> Diamond Drilling Report for Drilling completed on the **Red Cap Property** Kap 3 and Kap 4 Mineral Claims located within the Atlin Mining Division NTS 104 K / 11W, 14W Lat. 58° 45'N, Long. 133° 30 E

> > July 1999

Prepared for **XPLORER GOLD CORP.** Kelowna, British Columbia

By James W. Davis, MSc., P.Geo., P.Geol., F.GAC and Michael D. Jamieson, B.Sc., P.Geo., P.Geol.

Taiga Consultants Ltd.

#301, 1000 - 8th Avenue SW Calgary, Alberta T2P 3M7

> GEOLOGICAL SURVEY BRANCH AGSESSMENT REPORT

SUMMARY

A twelve-hole drilling program was completed in 1998 on Xplorer Gold Corp.'s Red Cap property in northwestern British Columbia. This property is located approximately 90 km south of the town of Atlin between the Taku River and Mount Lester Jones. Drilling totaled 1,752 m of slim-walled B diamond drilling.

Exploration in the Red Cap area has occurred since prospectors discovered gold in the area in the late 1800's. References to the area are noted in the Annual Mines Minister's Reports in 1930 and 1931; however, there was no drilling on the property until 1971. Prospecting, geological mapping, geochemical sampling, geophysical surveying, and drilling have been carried out intermittently since 1980. The focus of the drill program completed in 1998 on the property was an evaluation of a number of gold and base metal showings in the East Cirque zone.

The geology of the area consists of a Paleozoic to Permian basement rocks composed of metamorphosed volcanic and sedimentary rock units. The Upper Triassic Stuhini Group consists of a lower volcanic sequence and the overlying sedimentary rock units belonging to the King Salmon Formation. The conglomerates of the lower to middle Jurassic Takwahoni Formation overlie rocks of the Stuhini Group in the southern part of the property. In late Cretaceous to Tertiary time, the area was intruded by porphyry stocks which formed at the edge of the Coastal intrusive complex. Effusive equivalents belonging to the Sloko Group were extruded at the same time. Uplift, erosion, and glaciation produced the current high topographic relief of the area.

Mineralization on the property in primarily related to the presence of an upper level, coppermoly porphyry system developed in the area. Other possible ore deposits types include earlier volcanogenic massive sulphide mineralization and subsequent epithermal gold mineralization.

While the results of the drilling program were generally disappointing, there were several mineralized intersections of note. A 3 m interval in hole LJ-98-5A assayed 3.7 g/t gold and 26.0 g/t silver. In hole RV-98-10, there were two intervals which significant: the first assayed 12.05 g/t gold and 49.5 g/t silver over 7.15 m; the adjacent intersection assayed 2.50 g/t gold and 18.37 g/t silver.

Both of these holes require additional drilling evaluation. In addition, the massive sulphide mineralization identified previously in hole RC81-1 should be reevaluated by diamond drilling.

TABLE OF CONTENTS

INTRODUCTION	1
Location and Access	1
Physiography	1
Claim Status	1
GEOLOGY	
Regional Geology	
Property Geology	
HISTORY OF EXPLORATION	
EXPLORATION MODEL	
DIAMOND DRILLING	
Drilling Program	
Drilling Results	
CONCLUSION AND RECOMMENDATIONS	
CERTIFICATE – J.W.Davis	
CERTIFICATE – M.D. Jamieson	
SELECTED REFERENCES	
SUMMARY OF EXPENDITURES	
SUMMARY OF PERSONNEL	

Appendices I- Analytical Results and Procedures

II- Drilling Logs

Figures

1 – Regional Location Map	2
2 – Property Map	
3 – Local Geology	
4 – Drill Hole Location Map	14
5 – Drill Section- LJ-98-1 and 2	
6 – Drill Section- LJ-98-3, 4, 5A, 5B and 5C	16
7 – Drill Section- LJ-98-6	
8 – Drill Section LJ-98-7	18
9 – Drill Section- LJ-98-8	19
10 – Drill Section- LJ-98-9	20
11 – Drill Section- LJ-98-10	21

Tables

1.

1 – Claim Status	. 3
2 – Table of Formations	
3 – Assays from Showings	10
4 – Previous Diamond Drilling	10
5 – Drill Hole Locations	13
6 – Drilling Results	. 14

INTRODUCTION

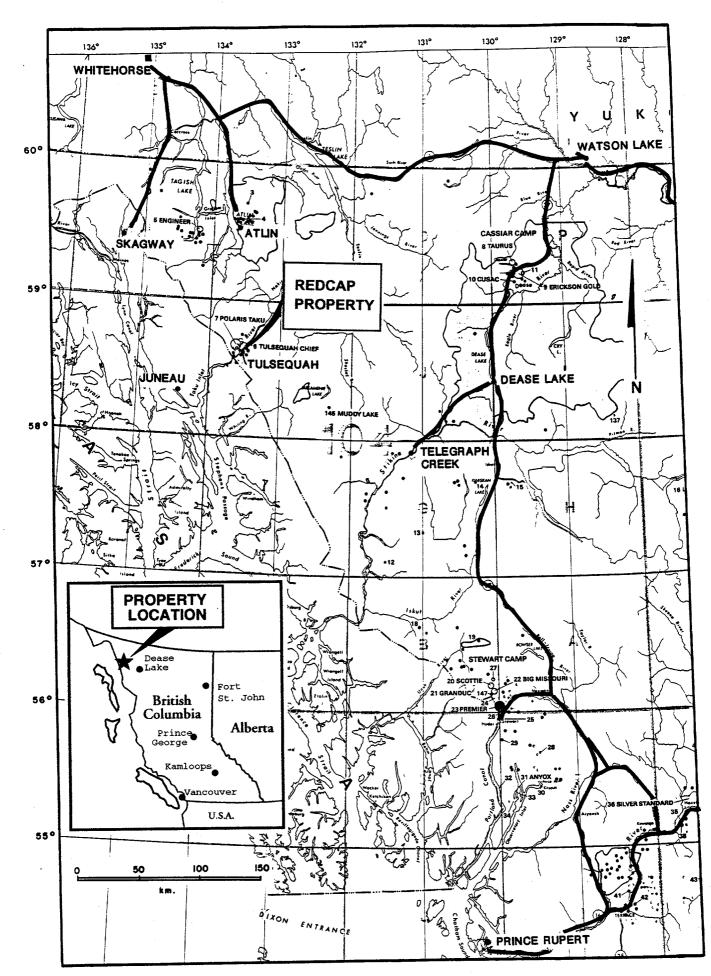
At the request of Mr. Ernest Bergvinson, president of Xplorer Gold Corp., Taiga completed an assessment report on the diamond drilling carried out on the Red Cap Property in 1998. Taiga has relied entirely on data provided by the company with regard to this drilling program in order to complete this report

Location and Access

The Red Cap property is located in northwest British Columbia approximately 90 km south of the town of Atlin. Juneau, Alaska is located about 75 km toward the southwest. The property is situated at the headwaters of Red Cap Creek 5 km east of the Taku River and immediately northwest of Mount Lester Jones. The exact location of the property is 58°44' North Latitude and 133°16' West Longitude in N.T.S. 104 K/11W & K/14W.

Access to the property is via helicopter from the airstrip at Atlin. Additional access is provided by fixed wing to an airstrip along the Taku River about four kilometers northwest of the claims and then via helicopter to the property.

Physiography


The Red Cap Property is positioned on the eastern edge of the Coast Range Mountains. The topography of the area is steep and rugged with serrated ridges present in the upper elevations. Vertical relief is about 2,100 meters, from the deeply incised valley of the Taku River (40 metres) to Mount Lester Jones at an elevation of 2,139. Figure 1 illustrates the location of the property.

Precipitation is heavy averaging 200 cm a year. The precipitation falls mainly as snow in the winter months. Heavy snowfall limits the field season to a period from July to mid-November depending on the year. Treeline is at approximately 1000 m elevation with the lower valleys choked by dense forest cover.

The entire area has been subjected to alpine glaciation during the Pleistocene producing broad Ushaped valleys. In the upland areas, cirques and arêtes are the result of glacial erosion. An ice field and glaciers are still present on the north flank of Mount Lester Jones.

Claim Status

The Red Cap Property is located within the Atlin Mining Division and was staked under the provisions of the British Columbia Mineral Tenure Act. The claims on which assessment credits have been filed are listed along with relevant claim data in Table 1 and illustrated in Figure 2. The renewal period indicated is based on a 'Statement of Work' filed previously and upon the acceptance of this technical report describing the results of the drilling program completed in 1998.

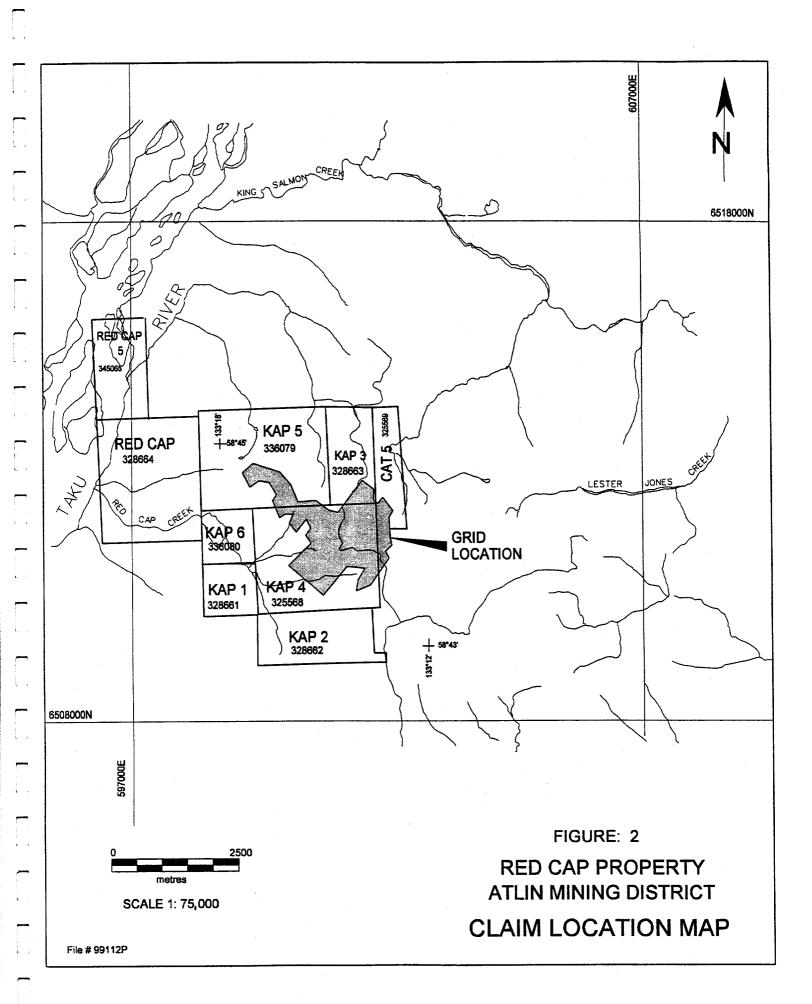

GENERAL LOCATION MAP

FIGURE 1

<u>.</u>	Tenure			Mining	Renewal
Claim Name	No.	Tag No.	Units	Division	Date
KAP 1	328661	213362	4	Atlin	15/07/2009
KAP 2	328662	213361	10	Atlin	15/07/2009
KAP 3	328663	213360	8	Atlin	15/07/2009
KAP 4	325568	227190	20	Atlin	15/05/2009
KAP 5	336079	227227	20	Atlin	15/09/2009
KAP 6	336080	227225	4	Atlin	15/09/2009
RED CAP	345065	207896	8	Atlin	15/09/2009
CAT 5	325569	227191	5	Atlin	15/05/2009
RED CAP 5	345065	207896	8	Atlin	28/03/2001

Table 1 - Claims Status

These claims constitute the current Red Cap Property, encompassing a total of 83 units or 2,025 hectares, and are held 100% by Xplorer Gold Corp. All of these claims with the exception of the RED CAP 5 have been grouped for purposes of assessment as Group #3134152.

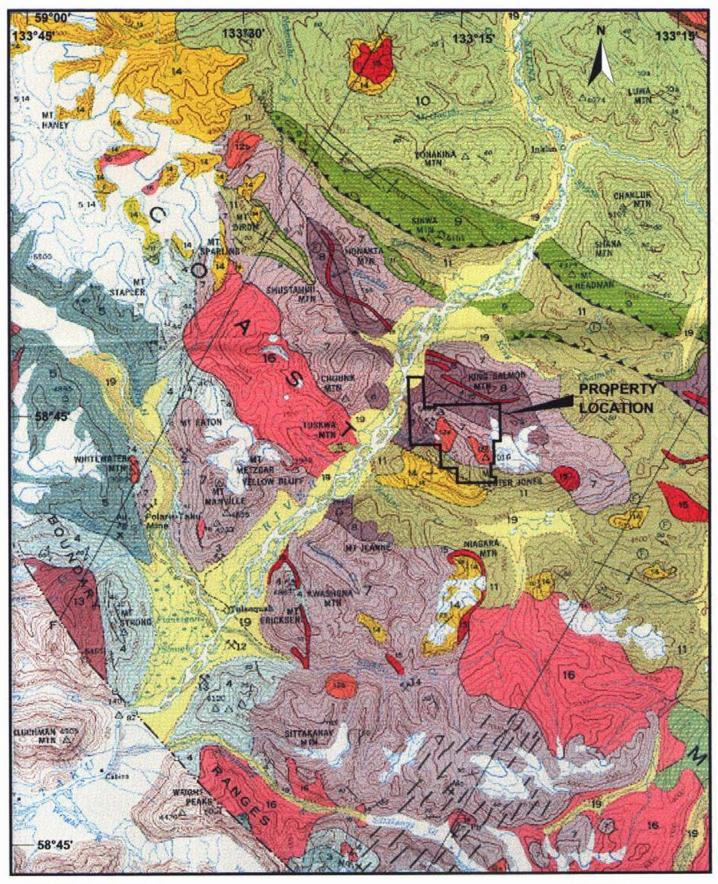
GEOLOGY

Regional Geology

The Red Cap property is located along the western edge of the Intermontane Belt where the Whitehorse Trough overlies the Atlin Horst to the northeast and the Stikine Arch to the south. The Coastal Plutonic Complex lies to the west of this area.

Intensely folded and regionally metamorphosed sedimentary and volcanic rock units of Permian and Paleozoic ages constitute the basement complex of this region. This basement succession consists of metasedimentary and metavolcanic rock units.

The Whitehorse Trough is an elongate basin of Mesozoic age consisting of sedimentary and volcanic rocks. This trough separates the older, more intensely folded rock units of the Stikine Arch from the Atlin Horst sequence. The Whitehorse Trough is thought to be a fore-arc basin while the Coastal Plutonic is believed to be a reactivated root of an associated arc. The basin and arc collided with the North American craton during Jurassic and Cretaceous time.


Felsic to intermediate volcanic formations of the Late Cretaceous to Tertiary Sloko Group intrude and overlie older rocks along the eastern margin of the Coastal Plutonic Complex. The main mineralizing event in this region is related to quartz veining and porphyry systems developed along the eastern edge of this plutonic belt.

Property Geology

The property under investigation is located on the southern flank of a southeast plunging anticline within the northwest-trending Stuhini Group. The claims are underlain by volcanic flows, pyroclastic rock units, and sedimentary rocks belonging to the Upper Triassic Stuhini Group. Volcanic rock units consist of rhyolitic to basaltic flows, volcanic breccia, agglomerate, tuffs, and minor volcanic sandstone. These volcanic units are disconformably underlain by sedimentary rock units form the Upper Triassic King Salmon Formation.

The King Salmon Formation is comprised of thick-bedded, dark greywacke, conglomerate, mudstone, siltstone, and shale with minor volcanic flows, tuffs, breccia, limy shale, and limestone. Overlying the Stuhini Group along the southern margin of the property is the Takwahoni Formation of the LaBarge Group, which is composed of conglomerate, sandstone, shale, and greywacke.

The Stuhini Group and the Takwahoni Formation are intruded by Cretaceous hornblende, biotite granodiorite stocks that form part of the Coastal Plutonic Complex and associated feldspar porphyry dykes that are thought to be correlative with the Cretaceous to Tertiary Sloko Group. On the property, these intrusive rocks consist of light grey, medium crystalline granodiorite and a darker grey diorite or quartz diorite.

Source: GSC Map 1262A Geology of the Tulsequah and Juneau Area

10km 1:250,000

0

FIGURE: 3 XPLORER GOLD CORP. REDCAP PROPERTY LOCAL GEOLOGY

	QUAT	ERNARY					
	PLE	EISTOCENE AND RECENT					
	19	Fluviatile gravel, sand, silt; glacial outwash, till, alpine moraine, and undifferentiated colluvium					
	CRET	ACEOUS AND TERTIARY					
~	LA	TE CRETACEOUS AND EARLY TERTIARY					
CENOZOIC	16 probably genetically related to 14 : medium- to coarse-grained, pink, biotite-hornblende qu monzonite						
CEN	15	probably genetically related to 14 :felsite, quartz-feldspar porphyry					
	14	Sloko Group: Light green, purple and white rhyolite, dacite, and trachyte flows, pyroclastic rocks, and derived sediments					
	PR	E-UPPER CRETACEOUS					
	13	CENTRAL PLUTONIC COMPLEX: granodiorite, quartz diorite: minor diorite, leuco-granite, migmatite and agmatite; age and relationship to 12 uncertain					
	JURA	SSIC AND/OR CRETACEOUS					
	PC	OST MIDDLE JURASSIC					
	12	12a, hornblende-biotite granodiorite; 12b, biotite-hornblende quartz diorite; 12c, hornblende diorite; 12d, augite diorite. Age and relationship to 13 uncertain					
	JURA	SSIC					
	LO	WER AND MIDDLE JURASSIC					
0	11	LABERGE GROUP (10,11) : <i>Takwahoni Formation</i> : granite-boulder conglomerate, chert- pebble conglomerate, greywacke, quartzose sandstone, siltstone, shale					
MESOZOIC	10	<i>Inklin Formation</i> : well bedded greywacke, graded siltstone and silty sandstone, pebbly mudstone, limy pebbly conglomerate; 10a, limestone					
ME	TRIAS	SSIC					
	UF	PER TRIASSIC					
	9	Sinwa Formation : limestone; minor sandstone, argillite, chert					
	8	STUHINI GROUP (7,8) : <i>King Salmon Formation</i> : thick bedded, dark greywacke, conglomerate, mudstone, siltstone, and shale; minor andesitic lava, volcanic breccia, tuff, limestone limy shale; locally enclosed in 7					
	7	mainly volcanic rocks; andesite and basalt flows, pillow lava, volcanic breccia and agglomerate, lapilli tuff; minor volcanic sandstone, greywacke, and siltstone					

Table 2 - Table of Formations

On the Red Cap property, the Stuhini Group has been divided into two assemblages. The southern assemblage is described as consisting of submarine pillow lavas, breccias, and agglomerate of dark grey to black basalt and basaltic andesite. The northwestern assemblage is described as a succession of at least 3,500 metres of mainly subaereal andesite flows and pyroclastic rocks interlayered with coarse breccia and volcanic conglomerate. These volcanics are primarily dark green in the lower part of the section and lighter green or purple in the middle

and upper parts of the section. The volcanics in the Red Cap area are composed of pale green to white volcanic flows, flow breccias, ash tuffs, lapilli tuffs, and agglomerate of andesitic to rhyolitic composition. These volcanics are either a more acidic version of the Stuhini Group or the extrusive equivalent of the Sloko Group. Figure 3 is taken from Souther (1971) and shows the general geology and Table 2 describes the formations present in the property area.

There are three main structural components in the Red Cap area. The most pronounced of these is an east-northeast trending fault, located in the northern part of the claims in Fault Creek. The second major structure strikes in a northeast direction and runs through the core of the porphyry intrusive. The third structure cuts the northeast part of the claims. A system of east-west and northeast-southwest faults and fractures form the basic fabric of the area. The presence of these structures controlled subsequent development of stockworks within the porphyry system and appears to have influenced the distribution of the associated mineralization.

HISTORY OF EXPLORATION

The Tulsequah area has been the focus of much exploration activity since the latter part of the 1800s. Little is known about the early history of the Red Cap prospect, other than the large gossan and numerous small high gold veins attracted prospectors to the area in the Late 1920's. The prospect was mentioned in the 1930 and 1931 Minister of Mines Annual Reports. Included in these reports were several assays, obtained from samples from the Red Cap. One galena-rich, quartz vein assayed 1.59 ounces per ton gold and a composite sample of an area 100x400 feet is reported to have assayed 0.21 ounces per ton gold and 1.00 ounce per ton silver.

Souther mapped the Tulsequah map-sheet for the geological Survey of Canada between 1958 and 1960, and in GSC Memoir 362, he reports that:

Mineralization on this property is related to the contacts of a small granodiorite stock. The adjacent Stuhini and King Salmon volcanics rocks have been silicified, carbonatized, and heavily pyritized for a distance as much as 3,000 feet from the contact. Within this altered zone are quartz-carbonate-pyrite veins with lesser amounts of sphalerite, galena, chalcopyrite and arsenopyrite.

In 1971, Archer Cathro and Associates staked the MIKE claims over the Red Cap showing and drilled five short vertical holes totaling 88 feet on the north side of Red Cap Lake. These holes were unable to penetrate through the surface oxidation to fresh bedrock. Despite poor recoveries from these holes, they were able to confirm the presence of molybdenite in geochemically anomalous amounts. Copper and silver were not reported, but were likely depleted by surface oxidation.

Omni Resources staked the Red Cap Prospect in 1979 and initiated a prospecting program. In 1980, a total of 43.45 km of grid line were put in with 100m lines and 50 m stations. Some geological mapping was carried out and a total of 723 soil samples (talus fines) were collected from this grid. These samples were analyzed for copper, molybdenum and silver. Due to the relief in the grid area, ranging from 850 m to 1525 m, both vertical and lateral zonation patterns could be inferred. Combined with the mapping results, this geochemical pattern was used to define a large porphyry copper-moly system with associated gold values.

The grid area encompasses the Ridge Zone, East Cirque Zone along with a number of mineralized showings. These showings include the Berg, Bergie, Goat, RV, and Ridge Extension. The location of these showings is illustrated on the Drill Hole Location Map (Map1) which accompanies this report. Table 3 (overpage) summarizes the best values obtained from these showings.

A diamond drill hole (NQ) was completed in September 1980 on the property. This hole tested the Bergie showing within the East Cirque Zone. Rhyolite pyroclastic breccia, tuff breccia, and angular lapilli tuff cut by two dacite porphyry dykes were intersected in this hole. Three mineralized sections were encountered. The first consisted of 90cm of sheared rhyolite breccia with 20-30% pyrite and arsenopyrite, 1-2% sphalerite, and 0.5% chalcopyrite. The second section was a narrow interval within rhyolite breccia with 10% pyrite and 1-2% arsenopyrite with minor sphalerite. The third mineralized intersection was over 5.30 m with 5% total suphides

occurring as quartz veins, disseminations, along fractures, and as sphalerite veins. Assays from core samples were low with the best results obtained being 0.12% copper, 0.51% zinc, 0.08% lead, and 0.98 ounces of silver per ton.

Showing/ Zone	gold (g/t)	silver (g/t)	copper (%)	lead (%)	zinc(%)
E. Cirque	34.99	128.6			9.33
LJ	8.29	419.3	0.47		1.54
Berg	8.44	359.5		1.01	1.23
Bergie	28.81	419.8	1.65	1.18	2.07
Goat	18.59	105.0		1.75	1.31
Ridge	12.76	185.6	1.71	2.70	5.65
Ridge Ext.	20.79	366.7		9.85	1.40
RV	34.99	128.6		9.33	3.89
N. Face	4.73	127.6		4.98	14.72
Goat	18.59	105.0	·	1.75	1.31

Table 3 - Assays from Showings

In 1981, a series of seven NQ diamond drill holes were drilled from four drill sites. A total of 1,203 m were completed designed to test the "Ridge Zone" and a large molybdenum soil geochemical anomaly known as the "Slope Zone". The Ridge Zone was defined by re-analysis of soil samples collected in 1980 for gold. The best hole in this series was RC-81-1 that tested a copper-molybdenum-silver anomaly. This hole intersected 9.2 m grading 1.59% copper and 1.74 ounces per ton silver. The best intersection on the Slope Zone was 125 m grading 151 ppm molybdenum.

During late summer of 1982, a single diamond drill hole was completed in order to test highly anomalous (3,500 ppb) gold-in-soil geochemical value. This hole was completed in a massive unfractured rhyolite for 31.2m. Hosted by this rhyolite was a 2.15 m section of massive sulphide material assaying 1.84% copper and 2.80 ounces of silver per ton. This mineralized interval included a 60 cm section grading 3.17% copper, 4.94 ounces per ton silver, and 0.14% zinc with the best gold assay of 0.008 ounces per ton. The source of the original high gold geochemical anomaly remains unexpanded. Table 4 summarizes data for all previous drilling.

Table 4 - Previous Diamond Drilling

Drill Hole	Grid Location	Elevation (m)	Dip	Azimuth	Depth (m)
RC80-1	East Cirque	1,600	45°	315°	172.3
RC81-1	109+00W 108+00N	1,715	55°	123°	184.7
RC81-2	109+00W 108+00N	1,715	60°	300°	152.4
RC81-3	108+60W 100+40N	1,375	60°	020°	260.0
RC81-4	108+60W 100+40N	1,375	60 °	197°	154.0
RC81-5	106+60W 101+60N	1,475	60°	030°	152.4
RC81-6	111+00W 101+00N	1,240	54°	008°	167.6
RC81-7	111+00W 101+00N	1,240	55°	188°	132.3
RC82-1	104+00W 107+26N	1,730	65°	176°	31.2

No further work was completed on the Red Cap Property until 1988, when an airborne geophysical program. A total of 92 line kilometres of airborne magnetic and VLF-EM survey was flown. A number of magnetic anomalies and conductors were detected by this survey. In the East Cirque area, airborne conductors were found to be coincident with precious metal bearing vein systems. In 1998, Amerok Geoscience Ltd. completed a ground magnetic and VLF-EM survey on the property on the existing grid. The magnetic identified two granodiorite plugs in the southern part of the grid and the VLF-EM survey identified three conductors.

EXPLORATION MODEL

There are a number of potential deposit types found on the property. These include an upper level porphyry system with stockworks, sheeted veins, and volcanogenic massive sulphides; and a possible epithermal system. The common denominator for all of the types of mineralization is a relationship to hydrothermal activity. It is possible that the observed mineralization reflects an ongoing series of thermal pulses in this area.

The presence of massive sulphide mineralization comes from Rayner (1983), who describes a 2.15 m section of comformable massive sulphide material in drill hole RC82-1. Up to 90% suphides were encountered consisting mainly of pyrrhotite with pyrite and minor chalcopyrite and traces of sphalerite hosted by rhyolite. This section assayed 1.84% copper and 96.04 oz/t silver. Whether this is a true massive sulphide horizon or an extremely sulphide-rich vein as Wilkins and MacKinnon (1989) imply is an open question that can only be answered by future drilling.

The main mineralizing event was the emplacement of an upper level, zoned, coppermolybdenum porphyry system related to the granodiorite stocks on the property. This intrusive event resulted in the development of hornfels in the volcanic country rock and an extremely intense pyritic halo along the contact and in major structures within these intrusive rocks. Stockworks and sheeted quartz veins containing chalcopyrite and molybdenite are the principal ore minerals with accessory sphalerite and minor galena. Gold and silver mineralization occurs throughout the system, but higher grades are concentrated in structures away from the coppermolybdenum core. Gangue minerals include pyrite, pyrrhotite, arsenopyrite, carbonate, minor tourmaline, and rare graphite.

A potassic alteration zone characterizes the core of the porphyry system as evidenced by the presence of biotite and k-feldspar, while the pyrite and chlorite at the margins of the intrusive indicate a propylitic alteration halo. The area of the porphyry system extends beyond the current claims toward the north, east, and south.

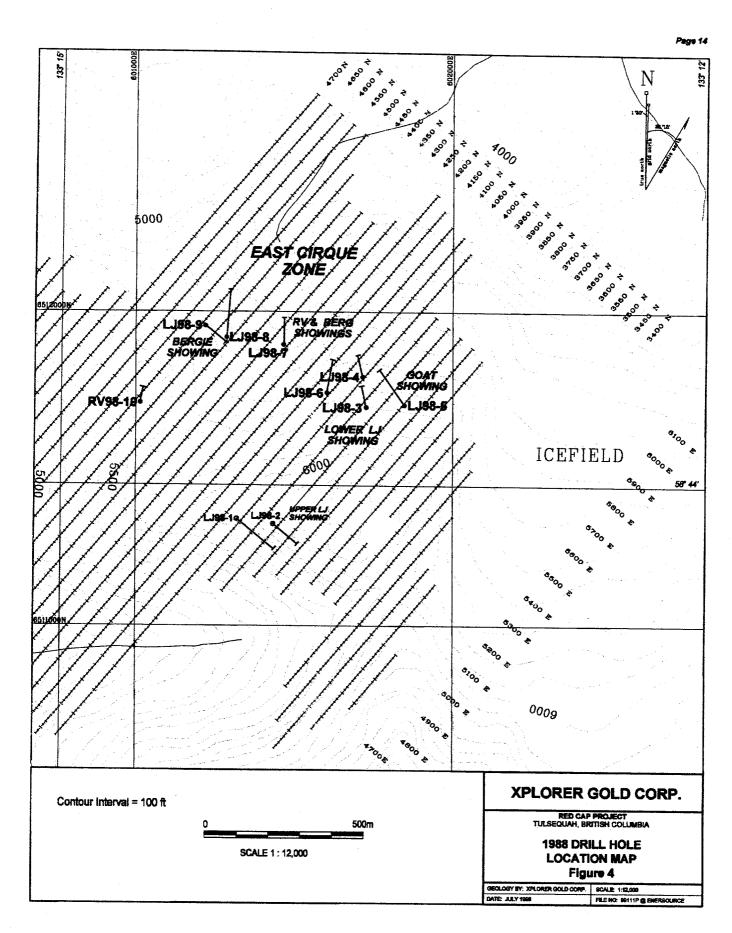
The presence of a silica cap on the property would indicate that a late-staged epithermal gold system may have overprinted porphyry mineralization once the intrusive had been unroofed by erosion. Such a silica cap is generally barren but would overlie feeder veins, which may contain economically significant precious metals. The alternative interpretation of the silica cap area is that in fact this area is a leached cap developed on the porphyry system. If this interpretation is correct, then the epithermal potential would be eliminated.

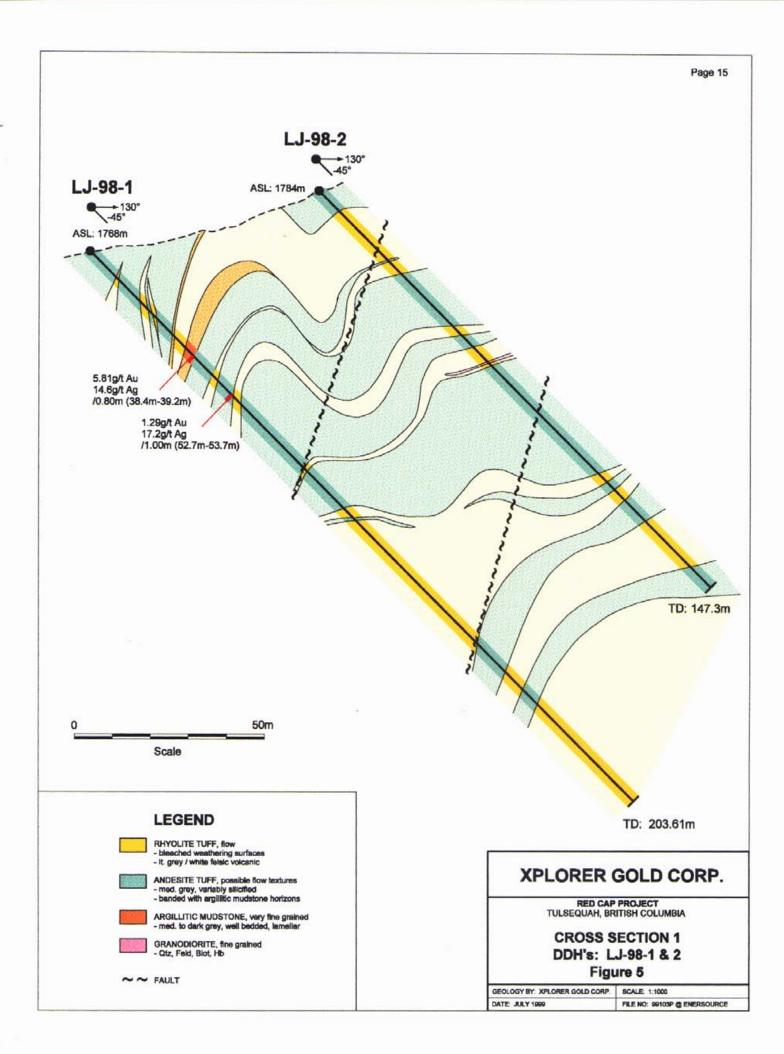
DIAMOND DRILLING

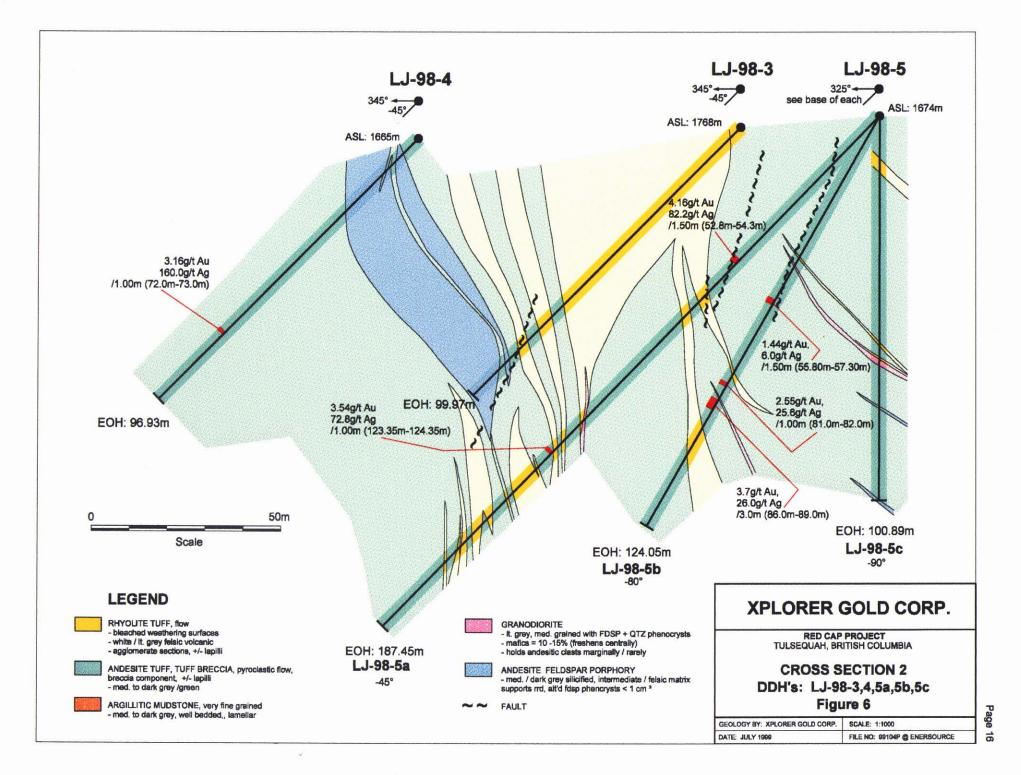
Drilling Program

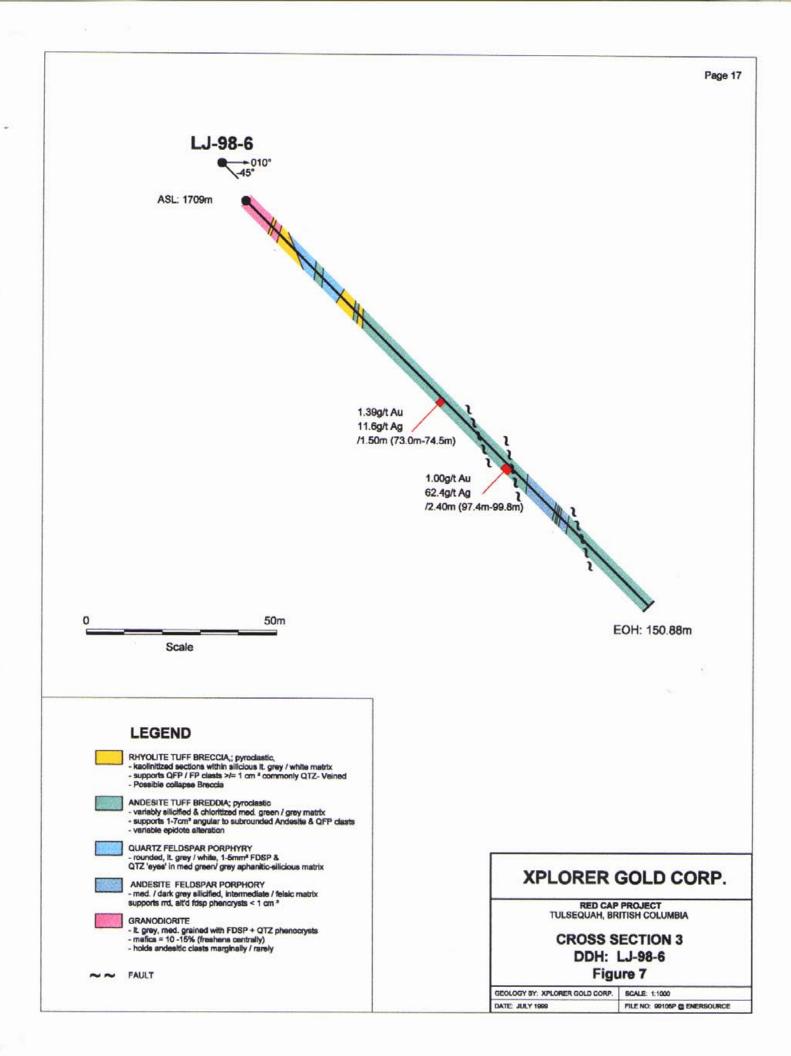
Xplorer contracted Falcon Drilling Ltd. to complete a diamond drilling program on the property in 1998. A total of 1752 m (5,748 feet) of slim-wall B core was completed during this program. Twelve drill holes were completed designed to test the LJ, RV, Bergie, and Berg showings in the East Cirque Zone. Core was logged, and mineralized intervals were split and sampled by onsite geologists. These samples were then sent to either Chemex Labs Ltd. or Eco-Tech Laboratories Ltd. for sample preparation and analysis. Sample preparation procedures, analytical techniques, and assay results are presented in Appendix I of this report. Table 5 provides a summary of the drill hole locations and other details concerning the holes completed, and Figure 4 illustrates these locations on a plan map of the area.

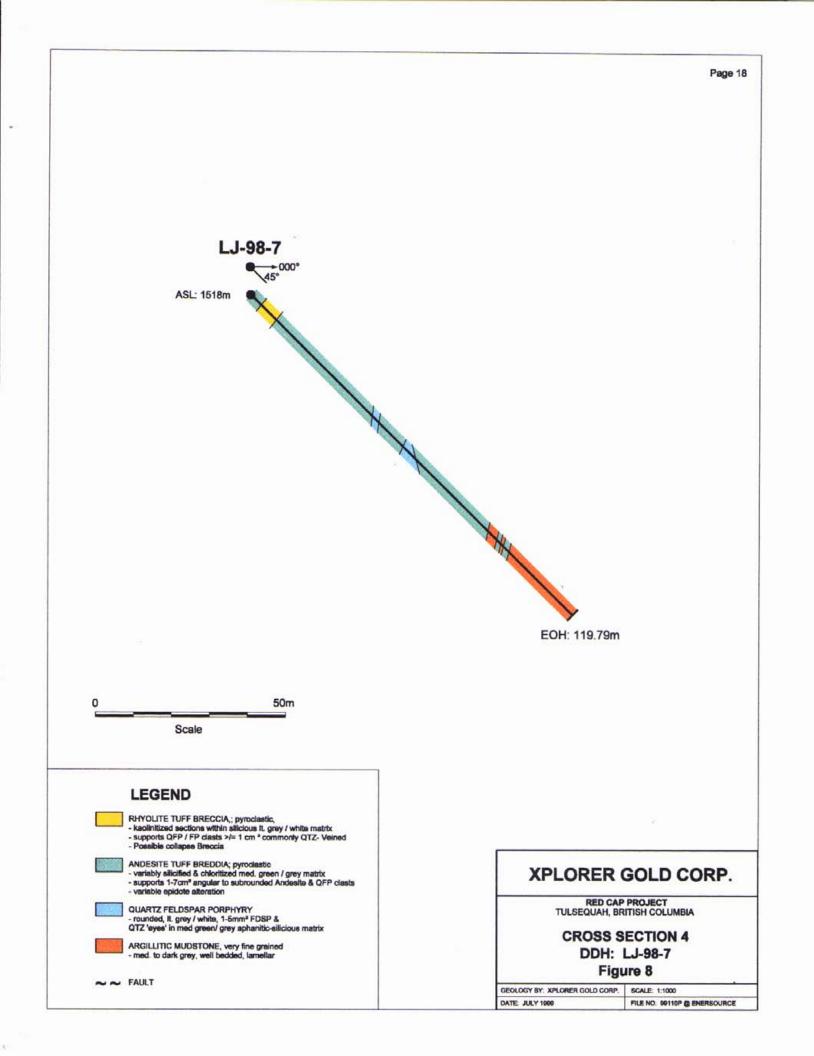
Drill Hole	Grid Location	Elevation (m)	Dip	Azimuth	Depth (m)
LJ-98-1	40+10N 50+07E	1,768	45°	130°	203.61
LJ-98-2	39+17N 50+70E	1,784	45°	130°	147.30
LJ-98-3	39+17N 50+70E	1,671	45°	345°	99.97
LJ-98-4	40+05N 56+05E	1,665	45°	345°	96.93
LJ-98-5A	38+45N 56+20E	1,674	45°	325°	187.45
LJ-98-5B	38+45N 56+20E	1,674	60°	325°	124.05
LJ-98-5C	38+45N 56+20E	1,674	90°		100.89
LJ-98-6	40+55N 54+96E	1.709	45°	010°	150.90
LJ-98-7	42+61N 55+10E	1,518	45°	°000	119.78
LJ-98-8	44+13N 54+25E	1,452	45°	005 ⁰	213.97
LJ-98-9	44+90N 54+10E	1,542	45°	130°	113.69
RV-98-10	44+56N 50+95E	1,698	60°	010°	61.57

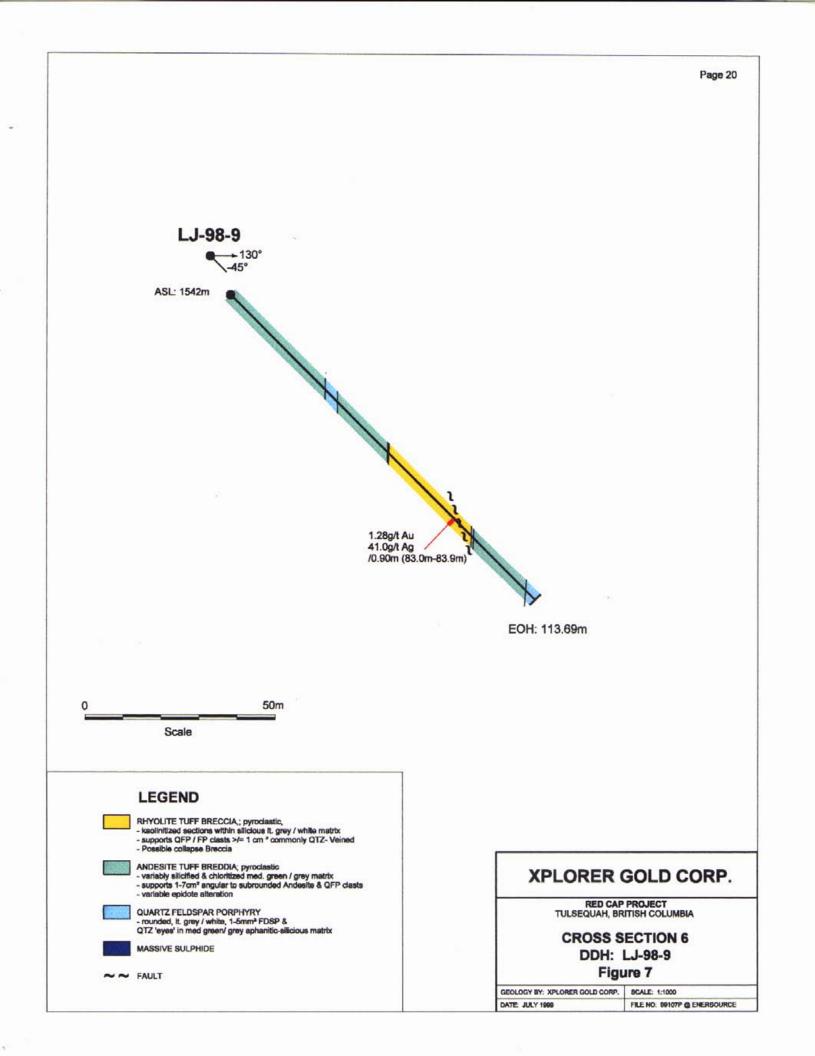

Table 5 - Drill Hole Locations

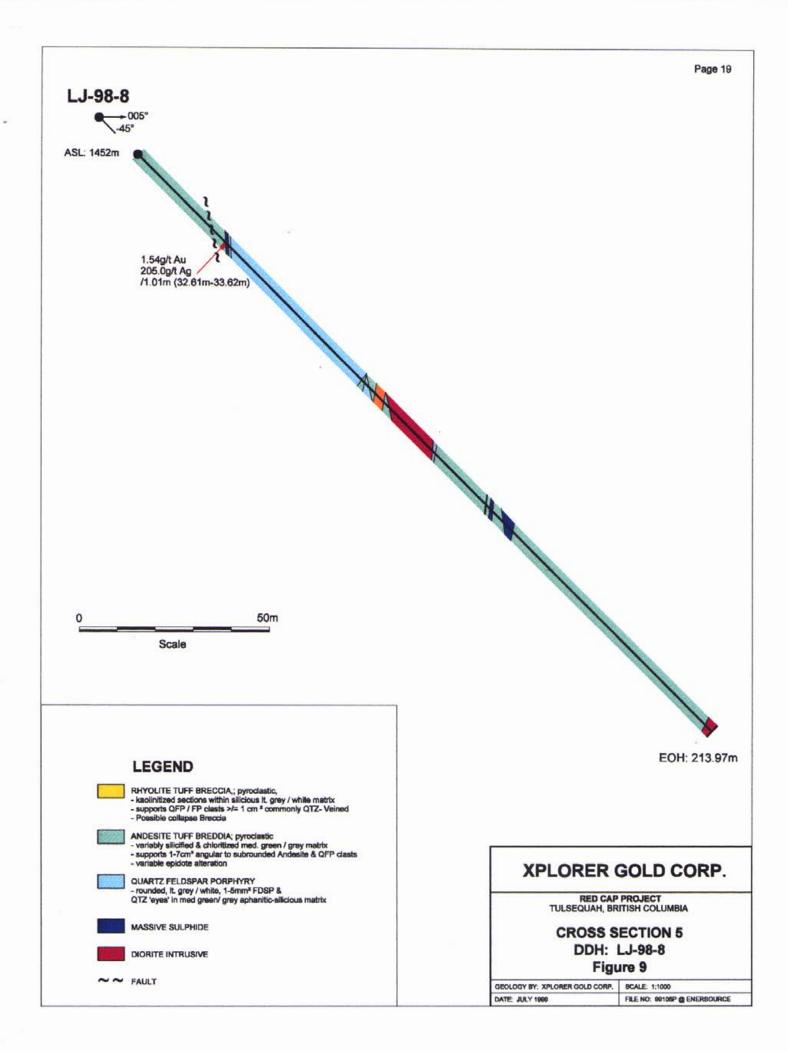

Drill logs combined with assay and geochemical data are presented in Appendix II of this report. Most of the core is stored at the campsite near the mouth of Kwashona Creek, a tributary of the Taku River. A hundred feet of core from Hole 10 is currently stored in the town of Atlin.

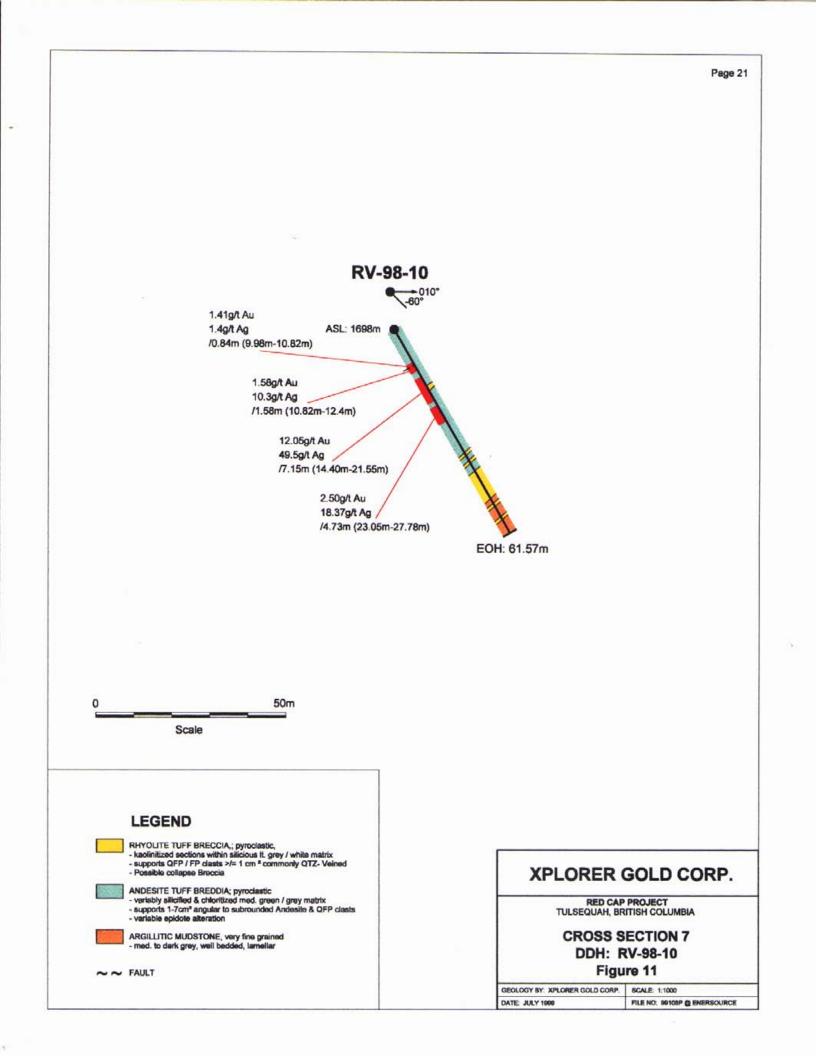

Drilling Results


The 1998 drilling program focused on the evaluation of the RJ and RV showings within the East Cirque Zone. In general the results of this drilling program were disappointing from a economic prospective with the possible exception of Hole RV-98-10. Significant results, defined as better than 1.0 g/t gold are shown in Table 6 (overpage).


It should be noted that a_{i} of these holes with the exception of Hole RV-98-10 were writted under the supervision of a Taiga Consultants Ltd. geologist; RV-98-10 by Mr. Matthew Fay. This final drill hole tested the RV showing. None of the holes have been surveyed. The orientation and the true width of the mineralized intersections could not be determined based on the limited drilling completed thus far. A series of seven sections illustrating the significant assay results and rock units are included as Figures 5 to 11 in this report.







		Width	Gold	Silver	Copper	Lead	Zinc
Hole #	Interval (m)	(m)	(g/t)	(g/t)	(ppm)	(ppm)	(ppm)
LJ-98-1	38.40 - 39.20	0.80	5.81	14.6	92	2080	3732
	52.70 - 53.70	1.00	1.29	17.2	87	5476	6253
LJ-98-4	72.00 - 73.00	1.00	3.16	160.0	1716	2%	7193
LJ-98-5A	52.80 - 54.30	1.50	4.16	82.2	1082	9922	441
	123.35 - 124.35	1.00	3.54	72.8	581	1.92%	4.25%
LJ-98-5B	55.80 - 57.30	1.50	1.44	6.0	195	1192	964
	81.00 - 82.00	1.00	2.55	25.6	3637	1106	5.96%
	86.00 - 87.50	1.50	6.38	25.0	1374	802	776
	87.50 - 89.00	1.50	1.02	27.0	1057	2416	4361
LJ-98-6	73.00 - 74.50	1.50	1.39	11.6	160	212	1057
	97.40 - 99.80	2.40	1.00	62.4	1376	1112	4380
LJ-98-8	32.61 - 33.62	1.01	1.54	205.0	1612	4254	3.06%
LJ-98-9	83.00 - 83.90	0.90	1.28	41.0	799	4064	5633
RV-98-10	9.98 - 10.82	0.84	1.41	1.4	0.01%		0.12%
	10.82 - 12.40	1.58	4.50	10.3	0.03%	0.01%	0.31%
	14.40 - 16.10	1.70	4.26	18.9	0.04%	0.01%	2.77%
	16.10 - 17.60	1.50	33.21	122.5	0.10%	0.14%	7.37%
	17.60 - 18.03	0.43	1.11	28.4	0.02%	0.05%	5.12%
· ·	18.03 - 18.48	0.45	2.31	11.9	0.02%	0.02%	1.28%
	18.48 - 20.05	1.57	10.32	39.5	0.03%	0.06%	2.24%
	20.05 - 21.55	1.50	7.59	38.9	0.03%	0.09%	2.10%
	23.05 - 24.55	1.50	1.38	4.6	0.01%	0.01%	0.14%
	24.55 - 25.68	1.13	3.30	16.9		0.09%	0.36%
	26.2 8 – 27.78	1.50	4.02	40.6	0.01%	0.17%	0.53%

Table 6 -Drilling Results

The three most significant intersections encountered during the 1998-drilling program were one interval encountered in hole LJ-98-5B, and two intervals in RV-98-10. The mineralized intersection in LJ-98-5B was a 3.0 m interval grading 3.7 g/t gold and 26.0 g/t silver at 86.00 to 89.00 m. The host rock for this interval was a chloritized andesite tuff with pyrite and pyrrhotite veinlets from 1% to 15% with minor chalcopyrite. Hole LJ-98-5A above had only geochemically anomalous values corresponding to this interval, while Hole LJ-98-5C would not have intersected this mineralized interval as shown in Figure 6. The mineralization in RV-98-10 occurred at 14.40 to 21.55 m and 23.05 to 27.78 m respectively. The first 7.15 m interval graded 12.05 g/t gold and 49.5 g/t silver hosted by a variably altered flow breccia with 2% to 6% sulphides consisting of pyrrhotite, pyrite, with minor galena, sphalerite and chalcopyrite. Gangue minerals include quartz, carbonate, cpidote, and chlorite. The second interval in hole RV-98-10 consists of a 4.73 m mineralized section grading 2.50 g/t gold and 18.37 g/t silver. This section is hosted by an andesite flow breccia and lapilli tuff containing up to 6% sulphides. These sulphides include pyrrhotite, pyrite with minor chalcopyrite, galena, sphalerite, and arsenopyrite, within a gangue of chlorite, epidote, and calcite.

While encouraging, additional drilling will be necessary to fully evaluate the potential of the mineralization found to date.

CONCLUSION AND RECOMMENDATIONS

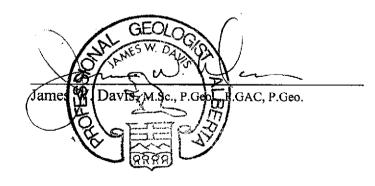
A twelve-hole diamond drilling program was completed on the Red Cap property in northwestern British Columbia in 1998. This program was designed to test a number of showings previously discovered in the East Cirque Zone of on the property. Potentially economic gold and silver mineralization were encountered in holes LJ-98-5B and RV-98-10. In hole LJ-98-5B, 3 m grading 3.7 g/t gold and 26.0 g/t silver were intersected. In RV-98-10, there were two intersections of note. These were 7.15 m grading 12.05 g/t gold and 49.50 g/t silver and a second adjacent 4.73 m interval grading 2.50 g/t gold and 18.37 g/t silver. The remainder of the drill holes encountered low values over narrow widths.

On the basis of results obtained to date from this drilling, some additional drilling is justified to further evaluate the extent and grade of mineralization encountered in these two holes. In addition, some drilling is required to follow up on the possible volcanic massive sulphides intersected in the previous drilling at RC82-1.

A formal survey of the existing drill holes should be completed and survey control points established on the property to tie in existing and future work to a global coordinate system. This would facillitate more accurate plotting of the data.

As a part of planning for future exploration work on the property a comprehensive compilation of all available data pertaining to the property should be completed.

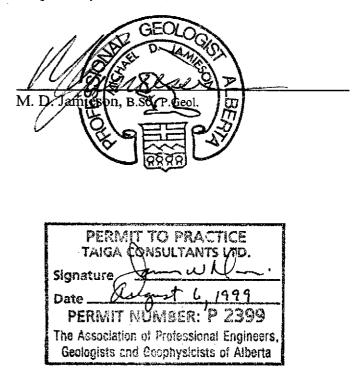
CERTIFICATE – J.W.Davis


I, James Wilson Davis, of 98 Hidden Circle NW in the City of Calgary in the Province of Alberta, do hereby certify that:

- 1. I am a Consulting Geologist with the firm of Taiga Consultants Ltd. with offices at Suite 301, 1000 8th Avenue SW, Calgary, Alberta.
- 2. I am a graduate of St.Louis University, B.Sc. Geology (1967) and M.Sc. Geology (1969), and I have practised my profession continuously since graduation.
- 3. I am a member in good standing of the Association of Professional Engineers, Geologists and Geophysicists of Alberta; and I am a Fellow of the Geological Association of Canada; and I am a member in good standing of the Association of Professional Engineers and Geoscientists of B.C.
- 4. I am co-author of the report entitled "Diamond Drilling Report for Drilling completed on the Red Cap Property, Kap 3 and Kap 4 Mineral Claims, Atlin Mining Division, British Columbia", dated July 1999.
- 5. I do not own or expect to receive any interest (direct, indirect, or contingent) in the property described herein nor in the securities of **Xplorer Gold Corp.** in respect of services rendered in the preparation of this report.

DATED at Calgary, Alberta, this 30th day of July, A.D. 1999.

Respectfully submitted,


CERTIFICATE – M.D.Jamieson

I, Michael Douglas Jamieson, of 16 Riverwood Crescent S.E. in the City of Calgary in the Province of Alberta, do hereby certify that:

- 1. I am a Consulting Geologist with the firm of Taiga Consultants Ltd. with offices at Suite 301, 1000 8th Avenue S.W., Calgary, Alberta.
- 2. I am a graduate of Queen's University, B.Sc. Geology (1985), and I have practised my profession continuously since graduation.
- 3. I am a member in good standing of the Association of Professional Engineers, Geologists and Geophysicists of Alberta.
- 4. I am co-author of the report entitled "Diamond Drilling Report for Drilling completed on the Red Cap Property, Kap 3 and Kap 4 Mineral Claims, Atlin Mining Division, British Columbia", dated July 1999.
- 5. I do not own or expect to receive any interest (direct, indirect, or contingent) in the property described herein nor in the securities of **Xplorer Gold Corp.** in respect of services rendered in the preparation of this report.

DATED at Calgary, Alberta, this 30th day of July, A.D. 1999.

Respectfully submitted,

SELECTED REFERENCES

Archer, A. R., (1972): Report on Diamond Drilling Program Mike 1-32 Claims – Mt. Lester Jones Area, Assessment report #3670

British Columbia, Minister of Mines Annual Report for 1930 and 1931

- Clouthier, G. A., Elliott, T. M., (1981): A Diamond Drilling Report on the Redcap Property, Mineral Branch Assessment Report # 9246
- Murton, J. C., Woods, D. V., (1988): Geophysical Report on an Airborne Magnetic and VLF-EM Survey, CAP2,3,4 and Goat 1 Claims, private company report by Western Geophysical Aero Data Ltd. for Omni Resources Ltd.
- Power, M. A., (1998): Ground Total Magnetic Field and VLF-EM Surveys at the Red Cap Property, Tulsequah Area, Atlin Mining Division, by Amerok Geoscience Ltd., private company report, for Xplorer Gold Corp.
- Rayner, G. H., (1983): Diamond Drilling Report on the CAP 4 Claim, private company report, for Berglynn Resources Inc. and Omni Resources Inc.
- Souther, J.G. (1971): Geology and Mineral Deposits of the Tulsequah Map Area, British Columbia: Geological Survey Canada., Memoir 362
- Wilkins, A. L., MacKinnon, H. F., (1989): Geological and Geochemical Report on the Red Cap Prospect, private company report for Omni Resources Inc.

i.

.

SUMMARY OF EXPENDITURES

Diamond Drill Program

Falcon Drilling Ltd. 1,752 m (5,748 ft)	of BTW core drilling	
completed from July 17/98 to Sep	t.19/98	180,877.00
Northern Mountain Helicopters	48.0 hours @ \$670/hour	23,040.00
Interior Helicopters Ltd.	45.4 hours @ \$675/hour	30,645.00
Discovery Helicopters Ltd.	65.0 hrs @ \$675/hour	43,875.00
Personnel		27,300.00
Camp room and board	200 man days @ \$40/man day	8,00000.00
Chemex Labs Ltd.	17 samples @ \$49.35/ sample	
	assayed for Au, Ag, Cu,Co, Pb, Zn	838.95
Eco-Tech Laboratories	780 samples @ \$23.79/sample	
	28 element ICP plus Au	18554.08
Report writing and drafting		7,500.00
	Te	otal \$ <u>339,102.00</u>

SUMMARY OF PERSONNEL

July 15-30 and August 18-30, 1998

Bob NicholConsulting GeolErik BergvinsonProject ManagerMatthew FayJunior GeologistJason WilliamsGeological AssisDeirdre PoulinCook

21 days @ \$425	8,925.00
29 days @ \$300	8,700.00
9 days @ \$175	1,575.00
22 days @ \$150	3,300.00
24 days @ \$200	4,800.00
	Total \$ <u>27,300.00</u>
	29 days @ \$300 9 days @ \$175 22 days @ \$150

. .

. .

. .

ί.

. .

: .

È j

APPENDIX I

ANALYTICAL RESULTS AND PROCEDURES

Fire Assay Procedure - Assay Gold

Sample Decomposition:Fire Assay FusionAnalytical Method:Atomic Absorption Spectroscopy (AAS)

A prepared sample is fused with a mixture of lead oxide, sodium carbonate, borax, silica and other reagents as required, inquarted with 6 mg of gold-free silver and then cupelled to yield a precious metal bead.

The bead is digested for $\frac{1}{2}$ hour in dilute nitric acid. Hydrochloric acid is then added and the solution is digested for an additional hour. The digested solution is cooled, diluted to 7.5 ml with demineralized water, homogenized and then analyzed by atomic absorption spectrometry.

Fire assay with gravimetric finish is used for samples having gold values greater than 15 g/t (0.4 oz/ton).

International Units:

Routine <u>Code</u>	Rush <u>Code</u>	Element	Sample Weight (grams)	<u>Symbol</u>	Detection <u>Limit</u>	Upper <u>Limit</u>
399	957	Gold	15	Au	0.07 g/t	150 g/t
999	953	Gold	30	Au	0.03 g/t	150 g/t
3599		Gold	50	Au	0.03 g/t	150 g/t
496		Gold	all	Au	0.03 g/t	150 g/t

American/English Units:

Routine <u>Code</u>	Rush <u>Code</u>	Element	Sample Weight (grams)	<u>Symbol</u>	Detection <u>Limit</u>	Upper <u>Limit</u>
398 998 3598	981 916	Gold Gold Gold	15 30 50	Au Au Au	0.002 oz/ton 0.001 oz/ton 0.001 oz/ton	5 oz/ton 5 oz/ton 5 oz/ton

<u>Assay Procedure</u> - Cobalt, Copper, Iron, Lead, Manganese, Molybdenum, Nickel, Silver, and, Zinc by HNO₃-HClO₄-HF-HCl digestion

Sample Decomposition:HNO3-HClO4-HF-HCl digestionAnalytical Method:Atomic Absorption Spectroscopy (AAS)

A prepared sample (0.2 to 2.0g) is digested with nitric, perchloric, and hydrofluoric acids, and then evaporated to dryness. Hydrochloric acid is added for further digestion, and the sample is again taken to dryness. The residue is dissolved in nitric and hydrochloric acids and transferred to a volumetric flask (100 or 250 ml). The resulting solution is diluted to volume with demineralized water, mixed and then analyzed by atomic absorption spectrometry against matrix-matched standards.

International Units:

Chemex			Detection	Upper
<u>Code</u>	Element	Symbol	Limit	<u>Limit</u>
323	Cobalt	Co	0.001 %	100 %
3310	Copper	Cu	0.01 %	100 %
3503	Copper	Cu	0.001 %	100 %
327	Iron	Fe	0.01 %	1 00 %
3312	Lead	Pb	0.01 %	100 %
3505	Lead	Pb	0.001 %	100 %
33 28	Manganese	Mn	0.01 %	100 %
3506	Molybdenum	Мо	0.001 %	100 %
321	Nickel	Ni	0.01 %	100 %
3321	Nickel	Ni	0.001 %	100 %
3386	Silver	Ag	0.3 g/t	350 g/t
3316	Zinc	Zn	0.01 %	100 %
3504	Zinc	Zn	0.001 %	100 %

American/English Units:

Chemex <u>Code</u>	Element	Symbol	Detection <u>Limit</u>	Upper <u>Limit</u>
3385	Silver	Ag	0.01 oz/ton	10.0 oz/ton

<u>Assay Procedure</u> - Arsenic, Bismuth, Cadmium, Copper, Iron, Lead, Molybdenum, Silver, and Zinc by Nitric- Aqua Regia digestion

Sample Decomposition:Nitric - Aqua Regia DigestionAnalytical Method:Atomic Absorption Spectroscopy (AAS)

A prepared sample (0.2 to 2.0g) is digested with concentrated nitric acid for one half hour. After cooling, hydrochloric acid is added to produce aqua regia and the mixture is then digested for an additional hour and a half. An ionization suppressant is added if molybdenum is to be measured. The resulting solution is diluted to volume (100 or 250 ml) with demineralized water, mixed and then analyzed by atomic absorption spectrometry against matrix-matched standards.

International Units:

Chemex			Detection	Upper
<u>Code</u>	<u>Element</u>	<u>Symbol</u>	Limit	Limit
331	Arsenic	As	0.01 %	100 %
349	Bismuth	Bi	0.001 %	100 %
320	Cadmium	Cd	0.001 %	100 %
301	Copper	Cu	0.01 %	100 %
3501	Copper	Cu	0.001 %	100 %
3508	Copper	Cu	10 ppm	1,000,000 ppm
326	Iron	Fe	0.01 %	100 %
312	Lead	Pb	0.01 %	100 %
306	Molybdenum	Мо	0.001 %	100 %
307	Molybdenum as MoS ₂	MoS_2	0.001 %	100 %
386	Silver	Ag	0.3 g/t	350 g/t
956	Silver (Rush charge)	Ag	0.3 g/t	350 g/t
316	Zinc	Zn	0.01 %	100 %
8089	Manganese	Mn	0.01 %	100 %

American/English Units:

Chemex <u>Code</u>	Element	Symbol	Detection <u>Limit</u>	Upper <u>Limit</u>
385	Silver	Ag	0.01 oz/ton	10.0 oz/ton
980	Silver (Rush charge)	Ag	0.01 oz/ton	10.0 oz/ton

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 8T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@mail.wkpowerlink.com

Analytical Procedure Assessment Report

GEOCHEMICAL GOLD ANALYSIS

Samples are catalogued and dried. Soils are prepared by sieving through an 80 mesh screen to obtain a minus 80 mesh fraction. Samples unable to produce adequate minus 80 mesh material are screened at a coarser fraction. These samples are flagged with the relevant mesh. Rock samples are 2 stage crushed to minus 10 mesh and a 250 gram subsample is pulverized on a ring mill pulverizer to -140 mesh. The subsample is rolled, homogenized and bagged in a prenumbered bag.

The sample is weighed to 10/15/30 grams and fused along with proper fluxing materials. The bead is digested in aqua regia and analyzed on an atomic absorption instrument. Over-range values for rocks are re-analyzed using gold assay methods.

Appropriate reference materials accompany the samples through the process allowing for quality control assessment. Results are entered and printed along with quality control data (repeats and standards). The data is faxed and/or mailed to the client.

K:Methods/geoauaпa

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@rr.ail.wkpowerlink.com

GEOCHEMICAL ANALYSIS Ag. Cu. Pb. Zn

A 0.5 gram sample is weighed into a test tube and digested with 3ml 3:1:2 solution (HCI:HNO3:H20) in a water bath at 95° C for 90 minutes. The digested sample is made up to 10 ml. with water, vortexed to mix and allowed to settle prior to analysis.

The metals are analyzed on an atomic absorption instrument.

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. #2. Kamloops, B.C. V2C 6T4 Phone (2.0) 573-5700 Fax (250) 573-4557 email: ecotech@mail.wkpowerlink.com

Analytical Method Assessment for

GOLD ASSAY

Samples are sorted and dried (if necessary). The samples are crushed through a jaw crusher and cone or rolls crusher to -10 mesh. The sample is split through a Jones riffle until a -250 gram subsample is achieved. The subsample is pulverized in a ring & puck pulverizer to 95% - 140 mesh. The sample is rolled to homogenize.

A 1/2 or 1.0 A.T. sample size is fire assayed using appropriate fluxes. The resultant dore bead is parted and then digested with aqua regia and then analyzed on a Perkin Elmer AA instrument.

Appropriate standards and repeat sample (Quality Control components) accompany the samples on the data sheet.

K:methods/methauas

in The second

6 - i

. r £.,

32-Element Geochemistry Package (32-ICP) Inductively-Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES)

A prepared sample (1.0g) is digested with concentrated nitric and aqua regia acids at medium heat for two hours. The acid solution is diluted to 25ml with demineralized water, mixed and analyzed using a Jarrell Ash 1100 plasma spectrometer after calibration with proper standards. The analytical results are corrected for spectral inter-element interferences.

Chemex	Element	Detection Limit	Upper Limit
Codes	Digestion		Luxut
229 2119	* Aluminum	0.01 %	15 %
	Silver		0.02 %
2118	Arsenic	0.2 ppm	1%
2120	* Barium	2 ppm	1%
2121		10 ppm	0.01 %
2122	* Beryllium Biograph	0.5 ppm	0.01 %
2123	Bismuth	2 ppm	
2124	* Calcium	0.01 %	15 %
2125	Cadmium	0.5 ppm	0.05 %
2126	Cobalt	1 ppm	1%
2127	* Chromium	1 ppm	1%
2128	Copper	1 ppm	1%
2150	Iron	0.01 %	15 %
2130	* Gallium	10 ppm	1%
2132	* Potassium	0.01 %	10 %
2151	* Lanthanum	10 ppm .	1%
2134	 Magnesium 	0.01 %	15 %
2135	Manganese	5 ppm	1%
2136	Molybdenum	1 ppm	1%
2137	* Sodium	0.01 %	10 %
2138	Nickel	1 ppm	1%
2139	Phosphorus	10 ppm	1%
2140	Lead	2 ppm	1%
2141	Antimony	2 ppm	1%
2142	* Scandium	1 ppm	1%
2143	* Strontium	1 ppm	1%
2144	* Titanium	0.01 %	10 %
2145	 Thallium 	10 ppm	1%
2146	Uranium	10 ppm	1 %
2147	Vanadium	1 ppm	1%
2148	* Tungsten	10 ppm	1%
2149	Zinc	2 ppm	1%
2131	Mercury	1 ppm	1 %

* Elements for which the digestion is possibly incomplete.

	CE	RTIFIC	ATE O	= ASSA	Y AK	98-352F	2	
XPLORE	R GOLD CORPORATI	ON						31-Jul-9
	-1708 DOLPHIN AVEN	IUE						
KELOWN	IA, BC							
V1Y 4S4								
ATTENTI	ON: ERNIE BERGVIN	ISON						
No of sar	mples received: 93							
	/pe: Core							
	T #: None Given							
	VT #: None Given							
	submitted by: Xplorer							
		Au	Au	Ag	Ag	As	Zn	
ET #.	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)	(%)	(%)	
1	111811	<.03	<.001					
2	111812	<.03	<.001					
3	111813	0.07	0.002					
4	111814	<.03	<.001					
5	111815	<.03	<.001					
6	111816	<.03	<.001					
7	111817	<.03	<.001					
8	111818	0.12	0.003	25.8	0.75			
9	111819	0.35	0.010					
10	111820	<.03	<.001					
11	111821	<.03	<.001					
12	111822	<.03	<.001					
13	111823	0.12	0.003					
14	111824	<.03	<.001					
15	111825	<.03	<.001					
16	111826	<.03	<.001					
17	111827	<.03	<.001		· · · · · · · · · · · · · · · · · · ·			
18	111828	<.03	<.001		<u>,</u>			
19	111829	<.03	<.001	· · · · · · · · · · · · · · · · · · ·				
20	111830	<.03	<.001 <.001					
21	111831	<.03 <.03	<.001					
22	111832	<.U3	<.001					
						FCO-TECH	LABORATO	RIES LTD.
							zzotti, A.Sc.T.	
							ed Assayer	

.

.

. . .

έs

i.

PLORE	R GOLD CORPO	RATION AK98-	352					31-Ju
		Au	Au	Ag	Ag	As	Zn	
ET #.	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)	(%)	(%)	
23	111833	<.03	<.001					
23	111834	<.03	<.001					
25	111835	<.03	<.001					
26	111836	<.03	<.001					
20	111837	<.03	<.001					
28	111838	<.03	<.001					
29	111839	<.03	<.001					
30	111840	<.03	<.001					
31	111841	<.03	<.001					
32	111842	<.03	<.001		Ì			
33	111843	<.03	<.001					
34	111844	<.03	<.001					
35	111845	0.06	0.002					
36	111846	<.03	<.001					
37	111847	<.03	<.001					
38	111848	<.03	<.001					
39	111849	<.03	<.001					
40	111850	<.03	<.001					
40	111851	<.03	<.001					
41	111852	<.03	<.001					
42	111853	<.03	<.001					
<u> </u>	111854	<.03	<.001					
44	111855	0.04	0.001					
46	111856	<.03	<.001					
47	111857	<.03	<.001					
48	111858	<.03	<.001					
40	111859	<.03	<.001					· · · · · · · · · · · · · · · · · · ·
4 9 50	111860	<.03	<.001					
<u> </u>	111861	0.41	0.012	30.0	0.88		1.54	
52	111862	0.05	0.001					
52	111863	<.03	<.001					
53	111864	<.03	<.001					
54	111865	<.03	<.001					
ວວ 56	111866	<.03	<.001					
57	111867	<.03	<.001					
58	111868	<.03	<.001					
59	111869	<.03	<.001					
<u> </u>	111870	<.03	<.001					
61	111870	<.03	<.001					
62	111872	<.03	<.001					
63	111873	<.03	<.001					
64	111874	<.03	<.001					
65	111875	<.03	<.001					
00	1110/5	03	5.001					
						ECO-TEC	H LABO	RATORIES LTD.
						Frank J. P		
						B.C. Certif		

.

. L.,

1

.

i.

PLORE	R GOLD CORPO	RATION AK98-	352					31-Jul-9
			Au	٨٥	Δα	As	Zn	
ET #.	Tag #	Au (g/t)	(oz/t)	Ag (g/t)	Ag (oz/t)	(%)	(%)	
	Tag #	<.03	<.001	(9/7)		(//)		
66	111876	<.03	<.001					
67	111877	<.03	<.001					
68	111878 111879	<.03	<.001					
69	111880	<.03	<.001					
70	111881	<.03	<.001					
71	K1102	0.58	0.017	34.8	1.02		3.83	
72		0.38	0.017		1.02		0.00	
73	K1103	1.04	0.000					
74	K1104 K1105	2.13	0.050			1.64		
75		0.05	0.002			1.04		
76	K1106	0.00	0.001	38.5	1.12			
77	K1107	<.03	<.001	30.5	1.12			
78	111882	<.03	<.001					
79	111883	0.21	0.006					
80	111884 111885	<.03	<.001					
81		<.03	<.001					
82	111886	<.03	<.001					
83	111887	<.03	<.001					
84	111888	<.03	<.001					
85	111889	<.03	<.001					
86	111890	<.03	<.001					
87	111891	0.03	0.001					
88	111892	<.03	<.001					
89	111893	<.03	<.001			· · ·		
90	111894	0.15	0.004					
91	111895 111896	0.15	0.004					
92	111897	0.10	0.005					
93	111091	0.21	0.000					
DA DAT	A .							
QC DAT								
Resplit:	111011	- 00	- 004					
1	111811	<.03	<.001					
36	111846	<.03	<.001					
71	111881	<.03	<.001					
Repeat:	444044	00	< 001		<u> </u>			
1	111811	<.03	<.001	ŀ				
10	111820	<.03 <.03	<.001				-	· · · · · · · · · · · · · · · · · · ·
19	111829		<.001 <.001					
36	111846	<.03						
45	111855	0.04	0.001					
54	111864	<.03	<.001					
71	111881	<.03						
80	111884	0.23	0.007					
						FCO-TFC	HLABORAT	ORIES LTD.
							ezzotti, A.So	
							fied Assayer	

XPLORE	R GOLD CORPO	RATION AK98-	352						31-Jul-9
		Au	Au	Ag	Ag	As	Zn		
ET #.	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)	(%)	(%)		
Standard									
STD-M		1.55	0.045						
STD-M		1.62	0.047						
STD-M		1.53	0.045						
MPla				69.7	2.03	0.84			
CPb-1							4.42		
	· · · · · · · · · · · · · · · · · · ·								
						ECO-TECH	I LABO	RATORIES	LTD.
·						Frank J. Pe			
XLS/98						B.C. Certifi			

r L s

			ALL OF AS	SAY AK 98-		
	R GOLD CORPOR					4-Aug-9
	1708 DOLPHIN A	VENUE				
KELOWN	A, BC					
V1Y 4S4						
ATTENTIC	ON: ERNIE BER	GVINSON				
No. of san	nples received: 12	9				
Sample ty						
	"#: Red Cap					
SHIPMEN	T #: None Given					
Samples s	submitted by: M. F	ay				
		Au	Au			
ET #.	Tag #	(g/t)	(oz/t)			
1	111898	<.03	<.001			
2	111899	<.03	<.001			
3	111900	<.03	<.001			
4	111901	<.03	<.001			
5	111902	<.03	<.001			
6	111903	<.03	<.001			
7	111904	<.03	<.001			
8.	111905	<.03	<.001			
9	111906	<.03	<.001			
10	111907	<.03	<.001			
11	111908	<.03	<.001			
12	111909	<.03	<.001			
13	111910	<.03	<.001			
14	111911	<.03	<.001			
15	111912	<.03	<.001			
16	111913	<.03	<.001			
17	111914	<.03	<.001			
18	111915	<.03	<.001			
19	111916	<.03	<.001			
20	111917	<.03	<.001			
21	111918	<.03	<.001			
22	111919	<.03	<.001			
23	111920	<.03	<.001			
	-					
					TECH LABORATORI	ES LTD.
				Frank	J. Pezzotti, A.Sc.T.	
				B.C.	Certified Assayer	
· · · · · · · · · · · · · · · · · · ·						
			-			
· · ·						
	-					
						· · · · ·

5

*

. .

.

i. .-

. 2 - 3

è

.

4. J

PLOREF		ATION AK98-	370					
		Au	Au	Ag	Ag	As	Pb	Zn
ET #.	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)	(%)	(%)	(%)
24	111921	<.03	<.001	-	-	-	-	*
25	111922	<.03	<.001	-	-	-	-	-
26	111923	<.03	<.001	-	-	-	-	-
27	111924	<.03	<.001	-	-	-	-	-
28	111925	<.03	<.001	-	-	-	-	
29	111926	<.03	<.001	-	-	-	-	-
30	111927	<.03	<.001	-	-	-	-	-
31	111928	<.03	<.001	-	-	-	-	-
32	111929	<.03	<.001	-	-	-	-	-
33	111930	<.03	<.001	-	-	-	-	
34	111931	<.03	<.001	-	-	-	-	-
35	111932	<.03	<.001	•	-	-	•	-
36	111933	<.03	<.001	-	-	-	-	•
37	111934	<.03	<.001	-	-	-	-	
38	111935	<.03	<.001	-	-	-	-	-
39	111936	<.03	<.001	-	-	-	-	-
40	111937	<.03	<.001	-	-	-	-	
41	111938	<.03	<.001	-	-	-	-	
42	111939	<.03	<.001	-	-	-	-	-
43	111940	<.03	<.001	-	-	-	-	
44	111941	0.98	0.029	164.0	4.78	-	-	
45	111942	<.03	<.001		-	-	-	•
46	111943	<.03	<.001	-	-	-	-	
47	111944	<.03	<.001	-	-	-	-	
48	111945	0.06	0.002	_	-	-	-	
49	111946	<.03	<.001			-	-	
50	111947	0.30	0.009	46.2	1.35	-	-	2.70
51	111948	3.16	0.092	160.0	4.67	1.12	2.00	
52	111949	0.06	0.002	-	_	-	-	
53	111950	<.03	<.001	-	-	-	-	
54	111951	<.03	<.001		-	-	-	
55	111952	<.03	<.001			-	-	
56	111953	<.03	<.001		-	-		
57	111954	<.03	<.001	-	-	-	-	
58	111955	<.03	<.001		-	-	-	
59	111996	0.16	0.005	-	-	2.56	-	
60	111997	<.03	<.001		-	-	-	
61	111998	<.03	<.001		-	-	-	
62	111999	<.03	<.001		-	-	-	
63	112000	<.03	<.001		-	-	-	
64	112001	<.03	<.001		-	-	-	
65	112002	<.03	<.001	-	-	-	-	
66	112003	0.03	0.001	_		•	-	
	112000							
						ECO-TEC		
						Frank J. P		
						B.C. Certif		

_

31-Jul-98

LOREF	R GOLD CORPOR	RATION AK98-	370						31-JL
		Au	Au	Ag	Ag	As	Pb	Zn	
ET #.	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)	(%)	(%)	(%)	
67	112004	<.03	<.001	-	-	1.09	-	-	
68	112005	<.03	<.001	-	-	1.00	-	-	
69	112006	<.03	<.001	-	-	-	-	-	
70	112007	<.03	<.001	-	-	-	-	-	
71	112008	0.06	0.002	-	-	-	-	-	
72	112009	0.05	0.001	-	-	-	-	-	
73	112010	0.03	0.001		-	-	-	-	
74	112011	<.03	<.001	-		-	-	-	-
75	112012	<.03	<.001	-	-	-	-	-	
76	112012	<.03	<.001		-	-	-	-	
77	112014	<.03	<.001	-	-	-	· _	-	
78	112014	<.03	<.001		_	-	-		
79	112015	<.03	<.001						
80	112018	<.03	<.001	-			-	-	
81	112017	<.03	<.001		-	-			
		<.03	<.001						
82	112019	<.03	<.001]		
83	112020	<.03	<.001						
84	112021	<.03	<.001		-]	· · · · · · · · · · · · · · · · · · ·
85	112022			-					
86	112023	<.03	<.001		-	-	-	-	
87	112024	<.03	<.001		-				
88	112025	<.03	<.001		-		-	-	
89	112026	0.03	0.001	-	-	-			
90	112027	<.03	<.001			-			
91	112028	<.03	<.001	•	-				· · · ·
92	112029	0.03	0.001	-	-	-			
93	112030	<.03	<.001	-	-	-	-	-	
94	112031	<.03	<.001	-	-	-		-	
95	112032	<.03	<.001	-	-	-	-	-	
96	112033	<.03	<.001	-	-	-	-		
97	112034	<.03	<.001	-	-	-	-	-	
98	112035	<.03	<.001	-	-	-	-	-	
99	112036	<.03	<.001	-	-	-	-	-	
100	112037	<.03	<.001	-	-	-	-	-	
101	112038	0.03	0.001	-	-	-	-	-	
102	112039	0.49	0.014	-	-	-	-	-	
103	112040	0.04	0.001	-	-	-	-	-	
104	112041	<.03	<.001	-	-	-	-	-	
105	112042	3.54	0.103	72.8	2.12	2.39	1.92	4.25	
106	112043	<.03	<.001	-	-	-	-	-	
107	112044	0.78	0.023	35.6	1.04	-	1.02	-	
107	112045	0.08	0.002		•	-	-	-	
108	112046	<.03	<.001		-	_	-		
	112048	<.03	<.001		*		_		
110	112047	~.03	5,001						
						ECO-TECI	HLABOR	ATORIES	LTD.
						Frank J. P			
						B.C. Certif			

т. Т.

PLOREF	R GOLD CORPOR	RATION AK98-	370						31-Jul	
		Au	Au	Ag	Ag	As	Pb	Zn		
ET #.	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)	(%)	(%)	(%)		
111	112048	0.05	0.001	(9.7	(0-0)					
112	112048	<.03	<.001		-		-	-		
112	112050	<.03	<.001		-		-	-		
114	112050	<.03	<.001	-	-	-	-	-		
115	112052	<.03	<.001	-		-	-	-		
116	112053	0.03	0.001				-	-		
117	112054	<.03	<.001	-	-	-	-	_		
118	112055	0.04	0.001	-			-	-		
119	112056	<.03	<.001		-	-	-	-		
120	112057	<.03	<.001	-	-	_	-	-		
121	112058	<.03	<.001	-	-	-	-	-		
122	112059	<.03	<.001	-	-	-	-	-		
123	112060	<.03	<.001		-		-	-		
123	112061	<.03	<.001		-	-	-	-		
125	112062	<.03	<.001		-	-	-	-		
126	112063	<.03	<.001	· _		-	-	-		
127	112064	<.03	<.001	-	-	-	-	-		
128	112065	<.03	<.001	-	-	-	-	-		
129	112066	<.03	<.001	_	-	-	-	-		
130	111988	<.03	<.001	-		-		-		
130	111989	0.05	0.001			-	-	-		
132	111990	2.16	0.063	-		-	-	-		
133	111991	0.29	0.008		-		-	-		
134	111992	4.16	0.121	82.2	2.40	-	-	-		
135	111993	0.21	0.006		-	-	-	-		
136	111994	0.31	0.009	-	-	-	-	-		
137	111995	0.14	0.004	-	_	-		-		
C DATA	\ :									
esplit:										
1	111898	<.03	<.001	-	-	-	-	-		
36	111933	<.03	<.001	-	-	-	-	-		
71	112008	0.11	0.003	-	-	-	-	-		
106	112043	<.03	<.001	-	-	-	-	-		
						ECO-TEC			LTD.	
	+					Frank J. Pezzotti, A.Sc.T.				
						B.C. Certif				
	+						· · · · · · · · · · · · · · · · · · ·			

τ.,

.

.

XPLORE	R GOLD CORPO	RATION AK98-	370						31-Jul-9
		Au	Au	Ag	Ag	As	Pb	Zn	
ET #.	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)	(%)	(%)	(%)	
Repeat:									
1	111898	<.03	<.001	-	-	-	-	-	
10	111907	<.03	<.001	-	-	-	-	-	
19	111916	<.03	<.001	-	-	-	-	-	
36	111933	<.03	<.001	-	-	-	-	-	
45	111942	<.03	<.001	-		-	-	-	
54	111951	<.03	<.001	-	-	-	-	-	
71	112008	0.12	0.003	-	-	-	-	-	
80	112017	<.03	<.001	-	-	-	-	-	
89	112026	0.03	0.001		-	-	-	-	
106	112043	<.03	<.001				-	-	
115	112052	<.03	<.001		-	-	-	-	
124	112052	<.03	<.001		-		-		
124	112001								
Standard	k.				-				
STD-M		1.42	0.041	-	-	-	-	-	
STD-M		1.40	0.041	-	-	-	-	-	
STD-M		1.54	0.045	-	-	-	-	-	
STD-M		1.56	0.045	-	-	-	-	-	
MP-1a		-	-	69.7	2.03	0.84	4.33	-	
CPb-1			_		-	-	-	4.42	
	-								
		2				ECO-TECH	LABOR	ATORIES	LTD.
						Frank J. Pe			
XLS/98						B.C. Certifi			

í.

. k. ..

i.

_

	C	ERTIFIC	AIEO	- ASS	AY /	AK 98-359)		
	R GOLD CORPORAT							28-Jul-98	
	-1708 DOLPHIN AVE	NUE							
KELOWN	IA, BC								
/1Y 4S4									
	ON: ERNIE BERGVI	NGON							
	UN: ERNIE BERGVI								
No. of sar	nples received: 32								
Sample ty	pe: Core								
	T #: Red Cap								
SHIPMEN	T #: None Given								
Samples	submitted by: M. Fay								
		Au	Au	As					
ET #.	Tag #	(g/t)	(oz/t)	(%)			· · · · · · · · · · · · · · · · · · ·		
1	111956	0.11	0.003						
2	111957	<.03	<.001						
3	111958	<.03	<.001						<u> </u>
4	111959	0.03	0.001						ļ
5	111960	<.03	<.001						
6	111961	<.03	<.001						<u> </u>
7	111962	<.03	<.001						
8	111963	<.03	<.001						
9	111964	<.03	<.001						
10	111965	<.03	<.001						<u> </u>
11	111966	<.03	<.001						ļ
12	111967	<.03	<.001						<u> </u>
13	111968	<.03	<.001	1.07					
14	111969	<.03	<.001						
15	111970	<.03	<.001						ļ
16	111971	0.03	0.001	1.39					<u> </u>
17	111972	<.03	<.001	1.38					<u> </u>
18	111973	0.03	0.001	1.72					
19	111974	<.03	<.001						
20	111975	<.03	<.001						
21	111976	<.03	<.001						
22	111977	<.03	<.001						
23	111978	<.03	<.001						
24	111979	0.04	0.001			ECO TEC	H LABORAT		+
					·····		ezzotti, A.Sc.		+
	<u> </u>	-					fied Assayer	1.	+
	-					D.C. Celli	IICU ASSAYEI		+

ļ

. . .

ξ.,

	<u>н</u>				I.			
							· · · · · · · · · · · · · · · · · · ·	
							00 1.1 00	
KPLORE	R GOLD CORPO	RATION AK98-	359				28-Jul-98	
		Au	Au	As				
ET #.	Tag #	(g/t)	(oz/t)	(%)				
25	111980	<.03	<.001					
26	111981	0.04	0.001					
27	111982	0.07	0.002					
28	111983	0.03	0.001					
29	111984	0.14	0.004	1.99				
30	111985	0.07	0.002					
31	111986	0.06	0.002	;				
32	111987	0.06	0.002					
QC DATA	N:							
Resplit:								-
1	111956	0.10	0.003		-			
Repeat:				-				
1	111956	0.10	0.003					
10	111965	<.03	<.001					
19	111974	<.03	<.001					
Standard	l:							
STD-M		1.62	0.047					
MPla				0.84				
CD-1				0.66				
					ECO-T	ECH LABORA	TORIES LTD.	
	-					J. Pezzotti, A.S		
XLS/98						ertified Assaye		

. .

<u> </u>		CERTIFIC	ATE OF AS	SAY AK 98-387	
	R GOLD CORP				10-Aug-
	1708 DOLPHI	N AVENUE			
KELOWN	A, BC				
V1Y 4S4					
ATTENTI	ON: ERNIE B	ERGVINSON			
	nples received.	72			· · · · · · · · · · · · · · · · · · ·
Sample ty					
	#: RED CAP	· · · · · · · · · · · · · · · · · · ·			
	T #: None Giv				
Samples s	submitted by: N	1. Fay			
A4	T =	Au	Au		
ET #.	Tag #	(g/t)	(oz/t)		
1	112067	<.03	<.001		
2	112068	<.03	<.001		
3	112069	<.03	<.001		
4	112070	<.03	<.001		
5	112071	<.03	<.001		
6	112072	<.03	<.001		
7	112073	<.03	<.001		
8	112074	<.03	<.001		
9	112075	<.03	<.001		
10	112076	<.03	<.001		
11	112077	<.03	<.001		
12	112078	0.05	0.001		
13	112079	<.03	<.001		
14	112080	<.03	<.001		
15	112081	0.04	0.001		
16	112082	0.10	0.003		
17	112083	0.57	0.017		
18	112084	<.03	<.001		
19	112085	<.03	<.001		
20	112086	0.03	0.001		
21	112087	<.03	<.001		
22	112088	<.03	<.001		
23	112089	<.03	<.001		
				ECO TECHIA	ABORATORIES LTD.
				Frank J. Pezzo	
				B.C. Certified	
	<u> </u>				
<u></u>	·				
····					
	· · · · · · · · · · · · · · · · · · ·				
	· · · · · · · · · · · · · · · · · · ·				

2.7

-

÷.

.

i.

.

i.

	R GOLD CORPOR								10-Aug
<u> </u>		Au	Au	Ag	Ag	As			
ET #.	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)	(%)			
24	112090	<.03	<.001						
25	112091	<.03	<.001						
26	112092	<.03	<.001						
27	112093	<.03	<.001						
28	112094	<.03	<.001						
29	112095	<.03	<.001						
30	112096	<.03	<.001						
31	112097	<.03	<.001						
32	112098	<.03	<.001			1.45			
33	112099	<.03	<.001						
34	112100	<.03	<.001						
35	112101	<.03	<.001						
36	112102	<.03	<.001		·				·
37	112103	<.03	<.001						
38	112104	<.03	<.001						
39	112105	<.03	<.001						
40	112106	<.03	<.001						
41	112107	<.03	<.001						
42	112108	<.03	<.001						
43	112109	<.03	<.001					1	
44	112110	<.03	<.001						
45	112111	<.03	<.001						
46	112112	<.03	<.001					+	
47	112113	<.03	<.001			···· ··			
48	112114	<.03	<.001					- <u> </u>	
49	112115	<.03	<.001						
50	112116	0.04	0.001						
51	112117	<.03	<.001						
52	112118	1.44	0.042						
53	112119	<.03	<.001					1	
<u> </u>	112120	<.03	<.001					+	
55	112120	<.03	<.001					++	
56	112122	<.03	<.001				1		
57	112122	0.27	0.008	32.8	0.96		1		
58	112124	<.03	<.001						
59	112125	<.03	<.001						
60	112125	<.03	<.001				·		
61	112120	<.03	<.001						
62	112128	0.18	0.005					+	
63	112129	<.03	<.001						
03		~.03	~.001						
								ORATORIE	SLID.
						Frank J.	Pezzotti	, A.SC. I.	

.

έ.

ι.

1.

i. A i

XPLORE	R GOLD CORPOR	RATION AK98-	387					10-Aug-9
			Au	Ag	Ag	As	Zn	
ET #.	Tog #	Au (g/t)	(oz/t)	(g/t)	(oz/t)	(%)	(%)	
	Tag #			(9/1)		(/0)	(/0)	
64	112130	<.03	<.001					
65	112131	<.03	<.001					
66	112132	0.08	0.002					
67	112133	0.49	0.014			1.06		
68	112134	0.37	0.011			1.00	5.96	
69	112135	2.55	0.074				5.90	
70	112136	0.55	0.016					<u> </u>
71	112137	<.03	<.001					
72	111651	0.78	0.023	84.2	2.46	2.67	1.24	
QC DATA	•					-		
Resplit:								
<u>respir.</u> 1	112067	<.03	<.001					
36	112102	<.03	<.001					
71	112137	<.03	<.001					
Repeat:								
1	112067	<.03	<.001					
10	112076	<.03	<.001					
19	112085	<.03	<.001					
36	112102	<.03	<.001					
45	112111	<.03	<.001					
54	112120	<.03	<.001					
71	112137	<.03	<.001					
Standard								
STD-M		1.40	0.041					
STD-M		1.41	0.041					
STD-M		1.46	0.043					
Mpla				69.7	2.03			
Cd-1			-			0.66		
Cpb-1							4.42	
· · · · · · · · · · · · · · · · · · ·						ECO-TEC	HLABORAT	ORIES LTD.
	· · · · ·						ezzotti, A.So	
XLS/98						BC Cortif	ied Assayer	

1

		<u> </u>	ERTIFIC					,			
										10 4.00 09	
	GOLD CO									10-Aug-98	
	1708 DOLF	HIN AVE	NUE								
KELOWN	4, ВС										
V1Y 4S4											
ATTENT	DN: ERNIE	DEDCVI	NSON							· · ·	
ALLENTI	JN. ERNIE	BERGVI									
No of san	nples receiv	ed: 76									
	oe: Core	<u></u>	+								
	#: RED C	AP			· · · ·						
	T #: None (
	ubmitted by										

			Au	Au	Ag	Ag	As	Zn			
ET #.	Tag #		(g/t)	(oz/t)	(g/t)	(oz/t)	(%)	(%)			
1	112138		<.03	<.001							
2	112139		6.38	0.186			1.04				
3	112140	<u></u>	1.02	0.030	27.0	0.79					
4	112141		0.03	0.001							
5	112142		<.03	<.001			-				
6	112143		0.36	0.010			1.13				
7	112144		0.08	0.002							
8	112145		<.03	<.001							
9	112146		<.03	<.001							
10	112147		0.03	0.001							
11	112148		0.03	0.001							
12	112149		0.04	0.001							
13	112150		<.03	<.001							
14	112151		<.03	<.001							
15	112152		<.03	<.001							
16	112153		<.03	<.001							
17	112154		<.03	<.001							ļ
18	112155		0.18	0.005							
19	112156		<.03	<.001							
20	112157		<.03	<.001							
21	112158		0.03	0.001							
22	112159		<.03	<.001							
23	112160		<.03	<.001							
				·			ECO-TEC	HIARO	RATOP		+
							Frank J. F				
							B.C. Certi				+
			+				2.2. 3010		- ,		
											1
			+						· · · · · · · · · · · · · · · · · · ·		1
		<u> </u>							<u> </u>		1
			+								1
										-	
							1		1		

.....

. .

.

í.

. . .

LOREF	GOLD CORPOR	CATION AK98-	220					10-Aug-98
					• -			
		Au	Au	Ag	Ag	As	Zn	
ET #.	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)	(%)	(%)	
24	112161	<.03	<.001					
25	112162	0.08	0.002					
26	112163	<.03	<.001					
27	112164	0.17	0.005					
28	112165	<.03	<.001					
29	112166	0.03	0.001					
30	112167	0.08	0.002				1.19	
31	112168	<.03	<.001					
32	112169	<.03	<.001					
33	112170	<.03	<.001					
34	112171	<.03	<.001					
35	112172	<.03	<.001					
36	112173	<.03	<.001					
37	112174	<.03	<.001					
38	112175	<.03	<.001					
39	112176	<.03	<.001					
40	112177	0.03	0.001					
41	112178	<.03	<.001					
42	112179	<.03	<.001					
43	112180	<.03	<.001					
44	112181	0.03	0.001					
45	112182	<.03	<.001					
46	112183	<.03	<.001					
47	112184	<.03	<.001					
48	112185	<.03	<.001					
49	112186	<.03	<.001					
50	112187	<.03	<.001					
51	112188	<.03	<.001					
52	112189	<.03	<.001					
53	112190	<.03	<.001				-	
54	112191	0.03	0.001					·
55	112192	0.06	0.002					
56	112193	0.05	0.001			0.92		
57	112194	0.04	0.001					
58	112195	0.03	0.001					
59	112196	<.03	<.001					
60	112197	<.03	<.001					
61	112198	<.03	<.001					
62	112199	<.03	<.001					
63	112200	<.03	<.001					
64	112201	<.03	<.001					
65	112202	<.03	<.001					
66	112203	<.03	<.001					
						ECO-TEC	H LABORA	TORIES LTD.
	+				, tutte		ezzotti, A.S	
							fied Assayer	
				Page	2			

.

. . .

. .

ъŝ

с. л

-

.

APLOKE	R GOLD CORPO	KATION AK98-	-390						10-Aug-98	
		Au	Au	Ag	Ag	As	Zn			-
ET #.	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)		(%)			<u> </u>
67	112204	<.03	<.001							
68	112205	0.03	0.001							
69	112206	<.03	<.001							h
70	112207	0.03	0.001							
71	112208	0.14	0.004							
72	112209	0.03	0.001				—			
73	112210	0.03	0.001			-				
74	112211	<.03	<.001							
75	112212	0.03	0.001							
76	112213	<.03	<.001							
			·····						-	
QC DATA	1. T					-				
Resplit:	440400									ļ
1	112138	<.03	<.001			ļ				
36	112173	<.03	<.001							
71	112208	0.14	0.004					, ,,,,,		
Repeat:										
1	112138	<.03	<.001					• • • • • • • • • • • • • • • • • • • •		-
10	112147	<.03	<.001							
19	112156	<.03	<.001			t				
36	112173	<.03	<.001							
45	112182	<.03	<.001							-
54	112191	0.03	0.001							
71	112208	0.14	0.004							
Standard										
STD-M		1.44	0.042							
STD-M		1.48	0.043							
STD-M		1.70	0.050							
Mpla				69.7	2.03					
CD-1						0.66				
CPb-1							4.42			
- 14 '										
						·				
										L
						ECO TEC		DATOP		
						ECO-TEC			IES LID.	1
VI 0/00					· · · · · · · · · · · · · · · · · · ·	Frank J. P				
XLS/98			l			B.C. Certif	ied Assa	yer	1	

and a set

.

į,

1. J

ι.

i,

		CERTIFI		F AS	SAY A	K 98_1	09			T
						11 30-4				
	R GOLD CORPO									
	1708 DOLPHIN								14-Aug-9	8
KELOWN										
V1Y 4S4	.,									
ATTENTIO	ON: ERNIE BE	RGVINSON	· · · · · · · · · · · · · · · · · · ·							
No. of san	ples received: 2	233								
	be: Core/Rock									
	#: RED CAP									
	T #: None Giver	n								
	ubmitted by: M.		· · ·							
•										
		Au	Au							
ET #.	Tag #	(g/t)	(oz/t)							
1	112214	<.03	<.001							
2	112215	<.03	<.001							
3	112216	<.03	<.001							
4	112217	<.03	<.001							
5	112218	<.03	<.001							
6	112219	<.03	<.001							
7	112220	<.03	<.001					-		
8	112221	0.10	0.003							
9	112222	0.03	0.001							
10	112223	<.03	<.001							
11	112224	0.04	0.001							
12	112225	0.06	0.002							-
13	112226	0.06	0.002							
14	112227	<.03	<.001							
15	112228	<.03	<.001				· · · · · ·			
16	112229	<.03	<.001							
17	112230	<.03	<.001	· · · · · ·				+		+
18	112231	<.03	<.001				-			
19	112232	<.03	<.001							
20	112233	<.03	<.001							+
21	112234	<.03	<.001							-
22	112235	<.03	<.001							+
					<u> </u>				-	
							1			1
						ECO-TE	CH LABO	DRATO	RIES LTD.	+
							Pezzotti,			
							tified Ass			1
										-
_										

s. ..

-

, . .

-

e y

. .

, . .

. . L .

. .

, ,

							<u></u>			-
XPLOREF	R GOLD CO	ORPORATION AK	98-409			· · · · · · · · · · · · · · · · · · ·			14-Aug-98	2
									14-Aug-50	4
		Au		Ag	Ag	As	Pb	Zn		-
ET #.	Tag #	(g/t)		(g/t)	(oz/t)	(%)	(%)	(%)		
23	112236	0.07	the second se							
24 25	112237 112238	0.15								
25	112238	0.07								_
20	112239	0.11								_
28	112240	0.12								_
29	112242	<.03								-
30	112243	0.14				· · · · · · · · · · · · · · · · · · ·				-
31	112244	0.17								+
32	112245	<.03		· · · · · ·						1
33	112246	0.08	0.002							+
34	112247	<.03	1							-
35	112248	0.17	0.005							
36	112249	0.31	0.009							
37	112250	0.07	0.002							
38 39	112251	0.06								_
	112252 112253	<.03 <.03								4
40	112253	<.03								_
42	112255	<.03								+
43	112256	<.03								-
44	112257	<.03								┥
45	112258	0.16								+
46	112259	0.48								\dagger
47	112260	<.03								1
48	112261	<.03								1
49	112262	<.03	(
50	112263	<.03								
51	112264	<.03						1.11		
52 53	112265	0.10								4
53 54	112266 112267	0.25								4
55	112267	<.03	<.001 <.001							+
56	112269	<.03	<.001							+
57	112270	<.03	<.001							+
58	112271	<.03	<.001							+
59	112272	<.03	<.001							\dagger
60	112273	<.03								t
61	112274	<.03	<.001							t
62	112275	0.07	0.002							t
63	112276	<.03								1
64	112277	1.39								
65	112278	<.03	<.001							4
										4
						CO TEOU	LABOR	ATODI	CITP	4
						CO-TECH rank J. Pe			IN LID.	4

. 16. s

	R GOLD CORPO								14-Aug-98	
		Au	Au	Ag	Ag	As	Pb	Zn		
ET #.	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)	(%)	(%)	(%)		
66	112279	<.03	<.001							
67	112280	<.03	<.001							
68	112281	<.03	<.001							
69	112282	<.03	<.001							
70	112283	<.03	<.001							
71	112284	<.03	<.001							
72	112285	<.03	<.001							
73	112286	<.03	<.001							
74	112287	0.27	0.008							
75	112288	0.07	0.002							
76	112289	<.03	<.001							
77	112290	0.42	0.012							
78	112291	0.59	0.017							
79	112292	<.03	<.001							
80	112293	<.03	<.001							
81	112294	1.00	0.029	62.4	1.82					
82	112295	0.04	0.023	JE.T	1.02					
83	112296	<.03	<.001					-		
84	112297	<.03	<.001							
85	112298	<.03	<.001							
86	112299	<.03	<.001							
87	112300	<.03	<.001							
88	112300	<.03	<.001							
89	112302	<.03	<.001							
90	112302	0.12	0.003			3.10				
91	112303	0.12	0.003			5.10				
92	112305	<.03	<.001							
93	112306	<.03	<.001							
94	112307	<.03 <.03	<.001							
95	112308	<.03	<.001							
95 96	112309	<.03	<.001							•
97	112309	<.03								
98	112310	<.03	<.001				· · · ·			
99	112312	<.03	<.001			·				
100	112312	<.03	<.001				<u> </u>			
100	112313	<.03	<.001							
101	112315	<.03	<.001							
102	112316	0.08	0.002							
103	112317	<.03	<.002	· · · · · · · · · · · · · · · · · · ·						
104	112317	<.03	<.001							
105	112318									
105	112319	<.03	<.001							
107		<.03	<.001							
108	112321	<.03	<.001							
								ATOD		
· · · ·	·····					ECO-TECH			CƏLID.	
						Frank J. Pe				
						B.C. Certifi	eu Assay	er		

_

\$. . . .

. : £. 2

PLORER	GOLD CO	ORPORATIO	N AK98	3-409						14-Aug-98	
	· · · · · · · · · · · · · · · · · · ·		Au	Au	Ag	Ag	As	Pb	Zn		
ET #.	Tag #		(g/t)	(oz/t)	(g/t)	oz/t)	(%)	(%)	(%)		
109	112322		<.03	<.001		<u></u>					
110	112323		<.03	<.001							
111	112324		<.03	<.001							
112	112325		0.03	0.001							
113	112326		0.06	0.002							
114	112327		0.03	0.001							
115	112328		<.03	<.001							
116	112329		0.03	0.001							
117	112330		0.25	0.007							
118	112331		<.03	<.001							
119	112332		0.18	0.005							
120	112333		0.05	0.001							
121	112334		<.03	<.001							
122	112335		<.03	<.001							
123	112336		<.03	<.001							
124	112337	· · · · ·	0.07	0.002							
125	112338		<.03	<.001							
126	112339		<.03	<.001							
127	112340		<.03	<.001							
128	112341		<.03	<.001							
129	112342		0.86	0.025			7.55				
130	112343		<.03	<.001							
131	112344		<.03	<.001							
132	112345		<.03	<.001							
133	112346		<.03	<.001	· · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				
134	112347		0.25	0.007			1.13				
135	112348		<.03	<.001							
136	112349		0.25	0.007			1.58				
137	112350		<.03	<.001							
138	112351		0.08	0.002			1.42		· · ·		
139	112352		<.03	<.001							
140	112353		1.54	0.045	205.0	5.98	6.87		3.06		
141	112354	· · · · ·	<.03	<.001							
142	112355		<.03	<.001							-
143	112356		<.03	<.001							
144	112357		<.03	<.001							
145	112358		<.03	<.001							
146	112359		<.03	<.001					<u> </u>		
147	112360		<.03	<.001							
148	112361		<.03	<.001							
149	112362		0.08	0.002			1.27				
150	112363		<.03	<.001							
151	112364		<.03	<.001							
							ECO-TECH		ATOP		
							Frank J. Pe			LOLID.	-
					Page 4		B.C. Certifi				

: : : :

_

: 2 - 2

L.

			409							
		Au	Au	Ag	Ag	As	Pb	Zn		
ET #.	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)	(%)	(%)	(%)		
152	112365	0.19	0.006			1.95				
153	112366	<.03	<.001							
154	112367	<.03	<.001		- ** *** ** **					
155	112368	<.03	<.001							
156	112369	<.03	<.001							
157	112370	0.05	0.001							
158	112371	0.07	0.002							
159	112372	<.03	<.001							
160	112373	<.03	<.001							
161	112374	<.03	<.001							
162	112375	<.03	<.001							
163	112376	<.03	<.001							
164	112377	<.03	<.001							
165	112378	0.03	0.001							
166	112379	0.04	0.001							
167	112380	<.03	<.001							
168	112381	<.03	<.001							
169	112382	<.03	<.001							
170	112383	<.03	<.001			<u> </u>			•	
171	112384	0.25	0.007					1.29		
172	112385	0.04	0.001					1.20	<u> </u>	
173	112386	<.03	<.001	· · · · · · ·						
174	112387	<.03	<.001							
175	112388	<.03	<.001							
176	112389	<.03	<.001							
177	112399	<.03	<.001							
178		<.03	<.001							
	112391 112392	0.17	0.005							
179			<.001							
180	112393	<.03								
181	112394	<.03	<.001					, .		
182	112395	<.03	<.001							
183	112396	0.08	0.002						-	
184	112397	0.07	0.002			<u> </u>				<u> </u>
185	112398	<.03	<.001			ļ				
186	112399	<.03	<.001							
187	112400	< .03	<.001							-
188	112401	<.03	<.001			ļ				
189	112402	<.03	<.001			<u> </u>				
190	112403	0.08	0.002			<u> </u>				ļ
191	112404	0.11	0.003			<u> </u>				ļ
192	112405	<.03	<.001							
193	112406	<.03	<.001							ļ
194	112407	0.05	0.001							
						ECO-TECH			ES LTD.	
						Frank J. Pe			<u> </u>	
						B.C. Certifi	ed Assay	yer		

-

_

. k. .7

LORE	R GOLD CORPOR	RATION AK98-	409						14-Aug-98	
			A		0.0		Pb	Zn		
FT #	Ton #	Au	Au (oz/t)	Ag (g/t)	Ag (oz/t)	As (%)	(%)	<u> </u>	· · · · · · · · · · · · · · · · · · ·	
ET #.	Tag #	(g/t)		(9/4)	(02/1)	(70)	(%)	(%)		
195	112408	0.05	0.001			0.00				
196	112409	0.13	0.004			0.89				<u> </u>
197	112410	0.14	0.004							<u> </u>
198	112411	<.03	<.001							
199	112412	<.03	<.001							<u> </u>
200	112413	<.03	<.001							<u> </u>
201	112414	<.03	<.001							<u> </u>
202	112415	<.03	<.001							
203	112416	<.03	<.001							
204	112417	<.03	<.001							
205	112418	<.03	<.001							
206	112419	<.03	<.001							<u> </u>
207	112420	<.03	<.001							
208	112421	<.03	<.001							
209	112422	<.03	<.001							<u> </u>
210	112423	<.03	<.001							
211	112424	<.03	<.001							<u> </u>
212	112425	<.03	<.001							<u> </u>
213	112426	0.13	0.004							<u> </u>
214	112427	<.03	<.001							ļ
215	112428	0.03	0.001							ļ
216	112429	<.03	<.001					·		ļ
217	112430	<.03	<.001							ļ
218	112431	<.03	<.001							ļ
219	112432	<.03	<.001							┡
220	112433	<.03	<.001							<u> </u>
221	112434	<.03	<.001							
222	112435	<.03	<.001							
223	112436	<.03	<.001							
224	112437	<.03	<.001							<u> </u>
225	112438	<.03	<.001							
226	112439	<.03	<.001			ļļ.				<u> </u>
227	111652	<.03	<.001	· · · ·	•	-				<u> </u>
228	111654	<.03	<.001		10.00					_
229	K1108	2.62	0.076	345.0	10.06		5.42			
230	K1109	0.86	0.025			1.43			<u> </u>	
231	K1110	0.70	0.020	56.0	1.63	-			1	
232	K1111	<.03	<.001		······				<u> </u>	–
233	K1112	<.03	<.001							
			· · · ·	·						
						ECO-TEC		RATOR	ES LTD.	╞
						Frank J. P			T	+
						B.C. Certi				+
	<u> </u>									+

.

, . . .

, . . .

.

, . . .

.

·---

1 1. 7

AFLORLA	GOLD CORPOR					· · · · · · · · · · · · · · · · · · ·		-7	14-Aug-98	
		Au	Au	Ag	Ag	As	Pb	Zn		
ET #.	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)	(%)	(%)	(%)		
QC DATA	•									
Resplit:										
1	112214	0.03	0.001							
36	112249	0.34	0.010							
71	112284	<.03	<.001							
106	112319	<.03	<.001							
141	112354	<.03	<.001							
176	112389	<.03	<.001							
211	112424	<.03	<.001							
Repeat:										
1	112214	<.03	<.001							
10	112223	<.03	<.001							
19	112232	<.03	<.001							
36	112249	0.31	0.009							
45	112258	0.17	0.005							
51	112264				1			1.11		
54	112267	<.03	<.001							
71	112284	<.03	<.001							
80	112293	<.03	<.001							
81	112294			61.8	1.80					
89	112302	<.03	<.001							1
106	112319	<.03	<.001							
115	112328	<.03	<.001							
124	112337	0.07	0.002							1
141	112354	<.03	<.001	····						1
150	112363	<.03	<.001							
159	112372	<.03	<.001							
171	112373							1.28	1	
176	112389	<.03	<.001							
185	112398	<.03	<.001						-	
194	112407	0.06	0.002							
211	112424	<.03	<.001							1
220	112433	<.03	<.001							1
Standard		4.00								1
STD-M	•	1.60	0.047							1
STD-M		1.59	0.046							1
STD-M		1.60	0.040							
STD-M		1.54	0.045							
STD-M		1.70	0.050							1
STD-M		1.40	0.030							
STD-M STD-M		1.40	0.047							1
		1.02	0.047	69.7	2.03		4.33			
Mpla Cob 1					2.00			4.42	2	
Cpb-1 CD-1	· · · · · · · · · · · · · · · · · · ·					0.66			-	-
CD-1						0.00				
						ECO-TEC	H LABO	RATOR	IES LTD.	
						Frank J. P				
XLS/98						B.C. Certi				

. .

> . . .

i.,

.

		CERTIFIC						
								13-Au
	GOLD CORPO							13-AU
	1708 DOLPHIN	AVENUE						
KELOWN	A, BC							
V1Y 4S4								
ATTENTIC	ON: ERNIE BE	RGVINSON						
	nples received: (56						
	pe: Rock / Core							
	#: RED CAP							
	T #: None Giver							
Samples s	ubmitted by: X	plorer						
		Au	Au	Ag	Ag	As		
ET #.	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)	(%)		
1	112440	<.03	<.001					
2	112441	<.03	<.001					
3	112442	<.03	<.001					
4	112443	<.03	<.001					
5	112444	<.03	<.001					
6	112445	<.03	<.001					
7	112446	0.05	0.001					
8	112447	0.05	0.001					
9	112448	0.48	0.014			4.12		
10	112449	0.04	0.001					
11	112450	<.03	<.001					
12	112451	0.11	0.003			1.14		
13	112452	0.12	0.003					
14	112453	<.03	<.001					
15	112454	0.07	0.002					
16	112455	<.03	<.001					
17	112456	<.03	<.001					
18	112457	<.03	<.001					
19	112458	<.03	<.001					
20	112459	0.03	0.001					
21	112460	<.03	<.001					
22	112461	<.03	<.001					
								TORIES LT
							Pezzotti, A.S	
						B.C. Cert	ified Assaye	r
							ļ	
						<u> </u>	ļ	
							ļ	
							P	
				-				
L				Page	1			

LOKEP	R GOLD CORPOR	AIIUN AR30-	405					13-Aug
		Au	Au	Ag	Ag	As		
ET #.	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)	(%)		
23	112462	<.03	<.001					
23	112463	<.03	<.001					
25	112464	<.03	<.001					
26	112465	<.03	<.001					
20	112405	1.52	0.044	66.8	1.95	4.30		
28	112400	<.03	<.001	00.0	1.00			
29	112468	0.08	0.002			2.15		
30	112469	0.12	0.002	· · · · · · · · · · · · · · · · · · ·		1.14		
31	112409	0.12	0.005			1.99		
32	112470	0.19	0.006			1.99		
33	112471	0.19	0.008			1.66		
33	112472	<.03	<.001			1.00		
	112473	<.03	<.001					
35		<.03	<.001					
36	112475 112476	0.05	0.001					
37		0.05	0.001					
38	112477	<.03	<.001					
39	112478		<.001					
40	112479	<.03		27.0	0.81			
41	112480	0.11	0.003	27.8	0.01			
42	112481	0.07	0.002		-			
43	112482	0.08	0.002					
44	112483	<.03	<.001					
45	112484	<.03	<.001		4.00	E 74		
46	112485	1.28	0.037	41.0	1.20	5.71 3.13		
47	112486	0.61	0.018			3.13		
48	112487	<.03	<.001					
49	112488	0.03	0.001					
50	112489	<.03	<.001					
51	112490	0.04	0.001	[.				
52	112491	<.03	<.001					
53	112492	0.12	0.003					
54	112493	0.06	0.002					
55	112494	0.03	0.001					
56	112495	<.03	<.001					
57	112496	<.03	<.001					
58	112497	0.08	0.002					
59	112498	<.03	<.001					
60	112499	<.03	<.001					
61	112500	0.04	0.001					
62	112501	0.26	0.008			2.45		
63	112502	0.21	0.006			1.18		
64	112503	0.12	0.003					
65	112504	0.04	0.001					
66	112505	<.03	<.001					
								RATORIES LT
							Pezzotti, A	
						B.C. Cert	ified Assay	/er
							1	

_

. . .

:

ε.

,..... .

-

. .

XPLORE	R GOLD CORPO	RATION AK98-	405					13-Aug-9
		Au	Au	Ag	Ag	As		
ET #.	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)	(%)		
E1 #.	iay #	(9/9		(9,4)	(024)	(70)		
Resplit:								
1	112440	<.03	<.001					
36	112475	<.03	<.001					
Repeat:								
1	112440	<.03	<.001					
9	112448	-	-			4.44		
10	112449	0.04	0.001					
19	112458	<.03	<.001					
36	112475	<.03	<.001					
45	112484	0.03	0.001					
54	112493	0.07	0.002					
Standard	l:							
STD-M		1.52	0.044					
STD-M		1.40	0.041					
Mpla				6 9 .7	2.03			
			·				H LABORATOR	IES LTD.
							ezzotti, A.Sc.T.	
XLS/98						B.C. Certi	fied Assayer	

} }

		CERTIFIC	ATE OF AS	SAY AK 98-417	
	R GOLD CORPORA				12-Aug-98
	-1708 DOLPHIN AV				12-Aug-30
KELOWN					
V1Y 4S4					
ATTENTI	ON: ERNIE BERG	VINSON			
No. of san	nples received: 3				
Sample ty					
	T#: RED CAP				
SHIPMEN	IT #: None Given				
Samples s	submitted by: J. WIL	LIAMS			
·	Ī				
		Au	Au		
ET #.	Tag #	(g/t)	(oz/t)		
1	112506	<.03	<.001		
2	112507	<.03	<.001		
3	112508	<.03	<.001		
QC DATA	<u>\</u> :				
Resplit:					
1	112506	<.03	<.001		
Repeat:				· ·	
1	112506	<.03	<.001		
Standard	<u>k</u>				
STD-M		1.52	0.044		
	L			+	
	<u> </u>				
	· · · · ·				
				· · · · · · · · · · · · · · · · · · ·	
					LABORATORIES LTD.
					ezzotti, A.Sc.T.
					ed Assayer
XLS/98				B.C. Centin	

ξ.,

: x →

1

....

s.

.

.

ι.

. 1. 7

	CE	RIIFIC	AIEO	- ASSA	Y AK	98-347		
KPLORE	R GOLD CORPORATIO	NC						29-Jul-9
	-1708 DOLPHIN AVEN	UE						
KELOWN	A, BC							
V1Y 4S4								
ATTENITI	ON: ERNIE BERGVIN	SON						
ALLENII								
No. of sai	mples received: 86							
	/pe: Rock							
	T #: None Given							
	IT #: None Given							
Samples	submitted by: Xplorer							
							Cu	<u>····</u>
		Au	Au	Ag	Ag	As		
ET #.	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)	(%)	(%)	
1	K1084	0.08	0.002					
2	K1085	0.06	0.002					
3	K1086	0.22	0.006	<u> </u>				
4	K1087	4.63	0.135					
5	K1088	0.53	0.015	50.0	1 40	1.12		
6	K1089	7.57	0.221	50.8 25.6	1.48 0.75	2.78		
7	K1090	4.75	0.139	25.0	0.15	2.10		
8	K1091	0.55 <.03	<.001					
9	K1092	<.03 0.77	<.001			2.86		
10	K1093	0.77	0.022			1.25		
11	K1094	0.32	0.009					
12	K1095 K1096	1.05	0.012					
13		0.93	0.031					
14	K1097 K1098	<.03	<.001					
15 16	K1098	<.03	<.001					
10	K1099	<.03	<.001					
18	K1100	4.94	0.144	195.0	5.69	20.60	3.80	
10	111732	<.03	<.001					
20	111733	0.03	0.001					
						FCOLTECH	LABORAT	
							zzotti, A.Sc.	
							ed Assayer	••
		· · · · · · · · · · · · · · · · · · ·			·	<u> </u>		

ί ε.

() 8)

i A v

4

:

1

4. I

LOUL	R GOLD COF			
		 Au	Au	Ag
ET #.	Tag #	(g/t)	(oz/t)	(g/t)
21	111734	 <.03	<.001	
22	111735	 <.03	<.001	
23	111736	 <.03	<.001	
24	111737	 <.03	<.001	
25	111738	<.03	<.001	
26	111739	 <.03	<.001	
27	111751	 <.03	<.001	
28	111752	 <.03	<.001	
29	111753	0.04	0.001	
30	111754	 <.03	<.001	
31	111755	 5.81	0.169	
32	111756	 0.15	0.004	
33	111757	 <.03	<.001	
34	111758	 <.03	<.001	
35	111759	 <.03	<.001	
36	111760	 0.07	0.002	
37	111761	 1.29	0.038	
38	111762	 0.08	0.002	
39	111763	 <.03	<.001	
40	111764	 <.03	<.001	
41	111765	 <.03	<.001	
42	111766	 <.03	<.001	
43	111767	 <.03	<.001	
44	111768	 0.13	0.004	
45	111769	 0.22	0.006	
46	111770	 <.03	<.001	
47	111771	 <.03	<.001	
48	111772	 <.03	<.001	
49	111773	 <.03	<.001	
50	111774	 <.03	<.001	
51	111775	 <.03	<.001	
.52	111776	 <.03	<.001	
53	111777	 <.03	<.001	
54	111778	 0.61	0.018	
55	111779	 <.03	<.001	
56	111780	 0.15	0.004	
57	111781	 0.03	0.001	
58	111782	 0.03	0.001	
59	111783	 0.06	0.002	
60	111784	 0.20	0.002	
61	111785	 <.03	<.001	
62	111786	 0.04	0.001	
UZ	111/00	 0.04	0.001	
		 		·

29-Jul-98

As

(%)

2.70

Cu

(%)

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

i t b i i

XPLORE	R GOLD CORPO	RATION AK98-	347						29-Jul-9
		Au	Au	Ag	Ag	As	Cu		
ET #.	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)	(%)	(%)		
63	111787	0.08	0.002						
64	111788	<.03	<.001						
65	111789	<.03	<.001						
66	111790	<.03	<.001						
67	111791	0.10	0.003						
68	111792	0.04	0.001						
69	111793	<.03	<.001						
70	111794	0.04	0.001						
71	111795	<.03	<.001						
72	111796	<.03	<.001						
73	111797	0.16	0.005						
74	111798	<.03	<.001						
75	111799	<.03	<.001						
76	111800	<.03	<.001						
77	111801	<.03	<.001						
78	111802	<.03	<.001						
79	111803	<.03	<.001						
80	111804	0.03	0.001						
81	111805	<.03	<.001						
82	111806	<.03	<.001						
83	111807	<.03	<.001						
	111808	0.03	0.001						
84									
85	111809	0.28	0.008						
86	111810	<.03	<.001						
	A:								
Resplit:									
1	K1084	0.09	0.003						
36	111760	0.07	0.002						
71	111795	<.03	<.001						
Repeat:	111795	<u> </u>	<u> </u>						
	K1084	0.08	0.002						
1		0.84							
10	K1093		0.024						
19	111732	<.03	<.001						
36	111760	0.04	0.001						
45	111769	0.21	0.006						
54	111778	0.64	0.019						
71	111795	<.03	<.001						
Standar	d:	4.50	0.044						
STD-M		1.52	0.044						
STD-M		1.46	0.043						
STD-M	_	1.46	0.043	60.7		104	1 4 4		
NPIa				69.7	2.03	0.84	1.44		· · · ·
									D.
						Frank J. P			
XLS/98						B.C. Certi	ried Assa	yer	

T	19-Jun-98	T	- T				T]
	10-041-00]
CO-TI	ECH LABOR	ATORIES	LTD.								CP CE	RTIFICA	TE OF	ANALY	SIS A	<u>< 98-21</u>	0										RPOR		<u></u>	
0041	East Trans C	Canada Hig	ihway																						VNA, B		PHINP	AVENUE	÷+	
	OPS, B.C.																						-	/1Y 45						
2C 6T	4																							11 40				+		
											+												1	TTEN	TION:	ERNIE	E/ERIC	BERGL	JINSON	1
honor	604-573-57	00																					[⁻ -		1					
	604-573-45																						1	Vo. of s	samples	s receiv	<i>ied:</i> 29)		
	004-070-40	<u>, </u>																							type:			L		
																										Vone G		⊢−−− ∔		
†																										None		<u> </u>		
/alues	in ppm un	less other	wise r	eportec	1																			sample	es subn	nπed b	<u>y.</u> xplc	orer Gol		
															No. 0/		Mc	Na %	NI	P	Pb	Sb	Sn	87	TI %	U	v	w	Y	Zn
Et #.					As			Ca %	Cd	Co	Cr		Fe %		Mg %	Mn 178		Na %	7	340	10	<5	<20	13		<10			ব	
1	97315	5		1.25	<5			0.42	<1 <1	23 33	72 95	314	8.62 8.72		0.44	1/8	0 5		10	640	12	<5	<20	19		<10			<1	22 25
2	97316	5	<0.2	1.43	<5 10	45 10	<5 <5		<1	33	49	657		<10		74			4	630	8	<5	<20	39		<10			<1	32 73
3	97317 97318	80 85	1.8 4.2	1.17	50	60	<5		1	72	35	2092		<10		288	12		15	320	8	<5	<20	38		10			<1	
4	97310	35	2.4	2.46	<5	80	<5		2	53	22	2092				227	16	0.23	4	120	4	<5	<20	111	0.01	10	20	10	<1	53
	81515			2.10																										
6	97320	5	<0.2	1.49	<5	35	<5	0.37	<1	38	50	181		<10		107	5		9		8	<5	<20	15		10			<1	23
7	97321	45	2.0	0.76	<5	95	<5	0.44	3	97	7	1159				183	16		5		8	<5	<20	29		10			<1	42
8	97322	75	0.8	1.53	65	50	<5		<1	27	61	715		<10		377	12		6	300	8	<5	<20 <20	8	0.03	<10 <10		20	<1 <1	20 49
9	97323	55	2.2	1.66	<5	60	<5		<1	25	26	1721		<10		379	9	0.06	6	690 360	8	<5 <5	<20	8	0.03	10			<1	36
10	97324	>1000	1.6	3.09	<5	75	<5	0.49	2	52	27	1621	>10	<10	0.57	571	14	0.03	°	300	0	~0	~20	0	0.04					
				0.00				0.00		44	47	3370	>10	<10	0.78	1222	27	0.04	15	170	114	<5	<20	7	0.01	<10	55	10	<1	228
11	97325	55	18.2		6955 10	85 60	<5 <5		<1 <1	102	27	2131				403	396		65	460	6	<5	<20	9		<10			<1	44
12 13	97326 97327	15	4.4 0.2		<5	30	<5			43	59	142		<10		166	14	0.09	5	470	6	<5	<20	35	0.07	<10			<1	31
13	97327	15	0.2		15	40	<5		<1	26	50	148		<10		178	3	0.07	9	1060	36	<5	<20	24		<10	30		1	29
15	97329	5			170		<5		11	4	53	77	4.81	<10	0.74	1119	4	0.01	<1	970	78	<5	<20	14	0.01	<10	35	<10	<1	13
																									.0.04		<u> </u>	1		146
16	97330	620	27.6		5075		<5		<1	451	3	6558		<10		127	61		54	<10	16	<5 <5	<20 <20		<0.01 <0.01	<u>10</u> 10			<1 <1	41
17	97331	40			630	75	<5		<1	101	13			50		89	26		18 2	460 710	16 22	<0 <5	<20	9		<10			<1	432
18	97332	30			25	30	<5		5	12	30			<10 <10	0.09	66 655	10		343	<10	224	90	<20	15		<10	40		<1	333
19	97333	>1000	>30		>10000	70	<5 <5		<1 <1	4540 4255		>10000		<10	0.00	1007	15		343	890	226	70	<20	34		<10			<1	5480
20	97334	>1000	>30	1.85	>10000	80	<5	0.80	<1	4200	- 30	~10000		~10	0.07	1007		0.00			22.5									
						├																								

]		-	j .	·		. 1		1	1 ₄	J	x - 1	J .	1]	n	1		I	-	1		J.			. 1		. /		,
PLOR	ER GOLD	CORPORA	TION		Ī				[T	CP CE	RTIFICA	TE OF	ANAL	isis a	K 98-21	0									ECO-T		ABORA	TORIE	S LTD.
																									771 0/		v	w	Y	Zn
Et #.	Tag #	Au(ppb)		AI %	As	Ba		Ca %	Cd	Co	Cr		Fe %		Mg %	Mn		Na %	NI	P		the second s	Sn	_	TI %	U				352
21	97335	10		5.55	510	65		0.46	<1	42	54	232			2.94	3963		0.01		1620	64	<5	<20	25		<10 <10	141	<10 <10	<1 <1	173
22	97336	>1000	17.8		>10000	80		2.38	<1	1760	34	1886			0.52			0.08	552				<20	206		10	95	<10	<1	27
23	97337	5	0.4		370	125		0.06	<1	133	<1	1175			<0.01	49	25		106	<10	48	<5	<20		<0.01	<10	10 126	<10	6	48
24	97338	5	1.2		185	40		1.11	<1	12	121	984			1.24	227	4	0.05	55		10 612	<5 <5	<20 <20	<u></u> 91	0.02	<10	120	<10	<1	7140
25	97339	>1000	22.8	1.53	1040	45	<5	6.77	50	633	42	483	7.09	<10	0.27	7072	6	0.01	220	100	012	<0	<20	81	0.03	10	/	~10	~ 1	/140
												000 1			0.00	2002	- 44	0.00	E 2 4	1740	414	<5	<20	61	0.02	<10	39	<10	<1	1700
26	97340	>1000		1.79	2905	50		1.83	<1		37	9864			0.33	2003	11 11	0.06	524	1710 1950		<0 <5		59		<10	39	<10	<1	2140
27	97341	>1000	>30		3275	50		1.85	<1		28	8992				788	27	0.00	322	450			<20		<0.02	<10	17	<10	<1	262
28	97342	>1000		0.96	>10000	80			507	8509	3	9492			< 0.01		<1	0.04	55			<5		111		<10	15	<10		>10000
29	97343	>1000	>30	1.78	1475	35	<5	1.42	449	355	39	5631	7.26	<10	0.23	1754		0.02		1990	290	~~	~20		0.01	~10	- 10	-10		- 10000
C DA																														
Respli		L				- 05		0.40	<1	26	80	206	8.70	<10	0,38	172	8	0.02	6	370	14	<5	<20	11	0.01	<10	21	<10	<1	24
1	97315	5	0.4	1.20	5	35	<2	0.40	<1	20	00	290	0.70	\$10	0.30	112		0.02		0/0			-20		0.01					
l																														
Repea				4.04	<5	35	-5	0.42	<1	23	72	320	8.68	<10	0.43	180	8	0.02	7	380	12	<5	<20	13	0.01	<10	23	10	<1	20
1	97315	10	1.8	1.24	<5			0.42	2	51	26	1571				575	15		8		4	<5		8		20	58	<10	<1	35
10	97324 97333	>1000	>30		>10000				<1	4632		>10000				658	20		345		230	90	<20	15	0.02	<10	39	<10	<1	334
19	97333	>1000	>30	1.33	210000	- 10	~>	0.01		7002		- 10000																		
04d				<u> </u>			· · · · ·																							
Standa GEO'9		135	10	1.80	65	160	<5	1.86	<1	19	62	76	3.73	<10	0.86	680	<1	0.02	23	630	22	<5	<20	54	0.09	<10	76	<10	4	68
SEO 8	0	100	1.0	1.00	00	100		1.00																						
				<u> </u>																										
		+		l											· · · · ·															
		+																												
		+											1																	
		+		1		l							1		1															
		+		+	<u> </u>								1																	
		+		+									<u> </u>																	
		+		+					t	-					[
		+		+	···																									
		+			+	<u> </u>																			LECH L			S LTD.		
df/210							t						l											Frank	J. Pezz	otti, A.S	Sc.T.			
XLS/9			1		+	<u> </u>							1											B.C. C	certified	Assaye	ſ			

	17-Jul-98													+														
CO.T	ECH LABO	PATO	RES I .	TD						ICP CI				YSIS A	K 98-3	08							XPLORER O	BOLD C	ORPOF	ATION		
	East Trans												1	T		-							#102, 406-1	708 DO	PHIN /	VENU	E	
	DOPS, B.C.		l																				KELOWNA,	BC				
/2C 61																							V1Y 4S4	1				
200																							1					
														-									ATTENTION	: ERNI	E BERG	JUINSC)N	
)hono	604-573-5	700																						T				
	604-573-4		<u> </u>										-										No. of samp	les rece	ived:50			
άλ.	004-373-4		<u> </u>		· · ·																		Sample type	ROCK			· · · · · ·	
													1	+									PROJECT #			1		
													·	+									SHIPMENT					
			the second sector																				Samples su				GOLD	COF
values	s in ppm un	INSS OL	uierwis											+					+									
Et #.	Tag #	Δ	AI %	As	Ba	Ri	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr Ti ?	6 U	V	W	Y	
1	111601		1.10			5	0.73		6	47	9	i				2		16	430	200	<5	<20	27 0.0	3 <10			4	
2	111602	0.4			70	<5	0.29		6	33	47					4	0.03	<1	940	38	<5	<20	13 < 0.0	1 <10	32	<10	1	
3	111603	13.8				<5	0.16								692	3	0.02	14	220	1700	180	<20	10 0.0	2 <10	26		3	1:
4	111604	15.4	-		135	5	0.10		5						835	6		7	270	958	35	<20	15 0.0		19	<10	1	
4 5	111605	>30		>10000	40	<5	0.10		6	79	682					4	0.02	1	390		4870	<20	8 < 0.0				<1	6
3	111005	- 30	0.55	-10000		~~~~	0.10		`			0.11												-				
6	111606	3.4	1.37	155	65	<5	1.55	11	11	38	99	2.96	<10	0.65		13	0.10	8	1010	850	20	<20					4	
7	111607	0.2			55	5	0.33		6	44	49	2.71	<10	0.69	348	2	0.05	<1	940	34	5	<20	19 0.0				3	
8	111608	<0.2			50	<5	0.38	<1	7	35	58	2.60	<10	0.71	400	3	0.04	<1	930	18	<5	<20	16 0.0			<10	3	
9	111609	6.4			145	5		<1	5	50	77	3.57	/ <10	0.02	85	7	0.02	<1	890	184	<5	<20	20 <0.0			<10	<1	
10	111610	4.8	-			5	0.10		2	31	61	3.27	/ <10	< 0.01	89	5	0.02	<1	910	116	<5	<20	11 <0.0	1 <10	17	<10	<1	
11	111611	2.8	1.15	290	85	5	0.69	<1	11	40	117	5.83	<10	0.09	242	16	0.05	1	1000	82	<5	<20	44 0.0				<1	
12	111612	3.4				<5	0.48	<1	10	37	112	6.06	s <10	0.09	243	16	0.04	<1	990	78	<5	<20	31 0.0				<1	
13	111613	1.0				<5	0.54	2	6	37	79	3.77	<10	0.56	545	6	0.03	<1	890	38	<5	<20	23 <0.0			<10	<1	
14	111614	1.4				<5	0.17	<1	5	43	77	4.33	3 <10	0.14	208	7	0.03	<1	890	44	<5	<20	10 <0.0			<10	<1	
15	111615	4.0				10	0.08	<1	7	36	128	7.93	3 <10) <0.01	139	13	0.02	<1	770	24	<5	<20	11 <0.0	1 <10	25	<10	<1	
				+									1	1														
16	111616	1.0	0.32	265	115	5	0.09	<1	3	55	61	3.75	5 <10	0.02	168	13		1	800	18	<5	<20	9 <0.0				<1	
17	111617	1.4				10			4			3.28	3 <10) <0.01	204	12		<1	730	18	<5	<20	8 <0.0				<1	
18	111618	<0.2				<5			3		18	1.55	5 <10	0.39	211	1	0.05	<1	940	8	<5	<20	18 0.0				4	
19	111619	3.4				20	0.07	<1	7	28	105	>10) <10) <0.01	107	12	0.05	<1	890	40	<5	<20	9 <0.0	1 10			<1	
20	111620	3.8			90	15	0.09		11	36		>10	<10) <0.01	93	16	0.04	<1	760	70	<5	<20	8 <0.0	1 10	14	<10	<1	
40	111020								i															_				
															ļ													
			ļ											+														
		+									+				+													
				+				<u> </u>			+	<u>+</u>			+									1	1			
	1				1			L	L	·	A																	

PLOF	RER GOLD	CORPC	RATIO	ON							RTIFICA	TE OF	ANAL	ISIS A	K 98-3	08									ECO-T		ABORA	TORIE	S LTD.
					_		0.0		-	0		F - 9/		NA 0/			No.9/	Ní	P	Pb	CL			Ti %	U	v	w	Y	7
Et #.			AI %	As	Ba		Ca %	Cd	Co	Cr		Fe %		Mg %	<u>Mn</u> 93	Mo 16	Na %		870	4	Sb <5	<u>Sn</u> <20		< 0.01	10	33	<10	<1	Zn 32
21	111621	0.4		1085	115	15		<1 <1	9 34	15 25	261	>10 >10		< 0.01	101	18	0.03	3		4	<5	<20	-	< 0.01	10	10	<10	<1	12
22	111622	1.2		455	70	30								< 0.01	222	6	0.05	<1		16	<5	<20		< 0.01	<10	11	<10	<1	12
23	111623			>10000	60	<5		<u><1</u>	15	22 37	101	6.22		0.92	817	4	0.03	<1		32	10	<20		< 0.01	<10	46	<10	3	139
24	111624		1.24	85	80	<5		· ·		37				0.92	53	14	0.03	3		24	<5	<20		< 0.01	<10	19	<10	<1	44
25	111625	2.6	0.34	310	35	<5	0.12	<1	11	32	91	5.52	<10	0.05	55	14	0.03	3	010	24	<2	<20	!!	<0.01	<10	19	\$10		44
						45	- 0.07			05		5 50		0.00	~~~~	- 10	0.00	4	600	201	Æ	-20	40	10.01	10		-10	-1	GE
26	111626		0.31	510	55	15		<1	9	35		5.59		0.06	60	13	0.02	<1		22	<5 5	<20		<0.01	10	23 52	<10	<1 4	65 104
27	111627		1.26	100	90	<5		1	8	47		2.94		0.72		19 3	0.07	10		18	ວ <5	<20 <20		0.02	<10 <10		<10 <10	4	89
28	111628		1.18	110	80	<5		<1	7	37		3.13		0.76			0.06	<1		16	<5 <5		40 55		<10	42	<10	- 4	94
29	111629	0.2		40	80	<5		<1	7	37	55		<10		587	2	0.07	<1		14	-	<20				44			
30	111630	6.4	0.14	650	35	20	0.05	<1	22	25	20	6.83	<10	<0.01	19	17	0.02	4	240	16	<5	<20	8	<0.01	10	4	<10	<1	24
												0.00		0.40	040		0.00		040				40	10.01	-10	40	-10		57
31	111631		0.53	220	90	<5		<1	5	29		3.83		0.10		5		<1		68	<5	<20		<0.01	<10	18	<10	<1	
32	111632	4.2	0.83	125	95	10		<1	8	45	150			0.29	488	12		<1		112	<5	<20		<0.01	<10	24	<10	<1	81
33	111633		0.19			<5		79	84	12	3346	>10		<0.01	193	22		28			<5	<20		<0.01	10	5	<10	<1	4506
34	111634	2.0		-	75	<5	0.20	2	6	52	84	3.09		0.38	503	5	0.05	3		66	<5	<20		<0.01	<10	33	<10	<1	125
35	111635	>30	0.44	2435	110	185	0.05	346	65	34	2285	>10	<10	<0.01	344	14	0.05	22	<10	2188	<5	<20	8	<0.01	10	9	<10	<1	>10000
											- 100		.10	1.00		- 10	0.00		- 10			<20	5	0.02	10	84	<10	<1	41
36	111636	<0.2				15		2	79	15	192	>10		1.60			0.06	7	<10 1110	<2	<5 <5	<20	54		<10	167	<10	24	100
37	111637	<0.2			55	30		<1	49	41	28	7.76		2.21		<1		25 5		4	<5	<20	- 54 28		<10	44	<10	24	51
38	111638	0.8			55	<5		<1	12	72	454	2.31		0.65		26				18				+				<1	
39	111639	1.8			75	<5	4.42	<1	11	48	331			0.25		39	0.02	2		14	<5 5	<20	12 105		<10 <10	18 31	<10 <10	3	41 104
40	111640	2.6	0.89	30	15	<5	6.15	2	7	70	270	3.12	10	0.42	1389	12	0.02	1	1400	132		<20	105	0.06	<10	- 31	<10		104
			0.54		70		0.44	045		50	500	- 10	-10	<0.01	406	95	0.01	4		>10000	345	<20	11	<0.01	10	5	<10		>10000
41	111641			>10000	70			815	31	50	500	>10									55	<20	190		<10	40	<10	<1	225
42	111642	1.6			50			2	22	33	223			0.32		5			1120 610		ວວ <5	<20			<10	59	<10	<1	896
43	111643	3.6			60			13	22	92		9.12		0.38		10		8			<5 <5	<20	264		<10	23	<10	3	21
44	111644	<0.2			25	<5		<1	8	43		1.55		0.28	96	<1	0.07			12 >10000		<20		< 0.09	10	23	<10	<1	4693
45	111645	>30	0.03	>10000	75	530	0.01	70	25	23	7483	>10	<10	<0.01	27	14	0.01		<u> </u>	~10000	3000	~20	11	<u>~0.01</u>			~10		-033
45	444546			0000	-		-0.04			107	440	3.34	~10	<0.01	41	89	0.01	1	20	>10000	125	<20	10	<0.01	<10	7	<10	<1	331
46	111646	>30			25		< 0.01	3	3	167	92			1.23		09 5		1		92	60	<20		< 0.01	<10	33	<10	4	58
47	111647		0.33		40			6	17	23				0.97		5 11			1020	92 60	<5	<20	52		<10	21	<10	5	74
48	111648	0.6			45	10		<1	18	56	20 135			0.97	762	3	0.05	4		4258	50	<20		< 0.03	<10	21	<10		>10000
49	111649	26.4		>10000	45	45		253	28						136			13			10	<20		< 0.01	10	15	<10	<1	5320
50	111650	>30	0.78	>10000	75	<5	0.04	167	66	69	>10000	>10	<10	0.09	130	19	0.01	13	\$10	5270	10	~20	13	~0.01		- 15	~ 10		5520

Page 2

	RIES LTD.
/ w Y	Y Zn
4 <10 4	4 427
7 <10 <1	<1 46
	4 418
6 <10 <1	
	<1 13
3 <10 <1	<1 46
4 <10 5	5 85
3 <10 5	5 75
ILS LID.	

16	111716	>1000			>10000	80			>1000	33	42	412	>10	<10	0.35	306	16	0.02	3	410	962	765	<20	1	<0.01	10	19	<10	<1	2488
15	111715	>1000				80			50	9	66	207	7.20	<10	0.65	437	8	0.05	3	1480	520	40	<20	25		<10	43	<10		1284
14	111714	30			1535	45		0.73	<1	31	184	94		<10	0.65	301	<1	0.13	33		352	<5	<20	88		<10	129	10	3	
13	111713	10				115			<1	11	75	44		<10	0.60	1233	9	0.11	22		100	<5	<20	263	<0.01	<10	14	10	2	
11 12	111711 111712	135			30	85				15	99	80		<10				0.17	5		68	20	<20	86	0.21	<10	187	<10	4	
44	111714	135	2.0	4.48	<5	50	<5	3.55	2	80	102	666	>10	<10	1.02	474	14	0.08	118	5460	32	<5	<20	973	0.09	<10	96	10	7	131
10	111710	40	0.4	4.83	40	90	<5	2.94	<1	24	66	121	4.67	<10	0.81	707	8	0.11	28	1040	20	10	~20	310	0.02	- 10				- 03
9	111709	20			385	30		1.26	<1	7	89	20	2.08	<10			5		17 39		134 96	15 10	<20 <20	78 916		<10 <10	37	10	3	
8	111708	5			480	65		0.59	<1	11	84	31						0.17	23		48		<20	79		<10	54	10 10	7	
7	111707	25			900	60		1.65	<1	112	64	808	9.25				7		18	670	146	<5	<20	83			89	10	<1 6	
6	111706	>1000			160	<5	-	3.62	92	38	2	1228	>10		<0.01			0.01	19			35	<20	23		<10	40	<10		5107
		200		0.40																										
4	111704	265			255	150		3.86	92	54	13	1568	>10		<0.01		36		<1		3126	<5	<20	17		10	19	<10		4757
3	111703 111704	5	<0.2 <0.2	0.87	5 >	 45	15	0.79	<1	20	58	170		<10			3		7	2310	18	<5	<20	43		<10	112	10	2	
2	111702	25			<5 5	40 30			1	25 11	81	71	9.77	<10			4			1210	8	<5	<20		0.00	<10	44	10	2	
1	111701	20			<5	40		1.25	<1	16	70 60	86 183		<10 <10	0.53		16			1340	10	<5	<20		0.08	<10		<10	<1	
Et #.		Au(ppb)		Al %	As	Ba		Ca %	Cd	Co	Cr		Fe %		Mg %			Na %		P 1380	Pb 10	<u>50</u>	>n <20	39		-10	51	10	3	
																		N - 0/				Sb	Sn		TI %	U	v	w		Zn
				- · · ·																										
aiues	s in ppm ur	liess oure	rwise	eporte	iu ii																							<u> </u>		1
																											: Xpion	ər Gold	+	
																										None G None G				
																								Sample			hon	 		
ax :	604-573-45	57																								s receiv	<u>ed: 16</u>			
hone:	604-573-57	00																												
																								ATTEN	TION:	ERNIE	BERGI	UINSON	1	
2C 61	4						+																							
	DOPS, B.C.																							VIY 4S		<u> </u>				
	East Trans	Canada Hig	ghway																					FIUZ, 4				ENUE	+	
	ECH LABO									1	CP CE	RTIFIC	ATE O	FANA	LYSIS	AK 98-	315										RPORA			
	16-Jul-98																									ł				

XPLC	RER GOLD	CORPOR	TION								ICP CE	RTIFI	CATEC		LYSIS	AK 98	-315								ECO-1	TECH L	ABORA	TORIE	S LTD	
Et #	. Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	NI	P	Pb	Sb	Ŝn	Sr	TI %	U	v	w	Ŷ	Zn
QC D	ATA:																													
Resp	lit:																													
1	111701	15	<0.2	1.10	10	35	10	1.31	<1	16	70	82	3.87	<10	0.52	427	15	0.08	14	1410	12	<5	<20	36	0.10	<10	52	30	4	27
Repe	at:																													
1	111701	15	<0.2	1.11	10	35	5	1.29	<1	17	79	87	4.04	<10	0.54	430	17	0.08	12	1440	14	<5	<20	40	0.10	<10	53	10	3	28
Stan	dard:																											•••••		
GEO'	98	130	1.2	1.80	80	160	<5	1.76	<1	21	61	78	4.18	<10	0.92	679	<1	0.03	23	720	26	<5	<20	60	0.12	<10	75	<10	5	74
													·																	
												·····																		
	-																													
15(34	-																										TORIE	S LTD.		
df/317 XLS/9																										otti, A.S Assaye				

ECO-TE 10041 E	21-Jul-98 ECH LABO												1		1														
10041 E KAMLC	ECH LABO			++																									
KAMLC		RATOR	IES L'	FD.						ICP CE	ERTIFIC	CATE C)F ANA	YSIS	AK 98-	320									OLD CC	BBOB	ATION		
	East Trans	Canada	Highw	vay									T														VENUE		
ADD OT	DOPS, B.C.																							WNA. E			VENUE		
V2C 61	[4																						V1Y 4						
	004 570 5																						ATTEN	TION:	ERNIE	BERG	UINSON	4	
	604-573-57 604-573-45			<u> </u>												· .													
	004-5/3-43	5/																	ļ						s receiv	ed: 14			
				++												ļ							Sampl	e type:	Rock				
				+																			PROJE	=CT #:	None G	iven			
/alues	in ppm un	ess off	nerwis	e reporte	d																ł				None (
												· · · · -	<u> </u>								+		Sample	əs subi	nittea by	<u>y: xpioi</u>	rer Gold		·····
Et #.	Tag #	Ag	Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	РЬ	Sb	Sn	Sr	Ti %	U	v	W	Y	Zn
1	111718	6.8	4.33	>10000	80	20	2.22	11	27	40	181	>10		1.41	521	7	0.17	2		704	505	<20	251			72	<10	<1	1111
2	111719	0.2			85	10	1.96	1	11	66	31	4.41	<10	1.08	699	6	0.16	3		140	30	<20	152			60	<10	<1	172
3	111720	0.6			140	<5	0.75	1		48	93	3.92	<10	0.90	860	5	0.16	3	270	194	15	<20		< 0.01	<10	40		<1	114
4	111721	0.8				5		1	-	44	37	3.46			856	3	0.05	3		138	<5	<20	21	<0.01	<10	17	<10	<1	79
5	111722	12.8		>10000	65	15	0.54	7		50	93	6.84			296	9		4		1642	620	<20	27	<0.01	<10	16	<10	<1	541
6	111723	>30			45	55	0.17	12		78	282	9.88			532	8		<1		1968	<5	<20		<0.01	<10	36	<10	<1	1205
	111724	28.2	0.82	>10000	50	15	0.15	7	31	75	552	9.15	<10	0.25	376	12	0.02	2	760	1264	<5	<20	9	0.01	<10	34	<10	<1	626
8	111725	>30	0.54	7920	120	<5	1.12	28	226	25	2870	>10	-10	0.13	050					405.4]
9	111726	0.8			120	<5	1.12	20	220	40	128	4.86			656 674	28	0.04	79 1			<5 <5	<20		< 0.01	20	16	<10	<1	2327
10	111727	9.4		>10000	85	<5	1.36	43	41	115	201	5.92	<10		782	4	0.15		400	110 1428	425	<20 <20	122 71		<10 <10	26 71	<10 <10	<1	85
11	111728	8.6			70	20	3.37	12	22	88	98	4.87	<10		1238	3	0.12		1400	698	320	<20	152		<10	102	<10	<1 <1	1055
12	111729	1.6	6.37	760	105	<5	3.55	69	24	73	233	9.68	<10		2246	<1	0.22		1520	156	25	<20	153			156	<10	<1	913 5148
13	111730	3.0	5.14	830	35	<5	3.49	2	27	42	144	6.69	<10		962	4	0.18	3		464	35	<20	157	0.08	<10	50	<10	<1	161
14	111731	<0.2	6.05	>10000	105	<5	2.62	500	139	80	768	>10	<10	1.31	3367	<1	0.21	13	1330	196	<5	<20	142	0.29	<10	166	<10		>10000
				ļļ																									
				ļ																									
Resplit:	<u>::</u> 111718	6.8	4 40	>10000	80		2.04				470			4 40															
Repeat		0.0	4.40	-10000	80	20	2.24	1	25	40	170	>10	<10	1.43	533	6	0.14	<1	830	736	515	<20	251	0.08	<10	74	<10	<1	1092
	. 111718	6.8	4 32	>10000	80	10	2.22	1	27	41	178	>10	<10	1.40	521	7	0.16		040	000	EIO			0.00					
Standa		0.0	4.00	- 10000			6.62	!	1		1/0	~10	~10	1.40	521		0.18		810	698	510	<20	247	0.08	<10	72	<10	<1	1096
GEO'98		1.2	1.68	72	155	<5	1.84	<1	18	66	78	3.93	<10	0.97	663	<1	0.03	20	680	18	<5	<20	59	0.11	<10	76	<10	5	73
Ī																	0.00					~20		0.11	~10	-10	<u> </u>		
																													1
]		L																									
f/320				ļ														I				I	CO-TI	ECH L/	BORA	ORIES	LTD.		

	30-Jul-98	<u> </u>		1		Т			T T						· · · · · ·								······		·····	······	<u>-</u> -	-	
	30-301-30														++														
ECO-1	ECH LABO	RATOR		D.						CP CI	ERTIFIC	ATE O		YSIS	AK 98-3	52							XPLO	RER G	OLD CO	RPOR			
	East Trans						†																				VENUE		
	OOPS, B.C.	. 1																					KELO			1	T	·	
V2C 6						-			<u>†</u> †-														V1Y 45						
	l T														1														
																							ATTEN	ITION:	ERNIE	BERG		N	
Phone	: 250-573-5	700																									T		
Fax	250-573-45	557																					No. of	sample	s recei	/ed: 93			
																							Sampl	e type:	Core				
																							PROJE	ECT #:	None G	iven			
																							SHIPM	ENT#	: None	Given			
Value	s in ppm un	less oti	herwise	e reporte	đ																		Sampl	əs sub	mitted b	y: Xplo	rer		
Et #.		Ag	Al %	As	8a		Ca %	Cd		Cr	Cu			Mg %	the second s		Na %	Ni	P	Pb	Sb	Sn		Ti %	U	<u>v</u>	W	Y	Zn
1	111811	0.4	0.69	80	95	<5		3		70	17	1.50	<10			4	0.05	4	450	76	5	<20		<0.01	<10	12	<10	2	333
	111812	1.0	0.46	90	80	<5	1.95	3		62	26	1.76	<10		1479	4	0.04	4	410	88	<5	<20		<0.01	<10	7	<10	2	391
	111813	12.2	0.62	830	40	<5	4.97	71		54	683	5.60	<10		3930	4	0.02	5	300	520	<5	<20		<0.01	<10	9	<10	<1	7243
	111814	0.4	0.67	160	65	<5	1.75	2		71	9	1.57	<10			4	0.04	4	410	84	<5	<20		< 0.01	<10	10	<10	3	337
5	111815	<0.2	0.45	185	60	<5	1.75	<1	3	62	11	1.39	<10	0.32	991	4	0.05	4	500	48	5	<20	111	<0.01	<10	11	<10	. 3	167
-	111816	0.6	0.47	105	130	<5	2.01	1	1	52		1.83	<10			4	0.05	5	450	62	<5	<20		<0.01	<10	12	<10	3	197
	111817	1.4	0.66	1300	185	<5	3.23	<1		169	31	2.43	<10		2652	13	0.03	12	530	150	5	<20		<0.01	<10	13	<10	4	339
	111818	>30	0.36	2995	40	<5	1.92	<1		110		3.10	<10			8	0.01	7	530	2196	30	<20		< 0.01	<10	3	<10	<1	1963
	111819	18.2	0.22	3035	30	<5	2.40	58		153	368	4.54	<10		3994	8	0.01	5	390	1582	30	<20		<0.01	<10	3	<10	<1	8863
10	111820	1.4	0.50	945	65	<5	1.95	<1	4	67	37	2.19	<10	0.42	1341	<u> </u>	0.03	5	510	288	55	<20	142	<0.01	<10	18	<10	3	178
- 4.4	111821	0.2	0.79	210	65	<5	1.03		4	90	15	2.54	<10	0.51	768	7	0.05	5	510	56	15	<20	ED	<0.01	<10	33	<10		134
11 12	111821	0.2	0.79	300	65	<5 <5	1.03	<1 <1		90	32	2.97	<10		946	- 7	0.05		630	52	10	<20		<0.01	<10	31	<10	2	224
12	111823	0.4	0.00	725	95	<5	1.43	<1		76	23	2.57	<10		1464	6	0.03		570	114	5	<20		<0.01	<10	23	<10	2	399
14	111823	1.2	0.74	210	60	<5	2.00	1		79	20	3.08	<10		1651	5	0.04	6	670	354	<5	<20		<0.01	<10	23	<10	2	353
15	111825	1.2	0.59	425	50	5	1.99	<1		69	15	2.93	<10		1635	4	0.04	7	600	222	<5	<20		<0.01	<10	20	<10	3	265
13	111025	1.0	0.55	425			1.00					2.00		0.04			0.04	'				-20		40.01				\rightarrow	
16	111826	0.4	0.58	25	60	<5	1.36	<1	6	104	15	2.06	<10	0.33	779	6	0.04	6	560	48	<5	<20	79	< 0.01	<10	16	<10	3	147
17	111827	0.4	1.00	45	65	<5	1.40	3		59	37	3.55	<10		862	5	0.05	9	650	46	<5	<20		<0.01	<10	38	<10	3	323
18	111828	0.4	0.82	45	65	<5	1.72	2		87	18	2.52	<10		898	5	0.05	6	660	54	<5	<20		<0.01	<10	24	<10	3	222
19	111829	0.4	1.41	25	65	<5	1.50	<1	6	50	10	3.51	<10		885	4	0.05	6	760	18	5	<20		< 0.01	<10	53	<10	3	87
20	111830	0.6	1.01	465	90	<5		<1		88	44	3.60	<10		802	6	0.05	7	810	28	<5	<20		< 0.01	<10	24	<10	2	188
									<u> </u>																				
21	111831	0.4	0.80	35	60	<5	0.91	<1	8	59	29	2.73	<10	0.48	468	4	0.06	9	660	18	<5	<20	73	<0.01	<10	32	<10	2	51
22	111832	0.2	0.57	20	70	<5	0.81	<1		58	25	2.12	<10		381	4	0.06	6	720	14	<5	<20		< 0.01	<10	25	<10	3	53
23	111833	0.4	0.83	475	60	<5	1.58	<1	5	59	26	2.24	<10		1263	3	0.04	4	700	60	<5	<20		<0.01	<10	18	<10	3	490
24	111834	1.2	0.81	2025	45	<5	1.85	<1	12	53	35	3.57	<10		1173	5	0.03	5	770	232	<5	<20		<0.01	<10	13	<10	<1	754
	111835	0.2	0.77	35	65	<5	0.86	1		58	28	2.19	<10		442	3	0.06	5	690	6	<5	<20		<0.01	<10	29	<10	3	159

45 11855 3.8 2.0 0.65 0.5 1.01 0.10 1.05 1.01 0.10 1.05 1.01 0.10 1.05 1.01 0.10 1.05 1.01 0.10 1.05 1.01 0.10 0.02 00 750 152 <5	PLOF	RER GOLD	CORPO	RATIO	N						CP CE	RTIFIC	ATE OF	ANAL	YSIS A	K 98-3	52									ECO-T	ECH L	ABORA	TORIE	S LTD.
32 111836 42 20 31 212 110 44 51 200 44 110 44 51 200 44 110 44 51 200 44 51 200 44 52 500 44 520 64 520 64 520 64 520 64 520 64 520 64 520 64 520 64 520 64 520 64 520 64 520 64 500 710 75 550 50 50 50 50 51 61 224 110 0.25 44 500 44 500 710 750 710 750 710 750 710 750 710 750 7100 750 7100 750 7100 750 7100 750 7100 7100 7100 7										· · ·																				
28 1111396 400 410 41 5 42 41 50 44 100 41 50 400 410 41 50 400 410 41 50 400 410 410 41 50 400 411 410	Et #.	Tag #	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Ρ	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
27 111837 0.4 0.74 25 60 64 55 50.06 6 720 6 <5	26	111836	<0.2	0.70	30	45	<5	0.95	2	6	83	31	2.12	<10	0.46	476	5	0.05	4	710	4	5	<20	44	0.01	<10	29	<10	4	158
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										9		52		<10	0.49	455	5	0.06	6	720	6	<5	<20	35	0.04	<10	33	<10	2	107
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									<1	7	72	43	2.26	<10	0.45	431	3	0.05	4	720	8	<5	<20	26	0.05	<10	35	<10	2	89
30 111840 602 0.72 15 50 5 0.42 <1 7 112 23 210 <10 0.49 399 3 0.07 4 690 4 <5 <20 27 0.08 <10 0.38 <11 23 111841 0.22 2.33 80 195 10 0.38 <1 19 53 9 4.74 <10 0.75 1380 66 150 166 1150 122 <5 <20 48 <0.00 <58 840 122 <5 <20 48 <0.00 <50 30 740 46 <5 <20 710 <10 44 <14 48 10.01 <10 27 10.01 <10 27 10.01 <10 27 10.01 <10 27 10.01 10 11.11 11 11.84 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01			1				<5		2	8	126	40	2.44	<10	0.55	498	7	0.07	5	680	6	<5	<20	40	0.07	<10	44	<10	3	167
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			<0.2	0.75		50	5	0.42	<1	7	112	23	2.10	<10	0.49	399	3	0.07	4	690	4	<5	<20	27	0.08	<10	43	<10	3	97
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																														
33 1111843 34 256 112 cit 276 cit 101 1601 8 0.06 8 840 112 cit cit 63 63 63 63	31	111841	0.2	2.33	80	195	10	0.98	<1	19	53	9		<10	0.75		6		48										4	135
34 111844 0.4 174 85 110 10 1.14 11 14 21 481 221 481 100 0.84 1974 8 0.04 34 790 106 <5 <20 501 <10 481 1974 8 0.04 34 790 106 <5 <20 510 <10 45 <10 45 <10 45 <10 45 <10 45 <10 45 <10 46 <10 25 52 52 52 53 <10 0.04 45 54 0.01 <10 22 <17 117 373 <10 0.55 100 0.02 118 100 104 <5 200 <10 441 11 10 105 24 476 10 0.50 1148 4 0.04 45 520 400 410 41 100 25 400 10 0.51 144	32	111842	1.0	1.72	70	75	<5	1.36	4		56		5.94	<10	0.66		7												7	464
35 111845 1.0 1.89 1235 50 5 2.33 <1 19 94 29 5.02 <10 0.84 1974 8 0.04 34 790 106 <5 <2.00 59 0.01 <10 45 <10 36 111846 0.8 1.43 280 115 <5	33	111843	3.4	2.56	145	100	<5	1.20	<1	27	64	266	7.66	<10															3	179
36 111846 0.8 1.22 0.2 1.2 0.2<	34	111844	0.4	1.74	85	110	10	1.14	1	11	84		4.61				-												6	226
37 111847 1.2 2.36 380 95 10 0.80 <1 19 109 28 5.59 <10 0.82 1156 7 0.05 45 900 216 <5 220 45 0.03 <10 49 <10 38 111849 0.8 1.84 680 110 10 1.22 ×1 22 81 17 3.73 <10	35	111845	1.0	1.89	1235	90	5	2.33	<1	19	94	29	5.02	<10	0.84	1974	8	0.04	34	790	106	<5	<20	59	0.01	<10	45	<10	7	146
37 111847 1.2 2.36 380 95 10 0.80 <1 19 109 28 5.59 <10 0.82 1156 7 0.05 45 900 216 <5 220 45 0.03 <10 49 <10 38 111849 0.8 1.84 680 110 10 1.22 ×1 22 81 17 3.73 <10																														
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	36	111846																											8	68
33 111649 0.8 1.97 820 85 5 1.08 <1 16 105 24 4.76 <10 0.89 1189 7 0.07 30 910 90 <5 2.00 45 0.02 41 111850 0.4 1.41 110 105 <5 1.48 <1 16 62 22 3.27 <10 0.55 148 4 0.04 28 930 156 <5 <20 43 0.03 <10 21 <10 41 111851 1.8 1.70 175 70 5 170 70 6.71 0.081 1896 7 0.05 44 1690 272 <52																													4	334
30 111850 0.4 1.41 110 105 <5 1.46 <1 116 62 22 3.27 <10 0.50 1148 4 0.04 28 930 156 <5 <20 43 0.03 <10 21 <10 42 111852 1.6 1.22 51 55 1.77 10 22 51 95 8.22 <10 0.64 1984 8 0.02 56 1930 476 <5 <20 40 0.02 <51 $<52 <26 <0.02 <51 <50 <20 <67 <10 <0.02 <51 <50 <20 <00 <51 <00 <0.02 <51 <50 <00 <002 <51 <002 <00 <50 <20 28 <0.02 <07 <00 <0.02 <07 <00 <00 $	38	111848																											7	111
41 11100 0.7 1.11 110 100 </td <td>39</td> <td>111849</td> <td>0.8</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4</td> <td>137</td>	39	111849	0.8																			-							4	137
41 1105 1	40	111850	0.4	1.41	110	105	<5	1.46	<1	16	62	22	3.27	<10	0.50	1148	4	0.04	28	930	156	<5	<20	43	0.03	<10	21	<10	8	192
41 1105 15 15 15 15 15 15 15 15 15 15 15 16 16 175 155 155 155 15 16 16 165 7 0.05 44 1690 272 45 <20 69 0.02 <10 47 <10 43 111853 2.0 2.66 40 85 10 0.85 22 54 67 0.5 <10 0.99 1958 10 0.02 51 1200 266 <5 <20 69 0.02 <10 67 <10 67 <10 99 1853 10 0.02 51 1200 266 <5 <20 65 <10 67 <10 99 1853 22 0.02 80 460 <5 <20 98 <0.01 <10 88 942 9 0.02 90 750 152 <5 <20 98 <0.01 <10 83 <10 20 90 20 90 750 <	41	111851	18	1 70	175	70	5	1.57	10	22	51	95	8 22	<10	0.64	1984	8	0.02	56	1930	476	<5	<20	40	0.02	<10	24	<10	7	1120
43 111853 2.0 2.65 40 85 10 0.85 2 25 48 67 9.05 <10 0.99 1958 10 0.02 51 1200 266 <5 <20 29 0.02 <10 65 <10 <10 65 <10 <10 18 27 56 116 >10 0.88 2082 13 0.02 58 1750 450 <5 <0.01 <10 67 <10 <10 67 <10 <10 80 2082 13 0.02 58 1750 450 <5 <0.01 <10 67 <10 <10 0.88 1942 9 0.02 80 460 <5 <20 98 <0.01 <10 88 <0.04 35 730 64 <5 <20 98 <0.01 <10 80 <0.04 35 730 64 <5 <20 28 <0.01 <10 35 <10 <10 35 <10 <10 35 <10 <10 <13																												<10	5	549
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							_		2		48	67	9.05	<10	0.99	1958	10	0.02	51	1200	266	<5	<20	29	0.02	<10	65	<10	2	390
45 111855 3.8 2.08 695 65 <5 1.01 <1 31 198 124 9.76 <10 0.69 1653 22 0.02 87 800 460 <5 <20 37 <0.01 <10 44 <10 46 111856 3.4 2.07 2370 105 5 2.47 <1 35 73 64 <5 <20 98 <0.01 <10 43 <10 46 111856 3.4 2.07 2370 105 5 2.47 <1 35 73 64 <5 <20 32 0.01 <10 43 <10 47 111857 0.8 2.07 2370 100 <5 0.81 <1 21 65 30 5.00 <10 0.52 1007 7 0.03 39 760 48 <5 <20 25 0.01 <10 25 100 25 1007 7 0.03 22 620 152 <5 <20 25											56	116	>10	<10	0.98	2082	13	0.02	58	1750	450	<5	<20	56	0.01	<10	67	<10	2	1716
46 111856 3.4 2.07 2370 105 5 2.47 1 10 0.88 1942 9 0.02 90 750 152 <5 <20 98 <0.01 <10 68 10 0.88 1942 9 0.02 90 750 152 <5 <20 98 <0.01 <10 66 <10 47 111857 0.8 2.00 285 105 10 0.89 <1 21 65 30 5.00 <10 0.52 1007 7 0.03 39 780 48 <5 <20 25 0.01 <10 24 <10 50 111860 3.0 2.64 410 105 <5 0.90 <1 21 83 161 6.46 <10 0.73 1107 8 0.06 46 670 330 <5 20 21 0.01 24 500 100 2							<5				198	124	9.76	<10	0.69	1653	22	0.02	87	800	460	<5	<20	37	<0.01	<10	44	<10	<1	817
47 111857 0.8 2.00 285 105 0.8 10 0.89 10 0.8 10 0.89 10 0.89 10 0.89 10 0.89 10 0.89 10 0.89 10 0.89 100 25 0.01 10 0.89 100 25 0.81 21 21 65 30 5.00 110 0.52 1007 7 0.03 39 760 48 <5 <20 25 0.01 <10 35 <10 49 111859 0.8 1.25 1400 105 <5 1.65 <1 13 111 35 3.30 <10 0.52 1007 7 0.03 39 760 48 <5 <20 25 0.01 <10 24 <10 <10 24 <10 <10 24 <10 <10 25 <100 <10 25 <100 <10 25 <100 <10 25 <10 <10 27 <10 20 21 <10 <10																														
47 111057 0.0 2.00 100 <t< td=""><td>46</td><td>111856</td><td>3.4</td><td>2.07</td><td>2370</td><td>105</td><td>5</td><td>2.47</td><td><1</td><td>35</td><td></td><td></td><td></td><td><10</td><td>0.88</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>6</td><td>181</td></t<>	46	111856	3.4	2.07	2370	105	5	2.47	<1	35				<10	0.88														6	181
49 111050 0.8 1.75 105 11 105 3.30 10 0.52 1005 7 0.03 22 620 152 <5 <0.01 <10 24 <10 50 111860 3.0 2.64 410 105 <5	47	111857	0.8	2.00	285	105	10	0.89	<1	19	77		5.77	<10	0.70	1119	8	0.04											7	207
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	48	111858	0.6	1.75	130	100	<5	0.81	<1	21	65	where we are a set of the set of	5.00				7												7	115
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	49	111859	0.8	1.25	1400	105	<5	1.65	<1	13	111						7												7	130
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	50	111860	3.0	2.64	410	105	<5	0.90	<1	21	83	161	6.46	<10	0.73	1107	8	0.06	46	670	330	<5	<20	75	0.02	<10	36	<10	<1	395
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																0475		0.00			4070				10.01		20	-10		10000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																													< 1 >	
35 111863 1.0 1.05 570 110 30 110 12 10 11 10 10 11 10 11 10 10 11 10 12 10 0.47 132 6 0.05 25 910 276 <5 <20 24 0.02 <10 0.74 1132 6 0.05 25 910 276 <5 <20 24 <10 21 10 21 10 0.74 1132 6 0.0																													1	393 251
34 11864 1.0 1.10 0100 0.00 10 0.10 11 10 0.00 10 0.01 11 10 0.01 11 0.01																	-												2	579
35 11005 2.4 1.60 0.00 1.0 0.00 <t< td=""><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td>4</td><td>579</td></t<>			_																						1				4	579
36 111867 1.2 1.51 345 120 10 0.24 5 12 105 17 4.09 <10 0.44 745 5 0.05 24 490 256 <5 <20 23 0.02 <10 36 <10 57 111867 1.2 1.51 345 120 10 0.24 5 12 105 17 4.09 <10	55	111865	2.4	1.69	3350	60	10	0.46	<1	18	91	38	6.01	<10	0.74	1132	Ű	0.05	23	910	2/6	<0	<20	24	0.02	- 510	54	~10		
36 111867 1.2 1.51 345 120 10 0.24 5 12 105 17 4.09 <10 0.44 745 5 0.05 24 490 256 <5 <20 23 0.02 <10 36 <10 57 111867 1.2 1.20 1945 75 <5		111000	4.0	4.00	4705	105		0.42		25	QE	30	4 4 4	~10	0.54	288	10	0.05	44	870	218	<5	<20	38	0.01	<10	32	<10	6	408
57 11067 12 1.51 545 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 11 10 <								- · · · · · · · · · · · · · · · · · · ·													= • •								2	637
36 11056 2.0 1.20 1040 15 0.05 110 56 24 2.33 <10 0.29 532 4 0.05 9 60 20 <5 <20 23 <0.01 <10 5 <10																													2	631
																													<1	184
									- 1													_				-			<1	254

Page 2

PLO	RER GOLD	CORPC	RATIO	N						CP CE	RTIFIC	ATE OF	ANAL	YSIS A	K 98-3	52									ECO-T	ECHL	ABORA	TORIE	ES LT
Et #.	Tag #	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Ρ	Pb	Sb	Sn	Sr		U	V	W	Y	
61	111871	0.4	0.95	30	55	<5	0.28	1	10	61	28	2.22	<10		557	4	0.06	7	60	26	<5	<20	11	0.02		8	<10	<1	2
62	111872	0.6	1.34	35	95	<5	0.32	3	12	59	73	2.77	<10	0.50	615	3	0.08	8	50	24	<5	<20	31	0.03		14	<10	<1	3
33	111873	1.0	1.13	25	90	<5	0.27	2	9	53	95	2.52	<10	0.50	588	3	0.06	8	340	50	<5	<20	20	0.03		12	<10	2	2
64	111874	2.0	1.18	120	75	<5	0.39	2	8	58	172	2.23	<10	0.47	494	4	0.07	6	310	128	5	<20	35	0.03	<10	13	<10	1	
35	111875	0.8	1.50	30	90	<5	0.50	3	12	83	59	2.60	<10	0.66	646	3	0.10	7	210	44	10	<20	39	0.07	<10	23	<10	1	:
	444070		4.40	15	65	<5	0.31	<1	8	88	11	2.10	<10	σ.59	509	5	0.07		320	30	10	<20	28	0.05	<10	31	<10	2	
66	111876	<0.2	1.16	35	210	10	1.45	3	7	72	5	2.41	<10		585	<1	0.13	5	460	32	<5	<20	157	0.08		31	<10	3	
67	111877	<0.2	2.46	40	80	5	0.39	2	6	67	3	1.96	<10		487	2	0.05	6	440	22	10	<20	50	0.03	<10	17	<10	4	
<u>68</u>	111878	<0.2	2.36	35	155	<5	1.16		8	67	7	2.49	<10	0.74	565	4	0.14	7	530	36	5	<20	131	0.05	<10	36	<10	4	
69 70	111879 111880	<0.2	1.96	55	120	-5	0.78	<1	8	86	2	2.43	<10		677	2	0.14	9	530	24	10	<20	95	0.07	<10	45	<10	5	
71	111881	0.2	0.71	20	70	<5	1.99	3	7	57	5	2.66	<10		1315	3	0.04	8	510	98	10	<20		<0.01	<10	28	<10	3	
72	K1102	>30	0.82	1185	40	<5		390	147	46	3372	>10	<10		850	<1	0.02	107	400	1060	<5	<20		< 0.01	<10		<10	<1	>10
73	K1103	24.6	1.29	730	45	<5	0.76	58	43	58	1318	4.24	<10		768	2	0.02	26	560	852	<5	<20		<0.01	<10	14	<10	<1	5
74	K1104	14.2	0.78	2600	115	5	0.54	<1	87	80	92	3.76	<10		272	12	0.02	9	2030	258	<5	<20	42	< 0.01	<10	21	<10	2	
75	K1105	16.2	0.48	>10000	125	<5	0.05	<1	61	72	176	9.22	<10	0.03	160	11	0.01	26	580	500	<5	<20	4	<0.01	<10	15	<10	<1	
76	K1106	7.4	0.31	350	190	<5	0.10	<1	<1	59	26	2.28	<10	0.04	45	12	0.01	<1	760	186	<5	<20	4	<0.01	<10	11	<10	<1	1
77	K1107	>30	0.50	1300	172	5	0.13	<1	1	62	178	2.72	<10	0.09	137	7	0.02	7	636	2838	20	<20	8	<0.01	<10	16	<10	<1	
78	111882	0.6	3.19	2715	60	<5		<1	12	34	51	2.61	<10	0.58	490	4	0.30	9	1610	284	15	<20	118	<0.01	<10	30	<10	5	
79	111883	1.0	1.70	3865	45	5		<1	8	59	24	2.31	<10	0.51	451	4	0.18	5	1300	268	15	<20	64	0.01	<10	31	<10	5	
80	111884	1.6	1.69	5975	55	<5		<1	16	33	38	3.51	<10	0.61	572	4	0.16	12	1090	424	15	<20	61	0.02	<10	36	<10	3	h
	111004	+																											
81	111885	2.0	1.24	3770	30	10	0.85	<1	15	49	18	2.39	<10	0.60	576	3	0.10	11	1040	468	20	<20	42			31	<10	3	
82	111886	1.0		4770	35	5	1.33	<1	7	52	8	1.90	<10	0.68	486	2	0.19	7	820	292	20	<20	85			27	<10	3	
83	111887	1.4	2.27	1815	25	5	1.64	<1	6	69	6	1.81	<10	0.90	568	1	0.27	6	920	298	15	<20	112			31	<10	3	
84	111888	0.4	2.48	1520	25	<5	1.58	<1	8	51	9	2.11	<10	1.01	562	2	0.28	8	1140	232	20	<20	140			45	<10	3	
85	111889	0.4		3765	35	5	1.61	<1	12	52	14	2.88	<10	1.02	62 9	2	0.20	10	3280	158	10	<20	116	0.05	<10	70	<10	5	
															000		0.14		1 400	110	E	<20	82	0.02	<10	47	<10	3	
86	111890	0.6		280	45		1.29	<1		46	13		<10		639	4	0.14	9	1490	112 190	5 15	<20				44	<10	4	
87	111891	0.6		3240	45	<5		<1		46	10		<10		608	<1	0.16	9	2010 960	84	10	<20				39	<10	3	
88	111892	0.4		430	45	<5		<1		42	10		<10		603	3	0.10	9	1180	04 94	10	<20	59			44	<10	2	
89	111893	0.2		2265	45	<5		<1	12	35	16		<10		739 661	3	0.09	9	1080	80	10	<20				47	<10	3	
90	111894	0.2	1.67	2160	45	5	0.59	<1	12	41	11	3.09	<10	0.93	100	2	0.10	3	1000	00	- 10	~20		0.04					
04	111805	<0.2	1.32	2160	45	<5	0.79	<1	11	34	7	2.27	<10	0.60	485	2	0.12	10	1050	80	10	<20	60	0.02	<10	41	<10	3	
91	111895	<0.2		4185	60			<1		46	8		<10		502	4	0.09	11	900	78	5	<20	39	0.02	<10	34	<10	2	
92 93	111896	0.4		4165	55	-5		<1		45	18		<10		555	4	0.19	10	1080	88	<5	<20	90	0.02	<10	45	<10	1	
33	11109/	0.4	1.00	4155		J	1.40	-			+																		

C DATA: Ag Aly Ag Aly Ag Aly Co Co <thco< th=""> Co Co</thco<>	RIES LTD.	TORI	BORA	거나	-TE	ECO-		1						1							30-00		1000/	UNWL.	ur P	4164	TIFIC/	CER	ICP C								ION	DRATIC	ORPC	GOLD	RËË	PI OF
C DATA: Ag Ad Ad <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>· · ·</th><th></th><th></th><th>T</th><th></th><th></th><th></th><th>- China T</th><th>F LUI</th></t<>																																		· · ·			T				- China T	F LUI
Contra Pg At A Pg Pg <th>Y Zn</th> <th>Y</th> <th>w</th> <th>v</th> <th></th> <th>U</th> <th>Ti %</th> <th>Sr</th> <th>5</th> <th>Sn</th> <th><u>.</u></th> <th>Sb</th> <th>b</th> <th>Pb</th> <th>P</th> <th>P</th> <th>Ni</th> <th>N</th> <th>Va %</th> <th>Мо</th> <th>Mn</th> <th></th> <th>Ma %</th> <th>La</th> <th>6</th> <th>Fe %</th> <th>Cu</th> <th>.r</th> <th>C</th> <th>Co</th> <th>Cd</th> <th>a %</th> <th></th> <th>R</th> <th>Ra</th> <th>Δ</th> <th>9/</th> <th>A1 %</th> <th>A<i>a</i></th> <th></th> <th></th> <th>0.04</th>	Y Zn	Y	w	v		U	Ti %	Sr	5	Sn	<u>.</u>	Sb	b	Pb	P	P	Ni	N	Va %	Мо	Mn		Ma %	La	6	Fe %	Cu	.r	C	Co	Cd	a %		R	Ra	Δ	9 /	A1 %	A <i>a</i>			0.04
1 11181 0.0 0							-										T					Ť			1			<u>.</u>				~ //	+				/0		<u></u>			
1 11181 0.0 0	- 407										_																	_													it:	lespl
36 11046 0.00 1.30 213 100 10 100 100 100 100 100 100 100 100 110 100 110 100 110 100 110 100 110 100 111 100 110 100 110 100 110 100 110 100 111 100 111 100 111 100 111 100 111 100 111 100 111 200 130 4 75 17 152 <10 0.05 4 470 94 5 <20 110 <10 111 <10 111 <10 111 <10 111 <10 111 <10 111 <10 111 <10 111 <10 111 <10 111 <10 111 <10 111 <10 111 <10 111 <10 111 <10 111 <10 111 <10 111 <10 111 <10 111 <10 111 <10 111 <10 <td>3 437</td> <td></td> <td>-</td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>5</td> <td></td> <td>0</td> <td>0.70</td> <td>0.8</td> <td>311</td> <td>11'</td> <td>1</td>	3 437											-	_							5																	0	0.70	0.8	311	11'	1
111861 0.2 0.77 60 65 10 2.03 2 0 43 0 1.17 10 0.03 1.04 1.03	8 64 3 317				· · · · · ·								-		_		37	3		4		-								18	<1		-			275	8	1.38	0.6	346	11	36
1 111811 0.4 0.66 85 90 <5	3 317	3	<10	29	<u> </u>	<10	<0.01	212	21	<20	5	5	6	116	<u>•</u>	570	7		0.05	_4	343		0.91	<10	7	2.77	6	9	49	8	2	2.03	0	10	65	60	7	0.77	0.2	381	11	71
1 111811 0.4 0.66 85 90 <5																									_			-													et:	lepea
10 111220 1.36 0.02 1.36 1.37 1.36 1.36 1.36 1.37 1.36 1.37 1.36 1.36 1.37 1.36 1.37 1.30	2 355	and the second se			-												4			4										4	3	1.40			90	85	6	0.66	0.4	811		
19 111829 <0.2 1.38 15 60 <5 1.46 <1 6 50 9 3.43 <10 0.98 858 4 0.05 6 740 28 <5 <20 102 <10 51 1.23 <1 96 72 2.94 <10 0.48 975 5 0.04 41 590 98 <5 <20 0.11 <10 277 <10 45 111864 0.6 1.41 200 101 <1	3 202				_												5			5							38			4	<1	2.06	5	<	70	1010	52	0.52	1.8		-	
36 111846 0.6 1.44 290 110 5 1.23 <1 19 67 21 2.94 <10 0.48 975 5 0.04 41 590 98 <5 <20 27 <100 27 <100 45 111855 3.6 2.11 675 70 <5 1.01 <1 30 195 127 9.93 <10 0.71 1657 22 0.02 87 820 464 <5 <20 39 <0.01 <10 25 <10 441 65 30 111864 1.2 118 67 5 0.04 41 60 464 <5 <20 39 <0.01 <10 25 <10 25 <10 25 <10 26 <111 30 34 36 0.49 75 6 0.44 41 50 464 <5 <20 39 <0.01 <10 22 <10 23 <10 23 <10 23 <10 23 <10 23 <10	3 84	3									_	_					6	(4						3.43	9			6	<1	1.46	5	<	60	15	38	1.38	<0.2			
45 111855 3.6 2.11 675 70 <5	7 81	7			-															-						2.94	21	37	6	19	<1	1.23	5	5	110	290	14	1.44	0.6		حمضماه	
54 111864 1.2 1.18 6170 85 <5 0.31 <1 23 65 30 3.45 <10 0.49 757 6 0.04 34 380 172 10 <20 29 <0.01 <10 25 <10 71 111881 0.4 0.70 50 65 <5 1.99 2 7 50 5 2.63 <10 0.90 1311 3 0.04 6 530 102 <5 <20 216 <0.01 <10 28 <10 80 111884 1.6 1.76 6400 50 <5 0.92 <1 0.63 592 4 0.17 13 1170 456 15 <20 58 0.02 <10 37 10 37 10 37 10 37 10 0.83 592 4 0.17 13 1170 456 15 <20 58 0.02 <10 37 10 37 16 37 0.83 592 4 0.17		<1																		22			0.71	<10	3	9.9	127	95	19	30	<1	1.01	5	<	70	675						
71 111881 0.4 0.70 50 65 <5 1.99 2 7 50 5 2.63 <10 0.90 1311 3 0.04 6 530 102 <5 <20 216 <0.01 <10 28 <10 80 111884 1.6 1.76 6400 50 <5 0.92 <1 17 36 38 3.69 <10 0.63 592 4 0.17 13 1170 456 15 <20 58 0.02 <10 37 <10 89 111893 <0.2 1.71 2410 45 10 0.58 <1 13 37 16 3.78 <10 0.92 751 2 0.09 10 1210 98 10 <20 59 <10 <20 59 <10 <20 59 <10 <20 59 <10 <20 59 <10 <20 59 <10 <20 59 <10 <20 <10 <20 <10 <20 <10 <t< td=""><td>2 564</td><td>2</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>6</td><td></td><td></td><td></td><td></td><td></td><td>3.4</td><td>30</td><td>55</td><td>6</td><td>23</td><td><1</td><td>0.31</td><td>5</td><td><</td><td>85</td><td>6170</td><td></td><td></td><td>1.2</td><td></td><td></td><td></td></t<>	2 564	2			-															6						3.4	30	55	6	23	<1	0.31	5	<	85	6170			1.2			
80 111884 1.6 1.76 6400 50 <5 0.92 <1 17 36 38 3.69 <10 0.63 592 4 0.17 13 1170 456 15 <20 58 0.02 <10 37 <10 89 111893 <0.2 1.71 2410 45 10 0.58 <1 13 37 16 3.78 <10 0.92 751 2 0.09 10 1210 98 10 <20 59 0.05 <10 45 <10 Standard: <th< td=""><td>4 302</td><td>4</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>- 1</td><td></td><td></td><td></td><td></td><td>3</td><td>311</td><td>) 1</td><td>0.90</td><td><10</td><td>3</td><td>2.6</td><td>5</td><td>50</td><td>50</td><td>7</td><td>2</td><td>1.99</td><td>5</td><td><</td><td>65</td><td>50</td><td>70</td><td>0.70</td><td>0.4</td><td></td><td></td><td></td></th<>	4 302	4													- 1					3	311) 1	0.90	<10	3	2.6	5	50	50	7	2	1.99	5	<	65	50	70	0.70	0.4			
89 111893	3 178	3			_						-								0.17	4	592	6	0.63	<10	9	3.6	38	36	30	17	<1	0.92	5	<	50	6400	76	1.76	1.6			
3EO 1.0 1.77 70 165 <5 1.83 <1 21 69 80 4.36 <10 0.93 724 <1 0.03 29 680 32 <5 <20 60 0.13 <10 81 <10 3EO 1.0 1.81 70 165 <5	2 224	2	<10	45	0	<10	0.05	59	5	<20	0	10	8	98	0	1210	10	1	0.09	2	751	2	0.92	<10	8	3.7	16	37	3	13	<1	0.58	0	10	45	2410			<0.2			
3EO 1.0 1.77 70 165 <5 1.83 <1 21 69 80 4.36 <10 0.93 724 <1 0.03 29 680 32 <5 <20 60 0.13 <10 81 <10 3EO 1.0 1.81 70 165 <5											-				+-													_					+								lord	Stand
SEO 1.0 1.81 70 165 <5 1.85 <1 21 66 82 4.36 <10 0.95 730 <1 0.03 28 680 30 <5 <20 62 0.13 <10 83 <10 SEO 1.2 1.77 85 165 <5	4 83	4			_														0.03	<1	724	3	0.93	<10	6	4.3	80	59	6	21	<1	1.83	5	<	165	70	77	1.77	1.0	· · · · · · · · · · · · · · · · · · ·		
SEO 12 1.77 85 165 <5 1.90 <1 22 67 79 4.49 <10 0.94 747 <1 0.03 30 720 38 <5 <20 60 0.13 <10 83 <10 SEO	4 78	4										<5	30	30	0	680			0.03	<1	730	5	0.95	<10	6	4.3	82	6	6	21	<1	1.85										
	4 88	4	<10	83	0	<10	0.13	60	<u> </u>	<20	5	<5	38	38	0	720	30	3	0.03	<1	747		0.94	<10	9	4.4	7 9	57	6	22	<1	1.90	5								1	
													_																								-+-					
											_		_		_																		_									
				_																																		<u> </u>				
																									+								_					<u> </u>				
			<u>e i TD</u>			APOS	ECUI		EC				1																												+	
Frank J. Pezzotti, A.Sc.T.		<u></u>	3 610.																			_						_						L								
df/352 B.C. Certified Assayer				<u></u> +						-	_		_																												2	f/352

	31-Jui-98																												
FCO 7	ECH LABOR	ATOP	ES I TI	<u>,</u>							RTIFIC	ATEO		YSIS	AK 98-3	70							XPLO	RER G		ORPOI	RATION		
	East Trans Ca																		+								AVENU		
	OOPS, B.C.	anada	ngnwa	Y																			KELO						
V2C 6					+														+				V1Y 4						
V2C 0	1 4																							<u>.</u>					
																			11				ATTEN	ITION:	ERNI	E BER	GVINSC)N	
Phone	250-573-570	00																											
	250-573-455															,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							No. of	sample	s rece	ived: 1	29		
																							Sampl	e type:	Core				
	~																						PROJ	ECT #:	Red C	ap			
																									: None				
																							Sampl	es subi	mitted l	by: M. I	-ay		
Values	s in ppm unle	ss oth	erwise	reported	1														<u> </u>]								
				T									ļ						<u>_</u>					T: 0/	U	L,	w		
Et #.	Tag #		Al %	As	Ba		Ca %			Cr		Fe %		Mg %			Na %	Ni		Pb	Sb	Sn		Ti %				Y	Zn
1	111898		1.55	1295	50		0.97	<1	18	48	33			0.64		3		8		48	<5	<20	62		<10			<1	50 54
2	111899	<0.2		1330	60		1.05	<1	14	50		3.75				5		9		40	<5	<20			<10			2	54 103
3	111900		2.48	2825	60	10		<1	19	50	41	4.93		1.12		5		8		42	<5	<20			<10			<1	
4	111901	0.2		2320	55	5	0.76	<1	11	43	21	2.79	<10			3		$\underline{1}$	1170	42	10	<20	76		<10		<10	2	95 319
5	111902	0.6	2.24	2505	60	10	0.91	<1	10	52	25	3.89	<10	0.93	652	4	0.21		1030	94	5	<20	91	0.04	<10	51	<10	<1	- 319
6	111903	0.6	1.25	1165	40	10	1.01	<1	5	40		2.96	<10	0.71	747	3	0.07	5		118	<5	<20	52		<10			1	320
7	111904	2.6	1.90	570	55	<5	1.24	2	10	56	74	3.50	<10	0.74	975	3	0.15	7		360	<5	<20	90		<10			2	449
8	111905	1.0		830	35	<5	1.12	<1	7	48	37	2.52	<10	0.72	771	3	0.14	9	960	240	10			0.05	<10			2	213
9	111906	1.0		910	50	10	1.26	<1	10	54	15	3.67	<10	1.06		4	0.17	6		244	5	<20	113		<10			1	222
10	111907	0.6		1495	45	10	0.88	1	12	43	23	4.07	<10	1.00	878	3	0.10	7	1130	208	10	<20	69	0.06	<10	65	<10	<1	1008
11	111908	0.4	0.93	250	50	<5	0.37	<1	5	53	11	1.56	<10	0.38	490	2	0.08	2	680	168	5	<20	25	0.04	<10	27	<10	3	89
12	111909		2.29	505	35	10				38						2	0.23	5		414	5	<20	115		<10			3	159
13	111910	0.4		175	50	<5		<1		65			<10			4	0.12	6	1090	310	5	<20	65		<10	49	<10	2	138
14	111911	0.4		95	50	10	1.51	<1		49	44	3.10			718	2		7		218	5	<20	147		<10		<10	4	137
15	111912	<0.2		150	90	<5				60				1.64		2		8	1210	54	<5	<20	220	0.12	<10	64	<10	2	106
					*								1																
16	111913	<0.2	2.39	60	105	<5	0.91	<1	17	21	80	3.69	<10	0.86		3		9		48	<5		105		<10			2	37
17	111914	<0.2		45	80	10	1.60	<1	9	37			<10			1	0.21	8		60	10		162		<10			5	48
18	111915	3.0	2.02	105	45	10	2.73	<1								5		7		158	10		156		<10			4	144
19	111916	1.2	2.69	95	55	10	3.40	<1		60		3.54				3		16		134	10	<20		<0.01	<10			2	139
20	111917	0.4	1.12	45	45	5	2.65	<1	10	52	14	2.00	<10	0.77	712	3	0.04	15	1080	106	10	<20	152	<0.01	<10	59	<10	3	85
									<u> </u>										+									+	
									<u> </u>				<u>† </u>	<u> </u>	1														
L	L								 		t	<u> </u>	<u> </u>	+	+		+		++										

ECO-TECH LABORATORIES LTD. XPLORER GOLD CORPORATION ICP CERTIFICATE OF ANALYSIS AK 98-370 Mo Na % Ni P Pb Sb Sr Ti% U W Zn Bi Ca % Cd Co Cr Cu Fe % La Mg % Mn Sn V Y Et #. Tag # Ag Al% As Ba 3 13 55 13 2.41 <10 0.82 787 3 0.05 20 1070 96 10 <20 113 0.02 <10 69 <10 67 21 111918 0.6 1.20 95 30 5 2.24 <1 2 54 19 3.40 <10 1.17 3 0.04 19 1140 134 10 <20 144 0.03 <10 81 <10 95 55 45 10 2.91 <1 12 993 111919 0.6 1.68 22 3 0.04 90 <10 1.54 1409 23 1040 120 10 <20 253 0.03 <10 81 <10 1 70 <1 18 53 31 3.41 23 111920 0.8 1.89 40 <5 5.01 335 0.8 1.15 20 50 <5 2.83 4 10 52 66 3.09 <10 0.77 710 3 0.04 16 1040 78 5 <20 164 0.01 <10 59 <10 1 24 111921 13 59 92 5.19 <10 1.07 927 4 0.04 17 960 64 <5 <20 163 0.02 <10 70 <10 <1 662 50 <5 3.06 8 111922 0.6 1.59 20 25 2 0.04 21 1090 66 <20 121 0.06 <10 80 <10 <1 109 20 35 <5 3.22 13 77 99 4.28 <10 1.10 809 5 26 111923 0.4 1.45 - 1 50 94 58 3.21 637 3 0.05 19 1060 44 <5 <20 99 0.07 <10 80 <10 2 12 <10 0.80 27 111924 <0.2 0.98 25 35 <5 2.60 <1 57 <10 <1 2001 490 55 <5 2.51 17 21 80 69 3.71 <10 0.94 794 6 0.01 15 990 90 65 <20 82 < 0.01 <10 111925 1.6 1.29 28 1 239 4.23 <10 1.54 754 7 0.01 24 1180 124 35 <20 23 < 0.01 <10 83 <10 378 170 60 <5 0.94 3 34 87 111926 2.8 2.03 29 7 0.01 39 < 0.01 73 3 763 17 1170 80 40 <20 <10 <10 161 30 111927 0.6 1.54 150 105 <5 1.78 <1 12 73 56 3.28 <10 1.02 3 0.03 <20 237 < 0.01 <10 77 <10 3 223 1120 1.2 1.54 40 110 <5 5.12 1 12 70 172 2.92 <10 1.12 1073 14 64 10 31 111928 0.6 1.80 45 110 <5 5.56 12 73 22 2.86 <10 1.43 1117 4 0.02 11 1170 76 10 <20 293 < 0.01 <10 65 <10 3 224 32 111929 1 3 5 9 71 168 3.54 <10 1.65 1279 3 0.01 10 990 110 15 <20 186 < 0.01 <10 61 <10 519 <5 4.64 33 111930 3.2 2.11 85 80 4 0.02 128 198 < 0.01 39 <10 <1 598 10 690 5 <20 <10 111931 1.4 2.22 75 95 <5 6.06 5 6 57 89 4.52 <10 2.11 1300 34 55 44 3.82 <10 2.66 1562 4 0.03 5 730 116 15 <20 240 < 0.01 <10 49 <10 2 486 70 7 6 35 111932 1.8 2.63 105 10 7.46 74 <20 124 < 0.01 <10 50 2 803 180 70 5 3.46 12 9 58 53 3.48 <10 1.28 954 3 0.02 15 1000 15 <10 111933 1.2 1.79 36 2 0.05 15 40 5 <20 123 0.04 <10 69 <10 1 46 71 11 3.40 <10 0.87 538 980 <0.2 1.06 95 60 <5 2.49 <1 10 37 111934 <1 75 87 <10 4 4.30 <10 1.40 833 6 0.05 17 980 48 10 <20 141 < 0.01 <10 111935 <0.2 1.60 140 50 10 2.75 <1 11 78 38 2 232 <10 1.62 1178 2 0.10 5 1130 40 <5 <20 106 0.14 <10 125 <10 10 2.07 1 23 41 30 5.34 <0.2 2.37 95 45 39 111936 13 1010 992 <5 <20 52 0.03 <10 55 <10 <1 5863 2 0.02 111937 4.4 1.82 260 40 <5 2.31 66 20 73 161 5.84 <10 1.26 1171 40 1120 850 <20 0.03 <10 64 <10 <1 2189 60 63 3.86 <10 1.30 1143 1 0.05 16 15 86 1355 60 10 2.47 16 14 111938 3.6 2.14 41 2 1503 2 0.03 774 54 0.05 <10 66 <10 76 4.69 <10 1.17 809 14 1210 10 <20 111939 4.4 1.56 210 60 10 1.71 14 8 77 42 1940 5 34 85 285 4.80 <10 1.18 773 6 0.03 16 1220 550 30 <20 90 0.03 <10 74 <10 <1 43 111940 7.0 1.47 2525 50 <5 2.36 <10 <10 <1 3521 11 1360 40 0.01 48 55 1085 7.44 <10 0.96 1175 4 < 0.01 9500 265 <20 8910 45 310 1.13 4 11 44 111941 >30 1.79 10 <20 73 0.06 <10 81 <10 <1 783 100 5 2.59 8 9 80 40 3.62 <10 1.31 1138 2 0.02 9 1130 234 45 111942 1.6 1.69 135 <10 <1 3920 <1 0.09 1120 150 <20 131 <10 20 28 48 7.34 <10 1.79 1391 <1 <5 0.12 142 46 111943 0.4 2.58 110 75 15 3.07 45 6 9 7.34 <10 1.96 1339 2 0.15 <1 1240 36 <5 <20 174 0.16 <10 177 <10 100 2.94 85 20 3.44 <1 23 18 47 111944 < 0.2 60 <10 5 1996 6 0.03 5 1180 502 10 <20 81 0.02 <10 102 23 35 91 6.77 <10 1.36 1180 111945 3.4 2.06 5170 45 10 2.38 <1 48 3 285 13 1130 15 <20 76 0.06 <10 78 <10 <5 2.32 <1 9 94 57 3.09 <10 1.03 766 3 0.04 228 49 111946 1.0 1.29 380 35 <1 0.01 16 1160 7270 80 <20 71 < 0.01 <10 40 <10 <1 >10000 >30 1.59 8025 45 <5 1.98 200 11 56 1747 7.24 <10 0.98 1258 50 111947 10000 <10 21 <10 <1 7193 62 1716 >10 <10 0.50 742 12 < 0.01 16 1040 > 75 <20 12 < 0.01 >30 1.05 >10000 40 40 0.64 13 12 51 111948 27 < 0.01 <10 46 <10 <1 1392 8 < 0.01 19 1290 1296 <5 <20 <5 1.06 <1 11 65 241 8.68 <10 1.30 1431 11.2 2.03 5345 40 52 111949 2 637 47 4.20 <10 1.70 1559 2 0.02 11 1320 170 10 <20 123 0.05 <10 105 <10 1.8 2.04 395 45 10 3.47 3 12 69 53 111950 5 5 <1 0.06 11 48 10 <20 50 0.16 <10 54 <10 287 225 2.02 <10 0.76 467 1200 50 40 <5 1.18 3 9 86 54 111951 1.0 0.96 371 5 47 0.15 <10 37 <10 <1 0.06 9 1240 82 <20 <5 1.31 8 60 55 1.56 <10 0.70 418 55 111952 <0.2 0.79 30 35 3

PLO	RER GOLD C	ORPO	RATIC	N						ICP CĘ	RTIFIC	ATE O	F ANAL	YSIS /	AK 98-3	370									ECO-T	ECH L	ABOR	TORIE	S LTD.
Et #.	Tag #	Aa	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
56	111953	< 0.2			25	<5	1.26	2	8	71	81	1.93	<10	0.69	424	<1	0.05	12	1150	100	10	<20	37	0.13	<10	39	<10	3	243
57	111954	<0.2	0.85	80		5	1.62	1	10	59	33	1.91	<10	0.73	5 9 7	<1	0.06	9	1250	36	10	<20	45	0.12	<10	44	<10	4	233
58	111955	4.4	1.15	135	30	<5	1.43	9	11	57	240	3.18	<10	0.94	715	<1	0.03	12	1270	1084	15	<20	34	0.10	<10	67	<10	1	923
59	111996	18.0	5.99	>10000	70	<5	4.16	<1	31	95	415	8.17	<10	1.45	1176	4	0.25	14	2500	2142	280	<20	312	0.14	<10	202	<10	<1	393
60	111997	1.6	3.68	235	45	<5	2.37	2	28	56	202	5.73	<10	1.21	987	2	0.40	11	1700	252	<5	<20	164	0.10	<10	131	<10	3	338
61	111998	1.0	2.52	50	35	<5	1.51	2	23	104	167	5.92	<10	1.09	816	5	0.26	11	1680	150	<5	<20	82	0.11	<10	142	<10	5	249
62	111999	2.2	1.69	165		<5	1.82	15	11	53	79		<10	0.50	613	3	0.19	6		326	10	<20	71	0.04	<10	54	<10	3	1500
63	112000	1.6	1.64	285		<5		<1	10	79	49		<10	0.68	616	2	0.17	9		208	15	<20	69	0.04	<10	54	<10	3	281
64	112001	1.0	1.79	180		5	1.23	<1	15	96	54		<10	0.65	552	4	0.19	9	1500	182	10	<20	66	0.06	<10	92	<10	4	164
65	112002	1.0	1.87	110	35	<5	1.26	<1	14	74	62	3.29	<10	0.66	500	1	0.23	8	1190	204	10	<20	88	0.06	<10	78	<10	3	123
66	112003	0.8	1.82	185	45	<5		<1	36	64	215		<10	1.05	665	3	0.16	11		140	<5	<20	54	0.12	<10	179	<10	6	129
67	112004	0.8	2.66	>10000		<5	2.80	<1	31	37	175		<10		1043	5	0.26	9	2350	146	15	<20	122	0.05	<10	139	<10	<1	123
68	112005	0.8	3.00		25	<5	3.02	<1	26	76	85	4.73	<10	1.51	1236	6		8		116	20	<20	144	0.03	<10	76	<10	<1	94
69	112006	0.4				<5		<1	45	61	186		<10	0.95	714	3	0.18	16		90	<5	<20	79	0.09	<10	103	<10	1	74
70	112007	0.4	2.07	340	50	<5	1.87	<1	38	40	217	6.20	<10	0.93	802	1	0.16	8	2210	96	<5	<20	79	0.11	<10	137	<10	<1	98
71	112008	0.8	2.59	1790		<5	2.80	<1	188	71	125		<10	0.92	1018	6	0.28	10		144	<5	<20		0.09	<10	136	<10	<1	530
72	112009	2.4			and the second se	5		3		41	138		<10		1105	6		8		430	15	<20	236	0.11	<10		<10	<1	915
73	112010	4.2				<5		6	39	35	419		<10	1.24	1283	2	0.33	8		548	<5	<20		0.11	<10		<10	<1	663
74	112011	4.0				10		<1	18	40	119	4.60	<10		1120	2		7	1570	228	15	<20	147	0.06	<10	118	<10	<1	342
75	112012	<0.2	2.75	435	50	15	5.29	<1	30	30	57	6.87	<10	1.77	1529	3	0.21	6	2140	64	10	<20	244	0.12	<10	188	<10	<1	94
76	112013	<0.2	3.19	340	55	5	5.27	<1	29	45	65	5.60	<10	1.59	1378	2	0.30	4	2200	66	<5	<20	281	0.13	<10	177	<10	2	319
77	112014	<0.2	2.63	525	35	10	4.28	<1	22	41	51	5.83	<10	1.72	1348	4	0.12	7		86	5	<20	141	0.08	<10	146	<10	<1	383
78	112015	<0.2	2.05	425	50	15		<1	20	41	60	4.56	<10	1.14	909	2	0.08	5		76	<5	<20	102	0.10	<10	107	<10	3	77
79	112016	<0.2	1.53	525		<5		<1	33	56	129	6.34	<10		1061	3	0.05	7	1830	46	<5	<20	112	0.10	<10	142	<10	<1	70
80	112017	<0.2	1.61	820	35	<5	3.53	<1	29	45	178	6.02	<10	1.22	978	4	0.07	12	1700	50	<5	<20	133	0.10	<10	132	<10		65
81	112018	0.4	2.05			<5	4.80	<1	25	33	222			1.57	1234	2		11		62	5	<20		0.10	<10	136	<10	1	73
82	112019	0.6	1.57			<5	4.07	<1	24	64	236		<10		1143	3	0.05	12		54	10	<20	162	0.10	<10	143	10	<1	82
83	112020	<0.2	2.08			<5		<1	21	60	100	6.06	<10		1437	3	0.04	10		74	10	<20		0.07	<10	152	20	<1	71
84	112021	<0.2				10		<1	23	70	74		<10		1059	4	0.05	15		78	5	<20	146	0.06	<10	128	<10	<1	77
85	112022	<0.2	1.96	120	35	10	6.30	<1	17	49	93	5.16	<10	1.91	1359	3	0.04	10	1720	44	<5	<20	246	0.07	<10	149	<10	3	59
86	112023	<0.2	1.69	-		<5		<1	21	47	110		<10		1183	2	0.05	12		34	15	<20	200	0.08	<10	139	<10	<1	47
87	112024	<0.2			A REAL PROPERTY AND A REAL	<5		<1	21	72	75			1.20	765	2	0.06	15		36	15	<20		0.11	<10	102	<10	3	46
88	112025	<0.2				5		<1	20	36	62			1.02	825	<1	0.05	13		30	10	<20	112	0.11	<10	89	<10	3	49
89	112026	<0.2				<5	2.21	<1	24	49	60	3.95	<10		666	1	0.07	13		22	5	<20	103	0.13	<10	79	<10	2	54 65
90	112027	<0.2	1.70	95	45	<5	2.46	<1	23	42	71	4.49	<10	1.46	704	<1	0.05	12	1670	20	<5	<20	124	0.13	<10	112	<10		50
PLO	RER GOLD	CORPO	RATIC	DN						ICP CE	RTIFIC	ATE O	F ANAI	YSIS	AK 98-:	370									ECO-T	ECHL	ABOR/	TORIE	S LTD.
		1	[1																									

Et #.	Tag #	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	V	W	Y	Zn
91	112028	<0.2	2.11	100	45	5	2.94	<1	24	44	88	5.18	<10	1.66	801	<1	0.08	12	1860	22	<5	<20	152	0.15	<10	120	<10	2	61
92	112029	<0.2	1.66	50	35	5		<1	22	55	66	4.31	<10		751	<1	0.06	12	1590	20	5	<20	123	0.15	<10	114	<10	3	56
93	112030	<0.2	1.78	100	35	10	2.87	<1	23	86	82	4.92	<10	1.34	874	4	0.04	16	1310	36	<5	<20	113	0.08	<10	120	<10	1	72
94	112031	<0.2	1.70	45	40	<5	2.62	<1	15	80	36	3.69	<10	1.18	710	2	0.05	16	1440	32	10	<20	136	0.05	<10	107	<10	4	56
95	112032	<0.2	2.73		65	10	>10	<1	13	50	13	4.05	<10	2.92	2319	3	0.04	11	1580	88	20	<20	422	0.05	<10	96	<10	4	109
96	112033	0.4	1.89	30	35	10	3.50	<1	12	36	9		<10	1.06	926	3	0.03	14	1780	96	5	<20	182	<0.01	<10	70	<10	6	104
97	112034	4.4	2.44	25	35	20	5.07	3	11	54	27	4.07	<10	1.68	1789	4	0.07	11	1680	124	5	<20	22 9	0.02	<10	93	<10	4	290
98	112035	<0.2	1.58	35	45	<5	2.68	<1	17	64	85	3.29	<10	1.35	667	<1	0.09	14	1860	26	15	<20	143	0.14	<10	93	<10	4	59
99	112036	<0.2	0.99	25	40	<5	1.85	<1	16	43	87	2.17	<10	0.76	386	<1	0.08	11	1680	20	5	<20	98	0.15	<10	58	<10	5	37
100	112037	<0.2	1.91	20	40	10	3.65	<1	17	57	49	4.01	<10	1.52	906	<1	0.07	16	1650	36	15	<20	187	0.12	<10	113	<10	4	79
101	112038	2.4	2.62	35	40	10		10	15	46	51		<10		1313	3	0.03	13		146	5	<20	211	0.03	<10	106	<10	2	879
102	112039	16.4	2.87	1770	50	30	3.83	89	19	43	240		<10		1279	<1	0.08	13		2136	<5	<20	205	0.07	<10	145	<10	<1	8238
103	112040	<0.2	1.95	30	40	<5	4.45	<1	17	63	77	4.27	<10	1.83	1038	4	0.05	12	1920		15	<20	220		<10	146	<10	5	91
104	112041	0.2	2.05		45	<5	5.09	<1	28	69	173		<10		1254	3	0.04	16	1980		10	<20	230		<10	144	<10	5	93
105	112042	>30	1.89	>10000	55	<5	2.59	338	49	63	1345	8.76	<10	1.11	1168	<1	0.04	14	1410	>10000	35	<20	115	0.02	<10	88	<10	<1	>10000
106	112043	<0.2	1.21	1	35	<5		<1	20	69	92		<10		917	3	0.04	15	900		15	<20	106		<10	83	<10	<1	139
107	112044	>30			45	<5	2.20	76	19	73	581	4.35	<10		879	<1	0.05	14		>10000	30	<20	102	0.02	<10	62	<10	<1	8166
108	112045	0.2	0.82		30	<5	2.51	1	16	62	96		<10		619	1	0.05	16	830		<5	<20	170		<10	64	<10	2	174
109	112046	0.2	1.05		30	<5	2.95	2	14	78	91	2.67	<10		784	3	0.06	16	920		10	<20	197	0.04	<10	71	<10	2	260
110	112047	0.4	1.53	235	40	<5	3.99	1	13	62	76	3.48	<10	1.47	1156	3	0.05	15	880	48	10	<20	228	<0.01	<10	84	<10	<1	248
				1																									107
111	112048	0.8			45	<5		<1	21	71	116		<10		1075	4	0.02	14		120	10	<20			<10	67	<10		137
112	112049	<0.2	1.28		50	<5	3.78	<1	8	72	40	2.66	<10		948	2	0.03	12			15	<20	203		<10	89	<10	2	119 2061
113	112050	1.0	1.45		40	5	3.53	23	8	90	52		<10		1003	2	0.03	14		132	10	<20			<10	91	<10	<1	
114	112051	1.6	1.63		55	<5	3.67	<1	17	83	523		<10		1050	4	0.04	20		34	10	<20	240		<10 <10	101	<10	1	239 49
115	112052	<0.2	1.47	255	50	5	3.34	<1	12	106	37	2.88	<10	1.61	800	<1	0.05	15	1140	22	10	<20	289	0.10	510	99	<10		49
				007		44	4.00		40	05	00	2 4 0	<10	2.11	1010	-	0.04	15	1080	40	16	<20	372	0.04	<10	106	<10	2	79
116	112053	<0.2			25	10	4.82	<1	10	85	29 7				751	3	0.04	15		40 26	15	<20	278		<10	97	<10	2	
117	112054	<0.2	1.41	440	35	<5	3.53	<1	10	88		2.52	<10 <10		805		0.04	15			15	<20	273		<10	107	<10	2	142
118	112055	<0.2	1.60		35	5		<1	11	81 72	<u>11</u> 8		<10		508	2 <1	0.04	17		<u>- 24</u> 12	15	<20	155		<10	67	<10	2	43
119	112056	<0.2	1.21		65	10		<1	10	84	31	2.23	<10	1.24	697	~ 1	0.05	14		54	15	<20	213		<10	86	<10	2	78
120	112057	0.2	1.51	90	40	10	3.56	<1	Э	04	31	2.13	10	1.59	09/		0.04		1130		13	~20	213	0.00	~10		~ 10		
404	440050	10	4 07	225	50	<5	3.06	<1	11	88	208	3.43	<10	1.84	825	3	0.06	16	1150	70	10	<20	194	0.03	<10	113	<10	2	201
121	112058	1.0		235		<u></u>	3.41	<1		92	208	2.74	<10	1.63	673	3	0.08	12		18	15	<20	187	0.03	<10	136	<10	2	59
122	112059	<0.2				ح ح5	2.46	<1	10 11	92	70		<10		689	3	0.04	15			<5	<20	a series and a series of the	< 0.01	<10	138	<10	<1	101
123	112060	<0.2	1.38		40 30	<5 <5	3.74	<1	12	91	40		<10	1.46	810	5	0.04	16	1070	28	15	<20		< 0.01	<10	118	<10	2	56
124	112061	<0.2	1.34			<5 <5		<1	12	101	<u>40</u> 75		<10	1.40	805	C 8	0.03	14	1070	60	10	<20		<0.01	<10	118	<10	-1	89
125	112062	0.4	1.38	60	25	<>	2.91	<1	12		19	3.23	~10	1.57	005	0	0.04		1070		10	-20	104	-0.01					
		L		1			l						L							L,									

PLOF	RER GOLD C	ORPO	RATIO	N						ICP CE	RTIFIC	ATE O	F ANAL	YSIS	AK 98-3	70							· · · · · ·		ECO-1	ECH L	ABORA	ATORIE	S L
:t #.	Tag #	Aa	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	
26	112063	<0.2	the second s	20	35	<5	3.10	<1	13	121	52	3.52	<10	1.22	794	3	0.05	17	1080	42	<5	<20	243	0.01	<10	109	<10	2	
27	112064	<0.2	1.36	140	25	<5	3.62	<1	13	86	80	3.30	<10	1.41	899	5	0.04	15	1040	38	10	<20	220	<0.01	<10	98	<10	1	
28	112065	<0.2	1.84	120	35	<5	2.62	<1	17	76	60	4.09	<10	1.74	898	4	0.05	16	1100	30	10	<20		<0.01	<10			<1	
29	112066	0.4	1.78	190	25	<5	5.76	<1	12	75	141	3.34	<10		982	4	0.05	15	1020	34	15	<20	314	<0.01	<10	82		2	
30	111988	2.4	3.50	1555	60	10	2.09	<1	20	69	119	5.21	<10	1.16	546	1	0.42	11	1370	546	155	<20	160	0.09	<10	104	<10	4	
31	111989	1.2	4.31	250	35	<5		<1	18	77	76	3.90	<10		735	4	0.47	10		494	160	<20	162		<10			2	
32	111990	6.4	4.16	7805	60	<5		<1	23	97	380	9.35	<10		795	8	0.20	13		636	60	<20	159		<10			<1	1
33	111991	6.0	4.87	1405	80	<5	3.25	<1	38	98	459	6.76	<10		823	3	0.15	15		1250	15	<20	202		<10		<u> </u>	2	
34	111992	>30	5.47	3870	80	55		<1	30	66	1082	7.23	<10	1.25	1007	<1	0.14	15		9922	1195	<20	250		<10			<1	
35	111993	5.6	6.09	430	110	<5	4.11	12	23	91	472	7.06	<10	1.55	944	<1	0.20	14	2360	834	170	<20	301	0.27	<10	211	<10	3	1
36	111994	8.8	6.90	775	80	<5		18	29	133	513	8.19	<10		1297	<1	0.24	15		1054	155	<20	315		<10			5	2
37	111995	14.6	5.70	6635	65	<5	3.95	<1	43	98	364	7.81	<10	1.86	1261	<1	0.20	18	2400	1874	135	<20	280	0.19	<10	201	<10	<1	1
C DA	ΤΔ·																												
espli	it:																												
1	111898	<0.2	1.51	1240	45	10		<1	18	49	32	3.79	<10		506	4	0.15	7	950	54	<5		55		<10			1	
36	111933	1.4		190	70	5		11	9	71	51	3.47	<10		928	4	0.02	15		80	10			<0.01	<10			2	
71	112008	0.4	2.48	1745	55	<5		<1	176	61	117	6.72	<10		976	5		10		128	<5	<20	152		<10			<1	
06	112043	0.4	1.25	115	40	<5	3.02	<1	25	65	102	3.26	<10	1.20	1014	1	0.06	16	940	86	15	<20	112	0.06	<10	91	<10	1	
	L																										<u>├</u>		
epea				- 1010			0.04			45	- 24	3.78	(10	0.63	498	4	0.15		930	50	<5	<20	54	0.04	<10	55	<10	1	
1	111898	< 0.2		1210	40	5		<1 <1	17 12	45 48	31 24	4.22	<10		913	4		6		216	10		73		<10			<1	1
10	111907	0.6		1575	45	10 15		<1	20	40 62	- 24 7	3.60		1.56	1167	4	0.13	18		138	10			<0.03	<10			2	
19	111916	1.0	2.70	90 185	55 60	<5		11	9	53	50	3.25	<10		888	3		14		82	10			<0.01	<10			2	
36	111933 111942	1.2 1.8	1.82	145	100	10		8	10	90	43	3.93	<10		1228	3		10		246	10		74		<10			<1	
45		1.0	0.94	50	40	<5		3	9	87	221	2.03	<10		463	<1	0.02	11	1250	48	5				<10			4	
54 71	111951 112008	0.6		1765	55	5		<1	187	72	124	6.81	<10		1016	8	0.28	11	2570	158	5				<10			<1	
· · · · · · · · · · · · · · · · · · ·		<0.0		760	35	<5		<1	25	42	171	5.89		1.21	911			13		40	<5		128		<10			<1	
80 89	112017 112026	<0.2	1.52	700	45	<5		<1	23	49	62	4.04		1.14	686	1	0.07	14		24	<5		105		<10			2	
09 106	112028	0.4	1.33	115	35	<5		<1	22	75	101	3.23	<10		1007	3		18		92	15		114		<10			1	
115	112043	<0.4	1.43	270	55	5		<1	12	92	36	2.81	<10		780	<1	0.05	15		20	15				<10			2	
115	112052	<0.2	1.45	240	35	<5		<1	11	91	43	3.04	<10		815	4	0.04	15		28	10	<20	287	<0.01	<10	119		2	
133	111991	6.2	4.70	1445	75	<5		<1	38	96	447	6.70	<10		805	3	0.15	17	2040	1310	15				<10	177	<10	2	
																											╞∔		
																											 		
		L																								· · · · · · · · · · · · · · · · · · ·	┢────╋		

רדים רדים רדים רדים רבים רבים בלים ביום בלים ביום רדים רבים רבים רבים רבים רבים רבים ביום רבים רבים ביום

XPLOR	er gold (ORPO	RATIO	N						ICP CE	RTIFIC	ATE O	FANA	YSIS	AK 98-3	370									ECO-T	ECHL	ABOR	TORIE	ES LTD.
Et #.	Tag #	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Ρ	Pb	Sb	Sn	Sr	Ti %	U	v	W	Y	Zn
				· · · · .																									
Standar	rd•																												
GEO'98		1.4	1.79	70	160	<5	1.84	<1	19	66	80	4.18	<10	0.94	684	<1	0.03	24	670	20	<5	<20	58	0.12	<10	78	<10	6	72
GEO'98		1.4	1.73	75		<5	1.86	<1	20	62	79	4.22	<10	0.91	687	<1	0.03	24	710	22	<5	<20	57	0.11	<10	77	<10	6	79
GEO'98		1.0	1.75	70		<5			19	66	80		<10		672	<1	0.03	25	640	20	<5	<20	56	0.12	<10	78		6	76
GEO'98		1.2	1.73	65	150	<5	1.84	<1	19	64	79	4.00	<10	0.94	676	<1	0.03	25	650	24	<5	<20	53	0.11	<10	77	<10	5	78
																												\rightarrow	· · · · ·
						v																							
							· · · · ·																						
	···-																												
																													ES LTD
																										J. Pezz			
df/370 XLS/98												L		L											D.C. C	ertified	Assaye	<u>r</u>	

	29-Jul-98	Ϋ́		·····	T		T		T		<u></u>																	T	
ECO-1	ECH LABO	RATOR	IES LI	rD.						CP CE	RTIFIC	CATE C	OF ANA	LYSIS	AK 98-	359											RATION		
	East Trans	Canada	Highw	/ay																						PHIN A	VENUE		
(AML	OOPS, B.C.																							WNA, E					
/2C 6	Τ4																						V1Y 48	54					
																							ATTE	ITION:	ERNIE	BERG	VINSO	N	
hone	: 604-573-57	700																											
Fax :	604-573-45	57																						sample		ved: 3	2		
																								e type:					
																								ECT #:					
																								IENT #			<u> </u>		
Value	s in ppm un	less ot	herwis	e reporte	nd														u				Sampl	es subi	nitted b	у: М. F	ay		
			· · · ·																										······
Et #.	Tag #		Al %	As	Ba		Ca %	Cd	Co	Cr	Cu			Mg %	Mn		Na %	Ni	- · · · ·		Sb	Sn	Sr		U	<u>v</u>		Y	Z
1	111956	1.2	0.92		95	<5	0.07	<1	12	31	54			0.27	505	3		14	190		<5	<20	11	<0.01	<10	7	<10	<1	132
2	111957	0.8			100	<5	0.29	<1	21	38	113				1269	5		20	200		<5	<20		0.01	<10	27	<10	<1	19
3	111958	1.0	2.61	340	80	<5	0.93	<1	18	51	67	4.62				4	0.15	16	390		<5	<20		0.02	<10	41	<10	<1	15
4	111959	0.6	2.91	1560	65	<5	0.95	25	24	50	131	6.14	<10		1029	3		18	1070		5	<20		0.09	<10	87	<10	<1	387
5	111960	<0.2	2.36	2525	70	10	0.53	<1	30	73	72	5.36	<10	1.46	1110	<1	0.11	17	1030	106	10	<20	33	0.20	<10	144	<10	2	19
												-		1.10	070		0.07	40		400				0.40	-40	405	<10		13
6	111961	<0.2	1.65		50	10		<1	27	75	30		<10		853 673	3		12	890		<5 <5	<20 <20		0.12	<10 <10	125 113		2	11
7	111962	<0.2	1.32	235	40	10		<1	18	86	37	4.56			777	6	0.07	10	1000 1350		<5	<20		0.00	<10	126		2	11
8	111963	<0.2	2.82		60	15		<1	21	89	42	6.52 4.59	<10 <10		543	4	0.25	14 11	1550		<5	<20		0.14	<10	108	<10	4	9
9	111964	0.8	3.39		85	<5	1.89	<1	20	77	54			1	775		0.30	12	1650		5	<20		0.12	<10	160		4	11
10	111965	0.8	4.35	3085	85	<5	2.12	<1	30	100	105	6.75	<10	1.00	115	<u> </u>	0.42	12	1000	102		~20	239	0.20	<u> </u>	100			- 10
11	111966	1.4	5.12	3260	75	<5	2.54	<1	51	146	236	9.54	<10		747	4	0.56	21	2360		<5	<20		0.35	<10	234	<10	8	12
12	111967	1.2			100	10	2.65	<1	27	123	93	6.65			831	<1			2170		5	<20		0.35		223		5	12
13	111968	0.6		>10000	95	<5		<1	23	78	48	5.74	<10		779	<1	0.38	14	1390		20	<20		0.19		174		4	9
14	111969	0.8			85	10		<1	21	75	63	5.08	<10		690	<1	0.27	13	1770		15	<20		0.28	<10	182	<10	7	8
15	111970	0.8	2.32	4030	55	5	1.38	<1	35	110	99	6.01	<10	1.45	612	2	0.25	23	1590	396	15	<20	127	0.20	<10	187	<10	2	9
16	111971	4.2	2 71	>10000	70	15	1.42	<1	30	94	78	6.72	<10	1.66	665	2	0.32	17	1810	1114	30	<20	164	0.18	<10	171	<10	<1	10
17	111972	1.6		>10000		5		<1	21	68	84				552	3	0.30	11	1460		20	<20		0.15	<10	163		<1	9
18	111972	0.2		>10000		5		<1	27	87	112		<10		562	3	0.23	16	1550		15	<20		0.15		178		1	9
19	111973	0.2			65	5		<1	15	80	66	4.62	<10	1	488	2	0.28	11	1480	286	20	<20		0.13	<10	101	<10	<1	8
20	111975	0.2		1075	65	5		<1	20	83	93	4.58	<10		405	2	0.26	11	1630	234	15	<20		0.14	<10	123	<10	3	7
20		V.2	2.01	10.0									<u>-</u>	1															
	1	+			<u> </u>									1															
		1			†		-							1															
	1	t											[

	RER GOLD	CORPO	RATIC)N						CP CE	RTIFIC	ATE C	F ANA	LYSIS	AK 98-3	59							ECO-T	ECH L	ABOR/	TORIE	S LTD.		
			1																										
Et #.	Tag #	Δa	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	
21	111976		2.26	640	60	<5	Contraction of the local division of the loc	<1	26	57	130	5,56	<10	1.05	520	3	0.28	10	1660	390	20	<20	149	0.12	<10	121	<10	2	ł
22	111977	0.8	1.36	685	50	<5		<1	27	54	135	5.57	<10	0.93	539	4	0.08	10	1510	528	25	<20	77	0.09	<10	115	<10	4	
23	111978	1.6	3.79	4240	80	<5	2.54	<1	28	75	140	6.38	<10	1.67	628	1	0.46	20	2000	1006	40	<20	228	0.18	<10	147	<10	2	14
24	111979	2.2	5.20	9515	95	10	3.08	<1	29	72	104	6.51	<10	1.72	632	<1		12	1670	3012	320	<20	423	0.18	<10	137	<10	<1	16
25	111980	<0.2	2.46	1915	65	<5	1.74	<1	33	67	129	6.31	<10	1.38	769	3	0.24	9	1680	272	45	<20	109	0.13	<10	131	<10	3	12
26	111981	0.8	2.27	2635	40	<5	2.36	<1	42	51	152	6.80	<10		824	5		10		566	175	<20	99		<10	100	<10	2	143
27	111982	1.4	3.12	1310	25	<5	2.35	<1	28	54	147	6.44	<10		741	5		9	1750	926	425	<20		0.09	<10		<10	3	85
28	111983	2.2	2.01	1060	40	<5	1.28	<1	28	61	143	6.28	<10		628	5	0.18	9	1640	1208	725	<20	65			108	<10	3	18
29	111984	4.4	3.15	>10000	40	<5	2.00	<1	33	82	108	7.08	<10		681	7	0.30	12	1540	1192	475	<20		0.06	<10	125	<10		26
30	111985	3.6	2.61	2645	65	<5	1.36	<1	26	75	115	6.05	<10	1.42	588	4	0.25	10	1580	606	185	<20	101	0.12	<10	131	<10	3	61
																			4550		400	-00	407	0.40	- 10	424	<10	2	57
31	111986	3.0	2.65	2765	65	<5		<1	25	62	114	5.90			562	3		10		616 368		<20 <20			<10 <10	131 116	<10	2	31
32	111987	2.2	3.29	5820	55	<5	2.25	<1	22	60	84	5.67	<10	1.05	496	3	0.37	12	1620	368	75	<20	101	0.07	<u> </u>	110	~10		
2C DA	TA:																												
Respl																				40.0		-00		-0.01			- 10		4 46
1	111956	1.4	0.98	1900	100	<5	0.07	<1	12	34	53	3.07	<10	0.27	533	3	0.03	15	200	420	<5	<20	9	<0.01	<10	8	<10	<1	140
Repea											50	0.00		0.07	507	3	0.02	14	200	426	<5	<20	10	<0.01	<10	7	<10	<1	134
1	111956	1.4			95	<5		<1	12	32		3.03	<10	· · · · · · · · · · · · · · · · · · ·	776		0.02	13	1720	188	<5	<20				160	<10	4	11
10	111965	0.8	4.44	3240	80	10		<1	31	102	102 65	6.84 4.74	<10 <10		498	2	0.45	11	1520	304	20	<20				102	<10	<1	
19	111974	0.8	2.16	9290	65	<5	1.40	<1	17	81	60	4.74		1.00	430		0.20		1520		20	-20	1.4	0.10					
Stand	ard:																									70	-10	6	
GEO'S	8	1.2	1.73	75	160	<5	1.77	<1	20	60	81	4.19	<10	0.94	704	<1	0.03	22	690	20	5	<20	55	0.12	<10	78	<10	- 0	
														-															
· • · · · · · · · · · · · · · · · · · ·													<u> </u>	1															
				<u> </u>			+							<u> </u>															
		+					+							1															
				+																									
		+												1															
		+																											
	+	+		1			1		[]																		S LTD	:	
df/359		+										· · · ·											· · · · · · · · · · · · · · · · · · ·		otti, A.S				
XLS/9		+																					B.C. C	Certified	Assaye	r			

Page 2

		a second s
	a a contra a ser a ser a	

	7-Aug-98																													
												OTICIO			VOID		07							VDI OF			ORPOF	ATION		
	ECH LABO										CP CE	RIPIC	AIEO		-YSIS	AK 98-3	56/							#102.4						
	East Trans	Canada H	ighway									~~~~											-					VENU	5	
	DOPS, B.C.																							KELOV						
V2C 61	[4																							V1Y 45)4					
																	.							A	TION		-			
																								ALLEN	TION:	ERNI	E BERG	JONIOE	אנ	
	604-573-57																							No. of			in conde 71			
Fax :	604-573-45	57															•••••										ived: 72			
																								Sample			100			
					ļ																			SHIPM						
															-												by: M. F	014		
Values	s in ppm ur	less othe	erwise	report	ted																			Sampre	as sup	mueu	<u>ыу. м. г</u>	ay		
The P	* #		A.c.	AI %		Ba	Di	Ca %	Cd	Co	Cr	C"	Fe %	1.0	Mg %	Mn	Mo	Na %	Ni	Ρ	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
Et #.	Tag #		Ag			40		2.19		13	103	66			1.13		4				46	<5	<20		<0.01	<10	-		2	46
1	112067		0.4	1.14		40 30	<5		<1	17	91	64		<10		827	7	0.04	19		66	<5	<20		<0.01	<10			<1	66
2	112068		0.4	1.39	85 115	30	<5		<1	20	80				1.53	917		0.04	20		74	10	<20		<0.01	<10		<10	<1	121
3	112069			1.60		30	<5			16	80			<10		967	4	0.04	17		58	10	<20		< 0.01	<10		<10	<1	208
4	112070		0.4	1.00		25	<5		<1	16	64	56		<10		1030	4	0.03			44	<5	<20		<0.01	<10	-		<1	197
5	112071		0.4	1.70	215	- 23		3.23		- 10	64		5.00	- 10	1.47	1000		0.00												
	440070		0.4	1.70	235	25	<5	4.49	<1	12	63	49	3.52	<10	1.58	884	3	0.04	12	1150	28	<5	<20	200	<0.01	<10	88	<10	<1	70
6	112072 112073		<0.4	1.93		40	<5		<1	13	68			<10	2.03		4	0.03			18	10	<20		<0.01	<10			2	158
7	112073		0.8	1.75		25	<5		- 9	12	48			<10			3	0.01	13		64	10	<20		<0.01	<10			1	641
9	112074		0.0	1.73	200	45	<5		<1	18	38			<10	0.92	948	4	0.02	12	1250	56	10	<20		< 0.01	<10	59	<10	2	154
10	112075		0.4	1.77	105	45	5		-1	18	53			<10			4	0.05			38	<5	<20		< 0.01	<10	124	<10	2	177
10	112076		0.4	1.00	105			0.17	· · · · ·																		1			
11	112077		2.6	1.78	210	30	10	8.56	5	24	86	86	5.08	<10	1.53	2062	5	0.03	24	1440	200	10	<20	405	< 0.01	<10	131	<10	3	507
12	112078		3.8	1.44		35	<5		2	16	79		4.95	<10			5	0.02		1400	224	10	<20	369	0.01	<10	98	<10	2	430
13	112079		<0.2	1.99		50	<5		<1	17	101	101	5.17	<10			4	0.03		1450	32	20	<20	327	0.02	<10	127	<10	2	111
14	112080		<0.2	1.91	155	45	10		<1	32	81	81	4.22	<10			2	0.03	22	1400	28	15	<20	258	0.05	<10	128	<10	1	138
15	112081		1.0	1.05	Louis and the second	125	<5		<1	15	40	23	2.33	<10	0.41	585	4	0.02	13	170	338	<5	<20	22	< 0.01	<10	11	<10	<1	143
13	112001		1.0	1.00																										
16	112082		1.6	1.39	1575	85	<5	0.16	<1	17	28	68	4.20	<10	0.58	928	5	0.02	14	250	390	<5	<20		<0.01	<10			<1	214
17	112083		0.8	2.02		60	10		12	20	75			<10			4	0.08	16	870	118	<5	<20	41	0.03	<10	58		1	2216
18	112084	<u> </u>	<0.2	2.09		65	15		<1	16	75			<10	1.17	1060	3	0.09	10	970	76	<5	<20	43	0.10	<10			3	116
19	112085		<0.2	2.08	1	60	10		<1	16	76		4.66	<10	1.24	805	3	0.13	10	770	104	<5	<20		0.08	<10			<1	116
20	112086		<0.2	2.46		65	<5	0.98	9	27	61	87	5.63	<10	1.25	743	1	0.18	15	1110	116	<5	<20	74	0.11	<10	86	<10	1	1774
- -			1	<u> </u>				1										Ι												
21	112087		0.6	2.07	295	55	5	0.81	3	21	72		4.84	<10			2	0.16			196	10	<20						2	366
22	112088		<0.2	1.63		60	10	0.56	<1	23	80	49	5.50	<10	1.26	591	<1	0.10	12	1190	148	<5	<20		0.21	<10			4	176
23	112089		<0.2	2.27		65	20	0.81	<1	44	58	90	7.08	<10	1.61	693	<1	0.16	16		108	<5	<20		0.26	<10		<10	4	110
24	112090		<0.2	2.27	605	50	<5	1.61	<1	21	61	74	5.28	<10	1.58	730	1	0.10			118	10	<20		0.13	<10			4	104
25	112091		0.8	1.72		45	<5		<1	24	60	118	6.51	<10	1.65	751	3	0.06	9	1770	190	10	<20	35	0.12	<10	149	<10	6	88

PLOR	ER GOLD CORP	ORATION									RTIFIC	ATE O	FANA	YSIS	AK 98-3	387									ECO-T	ECH LA	ABORA	TORIE	2S LTI
Et #.	Tag #	Aa	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Ρ	Pb	Sb	Sn	Sr	TI %	U	v	w	Y	
	112092	1.2	2.23		60		1.26	<1	24	54	124	6.56	a sector de la company	1.84	655	2	0.16	12	1670	132	15	<20	84	0.16	<10	158	<10	7	
26 27	112093	1.4	1.92		60	10	0.87	<1	24	69	121	5.91	<10		520	<1	0.15	9	1700	122	<5	<20	57	0.25	<10	163	<10	7	
28	112093	2.0	1.51	4675	60	5	0.73	<1	21	46	114	6.03	<10	1.41	424	<1	0.10	10	1820	120	15	<20	39	0.19	<10	151	<10	7	
29	112095	1.2	1.18	2380	50	<5	0.65	<1	33	61	130	6.35	<10	1.00	392	4	0.07	11	1570	78	<5	<20	24	0.11	<10	146	<10	4	
30	112095	0.4	2.15		60	<5		<1	19	80	97	4.88	<10		353	1	0.27	13	1430	108	10	<20	142	0.11	<10	138	<10	4	
30	112090	V.T	2.19	2000																									
24	112097	<0.2	1.53	2900	65	10	0.87	<1	14	79	64	3.87	<10	1.11	400	3	0.13	11	1190	120	20	<20	59	0.12	<10	92	<10	5	
31 32	112098	<0.2		>10000	80	<5		<1	21	74	30	3.14			260	<1	0.36	13	1110	86	20	<20	186	0.06	<10	64	<10	<1	
33	112099	<0.2	2.15		85	5	1.41	<1	12	73	50	3.12		0.76	310	4	0.34	13	1360	140	35	<20	170	0.08	<10	84	<10	4	
		<0.2	3.00		70	10		<1	21	87	98	4.93	<10		332	2	0.45	15	1840	124	15	<20	233	0.11	<10	134	<10	3	
34 35	112100 112101	<0.2	3.85		75	<5		<1	28	88	169				487	1	0.49	14	2460	144	<5	<20	282	0.19	<10	223	<10	2	
35			3.00	030	1.0		2.40																					-	
	440400	<0.2	3.23	260	60	5	2.63	<1	24	69	144	6.57	<10	1.63	815	2	0.36	11	1700	108	<5	<20	231	0.15	<10	166	<10	2	
36	112102	<0.2	1.89	-			1.12	<1	14	66	86	4.04	<10		415	<1	0.24	10	1210	74	10	<20	88	0.11	<10	98	<10	4	
37	112103	<0.2	1.84					<1	18	83	83	4.19	<10		405	2		15	1220	64	10	<20	80	0.13	<10	100	<10	4	
38	112104					<5		<1	15	100	81		<10		421	1	0.32	9	1200	54	10	<20	131	0.13	<10	101	<10	4	
39	112105	<0.2	2.49			<5		<1	16	81	87		<10		477	<1		11	1350	46	15	<20	90	0.16	<10	88	<10	4	
40	112106	<0.2	1.97	20	05	-5	1.20					0.00				· · · · ·													
44	440407	<0.2	3.30	55	70	10	2.05	<1	11	94	40	2.98	<10	0.95	395	2	0.40	7	880	60	20	<20	279	0.09	<10	65	<10	2	
41	112107	<0.2	2.09			10		<1	18	73	75		<10		467	<1		13	1170	46	15	<20	127	0.14	<10	104	<10	3	
42	112108							<1	14	81	54	4.47	<10		516			9	910	36	10	<20	105	0.10	<10	83	<10	1	
43	112109	<0.2	1.98					<1	35	56	130				599	3		12	2300	46	<5	<20	303	0.13	<10	119	<10	4	
44	112110	<0.2	3.65					<1	47	57		7.30			647		0.58	16	2390	60	5	<20	431		<10	171	<10	5	
45	112111	<0.2	4.55	5 270	/3	20	2.30		- 4/			1.00		2.20			0.00												
46	440440	<0.2	4.2	7 195	80	10	2.48	<1	45	59	67	7.28	<10	2.12	628	<1	0.52	16	2430	54	10	<20	390	0.21	<10	163	<10	5	
46	112112	<0.2						<1	34	48	66				685	<1	0.54	14	2430	50	10	<20	386	0.21	<10	147	<10	5	
47	112113	11.2						67	44	78	136						0.46	15	2280	1768	50	<20	313	0.35	<10	213	<10	4	
48	112114							1	36	58	82		<10		1369	<1	0.48	13	2440	140	<5	<20	409	0.26	<10	226	<10	8	
49	112115	<0.2						15		63	129				1190	<1		14	2320	576	<5	<20	326	0.21	<10	163	<10	2	
50	112116	2.0	4.2	1 225	13		9.20	10																					
	449447	<0.2	5.2	3 335	90	10	3.39	<1	33	49	103	7.33	<10	2.03	1093	<1	0.52	11	2400	290	5	<20	423	0.25	<10	164	<10	4	
51	112117							10	35	48	195							13	2350	1192	<5	<20	450	0.16	<10	156	<10	2	
52	112118	6.0		·				<1	29	45	139							13	2430	362	10	<20	395	0.13	<10	140	<10	3	
53	112119	1.2						<1	31	42	123					<1		11	2420	96	5	<20	321	0,15	<10	140	<10	4	
54	112120	<0.2						<1	46	42	84					<1		16	2460	70	15	<20	227	0.19	<10	131	<10	4	
55	112121	<0.2	3.1	5 135	63	10	2.13	~1	40	-74		0.01				·													
					65	10	1.69	<1	34	43	66	6.83	<10	1.79	621	<1	0.31	12	2370	70	10	<20	182	0.22	<10	140	<10	5	
56	112122	<0.2						77	40	57	161							10	2280	8808	50	<20	197	0.29	<10	186	<10	<1	
57	112123	>30						<1	33	75	126							12	2460	236	10	<20	235		<10		<10	6	
58	112124	<0.2								71	120					<1		17	2490	1630	5	<20	238		<10		<10	<1	
59	112125	6.6	3.9	8 805	5 65	5	2.20	29	38	- 11	100	1 0.34	1 - 10	1 1.79	0 0		L V.TV		~~~~					0.15	<10			3	

105 6.54 <10 0.83 551

39

<1 27

5 2.43

112126

60

0.6 3.14

90

60

14 2540

316

<1 0.48

PLOR	ER GOLD	CORPOR	ATION								ICP CE	RTIFIC	ATE O	FANA	YSIS	AK 98-3	87									ECO-1		ABOR	ATOR	IES LTC
				A1 0/		Ba	Di	Ca %	Cd	Co	Cr	Cu	Fe %	12	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Śr	Ti %	U	v	w	Y	z
Et #.	Tag #		Ag 0.8	AI %	As 130	60	<5		<1	32	76	189	6.16	and the second s	0.95	831	2	0.26	15		358	10	<20	141	0.14	<10	in the second	<10	_	
61	112127		3.4	3.09	805	55	5	2.43	29	23	55	173		<10		1023	<1	0.36	11		912	<5	<20	151	0.14	<10	119	<10	1	317
62 63	112128		0.8	2.79		65	10		3	26	52	67		<10		758	<1	0.38	5		488	10	<20	155	0.20	<10	115	<10	3	40
64	112129		0.8	2.87	445	65	10		11	15	50	51		<10	1.25	765	<1	0.40	4	1730	438	5	<20	163	0.18	<10	109	<10	3	118
65	112130		1.6	3.12	215	55	5	2.07	1	21	54	119	5.04	<10	0.99	603	<1	0.47	6	1960	664	<5	<20	184	0.14	<10	159	<10	5	19
66	112132		4.6	3.27	105	45	<5	1.84	9	17	65	219	6.31	<10		737	2	0.33	10		856	5	<20			<10		<10		91
67	112133		7.2	3.18	6760	35	<5	2.10	<1	12	59	403	5.26	<10		564	3		4	1170	924	20	<20	150	0.06	<10		<10		103
68	112134		7.0	2.48	>10000	45	<5		32	18	45	1253	9.41	<10		665	3	0.13	4	1710	730	<5	<20	80	0.06	<10		<10		663
69	112135		25.6	2.50	875	105	<5		703	24	17	3637	>10	<10		850	3		5		1106	<5	<20		0.05	10		<10	· · · · ·	>1000
70	112136		22.6	5.01	905	55	10	2.91	73	18	47	509	8.25	<10	1.36	754	<1	0.43	5	1650	2046	10	<20	261	0.14	<10	136	<10	<1	646
71	112137		2.0	4.89	690	45	10	4.32	<1	24	24	86		<10		826	<1		6		342	10	<20		0.13	<10		<10		19
72	111651		>30	1.20	>10000	40	<5	0.59	46	83	49	5201	8.72	<10	0.54	711	10	0.01	13	680	3692	225	<20	15	<0.01	<10	27	<10	<1	>1000
C DA	TA:																													
Respli																											- 101			
1	112067		<0.2	1.22		35	<5		<1	14	105	69	La maintaine	<10		755	3	0.04	15		54	5	<20			<10		<10 <10		10
36	112102		<0.2	3.18	245	60	<5		<1	24	88	146		<10		874	4	0.33	13		122	<5	<20		0.14	<10				16
71	112137		1.8	5.08	740	45	5	4.47	<1	35	22	85	4.78	<10	1.10	859	<1	0.29	6	2130	338	<5	<20	340	0.15	<10	103	510		10
Repea	t.				 			1				······																		
1	112067		0.2	1.17	75	40	<5	2.22	<1	14	108	68	3.42	<10	1.15	695	4	0.05	16	1220	50					<10				
10	112076		0.2	1.78		40	15	5.77	1	18	52	43	4.46	<10	1.36	1353	5	0.05	10		38	<5	<20			<10				· · · · · · · · · · · · · · · · · · ·
19	112085		<0.2	2.18	1265	60	10	0.73	<1	18		29	4.80	<10			2	0.14	10		106	<5	<20			<10		<10		
36	112102		<0.2	3.31	265	60	<5	2.69	<1	24	71	148		<10			2	0.37	11		114	<5	<20			<10		<10		10 10
45	112111		<0.2	4.54	255	75	15	2.64	<1	46		67		<10		650	<1	0.58	17		68	10				<10		<10		12
54	112120		0.2	4.12	2 50	65	5		<1	33		127	6.93	<10			<1	0.48	11		106	<5	<20		0.16	<10		<10 <10		20
71	112137		2.0	5.03	725	40	15	4.44	<1	25	25	90	4.81	<10	1.08	852	<1	0.29	1	2080	372	<5	<20	341	0.15	<10	104	- 10		
Stand	ard:																						-00		0.44	-10	76	<10	4	6
GEO'9	8		1.2	1.70			<5		<1	19		81		<10			<1	0.03				10	<20			<10 <10		<10		
GEO'9	8		1.0	1.88			<5		<1	20		85		+			<1		26		28	<5	<20		+			<10		8
GEO'9	8		1.2	1.88	3 75	160	5	1.80	<1	21	59	83	4.26	<10	0.97	703	<1	0.03	24	690	30	<5	<20	66	0.14	<10	03	~10	- 4	
			ļ										ļ																	
		+	+	<u> </u>				+					1		T			1				ECO-1	ECH L	ABOR	ATORI	ES LTI	כ.			
df/387		+			+		h	1			1		1									Frank	J. Pezz	zotti, A	Sc.T.				ļ	
ai/307 XLS/98	•		+					1			1		1						1			B.C. C	ertified	Assay	er					L

ŧ

	7-Aug-98							T	r			1					<u> </u>	ľ												
	1 7 10 9 5 5		1				_																							
ECO-TE	CH LABOR	ATORIE	S LTD.								ICP CE	RTIFIC	ATE C	FANA	LYSIS	AK 98-	390	L										RATION		
10041 E	ast Trans C	anada Hi	ighway																								PHIN /	AVENU	5	
KAMLO	OPS, B.C.		T															ļ							WNA, E	<u>ic</u>	ļ	ļ		
/2C 6T	4																	ļ						V1Y 4	<u>54</u>	I	L	<u> </u>		
																		<u> </u>												
														1			ļ							ATTE	NTION:	ERNI	E BER	GVINSC	<u>N</u>	
Phone:	604-573-570	0													ļ		ļ										 			
Fax : (604-573-455	7																ļ												
															ļ										sample			0		
																									e type:					
																									ECT #:			<u> </u>		
														ļ											MENT #					
Values	in ppm uni	ess othe	erwise r	eporte	ed 🛛										 	ļ	_	+						samp	les subi	maed I	<u>зу: к. г</u>			
																	L						0-		T1 0/		L	w	Y	7.
Et #.	Tag #		Ag	AI %	As	Ba		Ca %	Cd	Co	Cr		Fe %		Mg %			Na %	the second se		_	Sb	Sn		Ti %		in the second			Zı
1	112138		1.4	4.01		45	5		6	22	44	162			1.30						276	<5	<20	257					<1	800 770
2	112139		25.0	2.87	>10000	60	<5		<1	24	43	1376	>10			895					802	<5	<20	170					<1	
3	112140		>30	2.43	1140	60	30		52	98	11	1057	>10					0.04			2316	<5	<20	122		1			<1	436
4	112141		2.0	3.38	245	55	15		6	17	31	52	4.76							1630	440	<5	<20	223	0.17	<10				56 102
5	112142		0.6	3.20	115	55	25	3.24	13	15	23	33	5.56	<10	2.35	1113	<1	0.22	2	2040	284	<5	<20	166	0.17	<10	10/	<10		1020
6	112143		13.0	4.15	>10000	45	<5	2.98	26	89	38	367	8.07								1982	<5	<20	190					<1	548
7	112144		3.6	2.60		30	15	3.49	5	14	27	137	4.25								440	25	<20						2	58
8	112145		<0.2	1.82		35	15	3.74	<1	14	30	31	4.24				-				44	<5	<20						3	6
9	112146		<0.2	2.23	30	25	15	3.18	<1	14	17	17	4.79								40	<5	<20							
10	112147		<0.2	1.67	340	40	10	3.35	<1	14	28	47	4.08	<10	1.17	1032	2	0.10	2	1720	38	<5	<20	207	0.12	<10	108	<10	3	6
													- 10	- 40	0.00			0.00	3	1610	32	5	<20	130	0.12	<10	77	<10	4	6:
11	112148		<0.2	1.65		35	5		<1	40	31	69									36	5	<20							110
12	112149	. <u></u>	1.8	1.65		35	<5		<1	29	27	435								1770 2100	30	5 <5	<20							5
13	112150		<0.2	1.46		45	10		<1	14	29	46	2.94			497 615					52	10	<20			<10		1		16
14	112151		<0.2	1.66		50	10		<1	16	26	45	3.74								24	<5	<20						5	4
15	112152		<0.2	1.30	25	45	15	2.74	<1	12	42	14	2.73	<10	0.85	/ 15	<u>'</u>	0.10	+	1000	64		-40	122	0.10		+		ب	
													2.00		1.08	579	<	0.13	2	1870	38	5	<20	117	0.22	<10	83	<10	4	6
16	112153		<0.2	1.70		25	20		<1	15	23	20									32	<5	<20							
17	112154		<0.2	1.66		30	5		<1	15		53	3.70								30	<5	<20							
18	112155		2.2	1.55		15	<5		<1	33	37 25	1337	4.43								38	<5	<20			<10			5	4
19	112156		<0.2	1.45		25	<5		<1	16		20									320	<5	<20		<0.01	<10				14
20	112157		0.4	1.49	485	175	<5	0.19	<1	18	/5	20	3.08		0.39	105		, 0.03	31				-20	+			+	1.0	·'	
														+	+		+		<u> </u>						1		t	1	[]	
					<u> </u>									1		1			1						1		1	1	[]	
														+	1		1	1	1						1			1		
														t	+		-	1	1						1			1		

		ORPORATI	ON				T				CP CE	RTIFIC	ATE O	F ANAL	YSIS A	AK 98-3	90	Т							1	ECO-T		ABORA'	TORIE	S LTD.
LON											T																			
	B			AL 0/		Ba	Di	Ca %	Cd	Co	Cr	Cu	Fe %	1.2	Mg %	Mn	Mo	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
Et #.	Tag #		Ag		As	Ba 90	<5	0,49	<1	22	52		3.51	A.C	0.49	776	4		26	290	418	<5	<20	-	<0.01	<10	19	<10	<1	160
21	112158			1.72	1055	- 9 0 60	10	1.02	<1	22	40	53		<10		990	5	0.18	13		120	<5	<20	67	0.02	<10	25	<10	<1	78
22 23	112159			3.16	3815	60	<5	1.43	<1	24	48	82			1.08	942	4	0.27	13		114	<5	<20	108	0.03	<10	52	<10	5	99
23	112161	<u> </u>		3.54	395	55	<5	1.49	<1	24	53	154		<10	0.94	1011	6	0.28	15	370	184	<5	<20	117	0.02	<10	42	<10	<1	127
25	112162			3,40	920	50	<5	1.70	<1	21	58	120	5.93	<10	1.17	991	3	0.27	13	1300	362	<5	<20	124	0.08	<10	66	<10	3	356
26	112163		2.0	2.19	2085	35	<5		<1	18	74		4.54		1.27	794		0.16		1260	204	<5	<20	50	0.04	<10	73	<10	4	372
27	112164		1.6	2.84	6915	40	10	1.25	<1	21	52	68				827	5		12		164	10	<20	81	0.04	<10		<10	7	716
28	112165			3.68	1840	45	5	1.91	21	22	73	123				922	1	0.37	9	2270	240	5 <5	<20 <20	116 88	0.12	<10 <10	158 98	<10 <10	8 4	1982 6560
29	112166		4.4	2.45	3040	40	<5	3.15	79	25	30	155				974 579	2 <1		10	1860 1070	310 96	<5	<20	51	0.02	<10	90 81	<10		>10000
30	112167	ļ	1.8	2.24	4510	35	<5	0.98	131	28	68	94	6.04	<10	1.08	2/3		0,10		10/0	50		~20	- 31						- 10000
	440460		4.0	2.40	1345	45	20	0.94	<1	15	72	49	4.90	<10	1.48	544	<1	0.21	7	1430	74	10	<20	44	0,18	<10	113	<10	4	454
31	112168	<u> </u>		2.40	1425	35	10	0.82	<1	24	143		6.58		1.44	588	5	0.14	13		34	<5	<20	31	0.15	<10	119	<10	3	408
32 33	<u>112169</u> 112170			2.18	6310	30	10	0.93	<1	18	65		5.09		1.50	550	2	0.13	10		32	15	<20	36	0.11	<10	130	<10	3	347
34	112170		<0.2	1,90	7790	40	15	0.79	<1	22	48	26		<10		585	<1	0.11	9	1030	26	10	<20	26	0.11	<10	119	<10	3	
35	112172	1	<0.2	1.84	4780	40	10	0.66	<1	27	64	83	5.72	<10	1.45	571	1	0.08	17	1230	22	5	<20	16	0.14	<10	142	10	3	76
36	112173		0.6	1.92	7710	55	<5	0.84	<1	25	51		5.19		1.44	532	<1	0.12		1100	38	10	<20	37		<10		<10	3	
37	112174		<0.2	1.28	965	45	10	0.58	<1	16	54	65			1.02	493	<1	0.09	6		38	20	<20	16		<10		<10	3	
38	112175		<0.2		640	50	5	0.67	<1	22	71		4.80		1.01	454	1	0.10	10		72	10	<20 <20	19 23	0.14	<10 <10	118 147	<10 <10	3	
39	112176		0.2	1.44	2040	45	5	0.67	<1	28	112	125				442 446	1	0.10	<u>11</u> 8		60 90	<5 15	<20	25	0.18	<10		<10	5	
40	112177	ļ	1.8	1.59	1645	45	20	0.88	<1	19	98	64	4.19	<10	1.17	440		0.12	- 0	1020	50	13	-20	- 20						
	440470			2.19	585	65	40	1.56	<1	17	63	58	3.33	<10	1.00	406	<1	0.26	4	2190	290	15	<20	73	0.13	<10	164	<10	9	148
41	112178	+			1850	45	15		<1	61	84		5.76			583	1	0.36	11		180	15	<20	95		<10		<10	8	352
42 43	112179 112180	++-			2105	50	15		<1	53			6.14			773	<1		18		46	10	<20	78	0.19	<10	158	<10	5	
44	112181	++-	3.8		2105	55	20		<1	27	89	53	4.64	<10	1.28	545	1	0.34	10	1440	528	20	<20	130	0.13	<10	145	<10	4	538
45	112182	++-		2.15	970	60	5	1.27	<1	15	79	32	4.23	<10	1.18	539	<1	0.23	8	1960	28	<5	<20	58	0.13	<10	137	<10	7	71
		1																											!	
46	112183		<0.2	1.78	1015	55		1.10	<1	23			5.11			541		0.14	11		28	5	<20	35		<10			4	102
47	112184		<0.2		980	55	10		7	19	82	50				551	2		13		26	<5	<20	33		<10			5	70 206
48	112185		0.8	3.20	675	55	10		<1	26	85	58				455	<1		10		180	20	<20 <20	171 83	0.15	<10 <10		<10 10	4	
49	112186		<0.2	2.67	915	65	15	1.28	<1	14	80	29				614	<1 <1	0.29	10 10	1620 1460	34 26	5 <5	<20	31	0.19	<10			5	
50	112187		<0.2	1.56	1390	65	10	0.84	<1	16	81	50	4.64	<10	1.06	471	~1	0.11	10	1400	20		~24							<u> </u>
		1													·										†					

Page 2

PLORI	ER GOLD COR	PORATION		_							ICP CE	RTIFIC		FANA	YSIS	AK 98-3	90	L								ECO-1	ECHL	ABOR	ATORIE	SLT
Et #.	Tag #	Aq	AI	%	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	ρ	Pb	Sb	Sn	Sr	TI %	U	v	w	Y	2
51	112188	<0.2	2.	-	625	65		1.59	<1	29	a superior and the second s	149		فتجالك وبسرابة الأخار	1.00	382	3	0.21	10	1630	44	5	<20	85	0.10	<10	107	<10	5	1
52	112189	<0.2	2.		625	65	<5		<1	29		149			1.00	382	3		10		44	5	<20	85	0.10	<10			5	1
53	112190	<0.2	5.		3640	50	<5		<1	52		284		<10		669	<1		14		68	10	<20		0.26	<10		10	4	10
54	112191	<0.2	4.		3790	50	<5		<1	67	72	385		<10		503	<1	0.11	18	2680	50	10	<20	189	0.29	<10		<10	2	3
55	112192	5.4		07	4555	50	<5		<1	57	86	954		<10		552	<1	0.11	18	2580	50	<5	<20	181	0.20	<10			<1	5
56	112193	1.0	3	93 :	>10000	55	<5	2.85	<1	190	89	505	8.33	<10	1.34	695	2	0.10	39	2650	44	15	<20	154	0.20	<10	185	<10	<1	1.
57	112194	<0.2	3.		6960	55	<5		<1	98		319		<10		597	1	0.13	20		40	<5	<20		0.15	<10			2	2
58	112195	0.6		42	4970	75	<5		<1	22		262		<10		1028	2		10		32	35	<20	301	0.07	<10			7	
59	112196	<0.2		09	3670	85	<5		<1	64		254		<10		792	<1		13		52	10	<20		0.22	<10			7	1
60	112197	<0.2		86	5600	60	<5		<1	121	78	247		<10		685	2	0.09	30		38	5	<20		0.10	<10			5	
61	112198	<0.2	1.	76	1835	55	10	2.78	<1	25	72	56	4.67	<10	1.25	1014	4	0.05	14	1780	36	<5	<20	74	<0.01	<10	91	10	6	•
62	112199	<0.2		35	640	45	<5		<1	16		77		<10	0.86	587	6	0.07	10	1090	24	<5	<20	67	0.01	<10	55	10	3	
63	112200	1.2		22	1490	45	<5	2.73	<1	11	63	308	3.86	<10	0.79	793	4	0.06	10	1070	22	10	<20	111	0.01	<10	59	<10	3	
64	112201	1.4		60	245	50	<5		<1	23	87	391	4.65	<10	0.80	528	6	0.11	12	1510	32	<5	<20	84	0.03	<10	65	10	4	
65	112202	<0.2		68	290	45	<5	2.26	<1	16	54	169	4.62	<10	0.88	535	2	0.12	11	1790	42	<5	<20	85	0.05	<10	79	<10	6	
66	112203	0.6	1.	61	245	35	<5	2.34	<1	11	78	209	4.19	<10	0.94	588	3	0.11	5	1750	76	<5	<20	81	0.05	<10		<10	6	
67	112204	0.4	1.	95	355	45	<5	1.86	<1	- 14	63	169	4.35	<10	1.03	460	2	0.16	11	1630	116	<5	<20	79	0.07	<10	90	10	5	
68	112205	0.4	2.	88	2165	65	<5		<1	15	83	264	3.88	<10	0.98	407	4	0.32	10	1750	68	5	<20	131	0.07	<10		10	4	
69	112206	<0.2	2.	65	820	65	<5	2.05	<1	14		154		<10	1.07	404	1	0.32	8	1580	54	<5	<20	115	0.10	<10			6	
70	112207	<0.2	1.	99	1055	55	<5	1.72	<1	15	73	279	4.45	<10	1.13	446	2	0.1 9	10	1660	42	5	<20	81	0.10	<10	112	10	6	
71	112208	0.6	4.	.42	5035	70	<5		<1	13		331	2.88	<10		319	3		9		48	15	<20		0.07	<10			3	
72	112209	<0.2	3.	.41	3760	65	<5		· <1	20		96		<10		578	<1		11		54	15	<20		0.11	<10			5	
73	112210	<0.2	2.	25	1685	75	10		<1	42		127		<10		1156	2		17		58	<5	<20		0.11	<10			6	1
74	112211	<0.2		.31	1440	60	<5		<1	34		102				821	5		13		58	<5	<20		0.09	<10			4	2
75	112212	<0.2		.73	1255	35	<5		<1	19		102		<10		1099	3	0.05	7	1680	48	10	<20	197	0.07	<10		<10	4	
76	112213	<0.2	1.	.70	1755	50	<5	5.04	<1	26	38	170	5.43	<10	1.47	1001	3	0.06	6	1650	44	10	<20	194	0.08	<10	144	<10	3	
				+																										
			[
				_																										
													<u> </u>																	
																						1								

XPLO	RER GOLD	CORPOR	ATION								CP CE	RTIFIC	CATE C	FANA	LYSIS	AK 98-	390									ECO-	ECH L	ABOR	ATORIE	SLT
Et #.	Tag #		Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	TI %	U	v	w	Y	Z
												·					·													
Respi																		1												
1	112138		1.6	4.24	855	40	10	3.38	7	24	34	177	7.25	<10	1.38	1064	3	0.39	10	2010	320	15	<20	267	0.13	<10	118	<10	<1	104
36	112173		0.2	1.93	7230	50	15	0.87	<1	23	66	74	5.43	<10	1.46	559	2	0.12	11		48	15		29	0.13	<10		<10	2	104
71	112208		1.0	4.49	5185	70	<5	4.15	<1	15	51	367	3.05	<10	0.78	346	2	0.41	9		56	10		534	0.07	<10	61	10	2	5
Repea	nt:																													
1	112138	T	1.4	4.01	795	40	5	3.15	5	22	44	161	6.58	<10	1.29	963	2	0.37	7	1860	290	<5	<20	255	0.12	<10	111	<10		04
10	112147		<0.2	1.66	330	40	10	3.37	<1	14	29	52	4.11	<10		1036	2		2		40	<5	<20	202	0.12	<10		<10	<1 3	81
19	112156		<0.2	1.47	90	25	5	2.64	<1	15	26	110		<10		540	<1	0.12	- 5		36	<5	<20	105	0.23	<10	68	<10	5	5
36	112173	T	0.6	1.92	7515	45	10	0.84	<1	24	51	69		<10		533	<1	0.12	10		42	<5	<20	30	0.12	<10	118	<10		4
45	112182		<0.2	2.18	980	55	10	1.29	<1	15	81	34		<10		549	<1	0.23	8	2030	32	5	<20	59	0.12	<10			3	18
54	112191	1	<0.2	4.54	3805	60	<5	3.14	<1	70	75	400		<10		523	<1	0.11	18	2800	52	5	<20	203	0.13	<10	138	<10		72
71	112208		0.6	4.64	5635	65	<5	4.28	<1	14	58	346		<10		340	3	0.40	9		64	20	<20	203 559	0.30	<10	202 61	<10 10	2	36
Stand	ard:																													`````
GEO'9	8		1.0	1.86	90	160	5	1.80	<1	20	61	81	4.32	<10	0.97	708	<1	0.03	25	720	34	<5	<20	50	0.40					
GEO'9	8		1.2	1.79	65	160	<5		<1	20	57	78		<10		682	<1	0.03	23	670	28	<5	<20	59 61	0.13	<10	83	<10	5	8:
GEO'9	8		1.0	1.81	75		<5		<1	20	58	80		<10		701	<1	0.03	24	690	30	<5	<20	62	0.13	<10 <10	80 81	<10 <10	4	76 72
																														·
													2																	
df/387			<u>├</u> ───]							
XLS/98																					Ē	CO-TI		ABORA	TORIE	SLTD				
															t									otti. A.S			·			
																							rtified /							

	14-Aug-98													<u> </u>															┼──
ECO-T	ECH LABO	RATOP	RIES LI	TD.							RTIFIC	ATE O	F ANA	LYSIS	AK 98-409	•							XPLO	RER GO		RPOR			├
	East Trans																							406-170					
KAML	DOPS, B.C.	. 1																					KELO	WNA, B	C				1
V2C 61	ſ4																						V1Y 45	54					
																	1												
														1									ATTEN	ITION:	ERNIE	BERG	VINSC	N	-
Phone:	250-573-5	700																									T		
Fax :	250-573-45	557																						sample					
																								e type:					
																								ECT #: I					
																							SHIPM	1ENT #:	NONE	GIVEN	1		
Values	in ppm un	less of	herwis	e reporte	ed																		Sampl	es subr	nitted b	<u>y: M. F</u>	AY		L
Et #.	Tag #	A	AI %	As	Ba	D i	Ca %	Cd	Co	Cr	<u></u>	Fe %	1.2	Mg %	Mn	Mo	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	
1	112214	<0.2		1520	75	<5	2.00	<1	17	62		3.45	<10	the second second second		4		11		32	10	<20		0.05	<10	60	<10	2	-
2	112215	<0.2	1.19	1035	50	<5	1.61	<1	12	38	125		<10			3		6	2070	52	<5	<20	115		<10	52	<10	3	
3	112216	0.6	2.46	1760	50	<5	2.48	<1	15	28	184		<10	0.36		4		8	2260	64	10	<20	328	0.04	<10	49	<10	3	
4	112217	0.4	1.59	895	45	<5	1.67	<1	21	56	136		<10			4		10	1750	68	5	<20	132	0.05	<10	61	<10	2	
5	112218	0.2	1.05	1205	50	<5	1.13	5	19	34	120		<10	_		2		10		42	<5	<20	60		<10	70	<10	3	
-																													1
6	112219	<0.2	0.98	695	50	<5		<1	19	35	115		<10		357	2		12	1660	32	<5	<20	42		<10	68	<10	4	
7	112220	<0.2	0.98	450	40	<5	1.11	<1	17	33	92		<10			1	1	7	1730	38	5	<20	46	0.09	<10	77	<10	5	_
8	112221	6.2	1.43	2800	45	<5	1.51	67	22	39	206		<10			<1		8	1350	1882	10	<20	59	0.07	<10	94	<10	<1	
9	112222	1.0	0.78	525	50	<5	1.43	<1	12	37	108		<10			<1		6		274	<5	<20	48	0.09	<10	66	<10	5	
10	112223	<0.2	0.71	320	40	<5	1.55	<1	11	32	156	2.27	<10	0.51	280	<1	0.08	9	2050	16	<5	<20	64	0.07	<10	51	<10	5	
11	112224	0.4	1.00	435	40	<5	1.99	<1	17	61	149	2.88	<10	1.02	478	<1	0.06	17	1240	16	10	<20	70	0.06	<10	77	<10	4	⊢
12	112225	3.6	0.29	1960	115	<5	0.15	25	5	37	103		<10		63	4		9	670	216	<5	<20		<0.01	<10	5	<10	<1	1
13	112226	11.0	0.21	2685	190	<5	0.04	12	3	56	68			< 0.01	42	3		1	370	2248	15	<20		<0.01	<10	2	<10	<1	<u> </u>
14	112227	2.2	0.18	135	80	<5	0.18	8	4	37	57			<0.01	236		<0.01	4	560	150	<5	<20		<0.01	<10	3	<10	1	<u> </u>
15	112228	2.0	0.27	40	60	<5	0.51	3	4	49	85		<10		611		<0.01	5	640	56	<5	<20		<0.01	<10	5	<10	3	
																-													<u> </u>
16	112229	2.0	0.20	45	55	<5	0.60	4	4	36	185		<10		398	4	<0.01	8	670	76	<5	<20		<0.01	<10	4	<10	2	
17	112230	1.4	0.20		100	<5	0.60	3	<1	65	25			<0.01	418	7	0.01	3	710	164	<5	<20		<0.01	<10	4	<10	3	
18	112231	0.6	0.15	25	70	<5	0.85	2	1	41	30		<10		530	4		6	700	16	<5	<20		<0.01	<10	4	<10	3	
19	112232	3.6	0.29	100	40	<5	0.25	15	5	42	105		<10		214	10		7	920	338	<5	<20		<0.01	10	4	<10	1	
20	112233	1.0	0.25	60	65	<5	0.55	3	3	40	47	1.64	<10	0.11	616	5	0.01	11	470	30	<5	<20	25	<0.01	<10	10	<10	2	
21	112234	4.2	0.30	35	45	<5	0.41	2	18	62	237	2.49	<10	0.08	512	6	0.02	25	590	38	<5	<20	17	<0.01	<10	18	<10	<1	\vdash
21	112235	4.2	0.30	70	45	<5	0.41	<1	5	55	304		<10		381	5		23	510	30	<5	<20		<0.01	<10	10	<10		į
23	112236	12.6	0.24	135	40	<5	0.52	4	5	67	1370		<10		445	7		27	620	16	<5	<20		<0.01	<10	6	<10	<1	
23	112237	5.0	0.24	250	35	<5	1.35	11	9	39	396		<10		777	5		35	610	456	<5	<20		<0.01	<10	12	<10	4	
25	112238	18.0	0.46	175	40	<5		66	7	68	2039		<10		584	6		32	830	52	<5	<20		<0.01	<10	14	<10	<1	e
																												-	_

PLOF	ER GOLD	CORPO	DRATIC	N N							RTIFIC	ATE O	F ANAI	YSIS	AK 98-409								ECO	TECH	ABOR	ATORIE	S LTD.	
Et #.	Tag #	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Ρ	Pb	Sb	Sn	Sr Ti %	6 U	v	w	- Y	Zn
26	112239	1.4	0.26	245	65	<5	0.24	26	3	35	141	1.07	<10	0.04	279	3	<0.01	6	800	42	<5	<20	9 <0.0	<10	5	<10	2	2760
27	112240	2.8		905	80		0.60	9	5	48		2.09		0.16	562	5	0.01	17	720	48	<5	<20	38 < 0.0	<10	19	<10	2	1006
28	112241	1.6	0.74	160	40		0.60	<1	9	61		3.06		0.29	610	5		39	670	20	<5		22 <0.0	<10	37	<10	2	90
29	112242	4.8	0.83	175	55		0.86	1	13	76		3.70		0.30	807	5		34	630	24	<5		39 <0.0		40	<10	<1	155
30	112243	6.4	0.55	110	50	<5	0.58	1	6	42	309	2.02	<10	0.17	462	2	0.03	16	550	28	<5	<20	25 < 0.0	<10	21	<10	1	95
31	112244	7.6	0.71	100	65	<5	0.53	2	7	57	649	2.43	<10	0.24	586	5	0.03	27	510	430	20	<20	22 < 0.0	<10	39	<10		184
32	112245	1.4	0.93	360	75	<5	0.88	1	5	73	129	2.83	<10	0.43	795	3	0.03	24	490	16	<5	<20	36 < 0.0	<10	55	<10	2	133
33	112246	0.8	0.71	60	75	<5	0.57	2	4	54	76	2.21	<10	0.30	570	3	0.03	19	450	16	<5	<20	23 < 0.0	<10	44	<10	1	125
34	112247	1.2	0.58	30		<5	0.72	2	5	66	113	2.01	<10	0.23	622	4	0.02	12	460	26	<5	<20	27 < 0.0	<10	32	<10	1	300
35	112248	2.0	0.42	150	45	<5	0.67	3	4	77	140	1.73	<10	0.13	532	6	0.02	9	520	50	<5	<20	21 < 0.0	<10	19	<10	1	302
36	112249	6.6	0.29	580	55	<5	0.55	3	5	64	427	1.51	<10	0.04	368	5	0.02	7	570	174	<5	<20	22 < 0.0	<10	12	<10	2	268
37	112250	6.0		310			0.95	4	8	73		3.38			701	8		13	540	550	<5		39 < 0.0				<1	355
38	112251	1.0	0.50	50	40		1.01	3	5	53		1.83			627	5		5	460	72	<5		35 < 0.0				2	212
39	112252	3.6	0.78	65	45	<5	1.37	2	12	43	145	3.45	<10	0.36	955	6	0.03	7	1200	178	<5	<20	54 < 0.0		37	the main in the second	2	223
40	112253	1.6	0.60	45	35	<5	1.43	1	13	57	114	3.49	<10	0.23	840	6	0.04	8	1180	90	<5	<20	48 < 0.0	<10	38	<10	1	102
41	112254	4.0		60			1.18	4	9	56		3.42		0.28	855		0.04	8		160	<5		41 < 0.0				<1	317
42	112255	5.4	0.46	50			1.80	6	7	54		2.65		0.17	906		0.04	5		256	<5		55 < 0.0				3	527
43	112256	1.6	0.64	35			2.64		6	40		2.52		0.28	1378	4		10		138	<5		65 < 0.0				4	984
44	112257	2.0	0.69	30			2.69	4	5	51		2.67		0.34	1380	5		6	1490	288	<5		87 < 0.0				4	359
45	112258	0.6	0.63	20	70	<>	2.76	<1	2	41	20	1.73	<10	0.33	1291	3	0.03	3	1460	68	<5	<20	73 <0.01	<10	44	<10	6	83
46	112259	0.8	0.57	30	45	10	2.44	4	3	52	30	1.92	<10	0.30	1099	4	0.03	3	1530	104	<5	<20	60 < 0.0	<10	45	<10	4	346
47	112260	0.2	0.73	35	55	<5	2.70	1	3	40	26	2.07	<10	0.42	1290	4	0.03	4	1460	48	5	<20	80 < 0.0	<10	54	<10	5	122
48	112261	0.6	0.66	65	55	<5	3.45	<1	3	46	29	1.90	<10	0.32	1318	5	0.04	2	1460	104	<5	<20	98 < 0.0	<10	49	<10	5	85
49	112262	0.6	0.59	60	65	<5	3.00	<1	2	38	24	1.56	<10	0.25	1170	2	0.04	4	1310	94	<5	<20	73 < 0.01	<10	43	<10	4	123
50	112263	1.2	0.74	120	50	<5	2.46	5	5	41	89	3.68	<10	0.34	1266	5	0.03	3	1420	182	<5	<20	62 < 0.01	<10	40	<10	2	468
51	112264	1.0	0.60	415	50	<5	1.97	128	11	45	133	4.21	<10	0.20	1077	<1	0.03	6	1080	304	<5	<20	59 < 0.01	<10	27	<10	<1>1	0000
52	112265	1.6	0.64	40			2.09		5	41		2.89		0.24	1259		0.04	5		98	<5		63 < 0.01			and the second state of th	4	152
53	112266	1.8	0.69	25			2.41	2	3	35	29			0.34	1358		0.04	5		176	<5		74 < 0.01				4	163
54	112267	1.0	0.94	15		<5	2.43	2	3	50	35	2.26	<10	0.68	1437		0.05	6	1200	136	<5		77 <0.01				4	183
55	112268	0.6	0.95	10	50	<5	1.82	5	6	39	49	2.46	<10	0.63	1173		0.05	6	1230	44	<5	<20	69 <0.01	<10	59	<10	3	474
56	112269	5.2	0.98	85	50	<5	1.83	8	11	45	164	5.23	<10	0.55	1175	5	0.04	8	1220	192	<5	<20	70 < 0.01	<10	55	<10	<1	611
57	112270	7.4	0.94	60			1.25		13	50		5.53		0.52	945		0.02	8		198	<5	<20	54 < 0.01					3189
58	112270	7.6	0.74	60			1.49	17	10	42	124			0.41	936		0.02	4		236	<5		66 < 0.01					1333
59	112272	2.2	0.93	65	50		1.76	17	12	44	165	3.87	<10		975	3		7		66	<5	<20	80 < 0.01					2117
60	112273	2.4	1.12	15	55	<5		13	15	64	228	4.72			1047		0.06	8		34	<5	<20	71 < 0.01					1594

PLO	RER GOLD	CORP	ORATIC	ON							RTIFIC	ATE O	F ANA	LYSIS	AK 98-409)								ECO-T	ECH L	ABOR	ATORIE	SLTD	
Et #.	Tag #	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
61	112274	1.4	1.21	155	45	<5	1.83	13	11	51	160	4.08	<10	0.77	1092	5	0.03	8	1010	24	<5	<20	72	< 0.01	<10	50	<10	<1	1501
62	112275	2.4	1.33	370	45	<5	1.91	11	20	51	206	6.89	<10	0.70	1524	9	0.02		1140	34	<5	<20	80	< 0.01	<10	53		<1	993
63	112276	6.6	1.17	715	45	10	0.97	6	8	43	89	4.86	<10	0.59	1006	6	0.02	5	1240	190	<5	<20	34	<0.01	<10	41	<10	<1	562
64	112277	11.6	0.96	125	40	20	1.32	12	13	90	160	5.47	<10	0.50	1099	10	0.03	5	1350	212	<5	<20	44	<0.01	<10	54	<10	<1	1057
65	112278	1.0	0.74	35	35	5	2.18	9	4	39	41	2.64	<10	0.46	1082	3	0.03	3	1370	32	<5	<20	74	<0.01	<10	61	<10	3	762
																	_												
66	112279	0.6		40	50		3.30	<1	4	73		2.28		0.85		6	0.04		1230	12	5	<20		<0.01	<10	77	10	4	52
67	112280	2.4	1.17	40	55	<5		12	7	54	78			0.96		4	0.03	9		162	10	<20		<0.01	<10	77		2	1077
68	112281	2.4	0.90	45	45	<5		14	6	49	98		<10			5	0.03	3		166	<5	<20		<0.01	<10	66	<10	1	1211
69	112282	2.2	0.77	130	45	<5		13	5	51	74		<10			4	0.03	4	1300	114	<5	<20		<0.01	<10	65	<10	2	1085
70	112283	2.4	0.88	125	45	<5	2.33	15	8	46	140	3.27	<10	0.66	1012	5	0.02	8	1320	54	5	<20	83	<0.01	<10	72	<10	2	1247
-	44000 4						1.00		I			0.70		4.00	4.400		0.00		1000								<u> </u>		
71	112284	0.8		55	90		4.02	4		38		2.76		1.09		3	0.02		1290	24	5		176					4	386
72	112285	0.4	0.89	140	80	<5		<1		55	36		<10			6	0.03	4	1320	26	10			<0.01	<10	70		3	110
73	112286	2.2	1.23	55	65	<5		2		42	156			0.93		5	0.02	4	1640	20	5	<20		<0.01	<10	74		3	149
74	112287	4.4	1.08	35	60	<5		2		46	274		<10			4	0.02	5		28	<5	<20		< 0.01	<10	72	<10	3	204
75	112288	1.2	0.98	25	60	<2	2.15	1	8	65	78	3.57	<10	0.62	1037	5	0.02	4	1590	58	<5	<20	110	<0.01	<10	56	<10	2	150
76	112280	20	0.90	110		-5	1.81	12	9	40	133	4.33	<10	0.51	989	6	0.01	5	1410	190	<5	<20	02	-0.01	<10		-10		1056
76 77	112289 112290	11.0	0.89	110 80	50 50	<5		12 5		40	538		<10			6	0.01	7		280	<5			<0.01 <0.01	<10 <10	52 64	<10 <10	1	1056 424
78	112290	1.0		15	60	<5		2		35	113		<10			4	0.02	8		200	<5	<20		<0.01	<10	74	<10	3	166
79	112291	0.6		10	55	-5		<1		51	45		<10			3	0.03	3	1210	18	<5			0.01	<10	69	<10	3	138
80	112293	0.6		5	65	5		2		48	57	3.73		0.42		5	0.04	4	1290	18	<5	<20		<0.01	<10	56	<10	3	156
00	112200	0.0	0.02			Ŭ	1.01		-			0.10		0.42	001		0.04		1200					-0.01					
81	112294	>30	1.27	610	65	<5	1.42	52	28	31	1376	6.16	<10	0.67	890	3	0.02	4	1330	1112	<5	<20	72	<0.01	<10	57	<10	<1	4380
82	112295	1.4		75	70	5		4		29	113		<10			5	0.03	5	1330	34	<5	<20		< 0.01	<10	80	<10	2	520
83	112296	1.0		20	65	10		3	9	58	87	4.81	<10	0.77	1492	6	0.04	2	1380	36	<5	<20	53	0.02	<10	79	<10	2	334
84	112297	2.6		410	50	<5		2	15	27	167	4.43	10	0.55	1253	6	0.04	2	1220	34	<5	<20	89	<0.01	<10	57	<10	8	272
85	112298	1.2	1.36	45	45	<5	2.78	3	5	30	27	2.84	<10	0.96	1257	2	0.04	<1	1180	246	10	<20	106	0.02	<10	55	<10	6	387
86	112299	0.4	1.72	110	55	15	2.59	5		35	53	4.03	<10	1.03	1532	4	0.04	6	1190	26	10	<20	104	<0.01	<10	59	<10	2	518
87	112300	0.2	0.87	65	45	<5	1.69	2	5	63	33	2.13	<10	0.45	687	3	0.06	6	1070	32	5	<20	70	<0.01	<10	57	<10	4	313
88	112301	<0.2	1.39	85	30	5		<1	7	76	28		<10		867	5	0.05	5	910	14	<5	<20	120	<0.01	<10	68	<10	3	184
89	112302		1.49	225	30		2.46	3	7	47	89	3.30	<10		1099	2	0.06	7	920	18	5	<20		<0.01	<10	77	<10	2	256
90	112303	3.2	1.60	>10000	50	10	1.12	47	35	69	162	7.84	<10	0.79	1166	10	0.06	17	820	154	15	<20	33	<0.01	<10	48	<10	<1	2114
91	112304	1.6		4455	50		1.64	48	12	38		4.53		0.44	1076	2	0.02	5	930	60	<5	<20		0.02	<10	49	<10	<1	3932
92	112305	<0.2		115	40		2.21	1		56	32	2.04	<10		839	3	0.03	5	1020	18	<5	<20	24		<10	49	<10	3	119
93	112306	0.4		195	50		2.45	3		34	94	3.75		0.46	905	3	0.04	5	1020	28	<5	<20		< 0.01	<10	55		2	239
94	112307	3.0		940	45	<5		<1	17	46	318	8.26	<10		801	9	0.03	8	870	54	<5	<20		< 0.01	<10	39	<10	<1	196
95	112308	2.0	0.91	535	75	<5	4.38	4	8	28	117	4.16	<10	0.41	1506	2	0.02	6	1160	226	<5	<20	96	0.02	<10	49	<10	4	430

PLOR	RER GOLD	CORPO	DRATI	ON						ICP CE	RTIFIC	ATE O	F ANAL	YSIS A	K 98-409)								ECO-T	ECH L	ABOR	ATORIE	ES LTD).
Et #.	Tag #	Aa	AI %	As	Ba	Ri	Ca %	Cd	Co	Cr	Cu	Fe %	la	Mg %	Mn	Mo	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	
96	112309	<0.2	1.99	50	45	10		1	5	56		2.83	<10	1.67	598	2		10		16	15	<20	81	0.05	<10			<1	A
97	112309	<0.2	0.98	50	50	10			8	55		2.00	<10		494	<1		7	1430	12	<5	<20	44		<10			5	6
98	112310	<0.2	1.70	65	35	10			7	46		2.32	<10	0.94	1276	2	0.00		1620	66	10	<20	213		<10			5	31
99	112312	<0.2	1.45	25	30	5		2	6	38	17		<10	0.80	1235	1	0.10	4	1640	44	10	<20	208	0.12	<10				2
100	112313	0.4	1.27	65	35	10		5	9	36	24		<10	0.82	1414	<1	0.05	5	1470	194	5	<20	67	0.09	<10				50
100	112010	0.4	1.61				0.10	Ŭ				0.10	-10	0.02			0.00		1410	104		~20		0.00	-10				<u> </u>
101	112314	<0.2	0.92	25	30	10			6	40	5		<10		878	<1	0.05	2		38	5	<20	48	0.13	<10			6	4
102	112315	<0.2	1.74	125	45	5		<1	9	37	27		<10	0.80	1018	<1	0.16	6	1540	28	10	<20	158		<10			4	
103	112316	0.8	0.82	90	35	<5		11	8	59			<10	0.50	1097	3	0.04	23	980	166	<5	<20	47	0.06	<10			2	112
104	112317	4.0	2.05	550	20	15		2	8	58	68	4.10	<10	0.75	2601	8	0.12	9	1320	104	<5	<20	199		<10			<1	28
105	112318	2.0	2.22	685	40	<5	4.44	14	19	95	189	6.46	<10	0.87	2202	8	0.12	9	1170	56	<5	<20	196	0.05	<10	61	<10	<1	128
106	112319	<0.2	1.82	<5	65	5	2.38	2	9	81	51	3.90	<10	0.94	916	3	0.14	12	1690	14	5	<20	225	0.09	<10	104	<10	<1	15
107	112320	<0.2	1.54	55	60	5 5	2.06	2	12	71	116		<10	1.17	1053	3	0.04	13		16	<5	<20	74		<10				17
108	112321	1.6	1.65	615	60	<5	1.21	14	16	101	288		<10	1.05	895	7	0.04	11	1510	32	<5	<20	106		<10			<1	123
109	112322	<0.2	1.81	685	50	10		3	12	70	76		<10	1.46	1145	2	0.04	13		22	<5	<20	92		<10			<1	39
110	112323	<0.2	1.61	50	45	10		<1	10	62	16		<10		1029	<1	0.04	12		20	15	<20	105		<10		<10	5	
111	112324	<0.2	1.57	70	50	20		<1	9	75	4		<10		1021	<1		12		12	10	<20	182		<10		<10	5	
112	112325	<0.2	1.40	20	50	10		<1	8	56	3		<10	1.68	811	<1	0.05	11	1690	12	20	<20	126		<10		<10	5	
113	112326	0.4	1.59	590	60	15		2	10	82	43		<10	1.34	1840	2		12		40	5	<20	113		<10			5	32
114	112327	<0.2	1.47	710	60	5		5	14	50	49	4.07	<10	1.28	1312	<1	0.06	14	1920	28	5	<20	81	0.12	<10		<10	2	70
115	112328	<0.2	1.33	130	50	5	2.75	2	9	47	39	3.58	<10	1.20	1426	2	0.04	7	1360	22	10	<20	69	0.06	<10	83	<10	1	22
116	112329	<0.2	1.12	240	65	10	2.22	1	- 7	35	13	2.52	<10	1.02	1024	<1	0.03	9	1400	18	10	<20	56	0.07	<10	82	<10	2	19
117	112330	<0.2	1.02	160	40	<5		<1	9	67		2.79	<10	0.77	659	6		4	700	12	5	<20	40		<10		<10	6	
118	112331	<0.2	1.44	175	50	10		3	26	47	10		<10	1.21	1834	6		11		38	10	<20	89		<10		<10	2	37
119	112332	<0.2	1.74	340	35	15		<1	10	63	10		<10	1.75	1492	<1	0.04	11	2100	36	15	<20	95	0.15	<10		<10	4	Ę
120	112333	1.4		85	40	10		2	17	69	4	2.25	<10	0.44	1195	<1	0.03	15	1390	120	5	<20	197	0.06	<10	86	<10	4	25
121	112334	5.4		920	85	5			22	68	126		<10	1.31	1653	8		11		522	10	<20	260		<10		<10	3	79
122	112335	<0.2		225	25	10		<1	12	36	109		<10	1.35	879	4		11	1590	20	15	<20	109		<10			<1	12
123	112336	<0.2		90	40	5		<1	12	56	95	4.10	<10	1.36	979	4	0.04	11	1550	26	5	<20	69		<10			<1	1(
124	112337	1.6		785	65	<5		3	8	68	34	4.26	<10	1.27	1617	8	0.03	5	1200	34	10	<20	66	< 0.01	<10		<10	1	30
125	112338	0.4	1.73	60	45	15	1.97	1	11	46	40	4.33	<10	1.47	1263	5	0.04	5	1270	22	<5	<20	124	<0.01	<10	99	<10		10
126	112339	5.2	1.63	18	53	<5	2.06	2	9	54	485	3.99	<10	1.44	1147	6	0.03	5	1144	7	2	<20	141	<0.01	<10	101	<10	<1	20
127	112340		1.60	35	50	<5	2.12	3	10	46	65	4.02	<10	1.31	1190	4	0.04	6	1180	12	<5	<20	116	<0.01	<10	87	<10	<1	32
128	112341	1.4	1.53		50	<5	2.27	2	7	59	148	3.80	<10	1.20	1250	6	0.04	6	1280	20	10	<20	119	<0.01	<10	95	<10	2	25
129	112342	27.8			50	110		118	36	56	343	>10	<10	0.72	1618	12	<0.01	3	540	578	140	<20	127	<0.01	<10	34	<10	<1	79
130	112343	0.4	1.48	415	55	5	2.45	1	8	44	27	3.38	<10	1.11	1475	6	0.03	4	1250	22	10	<20	89	<0.01	<10	89	<10	2	11
T																													

P Ph Sh Sn Sr Ti % -----V

7-

14/

V

Et# Tog#

Et #.	Tag #	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr		Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	V	W	Y	Zn
131	112344	0.4	1.50	365	60	<5	2.13	1	11	62	50	3.64	<10		1500	7	0.03	5	1330	20	<5	<20	86	<0.01	<10	97	<10	2	163
132	112345	<0.2	1.42	215	60	<5	1.92	<1	9	55	38	3.61	<10	0.97	1498	9	0.03	5	1390	16	5	<20	66	< 0.01	<10	90	<10	2	122
133	112346	0.6	1.49	290	55	5	1.53	<1	9	52	75	4.63	<10	0.77	1740	6	0.04	6	1360	22	5	<20	54	<0.01	<10	74	<10	2	79
134	112347	24.0	2.18	>10000	55	<5	4.78	2	15	41	1250	8.85	<10	1.37	5715	8		3	1010	750	95	<20	177		<10	66	<10	<1	3015
135	112348	2.4	1.14	405	50	<5	2.21	4	5	69	112	3.47	<10	0.53	1732	7	< 0.01	2	620	124	5	<20		< 0.01	<10	13	<10	1	466
								·····																				'	
136	112349	27.6	1.03	>10000	50	10	1.74	<1	20	74	1033	>10	<10	0.42	1442	16	<0.01	5	590	1128	95	<20	61	<0.01	<10	14	<10	<1	1000
137	112350	3.6	1.20		50	5	3.47	<1	9	36	132	4.40	<10	0.57	1655		< 0.01	2		150	20	<20		<0.01	<10	17	<10		312
138	112350	11.2		>10000	50	<5	0.22	<1	52	86	498	>10	<10	0.37	1312		<0.01	5		412	<5	<20		<0.01	<10	13		1	312
	112352	2.4	1.00		40	<5	3.85	<1	6	41	115	3.87	<10	0.42	1865		< 0.01	<1	530	86	<5	<20		<0.01	<10	13	<10	<1	384
139										67	1612	>10			1005	3		4	<10	4254									
140	112353	>30	0.45	>10000	50	560	0.51	298	83	- 0/	1012	>10	<10	0.19	1030	3	<0.01	4	<10	4204	95	<20	22	<0.01	<10	9	<10	<1	>10000
																									<u> </u>				
141	112354	1.8	2.40		70	<5		<1	10	34	161	7.04	<10		1914	9		9		32	<5	<20		<0.01	<10	79	<10	<1	287
142	112355	0.6	0.86	655	80	\$		<1	6	45		1.86	<10	0.48	931	5	0.02	2		30	5	<20		<0.01	<10	15	<10	3	44
143	112356	0.8	0.88		85	5		<1	6	81	12	2.30	<10	0.48	1448	6	0.03	2		42	10	<20		<0.01	<10	23	<10	2	48
144	112357	0.4	0.88	740	80	<5		<1	5	56	17	2.03	<10	0.46	874	5	0.04	1	650	34	<5	<20		<0.01	<10	23	<10	2	50
145	112358	0.4	0.81	190	45	<5	4.21	<1	4	52	10	1.94	<10	0.41	1682	3	0.02	<1	630	18	<5	<20	208	< 0.01	<10	13	<10	3	120
146	112359	0.4	0.90	170	55	<5	3.23	<1	4	49	7	1.82	<10	0.49	932	3	0.03	<1	610	46	<5	<20	192	< 0.01	<10	19	<10	2	74
147	112360	0.2	0.96		70	<5		2	5	49	22	2.11	<10	0.45	673	4	0.02	<1	630	12	<5	<20	79	<0.01	<10	17	<10	2	113
148	112361	6.6			55	<5		11	5	36	220	4.71	<10	0.33	620	7	< 0.01	1	550	148	<5	<20		<0.01	<10	8	<10	<1	1290
149	112362	4.6		>10000	50	<5		<1	20	76	119	4.04	<10	0.25		6	<0.01	2		158	10	<20		< 0.01	<10	7	<10	<1	983
150	112363	0.2		425	90	<5	4.61	1	5	32	41	2.22	<10	0.44	996	2	0.01	<1	820	48	<5	<20		<0.01	<10	14	<10	3	233
130	112303	0.2	0.52	425		2	4.01			- 52		2,22	~10	0.44	330		0.01	~1	020	-0		~20	223	~0.01					
454	440004	4.0	0.85	1140		<5	5.54	- 4	6		21	2 20	<10	0.48	3650		<0.01		610	32	5	<20	200	<0.01	<10	42	<10		63
151	112364	1.2			80			<1	and the second second	68		2.20 9.75	<10			- 10		<1 5					200			13	<10	<u>Z</u>	4209
152	112365	16.0		>10000	80	25	>10	12	13	67	164		<10	1.38	>10000	16				1334	15	<20				29		<1	
153	112366	0.8	1.90	705	65	<5	4.82	<1	7	97	27	3.75	<10	1.43	5391	31	0.01	6	670	28	5	<20	120			30		<1	112
154	112367	1.0	1.69	580	65	<5	4.78	<1	6	68	6	2.80	<10	1.26	4327	8	0.02	6	1030	28	15	<20	115		<10	35	<10	<1	73
155	112368	0.8	1.21	340	60	5	3.68	<1	6	71	29	2.42	<10	0.83	2923	6	0.04	4	1070	24	5	<20	82	0.02	<10	44	<10	3	118
																								L					
156	112369	0.8	1.62	210	50	5	5.63	1	6	62	38	3.91	<10	1.28	3071	10		3		34	5	<20		<0.01	<10	66	<10	<1	147
157	112370	3.6	2.23	2705	70	<5		<1	23	41	265	>10		1.34	5377	15	<0.01	6	800	246	<5	<20	216	0.04	<10	58	<10	<1	374
158	112371	2.6	3.15	3190	90	<5		<1	22	37	293	>10	<10	2.04	4198	21	0.02	6	750	44	<5	<20	194		<10	70	<10	<1	73
159	112372	<0.2	1.76	80	60	<5	6.15	<1	7	67	11	4.43	<10	1.33	2795	7	0.03	7	910	38	<5	<20	259	0.03	<10	90	<10	<1	70
160	112373	<0.2	1.46	30	55	<5	4.31	<1	7	63	5	3.28	<10	1.16	1434	5	0.05	9	1100	24	<5	<20	135	0.01	<10	109	<10	2	52
161	112374	0.4	0.99	25	75	<5	2.81	4	8	147	17	2.88	<10	0.67	1103	15	0.04	4	590	70	<5	<20	129	<0.01	<10	39	<10	3	372
162	112375	1.2	1.27	25	70	<5		4	11	76	60	6.82	<10	0.71	2443	165	0.04	3	700	64	<5	<20	170		<10	42	<10	<1	498
163	112376	0.6	1.22	115	60	5	5.12	<1	6	49	13	3.68	<10	0.69	2344	8	0.03	2	810	92	<5	<20	177		<10	46	<10	<1	120
163	112377	0.8	1.71	35	60	5	6.91		9	27	32	6.34	<10	0.98	3209	10	0.05	2	1130	46	<5	<20	169		<10	84	<10	<1	397
	112378				110	5	3.63	4	37	40	236	>10	<10		2736	20		2	570	22	<5	<20	97			56	<10	- <1	303
165	112378	2.6	2.08	~5	110		3.03	4	- 57	40	2.30	~10	~ 10	0.92	2130	20	0.02	•	570			~20	31	0.10			~~~		
																									┟	+			
				ļ						·															<u>↓</u>				1
																									\vdash				
																									└─── ↓				
																								L	i				

PLOF	RER GOLD	CORP	ORATIO	N					1	CP CE	RTIFIC	ATE O	F ANA	LYSIS	AK 98-409)								ECO-1	ECH L	ABOR	ATORIE	ES LTD	
	Ter #		A1 0/		Ba	D:	Ca %	Cd	Co	Cr	~	Fe %		Ma %	Mn	No	Na %	Ni	P	Pb	Sb	Sn	6-	Ti %	U	v	w	Y	
Et #.	Tag #		AI %	As				-		54	232	<u> </u>			3492			8					83						Zn 558
166 167	112379 112380		2.09	95 90	95 70		4.49 6.70	<u>6</u> 4		49	<u>- 232</u> 56		<10	1.02	3520	<u>19</u> 15				222	<5 <5	<20 <20		0.10	<10 <10	56 83	<10 <10	<1 <1	479
168	112381	1.0		15	70		6.75	4		48	42		<10		3551	33		6		260	<5	<20		0.12	<10	85	<10	<1	428
169	112382	1.0		5	60	5		14	16	62	78		<10		2809	45		5		154	<5	<20		0.13	<10	49	<10	<1	1540
170	112383	1.0		40	85		2.84	5		37		>10	<10		2843	16		4		64	<5	<20	68		<10	74	<10		437
	112000		2.00				2.01																	0.14					
171	112384	9.2	1.69	1010	60	10	6.18	120	34	56	210	>10	<10	0.71	3325	7	<0.01	12	640	284	<5	<20	61	0.10	<10	51	<10	<1	>10000
172	112385	7.0		<5	85	5		62	45	36	384	>10	<10	0.93	3597	13	<0.01	13	720	756	<5	<20	84	0.08	<10	53			6124
173	112386	0.6	2.47	5	75	10	3.08	4	17	29	134	>10	<10	0.82	2587	15	0.06	4	1170	24	<5	<20	91	0.13	<10	74	<10	<1	422
174	112387	0.4	2.36	<5	40	15	5.64	4	12	43	37	8.13	<10	1.18	3528	31	0.02	3		30	<5	<20	151	0.17	<10	88	<10	<1	375
175	112388	<0.2	2.11	<5	35	- 5	5.99	2	11	32	19	5.89	<10	1.34	3188	8	0.03	2	1090	18	<5	<20	158	0.19	<10	94	<10	<1	291
176	112389	<0.2		10	45		6.89	1		30		5.52		1.50	3378	15			1060	14	<5	<20		0.13		108			147
177	112390	<0.2	1.98	20	25		6.35	1	7	41	16		<10		3004	14		<1		14	<5	<20	162		<10	117			164
178	112391	0.4		20	55		4.85	8		30		10.00		1.26	3322	35	0.04	2	870	24	<5	<20		0.16		79	<10		833
179	112392	5.4		<5	95		3.19	53	56	17	621	>10	<10		2466	36	0.07	12		64	<5	<20	92		<10	50	<10	<1	5035
180	112393	<0.2	1.17	5	40	10	3.44	<1	7	47	5	2.73	<10	1.03	1372	3	0.06	3	1030	8	5	<20	114	0.16	<10	79	<10	4	78
404	440004	-0.0	4.00	-6	- 40		2.02		7	57		0.70	-40	1 4 2	1186		0.04		000	10	5	<20	153	0.00	<10		<10	3	50
181	112394	<0.2		<5	40	5 10		<1 <1	8	35	24			1.13	1335	2	0.04	8	890 1060	10	<5	<20		0.02		86 102	<10	2	50 63
182	112395 112396	<0.2 4.6	1.63	10 10	40 90	10		6		47	240			1.12	4015	81	0.04		680	202	<5	<20			<10	60	<10	2 <1	612
183 184	112396	4.0		1400	100	15		12		23	175			1.12	3721	58	0.03	4		454	<5	<20			<10	75	<10	<1	2075
185	112397	0.6		70	85	25		2		31	78			1.81	3599	54	0.06		850	26	<5	<20	99		<10	86	<10	<1	260
105	112330	0.0	5.57				4.00	£	- 23					1.01	0000		0.00		000			-20		0.14					
186	112399	0.4	1.97	45	35	10	6.21	2	11	44	12	5.57	<10	1.49	2775	6	0.04	4	1010	24	10	<20	149	0.16	<10	103	<10	<1	265
187	112400	1.0		20	45	5		1		34	24		<10		3341	6		3		138	<5	<20		0.15		93	<10	<1	143
188	112401	0.4		55	45	15		<1		31	88		<10		2931	18		- 4		34	<5	<20		0.17	<10	98	<10	<1	78
189	112402	1.2		790	55	15		<1	19	35	112	>10	<10		3428	22	0.01	7	1180	186	<5	<20	95	0.11	<10	96	<10	<1	154
190	112403		2.81	2895	55	15	>10	<1	21	46	105	>10	<10	1.62	5449	17	<0.01	5	810	736	<5	<20	103	0.06	<10	76	<10	<1	454
	· · · · · · · · · · · · · · · · · · ·																												
191	112404	0.8	2.10	285	55	5	9.54	<1	20	54	108	>10	<10	1.02	4304	10	0.02	7	780	80	<5	<20	141	0.11	<10	71	<10	<1	196
192	112405	4.0	2.19	670	75	<5	7.52	1	23	40	225	>10	<10	0.98	4987	14	<0.01	8		506	<5	<20		0.08	<10	77	<10	<1	544
193	112406	1.6		2605	65	<5		<1		33	127	>10	<10		5842	12		8	730	82	<5	<20		0.04	<10	83	<10	<1	120
194	112407		2.61	7850	90	<5		<1	20	43	216	>10	<10		4390		<0.01	1	840	794	<5	<20			<10	70		<1	897
195	112408	2.2	2.27	7390	85	5	9.74	<1	14	25	142	>10	<10	0.87	4701	29	0.01	<1	700	280	<5	<20	387	0.02	<10	59	<10	<1	145
											440		-40	1.00	4007							- 00		0.00		400			
196	112409		3.17		75		>10	<1	· · · · · · ·	32	118			1.63	4837		0.01	2		250	<5	<20		0.02		103	<10	<1	236
197	112410	6.4		3040	70		>10	<1		33	67	>10	<10		8488		< 0.01	<1	370	1278	<5	<20		0.02	<10	78	<10	<1	883
198	112411	0.4		445	30	10		<1 2		32	14		<10 <10		3074 2748	12	0.04	5	1220 1240	26 38	<5 <5	<20 <20	488 415	0.01	<10 <10	155 126	<10 <10	<1	82 283
199	112412	0.2		180 55	35 45	<u>10</u> 5		<u> </u>		24 38	12 12		<10		2/40	1	0.05	7		26	<5 <5	<20		0.01		120	<10	3	175
200	112413	<0.2	1.88	22	43	5	3.90	1	10	- 30	12	4,40	~10	1.50	1900	!	0.00		1100	20	~3	~20	204	0.10	~10	150			

287 124/4 402 162 175 68 175 124/4 402 106 1 14 406 10 38 1440 16 45 420 1011 410 110 36 112 54 111 36 14 45 500 172 160 41 100 61 55 201 97 111 36 14 44 85 110 44 100 41 100 61 120 14 111 36 14 44 100 41 144 100 41 144 400 45 200 20 45 111 46 114 414 400 45 420 255 10 46 114 414 400 114 410 100 45 420 205 410 411 446 400 410 410 406 4100 40 45 420 410 410 <t< th=""><th>PLOF</th><th>RER GOLD</th><th>CORPO</th><th>ORATIC</th><th>DN </th><th></th><th></th><th></th><th></th><th>1</th><th>CP CE</th><th>RTIFIC</th><th>ATE O</th><th>F ANAL</th><th>YSIS /</th><th>AK 98-409</th><th>) </th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>ECO-T</th><th></th><th>ABOR/</th><th>ATORIE</th><th>S LTD.</th><th>·</th></t<>	PLOF	RER GOLD	CORPO	ORATIC	DN					1	CP CE	RTIFIC	ATE O	F ANAL	YSIS /	AK 98-409) 								ECO-T		ABOR/	ATORIE	S LTD.	·
287 11/24/4 402 162 175 68 5 280 11/24/5 402 105 401 11/24/5 402 105 401 401 130 140 18 400 18 450 11/24/5 402 11/24/5 402 11/24/5 402 11/25 41 11/25 12/2 11/27 16/10 61 1005 61 1200 16 c5 201 01/11 11/1 10 41 44 403 11/27 11/1 100 41 120 11/2 12/	Ft#	Tag #	۸a	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Ma %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	υ	v	w	Y	Zn
272 112415 -0.2 203 12416 -0.2 1203 12416 -0.2 1300 116 -5. -200 107 1010 -11 0.06 6 1300 116 -5. -200 1011 -100 1011 -100 21 -100 20 20 -20 20 <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>10</td> <td>41</td> <td>14</td> <td>4.06</td> <td></td> <td></td> <td>1407</td> <td>1</td> <td>0.06</td> <td>3</td> <td>1240</td> <td>18</td> <td><5</td> <td><20</td> <td>204</td> <td>0.13</td> <td><10</td> <td>122</td> <td><10</td> <td>3</td> <td>92</td>	-									10	41	14	4.06			1407	1	0.06	3	1240	18	<5	<20	204	0.13	<10	122	<10	3	92
203 112416 -02 160 -00 50 5 244 <11 130 14 448 <10 141 471 1 006 6 1280 14 011 (10 122 <10 3 111 414 <10 024 1414 <10 005 4 1280 141 <5 220 245 0.016 <101 121 <10 22 144 <10 005 5 110 84 <5 220 245 0.016 <10 126 10 141 170 141 <10 005 5 110 84 <5 220 245 0.01 131 110 31 144 130 144 130 141 100 100 110 133 133 133 144 130 144 120 110 35 111 130 133 133 133 133 133 133 133 141 130 133 143 140 120 111 130 132 141																	<1													164
204 1 204 1 23 22 0.05 110 84 <5 200 25 0.01 100							5	2.84	<1	11	36		4.83	<10	1.46	1374	1	0.06	6	1290	20	<5	<20	241	0.11	<10	122	<10	3	112
205 112416 -0.02 1.78 10 4.85 -0.05 5 110 .84 -5 0.11 -10 10 -1									2	12	41	19	4.46	<10	1.37	1414	<1	0.05	4	1260	14	<5	<20	205	0.16	<10	121	<10	2	185
207 112420 402 180 10 13 410 150 41 1501 44 45 420 150 43 44 45 150 45 150 45 150 45 150 45 150 45 150 45 150 45 150 46 152 152 <t< td=""><td></td><td></td><td><0.2</td><td>1.79</td><td>10</td><td>45</td><td>5</td><td>3.14</td><td>2</td><td>11</td><td>39</td><td>13</td><td>4.82</td><td><10</td><td>1.39</td><td>1489</td><td>2</td><td>0.05</td><td>5</td><td>1110</td><td>84</td><td><5</td><td><20</td><td>245</td><td>0.11</td><td><10</td><td>126</td><td><10</td><td>1</td><td>187</td></t<>			<0.2	1.79	10	45	5	3.14	2	11	39	13	4.82	<10	1.39	1489	2	0.05	5	1110	84	<5	<20	245	0.11	<10	126	<10	1	187
207 112420 402 180 10 13 410 150 41 1501 44 45 420 150 43 44 45 150 45 150 45 150 45 150 45 150 45 150 45 150 45 150 46 152 152 <t< td=""><td>000</td><td>442440</td><td>-0.2</td><td>1.04</td><td></td><td></td><td>- 10</td><td>4 60</td><td>1</td><td>12</td><td>51</td><td>- 11</td><td>4 73</td><td><10</td><td>167</td><td>2179</td><td>5</td><td>0.04</td><td></td><td>1210</td><td>38</td><td>c5</td><td><20</td><td>354</td><td>0.03</td><td><10</td><td>153</td><td><10</td><td></td><td>107</td></t<>	000	442440	-0.2	1.04			- 10	4 60	1	12	51	- 11	4 73	<10	167	2179	5	0.04		1210	38	c 5	<20	354	0.03	<10	153	<10		107
208 112421 -0.2 1.37 35 60 -5 2.06 -1 1.65 1.596 -1 0.04 6 1180 30 -5 -20 102 2.00 -10 131 <10 2.2 133 5 38 5.40 -10 155 2 0.04 6 1180 44 -5 -20 104 0.00 +10 133 <10 -21 112422 -0.2 138 2 10 22 133 5 38 5.40 +10 22 5 20.05 9 1130 22 5 20 10 44 5 10 46 7 4.44 +10 122 428 7 0.04 6 15.40 90 10 20 22 5 65 6.05 +10 1.22 2488 7 0.03 14 120 62 2.20 400 0.01 +10 122 410 90																														
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																													_	98
210 112423 0.6 1.83 180 40 5 4.73 <1 12 40 22 5.22 <10 1.52 2253 5 0.05 12 1120 94 <5 <20 2.59 0.01 <10 137 <10 <1 <10 <11 112425 0.4 165 75 45 10 558 6 3.86 <10 158 1516 2 0.05 9 1130 22 5 200 10 20 200 0.04 <10 122 <10 24 10 241 112426 0.2 158 6 3.86 <10 48 46 46 70 12 226 0.04 6 130 20 52 52 0.01 137 40 12 128 225 50.04 6 50.05 70 71 34 41 110 102 2852 19 0.03 9 140 63 53 00 10 100 101 100 101 28 100																	· · ·		- market											130
210 112420 0.02 1.68 0.0 1.1																							and the second se							191
212 11225 0.4 1.05 75 45 10 558 5 10 48 7 448 10 128 2822 5 0.04 6 1540 90 10 c20 288 c001 10 122 <10	210	112423	0.0	1.55	- 100	40		4.13					5.22	-10	1.52	2200		0.00					-20	200						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	211	112424	<0.2	1.68	25	60	<5	3.38	2	10	58	6	3.86	<10	1.58	1516	2	0.05	9	1130	22	5	<20	270	0.04	<10	122	<10	2	159
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												7				and the second se														590
214 112227 6.6 2.04 280 5 7.85 7 22 55 65 6.05 <10 1.14 3288 8 0.04 12 1380 578 5 <20 409 0.01 <10 162 <10 1877 215 112428 30 1.64 385 70 <5 5.77 7 13 44 91 5.11 <10 1.02 2852 19 0.03 9 1410 328 <5 <20 101 <10 <10 2 8 0.04 9 1440 64 <5 <20 111 0.01 <10 <10 <10 2 8 111 112 5.58 <10 1.52 1830 <1 0.04 9 1440 64 <5 <20 117 0.16 <10 2 5.58 <10 1.52 1830 <1 0.04 9 1440 64 <5												46																	<1	738
215 112428 3.0 1.64 385 70 <5 5.87 7 13 44 91 5.11 <10 1.02 2852 19 0.03 9 1410 328 <5 <20 310 0.01 <10 <10 <10 2 853 216 112429 0.6 2.12 35 65 <5 3.50 7 15 44 112 5.93 <10 1.60 2046 2 0.04 9 1440 64 <5 <20 110 <10 <10 2 633 217 112430 0.8 2.01 20 55 <3.13 6 18 42 129 558 <10 1.52 1330 <1 0.04 9 1440 64 <5 <20 110 141 158 219 112432 118 1.65 270 65 2.02 16 35 191 5.70 <10 1.14 1390 5 0.03 6 1180 220 120 100 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>7</td> <td></td> <td></td> <td></td> <td>6.05</td> <td></td> <td></td> <td>3268</td> <td>8</td> <td>0.04</td> <td>12</td> <td>1380</td> <td>578</td> <td>5</td> <td><20</td> <td>409</td> <td>0.01</td> <td><10</td> <td>162</td> <td><10</td> <td>1</td> <td>878</td>									7				6.05			3268	8	0.04	12	1380	578	5	<20	409	0.01	<10	162	<10	1	878
210 112423 0.0 2.10 20 55 <5									7			91	5.11	<10	1.02	2852	19	0.03	9	1410	328	<5	<20	310	0.01	<10	110	<10	2	856
210 112423 0.0 2.10 20 55 <5																														
217 112430 0.5 2.34 45 40 12 12 12 15 120 15 150 26 45 40 41 60 150 26 45 40 41 60 150 26 45 40 41 60 150 26 45 40 41 150 26 45 40 41 40 144 6 0.03 6 1180 2754 5 420 90 40.01 <10 84 <10 <1 158 2009 6 1180 2754 5 <20 90 <0.01 <10 84 <10 <1 1441 6 0.03 6 1180 2754 5 <20 90 <0.01 <10 <16 <1 <158 <10 <11 <11 <10 <14 <10 <14 <1333 <10 <10 <10 <14 <10 <14 <10 <10 <14 <10 <10 <14 <10 <14 <10 <14 <10 <t< td=""><td>216</td><td>112429</td><td>0.6</td><td>2.12</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>635</td></t<>	216	112429	0.6	2.12																										635
210 112432 11.65 270 65 2.02 16 10 35 19 5.70 <10 1.14 1380 5 0.03 6 1180 2754 5 <20 90 <0.01 <10 84 <10 <1 1582 220 112433 1.4 1.74 60 50 <5 2.02 16 10 35 19 5.70 <10 1.44 1380 5 0.03 6 1180 2754 5 <20 90 <0.01 <10 84 <10 <1 1441 6 0.03 6 1180 2754 5 <20 90 <0.01 <10 <10 <1 1333 5 0.03 6 1180 622 200 155 <0.01 <10 141 160 143 1333 5 0.04 8 1220 165 200 10 143 1333 5 0.04 8 1220 113 <0.01 <10 108 4 10 143 1333 5	217	112430	0.8	2.01			-																							
210 112 113 113 114 114 115 1150 320 <5 <20 115 115 320 <5 <20 115 115 320 <5 <20 115 115 320 <5 <20 115 115 320 <5 <20 115 115 320 <5 <20 115 115 320 <5 <20 115 <0.01 <10 106 <10 <1 59 221 112435 0.4 1.87 70 70 2.41 16 7 38 89 5.64 <10 1.43 1333 5 0.04 8 1220 662 5 <20 115 <10 <11 117 223 112436 1.8 1.67 40 50 <5 2.90 7 6 35 73 4.19 <10 1.41 1603 4 0.03 4 1280 262 <5 <20 113 <0.01 <10 100 <17 700 <17 70	218	112431		2.34																										
112435 1.4 1.7 00 00 01 02 1.7 00 00 1.7 00 00 1.7 00 00 1.7 00 1.8 00 1.7 00 1.8 0.0 1.8 0.0 1.0 1.0	219					1																				the second s				
221 112434 0.0 1.00	220	112433	1.4	1.74	60	50	<5	2.98	6	6	54	39	4.14	<10	1.49	1441	6	0.03	6	1150	320	<5	<20	158	<0.01	<10	106	<10	-<1	590
112435 0.4 1.97 55 80 <5	221	112424	5.6	1 88	720	70	10	2 41	16		38	89	5 64	<10	1 43	1333	5	0.04	8	1220	662	5	<20	125	<0.01	<10	105	<10	<1	1808
222 112436 1.8 1.67 40 50 -5 2.90 7 6 35 73 4.19 <10 1.41 1603 4 0.03 4 1280 262 <5 <20 113 <0.01 <10 99 <10 <1 700 223 112436 1.8 1.67 40 50 <5 2.90 7 6 35 73 4.19 <10 1.41 1603 4 0.03 4 1280 262 <5 <20 113 <0.01 <10 99 <10 <1 1003 4 0.03 4 1280 262 <5 <20 113 <0.01 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10																														171
112437 3.6 1.72 35 60 <5 2.31 11 7 37 199 4.82 <10 1.51 1430 5 0.03 3 1210 306 <5 <20 122 <0.01 <10 100 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <							-										4									<10	99	<10	<1	700
12-10 0.0 1.71 20 60 5 2.74 1 7 37 43 4.30 <10 1.55 1160 4 0.04 4 1280 24 <5 <20 215 0.01 <10 120 <10 2 150 226 112438 0.2 1.60 10 65 <5 2.51 <1 6 54 50 4.03 <10 1.44 912 5 0.04 3 1190 18 <5 <20 195 0.02 <10 199 <10 2 1160 4 0.04 4 1280 24 <5 <20 119 10 <10 120 <10 2 1190 18 <5 <20 119 0.02 <10 2 1190 18 <5 <20 119 0.02 <10 2 1190 18 <5 <20 119 0.02 <10 2 119 10 130 <5 <20 119 0.02 <10 2 119 2										i.							5		3							<10	100	<10	<1	1085
226 112439 </td <td></td> <td>1160</td> <td>4</td> <td>0.04</td> <td>4</td> <td></td> <td>24</td> <td><5</td> <td><20</td> <td>215</td> <td>0.01</td> <td><10</td> <td>120</td> <td><10</td> <td>2</td> <td>150</td>																1160	4	0.04	4		24	<5	<20	215	0.01	<10	120	<10	2	150
220 112430 40.2 100 10 50 2.30 4.1 56 31 4.16 4.10 0.68 1378 6 4.01 29 800 130 <5 <20 125 <0.01 <10 53 <10 6 184 227 111652 0.8 1.67 385 55 <5																														
228 111052 0.0 1.01 0.00 0.0 0.00	226	112439	<0.2	1.60	10	65			<1													-								119
228 11034 4.8 5.14 73 100 52.00 1 10	227	111652																												
223 K1109 19.0 0.23 >10000 115 10 0.02 <1 18 126 128 4.41 <10 0.02 50 46 <0.01 2 280 1202 40 <20 11 <0.01 <10 8 <10 <10 231 K1109 30 0.18 7340 115 85 0.51 <1 4 138 124 2.97 <10 0.04 312 6 <0.01 3 170 5858 40 <20 32 <0.01 <10 2 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									•																					
230 K1105 19.0 0.23 710000 115 10 120																											-			
231 K1110 -36 0.10 7340 110 0.50 2 11 71 10 4.30 <10 <0.01 90 11 0.02 2 1140 56 <5 <20 7 0.07 <10 5 <10 5 7.	230	K1109	19.0	0.23	>10000	115	10	0.02	<1	18	126	128	4.41	<10	0.02	50	46	<0.01	2	280	1202	40	<20		<0.01	<10		<10		109
232 K1111 0.4 0.36 135 40 10 0.50 2 11 71 10 4.30 <10 <0.01 90 11 0.02 2 1140 56 <5 <20 7 0.07 <10 5 <10 5 74	231	K1110	>30	0.18	7340	115	85	0.51	<1	4	138	124	2.97	<10	0.04	312	6	<0.01	3	170	5858	40	<20	32	<0.01	<10	2	<10	<1	604
								~																		<10	5	<10	5	74
																77	8	0.02	<1	1370	30	<5	<20	8	0.08	<10	7	<10	8	35
																												· · ·		

	ER GOLD	CORP	ORATIO	DN						CP CE	RTIFIC	ATE O	F ANA	YSIS	AK 98-409)								ECO-T	ECH L	ABOR/	ATORIE	S LTD.	
	Tan #	٨	AI %	As	Ba	Di	Ca %	64	Co	Cr	<u></u>	Fe %	1	Ma %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr.	Ti %	U	- v	w	Y	Zn
Et #.	Tag #	Ag	AI %	<u>As</u>							- Cu	re 76	Ld	WIY 76	IAITI	MO	INA /0	141		FD	30	511	31	11 /0				—	
†																													
C DA																													· ·
lespli				1010			1.05		- 40			0.05		0.57	202		0.44	~ ~	4 4 9 0		E	-20	420	0.04	- 110	50			
1	112214			1310	60		1.95	<1	16	44	92			0.57	362	3	0.14	9		26	5	<20			<10	58		2	49 331
36	112249			585	40		0.57	3	5	58	412			0.04	388 1440	5		6		194	<5	<20		<0.01	<10	12 84		5	369
71	112284		1.30	75	75		4.12	3	5 9	28 82	49 65			1.10 0.94	880	<u></u>		4		22	10 <5	<20 <20		<0.01	<10 <10			<1	259
106	112319		1.76	50	65		2.31				155	3.87 7.21		1.55		10		9		38	<5			< 0.09	<10	81	<10	- <1	317
141	112354		2.38	1095	65 35		2.27	1	10 10	43 25	100			1.55	3467	14		2		16	<5	<20			<10	111	<10	<1	141
176	112389		2.25	30	- 35 65	10		2	11	51	7			1.67	1640	2		- 2		24	<5	<20			<10			2	168
211	112424	<0.2	1.70	- 30	60		3.40			- 31	/	4.10	~10	1.07	1040		0.05		1100	24		~20	209	0.04	~10	-121	10		
Repea	<i>t</i> .																	<u> </u>	+								+	+	
1 tepea	112214	02	1.26	1440	65	5	1.92	<1	17	59	88	3.33	<10	0.57	352	4	0.16	10	1540	34	5	<20	138	0.05	<10	59	<10	2	49
10	112223			295	45		1.52	<1	11	34	157	2.24		0.50		2		8		14	5	<20	67		<10			5	37
19	112232			100			0.25	15	5	43	106			0.04			< 0.01	5		328	<5	<20		< 0.01	<10	4		<1	1217
36	112249		0.28	610			0.55	3	5	62		1.49		0.04		5		7		180	<5	<20		<0.01	<10			2	271
45	112258		0.64	20			2.76	<1	2	42		1.73		0.34		4		4		62	<5	<20		<0.01	<10	45		6	81
	1122.00	0.4	0.04				2.70																						
54	112267	1.0	0.94	15	40	<5	2.47	2	4	51	36	2.34	<10	0.69	1466	3	0.05	5	1270	148	5	<20	75	<0.01	<10	58	<10	4	199
71	112284		1.29	65		5		3	6	38	49	2.81	<10	1.08	1409	3	0.02	5	1370	28	15	<20	170	<0.01	<10	85	<10	5	416
80	112293			10			1.29	1	9	48	59		<10		795	5	0.04	4	1280	18	<5	<20	55	<0.01	<10	56	<10	3	152
89	112302		1.44	215	25	<5	2.35	3	7	45	86	3.16	<10	1.04	1057	2	0.05	6	870	14	<5	<20	91	< 0.01	<10	74	<10	2	240
106	112319			10		10	2.42	2	10	108	52	3.97	<10	0.95	930	4	0.14	14	1740	18	<5	<20	223	0.10	<10	106	<10	1	199
115	112328	<0.2	1.37	155	55	10	2.85	1	10	50	42	3.72	<10	1.23	1472	2	0.04	8	1410	24	10	<20	71	0.07	<10	85		1	233
124	112337	1.4	1.53	770	65	<5	1.14	2	8	67	33	4.14	<10	1.23	1562	7	0.03	5	1200	34	<5	<20		<0.01	<10	68		1	379
141	112354	1.6	2.41	1125		<5	2.25	<1	10	33	168	7.10	<10	1.58	1944	9	0.03	7		32	<5	<20		<0.01	<10	79		<1	286
150	112363	0.4	0.89	425	85	<5	4.70	<1	5	32	38	2.26		0.42	1004	3	0.01	<1		56	<5	<20		<0.01	<10	14		4	240
159	112372	<0.2	1.72	75	65	10	6.14	<1	7	67	12	4.48	<10	1.29	2786	7	0.02	6	910	-38	<5	<20	236	0.03	<10	90	<10	<1	73
																												_	
176	112389		2.15	10			6.95	1	9	30	10			1.45			0.04	3		16	<5	<20			<10			<1	161
185	112398		3.54	65		15		2	22	29	74					47		7		24	<5	<20			<10	84		<1	251
194	112407		2.48			<5		<1	18	40	190			1.04	4137		<0.01	2		708	<5	<20			<10	62		<1	822
211	112424		1.66	20	60	5	3.52	2	10	61	6	4.02		1.56		2		9 5		28 310	<5 <5	<20 <20		0.04	<10 <10	125 107	<10 <10	3 <1	165 589
220	112433	1.2	1.76	60	55	<5	2.99	6	6	55	39	4.19	<10	1.50	1458	6	0.03	5	1190	310	<5	<20	160	<0.01	~10	107	<10		209
		L															├ ───- 								ł				{
		ļ												<u> </u>			├ 												
~~~~~		<b> </b>																											
																	<u>  </u>		├	· · · · · · · · · · · · · · · · · · ·				<u> </u>					
		ļ															I		l					<b>├</b>	ł				

 mi	5 ° ° <b>)</b>		7 0 0 0 1	P 0 01	50 C C C	r · · ·	1	e	1 1	1	r )	r 1 1	14 ¹ 1	a	i	5 · · · · · · · · · · · · · · · · · · ·	<b>k</b>	ł
u., <b>J</b>	. J	. <b>1</b>	<b>. )</b>	5 J	. 1		1 . 1	· . I	I	ы <u>ы</u>	L	<b>.</b>	• •		I . I	5 G. J.	-	,

...

XPLOR	RER GOLD	CORPO	RATIC	DN N						ICP CE	RTIFIC	ATE O	F ANA	LYSIS	AK 98-409	)							ECO-T	ECHL	ABOR/	TORIE		•	
Et #.	Tag #	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
Standa	ard:																												
GEO'98	8	1.2	1.80	70	155	<5	1.84	<1	18	66	79	3.88	<10	0.98	664	<1	0.02	23	680	24	<5	<20	53	0.10	<10	72	<10	6	69
GEO'98	8	1.6	1.72	70	160	<5	1.81	<1	21	66	86	4.19	<10	0.95	713	<1	0.02	22	770	24	10	<20	54	0.10		76	10	5	76
GEO'9	8	1.0	1.76	65	150	5	1.76	1	19	64	78	3.91	<10	0.96	687	<1	0.02	25	690	26	10	<20	54	0.10	<10	74	<10	5	74
GEO'9	8	1.2	1.85	70	165	5	1.91	1	21	68	80	4.01	10	1.03	710	1	0.01	22	710	20	5	<20	60			81	10	7	74
GEO'9	8	1.4	1.72	75	190	<5	1.76	<1	20	60	83	4.07	<10	0.98	707	<1	0.02	22	620	22	<5	<20	59	0.13	<10	81	<10	4	74
GEO'9	8	1.4	1.70	70	185	<5	1.79	<1	20	58	80	4.07	<10	0.94	722	<1	0.02	24	620	24	<5	<20	59	and the second second	<10	81	<10	5	81
GEO'9	8	1.2	1.76	60	185	<5	1.77	<1	19	59	83	4.10	<10	0.96	706	<1	0.02	22	650	24	<5	<20	61	0.13	<10	83	<10	5	80
																													·
							ł										<u>├</u>								- 1				
																							ECO-T	ECH L	ABOR	TORIE	S LTD		
df/411/	100													<u> </u>											otti, A.S		T		
XLS/98							<u>+</u>																		Assaye				

		. 1	( <b>1</b>	(	]	[]]]	r. N	1 1	1.1	(11) (11)	••••••••••••••••••••••••••••••••••••••	,	]	[] · · · · ]	<u> </u>		1	Ţ.,
--	--	-----	------------	---	---	------	---------	-----	-----	--------------	----------------------------------------	---	---	--------------	----------	--	---	-----

	12-Aug-98																												ļ
ECO-T	ECH LABO	RATOR	IES LT	D.						CP CE	RTIFIC		FANAL	YSIS A	AK 98-4	05							XPLO	RER G	OLD C	ORPOF	RATION	·	
10041	East Trans (	Canada	Highw	av						T	I			(									#102,	406-17	08 DOI	LPHIN /	AVENU	E	
	DOPS, B.C.	T	<b>X</b>		-																		KELO	WNA, I	3C	[ ]			
V2C 61																							V1Y 49	S4					
																							ATTE	NTION:	ERNI	E BERC	SVINSO	N	
Phone	604-573-57	00																						[		·····			
	604-573-45																						No. of	sample	es rece	ived: 66	;		
	1																						Sampl	e type:	Rock /	Core			
																							PROJ	ECT #:	RED C	:AP			
				-																			SHIPN	IENT #	: None	Given			
Values	in ppm uni	ess ot	erwis	e reporte	d																		Sampl	les sub	mitted l	by: Xpl	orer		
																	N- 0/	A.1:					<b>.</b>	Ti %		v v	w	Y	
Et #.	Tag #			As	Ba		Ca %	Cd	Co	Cr		Fe %		Mg %	Mn		Na %	Ni	P 1070	208	Sb 5	Sn <20	<u>Sr</u> 172	1			the second second	<1	
1	112440		1.77	660	65	5		<1	6	33	102	4.71	<10		902 927	6	0.06	<1		34	<5	<20	152		<10			<1	153
2	112441	0.4	1.84	235	55	5		<1	6	32 25	<u>40</u> 35	4.21 4.39	<10 <10		927 1242		0.06	<1		70	<5 5	<20		<0.01	<10			<1	255
3	112442	0.6	1.95	465	55	10		<1	5	25 37	53		<10		947		0.05	2		18	15	<20	159		<10			1	152
4	112443	<0.2	1.75	25	45	5	2.06	<1 9	5	31	106	3.92 4.76	<10		1101		0.05	<1	1220	106	<5	<20		< 0.01	<10			<1	833
5	112444	1.8	1.96	95	60	<5	1.95	9		31	100	4./0	<10	1.57	1101	. 4	0.07		1220	100	~5	~20	134	~0.01					000
	440445	0.2	1.89	05	50	5	1.95	2	6	44	47	4.43	<10	1.58	913	6	0.06	<1	1130	50	<5	<20	121	<0.01	<10	101	<10	<1	211
6	112445		1.69	35 3660	60	10		54	10	21	245	7.85	<10		1575	4	0.00	3		782	<5	<20	50		<10			<1	5976
7	112446 112447	13.8 6.6	1.04	7190	45	5	0.86	<1	12	41	238	7.53	<10		1203	11			1110	260	<5	<20		<0.01	<10	-		<1	1039
8 9	112447	13.4	0.96	>10000	50	15	1.76	<1	47	35	319	>10	<10	0.64	1895		0.01	<1	750	490	70	<20	178		<10			<1	329
9 10	112440	1.4	1.62	2690	50	<5		<1		25	70	4.05	<10		1852	3		<1	1270	98	<5	<20		< 0.01	<10			2	
10	112449	1.4	1.02	2090	- 50	~5	3.24					4.00	~10	1.40	1002	¥	0.00		12/0		~	-2.0		-0.01					
11	112450	5.2	1.99	175	50	5	1.81	23	6	22	165	6.44	<10	1.62	1507	4	0.04	<1	1220	308	<5	<20	87	<0.01	<10	91	<10	<1	2058
12	112450	15.4	1.55		45	<5	2.44	<1	10	29	631	7.22	<10		1367	6	0.03	<1		640	25	<20		< 0.01	<10			<1	3615
12	112451	6.4	1.60	355	45	<5		11	6	25	254	5.96	<10		1121	4	0.04	<1		166	<5	<20		< 0.01	<10			<1	1081
14	112453	7.2	1.51	4000	40	<5		6	13	42	321	7.32	<10		1335	7	0.03	<1		212	<5	<20	95		<10			<1	2073
14	112454	5.0	1.67	4810	50	<5		<1	10	69	421	7.34	<10		1097	8	4	<1		108	<5	<20		< 0.01	<10			<1	586
-15	112454	5.0	1.01																							<u> </u>			
16	112455	0.6	1.67	95	50	<5	2.53	3	6	56	56	4.07	<10	1.56	1226	6	0.03	<1	1150	46	<5	<20	115	< 0.01	<10	87	<10	<1	281
17	112456	7.2	1.68	2140	50	20		54	8	44	223	6.12	<10	1.32	1692	3	0.03	<1	1200	290	25	<20	78	<0.01	<10			<1	5169
18	112457	5.4	1.46	655	40	20		24	7	48	157	5.16	<10	1.23	1293	6	0.04	1	1090	252	15	<20	70		<10			<1	2123
19	112458	3.4	1.91	440	50	<5	1.84	15	8	40	208	6.86	<10		1468	6	0.04	<1	1140	146	<5	<20	77		<10			<1	1457
20	112459	5.0		2685	60	<5		9	12	68	326	6.37	<10	1.22	1185	8	0.05	<1	1170	240	<5	<20	61	<0.01	<10	90	<10	<1	1726
						· · · · ·																							
21	112460	3.0	1.81	3110	45	<5	1.67	<1	9	37	274	5.79	<10	1.45	1390	5	0.04	<1	1180	122	<5	<20	88	<0.01	<10			<1	1091
22	112461	5.4		3270	45	10		3	10	54	146	5.52	<10	1.28	1099	8	0.04	<1	1180	194	<5	<20	94	<0.01	<10			<1	1446
23	112462	3.2		1020	50	15		9		26	99	4.58	<10	1.53	1380	5	0.05	<1	1070	174	<5	<20	142	<0.01	<10		<10	<1	1126
24	112463	3.2	1.55	595	50	<5		8	6	28	189	4.87	<10	1.23	1032	4	0.05	<1	1120	112	<5	<20	93	<0.01	<10			<1	944
25	112464	3.6			55	<5		5		27	215	4.72	<10		1406	5	0.04	<1	1110	172	<5	<20	98	< 0.01	<10	80	<10	<1	865

XPLORER GOLD CORPORATION							ICP CERTIFICATE OF ANALYSIS AK 98-405												ECO-TECH LABORATORIES LTD.										
																									1	T			
Et #.	Tag #	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Ρ	Pb	Sb	Sn	Sr	Ti %	U	V	w	Y	Zn
26	112465	6.8	1.51	3380	55	10	1.62	<1	8	26	195	5.92	<10	0.98	1169	5	0.03	<1	1160	326	<5	<20	68	<0.01	<10	70	<10	<1	1413
27	112466	>30	0.91	>10000	55	<5	0.25	<1	38	39	6970	>10	<10	0.51	895	13	0.07	<1	310	754	40	<20	10	<0.01	<10	22	<10	<1	1187
28	112467	3.6	1.52	2730	55	<5	0.76	<1	10	41	257	7.33	<10	0.94	1272	7	0.02	<1	960	84	<5	<20	28	< 0.01	<10	48	<10	<1	219
29	112468	10.0	0.94	>10000	50	<5	1.40	<1	35	34	358	9.01	<10		980	12	0.02	3	960	190	25	<20	66	<0.01	<10	41	<10	<1	445
30	112469	11.0	1.17	>10000	40	<5	4.61	24	10	17	272	7.25	<10	0.77	2123	6	0.01	3	1030	258	<5	<20	341	< 0.01	<10	63	<10	<1	5759
31	112470	14.6		>10000	35	10		<1	24	38	416	>10	<10		898	9	0.01	5		396	5	<20		<0.01	<10	31	<10	<1	1288
32	112471	15.6		>10000	40	15		<1	23	27	430	>10	<10		962	8	0.01	6	950	408	5	<20		<0.01	<10	35	<10	<1	1543
33	112472	10.0		>10000	30	10		<1	21	59	401	7.99	<10		1232	8	0.01	<1	1050	446	15	<20		<0.01	<10	15	<10	<1	1212
34	112473	1.8	1.46	395	30	<5		5	6	40	103	4.99	<10		2001	6	0.02	<1	1010	102	<5	<20	145		<10	63	<10	<1	593
35	112474	3.4	1.61	2260	45	<5	2.12	<1	12	46	268	5.03	<10	1.17	1622	5	0.03	<1	1160	66	<5	<20	111	<0.01	<10	80	<10	<1	458
								ļ									-		1005										
36	112475	2.6		1010	40	<5		<1	9	48	232	5.54	<10		1417		0.02	<1	1080	56	<5	<20		< 0.01	<10	83	<10	<1	253
37	112476	2.4		2330	35	<5		<1	8	59	110	5.09	<10		1501	/	0.02	<1		106	<5	<20	61	<0.01	<10	74	<10	<1	789
38	112477	7.2		965	35	<5		2	9 7	49	240	6.15	<10		2949	6	0.02	<1		384	<5	<20		< 0.01	<10	55	<10	<1	691
39	112478	7.4		435	35	10				45	193	6.16	<10		1821	6	0.03	<1	1100	380	<5	<20		< 0.01	<10	69	<10	<1	1946
40	112479	6.0	1.65	245	45	<5	2.52	4	10	30	542	5.40	<10	1.20	1742	5	0.03	<1	1100	106	<5	<20	121	<0.01	<10	92	<10	<1	459
	112480	>30	1.05	1685	AE	100	1.79	24	17	33	1142	>10	<10	0.80	1868	12	0.02		730	996	<5	<20	05	<0.01	<10	41	-10	<1	2545
41	112460	4.8		2215	45 35	<5		18		27	227	4.20	<10		2552	5	0.02	<1		270	5	<20		< 0.01	<10	37	<10 <10	1	2751
42	112481	4.0		2215	30	<5		<1	7	32	188	4.85	<10		3190	5	0.02	<1	1210	428	15	<20		<0.01	<10	55	<10	3	896
43	112462	3.4	1.75	2960	40	<5		13	6	24	143	5.30	<10		1550	3	0.02	<1	1170	506	<5	<20		<0.01	<10	84	<10	<1	1242
44	112465	4.4	1.61	5455	40	<5		<1	16	27	169	5.64	<10		1444	5	0.03	<1	1200	656	15	<20		< 0.01	<10	74	<10	<1	847
	112404	4.4	1.01	3433		~~	1.01		10			0.04	- 10	1.07	1	ĭ	0.02		1200		- 10	~20		-0.01					
46	112485	>30	0.96	>10000	60	80	0.72	<1	32	21	799	>10	<10	0.31	898	12	0.07	<1	660	4064	10	<20	38	<0.01	<10	23	<10	<1	5633
47	112486	20.4		>10000	45	75		<1	25	27	696	>10	<10		585	12	0.06	<1	880	840	10	<20		< 0.01	<10	20	<10	<1	500
48	112487	2.0	1.04		45	<5		3		24	90	3.47	<10		1899	7	0.02	<1	1170	126	<5	<20		< 0.01	<10	52	<10	3	936
49	112488	1.8	1.03		45	<5	2.99	4		25	76	2.91	<10		1696	3	0.03	<1	1140	174	5	<20	91	< 0.01	<10	50	<10	2	977
50	112489	0.6	1.15		45	<5		4	4	23	48	3.08	<10	0.93	1958	4	0.03	<1	1180	64	10	<20	101	< 0.01	<10	64	<10	3	611
51	112490	5.0	1.43	3755	40	5	2.47	2	12	27	165	5.60	<10	0.95	1666	8	0.03	15	1270	342	<5	<20	163	<0.01	<10	72	<10	<1	1959
52	112491	2.6	1.66	905	35	<5	1.76	6	5	28	151	5.24	<10	1.17	1242	5	0.03	<1	1220	422	5	<20	91	< 0.01	<10	63	<10	<1	1013
53	112492	9.6	1.79	3435	35	<5	2.70	9	10	24	659	6.31	<10	1.34	1430	4	0.03	<1	1080	340	10	<20	164	< 0.01	<10	68	<10	<1	2261
54	112493	10.8	1.44	3330	35	<5	2.25	<1	7	23	476	5.18	<10	1.00	1564	4	0.03	<1	1220	450	10	<20	143	<0.01	<10	74	<10	<1	1485
55	112494	7.4	1.52	5200	35	10	1.92	32	12	35	240	6.85	<10	1.03	1713	3	0.03	3	1080	418	<5	<20	98	<0.01	<10	70	<10	<1	5100
56	112495	7.8			35	10		15		34	247	7.42	<10		1574	6	0.03	<1		318	<5	<20		<0.01	<10	88	<10	<1	1572
57	112496	4.8	1.54		45	10		9		29	108	4.50	<10		1784	2	0.03	<1	1200	398	10	<20		<0.01	<10	93	<10	<1	1325
58	112497	4.0	1.74	7550	45	<5		<1	24	25	250	8.82	<10		1505	8	0.02	<1	1280	258	<5	<20	61		<10	59	<10	<1	909
59	112498	2.2	1.52	160	40	<5		23	6	25	121	5.33	<10		1560	3	0.03	<1	1220	150	<5	<20	71	<0.01	<10	80	<10	<1	2046
60	112499	4.2	1.13	480	35	<5	1.71	19	6	30	138	4.34	<10	0.76	1314	3	0.02	<1	1340	348	<5	<20	59	<0.01	<10	53	<10	<1	1932
							1																			·			

			1	[ ]	<b>,</b>	)	н - -	1	· ·	) [	]		]		]	~	]	]		]	2 · · · ·	]	en	]	]]]]]	۲ -	]	-	
XPLOF	RER GOLD	CORPO	RATIO	N						CP CE	RTIFIC	ATE O		YSIS A	K 98-40	05							ECO-1	ECH L	ABOR	TORIE	S LTD		
Et #.	Tag #	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	v	W	Y	Zn
61	112500	6.4	1.46	2875	35	10	1.50	1	6	53	192	6.39	<10	0.89	1339	11	0.03	<1	1430	448	<5	<20	56	<0.01	<10	61	<10	<1	1418
62	112501	7.4	1.34	>10000	40	25	0.99	<1	36	64	292	>10	<10	0.59	1104	11	0.02	<1	1210	212	10	<20	50	<0.01	<10	29	<10	<1	330
63	112502	23.6	1.11	>10000	45	145	0.67	<1	26	55	916	>10	<10	0.37	984	14	0.01	<1	1020	610	10	<20	41	<0.01	<10	20	<10	<1	1227
64	112503	18.2	1.12	4355	35	25	1.20	84	6	28	303	6.64	<10	0.55	1496	6	0.02	2	1230	862	20	<20		<0.01	<10	36	<10	<1	8851
65	112504	2.8	1.08	3280	40	5	2.60	<1	11	68	93	3.99	<10	0.82	1544	9	0.03	<1	1310	180	15	<20		<0.01	<10	53	<10	<1	1076
66	112505	1.0	1.36	255	35	<5	3.27	3	5	48	58	3.74	<10	1.14	1968	5	0.03	<1	1280	142	<5	<20	137	<0.01	<10	88	<10	<1	423
QC DA	TA:																												
Respli	t:																												
1	112440	1.8	1.76	680	60	<5	2.08	<1	7	30	102	4.58	<10	1.53	913	3	0.06	<1	1130	196	5	<20	167	0.01	<10	101	<10	<1	323
36	112475	2.4	1.53	990	35	5	1.47	<1	8	42	226	5.42	<10	1.15	1368	6	0.03	<1	1100	64	<5	<20	65	<0.01	<10	78	<10	<1	272
Repea	t:																												
1	112440	2.4	1.70	700	60	<5	2.11	<1	7	30	100	4.65	<10	1.49	890	4	0.05	<1	1110	212	<5	<20	164	0.01	<10	99	<10	<1	362
10	112449	1.4	1.67	2555	55	5	3.24	<1	5	25	73	4.06	<10	1.45	1877	4	0.03	<1	1290	90	<5	<20	183	<0.01	<10	73	<10	1	278
19	112458	3.4	1.77	395	45	<5	1.72	14	8	40	200	6.44	<10	1.48	1375	5	0.04	<1	1050	138	<5	<20	72	<0.01	<10	82	<10	<1	1326
36	112475	2.6	1.65	970	35	<5	1.54	<1	9	47	228	5.75	<10	1.25	1461	7	0.02	<1	1160	66	<5	<20	67	<0.01	<10	85	<10	<1	279
45	112484	4.6	1.62	5975	40	<5	1.83	<1	15	26	173	5.77	<10	1.07	1461	5	0.02	<1	1210	684	10	<20	71	<0.01	<10	75	<10	<1	892
54	112493	10.4	1.38	3325	35	<5	2.19	<1	7	22	456	5.06	<10	0.95	1523	4	0.03	<1	1180	448	<5	<20		<0.01	<10	71	<10	<1	1458
63	112502	22.6	1.07	9435	45	160	0.65	<1	24	52	856	>10	<10	0.36	946	11	0.07	<1	980	562	10	<20	40	<0.01	<10	20	<10	<1	1153

680

<1 0.02

<1 0.02

20

20

630

660

16

24

<5 <20

5

<20

56 0.08

55 0.08

72 74

<10

<10

<10

<10

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer 5 6

68

80

793.74<10</th>0.98803.88<10</td>0.96

64 64

20

18

<1

<1

Standard: GEO'98 GEO'98

df/405 XLS/98 1.2 1.84

1.2 1.80

70 155

72 160

<5 1.82

<5 1.84

	13-Aug-98							I						1	1		1	·····	I					<u>                                     </u>			[T		-
																											i — — — — — — — — — — — — — — — — — — —		╞
ECO-1	ECH LABO	RATOF	RIES LT	D.						ICP CE	RTIFIC	ATE O	F ANAL	YSIS A	K 98-4	117							XPLO	RER GO	DLD CO	ORPOR	ATION		┢
10041	East Trans (	Canada	Highwa	ay 🛛																							VENUE		t
KAML	OOPS, B.C.																						KELO	WNA, B	C				t
V2C 6	Γ4														•								V1Y 4		-		rt		t
																											ł		t
																							ATTE	NTION	ERNIE		3VINSO	N	t
Phone	604-573-57	00																											t
ax :	604-573-45	57																					No of	sample	s recei	ved: 3	-+		t
																						1		e type:			r+		ł
											· · ·												PRO	ECT #:	REDC	AP			ł
																								1ENT #:			N +		ł
Value	s in ppm un	less of	herwis	e repo	rted																						/ILLIAM	\$	ł
																							Cump		1	<u>y. u.</u>		<u> </u>	ł
Et #.	Tag #	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	V	w	Y	t
1	112506	0.6	0.99	60	65	<5	2.21	2	6	83	34	2.51	<10	0.49	765	9		<1	620	24	<5	<20	131	<0.01	<10	17		2	4
2	112507	<0.2	0.85	50			2.40	<1	5		5	1.85	<10	0.47	787	3		<1	580	12	<5	<20	106		<10	13		3	ł
3	112508	<0.2	0.90	85	50	10	2.18	<1	6	83	7	2.26	<10	0.51	787	8	0.03	<1	690	58	<5	<20	80		<10	21	<10	3	
																													t
ac da	TA:																												F
Respl																													ł
1	112506	0.4	1.07	45	65	<5	2.26	3	5	91	38	2.54	<10	0.51	780	7	0.04	<1	630	22	<5	<20	136	<0.01	<10	19	<10	2	ŀ
												2.04	-10	0.01			0.04				~5	~20	150	-0.01	- 10	19	~10	2	ŀ
Repea	t:																												ł
1	112506	0.6	1.02	60	65	<5	2.29	2	6	82	34	2.55	<10	0.50	791	8	0.04	<1	640	26	<5	<20	134	<0.01	<10	18	<10	2	Ĺ
Stand	ard:																												ł
GEO'9	8	1.0	1.71	60	160	10	1.72	<1	19	61	81	4.02	<10	0.93	683	<1	0.03	21	670	20	5	<20	58	0.11	<10	75	<10	4	r
																				· · · · ·								· ·	Γ
																	1		h										Ē
																													-
																													-
																													-
																								†					-
																													-
			_																				ECO-T	ECH LA	BORA	TORIE	S LTD.		-
f/410																							Frank	I. Pezzo	ti, A.Sc	<b>.T</b> . T			

	22-Jul-98																												
													<b>E</b> 4514													20000	ATION		
	ECH LABO									CP CE	RIFIC	ALEO	IF ANA	LYSIS	AK 98-	330											VENUE		
	East Trans	Canada	Highw	ray																				WNA. E				·	
AML	DOPS, B.C.																						VIY 4						
2001	<u> </u>																												
																							ATTE	ITION:	ERNI	EBERG	JUINSO	N	
hone:	604-573-57	700																											
	604-573-45																							sample		ved: 18	1		
																								e type:					
																								ECT #:					
																								IENT#					
/alues	in ppm un	less of	herwis	e reporte	ed 🛛																		sampl	es subi	nitted l	y: Matt	ray		
<b>F</b> A #	Ter #	<b>A</b>	Al %	As	Ba	Di	Ca %	Cd	Co	Cr		Fe %	12	Mg %	Mn	Mo	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
Et #.	Tag #			and the second second	60		0.10	<1	40	73	184	5,30		0.19	259		<0.01	<1		636	<5			<0.01	<10			<1	280
1	K1066	12.0 13.6			60	<5			22	92	187	3.55		0.13	513		<0.01	<1		772	10			<0.01	<10			<1	463
2 3	K1067 K1068	10.8		>10000	45	<5		<1	6	43	115	4.46		0.20	469		<0.01	<1		1650	25	<20		< 0.01	<10			<1	343
4	K1069	16.0		2235	50	35		<1	4	86	138	5.04		0.20	211	-	<0.01	<1		1836	<5	<20	2	<0.01	<10	26	<10	<1	250
5	K1070	24.4		>10000	40	10		<1	15	59	229			<0.01	131	10	<0.01	<1	490	3574	255	<20	2	<0.01	20	8	<10	<1	3181
6	K1071	>30	0.60	>10000	60	<5	0.10	<1	12	43	321	>10	<10	0.07	269	13	<0.01	<1	810	7932	185	<20		<0.01	<10			<1	2592
7	K1072	15.2		>10000	45	10	0.10	<1	22	71	138	>10		0.03	108		<0.01		1010	3768	85	<20		<0.01	<10			<1	964
8	K1073	>30	2.02	>10000	90	<5	0.96	<1	14	42	825	>10		0.61	944		0.03		1260	6658	115			0.03	<10			<1	
9	K1074	11.2		>10000	70	<5		514		26	1431	>10		<0.01	38		<0.01	17		1470	610			<0.01	40			<1 <1	5516
10	K1075	>30	0.73	6020	65	<5	0.15	<1	6	47	349	6.78	<10	0.11	206	6	0.01	<1	1320	5446	15	<20	4	<0.01	<10	24	<10		1317
	· · · · · · · · · · · · · · · · · · ·									07	005	0.57	-40	0.07	4470		0.08	<1	890	3440	<5	<20	45	0.03	<10	112	<10	<1	1615
11	K1076	>30			35 110		1.04	<u>&lt;1</u> 727	38	<u>97</u> <1	335 8072	8.57 >10		0.87			0.08	<1		8926	<5			<0.03	40				>10000
12	K1077	>30 >30					0.04	155		<1	4487	>10		< 0.01			0.03	5			<5			< 0.01	50			<1	
13 14	K1078 K1079	19.8				<5		65		51	388	>10		0.24		6			1190	2816	<5	<20			<10			<1	6958
15	K1079	4.2				<5		15		29	314			0.48		14			1170	198	<5	<20			<10	87	<10	<1	2280
13	11000	7.6	1.00																										
16	K1081	38	1.10	8655	40	<5	0.47	<1	20	25	230	9.33	<10	0.19	1101	11	0.03	<1	1240		<5	<20			<10				
17	K1082	4.0		>10000	40	<5		<1	20	44	169	7.33	<10	0.27	1639	9		and the second	1150	276	<5	<20			<10				
18	K1083	2.8	1.00		50	5	0.46	<1	39	31	159	9.37	<10	0.22	1184	9	0.02	<1	1130	162	<5	<20	20	0.09	<10	67	<10	<1	578
																											ii		i
																											┟╂		·
			L										·														┟────┼		
		ļ	ļ	ļ																							i		
			·	1	I				1					1										L			+		

Page 1

	ER GOLD	CORPO	RATIO	N					[	CP CE	RTIFIC	ATE O	FANA	LYSIS	AK 98-	336									ECO-T		ABORA	TORIE	SLT
Et #.	Tag #	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	2
							<u> </u>																						
	TA:																												
Resplit										62	100	5.39	<10	0.17	245	25	<0.01	<1	860	654	<5	<20	2	<0.01	<10	23	<10	<1	2
1	K1066	12.4	0.60	8965	55	10	0.10	<1	40	62	190	5.38	<10	0.17	245		~0.01	~1				~2.0	-	-0.01					
Repeat										70	400	F 00	-40	0.19	254	25	<0.01	<1	850	626	<5	<20	3	<0.01	<10	24	<10	<1	2
1	K1066	12.0	0.63	8660	55	<5		<1	40	70			<10			25	0.01	- <1	1290	5340	10	<20		< 0.01	<10	24	<10		13
10	K1075	>30	0.73	5900	70	<5	0.14	<1	5	46	339	6.67	<10	0.11	205	0	0.01		1230	0040	10			-0.01					
Standa	rd:																0.02	40	620	18	<5	<20	60	0.11	<10	75	<10	3	
GEO'98	3	1.0	1.71	55	155	<5	1.84	<1	18	62	82	3.94	<10	0.91	663	<1	0.03	18	620	10		~20	00	0.11	~10	15			
																					_								
															·														
																							ECO-	I FECH L	ABOR	ATORI	ES LTD		
df/342																									otti, A.S				
01/342		1									ł			<u> </u>			1						PCC	ortified	Assaye				

														······			· · · · · · · · · · · · · · · · · · ·	·····		T	1		T						
	30-Jul-98																												
									li		RTIFICA		NAL		( 98.34	7R						- ti		RER G	OLD CC	RPOR	ATION		
	ECH LABO						+				KIIFICA							+									VENUE		
	East Trans	Canada	Highw	lay																				NNA, E		1	T		
	OOPS, B.C.													+									/1Y 45						
/2C 6	14																						1						
																						4	TTEN	ITION:	ERNIE	BERG	VINSON	1	
Dhana	: 604-573-5	700																	1										
	604-573-45													·····											s receiv	/ed: 86			
ax	004-373-45	51																						e type:					
															ľ										None G				
																									None (				
Value	s in ppm un	less of	herwis	e reporte	d																ł		Sampl	es subi	mitted b	<u>y: xpio</u>	rer	+	
												<b>F</b>		Aller N			No %	Ni	Р	Pb	Sb	Sn	6,	Ti %	U	v	w	- Y	Zn
Et #.	Tag #	Ag	Al %	As	Ba		Ca %	Cd	Co	Cr	Cu	Fe %		Mg %	Mn		Na %	13	430	174		<20		<0.01	<10	39	<10	<1	81
1	K1084	10.0		275	50	<5		<1	40	56	359	7.79		0.02	149 91	11	0.02	8	340	36	<5	<20		<0.01	<10	34	<10	<1	111
2	K1085	7.6	0.23	1050	70	<5		<1	32	41	181	5.13 8.24		<0.01	101	- 5	0.03	8	380	90	<5	<20		< 0.01	<10	53	<10	<1	241
3	K1086	20.4	0.35	1420	75	5		<1	25	95	136 229	0.24 >10	<10		2698	9	0.03	2	790	256	<5	<20	32		<10	48	<10	<1	4825
4	K1087	26.0	2.66	6550	55	65		9 56	1039	26 43	452	>10	<10	-	2401	8	0.03	10	1010	62	<5	<20	23			58	<10	<1	5484
5	K1088	2.6	2.02	100	45	<5	0.77	20	45	43	452	~10	~10	1.51	2401		0.00												
·			0.00	- 40000	60	155	0.49	<1	1417	55	269	>10	<10	2.01	3972	18	0.03	8	910	2934	<5	<20	13	0.04	<10	102	<10	<1	1713
6	K1089	>30		>10000	60 40	99	0.49	<1	2552	40	369	16.54		<0.01	2173	16	0.02	<1	1197	659	<5	<20	35	0.04	<10	44	<10	<1	3957
	K1090*	>30	2.87	163	40	<5		9	48	90	368	14.72	<10		3280	9	0.02	15	1285	33	<5	<20	35	<0.01	<10	84	<10	<1	1060
8	K1091*	1.2	1.04	390	75	<5	0.26	<1	9	35	160	5.77	<10		517	6	0.05	6	880	30	<5	<20	16			52	<10	<1	97
<u>9</u> 10	K1092 K1093	4.0		>10000	55	<5		<1	129	85	452	8,37	<10		359	11	0.02	10	580	88	60	<20	10	0.02	<10	20	<10	<1	121
10	K1085	4.0	0.07	- 10000																									
11	K1094	9.0	1 30	>10000	50	<5	0.39	<1	93	54	632	>10	<10	0.57	715	10		23	660	162	5	<20	37		<10	41	<10	<1	303
12	K1095	2.6		585	35	10		25	24	26	120	7.92	<10		1466	3		11	1180	216	<5	<20	44	1		65	<10	<1	2610
13	K1096	3.0		185	50	<5		22	24	33	128	7.48	<10		1410	4	0.09	5	1400	466	<5	<20	63			75	<10	<1 <1	1928 4378
14	K1097	6.4		1250	45	15	1.06	38	116	30	154	>10	<10		1925	11		8	1410	1132	<5	<20	89			87 30	<10 <10	2	226
15	K1098	0.6	1.97	130	105	<5	1.13	<1	18	66	42	2.51	<10	0.50	563	6	0.22	6	610	42	5	<20	187	0.05	<10				420
	1																0.1.1		1200	42	<5	<20	104	0.11	<10	90	<10	<1	192
16	K1099	0.8		235	60	5		<1	32	33	37	5.49	<10			2		6 6		42	<5 <5	<20	78			99		<1	231
17	K1100	<0.2		185	45	5		2	18	38	36	5.62	<10		1094 412	2 22		25	<10		100	<20	- 10			3	<10	<1	1018
18	K1101	>30			90	<5		<1	118		>10000	>10		0 < 0.01	412	 5	0.07	25 41	980	122	5	<20	212		<10	58	<10	<1	453
19	111732	2.2		765	90	<5		<1	15	43	155 158	<u>5.29</u> 5.18	<1( <1(		2371	4	0.03	60	3130	198	<5	<20	110		<10	63	<10	2	1863
20	111733	2.8	2.17	95	75	<5	2.66	18	22	42	120	<b>9.10</b>		1.07	2011		0.04		0.00										
						40	2.05		15	63	10	3.22	<10	0.84	1695	4	0.07	39	970	22	<5	<20	109	0.02	<10	57	<10	2	82
21	111734	<0.2		55	85	10		<1 12	15	63	94	4.58	<10			4	0.11	40	4050	192	<5	<20	124			76	<10	3	
22	111735	2.2			90	<5 <5		12	15	42	46	4.48	<10		1864	3	0.07	51	6010	58	5	<20	107			68	<10	7	
23	111736	1.0			110	<5 <5		15	15	58	46	3.66	<10		1668	3	0.09	32	970	298	10	<20	89	0.05	<10	56	<10	1	1404
24	111737	1.8	2.33	25	110	i ≤⊃	2.39	10	10	50	0	0.00	- 11		1.000	•				1	5		61	0.05	<10	35	<10	2	263

Page 1

· · · · ]	( <b>1</b>		1	1	1	1	[]	1				

-

XPLOR	RER GOLD	CORPO	RATIO	ON I					l	CP CE	RTIFICA	TE OF A	NALY	SIS AK	98-347						1	ECO-TI		ABOR	ATORIE	S LTD.			
												F . 0/		All 0/		Ma	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %		v	w		Zn
Et #.	Tag #	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %		Mg %	Mn				and the second second					0.04	<10	91	<10	<1	241
26	111739	0.6	3.16	45	100	15		2	21	77	15	6.30	<10		1957		0.10	58	940 950	112 40	<5 <5	<20 <20	64	0.04	<10	55	<10	<1	233
27	111751	0.6	2.33	45	85	5		2	18	43	12	5.72	<10		1816	6	0.05	41				<20		<0.01	<10	9	<10		101
28	111752	0.6	0.76	410	110	<5		<1	15	12	10	1.69	<10		1128	2	0.02	33	410	24	10 <5	<20		<0.01	<10	65	<10	<1	293
29	111753	1.8	2.58	105	80	10		3	28	40	27	7.86	<10	1.18	2438	5	0.02	65 27	860 810	80 108	<5	<20		<0.01	<10	36	<10		539
30	111754	1.2	1.64	25	65	10	1.50	6	12	41	24	4.59	<10	0.73	2064		0.02		010	100	~ ~ >	~20	-14	-0.01					
														0.47	7965		0.01	41	320	2080	255	<20	77	0.01	<10	28	<10	<1	3732
31	111755	14.6		>10000	55	20		<1	22	34	92	8.36	<10	0.47	7865 2170	5	0.01	33	1930	70	<5	<20		< 0.01	<10	61	<10	8	362
32	111756	0.6	1.92	135	65	5		3	17	65	14	4.92	10		1498	5	0.02	31	750	30	5	<20		<0.01	<10	42	<10	7	202
33	111757	0.2	1.27	50	60	5		2	15	69	8	2.69	10	0.69	1557	- 4	0.03	29	910	64	5	<20	84	<0.01	<10	50	<10	- 9	218
	111758	0.6	1,26	60	40	5		2	15	81	14	2.35	10 <10	0.62	1268	- 4	0.02	17	680	40	5	<20		< 0.01	<10	30	<10	12	111
35	111759	1.0	0.89	30	50	<5	1.96	1	13	82	39	2.03	\$10	0.48	1200		0.05		000		ĭ	-20		-0.01					
											40	4.58	<10	0.77	1628	6	0.02	41	1450	62	<5	<20	40	<0.01	<10	39	<10	6	144
	111760	0.8	1.61	350	65	<5		<1	17	54	18	6.41	<10		2225	5	0.02	44	1110	5476	25	<20		< 0.01	<10	31	<10	<1	6253
	111761	17.2	1.42	700	50	5		62	21	28		4.66	<10		2197		0.01	35	810	492	15	<20		< 0.01	<10	26	<10	1	777
	111762	3.0	1.11	1375	40	5		<1	16	38	81 233	6.64	<10		2296	9	0.02	57	1050	86	<5	<20	97		<10	65	<10	3	351
	111763	3.6	2.54	195	85	<5		3	31	42 43	233	7.77	<10		2750	12	0.02	50		22	<5	<20		<0.01	<10	69	<10	1	204
40	111764	1.4	2.83	110	80	<5	1.81		25	43			\$10	1.00	2750		0.02		1210										
							0.04		16	41	163	7.94	<10	1.31	3698	10	0.02	56	1230	62	15	<20	140	<0.01	<10	70	<10	<1	464
	111765	3.0		790	70	<5 10		<1 3	19	41	43	6.43	<10		1686	6		44	710	20	<5	<20	98	0.03	<10	72	<10	<1	421
	111766	0.6		205	90		1		23	41	102	9.46	<10		1607	11	0.04	63	760	28	<5	<20	57	0.02	<10	82	<10	<1	1091
	111767	1.0		3665	70	<5 <5		<1	20	25	120	7.74	<10	0.83	1158	11	0.02	53	880	348	5	<20	23	<0.01	<10	33	<10	<1	460
	111768	4.4	1.88	8865	55 70			<1	41	26	225	8.02	<10	0.78	1402	11	0.02	85	620	514	<5	<20	51	0.01	<10	35	<10	<1	2002
45	111769	8.0	2.23	8470	/0	<5	0.70		41	20	- 225	0.02	-10	0.10															
			0.70	400	05	10	0.66	10	24	42	101	7.87	<10	0.99	1727	9	0.03	55	960	260	<5	<20	39	0.03	<10	59	<10	<1	1026
••	111770	2.4			85 60	<5		8	29	39	125	6.47	<10		1196	8	0.03	56	670	308	<5	<20	73	0.02	<10	38	<10	<1	1088
	111771	3.8	2.00	55	95	<5		8	25	63	73	4.09	<10		992	5	0.11	50	660	76	<5	<20	64	0.03	<10	42	<10	<1	904
48	111772	1.0	2.11		105	<5		6	21	53	56	3.82	<10		1159	6	. 0.10	39	670	78	<5	<20	64	0.02		40	<10	<1	656
49	111773	1.2		80	80	<5		5	20	50	69	4.32	<10		1451	6	0.05	40	770	74	<5	<20	87	0.01	<10	35	<10	3	569
50	111774	1.2	1.01		00																								
=4	111775	1.8	1.51	225	80	<5	2.02	3	23	49	51	4.17	<10	0.58	1581	5	0.03	53	670	110	<5	<20		0.01	<10	27	<10	3	494
	111776	2.8			60	<5			27	52	85	4.20	<10	0.45	1886	6	0.02	59	730	262	<5	<20		<0.01	<10	26	<10		599
53	111777	0.6			65	5		2	19	41	51	5.07	<10	0.66	1859	8	0.03	37	740	86	<5	<20		<0.01	<10	42	<10		204
54	111778	1.4			55	5		<1	21	59	33	3.98	<10	0.41	2471	7	0.02	37	740	158	35	<20		<0.01	<10	31	<10		1
	111779	1.0			75	<5			11	42	28	2.19	<10	0.25	983	4	0.03	26	180	114	<5	<20	94	<0.01	<10	14	<10	1	20
<b>1</b> 35	111113	+	0.77	+	····		1	<u> </u>																				ļ	
56	111780	<0.2	1.08	70	85	5	1.00	<1	9	61	9	2.33	<10	0.37	878	4		17		14	<5	<20	46		<10	19	<10		42
57	111781	0.4				<5			13	76	19	2.16	<10	0.32	802	4	0.03	25	400		<5	<20	61		<10	17	<10		
58	111782	0.6			105	5	1.56		21	21	18	4.66	<10		2176	5		48			<5	<20	91		<10	19	<10		
59	111783	0.2			130	5	0.60		17	38	13	3.66	<10	0.61	850	5		38	480		<5	<20	56		<10	25	<10		123
60	111784	0.6			110	15		<1	21	33	17	6.75	<10	1.13	1477	6	0.04	41	3100	68	<5	<20	76	<0.01	<10	36	<10	2	
<b>⊢</b> ∞	111104	- 0.0		+	<b>-</b>		1	1										L										<b>i</b>	L

	RER GOLD	CORPO	RATIO	N		T			i.	CP CE	RTIFICA	TE OF	ANALY	SIS AK	98-347	'							ECO-T	ECH L	ABORA	TORIE	S LTD.		
			T																										
	<b>T</b> 4	<b>A</b>	AL 9/	As	Ba	Di	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	V	w	Y	Zn
#.	Tag #	Ag	and the second second				0.32	<1	10	88	13	0.91		0.08	303		0.02	16	150	46	<5	<20	40	<0.01	<10	3	<10	<1	106
	111785	<0.2	0.36	75 180	75		0.32	4	13	22	61	4.35		0.40		5		21	260	22	<5	<20		<0.01	<10	12	<10	<1	576
_	111786	1.2 1.2	0.66	130	75	<5	0.53	9	8	72	90	2.04		0.20	504	5		12	260	60	<5	<20	32	<0.01	<10	3	<10	<1	1024
-	111787	0.8	0.00	75	75	<5	0.47	4	4	49	36	1.61	1	0.24	628	4	0.03	6	100	56	<5	<20	34	<0.01	<10	4	<10	<1	394
	111788 111789	0.8	0.90	40	80	<5	0.55	15	5	42	54	2.42			821	3	0.03	8	70	78	<5	<20	40	<0.01	<10	6	<10	<1	1413
2	111/09	0.8	0.30			~~	0.00																						
6	111790	1.2	1.13	90	75	5	0.52	6	8	44	58	3.29	<10	0.43	1061	5	0.02	8	50	86	<5	<20	35	<0.01	<10	7	<10	<1	677
- 1	111791	2.4	1.45	75	75		0.92	12	13	44	83	4.20	<10	0.60	1465	5	0.03	10	40	324	<5	<20		<0.01	<10	10	<10	<1	1219
	111792	0.8	1.00	105	75	5		6	5	49	16	2.20	<10	0.40	999	4	0.04	7	50	136	<5	<20		<0.01	<10	6	<10	<1	539
	111793	0.8	0.84	20	75	<5		1	4	44	16	1.85	<10	0.30	779	3	0.05	7	50	140	<5	<20		<0.01	<10	6	<10	<1	135
	111794	1.0		185	60		0.63	3	4	39	33	1.74	<10	0.22	824	3	0.03	7	40	122	<5	<20	50	<0.01	<10	4	<10	<1	447
<u> </u>	111104	1.0	0.10																										
1	111795	0.8	0.56	55	60	<5	0.68	4	6	63	21	1.50		0.23	763	4		7	40	86	<5	<20		<0.01	<10	4	<10	<1	441
·	111796	2.8	0.66	125	65	<5	0.45	9	7	46	45	1.99		0.23	912	3		7		236	<5	<20		<0.01	<10	3	<10	<1	1126
	111797	3.0	0.76	560	65	<5	0.40	23	8	45	62	3.02		0.26		3		9		280	<5	<20		<0.01	<10	4	<10	<1	2854
-	111798	0.8	0.93	535	65	<5	0.91	9	13	66	35	2.31		0.32		5	0.04	9		122	<5	<20		<0.01	<10	6	<10	<1	1164
	111799	1.8		440	75	<5	1.88	7	49	48	37	3.02	<10	0.52	2295	4	0.08	13	90	186	<5	<20	131	<0.01	<10	13	<10	<1	967
-																													202
6	111800	0.8	0.70	1395	65	<5	1.09	<1	7	88	18	2.30		0.39		6		10		104	5	<20		<0.01	<10	15	<10	<1	202 606
7	111801	1.6	0.85	170	60	<5	1.15	5	24	49	52	2.77		0.43		4	0.04	11		236	<5			< 0.01	<10	14	<10 <10	<1 <1	95
8	111802	0.4	0.77	25	60	<5		<1	5	78	18	1.92		0.35	777	4	0.05	6		56	<5			<0.01	<10 <10	12 12	<10		140
9	111803	0.6	0.79	30	55	5		1	4	49	19	1.77		0.41	987	3	0.04	7	360	88	<5 <5	<20 <20		<0.01 <0.01	<10	10	<10	<1	657
0	111804	1.0	0.72	140	50	<5	1.15	5	7	89	33	1.97	<10	0.37	865	6	0.03	7	380	124	<2	<20	92	<0.01	<u> </u>	- 10	~10		001
																	0.05		- 200	90		<20	08	<0.01	<10	12	<10	<1	377
1	111805	0.6	0.81	70	55		1.15	3		61	24	1.78		0.42		4	0.05	7	<u> </u>	86 86	<5 <5	<20		<0.01	<10	13	<10	<1	140
2	111806	0.6		15	45		1.06	1		69	21	1.77		0.38	784	4	0.04			112	<5	<20		<0.01	<10	18	<10	<1	256
3	111807	0.8		65	60		1.46	2	13	56	37	2.86		0.50	1007 697	6	0.05	10 6		106	<5	<20		<0.01	<10	11	<10	<1	1118
4	111808	0.6		25	40	<5		11	5	65	24	1.69		0.33	812	4	0.04	12		192	<5	<20		<0.01	<10	13	<10	<1	929
5	111809	1.4		45	55	<5	1.04	9	14	50	53 20	2.81			851	3		5		132	5	<20		<0.01	<10	11	<10	3	410
6	111810	0.8	0.52	100	75	<5	1.56	4	3	49	20	1.21	<u> </u>	0.59	001		0.00		400					-0.01					
													+				<u> </u>												
		<u>_</u>																							t				
	ļ		ļ											+															
	· · · · · · · · · · · · · · · · · · ·												+	+			1												
	L		<b>  </b>																										
	<u> </u>		╄										+	+															
		1	1											1			+												

PLOF	RER GOLD	CORPO	ORATIO	DN I	T		T	T		CP CE	RTIFICA	TE OF A	NALY	sis ak	98-347				T		T		ECO-T	ECH L	ABORA	TORIE	S LTD.	T	
Et #.	Tag #	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
													-												·				{
espli	t: K1084	11.0	0.36	315	40	<5	0.09	<1	44	60	390	8.54	<10	0.03	166	12	0.02	13	470	190	<5	<20	9	<0.01	10	43	<10	<1	93
	111760	0.6	1.75	375	65		1.59	<1	19	58	17	4.79		0.82	1732	6		43		68	<5	<20	_	< 0.01	<10	41	<10	7	142
	111795	1.0	0.59	50	55	<5	0.71	4	5	57	21	1.60	<10		804	3		7	50	90	<5	<20		< 0.01	<10	4	<10	<1	476
	111785	1.0	0.00			~~~	0.11																						
epea	ıt:																												
	K1084	9.8		290	45	<5		<1	40	56	361	7.84		0.02	148	11		12		176	<5	<20		<0.01	10	39	<10	<1	82
10	K1093	4.2	0.57	>10000	60	<5		<1	128	83	457	8.28		0.12	356	11		11	570	86	60	<20	11		<10	19	<10	<1	116
	111732	2.2	2.24	720	85	<5		<1	14	41	165	5.30		1.13	4341	5		42		122	<5	<20		0.01	<10	55	<10	<1	448
	111760	0.6		325	60		1.45	<1	15	50	14	3.91		0.65	1388	5		34	1280	56	5	<20		<0.01	<10	33	<10	5	128
45 ·	111769	7.6	2.20	8270	65	<5		<1	39	16	214	7.84		0.77	1383	11		83		504	<5	<20	48		<10	35	<10	<1	1950
	111778	1.4		7235	55	<5	3.17	<1	21	4.10	30	3.88	<10		2389		0.02	36		176	35	<20		<0.01	<10	30	<10	3	384
71	111795	0.6	0.54	55	50	<5	0.67	4	5	60	19	1.46	<10	0.22	754	3	0.03	7	50	82	<5	<20	39	<0.01	<10	4	<10	<1	438
tand	ord:																												
EO'9		1.2	1.76	60	165	10	1.73	<1	19	60	86	4.12	<10	0.96	706	<1	0.03	20	610	22	<5	<20	60	0.12	<10	80	<10	5	73
EO'9		1.4	1.73	70		<5		<1	19	63	83	4.11	<10	0.96	720	<1	0.03	22	640	26	<5	<20	60	0.12	<10	78	<10	4	77
EO'9		1.4		65		<5		<1	19	62	82	4.06	<10	0.96	702	<1	0.03	22	640	22	<5	<20	61	0.12	<10	78	<10	5	82
		Ļ																											
IOTE	: * = Rerun	Sample	9																										
						·········																							
																										TORIE			

	16-Jun-98																													
	ECH LABOR											RTIFICA	TE OF	ANA	YSIS	AK 98-1	88									OLD CC				
	East Trans Ca OOPS, B.C.	inada Higi	iway																							08 DOL	PHIN F	VENU	<u>E</u>	
V2C 6																								KELOV				┢┣-		
200																		,						<u>vii 40</u>		<u>├</u>		<b> </b> -		
																								ATTEN	TION:	ERNIE	E BER(	JUINS	ON	
hone	: 604-573-570	0																									,, ,			
-ax	604-573-455	7																						No. of s	sample	s receiv	/ed: 3	1		
																								Sample						
																										SP,RC,	LT	L		
later-																								SHIPM				Ļ		
aiue	s in ppm unie	ss omervi	nse rep	orted																				Sample	is subr	nitted b	Y: Eric I	Berguir	ison	·
					<u> </u>																					<u>                                     </u>		┢───┼		· · · · · · · · · · · · · · · · · · ·
Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	BI	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	NI	P	Pb	Sb	Sn	Sr	TI %	U	v	w	Y	Zn
1	M460451	90	2.4	7.07	605	55	5	4.59	43	14	143	230	6.89	<10	2.00	515	2	0.39	21	1860	252	95	<20	130	0.10	<10	146	<10	<1	2442
2	M460452	5	<0.2			75		1.06	<1	18	93	62			0.85	254	<1	0.27	25		24	<5		55	0.21			<10	7	100
3	M460453	125			>10000	50	20		<1	23	89	80			0.93	346	7	0.38	29		58			92	0.03	<10			<1	1464
	M460454	160			>10000	45	20		<1	21	93	86	6.44	and the state of the		360	6	0.41	28	1160	54	30	<20	105	0.03	<10			<1	1603
5	M460455	50	<0.2	0.50	650	60	<5	2.80	>1000	67	17	979	>10	<10	<0.01	1405	<1	0.04	161	360	28	<5	<20	7	0.03	<10	41	<10	<1	>10000
6	M460456	5	<0.2	0.96	215	55	<5	0.82	9	12	153	81	2.80	c10	0.05	237	44	0.11	47	2670	8	-F	<20	22	0.16	<10	EC0	<10	11	504
7	M460457	5			35	45	<5	0.02	4	19	114	60				123	8	0.04	46	850	6			3	0.05		83		2	244
8	M460458	5				50	<5		>1000	42	17	508			< 0.01	978	<1	0.05	111		2	-	<20	22	0.02			<10		>10000
9	M460459	5	<0.2	1.94	85	75	<5	1.45	4	12	94	40				269	21	0.16	31	920	20	<5	<20	84	0.07	<10	79		3	228
10	M460460	5	0.2	1.38	25	25	<5	1.22	4	18	70	75	2.78	<10	0.12	154	15	0.23	16	1070	42	<5	<20	66	0.10	<10	32	<10	3	200
11	M460461	5			10	25	<5		2	14	83		2.34			104	32	0.20			26			63	0.09		28		3	90
12	M460462	160			325	35	15	8.77	927	10	35	135				2508	<1	0.01	24		58	<5	<20	17	0.05	<10			<1	>10000
13	M460463	5			65	70	<5		3	21	57	154				213	<1		21		10		<20	53	0.34		49	<10	8	153
14 15	M460464 M460465	5 30				35 45	<5 <5	4.92 4.50	4 <1	58 92	29 16	754 1497			0.03 <0.01	88 1542		0.72	101	740 310	28 36		<20 <20	356 27	0.13	<10 <10	15	10 100	<1 <1	140 206
10	WI400403	30	2.0	0.09	4525	40		4.00		92	10	148/	~10	10	-0.01	1042	80	0.04	00	310	30	<b>~</b> 0	~20	- 21	0.03	\$10	03	100		206
16	M460466	35	0.6	1.39	80	20	<5	7.84	3	9	20	166	5.15	<10	0.03	2659	39	0.07	14	760	12	<5	<20	118	0.04	<10	56	<10	<1	148
17	M460467	550		0.83		70	<5	0.20	6	5		5766				532			11		234				<0.01	<10		<10	<1	454
18	M460468	755	4.0	4.39	>10000	60	<5	4.02	<1	62	36	130	1.91	10	0.18	2092	1	0.11	39	540	118		<20	337	0.02	<10			4	83
19	M460469	150			85	75	<5	0.52	<1	46	53	223	>10			1193			26	960	74	<5	<20	44	0.03	<10	48		<1	71
20	M460470	5	0.4	3.77	30	175	<5	0.96	3	27	128	398	>10	<10	1.05	1177	8	0.12	85	1470	56	<5	<20	76	0.06	<10	172	<10	3	102
					<u>                                      </u>																					j+				
		L			L				_																					
		1		L		1				1				1		- E	1									·	1	· .		1

PLO	RER GOLD CO	RPORAT	ON								ICP CE	RTIFICA	TE OF	ANAL	YSIS	AK 98-	188								ECO-T		BORA	TORIE	ES LTI	<u>0.</u>
Et #.	Tag #	Au(ppb)	Aa	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	NI	P	Pb	Sb	Sn	Sr	TI %	U	v	w	Y	Z
	M460471	45	7.4		345	105	<5	1.32	1	23	37	1389	1.69	<10	0.53	1012	<1	0.08	27	880	84	<5	<20	93	0.03	<10	34	<10	3	16
	M460472	5	9.2	1.34	1025	65	<5	2.26	12	101	49	2193	>10	<10	0.04	359	54	0.09	38	1180	76	<5	<20	272	0.05	<10	61	10	<1	8
	M460473	>1000	>30	1.55	>10000	65	<5	1.80	<1	2760	37	>10000	>10	<10	0.14	1343	9	0.04	319	<10	2346	90	<20	161	0.01	<10	23	<10	<1	>100
24	M460474	15	1.6	0.67	2045	70	<5	4.75	75	90	24	614	>10	<10	< 0.01	1425	11	0.03	262	810	20	<5	<20	28	0.04	<10	45	<10	<1	35
25	M460475	15	7.8	2.35	335	40	<5	1.49	11	28	59	311	6.38	<10	0.15	307	71	0.19	66	1040	228	<5	<20	126	0.05	<10	76	10	<1	5
26	M460476	5	1.6	0.69	110	15	<5	0.72	<1	17	56	177	3.46	<10	0.02	112			91	880	28	<5				<10	28	<10	4	
27	M460477	5	<0.2	1.12	30	60	10	0.77	<1	17	138	48	2.57	<10	1.01	240			33	1920	12	5	<20			<10	99	<10	8	
28	M460478	500	>30	0.33	105	45	1940	0.91	>1000	18	11	452	>10		<0.01	1220			14		>10000	<5				<10	30	<10		>100
29	98-I-KS-FO1	5	0.4	2.39	10	85	5	5.80	6	39	156	116	7.54	<10	3.15	1228	3		49	1190	46	<5				<10	208	<10	2	1
30	89-I-YB-RO1	5	2.4	1.99	260	50	<5	0.69	<1	157	120	125	>10	<10	1.46	281	10		513	3620	62	25			<0.01	<10	47	<10	<1	
31	98-YB-FO1	5	0.6	2.43	25	45	10	0.14	2	20	44	56	7.03	<10	1.01	172	5	0.03	41	490	40	<5	<20	15	<0.01	10	53	<10	<1	1
																							ļ	L				ı		
C D/	<u>ATA:</u>																											ı		
	<u>L</u>																							· ·				⊢		
Repe																				- 1000				100						
	M460451	115	2.2	6.72	595	50	15	4.39	41	15	137	220	6.65		1.92	498			20	1830	250	100				<10 <10	141		<1	23
	M460460	5	0.2	1.35	20	25	<5		3	18	70	74	2.74	<10	0.11	160			15	1090	40	<5		1			32	<10	3	1
	M460469	<u> </u>	2.2	1.86	85	80	<5	0.52	<1	46	55	227	>10	<10	0.70	1231	9	0.05	28	930	74	<5	<20	45	0.03	<10	50	10	<1	
20	M460470	5	-	-		-	-				-	•	•	•	-	•	•	•		-				-				·		
Stand	lard:																													
GEO'	98	155	1.2	1.68	60	155	<5	1.90	<1	19	62	76	4.04	<10	0.98	654	<1	0.03	25	670	20	<5	<20	57	0.12	<10	74	<10	4	6
																												i		
																												ı		
																							ļ					j		
																								ļ				·		
																									ļ					
																		<u> </u>						<b> </b>				ł-		
	L																											<b> </b>		
																										DOD	TODIE			
					L																							SLID	<u>·</u>	
lf/197	'				1																			-	J. Pezzo ertified	····				



]

## **Chemex Labs Ltd.**

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: XPLORER GOLD CORP.

102 - 406 1708 DOLPHIN AVE. KELOWNA, BC V1Y 9S4

Project : RED CAP Comments: ATTN:ERNIE BERGVINSON Page Number :1 Total Pages :1 Certificate Date: 16-SEP-199: Invoice No. : 19830366 P.O. Number : Account :QLS

1/10.6

<b></b>			F			CERTIFIC	ATE OF AI	NALYSIS	A98	30366	
SAMPLE	PREP CODE	Au g/t	Ag g/t	Cu %	Pb %	Zn %	Co %		<u>eren 1 </u>		
244051 244052 244053 244054 244055	208 226 208 226 208 226 208 226 208 226 208 226	1.41 4.50 0.12 0.12 4.26	1.4 10.3 1.0 1.0 18.9	0.01 0.03 0.01 < 0.01 0.04	< 0.01 0.01 < 0.01 < 0.01 0.01	0.12 0.31 0.08 0.04 2.77	0.011 0.007 0.001 0.001 0.026				
244056 244057 244058 244059 244060	208 226 208 226 208 226 208 226 208 226 208 226 208 226	33.21 1.11 2.31 10.32 7.59	122.5 28.4 11.9 39.5 38.9	0.10 0.02 0.02 0.03 0.03	0.14 0.05 0.02 0.06 0.09	7.37 5.12 1.28 2.24 2.10	0.010 0.006 0.004 0.004 0.021				
244061 244062 244063 244064 244065	208 226 208 226 208 226 208 226 208 226 208 226 208 226	0.72 1.38 3.30 4.02 0.15	5.9 4.6 16.9 40.6 13.3	0.01 0.01 < 0.01 0.01 0.01	0.01 0.01 0.09 0.17 0.11	0.29 0.14 0.36 0.53 0.31	0.003 0.018 0.037 0.148 0.007				
244066 244067 986R1 MRC1000	208 226 208 226 208 226 208 226 208 226	0.06 < 0.03 0.27 3.00	1.8 0.7 >350 231	< 0.01 < 0.01 0.17 0.69	0.01 0.02 17.30 2.20	0.04 0.06 15.35 0.22	<pre> &lt; 0.001 0.006</pre>				
											-
i						·					λ

• •

CERTIFICATION:

Red Cap Property Xplorer Gold Corp.

1

## **APPENDIX II**

## **DRILLING LOGS**

Area: F Contractor: F Core Size: F				Latitude: 50+07E Departure: 40+10N Elevation: 1768 m	DDH LJ-98-1		Inclina	Bearing: tion @ collar: Total Depth:	-45°		Date Con	pleted:	July 17, 19 July 18, 19 R. I. Nicho	998
											Ass	avs		
From m	To m	interval m		Lithology	From m	To m	width m	Tag No.	Au g/T	Ag g/T	Cu ppm	Co ppm	Pb ppm	Zn ppm
0.00	2.50	2.50	CASING, andesite	pebbles only, no recovery										
2.50	9.15	6.65	horizons (argillite m bedded, v.f.g. interr mn / chlorite mm-w	minor interlayered sediment nudstone); med-grey, well nediate volcanic tuff; dk-grey ide bankds define bedding wide qtz veinlets in fracture										
				bedding 70° 1-2% pyrite cubelets/blebs along bedding planes @ 70° to ca	8.50	10.00	1.50	111732	<0.03	2.20	165	15	122	448
9.15	10.30	1.15	volcanic tuff (45°-50 fracture filling; brittle	40° quartz-chlorite vein, ½% local pyrite	10.00	11.50	1.50	111733	<0.03	2.8	158	22	198	1863
10.30	18.00	7.70	silicified; rare epido bedding)	med-grey, lighter grey sections te blebs rounded <cm² (55-65°<br="">1% Py/Po, ½% Cpy blebs as</cm²>	11.50	13.00	1.50	111734	<0.03	<0.2	10	15	22	82
				fracture healing, minor epidote association, leucoxene crystals commonly sprinkle unit	13.00	14.50	1.50	111735	<0.03	2.2	94	15	192	1149
			14.10-14.90	longitudinal fracture, quartz- carbonate filling, Po/Py dissem cubes/blebs	14.50	16.00	1.50	111736	<0.03	1.0	46	16	58	1025
				semi-massive Po	16.00	17.50	1.50	111737	<0.03	1.8	46	15	298	1404
			17.00-17.80	open longitudinal quartz-carbonate coated fracture, trace Pb, S, V disseminated along open faces	17.50	19.00	1.50	111738	<0.03	0.4	5	10	196	263
18.00	21.45	3.45	overprinted by <mn margins for mm wid minor horizons (&lt;10</mn 	weak breccia zone; 50° bedding n qtz veinlets with chlorite; sulphate tths on opposite plane to bedding; 0 cm) of andesite breccia clasts / 65° qtz vein <1 cm width										
21.45	23.50	2.05		minor argillaceous mudstone horizons; ey v.f.g. intermediate volcanic;										

Area: F Contractor: F Core Size: F			Latitude: 50+07E Departure: 40+10N Elevation: 1768 m	DDH LJ-98-1		Inclina	Bearing: ition @ collar: Total Depth:	-45°		Date Con	npleted:	July 17, 1 July 18, 1 R. I. Nicho	998
										Ass	ays		
From	То	interval		From	То	width		Au	Ag	Cu	Со	Pb	Zn
m	m	m	Lithology	m	m	m	Tag No.	g/T	g/T	ppm	ppm	ppm	ppm
			felsic volcanic (bedding 30°-35°) Iower contact 30°										
23.75	30.15	6.40	ANDESITE TUFF, argillaceous mudstone horizons; silic andesite, med.grey with dk.grey sed intersections 24.15-24.30 1/2-1% Py blebs scattered through- out, minor qtz-filled fractures at high angles, weakly chloritized										
			29.90-30.05 20° cross-cutting micro-fractures, weak chloritiz fractures sharp lower contact 50°										
30.15	30.85	0.70	ARGILLACEOUS MUDSTONE, dk.grey, massive, very siliceous; disseminated Py rounded blebs to ½% over 10 cm widths concordant to bedding @ 50° lower contact 45°										
30.85	31.35	0.50	ANDESITE TUFF, med.grey, v.f.g. (weak Py fracture coating) bedding variable 35°-45°; weak mm-wide Py fracture filling 65°-70°; lower contact shart at 47°	29.60	31.10	1.50	111751	<0.03	0.6	12	18	40	233
31.35	35.40	4.05	RHYOLITE TUFF / ARGILLACEOUS MUDSTONE BANDS It.grey <3 cm wide andesite tuff bands randomly at 45°-50° define bedding; dk.grey lapilli elongate blebs to cm scale; leucoxene crystals on mm ² scale thru-out. 32.55-33.30 broken, fractured core @ 75°	31.10 5,	32.60	1.50	111752	<0.03	0.6	10	15	24	101
			33.30-33.65 mudstone horizon @ 50°, charac- teristic Py blebs mm scale, random broken contact										
35.40	38.60	3.20	MUDSTONE, dk.grey, v.silicified, v.f.g.; trace Py v.dissem, contact 45°										
38.60	45.50	6.90	ANDESITE TUFF / ARGILLACEOUS MUDSTONE inter- sections which are Py-enhanced to 1% locally, Py as mm ² rounded blebs; andesite = med.grey, v.siliceous; dacite = dk.grey, massive, silicified; bedding 45°-60° 37.10-37.80 1% Py micro-veinlets at low angles	36.80 37.60	37.60 38.40	0.80 0.80	111753 111754	0.04 <0.03	1.8 1.2	27 24	28 12	80 108	293 539
			to c.a., weak 45° qtz veinlets ± 1%	38.40	39.20	0.80	111755	5.81	14.6	92	22	2080	3732
			Py marginally 39.30-40.00 2% Aspy, 2% Py, ½% Po in frac-	39.20	40.00	0.80	111756	0.15	0.6	14	17	70	362

	Red Cap (L Falcon Drill BTW		Latitude: 50+07E Departure: 40+10N Elevation: 1768 m	DDH LJ-98-1		Inclina	Bearing: tion @ collar: Total Depth:	-45°	[	Date Com	npleted:	July 17, 19 July 18, 19 R. I. Nicho	998
										Ass	ays		
From m	To m	interval m	Lithology	From m	To m	width m	Tag No.	Au g/T	Ag g/T	Cu ppm	Co ppm	Pb ppm	Zı ppn
			chloritized stratigraphic 'top', moderately brecciated 40.60-40.80 broken core, bedding 45° 41.80-42.30 broken core silicified zones randomly, weak assoc tr Py blebs are lighter grey colored lower contact diffuse 65°	43.85	45.05	1.20	111757	<0.03	0.2	8	15	30	20
45.50	47.10	1.60	RHYOLITE TUFF / LAPILLI TUFF, It.grey silicified, with dk.grey altered and lapilli (weak chloritic lapilli)	45.05	46.35	1.30	111758	<0.03	0.6	14	15	64	2
			46.20-46.80 longitudinal 2 mm wide qtz-talc veinlets, no visible sulphides lower contact diffuse 60°	46.35	47.85	1.50	111759	<0.03	1.0	39	13	40	1
47.10	53.90	6.80	ANDESITE TUFF / LAPILLI TUFF, med.grey; bedding 60 65°; It.grey mm² lapilli 47.85-47.92 Po blebs to cm² within epidote rims 51.85 2 mm wide Py veinlet 40° to c.a. 52.30 bedding 60°	)°- 51.20	52.70	1.50	111760 repeat	0.07 0.4	0.8 0.6	18 14	17 15	62 56	1
			52.40-52.55 1% Py, 2% Po, v.magnetic along bedding planes as blebs/'necklaces' lower contact, sharp, broken, 50°	52.70	53.70	1.00	111761	1.29	17.2	87	21	5476	62
53.90	55.70	1.80	RHYOLITE TUFF, minor andesite horizons, brecciated, quartz-flooded with 1% Py, 1% Po marginal to clasts;	53.70	54.70	1.00	111762	0.08	3.0	81	16	492	7
			iron carbonate alteration, It.orange 54.50-54.75 silicified strongly, cross-cut by Py micro-veinlets to 2% locally lower contact sharp 65°	54.70	56.20	1.50	111763	<0.03	3.6	233	31	86	3
55.70	67.90	12.20	ANDESITE TUFF > minor argillaceous mudstone horizon med.grey andesite tuff; dacite horizons 10-20 cm med. grey, massive; weak <10cm epidote ± Py to 1% locally;	ns;									
			Py fracture coating rarely 57.60-57.65 15° brittle deformatin; qtz-filled frac 58.10-58.20 qtz-filled 10-15° micro-fracture	56.20	57.70	1.50	111764	<0.03	1.4	87	25	22	2
			58.30-58.45 broken core, chlorite/quartz frac ctg 58.35 65° chlorite/qtz-filled shear, tr	57.70	59.20	1.50	111765	<0.03	3.0	163	16	62	4
			associated Py 58.40-59.80 brecciated, qtz fracture, bedding	59.20	60.70	1.50	111766	<0.03	0.6	43	19 23	20 28	4 10
			55°, tr Py to 1%, 1-2% Po along bedding planes; 0.5 cm rounded segregations	60.70 62.20	62.20 63.70	1.50 1.50	111767 111768	<0.03 0.13	1.0 4.4	102 120	23 20	20 348	2
			segregations	02.20	00.70	1.00		•					

Area: R Contractor: F Core Size: B			Latitude: 50+07E Departure: 40+10N Elevation: 1768 m	DDH LJ-98-1		Inclina	Bearing: ition @ collar: Total Depth:	-45°	[	Date Com	pleted:	July 17, 19 July 18, 19 R. I. Nicho	998
										Ass	avs		
From	То	interval		From	То	width		Au	Ag	Cu	Co	Pb	Zn
m	m	m	Lithology	m	m	m	Tag No.	g/T	g/T	ppm	ppm	ppm	ppm
			concordantly @ 60° 67.60-67.90 increasingly silicified, lighter gre coloration, less brecciated than	y 65.20	66.70	1.50	repeat 111770	0.21 <0.03	7.6 2.4	214 101	39 24	504 260	1950 1026
			61.40-67.60	66.70	68.20	1.50	111771	<0.03	3.8	125	29	308	1088
67.90	79.55	11.65	ANDESITE LAPILLI TUFF, It.grey and dk.grey lapilli	i, 68.20	69.70	1.50	111772	<0.03	1.0	73	25	76	904
01.00			f.g. (mm ² ) in med.grey silicified andesite matrix; wea bedding at 55°, chloritic local qtz-filled weak breccia;	ak 69.70	71.20	1.50	111773	<0.03	0.8	56	21	78	656
			tr-1% Po in 25-35° low angle fractures, ± tr Sph	71.20	72.70	1.50	111774	<0.03	1.2	69	20	74	569
			lapilli partly resorbed; rare ovoid ~2cm ² 'clasts', bedo	aing 72.70	74.20	1.50	111775	<0.03	1.8	51	23	110	494
			74.90-75.00 44° chlorite-cuartz filled shear, ½% Po/Py marginally	74.20	75.70	1.50	111776	<0.03	2.8	85	27	262	599
			79.00-79.55 bleached, altered; increasingly silicified to contact at 67°	78.30	79.55	1.25	111777	<0.03	0.6	51	19	86	204
79.55	79.95	0.40	RHYOLITIC PYROCLASTIC BRECCIA -> tuff; it.gre white, f.f., silicified matrix with med.grey andesite breccia clasts to 0.5 cm ² and white remobilized rhyo fragments 0.5 cm ² , angular to sub-rounded; random quartz veinlets at high angles to c.a.; lower contact shart and quartz-veined @ 60°	lite									
79.95	80.30	0.35	BRECCIATED SHEAR ZONE @ 65° to c.a., S.Kaol mod.chloritc, soft, altered; dissem Py/Aspy to 1% concordantly, contact 60°	79.55	80.85	1.30	111778 repeat	0.61 0.64	1.4 1.4	33 30	21 21	158 176	400 384
80.30	80.85	0.55	RHYOLITE, altered, pyroclastic, mod.fractured and quartz-veined alteration zone, kaolinitized, silicified andesite/rhyolite fragments to <cm<sup>2 in It.grey silicified matrix</cm<sup>										
80.85	95.20	14.35	ANDESITE TUFF, med.grey, becomes massive, po	orly 80.85	82.35	1.50	111779	<0.03	1.0	28	11	114	206
			bedded after 80.85-81.60 contact/alteration zone; 1/2-1% Po/Py veinlets enclosed by 2 mm wide bleach		83.85	1.50	111780	0.15	<0.2	9	9	14	421
			alteration halos; predominantly silicified: qtz overgro hackly texture; bedding 65-70°; tr Py/Po randomly distributed; probable tuff horizons with more siliceou lighter grey tops that are fractured moderately.	83.85	85.35	1.50	111781	0.03	0.4	19	13	46	265
			88.90-90.40 bleached and fractured moderal 20° fractures predominate; ± ep ½% Po/Py disseminated 91.00 bedding 60°		90.50	1.50	111782	0.03	0.6	18	21	28	73

	: Red Cap (I : Falcon Dril : BTW		Latitude: 50+07E Departure: 40+10N Elevation: 1768 m	DDH LJ-98-1		Inclina	Bearing: tion @ collar: Total Depth:	-45°	[	Date Com	pleted:	July 17, 19 July 18, 19 R. I. Nicho	98
										Ass	ays		
From	То	interval		From	То	width		Au	Ag	Cu	Co	Pb	Zn
m	m	<u>m</u>	Lithology	m	m	m	Tag No.	g/T	g/T	ppm	ppm	ppm	ppm
			limonite staining @ 55° to c.a. 93.42-94.20 20° fractures, hematite/limonite, quartz veinlets, mod.fractured	92.50	94.00	1.50	111783	0.06	0.2	13	17	42	123
			94.95-95.00 1% Po/Py in 65-70° quartz veinlets lower contact subtle 60°	94.00	95.20	1.20	111784	0.20	0.6	17	21	68	111
95.20	99.00	3.80	RHYOLITE TUFF, minor dk.grey argillaceous mudstone horizons; silicified, lt.grey, weakly fractured/brecciated	95.20	96.70	1.50	111785	<0.03	<0.2	13	10	46	106
			felsic volcnaic; tr Py v.dissem. 96.55-96.80 dk.grey argillite horizon, tr Po/Py dissem 98.65-99.00 tr Po/Py, semi massive specular hematite 98.77-98.78 specular hematite flooding along 55° fracture lower contact 50°	96.70	98.20	1.50	111786	0.04	1.2	61	13	22	576
99.00	99.70	0.70	ANDESITE TUFF, weakly fractured @ 50-55° to c.a.; hematite + limonite, broken	98.20	99.70	1.50	111787	0.08	1.2	90	8	60	1024
99.70	102.20	2.50	RHYOLITE TUFF, tuff brecciated; weak to mod fractured, silicified, It.grey, v.f.g. tuff; clasts partly resorbed andesitic fragments to cm²; tr-1% Po>Py along fracture	99.70	100.70	1.00	111788	<0.03	0.8	36	4	56	394
			planes and veinlets 100.30-100.45 2% Po, 1% Py, 3% Sph, semi massive 100.45 tr Sph, ½-1% Po/Py dissem to contact, subtle	100.70	101.70	1.00	111789	<0.03	0.8	54	5	78	1413
102.20	136.30	34.10	RHYOLITE, pyroclastic (flow?) breccia/agglom in part;	101.70	102.70	1.00	111790	<0.03	1.2	58	8	86	677
102.20		54.10	It grey silic rhyolite matrix suspens v.angular var-sized (mm, 2-3 cm ² ) andesite and rhyolite clasts, agglom.horizons; 40-60° clast axis orientation; weak epidote alteration zones 10-20 cm wide; clasta are partially resorbed into matrix										4040
			102.20-103.50 tr-1% Po/Py, tr Sph, tr Cpy	102.70	104.20	1.50	111791	0.10	2.4	83 16	13 5	324 136	1219 539
			concentrated along high-angle	104.20	105.70 107.20	1.50 1.50	111792 111793	0.04 <0.03	0.8 0.8	16	5	136	135
			fracture planes; unit is var.silicified;	105.70 107.20	107.20	1.50	111793	0.03	1.0	33	4	140	447
			clasts var.chloritized; reaction rims assoc with Py/Po bleb in tr-½%	107.20	1108.70	1.50	111794	< 0.04	0.8	21	6	86	441
			quantities	100.70	110.20	1.50	repeat	< 0.03	0.6	19	5	82	438
			110.45-110.50 1% Po/Py in 40° fracture, tr Cpy	110.20	111.70	1.50	111796	<0.03	2.8	45	7	236	1126
			112.10-112.65 1-2% Po/Py, 2-3% spec.hematite	111.70	113.20	1.50	111797	0.16	3.0	62	8	280	2854
			113.05 mm-scale almandine garnets x2 114.80-114.85 mm-scale almandine garnets in horizon	113.20	114.70	1.50	111798	<0.03	0.8	35	13	122	1164

	Red Cap (L. Falcon Drilli 3TW			Latitude: 50+07E Departure: 40+10N Elevation: 1768 m	DDH LJ-98-1		Inclina	Bearing: tion @ collar: Total Depth:	: -45° ·	ſ	Date Con	Started: J npleted: J ged By: F	luly 18, 19	98
											Ass	ays		
From	То	interval			From	То	width		Au	Ag	Cu	Co	Pb	Zn
m	m	<u>m</u>		Lithology	m	m	m	Tag No.	g/T	<u>g/T</u>	ppm	ppm	ppm	ppm
			114.85-115.10	1-2% Po/Py fracture filling, tr	114.70	116.20	1.50	111799	<0.03	1.8	37	49	186	967
			114.00-110.10	Aspy common; Po/Py blebs common in reaction rims of clasts	116.20	117.70	1.50	111800	<0.03	0.8	18	7	104	202
			117.65-117.70	fracture zone @ 80°, qtz-Py filling;	117.70	119.20	1.50	111801	<0.03	1.6	52	24	236	606
				Py 3-4% as cubes; tr Aspy dissem	119.20	120.70	1.50	111802	<0.03	0.4	18	5	56	95
				-	120.70	122.20	1.50	111803	<0.03	0.6	19	4	88	140
					122.20	123.70	1.50	111804	0.03	1.0	33	7	124	657
			122.60	cm-wide 40° shear, 2-3% Po/Py,	123.70	125.20	1.50	111805	<0.03	0.6	24	- 6	86	377
			124.68	tr Aspy cm-wide semi-massive Po vein @ 55° to c.a.	125.20	126.70	1.50	111806	<0.03	0.6	21	5	86	140
			126.70-127.50		126.70	128.20	1.50	111807	<0.03	0.8	37	13	112	256
			120.70-127.50	Po/Py <1% on fracture faces and dissem, Py cubelets <mm<sup>2</mm<sup>	128.20	129.70	1.50	111808	0.03	0.6	24	5	106	1118
			129.70-130.15	longitudinal fracture, 1% Py, 1%	129.70	131.20	1.50	111809	0.28	1.4	53	14	192	929
			120.70 100.10	Po, tr Sph	131.20	132.70	1.50	111810	< 0.03	0.8	20	3	138	410
					132.70	134.20	1.50	111811	< 0.03	0.4	17	4	76	333
			134.00	mm-scale almandine garnets dissem				repeat	<0.03	0.4	17	4	94	355
				3% Py, 1% Po, tr Sph in epdiote/	134.20	135.70	1.50	111812	< 0.03	1.0	26	3	88	391
			133.70-130.10	chlorite/ silicified fracture zone, tr Cpy + bornite, shear @ 35° to ca	135.70	136.70	1.00	111813	0.07	12.2	683	14	520	7243
420.20	142 50	7.20		BRECCIA / tuff; clasts thinning out,	136.70	138.20	1.50	111814	<0.03	0.4	9	3	84	337
136.30	143.50	1.20		rix (tuff), v.silicified, bedding 50°;	138.20	139.70	1.50	111815	< 0.03	<0.2	11	3	48	167
				sts; local kaolinitized shear zone	139.70	141.20	1.50	111816	< 0.03	0.6	30	7	62	197
			(<10 cm); contact 3		141.20	142.50	1.30	111817	<0.03	1.4	31	7	150	339
			(<10 cm), contact		142.50	143.50	1.00	111818	0.12	25.8	497	16	2196	1963
143.50	144.50	1.00	pods of semi-mass Cpy, 1-2% Po, ±bo kaolinitied; secpula	eralized variably along shear planes; sive Py to 5% locally; ½% Sph, ½% rnite, ½% galena; fault is strongly ir hematite fracture filling over 5 xidized, limonitic, brecciated;	143.50	144.50	1.00	111819	0.35	18.2	368	12	1582	8863
144.50	145.20	0.70	epidote-altered rhy	CLASTIC / AGGLOMERIATE, It.green olite matrix with 1-3 cm ² rounded ndesite clasts; tr Po/Py only, very contact	144.50	146.00	1.50	111820 repeat	<0.03 <0.03	1.4 1.8	37 38	4	288 328	178 202
145.20	156.35	11.15		DMERATE / BRECCIA, pyroclastic									50	404
				g. matrix supports 1-3 cm sub-	146.00	147.50	1.50	111821	< 0.03	0.2	15	4	56 52	134 224
				anics and intermediate volcanic	147.50	149.00	1.50	111822	< 0.03	0.4	32	7	52	224 399
			•	wide fractures are Po-enhanced	149.00	150.50	1.50	111823	0.12	0.8	23 20	7 6	114 354	399
			to 3% locally		150.50	152.00	1.50	111824	<0.03	1.2		n 1	454	

	Red Cap (I Falcon Dril BTW			Latitude: 50+07E Departure: 40+10N Elevation: 1768 m	DDH LJ-98-1		Inclina	Bearing: tion @ collar: Total Depth:	-45°	[	Date Com	pleted:	July 17, 19 July 18, 19 R. I. Nichol	98
											Ass	ays		
From m	To m	interval m		Lithology	From m	To m	width m	Tag No.	Au g/T	Ag g/T	Cu ppm	Co ppm	Pb ppm	Zn ppm
			152.05-152.25	It.green chloritic zone	153.50 155.00	155.00 156.50	1.50 1.50	111826 111827	<0.03 <0.03	0.4 0.4	15 37	6 11	48 46	147 323
156.35	162.25	5.90	flow, It.grey v.silic n angular 1-3 cm ² cla fractures and v.diss rhyolite breccia clas by matrix; bedding	increasingly silicified/bleached	156.50	158.00	1.50	111828	<0.03	0.4	18	7	54	222
162.25	163.60	1.35	silic.intermediate ve ± chlorite intermedi	scattered clasts/bombs, med.grey, olcanic tuff with bleached rhyolite ate clasts/bombs sub-rounded to n², rare Po margins to 1% locally; I, kaolinitized	162.50	164.00	1.50	111829 repeat	<0.03 <0.03	0.4 0.2	10 9	6 6	18 28	87 84
163.60	166.75	3.15		DMERATE, intermediate volcanic elsic; volcanic clasts/pebbles; s										
166.75	175.85	9.10	chloritized/altered v accompanied by tr	BRECCIA, angular 1-2,3 cm ² clasts with alteration rims (into clasts) Po/Py disseminations fractured / sheared, weakly kaolinitized, 2-3% Py, 1% Po	170.00	171.50	1.50	111830	<0.03	0.6	44	12	28	188
175.85	178.75	2.90		DMERATE, both rhyolite and andesite d in It.grey aphanitic silicified matrix; ly, bedding 60°										
178.75	203.61	24.86		sparse chlorite lapilli, fragments 3-5% Po, 2% Py, 1% magnetite in breccia contact zone. S fracture rhyolite It.grey/white with dk.green/ white/drk.grey lapilli/fragments, mm-cm?; sulphides localized in fractures/veinlets & dissem mm? cubes; minor epidotized intersec- tions <10 cm widths; magnetite	178.50	180.00	1.50	111831	<0.03	0.4	29	8	18	51
			181.10	stringers randomly throughout massive magnetite band (0.5 cm wide) @ 25° to c.a., ½% Po; magnetimte banding commin in <mm width veinlets</mm 	180.00	181.50	1.50	111832	<0.03	0.2	25	7	14	53

Area: Red Caj Contractor: Falcon I Core Size: BTW	• •	•		Latitude: 50+07E Departure: 40+10N Elevation: 1768 m	DDH LJ-98-1		Inclina	Bearing: tion @ collar: Total Depth:	-45°		Date Com	npleted:	July 17, 19 July 18, 19 R. I. Nicho	98
											Ass	ays		
From T	б	interval			From	То	width		Au	Ag	Cu	Co	Pb	Zn
	m			Lithology	m	m	m	Tag No.	g/T	g/T	ppm	ррт	ppm	ppm
			188.80-188.90	1-2% Po + magnetite veinlets 25° ca	188.50	190.00	1.50	111833	<0.03	0.4	26	5	60	490
			190.05-190.10	1-2% Po/py + magnetite veinlets	190.00	191.50	1.50	111834	<0.03	1.2	35	12	232	754
				at 65° to c.a., bedding/fol @ 60°										
			190.10-190.40	70° fracture zone, 3-4% Py, hem/										
				lim + clay/talc along shear; unit is									-	
				often fracture and qtz-rehealed	195.40	196.90	1.50	111835	<0.03	0.2	28	6	6	159
					196.90	198.40	1.50	111836	<0.03	<0.2	31	6	4	158
			195.20-200.05	1/2% Po veinlets high-angle to c.a.	198.40	199.90	1.50	111837	<0.03	0.4	52	9	6	107
			201.05-201.30	1/2% Po veinlets high-angle to c.a.	199.90	201.40	1.50	111838	<0.03	<0.2	43	7	8	89
			202.10-202.20		201.40	202.40	1.00	111839	<0.03	<0.2	40	8	6	167
			202.40-203.50	1/2% Po veinlets high-angle to c.a. 5 - 40° Po veinlets, mm widths	202.40	203.61	1.21	111840	<0.03	<0.2	23	7	4	97

203.61 Total Depth

BTW	J) ing	Latitude: 30+17N Departure: 50+07E Elevation: 1786 m	DDH LJ-98-2		Inclina	Bearing: tion @ collar: Total Depth:	-45°	(	Date Com		July 18, 19 R. I. Nichol	98
									Ass	avs		
То	interval		From	То	width		Au	Ag	Cu	Co	Pb	Zn
m	m	Lithology	<u> </u>	m	m	Tag No.	g/T	g/T	ррт	ppm	ppm	ppm
1.52	1.52	CASING, no recovery										
7.45	5.93	ANDESITE TUFF, argillite intersections (0 - 11.85 strongly fractured). med.grey intermed.volcanic tuff with lesser dk.grey chloritized argillite bands <10 cm widths; rock has limonitic/oxidized fracture planes, quartz fracture filling; bedding at 40°- 80° to c.a.; broken contact										
11.70	4.25	RHYOLITE TUFF, wk.black / dk.grey argillite bands, irregular ( <cm lt.grey="" rhyolite="" white;<br="" widths);="">kaolinite fracture coatings; bedding 65° swings; broken contact</cm>										
16.00	4.30	interfingered RHYOLITE > ARGILLITE. rhyolite = tuff; argillite = dk.grey/black, chloritized. 40°-65° intercepts; Py cubelets < $cm^2$ cluster along argil boundaries concordantly, locally to 1% (12.2-12.3); bedding @ 15.5 m = 3-°, steepens with depth; broken contact	12.50	14.00	1.50	111841	<0.03	0.2	9	19	30	135
25.10	9.10	FRACTURE ZONE (fault-related); strongly fract'd with limonitic sections, interbedded altered argillite & rhyolite tuff; no visible sulphides 20.55-21.75 kaolinite fracture coating; quartz-filled micro-fracture										
30.80	5.70	RHYOLITE TUFF > black argillite intersections, 50°-65° bedding; argillite weakly chloritized, interfingered with It.grey rhyolite; longitudinal chlorite-filled fracture zones common; subtle 60° contact										
42.70	11.90	ANDESITE TUFF, interbedded 60:40 with black v.f.g. argillite volcanogenic sediments (banded in part); stratified; bedding 65°-70°; volcanic tops characterized by lighter grey more siliceous intersections (± epidote weakly) 30.95-31.05 5% Py, ½%Py/Po along bedding planes 39.60-39.80 white felsic rounded lapilli (mm²) in andesite tuff	30.90	31.90	1.00	111842	<0.03	1.0	63	28	182	464
	m 1.52 7.45 11.70 16.00 25.10 30.80	m         m           1.52         1.52           7.45         5.93           11.70         4.25           16.00         4.30           25.10         9.10           30.80         5.70           42.70         11.90	m         Lithology           1.52         1.52         CASING, no recovery           7.45         5.93         ANDESITE TUFF, argillite intersections (0 - 11.85 strongly fractured), med.grey intermed.volcanic tuff with lesser dk. grey chloritized argillite bands <10 cm widths; rock has limonitic/oxidized fracture planes, quartz fracture filling; bedding at 40°-80° to c.a.; broken contact	m       Lithology       m         1.52       1.52       CASING, no recovery         7.45       5.93       ANDESITE TUFF, argillite intersections (0 - 11.85 strongly fractured). med.grey intermed.volcanic tuff with lesser dk.grey chloritized argillite bands <10 cm widths; rock has limoniti/coxidized fracture planes, quartz fracture filling; bedding at 40°- 80° to c.a.; broken contact         11.70       4.25       RHYOLITE TUFF, wk.black / dk.grey argillite bands, irregular ( <cm lt.grey="" rhyolite="" white;<br="" widths);="">kaolinite fracture coatings; bedding 65° swings; broken contact       12.50         16.00       4.30       interfingered RHYOLITE &gt; ARGILLITE. rhyolite = tuff; argillite = dk.grey/black, chloritized.40°-65° intercepts; Py cubelets <cm² along="" argil<br="" cluster="">boundaries concordantly, locally to 1% (12.2-12.3); bedding @ 15.5 m = 3-°, steepens with depth; broken contact       12.50         25.10       9.10       FRACTURE ZONE (fault-related); strongly fract'd with limonitic sections, interbedded altered argillite &amp; rhyolite tuff, no visible sulphides 20.55-21.75       12.50         30.80       5.70       RHYOLITE TUFF &gt; black argillite intersections, 50°-65° bedding; argillite weakly chloritized, interfingered with tgrey rhyolite; longitufinal chlorite-filled fracture zones common; subtle 60° contact       30.90         42.70       11.90       ANDESITE TUFF, interbedded 60:40 with black v.f.g. argillite volcanogenic sediments (banded in part); stratified; bedding 65°-70°; volcanic tops characterized by lighter grey more siliceous intersections (± epidote weakly) 30.95-31.05       30.90, Yhite felsic rounded lapillii</cm²></cm>	m       Lithology       m       m         1.52       1.52       CASING, no recovery         7.45       5.93       ANDESITE TUFF, argillite intersections (0 - 11.85 strongly fractured). med.grey intermed.volcanic tuff with lesser dk.grey chloritized argillite bands <10 cm widths; rock has limonitic/oxidized fracture planes, quartz fracture filling; bedding at 40°- 80° to c.a.; broken contact         11.70       4.25       RHYOLITE TUFF, wk.black / dk.grey argillite bands, irregular (ccm widths); rhyolite it.grey/white; kaolinite fracture coatings; bedding 65° swings; broken contact       12.50       14.00         16.00       4.30       interfingered RHYOLITE > ARGILLITE. rhyolite = tuff; argillite = dk.grey/black, chloritized. 40°-65° intercepts; Py cubelets ccm ² cluster along argil boundaries concredantly, locally to 1% (12.2-12.3); bedding @ 15.5 m = 3-°, steepens with depth; broken contact       12.50       14.00         25.10       9.10       FRACTURE ZONE (fault-related); strongly fract'd with limonitic sections, interbedded altered argillite & rhyolite tuff; no visible sulphides 20.55-21.75       12.50       14.00         30.80       5.70       RHYOLITE TUFF > black argillite intersections, 50°-65° bedding; argillite weakly chloritized, interfingered with it.grey rhyolite; longitudinal chlorite-filled fracture zones common; subtle 60° contact       30.90       31.90         42.70       11.90       ANDESITE TUFF, interbedded 60:40 with black v.f.g. argillite volcanogenic sediments (banded in part); stratified; bedding 65°-70°; volcanic tops characterized by lighter grey more	m     Lithology     m     m     m       1.52     1.52     CASING, no recovery       7.45     5.93     ANDESITE TUFF, argilitie intersections (0 - 11.85 strongly fractured), med.grey intermed.volcanic tuff with lesser dk.grey chloritized argilite bands <10 cm widths; rock has limonitic/oxidized fracture planes, quartz fracture filling; bedding at 40°- 80° to c.a.; broken contact       11.70     4.25     RHYOLITE TUFF, wk.black / dk.grey argilite bands, irregular ( <cm fracture<br="" royout="" widths;="">planes, quartz fracture filling; bedding 65° swings; broken contact     12.50     14.00     1.50       16.00     4.30     interfingered RHYOLITE &gt; ARGILLITE, rhyolite = tuff; argilitie = dk.grey/black, chloritized. 40°-65° intercepts; Py cubelets <cm<sup>2 cluster along argil boundaries concordantly, locally to 1% (12.2-12.3); bedding @ 15.5 m = 3.°, steepens with depth; broken contact     12.50     14.00     1.50       25.10     9.10     FRACTURE ZONE (fault-related); strongly fract'd with limonitic sections, interbedded altered argilite 8, thyolite tuff; no visible sulphides 20.55-21.75     kaolinite fracture coating; quartz-filled micro-fracture     30.80     5.70     RHYOLITE TUFF &gt; black argilitie intersections, 50°-65° bedding; argilitie weakly chloritized, interfingered with It grey rhyolite; longitudinal chlorite-filed fracture zones common; subtle 60° contact     30.90     31.90     1.00       42.70     11.90     ANDESITE TUFF, interbedded 60:40 with black v.f.g. argillite volcanogenic sediments (banded in part); stratified; bedding 65°-70°; volcanic tops characterized by lighter grey more siliceous intersections (t.e</cm<sup></cm>	m     Lithology     m     m     Tag No.       1.52     1.52     CASING, no recovery       7.45     5.93     ANDESITE TUFF, arglilite intersections (0 - 11.85 strongly fractured). med grey intermed volcanic tuff with lesser dk. grey chloritized arglille bands <10 cm widths; rock has limonitic/oxilized fracture planes, quartz fracture filling, bedding at 40°- 80° to c.a.; broken contact       11.70     4.25     RHYOLITE TUFF, wk.black / dk. grey arglilite bands, irregular (ccm widths); hryolite It grey/white; kaolinite fracture coating; bedding 65° swings: broken contact     12.50     14.00     1.50     111841       16.00     4.30     interfingered RHYOLITE > ARGILLITE. thyolite = tuff: arglilite / dk.grey/black, chioritized. 40°-65° tuff: arglilite / dk.grey/black, chioritized. 40°-65°     12.50     14.00     1.50     111841       25.10     9.10     FRACTURE ZONE (fault-related); strongly fract'd with limonitic sections, interbedded altered arglilite & hryolite tuff; no visible sulphides 20.55-21.75     14.00     1.50     111841       30.80     5.70     RHYOLITE TUFF > black arglilite intersections, 50°-65' bedding; arglilite weakly chloritized, interfingered with tigrey rhyolite; torgutudinal chlorte-filled fracture zones common; subtle 60° contact     30.90     31.90     1.00     111842       42.70     11.90     ANDESITE TUFF, interbedded 60.40 with black vf g, arglilite volcanogenic sediments (banded in part); stratified; bedding 65°-70°; volcanic tops characterized by lighter grey more siliceous intersections (c epidote weakly)     30.90 <td>m     Lithology     m     m     Tag No.     g/T       1.52     1.52     CASING, no recovery     m     m     m     Tag No.     g/T       1.52     1.52     CASING, no recovery     m     m     m     m     Tag No.     g/T       1.52     1.52     CASING, no recovery     m     m     m     m     Tag No.     g/T       7.45     5.93     ANDESITE TUFF, arglilite intersections (0 - 11.85 strong) fractured other those of thorized arglilite bands, irregular chorited arglilite bands, evaluate recovery evaluate recovery evaluate fracture contact     and the intersection of the intersection intercepts, bedding 65 swings; broken contact     bands, irregular (ccm widths), thyolite it, grey/white; kaoinine fracture contact duster along argli boundaries concordantly, locally to 14 (12.2-12.3); bedding @ 15.5 m = 3-*, steepens with depth; broken contact     12.50     14.00     1.50     111841     &lt;0.03</td> 25.10     9.10     FRACTURE ZONE (fault-related); strongly fract/d with limonits sections, interbedded altered arglilite & thyolite tuff, no visible subplides 20.55-21.75     kolonite facture costing; quartz-filed micro-fracture     30.80     5.70     RHYOLITE TUFF > black arglilite intersections, intersections, interbedded 60.40 with black vrg, arglilite volcanogenic sectiments (banded in party; statified; bedding 65*.70°, volcanic tops characterized by lighter grey more siliceous intersections (¢ epidding 65*.70°, volcanic tops characterized by lighter grey more siliceous intersections (¢ epidding 65*.70°, volcanic tops c	m     Lithology     m     m     Tag No.     g/T       1.52     1.52     CASING, no recovery     m     m     m     Tag No.     g/T       1.52     1.52     CASING, no recovery     m     m     m     m     Tag No.     g/T       1.52     1.52     CASING, no recovery     m     m     m     m     Tag No.     g/T       7.45     5.93     ANDESITE TUFF, arglilite intersections (0 - 11.85 strong) fractured other those of thorized arglilite bands, irregular chorited arglilite bands, evaluate recovery evaluate recovery evaluate fracture contact     and the intersection of the intersection intercepts, bedding 65 swings; broken contact     bands, irregular (ccm widths), thyolite it, grey/white; kaoinine fracture contact duster along argli boundaries concordantly, locally to 14 (12.2-12.3); bedding @ 15.5 m = 3-*, steepens with depth; broken contact     12.50     14.00     1.50     111841     <0.03	m         Lithology         m         m         Tag No.         g/T         g/T           1.52         1.52         CASING, no recovery           7.45         5.93         ANDESITE TUFF, argillite intersections (0 - 11.85 strongly fractured), med grey intermed volcanic tuff with lesser dk.grey cholnized argillite bands < 10 cm widths; rock has limonitic/coxidized fracture planes, quartz fracture filling, bedding at 40°- 80° to c.a.; broken contact         11.70         4.25         RHYOLITE TUFF, wk.black / dk.grey argillite bands, irregular (ccm widths; hyplite l.grey/white; kaoiinte fracture coatings; bedding 65° sings; broken contact         12.50         14.00         1.50         111841         <0.03	To       Interval m       From m       To       width m       Au       Ag       Cu g/T       Q/T       ppm         1.52       1.52       CASING, no recovery       m       m       m       m       m       Tag No.       g/T       g/T       g/T       ppm         7.45       5.93       ANDESITE TUFF, anglilite intersections (0 - 11.85 strongly fractured), med arey intermed volcanic tuff with lesser disagrey chlonitized arguite bands <10 cm within; rock has immonitio/ducted fracture planes, quartz fracture filling; bedding at 40°- 80° to c.a; broken contact       50° to c.a; broken contact         11.70       4.25       RHYOLITE TUFF, wk.black / dk.grey argilite bands, irregular (com widths); rhoylite ki grey/white; kaoinite fracture coaling; spedding 55° swings; broken contact       12.50       14.00       1.50       111841       <0.03	m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m	To       interval m       From m       To       width m       Au       Ag       Cu       Co       Pb         1.52       1.52       CASING, no recovery       n       n       m       m       m       Tag No.       g/T       g

	: Red Cap (l : Falcon Dril : BTW		Latitude: 30+17N Departure: 50+07E Elevation: 1786 m	DDH LJ-98-2		Inclina	Bearing: tion @ collar: Total Depth:	-45°	[	Date Com	pleted: J	luly 18, 19 luly 18, 19 R. I. Nichol	98
										Ass	ays		
From	То	interval		From	То	width		Au	Ag	Cu	Co	Pb	Zn
m		m	Lithology	m	m	m	Tag No.	g/T	g/T	ppm	ppm	ppm	ppm
			·										
43.10	52.55	9.45	ANDESITE TUFF with lesser black argillite (volcan- genic) sediment horizons to 10-15 cm widths; bedding 60°; remobilized argillite fragments exhibit reaction rims (mm-scale), weakly broken core; at 48m bedding = 50°; contact sharp 60° 48.30-48.40 3-4% Po within weakly brecc'd argil.horizon, v.magnetic 49.35-49.45 5-10% Po, 1-2% Cpy marginally, Po bands, cm ² subhedral crystals in argil.band 49.45-49.75 10% Po along bedding planes,	48.00 49.50	49.50 51.00	1.50	111843 111844	<0.03	3.4 0.4	266 21	27	122 46	179 226
			tr Py/Cpy 49.75-50.45 Po finely dissem.to 1% locally 50.35-50.45 1-2% Py, 1% Po in 53° argill. horizon	51.00	52.50	1.50	111845	0.06	1.0	29	19	106	146
52.55	5 53.80	1.25	52.15-52.20 1% Gn marginal to Po/Py band at 30° RHYOLITE TUFF, It.grey, v.siliceous felsic volcanic; minor <10 cm wide argillite (black vfg volcanogenic sediments) usually with tr Py/Po associated; weak epidote fracture filling, bedding and contact at 50°	52.50	54.00	1.50	111846 repeat	<0.03 <0.03	0.8 0.6	20 21	19 19	92 98	68 81
53.80	) 57.65	3.85	ANDESITE TUFF, +40% black argillite sediment bands to 20-25 cm concordantly, bedding $50^{\circ}$ - $55^{\circ}$ ; epidote noted within sediment bands ±½%- 1% Po blebs locally, tr Py dissem and to 2% as veinlets at high angles to c.a.										
57.65	5 63.65	6.00	RHYOLITE TUFF, + <10 cm black argillite horizons; dissem Py blebs and veinlets randomly; bedding 55°; contact sharp @ 65° 60.20-60.30 argillite band, 2-3% v.magnetic Po clasts 60.60-60.65 argillite band, 2-3% v.magnetic	58.50 60.00	60.00 61.50	1.50 1.50	111847 111848	<0.03 <0.03	1.2 0.6	28 17	19 22	218 104	334 111
			Po clasts	50.00	01.00			5.00					
63.6	5 64.15	0.50	bleached alteration zones marginal to altered granodiorite intrusive dykelet; chlorite + biotite + feldspar alter'n zone = 63.65-63.80 and 63.93- 64.15; qtz-veined @ low angles to ca; contact 65°										
64.1	5 65.00	0.85	RHYOLITE TUFF, lesser black argillite horizons; contact sharp 53°										

Taiga Consultants Ltd.

	Red Cap (L Falcon Drill BTW			Latitude: 30+17N Departure: 50+07E Elevation: 1786 m	DDH LJ-98-2		Inclina	Bearing: tion @ collar: Total Depth:	-45°		Date Com	pleted: J	luly 18, 19 luly 18, 19 R. I. Nicho	98
											Ass	avs		
From	То	interval			From	То	width		Au	Ag	Cu	Со	Pb	Zn
m	m	m		Lithology	m	m	m	Tag No.	g/T	g/T	ppm	ppm	ppm	ppm
65.00	75.75	10.75		vell bedded @ 55°-60°) with										
				ng / horizons; variably miner-	65.00	66.50	1.50	111849	<0.03	0.8	24	16	90	137
				rsection to 5% Po/Py locally; d's and crosscutting fractures/	65.00	06.50	1.50	111049	~0.05	0.0	24	10	50	107
				ontact 65° quartz-veined	66.50	68.00	1.50	111850	<0.03	0.4	22	16	156	192
				4-5% Po, 1% Py as fracture filling			4 50	444054	-0.02	4 0	05	22	476	1120
				and veinlets; quartz associated; micro-almandine garnets in	68.00	69.50	1.50	111851	<0.03	1.8	95	22	476	1120
				argillite bands	69.50	71.00	1.50	111852	<0.03	1.6	90	21	272	549
				2-3% Po fracture filling / veinlets,				444050	-0.00	• •	07	26	266	390
				1/2-1% Py associated	71.00	72.50	1.50	111853	<0.03	2.0	67	25	200	390
			72.00-72.55	½-1% Po > tr Py	72.50	74.00	1.50	111854	<0.03	2.8	116	27	450	1716
				1-3% Po, high angle veinlets to										
			74 90 75 40	0.3 cm widths 1-3% Po, high angle veinlets	74.00	75.50	1.50	111855	0.04	3.8	124	31	460	817
			/4.00-/5.40	with 1-2% Py associated	74.00	10.00	1.00	repeat	0.04	3.6	127	30	464	824
						77.00	4 50	111856	<0.03	3.4	83	35	152	181
75.75	81.80	6.05		I TUFF, lt.grey, <0.3 cm ² i floating in med.grey v.f.g.	75.50	77.00	1.50	111000	<b>~0.03</b>	J.4	00	55	152	101
			intermediate volcan	ic; dk.grey/black v.f.g. argillite										
				ths; mod.silic rocks; bedding										
			55°-65° 81 30-81 32	rounded lapilli/fragment 2x3 cm,										
			01.50-01.52	1% Po dissem throughout										
				the second the second										
81.80	105.15	23.35	hiack v f a weakiv	med.grey, v.f.g., with dk.grey/ garnetiferous argillite bands (1-										
			10 cm widths); Po t	o 1-4% locally within sediment										
				6 locally; Po fracture filling /										
			veinlets cross-cut b 82 35-82 65	oth rock units; bedding 50°-55° 2-3% Po concordant to bedding	82.35	83.85	1.50	111857	<0.03	0.8	46	19	64	207
			02.00 02.00	plane in sediments, tr Py/Po										
				v.dissem	02.05	05 25	1 50	111858	<0.03	0.6	30	21	48	115
			83.40-83.50	2% Po, 3% Py in fractures/ guartz veins; chloritic frac.zone	83.85	85.35	1.50	111000	<0.05	0.0	50	21	-10	
			85.20-85.55	1% Po crosscutting veinlets										
				mod.chloritic, altered andesite	85.35	86.85	1.50	111859	<0.03	0.8	35	13	152	130
			86.70-88.00	rounded agglomeratic clast horizon										
			to 93.75	tr Py/Po in weakly hornfelsed										
				argillite band; weak mm garnets;										
				local Po/Py veinlets to 1-2% over						3.0			330	395

	Red Cap (L Falcon Drill BTW			Latitude: 30+17N Departure: 50+07E Elevation: 1786 m	DDH LJ-98-2		Inclina	Bearing: tion @ collar: Total Depth:	-45°	[	Date Con	pleted:	July 18, 1 July 18, 1 R. I. Nicho	998
											Ass	ays		
From	То	interval			From	То	width		Au	Ag	Cu	Co	Pb	Zr
m	m	<u>m</u>		Lithology	<u> </u>	m	m	Tag No.	g/T	g/T	ppm	ppm	ppm	ppm
			93,75-93.90 3	-4% local Po concentrated blebs										
			•••••	< cm) ± weak epidote veinlets										
				-4% semi-massive sepcular	93.90	95.40	1.50	111861	0.41	30.0	152	20	4678	1.54%
				ematite; 1% Po/Py; ½% Gn										
				ssociated; garnetiferous argil										
			h	orizon	95.40	96.90	1.50	111862	0.05	3.6	76	34	584	39
			95.95-96.05 1	% Aspy + Py tr concordantly										
				ithin sed horizon, weak spec.										
			h	ematite										
			96.70-96.80 1	-2% Po/Py low angle frac.fill	96.90	98.40	1.50	111863	<0.03	1.0	42	21	110	25
				m wide Po>>Py bands concord-										_
				antly	98.40	99.90	1.50	111864	<0.03	1.0	29	24	172	57
				% Po concentrated along				repeat	<0.03	1.2	30	23	172	56
				argillite bands, local Po to	99.90	101.40	1.50	111865	< 0.03	2.4	38	18	276	57
			3-4%; bedding 65°, c	ontact 65°	101.40	102.90	1.50	111866	< 0.03	1.6	39	25	218	4(
					102.90	104.40	1.50	111867	<0.03 <0.03	1.2 2.0	17 22	12 21	256 298	63 63
105.15	108.15	3.00	well bedded at 55°-60	grey, siliceous, tr Py only, )°	104.40	105.90	1.50	111868	<0.05	2.0	22	21	290	0.
108.15	110.45	2.30	along bedding planes	ell bedded 50° with ½-1% Po and micro-fractures, tr Py iziation and garnets (to cm²) rgillite bands										
110.45	110.80	0.35		GGLOMERATE, sed.argillite nyolite + andesite clasts / to cm², rounded)										
110.80	114.75	3.95		GGLOMERATE, green/lt.grey, bunded andesite, rhyolite, and										
114.75	122.50	7.75	rhyolite + argillite clas	GGLOMERATE, andesite/ sts/pebbles to 3 cm² + minor r bands may be argillite input;										
122.50	122.85	0.35	RHYOLITE TUFF, v.i rehealed, no visible s	f.g., lt.grey; fractures ulphides; subtle contact										
122.85	123.15	0.30	volcnaic. S fractures	ed.grey, v.f.g., silic intermed and rehealed at high angles % Po enhancement as fracture-	122.50	124.00	1.50	111869	<0.03	0.4	24	10	20	18

Area: Contractor: Core Size:			Latitude: 30+17N Departure: 50+07E Elevation: 1786 m	DDH LJ-98-2		Inclina	Bearing: tion @ collar: Total Depth:	-45°		Date Com	pleted:	July 18, 19 July 18, 19 R. I. Nicho	998
										Ass	ays		
From m	To m	interval m	Lithology	From m	To m	width m	Tag No.	Au g/T	Ag g/T	Cu ppm	Co ppm	Pb ppm	Zn ppm
402.45	139.80	16.65	RHYOLITE FLOW BRECCIA / AGGLOMERATE,	124.00	125.50	1.50	111870	<0.03	0.6	54	11	22	254
123.15	159.00	10.05	weak chlorite alteration, fractured + rehealed; Po	125.50	127.00	1.50	111871	< 0.03	0.4	28	10	26	203
			blebs common + disrupted < cm wide veinlets; tr	127.00	128.50	1.50	111872	< 0.03	0.6	73	12	24	314
			Py dissem randomly in matrix, v.siliceous; occas	128.50	130.00	1.50	111873	< 0.03	1.0	95		50	241
			epidote veinlets yellow/green; bedding 65°	130.00	131.50	1.50	111874	< 0.03	2.0	172	8	128	387
			134.20-134.85 broken core, longitudinal frac	131.50	133.00	1.50	111875	<0.00	0.8	79	12	44	284
				131.50	133.50	1.50	111876	<0.03	<0.2	11	8	30	92
			134.80 argillite clast increase to >5 cm ² ,	133.00	154.50	1.50	111070	<0.05	<b>~0.2</b>		0	50	52
			rounded cobbles, commonly Po-	424 50	126.00	1.50	111877	<0.03	<0.2	5	7	32	352
			bearing; angular clasts to 2 cm	134.50	136.00	1.50	111878	<0.03 <0.03	<0.2	3	, 6	22	274
			rarely	136.00	137.50	1.50	1110/0	<0.05	<b>~0.2</b>	5	0	22	2/4
			138.95-139.40 open longitudinal fracture;	407 50	400.00	4 50	111879	<0.02	<0.2	7	8	36	216
			reaction rims noted around	137.50	139.00	1.50	1110/9	<0.03	<b>NU.2</b>	'	0	- 50	210
			argillite clasts/pebbles										
			subtle contact 60°?										
139.80	141.25	1.45	ANDESITE TUFF, v.f.g., intermediate volcanic, med. grey, silicified, minor andesitic breccia fragments randomely oriented; rhyolitic intersections 10- 20 cm widths	139.00	140.50	1.50	111880	<0.03	<0.2	2	8	24	80
141.25	142.50	1.25	ANDESITE AGGLOMERATE FLOW BRECCIA, large >2 cm ² angular rhyolite clasts floating in med.grey v.f.g. matrix										
142.50	145.25	2.75	ANDESITE TUFF, v.f.g., med.grey, silicified intermed volcanic, tr Py only v.dissem, subtle contact	144.20	145.20	1.00	111881	<0.03	0.2	5	7	98	302
			including epidote altered, lt.green, silic + qtz-veined @ 40° to c.a., tr Py v.dissem, possible rehealed shear zone				repeat	<0.03	0.4	5	7	102	302
145.25	147.30	2.05	ANDESITE AGGLOMERATE / FLOW BRECCIA, silic med.grey v.f.g. intermed volcanic matrix, supports angular to sub-rounded argiilite + felsic intermed clasts/pebbles; tr Po/Py only										
		147.30	Total Depth										

Area: Contractor: Core Size:				Latitude: 55+60E Departure: 39+44N Elevation: 1671 m	DDH LJ-98-3		Inclina	Bearing ation @ collar Total Depth	: <b>-45°</b>		Date Con	npleted:	July 19, 19 July 19, 19 R. I. Nicho	98
											Ass	says		
From	То	interval			From	То	width		Au	Ag	Cu	Co	Pb	Zn
<u> </u>	m	<u> </u>	<b>.</b>	Lithology	m	m	m	Tag No.	g/T	g/T	ppm	ppm	ppm	ppm
0.00	1.52	1.52	CASING, no recov	ery										
1.52	3.60	2.08	in med.grey siliceo variably chloritized oxidized weak-moo longitudinal fracture	BRECCIA, angular dk.grey clasts us matrix (oxidized to 23 m); , strongly fractured chaotically; d. along fracture planes, limonitic; e overprint; contact 50° oxidized fracture, cm wide, 28°, with ½% Cpy, tr Aspy euhedral crystals	3.30	4.80	1.50	111882	<0.03	0.6	51	12	284	109
3.60	56.60	53.00	cap', white clasts/p ovoid, in It.grey v.s	-AGGLOMERATE / TUFF, 'silica bebbles to 2 cm² to sub-rounded, iliceous matrix (matrix-supported) with limonite along fractures;										
			common Aspy, stit	onite > Gn fractures and bands to	4.80	6.30	1.50	111883	<0.03	1.0	24	8	268	109
				o margins; dk.grey oxide margins	6.30	7.80	1.50	111884	0.21	1.6	38	16	424	170
			•	ls; rock is brecciated + silicified -				repeat	0.23	1.6	38	17	456	178
				re coating [NB, hydrothermal/	7.80	9.30	1.50	111885	<0.03	2.0	18	15	468	173
			fractures/veinlets; common on fractur 40°, and 75°-85° (r precipate on fractu	blage]; much sulphide remob along radiating acicular stibnite crystals res; fracture sets = longitudinal, mineralized); (possible silver oxide ires); specular hematite ubiquitously graphite; fractures vuggy in part	9.30	10.80	1.50	111886	<0.03	1.0	8	7	292	106
				broken core	10.80	12.30	1.50	111887	<0.03	1.4	6	6	298	122
			12.95	stibnite crystals, cm lengths, mm	12.30	13.80	1.50	111888	<0.03	0.4	9	8	232	124
			14.25-14.90	widths, on fracture planes open, lomonitic longitudinal fracture, broken core	13.80	15.30	1.50	111889	<0.03	0.4	14	12	158	121
				open, lomonitic longitudinal fracture, broken core	15.30	16.80	1.50	111890	<0.03	0.6	13	7	112	80
			mod.limonite/oxide											
			17.50	Po blebs ~1% to cm ² along 30°	16.80	18.30	1.50	111891	< 0.03	0.6	10	9	190	138
				frac; Py blebs ½% dissem to 17.6;	18.30	19.80	1.50	111892	0.03	0.4	10	11	84	214
				graphite 'dust', fracture-fill along	19.80	21.30	1.50	111893	<0.03	0.2	16 16	12 13	94	217 224
				fracs throughout oxidation; weak	21 20	22.80	1 50	repeat 111894	 <0.03	<0.2 0.2	16 11	13	98 80	144
				chlorite along fractures; bedding 45° to c.a., core 'breaks out' at	21.30 22.80	22.80 24.30	1.50 1.50	111895	<0.03 0.15	0.2 <0.2	7	12	80 80	70
				30-45° to c.a.	22.80	24.30 25.80	1.50	111895	0.15	<0.2	8	11	78	59
			25.20-25.30		24.00	20.00	1.00	11030	0.10	20.2	U		70	55
			25.50	1/2% Py blebs and graphite dissem brecciated matrix, graphite	25.80	27.30	1.50	111897	0.21	0.4	18	20	88	94
				enhanded; local 10 cm sections	27.30	28.80	1.50	111898	<0.03	0.4	33	18	48	50

	alcon Drilli STW	J) ng	Latitude: 55+60E Departure: 39+44N Elevation: 1671 m	DDH LJ-98-3		Inclina	Bearing: ition @ collar: Total Depth:	-45°		Date Con		July 19, 19 July 19, 19 R. I. Nicho	998
										Ass	says		
From	То	interval		From	То	width		Au	Ag	Cu	Co	Pb	Zn
m	m	m	Lithology	m	m	m	Tag No.	g/T	g/T	ppm	ppm	ppm	ppm
			of graphita/atikpita		•		ropost	0.02	-0.0	20	4.0	E A	
			of graphite/stibnite 31.20-32.50 longitudinal open fracture @ 45°	28.80	30.30	1.50	repeat 111899	0.03 <0.03	<0.2 <0.2	32 34	18 14	54 40	55 54
			to c.a., limonite coating,	30.30	31.80	1.50	111900	<0.03	<0.2	41	14	40	103
			slickensides	30.30	33.40	1.60	111900	<0.03 <0.03	0.2	21	19		
				33.40	33.40 34.90	1.50	111901	<0.03	0.2	25	10	42 94	95 319
			32.90-35.20 pervasive longitudinal open		34.90 36.40	1.50	111902	<0.03 <0.03	0.6		5		
			(limonitic) fracture, exploited	34.90						19		118	320
			by 2 mm wide Py filling	36.40	37.90	1.50	111904	< 0.03	2.6	74	10	360	449
			35.20-42.00 brecciated, 45-50° fractures; tr	37.90	39.40	1.50	111905	<0.03	1.0	37	7	240	213
			Aspy and low-angle graphite	39.40	40.90	1.50	111906	< 0.03	1.0	15	10	244	222
			fracture filling 20-30°	40.00	40.40	4 50	repeat	< 0.03	0.6	23	12	208	1000
			42.00-42.85 broken core, oxidized	40.90	42.40	1.50	111907	<0.03	0.6	24	12	216	1038
			46.00-47.00 1-2% graphite fracture filling	42.40	43.90	1.50	111908	< 0.03	0.4	11	5	168	81
			Note: rock is silic/chlor rhyolite agglom breccia; graphite	43.90	45.40	1.50	111909	< 0.03	0.8	22	13	414	159
			and stibnite / Py fracture fill (graphite >> stibnite);	45.40	46.90	1.50	111910	<0.03	0.4	30	10	310	138
			limonitic fracture filling	46.90	48.40	1.50	111911	<0.03	0.2	44	10	218	137
			48.10-48.40 broken core										
			49.30 scorodite coating on longitudinal	48.40	49.90	1.50	111912	< 0.03	<0.2	185	19	54	106
			fracture	49.90	51.40	1.50	111913	<0.03	<0.2	80	17	48	37
			52.35-53.35 strongly chloritized, badly broken	51.40	52.90	1.50	111914	<0.03	<0.2	13	9	60	48
			(faulted?) core; soft, kaolinitized;	52.90	54.40	1.50	111915	<0.03	3.0	11	10	158	144
			15° fractures throughout section	54.40	55.90	1.50	111916	<0.03	1.2	7	20	134	139
			55.10 1% graphite coating on fractures 55.10-55.85 10-15° open fracture broken contact				repeat	<0.03	1.0	7	20	138	139
			broken conduct										
56.60	62.50	5.90	RHYOLITE TUFF, It.grey, v.v.siliceous; cross-cut by	55. <b>90</b>	57.40	1.50	111917	<0.03	0.4	14	10	106	85
•••••			several generations of brecciation; fractures at 45° =	57.40	58.90	1.50	111918	<0.03	0.6	13	13	96	67
			latest episode + predominant.	58.90	60.40	1.50	111919	<0.03	0.6	19	12	134	95
			61.00-61.70 radiating black, soft acicular crystals < <mm<sup>2, possible</mm<sup>	60.40	61.90	1.50	111920	<0.03	0.8	31	18	120	90
			boulangerite (stibnite?) 61.80-61.85 Po>Py blebs on fracture planes at 30-40° to c.a.										
				61.90	63.40	1.50	111921	<0.03	0.8	66	10	78	335
62.50	65.95	3.45	RHYOLITE FLOW BRECCIA/AGGLOMERATE, rounded + angular felsic volcanic clasts to 3 cm ²										
			throughout silceous It.grey matrix; rehealed later fractures are mod.chloritized; graphitic matrix	63.40	64.90	1.50	111922	<0.03	0.6	92	13	64	662
			common; tr stibnite randomly as euhedral crystals 63.70-65.95 gradually increasing percentage of andesite fragments/pebbles	64.90	66.40	1.50	111923	<0.03	0.4	99	13	66	109
			to contact										
65.95	70.15	4.20	ANDESITE TUFF, med.grey, silicified, undulating	66.40	67.90	1.50	111924	<0.03	<0.2	58	12	44	50

1 1	· · · · · · · · · · · · · · · · · · ·	1	1	1 1	1	Part 1 1	11	1 1 1 1 1 <b>1</b>		,	**** <b>1</b>		· · · · · · · · · · · · · · · · · · ·	*** ** <b>*</b>	10 C 10 C	111 111	,	
<b>-</b>	. 1	<b></b>	· · · · · · · · · · · · · · · · · · ·		I	, <b>1</b>		ы. " <b>В</b>	. J	<b></b>	_ 1	. 1	s <b>1</b>	<b>.</b>	<b>. 1</b>	J	ан с <b>.</b>	1

	: Red Cap ( Falcon Dri BTW		Latitude: 55+60E Departure: 39+44N Elevation: 1671 m	DDH LJ-98-3		Inclina	Bearing: tion @ collar: Total Depth:	-45°	(	Date Com	pleted:	July 19, 19 July 19, 19 R. I. Nicho	998
										Ass	avs		
From m		interval m	Lithology	From m	To m	width m	Tag No.	Au g/T	Ag g/T	Cu ppm	Co ppm	Pb ppm	Zn ppm
			40° and 60° sets of fractures on opposite planes, limonitic; tr dissem Po/Py blebs (fracture-associated), weak 35° 2-3 mm wide quartz veinlets, 55° contact										
70.15	75.45	5.30	RHYOLITE TUFF, brecciated; bedding 55-60°; brecciated/mod.fractured, siliceous, lt.grey; unit has dk.grey/black oxidized fracture filling ± tr Py,	70.00	71.50	1.50	111925	<0.03	1.6	69	21	90	2001
			chlorite; fractures @ 50° to 65° predominate 70.60-70.80 black, chloritic shear @ 40° to c.a., 2-3% Po, tr Py	71.50	73.00	1.50	111926	<0.03	2.8	239	34	124	378
			0.0., 2 070 ( 0, 4 ) y	73.00	74.50	1.50	111927	<0.03	0.6	56	12	80	161
75.45	79.35	3.90	ANDESITE TUFF, brecciated; jagged 55-60° contact; med.grey, mod.siliceous, with sets of 45-60° and longitudinal fractures throughout, increasingly chloritic and limonitic to falt zone; bedding 55-60°										
			76.80-77.30 chaotic hairline white quartz veinlets pervasively, tr Py cubelets	76.50	78.00	1.50	111928	<0.03	1.2	172	12	64	223
79.35	82.60	3.25	BRECCIA ZONE : FAULT; strongly limonitized and	78.00	79.50	1.50	111929	<0.03	0.6	22	12	76	224
			chloritized, fractured and sheared; soft / clay altered; quartz veined (cm width) at low angles to	79.50	81.00	1.50	111930	<0.03	3.2	168	9	110	519
			c.a.; sharp 25° contact, limonitic	81.00	82.50	1.50	111931	<0.03	1.4	89	6	128	598
82.60	84.50	1.90	ANDESITE AGGLOMERATE FLOW, dkmed.grey/ green, f.g., siliceous matrix supports rounded >2 cm ² felsic volcanic pebbles (dk.green + grey chloritic/ andesite matrix); broken contact	82.50	84.00	1.50	111932	<0.03	1.8	44	6	116	486
84.50	85.35	0.85	FAULT - BRECCIA ZONE, andesite agglomerate flow host; strongly chloritized, limonitic, broken core; quartz gash-fill veining common; tr Py only; 25° shearing; goethite/limonite cm wide contact at 25-30° to c.a.	84.00	85.50	1.50	111933 repeat	<0.03 <0.03	1.2 1.2	53 50	9 9	74 82	803 765
85.35	85.95	0.60	ANDESITE TUFF, chloritized, med.green/grey tr Py/Po blebs along longitudinal limonite fracture; undulating 75-85° contact										
85.95	86.80	0.85	ANDESITE FELDSPAR PORPHYRY, intrusive; aphanitic med.green/grey matrix suspends It.grey/ dk.grey <cm and="" partly<br="" phenocrysts,="" sub-rounded="">replaced by epidote; no visible sulphides; broken contact</cm>	85.50	87.00	1.50	111934	<0.03	<0.2	11	10	40	46
86.80	87.05	0.25	ANDESITE TUFF, med.grey, v.f.g., siliceous, with black dendritic filigree (Mn?), weak fracturing, no										

			_							_							
				· · · · · · · · · · · · · · · · · · ·	" I				1	 1			6.1 1 19		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2	
	1	1	1	1	1	1	1	1	1	1		1	1	1	1		
· · ·	· · · · · · · · · · · · · · · · · · ·	· · · · ·			· ·	· · · · · · ·		· · · · ·		 	14 A A A A A		· · · · ·	N 🖡	Sec. 1		54

	Red Cap (I Falcon Dril BTW	•	Latitude: 55+60E Departure: 39+44N Elevation: 1671 m	DDH LJ-98-3		Inclina	Bearing ation @ collar Total Depth	: <b>-45°</b>		Date Com	pleted:	July 19, 19 July 19, 19 R. I. Nicho	998
										Ass	ays		
From	То	interval		From	То	width	Tee Me	Au	Ag	Cu	Co	Pb	Zn
m	m	m	Lithology	<u> </u>	m	m	Tag No.	g/T	g/T	ррт	ppm	ppm	ppm
			visible sulphides, contact 25-30°										
87.05	87.30	0.25	ANDESITE PORPHYRY, as above, no visible sulphides, contact 30-35°										
87.30	89.15	1.85	ANDESITE TUFF, v.f.g., med.grey, siliceous intermediate volcanic tuff 88.70-88.91 broken core, limonitic fracture coating, 35° subtle contact	87.00	88.50	1.50	111935	<0.03	<0.2	4	11	48	75
89.15	99.97	10.82	ANDESITE PORPHYRY, white <cm<sup>2 rounded feldspar phenocrysts in part, epidote-replaced and rimmed zones of chloritizatin/alteration between 91.60 and 94.70m; weakly fractured 95.60-96.60m; epidote alteration; matrix aphanitic, dyke shows crude differentiation with chill margin from 90.80-99.55m 96.60-97.10 strongly broken core (fault zone?) dkmed. pea-green feldspar porphyry to end of hole, epidote altered, no visible sulphides</cm<sup>										
		99.97	Total Depth										

	Red Cap (I Falcon Dril BTW		Latitude: 56+05E Departure: 40+05N Elevation: 1665 m	DDH LJ-98-4		Inclinat	Bearing: tion @ collar: Total Depth:	-45°		Date Con	npleted:	July 20, 19 July 21, 19 R. I. Nicho	98
										Ass	says		
From	То	interval		From	То	width		Au	Ag	Cu	Co	Pb	Zn
<u>m</u>	m	<u> </u>	Lithology	m	m	m	Tag No.	g/T	g/T	ppm	ppm	ppm	ppm
0.00	1.20	1.20	CASING, no recovery										
1.20	5.55	4.35	ANDESITE FLOW BRECCIA / AGGLOMERATE, v.f.g., med-grey, weakly siliceous, intermed.volcanic matrix supports sub-rounded to angular dk.green, chloritized pebbles/clasts, tr Py v.dissem only, limonite fracture coating common, bedding apparent 65°, contact 65° Py enhanced <1% 1.20-5.18 broken core										
5.55	8.20	2.65	ANDESITE PORPHYRY BRECCIA, med.grey porphyry, mod.siliceous, matrix with 1-3 cm ² angular chloritized clasts, mm ² Py cubelets throughout sparsely; clasts = andesite, weak bleached reaction rims; sharp 40° contact	8.15	9.85	1.70	111936	<0.03	<0.2	30	23	40	232
8.20	10.50	2.30	ALTERED ANDESITE TUFF, med.grey, mod.siliceous intermed.volcanic, ½% Po blebs, rounded, chloritic; Py cubelets disseminated, indistinct 20-25° contact 9.75-10.10 limonitic 35° fracture, open and qtz-veined, no visible sulphides										
10.50	11.30	0.80	ANDESITE PORPHYRY, as above, broken 20° contact										
11.30	12.00	0.70	ANDESITE TUFF, mod.silic, med.grey, v.f.g., intermed. volcanic										
12.00	27.30	15.30	ANDESITE QUARTZ-FELDSPAR PORPHYRY BRECCIA, med.olive-green, weakly chloritic, intrusive breccia, angular andesite lapilli tuff, quartz-feldspar clasts to >5 cm ² , partly resorbed in part, ± reaction rims; tr Py v.v.dissem; 40-45° clast along axis orientation; minor dendrites randomly throughout; contact broken, limonitic, at 45-50° 26.80 weak 20° slickensides										
27.30	32.00	4.70	ANDESITE VOLCANIC BRECCIA / FLOW, quartz-feldspar and andesite lapilli tuff fragments 1-5 cm ² ; weakly chloritic clasts/matrix, variable; weakly silic., variable; bedding 53-60°; contact broken, 50-55°?	r									

Constant and Constant		territorial and the second sec	

	Red Cap (l Falcon Dril BTW		Latitude: 56+05E Departure: 40+05N Elevation: 1665 m	DDH LJ-98-4		Inclina	Bearing: tion @ collar: Total Depth:	-45°	l 	Date Con	npleted:	July 20, 1 July 21, 1 R. I. Nicho	998
										Ass	ays		
From	То	interval		From	То	width		Au	Ag	Cu	Co	Pb	Zn
m	m	<u>m</u>	Lithology	<u>m</u>	m	m	Tag No.	g/T	g/T	ppm	ppm	ppm	ppm
32.00	36.10	4.10	ANDESITE TUFF / lapilli tuff horizons, chlorite fractu filling in med.green andesite volcanic; bedding 55°; contact 55° 34.45-35.15 broken core; quartz flooded, alte 35.80-36.10 semi-massive hematite bands a and 20° to c.a.; 1% local Py 20° veinlets; Po blebs ~1%, <mm° rounded</mm° 	ered t 70° 35.10	36.60	1.50	111938	<0.03	3.6	63	14	850	2189
36.10	39.90	3.80	ANDESITE FLOW BRECCIA, andesite lapilli tuff bre clasts to >5 cm ² in med.grey siliceous andesite mate no visible sulphides, subtle (55°?) contact										
39.90	54.20	14.30	ANDESITE LAPILLI TUFF, chlorite + epidote altered lapilli / fragments in v.f.g. olive-green andesite matrix	x;	48.40	1.50	111939	<0.03	4.4	76	8	774	1503
			bedding 55°; limonite coated fractures; rare low-ang quartz veinlets (mm-scale); rare feldspar porphyry clasts to 2 x 4 cm; contact 55°	48.40	49.90	1.50	111940	<0.03	7.0	285	34	550	1940
			49.70-50.60 fracture zone @ 55°; limonitic/ oxidized, massive specular hematite bands randomly sited 55° + 1% Py micro-veinlets concordantly crosscutting limoni quartz veinlets at low angles to	itc	51.40	1.50	111941	0.98	164.0	1085	11	9500	3521
			50.60-51.551-3% Py as 25-35° semi-massiv stringers, bedding 25-30°51.55-51.903-5% Cpy veinlets associated with massive Po veining at low angles to c.a.; Po 5-6%51.82-51.85massive Aspy flooding & graphi51.83-51.88massive hematite / specular her	ve 51.40	52.40	1.00	111651	0.78	84.2	5201	83	3692	1.24%
			bands at 75-80° to c.a. 51.95-52.00 massive Po, 2-3% Cpy stringers Po @ 55° along bedding planes 52.00-52.40 various high angle spec.hematit		53.90	1.50	111942 repeat	<0.03 <0.03	1.6 1.8	40 43	9 10	234 246	783 855
			and Py veinlets. NB 53.95-54.20 cycle 'top' disturbed, silicified, fractured bedding 57°, 5% spec hematite, ½% Cpy, 2-3% Py alo bedding planes		55.40	1.50	111943	<0.03	0.4	48	20	150	3920
54.20	72.90	18.70	ANDESITE TUFF, weak lapilli tuff horizon to 54.55 r med.grey-green; 30-35° banded intermediate andes tuff; occas.60° quartz veins/veinlets; tr Py		56.90	1.50	111944	<0.03	<0.2	9	23	36	100

tend tends tends

Area Contracto Core Size					Latitude: 56+05E Departure: 40+05N Elevation: 1665 m	DDH LJ-98-4		Inclina	Bearing: tion @ collar: Total Depth:	-45°		Date Corr	Started: . apleted: . ged By: f	July 21, 1	998
												Ass	ays		
From	ı	То	interval			From	То	width		Au	Ag	Cu	Co	Pb	Zn
n	)	m	<u>m</u>		Lithology	m	m	m	Tag No.	g/T	g/T	ppm	ppm	ppm	ppm
				57.80-58.80	"top", altered/silicified, lighter grey, 1-2% hematite	56.90	58.40	1.50	111945	0.06	3.4	91	23	502	1996
					weak brecc'n, unaltered 2-5 cm ² ckasts rarely										
				62.60-63.20	hornfelsed, brown, bedding 35°										
				71.35-71.65	2-4% Gn, 1% Py, 5% Po, 2-3% Cpy along 35° bedding, spec.hem	69.50	71.00	1.50	111946	<0.03	1.0	57	9	228	285
				71.60	semi-massive hematite bands at 70° 35° clay/Py-filled cm fault	71.00	72.00	1.00	111947	0.30	46.2	1747	11	7270	2.70%
				72.25-72.90	semi-massive >10% specular hematite, 5% Po, 3-4% Cpy along 50° bedding	72.00	73.00	1.00	111948	3.16	160.0	1716	12	2.0%	7193
72.90	) 73	.50	0.60	clasts to 1.5 cm ² in matrix, undulating 3	BRECCIA, dk.grey/green (andesitic) med.green/grey chloritic andesite 30° contact cm wide graphite band @ 50°	73.00	74.00	1.00	111949	0.06	11.2	241	11	1296	1392
73.50	) 96	.93	23.43	ANDESITE TUFF, volcanic; pyritiferou	olive green-grey, v.f.g. intermed s narrow ( <cm) 40°="" and<br="" at="" shears="">ssive hematite @ 73.70, 74.35-73.55</cm)>						·				
					chloritic, quartz veined cycle 'top', tr Py v.dissem, bedding 55°; epidote veinlets at low angles to	80.00	81.50	1.50	111950	<0.03	1.8	47	12	170	637
					c.a., rare Py cubelets mm ²	89.25	90.75	1.50	111951	<0.03	1.0	225	9	48	287
			X	89.30-90.30	weakly fractured, epidote/chlorite	<del>9</del> 0.75	92.25	1.50	111952	<0.03	<0.2	55	8	82	371
					filling, finely dissem Po/Cpy in tr				repeat	<0.03	<0.2	43	11	28	58
					quantities only on frac planes	92.25	93.75	1.50	111953	<0.03	<0.2	81	8	100	243
				92.00-96.93	dark chloritic rehealed weak	93.75	95.25	1.50	111954	<0.03	<0.2	33	10	36	233
					fractures dominate core	95.25	96.90	1.65	111955	<0.03	4.4	240	11	1084	923
				96.76-96.90	½% Py veinlets @ 55°; tr-½% Po associated										

96.93 Total Depth

Area: F ontractor: F ore Size: E			Latitude: 38+45N Departure: 56+20E Elevation: 1674 m	DDH LJ-98-5-A		Inclina	Bearing: ition @ collar: Total Depth:	-45°	[	Date Con	npleted: J	luly 20, 19 luly 21, 19 R. I. Nicho	98
										Ass	ays		
From	То	interval		From	То	width		Au	Ag	Cu	Co	Pb	Zn
m	m	<u>m</u>	Lithology	<u>m</u>	m	m	Tag No.	g/T	g/T	ррт	ppm	ррт	ppm
0.00	2.14	2.14	CASING, no recovery										
2.14	19.40	17.26	ANDESITE TUFF, med.grey, strongly silicified, s	strongly									
			fractured / limonite coated; bedding 45°	2.15	3.65	1.50	111956	0.11	1.2	54	12	418	1326
			2.14-7.93 broken core				repeat	0.1	1.4	52	12	426	1340
			4.25 patches of maroon andesite	3.65	5.15	1.50	111957	<0.03	0.8	113	21	132	199
			7.90-8.10 maroon andesitic tuff (possi										
			sub-aerial + oxidized +/or ne										
			surface); Po>Py, hematized	v.f.g.									
			volcanic tuff; (pseudo-) cubi		6.65	1.50	111958	<0.03	1.0	67	18	166	153
			masses of easily tarnished										
			matallic silver mineral : poss	sible 6.65	8.00	1.35	111959	0.03	0.6	131	24	122	3875
			argentite +/or acanthite (pos										
			stibnite?) dissem throughou										
			(sylvanite?); minor Gn + Cp		9.20	1.20	111960	<0.03	<0.2	72	30	106	194
			distributed to 1% locally, tr A	,									
			2-3% Po, <1% Py	(op),									
			9.20-12.20 1% Po, tr Aspy, ½% stibnite	, tr Py 9.20	10.70	1.50	111961	<0.03	<0.2	30	27	136	138
			in It.grey v.silic.horizon, diss					••••					
			12.20-12.50 color change - dk.maroon /		12.20	1.50	111962	<0.03	<0.2	37	18	170	115
			2% Po, 1% Py, tr covellite, t			1.00	111002	0.00	•	•••			
			stibnite, dissem finely through										
			v.silic qtz overgrowths / hac										
			breakout	i i i i i i i i i i i i i i i i i i i									
			12.50-12.70 It.grey, v.silic Andesite Tuff,	1%									
			Po, v.dissem	12.20	13.50	1.30	111963	<0.03	<0.2	42	21	138	115
			12.70-13.48 dk.maroon oxidized hematit		10.00				•				
			3% Po, 1% stibnite / (acanti										
			oxidized core + hem (dk.pur		15.00	1.50	111964	<0.03	0.8	54	20	152	90
			mod.magnetic		10.00	1.00	111001	0.00	0.0	•••			
			17.00-19.40 1% Cpy, 2% stibnite/acanth	ite, 2% 15.00	16.50	1.50	111965	<0.03	0.8	105	30	182	116
			Po; Cpy concentrated along		10.00	1.00	repeat	< 0.03	0.8	102	31	188	114
			fractures; Po dissem throug				Topour	-0.00	0.0		•••		
			Aspy spicules/veinlets rando	•	18.00	1.50	111966	<0.03	1.4	236	51	216	125
			to 1%; core has mottled bre		10.00	1.50	111300	-0.00	1.4	200	0.	210	
			appearance; hematized long										
			'swirls' throughout, rehealed										
			fractures remobilize sulphide		19.50	1.50	111967	<0.03	1.2	93	27	266	125
			fractures 35°; radiating stibr		13.50	1.50	111307	-0.00	1.2	00	21	200	120
			· •	iite									
			crystals utiquitous										
		44.00		and									
19.40	64.00	44.60	(maroon unit) ANDESITE PYROCLASTIC, felsio										
			intermed.breccia clasts, 1-4 cm° (many sub-rous agglomeratic) in maroon hematitic v.f.g. matrix;	nded 19.50	21.00	1.50	111968	<0.03	0.6	40	23	246	95
										48			

Area: Re ontractor: Fa	Icon Dril			Latitude: 38+45N Departure: 56+20E	DDH LJ-98-5-A		Inclina	Bearing: tion @ collar:	-45°	i	Date Con	npleted:	July 20, 19 July 21, 19	998
Core Size: B	W			Elevation: 1674 m		<u></u>	<u> </u>	Total Depth:	187.45 m		Log	ged By:	R. I. Nicho	01
					_				•			ays		
From	То	interval			From	То	width	<b></b>	Au	Ag	Cu	Co	Pb	Zn
m	m	<u> </u>	• ····	Lithology	m	m	m	Tag No.	g/T	g/T	ppm	ppm	ppm	ppm
			throughoutto 1-2%,	clusters along fracture planes as										
			'necklaces'; ubiquite	ous mod.magnetic Po as veinlets,	21.00	22.60	1.60	111969	<0.03	0.8	63	21	220	88
			dissem & clast-repl	acement; Py veinlets + dissem										
			cubelets to 1-2% lo	cally; possible acanthite randomly;										
			Cpy associated with	Po veining as terminations to 1-										
			2% locally; Aspy sp	icules randomly and fracture-										
			associated; rocks a	re siliceous; quartz overgrowths	22.60	23.70	1.10	111970	<0.03	0.8	99	35	396	94
			throughout fresh fac	ces; contact 55°-60°	23.70	25.20	1.50	111971	0.03	4.2	78	30	1114	107
			22.60-23.70	It.grey > maroon, v.silic horizon;	25.20	26.70	1.50	111972	<0.03	1.6	84	21	448	93
				sulphides tend to cluster in <cm< td=""><td>26.70</td><td>27.70</td><td>1.00</td><td>111973</td><td>0.03</td><td>0.2</td><td>112</td><td>27</td><td>258</td><td>93</td></cm<>	26.70	27.70	1.00	111973	0.03	0.2	112	27	258	93
				groupings	27.70	28.70	1.00	111974	<0.03	0.6	66	15	286	80
			28.70-31.40	longitudinal + 10-20° hem-filled				repeat	<0.03	0.8	65	17	304	87
				fracture overpint, filled with semi-	28.70	30.10	1.40	111975	<0.03	0.2	93	20	234	70
				massive Po surrounded by stibnite										
				flakes/crystals (Po 3-4%, stib 2%);	30.10	31.60	1.50	111976	<0.03	0.8	130	26	390	80
				this zone increasingly silic, itgrey										
			04 00 00 00	= hem proportionately	24.00	22.00	1 00	111077	<0.02	0.0	135	27	528	70
			31.60-32.20	chloritized, quartz veined / altered;	31.60	32.60	1.00	111977	<0.03	0.8	135	21	526	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
				fracture zone 1-2 cm wide; milky	22.02	24.40	4 50	444070	-0.02	10	440	20	1006	148
				quartz veins @ 10-25° to c.a.;	32.60	34.10	1.50	111978	<0.03	1.6	140	28	1000	140
				marginal stibnite to 5% over cm	24.10	35.60	1 50	111979	0.04	2.2	104	29	3012	1632
			25 20 40 00	widths; 1-2% Po, ½% Py	34.10	30.00	1.50	111979	0.04	2.2	104	29	3012	1032
			35.30-49.20	increasing silicification, It.grey with	25 60	27 10	1 50	111980	<0.03	<0.2	129	33	272	128
				maroon intersections (silica cap?);	35.60	37.10	1.50	111900	<b>NU.US</b>	<b>NU.Z</b>	129	33	212	120
				10 cm sections of massive stibnite	27 40	20.00	4 50	444004	0.04		152	40	566	1432
				with 2 cm massive Po margins, ½%	37.10	38.60	1.50	111981	0.04	0.8	152	42	000	1432
				Py/Cpy; weakly fractured at low	20.00	40.40	4 60	111982	0.07	1.4	147	28	926	859
				angles to c.a.; stibnite coating on	38.60	40.10	1.50	111962	0.07	1.4	147	20	920	008
				fracture faces; rare 25-40° quartz	40.10	41.60	1.50	111983	0.03	2.2	143	28	1208	188
			40.40.40.05	veinlets (< cm widths)	40.10	41.00	1.50	111903	0.05	2.2	140	20	1200	100
			42.10-42.25	massive stibnite - fine hair-like	44.60	42.40	1 50	111984	0.14	4.4	108	33	1192	268
				spicules in masses marginal to	41.60	43.10	1.50	111904	0.14	4.4	100		1192	200
			10.05.10.10	10° quartz veinlets	42 40	44.60	4 60	444005	0.07	26	115	26	606	615
			43.35-43.46	massive stibnite within 55° bedding	43.10	44.60	1.50	111985	0.07	3.6 3.0	115 114	20 25	616	575
			17 ^^	plane, weak shear	44.60	46.10	1.50	111986	0.06		114 84		368	310
				60° bedding; 2-3% Po	46.10	47.60	1.50	111987	0.06 <0.03	2.2 2.4	84 119	22 20	546	361
				5% Py, 2-3% Po veinlets	47.60	49.00	1.40	111988			76	20 18	546 494	214
			49.20	dk.maroon hematite predominates,	49.00	50.00	1.00	111989	0.05	1.2		23	494 636	1521
			F4 00 F4 00	s.silic	50.00	51.30	1.30	111990	2.16	6.4	380		1250	311
			51.00-51.30	massive stibnite sandwiched by	51.30	52.80	1.50	111991	0.29	6.0	459	38		320
				5 cm wide massive Po, 2-3% Py,	50.00	E4 00	4 50	repeat		6.2	447	38	1310	441
				tr Cpy, tr Aspy in quartz-veined	52.80	54.30	1.50	111992	4.16	82.2	1082	30	9922	
			<b>-</b> •	shear; weakly chloritic	54.30	55.80	1.50	111993	0.21	5.6	472	23	834	1229
			54.00	15° open, chloritiz fracture, ubi-	<b></b>	<b>F7 6</b> 6	4 - 0		0.31	8.8	513	29	1054	2034
				quitous Po to 54.2 m veinlets/	55.80	57.30	1.50	111994	11.341	- н н				21134

Contractor:		•		Latitude: 38+45N Departure: 56+20E Elevation: 1674 m	DDH LJ-98-5-A		Inclina	Bearing: tion @ collar: Total Depth:	-45°		Date Com	pleted:	July 20, 19 July 21, 19 R. I. Nicho	998
											Assays		j.	
From	То	interval			From	То	width		Au	Ag	Cu	Co	Pb	Zr
m	m	m		Lithology	m	m	m	Tag No.	g/T	g/T	ppm	ppm	ppm	ppn
				lissem., 1% stibnite dissem. semi-massive stibnite >5% + dissem	57.30	58.80	1.50	111995	0.14	14.6	364	43	1874	139
			F	Po ~2% in chloritic and fractured	58.80	60.30	1.50	111996	0.16	18.0	415	31	2142	39
				10° quartz veining, chloritic	56.60	00.50	1.50	111330	0.10	10.0	410	51	2172	0.
			S	shearing, limonitic veinlets ncreasing Cpy to 1%, Po 2-3%,	60.30	61.60	1.30	111997	<0.03	1.6	202	28	252	3
			S	stibnite 1%	61.60	62.60	1.00	111998	<0.03	1.0	167	23	150	2
			62.60-64.00 i a f	ncreasing Po dissem to 4% ncr. silicification / grey coloration and decreasing magnetism; Po in bods ± Py + weak stibnite <cm² boatches</cm² 	62.60	64.00	1.40	111999	<0.03	2.2	79	11	326	15
			•	ocal Po to 4-5% at contact										
64.00	68.50	4.50	clasts - rhyolite + and	STIC BRECCIA, tuff horizons; desite to 2-3 cm ² , non-magnetic, printed by 30-60° chlorite-healed	64.00	65.50	1.50	112000	<0.03	1.6	49	10	208	2
			fracture pattern; loca	I Po (clast replacement?) in >cm ² s, tr-½% Py; lapilli horizons	65.50	67.00	1.50	112001	<0.03	1.0	54	15	182	1
				coated fracture with 'open';	67.00	68.50	1.50	112002	<0.03	1	62	14	204	1
68.50	71.46	2.96	Py veinlets; strongly	% Po along low-angle fractures, tr siliceous, med.grey; bedding	68.50	70.00	1.50	112003	0.03	0.8	215	36	140	
			fractureing; 2% pyriti	apparent ~55-60°; weak 30-40° ferous 30° contact	70.00	71.50	1.50	112004	<0.03	0.8	175	31	146	
71.46	73.25	1.79	RHYOLITE TUFF, st rhyolite	rongly silicified, It.grey/white										
			71.46-71.80 72.55-73.25	top' chlor, v.silic, disturbed bedding 30°, Po/Py ½%-1% along bedding planes 30° chloritic shear, 2% Po/Py, ½% stibnite, v.irregular Po/Py/ stibnite veining, ~2% Po, tr Py,	71.50	73.00	1.50	112005	<0.03	0.8	85	26	116	
				tr-1/2% stibnite										
73.25	74.00	0.75	supported by med.gr horizons randomly; b	RECCIA, rhyolite and andesite clasts rey v.f.g. andesite matrix; tuff bedding 45°; ½% Po/Py invading siliceous; undulating 50-55° contact	73.00	74.00	1.00	112006	<0.03	0.4	186	45	90	
74.00	110.70	36.70		eakly hematized, lt.purple/maroon; magnetism associated with Po										

.

Area: Red Cap (LJ) Contractor: Falcon Drilling Core Size: BTW			Latitude: 38+45N Departure: 56+20E Elevation: 1674 m		DDH LJ-98-5-A		Inclina	Bearing: tion @ collar: Total Depth:	-45°	Date Started: July 20, 1998 Date Completed: July 21, 1998 Logged By: R. I. Nichol				
											Ass	ays		
From	То	interval			From	То	width		Au	Ag	Cu	Co	Pb	Zn
m	m	<u> </u>	· · · · · · · · · · · · · · · · · · ·	Lithology	m	m	m	Tag No.	g/T	g/T	ppm	ppm	ppm	ppm
			segregations to 2 c	m², rounded; Py veinlets chaotically										
				ebs & cubelets ubiquitously	74.00	75.50	1.50	112007	<0.03	0.4	217	38	96	98
				incr silic It.grey coloration	75.50	77.00	1.50	112008	0.06	0.8	125	188	144	530
				bedding 65°, 1% Po, ½% Cpy				repeat	0.12	0.6	124	187	158	546
				black 'pinhead' rounded blebs	77.00	78.50	1.50	112009	0.05	2.4	138	109	430	
			10.00-01.00	infest core surfaces (mn?)	78.50	80.00	1.50	112010	0.03	4.2	419	39	548	
			76 65-78 45	vuggy, mm-wide quartz vein follows	80.00	81.50	1.50	112011	< 0.03	4.0	119	18	228	
			10.00-10.40	c.a. @ 5°, terminates over final 20	81.50	83.00	1.50	112012	< 0.03	<0.2	57	30	64	94
				cm as 1 cm wide qtz vein	83.00	84.50	1.50	112013	< 0.03	<0.2	65	29	66	
			79 50-85 60	20-40° fractures, chlorite-filled,	84.50	86.00	1.50	112014	< 0.03	<0.2	51	22	86	
			79.30-03.00	overpint core; dissem <1% Py	86.00	87.50	1.50	112015	< 0.03	<0.2	60	20	76	
				cubelets mm ² , w-mod frac	87.50	89.00	1.50	112016	< 0.03	<0.2	129	33	46	
			85.75	bedding 45°; Py/Po dissem through-	01.00	00.00								
			00.70	out core to 1/2-1% quantities, occas										
				veinlets (mm-widths)	89.00	90.50	1.50	112017	<0.03	<0.2	178	29	50	65
			88.30-88.50		00.00	50.00	1.00	repeat	< 0.03	<0.2	171	25	40	
				20-30° chlor shear, 2% Po, 1% Py	90.50	92.00	1.50	112018	< 0.03	0.4	222	25	62	
				30° chlor fractures coincident with	92.00	93.50	1.50	112019	< 0.03	0.6	236	24	54	
			09.40-90.00	1-2% Po ± ½-1% Py cubelets; Po	93.50	95.00	1.50	112020	< 0.03	<0.2	100	21	74	
				replacement of chlor clasts to 2%	95.00	96.50	1.50	112021	< 0.03	<0.2	74	23	78	
				randomly	96.50	98.00	1.50	112022	< 0.03	<0.2	93	17	44	
			02 75 100 15	longitudinal quartz veins with 1-2%	98.00	99.50	1.50	112023	< 0.03	<0.2	110	21	34	
			92.75-100.15	Po/Py marginally x-cut 15-35°	99.50	101.00	1.50	112024	< 0.03	<0.2	75	21	36	
				chl frax overprint, tr-12% stibnite	101.00	102.50	1.50	112025	< 0.03	<0.2	62	20	30	
				blebs/crystals along frac.planes	102.50	104.00	1.50	112026	0.03	<0.2	60	24	22	
			00 10 00 60	10-15° limonitic open fracture	102.00	104.00	1.50	repeat	0.03	<0.2	62	23	24	2n ppm 98 530 546 915 663 342
				1% Py, 1% Py v.dissem throughout	104.00	105.50	1.50	112027	< 0.03	<0.2	71	23	20	
				hem/lim frac zone @ 28° to c.a.;	105.50	107.00	1.50	112028	< 0.03	<0.2	88	24	22	
			104.30-104.70	strong chlor	107.00	108.50	1.50	112029	0.03	<0.2	60	22	20	
			105,10-106.00	limonitic open frac follows c.a.	108.50	109.50	1.00	112030	< 0.03	<0.2	82	23	36	
				increasingly silic / chlor, dyke	109.50	110.70	1.20	112031	<0.03	<0.2	36	15	32	
			contact sharp 35°	alteration zone										
110.70	111.00	0.30	intrusive med.gree	DYKE, strongly chloritized, c.g.; n quartz/feldspar/biotite/hornblende only; sharp 50° contact	110.70	111.70	1.00	112032	<0.03	<0.2	13	13	88	109
111.00	112.85	1.85		(possible highly altered silic andesite?) Py/Po v.dissem; subtle 45° contact	111.70	112.85	1.15	112033	<0.03	0.4	9	12	96	104
112.85	113.20	0.35		BRECCIA, pyroclastic + tuff horizons, ctures, weakly chloritized, 45°	112.85	113.85	1.00	112034	<0.03	4.4	27	11	124	290

	Red Cap (LJ) Falcon Drilling BTW		Latitude: 38+45N Departure: 56+20E Elevation: 1674 m	DDH LJ-98-5-A		Bearing: 325° Inclination @ collar: -45° Total Depth: 187.45 m			Date Completed:			: July 20, 1998 : July 21, 1998 : R. I. Nichol	
										Ass	avs		
From m	To m	interval m	Lithology	From m	To m	width m	Tag No.	Au g/T	Ag g/T	Cu ppm	Co ppm	Pb ppm	Zn ppm
113.20	117.80	4.60	ANDESITE TUFF BRECCIA, pyroclastic; clasts to 2 cm ² sub-rounded to angular consisting of rhyolite + chlor andesite fragments; feldspar porphyry fragments throughout; mod.chlor, med-green coloration; tr Po/Py	113.85	115.25	1.40	112035	<0.03	<0.2	85	17	26	59
			dissem + localized along fractures to 1%, contact broken & limonitic at 45°	115.25	116.75	1.50	112036	<0.03	<0.2	87	16	20	3
117.80	119.35	1.55	RHYOLITE TUFF BRECCIA, pyroclastic, angular to sub-rounded intermed.clasts/pebbles in lt.grey/green v.f.g. matrix; strongly silic.; Po/Py dissem to ½% and	116.75	118.25	1.50	112037	<0.03	<0.2	49	17	36	79
			marginal to clasts; bedding 50°; contact sharp and undulating 40°	118.25	119.35	1.10	112038	0.03	2.4	51	15	146	87
119.35	120.55	1.20	ANDESITE TUFF, med.grey capped by hematized / maroon intersection having stibnite ½%, Py 3-4%, Po 5%, at 40° (bedding intercept); subtle 45° contact 119.35-119.65 hematite 119.65-120.55 hematite	119.35	120.35	1.00	112039	0.49	16.4	240	19	2136	8238
120.55	122.15	1.60	RHYOLITE TUFF BRECCIA, pyroclastic, it.grey, v.silic; mod fractured @ 30° and 35° on opposite planes; weakly chloritic; dissem Po/Py blebs and fractures associated; weak stibnite on fracture planes; contact 50-55°	120.35	121.85	1.50	112040	0.04	<0.2	77	17	56	9
122.15	128.25	6.10	ANDESITE TUFF, ~50% lapilli tuff horizons, med-grey, strongly silic.; contact gradual 60-65°	121.85	123.35	1.50	112041	<0.03	0.2	173	28	80	9
			122.15-122.36 massive Gn, Aspy, Po > Py, stibnite; >20% sulphides along 45° bedding plane	123.35	124.35	1.00	112042	3.54	72.8	581	19	1.92%	4.25
			122.36-126.20 1-2% Po as blebs dissem; Py ½% dissem, tr stibnite frac-assoc	124.35	125.85	1.50	112043 repeat	<0.03 <0.03	<0.2 0.4	92 101	20 22	82 92	13 15
			126.20-126.46 massive Gn, stibnite+ Po/Py stringers concordant to 35° bedding	125.85	126.85	1.00	112044	0.78	35.6	581	19	1.02%	816
			which shifts rapidly 35-45°; spec. hematite semi-massive >10%	126.85	128.30	1.45	112045	0.08	0.2	96	16	82	17
128.25	128.55	0.30	RHYOLITE TUFF, v.silic, lt-grey, tr Po/Py along 60° fractures and quartz veinlets; contact 60-65°	128.30	129.80	1.50	112046	<0.03	0.2	91	14	64	26
128.55	129.15	0.60	ANDESITE TUFF / LAPILLI TUFF, med.grey, v.silic., with white ovoid/rounded lapilli; tr Py/Po only v.dissem; contact 60°										
129.15	137.50	8.35	RHYOLITE TUFF, tuff breccia horizons (as noted); It										

.

		]		1			]	· · · · · ·	1 * *	1	1	<b>)</b> (*	1	1	1	71	111)	i]		1
--	--	---	--	---	--	--	---	-------------	-------	---	---	-------------	---	---	---	----	------	----	--	---

Area: Red Cap (LJ) ntractor: Falcon Drilling ore Size: BTW		Latitude: 38+45N Departure: 56+20E Elevation: 1674 m	DDH LJ-98-5-A		Inclina	Bearing: tion @ collar: Total Depth:	-45°	[	Date Com	pleted: J	July 20, 19 July 21, 19 R. I. Nicho	998		
											Ass	ays		
From	То	interval			From	То	width		Au	Ag	Cu	Co	Pb	Zn
m	m	m		Lithology	m	<u>m</u>	m	Tag No.	g/T	g/T	ppm	ppm	ppm	ppm
			attenuating to 35° by tr Py/Po, v.dissem; c 130.78-131.30 131.55-131.75	verprinted by 25° micro-fractures 130m; fractures are chloritic; contact sharp 55°, limonitic suff breccia, dk.grey, chloritic clasts 2-3 cm² in lt.grey v.silic matrix 50-60° chlor shearing, 3-5% spec	129.80	131.30	1.50	112047	<0.03	0.4	76	13	48	24
			131.50-131.80	hem + 2-3% Po concordantly black oxidized pinhead crystals on core surfaces (Mn/stibnite?);	131.30	132.80	1.50	112048	0.05	0.8	116	21	120	13
				probable stibnite; bedding 48° tuff breccia, clasts to 3x5 cm²,	132.80	134.30	1.50	112049	<0.03	<0.2	40	8	40	11
				v.angular	134.30	135.80	1.50	112050	<0.03	1.0	52	8	132	206
·			135.35-135.38	mod.fractured massive specular hematite @ 55° (bedding?); with concordant Py veinlets ± ½% Po; weak 60° qtz veinlets	135.80	137.30	1.50	112051	<0.03	1.6	523	17	34	23
137.50	139.15	1.65	silic, angular, chloriti tr Py/Po marginally a 137.50-138.55 138.50-138.80	RECCIA + tuff horizons (as noted); c, dk.green clasts (altered andesite); and as micro-veinlets chaotically tuff breccia, silic tuff, longitudinal qtz/chlor vein filling	137.30	138.80	1.50	112052 repeat	<0.03 <0.03	<0.2 <0.2	37 36	12 12	22 20	4
139.15	140.00	0.85	clasts 1-5 cm ² in lt.g	RECCIA, dk.green, chlor angular rey silic v.f.g. matrix; clasts lding); tr Py only; contact 60°	138.80	140.30	1.50	112053	0.03	<0.2	29	10	40	ī
140.00	143.50	3.50	andesite matrix; dk.g c.a.; weak low-angle	RECCIA, pyroclastic; med.grey vfg green chlor cm² clasts @ 50° to e qtz veinlets throughout, mod	140.30	141.80	1.50	112054	<0.03	<0.2	7	10	26	ŧ
				fracture zone, 40-50° open fracs pervasively; weak limonite frac coating	141.80	143.30	1.50	112055	0.04	<0.2	11	11	24	14
143.50	145.70	2.20	matrix supports chlo	RECCIA, lapilli tuff; med.grey silic r ½-3 cm² clasts; lt.grey lapilli t; ½% Po/Py along rehealed/chlor ;	143.30	144.80	1.50	112056	<0.03	<0.2	8	10	12	4
145.70	146.20	0.50	RHYOLITE TUFF B felsed) rhyolite matr angular clasts, conta	RECCIA, s.silic, lt.grey/brown (horn- ix supports dk.green 2-4 cm ² act 65°	144.80	146.20	1.40	112057	<0.03	0.2	31	9	54	7

Contractor:	Area: Red Cap (LJ) ontractor: Falcon Drilling ore Size: BTW From To interval	Latitude: 38+45N Departure: 56+20E Elevation: 1674 m	DDH LJ-98-5-A		Inclina	Bearing: tion @ collar: Total Depth:	-45°	[	Date Com	pleted:	luly 20, 19 July 21, 19 R. I. Nicho	98	
										Ass			
				From	To	width m	Tag No	Au g/T	Ag g/T	Cu ppm	Co ppm	Pb ppm	Zn ppm
m	<u> </u>	<u> </u>	Lithology	<u> </u>	m		Tag No.	<u>9</u> /1	<u> </u>	ppin	ppm		ppin
146.20	149.20	3.00	ANDESITE TUFF BRECCIA, tuff (as noted); med.grey, silic, andesite matrix with cm-2cm ² chlor clasts scattered throughout; contact 35-40° 146.20-146.40 tuff breccia, tr Py only as dissem	146.20	147.70	1.50	112058	<0.03	1.0	208	11	70	201
			and frac-associated 146.40-149.20 tuff breccia, tr Py only as dissem and frac-associated										
			147.20-147.45 strongly chlor frac zone @ 30°	147.70	149.20	1.50	112059	<0.03	<0.2	29	10	18	59
			to c.a. 148.75-149.20 tawny brown coloration, incr silic (hornfels)	147.70	145.20	1.50	112055	-0.00	-0.L	20	10		
149.20	153.80	4.60	RHYOLITE TUFF, filigreed by chloritized 35-50° fracs	149.20	150.70	1.50	112060	<0.03	<0.2	70	11	58	101
149.20	100.00	4.00	/rehealed and random qtz veinlets; dissem stibnite,	150.70	152.20	1.50	112061	<0.03	<0.2	40	12	28	56
			Aspy to 1/2% throughout unit; 55° fracture overprint;				repeat	<0.03	<0.2	43	11	28	58
			contact 30°(?)	152.20	153.70	1.50	112062	<0.03	0.4	75	12	60	89
153.80	155.35	1.55	ANDESITE TUFF, med.grey, silic, unfrac'd to 153.50m; weak chlor partly resorbed rare clasts/fragments; sutble 65-70° contact	153.70	155.20	1.50	112063	<0.03	<0.2	52	13	42	59
155.35	157.40	2.05	RHYOLITIC TUFF (possible v.silic andesite tuff); It.grey, crosscut ubiquitously by hairline 50-70° fractures rehealed by chlorite; tr Py v.dissem; weak quartz veinlets randomly; hematite/limonite along fractures	155.20	156.70	1.50	112064	<0.03	<0.2	80	13	38	162
157.40	157.95	0.55	ANDESITE TUFF, lapilli tuff; med.grey, v.f.g., intermed volcanic tuff; dk.grey <mm² (45°?)="" contact<="" fractured="" irregularly;="" lapilli="" only;="" py="" rounded="" td="" tr=""><td>450 70</td><td>450.00</td><td>4.50</td><td>440005</td><td>-0.02</td><td>-0.2</td><td>60</td><td>17</td><td>30</td><td>105</td></mm²>	450 70	450.00	4.50	440005	-0.02	-0.2	60	17	30	105
157.95	159.00	1.05	RHYOLITE TUFF, It.grey, strongly fractured, strongly	156.70	158.20	1.50	112065	<0.03	<0.2	60	17	30	105
			chloritic; tr Py only; chloritized 30-35° contact 158.40-158.80 broken core, strong fracturing (fault zone?)	158.20	159.70	1.50	112066	<0.03	0.4	141	12	34	112
159.00	162.75	3.75	ANDESITE TUFF, weakly fractured, mod-strong silic;	159.70	161.20	1.50	112067 repeat	<0.03 <0.03	0.4 0.2	66 68	13 14	46 50	46 49
			30° limonitic fractures and quartz veinlets randomly surrounded by 20 cm limonite coloration; occasional lapilli/fragments dk.grey/chlor; Py to 1% in 20° qtz veinlets and dissem; 40° contact	161.20	162.75	1.55	112068	<0.03	0.4	64	17	66	66
162.75	168.30	5.55	RHYOLITE TUFF, mod-strongly brecciated, v.v.silic,	162.75	164.25	1.50	112069	<0.03	0.4	75	20	74	121
			It.grey; gradual change in color over next 6 m; rhyolite shatters and is invaded by increasing andesitic matrix;	164.25	165.75	1.50	112070	<0.03	0.4	49	16	58	208
			shatters and is invaded by increasing andesitic matrix;	164.25	165.75	1.50	112070	<0.03	0.4	49	10		00

			 	• • •		والمستحد المراجع	<ul> <li>personal figure</li> </ul>	 20 C C C C C C C C C C C C C C C C C C C	P	2011 C 10 10	 	14 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	7	. I
		· · ·			e.									
	1								1			1 1	1	
										1		4 1		

From m         To m         interval m         Libbiogy         From m         To m         To m         width m         To m         Width m         To m $\frac{1}{200}$		Red Cap (l Falcon Dril BTW		Latitude: 38+45N Departure: 56+20E Elevation: 1674 m	DDH LJ-98-5-A		Inclina	Bearing: ition @ collar: Total Depth:	-45°	[	Date Com	npleted:	July 20, 19 July 21, 19 R. I. Nicho	98
International model         Lithology         m         m         m         m         m         m         Tag No.         g/T         g/T         p/P         ppm         ppm           m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m <th></th>														
m         mod-strong limonitic factures; bedding 50° to c.a.; tr PyPPo interstice fill 168.30         mod-strong limonitic factures; bedding 50° to c.a.; tr PyPPo interstice fill 162.85-163.00         mod-strong limonitic factures; bedding 50° to c.a.; tr PyPPo interstice fill 162.85-163.00         mod-strong limonitic factures; bedding 50° to c.a.; tr PyPPo interstice fill 162.75         166.75         167.25         1.50         112071         <0.03	From	То	interval							-				Zr
PyrPo intersito-fill         165.75         167.25         1.50         112071         <0.03	m	m	m	Lithology	m	m	m	Tag No.	g/T	g/T	ppm	ppm	ppm	ppr
PyrPo intersito-fill         165.75         167.25         1.50         112071         <0.03         0.4         56         16         44           168.30         174.20         5.90         ANDESITE TUFF BRECCIA, it grey thyolite clasts supported by med grey andesite matrix, itimonite-stained fractures and pods of Po/Py to 1% randomiy; mod         167.25         168.70         1.45         112072         <0.03				mod-strong limonitic fractures; bedding 50° to c.a.; tr										
162.85-163.00       goethite filling 25° frac zone       167.25       168.70       1.45       112072       <0.03					165.75	167.25	1.50	112071	<0.03	0.4	56	16	44	1
168.30       174.20       5.90       ANDESITE TUFF BRECCA, it gray rhyolite clasts supported by med.gray andesite matrix; limonite-stained fractures and pods of Po/Py to 1% randomiy, mod chloritized matrix; structural movement indicated; sharp 60° contact       168.70       1.45       112072       <0.03	,			,										
174.20       187.45       13.25       ANDESITE AGGLOMERATE DEBRIS FLOW, breadted in part, c.g. polymicitated in casts/sobles/pebbles in contact       173.00       170.20       1.50       112073       <0.03					167.25	168.70	1.45	112072	<0.03	0.4	49	12	28	
168.70-169.00       quartz veinietis @ 40-45* and quartz interstice-filling       168.70       170.20       1.50       112073       <0.03	168.30	174.20	5.90	supported by med.grey andesite matrix; limonite-stained fractures and pods of Po/Py to 1% randomly; mod chloritized matrix; structural movement indicated;										
174.20       187.45       13.25       ANDESITE AGGLOMERATE DEBRIS FLOW, breciated in part, eginomite/ chiorite fractorolite, and eginomite/ chiorite fractorolite, and to contact       171.70       173.00       1.30       112075       <0.03				168.70-169.00 quartz veinlets @ 40-45° and	168.70	170.20	1.50	112073	<0.03	<0.2	28	13	18	1
174.20       187.45       13.25       ANDESITE AGGLOMERATE DEBRIS FLOW, brecciated in partic lasts / choired for strongly to contact       174.20       175.40       175.40       174.20       174.20       174.20       12075       <0.03				169.00-171.60 increasingly fract'd/chlor'd and										
171.60-172.80       pink-yellow coloration; strongly silic and crosscut by limonile/ chlorite fractures @ 45.70° to c.a.; 35° clast along axis orientation       171.70       173.00       1.30       112075       <0.03				Py only, bedding 55°; broken	170.20	171.70	1.50	112074	<0.03	0.8	110	12	64	(
173.55       0.2-0.3 cm wide Po/Py veinlet @       28" with chlor margins for 0.5 cm,         15" quartz veinlets       173.50-174.20       med grey, siic, 45" weak fracturing       173.00       174.20       1.20       112076       <0.03				171.60-172.80 pink-yellow coloration; strongly silic and crosscut by limonite/ chlorite fractures @ 45-70° to c.a.;	171.70	173.00	1.30	112075	<0.03	0.4	56	18	56	
173.50-174.20       med.grey, silic, 45° weak fracturing to contact       173.00       174.20       1.20       112076        <0.03				173.55 0.2-0.3 cm wide Po/Py veinlet @ 28° with chlor margins for 0.5 cm,										
174.20 107.40 107.40 10.20 micro learner of the class / cobbles/pebbles 175.70 177.20 1.50 112078 0.05 3.8 173 16 224 are sub-rounded, consist of prhyolite, andesite, and 177.20 178.70 1.50 112079 <0.03 <0.2 101 17 32 (remobilized) feldspar porphyry fragments; matrix is 178.70 180.20 1.50 112080 <0.03 <0.2 81 32 28 green/grey andesite; epidote anteration of clasts is evident; quartz clasts also noted 174.20-175.12 silic, chlor, epidote altered 175.12-181.75 v.altered, v.weakly silic, cobbles/ fragments range from <cm (10-15°)="" 173.80-174.20="" 30°;="" 5cm²,="" @="" and="" associated="" clay="" cm-wide="" cubelets="" dissem="" fault="" fill<="" fractures="" gouge="" limonite="" low-angle="" p="" py="" quartz="" rarely="" shears="" to="" veins="" with=""></cm>				173.50-174.20 med.grey, silic, 45° weak fracturing	173.00	174.20	1.20							
174.20 107.40 10.20 in part; c.g. polymictic/heterolithic clasts/cobbles/pebbles 175.70 177.20 1.50 112078 0.05 3.8 173 16 224 are sub-rounded, consist of prhyolite, andesite, and 177.20 178.70 1.50 112079 <0.03 <0.2 101 17 32 (remobilized) feldspar porphyry fragments; matrix is 178.70 180.20 1.50 112080 <0.03 <0.2 81 32 28 green/grey andesite; epidote anteration of clasts is evident; quartz clasts also noted 174.20-175.12 silic, chior, epidote altered 175.12-181.75 v.altered, v.weakly silic, cobbles/ fragments range from <cm (10-15°)="" 5cm²,="" and="" associated="" cm-wide="" cubelets="" dissem="" low-angle="" p="" py="" quartz="" rarely<="" to="" veins="" with=""> 173.80-174.20 limonite fractures/shears @ 30°; clay fault gouge fill</cm>	174 20	197 45	13.25	ANDESITE AGGLOMERATE DEBRIS FLOW brecciate	d 174.20	175.70	1.50	112077	<0.03	2.6	86	24	200	
are sub-rounded, consist of prhyolite, andesite, and (remobilized) feldspar porphyry fragments; matrix is green/grey andesite; epidote anteration of clasts is evident; quartz clasts also noted 174.20-175.12 silic, chlor, epidote altered 175.12-181.75 v.altered, v.weakly silic, cobbles/ fragments range from <cm 5cm²,<br="" to="">dissem Py cubelets and associated with low-angle (10-15°) cm-wide quartz veins rarely 173.80-174.20 limonite fractures/shears @ 30°; clay fault gouge fill</cm>	174.20	107.45	10.20								173	16	224	
(remobilized) feldspar porphyry fragments; matrix is green/grey andesite; epidote anteration of clasts is evident; quartz clasts also noted 174.20-175.12 silic, chlor, epidote altered 175.12-181.75 v.altered, v.weakly silic, cobbles/ fragments range from <cm 5cm<sup="" to="">2, dissem Py cubelets and associated with low-angle (10-15°) cm-wide quartz veins rarely 173.80-174.20 limonite fractures/shears @ 30°; clay fault gouge fill</cm>							1.50		< 0.03	<0.2	101	17	32	
with low-angle (10-15°) cm-wide quartz veins rarely 173.80-174.20 limonite fractures/shears @ 30°; clay fault gouge fill				(remobilized) feldspar porphyry fragments; matrix is green/grey andesite; epidote anteration of clasts is evident; quartz clasts also noted 174.20-175.12 silic, chlor, epidote altered 175.12-181.75 v.altered, v.weakly silic, cobbles/		180.20	1.50	112080	<0.03	<0.2	81	32	28	
epidote % increase to 3-5% from 174.20 to end of hole				with low-angle (10-15°) cm-wide quartz veins rarely 173.80-174.20 limonite fractures/shears @ 30°; clay fault gouge fill										
				epidote % increase to 3-5% from 174.20 to end of hole										
187.45 Total Depth			187.45	Total Depth										

г · · · · ·

|--|--|--|--|--|--|

	Red Cap (l Falcon Dril BTW			Latitude: 38+45N Departure: 56+20E Elevation: 1672 m	DDH LJ-98-5-B		Inclina	Bearing: tion @ collar: Total Depth:	~60°	[	Date Com	pleted: J	uly 21, 19 July 22, 19 R. I. Nicho	98
											Ass	avs		
From	То	interval			From	То	width		Au	Ag	Cu	Co	Pb	Zn
m	m	m		Lithology	m	m	m	Tag No.	g/T	g/Ť	ppm	ppm	ppm	ppm
						•								
0.00	1.54	1.54	CASING, no recove	ery										
1.54	13.30	11.76	only), v.f.g. interme silicified to 5.80m, med.grey (quartz o hematite intersectio dissem's + tr-½% F chlorite healed @ 6 fracture filling, poss sections; fracture s	(1.54-1.60 broken core, fragments diate volcanic tuff, increasingly silic mod-strongly downwards; vergrowths) with patchy maroon ons having 1-2% Po veinlets and Py, tr Cpy blebs; strongly fractured, 60-80° to c.a.; weak tr stibnite as sible Sph in stronger hematized surfaces oxidized, limonite/hematite	1.60	3.10	1.50	112081	0.04	1.0	23	15	338	143
			subtle contact		3.10	4.60	1.50	112082	0.10	1.6	68	17	390	214
			1.54- 6.70 5.70- 6.50	med.grey, weakly silic magnetic, ½-1% Po, tr Py, maroon	4.60	4.60 6.10	1.50	112082	0.10	0.8	56	20	118	2216
			6.50- 7.80	•	6.10	7.60	1.50	112084	< 0.03	<0.2	27	16	76	116
			7.80- 8.90		7.60	9.10	1.50	112085	< 0.03	<0.2	28	16	104	116
			7.00- 0.00	2%, bedding 45-50°				repeat	<0.03	<0.2	29	18	106	119
			8.90-13.30	alternating silic with maroon hema-	9.10	10.60	1.50	112086	0.03	<0.2	87	27	116	1774
				tite intersections; sulphides prefer	10.60	12.10	1.50	112087	<0.03	0.6	66	21	196	366
				hematite zones	12.10	13.60	1.50	112088	<0.03	<0.2	49	23	148	176
13.30	14.25	0.95	felsic clasts in mar	BRECCIA, pyroclastic; 1-2 cm lt.grey oon hematite; v.f.g. intermed silicified te/Py stringers 1-2% ubiquitously, magnetic rock"	13.60	14.60	1.00	112089	<0.03	<0.2	90	44	108	110
14.25	5 18.25	4.00	andesite tuff; hema strongers, euhedra coating (± possible 14.45-14.55	by low-angle Po & assoc'd Aspy crystals; fractures limonite stained	14.60 16.10 17.60	16.10 17.60 19.10	1.50 1.50 1.50	112090 112091 112092	<0.03 <0.03 <0.03	<0.2 0.8 1.2	74 118 124	21 24 24	118 190 132	104 88 73
				@ 60-70° to c.a.	17.00	19.10	1.50	112092	~0.03	1.4	124	27	104	
18.25	5 42.20	23.95	ANDESITE TUFF	BRECCIA (maroon) with andesite	19.10	20.60	1.50	112093	<0.03	1.4	121	24	122	57
10.25	, 42.20	20.00		silic, It.grey; sulphides = tr-½% Cpy,	20.60	22.10	1.50	112094	<0.03	2.0	114	21	120	49
				bnite, 1/2-1% Py, local concentra-	22.10	23.60	1.50	112095	<0.03	1.2	130	33	78	45
				-										

Taiga Consultants Ltd.

Area: Contractor: Core Size:				Latitude: 38+45N Departure: 56+20E Elevation: 1672 m	DDH LJ-98-5-B		Inclina	Bearing: tion @ collar: Total Depth:	-60°	[	Date Com	pleted: J	uly 21, 19 Iuly 22, 19 R. I. Nicho	998
											Ass	avs		
From	То	interval			From	То	width		Au	Ag	Cu	Co	Pb	Zn
m	m	m		Lithology	m	m	m	Tag No.	g/T	g/Ť	ppm	ppm	ppm	ppm
				s and as Po clast replacement;	23.60	25.10	1.50	112096	<0.03	0.4	97	19	108	46
				ides over 5 cm widths; chlorite	25.10	26.60	1.50	112097	< 0.03	< 0.2	64	14	120 86	59
			•	on common; 'magnetic rock';	26.60	28.10	1.50	112098	<0.03	<0.2 <0.2	30 50	21 12	140	40 54
			35° contact	4	28.10	29.60	1.50	112099	<0.03 <0.03	<0.2 <0.2	50 98	21	140	54
				tourmaline crystals	29.60 31.10	31.10 32.60	1.50 1.50	112100 112101	<0.03 <0.03	<0.2	169	21	144	82
			33.05	breccia, 30-35° quartz vein, cm width; mod.hem with lt.grey	32.60	32.00 34.10	1.50	112101	<0.03 <0.03	<0.2	144	20	108	92
				intersections & local hem zones	52.00	54.10	1.50	repeat	<0.03	<0.2	148	24	114	94
				coincident with enhanced sul-	34.10	35.60	1.50	112103	< 0.03	<0.2	86	14	74	60
				phides; rapid bedding angle shifts	35.60	37.10	1.50	112104	< 0.03	<0.2	83	18	64	56
				60°; Po,Py stringers randomly to	37.10	38.60	1.50	112105	< 0.03	<0.2	81	15	54	49
				1%; breccia clasts hematized ->	38.60	40.00	1.40	112106	<0.03	<0.2	87	16	46	74
				interbedded tuff/ tuff breccia	40.00	41.60	1.60	112107	<0.03	<0.2	40	11	60	61
					41.60	43.10	1.50	112108	<0.03	<0.2	75	18	46	46
42.20	42.50	0.30	RHYOLITE TUFF, It.grey, v.siliceous felsic volcanic, bedding 35°; mod.fractured, tr Po/Py in fractures ANDESITE TUFF, interbedded tuff breccia / tuff, silici-											
42.50	44.65	2.15	fied with mod.strong	nterbedded tuff breccia / tuff, silici- y hematitic maroon intersections anced Po/Py/stibnite, 75-80° contact	43.10	44.60	1.50	112109	<0.03	<0.2	54	14	36	53
44.65	44.95	0.30		DIORITE DYKE, equi-granular quartz- mblende?) granodiorite; dk.grey, ating 58° contact	44.60	46.10	1.50	112110	<0.03	<0.2	130	35	46	73
44.95	77.05	32.10	ANDESITE TUFF.	pedding 42-55°, low-angle 10-20° Po										
-17.00				Po/Py + dissem's, tr stibnite flakes;	46.10	47.10	1.00	112111	<0.03	<0.2	67	47	60	97
			sharp silicified 45°	•				repeat	<0.03	<0.2	67	46	68	101
			47.55-47.70	Py-coated 20° open fracture; finely dissem Po/Py ubiquitous; weakly	47.10	48.60	1.50	112112	<0.03	<0.2	67	45	54	90
				magnetic	48.60	50.10	1.50	112113	<0.03	<0.2	66	34	50	86
			50.50-51.15	specular hematite/Py/Po-filled 0°-10° fracture <cm follows<br="" width="">c.a. down</cm>	50.10	51.60	1.50	112114	<0.03	11.2	136	44	1768	5099
			51.60-57.20	limonitic open fracture, carbonate- quartz veining slices @ 10-15° to	51.60	52.80	1.20	112115	<0.03	<0.2	82	36	140	342
				short axis of core; core thorughout is magnetic, ½-1% Po/Py, Po fills	52.80	54.30	1.50	112116	0.04	2.8	129	36	576	1278
				low-angle 10°-30° fractures and dissem's; chloritized sections related to fracture; mod.to strongly	54.30	55.80	1.50	112117	<0.03	<0.2	103	33	290	239
			55.80-55.90	siliceous semi-massive Po along 35°	55.80	57.30	1.50	112118	1.44	6.0	195	35	1192	964

and a second	~~~ }		· · · ·	1 . 1	- ···· 1	· · · · · · · · · · · · · · · · · · ·	<u> </u>		····· · ]	<b>, , , , , ,</b>	· · · · · · · · · · · · · · · · · · ·	}	· · · · · ·	· · · · · ]	···· · · · · · · · · · · · · · · · · ·		
<b>.</b>	. J.	. <b>1</b>						I		- · · · ·		<b></b>	· · · ·	<b></b>	1. A. 1. A. 1.	· · · · · ·	· · · · · · ·

	Red Cap (I Falcon Dril BTW			Latitude: 38+45N Departure: 56+20E Elevation: 1672 m	DDH LJ-98-5-B		Inclina	Bearing: tion @ collar: Total Depth:	-60°	i 	Date Com	pleted:	luly 21, 19 luly 22, 19 R. I. Nicho	998
											Ass	ays		
From	То	interval			From	То	width		Au	Ag	Cu	Co	Pb	Zn
m	<u>m</u> .	m		Lithology	m	m	m	Tag No.	g/T	g/T	ppm	ppm	ppm	ppm
			63.85-64.84	cm-3cm wide 5° quartz vein with	58.80	60.30	1.50	112120	<0.03	<0.2	123	31	96	119
			05.05-04.04	massive iron carbonate, 1% Gn,	55.55	00.00	1.00	repeat	< 0.03	0.2	127	33	106	127
				1% graphite, 3-5% Po, 1% Py, ½%	60.30	61.80	1.50	112121	< 0.03	<0.2	84	46	70	95
				Sph; 20° 2 cm wide specular hema-	61.80	63.30	1.50	112122	< 0.03	<0.2	66	34	70	100
				tite/graphite, tr Gn and Po/Py to 3-	63.30	64.85	1.55	112123	0.27	32.8	161	40	8808	7553
				4%; bedding at 40° to c.a.; dissem	64.85	66.30	1.45	112124	<0.03	<0.2	126	33	236	25
				Po (magnetic) with local low-angle	66.30	67.80	1.50	112125	<0.03	6.6	188	38	1630	289
				35° fracture filling randomly	67.80	69.30	1.50	112126	< 0.03	0.6	105	27	316	10
			67.00-68.30	tr Cpy	69.30	70.80	1.50	112127	< 0.03	0.8	189	32	358	15
				increasing It.g-rey silicification with	70.80	72.30	1.50	112128	0.18	3.4	173	23	912	317
			69.00-77.05	maroon hematite localization over	72.30	73.80	1.50	112129	< 0.03	0.8	67	26	488	40
				10-50 cm	72.50	75.00	1.50	112125	-0.00	0.0	01	20	400	10
			73.85-74.35	5° chloritic fracture zone, semi- massive Po within 2 cm wide frac;	73.80	75.30	1.50	112130	<0.03	0.8	51	15	438	118
			74.85-77.05	bedding 65° to c.a. local Po/stibnite to 3-5%, 1% dissem ± tr-1% Py cubes	75.30	76.80	1.50	112131	<0.03	1.6	119	21	664	19
77.05	77.50	0.45		lt.grey, v.silic; tr Cpy, tr Cpy/Po along dulating 45° contact	76.80	78.30	1.50	112132	0.08	4.6	219	17	856	91
77.50	84.90	7.40	strongly hematitic ( clasts chloritic, repl	BRECCIA, lapilli tuff horizons, mod.to maroon), v.f.g. intermed.volcanic; laced in part by Po>Py; locally oc with fracture planes and dissem										
			79.30	ughout; contact 40° 25° fracture zone, epidote enhanced incresed silicified, v.v.hard (not able to cut with rock-saw); 20° frax/chlor throughout; increased sulphide content; local massive Po with Cpy termiantions; specular	78.30	79.80	1.50	112133	0.49	7.2	403	12	924	103
			81.10-81.20		79.80	81.00	1.20	112134	0.37	7.0	1253	18	730	663
				massive Po/iron carb and 3-5% Cpy, 1% Py, ½% graphite, tr Gn	81.00	82.00	1.00	112135	2.55	25.6	3637	24	1106	5.96%
			01.00-01.80	carbonatized, reacts with HCl; bedding 35°; fractured 30° hema- tized contact	82.00	83.00	1.00	112136	0.55	22.6	509	18	2046	6464
				chloritized, pea-green andesite tuff, tr-½% Po/Py dissem	83.00	84.50	1.50	112137 repeat	<0.03 <0.03	2.0 2.0	86 90	24 25	342 372	195 203
			84.22-84.30	48° hematite intersections, sulphides as above				Tepeat	<0.03	2.0	90	23	572	

Area: F ontractor: F ore Size: F			Latitude: 38+45N Departure: 56+20E Elevation: 1672 m	DDH LJ-98-5-B		Inclina	Bearing: tion @ collar: Total Depth:	-60°	[	Date Com	Started: J npleted: J ged By: F	luly 22, 19	98
										Ass	says		
From	То	interval		From	То	width		Au	Ag	Cu	Со	Pb	Zn
m	m	<u>m</u>	Lithology	<u> </u>	m	m	Tag No.	g/T	g/T	ppm	ppm	ppm	ppm
			84.30-84.65 chloritic, v.silic; Po,Py di 84.65-84.90 strongly hem; Po,Py dis		86.00	1.50	112138 repeat	<0.03 <0.03	1.4 1.4	162 161	22 22	276 250	808 814
84.90	85.05	0.15	GRANODIORITE DYKE, contact = Aspy to 7 laths), weakly limonitic, strongly chloritic; 55										
85.05	93.55	8.50	ANDESITE TUFF, med.green/grey, v.f.g., in chloritized; Po <py 1%="" as="" mm<sup="" to="">2 crystals dis throughout; 35° weak foliation</py>								÷		
			86.00-87.05 Po/Py veinlets to 1% will 87.05-87.42 massive Po >15%, Cpy marginal to Po; quartz-fi	~2%	87.50	1.50	112139	6.38	25.0	1376	24	802	776
			35° bedding, tr Py 87.42-88.00 3-4% Po, quartz clasts, ment clasts 88.05-88.40 mod.hem		89.00	1.50	112140	1.02	27.0	1057	98	2316	4361
			88.15-88.90 45° fault zone (weak car broken core, v.silic (med 88.90-93.35 weak hem sections alter	d.grey) 89.00	90.50	1.50	112141	0.03	2.0	52	17	440	566
			strong med.grey silic int bedding 60°		92.00	1.50	112142	<0.03	0.6	33	15	284	1020
			93.35-93.55 semi-massive Po >10% 3% graphite in 60 bands		93.50	1.50	112143	0.36	13.0	367	89	1982	5486
93.55	101.75	8.20	RHYOLITIC TUFF, It.grey, v.siliceous with 5 andesite bands, weakly chloritic, very siliceo noted)										
			93.55- 94.60 It.grey, silic. rhyolite, we fractured predom.40° to	o c.a.	95.00	1.50	112144	0.08	3.6	137	14	440	583
			94.60- 96.05 med.grey, silic andesite mod.fracturing @ 25° to De veiplete % discom to	o c.a., 1-2% 95.00	96.50	1.50	112145	<0.03	<0.2	31	14	44	67
			Po veinlets & dissem, tr 96.05- 99.00 rhyolite tuff with mod fra 40° to c.a.; ± Po brecc'c	acturing @ 96.50	98.00	1.50	112146	<0.03	<0.2	17	14	40	95
			fracture filling, 1% overa		99.50	1.50	112147	0.03 <0.03	<0.2 <0.2	47 52	14 14	38 40	61 58
			siliceous 99.00-100.60 2% Po, 1% Py dissem a throughout; weakly-moc chloritic, lt.green andesi chaotic fracturing, 60° b	derately ite tuff,	101.00	1.50	repeat 112148	0.03	<0.2	69	40	32	63
101.75	124.05	22.30	ANDESITE TUFF, med.olive-green, siliceou	us with 101.00	102.50	1.50	112149	0.04	1.8	435	29	36	116 57
101.75	124.00	£2.00	lighter grey (bleached) fracture intersections Po blebs and frac.filling; weakly hematitic 10	s; tr-1⁄2% 102.50	104.00 105.50	1.50 1.50	112150 112151	<0.03 <0.03	<0.2 <0.2	46 45	14 16	32 52	1

 e		~~~ · · · · · · · · · · · · · · · · · ·		e	<b>-</b>	· · · · · · · · · · · · · · · · · · ·	P	r	1 1 1	51 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	r • • • • • • • • • • • • • • • • • • •	····· 1	1 m · · · · · · · · · · · · · · · · · ·	·····	<b> </b>	<u> </u>	· · · · · · · · · · · · · · · · · · ·
<b>.</b>	<b>j</b>	I	I	<b>i</b>	. <b>F</b>		. J		1 . 1	. 4	F F	I	. J	C 1		5 D B	· · · J

Area: Contractor: Core Size:					Latitude: 38- Departure: 56- Elevation: 16	6+20E	DDH LJ-98-5-B		Inclina	Bearing: tion @ collar: Total Depth:	-60°		Date Com	pleted: J	luly 21, 19 luly 22, 19 R. I. Nicho	98
													Ass	ays		
From	Т	o in	iterval				From	То	width		Au	Ag	Cu	Co	Pb	Zn
m	n		<u>m</u>		Lithology		m	m	m	Tag No.	g/T	g/T	ppm	ppm	ppm	ppm
				weak limonite fract	ure coating											
					55° fracture, mod	d.quartz-filled.	105.50	107.00	1.50	112152	<0.03	<0.2	14	12	24	42
				100.10 100.70	tr dissem Po		107.00	108.50	1.50	112153	<0.03	<0.2	20	15	38	64
				107.95-108.50			108.50	110.00	1.50	112154	<0.03	<0.2	53	15	32	130
				110.10-110.30	• •	illing, 1/2% Py/Cpy	110.00	111.50	1.50	112155	0.18	2.2	1337	33	30	113
				111.35			111.50	113.00	1.50	112156	<0.03	<0.2	107	16	38	47
				112.00-112.20	40° fracture, silic, weak 30-40° fract quartz-fill, local Pe within; rock becor It.pea-green, silica	c, TO, ctures randomly, Po rarely to >1% oming dacitic, ceous				repeat	<0.03	<0.2	110	15	36	45
				118.65-119.00	It.grey fracture int 45° to c.a., fracture to c.a.; tr Py cube	ures @ 45° to										

124.05 Total Depth

	Red Cap (L Falcon Drill BTW		Latitude: 38+45N Departure: 56+20E Elevation: 1672 m	DDH LJ-98-5-C		Inclina	Bearing: tion @ collar: Total Depth:	-90°	E	Date Com	pleted: J	uly 22, 19 July 22, 19 R. I. Nicho	998
										Ass	ays		
From	То	interval		From	То	width		Au	Ag	Cu	Co	Pb	Zı
m	 m	m	Lithology	<u> </u>	m	m	Tag No.	g/T	g/T	ppm	ppm	ppm	ppn
0.00	1.52	1.52	CASING, no recovery		•								
1.52	4.50	2.98	ANDESITE TUFF / LAPILLI TUFF 1.52- 3.70 broken core, Mn/chl-coated fracx + limonite coating; med.grey weakly silic intermed volcanic; Po>Py	1.52	3.00	1.48	112157	<0.03	0.4	20	18	320	1,
			within high-angle fracs; bedding 75° -80° to c.a. 3.77- 3.80 Po/Chl band, Po to 2% along 80° bedding, Po veinlets randomly @ 55°-60°, 2 mm widths	3.00	4.50	1.50	112158	0.03	1.2	42	22	418	1
4.50	10.40	5.90	ANDESITE TUFF BRECCIA, pyroclastic, med.grey,										
			weakly silic, intermed.volcanic matrix supports dk.grey/ green clasts mm-2 cm ² scale, Po invades clasts commonly; 1-2% Po within 10-15° and 40-60° frac/	4.50	6.00	1.50	112159	<0.03	0.8	53	22	120	
			veinlets; unit is weakly hematized, maroon with silic intersections; epidote alternation / clast replacement	6.00	7.50	1.50	112160	<0.03	1.0	82	24	114	
	,		between 7.55m-10.40m; bedding 65-70°; distinct 42° contact	7.50	9.00	1.50	112161	<0.03	2.2	154	24	184	
			8.80-10.40 3-5% Po as veining/veinlets along 45-50° fractures	9.00	11.50	2.50	112162	0.08	2.8	120	21	362	:
10.40	14.25	3.85	RHYOLITE TUFF, It.grey, v.silic, maroon bands 20 cm wide @50° to c.a., containing 3-5% Po, tr stibnite;	10.50	13.00	2.50	112163	<0.03	2.0	62	18	204	
			1-2% Po >> Py dissem throughout unit; weakly frac'd with limonite coating; Po blebs throughout to cm ² ,			note: 112	2162-112164	intervals as	s record	ed by Lo	gger		
			rounded; indistinct fractured contact 12.50-14.25 open, limonite-coated frault longitudinal to c.a.; geothite/ limonite filled to cm widths	12.00	14.25	2.25	112164	0.17	1.6	68	21	164	
14.25	58.70	44.45	ANDESITE TUFF / LAPILLI TUFF, maroon, mod.hem; v.f.g. intermed.volcanic; Po dissem throughout + con- centrated along low-angle fractures; epidote and chlorite throughout; weakly-mod.siliceous; quartz- Py veintets @ 5-15° randomly; 35° contact	14.25	15.75	1.50	112165	<0.03	5.0	123	22	240	19
			15.85-17.10 fracture zone, limonitic 15.95-16.40 cm-2 cm wide quartz-carbonate	15.75	17.25	1.50	112166	0.03	4.4	155	25	316	6
			vein, limonitic, follows c.a.	17.25	18.75	1.50	112167	0.08	1.8	94	28	96	1.1
			16.80-17.00 Py, Po, stibnite-filled 15° fracture	18.75	20.25	1.50	112168	<0.03	1.6	49	15	74	
			+ quartz + carbonate 17.00-17.30 semi-massive stibnite over mm	20.25	21.75	1.50	112169	<0.03	1.2	98	24	34	
			widths (fracture) to 2-3% locally,			1.50	112170	<0.03	0.2	42	18	32	

Area: F Contractor: F Core Size: E			Latitude: 38+45N Departure: 56+20E Elevation: 1672 m	DDH LJ-98-5-C		Inclina	Bearing: tion @ collar: Total Depth:	-90°		Date Com	npleted:	July 22, 19 July 22, 19 R. I. Nicho	98
										Ass	ays		
From	То	interval		From	То	width	<b>T</b> N	Au	Ag	Cu	Co	Pb	Zn
m	m	m	Lithology	<u>m</u>	m	m	Tag No.	g/T	g/T	ppm	ppm	ppm	ppm
			core is mod.hematitic with lighter grey silic zones	23.25	24.75	1.50	112171	<0.03	<0.2	26	22	26	103
			throughout cyclically	24.75	26.25	1.50	112172	<0.03	<0.2	83	27	22	76
			18.30-23.40 longitudinal fracture cross-cuts +		27.75	1.50	112173	<0.03	0.6	71	25	38	185
			offsets 45-50° frac (cm offset);				repeat	<0.03	0.6	69	24	42	185
			tr Aspy. ½% Py, ½-1% Aspy, 1%	27.75	29.25	1.50	112174	<0.03	<0.2	65	16	38	91
			stibnite, 2% Po; sulphides also	29.25	30.75	1.50	112175	<0.03	<0.2	121	22	72	184
			dissem particularly in hem section	ns; 30.75	32.25	1.50	112176	<0.03	0.2	125	28	60	140
			fractures limonite coated; stibnite		33.75	1.50	112177	0.03	1.8	64	19	90	101
			euhedral spicules / acicular section		35.25	1.50	112178	<0.03	3.8	58	17	290	148
			23.40-41.00 incr.silic., med.grey	35.25	36.75	1.50	112179	<0.03	0.8	104	61	180	352
			40.35 3 mm wide 55° graphite horizon;	36.75	38.25	1.50	112180	<0.03	<0.2	75	53	46	131
			mottled appearance to hematite	38.25	39.75	1.50	112181	0.03	3.8	53	27	528	538
			sections; rounded quartz frag's;	39.75	41.25	1.50	112182	< 0.03	<0.2	32	15	28	71
			local sulphides to 2-3% along fra				repeat	< 0.03	<0.2	34	15	32	72
			planes, minor chlorite/epidote	41.25	42.75	1.50	112183	<0.03	<0.2	61	23	28	102
			shear-filling; It.green/blue frac-	42.75	44.25	1.50	112184	<0.03	<0.2	50	19	26	70
			filling (dravite? chlor?)	44.25	45.75	1.50	112185	<0.03	0.8	58	26	180	206
			41.00-42.00 tr-1% stibnite, 2% OPo, ½% Py	45.75	47.25	1.50	112186	<0.03	<0.2	29	14	34	71
			dissem; bedding 30-35°	47.25	48.75	1.50	112187	< 0.03	<0.2	50	16	26	67
			dissent, bedding 50-00	48.75	50.25	1.50	112188	<0.03	<0.2	149	29	44	152
				50.25	51.30	1.05	112189	< 0.03	<0.2	149	29	44	152
			51.30-58.70 dk.maroon, strongly hematized,	51.30	52.80	1.50	112190	<0.03	<0.2	284	52	68	168
			incr.sulphides dissem 2-3% stib/	52.80	54.30	1.50	112191	0.03	<0.2	385	67	50	350
			Po/Py, tr Cpy	52.00	04.00	1.50	repeat	< 0.03	<0.2	400	70	52	366
			Fo/Fy, ti Opy	54.30	55.80	1.50	112192	0.06	5.4	954	57	50	560
				55.80	57.30	1.50	112192	0.05	1.0	505	190	44	142
50.70	50.50	0.00	RHYOLITE TUFF, 'bleached' white, strongly fractured		58.80	1.50	112194	0.04	<0.2	319	98	40	225
58.70	59.50	0.80	and quartz veined; 1-2% Py, 1% Po, tr stibnite	58.80	60.30	1.50	112194	0.04	0.6	262	22	32	57
			58.80-59.50 0-5° 2cm wide quartz vein, limonitic contacts 59.55 50° Po vein 0.5cm + graphite	00.00	00.00	1.00	112100	0.00	0.0			01	
59.50	62.70	3.20	ANDESITE TUFF / LAPILLI TUFF, maroon, weak her dissem 1-2% stibnite, 1-2% Po, ½% Py locally to 3-4 in fractures, tr Aspy spicules, striated perfect crystals; 40° contact		61.80	1.50	112196	<0.03	<0.2	254	64	52	101
62.70	63.10	0.40	RHYOLITE TUFF, It.grey/white, v.siliceous; Po blebs >cm ² rounded and frac-fill; contact 60°	61.80	63.10	1.30	112197	<0.03	<0.2	247	121	38	63
63 10	64.50	1.40	GRANODIORITE DYKE, m.g., altered/chloritic grano-	- 63.10	64.10	1.00	112198	<0.03	<0.2	56	25	36	74
63.10	04.90	1.40	diorite; clasts of andesite/rhyolite incorporated; limoni along fracture planes throughout; stronly limonitic contact "lost"		65.60	1.50	112199	<0.03	<0.2	77	16	24	46

	Red Cap (L Falcon Drill BTW	•	Latitude: 38+45N Departure: 56+20E Elevation: 1672 m	DDH LJ-98-5-C		Inclina	Bearing: tion @ collar: Total Depth:	-90°		Date Com	pleted:	July 22, 19 July 22, 19 R. I. Nicho	998
										Ass	ays		
From m	To m	interval m	Lithology	From m	To m	width m	Tag No.	Au g/T	Ag q/T	Cu ppm	Co	Pb ppm	Zn ppm
			anatectized				······································					E.F	
64.50	75.80	11.30	ANDESITE TUFF, strongly silic intersection	s = It.grev, 65.60	67.10	1.50	112200	<0.03	1.2	308	11	22	58
04.00	75.60	11.50			68.60	1.50	112200	<0.03	1.4	303 391	23	32	9
			mass = med.grey mod-strongly silic; tr-1/2%		70.10	1.50	112201	< 0.03	< 0.2	169	23 16	42	6
			stibnite, Po>Py, tr Cpy v.dissem; limonite st		70.10	1.50	112202	<0.03	~0.2 0.6	209	10	42 76	59
			along multiple fractures; bedding 65-70°; cn										
			itinerant quartz veinlets follow c.a. common		73.10	1.50	112204	< 0.03	0.4	169	14	116	6
			tr-1% Po marginally	73.10	74.60	1.50	112205	0.03	0.4	264	15	68	72
75.80	75.95	0.15	ANDESITIC FELDSPAR PORPHYRY DYK contact 20°, lower contact 50°; limonitic and tr Py v.dissem		76.10	1.50	112206	<0.03	<0.2	154	14	54	6
75.95	99.90	23.95	ANDESITE TUFF with Tuff Breccia intersec	tions: 76.10	77.60	1.50	112207	0.03	<0.2	279	15	42	6
10.00	55.55	20.00	predom. med.grey/silic with random hemati		79.10	1.50	112208	0.14	0.6	331	13	48	4
			usually sulphide-enhanced; 1-2% Po, 1/2-1%				repeat	0.14	0.6	346	14	64	4
			1/2% Py, random graphite veinlets to 1-2% o		80.60	1.50	112209	0.03	<0.2	96	20	54	7
			widths; Po replaces clasts commonly; 30° c		81.60	1.00	112210	0.03	<0.2	127	42	58	14
			78.50-79.55 increasingly chloritized,		82.60	1.00	112211	<0.03	<0.2	102	34	58	20
			35° mod.foliation / shea		84.10	1.50	112212	0.03	<0.2	102	19	48	9
			orientation	84.10	85.60	1.50	112213	<0.03	<0.2	170	26	44	8
			79.55-82.80 mod.chloritic, pea-gree		87.10	1.50	112213	<0.03	<0.2	90	17	32	4
			, ,		07.10	1.50		<0.03	< 0.2	92	16	26	4
			v.dissem Po/Py only <		88.60	1.50	repeat 112215	<0.03	< 0.2	125	12	20 52	-
			82.80-85.00 mod.fractured, liminitic		90.10	1.50	112215	<0.03	~0.2 0.6	125	12	52 64	6
			qtz-carb veined @ 5°; s							136	21	68	
			silicified	90.10	91.60	1.50	112217	<0.03	0.4				
			85.60-85.90 strongly brecc'd and sili	•	93.10	1.50	112218	< 0.03	0.2	120	19	42	80
			Po ~1% dissem 0.5cm ²	,	94.60	1.50	112219	< 0.03	<0.2	115	19	32	8
			Po clusters along frac/c		96.10	1.50	112220	<0.03	<0.2	92	17	38	5
			epidote veinlets to cont		97.10	1.00	112221	0.10	6.2	206	22	1882	642
			91.70-98.10 epidote/chlorite/fracture		98.10	1.00	112222	0.03	1.0	108	12	274	11
			bedding	98.10	99.40	1.30	112223	< 0.03	<0.2	156	11	16	3
							repeat	<0.03	<0.2	157	11	14	8
99.90	100.89	0.99	ANDESITE PORPHYRY, med.grey, strongl intrusive dyke; weak carbonate veinlets long to core	-	100.89	1.49	112224	<0.03	<0.2				

Area: F ntractor: F ore Size: E			Latitude: 40+55N Departure: 54+96E Elevation: 1709 m	DDH LJ-98-6		Inclina	Bearing: tion @ collar: Total Depth:	-45°		Date Con	npleted:	July 23, 19 July 24, 19 R. I. Nicho	998
										Ass	ays		
From	То	interval		From	То	width		Au	Ag	Cu	Co	Pb	Zn
m	m	<u>m</u> -	Lithology	m	m	m	Tag No.	g/T	g/T	ppm	ppm	ppm	ppm
0.00	1.52	1.52	CASING, no recovery										
1.52	8.75	7.23	CHERT bands within altered siliceous qtz monzonite(? broken contact; limonitic	")									
			1.52-8.10 broken core, limonite coated (cher = chill margin cycles?); It.grey/ green cryptocrystalline chert thru- out (upper magma chamber facies		3.00	1.48	112225	0.06	3.6	103	5	216	382
			It.grey/white f.g. intrusive rock; dk.grey/black patchy retrograded biotite (chlorite) give texture to intrusive; qtz monz is brecc'd in part exhibiting Po/Py replacement	3.00	4.50	1.50	112226	0.06	11.0	68	3	2248	562
			of <crrv<sup>2 clasts randomly oriented (anatectically altered intrusive?); Mn dendrites very common along fracture zones invading to 5 cm widths</crrv<sup>	4.50	6.00	1.50	112227	<0.03	2.2	57	4	150	779
			3.30-4.00 longitudinal limonite frac followed by semi-massive Py to cm widths	6.00	7.50	1.50	112228	<0.03	2.0	85	4	56	336
8.75	9.40	0.65	RHYOLITE (TUFF?) FELSITE, shows bedding 70° with oxidized Py crystals ubiquitously; ½-1% Py (clast?) replacement; broken contact, limonitic	h 7.50	9.00	1.50	112229	<0.03	2.0	185	4	76	378
9.40	12.45	3.05	QUARTZ MONZONITE, siliceous, v.altered; longitudin fractures commonly filled with semi-massive Py; (Mn?) dendrites throughout rock unit; Py/Po-filled 70-75° fractures in <cm alt'd<="" bands;="" epidote="" spaced="" td=""><td>al 9.00</td><td>10.50</td><td>1.50</td><td>112230</td><td>&lt;0.03</td><td>1.4</td><td>25</td><td>&lt;1</td><td>164</td><td>287</td></cm>	al 9.00	10.50	1.50	112230	<0.03	1.4	25	<1	164	287
			It.green; faulted contact (60°?), limonitic 11.50-12.45 freshens and brecciates	10.50	12.00	1.50	112231	<0.03	0.6	30	1	16	311

- 12.45 17.95 5.50 FELSTTE (ultra-silicined myolite), it.green/white flecked with oxidized Py crystals << mm²; local Po/Py fracturefilling to 1-2%; 65° bands of 10 cm wide Py>Po at 15.88-15.93m and 16.21-16.24m define bedding; contact @ 15° 16.50 bedding 75° 16.80-16.98 liesegang rings; limonite stained
- 17.95 25.87 7.92 QUARTZ MONZONITE, altered with chert bands/ horizons, v.v.silic, it.grey/green, qtz 'eyes' throughout; mod.fractured; chert is translucent, pale grey/green/ white; fractures @ 75° locally loaded with Py/Po to 5-10% over cm-2cm widths; Sph in 2-3% in fracs at

13.50

15.00

16.50

1.50

1.50

1.45

15.00

16.50

17.95

112233

112234

112235

Drill Hole LJ-98-6, Page 1 of 5

1.0

4.2

4.0

< 0.03

< 0.03

< 0.03

47

237

304

3

18

5

30

38

30

308

195

Area: Contractor: Core Size:			Latitude: 40+55N Departure: 54+96E Elevation: 1709 m	DDH LJ-98-6		Inclina	Bearing: tion @ collar: Total Depth:	-45°	[	Date Com	pleted:	July 23, 19 July 24, 19 R. I. Nicho	<del>9</del> 98
										Ass	ays		
From	То	interval		From	То	width		Au	Ag	Cu	Co	Pb	Zn
m	m	m	Lithology	m	m	m	Tag No.	g/T	g/T	ppm	ppm	ppm	ppm
			18.90-19.00m, 19.35-19.37m, 19.70-19.72m, 19.81-										
			20.30m; chert with 3cm ² qtz monz clasts along base;	17.95	19.00	1.05	112236	0.07	12.6	1370	5	16	382
			undulating 50° contact	19.00	20.30	1.30	112237	0.15	5.0	396	9	456	1210
			20.30-20.70 qtz monz, local semi-massive Py>										
			Po in cm-2cm ² 'blebs'	20.30	21.80	1.50	112238	0.07	18.0	2039	7	52	6366
			21.00-21.80 1-2% Po, 1-2% Py, 1-2% Sph as										
			10-15° frac filling, chlor fracs	21.80	22.80	1.00	112239	0.11	1.4	141	3	42	2760
			intrusive fragments/clasts to 5 cm ²	22.80	23.80	1.00	112240	0.12	2.8	236	5	48	1006
			in chert units				440044	0.40		400	•		00
			22.35-25.00 1-2% Po/Py, 1-2% Sph in fractures	23.80	24.80	1.00	112241	0.12	1.6	168	9 13	20 24	90 155
			at 0-5° 25.73-25.80 Po/Py dissem ~5% along 75° bedding/foliation	24.80	25.87	1.07	112242	<0.03	4.8	319	15	24	155
25.87	26.12	0.25	ANDESITIC TUFF, 76°; Po/Py/Sph ~2% horizon, v.f.g., med.grey, silic, contact 80°	25.87	27.00	1.13	112243	0.14	6.4	309	6	28	95
26.12	27.35	1.23	QUARTZ MONZONITE, fm.g., white/lt.grey, white qtz eyes to 0.5cm², tr Sph along frac planes, broken limonitic contact										
27.35	28.15	0.80	ANDESITE TUFF BRECCIA, with qtz clasts to 2-3cm ² , pale green, epidotized; 1-2% Po/Py clustered finely arounds clasts; contact 75-80°	27.00	28.50	1.50	112244	0.17	7.6	649	7	430	184
28.15	35.10	6.95	QUARTZ MONZONITE, + med.grey minerlized andesitic bands; It.grey, f.g., altered intrusive with meddk.grey andesitic bands (10-20 cm widths); siliceous; Po/Py to 2-3% finely dissem & in clusters intervals 28.90- 29.00m, 29.70-29.78m, 28.95-30.12m, and 32.60- 32.67m; Mn(?) dendrites noted along fracs; sharp 75° contact 31.00-31.40 5-10° limonite/goethite-filled fracture, Po/Py within frac to 1-2% 31.40-32.00 60-70° mod.strong foliation devel- ops; Po/Py dissem along foliation	28.50 30.00 31.50 33.00 34.00	30.00 31.50 33.00 34.00 35.10	1.50 1.50 1.50 1.00 1.10	112245 112246 112247 112248 112249 repeat	<0.03 0.08 <0.03 0.17 0.31 0.31	1.4 0.8 1.2 2.0 6.6 6.8	129 76 113 140 427 420	5 4 5 4 5 5	16 16 26 50 174 180	133 125 300 302 268 271
/-		c 0 c	FELSITE/RHYOLITE FLOW BRECCIA/AGGLOMERATE	, 35.10	36.60	1.50	112250	0.07	6.0	233	8	550	355
35.10	40.45	5.35	Py dissem throughout matrix 1-2% ± ½-1% Po;	, 35.10 36.60	38.10	1.50	112250	0.07	1.0	233 39	5	72	212
			dk.green chlor clasts invariably Po-replaced; white	38.10	39.60	1.50	112252	<0.03	3.6	145	12	178	223
			sub-rounded qtz + rhyolite pebbles 40%; dk.grey intersections 10-20 cm may be andesitic pulses; limonitic 50° contact	39.60	40.60	1.00	112253	<0.03	1.6	114	13	90	102
40.45	41.50	1.05	ANDESITE TUFF, rhyolitic, strongly silic intersections;	40.60	41.60	1.00	112254	<0.03	4.0	177	9	160	317

	Red Cap (L Falcon Dril BTW			Latitude: 40+55N Departure: 54+96E Elevation: 1709 m	DDH LJ-98-6		Inclina	Bearing: tion @ collar: Total Depth:	-45°	1	Date Corr	pleted:	July 23, 1 July 24, 1 R. I. Nicho	998
											Ass	ays		
From	То	interval			From	То	width		Au	Ag	Cu	Co	Pb	Zn
m	m	m		Lithology	m	<u> </u>	m	Tag No.	g/T	g/T	ppm	ppm	ppm	ppm
				ance (possible hypabyssal andesite -filling to 2-3% over <cm td="" widths;<=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></cm>										
41.50	42.90	1.40	brecciated in part; f	(?), altered; It.green chlor/epidotized; inely dissem Py to 1% throughout; crystals 1%, sharp 55° contact	41.60	42.90	1.30	112255	<0.03	5.4	85	7	256	527
42.90	83.70	40.80		TIC TUFF BRECCIA; matrix med grey, dk.green clasts to 2 cm ² ; Po										
				ly; silicified It.grey intersections	42.90	44.40	1.50	112256	<0.03	1.6	65	6	138	984
			throughout may be	aborted rhyolitic pulses, v.silic.	44.40	45.90	1.50	112257	<0.03	2.0	59	5	288	359
			50° fractures throug	hout; 1⁄2-1% Po + chlorite; Py	45.90	47.40	1.50	112258	0.16	0.6	20	2	68	83
			flecks throughout			•		repeat	0.17	0.4	19	2	62	81
			45.80-45.90	1% Gn, 1/2-1% Sph as blebs to	47.40	48.90	1.50	112259	0.48	0.8	30	3	104	346
				1 cm ² (possible frac filling?)	48.90	50.40	1.50	112260	<0.03	0.2	26	3	48	122
			50.10-83.70	andesite tuff intersections 10-20	50.40	51.90	1.50	112261	<0.03	0.6	29	3	104	85
				cm alternating with tuff breccia	51.90	53.40	1.50	112262	<0.03	0.6	24	2	94	123
				and rhyolitic zones 20-40 cm in	53.40	54.90	1.50	112263	<0.03	1.2	89	5	182	468
				width; Po>Py concentrated in	54.90	55.90	1.00	112264 112265	<0.03 0.10	1.0 1.6	133	11 5	304 98	1.11% 152
				fracs (chaotic) and dissem finely	55.90 57.40	57.40 58.90	1.50 1.50	112265	0.10	1.8	91 29	3	98 176	163
			E4 00 EE 4E	to 1-2% locally 1/2% Sph, 2% Po/Py; strongly	58.90	60.40	1.50	112267	<0.23	1.0	35	3	136	183
			54.90-55.45	frac'd @ 5-10° to c.a.	50.50	00.40	1.00	repeat	<0.03	1.0	36	4	148	199
			62.50-62.70	as above	60.40	61.90	1.50	112268	<0.03	0.6	49	6	44	474
			64.20-64.55	dissem v.f.g. Sph along fracs at	61.90	62.90	1.00	112269	< 0.03	5.2	164	11	192	611
			04.20-04.00	15° to c.a.	62.90	64.40	1.50	112270	< 0.03	7.4	158	13	198	3189
			66 00-74 80	1-2% local Po>Py within low-angle	64.40	65.50	1.10	112271	<0.03	7.6	124	10	236	1333
			00.00 / 1.00	(0-10°) and 45-60° fracture sets	65.50	67.00	1.50	112272	< 0.03	2.2	165	12	66	2117
				commonly; rock is andesite tuff w/	67.00	68.50	1.50	112273	<0.03	2.4	228	15	34	1594
				tuff breccia intersections and It.	68.50	70.00	1.50	112274	<0.03	1.4	160	11	24	1501
				grey more silicified zones 30-40 cm	70.00	71.50	1.50	112275	0.07	2.4	206	20	34	993
				wide; later stage qtz veins/veinlets	71.50	73.00	1.50	112276	<0.03	6.6	89	8	190	562
				crosscut fracture at 35-40°, 1-2 cm	73.00	74.50	1.50	112277	1.39	11.6	160	13	212	1057
				widths at 69.80m and 70.45 m;	74.50	76.00	1.50	112278	<0.03	1.0	41	4	32	762
				Po 2-3% marginally	76.00	77.50	1.50	112279	<0.03	0.6	30	4	12	52
			67.75-83.70	lighter grey, increased silicification,	77.50	7 <del>9</del> .00	1.50	112280	<0.03	2.4	78	7	162	1077
				approaches rhyolitic % SiO2; fine	79.00	80.50	1.50	112281	<0.03	2.4	98	6	166	1211
				filigreed fractures @ 5-60° to c.a.,	80.50	82.00	1.50	112282	<0.03	2.2	74	5	114	1085
				followed by Po>Py to 1%; fracs crosscut by clasts (fault alteration)	82.00	83.70	1.70	112283	<0.03	2.4	140	8	54	1247
02 70	86.85	3.15	FALLET ZONE 15°	plane to core axis, kaolinite fill fault	83.70	85.30	1.60	112284	<0.03	0.8	49	5	24	386
83.70	00.00	3.10		15°; weakly limonitic; rock	00.70	00.00	1.00	repeat	<0.03	0.8	49	6	28	416
				t low angles to c.a., contact 15°	85.30	86.85	1.55	112285	< 0.03	0.4	36	3	26	110

	Red Cap (I Falcon Dril BTW		Latitude: 40+55N Departure: 54+96E Elevation: 1709 m	DDH LJ-98-6		Inclina	Bearing: tion @ collar: Total Depth:	-45°	(	Date Com	pleted:	July 23, 19 July 24, 19 R. I. Nicho	998
										Ass	ays		
From	То	interval		From	То	width		Au	Ag	Cu	Co	Pb	Zn
<u> </u>	m		Lithology	m	m	m	Tag No.	g/T	g/T	ppm	ppm	ppm	ppm
00.05	07.40	40.55	ANDESITE TUFF / lapilli tuff (with Tuff Breccia horizons	86.85	88.00	1.15	112286	<0.03	2.2	156	4	20	149
86.85	97.40	10.55	to 0.5 m widths); med.grey, crosscut by fine chlor	88.00	89.50	1.50	112287	~0.03 0.27	4.4	274	4	28	204
			45-60° fractures; weakly chlor increasing in local	89.50	<del>9</del> 1.00	1.50	112288	0.07	1.2	78	8	58	150
			strong frac zones; Po>Py concentrated in fracs to	91.00	92.50	1.50	112289	< 0.03	3.0	133	9	190	1056
			1% locally	92.50	94.00	1.50	112290	0.42	11.0	538	13	280	424
			92.05-92.60 strongly fract'd, limonitic,	94.00	95.50	1.50	112291	0.59	1.0	113	9	24	166
			bleached, tr Py	95.50	96.50	1.00	112292	< 0.03	0.6	45	7	18	138
			92.80-92.85 1-2° frac-related Sph @ 15° to ca	96.50	97.40	0.90	112293	<0.03	0.6	57	9	18	156
			93.70-94.20 2-4% Po, 1% Py, dissem Sph fracture-filling				repeat	<0.03	0.6	59	9	18	152
97.40	99.80	2.40	FAULT ZONE, 25° to c.a., limonitic, strongly fractured										
			at 25° to c.a., soft chlor fault gouge, tr Sph in frac's locally to 1%, 25° contact	97.40	99.80	2.40	112294 repeat	1.00 	62.4 61.8	1376 	28 	1112 	4380 
99.80	105.30	5.50	ANDESITE TUFF BRECCIA, pyroclasitic, tuff horizons, med.grey/green, weakly chlor predominantly Tuff Breccia with tuff horizons to 30 cm widths; 50° contact 100.00 bedding 65°	99.80	101.30	1.50	112295	0.04	1.4	113	11	34	520
			100.80-101.00 15° fracture zone, limonitic 104.00 bedding 55°, mod-weak silic 105.15-105.30 breccia clasts to 2 cm², incr chlor	101.30	102.80	1.50	112296	<0.03	1.0	87	9	36	334
105.30	115.10	9.80	ANDESITE FELDSPAR PORPHYRY INTRUSIVE, rare rounded mm ² qtz 'eyes' (<1%), It.green feldspar phenocrysts (~20% of core) supported by aphanitic silic matrix + modstrongly chlor; some epidote	105.30	106.80	1.50	112297	<0.03	2.6	167	15	34	27
			phenocryst replacement; feldspar sausseritized/ altered; tr Po/Py only; randomly placed kaolinitized fracture zones as noted; 60° contact 110.90-113.40 kaolinitized (veins / fracture coat-	110.90	112.40	1.50	112298	<0.03	1.2	27	5	246	387
			ing) fracture zone 114.50-115.10 fractured, kaolinitied, frax zone, shear @ 60°	114.30	115.80	1.50	112299	<0.03	0.4	53	8	26	518
115.10	116.15	1.05	ANDESITE LAPILLI TUFF, Tuff Breccia horizons; intermed.volcanic tuff breccia sequences, med.grey/ green, chloritized variably; tr Py only; 80° contact										
116.15	116.70	0.55	(ANDESITIC) INTRUSIVE, medlt.grey, m.g.; remnant chlor biotite flakes, no visible sulphides; white rounded phenocrysts = altered feldspar; weakly fractured; contact 85°										

	: Red Cap (l Falcon Dril : BTW		Latitude: 40+55N Departure: 54+96E Elevation: 1709 m	DDH LJ-98-6		Inclina	Bearing: ation @ collar: Total Depth:	-45°	[	Date Com	pleted:	July 23, 19 July 24, 19 R. I. Nicho	98
										Ass	ays		
From	То	interval		From	То	width		Au	Ag	Cu	Co	Pb	Zn
<u> </u>	m	<u>m</u>	Lithology	m	m	m	Tag No.	g/T	g/T	ppm	ppm	ppm	ppm
116.70	117.50	0.80	ANDESITE LAPILLI TUFF, silic, generically related to above hypabyssal equivalent; med.grey matrix; It.grey rounded lapilli < <mm<sup>2; no visible sulphides; broken contact (80°?), kaolinitized</mm<sup>										
117.50	119.50	2.00	(ANDESITIC) INTRUSIVE, altered feldspar rounded phenocrysts; fragments of andesite lapilli tuff to 5cm ² over initial 20 cm and at 118.50-118.85m; no visible sulphides; 60-65° clast orientation; 45° contact 118.95-119.10 'cherty' crysto-crystalline cooling rim, It.pink (hem) coloration	117.50	119.00	1.50	112300	<0.03	0.2	33	5	32	313
119.50	125.95	6.45	ANDESITE LAPILLI TUFF, Tuff Breccia horizons to 20 cm widths, chloritized, med.green with rounded 2-5 cm epidote 'eggs'/concentrations; rock becoming more mafic compositionally, 25° contact 123.65-13.87 minor andesitic intrusive (dykelet)										
125.95	126.55	0.60	FAULT ZONE, limonitic, broken core; no visible sulphides; hem fracs longitudinal to c.a. dominate; moderate clay reduction; soft 'soapy', broken low-angle 10-15° contact	i									
126.55	129.35	2.80	ANDESITE LAPILLI TUFF, med.green/grey, chlor unit; Tuff Breccia 10-20 cm wide horizons randomly; no visible sulphides; 25° contact										
129.35	132.30	2.95	FAULT ZONE, limonitic, chloritic, weakly kaolinitized fracture surfaces, 'broken core'; no visible sulphides; fragments only to 3 cm widths; overdrilled - lost core, note: 2.3 m recovery between 129.35-132.30 m	129.30	130.80	1.50	112301	<0.03	<0.2	28	7	14	184
132.30	) 150.88	18.58	ANDESITE TUFF, pale green, chlor, Tuff Breccia; frac zones common (where noted); Tuff Brecia zones randomly sited to 30 cm widths; epidote altered rock; tr Py frac-fill 134.42-134.65 broken core, fractured 134.80-135.70 broken core, strong longitudinal frac, barren qtz veinlets 136.80-137.45 longitudinal open fracture, chlor coated, weak clay alteration 150.10-150.88 brecciated, clasts to 5 cm ² (of Andesite Tuff); no visible sulphides	130.80	132.30	1.50	112302 repeat	<0.03 <0.03	0.6 0.6	89 86	777	18 14	256 240
		150.88	Total Depth										

Area: Fontractor: Fore Size: B		•	Latitude: 42+61N Departure: 55+12E Elevation: 1518 m	DDH LJ-98-7		Inclina	Bearing: tion @ collar: Total Depth:	-45°	[	Date Com	pleted:	July 25, 19 July 26, 19 R. I. Nicho	998
										Ass	avs		
From	To m	interval m	Lithology	From m	To m	width m	Tag No.	Au g/T	Ag g/T	Cu ppm	Co ppm	Pb ppm	Zr ppn
m			Lindiday										
0.00	1.52	1.52	CASING, no recovery										
1.52	3.50	1.98	ANDESITE TUFF BRECCIA, rhyolite clasts to 3 cm ² , broken 85° contact 1.52-3.20 broken core, hem frac surfaces	1.52	2.65	1.13	112303	0.12	3.2	162	35	154	211
			2.50-2.65 15° goethite-filled fracture, strongly silicified; 5% Aspy, 3-4% Py, 2% Po in interval above, poss		2.00	1.10		••••					
			v.dissem Sph	2.65	3.50	0.85	112304	0.08	1.6	127	12	60	393
			3.15-3.30 4% Aspy, 2% Py, 1% Po, possible v.dissem Gn (stibnite?); strongly fractured & limonitic; strong silic										
3.50	6.18	2.68	RHYOLITE TUFF BRECCIA, andesite clasts to 2x3 cm	3.50	5.00	1.50	112305	<0.03	<0.2	32	4	18	1
5.50	0.10	2.00	% Po/Py dissem	5.00	6.18	1.18	112306	<0.03	0.4	94	7	28	2
6.18	7.75	1.57	FAULT ZONE, goethite/limonite dominated, 10 cm sections of massive Py, kaolinitized rock to 6.70 m; strongly fractured, sense of fault 30-35° to c.a.; contact 15°	6.18	7.75	1.57	112307	<0.03	3.0	318	17	54	1
7.75	9.10	1.35	RHYOLITE TUFF BRECCIA, pyroclastic; moderately fractured, limonite-stained faces, 1-2% Py along fractures, tr Po; bedding 75°; broken limonitic contact	7.75	9.10	1.35	112308	<0.03	2.0	117	8	226	4
9.10	18.90	9.80	ANDESITE LAPILLI TUFF, Tuff Breccia horizons; 75°	9.10	10.60	1.50	112309	<0.03	<0.2	3	5	16	
0.10	10.00	0.00	bedding; sections of med.grey silic andesite dominated	10.60	12.10	1.50	112310	<0.03	<0.2	26	8	12	
			by olive-green chlor and tuff; tr v.dissem Py/Po only;	12.10	13.60	1.50	112311	<0.03	<0.2	5	7	66	3
			30-40° fractures rarely carry 1-2% Po fill; contact 45° subtle	13.60	15.10	1.50	112312	<0.03	<0.2	17	6	44	2
			15.85-16.30 35° fracture, 2-3% local Po fill 16.70-17.40 Tuff Breccia, lighter green/grey	15.10	16.60	1.50	112313	<0.03	0.4	24	9	194	5
			matrix supports 1-3cm² andesite breccia clasts; bedding 50° to c.a.; epidote invades clasts	16.60	18.10	1.50	112314	<0.03	<0.2	5	6	38	
18.90	33.68	14.78	ANDESITE TUFF BRECCIA, pyroclastic; andesite clasts partly replaced by epidote; med.pea-green matri and lt.green clasts; contact 75° 19.13-19.20 2-3% Po within matrix 19.25-19.85 lapilli tuff matrix, white guartz/	18.10 x	19.60	1.50	112315	<0.03	<0.2	27	9	28	
			rhyolite fragments; bedding 45° 23.85-23.95 2% Po along 45° bedding planes and dissem Py; randomly oriented epidote veinlets throughout	23.50	25.00	1.50	112316	0.08	0.8	38	8	166	11

	per a la companya de	press and man	2 C 1	10 C C C 10 B	 	<b>.</b>	ent en eg	 #15 1 1 <b>1</b>	2 C 13	5 C C C C 1	<i></i>	1 1 1 1 N N	 A 4 1 7 1 8	 ····
		1	1	1			1	 1		[ ]				
· · ·	1	•			·. •	· -								

	Red Cap (I Falcon Dril BTW		Latitude: 42+61N Departure: 55+12E Elevation: 1518 m	DDH LJ-98-7		Inclina	Bearing: tion @ collar: Total Depth:	-45°	[	Date Com	pleted: J	luly 25, 19 luly 26, 19 R. I. Nicho	98
										Ass	avs		
From	То	interval		From	То	width		Au	Ag	Cu	Co	Pb	Zn
m	m	m	Lithology	m	m	m	Tag No.	g/T	g/T	ppm	ppm	ppm	ppm
			31.50-33.68 1-3% Po replaces matrix, invades clasts, locally to 5% over <cm< td=""><td>31.50</td><td>33.00</td><td>1.50</td><td>112317</td><td>&lt;0.03</td><td>4.0</td><td>68</td><td>8</td><td>104</td><td>287</td></cm<>	31.50	33.00	1.50	112317	<0.03	4.0	68	8	104	287
				33.00	34.00	1.00	112318	<0.03	2.0	189	19	56	1281
33.68	34.00	0.32	FAULT ZONE, 75°; brecciated, limonite/goethite-filled shear/fault plane; vuggy quartz veining throughout; v.oxidized; contact 75°										
34.00	35.65	1.65	ANDESITE TUFF BRECCIA, andesitic epidotized frags to 2 cm ² partly resorbed into med.pea-green chloritic matrix; subtle (75°?) contact										
			34.00-34.20 2-3% Po>Py along 10° fracture	34.00	35.00	1.00	112319	<0.03	<0.2	51	9	14	194
			35.05-35.35 2% Po fracture filling/veinlets	25.00	26.20	1 00	repeat 112320	<0.03 <0.03	<0.2 <0.2	52 116	10 12	18 16	199 179
35.65	41.30	5.65	ANDESITE TUFF / lapilli tuff, med.green/grey, epidote altered, intermed.volcanic; 35° contact 35.65-36.90 3-4% Sph in margins of 10-15°	35.00	36.20	1.20	112320	-0.05	<b>~0.2</b>	110	12	10	115
			qtz veins 2-3 cm wide, + Po ~10% 35.85-37.20 zoned sulphides (35.85-36.65 =	36.20	37.20	1.00	112321	<0.03	1.6	288	16	32	1237
			Po>Py frac fill to 3-4%) 36.90-37.20	37.20	38.70	1.50	112322	<0.03	<0.2	76	12	22	399
			tr Po>Py noted throughout unit (rare) as frac filling	38.70	40.20	1.50	112323	<0.03	<0.2	16	10	20	76
			· · · · · · · · · · · · · · · · · · ·	40.20	41.70	1.50	112324	<0.03	<0.2	4	9	12	61
41.30	45.30	4.00	ANDESITE TUFF BRECCIA; med.pea-green, chloritized/ epidotized matrix supports rhyolite, andesite, chlorite clasts 0.5-3 cm ² ; glassy, siliceous matrix, tr Py/Po invades clasts; contact 70° 44.80-45.30 alteration zone, moderately bleached / foliation @ 70-75°	41.70	43.20	1.50	112325	0.03	<0.2	3	8	12	50
45.30	47.00	1.70	'QUARTZ EYE' QUARTZ FELDSPAR PORPHYRY, chlor matrix, quartz/feldspar phenocrysts, chlorite (biotite/hornblende?) flakes, no visible sulphides; 70° contact										
47.00	56.47	9.47	ANDESITE TUFF BRECCIA, lapilli tuff; med.pea-green, silic intermed volcanic tuff / tuff breccia; Po>Py to 2% locally as frac fill / veinlets @ 60-65° to c.a.; bedding 75°; chlorite/epidote-altered; tuff / lapilli tuff > t.breccia 70 : 30; tuff grad.becomes pale green with 10 cm weakly hematitic horizons (10 cm widths) (dacitic?);	47.00	48.50	1.50	112326	0.06	0.4	43	10	40	323
			sharp 65° contact 50.50-50.60 1-2% Po, ½% Py along bedding	48.50 50.00	50.00 51.50	1.50 1.50 1.50	112327 112328	0.03 <0.03	<0.2 <0.2	49 39	14 9	28 22	701 221
			planes (55-60°); v.silic/altered	51.50	53.00	1.50	repeat 112329	<0.03 0.03	<0.2 <0.2	42 13	10 7	24 18	233 195

Taiga Consultants Ltd.

Xplorer Gold Corp. (BC-98-1)

	a: Red Cap r: Falcon D e: BTW		Latitude: 42+61N Departure: 55+12E Elevation: 1518 m	DDH LJ-98-7		Inclina	Bearing: tion @ collar: Total Depth:	-45°	[	Date Com	pleted:	luly 25, 19 luly 26, 19 R. I. Nichol	98
										Ass	avs		
Fron	n Te	o interval		From	То	width		Au	Ag	Cu	Co	Pb	Zn
n	<u> </u>	<u>n m</u>	Lithology	<u> </u>	m	m	Tag No.	g/T	g/T	ppm	ppm	ppm	ppm
56.47	62.40	) 5.93	QUARTZ FELDSPAR PORPHYRY, It.grey/green, f.g. (intrusive) dyke, chloritized, weakly altered, freshens with depth; alteration zone/breccia 56.47-56.75m, no visible sulphides; 25° sharp contact 61.25-62.40 strongly fractured @ 10° to c.a., limonite-coated	61.25	62.40	1.15	112330	0.25	<0.2	18	9	12	41
62.40	) 66.3	5 3.95	ANDESITE TUFF, strongly silic, grey/green/'gassy' chloritized alteration zone adjacent ot dyke, no visible sulphides; concave 'up' contact	62.40	63.90	1.50	112331	<0.03	<0.2	10	26	38	378
66.3	5 83.5	2 17.17	ANDESITE TUFF BRECCIA, pyroclastic (slump breccia?) med.green, chlor/epidotized intermed white quartz & dk.green/chlor sub-angular 1-3cm ² clasts; tr-½% Py cubelets diss; weak fractured @ 5-15° to c.a.; contact 40-45° (?) 67.20-69.47 distinctive <mm<sup>2 rounded white lapilli in matrix 68.47-68.48 35° Po band 69.47 2mm wide Po band 45° 74.00-74.60 5° quartz-filled fracture; no visible sulphides - tr Po @ 30-40° in frac 75.40-75.60 5° chlor clay-filled frac, bleaching noted in frac intervals 77.00 65° open clay/brecc filled frac 78.90-79.60 longitudinal quartz veinlets, tr Py marginally 82.30-82.70 longitudinal quartz veinlet swarm, tr Py only 82.70-83.52 longitudinal open fracture follows c.a.; mud/clay-fill; no visible sulphides</mm<sup>	68.40 81.40	69.90 82.90	1.50	112332 112333	0.18	<0.2	10	10	36 522	96 257
83.5	2 86.2	6 2.74	ANDESITIC FLOW BRECCIA, pyroclastic flow; andesite lapilli tuff, andesite tuff fragments to >10cm; mod strongly chloritized, med.green; tr-½% Py dissem and 1% Po bands; contact 20°										
86.2	6 88.4	0 2.14	ANDESITE TUFF, lapilli tuff; med.grey/green, intermed volcanic tuffs; bedding 40-45°; white 0.3cm² rounded lapilli throughout; contact 55° 87.78-88.20 thinly bedded 55° andesite tuffs 87.78-88.40 2% Po, 2% Py frac-fill 88.20-88.40 strongly brecc'd, siliceous	87.75	89.25	1.50	112334	<0.03	5.4	126	22	522	796
88.4	0 91.3	0 2.90	Banded Siliceous Turbidite Sediments (argillite -										

From m     To m     Interval m     Ethology     From m     To m     To m     No     Au m     A		: Red Cap (l : Falcon Dril : BTW		Latitude: 42+61N Departure: 55+12E Elevation: 1518 m	DDH LJ-98-7		Inclina	Bearing: ation @ collar: Total Depth:	-45°	l	Date Com	pleted:	July 25, 19 July 26, 19 R. I. Nicho	98
From m       To m       To m       To m       To m       To m       To m       To m       To m       Au       Ag       Cu       Co       Pb         m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m       m <tdm< td=""> <tdm< td="">       m</tdm<></tdm<>											Ass	avs		
argiliaceous mudsione); bedding 75°; med green alterantes wih black, Vf g. seds in mm-thick to om- thick lameliae; bedding drugted and offset 1-2 cm by cross-cutting 30-50° hair-like fractures (quartz- filled) on opposing planes; 60° contact 93.30-322 1% Po blebs along bedding planes 91.30 92.85 1.55 TUFF BRECCIA (andeslike) inextricably interhedded with disrupted banded argiliaceous mudstone/argilite, wry fractured with 1% local PO frachility proclassities sed- ment interbeds; concave upwards contact 92.85 93.48 0.63 Banded Lamellar Argiliaceous Mudstone + Argilite; v.thinly bedded 60°; grey/lk grey; no visible sulphides; 55° contact 93.48 95.85 2.37 BRECCIA (andeslike); fractured Tuff Breccia, mod-strongly chloritized; minor brecc'd banded sediments, interbedded; no visible sulphides; undulating 35° to ca: minor Po/Py along bedding planes; bedding orse-cut and offset cm-8cm distances by low-angle fractures 99.70-99.95 chloriti, brecciater Po veinlets conter to bedding at 0-30° (Po 1%) 105.00-105.50 broken core fremainder of hole is hythmic succession of banded sediments, itameliat black/dk grey angilite and it green angiliaceous mudstome; minor Po follows bedding planes; periodic fractures 0400 (grey for 000 for 0000 for 000				Litheleev							Cu	Co		Zn ppm
disrupted banded argillaceous mudstone/argillite; very fractured with 1% local Po frac-fill; pyroclastic sedi- ment interbeds; concave upwards contact 92.85 93.48 0.63 Banded Lamellar Argillaceous Mudstone + Argillite; v.thinly bedded 60°; grey/It.grey; no visible sulphides; 55° contact 93.48 95.85 2.37 BRECCIATED TUFF BREECCIA (andesitic); fractured Tuff Breccia, mod-strongly chloritized; minor brecc'd banded sediments interbedded; no visible sulphides; undulating 35° contact 95.85 119.79 23.94 Banded Argillaceous Mudstone / Argillite; lamellar, v.thinly bedded @55° to c.a.; minor Po/Py along bedding planes; bedding cross-cut and offset cm-8cm distances by low-angle fractures 99.70.99.55 chloritic, brecciated; Po veinlets counter to bedding at 0-30° (Po 1%) 105.00-105.50 broken core remainder of hole is rhythmic succession of banded sediments; lamellar black/dk.grey argillite and It.green argillaceous mudstone; winor Po/folkows bedding planes; periodic fracturing (uplift) cross-cuts bedding and offsets by cm-scale; sediments are probable Bourna sequence 7% E: distal turbildte pattern. 102.00-119.79 bedding from 60° at 102m to 50° at ECH 115.60-110.75 increasing argillite beds to 20-30 118.29 119.79 1.50 112336 <0.03 <0.2 95 12 28				argillaceous mudstone); bedding 75°; med.green alterantes with black, v.f.g.seds in mm-thick to cm- thick lamellae; bedding disrupted and offset 1-2 cm by cross-cutting 30-50° hair-like fractures (quartz- filled) on opposing planes; 60° contact					<del>_</del>					
<ul> <li>v.thinly bedded 60°; grey/lt.grey; no visible sulphides; 55° contact</li> <li>93.48 95.85 2.37 BRECCIATED TUFF BRECCIA (andesitic); fractured Tuff Breccia, mod-strongly chloritized; minor brecc'd banded sediments interbedded; no visible sulphides; undulating 35° contact</li> <li>95.85 119.79 23.94 Banded Argillaceous Mudstone / Argillite; tamellar, v.thinly bedded @ 55° to c.a.; minor Po/Py along bedding planes; bedding cross-cut and offset cm-8cm distances by low-angle fractures 99.70-99.95 chloritic, brecciated; Po veinlets 98.40 99.90 1.50 112335 &lt;0.03 &lt;0.2 109 12 20 counter to bedding at 0-30° (Po 1%) 105.00-105.50 broken core remainder of hole is rhythmic succession of banded sediments; lamellar black/dk, grey argillite and It.green argillaceous mudstone; minor Po follows bedding planes; periodic fracturing (uplift) cross-cuts bedding and offsets by cm-scale; sediments are probable Bouma sequence TO &amp; 'E' distal turbidile pattern. 102.00-119.79 bedding from 60° at 102m to 50° at ECH</li> <li>115.60-119.79 increasing argillite beds to 20-30 118.29 119.79 1.50 112336 &lt;0.03 &lt;0.2 95 12 26</li> </ul>	91.30	92.85	1.55	disrupted banded argillaceous mudstone/argillite; very fractured wtih 1% local Po frac-fill; pyroclastic sedi-										
Tuff Breccia, mod-strongly chloritized; minor brecc'd banded sediments interbedded; no visible sulphides; undulating 35° contact         95.85       119.79       23.94       Banded Argillaceous Mudstone / Argillite; lamellar, v.thinly bedded @ 55° to c.a.; minor Po/Py along bedding planes; bedding cross-cut and offset cm-8cm distances by low-angle fractures       98.40       99.90       1.50       112335       <0.03	92.85	93.48	0.63	v.thinly bedded 60°; grey/lt.grey; no visible sulphides;										
v.thinly bedded @ 55° to c.a.; minor Po/Py along bedding planes; bedding cross-cut and offset cm-8cm distances by low-angle fractures 99.70-99.95 chloritic, brecciatel; Po veinlets 99.70-99.95 chloritic, brecciatel; Po veinlets counter to bedding at 0-30° (Po 1%) 105.00-105.50 broken core remainder of hole is rhythmic succession of banded sediments; lamellar black/dk.grey argillite and It.green argillaceous mudstone; minor Po follows bedding planes; periodic fracturing (uplift) cross-cuts bedding and offsets by cm-scale; sediments are probable Bouma sequence 'D' & 'E' distal turbidite pattern. 102.00-119.79 bedding from 60° at 102m to 50° at EOH 115.60-119.79 increasing argillite beds to 20-30 118.29 119.79 1.50 112336 <0.03 <0.2 95 12 26	93.48	95.85	2.37	Tuff Breccia, mod-strongly chloritized; minor brecc'd banded sediments interbedded; no visible sulphides;										
115.60-119.79 increasing argillite beds to 20-30 118.29 119.79 1.50 112336 <0.03 <0.2 95 12 26	95.85	119.79	23.94	v.thinly bedded @ 55° to c.a.; minor Po/Py along bedding planes; bedding cross-cut and offset cm-8cm distances by low-angle fractures 99.70-99.95 chloritic, brecciated; Po veinlets counter to bedding at 0-30° (Po 1%) 105.00-105.50 broken core remainder of hole is rhythmic succession of banded sediments; lamellar black/dk.grey argillite and It.green argillaceous mudstone; minor Po follows bedding planes; periodic fracturing (uplift) cross-cuts bedding and offsets by cm-scale; sediments are probable Bouma sequence 'D' & 'E' distal turbidite pattern.	98.40	<b>99.90</b>	1.50	112335	<0.03	<0.2	109	. 12	20	12
				115.60-119.79 increasing argillite beds to 20-30	118.29	119.79	1.50	112336	<0.03	<0.2	95	12	26	10

119.79 Total Depth

	Red Cap (I Falcon Dril BTW			Latitude: 44+13N Departure: 54+25E Elevation: 1452 m	DDH LJ-98-8		Inclina	Bearing: tion @ collar: Total Depth:	-45°	[	Date Com	pleted:	July 26, 19 July 28, 19 R. I. Nicho	98
											Ass	avs		
From	То	interval			From	То	width		Au	Ag	Cu	Co	Pb	Zn
m	m	m		Lithology	m	m	m	Tag No.	g/T	g/T	ppm	ppm	ppm	ppm
0.00	0.61	0.61	CASING, no recove	ery										
0.61	25.30	24.69	lapilli tuff; med.grey volcanic matrix sup 0.5-3 cm²; consiste orientation; broken,	BRECCIA, pyroclastic >> andesite re/grey epidotized (mod silic) intermed orts rhyolite > andesite clasts nt 60° bedding / clast long axis limonitic (50°?) contact broken, strongly frac'd core @ 0°-										
				15° to c.a., goethite/limonite frac coating; no visible sulhides										
				1% Po frac fill noted in chlor breccia clasts <cm td="" widths<=""><td>2.60</td><td>4.10</td><td>1.50</td><td>112337 repeat</td><td>0.07 0.07</td><td>1.6 1.4</td><td>34 33</td><td>8 8</td><td>34 34</td><td>388 379</td></cm>	2.60	4.10	1.50	112337 repeat	0.07 0.07	1.6 1.4	34 33	8 8	34 34	388 379
			3.00- 4.65	strongly frac'd longitudinal -45° to c.a., limonite fill										
			3.60- 3.70	drusy quartz crystal-filled cavities, no visible sulphides										
			5.85- 6.20	goethite-filled 5° fracture plane; tr Py only	5.70	7.20	1.50	112338	<0.03	0.4	40	11	22	189
				goethite-filled 45° fracture plane; no visible sulphides								-	_	0.05
				2% Po, ½% Cpy in 15° chlor frac fill	14.40	15.90	1.50	112339	<0.03	5.2	455	9	7	205
				random/rare Py veinlets < <mm sets of 50° + longitudinal weak frac's dominate, lim &amp; chlor weakly,</mm 	15.90	17.10	1.20	112340	<0.03	0.8	65	10	12	320
				1/2% dissem Py envelope; internal 45° contact	17.10	18.10	1.00	112341	<0.03	1.4	148	7	20	255
			18.10-18.80		18.10	19.10	1.00	112342	0.86	27.8	343	36	578	798
			18.80-25.30	Tuff Breccia, mod-strongly silic	19.10	20.60	1.50	112343	< 0.03	0.4	27	8	22	118
				20-45° open limonitic frac, ½% Py	20.60	22.10	1.50	112344	<0.03	0.4 <0.2	50 38	11 9	20 16	163 122
			21.94-22.40	longitudinal <cm milky="" quartz="" vein,<br="">3% Py in vuggy solution cavities to cm²</cm>	22.10	23.10	1.00	112345	<0.03	<u.z< td=""><td>30</td><td>9</td><td>10</td><td>122</td></u.z<>	30	9	10	122
			22.70-23.50		23.10	24.10	1.00	112346	<0.03	0.6	75	9	22	79
			24.10-24.23	massive sulphides, 50% Po, 10% Sph, 20% Py, 5% graphite in silic qtz-enhanced 50° 'bed' surrounded	24.10	25.30	1.20	112347	0.25	24.0	1250	15	750	3015
			24.23-25.30	by 50° Py zonation cm wide 50° quartz veins along bedding										

ierma entra épia quia e a como cola como erra erra entra ella dia como erra erra como como como como como como

Area: 1 ontractor: Core Size:			Latitude: 44+13N Departure: 54+25E Elevation: 1452 m	DDH LJ-98-8		Inclina	Bearing: tion @ collar: Total Depth:	-45°		Date Con	npleted:	July 26, 19 July 28, 19 R. I. Nicho	998
										Ass	ays		
From m	To m	interval m	Lithology	From m	To m	width m	Tag No.	Au g/T	Ag g/T	Cu ppm	Co ppm	Pb ppm	Zn ppm
			planes, ½% dissem Py in v	eining									
25.30	27.00	1.70	ANDESITIC LAPILLI TUFF, med.green/grey, cl intermed amtrix supports 1-2 mm ² rounded lapi white/lt.grey + dk.grey chloritized lapilli frags. 25.50-26.00 10-15° open limonitic/kaolin fracture slickensided @ 65' c.a., no visible sulphides 26.30-26.95 wandering 0-20° limonitic fr Py filled to 2% over <mm w<br="">2 cm wide anastomosing q</mm>	lli = nitized ° to 25.30 rac, ridths;	27.10	1.80	112348	<0.03	2.4	112	5	124	466
27.00	27.43	0.43	veinlets follow frac										
			<ul> <li>27.00-27.10 fault breccia, limonitic, soft gouge @ 30° to c.a.</li> <li>27.10-27.40 30° quartz vein loaded with massive + crystal Aspy, 10 5% Py, 1% Gn, tr Sph(?)</li> </ul>	15% 27.10	28.30	1.20	112349	0.25	27.6	1033	20	1128	1000
27.43	32.61	5.18	ANDESITE LAPILLI TUFF, med.grey/green, ch fractured; 30° contact 27.43-28.30 strongly altered, brecc'd, st chlor, 'soft'; 2-3% dissem F Po frac fill	rongly									
			28.30-29.20 longitudinally fractured, lim frac coating; ½% Py fill 29.20-30.00 mod.frac'd longitudinally +		30.00	1.70	112350	<0.03	3.6	132	9	150	312
			to c.a., mod.chlor; barren o 30.00-31.52 highly altered silic/chlor se bedding 70°; dissem + rem semi-massive sulphides, 1 10-15% Po, 4-5% Aspy, so	f sulphides ction; 30.00 obilized 0% Py,	31.52	1.52	112351	0.08	11.2	498	52	412	314
			strongly fractured 30.90-31.52 50° bedding followed by 2 31.55 3 mm wide Po/Py massive vein @ 45° 32.00-32.61 1-3cm wide quartz vein foll c.a. down; 5% Py overall, c in drusy vugs; core frac'd a angles to core, mod.chlor	sulphide 31.52 ows clustered	32.61	1.09	112352	<0.03	2.4	115	6	86	384
32.61	33.62	1.01	MASSIVE SULPHIDES, core is 10-15° milky qu vein; chlor margins; strongly silic; 25-30% Po, 2		33.62	1.01	112353	1.54	205.0	1612	83	4254	3.06%

 ***** <b>`</b>	5 m m 1	<pre>// // // // // // // // // // // // //</pre>	6 a	· · · · · · ]	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	e	/* ~~ · · · ·	<b>.</b> .	4 N N N	··· ··· ]	r	· · · · · · · · · · · · · · · · · · ·	· · · · ]	° · · 1	- · · · · · · · · · · · · · · · · · · ·	,
 		I	. I	<b>-</b>	. 1	. 1	. J	4. <b>I</b>	. I				A. 1				5 <b>I</b>

	Red Cap (I Falcon Dril BTW		Latitude: 44+13N Departure: 54+25E Elevation: 1452 m	DDH LJ-98-8		Inclina	Bearing: tion @ collar: Total Depth:	-45°	[	Date Com	pleted: J	luly 26, 19 luly 28, 19 R. I. Nicho	98
										Ass	ays		
From	То	interval		From	То	width		Au	Ag	Cu	Co	Pb	Zn
m	<u> </u>	<u>m</u>	Lithology	<u> </u>	m	m	Tag No.	g/T	g/T	ppm	ppm	ppm	ppm
			30° contact										
33.62	34.00	0.38	ANDESITE LAPILLI TUFF, brecciated and quartz veined at 25-30° to c.a.; med.pea-green , strongly chloritized; 1-2% Py, tr-½% Aspy along qtz veinlets; 45° contact	33.62	34.62	1.00	112354 repeat	<0.03 <0.03	1.8 1.6	161 168	10 10	32 32	287 286
34.00	67.00	33.00	QUARTZ FELDSPAR PORPHYRY, weakly chloritized, increasingly It.grey siliceous to depth; tr Py along c.a. from 34.0-34.6m; kaolinitized frac zones as listed, dendritic Mn along frac's randomly, pervasive carbon- ization along fracs/veins; 40° contact 38.05-38.40 broken core; kaol coating + carb 38.40-39.00 fractured @ 0-10° and 45° to c.a.; 1% Py in frax; dissem pseudo- hexagonal chlorite crystals through- out (38.6 to end of unit)	34.62	36.00	1.38	112355	<0.03	0.6	18	6	30	44
			40.35-46.85 strongly fractured; kaol-coated fracs are weakly limonitic; strong	40.35	41.85	1.50	112356	<0.03	0.8	12	6	42	48
			carbonate; tr Py cubes to ½%; predominant fracs @ 35-45° to ca 46.94-47.65 cmwide quartz veins, kaol frac zone, + carb; 1-2% Py, tr Po along vein margins, 10° fracs 48.50-50.45 as above	41.85	43.40	1.55	112357	<0.03	0.4	17	5	34	50
			51.10-51.25 longitudinal kaol frac-fill + carb 54.00-54.05 25° milky quartz vein with 1 cm carbonate crystal margins 54.75-55.90 broken core; carb-kaol coating, ½% Py cubelets	51.80	53.30	1.50	112358	<0.03	0.4	10	4	18	120
			57.00-59.95 as above 60.40-62.50 strong white kaol/carb fill in pervasive longitudinal to 15° frac 63.45-64.95 strongly kaol, frac @ 45° to c.a., tr dissem Py	58.20	59.70	1.50	112359	<0.03	0.4	7	4	46	74
			66.30-67.00 bleached alteration zone	66.00	67.00	1.00	112360	<0.03	0.2	22	5	12	113
67.00	69.80	2.80	QUARTZ FELDSPAR PORPHYRY (pipe?), brecciated, silicified, quartz veined; It.grey/green, highly siliceous; strongly fractured and filled with sulphides; 30° quartz veining; 1-3% Po veining (at 45° + longitudinal), 4-5% Aspy, 1-2% (local) Cpy, 1% Py in most siliceous inter- sections + dissem sulphides throughout QFP host + sulphides marginal to qtz veins to 3-4%	67.00 68.40	68.40 69.80	1.40 1.40	112361 112362	<0.03 0.08	6.6 4.6	220 119	5 20	148 155	1290 983
69.80	83.30	13.50	altered QUARTZ FELDSPAR PORPHYRY, weak-mod										
		-											

-

	Red Cap (L Falcon Dril BTW	•	Latitude: 44+13N Departure: 54+25E Elevation: 1452 m	DDH LJ-98-8	-	Inclina	Bearing: tion @ collar: Total Depth:	-45°	[	Date Com	pleted:	luly 26, 19 July 28, 19 R. I. Nicho	998
										Ass	ays		
From	То	interval		From	То	width		Au	Ag	Cu	Co	Pb	Z
m	m	<u>m</u>	Lithology	m	m	m	Tag No.	g/T	g/T	ppm	ppm	ppm	рр
			chlor, fracs with limonite coating $\pm$ kaolinite; chlor hex crystals to 0.3 cm ² ; feldspar crystals lt.green; quartz crystals white/lt.grey; low-angle qtz veinlets + hem = common + kaol frax, undulating 85° contact	69.80	71.30	1.50	112363 repeat	<0.03 <0.03	0.2 0.4	41 38	5 5	48 56	22
			80.70-83.30 common 45° milky quartz veins/										
			veinlets, no visible sulphides	82.30	83.30	1.00	112364	<0.03	1.2	21	6	32	
83.30	84.00	0.70	ANDESITE TUFF BRECCIA (possible collapse breccia?),	02.30	05.50	1.00	112304	-0.00	1.2	21	0	02	
03.50	04.00	0.10	dk.grey/green, strongly chlor & silic; brecc'd rock is cross-cut by massive Po veining @ 35° and dissem of shear-related pods Po ~10-15%, 3-5° Cpy marginal to Po, 45° contact	83.30	84.30	1.00	112365	0.19	16.0	164	13	1334	42
84.00	85.15	1.15	QUARTZ FELDSPAR PORPHYRY, altered intrusive; weakly chlor, cross-cut by <cm 55-<br="" at="" po="" py="" veinlets="">60°; contact 25-30°</cm>	84.30	85.80	1.50	112366	<0.03	0.8	27	7	28	
85.15	86.45	1.30	CHLORITIZED ANDESITE TUFF BRECCIA (possible collapse breccia?), meddk.green, chlor, vfg ground- mass (clast-supported) with dk.grey/green + It.green andesite/rhyolite clasts numerously; high-angle quartz carbonate veining randomly rarely, brecc'd 40° contact	85.80	86.45	0.65	112367	<0.03	1.0	6	6	28	
86.45	88.30	1.85	ANDESITE TUFF / lapilli tuff; weakly chlor, med.green, v.f.g., frac + rehealed with chlor + minor qtz veinlets; increasingly grey / silic with depth; 50-55° contact, pyritiferous	86.45	87.45	1.00	112368	<0.03	0.8	29	6	24	
			87.70-88.20 brecc'd, v.silic contact zone	87.45	88.30	0.85	112369	<0.03	0.8	38	6	34	
88.30	91.10	2.80	SULPHIDE ZONE, semi-massive sulphides throughout; strong epidote/chlorite alteration 88.30-89.00 2-3% Cpy, 5-10% Po, 2% Py, both matrix & clast replacement;	88.30	89.70	1.40	112370	0.05	3.6	265	23	246	
			host = Tuff Breccia (andesite) 89.00-91.10 Po >1%, Cpy 4-5%, Py 2-3%; ubiquitous sulphides 90.55-90.95 open longitudinal fracture	89.70	91.10	1.40	112371	0.07	2.6	293	22	44	
91.10	93.00	1.90	ANDESITE TUFF BRECCIA (possible collapse breccia) mod.chloritized, med.green, clast-supported unit with mm-2cm andesite/rhyolite clasts; dissem Py cubelets in trace quantities; undulating 15-20° contact	91.10	92.60	1.50	112372 repeat	<0.03 <0.03	<0.2 <0.2	11 12	7 7	38 38	
		17.05	91.85-92.00 1-2% Po/Py veinlets @ 10-15° GRANODIORITE, It.grey, m.gv.f.g aphanitic matrix +	92.60	94.10	1.50	112373	<0.03	<0.2	5	7	24	

Taiga Consultants Ltd.

	Red Cap (l Falcon Dril BTW			Latitude: 44+13N Departure: 54+25E Elevation: 1452 m	DDH LJ-98-8		Inclina	Bearing: tion @ collar: Total Depth:	-45°		Date Com	pleted: J	uly 26, 19 uly 28, 19 R. I. Nicho	98
											Ass	avs		
From	То	interval			From	То	width		Au	Ag	Cu	Co	Pb	Zn
m	m	m		Lithology	m	m	m	Tag No.	g/T	g/T	ppm	ppm	ppm	ppm
		•	= ~10-15°; contact 94.30- 95.20	ded feldspar phenocrysts, mafics 50° low-angle limonitic open frac; no visible sulphides; rock freshens to centre of intrusion; leaching & limonite common adjacent to frac granodiorite gradually differentiates, rounded qtz phenocrysts increase, mafic content decreases; clasts of elongate "stretched" andesite rarely, dissem Py to ½%	108.55	110.05	1.50	112374	<0.03	0.4	17	8	70	37
110.05	110.30	0.25		5% Po, 3-4% Py in epidotized horizon between intrusives; 50° contact	110.05	111.05	1.00	112375	<0.03	1.2	60	11	64	49
110.30	111.70	1.40	matrix with <5% rouble of the second se	RY, translucent lt.green, v.v.siliceous unded lighter green phenocrysts; ot frac zones, 68° contact meandering <cm qtz="" vein,<br="" wide="">weakly lim margins, no visible sulph</cm>										
111.70	125.00	13.30	SULPHIDE ZONE,	li tuff) + minor Tuff Breccia strongly graphitic in sulphide-rich ote alteration throughout; green										
			111.70-113.20	1% Po dissem + within 30° veins/ veinlets , brecc'd section kaolinte	111.05	112.05	1.00	112376	<0.03	0.6	13	6	92	12
			112.90-113.23	•	112.05	113.23	1.18	112377	<0.03	0.8	32	9	46	39
			113.23-113.30	weakly graphitic >5% Po semi-massive; strongly graphitic	113.23	114.30	1.07	112378	0.03	2.6	236	37	22	30
			113.30-116.00	>10% massive to semi-massive Po; local >25% Po, ~5% Py; strong	114.30	116.00	1.70	112379	0.04	4.8	232	28	222	55
			116.00-116.50	epidote alt'n; strongly graphitic 5% Po, 3-4% Py semi-massive; strongly graphitic	116.00	117.50	1.50	112380	<0.03	0.8	56	15	46	47
			116.50-118.55 118.55-118.80	graphitic	117.50	118.80	1.30	112381	<0.03	1.0	42	12	260	42
			118.80-120.94	graphitic	118.80 119.80	119.80 120.94	1.00 1.14	112382 112383	<0.03 <0.03	1.0 1.0	78 77	16 19	154 64	154 43

Taiga Consultants Ltd.

r ~ 1	· · · · ]	· · · · · · · · · · · · · · · · · · ·		· 1	1	<u> </u>		 1	3	··· ···]	1	<	1	( <b>* * * )</b>

Contractor: Core Size:		-	Latitude: 44+13N Departure: 54+25E Elevation: 1452 m	DDH LJ-98-8		Inclina	Bearing: tion @ collar: Total Depth:	-45°	[	Date Com	Started: pleted: ged By: f		998
										Ass	ays		
From	То	interval		From	То	width		Au	Ag	Cu	Со	Pb	Zn
m	m	m	Lithology	m	m	m	Tag No.	g/T	g/T	ppm	ppm	ppm	ppm
			120.94-121.60 >5% (10%?) semi-massive Po, 2-3% Py locally to >20%, tr-½% Sph; mod-strongly graphitic	120.94	121.60	0.66	112384	0.25	9.2	210	34	284	1.29%
			121.60-122.20 >50% Po, 5-10% Py massive, assoc'd with qtz-carb flooding; brecc'd; mod-strongly graphitic	121.60	122.70	1.10	112385	0.04	7.0	384	45	756	6124
			122.20-122.70 5-10% Po dissem, mod-strongly graphitic 122.50-125.00 ½-1% Py, ½% Py, petering out;										
			incr silic; mod-strongly graphitic 122.70-125.50 1-5% Po veining, 1-2% Py;	122.70	124.20	1.50	112386	<0.03	0.6	134	17	24	422
			mod-strongly graphitic	124.20	125.20	1.00	112387	<0.03	0.4	37	12	30	375
125.00	129.30	4.30	epidote altered ANDESITE TUFF / TUFF BRECCIA, occas thin Po veinlets, strong micro-fractures, carbonatized									40	204
			weakly (veinlets at low core angles; pea-green color; incr brecc'n with depth to contact; gradual contact	125.20	126.70	1.50	112388	<0.03	<0.2	19	11	18	291
			"subjective"	126.70	128.20	1.50	11238 <del>9</del>	<0.03	<0.2	11	9	14	147
			125.00-126.00 tr-1/2% Po, dissem				repeat	<0.03	<0.2	10	9	16	161
			129.10-129.20 goethite-filled 25° frac	128.20	129.30	1.10	112390	<0.03	<0.2	16	7	14	164
129.30	129.90	0.60	SULPHIDE ZONE, strongly graphitic, resembles calc- silicate(?), mod.carbonatized, strong epidote; bedding 45°; 5-10% Po, 2-3% Py, semi-masive, tr-½% Sph (secondary); brecciated (tuff breccia? collapse breccia?); contact 45°		400.70	1.40	440004	-0.02	0.4	109	16	24	833
129.90	130.70	0.80	ANDESITE TUFF, pea-green, strongly silic/epidotized; 1-2% Po along bedding planes (45°), tr-½% Py dissem, quartz veined (3 mm) @ 45° to c.a.; 25° contact	129.30	130.70	1.40	112391	<0.03	0.4	108	10	24	033
130.70	132.20	1.50	SULPHIDE ZONE, strongly graphitic/epidotized; 10-15% semi-massive Po, 5-7% Py, tr-½% Sph (secondary); longtiudinal massive Py veining @ 0-5° to c.a.; bedding 45°; brecc' (tuff breccia? collapse breccia?); contact 55°	130.70	132.20	1.50	112392	0.17	5.4	621	56	64	5035
132.20	136.20	4.00	ANDESITE TUFF BRECCIA (collapse breccia?) / lapilli tuff; angular 1-5 cm feldspar porphyry clasts in lapilli tuff matrix; carbonate/kaolinite frac fill increasing porportional to depth; 30° contact 136.00-136.20 strongly brecc'd contact zone	132.20 133.70 135.20	133.70 135.20 136.20	1.50 1.50 1.00	112393 112394 112395	<0.03 <0.03 <0.03	<0.2 <0.2 <0.2	5 2 4	7 7 8	8 10 8	78 50 63
136.20	139.85	3.65	SULPHIDE ZONE, strongly graphitic/epidotized; tuff breccia (collapse breccia?) with 30 cm unfractured	136.20 137.70	137.70 138.70	1.50 1.00	112396 112397	0.08 0.07	4.6 6.0	240 175	21 19	202 454	612 2075

	Red Cap (l Falcon Dril BTW		Latitude: 44+13N Departure: 54+25E Elevation: 1452 m	DDH LJ-98-8		Inclina	Bearing: tion @ collar: Total Depth:	-45°		Date Com	pleted: J	July 26, 19 July 28, 19 R. I. Nicho	98
										Ass	ays		
From	То	interval		From	То	width		Au	Ag	Cu	Co	Pb	Zn
m	m	<u>m</u>	Lithology	m	m	m	Tag No.	g/T	g/T	ppm	ppm	ppm	ppm
			sections; 15-20% Po, 3-5% Py (locally to >10%), ½% Sph (secondary); Po = semi-massive, replaces epidotized clasts (1-3 cm²); gradual contact	138.70	139.85	1.15	112398 repeat	<0.03 <0.03	0.6 0.8	78 74	23 22	26 24	260 251
139.85	152.00	12.15	ANDESITE TUFF / TUFF BRECCIA, weak graphite,	139.85	141.00	1.15	112399	<0.03	0.4	12	11	24	265
			strong epidote; v.silic; pea-greeen intermed volcanic	141.00	142.50	1.50	112400	<0.03	1.0	24	11	138	143
			tuff; Tuff ~70%, T.Breccia ~30%; 1-3% Po, 1/2-1% Py	142.50	144.00	1.50	112401	<0.03	0.4	88	16	34	78
			as veinlets + cm ² blebs along bedding; tr-½-% Sph	144.00	145.50	1.50	112402	<0.03	1.2	112	19	186	154
			(secondary) marginally, tr-1/2% local Aspy spicules,	145.50	147.00	1.50	112403	0.08	4.6	105	21	736	454
			local concentrations of Po >5% over cm widths,	147.00	148.50	1.50	112404	0.11	0.1	108	20	80	196
			graphite 'wisps out' to local 1/2-1% by 150m	148.50	150.00	1.50	112405	<0.03	4.0	225	23	506	544
				150.00	151.00	1.00	112406	< 0.03	1.6	127	20	82	120
				151.00	152.00	1.00	112407	0.05	5.2	216	20	794	897
152.00	158.60	6.60	ANDESITE TUFF / TUFF BRECCIA, med.grey/green,				repeat	0.06	4.8	190	180	708	822
			weakly fractured, silic; 1-3% Po, ½-1% Py	152.00	153.50	1.50	112408	0.05	2.2	142	14	280 250	145 236
			154.20-157.00 incr siliceous, sulphides	153.50	155.00	1.50	112409	0.13	2.4	118 67	15 16	1278	883
			'podding up'	155.00	156.50	1.50	112410	0.14 <0.03	6.4 0.4	14	8	26	82
			157.00-158.30 1-3% Po, ½-1% Py - % declines	156.50	157.50	1.00	112411 112412	< 0.03	0.4	14	8	38	283
			158.30-158.60 tr-½% local Po in silic med.grey andesite tuff / lapilli tuff	157.50	158.60	1.10	112412	-0.05	0.2	12			200
158.60	) 176.00	17.40	ANDESITE TUFF / Lapilli Tuff & Tuff Breccia horizons; intermediate package; several cycles of intermediate volcanics; v.silic (dacitic?); variable bedding intercepts (30-40° to c.a.); chloritic rather than epidote alt'n reigns; <1% dissem Po/Py, Py as <mm² along<br="" cubelets,="" po="">fracs &amp; dissem; kaolinitized 'lost' contact Note: rock increasinging 'dacitic'/silic in tuff sections; tuff breccia sections are silic, It.grey, with numerous 50-60° qtz veinlets, tr-½% Py marginally 162.00-162.30 ½-1% dissem Po &gt;&gt; Py, randomly sited Py micro-veinlets rarely 164.60-164.80 30-35° qtz veinlet, Po/Py clast replacement</mm²>	158.60 160.00 161.50 163.00 164.50 166.00 167.50 169.00	160.00 161.50 163.00 164.50 166.00 167.50 169.00 170.50	1.40 1.50 1.50 1.50 1.50 1.50 1.50 1.50	112413 112414 112415 112416 112417 112418 112419 112420	<0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	12 14 21 14 19 13 11 24	10 10 12 11 12 11 12 11 12 12	26 18 16 20 14 84 38 38	175 92 164 112 185 187 107 241
			170.10-170.70 longitudinal open fracture, Po/Py	172.50	174.00	1.50	112421	<0.03	<0.2	26	16	30	98
			clusters on frac surfaces	174.00	175.50	1.50	112422	<0.03	<0.2	38	13	44	130
			175.20-175.50 Py marginal to 60° qtz veinlets;	175.50	177.00	1.50	112423	<0.03	0.6	22	12	94	191
176.00	) 203.50	27.50	ANDESITE TUFF BRECCIA, minor tuff/lapilli tuff inter- sections, med.green/grey, weakly chloritized with distinct 10 cm epidote concentrations; fracture/shear									22	159
			zones invariably kaolinite-enhanced, dissem Py in	177.00	178.50	1.50	112424	< 0.03	< 0.2	6 6	10 10	22 28	165
			fractures; Po/Py veinlets randomly; bedding 40-45° to c.a.; brecia clasts <cm (rare)="" cobbles="" to="">10 cm,</cm>				repeat	<0.03	<0.2	o	10	20	105

Area:   Contractor:   Core Size:			De	.atitude: 44+13N parture: 54+25E evation: 1452 m	DDH LJ-98-8		Inclinat	Bearing: tion @ collar: Total Depth:	-45°	[	Date Com	npleted: J	luly 26, 19 luly 28, 19 R. I. Nicho	98
											Ass	ays		
From	То	interval			From	То	width		Au	Ag	Cu	Co	Pb	Zn
m	m	m	Lit	hology	<u> </u>	m	m	Tag No.	g/T	g/T	ppm	ppm	ppm	ррт
- -			rounded; qtz-carb veining strong fractures with marg < <mm²< td=""><td>mm to 5-10 cm widths in jinal Py&gt;Po, Py as cubelets</td><td>181.50</td><td>183.00</td><td>1.50</td><td>112425</td><td>&lt;0.03</td><td>0.4</td><td>7</td><td>10</td><td>90</td><td>590</td></mm²<>	mm to 5-10 cm widths in jinal Py>Po, Py as cubelets	181.50	183.00	1.50	112425	<0.03	0.4	7	10	90	590
			@ 50 (react	gly kaolinitized, slickensides *, 1% Py dissem + carbonate is with HCl)										
				rous 25-35° qtz veinlets (cm- n), enhanced Po (2%), Py 3-										
				ubelets; chloritized (serpen-	185.70	187.20	1.50	112426	0.13	1.0	46	34	62	738
			tinize	d? adjacent to qtz veinlets)	187.20	188.70	1.50	112427	<0.03	6.6	65	22	578	878
			189.90 end fi	racturing / bleaching / kaolinite	188.70	190.20	1.50	112428	0.03	3.0	91	13	328	856
			189.90-195.00 weak	epidote alternation, 30-60°	190.20	191.70	1.50	112429	<0.03	0.6	112	15	64	635
			Po,Py	veinlets randomly	191.70	193.20	1.50	112430	<0.03	0.8	129	18	42	580
				0-203.5 gradual increase in z-diorite clasts	193.20	194.70	1.50	112431	<0.03	<0.2	45	25	26	620
203.50	211.30	7.80	mod epidote green/grey tu breccia; dyking throughou sub-rounded to angular; v (albite?); tr Py/Po only 205.66-205.75 aplite enha	CIA (collapse breccia?); weak- uff matrix, clast-supported it; 70% quartz-diorite clasts white felted masses of mm ² o dyke; epidote segregations/ ncement = localized over 10- n widths										
211.30	213.97	2.67		/E BRECCIA, felted mass of aphanitic matrix; epidotized; throughout ~10%; tr Po										

	Red Cap (L Falcon Drill BTW			Latitude: 54+10E Departure: 44+90N Elevation: 1542 m	DDH LJ-98-9		Inclina	Bearing: tion @ collar: Total Depth:	-45°	C	Date Com	pleted:	uly 28, 19 uly 29, 19 R. I. Nicho	98
											Ass	avs		
From	То	interval			From	То	width		Au	Ag	Cu	Co	Pb	Z
m	m	m		Lithology	m	m	m	Tag No.	g/T	g/T	ppm	ppm	ppm	ppn
						•								
0.00	1.52		CASING - full recover	ery ?? <see below=""></see>										
0.00	32.40	32.40	andesitic breccia (co 0.00- 0.30	roclastic andesite; clast-supported blapse breccia?); 40° contact broken core; strongly silicified; clasts predominantly (90%) felsic rhyolitic quartz feldspar porphyry;										
				phenocrysts < <mm<sup>2 rounded quartz 'eyes, weakly potassically</mm<sup>										
				altered (pink coloration varies widely), may be hematite alter-										
				ation; matrix chloritized, med.										
				pea-green; localized sulphides										
				Py>>Gal concentrated within										
				strongly chloritized fractures at										
				high angles to c.a. Py micro-veinlets randomly at	0.00	1.50	1.50	112432	<0.03	11.8	191	10	2754	1
			0.00- 1.00	45°-60° to c.a.	0.00	1.00	1.00		0.00					
			0.20- 0.22	40° Py with Gal laminae/cubes										
				in fracture plane; 55-60° Py										
				micro-veinlets randomly /										
				rarely; geothite-coated fracture planes common (50° fractures										
				commonly)	1.50	3.00	1.50	112433	<0.03	1.4	39	6	320	1
			2.95	mm wide Py vein wtih smears &				repeat	<0.03	1.2	39	6	310	
				layers of Gn, possible dissem								_		
				Sph in fracture plane ~65°, Py	3.00	4.50	1.50	112434	< 0.03	5.6	89 25	7	662 64	1
				common in qtz veinlets semi-	4.50	6.00	1.50	112435	<0.03	0.4 1.8	35 73	6 6	262	
				massive over 2cm zone	6.00	7.50	1.50 1.50	112436 112437	<0.03 <0.03	3.6	199	7	306	1
					7.50 9.00	9.00 10.50	1.50	112437	<0.03 <0.03	0.2	43	7	24	•
					9.00 10.50	12.00	1.50	112439	<0.03	<0.2	50	. 6	18	
					12.00	13.50	1.50	112440	< 0.03	2.2	102	6	208	
					12.00			repeat	< 0.03	2.4	100	7	212	
								re-split	<0.03	1.8	102	7	196	;
					13.50	15.00	1.50	112441	<0.03	0.4	40	6	34	
					15.00	16.50	1.50	112442	<0.03	0.6	35	6	70	1
			18.15	50° Py veinlets, iron carbonate	16.50	18.00	1.50	112443	<0.03	<0.2	53	5	18	•
				margins over 2 cm zone	18.00	19.50	1.50	112444	<0.03	1.8	106	7	106	8
			22.40-26.45	set of 55-65° mm-2mm wide										
				quartz veinlets @ 5-10 cm			4	440445	-0.00	0.2	47	Ē	50	:
				spacings	29.90	31.40	1.50	112445	<0.03	0.2	47	6	50	4

SILICIFICATION ZONE, brecciated andesitic turt breccia (collapse breccia?); graphitic zone (<1%) variable;

|--|--|--|--|--|

	: Red Cap ( : Falcon Dri : BTW	•	Latitude: 54+10E Departure: 44+90N Elevation: 1542 m	DDH LJ-98-9		Inclina	Bearing: tion @ collar: Total Depth:	-45°	[	Date Com	pleted: J	luly 28, 19 luly 29, 19 R. I. Nichol	98
										Ass	avs		
From m		interval m	Lithology	From m	To m	width m	Tag No.	Au g/T	Ag g/T	Cu ppm	Co ppm	Pb ppm	Zn ppm
			It.grey, v.silic (conduit?); 45-50° clast orientation; over- printed by 45-50° chlor fractures; 1-3% Py + hematite	31.40	32.90	1.50	112446	0.05	13.8	245	10	782	5976
			veinlets in matrix, sulphidized; tr Cpy clustered marginal to Py veinlets; contact 35-40° 33.25-33.70 massive Aspy, euhedral perfect crystals, v.silic + (massive Py over 5 cm) @ 40° to c.a., shear fill 33.70-34.20 dissem >10% Aspy fine crystals oxidized, & chloritic 40° shear;	32.90	33.90	1.00	112447	0.05	6.6	238	12	260	1039
			local massive Py over cm width penetrate as veining @ 40-45°; zone is mod-strongly carbonatized 34.65 3 cm wide carbonate vein 53°	33.90	34.90	1.00	112448	0.48	13.4	319	47	490	329
34.95	i 39.60	4.65	ANDESITE TUFF BRECCIA, pyroclastic; clast-supported breccia with andesitic/chloritic matrix; silic, med.green	34.90	36.40	1.50	112449	0.04 0.04	1.4 1.4	70 73	6 5	98 90	279 278
			(feldspar porphyry clasts); crossed by randomly sited 40-45° Po/Py veining to cm widths; Py veinlets sand- wiched by iron carbonate layers, mm- <cm td="" widths<=""><td>36.40</td><td>37.90</td><td>1.50</td><td>repeat 112450</td><td>&lt;0.04</td><td>5.2</td><td>165</td><td>6</td><td>308</td><td>2058</td></cm>	36.40	37.90	1.50	repeat 112450	<0.04	5.2	165	6	308	2058
39.60	) 39.08	(0.52)	FAULT ZONE, 40°, kaolinitized and carbonatized, soft fault gouge defines fault axis; weakly graphitic	37.90	39.08	1.18	112451	0.11	15.4	631	10	640	3615
39.08	3 58.92	19.84	pyroclastic TUFF BRECCIA, clast-supported, quartz feldspar porphyry clasts with andesitic matrix, locally strontly fractured (as detailed); contact 45° 41.00 3 cm wide Py/Po, hem frac fill @	39.08	40.60	1.52	112452	0.12	6.4	254	6	166	1081
			40° to c.a.; semi-massive Cpy fill over cm width 41.30-41.36 Po-bearing carbonate vein @ 40° 41.50-41.64 brecciated fracture, weakly graphitic, 2% Cpy, 2% Py, 1-2% iron carbonate 41.74 45° hem/Py 2 cm wide veining	40.60	42.10	1.50	112453	<0.03	7.2	321	13	212	2073
			42.00-42.45 hem/Py veining, 2-3% dissem Aspy crystals 42.60 45-50° Py vein, cm wide 43.10-43.25 fracture zone, 3-4% Py along 45°	42.10	43.60	1.50	112454	0.07	5.0	421	10	108	586
			quartz veining	43.60	45.10	1.50	112455	<0.03	0.6	56	6	46	281
			45.70-46.33 3-4% Py/hem veining @ 25-30° 46.50-46.75 5% Py/hem @ 35° veining + 1%	45.10 46.60	46.60 48.10	1.50 1.50	112456 112457	<0.03 <0.03	7.2 5.4	223 157	8 7	290 252	5169 2123
			graphitic; chloritic (serpentinized?) 48.10-48.90 1-3% Py + hem veining @ 45-55° + 2 cm wide qtz veinlets	48.10	49.60	1.50	112458 repeat	<0.03 <0.03	3.4 3.4	208 200	8 8	146 138	1457 1326
			48.90-50.15 dissem Py only	49.60	50.60	1.00	112459	0.03	5.0	326	12	240	1726

provide a second s	) <u>(</u> ]		1 (1) (					(1)	
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	--------------	--	---------	--	--	--	--	-----	--

	Red Cap (L Falcon Dril BTW		,	Latitude: 54+10E Departure: 44+90N Elevation: 1542 m	DDH LJ-98-9		Inclina	Bearing: tion @ collar: Total Depth:	-45°		Date Com	pleted:	July 28, 19 July 29, 19 R. I. Nicho	98
											Ass	ays		
From	То	interval			From	То	width		Au	Ag	Cu	Co	Pb	Zn
m	m	m		Lithology	m	m	m	Tag No.	g/T	g/T	ppm	ppm	ppm	ppm
			50.50-51.85 51.85-52.15 54.22-54.30 54.90 55.33	Po/Py 3-4% veinlets/frac fill @ 80° note: poss. Sph within hem sections dissem ½-1% Py fine Aspy dissem ~5%, 2-3% Po>Py, chloritic, chaotically fractured; dissem Po/Py + 0.5cm veinlets irregular + rare @ 65° milky 32° quartz vein hem, Py veining @ 35-40° tr-½% Cpy, 2-3% Py in 35° frac- fill veinlets 25° quartz vein, 3-5% Py/hem	50.60 51.85 53.35	51.85 53.35 54.90	1.25 1.50 1.55	112460 112461 112462	<0.03 <0.03 <0.03	3.0 5.4 3.2	274 146 99	9 10 7	122 194 174	1091 1446 1126
				fill, dissem Aspy	54.90	56.40	1.50	112463	<0.03	3.2	189	6	112	944
			55.85-58.20	Py/Po veinlets/veins @ 45°, <1% overall	56.40	57.90	1.50	112464	<0.03	3.6	215	7	172	865
			58.20-58.21	40° Py/hem vein, 10cm dissem										
			58.21-58.70	Aspy/Py surrounding vein broken core, longitudinal-15° frac, limonite coated	57.90	58.92	1.02	112465	<0.03	6.8	195	8	326	1413
58.92	59.20	0.28		DES, 40% Po, 5-10% Cpy, 40% 5° horizon; 45° contact	58.92	59.92	1.00	112466	1.52	66.8	6970	38	754	1187
59.20	78.85	19.65	to white / kaolinitize 3-4% Po, 1-2% Py throughout + locally quartz-veined frac with + within semi-r	yroclastic rhyolite, siliceous, lt.grey ed, strongly quartz veined; 1% Cpy, frac-fill + veinlets, Aspy dissem / massive (as marked) within system; Aspy crystals associated massive Po veining / quartz veining;	59.92	61.40	1.48	112467	<0.03	3.6	257	10	84	219
				to c.a.; highly altered rock strongly kaolinitized shear/fault @ 15-20°; chloritized with massive Aspy 61.7-61.8m + ½% graphite, bounded by semi-massive Py cm	61.40	62.55	1.15	112468	0.08	10.0	358	35		445
			62.00-62.55	veins (stockwork?); dissem Aspy/ Py/graphite marginally 2-3%	62.55	63.60	1.05	112469	0.12	11.0	272	10	258	5759
			63.60-63.75 64.20-64.45 64.80-65.85	$25^{\circ}$ massive Aspy shear fill, Py ~3% 35^{\circ} massive Aspy shear fill, Py ~5% massive Aspy over 5-10 cm widths, 5-10% Py, graphite throughout,	63.60 65.10	65.10 66.35	1.50 1.25	112470 112471	0.20	14.6 15.6	416 430	24 23	396	1288 1543
			65.85-66.35	extensive 35° quartz veining Py veining @ high angles to core, dissem Aspy to 5% locally,	00.10	00.00	1.20	1127/1	0.10			20		

	Red Cap (L Falcon Drill BTW			Latitude: 54+10E Departure: 44+90N Elevation: 1542 m	DDH LJ-98- <del>9</del>		Inclina	Bearing: tion @ collar: Total Depth:	-45°	C	Date Com	pleted: J	uly 28, 19 uly 29, 19 I. Nicho	98
											Ass	ays		
From	То	interval			From	То	width		Au	Ag	Cu	Со	Pb	Zn
m	m	m		Lithology	m	m	m	Tag No.	g/T	g/T	ppm	ppm	ppm	ppm
					······									
				ongly chloritic										
				iliceous, 'rhyolitic' in nature;										
			strong fracturing pervas					440470	0.00	40.0	401	21	446	1212
				ctures (faulted?), v.f.g. Aspy	66.35	67.50	1.15	112472	0.29	10.0	401	21	440	1217
				oded and cross-cut (later) by										
				-wide Py veining @ 35°; shear/										
				Iting @ 25° to c.a.										
				oken core, kaolinitized, Py cubelets										
				ecipitated on frac surfaces	67.50	69.00	1.50	112473	<0.03	1.8	103	6	102	59
				m 25° Aspy/Py horizons (3-5% lphides), numerous high-angle	69.00	70.00	1.00	112474	< 0.03	3.4	268	12	66	45
				lky qtz veins/veinlets, dissem Py	70.00	71.00	1.00	112475	< 0.03	2.6	232	9	56	25
				iquitous to 2-3%				repeat	< 0.03	2.6	228	9	66	27
				artz-carbonate-(barite?) (crystal)				re-split	<0.03	2.4	226	8	64	27
				in @ 50° to c.a., vuggy solution	71.00	72.25	1.25	112476	0.05	2.4	110	8	106	78
				vities	72.25	73.60	1.35	112477	0.06	7. <b>2</b>	240	9	384	69
				mi-massive 2cm Po/Aspy/Py/Gf										
				ining @ 30° to c.a.										
				mi-massive 2cm Po/Aspy/Py/Gf	73.60	75.10	1.50	112478	<0.03	7.4	193	7	380	194
			vei	ining @ 30° to c.a.; Py cubelets	75.10	76.60	1.50	112479	<0.03	6.0	542	10	106	45
			thr	oughout wallrock >2%	76.60	77.60	1.00	112480	0.11	27.8	1142	17	996	254
				assive Po/Aspy/Py @ 20-25°	77.60	78.60	1.00	112481	0.07	4.8	227	8	270	275
			ho	rizon >90%						~ 4	400	-	400	89
					78.60	79.85	1.25	112482	0.08	8.4	188	7	428	09
78.85	79.85	1.00		2% Py dissem, Py/Po veinlets at ½% Aspy, Gf crystals randomly; @ 75° to c.a.										
70.05	02.00	2 15		ECCIA, pyroclastic; med.grey,										
79.85	83.00	3.15		), clast-supported andesitic										
			matrix, clasts = quartz	feldspar porphyry > andesite;	79.85	81.50	1.65	112483	<0.03	3.4	143	6	506	124
			dissem sulphides in ma	atrix, 1/2% Aspy locally; Po/Py										
			veining at high angles i	irregularly in quartz veins;										
			kaolinite on fracture pla	anes weakly; local semi-massive										
			Po/Py qtz-vein-associa	ated; broken sheared 35-40°										
			contact, slickensided								400	40	656	84
				aphite crystals to mm ² within	81.50	83.00	1.50	112484	< 0.03	4.4	169	16 15	684	89
			60	)° qtz veining				repeat	0.03	4.6	173	15	004	05
83.00	84.80	1.80		ECCIA, fault breccia zone, silic;										
			kaolinite + qtz veins/ch	ntorite throughout weak local e Aspy/Py veining at low angles;										
			graphite; semi-massive 83.00-83.85 bro		83.00	83.90	0.90	112485	1.28	41.0	799	32	4064	563
			na uu=na na DII		00.00									
				cm wide f.g. Aspy (massive) +										

<u>, 199</u>	 [ ]	( ( ) <b>)</b>	]	[]]	]	[ ]	<b>[</b> ]	- C - D	<b>[</b> ]	]	( ) }	[	1	[]]	[ ] ]

	Red Cap (l Falcon Dril BTW		Latitude: 54+10E Departure: 44+90N Elevation: 1542 m	DDH LJ-98-9		Inclina	Bearing: tion @ collar: Total Depth:	-45°	[	Date Com	pleted: J	iuly 28, 19 Iuly 29, 19 R. I. Nicho	98
										Ass	ays		
From	То	interval		From	То	width		Au	Ag	Cu	Со	Pb	Zn
m	m	m	Lithology	m	m	m	Tag No.	g/T	g/T	ppm	ppm	ppm	ppm
			kaolinite frac coating 83.85-84.80 25-30° shearing, dissem 3-5% Aspy concentrated in 25° 10cm wide fracture @ 84.45-84.55m; 2-3% Py cubelets clustered on frac surfaces 84.80 35° contact, 3-4% dissem Py, ½% Aspy	83.90	84.80	0.90	112486	0.61	20.4	696	25	840	500
84.80	90.25	5.45	RHYOLITE TUFF BRECCIA (collapse breccia/); v.silic	84.80	86.30	1.50	112487	<0.03	2.0	90	4	126	936
			with mod-strongly chloritized matrix, clasts indistinct/ silic quartz overgrowths throughout; Py 1-3%, Aspy tr-½%; strongly fractured, Py stringer zone; weak-mod	86.30	87.80	1.50	112488	0.03	1.8	76	4	174	977
			kaolinite on frac planes, 0-10° fractures; It.grey/white/ green colored; 45° contact	87.80	89.30	1.50	112489	<0.03	0.6	48	4	64	611
90.25	90.40	0.15	quartz-eye QUARTZ FELDSPAR PORPHYRY DYKE; tr Py dissem, rounded <0.5cm ² feldspar + quartz phenocrysts in med.grey aphanitic silic matrix; 85° contact	89.30	90.40	1.10	112490	0.04	5.0	165	12	342	1959
90.40	99.70	9.30	ANDESITE TUFF BRECCIA, pyroclastic; clasts of qtz feldspar porphyry, matrix is chlor, meddk.green; weak-mod.kaolinitized, strongly in fractures; tr-1/2% dissem Py throughout, limonite coating on fractures;	90.40	91.90	1.50	112491	<0.03	2.6	151	5	422	1013
			cm-wide high-angle Po>Py semi-massive veinlets randomly associated with milky quartz veins/veinlets;	91.90	93.40	1.50	112492	0.12	9.6	659	10	340	2261
			25-30° contact 93.90-96.60 set of 50-55° milky quartz veins/	93.40	94.90	1.50	112493	0.06	10.8	476 456	7 7	450 448	1485 1458
			veinlets at 5-10 cm spacing; 3-4% Po/Py veinlets dissem throughout wallrocks	94.90	96.40	1.50	repeat 112494	0.07 0.03	10.4 7.4	450 240	12	418	5100
			rock becoming less broken with depth (away from 90.25-99.40m breccia); tr-½% Py only to 98.40m 98.40-99.70 local 5-10% Py veins/veinlets @ 40-45° to c.a., in strongly chlor / sheared zone, much broken core; slickensides ~45° to c.a.	96.40 97.40 98.40	97.40 98.40 99.70	1.00 1.00 1.30	112495 112496 112497	<0.03 <0.03 0.08	7.8 4.8 4.0	247 108 250	10 7 24	318 398 258	1572 1325 909
99.70	110.15	10.45	ANDESITE TUFF BRECCIA (possible collapse breccia' 'matrix-supported', med.green/grey chlor/silic matrix supports 1-7 cm angular to sub-rounded clasts of andesite and quartz feldspar porphyry, altered; rock cross-cut by 45-60° Py veins/veinlets with local semi-massive specular hematite (Py dissem + Hem	?); 99.70	101.20	1.50	112498	<0.03	2.2	121	6	150	2046

er e song	r	<b>.</b>	er		·····)		#1.55 <b>]</b>	e** · · ·	· · · ]	<u> </u>	1	<b>1</b>	 	(	[ ] ]	
<b>-</b>	· · · · ·	J	<b>-</b>	. 3		· •							 -			

Area: F ontractor: F Core Size: F				Latitude: 54+10E Departure: 44+90N Elevation: 1542 m	DDH LJ-98-9		Inclina	Bearing: tion @ collar: Total Depth:	-45°	[	Date Com	npleted:	July 28, 19 July 29, 19 R. I. Nicho	998
											Ass	ays		
From	То	interval			From	То	width		Au	Ag	Cu	Co	Pb	Zn
m	m	<u>m</u>		Lithology	m	m	m	Tag No.	g/T	g/T	ppm	ppm	ррт	ppm
			along 35-60° borizo	ns/fractures); Py ~2%; silicified	101.20	102.70	1.50	112499	<0.03	4.2	138	6	348	1932
				It.grey; Po semi-massive >10%	102.70	103.95	1.25	112500	0.04	6.4	192	6	448	1418
				ears; 50° sharp contact	102.10	100.00	1.20							
				3% finely dissem Aspy underlain	103.95	105.30	1.35	112501	0.26	7.4	292	36	212	330
			100.00 104.00	by 5 cm-wide semi-massive >10%										
				50-60° vuggy Po/quartz veining										
			105 30-106 70	35° quartz vein, semi-massive >20%	105.30	106.70	1.40	112502	0.21	23.6	916	26	610	1227
			105.50-100.70	Po, dissem 2% Aspy marginal to	100100			repeat		22.6	856	24	562	1153
				Po, 3% Py				P						
			106 30	3 cm wide 60° Po vein, 1% Cpy										
			100.00	internally .										
			106.50-106.60	>10% Po, >15% Py, tr Cpy as 50°										
			100.00-100.00	vein, and quartz veining	106.70	107.70	1.00	112503	0.12	18.2	303	6	862	8851
			106.70-107.35	epidote alteration, 5% Po, 2% Aspy,										
			100.70-107.00	4-5% Py, tr Cpy; 30° qtz vein/ fol;										
				40-50° milky quartz vein to end of	107.70	109.00	1.30	112504	0.04	2.8	93	11	180	1076
				unit, dissem sulphides, 1% Py/Po,	101.10	100.00								
				tr Aspy dissem										
			110.00-110.15	semi-massive >20% Po, (tr Cpy?),	109.00	110.15	1.15	112505	<0.03	1.0	58	5	142	423
			110.00-110.15	5-10% Py concentrated at contact	100.00									
				zone @ 50° to c.a.										
110.15	113.69	3.54	QUARTZ FELDSP	AR PORPHYRY, rounded It.grey/white										
110.15	110.00	0.01		and quartz eyes in med.green/grey										
				x; intrusive unit has dissem Py to	110.15	111.65	1.50	112506	<0.03	0.6	34	6	24	194
				to euhedral Py crystals; weakly				repeat	<0.03	0.6	34	6	26	195
			fractured longitudin					re-split	<0.03	0.4	38	5	22	216
			•••••	faulted, fractured, broken core,	111.65	112.65	1.00	112507	<0.03	<0.2	5	5	12	26
				limonite coated	112.65	113.69	1.04	112508	<0.03	<0.2	7	6	58	101

113.69 Total Depth

	Red Cap - Falcon Dril BTW		Latitude: 44+65N Departure: 50+05E Elevation: 1698 m	DDH RV-98-10		Inclina	Bearing: tion @ collar: Total Depth:	-60°	[	Date Com		August 19 August 19 M. Fay	
										Ass	ays		
From m	To m	interval m	Lithology	From m	To m	width m	Tag No.	Au g/T	Ag g/T	Pb %	Zn %	Co %	Cu %
0.00	1.52	1.52	CASING, no recovery										
1.52	5.50	3.98	ANDESITE LAPILLI TUFF, rhyolite + andesite clasts, epditozied; matrix - chlorite clasts <2 cm diameter, dominantly angular; tr Py; fractures 40-50° to c.a.; broken contact 40° 1.52-4.05 broken core										
5.50	7.00	1.50	ANDESITE TUFF, chloritized; weakly limonitic; fractures 40° to c.a.; 15° contact										
7.00	9.98	2.98	ANDESITE LAPILLI TUFF, clasts angular; highly epi- dotized; andesite; and chert or rhyolite with <40% Po; matrix chloritized; fractures 40° to c.a.; 80° sharp contact 9.10-9.45 broken core; rusty fractures										
9.98	13.67	3.69	ANDESITE FLOW BRECCIA ± lapilli horizons at 10.91- 11.92m and 12.10-12.40m; clasts of massive Po, quartz with calcite in matrix of epidote chlorite quartz; 5-10% Po, 1% Sph, Po along foliation; remaining sections of lapilli tuff with discernible clasts altered with epidote/Po/calcite in chloritized/quartz matrix; roll structures @ 12.10-12.40m, tr-1% Gn as well; intersections of lapilli tuff widen downhole; foliation undulating @ 60° to c.a.; contact 90°	9.98 10.82 12.40	10.82 12.40 13.68	0.84 1.58 1.28	244051 244052 244053	1.41 4.50 0.12	1.4 10.3 1.0	<0.01 0.01 <0.01	0.12 0.31 0.08	0.011 0.007 0.001	0.01 0.03 0.01
13.67	14.40	0.73	ANDESITE TUFF ± lapilli; trace py,Po; 1% epidote with chlorite; fractures 45° to c.a. filled with calcite, tr-1% Py,Po <2m wide; faulted contact 28° to c.a.; 60° fault - reverse offset	13.68	14.40	0.72	244054	0.12	1.0	<0.01	0.04	0.001	<0.01
14.40	) 16.11	1.71	ANDESITE FLOW BRECCIA with minor lapilli tuff (semi- massive sulphides); foliation low angles to c.a.; contact 80° weak 14.40-14.55 possible barite - pink mineral with black flecks (bituminous) - surrounded with calcite 14.93-16.11 epidote / quartz / calcite / chlorite; 4% Sph, 1% Py, tr-1% Cpy, iron carbonate	14.40	16.10	1.70	244055	4.26	18.9	0.01	2.77	0.026	0.04
16.11	18.06	1.95	RHYOLITE FLOW BRECCIA (semi-massive sulphides); 4% Sph, 1% Py, tr Gal, tr Cpy, iron carbonate; epidote	16.10 17.60	17.60 18.03	1.50 0.43	244056 244057	33.21 1.11	122.5 28.4	0.14 0.05	7.37 5.12	0.010 0.006	0.10 0.02

	Red Cap - Falcon Dril BTW		Latitude: 44+65N Departure: 50+05E Elevation: 1698 m	DDH RV-98-10		Inclina	Bearing: tion @ collar: Total Depth:	-60°	E	Date Com		August 19, August 19, M. Fay	-
										Ass	ays		
From	То	interval		From	То	width		Au	Ag	Pb	Zn	Co	Cu
m	m	m	Lithology	<u>m</u>	m	m	Tag No.	g/T	g/T	%	%	%	%
			alteration, calcite present as visible subhedral crystals mineralization preferential to foliation (bedding?); foliation @ 65° weakly undulating; contact 70°	:									
18.06	18.48	0.42	DACITE FLOW BRECCIA, highly chloritized black roc clasts angular, highly overprinted; 5% Po, tr-1% Py; two fracture sets 45° and 70°; broken contact 80°	k, 18.03	18.48	0.45	244058	2.31	11.9	0.02	1.28	0.004	0.02
18.48	20.05	1.57	ANDESITE FLOW BRECCIA, clast replacement with Sph,Po in matrix of quartz, calcite, epidote & chlorite; milky green rock with dk.green intersections (chlorite- rich), 1% Sph, 1% Po, large (<8cm) lobate epidote rimmed, rounded clast, rich in calcite & sulphides; foliation locally @ high angle to c.a.; contact 55°	18.48	20.05	1.57	244059	10.32	39.5	0.06	2.24	0.004	0.03
20.05	25.68	5.63	highly altered ANDESITE FLOW BRECCIA ± lapilli; chlorite, epidote, minor calcite, ± graphite; large lobate epidote clasts (<15 cm) as above but sharp, with wide epidote zonation; flow structure; <3% Po, tr-1% Py, tr-1% Aspy, tr-1% Gn; bedding undulating 50-70°, contact sharp 42° 21.45-21.70 4% Sph, 1-2% Po; calcite-filled fractures 50° to c.a.	20.05 21.55 23.05 24.55	21.55 23.05 24.55 25.68	1.50 1.50 1.50 1.13	244060 244061 244062 244063	7.59 0.72 1.38 3.30	38.9 5.9 4.6 16.9	0.09 0.01 0.01 0.09	2.10 0.29 0.14 0.36	0.021 0.003 0.018 0.037	0.03 0.01 0.01 <0.01
25.68	31.98	6.30	ANDESITE FLOW BRECCIA. lower contact 75° 26.68-28.95 epidotized with minor chlorite in zoned bands, 2% Po, tr Cpy, tr Py 28.95-31.98 minor epidote in siliceous matrix with calcite; clarge chert clasts (10 cm), tr sulphides, 50° calcite- filled fractures	25.68 26.28 7.78 28.95	26.28 27.78 28.95 30.45	0.60 1.50 1.17 1.50	244066 244064 244065 244067	0.06 4.02 0.15 <0.03	1.8 40.6 13.3 0.7	0.01 0.17 0.11 0.02	0.04 0.53 0.31 0.06	 0.148 0.007 	<0.01 0.01 0.01 <0.01
31.98	41.32	9.34	ANDESITE BRECCIA > RHYOLITE BRECCIA, silicific calcite-rich matrix, with tr chlorite and epidote; chert, andesite sub-rounded - rounded clasts; tr sulphides; calcite-filled fractures 53°; local rusty fractures; bedding 65°; contact 80°	ed,									
41.32	42.07	0.75	ANDESITE LAPILLI TUFF / FLOW; chert roll structure with weak alteration rims (<5 cm diameter); 1% Po, tr Sph associated with clasts, silicified; broken contact										
42.07	61.57	19.50	CHERT > SILICEOUS ARGILLITE; progressive grada over ~20 m from pale green bedded exhalative	ation									

Area: Red Cap - RV			Latitud	Latitude: 44+65N				Bearing: -010°			Date Started: August 19, 1998					
Contractor:	Falcon Dri	ling	Departur	e: 50+05E		RV-98-10		Inclination @ collar: -60°				Date Completed: August 19, 1998				
Core Size:	BTW	-	Elevatio	Elevation: 1698 m Total Dept						: 61.57 m Logged By: M. Fay						
												Assa	iys			
From	То	interval				From	То	width		Au	Ag	Pb	Zn	Co	Cu	
m	m	m	Litholog	γ		m	m	m	Tag No.	g/T	g/T	%	%	%	%	

sequences; tr Po; weakly chloritized; bedding conformable 60° to c.a.; calcite-filled fractures 60° opposite to bedding

61.57 Total Depth