

CONSULTING • DATA PLOTTING • ORIENTATION STUDIES • INTERPRETATION

THE JAJAY PROJECT

ASSESSMENT REPORT DESCRIBING THE 1999 GEOCHEMICAL STUDY ON THE BOOT STEELE PROPERTY (BISHOP ZONE), STEELHEAD PROPERTY, DOROTHY PROPERTY AND PAL CLAIMS (ATO AREA)

OMINECA MINING DIVISION, BRITISH COLUMBIA

NTS 93N/14 and 94C/3

Latitude 55°55'N - Longitude 125°20'W

For

LYSANDER GOLD CORPORTION

By

John L. Gravel, M.Sc., P.Geo.

Vancouver, BC

August 12, 1999

网络科拉希勒 多时限制的的 自民民间的时

UNT REPORT

GST# R122414873

4406 West 9th Avenue • Vancouver, B.C. • V6R 2E1 • CANADA Tel: (604) 221-8061 • Fax: (604) 221-8091 • e-mail: jgravel@sympatico.bc.ca

TABLE OF CONTENTS

		Page
1.0	SUMMARY	1
2.0	INTRODUCTION	2
3.0	LOCATION AND ACCESS	3
4.0	CLAIMS	4
5.0	HISTORY	7
6.0	GEOLOGY	8
7.0	MINERALIZATION	9
0.8	METHODS	10
9.0	DESCRIPTION OF RESULTS	12
10.0	DISCUSSION OF RESULTS	16
11.0	CONCLUSIONS	18
12.0	RECOMMENDATIONS	18
13.0	REFERENCES	19
14.0	STATEMENT OF COSTS	20

APPENDIX 1 – ASSAY CERTIFICATES

LIST OF ILLUSTRATIONS

	Following Page
Figure 1 – Location Map	
Figure 2 – Access Map	2
Figure 3 – Claim Map	in map pocket
Figures 4A to 4D – Geochemical Maps of Bishop Zone	13
Figures 5A to 5D – Geochemical Maps of Steelhead Property	14
Figures 6A to 6D – Geochemical Maps of Dorothy Property	14
Figures 7A to 7D – Geochemical Maps of ATO Area	15

Prime Geochemical Methods Ltd.

- -

1.0 SUMMARY.....

The Jajay Property composed of the Lorraine, Steelhead, Dorothy and Boot Steele properties and the PAL claims, is in the Omineca Mining Division of British Columbia. Intrusive rocks of the Duckling Creek Syenite Complex and alkaline phase of the Hogem batholith underlie the Property. Two substantial zones of copper-gold mineralization with some silver, the Main Zone (Upper and Lower deposits) and the Bishop Zone, have been discovered to date. The Main Zone deposits were estimated earlier to contain a geological resource of 10 million tonnes averaging 0.67% Cu and between 0.10 and 0.34 g/t Au. The Bishop Zone is still at the very early drilling stage: tonnage and grade are not yet defined, but the grade is similar to that of the Main Zone. Less is known about the Steelhead, Dorothy and Boot Steele properties that also bear copper mineralization.

In early 1996, an annular magnetic structure, the Jajay Ring, was recognized. Most of the known copper mineralization in the area lies along the perimeter of this structure. Based on the potential of the Jajay Ring, Lysander assembled a land package by acquiring two existing properties additional to the Lorraine and Boot-Steele properties and by staking claims.

In 1999, talus fines collected during the 1996 and 1997 geochemical sampling programs over the Bishop Zone, the Steelhead Property, the Dorothy Property and the ATO area were re-analyzed for Au, Pt and Pd. Previous reconnaissance stream sediment surveys and outcrop grab samples had defined potential for PGE mineralization.

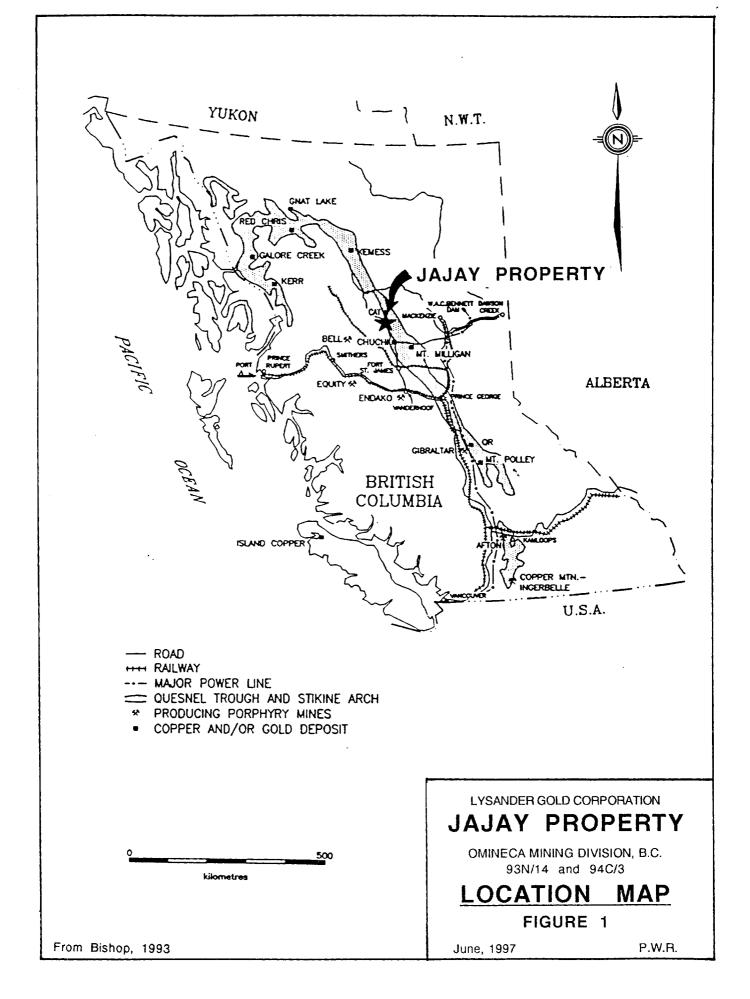
Results demonstrated a relationship between the fenitisation event and Pt-Pd distribution. Pt and Pd define halos around high-grade Cu \pm Au mineralization and are effective pathfinders. High-grade Pt-Pd mineralization also occurs and is a worth target for further investigation.

1

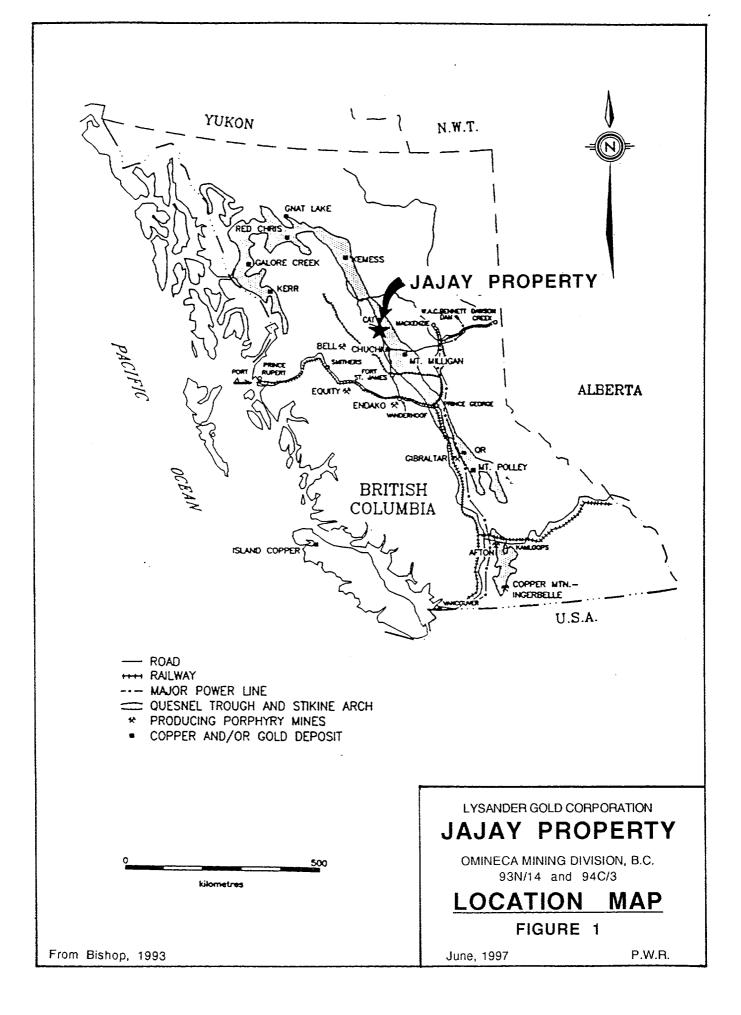
2.0 INTRODUCTION.....

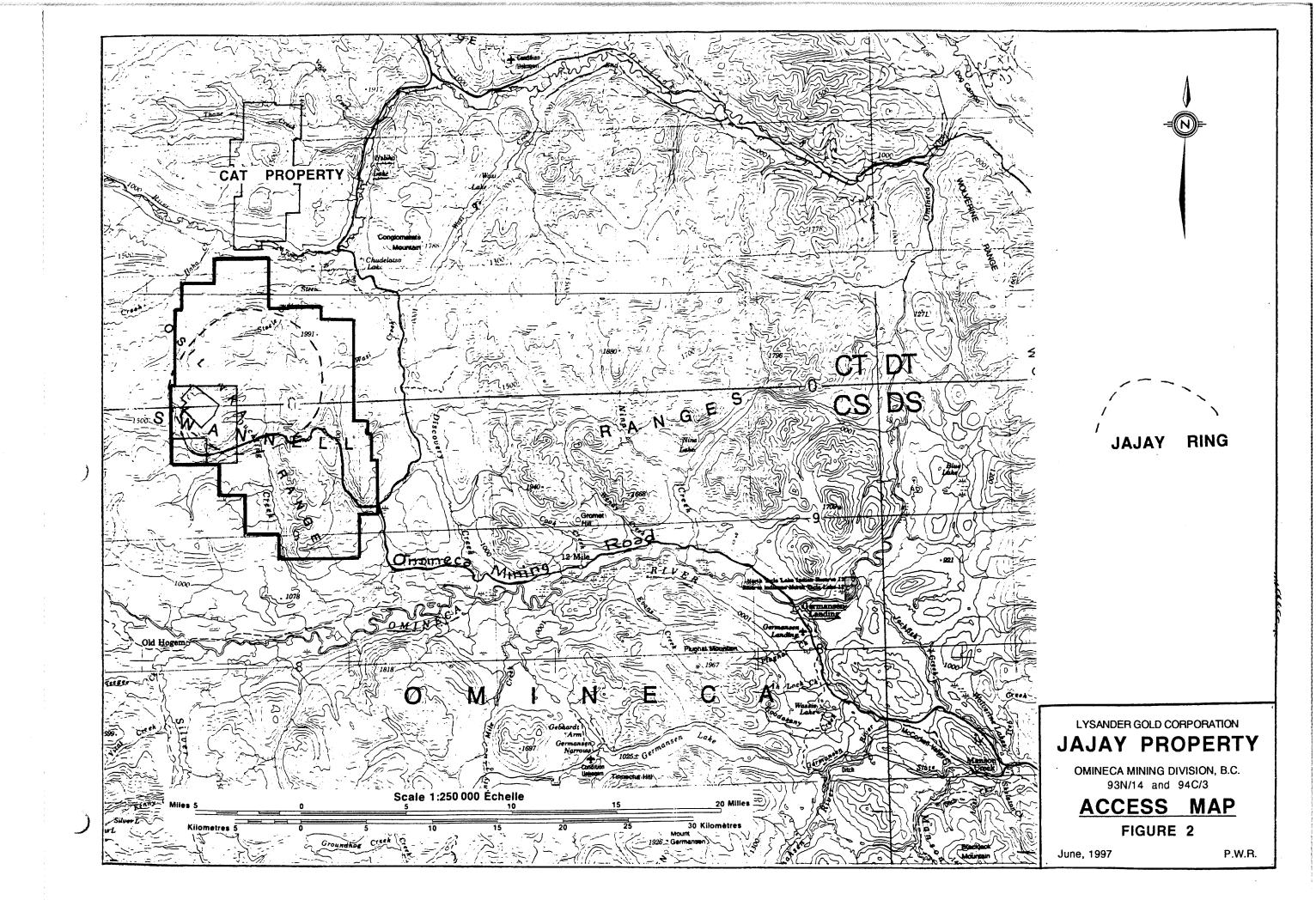
In 1994, Lysander Gold Corporation optioned the Lorraine copper-gold property from Kennecott Canada Ltd. The Lorraine property was owned by Kennecott and by a predecessor company for many years, but apparently the deposit was not large enough to meet the company's corporate requirements. Data describing the property were examined by Lysander and there appeared to be potential both for smaller, higher grade portions within the known mineralized areas and for additional deposits between the Main Zone and the Bishop Zone as well as elsewhere on the property. Diamond drilling programs conducted from 1994 to 1996 tested mineralized areas at the Main, Bishop, Eckland, and North Cirque Zones.

In 1968, while doing regional geological mapping in the area, Dr. Jahat Koo recognized the migmatitic rocks in the area to be fenites. A fenite is a quartzo-feldspatic rock that has undergone alkali metasomatism at the contact of a carbonatite intrusive complex. He postulated that a buried alkalic complex caused the fenitisation. In early 1996, Dr. C. Jay Hodgson pointed out an annular magnetic anomaly about 10 km in diameter with its western edge lying just west of the Lorraine property (Figures 2 and 3). Dr. Koo's postulated buried alkalic complex is thought to cause this anomaly, now termed the Jajay Ring. Most of the known copper mineralization in the area lies around the perimeter of this structure. Based on the potential of the Jajay Ring, Lysander assembled a land package by acquiring existing properties additional to the Lorraine and Boot-Steele properties and by staking the PAL claims.


In 1996 and 1997, sampling traverses collecting talus fines and seepage sediments tested the known mineralized zones and expanded outwards to evaluate the mineral potential of the Jajay Ring. Approximately 1/3 of the prospective region has been evaluated for Au, Cu and 29 other base and trace elements. Rock samples and reconnaissance stream sediment had previously defined a potential for PGE mineralization. As such the following report describes results from the re-analysis of select talus fines samples from the 1996 and 1997 geochemical programs for Au, Pt and Pd.

Prime Geochemical Methods Ltd.


- -


August 1999

3.0 LOCATION AND ACCESS.....

The Jajay Property lies in north-central British Columbia (lat. 56°55'N, long. 125°250'W) approximately 250 km NW of Prince George (Figure 1) and 10 km SSW of the CAT Property (Figure 2). The property is in the Omineca mining division on NTS Map 93N/14W and 94C/3. An access road begins 40.8 km west of Germansen Landing along the Omineca Mining Road (Figure 2). The road is 32.1 km long and can be traversed by 4-Wheel drive in two to three hours depending on conditions and the vehicle.

The property is in the Omineca Mountains, and has moderate to steep relief with elevations ranging from 1150 m in the valleys up to peaks of 2000 m. The valleys are U-shaped, and are blanketed by glacial till. There are talus-covered slopes and sharp ridges above the valleys. Coniferous forests grow up to the 1600 m elevation with alpine scrub and tundra at higher elevations.

4.0 CLAIMS

The Jajay Project consists of four optioned properties and the PAL claims. There are 104 claims made up of 1015 units (Figure 3 in map pocket).

Lorraine Property

Claim Name	Record #	# Units	Record Date	Expiry Date*
Lorraine 1	243499	1	17-Sep 1947	17-Sep 2006
Lorraine 2	243500	1	17-Sep 1947	17-Sep 2006
Lorraine 3	243501	1	17-Sep 1947	17-Sep 2006
Lorraine 4	243502	1	17-Sep 1947	17-Sep 2006
Lorraine 5	243503	1	17-Sep 1947	17-Sep 2006
Lorraine 6	243504	1	17-Sep 1947	17-Sep 2006
Lorraine 7	243505	1	17-Sep 1947	17-Sep 2006
Lorraine 8	243506	1	17-Sep 1947	17-Sep 2006
Lorraine 9	243507	1	22-Jun 1948	22-Jun 2006
Lorraine 10	243508	1	22-Jun 1948	22-Jun 2006
Lorraine 11	243509	1	22-Jun 1948	22-Jun 2006
Lorraine 12	243510	1	22-Jun 1948	22-Jun 2006
Lorraine 1FR	245449	1	31 May 1972	31-May 2006
Lorraine 2FR	245450	1	31 May 1972	31-May 2006
Lorraine 3FR	245451	1	31 May 1972	31-May 2006
Lorrex 1	243646	1	04-Sep 1961	04-Sep 2006
Lorrex 2	243647	1	04-Sep 1961	04-Sep 2006
GK 1	245043	1	03-Jul 1970	03-Jul 2006
GK 2	245044	1	03-Jul 1970	03-Jul 2006
GK 3	245045	1	03-Jul 1970	03-Jul 2006
GK 4	245046	1	03-Jul 1970	03-Jul 2006
GK 5	245047	1	03-Jul 1970	03-Jul 2006
GK 6	245048	1	03-Jul 1970	03-Jul 2006
GK 7	245049	1	03-Jul 1970	03-Jul 2006
GK 8	245050	1	03-Jul 1970	03-Jul 2006
GK 9	245051	1	03-Jul 1970	03-Jul 2006
GK 10	245052	1	03-Jul 1970	03-Jul 2006
GK 11	245053	1	03-Jul 1970	03-Jul 2006
GK 18	245054	1	03-Jul 1970	03-Jul 2006
GK 19	24595 5	1	03-Jul 1970	03-Jul 2006
GK 20	245056	1	03-Jul 1970	03-Jul 2006
GK 21	245057	1	03-Jul 1970	03-Jul 2006
GK 109 FR	245452	1	31 May 1972	31-May 2006
GK 110 FR	245530	1	25-Jul 1972	25-Jul 2006
GK 111 FR	245453	1	31 May 1972	31-May 2006
GK 112 FR	245531	1	25-Juĺ 1972	25-Jul 2006
Boot-Steele Property				
Claim Name	Record #	# Units	Record Date	Expiry Date
Steele #1	240496	20	29-Apr 1989	29-Apr 2003
Steele #2	240490	20	29-Apr 1989 29-Apr 1989	29-Apr 2003 29-Apr 2003
Steele #3	240498	20	29-Apr 1989	29-Apr 2003 29-Apr 2003
Steele #4	240499	20	29-Apr 1989	29-Apr 2003 29-Apr 2003
Boot 6	242900	15	29-Apr 1989	30-Oct 2001
Boot 10	303913	20	05-Sep 1991	
	000010	20	00-0ch 1991	05-Sep 2002

Steelhead Property				
Claim Name	Record #	# Units	Complet. Date	Expiry Date
Steelhead 1	334766	8	06-Apr 1996	06-Apr 2001
Steelhead 2	334767	8	06-Apr 1996	06-Apr 2001
SH 8	334773	1	06-Apr 1996	06-Apr 2001
SH 9	334774	1	06-Apr 1996	06-Apr 2001
SH 10	334775	1	06-Apr 1996	06-Apr 2001
Dorothy Property				
Claim Name	Record #	# Units	Record Date	Expiry Date
Dorothy 1	241431	12	20-Nov 1989	20-Nov 2002
Dorothy 2	241432	12	20-Nov 1989	20-Nov 2002
Dorothy 3	241433	12	20-Nov 1989	20-Nov 2002
Dorothy 4	241434	12	20-Nov 1989	20-Nov 2002
Dorothy 5	241961	12	14-May 1989	14-May 2002
Dorothy 6	241962	15	14-May 1989	14-May 2002
Dorothy 7	241963	18	14-May 1989	14-May 2002
Dorothy #1	243511	1	16-Jul 1948	16-Jul 2002
Dorothy #3	243512	1	16-Jul 1948	16-Jul 2002
Elizabeth #1	243513	1	27-Aug 1948	27-Aug 2002
PAL Claims				
Claim Name	Record #	# Units	Record Date	Expiry Date
Pal 1	346810	6	1996	31-May 2001
Pal 2	346811	20	1996	30-May 2001
Pal 3	346812	20	1996	01-Jun 2001
Pal 4	346813	20	1996	11-Jun 2001
Pal 6	346815	20	1996	11-Jun 2001
Pal 7	346816	20	1996	11-Jun 2001
Pal 8	346817	15	1996	09-Jun 2000
Pal 9	346818	20	1996	09-Jun 2000
Pal 10	346819	20	1996	09-Jun 2000
Pal 12	346820	15	1996	10-Jun 2000
Pal 13	346821	20	1996	12-Jun 2000
Pal 14	346822	15	1996	12-Jun 2000
Pal 15	346823	20	1996	06-Jun 2001
Pal 16	346824	20	1996	07-Jun 2001
Pal 17	346825	20	1996	07-Jun 2001
Pal 18	346826	20	1996	06-Jun 2001
Pal 19 Pal 20	346827 346828	20	1996	05-Jun 2001
Pal 20 Pal 21	346829	8 20	1996	02-Jun 2001
Pal 22	346830	8	1996 1996	31-May 2001 07-Jun 2001
Pal 23	346831	20	1996	07-Jun 2000
Pal 24	346832	20	1996	06-Jun 2000
Pal 25	346833	20	1996	04-Jun 2000
Pal 26	346834	20	1996	04-Jun 2000
Pal 27	346835	20	1996	02-Jun 2000
Pal 30	346838	20	1996	02-Jun 2000
Pal 31	346839	20	1996	03-Jun 2000
Pal 32	349774	20	1996	11-Aug 2001
Pal 33	349775	12	1996	16-Aug 2000
Pal 34	349776	8	1996	16-Aug 2002
Pal 35	349777	10	1996	14-Aug 2000

Claim Name	Record #	# Units	Record Date	Expiry Date
Pal 36	349778	20	1996	17-Aug 2000
Pal 37	349779	20	1996	17-Aug 2000
Pal 38	349780	20	1996	17-Aug 2000
Pal 39	349781	20	1996	17-Aug 2000
Pal 40	349782	15	1996	16-Aug 2000
Pal 41	349783	15	1996	20-Aug 2000
Pal 42	349784	12	1996	18-Aug 2000
Pal 43	349785	20	1996	21-Aug 2000
Pal 44	349786	20	1996	20-Aug 2000
Pal 47	350425	15	1996	24-Aug 2001
Pal 48	350016	12	1996	23-Aug 2000
Bobino 1	346808	10	1996	07-Jun 2001
Bobinette	346809	10	1996	08-Jun 2000
Fiona	352235	1	1996	09-Oct 2000
Isabelle	352236	1	1996	09-Oct 2000
Suzanne	352237	1	1996	09-Oct 2000

*Expiry date when the credits applied for, supported by this report, have been approved.

Lysander Gold Corporation owns all claims. The Lorraine and Dorothy properties are subject to agreements with Kennecott Canada Inc.; the Boot-Steele property is subject to an agreement with Richard Haslinger and Larry Hewitt and the Steelhead property is subject to an agreement with Alvin Jackson. The remainder of the claims were staked by Lysander, and are unencumbered.

5.0 HISTORY.....

Local aboriginals brought malachite stained bluffs on Lorraine Mountain to the attention of prospectors during World War I. However, the showings were not staked until 1931. Consolidated Mining and Smelting Company Limited acquired the Lorraine property in 1943, took some surface samples and allowed the claims to lapse in 1947 (Wilkinson et al, 1976). Later in 1947, a predecessor company of Kennecott Canada Inc. staked the Lorraine showings. In 1948 and 1949, the showings were mapped and sampled, and five widely spaced AX diamond drill holes tested the Upper Main Zone. In 1961, Kennco enlarged the property, conducted geochemical and geophysical surveys and drilled two holes totaling 118 m. Granby Mining Corporation optioned the property in 1970 and did geological mapping, soil and rock sampling, trenching and a total of 3992 m of diamond and 2470 m of percussion drilling. This work found the Lower Main Zone. The property then lay dormant from 1975 to 1990. Subsequently, Kennecott assessed the tenor of gold associated with the copper mineralization and explored the property for additional copper and gold showings. Geological, geophysical and geochemical surveys followed by 12 diamond drill holes totaling 2392 m resulted in the discovery of the Bishop Zone.

In 1994, Lysander Gold Corporation optioned the property and investigated the higher grade portions of the mineralization in the Upper Main and Bishop zones with a 10-hole diamond drilling program totaling 1,221.3 m.

Subsequent to the 1994 drilling, five adjacent Boot-Steele claims of 20 units each were optioned in order to protect both the southeastern extension of the Bishop Zone and other prospects near the presently known Lorraine deposits. Recently, the Boot 6 claim was added in the Boot-Steele option.

CIM Special Volume 15 (1976): Porphyry deposits of the Canadian Cordillera describes the Lorraine property. CIM Special Volume 46 (1995): Porphyry Deposits of the Northwestern Cordillera of North America gives an updated description.

Recognizing the importance of the Jajay Ring structure led to Lysander's optioning the Dorothy and Steelhead properties and staking the PAL claims in 1996 to protect the area of the Jajay Ring.

6.0 GEOLOGY.....

The area of the Jajay Project lies entirely within the Hogem Batholith, a late Triassic to Middle Jurassic multiphase intrusion of calc-alkaline to alkaline composition, which is intruded by early Cretaceous granitic bodies. The batholith intrudes the Takla Group to the east and is bounded by the northerly-trending Pinchi Fault to the west. The Takla Group is composed mostly of fragmental rocks with lesser amounts of flow rocks. The group forms the northern part of the Quesnel Trough, and is similar and probably equivalent to the Nicola Group of southern British Columbia. Several gold and alkalic copper-gold porphyry deposits are hosted in the rocks of the Quesnel Trough.

August 1999

7.0 MINERALIZATION.....

In the project area, the greatest concentrations of mineralization found to date are on the Lysander property, and occur in syenite rocks and in biotite pyroxenite in the Main and Bishop zones (Bishop, 1994). Mineralization also occurs in the Eckland, Weber and North Cirque zones and on the Boot Steele, Dorothy and Steelhead properties (Richardson 1995, 1996, 1997). Copper sulphides on Lorraine include chalcopyrite, bornite and rare covellite. Pyrite amounts to less than 1%, and is erratically distributed throughout the property. Malachite, azurite and chryscolla occur in oxidized portions of the copper-bearing zones. Sulphides are fine to medium grained, disseminated throughout the host rocks or concentrated along fractures and in narrow quartz veinlets. Total sulphide abundance ranges from trace amounts to greater than 7%.

A potential resource, calculated in 1975 for the two Main Zone deposits, was reported as 4.5 million tonnes of 0.75% Cu and 0.34 g/t Au in the upper deposit and 5.5 million tonnes of 0.60% Cu and 0.10 g/t Au in the lower deposit, based on a cutoff grade of 0.4% Cu (Wilkinson et al, 1976). Gold grades were estimated based on the limited number of assays.

Prior to the 1994 drilling, it was thought that copper-gold mineralization in the Upper Main Zone was confined to a NW-striking, SW-dipping layer of mostly K-feldsparaltered rock. The Lower Main Zone was believed to be similar and cut by several faults. Drilling in 1994 indicated that the Upper Main Zone extends much deeper then was previously thought. This was confirmed by the 1995 and 1996 drilling programs.

Less is known of mineralization on the other optioned properties. The Dorothy was explored using geological, geophysical and geochemical surveys but only six diamond drill holes to date. These had moderate success. Cyprus Exploration using geochemistry and airborne and ground geophysics explored the Steelhead property. The property has not been drilled.

Prime Geochemical Methods Ltd.

8.0 METHODS.....

8.1 Sampling

In 1996 and 1997, two man crews were trained to recognize, document and sample talus fines. Samples are collected at sites spaced 100 metres apart along a line that traverses the lower third of the talus fan. This material is believed to be compositionally representative of bedrock above the site. The sampler excavates talus blocks by shovel and hand, typically to a depth of 30 to 100 cm where a sufficient quantity of fines (0.5 to 1 Kg) has accumulated by downward percolating surface waters. On overgrown talus fans, the sampler digs into the C soil horizon to collect talus fines unmodified by soil forming processes.

Site observations regarding location, sample texture and colour, slope angle and direction and evidence of mineralization are noted on field forms. Florescent orange painted wooden pickets, bearing the site coordinates and sample number, mark the sample locations.

8.2 Analysis

Talus fines samples collected in 1997 and 1998 were submitted to Acme Analytical Laboratories Ltd. of Vancouver, British Columbia for the determination of: Ag, Al, As, Au, B, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sr, The, Ti, U, V, W and Zn by ICP-ES analysis using an Aqua Regia digestion and for Au by Graphite Furnace AA.

In this study, select archived talus fines pulps and rock pulps were re-analysed by Acme for Au, Pt and Pd using their fire geochemical method (Appendix 1). A specific amount of sample pulp (30 g for rocks and 10 g for talus fines) is mixed with fire assay fluxes and fused at 1050°C to produce a melt of two immiscible liquids: slag containing silicates plus impurities and metallic Pb containing precious metals. The melt is poured into a mold and cooled. The metallic Pb is recovered as a button. Cupellation of the Pb button renders a silver doré bead that is then parted in HNO₃ to remove the Ag. Addition of HCl solubilizes Au and the PGEs. The solution is then analysed by an ultrasonic nebulizer equipped ICP-ES to determine Au, Pt and Pd.

8.3 Data Presentation

Results for each element are spatially presented as a dot plot wherein dot sizes are scaled to seven concentration intervals. These intervals are the 50th, 68th, 80th, 90th, 95th, 97.5th and greater than 97.5th percentile concentrations. Although this is a coarse means of dividing the data, it has proven effective in a multi-element evaluation for attributing geochemical features to mineralization, lithology or background variation. North arrows indicate UTM north.

9.0 DESCRIPTION OF RESULTS.....

9.1 Rock Samples

Ten select rock samples representing mineralized and non-mineralized specimens were analyzed (See Table 1). Samples 99-ATO-MG from the ATO area and 96-L-43 106.2 m from a drill hole on the Eckland Zone represent non-mineralized (background) rock, Au and PGEs are uniformly less than 10 ppb.

Sample	Cu %	Au ppb	Pt ppb	Pd ppb
96-L-39 220.6 m	5.083	108	7	36
96-L-43 106.2 m	0.020	5	4	6
99-ATO -M G	0.007	1	<1	3
99-BO-BX#1	24.637	12297	38	641
99-BO-BX#2	17.716	13404	236	2122
B-190452		234	8	19
B-190455		5937	8	198
B-190456		8125	1	107
B-190457		297	12	11
B-190458		521	14	15

Table 1 Concentrations of Cu, Au, Pt and Pd in select rock samples

Sample 96-L-39 220.6 m is a Cu-sulphide rich syenite from the Lorraine Main Zone displaying minor Au and Pd enrichment. Samples B-190452 to B-190458 are grab samples from mineralized float and outcrop taken from the ATO property. Samples B-190455 and B-190456 display notable Pd enrichment associated with Au mineralization. Samples 99-BO-BX#1 and #2 are grab samples from a high grade mineralized breccia found on Jeno Ridge near the Bishop Zone. Au and the PGEs are strongly enriched in concert with high-grade Cu.

9.2 Talus Fines Samples

A total of 333 talus fines samples were analyzed from selected areas of the Bishop Zone, Steelhead Property, Dorothy Property and the ATO area. Table 2 gives basic statistics on the distribution of values for Au, Pt and Pd.

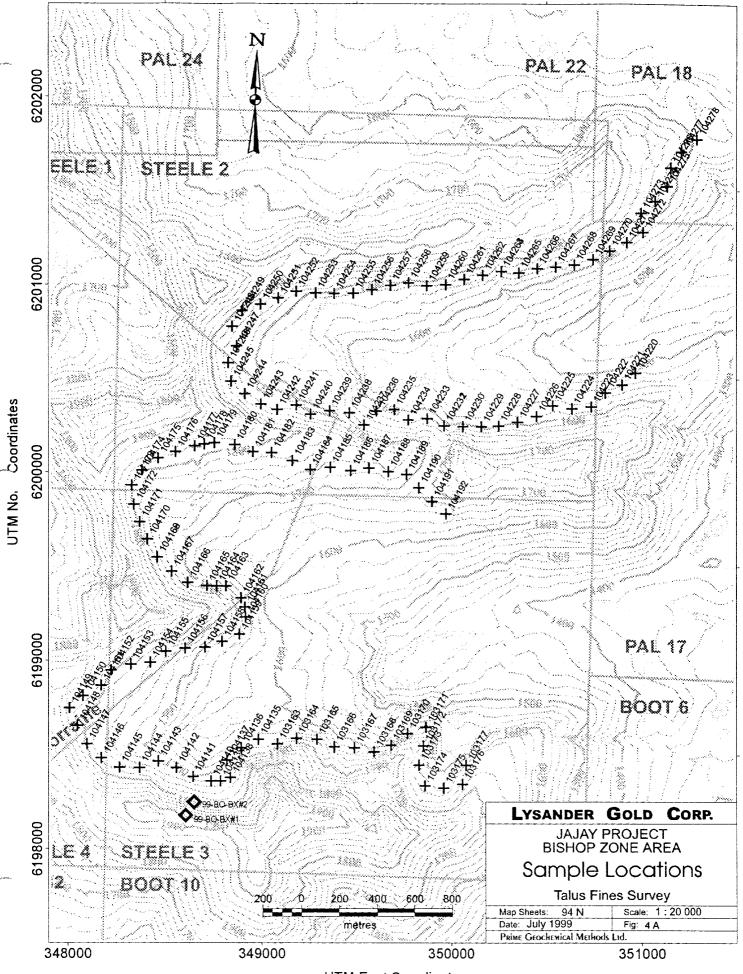
Table 2 Statistical Analysis of Au, Pt and Pd in Talus Fines Samples

Statistic	Au ppb	Pt ppb	Pd ppb
Range	0.5 - 1242	0.5 - 25	0.5 - 97
Mean	29.4	2.5	6.4
Stan, Dev.	96.6	3.4	10.6
Median	5	1	2
68 th Percentile	16	2	5
80 th Percentile	28	3	9
90 th Percentile	49	7	18
95 th Percentile	98	10	23
97.5 th Percentile	142	11	32

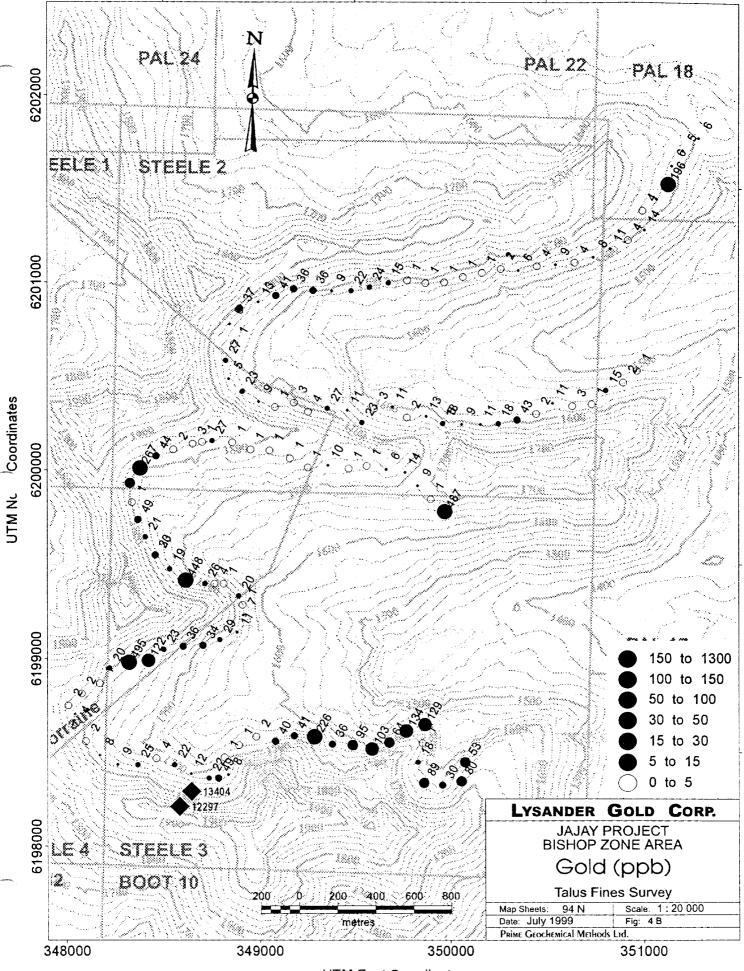
9.2.1 BISHOP ZONE AREA (Figures 4A to 4D)

A total of 132 samples were analyzed from the Bishop Zone area (Figure 4A).

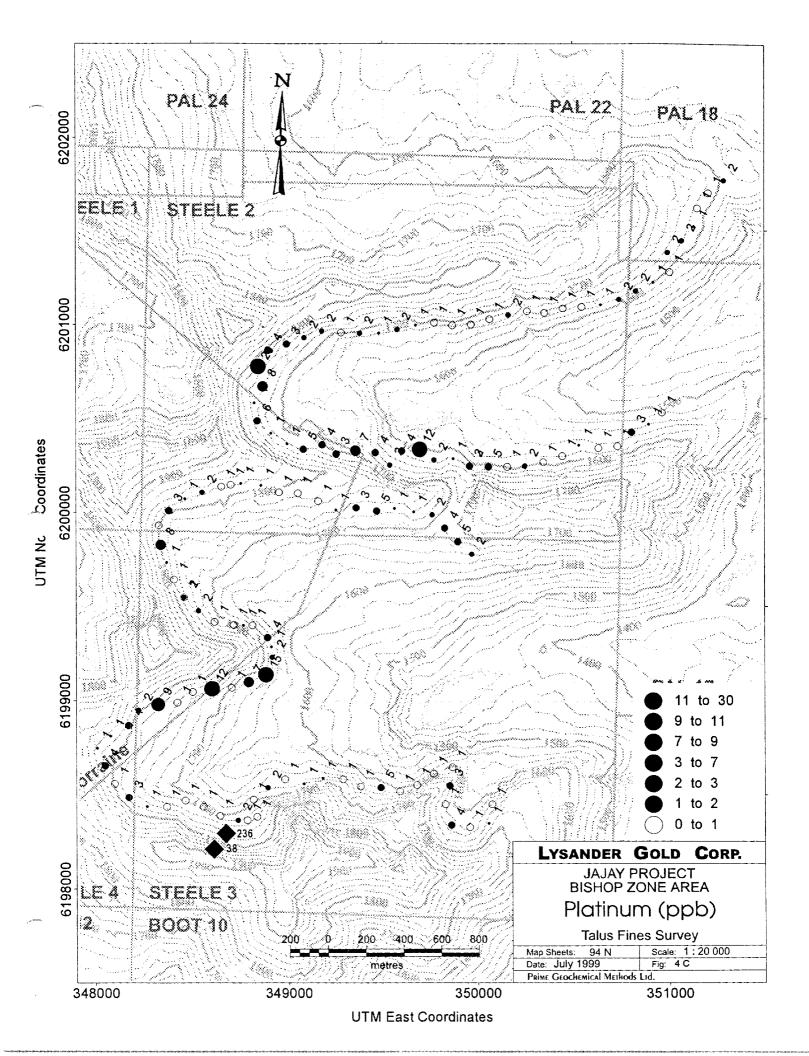
9.2.1.1 Au (Figure 4B)

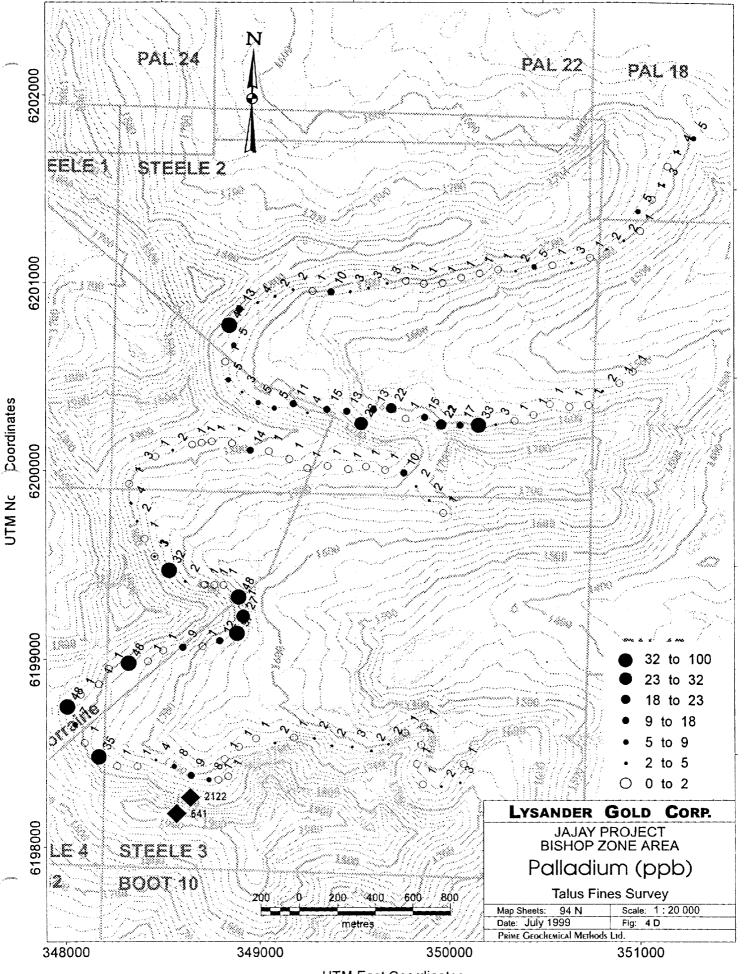

- The largest Au anomaly is 600 m long lies approximately 500 meters NE of Jeno Ridge on STEELE 3 and has values up to 226 ppb.
- The high grade breccia near the top of Jeno Ridge produces a weak anomaly in talus fines 200 metres down slope.
- Smaller anomalies are seen at 6199000N 348300E, 6199400N 348600E and 6200000N 348500E in the relative vicinity of the Bishop Zone.
- Sporadic single site Au anomalies are observed at 6199800N 350000E and at 6201500N 351100E.

9.2.1.2 Pt (Figure 4C)


- The high grade breccia on Jeno Ridge does not generate a Pt anomaly in the talus fines downslope.
- Several sites of weakly anomalous Pt (up to 15 ppb) are noted on the north face of the cirque south of the Bishop zone (6199000N 348500E).
- Continuous weakly to moderately anomalous Pt (up to 20 ppb) is seen on the south and west faces of the cirque on STEELE 2, north of the Bishop zone.

9.2.1.3 Pd (Figure 4D)


- Weak Pd enrichment (up to 9 ppb) is noted in talus fine below the high-grade breccia on Jeno ridge.
- Several sporadic Pd anomalies with values up to 48 ppb are seen in the Cirque to the south of the Bishop Zone.
- A prominent 3 sample anomaly with values up to 91 ppb Pd lies along the nose of the ridge immediately south of the Bishop Zone.
- A moderately weak continuous anomaly (up to 41 ppb), coincident to Pt, lies along the south and west faces of the Cirque on STEELE 2.



UTM East Coordinates

UTM East Coordinates

UTM East Coordinates

9.2.2 STEELHEAD PROPERTY (Figures 5A to 5D)

A total of 76 samples were analyzed from the Steelhead Property (Figure 5A).

9.2.2.1 Au (Figure 5B)

- The most prominent Au in talus fines anomaly lies on SH 8 and describes a 500 m long zone of better than 35 ppb Au (maximum of 112 ppb).
- The Steelhead showing at 6206500N 349600E in the SE quadrant of PAL 48 gives a maximum concentration of Au in talus fines of 64 ppb.
- Sporadic single point anomalies are noted at 6206700N 350700E and at 6204500N -351200E.

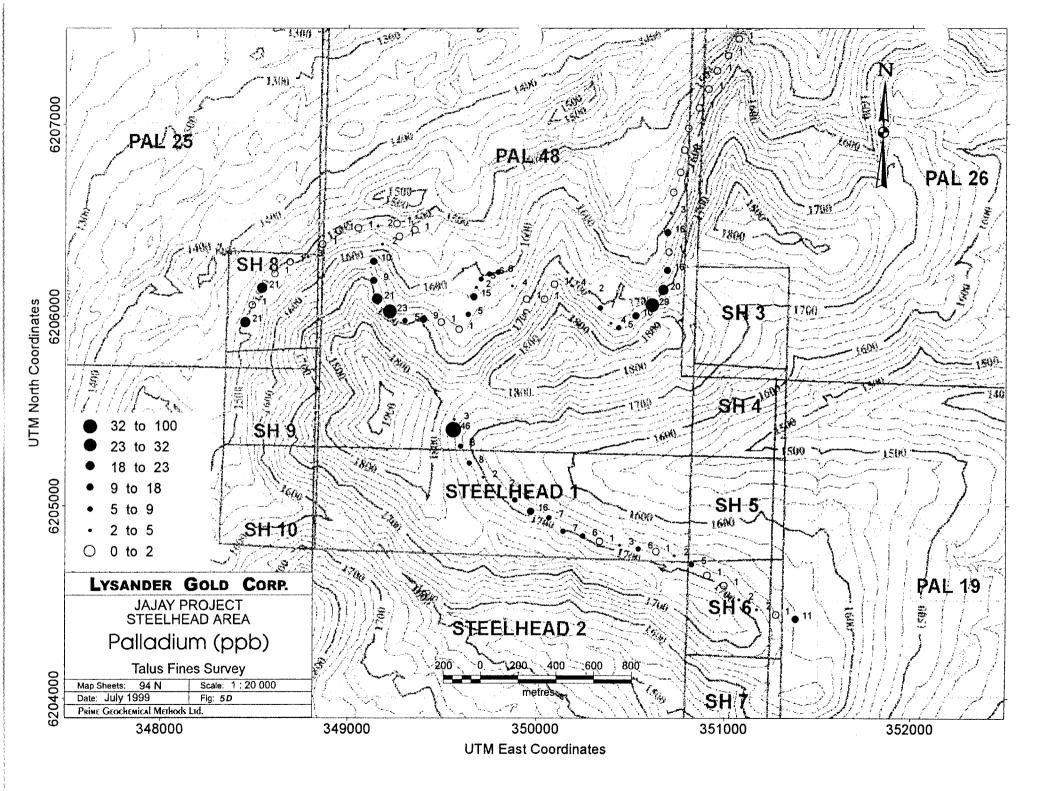
9.2.2.2 Pt (Figure 5C)

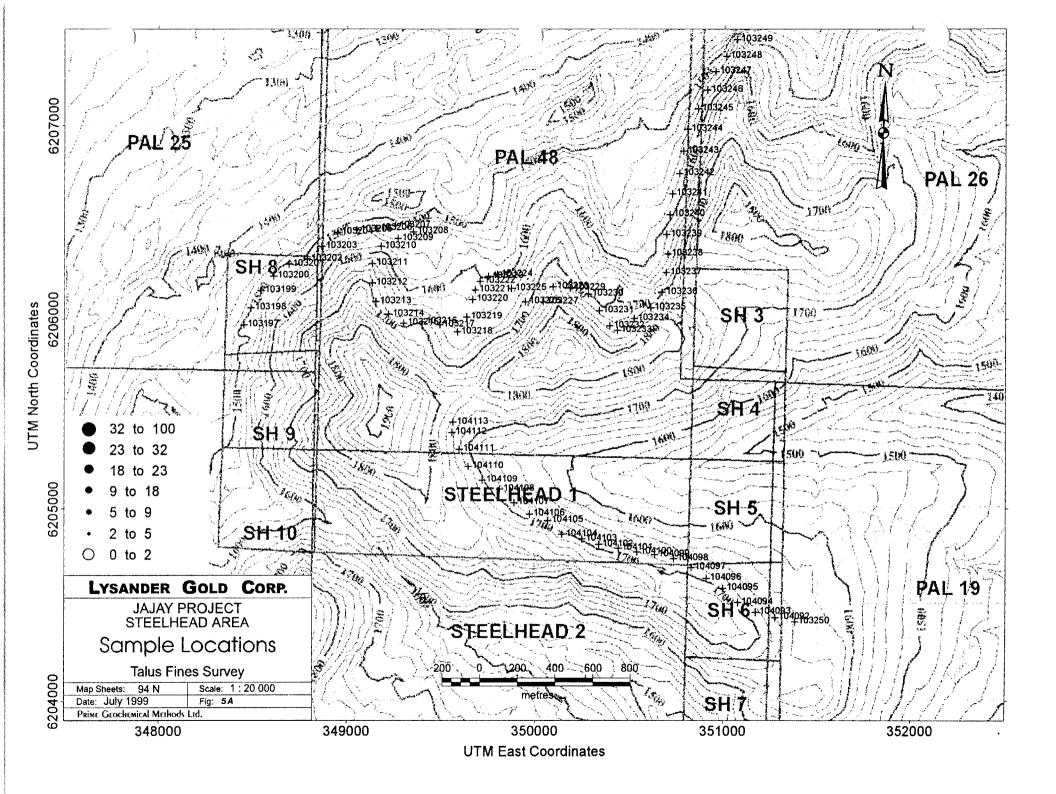
- The Steelhead showing is bordered by weak Pt anomalies to the east at 620600N 350500E (up to 9 ppb), to the west at 6206100N – 349200E (up to 8 ppb) and to the south at 6205400N - 349050E (up to 11 ppb).
- A single point anomaly of 8 ppb on SH8 roughly corresponds to Au enrichment seen in the area.

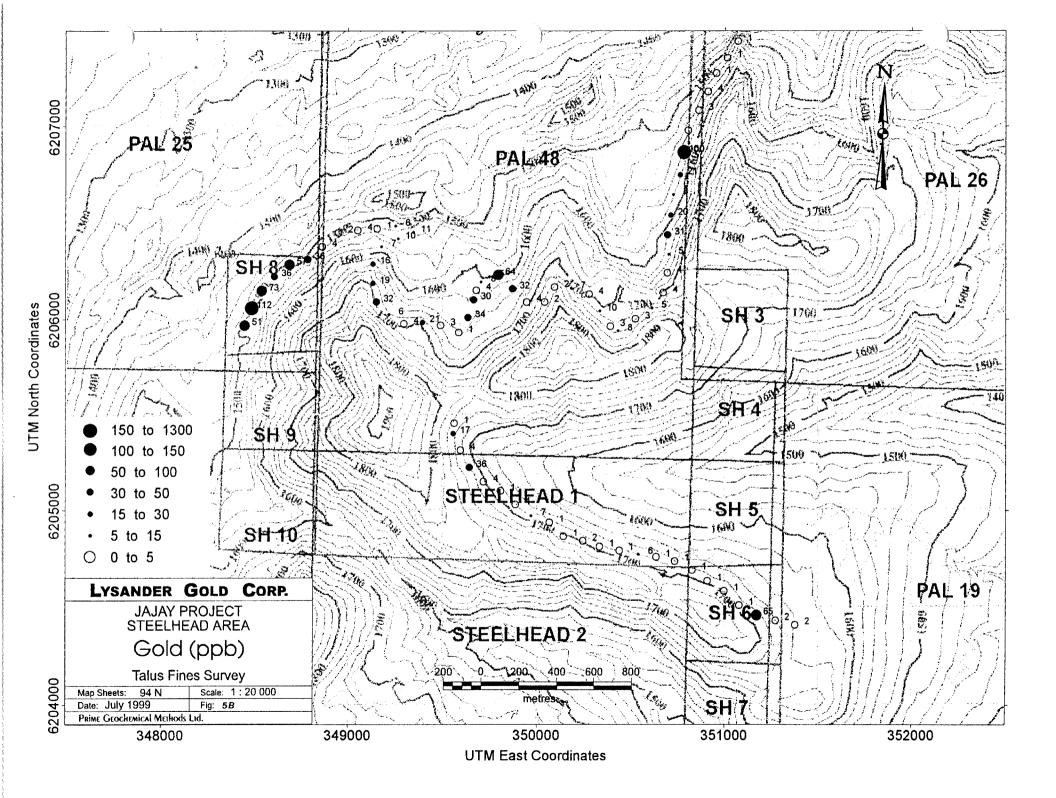
9.2.2.3 Pd (Figure 5D)

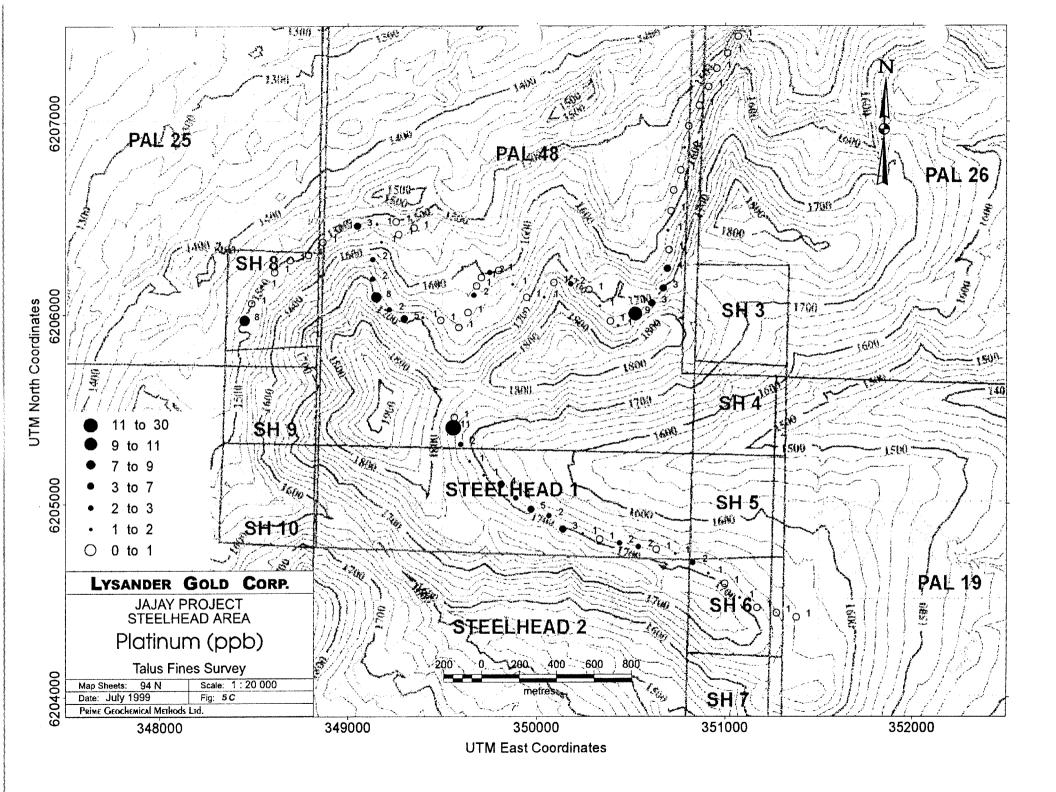
- Pd defines anomalies similar to Pt that border the Steelhead showing on the east (up to 29 ppb), west (up to 23 ppb) and south (up to 46 ppb).
- Weak Pd anomalies are noted on SH8 in conjunction with Au and Pt.

9.2.3 DOROTHY PROPERTY (Figures 6A to 6D)

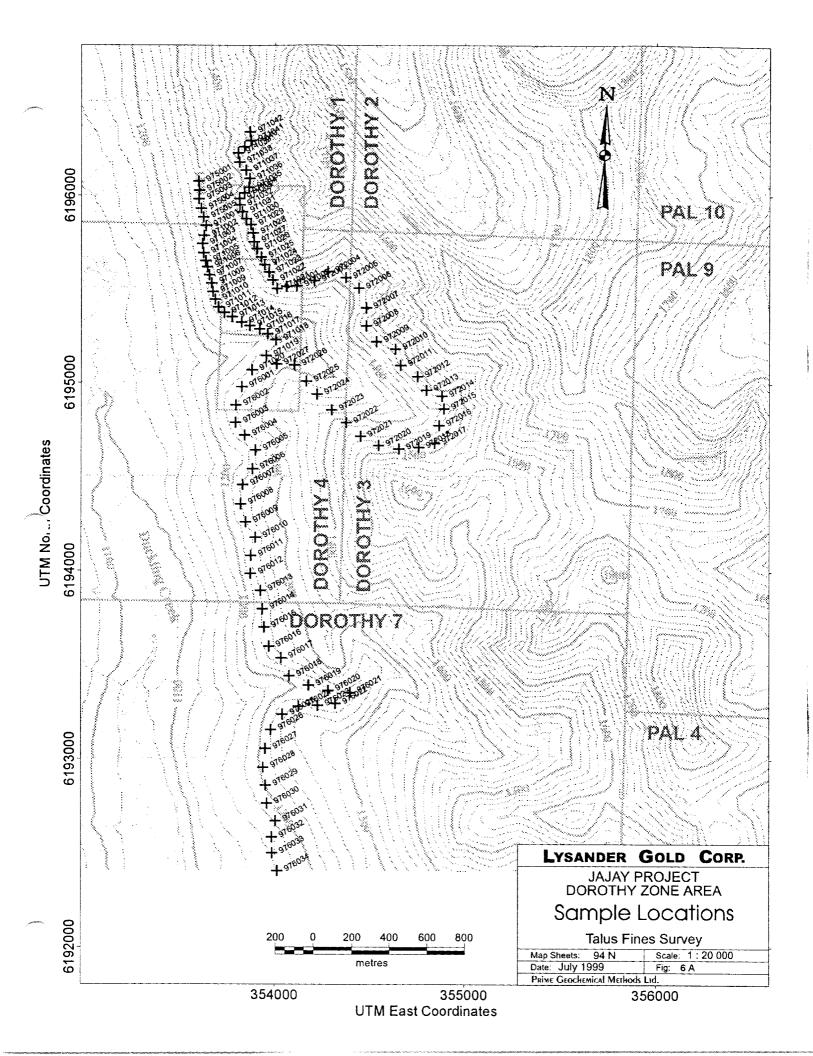

A total of 108 samples were analyzed from the Dorothy Property (Figure 6A).

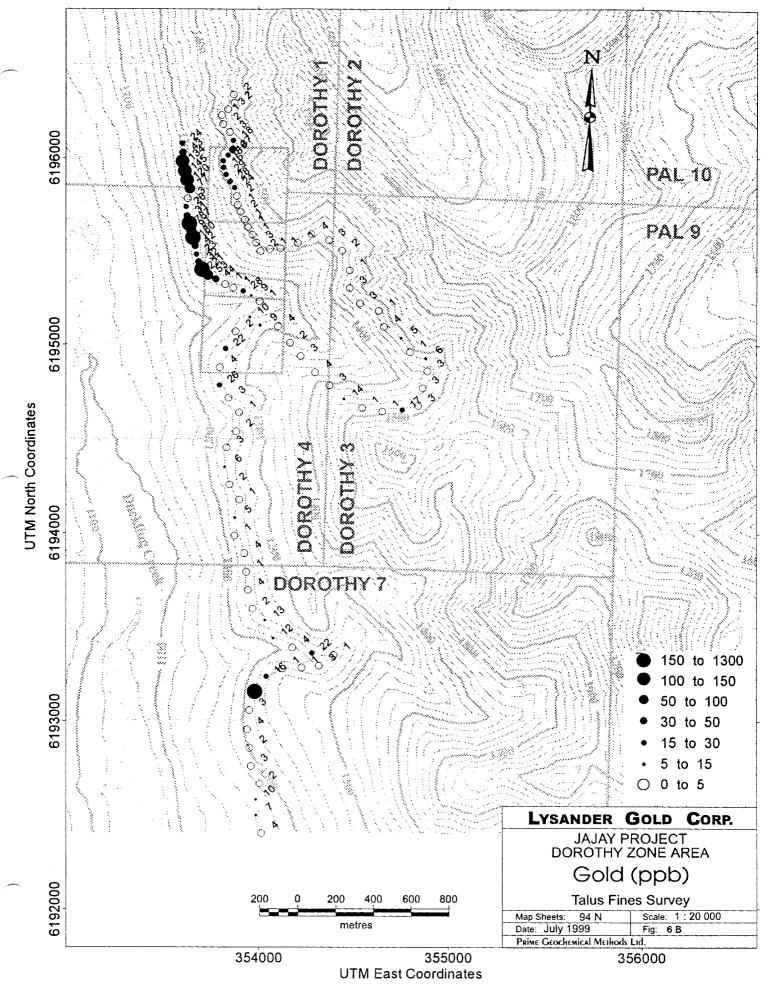

9.2.3.1 Au (Figure 6B)

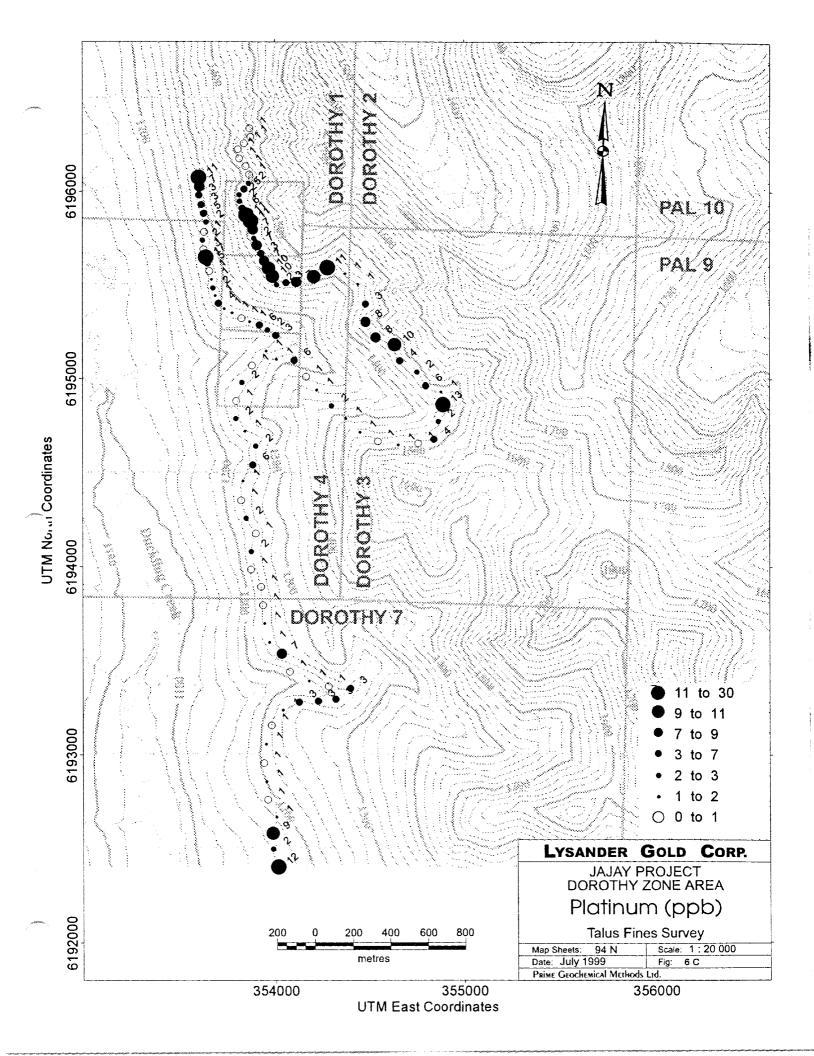

- The Dorothy mineralization is defined by an extensive Au in talus fines anomaly over 800 m long with values up to 787 ppb centred at 6195700N 353700E.
- Samples collected above the Dorothy mineralization display weak Au enrichment defining a 350 m anomaly with concentrations up to 37 ppb.
- A single sample anomaly of 1242 ppb Au is noted at 6193200N 354000E.

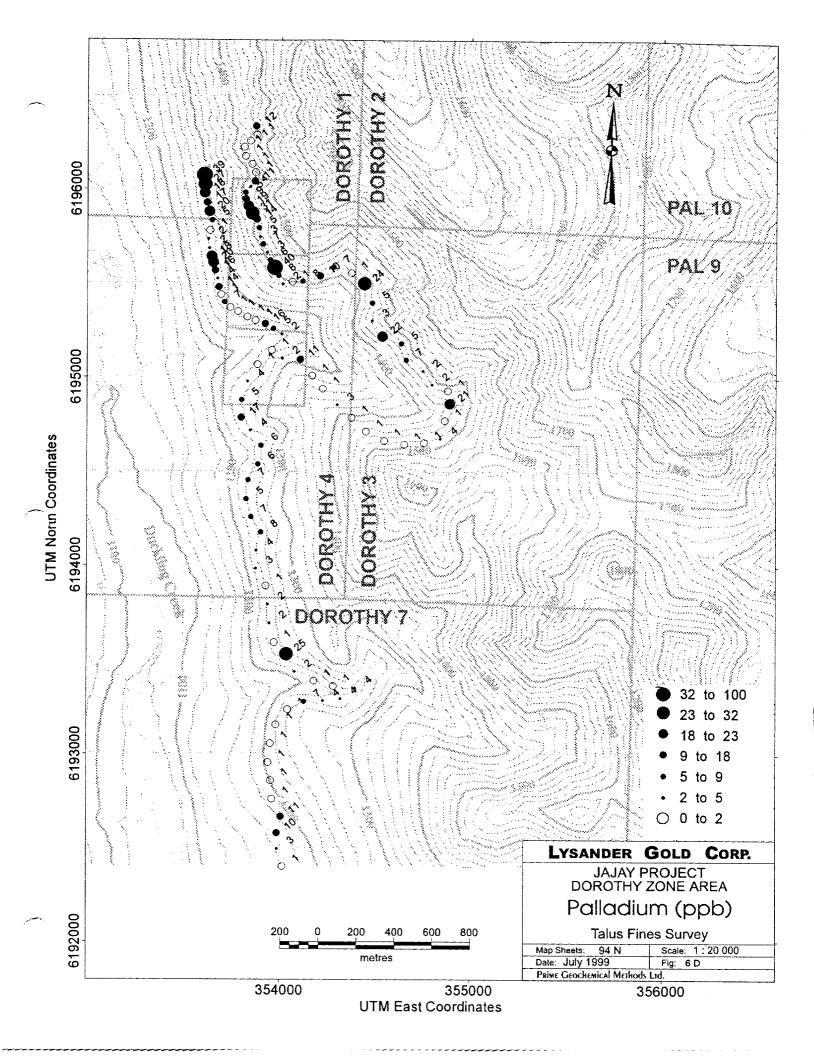

9.2.3.2 Pt (Figure 6C)

- Sporadic weak Pt enrichment is seen over the Dorothy mineralization. The maximum value 17 ppb coincides with the Au maximum.
- Samples collected above the Dorothy mineralization define a broad anomaly over 800 metres long with values up to 11 ppb.









The second s

- A second, moderately weak anomaly (up to 13 ppb) extends on to the DOROTHY 3 claim and may be a continuation of the upper Dorothy anomaly
- Several anomalous samples are noted at the southern end of the sample traverse on DOROTHY 7. Values range up to 12 ppb.

9.2.3.3 Pd (Figure 6D)

- Weak Pd anomalies (up to 39 ppb), coincident to Au, are noted over the Dorothy mineralization.
- Pd defines a restricted, weak (up to 31 ppb) anomaly similar to Au along the traverse above the Dorothy mineralization.
- Sporadic Pd enrichment (up to 24 ppb) is seen along the traverse on DOROTHY 3.
- Subtle enrichment (up to 17 ppb) defines a continuous zone 800 m long on DOROTHY
 4.
- Another subtle anomaly is noted at the southern end of the sample traverse corresponding to the Pt anomaly on DOROTHY 7.

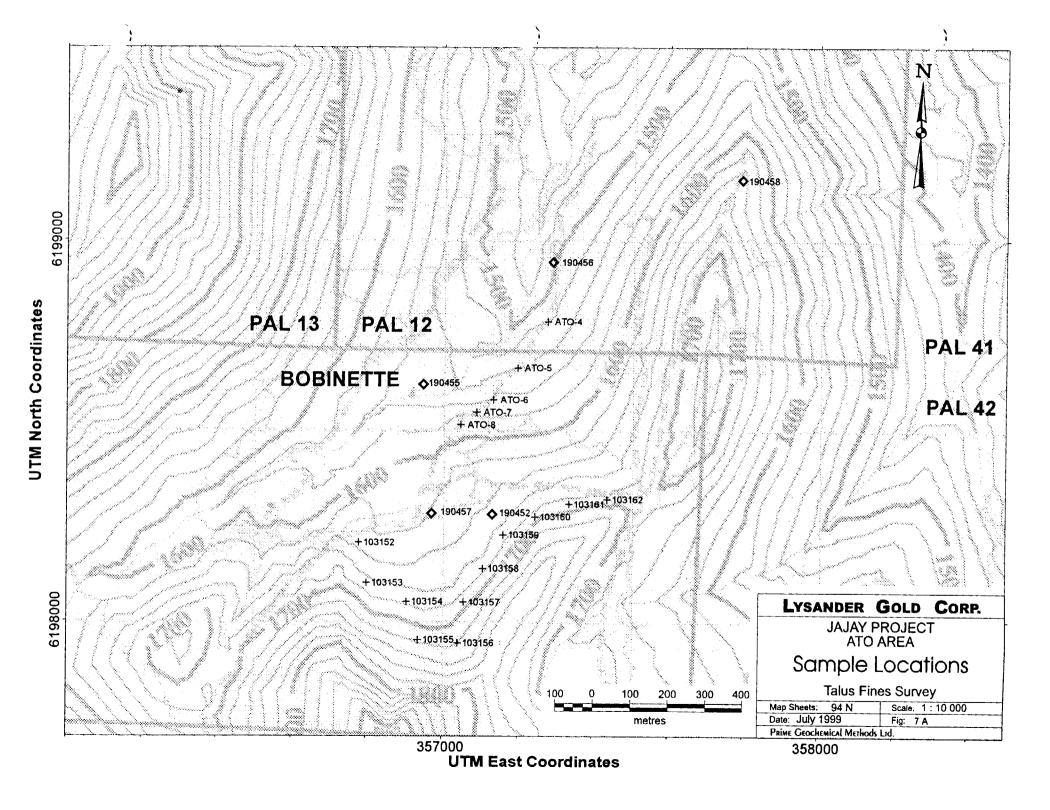
9.2.4 ATO AREA (Figures 7A to 7D)

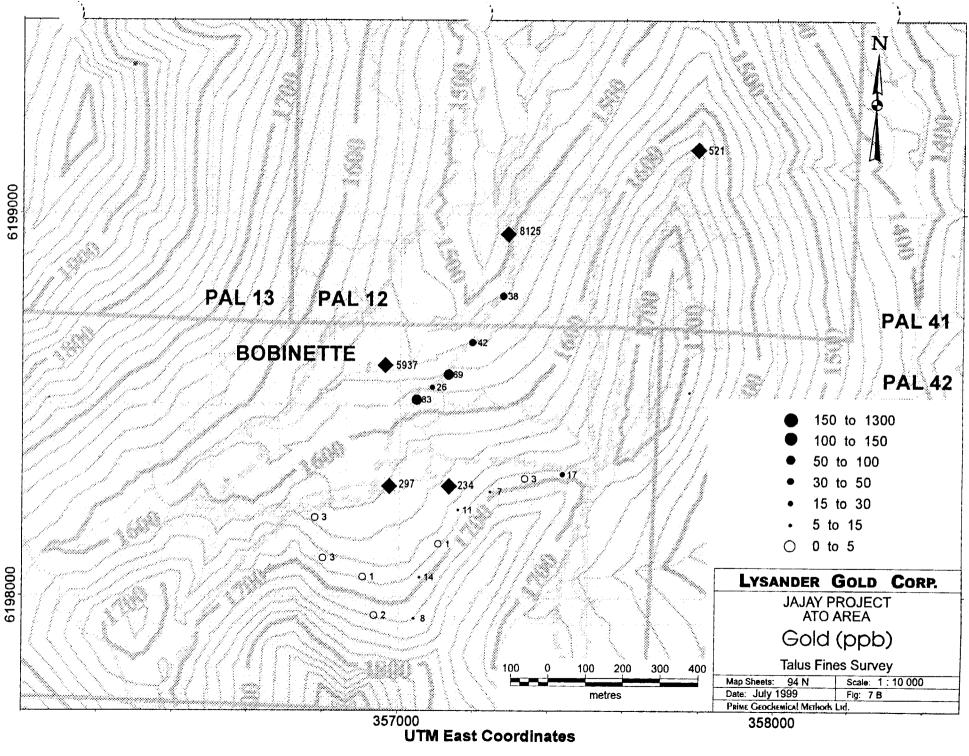
A total of 16 samples were analyzed from the ATO Area (Figure 7A).

9.2.4.1 Au (Figure 7B)

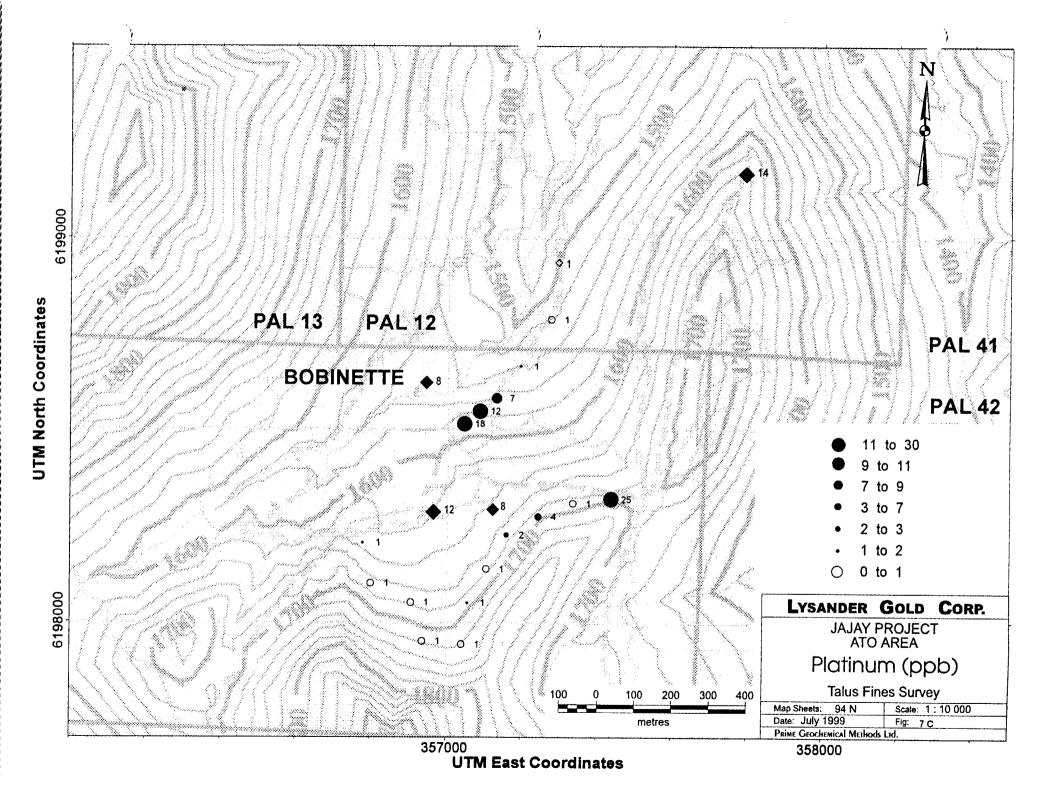
- Au enrichment of up to 83 ppb is noted along the road that traverses immediately below the ATO showing at 6198020N - 35750E.
- The remaining samples define elevated background concentrations.

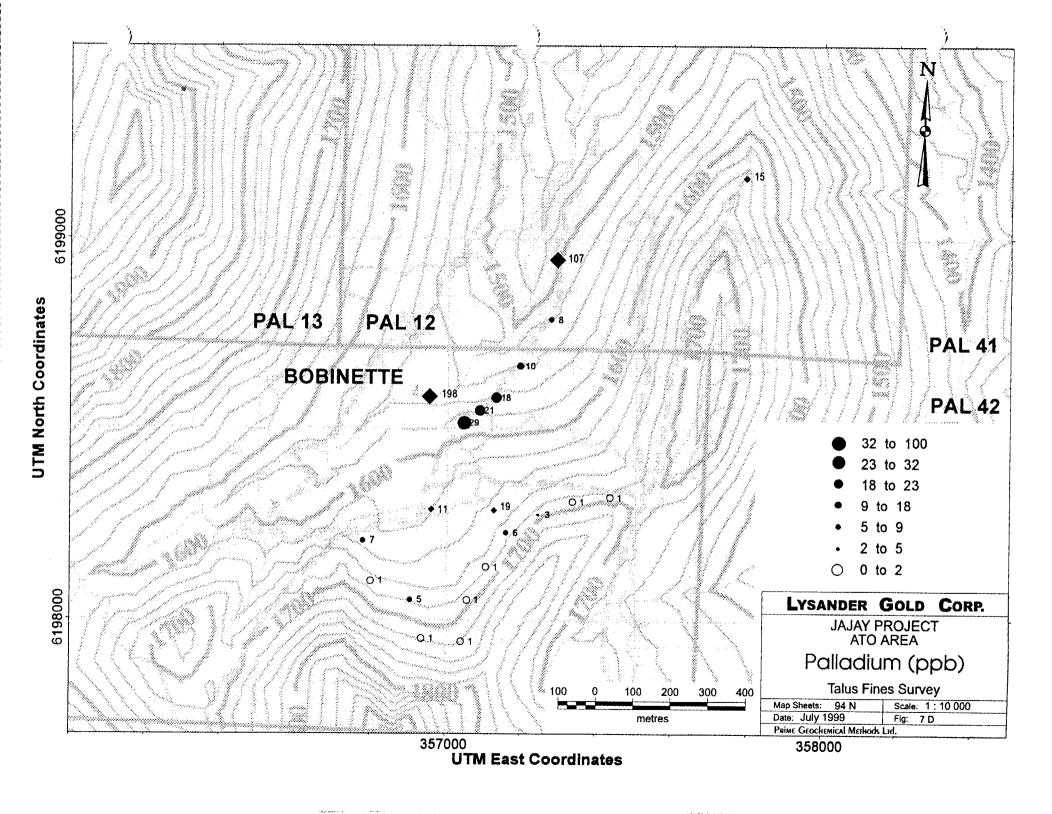
9.2.3.2 Pt (Figure 7C)


- Pt defines an anomaly coincident to Au with values up to 18 ppb near the ATO showing.
- A single sample anomaly of 25 ppb is seen at 6198300N 357450E approximately 500 m ESE of the ATO showing.


9.2.3.3 Pd (Figure 7D)

- A weak Pd anomaly with values up to 29 ppb is seen near the ATO showing.
- The remaining samples define elevated background concentrations.


-


August 1999

UTM North Coordinates

10.0 DISCUSSION OF RESULTS.....

10.1 BISHOP ZONE AREA

Anomalous Au near the Bishop Zone generally corresponds to areas of anomalous Cu concentrations as defined by the 1996 sampling program (Richardson, 1997). The extensive Au anomaly NE of Jeno Ridge, however, lacks a Cu signature and represents a different tenor of Au enrichment.

Potentially economic concen-trations of Pt and Pd do occur on the property as seen in the high-grade breccia samples. Elsewhere Pt and Pd generally define a halo surrounding the Bishop Zone. Similar patterns were previously found (Richardson, 1997) for Ca, Co, Cr, Fe, K, La, Mg, Ni, P and Ti, indicating a genetic relationship to the fenitisation event. The above elements also defined very strong anomalies in seepage sediments collected 300 metres down slope of the high-grade breccia.

10.2 STEELHEAD PROPERTY

As with the Bishop Zone, Au shows a strong correspondence with the distribution of Cu in talus fines in and around the Steelhead showing. There is, however, a higher ratio of Au to Cu in the anomaly on SH8.

Pt and Pd seem to outline a broad halo (> 1 km) surrounding the Steelhead showing. While Pt reports background values in the heart of the showing, Pd defines weak enrichment. Again, Pt and Pd agree with the patterns of Ca, Co, Cr, Fe, K, La, Mg, Ni, P and Ti.

10.3 DOROTHY PROPERTY

Similar to Bishop and Steelhead, Au highlights the areas of high-grade Cu mineralization at Dorothy whereas Pt apparently defines a halo that surrounds the zone of mineralization. Pd bears similarities to both Au and Pt in its distribution. Pt apparently defines two other areas of potential mineralization, one in the NE quadrant of DOROTHY 3 and the other in the SW quadrant of DOROTHY 7. The weak continuous Pd anomaly coincides with the seepage Cu anomaly found by the 1997 sampling indicating the potential for buried or blind Cu ± Au mineralization.

The site reporting the highly anomalous Au value (1242 ppb) did not contain particularly anomalous Au as determined in the 1997 survey. In the previous study, Au

Prime Geochemical Methods Ltd.

August 1999

was determined on a 10 g sample using a acid digestion. It is likely that coarse Au is present on the property and that the small sample size is not appropriate for accurate determination.

10.3 ATO AREA

As with the other properties, Au highlights high-grade Cu mineralization. However, Pt and Pd also define the mineralization. The Pt anomaly found 500 m ESE of the ATO showing, lacks coincident enrichment in Au and Pd. This style of anomaly has not been encountered before on any of the properties.

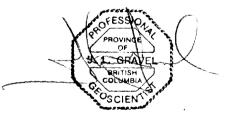
11.0 CONCLUSIONS.....

The fenitisation event that produced the Cu \pm Au mineralization is also the source of the Pt, Pd enrichment. For the most part, Pt and Pd form weak halos surrounding the cores of higher-grade Cu \pm Au mineralization. Hence, Pt and Pd can be effective pathfinders for defines zones of blind or buried mineralization. However, as seen on the Bishop property, Pt and Pd can occur in "economic" concentrations and worthy target for exploration. Elements that proved to be effective in defining the high-grade breccia included: Ca, Co, Cr, Fe, K, La, Mg, Ni, P and Ti.

12.0 RECOMMENDATIONS.....

- Remaining samples should be analyzed for Pt and Pd to determine other areas of interest.
- ii) Current data should be re-evaluated using Ca, Co, Cr, Fe, K, La, Mg, Ni, P and Ti to define areas having potential for high-grade Pt-Pd mineralization similar to the breccia on Jeno Ridge.
- iii) Further investigation of the Au anomaly found NE of Jeno Ridge on STEELE 3 to determine source and possible regions of high-grade mineralization.
- iv) Further investigation of the Pt-Pd anomaly found immediately south of the Bishop Zone.
- v) Prospecting in the area of the Elizabeth showing to determine the source of mineralization suggested by the the extensive Pt anomaly on DOROTHY 3.
- vi) Prospecting on DOROTHY 7 to determine the source of the highly anomalous Au result and the source of the Pt – Pd enrichment at the southern end of the sampling traverse.

13.0 REFERENCES.....


- Bishop, Sandra T., 1994: 1993 Geochemical and diamond Drilling Report on the Lorraine Property. Private Report to Kennecott Canada Inc.
- Bishop, Sandra, T., Heah, T.S., Stanley, C.R. and Lang, J.R., 1995: Alkalic intrusion hosted copper-gold mineralization at the Lorraine deposit. In Canadian Institute of Mining, Metallurgy and Petroleum. Special Volume 46, pp. 623-629.
- Richardson, Paul W., 1995: Ass3essment Report Describing the 1994 Drilling Programme, Lorraine Property. Assessment Report to the British Columbia Ministry of Energy, Mines and Petroleum Resources
- Richardson, Paul W., 1996: Assessment Report Describing the 1995 Drilling Programme, Lorraine Property. Assessment Report to the British Columbia Ministry of Energy, Mines and Petroleum Resources
- Richardson, Paul W., 1997: Assessment Report Describing the 1996 Geological, Geochemical and Drilling Programs on the Lorraine, Steelhead, Dorothy, and Boot Steele Properties and the PAL Claims. Assessment Report to the British Columbia Ministry of Energy, Mines and Petroleum Resources
- Wilkinson, W.J., Stevenson, R.W. and Garnett, J.A., 1976: Lorraine. In Canadian Institute of Mining and Metallurgy, Special Volume 15, pp. 397-401

14.0 STATEMENT OF COSTS.....

The total amounts expended in conducting the work detailed in this report is \$5,706.92. Details on these expenses are as follows:

1)	Analysis of samples for Au, Pt and Pd by	
	ACME Analytical Labs of Vancouver, BC	\$3366.92

2) Interpretation, report generation and reproductionby J.L. Gravel, M.Sc., P.Geo. \$2340.00

Prime Geochemical Methods Ltd.

STATEMENT OF QUALIFICATIONS

- I, John Gravel, am a graduate of McGill University with degrees in Geology (B.Sc., 1979) and Mineral Exploration (M.Sc.A., 1985).
- I'm a member in good standing of the Association of Professional Engineers and Geoscientists of BC and have been so since April, 1993. (Reg. # 20200)
- I'm a fellow and voting member of the Association of Exploration Geochemists and have been so since 1979. (Mem. # 841).
- I have practiced my profession as an exploration geochemist and geologist in British Columbia since 1979.
- I have been involved with this project since 1996, I have been to the project area, conducted orientation surveys, designed the geochemical programs for 1996 and 1997, trained the sampling crews and supervised the geochemical programs for both years.

/E1 SCIEN

20

APPENDIX 1

ASSAY CERTIFICATES

21

August 1999

ACME AN	TICAL LABORATORIES LTD.	852 E.	HASTINGS ST.
(ISO	9002 Accredited Co.)		

GEOCHEM PRECIOUS METALS ANALYSIS

Lysander Gold Corp. PROJECT JAJAY File # 9901437 2120 - 1066 W. Hastings S, Vancouver BC V6E 3X1 Submitted by: D.MUSTARD Page 1

	SAMPLE#	Au** ppb	Pt** ppb	Pd** ppb				
	103152 -80 103153 -80 RE 103153 -80 103154 -80 103155 -80	3 3 3 <1 2	1 <1 <1 <1 <1	7 <1 <1 5 <1				
	103156 -80 103157 -80 ≇103158 -80 103159 -80 103160 -80	8 14 <1 11 7	<1 <1 2 4	<1 1 <1 6 3				
	103161 -80 103162 -80 103163 -80 103164 -80 # 103165 -80	3 17 40 41 226	<1 25 1 1 <1	<1 <1 2 <1 2			÷	
	103166 -80 103167 -80 103168 -80 103169 -80 ¥103170 -80	36 95 103 64 134	<1 5 <1 <1 <1	2 3 2 2 <1	<u></u>			
	103171 -80 103172 -80 103173 -80 103174 -80 103175 -80	129 <1 18 89 30	<1 3 <1 4 <1	<1 <1 <1 <1 2				
	103176 -80 103177 -80 103197 -80 103198 -80 103199 -80	80 53 51 112 73	1 <1 8 <1 1	3 <1 21 <1 21				
	103200 -80 ≯103201 -80 103202 -80 103203 -80 103204 -80	36 57 36 4 2	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1				
	STANDARD FA100	47	44	43				
	10 GRAM SAMPLE FIRE ASSAY AN - SAMPLE TYPE: SOIL PULP Samples beginning 'RE' are R				* 2 5 g	, for an	alysis.	
	Mailed: May 31/99		\cap	h.				
DATE RECEIVED: MAY 21 1999 DATE REPORT	MAILED: ///// ZI///	SIGNED	BY. <u>··</u> .	· / · Y · · · · ·	D. TOYE, C.LEONG, J	. WANG; CERTIF	IED B.C. ASSA	YERS

AA

Page 2

SAMPLE#	Au**	Pt.**	Pd**	
	ppb	ppb	ppb	
103205 -80 103206 -80 103207 -80 103208 -80 103209 -80	4 <1 6 11 10	3 1 <1 <1 <1	<1 2 <1 <1 1	
103210 -80 103211 -80 103212 -80 103213 -80 103214 -80	7 16 19 32 6	1 2 2 8 2	2 10 9 21 23	
103215 -80 103216 -80 ★ 103217 -80 103218 -80 103219 -80	4 21 3 1 34	5 1 <1 <1 <1	5 9 <1 <1 5	
RE 103212 -80 103220 -80 103221 -80 103222 -80 103223 -80	21 30 4 8 5	2 2 <1 <1 2	15 15 5 6	
103224 -80 103225 -80 ▼ 103226 -80 103227 -80 103228 -80	64 32 4 2 2	<1 <1 <1 <1	6 4 1 1 <1	
103229 -80 103230 -80 103231 -80 103232 -80 103233 -80	7 4 10 3 8	2 <1 <1 <1 1	4 2 7 4 5	
103234 -80 ★ 103235 -80 103236 -80 103237 -80 ★ 103238 -80	3 5 4 4 5	9 3 3 4 <1	10 29 20 16 <1	
STANDARD FA100	46	50	48	

Sample type: SOIL PULP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

* 259 for analysis

Data FA 11

44

Page 3

	ACHE ANALYTICAL				ALME ANALYTILAL
	SAMPLE#	Au** ppb	Pt** ppb	Pd** ppb	
	103239 -80 103240 -80 103241 -80 103242 -80 103243 -80	31 20 8 21 100	1 <1 <1 <1 <1 1	16 3 <1 <1 1	
	103244 -80 ★103245 -80 ★103246 -80 103247 -80 103248 -80	1 3 4 <1 <1	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1	
	103249 -80 103250 -80 TF 03 104092 -80 TF 03 104093 -80 TF 03 104094 -80	<1 2 65 <1	<1 <1 <1 <1 1	<1 11 <1 2 2	
	TF 03 104095 -80 TF 03 104096 -80 TF 03 104097 -80 TF 03 104098 -80 TF 03 104098 -80 TF 03 104099 -80	<1 <1 <1 <1 <1 <1	<1 2 1 <1	1 <1 5 2 1	
1 1 1	TF 03 104100 -80 RE TF 03 104099 -80 TF 03 104101 -80 TF 03 104102 -80 TF 03 104102 -80 TF 03 104103 -80	6 4 <1 <1 2	2 <1 <1 <1 1	6 1 3 <1 6	
	TF 03 104104 -80 TF 03 104105 -80 TF 03 104106 -80 TF 03 104107 -80 TF 03 104107 -80 TF 03 104108 -80	<1 <1 7 4 <1	3 2 5 2 4	7 7 16 5 2	
	 ★ TF 03 104109 -80 TF 03 104110 -80 TF 03 104111 -80 ★ TF 03 104112 -80 TF 03 104113 -80 	4 36 4 17 1	1 2 11 <1	2 8 8 46 3	
	TF 03 104114 -80 STANDARD FA100	48	<1 48	<1 47	

Sample type: SOIL PULP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

* 259 for analysis

Data FA /IN

Lysander Gold Corp. PROJECT JAJAY FILE # 9901437

Page 4

Data FA 1/1x

				A
SAMPLE#	Au** ppb	Pt** ppb	Pd** ppb	
<pre>\$\$\$ \$</pre>	2 1 <1 8 49	<1 <1 <1 <1	<1 <1 <1 <1	
104140 -80 104141 -80 104142 -80 104143 -80 104144 -80	22 12 22 4 25	2 <1 <1 <1 <1	8 9 8 4 <1	
RE 104159 -80 104145 -80 104146 -80 104147 -80 104147 -80 104148 -80	7 9 8 2 4	18 3 <1 4	105 <1 35 <1 7	
104149 -80 104150 -80 104151 -80 104152 -80 # 104153 -80	2 2 <1 20 495	1 4 2 9	48 1 <1 <1 48	
★104154 -80 104155 -80 104156 -80 ★104157 -80 104158 -80	122 23 36 34 29	<1 <1 12 <1 7	<1 <1 9 <1 12	
104159 -80 ✔104160 -80 104161 -80 104162 -80 104163 -80	11 7 1 20 <1	15 2 1 4 <1	97 27 <1 48 <1	
104164 -80 104165 -80 104166 -80 104167 -80 104168 -80	4 26 448 19 30	1 <1 <1 2 <1	<1 <1 32 <1	
STANDARD FA100	47	42	40	

AA

Lysander Gold Corp. PROJECT JAJAY FILE # 9901437

Page 5

SAMPLE#	ppb	Pt** ppb	ppb	
104169 -80 104170 -80 104171 -80 104172 -80 104173 -80	23 21 49 <1 60	2 <1 1 8 <1	3 <1 2 4 <1	
104174 -80 104175 -80 104176 -80 104177 -80 104178 -80	267 44 2 3 1	3 1 2 <1 <1	3 <1 2 <1 <1	
104179 -80 104180 -80 104181 -80 104182 -80 ★ 104183 -80	27 <1 <1 <1 <1	1 <1 <1 <1	<1 <1 14 <1 <1	
RE 104185 -80 104184 -80 104185 -80 104186 -80 104187 -80	10 <1 2 <1 <1	3 1 5 1	<1 <1 <1 <1 <1	
104188 -80 104189 -80 104190 -80 104191 -80 104192 -80	6 14 9 1 487	1 2 4 5 2	<1 10 2 <1	
104220 -80 104221 -80 ✔104222 -80 104223 -80 104224 -80	<1 2 15 1 3	<1 3 <1 <1	<1 2 <1 <1	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	11 2 43 18 11	1 <1 <1 2 <1	<1 <1 <1 3 33	
STANDARD FA100	51	47	48	

* 659 for analysis

Data FA 1/14

Lysander Gold Corp. PROJECT JAJAY FILE # 9901437

Page 6

SAMPLE#	Au** ppb	Pt** ppb	Pd** ppb	
104230 -80 104231 -80 104232 -80 104233 -80 104234 -80	9 5 18 13 2	5 3 2 1 2	17 22 21 15 <1	
104235 -80 104236 -80 104237 -80 104238 -80 104239 -80	11 3 23 11 27	12 4 2 4 7	22 13 23 13 15	
104240 -80 104241 -80 104242 -80 RE 104248 -80 104243 -80	4 3 1 4 9	34 59 1	4 11 5 32 5	
104244 -80 104245 -80 104246 -80 104247 -80 104248 -80	23 5 27 <1 6	1 6 1 8 20	3 5 <1 5 44	
104249 -80 104250 -80 104251 -80 104252 -80 104253 -80	37 13 41 36 36	4 3 2 <1	13 4 2 2 <1	
104254 -80 104255 -80 104256 -80 104257 -80 104258 -80	9 22 24 15 <1	2 1 2 1 <1	10 3 3 <1	
104259 -80 104260 -80 104261 -80 104262 -80 104263 -80	<1 <1 <1 <1 1	<1 <1 <1 2 <1	<1 <1 <1 1 <1	
STANDARD FA100	45	43	44	

Data [FA 1/4 5

ACHE ANALYTICAL

Lysander Gold Corp. PROJECT JAJAY FILE # 9901437

Page 7

SAMPLE#	Au** ppb	Pt** ppb	Pd** ppb	
104264 -80 104265 -80 104266 -80 104267 -80 104268 -80	2 6 4 9 4	<1 <1 <1 <1 1	<1 2 5 1 3	
RE 104268 -80 104269 -80 104270 -80 104271 -80 104272 -80	$2\\8\\11\\4\\14$	1 2 2 1 <1	<1 1 2 2 1	
104273 -80 104274 -80 104275 -80 104276 -80 104277 -80	4 9 196 6 5	2 2 1 <1 <1	5 1 3 <1 4	
104278 -80 STANDARD FA100	6 46	2 46	5 47	

Sample type: SOIL PULP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

ACHE ANALYTICAL

Page 8

SAMPLE#	Au** ppb	Pt** ppb	Pd** ppb	
971001 971002 971003 971004 971005	77 3 26 31 787	2 <1 2 <1 17	5 1 2 18	
971006 #971007 971008 971009 971010	91 180 42 23 32	5 <1 2 1	20 16 4 14 <1	
971011 RE 971021 971012 971013 971014	221 1 53 44 <1	4 <1 1 <1	7 <1 <1 <1	
971015 971016 971017 971018 971019	<1 28 9 1 10	1 6 2 3 1	1 16 5 2 1	
971020 971021 971022 971023 971024	2 2 3 1 <1	<1 2 10 10 7	<1 2 8 40 6	
971025 971026 971027 971028 971029	1 2 1 2 24	3 7 2 7 11	3 7 3 5 14	
971030 971031 971032 971033 971034	28 29 16 18 16	11 6 2 2 5	31 19 9 5 4	
STANDARD FA100	45	47	50	

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data FA 1/14

££

Lysander Gold Corp. PROJECT JAJAY FILE # 9901437

Page 9

ppb 37 18 32 1 32 22 1 <1 <1 4 32 22 1 <1 4 32 22 1 <1 4 32 22 1 <1 4 32 22 1 <1 5 <1 5 5 5 5 5 5 5 5 5 5 5 5 5	2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	11 <1 <1 <1 <1 <1 12 18 107 <145 322 57 2			
<1 <1 4 3 2 1 3 <1 4	<1 <1 3 7 10 11 1 3 8 8 5 10 4	<1 12 1 8 10 7 <1 24 5 22 3 5 7			
4 3 2 1 3 <1 4	11 1 3 8 8 5 10 4	7 <1 24 5 22 3 5 7			
<1 1 4	$10 \\ 4$	3 5 7			
5 <1	2	2			
3	2 6 1 13 2	2 2 <1 21 1			
3 17 <1 <1 14	4 <1 <1 <1 1	4 <1 <1 <1			
432	1 2 1 <1 6	<1 3 <1 <1 11			
9 00 46	$4\frac{1}{7}$	2 49			
	<pre><1 <1 <1 14 34 32 4 9 00 46</pre>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccc} <1 & 1 & 1 \\ <1 & <1 & <1 \\ 14 & 1 & <1 \\ 3 & 1 & <1 \\ 4 & 2 & 3 \\ 3 & 1 & <1 \\ 2 & <1 & <1 \\ 4 & 6 & 11 \\ 4 & 6 & 11 \\ 9 & 1 & 2 \\ 9 & 1 & 2 \\ 00 & 46 & 47 & 49 \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Data FA 1/10 4

SAMPLE#	Au** ppb	Pt** ppb	Pd** ppb	
975001 975002 975003 975004 975005	24 43 134 145 120	11 7 3 3 5	39 27 18 17 20	· · · · · · · · · · · · · · · · · · ·
976001 976002 976003 976004 976005	22 4 26 3 1	2 <1 2 1 2	4 5 17 4 6	
976006 976007 976008 976009 ★ 976010	2 3 6 2 1	6 1 <1 2 <1	6 7 5 7 8	
976011 976012 976013 976014 976015	5 1 4 <1 4	2 <1 <1 <1 1	4 3 <1 2 2	
976016 976017 976018 RE 976005 976019	2 13 12 4 4	1 7 <1 1 1	25 2 1 <1	
976020 976021 976022 976023 976024	22 <1 3 <1 1	<1 3 3 3 3	<1 4 4 7	
976025 ★ 976026 976027 976028 ★ 976029	$\begin{array}{r}16\\1242\\3\\4\\2\end{array}$	1 <1 <1 <1 1	<1 <1 <1 <1 <1	
STANDARD FA100	44	43	46	

Sample type: SOIL PULP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

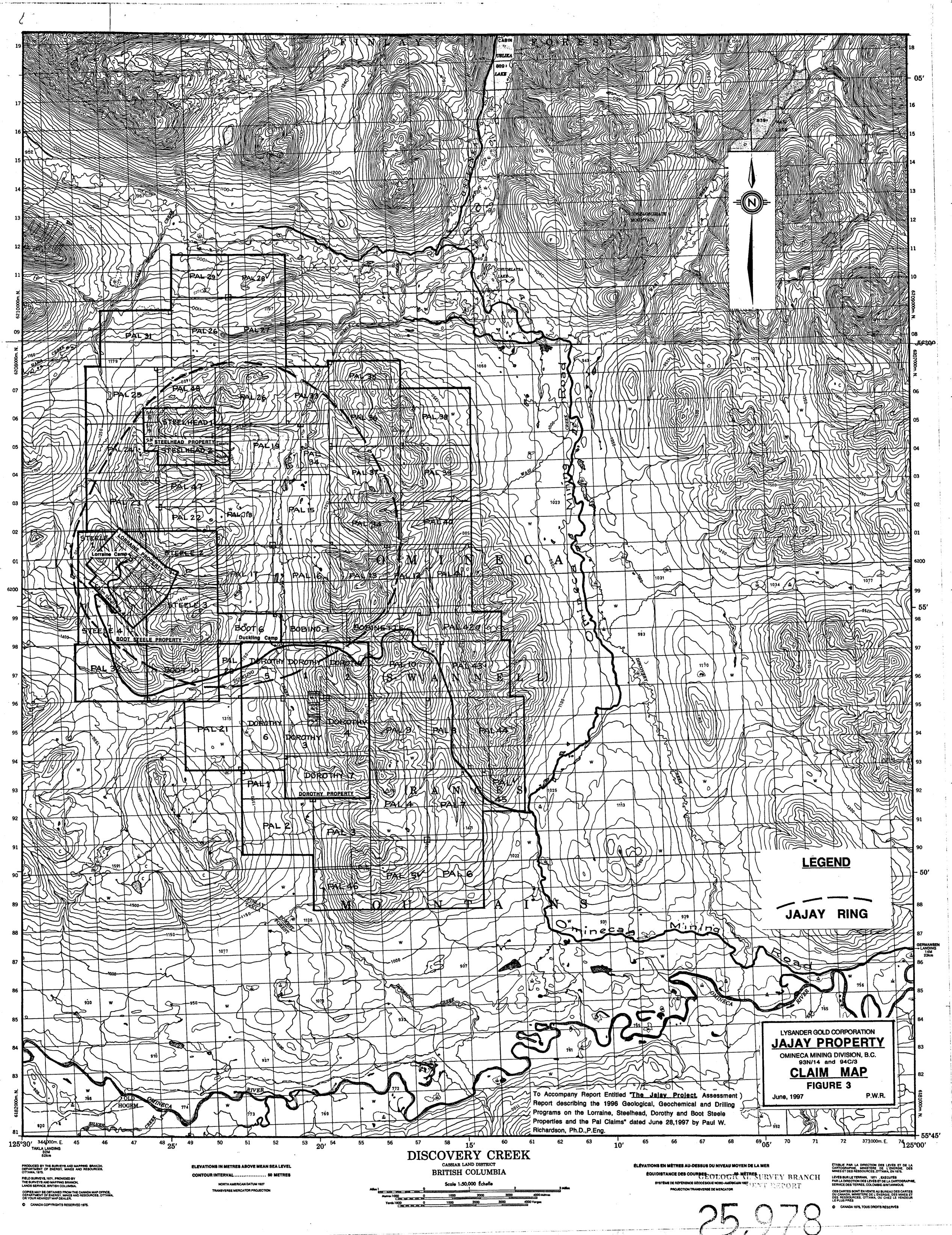
* 259 for analysis

Data K FA _____

££

Lysander Gold Corp. PROJECT JAJAY FILE # 9901437

SAMPLE#	Au** ppb	Pt** ppb		
976030 976031 976032 976033 976033	3 2 10 7 4	<1 1 9 2 12	1 11 10 3 <1	
RE 976032	11	10	6	


Sample type: SOIL PULP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

		METALS ANALYSIS	<u>A</u>
	Lysander Gold Corp. PROJECT 2120 - 1066 W. Hastings S, Vancouver BG	<u>JAYJAY</u> File # 9901538 C V6E 3X1 Submitted by: J.W. MORTON	L
	SAMPLE#	Au** Pt** Pd** ppb ppb ppb	
	ATO-4 -80 ATO-5 -80 ATO-6 -80 ATO-7 -80 ATO-8 -80	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	RE ATO-4 -80 STANDARD FA100	19 9 6 46 50 55	
DATE RECEIVED: MAY 27 199	10 GRAM SAMPLE FIRE ASSAY AN - SAMPLE TYPE: TALUS FINES Samples beginning 'RE' are f 9 DATE REPORT MAILED: Jour 3/99	Reruns and 'RRE' are Reject Reruns.	ERTIFIED B.C. ASSAYEF

Data 1/ FA

CHARACTER COLD CORP. DEOXPECT JANJAY FILE # 901506 2120 - 1066 4. Hattings 8. Vancouver 40 V46 3M1 Submitted by 1.0. MARTIN SAMPLER AUX-F PE*F Pd* B-1904552 234 8 19 B-1904557 234 8 19 B-1904557 B-1904558 CARS SAMPLE FIRE ASSAT AND ANALYSIS BY ULHAVLEP. - SAMPLE B-190458 - SAMPLE FIRE ASSAT AND ANALYSIS BY ULHAVLEP. - SAMPLE B-190458 - SAMPLE FIRE ASSAT AND ANALYSIS BY ULHAVLEP. - SAMPLE B-190458 - SAMPLE FIRE ASSAT AND ANALYSIS BY ULHAVLEP. - SAMPLE B-190458 - SAMP	ACME ANF TICAL LABORATORIES LTD. (IS()02 Accredited Co.)	852 E. HASTINGS ST.	COUVER BC		PHONE (604) 253-315	8 FAX(6' 253-1716
Image: Second state 2120 - 1066 W. Hastings S, Vancouver BC V6E 3X1 Submitted by: J.W. MORTON SAMPLE# Aut** Pt** Pd** ppb ppb ppb ppb B-190452 234 8 19 B-190455 5937 8 198 B-190456 8125 1 107 B-190457 297 12 11 B-190458 521 14 15 RE B-190458 485 13 11	ΔΔ	GEOCHEM PRECIOUS	5 METALS A	NALYSIS		
SAMPLE# Au** Pt** Pd** ppb ppb ppb B-190452 234 8 B-190455 5937 8 B-190456 8125 1 B-190457 297 12 B-190458 521 14 B-190458 521 14 RE B-190458 485 13 30 GRAM SAMPLE FIRE ASSAY AND ANALYSIS BY ULTRA/ICP. - - SAMPLE TYPE: ROCK PULP Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.	Lysander 2120 - 1	Gold Corp. PROJECT 066 W. Hastings S, Vancouver E	<u>JAYJAY</u> IC V6E 3X1 Suba	File # 99 mitted by: J.W.	D1506 Morton	TI
B-190455 5937 8 198 B-190456 8125 1 107 B-190457 297 12 11 B-190458 521 14 15 RE B-190458 485 13 11 30 GRAM SAMPLE FIRE ASSAY AND ANALYSIS BY ULTRA/ICP. - SAMPLE FIRE ASSAY AND ANALYSIS BY ULTRA/ICP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.			Au** Pt**	Pd**		
30 GRAM SAMPLE FIRE ASSAY AND ANALYSIS BY ULTRA/ICP. - SAMPLE TYPE: ROCK PULP Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.		B-190455 B-190456 B-190457	5937 8 8125 1	198 107		
- SAMPLE TYPE: ROCK PULP Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.		RE B-190458	485 13	11		
	DATE RECEIVED: MAY 27 1999 DATE REPORT	- SAMPLE TYPE: ROCK PULP Samples beginning 'RE' are	Reruns and 'RRE'	are Reject Rer		CERTIFIED B.C. ASSAYERS
		0 , , ,			•	
Il results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only. Data 📈 FA	All results are considered the confidencial succession					1

(160	ACME ANA. ICAL LABORATORIES	LTD. 852 E. HASTINGS ST.	COUVER BC V6A	1R6 PHONE (604)	253-3158 FAX(60	53-1716
2120 - 166 V. Hattings S, Vancouver BC VAG 3NT Submitted by J.M. KARION SAMPLE# Ch. Aux** Pr** Pd** 95-1-39 220.5M 5.083 106 7 36 95-10-EX#1 17.716 13404 236 2122 RE 99-BO-BX#2 17.731 14892 275 2412 STANDARD R-1/FA100 17.835 150 00 H. AMAITSIS BY ICP. -sample to petrioning and MEE aux East A AuxTSIS BY UTB/ICP. -sample to petrioning and MEE aux East A Sautrasis By UTB/ICP. -sample to petrioning and make aux failed Brund. Aux** pir= por* BY THE ASA* A AuxTSIS BY UTB/ICP. -sample to petrioning and MEE aux East A Sautrasis Brund. Aux** pir= por* BY THE ASA* A AuxTSIS BY UTB/ICP. -sample to petrioning and make aux failed Brund. Aux*** pir= por* BY THE ASA** A AuxTSIS BY UTB/ICP. -sample to petrioning and make aux failed Brund. Aux**** Date received, may 25 1999 Date REPORT MAILED. Aux** 4/49 SIGNED BY	(ISO JO2 Accredited Co.	ASSAY CE	RTIFICATE			
4 ppb ppb 36-L-39 220.6M 5.083 108 7 36 39-RO-DMG .007 1 1 3 5 39-RO-DMG .007 1 1 3 5 39-RO-DMG .007 1 1 3 5 39-RO-DMG .24.637 12662 122 1 39-RO-DXH2 17.731 14892 215 241.23 RE 99-RO-DXH2 17.731 14892 275 241.23 SAMPLE DICESTED IN SUM & MAUAR - RECIA, DILUTE TO 100 PM, AMAINTS PW URANTS PW	TT	Lysander Gold Corp. PROJE 2120 - 1066 W. Hastings S, Vancouver	CT JAJAY File BC V6E 3X1 Submitted	# 9901505 by: J.W. MORTON		TT
99-ATC RECEIVED: NAT 25 1999 DATE REPORT MAILED / 4/49 STQNED BY		SAMPLE#				
STANDARD R-1/FA100 .835 50 46 51 1.000 CM SAMPLE DIGESTED IN 30 ML AQUA - REGIA, DILUTE TO 100 ML, ANALYSIS BY ICP. - SAMPLE TYPE: ROCK Autor PIT-PIT-PIT BUT IN ASSAY & ANALYSIS BY ULTRA/ICP. (30 Gm) Samples beginning /REF are Refurm and 'RREF' are Relact Refurms. DATE RECEIVED: MAY 25 1999 DATE REPORT MAILED Jul 4/99 SIGNED BY D. TOTE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS MARCE IVED: MAY 25 1999 DATE REPORT MAILED Jul 4/99 SIGNED BY D. TOTE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS		96-L-43 106.2M 99-ATO-MG 99-BO-BX#1	.020 5 .007 1 24.637 12297	4 6 <1 3 38 641		
Autor pier by Fire Assav & AMALYSIS BY ULTRA/ICP. (30 gm) Samples beginning 'RE' are Reguns and 'RRE' are Reject Reguns. Date RECEIVED: MAY 25 1999 DATE REPORT MAILED J SIGNED BY		RE 99-BO-BX#2 STANDARD R-1/FA100	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	275 2412 46 51		
All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only. Data $\frac{1}{2}\sqrt{FA}$	DATE RECEIVED: MAY 25 1999 DA	- SAMPLE TYPE: ROCK AU** PT** PD** BY FIRE ASSAY & ANALYSIS Samples beginning 'RE' are Reruns and 'R	BY ULTRA/ICP. (30 gm) <u>RE' are Reject Reruns.</u>	ρ	J. WANG; CERTIFIED B.C	. ASSAYERS
All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only. Data 📈 FA 🗍						
	All results are considered the confide	ntial property of the client. Acme assumes	the liabilities for act	ual cost of the analysis or	ıly. Dəti	B KFA 11

