C>	1.4	1.30	225	215	100 0.04	- 1	31	5	218	>10	50	0.22	1256	17	0.04	20	2630	264	<5	<20	4	<0.01	<10	63 <10) <1	384
L-8N - 2+50E	810	3,4	1.55	233	600	15 0.00	-1	37	5	57	>10	90	0.08	3144	13	0.02	27	2840	68	<5	<20	51	<0.01	<10	71 <10) 13	197
L-8N - 7+50E	125	1.0	1,00	90	225	10 0.22	21	7	1	33	5 31	20	0.07	180	6	0.03	5	1640	40	<5	<20	50	<0.01	<10	61 <10) <1	100
L-8N - 12+50E	<0	1.0	1.30	00	235	10 0.05	~ 1	,	•		0.01	20	0.01		-					_		40	.0.04	40	70 44	۰ <i>-</i> ۱	250
L-9N - 3+50E	130	2:4	1.00	230	170	35 0.01	<1	13	<1	101	>10	10 <	< 0.01	480	12	0.02	9	2320	216	<5	<20	48 ⊿1	<0.01	10 <10	70 < 10) <1	149
L-9N - 8+00E	95	0.8	2.36	90	285	20 0.06	<1	25	12	128	>10	30	0.11	1112	10	0.02	21	2000	54	<5	<20	26	<0.01	<10	56 <10) <1	88
L-9N - 12+50E	<5	0.6	1.36	90	145	10 0.02	<1	8	5	28	5.97	20	0.00	190	0 4 <i>E</i>	0.02	12	2470	78	<5	<20	53	<0.01	<10	65 <10) <1	129
L-10N - 7+00E	395	1.8	1.89	235	300	35 0.04	<1	25	7	201	>10	20	0.09	1191	15	0.05	13	4540	74	-5	<20	23	<0.01	<10	78 <1	n <1	118
L-10N - 12+50E	60	2.4	2.04	470	145	15 0.10	<1	15	6	51	7.58	<10	0.23	496	1	0.01	o	1040	14	-0	~20	20		- 10			
L-11N - 7+00F	465	4.8	2.69	395	220	35 0.12	<1	20	4	282	9.62	10	0.12	511	12	0.02	16	1890	182	<5	<20	45	<0.01	<10	39 <1	0 3	174
L-11N - 13+50F	60	0.6	1.13	150	310	15 0.28	<1	10	3	37	7.22	20	0.02	739	9	0.03	9	2850	96	<5	<20	102	<0.01	<10	40 <1	u <1	1/4
L-12N - 9+50F	330	3.0	1.64	310	360	35 0.21	<1	31	7	332	>10	20	0.12	2790	14	0.03	22	2090	74	<5	<20	96	<0.01	<10	02 <1	u ≤1. ≜⊷ n	101
1-13N - 8+50F	10	0.6	1.47	75	135	<5 0.16	<1	11	8	36	5.93	<10	0.18	543	6	0.01	8	1990	50	<5	<20	25	<0.01	<10	00 <1	U 51	141
L-13N - 12+50E	-	<0.2	0.76	35	90	<5 0.05	<1	6	4	18	3.62	<10	0.03	171	3	0.02	5	880	26	<5	<20	13	0.01	<10	02 <1	י ≤ו	57

C

(Contact)

(CEEE)

Constant of the

 \mathbf{C}

(Constant)

Constant of the

PHONE PROVIDE

S Mission

		(ſ	<u> </u>		1	<u> </u>	Į.			TLO S	C			Į	välke av		jeta, J	L	J		J)
Tao #	Au(ppb)	Aa	AI %	As	Ba	Bi Ca %	Cd	Co	Cr	Cu	Fe %	La M	fg %	Mn	Mo Na%	NI	P	Pb	Sb	Sn	Sr Ti	<u>% U</u>	V	W	Y
<u>/:</u>	<u></u>																								
L 18+00N 5+50E L 18+00N 10+50E L 19+00N 5+50E L 19+00N 9+50E L 19+00N 14+50E	35 120 55 15 25	0.6 25.4 5.2 2.6 5.2	1.52 2.03 1.33 2.28 1.42	125 480 155 40 45	200 300 190 250 265	<5 0.16 <5 0.05 <5 0.39 10 0.25 <5 0.34	2 <1 6 3 1	12 13 9 10 12	<1 <1 <1 5 8	117 542 467 97 107	6.50 >10 5.86 5.11 4.94	<10 <10 50 <10 10	0.14 0.10 0.07 0.14 0.34	512 481 373 505 1220	14 0.01 91 0.03 14 0.07 8 0.01 8 0.01	4 67 8 15	1050 2420 1980 1600 1010	230 330 296 196 170	<5 < <5 < <5 < <5 <	<20 <20 <20 <20 <20	22 <0.0 52 <0.0 55 <0.0 25 <0.0 32 0.0)1 <10)1 <10)1 <10)1 <10)1 <10)1 <10	65 · 65 · 43 · 59 · 50 ·	:10 < :10 < :10 2 :10 < :10 < :10	1 4 1 6 1 6 1 3 4 3
L 20+00N 7+00E L 20+00N 12+00E L 20+00N 16+00E L 21+00N 5+00E L 21+00N 9+50E	40 50 60 50 260	3.0 0.2 1.2 1.2 3.2	1.94 1.20 1.77 2.14 1.27	50 20 50 135 85	205 120 165 255 170	<5 0.11 10 0.12 10 0.24 10 0.06 <5 0.02	<1 1 <1 <1 <1	15 8 15 14 10	4 5 13 4 <1	185 51 80 139 376	6.25 4.01 6.16 7.78 >10	<10 <10 <10 <10 <10	0.17 0.20 0.48 0.23 0.03	583 230 1202 273 322	24 0.01 7 0.01 6 0.01 14 0.02 105 0.05	8 8 23 10 3	1140 800 980 1100 2420	160 74 330 178 304	<5 < <5 < <5 < <5 <	<20 <20 <20 <20 <20	25 <0.0 12 <0.0 20 0.0 31 <0.0 125 <0.0	01 <10 01 <10 02 <10 01 <10 01 <10	65 · 58 · 58 · 93 · 58 ·	:10 < :10 < :10 : :10 : :10 < :10 <	1 2 2 2 1 3 1 3
L 21+00N 14+50E L 21+00N 18+50E L 22+00N 7+50E L 22+00N 12+50E L 22+00N 17+00E	10 <5 80 40 <5	0.8 1.6 2.4 3.4 1.6	1.71 1.42 2.71 1.34 1.27	35 25 30 55 20	175 345 215 225 140	15 0.15 <5 0.30 <5 0.01 <5 0.08 10 0.09	2 3 <1 <1 <1	11 9 11 7 8	6 7 11 3 3	21 30 381 118 23	5.96 4.41 9.57 5.54 4.52	<10 <10 <10 <10 <10	0.18 0.30 0.62 0.16 0.18	807 1504 126 339 525	6 0.01 5 0.01 47 0.03 10 0.01 5 0.01	9 11 4 7 7	1440 1640 1350 1500 1480	198 78 48 332 116	<5 <5 <5 <5 <5 <5	<20 <20 <20 <20 <20	14 <0.0 25 0.0 43 0.0 25 <0.0 8 0.0	01 <10 01 <10 08 <10 01 <10 01 <10	69 52 131 47 54	<10	1 4 1 3 1 1 1 7
L 23+00N 5+50E L 23+00N 10+50E L 23+00N 15+00E L 23+00N 19+50E L 24+00N 8+00E	115 40 105 <5 10	3.2 2.4 5.6 2.0 1.2	1.54 1.75 2.10 1.99 1.09	360 55 55 30 60	195 210 135 90 345	140 0.06 <5 0.15 5 0.03 5 0.10 10 0.06	<1 1 <1 1 <1	31 9 6 8 9	4 3 3 5 <1	218 250 138 51 27	>10 7.48 7.05 4.82 7.34	<10 <10 <10 <10 <10 20	<0.01 0.18 0.08 0.24 <0.01	319 269 325 554 404	508 0.03 27 0.0 10 0.0 5 <0.0 10 0.0	5 11 5 3 8 <1	2200 1850 1630 1390 1520	58 86 848 342 64	<5 <5 <5 <5 <5 <5	<20 <20 <20 <20 <20	39 <0.0 39 <0.0 10 <0.0 4 <0.0 77 <0.0	01 30 01 <10 01 <10 01 <10 01 <10 01 <10	128 72 59 53 36	<10 < <10 < <10 < <10 < <10 <	1 : 1 : 1 : 1 :
L 24+00N 13+00E L 24+00N 17+00E L 25+00N 6+00E L 25+00N 10+50E L 25+00N 15+00E	10 5 <5 20 <5	0.6 0.6 0.4 2.2 0.6	1.56 2.47 1.27 2.22 1.63	55 35 10 25 20	125 145 90 80 135	<5 0.03 <5 0.06 <5 0.06 10 0.02 5 0.05	<1 <1 <1 <1 1	5 15 5 7 7	<1 14 4 1 5	90 115 20 80 19	5.17 5.92 3.41 6.88 4.91	<10 <10 <10 <10 <10	0.10 0.47 0.12 0.11 0.19	226 631 176 140 205	6 <0.0 6 0.0 4 0.0 20 0.0 7 0.0	1 22 3 1 7	1430 1120 1440 1470 1270	94 54 18 88 30	<5 <5 <5 <5 <5 <5	<20 <20 <20 <20 <20	15 <0.0 2 <0.0 1 <0.0 11 <0.0 4 0.0	01 <10 01 <10 01 <10 01 <10 01 <10 01 <10	50 57 55 73 63	<10 < <10 < <10 < <10 < <10 <	1 : 1 : 1 : 1 :
L 25+00N 19+50E L 26+00N 8+50E L 26+00N 12+50E L 26+00N 17+00E RS - 0	85 75 35 55 <5	5.4 1.0 3.0 3.2 0.2	1.52 1.12 1.73 1.40 2.35	90 10 25 25 25	160 110 100 145 90	10 0.07 <5 0.02 <5 0.01 <5 0.05 5 0.02	<1 <1 <1 1 1	8 4 7 5 11	2 <1 2 <1 24	50 223 157 86 66	7.34 4.18 7.39 3.26 7.78	<10 <10 <10 <10 <10	0.12 0.07 0.12 0.10 0.42	867 132 197 310 388	8 0.0 26 0.0 28 0.0 4 0.0 9 0.0	5 <1 3 4 22	2450 1060 1040 670 960	884 32 70 76 44	<5 <5 <5 <5 <5 <5	<20 <20 <20 <20 <20	12 <0.0 11 <0.0 9 <0.0 9 <0.0 10 0.0	01 <10 01 <10 01 <10 01 <10 01 <10 01 <10	58 63 68 50 75	<10 < <10 < <10 < <10 < <10 <	1 : 1 4 : 1
RS - 9 RS - 18 RS - 27 RS - 35 RS - 44	40 60 80 60	3.4 0.8 6.4 >30 1.8	2.91 3.12 2.65 0.79 2.97	30 30 30 100 20	85 105 100 65 115	<5 0.02 5 0.03 <5 0.03 10 0.01 5 0.03	<1 <1 <1 <1 1	8 11 11 10 9	8 20 18 2 21	338 84 170 214 36	6.26 7.56 7.78 >10 7.25	<10 <10 <10 <10 <10	0.05 0.36 0.27 <0.01 0.24	213 295 294 37 248	43 0.02 13 0.02 11 0.02 321 1.14 10 0.02	5 15 15 15 15 12	1460 1260 1040 930 1740	50 34 118 1826 46	<5 <5 <5 <5 <5 <5	<20 <20 <20 <20 <20	9 <0.0 6 0.0 11 0.0 164 <0.0 5 0.0	01 <10 01 <10 01 <10 01 <10 01 20 01 <10	106 68 69 44 72	<10 < <10 < <10 < <10 < <10 <	1 · 1 · 1 ·
۶.	135 130 135 135 125 130 135 135 135 150 145	1.2 1.6 1.6 1.0 1.0 1.0 1.0 1.0 1.0 1.2 1.0	1.79 1.73 1.77 1.72 1.79 1.80 1.76 1.86 1.90 1.71 1.73 1.76	65 60 60 70 60 65 60 50 50	160 165 170 160 150 150 150 160 150 150 150	<5 1.86 <5 1.89 <5 1.90 5 1.86 10 1.86 5 1.81 <5 1.84 <5 1.84 <5 1.76 <5 1.61 <5 1.61 <5 1.85 < 1.85	<pre> </pre> </td <td>19 18 19 19 19 20 20 18 18 18</td> <td>66 63 66 66 66 59 46 42 64</td> <td>84 89 88 81 80 85 85 85 75 81 80</td> <td>4.11 4.10 4.12 3.94 4.06 4.04 3.96 4.26 4.26 3.94 3.99 4.00</td> <td><10 <10 <10 <10 <10 <10 <10 <10 <10 <10</td> <td>0.96 0.98 0.94 0.96 0.98 0.93 0.98 0.96 0.98 0.98 0.90 0.98</td> <td>668 657 681 651 672 660 649 692 693 664 639 673</td> <td><1 0.00 <1 0.00</td> <td>2 23 2 23 2 22 2 24 2 23 2 24 2 23 2 24 2 23 2 24 2 23 3 24 3 18 3 18 3 19 3 22</td> <td>660 680 650 620 670 650 630 660 660 650 640 650</td> <td>18 16 18 22 18 20 18 20 18 22 26 20</td> <td>5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</td> <td><20 <20 <20 <20 <20 <20 <20 <20 <20 <20</td> <td>59 0. 55 0. 56 0. 57 0. 56 0. 57 0. 61 0. 55 0. 61 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 60 0.</td> <td>12 <10 11 <10 11 <10 12 <10 13 <10 12 <10 12 <10 13 <10 13 <10 12 <10 12 <10</td> <td>79 77 79 76 79 78 76 80 81 75 76 78</td> <td><10 <10 <10 <10 <10 <10 <10 <10 <10 <10</td> <td>5 6 6 5 6 5 4 5 5 4 4 4</td>	19 18 19 19 19 20 20 18 18 18	66 63 66 66 66 59 46 42 64	84 89 88 81 80 85 85 85 75 81 80	4.11 4.10 4.12 3.94 4.06 4.04 3.96 4.26 4.26 3.94 3.99 4.00	<10 <10 <10 <10 <10 <10 <10 <10 <10 <10	0.96 0.98 0.94 0.96 0.98 0.93 0.98 0.96 0.98 0.98 0.90 0.98	668 657 681 651 672 660 649 692 693 664 639 673	<1 0.00 <1 0.00	2 23 2 23 2 22 2 24 2 23 2 24 2 23 2 24 2 23 2 24 2 23 3 24 3 18 3 18 3 19 3 22	660 680 650 620 670 650 630 660 660 650 640 650	18 16 18 22 18 20 18 20 18 22 26 20	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	<20 <20 <20 <20 <20 <20 <20 <20 <20 <20	59 0. 55 0. 56 0. 57 0. 56 0. 57 0. 61 0. 55 0. 61 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 60 0.	12 <10 11 <10 11 <10 12 <10 13 <10 12 <10 12 <10 13 <10 13 <10 12 <10 12 <10	79 77 79 76 79 78 76 80 81 75 76 78	<10 <10 <10 <10 <10 <10 <10 <10 <10 <10	5 6 6 5 6 5 4 5 5 4 4 4

18-Aug-98

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AK 98-428

TECK EXPLORATION LTD. #350-272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2 1000

ATTENTION: SCOTT SMITH

No. of samples received:88 Sample Type: Rock PROJECT #: 1763 SHIPMENT #: None Given Sample submitted by: S. Smith

. . .

...

Values in ppm unless otherwise reported

F4 4	Ton #	Au(nnh)	٨٩	AL %	Λe	Ba	Bi C	Ca %	Cd	Co	Cr	Cu	Fe %	La Mo 🤋	6 Mn	Mo	Na %	NE	P	Pb	Sb	Sn	Sr TI%	<u> </u>	<u>v</u>		<u>Y</u>	<u></u>
<u> </u>	1 ag #	Ad(ppp)	<u></u>	AI /0	45			0.20		10	46	773	6 27	10 03	423	167	0.04	8	1400	50	<5	<20	29 0.04	<10	48	<10	2	320
1	SS-101	30	3.8	0.69	15	30	<0 45	0.39	2	10	77	100	1 20	<10 <0.0	22	7	<0.01	<1	330	2888	230	<20	4 <0.01	<10	2	<10	<1	618
2	SS-102	515	>30	0.16	220	10	40 5	0.01	-1	4	40	47	9.43	<10 <0.0	1 24	11	<0.01	3	720	344	<5	<20	11 <0.01	<10	16	<10	<1	90
3	SS-103	370	22.4	0.24	200	25	20	0.03	51	9	40	25	6 20	10 <0.0	1 122	10	<0.01	3	660	24	<5	<20	22 < 0.01	<10	24	<10	<1	47
4	SS-104	10	0.8	0.37	190	40	<5	0.03	51	5	52	25	0.20	-10 -0.0	1 52	6	~0.01	4	540	12	40	<20	11 < 0.01	<10	15	<10	<1	12
5	SS-105	110	0.6	0.23	375	15	10	0.04	<1	6	13	10	3.71	<10 <0.0	1 52	0	-0.01	-	040									
												475	- 40	-10 2.2	1 1000	20	0.01	21	1690	12	<5	<20	5 0.01	<10	325	<10	<1	91
6	SS-106	65	0.6	4.67	285	55	20	0.31	<1	32	160	1/5	>10	<10 2.2	1 1000	20	-0.01	4	650	12	<5	<20	7 < 0.01	<10	18	<10	<1	21
7	SS-107	75	0.8	0.32	150	35	35	0.06	<1	8	38	50	4.66	<10 <0.0	001 1		~0.01	· I 6	1210	2	-5	<20	20 <0.01	<10	25	<10	<1	38
. 8	SS-108	10	0.4	0.30	10	25	10	0.12	<1	10	47	5	5.42	20 < 0.0	1 229	8	0.03	-1	1210		15	~20	8 < 0.01	<10	10	<10	<1	3
9	SS-109	20	0.2	0.40	205	75	<5 <	<0.01	<1	1	45	11	1.45	<10 <0.0	1 13	4	0.01	< I 4	170	12	-5	~20	9 < 0.01	<10	4	<10	<1	2
10	SS-110	10	0.2	0.26	40	15	<5 <	<0.01	<1	3	35	17	2.12	<10 <0.0	1 /	5	<0.01	1	170	12	-5	~20	3 -0.01	-10	-	-10		-
																_		- 4	400	26	~E	~20	15 <0.01	~10	5	<10	<1	6
11	SS-111	15	0.6	0.28	60	40	5 <	<0.01	<1	З	36	11	2.37	<10 <0.0	1 6	5	0.01	<1	120	30	<0 -5	~20	25 <0.01	<10	25	<10	8	36
12	SS-112	5	<0.2	0.56	10	25	10	1.64	<1	14	66	12	5.14	70 0.2	1 541	9	0.03	15	1700	40	<0	<20	33 <0.01	~10	25	<10	<1	2
13	SS-113	10	0.8	0.29	125	25	<5 <	<0.01	<1	4	47	25	2.61	<10 <0.0	1 15	6	<0.01	<1	60	10	20	<20	21 <0.01	<10	4	<10	<1	2
14	SS-114	5	0.4	0.23	35	25	5 <	<0.01	<1	6	52	15	3.10	<10 <0.0	1 7	7	<0.01	2	230	16	<0	<20	25 <0.01	~10	404	~10	5	133
15	RRX-1	5	<0.2	1.82	<5	90	<5	0.37	1	15	34	167	5.11	<10 0.8	5 825	15	0.07	11	850	6	<2	<20	23 0.03	\$10	104	\$10	5	100
																							0.4 0.0E	-10	00	~10	7	116
16	RRX-2	5	0.2	2.55	10	65	<5	0.97	1	16	60	286	4.98	<10 1.2	3 662	16	0.17	8	870	16	<5	<20	64 0.05	< 10	90	~10	44	55
17	RRX-3	25	0.4	2.67	<5	45	<5	1.45	<1	22	87	378	3.98	10 1.2	3 447	13	0.25	9	570	4	<5	<20	123 < 0.01	<10	02	<10	7	210
18	RRX-4	15	<0.2	1.52	<5	75	<5	0.32	1	14	35	328	3.97	<10 0.8	1 721	68	0.06	11	730	8	<5	<20	16 < 0.01	<10	93	<10 <10	6	210
19	RRX-5	5	<0.2	3.33	35	80	<5	0.84	<1	26	75	223	7.13	<10 2.5	9 645	<1	0.14	20	1130	4	<5	<20	62 0.29	<10	201	<10	0	440
20	RRX-6	5	<0.2	2.78	<5	75	<5	0.69	<1	27	68	334	6.98	<10 2.3	2 1112	31	0.10	24	780	4	<5	<20	109 0.09	<10	172	<10	4	140
20	1000	•																								4.5		
21	RRX-7	10	<0.2	3.15	20	75	<5	0.38	1	23	73	345	8.01	<10 2.2	1 1122	9	0.10	21	830	22	<5	<20	37 0.16	<10	184	<10	1	206
22	PPY-8	60	2.0	1 99	135	205	<5	0.36	4	26	38	624	8.63	<10 1.0	2 1993	30	0.09	21	770	136	<5	<20	35 0.14	<10	148	<10	4	493
22	DDY-0	40	0.8	2 21	15	55	<5	0.67	1	55	50	1469	7.58	<10 1.6	1 979	48	0.13	28	820	6	<5	<20	67 0.13	<10	177	<10	5	169
23	PPY-10	25	12	0.51	<5	125	<5	0.44	2	14	21	700	5.26	<10 0.2	2 1907	28	0.03	14	470	6	<5	<20	44 <0.01	<10	79	<10	6	290
24	DDY-11	75	20	1 00	<5	85	<5	0.38	2	14	43	1338	6.76	<10 0.4	6 2044	15	0.05	18	690	8	<5	<20	24 0.01	<10	103	<10	5	284
25	KKA-II		2.0	1.00		00	•	••••	-																			
96	DDV 42	10	-0.2	0 78	10	180	<5	1 95	<1	11	68	74	3.30	30 0.6	7 1243	4	0.03	17	1400	12	<5	<20	167 <0.01	<10	51	<10	4	207
20	RRA-12	10	-0.2	0.70	-F	120	-5	1 60	Å	13	76	120	3 58	30 0.6	0 1640	6	0.03	20	1360	12	<5	<20	121 <0.01	<10	50	<10	5	494
27	RRX-13	5	~U.Z	0.79	-0	100	~5	0.06	1		20	534	5.08	<10 0.1	6 702	13	0.04	8	620	14	<5	<20	15 <0.01	<10	45	<10	<1	454
28	RRX-14	55	1.0	0.00	400	140	~5	0.00	6	13	42	126	2 72	30 <0 0	1 2347	3	0.01	16	1390	28	<5	<20	26 <0.01	<10	33	<10	4	660
29	RRX-15	5	0.4	0.51	75	140	~5	0.27	-1	6	22	411	5 96	<10 04	5 198	19	0.06	2	2610	30	<5	<20	34 <0.01	<10	58	<10	2	168
30	RRX-16	45	1.2	1.20	15	60	×0	0.34	-1	U	~~	411	0.00	10 0.			••••											
		400	• •	0 70	45	405	~E	4 12	-1	2	12	261	3.67	10 <00	1 77	60	< 0.01	<1	7440	8	<5	<20	38 <0.01	<10	21	<10	13	129
31	RRX-17	100	0.6	0.78	15	125	<5 -5	1.23		2	17	821	5.57	<10 <0.0	1 401	66	0.02	5	730	8	<5	<20	4 <0.01	<10	58	<10	<1	396
32	RRX-18	30	1.6	0.62	5	105	50 -5	0.03	-1	2	20	172	3 13	<10 <0.0	1 153	39	<0.01	<1	720	44	<5	<20	6 < 0.01	<10	22	<10	<1	139
33	RRX-19	175	2.0	0.43	15	95	50 	1.42		42	20	2050	8 97	<10 -0.0	4 857	105	0.22	27	650	4	<5	<20	72 0.08	<10	160	<10	2	235
34	RRX-20	105	2.0	2.45	<5	100	<5	1.32	2	13	20	452	2.04	30 0.0	2 2227	201	0.03	17	1280	14	<5	<20	29 < 0.01	<10	29	<10	4	370
35	JR-01	5	0.4	0.47	<5	200	<5	0.72	2	11	52	123	3.01	30 0.0	5 2001	5	0.00	.,		••	3							
		_			4.5			0.45	2	40	20	740	2 86	30 000	1 2220	8	<0.01	15	1340	22	<5	<20	25 <0.01	<10	31	<10	1	439
36	JR-02	5	1.0	0.60	10	260	<5	0.15	3	10	30	/19	3.00	· 30 <0.0	1 3330	0	~0.01	.5	1040	~~				. +	-			

|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|

																	NI- 0/			Dh	Sh	Sn	Sr Ti%	U	v	w	Y	Zn
Et #	Tag #	Au(opb)	Aq	AI %	As	Ba	Bi (Ca %	Cd	Co	Cr	Cu	Fe %	La Mg	<u>% Mn</u>	MO	Na %		F			<20	24 <0.01	<10	17	<10	2	404
	10 03	5	0.2	0.54	25	165	<5	0.18	<1	5	23	65	2.58	30 <0.0)1 900	4	<0.01	3	1130	30	<5 <5	~20	22 <0.01	<10	21	<10	<1	427
31	JR-03	15	16	0.60	20	260	<5	0.16	2	5	40	463	2.51	30 <0.0	01 867	18	0.01	4	1210	180	<5 -5	~20	25 <0.01	<10	32	<10	<1	277
38	JR-04	405	12.4	0.65	365	210	<5	0.03	<1	4	27	329	5,50	<10 0.0	07 174	37	0.02	<1	800	2588	<0 -5	<20	25 < 0.01	<10	35	<10	<1	246
39	JK-05	495	46	0.52	25	255	<5	0.04	<1	4	24	441	4.58	<10 0.0)3 246	71	0.02	<1	970	206	<0	<20	33 -0.01	-10	00		•	
40	JK-06	80	4.0	0.52	20	200	•	••••														-00	21 -0.01	~10	46	<10	<1	234
	10.07	00	50	0.85	35	165	<5	0.09	<1	5	32	412	4.23	<10 0.1	13 413	30	0.02	2	700	340	<5	<20	21 <0.01	~10	20	<10	4	749
41	JK-07	90	2.4	0.00	10	270	<5	0.90	4	12	61	372	3.52	30 0 .1	13 1350	9	0.04	7	1090	106	<5	<20	55 \0.01	~10	51	<10	-1	346
42	JR-08	30	2.4	1.00	20	100	<5	0.04	<1	7	23	404	4.17	10 0.3	25 469	24	0.03	<1	800	62	<5	<20	17 0.01	<10	53	~10	<1	255
43	JR-09	40	3.0	1.00	20	215	-5	0.01	<1	5	35	320	5.58	<10 0.3	24 369	21	0.03	4	1300	80	<5	<20	52 0.02	>10	22	~10	2	450
44	JR-10	95	2.2	0.90	20	210	-5	0.11	3	9	35	234	4.67	30 0.0	07 1489	7	0.02	4	1430	50	<5	<20	36 < 0.01	<10	32	510	~	400
45	JR-11	20	1.0	0.52	20	210	-0	0.00	v	•															~~	~10	-1	357
				0 57	E	165	-5	0 00	1	6	27	240	6.13	<10 0.	08 5 66	7	0.02	5	1440	40	<5	<20	22 < 0.01	<10	33	~10	~1	760
46	JR-12	60	1.2	0.57	5	420	-5	0.03	3	ă	20	380	6 36	10 <0.	01 1349	9	0.02	3	1520	66	<5	<20	12 < 0.01	<10	25	~10	- I E	1007
47	JR-13	620	4.4	0.46	80	130	<5 <5	0.10	5	13	22	393	5 31	30 0.	05 1943	5	0.02	4	1510	20	<5	<20	39 < 0.01	<10	30	<10	-1	249
48	JR-14	40	0.8	0.49	10	135	~0	~0.01	~1	4	40	287	5 45	<10 <0.	01 285	10	<0.01	<1	1170	1300	<5	<20	28 < 0.01	<10	14	< 10		700
49	JR-15	285	10.8	0.37	105	135	<0 -5	0.01	-1	10	10	353	5.94	10 0.	01 1248	6	0.02	2	1600	50	<5	<20	25 <0.01	<10	30	<10	< I	100
50	JR-16	150	2.0	0.44	15	120	<0	0.22	4	10	13	000	0.01															460
								0.00	-4	7	28	141	7 46	<10 <0.	01 58	24	0.02	<1	1540	52	<5	<20	21 <0.01	<10	33	<10	<1	103
51	JR-17	95	1.4	0.31	15	60	<5	0.06	- 4	7	50	128	692	<10 <0	01 155	14	0.02	3	1520	258	<5	<20	33 <0.01	<10	33	<10	<1	1/9
52	JR-18	90	2.8	0.36	20	50	<5	0.08	51		20	120	7 33	<10 <0	01 228	14	0.02	3	1590	46	<5	<20	15 <0.01	<10	36	<10	<1	239
53	JR-19	40	2.0	0.35	<5	55	5	0.11	<1 -4	9	29	404	7.00	<10 0	05 166	12	0.02	3	1430	40	<5	<20	40 <0.01	<10	34	<10	<1	144
54	JR-20*	55	1.2	0.37	15	50	5	0.21	<1	40		402	1.44	<10 0.	02 2373	11	0.01	7	1290	90	<5	<20	23 <0.01	<10	26	<10	1	565
55	JR-21	35	1.4	0.40	15	85	<5	0.27	4	12	00	125	4.00	-10 0.	02 2010													
							_		•	•	44	450	4 20	10 <0	01 2329) 5	0.01	6	1170	16	<5	<20	21 <0.01	<10	22	<10	1	523
56	JR-22	80	1.4	0.39	20	140	<5	0.20	3	9	44	103	4.39	10 -0	01 607	11	0.03	2	1570	24	<5	<20	23 <0.01	<10	32	<10	<1	251
57	JR-23	15	1.2	0.48	10	130	<5	0.22	2	7	23	144	5.20	10 -0.	01 031	; 'A	0.02	3	1380	12	<5	<20	40 <0.01	<10	18	<10	3	244
58	JR-24	75	0.8	0.37	20	105	<5	0.70	2	9	37	00	4.13	~10 0	06 700	26	0.06	2	1520	102	<5	<20	86 <0.01	<10	26	<10	<1	265
59	JR-25	45	3.2	0.60	55	135	<5	0.10	<1	6	30	292	1.22	<10 0	00 700	, <u>2</u> 0 I 13	0.00	ģ	1830	58	<5	<20	70 <0.01	<10	27	<10	2	602
60	JR-26	45	1.8	0.87	55	290	<5	0.35	3	10	32	396	6.24	30 0	.20 223-		0.00											
													C 45	20 0	01 920	10	0.03	2	1820	40	<5	<20	49 <0.01	<10	24	<10	<1	278
61	JR-27	15	2.0	0.45	20	95	<5	0.22	1	6	22	287	6.45	20 <0	01 023	5 10 5 24	0.00	- 1 ح	1510	86	<5	<20	28 < 0.01	<10	27	<10	<1	78
62	JR-28	25	4.8	0.39	35	120	<5	0.19	<1	4	38	439	5.19	<10 0	04 43	24	~0.03	1	1330	194	<5	<20	18 < 0.01	<10	22	<10	<1	255
63	IR-29	155	28.0	0.53	60	195	<5	0.03	<1	2	31	623	5.31	<10 <0	.01 135	190		ור מ	1200	228	<5	<20	25 < 0.01	<10	22	<10	<1	256
64	JR-30	80	10.6	0.45	35	275	<5	0.11	<1	4	40	527	4.58	10 <0	.01 57	1 02	0.02	2	1250	24	<5	<20	37 < 0.01	<10	24	<10	4	550
65	JR-31	5	0.4	0.44	<5	200	<5	0.77	3	11	36	105	3.07	30 0	.03 238	9 3	0.03		1200	24								
00	011 01																-0.01	40	1270	30	<5	<20	21 < 0.01	<10	25	<10	3	670
66	JR-32	5	0.6	0.48	<5	455	<5	0.28	3	12	36	127	3.33	40 <0	.01 270	4 4			1 12/0	288	<5	<20	31 < 0.01	<10	27	<10	3	863
67	JR-33	25	1.6	0.45	25	305	<5	0.56	4	10	27	142	4.26	30 0	.01 285	2 5	0.01	2	1200	200	<5	<20	77 < 0.01	<10	31	<10	7	461
68	IR-34	10	0.6	0.44	<5	220	<5	1.09	3	10	43	142	2.99	40 0	.13 213	J 4	1 0.03		1400	20	-5	<20	50 <0.01	<10	28	<10	9	502
60	IR-35	5	0.6	0.47	<5	210	<5	0.96	3	9	34	356	3.38	40 0	08 200	2 6	0.04	2	7 1400	16	-5	<20	92 <0.01	<10	33	<10	9	439
70	ID-36	5	1.2	0.50	10	275	<5	1.20	3	8	42	187	4.15	50 0	.17 183	9 8	\$ 0.03	1	1590	10	-5	~20	52 .0.01					
10	011-00	-																	1 4700	80	-5	<20	18 < 0.01	<10	41	<10	<1	153
71	IR-37*	195	14.6	0.51	25	65	<5	0.17	1	9	27	702	6.80	<10 0	.05 23	7 4/	0.02	4	1010	02	-5	<20	13 < 0.01	<10	33	<10	<1	964
71	10.38	60	2.4	0.46	35	95	<5	0.18	2	13	42	422	7.47	10 <0	.01 220	2 10	0.01	10	1910	34	-5	~20	10 <0.01	<10	42	<10	5	2335
72	10 30	10	0.8	0.47	5	230	<5	0.25	10	25	38	295	5.34	30 <0	.01 598	5 10) <0.01	3	1020	30	~5	~20	48 <0.01	<10	35	<10	<1	442
73		245	12	0.63	45	245	<5	0.07	2	4	33	403	4.53	20 <0	0.01 27	4 18	3 0.01		3 1400	40	~5	<20	66 <0.01	<10	31	<10	<1	149
14	JR-40	55	28	0.60	55	165	<5	0.10	<1	6	32	524	5.28	<10 0	0.12 22	6 34	4 0.03	<'	1400	48	<0	~20	00 -0.01	.10	•••			
15	312-41		2.0	0.00																	-5	~20	51 <0.01	<10	21	<10	<1	307
	10.40	25	14	0.38	10	90	<5	0.10	2	7	38	125	4.96	<10 C	0.02 57	0 9	9 0.03		3 1250	58	<5	<20	31 <0.01	<10	29	<10	3	195
76	JR-42	20	1.4	0.30	15	100	<5	0.12	<1	3	67	297	3.55	40 <0	0.01 15	8 3 [.]	1 0.03		1 1480	76	<5	<20	44 <0.01	<10	16	<10 <10	3	276
71	JR-43	30	1.0	0.40	10	190	<5	0.57	4	7	78	57	2.73	20 0	0.02 74	7	7 0.03	1	B 1110) 56	<5	<20	25 < 0.01	~10	22	<10	6	594
78	JR-44	15	0.2	0.33	5	235	<5	0.95	6	7	68	89	3.05	30 C	0.06 124	6 !	5 0.03	1	B 1170	30	<5	<20	68 < 0.01	~10	30	<10	8	184
79	JR-45	5	0.0	0.41	5	200	<5	0.95	3	17	177	5164	4.86	20 0	0.29 60	4 3	6 0.02	1	0 1440) 26	<5	<20	29 <0.01	<10	39	-10	0	104
80	JR-46	85	9.0	0.41	5	50	-0	0.00	J											_	_		F0 .0.01	-10	40	<10	c1	172
		~~		0.00	40	170	2 5	0.05	<1	3	49	104	4.13	<10 <().01 12	4 20	6 0.05	<	1 960) 130	<5	<20	50 <0.01	<10	10	~10	0	Q15
8	JC-01	20	1.8	0.33	10	205	-0	0.00	4	10	36	124	3.30	30 (0.04 188	0	5 0.02		7 1100) 34	<5	<20	41 <0.01	<10	14	~10	5	615
82	JC-02	5	0.6	0.38	50 	200	-3	0.75	т А	10	38	119	2.79	20 0	0.01 148	4 3	3 0.03	1	0 1100) 70	<5	<20	18 < 0.01	<70	10	<10	5	424
83	JC-03	5	0.4	0.35	50 5	145	~0 ~E	1.00	⊿	à	54	103	2.57	20 (0.12 117	2	5 0.03	!	9 1120) 42	<5	<20	84 < 0.01	<10	20	<10	2	529
84	JC-04	5	<0.2	0.33	<5	140	~0 ~E	0.64	- -	11	44	136	3.00	20 ().06 154	6	4 0.03	1	0 1130) 34	<5	<20	38 <0.01	<10	19	< 10	3	520
85	i JC-05	5	0.6	0.50	10	150	~0	0.04	Ĵ,				0,00															

				<u></u>]	L	J	[عقيقر]			(عنها			(and the second se	L oine see		التصفية	6			J.	U		6	ä. J				
													• •															
Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi Ca	1% C	<u>Co</u>	<u>Cr</u>	Cu	Fe %	La Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	V	w	Y	Zn
		E	-0.2	0.26	15	140	<5 0	67		34	69	3 38	30 0.04	1053	9	0.02	11	1060	42	20	<20	52	<0.01	<10	16	<10	3	502
80 87	JC-06 JC-07	5	<0.2	0.50	10	50	<5 1	.23	7 23	26	77	5.49	30 0.19	1161	9	0.03	15	1580	8	20	<20	72	<0.01	<10	30	<10	7	478
88	JC-08	5	<0.2	0.45	10	170	<5 0	.16	6 9	38	111	3.99	10 0.03	1208	14	0.03	13	1160	56	25	<20	46	<0.01	<10	23	<10	51	400
QC DA	<u> </u>																											
Resplit	: SS-101	20	38	0.66	20	30	< 5 0	43	2 16	5 44	750	5,75	10 0.38	452	178	0.04	6	1450	56	<5	<20	26	0.04	<10	46	<10	3	333
R/S 36	33-101 JR-02	20	1.2	0.61	10	260	<5 0	.15	3 10	34	704	3,86	20 < 0.01	3395	6	<0.01	14	1390	22	<5	<20	22	<0.01	<10	31	<10	1	458
R/S 71	JR-37	75	15.0	0.46	25	60	<5 0	.17	1 9	26	705	6.74	<10 0.05	233	46	0.02	3	1740	78	<5	<20	16	<0.01	<10	40	<10	<1	152
Repeat																	-	4200	50	~5	~20	26	0.04	<10	47	<10	2	310
. 1	SS-101	30	3.8	0.68	25	25	<5 0	.38	2 18	3 45	760	6.14	10 0.38	415	154	0.04	-1	1390	52 12	<5	<20	20	<0.04	<10	5	<10	<1	3
10	SS-110	5	0.4	0.27	40	20	5 <0	.01 <	1 3	3 35	16	2.14	<10 <0.01	645	0 -1	<0.01 0.14	20	1150	4	<5	<20	61	0.28	<10	202	<10	7	91
19	RRX-5	5	<0.2	3.36	45	75	<50	.84 <	1 20	5 /0 	225	7.14	20 <0.01	3368	י- א	<0.14	16	1380	22	<5	<20	22	<0.01	<10	32	<10	1	452
36	JR-02	5	1.2	0.60	15	255	<5 0	.15	3 10) 31	125	3.93	30 <0.01	3300	U	-0.01	10	1000		-								
45	JR-11	75	1.4	0.50	15	200	<5 0	.39	39	9 33	232	4.71	30 0.07	1490	7	0.02	4	1460	50	<5	<20	35	<0.01	<10	32	<10	2	458
54	JR-20*	145	1.2	0.38	15	45	50).21 <	18	3 40	105	7.34	<10 0.05	167	11	0.02	3	1440	40	<0 - E	<20	41	<0.01	<10	34 A1	<10	<1	157
71	JR-37*	85	14.8	0.50	30	55	<5 0	.17	1 9	27	717	6.89	<10 0.05	240	46	0.02	3	1/30	82	<0 5	<20	30	<0.01	<10	39	<10	8	188
80	JR-46	85	8.0	0.41	5	50	<5 0	.96	4 16	5 167	5229	4.85	20 0.30	609	40	0.03	12	1450	20	5	-20	00	-0.01	-10			-	
Standa	rd:																~ ~	660	20	~E	~20	57	0.10	<10	75	<10	5	76
GEO'98	3	135	1.2	1.78	65	155	5 1	.73 <	1 19	9 66	91	4.18	<10 0.96	693	<1	0.03	24	000	20	<5	<20	56	0.10	<10	76	<10	5	77
GEO'98	3	150	1.4	1.77	65	160	<5 1	.76 <	1 19	9 64	86	4.23	<10 0.95	101	<1 21	0.02	24	680	18	<5	<20	57	0.12	<10	78	<10	6	72
GEO'98	3	155	1.4	1.80	70	160	5 1	.76 <	1 19	9 65	89	4.29	<10 0.95	000	~1	0.03	25	000	10									
NOTE:	Metallic go screen as	old suspect	ted mende	ed																								
										-	-	m	1 - 1 4 0/		Ма	No 9/	NII		Ph	Sh	Sn	Sr	Ti %	ย	v	w	Y	Zn
Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	BiC	<u>a% C</u>	d Co		Cu	Fe %		<u> Win</u>	MO MO	Nd 76	15	1590		<5	<20	83	<0.01	<10	60	<10	4	57
1	6-1	15	<0.2	1.41	95	50	5 0).86 <	1.10	D 78	1/	5.56	30 1.23	653	9 15	0.04	15	1120	142	<5	<20	17	<0.01	<10	35	<10	<1	399
2	107-BX	10	0.4	0.73	65	180	50).04	1 10	0 23	203	4 78		730	6	0.02	7	1340	20	<5	<20	15	<0.01	<10	27	<10	2	368
. 3	63-M	25	0.6	0.48	40	295	<5 U).14 0.04	20	5 J4 5 10	167	9.70	<10 <0.01	190	17	0.03	<1	1570	30	<5	<20	64	<0.01	<10	31	<10	<1	165
4	63-FD	35	0.8	0.45	55	195	<5 L).04 <		5 13	107	0.00	-10 -0.01	150	.,	0.00	•											
QC DA	TA:																											
Respli	t:																40	4670	•	~F	-20	97	0.01	<10	63	<10	4	57
R/S 1	6-1	10	0.2	1.48	85	50	5 0).93 <	1 1 [.]	1 83	18	5.84	30 1.29	482	10	0.04	16	1670	đ	-0	~20	01	0.01	~10	00	-10	7	•••
Repea	t:											_			_			4000	40	Æ	~20	0.4	<0.01	~10	61	∠1 0	٦	58
1	6-1	10	0.4	1.45	85	50	5 0).88 <	1 10	0 81	20	5.71	30 1.26	5 475	8	0.04	15	1620	10	<0	~20	04	~U.U1	~10	01	-10		00

CERTIFICATE OF ASSAY AK 98-428

19-Aug-98

TECK EXPLORATION LTD. #350-272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2

North A

ATTENTION: SCOTT SMITH

No. of samples received:88 Sample Type: Rock PROJECT #: 1763 SHIPMENT #: None Given Sample submitted by: S. Smith

ET #. Tag #	Ag (g/t)	Ag (oz/t)			
2 SS-102	110.0	3.21	· · ·		- · ·
QC DATA:					
Standard: Mpla	69.7	2.03			
	an an an Arraighteachtachtachtachtachtachtachtachtachtacht				
XLS/98TecK fax: @ 372-1285	an a	ECO Fran B.C.	-TECH LABOR k J. Pezzotti, A. Certified Assay	ATORIES LT Sc.T. er	ѓр.

Page 1

CERTIFICATE OF ASSAY AK 98-428M

TECK EXPLORATION LTD. #350-272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2

A.

No. All No.

Π

0

2-Sep-98

ATTENTION: SCOTT SMITH

No. of samples received:88 Sample Type: Rock PROJECT #: 1763 SHIPMENT #: None Given Sample submitted by: S. Smith

		Au .	Au	
ET #.	Tag #	(g/t)	(oz/t)	
54	JR-20	0.06	0.002	
71	JR-37	0.09	0.003	

Metallic Assay

XLS/98Teck

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

Appendix V

C

D

0

Statement of Costs

Geological Mapping & Geochemistry Sampling (between July 11 and July 29, 1998)

Sampler - Jeremy Marlow		
Sampler - Jerenny Mariow	\dots 15 days @ \$175/day \dots	
Sampler – Paul Watt	10 days @ \$175/day	1,750.00
Geologist – Andy Betmanis	17 days @ \$320/day	5,440.00
Geologist – Scott Smith	17 days @ \$270/day	4,590.00
Field Supplies		1,023.45
Analytical Costs (Eco-Tech Labs):		<i>i</i>
Rock Samples		7 (())
Geochemical analysis	42 @ \$18.26/sample	
Assay	1 @ \$8.50/sample	8.50
Metallic screening, Gold assay	2 @ \$24.00/sample	
Soil Sample analysis	410 @ \$14.85/sample	6,088.50
felicopter (PWH Ltd.), 206 Jet Ranger	22.9 hrs @ \$833.28/hr	
Food and Accommodation	68 man days @ \$75.00/day	5,100.00
dobilization		3,400.00
SUBTOTAL		\$49,922.48
Teck Personnel:	5 davia @ \$175/dav	875.00
Sampler – Jeremy Marlow	5 days @ \$175/day	
Sampler – Paul Watt	$\frac{3}{6} days (a) $1/5/day \dots$	1 600 00
Geologist – Andy Betmanis		1,000.00
Geologist – Scott Smith	$\dots 5 \text{ days} @ $270/\text{day} \dots$	1 / 6 / 1 / 1 / 1
Field Supplies		1,350.00
위에 이렇게 잘못하는 것을 수 있는 것이 가지 않는 것이 가지 않는 것이 가지 않는 것이 있는 것이 있다.		
Analytical Costs (Eco-Tech Labs):		
Analytical Costs (Eco-Tech Labs): Rock Samples		1,350.00
Analytical Costs (Eco-Tech Labs): Rock Samples Geochemical analysis		
Analytical Costs (Eco-Tech Labs): Rock Samples Geochemical analysis Soil Sample analysis		
Analytical Costs (Eco-Tech Labs): Rock Samples Geochemical analysis Soil Sample analysis Helicopter (PWH Ltd.), 206 Jet Ranger		
Analytical Costs (Eco-Tech Labs): Rock Samples Geochemical analysis Soil Sample analysis Helicopter (PWH Ltd.), 206 Jet Ranger Food and Accommodation		
Analytical Costs (Eco-Tech Labs): Rock Samples Geochemical analysis Soil Sample analysis Helicopter (PWH Ltd.), 206 Jet Ranger Food and Accommodation De-Mobilization		
Analytical Costs (Eco-Tech Labs): Rock Samples Geochemical analysis Soil Sample analysis Helicopter (PWH Ltd.), 206 Jet Ranger Food and Accommodation De-Mobilization Petrographic Report (Vancouver Petrographi		
Analytical Costs (Eco-Tech Labs): Rock Samples Geochemical analysis Soil Sample analysis Helicopter (PWH Ltd.), 206 Jet Ranger Food and Accommodation De-Mobilization Petrographic Report (Vancouver Petrographi Report Writing and Drafting		
 Analytical Costs (Eco-Tech Labs): Rock Samples Geochemical analysis Soil Sample analysis Helicopter (PWH Ltd.), 206 Jet Ranger Food and Accommodation De-Mobilization Petrographic Report (Vancouver Petrographic Report Writing and Drafting 		
Analytical Costs (Eco-Tech Labs): Rock Samples Geochemical analysis Soil Sample analysis Helicopter (PWH Ltd.), 206 Jet Ranger Food and Accommodation De-Mobilization Petrographic Report (Vancouver Petrographi Report Writing and Drafting SUBTOTAL		
 Analytical Costs (Eco-Tech Labs): Rock Samples Geochemical analysis Soil Sample analysis Helicopter (PWH Ltd.), 206 Jet Ranger Food and Accommodation De-Mobilization Petrographic Report (Vancouver Petrographic Report Writing and Drafting SUBTOTAL 		
Analytical Costs (Eco-Tech Labs): Rock Samples Geochemical analysis Soil Sample analysis Helicopter (PWH Ltd.), 206 Jet Ranger Food and Accommodation De-Mobilization Petrographic Report (Vancouver Petrographi Report Writing and Drafting SUBTOTAL TOTAI		
 Analytical Costs (Eco-Tech Labs): Rock Samples Geochemical analysis Soil Sample analysis Helicopter (PWH Ltd.), 206 Jet Ranger Food and Accommodation De-Mobilization Petrographic Report (Vancouver Petrographic Report Writing and Drafting SUBTOTAL TOTAL 		

Appendix VI

Statement of Qualifications

- I, Scott William Smith, do hereby certify that:
- 1) I am a geologist and have worked in British Columbia in mineral exploration for ten years.
- 2) I am a graduate of the University of Alberta in Edmonton Alberta, with a B.Sc. degree Specialization, Geology (May 1988).
- 3) I am a Professional Geologist, registered with the Association of Professional Engineers, Geologists and Geophysicists of Alberta.
- 4) I supervised and conducted exploration on the Jake Claim Group between July 11 and August 5, 1998.

100 A.

- Contraction

Π

Scott Smith Senior Project Geologist

	-
	-
	-
$\langle / / /$	
χ	
X / /	
10 /	
$\langle / / /$	
1000	
	CONTRACTOR BRANCH
	25451
X / /	
	A.S.
	and the second
	Legend
	Kastborg (Quartz) Latite Porphyrys
1 /	BX BRECCIA
1/ / 1/	
V / 1	KLp FELDSPAR PORPHYRY
	KLd DIORITE
	Rte BOWSER SEDIMENTS and THEE
X / /	
	SS-104 ROCK SAMPLE 5-3(5) PETROGRAPHIC SAMPLE
	GEOLOGICAL CONTACT TRENCH
	C OUTCROP ==== ROAD × FLOAT TRAIL
	BEDDING CREEK
	JOINTING CLEARING
	Figure 6 TECK EXPLORATION LTD.
	KAMLOOPS, BRITISH COLUMBIA
1 / /	SOUTH GRID
	Property Geology Map
1 / /	GEOLOGY BY: S. Smith JOB No: 176300

\mathbf{x}	
\sum	
for and the second seco	
$\langle \rangle$	
	CEOLOGICAL SURVEY BRANCH
	SEMENT REPORT
	JA UKI
$\left(\right)$	
$\langle \rangle$	
	1998 SOIL SAMPLING
	о 0 — 99 ррb ○ 100 — 499 ррb
	○ 500 - 999 ppb
	💛 >1000 ррв
X	CONTOUR INTERVAL
and the second	100 ppb Au
	500 ppb Au
	1997 SOIL LINES
	\$ 20
	S S
	-
	0 50 100 150
	metres
	FIGURE 7
1	TECK EXPLORATION LTD.
	JAKE PROPERTY
	NORTH GRID
	Soil Geochemistry
	DATE DRAWN: JUNE 17, 1999 SCALE: 1:2,500
	COMPILED BY: R.Former/S.Smith JOB No: 176300 DRAWN BY: S.A. NTS No: 94D

