

ASSESSMENT REPORT ON THE DL CLAIMS, LEDGE PROPERTY, CANIM LAKE AREA, CARIBOO MINING DIVISION, B.C.

LOCATION

NTS 93A-2 LAT. 52⁰01'N LONG. 120⁰ 35'W

> CLAIMS DL 1 TO DL 8

PREPARED FOR

MANDALAY RESOURCES CORPORATION 710-750 WEST PENDER STREET VANCOUVER, B.C. V6C 2T7

PREPARED BY

PETER A. CHRISTOPHER PhD., P.Eng. PETER CHRISTOPHER & ASSOCIATES INC. 3707 WEST 34TH AVENUE VANCOUVER, B.C. V6N2K9

SEPTEMBER 15, 1999

Buchteren

TABLE OF CONTENTS

	PAGE
SUMMARY	i
INTRODUCTION	l
LOCATION AND ACCESS	1
TOPOGRAPHY AND VEGETATION	1
PROPERTY DEFINITION	2
HISTORY	2
WORK PROGRAM	4
REGIONAL GEOLOGY	4
PROPERTY GEOLOGY	5
ALTERATION AND MINERALIZATION	6
GEOCHEMICAL SURVEYS	7
GEOPHYSICAL SURVEYS	8
DISCUSSION	9
CONCLUSIONS AND RECOMMENDATIONS	10
BIBLIOGRAPHY	11
CERTIFICATE	13
CONSENT LETTER	
CERTIFICATES OF ANALYSES	APPENDIX A
COST STATEMENT	APPENDIX B

LIST OF TABLES

TABLE 1.	PERTINENT CLAIM DATA	2
TABLE 2.	WRITER'S CHECK SAMPLES DL GRID	6

LIST OF ILLUSTRATIONS

		AFTER PAGE
FIGURE 1.	LOCATION MAP	1
FIGURE 2.	CLAIM MAP	1
FIGURE 3.	TECTONIC ASSEMBLAGE MAP	4
FIGURE 4 .	PROPERTY GEOLOGY AND SAMPLE LOCATIONS	5
FIGURE 5A.	DL GRID GEOLOGY & ROCK SAMPLES	5
FIGURE 5B.	DL GRID GOLD GEOCHEMISTRY	7
FIGURE 5C.	DL GRID SILVER GEOCHEMISTRY	7
FIGURE 5D.	DL GRID ARSENIC GEOCHEMISTRY	7
FIGURE 5E.	DL GRID COPPER GEOCHEMISTRY	7
FIGURE 5F.	DL GRID ZINC GEOCHEMISTRY	7
FIGURE 5G.	DL GRID ANOMALY COMPILATION MAP	7
PLATE 1.	LEDGE (DL) GRID MAGNETIC SURVEY	IN POCKET
PLATE 2.	LEDGE (DL) GRID VLF-EM SURVEY	IN POCKET

SUMMARY

The DL claims, part of the Ledge Property, consisting of 8 2-post claims covering about 160 hectares (395 acres) in the Cariboo Mining Division, B.C., is presently being explored by Mandalay Resources Corporation (Mandalay). The DL claims are located about 70 kilometers northeast of 100 Mile House with easy access via 40 kilometers of paved road to Eagle Creek and then 30 kilometers of gravel and good logging road to the property. The Ledge Property is held under option and being explored by Mandalay Resources Corporation (Mandalay). The DL 1 to DL 8 claims cover about 1.5 kilometers of the Ledge Creek valley near its junction with Deception Creek.

The DL claims are situated near the southern end of the Cariboo-Quesnel Gold Belt section of the Quesnel Trough. The claims are underlain by quartz veined phyllitic rocks of the Cariboo Group. North-south and east-west fault structures cut rock units and are associated with an auriferous quartz vein at the DL adit.

The writer examined the DL adit area in the DL Grid area, and obtained a 1 meter chip sample which contained 1540ppb gold, and a 2 meter chip sample across bull quartz which contained 18ppb gold. Previous sampling from the DL adit area returned values up to 1.5 oz Au/ton which suggest potential for bonanza gold mineralization, and irregular distribution of gold.

Mandalay conducted grid geochemical and geophysical surveys over DL claim area. A total of 392 soil samples were collected along 15.5 line-kilometer in the DL grid. Gold in soil values up to 1020ppb were obtained from an 800 meter anomalous zone of the DL grid which subparallel Ledge Creek, and 58 sample with anomalous gold values over 20ppb were obtained from the DL grid area. Some of the anomalous gold zones have coincident anomalous conditions for copper, arsenic and/or silver.

VLF-EM and magnetic surveys resulted in geophysical anomalies which are coincident with anomalous gold in soils. Trenching is required to select the best locations for drill testing mineralized conductive zones which probably reflect east-west and north-south trending fault structures.

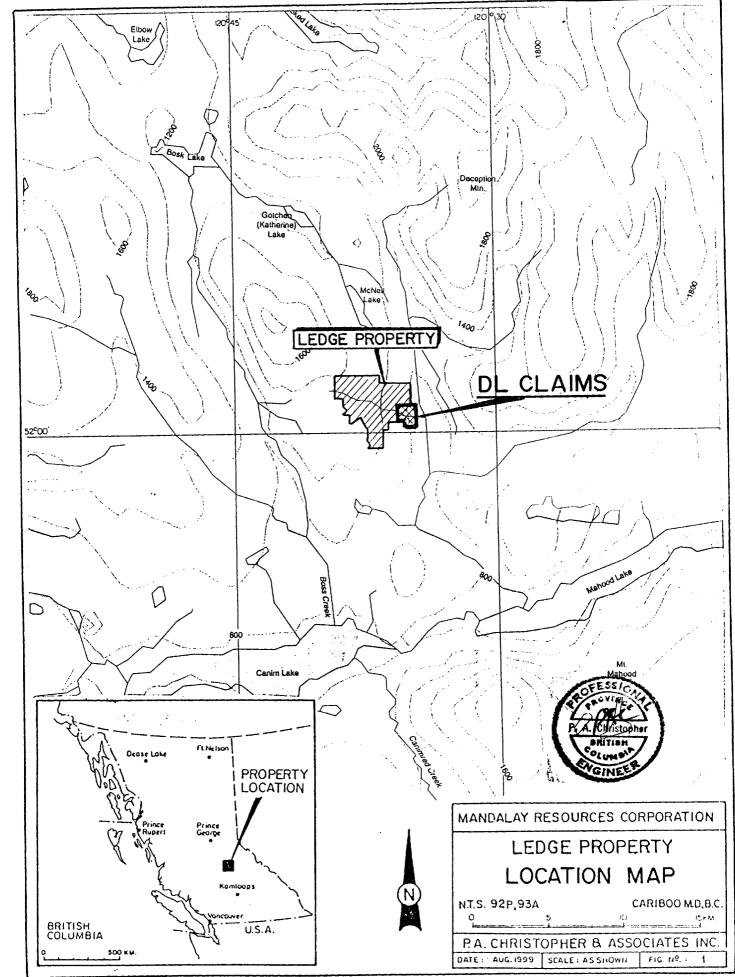
Further success contingent exploration is recommended for the DL claims on the Ledge Property with a Stage I program of grid extension, trenching, and 500 meters of diamond drilling recommended.

INTRODUCTION

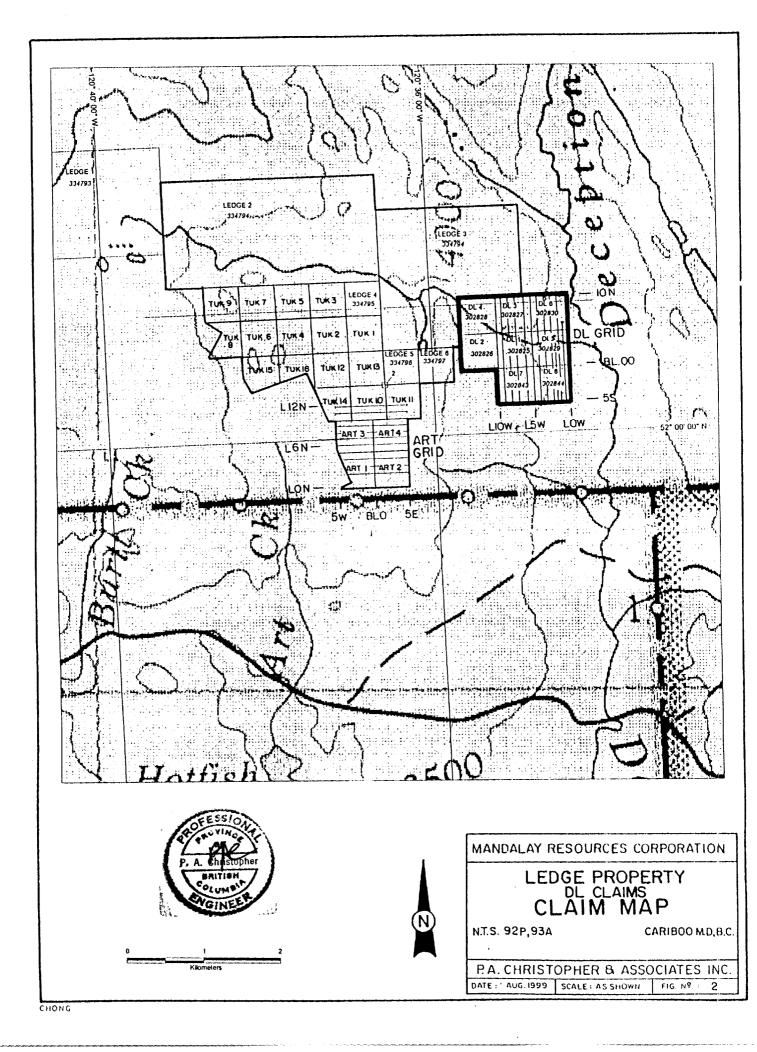
The DL claims, part of the Ledge Property, consisting of 8 2-post claims covering about 160 hectares (395 acres) in the Cariboo Mining Division, B.C., are presently being explored by Mandalay Resources Corporation (Mandalay). Quartz veined metamorphic rocks in the area have been intermittently explored for gold and base metals since the late 1800s, but no records have been found for the date of construction of the DL adit and other physical workings in the DL claim area.

Mandalay acquired the property and started systematic, grid exploration of the property in June 1998. Peter Christopher & Associates Inc. was retained in September 1998 to examine the geological setting of the Ledge Property in order to qualify for preparing an engineering report. The writer conducted an examination with Maqndalay's president Dr. J. Duro Adamec on September 29th and 30th, 1998. The DL showings and grid areas were examined and two check samples collected by the writer and personally submitted to Acme Laboratory in Vancouver for gold and ICP analysis.

This report summaries the geological setting and past exploration on the DL claims and Ledge Property, and provides recommendation for further success contingent exploration on the DL claims.


LOCATION AND ACCESS (FIGURES 1 & 2)

The DL claims cover about 160 hectares (395 acres), and are situated in the Cariboo Mining Division approximately 70 kilometers northeast of 100 Mile House and 30 kilometers northeast of a small settlement at Eagle Creek, British Columbia. The property straddles Ledge Creek about two kilometers south of McNeil Lake, and 13 kilometers north of the east end of Canim Lake.


The property is easily accessible from 100 Mile House, located on main Highway 97 about 50 kilometers southeast of Williams Lake. It is approximately 40 kilometers by paved road to Eagle Creek and another 35 kilometers to the property via good gravel roads and local logging roads.

TOPOGRAPHY AND VEGETATION

The DL claims are situated within the Interior Plateau Physiographic Province in an area designated the Quesnel Highland. The area has low to moderate relief with elevations ranging from about 1000 meters (3300 feet) where Ledge Creek crosses the easterly property boundary to over

CHONG

1273 meters (4,200 feet) on a hill at the western claim boundary.

The property area was covered by mature stands of balsam, spruce, Douglas fir, and lodgepole pine but a large area of the property has recently been commercially logged. Areas logged in the past are now covered by thick second growth of conifers, alder and willow. Ledge Creek and a number of tributaries or swampy areas provide ample water for exploration purposes.

PROPERTY DEFINITION (FIGURE 2)

The DL 1 through DL 8 claims, cover about 160 hectares (395 acres) in the Cariboo Mining Division, British Columbia. The property located in mineral title map area 93A/2E. Claim locations are shown of Figure 3 with pertinent claim data summarizes in Table 1.

Table 1. Pertinent Claim Data for Legde Property.

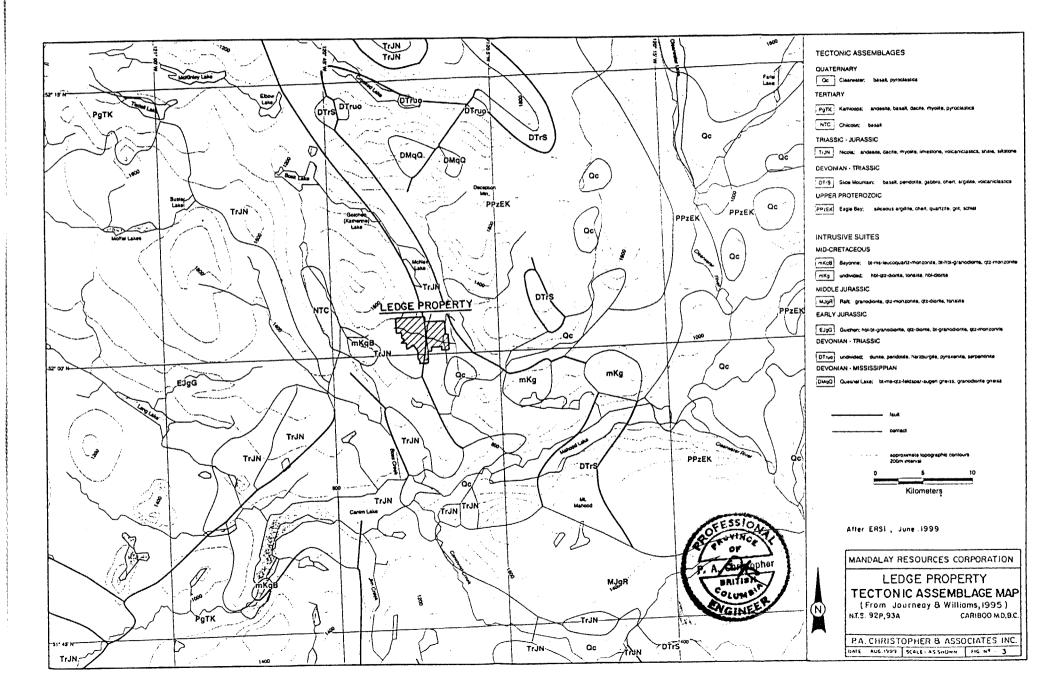
<u>Claim Na</u>	<u>me Clair</u>	m Units	Tenure	: #		Exp	<u>iry*</u>
						_	_
DL 1		1	302825	•	July	11,	2002
DL 2		1	302826	i	July	11,	2002
DL 3		1	302827	,	July	11,	2002
DL 4		1	302828	;	July	11,	2002
DL 5		1	302829	}	July	16,	2002
DL 6		1	302830)	July	14,	2002
DL 7		1	302843	i	July	14,	2002
DL 8		1	302844	:	July	14,	2002
* Work h	as been	filed an	d expirv	date wil	l apr	n v fo	when

* Work has been filed and expiry date will apply when Assessment Report is accepted.

HISTORY

Placer gold was discovered in the Cariboo District in 1860 at Quesnel Forks, Keithley Creek and Antler Creek, and in 1961 at Williams, Grouse, Lowhee and Lightning creeks. Placer activity peaked in 1863, but has continued in a sporadic manner to the present.

The earliest reported exploration of quartz veins or lodes was in the early 1870's. Sutherland Brown (1957) suggested that the history of lode-mining in the Cariboo District from the early 1970's until 1933 was one of repeated unsuccessful ventures on the many quartz veins in the area, but with the development of modern milling methods after 1933, veins could be exploited for auriferous pyrite which occurred below the weathered and enriched upper parts. The Cariboo Gold Quartz and Island Mountain lode mines were developed near Likely and resulted in the production of about 1.2 million ounces of gold between 1933 and 1967.


Since the 1960's, the Cariboo District has been actively explored for porphyry molybdenum, porphyry copper and porphyry copper-gold deposits. Gibraltar Mines, a half billion tonne, low grade copper deposit, and Cariboo Bell (48.5 mt at 0.16 g/t gold and 0.44% copper) were developed. The Boss Mountain molybdenum mine (4.17 mt of 0.23% molybdenum) was located and mined. The QR gold deposits was found by Dome and recently developed by Kinross. A bedrock source for the Cariboo placer gold was also a target and resulted in the discover of the Frasergold property near Crooked Lake (about 20 mt of 2.5 g/t gold) and CPW property in the Likely area (890,000 tons of 2.5 g/t gold) within a deep water sedimentary rock package called the "black phyllites".

The Ledge Property or Deception Ledge Property was staked as the Rec and LK claims by prospector E. Scholtes in 1987 to cover quartz veins in an adit and some old trenches. Durfield Geological Management Ltd. was contracted to perform a limited program of rock sampling and geological mapping. The work returned values as high as 620 grams/ton silver, 3.23 grams/ton gold, 5.2% lead and 444 ppm antimony (Durfield, 1988), but no further work was done and the claims were allowed to lapse in 1991.

The present DL claims were staked in July, 1991 to cover the old showings and a length of the westerly trending, fault controlled canyon of Ledge Creek. A prospecting program consisting of rock sampling of quartz veins in and near the old adit was conducted during July 1991 and May 1992 (Ridley, 1992). Sampling was successful in revealing high-grade gold values with a chip sample, across one meter from well weathered quartz in a surface trench above the old adit, reported to contain 42,906 ppb gold and 34.7 ppm silver.

In June 1993, Pioneer Metals Corporation optioned the DL claims and conducted a program of hand-trenching, rock chip sampling, geological mapping, pan concentrate sampling of Ledge Creek and an orientation soil sampling in the area of the old workings. Rock chip sampling returned 4.12 g/t Au across 2 meters and 4.57 g/t gold across 1.6 meters. The strongest gold in soil response, up to 320 ppb Au, was mainly restricted to a previously trenched area north of the DL adit (Ridley and Dunn, 1993).

After the DL claims were returned to D. Ridley by Pioneer Metals, the Art and Ledge claims were added to the

property. In June, 1998 the Ledge Property, consisting of the DL, Art and Ledge claims, was optioned to Mandalay Resources Corporation. The Tuk 1-16 claims, to the north of the Art claims, were optioned by Mandalay from Juraj Jakubik. From June to October 1998, Mandalay conducted a work program on the Ledge Property.

WORK PROGRAM

Work programs conducted for Mandalay on the DL claims consisted mainly of grid exploration with emphasis on areas of known showings. Geological mapping, VLF-EM, magnetic and soil and limited rock sampling programs were conducted over the DL claims.

VLF-EM and magnetometer surveys were conducted over the DL grid area by Basil (1998b). The surveys utilized an EDA Mag/VLF field unit in conjunction with a EDA TFM base station.

A soil sample program was conducted over DL grid (Figures 5a-g) with "B" horizon soil samples shipped to Acme Analytical Laboratories in Vancouver and analyzed for 30 elements by ICP method and fire assay for gold.

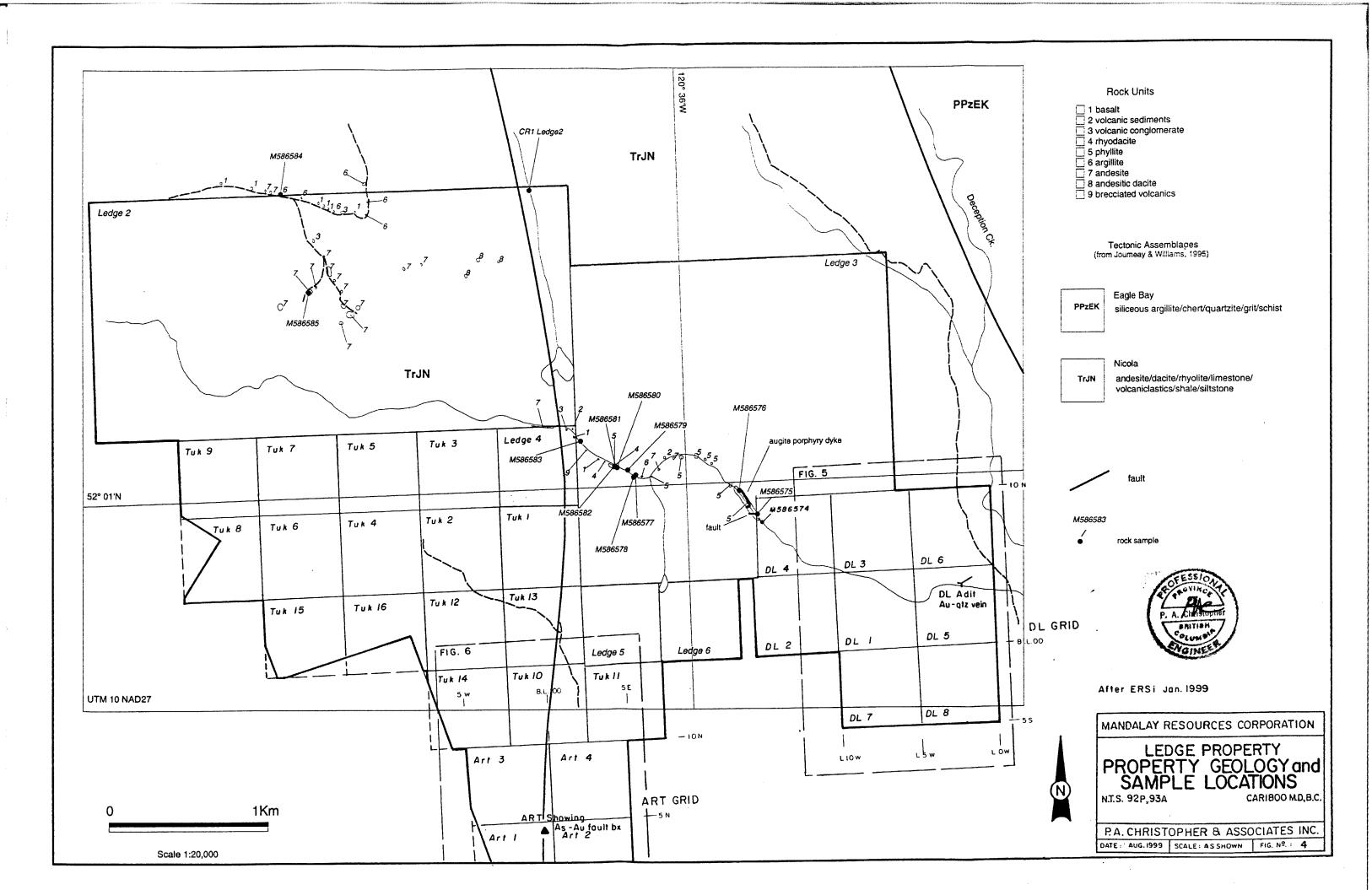
The writer examined the DL grid area on September 30, 1999 and collected 2 rock samples to check previously reported sample results (Tables 2). The writer's samples were personally submitted to Acme Analytical Laboratories in Vancouver of 30 element ICP and fire assay gold analyses.

REGIONAL <u>GEOLOGY</u> (FIGURE 3)

The Ledge Property is situated near the eastern edge of the Quesnel Trough, a fault bounded division of the Intermontane Tectonic Belt which extends from Canim Lake northwest to the town of Quesnel. The Quesnel Trough is a linear, fault bounded belt of early Mesozoic volcanic and sedimentary rocks intruded by Triassic to Cretaceous granitic rocks which lie along the western margin of the Omineca Crystalline Belt. It is bounded on the west by Paleozoic rocks of the Cache Creek Group and on the east by older Paleozoic Slide Mountain Group and Redfern Complex and Pre-Cambrian Snowshoe Formation strata (Saleken and Simpson, 1984). The regional geology of the Ledge Property is shown on Figure 3 (after ERSi, 1998).

The oldest rocks in the vicinity of the Ledge Property are quartz-mica schist, micaceous quartzite and quartzfeldspar gneiss of the Lower Cambrian Snowshoe Formation (Cariboo Group; Struik, 1988). The Snowshoe Formation outcrops east of the property and forms many of the high mountain peaks in the area.

Permian-Mississippian rocks of the Redfern Complex, consisting of amphibolite, gabbro, norite, serpentine, pyroxenite and peridotite, outcrop east of the Ledge Property. The Redfern Complex has been correlated to the Crooked Amphibolite Unit of Bloodgood (1990) and is interpreted to represent the imbricated boundary between Quesnellia and Cariboo or Kootenay-Barkerville terranes.


The basil unit of the Quesnel Trough is composed mainly of black argillite and represent a back-arc basinal facies of the Quesnel River Group. The argillites may be metamorphosed to slaty or phyllitic rocks. The phyllitic rocks which outcrop in the eastern part of the Ledge Property are part of the basil unit of the Quesnel Trough. A succession of augite porphyry breccias and flows with minor interbedded argillite (Nicola Group) overlies the basinal facies, and is more typical of the assemblage which underlies the Art claim area on the Ledge Property.

The thick package of Triassic to Jurassic Quesnel River and Nicola Group rocks underlie the Ledge Property and extend to the west where they are intruded by the Takomkane Batholith (Guichon intrusion, Figure 3) and Cretaceous stocks of granodiorite, diorite and quartz monzonite compositions. Basaltic dykes, possible feeders to the Chilkotin Group plateau basalts, represent the youngest intrusive rocks on the Ledge Property.

PROPERTY GEOLOGY (FIGURES 4 & 5A)

Property geology has been mapped by E. Ronyeca. The western part of the Ledge Property is predominantly underlain by pyroclastic augite andesite tuffs and flows that are interbedded with argillite, shale and minor The sequence is cut by various andesitic to limestone. basaltic composition dikes and a hornblende granodiorite to guartz-diorite stock. The sequence suggests shallow marine deposition with marine depth increasing easterly. Foliations in the western part of the Ledge Property generally vary from 120° to 160° with dips from 50°NE to vertical. Felsic dikes follow weakly developed, 090-110⁰/60-90⁰N, fault structures which sub-parallel fault controlled Ledge Creek. Sub-parallel motherly trending structures are suggested by geophysical survey results and a left-latteral offset of Ledge Creek.

The eastern part of the Ledge Property (DL Grid Area) is mainly underlain by phyllite with a numerous quartz veins up to 2 meters wide observed in the Ledge Creek canyon. The

phyllite has foliations generally varying from about 340° to 20° with dips from 30° E to 85° E.

The Ledge Creek valley and canyon crosses the Ledge Property in a WNW direction with the believed to be fault controlled and offset by northerly trending fault structures.

ALTERATION AND MINERALIZATION

The Ledge Property was established to cover auriferous pyritic quartz veins which cut or parallel foliation in Triassic black phyllites of the Quesnel River or Nicola Group. Work recorded to date reported values as high as 1.5 oz/ton gold, 620 g/ton silver, 5.2% lead and 444 ppm antimony (Durfeld, 1988). These results were obtained from narrow outcropping quartz veins and/or material on the DL adit or trench dumps. A chip sample across one meter from weathered quartz in a surface trench above the DL adit returned 42,906 ppb gold and 34.7 ppm silver (Ridley, 1992).

Quartz veins, typically milky white and sheared, generally formed along foliation in phyllitic wallrock. The veins contain carbonate knots and locally breccia fragments of the wallrock. Weathering of carbonate knots has resulted in vuggy, limonitic texture to veins. Veins vary from hairline fracture fillings to over two meters wide with rare sulphide except in the DL adit area. Rock chip sampling in the DL adit area (Ridley and Dunn, 1993) returned 4.12 gram/ton gold across 2 meters and 4.57 gram/ton gold across 1.6 meters, but trenching revealed a post-mineral northerly trending fault zone which cut off the mineralization within 5 meters of the DL adit. From 100-175m west of the DL adit, quartz veinlets in the phyllitic wallrock along the Ledge Creek canyon are reported by Ridley and Dunn (1993) to contain galena, sphalerite, arsenopyrite and stibnite. A 2 meter chip sample (138704), by the writer, across white quartz at the DL adit contained only 18 ppb gold, but a meter wide chip sample (138703) of weakly pyritic quartz from a surface trench just west of the DL adit contained 1540 ppb gold.

Table 2. Writer's Check Samples DL Grid.

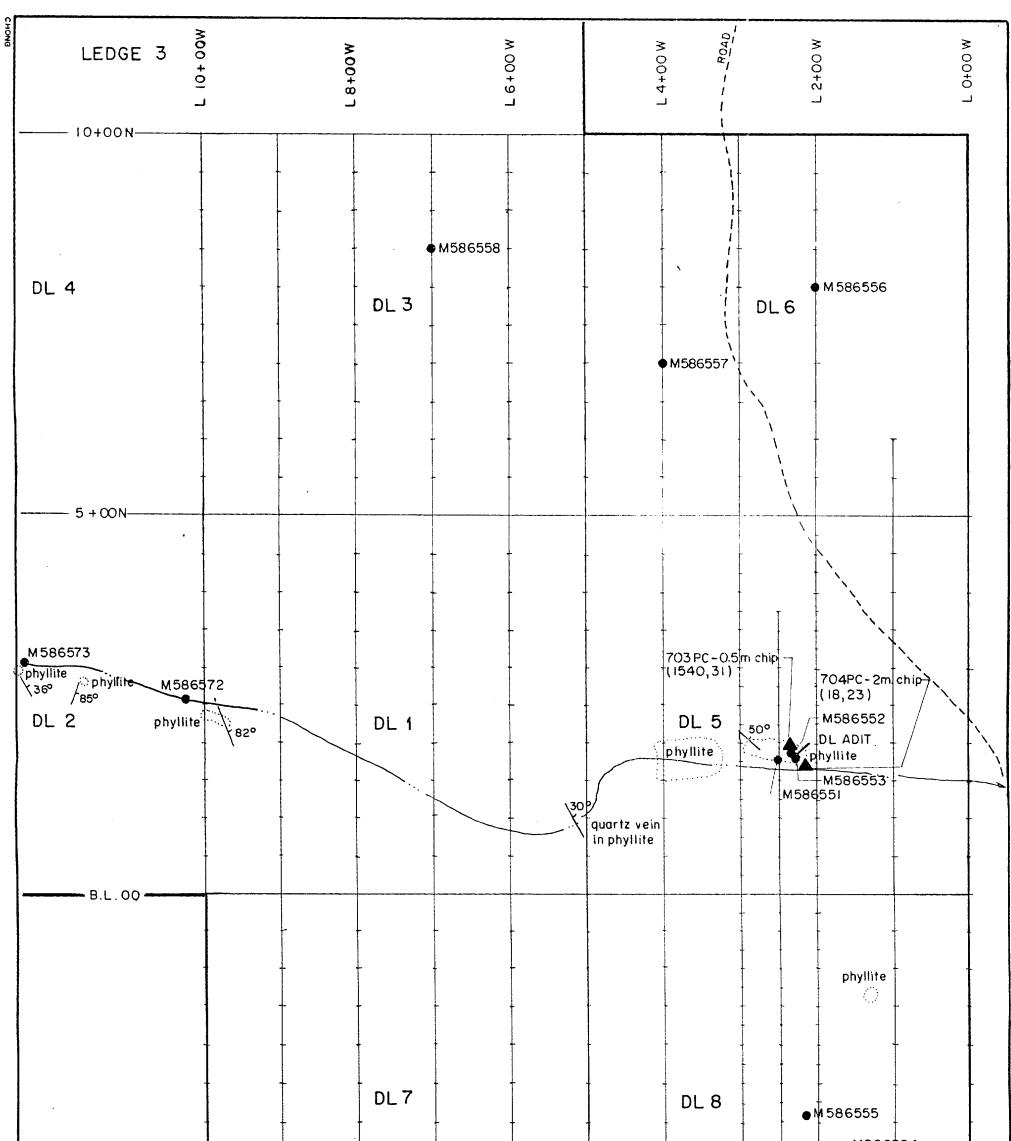
Sample #_	Type	Length	ppm As	ppm Aq	ppb Au	<u>Rock Type</u>
E 138703			31	2.5	1540	Quartz Vein
E 138704			23	<.3	18	Quartz Vein
=========	======		=========	=========	=======	

GEOCHEMICAL SURVEYS (FIGURES 4 & 5a-g)

Grid soil geochemical sampling was conducted over the DL grid areas with samples collected at 25 or 50 meter intervals along lines generally spaced at 100 meter intervals. An intermediate line (2+50W) was run to cross the DL adit area. A mattock was used to collect samples from the "B" horizon at depths of 15 to 40cm. Each sample was placed in a kraft paper envelope, and grid location marked. Samples were dried and shipped to Acme Analytical Laboratories in Vancouver, British Columbia for analysis by 30 element I.C.P. and gold by fire assay start and AA finish. A total of 392 soil samples were collected along 15.5 line-kilometers in the DL grid.

Rock samples were collected to check quartz veins, veined wallrock and background of country rock. Rock samples were also shipped by Mandalay to Acme Analytical Laboratories in Vancouver. Rock sample description and analytical results are present in Appendix A with sample locations shown on Figures 4 and 5a. The writer collected 2 check samples and personally delivered the samples to Acme Analytical Laboratories in Vancouver for 30 element I.C.P. and gold analyses. Two DL grid check samples are located on Figure 5a and results summarized in Table 2. A copy of the certificate of analysis for the writer's samples is presented in Appendix A.

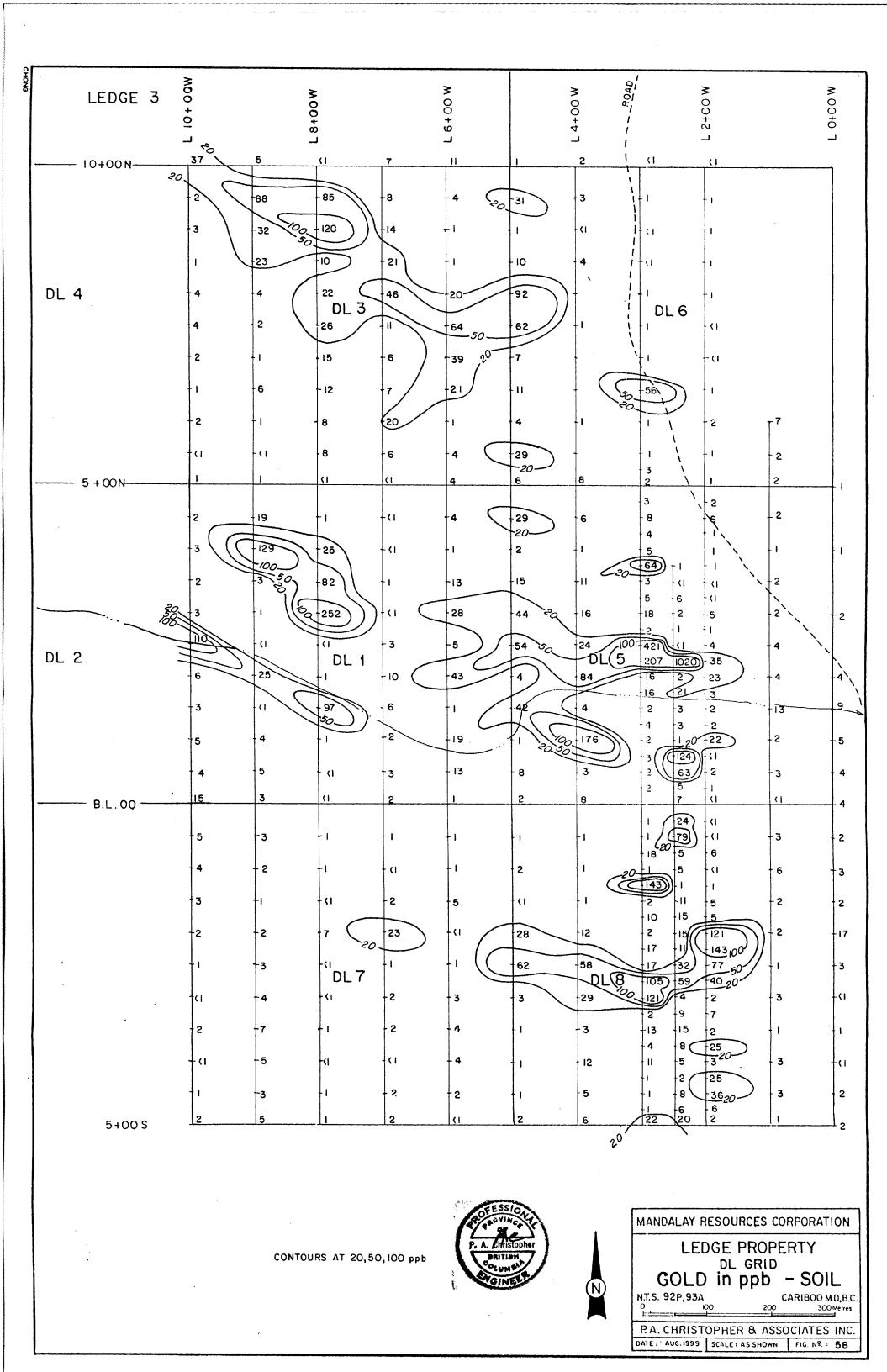
DL Grid-Soil Geochemical Results

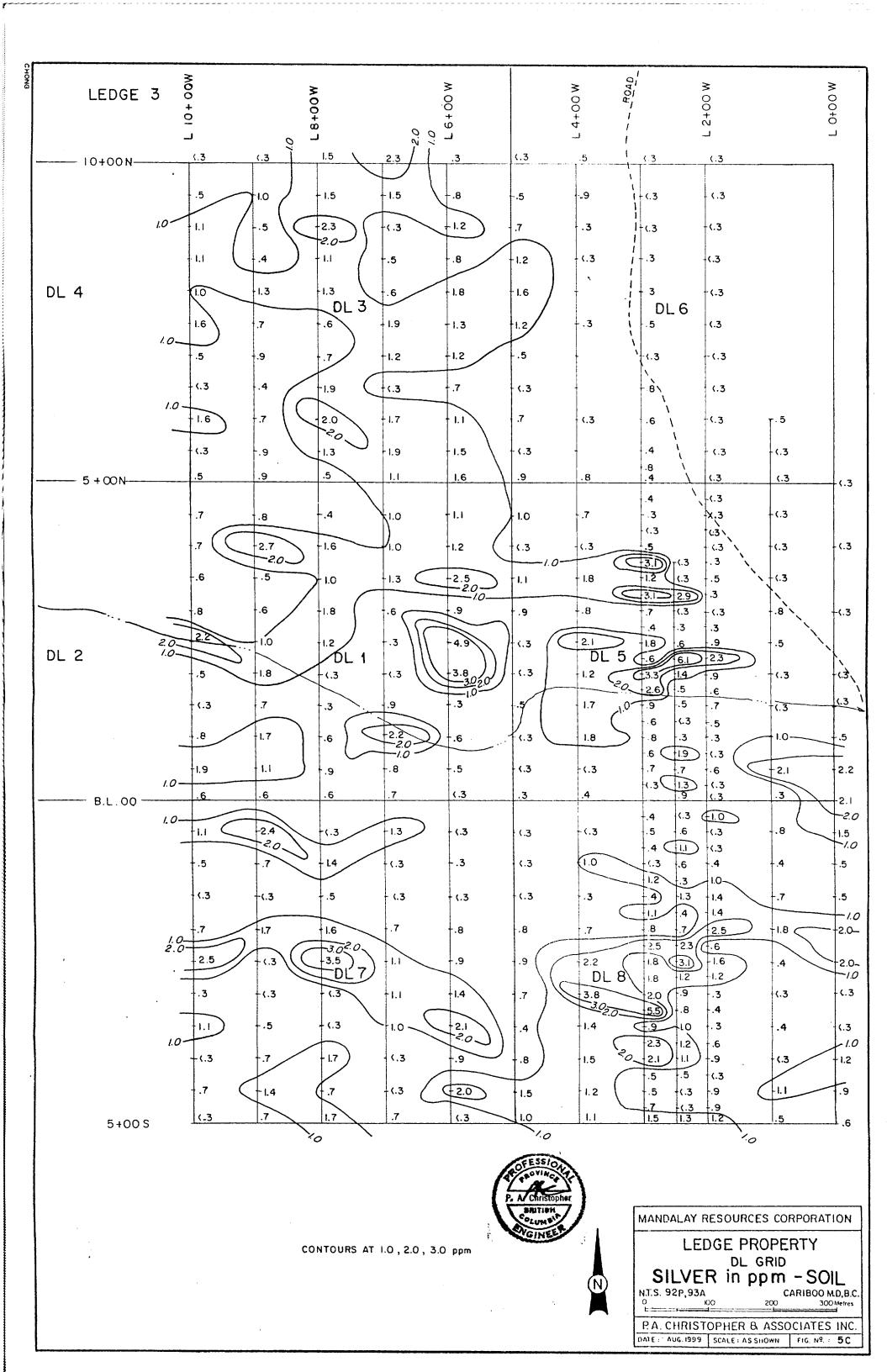

<u>Gold</u>

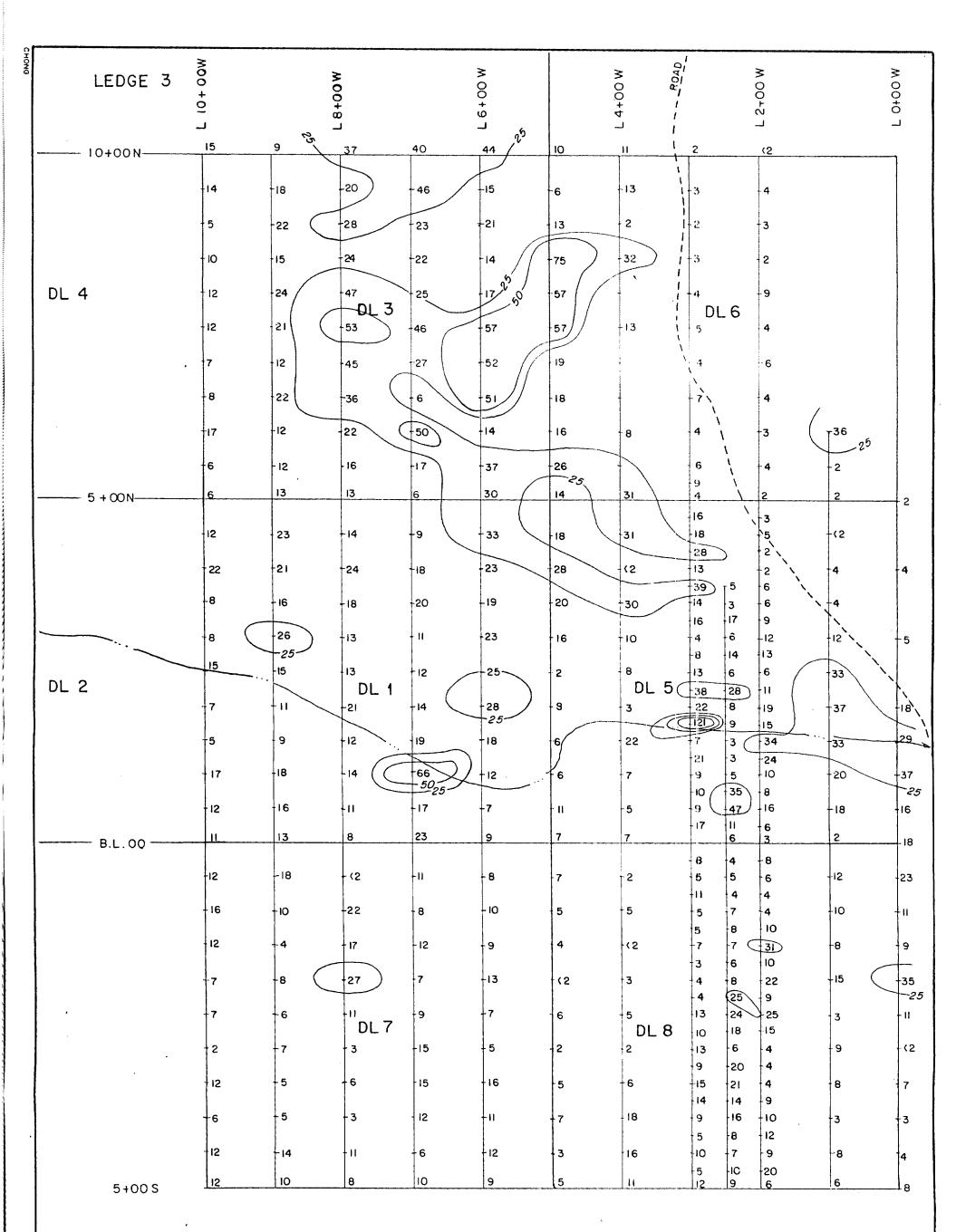
Gold in soil values vary from <1 ppb to 1020ppb at 2+25N L2+50W above the DL adit. Gold results are contoured at 20, 50 and 100ppb levels on Figure 5B which shows a zone of anomalous values along structurally controlled Ledge Creek. A second E-W grouping of highs occurs between lines 2W and 5W and extend from 2S to 3S. A WNW trending group occurs in the northwest corner of the grid. Extending grid sampling into the Ledge 3 claim area may extend the gold anomaly. The Ledge Creek valley is also the focus of elevated silver values, VLF-EM conductors and a modest magnetic high.

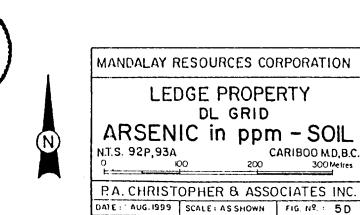
Silver

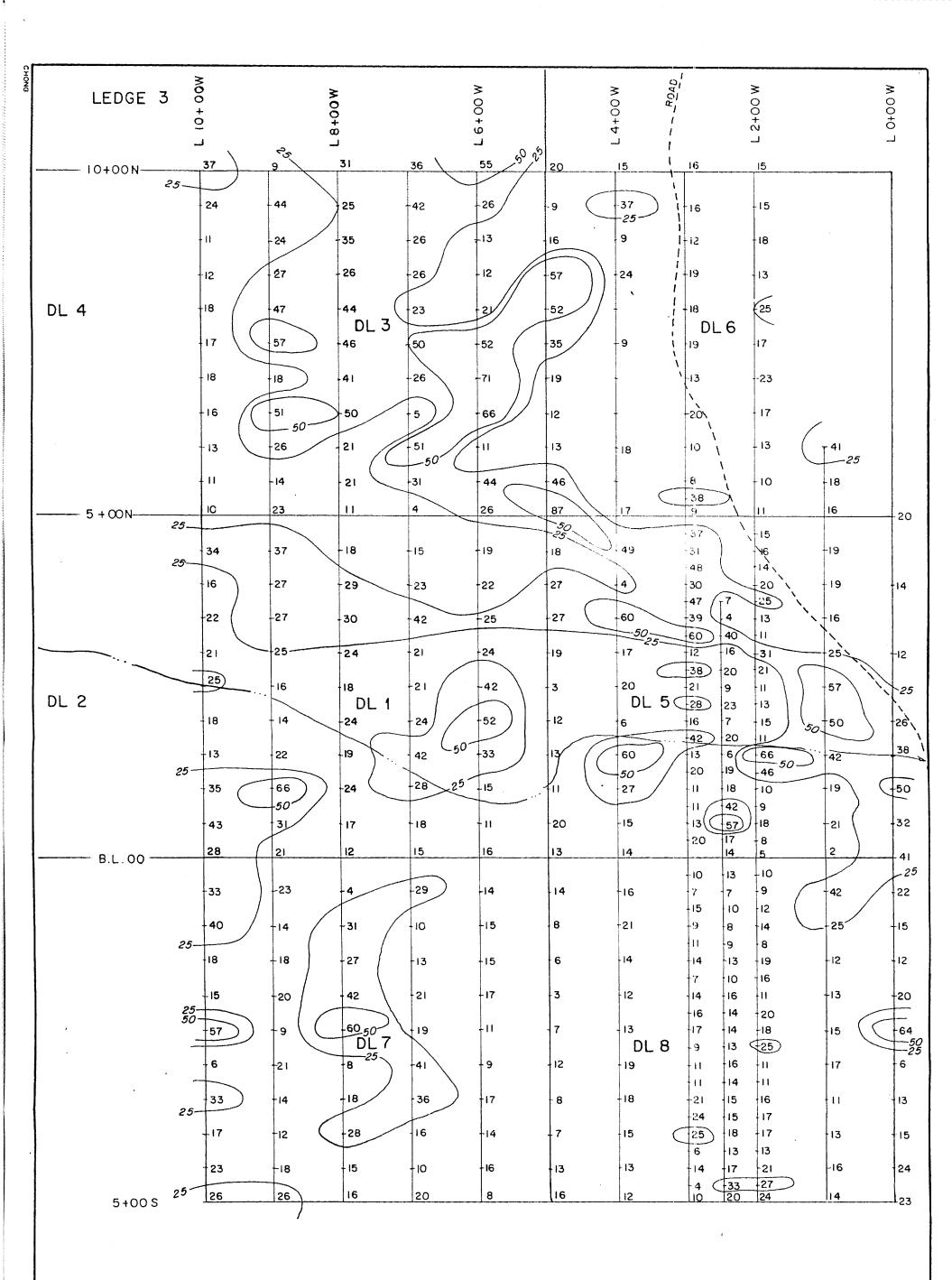
Silver in soil values vary from <.3 to 6.1ppm at 2+25N L2+50W above the DL adit. Silver results are contoured at 1.0, 2.0 and 3.0ppm levels on Figure 5C which shows a zone of anomalous values along structurally controlled Ledge Creek. A second E-W grouping of highs crosses the grid between 2S and 3+25S. Only spot highs

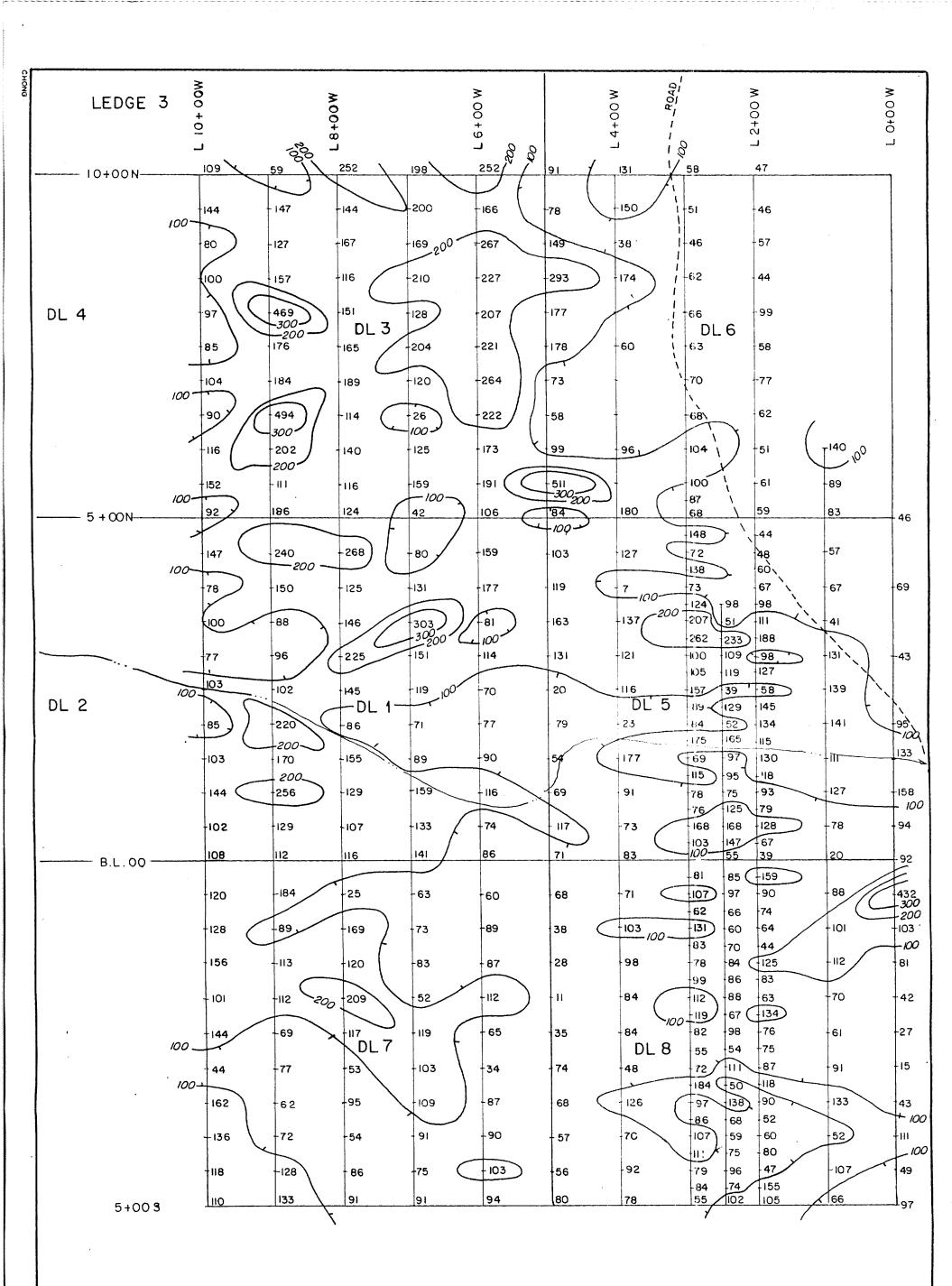


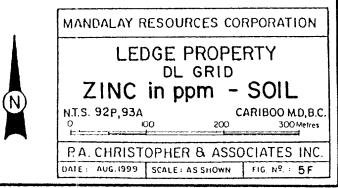



					•	-	●M5865	554	
		-			 		-		
-	-	-	-				 -	-	Ī
-				-			~	-	
						-	-		

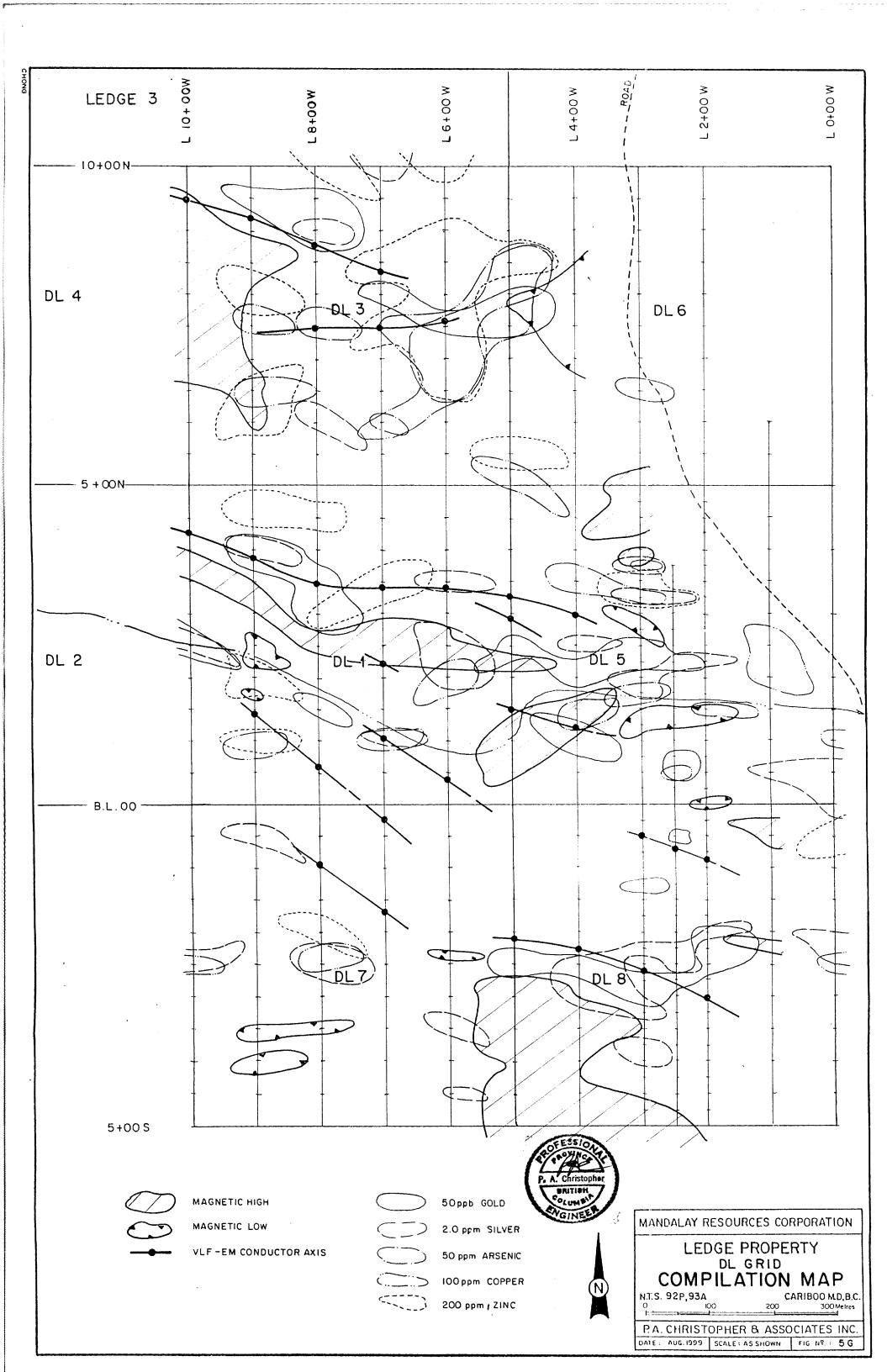

5+00 S




CONTOURS AT 25,50,100 ppm



CONTOURS AT 25,50,100 ppm


MANDALAY RESOURCES CORPORATION LEDGE PROPERTY DL GRID COPPER in ppm - SOIL NI S. 92P,93A CARIBOO MD,B.C. 00 200 300 Metres P.A. CHRISTOPHER & ASSOCIATES INC. DATE: AUG.1999 SCALE: AS SHOWN FIG. Nº: 5 E

CONTOURS AT 100, 200, 300 ppm

occur north of 4+00N. Groups of anomalous silver values follow VLF-EM conductor trends which suggest structural control.

Arsenic

Arsenic in soil values vary from <2 to 121ppm at 1+75N L3+00W near the DL adit. Arsenic results are contoured at 25, 50, and 100ppm levels on Figure 5D which shows spot anomalous values along structurally controlled Ledge Creek. A second WNW grouping of highs crosses the grid From 3N Line 3W to 7+50N Line 8. Anomalous arsenic values follow gold but have a more restricted extent.

Copper and Zinc

Copper and zinc values are plotted and contoured on Figures 5E and 5F, respectively. Copper and Zinc show a few spot highs but are generally not anomalous within the DL grid area.

GEOPHYSICAL SURVEYS (FIGURES 5G, PLATES 1 & 2)

In late August and early September 1998 a combined Total Field Magnetometer/VLF-EM survey was conducted over the gridded portions of the DL claims by Coast Mountain Geological Ltd. (Basil, 1998b). The survey used an EDA Mag/VLF field unit in conjunction with a EDA TFM base station to survey approximately 9.6 kilometers of the DL Grid with readings predominantly at 25 meter intervals, but 12.5 meter intervals were used over high priority zones. The survey results for the DL Grid are summarized on Figure 5g, and on Plates 1 and 2 in attached pocket.

Survey Results-DL Grid

The Total Field Magnetic values from the DL Grid area ranged 168nT, from 55,956nT to 56,124nT (Plate 1). The area showed very low magnetic relief, however distinctly higher reading in the northwestern area, Ledge Creek area and south-central area of the grid. The higher magnetic readings along Ledge Creek terminate at a bend in the canyon that occurs west of the DL adit with the value change and canyon bend suggesting structural complexity.

The VLF-EM survey conducted over the DL grid utilized the VLF transmitting station to the ESE at Cutler, Maine (24.0khz.). A weak conductor extends from 4+00N on line 10+00W to the area of the DL adit, and is coincident with a relative magnetic high lineament. A number of less continuous conductors (Figure 5g, Plate 2) sub-parallel the WNW trend of the fault controlled Ledge Creek canyon, and may represent additional fault structures.

DISCUSSION

The Ledge Property is situated near the southern end of the Cariboo-Quesnel Gold Belt section of the Quesnel Trough (Saleken and Simpson, 1984). The DL prospect is believed to have been discovered in the 1870s with the DL adit and several trenches, of unknown vintage, constructed to explore quartz veins in structural zones that cut Cariboo Group phyllites. The property was re-discovered in the early 1980's with limited prospecting and sampling prior to Mandalay's 1998 work programs (Adamec, 1999a, 1999b, and 1999c). Systematic grid exploration was conducted by Mandalay over gold showings on the Art and DL claim areas with minor geological mapping and prospecting in the remainder of the property.

A total of 392 soil samples were collected along 15.5 line-kilometers in the DL grid. Gold in soil values up to 1020ppb were obtained from an 800 meter anomalous zone of the DL grid which subparallel Ledge Creek, and 58 sample with anomalous gold values over 20ppb were obtained from the DL grid area. Some of the anomalous gold zones have coincident anomalous conditions for copper, arsenic and/or silver.

Figure 5G is a compilation of geophysical and geochemical results from the DL Grid which shows several coincident geophysical and geochemical anomalies. The writer believes that mechanized trenching and diamond drilling should be used to test the mineralized zone at the DL adit and anomalies that extend along Ledge Creek. coincident VLF-EM and geochemical anomalies on the DL3 and DL 8 claims should be trenched before drilling is considered.

CONCLUSIONS AND RECOMMENDATIONS

Grid exploration programs conducted by Mandalay have advanced the Ledge Property to the point were trenching and/or drilling are required to evaluate surface anomalies and test showings at depth.

The writer recommends further success contingent, staged exploration of the Ledge Property with a Stage I program of grid extension, trenching and 500 meters of diamond drilling.

a. PETER A R PhD, P.Eng. PETER CH & ASSOCIATES INC. 1999^{,1} SEPTEMBER 15

- 11 -

BIBLIOGRAPHY

- Adamec, J., 1999a. Report on the Art Property, Cariboo Mining Division, British Columbia. Assessment Report prepared for Mandalay Resources Corporation, dated Jan. 10, 1999.
- Adamec, J., 1999b. Report on the Ledge Property, Cariboo Mining Division, British Columbia. Assessment Report prepared for Mandalay Resources Corporation, dated June 15, 1999.
- Adamec, J., 1999c. Report on the TUK Property, Cariboo Mining Division, British Columbia. Assessment Report prepared for Mandalay Resources Corporation, dated Aug. 8, 1999.
- Basil, C., 1998a. Geophysical report on the Art Property. for Mandalay Resources Corporation, September, 1998.
- Basil, C., 1998b. Geophysical Report on the Ledge Grid DL Claims, September, 1998. for Mandalay Resources Corporation, dated October 27, 1998.
- Bloodgood, M.A., 1990. Geology of the Eureka Peak and Spanish Lake Map Areas, B.C. B.C. Min. Energy Mines & Pet. Res. Paper 1990-3.
- Campbell, K.V., and Campbell, R.B., 1970. Quesnel Lake maparea BC (93A). GSC Paper 70-1, Part A, pp. 32-35.
- Campbell, R.B., 1978. Geology of Quesnel Lake Area, 93A. GSC map Open File 574.
- Campbell, R.B., and Tipper, H.W., 1971. Geology of Bonaparte Lake Map-Area, British Columbia. GSC Memoir 363.
- Campbell, R.B., and Tipper, H.W., 1970. Geology and Mineral Exploration Potential of the Quesnel Trough, British Columbia. CIM Trans., Vol. LXXIII, pp. 174-179.
- Durfeld, R.M., 1988. Geochemical and Geological Report on the Deception Ledge Property.
- Holland, S.S., 1950. Placer Gold Production of British Columbia. B.C. Dept. of Mines Bull. No. 28.
- Ridley, D.W., 1992. Prospecting Report on Deception Ledge Property.

- Ridley, D., 1996. Prospecting Proposal for A Portion of NTS Map Sheets 93A 1, 2, 7 and 92P 15 & 16 in the Southeast Cariboo Region, British Columbia. private report.
- Ridley, D.W. and Dunn, D., 1993. Prospecting Report on Deception Ledge Property, Assessment Rept.
- Saleken, L.W., and Simpson, R.G., 1984. Cariboo-Quesnel Gold Belt: a geological overview. Western Miner, April 1984, pp. 15-20.
- Struik, L.C., 1986. Imbricated Terranes of the Cariboo Gold Belt with Correlations and Implications for Tectonics in Southeastern BC. Canadian Jour. Earth Sci., Vol. 23, No. 8, Pgs. 1047-1061.
- Struik, L.C., 1988. Structural Geology of Cariboo Mining District, East-Central BC. GSC Mem. 421.
- Sutherland Brown, A., 1957. Geology of the Antler Creek Area, Cariboo District, British Columbia. B.C. Dept. of Mines Bulletin No. 38.

CERTIFICATE

I, Peter A. Christopher, with business address at 3707 West 34th Avenue, Vancouver, British Columbia V6N 2K9, do hereby certify that:

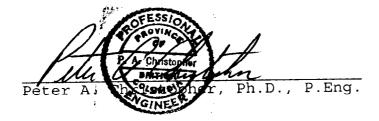
- 1) I am a consulting geological engineer register with the Association of Professional Engineers of British Columbia since 1976.
- 2) I am a Fellow of the Geological Association of Canada and a member of the Society of Economic Geologists.
- 3) I hold a B.Sc. (1966) from the State University of New York at Fredonia, a M.A. (1968) from Dartmouth College and a Ph.D., (1973) from the University of British Columbia.
- 4) I have been practicing my profession as a Geologist for over 30 years.
- 5) I have based this report on previous exploration experience in the area of the Ledge Property, review of government and company reports listed in the bibliography, and on a field examination conducted by me on September 30, 1998.
- 6) I have no direct or indirect interest, nor do I expect to receive any interest directly or indirectly in the properties or securities of Mandalay Resources Corporation.
- 7) I consent to the use of this report by Mandalay Resources Corporation for any assessment work on the DL claims.

Peter A. Eng., Ph.D. Chr September 15,

- 13 -

Peter Christopher & Associates Inc.

GEOLOGICAL & EXPLORATION SERVICES 3707 West 34th Ave., Vancouver, B.C. V6N 2K9


September 15, 1999

Mandalay Resources Corporation 710-750 West Pender Street Vancouver, B.C. V6C 2T7

Dear Sirs

I, Peter A. Christopher, Ph.D., P.Eng., owner and manager of Peter Christopher & Associates Inc., hereby consent to the use of my report dated September 15, 1999, on the DL claims, Cariboo Mining Division, British Columbia for filing assessment work on the DL claims.

Dated at Vancouver, British Columbia, this 15th day of September 1999.

APPENDIX A

CERTIFICATES OF ANALYSIS-MANDALAY SAMPLES MANDALY ROCK SAMPLE DESCRIPTIONS CERTIFICATE OF ANALYSIS-WRITER'S SAMPLES

		")	• •*	`}		}	;=]	· · · · · · · · · · · · · · · · · · ·	;-	7.]	٠	1		7	3" "	3		3	* * * *				····]	?* *	$\left(\right)$	<i>y '</i>]			
11		J	Man	dal	ay	Res	our	ces	Co	rp.	PR	OJE	CT :	LED	GE	PRO	PER	ΤY	FI	LE ‡	‡ 9 <u>9</u>	9010	66		Pa	age	5		4CM	ANALYT	
ACHE ANALYTICAL	Mo	Cu	Pb ppm	Zn ppm	Ag	Ni	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	8i ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	K %		Au* ppb
A 5+00N 3+00E A 5+00N 3+50E A 5+00N 4+00E A 5+00N 4+50E A 5+00N 5+00E	5 1 2 9 2	43 42 20 131 9	14 7 14 23 18	147 74 72 294 45	.8 .4 <.3 1.9 .9	192 66 37 89 10	25 16 13 30 4	260 565 660	5.60 3.73 3.27 8.42 1.88	24 6 2 37 7	<8 <8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	3 2 <2 3 2	22 35 37 30 13	.8 .4 .2 1.7 <.2	ব্য ব্য ব্য 5 ব্য	5 6 5 <3 <3	111 105 79 185 34	.31 .30 .39	.108	6 3	569 2 126 1 74 104 1 14	.32 .88	122 120 201 184 52	.09 .11 .11 .08 .03	<3 <3 6	2.80 1.85 1.73 3.45 1.00	.02	.11 .14 .16 .36 .06	<2 <2 <2 7 <2	1 55 2 39 15
A 4+00N 5+00W A 4+00N 4+50W A 4+00N 4+00W A 4+00N 3+50W A 4+00N 3+00W	3 4 15 12 5	46 54 152 102 55	7 14 17 13 11	93 151 801 416 110	.9 .8 1.8 1.2 1.5	15 33 94 118 48	20 26 36	1802		50 7 132 41 14	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	2 2 2 ~2 ~2 ~3	25 47 123 73 16	.6 .7 3.6 2.4 .5	८३ ८२ ८२ ८३ ८३	3 8 7 7 8	152 166 362 216 144	.46 .76 .77	.082 .141 .169 .210 .235	2 5 6 9	19 1 65 1 84 2 167 1 109 1	.65 .34 .79	139 189 182 496 137	.17 .11 .14 .07 .14	<3 4 3	1.84 2.20 4.70 3.53 1.87	.02 .02 .07 .03 .02	.24 .13 .12 .10 .22	2 <2 10 5 <2	2 19 1 1 25
A 4+00N 2+50W A 4+00N 2+00W A 4+00N 1+50W A 4+00N 1+50W A 4+00N 1+00W A 4+00N 0+50W	22447	38 38 77 45 56	5 15 13 12 21	77 72 103 86 120	1.1 .4 1.4 1.1 1.0	63 94 89 76 51	17 16	460 638	3.43 4.08 3.40 5.90 4.73	14 8 18 14 39	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	3 <2 2 2 5	19 24 44 40 16	.8 .5 1.2 .5 .9	८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८	<3 6 7 9 8	86 88 62 212 114	.49 .82 .49	.053 .108 .062 .152 .082	8 2 19 8 21	154	.74 .82 2.70	175 236 182 419 147	.14 .27 .08 .23 .10	<3 <3 <3	1.61 2.30 2.38 3.89 2.41	.02	.11 .11 .17 .74 .32	<2 <2 <2 4 3	53 1 2 25 104
A 4+00N 0+50E A 4+00N 1+00E A 4+00N 1+50E A 4+00N 2+00E A 4+00N 2+50E	1 3 5 4 3	32 30 27	<3 10 17 17 7	131	.8 <.3 1.4 .5 .8	51 45 47	12 14 13	373 629 296	4.04 3.19 3.67 3.10 2.84	12 17 9 15 8	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	<2 4 5 3	58 19 25 15 21	.8 .7 2.1 1.5 1.0	ব ব ব ব ব ব	<3 <3 <3 <3 <6	88 53 47 44 39	.44 .15	.155 .066 .100 .059 .097	2 21 24 26 19	206 70 42 51 34	1.54 .65 .46 .62 .43	188 170 252 102 124	.29 .08 .05 .06 .06	<3 <3 <3	2.79 1.39 2.32 1.71 1.79	.03 .01 .02 .01 .01	.20 .09 .12 .10 .12	4 <2 <2 3 <2	<1 3 1 2 2
A 4+00N 3+00E A 4+00N 3+50E RE LA 4+00N 3+50E A 4+00N 4+00E A 4+00N 4+50E	25463	79 34 36 72 14	8 20 13 23 14	102 105 213	.5 1.2	36 37 58	13 13 24	378 374 705	5.00 3.12 3.05 5.92 2.45	4 9 10 9 12	<8 <8 <8 <8 <8	~~ ~~ ~~ ~~	4 2 2 2 4		.5 1.1 1.3 .9 .2	<3	4 <3 <3 7 <3	116 57 58 194 40	.26 .27 .37	.107 .041 .043 .193 .072	9 21 19 9 19	89 43 43 135 21	1.48 .51 .51 1.88 .36	132 161 163 167 49	.14 .07 .07 .15 .03	<3 <3 3	2.73 2.01 1.98 3.50 1.27		.15 .13 .12 .42 .06	<2 <2 2 3 2 2 3 2	2 2 <1 54 27
LA 4+00N 5+00E L 10+00W 10+00N L 10+00W 9+00N L 10+00W 8+00N L 10+00W 7+00N	47476	11 18	23 15 14 16 15	80 97	<.3 1.1 1.0	22 32	12 5 6	356 109 133	3.17 3.06 1.96 2.63 2.23	5		<2 <2 <2 <2 <2 <2	7 5 4 3	14 20 18 12 10	.2 .8 .8 .9 .4	<3 <3 <3	4 <3 <3 <3 6	36	.29	.142	23 17 11 16 16	27 42 17 23 24	.49 .85 .18 .25 .28	60 148 80 96 78	.02 .10 .07 .06 .05	<3 <3 <3	1.65 1.83 1.55 1.33 1.45	.01 .01 .01 .01 .01	.07 .26 .06 .06 .06	< < < < < < < < < < < < < < < < <> </td <td>326 37 3 4 2</td>	326 37 3 4 2
L 10+00W 6+00N L 10+00W 5+00N L 10+00W 5+00N L 10+00W 3+00N L 10+00W 3+00N L 10+00W 2+00N	53635	10 16 21	10 15 8	92 78 77	.5 .7 .8	24 28 40	7 3 5 0 11	260 163 289	2.48 1.79 2.67 2.43 2.39	6 22 8	<8 <8 <8	<2 <2 <2 <2 <2 <2	6	10 14 31	.7 .7 .6 .7	<3 <3 <3	<3 6	28 43 40	.09 .14 .37	.109 .179 .180 .069 .069	13 17 17 18 23	30 22 27 33 32	.27 .21 .26 .51 .57	82 87 75 107 101	.06 .05	<3 <3 <3	1.58 1.47 1.16 1.72 1.45	.01 .01 .01 .02 .02	.06 .06 .06 .16 .13	3 <2 <2 <2 <2 <2 <2	2 1 3 6
STANDARD C3/AU-S STANDARD G-2	26 2	64 2			5.9 <.3				3.43 1.92		19 <8			29 72	24.2 <.2					.089	18 8		.63 .61	151 218	.09 .13		1.96 .97	.05 .08	.17 .47	18 2	44 <1

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 4 FA

	, · · ·	·	•••	· ·)		J		3	•••••	}	· · ·]	,]	7	(\cdot)	y = ;	1	; · · ,)		`}	• • • • •	}	,) î	}	,	· ·]		<i>م</i> ۳	
ACHE ANALYTICAL		1	Man	dal	ay	Res	our	ces	Co	rp.	PR	OJE	CT	LED	GE	PRO	PER	ΓY	FI	LE	# 9	901	066		Pa	age	6				2
AMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Сг ррт	Mg %	8a ppm	Ti %	B ppm	Al %	Na %	K %		Au* ppb
10+00W 1+00N 10+00W 1+00S 10+00W 2+00S E L 10+00W 2+00S 10+00W 3+00S	8 5 3 4 3	35 40 13 15 6	11 15 8 6 6	144 128 90 101 44	.8 .5 .7 <.3 .3	77 56 24 24 14	15 13 7 8 5	498 324 342	3.14 2.85 1.90 2.01 1.13	17 16 7 7 2	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	5 6 5 4 <2	46 45 14 14 34	1.7 1.7 .5 .7 .2	3 5 3 4	<3 7 <3 4 <3	47 45 36 38 27	.16	.051 .042 .062 .067 .037	23 20 15 17 9	48 41 27 29 13	.59 .64 .37 .38 .20	201 142 107 113 56	.09 .12 .08 .08 .07	<3 <3	. 69	.02 .02 .01 .01 .03	.20 .21 .10 .11 .04	<2 <2 <2 <2 <2 <2	5 4 2 1 <1
10+00W 4+00S 10+00W 5+00S 9+00W 9+50N 9+00W 8+50N 9+00W 7+50N	5 4 11 11 31	17 26 44 27 57	10 9 20 10 16	136 110 147 157 176	<.3 <.3 1.0 .4 .7	37 44 58 61 69	12 13	283 173	2.35 2.81 3.01 2.92 3.44	6 12 18 15 21	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	2 6 5 4 3	96 49 16 13 13	1.4 .8 1.1 .9 .8	22 <3 5 <3 3	ব্য ব্য ব্য ব্য ব্য	36 47 64 39 41	.58 .20 .11	.048 .073 .073 .068 .072	11 19 20 17 23	28 40 33 28 20	.39 .60 .57 .31 .37	141 147 104 89 70	.08 .10 .07 .05 .02	<3 <3 <3	1.66 1.68 1.62 1.75 1.12	.02 .03 .01 .01 .01	.14 .23 .17 .07 .06	<2 <2 2 <2 <2	<1 2 88 23 2
9+00W 6+50N 9+00W 5+50N 9+00W 4+50N 9+00W 3+50N 9+00W 2+50N	37 4 9 7 3	51 14 37 27 16	27 12 17 5 9	494 111 240 88 102	.4 .9 .8 .5 1.0	93 22 75 51 27	12 6 16 13 8	283 306 180	3.69 2.14 3.80 2.47 3.05	22 12 23 16 15	<8 <8 <8 <8 8	<2 <2 <2 <2 <2 <2	7 2 5 7 5	23 37 19 17 16	4.1 .9 1.3 .4 .9	<3 3 4 3 4 3 4	5 <3 4 7 <3	50 39 62 39 52	.49 .23 .15	.112 .135 .156 .059 .223	25 10 20 22 12	30 24 56 31 36	.33 .24 .77 .45 .33	105 77 127 101 104	.03 .05 .11 .08 .09	<3 3 <3	1.36 1.23 2.68 1.34 1.64	.01 .01 .02 .01 .01	.09 .04 .11 .09 .07	<2 <2 3 <2 <2	6 <1 19 3 <1
9+00W 1+50N 9+00W 0+50N 9+00W 0+50S 9+00W 1+50S 9+00W 2+50S	4 6 7 3 3	22 31 23 18 9	11 11 12 11 5	170 129 184 113 69	.7 1.1 2.4 <.3 <.3	41 55 46 32 23		1035 315 164	2.89 3.48 3.38 2.78 2.11	9 16 18 4 6	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	4 4 5 4	19 38 26 23 42	.8 .8 .9 .6	<3 4 3 <3 7	<3 <3 3 8 <3	65 53 43 44 29	.31 .27 .23	.122 .048 .179 .110 .065	11 16 20 12 12	65 42 31 35 23	.70 .50 .38 .42 .35	93 191 112 117 118	.11 .10 .08 .10 .06	<3 <3 <3	1.85 2.50 1.82 1.89 1.11	.01 .02 .02 .01 .01	.07 .20 .11 .11 .13	<2 <2 <2 <2 <2 <2	<1 5 3 1 3
9+00W 3+50S 9+00W 4+50S 8+00W 10+00N 8+00W 9+50N 8+00W 9+00N	2 3 10 7 10	14 18 31 25 35	11 14 16 <3 4	128 252 144	1.4 1.5 1.5	25 39 53 53 72	9	177 466 264	2.07 2.85 4.85 2.77 3.26	5 14 37 20 28	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	6 5 5 4 5	12 29 30 19 17	.5 1.6 1.0	ও ও ও ও ও ও	<3 <3 8 3 5	38 40 72 36 38	.29 .39 .14	.040 .127 .480 .188 .123	19 19 10 14 16	25 28 47 24 27	.42 .42 .44 .28 .32	79 107 154 107 105	.09 .07 .10 .06 .06	<3 <3 <3	1.36 1.79 2.43 1.33 1.48	.01 .01 .01 .01 .01	.11 .10 .12 .07 .07	<2 <2 4 <2 <2 <2	7 3 <1 85 120
8+00W 8+50N 8+00W 8+00N 8+00W 7+50N 8+00W 7+00N 8+00W 6+50N	-8 13 14 12 22	26 44 46 41 50	4 11 14 11 11	151 165 189	1.3 .6 .7	56 72 86 76 86	14 14 16	209 188 365	2.60 3.90 4.34 3.69 3.68	24 47 53 45 36	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	6 6 7 7	21 14 11 25 28	.6 1.1	3 उ उ उ उ	<3 <3 5 4 <3	32 33 35 33 32	.08 .05 .18	.111 .104 .145 .156 .077	18 23 22 23 24	21 24 26 25 21	.23 .27 .29 .29 .29	95 123 108 121 134	.04 .03 .04 .04 .02	<3 <3 <3	1.29 1.63 1.55 1.48 1.45	.01 .01 .01 .01 .01	.07 .08 .07 .08 .06	<2 <2 <2 <2 <2 <2	10 22 26 15 12
8+00W 6+00N 8+00W 5+50N 8+00W 5+50N 8+00W 5+00N 8+00W 4+50N 8+00W 4+00N	6 6 4 5 6	21 21 11 18 29	6 6 7 11 8	116 124 268	1.3 .5 .4	47 43 27 55 46	11 6 12	256 128 164	3.19 2.83 2.20 2.56 2.99	16 13 14	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	4 5	25 20 9 9 22	.5 .8 1.2	<3 <3 <3 <3 5	6 5 3 6 3	40 36 41 34 52	.18 .07 .09	. 199 . 140 . 134 . 084 . 158	17 19 11 13 17	30 27 23 31 32	.32 .28 .21 .37 .45	104 108 65 108 110	.07 .06 .06 .07 .07	<उ <उ <उ	1.88 1.68 1.41 2.38 1.81	.01 .01 .01 .01 .01	.09 .07 .05 .06 .12	2 <2 2 2 2	8 <1 1 25
TANDARD C3/AU-S	28 2	65 4	37 <3		5.7 <.3	37 7			3.33		18 <8	4 <2	21		24.3 <.2	18 3	26 <3	80 40		.091 .092	19 6	164 72	.65 .61	154 222	.09 .13		1.98 .94	.04 .07	.17 .46	17 3	52 <1

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data FA

A (1)		-1		1	المنت المائي مرام الرام الراب ال)		, , , ,)	· · ·)		· ·)		~)		1	•••	3	1. 1.	1	ŗ., ,			,		, . ,	~)	 		
ACHE ANALYTICAL		1	Man	dal	ay	Res	our	ces (orp	. PR	OJE	СТ	LED	GE	PRO	PER	ΓY	FI	LE :	# 9	901	066		Pa	age	7			E ANALYT	
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm		e As % ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	K X	W ppm	Au* ppb
L8+00W 3+50N L8+00W 3+00N L8+00W 2+50N L8+00W 2+00N L8+00W 1+50N	6 4 3 4 4	30 24 18 24 19	15 18 13 10 17	146 225 145 86 155	1.0 1.8 1.2 <.3 .3	67 57 37 58 42	14 16 9 13 9	522 3.2 336 4.0 236 2.9 320 3.7 180 3.7	0 13 9 13 8 21	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	5 4 3 3 4	14 21 49 20 21	.9 .8 .5 .5 .4	ব্য ব্য ব্য ব্য	ব্য ব্য ব্য ব্য ব্য	47 79 61 71 77	.19 .37 .20	.165 .211 .341 .053 .402	17 11 10 12 11	36 81 62 115 72	.68 .75 .50 1.00 .52	95 123 119 99 96	.07 .11 .09 .11 .10	-	2.61	.01 .01 .01 .02 .01	.07 .08 .07 .06 .06	<2 <2 5 <2 <2	82 252 <1 1 97
L8+00W 1+00N L8+00W 0+50N L8+00W 0+00N L8+00W 0+50S L8+00W 1+00S	4 2 2 1 7	24 17 12 4 31	16 3 <3 21	129 107 116 25 169	.6 .9 .6 <.3 1.4	41 38 32 3 60	9 12 9 2 16	207 3.2 416 2.9 226 2.9 71 .0 360 4.0	5 11 1 8 2 <2	<8 <8	<2 <2 <2 <2 <2 <2	3 3 2 4	14 18 14 10 21	.5 .7 .6 <.2 .9	ব্য ব্য ব্য ব্য	3 3 3 3 5	78 56 57 19 53	.18 .16 .08	.064 .334 .199 .013 .104	14 10 13 25	72 76 84 7 43	.65 .57 .47 .02 .64	64 129 55 34 124	.12 .08 .08 .04 .10	3 ' <3 ' <3	1.57 1.55 1.42 .19 1.90	.01 .01 .01 .01 .01	.05 .06 .04 .01 .13	2 3 3 <2 3	1 <1 <1 1 1
L8+00W 1+50S L8+00W 2+00S L8+00W 2+50S L8+00W 3+00S L8+00W 3+50S	4 7 4 1 2	27 42 60 8 18	15 17 12 11 12	120 209 117 53 95	.5 1.6 3.5 <.3 <.3	48 86 49 13 37	13 21 10 4 11	391 3.3 505 5.3 771 2.3 90 1.0 175 2.4	8 27 7 11 4 3	<8 <8 <8	<2 <2 <2 <2 <2 <2	4 5 2 2 5	30 40 164 10 14	.8 1.6 2.7 .2 .5	3 3 3 3 3 3 3 3	ব্য ব্য ব্য ব্য ব্য	54 66 41 32 46	.37 2.18 .11	.051 .095 .098 .057 .055	25 20 28 13 16	40 62 37 18 33	.51 .72 .41 .18 .48	171 256 225 56 84	.11 .13 .06 .06 .11	4 : 4 : <3	2.45 3.33 2.41 .82 1.67	.02 .02 .02 .01 .01	.16 .24 .20 .05 .10	5 3 2 <2 <2 <2	<1 7 <1 <1 1
L8+00W 4+00S L8+00W 4+50S L8+00W 5+00S L7+00W 10+00N L7+00W 9+50N	3 3 2 11 14	28 15 16 36 42	12 13 9 9 16	54 86 91 198 200	1.7 .7 1.7 2.3 1.5	16 41 40 84 84	16 7 9 15 13	892 1.9 173 2.1 137 2.1 249 4.9 355 5.1	i0 11 i9 8 i5 40	<8 <8 <8	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	<2 4 4 7 4	30 21 23 18 20	1.6 .4 .3 1.4 1.6	८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८	ব্য ব্য ব্য ব্য	31 46 35 51 42	.23 .33 .14	.048 .048 .075 .227 .212	20 18 15 18 11	17 31 31 45 23	.15 .46 .38 .41 .17	75 119 77 145 81	.06 .10 .07 .08 .04	<3 <3 3	1.36 1.57 1.76 2.79 1.40	.02 .01 .01 .01 .01	.05 .07 .08 .10 .05	<2 2 2 2 2 2 2 2	<1 1 7 8
L7+00W 9+00N L7+00W 8+50N L7+00W 8+00N RE L7+00W 8+00N L7+00W 7+50N	9 11 11 12 15	26 26 23 22 50	16 14 10 13 18	210 125 128	<.3 .5 .6 <.3 1.9	59 77 48 47 88	11 13 10 10 15	450 3. 223 3. 660 3. 676 3. 380 4.	6 22 2 23 5 25	<8 <8 <8	<2 <2	4 6 4 6	29 21 30 30 28		ব্য ব্য ব্য ব্য ব্য	<3 <3 <3 6 <3	39 40 36 37 35	.14 .18 .19	.221 .215 .155 .157 .157 .152	18 19 15 16 19	30 26 21 21 23	.29 .23 .18 .18 .23	122 150 171 176 137	.05 .06 .04 .04 .03	<3 <3 <3	1.36 1.99 1.11 1.14 1.40	.01 .01 .01 .01 .01	.09 .07 .06 .07 .07	<2 <2 <2 <2 <2 <2 <2 <2	14 21 46 34 11
L7+00W 7+00N L7+00W 6+50N L7+00W 6+00N L7+00W 5+50N L7+00W 5+50N	-8 3 13 8 1	26 5 51 31 4	12 7 10 12 7	26 125	1.2 <.3 1.7 1.9 1.1	43 7 81 61 5	7 2 18 15 2	206 3. 35 . 251 4. 287 3. 142 1.	70 6 26 50 19 17	5 <8) <8 / <8	<2 <2 <2	5 4 8 9 2		.8	८३ ८३ ८३ ८३ ३	८३ २३ २३ २३ २३	34 14 34 33 28	.18 .07 .11	.241 .019 .062 .102 .058	20 24 28 22 9	22 6 33 30 9	.21 .02 .39 .33 .05	87 45 104 109 71	.05 .01 .05 .04 .04	<3 <3	1.26 .28 1.53 1.68 .55	.01 .01 .01 .01 .01	.05 .02 .08 .08 .03	<2 <2 <2 <2 <2 <2 <2	6 7 20 6 <1
L7+00W 4+50N L7+00W 4+00N L7+00W 3+50N L7+00W 3+00N L7+00W 3+00N	4 9 10 6 3	15 23 42 21 21	10 12 22 17 8	131 303 151	1.0 1.0 1.3 .6 .3	22 26 89 62 48	15		50 18 50 20 75 11	8 <8) <8 <8	<2 <2 <2	3 4 5 5		6.1 .5	ব্য ব্য ব্য ব্য ব্য	<3 6 <3 <3 <3	35 41 49 54 41	.11 .84 .15	.096 .168 .091 .226 .115	9 12 19 18 18	19 21 44 76 45	.20 .18 .54 .64 .46	56 52 206 105 110	.04 .09 .07 .08 .07	<3	.76 .89 2.27 2.74 1.99	.01 .01 .02 .01 .01	.04 .05 .25 .05 .07	<2 <2 <2 <2 <2 <2 <2 <2	<1 <1 1 <1 3
STANDARD C3/AU-S Standard G-2	28 1		37 <3		6.2 <.3	39 8	13 4	837 3. 545 2.		5 17 2 <8		22 3		25.4 <.2	17 <3	28 <3	84 40		.095 .096	19 7	169 73	.65 .62	161 230	.10 .13	23 <3	2.00	.05 .08	.18 .48	21 3	44 <1

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data _____FA _

"] A)		·]	,)	• • •]	.)		7				r ·	1	, . .	7	.	. J	ب ر	})	····)				• • • •	j te		, ^U ,
			Man	dal	ay :	Res	our	ces	Co	rp.	PR	OJE	СТ	LED	GE	PRO	PER	ΓY	FI	LE	# 9	901	066		P	age	8			E ANALYT	
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	8a ppm	Ti %	8 ppm	Al %	Na %	K %		Au* ppb
L 7+00W 2+00N L 7+00W 1+50N L 7+00W 1+00N L 7+00W 0+50N L 7+00W 0+00N	2 4 9 5 4	24 42 28 18 15	8 10 17 12 12	71 89 159 133 141	<.3 .9 2.2 .8 .7	38 35 46 41 41	9 13 12 13 13	161 651 602 926 594	8.69 6.29	14 19 66 17 23	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	8 3 4 6	13 38 109 83 58	.2 .5 1.0 <.2 .4	<3 4 12 <3 6	ব্য ব্য ব্য ব্য	144		.051	20 11 12 11 14	32 83 64 63 71	.39 .99 .56 .73 .87	69 109 203 136 111	.08 .17 .08 .09 .11	<3 <3 <3	1.26 2.07 2.44 2.18 1.96		.09 .13 .19 .19 .19	<2 2 4 <2 2	10 6 2 3 2
L 7+00W 0+50S L 7+00W 1+00S L 7+00W 1+50S L 7+00W 2+00S L 7+00W 2+50S	2 2 3 1 2	29 10 13 21 19	10 8 10 6 9	63 73 83 52 119	1.3 <.3 <.3 .7 1.1	38 19 24 21 28	5	131 188	2.15	11 8 12 7 9	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	2 6 5 <2 4	25 8 16 28 51	.4 .5 .4 .3 1.2	<3 <3 5 3 <3	ব্য ব্য ব্য ব্য ব্য	45 38 47 50 39	.09 .14 .35	.037 .038 .026 .057 .044	22 16 21 6 11	50 29 39 23 28	.33 .26 .32 .43 .37	107 57 61 91 107	.07 .08 .07 .08 .08	<3 <3 <3	2.26 1.40 1.18 1.53 1.51	.02 .01 .01 .03 .02	.09 .07 .04 .16 .13	<2 2 2 2 2 2 2 2 2 2 2 2	1 <1 2 23 1
L 7+00W 3+00S L 7+00W 3+50S L 7+00W 4+00S L 7+00W 4+50S RE L 7+00W 4+50S	5 4 2 1	41 36 16 9 10	13 11 6 10 9	103 109 91 75 75	1.1 1.0 <.3 <.3 <.3	53 49 29 18 19	15 9 8 6 6	237 235	4.01 2.62 2.61 1.59 1.62	15 15 12 5 6	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	2 3 5 4 4	110 34 14 9 9	1.7 1.5 .5 .2 .4	<3 8 3 <3 3	3 <3 <3 3 <3		.10		20 15 23 17 18	52 43 37 26 26	.54 .49 .45 .33 .33	233 183 98 78 78	.05 .08 .09 .08 .08	<3 <3 <3	2.30 2.70 1.52 1.09 1.10	.03 .02 .01 .01 .01	.22 .19 .09 .07 .06	<2 3 2 <2 2 2	2 2 <1 1 2
L 7+00W 5+00S L 6+00W 10+00N L 6+00W 9+50N L 6+00W 9+00N L 6+00W 8+50N	2 11 8 6 7	20 55 26 13 12	13 10 15 21 21	166 267	.7 .3 .8 1.2 .8	33 76 52 25 24	12 10 9	1108 261 475 358 324	2.86 2.41 3.57	10 44 15 21 14	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	3 6 4 3	26 25 14 17 18	3.2	4 10 5 4 <3	6 3 3 3 3	45 46 30 45 41	.22 .09 .21	.065 .140 .131 .356 .301	14 18 14 11 11	31 33 17 20 18	.38 .43 .19 .15 .13	132 138 94 122 115	.08 .08 .04 .05 .04	<3 <3 <3	2.19 1.55 1.01 2.15 1.89	.03 .01 .01 .01 .01	.12 .15 .07 .08 .06	<2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 11 4 1 1
L 6+00W 8+00N L 6+00W 7+50N L 6+00W 7+00N L 6+00W 6+50N L 6+00W 6+00N	6 17 26 14 3	21 52 71 66 11	18 10 12 18 10	221 264 222	1.3		9 14 14 15 8	301 299 300	2.48 4.05 3.77 3.91 2.66	17 57 52 51 14	<8 <8 <8 <8 <8	~~ ~~ ~~ ~~	5 5 7 8 5	30		3 9 3 6 3	उ उ उ उ उ उ	39 41 30 41 37	.26 .14 .16	.097 .150 .132 .126 .202	13 16 18 25 11	25 31 24 38 24	.13 .29 .21 .41 .16	161 119 182 123 95	.05 .05 .03 .07 .07	<3 <3 <3	2.13 1.65 1.44 1.50 2.44	.01 .01 .01 .01 .01	.06 .09 .08 .12 .07	<2 3 <2 <2 <2	20 64 39 21 1
L 6+00W 5+50N L 6+00W 5+00N L 6+00W 4+50N L 6+00W 4+00N L 6+00W 3+50N	-7 4 5 4 2	44 26 19 22 25	19 15 12 16 11	106 159 177	1.2	75 34 36 49 25	9 10 10	350 290	3.28	37 30 33 23 19	<8 8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	6 10 5 7 5	15 15	1.7 .6 1.2 .5 .7	6 6 3 <3 6	3 3 5 3 8	32 31 37 48 25	.17 .13 .16	.047 .176 .137 .159 .052	26 29 21 24 24	64 28 24 43 17	.42 .31 .24 .47 .19	129 73 110 148 87	.05 .04 .03 .06 .03	<3 <3	1.53 1.44 1.18 1.87 .88	.02 .01 .01 .01 .01	.12 .09 .09 .09 .06	2 2 2 2 2 2 2 2 2 2 2	4 4 1 13
L 6+00W 3+00N L 6+00W 2+50N L 6+00W 2+00N L 6+00W 1+50N L 6+00W 1+00N	3 5 5 4 3	24 42 52 33 15	12 24 23 15 9	70 77 90	3.8 .3	39 47 43 58 24	12 14	141 280 332	3.03 4.71 4.73 4.31 3.10	23 25 28 18 12	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2		42 33 22	1.0	4 13 9 <3 7	<3 <3 <3 <3 4	36 77 114 112 56	.44 .40 .19	.164 .098 .094 .101 .115	27 17 16 14 18	28 97 92 124 42	.30 .41 .79 1.14 .31	94 112 116 105 125	.04 .17 .18 .16 .09	3 <3 <3	1.57 5.12 4.74 2.08 2.29	.01 .02 .02 .02 .01	.07 .11 .28 .09 .06	<2 3 3 <2 2	28 5 43 1 19
STANDARD C3/AU-S STANDARD G-2	24 1	67 4		173 43	5.9 <.3	38 8			3.22 1.99	60 6	25 <8	<2 <2			23.8 <.2	20 4	25 3	82 42		.090 .097	18 7	169 79		147 222			1.99 .97	.04 .07	.18 .46	20 3	55 <1

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data ____ FA

ACHE ANALYTITA.

Mandalay Resources Corp. PROJECT LEDGE PROPERTY FILE # 9901066 Page 9

ACHE ANALYTICA

ACHE ANALYTICA.																													~		A *
MPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U		Th	Sr	Cd	Sb	Bi	V	Ca %	Р %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	K %		Au* ppb
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	*	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	<u>/•</u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ppiii	ppin		PP"							FF
(1	5	3	13	.6	5	1	42	.46	<2	<8	<2	3	12	.2	<3	3	17	.09	.011	15	9	.04	49	.04	<3	. 19	.01	.02	<2	1
6+00W 1+00N (A) 6+00W 0+50N	1	11	4	74	.5	24	6		.60	7	<8	<2	3	25	.4	<3	<3	36		.050	15	42	.39	82	.07	<3	.80	.01	.07	<2	13
6+00W 0+00S	3	16	5	86	<.3	31	6	118	5.05	9	<8	<2	4	16	.5	<3	<3	50		.044	15	39	.32	88	.09		2.09	.01	.05	<2 <2	1
6+00W 0+50S	ž	14	5	60	<.3	23	5	180	1,77	8	<8	<2	4	15	.6	<3	<3	36		.037	21	29	.30	68	.08		.92 1.31	.01 .01	.05 .07	<2	1
6+00W 1+00S	2	15	6	89	.3	34	8	149	2.41	10	<8	<2	5	18	.5	<3	<3	41	.22	.057	18	41	.36	89	.08	د>	1.31	.01	.07	~2	
					-		_			~	.0		7	*0	4	<3	<3	39	21	.053	19	38	.35	88	.08	<3	1.26	.01	.05	<2	5
6+00W 1+50S	2	15	4	87	<.3	32		145		9	<8 10	<2 <2	35	19 15	.6 .7	4	<3	44		.084	12	37	.40	78	.08		1.23	.01	.08	<2	<1
6+00W 2+00S	2	17	<3	112	.8	30	9	231 1 101		13 7	<8	<2	3	16	.8	2	4	42		.065	16	20	.15	110	.07		1.27	.01	.04	<2	1
6+00W 2+50S	2	11	12	65	.9	11 10	3	196		5	<8	<2	5	8	<.2	3	7	26		.035	18	16	.15	51	.06	<3	.57	.01	.04	<2	3
6+00W 3+00S	23	9	5 12	34 87	1.4	25	6	172		16	<8	<2	6	9	.2	3	<3	56	.10	.139	20	36	.35	96	.11	<3	1.57	.01	.07	<2	4
6+00W 3+50S	د	17	12	07	2.1	23	Ŭ					-														_				•	_
6+00W 4+00S	2	14	9	90	.5	22	5	139	2.33	10	<8	<2	4	15	.7	4	<3	44		.074	21	29	.32	81	.08	-	1.08	.01	.07	<2 <2	2
E L 6+00W 4+00S	2	13	7	87	.9	20	5	132		11	<8	<2	5	14	.7	5	<3	42	. 19		22	27	.31	76 110	.08		1.04	.01 .01	.06 .06	<2	2
6+00W 4+50S	3	16	12	103	2.0	28	7	165		12	<8	<2	7	10	.3	<3	5	50		.207	19 15	34 22	.38 .24	78	.09	_	1.06	.01	.06	<2	<1
6+00W 5+00S	1	8	8	94	<.3	15	-	167		9	<8	<2	4	9 12	.3 .8	3	<3 <3	36 47	.10	-	11	30	.76	69	.10	-	1.53	.01	.05	<2	1
5+00W 10+00N	3	20	<3	91	<.3	57	12	177	2.88	10	<8	<2	3	12	.0	3	0	41	. 14	. 107		50					1000	•••	• • •		
5 000 0.500		9	11	78	.5	11	٦	116	1.32	6	<8	<2	2	21	.9	<3	<3	31	.14	.138	6	14	.12	59	.07	<3	.68	.01	.03	<2	31
5+00W 9+50N	23	16	4	149	.7	37	10	209		13	<8	<2	3	14	1.0	4	<3	70	. 13		7	40	.51	85	.12		2.43	.01	.07	<2	1
5+00W 9+00N 5+00W 8+50N	10	57	12	293	1.2	135	11	180		75	<8	<2	6	35	2.4	3	<3	32		.124	18	27	.23	119	.06		1.38	.01	.06	<2	10
5+00W 8+00N	13	52	17		1.6	93	13	225	4.47	57	<8	<2	6	44	1.3	4	<3	47	.38		14	32	.38	98	.06		1.58	.01 .01	.08	<2 2	92 62
5+00W 7+50N	5	35	7	178	1.2	88	10	164	2.74	57	<8	<2	4	20	1.6	4	<3	46	. 15	. 197	12	30	.39	118	.07	~ >	1.47	.01	.07	۲.	02
	1				~	77	,	E 2 /	1 40	19	<8	<2	2	9	1.1	3	3	25	.06	.056	11	9	.05	80	.04	<3	.29	.01	.03	<2	7
5+00W 7+00N	7	19	6 5	73 58	.5 ×.3	27 22	4	564 05	1.66	18	<8	<2	ž	7	.4	<3	<3	36	.03		14	12	.04	50	.03	<3	.44	.01	.02	<2	11
5+00W 6+50N	93	12 13	9	99		27	8	193		16	<8	<2	3	8	.7	<3	<3	46	.07	. 191	10	24	.24	72	.08		2.06	.01	.03	<2	4
5+00W 6+00N 5+00W 5+50N	33	46	60	511	<.3	43	9	243		26	<8	<2	4	9	2.3	8	<3	63	.06		14	22	.10	43	.04		1.19	.01	.03	<2	29
5+00W 5+00N	<1	87	<3	84	.9	57	13	515		14	17	<2	2	88	1.1	<3	<3	20	1.14	. 140	13	26	.55	61	.02	<5	1.20	.02	.07	<2	6
5 000 5 000													7	74	4.0	6	3	43	.37	.038	12	26	. 18	98	.06	<3	1.08	.01	.06	<2	29
5+00W 4+50N	-3	18	11		1.0	26	11	532		18 28	<8 <8	<2 <2	3	36 27	1.0	5	3	43	.24		17	44	.42	135	.08	-	2.22	.01	.06	<2	2
5+00W 4+00N	5	27	10	119	<.3	59 57	12	207 187		20	<8	<2	6	11	.9	á	<u>د</u>	38		.082	18	38	.42	118	.07	<3	2.14	.01	.08	<2	15
5+00W 3+50N	4	27	13	163 131	1.1	29		198		16	<8	<2	4	19	.9	3	<3	67		.047	14	42	.39	73	.11	<3	1.29	.01	.05	<2	44
5+00W 3+00N	3	19 3	6 4	20	<.3	6	1	55	.67	2	<8	<2	<2	8	.3	<3	<3	20	.08	.022	7	7	.07	22	.03	<3	.34	.01	.01	<2	54
5+00W 2+50N		3	4	20		0	,			-	-	-														_		••	~		,
5+00W 2+00N	1	12	<3	79	<.3	22	5	117	2.06	8	<8	<2	3	12		<3	<3	36		.056	11	31	.32	89	.08		1.51	.01	.08 .09	<2 <2	4 42
5+00W 1+50N	2	13	7	54	.5	24	6			6	<8	<2	5	11		<3	<3	37	. 15		19	29	.37	73 65	.08	-	1.19	.01 .01	.09	<2	42
5+00W 1+00N	1	11	4	69	<.3	18	5	117		6	<8	<2	4	10		4	<3	45	.11		16		.34 .58	65 150	.11		2.30	.01	.13	<2	8
5+00W 0+50N	3	20	10			52	11	209		11	<8	<2	5		.5	<3	3	47 37	.26 .15		20 20	47 33	.38	90	.10		1.27	.01	.08	<2	2
5+00W 0+00S	2	13	6	71	.3	29	7	162	2.02	7	<8	<2	6	13	.2	<3	<3	51	. 13	.055	20			70	.07	.,					-
۰ •	1 ~	70	77	177	6 7	27	11	793	3 40	57	17	3	22	29	24.4	22	23	82	.59	.090	20	168	.61	154	.09	19	1.99	.04	.17	18	47
TANDARD C3/AU-S	26	70 4	27		6.2 <.3	37		487		2					<.2					.085	8		.55	204	.12	<3	.88	.07	.44	3	3
TANDARD G-2	<u> </u>	4		42	<u>`.</u>			407																							

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data 7 FA.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

	£]	12.000 4 .)	;	<u>]</u>	1) [)	7*** 1]	с И.,]	1	")	y]	1]		")	[] [}	ľ,	J	1	1	, .) 1		, . #
11			Man	dal	ay :	Res	our	ces	Co:	rp.	PRO	OJE	CT	LED	GE	PRO	PER	ΓY	FI	LE	# 9	901	066		Pa	age	10	,		E ANALYT	
ACHE ANALYTICAL	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %		U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	К %		Au* ppb
L 5+00W 0+50S L 5+00W 1+25S L 5+00W 1+50S L 5+00W 2+00S L 5+00W 2+50S	2 2 2 1	14 8 6 3 7	9 12 10 <3 10	68 38 28 11 35	<.3 <.3 <.3 .8 .9	27 11 9 4 9	8 3 2 1 3	184 2 56 1 48 1 39 127 1	.86 .42 .46	7 5 4 2 6	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	2 2 2 2 2 2 2 2	22 10 12 3 8	.4 .6 .4 <.2	ব্য ব্য ব্য ব্য	7 3 6 3 3	43 37 32 16 34	.10	.032 .022 .019 .014 .070	17 12 12 4 10	35 25 19 5 17	.28 .14 .11 .03 .12	84 63 64 16 52	.08 .07 .05 .03 .07	<3 <3	.32 .96 .69 .18 .65	.01 .01 .01 .01 .01	.05 .03 .03 .01 .03	<2 <2 <2 <2 <2 <2	1 2 <1 28 62
L 5+00W 3+00S L 5+00W 3+50S L 5+00W 4+00S L 5+00W 4+50S L 5+00W 4+50S L 5+00W 5+00S	1 1 1 <1 2	12 8 7 13 16	6 11 10 <3 5	74 68 57 56 80	.7 .4 .8 1.5 1.0	31 14 16 21 38	7 5 4 6 8	302 2 139 1 107 2 158 1 295 2	.96 .18 .70	2 5 7 3 5	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	5 3 4 5	42 8 7 10 14	.8 .5 .4 .3	<3 <3 4 <3 <3	5 8 5 3 5	41 39 50 32 33	.07 .07 .11	.170 .271 .248 .086 .070	13 14 15 10 20	30 25 27 25 33	.42 .23 .21 .28 .39	115 96 102 94 149	.08 .10 .10 .07 .08	<3 1 3 1 <3 1	1.58 1.21 1.33 1.35 2.12	.01 .01 .01 .01 .01	.07 .06 .04 .07 .07	<2 <2 <2 <2 <2 <2 <2 <2	3 1 1 2
L 4+00W 10+00N L 4+00W 9+50N L 4+00W 9+00N L 4+00W 8+50N L 4+00W 7+50N	4 5 1 6	15 37 9 24 9	14 15 9 20 9	131 150 38 174 60	.5 .9 .3 <.3 .3	47 72 26 53 19	7 15 3 10 3	297 3 279 481 3	.53 .93 .76	11 13 2 32 13	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 3 2 2 2 2 2	31 28 66 33 61	1.6 1.3 1.5 1.1 1.4	4 <3 <3 7 3	10 5 <3 <3 <3	44 61 25 81 46	.28 .75 .29	.095 .117 .066 .161 .026	9 13 7 9 10	23 45 8 45 23	.27 .74 .13 .41 .12	71 110 31 96 69	.09 .11 .05 .11 .05	<3 7 <3 3	1.25 2.47 .77 1.69 .57	.01 .02 .04 .01 .01	.04 .09 .02 .05 .02	<2 <2 <2 7 <2	2 3 <1 4 1
L 4+00W 6+00N L 4+00W 5+00N L 4+00W 4+50N L 4+00W 4+00N L 4+00W 3+50N	2 5 5 1 5	18 17 49 4 60	12 14 14 <3 30	96 180 127 7 137	.8 .7 <.3	35 58 57 2 71	8 12 14 1 20		.55 .07 .33	8 31 31 <2 30	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	<2 3 7 2 7	142 16 36 6 18	1.3 .5 .3 <.2 .7	<3 <3 <3 <3 <3 3	<3 6 <3 3 3	48 60 46 11 49	.29 .04	.052 .110 .215 .010 .142	12 13 19 9 14	42 39 38 3 34	.38 .29 .44 .01 .51	87 118 85 21 100	.08 .11 .08 .02 .09	<3 <3 <3	2.09 2.68 1.14 .15 1.70	.02 .01 .01 .01 .01	.04 .04 .09 <.01 .07	<2 <2 <2 <2 <2 <2 <2	1 8 6 1 11
L 4+00W 3+00N L 4+00W 2+50N L 4+00W 2+00N RE L 4+00W 2+00N L 4+00W 1+50N	2 3 <1 <1 1	17 20 6 5 60	15 11 <3 <3 <3	116 23 20	1.0 1.2	38 39 7 80		52 52	.33 .60 .60	10 8 3 4 22	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	5 5 4 5 6	13 15 6 15	.5 <.2 .2 <.2 .3	<3 <3 <3 3 4	<3 4 <3 <3 <3	49 46 16 16 108	.17 .05 .06	.052 .121 .029 .028 .089	18 14 16 17 11	36 29 8 7 101	.40 .37 .08 .08 1.53	96 118 29 29 88	.10 .08 .01 .01 .14	<3 <3 <3	1.71 1.69 .48 .48 3.92	.01 .01 .01 .01 .01	.05 .05 .02 .02 .07	~? ~? ~? ~?	16 24 48 84 4
L 4+00W 1+00N L 4+00W 0+50N L 4+00W 0+00N L 4+00W 0+50S L 4+00W 1+00S	-3 1 1 1 2	27 15 14 16 21	12 5 3 <3 9	73 83 71	1.8 <.3 .4 <.3 1.0	16 34 29 28 46	8 9 6 8 14	274 155 199	2.15	7 5 7 2 5	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	4 4 4 7	21 24 20 17 30	.2 .2 .4 .5 .3	4 3 3 3 3	ও ও ও ও ও	84 41 44 48 51	.23 .19 .16	.190 .047 .059 .050 .134	9 17 15 12 21	36 37 32 40 46	.60 .50 .36 .42 .74	97 99	.12 .10 .10 .11 .13	र् र र र	1.45 1.40 1.46 1.39 2.17	.01 .02 .01 .01 .02	.17 .09 .06 .07 .11	~? ~? ~? ~?	176 3 8 1 1
L 4+00W 1+50S L 4+00W 2+00S L 4+00W 2+50S L 4+00W 3+00S L 4+00W 3+50S	3 2 1 2 1	14 12 13 19 18	10 11 6 9 <3	84 48		31 36 29 33 37	7 10 8 5 10	164 190 125	3.01 2.06 .85	<2 3 5 2 6	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	4 5 2 5	19 16 11 23 10	.4	ব্য ব্য ব্য ব্য ব্য	<3 10 5 <3 <3	59 51 38 31 38	.14 .11 .14	.210 .068 .094 .057 .090	15 16 14 12 15	43 41 31 32 40	.42 .45 .35 .30 .41	119 126 138 153 115	.11 .13 .07 .08 .08	<3 <3 <3	2.84 2.35 1.46 2.71 2.28	.01 .01 .01 .03 .01	.06 .07 .05 .13 .06	<2 <2 <2 <2 <2 <2 <2	1 12 58 29 3
STANDARD C3/AU-S STANDARD G-2	24 2		39 5			37 8				55 <2	27 <8	<2 <2	21 5		24.7 <.2		27 <3	80 42		.092 .098	17 9		.63 .62				1.81 .94	.04 .08	.17 .48	20 3	42 1

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data _ FA _

ACHE AWALYTICAL	£	1	Mandalay Resources Corp. PROJECT LEDGE PROPERTY FILE # 9901066										Page 11				ACHE ANALYTICAL														
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Со ррпп	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	8a ppm	Ti %	B ppm	Al %	Na %	K %	W ppm	Au* ppb
L 4+00W 4+00S L 4+00W 4+50S L 4+00W 5+00S RE L 4+00W 5+00S	3 2 1 2	15 13 12 12	12 7 6 9	70 92 78 77	1.5 1.2 .9 1.1	22 22 24 24		195 225	2.93 2.36 2.32 2.29		<8 <8 <8 <8	<2 <2 <2 <2 <2	5 5 5 4	13 8 11 11	1.2 <.2 <.2 .5	12 4 7 7	7 4 5 6	44 31 33 33	.07	.190 .070 .073 .073	17 22 19 19	27 23 27 27	.27 .24 .25 .25	109 114 100 99	.08 .05 .06 .05	<3 <3 <3 <3	1.30	.01 .01 .01 .01	.05 .05 .05 .04	<2 <2 <2 <2	12 5 6 5

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

)1 - 5			:., Va 	Cd	ver BC	: V6C 	215 V	Ca	P	La	Cr	Mg	Ba	Ti	В	AL	Na	ĸ		Au*
AMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	N i ppm	Co ppm	Mn ppm	Fe %	As ppm	ppm	Au ppm	Th ppm	ppm	ppm	ppm	ppm	ppm	%		ppm	ppm		ppm	%	ррт	%	%	%		ppb
10+00W 9+50N 10+00W 8+50N 10+00W 7+50N 10+00W 6+50N 10+00W 5+50N	9 4 5 5 2	24 12 17 16 11	18 13 11 9 10	144 100 85 90 152	.5 1.1 1.6 <.3 <.3	44 25 28 27 34	6 5 7	104 114 296	3.09 2.19 1.93 1.97 2.29	14 10 12 8 6	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	4 4 2 4	36 21 14 10 17	.7 .8 .7 .4 .7	ও ও ও ও ও	<3 <3 <3 3 <3	41 41 29 32 37	.22 .08 .07	.171 .103 .116 .070 .148	23 14 16 16 18	26 20 19 23 35	.32 .20 .20 .25 .35	127 86 86 66 124	.05 .08 .04 .05 .07	6 <3 6	1.40 1.53 1.06 1.11 1.65	.01 .01 .01 .01 .01	.11 .07 .07 .07 .09	<2 <2 <2 <2 <2 <2	2 1 4 1 <1
0+00W 4+50N 0+00W 3+50N 0+00W 2+50N 10+00W 1+50N 10+00W 0+50N	5 2 4 4	34 22 25 13 43	12 9 12 10 13	100 103 103	.7 .6 2.2 <.3 1.9	47 42 44 23 61	13 13 6	301 328 145	2.27 2.59 2.72 1.94 3.47	12 8 15 5 12	12 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	4 5 6 5 7	10 35 21 12 48	.8 .8 .6 1.4	ব্য ব্য ব্য ব্য ব্য	ও ও ও ও ও ও	38 42 46 36 57	.38 .20 .11	.125 .081 .102 .082 .048	16 22 24 17 28	35 37 38 23 53	.36 .52 .54 .21 .59	80 112 112 87 208	.05 .08 .08 .06 .11	<3 <3 <3	1.35 1.74 1.86 1.36 2.57	.01 .02 .01 .02 .03	.09 .15 .13 .08 .26	<2 <2 <2 <2 <2 <2	110
10+00W 0+00N E L10+00W 0+00N 10+00W 0+50S 10+00W 1+50S 10+00W 2+50S	5 5 4 8 6	27 28 33 18 57	10 12 10 12 14		.6 .6 1.1 <.3 2.5	50 52 51 32 66	13 12 8	418 419 189	2.80 2.88 2.79 3.14 3.43	10 11 12 12 7	<8 <8 12 <8 <8	<2 <2 <2 <2 <2 <2	5 6 7 4 3	43 44 42 11 62	1.4 1.4 .9	उ उ उ उ उ	८३ ८३ ८३ ८३ ८३	45 46 44 52 51	.43 .39 .08	.052 .054 .040 .045 .068	29 29 25 22 23	39 39 39 28 45	.58 .60 .59 .27 .48	131 136 127 81 239	.09 .10 .11 .06 .09	<3 6 <3	1.65 1.69 1.65 1.40 3.12	.03 .03 .02 .01 .03	.15 .16 .19 .07 .27	<2 <2 <2 <2 <2 <2	1
10+00W 3+50S 10+00W 4+50S 9+00W 10+00N 9+00W 9+00N 9+00W 8+00N	8 9 5 12 29	33 23 9 24 47	19 19 9 13 18	162 118 59 127 469	1.1 .7 <.3 .5 1.3	51 42 18 43 105	12 4 9	229 228 239	3.74 3.41 1.52 2.62 4.10	12 12 9 22 24	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	5 6 2 6 9	66 49 11 23 15	1.5 .8 .5 .7 2.6	3 3 3 3 3	<3 <3 <3 4 3	41 38 26 38 54	.52 .07 .18	.074 .088 .077 .170 .172	27 25 15 24 28	33 27 12 22 31	.42 .36 .07 .29 .35	141 98 56 81 108	.07 .06 .04 .07 .04	<3 <3 <3	1.97 1.45 .70 1.06 2.05	.02 .02 .01 .01 .01	.14 .12 .03 .11 .09	<2 <2 <2 <2 <2	32
9+00W 7+00N 9+00W 6+00N 9+00W 5+00N 9+00W 4+00N 9+00W 3+00N	14 5 5 5 3	18 26 23 27 25	15 8 9 17 12	184 202 186 150 96	.9 .7 .9 2.7 .6	42 52 49 52 61	13 11 11	216 208 245	2.87 2.90 2.72 3.38 3.55	12 12 13 21 26	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	4 6 5 3 3	11 17 14 17 23	1.0	ব্য ব্য ব্য ব্য ব্য	ও ও ও ও ও ও	42 54 49 66 81	. 16 . 14 . 18	.298 .104 .111 .198 .060	22 19 15 13 10	20 50 43 45 128	.18 .62 .51 .49 1.02	110 116 117 113 78	.03 .10 .09 .09 .12	<3 <3 <3	1.60 1.88 1.82 2.44 1.82	.01 .01 .01 .01 .01	.08 .10 .10 .09 .11	<2 <2 <2 <2 <2 <2	129
9+00W 2+00N 9+00W 1+00N 9+00W 0+00N 9+00W 1+00S 9+00W 2+00S	2 7 5 4 2	14 66 21 14 20	11 31 13 9 12	112 89	1.8 1.7 .6 .7 1.7	29 107 39 23 31	28 12 8	1750 326 267	2.56 5.86 2.58 2.06 2.53	11 18 13 10 8	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	3 6 3 3 4	21 65 31 18 29		ব্য ব্য ব্য ব্য ব্য	3 3 3 4 3	60 78 40 38 50	-48 .30 .17	.254 .067 .053 .042 .061	11 34 21 13 21	58 83 29 20 34	.47 .88 .35 .22 .35	148 336 113 83 126	.10 .14 .07 .07 .09	<3 <3 <3	2.06 3.82 1.41 1.19 1.87	.01 .03 .01 .02 .02	.07 .43 .10 .09 .13	<2 <2 <2 <2 <2 <2 <2	2!
9+00W 3+00S 9+00W 4+00S 9+00W 5+00S 3+00W 10+00N 3+00W 9+50N	1 1 3 2 2	21 12 26 16 16	7 8 13 9 7	72 133	.7 <.3	36 26 46 58 54	9 13 14	148 388 496	2.60 2.07 2.95 2.58 2.28	7 5 10 2 3	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	7 6 7 5 4	26 13 53 18 19	.2 1.0 .4	<3 <3	ও ও ও ও ও ও	48 34	.12 .57 `.23	.056 .037 .070 .052 .060	23 20 25 21 22	37 27 43 45 47	.58 .39 .58 .63 .55	91 80 147 74 66	.12 .09 .11 .09 .09	5 7 <3	1.76 1.43 1.93 1.71 1.86	.02 .02 .03 .01 .01	.18 .12 .23 .14 .12	<2 <2 <2 2 3	<
TANDARD C3/AU-S TANDARD G-2	25 1	65 3	35 3		5.7 <.3	36 8			3.30	55 <2	20 <8	3 <2			23.7 <.2	19 <3	21 <3	80 39		.091 .094	20 10	177 75			.09		2.03 .98		.17 .46	16 2	48 <
	<u> (</u>	THIS		H IS I Type:	SOIL	il fof	r mn 1 1.11* -	FE SF AQU/	WITH CAP -REGI/ and /F	LA CF \/MIBK	R MG B (Extr	A TI ACT,	B W A	ND MA	ASSIVE	e suli	IDE A	ONE H	IOUR IMTED	AND IS FOR N	DILU AKA	UTED T	0 10 	ML WI	TH WA	ATER.					

Mandalay Resources Corp. FILE # 9803545

LOME ARAL (TECH)												-																	40 	ME ANAL I	16-6
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Со ррп	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	K %		Au* ppb
L3+00W 9+00N L3+00W 8+50N L3+00W 8+00N L3+00W 7+50N	2 2 2 2	12 19 18 19	6 9 8 8	46 62 66 63	<.3 .3 .3 .5	48 64 55 57	17 16 14	399 485 628 825	2.95 2.58 2.51	2 3 4 5	<8 <8 <8 <8	<2 <2 <2 <2 <2	2543	16 16 29 59	.3 .4 .4 .6	<3 <3 <3 <3	4 <3 3 <3	27 35 34 33	.19 .32 .61	.060 .076	18 26 22 21 15	36 50 46 38 43	.53 .61 .66 .66	64 84 110 102 101	.08 .11 .10 .08	7 <3 3	1.27 2.23 1.81 1.50 1.52	.01 .02 .02 .02 .02	. 14 . 16 . 17 . 15 . 12	<2 <2 <2 6 3	<1 <1 1 1
L3+00W 7+00N L3+00W 6+50N L3+00W 6+00N L3+00W 5+50N L3+00W 5+25N	2 1 2 1 3	13 20 10 8 38	6 8 8 13 7	70 68 104 100 87 68	<.3 .8 .6 .4 .8	39 43 29 21 52 18	9 7 14	435 327 291 412 376 117	2.35 3.08 2.22 3.01	4 7 4 6 9 4	<8 <8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	2 5 4 2 7 2	78 58 25 25 29 11	.7 .8 .9 .8 .2	<3 4 <3 4 4 4 <3	ও ও ও ও ড ড ড ড ড ড ড ড ড ড ড ড ড ড ড ড	34 59 48 52 51	.28 .29 .30	.066	18 12 11 18 9	43 36 36 30 43 28	.34 .84 .43 .32 .85 .28	95 99 122 126 46	.10 .12 .11 .11 .11	<3 <3 <3 <3	1.23 1.87 1.39 1.87 .99	.03 .01 .01 .02 .01	.13 .06 .06 .15 .04	2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	56 1 1 3 2
L3+00W 5+00N L3+00W 4+75N L3+00W 4+50N L3+00W 4+25N L3+00W 4+00N RE L3+00W 4+00N	2 8 2 5 2 2	9 37 31 48 30 28	12 17 12 13 13	60 148 72 138 73 69	.4 .3 <.3 .3 .5	56 42 63 42 41	17 17 15 15	379 410 676 422 398	3.43 3.15 3.73 3.09	16 18 28 12 13	<8 <8 <8 <8 <8 <8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- 3 9 5 8 8	31 25 65 24 23	1.4 .4 1.5 .4 .5	उ उ उ उ उ उ उ उ उ उ	<3 3 3 3 4	62 41 97 44 42	.18 .60	.189 .047 .121 .043 .041	13 28 21 26 25	48 34 67 37 35	.77 .62 1.23 .65 .63	115 101 147 104 99	.11 .10 .14 .10 .10	9 <3 <3	2.61 1.40 2.04 1.53 1.45	.02 .02 .05 .02 .02	.12 .14 .23 .14 .14	5 <2 <2 <2 <2	3 8 4 5 3
L3+00W 3+75N L3+00W 3+50N L3+00W 3+25N L3+00W 3+25N L3+00W 3+00N L3+00W 2+75N	4 4 6 2 3	47 39 60 12 38	31 15 19 10 10	124 207 262 100 105	3.1 1.2 3.1 .7 .4	62 76 101 28 66	15 19 8	441 749 1682 155 286	3.68 5.02 2.23	39 14 16 4 8	17 <8 9 <8 <8	<2 <2 <2 <2 <2 <2	3 2 6 4 5	92 55 82 14 19	3.4 3.7 7.6 .3 .8	<3 <3 <3 3 3	4 3 3 3 3 3	53 47 49 61 52	1.04 .54 .76 .14 .24	.058 .081 .041	23 21 27 11 15	55 47 56 37 49	.50 .45 .54 .40 .94	114 169 288 60 99	.06 .08 .07 .12 .11	<3 <3 <3	2.29 2.54 2.87 1.40 2.32	.02 .01 .02 .01 .01	.09 .15 .26 .05 .10	<2 <2 <2 <2 <2 <2	64 3 5 18 2
L3+00W 2+50N L3+00W 2+25N L3+00W 2+00N L3+00W 1+75N L3+00W 1+50N	2 2 2 3 1	21 28 16 42 13	14 45 23 24 8	157 89 84 175 69	1.8 .6 3.3 2.6 .9	44 38 54 55 28	15 10 13 15 7	449 127 126 263 94	2.63 3.73	13 38 22 121 7	<8 <8 <8 <8 14	<2 <2 <2 <2 <2 <2	4 3 2 9 4	44 11 22 10 8	.9 .3 .7 .8 .2	<3 4 <3 10 3	<3 4 <3 3 3	97 41 88 62 28	.06 .24	.169 .128	15 18 13 14 14	82 30 78 51 24	1.03 .33 .30 .70 .25	168 87 64 101 86	.16 .06 .07 .05 .07	<3 <3 <3	2.02 1.40 2.79 3.67 1.75	.02 .01 .01 .01 .01	.06 .06 .03 .07 .07	<2 <2 <2 <2 <2 <2	421 207 16 16 2
L3+00W 1+25N L3+00W 1+00N L3+00W 0+75N L3+00W 0+50N L3+00W 0+25N	2 2 2 2 3	20 11 11 13 20	10 8 10 9 11	115 78 76 168 103	.6 .8 .6 .7 <.3	21 24	16 8 9 11	231 182 211 252 494	2.28 2.21 2.63	21 9 10 9 17	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	2 3 4 3 3	28 22 24 17 11	.8 .6 .8 .7	८३ २३ २३ २३ २३	उ उ उ उ	43 37 43 42 51	.20 .18	.076 .057 .056 .177 .066	17 14 13 13 14	62 35 40 33 45	.48 .32 .36 .39 .33	190 105 128 131 167	.09 .09 .09 .08 .08	<3 <3 <3	2.14 1.70 1.26 1.94 2.22	.01 .01 .01 .01 .01	.10 .08 .07 .09 .10	<2 <2 <2 <2 <2 <2	4 2 3 2 2
L3+00W 0+25S L3+00W 0+50S L3+00W 0+75S L3+00W 1+00S L3+00W 1+25S	2 2 2 2 2 2	10 7 15 9 11	8 13 9 7 9	81 107 62 131 83	.4 .5 .4 <.3 1.2	25	9	129 147 270 147 124	2.49 2.91 2.45	8 5 11 5 5	<8 <8 9 <8 <8	<2 <2 <2 <2 <2 <2	2 3 2 3	16 34 27 11 8	.3 .5 .9 .4	<3 3 4 <3 <3	ও ও ও ও ও ও	49 55 49 43 37	.36	.090	13 13 18 12 12	35 30 47 42 30	.35 .27 .48 .32 .27	97 113 138 109 81	.11 .11 .11 .11 .09	<3 <3 <3	1.65 1.55 2.17 2.71 1.93	.01 .01 .02 .01 .01	.06 .08 .10 .06 .04	<2 <2 <2 <2 <2 <2	1 18 1 143
STANDARD C3/AU-S Standard G-2	25 2	64 3	37 <3	161 42	5.4 .3		12 4	747 503		54 <2	20 12	<2 <2	21 6	28 74	23.2 <.2	17 <3	22 <3	79 40		.088 .093	19 9	171 77	.59 .58	166 253	.09 .13		1.96 1.00	.04 .09	- 16 - 49	16 2	52 3

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data____ FA

11						М	and	ala	y R	eso	urc	es	Cor	p.	F	ILE	#	980	354	5					P	age	3				
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	K %	W ppm	Au* ppb
L3+00W 1+50S L3+00W 1+75S RE L3+00W 1+75S L3+00W 2+00S L3+00W 2+25S	2 1 1 1 2	14 7 6 14 16	11 10 9 12 10	78 95 99 112 119	.4 1.1 .8 .8 2.5	41 17 17 41 47	7 7 11	170 150 150 267 175	2.01 2.02 2.74	7 3 2 4 4	<8 19 <8 <8 9	<2 <2 <2 <2 <2 <2	7 6 4 7 7	19 23 24 15 13	.4 .5 .6 .7 .4	<3 <3 <3 <3 <3	3 3 3 3 3 3	44 40 40 47 43	.20 .21 .21 .16 .14	.185 .189 .113	18 14 14 17 18	39 27 27 42 42	.48 .24 .24 .45 .47	116 89 90 117 116	.11 .09 .09 .10 .09	4 <3 3	1.71 1.82 1.87 2.65 2.54	.01 .01 .01 .01 .01	.09 .07 .05 .08 .08	<2 <2 <2 <2 <2 <2 <2	2 10 2 2 17
L3+00W 2+50S L3+00W 2+75S L3+00W 3+00S L3+00W 3+25S L3+00W 3+50S	1 2 2 1	17 9 11 11 21	12 13 13 14 8	82 55 72 184 97	1.8 1.8 2.0 5.5 .9	38 16 18 21 46	4 4 7	108	1.72 2.28 2.47	13 10 13 9 15	10 <8 19 <8 <8	<2 <2 <2 <2 <2 <2	8 6 7 6 8	15 8 7 11 15	.5 .3 .4 .8	८३ ८३ ८३ ८३ ८३	ব ব ব ব ব ব ব	42 41 47 32 34	.05 .05	.060 .122	18 17 17 16 21	40 21 26 26 34	.45 .18 .22 .21 .52	115 49 56 103 135	.09 .08 .08 .08 .08	3 <3 4	1.97 1.02 1.21 1.94 1.52	.01 .01 .01 .01 .01	.09 .04 .06 .06 .10	<2 <2 <2 <2 <2 <2	
L3+00W 3+75S L3+00W 4+00S L3+00W 4+25S L3+00W 4+25S L3+00W 4+50S L3+00W 4+75S	2 2 1 2	24 25 6 14 4	11 7 8 12 9	86 107 111 79 84	2.3 2.1 .5 .5 .7	50 46 13 27 23		224		14 9 5 10 5	<8 15 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	5 7 3 4 5	29 22 10 15 11	.6 .7 .4 .5 .3	ও ও ও ও ও	ব্য ব্য ব্য ব্য ব্য	58 40 50 61 54	.21 .07 .11	.045	20 16 10 13 13	55 34 35 36 36	.51 .50 .31 .33 .29	145 126 109 75 77	.13 .08 .13 .12 .10	<3 3 <3	2.08 1.87 1.16 1.61 1.48	.01 .01 .01 .01 .01	.14 .09 .08 .06 .05	<2 <2 <2 <2 <2 <2	1
L3+00W 5+00S L2+50W 3+75N L2+50W 3+50N L2+50W 3+50N L2+50W 3+25N L2+50W 3+00N	1 2 1 5 2	10 7 4 40 16	8 9 7 18 7	55 98 51 233 109	1.5 <.3 <.3 2.9 <.3	14 12 6 74 44	4	99 1300	1.50	12 5 3 17 6	19 <8 <8 10 <8	<2 <2 <2 <2 <2 <2	8 <2 <2 4 4	13 35 24 87 20	.2 1.2 .5 4.2 .7	ও ও ও ও ও	ব্য ব্য ব্য 5 ব্য	27 41 32 44 42	.24	.021 .013 .098	26 7 7 23 15	17 15 11 49 34	.15 .11 .05 .48 .54	68 64 44 237 76	.04 .08 .07 .05 .11		.64 .52 .28 2.49 1.55	.01 .02 .02 .02 .02	.06 .04 .03 .23 .06	<2 <2 <2 <2 <2 <2	1 <1 6
L2+50W 2+75N L2+50W 2+50N L2+50W 2+25N L2+50W 2+25N L2+50W 2+00N L2+50W 1+75N	2 1 3 2 1	20 9 23 7 20	12 4 23 15 11	39 129 52	.3 .6 6.1 1.4 .5	24 8 50 13 39	9 3 11 4 12	78 220 125	3.07 1.06 3.45 1.85 4.37	14 6 28 8 9	<8 <8 13 <8 <8	<2 <2 <2 <2 <2 <2	2 2 5 2 4	17 12 12 21 19	.8 .3 .7 .3 .6	ও ও ও ও ও	ব্য ব্য ব্য ব্য ব্য	65 36 71 45 65	.07 .11 .15	.083 .023 .105 .060 .095	11 6 12 14 13	39 13 47 21 49	.41 .09 .46 .18 .74	90 68 96 72 226	.11 .07 .10 .04 .09	3 <3 <3	1.35 .31 2.57 .58 3.05	.01 .01 .01 .01 .01	.05 .03 .07 .03 .04	<2 <2 <2 <2 <2 <2	<1 1020 2
L2+50W 1+50N L2+50W 1+25N L2+50W 1+00N L2+50W 0+75N L2+50W 0+50N	1 2 1 5 6	6 19 18 42 57	7 7 23 29	75	.5 <.3 .3 1.9 .7	19 41 36 95 68	6 11 11 30 16	341 317	2.52 2.31 4.88	3 3 5 35 47	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	4 6 8 5	10 19 20 27 39	.4 .4 1.3 1.0	<3 <3 <3 <3 4	<उ <उ <उ <उ 3	46 46 45 61 76	.23 .24	.070 .095 .075 .205 .267	12 21 21 17 13	33 42 39 54 59	.26 .67 .68 1.09 .67	67 118 90 219 231	.09 .12 .13 .10 .13	4 4 <3	1.92 1.71 1.50 2.88 2.23	.01 .02 .02 .01 .02	.04 .16 .18 .12 .15	<2 <2 <2 3 <2	3 1 124
L2+50W 0+25N BL2+50W 0+00S L2+50W 0+25S L2+50W 0+50S L2+50W 0+75S	3 1 1 1 2	17 14 13 7 10	9 8 10 10 8	55	1.3 .9 <.3 .6 1.1	38	13 8 10 7 7	172 157 206	3.54 1.96 2.60 1.83 2.66	11 6 4 5 4	<8 16 <8 <8 <8	< < < < < < < < < < < < < < < < < <> <> </td <td>4 6 4 5 6</td> <td>20 17 18 11 າບ</td> <td>.9 .3 .5 .4 .5</td> <td><3 3 <3 <3 <3</td> <td><उ <उ <उ <उ <उ</td> <td>64 34 39 36 47</td> <td>.24 .22 .12</td> <td>.259 .077 .073 .122 .110</td> <td>13 17 16 17 15</td> <td>41 34 40 26 35</td> <td>.61 .50 .41 .22 .32</td> <td>135 101 119 79 77</td> <td></td> <td><3 <3 <3</td> <td>2.64 1.42 2.29 1.46 2.29</td> <td>.01 .01 .01 .01 .01</td> <td>.08 .10 .07 .04 .06</td> <td><2 <2 <2 <2 <2 <2</td> <td>7 24 79</td>	4 6 4 5 6	20 17 18 11 າບ	.9 .3 .5 .4 .5	<3 3 <3 <3 <3	<उ <उ <उ <उ <उ	64 34 39 36 47	.24 .22 .12	.259 .077 .073 .122 .110	13 17 16 17 15	41 34 40 26 35	.61 .50 .41 .22 .32	135 101 119 79 77		<3 <3 <3	2.64 1.42 2.29 1.46 2.29	.01 .01 .01 .01 .01	.08 .10 .07 .04 .06	<2 <2 <2 <2 <2 <2	7 24 79
STANDARD C3/AU-S Standard G-2	23 1		38 3				11 4	731 515	3.11 1.93	53 <2	20 <8	<2 <2	21 5	29 84	22.5 .2	17 <3	20 <3			.086 .094	20 11	166 77	.58 .58	165 264	.09 .13		1.93 1.10	.04 .11	.18 .51	16 <2	

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

-

AA

Mandalay Resources Corp. FILE # 9803545

SAMPLE# No Cu Pbo Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Mg Ba Ti B Al. Na L2+50U 1+00S 1 8 9 60 .6 23 8 162 2.98 7 78 2 7 78 9 4 .4 .31 .4 6.0 .6 8.5 3 3 56 .27 .049 20 37 .35 94 .14 .41 .43 .14 .43 .44 .43 3 35 .18 .100 10 86 .14 .13 .89 .19 .23 .13 .13 .13 .13 .13 .13 .13 .13 .13 .13 .13 .13 .13 .12 .29 .20 .25 .23 .19 <td< th=""><th>SCME ANAL (7)</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>ACTERATIONS</th></td<>	SCME ANAL (7)																														ACTERATIONS
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	K W % ppm							-																		-				i i	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$.06 <2												56	3	-		23	6	<2	<8	7				23	.6	60	9	8	1	L2+50W 1+00S
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$.05 <2													•	-		-	_				2.66	178 2	7	22	.3	70	9	9	2	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$.08 <2												-	-	-			•						9		1.3	84	9	13	2	L2+50W 1+50S
L2+50W 2+00s211010101010101010101010101010L2+50W 2+50s21416672.31982392.332513 <2 7944 <3 34.07.0482319.2067.03 <3 3.1.61.01L2+50W 2+50s21410983.12372002.5224 <8 <2 621.4 <3 33.01.0125.22.2380.0431.61.01L2+50W 2+75s1131541.2164961.7618 <8 <2 58.33328.06.0892118.1760.04101.00.01L2+50W 3+50s1164111.950122092.506 <8 <2 712.5338.12.2062131.29128.07<3	.07 <2														-			-						-			86	10	10	1	L2+50W 1+75S
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$.09 <2	.09	.01	.50	5 4	.12	139	.55	47	19	. 122	.15	48	4	5	.5	12	7	<2	<8	8	2.80	183 2	14	50	.7	88	19	16	1	L2+50W 2+00S
12+50W 2 14 10 98 3.1 23 7 200 2.52 24 48 42 6 21 44 43 33 39 18 $.091$ 22 25 23 80 0.4 31.61 $.01$ $12+50W$ $2+75s$ 1 13 11 54 1.2 16 4 96 1.76 18 48 25 8 $.3$ 3 28 $.06$ $.089$ 21 18 $.17$ 60 $.04$ 10 1.00 $.01$ $12+50W$ $3+25s$ 1 14 11 50 12 209 2.50 6 48 < 22 5 8 $.3$ 3 22 225 2.3 80 $.04$ 40 0.10 10 100 0.01 $12+50W$ $3+25s$ 1 14 11 50 8 14 4 90 1.79 20 48 22 6 7 $.2$ 33 33 8 12 206 21 31 $.29$ 128 $.07$ 33 1.61 $.01$ $12+50W$ $3+75s$ 1 15 8 138 1.0 30 8 224 2.75 21 48 22 6 14 $.6$ 33 33 28 $.06$ $.089$ 21 31 $.09$ 13 1.61 $.01$ $12+50W$ $3+75s$ 1 15 11 68 122	.06 <2				-											.4	9	7	<2	13	25	2.33	239 2	8	19	2.3	67	14	14	2	L2+50W 2+25S
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$.04 <2													-	-			-	<2	<8	24	2.52	200 2	7	23	3.1	98	10	14	2	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$.04 <2														_		-					.76	96 ^r	4	16	1.2	54	11	13	1	L2+50W 2+75S
L2+50W3+23S1141130.3144901.120308 224 2.75 21 < 8 < 2 7 12 < 5 3 < 3 38 $.12$ 206 21 31 $.29$ 128 $.07$ < 3 1.61 $.01$ L2+50W3+75S11511 68 1.2 30 8 224 2.75 21 < 8 < 2 7 12 $.5$ 3 < 3 38 $.12$ 206 21 31 $.29$ 128 $.07$ < 3 1.61 $.01$ L2+50W $3+75S$ 11511 68 1.2 30 8 159 2.23 14 < 8 < 2 6 14 $.6$ < 3 < 3 34 $.14$ $.134$ 20 30 31 130 $.07$ < 3 1.44 $.01$ L2+50W $3+005$ 2181059 1.1 23 6 225 21 48 < 28 27 3 33 32 $.34$ $.044$ 22 23 $.25$ 77 $.05$ 3.78 $.01$ L2+50W $4+755$ 217 5 39 12 2266 2.66 8 42 4 16 $.6$ 33 46 $.23$ $.072$ 19 54 $.99$ 108 $.11$ < 3 1.72 $.01$ L2+50W $4+755$ 2 33 <th< td=""><td>.07 <2</td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td>-</td><td></td><td>-</td><td></td><td>2.50</td><td>209 2</td><td>12</td><td>50</td><td>.9</td><td>111</td><td>4</td><td>16</td><td> 1</td><td>L2+50W 3+00S</td></th<>	.07 <2				-										-			-		-		2.50	209 2	12	50	.9	111	4	16	1	L2+50W 3+00S
$\begin{array}{c} L2+50W 3+75S \\ L2+50W 4+00S \\ L2+50W 4+00S \\ L2+50W 4+25S \\ L2+50W 4+25S \\ L2+50W 4+50S \\ 2 & 17 & 5 & 96 & <.3 & 55 & 13 & 237 & 2.51 & 7 & <8 & <2 & 6 & 16 & .5 & <3 & <3 & 4 & .14 & .134 & 20 & 30 & .31 & 130 & .07 & <3 & 1.44 & .01 \\ L2+50W 4+25S \\ L2+50W 4+50S \\ 2 & 17 & 5 & 96 & <.3 & 55 & 13 & 237 & 2.51 & 7 & <8 & <2 & 6 & 16 & .5 & <3 & <3 & 40 & .18 & .129 & 16 & 36 & .53 & 91 & .09 & <3 & 2.54 & .01 \\ L2+50W 4+50S \\ 2 & 17 & 5 & 96 & <.3 & 55 & 13 & 237 & 2.51 & 7 & <8 & <2 & 4 & 16 & .6 & <3 & <3 & 40 & .18 & .129 & 16 & 36 & .53 & 91 & .09 & <3 & 2.54 & .01 \\ L2+50W 4+50S \\ 2 & 17 & 5 & 96 & <.3 & 55 & 13 & 237 & 2.51 & 7 & <8 & <2 & 4 & 16 & .6 & <3 & <3 & 45 & .22 & .114 & 14 & 44 & .69 & 96 & .11 & <3 & 1.72 & .01 \\ L2+50W 4+75S \\ L2+50W 5+00S \\ 2 & 20 & 7 & 102 & 1.3 & 61 & 14 & 249 & 2.79 & 9 & <8 & <2 & 7 & 14 & .6 & <3 & 3 & 48 & .18 & .091 & 16 & 48 & .82 & 114 & .10 & <3 & 2.02 & .01 \\ L2+50W 4+75N \\ 2 & 15 & 7 & 44 & <.3 & 33 & 15 & 351 & 2.51 & 2 & <8 & <2 & 5 & 21 & .4 & <3 & <3 & 35 & .20 & .033 & 25 & 42 & .40 & 64 & .09 & <3 & 2.02 & .01 \\ L2+00W 4+75N \\ 2 & 15 & 9 & 43 & <.3 & 32 & -15 & .337 & 2.38 & -3 & <8 & <2 & 4 & 19 & .4 & <3 & <3 & 34 & .19 & .031 & 23 & 40 & .38 & 60 & .09 & <3 & 1.92 & .01 \\ L2+00W 4+25N \\ 2 & 14 & 8 & 60 & <.3 & 42 & 8 & 151 & 1.98 & 2 & <8 & <2 & 4 & 13 & .3 & <3 & 3 & 32 & .14 & .047 & 20 & 47 & .51 & 64 & .10 & <3 & 1.89 & .01 \\ L2+00W 3+25N \\ 2 & 11 & 11 & 188 & .3 & 26 & 10 & 287 & 3.11 & 9 & <8 & <2 & 4 & 18 & .6 & <3 & <3 & 57 & .19 & .142 & .13 & .50 & .58 & 94 & .11 & <3 & 2.27 & .01 \\ L2+00W 3+25N \\ 2 & 11 & 11 & 188 & .3 & 26 & 10 & 287 & 3.11 & 9 & <8 & <2 & 4 & 12 & .7 & <3 & <3 & 59 & .14 & .278 & 12 & 41 & .38 & 75 & .11 & <3 & 2.27 & .01 \\ L2+00W 3+25N \\ 2 & 11 & 5 & 127 & .3 & 30 & 11 & 171 & 3.31 & 13 & <8 & <2 & 5 & 31 & 1.5 & <3 & <3 & 73 & .30 & .039 & 13 & 44 & .47 & 79 & .13 & <3 & 2.23 & .01 \\ L2+00W 2+75N \\ 3 & 21 & 15 & 127 & .3 & 30 & 11 & 171 & 3.31 & 13 & <8 & <2 & 5 & 31 & 1.5 & <3 & <3 & 73 & .30 & .039 & 13 & 44 & .4$.04 <2	.04	.01	.89	<3	.03	55	.14	17	23	.090	.05	24	<3	<3	.2	7	6	<2	<8	20	.79	90 °	4	14	.8	50	11	14	1	L2+50W 3+25S
L2+50W $3+75S$ 11511 68 1.2308 159 2.23 14 <8 <2 614.6 <3 <3 34 .14.13420 30 .31 130 .07 <3 1.44 .01L2+50W4+00S21810591.1236 285 2.20 16 13 <2 8 27 $.3$ $3<$ <3 32 $.34$.044 22 23 $.25$ 77 $.05$ 3 $.78$.01L2+50W $4+25S$ 1137 75 .5 39 12 286 2.66 8 <8 <2 6 16 .5 <3 <3 40 $.18$ $.129$ 16 36 $.53$ 91 $.09$ <3 2.54 $.01$ L2+50W $4+75S$ 2 17 5 6 $.15$ 322 2.75 10 <8 <2 8 28 $.5$ <3 <3 46 $.23$ $.072$ 19 54 $.99$ 108 $.11$ <3 1.85 $.01$ L2+50W $4+75S$ 2 23 7 74 $<.3$ 60 15 322 2.75 10 <8 <2 8 28 $.5$ <3 <3 46 $.23$ $.072$ 19 54 $.99$ 108 $.11$ <3 1.85 $.01$ L2+50W $4+75N$ 2157 44	.04 <2	.04	.01	.61	<3 1	.07		.29	31	21	.206	.12	38	<3	3	.5	12	7	<2	<8	21	2.75	224 2	8	30	1.0	138	8	15	1	12+504 3+505
L2+50W4+00s21810591.12362852.201613 < 2 827.33 < 3 32.34.04422222577.053.78.01L2+50W4+25s113775.539122862.668<8	.06 <2	.06	.01	.44	<3 1	.07	130	.31	30	20	.134	.14	34	<3	<3	.6	14	6	<2	<8											
L2+50W $4+25S$ 1 13 7 75 .5 39 12 286 2.66 8 <8 <2 6 16 .5 <3 <3 40 .18 .129 16 36 .53 91 .09 <3 2.54 .01 L2+50W $4+75S$ 2 17 5 96 <.3	.06 <2	.06	.01	.78	3	.05	77	.25		22	.044	.34	32	<3	3	.3	27	8	<2	13	16	2.20	285 2	6						1 ·	
L2+50W 4+50S 2 17 5 96 < 3 55 13 237 2.51 7 <8 <2 4 16 .6 <3 <3 45 .22 .114 14 44 .69 96 .11 <3 1.72 .01 L2+50W 4+75S 2 33 7 74 <.3	.05 <2					.09			36	16	. 129	.18	40	<3	<3	.5	16	6	<2	<8	8	2.66	286 2	12							
L2+50W $4+75S$ 2 33 7 74 (.3) 60 13 22 13 61 14 249 2.79 9 <8	.06 <2	.06	.01	.72	<3 1	.11	96	.69	44	14	.114	.22	45	<3	<3	.6	16	4	<2	<8	7	2.51	237 2	13	55		96			4	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.15 <2	. 15	.01	.85	<3 1	.11	108	.99	54	19	.072	.23	46	<3	<3	.5	28	8	<2	<8	10	75	322 2	15	60	~ 7	74	7	77	2	1 2+5011 /+75C
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.06 <2	.06	.01	2.02	<3 2	.10	114	.82	48						_			-		-					-					_	
L2+00W $4+75N$ 2 15 9 43 \cdot .3 32 -15 337 2.38 -3 -4 19 \cdot .4 \cdot .3 34 19 0.31 23 40 \cdot .38 60 \cdot .99 \cdot .37 2.38 -3 -46 -36 -33 34 19 0.31 23 40 \cdot .38 60 \cdot .99 -31.92 \cdot .01 L2+00W $4+25N$ 2 14 8 60 $<.3$ 42 8 151 1.98 2 43 -33 32 14 0.047 20 47 $.51$ 64 $.10$ <3 1.89 $.01$ L2+00W $3+75N$ 2 25 9 98 3 48 12 283 2.94 6 -33 -33 357 $.19$ $.142$ 13 50 $.58$ 94 $.11$ <3 2.27 $.01$ L2+00W $3+75N$ 2 11 1188 .3	.09 <2	.09	.01	. 05	<3 2	.09	64		42					<3	<3		•••		_												
L_{2+00W} $4+25N$ 2 14 8 60 <.3 42 8 151 1.98 2 <8 <2 4 13 .3 <3 3 32 .14 .047 20 47 .51 64 .10 <3 1.89 .01 L_{2+00W} $4+25N$ 2 14 8 60 <.3 42 8 151 1.98 2 <8 <2 4 13 .3 <3 3 32 .14 .047 20 47 .51 64 .10 <3 1.89 .01 L2+00W $3+75N$ 2 25 9 98<<<.3 48 12 283 2.94 6 <8 <2 4 18 .6 <3 <3 57 .19 .142 13 50 .58 94 .11 <3 2.27 .01 L2+00W $3+25N$ 2 11 11 188 .3 26 10 287 31 15 <3 37 30 .039	:-10	10	01-	92			- 60	-:38-	40	23	.031 -	.19	34	<3	<3			- 4		-								-		1	
L2+00W 3+75N 2 2 1 11 188 .3 26 10 287 3.11 9 <8	.14 2	.14	.01	.89	<3 1	.10	64	.51	47	20	.047	.14	32	3	<3	.3	13	4	<2	<8										•	
L2+00W 3+75N 2 21 11 188 .3 26 10 287 3.11 9 <8	.09 <2	.09	.01	2.27	<3 2	.11	94	.58	50	13	142	19	57	<3	~7	6	18	6	-2	-8	6	0/	207 1	12	19	. 7	09	•	25		
L2+00W S+25N 2 11 11 100 13 20 10 201 3.11 13 48 42 5 31 1.5 43 43 73 .30 .039 13 44 .47 79 .13 43 2.23 .01 L2+00W 2+75N 3 21 15 127 .3 30 11 171 3.31 13 48 42 5 31 1.5 43 73 .30 .039 13 44 .47 79 .13 43 2.23 .01	.09 <2	.09	.01											-	-			•		-											
	.06 <2	.06	.01	2.23	<3 2		79							-		•••				_											
	.09 <2	.09	.01	.78	<3 1	.14	97	.39	43	13			67	<3	3	.8	14	5	<2	<8	11			8	28	2.3	145	15	13	3	
L2+00W 2+25N 3 13 15 145 2.3 28 8 190 3.23 11 <8 <2 5 14 .8 5 <5 67 .17 .060 15 45 .37 77 .14 <5 1.70 .01 L2+00W 1+75N 3 11 19 115 .6 22 7 207 3.75 15 <8 <2 3 15 .8 <3 <3 75 .15 .311 10 37 .31 106 .13 <3 1.76 .01	.05 <2	.05	.01	.76	<3 1	.13	106							-	-					-										-	
	.10 <2	10	01	204	~7.2	00	116	04	5/	1/	084	28	70	~7	4	1 7	20	,	~2	-0	24		201	~~		-				-	
	.05 <2														-			-												-	
	.04 <2														-					-										-	
	.02 <2														-													-	-	-	
	.07 2													-	-														-		
L2+00W 0+25S 2 10 14 159 1.0 22 10 227 3.76 8 <8 <2 6 11 1.0 <3 3 64 .12 .194 13 40 .37 112 .12 <3 2.71 .01			.01	•••	·J 6		112		40	5	. 174	. 12	04	2	3	1.0		0	<۲	<0	8		221 :	10	22	1.0	159	14	10	2	L2+00W 0+25S
L2+00W 0+50S 1 9 5 90 <.3 29 9 397 3.05 6 <8 <2 5 14 .6 <3 3 59 .14 .244 13 40 .37 156 .11 <3 2.63 .01	.06 <2													-	_			-					-	-	29	<.3	90	5	9	1	L2+00W 0+50S
L2+00W 0+75S 1 12 4 74 <.3 48 12 166 2.52 4 <8 <2 7 11 .5 <3 3 45 .11 .071 18 42 .53 114 .12 <3 2.20 .01	.07 <2													-	-											<.3	74	4	12	1	L2+00W 0+75S
L2+00W 1+00S 1 14 6 64 .4 34 11 231 2.44 4 <8 <2 6 16 .4 <3 <3 46 .20 .167 17 38 .50 98 .10 8 1.59 .01	.06 <2														-			-								.4	64	6	14	1	L2+00W 1+00S
L2+00W 1+25S 1 8 8 44 1.0 42 10 248 2.07 10 <8 <2 8 26 .2 4 3 34 .29 .041 23 33 .72 52 .09 <3 .99 .03	.06 <2	-			-									-						-						1.0	44	8	8	1	L2+00W 1+25S
L2+00W 1+50S 2 19 25 125 1.4 59 14 286 3.42 31 <8 <2 6 14 .6 <3 <3 45 .16 .217 18 43 .47 145 .08 <3 2.43 .01	.06 <2	.00	.01	.45	<5 2	.08	145	.47	43	18	.217	.16-	45	<3	<3	.6	14	6	<2	<8	31	5.42	286 3	14	59	1.4	125	25	19	2	L2+00W 1+50S
STANDARD C3/AU-S 24 63 37 163 5.3 35 11 764 3.25 56 17 <2 22 29 23.1 17 23 78 .54 .087 21 172 .60 163 .09 25 1.95 .04	.17 16												78	23	17	23.1	29	22	<2	17	56	.25	764 3	11	35	5.3	163	37	63	24	STANDARD C3/AU-S
STANDARD G-2 2 3 3 43 <.3 7 4 526 1.95 2 <8 <2 3 72 <.2 <3 <3 40 .62 .091 11 79 .58 237 .13 3 .96 .07	.45 2	.45	.07	.96	3	. 13	237	.58	79	11	.091	.62	40	<3	<3	<.2	72	3	<2	<8				4	7			- ·			· ·

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data FA

Mandalay Resources Corp. FILE # 9803545

F

T

.....

F

Page 5

ACME ANALYTICAL																															
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	К %	W ppm	Au* ppb
L2+00W 1+75S		16	11	83	1.4	43	9	183	2.29	10	10	<2	6	13	.5	3	<3	37	.13	.081	17	36	.47	121	.10	3	2.01	.01	.08	<2	5
		11	10	63	2.5	20	6	224		22	14	<2	4	9	.2	<3	<3	33	.08	.119	14	22	.22	75	.06		1.14	.01	.05	<2	
L2+00W 2+00S	2	20	9	134	.6	54	13	296		-9	<8	<2	4	20	.7	<3	<3	56	.20	.109	13	52	.67	105	.11	<3	2.30	.01	.08	<2	143
L2+00W 2+25S		18	9	76	1.6	30	8	148		25	<8	<2	6	9	.2	<3	<3	32	.09	.066	17	24	.28	75	.05	<3	1.15	.01	.05	<2	77
L2+00W 2+50S	1		-	75	1.2	52	14			15	25	<2	6	17	.4	4	<3	36	.19	.077	17	40	.69	102	.09	<3	1.48	.01	.09	<2	40
L2+00W 2+75S	2	25	8	75	1.6	26		210 1					•	••	••	•	-														
	-		4.1	07	7	25	7	166	2 / 5	6	<8	<2	2	17	.3	<3	3	63	. 16	.110	10	42	.33	91	.12	<3	1.66	.01	.05	<2	2
L2+00W 3+00S	2	11	11	87		31	ģ	177			<8	<2		17		<3	<3	46		.119	9	40	.41	90	.10	<3	1.65	.01	.07	2	7
L2+00W 3+25S	1	11		118	.4		11	164		7	10	<2	ž	12	.6	<3	<3	52		.095	14	51	.53	87	.11	<3	2.16	.01	.07	<2	2
L2+00W 3+50S	2	16	8	90		44	7	104		9	<8	<2	7	13	.5	<3	3	52		.037	10	37	.30	59	.11	<3	1.81	.01	.05	<2	15
L2+00W 3+75S	2	13	10	52		23					8	<2	·· 5··				<3-						.46					01	05		
RE L2+00W 4+00S	- 2	17	10	60	.6	37	10	134	2.02	y	0	~2	,	14	• '	`		45					••••			-					
			_		~	77	40	17/	- o-	10	11	<2	5	14	7	<3	<3	43	. 14	.052	12	44	.47	69	.10	<3	2.54	.01	.07	<2	3
L2+00W 4+00S	2	17	8	60	.9	37		134		10			2	15	• • •	3	<3	33		.043	14	31	.36	67	.08		1.54	.01	.06	<2	25
L2+00W 4+25S	1	13	7	80	<.3	33	10			12	<8	<2	2		.4	<3	3	35		.032	13	31	.23	41	.09	_	1.46	.01	.04	<2	
L2+00W 4+50S	1	21	11	47	.9	28		112		9	<8	<2	2	23		-	~ ~ ~	66		.119	12	55	.64	146	.12	-	2.52	.01	.10	<2	_
L2+00W 4+75S	2	27	13	155	.9	54	15	249		20	<8	<2	4	15	.9	<3	-7	51		.084	13	50	.83	108	.11	-	2.09	.02	.11	<2	
L2+00W 5+00S	2	24	9	105	1.2	62	15	266	2.68	6	<8	<2	4	18	.7	<3	<3	21	.21	.004	15	50	.05	100	• * *	- 5	2.07	.02	• • •	-	
					_						- 0			7/	,	-7	17	26	.44	.071	26	35	.64	83	.08	<3	1.43	.02	.14	2	
L0+00W 5+00N	1	20	8	46	<.3	52	13			2	<8	<2	<2	34	-4	<3	<3	31		.059	13	35	.69	- 99	.09		1.22	.02	.23	3	
L0+00W 4+00N	2	14	7	69	<.3	51	11	620		4	<8	<2	4	28	.4	<3	<3	- · ·		.059	16	37	.57	75	.08		1.28	.02	.14	ž	
L0+00W 3+00N	1	12	7	43	<.3	46	8	204		5	20	<2	5	23	<.2	<3	<3	27						121	.08		1.30	.02	.11	<2	
L0+00W 2+00N	2	26	10	95	<.3	48	17	938		18	<8	<2	<2	31	.8	<3	<3	59		.098	15	81	.88 1.26		.07		1.39	.02	.14	<2	
L0+00W 1+50N	2	38	10	133	<.3	80	18	729	3.17	29	<8	<2	3	42	1.2	<3	<3	59	.54	.107	16	115	1.20	128	.00	4	1.37	.02	• 14	~2	
	1											_					~~			005	10	447	57	154	00	20	1 9/	۵/	.16	16	4
STANDARD C3/AU-S	24	62	38	164	5.2	35	11			53	18	<2	19		22.0	16	23	75		.085	19	163	.57	156	.08		1.84	.04	.43	2	
STANDARD G-2	1	3	<3	40	<.3	7	4	482	1.76	<2	<8>	<2	4	66	<.2	<3	<3	37	.55	.088	9	68	.53	226	.12	<3	.89	.07	.43	2	

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

ACME ANALYTIC

Mandalay Resources Corp. FILE # 9803545

T

Page 6

AGME ANALYTICAL																							• ·						~		A*
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	в ppm	Al %	Na %	K %	W ppm	
LA3+00N 1+00W LA3+00N 0+50W LA3+00N 0+50E LA3+00N 1+00E LA3+00N 1+50E	3 3 2 2 4	36 104 45 44 32	10 7 10 7 11	120 112 122 102 123	<.3 <.3 .5 .3 <.3	59 104 86 183 55	27	271 617 398 474 256	5.07 3.36 4.90	32 7 16 51 18	<8 <8 9 <8 <8	<2 <2 <2 <2 <2	2 <2 4 <2 4	24 30 17 13 18	.8 .5 1.0 .9 .8	<3 <3 <3 <3	<3 <3 <3 <3 <3	73 128 56 131 43	.53 .22 .08	. 153 . 098 . 073 . 058 . 079	22 11 23 9 26	97 233 124 425 68	.93	145 258 175 122 92	.07 .17 .08 .10 .06	<3 <3 <3	2.05 3.08 2.04 2.76 1.69	.01 .02 .02 .01 .01	.11 .37 .14 .08 .11	<2 <2 <2 <2 <2 <2	4 41 20 4 2
LA3+00N 2+00E LA3+00N 2+50E LA3+00N 3+00E LA3+00N 3+50E LA3+00N 4+00E	3 3 3 2 3	22 16 21 9 30	11 13 11 12 16	145 97 74 94 195	.5 .8 .4 .3 .3	35 28 26 19 57	10 8 6 13	375 186 112 243 220	3.30 2.88 2.76	10 14 10 7 23	<8 <8 8 <8 <8	<2 <2 <2 <2 <2 <2	4 <2 3 <2 5	13 12 20 29 15	1.3 .6 .9 .6 1.1	<3 3 3 <3 <3	ব ব ব ব ব ব ব	43 53 40 56 49	.11 .16 .23	.100 .139 .037 .185 .232	27 20 19 15 27	42 46 43 37 70	.41 .38 .33 .28 .76	122 88 86 126 118	.06 .08 .05 .10 .06	<3 <3 <3	1.72 1.09 1.31 1.39 2.40	.01 .01 .01 .01 .01	.11 .05 .06 .06 .08	<2 <2 <2 <2 <2	1
LA3+00N 4+50E LA3+00N 5+00E LA2+00N 5+00W LA2+00N 4+50W LA2+00N 4+00W	3 2 4 7 2	25 8 67 75 56	10 16 15 12 5	123 42 218 380 96	1.2 1.8 <.3 .3 .3	63 12 76 38 65	3 28 24	203 117 1139 1503 457	1.87 5.62 4.73	22 8 14 27 18	<8 15 <8 <8 <8	<2 <2 <2 <2 <2 <2	2 3 <2 <2 <2	16 8 30 83 32	.9 .4 1.8 2.5 .5	6 <3 <3 5 <3	ব্য ব্য ব্য ব্য ব্য	48 40 180 218 143	.04 .35 .60	.096 .075 .210 .319 .063	7	91 20 124 47 191	1.38	94 59 289 269 228	.06 .03 .17 .09 .14	<3 <3 4	1.65 .89 2.78 3.44 3.04	.01 .01 .02 .05 .01	.05 .05 .25 .18 .13	<2 <2 <2 <2 <2	59 208 98
LA2+00N 3+50W LA2+00N 3+00W LA2+00N 2+50W RE LA2+00N 2+50W LA2+00N 2+00W	3 9 1 1 2	48 64 23 23 36	9 9 9 10 9	284 558 70 72 101	.8 1.2 .5 <.3 <.3	29 30	18 10 11	1199 1068 257 257 543	4.22 2.64 2.65	11 18 3 4 52	<8 13 20 <8 <8	<2 <2 <2 <2 <2 <2	2 2 3 <2 2	34 33 15 15 32	3.0 3.4 .6 .8	ব্য ব্য ব্য ব্য	ব্য ব্য ব্য ব্য ব্য	132 292 69 69 58	.32 .18 .18	.221 .180 .043 .043 .065	11 10 8 7 20	57 57		191 141 208 211 170	.11 .06 .18 .18 .09	<3 <3 3	2.50 3.52 1.03 1.03 1.64	.02 .03 .02 .02 .02	.12 .08 .07 .06 .17	<2 <2 <2 <2 <2 <2	2 <1 1
LA2+00N 1+50W LA2+00N 1+00W LA2+00N 0+50W LA2+00N 0+50E LA2+00N 1+00E	2 2 2 3 2	45 13 45 16 15	11 8 9 11 12	102 35 107 72 106	1.5 <.3 .8	14 78 28	4 17 7		1.65 3.58 2.37	17 5 14 6 10	14 <8 <8 23	<2 <2 <2 <2 <2 <2	7 3 3 <2 4	21 7 15 17 16	.5 1.1 .7 .9	3 <3 <3 <3 <3	<3 <3 <3 <3 <3	60 31 65 52 39	.03 .18 .16	.078 .031 .080 .039 .078	27 9 18 13 22	93 20 116 56 29	1.09 .15 .99 .44 .29	116 70 150 109 157	.10 .06 .11 .06 .05	<3 <3 <3	2.23 1.08 2.29 1.41 1.20	.02 .01 .01 .01 .01	.22 .06 .11 .04 .10	<2 <2 <2 <2 <2 <2	1 1 1
LA2+00N 1+50E LA2+00N 2+00E LA2+00N 2+50E LA2+00N 3+00E LA2+00N 3+50E	2 3 1 2 2	13 28 32 33 33	11 13 17 12 12	100 87 85 85 60	<.3 2.2 1.0	33 44 38	7 10 12 11 6	266 281	1.96 2.79 2.20 2.17 2.09	8 7 5 7 8	<8 <8 <8 24 <8	<2 <2 <2 <2 <2 <2	2 <2 <2 3 2	15 18 28 19 43	1.0	ব্য ব্য ব্য ব্য	ব্য ব্য ব্য ব্য ব্য	38 46 31 36 45	. 16 . 23 . 16	.072 .040 .083 .046 .036	21 21 20 25 20	25 41 53 51 38		153 120 192 142 124	.05 .05 .03 .05 .05	<3 <3 4	1.03 1.95 2.36 1.77 1.16	.01 .01 .02 .02 .01	.09 .12 .20 .15 .07	<2 <2 <2 <2 <2 <2	2 2 1
LA2+00N 4+00E LA2+00N 4+50E LA2+00N 5+00E LA0+00N 5+00W LA0+00N 4+50W	8 6 5 2	39 26 43 111	16	250 187 161 100	.7 .7 1.1 <.3	36 34 191	10 7 11 58 57	184 332 852	3.98 2.93 3.43 6.86 6.46	43 13 11 9 10	11 13 27 <8 <8	<2 <2 <2 <2 <2 <2	<2 4 6 <2 3		.9 .8 1.3	8 3 <3 <3 <3		54 102 117	.09 .21 .61	.062 .130 .138 .141 .138	12 22 18 7 6	42 54 302	1.08 .39 .93 2.15 2.07	193 127 140 241 216	.04 .04 .07 .22 .22	ব্য ব্য ব্য	2.62 1.45 1.90 2.66 2.66	.01 .01 .01 .03 .02	.12 .08 .28 .17 .18	<2 <2 <2 <2 <2	5 40 114
STANDARD C3/AU-S STANDARD G-2	24	62						725 492	3.21 1.89	51 2	18 8	2 <2	19 6		21.9 <.2	19 <3				.085 .089	20 11		.59 .57		.09 .12		1.90 .96	.04 .08	.17 .47	16 3	

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data A

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Â	A
ache ana	ALITTICA.

Mandalay Resources Corp. FILE # 9803545

F

r-----

.....

F

F

F

									_																				20	ME ANALY	TE4.
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	8a ppm	Ti %	B ppm	Al %	Na %	K %	W ppm	Au* ppb
LA0+00N 4+00W LA0+00N 3+50W LA0+00N 3+00W LA0+00N 2+50W LA0+00N 2+00W	2 2 <1 2 2	24 50 88 91 28	7 10 3 7 10	47 77 65 79 103	<.3 .9 .4 <.3 <.3	126 68 358 127 60	21 41 16	234 491 581 358 306	2.88 4.98 2.82	4 15 5 19 22	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	<2 4 2 3 2	22 24 36 22 28	.5 1.2 .6 .4	ব ব ব ব ব ব	ব্য ব্য ব্য ব্য ব্য	54 58 77 55 62	.23 .74 .27		5 17 5 21 18	102 365	1.59 .79 4.46 1.16 .91	140 168 236 129 126	.15 .07 .23 .09 .09	6 ⁻ 8 - 6 ⁻	1.51 1.90 3.87 1.61 1.54	.03 .02 .03 .01 .01	.07 .16 .56 .14 .14	<2 <2 <2 <2 <2 <2 <2 <2 <2	<1 <1 <1 5
LAO+OON 1+50W LAO+OON 1+00W LAO+OON 0+50W LAO+OON 0+50E LAO+OON 0+50E	2 4 1 5 3	26 22 12 33 25	12 10 10 16 10	96 83 66 147 101	.6 <.3 .4 5.0 1.4	46 41 18 79 59	10 9 25	144 213 608 737 310	2.90 1.46 3.84	14 13 5 12 11	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	5 4 2 6	15 18 16 52 31	.9 .6 .5 1.6 1.1	3 <3 <3 <3 3	<3 <3 <3 <3 3	49 51 30 45 37	.15 .20 .56	.051 .041 .056 .147 .048	20 19 18 28 24	76 69 28 65 52	.56 .58 .26 .55 .52	111 83 99 335 195	.06 .06 .04 .04 .06	6 3 3	1.65 1.39 .85 4.12 2.17	.01 .01 .01 .02 .02	.06 .08 .07 .37 .22	<2 <2 <2 <2 <2 <2	3 1 <1 2 3
LAO+OON 1+50E LAO+OON 2+00E LAO+OON 2+50E LAO+OON 3+00E LAO+OON 3+50E	4 3 5 5 4	27 22 74 72 18	12 10 12 11 12	106 94 151 153 151	.5 1.2 .9 .3 .7	66 53 125 115 27	17 15 27 25 7	313 573 517	2.70 6.44 6.10	12 9 19 17 12	<8 <8 8 <8 <8	<2 <2 <2 <2 <2 <2	5 5 6 3	31 31 43 42 20	.9 .7 1.3 1.2 1.0	८३ ८३ ८३ ८३ ८३	3 4 3 3 3 3	42 36 169 156 45	.32 .20 .20	.046 .050 .127 .137 .229	27 25 20 21 22		.58 .50 2.90 2.61 .34	210 171 849 784 128	.07 .06 .18 .17 .03	8 <3 <3	2.32 1.95 3.89 3.73 1.39	.03 .02 .01 .01 .01	.22 .18 .39 .33 .06	<2 <2 <2 <2 <2 <2 <2	3 3 5 4 3
A0+00N 4+00E RE LA0+00N 4+50E A0+00N 4+50E A0+00N 5+00E BLA 10+00N	3 3 4 3 2	14 9 9 18 33	14 9 9 11 8	148 59 61 190 145	.4 .3 .6 2.5 .7	24 13 14 39 92	8 3 11 19	169	1.97 2.00 2.74	11 8 13 11	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	6 4 5 7 4	14 10 10 10 17	1.5 .6 .5 1.2 .9	<3 <3 <3 <3 <3	ব্য ব্য ব্য ব্য ব্য	62 39 39 32 62	.08 .08 .10		20 21 21 23 17	37 17 17 30 146		168 60 61 88 133	.06 .04 .04 .04 .11	6 <3 <3	1.84 .75 .76 2.01 2.51	.01 .01 <.01 .01 .01	.09 .03 .04 .07 .12	<2 <2 <2 <2 <2 <2	
LA 9+50N LA 8+50N LA 8+00N LA 7+50N LA 7+00N	2 1 1 1 2	38 156 87 55 10	6 3 <3 4 8		<.3 .3 .5 <.3 <.3	89 115 100 127 26	18 43 40 25 5	479 525 413	6.18 7.21	18 61 11 12 7	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	4 2 2 2 2 2 2	15 35 23 50 9	1.0 .7 .8 .9 .2	4 <3 <3 3 3	<3 4 <3 4 3	66 138 176 108 46	.48 .29 .82	.070 .079 .075 .067 .024	20 7 9 9 9	213 231 218	.98 2.33 3.38 2.10 .44	107 107 259 174 66	.12 .28 .26 .21 .08	<3 <3	2.41 4.07 5.48 3.37 .89	.01 .02 .01 .02 .01	.11 .47 .56 .27 .05	<2 <2 <2 <2 <2 <2	
ELA 6+50N ELA 6+00N ELA 5+50N ELA 5+00N ELA 4+50N	2 1 1 3 2		9 10 9 11 7	115 131	.8 <.3 <.3 .5 .5	390 39 43 46 48	9 11 11	171	3.04 3.67 3.38	31 12 12 23 33	<8 <8 <8 <8 9	<2 <2 <2 <2 <2 <2	5 <2 7 3	27 12 14 11 13	.7 .4 .6 .4	6 3 <3 <3 <3	3 4 <3 3 3	58 76 90 60 65	. 16 . 18 . 14	.041 .049 .061 .113 .075	21 10 11 22 10	109 124 88	1.19 .77 .93 .65 .79	106 97 118 103 87	.09 .17 .19 .05 .11	<3 <3 6	2.07 1.54 1.82 2.01 1.86	.01 .01 .01 .01	.10 .11 .13 .09 .07	<2 <2 <2 <2 <2	<
ALA 4+00N ALA 3+50N ALA 3+00N ALA 2+50N ALA 2+50N ALA 2+00N	3 1 3 2 1	30 73 32 17 67	9 <3 12 11 <3	98 106	<.3 <.3 .4 .5 <.3	61 185 69 37 119	14 41 15 9 34	349 213	6.03 3.29 2.76	15 4 17 8 10	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	7 2 7 5 <2	16 42 16 16 30	.5 .9 .6 .7 .7	3 <3 3 4 <3	<3 4 <3 4 3	60 81 55 55 81	.68 .21 .19	.079 .028 .068 .077 .197	7 26 20	386 114 65		102 237 111 87 367	.09 .21 .09 .08 .20	8 <3 <3	1.65 4.53 1.56 1.42 3.30	.01 .01 .01 .01 .01	.11 .34 .15 .08 .24	<2 <2 <2 <2 <2	<
STANDARD C3/AU-S STANDARD G-2	25		37 <3		5.8 <.3	35 7		723 504		54 2	22 <8	2 <2	23 3		22.5 <.2	19 <3	24 <3	78 39		.086 .092	19 10	171 76	.59 .58	144 215	.09 .12		1.87 .94	.04 .07	.17 .45	16 2	

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data____ FA

ACME ANALY (ISO 9	002 .	Accr	edi	ted	Co.)		•	0.		OCH								FIC	ATE												Ł
H				Ma	nda	lay	Re	<u>sou</u> 501 -	<u>rce</u> 595	B C	orp ^{St., V}	. Pl /ancol	ROJ] Jver E	ECT BC V60	DL 215	PR(Sut	<u>OPE</u>	RTY ed by	F : Dur	ile o Adau	# nec	980:	3274	4							
MPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg X	Ba ppm	Ti X	8 ppm	Al %	Na X	K %	W ppm	AI Pi
+00W 0+00S +00W 0+50S +00W 1+00S +00W 1+50S A +00W 1+50S B	1 3 3 2 1	2 42 25 12 10	7 11 9 12 5	20 88 101 78 112	.3 .8 .4 .7 .4	5 71 57 40 41	17 12 10	116 288 261 198 183	3.36 3.32	2 12 10 8 7	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	2 8 5 7 6	18	.2 1.2 .9 1.0 .7	3 3 3 3 3 3	ও ও ও ও ও	23 52 61 61 44	.16 .19 .31	.024 .075 .232 .060 .102	6 19 13 14 16	11 54 46 47 37	.10 .92 .68 .45 .57	95	.06 .14 .11 .13 .10	<3 <3 <3 <3		.02 .01 .02	.05 .17 .06 .06 .06	<2 <2 <2 <2 <2 <2 <2	
+00W 2+00S +00W 2+50S +00W 3+00S +00W 3+50S +00W 4+00S	2 1 2 1	13 15 17 11 13	12 4 8 6 3	70 61 91 133 52	.4	28 47 52 46 41	10 13 14	203 207 218 227 198	2.13 2.76 3.23	15 3 9 8 3	<8 <8 <8 <8 <8	~? ~? ~? ~?	4 5 6 5 5	16 20 19 19 12	.8 .4 .6 1.2 .2	ব্য ব্য ব্য ব্য ব্য	८३ ८३ ८३ ८३ ८३	60 38 43 53 30		.061	10 16 19 12 13	37 36 41 47 28	.36 .53 .67 .74 .54	86 101	.13 .11 .11 .12 .08	3 3 3	1.56	.01 .02 .01	.07 .09 .06 .07 .09	2 <2 <2 3 <2	
+00W 4+50S +00W 5+00S +00W 1+00N +00W 0+50N _L0+00W 0+50N	2 2 2 3 2	16 14 50 32 32	7 8 10 14 16	107 66 158 94 92	1.1 .5 2.2 2.1	52 39 99 64 64	10 26	187 193 1068 1010 997	2.75 4.32 3.72	8 6 37 14 16	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2	5 5 3 4	21 55 54	1.1 .9 2.1 1.9 1.9	<3 <3 4 <3 <3	ব্য ব্য ব্য ব্য	51 53 84 55 54	.23 .73 .57	.082 .072 .110 .088 .088	11 12 13 22 23	156 63	.71	87 240 200	.10	<3 <3	2.57 2.12 2.58	.01 .02 .02	.12 .09 .16 .19 .19	<2 <2 <2 <2 <2 <2	
+00W 0+00 +00W 0+50S +00W 1+00S +00W 1+50S +00W 2+00S	2 6 1 1	41 22 15 12 20	15 17 8 8 14	92 432 103 81 42	.5 .5	62 64 37 27 17	18 11	1094 370 321 186 66	3.94 2.20	18 23 11 9 35	<8 <8 <8 <8 <8	< < < < < < < < < < < < < < < < < < <	4 4 4 2	•••	1.7 3.7 .8 .5 .4	ব্য ব্য ব্য ব্য	८३ २३ २३ २३ २३	54 78 35 40 18	.30 .27 .17	.083 .185 .069 .049 .031	26 11 15 13 9	59 50 32 28 5	.59 .62 .46 .35 .05	128	.10 .11 .09 .10 .01	ব্য ব্য ব্য	2.52 3.07 1.48 1.18 .35	.01 .02 .01	.22 .11 .09 .06 .03	<2 <2 <2 <2 <2 <2 <2	
+00W 2+50S +00W 3+00S +00W 3+50S +00W 4+00S +00W 4+50S	1 <1 2 1	64 6 13 15 24	12 3 9 6 6			34 3 41 39 47	6 1 10 12 12	167 216	.31 3.30	11 <2 7 3 4	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	<2 <2 4 7 7	84 16 26 11 20	2.3 .2 1.2 .8 .4	ব্য ব্য ব্য ব্য ব্য	८३ ८३ ८३ ८३ ८३	25 10 66 45 42	.17 .26 .16	.052 .016 .052 .061 .077	13 5 11 19 22	18 4 62 49 40	.20 .03 .59 .69 .59	33	.01 .13 .15	<3 <3 <3	.85 .14 2.80 2.84 1.91	.01 .01 .01	.03 .04 .03 .25 .14	<2 <2 <2 <2 <2 <2 <2	
HOOW 5+00S ANDARD C3/AU-S ANDARD G-2	2 25 1	23 64 3	9 35 3		.6 5.7 <.3	49 38 8		234 796 513	3.39	8 56 <2	<8 25 <8	<2 <2 <2	6 22 4	29	1.3 24.4 <.2	<3 15 <3	<3 23 <3		.31 .57 .60		14 18 7	38 176 74		151		20	2.97 1.96 .97		.09 .17 .46	<2 15 2	

DATE REPORT MAILED: Ang 12/98 SIGNED BY D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS - SAMPLE TYPE: SOIL Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: AUG 5 1998

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data / 👘 FA

ACME ANALY (ISO 9	TICA	L LA	BOR	ATOR	IES Co.)	LTD	•	8		. H7								V6A			PH	ONE (604) 253	-31!	58 F.	AX (6	04)2	253-	1710	ь ••
	002								GE	OCH	EMI	CAL	AN	ALY	SIS	CE	RTI	FIC	ATE											A .	
ŤŤ							M	and	ala	<u>y R</u> 50	<u>eso</u> 11 - 5	urc 95 Ha	es we St	Cor	p. Incouv			# 9 215	803	391									_		Ľ
MPLE#	Mo	Cu	Pb ppm	Zn ppm	Ag ppm	Ni	Co	Mr. ppm	Fe %	As ppm	U mqq	Au ppm	Th	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Cə %	P X	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	K %	W Maqa	Au Pf
	ppm		•••			 58	10	385		<2	<8	<2	3	21	<.2	<3	<3	26	.30	.071	17	34	.71	69	.08	<3	1.35	.02	. 14	3	•
00W 10+00N 00W 9+50N	1	15 15	5	47 46	<.3 <.3	57	11	411		4	<8	<2	3	22	.2	<3	<3	26		.070	18	34	.70	68	.08		1.34	.02	. 13	3	
00W 9+00N	1	18	5	57	<.3	57	10	176		3	<8	<2	4	22	.3	<3	<3	28		.063	19	40	.64	100	.10		1.62	.02 .01	.18 .15	35	
DOW 8+50N	1	13	6	44	<.3	62	11	386		2	<8	<2	3	17	.2	<3 <3	ব্য ব্য	24 57		.072	17 14	33 41	.77	65 117	.10	-	1.51	.05	.23	ź	
N00+8 W0	4	25	11	99	<.3	63	11	498	2.52	9	<8	<2	4	67	.9	• • •	N 3	1	.40	. 104	14			•••					_	_	
0W 7+50N	2	17	7	58	<.3	46	12	435	2.66	4	<8	<2	4	20	.3	<3	<3	37		.045	18	44	.55	70	.11	-	1.80	.01	.13 .26	2 <2	
OW 7+00N	3	23	5	77	<.3	40	8	456		6	<8	<2	5	33	.6	<3	<3	60		.077	11 15	35 37	.63 .80	102 82	.08	_	1.27	.04 .02	.20	4	
)OW 6+50N	2	17	6	62	<.3	63	12	534		4	<8 <8	<2 <2	4	28 29	.4 .3	<3 <3	<3 3	32 25		.070	15	31	.77	70	.08		1.17	.02	.17	ż	
00W 6+00N		13	4	51 61	<.3 <.3	61 32	10 10	400 274			>0 <8	<2	5	16	.4	3	3	37		.031	12	42	.42	51	.11	<3	1.51	.01	.10	4	
OW 5+50N	3	10		01	`. 」	JL	10	£14				-	-			_	_						70	400	43	.7	4 14	01	.08	2	
IOW 5+00N	2	11	9	59	<.3	26	10	309		2	<8	<2	4	17	.6 .3	<3 <3	<3 <3	47 35		.033	11 21	40 40	.38	109 60	.12		1.46	.01 .02	.00	3	
DOW 4+50N	2	16	7	48	<.3	47 44	12	298 148		5 2	<8 <8	<2 <2	6 3	18 12	.5	3	<3	33		.042	19	46	.51	70	.11	-	2.03	.02	.14	2	
)ow 4+00n)ow 3+50n	1 2	20 13	9	67 111	<.3 .5	28	8	140		6	<8	<2	5	12	.6	<3	<3	68		.131	13	42	.37	95	. 13		1.92	.01	.06	<2	
DOW 3+00N	3	29	10	95	<.3	44	15	273		10	<8	<2	3	24	1.4	<3	<3	56	.21	.070	11	43	.57	76	. 10	<3	2.48	.01	.08	<2	
		74		98	<.3	46	16	279	3 10	12	<8	<2	3	25	1.3	<3	<3	58	.22	.071	- 11-	45	. 59	-78	. 10	-	2.54	.01	.08		
2+00W 3+00N 00W 2+50N	3	31 11	11	58		16	5	207		6	<8	<2	3	10	.5	<3	<3	41		.034	10	23	.22	65	.10		.95	.02	.06	<2	
DOW 2+00N	3	15	16	134	.9	35	9	152	4.57	19	<8	<2	5	19	1.0	4	3	90		.337	11	50	.46 2.58	107 121	.14		2.84	.01 .01	.07	<2 <2	
DOW 1+50N	2	66	6	130	.7	53	25	436		34	<8	<2 <2	3	32 23	1.2 .9	3 <3	3 <3	170 52		.060	9	90 35	.27	101	.12	-	2.09	.01	.06	<2	
00W 1+00N	2	10	9	93	.3	22	11	186	2.80	10	<8	×2	2	23	.7	• • •	` J	22		.070					• • •					_	
00W 0+50N	4	18	8	128	.6	50	11	198	3.39	16	<8	<2	5	21	.8	<3	<3	57		.183	11	44	.49	90	.11		2.59	.01	.10 .16	<2 <2	
DOW 6+00N	3	41	8	140	.5	88	20	783		36	13	<2	3	46	1.4	3	<3	66		.114	13 20	125 56	1.39	132 135	.09		1.55	.02 .02	.19	~2	
DOW 5+50N	2	18	7	89	<.3	55	14	314		2	9 <8	<2 <2	4	42 40	.3 .4	<3 <3	<3 3	39 34		.074	17	45	.62	119	.12		1.72	.03	.15	2	
DOW 5+00N	<1	16 19	8 7	83 57	<.3 <.3	44 50	10 8	165 134		<2	<0 <8	<2	4	27	.3	<3	<3	32		.063	20	46	.58	104	.10	<3	1.80	.02	.13	2	
)ow 4+50N	'	19	1	,,	·	50	Ŭ				-					_	_			A / F				105	10	.7	1.81	.02	. 13	2	
00W 4+00N	1	19	7	67	<.3	59	11	155	-	4	<8	<2	4	32 25	.4 .4	< ব	<3 <3	32 23		.065	21 14	50 26	.58 .34	105 72	.10	_	1.25	.02	.06	<2	
00W 3+50N	1	16	6	41	<.3	28 54	5 14	82 462	.81	4 12	<8 <8	<2 <2	2 3	25 40	1.2	3	<3	54		.095	10	47	.69	138	.10		1.71	.02	. 15	<2	
00W 3+00N 00W 2+50N	2	25 57	9 8	131 139	.8 .5	103	25	582		33	<8	<2	3	38	1.1	< 3	<3	93	.36	.117	15		1.70	151	.10		2.45	.02	.10	<2	
DOW 2+00N	3	50	9	141	<.3	90	24	951		37	<8	<2	3	41	1.5	4	<3	79	.48	.127	15	142	1.48	146	.10	<3	1.91	.02	. 15	<2	
	_		~			63	77	1754	7 40	33	<8	<2	2	45	1.0	4	<3	75	.64	.100	14	119	1.37	134	.10	<3	1.79	.03	.12	<2	
00W 1+50N	3	42 19	9 11	111 127	<.3 1.0	82 33	23	1356		دد 20	15	<2	5	12		3	<3	55		.242	11	32	.37	81	.10	<3	1.67	.01	.07	<2	
00W 1+00N 00W 0+50N	4	21	12	78	2.1	45	12	809		18	22	<2	3	79	1.1	<3	<3	43		.078	20	46	.47	183	.07		1.96	.02	.16	<2	
NDARD C3/AU-S	25	63	32	166	5.5	37	11	741	3.24	56	13	<2	20		23.6	18	23	80		.090	17	166	.60	150	.09		1.90	.04 .09	.17 .48	18 2	
NDARD G-2	1	3	<3	42	<.3	8	4	497	1.91	<2	<8	<2	5	74	<.2	<3	<3	40	.59	.095	7	72	.58	228	.12		1.04	.07	.+0		

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND MASSIVE SULFIDE AND LIMTED FOR NA K AND AL. - SAMPLE TYPE: SOIL AU* - AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED.(10 GM)

SIGNED BY TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

Data

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: AUG 11 1998 DATE REPORT MAILED:

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

1Jug 14/98

	9002	ACC	real	Ltea		,			GI	EOCI	HEM	CAI	IA L	VAL Y	SIS	S CE	ERTI	IFIC	CATE												Δ
††				Ma	anda	alay	r Re	esou	irce	<u>es (</u>	<u>Corr</u> 01 -	<mark>595</mark> н	PROU	JEC] St., V	<u>r</u> DI /ancou	J CI ver B	LAIN	<u>45</u> : 215	Fil	e #	98	035							-		
MPLE#	Mo	Cu	Pb ppm	Zn ppm	Ag	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	K %		Au Pf
			· · · · · · ·						70				<2	2	7	<3	<3	2	02	.001	<1	23	.01	40	<.01	<3	.02	.01	<.01	8	
86551	3	5	40	86	<.3	5	1	53	.39	57	<8 - 0	<2	<2	2	<.2	उ	<3	1		.001	2		<.01		<.01	<3	.03	.01	.01	<2	36
86552	4	6	44	19	4.7	11	1	23	.87	53	<8	4		_	`. 2	3	<3	2		.009	4	26	.01	16	<.01	<3	.09	.02	.02	9	
86553	3	10	19	14	1.0	6	1		1.35	84	<8	<2	<2	6	.2	-	<3	3		.027	- 7	16	.13		<.01	<3	.08	.01	.03	<2	
86554	3	5	14	18	1.1	11	2	499		40	<8	<2	<2	19	<.2 <.2	<3	<3	2		.040	2	22	.05		<.01	<3	.06	.01	.02	9	
86555	3	7	6	12	.3	6	2	189	1.00	4	<8	<2	<2	14	۲.۲	<3	5	2	. 23	.040	-			.,		-					
86556	3	7	<3	6	<.3	9	1	110	.45	<2	<8	<2	<2	37	<.2	<3	<3	2		.001	<1	16	.01		<.01	<3	.04	.01	.01	<2	
86557	2	4	63	22	.3	6	2	1540	1.08	3	8	<2	3		.9	<3	<3	-			1	18	.04		<.01	-	.11	.01	.02	<2	
86558	<1	1	<3	7	<.3	1	<1	20	.07	<2	<8	<2	<2	2655	.3	<3	<3		34.19		<1	1	.20		<.01	<3		<.01			1
	3	142	Š	60	1.0	27	22	484		6	<8	<2	2	46	<.2	<3	3	257		.143	4		1.76	180	.18		1.94	.08	.57	2	
586559		40	3	38	<.3	24	16	479		ž	<8	<2	<2	114	<.2	<3	<3	155	.89	.130	1	55	1.83	270	. 19	<3 7	2.03	.09	1.21	<2	
86560		40	2	50	·	24				•	-	-										_				-		~~	40		
586561	2	18	6	30	<.3	8	6	271	2.61	143	<8	<2	3	34	.3	3	<3	76		.134	15	7	.89	97	.05	_	1.40	.09	.18	<2	
86562	5	11	21	12	.3	8	14	104	6.94	4994	<8	<2	3	98	<.2	25	<3	10		.111	12	9	.04	157			.45	.13	.18	2	
586563	1	19	5	41	<.3	66	21	963	4.24	50	<8	<2	3	740	.8	<3	<3	52	8.24		4	42	3.11	140			.51	.03	.25	<2	
		3	ś	52	<.3	3	5	318		30	<8	<2	4	47	<.2	3	<3	95		.128	13	7		351	.21	-	1.53	.13	.80	2	
586564	2	9	19	8	.6	10	11		5.14	2961	<8	<2	3	25	<.2	15	<3	6	.17	.119	8	9	.03	65	<.01	5	.29	.08	. 13	<2	
86565	2	,	17	U	.0		••				_																			~	
W 50/5/5	2	9	20	6	.7	9	10	54	5.00	2864	<8	<2	3	24	<.2	16	<3	6	. 16	.116	8	5	.03		<.01	-	.28	.07	.13	<2	
N 586565	52	82	8	108	1.1	14	2		1.67	17	<8	<2	5	63	.7	<3	<3	287	.78	.163	11	88	1.04	620	.07		2.39	.20	.55	4	
86566	1	82	8	33	<.3	58	18	396		7	<8	<2	<2	139	.2	<3	<3	66	2.58	.119	2	203	1.46	553	.20		1.22	.09	.76	<2	
586567			7	75	<.3	9		1367		23	<8	<2	3	453	.4	<3	<3	57	6.60	.243	7		1.85	156	.01	10	.69	.06	.34	<2	
586568	2	188	1	60	<.3	184		1140		31	<8	<2	2	400	.2	6	<3	151	5.92	.107	3	251	3.42	257	.10	<3 2	2.23	.03	.99	<2	
586569		78	2	00	、	104	51	1140	2.07	51			~			-	_														
NDARD C3/AU-R	24	62	33	170	5.5	34	12	724	3.25	56	21	4	19	28	23.1	21	21	77		.085	17	168	.57		.09		1.84	.04	.16	18	
ANDARD C37AU-R	1	3	3		<.3	8		485		3	<8	<2	3		<.2	<3	<3	39	.58	.091	6	73	.56	213	.12	<3	.92	.07	.44	2	

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND MASSIVE SULFIDE AND LIMTED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK AU* - IGNITED, AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED.(10 GM) Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: AUG 17 1998 DATE REPORT MAILED: Huy 20/98

Data 🦌 FA

ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.) 852 B. HASTINGS ST. VANCOUVER BC V6A 1R6

GEOCHEMICAL ANALYSIS CERTIFICATE

PHONE (604) 253-3158 FAX (604) 253-1716

Æ

Data A/FA

Mandalay Resources Corp. File # 9803787 501 - 595 Howe St., Vancouver BC V6C 215 Submitted by: Ed Ronyecz

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	·Ni ppm	Co ppm	Mn ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg X	8a ppm	Ti X	B مرد	AL %	Na %	к Х	W ppm	Au* ppb
					1 5	32	35	443	7 02	740	<8	<2	2	31	.8	17	<3	236	.49	. 163	8	107	2.42	62	.07	ব	2.16	.04	.29	2	25
M 586570	6	180	194	156	1.5		38	554		<2	<8	<2	<2	31	.6	7	3	123		.152	5		2.29	193	.29	<3	2.34	.09	1.95	<2	1
M 586571	5	128	80	129	.6	91	57	726		<2	<8	<2	<2	93		3	3		3.48		3		2.11	176	.13	<3	1.79	.05	.79	<2	1
H 586572		103	80	107	.8	81				101	_	<2	~2	296	.7	25	<3		8.33		<1		2.64	170	<.01	<3	.50	.01	.30	<2	5
M 586573	1	124	28	70	.4	108		1022			<8			415	.3	22	<3		4.12		2	6		158		<3	.37	.03	.23	2	3
M 586574	.2	41	55	105	.8	20	8	1114	5.14	19	<8	<2	<2	412		2	5	y 1	4.12	.002	٤.		. 7 1	150						-	
		/ 5	14	150	7	24	8	1260	2 02	6	<8	<2	<2	394	.7	<3	<3	80	9.85	.056	<1	23	2.18	71	<.01	<3	1.12	.03	.06	<2	<1
N 586575		45	16	150	• • •	226		857		7	<8	<2	8	697	.6	3	3		5.68		44			1312		<3	3.52	.05	2.89	<2	1
M 586576	2	83	40	73	.8					20	<8	<2	<2	306		~ ~	ح		3.47		2		2.14		<.01	3	.79	.06	.17	<2	1
M 586577	4	177	37	95	.9	19		1080			-	-		195		7	3		3.84		ž		2.86		.01	Ā	1.84	.03	.21	<2	3
M 586578	4	179	24	120	.5	28	- 54	1221		< <u>2</u>	<8	<2	<2				-				6	21			.01	5	.59	.02	.30	<2	12
N 586579	51	13	18	234	.9	49	5	40	1.92	3	<8	<2	ు	28	.2	11	ও	135	. 37	. 194	0	21	. 12	221	.01	,					
		129	22	74	.5	14	2/	1144	5 18	18	<8	<2	<2	479	.5	3	<3	52	6.37	.202	2	8	1.84	123	.01	3	.61	.05	.30	<2	6
M 586580	4					9		1342		13	<8	<2	<2	373	4.0	Š	3		4.39		6		1.55		.02	<3	.75	.04	.40	<2	11
M 586581	13	105	22	234	.4					16	~8	~2	<2	384	4.1	ő	<3		4.52		7		1.59	126	.02	<3	.76-	.04	.41	<2	6
RE N 586581	13	106	22	239		10		1377		10	-		<2	210	.3	Ś	<3		3.28		ż	16			<.01	<3	.48	.01	.24	6	1
M 586582	6	120	18	21	.4	14	18				<8	<2				उ	7		2.09		65			32	.14		3.66	.25	. 14	<2	1
M 586583	1	350	15	96	1.0	58	23	536	5.00	<2	<8	<2	23	121	.5	••	3	17	2.07	.035	0,2	105	1.37	26	• • •		2.00		• • •	-	
M 586584	5	61	19	81	.5	11	5	398	3.18	<2	<8	<2	2	31	.7	3	<3	232	.22	.093	8	64	1.30		.20		1.95		1.23	<2	4
		119	15	40	.4	55	27	305		<2	<8	<2	<2	106	.3	<3	<3	64	1.71	.073	4	54	1.26	212	.20		1.18	.08	.48	<2	1
M 586585	1	66	37	166	6.3	38	12			58	26	7	22		24.1	22	25	83		.091	19	173	.62	155	.09	19	1.99	.04	. 19	16	486
STANDARD C3/AU-R	26	- 00	51			50		519		<2	<8	<2		76		<3	3	41		.095	9	77		225	.13	<3	.99	.09	.48	2	<1
STANDARD G-2	1	د	<u> </u>	42	<.3		4	212	1.90	~~		~~			- 0 64																

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 2-2-2 HCL-HH03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND MASSIVE SULFIDE AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK AU* - IGNITED, AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED.(10 GM) Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: AUG 31 1998 DATE REPORT MAILED: Sept 8/98

ACME AN	5 90)2 A	ccre	dit	ed C	.)					снь	MIC	TAL	ANZ	LYS		ER B CER													253-	
A A								Ma			r Re	. 801	irce	es (Corp , Vank	•	Fil	e ŧ	ŧ 9;		392										Ĺ
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn opm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe X	As ppm	U ppna	Au ppm	Th ppm		Cd ppm	Sb ppm	Bi ppm	V ppm	Ca X		La ppm	Cr ppm	Mg X	Ba ppm	Ti X	8 ppm	Al X	Na X	К %		Au Pi
I,II III,IV RE III,IV	4 4 5	21 23 23	5 11 10	68 73 76	3.0 .8 .7	71 93 95	22	1184 1486 (1505 (5.37	17 19 19	<8 <8 <8	32 <2 <2	6 5 6		.5 .5 .5	ব্য ব্য ব্য	<3 4 <3	88	.53	.053 .050 .051	19	115	1.22 1.54 1.57	83	.09 .11 .11	<3	1.44	.06 .06 .06	. 15	81	1 ⁷ 225
		T	CP HIS LE	ACH	IS PA	RTIAL	FOR	MN FE	SR C	APL	A CR I	MG BA	TI B	3 W AN	D MASS	SIVE	SULFII	DE AN	D LH	MTED I	FOR NA	DILUI K AN	IED TO	10 M	LWIT	H WAT	ER.				
		-	SAMPL	ETY	PE: P/	AN COL 0 'RF	NC. ′are	AU Rerui	r - I(∩s ann	GNITE d'RR					XTRACI																
		<u>5</u>	amples	Deg			<u> </u>					<u> </u>			÷				7	P								•			
DATE RE	CEIV	_	<u>amptes</u> AUG					PORT): /	An	g 19	/98	r s	IGNI	ed B	y.C	l	۲ 	p	. TOY	E, C.I	EONG,	. J. W	ANG;	CERT	IFIED	B.C.	ASSA	YER
		BD:	AUG	1 19	998	DATI	e re	PORT	' MA	ILEI): /	An	g 19	/98	· ´ s	IGNI	ed B	y.(<u>.</u> .]	۲ 	p	. TOY	E, C.I	.EONG,	. J. W	ANG;	CERT	IFIED	B.C.	ASSA	YER
		BD:	AUG	1 19	998	DATI	e re	PORT	' MA	ILEI):	An	g 19	/98	r s	IGNI	ed B	y.C	l	۳ 	p	. TOY	E, C.I	.EONG,	. J. W	ANG;	CERT	IFIED	B.C.	ASSA	YER
		BD:		1 19	998	DATI	e re	PORT	' MA	ILEI): /	An	g 19	/98	- s	IGNI	ed B	y. (<u>.</u>	۲ 	•••• p	. TOY	E, C.I	.EONG,	. J. W	ANG;	CERT	IFIED	B.C.	ASSA	YER
		BD:	AUG	1 19	998	DATI	e re	PORT	' MA	ILEI): /	An	g 19 ₁	/98	- S	IGNI	ED B	9 x .C	<u>.</u>	۲ 	p	. TOY	E, C.I	.EONG,	. J . W	ANG;	CERT	IFIED	в.с.	ASSA	YER
		BD:	AUG	1 19	998	DATI	e re	PORT	' MA	ILEI): /	An	g 19	/98	- s	IGNI	ed B	y	2 - 7	۲ 	p	. TOY	E, C.I	.EONG,	. J. W	ANG;	CERT	IFIED	B.C.	ASSA	YER
		BD:	AUG	1 19	998	DATI	e re	PORT	' MA	ILEI): /	An	g 19	/98	s	IGNI	ED B	y. (۳ 	p	. TOY	E, C.I	.EONG ,	. J_ W	ANG;	CERT	IFIED	B.C.	ASSA	YER
		BD:	AUG	1 19	998	DATI	e re	PORT	' MA	ILEI): /	An	g 19	/98	s	IGNI	ED B	y. C		۳ 	p	. TOY	E, C.I	.EONG,	. J_ W	ANG;	CERTI	I F I E D	B.C.	ASSA	YER
		BD:	AUG	1 19	998	DATI	e re	PORT	' MA	ILEI):)	An	g 19	/98	Ś	IGNI	ED B	y. C	<u>}</u>	۳ 	p	. TOYI	E, C.I	.EONG,	. J. W	ANG;	CERT	IFIED	B.C.	ASSA	YER

SAMPLE# Mo Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Mg Ba Ti B All Na K W Au ppm																:9 S																
E 138702 E 138703 E 138703 E 138703 E 138703 E 138704 E 1387	SAMPLE#	1					N i ppm		Mn ppm										V ppm		P %						-			К %		
E 138703 2 8 30 3 2.5 5 1 36 .58 31 < 8 2 < 2 2 < 2 < 3 < 3 3 .01 .002 1 23 .02 4 $<$.01 < 3 .04 $<$.01 .10 8 1540 E 138704 2 7 3 21 $< .3$ 6 1 65 .65 23 < 8 < 2 < 2 4 $< .2$ < 3 < 3 1 .02 .011 3 20 $<$.01 4 $<$.01 < 3 .07 .01 .12 7 18 RE E 138704 2 6 < 3 21 $< .3$ 5 1 64 .63 21 < 8 < 2 < 2 4 $< .2$ < 3 < 3 1 .02 .012 3 19 $<$.01 $< 1 <$.01 3 .07 .01 .11 7 18 ICP500 GRAM SAMPLE IS DIGESTED WITH 3ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND MASSIVE SULFIDE AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK AU* - IGNITED, AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED.(10 GM) Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.	E 138701	2	6	4	4		6	4						4																		
E 138704 2 7 3 21 <.3 6 1 65 .65 23 <8 <2 <2 4 <.2 <3 <3 1 .02 .011 3 20 <.01 4 <.01 <3 .07 .01 .12 7 18 RE E 138704 2 6 <3 21 <.3 5 1 64 .63 21 <8 <2 <2 4 <.2 <3 <3 1 .02 .012 3 19 <.01 <1 <.01 3 .07 .01 .11 7 12 ICP500 GRAM SAMPLE IS DIGESTED WITH 3ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND MASSIVE SULFIDE AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK AU* - IGNITED, AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED.(10 GM) Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.		4	195	-				19														4										
REE 138704 2 6 3 21 <6 3 21 <8 <2 <2 4 <.2 <3 1 .02 .012 3 19 <.01 <1 <.01 3 .07 .01 .11 7 16 ICP500 GRAM SAMPLE IS DIGESTED WITH 3ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND MASSIVE SULFIDE AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK AU* - IGNITED, AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED.(10 GM) Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. Au Au Au		2	7		-			i														3										
THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND MASSIVE SULFIDE AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK AU* - IGNITED, AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED.(10 GM) Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.		2					5	1							4		<3	<3	1			3			<1	<.01	3	.07	.01	.11	7	17
	DATE REC	EIVE	D:	SEP 3	50 199	98]	DATE	REI	PORT	MAJ	LED	: ()	xt.	61	19	f s:	IGNE	D BY		/[[/.	<u>Ų</u>	J.d.	TOYE	, C.LE	ONG,	J. WA	NG; C	ERTI	IED E	i.C. /	ASSAY	ERS

.

		AL		RAT		ts I			E	2 E	ls	TI]s	т.	kc	:01	Јв	C	A.	 	1		:(6.	., b 5	53-2	<u>B</u>	 Fi	J	4)	_ 1 <u>17</u>	ī. /
	900	Z AC	cre	aite	a C	0.)				GEO	CHE	MIC	AL	ANA	LYS	IS	CER	TIF	ICA	TE										Å	А
TT	-	-				Ch	<u>ris</u> 37	top. 07 W.	her 34th	, P	ete Vanc	r A ouver	BC V	ROJ 6N 20	ECT C9 s	BC: Submit	98- ted b	<u>1</u>] y: Pe	File ter A	e # . Chr	98 istop	0433 her	8			i Na li				Ĩ	£
SAMPLE#	Mo ppm		Pb ppm	Zn ppm	Ag ppm	Ni ppm	Có ppm	Mn ppm		As ppm	U ppm	Au ppm	Th ppm	Sr ppm		Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm		Ba opm	Ti % p	8 ppm	Al %	Na %	К %		Au* \ ppb \
E 138701 E 138702 E 138703 E 138704 RE E 138704	2 4 2 2 2	6 195 8 7 6	4 8 30 3 <3	56 3 21	<.3 1.0 2.5 <.3 <.3	6 22 5 6 5	4 19 1 1	594 36 65	3.77 4.30 .58 .65 .63	34 31 23	<8 <8 <8 <8 <8 <8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4 3 2 2 2 2	4	<.2	5 3 3 3 3 3	ও ও ও ও ও ও ও ও	6 258 3 1 1	.14 .56 .01 .02 .02	.128 .002 .011	9 4 1 3 3	6. 731. 23. 20<. 19<.	87 2 02 01	74 <. 52 . 4 <. 4 <. <1 <.	.21 .01 .01	42 <3 <3	2.18 .04 · .07	.07 .11 <.01 .01 .01	1.03 .10 .12	2 <2 8 1 7 7	540
DATE REC	CEIVE	THIS ASS/ - S/ <u>Sam</u> y	S LEA AY RE AMPLE oles	CH IS	S PAR ENDED E: RO nning	TIAL FOR CK <u>'RE'</u>	FOR M ROCK AU* AU*	IGESTI N FE S AND CO - IGI Reruns	ED WI SR CA ORE S NITED S and	TH 3MI P LA AMPLES , AQU/ 'RRE	CR M CR M S IF (A-REG are	-2 HC G BA CU PB IA/MII Reje	L-HNO TIBI ZNA BKEX CtRe	3-H20 W AND S > 1 TRACT runs.) AT 9 MASS X, AG , GF/	95 DEG. SIVE SU S > 30 AA FIN	C FI DLFID PPN 0 IISHE	OR ONE E AND & AU 3 D.(10	E HOUR LIMIT 1000 GM)	R AND TED FO O PPB	IS DE DR NA	ILUTED K AND	TO 10 AL.) ML W	/ITH 6	WATER					

DL PROPERTY PROJECT

- 1

tatiin area ta

Language of the

Constant of the second

tin and the second

Contract of T

and and and a second

Company

Construction of the second

ROCK HAND SPECIMENS - FIELD DESCRIPTIONS

SAMPLE NO.	DESCRIPTIONS
M586551	Quartz vein (050°/49°NW) outcrop in phyllite, 2 m grab sample @ 2+46 Aphanitic, white, non- magnetic, competent, hard, surficially stained wit some limonite and a trace of pyrite. Outcrop contains some phyllite inter
M586552	Quartz vein (123°/47°NE) outcrop in phyllite, 30 cm vertical chip sample Aphanitic, bull-white below surface 8 cm, non-magnetic, competent, har to white, silicified, limonite, hematite, vuggy boxwork structure after pyrit
M586553	Quartz vein (114°/637°NE) outcrop in phyllite, 20 cm vertical chip sampl Aphanitic, white, non-magnetic, competent, hard, some rusty portions, s hematite, some carbonate. Resampling of DL93DR7.
M586554	Quartz float, 40 cm grab sample @ 1+56W, 3+35S. Aphanitic, white, non- magnetic, competent, hard, dark gray and orange- hematite, trace of massive pyrite. Skidder trail in clearcut exposed quart
M586555	Quartz float, 70 cm grab sample @ 2+20W, 3+00S. Aphanitic with some 1 cm crystals, white, non-magnetic, competent, har limonite and hematite with a trace of pyrite. Quartz train float in clearcut i
M586556	Quartz float in phyllite, 20 cm grab sample @ 2+00W, 7+90N. Coarse grained, white, non-magnetic, competent, hard, orange tints, so vugs with crystals. Sample taken from the Deception Creek flats.
M586557	Quartz float in phyllite, 20 cm grab sample @ 4+00W, 6+75N. Coarse grained with pegmatitic portions, white, non-magnetic, competen siderite and limonite, trace pyrite. Soil sample hole excavated this.
M586558	Brecciated limestone float, 40 cm grab sample @ 7+00W, 8+50N. Aphanitic, medium gray, non-magnetic, competent, moderately hard, we sulphides visible but lots of crosscutting calcite veinlets. Fizzes vigorousl

TUK PROPERTY PROJECT

ROCK HAND SPECIMENS - FIELD DESCRIPTIONS

Alleria and the state

A COLORED

Chaptering

Annual Sector

••••

SAMPLE NO.	DESCRIPTIONS
M586570	Andesitic float, 20 cm grab sample, north 941 m along road from 10+00 .Fine grained, light gray colour, magnetic, competent, hard, rusty brown contains veinlets of 4mm pyrite + trace chalcopyrite, bornite & arsenopy
M586571	Chert outcrop, 50 cm horizontal chip sample, north 437 m along road fr Very fine grained, banded black & medium gray colour, trace magnetic, weathering, dark bands contain clumps of disseminated pyrite, pyrite th
M586572	Quartzite float, 75 cm grab sample, 73 m upstream of 10+00W, ~3+00M Coarse grained, layered medium and light gray, non-magnetic, competent high % silica, some biotite, 0.5% pyrite disseminated and in clumps.
M586573	Cherty float, 40 cm grab sample, 315 m upstream of 10+00W, ~3+00N Fine grained, light gray-blue colour, non-magnetic, competent, hard, we serpentinization, trace fuchsite, cubes of pyrite up to 5 mm (0.25%), hig
M586574	Phyllitic slate float, 30 cm grab sample, 725 m upstream of 10+00W, ~3 Aphanitic, dark gray, trace magnetic, semi-competent, moderately hard gray to rusty, two veinlets with sulphides up to 3mm thick.
M586575	Shear crosscutting phyllite outcrop, 15 cm vertical chip sample, 830 m Fine grained, variable colour light-med brown, non-magnetic, low-mode hardness, weathers light brown-orange, clay alteration, calcareous com
M586576	Augite porphyry dyke (157°/53°E) outcrop, 1 m chip sample, 1020 m up Fine to medium grained, dark greed-black, trace magnetic, competent, green, serpentine altered?, 2 mm cubes of pyrite disseminated, 2 mm c
M586577	Rhyo-dacite float, 45 cm grab sample, 90 m upstream of first junction of Aphanitic, light gray-blue colour, trace magnetism, semi-competent, had quartz veinlets, trace knots of fuchsite, up to 0.5% sulphides.

2

LEDGE PROPERTY PROJECT

ROCK HAND SPECIMENS - FIELD DESCRIPTIONS

a and and a set

hada i san ay

earts Wilsteidung W

A Visit o Digona di

Luisanai vai vier a

Construction of the second

SAMPLE NO.	DESCRIPTIONS
M586578	Rhyo-dacite float, 40 cm grab sample, 95 m upstream of first junction on Aphanitic, light gray-blue colour, magnetic, competent, hard, weathers li knots of fuchsite, 1% sulphides, pyrite, bornite.
M586579	Argillite float, 30 cm grab sample, 155 m upstream of first junction on Le Aphanitic, black colour, non-magnetic, semi-competent, moderately hard veinlets parallel and crosscutting bedding, good cleavage, graphitic, sulp
M586580	Rhyo-dacite outcrop, 1 m horizontal chip sample, 210 m upstream of firs Aphanitic, light gray-blue, magnetic, competent, very hard, weathers ligh locally 1% disseminated, trace mariposite.
M586581	Rhyo-dacite outcrop, 1 m horizontal chip/grab sample, 222 m upstream Aphanitic, light gray-blue, magnetic, competent, very hard, weathers ligh mariposite, disseminated and clumped pyrite up to 1%.
M586582	Quartz carbonate vein in rhyo-dacite outcrop, 20 cm grab sample, 227 Aphanitic, white with pyrite and rusty weathering, non-magnetic, compet orange white, pyrite clusters up to 1%,
M586583	Quartzose rhyolite float, 30 cm grab sample, 525 m upstream of first jun Aphanitic, light gray-blue to white, magnetic, moderately competent, har trace chalcopyrite, trace bornite, 0.5% disseminated and clumped pyrite.
M586584	Argillite outcrop, 1 m vertical chip sample, 80 m west along road of junct Aphanitic, black colour, non-magnetic, semi-competent, moderately hard sulphides. Sample taken for background values.
M586585	Augite porphyry outcrop, 50 cm grab sample, 150 m from western end o Fine grained, light-medium green colour, trace magnetic, competent, mo brown to white, slightly different alteration than surrounding outcrop, trac

APPENDIX B

Statement of Costs

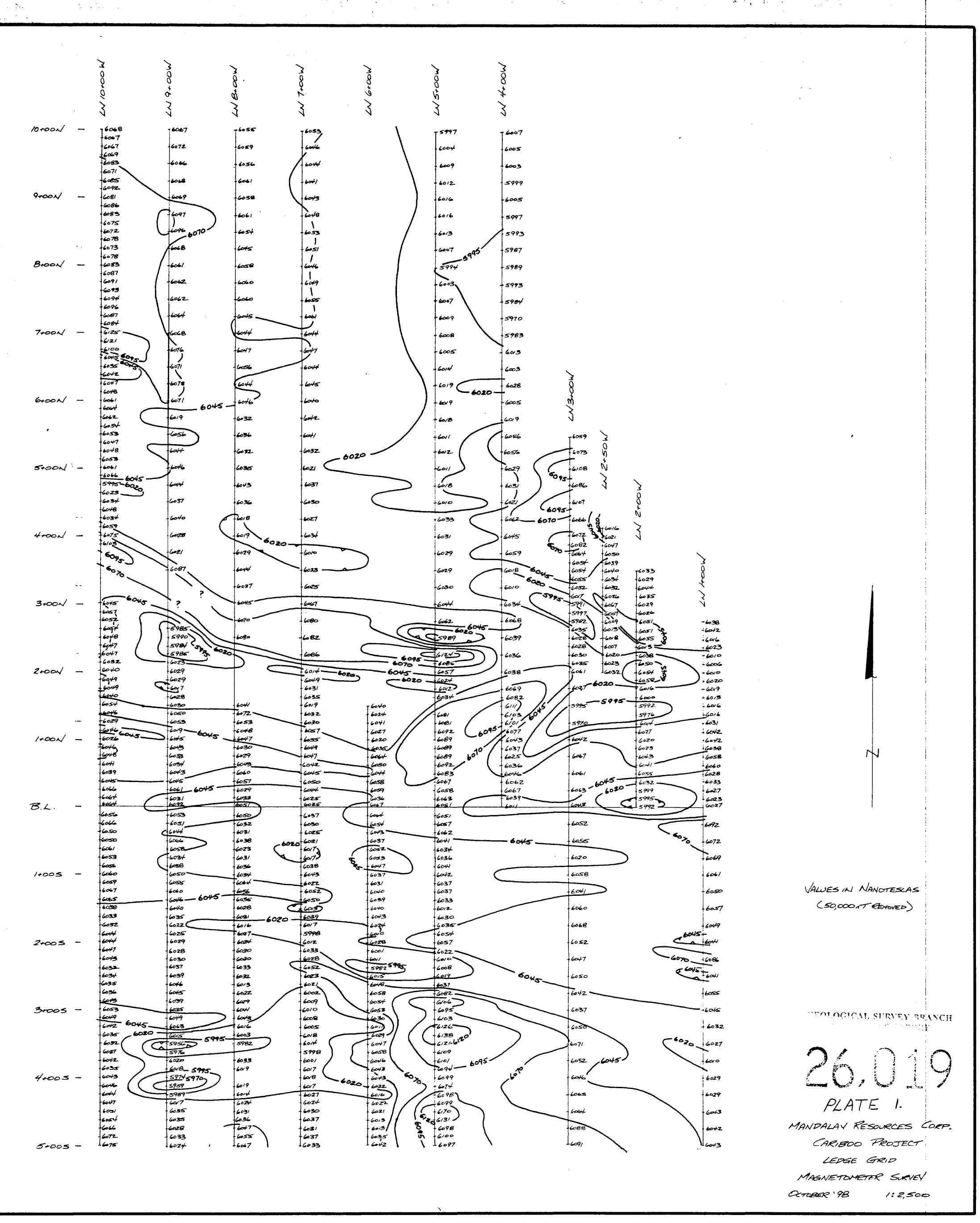
Preparation			\$ 1,250.00
Mob/Demob			796.00
Truck rental 31	days @\$120/day		4,680.00
Equipment rental			2,675.00
Domicile 99days	@\$70/day		6,930.00
Geochemistry			6,008.83
Geophysics (VLF	-EM, Mag)		4,700.00
Field supplies			1,860.45
Report, drafting			3,000.00
Communication			237.50
Personnel			
Senior Geologist	2 days@\$500/day		1,000.00
Project Manager	25 days@\$400/day		10,000.00
Geologist	15 days@\$325/day		4,875.00
Technicians 2	12days@\$220/day		5,280.00
3	12days@\$175/day		6,300.00
Cook	23 days@\$150/day		3,450.00
		TOTAL	63,042.78

not statuturu

Sime states

Lon-Webbildes Lighting

Linthinations


in the Lenieriand

Contraction of the local distance of the loc

Share Basia Basia

Contraction 1

in the light of the light

