

DRILL HOLE PM 98-1

PAUL-MIKE PROPERTY

Lewis Creek Area Fort Steele Mining Division

NTS 82 G/12 & G/13

Latitude 49° 45' N Longitude 115° 43' W

by

Peter Klewchuk, P.Geo.

June, 1999

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

TABLE OF CONTENTS

	이 같은 것은 것은 것은 것은 것은 것은 것을 가지 않는 것을 가지 않 같은 것은	Page
1.00	DRILLING SUMMARY	1
2.00	INTRODUCTION	3
	 2.10 Location and Access 2.20 Property 2.30 Physiography 2.40 History 2.50 Scope of Present Program 	3 3 3 3 6
3.00	GEOLOGY 3.10 Regional Geology 3.20 Property Geology	6 6 9
4.00	DIAMOND DRILLING	9
5.00	GEOCHEMISTRY	13
6.00	CONCLUSIONS	15
7.00	STATEMENT OF COSTS	15
8.00	REFERENCES	16

APPENDIX I	LIST of CLAIMS	Following p.16
APPENDIX II	DRILL LOG DDH PM 98-1	· · · · · · · · · · · · · · · · · · ·
APPENDIX III	GEOCHEMICAL ANALYSES	66
	コート ション・ション しゅうえい ゆうえん たたい かんたい したいたい たいかい	

LIST OF ILLUSTRATIONS

Figure 1	Paul-Mike Property location map		
Figure 2	Paul-Mike property claim map	5	
Figure 3	Geology of Paul-Mike claims	7	
Figure 4	Geologic Cross-section showing DDH PM 98-1	10	

1.00 DRILLING SUMMARY

Drill hole PM 98-1 tested a seismic anomaly on the Paul-Mike claim group during the period August 1998-February 1999. The drill hole is located on the eastern side of the Rocky Mountain Trench, approximately 22 km east of the world class SEDEX zinc-lead-silver Sullivan orebody at Kimberley, B.C.

Drill hole PM 98-1 was collared with a water well drill owned by Owen's Drilling of Cranbrook, B.C. who completed the following: 0-400 ft / 122 m : 12" / 30.5 cm ID casing 0-740 ft / 225.6 m : 10" / 25.4 cm ID casing 0-1015 ft / 309.5 m : 8" / 20.3 cm ID casing Drilled a separate 225 ft / 68.6 m water well 4 m NE of DDH PM 98-1 to

provide a water supply for rotary and diamond drilling.

Hi-Rate Drilling Ltd of Stettler, Alberta then drilled to 1790 ft / 545.7 m and cased to 1247 ft / 380.2 m with 6" / 15.24 cm ID casing. Samples were collected every 5 feet / 1.5 m. 1247 feet to 1790 feet was left as open hole due to caving but was cemented below the 6" casing.

SDS Drilling Ltd. of Calgary, Alberta cleaned the hole and drilled to 2034.6 feet / 620.3 m with 6 1/8" / 15.6 cm tools. Samples were collected every 5 feet / 1.5 m in the new hole. The lowermost ~7.1 m was drilled in bedrock. SDS set HW casing to 620.3 m.

Diamond drilling was conducted by Midwest Drilling Ltd. of Winnipeg, Manitoba; they cored with HQ tools to 731.4 m and with NQ tools to the final depth of 1529.6 m.

Summary Drill Log:

0-613.2m	Overburden
----------	------------

- 613.2-620.3 Triconed in bedrock; no core.
- 620.3-753.9 CRESTON Fm Green siltstone and silty argillite, minor quartzite.
- 753.9-820.0 GABBRO
- 820.0-842.0 CRESTON FM
- 842.0-849.0 MAJOR FAULT ZONE, flat-lying, separates Creston and Aldridge Formations. Apparent vertical displacement is in the order of 3000 meters.

849.0-937.3 MIDDLE ALDRIDGE Fm Medium and dark gray siltstone, silty argillite and minor quartz wacke.

937.3-956.0 Felsic Dike

956.0-1331.5 MIDDLE ALDRIDGE Fm

956-1010 m is gray siltstone, calcareous siltstone, and quartz wacke, 1010-1331.5 m is dark blue-gray to black pyritic argillite, locally geochemically anomalous in Pb, Zn, and Cu.

1331.5-1529.6 FORT STEELE Fm 'White' quartzites and siltstone, mixed with dark gray argillite

Almost all of the rock cored is very badly fractured and faulted with numerous zones of fault breccia and gouge. This very broken ground is reflected in the extensive core loss which was experienced throughout the drilling. Most of the fracturing is at a high angle to the vertical drill hole and is evidently related to the low-angle fault which separates the Creston and Aldridge Formations at 842-849 m in the hole.

The most competent units cored are the gabbro within the Creston Formation, and the Fort Steele Formation.

The dark gray to black pyritic argillite which occurs at the base of the middle Aldridge Formation is anomalous in copper, lead, zinc and silver.

2.00 INTRODUCTION

2.10 Location and Access

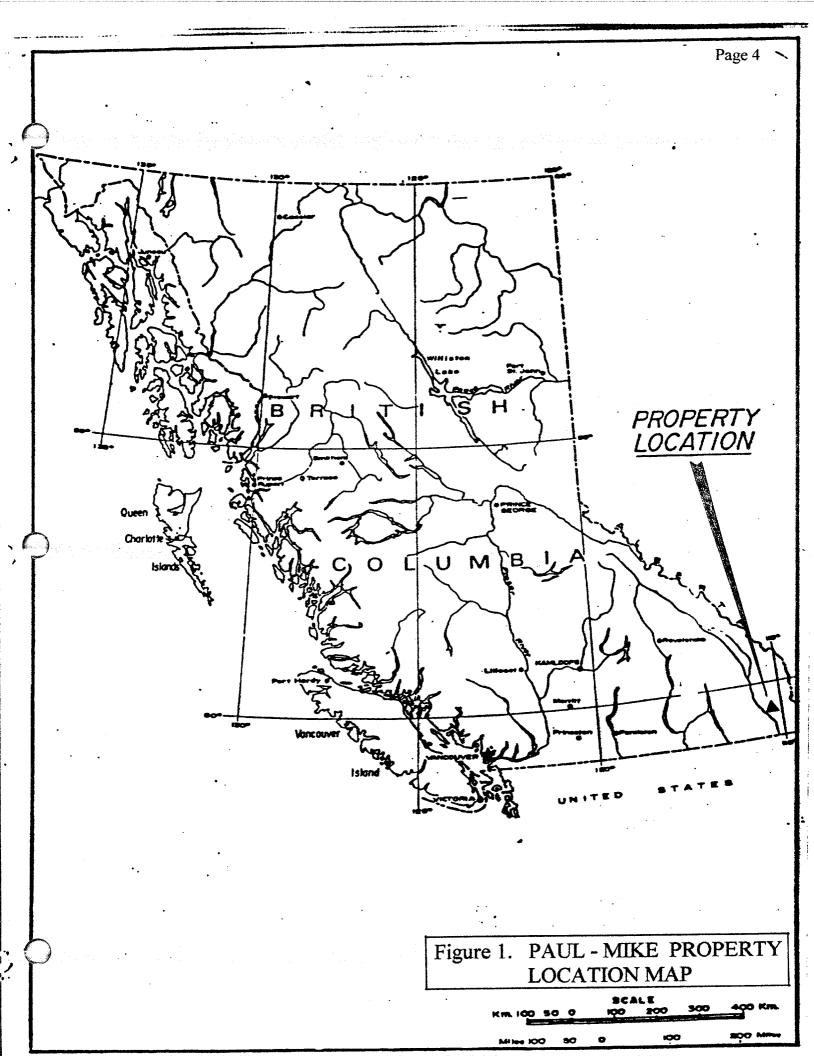
The Paul-Mike property is located in southeastern British Columbia in the Fort Steele Mining Division, approximately 22 km east of the Sullivan orebody at Kimberley, B.C., and 25 km north of Cranbrook. The claims are centered approximately at 49° 45' N latitude and 115° 43' W longitude, on reference maps NTS 82G/12 and G/13 (Fig. 1).

Access to the claims is provided by paved Highway 93/95 from either Kimberley or Cranbrook. Numerous secondary roads provide additional access to various parts of the claim group.

2.20 Property

The Paul-Mike property includes the Paul, Mike, King, Flat and Mikey #1 Fraction mineral claims, owned 100% by Dia Met Minerals Ltd of Kelowna, B.C. (Fig.2). At the time of drilling, the block included 287 claim units in 21 four-post claims, 55 two-post claims and one fractional claim for a total of 343 claim units. Appendix 1 is a complete listing of the claims held at the time of drilling and their expiration dates following application of the 1998-99 work for assessment.

2.30 Physiography


The Paul-Mike property is situated at an elevation of about 900 m on the immediate east side of the Rocky Mountain Trench, on the westernmost flank of the Hughes Range of the Rocky Mountains. The claims cover an area of relatively low local relief, straddling the Kootenay River, and mainly south of Lewis Creek. Flat to hummocky terrain is common in the claim area and bedrock is present only on the extreme eastern edge of the property.

The mixed forest cover is typical of the Rocky Mountain Trench in southeastern B.C. and includes Ponderosa and Lodgepole Pine, Douglas Fir and Western Larch. Parts of the claim block have been recently logged.

2.40 History

The Paul-Mike claims were originally staked in the early 1980's. Exploration activity on the claims is documented in a number of Assessment Reports, eg. #'s 10,289, 11,612, 13,689, 14,835 & 22,258.

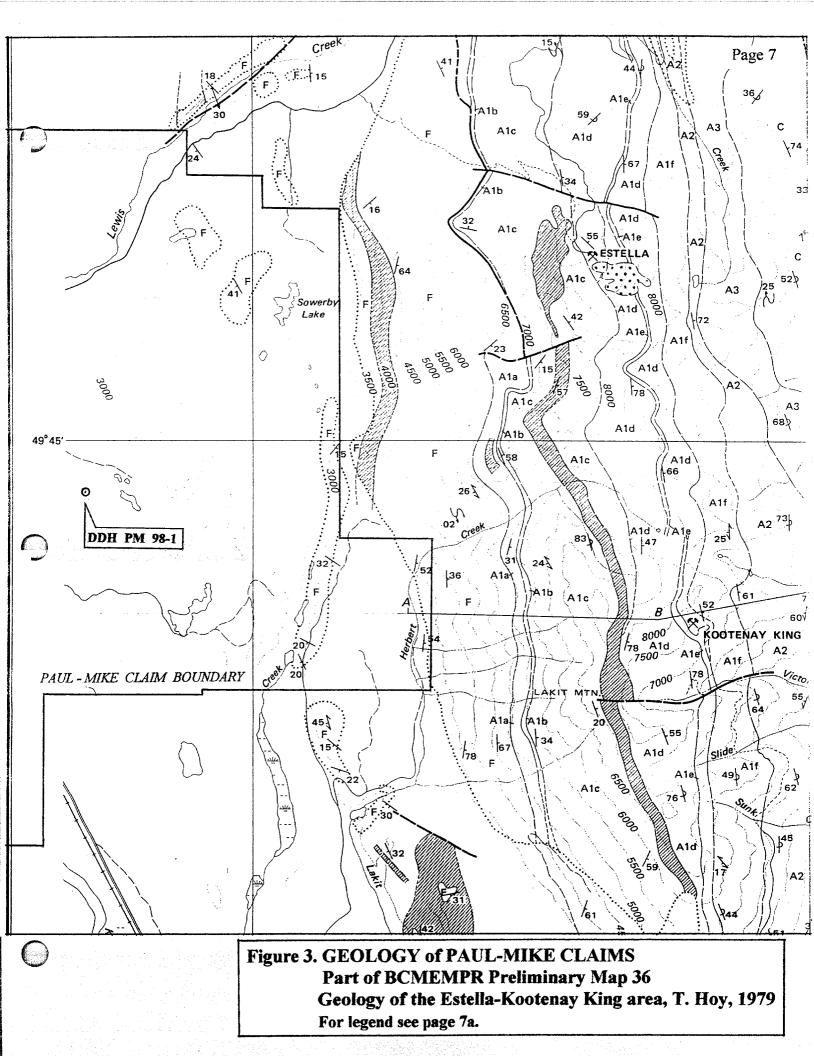
Limited other exploration activity has taken place near the Paul-Mike property in recent years. In

1970 Texas Gulf Sulfur staked a 32 unit claim block north of the Paul-Mike property and conducted geological mapping and took 75 soil samples (Gifford, 1971, AR 3092). In 1992 INCO Exploration staked a larger claim block called the 'Lewis Creek Property', also north of the Paul-Mike ground. INCO was interested in copper mineralization and their work included geological mapping and a large soil sampling grid. INCO's work is reported on by Rawick and Rush, 1994 (AR 23,115).

2.50 Scope of Present Program

In 1998 and early 1999 an exploration diamond drill hole was completed on the Paul-Mike claims to test a geophysical anomaly obtained during an earlier seismic survey.

3.00 GEOLOGY


3.10 Regional Geology

The Paul-Mike property is situated on the east side of the Rocky Mountain Trench, within the Fernie (West Half) map sheet (Leech, 1960) and is also included in BCMEMPR Preliminary Map 36 by Trygve Hoy: Geology of the Estella - Kootenay King Area, Hughes Range, Southeastern British Columbia (1979). A portion of this map which covers the area of the Paul-Mike claims is reproduced here as Figure 3.

The Paul-Mike claim group is on the eastern margin of the Purcell Anticlinorium "a generally north-plunging structure that is cored by the Middle Proterozoic Purcell Supergroup and the late Proterozoic Windermere Supergroup, and flanked by Paleozoic miogeoclinal rocks. ... The anticlinorium is cut by prominent northeast trending faults, including the Moyie and St. Mary faults and its eastern edge by north trending, west-side down normal faults, such as the Gold Creek and Rocky Mountain Trench faults." Hoy et al, 1995.

The lowest member of the Purcell Supergroup is the Aldridge Formation, a thick succession of fine-grained, medium to dark gray siliciclastic rocks, informally divided into a lower, middle and upper division. The lower Aldridge near Kimberley consists of at least (base not exposed) 600 m of thin and medium bedded siltstone, argillite and minor quartz wacke; the middle Aldridge consists of about 1800 m of turbidites, fine and medium grained quartz wackes mixed with thinner bedded siltstones and argillites; and the upper Aldridge is about 300 m of thin and medium bedded, rusty-weathering siltstones and argillites which are gradational to the overlying shallow water Creston Formation. The Creston Formation consists of up to 2000 m of gray-green and maroon siltstone and argillite and white and maroon quartzites.

The Creston, Aldridge and Fort Steele Formations are intruded by gabbroic sills and dikes of the

Province of British Columbia Ministry of Energy, Mines and Petroleum Resources

PRELIMINARY MAP 36

GEOLOGY OF THE ESTELLA-KOOTENAY KING AREA

HUGHES RANGE

SOUTHEASTERN BRITISH COLUMBIA

(NTS 82G/11, 12, 13, 14)

GEOLOGY BY TRYGVE HÖY, 1976-1978

LEGEND

CRETACEOUS

QUARTZ MONZONITE, SYENITE

HADRYNIAN/HELIKIAN

с

PURCELL SUPERGROUP

PURCELL SILLS AND DYKES

C CRESTON FORMATION: GREEN AND PURPLE ARGILLITE AND SILTSTONE, WHITE AND GREEN QUARTZITE; MINOR DARK ARGILLITE

ALDRIDGE FORMATION

A3 DARK GREY FINELY LAMINATED ARGILLITE; MINOR SILTSTONE

A3I DARK GREY ARGILLITE WITH LENTICULAR BEDDING

A2 QUARTZITE, SILTSTONE; INTERLAYERED WITH DARK ARGILLITE

A1 FINELY LAMINATED ARGILLITE, SILTSTONE; MINOR DOLOMITE, QUARTZITE

- f MEDIUM TO DARK GREY SILTSTONE, ARGILLITE
- e THICK-BEDDED QUARTZITE; MINOR CONGLOMERATE
- d BUFF-COLOURED DOLOMITIC SILTSTONE, DOLOMITIC ARGILLITE; ABUN-DANT LENTICULAR BEDDING AND RIPPLE CROSSBEDDING
 - GREY SILTSTONE, ARGILLITE; TAN SILTSTONE, BLACK GRAPHITIC ARGILLITE
- **b** SILTY DOLOMITE, DOLOMITIC SILTSTONE; MINOR LIMESTONE
- a GREY TO BLACK SILTSTONE AND ARGILLITE

FORT STEELE FORMATION: WHITE CROSSBEDDED QUARTZITE, MUD-CRACKED SILTSTONE, ARGILLITE

SYMBOLS

GEOLOGICAL CONTACT: DEFINED, APPROXIMATE, ASSUMED	
FAULT: DEFINED, APPROXIMATE, ASSUMED	-
ANTICLINE - AXIAL SURFACE	
BEDDING (S0): VERTICAL, INCLINED, OVERTURNED	
FOLIATION, CLEAVAGE (S1)	· Z
LINEATION (S0 - S1 INTERSECTION)	
FOLD AXIS	·Y
MINERAL DEPOSIT	*
LIMITS OF OUTCROP (OR MAPPING)	•••••
a faith an	

Legend for Figure 3

Movie Intrusions. They consist mainly of medium grained amphibole and plagioclase.

The Sullivan orebody at Kimberley, 22 km west of DDH PM 98-1, is a world-class SEDEX Zn-Pb-Ag deposit originally comprised of about 160 million tonnes of approximately 6% Pb, 6% Zn and 67 grams Ag per tonne. This deposit occurs at the top of the lower Aldridge Formation. A Sullivan-equivalent orebody is the primary exploration target in the Aldridge Formation and is the target on the Paul-Mike claims. The lower-middle Aldridge contact (LMC) is considered the prime stratigraphy for such exploration.

The Sullivan orebody is cut at its northern edge by the Kimberley Fault, an east-west trending structure with approximately 3000 meters of north side down apparent vertical displacement in the vicinity of the orebody. This fault is considered by many workers to have had an influence on the deposition of the Sullivan orebody.

East of the Rocky Mountain Trench, in the western Rocky Mountains, the oldest rocks are of the Fort Steele Formation, comprised of at least 2000 m (base not exposed) of coarse to finer grained white quartzites, gray siltstones and black argillites. Hoy (1979) interprets the Fort Steele Formation at the base of the exposed Purcell sequence to predominantly be braided fluvial deposits derived from a source area to the south.

A transitional contact exists between the Fort Steele Formation and the overlying middle Aldridge Formation. The Fort Steele Formation is considered to be the facies equivalent of the lower part of the Aldridge Formation of the Purcell Mountains. The basal middle Aldridge unit in the Rocky Mountains immediately east of the Paul-Mike claims is a pyritic 'black mudstone' of about 200-300 m thickness which is at least locally anomalous in Cu, Pb, Zn & Ag, and this unit is conceivably equivalent stratigraphically to the LMC of the Purcell Mountains.

Both the Fort Steele and Aldridge Formations are intruded by gabbroic sills and dikes of the Movie Intrusions. They consist mainly of medium grained amphibole and plagioclase.

The structure of the Estella - Kootenay King area is dominated by a large, open, recumbent anticline (Hoy, 1979; Fig. 3). Its axial plane dips to the west and bedding in its upper limb, in the western part of the area dips to the west. The east side of the Paul-Mike claims overlies the western limb of the anticline; on the west side of the claims, extensive glacial debris overlies the bedrock (Fig. 4).

The Rocky Mountain Trench is a large valley that was carved down by Pleistocene ice almost to present sea level. During the waning stages of glaciation it was filled with glacio-fluvial sediments to a depth of more than 600 meters.

The extensive glacio-fluvial deposits within the Rocky Mountain Trench apparently cover the zone of transition between the LMC of the Purcells and the equivalent stratigraphy in the Rockies.

3.20 Property Geology

The Paul-Mike claims cover a portion of the eastern side of the Rocky Mountain trench. A thick layer of glacial debris underlies most of the claim block with bedrock exposed only on the eastern edge of the property. This bedrock is of the Fort Steele Formation; predominantly white to gray quartzite, lesser gray siltstone and minor gray to black argillite.

Bedding in the Fort Steele Formation along the east edge of the property dips gently westward.

The Rocky Mountain Trench Fault underlies the Paul-Mike property along the western edge of the Rocky Mountains, somewhere just west of the exposed Fort Steele Formation; it's surface trace is covered by glacial debris.

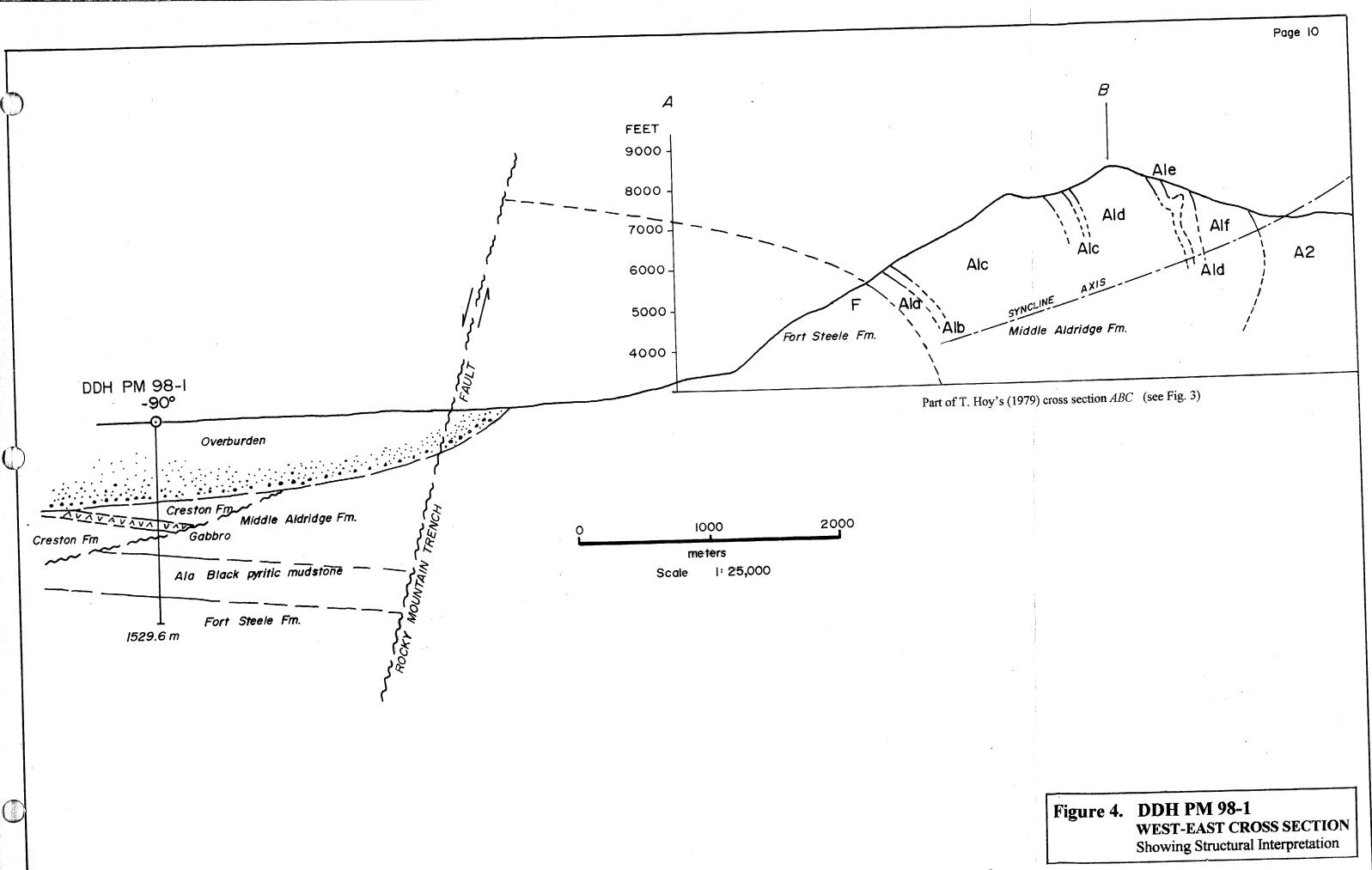
The eastern extension of the Kimberley Fault, which cuts the northern margin of the Sullivan orebody, is not clearly defined in the Paul-Mike area. The Lewis Creek Fault which crosses the northern portion of the Paul-Mike claims may be correlative with the Kimberley Fault. Three other east-west oriented faults defined in part by Hoy (1979) in the general Estella-Kootenay King area (Fig. 3), might also be considered candidates.

4.00 DIAMOND DRILLING

Drill hole PM 98-1 was drilled between August 1998 and late January, 1999. UTM coordinates of the hole are 594,028.1 E 5,510,973.8 N (115° 41'43" W longitude, 49°44'45" N latitude) with a collar elevation of 889.1 m.

The hole is located approximately 7 km southwest of the Estella Zn-Pb-Ag vein deposit and 8 km west-northwest of the stratiform Zn-Pb-Ag Kootenay King deposit (Fig. 3). Both deposits are hosted by rocks of the middle Aldridge Formation.

As very thick overburden was expected, the hole was drilled in stages starting with 12" (30.5 cm) ID water well casing. Four separate contractors were involved in the drilling, at different stages. The drill hole was completed to 1529.6 m with NQ diamond drilling tools.


A brief summary of the drilling history:

Overburden Drilling

 $\begin{array}{l} 0-400 \ ft/122 \ m \ : \ 12^{"}/30.5 \ cm \ ID \ casing \\ 0-740 \ ft/225.6 \ m \ : \ 10^{"}/25.4 \ cm \ ID \ casing \\ 0-1015 \ ft/309.5 \ m \ : \ 8^{"}/20.3 \ cm \ ID \ casing \end{array}$

an the second

Owens Drilling Ltd Cranbrook, B.C.

Owens also drilled a separate 225 ft / 68.6 m water well 4 m NE of DDH PM 98-1 to provide a water supply for rotary and diamond drilling.

1015 ft / 309.5 m to 1790 ft / 545.7 m cased to 1247 ft / 380.2 m with 6" / 15.24 cm ID casing

1790 ft / 545.7 m to 2034.6 feet / 620.3 m The lowermost ~7.1 m was drilled in bedrock. Set HW casing to 620.3 m

Hi-Rate Drilling Ltd Stettler, Alberta

SDS Drilling Ltd. Calgary, Alberta

Bedrock Diamond Drilling

620.3 m to 731.4 m	HQ	Midwest Drilling Ltd.
731.4 m to 1529.6 m	NQ	Winnipeg, Manitoba

Diamond drilling started October 11, 1998 and was completed January 29, 1999. The first bedrock encountered was a thin bedded green argillite and siltstone unit with one local occurrence of maroon bands. The core is quite broken, with extensive fault breccia and gouge and considerable core loss, hindering a geological interpretation. Nevertheless, this lithology is most compatible with the Middle Proterozoic Creston Formation, and is probably part of the upper Creston.

A gabbro, interpreted to be a sill included within the Creston Formation, was cored from 753.9 to 820.0 m. This gabbro is a relatively competent unit with generally good core recovery although there are numerous zones of broken core and scattered narrow bands of fault gouge and/or breccia. The relatively competent nature of this gabbro and its possible occurrence as a fault-bounded unit support it being the cause of the seismic anomaly.

A major, flat-lying fault (the 'Paul-Mike Fault') occurs at 842-849 m, separating the Creston Formation from thin and medium bedded, distinctly darker gray colored siltstones and quartz wackes of the middle Aldridge Formation. Deformation fabric within the fault zone ranges from 60 to 90° to the core axis, implying a dip of 0 to 30°. The normal stratigraphic separation between the interpreted upper Creston Formation and the middle Aldridge Formation is in the order of 3000 m. This structure is not evident on surface and in fact may be entirely covered by glacial debris within the Rocky Mountain Trench.

The relatively flat deformational fabric seen in the Paul-Mike Fault persists through most of the core drilled, both above and below the fault zone, indicating a wide zone of peripheral deformation.

Middle Aldridge Formation siltstone, quartz wacke and argillite were encountered below the fault zone to 1010 m, with one included felsic dike from 937.3 to 956 m. This type of intrusive is not uncommon within the Rocky Mountains east of the Paul-Mike claims.

From 1010 to 1331.5 m a thin bedded, dark blue-gray to black pyritic argillite was encountered, along with minor siltstone and quartz wacke. This unit is equivalent to the lowest member of the middle Aldridge Formation as mapped by Hoy (1979) in the Rocky Mountains to the east (designated as unit A1a by Hoy; Fig. 3). Minor base metal mineralization including sphalerite, galena and chalcopyrite were observed in the core, and subsequent geochemical analyses of both the core and sludge samples of drill cuttings support the geochemically anomalous nature of the unit. This metalliferous lithology may be the lateral equivalent of the lower-middle Aldridge contact (LMC; Sullivan stratigraphy), in the Purcell Mountains to the west.

The upper part of the Fort Steele Formation is interpreted to occur at 1331.5 m, where gray siltstones and quartzites become apparent. These more siliceous beds are mixed with black argillite sections, with one thicker band of black argillite at 1397.2 to 1407.3 m (with minor PbS and Cpy). With depth, thicker quartzites become more common.

Two narrow gabbro dikes (bedding sub-parallel?) were encountered from 1495.4 to 1497.8 m.

Final depth of the hole was 1529.6 m, ending in fairly massive light gray quartzites.

A summary drill log follows:

- 0-613.2m Overburden
 - 613.2-620.3 Triconed in bedrock; no core.

6220.3-753.9 CRESTON Fm Green thin bedded and laminated siltstone and silty argillite, minor quartzite. A few maroon colored beds.

753.9-820.0 GABBRO Dark green, quite massive, medium to coarse grained, somewhat finer grained near contacts.

- 820.0-842.0 CRESTON Fm
- 842.0-849.0 MAJOR FAULT ZONE, flat-lying, separates Creston and Aldridge Formations. Apparent vertical displacement is in the order of 3000 meters.
- 849.0-937.3 MIDDLE ALDRIDGE Fm Medium to dark gray siltstone, silty argillite and minor quartz wacke.

937.3-956.0 Felsic Dike

956.0-1331.5 MIDDLE ALDRIDGE Fm 956-1010 m is gray siltstone, calcareous siltstone, and quartz wacke, 1010-1331.5 m is dark blue-gray to black pyritic argillite, locally geochemically anomalous in Pb, Zn, and Cu.

1331.5-1529.6 FORT STEELE Fm 'White' quartzites and siltstone, mixed with dark gray argillite.

Five dip tests were taken in the hole:

Depth	Uncorrected Dip
615 m	-85°
704 m	-78 °
888 m	-82°
1115 m	-86°
1480 m	-8 0°

A complete drill log is provided as Appendix Π

5.00 GEOCHEMISTRY

Samples were collected from DDH PM 98-1 from both core and drill cuttings. Representative grab samples of core were collected between 616 and 817.5 m; continuous core sampling was conducted from 1019 m to 1433 m and sludge samples of the drill cuttings were collected from 1280 m to the end of the hole. Core was sampled by G.M.Rodgers, P.Eng., who managed the drill program above bedrock. Sludge samples were taken by the drill crew.

The representative grab samples were analyzed by the ICP method for 33 elements; the other core samples and the sludge samples were analyzed by the ICP method for 33 elements and by the AA method for selected elements. Complete analytical results are provided in Appendix III.

All geochemical analyses were done by Acme Analytical Laboratories Ltd. of 852 East Hastings Street, Vancouver, B.C.

Grab Samples

A suite of eleven 'grab' samples were taken in the upper part of the hole between 616 and 817.5 m as a check for possible anomalous metals that were not observed during logging of the core.

The 33 element ICP analyses for these samples is provided in Appendix III a.

 \bigcirc

Maximum values for some selected elements is:

Element	Max. Value
Cu	277 ppm
Pb	85 ppm
Zn	143 ppm
Ag	2.6 ppm
As	64 ppm
Au	17 ppb

Continuous Core Sampling

Diamond drill core was sampled in 3 m intervals continuously from 1019 to 1433 m. Samples were analyzed by both ICP for 33 elements and AA for Cu, Pb, Zn, Mn, Na and boron. Complete analytical results for this core are provided in Appendix III b. A high number of samples are strongly anomalous, with maximum values being:

	Cu	Pb	Zn	Mn	Na	В
ICP	323	1113	3289	1339	2.62	-
AA	198	1180	3350	1081	1.72	147

Na is %; other values are ppm

There is generally good correlation between ICP and AA results.

Sludge Sampling

Because of the considerable core loss being experienced during drilling of hole PM 98-1, sludge samples were collected of the drill cuttings to provide a geochemical record. Sampling started at 1280 m and continued to the bottom of the hole. Samples were taken every 3 m and were analyzed by both ICP and AA methods. ICP analyses were for 33 elements, AA analyses were for Cu, Pb, Zn, Mn, Na, and boron. Complete analytical results for sludge samples are provided in Appendix III c.

Given the depth of the hole and the mixing of the drill cuttings in the drilling fluid as it is pumped to surface, analytical values for sludge samples tend to be subdued. Anomalous values were detected for base metals, with the highest values being:

	Cu	Pb	Zn	Mn	Na	В
ICP				844		
AA	320	330	220	1160	2.32	130

Page 14

The anomalous values of sludge samples tend to confirm the anomalous nature of the pyritic black mudstone unit which occurs here at the base of the middle Aldridge Formation. There is no obvious indication of higher grade mineralization having been encountered in the hole but lost during the drilling process due to very broken ground.

6.00 CONCLUSIONS

- 1. Drill hole PM 98-1 successfully tested stratigraphy at the base of the middle Aldridge Formation on the Paul-Mike claims.
- 2. A major low-angle fault which separates Creston Formation from underlying middle Aldridge Formation has an apparent vertical displacement in the order of 3000 m. The surface trace of this fault may be entirely covered by overburden in the Rocky Mountain Trench.
- 3. The north trending Rocky Mountain Trench Fault occurs east of drill hole PM 98-1 but west of outcropping Fort Steele Formation that is 3 kilometers to the east. Evidence from DDH PM 98-1 suggests vertical displacement on this fault is also in the order of 3000 m.

4. Very thick overburden and structural complexities along with very broken ground conditions are significant impediments to further drill testing of this favorable stratigraphy on the claim block.

7.00 STATEMENT OF COSTS

	Total Drilling Cost	<u>\$725,626</u>
Bedrock Drilling:	Midwest Drilling, Thompson, Manitoba	\$491,717
	SDS Drilling, Calgary, Alberta	43,869
	Hi Rate Drilling, Stettler, Alberta	91,787
Overburden Drilling:	Owens Drilling, Cranbrook, B.C.	\$98,253

KLEWCHUP BRITISH OLUMB

8.00 REFERENCES

- Capell, R., 1982, Assessment Report, Paul 1, Paul 2, Paul 3, Darcy 1, Darcy 2, Darcy 3, Darcy 4, Darcy 5, and Darcy 6 claims, Fort Steele Mining Division, British Columbia Ministry of Mines Assessment Report # 10,289.
- Fipke, C.E., 1986, Assessment Report, Paul Mike claims, Lewis Creek, Fort Steele Mining Division, British Columbia Ministry of Mines Assessment Report # 14,835.
- Fipke, C.E., and E.R.Capell, 1985, Assessment Report, Paul 1, 2, 3, Mike 2 7 claims and Mikey #1 fractional claim, British Columbia Ministry of Mines Assessment Report # 13,689.
- Gifford, R.G., 1971, Geological and geochemical survey report, Lazy claim group, Texas Gulf Sulfur Company, British Columbia Ministry of Mines Assessment Report # 3092.

Hoy, T., 1979, Geology of the Estella-Kootenay King area, Hughes Range, southeastern British Columbia; BCMEMPR, Preliminary Map 36, and Notes to accompany Preliminary Map 36.

- Hoy, T., R.J.W. Turner, C.H.B. Leitch, D. Anderson, P.W. Ransom, D. Pighin and D. Brown, 1995, Depositional environment, alteration and associated magmatism, Sullivan and related massive sulphide deposits, southeastern B.C., A1 Fieldtrip Guidebook, GAC/MAC Victoria '95.
- Klewchuk, P., 1992, Assessment Report on Diamond Drilling, Paul and Mike claims, Lewis Creek area, Wasa, B.C., Fort Steele Mining Division, British Columbia Ministry of Mines Assessment Report # 22,258.
- Leech, G.B., 1960, Geology Fernie (West Half), Kootenay District, British Columbia, Geol. Surv. Canada Map 11-1960.
- Northcote, K.E., 1983, Report on Paul and Mike claims, Lewis Creek, Fort Steele Mining Division, British Columbia Ministry of Mines Assessment Report # 11,612.

Rawlek, D.G. and P.J.Rush, 1993, Geological and geochemical report on the Lewis claim group, Lewis 1-11 claims, INCO Ltd., British Columbia Ministry of Mines Assessment Report # 23,115.

APPENDIX 1 LIST OF CLAIMS PAUL - MIKE PROPERTY

Tenure Number	Claim Name	Owner Number	Map Number	Work Recorded To	Status	Mining Division	Units	Tag Number
<u>209863</u>	PAUL 1	<u>106717</u> 100%	082G13E	1	Good Standing 20100217		18	44708
<u>209864</u>	PAUL 2	<u>106717</u> 100%	082G13E	1	Good Standing 20100217		18	44709
<u>209865</u>	PAUL 3	<u>106717</u> 100%	082G12E		Good Standing 20100217	ł	18	44710
<u>209946</u>	MIKEY #1 FR.	<u>106717</u> 100%	082G13E	20090426	Good Standing 20090426	3	1	69525
<u>210056</u>	MIKE 7	<u>106717</u> 100%	082G13E	20010822	Good Standing 20010822	1	2	44891
<u>353155</u>	MIKE 3	<u>106717</u> 100%	082G13E	20091219	Good Standing 20091219	i	3	203872
<u>353156</u>	MIKE 4	<u>106717</u> 100%	082G13E	20091219	Good Standing 20091219	1	6	203873
<u>361775</u>	FLAT 1	<u>106717</u> 100%	082G13E	20090328	Good Standing 20090328	5 Fort Steele	6	21 78 32
<u>361776</u>	FLAT 2	<u>106717</u> 100%	082G13E	20090328	Good Standing 20090328	1	12	217833
<u>361801</u>	KING 1	<u>106717</u> 100%	082G12E	20090327	Good Standing 20090327	4	20	21 78 24
<u>361802</u>	KING 2	<u>106717</u> 100%	6082G12E	19990328	Good Standing 19990328		20	217820
<u>361808</u>	PAUL 6	<u>106717</u> 100%	6082G13E	19990331	Good Standing 19990331		1	6786761

38

					1997 - 1997 1997 - 1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1			25.00	
361809	PAUL 7	106717	100%	082G13E		Good Standing 19990331	5 Fort Steele	1	678677M
<u>361810</u>	PAUL 8	<u>106717</u>	100%	082G13E	19990331	Good Standing 19990331	5 Fort Steele	1	678678M
361811	PAUL 9	<u>106717</u>	100%	0 82 G13E	19990331	Good Standing 19990331	5 Fort Steele	1	678679N
361812	PAUL 10	<u>106717</u>	100%	082G13E	19990331	Good Standing 19990331	5 Fort Steele	1	678680 №
361813	PAUL 11	106717	100%	082G13E	19990331	Good Standing 19990331	5 Fort Steele	1	678681N
361814	PAUL 12	<u>106717</u>	100%	082G13E	19990331	Good Standing 19990331	5 Fort Steele	1	678682N
361815	PAUL 13	<u>106717</u>	100%	082G13E	19990331	Good Standing 19990331	5 Fort Steele	1	678683N
361816	PAUL 14	<u>106717</u>	100%	082G13E	19990331	Good Standing 19990331	5 Fort Steele	1	678684N
<u>361817</u>	PAUL 15	106717	100%	082G13E	19990331	Good Standing 19990331	5 Fort Steele	1	678685N
<u>361818</u>	PAUL 16	<u>106717</u>	100%	082G13E	19990331	Good Standing 19990331	5 Fort Steele	1	678686N
<u>361819</u>	PAUL 17	<u>106717</u>	100%	082G13E	19990401	Good Standing 19990401	5 Fort Steele	1	678687N
361820	PAUL 18	<u>106717</u>	100%	082G13E	19990401	Good Standing 19990401	5 Fort Steele	1	678688N
361821	PAUL 19	<u>106717</u>	100%	082G13E	19990401	Good Standing 19990401	5 Fort Steele	1	678689N
361822	PAUL 20	106717	100%	082G13E	19990401	Good Standing 19990401	5 Fort Steele	1	6786901
361823	PAUL 21	<u>106717</u>	100%	082G13E	19990401	Good Standing 19990401	5 Fort Steele	1	6786911

. . .

8888

and the second se

	<u>361824</u>	PAUL 22	106717	100%	082G13E	19990401	Good Standing 19990401	5 Fort Steele	1	678692M
	<u>361825</u>	PAUL 23	<u>106717</u>	100%	082G13E	19990401	Good Standing 19990401	5 Fort Steele	1	678693M
	<u>361826</u>	PAUL 24	. <u>106717</u>	100%	082G13E	19990401	Good Standing 19990401	5 Fort Steele	1	678694M
	<u>361827</u>	PAUL 25	<u>106717</u>	100%	0 82 G13E	19990401	Good Standing 19990401	5 Fort Steele	1	678695M
•	<u>361828</u>	PAUL 26	<u>106717</u>	100%	082G13E	1 999 0401	Good Standing 19990401	5 Fort Steele	1	678696M
	<u>361829</u>	PAUL 27	<u>106717</u>	100%	082G12E	19990401	Good Standing 19990401	5 Fort Steele	1	678697M
	<u>361830</u>	PAUL 28	<u>106717</u>	100%	082G12E	19990401	Good Standing 19990401	5 Fort Steele	1	678698M
	<u>361831</u>	PAUL 29	<u>106717</u>	100%	082G12E	19990401	Good Standing 19990401	5 Fort Steele	1	678699M
	<u>361832</u>	PAUL 30	<u>106717</u>	100%	082G12E	19990401	Good Standing 19990401	5 Fort Steele	1	678700M
	<u>363697</u>	MIKE 26	106717	100%	082G12W	19990701	Good Standing 19990701	5 Fort Steele	1	678386M
	363698	MIKE 27	106717	100%	082G12W	1 99907 01	Good Standing 19990701	5 Fort Steele	• 1	678387M
	363699	MIKE 28	<u>106717</u>	100%	082G12W	19990701	Good Standing 19990701	5 Fort Steele	1	678388M
	363700	MIKE 29	<u>106717</u>	100%	082G12W	19990701	Good Standing 19990701	5 Fort Steele	1	678389M
	363701	MIKE 39	106717	100%	082G12W	19990702	Good Standing 19990702	5 Fort Steele	1	678421M
	363702	MIKE 40	106717	100%	082G12W	19990702	Good Standing 19990702	5 Fort Steele	1	678422M

. .

63703	MIKE 41	106717	100%	082G12W	19990702	Good Standing 5 Fort Steele 19990702	1	678423M
<u>363704</u>	MIKE 42	106717	100%	082G12W	19990702	Good Standing 5 Fort Steele 19990702	1	678424M
<u>863705</u>	MIKE 43	<u>106717</u>	100%	082G12W	19990702	Good Standing 5 Fort Steele 19990702	1	678425M
63706	MIKE 44		100%	082G12W	19990702	Good Standing 5 Fort Steele 19990702	1	678426M
63707	MIKE 45	<u>106717</u>	100%	082G12E	19990702	Good Standing 5 Fort Steele 19990702	1	678427M
63708	MIKĖ 46	106717	100%	082G12E	19990702	Good Standing 5 Fort Steele 19990702	1	706415M
63709	MIKE 37	<u>106717</u>	100%	082G12W	19990702	Good Standing 5 Fort Steele 19990702	. 1	706416M
363710	MIKE 38	<u>106717</u>	100%	082G12W	19990702	Good Standing 5 Fort Steele 19990702	1	706417M
363711	MIKE 7	<u>106717</u>	100%	082G13W	4 · ·	Good Standing 5 Fort Steele 20090629	1	678379M
363712	MIKE 8	<u>106717</u>	100%	082G13W		Good Standing 5 Fort Steele 20090629	1	678380M
363713	MIKE 9	106717	100%	082G13W	I	Good Standing 5 Fort Steele 20090629	1	678381M
363714	MIKE 10	<u>106717</u>	100%	082G13E	20090629	Good Standing 5 Fort Steele 20090629	- 1	678382M
363715	MIKE 15	<u>106717</u>	100%	082G12W	19990630	Good Standing 5 Fort Steele 19990630	1	683358M
363716	MIKE 16	<u>106717</u>	100%	082G12W	19990630	Good Standing 5 Fort Steele 19990630	. 1	683357M
363717	MIKE 17	<u>106717</u>	100%	082G12W	19990630	Good Standing 5 Fort Steele 19990630	e 1	683356M
363718	MIKE 18	<u>106717</u>	100%	082G12W	19990630	Good Standing 5 Fort Steele 19990630	e 1	683355M

. Si i

an star o

388

. i

<u>363719</u>	MIKE 19	<u>106717</u>	100%	082G12W	19990630	Good Standing 19990630	5 Fort Steele	1	683354M
<u>363720</u>	MIKE 20	<u>106717</u>	100%	082G12W	19990702	Good	5 Fort Steele	1	678406M
363721	MIKE 21	<u>106717</u>	100%	082G12W	19990702	19990702	5 Fort Steele	1	678383M
<u>363722</u>	MIKE 22	<u>106717</u>	100%	082G12W	19990702	19990702	5 Fort Steele	1	678384M
<u>363723</u>	MIKE 23	<u>106717</u>	100%	082G12W	19990702	19990702	5 Fort Steele	1	678385M
<u>363724</u>	MIKE 47	<u>106717</u>	100%	082G13W	19990702	19990702	5 Fort Steele	1	678428M
<u>363725</u>	MIKE 48	<u>106717</u>	100%	082G13W	19990702	19990702	5 Fort Steele	1	678390M
<u>363726</u>	MIKE 50	<u>106717</u>	100%	082G13E		20090703	5 Fort Steele	1	671499M
<u>363761</u>	MIKE 5	<u>106717</u>	100%	082G13E	19990703	19990703	5 Fort Steele	12	233095
) <u>363762</u>	MIKE 6	106717	100%	082G12W		20090629	5 Fort Steele	20	217911
<u>363763</u>	MIKE 11	106717	100%	082G12W	19990629	19990629	5 Fort Steele	16	217912
<u>363764</u>	MIKE 12	<u>106717</u>	100%	082G12W	19990628	19990628	5 Fort Steele	8	21 79 10
<u>363765</u>	MIKE 13	<u>106717</u>	100%	082G12W	19990630	19990630	5 Fort Steele	18	217913
<u>363766</u>	MIKE 14	<u>106717</u>	100%	082G12W	19990630	19990630	5 Fort Steele	20	217914
<u>363767</u>	MIKE 36	106717	100%	082G12W	19990701	19990701	5 Fort Steele	8	217915
<u>363768</u>	MIKE 24	106717	100%	082G12W	19990702	19990702	5 Fort Steele	20	217916
<u>363769</u>	MIKE 25	<u>106717</u>	100%	082G12W	19990702	19990702	5 Fort Steele	20	217821
364321	PAUL 5	106717	100%	082G12E	20090720	20090720	5 Fort Steele	14	217822
<u>365603</u>	PAUL 99	106717	100%	082G12W	19990917	Good Standing 19990917	5 Fort Steele	8	233099

APPENDIX II DRILL LOG DDH PM 98-1

Midwest Setting up ~98-10-09 Started coring 98-10-11 Completed coring 99-01-29 Logged by: P. Klewchuk, P.Geo. 98-10-12 to 99-02-08

- 0-613.2m **OVERBURDEN**, no core. 613.2 is an estimate of where bedrock was encountered.
- 613.2-620.3 Triconed in bedrock, no core.

620.3-701.8 ARGILLITE AND SILTSTONE, minor QUARTZITE; FAULT ZONE

Pale green and gray-green, rarely darker green.

Thin bedded and laminated, may be a few medium thick beds. Bedding tends to be somewhat lensey and discontinuous and is typically at 70° to core axis (c/a) but ranging from 80° to 45° to c/a. Narrow zones are calcareous.

Extensively brecciated throughout with numerous zones of 'clay gouge matrix' breccia, with angular to sub-rounded fragments up to 4 cm across. Longest piece of unbroken or unbrecciated core is 30 cm. Fault breccia is mostly clast-supported, locally narrow sections are matrix-supported. Most breccia fragments are not rotated, but a few are slightly rotated with bedding attitudes of 45° to 30° to c/a. Much of the core is quite rubbly; there is est. 25-30% core loss through the interval. Narrow zones of shearing within fault breccia tend to be at 45° to 60° to c/a (30° to 45° dip). Many zones of clay gouge are parallel or sub-parallel to bedding at 70° to 80° to c/a.

Moderately to strongly chloritic throughout. More intense chlorite is developed locally; as small irregular dark green blebs in argillite and as open space crystal clusters along fractures (eg. at 622.6 m). Core is more chloritic and darker green near 696.5 m

Minor sulfides occur throughout. Fine-grained pyrite is locally concentrated in small massive bedding-parallel lenses and as dense disseminations within some thin beds. Pyrite is also disseminated along a few fracture surfaces. One bleb of Cpy noted at 622.55 m at a quartzite-silty argillite contact.

Quartz-carbonate veining is present in some of the fault breccia zones. At 644.8 m thin QV's in fault bx have some reddish hematite staining. A few thin (1-2 mm) light gray QV cut bedding at high angles.

At 659.2 m fine pyrite is concentrated within a thin bed that terminates in the core, suggesting primary sulfide but at 665.6 m med. grained pyrite is locally concentrated in fault breccia material, indicating fault-related sulfide.

At 656.2 m a very thin (.25 - 1.0 mm) quartz vein along a fracture at 25° to c/a carries scattered py and minor cpy.

Between 649.9 and 651.0 m are a series of white quartz and quartz-calcite veins, typically at 0° to 10° to c/a. Some of these veins carry reddish hematite staining.

659.7-661.5 m ~0.8 m of fairly uniform sized rubble; argillite and siltstone fragments averaging 4 to 7 mm across. Some carry mm scale QV with py.

Below 670 m there is more quartz 'vein' material within the fault breccia. Quartz occurs as somewhat irregular bands 2-3 cm wide of strongly fractured light to medium gray quartz and wider bands of rubbly, whiter fine-grained quartz. These 'veins' tend to be at high angles to the c/a; commonly at 70-80° to c/a, rarely at 45° . In more competent pieces of core, quartz veins are more competent also, with a bedding-parallel attitude of $65^{\circ} - 75^{\circ}$ to c/a and irregular diffuse contacts. Some zones of quartz are up to 15 cm long. Est. 3-4% of core below 670 m is quartz.

At 694.2 m 25 cm of quartz vein rubble.

Core is quite rubbly from 697 to 701.8 m.

701.8-704.2 QUARTZ VEIN RUBBLE

60

Light to medium gray, massive quartz; entire zone is strongly fragmented; largest piece is \sim 7 cm by 4 cm; mostly rubble of <1 cm diameter. Very minor pyrite and chlorite are present. Est. 35% of this zone lost during drilling.

704.2-714.3 ARGILLITE, minor SILTSTONE & QUARTZITE; FAULT ZONE

Mainly medium and dark green, thin bedded and laminated. Variably brecciated throughout with lighter gray-green clay as fault gouge on fracture surfaces. Bedding at 65° to 75° to c/a

707.3-709.2 m is relatively intact core, of matrix-supported breccia with subangular, roughly equidimensional fragments in a lighter green clay matrix. Narrow zones of white to light gray rubbly quartz occur from 709.1 to 712.3 m. These are typically developed at 65° to 75° to c/a

Core is locally rubbly but more competent than any of the upper part of the hole.

714.3-731.4 ARGILLITE & SILTSTONE, minor QUARTZITE; FAULT ZONE

Medium and dark green, alternating with hematitic dark maroon zones. Thin bedded and laminated, may be some medium thick beds. Bedding typically at 60° to c/a. Bedding is lenticular, irregular and discontinuous. Core is variably brecciated with zones of rubbly fault breccia with clay matrix. Fault intensity generally diminishes downward with sections of more competent, unfaulted core up to 1 m long. Small maroon clasts and rounded concretions (1-2 mm wide) occur in vaguely laminated maroon-green silty argillite near 723.5 m.

Near 731 m a narrow section of pastel shades of maroon and green with discontinuous bedding.

Minor quartz is present, as narrow broken rubbly zones and as irregular beddingparallel bands in more competent core. Very minor pyrite occurs locally as fine disseminations. A few fractures are present, at ~ 10° to c/a, with thin < 1 mm QV and purple-red hematite staining.

REDUCED TO NQ AT 731.4 m

731.4-743.0 SILTY ARGILLITE, minor SILTSTONE

Green and gray-green, a few lavender / maroon lenses and small concretionary features. Thin bedded and laminated with typically lensey, discontinuous bedding. Bedding at 65° - 75° to c/a.

Core is fairly broken, locally rubbly (731 - 734 m > 60% core loss). 735.5-735.8 m is a zone of fault breccia with white quartz-calcite veining at 40°-60° to c/a, oblique to bedding.

A few other light gray QV are present, typically in broken core. At 740 m coarse crystalline white calcite forms a bedding parallel vein at least 1 cm wide.

At ~735.5 m 2 thin (1-3 mm wide) bedding parallel and sub-parallel QV carry minor yellowish dolomite, PbS, ZnS & Cpy.

743.0-744.0 QUARTZ VEIN

Mostly quartz vein rubble, no contacts preserved. Light gray, mottled, massive quartz.

744.0-753.9 SILTY ARGILLITE, minor SILTSTONE; FAULT ZONE

Lithologically similar to 731.4-743.0 interval with bedding ranging from 45° to 70° to c/a.

Variably brecciated, mostly quite intensely; almost all of the core is quite rubbly. 746.1-746.8 is shattered, rubbly QV material.

753.9-820.0 GABBRO

Dark green to gray-green, quite massive.

Both contacts are faulted. Upper contact is a fracture zone at 40° to c/a. Lower contact is in broken, rubbly core. Contact relationships are unclear but relatively massive character suggests this is a sill. Gabbro is medium grained right from upper contact but somewhat finer grained from 815 to 820 m.

Predominantly dark green hornblende and pale gray-green altered feldspar as generally randomly oriented crystals (ie no obvious flow texture). Minor dissem magnetite and pyrite, (est. 3/4 to 1% mt, 1/2% py), core is variably magnetic.

Numerous zones of broken core exist, along with scattered narrow bands of fault gouge &/or breccia. Narrow fault breccia zones tend to be at 45° to c/a, ranging from 30° to 60° to c/a. Some of the fault breccia / gouge zones carry thin quartz and quartz-calcite veins.

Numerous quartz +/- calcite veins occur throughout the gabbro. These range from hairline, discontinuous veins to rare 12 cm wide veins; most are about 1 cm wide. QV are typically at 40° to 70° to c/a. A few thin QV have narrow siliceous and pyritic alteration zones associated with them. Dissem py is rarely associated with QV and Cpy occurs within a few thin QV. A few QV have specularite in them.A few fracture surfaces have reddish hematite staining.

At 757 m a 1 cm wide quartz-epidote vein is at 20° to c/a, in broken core. At 805 m coarse grained py makes up about 5% of the rock over 10 cm of core. Below ~812 m core is more significantly broken and rubbly.

820.0-834.5 FAULT BRECCIA

Light green to medium gray-green. Clay fault gouge is lighter in color. Mostly a matrix-supported fault breccia with angular to sub-rounded fragments of argillite, silty argillite and minor quartzite. Individual fragments are up to \sim 5 cm long in a clay gouge matrix. Fault fabric tends to be at 60° to 70° to c/a but there are also fractures and irregular bands of clay gouge at 10° to 25° to c/a.

Bedding is recognizable in a few fragments; it is laminated and thin bedded with a lensey, discontinuous style. Bedding tends to be at 60° to 70° to c/a but ranges to 45° to c/a.

Broken light gray quartz vein material occurs intermittently through the interval. Quartz is relatively barren with very minor chlorite and fine pyrite. Some lenses of light gray quartz occur in fault breccia, parallel to fault fabric at $\sim 70^{\circ}$ to c/a.

Very minor fine grained pyrite is locally present.

834.5 m Switched NQ Rod String to 'Tough Rods'

834.5-835.8 QUARTZ VEIN

Quartz rubble; angular fragments up to 7 cm long with minor angular fault breccia fragments of pale greenish argillite and silty argillite. Pink to dark red streaks of hematite staining are common near 835 m in quartz.

835.8-842.0 ARGILLITE, SILTSTONE, QUARTZ WACKE; FAULT ZONE

Pale gray and pale greenish gray.

Fragments of argillite, silty argillite, siltstone and quartz wacke. Locally there is strong fault fabric at \sim 70° to c/a. Some bands of fault breccia are at \sim 45° to c/a. More quartzitic fragments are medium to coarse grained.

Mostly a clast-supported fault breccia with thin veinlets of finer breccia fragments and clay gouge. Very minor disseminated py occurs in sedimentary rock fragments and in fault gouge.

837-837.5 is mainly angular rubble of quartz vein material. Locally (eg. near 841.7 m there is a pink-maroon hematite staining on fractures and within siltstone and quartzitic fragments.

842.0-845.7 FAULT BRECCIA

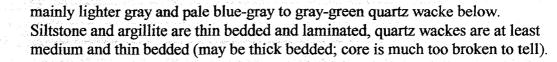
Gray-green matrix-supported fault breccia. Clasts tend to be <5 mm diameter, rarely to > 2 cm long. Fragments are a mixture of pale green, greenish gray and darker gray. Estimated 65% fragments, 35% clay matrix. Fabric ranges from 60 to 90° to c/a. Clasts are mostly equidimensional to slightly elongate with a general tendency to be aligned parallel to the fault fabric. Minor fine, disseminated py occurs throughout. There is local darker green chloritic alteration.

845.7-849.0 FAULT BRECCIA

Medium to dark gray. Generally similar to 842-845.7 m interval but clast fragments are more consistently medium and darker gray in color. Rock fragments are siltstone and silty argillite. Patchy chlorite and fine disseminated py are present. Near 848.7 m there are larger fragments of dark gray to black chloritic argillite.

849.0-863.5 SILTY ARGILLITE & SILTSTONE; ALDRIDGE FORMATION

Dark gray, dark blue-gray to almost black. Thin bedded with some beds finely laminated. Bedding is mostly planar, some discontinuous, typically at 60-70° to c/a. Very broken, locally quite rubbly core. Largest piece of core is about 13 cm long and there are only a few pieces close to this size; fragments of 3-4 cm are common with large portions of the 'core' consisting of ~1 cm diameter angular fragments. Numerous zones of fault breccia are present. These are mostly clastsupported breccia with thin fracture fillings of clay gouge matrix. Matrixsupported breccia occurs less frequently; these consist of small, equant, subangular to sub-rounded clasts in a clay gouge matrix. Breccia fragments are all similar to unbrecciated material but are lighter gray in color and fault gouge is even lighter gray.


Rare gray-white quartz veins are present, eg near 851 m, up to 1 cm wide, at 65° to c/a, sub-// to bedding.

Minor fine disseminated py is present; py also occurs smeared on some fracture surfaces.

863.5-904.8 SILTSTONE, ARGILLITE & QUARTZ WACKE

Mainly medium to dark blue-gray argillite and siltstone from 863.5 m to 882.5 m;

Page 7

Extensively brecciated with alternating sections of fault breccia or gouge and broken wallrock. Longest piece of core is about 12 cm. Most of the core is very rubbly, consisting of angular fragments of siltstone, argillite and quartz wacke or fault breccia and fault gouge. Fault breccia is commonly matrix supported, with clay gouge matrix; some clast-supported breccia also present. Below 887.7 m core is even more rubbly; lithology is more siliceous and more pale brown-gray to pink-gray in color.

Chloritic alteration occurs in 3 zones; at 868.7 m \sim 20 cm of fault rubble is dark green, chlorite altered, at 875 m \sim 60 cm of core is a pale green color and 882.5 to 887.5 is also greenish and chloritic.

At 904.5 m shearing in one piece of core 6 cm long is at $5-10^{\circ}$ to c/a, within a more intensely rubbly zone from 899 - 906.5 m.

904.8-932.0 SILTSTONE & QUARTZ WACKE

Pale greenish gray to light and medium gray colored, somewhat mottled. Core is quite broken, fairly rubbly with only small pieces of core preserved, but significantly more siliceous than previous interval. Fault breccia and fault gouge are also present. Very little bedding is evident; quartz wacke beds are medium or thick bedded; some thin beds are present, at 75-80° to c/a.

Above 911.8 m, minor quartz is present, as widespread, almost rare, fault fabric - parallel bands and lenses oriented ~75-80° to c/a.

911.8-913 m is mostly quartz vein rubble consisting of angular fragments of light gray to blue-gray, relatively massive quartz with rare very fine-grained disseminated pyrite.

Most of the fault 'shearing' or 'breccia' zones are oriented at higher angles to c/a, \sim 70-80°, although there are scattered fractures to 15 or 30° to c/a.

Very minor fine disseminated py is present, in both sedimentary rock fragments and in fault breccia and gouge; est. <1/4%.

There is local more pale colored alteration, possibly sericitic.

Page 8

Narrow zones of gabbro pebbles occur where reaming of the hole was necessary during tripping of rods. Eg. gabbro pebbles are present at 916, 923.3, and 928.5 m. At 916 m when rods were tripped, reaming started at 816 m; ~70 cm of muddy fault gouge was collected and cored from fault gouge zone(s) squeezing into hole.

- At 932 m Four attempts made at cementing the bottom of the hole after a 1 week break from drilling. These were generally apparently unsuccessful.
- 932-934.5 15 cm of cave: rounded to sub-angular fragments of mainly gabbro with a few vein quartz fragments. Then about 70 cm of brownish silty, unconsolidated material with very small rock fragments, apparently cave (not a remnant of the cementing process as it is non-calcareous).

Below cave, ~ 50-60 cm of recovered chloritic, quartz vein material with 5-7% disseminated fine-grained euhedral py - probably fault veining.

934.5-935.7 Rubbly fault breccia. Small quartzitic and silty fragments with sheared chloritic, siliceous and micaceous material, locally strongly calcareous. Shear fabric is ~50° to c/a

935.7-937.3 SILTSTONE, QUARTZ WACKE

Medium - dark gray fragments of siltstone, quartz wacke and quartzite. Appears silicified, compatible with Middle Aldridge Formation.

937.3-956.0 **FELSIC DIKE**

Mostly a dull, gray-green fine grained rock, strongly chloritic altered, apparently feldspar-rich. Very broken up with very poor core recovery. Fine grained pyrite is very common in many of the rock fragments. Individual rock fragments display a variety of textures. Some fragments display a homogeneous, massive fine-grained texture, many others have a porphyritic texture with altered, commonly rounded, pale green feldspar phenocrysts. Sections of this core consist of rounded to sub-angular 'pebbles' up to 4 cm across. Most of these fragments are similar to the dike description given above; a few others are darker green and more intensely chloritic altered. These darker fragments typically carry more abundant pyrite.

Narrow bands (up to 12 cm in core, probably longer in the hole) of fault breccia occur throughout this dike interval; gray clay gouge with small fragments of the pale gray-green felsic dike rock and scattered grains of pyrite. Near the bottom, fine-grained biotite is present.

956.0-959.0 SILTSTONE, minor QUARTZ WACKE

3 m of hole represented by \sim 25 cm of rock fragments. Predominantly pale graygreen. Some is thin bedded with bedding at 70-75° to c/a. Appears bleached, may be sericitically altered. Weakly to fairly strongly chloritic with dissem py common.

959.0-962.0 VEIN QUARTZ

3 m of hole represented by $\sim 10-15$ cm of vein quartz. Quartz is milky white, quite massive with a band of chloritic, micaceous material developed sub-parallel to c/a. Two small irregular patches of fine-grained PbS noted.

962.0-998.0 SILTSTONE AND QUARTZ WACKE, minor ARGILLITE

Very poor core recovery in parts of this interval; no recovery from 980 to 983. Recovered material shows a range of lithologies, mainly gray-brown quartz wackes and dark blue-gray to (altered?) pale gray-green siltstone. Locally there is dark blue-gray argillite. Much of the interval is thin bedded; a few fragments are finely laminated, and the 'better recovered' quartz wackes are medium thick. Bedding is at ~80° to c/a.

Zones of fault breccia and fault gouge are present, with minor local vein quartz.

Chloritic alteration occurs throughout and varies in intensity. A brownish gray alteration occurs locally, in bedding-parallel bands typically 2-3 cm wide. Some bands are softer and may be sericite altered, elsewhere the bands are hard and are probably albite altered.

Minor pyrite is common through most of the interval. Locally py occurs with chlorite as metamorphic grain aggregates with a central cluster of pyrite rimmed by dark green chlorite. Locally these occur in irregular narrow bedding-// zones. Fine-grained pyrite also dissem through some sections of the interval, including the quartz wackes. Pyrite is also smeared along fractures with chlorite.

998.0-1010

CALCAREOUS SILTSTONE

Light to medium brownish gray and pinkish gray. Thin bedded and laminated to more massive. Core is rubbly, broken, with very poor recovery. Many of the fragments are fine-grained, quite massive, with hairline fractures healed by chlorite and associated pyrite.

Largest piece of core is 12 cm, with a few 5-6 cm pieces. Minor fault breccia is present, as generally small pieces.

1010-1118

ARGILLITE, SILTY ARGILLITE, minor SILTSTONE

Dark blue-gray to black. Narrow sections are more medium gray in the upper part of the interval. Finely laminated to thin bedded, possibly some medium beds. Bedding tends to be at 60-80° to c/a with only local variation. Many of the small fragments are massive in character with no obvious bedding character. Pyrite is common and is usually associated with some chlorite.

Much of the core is very rubbly with generally very poor recovery. Some of the longer pieces recovered are of fault gouge or breccia. Evidently the argillite is so intensely fractured that it breaks up as the drill bit penetrates it. The fault zones which are typically of a crushed argillite clay matrix are better recovered because they remain more intact as the drill penetrates them.

Fault breccia and gouge zones have a lighter gray clay matrix or a sheared argillite matrix. Fault fabric tends to be at $65-70^{\circ}$ to c/a but locally can be at $15-20^{\circ}$ to c/a. Thin calcite veins are present in some fault zones. Some of these form a denser lensey anastomosing network in short sections of core. At 1082 m a few large fragments of coarse crystalline calcite are present, in rubbly core. 1101-1102 m is a section of better recovered fault breccia and gouge, consisting of sheared and shattered wallrock with very minor clay matrix. This fabric ranges from 70 to 30° to c/a but is most prominently at ~ 45° to c/a.

Pyrite is fairly common throughout, averaging 2 to 4%. It occurs most commonly in a fine-grained manner as thin wavy, irregular veins which range from beddingparallel to 50 or 60° to c/a, sub-parallel to shearing or fracturing. Py also occurs as small irregular fine-grained clots, usually parallel to bedding, and is present in some bands as medium or coarse-grained disseminations. Fine pyrite is also disseminated within the argillite / siltstone.

1118-1129.5

ARGILLITE & SILTSTONE FAULT BRECCIA

Dark blue-gray to black argillite and siltstone. Better core recovery, est. 50-70%. Fault breccia is mostly clast-supported; a tectonic breccia with narrow zones of clay gouge. Fabric is more variable than has been typical higher in the hole, ranging from 80° to 0° to c/a with 30° to 60° to c/a most common.

Quartz and quartz carbonate veining is scattered through the fault breccia, up to \sim 3 cm wide but most commonly lensey and <5 mm wide. Py and chlorite can be present with quartz-carbonate veins. A few sections of fault breccia are chloritic.

Pyrite is quite common, dissem and in small patches. At 1128 m an irregular, wavy quartz-chlorite vein at 20 to 40° to c/a (~3 cm wide) carries abundant py; as irregular veinlets, almost a 'matrix' through the vein, and as a thin vein along much of the contact. One small patch of **PbS and ZnS** occurs in this QV.

A few thin beds are recognizable, at $\sim 70^{\circ}$ to c/a.

1129.5-1222.3

ARGILLITE & SILTY ARGILLITE

Dark blue-gray to black argillite and silty argillite. Generally very poor core recovery with mostly small fragments of core <2 cm diam, rarely >3 cm diam. Some thin bedded character evident, with bedding at $\sim75^{\circ}$ to c/a. At 1197 m bedding is at 45° to c/a; at 1201 at 60°. Narrow bands of fault bx (usually these pieces are ~5 cm across) are scattered through the interval. Pyrite is common with numerous thin bands both bedding-parallel and cross-cutting. Near 1202.3 m some of the pyrite 'veins' are actually narrow bands of an anastomosing network of very thin pyrite veinlets as a matrix to argillite.

In better core, brecciation is locally evident. Breccia is mainly clast-supported with some fragments bedded at 10° to c/a; evidently rotated by disruption.

Irregular, lensey quartz-carbonate veins are present, ranging from ~beddingparallel at 75-80° to c/a to ~ 15° to c/a.

There are scattered, apparently narrow sections of chloritic alteration.

1222.3-1242.6

BRECCIATED ARGILLITE

Core recovery is considerably better here and general character of the rock is more evident.

Dark blue-gray to black argillite with very minor silty argillite. Commonly finely laminated with bedding at 60-70° to c/a

The interval is a poorly healed breccia; core appears competent but commonly breaks apart when picked up. The breccia has a very irregular texture, suggesting complex tectonic movement. There is a strong general fabric at 30 to 60° to c/a;

healed fractures commonly intersect. Narrow sections are pale greenish and chloritic altered.

Patchy silicification occurs throughout, ranging from distinct (but wavy and irregular or re-brecciated) quartz veins to a more pervasive brownish to greenish silicification. Quartz veins get up to 12 cm wide but are commonly <1 to 2 cm wide.

Pyrite is common but very irregularly distributed, est 2-4%, usually as thin, wavy and irregular veins, parallel to fracturing / shearing at 30-60° to c/a and also // and sub-// to bedding. Py is also dissem in silicified zones, both in quartz-rich areas and in more weakly silicified argillite. Py is both fine and coarse grained. At 1241.5 m dissem **PbS** is mixed with dissem py in a vague narrow 'band' at ~90° to c/a.

1242.6-1244.6

SILTSTONE & QUARTZITE

Light to medium gray-green, appears mainly thin bedded but quite brecciated. Bedding at 60-75° to c/a. Texture is somewhat mottled with brownish patches and scattered cross-cutting thin QV. Weakly to moderately chloritic altered. Minor py is present, dissem in siltstone and with QV. Minor epidote occurs with QV at 1243.1 m.

1244.2-1331.5

ARGILLITE, minor SILTSTONE & QUARTZITE

Dark gray to black, finely laminated. Bedding at 65-75° to c/a. Much of the core has a healed breccia texture. There are scattered narrow sections of lighter gray-green, typically somewhat chlorite-altered siltstone and quartzite. These bands are <15 cm thick and are typically only 1-4 cm wide. The siltstone-quartzite bands commonly display a healed breccia texture, occasionally with angular fragments of black laminated argillite and bedding-parallel lenses of fine to medium grained pyrite.

The core is generally quite rubbly with poor recovery. Largest piece is ~ 15 cm long; much of the core is angular rubble <1 cm across. Py is common, est. 2-4%, occurring as bedding-parallel laminations, as cross-cutting irregular veins and as dissem medium to coarse grained patches. Minor Cpy occurs with py locally.

1331.5-1397.2 SILTSTONE & QUARTZITE

Light to medium gray-green and pale yellow-green with medium to darker graybrown sections, locally dark gray-brown to almost black. Variably chloritic altered and somewhat mottled in texture with variable color. Medium and thin bedded with a few thick beds. Some medium and thick beds are internally laminated. Bedding at ~65° to c/a. Texture is largely a healed breccia and bedding is not obvious throughout the interval.

Healed breccia is clast-supported, mostly of only minor movement; beds are offset along healed fractures a few mm. There are a few healed fractures (eg at $25-30^{\circ}$ to c/a) where distinctly different beds are juxtaposed; movement is probably 10's of cms or more. Veins of fine-grained medium gray silica with chlorite and fine dissem pyrite are common. A few thin lensey QV are present as breccia matrix. Healed fractures do not have any obvious preferred orientation; they are mostly from 30 to 70° to c/a but range from 0 to 90°.

Minor pyrite (est 1-2%) is scattered throughout, commonly dissem in siltstone and quartzite. Small lenses of py tend to follow bedding and breccia fabric and are locally associated with patches of epidote that are developed along lithologic contacts in more obvious breccia zones. Coarse dissem py occurs locally with more intense, dark green chlorite.

Dark reddish hematite-stained fractures are present near 1349.5 m.

Numerous narrow zones of core are very rubbly but generally there is much better recovery here with sections of 'intact' core (fractured but no core loss) up to 1.5 m long.

1397.2-1407.3

ARGILLITE

Dark blue-gray to black. Thin bedded and laminated; bedding at $\sim 65^{\circ}$ to c/a. Some fracture surfaces are graphitic. Pyrite is common (est 2-4%) in irregular bands parallel to and cross-cutting bedding. Py also occurs with thin lensey to irregular QV which also parallel and crosscut bedding. Py is also locally dissem in argillite. At 1406.5 m small blebs of **Cpy and PbS** are common in one 3-10 mm wide fractured, bedding-parallel QV.

Most of the core is quite rubbly with some core loss.

1407.3-1440.6 SILTSTONE, SILTY QUARTZITE & ARGILLITE

Interval of varicolored, mixed lithologies. Bands of gray-green and gray siltstone and silty quartzite are interbedded with black argillite. Est 60% siltstone and quartzite, 40% argillite

Siltstone and silty quartzite are medium and thick bedded, argillite is laminated and thin bedded. Bedding is at ~65° to c/a. Silty quartzite typically consists of medium grains of light gray quartz isolated in a greenish, much finer grained and softer silty matrix. Some of the thicker silty quartzite beds are internally laminated. Silty quartzite beds range in thickness from 10 cm to 1.7 m.

Considerable healed brecciation is evident, with chloritic fractures at $5-60^{\circ}$ to c/a; most intense fracturing is at $35-55^{\circ}$ to c/a.

Black argillite zones are commonly fractured with thin quartz &/or pyrite veins. A few thin, irregular beds or laminae of light gray chert are present within argillite.

Minor pyrite is common throughout, dissem in quartzite and argillite, as crosscutting veins and more rarely as bedding-parallel and sub-parallel bands of concentrated coarse-grained dissem py with dark green chlorite.

A few 3 cm wide QV cut core at $\sim 25^{\circ}$ to c/a in the lower part of the interval.

1440.6-1448.4

FAULT ZONE; ARGILLITE & SILTY QUARTZITE

Lithologies are similar to previous interval with est 70% dark gray to black argillite and 30% light gray to pale green silty quartzite. Moderately to strongly foliated throughout, at 35 to 45° to c/a. Narrow clay gouge 'mud' zones are present. A few thin lensey veinlets of quartz occur locally. Very minor dissem py is scattered through the interval.

1448.4-1472.0

QUARTZITE, minor **ARGILLITE**

Zones of up to 1.5 m thick massive 'healed breccia texture' light gray to pale or medium gray-green quartzite interbedded with a mixture of thinner quartzite beds and thin beds and laminations of medium to dark gray phyllitic argillite. Argillite zones are quite strongly fractured, parallel and sub-// to bedding, producing very thin lenses of rock. Bedding at 50-75° to c/a, disrupted by small-scale healed tectonic fracturing sub-parallel to c/a (ie ~vertical) with mm scale displacement. More massive quartzites are mottled with angular fragments apparent, as though brecciated and cemented. Some argillite bands are micaceous with a schistose texture.

No pyrite noted; it is either absent or very rare

Sections of core, both quartzites and argillites, are quite broken and rubbly.

1472.0-1491.5 QUARTZITE, very minor ARGILLITE

Very light gray to pale gray-green. Texture is typically quite massive and mottled with no obvious bedding. Healed breccia texture. Near 1480 m is a 50 cm band of tectonically fractured medium gray-green argillite. Fracturing is at 60° to c/a. Micaceous, clay-altered argillite is bedded at ~ 65° to c/a.

1491.5-1492.8 FAULT ZONE

Zone of unconsolidated mixture of clay gouge and micaceous material with small rock fragments, generally <1 cm across, typically of gray-green argillite. No fabric evident. No sulfides noted.

1492.8-1495.4 **QUARTZITE**

Pale gray-green, mottled texture, quite massive, locally 'bedded' (probably crossbedding or internal laminations of thick beds), locally sheared at 30° to c/a in narrow argillaceous zones. Core is quite fractured, broken.

1495.4-1497.8 GABBRO, minor QUARTZITE

1495.4-1496.3 and 1497-1497.8 is gabbro, dark green, fine grained with thin irregular quartz-calcite veins and very minor fine dissem pyrite. Upper and lower contacts of the interval are at 45-55° to c/a, probably bedding-sub-parallel although there is no evident bedding in the adjacent or included quartzite. Internal contacts (with included quartzite) are in broken core. Gabbro is locally fractured at ~45° to c/a. Internal quartzite is pale gray-green, massive with mottled texture, similar to overlying interval.

1497.8-1529.6 QUARTZITE minor SILTSTONE

Light gray-green, mottled, massive. Mainly fine-grained, locally medium to coarse-grained. This interval is of more massive, dense quartzite than previous intervals. Locally bedded at 40-50° to c/a (possibly internal laminations or crossbedding). Core is quite broken, evidently still tectonically fractured. Narrow bands of siltstone are medium gray colored.

1529.6 m

End of Hole

Five dip tests were taken in the hole:

Depth	Uncorrected Dip
615 m	-85°
704 m	-78 °
888 m	-82°
1115 m	-8 6°
1480 m	-80°
	والمربي ومحاصر معاملات المقارب والأرا

Pet 15h FESSIO ROVING KLEWCHUK BRITISH

ESTIMATED CORE LOSS

Core is marked in 3 m intervals

614-617		740-743	50%	866-869	35-40%
617-620		743-746	10%	869-872	55%
620-623		746-749	40-45%	872-875	30%
623-626		749-752	30%	875-878	15%
626-629		752-755	15%	878-881	15%
629-632		755-758	0%	881-884	20%
632-635	4	758-761	0%	884-887	75%
635-638		761-764	0%	887-890	75%
638-641		764-767	0%	890-893	35-40%
641-644		767-770	0%	893-896	50%
644-647		770-773	0%	896-899	40%
647-650		773-776	0%	899 - 902	35-40%
650-653		776-779	0%	902-905	25-30%
653-656		779-782	0%	905-908	15%
656-659		782-785	0%	908-911	5%
659-662		785-788	0%	911-914	5%
662-665		788-79 1	0%	914-917	0%
665-668		791-794	0%	917-920	30%
668-67 1		794-797	0%	920-923	45%
671-674		797-800	0%	923-926	35%
674-677	15%	800-803	0%	926-929	50%
677-680	15%	803-806	0%	929-932	>95%
680-683	15%	806-809	0%	932-935	75-80%
683-686	25%	809-812	0%	935-938	55%
686-689	5%	812-815	5%	938-94 1	75%
689-692		815-818	0%	941-944	80%
692-695	25%	818-821	0%	944-947	90-95%
695-698	25-30%	821-824	35%	947-950	95%
698-7 01	30%	824-827	75%	950-953	
701-704	35%	827-830	65%	953-956	
704-707	5-10%	830-833	65% ·	956-959	95%
707-710	0%	833-836	30%	959-962	
710-713	15%	836-839	5-10%	962-965	
713-716	5-10%	839-842	0%	965-968	
716-719	5-10%	842-845	25%	968-971	
719-722	5-10%	845-848	0-5%	971-974	
722-725	0-5%	848-851	35-40%	974-977	and the second
725-728		851-854	0-5%	977-980	
728-731	25%	854-857	50%	980-983	
731-734	>60%	857-860	and the second	983-986	
734-737	30%	860-863		986-989	
737-740	0%	863-866	60%	989-992	85%

 \bigcap

ESTIMATED CORE LOSS p.2

Core is marked in 3 m intervals

992	2-995	70% loss	1115-1118	55%	1238-1241	5-10%
	5-998	90%	1118-1121	45%	1241-1244	15%
	8-1001	90-95%	1121-1124	30%	1244-1247	65%
)1-1004	80-85%	1124-1127	30%	1247-1250	60%
	04-1007	50%	1127-1130	40%	1250-1253	50%
	07-1010	75%	1130-1133	95%	1253-1256	75%
	10-1013	75%	1133-1136	85%	1256-1259	75%
	13-1016	60%	1136-1139	90%	1259-1262	65%
	16-1019	80%	1139-1142	90%	1262-1265	65%
	19-1022	70-75%	1142-1145	90%	1265-1268	60%
102	22-1025	80%	1145-1148	90%	1268-1271	30%
102	25-1028	70%	1148-1151	85%	1271-1274	65%
102	28-1031	85%	1151-1154	90%	1274-1277	50%
10	31-1034	80%	1154-1157	90%	1277-1280	30%
10	34-1037	60%	1157-1160	50%	1280-1283	50-55%
10	37-1040	80%	1160-1163	55%	1283-1286	50-55%
10-	40-1043	85%	1163-1166	60%	1286-1289	40%
10-	43-1046	70%	1166-1169	80%	1289-1292	35%
10	46-1049	70%	1169-1172	50%	1292-1295	30-35%
10	49-1052	75-80%	1172-1175	85%	1295-1298	50%
10	52-1055	85%	1175-1178	90%	1298-1301	80%
10	55-1058	90%	1178-1181	95%	1301-1304	75%
10	58-1061	80%	1181-1184	90%	1304-1307	30%
10	61-1064	80-85%	1184-1187	90%	1307-1310	30%
10	64-1067	60-65%	1187-1190	95%	1310-1313	55%
10	67-1070	60%	1190-1193	85%	1313-1316	85%
10	70-1073	70%	1193-1196	85%	1316-1319	65%
10	73-1076	80-85%	1196-1199	20%	1319-1322	55%
10	76-1079	85%	1199-1202	60%	1322-1325	
10	79-1082	75%	1202-1205	55%	1325-1328	55%
10	82-1085	80%	1205-1208	75%	1328-1331	65%
10	85-1088	90-95%	1208-1211	90-95%	1331-1334	
10	88-1091	90%	1211-1214		1334-1337	
10	91-1094	90%	1214-1217	and the second second	1337-1340	
10)94-1097	90%	1217-1220		1340-1343	
10	97-1100	90-95%	1220-1223		1343-1346	
11	100-1103	65%	1223-1226	and the second	1346-1349	
11	103-1106	75%	1226-1229		1349-1352	
11	106-1109	65%	1229-1232		1352-1355	
	109-1112	and Warden and a second second second	1232-1235	A second second second second second second	1355-1358	
1	112-1115	15%	1235-1238	0-5%	1358-1361	0-5%
- 10 C						Constant States and

8

(

ESTIMATED CORE LOSS p.3 Core is marked in 3 m intervals

1361-1364	5%	1484-1487	10-15%		
1364-1367	0-5%	1487-1490	10%		
1367-1370	5-10%	1490-1493	10%		
1370-1373	0%	1493-1496	~15%		
1373-1376	10%	1496-1499	5-10%		
1376-1379	0%	1499-1502	10%		
1379-1382	5%	1502-1505	0%		
1382-1385	0-5%	1505-1508	10%		
1385-1388	0-5%	1508-1511	0-5%		
1388-1391	0%	1511-1514	0%		
1391-1394	15%	1514-1517	0%		
1394-1397	5%	1517-1520	0%		
1397-1400	5-10%	1520-1523	0-5%		
1400-1403	10%	1523-1526	10-15%		
1403-1406	15%	1526-1529	10%		
1406-1409	15-20%	1529-1529.	6 0%		
1409-1412	10%				
1412-1415	10%				
1415-1418	20%				
1418-1421	30%				
1421-1424	25%				
1424-1427	15%				
1427-1430	15%				
1430-1433	0-5%	e els sus estados en apartes.			
1433-1436	5%				
1436-1439	5%				
1439-1442	5%		The second second		
1442-1445	0-5%	Geografication (Catalogio)			
1445-1448	0% 0%	Salar di Salar	tara tara tara tara tara tara tara tara	e di serie di	
1448-1451 1451-1454	States Chief and the second second	loo ahariyaa ay ka		•	
1451-1454	Children and the second second				
1457-1460					
1460-1463	a the design of the second	the transformer of the second			
1463-1466					
1466-1469					
1469-1472					
1409-1472	and the second				
1472-1473					
1478-1481					
1481-1484					
			agen perio		

APPENDIX III GEOCHEMICAL ANALYSES

APPENDIX III a. Grab Samples of Core

APPENDIX III b. Core Sampling

III b i) List of Samples & Depth in Hole

- III b ii) ICP Results
- III b iii) AA Results

APPENDIX III c. Sludge Sampling

III c i) ICP Results III c ii) AA Results

Arth (1) Chrystown (asa partor fies) (no.) 852 B. (matrinos pri), Minoriza de Colora de Colora de Minoriza de Colora de Colora de Colora de Minoriza de Colora de Co													
Appendix III a response to the property of the start of the	ACME ALYTICA	L LABORA	ALORIDA MMS. USA Q. MALIAON PLANT	3-1716									
L Undp evaluate med, katoma af Schellted by Control Reperts Description 1009 evaluate med, katoma af Schellted by Control Reperts 1009 evaluate med on parts and part part parts 2 Katoma af Schellted by Control Reperts 1000 evaluate med on parts and part parts 2 Katoma af Schellted by Control Reperts 2 Katoma af Schellted by Control Reperts 1000 evaluate med on parts and parts parts 2 Katoma af Schellted by Control Reperts 2 Katoma af Schellted by Control Reperts <td< td=""><td>AA</td><td>ACCLOLE</td><td>GEOCHEMICAL ANALISIS CERTIFICATE</td><td>AA</td></td<>	AA	ACCLOLE	GEOCHEMICAL ANALISIS CERTIFICATE	AA									
advect# P2 CL PP Ch 4 4 10 CB #F PAG 20 FOR INT PP FOR CONTROL PER PP 14 X PDT PPAG X PDT PPAG X PDT PPAG VALUE X PDT PPAG X PDT VALUE PPAG VALUE PP		•	Diamet Minerals Ltd. PROJECT PAUL-MIKE File # 9805236 1695 Powick Road, Kelowna 8E Submitted by: Glen Rodgers										
m 2201 1 1 15 16 10 <	SAMPLE#		Por Zn Ag Nh Co Nh Fe As 9 Au th at 50 ap of V and T co at 6 at 7 and 7 at 7 and and and										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ри 2261 ри 2262 ри 2243	<1 18 1 1 12 11 277 8	16 95 < .3 33 43 869 7.92 22 <8 <2 <2 60 <.2 <3 <3 61 2.28 .168 24 14 2.52 426 .07 6 3.04 .03 .29 <2 <1 1 9 39 < 3 23 54 1315 5.80 64 <8 <2 <2 64 <.2 <3 <3 33 5.40 .159 20 5 2.76 46<.01 6 1.07 .02 .32 <2 <1 <1 85 70 2.6 16 8 267 2.56 36 <8 <2 5 50 1.0 30 <3 7 1.15 .036 8 5 1.18 114<.01 7 .47 .02 .30 <2 17 <1										
$\begin{array}{c} \begin{array}{c} Ref PM 2243 \\ PM 2242 \\ PM 2243 \\ PM 2242 \\ PM 2243 \\ PM 2243 \\ PM 2242 \\ PM 2242 \\ PM 224 \\ PM 2243 \\ PM 233 \\ PM 33.0 PM 0 \\ gabbro, chlor, arg. quzite, t. py. \\ PM 2243 \\ PM 2243 \\ PM 233 \\ PM 33.0 PM 0 \\ Q PM 2243 \\ PM 2243 \\ PM 233 \\ PM 0 \\ Q Q PM 233 \\ PM 0 \\ Q Q PM 2243 \\ PM 243 \\ PM 243 \\ PM 243 \\ PM 253 \\ PM 0 \\ Q Q PM 243 \\ PM 243 \\ PM 253 \\ PM 0 \\ Q Q PM 243 \\ PM 253 \\ PM 0 \\ Q Q PM 0 \\ Q Q PM 0 \\ Q Q PM Q Q Q N N N C Q N N \mathsf$	PM 2246 PM 2247 PM 2248	2 9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
THIS LEACT IS PARTIAL FOR MY PE SR CA P LA CR MG BATT B U MA PASSIVE SUFJOE AND THE PAR AND ALL ARSSAV RECOMPLEDE FOR UNA CABLE CAME OR 2 NA AS 1 X, AND PASSIVE SUFJOE AND THE PASA SAMPLE TYPE DORE AND CORE SAMPLES IF U DU R 2 N AS 2 X, AND PASSIVE SUFJOE AND THE Samples regimining 'Re' prove part of the Assav 2 X, AND PASSIVE SUFJOE AND THE PASSIVE SUFJOE AND PASSIVE	PM 2249 PM 2250 STANDARD C3/FA100	1 53 × 24 62 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<1 46									
Sample # Interval Description PM2250 616.0-616.6 green argillite w. slicks, py, chlorite. PM2249 628.0-629.0 " " " " " " " PM2248 638.5-639.2 " " " " " " PM2247 674.2-675.0 green argillite, breccia (frags. To 2 cm). PM2246 694.4-694.9 crushed quartz, grn. argillite, calc. PM2245 707.3-708.0 grn. arg., chloritized, brecciated, shear. PM2243 735.0-723.7 grn argillaceous qtzite, tr. py. PM2243 735.0-736.0 grngy. qtzite, 1-2% py PM2242 752.6-753.8 HW of gabbro, chlor., gouge, QV's, py. PM2241 753.8-755.0 gabbro (top meter), magnetite, chlor. PM2240 816.5-817.5 FW gabbro, chlor., arg. qtzite w. py	HIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI & W AND MASSIVE SULFIDE AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB 2N AS > 1%, AG > 30 PPN & AU > 1000 PPB - SAMPLE TYPE: CORE AU** PT** PD** BY FIRE ASSAY & ANALYSIS BY ULTRA/ICP. (30 gm) Sumples beginning 'RE' are Returns and 'RRE' are Reject Returns. DATE RECEIVED: NOV 27 1998 DATE REPORT MAILED: Dec. G/98 SIGNED BY												
PM2249 628.0-629.0 """"""""""""""""""""""""""""""""""""	Sample # Inte	rval											
PM2245707.3-708.0grn. arg., chloritized, brecciated, shear.PM2244723.0-723.7grn argillaceous qtzite, tr. py.PM2243735.0-736.0grngy. qtzite, 1-2% pyPM2242752.6-753.8HW of gabbro, chlor., gouge, QV's, py.PM2241753.8-755.0gabbro (top meter), magnetite, chlor.PM2240816.5-817.5FW gabbro, chlor., arg. qtzite w. py	PM2249628PM2248638PM2247674	PM2249 628.0-629.0 """"""""""""""""""""""""""""""""""""											
PM2243735.0-736.0grngy. qtzite, 1-2% pyPM2242752.6-753.8HW of gabbro, chlor., gouge, QV's, py.PM2241753.8-755.0gabbro (top meter), magnetite, chlor.PM2240816.5-817.5FW gabbro, chlor., arg. qtzite w. py	PM2245 707	.3-708.0	grn. arg., chloritized, brecciated, shear.										
PM2242752.6-753.8HW of gabbro, chlor., gouge, QV's, py.PM2241753.8-755.0gabbro (top meter), magnetite, chlor.PM2240816.5-817.5FW gabbro, chlor., arg. qtzite w. py													
PM2241 753.8-755.0 gabbro (top meter), magnetite, chlor. PM2240 816.5-817.5 FW gabbro, chlor., arg. qtzite w. py			Appendix in a.										
PM2240 816.5-817.5 FW gabbro, chlor., arg. qtzite w. py													
	PM2240 816	5.5-817.5	FW gabbro, chlor., arg. qtzite w. py	Ł MR									
All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only. Data 1 FA	All results are con	nsidered the	he confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only. Data <u>f</u>	FA									

APPENDIX III B i Core Sampling LIST OF SAMPLES (All samples start with '146')

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	From	То	#		From	То	#		From	То	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											1100
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
308 1141 1144 357 1291 1294 456 1118 1120 309 1144 1147 358 1294 1297 1301 1147 1150 359 1297 1300 457 1331 1334 311 1150 1153 366 361 1303 1306 459 1337 134 1333 313 1166 1159 362 1306 1309 460 1340 1343 314 1159 162 363 1309 1312 461 1343 1345 316 1162 1165 364 1312 1315 462 1349 1352 318 1171 1174 366 1318 1321 464 1352 1355 319 1174 1177 369 1324 1327 466 1358 1361 320 1177 1180 370 1327 1330 467				4							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									457	1331	1334
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
3141159116236313091312461134313463151165116536413121315462134613491352316116511683651315131846313491352317116811713661318132146413521355318117411773691324465135513583201177118037013271330467136113643211180118337113301331468136713703231186118947013701373133146813671370324118911923731019102247113731376325119211953741022102547213761379326119511983751025102847313791382327119812013761028103147413821385328120112043771031103447513851388139133012071210379103710404771391139433112101213380104010434781397134033312161216381104910404771391139433312161219<											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					0.12		100 .				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					373	1019	1022				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			and the second								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									477		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				 South states and states are states. 		1040	1043		478	1394	1397
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					381	1043	1046		479	1397	1400
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				All the second secon	382	1046	1049		480	1400	1403
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					383	1049	1052		481	1403	1406
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				an an tha an an Arthree	384	1052	1055		482	1406	1409
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	336		1228	ana ang ang ang ang ang ang ang ang ang	385	1055	1058		483	1409	1412
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	337	1231	1234		386	1058	1061		484	1412	1415
34012401243389106710704871421142434112431246390107010734881424142734212461249391107310764891427143034312491252392107610794901430143334412521255393107910823451255125839410821085346125812613951085108810913481264126739710911094			1237		387	1061	1064		485	1415	1418
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	339	1237	1240	e de la construcción de la constru La construcción de la construcción d	388	1064	1067		486	1418	1421
342 1246 1249 391 1073 1076 489 1427 1430 343 1249 1252 392 1076 1079 490 1430 1433 344 1252 1255 393 1079 1082 345 1255 1258 394 1082 1085 346 1258 1261 395 1085 1088 1091 348 1264 1267 397 1091 1094	340	1240	1243	na shekara na shekara na shekara. T	389	1067	1070		487		
34312491252392107610794901430143334412521255393107910823451255125839410821085346125812613951085108834712611264396108810913481264126739710911094	341	1243	1246	na su sur Roscu - Arturn	390	1070	1073		488	1424	1427
344 1252 1255 393 1079 1082 345 1255 1258 394 1082 1085 346 1258 1261 395 1085 1088 347 1261 1264 396 1088 1091 348 1264 1267 397 1091 1094	342	1246	1249		391	1073	1076				
3451255125839410821085346125812613951085108834712611264396108810913481264126739710911094	343	1249	1252		392	1076	1079		490	1430	1433
346 1258 1261 395 1085 1088 347 1261 1264 396 1088 1091 348 1264 1267 397 1091 1094	344	1252	1255		393						1 .
347 1261 1264 396 1088 1091 348 1264 1267 397 1091 1094	345										
348 1264 1267 397 1091 1094			The second								
	347	1261	1264								
349 1267 1270 398 1094 1097	348	1264	1267		397	1091	1094				
"我们就是你们就是你们的你们,你就是你们的你们,你们们的你们,你们们还是你们的你们,你们就是你们的你们,你们就是你们的你们,你们们不是你们的你们,你们们不是你们,	349	1267	1270		398	1094	1097				

 \frown

3

 \frown

<u>, ()</u>)	PHONE (604) 253-3158 FA	<u>()</u>					
	TICAL LABORATORIES LTD. 852 E. HASTINGS ST. V 002 Accredited Co.) GEOCHEMICAL ANAL	NCOUVER BC V6A 1R6 YSIS CERTIFICATE	PHONE (604) 253-3136 FF	A A					
# #	Diamet Minerals Ltd. PROJECT PAU 1695 Powick Road, Kelowna BC V1X	L-MIKE File # 9900	455 Page 1						
SAMPLE#	No Cu Dh 7p Ag Ni Co Mp Fe As U Au Th Sr Cd Sb B	V Ca P La Cr Mg B	a Ti Al Na K W Zr S	n Y Nb Be Sc Hg					
5APIFLE#	pom pom pom pom pom pom pom pom vom vom pom pom pom pom pom pom pom pom pom p	nppm % %ppmppm %pp	nn % % % % ppm ppm pp	m ppm ppm ppm ppm ppb					
B 146301 B 146302 B 146303 B 146304 B 146305	2 28 17 48 5 18 0 408 3 16 <5 <10 <4 12 96 < 4 <5 <	5 48 2.30 .047 37 39 1.12 55 5 47 1.95 .048 33 38 1.28 60 5 49 2.26 .044 36 37 1.30 61	6 .20 6.75 1.65 2.63 / 56 2 .24 6.70 1.42 2.79 <4 54 < 8 .23 6.95 1.35 3.11 5 57 <	3 16 6 1 8 <10 2 25 7 1 8 15					
B 146306 B 146307 B 146308 B 146309 B 146310	8 31 24 74 .8 16 10 469 2.87 <5	5 65 1.84 .051 38 47 1.22 71 5 61 2.24 .052 39 47 1.48 60 5 50 2.17 .047 41 45 1.30 62	6 .29 7.84 1.31 3.50 5 66 < 3 .28 7.26 1.29 3.05 7 71 < 2 .27 6.88 1.27 3.07 7 83 <	2 31 8 1 11 10 2 31 9 1 10 10 2 31 9 1 9 <10					
B 146311 B 146312 RE B 146312 RRE B 146312 B 146313	2 25 19 80 <.5 19 9 310 3.83 5 <10 <4 12 60 .4 6 <	5 75 .75 .055 40 57 1.22 57 5 61 2.15 .047 41 42 1.26 57 5 61 2.11 .046 40 41 1.23 53 5 61 2.11 .046 41 40 1.25 54	8 .30 7.60 1.33 3.13 7 62 < 2 .25 6.88 1.20 2.86 <4 53 0 .25 6.61 1.13 2.78 5 54 < 0 .25 6.72 1.17 2.80 4 53	2 25 9 2 11 <10					
B 146314 B 146315 B 146316 B 146317 B 146318	3 27 18 91 <.5 22 9 327 3.71 10 <10 <4 13 68 .5 5 < 2 27 16 143 <.5 22 11 375 3.70 <5 <10 <4 12 62 <.4 <5 <	5 69 .82 .050 39 44 1.21 61	3 .32 7.75 1.32 3.16 5 73 1 .31 7.51 1.18 3.23 <4 62 < 3 .27 6.27 1.36 2.48 <4 54 <	2 34 9 2 12 15 2 23 8 1 11 <10					
B 146319 B 146320 B 146321 B 146322 B 146323	<pre><2 15 9 41 .5 10 4 454 2.33 8 <10 <4 12 71 .4 7 < <2 26 22 53 <.5 18 9 802 3.80 6 <10 <4 10 139 .5 <5 < <2 21 13 74 <.5 15 7 360 3.51 13 <10 <4 11 73 <.4 6 < 2 41 31 68 <.5 31 13 702 3.88 <5 <10 <4 13 87 <.4 <5 < 2 20 105 384 <.5 12 5 565 2.91 5 <10 <4 12 81 1.4 6 <</pre>	5 63 2.32 .051 39 47 1.15 60	4 .28 6.69 1.22 2.96 <4 61 0 .31 7.17 1.20 3.07 5 60 < 1 .31 7.38 1.04 3.26 <4 65	2 31 7 1 9 <10					
B 146324 RE B 146324 RRE B 146324 B 146325 B 146326	2 29 16 64 <.5	5 76 .90 .047 40 55 1.30 66 5 78 .90 .048 40 49 1.32 67 5 69 1.84 .048 34 52 1.31 57	7 .31 7.94 1.34 3.44 <4 64 8 .31 8.06 1.36 3.49 6 65 9 .29 7.41 1.51 3.06 6 60	2 26 3 1 12 <10					
B 146327 B 146328 B 146329 B 146330 STANDARD CT3/C3	<2 47 18 80 <.5 25 11 613 3.78 6 <10 <4 11 109 .5 <5	5 76 .57 .046 42 49 1.18 52 5 62 2.16 .050 37 51 1.22 50 5 59 3.65 .063 30 70 1.15 13 5 74 2.43 .103 31 134 1.31 56 1 137 1.58 .099 26 269 .91 105	8 .26 7.09 1.46 2.90 4 56 < 4 .19 5.54 .94 2.47 <4 47 < 4 .25 6.32 .87 3.11 <4 54 <	2 21 3 1 8 15 2 21 4 1 9 <10					
STANDARD G-2	<2	57 2.97 .096 27 72 .71 103	4 .26 8.58 2.83 3.15 <4 9 <	2 18 17 1 6 <10					
IS PAR DURING	.250 GRAM SAMPLE IS DIGESTED WITH 10ML HCLO4-HNO3-HCL-HF AT 200 DEG. RTIAL FOR MAGNETITE, CHROMITE, BARITE, OXIDES OF AL,W,ZR & MN AND MAS B HCLO4 FUMING. PLE TYPE: CORE HG ANALYSIS BY FLAMELESS AA. <u>Samples beginning 'R</u>	sive sulfide samples. As, ck, s	ct Reruns.	Appendix III b ii)					
DATE RECEI	GI DIA	SIGNED BY	. TOYE, C.LEONG, J. WANG; CERT	ICP Results p.1					
All results an	e considered the confidential property of the client. Acme assumes t) ne liabilities for actual cost o	f the analysis only.	Data FA					

	Diamet Mir	nerals Ltd. PROJECT	PAUL-MIKE FILE # 9900455	Page 2
SAMPLE#	Mo Cu Pb Zn Ag Ni Co Mn opm ppm ppm ppm ppm ppm ppm ppm	Fe As U Au Th Sr Cd Sb % ppm ppm ppm ppm ppm ppm ppm ppm	Bi V Ca P La Cr Mg Ba Ti Al Na K W ppm ppm % % ppm ppm % % % % ppm	Zr Sn Y Nb Be Sc Hg ppm ppm ppm ppm ppm ppm ppb
B 146331 B 146332 B 146333 RE B 146333 RRE B 146333	4 25 26 98 <.5	3.38 6 <10	<pre><5 56 2.79 .070 32 79 1.48 493 .25 6.46 1.08 2.70 7 <5 54 2.92 .053 32 49 1.32 488 .23 6.61 1.20 2.80 9 <5 68 2.52 .055 37 54 1.63 560 .26 7.40 1.14 2.99 9 <5 63 2.34 .051 35 49 1.52 542 .25 6.98 1.10 2.89 6 <5 62 2.28 .050 35 42 1.48 461 .24 6.93 1.09 2.89 6</pre>	71 <2
в 146334	4 32 23 93 <.5 22 13 731 3	3.81 19 <10 <4 11 129 1.3 <5	<5 58 3.06 .051 34 50 1.48 564 .27 7.00 1.20 3.04 7	75 <2 25 8 <1 10 <10

Sample type: CORE. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Appendix III b ii) ICP Results p.2

Data___FA

		1. 202. 1			********			S.C. I LANKS							*	Ng Lin	i escaria in	a sa sana sa				·	21 S.										# # / -		24 9 9 9 9 9 9	
)															(\bigcirc) ¹ - 1 - 1 - 1)	•	
ACME ANAL								rD.		852	2 E.	H2	ST	ING	5 51	r. 1	VAN	COU	VER	BC	V6.	A 1	R6		PHO	NE (6	504)	253	-31	58 I	XA	604)25	3-1	716	10
AA	5002	, AC													· · · ·					ERTI								- 1						A	A	
									<u>era</u> 16	95 Po	wick	Roa	d. K	elow	na BC	: V1>	(4L1	1 5	Submi	Fi tted b	oy: (len	Rodge	rs			-	e 1						1	. L	
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn	Ag	NÍ	Co	> Mn		As	U	Au	Th	Sr	Cđ	SÞ	Bi	V	Ca %	P	La ppm	Сr	Mg	Ba ppm	Τi	Al	Na	a 1	ĸ	IZr ippm						
B 146335 B 146336 B 146337 B 146337 B 146338 B 146339	4 3 4	139 130 82 89 196	232 46 52 33 145	90 75 94	<.5 <.5 .5	22 17	11 9 9	453 441 348	3.15 3.11 2.96 3.29 2.61	5 8 <5	<10 <10	<4 <4 <4	12 13 13	133 103 108	1.0 .4 .7	<5 <5	<5 <5 <5	59 59 52	2.45 3.03 1.66	.049 .045 .042 .044 .044	36 41 37	34 30 34	1.54 1.10 1.31	485 397 456	.24 .21 .23	6.53 6.04 6.46	1.20	5 2.8 1 2.6 3 2.9	8 <4 6 <4 5 4	64 65 67 53 53 57	<2 5	20 21 20	6 8 8 10	2 2 2 1	10 < 9 < 8 < 9 7 <	10 10 15
B 146340 B 146341 B 146342 B 146343 B 146343 B 146344	3 3	133 61 84	182 1113 40 327 16	76 70	4.3 <.5 <.5	19 22 17 19 20	9 8 8) 434 332 609	2.92 3.11 2.33 2.61 2.18	9 <5 <5	<10 <10 <10	<4 <4 <4	13 11 10	122 87 128	3.9 .5	6 <5 <5	16 <5 <5	56 39 59	2.70	.042 .066 .032 .048 .048	65 45 38	31 29 42	1.17 1.27 1.12	418 427 391	.23 .20 .21	6.36 6.42 6.21	1.44 .93 1.78	3.0 2.8 2.6	54 6<4 05	60 70 58 52 55	<2 4 4	26 28 25	8 10 10 7 6	2 1 1 1	9 8 7 < 8 11 <	15 10 10
B 146345 B 146346 RE B 146346 RRE B 146346 B 146347	4 4 5	32	17 686 652 434 32	61 59	.6 <.5	16 14 14	7 7 8	227 227 227 241	3.49 2.43 2.44 2.73 4.03	<5 <5 <5	<10 <10	<4 <4 <4	12 11 10 11 12	70 71 77	<.4 .6 <.4	<5 <5 <5	9 9 7	78 78 83	1.21 1.20 1.31	.049 .046 .046 .048 .053	33 31 34	37 37 44	1.10 1.10 1.14	362 367 382	.23 .22 .24	6.30 6.36 6.69	1.87 1.91 2.11	7 2.3 1 2.3 1 2.4	0 <4 1 4 0 9	59 52 52 52 57 63	2 3	16 16 17	12 8 8 10 10	1 1 1	11 < 9 < 9 < 9 < 11 <	10 10 10
B 146348 B 146349 B 146350 B 146351 B 146352	3 3 4	40 52 31 18 35	461 64 45 31 30	149 73 121	<.5 <.5 <.5	21 19 19 12 26	9 8 5	910 937 565	3.34 3.48 3.28 2.61 3.66	5 <5 <5	<10 <10 <10	<4 <4 <4	11 12 10	148 121 105	.8 .4 .8	<5 <5 <5	<5 <5 5	60 55 48	3.03 2.78 2.63	.049 .054 .053 .044 .044	40 38 35	46 45 29	2.33 2.25 1.87	451 436 408	.28 .26 .24	6.99 6.72 6.46	1.51	12.9 72.8 32.7	76 96 5<4	71 69 677 64 71	3 2	29 29 24	6 10 10 8 9	-	10 < 10 < 9 < 8 <	10 10 15
B 146353 B 146354 B 146355 B 146355 B 146356 B 146357	2 3 <2		91 29 445 184 14	3289 120	<.5 .8 .5	38 25 19	15 11 7	238 384 328	3.33 3.76 3.59 3.20 3.89	21 22 <5	<10 <10	<4 <4 <4	12	52 86 85	.4 30.9	6 <5 <5	<5 <5 <5	60 56 84	1.90 4.13 1.83	.042 .044 .035 .049 .050	39 32 37	39 37 44	.90 .86 1.37	381 366 417	.25 .19 .25	6.68 5.94 6.79	.89 89. 1.18	33.0	4 5 5 <4 1 <4	59 51 54 69 58	<2 <2	13 15 22	8 9 6 9 7	1 2	8 < 10 < 8 4 10 < 11 <	10 45 10
B 146358 RE B 146358 RRE B 146358 B 146359 B 146360	2 3	38 39 39 51 46	15 23 16 23 34	82 83	.5 <.5	29 27	13 12	485	4.17	<5 <5 7	<10 <10 <10	<4 <4 <4	13 12 12	118 120 129	<.4 .9	<5 <5 <5	<5 <5 <5	51 52 52	2.92 2.83 2.64	.050 .049 .049 .049 .046 .049	39 41 38	42 39 44	1.73 1.73 1.59	360 343 313	.25 .25 .26	6.47 6.61 6.84	1.16	2.5	6 <4 7 6 0 7	64 63 60 68 55	<2 <2 4	29 27	9 8 9 10 8	2 1 2 1	9 9 9 < 8 <	10 10 10
B 146361 B 146362 B 146363 B 146364 STANDARD CT3/C3	2	24 44 49 38 58	11 17 30 22 37	58 104	<.5 <.5	18 21 20 21 40	11 9	221 294	2.44 3.06 3.12 3.26 3.91	<5 <5	<10 <10 <10	<4 <4 <4	11 11 12	67 79 89	<.4 .6 <.4 21.8	<5 <5 <5 21	<5 <5 <5 21	57 60 48 127	2.14 1.94 2.12 1.53	.046 .042 .041 .044 .101	45 38 42 25	37 41 39 249	1.06 1.27 1.63 .89	361 393 419 947	.24 .24 .24 .38	6.77 6.78 6.70 6.84	1.25 1.30 1.21 1.75	2.6 2.7 2.8 5 1.8	4 7 3 5 4 <4 0 24	45 60 59 76 45	<2 2	27	8 10 8 8 14	<1 1 1 2 4	7 < 9 < 9 < 9 < 10 9	10 10 10 15
STANDARD G-2	2	3	24			10			2.50		<10			B1 0						.106										8		17		2	6	10
IS P/	ARTIA	L FOI	R MAG	NETI	TE,	CHROM	11 T E	, ВА	RITE,	OXID	ES OI	FAL	,W,Zł	2 & 1	IN AN	ID MA	SSIV	ESU	LEID	G AND E SAMP	LES.	D^{AS}	, ск,	58,	AU 3	UDJC	LUTE CT TC	D AQI	JA RE S BY	GIA. VOLA						
	NG HCI Mple				HG															ns and														t III lte		
DATE RECE	IVED):	FEB	11 19	799	DA	TE	REI	ORT	MAI	LEC):	W	61	s 9	1	8	SIG	NED	BY.	<u>.</u>	<i>!</i> .Y	···/·	•D.	IOYE	, C.L	EONG	, J.	WANG	; CER					P	
All results a	are c	onsi	dered	the	con	fider	ntia	lpr	opert	y of	the o	clie	nt./	Асте	assu	mes	the	liab	oilit	ies fo	or ac	tual	cost	of t	he a	naly	sis c	only.				D	ata_(FA		

]	Dia	am	et	M	ine	ra	ls	L	td.	P	RO	JEC	T I	FC PAU)- 11-	MI	KE	FI	LE	#	99	004	453]	Pac	ge	2		-(
SAMPLE#	Mo ppm	•••				N1 ppr		Mı ppi		е хр	As l pm ppm	J Au n ppr			Cd ppm				Ca X		La ppm		Mg % p		Ti X	A1 %	Na X	K X							Sc opm p		
B 146365 B 146366 B 146367 not received	4 2		65 19	45 87	.5	26 19			83.3 93.3	-	<5 <1(6 <1(6 <5	<5 <5	48 46	2.96 2.28	.039 .040	45 31	42 1 39 1	1.08 (1.54 (394 346	.22 6 .21 5 	.74	1.31 .99 -	2.91 2.31	6 5	69 60 -	-	21 23	11 8 -	1	9 < 8 -	10	
B 146368 B 146369	4 4				<.5 <.5	21 32	9 13	29) 35)	03.0 64.6	1 60	<5 <10 <5 <10) <4) <4	11	95 102	.5 1.3		<5 <5		2.20 3.80				1.87 4 1.74 (5 4	66 55	<2 <2	27 43	9 8	_	10 10		
RE B 146369 RRE B 146369 B 146370 B 146371	4 5 6 <2	98 66	31	224 192	<.5 <.5 <.5 <.5	33 24	13 11	32 22 122	94.5 53.7 01.8	0 5	9 <1(<5 <1(5 <1() <4) <4) <4	10 13	96 64 371	1.6 1.1 <.4	7 <5 <5	<5 <5 <5	60 63 39	11.83	.062 .066 .044	37 40 32	47 1 46 2 26 1	1.73 (2.04 4 1.58 (323 476 395	.26 6 .29 7 .18 4	.31 .35 .61	1.32 1.26 1.07	2.53 3.14 2.81	7 <4 5	59 77 55	<2 3 <2	40 25 26	8 10 9 9	-	9 10 11 6 < 8 <	15 15 10	
B 146372 STANDARD CT3/C3 STANDARD G-2	23			174		40		91	B 2.4 7 3.9 B 2.3	7	<5 <10 57 22 8 <10	2 <4	26	243 220 715	22.4	18	16	130	5.93 1.51 2.75	. 100	25	255		986	. 37 7	. 08	1.73	1.88	25	44	16		10 14 18	1 4 1	8 < 10 9 6 <	35	

Sample type: CORE. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Appendix III b ii) ICP Results p.4

Data FA

C		
	LYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE(604)253-3158 FAX(6	04)253-1716
	9002 Accredited Co.) GEOCHEMICAL ANALYSIS CERTIFICATE	A A B
	Diamet Minerals Ltd. PROJECT PAUL-MIKE File # 9900496 Page 1 1695 Powick Road, Kelowna BC V1X 4L1 Submitted by: Glen Rodgers	TT
SAMPLE#	Mo Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Mg Ba Ti Al Na K W Zr Sn ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm	Y NID BE SC Hg m ppm ppm ppm ppb
B 146373 B 146374 B 146375 B 146375 B 146376 B 146377	2 9 7 66 .5 9 3 913 2.14 <5	2 7 <1 8 30 7 9 <1 8 20 0 4 <1 8 20
B 146378 B 146379 B 146380 B 146381 B 146382	<2 10 10 39 <.5 11 5 780 2.29 <5 12 <4 10 84 <.4 <5 <5 35 2.94 .052 37 33 1.24 581 .21 6.25 .97 2.71 <4 74 <2 2 <2 6 9 33 <.5 9 3 614 1.93 <5 <10 <4 10 64 <.4 <5 <5 35 2.08 .045 38 31 1.10 607 .22 6.48 .82 2.89 <4 84 <2 2 2 38 45 47 .5 19 12 648 3.13 <5 <10 <4 9 98 <.4 <5 <5 36 2.40 .055 34 34 1.01 402 .20 5.44 1.45 1.80 <4 72 <2 3 2 35 82 143 .8 13 6 479 2.78 17 <10 <4 11 137 .8 5 <5 78 1.75 .039 33 36 .95 580 .21 6.76 .69 2.91 <4 49 <2 1 2 46 17 158 .6 20 11 850 3.59 9 <10 <4 10 80 .5 11 <5 59 2.40 .045 29 43 1.24 579 .26 6.98 .54 2.96 6 74 2 1	5 9 1 8 15 0 7 <1 7 40 2 7 2 11 45
B 146383 B 146384 RE B 146384 RRE B 146384 B 146385	2 19 17 55 <.5 6 5 1113 2.72 <5 <10 <4 11 74 <.4 <5 <5 57 3.14 .048 41 42 1.56 567 .21 6.67 .66 2.74 <4 59 <2 2 2 50 35 68 .6 17 10 780 3.11 <5 14 <4 9 101 .5 <5 <5 50 2.51 .051 34 22 1.33 540 .19 6.59 .72 3.05 <4 56 <2 1 4 49 41 69 <.5 18 10 774 3.10 <5 <10 <4 10 102 .6 7 <5 51 2.49 .053 35 25 1.33 622 .19 6.60 .72 3.03 5 69 3 1 3 51 44 70 .7 20 11 790 3.17 <5 10 <4 9 104 .5 6 <5 51 2.55 .055 36 25 1.35 560 .20 6.82 .73 3.10 5 93 <2 1 2 19 18 52 <.5 9 4 588 2.16 12 <10 <4 10 79 .5 5 <5 53 2.11 .051 37 30 1.21 627 .22 6.84 .92 2.98 8 53 <2 1	4 7 1 10 25 5 9 1 10 20 8 9 1 10 <10
B 146386 B 146387 B 146388 B 146389 B 146390	2 21 21 48 <.5	3 6 1 10 45 6 8 1 10 45 9 9 1 9 30
B 146391 B 146392 B 146393 B 146394 B 146395	 <2 22 15 62 <.5 15 7 734 2.70 <5 11 <4 11 111 .6 5 <5 44 2.68 .048 35 37 1.27 574 .22 6.30 .86 2.75 4 56 <2 1 <2 26 19 61 <.5 12 8 553 2.72 <5 11 <4 12 92 <.4 <5 <5 48 2.21 .048 36 34 1.17 614 .20 6.46 .81 2.85 <4 48 <2 1 <2 9 <5 45 <.5 10 4 802 2.21 <5 <10 <4 12 126 <.4 5 <5 31 3.49 .037 38 17 .76 547 .19 6.04 1.06 2.47 <4 94 <2 2 <2 30 31 65 <.5 18 10 530 3.11 <5 <10 <4 12 92 <.4 <5 <5 47 2.08 .049 35 35 1.22 598 .21 6.50 .99 2.60 <4 86 <2 2 <2 0 16 56 72 <.5 11 6 390 2.64 <5 <10 <4 11 84 <.4 <5 <5 49 1.67 .042 39 34 1.20 597 .24 6.75 1.05 2.74 <4 82 <2 2 <2 3 2 30 31 65 <.5 11 6 390 2.64 <5 <10 <4 11 84 <.4 <5 <5 49 1.67 .042 39 34 1.20 597 .24 6.75 1.05 2.74 <4 82 <2 2 <2 3 2 30 31 65 6 72 <.5 11 6 390 2.64 <5 <10 <4 11 84 <.4 <5 <5 49 1.67 .042 39 34 1.20 597 .24 6.75 1.05 2.74 <4 82 <2 2 <2 3 2 30 31 6 5 6 72 <.5 11 6 390 2.64 <5 <10 <4 11 84 <.4 <5 <5 49 1.67 .042 39 34 1.20 597 .24 6.75 1.05 2.74 <4 82 <2 2 <2 3 4 3 5 3 5 1.20 597 .24 5 5 1.05 2.74 <4 5 <2 4 5 <5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 8 1 9 20 6 9 1 7 10 3 8 1 9 20
B 146396 RE B 146396 RRE B 146396 B 146397 B 146398	<2 19 15 63 <.5 9 7 355 2.29 54 11 <4 12 82 <.4 7 <5 47 1.45 .045 33 32 .91 606 .18 6.60 .59 2.86 5 80 <2 1 2 19 18 63 <.5 10 7 357 2.29 62 10 <4 11 82 .4 <5 <5 48 1.45 .046 34 29 .91 605 .18 6.61 .59 2.88 <4 56 2 1 2 18 17 64 <.5 12 6 349 2.20 81 <10 <4 11 80 <.4 <5 <5 46 1.40 .045 33 29 .88 590 .17 6.39 .58 2.80 <4 56 2 1 <2 26 12 47 <.5 21 10 488 2.52 7 <10 <4 11 91 <.4 <5 <5 48 1.82 .044 33 24 1.12 568 .19 6.54 1.12 2.68 <4 45 <2 1 2 16 17 68 <.5 12 6 293 3.01 <5 <10 <4 16 77 .4 <5 <5 48 .76 .040 43 19 1.11 645 .20 7.40 .88 3.03 <4 66 <2 1	3 7 1 9 45 2 8 1 9 45 3 8 1 9 40
B 146399 B 146400 B 146451 B 146452 STANDARD CT3/C3		7 9 1 10 10 7 8 1 10 <10 4 17 4 10 935
STANDARD G-2	<2 5 20 53 <.5 9 5 730 2.39 <5 <10 <4 8 721 <.4 <5 <5 54 2.96 .097 26 67 .67 953 .25 7.95 2.50 2.74 <4 8 <2 1	5 12 1 6 <10
IS P/ DURI	250 GRAM SAMPLE IS DIGESTED WITH 10ML HCLO4-HNO3-HCL-HF AT 200 DEG. C TO FUMING AND IS DILUTED TO 10 ML WITH DILUTED AQUA REGIA. THIS PARTIAL FOR MAGNETITE, CHROMITE, BARITE, OXIDES OF AL,W,ZR & MN AND MASSIVE SULFIDE SAMPLES. AS, CR, SB, AU SUBJECT TO LOSS BY VOLATILIZA ING HCLO4 FUMING. AMPLE TYPE: CORE HG ANALYSIS BY FLAMELESS AA. <u>Samples beginning 'RE' are Refuns and 'RRE' are Reject Refuns.</u>	LEACH TION pendix III b ii)
All results a	are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.	Data_FA

Diamet Minerals Ltd. PROJECT PAUL-MIKE Page 2 9900496 FILE # ACHE ANALYTICAL SCHE ANALYTICA Sn Y Nb Be Sc Ha Cd Sb Bi V Са P La Cr Mg Ba Ti AL Na κ W Zr Mo Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr SAMPLE# % ppm ppm ppm ppm ppm ppm ppm ppb % % % % % ppm % ppm ppm ppm ppm ppm ppm ppm ppm ppm % ppm ppm made made made made made made made 14 20 <5 64 1.20 .050 38 36 1.04 696 .26 7.68 1.35 3.03 <4 100 2 24 6 360 2.47 <5 <10 <4 12 77 <5 <.4 B 146453 3 36 16 57 <.5 15 23 9 2 14 20 <5 77 2.03 .067 34 41 1.07 655 .28 8.05 1.10 3.14 7 99 4 <.4 11 <4 11 113 10 <10 93 < 5 23 12 574 4.05 B 146454 4 40 33 20 <5 50 2.41 .056 40 36 1.34 615 .24 7.11 1.53 2.66 28 9 1 10 <4 72 5 5 <5 <10 <4 12 92 .4 7 660 2.28 2 24 13 127 .5 17 B 146455 11 15 7 93 9 1 <5 <5 52 2.06 .055 39 43 1.34 631 .24 7.00 1.24 2.77 <2 30 89 .5 8 558 2.90 <5 <10 <4 11 .9 18 в 146456 3 26 13 71 10 15 <5 81 5.65 .073 42 30 2.33 478 .29 6.30 1.78 3.28 10 62 3 28 13 3 7 8 1029 2.85 6 <10 <4 11 268 <.4 3 61 84 53 .6 16 B 146457 10 <10 <5 52 4.94 .061 41 32 2.76 436 .31 6.38 1.75 2.67 59 <2 32 <4 <4 12 207 <.4 <5 11 1055 3.32 <5 <10 B 146458 <2 49 18 -73 .5 18 9 <10 <5 43 4,71 .051 34 25 1.68 395 .26 6.49 2.01 2.86 3. 24 9 2 <4 54 <5 12 <4 13 126 <.4 7 775 2.33 <5 3 27 15 58 .8 17 в 146459 <5 50 5.78 .050 30 25 1.59 376 .24 6.22 1.65 3.09 9 52 <2 25 12 4 8 <10 .5 <5 <10 <4 12 143 6 7 952 2.39 <2 25 29 77 .5 16 B 146460 <.4 <5 <5 62 8.45 .055 37 28 1.98 318 .27 5.65 1.96 2.37 <4 47 2 10 4 9 15 39 10 173 <2 47 13 62 <.5 26 11 1184 2.74 <5 <10 <4 B 146461 5 45 2 24 11 3 15 20 <5 <5 128 4.89 .171 38 28 1.88 499 .65 6.46 1.12 2.66 16 915 4.34 <5 <10 <4 10 128 <.4 <2 41 12 65 <.5 24 B 146462 2 24 13 3 15 15 5 <5 129 4.94 .175 38 30 1.91 502 .65 6.50 1.13 2.68 10 41 7 <10 <4 10 129 <.4 69 .5 24 17 921 4.37 RF B 146462 2 41 14 15 15 <2 24 13 4 32 1.93 507 .66 6.58 1.13 2.71 8 43 8 <5 130 4.99 .176 40 <4 10 131 <.4 <5 <10 .8 28 17 943 4.44 <2 39 8 68 RRE B 146462 9 10 406 .27 6.38 1.78 2.72 6 59 3 29 10 1 7 52 5.42 .055 37 30 2.07 8 897 2.59 <5 10 <4 13 168 <.4 6 3 28 358 43 1.3 18 B 146463 <4 42 <2 35 8 1 7 <10 <5 <5 42 8.22 .042 37 19 1.71 299 .22 5.52 1.84 2.23 12 <4 12 191 <.4 12 996 2.20 <5 37 .6 22 8 146464 5 32 16 10 10 <5 52 7.16 .054 37 27 2.31 398 .29 5.91 1.69 2.62 51 <2 34 8 1 <4 <4 11 213 <5 <.4 <5 <10 <2 48 9 43 <.5 25 8 874 2.86 B 146465 <5 62 6.61 .053 35 31 2.97 419 .29 5.86 1.72 2.63 <4 51 2 10 10 <2 27 10 <5 <10 <4 11 199 <.4 <5 12 1000 2.72 62 < .5 19 B 146466 5 29 12 60 9.07 .058 37 26 2.21 345 .27 5.39 1.81 2.57 2 9 10 5 42 <2 31 9 10 200 <.4 <5 <5 10 910 2.52 <5 11 <4 3 15 55 .7 22 B 146467 46 9 1 9 20 45 <2 27 34 24 4.34 380 .28 5.49 1.34 2.50 <4 48 8.55 .053 <5 <10 <4, 10 168 <5 <5 <.4 51 <.5 19 11 1427 3.28 <2 6 8 146468 21 9 20 30 3.68 456 .30 5.89 1.90 3.12 5 50 <2 27 12 3 62 7.70 .056 37 <4 10 166 <.4 9 <5 10 1187 2.89 <5 11 22 2 14 58.7 B 146469 59 8 15 <4 36 <2 30 10 48 10.14 .051 35 30 3.51 369 .26 5.10 1.83 2.53 7 <5 <.4 16 1339 2.70 <5 10 <4 9 158 51 <.5 25 B 146470 4 47 39 50 8.16 .055 33 26 2.52 371 .26 5.38 1.61 2.29 <4 42 <2 28 10 9 25 8 265 <.4 <5 <5 12 887 2.52 <5 <10 <4 <2 41 118 61 <.5 23 B 146471 8 10 8 40 2 29 11 2 33 23 2.93 283 .24 4.75 1.81 2.27 8 189 8 <5 49 10.51 .049 <.4 8 <10 <4 18 9 1239 2.57 B 146472 <2 30 14 66 <.5 29 10 1 9 10 38 27 2.00 448 .28 5.62 1.69 2.28 <4 44 <2 <5 48 7.63 .061 11 278 .5 7 14 703 2.71 <5 <10 <4 51 16 60 <.5 32 B 146473 4 9 <10 36 29 2.32 448 .27 5.67 1.45 2.54 <4 48 4 29 9 1 51 8.45 .059 <5 7 791 2.47 <5 10 <4 9 425 <.4 <5 60 <.5 15 2 35 16 8 146474 28 10 <5 50 8.28 .058 35 27 2.28 436 .27 5.53 1.39 2.50 <2 10 <4 46 <4 11 419 <.4 7 7 779 2.41 <5 <10 57 <.5 18 RE B 146474 <2 34 28 <5 51 8.41 .060 35 26 2.31 444 .27 5.62 1.43 2.53 2 29 12 9 <10 4 48 9 <10 <4 10 421 .4 9 14 58 <.5 19 7 768 2.45 RRE B 146474 2 37 9 15 388 .29 5.56 1.91 2.72 31 11 <.4 <5 <5 59 7.27 .069 38 33 2.99 <4 61 <2 11 180 <5 <10 <4 8 868 2.51 3 43 15 71 <.5 16 B 146475 9 20 <5 75 5.80 .077 39 29 2.64 399 .30 5.80 2.26 2.93 <4 54 3 33 13 3 7 6 <10 <4 10 209 .4 7 533 2.53 66 <.5 16 3 78 104 B 146476 10 25 6 <5 108 5.74 .077 32 45 2.77 398 .31 5.78 1.86 3.33 <4 53 <2 30 11 3 <5 <10 <4 10 249 <.4 77 .5 20 8 492 2.86 B 146477 <2 88 40 <4 52 11 20 <2 17 7 35 53 1.08 480 .25 6.32 1.01 2.67 <5 107 3.61 .079 14 80 <.4 6 162 2.35 <5 <10 <4 10 50 <.5 **3**4 8 4 47 B 146478 <5 130 1.64 .088 27 55 1.10 526 .27 6.80 .82 2.92 <4 52</p> 12 15 2 13 <5 63 2.60 <5 <10 <4 13 46 <.4 10 5 61 <5 83 <.5 65 B 146479 12 20 9 .85 .089 25 53 1.54 238 .23 6.68 1.20 2.86 <4 51 <2 12 1 <5 99. 43 <.4 8 <5 <10 <4 14 39 < .5 38 19 56 3.03 6 54 54 B 146480 3 12 15 4 8 <10 30 39 .94 375 .17 7.55 2.62 3.19 4 91 <5 99 2.43 .068 <5 <10 <4 19 67 .4 8 68 <.5 15 5 157 1.62 7 323 51 B 146481 31 41 3.34 365 .26 5.48 1.49 2.83 <4 56 <2 34 11 <1 8 <10 <5 134 5.38 .080 9 211 <.4 <5 22 352 2.86 <5 <10 <4 74 39 85 <.5 31 8 <10 B 146482 9 25 9 <5 <5 90 6.15 .077 35 40 5.11 444 .27 5.22 1.68 2.83 <2 1 <4 64 <5 <10 10 156 <.4 3 617 1.98 <4 83 <.5 11 8 26 <5 B 146483 26 64 46 182 6.1 42 13 966 4.19 58 21 <4 25 228 22.5 21 23 132 1.52 .104 27 265 .89 1010 .39 7.13 1.76 1.82 32 51 23 17 17 4 11 975 STANDARD CT3/C3 9 <10 <4 7 773 <.4 7 <5 57 3.02 .108 28 75 .74 1021 .26 8.96 2.68 2.90 8 9 2 19 21 2 7 < 10 2 5 21 58 <.5 9 5 812 2.68 STANDARD G-2 Sample type: CORE. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. Appendix III b ii)

ICP Results p.6

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data FA

AA

Page 3 Diamet Minerals Ltd. PROJECT PAUL-MIKE FILE # 9900496 2018 2013 2010 2 ACME ANALYTICAL -W Zr Sn Y Nb Be Sc Hg Ba Ti Na κ Mo Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Mg Αl SAMPLE# dag mag mag mag mag mag mag mag % % ppm ppm % ppm % % % pom pom pom pom pom pom pom % pom pom pom pom pom pom pom pom pom 11 212 <.4 12 <5 107 4.81 .088 39 54 4.23 649 .32 6.14 1.54 3.32 15 7 -63 <2 29 13 3 406 1.92 8 <10 <4 B 146484 11 22 13 76 <.5 <4 10 236 <.4 9 <5 152 7.51 .081 34 40 5.41 431 .33 5.56 1.46 3.78 6 65 <2 32 13 <10 3 8 5 135 59 83 <.5 31 11 595 3.14 9 <10 B 146485 .6 17 <5 136 6.16 .070 36 41 3.56 396 .27 5.38 1.16 3.17 5 59 <2 27 10 15 2 8 7 317 4.14 6 <10 <4 9 238 8 145 50 89 <.5 56 B 146486 5 600 2.46 10 11 <4 9 216 .5 10 <5 182 7.35 .074 31 45 5.81 354 .25 5.34 1.48 3.18 9 66 <2 28 12 2 8 10 B 146487 10 145 44 122 <.5 27 7 831 2.48 <5 <10 <4 7 307 1.3 10 <5 276 8.18 .057 25 29 5.45 311 .19 4.56 1.34 3.21 <4 67 3 23 11 4 6 <10 6 68 73 216 <.5 22 B 146488 4 60 66 208 <.5 24 7 791 2.38 <5 <10 <4 7 296 1.0 11 <5 264 7.84 .055 24 31 5.23 301 .18 4.38 1.27 3.11 4 64 6 <10 <2 23 12 RE B 146488 5 59 63 191 <.5 22 7 748 2.29 <5 <10 <4 6 279 .7 7 <5 248 7.36 .052 22 28 4.95 283 .17 4.18 1.23 2.95 <4 60 3 5 < 10 2 22 10 RRE B 146488 27 68 40 195 6.2 41 14 968 4.28 59 <10 <4 28 229 23.2 26 22 139 1.60 .097 28 270 .95 1025 .41 7.06 1.78 1.90 30 49 21 16 19 5 11 1010 STANDARD CT3/C3 <2 5 25 63 <.5 12 6 846 2.85 14 <10 <4 8 817 .5 14 <5 63 3.26 .103 30 87 .79 1086 .29 9.16 2.83 3.17 9 10 <2 20 26 2 7 15 STANDARD G-2

8

Sample type: CORE. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Appendix III b ii) ICP Results p.7

Data

ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.)

FEB 11 1999 DATE REPORT MAILED

DATE RECEIVED:

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

÷.

GEOCHEMICAL ANALYSIS CERTIFICATE

PHONE(604)253-3158 FAX(604)253-1716

.D. TOYE, C.LEONG, J. WANG; CERT AA Results p.1

Data__

FΔ

Diamet Minerals Ltd. PROJECT PAUL-MIKE File # 9900455 Page 1

DIAME	<u>c Mine</u>	1695 Powick Road, Kelown			bmitted b	y: Glen		. –			
SAMPLE#	B ppm	SAMPLE#	Cu ppm	Pb ppm	Zn ppm	Mn ppm	Na ¥		 		-
B 146301 B 146302 B 146303 B 146304 B 146305	72 66 87 79 74	B 146301 B 146302 B 146303 B 146304 B 146305	41 48 31 27 62	66 32 31 30 327	69 98 55 145 630	562 599 536 620 492	1.471.631.571.411.38				
B 146306 B 146307 B 146308 B 146309 B 146310	69 97 93 86 45	B 146306 B 146307 B 146308 B 146309 B 146310	31 35 27 28 69	40 28 30 15 30	75 76 98 37 1100	493 497 627 751 543	1.711.421.411.391.70	•			
B 146311 B 146312 RE B 146312 RRE B 146312 B 146313	108 81 85 81 86	B 146311 B 146312 RE B 146312 RRE B 146312 B 146313	28 39 37 38 29	24 67 65 67 34	83 112 120 122 423	298 617 630 604 672	1.54 1.41 1.39 1.38 1.41			·	
B 146314 B 146315 B 146316 B 146317 B 146318	$ \begin{array}{r} 110 \\ 104 \\ 116 \\ 84 \\ 112 \end{array} $	B 146314 B 146315 B 146316 B 146317 B 146318	26 29 31 60 29	20 19 17 57 12	111 97 159 132 213	420 315 378 715 387	1.21 1.44 1.47 1.66 1.57	. :			
B 146319 B 146320 B 146321 B 146322 B 146323	104 95 120 120 105	B 146319 B 146320 B 146321 B 146322 B 146322 B 146323	15 28 25 44 22	17 22 29 29 92	43 59 80 71 389	371 671	1.39 1.51 1.46 1.31 1.36				
B 146324 RE B 146324 RRE B 146324 B 146325 B 146326	92 92 91 87 100	B 146324 RE B 146324 RRE B 146324 B 146325 B 146326	34 35 33 38 36	21 20 19 40 19	71 70 70 70 108	399 383 585	1.48 1.49 1.49 1.72 1.58				
B 146327 B 146328 B 146329 B 146330 STANDARD LIB-10	$ \begin{array}{r} 114 \\ 73 \\ 49 \\ 72 \\ 2231 \\ \end{array} $	B 146327 B 146328 B 146329 B 146330 STANDARD CT3	26 50 198 39 63	22 24 40 17 43	68 90 136 90 172	615 857	1.441.701.461.231.80				
 B BY EUCTON TOD ETNICH		STANDARD G-2	5	24	54	766	2.47		 		-
B BY FUSION, ICP FINISHE		CH PR 7N MN & NA RY	MULTI-ACI			FINISHED					1

23/99

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

CU PB ZN MN & NA BY MULTI-ACID DIGESTION, AA FINISHED. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: CORE Appendix III b iii)

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

SIGNED BY

(<u>)</u>				<u>)</u>					<u> </u>
ACHE AHALYTICAL	Dia	amet Mir	nerals Ltd. PROJE					9900455	Page 2	ACHE AIGLYTICAL
	SAMPLE#	B ppm	SAMPLE#	Cu ppm	Pb ppm	Zn ppm	Mn ppm	Na ¥		
	B 146331 B 146332 B 146333 RE B 146333 RRE B 146333 RRE B 146333	76 87 80 80 80	B 146331 B 146332 B 146333 RE B 146333 RE B 146333 RRE B 146333	25 35 32 32 30	30 40 28 32 27	101 113 125 120 112	725 720 677 673 647	1.16 1.25 1.19 1.17 1.13		
	B 146334	68	B 146334	33	33	97	749	1.19		

Sec. 4 iks

Sample type: CORE. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Appendix III b iii) AA Results p.2

Data FA

ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.)

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

GEOCHEMICAL ANALYSIS CERTIFICATE

ale and the distance of the

تخاصفه فاعتداده واربار

Diamet Minerals Ltd. PROJECT PAUL-MIKE File # 9900453 Page 1

s. : :::::.s

	<u>Diamet Mine</u>	rals Ltd. PROJEC 1695 Powick Road, Kelown	T PAU	L-MIH 4L1 Su	(<u>E</u> Fi bmitted b	le # y:Glen	990045. Rodgers	3 Page 1		
SAMPLE#	B ppm	SAMPLE#	Cu ppm	Pb ppm	Zn ppm	Mn ppm	Na %			
B 146335 B 146336 B 146337 B 146338 B 146339	61 67 61 72 58	B 146335 B 146336 B 146337 B 146338 B 146339	135 133 85 96 196	$209 \\ 48 \\ 56 \\ 40 \\ 142$	169 86 76 96 63	540 469 487 370 385	1.41 1.33 1.42 1.26 1.72			
B 146340 B 146341 B 146342 B 146343 B 146343 B 146344	83 72 80 84 113	B 146340 B 146341 B 146342 B 146343 B 146343 B 146344	159 130 64 84 47	$161 \\ 1180 \\ 278 \\ 25$	161 520 71 62 46	390 450 374 611 281	1.32 1.41 1.05 1.61 1.53			
B 146345 B 146346 RE B 146346 RRE B 146346 B 146347	106 89 95 92 123	B 146345 B 146346 RE B 146346 RRE B 146346 B 146347	42 37 34 31 53	19 675 650 490 32	66 58 57 59 595	234 253 249 263 228	1.42 1.75 1.73 1.80 1.40			· · ·
B 146348 B 146349 B 146350 B 146351 B 146352	100 64 48 69 68	B 146348 B 146349 B 146350 B 146351 B 146352	42 51 33 21 39	409 58 46 32 33	81 150 70 126 83	226 836 867 618 618	1.32 1.44 1.26 1.33 1.24	:		:
B 146353 B 146354 B 146355 B 146355 B 146356 B 146357	86 147 87 95 115	B 146353 B 146354 B 146355 B 146355 B 146356 B 146357	53 100 79 71 50	101 36 416 190 17	$1120 \\ 72 \\ 3350 \\ 124 \\ 75$	480 269 427 378 285	.96 1.06 1.02 1.23 1.06			
B 146358 RE B 146358 RRE B 146358 B 146359 B 146360	66 67 66 101 61	B 146358 RE B 146358 RRE B 146358 B 146359 B 146360	42 43 42 50	23 28 29 36 43	89 85 88 103 143	505 504 508 420 733	1.23 1.23 1.25 1.26 1.29	•		
B 146361 B 146362 B 146363 B 146364 STANDARD LIB	68 82 90 107 -10 2174	B 146361 B 146362 B 146363 B 146364 STANDARD CT3	25 496 522 62	28 20 34 26 41	67 63 114 125 176	855 264 339 392 760	1.121.281.331.231.72		Appendix AA Resul	
		STANDARD G-2	5	23	50	696	2.45			
B BY FUSION, ICP	FINISHED.	CU PB ZN MN & NA BY ASSAY RECOMMENDED F - SAMPLE TYPE: CORE Samples beginning /	OR ROCK A	ND CORE	SAMPLES I	F CU PB	ZN AS > 1%,	AG > 30 PPM & /	au > 1000 ppb	

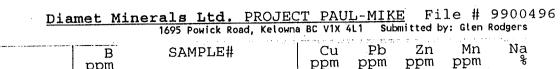
the analysis only. Data_

PHONE (604) 253-3158 FAX (604) 253-1716

FA

	amet Minerals Ltd. PROJECT PA	AUL-MIKE FILE # 9900453	Page 2
SAMPLE#	B SAMPLE#	Cu Pb Zn Mn Na ppm ppm ppm ppm %	
B 146365 B 146366 B 146367 not received B 146368 B 146368 B 146369	102 B 146365 79 B 146366 - B 146367 not received 96 B 146368 93 B 146369	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
RE B 146369 RRE B 146369 B 146370 B 146371 B 146372	101 RE B 146369 106 RRE B 146369 132 B 146370 22 B 146371 42 B 146372	91 33 220 373 1.34 95 34 245 360 1.30 67 34 211 249 1.29 31 23 38 1081 1.27 73 27 50 868 1.39	
	STANDARD CT3 STANDARD G-2	63 36 185 770 1.66 5 23 50 696 2.30	
Sample type:	CORE. Samples beginning 'R	E' are Reruns and 'RRE' are B	Reject Reruns.

Appendix III b iii) AA Results p.4


ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.)

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

Page 1

GEOCHEMICAL ANALYSIS CERTIFICATE

SAMPLE#	B ppm	SAMPLE#	Cu ppm	Pb ppm	Zn ppm	Mn ppm	Na %		
B 146373 B 146374 B 146375 B 146376 B 146377	36 64 65 66 67	B 146373 B 146374 B 146375 B 146376 B 146377	8 8 7 14 11	12 15 21 28 16	63 126 166 100 46	885 596 925 810 770	1.19 1.09 1.03 1.00 1.04		
B 146378 B 146379 B 146380 B 146381 B 146382	61 58 54 79 126	B 146378 B 146379 B 146380 B 146381 B 146382	9 5 38 35 45	14 11 42 66 24	40 34 53 137 154	796 666 675 513 797	$1.00 \\ .90 \\ 1.40 \\ .82 \\ .68$		
B 146383 B 146384 RE B 146384 RRE B 146384 B 146385	129 96 101 95 94	B 146383 B 146384 RE B 146384 RRE B 146384 B 146385	19 50 50 51 21	22 42 40 39 18	57 69 70 54	1071 766 763 778 628	.81 .85 .84 .84 .96		
B 146386 B 146387 B 146388 B 146389 B 146390	106 105 97 101 94	B 146386 B 146387 B 146388 B 146388 B 146389 B 146390	20 28 26 18 13	28 18 25 16	49 116 55 45	549 330 523 707 737	.89 .45 .94 .91 1.03		
B 146391 B 146392 B 146393 B 146394 B 146395	94 102 67 95 94	B 146391 B 146392 B 146393 B 146394 B 146395	24 27 9 32 18	19 19 31 48	66 69 532 80	764 606 856 585 465	.95 .92 1.12 1.04 1.07		
B 146396 RE B 146396 RRE B 146396 B 146397 B 146398	123 126 126 81 98	B 146396 RE B 146396 RRE B 146396 B 146397 B 146398	20 20 20 28 18	21 21 24 14 24	68 68 70 52 75	421 400 410 560 306	.74 .73 .73 1.14 .95		
B 146399 B 146400 B 146451 B 146452 STANDARD LIB-10	96 70 84 95 2076	B 146399 B 146400 B 146451 B 146452 STANDARD CT3	20 35 18 26 63	20 31 20 14 35	95 57 100 97 182		.70 1.03 1.21 1.29 1.57		Appendix III b iii) AA Results p.5
		STANDARD G-2 CU PB ZN MN & NA BY ASSAY RECOMMENDED F	OR ROCK A	20 ID DIGES ND CORE	56 TION, AA SAMPLES	FINISHE	2.22 D. ZN AS > 1	%, AG > 30 PPM & AU > 10	000 PPB

- SAMPLE TYPE: CORE

Samples beginning 'RE' are Reruns and 'RRE' are Reflect Reruns.

SIGNED

BY

FEB 16 1999 DATE REPORT MAILED: DATE RECEIVED:

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data A-FA

ALL REAL PROPERTY AND ADDRESS AND ADDRESS ADDR

Diamet Minerals Ltd. PROJECT PAUL-MIKE FILE # 9900496

w.

Page 2

....

AA

AGE ANALITICA

ACHE ABIAL VTICAL					nar and an	ta tangan a		er de la composición de			ngal 10 militari		
SAMPLE#	B ppm	SAMPLE#	Cu ppm	Pb ppm	Zn ppm	Mn ppm	Na %						
B 146453 B 146454 B 146455 B 146455 B 146456 B 146457	78 93 64 75 32	B 146453 B 146454 B 146455 B 146455 B 146456 B 146457	35 40 22 23 58	20 32 14 14 87	54 80 114 68 55	538	1.441.191.441.311.72						
B 146458 B 146459 B 146460 B 146461 B 146462	21 25 19 36 34	B 146458 B 146459 B 146460 B 146461 B 146462	41 27 24 43 39	18 18 32 18 18	67 59 79 62 73	950 790 900 1013 878	1.71 1.89 1.66 1.94 1.30		•				
RE B 146462 RRE B 146462 B 146463 B 146464 B 146464 B 146465	32 35 28 14 16	RE B 146462 RRE B 146462 B 146463 B 146464 B 146464 B 146465	37 37 24 32 47	14 14 330 28 17	68 71 40 47	860 890 870 974 875	1.29 1.31 1.71 1.89 1.77					. •	
B 146466 B 146467 B 146468 B 146469 B 146470	17 12 13 10 5	B 146466 B 146467 B 146468 B 146469 B 146470	27 41 18 54 40	16 22 11 23 53	62 555 54 50	933 885 1160 1020 1120		:					
B 146471 B 146472 B 146473 B 146474 RE B 146474	17 8 11 31 37	B 146471 B 146472 B 146473 B 146473 B 146474 RE B 146474	41 26 51 34 33	116 21 21 24 20	64 70 64 61	907 1102 768 797 789	$1.73 \\ 1.94 \\ 1.80 \\ 1.58 \\ 1.56 $						
RRE B 146474 B 146475 B 146476 B 146477 B 146477 B 146478	30 9 7 11 76	RRE B 146474 B 146475 B 146476 B 146477 B 146477 B 146478	37 41 72 80 48	18 27 105 42 12	62 74 65 80 52	804 858 587 532 222	2.18						
B 146479 B 146480 B 146481 B 146482 B 146483	73 54 33 11 6	B 146479 B 146480 B 146481 B 146482 B 146483	60 53 320 70 25	13 53 56 53 19	83 37 68 86 91	95 82 214 413 730	1.03 1.31 2.32 1.59 1.81					·	
STANDARD LIB-10	2105	STANDARD CT3 STANDARD G-2	61 3	43 23	179 54	809 752	1.64 2.31						
Sample type:	CORE.	Samples beginnin	ng 'RE	' are	Reru	ins ai	nd 'RRE	' are	Rejec				
											pendix l		
				6a 1ah1	itton fo	n actual	I cost of t	he analve	is only.	L	Dat	a /- FA	
All results are considered the confi	idential pr	operty of the client. Acme	assumes t		iiies IC	n actua							

	Diame	et Mine	erals Ltd. PROJE	CT PA	UL-MI	KE F	ILE #	990049	6	-	Page 3	}	
ANALYTICAL Ville - 200	SAMPLE#	B ppm	SAMPLE#	Cu ppm	Pb ppm	Zn ppm	Mn ppm	Na %					
	B 146484 B 146485 B 146486 B 146487 B 146488	27 12 20 11 9	B 146484 B 146485 B 146486 B 146487 B 146488	22 115 125 117 55	19 51 52 42 69	65 75 81 103 200	529 331 536	1.48 1.40 1.23 1.41 1.39					
	RE B 146488 RRE B 146488 STANDARD LIB-10	7 10 1907	RE B 146488 RRE B 146488 STANDARD CT3 STANDARD G-2	52 53 62 4	65 66 33	190 184 172 51	728 789	1.35 1.36 1.59 2.24					

Appendix III b iii) AA Results p.7

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data MFA

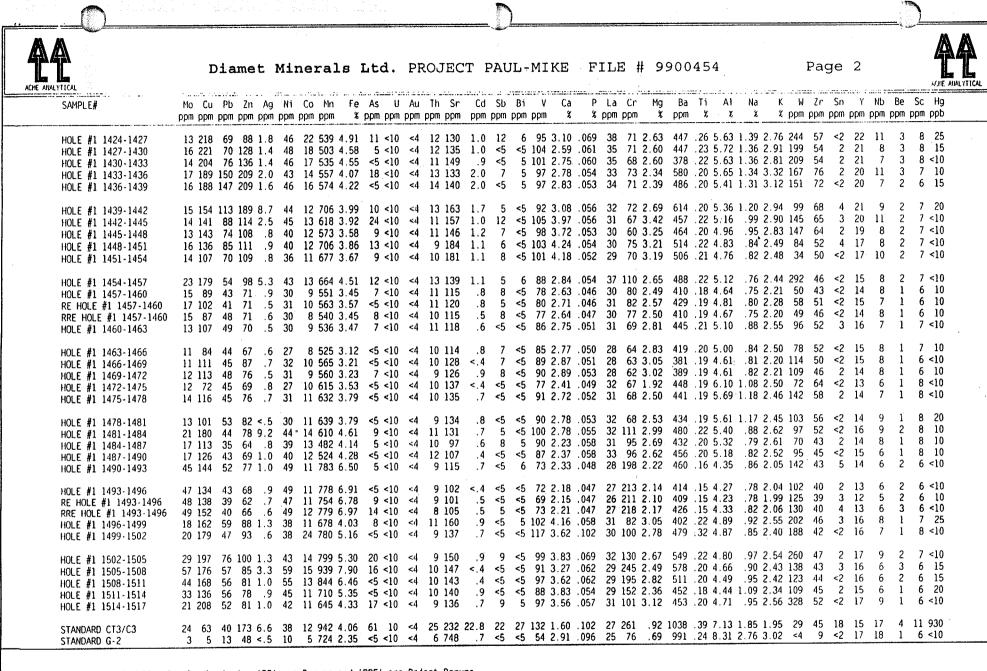
	AL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE(604)253-3158 FAX(604)253- Accredited Co.) GEOCHEMICAL ANALYSIS CERTIFICATE Diamet Minerals Ltd. PROJECT PAUL-MIKE File # 9900452 1695 Powick Road, Kelowna BC V1X 4L1 Submitted by: Glen Rodgers	.1716 AA
SAMPLE#	Mo Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Mg Ba Ti Al Na K W Zr Sn Y Nb Be Sc H ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm	
HOLE #1 1280-128 HOLE #1 1283-128 HOLE #1 1286-128 HOLE #1 1286-128 HOLE #1 1289-129 HOLE #1 1292-129	286 10 126 47 80 3.0 31 78 464 3.97 <5	5 0 0
HOLE #1 1295-129 HOLE #1 1298-130 HOLE #1 1301-130 HOLE #1 1304-130 HOLE #1 1304-131	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0
HOLE #1 1310-131; HOLE #1 1313-131 HOLE #1 1316-1319 RE HOLE #1 1316- RRE HOLE #1 1316- RRE HOLE #1 1316	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0
HOLE #1 1319-132 HOLE #1 1322-132 HOLE #1 1325-132 HOLE #1 1328-133 HOLE #1 1331-133	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0
STANDARD C13/C3 STANDARD G-2	3 26 61 37 174 6.2 38 °13 919 4.09 59 15 <4 25 218 22.7 25 17 131 1.58 .102 26 260 .91 965 .39 7.10 1.71 1.83 30 49 19 15 19 4 11 88 3 3 20 48 <.5 5 5741 2.50 5 <10 <4 6 735 <.4 <5 <5 54 2.96 .098 26 70 .71 974 .25 8.47 2.68 2.93 <4 8 3 17 19 1 7 1	5 0

÷.

ICP - .250 GRAM SAMPLE IS DIGESTED WITH 10ML HCL04-HN03-HCL-HF AT 200 DEG. C TO FUMING AND IS DILUTED TO 10 ML WITH DILUTED AQUA REGIA. THIS LEACH IS PARTIAL FOR MAGNETITE, CHROMITE, BARITE, OXIDES OF AL,W,ZR & MN AND MASSIVE SULFIDE SAMPLES. AS, CR, SB, AU SUBJECT TO LOSS BY VOLATILIZATION DURING HCL04 FUMING.

- SAMPLE TYPE: SLUDGE HG ANALYSIS BY FLAMELESS AA. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Feb 18/99


DATE RECEIVED: FEB 11 1999 DATE REPORT MAILED:

SIGNED BY.

Appendix III c i) ICP Results p.1

Data

ACME ANALYTICAL LA		R6 PHONE (604) 253-3158 FAX (604) 253-1716
(ISO 9002 Accr	edited Co.) GEOCHEMICAL ANALYSIS CERTIFICAT	re AA
TT	Diamet Minerals Ltd. PROJECT PAUL-MIKE File # 1695 Powick Road, Kelowna BC V1X 4L1 Submitted by: Glen	Rodgers IIm IIm IIm IIm
SAMDIE#	No Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Col Sb Bi V Ca P La Cr ppin ppin ppin ppin ppin ppin ppin ppin	Mg Ba Ti Al Na K W Zr Sn Y No Be Sc Hg
HOLE #1 1337-1340 HOLE #1 1340-1343	10 122 42 106 .7 107 29 435 4.47 <5 <10 <4 12 91 1.2 <5 <5 58 2.08 .052 41 76 9 103 40 97 1.6 26 13 686 4.11 15 <10 <4 12 137 1.0 <5 <5 67 2.61 .053 37 60 6 81 34 87 1.4 26 14 638 3.78 <5 <10 <4 12 137 1.0 <5 <5 67 2.61 .053 37 60 6 81 34 87 1.4 26 14 638 3.78 <5 <10 <4 13 140 .8 <5 <5 54 2.69 .052 41 59 10 86 36 86 .8 25 11 634 3.60 11 <10 <4 14 128 1.0 5 <5 46	1.64 634 .29 6.54 1.55 2.78 96 64 2 23 10 2 10 <10 1.74 658 .27 6.33 1.54 2.70 81 59 <2 25 8 1 10 <10 1.53 694 .24 6.41 1.75 2.95 107 57 2 22 9 1 8< <10
UCKE #1 1252 1255	11 117 57 94 2.2 31 15 587 4.36 10 10 <4 13 126 .7 <5 <5 49 2.21 .046 37 74 9 120 53 96 3.2 29 12 558 3.97 23 <10 <4 12 114 .9 6 <5 52 1.96 .048 35 67 10 186 52 100 1.7 31 25 563 4.07 29 <10 <4 12 114 .9 6 <5 52 1.96 .048 35 67 10 186 52 100 1.7 31 25 563 4.07 29 <10 <4 13 115 .9 10 <5 54 2.03 .050 35 68 9 163 69 110 1.0 30 17 604 3.78 18< <10 <4 12 148 1.0 <5 53 <t< th=""><th>1.27 659 .24 6.32 1.33 2.79 228 66 <2 20 10 1 9 10 1.31 681 .24 6.51 1.36 2.81 353 68 2 20 9 2 9 10 1.41 738 .25 6.42 1.34 2.72 173 64 3 22 10 1 9 10</th></t<>	1.27 659 .24 6.32 1.33 2.79 228 66 <2 20 10 1 9 10 1.31 681 .24 6.51 1.36 2.81 353 68 2 20 9 2 9 10 1.41 738 .25 6.42 1.34 2.72 173 64 3 22 10 1 9 10
HOLE #1 1361-1364 HOLE #1 1364-1367 HOLE #1 1364-1370	10 161 59 115 1.6 119 13 621 3.92 19 <10 <4 12 153 .9 6 <5 55 2.64 .051 41 65 10 85 45 102 1.8 27 13 696 3.94 <5 <10 <4 12 156 .5 <5 51 3.12 .049 42 66 11 107 44 104 1.4 32 18 610 4.31 18 <10 <4 13 144 .8 6 <5 47 2.67 .054 44 70 13 108 70 93 2.9 35 16 663 4.86 22 <10 <4 13 126 .8 <5 <5 53 2.99 .047 41 88 12 117 58 91 1.3 34 15 641 4.43 13 128 .5 <5 50 3.01 .044 40 78	1.46 647 .25 6.13 1.51 2.73 75 59 2 23 7 <1 9 10 1.37 475 .23 5.99 1.41 2.53 106 63 <2 25 10 1 8 10 1.49 648 .25 6.21 1.32 2.83 116 66 <2 22 9 1 9 10
HOLE #1 1376-1379 HOLE #1 1379-1382 HOLE #1 1382-1385 HOLE #1 1385-1388	14 222 76 101 12.3 48 14 790 5.71 38 40 <4 11 127 1.1 5 <5 52 3.11 .045 35 97 18 182 85 119 8.0 45 15 806 5.88 46 <0 <4 12 130 .9 <5 <5 53 3.23 .046 38 94 9 138 54 99 1.7 35 23 844 4.83 13 <10 <4 12 167 .7 <5 <5 73 4.13 .054 37 66 12 172 58 106 23.6 34 21 818 4.89 24 <0 <4 11 17 .7 <5 <5 81 3.79 .055 36 67 12 172 58 106 23.6 34 21 818 4.10 <4 11 171 .7 <5 <5 81 3.79	1.58 612 .24 6.33 1.43 2.77 188 64 5 22 8 2 9 10 1.84 613 .31 6.02 1.55 2.51 176 59 2 23 9 2 10 <10 1.78 596 .33 5.90 1.50 2.36 281 61 2 22 10 2 10 10 1.53 402 .24 5.51 1.48 2.27 47 48 <2 24 9 <1 8 <10
HOLE #1 1391-1394 HOLE #1 1394-1397 HOLE #1 1394-1397	7 86 64 89 2.3 31 16 731 3.84 <5 <10 <4 13 231 .8 <5 <5 48 4.57 .052 40 55 10 102 54 109 2.1 35 17 748 4.40 12 <10 <4 12 199 .9 7 <5 50 4.49 .055 43 68 21 189 70 79 1.3 41 16 601 5.33 25 <10 <4 12 136 .6 10 <5 65 2.91 .060 40 116 18 165 60 76 3.6 40 15 578 5.04 20 <10 <4 11 131 .7 10 7 63 2.79 .058 37 109 10 90 47 78 .7 36 11 390 5 10 <4 13 92 .4 <5 <5 78 1.56 .060<	1.71 268 .26 5.58 1.62 2.52 54 56 <2 26 10 <1 8 10 1.86 616 .29 6.24 1.63 2.91 242 64 5 25 13 2 10 10 1.81 605 .28 6.12 1.54 2.83 249 63 <2 24 12 2 10 <10
RRE HOLE #1 1400-1403 HOLE #1 1403-1406 HOLE #1 1406-1409 HOLE #1 1409-1412	12 93 48 87 1.0 37 11 402 3.98 19 <10 <4 13 94 .6 8 <5 80 1.59 .061 39 75 12 106 48 81 .9 37 11 409 3.98 16 <10 <4 13 93 .5 7 5 79 1.59 .060 36 74 14 137 45 82 1.4 40 12 424 4.30 10 <10 <4 14 96 <.4 5 <5 81 1.70 .061 38 83 8 141 52 67 14.4 29 21 315 3.33 8 <10 <4 14 96 <.4 5 <5 91 1.19 .082 34 63 9 131 62 60 <.5 28 13 305 2.86 9 <10 <4 14 91 .5 6 <5 91	1.42 635 .23 6.35 1.21 2.77 109 55 2 18 9 <1 10 15 1.44 599 .25 6.47 1.22 2.82 167 63 3 19 8 <1 10 15 1.34 658 .22 6.29 1.41 2.93 166 56 <2 17 7 <1 10 15 1.25 737 .20 6.20 1.59 2.91 125 58 2 15 10 <10
HOLE #1 1415-1418 HOLE #1 1418-1421	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.94 708 .24 6.02 1.38 2.73 129 64 2 19 11 1 9 15 2.46 302 .27 5.51 1.31 2.77 265 58 <2 22 10 <1 9 15
STANDARD G-2	2 3 22 50 <.5 9 5 762 2.48 <5 <10 <4 7 764 .5 <5 <5 53 2.97 .095 28 71	
ICP250 GRAM S IS PARTIAL FOR MA DURING HCLO4 FUMI - SAMPLE TYPE: SL		A CR. SB, AU SUBJECT TO LOSS BY VOLATELIZATION
		D. TOYE, C.LEONG, J. WANG; CERT Appendix III c i) ICP Results p.2
All results are considere	/ d the confidential property of the client. Acme assumes the liabilities for actual	cost of the analysis only. Data FA

Sample type: SLUDGE. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Appendix III c i) ICP Results p.3

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 4 FA

	•	a strange Santas Santas	n an					
ACHE ANALYIICAL		Diame	t Minerals	Ltd. PROJE	ECT PAUL-MIKE	FILE # 9900454	Page 3	AA SCHE AHALYTICAL
SAMPLE#	Mo Cu Pb ppm ppm ppm			As: U Au Th S ppm ppm ppm ppm pp	Sr Cd Sb Bi V Ca pm ppm ppm ppm ppm %	P La Cr Mg Ba Ti A %ippmippmi %ippmi %	l Na K W Zr Sn % % % ppm ppm ppm	Y ND Be Sc Hg ppm ppm ppm ppm ppb
HOLE #1 1517-1520 HOLE #1 1520-1523 HOLE #1 1523-1526 A HOLE #1 1523-1526 B HOLE #1 1526-1529	24 184 57 23 221 63 39 186 52 17 129 68 22 108 42	85 48.2 76 2.4 76 1.0	47 12 711 4.77 46 12 648 4.66 56 18 792 6.71 39 13 607 4.28 40 12 664 4.15	11 <10 <4 10 12 7 <10 <4 12 14 8 <10 <4 10 12		.055 31 110 3.07 446 .20 4.7 .061 37 180 2.57 604 .25 5.9 .058 31 88 2.77 469 .22 4.9	72 .85 2.10 367 48 <2	17 9 1 7 <10
RE HOLE #1 1526-1529 RRE HOLE #1 1526-1529 HOLE #1 1529-1532	20 111 32 19 101 34 17 129 48		38 9 621 3.85	13 <10 <4 9 17		.066 28 80 4.30 400 .23 4.1 .066 29 80 4.35 409 .24 4.2 .063 29 72 3.84 426 .25 4.2	23 .62 2.10 62 46 <2	16 6 1 6 <10 16 8 1 6 15 15 8 1 6 20

Sample type: SLUDGE. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Appendix III c i) ICP Results p.4

Data

FA

ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.)

SAMPLE#

HOLE #1 HOLE #1 HOLE #1 HOLE #1 HOLE #1 HOLE #1 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

.

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

......

	<u>Diame</u>	t Minerals Ltd. PROJECT 1695 Powick Road, Kelowna BC V1X		MIKE mitted b	File y: Glen M		00452			
	B ppm	SAMPLE#	Cu ppm	Pb ppm	Zn ppm	Mn ppm	Na %			
1280-1283 1283-1286 1286-1289 1289-1292 1292-1295	99 66 118 93 109	HOLE #1 1280-1283 HOLE #1 1283-1286 HOLE #1 1286-1289 HOLE #1 1289-1292 HOLE #1 1292-1295	102 126 103 102 172	47 41 40 38 62	100 83 84 87 220	603 483 475 453 541	1.33 1.45 1.50 1.46 1.24			
1295-1298 1298-1301 1301-1304 1304-1307	120 113 107 123	HOLE #1 1295-1298 HOLE #1 1298-1301 HOLE #1 1301-1304 HOLE #1 1304-1307	216 159 165 107	47 54 49 27	108 113 122 82	554 644 642 454	1.33 1.35 1.35 1.34 1.34	•		

HOLE #1 1295-1298 HOLE #1 1298-1301 HOLE #1 1301-1304 HOLE #1 1304-1307 HOLE #1 1307-1310 HOLE #1 1310-1313 HOLE #1 1313-1316	120 113 107 123 125 120 117	HOLE #1 1295-1298 HOLE #1 1298-1301 HOLE #1 1301-1304 HOLE #1 1304-1307 HOLE #1 1307-1310 HOLE #1 1310-1313 HOLE #1 1313-1316	216 159 165 107 101 99 181	47 549 271 386 386	108 113 122 82 80 82 94	644 1 642 1 454 1 431 1 462 1 449 1	.36			
HOLE #1 1316-1319 RE HOLE #1 1316-1319 RRE HOLE #1 1316-1319 RRE HOLE #1 1316-1319	112 112 115	HOLE #1 1316-1319 RE HOLE #1 1316-1319 RRE HOLE #1 1316-1319 RRE HOLE #1 1316-1319	95 106 133	36 42 33	85 85 80	454 1	.35 .34 .33			
HOLE #1 1319-1322 HOLE #1 1322-1325 HOLE #1 1325-1328 HOLE #1 1328-1331 HOLE #1 1331-1334	129 130 119 130 97	HOLE #1 1319-1322 HOLE #1 1322-1325 HOLE #1 1325-1328 HOLE #1 1328-1331 HOLE #1 1331-1334	83 67 83 86 119	30 29 38 34 42	69 74 148 143 130	$371\ 1$ $361\ 1$.38 .39 .49 .54 .35			
STANDARD LIB-10	2073	STANDARD CT3 STANDARD G-2	61 6	40 22	180 54	790 1 756 2	. 72 . 43	 	 	

B BY FUSION, ICP FINISHED. - SAMPLE TYPE: SLUDGE

CU PB ZN MN & NA BY MULTI-ACID DIGESTION, AA FINISHED.

- SAMPLE TYPE: SLUDGE

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: FEB 11 1999 DATE REPORT MAILED: (reh 26/99

Λ.

Appendix III c ii) ICP Results p.1

Data U- FA

ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.)

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Page 1

		AMPLE#		Pb	Zn	Mn	Na				
SAMPLE#	B S. ppm	Амьпен	ppm	ppm	ppm	Mn ppm	1NG 8				
HOLE #1 1334-1337 HOLE #1 1337-1340 HOLE #1 1340-1343 HOLE #1 1343-1346 HOLE #1 1346-1349	52 H 46 H	OLE #1 1334-1337 OLE #1 1337-1340 OLE #1 1340-1343 OLE #1 1343-1346 OLE #1 1346-1349	120 94 81 80 110	40 350 36 46	113 99 89 85 100	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	53 56 62				
HOLE #1 1349-1352 HOLE #1 1352-1355 HOLE #1 1355-1358 HOLE #1 1355-1358 HOLE #1 1358-1361 RE HOLE #1 1358-1361	64 H 60 H 67 H 68 H 67 R	OLE #1 1349-1352 OLE #1 1352-1355 OLE #1 1355-1358 OLE #1 1358-1361 E HOLE #1 1358-1361	119 119 176 156 98	53 441 56	97 101 95 115 122	557 1. 550 1. 542 1. 591 1. 589 1.	43 47				·.
RRE HOLE #1 1358-1361 HOLE #1 1361-1364 HOLE #1 1364-1367 HOLE #1 1367-1370 HOLE #1 1370-1373	73 H 58 H	RE HOLE #1 1358-1361 OLE #1 1361-1364 OLE #1 1364-1367 OLE #1 1367-1370 OLE #1 1370-1373	152 84 104 105 117	56 38 40 70 50	122 104 109 99 100	596 1. 668 1. 585 1. 619 1. 631 1.	57 52	·			
HOLE #1 1373-1376 HOLE #1 1376-1379 HOLE #1 1379-1382 HOLE #1 1382-1385 HOLE #1 1385-1388	57 H 46 H 47 H	OLE #1 1373-1376 OLE #1 1376-1379 OLE #1 1379-1382 OLE #1 1382-1385 OLE #1 1385-1388	205 169 136 166 86	65 61 53 48	110 123 100 116 89	677 1. 693 1. 761 1. 750 1. 705 1.	67 73				
HOLE #1 1388-1391 HOLE #1 1391-1394 HOLE #1 1394-1397 HOLE #1 1397-1400 HOLE #1 1400-1403	32 H 40 H 41 H	OLE #1 1388-1391 OLE #1 1391-1394 OLE #1 1394-1397 OLE #1 1397-1400 OLE #1 1400-1403	89 99 171 154 92	56 54 60 53	96 117 80 83 81	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	76 70				
RE HOLE #1 1400-1403 RRE HOLE #1 1400-1403 HOLE #1 1403-1406 HOLE #1 1406-1409 HOLE #1 1409-1412	52 R 50 R 70 H 46 H 47 H	E HOLE #1 1400-1403 RE HOLE #1 1400-1403 OLE #1 1403-1406 OLE #1 1406-1409 OLE #1 1409-1412	92 104 132 141 131	39 39 40 45 55	90 85 84 72 66	380 1. 395 1. 396 1. 312 1. 327 1.	23	·			
HOLE #1 1412-1415 HOLE #1 1415-1418 HOLE #1 1418-1421 HOLE #1 1421-1424 STANDARD LIB-10	41 H 40 H 31 H	OLE #1 1412-1415 OLE #1 1415-1418 OLE #1 1418-1421 OLE #1 1421-1424 TANDARD CT3	144 193 144 210 61	55 62 40 62 37	78 102 82 102 182	454 1. 587 1. 617 1. 550 1. 771 1.	48 54				
	S	TANDARD G-2	5	24	53	736 2.	31				
B BY FUSION, ICP FINISHED.		CU PB ZN MN & NA BY MULTI-AC - SAMPLE TYPE: SLUDGE Samples beginning 'RE' are R							Appendix I ICP Results		
		<i>/</i> , ,			7						
DATE RECEIVED: FEB 11 1999	DATE REI	PORT MAILED: 10 26 99				1	YE, C.LEONG, J		TIFIED B.C. A	4	
All results are considered the cor	nfidential pr	operty of the client. Acme assumes t	ne liadil	ILIES TO	accuat	LUSE OF THE					

Diamet Minerals Ltd. PROJECT PAUL-MIKE FILE # 9900454

بالقائمة فسناب المستاب أصبر

Page 2

ACHE ANALYTICAL

ACHE ANALYTICAL					ACITE ANALYTICAL
SAMPLE#	B SAMPLE# ppm	Cu Pb ppm ppm	Zn ppm	Mn Na ppm %	
HOLE #1 1424-1427 HOLE #1 1427-1430 HOLE #1 1430-1433 HOLE #1 1433-1436 HOLE #1 1436-1439	27 HOLE #1 1424-1427 32 HOLE #1 1427-1430 28 HOLE #1 1430-1433 29 HOLE #1 1433-1436 26 HOLE #1 1436-1439	202612196920169185129185125	90 133 145 219 216	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
HOLE #1 1439-1442 HOLE #1 1442-1445 HOLE #1 1445-1448 HOLE #1 1448-1451 HOLE #1 1451-1454	32 HOLE #1 1439-1442 28 HOLE #1 1442-1445 33 HOLE #1 1445-1448 32 HOLE #1 1448-1451 33 HOLE #1 1451-1454	1549814081145751327511168	202 125 127 124 121	700 1.11 636 .97 607 .97 708 .87 709 .90	
HOLE #1 1454-1457 HOLE #1 1457-1460 RE HOLE #1 1457-1460 RRE HOLE #1 1457-1460 HOLE #1 1460-1463	45 HOLE #1 1454-1457 34 HOLE #1 1457-1460 39 RE HOLE #1 1457-1460 37 RRE HOLE #1 1457-1460 42 HOLE #1 1460-1463	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	103 79 77 76 72	669 .82 590 .82 604 .84 594 .83 589 .90	
HOLE #1 1463-1466 HOLE #1 1466-1469 HOLE #1 1469-1472 HOLE #1 1472-1475 HOLE #1 1475-1478	37 HOLE #1 1463-1466 31 HOLE #1 1466-1469 32 HOLE #1 1469-1472 40 HOLE #1 1472-1475 37 HOLE #1 1475-1478	$\begin{array}{cccc} 90 & 48 \\ 116 & 50 \\ 110 & 47 \\ 74 & 54 \\ 111 & 50 \end{array}$	75 97 84 75 82	576 .90 603 .88 605 .86 634 1.05 645 1.06	
HOLE #1 1478-1481 HOLE #1 1481-1484 HOLE #1 1484-1487 HOLE #1 1487-1490 HOLE #1 1490-1493	35 HOLE #1 1478-1481 36 HOLE #1 1481-1484 37 HOLE #1 1484-1487 34 HOLE #1 1487-1490 27 HOLE #1 1490-1493	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	85 87 67 76 84	665 1.06 612 .91 520 .85 560 .85 710 .90	
HOLE #1 1493-1496 RE HOLE #1 1493-1496 RRE HOLE #1 1493-1496 HOLE #1 1496-1499 HOLE #1 1499-1502	27 HOLE #1 1493-1496 29 RE HOLE #1 1493-1496 28 RRE HOLE #1 1493-1496 34 HOLE #1 1496-1499 30 HOLE #1 1499-1502	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	74 71 70 95 102	710 .86 698 .85 704 .86 692 .91 749 .87	
HOLE #1 1502-1505 HOLE #1 1505-1508 HOLE #1 1508-1511 HOLE #1 1511-1514 HOLE #1 1514-1517	26 HOLE #1 1502-1505 30 HOLE #1 1505-1508 28 HOLE #1 1508-1511 24 HOLE #1 1511-1514 28 HOLE #1 1514-1517	1957316564168591355720156	108 91 93 86 88	760 .94 761 .90 770 .97 682 1.04 649 .94	
STANDARD LIB-10	1921 STANDARD CT3 STANDARD G-2	60 42 5 27	171 51	764 1.65 728 2.43	
Sample type: 9	9-1442 2-144532HOLE #11439-1442 1442-1445154982027001.11 1.122-1445 2-144528HOLE #11442-1445 1442-144814081125636 6.97.978-1451 3-232HOLE #11445-1448 1457-146013275124708.874-1457 1-145445HOLE #11457-1460 1457-146037REFHOLE #11457-1460 102924179590.824-1457 1-145745HOLE #11457-1460 1457-146037REFHOLE #11457-1460 102102669.821457-1460 1457-146037REFHOLE #11457-1460 1457-14601024677604.8433-1466 6-146337HOLE #11463-1466 1466-1469904875576.903-1466 6-146937HOLE #11462-1472 1466-14691165097603.882-1475 2-147540HOLE #11472-1475 1472745475520.862-1475 2-147540HOLE #11478-1481 1481-14849850856651.061-1484 1-148436HOLE #11487-1490 1481-14871264676560.851-1484 1-148436HOLE #11493-1496 1493-14961334674710.861493-1496 6-149327HOLE #11493-1496 <b< td=""></b<>				
Bampie cype.					Appendix III c ii) ICP Results p.3
All results are considered the conf	fidential property of the client. Acme assumes t	he liabilities fo	r actual d	cost of the analysis only.	Data FA

	lamet	Minerals	Ltd. PROJECT PA	AUL-MI	KE F	ILE #	9900	454	F	Page 3	ACHE AIRENTICAL
ADIE AMALVIICA. AMPLE#	B ppm	SAMPLE#		Cu ppm	Pb ppm	Zn ppm	Mn ppm	Na %	, · · · ·		
OLE #1 1517-1520 OLE #1 1520-1523 OLE #1 1523-1526 A OLE #1 1523-1526 B OLE #1 1523-1526 B OLE #1 1526-1529	54 47 69 47 29	HOLE #1 HOLE #1 HOLE #1 HOLE #1 HOLE #1 HOLE #1	1517-1520 1520-1523 1523-1526 A 1523-1526 B 1526-1529	$ \begin{array}{r} 171 \\ 211 \\ 184 \\ 135 \\ 108 \end{array} $	49 50 46 59 41	90 92 75 83 97	673 680 719 653 678	.86 .89 .96 .87 .74			
E HOLE #1 1526-1529 RE HOLE #1 1526-1529 OLE #1 1529-1532 TANDARD LIB-10	36 33 32 2073	HOLE #1	#1 1526-1529 3 #1 1526-1529 1529-1532	117 103 127	39 38 50	97 102 109	667 666 690	.74 .74 .74	•		

8

 \bigcirc

Appendix III c ii) AA Results p.4

Data_

Y

FA

()