

SAIL PROPERTY

1998 ASSESSMENT REPORT ON GEOLOGICAL MAPPING,

GEOCHEMICAL ROCK AND SOIL SAMPLING SURVEYS

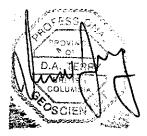
ON THE SAIL 1 TO 8 MINERAL CLAIMS,

CASSIAR MOUNTAINS, BRITISH COLUMBIA

DATES WORKED: August 4 to 29, 1998

NTS MAP AREA 1041/15 LATITUDE 58° 47'00'' N, LONGITUDE 128° 45'00'' W LIARD MINING DIVISION

GEOLOGICAL SURVEY BRANCH


ASSESSMENT REPORT

Prepared for: BOLIDEN LIMITED 904-1055 DUNSMUIR STREET P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, B.C., CANADA V7X 1C4

By:

David J. Pawliuk, P. Geo. David A. Terry, Ph.D., P.Geo.

June, 1999

TABLE OF CONTENTS

 \bigcirc

#	Title	Page
1.0	INTRODUCTION	6
2.0	LOCATION, ACCESS, AND PHYSIOGRAPHY	7
3.0	LIST OF CLAIMS AND OWNERSHIP	9
4.0	PREVIOUS WORK	11
5.0	REGIONAL GEOLOGY	11
6.0	PROPERTY GEOLOGY	12
6.1	Structure	16
6.2	Alteration and Mineralization	17
6.3	Rock Geochemistry	24
7.0	SOIL GEOCHEMISTRY	26
7.1	Grid Soils	27
8.0	DISCUSSION AND CONCLUSIONS	29
9.0	RECOMMENDATIONS	32
10.0	REFERENCES	34

LIST OF TABLES

 $\langle \cdot \rangle$

#	Title	Page
3.1	List of Claims	9
6.1	Rock Geochemistry of Slot Showing Samples	26
7.1	Soil Geochemcial Statistics for the North Grid	28
7.2	Soil Geochemical Statistics for the South Grid	29

LIST OF FIGURES

#	Title	Page
2.1	Property Location Map	8
3.1	Claim Location Map	10
6.1	Geology and Rock Sample Location - North Half (1:3,000 Scale)	Appendix F
6.2	Rock Geochemistry - North Half (1:3,000 Scale)	Appendix F
7.1	Au in Soils North Grid (1:3000 Scale)	Appendix F
7.2	Ag in Soils North Grid (1:3000 Scale)	Appendix F
7.3	Cu in Soils North Grid (1:3000 Scale)	Appendix F
7.4	Pb in Soils North Grid (1:3000 Scale)	Appendix F
7.5	Zn in Soils North Grid (1:3000 Scale)	Appendix F
7.6	Ba in Soils North Grid (1:3000 Scale)	Appendix F
8.1	Geology and Rock Sample Location - South Half (1:5,000 Scale)	Appendix F
8.2	Rock Geochemistry - South Half (1:5,000 Scale)	Appendix F
9.1	Au in Soils South Grid (1:5000 Scale)	Appendix F
9.2	Ag in Soils South Grid (1:5000 Scale)	Appendix F
9.3	Cu in Soils South Grid (1:5000 Scale)	Appendix F
9.4	Pb in Soils South Grid (1:5000 Scale)	Appendix F
9.5	Zn in Soils South Grid (1:5000 Scale)	Appendix F
9.6	Ba in Soils South Grid (1:5000 Scale)	Appendix F
10.1	Ice Showing Geology and Sample Location (1:500 Scale)	Appendix F

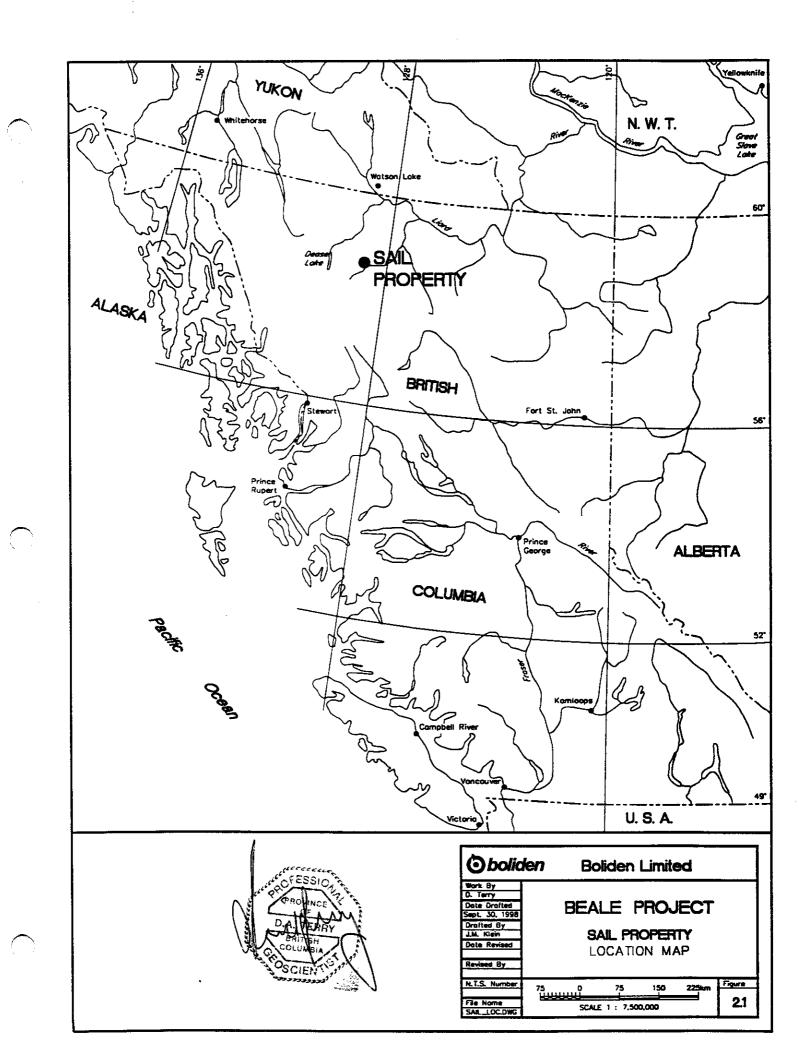
APPENDICIES

A	Statement of Expenditures
B	List of Personnel
С	Geologists Certificates
D	Rock Sample Descriptions
E	Assay Certificates
F	Oversize Figures

1.0 INTRODUCTION

The SAIL 1 – 6 mineral claims were staked by Westmin Resources Ltd. in July, 1996 to follow-up on base metal anomalies generated during silt sampling surveys by Western Mines Limited (Westmin Resources Limited's precursor company) in 1979 and the B.C. Geological Survey in 1995 (Jackaman, 1996). A number of rock and soil samples containing anomalous concentrations of gold and base metals were identified during 1996 exploration. Rocks containing up to 32.4 % lead, 1.1 % zinc and 0.25 % copper were obtained from a mineralized fault zone. A quartz-sericite-pyrite schist unit contained up to 5.0 g/t gold. Numerous precious and base metal geochemical soil anomalies were also identified (Jones, 1997).

Fieldwork was concentrated on the SAIL 5 and 6 mineral claims during 1997 exploration. The contour soil anomalies delineated during 1996 exploration were better-defined by grid geochemical soil sampling. Mineralized float boulders containing massive sulphides were discovered. These massive sulphide boulders contain up to 15% chalcopyrite and 65 to 80 % pyrrhotite within a silica-chlorite gangue. The bedrock source of the boulders was not determined in 1997 due to extremely steep topography in the apparent source area. A linear gossan approximately 500 m in length on an east-facing cliff face was thought to be the bedrock source of the massive sulphide boulders. Locally anomalous concentrations of gold and zinc occur within a quartz-sericite-pyrite schist within the property area. Whole rock geochemical analyses indicated that this unit could be a felsic meta-volcanic rock.

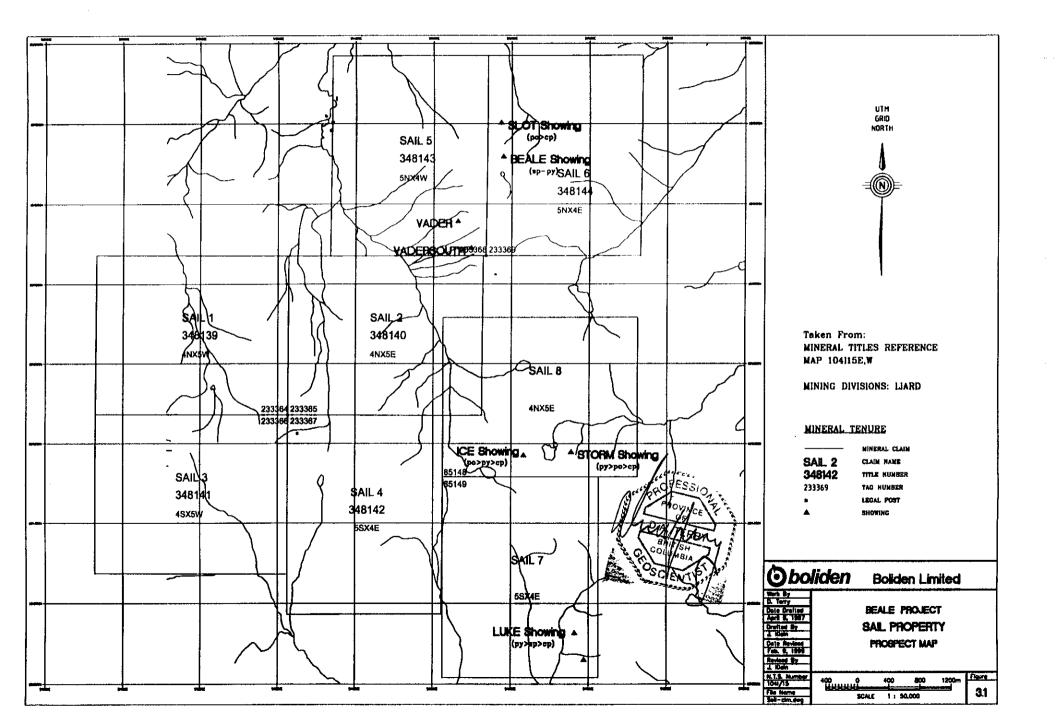

The objectives of the 1998 exploration program were to determine the source of mineralized massive sulphide boulders found during 1997 work, to determine the character and extent of the gold-bearing quartz-sericite-pyrite schist, and to test the potential for a volcanogenic massive sulphide deposit on the property. Lead- and zinc-in-soil geochemical anomalies delineated by 1996 contour soil sampling to the

southeast of the SAIL 1 to 6 claims were also investigated by 1998 work. Claim staking, grid geochemical soil sampling, geological mapping and rock sampling were done to follow-up these lead- and zinc-in-soil anomalies. Fly camps with six people were established on the SAIL 5 and SAIL 6 mineral claims from August 4th to 17th; a four-person camp was established on the SAIL 7 mineral claim from August 18th to 29th. Camp material and crew were flown from Watson Lake to the northern end of Cry Lake by a fixed-wing DHC-3 Otter floatplane. A Bell 206B helicopter chartered from Pacific Western Helicopters at Dease Lake was used to position the camp and crew onto the property from Cry Lake. The camp and crew were demobilized to Dease Lake by Pacific Western Helicopters Bell 206B helicopter. The exploration program involved geological mapping combined with detailed rock and soil sampling. The work was done by Boliden Limited field personnel, and under contract by Nanoose Geoservices.

2.0 LOCATION, ACCESS AND PHYSIOGRAPHY

The SAIL property is located approximately 10 km east-southeast of the northern end of Cry Lake, and about 65 km east of the Stewart-Cassiar Highway (#37). The nearest community is Dease Lake, B.C., located 80 km southwest of the property (Fig. 2.1). The property lies within NTS map-sheet 104 I/15 E and is centred at approximately 58° 47' N latitude and 128° 45' W longitude. Access to the property is by helicopter.

Elevations on the property range from about 1300 metres at the northern boundary of SAIL 5 mineral claim to over 2200 metres in the southern part of the property. The terrain consists of steep ridges separated by long, broad, cirque valleys. Treeline is at approximately 1400 metres with only local patches of small trees and alpine vegetation above that elevation.


3.0 LIST OF CLAIMS AND OWNERSHIP

The property currently consists of 8 contiguous mineral claims containing 160 units in total. The claims are shown on Figure 3.1 and are listed below in Table 3.1. The expiry dates shown below are those in effect prior to filing the current work programme for assessment.

Claim Name	Tenure No.	Expiry Date	Owner
SAIL 1	348139	July 2, 2001	Boliden Limited
SAIL 2	348140	July 2, 2001	Boliden Limited
SAIL 3	348141	July 2, 2001	Boliden Limited
SAIL 4	348142	July 2, 2001	Boliden Limited
SAIL 5	348143	July 2, 2001	Boliden Limited
SAIL 6	348144	July 2, 2001	Boliden Limited
SAIL 7	364957	August 18, 1999	Boliden Limited
SAIL 8	364958	August 18, 1999	Boliden Limited

Table 3.1 List of Claims

 \bigcirc

4.0 PREVIOUS WORK

Exploration has been carried out in the northern Cry Lake area since the late 1800's. Several showings are known in the Rapid River Tectonite including the vein-hosted gold-zinc-silver-copper Nizi Showing, an un-named polymetallic occurrence on Beale Mountain, and the GB copper-nickel-asbestos showing (B.C. Minfile Map 104I).

The Nizi property is 22 km northwest of the SAIL property. Nizi has been explored on several occasions dating back to the early 1970's. In 1991-92 Goldfields Canadian Mining Limited carried out geological mapping and sampling, and drilled several vein showings on the property. Madrona Mining Limited also drilled the Nizi property during the summer of 1996. Drilling results have varied widely. However, intersections such as 13.5 g/t gold, 146.8 g/t silver and 2.85 % zinc across 3.0 m and 1.16 g/t gold, 733.4 g/t silver and 7.8 % zinc over 4.5 m indicate that the veincontrolled mineralization is significant (Wojdak, 1997).

A search of assessment file records did not show any previous work on the ground covered by the SAIL mineral claims prior to Westmin's 1996 summer program. However, claim posts dating from 1970 and 1991 are present within the property area. The area was covered by a regional stream sediment sampling survey conducted by the provincial government in 1995 (Jackaman, 1996)

5.0 REGIONAL GEOLOGY

The SAIL property is situated within the Rapid River Tectonite assemblage, part of the dominantly oceanic Sylvestor Allochthon (Gabrielse, 1994; Gabrielse and Harms, 1989). The allochthon in the SAIL property area includes tectonized metavolcanics, meta-sediments, and limestone of possibly Upper Devonian to

Mississippian age (K-Ar date of 358.8+/-7.6 Ma on hornblende; Gabrielse, 1994). Foliated granodiorite and gabbro of Mississippian age intrude the supracrustal rocks. The supracrustal rocks have also been intruded by elongate, commonly serpentinized, peridotite and pyroxenite bodies. Collectively this assemblage is characteristic of a relatively deep oceanic environment. Tuffaceous, intermediate to felsic volcanic units and limestone are locally present. Cretaceous granite plugs, characterized by strong hornfels margins, and the Eocene Major Hart Pluton, a high-level granite body, intrude the other rocks.

The dominant structural trend of the Sylvester Allochthon is northwesterly with variable dips at SAIL property area. Complexly faulted and lithologically distinct terranes comprise the Sylvestor Allochthon. A basal fault separates the allochthon from underlying miogeoclinal Devonian strata to the east (Gabrielse and Harms, 1989).

6.0 PROPERTY GEOLOGY

Chlorite-feldspar gneiss, quartz-biotite gneiss, quartz-sericite-pyrite gneiss, argillite, dacitic volcanic rocks, serpentinite and granite are the main rock types present within the SAIL property area. The gneisses are generally metamorphosed to upper greenschist - lower amphibolite grade, making recognition of original lithologies difficult.

Quartz-biotite gneiss

Quartzose and quartz-biotite gneisses contain quartz- and biotite-rich bands from 1 to 5 cm wide. These rocks are interpreted to be meta-sedimentary rocks because of their combined low Zr and TiO₂ content (Jones, 1997; Gale and Terry, 1998). These rocks are locally silica-indurated and cherty.

Chlorite-feldspar gneiss

Structurally above these sedimentary gneisses there is a package of chloritefeldspar gneisses, which form many of the ridges within the property area (Fig. 6.1). These rocks usually consist of alternating bands of chlorite and feldspar, or are mostly chlorite. These gneisses are mainly banded on a mm scale. The protolith of the chlorite-feldspar gneiss is interpreted to be mafic volcanic rocks such as basaltic tuffs and gabbro flows.

The quartz-biotite gneiss and the chlorite-feldspar gneiss are usually interbanded across 5 to 15 metres at the contact between these two gneissic packages. The two rock units are conformable.

Quartz-sericite-pyrite schist (thrust fault unit)

The quartz-sericite-pyrite schist crossing SAIL 6 and SAIL 2 mineral claims is likely the surface expression of a shallow-dipping thrust fault (Fig. 6.1). Detailed geological mapping indicates that this rock unit crosscuts other lithologies, and is therefore not part of the meta-volcanic/meta-sedimentary sequence in the property area. The schist unit varies along strike from quartz-sericite-pyrite schist to a massive siliceous rock (Fig. 6.1). The schist is a distinctive yellow-brown colour in outcrop and hosts a number of gossanous zones. It is a continuous unit 5 to 35 metres thick. Pyrite content varies from 1 to 13 % throughout the unit; pyrite is typically disseminated with a weakly developed, banded texture. The schist unit has the whole rock chemical signature of a felsic volcanic unit (Gale and Terry, 1998). The siliceous rock occurs along strike from the quartz-sericite-pyrite schist and is composed of fine to medium grained silica with only a weakly developed foliation. At one locale the thrust fault unit appears to be crosscut by a later serpentinite body.

Felsic lapilli tuff

A band of felsic lapilli tuff 2 to 4 m wide was observed at one locale within SAIL 6 mineral claim. This rock consists of quartz- and feldspar-phyric fragments 2 to 5 cm across within a fine-grained, siliceous matrix.

Serpentinite and peridotite

Peridotite and serpentinite bodies occur throughout the northern portion of the property (Fig. 6.1). These ultramafic bodies trend northwesterly, parallel to the regional structural trend, but locally crosscut the gneissic layering. The peridotite is melanocratic, medium to coarse grained, orange-brown on weathered surfaces and weathers positively with respect to the surrounding lithologies. The serpentinite bodies are presumably altered equivalents of the intrusive peridotites but could have been partially tectonically emplaced. The serpentinite body south of SAIL 5 mineral claim has a ramp-like thrust fault contact with the underlying chlorite gneisses. The serpentinite body within south-central SAIL 5 mineral claim appears to have intruded the country rock in that area. A serpentinite body at southwestern SAIL 6 mineral claim was mapped by Gale and Terry (Fig. 6.1, 1998) as crosscutting the thrust fault unit described above.

Argillite

Argillite underlies much of SAIL 7 mineral claim (Fig. 8.1). It is dark grey to black, schistose and usually banded on a mm to cm scale. Most of the unit contains graphite and traces of finely disseminated, sooty pyrite. Local, irregular, hairline

pyrite veinlets occur within the argillite. Pyrite, chalcopyrite, galena and sphalerite veinlets line fracture surfaces at one locale in eastern SAIL 7 mineral claim. Galena and chalcopyrite traces also occur within quartz veinlets in argillite in eastern SAIL 7 claim. Greyish white barite crystals up to 2 or 3 mm across spot the argillite at many places. Argillite contains light grey to light brown siltstone interbeds that increase in thickness and abundance towards the structural top of the argillite, the dacitic lapilli tuff contact. Argillite has a conformable contact with the overlying dacitic lapilli tuff. Bedding within the argillite strikes easterly and dips steeply to the north.

Dacite lapilli tuff

Dacitic volcanic rocks in the SAIL 7 mineral claim are light greyish green lapilli tuffs that appear to have undergone greenschist facies metamorphism (Fig. 8.1). The lapilli average about 8 mm in length, and range up to about 10 by 30 mm. The dacitic volcanic rocks are relatively unaltered and unmineralized. They contain rare traces of pyrite.

The dacitic lapilli tuffs are conformable with the argillites in eastern SAIL 7 mineral claim. Argillite interbeds are present within the dacitic lapilli tuff near the contact between the two units.

Granitic dykes and stocks

Granitic dykes intrude the chlorite-feldspar gneisses at northern SAIL 5 mineral claim and in the southwestern corner of SAIL 6 mineral claim (Fig. 6.1). These dykes are sometimes foliated and pegmatitic. The dykes are presumably related to the Cretaceous granites or the Eocene Major Hart granitic pluton.

Granite and granodiorite stocks also intrude the stratified rocks at the SAIL mineral claims (Fig. 6.1). The granitic rocks are mostly coarse grained, leucocratic and quartz-rich. Granite at western SAIL 8 mineral claim contains elongate to blocky hornblende phenocrysts along the intrusive contact with chlorite gneiss wallrock. These hornblende phenocrysts are up to 6 cm across.

6.1 Structure

A well-developed, pervasive, schistose to gneissic foliation (S_1) is present throughout most lithologies on the SAIL property. This foliation has a general northwest trend but locally the strike is quite variable. An equal-area stereoplot with poles to S_1 foliation planes defines an F_2 fold axis that plunges 24° towards 329° (Fig. 6.1; Gale and Terry, 1998). A broad, open, northwesterly trending antiform (F_2) is present within SAIL 6 claim (Fig 6.1). Open to closed F_2 folds observed at outcrop scale are 0.2-1 m across. The measured fold axes of these structures correspond to the F_2 fold axis generated by the poles to the S_1 foliation (Fig. 6.1). F_2 Z-folds in a felsic lapilli tuff unit at southern SAIL 6 claim suggest an F_2 antiform to the north (Gale and Terry, 1998).

A joint set that strikes slightly east of north and has a near vertical eastward dip is irregularly developed throughout the property. The jointing post-dates the gneissic foliation.

Numerous faults are present within the SAIL property. Most of these faults strike northerly to northeasterly and dip steeply. The quartz-sericite-pyrite schist/siliceous rock unit crossing other lithologies at SAIL 6 mineral claim has been determined by detailed geological mapping to be the surface expression of a shallow-dipping thrust fault. Other thrust faults are present within the property area.

Jones (1997) described a large north-south trending fault located along the boundary between SAIL 5 and 6 mineral claims. Evidence for this structure occurs at east-central SAIL 5 claim where a 1 to 2 metre wide zone of fault gouge, quartz veining, ferricrete and gossan is present (Fig. 6.1).

At the Ice Showing – Storm Showing area within SAIL 7 and SAIL 8 mineral claims the meta-volcanic rock sequence has likely been overturned. At both of these occurrences chlorite gneiss (mafic meta-volcanic) overlies cherty quartzite or siliceous gneiss (felsic meta-sediment).

The argillite and dacitic lapilli tuff in southern SAIL 7 mineral claim may also be overturned. Siltstone interbeds within the argillite are most abundant and thicker near the contact with the dacitic lapilli tuffs. The dacitic lapilli tuffs structurally overlie the argillite (Fig. 8.1). If grain sizes within the argillite interval are fining-upwards, then siltstone would be most abundant within the lowermost section of the argillites. As siltstone is most abundant near the contact with the overlying lapilli tuff, these units could be overturned.

6.2 Alteration and Mineralization

Alteration

The rocks within the Sail property have locally been silicified, sericite- and chloritealtered.

There is a pervasive weak to moderate, sericitic alteration developed within the quartz-sericite-pyrite schist (thrust fault unit). The sericite is a distinctive strawyellow colour. Little to no sericite alteration has occurred within the rocks structurally above and below the thrust fault (schist). Silicification on the property occurs as a weak to intense, pervasive silica flooding. The quartz-sericite-pyrite schist (thrust fault unit) has been moderately to intensely silicified. The massive siliceous rocks occurring along strike from the schist unit show sporadic silica alteration.

Some of the quartzose meta-sediments, quartz-biotite gneisses and felsic metavolcanics have been silica-indurated and are cherty.

Quartz veins are generally rare within the stratified rocks in the property area. However, several quartz veins were mapped along faults, as at the Slot, Vader and South Vader showings in SAIL 5 mineral claim (Fig. 6.1; Appendix D). The intermediate meta-volcanic(?) host rock along the fault at the Slot Showing has been moderately silicified. Quartz vein stockwork occurs near inferred fault structures (Gale and Terry, 1998).

Mineralization

Mineralization has occurred within most lithologies at Sail property area as disseminated traces to veinlets to pods and bands of massive sulphide. Numerous gossans occur on the property where limonite is present along fractures and weathered surfaces. Typically the gossans are erratic patches 2 to 5 metres across. A linear gossan is developed over a strike length of about 500 m along the east-facing cliff face at west-central SAIL 5 mineral claim. This gossan is the surface expression of a steeply dipping, northerly trending fault.

Analytical results from 1998 rock sampling on the SAIL property are summarised in Section 6.3, and are also discussed below in the occurrence descriptions.

Volcanogenic massive sulphide-style mineralization has occurred within SAIL 7 and SAIL 8 mineral claims (Figs. 8.1, 8.1a). Gossans in this area are associated with sulphide mineralization along a specific stratigraphic unit, a chlorite gneiss/felsic meta-sediment contact.

The quartz-biotite and chlorite gneisses are typically unmineralized but locally contain up to 6% fine-grained, disseminated pyrite, traces pyrrhotite, and up to 1% chalcopyrite.

Beale Showing

The quartz-sericite-pyrite schist (thrust fault unit) contains up to 13% fine-grained, disseminated and weakly banded pyrite, up to 4 % pyrrhotite, and trace to 1% fine-grained chalcopyrite. The schist unit contains up to 6% dark red, fine-grained sphalerite at 5530N/4245E, the "Beale" Showing (Fig. 6.1). Select samples BE3009, BE3010 and BE3011 from here contain 5 to 10 % disseminated pyrite, 1 to 3 % disseminated chalcopyrite and 1 to 5 % fine grained sphalerite. These rocks are intensely silicified (Appendix D). They contain up to 6,330 ppb gold, 2 ppm silver, 708 ppm copper and up to 1.75 % zinc (Appendix E). Grab sample BE2016 from Beale Showing contains 1 to 2 % disseminated pyrite and is intensely sericite-altered (Appendix D); it contains 1,525 ppb gold and 3,220 ppm zinc.

Many of the gossans on SAIL 5 and 6 mineral claims are developed along the presumed surface expression of the thrust fault, in massive siliceous rocks occurring along strike from the quartz-sericite-pyrite schist. The massive siliceous rock contains up to 4% pyrite, trace chalcopyrite and up to 4% pyrrhotite. The massive siliceous unit is 35 metres thick and contains 2 % disseminated pyrite at UTM 6517805N/516305E (Fig. 6.1). Chip samples BE2005-BE2011 were collected

across the siliceous unit at this locale; they all contain less than 5 ppb gold (Appendix E).

Slot Showing

Massive sulphide boulders up to 0.5 meters in diameter were discovered along an east-sloping talus slope at northeastern SAIL 5 claim during 1997 exploration (Gale and Terry, 1998). The massive sulphide boulders contain up to 15% chalcopyrite as clots, blebs, stringers, and fracture-fillings within massive, coarse-grained pyrrhotite and a silica-chlorite gangue. One of the main objectives of 1998 exploration at the SAIL property was to discover the bedrock source of these mineralized boulders.

The Slot Showing is likely the bedrock source of these mineralized boulders. The Slot Showing is at 6040N/4010E in a dilation zone or warp along a large, subvertical fault trending 022⁰ (Fig. 6.1). This Slot Fault forms a steep-sided gully or slot 5 to 10 metres wide and approximately 40 metres deep. A lens or pod of massive pyrrhotite and chalcopyrite occurs along the Slot Fault, within silicified and chlorite-altered intermediate meta-volcanic(?) host rock. The fault strikes 011⁰ at the Slot Showing. Continuous chip samples BER1011, BER1012 and BER1013 contain a weighted average of 1.14% copper, 36.0 ppm silver, 295 ppm lead and 540 ppm zinc across 212 cm at the showing (Appendix E). The rocks within this interval contain up to 40 % pyrrhotite and 20 % chalcopyrite across 40 cm (Appendix D). The sulphides are predominantly massive, and largely confined to within 100 cm of the fault. Disseminated sulphides are rare at the Slot Showing. The chlorite gneiss wallrocks outside of the mineralized zone at Slot Showing appear unmineralized and unaltered.

RPT/98-002

Continuous chip sample BER1014 was collected 17 metres along strike to the north of samples BER1011 – BER1013 (Fig. 6.1). A late, cream-coloured quartz-carbonate vein up to 50 cm wide is here emplaced along the Slot Fault structure. Traces of disseminated pyrite, chalcopyrite and pyrrhotite occur within BER1014; it contains 3,410 ppm copper, 9.2 ppm silver and 288 ppm zinc across 80 cm (Appendices D and E).

Vader Showing

The Vader Showing is located at approximately 4900N/3540E within southeastern SAIL 5 mineral claim (Fig. 6.1). Sheared mafic rock occurs along a fault zone 1.5 m wide striking 040[°] and dipping 75[°] northwest. The rocks within the fault zone are stained by manganese oxides and by red-orange limonite. Disseminated pyrite, galena and lesser chalcopyrite occur within a quartz vein 1.5 m wide emplaced along the fault zone over a strike length of 7 m. The sulphides comprise 5 to 7 % of the quartz vein. Grab samples BE2032-BE2034 were collected at the Vader Showing; they contain up to 1.12 % lead, 49.6 ppm silver, 1,790 ppm copper and up to 9,760 ppm zinc (Appendices D and E).

Another quartz vein is emplaced along the same fault structure 100 m along strike to the southwest, at 4830N/3475E (Fig. 6.1). The vein here is 2 m wide, with euhedral quartz crystals lining open cavities and rimming angular breccia fragments. The quartz vein is stained by manganese oxides. The vein contains up to 10 % limonite and traces disseminated galena. Chip samples BE2029-BE2031 were collected here; they contain up to 6.13 % lead, 13.4 ppm silver, 438 ppm copper and up to 730 ppm zinc across 2 m (Appendices D and E).

South Vader Showing

The South Vader Showing is located at approximately 4750N/3350E, south of Vader Showing (Fig. 6.1). A quartz-iron carbonate vein 3 m wide is emplaced along a fault striking approximately 020^o and dipping 70^o northwest. The vein contains angular fragments of chlorite gneiss wallrock up to 4 cm across, and fewer euhedral quartz crystals lining open spaces than at the Vader Showing. The quartz vein has been moderately stained by manganese oxides and by 5 to 10 % limonite. The vein contains rare disseminated pyrite, galena and lesser chalcopyrite across a width of 1 m. Grab samples BE2035-BE2037 and BE3021 were collected here; they contain up to 2,690 ppm lead, 5 ppm silver, 143 ppm copper and up to 976 ppm zinc (Appendices D and E).

Ice Showing

The Ice Showing is within SAIL 7 mineral claim, at UTM co-ordinates 6514650N/515970E (Figs 8.1 and 10.1). Gossans with associated sulphide mineralization occur along a specific stratigraphic unit, the contact between meta-volcanic chlorite gneiss and a siliceous meta-sediment. The stratigraphic sequence is overturned. The mineralized horizon extends for 210 m along strike, and likely extends a further 75 m across an inaccessible cliff face (Fig. 10.1).

Selected rock samples from the mineralized area contain up to 30 % combined pyrrhotite, pyrite and chalcopyrite within an intensely chlorite-altered mafic to intermediate volcanic meta-tuff. The chlorite is a dark, green-black colour, characteristic of footwall-style alteration chlorite at volcanogenic massive sulphide occurrences. Pyrrhotite is the most abundant sulphide. Lesser amounts of pyrite and chalcopyrite occur at the Ice Showing. Select samples BE2054-BE2056 were collected from the best-mineralized float at the Ice Showing. These rocks contain

up to 8,690 ppm copper, 885 ppm zinc, 40 ppm lead and up to 3 ppm silver (Appendix E).

Storm Showing

The Storm Showing is within SAIL 8 mineral claim, at UTM co-ordinates 6515155N/516870E (Fig 8.1). As at the Ice Showing, gossans with associated sulphide mineralization occur along a specific stratigraphic unit, the contact between meta-volcanic chlorite gneiss and a fine grained cherty, biotite-rich quartzite about 25 m thick. The quartzite structurally underlies the mineralized horizon. The quartzite contains abundant subhorizontal, isoclinal to open folds an average of 10 to 20 cm across. The stratigraphic sequence is likely overturned. The mineralized horizon is a garnet-biotite-quartz gneiss up to 6 m thick that extends for 43 m along a strike of 015⁰ at the main showing area. The mineralized horizon extends 250 m along strike to the south where it is cut-off by a steep fault trending 076⁰ (Fig. 8.1). Numerous gossans are present around the perimeter of the cirque in which the Storm Showing is located. These may be the surface expression of mineralized horizons, similar in character to the Storm and the loc showings.

The best-mineralized part of the Storm Showing is 6 m thick. Here the host garnetblack biotite-quartz gneiss contains subhedral to euhedral, red, spessartine garnets average about 3 mm diameter. Syn-depositional faulting may have occurred where the garnet-biotite-quartz gneiss is best-mineralized. The mineralized gneiss here contains up to about 35 % pyrite, 3 % pyrrhotite and up to 2 % chalcopyrite within a steeply dipping band or fault shear 30 cm wide. The sulphides are very finely disseminated and faintly banded. Subround fault breccia (or lapilli?) fragments up to 3 cm across have locally been mineralized with very fine grained, disseminated pyrite within the steeply dipping band or shear. The mineralized horizon averages 1 to 5 % disseminated pyrite.

Select samples BE2070 and BE2070A were collected from the best-mineralized portion of the Storm Showing, the steeply dipping band or shear. These rocks contain up to 2,490 ppm copper, 95 ppm zinc, 50 ppm lead and up to 1 ppm silver (Appendix E). Continuous chip samples BE2077 and BE2078 were each taken across 1 metre at the best-mineralized portion of Storm Showing, the steeply dipping band or shear. These samples contain up to 360 ppm copper, 80 ppm zinc, 55 ppm lead and less than 1 ppm silver (Appendix E).

6.3 Rock Geochemistry

Rock samples collected during 1998 exploration were submitted to Chemex Labs Ltd. in North Vancouver, B.C. to be analysed for 27 elements by ICP-AES and gold by fire assay-atomic absorption. Seven selected rocks were analyzed by whole rock (ICP-MS) analysis. A total of 163 rocks were analyzed; the analytical certificates form Appendix E. Figures 6.2 and 8.2 show the results for gold, silver, copper, lead, zinc and barium within the rocks.

<u>Argillite</u>

Twenty samples of argillite were collected within SAIL 7 mineral claim area during 1998 exploration (Fig. 8.1).

Grab sample BE2048 was collected at UTM 6512857N/515162E (Fig. 8.1). Here a quartz vein 2 cm wide contains 15 % limonite (after pyrite?); this vein intrudes fresh black argillite. This rock contains 11.4 ppm silver, 4,630 ppm lead and 1,995 ppm zinc (Appendix E).

Grab sample BE2061 was collected across 10 cm at 10600N/10495E (Fig. 8.1). This rock is a sheared black argillite with light manganese and iron oxide stains. It

contains 2.8 ppm silver, 1,220 ppm lead and 2,030 ppm zinc (Appendix E). This sample was collected within the central part of a large, multi-element geochemical soil anomaly (Figs. 9.1 - 9.6).

Grab sample BE2063 was collected from subcrop at 10525N/10480E (Fig. 8.1). This rock is black argillite with light manganese oxide stains; a quartz veinlet with limonite intrudes the argillite. This sample contains 3.0 ppm silver, 1,540 ppm lead and 2,000 ppm zinc (Appendix E). As for sample BE2061 above, this rock was collected within the central part of the same large, multi-element geochemical soil anomaly (Figs. 9.1 - 9.6).

The other seventeen samples of argiilite contain up to 15 ppb gold, 1.8 ppm silver, 2,910 ppm barium, 124 ppm copper, 256 ppm lead and up to 224 ppm zinc (Appendix E).

Sail 5 fault samples

Samples BER1020 and BER1021 were collected near the top of the ridge within Sail 5 mineral claim (Fig. 6.1). The two samples were collected 25 m apart, along a north-northeasterly trending fault zone 3 m wide that crosscuts metagabbro or coarse grained chlorite gneiss. The rocks are pervasively stained by limonite and contain less than 0.5 % dark grey, irregular quartz veinlets to 3 mm wide. These samples contain up to 2.54 % lead, 2.2 % zinc, 1,120 ppm copper and up to 13.4 ppm silver (Appendix E).

Slot Showing Massive Sulphides

Samples BER1011 – BER1014 are from the presumed bedrock source of the massive sulphide boulders discovered at the end of the 1997 field exploration. The analytical results for these rocks are summarised below in Table 6.1.

These samples contain from 0.278 to 3.5 % copper, from 266 to 1,460 ppm zinc and from 9.2 to 122.0 ppm silver. These rocks also contain 1.0 to 8.5 ppm cadmium, 64 to 178 ppm cobalt, 52 to 80 ppm chromium, 2,790 to 5,910 ppm manganese and from 41 to 246 ppm nickel (Appendix E).

The 1997 massive sulphide float samples contained from 1.55 % to 8.86 % copper (Gale and Terry, 1998). The float also contained from 0.05 % to 0.3% zinc and from 37 g/t to 233 g/t silver. The 1997 massive sulphide float samples also contained <10 ppm to 20 ppm cadmium, 220 to 640 ppm cobalt, 10-30 ppm chromium, 970 ppm to 3440 ppm manganese, and 140 ppm to 360 ppm nickel (Gale and Terry, 1998).

Table 6.1	Rock	Geochemistry	of Slot	Showing	Samples
-----------	------	--------------	---------	---------	---------

Γ	Sample #	Au ppb	Ag ppm	Cu %	Pb %	Zn ppm	Ba ppm
Γ	BER1011	<5	122	3.5	0.104	1460	10
Γ	BER1012	<5	24.8	1.14	0.003	432	50
Γ	BER1013	<5	11.0	0.278	0.017	266	170

7.0 SOIL GEOCHEMISTRY

Contour soil sampling was done along many of the slopes and ridges on the SAIL property during 1996. A significant multi-element soil anomaly was found along the boundary between SAIL 5 and 6 mineral claims.

Detailed grid soil sampling in 1997 further tested this anomalous area. Three contour soil lines were also sampled in the area of the quartz-sericite-pyrite schist south of the 1997 grid area.

The 1997 soil sampling grid at SAIL 5 and 6 mineral claims was extended during 1998 work (Figs. 7.1-7.6). This was done to better-define the anomalies generated as a result of the 1997 work, and to provide survey grid control for detailed geological mapping and rock sampling.

A separate grid was surveyed and soil sampled in SAIL 7 mineral claim during 1998 exploration (Figs. 9.1-9.6). This was done to better-define 1996 contour soil geochemical anomalies within this area, and to provide survey grid control for 1:5,000 scale geological mapping and rock sampling.

Samples of B-horizon soil were taken except where the soils are poorly developed. Talus fines or other C-horizon type material was sampled where B-horizon material could not be obtained. Soil sample stations were marked in the field with flagging tape and a Tyvek tag with the station number written on it. Samples were partially dried in the field and then shipped to Chemex Labs Ltd. in North Vancouver, B.C. for analysis. They were subsequently dried, sieved to -80 mesh, pulverized and then analysed for 24 elements using ICP-AES and Au by fire assay-atomic absorption. Analytical certificates form Appendix E.

A total of 731 soil samples were collected during the 1998 exploration program. Twenty-one man-days were required for the soil sampling.

7.1 Grid Soils

North Half

Figures 7.2 to 7.7 inclusive show the results for gold, silver, copper, lead, zinc and barium in the northern part of the property. A northerly-trending, multielement anomaly occurs along the eastern side of the steep-sided ridge at eastern SAIL 5 mineral claim. Soils here contain up to 10 ppb gold, 5.2 ppm silver, 813 ppm copper, 2,750 ppm lead and up to 2,520 ppm zinc. This anomalous area extends 1.6 km north to south (5000N to 6600N), and includes the known Slot Showing, Beale Showing and massive sulphide float samples.

	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ba (ppm)
Maximum	210	5.2	813	2570	4200	2500
Average	4.9	0.4	125	204	315	681
Minimum	2.5	0.1	8	8	38	160
Percentiles						
95th	10	1.2	353	928	950	1440
90th	5	0.8	234	604	708	1120
75th	2.5	0.6	153	196	326	780

Table 7.1 Soil Geochemcial Statistics for the North Grid

Another anomalous area was identified from soil results in SAIL 5 and 6 claims, at 4600N/4200E, in the southwestern part of the grid (Figs. 7.1-7.6). This circular anomaly is about 400 metres across and is defined by concentrations of up to 1,470 ppm lead (Fig 7.4) and up to 1275 ppm zinc (Fig. 7.5). This anomaly is generally downslope of the Vader and South Vader showing areas (Fig. 6.1).

Soils overlying the quartz-sericite-pyrite schist (thrust fault unit) within southwestern SAIL 6 mineral claim also contain anomalous concentrations of up to 210 ppb gold, up to 554 ppm zinc and up to 533 ppm copper (Figs. 7.1, 7.3, 7.5).

South Half

Figures 9.1 to 9.6 inclusive show the results for gold, silver, copper, lead, zinc and barium in 262 soils from SAIL 7 mineral claim, in the southern part of the property. Soils here contain up to 260 ppb gold, 8.8 ppm silver, 434 ppm copper, 2,900 ppm lead, 2,900 ppm zinc and up to 6,470 ppm barium.

	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ba (ppm)
Maximum	260	8.8	434	2900	2900	6470
Average	4.8	0.6	70	130	256	958
Minimum	2.5	0.1	3	16	66	230
Percentiles						
95th	10	1.8	165	409	602	1351
90th	10	1.4	140	250	436	1232
75th	2.5	0.8	92	108	278	1110
50th	2.5	0.4	55	56	194	950

Table 7.2: Soil Geochemcial Statistics for the South Grid

A northwesterly trending multi-element anomaly extends from 10000N/10675E to 11000N/10250E. The anomaly coincides with 2 showings where rock samples BE2061 and BE2063 were collected within SAIL 7 mineral claim.

Another, more irregular anomaly extends from 9800N/11525E to 10000N/11600E. This second anomaly contains mainly anomalous silver and zinc concentrations in soil.

Large lead-in soil anomalies extend from 11375E to 11450E along line 10600N; from 10050E to 10400E and from 10575E to 10700E along line 10800N. Many of the soils from line 11000N and much of the soil from the western end of line 11200N also contains anomalous concentrations of lead in soil (Fig. 9.4). These soils also often contain anomalous concentrations of zinc and silver (Figs. 9.2 and 9.5); copper and barium are not as abundant within these soils (Figs. 9.3 and 9.6).

8.0 DISCUSSION AND CONCLUSIONS

The SAIL property is primarily underlain by strongly metamorphosed and deformed meta-sedimentary (quartz-biotite gneiss) and meta-volcanic rocks (chlorite-feldspar

gneiss), with minor interlayered felsic volcanic units. Argillite and dacitic lapilli tuffs were also mapped within the southeastern corner of the property. The supracrustal rocks are intruded and/or tectonically interleaved with ultramafic bodies of uncertain age and intruded by Eocene(?) or Cretaceous granitic stocks and dykes.

There are several mineral occurrences on the SAIL property.

The stratified rocks within the Sail property area are mainly interlayered sediments and mafic volcanics with some interlayered ultramafic rocks and minor felsic volcanics. This package collectively fits the model for Besshi-type massive sulphide deposits. The main host rocks at the Storm and the Ice showings are interlayered quartz-garnet-biotite gneiss (siliciclastic meta-sediment) and chloritefeldspar gneiss (mafic meta-volcanic). Felsic meta-volcanic rocks make up only a minor component of the section. Therefore Besshi-type massive sulphide deposits, or a hybrid between Besshi-type and Cyprus-type categories of VMS deposits supply the best analogue for the mineralization observed at the Ice and Storm occurrences. Franklin et al. (1998) put Besshi-type and Cyprus-type deposits into the mature backarc - spreading centre class of the intra-oceanic setting for VMS deposits.

The cobalt content of samples from the Storm and Ice showings ranges from 15 to 250 ppm. This is below the average for Besshi deposits of 0.06% cobalt (Slack, 1993). The nickel content (45 ppm to 265 ppm) however is near the average for Besshi-type deposits which usually contain <100 ppm nickel (Slack, 1993). Besshi-type deposits contain an average of 5 to 20 g/t silver; Storm and Ice showing samples contain <1 to 5 g/t silver.

The Ice Showing contains anomalous though sub-economic metal concentrations. The mineralized horizon here has been chlorite-altered. This chlorite is green-black in colour, typical of chlorite associated with volcanogenic massive sulphide deposits. The Ice Showing contains the best mineralization discovered to date on the Sail property.

The Storm Showing contains anomalous though sub-economic metal concentrations. The mineralized horizon at the Storm Showing contains garnet and fresh black biotite, compared to the chlorite at the Ice Showing. The Storm Showing contains relatively more pyrite and less pyrrhotite than the Ice Showing.

The quartz-sericite-pyrite schist/massive siliceous (thrust fault) unit was extensively sampled during 1997 and 1998 exploration. This rock was earlier interpreted to be an altered felsic volcanic rock. It is also the expression of a shallow-dipping thrust fault. This thin rock unit extends throughout SAIL 5 and 6 claims and probably continues to the west onto SAIL 2 claim. The unit is extensively sericite- and silica-altered, and locally contains anomalous concentrations of gold and zinc.

The rocks from the Slot Showing contain up to 3.5 % copper and 122 ppm silver along a north-northeasterly trending fault structure. The Slot Showing is likely the source of the copper- and silver-bearing massive sulphide float boulders found during 1997 exploration at western SAIL 5 mineral claim. A multi-element soil anomaly coincides with the location of the massive sulphide boulder float downslope of the Slot Showing.

Argillites collected within a large, multi-element geochemical soil anomaly within SAIL 7 mineral claim contain anomalous concentrations of lead, zinc and silver.

These mineralized argillites have been intruded by quartz veins or veinlets, and stained by limonite.

9.0 RECOMMENDATIONS

The numerous gossans in the vicinity of the Storm Showing and the Ice Showing should be ground-checked to determine if they are associated with significant volcanogenic massive sulphide-style mineralization. A fly camp should be established near the tarn at central SAIL 8 mineral claim during the recommended follow-up work. The steep terrain makes ground access difficult, and travelling for any distance on foot is slow. Both the gossans to the east and south of the Storm Showing, and those in the East Ice Showing area can be accessed from the vicinity of the tarn.

As this area is well above treeline at an elevation of over 1,800 m a.s.l., the work should be done during late summer. Due to the steep terrain, it is recommended that a geologist with some technical climbing experience be included on the exploration team to facilitate a detailed investigation of the target areas.

The lead- and zinc-in-soil anomalies from 1996 sampling within SAIL 7 claim were better defined by 1998 exploration. Hand trenching followed by detailed rock sampling should be done within the anomalous areas delineated by 1998 soil sampling. This work should determine the bedrock source of the anomalous metal concentrations within the soils. Grab samples of argillite collected within one of the geochemical soil anomalies at SAIL 7 claim contain anomalous concentrations of lead, zinc and silver. The extent and character of the mineralization within the argillite in this area should be determined. The mineralized argillites found during 1998 exploration are crosscut by quartz veins or veinlets, and also stained by limonite.

The cost estimate for the program outlined above is \$80,000. If this phase provides encouragement then ground geophysics and possibly diamond drilling may be considered.

The Slot Showing is small and fault-hosted; this showing is not an economically important sulphide occurrence. No further work should be done at the Slot Showing.

The Vader and South Vader showings are small and fault-hosted; they are not economically important sulphide occurrences. No further work should be done at these showings.

The quartz-sericite-pyrite schist – massive siliceous horizon is the expression of a thrust fault. A number of precious and base metal soil anomalies occur along the surface trace of the thrust fault, but detailed geochemical rock sampling of the thrust fault horizon shows that it contains only spotty, erratic concentrations of gold and zinc. This rock unit requires no further exploration.

REFERENCES

- Cry Lake Mineral Occurrence Map, Minfile Map 104I, 1988. B.C. Ministry of Energy, Mines and Petroleum Resources.
- Franklin, J.M., Hannington, M.D., Jonasson, I.R., and Barrie, C.T. 1998. Arcrelated volcanogenic massive sulphide deposits. *In* Metallogeny of volcanic arcs, B.C. Geological Survey Short Course Notes, Open File 1998-5, Section B.
- Gabrielse, H., 1994. Geology of the Cry Lake (104I) and Dease Lake (104J east) map areas, north central British Columbia: Geological Survey of Canada, Open File 2779.
- Gabrielse, H. and Harms, T.A., 1989. Permian and Devonian plutonic rocks in the Sylvestor Allochthon. Cry Lake and McDame map areas, northern British Columbia: in Current Research, Part E, Geological Survey of Canada, Paper 89-1E, pp. 1-4.
- Gabrielse, H. and Mansy, J.L., 1980. Structural style in northeastern Cry Lake map area, north central British Columbia: in Current Research, Part A, Geological Survey of Canada, Paper 80-1A, pp. 33-35.
- Gale, D. F., and Terry, D.A., 1998. Sail Property, 1997 assessment report describing geological mapping and soil sampling surveys on the SAIL 1 to 6 mineral claims, Cassiar Mountains, British Columbia; assessment report filed with the government of British Columbia.
- Jackaman, W., 1996. British Columbia Regional Geochemical Survey, NTS 104/I -Cry Lake: B.C. Geological Survey Branch, B.C. RGS 44.
- Jones, M.I. 1997. 1996 Assessment report, SAIL 1 to 6 mineral claims, geological mapping and soil sampling surveys, Assessment Report filed with the government of British Columbia.
- Ray, G.E. 1998. Skarns and skarn deposits in the Canadian Cordillera. In Metallogeny of volcanic arcs, B.C. Geological Survey Short Course 1998-5, Section B.
- Slack, J.F. 1993. Descriptive and grade-tonnage models for Besshi-type massive sulphide deposits. In: Mineral Deposit Modelling, Edited by R.V. Kirkham, W.D. Sinclair, R.I. Thorpe, and J.M. Duke, Geological Association of Canada Special Paper 40, pp. 343-372.

Wojdak, P., 1997. Summary of 1996 Exploration Activities in Northwest District, British Columbia: District Geologist's Office, Smithers, B.C.

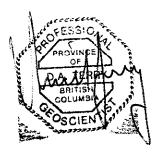
÷

APPENDIX A

STATEMENT OF EXPENDITURES

STATEMENT OF EXPENDITURES

I, David A. Terry as agent for Boliden Limited, #904-1055 Dunsmuir Street, Vancouver, B.C. do believe that a field program consisting of soil sampling, rock sampling, and geologic mapping was carried out on SAIL 1 to 8 mineral claims from August 4 to August 29, 1998.


The following expenses were incurred during the course of this work.

Labour costs	\$36,716
Travel	\$10,950
Helicopter	\$17,102
Fixed Wing	\$3,420
Miscellaneous field costs	\$9,682
Geochemistry	\$15,433
Drafting	\$2,402
Shipping	\$719
Miscellaneous report preparation costs	\$150
Telephone	\$2,849
Total:	\$99,423

And I make this solemn declaration conscientiously believing it to be true and knowing it is the same force and effect as if made under oath and by virtue of the Canadian Evidence Act.

Dated at Vancouver in the Province of British Columbia this $\frac{\partial 3}{\partial 2}$ day of June, 1999..

David A. Terry, **Rroject** Geelogist

APPENDIX B

 \bigcirc

LIST OF PERSONNEL

RPT/98-002

LIST OF PERSONNEL

Alan Dennis (Mountaineer) P.O. Box 2426 Revelstoke, B.C. V0E 2S0

Ken Gibson (Contract Geologist) c/o #904 – 1055 Dunsmuir Street Vancouver, B.C V7X 1C4

Keith Miller (Field Assistant) #904 – 1055 Dunsmuir Street Vancouver, B.C V7X 1C4

Jan Tindle (Field Assistant) 3341 Lakeside Road Whistler, B.C V0N 1B3

Mark Padberg (Field Assistant) #904 – 1055 Dunsmuir Street Vancouver, B.C V7X 1C4

David A. Terry (Project Geologist) 904-1055 Dunsmuir St. Vancouver, B.C. V7X 1C4

Christopher Rockingham (Exploration Manager) 904-1055 Dunsmuir St. Vancouver, B.C. V7X 1C4

David Pawliuk (Consulting Geologist) c/o Nanoose Geoservices 2960 Anchor Drive Nanoose Bay, B.C. V9P 9G2 APPENDIX C

GEOLOGISTS CERTIFICATES

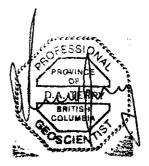
GEOLOGIST CERTIFICATE

I, David J. Pawliuk, of 2960 Anchor Drive, Nanoose Bay, in the Province of British Columbia, DO HEREBY CERTIFY:

- 1. THAT I am a consulting geologist with Nanoose Geoservices with offices at 2960 Anchor Drive, Nanoose Bay, British Columbia, V9P 9G2.
- 2. That I am a graduate of the University of Alberta and hold a Bachelor of Science degree with Specialization in Geology.
- 3. That I am registered as a Professional Geoscientist with the Association of Professional Engineers and Geoscientists of the Province of British Columbia.
- That I am registered as a Professional Geologist with the Association of Professional Engineers, Geologists and Geophysicists of the Province of Alberta.
- 5. That I have practiced geology in Canada, Mexico, Ecuador and the United States since 1975.
- That I have no direct nor indirect interest in the property described herein, nor do I expect to receive any such interest.

Dated at Nanoose Bay, British Columbia this $\frac{15}{5}$ day of October, 1998.

David J. Pawlick, P. Geo.


GEOLOGISTS CERTIFICATE

I, David A. Terry of 1040 Spruce Avenue, Port Coquitlam, in the Province of British Columbia, DO HEREBY CERTIFY:

- 1. THAT I am a Project Geologist with Boliden Limited with offices at #904-1055 Dunsmuir Street, Vancouver, British Columbia.
- 2. THAT I have practiced my profession with various mining companies in Ontario, Quebec, British Columbia, Yukon, the United States, Mexico and Argentina for ten years.
- 3. THAT I am a graduate of the University of Western Ontario and hold a Bachelor of Science in Geology (1988) and a Doctor of Philosophy in Geology (1997).
- 4. THAT I am a member of the Prospectors and Developers Association of Canada, and the Society of Economic Geologists.
- 5. THAT I am registered as a Professional Geoscientist with the Association of Professional Engineers and Geoscientists of British Columbia.
- 6. THAT this report is based on property work I managed and that I visited the property on August 21, 1998.
- 7. THAT I have no direct interest in the property described herein, nor do I expect to receive any interest.

DATED at Vancouver, British Columbia this $\frac{\partial S}{\partial s}$ day of June, 1999.

David A. Terry, Ph.E **Project Geologist**

ROCK SAMPLE DESCRIPTIONS

()

APPENDIX D

Rock Sample Descriptions

 \bigcirc

 \bigcirc

.

Rock Sample Descriptio	
Number Type	Description
	to BER1042 inclusive were collected by D. Pawliuk.
•	078 inclusive were collected by K. Gibson.
•	040 inclusive were collected by M. Padberg.
BER1001 Chip	Fine gr., light greenish grey dacitic tuff(?); strong limonite
	alteration, 0.5% disseminated pyrite, traces chalcopyrite.
	Mineralized band str. 158/26 W. Chip across 10 cm.
BER1002 Cont. chip	Biotite gneiss 1 m below andesite contact. 0.5 % pyrite, trace
	chalcopyrite; sulphides mainly as irregular, cuspate masses
	to 3 mm across. S1 str. 176/27 W. Chip across 55 cm.
BER1003 Discont. chip	Med. Gr. Biotite gneiss; moderate limonite staining; 0.5%
	combined disseminated po (mostly), pyrite, chalcopyrite(?).
	Str. 017/32 W. Chip across 100 cm.
BER1004 Discont. chip	Fine gr, cherty biotite gneiss with abundant limonite. Traces
	disseminated pyrite, to 0.5% finely disseminated chalcopyrite.
	S1 str. 173/35 W. Chip across 70 cm.
BER1005 Cont. chip	Sheared, banded, lensoid andesite; limonite staining, traces
	very finely disseminated pyrite; within large, northerly
	trending fault str. 009/60 W. Chip across 70 cm.
BER1006 Discont. chip	-
BERRICO BIOCONA SINP	fine gr. disseminated pyrite, chalcopyrite(?), azurite(?). S1
	str. 167/30 W. Chip across 80 cm.
BER1007 Discont. chip	Siliceous, sheared andesite; weakly silicified, local 2 %
BERTOOT Discont. enip	disseminated pyrite. 18 m S of M.I.J. sample #535. From fault
	str. 011/60 W. Chip across 100 cm.
BER1008 Grab	Orange weathering, faintly laminated felsic ash tuff; weakly
BEIL1000 Glab	
	silicified; locally to 8 % combined sulphides, mostly very fine
	gr. Disseminated pyrite, traces chalcopyrite, also grey very
	fine sphalerite or pyrrhotite.
BER1009 Float	Intermediate tuff? With 60-85 % po, local 2 % cp, local 2 %
	py, sph? Subangular boulder 35 cm across, from margin of
	scree cone below big slot fault cut in mountainside.
BER1010 Discont. chip	Medium gr. Andesite with yellow-brown limonite on
	weathered surface. 0.5 % disseminated py, traces cp, and
	possibly po present. From splay fault hangingwall on N side
	of Slot Fault entrance. Splay fault str. 040/70 NW. Slot Fault
	trend 022, 3 to 4 m wide, 50 m plus deep. Discont. Chip
	sample across 150 cm.
BER1011 Cont. chip	Host rock intermediate volcanic(?), moderately chlorite-
	altered, weakly silicified. Wallrocks outside of mineralized
	lens typical chlorite gneiss. Sample from western margin of
	vein or dilation lens along Slot Fault. Po 40 %, cp 20 %. Chip
	across 40 cm. Lens str. 011/approx. 80 E. Elev. 1790 m asl.

BER1012 Cont. chip Fine gr. Intermediate volcanic immediately adjacent to and east of BER1011 above. 20 % po, 12 % cp; across 62 cm.

BER1013 Cont. chip

Immediately west of BER1011 above. Av. < 1 % po, cp, py combined. Local 5 % py. Sulphides rarely disseminated, largely confined to faults. Local 20 % combined py, cp across 10 cm along small splay(?) fault which dips steeply west within sample interval. Sample across 110 cm.

- BER1014 Cont. chip Upslope of BER1011 013; 98 m upslope from junction. across 80 cm Sample taken on west side of Slot Fault. Traces cp, py. Po within 15 cm of fault. Abundant limonite on wx'd sfc. Slot Fault here occupied by carbonate vein.
- BER1015 Discont. Chip Fine gr. Intermediate tuff(?) with S1 str. 008/47 W. Biotite 200cm altered. Traces to locally 3 % combined diss. Py, cp, po. From base of mountainside exposure, overlooking 1997 campsite.
- BER1017 Float Orange-stained medium gr chl gn, somewhat massive. 1 to 2 % combined diss po, py, cp. Angular boulder 30 X 35 cm. Elev. 1710 m.
- BER1016 Discont. Chip Fine gr. Intermediate tuff. S1 str 161/40W. 6400 N/4055 E. 400 cm. To 1 % combined finely disseminated py, po, cp. Weakly silicified? Typical occurrence.
- BER1018 Discont. Chip Very fine gr. Quartzitic ash tuff, laminated. S1 str 159/30 W. 75 cm To 1 % combined diss po, py, cp. From E-facing bluff.
- BER1019 Discont. Chip Medium grey, fine gr quartzitic tuff with typical orange brown 80 cm limonite on wx'd surface. To 2 % combined py and cp. S1 str 146/80 W.
- BER1020 Select Coarse grained chl gn / metagabbro with abundant limonite. Occasional dk grey qtz vlts. Local float likely associated with large fault 3 m wide str 011 / 76W. No sulphides seen. Elev. 2050 m.
- BER1021 Grab Pervasive limonite stained, clay-altered meta-gabbro. S1 str 012/steep W. 25 m along strike from --1020; no sulphides seen. From 60 cm area on western side of 3 m wide fault zone. < 0.5 % irregular qtz vlts to 3 mm wide.

BER1022 Grab Medium gr qtz-ser-py-bi schist; S1 str 121/45 S. 0.5 % py diss and as smeared flakes. Unit may correlate with qtz-serpy schist to SE across ridge that is locally gold-bearing. Grab from several sites across 1 X 1 m area.

BER1023 Cont chip 40 Fine gr quartzite band within chl gn/andesitic meta-tuff cm. sequence contains up to 1 % py across few cm as patches on fracture surfaces. S1 str 098/65 N. Elev 1885 m.

BER1024 Cont chip 55 Limonite-stained andesite tuff S1 str 173/20 E. Below main cm mineralized zone at Ice Showing. 9 m N from BER2051. No sulphides seen.

BER1025	Cont chip 60 cm	Andesite tuff; lower third of mineralized horizon. Immediately above -024. Friable rock, looks to be within mineralized
BER1026	Float	horizon. Po seen. Elev 1981 m. Medium grained quartzite with 1 % combined po, py, cp mainly as irregular masses along margins of chloritic laminae. Chlorite say 6 % rock volume. Recrystallized exhalite?? Few other similar float pieces in vicinity. Boulder 25 cm diameter. Elev 1820 m.
BER1027	Float	Light maroon grey, fine gr andesite. Cp, po, py. Elev 1575 m. Bldr 30 cm diameter. 264 m S of 5E X 2N post SAIL8.
BER1028	Cont chip 70 cm.	Chert? 5 m from creek, on W side stream. 1 to 2 % py as diss subhedral masses, and as elongate, thin, wispy lenses parallel S1 str 078/62 N. Traces cp as irregular, diss masses. Elev 1650 m.
BER1029	Grab	Graphitic, schistose argillite with red-brown Fe oxides on wx'd sfc. To 5 % py within lensoid areas to 10 X 25 mm. Grab from few places across 2 m. S1 str 129/54N. Elev 1560 m.
BER1030	Discont chip 50 cm	Graphitic, schistose argillite with red-brown Fe oxides on wx'd sfc. Say 0.5 % very finely diss py throughout. S1 str 107/steep. Elev 1580 m.
BER1031	Float	Fine gr dacite? Bldr 30 cm diameter. 5 to locally 15 % po, av $1 - 2$ % py, < 0.5 % cp. Sulphides diss and as irregular bands. Subround float. Elev 1595 m.
BER1032	Float	Brecciated, rehealed (soft sediment deformation?) argillite with very fine gr py plus other sulphides? Dense, graphitic argillite. 15 cm diameter. Elev. 1600 m.
BER1033	Float	Fine gr dacite? As for BER1031 above. Bldr 20 cm diameter. Say 20 % po, 1 % py, 1 % cp, ?? sp. Po coarsely crystalline, recrystallized; probably skarn-style mineralization. Cp mostly in later, cross-cutting veinlets. Round float. Elev 1610 m.
BER1034	Grab	Tough, dense, cherty argillite with conchoidal fracture. 9 m upstream of BER1033. Py vits lining irregular, hairline fractures, locally with splashes cp. Very fine grained sulphides throughout, cannot identify with hand lens.
BER1035	Discont chip 150 cm	Somewhat dense, graphitic, schistose argillite; S1 str 105/56N. Local traces very finely disseminated pyrite seen, other sulphides may be present. Also irregular, discontinuous, greyish white barite(?) veinlets present. 9920N/11585E.
	cm	Dense, graphitic argillite with trace to locally 1 % very fine disseminated pyrite. F1 str 104/66N. 9825N/11608E.
BER1037	Cont chip 50 cm	Dense, graphitic argillite with local siltstone interbeds. Traces very fine, sooty, diss py. May be more sulphides +/or barite present. F1 str 109/83S. 9830N/11660E. Elev 1670 m.

BER1038	Grab	Light grey, silica – indurated siltstone with 6 % qtz vits. Up to 0.5 % combined diss py, po, cp, sp(?). S1 str 123/73N. Grab from 50 X 100cm area. Sample 8 m N sidehill from 1996 soil sample site; cannot read number on Tyvek tag.
BER1039	Cont chip 70 cm	Orange-brown weathering graphitic argiilite with barite clots and lenses. No sulphides seen. S1 str 137/44NE. 9830N/11737E.
BER1040	Cont chip 100 cm	Red-brown to yellow weathering silty argillite with 1 % irregular qtz vits. Trace py; near top of gully. 9830N/11820E. S1 str 095/65N.
BER1041	Grab	Representative sample of argillite near contact with dacitic lapilli tuff. No sulphides seen. Silty argillite with local faint limonite on wx'd sfc. S1 str 085/37N. Sample from 1 X 2 m area. Elev 1850 m.
BER1042	Discont chip 100 cm	Argillaceous siltstone with 3 % qtz vlts. Rare specks cp and gn seen within irregular, discontinuous qtz vlts. S1 str 097/57N.
BE2000		5 ChI schist / gneiss; moderately to intensely silicified, 1 to 2 % t fine grained, disseminated py. 5840N/4450E.
BE2001	Grab	Chi schist/gneiss with diss py, po; rare trace cp. Silicified, possibly chlorite-altered rock. 5475N/4430E.
BE2002	Grab	Chl schist/gneiss with 15 % very fine grained, vuggy diss py throughout. Silicified; similar to BE2000, BE2001 above. 5480N/4420E.
BE2003	Grab	Quartz-biotite gneiss; silicified. Fine qtz-py vlts, abundant limonite; vuggy. 5490N/4410E.
BE2004	Float	Chl-qtz gneiss; massive, moderately silicified. Py-po- cp(trace) vit. From valley south of Beale Showing. UTM 6517700N/516305E.
BE2005	Discont chi 500 cm	Quartz-sericite-pyrite schist (thrust fault) unit with 2 % py disseminated throughout. No base metal sulphides. Well- defined quartz domains. UTM 6517805N/516410E. Part of series from BE2005 – BE2011 inclusive across thrust fault unit where it is 35 m thick.
BE2006	Discont chij 500 cm	Quartz-sericite-pyrite schist (thrust fault) unit with 2 % py disseminated throughout. No base metal sulphides. Well- defined quartz domains. UTM 6517805N/516410E. Part of series from BE2005 – BE2011 inclusive across thrust fault unit where it is 35 m thick.
BE2007	Discont chij 500 cm	p Quartz-sericite-pyrite schist (thrust fault) unit with 2 % py disseminated throughout. No base metal sulphides. Well- defined quartz domains. UTM 6517805N/516410E. Part of series from BE2005 – BE2011 inclusive across thrust fault

BE2008	Discont 500 cm	unit where it is 35 m thick. chip Quartz-sericite-pyrite schist (thrust fault) unit with 2 % py disseminated throughout. No base metal sulphides. Well- defined quartz domains. UTM 6517805N/516410E. Part of series from BE2005 – BE2011 inclusive across thrust fault
BE2009	Discont 500 cm	unit where it is 35 m thick. chip Quartz-sericite-pyrite schist (thrust fault) unit with 2 % py disseminated throughout. No base metal sulphides. Well- defined quartz domains. UTM 6517805N/516410E. Part of series from BE2005 – BE2011 inclusive across thrust fault unit where it is 35 m thick.
BE2010	Discont 500 cm	chip Quartz-sericite-pyrite schist (thrust fault) unit with 2 % py disseminated throughout. No base metal sulphides. Well- defined quartz domains. UTM 6517805N/516410E. Part of series from BE2005 – BE2011 inclusive across thrust fault unit where it is 35 m thick.
BE2011	Discont 500 cm	chip Quartz-sericite-pyrite schist (thrust fault) unit with 2 % py disseminated throughout. No base metal sulphides. Well- defined quartz domains. UTM 6517805N/516410E. Part of series from BE2005 – BE2011 inclusive across thrust fault unit where it is 35 m thick.
BE2012	Discont 500 cm	chip Chl gneiss; silicified. Trace disseminated pyrite throughout. Samples across fault zone where silica-flooding has occurred. Part of sample series BE2012 – BE2014 inclusive. UTM 6518005N/516525E.
BE2013	Discont 500 cm	chip Chl gneiss; silicified. Trace disseminated pyrite throughout. Samples across fault zone where silica-flooding has occurred. Part of sample series BE2012 – BE2014 inclusive. UTM 6518005N/516525E
BE2014	Discont 500 cm	chip ChI gneiss; silicified. Trace disseminated pyrite throughout. Samples across fault zone where silica-flooding has occurred. Part of sample series BE2012 – BE2014 inclusive. UTM 6518005N/516525E
BE2015	Float; subcrop	ChI gneiss; silicified and sericite-altered. Traces disseminated pyrite & po throughout. Altered unit pinches and swells up to several metres wide, but poorly developed. UTM 6518150N/516460E.
BE2016	Grab	Beale Showing where 272226, 272227 collected earlier. Intensely sericite-altered quartz-sericite-pyrite schist with 1 – 2 % disseminated py. Q-S-S band 5 cm wide within a quartz- biotite gneiss. 5530N/4245E
BE2017	Grab	Quartz-biotite gneiss with minor silica alteration, trace disseminated pyrite. Beale Showing area. 5565N/4250E.
BE2018	Grab	Chi gneiss from band 10 cm wide. Trace diss py. Beale

 \square

	Showing area. 5540N/4250E.
BE2019	Grab Chl ash tuff across 10 cm, from 5 m wide shear. 1 % diss py. 5910N/4125E.
BE2020	Grab Chl ash/lapilli tuff across 20 cm, from 5 m wide band. Traces diss py and po. Rusty-weathering. 5875N/4055E.
BE2021	Grab from 10 Chl gneiss from silicified shear 10 cm wide. To 5 % diss py. cm 5500N/4300E.
BE2022	Grab from 10 Chl gneiss from silicified shear 5 m wide. 1 to 2 % diss py, cm. trace cp and po. Mineralized, discontinuous pod 15 m long. 5500N/4300E
BE2023	Grab Weakly sericite-altered, silicified quartz-biotite gneiss. Rare tr py. UTM 6518450N/516650E.
BE2024	Grab across 2 Silica-altered chl gneiss with abundant limonite (after py?). m 5790N/5375E.
BE2025	Grab across 2 Silica-altered chl schist/gneiss with abundant limonite (after m py?) and qtz veining across 2 m zone. 5785N/5425E
BE2026	Grab from 10 Chloritic ash tuff; intensely sericite-altered, weakly silicified, cm. band 6 m wide. Total 5 % sulphides po>py>cp. Cp traces within centres of po masses. 4925N/2940E.
BE2027	Grab from 10 Chloritic ash tuff; intensely sericite-altered, weakly silicified, cm. band 6 m wide. Total 5 % sulphides po>py>cp. Cp traces within centres of po masses. 4925N/2940E.
BE2028	Grab from 10 Chloritic ash tuff; intensely sericite-altered, weakly silicified, cm. band 6 m wide. Total 5 % sulphides po>py>cp. Cp traces within centres of po masses. 4925N/2940E.
BE2029	Grab across 2 Quartz vein 2 m wide, 20 m long with 10 % limonite and Mn- m staining. Quartz crystals line open spaces around breccia fragments. 4830N/3475E.
BE2030	Grab across 2 Quartz vein 2 m wide, 20 m long with 10 % limonite and Mn- m staining. Quartz crystals line open spaces around breccia fragments. 4830N/3475E.
BE2031	Grab across 2 Quartz vein 2 m wide, 20 m long with 10 % limonite and Mn- m staining. Quartz crystals line open spaces around breccia fragments. 4830N/3475E.
BE2032	Grab across 1 VADER SHOWING. Sample from 1 m wide quartz vein within m 1.5 m wide fault zone. 5 – 7 % total sulphides, with py>gn>cp. Heavy Mn-oxide staining along fault. 4900N/3540E.
BE2033	Grab across 1 VADER SHOWING. Sample from 1 m wide quartz vein within m 1.5 m wide fault zone. 5 – 7 % total sulphides, with py>gn>cp. Heavy Mn-oxide staining along fault. 4900N/3540E.
BE2034	Grab across 1 VADER SHOWING. Sample from 1 m wide quartz vein within m 1.5 m wide fault zone. 5 – 7 % total sulphides, with

 $\langle \$

 \bigcirc

py>gn>cp. Heavy Mn-oxide staining along fault. 4900N/3540E.

- BE2035 Grab across 1 SOUTH VADER SHOWING. Sample from 1 m wide quartz m vein along fault zone; moderate sericite alteration along fault. Py>gn>cp; trace cp. Moderate Mn-oxide staining along fault. Some qtz crystals lining open cavities. 4750N/3000E approx. loc'n.
- BE2036 Grab across 1 SOUTH VADER SHOWING. Sample from 1 m wide quartz m vein along fault zone; moderate sericite alteration along fault. Py>gn>cp; trace cp. Moderate Mn-oxide staining along fault. Some qtz crystals lining open cavities. 4750N/3000E approx. loc'n.
- BE2037 Grab across 1 SOUTH VADER SHOWING. Sample from 1 m wide quartz m vein along fault zone; moderate sericite alteration along fault. Py>gn>cp; trace cp. Moderate Mn-oxide staining along fault. Some qtz crystals lining open cavities. 4750N/3000E approx. loc'n.
- BE2038 Grab across Weakly sericite-altered qtz-biotite gneiss with 1 2 % diss py 10 m and po. Hornfels?? underlying meta-gabbro. 4595N/3665E.
- BE2039 Grab across Intensely silicified horizon 1 m wide within chl tuff; about 5 % 50 cm py and po. 4225N/3450E.
- BE2040 Grab across Silicified pod 20 cm wide within chl gneiss unit. Total 3 5 % 10 cm sulphides; py = po > cp > sp. 4290N/3585E.
- BE2041 Grab across Quartz-sericite schist with 5 % disseminated py. Unit 25 m 10 m thick; thrust fault unit. 4370N/3680E.
- BE2042 Grab across Quartz-sericite schist with 5 % disseminated py. Unit 25 m 10 m thick; thrust fault unit. 4370N/3680E.
- BE2043 Float Coarse-grained chlorite schist; stringer py > po > cp; total 5 7 % sulphides. Chlorite appears typical of footwall-type alteration. Float 10 cm diameter. UTM 6515974N/9515210E.
- BE2044 Float Silicified felsic ash tuff with wispy py + aspy + trace sp; total 3 % sulphides. Float 50 cm diameter. 150 m south of BE2043. UTM 6515975N/515160E.
- BE2045 Float Intensely silicified felsic tuff? with total 10 15 % very fine grained sulphides; py, trace cp; gn?. Float 30 cm diameter. UTM 6515800N/515230E.
- BE2046 Grab across Silicified pod 10 cm wide within chl gneiss unit. Total 3 % 10 cm sulphides; py = po > cp. UTM 6515490N/515237E
- BE2047 Grab across 1 Chlorite stringers to 1 cm within strongly foliated gneiss or m meta-gabbro. Py = po >cp. Total 1 – 2 % sulphides. Chlorite stringer zone? UTM 6514999N/514640E.
- BE2048 Grab 2 cm wide qtz vein with 15 % limonite (after py?) in fresh black argillite. UTM6512857N/515762E.

BE2049	Float	Black chlorite schist with 2 % wispy stringers py + cp. Float from base of cliff of dark green – black chlorite schist. Footwall-type chlorite. UTM 6515020N/515856E.
BE2050	Float	Black chlorite schist with 4 - 5 % total sulphides; $1 - 2$ % po. Wispy stringers py + po + cp. Footwall-type chlorite. UTM 6514850N/515946E. Elev. 1926 m.
BE2051	Grab	Chlorite schist; immediate footwall to Ice Showing. Taken 1 – 2 m below 3.5 m wide mineralized horizon. For whole rock analysis. UTM 6514644N/516001E.
BE2052	Grab	Chlorite schist; 20 m within footwall of Ice Showing. Strong chlorite alteration. For whole rock analysis. UTM 6514644N/515997E.
BE2053	Grab across 10 cm	s From qtz-biotite gneiss band 3 m wide in hangingwall above mineralized zone. Felsic volcanic? For whole rock analysis. UTM 6514660N/516017E.
BE2054	Select float	Select sample chlorite schist/gneiss from talus below Ice Showing. Strong footwall-type chlorite alteration with 20 % sulphides. Po > py > cp. UTM6514650N/515970E.
BE2055	Select float	Select sample chlorite schist/gneiss from talus below ice Showing. Strong footwall-type chlorite alteration with 20 % sulphides. Po > py > cp. UTM6514650N/515970E.
BE2056	Select float	Select sample chlorite schist/gneiss from talus below Ice Showing. Strong footwall-type chlorite alteration with 20 % sulphides. Po > py > cp. UTM6514650N/515970E.
BE2057	Grab from 20 cm wide bed	^O Rusty weathering black argillite with 1 % diss py, and possibly very fine grained sphalerite? Also fine grained, white phase may indicate barite. Bed strike 140 ^o dip 68 SW. UTM 651257N/515145E.
BE2058	Grab from 20 cm wide bed	0 Rusty weathering black argillite with 1 % diss py, and
BE2059	Grab from 1 cm	0 Silicified black argillite near contact with a quartz-biotite dyke. Moderately silicified with 2 % fine grained pyrite. UTM 6512130N/515025E. Bed 5 m wide.
BE2060	Float	Grey argillite with limonite staining and trace py. UTM 6512384N/515828E, Elev. 1675 m.
BE2061	Grab from 1 cm	0 Black argillite, sheared, with limonite and manganese oxide staining. Grid 10600N/10495E. Bed 20 m wide; strike 290/dip 60.
BE2062	Grab	Altered basalt(?) with possible pillowed flows. Sample for whole rock analysis. 10650N/10500E.
BE2063	Float	Black argillite, subcrop, with limonite and manganese oxide staining. Quartz veinlet. Next to old sample 530416. Grid

.

 \bigcirc

		10525N/10480E.
BE2064	Grab from 10 cm	Black argillite with quartz veinlet stockwork. No limonite nor manganese oxides present. Bed 5 m wide. 10400N/10540E.
BE2065	Float	Chlorite schist with intense chlorite alteration; po>py>>cp. Total sulphides 5 %. Float from south end of tarn. EAST ICE, UTM 6514791N/516521E. Elev. 1850 m.
BE2066	Float	Quartz – chlorite gneiss with intense chlorite alteration. Total 10 % very finely disseminated py and po. Float from talus 100 m SE of outcrop. EAST ICE area. UTM 6515175N/516460E. Elev. 1825 m.
BE2067	Float	Black chlorite schist with intense chlorite alteration. 2 % disseminated cp. Float from talus 100 m SE of source outcrop. EAST ICE area. UTM 6515175N/516460E. Elev. 1825 m.
BE2068	Grab	Felsic volcanic tuff band 2 m wide with 5 - 10 % diss py and cp. Very fine grained sulphides in a quartz-chlorite rock (intermediate exhalite or felsic tuff?) UTM 6515175N/516460E. Elev. 1775 m. 75 m up-section from the Storm Showing.
BE2069	Float; select	Chloritic schist/gneiss with 10 - 13 % po and $1 - 2$ % cp. EAST ICE AREA. Intensely chlorite-altered. Float from talus 100 m SE of outcrop source, as for BE2066-BE2067 above. UTM 6515175N/516460E. Elev. 1825 m.
BE2070	Select	STORM SHOWING. From 30 cm wide better-mineralized band with up to 40 % disseminated sulphides hosted in a garnet – chlorite – biotite – garnet horizon 8 m wide. Py, cp and ?sp, all very fine grained. UTM 6515155N/516850E.
BE2070A	Select	Subround sulphidized, pyritic clasts to 3 cm present. STORM SHOWING. From 30 cm wide better-mineralized band with up to 40 % disseminated sulphides hosted in a garnet – chlorite – biotite – garnet horizon 8 m wide. Py, cp and ?sp, all very fine grained. UTM 6515155N/516850E.
BE2071	Chip across 1 m	Subround sulphidized, pyritic clasts to 3 cm present. STORM SHOWING. Sample series: BE2071 at top of mineralized interval; BE2076 at base of 6 m wide mineralized horizon. Garnet – biotite – chlorite gneiss. UTM 6515155N/516850E.
BE2072	Chip across 1 m	STORM SHOWING. Sample series: BE2071 at top of mineralized interval; BE2076 at base of 6 m wide mineralized horizon. Garnet – biotite – chlorite gneiss. UTM 6515155N/516850E.
BE2073	Chip across 1 m	STORM SHOWING. Sample series: BE2071 at top of mineralized interval; BE2076 at base of 6 m wide mineralized horizon. Garnet – biotite – chlorite gneiss. UTM

 \bigcirc

6515155N/516850E.

- BE2074 Chip across 1 STORM SHOWING. Sample series: BE2071 at top of m mineralized interval; BE2076 at base of 6 m wide mineralized horizon. Garnet – biotite – chlorite gneiss. UTM 6515155N/516850E.
- BE2075 Chip across 1 STORM SHOWING. Sample series: BE2071 at top of m mineralized interval; BE2076 at base of 6 m wide mineralized horizon. Garnet – biotite – chlorite gneiss. UTM 6515155N/516850E.
- BE2076 Chip across 1 STORM SHOWING. Sample series: BE2071 at top of m mineralized interval; BE2076 at base of 6 m wide mineralized horizon. Garnet – biotite – chlorite gneiss. UTM 6515155N/516850E.
- BE2077 Chip across 1 STORM SHOWING. From 30 cm wide better-mineralized m band with up to 40 % disseminated sulphides hosted in a garnet – chlorite – biotite – garnet horizon 8 m wide. Py, cp and ?sp, all very fine grained. Sample collected within bettermineralized band, along dip of steeply-dipping band. UTM 6515155N/516850E. Subround sulphidized, pyritic clasts to 3 cm present. Overlies BE2078.
- BE2078 Chip across 1 STORM SHOWING. From 30 cm wide better-mineralized m band with up to 40 % disseminated sulphides hosted in a garnet – chlorite – biotite – garnet horizon 8 m wide. Py, cp and ?sp, all very fine grained. Sample collected within bettermineralized band, along dip of steeply-dipping band. UTM 6515155N/516850E. Subround sulphidized, pyritic clasts to 3 cm present.
- BE3000 Grab Weakly chlorite altered, massive siliceous unit with 1 2 % fine, disseminated py/po; trace cp. Limonite on weathered sfc. Spindly serpentinite crystals present. From 5 cm wide band. Joint strike 352/74.
- BE3001 Grab Moderately chlorite-altered, silicified massive siliceous unit with 3 4 % fine, disseminated py. 1 % orange-yellow fine grained sp. Traces fine cp. Limonite on weathered sfc. From 20 cm wide band.

BE3002 Grab Moderately to intensely chlorite-altered, silicified, aphyric, massive siliceous unit with 1 % fine, disseminated py. 1 % orange-yellow fine grained sp. Rare diss cp. Limonite on weathered sfc. From 10 cm wide band. Joint str. 358/85.

BE3003 Grab Moderately chlorite-altered, silicified, aphyric, massive siliceous unit with 5 % fine, disseminated po. 1 – 2 % diss sp. 1 % fine cp stringers. Traces py. Limonite on weathered sfc. From 10 cm wide band.

BE3004 Chip across 4 Up to 5 % py in siliceous shear zone 4 m wide with Fe-

BE3005	m Select	carbonate. Traces cp and po. Qtz-Fe carbonate vein with trace fine grained diss py. Aphyric siliceous texture; does not appear sheared.
BE3006	Select float	Rusty-weathering stringer of Fe-carbonate 10 cm wide within qtz vein with trace fine grained diss py. Large float boulder 2 m N of BE3005.
BE3007	Select	Smokey coloured, intensely silicified intermediate volcanic band 10 cm wide with 2 – 3 % fine grained diss py. Minor chl stringers. 20 m along strike(?) of 255° from BE3005, BE3006.
BE3008	Select float	Qtz vein with 3 % py, traces gn, sp, cp.
BE3009	Select	BEALE SHOWING. Intensely silicified volcanic band with 5 % fine grained diss py, 1 % diss cp and sp. Moderately limonite-stained. At sample sites 272226, 272227.
BE3010	Select	BEALE SHOWING. Intensely silicified volcanic band with 7 - 10 % fine grained diss py, 3 % diss cp and 5 % fine grained sp. Moderately limonite-stained. At sample sites 272226,
BE3011	Select	272227. Same outcrop as BE3009 above. BEALE SHOWING. Intensely silicified volcanic band with 7 - 10 % fine grained diss py, 3 % diss cp and 5 % fine grained sp. Sulphides interbanded. Moderately limonite-stained. At sample sites 272226, 272227. Same outcrop as BE3009, BE3010 above.
BE3012	Select	Intensely silicified felsic volcanic band with 3 % fine grained diss py, 1 % black, fine grained sp. Weak to moderate limonite stain. Small outcrop exposure about 15 m N of BE3009 – BE3011.
BE3013	Select	Intensely silicified, weakly chloritized felsic volcanic band with 1 % fine grained diss py. Weak to moderate limonite stain. Small, 50 cm outcrop exposure along extension of rock unit in previous samples.
BE3014	Select	Intensely silicified, weakly chloritized felsic volcanic band with 1 % fine grained diss py, traces cp and sp. Weak to moderate limonite stain. Local rare, blebby chlorite.
BE3015	Select	Intensely silicified, weakly chloritized felsic volcanic band with 1 - 2 % fine grained diss py. Weak to moderate limonite stain. Local rare, blebby chlorite. Similar to BE3014 above.
BE3016	Select	Intensely silicified felsic volcanic band with 3 - 5 % fine grained diss py, 1 % cp, trace sp. Native copper.
BE3017	Select	Pervasively silicified, fine grained chlorite ash tuff(?) band 10 cm wide. Local quartz veinlets. Fine grained sulphides throughout. 4925N/2940E.
BE3018	Float	Coarsely fragmental, felsic fragmental. Float found in stream bed. Manganese oxides. Limonite.

- BE3019 Select Bullish quartz vein with Fe carbonate, trace fine grained diss py. Weak to moderate limonite stain. Vein 10 cm wide. Elev. 1810 m.
- BE3020 Select VADER SHOWING. Sample from fault str. 060/75 within chloritic gneiss. 5 % cp, 3 % gn, 1 % bornite generally medium to fine grained. Gn locally euhedral, coarse grained. Sample across 10 cm from 150 cm wide fault.
- BE3021 Select SOUTH VADER SHOWING. Quartz- Fe carbonate vein with 4 cm wide wallrock (chl gneiss) fragments. Rare very fine grained diss py. Sample across 10 cm from 4 m wide vein. Elev. 1690 m.
- BE3022 Grab Limonitic qtz-sericite-biotite gneiss with 1 % po and py along contact with overlying meta-gabbro. Rock grey apple green colour, with aphyric silica. Grab from 10 cm wide band within unit 25 m wide.
- BE3023 Grab from 10 ICE SHOWING. Pervasive, intense chlorite alteration within cm ash tuff(?). Rare, very fine grained cp and po in chloritic groundmass. Sample from 10 cm wide band within unit about 4 m wide, strike 340/55. Abundant limonite. Elev. 1990 m.
- BE3024 Grab from 10 ICE SHOWING HANGINGWALL. Banded (on 1 2 cm cm scale) chlorite and quartz-Fe carbonate gneiss structurally above Ice Showing, in hangingwall. Chlorite very finely mottled. Siliceous speckles throughout. No visible sulphides. Sample from 10 cm wide band within unit ? m thick. Local limonite. Elev. 1990 m.
- BE3025 Grab from 10 ICE SHOWING, Pervasive chlorite alteration within ash cm tuff(?). Weakly banded sulphides, 1 – 2 % po with splashes of local, very fine grained cp; rare fine grained honey brown sp(?). Siliceous stringers 1 mm wide form stockwork throughout. Sample from 10 cm wide band within unit about 5 m wide. Abundant limonite. Elev. 1990 m.
- BE3026 Grab from 10 ICE SHOWING. Pervasive, very fine grained chlorite cm alteration within ash tuff(?). Weakly banded sulphides. 1 – 2 % fine grained diss po with rare fine grained cp. Sample from 10 cm wide band within unit about 5 m wide. Abundant limonite. Elev. 1990 m.
- BE3027 Grab from 20 ICE SHOWING HANGINGWALL. Chlorite-altered lapilli tuff cm structurally above Ice Showing, in hangingwall. Rare sulphides; fine stringers of yellow-brown sp. Sample from 20 cm wide band within unit ? m thick. Local limonite. Elev. 1980 m.
- BE3028 Select from ICE SHOWING. Pervasive, intense, very fine grained chlorite 10 cm alteration within ash tuff(?). Up to 1 % fine grained diss po,

traces cp and py. Sample from 10 cm wide band within unit 2 m wide. Abundant limonite.

- BE3029 Grab from 10 ICE SHOWING FOOTWALL. Fine to medium grained cm chloritic gneiss with rare fine grained diss py and sp stringers. Elev. 1980 m.
- BE3030 Grab from 10 ICE SHOWING. Moderately to intensely chlorite altered cm chloritic gneiss with up to 1 % fine grained diss py. Finely mottled texture. Sample from band 4 m wide.
- BE3031 Select grab ICE SHOWING Moderately chlorite altered chloritic gneiss from 10 cm with 2 to 3 % po with local splashes cp and py. Weakly banded appearance. Sample from band 2 m wide. Elev. 1980 m.
- BE3032 Grab from 10 ICE SHOWING. Trace to 1 % sulphides; po, py, cp. Sample cm from 10 cm wide band within chloritic gneiss unit about 5 m wide. Abundant limonite.
- BE3033 Grab from 20 ICE SHOWING northern portion. Chloritic gneiss with 1 2 cm % fine grained diss py and po with rare fine stringers cp. Sample from 20 cm wide band within unit about 5 m wide. Abundant limonite. Elev. 1980 m.
- BE3034 Select grab ICE SHOWING. Chloritic gneiss with local 3 % fine grained from 50 cm diss to massive py stringers and trace cp as blebs. Sample from 50 cm wide band within unit about 10 m wide. Abundant limonite.
- BE3035 Select from ICE SHOWING. Moderately sheared chloritic gneiss with up 15 cm to 1 % py. Quartz veinlets. Sample from 15 cm wide band within unit 8 m wide. Abundant purple and orange limonite. Elev. 1980 m
- BE3036 Select from ICE SHOWING. Chloritic gneiss with 2 % py stringers. 10 cm Sample from 10 cm wide band within unit 8 m wide. Abundant purple and orange limonite. Abundant limonite.
- BE3037 Select from 5 ICE SHOWING. Quartz Fe carbonate vein with 1 2 % cm coarse grained, euhedral gn. Steeply dipping vein strike 325/85 crosscuts outcrop exposure of Ice Showing. Vein 5 cm wide. Elev. 1990 m.
- BE3038 Select from Massive, black aphyric argillite with trace to 1 % very fine 10 cm grained diss py and sp. Locally moderately silicified. Abundant purple and orange limonite. Sample from 10 cm wide bed within unit 25 m wide strike 140/68. Elev. 1710 m. UTM 6512157N/15145E.
- BE3039 Select from Massive, black aphyric argillite with 2 to 3 % very fine grained diss py. Abundant purple and orange limonite. Sample from 10 cm wide bed within unit 25 m wide strike 140/70. Elev. 1703 m. UTM 6512150N/15143E.
- BE3040 Float Backside of ICE SHOWING ridge. Moderately silicified,

moderately chlorite altered chlorite gneiss with 5 to 7 % po, 3 -5 % fine grained diss cp. Abundant purple limonite. UTM 6515175N/516460E.

APPENDIX E

ASSAY CERTIFICATES

 \bigcirc

4

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

ho: BOLIDEN - WESTMIN LIMITED P.O. BOX 49066 STE. 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4

INVOICE NUMBER

19829377

1

BILLING	INFORMATION	# OF SAMPLES		LYSED FOR DESCRIPTION	UNIT PRICE	SAMPLE PRICE	AMOUNT
Date: Project: P.O. No.: Account:	31-AUG-98 BEALE 6112 QDGD	10	258 -	RUSH Assay ring approx 150 A-30 ICP Package RUSH 0-3 Kg crush/split	mesh 3.15 13.50 3.00	19.65	196.50
Comments	:		••••		Tota Client Discount	l Cost \$ (25%) \$	196.50 -49.13
					TOTAL PAYABLE	(U.S.) \$	147.37
Billing:	For analysis performed on Certificate A9829377						
Terms:	Payment due on receipt of invoice 1.25% per month (15% per annum) charged on overdue accounts						
Please Rer	nit Payments to:						
	CHEMEX LABS LTD. 212 Brooksbank Ave., North Vancouver, B.C. Canada V7J 2C1						

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY P.O. BOX 49066, STE. 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4

Comments: ATTN: DAVID TERRY CC: DAVID PAWLIUK

A9829377

CERTIFICATE

A9829377

(QDGD) - BOLIDEN - WESTMIN LIMITED

Project: BEALE P.O. # : 6112

Samples submitted to our lab in Vancouver, BC. This report was printed on 31-AUG-1998.

	SAMPLE PREPARATION		
Chemex Code	NUMBER SAMPLES	DESCRIPTION	
258 295 3202 233	10 10 10 10	RUSH Assay ring approx 150 mesh RUSH crush and split (0-3 Kg) Rock - save entire reject Assay AQ ICP digestion charge	
NOTE	1.		

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: A1, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, T1, W.

	ANALYTICAL PROCEDURES						
	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	upper Limit		
4001			ICP-AES	1	200		
4002	10	Al %: A30 ICP package	ICP-AES	0.01	15.00		
4003	10	As ppm: A30 ICP package	ICP-AES	10	50000		
4004	10	Ba ppm: A30 ICP package	ICP-AES	20	20000		
4005	10	Be ppm: A30 ICP package	ICP-AES	5	100		
4006	10	Bi ppm: A30 ICP package	ICP-AES	10	50000		
4007	10	Ca %: A30 ICP package	ICP-AES	0.01	30.0		
4008	10	Cd ppm: A30 ICP package		5	1000		
4009	10	Co ppm: A30 ICP package	ICP-AES	5	50000		
4010	10	Cr ppm: A30 ICP package	ICP-AES	10	20000		
4011	10	Cu ppm: A30 ICP package	TCD-188	5	50000		
4012	10	Fe %: A30 ICP package	ICP-AES	0.01	30.0		
4013	10	Hg ppm: A30 ICP package	ICP-AES	10	10000		
4014	10	K %: A30 ICP package	ICP-ARS	0.01	10.00		
4015	10	Mg %: A30 ICP package Mn ppm: A30 ICP package	ICP-AES	0.01	30.0		
4016	10	Mn ppm: A30 ICP package	ICP-ARS	10	50000		
4017	10	Mo ppm: A30 ICP package		5	50000		
4018	10	Na %: A30 ICP package	ICP-AES ICP-AES	0.01	20.0		
4019	10	Ni ppm: A30 ICP package	ICP-AES ICP-AES	5	50000		
4020	10			100	10000		
4021	10	Pb ppm: A30 ICP package	ICP-AES	5	50000		
4022	10	Pb ppm: A30 ICP package Sb ppm: A30 ICP package Sc ppm: A30 ICP package	ICP-AES	10	10000		
4023	10	Sc ppm: A30 ICP package	ICP-AES	5	10000		
4024	10	Sr ppm: A30 ICP package		5	10000		
4025	10	Ti %: A30 ICP package	ICP-AES	0.01	10.00		
4026	10	Tl ppm: A30 ICP package U ppm: A30 ICP package	ICP-AES	20	10000		
4027 4028	10	U ppm: A3U ICP package	ICP-AKS	20	10000		
4028	10 10	V ppm: A30 ICP package		20	50000		
4029	10	W ppm: A30 ICP package	ICP-AES	20	10000		
4030	10	Zn ppm: A30 ICP package	ICP-AES	5	50000		

BE2054 BE2055 BE2056 BE2066 BE2067 BE2068 BE2069 BE2070 BE2070 BE2070A

BE2078

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY P.O. BOX 49066, STE. 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4 Page N. ...der : 1-A Total Pages : 1 Certificate Date: 31-AUG-1998 Invoice No. : 19829377 P.O. Number : 6112 Account : QDGD

Project : BEALE Comments: ATTN: DAVID TERRY CC: DAVID PAWLIUK

											С	ERTIF	ICAT	E OF	ANAL	YSIS		A982	9377		
SAMPLE		EP DE	Ag ppm												-					Na %	Ni ppm
054 055 056 066 067	258 258 258	295 295 295 295 295 295	3 1 1	2.15 3.36 1.88	40 40	< 20 < 20 < 20	<pre>< < 5 < 5 < 5</pre>	< 10 < 10 < 10	0.25 0.53 0.33	<pre>< 5 < 5 < 5 < 5 < 5</pre>	205 45 165		6860 175 5700	7.81 14.85	< 10 < 10	0.04	1.47 1.68 1.28	150 340 860 310 540	< 5 5 5	0.09 0.06 0.07 0.08 0.18	125 120 50 110 55
068 069 070 070a 077	258 258	 295 295 295 295 295	NotRed 3 < 1 1 < 1	1.33 3.19 2.55	NotRcd 50 60 50 20	< 20 120 60	< 5 < 5 < 5	< 10 < 10 < 10	1.14 1.70 1.31	< 5 < 5	250 90 105	NotRcd 100 80 80 120	2120 2490	14.95 15.10 18.05	NotReđ < 10 < 10 < 10 < 10 < 10	NotRed 0.03 0.38 0.20 0.58	0.72 0.88 0.83	NotRcd 490 480 610 610	5	NotRed 0.09 0.07 0.04 0.06	NotRcd 265 150 170 45
078	258	295	< 1	2.75	60	180	< 5	< 10	1.06	< 5	25	90	360	10.80	< 10	0.58	0.68	620	10	0.05	55

Havituller

BE2054 BE2055 BE2056 BE2066 BE2067 BE2068 BE2069 BE2070 BE2070 BE2070 BE2077 BE2077

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY P.O. BOX 49066, STE. 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4 Page Norther : 1-B Total Pages : 1 Certificate Date: 31-AUG-1998 Invoice No. : 19829377 P.O. Number : 6112 Account : QDGD

Project : BEALE Comments: ATTN: DAVID TERRY CC: DAVID PAWLIUK

											CE	RTIF	ICATE	OF ANALYSIS	A9829377	
SAMPLE		ep De	P ppm		Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	V ppm	W ppm	Zn ppm			
054 055 056 066 067	259 258 258	295 295 295 295 295 295	500 1100 500	30 40 < 5 5 35	< 10 < 10 < 10 < 10 < 10 < 10	< 5 < 5 5 < 5 < 5 < 5	10 5 30 < 5 15	0.05 0.08 0.19 0.09 0.14	< 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	20 120 140 100 60	< 20 20 20 < 20 < 20 < 20	380 885 55 800 220	estratu - settad	****************	
068 069 070 070 070 077	258 258	 295 295 295 295	NotRed 2500 7000 6100 6300	NotRcd 20 30 50 45	NotRcd 1 < 10 < 10 10 < 10	NotRcd N 10 < 5 < 5 < 5 < 5	lot Red 1 5 215 145 130	NotRed 1 0.27 0.05 0.04 0.11	NotRed 1 < 20 < 20 < 20 < 20 < 20	NotRcd M < 20 < 20 < 20 < 20 < 20	NotRed 120 140 120 160	NotRcd 20 < 20 < 20 20 20				
078	258	295	5100	55	< 10	< 5	130	0.11	< 20	< 20	120	< 20	75			
		-														

CERTIFICATION: 1200

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

) BOLIDEN - WESTMIN LIMITED

P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

INVOICE NUMBER

I 9 8 3 0 7 3 2

BILLING	INFORMATION	# OF Samples	ANAL CODE -	LYSED DESCR			UNIT PRICE	SAMPLE PRICE	AMOUNT
Date: Project: P.O. No.: Account:	11-SEP-98 BEALE 6112 GP D	10	258 -	A-30	Assay ring approx ICP Package 0–3 Kg crush/split		3.75 15.75 3.90	23.40	234.00
Comments	· · · · · ·					Client (keg# kl009	Discount (Net	Cost \$ 25%) \$ Cost \$ GST \$	234.00 -58.50 175.50 12.29
Billing:	For analysis performed on Certificate A9830732					τοτα	L PAYABLE	(CDN) \$	187.79
Terms:	Payment due on receipt of invoice 1.25% per month (15% per annum) charged on overdue accounts							·	
Please Rer	nit Payments to:								
	CHEMEX LABS LTD. 212 Brooksbank Ave., North Vancouver, B.C. Canada V7J 2C1								

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY P.O. BOX 49066, STE. 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4

Comments: ATTN: DAVID TERRY CC: DAVID PAWLIUK

A9830732 ANALYTICAL PROCEDURES CHEMEX NUMBER DETECTION UPPER CODE SAMPLES DESCRIPTION METHOD LIMIT LIMIT 4001 10 Ag ppm : A30 ICP package ICP-AES 1 200 4002 10 Al %: A30 ICP package 0.01 ICP-ARS 15.00 4003 10 As ppm: A30 ICP package ICP-AES 10 50000 4004 10 Ba ppm: A30 ICP package ICP-AES 20 20000 4005 10 Be ppm: A30 ICP package ICP-AES 5 100 4006 10 Bi ppm: A30 ICP package ICP-ARS 10 50000 4007 10 Ca %: A30 ICP package ICP-AES 0.01 30.0 4008 10 Cd ppm: A30 ICP package ICP-AES 5 1000 4009 10 Co ppm: A30 ICP package ICP-AES 5 50000 4010 10 Cr ppm: A30 ICP package ICP-ABS 10 20000 4011 10 Cu ppm: A30 ICP package ICP-AES 5 50000 4012 Fe %: A30 ICP package 10 ICP-AES 0.01 30.0 4013 10 Hg ppm: A30 ICP package ICP-AES 10 10000 4014 10 K %: A30 ICP package ICP-AES 0.01 10.00 4015 10 Mg %: A30 ICP package ICP-ARS 0.01 30.0 4016 10 Mn ppm: A30 ICP package ICP-AES 10 50000 4017 Mo ppm: A30 ICP package 10 ICP-AES 5 50000 4018 10 Na %: A30 ICP package ICP-ARS 0.01 20.0 4019 10 Ni ppm: A30 ICP package ICP-AES 50000 5 4020 10 P ppm: A30 ICP package ICP-AES 100 10000 4021 10 Pb ppm: A30 ICP package ICP-AES 5 50000 4022 10 Sb ppm: A30 ICP package ICP-ARS 10 10000 4023 10 Sc ppm: A30 ICP package ICP-AES 5 10000 Sr ppm: A30 ICP package 4024 10 ICP-AES 10000 5 Ti %: A30 ICP package 4025 10 ICP-AES 0.01 10.00 T1 ppm: A30 ICP package 4026 10 ICP-AES 20 10000 4027 10 U ppm: A30 ICP package ICP-AES 20 10000 4028 10 V ppm: A30 ICP package ICP-AES 20 50000 4029 10 W ppm: A30 ICP package ICP-AES 20 10000 4030 10 Zn ppm: A30 ICP package ICP-AES 5 50000

(GP D) - BOLIDEN - WESTMIN LIMITED

CERTIFICATE

Project: BEALE P.O. #: 6112

Samples submitted to our lab in Vancouver, BC. This report was printed on 11-SEP-1998.

	SAM	PLE PREPARATION
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION
258 295 3202 233	10 10 10 10	RUSH Assay ring approx 150 mesh RUSH crush and split (0-3 Kg) Rock - save entire reject Assay AQ ICP digestion charge
NOTE	1.	

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Ba, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, Tl, W. A9830732

To: BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY P.O. BOX 49066, STE. 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4

Page I. ber :1-A Total Pages :1 Certificate Date: 11-SEP-1998 Invoice No. 19830732 P.O. Number :6112 Account GP D

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers North Vancouver

212 Brooksbank Ave. I British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

Project BEALE

Comments: ATTN: DAVID TERRY CC: DAVID PAWLIUK

											CE	RTIF	ICAT	E OF	ANAL	YSIS		A983	0732		
SAMPLE	PR CO	EP DE	Ag ppm	A1 %		Ba ppm	Be ppm				Co ppm	Cr ppm	Cu ppm	Fe %	Hg ppm	K %	Mg %		Mo ppm	Na %	Ni ppm
BE2054		295	3	0.93	50		< 5	< 10	1.42		165	50		13.60	10	0.03	0.53	150	< 5	0.09	125
BE2055 BE2056		295 295	3	2.15 3.36	40 40	< 20 < 20	< 5 < 5	< 10 < 10	0.25		205 45	90 170	6860 175	16.40 7.81	< 10 < 10	0.04	1.47	340 860	< 5 5	0.06 0.07	120 50
BE2066	258	295	1	1.88	50	< 20	< 5	< 10	0.33	< 5	165	80	5700		< 10	0.05	1.28	310	5	0.08	110
BE2067	258	295	5	2.64	50	< 20	< 5	< 10	0.80	< 5	70	80	2150	4.91	< 10	0.03	1.69	54 0	5	0.18	55
BE2068			NotRed	NotRed	NotRed	NotRed	NotRed			NotRed						NotRed	NotRed	NotRed			NotRed
BE2069 BE2070		295 295	3	1.33	50	< 20	< 5	< 10	1.14		250	100		14.95	< 10	0.03	0.72	490	5	0.09	265
BE2070A		295	< 1 1	3.19 2.55	60 50	120 60	< 5 < 5	< 10 < 10	1.70		90 105	80 80		15.10 18.05	< 10 < 10	0.3B 0.20	0.88 0.83	480 610	20 10	0.07 0.04	150 170
BE2077		295	< 1	2.79	20	260	< 5	< 10	1.96		15	120	310	9.62	< 10	0.58	0.68	610	< Š		45
BE2078	258	295	< 1	2.75	60	180	< 5	< 10	1.06	< 5	25	90	360	10.80	< 10	0.58	0.68	620	10	0.05	55
-																					
	-																				
																					1

00

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY λo: P.O. BOX 49066, STE. 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4 Page N Jer 1-B Total Pages 1 Certificate Date: 11-SEP-1998 Invoice No. : 19830 P.O. Number :6112 :19830732 Account :GP D

 \mathcal{N} \mathcal{C}

Project : BEALE Comments: ATTN: DAVID TERRY CC: DAVID PAWLIUK

CERTIFICATE OF ANALYSIS A9830732

CERTIFICATION

SAMPLE	PR CO		P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppma	V ppm	W PPM	Zn ppm	
E2054		295	1500	30	< 10	< 5	10	0.05	< 20	< 20	20	< 20	380	
2055	258	295	500	40	< 10	< 5	5	0.08	< 20	< 20	120	20	885	
E2056	258	295	1100	< 5	< 10	5	30	0.19	< 20	< 20	140	20	55	
E2066	258	295	500	5	< 10	< 5	< 5	0.09	< 20	< 20	100	< 20	800	
E2067	258	295	400	35	< 10	< 5	15	0.14	< 20	< 20	60	< 20	220	
E2068			NotRed 1	NotRed	NotRed	NotRed		NotRed	NotRed					
E2069	258	295	2500	20	< 10	10	5	0.27	< 20	< 20	120	20	65	
E2070 E2070a	156	295 295	7000 6100	30 50	< 10 10	< 5 < 5	215	0.05	< 20	< 20	140 120	< 20	95 80	
E2077	258	295	6300	45	< 10	< 5	145 130	$0.04 \\ 0.11$	< 20 < 20	< 20 < 20	160	< 20 20	80	
	_													
2078	258	295	5100	55	< 10	< 5	130	0.11	< 20	< 20	120	< 20	75	
		1												
		- 1												
	1													
	1													
		1												
	1 1													
	1 1													
	1													
	1													

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

Xo: BOLIDEN - WESTMIN LIMITED

P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

INVOICE NUMBER

I9830733

BILLING	INFORMATION	# OF SAMPLES		LYSED FOR DESCRIPTION			UNIT PRICE	SAMPLE PRICE	AMOUNT
Date: Project: P.O. No.:	14-SEP-98 BEALE 6112	10	244 - 983 -	- Pulp; prev. - Au ppb	prepared at FA+AA	Chemex	0.00 9.75	9.75	97.50
Account:	GP D					Client	Tota Discount	1 Cost \$ (25%) \$	97.50
Comments						, Keg# R1009	N t	t Cost \$ GST \$	$\frac{11.20}{73.12}$ 5.12
Billing:	For analysis performed on Certificate A9830733					TOTI	AL PAYABLE	(CDN) \$	78.24
Terms:	Payment due on receipt of invoice 1.25% per month (15% per annum) charged on overdue accounts								
Please Ren	nit Payments to:								
	CHEMEX LABS LTD. 212 Brooksbank Ave., North Vancouver, B.C. Canada V7J 2C1								

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY P.O. BOX 49066, STE. 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4

Comments: ATTN: DAVID TERRY CC: DAVID PAWLIUK

С	ERTIF	ICATE A9830733			ANALYTICAI	PROCEDURES	6	
(GP D) - E Project: P.O. # :	BOLIDEN - BEALE	WESTMIN LIMITED		NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT
Samples	6112 submitt	ed to our lab in Vancouver, BC. printed on 14-SEP-1998.	983	10	Au ppb: Fuse 30 g sample	г л-ллs	5	10000
	SAM	PLE PREPARATION						
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION						
244	10	Pulp; prev. prepared at Chemex						
	1							

A9830733

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY P.O. BOX 49066, STE. 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4

Page Number 1 Total Pages 1 Certificate Date: 14-SEP-1998 Invoice No. : 19830733 P.O. Number : 6112 Account :GP D

BEALE Project : Comments: ATTN: DAVID TERRY CC: DAVID PAWLIUK

			 CERTIFIC	CATE OF ANALYSIS	S A983073	3
SAMPLE	PREP CODE	Au ppb FA+AA				
BE2054 BE2055 BE2056 BE2066 BE2067	244 244 244 244 244	< 5 < 5 < 5 < 5 < 5 < 5 < 5				
BE2068 BE2069 BE2070 BE2070A BE2077	 244 244 244 244 244	NotRcd < 5 < 5 < 5 < 5 < 5 < 5				
BE2078	244	< 5				
<u></u>	···· I ···	l		CERTIFICATIO	N: Thak	Vmh

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

lo: BOLIDEN - WESTMIN LIMITED

P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

INVOICE NUMBER

I9829792

BILLING	INFORMATION	# OF SAMPLES		YSED FOR DESCRIPTIO	N	UNIT Price	SAMPLE PRICE	AMOUNT
Date: Project: P.O. No.:	10-SEP-98 BEALE 6112	249	202 -	Dry, sieve save rejec ICP-24 Au ppb	e to -80 mesh t FA+AA	1.25 0.85 10.50 9.75	22.35	5565.15
Account:	GP D		205	na ppo		<i></i>	216 . 3 3	5505.15
Comments:	:			· · · · · · · · · · · · · · · · · · ·		client Discount (Cost \$ 25%) \$ Cost \$ GST \$	5565.15 - <u>1391.29</u> 4173.86 _292.17
Billing:	For analysis performed on Certificate A9829792					TOTAL PAYABLE		4466.03
Terms:	Payment due on receipt of invoice 1.25% per month (15% per annum) charged on overdue accounts							
Please Ren	nit Payments to:							
	CHEMEX LABS LTD. 212 Brooksbank Ave., North Vancouver, B.C. Canada V7J 2C1							

CERTIFICATE

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

A9829792

To: BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY P.O. BOX 49066, STE. 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4

Comments: ATTN: DAVID TERRY

CC: DAVID PAWLIUK

XODE SAMPLES DESCRIPTION 201 249 Dry, sieve to -80 mesh 202 249 save reject	Ó.#:	BEALE 6112	
HEMEX NUMBER CODE SAMPLES DESCRIPTION 201 249 Dry, sieve to -80 mesh 202 249 save reject			
HEMEX NUMBER CODE SAMPLES DESCRIPTION 201 249 Dry, sieve to -80 mesh 202 249 save reject			
HEMEX NUMBER CODE SAMPLES DESCRIPTION 201 249 Dry, sieve to -80 mesh 202 249 save reject			
CODE SAMPLES DESCRIPTION 201 249 Dry, sieve to -80 mesh 202 249 save reject		SAMI	PLE PREPARATION
202 249 save reject			
	CODE		DESCRIPTION
265 249 ICF - HF digestion charge	CODE	SAMPLES	Dry, sieve to -80 mesh
	CODE	SAMPLES	Dry, sieve to -80 mesh

ANALYTICAL PROCEDURES

Hemex Code	NUMBER SAMPLES		METHOD	DETECTION LIMIT	uppei Limi
	ł				
983	249	Au ppb: Fuse 30 g sample	FA-AAS	5	10000
578	249	Ag ppm: 24 element, rock & core	AAS	0.2	100.0
573	249	Al %: 24 element, rock & core	ICP-ABS	0.01	25.0
565	249	Ba ppm: 24 element, rock & core	ICP-ABS	10	10000
575	249	Be ppm: 24 element, rock & core	ICP-ABS	0.5	1000
561	249	Bi ppm: 24 element, rock & core	ICP-ABS	2	10000
576	249	Ca %: 24 element, rock & core	ICP-ARS	0.01	25.0
562	249	Cd ppm: 24 element, rock & core	ICP-ABS	0.5	500
563	249	Co ppm: 24 element, rock & core	ICP-ABS	1	10000
569	249	Cr ppm: 24 element, rock & core	ICP-AES	1	10000
577	249	Cu ppm: 24 element, rock & core	ICP-ABS	1	10000
566	249	Fe %: 24 element, rock & core	ICP-AES	0.01	25.0
584	249	K %: 24 element, rock & core	ICP-ABS	0.01	10.00
570	249	Mg %: 24 element, rock & core	ICP-AES	0.01	15.00
568	249	Mn ppm: 24 element, rock & core	ICP-AES	5	10000
554	249	Mo ppm: 24 element, rock & core	ICP-AES	1	10000
583	249	Na %: 24 element, rock & core	ICP-AES	0.01	10.00
564	249	Ni ppm: 24 element, rock & core	ICP-AES	1	10000
559	249	P ppm: 24 element, rock & core	ICP-AES	10	10000
560	249	Pb ppm: 24 element, rock & core	AAS	2	10000
582	249	Sr ppm: 24 element, rock & core	ICP-AES	1	10000
579	249	Ti %: 24 element, rock & core	ICP-AES	0.01	10.00
572	249	V ppm: 24 element, rock & core	ICP-AES	1	10000
556	249	W ppm: 24 element, rock & core	ICP-AES	10	10000
558	249	Zn ppm: 24 element, rock & core	ICP-AES	2	10000

A9829792

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave. North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 **BOLIDEN - WESTMIN LIMITED** ATTN: DAVID TERRY P.O. BOX 49066, STE. 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4

Page N er :1-A Total Pages :7 Certificate Date: 10-SEP-1998 Invoice No. 19829792 P.O. Number :6112 GPD Account

Project : BEALE Comments: ATTN: DAVID TERRY

lo:

CC: DAVID PAWLIUK

				T	·		.		CERTIFICATE OF ANALYSIS A9829792							
SAMPLE	PRE		λи ppb FA+AA	Ag ppm AAS	A1 % (ICP)	Ba ppm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cd ppm (ICP)	Co ppm (ICP)	Cr ppm (ICP)	Cu ppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)
2750E 4450N		02	< 5	0.4	6.68	630	1.0	6	2.63	4.0	40	462	122	6.22	0.72	5.31
2750E 4500N 2750E 4550N		02 02	< 5	0.6	6.84	620	1.5	< 2	2.23	2.5	35	263	111	5.34	0.95	3.21
2750E 4650N		02	< 5 < 5	< 0.2 0.2	5.78 5.41	440	0.5	6	2.92	0.5	24	197	43	5.25	0.73	2.64
2750E 4700N	201 2		< 5	0.2	5.02	640	0.5	8	2.28 2.16	0.5	40 75	886 858	37	5.87 5.58	0.70	5.41
2750E 4900N	201 2		< 5	0.2	6.69	670	1.5	< 2	1.56	1.5	26	250	19	5.82	1.62	1.74
2750E 4950N	201 2		< 5	0.6	7.58	410	2.0	6	1.44	1.5	25	182	51	5.79	1.50	1.56
4400N 2750E 4400N 2800E	201 20		< 5	1.4	6.87	680	1.5	16	2.51	4.0	45	500	130	6.35	0.86	5.39
4400N 2850E	201 20		< 5 < 5	0.4	6.77 6.78	640 520	1.0	16	2.54	2.5	39	469	141 191	6.00 5.88	0.76	5.31 4.97
4400N 2900E	201 20)2	< 5	0.6	6.03	460	0.5	10	2.46	0.5	33	413	104	5.46	0.65	4.54
4400N 2950E	201 20		< 5	0.8	6.17	490	1.0	2	2.67	1.0	44	438	113	5.43	0.05	5.01
4400N 3000E 4400N 3050E	201 20		< 5	0.4	6.05	520	0.5	6	2.40	0.5	30	268	82	5.56	0.74	3.08
4400N 3100E	201 20 201 20		< 5 < 5	0.2	6.56 5.91	640 630	1.0 1.0	< 2 10	2.51 2.45	1.0	44 51	318 270	121 138	5.64 5.11	0.83	3.85 3.22
4400N 3150E	201 20)2	< 5	0.6	6.49	600	1.0	10	2.56	1.5	44					
4400N 3200E	201 20		< 5	0.6	5.85	520	0.5	6	2.20	0.5	29	327 281	143 80	5.68 5.51	0.81	3.86
4400N 3250E	201 20		< 5	0.4	6.16	540	1.0	8	2.33	2.5	33	253	52	5.98	1.04	2.77
4400N 3300E 4400N 3350E	201 20		< 5	0.2	6.00	610	1.0	10	2.39	1.5	35	242	68	5.35	0.97	2.75
	201 20		< 5	0.6	6.68	690	1.5	< 2	1.89	4.5	39	189	135	5.65	0.98	2.38
4400N 3400E 4400N 3450E	201 20	_	100	0.8	6.95	680	1,5	10	2.26	1.5	39	278	152	5.64	1.01	3.41
4400N 3450E	201 20		< 5 < 5	1.0	6.56	570	1.5	10	1.96	9.5	40	165	226	5.35	0.91	2.10
4400N 4300E	201 20		< 5	0.4	6.65 6.39	320 490	0.5 0.5	16	4.19	0.5	55	449	209	5.53	0.62	5.90
4400N 4350E	201 20		< 5	0.6	6.08	420	1.0	12 6	4.26 2.77	1.5 0.5	67 63	468 489	185 138	6.66 4.89	0.70	6.17
4400N 4400E	201 20		< 5	1.0	7.29	650	1.5	18	2.02	1.5	60	315	219	5.48	1.04	4.82
4400N 4450E 4400N 4500E	201 20		< 5	0.2	7.80	510	2.0	6	2.79	1.0	66	474	160	6.40	0.97	4.91
4400N 4550E	201 20 201 20		< 5 < 5	0.4	8.14	580	3.5	< 2	1.79	0.5	42	161	191	5.76	1.58	2.33
4400N 4600E	201 20		< 5	< 0.2 0.2	7.74 7.91	390 440	1.5 2.0	< 2 10	3.20 2.46	< 0.5 < 0.5	38 37	299 230 i	35 100	5.46	0.89	3.93
4400N 4650E	201 20		< 5	< 0.2	6.92	400	2.0	8	2.53	0.5	40	274	98	5.04		
4400N 4700E	201 20		< 5	< 0.2	8.13	450	3.0	2	1.44	< 0.5	47	305	101	5.62	1.10	3.76
4400N 4750E 4400N 4800E	201 20		< 5	< 0.2	5.97	300	1.5	6	2.23	< 0.5	58	739	54	4.79	0.75	8.19
4400N 4850E	201 20 201 20		< 5 < 5	< 0.2	8.58 6.93	310 350	4.5 2.5	< 2 8	1.18 0.76	< 0.5	25 B	111 78	27 8	5.74 5.30	2.03	1.28
4400N 4900E	201 20	2	< 5	0.2	6.87	440	2.0	2	2.12	0.5						
4400N 4950E	201 20	2	< 5	0.2	6.45	300	2.0	< 2	0.74	< 0.5	28	247 87	45 12	4.63	0.93	2.82
4400N 5000E	201 20		< 5	0.2	6.52	450	2.0	< 2	1.96	0.5	24	196	37	4.82	1.62	0.59
4400N 5050E 4400N 5100E	201 20		< 5	0.2	7.59	320	2.5	< 2	1.07	< 0.5	15	134	13	7.50	1.79	0.78
	AUT AU .	1	< 5	< 0.2	5.90	240	0.5	8	2.73	< 0.5	33	221	36	4.88	0.44	2.80

CERTIFICATION: Hartfuchle

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 JTo: BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY P.O. BOX 49066, STE 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4 Page I.ber :1-B Total Pages :7 Certificate Date: 10-SEP-1998 Invoice No. : 19829792 P.O. Number :6112 Account :GP D

Project : BEALE Comments: ATTN: DAVID TERRY

CC: DAVID PAWLIUK

								CERTI	FICATE	OF AN	ALYSIS	5 <i>4</i>	982979	92	
SAMPLE	PREP CODE	Mn ppm (ICP)	Mo ppm (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm (ICP)	Pb ppm AAS	Sr ppm (ICP)	Ti % (ICP)	V ppm (ICP)	W ppm (ICP)	Zn ppm (ICP)			
2750E 4450N 2750E 4500N 2750E 4550N 2750E 4550N 2750E 4650N 2750E 4700N	201 202 201 202 201 202 201 202 201 202 201 202	2410 1625 1235 1015 1495	3 1 < 1 < 1 < 1 < 1	1.12 1.29 1.28 1.33 1.08	350 218 109 386 667	1020 950 560 970 1060	796 670 50 58 92	158 169 154 143 134	0.55 0.51 0.72 0.55 0.42	193 179 198 175 150	< 10 < 10 < 10 < 10 < 10 < 10	908 620 152 174 194			
2750E 4900N 2750E 4950N 4400N 2750E 4400N 2800E 4400N 2850E	201 202 201 202 201 202 201 202 201 202 201 202	1085 755 2670 2120 2050	<pre>< 1 1 3 1 < 1 </pre>	1.93 1.69 1.13 1.20 1.43	94 145 358 362 341	830 1270 1160 920 780	52 90 928 674 660	175 134 165 159 167	0.72 0.66 0.49 0.48 0.46	161 119 195 183 167	< 10 < 10 < 10 < 10 < 10 < 10	194 288 944 796 588			
4400N 2900E 4400N 2950E 4400N 3000E 4400N 3050E 4400N 3050E	201 202 201 202 201 202 201 202 201 202 201 202	1450 1705 1430 1610 2510	< 1 < 1 2 1 5	1.20 1.29 1.08 1.20 1.00	314 382 147 214 196	1150 870 1200 1090 1300	286 350 180 192 474	143 155 134 146 139	0.49 0.50 0.64 0.56 0.50	166 160 190 191 170	< 10 < 10 < 10 < 10 < 10 < 10	344 416 294 356 420			
4400N 3150E 4400N 3200E 4400N 3250E 4400N 3300E 4400N 3350E	201 202 201 202 201 202 201 202 201 202 201 202	1640 1890 1530 2010 1770	1 < 1 < 1 < 1 < 1 < 1	1.18 1.11 1.42 1.32 1.23	219 141 134 135 133	1050 2110 660 1130 980	196 136 92 106 126	145 124 144 148 141	0.57 0.62 0.70 0.65 0.68	195 199 186 171 170	< 10 < 10 < 10 10 < 10	350 186 268 272 394			
4400N 3400E 4400N 3450E 4400N 4200E 4400N 4300E 4400N 4350E	201 202 201 202 201 202 201 202 201 202 201 202	1535 2240 1335 1755 1120	< 1 4 < 1 < 1 < 1 < 1	1.32 0.90 1.27 0.92 1.20	204 148 484 357 816	990 1020 730 1170 820	226 246 60 150 92	162 138 178 153 164	0.64 0.48 0.52 0.57 0.45	177 138 197 267 157	< 10 < 10 < 10 < 10 < 10 < 10	362 836 168 326 190			
4400N 4400E 4400N 4450E 4400N 4550E 4400N 4550E 4400N 4550E 4400N 4600E	201 202 201 202 201 202 201 202 201 202 201 202	1560 1760 1705 1950 1080	< 1 < 1 < 1 < 1 < 1 < 1	1.03 1.22 1.73 0.74 1.28	488 355 160 184 218	1060 700 1280 690 1040	432 140 90 32 50	153 172 176 122 187	0.47 0.51 0.54 0.58 0.54	162 174 146 174 155	< 10 < 10 < 10 < 10 < 10 < 10	554 326 230 108 142			
4400N 4650E 4400N 4700E 4400N 4750E 4400N 4750E 4400N 4800E 4400N 4850E	201 202 201 202 201 202 201 202 201 202 201 202	1170 1355 1290 1160 845	< 1 < 1 < 1 1 4	1.55 1.40 1.34 2.27 2.33	381 575 946 204 21	1050 990 570 1080 1410	32 60 32 16 28	209 138 131 104 101	0.56 0.46 0.36 0.55 0.55	129 129 108 73 88	< 10 < 10 < 10 < 10 < 10 < 10	132 190 114 134 72			
4400N 4900E 4400N 4950E 4400N 5000E 4400N 5050E 4400N 5100E	201 202 201 202 201 202 201 202 201 202 201 202 201 202	1120 610 920 610 1390	< 1 5 1 1 < 1	1.37 1.86 1.56 2.01 1.19	172 23 143 40 144	1380 1350 1080 830 870	30 34 28 18 20	177 97 188 110 139	0.45 0.58 0.57 0.79 0.70	129 99 138 117 172	< 10 < 10 < 10 < 10 < 10 < 10	128 70 122 104 106			

CERTIFICATION Hard Lalle

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave.,
Bntish Columbia, CanadaNorth Vancouver
V7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

to: BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY P.O. BOX 49066, STE. 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4 Page Ner: 2-A Total Pages: 7 Certificate Date: 10-SEP-1998 Invoice No.: 19829792 P.O. Number: 6112 Account: GP D

Project : BEALE Comments: ATTN: DAVID TERRY

CC: DAVID PAWLIUK

CERTIFICATION:

CERTIFICATE OF ANALYSIS A9829792

		-													
SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm AAS	Al % (ICP)	Ba ppm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cđ ppm (ICP)	Coppm (ICP)	Cr ppm (ICP)	Cu ppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)
4400N 5150E	201 202	< 5	0.4	7.12	460	2.0	6	2.74	1.5	65	469	181	6.01	0.90	5.09
4400N 5200E	201 202	< 5	0.2	5.81	280	1.0	2	2.50	< 0.5	27	266	31	4.89	0.63	2.78
4600N 2750E	201 202	< 5	< 0.2	5.60	590	0.5	14	2.15	0.5	50	769	69	5.79	0.74	6.67
4600N 2800E	201 202	< 5	0.4	7.57	560	2.0	2	1.36	0.5	18	121	34	5.49	1.78	1.20
4600N 2850E	201 202	< 5	0.2	6.31	550	1.0	2	2.56	0.5	31	341	79	5.26	0.82	3.77
4600N 2950E	201 202	< 5	< 0.2	5.62	580	0.5	2	2.81	1.0	39	634	45	5.53	0.77	4.83
4600N 3000E	201 202	< 5	0.6	6.44	570	1.0	14	3.08	3.0	45	415	147	5.96	0.82	4.75
4600N 3050E	201 202	< 5	0.6	6.67	620	1.0	< 2	2.90	3.5	48	418	177	5.94	0.87	4.82
4600N 3100E	201 202	< 5	1.0	6.46	590	1.0	12	2.73	4.0	45	414	167	5.77	0.80	4.78
4600N 3150E	201 202	< 5	0.4	6.46	600	0.5	12	3.44	1.5	52	313	113	6.00	0.80	4.49
4600N 3200E	201 202	< 5	0.4	6.50	590	1.0	12	3.37	2.0	44	461	126	6.00	0.74	5.24
4600N 3250E	201 202	< 5	0.2	5.32	420	1.0	2	1.81	1.5	23	216	62	4.88	0.72	2.30
4600N 3300E	201 202 201 202	< 5	1.0 0.8	6.69 6.47	590 800	1.5	12 8	2.37	2.5	40	299 274	151 197	6.36 6.22	0.93	3.22
4600N 3350E 4600N 3400E	201 202	< 5 5	0.2	6.49	970	1.5	6	2.47	2.0	37	252	125	5.41	1.13	3.15
4600N 3450E	201 202	< 5	0.2	5.62	430	1.0	8	1.99	1.5	48	144	166	5.56	0.83	2.10
4600N 4500E	201 202	< 5	0.2	6.73	320	< 0.5	4	1.08	< 0.5	16	305	134	9.32	1.01	4.21
4600N 4550E	201 202	< 5	0.2	5.89	520	1.5	4	2.05	1.5	55	373	153	5.58	0.82	4.26
4600N 4600E	201 202	< 5	0.2	6.44	480	1.0	2	2.58	0.5	53	464	144	5.98	0.80	4.98
4600N 4700E	201 202	20	< 0.2	6.29	510	1.5	4	2.30	< 0.5	51	445	136	5.51	0.79	5.17
4600N 4750E	201 202	< 5	0.2	8.13	1120	1.5	< 2	1.38	0.5	27	271	11	3.66	0.86	3.70
4600N 4800E	201 202	< 5	0.2	5.33	470	1.0	8	1.91	< 0.5	19	190	32	4.22	0.77	2.27
4600N 4850E	201 202	< 5	0.4	5.25	600	1.0	6	1.27	0.5	12	119	33	2.66	1.02	1.13
4600N 4900E	201 202	10	0.4	6.92	570	2.5	14	0.86	1.0	32	190	159	5.23	1.01	2.02
4600N 4950E	201 202	< 5	0.6	7.47	600	3.0	< 2	1.57	1.5	29	173	91	4.72	1.27	1.75
4600N 5050E 4600N 5100E	201 202 201 202	< 5 < 5	0.8	7.00	450 550	3.0 2.0	2 < 2	0.97 1.63	< 0.5 0.5	13 20	113 154	41 32	4.64	1.58	1.00
4600N 5150E	201 202	< 5	0.8	6.37	460	2.5	6	1.83	1.0	27	181	138	4.80	0.89	1.57
4800N 2750E	201 202	< 5	0.4	6.33	570	1.5	12	1.38	2.0	17	151	14	5.23	1.73	1.06
4800N 2800E	201 202	< 5	0.6	7.07	590	1.5	2	1.65	0.5	19	183	25	5.06	1.38	1.59
4800N 2850E	201 202	< 5	0.2	5.80	600	0.5	10	2.63	2.0	56	751	106	5.74	0.80	6.88
4800N 2900E	201 202	< 5	0.6	6.03	440	1.5	< 2	1.68	0.5	18	195	22	6.49	1.30	1.63
4800N 2950E	201 202	< 5	0.6	8.71	340	3.0	8	1.25	0.5	17	152	52	6.02	1.61	1.10
4800N 3000E	201 202	< 5	0.2	6.80	470	1.0	20	2.34	3.5	37	307	119	5.28	0.93	3.83
4800N 3050E	201 202	S	0.2	6.61	490	1.0	12	2.34	0.5	35	308	119	5.06	0.88	3.79
4800N 3100E	201 202	< 5	1.0	6.21	510	1.5	8	2.12	2.0	27	225	94	4.93	0.98	2.50
4800N 3150E	201 202	< 5	0.4	7.11	560	1.5	< 2	2.40	1.5	37	313	113	5.53	1.12	3.59
4800N 3200E 4800N 3250E	201 202	< 5	0.2	4.71	360	0.5	< 2	2.31	0.5	26	204	44	3.93	0.74	2.39
4800N 3250E	201 202 201 202	< 5 < 5	< 0.2	6.11 7.35	590	1.5	10 2	2.22	1.5	54 34	682 245	67	5.47	1.10	5.76
4000M 33002	AUT AUA		0.6	1.33	610	1.5	∡	1.80	2.0	34	447	147	4.92	1.14	2.95
		I								L					L

Chemex Labs Ltd.

Analytical Chemists " Geochemists * Registered Assayers 212 Brooksbank Ave., British Columbia, Canada North Vancouver V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

BOLIDEN - WESTMIN LIMITED 才o: ATTN: DAVID TERRY P.O. BOX 49066, STE. 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4

Jer :2-B Page N. Total Pages :7 Certificate Date: 10-SEP-1998 Invoice No. :19829792 P.O. Number :6112 Account : GP D

Hastfickler

CERTIFICATION:

Project : BEALE Comments: ATTN: DAVID TERRY

CC: DAVID PAWLIUK

									CERTI	FICATE	OF AN	ALYSIS	6 /	A98297	92	
SAMPLE	PRI		Mn ppm (ICP)	Mo ppm (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm (ICP)	Pb ppm AAS	Sr ppm (ICP)	Ti % (ICP)	V ppm (ICP)	W ppm (ICP)	Zn ppm (ICP)			
4400N 5150E	201		1495	< 1	1.27	512	980	176	170	0.48	163	< 10	380			
4400N 5200E	201		1205	< 1	1.35	167	780 1050	36	136	0.68	159 162	< 10 < 10	116			
4600N 2750E 4600N 2800E	201 2		1200 805	< 1 2	1.25	525 50	1200	48	170	0.65	116	< 10	160			
4600N 2850E	201		1120	< ī	1.40	220	920	104	154	0.55	165	< 10	232	\ \		
4600N 2950E		202	1230	< 1	1.44	301	670	94	180	0.56	168	< 10	218	† · · · · ·		t
4600N 3000E		202	1975	< 1	1.42	320	870 970	620 844	181	0.60	179 180	< 10 < 10	582 708			
4600N 3050E 4600N 3100E		202 202	2100 2050	< 1 < 1	1.38	332	1080	834	165	0.52	169	< 10	716			
4600N 3150E		202	1760	< 1	1.40	410	950	166	185	0.75	196	< 10	252			
4600N 3200E	201 2		2170	< 1	1.32	310	770	414	153	0.62	182	< 10	472	• • •		
4600N 3250E 4600N 3300E	201 2	202	1285 2860		0.97	121	1500 1260	280	99	0.53	136	< 10 < 10	278 1075			
4600N 3350E		202	2360	< 1	1.36	181	890	876	161	0.68	193	< 10	1275			
4600N 3400E	201		1690	< 1	1.27	143	940	422	159	0.64	171	< 10	628			
4600N 3450E		202	1345	1	1.08	105	1350	142	129	0.59	172	< 10	364			
4600N 4500E 4600N 4550E	201 2	202 202 -	850 1495	< 1 < 1	1.41	126	1070 1230	68 156	87 124	0.30	211 190	< 10 < 10	98 284			
4600N 4600E	201		1440		1.24	397	1120	68	122	0.52	187	< 10	206			
4600N 4700E	201 2	202	1300	< 1	1.21	438	860	38	120	0.46	164	< 10	138			
4600N 4750E	201		400	< 1	2.85	146	1180	24	427	0.54	123	< 10	66 72			
4600N 4800E 4600N 4850E	201 2	202	865 565	1 2	1.06	83	1050 1410	34	123	0.57	163	<pre> < 10 < 10 < 10</pre>	58			
4600N 4900E	201 2		1170	2	1.05	124	1680	108	88	0.43	153	10	230			
4600N 4950E	201 2	202	1740	9	1.40	113	1570	54	133	0.50	143	< 10	220			1
4600N 5050E		202	640	6	1.75	56	2060	42	109	0.48	95	< 10	122			
4600N 5100E 4600N 5150E	201 2		935 1590	35	1.42	66 135	1240 2360	34	133	0.66	133 139	< 10 10	128			
4800N 2750E	201 2		930	1	1.97	51	1180	38	168	0.74	136	< 10	146			
4800N 2800E	201 2	202	770	< 1	1.75	97	950	58	180	0.62	132	< 10	160			
4800N 2850E 4800N 2900E	201 2 201 2	202	1410 910	< 1	1.36	578 76	1020 1500	144	155 147	0.47	158 140	< 10 < 10	236 134			
4800N 2950E	201 2		725	2	2.06	80	1270	114	132	0.63	98	< 10	176	1		
4800N 3000E	201 2	202	1185	< 1	1.61	202	810	134	156	0.46	153	< 10	260			
4800N 3050E	201 2	202	1200	< 1	1.57	206	860	176	164	0.45	148	< 10	276			
4800N 3100E 4800N 3150E	201 2		1105 1355	1 < 1	1.36	141 219	1340 1140	244	165 154	0.53	136 154	< 10 < 10	344 270			
4800N 3200E	201 2		1030	<1	1.80	103	650	56	144	0.44	124	< 10	132		1	
4800N 3250E	201 2	202	1445	< 1	1.55	546	1420	104	180	0.51	145	< 10	224			
4800N 3300E	201 2	202	1105	< 1	1.78	279	650	420	234	0.42	133	< 10	576			
			L			L		I	I	1	I		I	<u> </u>	<u> .</u>	L

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 to: BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY P.O. BOX 49066, STE. 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4 Page No. Jer : 3-A Total Pages : 7 Certificate Date: 10-SEP-1998 Invoice No. : 19829792 P.O. Number : 6112 Account : GP D

Project : BEALE Comments: ATTN: DAVID TERRY

CC: DAVID PAWLIUK

								CERTI	FICATE	OF AN	ALYSIS	i /	4982979	92	
SAMPLE	PREP CODE	ли ppb Fλ+λλ	Ag ppm AAS	A1 % (ICP)	Ba ppm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cđ ppm (ICP)	Coppm (ICP)	Cr ppm (ICP)	Cu ppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)
4800N 3350E 4800N 3400E 4800N 3450E 4800N 3500E 4800N 3500E	201 202 201 202 201 202 201 202 201 202 201 202	<pre>< 5 10 < 5 < 5 < 5 < 5<</pre>	< 0.2 2.0 0.6 0.2 2.0	6.39 7.39 7.38 7.24 7.66	590 680 590 570 640	1.5 2.0 2.0 0.5 2.0	4 12 22 4 < 2	1.57 1.73 1.90 2.09 2.03	3.0 3.0 1.5 0.5 2.5	54 37 41 47 46	371 230 277 400 398	91 475 171 124 268	5.22 5.42 5.29 4.85 5.53	1.06 1.28 1.33 0.72 1.23	3.36 2.62 3.13 4.87 4.25
4800N 4750E 4800N 4800E 4800N 4850E 4800N 4950E 4800N 4950E	201 202 201 202 201 202 201 202 201 202 201 202	5 40 < 5 30 5	0.2 0.6 0.8 1.0 0.8	7.80 6.53 6.88 6.86 5.34	550 910 1050 1120 1610	1.0 1.5 2.5 2.5 2.0	14 6 8 12 < 2	1.86 1.01 1.19 1.08 0.53	0.5 0.5 2.0 1.5 1.0	48 35 56 35 20	345 157 128 115 78	187 487 479 353 127	5.19 6.30 5.98 4.99 4.18	1.01 1.03 1.14 1.21 1.21	4.62 2.29 2.21 1.74 0.94
4800N 5050E 4800N 5100E 4800N 5150E 4800N 5200E 5000N 3450E	201 202 201 202 201 202 201 202 201 202 201 202 201 202	< 5 10 < 5 < 5 < 5 < 5	< 0.2 0.6 0.2 0.2 0.2	5.30 4.85 3.21 5.49 7.35	1030 1330 940 880 500	2.0 2.0 0.5 2.0 1.5	4 6 < 2 < 2 14	0.53 0.52 0.77 1.04 3.42	0.5 1.0 < 0.5 0.5 1.0	14 26 7 17 46	72 72 62 110 272	102 111 20 64 158	3.35 3.87 1.64 4.22 6.32	0.89 1.03 0.79 1.12 0.95	1.03 0.85 0.61 1.27 3.90
5000N 3500E 5000N 3550E 5000N 3600E 5000N 4100E 5000N 4150E	201 202 201 202 201 202 201 202 201 202 201 202	< 5 < 5 < 5 < 5 < 5 < 5	< 0.2 < 0.2 0.2 0.2 < 0.2 < 0.2	6.52 5.24 5.67 6.67 7.21	710 730 520 570 520	1.5 1.0 1.0 1.5 1.5	2 4 2 8 10	2.30 1.91 2.37 2.66 3.05	1.5 0.5 0.5 0.5 0.5	49 54 52 63 62	400 592 416 591 460	73 70 71 185 321	5.72 5.28 5.23 5.99 6.60	1.11 0.89 0.87 0.87 0.87	4.25 5.99 4.41 6.31 5.28
5000N 4200E 5000N 4250E 5000N 4300E 5000N 4350E 5000N 4350E	201 202 201 202 201 202 201 202 201 202 201 202	5 < 5 < 10 < 5 < 5	0.4 1.2 0.2 0.2 < 0.2	6.86 5.62 2.95 5.50 6.87	490 360 160 200 470	1.0 1.0 0.5 0.5 1.5	4 12 10 4 12	2.62 3.29 1.84 3.07 2.25	1.0 6.5 1.5 0.5 0.5	67 93 137 71 70	528 975 979 971 422	477 180 91 94 171	6.11 6.60 5.26 5.68 5.25	0.78 0.64 0.39 0.57 1.11	5.78 9.15 14.90 9.43 3.94
5000N 4450E 5000N 4500E 5000N 4550E 5000N 4600E 5000N 4650E	201 202 201 202 201 202 201 202 201 202 201 202	< 5 10 10 10 < 5	< 0.2 < 0.2 < 0.2 0.2 0.4	6.25 5.32 6.79 5.54 6.69	750 750 820 810 790	1.5 2.0 2.0 2.0 2.5	< 2 6 < 2 10 6	2.33 2.07 1.73 1.58 1.70	0.5 0.5 0.5 0.5 < 0.5 < 0.5	33 25 26 25 24	249 203 154 158 156	118 55 85 81 60	4.38 4.04 4.44 4.07 4.61	1.08 1.05 1.30 1.00 1.33	2.91 2.38 1.98 1.99 1.96
5000N 4700E 5000N 4750E 5000N 4800E 5000N 4850E 5000E 4450N	201 202 201 202 201 202 201 202 201 202 201 202	< 5 25 15 10 < 5	< 0.2 < 0.2 < 0.2 0.6 0.2	6.85 6.46 7.32 7.37 6.64	530 800 800 1070 420	3.0 1.5 2.0 2.5 2.0	8 12 6 < 2 4	1.27 1.54 1.56 1.63 2.11	< 0.5 < 0.5 < 0.5 0.5 1.5	18 24 28 36 59	103 150 167 198 455	27 64 101 191 144	4.74 4.59 4.97 5.22 5.78	1.72 1.25 1.34 1.30 0.79	1.34 1.79 2.14 2.53 4.57
50002 4500N 50002 4550N 50002 4600N 50002 4650N 50002 4650N 50008 4700N	201 202 201 202 201 202 201 202 201 202 201 202	< 5 10 < 5 5 5	0.2 0.2 < 0.2 1.0 0.4	4.60 5.99 6.03 8.32 5.90	390 430 440 510 1620	0.5 1.5 1.5 4.5 7.0	8 8 10 4 2	2.72 1.17 1.52 0.92 0.79	0.5 < 0.5 < 0.5 0.5 0.5	33 31 26 24 32	159 407 207 150 106	45 114 101 206 323	5.79 4.94 5.27 5.75 4.78	0.67 0.58 0.77 1.67 1.12	2.39 4.09 2.11 1.40 1.32

CERTIFICATION: Hartfuller

.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., British Columbia, Canada North Vancouver V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY P.O. BOX 49066, STE. 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4 /To∷

Page 1 ber : 3-B Total Pages :7 Certificate Date: 10-SEP-1998 Invoice No. 19829792 P.O. Number :6112 Account ; GP D

Project . BEALE Comments: ATTN: DAVID TERRY

CC: DAVID PAWLIUK

A9829792 **CERTIFICATE OF ANALYSIS**

SAMPLE	PREP CODE	Mn ppm (ICP)	Mo ppm (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm (ICP)	Pb ppm AAS	Sr ppm (ICP)	Ti % (ICP)	V ppm (ICP)	W ppm (ICP)	Zn ppm (ICP)			
800N 3350E	201 202	1345	< 1	1.25	293	1120	262	155	0.44	145	< 10	428			
1800N 3400E	201 202	1965	< 1	1.54	212	1340	1020	190	0.46	139	< 10 < 10	752 480			
800N 3450E 800N 3500E	201 202 201 202	1595 1200	< 1 < 1	1.61	248 417	1070 530	330	200	0.50	154 167	< 10	300			
800N 4700E	201 202	1480	< i	1.47	476	1150	524	204	0.52	159	< 10	642			
800N 4750E	201 202	1075	< 1	1.89	322	590	136	196	0.43	164	< 10	180		1	
800N 4800E 800N 4850E	201 202 201 202	880 1740	8	1.07	106 118	1370 900	88 424	99	0.43	179	10 < 10	210 636			
800N 4900E	201 202	1915	4	1.46	75	920	418	134	0.43	160	10	406			}
800N 4950E	201 202	2040	< 1	1.01	41	1020	106	88	0.42	141	< 10	176			
800N 5050E	201 202	1325	< 1	0.96	40	620	40	87 92	0.36	140 137	< 10 < 10	96 136			
800N 5100E 800N 5150E	201 202 201 202	2120 1040	< 1 < 1	0.97	40	1860 850	18	91	0.36	84	< 10	38			
800N 5200E	201 202	1350	< 1	1.19	52	1500	32	133	0.45	122	< 10	106			
000N 3450E	201 202	1600	< 1	1.73	167	800	86	307	0.81	209	< 10	200			
000N 3500E	201 202	1660	< 1	1.44	313	1040	156	208	0.66	161	< 10	238			
000N 3550E	201 202	1490	< 1	1.01	696	1530	66	151	0.43	128	< 10	130			
000N 3600E	201 202 201 202	1470 1335	< 1 < 1	1.26	370 551	1450 1000	102	205 155	0.52	142 196	< 10 < 10	136 210			
000N 4100E 000N 4150E	201 202 201 202	1220	< 1	1.13	394	920	42	150	0.55	218	< 10	232			
000N 4200E	201 202	1210	< 1	1.10	458	830	58	128	0.46	194	< 10	318			
000N 4250E	201 202	1935	< 1	0.78	1005	1010	354	141 63	0.55	165 72	< 10 < 10	1105 224			
000N 4300E 000N 4350E	201 202 201 202	1835 1445	< 1 < 1	0.69	2110 978	410 830	134 72	88	0.41	129	< 10	156			
000N 4400E	201 202	1330	< 1	1.48	603	1320	64	148	0.53	141	< 10	182			
000N 4450E	201 202	1155	< 1	1.55	174	860	34	178	0.51	137	< 10	124			
000N 4500E 000N 4550E	201 202 201 202	1250 920	< 1	1.47	128 153	730 890	22	159 225	0.55	131 135	< 10 < 10	96 126			
000N 4600E	201 202	1350	< 1	1.19	113	730	34	122	0.49	130	< 10	122		-	
000N 4650E	201 202	1170	< 1	1.69	106	920	36	163	0.56	131	< 10	116			
000N 4700E	201 202	1125	1	2.11	66	1110	28	147	0.48	94	< 10	120			
000N 4750E 000N 4800E	201 202 201 202	1270 1245	< 1 < 1	1.56	86 119	1120 1560	34	135 148	0.55	139 141	< 10 < 10	116 150			
000N 4850E	201 202	1535	< 1	1.47	180	1090	108	162	0.50	163	< 10	262			
000E 4450N	201 202	1405	< 1	1.16	488	1010	144	131	0.42	150	< 10	364			
000E 4500N	201 202	5020	2	1.05	63	2180	28	112	0.89	273	< 10	112			
000E 4550N 000E 4600N	201 202 201 202	965 885	< 1 1	0.41	318 111	690 970	28 22	54 97	0.48	124 144	< 10 < 10	88 86			
000E 4650N	201 202	1085	5	1.76	98	1430	52	94	0.52	135	< 10	160			
000E 4700N	201 202	2270	2	0.77	71	840	90	88	0.41	166	10	212			
				1	1										<u> </u>
													N8 1	Ale	~

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY P.O. BOX 49066, STE. 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4 Page t er: 4-A Total Pages :7 Certificate Date: 10-SEP-1998 Invoice No. : 19829792 P.O. Number :6112 Account : GP D

Project : BEALE Comments: ATTN: DAVID TERRY

CC: DAVID PAWLIUK

CERTIFICATE OF ANALYSIS A9829792

SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm AAS	A1 % (ICP)	Ba ppm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cd ppm (ICP)	Coppm (ICP)	Cr ppm (ICP)	Cu ppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)
5000E 4750N	201 202	< 5	< 0.2	5.34	770	1.5	2	1.44	0.5	17	96	57	3.34	1.01	1.37
5000E 4750N	201 202	< 5	< 0.2	5.46	1330	2.5	8	0.58	1.5	20	76	128	4.55	1.21	0.92
5000E 4850N	201 202	< 5	< 0.2	5.96	1390	3.0	8	0.69	1.5	32	75	167	3.63	1.22	1.35
5000E 4850N	201 202	210	< 0.2	5.42	1520	2.0	4	0.71	0.5	22	83	119	4.33	1.20	0.98
5000E 4950N	201 202	20	< 0.2	5.86	1120	2.5	8	1.22	0.5	34	94	553	4.28	1.10	1.39
5200N 3400E	201 202	< 5	< 0.2	6.78	460	1.5	8	2.92	0.5	57	188	331	5.93	1.02	2.60
5200N 3450E	201 202	< 5	< 0.2	6.47	510	1.0	8	2.61	< 0.5	55	186	243	6.23	1.00	2.73
5200N 3500B	201 202	< 5	0.8	3.88	510	0.5	6	1.40	5.0	98	1055	128	5.80	0.54	7.45
5200N 3550E	201 202	< 10	< 0.2	2.96	670	0.5	8	1.10	1.0	95	1335	57	4.95	0.53	
5200N 3600E	201 202	< 5	< 0.2	3.73	570	0.5	12	1.30	0.5	83	1105	37	4.66	0.69	13.65
5200N 3650E	201 202	< 5	< 0.2	3.70	410	0.5	4	1.26	< 0.5	76	1065	29	4.59	0.77	13.95
5200N 3700E	201 202	5	< 0.2	3.42	380	0.5	14	1.23	< 0.5	82	1115	20	4.66	0.66	13.80
5200N 3750E	201 202	< 5	0.8	4.89	850	0.5	6	1.28	3.0	88	1060	77	6.76	0.79	11.50
5200N 3900B	201 202	< 5	0.8	3.89	580	0.5	8	1.27	11.0	121	1295	209	6.19	0.49	11.40
5200N 3950B	201 202	< 5	0.6	3.75	590	0.5	8	1.27	10.5	112	1345	162	6.14	0.49	12.00
5200N 4150E	201 202	< 5	0.6	6.09	530	1.5	6	1.90	6.0	73	451	223	6.33	0.72	5.85
5200N 4200E	201 202	< 5	< 0.2	6.79	580	1.5	4	2.78	1.0	62	406	276	6.07	0.95	4.66
5200N 4300E	201 202	< 5	< 0.2	6.42	510	1.5	10	2.05	0.5	41	283	121	4.99	1.11	3.34
5200N 4350E	201 202	< 5	< 0.2	6.80	460	2.0	12	2.42	0.5	37	310	117	5.39	1.23	3.48 0.91
5400N 3050E	201 202	< 5	< 0.2	6.13	450	2.0	< 2	1.10	1.5	41	108	68	5.03		0.31
5400N 3100E	201 202	< 5	< 0.2	5.72	740	1.5	2	1.17	0.5	45	434	51	4.39	1.05	3.80
5400N 3150E	201 202	< 5	< 0.2	4.60	1010	1.0	4	1.16	2.0	45	332	65	4.71	0.86	2.97
5400N 3200E	201 202	< 5	< 0.2	5.79	680	1.5	2	1.64	0.5	54	633	82	5.57	0.92	6.40
5400N 3250E	201 202	< 5	< 0.2	6.33	730	2.0	2	1.67	0.5	41	325	67	5.19	1.20	3.00
5400N 3300E	201 202	< 5	< 0.2	6.65	940	2.0	6	1.71	0.5	47	393	76	5.70	1.31	3.93
5400N 3350E	201 202	< 5	< 0.2	6.59	1670	2.0	6	1.64	1.5	47	308	71	6.22	1.51	3.62
5400N 3400E	201 202	15	< 0.2	2.41	990	0.5	2	0.73	0.5	44	497 470	52 52	3.32	0.56	5.53
5400N 3450B	201 202	< 5	< 0.2	4.30	2500	0.5	4	0.89	1.5	44		46	4.37	0.85	>15.00
5400N 3500B 5400N 3850B	201 202 201 202	< 5 < 5	< 0.2	2.29 3.37	600 650	< 0.5 0.5	10 8	0.92	0.5	119 97	1180 1065	175	6.38	0.42	12.05
5400N 3900E	201 202	10	0.4	3.44	780	0.5	6	1.71	6.0	106	1110	211	6.77	0.44	11.90
5400N 3950E	201 202	5	< 0.2	2.18	310	< 0.5	10	0.99	3.0	121	1210	82	5.33	0.28	>15.00
5400N 4000E	201 202	5	0.2	1.70	310	< 0.5	10	0.67	2.5	121	1230	63	5.41	0.27	>15.00
5400N 4050E	201 202	5	< 0.2	1.88	290	< 0.5	10	0.66	2.5	118	1120	65	5.27	0.32	>15.00
5400N 4150E	201 202	10	0.8	3.58	430	0.5	8	1.54	3.5	98	820	142	5.62	0.67	12.45
5600N 2850E	201 202	10	< 0.2	4.49	560	1.0	< 2	2.62	1.0	28	158	49	4.47	0.80	1.92
5600N 2900B	201 202	< 5	< 0.2	6.22	1300	2.0	4	1.63	1.0	42	225	114	5.47	1.36	2.15
5600N 2950E	201 202	< 5	< 0.2	6.13	1140	1.5	< 2	0.95	2.0	40	164	84	4.72	1.62	1.23
5600N 3000E	201 202	< 5	< 0.2	5.09	1100	1.5	< 2	1.29	1.0	48	264	69	4.64	1.16	2.32
5600N 3050E	201 202	< 5	0.2	5.93	750	1.5	12	1.96	1.0	62	318	148	5.86	0.91	2.78
															1
	I		I		I	I	I	.	L	L	1	I	L	6 ·	4

CERTIFICATION: 1 Jan Kullen .*+

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., British Columbia, Canada North Vancouver V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY P.O. BOX 49066, STE. 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4

ber :4-B Page I. Total Pages :7 Certificate Date: 10-SEP-1998 Invoice No. : 19829792 P.O. Number :6112 GPD Account

Project : BEALE Comments: ATTN: DAVID TERRY

CC: DAVID PAWLIUK

A9829792 **CERTIFICATE OF ANALYSIS**

in the second	CODE	(ICP)	Mo ppm (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm (ICP)	Pb ppm AAS	Sr ppm (ICP)	Ti % (ICP)	V ppm (ICP)	W ppm (ICP)	Zn ppm (ICP)		
5000E 4750N	201 202	1190	< 1	1.18	43	1020	38	150	0.48	143	10	98		
5000E 4800N	201 202	1885	< 1	1.15	44	1350	92	97	0.37	143	< 10	158		
5000E 4850N	201 202 201 202	1915		0.99	73	640 1150	176	114	0.31	146 164	< 10 < 10	274		
5000E 4900N 5000E 4950N	201 202 201 202	1760 1565	< 1 < 1	1.43	78	1150	40	175	0.45	136	< 10	122		
200N 3400E	201 202	1205	< 1	1.70	137	1110	40	218	0.60	180	< 10	574	 	
200N 3450E	201 202	1105	< 1	1.62	159	690	44	212	0.61	210	< 10	134 300		
200N 3500E	201 202	1810	< 1	0.67	1440	1630 870	604 32	79	0.29	136 105	< 10 < 10	114		
200N 3550E 200N 3600E	201 202 201 202	1260 1270	< 1 < 1	0.62	1560 1285	530	30	112	0.13	93	< 10	96		
200N 3650E	201 202	1150	< 1	1.18	1290	390	22	143	0.27	81	< 10	82	 	
200N 3700E	201 202	1185	< 1	1.03	1210	310	16	133	0.24	78	< 10	70		
200N 3750E	201 202	2460	< 1	0.86	1230	1350	200	132 110	0.50	175 177	< 10 < 10	444 1300		
200N 3900B 200N 3950B	201 202 201 202	2610 2860	< 1 < 1	0.50	1640 1635	1140 1090	1255 1275	108	0.23	173	< 10	1135		
200N 4150E	201 202	2300	< 1	0.93	584	1110	1170	169	0.43	210	< 10	1465	 1	
200N 4200E	201 202	1330	< 1	1.26	364	910	196	175	0.55	204	< 10	312		
200N 4300E	201 202	1040	< 1	1.54	447	1120	86	147	0.47	127	< 10 < 10	186 200		
200N 4350E 400N 3050E	201 202 201 202	1300 1280		1.68	317 90	1070 2030	116 52	149 120	0.55	125 105	< 10	146		
400N 3100E	201 202	1735	< 1	1.11	374	1530	66	141	0.35	127	< 10	178	 	1
400N 3150E	201 202	2130	< 1	0.70	236	2350	62	194	0.33	169	< 10	206		
400N 3200E 400N 3250E	201 202 201 202	1560 1320	< 1 < 1	1.03	598 238	1340 1840	64 32	188 252	0.43	164 161	< 10 < 10	230 148		
400N 3250E	201 202	1245		1.34	344	1110	26	234	0.53	186	< 10	146		
400N 3350E	201 202	2060	2	1.41	261	1580	60	755	0.64	246	< 10	256		+
400N 3400E	201 202	895	5	0.58	589	1440	28	108	0.16	111	< 10	88		
400N 3450E 400N 3500E	201 202 201 202	735		0.75	537 2210	1120 1020	10	97 68	0.34	150 92	< 10 < 10	138 104		
400N 3850E	201 202	1925	3	0.48	1420	1680	1130	104	0.27	198	< 10	786		
400N 3900E	201 202	2090	4	0.54	1460	2010	972	108	0.28	226	< 10	814	 	1
400N 3950E	201 202	1755	< 1	0.42	2060	610	360	60	0.14	92	< 10	452		
400N 4000E 400N 4050E	201 202 201 202	1770 1745		0.37	2120 2100	600 510	300 340	55 51	0.13	87 77	< 10 < 10	364 368		
400N 4050E	201 202	1745	< 1 < 1	0.48	1405	780	864	110	0.31	124	< 10	596		
600N 2850E	201 202	1060	< 1	0.95	130	1890	78	195	0.50	98	< 10	162	 1	1
600N 2900E	201 202	2050	1	1.37	168	1780	104	285	0.50	194	10	288		1
600N 2950E 600N 3000E	201 202 201 202	2020 1390	3	1.09	112	2070 1780	44	149 136	0.43	187 155	< 10 < 10	208 192		
600N 3050E	201 202	2090	3	1.05	274	2340	28	204	0.47	207	< 10	184		1
·····						 ,	<u>.</u>					N: 1-2-2		Į

6000N 5400E

201 202

< 5

< 0.2

6.59

490

2.0

10

2.35

< 0.5

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave.,North VancouverBritish Columbia, CanadaV7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

To: BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY P.O. BOX 49066, STE. 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4 Page 1 per : 5-A Total Pages : 7 Certificate Date: 10-SEP-1998 Invoice No. : 19829792 P.O. Number : 6112 Account : GP D

Project : BEALE Comments: ATTN: DAVID TERRY

r

CC: DAVID PAWLIUK

								CERTI	FICATE	OF AN	ALYSIS	5 /	4982979	92	
SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm AAS	A1 % (ICP)	Ba ppm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cd ppm (ICP)	Coppm (ICP)	Cr ppm (ICP)	Cu ppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)
5600N 3100E	201 202	< 5	0.6	6.37	1080	2.0	2	1.57	4.0	64	335	190	5.89	1.23	3.35
5600N 3150E	201 202	< 5	< 0.2	4.79	870	1.5	6	0.88	1.5	38	228	105	4.45	1.01	1.94
5600N 3200E	201 202	< 5	0.2	7.15	860	2.0	4	1.23	1.5	28	181	68	4.24	1.45	1.83
5600N 3250E	201 202	< 5	< 0.2	7.28	790	1.5	< 2	1.74	0.5	48	167	133	4.69	1.42	1.94
5600N 3300E	201 202	< 5	< 0.2	6.83	940	2.0	2	1.68	0.5	39	393	59	5.05	1.55	3.00
5600N 3350E	201 202	< 5	< 0.2	6.35	770	1.5	2	1.89	0.5	61	1060	38	5.24	1.34	6.96
5600N 3400E	201 202	< 5	< 0.2	5.04	630	1.0	< 2	1.49	< 0.5	61	1110	24	4.43	1.09	8.89 4.82
5600N 4000E	201 202	< 5	0.6	5.92	570	1.0	12	2.77	3.5	75	446	364 291	6.53	0.68	5.46
5600N 4050E	201 202	< 5 < 5	0.2	5.84 6.71	610 540	1.0	8	2.56	6.0	70 63	466	318	6.64	0.90	4.94
5600N 4100E	201 202		0.6	0.71	540	1.5		4.10	4.0						
5600N 4150B	201 202	< 5	< 0.2	1.94	310	< 0.5	8	0.92	2.0	113	1290	69	5.44	0.25	>15.00
5600N 5250E	201 202	< 5	< 0.2	6.23	960	3.0	18	1.27	0.5	31	125	65	4.69	1.42	1.73
5600N 5300B	201 202	< 5	< 0.2	6.86	1440	2.5	2	1.26	0.5	38	179	84	6.14	1.53	2.08
5600N 5350E	201 202	< 5	< 0.2	6.77	1430	2.5	10	1.02	0.5	33	155	107	5.20	1.35	0.94
5600N 5400B	201 202	< 5	< 0.2	5.36	1510	2.0	▲	0.07	0.5	*1	133			1,27	
5600N 5450E	201 202	< 5	< 0.2	5.56	1120	2.0	2	1.47	0.5	25	147	82	4.22	1.07	1.58
5600N 5500E	201 202	< 5	< 0.2	8.58	1550	3.5	2	1.56	0.5	31	277	78	4.90	1.47	1.98
5600N 5550E	201 202	< 5	< 0.2	7.06	790	2.0	2	2.54	0.5	31 27	228	65 45	4.93	0.98	2.53
5600N 5600E 5800N 2750E	201 202 201 202	< 5	< 0.2 1.2	6.55 7.07	820 1310	1.5	< 2 10	2.31	< 0.5 32.5	52	215	170	5.96	1.40	2.78
3500N 2750E	201 202		1.4	/.0/		5.0		1.00			ļ	L	ļ		ļ
5800N 2800E	201 202	< 5	0.4	7.14	1030	2.0	< 2	2.57	3.0	98	285	372	7.02	1.08	2.94
5800N 4050E	201 202	< 5	< 0.2	6.26	570	1.0	8	2.61	2.0	68	301	316	6.51	0.90	3.31
5800N 4100E	201 202	10	1.4	6.56	640	1.5	26	2.01	4.0	95	611	385	8.06	1.13	6.02
5800N 4150E	201 202	< 5	0.6	6.39	600	1.5	12	2.13	2.0	71	606 198	284 231	7.22	0.95	6.00
5800N 5250E	201 202	< 5	< 0.2	6.73	1370	2.5	10	2.24	0.5	44	190	169	5.04	1.10	A.34
5800N 5300E	201 202	< 5	< 0.2	8.34	1620	5.5	2	1.74	0.5	48	315	234	5.87	1.33	2.62
5800N 5350E	201 202	< 5	2.8	6.78	2400	5.0	434	1.78	1.5	217	197	109	8.00	1.16	1.90
5800N 5400E	201 202	< 5	< 0.2	5.94	1910	2.5	24	1.73	0.5	45	147	107	5.47	1.37	1.63
5800N 5450E 5800N 5500E	201 202 201 202	< 5 < 5	< 0.2	5.99 7.84	1630 1350	2.5	24	2.43	0.5	31	158	73	6.14	1.35	2.86
3800M 3300E	201 202			7.0%	1350	1.5	^	A.1.	0.0						L
5800N 5550E	201 202	< 5	< 0.2	8.93	980	2.5	6	1.79	< 0.5	36	78	52	6.71	1.88	1.53
5800N 5600E	201 202	< 5	< 0.2	7.50	990	3.0	6	1.70	< 0.5	29	108	45 58	5.40	1.53	1.58
6000N 2850E 6000N 2950E	201 202 201 202	< 5 < 5	0.6	3.52	1110	1.5	8	1.70	4.5	32	136	197	6.22	1,52	2.23
6000N 3000E	201 202	< 5	1.0	4.67	570	1.0	2	1.53	1.5	20	281	70	4.40	0.85	1.83
					<u> </u>	ļ	L		ļ		<u> </u>		l		
6000N 4150E	201 202	< 5	0.4	7.01	310	0.5	8	2.17	0.5	59	390	557	8.18	0.91	4.20
6000N 5250E	201 202	< 5	< 0.2	8.76	500	5.0	10	2.80	< 0.5	40	70	96	7.55	1.42	2.67
6000N 5300E	201 202	< 5	< 0.2	6.64	360 430	1.5	10	3.22 3.20	< 0.5	47	141	80 127	7.69	1.03	3.38
6000N 5350B	201 202	< 5	< 0.2	6.53	430	1.5		3.40		1 10	135	26	5 21	1 07	1 20

CERTIFICATION: How Engles

5.31

1.07

1.89

26

27

83

To: BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY P.O. BOX 49066, STE 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4 Page , ber : 5-B Total Pages : 7 Certificate Date: 10-SEP-1998 Invoice No. : 19829792 P.O. Number : 6112 Account : GP D

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave.,North VancouverBntish Columbia, CanadaV7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

Project : BEALE Comments: ATTN: DAVID TERRY

CC: DAVID PAWLIUK

									CERTI	FICATE	OF AN	ALYSIS	i 4	982979	92	
SAMPLE	PRE		Mn ppm (ICP)	Mo ppm (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm (ICP)	Pb ppm AAS	Sr ppm (ICP)	Ti % (ICP)	V ppm (ICP)	W ppm (ICP)	Zn ppm (ICP)			
5600N 3100E 5600N 3150E	201 2 201 2		5160 3110	4 2	0.95	331 166	1910 2760	98 36	175 118	0.44 0.37	221 149	< 10 < 10	380 164			
5600N 3200E 5600N 3250E	201 2 201 2		1535 905		1.68	145 163	1230 1250	248 28	218 225	0.44	142 151	< 10 < 10	332 126			
5600N 3300E	201 2		1170	< 1	1.70	432	1190	26	238	0.45	143	< 10	146			
5600N 3350E 5600N 3400E		02 02	1070 940	< 1 < 1	1.91 1.54	890 941	850 460	18	274 220	0.42	128 94	< 10 < 10	98 86			
5600N 4000E		02	1890		1.01	440	1420	1010	136	0.44	200	< 10	950			
5600N 4050E		02	1925	< 1	1.06	506	1530	870	124	0.48	206	< 10	962			
5600N 4100E	201 2		1680	< 1	1.38	502	1350	596	136	0.58	206	< 10	736			
5600N 4150E 5600N 5250E	201 20 201 20		1505 1290	< 1 < 1	0.37	1925 82	590 1290	252 50	49 137	0.15	91 129	< 10 10	280 124			
5600N 5300E	201 2		1745		0.96	100	980	26	116	0.92	204	20	110			
5600N 5350E	201 2		1215		1.06	97	980	20	128	0.75	159	10	98			
5600N 5400E	201 2		1115	2	0.84	64	1460	20	107	0.51	147	< 10	84			
5600N 5450E		02	1125	< 1	1.10	72	670	14	104	0.48	140	< 10	82 102			
5600N 5500E	201 2		1140		1.10	126	770 650	14	103 138	0.68	206 170	10 < 10	104			
5600N 5550E 5600N 5600E	201 2	02 02	1170 1380	<pre> < 1 < 1 < 1</pre>	1.65	89	1430	22	133	0.55	162	< 10	114			
5800N 2750E	201 2		8720	2	0.80	180	1500	1805	377	0.49	246	< 10	2990			
5800N 2800E		02	2930	4	1.09	360	2270	136	380	0.53	259	< 10	452			
5800N 4050E	201 2		1750	< 1	1.02	223	1750	76	187	0.41	150	10	242			
5800N 4100E	201 20		1995 1740		0.80	568 508	1290 1190	322	116 108	0.54	192 190	< 10 < 10	936 716	1		
5800N 4150E 5800N 5250E	201 20		1765		1.23	85	840	26	132	0.57	194	10	156			
5800N 5300E	201 20		1585	< 1	0.84	146	630	22	99	0.72	290	10	188			
5800N 5350E	201 20		3680	< 1	0.79	114	1720	268	102	0.66	261	40	162 94			
5800N 5400E 5800N 5450E	201 20		1760 1550	<pre> < 1 < 1 < 1</pre>	1.40	130 71	1170 1440	34	139 203	0.67	166 157	10	100			
5800N 5500E	201 20		1870		1.11	128	1420	19	150	1.55	210	< 10	136			
5800N 5550E	201 20		1790	< 1	2.05	57	3140	16	203	1.20	113	< 10	114			
5800N 5600E	201 20		1320	< 1	1.73	68	2070	18	185	0.86	125	< 10	106 288			
6000N 2850E 6000N 2950E	201 20		2660 >10000	3	0.47	107 196	2980 1740	192 1205	215 186	0.27	152 225	< 10 < 10	1275			
6000N 2950E	201 20	52	755		0.96	143	3520	362	167	0.43	160	<pre>10 < 10</pre>	206] i		
6000N 4150E	201 20		1355	< 1	1.42	228	1020	78	125	0.39	193	30	182			
6000N 5250E	201 20		1335	< 1	1.09	62	5770	12	202	1.42	124	20	116			
6000N 5300E 6000N 5350E	201 20		1335 1550	< 1 < 1	1.57	103	2340 1960	12 12	296 348	1.44	163 173	< 10 < 10	98 104			
6000N 5400E	201 20		1085		1.62	50	2990	18	306	1.06	118	< 10	82			
	• .	-			_,,,,]					

CERTIFICATION: 1 AND KA QUE

SAMPLE

6000N 5450E 6000N 5500E 6000N 5550E 6000N 5600E 6200N 2950E 6200N 4100E 6200N 4150E 6200N 5250E 6200N 5400E 6200N 5450E 6200N 5500E 6200N 5550B 6200N 5600E 6400N 3450E 6400N 3500E 6400N 3550E 6400N 3600E 6400N 3650E 6400N 3700E 6400N 3750E 6400N 3800E 6400N 3850E 6400N 3900E 6400N 4100E 6400N 4150E 6400N 5250E 6400N 5300E 6400N 5350E 6400N 5400E 6400N 5450E 6400N 5500E 6400N 5550E 6400N 5600E 6600N 3550E 6600N 3600E 6600N 3650E 6600N 3700E 6600N 3750E

6600N 3800E

6600N 3850E

201 202

201 202

0.4

0.6

6.05

7.06

360

400

0.5

1.0

< 2

10

2.81

3.04

0.5

0.5

42

46

181

207

< 5

< 5

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver Bntish Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY P.O. BOX 49066, STE. 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4 Page I., ber :6-A Total Pages :7 Certificate Date: 10-SEP-1998 Invoice No. : 19829792 P.O. Number :6112 Account :GP D

Project : BEALE Comments: ATTN: DAVID TERRY

CC: DAVID PAWLIUK

									CERTI	FICATE	OF AN	ALYSIS	5 /	498297 9	92	
		REP	Au ppb FA+AA	Ag ppm AAS	A1 % (ICP)	Ba ppm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cd ppm (ICP)	Coppm (ICP)	Cr ppm (ICP)	Cu ppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)
	201	202	< 5	< 0.2	6.99	440	2.0	4	2.69	< 0.5	34	119	32	6.43	0.91	2.55
		202	< 5	< 0.2	9.60	560	2.5	16	4.09	< 0.5	55	161	45	9.93	1.12	3.78
	201	202	< 5	< 0.2	4.93	1410	3.5	14	1.37	0.5	23	109	42	3.85	1.26	1.54
	201		< 5	0.2	5.87	930	2.5	< 2	2.19	< 0.5	32	130	46	5.30	1.14	2.05
	201	202	< 5	0.4	5.41	850	0.5	2	1.74	0.5	46	314	131	5.67	0.77	3.20
	201	202	< 5	1.6	6.97	400	1.0	16	2.79	2.5	97	413	486	7.64	0.77	5.04
	201	202	< 5	2.6	6.96	350	1.5	32	2.71	3.0	72	403	813	8.41	1.02	5.09
	201	202	< 5	< 0.2	7.13	360	1.5	12	3.57	< 0.5	51	112	71	7.87	0.98	3.63
	201	202	< 5	< 0.2	7.78	460	2.0	6	2.71	< 0.5	4.5	52	42	7.51	1.16	2.81
	201	202	< 5	< 0.2	7.84	550	2.0	8	2.40	< 0.5	42	54	43	7.24	1.25	2.42
	201	202	< 5	< 0.2	7.49	510	2.0	< 2	2.40	< 0.5	35	58	33	6.66	1.14	1.96
	201	202	< 5	< 0.2	7.89	540	2.0	2	2.17	< 0.5	37	51	34	6.66	1.15	2.27
	201	202	< 5	< 0.2	7.31	700	3.0	4	2.47	< 0.5	37	71	32	7.00	1.29	2.34
	201	202	< 5	< 0.2	6.67	660	1.5	< 2	3.26	0.5	38	261	138	5.12	0.94	3.44
	201	202	< 5	0.2	6.43	670	1.5	< 2	2.99	1.0	37	265	128	4.85	1.05	3.19
······	201	202	< 5	0.6	6.34	750	1.5	2	2.81	1.5	38	217	219	5.27	0.91	2.81
			NotRed	NotRed	NotRed	NotRed	NotRed	NotRed	NotRed	NotRed	NotRcd	NotRed	NotRed	NotRed	NotReđ	NotRed
		202	< 5	< 0.2	7.30	420	0.5	2	3.28	0.5	63	260	184	4.82	0.85	3.50
	201	202	< 5	< 0.2	6.38	470	1.0	2	2.70	0.5	39	240	77	4.92	0.88	2.81
	201	202	< 5	0.2	7.09	560	1.5	6	2.83	1.5	39	305	125	5.21	1.01	3.35
	201	202	< 5	< 0.2	5.86	630	1.5	4	2.17	0.5	40	453	54	4.79	1.00	4.24
	201	202	< 5	0.2	6.28	620	1.5	< 2	2.72	1.5	40	385	83	4.93	0.98	4.17
	201	202	< 5	0.2	6.34	550	1.0	8	3.46	0.5	41	384	65	5.44	0.89	4.45
		202	10	5.2	7.02	450	2.0	24	2.45	7.5	86	242	397	7.16	0.87	3.03
	201	202	10	3.4	7.06	440	2.0	52	2.86	3.5	127	294	204	6.34	0.87	3.61
	201	202	< 5	< 0.2	6.98	360	2.5	14	2.67	< 0.5	35	27	20	7.23	0.82	2.37
		202	< 5	< 0.2	7.89	420	3.0	12	3.36	< 0.5	37	29	17	8.12	1.10	2.61
		202	< 5	< 0.2	7.60	490	2.5	6	3.93	< 0.5	38	33	18	8.06	1.26	2.69
		202	< 5	< 0.2	6.63	420	2.0	2	2.83	< 0.5	34	52	27	6.83	1.08	2.24
	201	202	< 5	0.2	6.98	480	2.5	8	3.04	0.5	34	21	21	7.64	1.11	2.26
		202	< 5	< 0.2	6.38	530	2.0	< 2	1.94	< 0.5	26	29	19	5.58	1.34	1.96
		202	< 5	< 0.2	5.86	680	2.5	16	2.32	< 0.5	26	83	21	5.38	1.06	1.90
		202	< 5	< 0.2	5.67	700	3.0	< 2	1.96	< 0.5	28	109	29	5.17	1.18	1.71
		202	< 5	0.2	7.08	590	0.5		2.65	0.5	47	408	137	5.44	0.94	4.67
	201	202	< 5	< 0.2	7.21	340	0.5	< 2	4.34	< 0.5	40	349	70	5.18	0.67	5.06
		202	< 5	0.2	6.85	320	0.5	8	4.03	< 0.5	41	371	77	5.01	0.69	5.55
		202	< 5	< 0.2	5.95	320	0.5	4	2.60	0.5	53	520	107	5.60	0.70	6.14
	201	202	< 5	1.2	6.08	340	0.5	8	2.46	0.5	61	175	212	5.99	0.57	2.75
		202	- E	04	< 0E	260			2 61		40	404	1 140			1 2 61

CERTIFICATION: Hart Culler

5.75

6.42

0.63

0.80

2.81

3.47

140

131

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218) to: BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY P.O. BOX 49066, STE 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4 Page N. Joer : 6-B Total Pages :7 Certificate Date: 10-SEP-1998 Invoice No. : 19829792 P.O. Number : 6112 Account : GP D

Project : BEALE Comments: ATTN: DAVID TERRY

CC: DAVID PAWLIUK

CERTIFICATE OF ANALYSIS A9829792

SAMPLE	PREP CODE	Mn ppm (ICP)	Moppm (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm (ICP)	Pb ppm AAS	Sr ppm (ICP)	Ti % (ICP)	V ppm (ICP)	W ppm (ICP)	Zn ppm (ICP)		
6000N 5450E	201 202	1150	< 1	1.89	73	2660	14	294	1.18	135	< 10	104		
6000N 5500E	201 202	2180	< 1	2.68	118	3130	12	418	2.14	220	< 10	142		
6000N 5550E	201 202	1140	< 1	1.07	69	990	16	128	0.57	110	< 10	84		
6000N 5600E	201 202	1330	< 1	1.41	84	1400	14	181	1.00	128	10	90]	
6200N 2950E	201 202	1010	< 1	0.73	242	1540	130	184	0.51	234	< 10	234		
6200N 4100E	201 202	1855	< 1	1.15	330	720	310	145	0.62	237	10	380		
6200N 4150E	201 202	2320	< 1	1.04	277	630	262	138	0.53	215	10	470		
6200N 5250E	201 202	1240	< 1	1.94	107	2460	12	397	1.53	174	< 10	120		
6200N 5400E	201 202	1315	< 1	1.60	52 50	2780 2770	16 12	318 302	1.91	166 147	< 10 < 10	122 118		
6200N 5450E	201 202	1440	< 1	1.55		<i></i>		304	1.05	147	× 10	110	 	
6200N 5500E	201 202	1280	< 1	1.57	48	2840	14	307	1.62	144	< 10	106		
6200N 5550E	201 202	1265	< 1	1.49	44	2520	16	284	1.44	133	< 10	116		
6200N 5600E	201 202	1510	< 1	1.48	54	2640	16	262	1.53	141	< 10	110		
6400N 3450E	201 202	1045	< 1	1.69	168	800	96	193	0.71	198	< 10	176		
6400N 3500E	201 202	1055	< 1	1.71	180	1220	164	201	0.67	170	< 10	234		
6400N 3550E	201 202	1155	< 1	1.35	142	1570	222	180	0.73	185	< 10	308		
6400N 3600E		NotRed	NotRed	NotRed	NotRed	NotRed	NotRed	NotRed	NotRed	NotRed	NotRed	NotRed		
6400N 3650E	201 202	1045	< 1	1.83	305	900	36	194	0.43	163	< 10	158		
6400N 3700E	201 202	1505	< 1	1.70	146	1060	62	175	0.42	145	< 10	176		
6400N 3750E	201 202	1130	< 1	1.72	183	960	202	208	0.55	180	< 10	202		
6400N 3800E	201 202	985	< 1	1.51	389	850	60	168	0.52	152	< 10	144		
6400N 3850E	201 202	1205	< 1	1.60	306	860	292	189	0.60	170	< 10	314		
6400N 3900E	201 202	1285	< 1	1.87	269	890	92	184	0.76	213	< 10	168		
6400N 4100E	201 202	2310	< 1	1.53	160	1000	2570	147	0.58	199	< 10	2520		
6400N 4150E	201 202	2090	< 1	1.68	184	900	694	150	0.61	190	< 10	1040		
6400N 5250E	201 202	1420	< 1	2.02	19	3400	20	360	1.41	112	10	122		
6400N 5300E	201 202	1735	< 1	2.46	21	4490	20	460	1.74	123	10	122		
6400N 5350E	201 202	1635	< 1	2.19	36	4430	24	587	1.68	137	10	142		
6400N 5400E 6400N 5450E	201 202 201 202	1230 1715	< 1 < 1	1.72 2.03	44 14	3140 4840	26 28	383 561	1.29	138 94	< 10 < 10	136 146		
0100M 3830E	AV1 AV4	1/15	· · ·	<u>4.03</u>	14	*6*0	48	201	7.41	74	< 10	140		
6400N 5500E	201 202	1040	< 1	1.64	23	2750	26	292	0.83	84	< 10	124		
6400N 5550E	201 202	1190	< 1	1.58	48	2430	20	280	1.05	108	< 10	104		
6400N 5600E	201 202	1290	< 1	1.50	65	1730	16	101	1.06	119	< 10	88	1	
6600N 3550E	201 202	1070	< 1	1.46	294	950	32	142	0.53	229	< 10	124		
6600N 3600E	201 202	1185	< 1	2.06	184	540	26	218	0.55	199	< 10	96		
6600N 3650E	201 202	1170	< 1	1.89	203	540	24	206	0.51	190	< 10	94		
6600N 3700E	201 202	1155	< 1	1.56	580	620	80	138	0.59	179	< 10	172		
6600N 3750E	201 202	1450	< 1	1.22	161	1430	198	125	0.55	210	< 10	226		
6600N 3800E	201 202	1465	< 1	1.34	129	1120	118	130	0.68	224	< 10	166		
6600N 3850E	201 202	1505	< 1	1.66	182	940	130	143	0.74	244	< 10	198		
1														

CERTIFICATION: 1 Star Star Mile

*+

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver Bntish Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 Co: BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY P.O. BOX 49066, STE. 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4 Page N. Jer: 7-A Total Pages: 7 Certificate Date: 10-SEP-1998 Invoice No. : 19829792 P.O. Number: :6112 Account: :GP D

Project : BEALE Comments: ATTN: DAVID TERRY

CC: DAVID PAWLIUK

CERTIFICATE OF ANALYSIS A9829792

SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm AAS	A1 % (ICP)	Ba ppm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cd ppm (ICP)	Co ppm (ICP)	Cr ppm (ICP)	Cu ppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)
6600N 3900E 6600N 4050E RGS 001 RGS 002 RGS 003	201 202 201 202 201 202 201 202 201 202 201 202	< 5 70 130	0.4 2.4 < 0.2 < 0.2 < 0.2	7.15 6.55 10.05 9.72 10.05	430 870 900 680 610	2.5 2.0 0.5 0.5 0.5	2 18 2 6 2	2.26 2.51 0.56 1.03 0.56	0.5 17.5 0.5 0.5 < 0.5	29 42 7 9 8	141 425 95 502 604	45 258 66 56 40	5.21 5.54 8.38 7.49 7.76	1.38 0.85 3.01 2.13 2.73	2.07 4.11 3.74 4.53 4.25
KGS 004 KGS 005 KGS 006 MPS 001 MPS 002	201 202 201 202 201 202 201 202 201 202 201 202	10 15 3700	18.8 19.8 47.0 3.4 2.8	4.31 3.88 4.57 8.63 4.87	420 260 450 2650 250	0.5 1.0 0.5 0.5 < 0.5	60 190 82 6 6	0.92 0.71 1.20 0.22 0.26	1.5 4.5 5.0 1.0 2.5	32 28 79 7 4	268 132 257 138 129	1415 1050 1225 226 144	21.9 22.1 19.80 10.25 6.90	0.72 0.50 0.64 2.62 1.51	1.38 1.02 2.57 2.40 4.01
						2 2 2									
			5												
										CEF		N: 1to	AK	Ale	*+

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave.,
British Columbia, CanadaNorth Vancouver
V7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

to: BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY P.O. BOX 49066, STE. 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4 Page N Der 7-B Total Pages 7 Certificate Date: 10-SEP-1998 Invoice No. 19829792 P.O. Number 6112 Account GP D

Project : BEALE Comments: ATTN: DAVID TERRY

CC: DAVID PAWLIUK

CERTIFICATE OF ANALYSIS A9829792

SAMPLE	PREP CODE	Mn ppm (ICP)	Mo ppm (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm (ICP)	Pb ppm AAS	Sr ppm (ICP)	Ti % (ICP)	V ppm (ICP)	W ppm (ICP)	Zn ppm (ICP)		
6600N 3900E 6600N 4050E Kgs 001 Kgs 002 Kgs 003	201 202 201 202 201 202 201 202 201 202 201 202	1790 365 495	<pre></pre>	2.01 1.26 0.83 1.21 0.98	91 392 59 76 71	900 1240 250 610 710	84 1630 26 24 26	168 125 66 100 81	0.66 0.43 0.22 0.30 0.26	141 169 138 225 272	< 10 < 10 < 10 < 10 < 10 < 10	144 4200 100 120 140		
KGS 004 KGS 005 KGS 006 MPS 001 MPS 002	201 202 201 202 201 202 201 202 201 202 201 202 201 202	1305 5250 375	23 308 17 59 382	0.64 0.46 0.67 1.39 0.78	106 96 147 34 33	990 470 900 360 320	1960 1950 2870 214 190	97 84 123 46 41	0.43 0.24 0.35 0.21 0.13	192 193 167 195 242	10 20 10 < 10 < 10	412 1250 1380 224 634		
							-							

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

to: BOLIDEN - WESTMIN LIMITED

P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

INVOICE NUMBER

I9830625

BILLING	INFORMATION	# OF SAMPLES		NALYSED FOR - DESCRIPTION	UNIT PRICE	SAMPLE PRICE	AMOUNT
Date: Project: P.O. No.: Account:	18-SEP-98 BEALE 6112 GP D	1	208	- Assay ring to approx 150 A-30 ICP Package 0-3 Kg crush and split	mesh 2.50 10.50 2.60	15.60	15.60
Comments					Client Discount	al Cost \$ { 25%} \$ et Cost \$ } GST \$	15.60 <u>-3.90</u> 11.70 <u>0.82</u>
Billing:	For analysis performed on Certificate A9830625				TOTAL PAYABL	E (CDN) \$	12.52
Terms:	Payment due on receipt of invoice 1.25% per month (15% per annum) charged on overdue accounts						
Please Rer	mit Payments to:						
	CHEMEX LABS LTD. 212 Brooksbank Ave., North Vancouver, B.C. Canada V7J 2C1						

CERTIFICATE

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver Bntish Columbia, Canada V7J 2C1

A9830625

PHONE: 604-984-0221 FAX: 604-984-0218

To: BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY P.O. BOX 49066, STE 904 - 1055 DUNSMUIR ST. VANCOUVER BC V7X 1C4

Comments: ATTN:DAVID TERRY CC:DAVID PAWLIUK

(GP D) - BOLIDEN - WESTMIN LIMITED Project: P.O. # : BEALE 6112 Samples submitted to our lab in Vancouver, BC. This report was printed on 17-SEP-1998. SAMPLE PREPARATION CHEMEX CODE NUMBER SAMPLES DESCRIPTION 208 1 Assay ring to approx 150 mesh 226 1 0-3 Kg crush and split 3202 1 Rock - save entire reject 233 1 Assay AQ ICP digestion charge * NOTE 1:

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, Tl, W.

ANALYTICAL PROCEDURES													
SAMPLES	DESCRIPTION		DETECTION LIMIT	Upper Limit									
ł			1	200 15.00 50000 20000 100 50000 30.0 10000 20000 50000 30.0 10000 10.00 50000 20.0 50000 10000 10000 10000 10000 10000 10000 10000 50000									
	SAMPLES	NUMBER SAMPLES DESCRIPTION	NUMBER SAMPLESDESCRIPTIONMETHOD1Ag ppm : A30 ICP packageICP-AES1A1 %: A30 ICP packageICP-AES1A1 %: A30 ICP packageICP-AES1As ppm: A30 ICP packageICP-AES1Ba ppm: A30 ICP packageICP-AES1Be ppm: A30 ICP packageICP-AES1Be ppm: A30 ICP packageICP-AES1Bi ppm: A30 ICP packageICP-AES1Ca %: A30 ICP packageICP-AES1Cd ppm: A30 ICP packageICP-AES1Co ppm: A30 ICP packageICP-AES1Co ppm: A30 ICP packageICP-AES1Cu ppm: A30 ICP packageICP-AES1Cu ppm: A30 ICP packageICP-AES1Cu ppm: A30 ICP packageICP-AES	NUMBER DESCRIPTION METHOD LIMIT									

A9830625

Analylical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY P.O. BOX 49066, STE, 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4 Page N., Jber : 1-A Total Pages : 1 Certificate Date: 17-SEP-1998 Invoice No. : 19830625 P.O. Number : 6112 Account : GP D

Project : BEALE Comments: ATTN:DAVID TERRY CC:DAVID PAWLIUK

											CE	RTIFI	CATE	OF A	NAL	rsis		\9830	625		
SAMPLE	PR CC	EP DE	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Hg ppm	K %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm
SAMPLE BE 2068		DE		%	<u>ppm</u> 60	ppm 120		ppm < 10	% 0.86	ppm < 5	9pm 40	ppm 100		4.33		0.10	-	99m 380		0.08	5 0

CERTIFICATION: HawkEillo

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

Page N. ... ber : 1-B Total Pages : 1 Certificate Date: 17-SEP-1998 Invoice No. : 19830625 P.O. Number : 6112 Account : GP D

Project : BEALE Comments: ATTN:DAVID TERRY CC:DAVID PAWLIUK

CERTIFICATE OF ANALYSIS A9830625 PREP ₽ Pb Sb тi Sc Sr T1 U ٧ W Zn SAMPLE CODE ppm ppm ppm ppm ppm % ppm ppm ppm ppm ppm BE 2068 208 226 2600 < 5 < 10 < 5 10 0.08 < 20 < 20 80 < 20 25

CERTIFICATION: 12 Richles

Chemex Labs Ltd.

Analytical Chemists " Geochemists " Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

Vo: BOLIDEN - WESTMIN LIMITED

P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

INVOICE NUMBER

19831554

BILLING		# OF SAMPLES	ANALYSED FOR CODE - DESCRIPTION		UNIT Price	SAMPLE PRICE	AMOUNT
Date: Project: P.O. No.:	24-SEP-98 BEALE 6112	3	244 - Pulp; prev. 312 - Pb	prepared at C %	nemex 0.00 8.00	8.00	24.00
Account:	GP D	4	244 - Pulp; prev. 316 - Zn	prepared at Cl %	nemex 0.00 8.00	8.00	32.00
Comment	s:	2	244 - Pulp; prev. 312 - Pb 316 - Zn	prepared at C) % %	nemex 0.00 8.00 8.00	16.00	32.00
Billing:	For analysis performed on Certificate A9831554	1	244 - Pulp; prev. 384 - Ag FA 301 - Cu	prepared at Cl g/t %	nemex 0.00 10.50 8.00	18.50	18.50
		1	244 - Pulp; prev. 301 - Cu	prepared at Cł %		8.00	8.00
Terms:	Payment due on receipt of invoice 1.25% per month (15% per annum) charged on overdue accounts			(F	Client Discount (Cost \$ 25%) \$ Cost \$ GST \$	114.50 -28.63 85.87 6.01
Please Re	mit Payments to:				TOTAL PAYABLE	(CDN) \$	91.88
	CHEMEX LABS LTD. 212 Brooksbank Ave., North Vancouver, B.C. Canada V7J 2C1						

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY P.O. BOX 49066, STE. 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4

Comments: ATTN:DAVID TERRY CC:DAVID PAWLIUK

C	ERTIF	ICATE	A9831554			ANALYTICAL	PROCEDURES		
(GP D) - I Project: P.O. # :	BOLIDEN BEALE 6112	- WESTMIN LIMI	TED	CHEMEX	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT
Samples This re	submitt port was	ed to our lab printed on 2	o in Vancouver, BC. 33-SEP-1998.	384 301 312 316	1 2 5 6	Ag g/t: Gravimetric Cu %: Conc. Nitric-HCL dig'n Pb %: Conc. Nitric-HCL dig'n Zn %: Conc. Nitric-HCL dig'n	AAS	3 0.01 0.01 0.01	1000 100.0 100.0 100.0
	SAM	PLE PREP	ARATION		P.				
CHEMEX CODE	NUMBER SAMPLES		DESCRIPTION		•				
244	11	Pulp; prev.	prepared at Chemex						
A									
					-				

lo:

A9831554

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave.,North VancouverBritish Columbia, CanadaV7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

Fo: BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY P.O. BOX 49066, STE. 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4 Page Ner : 1 Total Pages : 1 Certificate Date: 23-SEP-1998 Invoice No. : 19831554 P.O. Number : 6112 Account : GP D

Project : BEALE Comments: ATTN:DAVID TERRY CC:DAVID PAWLIUK

CERTIFICATE OF ANALYSIS A9831554 PREP Ag FA Cu Pb Zn SAMPLE CODE g/t % % % BE 2030 244 ----6.13 ----_ _ _ _ _ ----BE 2031 244 ----~ - - - -----1.12 _____ BE 2033 244 --_ _ _ _ ... -- -1.12 ----BE 3009 244 --____ 1.66 -----_ _ _ _ BE 3010 244 -------------1.75 ----BE 3011 244 ----____ ____ ____ 1.30 BE 3020 244 -----_ _ _ _ _ _ _ _ _ _ 1.56 1.67 **BER 1011** 244 --122 3.50 --------BER 1012 244 ---------1.14 _ _ _ _ _ ----BER 1020 244 - -----_ _ _ _ _ ----1.26 BER 1021 244 --_____ ----2.54 2.20 10 CERTIFICATION:

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

Jo: BOLIDEN - WESTMIN LIMITED

P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

INVOICE NUMBER

I9830791

BILLING	INFORMATION	# OF SAMPLES	ANALYSED FOR CODE - DESCRIPTION	UNIT PRICE	SAMPLE PRICE	AMOUNT
Date: Project: P.O. No.: Account:	25-SEP-98 BEALE 6112 GP D	219	201 - Dry, sieve to -80 mesh 202 - save reject ICP-24 983 - Au ppb FA+AA	1.25 0.85 10.50 9.75	22.35	4894.65
Comments				Client Discount (Cost \$ 25%) \$ Cost \$ GST \$	4894.65 -1223.66 3670.99 256.97
Billing:	For analysis performed on Certificate A9830791			TOTAL PAYABLE	(CDN) \$	3927.96
Terms:	Payment due on receipt of invoice 1.25% per month (15% per annum) charged on overdue accounts					
Please Ren	nit Payments to:					
	CHEMEX LABS LTD. 212 Brooksbank Ave., North Vancouver, B.C. Canada V7J 2C1					

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY P.O. BOX 49066, STE. 904 - 1055 DUNSMUIR ST. VANCOUVER, BC to: V7X 1C4

QC Pau 1-A Date: Invoice #: P.O. #: 2 25-SEP-1998 19830791 6112 GP D

Project: BEALE

Comments: ATTN:DAVID TERRY CC:DAVID PAWLIUK

QC DATA OF CERTIFICATE

A9830791

STD/DUP/BLANK DESCRIPTION	QC TYPE		λu ppb Fλ+λλ	Ag ppm AAS	A1 % (ICP)	Ba ppm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cđ ppm (ICP)	Co ppm (ICP)	Cr ppm (ICP)	Cu ppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)
AY-97	sta1	1	610					~								
AY-97	std1	2	620													
AY-97	Std1	3	605													
AY-97	Std1	5	525	+												
AY-97	Std1	6	630													
CHEMEX MEAN			639													
BL-C	Blnk	1	< 5													
BL-C	Blnk	2	< 5													
BL-C	Blnk	Э	< 5													
BL-C	Blnk	4	< 5													
BL-C	Blnk	5	< 5													
CHEMEX MEAN			< 5													
996-TOT	Std1	1			7.90	1150	1.0	< 2	2.10	1.5	22	97	102	1.00		
396-TOT	Std2	1			7.79	1160	1.0	2	2.05	1.5	21	91	183	4.69	1.84	1.
396-TOT	Std1	2			7.86	1160	1.0	< 2	2.22	1.5	21	98	178 175	4.58	1.80	1.
396-TOT	Std2	2			7.70	1130	1.0	< 2	2.15	1.5	20			4.77	1.85	0.
396-TOT	Std1	3			7.82	1150	1.0	< 2	2.15	1.5	20	94	171	4.66	1.84	0.
396-TOT	Std2	3			7.99	1180	1.0	2	2.24	1.5		99	180	4.74	1.86	0.
396-TOT	Std1	4			7.36	1090	1.0	< 2	2.06		21	97	183	4.87	1.87	1.
396-TOT	Std2	Ā			7.43	1110	1.0	< 2	2.06	1.5	19	89	165	4.54	1.74	0.
396-TOT	std1	5			8.05	1180	1.0	< 2	2.25	1.5	20	93	170	4.55	1.74	0.
396-TOT	Std2	5			7.71	1130	1.0	2			21	99	185	4.87	1.89	1.
396- TOT	Std1	6			8.16	1170	1.0	2	2.14	1.5	19	93	179	4.74	1.77	0.
HEMEX MEAN					7.60	1135	1.1	2	2.25 2.13	1.5	20 17	96 98	185 177	4.86	1.97 1.82	0.
20-96	sta1	1		5.8										1.00	1.04	1 1.
IEO-96	Std2	ī		6.8		~~~~										
EO-96	Std1	2		5.6												
EO-96	Std2	2		5.2												
EO-96	Std1	3		6.0												
EO-96	std2	3		5.4								·			**	
20-96	Std1	4		5.6												
EO-96	Std2	4		5.2												
E0-96	Btd1	5		6.4												
EO-96	Std2	5		6.0		*****										
E0-96	Std1	6		5.8												
HEMEX MEAN				5.6												
V-98	Std2	1	510													
V-98	Std2	2	535								···					
V-98	Std2	3	535										-			
V-98	Std2	ă I	510													
V-98	Std2	5	530													
BEMEX MEAN			522									}				
													1			

tart Sichler

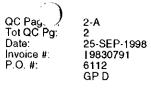
Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., British Columbia, Canada North Vancouver V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY P.O. BOX 49066, STE. 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4 才o:

1-B QC Pa Tot QC Pg: 2 25-SEP-1998 [9830791 Date: Invoice #: P.O. #: 6112 GP D

Project: BEALE Comments: ATTN:DAVID TERRY CC:DAVID PAWLIUK

QC DATA OF CERTIFICATE


A9830791

XT-97 Std1 is	STD/DUP/BLANK DESCRIPTION	QC TYPE		Mn ppm (ICP)	Mo ppm (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm (ICP)	Pb ppm AAS	Sr ppm (ICP)	Ti % (ICP)	V ppm (ICP)	W ppm (ICP)	Zn ppm (ICP)			
AT-97 Stdl 2	AY-97	std1	1														
AT-97 AT-97 AT-97 Setdi 3 Setdi 6	AY-97	Std1	2														
AT-97 Std1 5	AY-97	Std1	3														
AY-97 Std1 6	AY-97	Std1	5									<u></u>					1
CHEREX MEAN	AY-97	Std1	6				1					1				:	1
BL-C Bink 2 Dime Dime <thdime< th=""> Dime Dime</thdime<>	CHEMEX MEAN													1			İ
BL-C Blnk 2	BL-C	Blnk	1	 .							1						
BL-C Bink 3	BL-C	Bink	2									1					
Bink 4	BL-C							1	1		4		1	1			ł
Bink 5			Ā								1			1			
CHEMEX MEAN			-				í	1		1	ł	1	ł	1			
d96 - ror std2 1 1050 8 1.02 23 590 216 0.35 166 103 096 - ror std1 2 1065 8 1.01 23 630 216 0.35 166 103 096 - ror std1 3 1060 7 1.05 24 610 240 0.35 136 103 106 096 - ror std1 3 1060 7 1.05 24 610 241 0.35 136 10 188 096 - ror std1 4 1010 7 0.30 24 630 244 0.35 136 <10 188 096 - ror std1 4 1020 8 1.05 25 650 224 0.34 135 <10 188 096 - ror std1 5 1050 8 1.05 25 650 224 0.35 156 <10			-		1		1	1	1	1		1					
d96 - ror std2 1 1050 8 1.02 23 590 216 0.35 166 103 096 - ror std1 2 1065 8 1.01 23 630 216 0.35 166 103 096 - ror std1 3 1060 7 1.05 24 610 240 0.35 136 103 106 096 - ror std1 3 1060 7 1.05 24 610 241 0.35 136 10 188 096 - ror std1 4 1010 7 0.30 24 630 244 0.35 136 <10 188 096 - ror std1 4 1020 8 1.05 25 650 224 0.34 135 <10 188 096 - ror std1 5 1050 8 1.05 25 650 224 0.35 156 <10	G96-TOT	Std1	1	1075	R	1.06	26	610		240	0.22	1.00	. 10	200			
bit cold 2 1055 8 1.01 25 610 1.02 240 0.13 103 104 <101 188 096-roor Btd1 3 1060 7 1.03 24 610 102 244 0.35 155 <10 188 096-roor Btd1 3 1060 7 1.05 24 610 -124 0.35 156 <10 188 096-roor Btd1 3 1060 7 1.05 24 610 -124 0.35 156 <10 188 096-roor Btd14 1010 7 0.90 24 570 -124 0.34 155 <10 178 096-roor Btd15 1050 8 1.05 25 650 -124 0.34 155 <10 184 096-roor Btd15 1050 8 1.05 24 640 -124 0.35 156 <10 188 096-roor Btd16 1025 8 1.00 24 640]
D36-TOT Std2 D <thd< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td> </td><td></td><td>1</td></thd<>																	1
B36-TOT Std1 1 1060 7 1.05 24 610 241 0.35 1.05 1.01 188 D36-TOT Std1 3 1070 8 1.03 24 610 241 0.35 1.05 1.01 194 D36-TOT Std1 4 1010 7 0.90 24 570 224 0.35 164 <10 194 D36-TOT Std1 4 1010 7 0.90 24 570 224 0.34 155 <10 188 D36-TOT Std1 5 1055 8 1.05 25 650 224 0.34 155 <10 188 D36-TOT Std1 6 1.05 24 640 247 0.35 156 <10 188 D36-TOT Std1 1 1.02 8 1.00 24 640 236 0.34 160 <10 188 D36					-				•				÷ -				
2956-POT \$\$td2 3 1070 \$\$ 1.03 24 630 245 0.35 123 <10														[İ
3956-FOT Stal 4 1010 7 0.90 24 570 111 222 0.34 155 < 10 178 396-FOT Stal 4 1020 8 0.91 24 570 111 224 0.34 155 < 10 178 396-FOT Stal 5 1095 8 1.05 25 650 111 244 0.34 155 < 10 184 396-FOT Stal 2 5 1050 8 1.01 24 600 243 0.36 166 < 10 189 396-TOT Stal 4 1057 7 1.01 24 600 237 0.35 158 < 10 188 396-TOT Stal 1 1 1025 8 1.00 24 624 236 0.34 160 10 188 396-TOT Stal 1 1 1025 8 1.00 24 624 237 0.34 160 <10 188 10 10 </td <td></td> <td></td> <td>- 1</td> <td></td>			- 1														
D36-TOT Btd2 4 1020 8 0.91 24 580 1111 128 0.33 1355 10 184 296-TOT Std1 5 1095 8 1.05 25 650 245 0.36 166 <10			-							1							
396-POT Std1 5 1005 6 1.05 25 650 245 0.36 126 <10 138 396-POT Std2 5 1050 8 1.01 24 600 237 0.35 156 <10 188 396-POT Std2 5 1050 8 1.01 24 600 237 0.35 156 <10 188 396-POT Std1 6 1075 7 1.09 24 640 237 0.35 160 <10 188 380-96 Std1 1 1122 236 0.34 160 <10 185 380-96 Std1 1 134								1	1								
395-POT \$\$td2 5 1050 8 1.01 24 600 237 0.35 158 10 188 396-POT \$\$td1 6 1075 7 1.09 24 600 237 0.35 158 101 198 396-POT \$\$td1 6 1075 7 1.09 24 600 237 0.35 158 198 380-96 \$td1 1 1025 8 1.00 24 624 236 0.34 160 < 10 198 380-96 \$td1 1 128 136			-		-				1								[
396-TOT Std1 6 1075 7 1.09 24 640 247 0.35 160 < 10 198 CHEMEX MEAN 1025 8 1.00 24 640 247 0.35 160 < 10 198 DE0-96 Std1 1 122 236 0.34 160 < 10 198 DE0-96 Std1 1 124 236 0.34 160 < 10 198 DE0-96 Std1 2 134 134 134 134 134					-												i i
CBENEX MEAN 1025 8 1.00 24 624 236 0.33 160 < 10 196 JEO-96 Std1 1 142 142 160 < 10 186 JEO-96 Std1 1 142 142 1105 1102 1102 1102 1102 1102 1102 1102 1102 1102 1102 1102 1102 1102 1102													< 10	188			
JEC-96 Std1 1 142			-									160	< 10	198			
DEO-96 Std2 1 128 134 134 134 134 134 133 133 133 133 133 133 133 133 133	JHEMEA MEAN			1025	8	1.00	24	624		236	0.34	160	< 10	185			
JEO-96 Std1 2 134 134 134 134 134 134																	
DBO-96 Std2 2 138 130 130 130 130																	
DBO-96 Std1 3 130 1 1 1 1																	
DEO-96 Std2 3 120																	[
DBO-96 Std1 4 1126 1126 1126 1126 1126 1126 1126 1126 1126 1126 1126 1126 1126 1126				1													
DBO-96 Std2 4 136																	
DEO-96 Std1 5 136 DEO-96 Std2 5 136 DEO-96 Std1 6 136 DEO-96 Std1 6 136 DEO-96 Std1 6 136 DEO-96 Std2 1 146																	
JEO-96 Std2 5 136 136																	
DEO-96 Std1 6 146 1 1 CHEMEX MEAN 125 1 RV-98 Std2 1 125 RV-98 Std2 2 125 RV-98 Std2 2 RV-98 Std2 3 RV-98 Std2 4 RV-98 Std2 4 RV-98 Std2 5 RV-98 Std2 5					1								*				
THEMEX MEAN The state The state The state The state The state VV-98 Std2 1 The state The s									136								
IV-98 Std2 1									146						1		
XV-98 Std2 2 XV-98 Std2 3 XV-98 Std2 4 XV-98 Std2 4 XV-98 Std2 5 XV-98 Std2 5	BEMEX MEAN	 							125								
W-98 Std2 2														~~~~			
W-98 Std2 4 <td></td> <td></td> <td></td> <td></td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>l</td> <td></td> <td></td>															l		
W-98 Std2 5																	
															1		
		Std2	5			*****											
	HEMEX MEAN	·															
	· · · · · · · · · · · · · · · · · · ·	╘╌╌╌┟														Ihre	

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY to: P.O. BOX 49066, STE. 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4

Project: BEALE Comments: ATTN:DAVID TERRY CC:DAVID PAWLIUK

QC DATA OF CERTIFICATE

A9830791

r	·				••••••				TAUP				4902013	21	
STD/DUP/BLANK DESCRIPTION		Au ppb FA+AA	Ag ppm AAS	Al % (ICP)	Ba ppm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cd ppm (ICP)	Coppm (ICP)	Cr ppm (ICP)	Cu ppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)
\$102-3	Blnk 1		< 0.2												
8102-3	Blnk 2		< 0.2												
SI02-3	Blnk 3		< 0.2												
SI02-3	Blnk 4		< 0.2												
SIO2-3	Blnk 5		< 0.2												
CHEMEX MEAN			0.2					-							
SI02-T5	Blnk 1			0.26	30	< 0.5	< 2	0.03	< 0.5	< 1	5	2	0.07	0.05	
SI02-T5	Blnk 2			0.24	20	< 0.5	< 2	0.02	< 0.5	< 1	4	< 1	0.06	0.05	0.01
\$102-T5	Blnk 3			0.25	20	< 0.5	< 2	0.03	< 0.5	< 1	4			0.04	0.01
SI02-T5	Blnk 4			0.25	20	< 0.5	2	0.02	< 0.5	< 1	3		0.06	0.05	0.01
SI02-T5	Blnk 5			0.24	20	< 0.5	< 2	0.02	< 0.5	< 1	4		0.06	0.05	0.01
CHEMEX MEAN				0.25	21			0.02			4	< 1	0.06	0.04	0.01
					••			0.04		1	•	3	0.06	0.04	0.01
L10600N 10000B	Dup1-01 Orig1-01	< 5 < 5	1.0 1.0	9.23 8.95	660 640	5.0 4.5	< 2 < 2	0.89 0.86	1.5 1.5	17 16	58 54	72 70	5.96 5.75	2.05 1.97	1.42
L10600N 11050E	Dup2-01 Orig2-01	< 5	< 0.2 < 0.2	8.16 7.80	880	2.5	< 2	1.04 0.98	0.5	15	70	26	4.25	1.95	1.19
				,	000	A.J	` ^	V.38	0.5	15	70	26	4.18	1.80	1.19
L10800N 10600E	Dup3-01 Orig3-01	< 5 < 5	1.0 1.0	8.10 7.82	1340 1300	1.5 1.5	4 < 2	1.16 1.13	3.0 2.5	29 27	66 63	141 133	5.53 5.32	1.53 1.49	2.64 2.56
L11000N 10075E	Dupi-01 Origi-01	 < 5	1.0 0.8	8.50 8.43	1350 13 4 0	2.5 2.5	< 2 < 2	0.88 0.90	2.5 2.5	33 32	108 108	122 121	5.55 5.42	2.24	2.09
L11000N 11150E	Dup5-01 Orig5-01	< 5	1.8 0.8	7.91 8.16	1240 1310	3.0 3.0	< 2 < 2	1.48 1.57	0.5 0.5	30 32	89 90	201 206	5.40 5.68	1.52	1.24 1.29
L11200N 11000E	Dup6-01 Orig5-01	< 5 < 5	0.4	9.84 9.74	1440 1420	3.0 3.0	< 2 < 2	0.76	< 0.5	22 22	66 67	47 49	3.25	2.27	1.56 1.53
		I	I	I.	1	1	<u>i</u>	L	l	CER	TIFICATION	1. 1.50	Sht.	ichl	<u>P</u>

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY P.O. BOX 49066, STE. 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4 to:

QC Pag 2-B Tot QC Pg: 2 Date: 25-SEP-1998 Invoice #: P.O. #: 19830791 6112 GP D

Project: BEALE Comments: ATTN:DAVID TERRY CC:DAVID PAWLIUK

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			•		· · · · · · · · · · · · · · · · · · ·	·			QC DA	TA OF	CERTIF	ICATE		A98307	91	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							P ppm (ICP)				V ppm (ICP)					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								2								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				1				< 2								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1			1	1										
CHEMEX MEAN $\langle 2 \rangle$ $\langle 2 \rangle$ $\langle 2 \rangle$ 126 0.01 4 < 10 2 SIO2-75 Bink 3 5 <1							1		1		<u>-</u>			1		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				4	1		1		1		1				-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Blnk 1	5	< 1	0.01	< 1	150		126	0.01	4	< 10	2			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				< 1	0.01	< 1	140									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Blnk 3		< 1	0.01	< 1										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				< 1	0.01	< 1	140								1	
CHEMEX MEAN 5 2 176 130 0.01 4 2 L10600N 10000E Dupl-01 orig1-01 1175 6 2.10 61 1990 514 102 0.42 125 < 10		Blnk 5		< 1	0.01	< 1	140									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	CHEMEX MEAN		5			2	176									
L10600N 11050EDup2-01 Orig2-01855 8401 21.88 1.7632 32 20702100 3640 216218 2160.47 0.46118 117<10 118 117114 114L10800N 10600EDup3-01 Orig3-011980 1920<1 <1	L10600N 10000E															1
Origi-01 1920 < 1 1.51 45 1260 244 179 0.54 215 < 10 554 L11000N 10075E Dupi-01 1940 1 0.93 63 1940 250 128 0.49 210 < 10	L10600N 11050E								218	0.47	118	< 10	114			
Origi-01 1925 3 0.92 82 1930 252 126 0.43 187 < 10 496 L11000N 11150E Dup5-01 1950 1 1.57 57 2020 122 259 0.49 115 < 10	L10800N 10600E															
Origs-01 2060 2 1.64 59 2090 122 269 0.49 113 < 10 204 L11200N 11000E Dup5-01 1075 < 1	L11000N 10075E															
	L11000N 11150E															
	L11200N 11000E															

CERTIFICATION:

bart Bachla

CERTIFICATE

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

A9830791

 BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY
 P.O. BOX 49066, STE. 904 - 1055 DUNSMUIR ST. VANCOUVER, BC
 V7X 1C4

Comments: ATTN:DAVID TERRY CC:DAVID PAWLIUK

A9830791

(GP D) - BOLIDEN - WESTMIN LIMITED ĊН C Project: P.O. # : BEALE 6112 Samples submitted to our lab in Vancouver, BC. This report was printed on 25-SEP-1998. SAMPLE PREPARATION CHEMEX NUMBER CODE SAMPLES DESCRIPTION 201 219 Dry, sieve to -80 mesh 202 219 save reject 285 219 ICP - HF digestion charge

		ANALYTICAL F	PROCEDURES	5	
	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	upper Limit
983	219	Au ppb: Fuse 30 g sample	FA-AAS	5	10000
578	219	Ag ppm: 24 element, rock & core	AAS	0.2	100.0
573	219	Al %: 24 element, rock & core	ICP-AES	0.01	25.0
565	219	Ba ppm: 24 element, rock & core	ICP-AES	10	10000
575	219	Be ppm: 24 element, rock & core	ICP-AES	0.5	1000
561	219	Bi ppm: 24 element, rock & core	ICP-AES	2	10000
576	219	Ca %: 24 element, rock & core	ICP-ABS	0.01	25.0
562	219	Cd ppm: 24 element, rock & core	ICP-ABS	0.5	500
563	219	Co ppm: 24 element, rock & core	ICP-AES	1	10000
569	219	Cr ppm: 24 element, rock & core	ICP-AES	1	10000
577	219	Cu ppm: 24 element, rock & core	ICP-AES	ī	10000
566	219	Fe %: 24 element, rock & core	ICP-AES	0.01	25.0
584	219	K %: 24 element, rock & core	ICP-ABS	0.01	10.00
570	219	Mg %: 24 element, rock & core	ICP-AES	0.01	15.00
568	219	Mn ppm: 24 element, rock & core	ICP-ARS	5	10000
554	219	Mo ppm: 24 element, rock & core	ICP-AES	1	10000
583	219	Na %: 24 element, rock & core	ICP-AES	0.01	10.00
564	219	Ni ppm: 24 element, rock & core	ICP-ARS	1	10000
559	219	P ppm: 24 element, rock & core	ICP-AES	10	10000
560	219	Pb ppm: 24 element, rock & core	ллs	2	10000
582	219	Sr ppm: 24 element, rock & core	ICP-AES	1	10000
579	219	Ti %: 24 element, rock & core	ICP-AES	0.01	10.00
572	219	V ppm: 24 element, rock & core	ICP-AES	1	10000
556		W ppm: 24 element, rock & core	ICP-ABS	10	10000
558	219	Zn ppm: 24 element, rock & core	ICP-ARS		10000

L10600N 10975E

L10600N 11000E

L10600N 11025E

201 202

201 202

201 202

Chemex Labs Ltd.

Analytical Chemists " Geochemists " Registered Assavers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7.12C1 PHONE: 604-984-0221 FAX: 604-984-0218

0.2

< 0.2

< 0.2

0.2

< 5

< 5

< 5

8.31

8.83

8.79

8.33

1110

840

840

1040

2.5

3.0

3.0

2.5

< 2

< 2

< 2

< 2

1.90

1.45

1.96

1.48

1.0

0.5

0.5

2.5

16

22

16

21

lo: BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY P.O. BOX 49066, STE, 904 - 1055 DUNSMUIR ST. VANCOUVER BC V7X 1C4

Page N. ⊿er ∶1-A Total Pages .6 Certificate Date: 25-SEP-1998 Invoice No. 19830791 P.O. Number :6112 Account : GP D

BEALE Project : Comments: ATTN:DAVID TERRY CC:DAVID PAWLIUK

CERTIFICATE OF ANALYSIS A9830791 PREP Au ppb A1 % Ag ppm Ba ppm Be ppm Bi DDM Ca % Cd ppm Fe % K % Co ppm Cr ppm Cu ppm Mg % SAMPLE CODE FX+XX XXS. (ICP) (ICP) (ICP) (ICP) (ICP) (ICP) (ICP) (ICP) (ICP) (ICP) (ICP) (ICP) L10600N 10000P 201 202 < 5 1.0 8.95 640 4.5 < 2 0.86 1.5 16 70 5.75 54 1.97 1.41 L10600N 10025E 201 202 < 5 0.2 8.04 800 3.0 < 2 1.16 2.5 17 79 40 4.43 1.78 1.24 L10600N 10050E 201 202 67 < 5 0.2 7.66 1010 2.5 < 2 1.43 1.5 18 28 3.49 1.80 1.09 L10600N 10125E 201 202 < 5 1.6 1290 8.90 3.5 < 2 0.44 8.5 48 110 119 5.41 2.43 1.49 L10600N 10150E 201 202 10 1.2 9.45 1200 3.5 < 2 0.76 2.5 41 112 93 5.65 2.54 1.55 L10600N 10175E 201 202 < 5 1.0 8.34 1020 3.5 < 2 0.74 2.5 36 101 92 5.14 2.11 1.30 L10600N 10200E 201 202 < 5 0.8 8.52 920 3.0 < 2 1.10 32 1 5 100 75 4.96 2.00 1.37 L10600N 10225E 201 202 < 5 0.8 8.77 1030 3.0 < 2 0 88 2 0 36 93 80 5.09 2.12 1.24 L10600N 10250E 201 202 < 5 < 2 1.06 0.6 8.25 1020 3.0 1.0 22 87 52 4.46 2.02 1.12 L10600N 10275E 201 202 < 5 0.4 8.25 1140 3.0 < 2 1.00 1.5 22 75 48 4.02 2.09 1.06 -- --L10600N 10300E 201 202 5 1.0 9.82 1570 < 2 4.0 0.19 2.0 54 119 143 6.29 2.73 1.77 L10600N 10325E 201 202 10 1.2 7.40 1140 3.5 < 2 0.51 2.5 57 88 153 5.68 1.93 1.22 L10600N 10350E 201 202 15 2.2 8.68 1250 3.5 < 2 0.29 2.5 50 114 180 7.17 2.29 1.32 L10600N 10375E 201 202 15 3.0 9.59 1420 3.5 0.28 < 2 5.5 41 126 139 6.29 2.61 1.46 L10600N 10400R 201 202 < 5 0.6 7.32 930 3.0 < 2 0.48 1.5 26 94 89 5.36 1.87 0.91 L10600N 10425E 201 202 25 1.4 8.91 1270 < 2 66 4.0 0.41 3.0 125 253 8.25 2.34 1.42 L10600N 10450E 201 202 < 5 0.6 7.78 1080 3.0 < 2 0.44 2.0 31 112 83 5.12 2.02 1.08 L10600N 10475E 201 202 < 5 1.2 8.73 1240 3.5 1.02 < 2 4.5 36 109 80 5.65 2.25 1.62 L10600N 10500E 201 202 10 5.6 9.83 1470 4.0 2 0.60 6.0 46 133 150 7.35 2.56 1.88 L10600N 10525E 201 202 10 8.8 10.30 1790 4.0 < 2 0.31 17.0 54 132 222 7.76 2.96 1.96 L10600N 10550E 201 202 5 1.4 8.50 1040 2.5 < 2 0.61 24 2.0 106 77 5.28 2.04 1.54 L10600N 10575E 201 202 < 5 1.0 8.57 1110 3.0 < 2 0.56 2.0 24 110 71 5.38 2.15 1.41 L10600N 10600E 201 202 < 5 900 1.4 7.96 3.0 < 2 0.80 2.0 24 98 63 4.81 1.93 1.28 L10600N 10625E 201 202 10 0.2 7.77 940 2.5 2 1.32 1.5 22 94 43 4.63 1.63 1.60 L10600N 10650E 201 202 < 5 0.8 8.32 1080 2.5 < 2 0.92 1.5 22 96 61 4.52 2.10 1.48 L10600N 10675E 201 202 < 5 0.4 8.74 1140 23 3.0 < 2 0.97 1.5 102 59 2.22 1.55 4.71 L10600N 10700E 201 202 < 5 0.8 8.94 1180 3.0 < 2 0.72 1.5 24 102 70 4.68 2.34 1.52 L10600N 10725E 201 202 < 5 0.8 9.11 1230 3.0 < 2 0.61 2.0 25 103 78 4.74 2.38 1.55 L10600N 10750E 201 202 < 5 0.2 8.97 920 3.0 < 2 0.B2 0.5 18 95 48 2.12 4.70 1.28 L10600N 10775E 201 202 < 5 0.6 8.96 1020 2.5 < 2 0.68 0.5 17 98 54 4.51 2.14 1.40 L10600N 10800E 201 202 < 5 0.6 7.96 800 2.5 < 2 0.64 0.5 13 89 35 4.00 1.89 1.07 L10600N 10825E 201 202 < 5 < 0.2 8.55 1070 3.0 < 2 1.35 0.5 16 68 27 3.74 1.96 1.31 L10600N 10850E 201 202 < 5 0.2 8.38 840 2.5 < 2 0.79 0.5 17 94 40 4.38 1.97 1.18 L10600N 10875E 201 202 55 0.6 9.07 960 3.0 2 0.74 0.5 19 99 47 4.78 2.18 1.31 L10600N 10900E 201 202 < 5 0.2 8.68 930 3.0 < 2 1.18 0.5 17 89 37 4.33 1.92 1.39 L10600N 10925E 201 202 < 5 0.6 8.86 710 2 3.0 1.21 0.5 17 110 33 5.24 1.99 1.27 L10600N 10950E 201 202 < 5

tart Buchle CERTIFICATION:

69

90

92

80

30

40

23

70

3.70

4.76

3.93

4.55

2.00

1.79

2.01

1.88

1.29

1.47

1.27

1.92

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 io: BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY P.O. BOX 49066, STE. 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4

Page I. er :1-B Total Pages :6 Certificate Date: 25-SEP-1998 Invoice No. : 19830791 P.O. Number :6112 Account :GP D

Project : BEALE Comments: ATTN:DAVID TERRY CC:DAVID PAWLIUK

								CERTI	FICATE	OF AN	ALYSIS	6 J	498307	91	
SAMPLE	PREP CODE	Mn ppm (ICP)	Mo ppm (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm (ICP)	Pb ppm AAS	Sr ppm (ICP)	Ti % (ICP)	V ppm (ICP)	W ppm (ICP)	Zn ppm (ICP)			
L10600N 10000E	201 202	1140	6	2.02	60	1950	516	99	0.42	124	< 10	574		Î	
L10600N 10025E	201 202	885	4	1.74	58	2340	74	209	0.51	123	< 10	556			
L10600N 10050E L10600N 10125E	201 202 201 202	805 3090	1 11	2.11	46	2110	54 306	340	0.47	107	< 10	260			
L10600N 10150E	201 202	2030	10	1.71	98	1720 1440	120	110 173	0.43	169 163	< 10 < 10	426 318			
L10600N 10175E	201 202	1690	8	1.50	95	1680	120	164	0.43	149	< 10	332			1
L10600N 10200E L10600N 10225E	201 202 201 202	1320 1780	5	1.80	112	1310	86	219	0.51	137	< 10	314			
L10600N 10250E	201 202	1095	10	1.75	94 60	1720	128 86	215 259	0.46	146 136	< 10 < 10	298			
L10600N 10275E	201 202	1080	6	1.86	56	1690	96	275	0.44	130	< 10	220 222			
L10600N 10300E	201 202	2170	13	1.01	135	1160	80	85	0.32	180	< 10	286		 	
L10600N 10325E L10600N 10350E	201 202 201 202	2110 2460	12	0.84	118	1980	128	95	0.27	135	< 10	324			
L10600N 10375E	201 202	2240	15	1.24	110 102	2400 1390	188 174	93 108	0.41	187 207	< 10 < 10	432 446			
L10600N 10400E	201 202	1275	10	1.15	60	3270	70	114	0.45	140	< 10	184			
L10600N 10425E	201 202	2400	38	1.22	192	1870	164	123	0.50	207	< 10	584			
L10600N 10450E L10600N 10475E	201 202	1885	10	1.14	69	2380	86	110	0.48	176	< 10	218			
L10600N 10500E	201 202 201 202	2720 5130	7 17	1.39	73 94	1710 1830	190 1465	230 147	0.57	146	< 10	518			
L10600N 10525E	201 202	7410	29	0.65	111	1410	2900	90	0.61 0.58	198 196	< 10 < 10	1595 2180			
L10600N 10550E	201 202	2290	5	1.45	62	1580	390	125	0.50	157	< 10	478			ł
L10600N 10575E L10600N 10600E	201 202 201 202	2040 1515	7	1.39	62	1980	278	125	0.52	164	< 10	418			
L10600N 10625E	201 202	1615	6 4	1.39	67 48	1770 2060	166 98	164 308	0.53 0.51	135 153	< 10 < 10	276 198			
L10600N 10650B	201 202	1315	5	1.55	69	1490	104	213	0.48	145	< 10	250			
L10600N 10675E	201 202	1300	5	1.60	68	1620	96	224	0.52	154	< 10	240		<u> </u>	
L10600N 10700E L10600N 10725E	201 202 201 202	1240 1335	6	1.39 1.33	77 84	1240	94	183	0.48	162	< 10	256			
L10600N 10750E	201 202	960	5	1.33	84 52	1120 1760	112 78	168 189	0.46	166 136	< 10 < 10	298 204			
L10600N 10775E	201 202	855	5	1.52	58	1460	68	176	0.50	149	< 10 < 10	206	:		
L10600N 10800E L10600N 10825E	201 202 201 202	615 800	5	1.52	40	1970	64	150	0.48	121	< 10	170			
L10600N 10820E	201 202	920	1 5	2.07 1.61	44 47	1660 1690	42 66	307 164	0.46	112 129	< 10 < 10	160			
L10600N 10875E	201 202	970	5	1.73	55	1680	72	173	0.51	142	< 10	192 218			
L10600N 10900E	201 202	925	4	1.90	52	1640	70	246	0.51	125	< 10	234			
L10600N 10925E L10600N 10950E	201 202 201 202	800 895	8	1.88	56	1920	60 86	174	0.63	132	< 10	206			
L10600N 10975E	201 202	1060	3	1.97	37	2420 2120	86 66	374 282	0.50	112 130	< 10 < 10	214 186			
L10600N 11000E	201 202	570	Ĩ.	2.16	41	2300	32	261	0.67	121	< 10	136			
L10600N 11025B	201 202	1655	3	1.69	59	1330	56	255	0.45	154	< 10	208			
														-	

CERTIFICATION:

tart Buchlen

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

BOLIDEN - WESTMIN LIMITED .lo: ATTN: DAVID TERRY P.O. BOX 49066, STE. 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4 Page N. Jer : 2-A Total Pages : 6 Certificate Date: 25-SEP-1998 Invoice No. : 19830791 P.O. Number : 6112 Account : GP D

Project : Project: BEALE Comments: ATTN:DAVID TERRY CC:DAVID PAWLIUK

		_						CERTI	FICATE	OF AN	ALYSIS	5 <i>1</i>	498307	91	
SAMPLE	PREP CODE	Ац ррб ГА+АА	Ag ppm AAS	A1 % (ICP)	Ba ppm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cđ ppm (ICP)	Coppm (ICP)	Cr ppm (ICP)	Cu ppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)
L10600N 11050E L10600N 11075E	201 202 201 202	< 5 < 5	< 0.2 < 0.2	7.80	980 770	2.5	< 2 < 2	0.98	0.5	15 32	70	26 140	4.18	1.80	1.19 2.43
L10600N 11100E	201 202	< 5	< 0.2	6.42	600	1.5	< 2	0.57	0.5	31	51	81	4.36	1.15	1.75
L10600N 11150E L10600N 11175E	201 202 201 202	< 5 < 5	< 0.2	6.87 7.58	480 610	2.5 2.0	< 2 < 2	0.72	0.5	19 29	65 69	65 121	4.85	1.40 1.23	1.30
L10600N 11200E L10600N 11225E	201 202 201 202	< 5 < 5	< 0.2 < 0.2	7.33	590 630	2.0	< 2 < 2	0.84	< 0.5	31	65 85	158	5.09	1.17	2.19
L10600N 11250E	201 202	< 5	< 0.2	7.39	660	1.5	< 2	1.44	< 0.5	28	61	147 132	5.10	1.12	2.77
L10600N 11275E L10600N 11300E	201 202 201 202	< 5 < 5	< 0.2	6.63 7.55	680 650	1.5	< 2 < 2	0.91	< 0.5	26	60 65	118	4.90	1.35	2.07
				1.55	630	1.3	<u>`</u>	1.11	× 0.5	36	60	164	5.06	1.27	2.28
L10600N 11325E L10600N 11350E	201 202 201 202	< 5 < 5	< 0.2	6.73	680 660	1.5	< 2	0.96	< 0.5	21 23	73	131 134	4.53	1.33	1.57
L10600N 11375B	201 202	< 5	< 0.2	8.50	770	1.5	× 2	0.68	1.5	34	49	196	5.15	1.37	2.15
L10600N 11400E L10600N 11425E	201 202 201 202	< 5 < 5	< 0.2 < 0.2	6.80 7.98	640 590	1.5	4	0.98	0.5	25 26	76 76	106 243	4.75 5.38	1.30	1.69 1.91
L10600N 11450E L10600N 11475E	201 202 201 202	< 5 < 5	< 0.2	9.02 8.12	730 730	2.0	< 2 < 2	0.91	1.5	36 40	62 81	206 86	5.59 5.54	1.63 1.91	2.61
L10600N 11500E	201 202	< 5	< 0.2	7.93	730	2.0	4	0.98	0.5	35	79	82	5.42	1.76	1.95
L10800N 10000E L10800N 10025E	201 202 201 202	< 5 < 5	< 0.2 0.4	7.90 7.10	1080 560	2.5	< 2 < 2	1.69 0.92	1.0	15 12	67 75	13 9	3.61 4.47	2.04	1.04 0.56
L10800N 10050E L10800N 10100E	201 202 201 202	5 < 5	1.4 3.2	7.46	880 910	2.0	< 2	0.86	3.5 4.5	24 33	64 71	128 163	4.79 5.80	1.71	1.98 2.57
L10800N 10125E	201 202	5	1.0	8.71	1200	3.0	< 2	1.21	2.0	26	79	102	4.92	2.15	1.68
L10800N 10150E L10800N 10175E	201 202 201 202	< 5 < 5	1.0	8.55 8.37	1040 1040	3.0 2.5	< 2 < 2	0.94 0.93	3.0 2.5	32 32	78 75	135 123	5.67 5.51	2.02	1.98 2.11
L10800N 10200E	201 202	10	< 0.2	7.52											
L10800N 10250E	201 202	10 20	1.2	8.11	940 1010	3.0 4.5	< 2 < 2	0.96 0.48	2.5 4.0	31 71	79 95	81 219	5.07 6.80	1.88 2.00	1.39 1.26
L10800N 10275E L10800N 10300E	201 202	< 5	< 0.2	8.86	1200	3.5	< 2	0.51	3.0	45	108	73	5.52	2.41	1.50
L10800N 10305E	201 202 201 202	< 5 < 5	< 0.2 0.8	7.64 7.47	940 1020	2.5	< 2 8	1.19 1.53	1.0 1.5	32 33	93 67	77 116	5.33 5.69	1.90	1.64 2.77
L10800N 10350E	201 202	10	1.4	7.00	1020	1.0	< 2	1.40	2.0	34	61	113	5.37	1.47	2.70
L10800N 10375E	201 202	5	1.2	7.28	990	1.5	< 2	0.74	1.0	42	84	146	5.61	1.50	2.47
L10800N 10400E L10800N 10425E	201 202 201 202	< 5 10	< 0.2	7.67	900 710	1.5 1.5	< 2 < 2	0.99	2.0 0.5	39 33	80 65	138 132	5.85 5.56	1.55 1.30	3.19 3.33
L10800N 10450E	201 202	< 5	< 0.2	6.33	560	1.0	< 2	1.45	< 0.5	35	48	140	5.21	0.98	2.92
L10800N 10475E	201 202	< 5	< 0.2	5.87	470	1.0	4	1.54	< 0.5	36	44	149	5.48	0.90	2.83
L10800N 10500E L10800N 10525E	201 202 201 202	< 5 < 5	< 0.2 < 0.2	7.74 7.60	480 570	1.5 0.5	< 2 < 2	0.69 1.53	0.5	40	46	286	6.65	1.27	3.71
L10800N 10550E	201 202	5	< 0.2	7.94	1150	1.5	< 2	1.53	0.5	41 35	41 59	257 143	7.04 6.17	1.08 1.53	4.64
L10800N 10575E	201 202	< 5	1.4	7.55	1250	1.5	4	1.25	4.5	27	59	153	5.12	1.45	2.29
													m. Xo	12 N	ـــــــــــــــــــــــــــــــــــــ
										CER	TIFICATIO	N:	<u>-</u> λ`	Arch	Skeinen

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 to: BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY P.O. BOX 49066, STE. 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4 Page Norent :2-B Total Pages :6 Certificate Date: 25-SEP-1998 Invoice No. : 19830791 P.O. Number :6112 Account :GP D

Project : BEALE Comments: ATTN:DAVID TERRY CC:DAVID PAWLIUK

		_						CERTI	FICATE	OF AN	ALYSIS	6 A	498307	91	
SAMPLE	PREP CODE	Mn ppm (ICP)	Moppm (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm (ICP)	Pb ppm AAS	Sr ppm (ICP)	Ti % (ICP)	V ppm (ICP)	W ppm (ICP)	Zn ppm (ICP)			
L10600N 11050E L10600N 11075E L10600N 11100E L10600N 11150E L10600N 11175E	201 202 201 202 201 202 201 202 201 202 201 202	840 2610 2280 1300 1590	2 < 1 < 1 < 1 < 1 < 1	1.76 1.52 1.08 1.52 1.30	32 49 24 29 36	2070 1680 2390 2360 2570	36 30 34 26 30	216 163 132 129 143	0.46 0.46 0.41 0.46 0.45	117 177 162 124 168	< 10 < 10 < 10 < 10 < 10 < 10	114 114 92 84 98			
L10600N 11200E L10600N 11225E L10600N 11250E L10600N 11250E L10600N 11275E L10600N 11300E	201202201202201202201202201202	1680 2930 1485 1450 1315	< 1 < 1 < 1 < 1 < 1 < 1 < 1	1.34 1.26 1.40 1.22 1.37	37 46 33 29 37	2200 1070 1880 2420 1100	28 32 26 28 22	175 120 281 127 228	0.44 0.33 0.46 0.46 0.45	176 173 173 163 185	< 10 < 10 < 10 < 10 < 10 < 10	76 66 82 76 82			
L10600N 11325E L10600N 11350E L10600N 11375E L10600N 11400E L10600N 11425E	201 202 201 202 201 202 201 202 201 202 201 202	1175 1195 3080 1155 1300	< 1 < 1 < 1 < 1 < 1 < 1	1.37 1.37 0.95 1.37 1.51	34 34 26 39 41	1670 1550 1830 1720 2320	18 22 436 106 100	254 243 157 174 173	0.44 0.41 0.42 0.46 0.49	171 162 175 152 163	< 10 < 10 < 10 < 10 < 10 < 10	74 76 530 172 256			
L10600N 11450E L10600N 11475E L10600N 11500E L10800N 10000E L10800N 10025E	201 202 201 202 201 202 201 202 201 202 201 202	1935 1770 1660 680 840	< 1 < 1 < 1 3	1.62 1.67 1.53 2.40 2.11	42 52 47 37 19	1630 1850 2000 1020 2080	144 90 70 46 36	172 202 186 389 196	0.47 0.54 0.54 0.45 0.60	180 152 164 95 101	< 10 < 10 < 10 < 10 < 10 < 10	282 192 162 162 100			
L10800N 10050E L10800N 10100E L10800N 10125E L10800N 10150E L10800N 10175E	201 202 201 202 201 202 201 202 201 202 201 202	1815 2680 1425 1995 1905	< 1 < 1 3 3 3	1.37 1.34 1.86 1.53 1.55	36 44 63 66 60	1540 1280 1260 1810 1620	682 924 260 366 240	156 140 268 169 165	0.44 0.48 0.46 0.45 0.46	164 191 156 177 180	< 10 < 10 < 10 < 10 < 10 < 10	716 982 368 584 446			
L10800N 10200E L10800N 10250E L10800N 10275E L10800N 10300E L10800N 10325E	201 202 201 202 201 202 201 202 201 202 201 202	1740 2480 2590 1820 2240	8 19 10 4 < 1	1.44 0.96 1.15 1.56 1.67	82 181 66 60 46	1720 2000 1860 2100 1400	172 144 88 98 184	180 97 106 160 180	0.41 0.36 0.50 0.50 0.53	145 141 172 145 214	< 10 < 10 < 10 < 10 < 10 < 10	302 436 228 166 224			
L10800N 10350E L10800N 10375E L10800N 10400E L10800N 10425E L10800N 10450E	201 202 201 202 201 202 201 202 201 202 201 202	2300 3070 2240 1610 1865	< 1 2 < 1 < 1 < 1 < 1	1.54 1.12 1.61 1.38 1.16	41 58 52 41 34	1340 1560 830 1310 1940	344 300 266 50 48	158 115 140 135 132	0.49 0.41 0.56 0.53 0.44	213 195 218 208 203	< 10 < 10 < 10 < 10 < 10 < 10	324 308 426 118 96			
L10800N 10475E L10800N 10500E L10800N 10525E L10800N 10550E L10800N 10575E	201 202 201 202 201 202 201 202 201 202 201 202	1555 2230 1515 1415 2630	< 1 < 1 < 1 < 1 < 1 < 1 < 1	1.05 1.19 1.11 1.64 1.29	33 62 49 45 40	2950 590 630 1040 1570	40 20 34 30 780	138 122 154 192 186	0.40 0.41 0.50 0.54 0.48	224 223 282 246 208	< 10 < 10 < 10 < 10 < 10 < 10	90 90 112 106 1020		 -	

CERTIFICATION:_

· ·

• ..

· .

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver

British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY P.O. BOX 49066, STE. 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4 Page L Per: 3-A Total Pages: 6 Certificate Date: 25-SEP-1998 Invoice No. : 19830791 P.O. Number: 6112 Account: : GP D

Project : BEALE Comments: ATTN:DAVID TERRY CC:DAVID PAWLIUK

								CERTI	FICATE	OF AN	ALYSIS	5 I	A98307	91	
SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm AAS	Al % (ICP)	Ba ppm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cd ppm (ICP)	Co ppm (ICP)	Cr ppm (ICP)	Cu ppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)
L10800N 10600E	201 202	< 5	1.0	7.82	1300	1.5	< 2	1.13	2.5	27	63	133	5.32	1.49	2.56
L10800N 10625E	201 202	< 5	0.4	7.96	1210	2.0	< 2	1.04	2.0	30	85	113	5.20	1.72	2.43
L10800N 10650E L10800N 10675E	201 202 201 202	< 5.	0.8	7.73	1020	2.0	2	0.73	2.0	26	77	89	5.07	1.66	2.09
L10800N 10700E	201 202	< 5 < 5	0.2	7.58	1050 1110	2.0	< 2 < 2	1.07	0.5	30 33	70	169 187	5.11 5.30	1.62	1.96
L10800N 10725E	201 202	< 5	0.2	7.82	920	2.5	↓	1.74	1.5	26	82	88	4.67	1.62	2.20
L10800N 10750E	201 202	< 5	0.2	7.80	1000	2.5	< 2	1.43	0.5	23	78	56	4.66	1.76	1.75
L10800N 10775E	201 202	< 5	0.2	7.74	830	2.5	< 2	1.00	0.5	19	80	62	4.73	1.80	1.51
L10800N 10800E	201 202	< 5	0.2	1.37	920	2.0	< 2	1.29	0.5	17	66	31	3.76	1.63	1.16
L10800N 10825E	201 202	< 5	< 0.2	7.09	660	2.5	2	1.02	< 0.5	13	62	6	4.03	1.68	0.60
L10800N 10850E	201 202	< 5	< 0.2	7.98	780	2.5	< 2	1.01	0.5	15	83	25	4.72	1.86	1.13
L10800N 10875E L10800N 10900E	201 202 201 202	< 5 < 5	1.6	7.59	1050	2.5	< 2	1.31	1.0	15	69	24	4.12	1.58	1.46
L10800N 10925B	201 202		0.2	7.13	650 1160	2.5	< 2	1.01	0.5	10	47	3	3.70	1.59	0.56
L10800N 10950E	201 202	< 5	< 0.2	7.45	750	2.5	< 2	1.28	< 0.5	15 15	83 84	34 29	3.86	1.72	1.33
L10800N 10975E	201 202	< 5	< 0.2	6.65	750	2.0	< 2	1.16	0.5	11	65	14	3.61	1.48	0.89
L10800N 11000E	201 202	< 5	< 0.2	7.31	930	2.5	< 2	1.73	2.5	17	76	38	4.10	1.51	1.62
L10800N 11025E	201 202	< 5	< 0.2	7.92	630	3.0	< 2	1.47	< 0.5	18	72	20	4.40	1.72	1.09
L10800N 11050E	201 202	< 5	0.6	7.74	730	3.0	< 2	1.25	0.5	19	82	29	4.71	1.79	1.40
L10800N 11075E	201 202	< 5	< 0.2	7.39	850	2.0	< 2	1.06	0.5	23	70	72	4.51	1.52	1.75
L10800N 11100E	201 202	< 5	< 0.2	8.15	750	2.5	< 2	1.36	0.5	28	102	49	5.41	1.84	1.81
L10800N 11125E L10800N 11150E	201 202 201 202	< 5 < 5	< 0.2	7.78 8.17	640	2.0	< 2	1.05	< 0.5	23	105	51	5.32	1.61	1.64
L10800N 11175E	201 202	< 5	< 0.2	8.17	800 850	2.5	< 2 < 2	1.31	< 0.5	27	104	62	5.24	1.70	1.81
L10800N 11200E	201 202	10	< 0.2	8.09	760	2.0	6	1.31	0.5	36 31	117 107	91 81	5.72 5.77	1.76	2.09
L10800N 11225E	201 202	10	< 0.2	8.29	650	2.0	< 2	1.12	< 0.5	44	142	112	6.42	1.49	2.19
L10800N 11250E	201 202	20	0.2	7.33	850	1.5	< 2	1.62	0.5	46	103	90	5.43	1.28	1.78
L10800N 11275E	201 202	< 5	< 0.2	8.26	860	2.0	< 2	1.56	0.5	33	115	52	4.88	1.71	1.89
L10800N 11300E	201 202	< 5	0.2	8.84	1030	2.5	< 2	0.94	0.5	23	45	41	3.14	1.54	1.35
L10800N 11325E	201 202	< 5	< 0.2	8.90	1280	2.0	< 2	1.26	0.5	20	64	33	3.85	1.94	1.26
L10800N 11350E L10800N 11375E	201 202 201 202	< 5 < 5	0.2	8.17 8.42	1040 1080	2.0	< 2	1.41	0.5	20	77	36	4.04	1.72	1.32
L10800N 11400E	201 202	< 5	0.8	7.39	950	2.5 2.0	< 2 < 2	1.55	0.5	19	96	31	4.07	1.79	1.38
L10800N 11425g	201 202	< 5	< 0.2	8.15	950	2.0	2	1.02	0.5	15 21	70 85	14 30	3.33	1.59	1.08
L10800N 11450E	201 202	< 5	< 0.2	8.04	1040	2.0	< 2	1.13	< 0.5	19	83	26	4.07 3.68	1.69 1.57	1.48 1.27
L10800N 11475E	201 202	< 5	0.4	9.57	1730	2.5	< 2	1.39	2.5	16	35	19	3.17	1.90	1.55
L10800N 11500E	201 202	< 5	< 0.2	8.35	1250	2.5	< 2	1.13	1.0	16	61	24	3.73	1.65	1.23
L11000N 10000E	201 202	< 5	0.2	7.25	790	2.5	< 2	1.23	< 0.5	9	48	6	3.25	1.70	0.58
L11000N 10025E L11000N 10050E	201 202	< 5	0.6	8.46	1030	3.0	< 2	1.37	1.5	25	83	59	4.68	2.16	1.30
DIIGOOM TOOSOE	201 202	25	0.8	8.85	1200	3.0	< 2	1.04	2.0	35	92	106	5.34	2.26	1.64

٢

CERTIFICATION:

1. J.R. 20

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY P.O. BOX 49066, STE. 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4 Page Nu.../ber : 3-B Total Pages :6 Certificate Date: 25-SEP-1998 Invoice No. : 19830791 P.O. Number :6112 Account :GP D

Project : BEALE Comments: ATTN:DAVID TERRY CC:DAVID PAWLIUK

		_				CERTIFICATE OF ANALYSIS A9830791									
SAMPLE	PREP CODE	Mn ppm (ICP)	Mo ppm (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm (ICP)	Pb ppm AAS	Sr ppm (ICP)	Ti % (ICP)	V ppm (ICP)	W ppm (ICP)	Zn ppm (ICP)			
L10800N 10600E	201 202	1920	< 1	1.51	45	1260	244	179	0.49	210	< 10	530	Î.		
L10800N 10625E L10800N 10650E	201 202 201 202	2110 2260	<pre> < 1 < 1 < 1</pre>	1.56	59 47	1010 1710	218 256	173 128	0.51	184 176	< 10 < 10	304 452			
L10800N 10675E	201 202	1405	< 1	1.51	47	1230	120	181	0.44	162	< 10	210		r -	
L10800N 10700E	201 202	1695	< 1	1.54	48	1400	138	184	0.46	171	< 10	232			
L10800N 10725E	201 202	1770	1	1.72	49	2440	94	317	0.46	155	< 10	192			
L10800N 10750E L10800N 10775E	201 202 201 202	1490 1350		1.77	40	2170 1720	88	273	0.49	145	< 10	178			
L10800N 10800E	201 202	940		1.82	41 29	2490	84	174 282	0.48	128 107	< 10 < 10	174			
L10800N 10825E	201 202	985	i	1.95	17	2070	26	228	0.45	78	< 10	84			
L10800N 10850E	201 202	1030	1	1.82	29	2270	38	216	0.52	126	< 10	164	<u> </u>		1
L10800N 10875E	201 202	1585	< 1	1.77	29	2370	1225	298	0.40	124	< 10	318			
L10800N 10900E L10800N 10925E	201 202 201 202	705 1075	1 2	1.89	15 32	2310 2060	30 88	230 248	0.41	68 112	< 10 < 10	76 252			
L10800N 10950E	201 202	835	< 1	1.49	35	1950	62	229	0.47	113	< 10	132			
L10800N 10975E	201 202	885	1	1.62	20	2080	28	280	0.42	101	< 10	70			
L10800N 11000E	201 202	1020	< 1	1.76	34	2430	108	369	0.43	126	< 10	976			
L10800N 11025E L10800N 11050E	201 202 201 202	955 1120	1 1	2.07	36	2110 1640	60 114	223 208	0.46	83 104	< 10 < 10	118 180			
L10800N 11075E	201 202	1305	< 1	1.58	36	1740	80	223	0.45	137	< 10	206			
L10800N 11100E	201 202	1500	< 1	1.79	53	2380	42	258	0.54	147	< 10	144			
L10800N 11125E	201 202	1135	1	1.54	50	2360	34	181	0.55	145	< 10	112			
L10800N 11150E L10800N 11175E	201 202 201 202	1160 1495	1	1.66	58 69	2210 1960	40	247 245	0.50	149 164	< 10 < 10	122 126			
L10800N 11200E	201 202	1355	< 1	1.65	60	1810	34	193	0.59	148	< 10	110			
L10800N 11225E	201 202	1635	< 1	1.76	83	1490	36	158	0.58	150	< 10	108		· ···· - ···	<u> </u>
L10800N 11250E L10800N 11275E	201 202 201 202	1330	< 1	1.85	66	1050	46	250	0.54	131	< 10	94			
L10800N 11275E	201 202	1270 1610	< 1 < 1	1.92	88 25	1570 720	42 96	249 165	0.55	129 102	< 10 < 10	114 114			
L10800N 11325E	201 202	1420	< 1	2.11	34	1000	112	272	0.43	107	< 10	208			
L10800N 11350E	201 202	1120	< 1	2.05	43	1170	124	251	0.46	113	< 10	126			+
L10800N 11375E L10800N 11400E	201 202 201 202	1130 735	< 1 < 1	2.21	59	1190	56	284	0.44	121	< 10	118			
L10800N 11425E	201 202	1070		1.98	38 49	1280 1210	24 44	213 234	0.38	97 112	< 10 < 10	72 106			
L10800N 11450E	201 202	1295	< 1	1.81	53	840	66	221	0.42	111	< 10	118	:		
L10800N 11475E	201 202	2790	< 1	1.73	17	690	268	291	0.33	91	< 10	348		[
L10800N 11500B L11000N 10000E	201 202 201 202	1755 635	< 1 2	1.77	34	980	164	289	0.39	99	< 10	320			
L11000N 10025E	201 202	1320	2	2.14 1.99	19 60	1840 1920	26 118	279 283	0.35 0.45	63 123	< 10 < 10	70 276			
L11000N 10050E	201 202	1870	4	1.70	82	1610	144	225	0.45	147	< 10	346			
														L	
														1214	£9
										CER	TIFICATIO	N:		· · · ·	

Г

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

o: BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY P.O. BOX 49066, STE. 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4

Page N Jer:4-A Total Pages :6 Certificate Date: 25-SEP-1998 Invoice No. : 19830791 P.O. Number :6112 Account GP D

Project : BEALE

Comments: ATTN:DAVID TERRY CC:DAVID PAWLIUK

		_						CERTI	FICATE	OF AN	ALYSIS	i 4	4983079) 1	
SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm AAS	A1 % (ICP)	Ba ppm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cd ppm (ICP)	Coppm (ICP)	Cr ppm (ICP)	Cu ppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)
L11000N 10075E L11000N 10125E L11000N 10150E L11000N 10175E L11000N 10200E	201 202 201 202 201 202 201 202 201 202 201 202	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5</pre>	0.8 0.2 0.8 0.2 1.6	8.43 8.40 7.22 7.62 7.92	1340 980 890 930 860	2.5 1.5 1.5 2.5 2.5	< 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.90 0.52 1.09 1.20 1.22	2.5 3.0 4.0 0.5 5.5	32 40 43 30 40	108 84 89 86 100	121 94 158 80 116	5.42 6.07 5.31 4.64 5.32	2.22 1.80 1.51 1.75 1.91	2.05 3.36 2.52 1.62 1.89
L11000N 10225E L11000N 10250E L11000N 10275E L11000N 10300E L11000N 10325E	201 202 201 202 201 202 201 202 201 202 201 202	<pre>< 5 < 5</pre>	0.4 1.2 0.2 1.0 0.8	7.07 7.53 7.51 7.93 6.71	700 750 890 780 590	2.0 2.0 2.5 2.0 2.0	6 6 2 < 2 2	1.31 1.10 1.30 1.12 1.01	2.0 2.5 1.0 1.5 2.0	42 40 36 51 48	111 122 88 80 73	84 100 60 77 86	4.96 5.19 5.07 4.79 5.74	1.77 2.08 1.68 1.73 2.32	1.73 1.88 1.47 1.67 1.61
L11000N 10350E L11000N 10375E L11000N 10400E L11000N 10425E L11000N 10450E	201 202 201 202 201 202 201 202 201 202 201 202	<pre></pre>	1.0 0.2 0.8 0.4 < 0.2	6.64 6.98 7.09 7.49 7.14	710 650 820 640 770	2.0 1.0 1.5 2.5 1.5	8 < 2 < 2 8 < 2	0.82 1.32 1.02 1.08 2.07	3.0 < 0.5 2.0 2.0 0.5	86 30 49 63 32	114 167 105 131 176	92 168 333 138 71	5.20 3.52 4.49 5.85 4.92	1.62 0.95 1.17 1.27 1.38	1.35 2.05 1.59 2.37 2.29
L11000N 10475E L11000N 10500E L11000N 10525E L11000N 10550E L11000N 10575E	201202201202201202201202201202	<pre>< 5 < 5 < 5 < 5 < 5 < 5</pre>	0.6 0.2 0.2 0.2 0.4	9.77 7.58 7.36 7.64 7.57	1140 870 1090 1140 1090	3.0 2.0 2.5 2.5 2.0	< 2 < 2 < 2 6	0.78 1.38 1.22 1.23 1.69	0.5 0.5 0.5 1.0 1.0	27 42 26 32 51	47 105 98 86 97	59 245 127 141 177	2.86 5.02 4.50 4.33 5.03	2.84 1.52 1.51 1.53 1.49	1.71 1.82 1.48 1.53 1.77
L11000N 106002 L11000N 10625E L11000N 10650E L11000N 10675E L11000N 10700E	201 202 201 202 201 202 201 202 201 202 201 202 201 202	<pre></pre>	0.2 0.4 0.2 1.6 2.6	7.98 7.99 7.84 7.66 7.69	960 1000 880 1180 1350	2.5 2.5 2.5 2.0 2.0	< 2 10 < 2 8 < 2	1.49 1.27 1.54 1.34 1.33	0.5 0.5 0.5 1.5 2.0	43 44 29 49 51	98 108 95 236 228	163 165 109 133 166	5.07 5.01 4.93 5.46 5.53	1.64 1.65 1.73 1.52 1.52	1.68 1.79 1.54 2.87 2.78
L11000N 10725E L11000N 10750E L11000N 10775E L11000N 10800E L11000N 10825E	201 202 201 202 201 202 201 202 201 202 201 202	<pre> < 5 < 5 < 5 < 4 < 5 < 5 < 5 < 5 </pre>	0.8 < 0.2 < 0.2 < 0.2 < 0.2 1.4	7.71 7.77 7.91 8.64 9.42	1070 1090 850 1220 1320	2.0 3.0 2.5 3.0 3.0	8 < 2 < 2 < 2 < 2	1.55 1.58 1.59 2.01 1.38	1.5 0.5 < 0.5 1.0 3.0	44 14 14 17 17	249 56 80 70 69	101 36 21 31 92	5.29 3.06 3.97 3.72 3.72	1.63 2.02 1.74 2.03 1.99	2.93 1.10 1.31 1.40 1.64
L11000N 10850E L11000N 10875E L11000N 10900E L11000N 10975E L11000N 11000E	201 202 201 202 201 202 201 202 201 202 201 202	< 5 < 5 < 5 < 5 < 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	8.76 9.14 8.76 6.67 7.68	1440 1690 1960 910 1170	2.0 2.5 2.5 1.5 2.5	< 2 < 2 < 2 6 < 2	1.26 1.36 1.73 1.09 1.29	0.5 0.5 0.5 0.5 0.5	16 20 22 16 24	56 70 69 67 77	55 62 55 34 65	3.16 3.60 3.49 3.56 4.43	2.13 2.04 1.93 1.45 1.66	1.55 1.47 1.56 1.03 1.37
L11000N 11025E L11000N 11050E L11000N 11075E L11000N 11100E L11000N 11125E	201 202 201 202 201 202 201 202 201 202 201 202	5555 777 7	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	7.80 8.51 7.11 7.66 9.00	1250 540 1040 1440 1150	2.0 3.0 2.5 2.5	<	1.73 1.45 1.12 1.59 1.61	0.5 < 0.5 0.5 0.5 1.0	22 21 18 16 14	85 90 62 63 57	107 17 30 37 27	4.50 5.04 3.50 3.46 3.15	1.84 1.71 1.62 1.54 1.66	1.66 1.25 1.28 1.24 1.46

CERTIFICATION:

tart Brickler

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 Fo: BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY P.O. BOX 49066, STE. 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4 Page Ner: 4-B Total Payes: 6 Certificate Date: 25-SEP-1998 Invoice No. : 19830791 P.O. Number: :6112 Account: : GP D

Project : BEALE Comments: ATTN:DAVID TERRY CC:DAVID PAWLIUK

								CERTI	FICATE	OF AN	ALYSIS	5 <i>1</i>	4983079	91	
SAMPLE	PREP CODE	Mn ppm (ICP)	Mo ppm (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm (ICP)	Pb ppm AAS	Sr ppm (ICP)	Ti % (ICP)	V ppm (ICP)	W ppm (ICP)	Zn ppm (ICP)			
L11000N 10075E L11000N 10125E L11000N 10150E L11000N 10175E L11000N 10200E	201 202 201 202 201 202 201 202 201 202 201 202	1925 2590 3600 1630 2380	3 < 1 1 2 1	0.92 1.23 0.96 1.44 1.13	82 51 62 58 75	1930 1140 1540 1570 1770	252 134 112 240 468	126 100 125 214 146	0.44 0.35 0.30 0.43 0.45	181 205 163 135 151	< 10 < 10 < 10 < 10 < 10 < 10	488 232 322 242 758			
L11000N 10225E L11000N 10250E L11000N 10275E L11000N 10300E L11000N 10325E	201 202 201 202 201 202 201 202 201 202 201 202	2150 2360 1545 2450 3760	1 1 1 < 1 < 1	0.96 0.77 1.38 0.98 0.39	75 97 69 66 82	1910 1240 1500 940 1080	176 214 164 146 100	131 105 236 98 70	0.46 0.45 0.46 0.42 0.41	134 133 134 121 96	< 10 < 10 < 10 < 10 < 10 < 10	288 436 322 238 250			
L11000N 10350E L11000N 10375E L11000N 10400E L11000N 10425E L11000N 10450E	201 202 201 202 201 202 201 202 201 202 201 202	3160 2600 5380 4330 1630	2 < 1 2 < 1 < 1 < 1	1.11 0.98 0.92 0.81 1.60	112 107 126 81 115	1010 520 870 1290 890	430 42 100 936 272	134 146 120 118 230	0.46 0.29 0.37 0.56 0.61	123 100 119 205 158	< 10 < 10 < 10 < 10 < 10 < 10	664 94 206 250 206			
L11000N 10475E L11000N 10500E L11000N 10525E L11000N 10550E L11000N 10575E	201 202 201 202 201 202 201 202 201 202 201 202	2240 1880 2040 2240 2160	< 1 < 1 < 1 < 1 1	1.04 1.53 1.57 1.64 1.76	27 71 60 59 94	840 1470 1530 1760 1770	68 128 280 220 146	113 214 212 261 410	0.41 0.54 0.47 0.44 0.50	103 155 130 127 146	< 10 < 10 < 10 < 10 < 10 < 10	78 186 254 238 194			
L11000N 10600E L11000N 10625E L11000N 10650E L11000N 10675E L11000N 10700E	201 202 201 202 201 202 201 202 201 202 201 202	1975 2600 1740 4000 4150	1 1 < 1 < 1	1.81 1.66 1.90 1.31 1.36	85 97 56 199 187	2010 1670 2080 1420 1360	152 226 144 686 892	310 240 296 173 171	0.51 0.51 0.60 0.58	140 139 134 154 158	< 10 < 10 < 10 < 10 < 10 < 10	206 258 194 522 650			
L11000N 10725E L11000N 10750E L11000N 10775E L11000N 10800E L11000N 10825E	201 202 201 202 201 202 201 202 201 202 201 202	3180 795 690 1005 1815	< 1 1 < 1 < 1 < 1	1.48 2.19 1.96 2.16 1.38	196 40 38 37 35	1510 1620 2300 2210 1460	334 52 40 162 1735	214 372 323 420 238	0.60 0.34 0.48 0.44 0.41	142 100 113 109 120	< 10 < 10 < 10 < 10 < 10 < 10	322 130 104 298 1880			
L11000N 10850E L11000N 10875E L11000N 10900E L11000N 10975E L11000N 11000E	201 202 201 202 201 202 201 202 201 202 201 202	1325 1720 1675 1220 1790	< 1 < 1 < 1 < 1 < 1 < 1	$1.41 \\ 1.40 \\ 1.60 \\ 1.33 \\ 1.51$	23 38 36 26 37	1190 990 1100 1950 1600	108 132 184 48 72	226 270 329 200 239	0.39 0.41 0.42 0.43 0.48	98 105 103 105 117	< 10 < 10 < 10 < 10 < 10 < 10	150 178 260 112 166			
L11000N 11025E L11000N 11050E L11000N 11075E L11000N 11100E L11000N 11125E	201 202 201 202 201 202 201 202 201 202 201 202	1305 1000 1545 1430 1215	< 1 < 1 < 1 < 1 < 1	1.85 1.89 1.39 1.40 1.25	50 50 28 29 24	1200 1610 1940 1590 1170	58 22 52 104 266	284 162 224 326 255	0.47 0.61 0.40 0.42 0.37	129 94 104 99 102	< 10 < 10 < 10 < 10 < 10 < 10	120 90 102 156 454			

CERTIFICATION:

tat Bichler

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY P.O. BOX 49066, STE: 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4

Invoice No. : 19830791 P.O. Number : 6112 Account : GP D

Project : BEALE Comments: ATTN:DAVID TERRY CC:DAVID PAWLIUK

								CERTI	FICATE	OF AN	ALYSIS	6 <i>I</i>	4983079	91	
SAMPLE	PREP CODE	ац ррб Ганал	λg ppm λλs	A1 % (ICP)	Ba ppm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cđ ppm (ICP)	Coppm (ICP)	Cr ppm (ICP)	Cu ppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)
L11000N 11150E	201 202	< 5	0.8	8.16	1310	3.0	< 2	1.57	0.5	32	90	206	5.68	1.60	1.29
L11000N 11175E L11000N 11200E	201 202 201 202	< 5	< 0.2 < 0.2	7.56	850 1010	2.5 3.0	< 2 < 2	1.51 2.00	0.5	19 22	90 83	31	4.75	1.68	1.22
L11000N 11225E	201 202	< 5	< 0.2	8.71	1230	3.0	< 2	2.10	0.5	22	83	79	4.25	1.84	1.83
L11000N 11275E	201 202	< 5	< 0.2	8.56	1180	3.0	< 2	2.17	0.5	21	91	63	4.29	1.97	1.76
L11000N 11325E	201 202	< 5	< 0.2	7.48	810	2.5	< 2	1.87	0.5	23	100	29	4.72	1.35	1.51
L11000N 11350E L11000N 11375E	201 202 201 202	< 5	< 0.2	8.55 8.13	1000	2.5		1.66	0.5	20 22	91 81	26	4.80	1.85	1.59
L11000N 11425E	201 202	< 5	< 0.2	9.01	1710	2.5	< 2	2.00	0.5	17	69	46	3.58	1.90	1.56
L11000N 11450E	201 202	< 5	< 0.2	8.19	1310	2.5	< 2	1.82	0.5	16	76	72	3.56	1.62	1.36
L11000N 11475E	201 202	10	< 0.2	8.07	1120	2.0	< 2	1.39	< 0.5	20	78	25	3.62	1.80	1.34
L11200N 10000E	201 202 201 202	< 5 < 5	< 0.2 < 0.2	7,20	840	2.0	< 2 < 2	0.96	0.5	15	79 95	37	4.30 4.68	1.65	1.31
L11200N 10025E L11200N 10050E	201 202 201 202	< 5	< 0.2	8.55	1040 1240	2.5	< 2	1.65	2.0	22	87	52	4.79	2.11	1.83
L11200N 10150E	201 202	5	< 0.2	8.69	1020	2.5	< 2	1.24	1.5	29	89	76	5.20	2.11	1.71
L11200N 10175E	201 202	< 5	0.6	8.62	1020	2.5	< 2	1.46	1.5	31	93	100	5.49	1.96	2.04
L11200N 10200E	201 202	< 5	0.4	7.37	890	1.5	< 2	1.21	1.5	29	89	99	5.01	1.68	2.01
L11200N 10225E L11200N 10250E	201 202 201 202	< 5 < 5	0.8	8.04 7.77	910 890	2.0	< 2 < 2	1.14	1.0	34 30	99 87	139 139	5.54	1.85	2.18 2.11
L11200N 10275E	201 202	< 5	< 0.2	8.07	1150	2.0	2	1.31	0.5	26	93	61	4.67	1.80	2.04
L11200N 10300E	201 202	< 5	0.8	7.82	880	1.5	< 2	1.89	1.5	35	113	155	5.52	1.69	2.32
L11200N 10325E	201 202	< 5	0.6	8.37	910	2.0	< 2	1.72	0.5	46	120	206	5.95	1.67	2.35
L11200N 10350E L11200N 10375E	201 202 201 202	< 5 < 5	0.8	7.95 7.72	920 700	1.5	2	2.09	1.5	39 36	127 112	160 434	5.81 5.80	1.68	2.36 1.81
L11200N 10400E	201 202	< 5	< 0.2	7.33	810	1.5	< 2	1.19	< 0.5	38	115	88	5.39	1.50	1.79
L11200N 10500E	201 202	< 5	0.2	7.37	870	2.0	< 2	1.12	< 0.5	16	71	15	3.80	1.58	1.08
L11200N 10525E	201 202	< 5	< 0.2	8.01	1120	2.5	< 2	1.20	0.5	21	71	25	3.88	1.81	1.48
L11200N 10550E L11200N 10575E	201 202 201 202	< 5	< 0.2	7.81 7.93	1190 1000	2.5	< 2 < 2	1.45	0.5	19 20	72	24	3.58	1.86	1.50
L11200N 10675E	201 202	< 5	0.6	8.58	1870	2.5	< 2	1.28	2.5	16	59	18	3.36	2.05	1.52
L11200N 10700E	201 202	< 5	1.8	8.42	1740	3.0	< 2	1.49	3.5	13	57	32	3.28	1.62	1.38
L11200N 10725E	201 202	< 5	0.6	8.85	1300	3.0	< 2	1.62	1.5	19	79	28	4.52	1.94	1.41
L11200N 10750E L11200N 10775E	201 202 201 202	< 5 < 5	0.2	7.52 7.40	980 1030	2.5	< 2 < 2	1.17	1.0	17	72	17	3.64 3.57	1.60	1.15
L11200N 10800E	201 202	< 5	0.4	7.00	1160	2.0	2	1.35	1.5	16	62	36	3.58	1.52	1.15
L11200N 10825E	201 202	< 5	0.2	7.26	1200	2.5	< 2	1.55	2.0	17	74	57	3.51	1.56	1.17
L11200N 10850E	201 202	< 5	0.6	8.13	1970	2.5	< 2	1.67	2.0	15	75	26	3.46	1.49	1.20
L11200N 10875E L11200N 10900E	201 202 201 202	< 5	< 0.2	8.05 7.92	1360 1300	2.5	< 2 < 2	1.23	0.5	16 18	67 86	36	3.70 3.95	1.78	1.25 1.34
L11200N 10925E	201 202	< 5 < 5	0.2 < 0.2	8.70	1300	2.5	< 2	1.56	0.5	15	76	53	3.35	1.78	1.40
								<u> </u>						•	
										CEP		N:	second	Brich	DRX

Г

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: BOLIDEN WESTMIN LIMITED P.O. BOX 49066, STE. 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4 BEALE Project : Comments: ATTN:DAVID TERRY CC:DAVID PAWLIUK

						CERTIFICATE OF ANALYSIS A9830791									
SAMPLE	PREP CODE	Mn ppm (ICP)	Moppm (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm (ICP)	Pb ppm AAS	Sr ppm (ICP)	Ti % (ICP)	V ppm (ICP)	W ppm (ICP)	Zn ppm (ICP)			
L11000N 11150E L11000N 11175E	201 202 201 202	2060 1205	2	1.64	59	2090	122	269	0.52	121	< 10	206			
L11000N 11200B	201 202	1105	< 1 < 1	1.85	34	2140 2020	34	265 365	0.57	118 119	< 10 < 10	102 102			
L11000N 11225E	201 202	1220	< 1	2.14	41	1800	46	426	0.50	129	< 10	114			
L11000N 11275E	201 202	1075	< 1	2.28	48	1690	48	430	0.50	127	< 10	128			
L11000N 11325E	201 202	1155	< 1	1.80	44	2590	42	351	0.56	141	< 10	118		1	
L11000N 11350E L11000N 11375E	201 202	1315	< 1	2.09	42	2270	68	346	0.53	130	< 10	216			
L11000N 11425g	201 202 201 202	910 1380	< 1 < 1	2.24	51 35	1540 1060	36	410 395	0.50	115 111	< 10 < 10	84			
L11000N 11450E	201 202	1155	× 1	1.83	39	960	216	354	0.42	111	< 10 < 10	204 228			
L11000N 11475E	201 202	805	< 1	2.08	48	1120	36	259	0.43	109	< 10	84			
L11200N 10000E	201 202	730	1	1.38	36	1740	72	171	0.43	103	< 10	126			
L11200N 10025E	201 202	1335	1	1.69	63	1450	98	238	0.48	142	< 10	240			
L11200N 10050E L11200N 10150E	201 202 201 202	1375 1550	< 1 3	2.04	51 54	1100 1700	108 132	271 208	0.53	129 147	< 10 < 10	258 230			
				· · · · · · · · · · · · · · · · · · ·		1700			0.34	147	< 10	4 30			
L11200N 10175E L11200N 10200E	201 202 201 202	1510 1320	2	1.80	67	1610	166	274	0.52	160	< 10	272			
L11200N 10225E	201 202	1520	2 1	1.42	63 72	1070 950	144 162	156 142	0.52 0.51	154 166	< 10 < 10	236 262			
L11200N 10250E	201 202	1575	1	1.27	60	1360	152	132	0.40	156	< 10	242			
L11200N 10275E	201 202	1580	< 1	1.56	42	1160	102	176	0.51	154	< 10	152			
L11200N 10300E	201 202	1380	1	1.71	75	1160	136	189	0.59	175	< 10	246			
L11200N 10325E	201 202	1765	1	1.59	80	1200	250	180	0.61	187	< 10	400			
L11200N 10350E L11200N 10375E	201 202 201 202	1470 1280	1	1.69	91	1060	290	203	0.67	187	< 10	378			
L11200N 10400E	201 202	1750	2	1.43 1.19	73 58	1380 1420	90 122	147 136	0.57 0.53	157 175	< 10 < 10	210 166			
L11200N 10500E	201 202	1235	< 1	1.61	22	2230	54	243	0.46						• • • • • • • • • • • • • • • • • • • •
L11200N 10525E	201 202	1330	< 1	1.75	32	1540	74	251	0.46	112 122	< 10 < 10	74 106			
L11200N 10550E	201 202	1165	< 1	1.93	35	1300	98	296	0.43	112	< 10	142			
L11200N 10575E L11200N 10675E	201 202 201 202	1395 1675	< 1 < 1	1.96 1.67	35 25	1920 920	140	287	0.51	120	< 10	202			
				1.07	<u> </u>	940	400	279	0.39	97	< 10	700			
L11200N 10700E L11200N 10725E	201 202 201 202	1530 1485	< 1	1.34	23	1250	876	286	0.35	99	< 10	1600			
L11200N 10750E	201 202	1485	< 1 < 1	2.06 1.59	40 27	1860 1530	286 88	312 244	0.50	108 112	< 10 < 10	510			
L11200N 10775E	201 202	1010	1	1.57	24	1440	214	233	0.46	106	< 10 < 10	188 370			
L11200N 10800E	201 202	1500	< 1	1.45	25	1580	408	227	0.42	98	< 10	508			
L11200N 10825E	201 202	1170	< 1	1.61	35	1580	282	268	0.41	96	< 10	304			
L11200N 10850E L11200N 10875E	201 202	1410	< 1	1.53	40	1330	682	348	0.39	108	< 10	922			
L11200N 10900E	201 202 201 202	1260 1260	1 < 1	1.58	29 45	1390 1630	172	228 291	0.43	102 115	< 10	286			
L11200N 10925E	201 202	1140	< 1	1.69	39	1210	112	323	0.41	105	< 10 < 10	144 230			
											•				
b i			A	I	l			I	l			· · · · · · · · · · · · · · · · · · ·	<u> </u>) 6,	L
										CER	TIFICATIO	1. 1. 1. 1. 1. 1. 1.		Secto	la la

Analylical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY P.O. BOX 49066, STE. 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4

Page N. Aber : 6-A Total Pages : 6 Certificate Date: 25-SEP-1998 Invoice No. : 19830791 P.O. Number : 6112 Account : GP D

Project : BEALE Comments: ATTN:DAVID TERRY CC:DAVID PAWLIUK

								CERTI	FICATE	OF AN	ALYSIS	<u>;</u>	4983079	91	
SAMPLE	PREP CODE	Ац ррb FA+AA	Ag ppm AAS	Al % (ICP)	Ba ppm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cđ ppm (ICP)	Coppm (ICP)	Cr ppm (ICP)	Cu ppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)
L11200N 11000E L11200N 11025E L11200N 11050E L11200N 1105E L11200N 11075E L11200N 11100E	201 202 201 202 201 202 201 202 201 202 201 202	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5<</pre>	0.2 < 0.2 < 0.2 < 0.2 < 0.2 0.2	9.74 8.68 8.70 7.65 6.92	1420 1230 1170 1160 620	3.0 2.5 2.0 3.0 2.5	< 2 < 2 < 2 < 2 < 2 < 2	0.77 1.35 1.16 2.52 1.19	0.5 0.5 < 0.5 0.5 < 0.5	22 20 17 20 19	67 78 77 87 100	49 25 17 11 7	3.26 3.66 3.48 4.13 4.75	2.18 1.90 1.93 1.59 1.58	1.53 1.51 1.30 1.63 1.12
L11200N 11125E L11200N 11150E L11200N 11150E L11200N 11175E L11200N 11200E L11200N 11225E	201 202 201 202 201 202 201 202 201 202 201 202	< 5 < 5 < 5 < 5 < 5 < 5	0.6 0.4 0.2 0.2 0.2	8.89 8.70 9.31 8.76 9.08	1080 1050 390 760 730	3.5 2.0 6.0 3.5 4.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	2.02 1.81 1.05 2.27 1.55	1.5 0.5 < 0.5 < 0.5 < 0.5 0.5	19 20 12 23 16	89 89 59 112 80	25 16 7 25 17	4.61 4.03 5.68 5.18 5.07	1.82 1.84 2.35 2.17 1.97	1.50 1.46 0.69 1.88 1.29
L11200N 11250E L11200N 11275E L11200N 11300E L11200N 11325E L11200N 11350E	201 202 201 202 201 202 201 202 201 202 201 202	< 5 < 5 < 5 < 5 < 5 < 5 < 5	< 0.2 < 0.2 0.2 0.2 0.2	8.50 8.59 9.04 8.57 8.76	1000 1180 1050 1460 1130	2.5 2.5 3.5 2.0 3.5	< 2 < 2 < 2 < 2 2 < 2	1.66 2.22 1.56 1.88 2.62	< 0.5 < 0.5 0.5 0.5 0.5	18 17 17 17 19	00 70 75 80 80	15 18 24 17 35	4.26 3.89 4.66 4.24 4.56	1.95 1.79 2.07 2.01 1.94	1.49 1.65 1.50 1.53 1.88
L11200N 11375E L11200N 11400E L11200N 11425E L11200N 11450E	201 202 201 202 201 202 201 202 201 202	< 5 < 5 < 5 < 5	0.4 < 0.2 < 0.2 < 0.2	11.95 8.17 9.13 9.26	6470 1160 1350 1260	4.0 2.5 2.5 2.5	< 2 < 2 < 2 < 2	1.54 1.96 1.87 1.04	2.5 1.0 2.0 1.0	16 18 17 16	44 72 75 65	74 23 17 23	3.28 3.49 3.59 3.54	2.05 1.72 1.84 2.09	1.50 1.33 1.45 1.33

11

1. Broker

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY To: P.O. BOX 49066, STE. 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4

Page N er :6-B Total Payes :6 Certificate Date: 25-SEP-1998 Invoice No. : 19830 P.O. Number :6112 :19830791 GPD Account

Project : BEALE

Comments: ATTN:DAVID TERRY CC:DAVID PAWLIUK

CERTIFICATE OF ANALYSIS A9830791

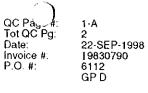
PREP CODE	Mn ppm (ICP) 1115 1130 925 930 1000 1865 1285 1030 1250 1160	Mo ppm (ICP) < 1 < 1 < 1 < 1 1 < 1 1 < 1 3 1	Na % {ICP} 1.01 1.80 1.60 2.14 1.76 2.07 1.85 2.80	Ni ppm (ICP) 28 39 35 48 49 45 87	P ppm {ICP} 700 1140 1100 3470 2510	Pb ppm AAS 88 58 46 32 24	Sr ppm (ICP) 137 239 227 568	Ti % (ICP) 0.41 0.44 0.40 0.46	V ppm (ICP) 105 113 110	W ppm (ICP) < 10 < 10 < 10	Zn ppm (ICP) 88 104 84			
201 202 201 202 201 202 201 202 201 202 201 202 201 202 201 202 201 202 201 202 201 202 201 202 201 202 201 202	1130 925 930 1000 1865 1285 1030 1250	<pre>< 1 < 1 < 1 < 1 1 < 1 < 1</pre>	1.80 1.60 2.14 1.76 2.07 1.85	39 35 48 49 45	1140 1100 3470 2510	58 46 32	239 227 568	0.44 0.40	113 110	< 10	104			
201 202 201 202 201 202 201 202 201 202 201 202	1285 1030 1250	< 1 3	1.85		1900		218	0.54	125 102	< 10 < 10	82 86			
		< 1	2.58	30 64 40	1790 1520 2140 2010	362 158 46 94 64	371 321 124 332 217	0.52 0.46 0.44 0.57 0.47	111 109 63 114 103	< 10 < 10 < 10 < 10 < 10 < 10	288 286 196 186 160			
201 202 201 202 201 202 201 202 201 202	1030 920 1135 1165 1015	1 < 1 1 < 1 < 1	2.13 2.23 2.21 2.15 2.50	38 32 37 37 39	2020 1950 1590 1550 2170	34 40 54 68 42	287 457 274 316 488	0.50 0.48 0.49 0.52 0.54	114 118 110 110 132	< 10 < 10 < 10 < 10 < 10 < 10	102 106 144 136 198			
201 202 201 202 201 202 201 202 201 202	2760 1095 1400 1690	< 1 < 1 < 1 < 1	0.58 1.78 1.87 1.50	18 33 37 29	710 1190 1100 1080	72 70 214 172	164 323 325 195	0.30 0.43 0.43 0.38	90 104 112 107	< 10 < 10 < 10 < 10	210 300 440 268			
												<u> </u>	<u>.</u>	<u> </u>
	201 202 201 202 201 202 201 202 201 202 201 202	201 202 1135 201 202 1165 201 202 1015 201 202 2760 201 202 1095 201 202 1400	201 202 1135 1 201 202 1165 < 1	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	201 202 1135 1 2.21 37 1590 201 202 1165 <	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	201 202 1135 1 2.21 37 1590 54 274 0.42 110 < 10

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

ho: BOLIDEN - WESTMIN LIMITED

P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4


INVOICE NUMBER

I9830790

BILLING	INFORMATION	# OF SAMPLES		ALYSED FOR - DESCRIPTION	UNIT PRICE	SAMPLE PRICE	AMOUNT
Date: Project: P.O. No.: Account:	22-SEP-98 BEALE 6112 GP D	260	202	- Dry, sieve to -80 mesh - save reject ICP-24 - Au ppb FA+AA	1.25 0.85 10.50 9.75	22.35	5811.00
Comments	5:				client Discount	Cost \$ 25%) \$ Cost \$ GST \$	5811.00 1452.75 4358.25 305.08
Billing:	For analysis performed on Certificate A9830790				TOTAL PAYABLE		4663.33
Terms:	Payment due on receipt of invoice 1.25% per month (15% per annum) charged on overdue accounts						
Please Rer	nit Payments to:						į
	CHEMEX LABS LTD. 212 Brooksbank Ave., North Vancouver, B.C. Canada V7J 2C1						

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 JTo: BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY
 P.O. BOX 49066, STE. 904 - 1055 DUNSMUIR ST. VANCOUVER, BC
 V7X 1C4

Project: BEALE Comments: ATTN:DAVID TERRY CC:DAVID PAWLIUK

QC DATA OF CERTIFICATE

A9830790

STD/DUP/BLANK DESCRIPTION	QC TYPE		Ац ррb FA+AA	Ag ppm AAS	Al % (ICP)	Ba ppm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cđ ppm (ICP)	Coppm (ICP)	Cr ppm {ICP}	Cu ppm {ICP}	Fe % (ICP)	K % (ICP)	Mg % (ICP)
AY-97	std1	1	625													
AY-97	std1	2	580													
AY-97	Std1	1 3	630													
AY-97	std1	4	620													
AY-97	Std1	5	630													
AY-97	Std1	6	650													
AY-97	std1	7	640													
CHEMEX MEAN			639													
BL-C	Blnk	1	< 5													
BL-C	Blnk	2	< 5													
BL-C	Bink	3	< 5													
BL-C	Blnk	4	< 5													
BL-C	Blnk	5	< 5													
BL-C	Blnk	6	< 5													
CHEMEX MEAN			< 5													
G96-TOT	Std1	1			7.59	1120	1.0	< 2	2.09	1.5	21	94	172	4.64	1.78	0.99
G96-TOT	std2	1			7.68	1130	1.0	< 2	2.09	1.5	21	95	174	4.59	1.77	1.00
G96-TOT	std1	2			7.43	1110	1.0	< 2	2.03	1.5	21	96	175	4.56	1.72	0.97
G96-TOT	Std2	2			7.19	1050	1.0	< 2	1.96	1.5	20	92	159	4.37	1.66	0.94
G96-TOT	Std1	3			7.64	1120	1.0	< 2	2.03	1.5	21	96	177	4.50	1.72	0.99
G96-TOT	std2	3			7.45	1090	1.0	< 2	2.01	1.5	20	94	168	4.44	1.73	0.97
G96-TOT	Std1	4			7.62	1140	1.0	< 2	2.07	1.5	21	96	177	4.67	1.76	1.01
G96-TOT	Std2	4			7.60	1110	1.0	2	2.07	1.5	21	94	171	4.61	1.78	0.98
G96-TOT	std1	5			7.76	1150	1.0	< 2	2.07	1.5	21	97	179	4.63	1.79	1.02
G96-TOT	Std2	5			8.10	1180	1.5	2	2.17	1.5	21	99	191	4.79	1.90	1.05
G96-TOT	std1	6			7.81	1150	1.5	< 2	2.11	1.5	21	96	182	4.73	1.83	1.02
G96-TOT	std2	6			7.75	1130	1.0	2	2.08	1.5	21	95	174	4.66	1.84	1.01
G96-TOT	std1	7	[8.03	1150	1.0	2	2.11	1.5	23	101	184	4.73	1.88	1.04
CHEMEX MEAN					7.60	1135	1.1	2	2.13	0.9	17	98	177	4.60	1.82	1.00
GEO-96	Std1	1		6.0												
GE0-96	Std2	1		6.2	*****											
GE0-96	std1	2		5.6												
GEO-96	Std2	2	[5.6												
GEO-96	std1	3		5.0												
GEO-96	std2	3		6.0												
GEO-96	Std1	4		5.6												
GEO-96	std2	4		5.4												
GEO-96	Std1	5		5.4				~								
GEO-96	Std2	5		7.6												
GE0-96	Std1	6		5.6												
GE0-96	Std2	6		5.8												
GE0-96	Std1	7		5.6												
CHEMEX MEAN				5.6												

CERTIFICATION:

140

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver Bntish Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY P.O. BOX 49066, STE 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4 ノ_{To:}

QC Pau 1-B Tot QC Pg: 2 2 22-SEP-1998 19830790 6112 GP D Date: Invoice #: P.O. #:

Project: BEALE Comments: ATTN:DAVID TERRY CC:DAVID PAWLIUK

QC DATA OF CERTIFICATE

A9830790

STD/DUP/BLANK DESCRIPTION	QC TYPE		Mn ppm (ICP)	Mo ppm (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm (ICP)	Pb ppm AAS	Sr ppm (ICP)	Ti % (ICP)	V ppm (ICP)	W ppm (ICP)	Zn ppm (ICP)			
AY-97	stđi	1												†"		+
AY-97	std1	2														
NY-97	std1	3														
AY-97	std1	4														
NY-97	Std1	5														
NY-97	std1	6								1		1	[Í	1	
NY-97	Std1	7													[
CHEMEX MEAN																
BL-C	Blnk	1								*****						
BL-C	Blnk	2														
BL-C	Blnk	3														
BL-C	Blnk	à												1	1	1
BL-C	Blnk	5												-		
BL~C	Blnk	6									*****			1		
CHEMEX MEAN																
396-TOT	std1	1	1040	8	0.96	25	600		236	0.36	162	< 10	186			
196-TOT	Std2	1	1040	8	0.97	25	600		237	0.33	164	< 10	190			
96-TOT	std1	2	1035	i e	0.96	24	580		232	0.35	159	< 10	190			
196-TOT	std2	2	990	7	0.91	24	570		218	0.33	155					
96-TOT	std1	3	1040	8	0.94	24	600	*****	233	0.34		< 10	178			
96-TOT	Std2	3	1005	1 7	0.99	24	580		226	0.34	164	< 10	190			
96-TOT	Std1	Ã	1045	i	1.00	25	600				157	< 10	188			
96-TOT	Std2	- 1	1020	8	1.00	24			238	0.36	165	< 10	196			
96-TOT	std1	5	1025	8	1.00		590		228	0.34	162	< 10	188			
196-TOT	Std2	5	1025	8		25	580		238	0.35	167	< 10	192			
196-TOT	std1	6	1070	7	1.09	26	620		246	0.37	172	< 10	210			
196-TOT	std1	6		•	1.03	25	600		241	0.36	166	< 10	196			
96-TOT	Std1	7	1045	8	1.04	24	600		237	0.36	165	< 10	190			
HEMEX MEAN			1080	8	1.17	26	620		246	0.37	167	< 10	202			
acada Mean			1025	8	1.00	24	624		236	0.34	160	< 10	185			
E0-96	Std1	1						132								
1EO-96	Std2	1				**		136								i
E0-96	std1	2						136								1
EO-96	Std2	2						132								
EO~96	Std1	3						138								
EO-96	Std2	3						136			~~					1
EO-96	std1	4						134								
E0-96	Std2	4						142								[
E0-96	Stdi	5						144								
E0-96	Std2	5						140						1		
E0-96	Std1	6						136						-		1
E0-96	Std2	6						146								
E0-96	Std1	7						142								
HEMEX MEAN		[125								
······	<u>_</u>			i										Aster 2	<u>a</u>	<u> </u>

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., British Columbia, Canada North Vancouver V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

)To: BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY P.O. BOX 49066, STE. 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4

2-A 2 QC Pa Tot OC Pg: Date: 22-SEP-1998 Invoice #: P.O. #: 19830790 6112 GP D

Project: BEALE Comments: ATTN:DAVID TERRY CC:DAVID PAWLIUK

QC DATA OF CERTIFICATE

A9830790

STD/DUP/BLANK DESCRIPTION	QC TYPE		Au ppb FA+AA	dg ppm das	A1 % (ICP)	Ba ppm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cd ppm (ICP)	Co ppm (ICP)	Cr ppm (ICP)	Cu ppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)
RV-98	std2	1	530													
RV-98	Std2	2	515													
RV-98	Std2	3	510													
RV-98	Std2	4	500					J								
RV-98	std2	5	540													
RV-98	Std2	6	560													
CHEMEX MEAN			522													
5102~3	Blnk	1		< 0.2									*****		·	
BIO2-3	Blnk	2		< 0.2												
5102-3	Blnk	3		< 0.2												
5102-3	Blnk	- 4		< 0.2												
3102-3	Blnk	5		< 0.2												
\$102-3	Blnk	6		< 0.2												
CHEMEX MEAN	-			0.2												
SI02-T5	Blnk	1			0.26	20	< 0.5	< 2	0.03	< 0.5	< 1	4	3	0.07	0.05	0.0
3102-T5	Blnk	2			0.25	20	< 0.5	< 2	0.02	< 0.5	< 1	5	2	0.09	0.05	0.0
3102-35	Blnk	3			0.25	20	< 0.5	< 2	0.03	< 0.5	< 1	4	1	0.06	0.04	0.0
3102-T5	Blnk	4			0.26	20	< 0.5	< 2	0.02	< 0.5	< 1	4	3	0.07	0.05	0.0
5102-T5	Blnk	5			0.25	20	< 0.5	< 2	0.02	< 0.5	< 1	4	17	0.07	0.04	0.0
5IO 2-T5	Blnk	6			0.23	20	< 0.5	< 2	0.02	< 0.5	< 1	4	6	0.05	0.04	0.0
CHEMEX MEAN					0.25	21			0.02		1	4	3	0.05	0.04	0.0
L9600N 11500E	Dupl- Origi-		< 5	1.2 1.0	6.71 6.44	310 300	1.5	< 2	0.71	< 0.5	13	91	9	6.51	1.68	0.5
						300	1.5	< 2	0.68	< 0.5	12	94	9	6.26	1.65	0.5
19800N 11775E	Dup2-			0.8	7.94	930	2.5	< 2	0.78	1.0	18	94	66	4.16	1.89	1.3
	Orig2-	01	< 5	1.0	8.13	930	2.5	< 2	0.79	1.0	18	93	65	4.12	1.90	1.3
L10000N 10550E	Dup3-			0.6	5.95	680	1.5	< 2	0.78	0.5	9	65	13	3.00	1.43	0.6
	Orig3-	01	< 5	0.4	5.94	670	1.5	< 2	0.77	< 0.\$	9	65	15	2.97	1.39	0.6
L10000N 11550E	Dupt-	01		1.8	8.32	1040	3.0	< 2	0.92	2.0	32	89	73	4 30		
	Origi-		5	1.8	8.29	1020	3.0	< 2	0.91	2.0	32	85	72	4.72 4.61	1.90 1.86	1.1
10200N 10350E	Dup5-	01		1.0	8.58	880	3.5	< 2	0.96	2.0				<i>.</i>		
	Origi-		< 5	1.0	8.52	880	3.5	< 2	0.95	2.0	33 32	92 100	70 67	6.09 6.33	1.95	1.2
10200N 11350E	Dup6-	01		0.6	7.40	1050	1.5	< 2	1.14	0.5	13	67	33	3.99	1.56	1.2
	Orig5-	01	< 5	0.6	8.15	1140	2.0	2	1.22	1.0	14	73	44	4.26	1.58	1.4
10400N 10875E	Dup7-			0.4	8.46	1100	2.5	< 2	0.65	1.0	13	90	43	3.93	2.13	1.3
	Orig7-	01	< 5	0.4	8.50	1110	2.5	< 2	0.66	1.0	14	90	41	3.91	2.15	1.3
			-													
														arth	•	<u> </u>

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave. North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY P.O. BOX 49066, STE. 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4 QC Pa 2-B Tot QC Pg: 2 Date: 22-SEP-1998 Invoice #: 19830790 P.O. #: 6112 GP D

Project: BEALE Comments: ATTN:DAVID TERRY CC:DAVID PAWLIUK

QC DATA OF CERTIFICATE A9830790

orig3-01 525 4 1.45 1.8 1050 26 197 0.49 108 < 10	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	STD/DUP/BLANK DESCRIPTION		Mn ppm (ICP)	Mo ppm (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm (ICP)	Pb ppm AAS	Sr ppm (ICP)	Ti % (ICP)	V ppm (ICP)	W ppm (ICP)	Zn ppm (ICP)			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	RV-98	Std2 1												+		+
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		std2 2										1]		
RV-38 RV-39 RV-39 RV-39 RV-39 RV-39 RV-39 RV-39 RV-39 RV-39 RU-30 Bink 1 std2 std2 std2 std2 std2 std2 std2 std2	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	RV-98	std2 3										1				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	RV-98	Std2 4		[
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	RV-98	Std2 5									1	1	1	1		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	RV-98	Std2 6														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CHEMEX MEAN															
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SI02-3	B1nk 1									1					
ST02-3 ST02-3 ST02-3 ST02-3 ST02-3 ST02-3 ST02-75 Bink 2 ST02-75 Bink 2 ST02-75 Bink 2 ST02-75 Bink 2 ST02-75 Bink 2 ST02-75 Bink 2 ST02-75 Bink 2 ST02-75 Bink 4 ST02-75 Bink 4 ST02-75 Bink 4 ST02-75 Bink 4 ST02-75 Bink 4 ST02-75 Bink 4 ST02-75 Bink 4 ST02-75 Bink 4 ST02-75 Bink 4 ST02-75 Bink 5 ST02-75 Bink 4 ST02-75 Bink 4 ST02-75 Bink 5 ST02-75 Bink 4 ST02-75 Bink 5 ST02-75 Bink 4 ST02-75 Bink 4 ST02-75 Bink 5 ST02-75 Bink 4 ST02-75 Bink 5 ST02-75 Bink 5 ST02-75 Bink 6 ST02-75 Bink 6 ST02-75 ST02-75 Bink 6 ST02-75 Bink 6 ST02-75 ST02-75 Bink 6 ST02-75 ST02-75 Bink 7 ST02-75 ST02-75 Bink 7 ST02-75 ST02-75 Bink 7 ST02-75 ST02-75 ST02-75 Bink 7 ST02-75 ST02-75 Bink 7 ST02-75 S	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	SI02-3	Blnk 2										1				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SI02-3	1 1						-	1	1						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SI02-3	1 1						1 7								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $					1		F			1	1		1	1		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CHEMEX MEAN Image: Amplitude of the second se						1				1		1	l.		1	
STO2-T5 BINK BINK 2 S 5 C C 0.01 C C 1 1 1 STO2-T5 BINK 0.01 S C 1 1 1 STO2-T5 BINK 0.01 S C 1 1 STO2-T5 BINK 0.01 S C 1 1 STO2-T5 BINK 0.01 S C 1 STO2-T5 BINK 0.01 S C 1 STO2-T5 S 0.01 S C 1 STO2-T5 BINK 0.01 S C 1 STO2-T5 S 1 STO2-T5 S 1 S 0.01 S C 1 S C 1 S C 1 S C 1 S C 1 S C 1 S <td< td=""><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td>1</td><td></td><td>ſ</td><td></td><td></td><td></td><td></td></td<>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $					1					1		ſ				
STO2-T5 BINK BINK 2 S 5 C C 0.01 C C 1 1 1 STO2-T5 BINK 0.01 S C 1 1 1 STO2-T5 BINK 0.01 S C 1 1 STO2-T5 BINK 0.01 S C 1 1 STO2-T5 BINK 0.01 S C 1 STO2-T5 BINK 0.01 S C 1 STO2-T5 S 0.01 S C 1 STO2-T5 BINK 0.01 S C 1 STO2-T5 S 1 STO2-T5 S 1 S 0.01 S C 1 S C 1 S C 1 S C 1 S C 1 S C 1 S <td< td=""><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>SI02-T5</td><td>B1pk 1</td><td>5</td><td> < 1</td><td>0.01</td><td>. 1</td><td>160</td><td></td><td>175</td><td>0.04</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SI02-T5	B1pk 1	5	< 1	0.01	. 1	160		175	0.04						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1			1								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $																
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-			1		\$			T					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				-						1	-					
CHEMMEX MEAN 5 1000 120 0.01 4 2 L9600N 11500E Dup1-01 1085 4 1.78 20 2750 20 91 0.01 4 2 L9600N 11500E Dup2-01 1085 4 1.78 20 2750 20 91 0.74 110 <10	CHEMMEX MEAN 5 1000 1000 1000 4 $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$											-					
L9600N 11500E Dup 1-01 origi-01 1085 1050 4 3 1.78 1.72 20 19 2750 2750 20 16 91 88 0.74 0.72 110 106 < 10 <100 78 74 L9800N 11775E Dup 2-01 origi-01 980 5 1.10 1.11 85 85 1290 1270 32 30 159 162 0.40 0.32 154 153 < 10 236 236 236 L10000N 10550E Dup 3-01 0rigi-01 530 55 5 1.48 1.45 19 18 1850 1750 28 26 204 197 0.50 0.49 111 < 10 78 80 78 L10000N 11550E Dup 4-01 0rigi-01 1705 1710 7 6 1.15 126 88 1820 166 76 0.38 152 152 < 10 280 286 280 L10200N 10350E Dup 5-01 0rigi-01 1270 111 1.76 128 1320 1340 164 166 219 215 0.51 0.52 133 138 < 10 652 L10200N 11350E Dup 5-01 0rigi-01 845 1 1 1.37 1.48 35 1640 94 175 160 0.42 0.41 148 < 10 208 L10400N 10875E Dup 5-01 0rigi-01 620 925 4 1 1.32 1.48 53 1670 46 158 158 0.41	L9600N 11500E Dup 1-01 orig 1-01 1085 1050 4 3 1.78 1.72 20 19 2750 2750 20 16 91 88 0.74 0.72 110 106 < 10 78 L9800N 11775E Dup 2-01 orig 2-01 980 5 1.10 85 1.11 1290 32 1270 159 30 0.40 162 0.32 154 153 < 10 200 236 L10000N 10550E Dup 3-01 orig 3-01 530 525 5 1.48 1.45 19 18 1850 1750 28 26 204 197 0.50 0.49 111 108 < 10 236 L10000N 10550E Dup 4-01 orig 3-01 1705 1710 7 6 1.15 18 88 1820 1860 76 78 166 0.38 152 10 286 L10000N 10350E Dup 4-01 orig 5-01 1270 11710 11 6 1.76 128 1320 1340 164 166 219 0.51 0.51 133 10 652 L10200N 10350E Dup 5-01 0rig 5-01 1270 11 1.76 1.26 128 1320 1640 166 215 0.52 0.52 133 138 < 10 652 L10200N 11350E Dup 5-01 0rig 5-01 845 925 1 1.48 1.37 32 1490 35 82 1640 0.41 175 148 0.44 135 < 10 208			-	F		-										
0r1g1-01 1050 3 1.72 19 2750 16 88 0.72 110 < 10 74 L9800N 11775EDup2-01 or1g2-01980 980 or1g2-01 5 1.10 85 1290 111 32 159 0.40 154 0.32 < 10 74 L9800N 11775EDup2-01 or1g2-01980 980 5 1.10 85 1290 111 32 159 0.40 154 0.32 < 10 236 L10000N 10550EDup3-01 or1g3-01 530 525 5 1.48 4 19 1.45 1850 18 28 26 204 197 0.50 0.49 111 108 < 10 236L10000N 10550EDup4-01 or1g3-01 575 575 4 1.45 18 18 1750 26 26 197 0.49 108 108 < 10 78L10000N 11550EDup4-01 or1g3-01 1705 1710 7 6 1.15 1.09 88 1820 1800 76 78 162 166 0.38 152 152 < 10 286L10200N 10350EDup5-01 or1g5-01 1270 1270 11 11 1.76 128 126 1340 1320 166 164 215 219 0.51 0.51 133 133 < 10 654 652L10200N 11350EDup5-01 or1g5-01 845 925 1 1 1.37 148 32 35 1490 1640 92 94 160 175 0.44 135 123 < 10 210 208L10400N 10875EDup7-01 <td>0r1g1-01$1050$$3$$1.72$$19$$2750$$160$$91$$0.72$$110$$<10$$76$$L9800N$$11775E$$Dup2-01$ $0r1g2-01$$980$ $980$$5$$1.10$ $1.11$$85$$1290$ $1270$$32$$159$ $162$$0.40$$154$ $162$$<10$ $74$$74$$L9800N$$11775E$$Dup2-01$ $0r1g2-01$$980$ $980$$5$$1.10$ $85$$85$ $1270$$1290$ $30$$32$ $162$$159$ $0.32$$0.40$ $153$$154$ $< 10$$<10$ $236$$L10000N$$10550E$$Dup3-01$ $0r1g3-01$$530$ $525$$5$ $4$$1.48$ $1.45$$19$ $188$$28$ $26$$204$ $197$$0.49$$108$ $< 108$$<10$ $210$$L10000N$$10550E$$Dup4-01$ $0r1g3-01$$1705$ $72$$7$ $1.15$$88$ $88$$1800$ $76$$78$ $162$$166$ $0.38$$152$ $152$$<10$ $280$$L10200N$$10350E$$Dup5-01$ $0r1g5-01$$1270$ $1270$$11$ $11$$1.76$ $1286$$126$ $1340$$1320$ $166$$164$ $215$$219$ $0.52$$0.51$ $133$$133$ $< 10$$654$ $652$$L10200N$$10350E$$Dup5-01$ $0r1g5-01$$845$ $925$$1$ $1.488$$35$ $1640$$94$$175$ $0.52$$0.41$$148$ $135$$<10$ $208$$L10400N$$10875E$$Dup7-01$ $0r1g5-01$$620$$4$ $4$$1.32$$53$ 53<!--</td--><td>L9600N 11500R</td><td>Dup - 01</td><td>1085</td><td></td><td>1 70</td><td>20</td><td>2764</td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td></br></td>	0r1g1-01 1050 3 1.72 19 2750 160 91 0.72 110 <10 76 $L9800N$ $11775E$ $Dup2-01$ $0r1g2-01$ 980 	L9600N 11500R	Dup - 01	1085		1 70	20	2764						_			
L9800N 11775EDup 2-01 orig2-01980 98051.10 1.1185 851290 127032 30159 1620.40 0.32154 153<10 236L10000N 10550EDup 3-01 orig3-01530 52551.48 419 1.451850 1828 1750204 260.50 197111 0.49<10 10880 78 108L10000N 10550EDup 3-01 orig3-01530 52551.48 419 1.451850 1828 1750204 260.50 197111 0.49<10 10880 78 152L10000N 11550EDup 4-01 orig4-011705 17107 61.15 1.0988 18201800 7678 162166 0.38 0.34152 152<10 286 280L10200N 10350EDup 5-01 orig5-011270 127011 1.761.76 1281320 1340164 166219 2150.51 0.52133 138 < 10	L9800N 11775E Dup 2-01 Orig2-01 980 980 5 1.10 85 1290 1270 32 30 159 162 0.40 154 153 < 10 236 236 L10000N 10550E Dup 3-01 Orig2-01 530 525 5 1.48 19 1850 28 204 0.50 111 < 10												1				
0rig2-0198051.10851270321350.40154< 10236L10000N 10550EDup3-0153051.48191850282040.50111< 10	0rig2-0198051.10851270301620.40154< 10236L10000N 10550EDup3-0153051.48191850282040.50111< 10	L9800N 11775E	Dup9-01	000	_ د	1 10	0.5	1000									
L10000N 10550E Dup3-01 530 5 1.48 19 1850 28 204 0.50 111 < 10 80 L10000N 10550E Dup3-01 525 4 1.45 18 1750 26 197 0.49 108 < 10 80 L10000N 11550E Dup4-01 1705 7 1.15 88 1800 78 166 0.38 152 < 10 286 L10200N 10350E Dup5-01 1270 11 1.76 126 1320 164 219 0.51 133 < 10 654 L10200N 10350E Dup5-01 1270 11 1.76 126 1320 164 219 0.51 133 < 10 654 L10200N 10350E Dup5-01 1270 11 1.76 128 1340 166 215 0.51 133 < 10 654 L10200N 11350E Dup5-01 845 1 1.37 32 1490 82 160 0.42 123 < 10 188 L10400N 10875E Dup7-01	L10000N 10550E Dup3-01 Orig5-01 530 525 5 4 1.48 1.45 19 18 1850 1750 28 26 204 197 0.50 0.49 111 108 < 10 70 80 78 L10000N 11550E Dup4-01 Orig4-01 1705 1710 7 6 1.15 1.09 88 1820 1800 76 78 166 166 0.38 152 152 < 10 286 L10200N 10350E Dup5-01 Orig5-01 1270 11 170 1.78 126 1320 164 166 219 0.51 0.51 138 133 < 10 652 L10200N 10350E Dup5-01 Orig5-01 1270 1270 11 1 1.76 128 1320 1340 164 166 219 0.52 0.51 138 133 < 10 652 L10200N 11350E Dup5-01 Orig5-01 845 925 1 1.48 35 1640 94 175 160 0.42 0.41 135 188 < 10																
orig3-01 525 4 1.45 1.8 1050 26 197 0.49 108 < 10 80 L10000N 11550E Dup1-01 1705 7 1.15 88 1800 78 166 0.38 152 < 10 286 L10000N 11550E Dup1-01 1705 7 1.15 88 1800 78 166 0.38 152 < 10 286 L10200N 10350E Dup5-01 1270 11 1.76 128 1340 164 219 0.51 133 < 10 654 L10200N 10350E Dup5-01 1270 11 1.76 128 1340 166 215 0.51 133 < 10 654 L10200N 11350E Dup5-01 845 1 1.37 32 1490 82 160 0.42 123 < 10 652 L10200N 11350E Dup5-01 845 1 1.37 32 1490 82 160 0.42 123 < 10 188 L10400N 10875E Dup7-01 620	orig3-01 525 4 1.45 1.8 1050 26 197 0.49 111 <10 80 L10000N 11550EDup1-01 orig1-01 1705 7 1.15 88 1800 78 166 0.38 152 <10 286 L10200N 10350EDup5-01 orig5-01 1270 11 1.76 126 1320 164 219 0.51 133 <10 654 L10200N 10350EDup5-01 orig5-01 1270 11 1.76 128 1340 166 215 0.52 133 <10 654 L10200N 11350EDup5-01 orig5-01 845 1 1.37 32 1490 82 160 0.42 123 <10 652 L10200N 11350EDup5-01 orig5-01 845 1 1.37 32 1490 82 160 0.42 123 <10 88 L10400N 10875EDup7-01 620 4 1.32 53 1670 46 158 0.41 148 <10 186	1.10000N 10550P	Dup2-01	E 2 0	-	1 40					[
L10000N 11550E Dupl-01 Origi-01 1705 1710 7 6 1.15 1.09 88 88 1800 1820 78 76 166 162 0.157 100 70 76 L10200N 10350E Dup5-01 Orig5-01 1270 1270 11 1.78 126 1320 164 219 0.51 133 138 < 10	L10000N 11550E Dupl-01 Origi-01 1705 1710 7 6 1.15 1.09 88 88 1800 1820 78 76 166 162 0.157 100 100 78 L10200N 10350E Dup5-01 Orig5-01 1270 1270 11 1.78 126 1320 164 219 0.51 133 < 10	270000 10000B															
Origa-01 1710 6 1.19 88 1820 76 166 0.38 152 < 10 286 L10200N 10350E Dup5-01 1270 11 1.78 126 1320 164 219 0.51 133 < 10	origination origination integration	100001 11550-			_							100	× 10	76			
L10200N 10350E Dup5-01 orig5-01 1270 1270 11 11 1.78 11 126 128 1320 128 164 1340 219 166 0.51 215 133 0.52 40 654 652 L10200N 11350E Dup6-01 orig5-01 845 925 1 1.37 1.48 32 1490 35 82 1640 160 94 0.42 175 123 0.44 40 188 208 L10400N 10875E Dup7-01 620 4 1.32 53 1670 46 158 0.41 148 <10	L10200N 10350E Dup5-01 orig5-01 1270 1270 11 11 1.78 1.76 126 128 1320 1340 164 166 219 215 0.51 0.52 133 138 < 10 654 652 L10200N 11350E Dup6-01 orig5-01 845 925 1 1.37 1.48 32 35 1490 1640 82 94 160 175 0.44 135 < 10 208 L10400N 10875E Dup7-01 620 4 1.32 53 1670 1670 46 158 0.41 148 < 10	PTOTON TIPPOE											< 10	286			
orig5-01 1270 11 1.76 128 1340 166 215 0.51 133 < 10 654 L10200N 11350E Dup6-01 845 1 1.37 32 1490 82 160 0.42 123 < 10	origs-01 1270 11 1.76 128 1340 166 215 0.51 133 < 10 654 L10200N 11350E Dup6-01 845 1 1.37 32 1490 82 160 0.42 123 < 10		or1g1-01	1710	6	1.09	88	1820	76	162	0.34	152	< 10	280			
Orig5-01 1270 11 1.76 128 1340 166 215 0.52 138 < 10 652 L10200N 11350E Dup5-01 845 1 1.37 32 1490 82 160 0.42 123 < 10	Orig5-01 1270 11 1.76 128 1340 166 215 0.52 138 < 10 652 L10200N 11350E Dup5-01 845 1 1.37 32 1490 82 160 0.42 123 < 10	L10200N 10350E				1.78	126	1320	164	219	0.51	133	< 10	654			
Orig5-01 925 1 1.48 35 1640 94 175 0.44 135 < 10	Orig5-01 925 1 1.48 35 1640 94 175 0.44 135 < 10		Orig5-01	1270	11	1.76	129	1340	166								
Origs-01 925 1 1.48 35 1640 94 175 0.44 135 < 10 208 L10400N 10875E Dup7-01 620 4 1.32 53 1670 46 158 0.41 148 < 10	Origs-01 925 1 1.48 35 1640 94 175 0.44 135 < 10 208 L10400N 10875E Dup7-01 620 4 1.32 53 1670 46 158 0.41 148 < 10	L10200N 11350E	Dup6-01	845	1	1.37	32	1490	82	160	0 42	122	/ 10	100			
				925													
	Outable 1 (30 1070 40 138 0.41 168 < 10 186	L10400N 10875E	Dup7-01	620	4	1 32	52	1670	46	150						i	

CERTIFICATION:

Ha & E. Do.

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., British Columbia, Canada North Vancouver V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY P.O. BOX 49066, STE. 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4

Comments: ATTN:DAVID TERRY CC:DAVID PAWLIUK

C	ERTIF	ICATE	A9830790			ANALYTICAL F	ROCEDURES	6	
(GP D) - i Project: P.O. # :	BOLIDEN - BEALE 6112	· WESTMIN LIMIT	ED	CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT
Samples This rep	port was	printed on 2	}	983 578 573 565 575 561 576 562 563	260 260 260 260 260 260 260 260 260 260	Au ppb: Fuse 30 g sample Ag ppm: 24 element, rock & core Al %: 24 element, rock & core Ba ppm: 24 element, rock & core Be ppm: 24 element, rock & core Bi ppm: 24 element, rock & core Ca %: 24 element, rock & core Cd ppm: 24 element, rock & core	FA-AAS AAS ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	5 0.2 0.01 10 0.5 2 0.01 0.5	10000 100.0 25.0 10000 10000 25.0 500
	SAM	PLE PREPA	RATION	569	260	Co ppm: 24 element, rock & core Cr ppm: 24 element, rock & core	ICP-ARS ICP-ARS	1 1	10000 10000
CHEMEX CODE	NUMBER SAMPLES		DESCRIPTION	577 566 584 570 568	260 260 260 260 260	Cu ppm: 24 element, rock & core Fe %: 24 element, rock & core K %: 24 element, rock & core Mg %: 24 element, rock & core Mn ppm: 24 element, rock & core	ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	1 0.01 0.01 0.01 5	10000 25.0 10.00 15.00 10000
201 202 285	260 260 260	Dry, sieve t save reject ICP - HF dig	o -80 mesh estion charge	554 583 564 559 560	260 260 260 260 260	Mo ppm: 24 element, rock & core Na %: 24 element, rock & core Ni ppm: 24 element, rock & core P ppm: 24 element, rock & core Pb ppm: 24 element, rock & core	ICP-ARS ICP-ARS ICP-ARS ICP-ARS ICP-ARS AAS	1 0.01 1 10 2	10000 10.00 10000 10000 10000
				582 579 572 556 558	260 260 260 260 260	Sr ppm: 24 element, rock & core Ti %: 24 element, rock & core V ppm: 24 element, rock & core W ppm: 24 element, rock & core Zn ppm: 24 element, rock & core	ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	1 0.01 1 10 2	10000 10.00 10000 10000 10000

A9830790

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY P.O. BOX 49066, STE. 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4 Page I. Joer : 1-A Total Pages : 7 Certificate Date: 22-SEP-1998 Invoice No. : 19830790 P.O. Number : 6112 Account : GP D

Project : BEALE Comments: ATTN:DAVID TERRY CC:DAVID PAWLIUK

			· · · · · ·					CERII	FICATE	OF AN	ALYSIS		A983079	90	
SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm AAS	A1 % (ICP)	Ba ppm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cd ppm (ICP)	Coppm (ICP)	Cr ppm (ICP)	Cu ppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)
L9600N 11500E L9600N 11525E L9600N 11550E L9600N 11575E	201 202 201 202 201 202 201 202 201 202	< 5 10 15 15	1.0 0.6 0.8 0.6	6.44 8.64 8.28 8.78	300 1110 1060 1170	1.5 3.0 2.5 3.0	< 2 < 2 < 2 < 2 < 2	0.68 0.40 0.40 0.31	< 0.5 2.0 2.5 2.0	12 34 35 37	94 106 105 107	9 86 91 92	6.26 5.00 4.93 4.88	1.65 2.38 2.28 2.46	0.55 1.46 1.39 1.50
L9600N 11600E	201 202 201 202	10	0.8	9.43 8.63	1260 1100	3.0	< 2 < 2	0.26	3.0	39 44	119 102	104 95	5.46	2.69	1.67
L9600N 11650E L9600N 11675E L9600N 11700E L9600N 11725E	201 202 201 202 201 202 201 202 201 202	10 < 5 10 < 5	0.6 1.0 1.6 0.2	8.33 8.84 8.80 6.85	1020 1160 1350 770	3.0 3.0 2.5 2.0	< 2 < 2 < 2 4	0.24 0.38 0.22 0.65	7.0 2.0 1.5 0.5	63 21 15 17	90 112 139 98	93 75 98 37	4.85 4.55 5.17 4.30	2.34 2.36 2.41 2.36 1.77	1.48 1.38 1.36 1.23 1.23
L9600N 11750E L9600N 11775E L9600N 11800E L9600N 11825E	201 202 201 202 201 202 201 202 201 202	25 5 < 5 10	1.6 0.8 0.6 1.4	9.70 7.95 8.13 7.84	1560 1010 1020 1150	3.5 2.5 2.5 2.5	< 2 < 2 < 2 < 2 < 2	0.18 0.46 0.49 0.46	10.5 2.0 1.5 3.5	37 21 21 20	151 104 99 103	142 54 55 84	6.47 4.23 4.33 4.58	2.74 2.11 2.11 2.10	0.99 1.30 1.38 1.08
L9600N 11850E L9600N 11875E L9600N 11900E L9600N 11925E L9600N 11950E	201 202 201 202 201 202 201 202 201 202 201 202	< 5 < 5 < 5 < 5 10	0.8 0.4 0.2 0.2 0.4	8.10 7.68 7.58 7.83 8.43	1140 980 950 980 1100	2.5 2.5 2.5 2.5 2.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.47 0.55 0.49 0.44 0.40	2.0 1.0 0.5 0.5 0.5	22 19 19 21 22	104 90 86 86 100	70 52 51 62 64	4.61 3.84 3.75 3.70 4.16	2.16 1.84 1.83 1.86 2.12	1.28 1.44 1.40 1.42 1.49
L9600N 11975E L9600N 12000E L9600N 12025E L9600N 12050E L9600N 12075E	201 202 201 202 201 202 201 202 201 202 201 202	< 5 10 5 10 < 5	0.6 1.0 0.2 0.2 < 0.2	7.81 8.60 7.87 7.48 7.69	1020 1020 1030 940 980	2.5 2.5 2.5 2.0 2.5	< 2 < 2 < 2 < 2 < 2 < 2	0.37 0.61 0.45 0.46 0.40	0.5 1.0 0.5 0.5 1.0	20 25 21 19 24	92 102 86 84 87	58 61 60 61 63	3.76 4.38 3.76 3.78 4.04	1.84 2.09 1.86 1.75 1.86	1.44 1.61 1.45 1.44 1.39
L9600N 12100E L9600N 12125E L9600N 12150E L9600N 12175E L9600N 12200E	201 202 201 202 201 202 201 202 201 202 201 202	5 10 10 5	0.6 2.0 1.8 1.4 1.4	8.59 7.75 8.10 8.19	1100 1010 1010 1000	2.5 2.5 3.0 3.0	< 2 < 2 < 2 < 2 < 2	0.38 0.45 0.53	1.5 2.0 2.5 2.5	24 40 44 37	96 103 104 100	73 116 155 122	4.34 4.73 5.02 5.01	2.21 2.06 2.04 2.10	1.59 1.36 1.35 1.47
L9800N 11500E L9800N 11525E L9800N 11525E	201 202 201 202 201 202 201 202	< 5 < 5 < 5 < 5	1.4 1.0 0.6 1.2	8.40 8.80 8.73 8.75	1110 1060 1150 1120	3.0 3.0 3.0 3.5	< 2 < 2 < 2	0.42 0.38	2.5 2.0 3.5	34 34 40	96 101 108	123 104 74	4.74 4.83 5.33	2.14 2.14 2.39	1.51 1.45 1.43
L9800N 11575E L9800N 11600E L9800N 11625E	201 202 201 202 201 202 201 202	<pre></pre>	0.6 0.6 0.8	7.32 7.55 8.20	900 840 1050	3.5 2.5 3.0 3.0	< 2 < 2 < 2 < 2	0.45 1.17 1.40 1.21	3.0 6.0 1.5 2.0	39 23 18 21	103 92 93 98	110 71 64 73	5.22 4.38 4.36 4.22	2.32 1.89 1.98 2.11	1.52 0.88 1.05 1.32
L9800N 11650E L9800N 11675E L9800N 11700E L9800N 11725E L9800N 11750E	201 202 201 202 201 202 201 202 201 202 201 202	< 5 10 < 5 5 < 5	0.6 1.2 0.2 1.6 2.4	7.82 8.93 8.17 7.95 7.84	950 1150 1110 920 920	3.0 3.0 3.0 3.0 3.0	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.63 0.29 0.27 0.63 1.11	2.0 1.0 1.5 1.0 2.0	58 57 36 22 23	88 106 103 94 90	110 108 80 87 109	4.76 5.60 5.52 4.09 3.95	1.94 2.40 2.22 1.87 1.91	1.29 1.26 1.23 1.26 1.24

CERTIFICATION: Hartenche

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218)To: BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY P.O. BOX 49066, STE. 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4

Page Lober : 1-B Total Pages :7 Certificate Date: 22-SEP-1998 Invoice No. : 19830790 P.O. Number : 6112 Account : GP D

Project : BEALE Comments: ATTN:DAVID TERRY CC:DAVID PAWLIUK

							L							
SAMPLE	PREP CODE	Mn ppm (ICP)	Mo ppm (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm (ICP)	Pb ppm AAS	Sr ppm (ICP)	Ti % (ICP)	V ppm (ICP)	W ppm (ICP)	Zn ppm (ICP)		
L9600N 11500E L9600N 11525E L9600N 11550E L9600N 11575E L9600N 11600E	201 202 201 202 201 202 201 202 201 202 201 202	1050 1680 1715 1320 1115	3 14 14 24 26	1.72 1.03 1.01 0.84 0.76	19 105 109 101 135	2750 1390 1320 1180 1110	16 46 44 30 28	88 134 132 126 100	0.72 0.46 0.44 0.42 0.48	106 202 191 202 222	< 10 < 10 < 10 < 10 < 10 < 10	74 256 264 246 296		
L9600N 11625E L9600N 11650E L9600N 11675E L9600N 11700E L9600N 11725E	201 202 201 202 201 202 201 202 201 202 201 202	1735 2660 970 610 1190	25 22 12 30 6	0.99 0.87 0.90 0.87 1.14	129 141 81 83 48	1340 970 1260 1300 1900	38 38 34 54 28	128 98 140 195 147	0.44 0.36 0.41 0.41 0.48	179 147 216 351 153	< 10 < 10 < 10 < 10 < 10 < 10	274 320 236 268 140		
L9600N 11750E L9600N 11775E L9600N 11800E L9600N 11825E L9600N 11850E	201202201202201202201202201202	2460 1350 1365 1240 1195	37 9 8 22 15	0.67 1.07 1.12 1.15 1.07	160 69 71 86 80	1190 1490 1510 1120 1030	30 34 32 36 30	170 134 139 199 157	0.41 0.44 0.41 0.38 0.38	514 204 178 253 198	< 10 < 10 < 10 < 10 < 10 < 10	532 204 190 250 208		
L9600N 11875E L9600N 11900E L9600N 11925E L9600N 11950E L9600N 11975E	201 202 201 202 201 202 201 202 201 202 201 202	1225 1250 1215 1405 1430	4 4 4 3	1.06 1.00 0.95 0.86 0.89	67 65 75 84 73	1010 1050 780 840 1150	28 30 28 30 28	148 131 125 115 105	0.42 0.34 0.39 0.42 0.37	141 136 134 159 144	< 10 < 10 < 10 < 10 < 10 < 10	146 138 140 160 140		
L9600N 12000E L9600N 12025E L9600N 12050E L9600N 12075E L9600N 12100E	201 202 201 202 201 202 201 202 201 202 201 202	1770 1175 1235 1395 1375	4 3 5 6 6	1.17 0.90 0.98 1.00 1.05	87 82 76 83 89	1110 620 770 730 640	30 26 28 32 34	141 118 126 119 128	0.42 0.36 0.37 0.41 0.34	151 135 133 140 160	< 10 < 10 < 10 < 10 < 10 < 10	158 134 144 152 164		
L9600N 12125E L9600N 12150E L9600N 12175E L9600N 12200E L9800N 11500E	201 202 201 202 201 202 201 202 201 202 201 202	3140 3830 2430 2160 1755	11 15 11 11 8	1.03 1.08 1.14 1.04 1.02	129 142 130 119 100	1350 1610 1390 1180 1460	52 84 96 80 60	122 121 132 131 108	0.38 0.39 0.41 0.37 0.38	155 159 157 165 173	< 10 < 10 < 10 < 10 < 10 < 10	262 310 282 288 324	 	
L9800N 11525E L9800N 11550E L9800N 11575E L9800N 11600E L9800N 11625E	201 202 201 202 201 202 201 202 201 202 201 202	1915 1930 1845 995 960	10 10 12 9 8	0.89 1.02 1.05 1.20 1.11	84 132 85 84 89	1440 1290 1830 1510 1240	86 62 54 54 64	97 123 184 196 218	0.38 0.34 0.37 0.38 0.33	184 180 153 136 158	< 10 < 10 < 10 < 10 < 10 < 10	284 320 410 268 342		
L9800N 11650E L9800N 11675E L9800N 11700E L9800N 11725E L9800N 11750E	201 202 201 202 201 202 201 202 201 202 201 202	2430 2460 1720 1140 1220	8 13 15 5 5	1.18 0.99 0.88 0.98 0.98 0.89	170 132 106 102 112	1630 1960 2150 1440 1560	36 52 62 34 36	166 115 111 138 172	0.37 0.42 0.39 0.36 0.30	146 185 180 150 146	< 10 < 10 < 10 < 10 < 10 < 10	292 256 236 272 354		

CERTIFICATION: No. Kan Range

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., British Columbia, Canada North Vancouver V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

BOLIDEN - WESTMIN LIMITED To: ATTN: DAVID TERRY P.O. BOX 49066, STE. 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4

ber :2-A es :7 Page Total Pages :7 Certificate Date: 22-SEP-1998 Invoice No. : 19830790 P.O. Number : 6112 Account : GP D

Project : BEALE Comments: ATTN:DAVID TERRY CC:DAVID PAWLIUK

	_ <u></u>					•		CERTI	FICATE	OF AN	ALYSIS	s /	498307	90	
SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm AAS	Al % (ICP)	Ba ppm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cd ppm (ICP)	Coppm (ICP)	Cr ppm (ICP)	Cu ppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)
L9800N 11775E L9800N 11800E L9800N 11825E L9800N 11825E L9800N 11850E L9800N 11875E	201 202 201 202 201 202 201 202 201 202 201 202 201 202	< 5 < 5 < 5 < 5 < 5 < 5	1.0 0.6 0.4 0.8 0.2	8.13 8.24 7.68 8.22 8.27	930 950 1070 960 970	2.5 2.5 2.5 2.5 2.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.79 0.72 1.64 0.44 0.48	1.0 1.0 0.5 0.5 0.5	18 18 21 17 19	93 91 85 96 97	65 70 80 71 62	4.12 4.08 3.61 4.10 4.27	1.90 1.89 1.73 1.84 2.08	1.38 1.52 1.53 1.44 1.32
L9800N 11900E L9800N 11925E L9800N 11950E L9800N 11950E L9800N 12000E	201 202 201 202 201 202 201 202 201 202 201 202 201 202	<pre>< 5 < 5</pre>	< 0.2 < 0.2 0.2 1.0 < 0.2	7.12 7.34 7.96 9.70 7.72	790 830 940 1080 900	2.0 2.0 2.5 3.0 2.0	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.76 0.45 0.50 0.88 0.59	0.5 1.0 0.5 1.0 0.5	14 16 20 20 20	81 88 85 112 86	48 54 63 90 68	3.83 4.05 4.08 4.88 4.22	1.67 1.76 1.84 2.23 1.75	1.17 1.20 1.34 1.56 1.50
L9800N 12025E L9800N 12050E L9800N 12075E L9800N 12100E L9800N 12125E	201 202 201 202 201 202 201 202 201 202 201 202 201 202	< 5 < 5 < 5 < 5 < 5 < 5	0.6 < 0.2 0.2 0.8 0.2	8.44 8.24 7.08 8.05 7.63	1020 950 750 870 920	2.5 2.5 2.0 2.5 2.5	< 2 < 2 < 2 < 2 < 2 < 2	0.46 0.49 0.45 0.52 0.59	1.0 1.0 0.5 0.5 0.5	21 22 12 18 20	102 92 85 97 88	70 79 36 48 52	4.58 4.46 3.99 4.08 3.90	2.03 1.91 1.79 1.84 1.79	1.43 1.65 0.97 1.16 1.34
L9800N 12150E L9800N 12175E L9800N 12200E L10000N 10000E L10000N 10025E	201 202 201 202 201 202 201 202 201 202 201 202	< 5 < 5 5 < 5 < 5 < 5	0.4 0.4 0.6 < 0.2 0.6	8.97 10.00 9.83 8.30 7.62	900 1200 1400 1220 860	3.0 3.5 3.0 2.5 2.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.66 0.26 0.36 1.59 1.25	1.0 1.5 2.0 1.5 3.5	27 39 39 13 18	104 113 113 74 83	60 88 101 32 37	5.07 5.20 5.50 3.52 3.94	2.31 2.69 2.73 2.11 1.79	1.34 1.56 1.66 1.25 1.12
L10000N 10050E L10000N 10075E L10000N 10100E L10000N 10125E L10000N 10150E	201 202 201 202 201 202 201 202 201 202 201 202	< 5 < 5 < 5 < 5 < 5 < 5 < 5	< 0.2 0.6 0.6 < 0.2 < 0.2	7.95 8.12 7.18 7.36 7.75	1000 630 920 1180 1270	2.5 3.5 2.5 2.5 2.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	1.34 1.08 1.19 1.67 1.40	1.5 2.0 1.5 1.5 1.0	12 12 16 14 13	89 87 78 52 69	25 43 60 41 47	3.33 3.25 3.65 2.75 3.46	1.69 1.77 1.67 1.90 1.99	1.20 0.79 1.16 0.89 1.14
L10000N 10175E L10000N 10200E L10000N 10225E L10000N 10250E L10000N 10275E	201 202 201 202 201 202 201 202 201 202 201 202	< 5 < 5 10 < 5 < 5	0.2 0.6 < 0.2 < 0.2 0.2	9.03 9.41 7.20 7.14 6.91	410 620 700 830 570	4.5 4.5 2.5 2.0 1.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	1.42 1.29 1.31 1.09 0.89	3.0 2.5 1.5 1.0 0.5	16 15 18 12 9	88 94 102 85 90	23 18 12 18 14	5.53 4.11 4.16 4.72 3.91	2.04 2.27 1.56 1.50 1.32	0.71 0.76 1.11 1.22 0.80
L10000N 10300E L10000N 10325E L10000N 10350E L10000N 10350E L10000N 10375E L10000N 10400E	201 202 201 202 201 202 201 202 201 202 201 202	10 15 5 10 < 5	0.6 0.2 < 0.2 1.4 0.2	7.75 6.30 7.11 7.90 7.02	870 650 1080 970 690	2.0 1.5 1.5 2.5 2.0	8 < 2 < 2 < 2 6	0.65 0.81 0.35 0.61 0.82	1.5 0.5 0.5 1.5 < 0.5	17 10 10 17 9	89 77 89 86 72	46 13 21 48 11	4.32 4.02 4.19 4.32 3.88	1.64 1.46 1.86 1.81 1.74	1.07 0.74 1.10 1.21 0.63
L10000N 10425E L10000N 10450E L10000N 10475E L10000N 10500E L10000N 10525E	201 202 201 202 201 202 201 202 201 202 201 202	< 5 < 5 < 5 < 5 < 5 < 5	< 0.2 0.2 < 0.2 < 0.2 0.8	8.32 8.11 6.07 7.39 8.12	1030 600 580 780 890	2.5 2.5 . 1.5 2.0 2.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	1.56 0.93 0.70 1.00 1.19	0.5 0.5 0.5 0.5 0.5	14 15 12 10 14	56 98 74 78 76	29 32 12 15 22	3.35 5.48 4.92 3.68 3.97	1.64 1.80 1.54 1.57 1.69	0.97 0.95 0.63 0.82 0.98

CERTIFICATION:

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218) To: BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY P.O. BOX 49066, STE. 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4 Page Ivendber : 2-B Total Pages :7 Certificate Date: 22-SEP-1998 Invoice No. : 19830790 P.O. Number : 6112 Account : GP D

Project : BEALE Comments: ATTN:DAVID TERRY CC:DAVID PAWLIUK

								CERTI	FICATE	OF AN	ALYSIS	5 J	4983079	90	
SAMPLE	PREP CODE	Mn ppm (ICP)	Mo ppm (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm (ICP)	Pb ppm AAS	Sr ppm (ICP)	Ti % (ICP)	V ppm (ICP)	W ppm (ICP)	Zn ppm (ICP)			
L9800N 11775E	201 202	980	5	1.11	85	1270	30	162	0.32	153	< 10	236			
L9800N 11800E L9800N 11825E	201 202 201 202	975 835	4	0.96	70	1310	30	134	0.32	159	< 10	190			
L9800N 11850E	201 202	1010	5	1.79	85 68	1390 1340	40 30	389 120	0.42	132	< 10	240			
L9800N 11875E	201 202	1070	4	1.14	56	1900	30	118	0.40	153 156	< 10 < 10	176 142			-
L9800N 11900E	201 202	755	3	1.25	42	1960	22	154	0.42	129	< 10	118			
L9800N 11925E	201 202	1055	4	1.10	52	1990	28	115	0.43	141	< 10	134			
L9800N 11950E	201 202	1350	3	1.15	53	1730	30	138	0.38	146	< 10	134			
L9800N 11975E L9800N 12000E	201 202 201 202	1055 1170	6	1.21	92 56	1680 1800	34	167	0.46	178 152	< 10 < 10	194 138			
L9800N 12025E	201 202	1230							L						
L9800N 12050E	201 202	1300	4	1.09	65 66	1840 1360	30 28	116 120	0.46	169	< 10	152			
L9800N 12075E	201 202	775	4	1.18	47	2340	26	100	0.39	164 125	< 10 < 10	142 120			
L9800N 12100E	201 202	1020	3	1.02	56	2900	32	111	0.44	144	< 10	128			
L9800N 12125E	201 202	965	4	1.15	70	1230	36	150	0.36	140	< 10	140			
L9800N 12150E	201 202	1130	7	1.61	73	1570	40	148	0.47	147	< 10	168			
L9800N 12175E	201 202	1285	6	1.01	97	1040	48	107	0.47	174	< 10	206			
L9800N 12200E L10000N 10000E	201 202 201 202	1230 570	12 14	1.01	101	1080	68	111	0.50	205	< 10	242			
L10000N 10025E	201 202	1080	20	2.08 1.60	54 68	1590 1760	40 30	365 219	0.44	137 133	< 10 < 10	176 276			
L10000N 10050E	201 202	505	5	1.89	52	1440	34	306	0.43	126	< 10				
L10000N 10075E	201 202	360	23	1.91	63	1500	32	174	0.50	99	< 10	148 210			
L10000N 10100E	201 202	750	13	1.53	66	1310	30	247	0.39	137	< 10	212			
L10000N 10125E	201 202	665	1	2.23	34	1810	40	383	0.37	94	< 10	120			ĺ
L10000N 10150E	201 202	775	13	2.11	40	1300	44	364	0.44	127	< 10	172			
L10000N 10175E	201 202	855	17	2.41	78	1890	18	154	0.61	85	< 10	228			
L10000N 10200g	201 202	525	12	2.44	111	1530	36	183	0.45	96	< 10	386			[
L10000N 10225E L10000N 10250E	201 202 201 202	865 670	6	1.95	54	1390	28	262	0.45	97	< 10	120			
L10000N 10255E	201 202	510	5 5	1.59 1.61	43 29	1370 1560	34 30	265 195	0.43	119 105	< 10 < 10	120 72			
L10000N 10300E	201 202	1960	15	1.22	67	1790	36	159	0.39	156	< 10	240			
L10000N 10325E	201 202	835	6	1.47	23	2360	42	179	0.47	124	< 10	84			
L10000N 10350E	201 202	715	11	0.80	32	1230	62	99	0.49	196	< 10	158			
L10000N 10375E	201 202	1005	9	1.20	52	1520	92	153	0.45	161	< 10	228			
L10000N 10400E	201 202	755	6	1.84	19	1790	38	203	0.58	124	< 10	82			
L10000N 10425E	201 202	610	4	2.06	37	1740	40	399	0.36	99	< 10	116			
L10000N 10450E L10000N 10475E	201 202	1140	10	1.87	30	2160	30	173	0.63	151	< 10	150			
L10000N 10500E	201 202 201 202	825 450	8	1.65	19	1600	30	166	0.51	115	< 10	84			
L10000N 10525E	201 202	645	5	1.69	25 36	1600 1760	34 28	236 282	0.52	117	< 10	92			
			-		30	1100	40	404	0.49	114	< 10	110			
		l	l	l											

٢

CERTIFICATION:___

Hark Ellen

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., British Columbia, Canada V7J 2C1

PHONE: 604-984-0221 FAX: 604-984-0218

)To: BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY P.O. BOX 49066, STE 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4

Page i ber : 3-A Total Pages : 7 Certificate Date: 22-SEP-1998 Invoice No. : 19830790 P.O. Number : 6112 Account : GP D

Project : BEALE Comments: ATTN:DAVID TERRY CC:DAVID PAWLIUK

		.		.		,		CERTI	FICATE	OF AN	ALYSIS	<u> </u>	498307	90	
SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm AAS	A1 % (ICP)	Ba ppm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cd ppm (ICP)	Coppm (ICP)	Cr ppm (ICP)	Cu ppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)
L10000N 10550E	201 202	< 5	0.4	5.94	670	1.5	< 2	0.77	< 0.5	9	65	15	2.97	1.39	0.67
L10000N 10575E	201 202	< 5	0.6	6.60	540	2.0	< 2	0.08	0.5	13	84	29	4.00	1.44	0.85
L10000N 10600E L10000N 10625E	201 202 201 202	5 < 5	1.0	7.76	820	2.5	< 2	1.09	1.0	19	89	54	4.32	1.64	1.28
L10000N 10650E	201 202	15	8.8	7.80 8.76	910 830	2.5 3.5	< 2 < 2	1.23	2.5 9.5	24 37	79 103	60 189	4.30	1.76	1.22
L10000N 10675E	201 202	20	5.0	8.55	1110	3.5	< 2	0.60	10.5	47	117	197	9.23	2.01	1.45
L10000N 10700E L10000N 10725E	201 202	30	4.4	8.45	900	3.0	< 2	0.88	3.0	38	101	129	6.51	1.92	1.62
L10000N 10725E	201 202	20 NotRcđ	2.2 NotRed	8.34	960	3.0	< 2	0.89	6.0	46	99	132	6.83	1.92	1.60
L10000N 10775E		NotRed	NotRed	NotRed NotRed	NotRed NotRed	NotRed NotRed	NotRcd NotRcd	NotRed NotRed	NotRcd NotRcd	NotRed NotRed	NotRed NotRed	NotRed NotRed	NotRed NotRed	NotRed NotRed	NotRed NotRed
L10000N 10800E	201 202	< 5	0.8	7.70	600	2.5	< 2	0.88	1.5	15	82	23	4.22	1.60	0.95
L10000N 10825E L10000N 10850E	201 202 201 202	< 5 < 5	1.6	8.38	540	3.0	< 2	0.82	1.0	17	92	26	5.25	1.75	0.86
L10000N 10875E	201 202	< 5	0.8	7.56 9.52	730	2.5	<pre> < 2 < 2 < 2 </pre>	1.34 0.59	0.5	13	63	14	3.81	1.62	0.85
L10000N 10900E	201 202	< 5	0.2	7.67	1010	2.5	< 2	1.63	0.5	5 13	26 55	17 19	5.12 3.14	2.19 1.61	0.25
L10000N 10925E L10000N 10950E	201 202 201 202	< 5	1.4	8.19	490	3.0	< 2	0.94	0.5	14	76	21	4.61	1.44	1.02
L10000N 10975E	201 202 201 202	< 5 < 5	< 0.2 0.8	7.35 7.51	800 430	2.5	< 2	1.05	0.5	14	76	31	4.00	1.50	1.32
L10000N 11000E	201 202	< 5	0.4	7.51	600	2.0 2.0	< 2 < 2	0.93	0.5	14 14	104 84	24 27	6.13	1.44	0.82
L10000N 11025E	201 202	< 5	< 0.2	7.24	1090	1.5	< 2	1.55	0.5	19	66	42	4.44 3.44	1.65 1.68	0.82
L10000N 11050E L10000N 11075E	201 202 201 202	20 < 5	0.8 0.8	7.13	940	2.0	< 2	1.39	1.5	13	73	16	4.05	1.62	1.25
L10000N 11100B	201 202	< 5	0.8	7.97 7.63	870 940	2.5 2.0	< 2 < 2	1.81 0.87	0.5	15	86	18	4.32	1.64	1.41
L10000N 11125E	201 202	< 5	0.4	8.62	1170	2.5	< 2	1.39	1.0	14 19	83 82	18 29	4.74 3.92	1.79	1.36
L10000N 11150E	201 202	< 5	1.4	9.21	470	3.0	< 2	0.84	0.5	16	85	35	4.96	1.95 1.89	1.63 0.94
L10000N 11175E L10000N 11200E	201 202 201 202	< 5 < 5	0.2	7.87	1010 1010	1.5	< 2	1.15	0.5	18	67	33	4.18	1.65	1.76
L10000N 11225E	201 202	< 5	< 0.2	7.85	1010	1.5 1.5	< 2 < 2	1.10	0.5	19 16	73	37	4.05	1.77	1.56
L10000N 11250E	201 202	< 5	0.2	7.31	650	2.0	< 2	1.19	0.5	14	74 71	27 16	4.18 4.72	1.66 1.60	1.56
L10000N 11275E	201 202	< 5	< 0.2	7.85	970	1.5	< 2	1.83	0.5	21	80	35	4.21	1.73	1.68
L10000N 11300E L10000N 11325E	201 202 201 202	< 5 < 5	0.4	6.18 7.09	660 870	1.5	< 2	1.04	0.5	11	57	19	3.27	1.33	0.86
L10000N 11350E	201 202	5	1.0	9.87	1210	2.0 4.5	< 2 < 2	1.28	1.0 1.0	14 27	75 136	23 116	3.97	1.57	1.27
L10000N 11375E	201 202	< 5	0.4	7.87	1100	2.5	2	2.21	0.5	13	71	12	3.07	2.30 1.72	1.81 1.43
L10000N 11400E	201 202	10	0.6	7.66	1080	2.0	< 2	1.46	2.0	23	82	51	4.12	1.91	1.56
L10000N 11425E L10000N 11450E	201 202 201 202	5 < 5	0.4	8.26 7.61	1190 810	2.5	< 2	1.29	1.0 1.5	27	85	56	4.08	1.88	1.65
L10000N 11475E	201 202	< 5	1.0	7.39	1000	2.0	< 2	0.69	1.5	15 20	80 70	63 48	4.86	1.94	0.91 1.20
L10000N 11500E	201 202	< 5	1.0	7.15	780	2.0	< 2	0.57	1.5	17	75	34	4.84	1.80	0.93
L10000N 11525E	201 202	15	0.8	8.58	1140	2.5	< 2	0.83	2.0	29	97	50	5.00	2.21	1.34
															

CERTIFICATION: Hask chle

BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY P.O. BOX 49066, STE. 904 - 1055 DUNSMUIR ST. VANCOUVER, BC VZX 1C4 Page ber :3-B Total Pages :7 Certificate Date: 22-SEP-1998 Invoice No. : 19830790 P.O. Number :6112 Account :GP D

KC

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

Project : BEALE Comments: ATTN:DAVID TERRY CC:DAVID PAWLIUK

CERTIFICATE OF ANALYSIS A9830790 PREP Ni ppm Mn ppm Mo ppm Na % P Pb ppm DDI Sr ppm TI % W ррш V ppm Zn ppm SAMPLE CODE (ICP) (ICP) (ICP) (ICP) (ICP) AAS (ICP) (ICP) (ICP) (ICP) (ICP) L10000N 10550E 201 202 525 1.45 4 18 1750 26 197 0.49 108 < 10 78 L10000N 10575E 201 202 875 4 1.45 31 2210 26 156 0.55 113 < 10 110 L10000N 10600E 201 202 1000 7 1.59 52 1720 40 223 0.49 140 < 10 156 L10000N 10625E 201 202 970 8 1.69 86 1450 156 276 0.42 126 < 10 372 L10000N 10650E 201 202 2020 54 1.38 139 2220 2380 208 0.49 186 < 10 1320 L10000N 10675R 202 201 2440 62 0.94 188 1790 1890 232 0.44 277 < 10 1670 L10000N 10700R 201 202 1850 23 1.18 140 1670 1830 203 0.44 188 < 10 638 L10000N 10725E 201 202 2200 26 1.25 167 1440 700 229 0.47 160 < 10 812 L10000N 10750E --- -NotRed NotRed NotRed NotRed NotRed Not Red NotRed NotRed NotRed NotRed NotRed L10000N 10775E - -- -NotRed NotRed L10000N 10800F 201 202 765 5 1.59 37 1870 50 0.52 148 105 < 10 144 L10000N 10825E 201 202 940 10 1.58 46 1990 72 114 0.47 103 < 10 230 L10000N 10850E 201 202 620 3 1.86 28 2320 34 259 0.41 88 < 10 98 L10000N 10875g 201 202 515 4 2.59 19 1220 28 50 0.26 44 < 10 122 L10000N 10900E 201 202 660 1 2.08 27 1990 36 387 0.39 97 < 10 92 L10000N 10925E 201 202 620 1 1.64 35 1480 30 154 0.43 88 < 10 108 L10000N 10950E 201 202 685 3 1.58 38 1460 28 197 0.44 111 < 10 132 L10000N 10975E 201 202 720 4 1.66 27 1910 28 152 0.64 109 < 10 118 L10000N 11000E 201 202 810 4 1.75 27 2380 50 182 0.48 103 < 10 120 L10000N 11025E 201 202 925 < 1 1.75 36 930 56 218 0.41 122 < 10 138 L10000N 11050E 201 202 615 3 1.74 32 1710 30 309 0.48 127 < 10 96 L10000N 11075E 201 202 690 2 1.97 34 2460 30 398 0.54 130 < 10 118 L10000N 11100E 201 202 770 2 38 1.40 1170 32 19B 0.49 148 < 10 174 L10000N 11125E 201 202 820 1 1.81 50 1110 40 324 0.43 136 < 10 146 L10000N 11150E 201 202 725 3 1.84 39 1490 34 107 0.52 101 < 10 142 L10000N 11175E 201 202 880 < 1 34 1.61 950 40 186 0.45 145 10 120 L10000N 11200E 201 202 880 1 1.59 38 1460 40 187 0.46 139 < 10 124 L10000N 11225g 201 202 < 1 1.75 830 33 1250 32 237 0.46 133 < 10 112 L10000N 11250E 201 202 890 1 1.73 27 1710 34 151 0.46 103 < 10 108 L10000N 11275E 201 202 1335 < 1 1.81 38 1410 42 237 0.48 135 < 10 150 L10000N 11300E 201 202 820 2 19 1.42 2110 30 185 0.38 97 < 10 68 L10000N 11325E 201 202 870 2 1.53 39 2600 26 283 0.40 113 < 10 104 L10000N 11350E 201 202 1460 6 1.12 85 1090 74 157 0.46 196 < 10 258 L10000N 11375E 201 202 5B0 2.29 < 1 38 1950 26 495 0.41 108 < 10 84 L10000N 11400E 201 202 1115 4 1.53 63 1250 44 233 0.46 152 < 10 160 L10000N 11425E 201 202 1065 4 1.61 66 1420 46 272 0.44 153 < 10 194 L10000N 11450E 201 202 930 7 1.18 76 2180 46 128 0.38 130 < 10 296 L10000N 11475E 201 202 1010 3 1.15 49 1780 46 135 0.37 130 < 10 162 L10000N 11500E 201 202 890 6 1.26 50 1880 58 137 0.39 132 < 10 248 L10000N 11525E 201 202 1295 7 1.32 79 1160 78 171 0.41 178 < 10 340

To:

CERTIFICATION: HANGE DO

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY P.O. BOX 49066, STE. 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4 Page i ber :4-A Total Pages :7 Certificate Date: 22-SEP-1998 Invoice No. :19830790 P.O. Number :6112 Account :GP D

Project : BEALE Comments: ATTN:DAVID TERRY CC:DAVID PAWLIUK

.

APPTICIA

·····	·	-	- 		T		_	CERTI	FICATE	OF AN	ALYSIS	<u> </u>	A98307	90	
SAMPLE	PREP CODE	ли ppb FA+AA	Ag ppm AAS	A1 % (ICP)	Ba ppm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cd ppm (ICP)	Coppm (ICP)	Cr ppm (ICP)	Cu ppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)
L10000N 11550E L10000N 11575E	201 202 201 202	5	1.8	8.29	1020	3.0	< 2	0.91	2.0	32	85	72	4.61	1.86	1.18
L10000N 11600E	201 202 201 202	15 < 5	1.8	8.99	1110	3.5	< 2	0.63	4.5	44	106	93	6.05	2.13	1.37
L10000N 11625E	201 202	5	1.4	8.10 8.45	1210	2.5	< 2	1.11	10.5	25	90	66	4.40	1.98	1.31
L10000N 11650E	201 202	10	1.6	8.58	1410 1110	3.0	< 2 < 2	0.90	13.5	39	100	150	5.19 4.75	1.97 2.10	1.44
L10000N 11675E	201 202	< 5	1.2	8.89	1150	3.0	< 2	0.52	0.5	28	97	60	4.62	2.28	1.28
L10000N 11700E	201 202	< 5	1.0	8.59	1100	3.0	< 2	0.34	1.5	20	99	58	4.69	2.25	1.29
L10000N 11725E	201 202	< 5	1.2	8.18	1010	2.5	< 2	0.46	1.5	22	93	61	4.11	2.07	1.37
L10000N 11750E	201 202	< 5	0.6	7.74	940	2.5	< 2	0.39	0.5	20	87	50	3.99	1.82	1.51
L10000N 11775E	201 202	< 5	0.6	7.82	1000	2.5	< 2	0.36	0.5	20	93	54	4.01	1.92	1.39
L10000N 11800E L10000N 11825E	201 202 201 202	< 5 10	1.0	8.32	1030	2.5	< 2	0.44	1.5	24	95	76	4.26	1.92	1.65
L10000N 11850E	201 202	< 5	1.0	8.74 8.25	1200	3.0	< 2	0.56	1.0	30	101	89	5.38	2.21	1.58
L10000N 11875E	201 202	260	0.8	7.70	1210 860	3.0	< 2	0.52	2.0	45	103	190	6.55	2.26	1.98
L10000N 11900E	201 202	10	0.6	7.70	800	2.0	< 2 < 2	0.95	2.0 4.0	33 33	83 69	100 139	4.90	1.70	2.11
L10000N 11925E	201 202	< 5	0.2	7.33	710	1.5	< 2	1.04	0.5	25	79	102	4.38	1.47	2.00
L10000N 11950E	201 202	5	0.2	7.92	730	1.5	< 2	1.10	0.5	28	103	113	4.77	1.39	2.95
L10000N 11975E	201 202	< 5	0.2	7.18	710	1.5	< 2	1.06	0.5	22	85	154	4.27	1.42	1.92
L10000N 12000B	201 202	10	0.2	7.53	860	2.0	< 2	1.07	0.5	24	94	361	4.08	1.63	1.89
L10000N 12050E	201 202	< 5	0.4	7.31	810	2.0	< 2	1.16	0.5	22	90	72	3.85	1.69	1.65
L10000N 12075E	201 202	< 5	0.2	6.86	630	2.0	< 2	1.27	0.5	19	75	99	3.59	1.36	1.92
L10000N 12100E L10000N 12125E	201 202	< 5	< 0.2	7.21	670	2.0	< 2	1.19	< 0.5	20	84	44	3.93	1.58	1.77
L10000N 12125E	201 202	< 5	< 0.2	7.19	700	2.0	< 2	1.06	< 0.5	20	93	106	3.95	1.50	1.40
L10000N 12175E	201 202 201 202	< 5 5	< 0.2	7.25	790	2.0	< 2	0.77	0.5	22	75	61	3.88	1.62	1.39
			< 0.2	7.25	740	2.0	< 2	1.05	< 0.5	19	93	93	3.83	1.52	1.48
L10000N 12200E L10200N 10000E	201 202	< 5	< 0.2	6.53	650	1.5	< 2	0.94	0.5	17	87	50	3.64	1.30	1.20
L10200N 10025E	201 202 201 202	< 5	0.6	7.92	450	3.0	< 2	1.04	1.0	15	88	29	5.21	1.60	0.78
L10200N 10050E	201 202 201 202	< 5 < 5	< 0.2	7.79	1050	3.0	2	1.39	1.5	13	68	35	3.08	1.85	1.13
L10200N 10075E	201 202	< 5	0.6	7.99	540	3.5	< 2	1.17	1.5	12	70	32	4.85	1.61	0.71
				8.61	930	3.0	< 2	1.37	2.5	18	90	39	4.57	2.02	1.15
L10200N 10100E L10200N 10125E	201 202	< 5	< 0.2	8.79	650	3.5	< 2	1.14	1.5	19	81	38	5.71	2.09	1.08
L10200N 10125E	201 202 201 202	< 5	0.4	8.21	650	3.5	< 2	1.23	6.0	18	85	30	4.80	1.80	0.85
L10200N 10130E	201 202 201 202	< 5	0.6	8.11	960	3.0	< 2	1.54	2.0	16	73	39	3.36	1.94	1.10
L10200N 10200E	201 202	< 5 < 5	0.4	7.97	1000	2.5	< 2	1.12	1.5	19	86	42	4.39	1.87	1.32
				7.18	640	2.0	< 2	0.85	1.0	17	104	28	4.15	1.57	1.01
L10200N 10225 <u>E</u> L10200N 10250E	201 202 201 202	< 5 < 5	1.2	8.51 6.37	1000 710	3.0	< 2	1.83	6.5	18	75	53	4.42	1.97	1.32
L10200N 10275B	201 202	< 5	0.6	6.78	800	2.0	< 2	0.79	1.0	14	62	26	3.46	1.36	0.81
L10200N 10300E	201 202	< 5	0.8	6.90	740	2.5	< 2	0.80	2.0	17	66	30	4.18	1.51	0.76
L10200N 10325E	201 202	< 5	0.4	6.63	690	2.0	< 2	0.89	1.0	14 12	65 73	32	3.88	1.44	0.77
		-					•	0.73	v. 3	14	13	29	4.26	1.54	0.97

CERTIFICATION: Hawkfull

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218) To: BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY P.O. BOX 49066, STE. 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4 Page ber :4-B Total Pages :7 Certificate Date: 22-SEP-1998 Invoice No. : 19830790 P.O. Number :6112 Account :GP D

Project : BEALE Comments: ATTN:DAVID TERRY CC:DAVID PAWLIUK

		_						CERTI	FICATE	OF AN	ALYSIS	6 A	983079	90	
SAMPLE	PREP CODE	Mn ppm {ICP}	Mo ppm (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm (ICP)	Pb ppm AAS	Sr ppm (ICP)	Ti % (ICP)	V ppm (ICP)	W ppm (ICP)	Zn ppm (ICP)			
L10000N 11550E L10000N 11575E L10000N 11600E L10000N 11625E L10000N 11650E	201 202 201 202 201 202 201 202 201 202 201 202	1710 1975 1415 1945 1075	6 9 6 8 10	1.09 1.46 1.11 1.11 1.30	88 153 97 159 101	1820 1520 1510 1040 970	76 98 334 1325 170	162 144 198 207 133	0.34 0.45 0.38 0.38 0.41	152 175 167 190 169	< 10 < 10 < 10 < 10 < 10 < 10	280 616 1675 2900 314			
L10000N 11675E L10000N 11700E L10000N 11725E L10000N 11750E L10000N 1175E	201 202 201 202 201 202 201 202 201 202 201 202	1225 1020 1105 1160 1120	7 7 6 5 5	1.27 1.08 1.18 0.95 0.93	77 74 78 68 65	1120 1260 830 900 930	98 50 46 30 36	155 110 129 108 108	0.45 0.44 0.41 0.38 0.41	166 167 153 148 153	< 10 < 10 < 10 < 10 < 10 < 10	206 194 168 158 144			
L10000N 11800E L10000N 11825E L10000N 11850E L10000N 11875E L10000N 11900E	201202201202201202201202201202	1255 1815 2960 1910 2270	5 11 11 2 < 1	1.04 1.15 0.97 1.63 1.76	90 72 103 65 45	670 2030 1440 1320 1570	42 78 150 428 316	128 121 120 186 204	0.41 0.36 0.38 0.40 0.42	153 190 189 174 161	< 10 < 10 < 10 < 10 < 10 < 10	180 182 270 500 402			
L10000N 11925E L10000N 11950B L10000N 11975E L10000N 12000E L10000N 12050E	201 202 201 202 201 202 201 202 201 202 201 202	1175 1285 1225 1165 1070	< 1 < 1 < 1 1 1	1.78 2.04 1.63 1.75 1.65	55 57 51 60 62	1200 930 1280 1010 930	32 26 32 30 22	196 208 207 241 223	0.45 0.57 0.45 0.42 0.46	148 182 151 149 133	< 10 < 10 < 10 < 10 < 10 < 10	112 98 106 104 116			
L10000N 12075E L10000N 12100E L10000N 12125E L10000N 12150E L10000N 12175E	201 202 201 202 201 202 201 202 201 202 201 202	1345 985 920 985 1000	1 < 1 1 4 1	1.80 1.64 1.72 1.53 1.66	48 52 55 66 60	1030 1190 1060 1140 1040	18 20 20 22 20	211 201 222 174 226	0.41 0.49 0.47 0.41 0.44	127 141 134 125 131	< 10 < 10 < 10 < 10 < 10 < 10	106 92 92 126 104			
L10000N 12200E L10200N 10000E L10200N 10025E L10200N 10050E L10200N 10075E	201 202 201 202 201 202 201 202 201 202 201 202	755 600 575 620 825	< 1 17 6 6 4	1.63 1.77 1.99 1.72 2.15	52 50 40 37 61	1250 1670 1590 3010 1870	20 18 34 30 38	185 141 307 154 269	0.43 0.55 0.40 0.46 0.56	128 98 114 96 128	< 10 < 10 < 10 < 10 < 10 < 10	90 152 130 136 254			
L10200N 10100E L10200N 10125E L10200N 10150E L10200N 10175E L10200N 10200E	201 202 201 202 201 202 201 202 201 202 201 202	1130 1550 580 1060 995	8 11 4 4 4	2.06 1.92 1.92 1.44 1.65	81 49 61 59 46	1500 2160 1870 1420 1890	34 38 44 58 40	155 198 262 181 168	0.54 0.52 0.45 0.44 0.45	122 107 108 134 117	< 10 < 10 < 10 < 10 < 10 < 10	262 208 224 212 142			
L10200N 10225E L10200N 10250E L10200N 10275E L10200N 10300E L10200N 10325E	201 202 201 202 201 202 201 202 201 202 201 202	895 1190 1820 985 655	5 4 5 4 5	1.97 1.36 1.49 1.48 1.41	56 29 30 33 31	2020 2070 2040 2490 1710	70 44 72 110 64	347 205 219 216 160	0.48 0.38 0.40 0.40 0.48	137 106 112 105 129	< 10 < 10 < 10 < 10 < 10 < 10	266 128 144 188 208			

CERTIFICATION: Have Eucles

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY P.O. BOX 49066, STE. 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4 Page ber :5-A Total Pages :7 Certificate Date: 22-SEP-1998 Invoice No. : 19830790 P.O. Number :6112 Account :GP D

Project : BEALE Comments: ATTN:DAVID TERRY CC:DAVID PAWLIUK

		-						CERTI	FICATE	OF AN	ALYSIS	<u> </u>	A98307	90	
SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm AAS	Al % (ICP)	Ba ppm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cđ ppm (ICP)	Coppm (ICP)	Cr ppm (ICP)	Cu ppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)
L10200N 10350E	201 202	< 5	1.0	8.52	880	3.5	< 2	0.95	2.0	32	100	67	6.33	1.92	1.18
L10200N 10375E L10200N 10400E	201 202 201 202	< 5 5	1.4	6.50	570	2.5	< 2	0.70	0.5	15	86	35	4.82	1.52	0.82
L10200N 10425E	201 202	10	0.8	7.40	640 930	3.0	< 2 < 2	0.73	2.0 3.0	18	75	40	4.82	1.70	0.85
L10200N 10450E	201 202	< 5	0.2	7.26	540	2.5	< 2	0.78	1.5	21 15	85 91	65 19	4.84 5.44	1.74 2.03	1.06
L10200N 10475E	201 202	< 5	0.8	7.98	1040	3.0	< 2	0.93	1.5	20	78	45	4.38	2.01	1.01
L10200N 10500E L10200N 10525E	201 202	< 5	0.6	7.98	1030	3.0	< 2	1.00	1.0	26	71	55	4.24	1.84	1.14
L10200N 10525E	201 202 201 202	10 5	1.6	8.13	1040	3.0	< 2	0.73	2.5	34	76	72	5.00	1.84	1.10
L10200N 10575E	201 202	< 5	2.8	8.33 7.14	1180 960	3.0	< 2 < 2	0.89	1.5	29	80	82	4.81	2.00	1.22
			l		ļ			0.54	1.5	39	71	297	7.91	1.64	1.03
L10200N 10600E	201 202 201 202	115	7.2	7.96	1120	2.5	< 2	0.34	0.5	13	117	89	7.99	2.12	1.04
L10200N 10650E	201 202	10 20	0.8	7.83	980 1110	3.0	< 2	0.69	1.0	38	83	81	4.99	1.78	1.08
L10200N 10675E	201 202	< 5	0.8	7.77	910	3.0	< 2 < 2	0.80	2.0 1.0	49 25	87 71	151	6.85	2.11	1.15
L10200N 10700E	201 202	< 5	0.2	7.43	960	2.5	< 2	1.10	1.0	20	61	62 44	4.21 3.49	1.77	1.11 1.04
L10200N 10725E	201 202	< 5	0.2	7.72	790	3.0	< 2	0.83	0.5	16	70	35	4.02	1.62	1.20
L10200N 10750E L10200N 10775E	201 202 201 202	< 5	0.4	6.87	660	2.5	< 2	0.68	0.5	13	66	22	3.63	1.52	0.87
L10200N 10775E	201 202 201 202	< 5 10	< 0.2 < 0.2	6.96 8.31	830	2.0	< 2	0.74	0.5	12	66	17	3.20	1.74	0.80
L10200N 10825E	201 202	< 5	0.8	7.27	740 710	3.0 2.5	< 2 < 2	0.92 0.75	1.5 1.0	17 14	75 69	52 36	4.47	1.84	1.13
L10200N 10850E	201 202	10	1.0	7.28	710	2.5	< 2	0.70	0.5	14	62	50	3.88	1.76	0.84
L10200N 10875E	201 202	< 5	1.6	7.76	950	3.0	< 2	1.10	1.0	16	78	90	3.80	1.89	1.19
L10200N 10900E L10200N 10925E	201 202	< 5	1.0	8.58	930	3.5	< 2	1.07	0.5	16	88	85	4.61	2.00	1.21
L10200N 10925E	201 202 201 202	< 5 5	< 0.2 < 0.2	8.87 7.70	1040 1210	3.0 2.5	< 2 < 2	1.42	0.5	19 14	71 58	51 15	4.58 3.72	2.05 1.98	1.34
L10200N 10975E	201 202	< 5	< 0.2	7.64	1040	2.0	< 2	1.17	0.5						
L10200N 11000E	201 202	< 5	0.8	8.05	930	3.0	< 2	1.83	2.0	13 14	76 77	26 31	3.72 3.59	1.74 1.87	1.71
L10200N 11025E	201 202	< 5	0.6	8.80	700	3.0	< 2	1.18	2.0	19	91	35	4.50	1.87	1.10 0.99
L10200N 11050E	201 202	< 5	0.4	8.14	1150	2.5	< 2	1.56	1.5	15	71	37	3.80	1.85	1.41
L10200N 11075E	201 202	< 5	0.8	8.99	410	3.5	< 2	0.95	0.5	16	89	24	5.77	1.67	1.00
L10200N 11100E L10200N 11125E	201 202	< 5	0.8	9.49	910	3.0	< 2	0.72	1.0	25	103	90	5.14	2.01	1.43
L10200N 11125E	201 202 201 202	< 5 < 5	1.2	8.23	880	2.5	< 2	0.77	0.5	22	87	32	5.34	1.79	1.43
L10200N 11175E	201 202	< 5	0.6	9.43 7.67	850 530	3.0 2.5	< 2	0.91	1.0	24	109	81	5.04	2.00	1.52
L10200N 11200E	201 202	< 5	< 0.2	8.32	940	3.0	< 2 < 2	0.87	< 0.5 0.5	11 17	68 94	13 25	4.45	1.54 1.82	0.85
L10200N 11225E	201 202	< 5	< 0.2	8.62	850	2.5	< 2	1.17	0.5	18	80	30	4.58	1.69	1.35
L10200N 11250E	201 202	< 5	< 0.2	7.51	790	2.0	< 2	1.22	< 0.5	14	75	22	4.30	1.61	1.35
L10200N 11275E L10200N 11300E	201 202	< 5	< 0.2	7.12	610	2.0	< 2	0.90	< 0.5	12	54	16	3.98	1.64	0.86
L10200N 11300E	201 202 201 202	< 5	< 0.2	7.84	610	2.5	< 2	1.01	< 0.5	13	80	22	4.30	1.83	1.06
			< 0.2	7.04	430	2.5	< 2	0.67	1.5	14	80	18	5.88	1.76	0.72
														<i>c</i>	

CERTIFICATION:

Hask Fills.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY
 P.O. BOX 49066, STE. 904 - 1055 DUNSMUIR ST. VANCOUVER, BC
 V7X 1C4 Page Number :5-B Total Pages :7 Certificate Date: 22-SEP-1998 Invoice No. :19830790 P.O. Number :6112 Account :GP D

Project : BEALE Comments: ATTN:DAVID TERRY CC:DAVID PAWLIUK

CERTIFICATE OF ANALYSIS A9830790 PREP Mn ppm Na % Mo ppm Ni ppm P ppm Pb ppm Sr ppm Ti % V ppm W ppm Zn ppm SAMPLE CODE (ICP) (ICP) (ICP) (ICP) (ICP) AAS {ICP} (ICP) {ICP} (ICP) (ICP) L10200N 10350E 201 202 1270 11 1.76 128 1340 166 215 0.52 138 < 10 652 L10200N 10375E 201 202 610 7 1.36 46 1960 48 137 0.55 112 < 10 136 L10200N 10400E 201 202 1045 10 53 1.58 2190 90 150 0.45 113 < 10 248 L10200N 10425E 201 202 1065 14 1.17 84 1750 238 185 0.43 153 < 10 530 L10200N 10450E 201 202 960 5 2.03 35 2140 34 145 0.65 112 < 10 138 L10200N 10475E 201 202 7 915 1.73 65 1350 247 0.46 54 129 < 10 178 L10200N 10500E 201 202 1040 A 1.66 84 1250 54 270 0.40 122 < 10 196 110200N 10525E 201 202 1305 10 1.39 122 1310 48 236 0.41 134 < 10 260 L10200N 10550R 201 202 1125 6 1.59 101 1230 54 276 0.43 137 < 10 186 L10200N 10575E 201 202 1395 15 1.07 136 1390 122 173 0.34 130 288 < 10 L10200N 10600g 201 202 605 101 1.22 57 1130 606 170 0.38 220 244 < 10 L10200N 10625E 201 202 2460 1.41 104 1950 9 76 197 0.39 135 < 10 242 L10200N 10650B 201 202 2430 8 1.57 225 1690 142 215 0.37 120 < 10 412 L10200N 10675E 201 202 1305 4 1.68 81 1140 60 228 0.41 113 < 10 200 L10200N 10700E 201 202 1045 3 1.79 65 790 52 268 0.39 105 < 10 166 L10200N 10725E 201 202 Э 890 1.57 56 1270 48 180 0.42 115 170 < 10 L10200N 10750E 201 202 740 3 1.48 33 1740 42 150 0.45 105 < 10 122 L10200N 10775E 201 202 865 3 1.61 28 1290 50 187 0.45 108 < 10 108 L10200N 10800E 201 202 1145 2 1.72 67 1650 46 184 0.45 109 292 < 10 L10200N 10825E 201 202 1005 5 1.67 28 2310 54 181 0.41 104 < 10 124 L10200N 10850E 201 202 3 1000 1.71 26 2180 44 162 0.40 100 < 10 116 L10200N 10875E 201 202 945 3 1.32 64 2150 68 197 0.35 128 < 10 210 L10200N 10900E 201 202 820 4 1.45 83 2000 62 179 0.43 131 < 10 258 L10200N 10925E 201 202 1005 2 1.98 55 1920 50 286 0.47 129 < 10 168 L10200N 10950E 201 202 750 1 2.29 22 930 32 624 0.49 149 < 10 92 L10200N 10975g 201 202 765 1 1.60 40 870 44 191 0.41 128 < 10 218 L10200N 11000E 201 202 690 1 2.12 48 1990 50 305 0.51 107 < 10 228 L10200N 11025E 201 202 855 5 1.73 61 1820 66 173 0.51 109 < 10 368 L10200N 11050E 201 202 810 4 1.94 43 1390 78 312 0.43 114 < 10 254 L10200N 11075E 201 202 695 4 1.80 52 1900 38 107 0.56 104 < 10 174 L10200N 11100E 201 202 1220 4 1.30 85 1270 74 124 0.46 159 < 10 280 L10200N 11125E 201 202 975 4 1.51 49 1310 42 149 0.50 151 < 10 184 L10200N 11150E 201 202 1220 2 1.51 69 1030 78 151 0.47 149 < 10 204 L10200N 11175E 201 202 670 2 1.75 30 2180 24 157 0.41 83 < 10 108 L10200N 11200E 201 202 595 < 1 2.24 47 750 32 305 0.50 125 < 10 98 L10200N 11225E 201 202 805 1 1.76 41 1270 34 221 0.46 122 < 10 118 L10200N 11250E 201 202 675 1 1.76 31 1870 30 242 0.50 120 < 10 106 L10200N 11275B 201 202 815 4 1.75 22 1700 28 157 0.37 84 < 10 98 L10200N 11300E 201 202 865 2.00 29 1830 4 30 167 0.46 104 < 10 112 L10200N 11325E 201 202 805 5 1.82 26 1470 66 121 0.55 96 < 10 148

CERTIFICATION: Have Eichlen

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY P.O. BOX 49066, STE. 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4 Page I. Jber :6-A Total Pages :7 Certificate Date: 22-SEP-1998 Invoice No. : 19830790 P.O. Number :6112 Account :GP D

Project : BEALE Comments: ATTN:DAVID TERRY CC:DAVID PAWLIUK

CERTIFICATE OF ANALYSIS A9830790

						· · · · ·	<u> </u>						-30307		
SAMPLE	PREP CODE	Ац ррб FA+AA	Ag ppm AAS	Al % (ICP)	Ba ppm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cd ppm (ICP)	Coppm (ICP)	Cr ppm (ICP)	Cu ppm (ICP)	Fe % (ICP)	K % (ICP)	Ng % (ICP)
L10200N 11350E	201 202	< 5	0.6	8.15	1140	2.0	2	1.22	1.0	14	73	44	4.26	1.69	1.41
L10200N 11375E	201 202	< 5	< 0.2	8.59	1170	2.0	< 2	1.26	0.5	20	80	58	4.40	1.92	1.48
L10200N 11400E	201 202	< 5	< 0.2	6.95	940	1.5	< 2	1.14	1.5	17	66	33	3.72	1.58	1.12
L10200N 11425E	201 202	< 5	2.0	8.63	1090	3.0	2	1.58	2.0	19	79	40	4.29	1.98	1.44
L10200N 11450E	201 202	< 5	< 0.2	8.77	860	3.0	< 2	0.95	2.0	21	90	45	4.92	2.02	1.27
L10200N 11475E	201 202	< 5	< 0.2	7.85	1100	2.0	i i 2	2.01	2.0	19	69	37	3.69	1.81	1.59
L10200N 11500E	201 202	< 5	< 0.2	8.49	900	3.0	< 2	1.13	0.5	17	97	45	4.30	2.00	1.31
L10400N 10000E	201 202	< 5	0.2	8.06	1030	2.5	< 2	1.73	2.0	15	75	30	4.60	1.92	1.40
L10400N 10025E	201 202	< 5	< 0.2	6.83	770	2.0	< 2	1.02	1.0	15	80	29	3.85	1.45	1.17
L10400N 10050E	201 202	< 5	< 0.2	8.37	950	3.0	< 2	1.28	1.5	19	79	36	4.37	1.87	1.30
L10400N 10075E	201 202	< 5	< 0.2	7.76	960	2.5	< 2	1.15	1.5	19	69	25	4.09	1.72	1.21
L10400N 10100E	201 202	< 5	< 0.2	8.19	740	3.5	< 2	0.91	2.0	19	93	60	5.02	1.84	1.22
L10400N 10125E	201 202	< 5	< 0.2	8.13	1100	2.0	< 2	0.92	2.5	15	93	48	4.10	1.90	1.49
L10400N 10150E	201 202	15	0.2	7.14	930	2.0	< 2	0.68	2.0	19	81	49	3.86	1.73	1.27
L10400N 10175E	201 202	< 5	< 0.2	6.14	700	2.0	< 2	1.75	4.0	16	72	24	4.02	1.56	0.92
L10400N 10200E	201 202	< 5	< 0.2	6.53	800	2.0	< 2	0.98	2.0	10	61	18	4.06	1.55	0.78
L10400N 10225E	201 202	5	0.6	8.44	690	3.0	< 2	1.17	3.5	23	94	63	5.13	2.00	1.24
L10400N 10250E L10400N 10275E	201 202 201 202	< 5	0.4	5.99	780	2.0	< 2	0.70	2.5	16	60	36	3.18	1.47	0.79
L10400N 10275E	201 202	< 5	0.8	6.16 8.30	640 870	2.0	< 2 < 2	0.53	1.5	13	77	33	4.20	1.36	0.77
			0.4	0.30	870	3.0	<u> </u>	0.86	2.0	25	102	77	5.46	1.91	1.08
L10400N 10325E	201 202	< 5	< 0.2	6.93	990	2.0	< 2	0.48	1.5	15	86	33	3.54	1.95	1.03
L10400N 10350E L10400N 10375E	201 202	< 5	0.2	7.10	760	2.5	< 2	0.57	1.0	16	84	45	4.66	1.85	0.71
L10400N 10400E	201 202 201 202	40	1.2	7.47	920	3.0	< 2	0.43	1.5	25	88	59	4.71	1.91	0.91
L10400N 10425E	201 202	\$ < 5	0.8 < 0.2	7.68 7.88	830 1080	3.0 3.0	< 2	0.70	1.0	23	95	50	4.94	1.93	1.05
			· · · · · ·	/.00	1080	3.0	< 2	0.83	1.5	18	78	46	3.94	2.01	1.01
L10400N 10450E	201 202	< 5	1.0	8.14	1110	3.0	< 2	0.47	3.5	28	89	61	4.33	2.10	1.14
L10400N 10475E	201 202	10	1.8	8.84	1100	3.5	< 2	0.54	1.5	40	107	95	5.11	2.24	1.28
L10400N 10500E L10400N 10525E	201 202	< 5	1.8	8.87	1220	3.5	< 2	0.49	2.0	43	122	98	5.42	2.22	1.36
L10400N 10525E	201 202 201 202	< 5 < 5	0.4	10.65	1700	3.5	< 2	0.27	2.0	39	120	86	5.06	3.07	1.69
TIDADOM 10330E		< 5	1.4	10.50	1710	3.5	< 2	0.30	3.5	34	130	111	5.89	2.97	1.71
L10400N 10575E L10400N 10600E	201 202	< 5	< 0.2	8.54	1050	3.0	< 2	0.72	2.5	34	96	77	4.96	2.24	1.28
L10400N 10600E	201 202	< 5	2.6	11.00	1660	3.5	< 2	0.33	8.5	64	132	140	6.36	3.19	1.70
L10400N 10650E	201 202 201 202	< 5 5	1.8	9.81	1230	3.5	< 2	0.65	3.5	40	115	87	5.81	2.78	1.59
L10400N 10725E	201 202	< 5	1.4	9.33 8.35	1300 870	3.0	< 2	0.57	2.5	32	114	86	5.12	2.56	1.51
·····						3.0	< 2	0.65	1.0	14	80	28	4.41	2.08	0.96
L10400N 10750B L10400N 10775B	201 202 201 202	< 5	0.6	8.36	1050	2.5	< 2	0.45	1.0	19	96	55	4.30	2.16	1.23
L10400N 10775E	201 202 201 202	< 5	0.8	8.71	810	3.0	< 2	0.66	0.5	13	75	29	4.45	1.98	1.06
L10400N 10825E	201 202	< 5	0.4	7.93	410	3.0	6	0.78	0.5	13	78	10	4.51	1.55	0.75
L10400N 10850E	201 202	< 5	0.2	8.67 8.13	330 750	3.0 2.5	< 2	0.80	0.5	15	81	15	5.82	1.92	0.69
			0.0	0.13	150	A.3	< 2	0.54	1.0	15	79	30	4.85	1.90	0.92
										-					

CERTIFICATION:_

 Ω Ω

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave British Columbia, Canada North Vancouver V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

) To: BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY P.O. BOX 49066, STE. 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4

Page Lober :6-b Total Pages :7 Certificate Date: 22-SEP-1998 Invoice No. :19830790 P.O. Number :6112 Account :GP D

Project : BEALE Comments: ATTN:DAVID TERRY CC:DAVID PAWLIUK

								CERTI	FICATE	OF AN	ALYSIS	5 /	498307	90	
SAMPLE	PREP CODE	Mn ppm (ICP)	Mo ppm (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm (ICP)	Pb ppm AAS	Sr ppm (ICP)	Ti % (ICP)	V ppm (ICP)	W ppm (ICP)	Zn ppm (ICP)			
L10200N 11350E	201 202	925	1	1.48	35	1640	94	175	0.44	135	< 10	208			
L10200N 11375E L10200N 11400E	201 202 201 202	1200 1040	3	1.64	48	1740	96	190	0.47	140	< 10	302			
L10200N 11425E	201 202	990	4	1.47	- 34 - 62	2020 1750	74 50	184 353	0.42	128 131	< 10	196	ĺ		
L10200N 11450E	201 202	1075	4	1.63	63	1830	42	172	0.51	131	< 10 < 10	364 308			
L10200N 11475E	201 202	1030	1	1.96	45	1240	40	298	0.49	137	< 10	170			
L10200N 11500E	201 202	820	6	1.72	57	1730	78	211	0.53	132	< 10	202			
L10400N 10000E	201 202	820	6	2.04	52	2230	36	320	0.52	132	< 10	290			
L10400N 10025E	201 202	775	3	1.33	42	2180	42	155	0.44	121	< 10	152			1
L10400N 10050E	201 202	835	4	2.02	74	1400	44	276	0.49	113	< 10	290			
L10400N 10075E L10400N 10100E	201 202	885	3	1.69	44	1550	46	263	0.46	117	< 10	180			
L10400N 10125E	201 202 201 202	1530 805	6	1.58	62 55	2060	60	142	0.49	128	< 10	352			
L10400N 10150E	201 202	865	5	1.19	64	1710 1090	60 74	150 125	0.42	161 138	< 10 < 10	600 562			
L10400N 10175E	201 202	935	3	1.43	34	2410	68	227	0.44	106	< 10	312			i i
L10400N 10200E	201 202	585	5	1.73	24	1880	58	270	0.38	114	< 10	180			····
L10400N 10225E	201 202	1205	5	1.79	77	1680	54	146	0.53	124	< 10	572			
L10400N 10250E	201 202	1000	4	1.20	37	1990	70	171	0.33	107	< 10	212			
L10400N 10275E L10400N 10300E	201 202 201 202	1485 1525	4	1.13 1.34	31 83	2390 2350	140	136 159	0.41 0.58	118 156	< 10 < 10	198			
	ll										× 10	426			
L10400N 10325E L10400N 10350E	201 202 201 202	1265	5	1.00	34	1980	38	121	0.36	153	< 10	158			
L10400N 10355E	201 202	1170 1870	7	1.48	40 53	2200 3330	54 56	141	0.48	129	< 10	156			
L10400N 10400E	201 202	1335	1	1.47	63	2120	62	126 156	0.44 0.51	141 137	< 10 < 10	180			
L10400N 10425E	201 202	940	8	1.64	58	1710	72	237	0.41	145	< 10	198 214			
L10400N 10450E	201 202	1995	7	1.09	61	2600	76	123	0.37	146	< 10	186			
L10400N 10475E	201 202	2840	6	1.40	94	1890	88	145	0.41	149	< 10	222			
L10400N 10500E	201 202	2690	12	1.26	109	1900	104	142	0.39	226	< 10	274			
L10400N 10525E L10400N 10550E	201 202	1890	6	1.21	92	690	68	123	0.33	197	< 10	288			
	201 202	2280	11	0.97	94	1400	418	135	0.36	213	< 10	920			
L10400N 10575E L10400N 10600E	201 202 201 202	1805 3900	12 15	1.55	101	1700	74	176	0.44	149	< 10	348			
L10400N 10625E	201 202	2590	15	1.14 1.65	151 101	1540 1920	344	143	0.41	223	< 10	996			
L10400N 10650E	201 202	1775	9	1.30	90	1600	208 102	153 159	0.43	180 187	< 10 < 10	618			
L10400N 10725E	201 202	885	5	1.76	36	2010	54	162	0.44	120	< 10	432 164			
L10400N 10750E	201 202	965	6	1.23	61	1350	74	128	0.39	150	< 10	234			
L10400N 10775E	201 202	775	4	1.72	40	1380	42	147	0.41	113	< 10	178			
L10400N 10800E	201 202	685	3	1.78	27	1730	34	127	0.49	84	< 10	116			
L10400N 10825E L10400N 10850E	201 202	1155	4	2.15	24	2160	22	98	0.62	90	< 10	118			
PICEOON INCON	201 202	980	4	1.65	35	1980	40	132	0.44	114	< 10	146			

CERTIFICATION:___

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave.,North VancouverBntish Columbia, CanadaV7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

7 To: BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY P.O. BOX 49066, STE 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4 Page is inder : 7-A Total Pages : 7 Certificate Date: 22-SEP-1998 Invoice No. : 19830790 P.O. Number : 6112 Account : GP D

Project : BEALE Comments: ATTN:DAVID TERRY CC:DAVID PAWLIUK

CERTIFICATE OF ANALYSIS A9830790 Al % PREP Au ppb Ba ppm Bi ppm Ca % Ag ppm Be ppm Cd ppm Co ppm Cr ppm Cu ppm Fe % K % Mg % SAMPLE CODE **F**አ+አአ AAS (ICP) (ICP) (ICP) (ICP) (ICP) (ICP) (ICP) {ICP} (ICP) (ICP) (ICP) (ICP) L10400N 10875E 201 202 < 5 0.4 8.50 1110 2.5 < 2 0.66 1.0 14 90 41 3.91 2.15 1.35 L10400N 10900E 201 202 < 5 1.2 8.66 1280 3.0 < 2 1.04 17 108 2.0 80 4.40 2.35 1.53 L10400N 10925E 201 202 10 8.26 1220 2.5 0.4 < 2 1.44 1.5 13 79 31 3.86 2.05 1.26 L10400N 10950E 201 202 < 5 < 0.2 9.81 450 3.0 6 1.77 0.5 13 121 45 3.42 1.96 0.78 L10400N 10975E 201 202 < 5 0.8 7.98 810 2.0 < 2 0.88 0.5 18 84 17 4.92 1.83 1.28 L10400N 11000E 201 202 < 5 < 0.2 8.37 1200 2.5 < 2 1.73 0.5 17 57 19 3.25 2.03 1.05 L10400N 11025E 201 202 < 5 1080 2.0 < 0.2 7.64 < 2 1.41 1.0 18 70 40 3.55 1.79 1.40 L10400N 11050E 201 202 < 5 < 0.2 7.07 990 1.5 < 2 1.06 0.5 13 62 17 3.84 1.69 1.32 L10400N 11075E 201 202 < 5 0.6 6.83 490 2.5 < 2 0.70 0.5 13 69 6 5.66 1.70 0.63 L10400N 11100E 201 202 < 5 8.37 1.2 500 3.0 < 2 0.90 0.5 12 83 12 4.55 1.80 0.77 L10400N 11125E 201 202 < 5 1.6 8.09 330 3.0 < 2 0.66 10 0.5 12 75 4.97 1.55 0.61 L10400N 11150E 201 202 < 5 0.2 7.40 420 3.5 < 2 0.69 0.5 10 58 20 5.28 1.62 0.65 L10400N 11175E 201 202 < 5 0.8 9.07 660 3.5 < 2 0.94 1.0 22 91 50 4.75 1.78 1.24 L10400N 11200E 201 202 < 5 0.6 8.28 440 4.5 < 2 1.06 65 0.5 15 51 4.95 1.66 0.76 L10400N 11225E 201 202 < 5 0.4 7.41 500 2.5 < 2 0.61 0.5 16 79 29 5.14 1.58 0.86 L10400N 11250E 201 202 < 5 < 0.2 8.30 470 3.0 < 2 0.81 19 85 36 < 0.5 5.18 1.62 0.98 L10400N 11350E 201 202 < 5 0.2 8.40 660 2.5 < 2 0.97 0.5 33 92 112 5.73 1.85 2.08 L10400N 11375E 201 202 < 5 0.2 7.94 610 2.5 < 2 0.67 0.5 27 73 96 5.43 1.69 1.71 L10400N 11400E 201 202 < 5 < 0.2 8.29 520 < 2 3.0 0.84 0.5 23 63 88 5.43 1.87 1.34 L10400N 11425E 201 202 < 5 0.2 7.13 710 2.0 < 2 0.70 21 0.5 66 110 4.01 1.56 1.63 L10400N 11475E 201 202 < 5 0.2 7.00 400 2.5 8 0.80 0.5 18 71 63 4.36 1.37 0.99 L10400N 11500E 201 202 < 5 0.6 8.26 960 2.5 < 2 1.17 1.5 27 68 123 4.54 1.68 1.83

Analylical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218) To: BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY P.O. BOX 49066, STE. 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4

Page i Aber : 7-B Total Pages : 7 Certificate Date: 22-SEP-1998 Invoice No. : 19830790 P.O. Number : 6112 Account : GP D

- - - - - -

Project : BEALE Comments: ATTN:DAVID TERRY CC:DAVID PAWLIUK

								CERTI	FICATE	OF AN	ALYSIS	<u> </u>	A98307	90	
SAMPLE	PREP CODE	Mn ppm (ICP)	Moppm (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm (ICP)	Pb ppm AAS	Sr ppm (ICP)	Ti % (ICP)	V ppm (ICP)	W ppm (ICP)	Zn ppm (ICP)			
L10400N 10875E L10400N 10900E L10400N 10925E L10400N 10950E L10400N 10975E	201 202 201 202 201 202 201 202 201 202 201 202	630 850 935 340 1140	5 3 3 5 1	1.32 1.04 1.75 2.52 1.80	53 86 49 33 30	1720 1520 2060 1210 1370	46 66 46 16 90	161 172 274 185 142	0.38 0.35 0.44 0.72 0.53	147 173 128 116 126	< 10 < 10 < 10 < 10 < 10 < 10	186 342 262 146 168			
L10400N 11000E L10400N 11025E L10400N 11050E L10400N 11075E L10400N 11100E	201 202 201 202 201 202 201 202 201 202 201 202	765 915 690 970 480	1 1 1 4 3	2.53 1.85 1.61 1.91 2.12	32 34 31 17 26	2100 1090 820 1550 1490	50 82 40 30 36	396 227 201 157 144	0.42 0.45 0.42 0.59 0.53	101 119 109 104 90	< 10 < 10 < 10 < 10 < 10 < 10	112 154 120 100 112			
L10400N 11125E L10400N 11150E L10400N 11175E L10400N 11200E L10400N 11225E	201 202 201 202 201 202 201 202 201 202 201 202	630 820 1000 1120 1095	5 5 3 3 3	1.76 1.80 1.58 1.78 1.62	21 28 69 38 23	1670 3470 1700 2430 2070	28 26 76 36 26	92 114 140 117 114	0.49 0.40 0.46 0.39 0.58	81 84 115 78 118	< 10 < 10 < 10 < 10 < 10 < 10	98 226 300 214 118			
L10400N 11250E L10400N 11350B L10400N 11375E L10400N 11400E L10400N 11425E	201 202 201 202 201 202 201 202 201 202 201 202	1110 2370 2440 2070 1310	5 1 1 1 1	1.78 2.05 1.84 2.16 1.53	33 53 36 36 32	2660 2080 2340 1850 2240	30 48 54 54 52	132 159 130 132 155	0.53 0.60 0.51 0.44 0.40	115 161 151 115 134	< 10 < 10 < 10 < 10 < 10 < 10	120 162 132 132 120			
L10400N 11475E L10400N 11500E	201 202 201 202	1210 1980	1 < 1	1.58 1.94	33 44	2080 2440	222 144	113 245	0.47 0.45	97 149	< 10 < 10	196 196			
											-				
														<u> </u>	
										CER	TIFICATIO	v:_1+0	white-	addle	2

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

)To: BOLIDEN - WESTMIN LIMITED

P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

INVOICE NUMBER

I9830621

BILLING	INFORMATION	# OF SAMPLES			LYSED FOR DESCRIPTION	UNIT PRICE	SAMPLE PRICE	AMOUNT
Date: Project: P.O. No.: Account:	18-SEP-98 BEALE 6112 GP D	7	20	08 -	Assay ring to approx 150 mesh ICP Basic Whole Rock 0-3 Kg crush and split	2.50 21.00 2.60	26.10	182.70
Comments:						ient Discount (Cost \$ [25%] \$ Cost \$ GST \$	182.70 -45.68 137.02 9.59
Billing:	For analysis performed on Certificate A9830621					TOTAL PAYABLE	(CDN) \$	146.61
Terms:	Payment due on receipt of invoice 1.25% per month (15% per annum) charged on overdue accounts							
Please Rem	nit Payments to:							
	CHEMEX LABS LTD. 212 Brooksbank Ave., North Vancouver, B.C. Canada V7J 2C1							

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., British Columbia, Canada North Vancouver V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY P.O. BOX 49066, STE. 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4 JTo:

1

1

17-SEP-1998

19830621 6112 GP D

Project: BEALE Comments: ATTN:DAVID TERRY CC:DAVID PAWLIUK

OC DATA OF CEDTIFICATE

A0020621

	· /				.	.	1	, L			CERTIF	ICATE	/	498306 2	21	
STD/DUP/BLANK DESCRIPTION	QC TYPE		A1203 %	CaO %	Cr203 %	Fe203 %	K20 %	NgO %	MnO %	Na20 %	P205 %	sio2 %	T102 %	LOI %	TOTAL %	
CHEMEX MEAN	Blnk	1														-
SY-4 Chemex Mean	Std1	1	20.58 20.69	8.08 8.05	< 0.01 < 0.01	6.16 6.21	1.62 1.66	0.55	0.12 0.11	7.18	0.07 0.13	50.67 49.90	0.30			
	Dup1 Orig1	-01 -01	14.31	7.87	0.03	12.95	0.39	8.27	0.22	3.10	0.10	47.91	1.74	3.00	 99.89	
						-										
						:										
															r	<u>. </u>
											CER	TIFICATIO	N: 10	when	uhle	~

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

A9830621

To: BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY P.O. BOX 49066, STE. 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4

Comments: ATTN:DAVID TERRY CC:DAVID PAWLIUK

A9830621

(GP D) - BOLIDEN - WESTMIN LIMITED

Project: BEALE P.O. # : 6112

Samples submitted to our lab in Vancouver, BC. This report was printed on 17-SEP-1998.

	SAM	PLE PREPARATION
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION
208 226 3202 200	7 7 7 7	Assay ring to approx 150 mesh 0-3 Kg crush and split Rock - save entire reject Whole rock fusion

ANALYTICAL PROCEDURES

CODE	NUMBER SAMPLES	DESCRIPTION	METHOD		UPPER LIMIT
594	7	Al203 %: Whole rock	ICP-AES	0.01	100.00
588	7	CaO %: Whole rock	ICP-ABS	0.01	100.00
590	7	Cr203 %: Whole Rock	ICP-AES	0.01	100.00
586	7	Pe203(total) %: Whole rock	ICP-AES	0.01	100.00
821	7	R20 %: Whole rock	ICP-AES	0.01	100.00
593 596	7	MgO %: Whole rock MnO %: Whole rock	ICP- AES ICP -AES	0.01 0.01	100.00 100.00
599	7	Na20 %; Whole rock	ICP-AES	0.01	100.00
597	7	P205 %: Whole rock	ICP-AES	0.01	100.00
592	7	S102 %: Whole rock	ICP-AES	0.01	100.00
595	7	T102 %: Whole rock	ICP-AES	0.01	100.00
475	7	L.O.I. %: @ 1000 deg.C	FURNACE	0.01	100.00
540	7	Total %	CALCULATION	0.01	105.00

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave. North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218)To: BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY P.O. BOX 49066, STE. 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4 Page ber :1 Total Payes :1 Certificate Date: 17-SEP-1998 Invoice No. :19830621 P.O. Number :6112 Account :GP D

Project : BEALE Comments: ATTN:DAVID TERRY CC:DAVID PAWLIUK

											ALYSIS		498306	<u> </u>	
SAMPLE	PREP CODE	A1203 %	Ca0 %	Cr203 %	Fe203 %	K20 %	MgO %	MnO %	Na20 %	P205	sio2 %	Ti02 %	LOI %	TOTAL %	
BE 2051 BE 2052 BE 2053 BE 2062 BE 3024	208 226 208 226 208 226 208 226 208 226 208 226	14.31 13.96 1.97 14.51 15.68	7.87 9.26 0.64 6.87 7.70	0.03 0.03 0.05 0.03 0.04	12.95 11.71 2.08 10.43 11.11	0.39 0.34 0.15 0.26 0.56	8.27 7.97 0.50 6.69 9.02	0.22 0.30 0.03 0.21 0.18	3.10 2.34 0.38 4.30 3.57	0.10 0.15 0.01 0.12 0.09	47.91 50.67 94.14 47.35 48.54	1.74 1.49 0.11 1.59 1.70	3.00 2.95 0.59 8.06 2.67	99.89 101.15 100.65 100.40 100.85	
BE 3027 BE 3029	208 226 208 226	13.91 13.19	11.09	0.01 0.02	12.06	0.52 0.29	8.16 8.91	0.23 0.21	2.37 2.47	0.05	48.41 48.75	1.82	2.42 1.50	101.05	
														De	

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 P.O. BOX 49066, THE BENTALL CENTRE VANCOUVER, BC V7X 1C4

INVOICE NUMBER

I9830617

# OF ANALYSED FOR SAMPLES CODE - DESCRIPTION	UNIT PRICE	SAMPLE PRICE	AMOUNT
145 208 - Assay ring to approx 150 mesh ICP-24 0-3 Kg crush and split 983 - Au ppb FA+AA	2.50 10.50 2.60 9.75	25.35	3675.75
	t Discount (25%) \$	3675.75 -918.94
	0938885)	GST \$	2756.81 <u>192.98</u> 2949.79
	·		
	SAMPLES CODE - DESCRIPTION 145 208 - Assay ring to approx 150 mesh ICP-24 0-3 Kg crush and split 983 - Au ppb FA+AA Clien (Reg# R10	SAMPLES CODE - DESCRIPTION PRICE 145 208 - Assay ring to approx 150 mesh 2.50 ICP-24 10.50 0-3 Kg crush and split 2.60 983 - Au ppb FA+AA 9.75 Total Client Discount (Net (Reg# R100938885) 1	SAMPLESCODE - DESCRIPTIONPRICEPRICE145208 - Assay ring to approx 150 mesh2.50ICP-2410.500-3 Kg crush and split2.60983 - Au ppbFA+AA9.7525.35Total Cost \$Client Discount (25%) \$Net Cost \$

Analylical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY P.O. BOX 49066, STE. 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4

Comments: ATTN:DAVID TERRY CC:DAVID PAWLIUK

A9830617 **ANALYTICAL PROCEDURES** CHEMEX NUMBER DETECTION UPPER CODE SAMPLES DESCRIPTION METHOD LIMIT LIMIT 983 145 Au ppb: Fuse 30 g sample FA-AAS 10000 5 578 145 Ag ppm: 24 element, rock & core AAS 0.2 100.0 573 Al %: 24 element, rock & core 145 ICP-AES 0.01 25.0 565 145 Ba ppm: 24 element, rock & core ICP-ARS 10 10000 575 Be ppm: 24 element, rock & core 145 ICP-AES 0.5 1000 561 145 Bi ppm: 24 element, rock & core ICP-AES 2 10000 576 145 Ca %: 24 element, rock & core ICP-AES 0.01 25.0 562 145 Cd ppm: 24 element, rock & core ICP-ARS 0.5 500 563 145 Co ppm: 24 element, rock & core ICP-ARS 10000 1 569 145 Cr ppm: 24 element, rock & core ICP-AES 1 10000 577 145 Cu ppm: 24 element, rock & core ICP-AES 1 10000 566 145 Fe %: 24 element, rock & core ICP-AES 0.01 25.0 584 145 K %: 24 element, rock & core ICP-AES 0.01 10.00 570 145 Mg %: 24 element, rock & core ICP-AES 0.01 15.00 145 568 Mn ppm: 24 element, rock & core ICP-ARS 5 10000 145 554 Mo ppm: 24 element, rock & core ICP-AES 10000 1 583 145 Na %: 24 element, rock & core ICP-AES 0.01 10.00 564 145 Ni ppm: 24 element, rock & core ICP-ARS 1 10000 559 145 P ppm: 24 element, rock & core ICP-AES 10 10000 560 145 Pb ppm: 24 element, rock & core AAS 2 10000 582 145 Sr ppm: 24 element, rock & core ICP-AES 1 10000 579 145 Ti %: 24 element, rock & core ICP-AES 0.01 10.00 572 145 V ppm: 24 element, rock & core ICP-AES 1 10000 556 W ppm: 24 element, rock & core 145 ICP-AES 10 10000 558 145 Zn ppm: 24 element, rock & core ICP-AES 2 10000

(GP D) - BOLIDEN - WESTMIN LIMITED

CERTIFICATE

Project: BEALE P.O. # : 6112

Samples submitted to our lab in Vancouver, BC. This report was printed on 19-SEP-1998.

	SAM	PLE PREPARATION
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION
208 226 3202 285	145 145 145 145	Assay ring to approx 150 mesh 0-3 Kg crush and split Rock - save entire reject ICP - HF digestion charge

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

) To: BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY P.O. BOX 49066, STE. 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4

Page hber :1-A Total Pages :4 Certificate Date: 19-SEP-1998 Invoice No. : [9830617 P.O. Number :6112 Account :GP D

Project : BEALE Comments: ATTN:DAVID TERRY CC:DAVID PAWLIUK

* PLEASE NOTE

PLEASE NOTE	1	CERTIFICATE OF ANALYSIS A9830617													
SAMPLE	PREP CODE	ли ррб Гл+лл	Ад ррт ААЗ	A1 % (ICP)	Ba ppm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cd ppm (ICP)	Coppm (ICP)	Cr ppm (ICP)	Cu ppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)
BE 2000 BE 2001	208 226	5	< 0.2	1.26	320	< 0.5	< 2	0.17	< 0.5	5	216	105	1.56	0.94	0.
E 2002	208 226 208 226	40 90	< 0.2	2.04	130 340	< 0.5 0.5	< 2	2.41 3.13	< 0.5	28	221	166	4.11	0.17	1.1
E 2003	208 226	15	0.2	1.23	140	< 0.5	< 2	1.08	0.5	9 10	401 211	210 283	3.45	0.69	1.
E 2004	208 226	< 5	< 0.2	8.65	540	0.5	< 2	1.87	< 0.5	16	69	38	3.39	1.30	2.
E 2005 E 2006	208 226 208 226	< 5 < 5	< 0.2 < 0.2	8.69 7.06	370 360	0.5	< 2	1.17	< 0.5	13	109	145	4.34	1.96	2.
E 2007	208 226	< 5	< 0.2	7.38	400	< 0.5	< 2	0.43	< 0.5 < 0.5	4	121 160	21 23	3.66 3.29	1.85	1.
E 2008	208 226	< 5	< 0.2	8.30	680	< 0.5	< 2	0.16	< 0.5	8	303	12	5.29	2.58	3.
2009	208 226	< 5	< 0.2	6.29	420	< 0.5	< 2	1.80	< 0.5	15	817	38	3.60	1.89	6.
2010 2011	208 226 208 226	< 5	< 0.2	8.35	320	< 0.5	< 2	0.60	< 0.5	B	238	65	4.07	1.44	3.
8 2012	208 226	< 5	< 0.2 3.2	8.51 1.26	280 120	< 0.5 0.5	< 2 < 2	0.83	< 0.5 < 0.5	18 3	379	121	4.10	1.19	4.
E 2013	208 226	< 5	1.4	1.53	3190	0.5	< 2	0.03	1.0	э 5	160 183	19 55	0.81 1.33	0.27	0.
2014	208 226	10	< 0.2	1.87	2560	0.5	< 2	0.33	1.0	8	177	105	1.59	0.60	, ő.
2015 2016	208 226 208 226	4260 1525	3.0	9.30	1480	0.5	< 2	2.57	14.0	20	142	353	4.48	2.97	2.
2017	208 226	30	1.4	3.79 1.32	90 140	< 0.5 < 0.5	< 2	0.30 0.91	26.0 < 0.5	9 5	165	228	5.09	0.72	3.
2018	208 226	145	0.8	9.16	860	0.5	< 2	3.89	4.5		227 286	95 190	1.96 5.79	0.47	0.2
2019	208 226	< 5	< 0.2	6.25	360	0.5	< 2	2.40	< 0.5	22 24	138	190	4.76	0.80	1.
2020 2021	208 226 208 226	< 5	0.2	6.10	220	0.5	< 2	4.16	< 0.5	24	84	188	6.58	0.68	2.
2022	208 226	< 5 < 5	0.2 < 0.2	6.59 10.80	70 400	< 0.5 0.5	< 2	2.31	< 0.5	38	88	415	3.68	0.24	1.
2023	208 226	< 5	< 0.2	1.79	900	< 0.5	< 2 < 2	3.34 0.09	< 0.5 < 0.5	18 5	68 167	154 13	5.13 1.17	2.93 0.67	1.
2024	208 226	20	0.6	0.61	190	1.5	< 2	0.04	< 0.5	< 1	180	180	13.00	0.04	0.
2025	208 226 208 226	< 5 < 5	0.2 < 0.2	0.99	2090	1.0	< 2	0.27	0.5	7	223	78	6.99	0.32	0.
2027	208 226	< 5	0.2	10.45 5.59	1430 50	1.5	8	3.96 1.61	0.5	44	326	45	7.93	1.74	2.
2028	208 226	< 5	< 0.2	9.20	100	0.5	< 2	3.41	< 0.5	14 29	203 256	64 133	6.43 6.25	0.07	1.
2029	208 226	< 5	0.4	2.18	40	2.5	< 2	0.04	1.5	3	214	168	1.72	0.19	
2030	208 226	< 5	13.4	1.28	40	1.0	< 2	0.04	1.5	3	141	438	1.34	0.30	0.
2031 2032	208 226 208 226	< 5 < 5	7.6 15.8	2.43	70	2.0	< 2	0.03	1.5	2	232	371	1.10	0.77	ŏ.
2033	208 226	< 5	49.6	5.04	60 30	2.5	26 104	6.87 3.85	20.5 66.5	44 88	92	663	11.20	0.09	2.
2034	208 226	< 5	25.0	6.91	700	3.5	58	1.85	17.5	71	77 85	1790 761	14.15 12.75	0.10	1. 2.
2035 2036	208 226	< 5	2.6	1.39	100	3.0	2	0.15	7.5	14	160	64	5.22	0.18	<u>.</u>
2037	208 226 208 226	< 5 < 5	5.0	1.32	80 70	2.0	4	0.09	5.5	4	174	143	0.91	0.34	0.
2038	208 226	< 5	< 0.2	9.11	70	0.5	< 2	0.06	3.5	5 14	214 95	65 25	13.00	0.06	0. 4.
2039	208 226	< 5	0.6	2.18	40	< 0.5	< 2	1.01	1.0	28	282	214	2.40	0.43 0.11	0.
							l							- A -	
											FICATION	11	st.	NO.	-

* INTERFERENCE: Cu on Bi and P

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

) To: BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY P.O. BOX 49066, STE. 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4

Page ber :1-B Total Pages :4 Certificate Date: 19-SEP-1998 Invoice No. :19830617 P.O. Number :6112 Account GPD

Project : BEALE Comments: ATTN:DAVID TERRY CC:DAVID PAWLIUK

* PLEASE NOTE

* PLEASE NOTE								CERTI	FICATE	OF AN	ALYSIS	5	A98306	17	
SAMPLE	PREP CODE	Mn ppm (ICP)	Mo ppm (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm (ICP)	Pb ppm AAS	Sr ppm (ICP)	Ti % (ICP)	V ppm (ICP)	W ppm (ICP)	Zn ppm (ICP)			
BE 2000 BE 2001	208 226	145	3	0.11	20	300	10	37	0.05	63	< 10	24			-
BE 2002	208 226 208 226	1045 485	8	0.36	44	570	20	64	0.11	97	< 10	76			
BE 2003	208 226	585	14	0.14	18 16	350 210	48	100 29	0.14	105 100	< 10	72	1		
BE 2004	208 226	810	< 1	3.16	25	330	10	148	0.22	130	< 10 < 10	50 62			
BE 2005	208 226	520	< 1	2.89	25	320	60	173	0.28	288	< 10	36			
BE 2006	208 226	310	3	2.08	9	270	8	80	0.16	136	< 10	18			
BE 2007 BE 2008	208 226	545	< 1	2.12	34	300	8	105	0.20	165	< 10	36			
BE 2009	208 226 208 226	305 425		1.18	61	300	10	49	0.15	237	< 10	20			
		l		0.78	226	100	6	41	0.12	139	< 10	30			
BE 2010 BE 2011	208 226	430 555		2.48	35	230	6	90	0.15	185	< 10	26		1	1
BE 2012	208 226	320		0.03	97	210 140	8 266	105 B	0.13	199	< 10	32		1	
BE 2013	208 226	915	< 1	0.21	12	210	74	28	0.08	38 57	< 10 < 10	114 78			
BE 2014	208 226	1170	< 1	0.28	15	140	50	54	0.11	54	< 10	34			
BE 2015	208 226	485	7	2.13	32	300	90	257	0.32	233	< 10	1575			<u> </u>
BE 2016	208 226	350	160	0.59	21	560	138	33	0.07	138	< 10	3220			1
BE 2017 BE 2018	208 226 208 226	390 855	?	0.17	24	840	12	24	0.10	76	< 10	38			
BE 2019	208 226	1535	1	0.93 2.38	55 19	250 430	430 12	253 255	0.30 0.27	136 255	< 10 < 10	424 56			
BE 2020	208 226	1260	< 1	2.89	23	1610									
BE 2021	208 226	785	ì	3.81	28	330	14 18	189 126	1.16 0.17	165 84	< 10 < 10	84			
BE 2022	208 226	285	1	1.60	15	980	14	156	0.25	204	< 10	60 58			
BE 2023	208 226	375	< 1	0.26	16	90	6	24	0.09	31	< 10	44			
BE 2024	208 226	265	7	0.01	6	2140	12	13	0.06	116	< 10	36			
BE 2025 BE 2026	208 226 208 226	380	4	0.01	18	1710	B	21	0.05	53	< 10	36			<u> </u>
BE 2027	208 226	1725 1680	< 1 < 1	1.76 2.57	102 41	2470 2010	14	687	1.58	172	< 10	78			
BE 2028	208 226	1175	< 1	4.30	56	2070	10 10	198 419	0.71 1.40	162 96	< 10 < 10	50			
BE 2029	208 226	165	32	0.05	15	60	336	23	0.03	45	< 10	56 646			
BE 2030	208 226	650	371	0.05	6	30	>10000	26	0.01	50	< 10	730			
BE 2031	208 226	540	362	0.04	5	< 10	>10000	23	0.01	164	< 10	580			
BE 2032 BE 2033	208 226	>10000	1	0.12	27	380	2650	530	0.42	158	< 10	3020			
BE 2034	208 226 208 226	>10000 >10000	1 18	0.10 0.13	26 46	460 700	>10000 3510	175 115	0.29	137 180	< 10 < 10	9760 3070			
BE 2035	208 226	1220	167	0.01											
BE 2036	208 226	855	215	0.01	25	420	808 766	24 21	0.11 0.03	62	< 10	756			
BE 2037	208 226	265	67	< 0.01	15	950	2690	23	0.03	50 149	< 10 < 10	684 806			
BE 2038	208 226	1880	1	2.05	47	40	28	219	0.28	98	< 10	110			
BE 2039	208 226	515	9	0.54	45	850	132	81	0.19	137	< 10	108			
									·						
													(]		

CERTIFICATION: Hartfulle

)To: BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY P.O. BOX 49066, STE. 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4 Page ber :2-A Total Pages :4 Certificate Date: 19-SEP-1998 Invoice No. : 19830617 P.O. Number :6112 Account :GP D

E

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

Project : BEALE Comments: ATTN:DAVID TERRY CC:DAVID PAWLIUK

CERTIFICATE OF ANALYSIS A9830617

Invoice No. : 1983 P.O. Number : 6112 Account : GP D

* PLEASE NOTE	*	PL	EASE	NOTE
---------------	---	----	------	------

SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm AAS	A1 % (ICP)	Ba ppm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cđ ppm (ICP)	Coppm (ICP)	Cr ppm (ICP)	Cuppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)
BE 2040	208 226	< 5	1.0	7.35	90	0.5	< 2	7.08	< 0.5	42	224	566	7.59	0.24	4.35
BE 2041	208 226	< 5	0.2	8.08	400	< 0.5	< 2	0.96	< 0.5	25	194	500	4.52	0.63	3.55
BE 2042	208 226	< 5	0.6	8.49	140	< 0.5	< 2	5.08	0.5	22	219	245	4.57	0.42	4.06
BE 2043	208 226	< 5	2.6	3.77	100	0.5	< 2	5.74	1.0	176	355	1830	17.80	0.26	2.95
BE 2044	208 226	< 5	0.2	4.34	320	1.5	< 2	1.96	0.5	22	214	195	3.23	0.88	0.53
BE 2045	208 226	< 5	< 0.2	1.50	100	< 0.5	< 2	1.35	< 0.5	19	389	208	3.90	0.40	0.26
BE 2046	208 226	< 5	1.0	6.05	150	0.5	< 2	2.82	< 0.5	124	176	735	6.87	0.95	1.82
BE 2047 BE 2047A	208 226	< 5	< 0.2	3.41	130	< 0.5	2	3.61	< 0.5	27	279	526	7.17	0.23	2.42
BE 2048	208 226	< 5 5	< 0.2	1.80	310	< 0.5	< 2	1.82	< 0.5	15	237	219	7.06	0.15	1.39
	408 440	`	11.4	4.46	280	1.0	< 2	0.17	1.5	7	116	283	6.68	0.68	1.66
BE 2049 BE 2050	208 226 208 226	< 5	0.2	5.91	60	< 0.5	< 2	4.75	0.5	34	87	163	7.28	0.25	4.28
BE 2057	208 226	< 5 < 5	< 0.2 0.6	7.52	40	< 0.5	< 2	7.25	1.0	44	160	135	7.35	0.27	4.20
BE 2058	208 226	< 5	0.2	9.92	2910 1940	2.5 1.5	< 2 < 2	1.40	0.5	8	200	15	3.26	4.14	1.56
BE 2059	208 226	< 5	1.0	7.65	1640	1.5	< 2	0.31	1.0	8 17	143 223	30 78	2.91 2.32	4.27 3.54	1.41
BE 2060	208 226	< 5	< 0.2	8.98	1490	2.5	< 2	0.95	1.5	7	144	31	2.30	2.65	1.72
BE 2061	208 226	< 5	2.8	8.19	1290	2.0	< 2	0.13	3.0	12	149	15	7 22	2.10	1.79
BE 2063	208 226	< 5	3.0	7.09	690	1.5	< 2	0.12	3.5	10	143	16	9.82	1.27	1.37
BE 2064	208 226	< 5	0.2	1.19	60	< 0.5	< 2	13.05	1.5	2	90	3	1.51	0.07	7.06
BE 2065	208 226	< 5	0.8	7.50	70	< 0.5	< 2	3.96	< 0.5	58	165	556	8.29	0.28	5.59
BE 2071	208 226	< 5	< 0.2	5.23	340	< 0.5	< 2	2.73	0.5	12	213	402	16.95	0.71	1.36
BE 2072 BE 2073	208 226	< 5	< 0.2	4.76	340	1.5	< 2	2.22	< 0.5	26	169	178	17.00	0.97	0.92
BE 2074	208 226 208 226	< 5 < 5	< 0.2	5.18	380	1.5	< 2	2.55	< 0.5	6	169	211	17.95	0.86	1.21
BE 2075	208 226	10	< 0.2 < 0.2	4.64 4.80	380 400	2.0	< 2 < 2	2.55 1.69	< 0.5	14 23	154 166	135 431	21.2 22.7	0.68 0.87	1.16
BE 2076	208 226	10	< 0.2	5.58	590	2.0									· · · · · · · · · · · · · · · · · · ·
BE 3000	208 226	< 5	< 0.2	8.50	2650	0.5	< 2 < 2	1.58 3.60	< 0.5 0.5	26 17	186 306	206	13.40	1.37	1.25
BE 3001	208 226	< 5	< 0.2	4.41	60	< 0.5	< 2	0.31	< 0.5	12	194	123 62	4.36 2.57	2.09 0.17	1.80
BE 3002	208 226	10	< 0.2	8.25	90	< 0.5	< 2	7.62	< 0.5	25	337	4	5.15	0.17	1.00
BE 3003	208 226	40	< 0.2	5.60	60	0.5	< 2	7.79	< 0.5	68	679	347	10.05	0.22	5.26
BE 3004	208 226	< 5	< 0.2	7.32	230	0.5	< 2	1.36	< 0.5	16	354	31	4.20	1.00	4.46
BE 3005	208 226	< 5	1.6	0.83	90	0.5	< 2	0.06	< 0.5	1	249	11	0.54	0.23	0.07
BE 3006	208 226	< 5	1.2	0.93	130	1.5	< 2	0.02	1.0	3	181	29	2.76	0.26	0.06
BE 3007 BE 3008	208 226 208 226	35	0.2	2.33	330	0.5	< 2	0.60	< 0.5	11	250	160	2.36	0.77	0.59
	405 445	5	< 0.2	2.06	370	< 0.5	< 2	0.44	< 0.5	7	293	46	1.81	0.58	0.60
BE 3009 BE 3010	208 226	6330	2.0	2.52	120	< 0.5	< 2	0.10	60.5	23	119	611	5.81	0.56	1.76
BE 3011	208 226 208 226	2310	1.6	3.81	250	< 0.5	< 2	0.16	110.0	19	115	708	6.64	0.83	2.10
BE 3012	208 226	2860 10	1.6	4.16	120	< 0.5	< 2	0.16	51.5	18	125	567	4.30	0.90	3.28
BE 3013	208 226	< 5	0.2	0.82	110 100	< 0.5	< 2	0.23	0.5	14	234	289	2.19	0.23	0.28
		``		v. ov	IOO	< 0.5	< 2	0.28	< 0.5	4	217	139	2.20	0.41	0.29
·												1			
									·····						

CERTIFICATION: Hartfullen

Analylical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave. North Vancouver

British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

)To: BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY P.O. BOX 49066, STE: 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4

Page ber :2-B Total Fuges :4 Certificate Date: 19-SEP-1998 Invoice No. :19830617 P.O. Number :6112 Account :GP D

Project : BEALE Comments: ATTN:DAVID TERRY CC:DAVID PAWLIUK

* PLEASE NOTE

* PLEASE NOTE							CERTIFICATE OF ANALYSIS A9830617								
SAMPLE	PREP CODB	Mn ppm (ICP)	Mo ppm (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm (ICP)	Pb ppm AAS	Sr ppm (ICP)	Ti % (ICP)	V ppm (ICP)	W ppm (ICP)	Zn ppm (ICP)			
BE 2040	208 22	1430	18	1.90	79	1090	10	290	0.95	330	< 10	142			
BE 2041	208 22	790	< 1	3.81	79	200	112	118	0.18	145	< 10	80			1
BE 2042 BE 2043	208 22		< 1	2.84	91	330	26	205	0.39	151	< 10	142			
BE 2044	208 22		< 1 22	0.47	143 48	2600	104	83 137	0.99	579 202	< 10 < 10	266 88			
BE 2045	208 22	200	34	0.40	66	3610	6	47	0.08	188	< 10	42			+
BE 2046	208 22		< 1	2.54	164	600	10	238	0.45	199	< 10	74			
BE 2047	208 22		< 1	0.65	44	1310	4	46	0.58	284	< 10	100			1
BE 2047A BE 2049	208 22		< 1	0.18	26	1270	6	20	0.14	130	< 10	80			
	208 22	4070	< 1	0.05	27	450	4630	22	0.28	62	< 10	1995			
BE 2049	208 22		< 1	1.72	21	550	18	108	1.07	411	< 10	216			
BE 2050 BE 2057	208 220		< 1	1.94	49	530	24	163	0.89	350	< 10	460	1		
BE 2058	208 220		23	1.58	18	490 480	52 42	286 95	0.35	292	< 10	130			
BE 2059	208 220	320	44	0.61	23	460	40	68	0.25	147 313	< 10 < 10	100 94			
BE 2060	208 226	510	3	1.16	19	4 10	24	207	0.41	184	< 10	72			
BE 2061	208 226		5	0.14	53	640	1220	48	0.34	152	< 10	2030			
BE 2063	208 226		4	0.12	54	480	1540	27	0.21	127	< 10	2000			
BE 2064 BE 2065	208 226			0.79	8	140	44	267	0.02	15	< 10	44			
			< 1	1.95	53	440	14	137	0.75	342	< 10	234			
BE 2071 BE 2072	208 226		2	0.44	9	4540	18	208	0.39	263	< 10	58			
BE 2073	208 226	4820 6270	8	0.11 0.16	59 13	6600 6750	32	160	0.23	204	< 10	122			
BE 2074	208 226	5990	< 1	0.16	30	3140	30 14	185 73	0.26	228 159	< 10 < 10	98 142			1
BE 2075	208 226	7370	2	0.11	48	5190	22	109	0.22	205	< 10	160			
BE 2076	208 226	3500	< 1	0.27	46	4540	32	104	0.29	191	< 10	110			
BE 3000	208 226	855	< 1	1.36	41	180	16	167	0.28	70	< 10	80			
BE 3001 BE 3002	208 226	310 1525	20 < 1	2.57 2.17	5	180	6	33	0.08	68	< 10	24			
BE 3003	208 226	2360	< 1	0.97	94 182	270 150	16 14	278 123	0.26 0.18	209 149	< 10 < 10	114 162			
BE 3004	208 226	555	< 1	2.38	112	200	8	92	0.13	174	< 10	40		·····	
BE 3005	208 226	60	4	0.01	7	90	182	15	0.03	24	< 10	62	1		
BE 3006	208 226	215	10	0.01	13	160	142	13	0.02	29	< 10	156			
BE 3007 BE 3008	208 226	195 105	1	0.23	32 17	280 340	18 8	57	0.11 0.05	91 27	< 10 < 10	34 24			
BE 3009	208 226	165	292	0.47											
BE 3010	208 226	265	202	0.61	36 41	50 50	144 74	27 30	0.03	113 125	< 10 < 10	>10000	1		
BE 3011	208 226	385	337	0.42	31	110	122	26	0.09	113	< 10	>10000 >10000			
BE 3012	208 226	100	4	0.09	19	600	10	15	0.03	30	< 10	92			
BE 3013	208 226	200	1	0.01	6	290	10	18	0.04	24	< 10	48			

CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers

North Vancouver V7J 2C1 212 Brooksbank Ave., British Columbia, Canada PHONE: 604-984-0221 FAX: 604-984-0218

To: BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY P.O. BOX 49066, STE. 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4

Page ber :3-A Total Pages :4 Certificate Date: 19-SEP-1998 Invoice No. : [9830 P.O. Number : 6112 : 19830617 Account :GP D

Project : BEALE Comments: ATTN:DAVID TERRY CC:DAVID PAWLIUK

* PLEASE NOTE

* PLEASE NOTE	PLEASE NOTE							CERTI	FICATE	OF AN	ALYSIS	<u> </u>	A98306	17	
SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm AAS	A1 % {ICP}	Ba ppm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cd ppm (ICP)	Coppm (ICP)	Cr ppm (ICP)	Cu ppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)
BE 3014	208 226	< 5	< 0.2	1.34	150	< 0.5	< 2	0.39	< 0.5	7	176	101	1.80	0.44	0.45
BE 3015 BE 3016	208 226 208 226	< 5	< 0.2	1.56	190	< 0.5	< 2	0.65	< 0.5	9	206	89	2.05	0.44	0.40
BE 3017	208 226		< 0.2	8.84	110 210	< 0.5 0.5	< 2 20	0.23	0.5	21 35	220	334	1.97	0.34	0.40
BE 3018	208 226	< 5	17.6	3.76	340	1.0	30	1.26	2.5	171	202	44 2150	6.10 22.5	0.47	1.87
BE 3019	208 226	< 5	0.2	2.46	40	2.5	< 2	0.06	< 0.5	2	131	15	0.83	0.31	0.10
BE 3020 BE 3021	208 226	< 5	61.8	2.73	40	3.0	128	8.66	103.0	109	34	2210	13.10	0.03	0.52
BE 3022	208 226	NotRed	3.0 NotRed	2.24 NotRed	150 NotRed	2.5	10	1.35	6.5	16	152	33	5.30	0.33	0.06
BE 3023	208 226	< 5	1.2	6.95	130	NotRcd < 0.5	NotRed 12	NotRed 4.65	NotRed 2.5	NotRed 37	NotReđ 133	NotRed 450	NotRed 8.87	NotRcđ 0.31	NotRed 3.86
BE 3025	208 226	< 5	0.2	6.52	60	< 0.5	14	5.73	0.5	41	86	218	6.73	0.29	3.86
BE 3026 BE 3028	208 226	< 5	< 0.2	7.52	20	< 0.5	8	3.96	1.0	55	217	1025	13.00	0.15	4.17
BE 3030	208 226 208 226	< 5 < 5	4.4	6.72	40	< 0.5		4.21	1.5	55	132	1350	9.15	0.16	3.91
BE 3031	208 226	< 5	< 0.2	6.45 6.72	150 70	< 0.5 < 0.5	6 10	5.40 6.18	1.5	20 35	88 89	177 94	6.97 6.64	0.30	3.67
BE 3032	208 226	< 5	3.8	6.31	140	< 0.5	14	3.49	0.5	15	86	408	9.72	0.15	4.24
BE 3033 BE 3034	208 226	< 5	1.6	6.37	90	< 0.5	10	3.44	2.5	44	87	644	8.61	0.29	4.31
BE 3034	208 226 208 226	< 5 < 5	1.0	7.50	90	< 0.5	< 2	5.62	2.0	30	185	306	6.76	0.37	3.77
BE 3036	208 226	< 5	0.4	7.12 6.85	120 150	< 0.5 < 0.5	10 < 2	5.26 4.79	1.0 3.0	28 31	145 234	331 495	7.55 7.39	0.33 0.33	4.13 3.60
BE 3037	208 226	< 5	4.6	1.20	< 10	< 0.5	6	1.55	7.0	22	228	494	3.72	0.01	0.37
BE 3038 BE 3039	208 226	< 5	1.0	9.33	1210	5.0	< 2	2.09	3.5	16	192	70	2.95	2.69	1.59
BE 3040	208 226 208 226	< 5 < 5	0.6	6.67 1.04	1100	1.5	< 2	0.86	3.5	12	203	62	2.47	2.72	1.22
BER 1001	208 226	< 5	0.2	4.73	10 460	< 0.5 0.5	< 2 < 2	1.33 3.82	< 0.5 1.5	24 23	264 312	1350 103	3.74 4.13	0.04 0.73	1.27 2.92
BER 1002	208 226	< 5	< 0.2	6.76	1640	0.5	< 2	0.50	1.0	11	226	57	3.22	2.62	1.38
BER 1003 BER 1004	208 226 208 226	< 5	< 0.2	5.60	1280	0.5	< 2	0.87	1.0	18	240	76	4.72	1.46	1.63
BER 1005	208 226	< 5 < 5	0.2	3.17 7.05	670 2710	1.0	< 2	0.66	1.5	8	221	79	1.61	0.85	0.80
BER 1006	208 226	< 5	< 0.2	5.00	2350	0.5	44	0.49 0.30	15.0 0.5	24 7	397 175	706 48	11.95 2.56	1.10	3.81 0.96
BER 1007	208 226	< 5	1.8	7.77	900	0.5	2	0.52	12.5	24	313	569	21.3	1.27	4.98
BER 1008 BER 1009	208 226	< 5	< 0.2	7.60	100	< 0.5	< 2	1.44	< 0.5	34	96	345	4.56	0.26	2.96
BER 1010	208 226 208 226	< 5 < 5	10.0 4.6	5.02	60	1.5	< 2	0.44	0.5	303	40	3600	22.5	0.08	1.28
BER 1011	208 226	< 5	>100.0	5.84 2.44	680 10	1.0	6 Intf*	2.95 2.80	< 0.5 8.5	13 178	68 80	286 >10000	7.01 >25.0	0.23	1.47 1.34
BER 1012	208 226	< 5	24.8	3.50	50	2.0	Intf*	3.96	3.0	94	61	>10000	20.2	0.08	2.33
BER 1013 BER 1014	208 226 208 226	< 5	11.0	5.65	170	1.5	76	8.51	1.0	64	52	2780	11.50	0.31	3.47
BER 1015	208 226	< 5 65	9.2 0.2	5.56	210	1.5	< 2	2.22	1.5	138	70	3410	20.9	0.45	2.91
9BR 1016	208 226	< 5	0.2	7.76	510 600	< 0.5 1.0	< 2	2.24 2.84	0.5	24	331	210	4.04	1.17	2.20
					000	1.0	× 4	4.04	0.5	21	81	210	6.00	1.55	1.90
	••••••••••••••••••••••••••••••				ł	_									

CERTIFICATION:

* INTERFERENCE: Cu on Bi and P

BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY P.O. BOX 49066, STE. 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4

Page Den ... Total Pages :4 Certificate Date: 19-SEP-1998 Invoice No. : 19830617 P.O. Number :6112 Account :GP D Page ber :3-B

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 Project : BEALE Comments: ATTN:DAVID TERRY CC:DAVID PAWLIUK

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

)To:

* PLEASE NOTE

* PLEASE NOTE							CERTIFICATE OF ANALYSIS A9830617							17	
SAMPLE	PREP CODE	Mn ppm (ICP)	Mo ppm (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm (ICP)	Pb ppm AAS	Sr ppm (ICP)	Ti % (ICP)	V ppm (ICP)	W ppm (ICP)	Zn ppm (ICP)			
BE 3014	208 226	270	2	0.12	13	230	14	23	0.06	41	< 10	32		<u> </u>	1
BE 3015	208 226	225	1	0.15	18	830	18	16	0.05	39	< 10	40			
BE 3016 BE 3017	208 226	115	1	0.14	37	340	14	19	0.05	32	< 10	34			1
BE 3018	208 226	1120 >10000	< 1	4.00	89 82	1190 410	12 2550	477 107	1.41	230 120	< 10 < 10	84 878			
BE 3019	208 226	65	13	0.05			I					ļ			
BE 3020	208 226	>10000		0.03	7	30 40	18 >10000	28	0.06	45	< 10	38			1
BE 3021	208 226	2180	1	0.01	48	330	308	488 36	0.17	104	< 10 < 10	>10000			
BE 3022		NotRed	NotRed	NotRed	NotRed	NotRed	NotRed	NotRed	NotRed	NotRed	NotRed	976 NotRcd		[
BE 3023	208 226	1620	< 1	2.60	36	510	208	170	0.85	348	< 10	476			
BE 3025	208 226	1350	< 1	1.89	38	470	14	150	0.75	324	< 10	172			
BE 3026 BE 3028	208 226	1365	1	1.03	49	510	36	185	0.68	297	< 10	864			
BE 3030	208 226 208 226	1720		1.64	32	470	26	93	0.82	321	< 10	456			
BE 3031	208 226	1490 1550	<pre> < 1 < 1 < 1</pre>	2.47	14 34	480 650	20 12	169 150	0.88 0.91	327 344	< 10 < 10	534 240			
BE 3032	208 226	2750	< 1	2.25	7	500		136	0.93						
BE 3033	208 226	1680	< 1	1.96	38	530	14	105	0.95	303 335	< 10 < 10	368 932			
BE 3034	208 226	1375	4	2.51	48	570	26	209	0.81	304	< 10	966			
BE 3035	208 226	1465	< 1	2.30	25	630	12	148	0.87	321	< 10	376		1	
BE 3036	208 226	1180	< 1	2.68	42	550	16	153	0.66	246	< 10	1105			
BE 3037 BE 3038	208 226 208 226	395	1	0.03	9	60	2760	36	0.08	50	< 10	1885			
BE 3039	208 226	570 415	42	1.66 1.01	56	770	64	225	0.28	416	< 10	224			
BE 3040	208 226	810	2	0.07	66 51	430 370	56 12	129	0.24	274	< 10	222			
BER 1001	208 226	1230	< 1	1.63	72	600	14 198	17 156	0.32 0.37	145 170	< 10 < 10	74 266			
BER 1002	208 226	350	< 1	1.11	32	700	110	105	0.37	198	< 10	86		·	
BER 1003	208 226	1575	< 1	0.86	67	1020	28	126	0.29	215	< 10	96			
BER 1004	208 226	235	3	0.82	40	580	72	107	0.19	154	< 10	140			
BER 1005 BER 1006	208 226 208 226	2440 225	3	0.72	133 27	580 610	562 46	96 69	0.41 0.29	265 156	< 10 < 10	2040			
BER 1007	208 226	2710										84			
BER 1008	208 226	935	1 < 1	0.73	249 28	30	932	126	0.12	70	< 10	1650			
BER 1009	208 226	1350	4	1.93		250 270	12 54	87 79	0.24 0.18	186	< 10	110			
BER 1010	208 226	2480	3	2.72	138	260	98	329	0.18	69 166	< 10 < 10	184 88			
BER 1011	208 226	5720	8	0.06	246	Intf*	1040	92	0.15	118	4190	1460			
BER 1012	208 226	3930	< 1	0.08	61	Intf*	30	108	0.42	195	150	432			
BER 1013	208 226	5910	< 1	0.75	41	820	174	306	1.14	357	10	266			
BBR 1014 BER 1015	208 226	2790	2	0.13	155	740	42	48	0.80	332	10	288			
BER 1016	208 226 208 226	650 900	7 < 1	0.82	106	370	22	78	0.23	119	< 10	64			
	AUU 440	900	< 1	1.84	30	440	34	205	0.38	316	< 10	132			

CERTIFICATION: HartRuchlen

* INTERFERENCE: Cu on Bi and P

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY P.O. BOX 49066, STE. 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4

Page 1995 Total Pages :4 Certificate Date: 19-SEP-1998 Invoice No. : 19830617 P.O. Number :6112 Account :GP D Page ber :4-A

Project : BEALE Comments: ATTN:DAVID TERRY CC:DAVID PAWLIUK

* PLEASE NOTE

* PLEASE NOTE			CERTI	FICATE	OF AN	ALYSIS	<u> </u>	A98306	17						
SAMPLE	PREP Code	Au ppb FA+AA	Ag ppm AAS	A1 % (ICP)	Bappm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cđ ppm (ICP)	Coppm (ICP)	Cr ppm (ICP)	Cu ppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)
BER 1017 BER 1018 BER 1019 BER 1020 BER 1021	208 226 208 226 208 226 208 226 208 226 208 226	<pre>< 5 < 5</pre>	< 0.2 < 0.2 < 0.2 13.4 6.0	6.08 4.36 3.41 8.78 6.65	60 630 660 940 630	0.5 1.0 0.5 1.5 1.0	4 < 2 < 2 14 6	5.21 2.65 2.43 0.26 0.18	< 0.5 0.5 1.0 29.0 73.5	51 15 13 34 22	34 320 316 246 190	144 64 61 384 1120	9.99 4.20 2.94 15.80 19.15	0.24 1.04 0.65 1.67 0.63	2.32 1.91 1.49 5.75 3.84
BER 1022 BER 1023 BER 1024 BER 1025 BER 1026	208 226 208 226 208 226 208 226 208 226 208 226	<pre>< 5 < 5</pre>	0.6 < 0.2 4.0 2.6 0.2	4.31 2.92 6.75 7.30 1.60	1340 670 80 30 20	0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5	8 < 2 < 2 6 2	2.87 0.93 3.84 4.11 1.76	2.5 1.5 0.5 0.5 0.5	16 8 34 23 62	620 266 158 186 299	94 66 486 678 646	3.67 2.33 9.62 12.15 4.98	1.20 0.42 0.20 0.12 0.06	6.62 1.02 4.25 3.59 1.46
BER 1027 BER 1028 BER 1029 BER 1030 BER 1031	208 226 208 226 208 226 208 226 208 226 208 226 208 226	<pre></pre>	2.0 0.6 0.4 0.2 1.2	5.11 1.37 7.03 9.19 3.78	90 160 940 1340 60	< 0.5 < 0.5 2.0 2.5 < 0.5	< 2 < 2 < 2 4 < 2	3.11 1.05 0.25 0.17 0.83	0.5 < 0.5 1.5 0.5 0.5	70 40 13 8 232	119 321 119 139 96	1320 179 74 24 1475	15.90 7.50 3.37 3.82 19.25	0.26 0.13 1.96 2.57 0.56	1.55 0.48 1.57 1.64 0.80
BER 1032 BER 1033 BER 1034 BER 1035 BER 1036	208 226 208 226 208 226 208 226 208 226 208 226 208 226	5 10 < 5 < 5 < 5 < 5	0.2 9.8 0.6 0.4 1.8	9.42 4.31 6.09 9.31 7.13	1370 20 380 1210 870	2.5 0.5 1.0 2.5 1.5	< 2 8 < 2 < 2 < 2 < 2	0.16 9.59 2.47 0.19 0.12	0.5 4.5 1.0 0.5 1.0	8 216 22 14 8	150 69 121 152 278	31 1400 78 53 42	3.99 19.25 5.27 4.15 3.27	2.77 0.05 0.91 2.56 1.80	1.51 1.33 2.10 1.65 1.05
BER 1037 BER 1038 BER 1039 BER 1040 BER 1041	208 226 208 226 208 226 208 226 208 226 208 226 208 226	<pre>< 5 < 5</pre>	0.2 0.2 2.0 0.4 0.2	9.14 5.51 8.94 6.66 5.40	1070 480 1170 900 1090	2.5 1.0 3.0 1.5 1.0	< 2 < 2 < 2 < 2 < 2 < 2	0.18 1.42 0.22 0.19 0.36	0.5 0.5 0.5 0.5 0.5	17 7 46 9 8	124 205 161 221 127	44 18 124 20 58	4.67 2.15 4.77 3.61 3.19	2.38 1.07 2.42 1.69 1.96	1.80 1.23 1.80 1.52 1.58
BER 1042	208 226	< 5	0.6	8.01	1090	2.0	< 2	0.76	1.5	17	197	37	4.30	1.95	1.57

To:

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

BOLIDEN - WESTMIN LIMITED ATTN: DAVID TERRY P.O. BOX 49066, STE. 904 - 1055 DUNSMUIR ST. VANCOUVER, BC V7X 1C4 To:

Page 1051 : . Total Pages :4 Certificate Date: 19-SEP-1998 Invoice No. : 19830617 P.O. Number :6112 Account :GP D Pages ber :4-B

Project : BEALE Comments: ATTN:DAVID TERRY CC:DAVID PAWLIUK

* PLEASE NOTE

* PLEASE NOTE				<u> </u>			CERTIFICATE OF ANALYSIS A9830617							17	
SAMPLE	PREP CODE	Mn ppm (ICP)	Mo ppm (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm (ICP)	Pb ppm AAS	Sr ppm (ICP)	Ti % (ICP)	V ppm (ICP)	W ppm (ICP)	Zn ppm (ICP)			
BER 1017 BER 1018 BER 1019 BER 1020 BER 1021	208 226 208 226 208 226 208 226 208 226 208 226	1665 870 875 >10000 6430	< 1 4 6 < 1 < 1	2.57 0.83 0.72 0.27 0.21	3 45 43 98 68	1720 1790 2000 600 1350	8 14 12 4200 ≻10000	110 222 154 143 66	2.37 0.48 0.38 0.81 0.64	361 198 155 359 300	< 10 < 10 < 10 < 10 < 10 < 10	74 84 94 >10000 >10000			
BER 1022 BER 1023 BER 1024 BER 1025 BER 1026	208 226 208 226 208 226 208 226 208 226 208 226	1165 1815 1715 1860 1065	1 < 1 < 1 < 1 < 1 3	0.68 0.80 1.97 1.36 0.16	119 28 32 11 94	740 730 540 380 560	132 494 24 36 60	159 102 157 242 20	0.41 0.16 0.83 0.98 0.41	281 73 315 375 210	< 10 < 10 < 10 < 10 < 10 < 10	438 520 286 252 86			
BER 1027 BER 1028 BER 1029 BER 1030 BER 1031	208 226 208 226 208 226 208 226 208 226 208 226	3980 5460 660 250 405	< 1 < 1 < 1 < 1 1 1	0.33 0.18 1.06 1.09 1.38	119 61 61 26 33	2440 1300 440 740 310	30 76 22 14 22	100 33 73 88 98	0.22 0.40 0.33 0.40 0.17	177 58 119 160 32	< 10 < 10 < 10 < 10 < 10 < 10	108 82 148 84 48			
BER 1032 BER 1033 BER 1034 BER 1035 BER 1036	208 226 208 226 208 226 208 226 208 226 208 226	410 4410 570 540 580	4 < 1 3 7 54	1.05 0.08 1.08 1.41 1.49	14 49 174 50 37	650 110 >10000 670 660	16 32 16 26 256	100 220 165 95 88	0.43 0.23 0.24 0.39 0.31	159 67 85 176 381	< 10 < 10 < 10 < 10 < 10 < 10	76 630 144 106 88	<u>.</u>		
BER 1037 BER 1038 BER 1039 BER 1040 BER 1041	208 226 208 226 208 226 208 226 208 226 208 226	645 795 1860 315 1195	1 1 12 3 6	1.06 1.67 0.78 1.15 0.08	41 21 127 27 26	520 490 910 740 680	18 18 26 14 70	82 150 85 78 21	0.37 0.23 0.39 0.31 0.32	129 59 209 152 167	< 10 < 10 < 10 < 10 < 10 < 10	112 58 176 92 130			
BER 1042	208 226	1275	1	0.70	49	640	88	126	0.39	133	< 10	148			
				-											
														-	