

SUMMARY REPORT

on the

1998 EXPLORATION PROGRAM

COREY PROPERTY (KRC BLOCK)

104B/7E, 8W, 9W, 10E Latitude 56°32' N, Longitude 130°28' W

> SKEENA MINING DIVISION BRITISH COLUMBIA

> > For

KENRICH MINING CORPORATION 910-510 Burrard Street Vancouver, B.C. V6C 3A8

By

John Kowalchuk and Helgi Sigurgeirson

August, 1999 EOLOGICAL SURVEY BRANCH

100 1900

SECTION

<u>PAGE</u>

1.0	INTRODUCTION	1
1.1	Location and Access	1
1.2	Physiography and Climate	1
1.3	Property and Claim Status	1
1.4	History	1
2	1998 FIELD PROGRAM	5
3	REGIONAL GEOLOGY	5
3.1	Stuhini Group	5
3.2	Hazelton Group	5
3.3	Salmon River Formation	5
1)	Bruce Glacier Member	5
2)	Eskay Rhyolite Member	7
3)	Troy Ridge Member	7
4)	John Peak Member	7
3.4	Bowser Lake Group	7
3.5	Intrusive Rocks	7
3.6	Structure	7
4	DETAILED GEOLOGY	8
4.1	Lithology	8
a)	Intermediate to Felsic Volcanics	8
b)	<u>Rhyolite</u>	14
c)	Mudstones	14
d)	<u>Basalts</u>	14
4.2	Structure	18
5.0	ALTERATION AND MINERALIZATION	18
5.1	Alteration	18
5.2	HSOV Showing	24
6	GEOCHEMISTRY	24
6.1	Soil and Stream Sediment Geochemistry	24
6.2	Rock Geochemistry	31
7	CONCLUSIONS	31
8	REFERENCES	31
9	STATEMENT OF QUALIFICATIONS	32
10	STATEMENT OF EXPENDITURES	33

LIST OF MAPS AND FIGURES

SECTION

<u>PAGE</u>

	Location Map	before 1
	Claim Map	2
	Regional Geology	6
Map 1	HSOV Geology	9
Figure 1	Total alkalis vs Silica	10
Figure 2	Immobile Elements Discrimination Plot	11
Figure 3	SiO2 vs Al2O3	12
Figure 4	Zr vs Y	13
-	Legend for Maps 2 to 4	15
Map 2	Whole Rock Sample Locations	16
Map 3	Whole Rock Sample Locations	17
Figure a	Graph HSOV Soils (Ag)	19
Figure b	Graph HSOV Soils (As)	20
Figure c	Graph HSOV Soils (Cu)	21
Figure d	Graph HSOV Soils (Pb)	22
Figure e	Graph HSOV Soils (Zn)	23
Map 4a	Soil Map (Ag)	25
Map 4b	Soil Map (As)	26
Map 4e	Soil Map (Zn)	29
Map 4f	Rock and Stream Geochemistry	30
Plate G1A	Total Magnetic Field - Stacked Profiles	in pocket
Plate G1C	Total Magnetic Field - Contour Map	in pocket
Plate G2A	VLF - Stacked Profiles - Seattle	in pocket
Plate G3A	VLF - Stacked Profiles - Hawaii	in pocket
Plate G4A	Interpretation and Compilation	in pocket

LIST OF APPENDICES

APPENDIX I	HSOV Mineralization and Petrography
APPENDIX II	Whole Rock Data
APPENDIX III	1997 Soil Sample Data
APPENDIX IV	1998 Soil Sample Data
APPENDIX V	1998 follow up Soil Sample Data
APPENDIX VI	1998 Stream Sediment Sample Data
APPENDIX VII	1998 Rock Sample Data
APPENDIX VIII	Logistics Report
APPENDIX IX	Laboratory Analysis Sheets

1. INTRODUCTION

1.1 Location and Access

The Corey Project area lies in northwestern British Columbia, approximately 70 kilometres north of Stewart and 900 kilometres northwest of Vancouver (Fig. 1). The property can be located on NTS map sheets 104 B/07E, 08W, 09W and 10E. The exploration camp is located in the centre of the property at the junction of the Unuk River and Sulphurets Creek.

Access to the camp is 10 kilometre by helicopter from kilometre 53 on the Eskay Creek Mine Road. The Eskay Creek Mine Road is a radio controlled, all season gravel road. Travel around the property is by helicopter.

1.2 Physiography and Climate

The property lies within the Unuk River watershed in the Intermontane Physiographic Belt. The major drainages include the Unuk River and Sulphurets Creek.

The terrain ranges from rugged to moderate with elevations ranging from 2250 metres at Johns peak to 220 metres in the Unuk River Valley. The slopes are generally steep with many cliffs forming the valley walls. The area shows evidence of alpine glaciation with steep walled U-shaped valleys and braided streams. approximately ten percent of the property is covered by glaciers of the Cambria Icefield.

Tree line is at about 1200 metre elevation, below which the forest cover consists of mature hemlock, spruce and fir typical of temperate rainforest. Lower elevations along the Unuk river host thick stands of aspen and alder. The undergrowth at lower elevations consists of thick growth of ferns, devils club, huckleberry, and salmonberry bushes. The alpine areas host a healthy cover of heather, heath, blueberry, copperbush, black spruce and juniper.

The climate is typical of that of northwestern British Columbia with cool wet summers and moderate wet winters. Snowfall is quite heavy with accumulations ranging from ten to fifteen metres at higher elevations and two to three metres along the Unuk River Valley. In higher elevations, the ground is covered with snow from late October to mid May. At lower elevations, the ground is covered with snow from early December to early April.

1.3 Property and Claim Status

The Corey Property consists of 837 contiguous mineral claim units totaling approximately 32,400 hectares. The claims are located in the Skeena Mining Division. Work was conducted by Kenrich Mining Corporation. The claims along with their respective tenure number, number of units, record date and expiry date are listed in Table I. A plot of the claims lies in Figure 2.

1.4 History

The earliest documentation of exploration in the area was from the late 1800's when H. W. Ketchum staked claims near the mouth of Sulphurets Creek in 1898. The Unuk river Mining and Dredging Company acquired the property in 1900 and drove to adits o the Cumberland Claim.

In 1980, Du Pont of Canada exploration Limited and E&B Explorations Ltd. conducted regional heavy mineral stream sediment sampling and reconnaissance geological mapping in the Mount Madge, Sulphurets Creek and Unuk River areas.

م ۲

	KEN	IRICH MINING C	ORP			
	(COREY PROJEC	T			
					· · · · · · · · · · · · · · · · · · ·	
			140	T 11		
Tenure #	Expiry Date	Claim Name	MD	iag #	iviap #	# of units
251714	11/02/01	COREY 10	19	93887	104B09W-	12
251715	11/02/01	COREY 11	19	93888	104B08W-	4
251716	11/02/01	COREY 12	19	93889	104B08W-	4
251710	11/02/01	COREY 14	19	93891	104B08W-	12
251718	11/02/01	COREY 15	19	93892	104B08W-	16
251719	11/02/01	COREY 16	19	93893	104B08W-	18
251720	11/02/01	COREY 18	19	93895	104B08W-	20
251721	11/02/01	COREY 19	19	93896	104B08W-	20
251722	11/02/01	COREY 20	19	93897	104B09W-	16
251723	11/02/07	COREY 21	19	93898	104B09W-	4
251724	11/02/07	COREY 22	19	93899	104B09W-	4
251725	11/02/01	COREY 23	19	108601	104B09W-	16
251726	11/02/07	COREY 24	19	108602	104B09W-	16
251727	11/02/07	COREY 25	19	108603	104B09W-	4
251728	11/02/07	COREY 26	19	108604	104B09W-	4
251729	11/02/07	COREY 27	19	108605	104B09W-	16
251730	11/02/08	COREY 28	19	108606	104B08W-E	16
251731	11/02/08	COREY 29	19	108607	104B08W-E	8
251732	11/02/08	COREY 30	19	108608	104B08W-E	8
251733	11/02/08	COREY 31	19	108609	104B08W-F	16
251734	11/02/08	COREY 32	19	108610	104B08W-	20
251735	11/02/08	COREY 33	19	108611	104B08W-	20
251736	11/02/08	COREY 34	19	108612	104B08W-E	20
251737	11/02/08	COREY 35	19	108613	104B08W-	20
251738	11/02/08	COREY 36	19	108614	104B08W-	14
251739	11/02/08	COREY 37	19	108615	104B08W-	14
251740	11/02/01	COREY 38	19	108616	104B08W-	12
251741	11/02/01	COREY 39	19	108617	104B08W-	12
251742	11/02/01	COREY 40	19	108618	104B08W-	12
251743	11/02/01	COREY 41	19	108619	104B08W-	12
251744	11/02/01	COREY 42	19	108620	104B08W-	5
251745	11/02/01	COREY 43	19	108621	104B08W-	4
251746	11/02/01	COREY 44	19	108622	104B08W-	20
251747	11/02/01	COREY 45	19	108623	104B08W-	10
253609	11/02/01	DEE 1	19	30247	104B08W-F	5
253610	18/02/01	DEE 2	19	30248	104B08W-F	4
25361 1	18/02/01	DEE 3	19	30249	104B08W-F	3
253612	18/02/01	DEE 4	19	39250	104B08W-C	4
253613	18/02/01	DEE 5	19	30251	104B08W-F	8
253614	18/02/01	DEE 6	19	30252	104B08W-E	4
251348	28/02/01	SUL 1	19	93451	104B08W-F	20
251349	28/02/01	SUL 2	19	93452	104B08W-	20
251377	28/02/01	UNUK 20	19	93617	104B09W-C	20
					1	
						517

,a¥-es

-

.....

	<u></u>					
Tenure #	Expiry Date	Claim Name	MD	Tag #	Map #	# of I
	·					
308909	16/04/08	DEL-1	19	227619	104B08W-E	8
308910	16/04/01	DEL-2	19	227620	104B08W-E	5
252108	13/05/07	CARL J	19	97757	104B10E-	2
252111	13/05/07	DWAYNE 1	19	97756	104B10E-	1
252107	13/05/08	JOJO M	19	97758	104B07E-	1
251446	25/06/04	COREY 01	19	93700	104B08W-E	2
251447	25/06/04	COREY 02	19	93701	104B08W-E	2
251448	25/06/04	COREY 03	19	93702	104B08W-E	2
251449	25/06/04	COREY 04	19	93703	104B08W-E	2
251450	25/06/04	COREY 05	19	93704	104B08W-E	2
251451	25/06/04	COREY 06	19	93705	104B08W-E	2
251452	25/06/04	COREY 07	19	93706	104B08W-E	2
251453	25/06/04	COREY 08	19	93707	104BO8W-E	2
301766	25/06/04	GINGER 1	19	112578	104B09W-D	2
301767	25/06/04	GINGER 2	19	207509	104B09W-D	2
303817	10/09/01	CANDY 1 FR	19	87306	104B08W-F	1
252209	10/09/01	NICA 1	19	107432	104B08W-	1
252210	10/09/01	NICA 2	19	107433	104B08W-	1
252211	10/09/01	TINE 1	19	107434	104B08W-	1
352676	31/10/01	SHEELAGH 1	19	663093M	104B08W	1
352677	31/10/01	SHEELAGH 2	19	663094M	104B08W	1
352678	31/10/01	SHEELAGH 3	19	663095M	104B08W	1
352679	31/10/01	SHEELAGH 4	19	663096M	104B08W	1
352680	31/10/01	SHEELAGH 5	19	663097M	104B08W	1
352681	31/10/01	SHEELAGH 6	19	663098M	104B08W	1
352682	31/10/01	SHEELAGH 7	19	663099M	104B08W	1
352683	31/10/01	SHEELAGH 8	19	663100M	104B08W	1
357665	16/07/03	UNUK 1	19		104B08W	2
357666	16/07/03	UNUK 2	19		104B08W	2
357667	16/07/00	UNUK 3	19		104B08W	2
357668	16/07/99	UNUK 4	19		104B08W	1
357669	16/07/99	UNUK 6	19		104B08W	1
357671	07/02/00	UNUK 8	19		104B08W	1
		. 				
		-				42
	······································				<u> </u>	01
		1		l	1	

1.4 History (continued)

In 1986, Catear Resources Ltd. staked eight claims (Corey 1-8) in the Mount Madge area and conducted a regional rock and stream sediment geochemical program. This work resulted in the discovery of the C-10 Zone, a large, structurally controlled alteration zone containing gold and silver. In 1987, Bighorn Development Corporation, a sister company to Catear conducted a widespread stream sediment, soil and rock geochemical surveys along with prospecting over the property. Bighorn conducted detailed work on the Cumberland prospect consisting of 49 metres of trenching and 590 metres of diamond drilling in six holes. In 1988, they drilled six holes on the C-10 zone totaling 647 metres.

In 1986, Kenrich Mining Corporation along with Ambergate Explorations Ltd. acquired the Sul and Nica Claims and by 1990, acquired much of the Corey package of claims that they presently hold. In 1994, Kenrich and Ambergate amalgamated under the one company, Kenrich Mining Corp.

In 1989 and 1990, Kenrich and Ambergate performed basic assessment work consisting of geological mapping, surface geochemistry and geophysics and diamond drilling of geophysical anomalies on the Sul and Nica claims.

In 1991, Placer Dome optioned the Sul and Nica claims adjacent to their Kerr Property, and proceeded over the next two years to perform detailed soil geochemical and ground geophysical surveys followed by diamond drilling on the Sul 1 claim. Along with this detailed work, Placer also reanalyzed all of the regional stream sediment samples taken by Bighorn in 1987. No evaluation was done on this multielement analysis until 1996. Placer did some detailed mapping, soil sampling and ground geophysics over the Cumberland showing and over the C-10 shear zone. None of this work was followed up and the property was returned to Kenrich and Ambergate in 1992.

In 1993, Kenrich did a regional, mapping, geochemical and prospecting program over the northwestern third of the property. This program located the high grade gold mineralization over what is now referred to as the TV Zone.

In 1994, Kenrich concentrated geological mapping and grid soil geochemistry and trenching over the TV Zone in preparation for drilling in 1995. They also did grid geochemistry and geophysics over the Bench and Battlement Zones.

In 1995, Kenrich drilled 22 diamond drill holes totaling 3,863.63 metres over the TV Zone. They also did detailed geological mapping and soil geochemistry over this zone. They did some cursory regional work over the Cumberland and C-10 zones.

In 1996, Kenrich did an extensive regional geological and geochemical survey on the property as well as detailed geology, geochemistry and drilling of 11 holes (1559 m)on the TV Zone and 9 holes (1383 m) on the Bench Zone. Further detailed geology along with drilling of five holes (634 m) was completed on the Cumberland Zone. An airborne magnetic and radiometric survey was completed over the western half of the property.

In 1997, Kenrich optioned the Bench, Battlement and Cumberland Zones, approximately 30% of the property to Prime Resources. Prime did a limited surface sampling and mapping program over this block of land referred to as the PRU Block. On the remaining area, Kenrich completed soil sampling and geological mapping on the HSOV, TM and Nica 1 Zones.

2. 1998 FIELD PROGRAM

In 1998, Kenrich improved and extended the soil grid over the HSOV to the north and over the NICA 1 claim. A total of 10 km of line was recovered or located and 102 soil samples were taken. Minor hand trenching was performed on the HSOV and NICA 1. A total of 168 rock samples were taken for petrographic studies lithogeochemistry and trace element geochemistry. Moss mat sampling (20 samples) and silt sampling (1 sample) were taken over areas extending the anomalous area. A VLF EM and magnetometer survey was completed over the HSOV grid which helped in mapping the structure and stratigraphy of the area.

3. **REGIONAL GEOLOGY**

The Mineral Deposit Research Unit (MDRU) at University of British Columbia has produced a regional geological framework of the Eskay Creek-Unuk River area. This report has borrowed heavily from the MDRU Final Report (June 1996) and has used the MDRU terminology for its discussion of Hazelton stratigraphy. The Regional Geology Map is shown on the following page.

The main focus of precious and base metal exploration in the area is on the Jurassic Hazelton Group of rocks. The Upper Triassic, Stuhini Group of volcanic and sedimentary rocks forms the base of the section These are covered by a sequence of Lower to Middle Jurassic, Hazelton Group volcanic and sedimentary rock. The northern part of the area is covered with Upper Jurassic, Bowser Lake Group basin fill sediments.

3.1 Stuhini Group

The oldest strata in the area are sedimentary and volcaniclastic rocks of the Triassic Stuhini Group. The Stuhini Group consists of a dominantly sedimentary lower division and a dominantly volcanic and volcaniclastic upper division.

3.2 Hazelton Group

The Hazelton Group has been divided into three major stratigraphic divisions. They comprise from lowest to highest: 1) Jack Formation; basal, course to fine grained, locally fossiliferous siliclastic rocks; 2) Betty Creek Formation; porphyritic andesitic composition flows, breccias, and related epiclastic rocks; dacitic to rhyolitic flows and tuffs; and locally fossiliferous marine sandstone, mudstone and conglomerate; 3) Salmon River Formation; bimodal subaerial to submarine volcanic rocks and intercalated mudstone

3.3 Salmon River Formation:

The upper part of the Hazelton group in the Iskut River area comprises dacitic to rhyolite flows and tuffs, localized interlayered basaltic flows and intercalated volcaniclastic intervals. The Salmon River Formation is subdivided into four members: Bruce Glacier, Eskay Rhyolite Troy Ridge, and John Peaks.

1) Bruce Glacier Member:

The Bruce Glacier Member consists of dacite to rhyolite flows, tuffs and epiclastic rocks. These rocks vary from as little as a few tens of metres to over 400 metres in thickness. Lithofacies are highly variable. The felsic extrusive centres are characterized by thick, domal porphyritic bodies, grading outward to flow breccias and talus piles. Deposits, proximal to extrusive centres include banded flows, massive domes with carapace breccias, autoclastic megabreccias and block tuffs. Welded lapilli to ash tuffs characterize more distal equivalents. Reworked tuffs locally form thick epiclastic accumulations and may fill in paleobasins adjacent to extrusive centres.

GEOLOGICAL SYMBOLS

stratigraphic or intrusive contact

fouits

Showing

defined	
nfered	
defined	······
nterred	
everse motion, teeth on upper plate	مفسيقم
normal motion, D = downthrown side	<u></u>
strike-slip motion	-
	4 74
	~

KENRICH MINING CORP.				
COREY PROJECT BRITISH COLUMBIA N.T.S. 104 B 8, 9 & 10				
REGIONAL GEOLOGY				
0 5000 Herenet Herenet				
Data By: J. Kowalchuk	Date: Aug. '98	Socie:		
Drawn by: Alpha-2000 & Royma	Rgure:			

2) Eskay Rhyolite Member:

The Eskay Rhyolite Member is comprised of rhyolite flows, breccias and tuffs. At Eskay creek, the member forms a distinct mappable unit overlying the Bruce Glacier Member and underlying the John Peaks Member with thicknesses of up to 250 metres.

3) Troy Ridge Member:

The Troy Ridge Member includes sedimentary and tuffaceous sedimentary rocks of the Salmon River Formation. This member includes the distinctive black and white striped strata known as the "pyjama beds" at Salmon River and the mineralized contact zone mudstone at Eskay Creek. Contact relations with other Salmon river Formation members are variable.

4) John Peaks Member:

Mafic components of the Salmon River Formation, assigned here to the John Peaks Member, are localized in their distribution and are missing from much of the Iskut River area. Generally they occur above the felsic members (Bruce Glacier and Eskay Rhyolite), but at Treaty Creek thick sections of mafic flows and breccias lie below welded tuffs of the Bruce Glacier Member. Mafic sections are thickest at Mount Shirley and near the mouth of Sulphurets Creek, and form intermediate thicknesses at Eskay Creek and Johnny Mountain. Textures present include massive flows, pillowed flows, broken pillow breccias and volcanic breccias

3.4 Bowser Lake Group

The Middle and Upper Jurassic Bowser Lake Group contain the youngest Mesozoic strata in the area. The Bowser Lake Group consists of a thick succession of shale and greywacke with lesser amounts of interbedded chert rich conglomerate. In the northern part of the area, the Bowser Lake Group consist primarily of thinly bedded turbiditic siltstone and mudstone with subordinate conglomerate and sandstone. It lies conformably over the underlying Hazelton Group rocks.

3.5 Intrusive Rocks

The sedimentary volcanic sequence in the Unuk River area has been intruded by a series of plutons, sills and dyke swarms of Late Triassic to Early Tertiary in age. The oldest intrusive is the Late Triassic Buck Glacier Pluton (foliated to gneissic hornblende-biotite quartz diorite) located immediately west of the South Unuk River. Upper Triassic to Middle Jurassic dioritic to gabbro stocks, up to 20 square kilometres in size, outcrop north of McQuillan ridge (Max Pluton) and at John Peaks. The Jurassic granodiorite to syenite, Lehto Batholith outcrops in the northwest portion of the Unuk River area. To the south of the Cumberland showing the hornblende-biotite quartz monzonite, Lee Brant Batholith of Early Tertiary age covers 40 square kilometres.

3.6 Structure

Mapping by J.M Britton and DJ Alldrick, 1988, identified tight northeasterly trending anticlinesyncline folds in the Unuk River area. Felsic synclinal fold closures were mapped in Coulter Creek and Unuk River. Stratigraphic evidence suggests that the Unuk River syncline extends from the Eskay Creek area to the Springer/Cove Resources prospect through the Mt. Madge area and southeasterly beyond the Lee Brant Batholith. The axial plane dips moderately to the east as east dipping fold limbs in the Storey Creek, Springer/Cove prospect and Mt. Madge areas. The synclinal axis is interpreted as undulating gently northerly and southerly from Mt. Madge to the Eskay Creek area. Mapping suggests that the beds dip moderately to the east.

A regional scale, northwest trending belt of shearing occurs along the eastern valley slopes of the South Unuk River. It dips steeply to the northeast and represent a major normal fault that has moved the northeast side down. This structure merges along strike into the Harrymel Creek fault to the north.

4. DETAILED GEOLOGY

The HSOV and RB Zones cover the north-south ridge east of Mandy Creek, across from Mount Madge. The HSOV Zone includes the area from the GFJ Fault north to the end of the HSOV ridge, while the RB Zone runs from the north end of the ridge north to Sulphurets Creek. Most of this area is above treeline (about 1100m), with moderate to steep slopes. Snow usually confines the field season to approximately June through September.

4.1 Lithology

Four units have been mapped in the HSOV area. The easternmost unit consist of a thick sequence of andesitic to rhyolitic volcaniclastics and minor flows. The unit west of the intermediates consists of massive rhyolites and minor related volcaniclastics. These rocks are only found in the southern part of the study area. West of these rocks are mudstones, which parallel the volcanics from the GFJ fault to John Peaks. The westernmost unit in this sequence is composed of locally pillowed basalts. These rocks are only found at and north of the RB Zone. Whole rock sample locations and structural measurements for the HSOV Zone and the RB Zone can be seen on Maps 2 and 3 (whole rock data appended).

a) Intermediate to Felsic Volcanics

This group of mainly volcaniclastic rocks dominates the ridge north-west of the HSOV showing. Most of the intermediate unit, at least in the southern thrust sheet, appears to be composed of a dark grey, feldspar glomeroporphyritic to amygdaloidal, volcanic boulder breccia and/or flows. Lichens and a variably strong foliation often make it difficult to distinguish between flows and coarse clastics. A sharp, conformable contact with the mudstones was observed at L 4 N, and graded turbidite beds at L 14 N indicate tops down. On a TAS chart (Figure 1), these rocks plot as mildly alkaline dacites. Those which plot in the andesite or trachyandesite fields appear to have been altered (as indicated by the Figure 3 - Al2O3 vs. SiO2 plot, and sample descriptions), or are volcaniclastics. On an immobile element plot (Figure 2) however, they plot consistently as andesites. These rocks plot as tholeitic to transitional on a Zr vs. Y chart (Figure 4). In the north thrust, lower in the unit (to the east), cherty, pale green felsic tuffs are found. These are interpreted to be a felsic member within the Betty Creek formation. One whole rock sample (97810) was taken from a massive, aphanitic representative of these rocks.

The volcanic rocks immediately overlaying the mudstones (interpreted to be stratigraphically lower) are commonly strongly pyritic, but show little geochemical difference from the (stratigraphically) lower intermediates. At several locations it appears that these rocks are fine grained tuffs or tuffaceous sediments, in contrast with the coarser volcaniclastics overlying them.

Only one whole rock sample (97811) was taken east of the mudstones in the RB zone. This sample plotted as a tholeitic basalt – trachybasalt, and is texturally and lithogeochemically similar to 97829 (both are soft, light grey, aphanitc and amygdaloidal). It is unknown what the relation of these rocks to the surrounding intermediates is. Sample 97816, from the intermediates(?) south-west of the HSOV showing, shows some affinity with these rocks.

HSOV - Regional Geology (Map 1)

1

Figure 1 - Total Alkalis vs Silica

ł

1

1

Y

ì

1

1

1

}

1

ì

1

3 6 1

ì

b) Rhyolites

Light to dark grey, locally flow banded, massive rhyolites and associated breccias overlie the mudstones near and south of the HSOV showing. Along strike to the north, this unit is represented by several small pods of massive and clastic rhyolites. To the south the unit thickens to about 50m, until it is cut off by the GFJ Fault. A continuum from massive to jig-saw fit rhyolite to black matrix breccia to peperitic mudstone can be observed along the rhyolite/mudstone contact (Photo 2). The breccias and peperites underlie the massive rhyolites, indicating that the sequence is overturned (assuming these are carapace breccias). The main alteration present in these rocks is a locally intense pyritization. On a TAS chart, samples from the massive rhyolite plot in a fairly tight cluster well within the rhyolite field. On the trace element chart they plot around the rhyolite/rhyodacite/trachyandesite triple point, though further into the rhyolite field. Their Zr/Y ratios indicates a tholeitic to transitional affinity, in which they differ from the more tholeitic Eskay rhyolites.

To the north of the HSOV showing, in the central part of the HSOV grid, is a texturally diverse group of felsic rocks which may be stratigraphically equivalent to the HSOV rhyolites. The northern felsics show more diversity geochemically as well as texturally, generally being less siliceous and more alkaline than the HSOV rhyolites. The degree of faulting in this area makes it difficult to determine the relation of these rocks to the larger thrust packages they are sandwiched between. Associated with these rocks is a group of polymictic sediments containing felsic clasts.

c) Mudstones

A thick belt of mudstones (up to 200m thick) appears to be continuous from the HSOV area north to the John Peaks area. A thrust fault (the North Thrust Fault) is interpreted to separate this belt into representative sections of the same unit on adjacent thrust sheets (see Map 1). The HSOV showing occurs at the contact of this unit and the HSOV rhyolite (see below). At this location the mudstone is attenuated by intense shearing caused by the intersection of the Mandy Creek Thrust and the GFJ Fault. To the south the mudstones disappear altogether.

d) Basalts

Olive green to dark purplish grey basalts occur north of the HSOV area, on the steep slopes east of the RB zone, above Mandy Creek. These rocks usually have a curviplanar fracture pattern suggestive of fractured pillows, and distinct pillows can be found at several locations (Photo 1). MDRU mapping indicates pillow basalts along strike to the north, across the Sulpherets. Sample 97806 was taken still north of these on the west shoulder of John Peaks. The three whole rock samples taken from this unit plot as basalts on a TAS chart and in the lower part of the basaltic-andesite field on a Zr/TiO2 vs. Nb/Y chart. Their Zr/Y ratio, as well as their Al2O3 content, indicate that they have a tholeitic affinity. These samples are very similar to the Eskay basalts with respect to both major and trace elements contents.

The mudstones discussed above overlie the basalts to the east, but between them is a complex area, the interpretation of which is hampered by a lack of outcrop. Mudstones, mafic intrusives and various volcaniclastic rocks, some of which may be basaltic peperites, occur in this area. Sample 97812 is a light grey, aphanitic volcanic rock which appears to have intruded mudstones. It plots as a rhyolite on a TAS chart, but as a mafic rock on the trace element charts. A number of outcrops featuring an indistinctly crystalline, olive green mafic rock are interpreted to be feeder dikes to the pillow basalts. The basalts don't continue south to the HSOV area, and are interpreted to have been cut off by the North Thrust Fault.

_Legend (Maps 2 - 4)

- 5 Basalt (locally pillowed)
 - 4 Mudstone
- 3a Massive rhyolite (locally flow banded)
- 3b- Black matrix rhyolite breccia
- 3c- Northern felsics
- 2 Polymictic sedimentary rocks associated with northern felsics
 - 1 Intermediate to felsic volcanics (Betty Creek)
- Contacts Contacts, approximate Contacts, uncertain Faults, approximate Faults, uncertain -\$ Bedding, overturned ╡ Cleavage Flow banding Ŷ Fold axis 1 Foliation 4 Fractures þ Joints Whole Rock Sample ⊕ Rock Sample 1997 Soil Sample Ο 1998 Soil Sample) Stream Sediment Sample Ð

These units appear to be the southward extension of the overturned Hazelton section mapped by the MDRU at John Peaks. East of the rocks described above are cobble conglomerates mapped as part of the Jack formation, then Stuhini Group rocks. The sequence associated with the HSOV showing begins with a footwall intermediate unit overlain by a relatively thick (compared to Eskay Creek) mudstone unit. The mudstones are locally intruded by rhyolite cryptodomes, with which the HSOV mineralization is directly associated. Lastly, a thick (locally pillowed) basalt unit caps the sequence. This sequence is similar to that at Eskay Creek, which suggests that the HSOV showing may be stratigraphically equivalent to the Eskay Creek Deposit.

4.2 Structure

Three main faults control the structure in the HSOV area. The Mandy Creek Thrust Fault strikes and verges to the NNW, and is moderately to steeply east dipping. It is the boundary fault between overturned Hazelton and Stuhini group rocks to the east (best seen at John Peaks), and the same, essentially upright sequence, to the west (Mount Madge, TV Zone). The GFJ Fault is a steeply dipping, WSW striking fault, which is marked by the large recessive lineament south of Mount Madge and the HSOV area. The intersection of this fault and the Mandy Creek Thrust has resulted in a strongly tectonized area SW of the HSOV showing. The HSOV strata are cut off to the south by this fault. Information from previous mapping suggests that they may have been offset about 1 km east. The North Thrust Fault is a steeply(?) east dipping, NW striking fault between adjacent thrust sheets in the overturned eastern package. These two sheets are separate thrusts of the same strata, each truncating the other along strike.

5. ALTERATION and MINERALIZATION

Previous to 1998, rock sampling in the HSOV area focused on the HSOV showing and the pyritic alteration along strike. These samples consistently returned low precious and base metal values.

5.1 Alteration

The volcanic rocks immediately overlying the mudstones are generally moderately to strongly pyritic. This pyritic layer is usually only a couple of meters thick, and does not show consistent signs of strong alteration on lithogeochemical plots. Those intermediate samples which do show textural and lithogeochemical signs of alteration are irregularly distributed. Altered rocks generally have low silica and correspondingly high immobile element values, as well as erratic K2O and Na2O. One of the most clearly altered samples (97822), was taken from a chloritized porphyritic intermediate volcanic directly above the HSOV showing. Sample 98909 was taken from a massive rhyolite at this location, and has the highest Na2O and lowest K2O values of the HSOV rhyolites.

į

1

1 1

ł

ł

1

5.2 HSOV Showing

The HSOV showing (Photo 3) is a body of semi-massive to massive colloform marcasite containing blocks of graphitic and/or peperitic mudstone (Photo 4). The main showing is 35m long and 1 to 3m thick. Offset 110m east, is the eastern portion of the showing which is about 30m long and up to 1m thick. In many places the marcasite forms small irregular tubules. Powdery white patches of melanterite, a characteristic oxidation product of marcasite, often coat the surface. Thin section work (Appendix 1) indicates that the marcasite has brecciated and replaced the host rocks. The marcasite may have precipitated within the sediments at the mudstone/volcanic interface.

Marcasite is a frequently observed component of modern sea floor vent mineralization. It precipitates at relatively low temperatures (below about 200° C) and often occurs at the outer zones of high temperature mineralization. It generally forms a very fine-grained colloform precipitate in these environments. It is possible that the HSOV showing represents peripheral mineralization in a sea floor hydrothermal system where the base and precious metals have been 'dumped' elsewhere (at higher temperatures).

6. **GEOCHEMISTRY**

6.1 Soil and Stream Sediment Geochemistry

A well defined Ag, As and Zn soil anomaly occurs within the mudstones to the north-west of the HSOV showing (Maps 4a - e). Cu and Pb also have erratic high values within this zone. Histograms for the above elements (Figures a -e) generally show a small population with high values. For Ag, As and Zn, all the samples in the higher population (with one exception for each) fall within the anomalous area (rock, soil and stream sediment data are appended). The outline of the anomaly tends to roughly parallel the volcanic - mudstone contact, usually at about 100m downslope. Tectonic thinning of the mudstones near the HSOV showing may explain why the soil anomaly approaches the contact in this area.

Almost all samples within the anomalous area had Ag values over 2 ppm (up to 12.6 ppm), As values ranged up to 1075 ppm, and Zn was up to 2588 ppm. The highest Cu (355 ppm), and Pb (1752 ppm) also occur within the anomalous area. Where assayed for, Hg is often elevated as well, though the highest value (8400 ppb) was obtained near the HSOV showing, from sheared mudstones immediately below the volcanic contact. Au does not show a strong correlation with the other elements. Interestingly, the most anomalous stream sediment samples (6N-mun) collected in 1998 had the highest Au (135 ppb) values as well as the highest Ag (5.8 ppm), As (235 ppm) & Pb (92 ppm) values. Sample 7N - mn had the highest Cu (322 ppb) and Zn (2291) values. Both these samples were collected within the anomalous area.

Thin residual soils predominate on the ridge top, while till cover thickens down towards Mandy Creek. Patchy till can be found in the area of the soil anomaly, but the sites examined during follow-up on the more anomalous samples usually had thin, poorly developed, residual soils. Sample 2+50 N 1 was taken from the C horizon of a residual soil, and assayed 12.6 ppm Ag, 210 ppm As, 225 ppm Cu, 1752 Pb, 25 ppb Sb, 1239 ppm Zn, and 3200 ppb Hg.

in the second second

Construction of the second

Summingson and

and an or strength of the second s

San and a state of the state of

and the second se

Contraction of the second

Contraction of the

A CONTRACTOR OF THE OWNER

and a subsection of the subsec

And the second se

and the state of t

£.

The second second second

ti i i i

. .

ale a la

-Theorem -Theorem -

a da da da da da

t .

....

and the second

and the second se

6.2 Rock Geochemistry

With the exception of two samples taken from a narrow quartz carbonate vein in the mylonitic intermediates to the west of the HSOV showing (98473 & 98475), the best 1998 rock sample values came from mudstones within the anomalous area. These include samples 98451 (4.4 ppm Ag, 2225 ppm As, 422 ppm Pb, 35 ppm Sb and 1427 Zn) and 38639 (365 ppb Au, 8.2 ppm Ag, Sb 20 ppm). As well, mudstones sampled from within the anomalous area have elevated Ag values (usually > 1 ppm) compared to mudstone samples taken outside the anomalous area (usually < 1 ppm).

The spatial correlation of anomalous rock and soil samples, and the well defined, coherent nature of the soil anomaly argue in favor of it being a residual rather than transported anomaly. The anomaly appears to be related to a particular level within the mudstone package.

7. CONCLUSIONS AND RECOMMENDATIONS

Textural, lithogeochemical and structural evidence indicates that the HSOV strata may be stratigraphically equivalent to Eskay Creek. The presence of the HSOV massive marcasite body implies that this area featured sea floor hydrothermal activity. The soil anomaly appears to outline a layer of geochemically anomalous mudstones that could be a distal expression of exhalative activity. The geochemical signature is compatible with the metal signature of a volcanogenic massive sulphide deposit.

This geochemically anomalous area can only be tested by a fence of diamond drill holes drilled west from the ridge.

8 REFERENCES

Alldrick, D., Britton, J., Webster, I. and Russell, C., 1989: Geology and Mineral Deposits of the Unuk River Area, (104B/7E, 8W, 9W, 10E), B.C. Ministry of Energy, Mines and Petroleum Resources, Open File 1989-10

Kowalchuk, J., Masterlitz, K., Russell, C. and Sigurgeirson, H., 1997: Summary Report on the 1996 Exploration Program Corey Property, Assessment Report

Kowalchuk, J. and Sigurgeirson, H., 1998: Summary Report on the 1997 Exploration Program Corey Property, in house Kenrich Report

Lewis, P., 1996: MDRU Metallogenesis of the Iskut River Area, Northwestern B.C. Final Report.

STATEMENT OF QUALIFICATIONS

I, John Kowalchuk of Richmond, British Columbia, Canada, do hereby certify that:

- 1. I am a consulting geologist, sole proprietor of JMK Geological Services with an office at 8551 Rosehill Drive, Richmond, B.C.
- 2 I am a graduate of M^e Master University of Hamilton, Ontario, Canada with an honours degree in Geology. I graduated in 1970.
- 3. I have practiced continuously as a geologist, primarily in Western North America since 1970.
- 4 This report is based on geological mapping and surface sampling, personally performed and supervised by the author. All conclusions and recommendations for the property are based on the aforementioned field work.

John Kowalchuk
STATEMENT OF EXPENDITURES

WAGES

Helgi Sigu	rgeirson June 26 - July 30, 199	98	\$	10,200.00
Devroord I	25.5 days @400			
Raymonu	⊤u lune 26lulv 30, 199	28	\$	5 000 00
	25 days @200		Ψ	0,000.00
3 Field Ass	sistants			
• • • • • • • • • • • •	June 26 - July 30, 199	98	\$	13,450.00
	75 days @180			
John Kowa	lichuk			
	July 07 - July 21, 199	8	\$	5,000.00
	10 days @500			
TRANSPO	RT			
Truck Rent	al			
	1 month including fue		\$	4,000.00
Helicopter	(contract) 40 hr @\$7	42/hr	\$	29,659.00
Air fares	(,) U		\$	600.00
Travel Cos	ts, Hotel and Meals		\$	800.00
CONTRAC	TORS			
	MFH Contracting	10km @ 337	\$	3,375.00
	SJV Geophysics	10km @ 600	\$	6,000.00
CAMP CO	ете			
CAIVIP CO	ວເວ 180 man davs @ \$10	0	\$	18 900 00
	Tuo man uayo @ #Tu	v	Ψ	10,000.00
SUPPLIES	5			
	Neville Crosby		\$	3,589.00
	Nugget		\$	3,590.00
	Husky Holdings		\$	5,000.00
	Map Copying		\$	595.00
ASSAYING	G		•	
	Eco lech Labs	300 samples @32	\$	9,562.00
	intertek resung	30 samples @56	φ	1,000.00
REPORT	PREPARATION		\$	8.000.00
				, – –
			-	
TOTAL CO	DSTS		\$ 1	129,008.00

Appendix I

· · · ·

į.,.

ļ,

La caste

. . .

2 :: : :

. .

:

. . .

1

r i

.

HSOV mineralization thin section report

. .

Estimated mode

	Quartz	7
	Feldspars	17
	Sericite	3
	Pyrite	65
Carbonaceous	material?	8

This sample is an unusual form of breccia, consisting of angular fragments of volcanic rock in a matrix of fine-grained compact pyrite. The latter shows banded and crustiform textures (best seen by macroscopic observation of the polished thin section) delineated by dark material, and includes more or less abundant, partially assimilated fragments.

The discrete fragments are of felsic volcanic material similar in composition to the host rock of KEN C. The largest fragment consists of a microgranular groundmass of quartz and K-feldspar with scattered discrete phenocrysts of plagioclase. It has a partial selvedge of microgranular albitite. Other fragments are of fine-grained trachytic aspect.

Pyrite impregnates the matrix as dense disseminations of anhedral/ subhedral grains 5 - 50 microns in size. These commonly coalesce as clumps and concentric bands of more or less compact character, but remnants of what would appear to have been an original brecciated felsic volcanic host occur intimately dispersed throughout - and as patchy segregations which are more or less clearly recognizable as partially replaced fragments.

In some cases the interstitial silicate material alternates in banded fashion with pyrite in concentric relation to silicate fragments. Vuggy cavities in the compact pyrite are typically filled by quartz.

The interstitial silicates include a component of minutely fine-grained felted sericite. This occurs as diffuse flecks in some of the felsitic fragments, as peripheral fringes to the same, and as monomineralic wisps and pockets in the pyritic matrix.

Another component is a low-reflective opaque - similar to the material noted in KEN C. This occurs in compact form, sometimes showing colloform features, as concentric zones outlining relict silicate fragments (the dark atoll structures seen in the off-cut) and, to a minor degree, in diffuse intergrowth throughout the pyrite and in some of the lithic fragments. Pyrite in the carbonaceous bands partly occurs as framboidal clusters - suggesting a possible biogenic factor in the formation of this rock.

Pyrite, of similar grain size to that of the matrix, also occurs as more or less dense disseminations in the volcanic fragments possibly representing progressive pyritization and assimilation into the sulfidic matrix.

Appendix II

Whole Rock Data

Whole rock samples were sent to Intertek Testing Services, where they were analyzed by XRF. A lithium borate fusion was used when analyzing the major elements, while pressed pellet was used for the trace elements (Ba, Nb, Rb, Sr, Y, Zr).

and taking

and a second second

	λqN	0.27 0.51 0.55 0.32 0.38 0.44 0.44 0.44 0.46 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.5	0.54 0.25 0.65 0.65 0.65 0.65 0.65 0.55 0.55 0.5	1.03 0.41 0.74 0.74 0.72	0.65 0.81	0.80 0.68 0.68 0.68 0.68 0.68	0.18 0.17 0.08	0.63 0.49 0.56 1.46	0.53
	Zritio2	0.020 0.016 0.020 0.023 0.023 0.023 0.023 0.023 0.023 0.019 0.019 0.019 0.019 0.019	0.020 0.022 0.019 0.017 0.019 0.019 0.019 0.015	0.110 0.109 0.068 0.068 0.062 0.072	0.115 0.119	0.089 0.102 0.082 0.076 0.106 0.096	0.006 0.006 0.006	0.007 0.088 0.006 0.005	0.011
	+Na20	4.95 7.26 6.06 7.55 8.06 8.08 8.08 8.08 8.08 8.33 8.18 7.15 7.15 7.15 8.23 8.23 8.23 8.23 8.23 7.15 7.15 7.15 7.15 7.15 7.15 7.15 7.15	8.19 7.28 6.27 6.27 6.27 6.82 6.82 7.21	10.88 6.33 9.16 8.83 11.32	8.81 7.97	9.37 9.17 8.15 9.01 8.46	4.4 2.44 3.72	5.49 6.59 5.18 4.97	5.79
	Zriv K20	444446447644646 06406606060767	00000000000000000000000000000000000000	9.7 9.6 9.6 1.0 1.0 1.0	42 4 80	0.04044 0.04044	3.2 2.8 2.9	6.6.6.4 6.6.4+	4.1
	*	4 -	8 2 3 8 8 4 2 5 5 5 5	5 2 2 3 3 3 3 7 4 5 8 4 4 4 7 4 7 4 4 7 4 4 7 4 4 7 4 4 7 4 4 7 4 4 7 4	51 37	\$ \$ \$ \$ \$ \$ \$	8 8 8 39 3	\$ \$ \$ \$ \$ \$	15
	윤	4 2 3 3 3 4 4 5 8 9 7 9 8 4 9 3 7 4 9 4 9 5 8 5 7 4 9 4 7 9 4 9 4 9 4 9 4 9 4 9 4 9 4 9	28 33 58 33 58 33 58 33 58 32 58 58 58 58 58 58 58 58 58 58 58 58 58	8 3 3 3 4 4 K	88	40 8 3 3 3 4	5 22 24	21 27 19	æ
	Ti02	9100 122000 122000 9600 9600 10200 11200 11200 11200 11200 11200 11200	12100 10600 9400 112300 7500 7500 7400 111700 111800	2800 2300 3400 3800 4000	2400 2100	3000 2800 3100 2400 2700	15000 14700 12800	10300 3900 8400 4500	5400
	2	188 204 198 198 198 198 198 198 198 198 198 198	243 243 279 224 224 224 221 221 225 17 195	251 251 234 234 286	277 250	268 254 255 255 255 255	88 85 76	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	61
	NB2O	2286 2286 327 327 327 327 327 327 328 488 488 488 488 3362 3362 3362	4.89 4.87 3.21 3.27 3.27 1.78 3.29 3.38 3.38 3.38	5.71 5.78 5.79 5.69 5.69	5.08 7.8	4.37 3.7 3.84 6.02 6.02	4.15 2.34 3.46	5.32 1.86 5.14 0.12	2.26
	62 K20	2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25	32 32 32 32 32 33 33 33 33 33 33 33 33 3	4.97 5.16 5.79 5.79 5.63	3.73 0.17	2 4 4 31 2 4 4 4 5 2 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0.25 2.1 0.26	0.17 4.73 0.04 4.85	3.53
iamples 98	AI203	13.01 14.03 14.09 14.03 13.72 13.72 13.72 13.72 13.72 13.72 13.72 13.72 13.72 13.72 13.72 13.72 13.72 13.72 13.72 13.72	16.47 15.34 15.83 15.69 14.51 13.67 15.98 15.98 14.63	16.42 14.09 11.4 13.78 13.78	14.07 13.6	14.33 14.32 13.11 14.4 13.76 14.66	14.62 14.37 16.96	16.17 12.82 14.62 10.18	15.71
Whole Rock S 1997 / 19	SIO2	60.62 65.53 65.14 65.53 65.14 65.35 65.55	63.4 67.54 63.8 63.8 63.12 58.12 64.77 71.56 64.79 66.79 61.68 61.68	69.44 72.42 73.09 73.09 66.88	71.13 70.28	74.5 73.65 74.62 74.73 74.11 73.3	48.45 49.45 47.3	50.18 71.11 51.3 73.93	53.46
			4 - 5						
	Description	letty Creek atgry forter vic clastic may int vic may int vic may int vic the turn? Het unt? Het vic may int vic may and; fld phyric, anyg1 may and; fld phyric, may and; fld phyr	msv int vic: amygl int vic: sil attd att vic: sil attd be to int turn? ilm'tc fel to int turn? forta int vic: ilm'tc forta int vic: ilm'tc forta int vic: ilm'tc boxd fel vic: py'tc, wix ear msv fel? vic: py'tc, wix chi	stratigraphic position) msv rhy lei riur? fai rur? vic, ilarge amygs fei riur? sti atro? drk gry fei, py'tic msv drk gry fei, py'tic	ay have clastic component) Aph rhy(?); msv, widy brx'd Feisic clasts (chipped out of cgi)	msv fel vic msv fel vic: pig phyric? msv fel vic: msv - bx/d fel vic md - dik gry fel vic; py'ic msv fel vic; py'ic	mfc vic mfc pillow brx? pillow bst?	int vic? mod fol'ld int vic mic? vic: amygri igt gry vic intruding mdst	int- mfc mylonite
	Easting	nr flows) - [413281 413281 413283 413863 413863 413863 413863 413820 413820 413820 413820 413820 413825 413820 413825 413826 413825 413825 413826 413825 413826 413825 413825 413826 413825 413825 413826 413825 413826 413826 413826 413826 413826 413826 413826 413826 413826 413826 413826 413826 413826 413826 413826 413826 413856 41386 410866 410866 410866 4108666 4108666666666666666666666666666666666666	413233 413488 413488 413327 413327 41363 41363 413565 413540 413540	uncertain 413193 413826 413416 413420 413320 413320	thyolite (m 413202 413464	414140 413970 413880 413780 413715 413615	410957 412110 412097	413301 413080 412530 412275	413528
	UTM Northing	dicial and a second and a second and a second and a second a secon) tuffs 6258755 6258558 6258598 6258598 6258698 6259500 6258470 6258470 6258470 6258470 6258470 6258645	sic rocks of 6259084 6259798 6259047 6258830 6258930 6258930 6258930	n Contact F 6258736 6258582	6258150 6258200 6258310 6258395 6258435 6258435	Jesites 6262345 6260000 6260175	6259150 6260120 6260965 6260965	ndary fault 6258345
	Easting	1436 moleculari 2465 moleculari 2465 moleculari 1405 moleculari 2460 moleculari 2465 moleculari 2455 moleculari 1435 molecular	alt d (py tr 0+45 W 0+75 E 0+75 E 0+73 E 1+02 W 0+30 W	diverse felt 0+45 E 4+70 E 2+35 E 2+35 E	strike from 0+80 W 0+70 E		aseltic And 2+55 W	iin affinity 1+70 E	\$ SW bour 0+00 E
	Grid Northing	anics (coa 10+95 N 3+80 N 7+20 N 0+42 N 13+55 N 13+55 N 13+55 N 9+50 N 9+50 N	iates - usu 4+80 N 2+14 N 2+50 N 3+80 N 8+40 N 11+60 N 11+60 N	(texturally 8+00 N 3+00N 6+90 N	dies along 4+75 N 2+40 N		Besalts - B 2+00 N	e of uncerta 8+25 N	td rk acros 0+00 N
	Sample Number	Intermediate Vok 97820 97820 97821 97823 97824 97827 97833 97793 977700 977700 977700000000	Contact Intermed 97815 97815 97815 97815 97815 97825 97825 97828 97828 97828 97828 97828 978311 98911	Northern Felsics 97830 97834 97836 98905 98914 98915 98915	Smaller Felsic br 97814 97818	HSOV Rhyolite 98902 98903 98906 98906 98907 98908 98908	Upper Hazelton 97806 97835 97835	Various samples 97829 97810 97811	From drk grn fol 97816

Italicized locations are only approximate (1997 samples) Bold samples are from north of the HSOV grid (ie. RB Zone or north of the Sulpharets)

•

÷

[______

Community

[_____

Common d

()

Lawrand

(____]

L

Appendix III

innernerer Land and

humann h

-unanound

......

Contraction of the

Commission of the

honoralited

Amontanana Amontanana Amontanana

process in

in and

(no many)

donner de la

Current

1997 soil sample data

HSOV SOIL SAMPL	ES										·			
SAMPLE	Au (ppb)	Ag (ppm)	A1 %	As (ppm)	Ba (ppm)	Bi (ppm)	Ca %	Cd (ppm)	Co (ppm)	Cr (ppm)	Cu (ppm)	Fe %	La (ppm)	Mg %
L2+00N 0+00	<5	0.6	4.48	20	140	<5	0.67	i <1	75	2	304	9.41	<10	3.27
L2+00N 0+25E	<5	0.8	2.18	20	135	10	0.08	3	13	2	19	6.77	<10	0.25
L2+00N 0+50E	35	0.4	2.24	20	75	5	0.07	3	6	5	20	4.78	<10	0,24
L2+00N 0+75E	<5	<0.2	1.57	45	95	<5	0.26	2	19	<1	55	6.72	<10	0.62
L2+50N 0+00	15	3.6	1.43	105	145	<5	0.11	11	38	<1	213	>10	<10	0.24
L2+50N 0+25E	5	0.6	4.23	25	100	5	0.14	4	13	<1	25	6.38	10	0.27
L2+50N 0+50E	5	0.4	1.24	20	130	5	0.29	4	18	<1	19	7.25	<10	0.13
L2+50N 0+75E	35	<0.2	1.13	20	140	<5	0.80	2	32	<1	70	8.61	<10	0.56
L2+50N 0+25W	45	1.0	2.61	85	140	<5	0.32	<1	51	21	137	8.70	<10	1.50
L3+00N 0+25E	10	6.8	1.86	135	115	<5	0.41	9	29	6	137	>10	<10	0.34
L3+00N 0+50E	<5	2.6	3.25	40	120	<5	0.32	8	39	6	115	8.99	20	0.65
L3+50N 0+00	35	6.6	1.30	90	70	<5	0.62	84	79	- 4	355	>10	<10	0.08
L3+50N 0+25E	10	2.0	2.88	35	275	<5	0.91	30	87	<1	172	>10	20	0.60
L3+50N 0+48E	20	2.2	1.78	50	295	5	0.64	11	36	<1	84	>10	<10	0.56
L3+75N 0+25E	10	5.6	1.86	45	120	<5	0.27	7	25	7	117	6.81	10	0.60
L3+75N 0+50E	5	0.8	2.89	35	155	10	0.17	2	34	<1	19	9.56	<10	0.41
L3+75N 0+75E	20	0.8	2.66	50	200	10	0.68	4	70	<1	41	>10	<10	0.91
L4+00N 0+00	5	4.0	1.71	50	110	5	0.16	3	26	6	61	6.01	<10	0.67
L4+00N 0+25W	10	0.8	2.03	25	105	<5	0.24	4	30	13	85	6,65	<10	0.90
L5+00N 0+00E	10	<0.2	1.98	25	65	<5	0.05	2	11	8	44	6.32	<10	0.28
L5+00N 0+25E	15	<0.2	2.88	25	115	10	0.03	1	13	12	36	8.76	<10	0.36
L5+00N 0+25W	5	0.2	1.66	25	110	<5	0.04	2	12	8	31	5.94	<10	0.21
L5+00N 0+50W	<5	0.2	2.72	20	90	10	0.10	2	10	8	25	7.46	<10	0.21
L5+00N 0+75W	20	<0.2	2.20	15	145	10	0.15	1	12	6	26	5.80	<10	0.34
L5+00N 1+00W	5	0.2	1.61	20	200	5	0.14	1	17	9	30	6.32	<10	0.38
L5+00N 1+25W	10	0.4	2.02	20	80	10	0.05	2	14	10	29	6.43	<10	0.33
L5+00N 1+50W	10	0.6	2.58	15	55	10	0.09	2	9	6	27	7.43	<10	0.19
L5+00N 1+75W	5	0.6	2.04	15	55	5	0.04	<1	11	8	19	6.23	<10	0.26
L5+00N 2+00W	<5	4.2	2.49	35	100	<5	0.16	2	30	9	59	6.91	30	0.49
L5+50N 0+00	<5	<0.2	1.88	5	90	15	0.07	<1	9	8	22	8.24	<10	0.18
L5+50N 0+25E	<5	<0.2	1.51	20	85	5	0.05	<1	6	7	19	5.15	<10	0.21
L5+50N 0+50E	<5	<0.2	2.03	20	55	10	0.04	<1	6	8	22	4.25	<10	0.22
L5+50N 0+75E	<5	<0.2	1.37	15	90	10	0.08	1	10	6	23	6.12	<10	0.27
L5+50N 1+00E	<5	<0.2	2.69	30	115	5	0.05	<1	17	12	34	9.39	<10	0.39
L5+50N 0+25W	<5	0.4	2.78	15	50	5	0.04	1	9	8	25	5.59	<10	0.20
L5+50N 0+50W	<5	0.2	3.01	25	90	<5	0.09	<1	12	15	38	6.06	<10	0.65
L5+50N 0+75W	<5	<0.2	2.08	15	105	15	0.10	1	10	12	24	7.30	<10	0.26
L5+50N 1+00W	<5	0.4	2.18	25	75	<5	0.05	1	18	10	26	6.16	<10	0.36
L5+50N 1+25W	<5	0.6	2.08	25	80	<5	0.09	<1	16	9	43	5.87	<10	0.47
L5+50N 1+50W	35	<0.2	2.15	15	75	10	0.10	1	11	7	34	8.06	<10	0.34
L5+50N 1+75W	20	1.2	2.48	20	65	<5	0.07	1	10	10	32	6.39	<10	0.38
L5+50N 2+00W	10	0.4	2.44	55	150	<5	0.33	1	13	17	66	5.90	<10	1.07
L6+00N 0+00	<5	0.4	2.70	15	90	5	0.04	<1	13	12	24	7.59	<10	0.21
1 6+00N 0+25E	5	0.6	0.98	10	70	<5	0.09	1	4	<1	14	2.23	<10	0.03

۰.

.

HSOV SOIL SAMP	પટડ		l					Samples s	ubmitted by	Kenrich M	Aining Corp.	· · · · · · · · · · · · · · · · · · ·	· · · · ·		<u> </u>
SAMPLE	Ma (ppm)	Mo (ppm)	Na %	Ni (nom)	P (nom)	Ph (nom)	Sh (nom)	Sa (nom)	Cr (nnm)	TI 4/	11 (
L2+00N 0+00	3640		0.01	10	1910	22	<5	<20		0.01	<10	<u>v 16500</u>	vv (ppm)	<u>r (ppm)</u>	Zn (ppm)
L2+00N 0+25E	1945	11	0.03	<1	1910	30	<5	<20	6	0.01	<10	100	<10	0	140
L2+00N 0+50E	477	8	0.05	1	1090	24	<5	<20	0	0.02	<10	38	<10		110
L2+00N 0+75E	1371	14	0.01	17	2050	24	<5	<20	19	0.07	<10		<10	10	
L2+50N 0+00	1341	22	0.01	66	2150	80	<5	<20	10	0.00	<10	31	<10	13	1080
L2+50N 0+25E	1649	8	0.06	5	1020	36	<5	<20	12	0.06	<10	21	<10	20	116
L2+50N 0+50E	2668	12	0.03	<1	1240	32	<5	<20	27	0.02	<10	61	<10	<1	
L2+50N 0+75E	1945	11	0.06	31	1760	22	<5	<20	61	0.08	<10	24	<10	21	250
L2+50N 0+25W	2387	12	0.05	19	1670	42	<5	<20	24	0.05	<10	103	<10	12	225
L3+00N 0+25E	3291	19	0.02	61	1730	34	<5	<20	27	0.01	<10	39	<10	15	694
L3+00N 0+50E	3199	27	0.03	95	2570	34	<5	<20	19	0.01	<10	36	. <10	31	583
L3+50N 0+00	>10000	31	0.01	402	2500	24	<5	<20	61	0.03	<10	36	<10	50	2586
L3+50N 0+25E	8364	28	0.08	196	1450	22	<5	<20	109	0.07	<10	34	<10	66	981
L3+50N 0+48E	3493	25	0.01	77	1710	26	<5	<20	74	0.01	<10	27	<10	32	969
L3+75N 0+25E	2012	32	0.01	48	1190	22	<5	<20	24	< 0.01	<10	40	<10	19	654
L3+75N 0+50E	4032	17	0.02	<1	2840	34	<5	<20	14	0.02	<10	37	<10	21	158
L3+75N 0+75E	4494	17	0.09	4!	3540	60	<5	<20	72	0.07	<10	61	<10	23	278
L4+00N 0+00	2104	8	0.03	9	1720	26	<5	<20	10	0.02	<10	42	<10	6	231
L4+00N 0+25W	2046	8	0.03	18	1650	30	<5	<20	17	0.03	· <10	61	<10	10	247
L5+00N 0+00E	679	13	0.04	7	1040	24	<5	<20	8	0.02	<10	80	<10	<1	108
L5+00N 0+25E	1187	15	0.03	3	1060	38	<5	<20	10	0.05	<10	54	<10	<1	109
L5+00N 0+25W	1141	12	0.03	7	1140	22	<5	<20	7	0.03	<10	88	<10	<1	94
L5+00N 0+50W	922	9	0.03	4	1070	32	<5	<20	14	0.06	<10	52	<10	3	90
L5+00N 0+75W	1150	9	0.04	6	1240	22	<5	<20	18	0.03	<10	59	<10	2	95
L5+00N 1+00W	1758	11	0.02	8	1460	26	<5	<20	17	0.03	<10	84	<10	4	127
L5+00N 1+25W	1014	11	0.03	5	1270	26	<5	<20	7	0.04	<10	80	<10	<1	89
L5+00N 1+50W	545	14	0.04	3	980	30	<5	<20	8	0.06	<10	48	<10	5	'75
L5+00N 1+75W	811	16	0.02	2	780	26	<5	<20	7	0.06	<10	73	<10	<1	81
L5+00N 2+00W	3103	17	0.03		1490	28	<5	<20	12	0.02	<10	53	<10	44	156
L5+50N 0+00	491	11	0.02	3	2270	20	<5	<20	9	0.04	<10	75	<10	<1	57
L5+50N 0+25E	197	7	0.02	2	840	20	<5	<20	10	0.06	<10	77	<10	<1	43
L5+50N 0+50E	185	5	0.02	<1	610	24	<5	<20	6	0.07	<10	74	<10	3	42
L5+50N 0+75E	323	9	0.04	3	1260	22	<5	<20	9	0.06	<10	61	<10	4	110
L5+50N 1+00E	1391	11	0.04	3	2050	24	<5	<20	8	0.06	<10	66	<10	3	75
L6+50N 0+25W	892	7	0.04	3	1360	20	<5	<20	4	0.04	<10	51	<10	7	58
L5+50N 0+50W	531	5	0.03	7	780	24	<5	<20	10	0.05	<10	69	<10	3	87
LOTOUN UT/OW	723	7	0.04	4	900	20	<5	<20	10	0.06	<10	89	<10	<1	67
L3+5UN 1+00W	1909	9	0.03	4	1010	28	<5	<20	6	0.06	<10	81	<10	5	81
L0+00N 1+25W	1254	11	0.03	7	1500	24	<5	<20	9	0.04	<10	74	<10	<1	98
L0+50N 1+50W	542	13	0.03	5	1710	26	<5	<20	10	0.05	<10	73	<10	<1	75
L0+5UN 1+/5W	634	12	0.03	6	1370	24	<5	<20		0.05	<10	66	<10	1	94
L3+5UN 2+00W	595	7	0.01	40	1070	24	<5	<20	22	0.06	<10	87	<10	7	554
L0+UUN U+UU	1467	13	0.03	5	1810	30	<5	<20	15	0.05	<10	65	<10	<1	76
1.0+00N 0+25E	117	7	0.03	<1	1470	14	<5	<20	5	0.01	<10	20	<10	3	37

•

SAMPLE	Au (ppb)	An (ppm)	AI %	As (ppm)	Ba (ppm):	Bi (ppm)	Ca %	Cd (ppm)	Co (pprn)	Cr (ppin)	Cu (ppm)	Fe %	La (ppm)	Mg %
L6+00N 0+50E	<5	0.2	2.21	<5	45	10	0.03	2,	9	3	29	7.44	<10	0.21
L6+00N 0+75E	10	<0.2	1.83	25	80	10'	0.11	<1	13	11	39	6.94	<10	0.60
L6+00N 1+00E	5	0.2	1.37	10	55	10	0.07	<1	7	24	18	4.13	<10	0.08
L6+00N 1+25E	10	<0.2	2.45	30	80	<5	0.16	<1	17	20	59	7.09	<10	0.97
L8+00N 0+25W	10	<0.2	1.37	15	50	<5	0.06	<1	6	10	15	2.64	<10	0.19
L6+00N 0+50W	<5	<0.2	2.41	10	75	10	0.07	<1	9	9	24	6.42	<10	0.25
L6+00N 0+75W	<5	<0.2	1.35	15	100	5	0.05	<1	8	5	19	4.95	<10	0.12
L6+00N 1+00W	15	0.8	2.77	15	90	5	0.05	<1	8	9	24	5.58	<10	0.35
L6+00N 1+25W	<5	0.4	2.34	25	90	, <5	0.10	<1	17	7	57	5.67	<10	0.56
L6+00N 1+50W	10	0.2	2.54	20	60	5	0.14	<1	20	14	43	6.16	<10	0.72
L6+00N 1+75W	35	0.6	2.21	70	100	<5	0.09	1	24	9	122	8.33	<10	0.67
L6+00N 2+00W	15	0.8	2.95	30	60	5	0.05	1	13	13	52	6.80	<10	0.44
L6+00N 2+25W	20	0.2	2.18	20	70	10	0.07	<1	15	9	25	6.80	<10	0.28
L6+00N 2+50W	5	1.4	1.66	30	105	10	0.05	1	15	9	44	6.10	<10	0.41
L6+50N 0+00	55	<0.2	1.66	20	40	20	0.12	<1	16	9	18	5.68	<10	0.28
L6+50N 0+25E	<5	0.4	3.66	25	60	5	0.13	<1	12	5	25	6.92	<10	0.18
L8+50N 0+50E	<5	0.4	1.90	20	55	10	0.10	1	12	<1	24	7.72	20	0.08
L0+50N 0+75E	<5	<0.2	4.54	25	<5	<5	0.05	<1	3	1	43	2.98	60	0.07
L6+50N 1+00E	5	<0.2	1.84	10	30	<5	0.04	<1	3	1 <1	12	2.27	10	0.05
L6+50N 1+25E	10	< 0.2	1.73	10	50	10	0.06	<1	7	9	23	5.91	<10	0.12
L6+50N 0+25W	<5	<0.2	1.06	5	45	10	0.08	3	8	7	14	3.49	<10	0.23
L6+50N 0+50W	5	0.4	2.45	15	55	5	0.07	2	9	9	35	5.13	<10	0.41
L6+50N 0+75W	<5	<0.2	2.22	25	70	<5	0.05	1	10	14	34	6.07	<10	0.61
L6+50N 1+00W	<5	<0.2	2.22	15	115	10	0.09	<1	9	11	27	6.32	<10	0.51
L8+50N 1+25W	<5	<0.2	2.53	40	65	10	0.09	<1	25	15	75	6.55	<10	0.89
L8+50N 1+50W	<5	0.4	3.44	40	95	<5	0.09	<1	35	10	105	6.12	<10	0.77
L6+50N 1+75W	15	1.2	2.17	30	125	<5	0.19	1	20	14	83	6.05	<10	0.88
L8+50N 2+00W	40	0.6	2.20	30	90	5	0.24	2	22	10	49	8.05	<10	0.68
L6+50N 2+25W	<5	4.4	3.82	65	90	<5	0.58	15	17	7	108	5.23	<10	0.41
L6+50N 2+50W	5	6.6	1.48	245	80	<5	0.02	<1	12	<1	95	>10	<10	0.03
L7+00N 0+00	<5	0.6	1.83	20	65	<5	0.04	5	7	10	32	4.16	<10	0.35
L7+00N 0+25E	<5	<0.2	0.79	15	60	<5	0.03	3	4	2	14	2.46	<10	0.03
L7+00N 0+50E	<5	0.2	1.36	15	65	5	0.10	3	6	<1	15	5.00	<10	0.02
L7+00N 0+75E	<5	0.2	2.25	10	45	10	0.28	3	. 8	8	18	4.83	40	0.12
L7+00N 1+00E	<5	<0.2	1.63	20	60	5	0.38	3	15	4	23	6.03	<10	0.47
L7+00N 1+25E	<5	0.8	1.62	20	125	5	0.06	<1	18	<1	24	5.51	<10	0.06
L7+00N 1+50E	<5	0.4	2.19	30	70	10	0.07	2	17	6	28	7.63	<10	0.21
L7+00N 1+75E	<5	<0.2	2.08	35	75	<5	0.14	2	27	7	82	9.76	<10	0.59
L7+00N 2+00E	<5	0.6	3,12	70	125	<5	0.22	8	68	4	179	>10	<10	0.71
L7+00N 0+25W	<5	0.6	2.31	30	105	<5	0.16	2	22	13	67	6.27	<10	0.46
L7+00N 0+50W	10	0.8	3.06	25	80	<5	0.10	1	21	-14	64	6.06	<10	0.52
L7+00N 0+75W	<5	0.2	2.17	20	130	5	0.14	1	10	9	48	5.73	<10	0.41
L7+00N 1+00W	10	0.2	2.27	40	315	10	0.14	1	22	9	37	9.62	<10	0.66
L7+00N 1+25W	</th <th><0.2</th> <th>1.90</th> <th>40</th> <th>140</th> <th><5</th> <th>0.21</th> <th><1</th> <th>29</th> <th>9</th> <th>90</th> <th>6.47</th> <th><10</th> <th>0.84</th>	<0.2	1.90	40	140	<5	0.21	<1	29	9	90	6.47	<10	0.84
L7+00N 1+50W	</th <th>0.2> از</th> <th>1.99</th> <th>45</th> <th>235</th> <th><5</th> <th>0.16</th> <th>4</th> <th>26</th> <th>10</th> <th>113</th> <th>8.23</th> <th><10</th> <th>0.87</th>	0.2> از	1.99	45	235	<5	0.16	4	26	10	113	8.23	<10	0.87
L7+00N 1+75W	F	0.2> از	2.61	20	120	<5	0.15	1	21	17	81	5.82	<10	1.05

K

9+000+05E 281 11 0.03 2 1420 241 251 200 45	SAMPLE	Mn (ppm)	Mo (ppm)	Na %	NI (ppm)	P (ppm)	Pb (ppm)	S5 (µpm)	Sn (ppm)	Sr (ppm)	TI %1	U (ppm)	V (ppm))	W (ppm)!	Y (ppm)	Zn (ppm)
9+000+075E 955 0 0.08 +10 07 +10 2 00 9+000+100E 162 8 0.44 10 800 22 45 220 7 0.011 <10	L6+00N 0+50E	281	11	0.03	2	1420	24	<5:	<20	8	0.04	<10	461	<10	10	79
êxovn (x)00E (b2 6 0.04 10 800 (z2) (z4) (z2) (z4) (z2) (z4) (z4) <t< td=""><td>L6+00N 0+75E</td><td>935</td><td>6</td><td>0.03</td><td>6</td><td>560</td><td>28</td><td><5</td><td><20</td><td>9</td><td>0.08</td><td><10</td><td>67</td><td><10</td><td>2</td><td>107</td></t<>	L6+00N 0+75E	935	6	0.03	6	560	28	<5	<20	9	0.08	<10	67	<10	2	107
6+001+25£ 752 5 0.03 11 1360 30'	L6+00N 1+00E	1 152	5	0.04	10	800	22	<5	<20	7	0.11	<10	53	<10	2	40
6+000 + 25W 204 3: 0.03 2: 800 32: <	L6+00N 1+25E	752	5	0.03	11	1360	30	<5	<20	15	0.11	<10	96	<10	7	119
6+000 r-37 8 0.03 2 1110 24 c5 c200 9 0.05 c+10 c+1 55 6+000 r-300 31 760 20 c+5 c+200 7 0.04 c+10 c	L6+00N 0+25W	204	3	0.03	2	800	32	<5	<20	9	0.12	<10	57	<10	2	41
6+000 +7:0W 9+9 0.03 2 110 16 <5 <200 7' 0.04 <10 72 <10 <1 P 6+000 + 1:0W 311 2330 22 <5	L6+00N 0+50W	737	8	0.03	4	1160	24	<5	<20	9	0.05	<10	63	<10	<1	59
9+001 +2001 +201 +50 +5	L6+00N 0+75W	959	9	0.03	2	1110	16	<5	<20	7	0.04	<10	72	<10	<1	54
arron 1:2200 1:2200 1:2200 1:2200 1:2200 1:2200 1:2200 1:2000 1:2000 1:2000	6+00N 1+00W	381	7	0.03	3	780	20	<5	<20	8	0.06	<10	62	<10	1	61
a+00n i+50w 1970 0 0.02 8 830 24 <5 <20 15 0.03 <10 105 <10 105 <10 105 <10 105 <10 105 <10 105 <10 105 <10 105 <10 105 <10 105 <10 105 <10 105 <10 105 <10 105 106 105 105 106 105 106 105 105 106 105 106 107 106 107 106 107 106 107 106 107 106 107 106 107 106 107 106 107 106 <td>6+00N 1+25W</td> <td>1022</td> <td>13</td> <td>0.04</td> <td>11</td> <td>2320</td> <td>22</td> <td><5</td> <td><20</td> <td>12</td> <td>0.03</td> <td><10</td> <td>59</td> <td><10</td> <td>5</td> <td>124</td>	6+00N 1+25W	1022	13	0.04	11	2320	22	<5	<20	12	0.03	<10	59	<10	5	124
6+001 +750W 6116 -100 36 1230 34 <55 <20 6+00 0.05 <10 6+10 12 466 6+000 +200W 664 10 0.03 6 890 28 <5	6+00N 1+50W	970	9	0.02	8	830	24	<5	<20	15	0.08	<10	105	<10	7	105
6-000 2-200W 624 10 0.03 6 850 32 45 420 7 0.07 4-10 66 4-10 9 66 6-000 2-25WV 1186 13 0.02 5 800 28 45 420 6 0.00 4-10 72 72	L6+00N 1+75W	1186	35	0.01	38	1230	34	<5	<20	9	0.05	<10	61	<10	12	463
6:001 2+28W 1188 13 0.02 5 800 28 6:20 8 0.00 <10 77 0 6 9 6:001 2+50W 1174 13 0.01 12 1360 26 <5	6+00N 2+00W	624	10	0.03	51	850	32	≤5	<20	7	0.07	<10	66	<10	9	98
B-001 2+50/V 1174 13 0.01 12 1380 26 c5 200 6 0.02 <10 72 <10 c1 21 6+500 0+26 1223 8 0.04 4 690 34 c5 c20 5 0.19 c10 63 10 19 55 6+500 0+26E 1223 8 0.04 3 1180 44 c5 c20 11 0.06 c10 31 c10 17 144 6+600 1+26E 1381 9 0.04 3 1180 44 c5 c20 11 0.08 c10 23 c10 238 c2 c400 14 c400 c40 c40<	L6+00N 2+25W	1188	13	0.02	5	890	28	<5	<20	8	0.09	<10	67	<10	6	84
3-500 023 5 0.04 4 600 24 5 0.19 <10 63 10 19 8 6+500 0+26E 1223 8 0.05 4 1350 40 <5	L6+00N 2+50W	1174	13	0.01	12	1360	26	<5	<20	6	0.02	<10	72	<10	<1	215
B:BN 0:25E 1223 8 0.05 4 1950 40 < < < < < < < < <	L6+50N 0+00	823	8	0.04	4	690	34	<5	<20	5	0.19	<10	93	10	19	58
B:FON 0-50E 3181 9 0.04 3 1190 44 <5 <20 6 0.05 <10 20 <10 66 17 6+60N 140E 232 2 0.03 <1	6+50N 0+25F	1223	8	0.05	4	1350	40	<5	<20	11	0.06	<10	31	<10	17	145
B:50N 0+75E 104 6 0.03 <1 1450 34 <5 <20 11 0.03 <10 16 <10 236 22 G+60N 1+00E 232 2 0.03 <1	L8+50N 0+50E	3181	9	0.04	3	1190	44	<5	<20	6	0.05	<10	20	<10	66	175
8+60N 1+00E 232 2 0.03 <1 670 22 <5 <20 4 0.08 <10 23 <10 23 24 6+60N 1+25E 239 8 0.04 2 2060 26 <5	L8+50N 0+75F	104	5	0.03	<1	1450	34	<5	<20	11	0.03	<10	16	<10	236	29
B+60N 1+25E 239 B 0.04 2 2000 26 45 420 5 420 40 42 40 30 4 8+60N 0+25W 547 4 0.04 2 900 30 45 420 8 0.20 <10	6+50N 1+00F	232	2	0.03	<1	670	22	<5	<20	4	0.08	<10	23	<10	23	25
8+50N 0+25W 647 4 0.04 2 900 30 5 <20 8 0.20 <10 25 <10 4 4 6+50N 0+50W 508 7 0.04 5 1010 22 <5	6+50N 1+25F	239		0.04	2	2060	28	<5	<20	5	0.06	<10	42	<10	30	44
B+50N 0+50W 50B 7 0.04 5 100 22 <5 20 8 0.05 <10 69 <10 4 00 8+50N 0+75W 534 7 0.03 6 790 22 <5	L6+50N 0+25W	547	4	0.04	2	900	30	<5	<20	8	0.20	<10	55	<10	4	46
B-60N 0+75W 534 7 0.03 8 790 22 <5 <20 8 0.07 <10 92 <10 <1 77 6+50N 1+00W 545 7 0.03 4 1070 20 <5	1 8+50N 0+50W	508	7	0.04	5	1010	22	<5	<20	8	0.05	<10	59	<10	4	62
B+50N + 100W 545 7 0.03 4 1070 20 c5 c20 12 0.05 c10 77 c10 c1 77 c10 c10 25 c10 66 77 c10 26 710 66 710 67 710 26 c20 40 107 c10 c17 710	6+50N 0+75W	534	7	0.03	8	790	22	<5	<20	8	0.07	<10	92	<10	<1	79
36-50N 1+25W 1065 6 0.00 15 920 30 0.02 10 8 14 64-50N 1+25W 1065 1 0.01 13 1030 30 <5	L 8+50N 1+00W	545		0.03	¥	1070	20	<5	<20	12	0.05	<10	77	<10	<1	77
6+50N 1+50W 1030 1030 30 45 420 9 0.06 <10 74 <10 20 20 6+50N 1+75W 1152 11 0.03 17 1280 26 <5	R+50N 1+25W	1085	A	0.00	15	920	30	<5	<20	8	0.12	<10	89	<10	8	141
64-50N 1+75W 1152 11 0.03 17 1260 26 20 18 0.07 <10 81 <10 8	1 8+50N 1+50W	1685	11	0.01	33	1030	30	<5	<20	9	0.06	<10	74	<10	20	284
3.5000 1.102 1.1 0.00 1.1 1.200 20 20 10 0.00 10 61 10 10 61 10 10 61 10 10 10 61 10 11 10	1 8+50N 1+75W	1152	11	0.03	17	1280	28	<5	<20	18	0.07	<10	81	<10	8	177
36:500 2:2000 12:00 14:00 10:00 25:00 10:00 10:00 25:00 10:00 10:00 25:00 11:00 14:00 14:00 14:00 14:00 11:00 12:00	1 8+50N 2+00W	1238	15	0.00	23	1330	24	<5	<20	15	0.03	<10	65	<10	6	306
3:500 2:500 10 2:500 2:500 2:500 10 2:500 10 2:500 10 2:500 10 2:500 10 2:500 10 2:500 11 100 2:500 11 100 2:500 11 100 2:500 11 100 2:500 11 100 2:500 11 100 2:500 11 100 2:500 11 100 100 2:500 11 100 11 11 100 11 11 100 11 11 100 11 11 100 11 11 100 11 11 100 11 11 100 11	6+50N 2+25W	534	7	0.10	20	1290	22	<5	<20	41	0.07	<10	38	<10	A	167
7+000 306 9 0.03 7 1350 24 <5 <20 9 0.05 <10 67 <10 <1 77 7+000 0+26E 93 6 0.03 <1	1 8+50N 2+50W	191	30	0.01	29	1510	60	<5	<20	4	< 0.01	10	25	<10	<1	1406
T+00N 0+25E 93 6 0.03 1 1210 14 <5 <20 5 0.02 <10 41 <10 <1 44 7+00N 0+25E 276 8 0.05 7 570 26 <5	7+00N 0+00	306	9	0.03	7	1350	24	<5	<20	9	0.05	<10	67	<10	<1	71
7+00N 0+50E 276 8 0.05 7 570 26 200 30 10 7 570 26 200 30 31 10 7 570 26 200 35 10 7570 26 200 14 0.12 10 35 10 93 55 7+00N 1+25E 230 4 0.05 2 620 24 <5 <20 14 0.12 <10 35 <10 93 55 7+00N 1+25E 4301 6 0.01 7 1120 32 <5 <20 32 0.05 <10 20 <10 49 211 7+00N 1+50E 2409 8 0.02 61 1650 52 <20 3 0.05 <10 38 <10 45 11 7+00N 1+75E 1136 60 0.02 61 1650 52	7+00N 0+25F		6	0.03	<1	1210	14	<5	<20	5	0.02	<10	41	<10	<1	40
7+000 75E 200 4 0.05 2 620 24 <5 <20 14 0.12 <10 35 <10 93 55 7+00N 1+00E 663 3 0.14 4 900 28 <5	7+00N 0+50F	276	A	0.05	7	570	26	<5	<20	8	0.14	<10	35	<10	7	53
7+000 1+00E 663 3 0.14 4 900 28 <5 <20 32 0.17 <10 55 <10 24 74 7+00N 1+25E 4301 6 0.01 7 1120 32 <5	7+00N 0+75F	230	4	0.05	2	620	24	<5	<20	14	0.12	<10	35	<10	93	53
7+00N 1+25E 4301 6 0.01 7 1120 32 <5 <20 2 0.05 <10 20 <10 49 212 7+00N 1+50E 2409 8 0.02 5 1220 34 <5 <20 3 0.05 <10 38 <10 45 11 7+00N 1+75E 1136 60 0.02 61 1650 52 <5 <20 13 0.13 <10 54 <10 6 455 7+00N 1+75E 1136 60 0.02 61 1650 52 <5 <20 13 0.13 <10 54 <10 6 455 7+00N 2+00E 2749 116 0.01 253 1970 90 <5 <20 27 0.16 <10 56 <10 13 122 7+00N 255W 1206 9 0.03 8 1540 30< <5 <20 9 0.06	17+00N 1+00F	663		0.14	4	900	28	<5	<20	32	0.17	<10	55	<10	24	74
7+00N 1+50E 2409 8 0.02 5 1220 34 <5 <20 3 0.05 <10 38 <10 45 11 7+00N 1+50E 1136 60 0.02 61 1650 52 <5	L7+00N 1+25F	4301	8	0.01	7	1120	32	<5	<20	2	0.05	<10	20	<10	49	212
7+00N 1+75E 1136 60 0.02 61 1650 52 <5 <20 13 0.13 <10 54 <10 6 450 7+00N 1+75E 1136 60 0.02 61 1650 52 <5	L7+00N 1+50F	2409	A	0.02	5	1220	34	<5	<20	3	0.05	<10	38	<10	45	111
7+001 2749 116 0.01 253 1970 90 <5 <20 27 0.16 <10 56 <10 13 1222 7+001 250 9 0.03 14 1670 32 <5	17+00N 1+75F	1136	60	0.02	B1	1650	52	<5	<20	13	0,13	<10	54	<10	6	453
7+00N 0+25W 1206 9 0.03 14 1670 32 <5 <20 14 0.04 <10 70 <10 4 102 7+00N 0+25W 1206 9 0.03 14 1670 32 <5	7+00N 2+00F	2749	118	0.01	253	1970	90	<5	<20	27	0.16	<10	58	<10	13	1225
7+00N 0+50W 1476 7 0.03 8 1540 30 <5 <20 9 0.06 <10 73 <10 9 64 7+00N 0+50W 1476 7 0.02 7 1290 22 <5	17+00N 0+25W	1204		0.03	14	1870	32	<5	<20	14	0.04	<10	70	<10	4	102
7+000 0+75W 517 7 0.02 7 1290 22 <5 <20 17 0.03 <10 63 <10 1 7 7+00N 0+75W 517 7 0.02 7 1290 22 <5	17+00N 0+50W	1478	7	0.03	A	1540	30	<5	<20	9	0.06	<10	73	<10	9	RF
7+000 1+00W 3157 18 0.03 8 1050 26 <5 <20 23 0.07 <10 77 <10 5 15 7+00N 1+00W 3157 18 0.03 8 1050 26 <5	1 7+00N 0+75M	617		0.00		1290	22	<5	<20	17	0.03	<10	83	<10	1	71
Treon 1+25W 1325 10 0.01 12 1170 28 <5 <20 20 0.07 <10 76 <10 16 16 7+00N 1+25W 1325 10 0.01 12 1170 28 <5	17+00N 1+00W	3167	18	0.02	Â	1050	28	<5	<20	23	0.07	<10	77	<10	5	154
17+00N 1+75W 1714 26 0.01 44 1900 28 <5 <20 15 0.07 <10 70 <10 17 37 17+00N 1+75W 1000 11 0.01 26 810 24 <5 <20 14 0.08 <10 90 <10 4 24	17+00N 1+25W	1325	10	0.00	12	1170	28	<5	<20	20	0.07	<10	78	<10	18	183
	17+00N 1+50W	1714	28	0.01	44	1900	28		<20	15	0.07	<10	70	<10	17	376
	17+00N 1+75W	1000	11	0.01	28	810	24	<5	<20	14	0.08	<10	90	<10		242

•

SAMPLE	Au (ppb)	Ag (ppm)	Al %	As (ppm)	Ba (ppm)	Gi (ppm)	Ca %	Cd (ppm)	Co (ppm)	Cr (ppm)	Cu (ppni)	Fe %	La (ppm);	My %
L7+00N 2+00W	<5	. 0.6	4.78	20	60	10	0.13	1	18	17	37	6.98	<10	0.29
L7+00N 2+25W	10	3.8	3.44	280	115	<5	0.08	<1	29	8	179	9.32	<10	0.47
L7+00N 2+50W	15	7.6	2.65	95	110	<5	0.04	5	7	14	43	>10	<10	0.08
L7+00N 2+75W	10	4.6	2.30	65	100	<5	0.09	4	12	26	57	8.68	<10	0.60
L7+00N 3+00W	10	5.0	2.16	275	90	<5	0.07	3	24	7	95	6.50	<10	0.47
L7+50N 0+00	10	<0.2	2.28	15	50	5	0.29	1	13	9	23	6.58	<10	0.52
L7+50N 0+25E	10	<0.2	1.87	20	55	5	0.19	<1	15	9	37	7.49	<10	0.58
L7+50N 0+50E	5	<0.2	2.57	30	125	<5	0.52	<1	27	10	63	8.23	<10	0.97
L7+50N 0+75E	5	<0.2	1.94	20	55	<5	0.08	2	9	8	35	5.95	<10	0.39
L7+50N 1+00E	<5	<0.2	1.80	20	50	10	0.04	5	30	3	. 31	7.58	<10	0.29
L7+50N 1+25E	<5	<0.2	2.00	20	105	10	1.30	3	12	10	25	5.58	<10	0.54
L7+50N 1+50E	10	0.2	2.63	50	70	<5	0.12	2	32	8	80	9.56	<10	0.60
L7+50N 1+75E	20	<0.2	2.00	15	65	5	0.11	1	14	18	37	5.49	<10	0.63
L7+50N 2+00E	25	<0.2	1.69	5	65	10	0.05	<1	11	15	24	4.04	<10	0.43
L7+50N 0+25W	20	0.4	1.82	10	35	<5	0.06	<1	5	5	15	4.27	<10	0.15
L7+50N 0+50W	<5	0.6	2.75	25	90	<5	0.13	1	12	. 14	71	5.73	<10	0.72
L7+50N 0+75W	<5	<0.2	2.46	30	80	<5	0.13	<1	21	11	60	6.21	<10	0.79
L7+50N 1+00W	<5	1.0	3.99	30	165	15	0.06	<1	23	5	38	9.20	<10	0.20
L7+50N 1+25W	<5	0.4	2.19	25	200	10	1.05	1	17	2	27	8.67	<10	0.44
L7+50N 1+50W	5	<0.2	2.25	30	90	<5	0.23	<1	30	16	122	6.77	<10	1.11
L7+50N 1+75W	10	0.6	2.13	40	115	<5	0.22	1	28	13	99	6.16	<10	0.91
L7+50N 2+00W	<5	0.4	2.42	30	105	<5	0.11	1	16	7	70	6.79	<10	0.51
L7+50N 2+25W	10	2.8	2.21	65	90	<5	0.08	<1	8	10	54	7.80	<10	0.30
L7+50N 2+50W	30	4.2	1.95	85	90	10	0.02	<1	9	11	58	>10	<10	0.18
L7+50N 2+75W	15	7.8	2.54	745	80	10	0.04	<1	11	15	62	9.75	<10	0.20
L7+50N 3+00W	10	7.2	3.38	220	80	10	0.04	<1	26	19	64	>10	<10	0.31
L8+00N 0+00	15	<0.2	2.35	25	95	<5	0.70	<1	30	14	66	7.02	<10	1.27
L8+00N 0+25E	35	<0.2	1.89	45	125	5	0.40	<1	27	16	108	5.83	<10	1.10
L8+00N 0+50E	<5	0.4	2.42	25	100	<5	1.24	3	11	11	31	5.44	30	0.33
L8+00N 0+75E	10	0.4	2.03	15	60	10	0.11	<1	24	18	37	6.23	<10	0.31
L8+00N 1+00E	60	0.4	2.63	35	85	10	0.05	<1	16	12	54	6.59	<10	0.50
L8+00N 1+25E	<5	<0.2	1.78	25	85	<5	0.09	<1	i4	13	41	6.16	<10	0.36
L8+00N 1+50E	5	<0.2	2.03	35	105	<5	0.10	<1	15	20	57	6.57	<10	0.64
L8+00N 1+75E	<5	<0.2	2.29	25	75	5	0.24	<1	30	23	54	7.12	<10	0.98
L8+00N 2+00E	<5	0.8	3.84	25	20	10	0.06	<1	7	6	16	6.10	<10	0.05
L8+00N 0+25W	<5	0.8	2.63	20	25	10	0.04	5	7	<1	16	8.11	<10	0.02
L8+00N 0+75W	<5	1.0	3.11	20	40	10	0.04	2	7	<1	13	8.78	10	<0.01
L8+00N 1+00W	<5	<0.2	1.75	10	75	10	0.04	2	9	11	25	7.29	<10	0.30
L8+00N 1+25W	<5	<0.2	1.81	<5	140	10	1.94	2	32	1	25	6.92	<10	1.51
10+00N 1+50W	<5	1.6	1.75	20	645	15	0.50	2	21	2	26	>10	<10	0.33
L8+00N 1+75W	<5	<0.2	1.04	- 15	80	5	0.08	2	6	6	32	6.25	<10	0.13
LU+00N 2+00W	<5	<0.2	1.19	25	60	10	0.05	<1	10	3	27	7.52	<10	0.13
L8+00N 2+25W	5	5.0	2.37	30	90	5	0.07	2	13	35	122	>10	<10	0.20
L8+00N 2+50W	15	7.2	1.77	1075	145	<5	0.46	<1	23	3	104	9.34	<10	0.29
LB+UUN 2+75W	<5	7.0	2.98	100	60	<5	0.09	4	24	21	173	5.35	20	0.22
L8+00N 3+00W	<u> <5</u>	5.2	3.95	260	55	<5	0.07	<1	31	5	- 73	6.78	<10	0.33

•

٠

and a constant and a And רעין בעם מייין מעם מיים בעם מעס מוס מוס בים בים בים מוס מוס מוס מיים בים מיים בים בים בים בים בים בים בים בים

.

.

SAMPLE	i Mn (ppm) i	Mo (ppm)	<u>Na %</u>	Ni (ppm)	P (ppm)	<u>, Pb (ppm)</u>	Sb (ppm)	Sn (ppm)	Sr (ppm)	TI %	<u> </u>	<u>V (ppm) i</u>	<u>W (ppn)</u>	<u> (ppm)</u>	Zn (ppm)
L7+00N 2+00W	1031	. 9	0.03	8	1290	38	<5	<20	9	0.10	<10	65	<10	10	70
L7+00N 2+25W	856	23	0.02	47	1430	30	<5	<20	9	<0.01	<10	40;	<10	5	382
L7+00N 2+50W	292	17	0.03	6	2210	48	<5	<20	9	0.02	<10	45	<10	2	133
L7+00N 2+75W	1056	14	0.03	16	1810	30	<5	<20	10	0.02	<10	99	<10	<1	351
L7+00N 3+00W	2175	15	0.02	16	1560	36	<5	<20	6	0.02	<10	46	<10	10	367
L7+50N 0+00	321	7	0.13	6	1020	30	<5	<20	27	0.19	<10	72	<10	8	56
L7+50N 0+25E	554	7	0.08	10	1340	34	<5	<20	18	0.20	<10	52	<10	11	108
L7+50N 0+50E	1010	18	0.20	25	1510	40	<5	<20	52	0.26	<10	70	<10	28	218
L7+50N 0+75E	318	13	0.02	10	1110	32	10	<20	9	0.08	<10	49	<10	19	111
L7+50N 1+00E	2326	22	0.01	23	1120	30	70	<20	5	0.07	<10	34	<10	21	137
L7+50N 1+25E	679	18	0.06	20	1640	32	<5	<20	90	0.06	<10	48	<10	14	256
L7+50N 1+50E	1745	40	0.03	69	1550	58	<5	<20	13	0.10	<10	64	<10	3	475
L7+50N 1+75E	843	8	0.03	12	1070	22	<5	<20	14	0.12	<10	95	<10	<1	99
L7+50N 2+00E	489	1	0.03	3	760	20	<5	<20	9	0.15	<10	94	<10	<1	50
L7+50N 0+25W	135	6	0.04	<1	870	34	<5	<20	7	0.12	<10	43	<10	7	33
L7+50N 0+50W	700	9	0.03	8	1630	22	<5	<20	13	0.04	<10	74	<10	4	98
L7+50N 0+75W	956	9	0.03	8	1090	28	<5	<20	15	0.10	<10	88	<10	3	112
L7+50N 1+00W	4907	23	0.04	3	1730	32	<5	<20	6	0.05	<10	34	<10	29	224
L7+50N 1+25W	1945	45	0.03	9	1510	24	<5	<20	76	0.03	<10	38	<10	38	271
L7+50N 1+50W	1284	12	0.03	23	1450	28	<5	<20	18	0.12	<10	99	<10	11	198
L7+50N 1+75W	1671	11	0.03	23	1340	28	<5	<20	16	0.08	<10	89	<10	88	204
L7+50N 2+00W	607	25	0.03	24	1310	22	<5	<20	17	0.05	<10	64	<10	6	185
L7+50N 2+25W	286	12	0.04	13	2010	22	<5	<20	10	0.02	<10	48	<10	<1	231
L7+50N 2+50W	262	14	0.03	7	1960	34	<5	<20	5	0.02	10	55	<10	<1	133
L7+50N 2+75W	554	21	0.01	7	1360	150	<5	<20	5	0.01	<10	71	<10	6	236
L7+50N 3+00W	2171	19	0.03	19	1440	60	> <5	<20	7	0.03	<10	65	<10	11	359
L8+00N 0+00	1158	2	0.24	20	1270	28	<5	<20	62	0.30	<10	88	<10	29	221
L8+00N 0+25E	1203	4	0.02	2 17	1770	28	<5	<20	20	0.09	<10	91	10	18	170
L8+00N 0+50E	1011	18	0.04	21	1880	32	<5	<20	79	0.07	<10	40	<10	50	480
L8+00N 0+75E	2578	16	0.03	B <u>7</u>	2140	26	3 <5	<20	10	0.10	<10	83	<10	<1	79
L8+00N 1+00E	899	15	0.02	2 16	1070	30) <5	<20	5	0.05	<10		<10	4	156
L8+00N 1+25E	1013	9	0.03	8 8	750	24	<5	<20	8	0.08	<10	111	<10	<1	91
L8+00N 1+50E	954	8	0.02	2 7	1030	2.8	3 <5	i <u> </u> <20	7	0.04	<10	102	<10	<1	91
L8+00N 1+75E	1423	4	0.01	11	1000	20) <5	si <20	13	0.11	<10	<u> </u>	<10	<1	93
L8+00N 2+00E	303	7	0.10) <1	560	40) <5	si <20	<1	0.14	<10	23	10	9	46
L8+00N 0+25W	271	12	0.07	/ <1	620	40) <5	<20	<1	0.13	<10	18	<10	5	38
L8+00N 0+75W	599	9	0.05	5 <1	760	42	? <5	<20	<1	0.11	<10	21	<10	3	42
L8+00N 1+00W	657	12	0.03	3 3	930	22	2 <5	s <20	6	0.06	<10	90	<10	<1	55
L8+00N 1+25W	1895	7	0.41	14	800	<u> 14</u>	<5	<20	158	0.38	<10	67	<10	84	107
L8+00N 1+50W	>10000	52	0.03	3 9	1860	26	S <5	ij <20	49	0.05	<10	32	<10	98	252
L8+00N 1+75W	216	14	0.03	3 7	1510	18	3 <5	5 < 20	9	0.08	<10	77	<10	<1	52
L8+00N 2+00W	361	16	0.02	2 8	830	22	2 <5	5 <20	5	0.17	<10	87	<10	<1	84
L8+00N 2+25W	425	25	0.03	3 18	2040	20) <5	i <20	16	0.04	10	65	<10	12	. 235
L8+00N 2+50W	2140	28	0.02	2 47	1660	70) <5	5 <20	33	0.01	<10	35	<10	13	590
L8+00N 2+75W	2640	15	0.03	3 16	1880	42	2 <5	s <20	6	0.03	<10	43	<10	44	294
L8+00N 3+00W	3543	14	0.02	2 14	1870	32	2 <5	5 <20	5	0.02	<10	33	<10	13	279

•

) :			
1. 1				

SAMPLE	Au (ppb)	Ag (ppm)	AI %	As (ppm)	Ba (ppm)	Ei (ppm)	Ca %	Cd (ppm)	Co (ppm)	Cr (ppm)	Cu (ppm)!	Fe %	La (ppm)	Mg %
L8+50N 0+00	5	0.8	3.04	20	45	<5	0.08	<1	10	15	46	6.16	<10	0.52
L8+50N 0+25E	5	0.2	2.96	30	60	10	0.08	<1	18	19	52	5.45	<10	0.57
L8+50N 0+50E	<5	0.4	1.22	20	65	5	0.05	<1	7	4	16	5.49	<10	0.06
L8+50N 0+75E	<5	0.4	2.59	15	50	10	0.07	1	8	9	23	6.21	<10	0.14
L8+50N 1+00E	<5	<0.2	2.99	20	110	<5	0.08	<1	27	8	51	6.94	<10	0.46
L8+50N 1+25E	5	<0.2	2.36	<5	60	5	0.23	<1	36	31	31	5.77	<10	0.91
L8+50N 1+50E	10	<0.2	0.94	<5	45	15	0.04	<1	23	18	27	7.64	<10	0.32
L8+50N 1+75E	5	<0.2	2.78	35	60	<5	0.09	<1	16	18	54	6.07	<10	0.67
L8+50N 2+00E	<5	<0.2	2.70	25	80	10	0.10	<1	16	19	56	6.38	<10	0.84
L8+50N 0+25W	5	<0.2	3.22	20	55	10	0.14	<1	13	15	37	7.82	<10	0.51
L8+50N 0+50W	10	<0.2	2.63	25	70	<5	0.14	<1	10	21	65	5.69	<10	0.96
L8+50N 0+75W	10	0.4	2.14	20	80	15	0.33	<1	27	<1	29	>10	<10	0.29
L8+50N 1+00W	15	0.6	3.35	60	90	<5	0.27	<1	39	11	114	7.87	<10	0.72
L8+50N 1+25W	10	0.2	2.32	35	105	<5	0.21	<1	22	13	83	5.65	<10	1.04
L8+50N 1+50W	15	0.6	3.62	30	75	<5	0.04	<1	20	7	60	5.99	<10	0.46
L8+50N 1+75W	<5	0.8	3.51	10	125	<5	0.51	5	50	<1	82	6.68	<10	0.39
L8+50N 2+00W	5	2.2	2.78	25	130	<5	0.74	6	28	3	70	7.58	<10	0.42
L8+50N 2+25W	10	1.8	2.56	25	110	<5	1.65	5	25	17	92	9.98	<10	0.68
L8+50N 2+50W	5	3.4	2.47	45	70	<5	0.08	1	13	19	81	>10	<10	0.31
L8+50N 2+75W	10	6.4	1.72	55	55	<5	0.07	<1	10	6	59	7.57	<10	0.16
L8+50N 3+00W	10	10.2	1.67	235	45	<5	0.05	<1	6	7	92	6,93	<10	0.17
L9+00N 0+00	10	0.6	1.97	40	120	5	0.22	<1	18	9	71	5.88	<10	0.87
L9+00N 0+25E	40	0.8	2.72	45	85	<5	0.10	<1	20	14	74	6.42	<10	0.54
L9+00N 0+50E	65	0.6	3.75	15	40	10	0.06	<1	11	7	25	6.05	<10	0.16
L9+00N 0+75E	40	<0.2	1.55	10	55	5	0.26	<1	34	29	17	4.32	<10	0.60
L9+00N 1+00E	15	0.6	4.07	20	30	10	0.08	<1	10	9	23	6.48	<10	0.11
L9+00N 1+25E	10	<0.2	4.56	5	125	15	0.90	1	149	70	39	>10	<10	3.45
L9+00N 1+50E	25	<0.2	2.88	30	95	<5	0.11	<1	24	25	76	6.61	<10	0.96
L9+0UN 1+75E	15	<0.2	1.13	15	70	<5	0.08	<1	9	8	13	3.04	<10	0.33
L9+00N 2+00E	10	<0.2	2.53	30	70	10	0.05	<1	14	13	40	6.77	<10	0.45
L9+00N 0+25W	5	0.4	2.57	15	40	5	0.07	<1	8	1	17	6.51	<10	0.09
L9+00N 0+50W	5	<0.2	1.48	<5	80	<5	2.43	<1	18	5	37	3.75	<10	0.92
L9+00N 0+75W	15	0.8	1.83	25	100	<5	1.06	<1	11	18	53	5.34	<10	0.89
L9+00N 1+00W	15	<0.2	1.73	20	150	<5	0.25	<1	9	14	26	4.58	<10	0.78
L9+00N 1+25W	10	0.4	2.02	20	135	5	0.12	<1	14	3	31	8.34	<10	0.45
L9+00N 1+50W	5	0.8	1.42	65	440	10	0.25	2	26	<1	68	>10	<10	0.45
L9+00N 1+75W	10	0.4	3.07	25	135	15	0.16	2	33	2	94	>10	<10	0.48
L9+00N 2+00W	<5	0.4	1.27	10	40	10	0.21	<1	12	<1	35	6.85	<10	0.26
L9+00N 2+25W	<5	1.4	1.62	25	60	10	0.16	2	14	5	40	7.72	<10	0.24
L9+00N 2+50W	10	7.2	4.04	30	95	<5	0.61	2	37	8	68	7.20	<10	0.18
L9+00N 2+75W	40	2.6	1.71	25	115	10	0.08	1	16	6	33	8.62	20	0.29
L9+00N 3+00W	45	2.8	1.74	100	80	5	0.06	<1	19	3	81	9.26	<10	0.38
L9+50N 0+00	20	0.2	2.96	30	85	<5	0.06	<1	12	18	53	6.39	<10	0.62
L9+50N 0+25E	<5	0.4	1.82	15	90	<5	0.06	. <1	11	13	26	5.11	<10	0.47
L9+50N 0+50E	<5	<0.2	2.49	25	70	10	0.06	<1	17	19	24	6.28	<10	0.35
L9+50N 0+75E	5	<0.2	2.67	<5	170	5	0.12	<1	22	36	19	6.92	<10	0.51

Y (ppm): Zn (ppn) P (ppm) Ph (ppm): Sh (ppm)! Sn (ppm) Sr (ppm) Ti % U (ppin) V (ppm); W (ppm) SAMPLE Mn (opm): Mo (opm) Na %) Er (ppm): 0.16 <10 65 <10 81 0.05 <20 81 L8+50N 0+00 292 6 61 1280 32 <5 9 <10 10 77 752 0.02 1010 32 <5 <20 3 0.07 87 3 6 4 L8+50N 0+25E 35 <10 55 0.02 <10 2940 24 <5 <20! 6 L8+50N 0+50E 594 10 0.03 1, 3 22 <20 6 0.05 <10 47 <10 2 66 636 <5 L8+50N 0+75E 13 0.04 1470 128 <10 65 <10 2042 15 0.02 13 920 22 <5 <20 9 0.06 11 L8+50N 1+00E <20 0.08 <10 84 <10 54 836 0.04 2 1030 8 <5 11 7 L8+50N 1+25E 4 3 0.16 <10 144 <10 <1 66 1050 18 <5 <20 4: L8+50N 1+50E 662 6 0.02 <5 <20 8 0.14 <10 87 <10 2 80 8+50N 1+75E 843 3 0.04 6 720 28 148 <10 1070 36 <5 <20 5 0.12 <10 104 6 0.03 7 8+50N 2+00E 1027 3 70 <10 85 7 1260 26 <5 <20 10 0.11 <10 <1 665 9 0.04 L8+50N 0+25W 61 0.08 <10 111 <10 <1 7 1090 22 <5 <20 11 376 5 0.02 L8+50N 0+50W <10 36 319 L8+50N 0+75W 3087 31 0.04 <1 3560 32 <5 <20 14 0.06 <10 8 <5 73 217 36 <20 17 0.07 <10 <10 30 6 L8+50N 1+00W 1438 17 0.05 1710 212 0.07 <10 83 <10 L8+50N 1+25W 921 8 0.01 23 880 28 <5 <20 12 6 51 20 <5 3 0.04 <10 <10 13 194 27 27 1090 <20 8+50N 1+50W 677 0.03 12 35 0.05 <10 27 <10 37 301 L8+50N 1+75W 2822 22 0.04 62 1550 <5 <20 20 0.03 <10 38 <10 28 538 1830 <5 <20 40 L8+50N 2+00W 1186 29 0.03 59 73 <10 22 1075 12 <20 93 0.08 <10 L8+50N 2+25W 1837 26 0.11 78 1940 <5 24 <10 71 <10 16 276 559 23 0.03 28 1630 <5 <20 11 0.04 L8+50N 2+50W <5 0.02 <10 50 <10 150 13 1780 18 <20 8 5 L8+50N 2+75W 537 19 0.03 2220 14 <5 <20 4 0.01 <10 35 <10 11 125 14 0.03 7 L8+50N 3+00W 357 24 <5 <20 10 0.02 <10 60 <10 12 121 14 1980 L9+00N 0+00 1650 9 0.03 32 <5 <20 7 0.05 <10 73 <10 3 75 936 9 0.02 9 1260 L9+00N 0+25E 2 <10 36 <10 59 <1 640 30 <5 <20 0.09 6 887 9 0.04 L9+00N 0+50E 12 <10 120 <10 3 48 1246 2 0.04 2 1060 14 <5 <20 0.14 L9+00N 0+75E 13 64 <1 34 <20 0.11 <10 24 <10 <5 4 L9+00N 1+00E 900 8 0.08 580 23 131 27 <10 175 <10 L9+00N 1+25E 4779 7 0.01 6 1350 12 <5 <20 0.11 113 34 <5 <20 8 0.14 <10 117 <10 5 3 15 770 L9+00N 1+50E 1105 0.03 87 <10 '33 <10 <1 850 <1 0.02 <1 470 26 <5 <20 10 0.18 L9+00N 1+75E 0.08 <10 85 <10 <1 60 790 32 <5 <20 913 0.04 5 4 L9+00N 2+00E 8 3 47 28 <10 32 <10 9 0.05 <1 520 <5 <20 0.13 L9+00N 0+25W 562 <20 0.16 <10 61 <10 11 54 12 <5 144 851 5 0.22 13 970 L9+00N 0+50W <10 79 <10 42 134 20 <5 <20 57 0.05 L9+00N 0+75W 544 20 0.02 8 1620 0.03 <10 89 <10 <1 76 20 <5 <20 24 L9+00N 1+00W 350 12 0.02 6 780 22 <5 <20 9 0.02 <10 47 <10 13 184 1610 L9+00N 1+25W 1363 30 0.03 15 30 <5 <20 22 0.04 <10 40 <10 5 478 63 0.01 61 1490 L9+00N 1+50W 895 7 <20 18 0.11 <10 45 <10 384 1820 30 <5 L9+00N 1+75W 982 44 0.06 67 <10 45 <1 144 418 24 0.07 19 1080 16 <5 <20 15 0.10 <10 L9+00N 2+00W <5 <20 11 0.04 <10 71 <10 A 238 1520 16 9+00N 2+25W 672 36 0.04 25 <10 51 267 1941 24 0.02 34 2720 22 <5 <20 33 0.04 <10 38 L9+00N 2+50W 20 <5 <20 7 0.07 <10 67 <10 10 218 19 L9+00N 2+75W 1675 29 0.02 1240 1303 18 0.02 20 1550 78 <5 <20 0.01 <10 41 <10 8 462 L9+00N 3+00W 12 0.07 <10 79 <10 <1 77 26 <20 0.02 7 670 <5 L9+50N 0+00 558 9 11 <10 85 <10 <1 71 971 8 0.03 5 870 16 <5 <20 0.08 L9+50N 0+25E <10 82 <10 3 83 <20 5 0.11 L9+50N 0+50E 1299 11 0.02 4 760 26 <5 <5 25 0.17 99 <10 <1 49 2 550 <20 <10 L9+50N 0+75E 1007 3 0.03 14

[]]

7.73 F.73

5 7 1

SAMPLE	<u> Au (ppb)</u>	Ag (ppm)	AI %	As (ppm)	Ba (ppm)	Bi (ppm)	Ca %	Cd (ppm)	Co (ppm)	Cr (ppn)	Cu (ppm)	Fe %	La (ppm)	Mg %
L9+50N 1+00E	10	. <0.2	0.77	10	100	5	. 0.08	<1	8	1	9	1.77	<10	0.14
L9+50N 1+25E	15	<0.2	1.35	10	90	10	0.36	<1	14	6	17	4.12	<10	0.45
L9+50N 1+50E	10	<0.2	2.29	15	55	10	0.06	<1	13	15	36	6.88	<10	0.36
L9+50N 1+75E	25	<0.2	2.74	35	90	<5	0.26	<1	22	30	120	6.44	<10	1.43
L9+50N 2+00E	25	<0.2	3.19	30	70	<5	0.22	<1	11	27	63	4.73	<10	0.69
L9+50N 0+25W	15	0.6	2.65	20	85	<5	0.05	<1	10	14	33	6.29	<10	0.44
L9+50N 0+50W	<5	<0.2	3.29	25	95	<5	0.33	<1	21	39	54	7.59	<10	1.25
L9+50N 0+75W	5	1.6	3.18	35	70	5	0.16	<1	13	10	58	6.67	<10	0.50
L9+50N 1+00W	<5	8.0	3.59	80	225	<5	0.22	7	50	<1	201	>10	<10	0.38
L9+50N 1+25W	5	3.4	7.04	95	275	<5	0.06	3	42	2	249	>10	<10	0.28
L9+50N 1+50W	<5	1.0	4.21	65	315	20	0.09	<1	19	7	138	>10	<10	1.00
L9+50N 1+75W	10	2.0	3.70	60	225	<5	0.05	2	29	6	115	9.99	<10	0.39
L9+50N 2+00W	5	4.0	3.19	60	150	<5	0.14	3	28	18	128	>10	<10	0.32

٩

•

.

SAMPLE	- Mn (ppm)	Mo (ppm)	Ka % [,]	NI (ppm)	<u>P (ppm)</u>	Pb (ppm)	Sb (ppm)	Sn (ppm)	Sr (ppm)	îi %	U (prm)	V (ppm)	W (ppm):	Y (ppm)	Zn (ppm)
L9+50N 1+00E	540	· <1	0.02	<1	410	24	<5	<20	9	0.20	<10;	74	<10	2	19
L9+50N 1+25E	738	2	0.07	3	940	28	<5	<20	28	0.16	<10	78	<10	2	65
L9+50N 1+50E	483	21	0.03	6	690	26	<5	<20	7	0.19	<10	94	<10		61
L9+50N 1+75E	1084	4	0.02	13	1880	34	<5	<20	15	0.09	<10	150	<10	<1	110
L9+50N 2+00E	331	<1	0.05	4	1100	30	<5	<20	14	0.17	<10	93	<10	5	56
L9+50N 0+25W	544	14	0.02	6	1270	26	<5	<20	7	0.05	<10	82	<10	<1	78
L9+50N 0+50W	762	13	0.03	14	1160	26	<5	<20	13	0.08	<10	106	<10	23	172
L9+50N 0+75W	633	32	0.03	46	1070	24	<5	<20	12	0.04	<10	68	<10		307
L9+50N 1+00W	1051	79	0.03	172	2460	40	<5	<20	16	0.08	<10	43	<10	36	1192
L9+50N 1+25W	1023	80	0.03	151	3770	42	<5	<20	11	0.11	<10	57	<10	24	503
L9+50N 1+50W	1637	61	0.04	98	1770	46	<5	<20	22	0.08	<10	67	<10	23	633
L9+50N 1+75W	997	53	0.03	67	1540	38	<5	<20	16	0.07	<10	55	<10	25	456
L9+50N 2+00W	1279	44	0.03	58	3120	24	<5	<20	25	0.05	<10	59	<10	23	418

.

-- •

Appendix IV

.

 \mathbb{C}^{2}

1998 soil sample data

HSOV Soil Samples

Grid	Fasting	Au	Ag	As	Cu	Pb	Sb	Zn	Hg
Norming 6+00N	Easong 3+25\//	40	1 6	375	76	32	<5	529	70
0.0014	3+00W	20	2.8	155	145	16	<5	1312	510
	2+75W	20	2.8	40	45	14	<5	171	440
10+00N	0+00E	10	<0.2	25	181	36	<5	159	480
	0+25W	15	0.6	25	41	28	<5	135	310
	0+25W	30 5	14	40	141	40	<5	230 944	1290
	1+00W	10	0.4	190	307	46	<5	1342	830
	1+25W	5	0.6	45	57	28	<5	256	390
	0+25E	85	0.4	30	103	30	<5	188	370
	0+50E	10	<0.2	25	59	30	<5	136	2/0
	1+00E	<5	<0.2	20	27	30	<5	43	220
	1+25E	<5	<0.2	20	42	34	<5	117	250
	1+50E	15	<0.2	40	153	34	<5	113	240
	1+75E	<5	<0.2	20	93	40	<5	91	260
	2+00E	15	<0.2	15	31	40 74	<0 <5	5/ 115	1210
	2+50E	20	<0.2	30	125	42	<5	145	300
	2+75E	10	<0.2	25	84	38	<5	136	420
	3+00E	15	<0.2	40	115	38	<5	107	610
	3+25E	5	<0.2	25	71	34	<5	90	140
	3+50E	<5 15	<0.2	20 55	41	30 48	<5	09 137	400
	4+00E	35	<0.2	30	215	38	<5	126	210
	4+25E	30	<0.2	50	282	42	<5	153	290
	4+50E	20	<0.2	55	243	42	<5	159	290
•	4+75E	10	<0.2	45	220	40	<5	164	230
10+50N	0+00E	<5	<0.2	50 15	295 40	40 22	<5	93	200
10.0011	0+25W	<5	<0.2	45	81	30	<5	251	220
	0+25E	<5	<0.2	5	21	26	<5	47	140
	0+50E	<5	<0.2	20	96	26	<5	123	300
	0+75E	30	0.2	20	36	28	<5	58	100
	1+25E	<5	<0.2	25	42	38	<5	95	170
	1+50E	<5	<0.2	25	86	34	<5	122	180
	1+75E	<5	<0.2	20	54	34	<5	134	150
	2+00E	<5	0.4	35	47	42	<5	177	720
	2+25E	<5	34	20	19	36	<5	130	134
	2+75E	25	<0.2	20	52	42	<5	95	460
	3+00E	35	<0.2	55	203	48	<5	141	280
	3+25E	20	<0.2	20	50	32	<5	77	180
	3+50E	20	<0.2	35	114	36	<5 <5	109 QA	200
	4+00E	20	<0.2	35	127	42	<5	119	180
	4+25E	35	<0.2	40	137	38	<5	124	140
	4+50E	25	<0.2	40	237	36	<5	147	170
	4+75E	150	<0.2	40	194	36	<5	177	230
11+00N	0+00E	20 5	<0.2	20	34	28	<5	96	180
	0+25W	5	1	25	99	32	<5	303	240
	0+50W	5	0.8	15	40	38	<5	99	340
	0+75W	5	0.6	30	43	30	<5	155	170
	0+25E	<5	0.2	15	31	24	<5 <5	82	290
	0+75E	25	0.4 <0.2	20 15	∠0 19	30	<0 <5	65	160
	1+00E	25	<0.2	20	52	26	<5	95	100
11+50N	0+00E	5	0.4	25	34	24	<5	89	240
	0+25W	5	<0.2	25	42	. 34	<5	101	230
	0+5077	10	<0.2	25	50	36	<5	110	230
	0+50E	15	<0.2	20	20	20 20	<5	61	70
	0+75E	15	<0.2	10	15	18	<5	73	290
12+00N	0+00E	5	0.4	20	24	36	<5	61	270
	0+25W	20	<0.2	30	29	28	<5	60	160
	0+50W	20	0.2	35	28	34	<5 <5	115	200
	1+00W	20	<0.2	40	59	32 42	<5	95 191	170
	0+25E	10	<0.2	20	35	28	<5	107	320
	0+50E	10	0.4	20	22	28	<5	47	310
	0+75E	5	<0.2	<5	43	28	<5	135	280
	ITUUE	<5	U.4	5	83	26	<5	168	220

Appendix V

.....

Land

1998 follow-up soil sample data

9dd	700 1540 1400 1711 1711 1630 8400	415 650 3200 220 90	650 1090 680 960	180 240 180	380 630 350 260 1423 1202 1350
nZ ppm	247 568 481 639 456 413 825	289 408 147 330 274	258 920 1076 418	58 95 95	287 140 323 323 801 1649 789
Sb ppm	20 20 20 20 20 20 20 20 20 20 20 20 20 2	ሌ ሌ ሌ ሌ ሌ ለ	<u>ሉ</u> ሉሉሉ	ሌ ሌ ሌ	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
dq mqq	4 4 4 5 6 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	50 220 1752 56 64	58 44 58 48	8 2 5	%
Cu	8 7 2 8 7 2 8 7 2 8 7 2 8 7 8 9 8 7 8 9 9 8 9 9 9 9 9 9 9 9 9 9	92 107 61 94	57 103 400 113	28 63 85	60 39 158 157 175
As	55 75 90 105 105 105	70 75 210 85 70	50 135 185	15 50 45	80 7 82 40 30 50 50 80 50 80 50 80 50 50 50 50 50 50 50 50 50 50 50 50 50
Ag ppm	0.0 8.0 8.0 8.0 8.0 8.0 8.0 7 8.0 7	1.2 1.8 1.6 0.6 2.2	2 5.8 5.2	.20.64.0	- 0 0 0 0 - 4 9 4 0 0 0 4 9 4 8
Au ppb	ကို ကို ကို က ကို ကို က	0 t t t v t t	15 20 20	10 15	ひりりらう
Description	Taken from rotted mdst or fault gouge " "	Poorly developed, rocky soil: steep C horizon: mdst chips Poorly developed, rocky soil: steep	Poorly developed, rocky soil: steep C horizon, fault gouge, wet Poorly developed soil, dry Surface dirt, steep	Drk brn, A horizon Rd-brn, B horizon Gry-brn, C horizon	Poorty developed soil Poorty developed soil Poorty developed soil Poorty developed soil; mdst chips Seepage: poorty developed soil Seepage: poorty doveloped soil C horizon: mdst chins
Sample No.	39057 A B C C F F G	2 450 2 4 3 0 5 5 7 1 2 8 7 1 2 8 7 1 2 8 7 1 2 8 7 1 2 8 7 1 2 8 7 1 2 8 7 1 2 8 7 1 2 8 7 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	3+00 N 1 3+50 N 1 2 3	8+00 N 1 2 3	9+50 N 2 2 4 5 5 7 4 7 7 6 7 7 7 8 7 7 8 7 7 7 7 7 7 7 7 7 7 7 7 7
Easting	1+05E 1+05E 1+05E 1+05E 1+05E 1+05E	0+00E 0+00E 0+00E 0+00E 0+00E 0+10E	0+00E 0+00E 0+00E	2+00E 2+00E 2+00E	0+75W 0+75W 0+75W 0+75W 0+75W 0+75W 0+75W 0+88W 0+88W
Northing	1+07N 1+03N 0+98N 0+97N 0+96N 0+92N 0+87N	2+55N 2+57N 2+57N 2+57N 2+55N 2+55N	3+50N 3+50N 3+50N 3+50N	7+82N 7+82N 7+82N	9+44N 9+44N 9+49N 9+44N 9+42N 9+43N 8+43N

.

.

HSOV soil sample follow-up

. . .

,

Appendix VI

L

Ţ,

Γ

 \int

Π.

1

1998 stream sediment sample data

Stream Sediment Samples 1998

				Grid		UTM		Au	Ag	As	Cu	Pb	Sb	Zn	Hg
Sample Number	Date	Sampler	Grid	Northing	Easting	Northing	Easting	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppb
Moss Sample		•		-	-										
97950	June 17	H.S.	RB			6260339	412343	<5	0.8	15	64	12	5	286	260
97951	June 19	H.S.	HSOV	9+97 N	0+00 E	6259251	413072	<5	<.2	10	44	8	5	153	160
97952	June 20	H.S.	HSOV	3+50 N	0+00 E	6258648	413350	<5	3.2	85	215	26	10	1653	810
97953	June 23	H.S.	RB			6261045	411640	<5	0.4	30	94	14	<5	147	220
97954	June 23	H.S.	RB			6261055	411670	40	0.6	50	144	24	10	156	320
97955	June 23	H.S.	RB			6261070	411695	80	0.6	20	68	10	<5	97 ·	203
97956	June 23	H.S.	RB			6261095	411895	<5	0.6	25	119	14	<5	180	260
97957	June 23	H.S.	RB			6261035	412010	<5	0.4	20	105	20	<5	215	160
97958	June 23	H.S.	RB			6261005	412315	<5	1.8	65	141	12	5	1179	530
97959	June 23	H.S.	RB			6260910	412485	<5	0.6	60	93	22	<5	834	464
97960	June 24	H.S.	RB			6260395	412450	<5	1.2	45	109	12	<5	762	500
97961	June 24	H.S.	RB			6260395	412460	<5	0.6	35	98	14	<5	568	270
97962	June 24	H.S.	RB			6260449	412368	<5	2.2	20	86	8	<5	907	240
97962b	June 26	H.S.	HSOV	3+15N	0+98W	6258583	413220	125	3	150	178	71	<5	399	260
97963	June 25	H.S.	HSOV	6+50 N	4+75 E	6259092	413658	<5	0.4	10	60	40	<5	127	140
97964	July 5	H.S.	HSOV	7+50 N	1+10 W	6258985	413068	<5	<0.2	45	18	<2	<5	132	160
97965	July 5	H.S.	HSOV	7+40 N	1+35 W	6258967	413048	5	1.2	75	111	38	<5	1779	330
97966	July 9	H.S.	HSOV			6259000	412615	<5	0.4	50	43	34	<5	562	620
7N-mm	Aug.17	H.S.	HSOV	7+00N	2+25W	6258895	412980	15	2.2	75	322	18	<5	2291	520
6N-mm	Aug.17	H.S.	HSOV	6+00N	3+25W	6258773	412925	135	5.8	235	159	92	<5	1362	270
Silt Sample	-														
97902	June 24	H.S.	RB			6260625	412515	5	0.8	45	86	18	<5	728	380

Appendix VI

And the state of the

Contraction of the second

Contraction of the second s

Contraction of the second

and a second second

anterioration and the

and the second second

The second s

hallmin without

in the second second

and a subscription of the subscription of the

1998 rock sample data

HSOV / RB Rock Samples 1998 (Au + ICP)

Sample		Gr	id	UT	M			Sample	Au	Αα	As	Си	Pb	Sb	Zn	Ha
Number	Grid	Northing	Easting	Northing	Easting	Type	Description	Number	pob	DOM	nom	nom	0.070	000	000	noh
97809	HSOV	6+80N	2+22F	6259034	413408	dena	v f a dacite(?); f.o. ovr anvo, intruded and alt'd by fels dike	97809	5	<0.2	<5	8	10	<5	36	666
98451	HSOV	7+75N	2+50W	6258960	412926	grab	mdst: sheared	98451	15	-U.L. A A	2226	70	422	25	1427	
98452	HSOV	6+25N	2+5000	6258821	412087	grab	mdst: oouge(2) integuler oz	98452	10	1.6	30	18	-22	-5	260	
08453	HSOV	10+40N	0+155	6250206	413060	grab	f a int vic: vec'r/2) & amun (ina az & emati chi)	08453	5	-0.2	25	10		~5	56	
09454	HEOV	0+50M	4+0014/	6258280	413003	grab	r.g. mit vic, vac it i jor annyg (ng qa or annan cruy, wali fild melet	09454	, S	<0.2	30	22	10	~5	379	
09455	HEOV	0+44N	OLOGINI	0239173	412000	1 Em abia	well fild melet	09455	5	~0.2	30	52	10	5	210	
90400	LEOV	9744N	0+9044	0239109	413003	7.5m cmp	wen nici musi	80400	5	<u.z< td=""><td>15</td><td>29</td><td>14</td><td>< 5 - 1</td><td>241</td><td></td></u.z<>	15	29	14	< 5 - 1	241	
90400	HOOV	9+00N	0+4077	0209194	413053	om chip	wen mast, v.t.g. py(?)	90400	2	<0.2	20	50	16	<5	321	
90407	HOOV	7+90N	2+00E	0239120	413343	grab	ser and ministry	90407	5	<0.2	<0	13	10	10	00	
96456	HSOV	3+50N	0+00E	6258647	413350	grab	graph most; 35% irreg dz vns	96458	0	0.4	15	1/	2	<5	38	
98459	HSOV	3+50N	0+00E	6258648	413353	1m chip	mast; 30% v. integ qz vns	98459	15	2.4	80	67	16	<5	305	
98460	HSOV	3+50N	0+00E	6258649	413355	1m chip	mdst	98460	15	1.6	50	33	16	<5	201	
98461	HSOV	3+50N	0+25E	6258655	413368	grab	mdst; fractured	98461	10	2	245	61	42	<5	237	
98462	HSOV	8+40N	0+75W	6259080	413065	grab	md gry, aph, chi amyg voic; 5% Po	98462	5	<0.2	10	8	14	<5	75	
98469	HSOV	3+15N	0+93W	6258586	413278	grab	limonitic, stg'ly fol'td grn volc + gossanous 1 cm Qz vn	98469	15	0.6	175	106	12	<5	29	660
98470	HSOV	3+18N	0+98W	6258590	413273	grab	limonitic, stg'ly fol'td grn volc	98470	5	<0.2	15	88	12	<5	64	110
98471	HSOV	3+20N	0+98W	6258590	413273	grab	limonitic, stgʻly fol'td gm volc	98471	50	<0.2	85	99	28	<5	74	280
98472	HSOV	3+15N	0+98W	6258584	413273	float	limonitic, bleached volc w. rusty qz vn	98472	5	<0.2	<5	8	6	<5	29	90
98473	HSOV	3+15N	0+98W	6258584	413273	grab	qz vn (5% Py) & healed gouge	98473	260	5.8	3725	39	16	<5	83	1140
98474	HSOV	3+15N	0+98W	6258584	413273	grab	irreg Qz vn (<15 cm) w. gossanous patches	98474	5	2.4	70	31	8	<5	39	40
98475	HSOV	3+10N	0+85W	6258580	413290	float	oz -Cb vn w. 3% c.g. Pv and 5% f.g. Pv (Aspv?)	98475	1860	14.2	45300	85	40	<5	747	950
98476	HSOV	3+05N	0+25W	6258602	413346	orab	myl: silicious	98476	5	<0.2	135	39	8	<5	73	250
98477	HSOV	0+50N	0+90E	6258419	413586	grab	massive Mrc. graphitic Mdst and silica from HSOV Showing	98477	5	<0.2	160	7	Ă	-5	12	80
08478	HSOV	6+20N	1+511	6259850	413082	15 m chin	hik natchily limite Melet	09479	10	28	70	71	12	-5	233	120
09470	HEOV	6420N	1+40144	6250050	412084	1.0 m Onip	fe ovide matrix fault box	09470	5	2.0	15	160	4	~	233	70
00400	HEOV	4+7EN	0.5514	6250051	440004	grab		00400	5	-0.2	15	105		-5	20	100
90400	HOOV	41751	0.7514	0200/42	413220	grab	10 IU HI VOIC, 3% Py	90400	5	<0.2	15		14	<0	29	-100
90401	HSUV	4+70N	0+/044	6256747	413224	grang	20 cm uz vn; 1-2% Py, wh and Fe staining on vuggy bands	96461	2	<0.2	<5	4	<2	<5	62	<10
98482	HSOV	4+/5N	0+55W	6258/42	413226	grab	massive Feisic Voic; 5% Py (r.g. clots & m.g. fract)	98482	5	<0.2	5	4	14	<5	1/	370
98483	HSOV	1+21N	3+72E	6258619	413814	grab	rusty Qz vns(<5cm) in rd-br alt'd int volc	98483	5	0.2	<5	6	20	<5	93	1740
98484	HSOV	0+97N	1+05E	6258462	413565	grab	drk Gry mdst; possibly impregnated with f.g. Py	93484	5	0.6	20	11	<2	15	29	1620
98485	HSOV	0+90N	1+03E	6258462	413556	float	as above; also granular wht and blk vnits	98485	5	0.8	25	15	<2	15	168	90
98486	HSOV	0+96N	1+05E	6258465	413561	2 m chip	drk Gry py'tc mdst	98486	5	0.4	50	20	12	<5	76	60
98487	HSOV	1+55N	0+94E	6258514	413534	1 m chip	felsic brx; silica & Py mtx	98487	5	<0.2	<5	7	14	<5	122	<10
98488	HSOV	1+57N	1+00E	6258519	413539	1 m chip	int Volc; 2% Py	98488	5	0.2	155	8	4	<5	55	<10
98489	HSOV	1+57N	1+00E	6258519	413539	1 m chip	int vic (tuff?); 3% Po	98489	5	<0.2	25	6	8	<5	18	50
98490	HSOV	1+98N	0+87E	6258543	413507	1 m chip	blk mdst clasts; silica & Py mtx	98490	5	<0.2	<5	4	6	<5	21	<10
98491	HSOV	1+92N	0+86E	6259536	413509	1 m chip	felsic brx, drk gry mtx	98491	5	<0.2	10	3	6	<5	9	<10
98492	HSOV	1+95N	0+83E	6258539	413504	1 m chip	mdst	98492	5	<0.2	20	12	12	<5	28	<10
98493	HSOV	1+95N	0+83E	6258539	413504	1 m chip	mdst	98493	5	<0.2	20	17	12	<5	68	460
98495	HSOV	1+95N	0+83F	6258539	413504	50 cm chin	bik mdst. grupav	98495	5	<0.2	15	14	14	<5	35	1130
98496	HSOV	1+95N	0+83E	6258539	413504	1 m chin	mdst	98496	5	<0.2	20	9	16	<5	22	920
98497	HSOV	1+95N	0+83E	6258539	413504	1 m chip	mist	98497	š	0.2	15	19	14	<5	52	860
08408	HSOV	2+171	0+775	6259555	413496	arah	hroni silicid possible ny (mro?) claste	08408	e e	0.2	165	24	16	-5	75	510
08400	HSOV	2+17N	0+775	6258556	412486	15 m chin	hor-ogi, allica nu	09400	a l	-02	20	6	10	-5	22	170
09500	HEOV	2+12N	0+745	6250550	412496	2 m oblo	mdet: well folid 10 15% imag mm(2)	09500	5	0.2	20	~~~	14	~5	25	1000
00500	HOOV	21121	0.0534	0200001	41000	2 11 Unip	musi, weritoria, to-to a meg mic(r)	90000	5	0.2	20	23	14	10	20	~10
96501	HOOV	3+UON	0.0514	0200000	413309	grao	dz vn brxd int-micdike, org wxng, trace malachite	90501	5	0.4	50	10	4	10	40	-10
90302	HEOV	3TUDN	0+0500	0206060	413309	grad 4 an abia	dz vni brx a int-inicalke, org wx ng	96502	5	0.4	70	22	4	10	73	4000
96511	HSOV	1+05N	0+9/6	6258467	413305	1 m chip	mast	98511	5	0.8	/0	45	16	5	206	1230
98512	HSUV	1+05N	0+98E	6258467	413565	1 m chip	mast	98512	10	<0.2	95	10	14	10	125	• 1/40
98513	HSOV	1+05N	0+96E	6258467	413565	1 m chip	mdst	98513	5	<0.2	70	17	8	5	68	//0
98514	HSOV	1+04N	0+97E	6258467	413565	1 m chip	mdst	98514	15	0.6	110	40	0.4	22	296	1160
98515	HSOV	1+00N	0+96E	6258462	413566	1 m chip	mdst	98515	20	0.4	85	44	28	10	229	1260
98516	HSOV	0+95N	0+95E	6258457	413568	1 m chip	mdst	98516	40	0.6	80	27	28	5	171	980
98517	HSOV	0+95N	0+96E	6258457	413568	1 m chip	mdst	98517	5	0.4	110	12	16	10	206	1500
98518	HSOV	0+95N	0+97E	6258457	413568	1 m chip	mdst	98518	5	0.6	85	35	28	10	199	580
98519	HSOV	1+05N	0+97E	6258467	413565	1 m chip	mdst	98519	10	0.4	95	39	22	<5	269	1180
98520	HSOV	1+10N	0+98E	6258472	413563	1 m chip	mdst	98520	5	0.4	100	30	22	<5	192	1340
98521	HSOV	1+15E	0+99E	6258476	413558	1 m chip	mdst	98521	5	0.6	75	27	12	<5	101	810
98522	HSOV	1+15E	1+00E	6258476	413558	1 m chip	mdst	98522	5	<0.2	55	22	14	<5	51	1520
98523	HSOV	1+15E	0+98E	6258476	413558	1 m chio	mdst	98523	10	<0.2	65	19	20	<5	77	640
98524	HSOV	2+60N	0+70E	6258591	413456	2 m chin	int Volc: gossenous & Pv'to	98524	5	<0.2	10	3	8	<5	1	<10
98525	HSOV	2+58N	0+66E	6258588	413453	1m chip	chi & nhì cai	08525	š	<0.2	10	Ă	Ä	<5	35	<10
COOLO	1004	E.0014	3.00L	5200000		monp	on a her offi	0002J	5	-0.2	10	-	•	-9	~~~	-10

Page 1

HSOV / RB Rock Samples 1998 (Au + ICP)

98526	HSOV	2+53N	0+61E	6258582	413452	1m chio	mdst	98526	5	<0.2	20	23	12	<5	37	150
98527	HSOV	2+53N	0+61E	6258582	413452	1.5 chip	mdst + pbi & arni cai	98527	5	<0.2	30	13	14	<5	31	60
98528	HSOV	3+35N	0+40E	6258634	413399	2 m chip	blk mdst	98528	5	<0.2	15	17	14	<5	37	140
09520	HSOV	3+20N	0+35E	6258656	A13305	orah	bik mty hoy: 2% Pv	98529	5	0.2	30	18	18	<5	88	730
09520	HEOV	3+00N	0+255	8259702	412361	50 cm chin	mdet immediately below vic ctc: 1% Pv	98530	š	04	15	11	R	-5	58	080
90330	HEOV	3+5014	0+355	6259702	413363	orah	int fol tr #(2) immediately shows do: limito 3.5% Pv	08531	š	<0.7	-5	5	10	-5	34	190
90531	HSOV	3+90N	0+30E	0200/0/	413303	grab 4 Cara ahim	for the full of a finite content of a boyer cic, and to, 5-5 yer any	00531	5	~0.2	45	10	40	-0	34	1400
98532	HSOV	3+80N	0+358	0200090	4133/1	1.5 m chip	TO TO DIK MOSE, U PY	90532	2	0.2	15	18	12	5	91	1100
98533	HSOV	3+80N	0+36E	6258695	413371	2 m chip	across cic w. gritty most	98533	5	<0.2	10	<u>′</u>	20	<5	52	430
98534	HSOV	3+80N	0+38E	6258696	413371	2 m chip	gritty mdst; limitc, 15% Py (&Mrc?)	98534	5	<0.2	10	5	10	<5	23	680
98535	HSOV	3+80N	0+40E	6258696	413371	2 m chip	gritty mdst; lim'tc, 5% Py	98535	5	<0.2	5	3	8	<5	12	390
98536	HSOV	3+80N	0+30E	6258688	413358	1 m chip	fol'td bik mdst; tr Py	98536	5	1	10	32	12	<5	72	1640
98537	HSOV	7+35N	1+25W	6258966	413060	Float	cherty blk most filled tubules in silica mtx, lined w. Py	98537	5	1	135	12	<2	<5	10	3940
98538	HSOV	7+35N	1+25W	6258966	413060	Float	int vic; chi-sil brx'tn, 5% Py (poss Sph?)	98538	5	0.2	5	4	10	<5	82	270
98539	HSOV	7+37N	1+10W	6258973	413073	Grab	msv Py and Sil in irreg, subvert band (~25 cm wide)	98539	5	0.2	360	4	<2	<5	17	360
98540	HSOV	7+37N	1+10W	6258973	413073	Rndm grab	cherty vic(?); 25% patchy vfg Py	98540	5	0.2	35	6	8	<5	78	590
98541	HSOV	7+37N	1+00W	6258976	413083	1 m chip	Alt'd (chl-sil bot'tn, bleached) int vic	98541	5	<0.2	20	2	10	<5	6	400
98542	HSOV	6+83N	1+15W	6258921	413090	1 m chip	lim'to, bleached int vic w, vuoqy bik bands; up to 20% Pv	98542	5	<0.2	25	4	8	<5	28	1170
09543	HSOV	7+35N	1+08\A/	6258072	413076	Grah	lat any alt d int vic: 2% Pv	98543	15	<0.2	<5	Å	Ř	<5	149	330
00544	LISOV	7+351	1+09\4/	6259072	412076	Grab	creamy any all'd int vic; chi bodid + blularo enote	98544	6	<0.2	<5	à	Ă	<5	82	610
90044	HOOV	7.051	4.00141	0230872	413070	d m abia	and the failed and the one bit to the biorgen apola	09545	£	0.6	25	21	14	~5	117	1540
98545	HSUV	7+35N	1+2000	0200900	413005	1 m crup	mast, rona, graphic	90040	5	0.0	60	47	10	<5 <5	142	950
98546	HSOV	7+35N	1+2000	6258968	413065	1 m chip	mast & bik (minor whit) gouge; for ta, graphilic	90040	5	0.0	50		10	-5	143	4500
98547	HSOV	7+35N	1+25W	6258966	413060	1 m chip	mdst; fortd, graphitic, Py bands (f.g., 5%)	98547	5	0.6	60	30	14	<5	161	1500
98548	HSOV	4+55N	0+65W	6258729	413231	1.5 m chip	gritty mdst and alt'd int vic? (resample of 98414?)	98548	15	0.4	35	4	8	<5	41	1110
98549	HSOV	4+55N	0+65W	6258729	413231	2 m chip	gritty mdst and alt'd int vic?	98549	5	0.6	15	5	6	<5	48	280
98550	HSOV	4+55N	0+70W	6258727	413226	grab	Int vic w. mdst clast (silic'd)	98550	5	0.4	5	3	10	<5	12	330
98562	HSOV	8+15N	0+40W	6259069	413108	rand chip	rusty weathering intermediate volcanics	98562	5	0.2	<5	6	38	<5	30	60
98563	HSOV	8+00N	0+75W	6259043	413081	1 m chip	dk grey sed cont diss py and other sulphides	98563	5	<0.2	<5	4	18	<5	17	50
98564	HSOV	7+90N	1+00W	6259025	413061	rand chip	sil volc cont diss py	98564	5	<0.2	<5	4	14	<5	121	220
98566	HSOV	8+00N	1+75W	6259009	412987	rand chip	black shale with lam of diss py	98566	5	<0.2	20	29	22	<5	141	740
98567	HSOV	8+00N	1+95W	6259002	412968	50 cm chin	bi shale	98567	5	<0.2	25	32	20	<5	164	1380
09569	HSOV	8+00N	2+05W	6258000	412959	rand chin	bl granbitic shale - ng sulphides	98565	5	0.6	20	24	16	<5	90	740
90300	HOOV	8+00N	2+4014	6259007	412054	arab	or graphics areas - no aciprices	08560	20	4.4	85	49	24	-5	355	1230
90309	HOOV	0700N	2+1044	62500997	440044	grau road abia	high muditions	09570	16	0.9	25	41	27	~5	007	000
96570	HSOV	D+UUN	272000	0200993	412944	rand chip	black mudstone	09571	5	0.6	40	27	22	~5	107	600
98571	HSOV	7+80N	2+2500	6258973	412948	rand chip	Diack mudstone	965/1	5	0.6	40	21	22	5	107	020
98572	HSOV	7+70N	2+40W	6258959	412938	rand chip	Diack mudstone	985/2	2	1.4	15	18	18	<5	48	260
98573	HSOV	7+50N	2+40W	6258940	412946	rand chip	pale green interm. voic cont. diss. py	98573	5	1.8	40	40	18	<5	43	200
98574	HSOV	7+40N	2+40W	6258931	412950	rand chip	black mudstone	98574	5	1.4	35	42	18	<5	47	180
98575	HSOV	7+25N	2+40W	6258917	412956	rand chip	black mudstone diss py	98575	5	3.4	60	74	22	<5	482	860
98576	HSOV	6+50N	2+75W	6258836	412953	rand chip	black mudstone	98576	5	1.4	70	18	48	<5	83	90
98577	HSOV	6+00N	2+25W	6258807	413020	rand chip	black mudstone some buil quartz	98577	5	2.8	40	34	16	<5	212	410
98578	HSOV	9+00N	1+27W	6259118	412992	rand chip	black mudstone - tr py - rusty weathering	98578	5	<0.2	15	22	26	<5	112	480
98579	HSOV	0+10\$	1+65E	6258413	413681	1 m chip	graphitic mdst; 2% Py	98579	5	1	15	24	12	<5	102	1490
98580	HSOV	0+20\$	1+75E	6258410	413697	1.5 m chip	mdst; tr Py, Limito	98580	5	0.4	15	28	10	<5	101	1630
98581	HSOV	0+258	1+80E	6258407	413703	1 m chin	mdst: tr Pv. Lim'tc	98581	5	<0.2	10	27	10	<5	74	470
98582	HSOV	0+405	1+90E	6258395	413715	1 m chip	mdst (felsic chip): 5% f.a. Pv	98582	5	0.4	30	10	14	<5	66	610
08583	HSOV	0+155	2+20E	6258430	413735	1 m chin	mdst (fesic chin): tr Pv	98583	5	<0.2	<5	6	28	<5	121	80
08584	HSOV	1+005	2+45E	6258360	413787	areb	fre'tel mey felsic	98584	5	04	30	2	14	<5	16	370
90304	HSOV	1+003	21400	6250300	440770	grab	fe comparied ad (arch coopers facture)	08585	ŝ	0.4	10	12		-5	65	270
90000		17103	ZTZOE	6250345	413//0	grab	re cernenteu cyl (prob seepage reature)	00500	5	0.4	50	26	12	~	35	20
98586	HSOV	6259305	412305	6259305	412305	grab	dz vn w. 376 vuggy dz a c.g. Py	90000	5	0.4	10	30	12	<5	33	100
98587	HSOV	6259220	412685	6259220	412685	1.5 m cnip		96367	5		10	40	12		07	100
98588	HSOV	6259125	412700	6259125	412700	1 m chip	lim'to most	98588	5	1.2	30	21	94	<5	199	200
98589	HSOV	6259120	412695	6259120	412695	Rndm grab	mdst (tough)	98589	20	2	25	41	20	<5	122	250
98590	HSOV	3: ()N	1+20W	6259065	413022	grab	mdat, well fol'td	98590	5	0.2	10	17	17	<5	85	150
98591	HSOV	15+95N	1+20W	6259760	412720	grab	fit'd, frc'td iap-tuf(?); qz vn's	98591	5	<0.2	<5	6	6	<5	109	270
98592	HSOV	16+05N	1+75W	6259751	412664	grab	cht'y int vic(?); 25% py (vn's & bib's), sit'y imn'tc wx'ng	98592	15	<0.2	25	. 10	10	<5	54	200
98593	HSOV	16+00N	1+90W	6259741	412652	1 m chip	bk, v fit'd mdst; imn'to wx'ng	98593	5	<0.2	5	21	21	<5	181	550
98594	HSOV	14+00N	0+85W	6259593	412830	grab	soft, ap vic; mod fit'd	98594	5	<0.2	<5	5	5	<5	107	190
98595	HSOV	12+05N	0+80W	6259416	412913	1 m chio	bk, v fit'd mdst; imn'te we'ng, TR pv	98595	15	<0.2	15	33	33	<5	186	550
98596	HSOV	12+15N	0+60W	6259432	412928	areb	cht'y vic: y fre'td & fit'd imn'e & yse'ir wy'ng tripy	98596	5	<0.2	<5	8	8	<5	101	50
08507	HSOV	13+05N	1+05W	6250400	412840	1 m chie	fol'td mdst: 2% dissem Pv	98597	5	<0.2	25	15	15	<5	81	1150
08508	HSOV	13+05N	1+15W	6259496	412840	15 m chin	fol'td mdst	98598	10	<0.2	20	17	17	<5	104	1110
09500	HEOV	11_10N	0+35/91	6250245	412000	Rode orch	folid mdet	00380	5	<0.2	~5 <5	20	20		40	21Q0
90099	HEOV		11055	60603040	412000	areb		00000	10	<0.2	10	20	20	<5	- -	430
98600	HSUV	3+00N	1+205	0209204	413228	grap	unt Ale (Afri fità) (al 10) (a)	98600	10	<u.z< td=""><td>10</td><td>o</td><td>0</td><td><0</td><td>00</td><td>430</td></u.z<>	10	o	0	<0	00	430

HSOV / RB Rock Samples 1998 (Au + ICP)

98601	HSOV	1+19N	1+00E	6258478	413558	1.5 m chip	int Volc(?); brx'd by Py blebs and vnlts (20%)	98601	15	0.2	100	12	20	<5	139	
98602	HSOV	3+45N	0+62E	6258667	413418	grab	bik mdst s/c between int volc and Fel Cgi	98602	5	0.2	25	3	18	15	20	400
98603	HSOV	3+45N	0+62E	6258660	413408	grab	fel Cgl; tr Py	98603	5	<0.2	5	2	8	<5	5	<10
98604	HSOV	3+45N	0+62E	6258660	413408	grab	fel Cgl; tr Py	98604	5	<0.2	15	3	10	<5	14	<10
98605	HSOV	3+20N	0+35E	6258630	413393	2 m chip	blk mdst	98605	5	0.8	30	25	16	5	125	740
98606	HSOV	4+20N	0+40E	6258729	413553	1.5 m chip	int vlc; bn/d, silic'd, 20% py irreg vns/blbs	98606	5	0.2	25	5	14	<5	26	1580
98607	HSOV	7+30 N	1+05 W	6258968	413081	1 m chip	int vic; chi-sii mtx brx, 5% Py	98607	5	<0.2	5	3	12	<5	96	160
98608	HSOV	6+78 N	1+10 W	6258918	413097	rndm grab	int vic; chi-sil mtx brx, 3% Py	98608	5	<0.2	5	4	12	<5	85	540
98609	HSOV	6+83 N	1+25 W	6258918	413081	1 m chip	blk mdst; occ Py'tc band	98609	5	0.4	70	25	14	<5	191	1420
98610	HSOV	6+83 N	1+24 W	6258918	413082	1.5 m chip	bik mdst	98610	5	0.4	50	21	12	<5	110	1500
98611	HSOV	0+50N	1+05E	6258423	413600	2 m chip	mdst (felsic chips)	98611	5	0.2	10	5	26	<5	168	190
98612	HSOV	0+50N	1+05E	6258422	413599	2 m chip	mdst (felsic chips)	98612	5	<0.2	10	6	24	<5	106	120
98613	HSOV	0+50N	1+05E	6258421	413595	1.5 m chip	mdst (felsic chips)	98613	5	0.4	60	5	24	<5	63	230
98614	HSOV	0+50N	1+05E	6258421	413597	1.5 m chip	msv rhy	98614	5	0.4	95	3	16	<5	21	310
98615	HSOV	0+00N	2+00E	6258440	413711	grab	msv rhy; 5% f.g. py	98615	5	0.2	20	2	10	<5	6	230
98616	HSOV	7+45 N	0+35 E	6259030	413206	grab	gritty mdst; tr py	98616	5	0.2	<5	6	24	<5	81	
98617	HSOV	7+50 N	0+60 E	6259043	413228	grab	convolute rhy; tr py	98617	10	0.2	10	9	12	<5	28	
98618	HSOV	7+40 N	1+55 E	6259066	413321	grab	gritty mdst; tr py	98618	5	<0.2	20	11	16	<5	47	
98619	HSOV	7+05 N	1+60 E	6259036	413340	grab	lim'to rhy; 5% f.g. py	98619	5	<0.2	10	5	22	<5	9	
98626	HSOV	7+90N	2+40W	6258977	412930	1.5m chip	lim'to mdst; 3% py	98626	15	1	20	32	10	<5	75	290
98627	HSOV	7+85N	2+50W	6258973	412932	2m chip	lim'tc mdst; 3-5% py, occ. band py	98627	30	1.6	10	32	10	<5	77	240
98628	HSOV	7+60N	2+50W	6258946	412932	grab	sh'd mdst (2m wide zone?); org &wht qz/cb vnlts, org frct coating	98628	5	5.4	1200	27	98	15	288	310
98629	HSOV	7+40N	2+75W	6258919	412917	1m chip	mdst; 2% py	98629	15	1.4	40	35	14	<5	42	27
98630	HSOV	7+30N	2+90W	6258905	412907	1m chip	mdst	98630	5	0.8	10	39	10	<5	60	140
98631	HSOV	8+00N	2+75W	6258975	412893	1m chip	mdst; band of Fe-oxide cemented fit brx	98631	5	1	50	36	14	<5	55	180
98632	HSOV	8+00N	2+55W	6258982	412912	1.5m chip	lim'to mdst; 5% py	98632	30	2	155	16	12	<5	74	240
98633	HSOV	8+00N	2+55W	6258982	412912	grab	lim'to mdst; 7% py	98633	20	2	45	23	14	<5	52	200
98634	HSOV	7+30N	2+10W	6258932	412982	grab	lim'to mdst (follow up on 97 soil stn 6+50N, 2+50W)	98634	20	2	40	35	12	<5	89	560
98635	HSOV	7+10N	2+85W	6258888	412920	1m chip	lim'te mdst	98635	20	4	45	36	12	<5	60	380
98636	HSOV	6+25N	2+50W	6258821	412987	orab .	sh'd mdst (rotten)	98636	5	2.8	120	43	16	<5	356	360
98637	HSOV	2+57N	0+00E	6258563	413399	arab	frct'd graphitic mds.; occ. py laminae (2+50N-3 soil pit)	58637	15	7.6	110	9	24	20	207	1000
98638	HSOV	2+45N	0+00E	6258555	413397	1m chip	frct'd lim'tc mdst; 5% py	98638	30	1.2	120	109	12	<5	216	500
98639	HSOV	3+05N	0+05E	6258608	413376	grab	graphitic mdst (rotten)	98639	365	8.2	110	27	24	20	348	1290
98640	HSOV	2+55N	0+10E	6258566	413402	grab	frct'd graphitic mdst (2+50N-6 soil pit)	98640	150	6	100	30	38	<5	185	820
98651	HSOV	7+55 N	2+00 E	6259095	413357	orab	sitst	98651	10	<0.2	95	13	8	<5	76	
98652	HSOV	8+50 N	1+20 E	6259156	413244	orab	sitet	98652	5	<0.2	75	12	10	<5	28	
98653	HSOV	8+00 N	0+05 E	6259070	413156	grab	hmfis'd? mdst; 3% py &po	98653	5	<0.2	40	9	18	<5	94	
98655	HSOV	9+50 N	1+07 W	6259171	412990	1 m chip	blk mdst	98655	5	<0.2	120	10	12	<5	59	
98657	HSOV	9+50 N	1+33 W	6259162	412966	1 m chip	blk mdst	98657	15	<0.2	90	15	20	<5	156	
98658	HSOV	9+65 N	1+45 W	6259172	412948	1 m chip	aritty mast	98658	10	<0.2	85	18	18	<5	250	
98659	HSOV	10+55 N	0+22 W	6259297	413028	1 m chip	int vic?	98659	5	<0.2	85	10	12	<5	92	
98660	HSOV	10+50 N	0+28 W	6259291	413024	1 m chip	oritty mdst	98660	10	<0.2	75	10	8	<5	48	
98661	HSOV	10+45 N	0+32 W	6259285	413022	1 m chip	blk mdst	98661	5	<0.2	75	36	12	<5	85	
98662	HSOV	9+95 N	0+50 W	6259232	413026	1 m chio	bik mdst	98662	10	<0.2	125	41	20	<5	207	
98663	HSOV	4+52N	0+85W	6258720	413214	1 m chip	graphitic mdat (resample of 97608)	98663	10	3	395	44	58	<5	698	
98664	HSOV	4+52N	0+85W	6258720	413214	1 m chip	araphitic most az vnlts	98664	10	2.4	70	57	22	<5	395	
98665	HSOV	4+51N	0+91W	6258718	413209	1 m chip	mdst: 5% vn pv	98665	15	2.4	50	42	16	<5	194	
98666	HSOV	4+44N	1+08W	6258707	413197	1 m chio	mdst tr pv	98666	15	3.4	35	29	16	<5	120	
96667	HSOV	4+42N	1+15W	6258701	413191	1 m chip	mdst; tr py	98667	20	2.6	35	44	14	<5	67	
09466	68	6261050	411850	6261050	411650	orah	mdet stalv frantured	98466	20	1	10	49	12	<5	92	
00400	00	8260840	412605	6260610	412605	grav	anh int vic: vesicular magnetic fig. dissemid po(2)	98467	5	<0.2	<5	13	Ř	<5	63	
5040/ 60/60		3260/10	412345	6260415	412265	ficat	aprica no, realizada, naginalis, ng. sisadin u polity anh sin: veceinalar nyin	98468	95	<0.2	<5	11	4	~5 <5	96	
90400		0±00+15	412300	62600915	412524	orah	api to, teenolei, py lo mdet-eltet minor rustu oz vo	98620	50	<0.2	~5	26	22	-0	194	200
90020		2+00 N	1+65 M	6260200	412004	grab	nagraner, marol 10307 42 411 dense bik mdet	08621	5	<0.0	~5	19	10	~5	57	270
90021		2+00 N	1700 VV	6260200	412205	grab	dense bik ødet	00620	10	<u> </u>	10	27	16	-5	55	240
90022		37/3 N	1+00 VV	6260560	4121/1	grap	utility nin musi	30022	5	~0.2	5	27	18	-6	1/18	1000
90023	KD DD		41400	02000000	412740	grap	int vic	00023	- -	~0.2	10	6 A	10	-0	67	2820
90024	KD DD	4+00N	4+430	0200001	412504	grao	nn aic maint	30024	5	<0.2	-5	7		~	450	2000
98625	KB	4+00N	∠+/ 01t	0200008	412001	grao -	mast	90020	5	<0.2	~ 5	'	•	~ 0	192	700

APPENDIX VIII

[]_____

La summer

- Allah A

n in the second s

.

LOGISTICS REPORT

۰.

LOGISTICS REPORT on an MAGNETIC & VLF-EM SURVEY

on the

COREY PROPERTY

SKEENA MINING DIVISION

ALC: NO DE CONTRACTO

Anderson and the second se

N.T.S. 104B (7E,8W,9W,10E)

LATITUDE: 56° 32'N

LONGITUDE: 130° 28'W

KENRICH MINING CORP.

UNUK RIVER

British Columbia, Canada

Survey by SJ GEOPHYSICS LTD.

Report and Plotting by S.J.V. CONSULTANTS LTD.

> Report By CHRIS MARCHILDON August, 1998

TABLE OF PLATES and FIGURES

G-1A TOTAL MAGNETIC FIELD INTENSITY (nT) - STACKED PROFILE MAP

G-1B-TOTAL MAGNETIC FIELD INTENSITY (nT) - COLOUR CONTOUR MAP-

- G-1C TOTAL MAGNETIC FIELD INTENSITY (nT) BLACK & WHITE CONTOUR MAP
- G-2A IN PHASE, QUADRATURE, TOTAL FIELD SEATTLE, NLK 24.8 kHz -STACKED PROFILES MAP
- G-2B FRASER FILTERED IN PILASE COLOUR CONTOURS SEATTLE, NLK 24.8 kHz
- G-3A IN PHASE, QUADRATURE, TOTAL FIELD LUALUALEI, HAWAII, NPM 21.4 kHz STACKED PROFILE MAP.
- G-3B FRASER FILTERED IN PHASE COLOUR CONTOURS -,. LUALUALEI, HAWAII, NPM 21.4 kHz.

G-4A COMPILATION MAP

Page i

SJ Geophysics Ltd/S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada tel (604) 582-1100 fax (604) 589-7466 E-mail: syd_visser@mindlink.net

SUMMARY AND CONCLUSIONS

In July 1998, SJ Geophysics Ltd. was commissioned by Kenrich Mining Corp. to conduct a geophysics exploration program consisting of magnetic and vlf-electromagnetic surveying across the Corey property. The purpose of the survey was to aid in the mapping of structures and local lithology. In addition, the survey would assist in the detection of Volcanoagenic Massive Sulphides (VMS) or associated alteration zones.

A total of some 14 kilometres of geophysical surveying was completed on a pre-existing grid, comprised of 26 East-West lines spaced at 50 metre intervals.

FIELD SURVEY

The geophysical surveys were conducted across a previously established survey grid with lines oriented E-W and connected by a common baseline (0E) that had a bearing of 335°. Lines were spaced 50 metres apart and had station pickets located at 25 metre increments. Mag and vlf-em data was acquired on 26 lines (0N-1400N).

The magnetic data was gathered using an EDA Omni Plus field magnetometer. Diurnal variations were monitored using an EDA Omni IV magnetometer as a base station. Data was gathered at 12.5 metre station intervals.

Vlf-em data was acquired for both Seattle (NLK 24.8 kHz) and Hawaii (NPM 21.4 kHz) frequencies using an EDA Omni Plus. Cutler was used only as back up on the days of July 22nd when Hawaii went off the air and on July 23rd when Seattle was off the air. Data was gathered at the same 12.5 metres station increments as the magnetic data.

DATA PROCESSING AND PRESENTATION

Geophysical data was downloaded from the field instrumentation daily. Computer processing to confirm data validity and the editing required to produce preliminary plots of the data was completed in the field. Raw and processed data files were saved in digital format.

Final processing and maps were produced in the Vancouver office, using Geopak and RTICAD software. All geophysical maps are presented at a 1:2500 scale and are registered to the NAD27, Zone 9 UTM projection.

SJ Geophysics Ltd/S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada tel (604) 582-1100 fax (604) 589-7466 E-mail: syd_visser@mindlink.net

DISCUSSION OF RESULTS

The geophysical responses described below and the interpretation are illustrated on a geophysical compilation map, Plate G4A.

Magnetic

The central magnetic response corresponds well with the local geology, trending north-west. The interpreted response of the magnetics in the eastern parts of the lines would seem to be indicative of local volcanics. The magnetic high in the vicinity of line 1050N, stations 325E-375E merits further investigation on possible extension to the north.

Vlf-em

Both Hawaii and Seattle show the same trend corresponding to a structure, again this represents the geology very well. Seattle and Hawaii frequencies in the vicinity of the baseline indicate a geologic contact with an associated magnetic response to the east

APPENDIX IX

 $\prod_{i=1}^{n}$

San and

Contract.

La da da

(The second sec

Subject of

and the second

ANALYSIS SHEETS

		vanada	l		™ IJ •••••	R G E N T	6 C 0	N F J	DEN	TIAL					
	To: Attentio Referenc Submitte	n : 9 : 9 7 : 8	ENRICE BEIPMEN I. SIGU	MINING T #5 RGEIRSON	CORPORATI	on			¥	Our You: Number o:	Fax No: r Fax No: f Pages :	(604) 5 688–334 4	985-10 16 inc	71 luding t	his page.
	Report	: V98-	-01295.	0	Status	: PRELIMIN	iary			Total	number of	samples	8:	4	
	Element	Metho	d		Totl	Element	Nethod			Totl	Element	: Nethod	1		Totl
	Au30	30g 1	Hre As	say - NA	4	Ъg	INDOC.	COUP.	PLASMA	4	Cu	INDOC.	COUP.	PLASMA	4
	Pb	INDUC	COUP	. PLASMA	4	Zn Co	INDUC.	COUP.	PLASMA	4	No	INDUC.	COUP.	PLASKA	4
	N1 Bi	INDUC	COUP	. PLASMA	4	CO As	INDUC.	COUP.	PLASMA	4	Ca. Sb	INDUC.	COUP.	PLASMA	4
	Fe	INDUC	COUP	. PLASMA	4	Ma	INDUC.	COUP.	PLASMA	4	Te	INDUC.	COUP.	PLASMA	4
	Ba	INDUC	. Coup	. Plasna	4	Cr	INDUC.	COUP.	Plasma	4	v	INDUC.	COUP.	PLASNA	4
	Sn	INDO	COUP	. PLASMA	4	W	INDOC.	COUP.	PLASMA	4	La	INDOC.	COUP.	PLASMA	4
	A1 Na	TNDOC	COUP	. PLASMA	4	ng K	INDUC.	COUP.	PLASMA	4	Ca Sr	INDUC.	COUP.	PLASMA	4
	Y	INDO	COUP	. PLASNA	4	Ga	INDUC.	COUP.	PLASMA	4	Li	INDUC.	COUP.	PLASMA	4
	Nb	INDUC	COUP	. Plasma	4	Sc	INDUC.	COUP.	PLASKA	4	Та	INDUC.	COUP.	Plasma	4
			4 _												
Results Sample Pr	to follo reparatio	w for:	: Eg Rocero Cotl (Flux Sa Sample T	mple LOI	2 LOI 3 Totl	LOI 1 Size	Nb 1 Fracti	I Ir I	1203 C	a0 Cr203	Fe203	* K20	LOI N	go Xao
RUSH/SP	LIT 6 PUL		4	ROCK		4		-		 4		ی وی و خب توجه و	ه هند مريد بر		د نتابی جودی حجات بادنار
			1				1								
			1				1			í					
			i				i			i					
			1				1			I.					
							1								
			1				+			1					
			i				1			l					
16 × 80 × 81		ا گزارش موجو بور			ao ao a o o o o o		وم به که به به د				ای این کر در او در با در ا			ک شور اور دو با در دارد و د	، جم عبد عبد هي
NOTOS:															

Constant of

.

history

alar and

LIENT:	KENRICE MINING CO	RPORATIO	N	PROJECT: COREY									
REPORT:	REPORT: V98-01295.0 **** PRELIMINARY ****					IVED: 28-	-JUL-98	DATE	PRINTED:	3-AUG-98	PAGE 1A (1/ 3)		
AMPLE	ELEMENT UNITS	Au30 PPB	Ag PPM	Cu PPM	Pd PPM	Zn PPM	No Ngg	ni PPN	Co PPN	Cd PPM	Bİ PPM	As PPN	Sd PPM
2 97833		10	<0.2	14	11	11	4	16	2	<0.2	<5	26	<5
E x2 97834		7	<0.2	30	17	28	1	25	2	<0.2	<5	<5	<5
R2 97835		6	<0.2	69	3	62	<1	68	28	<0.2	<5	<5	<5
2 97836		6	<0.2	19	27	58	3	18	3	<0.2	<5	8	<5

a second second

Constanting of

LIENT: 1	KENRICE MINING CO	RPORATION	1					PRO	JECT: CORE	Y			
REPORT:	V98-01295.0 ****	PRELIMIN	VARY ****		DATE RECE	IVED: 28-	JUL-98	DATE	PRINTED:	3-AUG-9	98 Pagi	1B(2,	/ 3)
AMPLE	<u>element</u> Units	F9 PCT	Mn PPM	Te PPM	Ba PPM	Cr PPM	V PPM	Sn PPM	W PPM	La PPM	Al PCT	Mg PCT	Ca PCT
2 97833		2.33	55	<10	71	82	5	<20	<20	8	0.28	0.03	0.03
k2 97834		1.27	45	<10	108	83	2	<20	<20	11	0.24	0.04	0.04
R2 97835		4.49	556	<10	109	95	71	<20	<20	2	3.45	1.70	2.62
2 97836		1.10	108	<10	50	127	4	<20	<20	9	0.23	0.02	0.78

Distriction of

Constanting of

Contraction of

and an and a start

Section of the sectio

LIENT: KEN	RICE MINING CO	DRPORATIO	N					PRC	JECT: CORI	Y			
REPORT: V98	-01295.0 ****	PRELIMI	NARY ****		DATE RECE	IVED: 28-	JUL-98	DATE	PRINTED:	3-AUG-	98 PAGE	1C(3/	/ 3)
AMPLE NUMBER	element Units	Na PCT	K PCT	Sr PPM	Б БЖ Д	ga PPN	Li PPN	ND PPM	Sc PPM	Ta PPX	Ti PCT	Žr PPM	
2 97833		0.08	0.30	11	3	<2	1	<1	<5	<10	<0.01	3	
2 97834		0.08	0.19	8	2	<2	4	4	<5	⊲0	<0.01	3	
R2 97835		0.27	0.03	46	9	7	12	6	5	<10	0.24	15	
2 97836		0.10	0.07	23	14	<2	4	2	<5	⊲0	0.07	3	

Jancouv	er, B.C. (Canada		* U R	. g e n t	£ C 0	NF		TIAL	******				
	To: Attention Reference Submitter	KENRI 1 : 9 : 1 : H. SJ	ICH MINING C	ORPORATIO	N				Our Your Number of	Fax No: Fax No: Pages :	(604) \$ 688-334 6	985-107: 16 incl:	l uding th	nis page.
	Report	: V98-0124	47.0	Status :	COMPLETE	ł			Total r	number of	samples	a: 10		
	Element	Me thod		Totl	Element	Method			Totl	Element	Nethod	i		Totl
	Au30	30g Fire	Assav - AA	10		INDUC.	COUP.	PLASMA	10	Cu	INDOC.	COUP.	Plasma	10
	Pb	INDUC. CO	OUP. PLASNA	10	Zn	INDUC.	COUP.	PLASMA	10	Хо	INDUC.	COUP.	plasna	10
	N1	INDUC. CO	OUP. PLASMA	10	Co	INDUC.	COUP.	PLASMA	10	Cđ	INDOC.	COUP.	Plasma	10
	Bi	INDUC. CO	OUP. PLASMA	10	As	INDUC.	COUP.	PLASMA	10	Sb	INDUC.	COUP.	Plasma	10
	Нg	COLD VAPO	or aa	10	Fe	INDUC.	COUP.	PLASKA	. 10	Mn	INDOC.	COUP.	PLASMA	10
	Te	INDUC. CO	OUP. PLASMA	10	Ba	INDUC.	COUP.	PLASNA	. 10	Cr	INDUC.	COUP.	Plasma	10
	V	INDUC. CO	OUP. PLASMA	10	Sn	INDUC.	COUP.	PLASMA	. 10	W	INDUC.	COUP.	PLASMA	10
	la	INDUC. CO	OUP. PLASMA	10	AL No	INDUC.	COUP.	TTA SNA	. 10	AG V	TNDUC.	COUP.	elandaa Dy. B gwb	10
	Ca	INDUC. CO	OUP. PLASMA	10	nei ▼	INDOC.	COUP.	PLA SNA	10	Ca Ca	TNDIC.	COTP.	DY.L SML	10
	5C T.4	TRADIC C	NTO DIAGNA	10	1 Nh	TNDUC.	COUP.	PLASMA	10	90 90	INDUC.	COUP.	PLASMA	10
	41 Ta	TNDDC C	OTP. PLASMA	10	70 11	INDUC.	COUP.	PLASMA	10	Žr	INDUC.	COUP.	PLASMA	10
	5102	YRAV FLOG	ORESCENCE	10	T102	XRAY FI	UORES	CENCE	10	A1203	XRAY F	LUORESC	ENCE	10
	Fe203*	XRAY FLU	ORESCENCE	10	MnO	XRAY FI	UORES	CENCE	10	MgO	XRAY F	LUORESC	ENCE	10
	CaO	XRAY FLUG	ORESCENCE	10	Na 20	XRAY FI	DORES	CENCE	10	K20	XRAY F	LUORESC	ENCE	10
	P205	XRAY FLU	ORESCENCE	10	LOI	GRAVIM	TRIC		10	Total				10
	Cr203	XRAY FLU	ORESCENCE	10	ĩ	XRAY FI	UORES	CENCE	10	Nb	XRAY F	LUORESC	ence	10
	Zr	XRAY FLU	ORESCENCE	10					، سے میں بروجہ وردی ہیں۔	ای برنیا سخم سے سے		بد نزد ذه که خو ها ه		
ample	Preparatio	ns Totl	Sample T	me	Totl	Size	Fract	ion To	tl Rema	arks		عد عد ب		هم وي وي وي وي
RUSE/S	PLIT 6 PUL	v. 10	ROCK		10	-150			10					
			1						1					
						1			1					
			1			i			i					
			·			1								
			1	-		1			1					
			1			1			I					
			I			1			1					
			- I .			I			I					
Notes ·	و و بر به به به به به م			هه می در در در او ور و	9 2 8 4 4 9 4 9 9		ه کری جندب و							98 99 <u>9</u> 4 99 99

LIENT: KENI	RICH MINING CO	RPORATIO	N					PR	OJECT: CO	REY			
REPORT: V98-	-01247.0 (COM	(PLETE)			DATE	RECEIVED:	21-JUL-98		DATE PRI	NTED: 4-3	UG-98	PAGE	1A(1/ 5)
AMPLE	ELEMENT	Au30	Ъg	Cu	Pb	Zn	Mo	Ni	Co	Cd	Bi	As	కర
NUMBER	UNITS	P PB	PPM	PPM	PPM	PPN	PPN	PPM	PPN	PPM	PPM	PPM	2 PM
2 97824		<5	<0.2	7	17	166	4	1	4	0.3	<5	<5	<5
×2 97825		<5	<0.2	8	13	168	3	4	4	0.3	<5	5	<5
R2 97826		<5	<0.2	7	10	25	1	1	4	<0.2	<5	12	<5
2 97827		<5	<0.2	5	11	92	1	1	4	0.2	<5	<5	<5
2 97828		< 5	<0.2	3	10	11	1	2	<1	<0.2	<5	<5	<5
-2 97829		<5	<0.2	8	<2	84	4	2	25	<0.2	<5	<5	<5
2 97830		<5	<0.2	5	10	25	1	2	2	<0.2	<5	<5	<5
¹ R2 97831		<5	<0.2	27	21	116	1	1	6	0.3	<5	<5	<5
<u>R</u> 2 97832		<5	<0.2	4	2	173	4	4	5	0.2	<5	<5	<5
2 98654		<5	<0.2	5	7	99	4	2	5	<0.2	<5	<5	<5

 $\prod_{i=1}^{n}$

LIENT: KENP	RICH MINING C	ORPORATIO	N					PRO	DJECT: COR	EY			
REPORT: V98-	-01247.0 (CO	MPLETE)			DATE P	ECEIVED:	21-JUL-98		DATE PRIN	TED: 4-A	UG-98	PAGE	1B(2/ 5)
AMPLE	<u>element</u> Units	Hg P PM	Fe PCT	Mn PPM	To PPM	Ba PPM	Cr PPM	N S S S S S S S S S S S S S S S S S S S	Sn PPM	W PPN	La PPN	Al PCT	Mg PCT
r	-												
2 97824		0.100	2.23	411	<10	83	18	3	<20	<20	7	0.59	0.13
¹ x2 97825		0.105	2.70	89	<10	68	40	4	<20	<20	11	0.74	0.13
R2 97826		0.089	3.86	397	<10	74	17	10	<20	<20	3	1.40	1.23
2 97827		0.155	3.27	625	<10	146	27	12	<20	<20	13	1.40	0.36
2 97828		0.054	1.19	25	<10	223	73	5	<20	<20	20	0.50	0.05
2 97829		0.065	6.54	894	<10	23	107	156	<20	<20	<1	3.07	2.82
2 97830		0.092	0.93	34	<10	122	49	3	<20	<20	20	0.30	<0.01
['] R2 97831		0.298	4.31	766	<10	59	36	24	<20	<20	11	1.53	0.66
<u>R2</u> 97832		0.041	7.32	367	<10	71	6	24	<20	<20	10	2.78	1.01
2 98654		0.102	4.29	605	<10	62	21	16	<20	<20	14	1.61	0.65

La Carelante

Π

Cherry and

Contraction of the

- states

Propertiers L

Compadied

LIENT: KENR REPORT: V98-	ICH MINING CO 01247.0 (CO	ORPORATION MPLETE)	N		DATE R	ECEIVED:	21-JUL-98	PRC	DJECT: COR DATE PRIN	EY Ted: 4-a	.UG - 98	PAGE	1C(3/5)
AMPLE	element Units	Ca PCT	Na PCT	K PCT	Sr PPM	55M Ā	G2 92%	Li PPN	85M NP	Sc PPN	. Ta PPM	Ti PCT	Zr PPN
2 97824		2.12	0.03	0.30	102	17	<2	4	<1	<5	<10	0.01	<1
L 37825		0.40	0.04	0.36	16	15	<2	3	<1	<5	<10	0.02	1
R2 97826		<0.01	0.02	0.24	3	3	2	9	<1	<5	<10	<0.01	1
.2 97827		0.49	0.05	0.31	14	16	3	5	<1	<5	<10	0.06	2
.2 97828		0.12	0.03	0.40	19	5	2	4	<1	<5	<10	<0.01	1
		1.71	0.05	0.01	9	8	<2	14	14	12	<10	0.33	15
.2 97830		<0.01	0.11	0.17	6	4	<2	<1	2	<5	<10	0.07	6
¹ R2 97831		0.91	0.06	0.09	57	10	5	3	1	10	<10	0.06	2
R2 97832		0.49	0.05	0.11	21	15	13	20	<1	8	<10	0.04	1
2 98654		0.52		0.09	13	21	6	- 5	<1	7	<10	0.11	5

anné a tiné a fi

The second

Contraction of

al donat an an

LIENT: KENI	RICE MINING C	ORPORATION	N.					PI	OJECT: CO	Rey			
REPORT: V98	-01247.0 (CO)	MPLETE)			DATE	RECEIVED:	21-JUL-98		DATE PRIM	NTED: 4	-aug-98	PAGE	1D(4/ 5)
AMPLE NUMBER	element Units	Sio2 PCT	Tio2 PCT	Al2O3 PCT	Fe203* PCT	Mn0 PCT	Mgû PCI	Ca0 PCT	Na20 PCT	K20 PCT	P205 PCT	LOI PCT	Total PCT
2 97824		64.39	0.96	14.66	3.46	0.06	1.03	2.99	3.27	3.46	0.31	3.78	98.41
×2 97825		67.77	1.12	14.30	3.93	0.02	0.90	0.63	3.29	2.98	0.32	3.33	98.64
R2 97826		64.91	0.75	14.51	5.50	0.06	2.85	0.09	1.86	3.30	0.02	4.55	98.43
12 97827		68.95	0.79	13.71	5.01	0.10	0.74	0.74	3.20	3.84	0.23	1.98	99.33
12 97828		71.56	0.74	13.67	1.95	0.01	0.42	0.16	1.79	6.82	0.23	1.90	99.30
		50.18	1.03	16.17	9.23	0.15	5.71	4.72	5.32	0.17	0.10	5.86	98.68
12 97830		69.44	0.28	16.42	1.17	0.01	0.07	0.08	5.71	4.97	0.03	1.02	99.25
R2 97831		65.52	0.94	13.72	6.49	0.13	1.16	1.30	4.24	3.63	0.36	1.85	99.38
R2 97832		54.87	1.28	18.10	10.83	0.07	1.88	0.79	6.11	1.97	0.42	2.56	98.92
12 98654		65.35	0.81	14.18	5.89	0.09	1.12	0.96	3.05	5.31	0.22	1.73	98.75

Contraction of the second

 \int

......

Constitue of

Converse of

and the second

and the second s

i .LII	ENT: KENRICH	MINING CO	RPORATION			22.08		91 - 7111 - 99	PROJECT: COREY	4-3777-99	DACE	18/5/5)
REPO	DRT: V98-012	47.0 (CO)	(PLETE)			DATE	KECETAED:	21-306-30	DATE FRINIED:	4-AUG-30	21432	TE(5/ 5)
AM	?LE	element	Cr203	Y	Nb	Zr						
NOM	BER	UNITS	PCT	PPM	PPM	PPM						
e ****												
2 !	97824		0.01	49	26	205						
ົ ສ2 🗄	97825		0.02	45	28	229						
R2 :	97826		0.01	29	19	171						
2	97827		0.01	44	21	221						
.2	97828		0.02	43	27	213						
<u>-2</u>	97829		0.03	19	12	75						
2	97830		0.02	31	32	307						
R2	97831		0.02	47	19	194						
R2	97832		0.01	49	20	242						
2	98654		0.02	45	18	224						

	ΤS	In	nterte	k Tes	ting Ser	vices						Lab Report
PORT: V98	-01161.0 (COMPLETE)					REFERENCE: SHIPM	ENT #3			
IENT. KEN			TON			······		SUBMITTED BY: H.	SIGURGEIRS	ON		
ROJECT: CO	REY		-		· · · · · · · · · · · · · · · · · · ·		i	DATE RECEIVED: 13-J	ul-98 da	TE PRINTED:	27-jul-98	
ATE PROVED	ELEMENT		NUMBER OF ANALYSES	LOWER DETECTION	EXTRACTION	METHOD	DATE APPROVED	ELEMENT	NUMBER OF ANALYSES	LOWER DETECTION	EXTRACTION	METHOD
30724 1 A	u30 Gold		3	5 PPB	Fire Assay of 30g	30g Fire Assay - /	A 980724 37 SiO	2 Silica (SiO2)	5	0.01 PCT	BORATE FUSIO	N XRAY FLUORESCEN
30724 2 A	lg Silve	er	3	0.2 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLAS	A 980724 38 TiO	2 Titanium (TiO2)	5	0.01 PCT	BORATE FUSIO	N XRAY FLUORESCEN
80724 3 C	u Coppe	er	3	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLAS	A 980724 39 AL2	03 Alumina (Al203)	5	0.01 PCT	BORATE FUSIO	N XRAY FLUORESCEN
30724 4 P	b Lead		3	2 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASE	A 980/24 40 Fe2	Wanganasa (MnO)	US) 5 5	0.01 PC1	BORATE FUSIO	IN XRAT FLUUKESLEN N VOAV FLUOPESCEN
50/24 52 10773/ 4N	n Zinc		נ ד	1 PPM	HCL:HNO3 (3:1) HCL:HNO3 (3:1)	INDUC. COUP. PLAS	A 980724 41 Mild A 980724 42 Mac) Magnesium (MgO)	5	0.01 PCT	BORATE FUSIC	N XRAY FLUORESCEN
00724 0 1	io noty:		J				, seeral is ige		-			
80724 7 N	i Nick	el	3	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLAS	🗚 980724 43 CaO) Calcium (CaO)	. 5	0.01 PCT	BORATE FUSIC	N XRAY FLUORESCEN
80724 8 0	co Coba	lt	3	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLAS	IA 980724 44 Na2	O Sodium (Na2O)	5	0.01 PCT	BORATE FUSIC	N XRAY FLUORESCEN
80724 9 0	d Cadm	ium	3	0.2 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLAS	A 980724 45 K20) Potassium (K2O)		0.01 PCT	BORATE FUSIC	IN XRAY FLUORESCEN
80724 10 E	3i Bismu	uth	3	5 PPM	HCL:HNOS (3:1)	INDUC. COUP. PLAS	LA 980724 46 P20	5 Phosphorous (P2	UD) 5	0.01 PCI	BORATE FUSIC	IN XRAY FLUORESCEN
80724 11 A	As Arsei	110	5 7	D PPM 5 DDM	HCL:HNUS (5:1) HCL:HNUS (3:1)	INDUC. COUP. PLAS	14 980724 47 LUI	al Whole Rock Tota	n 5 1 5	0.01 PCT	Ignition in	D Deg. GRAVIMETRIC
00724 12 3	SD ANCH	litery	5	2 114	102.1100 (311)	INDUCT DODI T LINU						
80724 13 H	lg Merci	Jry	3	0.010 PPM	HCL:HNO3 (3:1)	COLD VAPOR AA	980724 49 Cr2	03 Chromium Oxide	5	0.01 PCT	BORATE FUSIC	N XRAY FLUORESCEN
80724 14 F	Fe Iron	·	3	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLAS	A 980724 50 Y	Yttrium	5	5 PPM	BORATE FUSIC	N XRAY FLUORESCEN
80724 15 🕴	in Manga	anese	3	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLAS	A 980724 51 ND	Niobium	2	5 PPM	BORATE FUSIC	IN XRAY FLUORESCEN
80724 16 1	fe Tell	urium	5	10 PPM 1 DDM	HCL:HNO3 (3:1)	INDUC. COUP. PLAS	ИА 980 <i>12</i> 4 52 2Г IA	Zirconium	2	D PPM	BURATE FUSIC	IN XRAT FLUORESCEN
80724 17 E 9072/ 19 d	Sa Bari	.m nium	כ ז	1 DDM	HCL:HNUS (3:1) HCL:HNUS (3:1)	INDUC. COUP. PLAS	ia.					
00/24 10 1			5				SAMPLE TYPES	NUMBER	SIZE FRAC	TIONS	NUMBER SA	MPLE PREPARATIONS NUMB
80724 19 \	/ Vana	dium	3	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLAS	Å					
80724 20 9	Sn Tin		3	20 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLAS	ia r rock	5	2 -150		5 CR	NUSH/SPLIT & PULV.
80724 21 V	l Tung	sten	3	20 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLAS	A					
80724 22 L	a Lanti	nanum	3	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLAS	A	с то. #010 - 510 ри		.	INVOLCE TO.	#010 - 510 PHODADD STOC
80724 23 F	AL ALUM Ar Maan	inum natum	5 7	0.01 PCI	HCL:HNO3 (3:1)	INDUC. COUP. PLAS	A KEPUKI UUFIE	3 10: #710 " J10 BU	KRARD SIRCE	•	INVOICE IU:	#710 - J10 DURKARD SIKE
00/24 24 1	ng magn	estum	5	0.01 FG		11000.0001.1210	***	*****	******	******	*****	*****
80724 25 0	Ca Calc	ium	3	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLAS	lÁ Th	is report must not l	be reproduc	ed except in	full. The dat	a presented in this
80724 26 1	Na Sodi	Jm	3	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLAS	ļА́ ге	port is specific to	those samp	les identifi	ed under "Samp	le Number" and is
80724 27 1	C Pota	ssium	3	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLAS	ļÀ, ap	plicable only to the	e samples a	s received e	xpressed on a	dry basis unless
80724 28 9	Sr Stro	ntium	3	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLAS	A ot	herwise indicated		<u></u>		مار و المراجع و مار و المراجع و المراجع و المراجع و المراجع و المراجع و مراجع و مراجع و المراجع و ا
80724 29 1	Y Yttr	ium	3	1 PPM	HCL:HNOS (3:1)	INDUC. COUP. PLAS	A ***		*********	**********	~~ ~~~~~~~~~ ********	**********************
80724 30 (Ga Gall	1um	3	2 PPM	HUL:HNUS (5:1)	INDUL. COUP. PLAS						
0077/ 74 -		i.m	7	1 DDM	HCL - HNO3 (3-1)		A					
00/24 31 1 9072/ 72 4	Li LITA Խե հետե	ium	ב ד	1 DDM	HCL:HNO3 (3:1)	INDUC. COLP. PLAS	Å					
80724 32 1	nu nituu Sc Scen	dium	3	5 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLAS	À					
80724 34 1	Ta Tant	alum	3	10 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLAS	iÀ.					
80724 35	Ti Tita	กเนต	3	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLAS	ļĀ .					
				4 0044	100 1007 17 15		. 1					

		In Bo	teri ndar		(eg	rest g	in	Ig	Ser	vi	Ce	ES	1	not constant of the		kan wani	• engg	And And	in in the	ά _{ει}	gen 1990 û nilke ve	Ī	k, , 11° ri, Gattone		Austiansiasis	20.00	W aldow	Andraa Mew	ι. Έ	G L R	eo ab ep	ort	mic	al
CLIENT: K REPORT: V	ENRICH MINING CORPO 198-01161.0 (COMPLI	ORATI ETE)	DN		Ð	0							DA	te re	CEIV	ÆD:	13-JU	1L-98	D	DATE	PRINT	ED:	27- J	UL-98	i Pi	AGE	Pi 1A(ROJE(1/ 6	CT: C(5)	DREY				
SAMPLE NUMBER	ELEMENT AU30 / UNITS PPB PI	Agi C PM PP	u Pb Z M PPM PF	zn Mo 2M PPM	Ni PPM	Co Cd PPM PPM	Bi PPM	As PPM	Sb Hg PPM PPM	Fe PCT	e Mn PPM	Te PPM	Ba PPM	Cr PPM	V PPM	Sn PPM	W PPM P	La PM I	AL PCT P	Mg PCT	Ca PCT	Na PCT	K PCT	Sr PPM	Y PPM	Ga PPM	Li PPM I	ND PPM (SC PPM PI	Ta T PM PC	ī Z TPP	r SiO2 M PCT	TiO2 PCT	AL2O3 PCT
97819 97820 97821	<5 <	.2	4 2 1	52 2	2	3 0.4	<5	<5	<5 0.227	' 2.99	9 428	s <10	53	25	2	<20	<20	11 0	.68 0,	.06 1	1.19 0).03	0.29	45	15	<2	2	<1	<5 <	10 <.0	1	58.12 63.63	1.23	15.69 14.23 14.69
97822 97823	ব্য ২ ব্য ২	.2 .2	2 13 14 4 15 4	46 1 44 4	1 7	8 0.3 5 0.2	<5 <5	10 23	<5 0.086 <5 0.329	5.25 2.66	421	<10 <10	127 40	7 20	12 6	<20 <20	<20 <20	25 2 7 0	.35 0. .58 0.	.97 1 .07 0	1.82 0 0.20 0).03).02	0.38	80 10	19 3	5 <2	15 1	<1 <1	<5 < <5 <	10 <.0 10 <.0)1 <)1	1 55.14 1 60.33	1.22 0.67	18.14 19.86
						そうかい かんし たいにん 一般的な かたい しまた かんしゅう かんしん かんしゅう かんしゅう かいしん ひょうしん しょうしん しょうしん しょうしん しょうしん しょうしん しょうしん しょうしん	[10] S. M. Martin, M.						a de la companya de l La companya de la comp							1977年、1978年、「「「「「「「「「「「」」」」、「「」」、「」」、「」」、「」、「」、「」、「														
							and and the state of the state										and the second state of the second																	

Bondar-Clegg & Company Ltd., 130 Pemberton Avenue, North Vancouver, B.C., V7P 2R5, (604) 985-0681

		Inte	ertek	Test	ing S	Servi	ices	econostaneos	proportional and a	rissensette soor		errigen (1994) La contence d'Alivient	opperantinity Springering	anterporturent Landiësersen	Geochemical Lab
CLIENT: KE	NRICH MINING 28-01161.0 (0	CORPORATION	lar Cle	gg		···· .		DATE REC	EIVED: 13-JI	JL-98	DATE PRINTED	: 27-JUL-98	PAGE	PROJECT: 1B(2/ 6)	COREY
SAMPLE NUMBER	ELEMENT FO	203* MnO M PCT PCT PC	go Cao Na2o Ct PCT PCT	K20 P205 PCT PCT	LOI Total PCT PCT	Cr2O3 Y PCT PPM	ND Zr PPM PPM								
97819 97820 97821 97822 97823		7.69 0.03 1.0 4.45 0.13 0.0 4.57 0.07 0.1 8.16 0.06 2.1 4.02 0.02 1.1	00 1.97 2.77 64 3.43 4.01 70 1.72 2.58 36 2.58 2.66 27 0.32 2.58	7 3.92 0.53 3.25 0.51 4 3.48 0.32 4 4.02 0.43 3 4.97 0.06	6.10 99.06 3.79 99.29 4.32 98.99 5.04 99.82 5.31 99.45	0.02 63 0.02 41 0.01 46 0.01 59 0.04 35	17 204 21 189 23 204 19 236 18 157								

ITS		I B	nt on	er Ida	te r (ek Cle] eg	۲e g	st	ir	ıg	S	ber	vi	ce	es																		L R	eo ab epo	cne: ort	m10	
LIENT: KENRICH MININ EPORT: V98-01161.0	ng Co (Com	RPORA	TION	ŀ.													DAT	E RE	CEIV	ED:	13-JL	IL-98		DATE	PRIN	TED:	27-JI	JL-98	3 P.	AGE	PI 2A(ROJE(3/ 6	cτ: α 5)	REY				
TANDARD ELEMENT	Au30 PPB	Ag PPM	Cu PPM	Pb PPM	Zn PPM	Mo PPM	N Î PPM	Co PPM	Cd PPM	Bi PPM	As PPM	sd PPM	Hg PPM	Fe PCT	Mn PPM	Te PPM	Ba PPM	Cr PPM	V PPM	Sn PPM	W PPM P	La IPM	Al PCT	Mg PCT	Ca PCT	Na PCT	K PCT	Sr PPM	Y PPM	Ga PPM	Li PPM	ND PPM (SC 1 PPM PI	ia 1 214 P(i Zr TPPM	SiO2	2 TiO2 F PCT	AL2C PC
	-										æ	-		- 01		-10		-4			-20	201 201	01	. 01	. 01									0				
WALYTICAL BLANK	<>	<.2	_<[~~	<1	<u></u>	<1 1	.51	۲.۲	- 52	<2 4	52	×.010	1.01	<u></u>	×10	< I 1	N	- S - 4 - 2	×20 1	< <u>2</u> 0	1	101	5.U) '	< UI	S.UI	<.UI	- 51	· • •	~	<1 4	S I 4	SD 5	IU <.(1 1	•		ł.
iumber of Analyses	1		1		1 0 E	۱ ۵ - ۲		і П Б	1	1	; 7		0.005	005	1	- I E	1	0.5	1	40	10.0	1	005	1005	1	005	1	n s.	. I 0 E		1 0 5 1		7	1	505			Į.
lean value	3	V. I	0.5		0.3	U.)	0.5	0.5	0.1			3	0.005	.005	0.5	י ג	0.5	0.5	0.5	, in	10 0	1.2 ::		.005	.005	.005	.005	0.5	0.5	10 - 12	0.5	J.J)	5.00	U.9			
standard Deviation	-	្តុំ	-	<u> </u>		្វី	4	1	0 1	- ว	-		0.005	0 05	-	01	01	1	1	01	- :: 01	n1 /	01	- 01 -	- 01	- 01	- 01	01	01	01	01		01 0		1 01	- 001	- 01	<u>م</u> (
ccepted vatue	2	0.2	1	۲	: 1 :		1		0.1	2			0.005	u. 05	, r	.01	-01	i Po				<u> </u>	101		01	7.YI		• V I	.01	.01	.01		.01 .0					` .U
ormat Bof Natorial	1057		-	1991) 121	-		-	÷.,	-		-	44	-		-		-	1.12	_						-		_		-		-		- 11 -		. <u>19</u>	j.		eren e
umbor of Analyses	1057						-		· _		-						-		-		-		-		-		_		_		_		-		_	_		
	1057		· -						- -	-	_		_	682	-		_		_		_ :-		_		-		_		. .		_		. 9	•	- 233 - 234	-		
tendard Doviation	1001								-		_		-		-	-			-		_ :		_ :	<u> </u>	-				-		_		83 • 12	2022 5445	1993 1993			
Accepted Value	1070			1.4			-		_		-		-								•		-		-				3 _		_		- 2		- 94	8. 21 -		ŝ.
accepted value	1010		4 5						1									یں۔ آبر 44 غار																		à A		
CANMET LAKE-SED 1	-	0.8	41	80	282	9	9	7	1.2	<5	32	<5	0.118	1.82	411	<10	. 76	9	21	<20	<20	8 0	.42 (0.56	5.04	0.03	0.05	65	9	<2	4	<1	<5 <	0 0.0	4 <1	-1 12 12 12 12 14 14 14 14 14 14 14 14 14 14 14 14 14		
lumber of Analyses	-	1	<u> </u>	1	່ 1	1	1	្នា	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-		
rean Value	-	0.8	41	80	282	9	9	7	1.2	3	32	3	0.118	1.82	411	5	76	9	21	10	10	8 0	.42 ().56 (6.04	0.03	0.05	65	9	1	4).5	3	5 0.0	4 0.5	ë -		
Standard Deviation	-		-		-		-		-	-	-		-		-	•	-			•			-	1. 1.	-	-	-		-		-		-	23	- 194	- 		
Accepted Value	-	0.6	44	84	337	12	11	9	1.2		30	1	0.110	1.80	460	, 	-	12	27		- :		- :		-		-	-	· -		-		- 4		- 33	-		8
·									-			178 1817									-												1					ĺ.
CANMET SO-2 REF STD	-	•	-		-		-		: : +	-) -		-		-	-	-		-		- 3		- }	-	-		-	-	-	i en	-		- 0			51.81	1.34	14.0
lumber of Analyses	-		-		-		-		-	-	-		-		-	·	-	-	-		-				-	-	-		-		-		- 3		- 44	୍ଲି 1	1	
lean Value	-		-	•	-		-	-	-	-	-		-		•	-	-		-		- :				-		-	-		1 .	-		- 3		- 332	51.81	1.34	14.6
Standard Deviation	-		-		-		-	- - -	-	-	· •		-	- 	-	-	· -	- .	-	•	-		-		-	-	-		-	-	-		- 3		- 335	- -		
Accepted Value	-		-		-		-		-	-	-		-	공급	-	- : ; ;	-		-		- :	3	- :	5.5. . .	-	tin tin	-	-			-		•			51.70	1,38	14.7
								3. 31		1.1				андын. Казар																								
				di j				the state				ы́л.). 1997																		ins Ay	1							
																							:	5														
																																				19 19		ł
					i.																			na na Ngjari			-	andr The					le de la companya de La companya de la comp					
		1997 1983 1983			-									음음을 공연하		- 344 E 1 - 447 E											-						Å			22 X 20		2
					:																1										1000			9450 9434 4500			- 2010-041 7663-666	
											(940								동물 같은								신성	00000					14 15 15		-
				· 관계 - 동일과											-												-				2000							:
																																	53. 					÷
																					4 11						:				100 A 100 A							:
				1979 (1.08	ş.	2.54		- 2 ŝ.		32.17		a de t						80.81		i si s		e ga in				1. E - 1		1.2.2.4		000000	6.5	0.15	63,835,	8	- 2003-202	

 $b \cdots \dots \dots \dots \dots \dots \dots$

annua

			Int Bon	ert	ek Clea	Tes	sting	Serv	vice	S	Patronice and Pa		Antonio and A Antonio and Antonio and Anto	annan tarra a	(Bananana) An seanna chu	landinin Landinin	Geochemical Lab Report
CLIENT: REPORT:	KENRICH MI V98-01161.	NING CORP 0 (COMPL	ORATION		0102	50			· · · · ·		DATE RECEIVED: 13-	UL-98	DATE PRINTED	: 27-JUL-98	PAGE	PROJECT: 2B(4/ 6)	COREY
standari Name	D ELEME Uni	NT Fe203* TS PCT	Mn0 PCT	MgO Ca PCT PC	ao Na2o CT PCT	K20 P2 PCT P	OS LOI TO CT PCT	otal Cr203 PCT PCT P	Y NID Z IPM PPM PF	Zr PM							
ANALYTI	CAL BLANK	-	·	-	•	1. 	-			-							
Number (of Analyses	-	•	- 10 .0	(#13) -	•		•	- 1	-							
Mean Va	lue	· -	•	-	•	5-1-1- - 	- (.+ ⁻	-		-							
Standard	d Deviation	ı –		-			-	-		- :							
Accepte	d Value	<.0001	<.01 <	.01 <.(01 <.01	<.01 <.	01 <.001 <.	001 <.001 .	01 .01 .0	01							
	_ _																
Gannet i	Ref.Materia	it -			9 - 0 - 119		• • • • • • •			-							
Number	of Analyses	-	• 11 H 1 182 - 1	•		900 - 1800 1965 - 1960 1965 - 1966		•		•							
Mean Va	lue	-	•				•			-							
Standar	d Deviation	· -		•	9 - 99 - 9		•		•								
Accepte	d Value	-	•	•					-	-							
										_							
	LAKE-SED 1									-							
Number	of Analyses	-					-			-							
Mean Va	lue								111	-							
Standan	d Deviation	ı -								-							
Accepte	d value	-		- 6						-							
						7.95.0	11 11 24 01	00 0.04	12 44 7	50							
CANMET	SU-2 REF SI	U 7.04	• 0.09 0	.85 2.	51 2.51	2.65 U.	00 14.20 04	1.02 0.01	42 10 /:	4							
Number	or Analyses	i] 		1000 000000	1 1 57 3 77) 05 A	1	I I I	1 1	1							
mean va		7.04	+ U.09 L	.07 2.	1 2.31	∠.0) U.	W 14.2D 04		Ψ <u>C</u> 10 / .								
standan	O Deviation	· · ·		-	4. 2 10	2 95 0	67 11 34	- 0.001	10 22 74	-							
Accepte	d value	7.0	/ U.U9 C	.0/ 2.	04 2.40	2.00 0.	0/ 14.20	- 0.001	40 22 70	50							
) ())													
						n Alexandra Alexandra Alexandra Alexandra											
									-								
					839	380 C			11								

		یست [n1] 30]	tert ndar	ek Cl		Cest	in	g	Ser	vi	ce	S	k		۹				1 1	(1997) - 1997 (1		¥	3	4		1		A.	G La R	eoc ab epc	her rt	nic	al
CLIENT: KEI REPORT: V98	RICH MINING CORPOR	RATIC	N			2							DATE	REC	EIVEC): 13	- JUL -	98	DATE	e pri	NTED:	27- J	UL-98	P/	AGE	PR 3A(80JE0 5/ 6	CT: CC 5)	REY				.
SAMPLE NUMBER	ELEMENT AU3O A	g Cu M PPN	J PID Z I PPM PP	'n Mo M PPM	N i PPM	Co Cd PPM PPM	Bi PPM P	As s Pm pi	Sb Hg M PPM	I Fe PCT	Mn PPM	Te PPM I	Ba PPM P	Cr PM P	V S PM PF	sn PM PP	W La M PPM	AL PCT	Mg PCT	Ca PCT	Na PCT	K PCT	Sr PPM	Y PPM F	Ga PPM I	Li PPM F	NID PPM (SC T PPM PP	a T M PC	i Zr TPPM	SiO2 PCT	T i O2 PCT	AL203 PCT
97820 Duplicate								· · ·			•															a a state of the state of the					63.63 63.66	1.20 1.19	14.23 14.18
97822 Duplicate	<5 <. <5 <.	2 2 2 2	2 13 14 2 14 14	⊷6 1 •2 <1	1 2	8 0.3 7 0.2	ৎ ৎ	10 · 9 ·	<5 0.086 <5 0.078	5.25 4.97	421 402	<10 <10	127 122	7 7	12 <2 10 <2	20 <2 20 <2	0 25 0 24	2.35 2.26	0.97 0.93	1.82 1.74	2 0.03 6 0.03	0.38 0.37	80 75	19 18	5 5	15 14	<1 <1	<্য <1 <হ <1	0 <.0 0 <.0	11 <1 11 <1	55.14	1.22	18.14
																									r Rei EVA								
								ti ninder a v																									
											· • • •																						
																												an a					
								an the second																									
													2 2 - - -											· · ·		an tar							
																				5.						a station and stationary from							
								and the second second																				talia antaga sa a					
																										1000 Million							4.4.2619000004.

			Inte Bond	rtek ar Cle	Test	ing S	Ser	vi	ces	Contraction Contraction	and Lannau		Constant	1		Geod Lab Repo	hemical
CLIENT: KEN REPORT: V98	RICH MINING 3-01161.0 (g cori Compi	PORATION LETE)							DATE RECEIVED:	13-jul-98	DATE PRINTI	ED: 27-JUL-98	PAGE	PROJECT: 3B(6/ 6)	COREY	
Sample Number	ELEMENT I UNITS	Fe2O3 PC	* MnO Mg(T PCT PC) Cao Na2 PCT PC	0 K20 P205 T PCT PCT	LOI Total PCT PCT	Сг203 РСТ	y PPM f	Nb Zr PM PPM								
97820 Duplicate		4.4 4.4	5 0.13 0.64 5 0.12 0.64	4 3.43 4.0 5 3.46 4.0	1 3.25 0.51 3 3.23 0.51	3.79 99.29 3.83	0.02 0.01	41 49	21 189 23 191								
97822		8.1	6 0.06 2.3	5 2.58 2.6	6 4.02 0.43	5.04 99.82	0.01	59	19 236								

Bondar-Clegg & Company Ltd., 130 Pemberton Avenue, North Vancouver, B.C., V7P 2R5, (604) 985-0681

			Inter Bonda	tek]	[esti	ng S	Ser	vice	J (S		L		Junio	.	J	.		<i>آ</i> رمندوسی	Geo Lab Rep	chemica ort
CLIENT: KE	NRICH MININ 8-00975-0-0	g Corp	ORATION						DA	TE RECE	IVED	: 25-	jun-98	DATE P	RINTED:	10-JUL-98	PAGE	PROJECT: 1 OF 3	COREY	
SAMPLE NUMBER	ELEMENT UNITS	SiO2 PCT	TIO2 AL203 PCT PCT	Fe203* MnO PCT PCT	Mgo Cao Pct Pct	Na20 K20 PCT PCT) p205 1 pct	LOI Tot PCT F	al Cr2C CT PC	13 Ba :T PPM	y PP m i	ND PPM P	Zr PM							
97801		65.31	0.89 15.08	5.44 0.06	1.05 0.32	3.19 4.89	0.25	2.35 99.	15 0.0	2 2680	45	27 2	35							
97802		78.49	0.23 10.49	2.32 0.03	0.33 0.27	4.52 1.23	5 0,06	0.74 98.	90 0.0	5 1009	48	28 2	82							
97803		59.62	0.84 19.57	7.62 0.06	1.85 0.92	3.82 3.15	5 0.11	2.87 100.	64 0.0	1 1759	35 44	8 1	56. 97							
97804 97805		60.32	1.05 16.79	5.28 0.02	2.10 0.42	4.69 3.55	6 0.35	2.10 90.	60 0.0	1 2243	49	27 2	16							
97806		48.45	1.50 14.62	11.14 0.18	6.68 8.65	4.15 0.25	50.23 1022	3.60 99. 4 00 100	57 0.0 42 0.0)5 566 15 219	28 30	<5 <5	89 85							

Intertek Testing Services Bondar Clegg	Geochemical Lab Report
CLIENT: KENRICH MINING CORPORATION PROJEC REPORT: V98-00975.0 (COMPLETE) DATE RECEIVED: 25-JUN-98 DATE PRINTED: 10-JUL-98 PAGE 2 OF 3	CT: COREY
STADUAD ELEMENT SID2 TID2 AL203 Fe203* MD Mg0 Ca0 Ma20 K20 P205 L01 Total Cr203 Ba Y MD Zr MME WHTS PET	

			In Bo		rtek ar Cle	Т egg	les g	tin	g	Ser	vi	ces	1			τ ι τ αιτά	n, i i i i i i i i i i i i i i i i i i i	k.com	3,,,,,,,,,	1,400,1100, 2 8	Geochemical Lab Report
CLIENT: KEN REPORT: V98	RICH MININ 3-00975.0	ng cori (comp	PORATI	ON									DATE	RECEI	VED: 2	:5-jun-98	DATE PRINT	ED: 10-JUL	-98 PAGE	PROJECT: 3 OF 3	COREY
SAMPLE NUMBER	ELEMENT UNITS	SiO2 PCT	TiO2 PCT	AL203 PCT	Fe203* PCT	Minio Pct	MgQ PCT	Cao Na Pct P	20 K2 ST P(20 P205 CT PCT	LOI PCT	Total PCT	Cr2O3 PCT	Ba PPM F	y ni PPM PPI	2r I PPM					
97806 Duplicate		48.45 48.44	1.50 1.50	14.62 14.54	11.14 0 11.25 0	.18	6.68 6.84	3.65 4. 3.65 4.	15 0.2 15 0.2	25 0.23 25 0.23	3.60 3.60	99.57	0.05 0.04	566 577	28 < 30 <	89 90					

	, B.C. Cana	nda		₩ U R	. G E N T	4 CON	FIDEI	NTIAL	*		
	To: Attention : Reference : Submitter :	KENRIC Shipme H. Sig	e mining (nt #5 urgeirson	CORPORATIO	N			Our You Number o	Fax No: (604) 98 r Fax No: 688-3346 f Pages : 2	5-1071 including	this page.
	Report : VS	98-01295	.0	Status :	PARTIAL			Total	number of samples:	4	
	Element Met	thod	. او از میں میں میں م	Totl	Element 1	lethod		Totl	Element Nethod		Totl
	Au30 300	g Fire A	ssay - AA	4		 			• *		
									•		
Results	to follow f	or: Ag	Al As	Ba B1 Ca	A Cd Co	Cr Cu i	re ga A	g K La	Li Ng Na No R	a ND N1	Pb Sb Sc
Sample Pr	reparations	Totl 	Sample T	ype	Totl	Size Fra	action T	oti Rei	iar KS 	سند به برغ، وروا بوی ک	
RUSE/SPI	LIT & PULV.	4	ROCK		4	-150 ·		4 1		х	
							•	1 []			
				•		 		1			
						1		ł			

.

LIENT: KENRICH MINING CORPORATION REPORT: V98-01295.0 (PARTIAL)

SAMPLE	ELEMENT	Au30
NUMBER	UNITS	PPB
12 97833		10
L 2 97834		7
R2 97835		6
2 97836		6

Cunny

(.....)

Community of the second

Cum

DATE RECEIVED: 28-JUL-98

PROJECT: COREY DATE PRINTED: 1-AUG-98

PAGE 1 OF 1

[_____]

	anada	* U R	g e n t	6 C () N F	IDEN'	T I A L	•			
To:	KENRICH MI	NING CORPORATION	N				Our	Fax No: (60	I) 985-10	071	
Reference Submitter	: : A. SIGURGE	IRSON				N	unber o	f Pages : 4	-3346 in	cluding th	is page.
Report :	V98-01101 .0	Status :	PARTIAL				Total	number of samp	ples: :	10	
Element 1	ethod	Totl	Element	Nethod			Totl	Element Me	hod		Totl
Au 30	BOg Fire Assay	7 – AA 2	Ag	INDUC.	COUP.	PLASMA	2	Cu IND	C. COUP	. PLASMA	2
2b :	INDUC. COUP. I	lasna 2	Zn	INDUC.	COUP.	Plasna	2	No IND	C. COUP	. Plasma	2
N1 .	INDUC. COUP. E	LASKA 2	Co	INDUC.	COUP.	PLASNA	2	Cd IND	C. COUP	. PLASNA	2
B1 .	INDUC. COUP. P	LASMA 2	As Mo	INDUC.	COUP.	PLASMA PLASMA	2	Sb IND	C. COUP	. PLASMA	2
EU.	INDUC. COUP.	LASMA 2	ALI Cr	INDUC	COUP	PLASMA	2	נסומד ע וסומד ע	C. COUP	ARCALIS .	4
Sn 2	INDUC. COUP. H	LASMA 2	W	INDUC.	COUP.	PLASMA	2	La IND	C. COUP	. PLASMA	2
A1 :	INDUC. COUP. E	LASMA 2	Ng	INDUC.	COUP.	PLASMA	2	Ca IND	C. COUP	PLASNA	2
Na	INDUC. COUP. P	LASMA 2	K	INDUC.	COUP.	Plasma	2	Sr IND	C. COUP	. Plasma	2
Ŷ	INDUC. COUP. H	LASMA 2	Ga	INDUC.	COUP.	plasma	2	Li IND	C. COUP	. PLASMA	2
ND :	INDUC. COUP. P	LASMA 2	Sc	INDUC.	COUP.	Plasma	2	Ta IND	C. COUP	. Plasma	2
			·								
Results to follow	for: Hg Flu	x Sample LOI	2 LOI 3	LOI 1	A120	3 CaO (Cr203	Fe203* K20 1	OI NgO	Mno Na2	o No P
ample Preparation	Totl San	ple Type	Totl	Size	Fract	ion Tot	1 Rem	arks	***		
RUSE/SPLIT & PULV	. 10 ROC	ĸ	10	-150 		10	0				
				1			1				
				1			1				
				1			1				
	1 1			1			1				
				I			I				
	1			د عد عن م د			ی جرد مرد ها	****	و به بن الله او ها الله ا		
		نگ گی ہونے پر نظر میں صرف میں انگ گا									
stes:											

 \mathbf{f}

(manual)

ſ

C

C

(()

Cum

Commission

Cum

C

LIENT: KENI REPORT: V98-	CICE MINING CO -01101.0 (PAR	ORPOR <mark>ATIO</mark> CTIAL)	N		DATE P	ECEIVED:	07-JUL-98	PR	OJECT: CO	REY NTED: 15-J	111-98	PACE	12/1/31
AMPLE	element Units	Au30 PPB	Ag PPM	Cu PPM	P5 P5	Zn PPM	Mo PPM	ni PPM	Co PPM	Cd PPM	bi PPM	As PPX	Sb PPM
2 97808 2 97810 R2 97811 2 97812 2 97813		·											
B2 97814 2 97815 2 97816 R2 97817 2 97818		<5 <5	<0.2 <0.2	6 8	11 12	89 158	13	ব ব	2 3	<0.2 <0.2	<5 <5	37 18	<5 <5

ITS Intertek Testing Services Bondar Clegg

LIENT: KENR REPORT: V98-	ICE MINING CO 01101.0 (PAR	RPORATION TIAL)	1		DATE R	ECEIVED:	07-JUL-98	PR	OJECT: COP DATE PRIN	EY TED: 15-	J UL-9 8	PAGE	1B(2/3)
AMPLE	element Units	F9 PCT	Mn PPM	Te PPN	Ba PPM	Cr PPM	V PPM	Sn PPM	W PPX	la PPM	Al PCT	Mg PCT	Ca PCT
2 97808 2 97810 R2 97811 2 97812 2 97813													
R2 97814 2 97815 2 97816		2.44	57	<10	59	39	3	<20	<20	10	0.46	0.04	0.32
R2 97817		3.84	446	<10	38	43	3	<20	<20	12	0.33	0.02	2.77

Council Council

mining

(

ſIJ

Current of the second s

Cumm

C

ITS Intertek Testing Services Bondar Clegg

LIENT: KENR REPORT: V98-	ICH MINING CO 01101.0 (PAR	RPORATION TIAL)	8		DATE R	ECEIVED:	07-JUL-98	PRO	DECT: COP DATE PRIN	EY ITED: 15-	JUL-98	PAGE 10	:(3/3)
AMPLE	element Units	Na PCT	K PCT	Sr PPM	bbw Z	Ga PPN	Li PPM	ND P PM	Sc PPM	ta PPM	Tİ PCT	Zr PPM	
2 97808 2 97810 R2 97811 2 97812 2 97813													
R2 97814 2 97815 2 97816 R2 97817 2 97818		0.05 0.04	0.25	17 107	10 15	<2 <2	1 ব	<1 <1	<5 <5	<10 <10	<0.01 <0.01	2 1	

Current

-

(Cum)

Current

Cum

(man)

JD.

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

14-Jul-98

2007

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

CERTIFICATE OF ANALYSIS AK 98-302

KENRICH MINING CORPORATION 910-510 BURRARD STREET VANCOUVER, BC V6C 3A8

LABORATÓRIES

ATTENTION: J. KOWALCHUK

No. of samples received: 76 Sample type: ROCK PROJECT #: NONE GIVEN SHIPMENT #:2 Samples submitted by: H. SIGURGEIRSON

Printing (

				Hg	· · ·
	ET #.	Tag #	<u> </u>	(ppb)	
	1	89469		660	
- 	2	98470		110	. '
	3 ·	98471		280	
	4	98472		90	•
	5	98473	· · · · · · · · · · · · · · · · · · ·	1140	
نسر ن <u>ا</u>	6	98474		40	
<u> </u>	7	.98475		950	•
	8	98476		250	
	9	98477		. 80	
	10	98478		130	•••••
	11	98479		70	
	12	98480		100	
	13	98481		<10	
n	14	98482	••••	370	
	15	98483		1740	
	16	98484		1620	
n .	. 17	98485	•••	· 90 ··	• •
	18	98486		60	
	19	98487		<10	•••
-	20	98488	··· ··· ··· ··· ···	<10	• .
	21	98489		<10	
الرسية	22	98490		<10	• •
<u> </u>	23	98491		<10	
	24	98492		<10	• • •
E_I	25	98493	·	460	• • •
	•				

Constant

[.....

14-Jul-98

KENRICH MINING CORPORATION AK98-302

33:02

	·			Hg	
	ET #. ,	Tag #	•.* • •.	(ppb)	_
	26	98495	• · ·	1130	-
	·· 27	98496	· · ···	920	
-	28	98497		860	
•••	29	98498	· · · · · · · · · · · · · · · · · · ·	510	
	30	98499		170	
	31	98500	· · · · · · · · · · ·	1000	
	32	98501	•	<10	
	33	98502	·	<10	
	34	98503		770	
	35	98504		<10	•
-	36	98505	a ta a	<10	
	37	98506		460	
قرسها	38	98507		350	
	39	98508		10	
	40	98509	*	970	•••••
	41	98510		290	
	42	98511		1230	
	43	98512		1740	• • •
	44	98513		770	
*	45	98514	· . · · · · ·	1160	··· '
	46	98515	· · ·	1260	
	47	98516	,	980	
	48	98517		1500	
	49	98518		580	
	50	98519	· · · · · ·	1180	
.	51	98520	in an a	1340	
	52	98521	· · · · · ·	810	•
	53	98522	•	1520	
<u>.</u>	54	08523		640	
•••	55	08524	• • ¹	<10	
	56	08525		<10	
	57	09525		150	
	58	98527	· · · · ·	60	
	50	08528		140	
	60	08520		730	•
	61	08551	· · · ·	10	
	73	08602	·· ·		
	74	08603		~10	
. مسر	75	08604	t de la companya de la companya de la companya de la companya de la companya de la companya de la companya de l La companya de la comp	<10	
n .	76	-08605		740	
ر میں اور اور اور اور اور اور اور اور اور اور	10	90000		140	
فسيتة	OCMAI	Г А			
.	SO/	4			•
	504		· · · · ·	44	
	GUZ			00 046	
				-340	
		· · ·			

EQO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer EGO-TECH LABORATORIES LTD. Page 2

经总统计计划公理 的现在

21003

22-Jul-98

\bigcirc	Post-it" Fax Note 7671E	Date hall 2 z # of a
\sim	To John.	From
	Co./Dept.	Co.
	Phone #	Phone #
ABORATORIES LTD. 10041 E. Trans Car	Fax #	Fax #
		<u></u>
CERTIFICATE OF ANALYS	SIS AK 98-328	

KENRICH MINING CORPORATION 910-510 BURRARD STREET VANCOUVER, BC V6C 3A8

-

Contraction

Cumunad

Contraction (

(

(

Lookana

 $\left[\begin{array}{c} \\ \end{array} \right]$

Contract

C

ATTENTION: J. KOWALCHUK

No. of samples received: 59 Sample type: ROCK PROJECT #: None Given SHIPMENT #: 3 Samples submitted by: H. Sigurgeirson

			Au	Hg	
	ET #.	Tag #	(ppb)	(ppb)	
	. 1	98489	5	50	
	2	98530	5	980	
	3	98531	5	180	
	4	98 532	_ 5	1160	
	5	98533	5	430	
	6	98534	5	680	
•	7	98535	5	390	
	8	98536	. 5	1640	
•	9	98537	5	3940	
	10	98538	· 5	270	
	11	98539	5	360	
	12	98540	5	590	
	13	98541	.5	400	
	14	98542	5	1170	
	15	98543	. 15	330	
	16	98544		610	
	17	98545	· 5	1540	:
	18	98546	5	850	
	19	98547	. 5	1500	
	20	98548	15	1110	
•	21	98549	5	280	
	22	98550	5	330	
	23 ·	98562		60	
	- 24	98563	5	50	
	25	98564	. 5	220	

उड्डरच्च

24

(

Garan aya aray

22-Jul-98

KENRICH MINING CORPORATION AK 98-328

	•		Au	Hg		· .	· .	· .:	
Ω	ET #.	Tag #	(ppb)	(ppb)	•			•••••	
	26	98566	5	740			•	. .	· · · ·
	27	98567	5	1380				• •	•
	. 28	98568	· . 5	740			· · .		• • •
	29	98569	20	1230					• . •
, -	30	98570	15	900		• •			
	31	98571	· · · 5	620					•
	32	98572	5	260					· · · ·
•	33	98573	· 5	200				•	· ·
~	34	98574	5	180		• •	••••••	· ·	• • • • •
		98575	5	860	•		···		• •
E	36	98576	5	90	· ··· ·		· · · · · · · · · · · · · · · · · · ·	•	'· · · ·
-	37	98577	5	410					•.:
	38	98578	5	480	. •		•	•	· · ·
	39	98579		1490		•••	· · · · ·		
•	40	98580	5	1630	•				
	41	98581	. 5	470				· · ·	
	42	98582	· · 5	610				••	
	· 43	98583	5	80		•		•	• •
	44	98584	5.	370		· .			·
·····	45	98585	_ 5	270			· · · ·	·	· ·
	46	98586	5	·· 20		• • •			•
	. 47	98587	5	100		· ·			
	48	98588	5	200					
1	49	98589	20	250			· . ·	•	
	50	98606	5	1580 ·		•		·	· · · · · · · · · · · · · · · · · · ·
	51	98607	·. 5	160		•		•	• • •
٤. :	52	98608	5	540		• .	• •		
~	53	98609	5	1420				•	
	54	98910		1500	· ·	•••••••		•	•
	55	98611	5	190		• •			· · · ·
_	- 56	98612	5	120		· · · ·	·· ·· ·		
[]]	• 57	98613	5	230					
	58	98614	5	310					· · .
	59	98615	5	230					•
			• • •		•		· · ·	• •	• •

KENRICH MINING CORPORATION AK 98-328

· ET #,	Tag #	(pp	Au ib)	Hg (ppb)
	τ.	· · · · · · · · · · · · · · · · · · ·		
Resoli				
1	98489	· .	5	60
36	98576		5	110
,		· · · · · · · · · · · · · · · · · · ·		
Repea	t:			
1	98489	• ••	5	60
· 10	98538	• • • • •	5	290
19	98547	· · · ·	5 '	1570
31	98571		5	-
- 36	98576		-	100
40	98580		5	-
45	. 98585	· · · · · · ·	-	290
49	98589		20	
Standa	ard:	••		
GEO'9	В	- 13	35	90
GEO'9	B	.14	15	
STSD1		•	-	110
STSD4			<u>-</u> :	980

XLS/98Kenrich

Contraction of the second seco

A.1.1.1.1.1.1.1

Fax to John Kowalchuk 604-688-3346 & Mail to Vancouver

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

· : · *

22-Jul-98 ;

15-Jul-98

A.m.

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

Values in ppm unless otherwise reported

stt++++++

ICP CERTIFICATE OF ANALYSIS AK 98-302

KENRICH MINING CORPORATION 910-510 BURRARD STREET VANCOUVER, BC V6C 3A8

Land

ATTENTION: J. KOWALCHUK

No. of samples received: 76 Sample type: ROCK PROJECT #: NONE GIVEN SHIPMENT #:2 Samples submitted by: H. SIGURGEIRSON

11

T1 8/

7n

v

Et #.	Tag#	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La Mg	<u>% N</u>	n Mo	o Na	% 1	li	P	Pb	Sb	Sn	Sr	Ti %	U	V	W	Y	Zn
1	98469	15	0.6	0.26	175	55	<5	7.05	_<1	19	33	106	6.07	<10 1.	90 158	7 7	70.	.03	2 1	1080	12	<5	<20	659	<0.01	<10	28	<10	<1	29
2	98470	5	<0.2	2.45	15	95	5	0.40	<1	10	42	88	8.86	<10 1.	60 58	2 8	9 O.	.03 <	:1 1	1640	12	<5	<20	31	<0.01	<10	99	<10	<1	64
3	98471	50	<0.2	2.38	85	85	5	0.35	<1	9	29	99	9.80	<10 1.	78 5 1	7 11	1 0.	.02	3 1	1540	28 -	<5	<20	26	<0.01	<10	137	<10	<1	74
4	98472	5	<0.2	0.23	<5	45	<5	0.02	<1	2	72	8	3.25	<10 <0.	01 8	1 7	70.	.05 <	:1	330	6	<5	<20	3	<0.01	<10	2	<10	<1	29
5	98473	260	5.8	0.10	3725	35	15	>10	<1	14	50	39	>10	<10 3	39 >1000	0 11	1 0.	.05	5	100	16	<5	<20	687	0.03	<10	11	<10	3	83
6	98474	5	2.4	0.22	70	55	10	1.61	<1	24	61	31	9.61	<10 1	40 205	0 13	30.	.02	6 '	1000	8	<5	<20	49	<0.01	<10	27	<10	<1	39
7	98475	>1000	14.2	0.19	>10000	95	45	0.23	<1	29	32	85	>10	<10 0	91 >1000	0 26	6 0.	.01	3	170	40	<5	<20	23	0.04	<10	14	<10	<1	747
8	98476	5	<0.2	1.84	135	75	5	5.79	<1	14	20	39	5.42	<10 1	17 137	76	6 0.	.02	3 '	1240	8	<5	<20	235	<0.01	<10	50	<10	2	73
9	98477	· 5	<0.2	0.15	160	30	20	0.06	<1	8	99	• 7	8.69	<10 <0	01 8	6 53	30.	.07	3	<10	4'	<5	<20	5	<0.01	<10	2	<10	<1	12
10	98478	10	2.8	0.65	70	185	10	0.52	3	5	43	71	>10	<10 0	10 10	1 23	30.	.06	2 2	2480	12	<5	<20	30	<0.01	<10	87	<10	2	233
11	98479	5	0.2	1.25	15	140	20	0.10	4	13	30	169	>10	<10 0	36 26	5 19	9 0.	.02	6 '	1230	4	<5	<20	8	0.12	10	86	<10	<1	277
12	98480	5	<0.2	0.70	15	90	10	<0.01	<1	2	5	7	4.91	<10 0	46 8	2 6	6 O.	.01 <	:1	80	14	<5	<20	2	<0.01	<10	3	<10	<1	29
13	98481	5	<0.2	0.08	<5	10	<5	0.23	<1	1	131	4	0.98	<10 0	02 23	i4 (50.	.02 <	:1	270	<2	<5	<20	15	<0.01	<10	<1	<10	2	62
14	98482	5	<0.2	0.12	5	45	<5	0.05	<1	1	21	4	1.54	<10 <0	.01 8	6 5	50.	.03 <	:1	190	14	<5	<20	<1	<0.01	<10	<1	<10	1	17
15	98483	5	0.2	0.95	<5	95	10	0.36	<1	7	55	6	6.40	<10 0	39 92	2 8	B 0.	.03 <	1 ⁻	1390	20	<5	<20	31	<0.01	<10	13	<10	7	93
		-			•	•••																								
16	98484	5	0.6	0.13	20	<5	<5	>10	<1	1	<1	11	0.58	<10 0	42 30	0 4	40.	.04	6	890	<2	15	<20	1318	<0.01	<10	4	<10	9	29
17	98485	5	0.8	0.06	25	25	<5	>10	4	2	<1	15	0.71	<10 0	57 366	6 7	70.	.02 1	1	450	<2	15	<20	1192	<0.01	<10	11	<10	2	168
18	98486	5	0.4	0.20	50	40	<5	0.52	<1	4	5	20	2.80	<10 <0	01 1	1 13	30.	.04	8 '	1040	12	<5	<20	18	<0.01	<10	5	<10	3	76
19	98487	5	<0.1	2 47	<5	115	15	2 63	<1	7	12	7	7.08	<10 1	06 99	3 9	9 0.	.02 <	:1 ·	1890	14	<5	<20	107	<0.01	<10	24	<10	8	122
20	QRARR	5	0.2	0.21	155	25	30	0.20	<1	10	20	8	>10	<10 <0	01 16	5 39	9 0.	.03 <	:1	580	4	<5	<20	4	<0.01	<10	1	<10	<1	55
_0	00100	Ū	0.2	0.41		20		0.20	•			•							-			-								
21	98489	5	<0.2	0.21	25	90	5	0.23	<1	2	64	6	3 91	<10 <0	.01 1:	8 13	30.	.04 <	:1	480	8	<5	<20	11	<0.01	<10	2	<10	<1	18
22	08400	5	<0.2	0.12	<5	50	<5	0.08	<1	<1	59	4	1 69	<10 <0	01 13	7 8	B 0.	.04 <	:1	160	6	<5	<20	6	<0.01	<10	<1	<10	1	21
23	08401	5	<0.2	0.12	10	45	<5	0.00	<1	<1	79	3	1.64	<10 <0	01 1	6 12	2 0	05 <	:1	290	6	<5	<20	6	<0.01	<10	<1	<10	<1	9
20	08402	5 E	~0.2	0.11	10	186	-5	0.00	21	2		12	2.54	<10 0	07 10	8 1/	 	02	en -	1540	12	<5	<20	11	<0.01	<10	6	<10	9	28
27 25	00402	5 E	~0.2	0.44	20	200	~-J F	2 46	24	8	20	17	4 25	<10 0	20 01	4 13	2 0	02	2	1420	12	<5	<20	69	<0.01	<10	7	<10	6	68
20	80493	5	~U.Z	0.03	20	200	5	2.40	~1	0	20	. 17	7.20	-10 0	20 01	. 14	e. U.		~	1720	12	-0	-20	00	-0.01	-10	'	-10	Ŭ	

ECO-TECH LABORATORIES LTD.

A.....

ICP CERTIFICATE OF ANALYSIS AK 98-302

KENRICH MINING CORPORATION

(.....)

.....

[!!!!]

<u>....</u>

1

······]

4......

(.....)

\$12717

Et #.	Tag#	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	<u>v</u>	W	Y	Zn
26	98495	- 5	<0.2	0.49	15	155	<5	0.51	<1	3	12	14	2.41	10	0.11	193	8	0.02	<1	1530	14	<5	<20	17	<0.01	<10	8	<10	12	35
27	98496	5	<0.2	0.40	20	170	5	0.19	<1	1	20	9	2.79	<10	0.11	94	11	0.02	<1	1430	16	<5	<20	13	<0.01	<10	5	<10	4	22
28	98497	5	0.2	0.69	15	165	<5	0.21	<1	5	10	19	3.97	<10	0.20	354	11	0.02	<1	1770	14	<5	<20	9	<0.01	<10	10	<10	6	52
20	08408	5	0.6	0.25	155	45	15	3.69	<1	19	14	21	9.22	<10	<0.01	748	33	0.06	5	280	16	<5	<20	156	<0.01	<10	2	<10	<1	75
20	09400	5	<0.0	0.16	20	35	<5	0.99	<1	4	76	6	3.50	<10	<0.01	377	34	0.05	<1	260	10	<5	<20	40	<0.01	<10	2	<10	4	22
30	00430		-0.2	0.10	20	~~		0.00				•																		
24	00500	5	0.2	0.25	20	20	5	0 19	<1	7	20	23	3 4 2	[`] <10	0.08	147	22	0.02	6	940	14	<5	<20	6	<0.01	<10	6	<10	2	25
31 20	96500	5	0.2	0.30	20	00	5	6.82	21	17	A1	18	4 76	<10	1.82	1304	-5	0.02	40	1190	2	10	<20	457	<0.01	<10	17	<10	6	46
32 33	90001	5	0.4	0.30	70	75	~5	8 10	~1	16	46	22	4.81	<10	2.39	1524	6	0.02	41	1080	4	10	<20	661	< 0.01	<10	19	<10	6	73
33	00502	5	0.4	1 06	25	120	~5	0.10	<1	11	51	115	3.36	<10	0.58	405	27	0.02	28	2060	18	<5	<20	44	0.02	<10	46	<10	8	164
34	96503	5	-0.9	1.00	30	105	26	1 69		25	51	26	8 94	<10	3.40	1349	<1	0.06		1880	12	5	<20	43	0.21	<10	165	<10	1	82
35	90004	5	<0.Z	2.00	19	100	20	1.00		55	51	20	0.34	-10	0.40	1040		0.00	v			•								
20	09505	-	-0.2	2 00	-	65	15	1 71	-1	32	110	29	4 72	<10	2 49	1216	<1	0.01	11	1570	16	10	<20	152	0.15	<10	107	<10	<1	65
30	00500	5	~0.2	1 17	50	125	-6	0.22	-1	10	94	182	5 13	<10	0.45	235	24	0.02	11	1690	18	<5	<20	35	0.02	<10	62	<10	<1	73
31	00507	5	~0.2	0.04	20	00	~5	0.16	-1	2	87	52	1 78	<10	0.30	79	12	0.01	6	1010	20	<5	<20	17	<0.01	<10	17	<10	2	36
30	90307	5	2.2	4 04	20	55	~5	0.10	1	27	60	133	5.82	<10	0.86	790	4	0.01	20	1320	16	<5	<20	13	0.09	<10	67	<10	3	72
39	00500	40	0.4	1.01	20	195	~5	0.01	2	35	570	327	8 48	<10	0.80	1041	95	0.03	87	840	30	<5	<20	10	0.04	<10	76	<10	4	300
40	90009	40	0.0	1.80		100	-0	0.00	~	00	010	02.	0.40		0.00		•••	0.00				-								
41	08510	5	0.2	0.46	20	175	<5	0.24	<1	4	259	51	1.71	<10	0.15	182	17	0.04	11	810	10	<5	<20	23	<0.01	<10	36	<10	5	77
42	09511	5	0.2	0.40	70	60	-5	7 42	3	8	21	45	5.20	<10	0.08	861	36	0.05	34	750	16	5	<20	197	<0.01	<10	13	<10	<1	258
42	09517	10	-0.2	0.00	95	185	<5	0.12	<1	2	48	10	2 16	<10	0.03	87	36	0.04	12	390	14	10	<20	6	<0.01	<10	14	<10	2	125
44	09512	5	~0.2	0.40	70	80	<5	641	<1	3	37	17	2 60	<10	0.05	774	15	0.05	6	1360	8	5	<20	172	<0.01	<10	6	<10	7	68
45	00514	15	0.2	0.55	110	۵0 ۵0	-0	5 70	2	Ř	43		4 04	<10	0.09	1281	35	0.04	59	750	22	15	<20	133	<0.01	<10	17	<10	4	296
40	90014	15	0.0	0.51	110	00	9	5.70	6.	Ŭ			4.04		0.00		•••													
46	08515	20	04	0 37	105	85	<5	6 26	2	8	182	44	4.05	<10	0.08	979	45	0.05	37	930	28	10	<20	125	<0.01	<10	10	<10	5	229
47	08516	40	0.4	0.38	80	70	<5	5.57	<1	5	83	27	3.31	<10	0.06	764	27	0.05	25	590	28	5	<20	237	<0.01	<10	14	<10	3	171
49	08517	-0	0.0	0.00	110	125	<5	0.12	<1	2	13	12	2.27	<10	0.01	38	41	0.03	13	510	16	10	<20	7	<0.01	<10	14	<10	1	206
40	09519	5	0.4	0.00	95	85	~5	3.01	1	7	57	35	3 63	<10	0.09	523	32	0.03	29	880	28	10	<20	147	<0.01	<10	11	<10	2	199
50	00510	10	0.0	0.31	20	45	-0-	1 44	2	á	19	30	4 30	<10	0.03	340	35	0.04	41	900	22	<5	<20	39	< 0.01	<10	14	<10	2	269
50	90019	10	0.4	0.38	90	70	5	1.44	-		10	00	4.00	-10	0.00	0.0		0.01	••											
51	98520	5	04	0.40	100	50	5	0.22	<1	8	111	30	4.66	<10	<0.01	178	44	0.03	32	1040	22	<5	<20	8	<0.01	<10	12	<10	2	192
52	08521	5	0.4	0.40	75	75	<5	6.03	<1	6	97	27	3.97	<10	0.08	706	30	0.04	15	630	12	<5	<20	143	<0.01	<10	11	<10	2	101
53	08522	5	-0.2	0.34	55	80	<5	0.00	<1	5	44	22	3 16	<10	0.04	169	26	0.03	11	480	14	<5	<20	7	<0.01	<10	6	<10	<1	51
54	09522	10	-0.2	0.54	55	75	-0	1 53	-1	4	28	10	3.02	<10	0.10	169	15	0.05	9	1810	20	<5	<20	27	<0.01	<10	8	<10	8	77
54	00523	10	<0.2	0.55	10	70	-5	0.04		-1	08	3	1 16	10	<0.10	67	7	0.06	<1	140	8	<5	<20	5	<0.01	<10	1	<10	<1	1
55	30024	5	~U.Z	0.14	10	10	~	0.04	~,	-1		5	1.10	10	-0.01	0.	•	0.00		140	Ũ	.0		•			•			•
58	09525	5	~0.2	0 12	10	25	~ 5	6 36	c1	1	73	4	1 25	<10	0.06	946	3	0.06	<1	260	6	<5	<20	168	<0.01	<10	2	<10	7	35
57	09520	5	<0.2	0.13	20	445	-0	0.30		e i	21	22	3 44	~10	0.00	238	8	0.00	-1	1000	12	<5	<20	40	<0.01	<10	7	<10	2	37
57	09527	5	<0.2	0.34	20	110	ن ء _	0.00	~1	4	20	40	2.94	~10	0.00	111	7	0.02	-1	1100	14	<5	<20	19	<0.01	<10	6	<10	4	31
50	9002/ 00520	5	<0.2	0.37	30	110	~0	0.00			50	13	2.01	~10	0.00	160	, ۵	0.02	21	800	14	~5	<20	33	0.01	<10	6	<10	2	37
59	80020	5	<0.2	0.42	15	200	5	0.39	2	3	04	1/	0.00	~10	0.07	1.00	20	0.03	4#	1220	10	~	~20	10	0.00	<10	15	<10	10	80
60	98529	5	0.2	0.89	- 30	165	5	0.38	<1	2	28	18	2.33	<10	0.01	141	23	0.03	10	1320	10	-3	~20	10	0.02	~10	10	-10	10	00

ECO-TECH LABORATORIES LTD. ICP CERTIFICATE OF ANALYSIS AK 98-302 **KENRICH MINING CORPORATION** Mo Na% Ni Ρ Pb Sb Sn Sr Ti% **U** v W Y Zn Bi Ca % Cď Cr Cu Fe % La Mg % Mn Ba Co Et #. Tag# Au(ppb) Ag Al% As 122 0.06 <1 1830 <5 <20 7 0.28 <10 47 <10 9 79 98551 5 <0.2 0.30 5 50 10 0.63 <1 9 92 25 2.31 <10 0.14 <1 8 61 30 21 0.03 <1 640 14 <5 <20 6 0.01 <10 6 <10 <1 8 15 0.03 <1 24 10 6.80 <10 0.01 98552 5 <0.2 0.57 225 35 5 62 <5 <20 0.11 4 <10 7 65 75 35 15 0.29 <1 11 18 10 5.51 <10 0.03 64 10 0.02 <1 1100 12 4 <10 63 98553 10 <0.2 0.47 75 14 10 3.85 <10 0.03 76 <1 0.02 <1 1030 12 <5 <20 4 0.18 <10 4 <10 8 45 15 0.36 <1 14 64 98554 5 <0.2 0.34 35 <1 970 10 <5 <20 3 0.11 <10 6 <10 9 87 3 0.02 98555 20 <0.2 0.38 25 45 10 0.48 <1 13 23 9 3.96 <10 0.05 110 65 2 0.02 1 1390 16 <5 <20 2 0.17 <10 6 <10 15 112 0.03 76 66 98556 10 < 0.2 0.39 35 35 20 0.48 <1 25 20 12 5.06 <10 20 0.63 <1 25 58 18 8.05 <10 0.32 328 12 0.05 <1 2050 10 <5 <20 4 0.12 <10 60 <10 8 212 50 35 67 98557 5 <0.2 0.65 0.12 <10 119 <10 17 398 73 12 5.33 <10 0.45 427 4 0.06 <1 2840 8 <5 <20 2 25 25 15 0.95 <1 15 68 98558 5 <0.2 0.78 30 30 25 1.05 <1 17 78 13 5.47 <10 0.44 402 4 0.08 <1 2780 8 <5 <20 6 0.19 <10 115 <10 13 514 98559 <0.2 0.63 69 5 9 0.06 <1 2480 12 <5 <20 0.13 <10 70 <10 7 94 17 7.85 <10 0.19 215 3 70 98560 10 < 0.2 0.47 60 35 25 0.61 <1 35 67 0.11 65 <10 12 5.47 0.18 243 6 0.06 <1 2480 10 <5 <20 9 <10 13 110 0.52 35 30 20 1.09 <1 21 68 <10 71 98561 5 <0.2 165 50 0.03 <1 1550 20 <5 <20 36 < 0.01 <10 4 <10 <1 139 72 98601 15 0.2 0.66 100 30 25 0.97 <1 12 27 12 >10 <10 0.17 24 32 0.02 <1 290 18 15 <20 6 < 0.01 <10 4 <10 3 20 73 98602 5 0.2 0.26 25 145 <5 0.06 <1 <1 32 3 1.16 <10 0.02 <10 < 0.01 35 7 0.05 <1 230 8 <5 <20 2 < 0.01 <10 1 <10 <1 5 98603 125 <5 <0.01 <1 <1 80 2 1.12 74 5 <0.2 0.13 5 60 88 3 1.33 10 < 0.01 35 7 0.06 <1 320 10 <5 <20 3 < 0.01 <10 1 <10 <1 14 75 98604 <0.2 0.12 15 <5 < 0.01 <1 <1 5 <10 17 16 610 16 5 <20 6 < 0.01 34 <10 3 125 98605 0.8 0.76 30 85 5 0.12 <1 4 40 25 2.59 <10 0.50 192 0.05 76 5 OC DATA: Resplit: 8 0.03 1 1090 12 5 <20 672 < 0.01 <10 28 <10 <1 30 98469 0.24 170 60 <5 7.12 <1 19 31 105 6.09 <10 1.97 1598 5 0.4 1 2 0.01 12 1710 20 10 <20 160 0.16 <10 114 <10 70 120 27 5.03 <10 2.64 1266 <1 98505 5 <0.2 3.30 20 65 10 1.86 <1 35 36 0.57 40 35 20 1.19 <1 23 70 14 5.94 <10 0.19 257 9 0.07 <1 2560 10 <5 <20 9 0.12 <10 69 <10 14 115 71 98561 5 <0.2 Repeat: <10 27 30 8 0.03 10 <20 649 < 0.01 <10 98469 15 0.4 0.25 185 60 <5 6.98 <1 19 35 103 6.05 <10 1.88 1566 2 1090 <5 <1 1 72 98 23 0.05 1 2530 12 <5 <20 31 < 0.01 <10 89 <10 3 250 70 185 15 0.51 3 5 46 >10 <10 0.10 10 98478 15 2.8 0.66 9 0.02 <1 1890 14 <5 <20 109 < 0.01 <10 24 <10 7 121 7 12 7 7.08 <10 1.07 989 19 98487 5 0.2 2.49 <5 120 15 2.65 <1 5 60 10 32 107 28 4.59 <10 2.40 1180 <1 0.01 10 1560 18 10 <20 147 0.14 <10 102 <10 <1 65 36 98505 <0.2 2.95 10 1.67 <1 17 3 300 36 0.05 59 740 22 10 <20 134 < 0.01 <10 <10 45 98514 85 <5 5.74 2 8 45 40 4.07 <10 0.08 1286 15 0.4 0.51 110 98523 70 70 10 1.52 <1 4 29 19 3.06 <10 0.10 164 15 0.04 8 1820 20 <5 <20 27 < 0.01 <10 8 <10 8 76 54 30 <0.2 0.56 0.11 <10 7 0.06 <1 2520 10 <5 <20 7 <10 67 13 115 71 98561 <0.2 0.54 35 30 15 1.11 <1 22 71 12 5.62 <10 0.18 257 -Standard: 75 22 <20 62 0.11 <10 <10 5 68 GEO'98 19 65 82 4.04 <10 0.98 680 <1 0.03 21 650 <5 120 8.0 1.72 60 155 <5 1.71 <1 <5 77 65 GEO'98 1.77 75 160 <5 1.74 <1 19 66 82 4.15 <10 0.94 692 <1 0.03 22 680 22 <20 60 0.11 <10 <10 5 120 1.0 22 GEO'98 160 <5 1.75 20 60 83 4.19 <10 0.94 694 <1 0.03 700 24 <5 <20 60 0.11 <10 78 <10 6 67 120 1.0 1.79 70 <1

df/302 XLS/98Kenrich Fax to John Kowalchuk 604-688-3346 & Mail to Vancouver

15-11

[]]

7

1

3

Î

٦.

[]]

14-Jul-98

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

.

Phone: 604-573-5700 Fax : 604-573-4557

Values in ppm unless otherwise reported

ICP CERTIFICATE OF ANALYSIS AK 98-293

KENRICH MINING CORPORATION 910-510 BURRARD STREET VANCOUVER, BC V6C 3A8

ATTENTION: J. KOWALCHUK

No. of samples received: 37 Sample type: Soil PROJECT #: None Given SHIPMENT #: None Given Samples submitted by: H. Sigurgeirson

Et #	. Tag#	Au(ppb)	Ag	Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	TI %	U	<u>v</u>	W	Y	Zn
1	97902	5	0.8	1.50	45	130	<5	1.63	12	20	3	86	5.66	<10	0.53	2033	23	0.03	98	1280	18	<5	<20	76	0.05	<10	42	<10	8	728
2	NICA I 14+00S 1	85	<0.2	2.73	140	150	<5	0.08	<1	17	25	319	7.74	<10	0.94	789	11	0.01	16	810	46	10	<20	10	0.04	<10	96	<10	5	146
3	NICA 14+00S 2	130	0.4	2.64	135	150	<5	0.09	<1	20	25	313	7.25	<10	0.93	937	9	0.01	15	970	54	<5	<20	10	0.04	<10	91	<10	3	143
4	NICA I 14+00S 3	85	1.0	2.27	110	185	<5	0.11	1	15	25	187	9.58	<10	0.82	693	11	0.01	11	960	56	<5	<20	13	0.06	<10	105	<10	<1	108
5	NICA I 14+00S 4	45	3.6	0.91	20	95	<5	0.19	2	8	<1	50	2.33	<10	0.20	116	<1	0.08	<1	670	20	<5	<20	20	0.12	<10	57	<10	<1	35
																						-								
6	NICA I 14+00S 5	210	1.8	2.00	105	140	<5	0.06	<1	11	19	179	6.00	<10	0.64	535	8	0.01	8	1210	48	<5	<20	9	0.04	<10	87	<10	<1	94
7	NICA 14+00S 6	110	2.8	1.98	95	150	<5	0.08	<1	17	16	201	5.93	<10	0.67	828	8	0.01	9	940	50	<5	<20	9	0.03	<10	80	<10	<1	105
8	NICA 14+00S 7	70	3.8	2.24	115	180	<5	0.10	<1	22	19	312	6.71	<10	0.82	1537	10	0.01	14	1110	48	<5	<20	12	0.03	<10	85	<10	1	141
9	NICA 14+00S 8	75	2.2	1.48	105	150	<5	0.09	<1	9	11,	144	6.05	ຸ <10	0.41	333	9	0.01	7	780	40	<5	<20	11	0.05	<10	103	<10	<1	79
10	NICA I 14+00S 9	45	1.6	1.78	100	135	<5	0.08	<1	10	17	102	6.94	<10	0.48	322	10	0.01	5	880	42	<5	<20	8	0.04	<10	119	<10	<1	71
										•	40	407	F 07	-40	A 20	970		0.01		020	40	~5	~20	12	0.05	~10	129	~10	-1	75
11	NICA 14+005 10	95	1.0	1.67	115	165	<5	0.10	<1 	9	12	127	5.97	<10	0.39	3/9	40	0.01		320	40	~5	~20	16	0.00	<10	104	~10	2	142
12	NICA 1 14+005 11	95	0.8	2.06	120	260	<5	0.12	<1	18	18	201	7.11	<10	0.04	949	10	-0.01	11	760	42	~0 ~£	~20	10	0.03	~10	110	~10	~1	77
13	NICA 14+005 12	75	0.6	1.70	120	165	<5	0.07	<1	9	11	194	6.18	<10	0.35	317	10	<0.01	0	710	42	5	~20	40	0.04	~10	440	~10		60
14	NICA 14+005 13	65	1.2	1.47	110	165	<5	0.10	<1	9	12	113	7.21	<10	0.27	191	10	0.01	5	780	30	<0	~20	12	0.07	-10	440	~10		424
15	NICA 14+00S 14	105	<0.2	2.27	145	165	<5	0.14	<1	16	23	228	8.69	<10	0.88	735	11	0.01	13	1700	52	<0	<20	14	0.00	<10	113	\$10	S 1	131
16	NICA LALOOR 15	05	0.6	2 24	495	405	-6	0.12		12	22	182	8 16	<10	0.66	474	11	0.04	10	840	48	<5	<20	13	0.04	<10	114	<10	<1	103
17	HON 147003 15	40	1.0	2.31	70	100	~	0.13	4	27	~4	103	7 57	<10	0.67	2541	11	0.07	13	1580	50	<5	<20	12	0.04	<10	54	<10	17	289
40		10	1.2	2.07	70	80	~0	0.20	2	21	2	407	7 46	~10	0.07	2005	10	0.01	18	1820	220	~5	<20	16	0.05	<10	63	<10	15	408
10		15	1.0	1.71	61	455	<>	0.29	~	20	-1	225	~10	~10	0.75	2766	24	~0.01	55	1620	1752	25	<20	10	<0.00	<10	30	<10	22	1230
18		10	12.0	0.71	210	. 100	40	0.14	-1	20	-4	220	- 10 8 70	~10	0.03	1502	2	0.07	55	1720	58	25 25	<20	18	0.01	<10	53	<10	6	147
20	HSUV 2+50N 4	5	0.0	2.11	40	60	10	0.30	~1	23	~1	01	0.79	510	0.70	1002	0	0.02	Ū	1730	50	~	-20		0.04	-10		-10	v	141
21	HSOV 2+50N 5	10	16	1.49	95	90	<5	0.22	2	36	<1	97	7.97	<10	0.44	2276	14	0.02	20	1710	64	<5	<20	12	0.03	<10	40	<10	15	330
22	HSOV 2+50N 6	10	22	1 46	70	95	<5	0.39	4	37	<1	94	8.28	<10	0.46	2056	14	0.04	36	1750	42	<5	<20	27	0.05	<10	38	<10	17	274
23	HSOV 2+50N 7	35	13.0	0.99	230	175	<5	0.31	38	59	<1	270	>10	<10	0.09	6112	38	0.02	167	2920	140	25	<20	24	0.02	<10	24	<10	25	964
24	HSOV 3+50N 1	20	5.8	0.57	135	55	10	0.64	11	18	<1	103	>10	<10	0.06	516	34	<0.01	44	2630	48	<5	<20	63	<0.01	<10	42	<10	18	920
25	HSOV 3+50N 2	10	5.0	1 41	100	<u>an</u>	<5	0.11	18	75	3	400	>10	<10	<0.01	6538	38	<0.01	102	2900	24	<5	<20	11	<0.01	<10	48	<10	6	1076
20	10010102	10	0.0	1.44.1	100	20		0.11	10	10		-100	- 10	-10	.0.01	2009			1 wai			-•		• •					-	

				•																											
KENR		ORATIO	N							ICP	CERT	IFICA	re of	ANALY	SIS AF	< 98-29	3								i	ECO-TE	CH LA	BORA	TORIE	S LTI	D.
T Sheri VI S		Mesh					· •										•							_	_						_
Et #.	Tag#	Size	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	TI %	0	<u>v</u>		<u>Y</u>	
26	HSOV 3+50N 3		20	5.2	0.60	185	105	10	0.04	4	22	<1	113	>10	<10	0.02	1714	29	0.01	- 24	2930	58	<5	<20	15	<0.01	<10	37	<10	2	418
27	HSOV 8+00N 1		10	<0.2	1.80	15	65	10	0.05	<1	11	9	28	4.39	<10	0.50	555	<1	0.04	<1	870	22	<5	<20	8	0.15	<10	94	<10	<1 0	100
28	HSOV 8+00N 2		5	0.6	3.23	50	80	10	0.23	<1	18	12	63	6.15	<10	1.07	845	3	0.01		1510	54	<0	<20	13	0.10	<10	98	<10	4	05
29	HSOV 8+00N 3		15	0.4	2.54	45	85	5	0.46	<1	26	11	85	6.00	<10	1.31	1117	2	0.01	11	2020	30	<0	<20	21	0.12	<10	100	<10	3	20
30	HSOV 9+50N 1		10	1.4	3.36	40	70	10	0.14	2	14	3	60	6.58	<10	0.51	696	31	0.04	46	1180	26	<9	<20	11	0.05	<10	0/	<10	3	207
94	HOOV 0450M 2		5	0.2	2 16	50	50	5	0.04	<1	5	<1	39	4.75	<10	0.14	99	27	0.05	16	1180	32	<5	<20	4	0.03	<10	53	<10	2	140
27			10	0.2	3.55	50	85	<5	0.17	2	21	7	73	7.68	<10	0.68	927	33	0.04	49	1130	36	<5	<20	10	0.06	<10	84	<10	4	323
32	HSOV 9+50N 4		5	0.0	2 93	30	90	10	0.50	2	34	37	55	7.24	<10	1.43	1804	14	0.02	13	1050	32	<5	<20	14	0.08	<10	109	<10	12	178
24	HSOV 9+50N 5	-48	5	14	2.83	140	210	<5	0.13	7	47	<1	158	>10	<10	0.59	2962	105	0.06	140	1980	50	<5	<20	18	0.08	<10	68	<10	10	801
35	HSOV 9+50N 6		10	18	3 25	85	180	<5	0.81	23	44	<1	183	>10	<10	0.40	1403	89	0.03	191	1950	32	<5	<20	36	0.09	<10	55	<10	51	1649
	10010-0010				0.20	•••		-			•••	-																			
36	HSOV 9+50N 7	-48	5	2.4	3.63	70	110	<5	0.17	13	58	<1	157	7.21	<10	0.13	1540	56	0.05	99	2310	26	<5	<20	21	0.09	<10	32	<10	45	789
37	HSOV 9+50N 8	-48	5	1.8	3.23	80	180	<5	0.74	22	39	<1	175	>10	<10	0.43	1314	88	0.07	186	1900	34	<5	<20	35	0.09	<10	55	<10	56	1462
												•																			
QC D	ATA:																														
Repe	at:							_						5 05	-40		0044	~~	0.00		4000	20	~E	~20	70	0.04	~10	40	~10	0	720
1	97902		5	1.0	1.46	55	125	<5	1.61	13	20	<1	88	5.66	<10	0.52	2011	23	0.06	94	1320	20	<0	<20	12	0.04	<10	42	<10	-4	138
10	NICA I 14+00S 9		55	1.4	1.72	105	130	<5	0.06	<1	9	15	102	6.83	<10	0.48	330	9	0.01	5	008	40	<0	<20	8	U.U4	<10	114	<10	22	1020
19	HSOV 2+50N 3		85	12.4	0.68	205	150	<5	0.14	9	25	<1	227	>10	<10	0.09	2647	32	<0.01	28	1000	1/40	20	<20	44	~0.01	<10	20	<10	<u>~</u>	105
28	HSOV 8+00N 2		20	0.2	3.21	50	75	10	0.21	<1	18	12	62	6.08	<10	1.05	815	с С	0.01	8	1440	50	~0	~20	47	0.09	~10	30	<10	44	763
36	HSOV 9+50N 7	-48	-	2.4	3.46	70	100	<5	0.16	13	55	<1	149	0.76	<10	0.12	1441	52	0.04	90	2210	24	-0	~20	17	0.00	~10	30	~10		100
Stand	lard:																														
GEO	98		135	1.2	1.79	65	155	<5	1.80	<1	20	64	82	4.35	<10	0.94	704	<1	0.03	21	690	22	<5	<20	54	0.12	<10	78	<10	3	80
GEO'S	98		-	1.2	1.85	70	155	5	1.82	<1	21	62	86	4.36	<10	0.96	723	1	0.03	22	710	20	10	<20	59	0.12	<10	79	<10	5	86

NOTE: All samples are seived at -80 mesh unless otherwise indicated.

4

df/291 XLS/98Kenrich Fax to John Kowalchuk 604-688-3346 & Mall to Vancouver

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

14-Jul-98

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

CERTIFICATE OF ANALYSIS AK 98-303

KENRICH MINING CORPORATION 910-510 BURRARD STREET VANCOUVER, BC V6C 3A8

CV NALIDA

ATTENTION: J. KOWALCHUK

No. of samples received: 21 Sample type: SOIL PROJECT #: NONE GIVEN SHIPMENT #:2 Samples submitted by: H. SIGURGEIRSON

		Hg	
ET #.	Tag #	(ppb)	
1	97962	260	
2	97963	140	
3	HSOV 39057A	700	
4	HSOV 39057B	1540	
5	HSOV 39057C	1400	
6	HSOV 39057D	1490	
7	HSOV 39057E	1711	
8	HSOV 39057F	1630	
9	HSOV 39057G	8400	
QC D	ATA:		
Repe	at:		
1	97962	280	
Stand	lard:		
S04 -		30	
S02		82	

XLS/98Kenrich Fax to John Kowalchuk 604-688-3346 & Mail to Vancouver

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer
14-Jul-98

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

1

Values in ppm unless otherwise reported

ICP CERTIFICATE OF ANALYSIS AK 98-303

KENRICH MINING CORPORATION 910-510 BURRARD STREET VANCOUVER, BC V6C 3A8 1

ATTENTION: J. KOWALCHUK

No. of samples received: 21 Sample type: SOIL PROJECT #: NONE GIVEN SHIPMENT #:2 Samples submitted by: H. SIGURGEIRSON

Et #.	Tag#	Size	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	V	W	Y	Zn
1	97962		125	3.0	1.79	150	130	10	0.54	7	35	5	178	9.06	<10	0.95	1766	14	0.02	35	1920	71	<5	<20	36	0.01	<10	53	<10	6	399
2	97963	-32	<5	0.4	0.60	10	75	<5	1.96	2	14	<1	60	2.69	10	0.33	678	6	0.03	5	1080	40	<5	80	65	<0.01	<10	19	<10	15	127
3	HSOV 39057A		<5	0.6	0.85	55	50	10	0.66	3	12	<1	34	5.35	<10	0.61	585	20	<0.01	51	1420	44	15	<20	38	<0.01	<10	8	<10	8	247
4	HSOV 39057B		<5	0.8	0.62	75	75	10	0.49	9	20	<1	72	6.19	10	0.09	1455	25	<0.01	96	960	47	<5	<20	34	<0.01	<10	10	<10	16	568
5	HSOV 39057C		<5	0.8	0.59	65	45	10	0.92	7	13	<1	46	4.99	<10	0.15	657	28	<0.01	81	980	43	10	<20	38	<0.01	<10	12	<10	6	481
6	HSOV 39057D		5	1.0	0.67	90	90	10	0.73	8	12	<1	49	5.85	<10	0.17	1619	18	<0.01	84	850	50	20	<20	46	<0.01	<10	17	<10	9	639
7	HSOV 39057E		<5	0.8	0.47	105	80	10	0.51	9	14	<1	47	5.35	<10	0.21	1300	30	<0.01	125	920	49	20	<20	30	<0.01	<10	6	<10	10	456
8	HSOV 39057F		<5	0.6	0.47	105	45	5	0.56	6	13	<1	48	5.32	<10	0.08	298	37	<0.01	69	1200	60	15	<20	30	<0.01	<10	10	<10	4	413
9	HSOV 39057G		5	1.0	0.61	100	45	10	0.59	12	19	<1	54	5.53	<10	0.13	1775	33	<0.01	140	910	64	20	<20	34	<0.01	<10	14	<10	9	825
10	NICA 1 TRENCH A		45	0.6	1.65	65	180	<5	0.55	2	14	44	169	3.39	20	0.61	753	14	<0.01	28	3210	97	10	<20	122	<0.01	<10	33	<10	7	98
11	NICA 1 TRENCH B		110	<0.2	2.63	110	180	<5	0.09	2	26	31	421	6.98	<10	1.10	1303	9	0.01	23	930	50	10	<20	12	0.06	<10	94	<10	9	170
12	NICA 1 TRENCH C		95	0.4	2.68	120	200	<5	0.05	2	17	29	366	7.59	10	0.72	842	12	0.01	14	840	47	15	<20	10	0.04	<10	101	<10	16	129
13	NICA 1 TRENCH D		65	0.6	2.72	110	180	<5	0.07	2	18	29	347	8.06	10	0.79	889	13	0.01	14	870	52	5	<20	10	0.05	<10	105	<10	9	121
14	NICA 1 TRENCH E		90	<0.2	2.64	110	175	<5	0.07	2	16	30	315	6.96	<10	0.91	802	10	0.01	17	820	47	10	<20	9	0.04	<10	99	<10	3	126
15	NICA 1 TRENCH F		90	0.2	2.74	120	180	<5	0.10	2	24	30	356	7.26	<10	0. 9 7	1301	10	0.01	20	1190	62	10	<20	11	0.05	<10	95	<10	2	140
16	NICA 1 TRENCH G		115	1.2	2.56	115	145	10	0.08	2	18	27	244	9.08	<10	0.64	723	14	0.01	10	930	57	<5	<20	6	0.07	<10	99	<10	<1	100
17	NICA 1 TRENCH H	-48	55	2.0	1.46	60	140	10	0.09	<1	6	9	61	2.88	<10	0.41	268	4	0.02	3	560	19	5	<20	12	0.04	<10	80	<10	<1	41
18	NICA 1 TRENCH I		110	0.4	2.73	120	185	<5	0.08	2	24	30	418	7.65	<10	1.00	1220	13	0.01	25	920	52	10	<20	13	0.05	<10	97	<10	8	177
19	NICA 1 TRENCH J		80	0.2	2.67	105	185	<5	0.07	2	18	31	352	7.19	<10	0.97	970	10	0.01	19	900	45	10	<20	13	0.05	<10	102	<10	6	140
20	NICA 1 TRENCH K	-48	50	1.2	1.84	75	160	5	0.16	<1	12	16	110	4.96	<10	0.68	482	5	0.04	8	650	32	5	<20	16	0.08	<10	94	<10	<1	66
21	NICA 1 TRENCH L		85	1.6	2.59	100	205	<5	0.07	1	15	29	254	7.31	<10	0.77	638	11	0.01	13	840	46	<5	<20	13	0.03	<10	95	<10	<1	113

Mesh

										CED					K 98-31	13									ECO-T	ECHL	ABOR		IES L'	TD.
KENI	CCH MINING CORPORA	TION								ULIN					1.00-01															
Et#	. Tag#	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	<u>Na %</u>	Ni	P	Pb	Sb	Sn	Sr	Ti %	ບ	<u>v</u>	W	Y	Zn
QC D Repe	ATA: at:					•																								
1	97962	155	3.0	1.75	130	120	10	0.52	7	34	4	176	8.85	<10	0.93	1728	13	0.02	35	1900	71	<5	<20	32	0.01	<10	52	<10	6	395
10	NICA 1 TRENCH A	45	0.4	1.65	70	180	<5	0.56	1	14	44	172	3.41	20	0.60	748	14	<0.01	28	3310	96	15	<20	122	<0.01	<10	33	<10	7	97
19	NICA 1 TRENCH J	-	<0.2	2.62	105	180	<5	0.07	2	17	30	344	7.03	<10	0.95	939	10	0.01	19	890	49	10	<20	10	0.05	<10	100	<10	5	136
Stand GEO	lard: 98	120	1.2	1.77	65	160	10	1.88	<1	19	64	81	3.99	<10	0.93	663	<1	0.03	20	630	19	10	<20	60	0.12	<10	78	<10	6	72

NOTE: All samples are seived at -80 mesh unless otherwise indicated.

df/303 XLS/98Kenrich Fax to John Kowaichuk 604-688-3346 & Mail to Vancouver

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

1

Page 2

10-Jul-98

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557 **ICP CERTIFICATE OF ANALYSIS AK 98-291**

KENRICH MINING CORPORATION 910-510 BURRARD STREET VANCOUVER, BC V6C 3A8

٦

ATTENTION: J. KOWALCHUK

No. of samples received: 19 Sample type: Rock PROJECT #: None Given SHIPMENT #: None Given Samples submitted by: H. Sigurgeirson

Values in ppm unless otherwise reported

Et #.	Tag#	Au (ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	<u>v</u>	<u> </u>	<u>Y</u>	Zn
1	97809	5	<0.2	0.19	<5	60	<5	3.46	<1	4	155	8	2.10	<10	0.03	434	10	0.05	<1	270	10	<5	<20	64	0.04	<10	4	<10	13	36
2	98451	15	4.4	0.57	2225	35	<5	1.19	8	14	112	79	6.98	<10	0.31	1347	19	0.01	32	2020	422	35	<20	72 <	<0.01	<10	18	<10	13	1427
3	98452	10	1.6	0.55	105	105	5	0.05	<1	3	119	39	4.37	<10	0.04	131	13	0.01	3	630	18	<5	<20	2 <	<0.01	<10	11	<10	<1	260
4	98453	5	<0.2	2.76	15	35	30	0.30	<1	23	182	10	8.14	<10	3.92	938	<1	0.03	<1	350	8	<5	<20	1	0.30	<10	223	<10	<1	56
5	98454	5	<0.2	1.51	30	145	5	0.18	4	5	55	32	3.56	<10	0.56	307	34	0.03	24	560	18	<5	<20	12	0.09	<10	50	<10	12	278
6	98455	5	<0.2	1.58	15	120	10	0.14	2	7	66	59	3.83	<10	0.61	326	23	0.04	28	590	14	<5	<20	11	0.14	<10	52	<10	14	241
7	98456	5	<0.2	1.33	20	110	10	0.16	3	8	43	50	3.83	<10	0.46	267	23	0.03	35	620	16	<5	<20	16	0.17	<10	48	<10	15	327
8	98457	5	<0.2	3.11	<5	30	25	0.35	<1	48	158	13	6.86	<10	3.79	884	<1	0.03	<1	560	10	10	<20	2	0.29	<10	138	<10	<1	66
9	98458	5	0.4	0.23	15	45	5	3.92	<1	4	208	17	2.87	<10	0.94	1022	18	0.02	5	550	2	<5	<20	273 -	<0.01	<10	12	<10	8	38
10	98459	15	2.4	0.45	80	135	5	0.11	2	8	128	67	8.30	<10	0.02	313	24	0.01	11	1640	16	<5	<20	11 •	<0.01	<10	45	<10	1	305
11	98460	15	1.6	0.44	50	155	5	0.44	1	5	68	33	5.04	<10	0.07	460	11	0.01	9	1180	16	<5	<20	22 <	<0.01	<10	22	<10	3	201
12	98461	10	2.0	0.48	245	225	15	0.07	<1	6	87	61	>10	<10	<0.01	101	19	0.02	3	1280	42	<5	<20	8 <	<0.01	10	41	<10	<1	237
13	98462	5	<0.2	0.89	10	50	15	1.41	<1	6	46	8	5.47	<10	0.58	323	8	0.04	<1	1650	14	<5	<20	37	0.06	<10	4	<10	10	75
14	98463	25	<0.2	2.59	10	140	20	0.83	<1	17	10	57	6.81	<10	2.17	1132	<1	0.05	<1	2770	14	10	<20	43	0.21	<10	216	<10	<1	53
15	98464	10	<0.2	3.65	15	85	<5	0.58	<1	28	171	116	7.93	<10	4.04	1088	6	0.05	16	2630	16	<5	<20	29	0.03	<10	374	<10	<1	104
16	98465	5	<0.2	2.60	10	105	10	1.47	<1	23	20	86	5.57	<10	1.73	1101	<1	0.04	<1	2600	14	5	<20	181	0.25	<10	118	<10	2	72
17	98466	20	1.0	1.62	10	55	10	0.24	<1	11	10	49	5.64	<10	0.75	796	8	0.02	8	960	12	<5	<20	6 <	<0.01	<10	23	<10	4	92
18	98467	5	<0.2	3.82	<5	60	20	2.11	<1	38	193	13	7.18	<10	4.28	1022	<1	0.09	<1	500	6	<5	<20	19	0.18	<10	172	<10	1	63
19	98468	95	<0.2	2.16	<5	30	25	1.36	<1	46	139	11	8.75	<10	2.71	790	3	0.05	<1	400	4	<5	<20	5	0.15	<10	156	<10	2	96

		۰.			٠																									
		·																					•							
				•																										
RICH N	INING CO	RPORATION							ICP	CERT	IFICAT	EOF	ANALY	'SIS AK	(98-29 ⁻	1									I	ECO-TE	CH LA	BORA	TORIE	S LTD.
#	Tant	Au (nnh)	40	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Ma %	Mn	Mo	Na %	NI	P	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
	108"																									and an and be with an a				
olit:													•										•							
	97809	5	<0.2	0.19	5	55	10	3.41	<1	5	116	7	2.09	<10	0.04	418	3	0.05	<1	280	10	<5	<20	54	0.05	<10	5	<10	13	43
eat:																											_			
	97809	5	<0.2	0.19	5	50	<5	3.43	<1	5	163	7	2.09	<10	0.04	432	10	0.05	<1	280	10	<5	<20	61	0.04	<10	5	<10	12	37
)	98459	15	2.4	0.46	80	125	5	0.08	1	8	126	67	8.23	<10	0.04	314	23	0.01	9	1610	16	<5	<20	9	<0.01	<10	45	<10	<1	303
ıdard:																														

1

1

1

1

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer pr

-Canaline al

[]]]]

df/291 XLS/98Kenrich Fax to John Kowalchuk 604-688-3346 & Mail to Vancouver

[]]]

	'n

Post-it" Fax Note	7671E Date Alla 27 Honors 6
To John a	From
Co./Dept,	Co.
Phone #	Phone #
Fax #	Fax #

CERTIFICATE OF ANALYSIS AK 98-458

SERVICE MINING CORPORATION 910-510 BURRARD STREET

VANCOUVER, BC

V6C 3A8

ATTENTION: J. KOWALCHUK

No. of samples received:15 Sample type: ROCK - PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN Samples submitted by: J. KOWALCHUCK

100						
. .	 ET#.	Tag #	Au (ppb)	H (ppl	lg b)	••
1		08626	15	29	90	
	2	08627	. 30) 24	40 .	
7	2	08628	5	i . 31	10	
	3	90020	15	5 27	70	
~~		08630		5	40 ·	
ſ	S E	08631	E	5 18	80	
1000	7	30031	30) 24	40	
-9	(90002	20	20	00	
-	0	90000 09634-A	36	5 129	90 7 986341	5
1000	3	30034-A	. 20	5	60 \	
	10	900340		n 3	80	
_	11	98035	_	5 3	60	
1.1	12	98636		5 0. E 10		•
	- 13	98637	1			
	14	98638		0, 5		
-	15	98640	15	0 8	120	•

26-Aug-98

98639

KENRICH MINING CORPORATION AK98-458

ET #. Tag #	Au (ppb)	Hg (ppb)
	•	· ·
OC DATA: Resplit: VS 1 98626	15	-
Repeat: 1 98626	20	270
Standard: GEO'98 STSD4 STSD4		100 960 960
		• ••

XLS/98Kenrich Fax to John Kowalchuk 604-688-3346 & Mail to Vancouver

Andrianteria

and a state of the

Contractor of

ECO-TECH LABORATORIES LTD. Prank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

26-Aug-98

ETE LABORATORIES LTD.

27,68 10:07 🙄 230 573 4557

73 4557

ECO-TECH RAN.

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

26-Aug-98

D-TECH LABORATORIES LTD

Enank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

10041 E. Trans Canada Hwy, R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@mail.wkpowerlink.com

CERTIFICATE OF ANALYSIS AK 98-459

KENRICH MINING CORPORATION 10-510 BURRARD STREET /ANCOUVER, BC V6C 3A8

LABORATORIES

ATTENTION: J. KOWALCHUK

-No. of samples received:6 Sample type: SOIL PROJECT #: NONE GIVEN _SHIPMENT #: NONE GIVEN Samples submitted by: J. KOWALCHUCK

		Au	Hg
ET#. Tag#		(ppb)	(ppb)
1 HSOV-3N-1		15 .	650
2 HSOV-6N-1		40	70
3 HSOV-6N-2		20	510
4" "HSOV-6N-3		20	· · · 440
5 6N-3+25W		135	270
6 HSOV-7N-2+2	25W	15	520
			•
QC DATA:			•••••
······································		···· ·· · · · ·	
Repeat:	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·	•
1 HSVO-3N-1		. 15	
–			
Standard:		•••••••••	. .
GEO'98		145	110
_STSD-4		••• •••	960
STSD-4	· · · · · · · · · · · · · · · · · · ·		930
	•••••		
· · · · · · · · · · · · · · · · · · ·			

-XLS/98Kenrich Fax to John Kowalchuk 604-688-3346

& Mail to Vancouver

24-Aug-98

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KANLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

ICP CERTIFICATE OF ANALYSIS AK 98-458

KENRICH MINING CORPORATION 910-510 BURRARD STREET VANCOUVER, BC V6C 3A8

ATTENTION: J. KOWALCHUK

No. of samples received:15 Sample type: ROCK PROJECT 1: NONE GIVEN SHIPMENT 1: NONE GIVEN Samples submitted by: J. KOWALCHUCK

Values in ppm unless otherwise reported

			41.47		D.		~*	Cd	Co	Cr	Ċu	Fe %	La Ma %	Mn	No	Na %	Ni	P	Pb	Sb	Sn	Sr T	li %	U	<u> </u>	W	Y	Zn
Et #.	Taga	AQ	AI 70	<u> </u>	DK				<u> </u>	00		2.60	C10 0.44	284	2	0.02	7	270	10	<5	<20	6 (0.14	<10	50	<10	1	75
1	98626	1.0	0.99	20	100	- 10	0.08	<1	5	00	-32	3.08	-10 0.49	240	7	0.02	8	540	10	<5	<20	10 ≪	0.01	<10	32	<10	1	77
2	98627	1.6	1.16	10	105	Q	0.06	<1	5	33	32	4.92	<10 0.40	310	40	0.04	20	4020	08	15	<20	17 ⊲	0.01	<10	13	<10	1	268
3	96628	5.4	0.59	1200	50	- 5	0.21	<1	10	49	37	6.18	<10 0.18	100	.15	0.01	30	660	4.4	~	-20	5 4	0.01	<10	35	<10	<	42
Ā	98629	1.4	0.91	40	140	5	0.04	<1	2	38	25	3.77	<10 0.45	296	6	0.02	<1 	000	19	2	-20	5 - 1	0.01	~10	22	<10	e	60
5	98630	0.8	1.24	10	50	<5	0.06	<1	6	34	39	4.19	<10 0.94	322	5	⊲0.01	9	.310	10	4	-20		0.01	10	- -			
5	00000		•																	_				-10	~~		-4	55
•	00024	10	0.67	50	135	10	0.02	<1	4	16	38	7.49	<10 <0.01	33	12	0.02	<1	730	14	<5	<20	5 <	0.01	<10	23	<10	1	
6	80031	1.0	0.07	466	175		0.04	<1	2	37	16	3.06	<10 0.28	219	6	0.02	- 4	450	12	<5	<20	7 4	0.01	<10	23	<10	3	14
7	98632	2.0	0.00	100	173		0.07		Ē	20	23	4 29	<10 0.44	355	5	0.03	6	660	- 14	<5	<20	6 (0.06	<10	33	<10	1	52
8	98633	2.0	0.98	40	80	- 9	0.13	~1	5	20	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 2 2 2	c10 c1.01	39	30	0.01	11	650	24	20	<20	7 <(0,01	<10	20	<10	4	348
9	98634-A	8.2	0.30	110	110	<0	0,13	•	2	31	61	5.02	-10 -0.01	604		0.02	19	1590	12	<5	<20	21 ⊲	0.01	<10	47	<10	8	89
10	98634-B	20	1.06	40	55	<5	0.34	<1	7	44	30	5.21	~10 0.00	004	v	U.U				-								
	1.						•								40	-0.04		400	12	<5	<i>c</i> 20	Ad	Ő 01	<10	58	<10	<1	80
11	98635	4.0	1.64	45	60	- 5	0.03	<1	5	28	- 36	7.76	<10 1.31	409	12	SU.U1	5		40	~	-200	24	A 04	~10	18	<10	<1	358
12	98836	2.8	0.76	120	145	10	0.01	-<1	3	- 36	43	5.69	<10 0.05	34	. 22	0.01	D	040	10	~	~~~~		0.01	~10	20.	e10	-1	207
19	08837	78	0.32	110	180	<5	0.01	ব	<1	28	9	2.21	<10 <0.01	12	27	0.01	5	210	24	20	<20		0.01	-10	20	-10	-1	216
13	00639	12	2 77	120	55	<5	1.43	5	22	12	109	7.85	<10 1.58	1128	7	0.01	13	1270	12	<5	<20	51 4	10.01	< 10	00	NIU		405
14	80030	1.2	A.()	400	05	40	0.48	21	6	22	30	8.23	<10 <0.01	61	18	0.01	9	1460	38	<5	<20	8 ≪	0.01	10	20	<10	<1	100
15	98640	ö. 0	0.30	100	93	10	0.10	-1																				

4557

000

ICP CERTIFICATE OF ANALYSIS AK 98-469

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

25-Aug-98

Phone; 250-573-5700 Fax : 250-573-4557

KENRICH MINING CORPORATION

910-510 BURRARD STREET VANCOUVER, BC V6C 3A8

ATTENTION: J. KOWALCHUK

No. of samples received 6 Sample type: SOLL PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN Samples submitted by: J. KOWALCHUCK

Values in ppm unless otherwise reported

Et#	Tag#	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mri	Mo	Na %	NI	P	Pb	Sb	Sn	Sr	11%	U	<u>v</u>	W	<u>Y</u>	Zn
1	HSOV-3N-1	2.0	1.68	50	100	<5	0.08	2	22	<1	57	6.95	<10	0.36	2321	17	0.02	14	2240	40	<5	<20	10	0,01	<10	31	<10	10	258
2	HSOV-6N-1	1.6	0.71	375	140	25	0.28	7	31	<1	76	>10	<10	0.17	894	18	<0.01	48	1680	32	<5	<20	18	<0.01	<10	21	<10	<1	529
3	HSOV-6N-2	2.8	2.03	155	105	10	0.04	13	36	<1	145	>10	<10	0.30	2881	27	<0.01	79	990	16	<5	<20	2	<0.01	<10	22	<10	17	1312
4	HSOV-6N-3	2.8	2.63	40	80	10	0.04	2	11	6	45	7.07	<10	0.38	553	14	0.01	8	890	14	<5	<20	3	0.04	<10	82	<10	3	171
5	6N-3+25W	5.8	0.90	235	155	5	0.45	26	31	<1	159	>10	<10	0.29	3116	18	0.01	75	2150	92	<5	<20	47	<0.01	<10	30	<10	10	1362
6	HSOV-7N-2+25W	2.2	4.99	75	140	<5	0.53	39	76	6	322	8.00	20	0.57	6920	. 18	0.01	198	1700	18	<5	<20	39	0.02	<10	43	<10	54	2291
QC D Repe	NIA: It:																												
1	HSOV-3N-1	2.0	1.65	55	100	10	0.08	2	24	2	55	7.11	<10	0.36	2383	16	0.01	15	2260	45	<5	<20	8	0.01	<10	32	<10	12	267
Stand GEOS	arut: 18	1.2	1.65	65	160	<5	1 <i>.7</i> 0	<1	19	88	81	4.11	<10	0.96	713	্ব	0.02	23	680	24	<5	<20	59	0.11	<10	74	<10	6	73

di7453d XLS/98Kenrich Fax to John Kowalchuk 604-688-3346 & Mail to Vancouver

2

بلار د

EQO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. -De B.C. Certified Assayer

Page 1

10

KENRICH MINING CORPORATION

ICP CERTIFICATE OF ANALYSIS AK 98-458

ECO-TECH LABORATORIES LTD.

12

1940 C

NACH-THE MAKE

2004

Et #.	Tag#	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	N	P	Pb	Sb	Sn	Sr	Π%	Ų	V	W	Y	Zn	
<u>OC DATA:</u> Resplit: R/S 1	98626	1.4	1.01	20	110	10	0.07	ব	5	60	32	3.80	<10	0.43	279	1	0.02	6	280	12	⊲5	<20	5	0.14	<10	53	<10	1	81	
Repeat: 1	98626	1.2	0.99	20	100	<5	0.07	ব	5	73	32	3.76	<10	0.44	288	3	0.02	7	290	12	<5	<20	5	0.14	< 10	50	<10	. 1	79	
Standard: GEO'98		1.4	1.73	60	160	<5	1.83	<1	19	66	85	4.15	<10	0.98	697	<1	0.02	24	660	24	<5	<20	52	0.11	<10	76	<10	4	71	. •

di/481 XLS/98Kenrich Fax to John Kowalchuk 604-582-3346 & Mail to Vancouver

į.

ECO-TECH LABORATORIES LTD. Righk J. Pezzotii, A.Sc.T. B.C. Certilied Assayer

Page 2

21-Jul-98

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

Values in ppm unless otherwise reported

ICP CERTIFICATE OF ANALYSIS AK 98-328

KENRICH MINING CORPORATION

910-510 BURRARD STREET VANCOUVER, BC V6C 3A8

ATTENTION: J. KOWALCHUK

No. of samples received: 59 Sample type: ROCK PROJECT #: None Given SHIPMENT #: 3 Samples submitted by: H. Sigurgeirson

Et #.	Tag#	Ag	<u>AI %</u>	As	Ba	Bi	Ca %	_Cd	Co	Cr	Cu	Fe %	La	Mg %	Ma	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr TI%	U	v	W	Y	Zn
1	98489	<0.2	2.15	<5	185	15	3.39	<1	5	7	5	5.51	<10	0.83	957	4	0.05	<1	1940	6	<5	<20	143 0.02	<10	16	<10	11	107
2	98530	0.4	0.35	15	105	10	0.05	<1	8	14	11	6.24	<10	0.09	512	25	0.04	<1	1740	8	<5	<20	2 < 0.01	<10	5	<10	<1	58
3	98531	<0.2	0.26	<5	35	10	0.38	<1	7	23	5	4.53	<10	<0.01	45	9	0.03	<1	1240	10	<5	<20	10 <0.01	10	2	<10	3	34
4	98532	0.2	0.97	15	65	5	3.48	<1	4	5	19	3.23	<10	0.99	503	19	0.06	6	970	12	5	<20	75 <0.01	<10	19	<10	5	91
5	98533	<0.2	0.40	10	80	5	1.49	<1	3	39	7	2.71	<10	0.20	220	9	0.06	<1	470	20	<5	<ż0	108 <0.01	<10	5	<10	3	52
6	98534	⊲0.2	0.23	10	130	⊲5	0.16	~1	1	30	5	2.46	<10	<0.01	40	10	0.07	-1	620	10	~	~20	11 -0.04	- 40	•			
7	98535	<0.2	0.16	5	100	<5	0.08	<1	<1	46	3	1 59	<10	<0.01	30	6	0.07	-1	320	10	-5	~20	1 <0.01	<10	3	<10	<1	23
8	98536	1.0	0.77	10	50	<5	0.19	1	6	110	32	3.05	<10	0.55	140	10	0.00	10	780	42	-5	~20	4 ~0.01	<10	3	<10	<1	12
.9	98537	1.0	0.06	135	· 50	25	0.01	1	Å	89	12	>10	3<10	<0.00	77	57	0.02	21	<10	-2	-5	~20	3 0.01	10	20	<10	2	/2
10	98538	0.2	0.68	5	100	5	0.35	<1	Ă	52		4 24	<10	0.00	177	10	0.02	1	1310	40	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~20	10 -0.01	JU ~10		510	<1	10
				-		. T			•					0.00	••••				10.0		~	-20	10 \0.01	~10	0	10	1	62
11	98539	0.2	0.02	360	60	35	0.02	1	8	63	4	>10	<10	<0.01	158	22	0.03	<1	<10	~2	<5	<20	<1 <0.01	10	4	<10	<1	17
12	98540	0.2	0.34	35	40	15	1.04	1	7	88	6	6.42	<10	0.13	210	21	0.06	<1	1240	8	<5	<20	46 <0.01	<10	5	<10	9	78
13	98541	⊲0.2	0.21	20	100	5	0.02	<1	1	78	2	2.96	<10	<0.01	33	9	0.04	<1	620	10	<5	<20	1 <0.01	<10	2	<10	<1	6
14	98542	<0.2	0.18	25	45	10	0.17	<1	6	90	4	4.53	<10	<0.01	103	14	0.05	<1	860	8	<5	<20	4 0.02	<10	3	<10	2	28
15	98543	<0.2	0.74	<5	115	5	1.29	<1	5	41	4	3,96	<10	0.16	531	5	0.05	<1	1470	6	<5	<20	51 <0.01	<10	4	<10	14	149
40	00544	~ ~ ~		-							• _																	
10	96044	<0.2	0.46	<5	215	10	0.52	<1	4	19	6	5.79	<10	<0.01	184	15	0.05	<1	1260	4	<5	<20	24 <0.01	<10	4	<10	5	82
17	86545	0.6	0.35	65	45	10	0.17	1	5	6	21	3.96	<10	0.06	72	63	0.05	15	840	14	<5	<20	5 <0.01	<10	14	<10	1	117
18	96546	0.6	0.30	50	70	10	>10	2	6	9	17	3.87	<10	0.10	1248	35	0.05	18	690	10	<5	<20	447 < 0.01	<10	9	<10	7	143
19	98547	0.6	0.43	60	50	10	0.28	ব	8	7	30	6.20	<10	0.07	97	65	0.06	16	800	14	<5	<20	15 <0.01	10	12	<10	2	161
20	98548	0.4	0.26	35	40	10	1.54	~1	6	13	4	5.57	<10	0.03	355	25	0.02	4	1220	8	<5	<20	37 <0.01	<10	3	<10	3	41
21	98549	0.6	0.23	15	85	<5	>10	<1	5	44	5	3.63	<10	0.13	1357	19	0.02	<1	1210	6	<5	<20	354 <0.01	<10	2	10	44	49
22	98550	0.4	0.12	5	60	<5	0.18	<1	<1	79	3	1.47	<10	<0.01	42	8	0.10	<1	540	10	<5	<20	10 <0.01	~10	2	~10		40
23	98562	0.2	0.51	<5	130	10	0.02	<1	2	15	6	3.57	<10	0.11	22	6	0.01	<1	340	38	<5	<20	1 < 0.01	~10	3	~10	~1	14
24	98563	<0.2	0.20	<5	175	10	0.07	<1	3	54	4	2.68	<10	<0.01	84	6	0.06	<1	900	18	<5	~20	13 0.01	<10	4	~10		30
25	98564	<0.2	0.94	<5	170	10	1.15	<1	5	49	4	3.45	<10	0.15	413	7	0.05	<1	1580	14	-5	~20	30 0.00	~10	4	~10	4	1/
				•							-	- 10	-10	0.10	-11-2		0.00	- 1	1000	1.4	-0	~20	JB U.UZ	510	6	<10	15	721

07/23/98 09:34 23:250 573 4557

t

KENRICH MINING CORPORATION

ICP CERTIFICATE OF ANALYSIS AK 98-328

ECO-TECH LABORATORIES LTD.

El #.	Tag#	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	NI	Ρ	Pb	Sb	Sn	81	Ti %	U	v	w	Y	Zn
26	96566	<0.2	1.12	20	. 80	15	0.08	<1	8	<1	29	4.15	<10	0.62	197	24	0.02	13	560	22	<5	<20	<1	0.18	<10	24	<10	8	141
27	98567	<0.2	1.40	25	115	15	0.05	<1	6	23	32	4.90	<10	0.79	240	64	0.02	21	960	20	` < 5	<20	5	0.10	10	59	<10	2	164
28	98568	0.6	0.88	20	135	10	0.46	<1	3	12	24	4.37	<10	0.38	137	20	0.05	2	2850	16	<5	<20	23	<0.01	<10	28	<10	8	90
29	98569	4.4	0.99	85	150	5	0.12	2	6	5	49	5.34	20	0.10	140	22	0.05	18	670	24	<5	<20	7	<0.01	<10	42	<10	9	355
30	98570	8.0	1.28	35	125	15	0.36	<1	6	36	41	6.09	<10	0.58	611	6	0.05	3	2860	22	<5	<20	21	0.09	<10	63	<10	ä	00
																•		•				-24		0.00	- 10	00	~10		
31	98571	0.6	1.45	40	135	15	0.08	ব	6	21	27	4.87	<10	0. 76	510	2	0.06	4	600	22	<5	<20	6	0.13	<10	42	<10	2	107
32	98572	1.4	0.80	15	135	<5	0.05	<1	2	61	18	2.50	<10	0.29	206	3	0.06	ব	370	18	<5	<20	- 6	0.07	<10	31	<10	-	48
33	88573	1.8	0.87	40	100	5	0.01	<1	4	22	40	5.07	<10	0.19	192	7	0.05	4	420	18	<5	<20	<1	<0.01	<10	25	<10	<1	43
34	98574	1.4	0.86	35	90	5	0.01	1	5	37	42	5,21	<10	0.19	212	9	0.04	<1	440	18	<5	<20	<1	<0.01	<10	25	<10	<1	47
35	98575	3.4	0.92	60	35	<5	0.20	10	9	20	74	5.43	<10	0.37	295	10	0.06	32	950	22	<5	<20	6	<0.01	<10	43	<10	<1	482
	_																											•	142
36	98576	1.4	0.26	70	70	⊲5	0.04	<1	4	45	18	3.41	<10	<0.01	34	6	0.06	<1	530	48	<5	<20	3	<0.01	<10	9	<10	<1	83
37	98577	2.8	0.71	40	70	10	0.05	2	5	54	34	3.81	<10	0.37	539	12	0.02	7	500	16	<5	<20	<1	<0.01	<10	30	<10	<1	212
38	96578	<0.2	1.49	15	240	20	0.08	4	8	5	22	5.78	<10	0.68	487	22	0.04	- 4	1080	26	<5	<20	13	0.22	<10	39	<10	2	112
39	98579	1.0	0.41	15	6 0	<5	0.92	<1	- 4	<1	24	3.51	<10	0.27	161	18	0.05	5	1120	12	<5	<20	23	<0.01	<10	15	<10	3	102
40	98580	0.4	0.47	15	80	10	0.29	<1	5	6	28	6.71	<10	0.13	126	25	0.02	4	1080	10	<	<20	11	<0.01	10	12	<10	<1	101
																									•				
41	98581	<0.2	0.60	10	90	<5	6.36	<1	. 7	3	27	3.05	<10	0.52	983	10	0.02	<1	1260	10	<5	<20	142	<0.01	<10	9	<10	9	74
42	96582	0.4	0.23	30	35	10	0.43	<1	8	5	10	4.23	<10	0.06	188	8	0.04	<1	350	14	<5	<20	12	<0.01	<10	3	<10	<1	66
43	98583	<0.2	1.38	<5	145	<5	0.17	<1	5	з	6	2.93	20	0.61	107	3	0.02	<1	550	28	<5	<20	3	<0.01	<10	5	<10	6	121
44	98584	0.4	0.18	30	80	5	0.02	<1	<1	46	2	1.95	_ ≤10 ◄	<0.01	27	7	0.07	<1	130	14	<5	<20	<1	<0.01	<10	1	<10	<1	16
45	98585	0.4	0.41	10	125	35	0.03	<1	8	10	13	>10	<10 •	<0.01	78	23	0.03	<1	780	8	<5 ·	<20	<1	<0.01	10	13	<10	<1	65
AR	09598	04	0.4e	50	40	-6	0 E 4	-4	e	00	20	4 70	-40	a aa												_			
47	09597	1.0	0.10	10	105		0.09		5	24	30	1./0	<10	0.08	108	4	0.01		210	12	<5	<20	22	<0.01	<10	8	<10	<1	35
47 48	08588	1.0	0.38	20	70	5	0.03	2	2	44	40	2 00	<10 *	0.07	446	0	0.04	<1	370	12	<5	<20	<1	<0.01	10	11	<10	4	87
40	08580	20	0.50	25	50	46	0.20	-4	44	41	44	3.00	~10	0.07	110		0.00	<1 <1	0/U	94	<9 	<20	9	<0.01	<10	7	<10	<1	199
50	08606	2.0	0.04	20	00	40	0.15			30	-11	4.37	~10	0.49	210		0.00	29	490	20	\$	<20	6	<0.01	<10	30	<10	<1	122
	30000	0.2	0.92	20	00	10	0.04		2	ŕ	5	2.80	\$10	0.05	20	43	0.02	٤.)	530	14	<5	<20	2	⊲0.01	10	6	<10	<1	26
51	98607	<0.2	0.89	5	150	5	0.31	ব	4	47	3	3.63	<10	0 13	197	7	0.04	d	1440	12	~5	20		0.01	-10	7	-10	40	00
52	88608	<0.2	0.49	5	75	10	0.19	<1	5	57	4	3.29	<10	0.08	143	á	0.04	e1	080	12	~	~20	2	-0.01	~10	'	<10	10	90
53	98809	0.4	0.60	70	55	10	5.21	2	7	1	25	4 63	<10	0.42	676	41	0.00	20	1050	44		~20	476	~0.01	~10		<10	5	60
54	98910	0.4	0.72	50	65	<5	7 77	ĩ	6	ব	21	3.45	<10	0.58	771	32	0.02	44	070	40	~	~20	120	~0.01	~10	20	<10	3	191
55	98611	0.2	1.53	10	190	15	0.62	ح	ě	1	5	5.08	10	0.74	210	12	0.00	- 11	050	20	~5	~20	103	-0.01	<10	19	<10	3	110
							0.02		J	•	3		10	V.14	010	14	0.01	~!	800	20	~ 0	~20	19	~U.U T	510	10	<10	Ð	168
56	98612	<0.2	0.78	10	100	10	0.13	<1	6	<1	6	3.75	<10	0.31	92	5	<0.01	ব	280	24	<5	<20	4	<0.01	<10	3	<10	<1	108
57	98613	0.4	0.25	60	135	5	0.01	<1	2	37	5	2.86	<10	0.01	22	11	0.03	<1	160	24	<5	<20	Å	<0.01	<10	2	<10	4	R3
58	98614	0.4	0.17	95	200	10	<0.01	<1	<1	46	3	2.57	<10 <	0.01	30	8	0.08	<1	180	16	<5	<20	6	<0.01	<10	2	10	~1	21
59	98615	0.2	0.13	20	55	<5	0.02	<1	<1	75	2	0.97	<10 <	0.01	69	2	0.05	<1	140	10	<5	<20	<1	<0.01	<10	~1	10	-1	د ا م
						-		-	•		-				••	-	3.00		140	10	-0	-20		-0.01	~10		10	S I	o

09:35

07/23/98

1

KENRICH	MINING COF	RPORATI	ON					ICF	CER	TIFICA	TE OF	ANAL	rsis a	K 98-32	28									ECO-T	ECH LA	BORA	TORIE	S LTC).
<u>Et #.</u>	Tag#	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Ċr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	71 %	U	v	W	Y	Zn
OC DATA:					•																								
Resplit:																													
1	98489	<0.2	2.17	⊲5	185	20	3.37	<1	6	10	6	5.69	<10	0.82	962	5	0.05	<1	2090	8	<5	<20	135	0.02	<10	17	<10	12	118
36	98576	1.6	0.24	65	65	5	0.04	<1	4	40	18	3.51	<10	<0.01	32	6	0.06	<1	560	52	<5	<20	2	≪0.01	<10	8	<10	<1	89
Repeat:																													
1	98489	0.2	2.13	<5	180	10	3.36	<1	5	7	5	5.48	<10	0.81	945	4	0.05	<1	1940	-10	<5	<20	140	0.02	<10	16	<10	12	108
10	98538	<0.2	0.67	10	90	10	0.40	<1	4	54	4	4.32	<10	0.09	186	11	0.03	<1	1370	12	<5	<20	13	<0.01	<10	6	<10	7	84
19	98547	0.4	0.42	60	45	15	0.26	1	7	7	28	6.08	<10	0.07	93	64	0.05	16	780	14	<5	<20	10	<0.01	<10	12	<10	1	153
36	96576	1.4	0.27	70	70	<5	0.03	<1	4	42	17	3.41	<10	<0.01	32	7	0.04	<1	530	50	<5	<20	<1	<0.01	<10	9	<10	<1	82
45	98585	0.4	0.43	20	125	30	0.06	1	8	11	13	>10	<10	<0.01	88	24	0.04	<1	820	12	<5	<20	<1	<0.01	30	14	<10	<1	67
Standard:																													
GEO'98		1.2	1.80	65	155	<5	1.89	<1	19	57	77	4.02	<10	0.98	672	<1	0.03	20	680	22	<5	<20	53	0.10	<10	72	<10	4	73
GEO'98		1.2	1.81	65	160	5	1.78	<1	20	64	80	4.28	<10	0.95	692	<1	0.03	21	710	24	<5	<20	59	0.13	<10	79	<10	5	77

3

df/328 XLS/98Kenrich Fax to John Kowalchuk 604-688-3346 & Mail to Vancouver Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer 1

Ø 006

21-Jul-98

1

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

F+ # 7 #

Level .

Values in ppm unless otherwise reported

Et	P.	Tag#	Ag	AI %	As	Be	8	Ca %	Cd	Co	Cr	. Cu	Fe %		Ma %	Min	Mo	No %	NI	P	Ph	Ch.	e-	÷-	173 M					-
1	97964	4	<0.2	>10	45	50	10	0.21	<1	20	ব	18	4 44	10	0.04	1210	12	0.02		600		- 30	30	ər	11%	<u> </u>	V	W	<u> </u>	Zn
2	9796	5	1.2	2.15	75	170	10	1.55	23	29	20	111	6 70	<10	1 04	9709	40		104	020	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<0	<20	15	0.03	<10	10	<10	69	132
3	97966	3	0.4	2.69	50	180	25	1.00	6	27	<1	43	8.09	30	0.37	2/03	19	0.07	101	1850	38	<5	<20	63	0.09	<10	62	<10	16	1779
4	NICA	TRENCH 2 A	0.4	1.09	45	55	<5	0.05	<1	3	<1	14	1 32	<10	0.07	2080		0.06	- 34	1400	- 34	<5	<20	- 77	0.07	<10	26	<10	63	562
5	NICA	I TRENCH 2 B	0.6	0.56	35	55	<5	0.04	<1	2	<1	12	1 35	~10	0.10	40	4	0.01	<u>୍</u>	420	16	<5	<20	3	0.02	<10	65	<10	<1	31
6	NICA	TRENCH 2 C	2.4	0.86	60	50	<5	0.05	<1	Ā	d	31	2 02	~10	0.04	40	3	40.01	_	590	12	<5	<20	5	0.04	<10	- 44	10	<1	16
							•	0.00		7	-1	91	2.02	10	0.07	79	4	0.01	<1	800	18	<5	<20	- 4	0.04	<10	67	<10	<1	28
7	NICA	TRENCH 2 D	0.8	1.62	255	145	<5	0.18	3	33	Å	201	8 15	-10	0 ec	1000	~	0.04				_								
8	NICA	TRENCH 2 E	0.8	1.79	280	130	<5	0.20	4	36	Ŕ	388	8 86	~10	0.00	1000	47	0.01	30	2080	64	<5	<20	9	0.06	<10	65	<10	13	308
9	NICA	TRENCH 2 F	1.0	1.93	280	145	-	0.24	4	33	7.	345	7 80	20	0.03	1002	11	0.01	- 34	2050	72	<5	<20	7	0.05	<10	64	<10	13	356
10	NICA	TRENCH 2 G	1.8	3.13	245	125	4	0.14	2	41	ģ	320	7 85	-10	0.00	2440	10	0.01	44	1870	64	<5	<20	11	0.04	<10	63	<10	30	336
11	NICA	TRENCH 2 H	2.4	3.11	180	110	<5	0.06	4	20	14	105	9.64	~10	0.01	2149	13	0.01	27	1280	70	<5	<20	3	0.05	<10	67	<10	10	317
12	NICA	TRENCH 21	1.8	2.62	205	140	5	0.05	4	15	16	151	510	<10	0.40	1112	20	0.01	16	1250	66	<5	<20	7	0.08	<10	73	<10	3	217
13	NICA	TRENCH 2 J	1.2	2.83	215	100	5	0.12	તં	26	19	172	>10	<10	0.72	1304	13	0.01	4	1670	72	<5	<20	7	0.06	<10	72	<10	<1	102
- 14	HSOV	8+00N-R-1+50W	<0.2	1.49	25	75	15	0.08	1	11	6	34	5 43	~10	0.30	4600	10	0.03	0	3180	72	<5	<20	5	0.12	<10	103	<10	<1	125
									•	••	•	•••	0.40	-10	0.41	1039	17	0.04	1	1190	28	<5	<20	5	0.08	<10	104	<10	<1	132
QC D	ATA:																													
Repe	at:																													
1	97964		0.2	>10	45	45	10	0.21	<1	20	-1	24	A ER	10		4055														
								0.2.1	~.	~	-1	21	4,30	10	0.03	1258	12	0.02	<1	660	2	<5	<20	13	0.02	<10	11	<10	70	137
Stand	lerd;																													
GEO	98		1.2	1 71	60	155	10	4 98	-1	10	64	77	4.00				_													
					50	100	10	1.00	-1	13	01		4.09	<10	U.96	670	<1	0.03	19	680	24	<5	<20	55	0.12	<10	75	<10	4	75

df/328 XLS/98Kenrich Fax to John Kowalchuk 604-688-3346 & Mail to Vancouver

ICP CERTIFICATE OF ANALYSIS AK 98-329

KENRICH MINING CORPORATION 910-510 BURRARD STREET VANCOUVER, BC V6C 3A8

1227727

Leverse

2.....

2223

ATTENTION: J. KOWALCHUK

No. of samples received: 14 Sample type: MOSS PROJECT #: NONE GIVEN SHIPMENT #:3 Samples submitted by: H. Sigurgeirson 07/23/98 09:37 **D**250 573 4557

Q 008

CO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. Ĵ•/ B.C. Certified Assayer

ECO-TECH LABORATORIES LTD.

14-Jul-98

10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

Values in ppm unless otherwise reported Mesh

E(#.	. Tag#	Size	Au(ppb)	Ag	AI %	As	Ba	Bl	Ca %	Cd	Co	Cr	Си	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	u	v	w	v	7.
1	97962		125	3.0	1.79	150	130	10	0.54	7	35	5	178	9.06	<10	0.95	1766	14	0.02	35	1920	71	<5	<20	38	0.01	<10	63	<10	-	200
2	97963	-32	<5	0.4	0.60	10	75	<5	1.96	2	14	<1	60	2.69	10	0.33	678	6	0.03	5	1080	40	<5	80	85	<0.01	<10	10	~10	16	- 389 - 497
3	HSOV 39057A		<5	0.6	0.85	55	50	10	0.66	3	12	<1	34	5.35	<10	0.61	585	20	<0.01	51	1420	44	15	<20	38	<0.01	<10	ور وز	~10	15	127
4	HSOV 39057B		<5	0.8	0.62	75	75	10	0.49	9	20	<1	72	6.19	10	0.09	1455	25	<0.01	96	960	47	<5	<20	34	~0.01	<10	40	-10	0	247
5	HSOV 39057C		<5	0.8	0.59	65	45	10	0.92	7	13	<1	46	4.99	<10	0.15	657	28	<0.01	81	980	43	10	<20	38	<0.01	<10	12	<10	16 6	568 481
6	HSOV 39057D		5	1.0	0.67	90	90	10	0.73	8	12	<1	49	5.85	<10	0.17	1619	18	<0.01	84	850	50	20	<20	46	~0.01	~10	47	~10	~	
7	HSOV 39057E		<5	8.0	0.47	105	80	10	0.51	9	14	<1	47	5.35	<10	0.21	1300	30	<0.01	125	920	40	20	~20	20	~0.01	~10		< 10	8	639
8	HSOV 39057F		<5	0.6	0.47	105	45	5	0.56	6	13	<1	48	5.32	<10	0.08	298	37	<0.01	60	1200	60	46	~20	30	-0.01	510	0	<10	10	456
8	HSOV 39057G		5	1.0	0.81	100	45	10	0.59	12	19	<1	54	5.53	<10	0.13	1775	33	<0.01	140	010	CU C4	10	~20	30	SU.01	<10	10	<10	4	413
10	NICA 1 TRENCH A		45	0.6	1.65	65	180	<5	0.55	2	14	44	169	3 39	20	0.61	753	14	-0.01	20	2040	07	20	~20	400	<0.01	<10	14	<10	9	825
										-				0.00		0.01	100	1.4	-0.01	20	3210	9/	10	<20	122	<0.01	<10	33	<10	7	98
11	NICA 1 TRENCH B		110	<0.2	2.63	110	180	<5	0.09	2	26	31	421	6.98	<10	1.10	1303	9	0.01	23	020	6 0	40	~20	12	0.00	-10			•	
12	NICA 1 TRENCH C		95	0.4	2.68	120	200	<5	0.05	2	17	29	366	7.59	10	0.72	842	12	0.01	14	840	47	16	~20	10	0.00	510	29	<10		170
13	NICA 1 TRENCH D		65	0.5	2.72	110	180	<5	0.07	2	18	29	347	8.06	10	0 79	889	13	0.01	14	970	62	5	~20	10	0.04	<10	101	<10	18	129
14	NICA 1 TRENCH E		90	<0.2	2.64	110	175	<5	0.07	2	16	30	315	6.96	<10	0.91	802	10	0.01	17	820	47	10	~20	10	0.05	<10	105	<10	9	121
15	NICA 1 TRENCH F		90	0.2	2.74	120	18D	<5	0.10	2	24	30	356	7 28	<10	0.07	1301	10	0.01	20	4400	47	10	<20	3	0.04	<10	99	<10	3	126
										-		•••		1.20	.10	0.07	1001	10	0.01	20	1190	02	10	<20	11	0.05	<10	95	<10	2	140
16	NICA 1 TRENCH G		115	1.2	2.56	115	145	10	0.08	2	18	27	244	9.08	<10	0.64	723	14	0.04	40	020	57	-6	-00	~	0.07					
17	NICA 1 TRENCH H	-48	55	2.0	1.46	60	140	10	0.09	<1	6	9	61	2.88	<10	0.41	268		0.01	10	500 500	57	\$	~20	0	0.07	<10	89	<10	<1	100
18	NICA 1 TRENCH I		110	0.4	2.73	120	185	<5	0.08	2	24	30	418	7.65	<10	1.00	1220	13	0.02	25	000	19	3	<20	12	0.04	<10	08	<10	<1	41
19	NICA 1 TRENCH J		80	0.2	2.67	105	185	<5	0.07	2	18	31	352	7 10	=10	0.07	070	40	0.01	40	920	72 42	70	<20	13	0.05	<10	97	<10	8	177
20	NICA 1 TRENCH K	-48	50	1.2	1.84	75	160	5	0.16	<1	12	16	110	4 08	~10	0.01	400	10	0.01	.19	900	45	10	<20	13	0.05	<10	102	<10	6	140
21	NICA 1 TRENCH L		85	1.6	2 59	100	205	<5	0.07	1	15	20	264	7.34	~10	0.00	402	5	0.04	8	650	32	5	<20	16	0.08	<10	94	<10	<1	66
							200		4.41	•	10	2J	204	1.31	<10	V.//	038	77	0.01	13	840	46	<5	<20	13	0.03	<10	95	<10	<1	113

ICP CERTIFICATE OF ANALYSIS AK 98-303

KENRICH MINING CORPORATION 910-510 BURRARD STREET VANCOUVER, BC V6C 3A8

ATTENTION: J. KOWALCHUK

No. of samples received: 21 Sample type: SOIL PROJECT #: NONE GIVEN SHIPMENT #:2 Samples submitted by: H. SIGURGEIRSON 07/14/98

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557

Values in ppm unless otherwise reported

_Et #	l. Tag#	Au(ppb)	Ag	AI %	As	Ba	BI	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Ρ	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
1	97902	5	0.8	1.50	45	130	<5	1.63	12	20	3	86	5.66	<10	0.53	2033	23	0.03	98	1280	18	\$	<20	76	0.05	<10	42	<10	Ŕ	728
2	NICA I 14+00S 1	85	<0.2	2.73	140	150	<5	0.08	<1	17	25	319	7.74	<10	0.94	789	11	0.01	16	810	46	10	<20	10	0.04	<10	96	<10	5	148
3	NICA 14+00S 2	130	0,4	2.64	135	150	<5	0.09	<1	20	25	313	7.25	<10	0.93	937	9	0.01	15	970	54	<5	<20	10	0.04	<10	91	<10	3	143
4	NICA 14+00S 3	85	1.0	2.27	110	185	<5	0.11	1	15	25	187	9.58	<10	0.82	693	11	0.01	11	960	56	<5	<20	13	0.06	<10	105	<10	<1	108
5	NICA 14+00S 4	45	3.6	0,91	20	95	<5	0.19	2	8	<1	50	2.33	<10	0.20	116	<1	0.08	<1	670	20	<5	<20	20	0.12	<10	57	<10	<1	35
_																													.,	00
6	NICA 14+00S 5	210	1.8	2.00	105	140	<5	0.06	<1	11	19	179	6.00	<10	0.64	535	8	0.01	8	1210	48	<5	<20	9	0.04	<10	87	<10	<1	94
7	NICA 14+005 6	110	2.8	1.98	95	150	<5	0.08	<1	17	1 6	201	5.93	<10	0.67	828	8	0.01	9	940	50	<5	<20	9	0.03	<10	80	<10	<1	105
8	NICA 14+005 7	70	3.8	2.24	115	180	<5	0.10	<1	22	19	312	6.71	<10	0.82	1537	10	0.01	14	1110	48	<5	<20	12	0.03	<10	85	<10	7	141
9	NICA I 14+00S 8	75	2.2	1.48	105	150	<5	0.09	<1	9	11	144	6.05	<10	0.41	333	9	0.01	7	780	40	<5	<20	11	0.05	<10	103	<10	<1	79
10	NICA I 14+00S 9	45	1.6	1.78	100	135	<5	0.08	<1	10	17	102	6.94	<10	0.48	322	10	0.01	5	880	42	<5	<20	8	0.04	<10	119	<10	<1	71
										_			·																	
40	NICA 1 14+005 10	95	1.0	1.67	115	165	<5	0.10	<1	9	12	127	5.97	<10	0.39	379	8	0.01	4	920	40	<5	<20	12	0.05	<10	128	<10	<1	75
14	NICA 1 14+005 11	. 95	8.0	2.06	120	260	<5	0.12	<1	18	18	201	7.11	<10	0.64	949	10	0.01	11	780	42	<5	<20	15	0.03	<10	104	<10	6	113
13	NIGA 14+005 12	75	0.6	1.70	120	165	<5	0.07	<1	9	11	194	6.18	<10	0.35	317	10	<0.01	6	710	42	<5	<20	9	0.04	<10	110	<10	<1	77
14	NICA I 14+005 13	65	1.2	1.47	110	165	<5	0.10	<1	9	12	113	7.21	<10	0.27	191	10	0.01	5	780	36	<5	<20	12	0.07	<10	140	<10	<1	60
15	NICA 14+005 14	105	<0.2	2.27	145	165	<5	0.14	<1	16	23	228	8.69	<10	0.88	735	11	0.01	13	1700	52	<5	<20	14	0.06	<10	113	<10	<1	131
40							_																							
10	NICA 1 14+005 15	95	0.6	2.31	125	185	<5	0.13	1	12	22	183	8.1 6	<10	0.66	424	11	0.04	10	840	48	<5	<20	13	0.04	<10	114	<10	<1	103
17	HSOV 2+5UN 1	10	1.2	2.07	70	96	<5	0.20	1	27	<1	92	7.57	<10	0.67	2541	11	0.02	13	1580	50	<5	<20	12	0.04	<10	54	<10	17	289
18	HSOV 2+50N 2	15	1.8	1.71	75	95	<5	0.29	2	26	2	107	7.46	<10	0.75	2005	10	0.01	18	1820	220	<5	<20	16	0.05	<10	63	<10	15	408
19	HSOV 2+50N 3	10	12.6	0.71	210.	155	<5	0.14	9	25	<1	225	>10	<10	0.09	2768	31	<0.01	55	1520	1752	25	<20	10 <	<0.01	<10	30	<10	22	1239
20	HSOV 2+50N 4	5	0.6	2.11	45	85	10	0.30	<1	23	<1	61	6.79	<10	0.70	1502	8	0.02	6	1730	56	<5	<20	16	0.04	<10	53	<10	6	147
~																													-	• • •
21	HSOV 2+50N 5	10	1.8	1.49	95	90	<5	0.22	2	36	<1	97	7.97	<10	0.44	2276	14	0.02	20	1710	64	<5	<20	12	0.03	<10	40	<10	15	330
22	HSOV 2+50N 8	10	2.2	1.46	70	95	<5	0.39	4	37	<1	94	8.28	<10	0.46	2058	14	0.04	36	1750	42	<5	<20	27	0.05	<10	38	<10	17	274
23	HSOV 2+50N 7	35	13.0	0.99	230	175	<5	0.31	38	59	<1	270	>10	<10	0.09	6112	38	0.02	167	2920	140	25	<20	24	0.02	<10	24	<10	25	964
24	HSOV 3+50N 1	20	5.8	0.57	135	55	10	0.64	11	18	<1	103	>10	<10	0.06	516	34 -	<0.01	44	2630	48	<5	<20	63 <	0.01	<10	42	<10	18	920
25	HSOV 3+50N 2	10	5.8	1.41	100	90	<5	0.11	18	75	3	400	>10	<10	<0.01	6538	38 ·	<0.01	102	2900	24	<5	<20	11 <	0.01	<10	48	<10	6	1076

ICP CERTIFICATE OF ANALYSIS AK 98-293

KENRICH MINING CORPORATION 910-510 BURRARD STREET VANCOUVER, BC V6C 3A8

ATTENTION: J. KOWALCHUK

No. of samples received: 37 Sample type: Soil PROJECT #: None Given SHIPMENT #: None Given Samples submitted by: H. Sigurgeirson

KENI	RICH MINING CORF	PORATI	DN							ICF	CER	FIFICA	te of	ANALY	'SIS AI	< 98-29	3									ECO-TI	ECH LA	BORA	TORI	es l'I	D.
Et #	. Tag#	Size	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	υ	v	w	Y	Zn
26	HSOV 3+50N 3		20	5.2	0.60	185	105	10	0.04	4	22	<1	113	>10	<10	0.02	1714	29	0.01	24	2930	58	<5	<20	15	<0.01	<10	37	<10	2	418
27	HSOV 8+00N 1		10	<0.2	1.80	15	65	10	0.05	<1	11	9	28	4.39	<10	0.50	555	<1	0.04	<1	870	22	<5	<20	8	0.15	<10	94	<10	<1	58
28	HSOV 8+00N 2		5	0.6	3.23	50	80	10	0.23	<1	18	12	63	6.15	<10	1.07	845	3	0.01	7	1510	54	<5	<20	13	0.10	<10	98	<10	2	100
29	HSOV 8+00N 3		15	0.4	2.54	45	85	5	0.46	<1	26	11	85	6.00	<10	1.31	1117	2	0.01	11	2020	36	<5	<20	21	0.12	<10	106	<10	3	.00
30	HSOV 9+50N 1		10	1.4	3.36	40	70	10	0.14	2	14	3	60	6.58	<10	0.51	696	31	0.04	48	1180	26	<5	<20	11	0.05	<10	67	<10	3	287
31	HSOV 9+50N 2		5	0.2	3.16	50	50	5	0.04	່<1	5	<1	39	4.75	<10	0.14	99	27	0.05	18	1180	32	<5	<20	4	0.03	<10	53	<10	2	140
32	HSOV 9+50N 3		10	0.6	3.55	50	85	<5	0.17	2	21	7	73	7.68	<10	0.68	927	33	0.04	49	1130	36	<5	<20	10	0.06	<10	84	<10	4	323
33	HSOV 9+50N 4		5	0.2	2.93	30	90	10	0.50	2	34	37	55	7.24	<10	1.43	1804	- 14	0.02	13	1050	32	<5	<20	14	0.08	<10	109	<10	12	178
34	HSOV 9+50N 5	-48	5	1.4	2.88	140	210	<5	0.13	7	47	<1	158	>10	<10	0.59	2962	105	0.06	140	1980	50	<5	<20	18	0.08	<10	68	<10	10	801
35	HSOV 9+50N 6		10	1.6	3.25	85	180	<5	0.81	23	44	<1	183	>10	<10	0.40	1403	89	0.03	191	1950	32	<5	<20	36	0.09	<10	55	<10	51	1649
36	HSOV 9+60N 7	-48	5	2.4	3.63	70	110	<5	0.17	13	58	<1	157	7.21	<10	0.13	1540	56	0.05	99	2310	26	<5	<20	21	0.09	<10	32	<10	45	780
37	HSOV 9+50N 8	-48	5	1.8	3.23	80	180	ব	0.74	22	39	<1	175	>10	<10	0.43	1314	88	0.07	186	1900	34	<5	<20	35	0.09	<10	55	<10	56	1 462
	ATA:																														
Repa	st:																														
1	97902		5	1.0	1.46	55	125	<5	1.61	13	20	<1	88	5.66	<10	0.52	2011	23	0.06	94	1320	20	<5	<20	72	0.04	<10	42	<10	8	739
10	NICA 14+00S 9		55	1.4	1.72	105	130	<5	0.06	<1	9	15	102	6.83	<10	0.48	330	9	0.01	5	850	40	<5	<20	9	0.04	<10	114	<10	<1	67
19	HSOV 2+50N 3		85	12.4	0.68	205	150	<5	0.14	9	25	<1	227	>10	<10	0.09	2847	32	<0.01	58	1560	1746	20	<20	11	<0.01	<10	28	<10	22	1230
28	HSOV 8+00N 2		20	0.2	3.21	50	75	10	0.21	<1	18	12	62	6.08	<10	1.05	815	5	0.01	8.	1440	50	<5	<20	11	0.09	<10	95	<10	2 '	105
36	HSOV 9450N 7	-48	-	2.4	3.46	70	100	<5	0.16	13	55	<1	149	6.76	<10	0.12	1441	52	0.04	95	2210	24	<5	<20	17	0.08	<10	30	<10	44	753
Stano	lard:																														
GEO'S	8		135	1.2	1.79	65	155	<5	1.80	<1	20	64	82	4.35	<10	0.94	704	<1	0.03	21	690	22	<5	<20	54	0.12	<10	78	<10	3	80
GEOS	98		•	1.2	1.85	70	155	5	1.82	<1	21	62	86	4.38	<10	0.96	723	1	0.03	22	710	20	10	<20	59	0.12	<10	79	<10	5	86

NOTE: All samples are seived at -80 mesh unless otherwise indicated.

df/291 XLS/98Kenrich Fax to John Kowalchuk 604-688-3346 & Mail to Vancouver

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer P

B00 (2)

07/14/98

18:51

O250 573 4557

ECO-TECH KAN

ASSAYING

GEOCHEMISTRY

ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

30-Jul-98

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4567

CERTIFICATE OF ANALYSIS AK 98-346

KENRICH MINING CORPORATION 910-510 BURRARD STREET VANCOUVER, BC V6C 3A8

ATTENTION: J. KOWALCHUK

No. of samples received: 1 Sample type: Moss PROJECT #: None Given SHIPMENT #: 4 Samples submitted by: H. Sigurgeirson

				•	Au	Hg	
ET #.	Tag #				(ppb)	(ppb)	
1	98656	,	.'		5	490	

·

QC DATA:

5 500
140 80
- 990

D-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/98Kenrich Fax to John Kowalchuk 604-688-3346 & Mail to Vancouver

11:34

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

^{....}10041 E. Trans Canada Hwy., R.R. #2; Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

CERTIFICATE OF ANALYSIS AK 98-354

990

KENRICH MINING C	ORPO	RAT	101	N
910-510 BURRARD	STREE	Τ.		
VANCOUVER, BC				
V6C 3A8				

ATTENTION: J. KOWALCHUK

No. of samples received: 5 Sample type: Rock PROJECT #: None Given SHIPMENT #: None Given Samples submitted by: Helgi

	· · · · · · · · · · · · · · · · · · ·	Au	Hg
Tag #	(1	ppb)	(ppb)
98620	······································	5	200
98621		5	270
98622	· ••• •	10	240
98623		5	1900
98624	· · · · · · · · · · · · · · · · · · ·	5	2830
98625	· · · · · · · · · · · · · · · · · · ·	5	700
<u>.TA:</u>	· · · · · · · · · · · · · · · · · · ·		· · ·
98620	arian arian maria	5	210
t: 98620			230
	Tag # 98620 98621 98622 98623 98624 98625 TA: tr 98620 tr 98620	Tag # () 98620 98621 98622 98623 98623 98624 98625 TA: tr 98620 t: 98620	Au Tag # (ppb) 98620 5 98621 5 98622 10 98623 5 98624 5 98625 5 TA: 5 t: 98620 5 98620 5 5 5

	Stanoaro:	
•	GEO'98	
	STSD 4	•

XLS/98Kenrich Fax to John Kowalchuk 604-688-3346 & Mail to Vancouver 30-Jul-98

Rrank J. Pezzotti, A.Sc.T B.O. Certified Assayer

EC

Π.

LABORATÓRIES

EVU-LEVE AAE.

ψυυį

Post-it [™] Fax Note	7 671E	Date July3/ # of pages 7
To John		From
Co./Dept.		Co.
Phone #		Phone #
Fax #		Fax #

CERTIFICATE OF ANALYSIS AK 98-345

10041 E. Trans Cariai

KENRICH MINING CORPORATION
910-510 BURRARD STREET
VANCOUVER, BC
V6C 3A8

ATTENTION: J. KOWALCHUK

No. of samples received: 30 Sample type: Rock PROJECT #: None Given SHIPMENT #: None Given Samples submitted by: H. Sigurgeirson

`		,	Hg	
	ET #.	Tag #	(ppb)	
	1	98590	150	
	·· 2	98591	270	
	3	98592	200	
•	4	98593	550	
	5	98594	190	
·	6	98595	550	
	. 7	98596	50	
	8	98597	1150	
	9	98598	1110	
	10	98599	490	
	11	98600	430	

120

95

950

QC DATA:

STSD-4

Repea 1	98590	•	 •	•
Stand GEO'9	ard: 98			

XLS/98Kenrich Fax to John Kowalchuk 604-688-3346 & Mail to Vancouver 30-Jul-98

ECD-TECH LABORATORIES LTD. krahk J. Pezzotti, A.Sc.T. B.C. Certified Assayer

ECO-TECH 10041 East KAMLOOP V2C 6T4	H LABORATORIES LTD. ICP CERTIFICATE OF ANALYSIS AK 98-354 at Trans Canada Highway PS, B.C.								KENRICH MINING CORPORATION 910-510 BURRARD STREET VANCOUVER, BC V6C 3A8																					
Phone: 250	573-5700																		-				ATTEN	TION:	J. KO1	NALCH	IUK			
Values in p	opm unless	otherwise re	portec	1																			No. of s Sample PROJE SHIPMI Sample	ample type: CT #: ENT #: s subr	s receix Rock None G None None nitted b	ved: 6 Siven Given y: Heig	ŧ			
Et #.	Tag#	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	NĪ	P	Pb	Sb	Sn	Sr	TI %	U	v	w	Y	Zn
1	9862.0	5	<0.2	1.02	<5	90	15	0.11	<1	6	41	26	3.76	<10	0.32	303	29	0.02	18	420	22	<5	<20	6	0.10	<10	9	<10	4	194
2	98621	5	<0.2	0.59	<5	85	10	0.12	<1	6	23	19	4.12	<10	0.39	234	<1	0.02	2	280	10	<5	<20	<1	0.21	<10	14	<10	2	57
3	98622	10	0.2	1.92	10	25	5	0.29	<1	9	32	27	4.48	<10	2.24	312	<1	0.03	2	950	16	<5	<20	<1	0.14	<10	84	<10	2	55
4	98623	5	<0.2	0.66	5	80	5	1.16	<1	8	32	6	3.81	<10	0.21	791	6	0.03	<1	1050	10	<5	<20	38	0.03	<10	15	<10	Ā	148
5	98624	5	<0.2	0.53	10	75	5	0.21	<1	7	73	7	4.03	<10	0.10	419	8	0.02	<1	1190	8	<5	<20	15	0.03	<10	12	<10	2	57
6	98625	5	<0.2	1.30	<5	70	15	0.17	1	10	10	38	4.82	<10	0.50	590	39	0.02	18	670	26	<5	<20	4	0.14	<10	20	<10	7	152
QC DATA: Resplit:																														
1	98620	5	<0.2	1.06	<5	90	5	0.11	<u> </u>	6	33	27	3.93	<10	0.34	312	31	0.02	19	440	22	<5	<20	4	0.11	<10	9	<10	5	198
Repeat: 1	98620	5	<0.2	1.05	5	90	5	0.11	1	6	40	26	3.86	<10	0.33	315	30	0.02	21	430	22	ব	<20	4	0. 10	<10	9	<10	5	1 94
Standard: GEO'98		-	1.2	1.84	60	160	<5	1. 78	<1	20	58	83	4.08	<10	0.97	693	<1	0.03	25	630	24	<5	<20	59	0.12	<10	80	<10	3	73

df/348 XLS/98Kenrich Fex to John Kowalchuk 604-688-3346 & Mail to Vancouver

30-Jul-98

2250 573 4557

ECO-TECH KAM.

07/31/98

11:35

Ø 007

27-Jul-98

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AK 98-345

KENRICH MINING CORPORATION 910-510 BURRARD STREET VANCOUVER, BC V6C 3A8

ATTENTION: J. KOWALCHUK

No. of samples received: 30 Sample type: Rock PROJECT#: None Given SHIPMENT#: None Given Samples submitted by: H. Sigurgeirson

Values in ppm unless otherwise reported

Et #.	Tag#	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cđ	Co	Cr	Cu	Fe %	La	Mg %	Min	Mo	Na %	NI	P	Pb	Sb	Sn	Sr	<u> 71 %</u>	U	<u>v</u>	W	<u>Y</u>	Zn
1	96590	5	0.4	1.98	10	75	5	0.19	<1	4	48	17	4.11	<10	1.61	547	10	0.06	5	200	14	<5	<20	15	<0.01	<10	13	<10	4	85
2	98591	5	<0.2	2.29	<5	75	10	0.73	<1	9	109	6	5.26	20	1.30	491	12	0.03	2	1500	6	<5	<20	20	<0.01	<10	18	<10	17	109
3	98592	15	<0.2	0.45	25	50	20	4.10	<1	36	167	10	6.88	<10	0.31	1444	<1	0.07	4	480	2	<5	<20	25	0.35	<10	153	<10	9	54
4	98593	5	<0.2	1.17	5	80	10	0.21	<1	9	55	21	4,16	<10	0.49	470	31	0.03	16	720	16	<5	<20	3	0.11	<10	22	<10	10	181
5	98594	5	<0.2	1.97	<5	90	10	0.89	<1	8	34	5	5.41	10	0.91	909	4	0.04	<1	1360	6	<5	<20	36	0.04	<10	32	<10	7	107
							_		_						- <i></i>					700	-		-00	~	0.00	-10	-	-10		400
6	98595	15	<0.2	1.07	15	105	<5	0.35	2	13	56	33	4.13	<10	0.41	581	38	0.07	40	/00	- 22	5	<20	42	0.00	<10	*09	<10	•	100
7	98596	5	<0.2	4.67	<5	355	20	0.67	<1	32	132	8	8.24	<10	5.02	1628	<1	0.05	Z	400	10	<0 45	<20	13	0.29	<10	190	<10	4	94
8	98597	5	<0.2	2.75	25	135	10	0.02	<1	7	34	15	7.78	<10	2.58	249	14	0.03	4	05U 640	12	<0 <5	<20	10	0.05	<10	344 A.A	<10	7	104
9	98598	10	<0.2	1.23	20	160	20	0.07	<1	8	40	1/	5.79	<10	0.00	239	40	0.03	12	490	10	<0 -5	<20	2	0.29	<10	7	<10	r R	40
10	98599	5	<0.2	0.60	<5	100	10	0.08	<1	5		20	2.84	510	0.20	124	10	0.02	6	400	12	~0	~20	-	0.21	510	'	~10	U	40
	00000	40	-0.0		40	25	45	0.00	-1	76	146	e	8 40	<10	3 75	470	1	0.03	2	470	4	<5	<20	1	0 20	<10	153	<10	4	68
11	98600	10	<0.2	3.34	10	30	. 10	0.55	~	50	13	Å	3.16	<10	0.70	107	4	0.01	ĩ	70	24	<5	<20	2	0.02	<10	4	<10	<1	81
12	90010	10	0.2	0.63	10	460	~5	0.02	21	<1	70	ě	0.95	20	0.02	25	7	0.04	2	140	12	<5	<20	4	0.03	<10	1	<10	3	28
13	90017	10	-0.2	0.02	20	25	15	0.02	<1	19	16	11	4 46	<10	0.19	109	i	0.02	3	100	16	<5	<20	<1	0.17	<10	9	<10	<1	47
14	90010	5	~0.2	0.44	10	55	5	0.07		4	68	5	1.82	<10	<0.01	62	4	0.05	1	220	22	<5	<20	5	0.11	<10	2	<10	4	9
10	80019	5	~0.2	0.14	10	00	•	0.10	••	-	•••	•			••••							-		-						
16	98651	10	<0.2	0.93	<5	95	10	0.23	<1	6	52	13	2.38	<10	0.40	537	7	0.02	12	580	8	<5	<20	2	0.15	<10	4	<10	16	76
17	98652	5	<0.2	0.93	<5	75	15	0.11	<1	6	26	12	3.59	<10	0,62	400	2	0.02	<1	650	10	<5	<20	8	0.26	<10	10	<10	5	28
18	98653	5	<0.2	0.91	<5	40	10	0.04	<1	7	16	9	4.86	<10	0.67	205	9	0.01	<1	100	18	<5	<20	<1	0.04	<10	4	<10	2	94
19	98655	5	<0.2	0.77	50	120	10	0.10	<1	4	15	10	2.43	<10	0.35	152	24	0.03	4	380	12	<5	<20	8	0.17	<10	10	<10	6	59
20	98657	15	<0.2	0.85	35	90	5	0.22	<1	5	40	15	3.24	<10	0.41	168	41	0.06	9	590	20	<5	<20	7	0.16	<10	22	<10	8	156
												·																		
21	98658	10	<0.2	1.04	30	85	5	0.41	1	5	33 .	18	3.14	<10	0.51	260	34	0.07	39	1300	18	<5	<20	12	0.07	<10	52	<10	7	250
22	98659	5	<0.2	1.03	<5	85	5	0.65	<1	8	43	10	2.66	<10	0.48	1056	6	0.03	11	610	12	<5	<20	9	0.13	<10	9	<10	15	92
23	98660	10	<0.2	1.11	<5	75	15	0.14	<1	8	22	10	4,35	<10	0.62	812	<1	0.02	<1	770	8	<5	<20	5	0.23	<10	8	<10	8	48
24	98661	5	<0.2	1.00	<5	75	10	0.15	<1	9	17	36	4.74	<10	0.45	487	19	0.02	10	800	12	<5	<20	5	0.20	<10	21	<10	12	85
25	98662	10	<0,2	1.02	30	125	10	0.17	1	11	20	41	4.02	<10	0.33	344	62	0.03	44	790	20	<5	<20	8	0.20	<10	20	<10	16	207
-																														

2002

07/31/98

11:32

3250 573 4557

ECO-TECH KAM

																											•				
61 #	Taoff		Aa	AI %	As	Ba	Bi	Ca %	Cđ	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	NI_	Р	Pb	Sb	Sn	Sr	Ti %	U	V	W	Y	Zn	
20	09663	10	30	0.41	395	85	<5	1.18	12	8	72	44	4.64	<10	0.27	582	13	0.02	16	1270	58	<5	<20	90	<0.01	<10	15	<10	7	698	
20	80005	10	34	0.40	. 70	105	<5	1 44	5	8	83	57	4.70	<10	0.09	256	17-	0.02	13	870	22	<5	<20	37	<0.01	<10	18	<10	2	395	
41	90004	10	2.4	0.40	F0	48		0.40	4	7	22	42	4 44	<10	0.18	103	10	0.01	20	510	16	<5	<20	4	<0.01	<10	25	<10	<1	194	
28	98665	15	2.4	0.80	30	40	-0	0.10		2	20	20	2 02	<10	0.20	159	12	0.02	4	580	16	<5	<20	5	<0.01	<10	17	<10	<1	120	
29	98666	15	3.4	0.56	35	150	<5	0.03	<1	3	20	23	0.00	~10	0.40	174	44	0.06		1000	14	<5	<20	7	<0.01	<10	47	<10	<1	67	
30	98667	20	2.6	0.87	35	160	10	0.16	<1	3	22	44	0.17	×10	0.43	1/4	• •		-	1000	14	~		•							
QC DAT Resplit: 1	A: 98590	5	0.4	2.09	15	75	5	0.12	<1	4	54	16	4.44	<10	1.67	581	12	0.04	5	220	14	<5	<20	12	<0.01	<10	14	<10	4	93	
Repeat:																			•			-	-00	40	-0.01	~10	12	~10	2	86	
i	98590	5	0.2	1.95	10	65	<5	0.12	<1	4	46	18	4.18	<10	1.58	549	10	0.04	9	200	14	<0	<20	12	0.01	~10	13	~10		40	
10	98599	5	<0.2	0.57	<5	95	10	0.07	<1	5	7	20	2.92	<10	0.19	121	19	0.02	1	480	12	୍	<20	1	0.20	510		-10	, F		
19	98655	5	<0.2	0.73	50	115	5	0,14	<1	3	18	12	2.39	<10	0.35	148	23	0.05	3	390	14	<5	<20	9	0.15	<10	10	<10	5	01	
Standar GEO'98	d:	135	1.4	1.80	65	165	<5	1.74	<1	19	59	83	4.06	<10	0.96	688	<1	0.02	22	8 80	20	<5	<20	65	0.12	<10	79	<10	5	73	

ICP CERTIFICATE OF ANALYSIS AK 98-345

df/345 XLS/98Kenrich Fax to John Kowalchuk 604-688-3346 & Mail to Vancouver

KENRICH MINING CORPORATION

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. . Certified Assayer **B**.⊄.

ECO-TECH LABORATORIES LTD.

G 000

ECO-TECH KAM.

07/31/98

11:34

C250

573

4557

df/346 XLS/98Kenrich Fax to John Kowalchuk 604-688-3346 & Mail to Vancouver

EQO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assaver

KENRICH MINING CORPORATION 910-510 BURRARD STREET

ATTENTION: J. KOWALCHUK

Samples submitted by: H. Sigurgeirson

U

v

No. of samples received: 1 Sample type: Moss

PROJECT #: None Given SHIPMENT #: None Given

VANCOUVER, BC

V6C 3A8

P Pb Sb

Ni

Mo Na %

ICP CERTIFICATE OF ANALYSIS AK 98-346

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

30-Jul-98

Phone: 250-573-5700 Fax : 250-573-4557

Values in ppm unless otherwise reported

Ag Al% As Ba Bi Ca % Cd Co Cr Cu Fe % 8n Sr Ti% Et #. Tag# Au(ppb) w Y Zn 98656 <10 0.46 33 0.04 103 2210 9 <20 68 0.03 <10 37 19 1314 1 5 <0.2 1.70 30 100 5 2.06 26 18 4 79 6.17 878 16 <10 QC DATA: Repeat: 78 6.15 <10 0.46 878 32 0.04 102 2230 98656 2.06 16 18 <5 <20 62 0.03 <10 37 <10 20 1312 5 0.4 1.69 50 90 <5 28 4 1 Standard: GEO'98 0.8 1.79 60 155 5 1.72 <1 60 80 4.01 <10 0.93 671 <1 0.03 26 630 22 <5 <20 60 0.12 <10 79 <10 82 140 19 3

La Mo %

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

<u>ଜ</u>ୋତ ପ୍ର

LABORATORIES TD.

18:50

10041 E. Trans Canada Hwy., R.R. #2, Kamioops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

CERTIFICATE OF ANALYSIS AK 98-293

KENRICH MINING CORPORATION 910-510 BURRARD STREET VANCOUVER, BC V6C 3A8

ATTENTION: J. KOWALCHUK

No. of samples received: 37 Sample type: Soil PROJECT #: None Given SHIPMENT #: None Given Samples submitted by: H. Sigurgeirson

			Hg	
	ET #.	Tag #	(ppb)	
•	1	97902	380	•
••••	17	HSOV 2+50N 1	415	
	18	HSOV 2+50N 2	650	
	19	HSOV 2+50N 3	3200	
	20	HSOV 2+50N 4	220	
	21	HSOV 2+50N 5	450	
	22	HSOV 2+50N 6	90	
•	23	HSOV 2+50N 7	1250	
	24	HSOV 3+50N 1	1090	
	25	HSOV 3+50N 2	680	
	26	HSOV 3+50N 3	960	
	27	HSOV 8+00N 1	180	
	28	HSOV 8+00N 2	240	
	29	HSOV 8+00N 3	180	
•	30	HSOV 9+50N 1	380	
	31	HSOV 9+50N 2	630	
•	32	HSOV 9+50N 3	350	
·	33	HSOV 9+50N 4	260	
	34	HSOV 9+50N 5	590	
	35	HSOV 9+50N 6	1423	
	36	HSOV 9+50N 7	1202	
	37	HSOV 9+50N 8	1350	•
f				

14-Jul-98

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

14-Jul-98

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

CERTIFICATE OF ANALYSIS AK 98-303

KENRICH MINING CORPORATION 910-510 BURRARD STREET VANCOUVER, BC V6C 3A8

ATTENTION: J. KOWALCHUK

No. of samples received: 21 Sample type: SOIL PROJECT #: NONE GIVEN SHIPMENT #:2 Samples submitted by: H. SIGURGEIRSON

	1. in 1. in	· .	Hg.	• •
ET #	. Tag #		(ppb)	
1	97962		260	•
2	97963		140	
3	HSOV 39057	A	700	
4	HSOV 39057	B	1540	
5	HSOV 39057	С	1400	• •
6	HSOV 39057	D		
7	HSOV 39057	E	1711	
8	HSOV 39057	F	1630	•
9	_HSOV 39057	G	8400	
<u>QC [</u> Rep)ATA: eat:			
1	97962	• • • • •	280	· .
Stan	dard:		30	
S02			82	
				•

XLS/98Kenrich Fax to John Kowalchuk 604-688-3346 & Mail to Vancouver

Tooma - T

And a second second

Participation of the second

and the second

nalafatara:

- ALERCON

MCOHIECH KAN.

14-Jul-98

ECO-TECH LABORATORIES LTD. Frank J. Pezzotii, A.Sc.T. B.C. Certified Assayer

VENDIALI		AABBABATIAN	A 1/00 000
KENKILH	MINING	CURPURATION	AK98-293

16:50

	·	
ET #	. Tag #	Hg (ppb)
	· · · · · · · · · · · · · · · · · · ·	
	ATA:	
Repe	at:	
1	97902	380
19	HSOV 2+50N 3	3530
27	HSOV 8+00N 1	150
04	de ande	•
Stant	Daro:	
SO2		0.99
503		0.22
	· · · ·	

XLS/98Kenrich Fax to John Kowalchuk 604-688-3346 & Mail to Vancouver

EGIO-TAUN LABORATORIES LTD. Page 2

ECO-TECH MAN.

図001

Post-it" Fax Note	7671E	Date Aug 7 pages //
To John		From
Co./Dept.		Co.
Phone #	•••••••	Phone #
Fax #		Fax #

CERTIFICATE OF ANALYSIS AK 98-355

KENRICH MINING CORPORATION 910-510 BURRARD STREET VANCOUVER, BC V6C 3A8

ATTENTION: J. KOWALCHUK

anuullane ad

annaise state

Contraction of

A DESCRIPTION OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE

No. of samples received: 146 Sample type: Soil PROJECT #: None Given SHIPMENT #: None Given Samples submitted by: H. Sigurgeirson

		Mesh	Au	Hg	
ET #.	Tag #	Size	(ppb)	(ppb)	
1	HSOV 10+00N 0+00E/W		10	480	
2	HSOV 10+00N 0+25W		15	310	
3	HSOV 10+00N 0+50W		35	560	
4	HSOV 10+00N 0+75W	-60	5	1290	
5	HSOV 10+00N 1+00W		10	830	
6	HSOV 10+00N 1+25W	· · · · ·	5	390	· ··
7	HSOV 10+00N 0+25E		85	370	
8	HSOV 10+00N 0+50E		10	270	
9	HSOV 10+00N 0+75E		30	190	
10	HSOV 10+00N 1+00E	· -60	<5	220	
11	HSOV 10+00N 1+25E		<5	250	
12	HSOV 10+00N 1+50E		15	240	
13	HSOV 10+00N 1+75E		<5	260	
14	HSOV 10+00N 2+00E	• •	15	320	
15	HSOV 10+00N 2+25E		5	1210	۰.
16	HSOV 10+00N 2+50E	•	20	300	
• 17	HSOV 10+00N 2+75E	· .	10	420	
18	HSOV 10+00N 3+00E		15	610	
19	HSOV 10+00N 3+25E	•	5	140	
20	HSOV 10+00N 3+50E	· ·	<5	180	
21	HSOV 10+00N 3+75E		15	400	
22	HSOV 10+00N 4+00E	•	35	210	
23	HSOV 10+00N 4+25E	• • • •	30	290	
24	HSOV 10+00N 4+50E	••••	· 20	290	· ·
25	HSOV 10+00N 4+75E	•	10	230	

7-Aug-98

Page 1

and a state of the

And the Antonio State of the

and and a state of the second s

and the second second

Live Line Line and

Mindline Mining

Month Strategic

and the second second

The second second second second second second second second second second second second second second second s

and a sublimation of the

3230 373 4337

ECO-TECH KAM.

7-Aug-98

KENRICH MINING CORPORATION AK98-355

10:48

		Mesh	Au	Hg	
ET #	Tag #	Size	(ppb)	(ppb)	
26	HSOV 10+00N 5+00E		15	260	
20	HSOV 10+50N 0+00EAV		<5	200	
27	HSOV 10+50N 0+25W		<5	220	
20	HSOV 10+50N 0+25E		<5	140	
. 29			<5	300	
30	HSOV 10+50N 0+30E		30	270	
31			<5	190	
. 32	HSOV 10+50N 1+00E		<5	170	
33	HSOV 10+50N 1+20E		<5	180	
34	HSOV 10+50N 1+50C		<5	150	·
30	HSOV 10+50N 1+75E		<5	720	
30	HSOV 10+50N 2+00E		-0	80	
. 3/		•	<5	134	
38	HSOV 10+50N 2+50E	•	25	460	
39	HSOV 10+50N 2+75E		35	280	
40	HSUV 10+50N 3+00E		20	180	
41	HSUV 10+50N 3+25E		20	200	
42	HSOV 10+50N 3+50E		~~ 20	110	
43	HSOV 10+50N 3+75E		20	190	
44	HSOV 10+50N 4+00E	• •	20	140	· · · · ·
45	HSOV 10+50N 4+25E		30	140	
46	HSOV 10+50N 4+50E		150	220	
47	HSOV 10+50N 4+/5E		100	250	
48	HSOV 10+50N 5+00E	. 60	25	120	
49	HSOV 11+00N 0+00E/VV	-00	5	240	
50	HSOV 11+00N 0+25W	-00	- U	340	
- 51	HSOV 11+00N 0+50VV		5	170	• • • •
52	HSOV 11+00N 0+75V		· 5	200	
53	HSOV 11+00N 0+25E		-0	. 430 270	
54	HSOV 11+00N 0+50E		10	160	· · · · · · · · · · · · · · · · · · ·
55	HSOV 11+00N 0+/5E		25	100	
	HSOV 11+00N 1+00E		25	240	
57	HSOV 11+50N U+UUE/VV		5	240	
58	HSOV 11+50N 0+25VV		10	230	
59	HSOV 11+50N 0+50VV		10	100	
60	HSOV 11+50N 0+25E		10	70	
61	HSOV 11+50N 0+50E		10	200	
62	HSOV 11+50N 0+75E	•	15	290	
63	HSOV 12+00N 0+00E/W			. 270	
64	HSOV 12+00N 0+25W	60) 20	160	· · · · · · · · · · · · · · · · · · ·
65	HSOV 12+00N 0+50W		20	200	
66	HSOV 12+00N 0+75W		70	200	
· 67	HSOV 12+00N 1+00W	,	20	1/0	
68	HSOV 12+00N 0+25E		10	320	
69	HSOV 12+00N 0+50E		10	310	
.70	HSOV 12+00N 0+75E		5	280	

ECTU · TEUN LABORATORIES LTD. Page 2 Contraction Contraction

initial initia

Allowed Distances

R. marine and a second

building the state

ALC: THE REPORT OF

Constanting in the second

anonico and a second second second second second second second second second second second second second second

natalinilinnilinn

and him the second

and a second second second second second second second second second second second second second second second

and the second second

Contraction of the

7-Aug-98

KENRICH MINING CORPORATION AK98-355

13:49

		Mesh	Au	Hg	
ET #.	Tag #	Size	(ppb)	(ppb)	
71	HSOV 12+00N 1+00E	· · · ·	<5	220	· · · · · · · · · · · · · · · · · · ·
72	RB 0+00E/W 0+00E/W		25	430	·····
73	RB 0+00E/W 0+25N		, 20	160	· · · · · · · · · · · · · · · · · · ·
. 74	RB 0+00E/W 0+50N	-60	10	140	
75	RB 0+00E/W 0+75N		15	300	
76	RB 0+00E/W 1+00N	а. С. <u>с</u>	20	290	
77	RB 0+00E/W 1+25N		30	300	
78	RB 0+00E/W 1+50N		80	230	
79	RB 0+00E/W 1+75N	-60	25	260	
80	RB 0+00E/W 2+00N		20	230	
· · · 81	BB 0+00E/W 2+25N	-32	15	120	· · · · · · · · · · · · · · · · · · ·
82	RB 0+00E/W 2+50N	-32	25	490	
83	RB 0+00E/W 2+75N		35	260	
84	RB 0+00E/W 3+00N		45	620	· · · · · ·
85	RB 0+00E/W 3+25N	•	20	240	
- 86	RB 0+00E/W 3+50N	•	25	160	
87	RB 0+00F/W 3+75N	-60	35	150	
88	RB 0+00E/W 4+00N		45	230	
89	RB 0+00N 0+25W		20	240	
90	RB 0+00N 0+50W	-60	10	250	
91	RB 0+00N 0+75W		20	400	
92	RB 0+00N 1+00W	-60) 40	320	· · · · · · · · · · · · · · · · · · ·
93	RB 0+00N 1+25W		15	250	
94	RB 0+00N 1+50W		35	380	
95	RB 0+00N 1+75W		10	270	
96	RB 0+00N 2+00W	-48	3 40	310	
. 97	RB 0+00N 0+25E	-48	3 5	320	
98	RB 0+00N 0+50E	-48	3 20	310	
99	RB 0+00N 0+75E	-32	2 25	320	
100	RB 0+00N 1+00E	-48	3 20	240	· · · · · · · · · · · · · · · · · · ·
101	RB 0+00N 1+25E		<5	340	
107	RB 0+00N 1+50E		5	590	· · · · · · · · · · · · · · · · · · ·
103	RB 2+00N 0+25W		55	250	
104	RB 2+00N 0+50W	-48	35	220	
105	RB 2+00N 0+75W		15	290	····
106	RB 2+00N 1+00W	-48	3 25	220	
· 107	RB 2+00N 1+25W		15	130	
108	RB 2+00N 1+50W	-48	3 5	200	
100	RB 2+00N 1+75W	-48	- 	130	
110	RB 2+00N 2+00W		40	270	
111	RB 2+00N 2+25W		20	270	
117	RB 2+00N 2+50W	-48	3 25	240	
112	RB 2+00N 0+25E	-45	3 20	180	
114	RB 2+00N 0+50F		25	170	
115	RB 2+00N 0+75E	•	25	390	
116	RB 2+00N 1+00F		55	450	
, 10			••	•	

EDD. TECH LABORATORIES LTD. Page 3 and particular de

and a second second

Sumali International

Standard States

Bunda Antonio Maria

and a state of the

and an and a second sec

Antoret damage

international data

Constitution of the

Contraction of the second seco

demonstration of

KENRICH MINING CORPORATION AK98-355

13:49

					· ·	
		Me	esh	Au	Hg	
ET #.	Tag #	Si	ze	(ppb)	(ppb)	
117	RB 2+00N 1+25E		-32	10	280	
118	RB 2+00N 1+50E			20	460	•
119	RB 2+00N 1+75E			15	310	
120	BB 2+00N 2+00E		-48	10	440	
121	RB 4+00N 0+25W			45	170	
122	RB 4+00N 0+50W			55	250	
123	RB 4+00N 0+75W		-48	35	160	· · · · · · · · · · · · · · · · · · ·
124	RB 4+00N 1+00W			25	280	· · · · ·
125	RB 4+00N 1+25W		-48	25	90	
126	RB 4+00N 1+50W			50	210	
127	RB 4+00N 0+25E			45	370	
128	RB 4+00N 0+50E	•	•	30	340	• • • • •
129	RB 4+00N 0+75E			210	230	
130	RB 4+00N 1+00E			45	210	
131	RB 4+00N 1+25E	•		40	250	• . •
137	RB 4+00N 1+50E			40	600	
132	RB 4+00N 1+75E	· · ·		35	260	
134	RB 4+00N 2+00E	:		20	230	
135	RB 4+00N 2+25E	•	-32	<5	1400	. `
136	RB 4+00N 2+50E		-48	105	540	
137	RB 4+00N 2+75E		-48	25	1000	• • •
138	RB 4+00N 3+25E			70	340	• • •
139	RB 4+00N 3+50E		-48	30	490	· · · ·
140	RB 4+00N 3+75E	· · ·	-48	20	530	and the second second
141	RB 4+00N 4+00E		-48	5	460	
147	RB 4+00N 4+25E		-48	20	970	, , , , , , , , , , , , , , , , , , , ,
143	RB 4+00N 4+50E	•	48	5	5130	· · · · · ·
140	BB 3+00E 4+00N	•		45	440	
145	RB 3+00E 4+25N		-32	- 30	480	· · · · · · · · · · · · · · · · · · ·
146	RB 3+00E 4+50N	•	-60	. 65	690	н на на Стран
140						• • • •
•						, , , , , , , , , , , , , , , , , , ,
	ATA:					
Rene	at.		•			•
1	HSOV 10+00N 0+00E/W			10	370	· · · · · · · · ·
· 10	HSOV 10+00N 1+00E			10	190	
· 10	HSOV 10+00N 3+25E			10	130	· · ·
28	HSOV 10+50N 0+25W	•••••	:	<5	230	· · · ·
20	HSOV 10+50N 2+00F	• • • •	· ,	<5	780	·· ·
45	HSOV 10+50N 4+25E			- 25	150	
	HSOV 11+00N 0+50E		-	15	250	att i st
	HSOV 12+00N 0+00EM			15	340	
74	HSOV 12+00N 1+00F		•	<5	220	
. (1		····	•			· · · · · · · · · · · · · · · · · · ·
			•			

EDD · TECH LABORATORIES LTD. Page 4 heration in the second

alian da marte da marte da marte da marte da marte da marte da marte da marte da marte da marte da marte da mar

Contraction of the local division of the loc

Intellectories

North Address

aller Testinger

7-Aug-98

KENRICH MINING CORPORATION AK98-355

13:50

ET #.	Tag #	M S	esh Size	Au (p pb)	Hg (ppb)
		•		•	
QC D	ATA:				
Repea	at:			•	
80	RB 0+00E/W 2+00N			15	220
89	RB 0+00N 0+25W	1		20	240
98	RB 0+00N 0+50E		-48	20	330
106	RB 2+00N 1+00W		-48	30	230
115	RB 2+00N 0+75E			25	360
124	RB 4+00N 1+00W		• •	35	270
133	RB 4+00N 1+75E			15	290
141	RB 4+00N 4+00E		-48	10	.520
Stand	lard:		•		···· .
GEO'S	98			130	90
GEO'S	98			135	.90
GEO'S	38	· · .		135	80
GEO'S	98	•		135	80
GEO'S	98	· · · ·		140	. 80
STSD	-4			-	930

NOTE: * Mesh size -80 unless indicated otherwise

XLS/98Kenrich Fax to John Kowalchuk 604-688-3346 & Mail to Vancouver

ECD-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer EC

EGD-TRON LABORATORIES LTD. Page 5 30-Jul-98

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

ICP CERTIFICATE OF ANALYSIS AK 98-355

KENRICH MINING CORPORATION 910-510 BURRARD STREET VANCOUVER, BC V&C 3A8

ATTENTION: J. KOWALCHUK

No. of samples received: 148 Sample type: Soit PROJECT #: None Given SHIPMENT #: None Given Samples submitted by: H. Sigurgeirson

Values in ppm unless otherwise reported

		Mesn																												
Et /	. Tag#	Size	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	<u> </u>	Pb	Sb	Sn	Sr	TI %	บ	<u>v</u>	<u></u>	<u>Y</u>	<u> Zn</u>
1	HSOV 10+00N 0+00E/W		<0.2	2,78	25	140	\$	0.38	<1	32	28	181	6.33	<10	1.58	1284	1	0.02	32	1720	36	<5	<20	24	0.16	<10	157	<10	4	159
2	HSOV 10+00N 0+25W		0.6	2.64	25	75	15	0.05	<1	19	14	41	7.83	<10	0.44	2463	17	0.03	- 14	930	28	<5	<20	4	0.12	<10	77	<10	<1	135
3	HSOV 10+00N 0+50W		<0.2	2.01	35	125	<5	0.46	4	30	14	141	5.87	<10	1.03	1759	20	0.01	70	1820	30	<5	<20	25	0.14	<10	89	<10	9	238
4	HSOV 10+00N 0+75W	-60	1.4	2.88	. 40	190	<5	0.23	9	63	7	142	>10	<10	0.93	4373	52	0.02	201	1180	40	<5	<20	10	0.04	<10	67	<10	23	944
5	HSOV 10+00N 1+00W	-48	0.4	5.45	190	425	<5	0.14	5	52	10	307	>10	<10	0.75	1312	83	0.03	324	2850	46	<5	<20	14	0.10	<10	110	<10	14	1342
A			06	1 91	45	140	10	0.03	1	11	4	57	7.64	<10	0.21	369	49	0.01	44	1370	28	<5	<20	17	0.05	<10	89	<10	5	256
7	HSOV 10+00N 04255		0.0	3.01	30	135	<5	0.25	<1	33	21	103	5.94	<10	0.99	1415	7	0.02	25	1180	30	<5	<20	13	0.08	<10	89	<10	28	188
	HSOV 10-00N 0+50E		<0.4	3.03	25	65	<5	0.10	<1	18	15	59	5.79	<10	0.47	1466	15	0.02	11	800	30	<5	<20	3	0.10	<10	69	<10	10	136
å	HSOV 10+00N 0+75E		<0.2	3.53	20	135	15	0.13	<1	24	31	32	7.64	<10	0.68	1248	8	0.02	6	1040	24	<5	<20	12	0.10	<10	94	<10	3	71
10	HSOV 10+00N 1+00E	-60	<02	1.83	20	70	10	0.06	<1	15	15	27	6.13	<10	0.23	2272	8	0.04	4	600	30	<5	<20	8	0.21	<10	89	<10	4	43
10			-0.2																											
11	HSOV 10+00N 1+25E		<0.2	2.71	20	175	10	0.25	<1	19	41	42	5.87	<10	1.08	947	2	0.04	29	780	34	\$	<20	41	0.15	<10	94	<10	8	117
12	HSOV 10+00N 1+50E		<0.2	2.81	40	105	<5	0.40	<1	28	28	153	5.90	<10	1.36	1082	1	0.02	22	1720	34	<5	<20	21	0.16	<10	150	<10	<1	113
13	HSOV 10+00N 1+75E		⊲0.2	3.01	20	65	5	0.21	<1	14	14	93	4.72	<10	0.61	376	2	0.06	10	1260	40	4	<20	8	0.24	<10	65	<10	7	91
14	HSOV 10+00N 2+00E		<0.2	2.16	15	50	10	0.19	<1	9	16	31	3.15	<10	0.58	271	1	0.06	6	1180	40	<5	<20	16	0.18	<10	65	<10	3	57
15	HSOV 10+00N 2+25E		<0.2	3.04	30	65	20	0.15	<1	30	8	33	8.34	<10	1.07	2138	13	0.04	6	2020	74	<5	<20	3	0.11	<10	46	<10	5	115
16	HSOV 10+00N 2+50E		<0.2	3.67	30	160	15	0.49	<1	23	25	125	8.21	<10	1.24	798	2	0.07	21	1840	42	<5	<20	236	0.23	<10	99	<10	9	145
17	HSOV 10+00N 2+75E		<0.2	2.63	25	175	10	0.38	<1	21	19	84	4.74	20	0.99	769	1	0.08	18	1470	38	<5	<20	31	0.19	<10	75	<10	20	136
18	HSOV 10+00N 3+00E		<0.2	3.14	40	125	10	0.41	<1	25	27	115	6.57	<10	1.37	1053	5	0.03	19	1680	38	<5	<20	22	0.13	<10	123	<10	3	107
t9	HSOV 10+00N 3+25E		<0.2	2.63	25	85	10	0.23	<1	17	23	71	4.94	<10	1.07	703	3	0.05	14	1560	34	<5	<20	14	0.14	<10	102	<10	5	90
20	HSOV 10+00N 3+50E		<0.2	3.08	25	70	5	0.18	<1	15	12	41	5.73	20	0.58	703	6	0.08	10	1410	36	<5	<20	10	0.16	<10	60	<10	19	89
21	HSOV 10+00N 3+75E		<0.2	2.88	65	155	<5	0.34	<1	40	28	184	7.36	<10	1.37	2083	5	0.03	28	2080	48	<5	<20	24	0.17	<10	132	<10	9	137
22	HSOV 10+00N 4+00E		<0.2	2.90	30	115	<5	0.26	<1	34	35	215	6,43	<10	1.66	1740	1	0.03	25	1390	38	<5	<20	16	0.20	<10	156	<10	3	126
23	HSOV 10+00N 4+25E		<0.2	3.00	50	200	<5	0.33	<1	36	39	282	7.28	<10	1.92	1593	2	0.02	26	1620	42	<5	<20	19	0.17	<10	193	<10	3	153
24	HSOV 10+00N 4+50E		<0.2	3.19	55	210	<5	0.29	<1	35	40	243	7.10	<10	1.78	1437	1	0.02	31	2020	42	<5	<20	19	0.18	<10	171	<10	6	159
25	HSOV 10+00N 4+75E		⊲0.2	3.21	45	235	<5	0.39	1	35	44	220	7.07	<10	1.99	1554	1	0.02	35	1830	40	<5	<20	21	0.18	<10	197	<10	7	164

Page 1

 \tilde{C}

с. Э

56

Approved the second second

KENRICH MINING CORPORATION

enteringeneration and the second second second second second second second second second second second second s

ICP CERTIFICATE OF ANALYSIS AK 98-355

Laurence I

and the second se

ECO-TECH LABORATORIES LTD.

5

tech Man

S007

1

[.....]

en a novement Ladorania

a As, carte recordented

		W 6911																		_			_	_						
Et #.	. Tag#	Size	Ag	Al %	As	Ba	BI	Ca %	Cd	Co	Cr	Cu	Fe %	<u>La</u>	Mg %	Mn	Mo	Na %	Nł	<u> </u>	Pb	Sb	Sn	<u>Sr</u>	<u>п%</u>	<u> </u>	<u>v</u>	<u></u>	<u> </u>	Zn
26	HSOV 10+00N 5+00E		<0.2	2.73	50	235	<5	0.64	<1	36	41	295	7.38	<10	1.87	1939	2	0.02	33	1960	40	<5	<20	32	0.15	<10	177	<10	5	148
27	HSOV 10+50N 0+00E/W		<0.2	2.25	15	170	10	0.08	<1	18	27	40	7.02	<10	0.69	1894	9	0.02	10	1220	22	<5	<20	8	0.07	<10	112	<10	<1	93
28	HSOV 10+50N 0+25W		<0.2	3.11	45	105	10	0.22	<1	27	14	81	7.59	<10	0.99	1463	21	0.02	- 44	1540	30	<5	<20	14	0.09	<10	83	<10	13	251
29	HSOV 10+50N 0+25E		<0.2	2.00	5	45	20	0.04	<1	11	6	21	9.16	<10	0.13	940	15	0.03	4	640	26	<5	<20	<1	0,15	<10	49	<10	<1	47
30	HSOV 10+50N 0+50E		<0.2	4.19	20	215	15	0.11	<1	93	43	96	9.33	<10	1.51	2642	8	0.02	15	970	26	<5	<20	7	0.13	<10	138	<10	10	123
••																														
31	HSOV 10+60N 0+75E		0.2	2.37	20	80	10	0.08	<1	11	16	36	4.57	<10	0.33	393	7	0.02	6	920	28	<5	<20	4	0.08	<10	81	<10	1	58
32	HSOV 10+50N 1+00E		<0.2	2 63	25	60	15	0.05	<1	12	21	26	5.98	<10	0.38	636	3	0.03	8	610	32	ح	<20	3	0.17	<10	86	<10	3	63
33	HSOV 10+50N 1+255		<0.2	2 75	25	130	10	0.16	<1	14	27	42	5.42	<10	0.64	932	1	0.03	13	1070	38	<5	<20	18	0.22	<10	89	<10	8	95
24			<0.2	3.02	25	100	<5	0.39	<1	23	23	86	5.63	<10	1.07	948	<1	0.07	19	1640	34	<5	<20	25	0.25	<10	100	<10	8	122
36	HSOV 10+50N 1+75E		~0.2	2.61	20	115	<6	0.59	<1	13	18	54	4 94	30	0.82	936	<1	0.29	12	1230	34	<5	<20	22	0.17	<10	75	<10	28	134
30			~U.Z	2.01	20	110	-0	0.55	.,	10	14				0.04	000		0.20		1200		-0	-20		0.11	-10	10	-10	20	137
20	100140-5012-005		0.4	2 20	35	415	40	0.38	-	22	4	47	0 36	<10	1 38	2285	26	0.03	7	2980	42	<5	<20	17	0.07	<10	45	<10	18	177
30			0.4	3.20	20	65	10	0.14	24	11	-1	24	546	50	0.26	054	A	0.00	Å	850	36	65	<20		0.01	<10	25	<10	40	147
3/	HSUV 10+50N 2+23E		2.4	J.00	20	96	-6	0.22	-1	10	-1	10	6 44	40	0.21	786		0.15	Ă	540	38	~5	<20	ě	0.15	<10	21	<10	37	120
30	HOUV 10+50N 2+50E		-07	3.34	20	60	16	0.22	~1	13	12	62	7.04	<10	0.60	423	Ř	0.00		1330	42	<5	<20	2	0.18	<10	64	<10	Å	05
39	HSOV 10+50N 2+75E		-0.2	2.10	55	150	-6	0.10	-4	24	23	202	7 1 2	<10	1 30	1841	5	0.03	27	2130	48	<5	~20	21	0.13	<10	124	<10	10	144
40	HOUV 10+DUN 3+00E		~0.2	2.01	00	150	~	0.40	~1	.	20	2.00	1.14	-10	1.00	10-11	•	0.00		2100		~	-2.4	- 1	0.10	10	167	~10	10	141
44	HEOVIOLEON 2-255		~~ ~	2 40	20	65	5	0.21	~1	18	20	50	5 1 1	<10	0.90	787	3	0.04	10	1430	32	<5	<20	10	0 18	<10	97	<10	2	77
41	HON 10+50N 3+505		~0.2	2.40	35	110	<5	0.31	<1	24	27	114	5.63	<10	1 22	874	<1	0.03	20	1670	36	<5	<20	21	0.20	<10	118	<10	5	109
42	HOUV 10+50N 3+765		~0.2	2.01	35	100	<6	0.31	<1	25	25	85	5 63	<10	1.09	1148	1	0.03	15	1610	36	<5	<20	21	0 16	<10	112	<10	1	94
40			-0.2	3.02	35	115	10	0.23	<1	27	26	127	6 29	<10	1.20	2083	2	0.04	19	1750	42	<5	<20	14	0.19	<10	118	<10	6	119
44	HOOV TOTOON 4700C		<0.2	2.83	40	105	5	0.21	<1	28	28	137	6.19	<10	1.30	1382	3	0.04	22	1760	38	<5	<20	9	0.18	<10	126	<10	8	124
43	1000 10 JOIN 41232		-0.6	2.00	-10		÷		•	_			••••				-					-		-					-	
46	HSOV 10+50N 4+50F		<0.2	2.58	40	275	<5	1.58	1	34	35	237	6.60	<10	1.76	1384	3	0.03	36	1700	36	<5	<20	71	0.14	<10	159	<10	3	147
47	HSOV 10+50N 4+75E		<0.2	3.33	40	155	<5	0.35	<1	32	41	194	6.73	<10	1.86	1300	3	0.02	29	1560	36	<5	<20	20	0.16	<10	182	<10	7	177
48	HSOV 10+50N 5+00E		<1.2	3.24	40	190	<5	0.35	<1	37	42	212	7.18	<10	1.87	1466	6	0.02	38	1840	50	10	<20	21	0.16	<10	194	<10	11	174
49	HSOV 11+00N 0+00EAV	-60	<0.2	2.64	20	65	10	0.08	1	17	9	34	6.01	<10	0.35	1806	13	0.03	8	750	28	<5	<20	4	0.09	<10	58	<10	1	96
50	HSOV 11+00N 0+25W	-32	1.0	1.51	25	65	<5	0.15	1	20	<1	99	7.83	<10	0.33	1295	50	0.02	44	2140	32	<5	<20	5	0.08	<10	52	<10	<1	303
			•••																											
51	HSOV 11+00N 0+50W		0.8	3.09	15	145	5	0.12	<1	27	16	40	6.41	<10	0.53	3765	13	0.03	10	2080	38	<5	<20	7	0.03	<10	58	<10	5	99
52	HSOV 11+00N 0+75W		0.6	2.32	30	100	10	0.05	<1	17	8	43	7.66	<10	0.21	1980	33	0.02	20	760	30	<5	<20	4	0.12	<10	61	<10	3	155
53	HSOV 11+00N 0+25E		0.2	3.20	15	55	10	0.09	<1	8	4	31	4.86	<10	0.34	717	9	0.04	6	1220	24	<5	<20	3	0.06	<10	36	<10	5	82
54	HSOV 11+00N 0+50E		0.4	1.64	25	115	10	0.04	<1	7	8	28	5.13	<10	0.27	430	25	0.02	12	740	30	<5	<20	5	0.08	<10	86	<10	<1	77
55	HSOV 11+00N 0+75F		<0.2	3.24	15	70	10	0.08	<1	8	14	19	4.96	<10	0.20	441	7	0.04	5	750	32	<5	<20	3	0.18	<10	47	<10	3	65
56	HSOV 11+00N 1+00F		<0.2	2.92	20	150	20	0.05	<1	14	17	52	7.46	<10	0.81	795	8	0.02	10	750	26	<5	<20	7	0.05	<10	111	<10	<1	95
57	HSOV 11+50N 0+00EAV		0.4	2.73	25	115	15	0.07	<1	12	12	34	6.91	<10	0.50	1031	10	0.02	9	850	24	<5	<20	4	0.05	<10	87	<10	<1	89
58	HSOV 11+50N 0+25W		<0.2	3.36	25	75	10	0.06	<1	18	14	42	6,10	<10	0,47	1638	13	0.02	10	1140	34	<5	<20	4	0.08	<10	58	<10	2	101
59	HSOV 11+50N 0+50W		<0.2	2.70	25	60	15	0.03	<1	12	7	50	9.85	<10	0.14	696	24	0.02	10	550	36	<5	<20	<1	0.13	<10	60	<10	<1	110
60	HSOV 11+50N 0+25F		0.2	3.80	25	160	10	0.08	<1	12	15	28	6.19	<10	0.89	744	11	0.02	10	680	28	<5	<20	16	0.04	<10	75	<10	2	94
~~														-																

Page 2

	and the second sec	in the second second
KENRICH MIN	ING CORPO	RATION
		Mesh

ICP CERTIFICATE OF ANALYSIS AK 98-355

Contraction of the second second

Inclusion and

And Come

Contraction of the second

ECO-TECH LABORATORIES LTD.

E+#	Tani	Size	Aa	AI %	As	Ba	BI	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	TI %	U	<u>v</u>	<u></u>	<u>Y</u>	Zn
	LICOV 11+50N 0+50F		<02	1.76	20	90	15	0.05	<1	8	8	24	5.94	<10	0.18	232	11	0.01	7	720	20	<5	<20	4	0.07	<10	136	<10	<1	61
01 62	HOOV 11+50N 0+76E		<0.2	2.52	10	75	10	0.14	<1	11	3	15	4.84	<10	0.43	865	6	0.02	6	1560	18	<5	<20	9	0.02	<10	69	<10	6	73
02. #2			04	2 62	20	35	15	0.04	<1	10	11	24	6.15	<10	0.14	487	11	0.04	3	600	36	<5	<20	<1	0.15	<10	46	<10	3	61
03) 44	HSOV 12+00N 0+06LV		<0.4	1.52	30	80	10	0.06	<1	10	6	29	4.77	<10	0.20	1165	12	0.01	7	850	28	<5	<20	<1	0.05	<10	102	<10	<1	60
04			0.2	2.89	35	90	15	0.04	<1	17	5	28	7.09	<10	0.22	1297	19	0.03	8	1000	34	<5	<20	<1	80.0	<10	45	<10	3	115
60			0.2	2.00		••		••••	•																					
00	LICOV 434000 0475W		<0.2	2 86	35	100	<5	0.12	<1	17	10	64	6.38	<10	0.52	768	10	0.04	14	750	32	<5	<20	6	0.10	<10	59	<10	4	95
60	HSOV 12+00N 0+75W		-0.2	2.66	A 0	110	20	0.05	1	27	10	59	>10	<10	0.36	1595	36	0.02	21	760	42	<5	<20	4	0.12	<10	81	<10	<1	191
10	HOUV 12+00N 1+00VV		~0.2	2.00	20	115	15	0 16	<1	17	9	35	6.85	<10	0.75	1630	10	0.02	9	1720	28	<5	<20	10	0.03	<10	93	<10	2	107
00	HSOV 12+00N 0+25E		0.4	3 49	20	35	<5	0.07	<1	15	7	22	5.39	<10	0.09	1903	8	0.03	3	1590	28	<5	<20	<1	0.05	<10	33	<10	4	47
09	HSOV 12+00N 0+00E	.17	<0.7	246	<5	145	5	0.40	<1	19	3	43	6.81	<10	0.76	2272	8	0.03	7	1770	28	<5	<20	24	0.03	<10	78	<10	3	135
70	H50V 12+00N 0+/DE	-32	-0.2	4.70	~	140	Ť	Q. 10			•	,-																		
-74	1001/41-00N 1-00E		0.4	3.08	5	160	5	0.59	2	23	<1	83	7.80	<10	0.85	5138	8	0.02	- 4	2520	26	<6	<20	34	0.04	<10	78	<10	17	168
71	HSUV 12+00N 1+00E	-52	4.4	2.67	45	95	15	0.29	2	12	9	34	6.23	<10	0.36	729	32	0.02	30	1040	22	⊲5	<20	10	0.04	<10	58	<10	9	234
/2			10	240	80	60	10	0.05	<1	13	18	25	8.71	<10	0.47	900	26	0.01	12	1140	24	<5	<20	4	0.09	<10	70	<10	<1	113
73		-60	<0.2	2 11	40	60	15	0.05	<1	12	19	59	8.25	<10	0.28	1008	32	0.02	19	690	22	<5	<20	1	0.08	<10	88	<10	<1	131
(4 76		-00	<0.2	2.15	60	100	<5	0.09	<1	12	12	69	>10	<10	0.40	490	41	0.02	27	4010	28	<5	<20	9	0.06	<10	130	<10	<1	203
79	RB 0100CH 0113A						-																							
70	DB 0100EW 1100M		20	2.23	45	60	20	0.05	<1	9	16	33	9.13	<10	0.19	227	22	0.02	9	950	28	<5	<20	3	0.14	<10	124	<10	<1	58
70	DB 0+00EAN 1+25N		14	2 40	76	104	19	0.11	<1	11	22	53	8.99	<10	0.40	398	18	0.02	14	1330	50	<5	<20	- 14	0.14	<10	128	<10	<1	106
79	DB OFOCHAN THEON		<0.2	2.11	51	86	16	0.07	<1	11	23	39	8.42	<10	0.34	671	18	0.02	11	1130	44	<5	<20	11	80.0	<10	101	<10	<1	87
70	RB 0+00EW 1+75N	-60	2.0	1.89	50	75	5	0.09	<1	14	14	58	6.51	<10	0.34	2850	16	0.02	12	1100	26	<5	<20	7	0.08	<10	85	<10	<1	92
80	RB 0+00EAV 2+00N		0.4	1.58	40	110	15	0.07	<1	11	10	39	8.97	<10	0.15	249	15	0.01	13	590	20	<5	<20	6	0.17	<10	116	<10	<1	66
~~~	TO COULTY LOON																													
81	RB 0+00EAV 2+25N	-32	0.8	1.69	25	75	10	0.14	<1	14	10	50	5.30	<10	0.63	624	3	0.03	3	570	22	<5	<20	14	0.12	<10	100	<10	<1	61
82	RB 0+00E/W 2+50N	-32	6.4	2.81	70	65	10	0.12	<1	18	13	72	B.04	<10	0.47	710	9	0.03	8	1510	28	<5	<20	9	0.04	<10	66	<10	<1	110
83	RB 0+00E/W 2+75N		0.8	2.74	55	65	15	0.08	<1	17	26	- 44	7.62	<10	0.67	1267	9	0.02	12	960	30	<5	<20	<1	0.08	<10	83	<10	<1	123
84	R8 0+00E/W 3+00N		5.0	1.82	40	90	15	0.08	<1	10	10	32	6.81	<10	0.45	955	15	0.01	6	1270	20	<5	<20	4	0.05	<10	58	<10	<1	89
85	RB 0+00E/W 3+25N		1.6	2.24	35	65	20	0.06	<1	13	19	36	8.44	<10	0.39	473	7	0.02	6	420	26	<5	<20	2	0.20	<10	75	<10	<1	68
																							.00	_				.40		
86	RB 0+00E/W 3+50N		<0.2	1.52	20	90	20	0.09	<1	9	15	15	5.66	<10	0.14	136	4	0.02	4	520	30	<5	<20	1	0.24	<10	114	<10	<1	38
87	RB 0+00E/W 3+75N	-60	<0.2	1.98	50	90	20	0.08	<1	11	19	38	7.80	<10	0.48	288	10	0.01		560	28	<5	<20	4	0.15	<10	122	<10	2	87
88	RB 0+00E/W 4+00N		3.0	2.50	100	90	10	0.16	<1	10	25	43	7.41	<10	0.70	305	7	0.01	13	12/0	30	<5	<20	8	0.06	<10	98	<10	<1 	53
89	RB 0+00N 0+25W		0.6	1.80	65	80	15	0.08	<1	16	14	62	9.64	<10	0.50	645	14	0.01	11	1140	28	<5	<20	4	0.06	<10	66	<10	<1	98
90	RB 0+00N 0+50W	-60	0.6	2,44	65	70	20	0.04	<1	24	25	48	9.68	<10	0.63	1960	12	0.02	13	1620	38	<5	<20	<1	0.15	<10	/4	<10	4	140
																							-20		0.46		70		- 4	440
91	RB 0+00N 0+75W		1.2	2.78	60	60	25	0.06	<1	27	20	61	>10	<10	0.52	2226	16	0.02	18	1230	48	<0	<20	<1	0.15	<10 <10	10	<10 	<]	110
92	RB 0+00N 1+00W	-60	1.0	2.80	155	75	25	0.12	<1	21	17	68	>10	<10	0.72	1499	14	0,01	13	1800	50	< <u>&gt;</u>	<20	3	0.04	<1U	70	<10 	53 - 4	77
93	RB 0+00N 1+25W		0.4	2.87	65	80	15	80.0	<1	13	22	59	>10	<10	0.64	535	12	0.02	11	1930	46	<5	<20	5	0.04	<1U	72	<10	<1	./5
94	RB 0+00N 1+50W		0.2	2.78	65	90	15	0.02	<1	11	13	65	9.76	<10	0.31	216	12	0.01	9	1420	40	<5	<20	<1	0.03	<1U	82	<10	<1	51
95	RB 0+00N 1+75W		<0.2	2.75	40	50	5	0.03	<1	11	11	93	9,33	<10	0.42	239	11	0.01	9	1100	36	<Đ	<20	4	0.01	<10	οï	<10	<1	40

Page 3

800 (2

CLS 022.0

400 100

sto tech kam

KENRICH MINING CORPORATION

1

ICP CERTIFICATE OF ANALYSIS AK 98-355

Statis and

A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR O

ECO-TECH LABORATORIES LTD.

É

LECH KAM

600

Contraction of the second

) : : : : : : : : : : : : : : : : : : :	Tao#	Size	Αa	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	No	Na %	NI	P	Pb	Sb	Sn	Sr	Ti %	U	V	W	Y	Zn
06	DR 0400NI 2400M	-48	0.8	3 33	45	150	<5	0.05	<1	53	18	207	7.17	<10	0.94	3270	12	0.01	30	1100	60	<5	<20	3	0.02	<10	64	<10	4	173
90 07		-40	0.0	3 13	80	85	10	0.45	3	23	17	57	9.12	<10	0.48	1345	46	0.02	52	1700	30	<5	<20	20	0.04	<10	62	<10	15	463
97		-48	0.8	2.22	50	65	15	0.08	1	20	5	69	7.77	<10	0.45	2472	36	0.01	29	1890	30	<5	<20	4	0.06	<10	58	<10	<1	337
30		-32	20	2 15	50	95	<5	0.08	1	27	3	62	7.20	<10	0.35	1315	32	0.02	22	1020	30	<5	<20	10	0.05	<10	48	<10	<1	221
39	RB 0100N 01/3E	-32	12.0	2.10	60	105	10	0.60	. 8	56	3	88	8.29	<10	0.59	4419	34	0.08	51	2120	36	<5	<20	31	0.05	<10	52	<10	15	538
100	RD UTUUN ITUUE	-40	1.4	<b>A</b> ., <b>J</b> U		100		0.00	•	••	•		•																	
404	DD 0100NI 41255	22	0.8	2 83	45	135	5	044	7	36	<1	99	8.19	10	0.81	2097	43	0.10	108	1100	30	<5	<20	26	0.08	<10	54	<10	16	642
101		-32	1.4	2.00	76	150	<5	0.58	18	53	2	161	>10	10	0.62	3890	69	0.08	167	1630	66	<5	<20	40	0.08	<10	55	<10	30	1212
102	RD UTUUN ITUUE		20	2.00	80	05	5	0.24	2	36	15	80	6.23	<10	1.08	2756	7	0.02	19	1110	30	<5	<20	15	0.06	<10	74	<10	20	241
103	NB ZTUUN UTZOW		1.0	2.73	36	55	10	0.21	<1	22	7	40	5.54	10	0.60	4015	7	0.06	8	990	30	<5	<20	10	0.09	<10	53	<10	18	139
104	RD 2700R 0730W		1.0	2.00	40	60	10	0.09	<1	11	9	39	8.05	<10	0.29	640	9	0.02	5	3130	28	<5	<20	1	0.07	<10	80	10	<1	43
105	KB 2+00N 0+75W		1.0	2.05	-0	00		0,00		••	•	•••	0.00		•		-		-		-	-								
100	DD 0+00M 4+00M	40	4.0	2 55	20	55	5	0.14	<1	9	9	40	6.15	<10	0.42	299	5	0.03	4	720	28	<5	<20	8	0.11	<10	65	<10	<1	45
100	RD 2400N 1400W	-40	-1.0	2.00	45	65	15	0.09	<1	11	24	32	7.61	<10	0.38	165	3	0.01	7	320	26	<5	<20	4	0.20	<10	172	<10	<1	39
107	DD 2+00N 1+20W	_48	0.2	1 30	25	40	10	0.15	1	8	1	25	5.59	<10	0.09	429	3	0.04	-4	500	32	<5	<20	<1	0.17	<10	34	<10	11	97
100	DD 2100N 1100N	-48	c0.2	2 44	40	85	20	0.18	<1	17	31	43	>10	<10	0.84	541	9	0.02	13	490	32	<5	<20	6	0.21	<10	120	<10	<1	60
110	DR 3400N 7400W	-40	0.2	3 33	50	80	<5	0.11	<1	14	37	148	9,14	<10	0.68	333	8	0.01	16	560	36	<5	<20	7	0.11	10	100	<10	28	135
110				0.00			•																							
444	DD 3-00N 3-25W	-32	0.2	2.31	55	55	10	0.15	<1	19	13	71	7.79	<10	0.51	619	8	0.02	11	1730	24	<5	<20	9	0.03	<10	59	<10	<1	68
442	RB 2+000 2+2000	-48	0.8	1.27	25	100	15	0.18	<1	8	23	34	5.93	<10	0,15	92	5	0.01	7	1120	18	<5	<20	16	0.09	<10	119	<10	<1	26
112	DD 2400N 0425E	-48	28	1 91	40	150	10	0.37	3	21	16	34	5.43	<10	0.40	2967	11	0.02	16	990	26	<5	<20	26	0.09	<10	80	<10	7	209
114	BB 2100N 0150E	-14	0.8	1.76	60	125	15	1.04	4	13	14	46	6,64	<10	0.39	853	16	0.02	12	780	22	<5	<20	68	0.08	<10	77	<10	<1	111
115	RB 2+00N 0+75E		0.6	2.79	35	95	10	0.22	<1	16	22	61	5.86	<10	0.97	834	8	0.02	14	1270	28	<5	<20	20	0.07	<10	91	<10	<1	151
113	102.0010.002																													
116	RB 2+00N 1+00E		1.8	3.02	55	105	5	0.23	<1	18	17	119	6.15	<10	0.87	790	10	0.02	24	1270	32	<5	<20	17	0.06	<10	82	<10	<1	236
117	RB 2+00N 1+25E	-32	<0.2	2.20	40	45	15	0.11	<1	29	5	48	7.69	<10	0.30	2014	35	0.02	16	1 <b>240</b>	- 44	<5	<20	- 4	0.11	<10	55	<10	7	177
118	RB 2+00N 1+50E	-48	0.5	2.28	55	80	10	0.16	1.	35	6	95	8.15	<10	0.61	2784	50	0.02	41	1330	40	<5	<20	6	0.06	<10	50	<10	11	279
119	RB 2+00N 1+75E		1.4	1.86	20	195	20	0.21	<1	16	28	33	>10	<10	0.37	1337	- 14	0.03	5	970	26	<5	<20	10	0.15	<10	81	<10	<1	69
120	RB 2+00N 2+00E	-48	1.2	2.48	50	95	10	0.11	<1	23	6	62	6.79	<10	0.29	3528	36	0.02	26	2680	34	<5	<20	10	0.04	<10	62	<10	<1	234
•																						_								
121	RB 4+00N 0+25W	-60	<0.2	2.30	55	85	20	0.13	<1	17	98	21	7.66	<10	1.11	743	<1	0.02	17	<b>580</b> .	24	<5	<20	4	0.35	<10	205	<10	<1	41
122	RB 4+00N 0+50W		<0.2	2.09	-40	100	35	0.13	<1	13	28	31	7.28	<10	0.30	211	3	0.02	7	530	30	<5	<20	3	0.35	<10	154	<10	<	49
123	RB 4+00N 0+75W	-48	<0.2	2.10	40	70	15	0.10	<1	11	20	40	5.60	<10	0.42	293	2	0.01	10	540	26	<5	<20	3	0.19	<10	134	<10	<1	46
124	RB 4+00N 1+00W		8.0	3.07	40	65	15	0.08	<1	14	37	51	8.65	<10	0.30	327	5	0.02	7	550	40	<5	<20	3	0.26	<10	100	<10	<1	48
125	RB 4+00N 1+25W	-48	<0.2	2.49	60	105	25	0.10	<1	14	28	27	7.03	<10	0.27	117	<1	0.02	6	370	32	<5	<20	7	0.39	<10	190	<10	<1	31
																	-		-							40	4 4 7	.40		
126	RB 4+00N 1+50W	-48	<0.2	2.61	45	110	20	0.10	<1	15	22	75	>10	<10	0.66	342	7	0.02	9	520	26	<5	<20	16	0.13	10	14/	<10	<1	55
127	RB 4+00N 0+25E		1.2	2.87	80	125	10	0.73	- 4	38	34	76	7.71	<10	1.24	3042	9	0.05	32	1210	32	<5	<20	24	0.09	<10	86	<10	18	417
128	R8 4+00N 0+50E		2.4	2.38	30	415	15	1.62	22	31	13	107	9.36	<10	1.07	10000	6	0.14	94	1480	18	<5	<20	111	0.15	<10	73	<10	23	903
129	RB 4+00N 0+75E		<0.2	2.14	45	90	30	0.12	1	14	11	47	>10	<10	0.54	344	14	0.01	12	900	36	<5	<20	9	0.13	<10	99	<10	<1	52
130	RB 4+00N 1+00E		0.6	2.89	60	120	15	0.30	1	16	16	70	8.85	<10	0.48	1040	15	0,02	12	690	38	<5	<20	20	0.09	<10	78	<10	<1	129

Page 4
KENRICH MINING CORPORATION Mesh Constraint of

ICP CERTIFICATE OF ANALYSIS AK 98-355

I .....

ECO-TECH LABORATORIES LTD.

Å .....

 $\Omega_{\rm ext}$ 

North Contraction of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon

SCO-TECH RAM

S of o

Et #	Tag#	Size	Ag	AI %	As	Ba	Bi	Ca %	Cd	Ċo	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Nł	P	Pb	Sb	Sn	Sr	Ti %	U	v	w	v	7n
131	R8 4+00N 1+25E		1.8	1.66	40	95	15	0.08	<1	10	13	39	8.67	<10	0.25	273	12	0.01	7	1270	24	<5	<20	10	0.10	<10	00	<10		
132	RB 4+00N 1+50E		1.0	2.28	50	165	10	1.06	8	36	15	144	7.40	<10	1.21	2107	8	0.16	51	1390	24	<5	<20	84	0.10	~10	77	-10	45	13
133	RB 4+00N 1+75E		0.6	1.74	50	70	20	0.11	<1	10	14	50	>10	<10	0.20	327	13	0.01	6	2540	34	<5	<20	4	0.10	10	04	-10	10 - 1	100
134	RB 4+00N 2+00E	-32	<0.2	0.89	50	85	<5	0.07	<1	8	4	55	6.32	<10	0.07	146	24	0.02	12	800	20	~	~20	10	0.00	-10	51	-10	51	01
135	RB 4+00N 2+25E	-48	2.6	3.38	65	60	<5	0.05	10	59	2	115	7.41	<10	0.12	3812	77	n n2	112	1830	62	~	~20	-1	0.03		90	510	<1	89
											-							0.04		1000	02	~	~20	~1	0.02	\$10	30	<10	11	770
136	RB 4+00N 2+50E	-48	3.2	2.02	95	60	10	0.14	<1	18	9	73	8.38	<10	0.56	1536	24	0.02	17	1220	26	~	~20	•	0.00		00			
137	RB 4+00N 2+75E		1.8	4.15	40	55	10	0.07	1	15	11	91	8.04	<10	0.25	723	25	0.02	31	1500	48	~	~20	2	0.00	-10	00	<10	<1	159
138	RB 4+00N 3+25E		3.4	1.11	95	65	15	0.07	<1	9	11	48	7.80	<10	0.22	474	15	0.01	7	2010	22	ž	~20	2	0.00	<10	41	<10	15	184
139	RB 4+00N 3+50E	-48	1.6	1.05	40	50	15	0.07	<1	9	8	39	7.60	<10	0.20	298	15	0.01	Å	1630	28	-5	~20	3	0.03	<10	105	< 10	<1 	81
140	RB 4+00N 3+75E	-48	1.0	0.95	50	60	5	0.09	<1	10	7	43	8.03	<10	0 12	395	18	0.02	7	3350	24	~	~20		0.04	10	/0	<10	5	4/
																000	10	4.42	•	3330	24	-0	~20	4	0.00	<10	11	<10	<1	56
141	RB 4+00N 4+00E	-48	0.8	0.89	25	80	15	0.06	<1	9	ব	37	9.78	<10	0.08	306	15	0.01	3	8880	28	~5	~20	6	0.02	-10	-	-40		
142	RB 4+00N 4+25E	-48	1.0	4.86	35	95	10	0.06	<1	12	4	39	5.43	<10	0.15	472		0.01	Ă	2170	34	<5	~20	~1	0.03	~10	09	<10 <10	<1	43
143	R8 4+00N 4+50E	-48	1.2	1.38	15	305	10	0.14	<1	9	<1	15	6.36	<10	0.12	2772	12	0.07	2	2290	28	~5	<20	RR	0.00	<10	33 95	<10	0	49
144	RB 3+00E 4+00N	-32	<0.2	1.19	70	80	10	0.13	<1	11	13	66	8.30	<10	0.27	391	15	0.02	11	2170	24	~5	<20	10	0.02	<10	100	~10	51	87
145	RB 3+00E 4+25N	-32	1.4	1.38	50	105	10	0.17	<1	9	10	35	6.67	<10	0.37	229	10	0.04	8	930	18	<5	<20	20	0.00	~10	001	S1U 440	<1	80
146	RB 3+00E 4+50N	-60	1.8	2.94	55	90	<5	0.17	<1	18	10	70	8.06	<10	0.59	988	11	0.02	17	1830	74	~5	<20	14	0.07	~10	50 50	<10	51	11
ac D/	ATA:																									-				
Repea	t																									•				
1	HSOV 10+00N 0+00E/W		<0.2	2.84	35	135	<5	0.37	<1.	33	29	1 <b>81</b>	6.42	<10	1.60	1306	3	0.02	33	1770	36	<5	<20	22	0 16	<10	150	~10	6	160
10	HSOV 10+00N 1+00E	-60	⊲0.2	1.84	15	65	15	0.07	<1	14	15	24	5.93	<10	0.23	2060	6	0.04	4	680	30	<5	<20	5	0.25	<10	86	210	5	41
19	HSOV 10+00N 3+25E		<0.2	2.59	30	90	<5	0.25	<1	17	23	71	4.86	<10	1.06	692	2	0.05	13	1550	34	<5	~0	16	0.15	<10	101	<10	5 6	41
28	HSOV 10+50N 0+25W		<0.2	3.04	50	105	5	0.23	4	27	13	77	7.53	<10	0.95	1442	20	0.02	45	1520	30	<5	<20	18	0.10	<10	82	<10	12	03 756
36	HSOV 10+50N 2+00E		0.4	3.36	30	115	15	0.39	<1	36	4	50	9.71	<10	1.43	2474	27	0.03	7	3100	48	<5	<20	18	0.07	<10	48	~10	10	200
45	HSOV 10+50N 4+25E		⊲0.2	2.85	35	110	<5	0.22	<1	28	27	137	6.19	<10	1.30	1381	3	0.04	23	1700	34	<5	<20	12	0.18	<10	128	<10	7	100
54	HSOV 11+00N 0+50E		0.4	1.61	25	115	10	0.04	<1	8	8	28	5.06	<10	0.25	417	25	0.02	12	750	32	<5	<20	5	0.09	<10	85	<10	-1	77
63	HSOV 12+00N 0+00E/W		0.6	2.62	15	35	10	0.04	<1	10	10	24	6.12	<10	0.15	518	11	0.04	3	620	34	<5	<20	<1	0.15	<10	45	<10	4	60
71	HSOV 12+00N 1+00E	-32	0.6	2.92	10	145	5	0.55	<1	23	4	92	7.49	<10	0.81	4898	6	0.02	3	2440	30	<5	<20	30	0.03	<10	74	<10	17	157
80	RB 0+00E/W 2+00N		0.4	1.63	35	110	20	0.07	1	10	11	39	9.05	<10	0.17	220	16	0.01	13	590	22	<5	<20	6	0.15	10	118	<10	<1 -	66
89	RB 0+00N 0+25W		0.4	1.85	60	80	15	0.08	<1	16	14	64	9.88	<10	0.51	674	15	0.01	14	1190	30	<5	<20	4	0.06	<10	65	<10	<1	104
98	RB 0+00N 0+50E	-48	1.0	2.39	60	75	10	0.08	1	20	5	71	8.11	<10	0.45	2495	37	0.02	27	1910	32	<5	<20	8	0.08	<10	61	<10	<1	347
106	RB 2+00N 1+00W	-48	8.0	2.43	35	50	10	0.13	<1	9	8	38	5.94	<10	0.38	277	6	0.02	5	720	28	<5	<20	5	0.10	<10	61	<10	~1	42
115	RB 2+00N 0+75E		0.8	2,77	35	95	<5	0.22	<1	16	22	61	5.86	<10	0.97	827	8	0.02	15	1250	26	<5	<20	21	0.07	<10	92	<10	<1	181
124	RB 4+00N 1+00W		0,8	3.06	35	65	20	0.09	<1	14	38	52	8.61	<10	0.30	333	6	0.02	7	540	38	<5	<20	3	0.25	<10	99	<10	<1	54
133	RB 4+00N 1+75E		0.8	1.83	45	80	15	0.12	<1	10	15	53	>10	<10	0.21	346	14	0.01	6	2690	34	<5	<20	6	0.09	<10	98	<10	<1	82
141	RB 4+00N 4+00E	-48	0.8	0.94	30	85	15	0.06	<1	9	<1	38	9.74	<10	80.0	311	15	0.01	2	8730	28	<5	<20	3	0.03	<10	70	<10	<1	45

Page 5

and the second second second second second second second second second second second second second second second	and the second second	anna ann ann ann ann ann ann ann ann an	and the second second	(	ana mangaran Mandalangg	สารแก่งเกิด ผู้มีมีสารมาย	in and the second second second second second second second second second second second second second second s	a concina Aliandina	N MARCINE	fiteritation teste secondo		fundariante de la constante de La constante de la constante de		Horney ages	]		ar dia.	and second second		arraartagigadiga Gadayigadiga	)	eromojoromoj linistituzanjelaji		Lanoritanie ali	finite University		Guine Guine	an over the second	γ
KENRICH M	INING CORPO	DRATION						1CI	CER	TIFICAT	'E OF	ANALY	'SI <b>S A</b> I	( 98-35	5									ECO-TE		BORA	rories	LTD.	
Et #.	Tag#	Mesh Size	Ag A	1%	As B	a Bì	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	8b	Sn	Sr	Ti %	U	V	W	Y	Zn
Standard: GEO'98 GEO'98 GEO'98 GEO'98			1.6 1 0.8 1 1.0 1 0.8 1	.88  .88  .85  .87	60 15 65 15 65 15 65 15	5 <5 5 10 0 <5 5 5	1.75 1.84 1.82 1.84	ব ব ব ব ব ব ব ব ব	20 19 20 19	66 62 65 66	81 80 81 80	4.09 4.09 4.09 4.16	<10 <10 <10 <10	0.95 0.94 0.96 0.95	691 682 703 672	ণ ণ ণ ণ ণ ণ ণ ণ ণ ণ ণ ণ ণ ণ ণ ণ ণ ণ ণ	0.02 0.02 0.03 0.03	24 24 23 23 23	640 830 690 680 770	22 24 24 24 24 22	\$ \$ \$ \$	<20 <20 <20 <20 <20	64 60 59 62 86	0.14 0.14 0.13 0.13 0.14	<10 <10 <10 < <b>10</b> <10	82 81 80 82 83	<10 <10 <10 <10 <10	5 5 4 5	80 69 73 70 69

NOTE: * Mesh size -80 unless otherwise indicated.

df/355 XLS/98Kenrich Fax to John Kowalchuk 604-688-3346 & Mail to Vancouver

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer pe

1

0

停着

2

dar Tef Gif

(Sector) Sector

Page 6

## ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

## **CERTIFICATE OF ANALYSIS AK 98-292**

KENRICH MINING CORPORATION 910-510 BURRARD STREET VANCOUVER, BC V6C 3A8 15-Jul-98

## ATTENTION: J. KOWALCHUK

No. of samples received: 13 Sample type: Moss PROJECT #: None Given SHIPMENT #: None Given Samples submitted by: H.Sigurgeirson

		Au	Hg	
ET #.	Tag #	(ppb)	(ppb)	
1	97950	<5	260	
2	97951	<5	160	
3	97952	<5	810	
4	97953	<5	220	
5	97954	40	320	
6	97955	80	203	
7	97956	<5	260	
8	97957	<5	160	
9	97958	<5	530	
10	97959	<5	464	
11	97960	<5	500	
12	97961	<5	270	
13	97962	<5	240	
QC DA	TA:			
Repeat	t:			
1	97950	<5	190	
Standa	nd:			
GEO'98	3	125	-	
STSD1		-	100	
STSD4		. –	1060	
S02		-	120	
S04		-	40	
XLS/98	Kenrich			(

Fax to John Kowalchuk 604-688-3346 & Mail to Vancouver

Distanting and

O-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. **B.C. Certified Assayer** 

16-Jul-98

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557 ICP CERTIFICATE OF ANALYSIS AK 98-292

## **KENRICH MINING CORPORATION**

910-510 BURRARD STREET VANCOUVER, BC V6C 3A8

ATTENTION: J. KOWALCHUK

No. of samples received: 13 Sample type: Moss PROJECT #: None Given SHIPMENT #: None Given Samples submitted by: H.Sigurgeirson

Values in ppm unless otherwise reported

Ft #	Tao#	Aα	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	<u>Ti %</u>	<u> </u>	<u>v</u>	<u></u>	<u>Y</u>	Zn
4	07050	0.8	1 77	15	180	<5	1.09	9	19	12	69	4.12	<10	0.90	1882	4	0.04	29	1660	12	5	20	83	0.05	<10	63	<10	13	286
1	07051	<0.0	1 10	10	80	<5	1 84	4	13	11	44	2.68	10	0.66	896	3	0.06	17	1420	8	5	20	47	0.04	<10	43	<10	20	153
<u><u></u></u>	07062	-0.2	2.07	96	125	<5	0.81	39	36	5	215	9.03	<10	0.15	2249	20	0.03	105	1920	26	<5	<20	73	0.01	<10	32	<10	30	1653
3	9/902	3.2	4 10	20	125	-5	1.62	4	13	15	94	3 36	<10	0.65	802	3	0.06	20	1360	14	10	20	57	0.05	<10	46	<10	10	147
4	97955	0.4	1.18	50	190	~5	0.73	2	21	22	144	5.02	<10	1.10	1110	5	0.02	25	1530	24	<5	<20	36	0.04	<10	71	<10	5	156
5	97954	0.0	1.09	20	100	~5	1 48	<u> </u>	2,	12	68	2 65	<10	0.60	1291	3	0.03	14	1760	10	<5	<20	53	0.03	<10	37	<10	9	97
6	81900	0.0	1.09	20	135	-0	1.40	-	9			2.00	-10	0.00		Ξ.													
_		~ ~	4 70	05.	440	-5	1.00	£	47	21	110	3 62	40	0.87	1200	3	0.04	28	1470	14	<5	20	49	0.05	<10	53	<10	50	180
7	97956	0.0	1./5	20	140	-0	1.00	10	45	10	105	2 1 2	~10	0.67	QRA	2	0.06	35	1530	20	5	<20	85	0.06	<10	42	<10	11	215
8	97957	0.4	1.25	20	130	~0	4.00	47	20	17	144	0.12	10	0.57	2678	17	0.04	84	3020	12	<5	<20	59	0.03	<10	58	<10	13	1179
9	97958	1.8	2.01	60	140	0	1.23	- 40	47	11	02	8.13 E 02	~10	0.57	1203	15	0.04	69	1810	22	<5	20	67	0.02	<10	34	<10	10	834
10	97959	0.6	1.22	60	130	<0	1.30	10	17	40	400	0.02	<10	0.00	1030	10	0.04	52	1080	12	<5	<20	57	0.05	<10	48	<10	7	762
11	97960	1.2	1.55	45	135	<5	1.08	12	22	13	108	0.40	<10	0.70	1194	7	0.00	38	2100	14	<5	20	59	0.04	<10	40	<10	8	568
12	97961	0.6	1.20	35	135	<5	1.50	10	10	10	90	4.04	10	0.50	0504		0.04	06	1580	9	-5	<20	01	0.05	<10	53	<10	19	907
13	97962	2.2	1.79	20	340	5	1.40	19	21	13	80	8.05	<10	0.78	1000	Ŷ	0.04	80	1000	0	-0	-20	31	0.00	-10				
OC DATA:																													
Repeat: 1	97950	0.8	1.74	20	180	<5	1.09	9	19	12	69	4.11	<10	0.89	1883	4	0.04	28	1680	14	<5	<20	82	0.05	<10	61	<10	12	294
Standard:																		•			_		<b>c</b> 0	0.00	-10	77	-10	E	67
GEO'98		1.0	1.71	65	160	10	1.85	<1	20	59	78	3.89	<10	0.96	639	<1	0.03	21	680	16	5	<20	52	0.08	<10		<10	þ	0/
																							Λ,						

df/292 XLS/98Kenrich Fax to John Kowalchuk 604-688-3346 & Mail to Vancouver ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

Page 1





414100 -	414200 -		
+	+	- 6529900	INSTRUMENTATION FIELD OPAL PLUE PROTON PRECESSION MAGNETOMETER BASE STATION DOWL IV PROTON PRECESSION MAGNETOMETER
+	+	- 6239800	
+	+	- 6259700	
+	+	- 6239600	
+	+	- 6259300	
+	+	- 6259400	
+	+	- 6259300	
+	+	- 6259200	
+	+	- 6239100	
+	+	- 6259000	
+	+	- 6238900	
+	+	- 6258800	
+ + 4	+	- 6258700	
+	•	- 6258600	
+	+	- 6238500	
+	÷	- 6258400	KENRICH MINING CORP. COREY PROPERTY UNK REVER, BC. TOTAL MACHINETTO FICED
+	+	- 6258300	
+	+	- 6258200	304.LT 3% METTERS 50 0 50 100 150
- 414100	414 4100 00	-	SJ GEOPHYISICS L TR.



414100	414200		
<b>I</b>	1		
+	+	- 6259900	INSTRUMENTATION FIELD UNKL PLUE PROTON PRECESSION MAGENTURFTER INSEE STATUM UNKL TV. PROTON PRECESSION MAGNETORFTER
+	+	- 6259800	
+	+	- 6259700	
+	+	- 6239600	
+	+	- 6259500	
+	+	- 6259400	
+	+	- 6259300	
+	+	- 6259200	
+	+	- 6259100	
+	+	- 6259000	
+	+	- 6258900	
+	+	- 6258800	
1 + L 1	+	- 6258700	
+	• +	- 6258600	
+	+	- 6258500	
+	+	- 6258400	KENRICH MINING CORP. COREY PROPERTY UNIX STYER, BC.
+	+	- 6258300	TOTAL MAGNETIC FIELD INTENSITY (nT) STACKED PROFILE MAP NAB 27 2006 7 REENA HEIRE EVISION (11)
+ - 414100	+ + 41420	6258200	204.5 39 HETOBE 30 0 30 100 130 <i>S.J. GZ JPH/ISJCS L. T.B.</i> JULY, 1998 PLATE GLA
	5		



	414100	414200 -		
		- <b>- -</b>		INSTRUMENTATION
	+	+	- 6259900	PRECESSION MAGNETONETER DASE STATION OWNE IV PROTON PRECESSION MAGNETONETER
	+	+	- 6259800	
	+	+	- 6259600	
	+	+	- 6259500	
	+	+	- 6239400	
	+	+	- 6259300	
	+	+	- 6239200	
	+	+	- 6529100	
	+	+	- 6259000	
	+	+	- 6238900	
	+	+	- 6258800	
1	+	+	- 6258700	
	+	+	- 6258600	
	+	+	- 6258400	
	+	+	- 6238300	KENRICH MINING CORP. COREY PROPERTY UMAK RIVER, BG STACKED PROFILE MAP INPHASE QUADRATURE TOTAL FIELD SEATTLE NIK 24.8 KH7
	+	+	6258200	
	414100	414200		JLIY, 1 <b>998</b> PLATE GBA



414100 -	414200		
+	+	- 6259900	INSTRUMENTATION FIELD: ONGLYLUS PROTON PROCESSION MAGNETONETER BARE STATION ONCLY PROTON PRECESSION MAGNETONETER
+	+	- 6259800	TOTAL FIELD BLADMATURE DIFFASE
+	+	- 6259700	• -ea -bai
+	+	- 6259600	
+	+	- 6529200	
+	+	- 6259400	
+	+	- 6239300	
+	+	- 6259200	
+	*	- 6239100	
+	+	- 6259000	
+	÷	- 6258900	
+	+	- 6258800	
+	+	- 6258700	
+ 0	+	- 6238600	
+	+	- 6258500	
+	·	- 6258400	KENRICH MINING CORP. COREY PROPERTY UNLK REVER, BC STACKED PROFILE MAP
+	+	- 6258300	INPHASE QUADRATURE TOTAL FIELD HAWAII NPM 21.4 KHz INA E7 ZDE 3 BREEM HENRIG BY/SEEN NTS 1648775,89,59,380
+ - 414100	+ ***	6258200	ECHLE IN NETTORE 50 0 50 100 150 <i>S.J. GEODIFICISTICS L. T.B.</i> JULY, 1940 PLATE 63A