Exploration (Drilling and Geology) Report on the Watson Bar Gold Project

Clinton Mining Division, British Columbia

Latitude 51° 03' North Longitude 122° 03' West

Durfeld Geological Management Ltd. P.O. Box 4438 Station Main Williams Lake, B.C. V2G 2V5

► Table of Contents

1. Summary and Conclusions
2. Introduction 3 2.1 Location 3 2.2 Access and Physiography 3 2.3 Ownership 3 2.4 History 4 2.5 Program Objectives 4
3. Geology 5 3.1 Regional Geology 5 3.2 Watson Bar Property Geology 5 Lithology 5 Structure 6 3.3 Alteration 7 3.4 Mineralization 8 3.5 Geological Model 8
4. Geophysics 8 5. Geochemistry 9 5.1 Sample Collection 9 5.2 Soil Results 9 Gold 9 Mercury 10 Arsenic 10 5.3 Rock / Trench Results 10
6. Diamond Drilling 10 6.1 Diamond Drill Results 11 Zone V 11 Zone I 11 Zone IV 11 Zone VII 13 Zone X 13 7. Project Cost Summary 14 8. Statement of Ounlifections 15
 8. Statement of Qualifactions Appendix I - Diamond Drill Logs Appendix II - Geochemical / Assay Results Detailed Descripition of Geochemical Procedures

Table of Illustrations -

Fig #	Title	Scale	Page #
1	Watson Bar Property Location Map	n/a	2
2	Watson Bar Property Claim Map	1 : 40,000	5
3	Watson Bar Property Geology / Drill Plan	1 : 5,000	*
4	Watson Bar Property - Geochemical Plan Gold (ppb)	1 : 20,000	*
5	Watson Bar Property - Geochemical Plan Mercury (ppb)	1 : 20,000	*
6	Watson Bar Property - Geochemical Plan Arsenic (ppm)	1 : 20,000	*
3-V	Zone V Drill Location Plan	1:1000	*
8325	Section 83+25E (Geology\Gold)	1:2000	*
9100	Section 91+00E (Geology\Gold)	1 : 2000	*
9200	Section 92+00E (Geology\Gold)	1 : 2000	*
9250	Section 92+50E (Geology\Gold)	1 : 2000	*
9275	Section 92+75E (Geology\Gold)	1 : 2000	*
9300	Section 93+00E (Geology\Gold)	1:2000	*
9325	Section 93+25E (Geology\Gold)	1 : 2000	*
9350	Section 93+25E (Geology\Gold)	1:2000	*
9350	Section 93+50E (Geology\Gold)	1:2000	*
9525	Section 95+25E (Geology\Gold)	1:2000	*
9800	Section 98+00E (Geology\Gold)	1 : 2000	*
10800	Section 108+00E (Geology\Gold)	1 : 2000	*
11000	Section 110+00E (Geology\Gold)	1 : 2000	*
11280	Section 112+80E (Geology\Gold)	1 : 2000	*

* - attached illustration

1. Summary and Conclusions

The Watson Bar property, consisting of 111 contiguous mineral claim units covers some 2775 hectares (6875 acres) in the Clinton Mining Division. The property is 33 kilometres due west of Clinton and 7 kilometres west of the Fraser River (Figure 1). The property is south of Watson Bar Creek and centred on Second Creek at 51 degrees 3 minutes north latitude and 122 degrees 3 minutes west longitude. (NTS Map 92 0/1E)

The property covers an epithermal gold target on a large structurally controlled northwesterly trending, hydrothermal alteration zone hosted by Cretaceous sediments of the Jackass Mountain Group and Eocene felsic volcanics. Locally this alteration zone hosts significant gold mineralization. Ongoing work continues to define targets within this broad alteration.

Grid work to date has consisted of 4 kilometre long lines 100 metres apart to cover a 4 kilometre section of this alteration zone. Fifteen zones of interest are identified as gold and mercury and/or arsenic in soil anomalies.

Follow-up work on Zone V, a gold-arsenic in soil anomaly, led to the discovery of the auriferous shallow dipping sheeted quartz sulphide vein structure developed on a carbonaceous shear. Diamond drilling has tested and identified this vein structure 340 metres down-dip and 140 metres on strike. A geological reserve estimate, calculated after the 1997 drilling, shows a resource of 311,121 short tons grading 0.237 oz/ton, or 73,813 ounces contained gold.

Diamond drilling in Zone I, some 700 metres southeast of Zone V has intersected similar shallow dipping, sheared quartz vein material. A geophysical interpretation, of induced polarization data, by Mr. Allan Scott interprets both zones being reflected by chargeability high anomalies with some continuity between them. The strike potential between both zones should be evaluated by ongoing exploration. Other targets should be advanced for trenching and diamond drilling.

The 1998 diamond drill program cored 2121.7 metres (6961 feet) of HQ core during the period July 17th to September 21st, 1998. The most significant results of this program are the expansion of Zone V some 250 metres to the southeast in hole 98-04. Hole 98-06 while testing zone VII, some 900 metres west-northwest of zone V encountered strong argillic alteration and silicification. A one metre interval in this hole assayed 4.24 g/T gold.

▶ 2. Introduction

2.1 Location

The Watson Bar property, consisting of 111 contiguous mineral claim units covers some 2775 hectares (6875 acres) in the Clinton Mining Division. The property is 33 kilometres due west of Clinton and 7 kilometres west of the Fraser River (Figure 1). The property is south of Watson Bar Creek and centred on Second Creek at 51 degrees 3 minutes north latitude and 122 degrees 3 minutes west longitude. (NTS Map 92 0/1E)

2.2 Access and Physiography

The property is readily accessible from the village of Lillooet via the all-weather West Pavilion / Slok Creek logging road which at 70 kilometres bisects the property. Helicopter charters are available from either Williams Lake or Lillooet. The West Pavilion and Second Creek logging roads in conjunction with secondary cat trails provide good access to much of the property. The property is bisected by the broad and steep Watson Bar Creek Valley and the immature and narrow "V" shaped valleys of Second Creek and its tributaries. The elevation on the property varies from 400 metres in Watson Bar Creek in the central part of the property, to summits of 1,700 metres in the south.

Vegetation on the Watson Bar Property is characterized by open forests of mature fir and pine, with undergrowth of grasses that are typical of the dry climate (mean annual precipitation of less than 30 centimetres) in this area. In the lower elevations toward Watson Bar Creek the trees give way to sage brush, tumbleweed and grasses. Locally, in areas of recent forest fires, the forest cover consists of closely spaced immature fir and pine.

2.3 Ownership

The Watson Bar Property is comprised of 7 contiguous modified grid mineral claims for a total of 111 units, covering 2,775 hectares (6857 acres). The status of these claims is summarized below and the relative claim locations are plotted as Figure 2. The year of expiry reflects work that was applied for assessment credit on July 6 and September 8, 1999.

Tenure	Claim	Мар	Work	Mining	Number of		
Number	Name	Number	Recorded To	Division	Units		
208238	SECOND 1	092O01E	20010919	Clinton	20		
208239	SECOND 2	092O01E	20010919	Clinton	20		
208243	SECOND 3	092O01E	20001016	Clinton	10		
208244	SECOND 4	092O01E	20001016	Clinton	12		
208290	SECOND 5	092O01E	20050629	Clinton	18		

Tenure	Tenure Claim		Work	Mining	Number of		
Number	Name	Number	Recorded To	Division	Units		
208304	ULCER	092O01E	20050812	Clinton	15		
347862	GB 1	092001E	20010707	Clinton	16		
				Total	111		

The claims are recorded in the name of R.M. Durfeld.

2.4 History

Early exploration in this area would have coincided with the Gold Rush on the Fraser River and subsequent placer mining in Watson Bar Creek just to the north of the Watson Bar Property during the period 1860 to 1900. The adit on the adjoining Mad claims and old open cuts on the Watson Bar property would have been excavated during this period. In June 1980, E and B Explorations Inc. staked much of what is now the Watson Bar Property as the Carolyn 1 to 8 claims. E and B Explorations Inc. staked the ground to acquire several large alteration zones hosted by Jackass Mountain Group sedimentary rocks.

Subsequent exploration by E and B consisted of prospecting, contour soil sampling and rock geochemistry. Dome Mines also staked claims in 1980 over what is now the southern part of the Watson Bar Property. These claims, called the Leon 1 to 5, were prospected and grid-soil sampled by Dome. Work by E and B Explorations Inc. on the Carolyn claims, identified a northwesterly trending zone of silicification, kaolinization and carbonate alteration that is coincidentally anomalous for mercury, arsenic and gold. E and B subsequently allowed the claims to lapse, and they were restaked by Durfeld-McClintock in 1986 and 1987. Cyprus optioned the property in late 1987.

During the period 1987 to 1989 Cyprus conducted soil and rock geochem, induced polarization, and trenching surveys that in conjunction with geological mapping defined targets for diamond drilling. The results of these surveys are compiled in the Report on the Watson Bar Project, February 1990. This report defined fourteen zones of interest as geochemically anomalous (gold, arsenic, mercury) in soil and rock samples in conjunction with induced polarization response. Several of these zones were subjected to trenching and diamond drilling. This trenching and diamond drilling defined significant gold mineralization in Zone V. In 1992, Cyprus relinquished their interest in the property.

On April 15th, 1996, Stirrup Creek Gold Ltd. optioned the Watson Bar property. Ongoing work by Stirrup Creek in has consisted of trenching and 1650.4 metres (5415 feet) of diamond drilling in 1996 and 2226.4 metres (7305 feet) of diamond drilling in 1997. This report documents 2121.7 metres (6961 feet) of diamond drilling and compilation conducted on the Watson Bar property during the period July 15th to September 21st, 1998.

2.5 Program Objectives

...\second\dgn\ttlbase.dgn Sep. 28, 1999 15:52:49

The ongoing program objective is to confirm and further delineate the gold mineralization in Zone V by diamond drilling while evaluating additional targets.

Geology

3.1 Regional Geology

The Watson Bar Property area was mapped by H. W. Tipper of the Geological Survey of Canada in 1978 (92/0, Open File 534). Tipper shows the claim area to cover a northerly trending splay of the Fraser River Fault that brings rhyolite to dacitic pyroclastic rocks of Eocene-age in contact with clastic sedimentary rocks of the Lower Cretaceous Jackass Mountain Group to the southwest. More recent regional mapping by Dr. P. B. Read 1987 (B. C. Department of Mines Open File 1988-29) has shown the intermediate to mafic volcanic rocks to the northeast of the Jackass Mountain Group in the south central property area as the Lower Cretaceous Spences Bridge Group rather than the Eocene volcanics.

The Jackass Mountain Group is divisible into three distinct units (Duffell & McTaggard, 1950). These are: a lower unit comprised of up to 600 metres of non marine arkose, greywacke and lesser conglomerate and shale; a middle unit which is up to 500 metres thick and comprised of coarse conglomerate with minor beds of greywacke and argillite; and an upper unit of greywacke with thinly interbedded conglomerate and argillite that is at least 1,500 metres thick. Faulting is the dominant structural feature, with minor local folding.

Dr. Read mapped the Spence Bridge Group as a Middle Cretaceous Age section of intermediate volcanics and intercalated sediments.

The Eocene volcanic rocks are comprised of tuffs, breccia, agglomerates and flows. Most of these volcanic rocks are dacites with subordinate rhyolite. Although these rocks are not folded, near major faults they are intensely sheared.

3.2 Watson Bar Property Geology

The previous mapping of the property was expanded to incorporate new outcrops, particularly along roads. This is given at a scale of 1:10,000 as Figure 3.

Lithology

The oldest rocks on the property are a thick north- north westerly trending sequence of clastic sedimentary rocks of the Lower Cretaceous Jackass Mountain Group (Units Ss, Sd, Cng and Arg). Within the mapped portion of the claims, the Jackass Mountain rocks are predominantly medium to thick bedded arkose and greywacke. Siltstone (Ss) occurs locally as thin interbeds in the predominantly sandstone (Sd) units, while conglomerate (Cng) and argillite

(Arg) form thicker beds.

Greywacke and arkose typically consist of 1 mm grains of feldspar, with lesser amounts of lithic fragments in a matrix of feldspar, calcite, muscovite, and chlorite. Conglomerates, which were mapped near the western claim boundary and in the upper drainage of East Second Creek, are ploymictic with granite, sedimentary, and volcanic clasts to 10 cm. The clasts are matrix supported. In the property area the sediments generally show a coarsening up section from sandstone in the northeast to conglomerate in the southwest.

In the central property area a northwesterly trending splay of the Fraser River Fault brings sandstones of the Lower Cretaceous Jackass Mountain Group in contact with brown to maroon plagiphyric andesites of the Middle Cretaceous Spences Bridge Group to the northeast. The Spences Bridge Group pinches out on another splay of the Fraser River Fault to the northwest which in turn brings the Jackass Mountain Group in contact with the Eocene Age volcanics.

In the south central grid area an elliptical-shaped stock of granodiorite (Unit Gd) measuring about 700 metres by 500 metres intrudes the Jackass Mountain Group rocks. The stock has a hypidiomorphic granular core and a porphyritic border phase (Unit Fp). Geological mapping and trenching in the area of the baseline at 87+00E east and as drill core from WB 89-6 has shown what had been mapped as altered sediments to actually be a strong sericitic altered intrusive that is locally intruded by younger granodiorite dykes. Elsewhere on the claims, the sedimentary rocks are cut by dykes and sills of feldspar and/or hornblende porphyry which are compositionally similar to the border phases of the stock. The dykes and sills range in thickness from less than 1 metre to over 10 metres. Dykes are preferentially oriented between 090° and 120° with steep dips to the southwest and northeast. The dykes which are generally thicker than the sills, repeatedly splay and coalesce along strike. Sills are rarely more than 3 metres thick and maintain relatively consistent thickness along strike. In the hanging wall area of the Main Showing (Zone V) there are numerous hornblende to amphibole granite sills mapped parallel to bedding and truncated by local faulting. Both the granodiorite and feldspar porphyry are probably late Cretaceous or early Tertiary in age. A third type of intrusive are the quartz porphyry dykes (Unit QP) that occur in the eastern property area. The quartz porphyry and granite may be young phases of the granodiorite or may represent intrusions related to the younger Eocene volcanic rocks. The fine-grained, dark green andesite dykes (Unit An) and Tertiary Volcanics (Unit TV) that occur in the upper drainage area of East Second Creek are either subvolcanic equivalents of the Spence Bridge Group or the younger mafic volcanic flows.

The Eocene Age volcanics (Ev) are rhyolite to andesite tuffs, breccias, and flows that represent the youngest rocks in the property area. These volcanic rocks occur mainly northeast of the main splay of the Fraser River Fault and in the central property are to the northeast of the Spence Bridge Group, while in the northwest they are in direct contact with the Jackass Mountain Group. The Eocene volcanics underlie much of the northeastern property area.

Structure

The structure in the Watson Bar Property area is dominated by the north- northwesterly trending Fraser River and Slok Creek Faults and related subsidiary faults. In the property area the Slok Creek fault thrusts Jackass Mountain sediments over phagiphyric andesites of the Spences Bridge Group. A conjugate set of subsidiary faults and shears believed related to the Fraser River Fault splay, occur in the property area. The two prominent trends are northwesterly and northeasterly. These structures dip moderately to steeply southwesterly and northwesterly, respectively. Offsets across most faults appear to be minor. Based on abrupt changes in bedding attitudes, a major fault is postulated in the west Second Creek area. The absence of distinctive marker beds in the Jackass Group makes determination of relative movement difficult.

Throughout most of the grid area, the Jackass Mountain strata strike northwesterly to northerly with moderate westerly dips. Variations in the strike of the strata suggest the rocks are gently folded. Local folding documented by fold axes on an east to northeast trend thicken the siltstone and graphitic horizon associated with the silicification in the Main Showing (Zone V) area.

3.3 Alteration

Large regions of the grid area are hydrothermally altered. The type and intensity of alteration is variable but can be divided into five distinct types: propylitic, carbonate, phyllic/argillic, and intense silicification.

Propylitic alteration was mapped in a small area of siltstone in upper West Second Creek. Here alteration consists of chloritization, pyritization, epidote and calcite veining. Petrographic and field descriptions of diamond drill core and outcrop in the Main Showing Area showed chlorite as the matrix in several sandstone sections.

Carbonate alteration is ubiquitous throughout the central grid area. The intensity of carbonate alteration is variable ranging from calcite veining and fracture filling to pervasive replacement of the rock by calcite, dolomite and/or ankerite. Because it is so widespread, the zone of carbonate alteration is not outlined on Map 3.

Phyllic/argillic alteration consists primarily of sericitization with small areas of localized argillic alteration. This alteration type is widespread throughout the central area of the grid. Phyllic alteration as secondary sericite ranges from clouding to complete replacement of feldspar matrix and phenocrysts in all the sedimentary and intrusive lithologies. Argillic alteration consists of kaolonization and clay alteration of the feldspar in both intrusive and sedimentary rocks. Argillic alteration is not widespread being localized in areas of well fractured or sheared rock and appears to be a later alteration overprint within a more widespread zone of seritization. Carbonate as veining and flooding of matrix accompanies the phyllic/argillic alteration and is generally more intense within the phyllic/argillic zone.

Silicification consists of both fracture fillings and pervasive replacement of the rock.

Quartz veins are characteristic of open space fillings, with both Druse and banded textures. Prominent vein directions are northeast and northwest. Vein dips are variable. Both phyllic/argillic and carbonate alteration accompany the silicification. Within the intensely silicified zones, feldspars are completely transformed to assemblages of sericite or clay. Chalcedonic quartz and calcite are often interbanded in veins and quartz pseudomorphs after calcite are present. Locally, silicification and accompanying seritization are so intense as to make recognition of the host rock impossible (unit UN).

Bands and lenses of carbonaceous to graphitic material have been noted concentrated in shear zones and often associated with quartz veining. It is probable that the carbonaceous material has been altered to form graphitic horizons by the hydrothermal activity associated with the introduction of the quartz veining.

The andesitic rocks of the Spence Bridge Group and the rhyolitic Eocene volcanic section also have areas of extensive gypsum and carbonate alteration associated with quartz veining.

3.4 Mineralization

Sulphide mineralization noted in order of abundance occurs as pyrite, arsenopyrite, galena, chalcopyrite, sphalerite, stibnite and cinnabar. Pyrite typically occurs as disseminations, while the other sulphides are restricted to quartz veins and fractures. Visible gold has been noted as distinct rounded to dendritic grains and flakes in quartz-sulphide veins. Pyrite content of the sediments is typically 1-2%, but in zones of mineralization overall sulfide content increases to 10-15%. Arsenopyrite, galena, chalcopyrite and sphalerite are typically found associated with the gold bearing quartz veins.

3.5 Geological Model

The style of hydrothermal alteration, silicification, sulphide mineralization and gold in quartz veins identifies the Watson Bar property as an Epithermal - Gold prospect. The exploration programs to date have focussed on expanding the potential of the shallow dipping bonanza gold mineralized structures in Zone V. The potential is continued gold mineralization down-dip and on strike. The 1998 diamond drilling continued to do on strike stepouts in zone V while testing additional targets. Within all of these zones there is also a potential for stock work and/or disseminated gold mineralization with bulk tonnage potential.

4. Geophysics

During the period 1988 to 1989 Allan Scott Geophysics surveyed 56 line kilometres of Induced Polarization surveys on the Watson Bar property. In June of this year Mr. Scott generated colour contour plots and re-interpreted the data (Figure 7). Of particular interest is the moderate to strong chargeability structure in Zone V that is interpreted to continue 800 metres to the east and 200 metres to the west and may possibly link up with the chargeability structure in

Zone 1. As such this interpretation supports the strike continuation of Zone V and assisted in defining targets for ongoing diamond drilling.

► 5. Geochemistry

Geochemical soil, silt, rock and drill core sampling have been conducted on the Watson Bar property since 1987. All data have been maintained and updated in computer data bases that have been used to generate the geochemical plans and drill sections.

5.1 Sample Collection

Soil samples were taken as B-horizon soils bellow the local ash layer. Where possible deeper soil samples were also collected. Rock samples consisted of random chips from small outcrops and float, while panel samples were collected over defined widths from larger outcrops and trenches. Drill core was halved with mechanical or hydraulic splitter. All rock and core samples were placed in plastic bags and labelled with prenumbered assay tags. Half cores remaining are stored in boxes on the site.

All samples were sent to Min-En Laboratories in Vancouver for analysis. The sample preparation and analytical procedures are given in conjunction with the results as Appendix II to this report. The results for gold, silver, arsenic, copper, lead, antimony and zinc were merged with the diamond drill logs as Appendix I.

5.2 Soil Results

All soil sample results were provided in digital form from the lab and computer contoured and plotted for gold, mercury and arsenic (Figure 4, 5, 6).

In conjunction with the geology the soil results initially defined 15 zones and continues to define zones warranting follow-up. The arsenic and gold in soil anomaly as Zone V, led to the discovery of the auriferous banded quartz-sulphide (pyrite, arsenopyrite, galena, sphalerite) vein that has been the focus of extensive trenching and diamond drilling.

Gold

Geochemical results for gold (Figure 4) show gold in soil contoured at 20 and 100 ppb and the location of rock samples with greater than 100 ppb. It should be noted that much of the area to the east of 120+00 east has not been soil sampled. Most of the sites anomalous in gold occur below 1370 metres (4500 feet) in elevation. This vertical zoning may explain the well altered epithermal gold targets as zones II, III and IV as being above the gold horizon. Ongoing work has identified a mineralized source in zones I, IV, V, VII, VIII, IX and X. More detailed evaluations of the anomalous and other sites has shown gold in soil to be masked by the recent ash, local lenses of glacial drift and/or thick sections of colluvium. Detailed soil pitting has shown

surface soils to be depleted (anomalously low) in gold relative to samples taken at depth. This is demonstrated on line 93+00E from 106+00 to 107+20N, where the initial b-horizon soils were from 40 to 240 ppb gold and the deeper soils (at 1metre depth) were from 2560 to 8200 ppb gold. This anomaly was sourced by the Zone V quartz sulphide vein zone. The deeper soil pits and road sampling in other areas of the property also showed a stronger gold response that led to the discovery of auriferous quartz veins in zones VIII and IX.

Mercury

The contoured mercury (200 and 1500 ppb) (Figure 5) shows the highest values as a wedge between West and East Second Creeks. Some of the strongest mercury values occur peripheral to the central stock on East Second Creek. This area of highly anomalous mercury is over a kilometre in length and 200-300 metres across, with values from several hundred to 16,000 ppb mercury. The distribution of the mercury suggests structural controls parallel to West (east-northeast) and East (north) Second Creeks. The gold mineralization generally shows anomalous mercury values.

Arsenic

The contoured arsenic (40 and 200 ppm) (Figure 6) shows a narrower distribution that more closely reflects the gold in soil anomalies than mercury. The silicified sediments in zone IV show a strong arsenic response. The high gold in soil responses of zones V, VIII, IX, XI and XII correlate directly with highly anomalous arsenic in soil values.

5.3 Rock / Trench Results

Rock chip and trench panel sampling has been an integral part of all previus programs. Through this sampling bedrock sources for the gold, mercury and arsenic have been identified in many of the zones. Zone V was expanded by trenching on a gold - arsenic in soil anomaly. Section 105+60 north documents sampling and mapping of the main trench. This trenching has exposed a strike length in excess of 85 metres with gold assay of up to 3.48 oz/ton over 1.5 metres to 0.15 oz/ton over 2 metres. Although the vein structure is continuous over this length the thickness and assays show a variation. Much of this variation can be attributed to local folding and shearing. This high versus low grade variation in basically the same structure is also seen in the diamond drill holes. Ongoing mapping and sampling of this trench will assist in the evaluation of the mineralizing controls.

6. Diamond Drilling

This report is a compilation of diamond the 1998 diamond drilling with previous data on the Watson Bar property. During the period July 15th to September 21st, 1998, Beaupre Diamond Drilling of Princeton B.C. cored 2121.7 metres (6961 feet) of HQ core in 11 holes with

a Longyear LF-70 hydraulic diamond drill on the Watson Bar Property. The general location of the completed diamond drill holes is given on the Geology plan at a scale of 1:5,000 (Figure 3) and the more detailed holes in Zone V are also shown at a scale of 1:1000 (Figue 3-V). The geology and average gold assays are compiled for all the 1998 drill holes on the attached sections. The diamond drill logs with merged assay results are given as Appendix I. The detailed geochemical and assay results for the drilling are in Appendix II.

The location and results of the 1998 diamond drilling are summarized as Table 1.

6.1 Diamond Drill Results

Zone V

Diamond drill holes 98-01 to 98-05 represent on strike stepouts on the Zone V quartz vein structure. The sheeted quartz vein structure is hosted by a shallow dipping carbonaceous shear that is somewhat conformal to bedding. Of note is the intrusive sills that are also conformal to these bedding and shear structures. All of the 1998 diamond drilling in Zone V encountered this structure with variable quartz veining and silicification. The gold mineralization was also variable with assays from 6.7 g/T over 0.5 metres in hole 98-03 to 0.21 g/T over 0.4 metres in hole 98-05. Diamond drill hole 98-04 intersected the zone V structure 250 metres to the southeast of zone V.

Zone I

Diamond drilling in 1991 and 1997 on section 98+00 east showed shallow dipping interbanded and altered (carbonate-sericite-silicified) sediments and feldspar porphyry sills. Although the whole section was well altered and silicified the gold mineralization is confined to sheared quartz-pyrite-arsenopyrite-chalcopyrite in part carbonaceous veins. This sheared vein to vein zone is up to 10 metres thick and is somewhat conformable to the feldspar porphyry. The gold content in this vein structure varies from 0.071 oz/ton over a metre 91-11 to .017 oz/ton over 0.5 metre in 97-07 to 0.042 oz/ton over three metres and 0.07 oz/ton over 1 metre in 97-08. Of note are the high arsenic values in other silicified and quartz veined and/or altered sections showing anomalous gold values (200 to 500 ppb). This style of mineralization is similar to Zone V. As with Zone V, Zone I is located on an Induced Polarization chargeability structure. Diamond drill hole 98-11 intersected the zone I mineralized horizon 100 metres down-dip returning low gold values (.023 oz/ton over 1 metre).

Zone IV

Diamond drill hole 98-10 cored 127 metres of silicified and intense altered sediments and feldspar porphyries that returned no significant gold mineralization.

	1998 DIAMOND DRILL SUMMARY											
DDH	North	East	Elev.	Dip/Az	Depth	Notes						
02.01	10402	0206	1000	00	162.5	Fault gouge and carbonate shearing from						
98-01	10492	9206	1233	-90	102.5	Pauli gouge and carbonate shearing from						
						Max cold 1.080/C over 1.1 m at 101.5 102.6						
	40470	0005	4000		102.2	Carbanasasus hangingual at 55.1 67.6						
98-02	10476	9335	1220	-90	103.3	Carbonaceous nangingwan at 55.1 - 67.6.						
				l		Upper Zone v at 66.7 - 69.7 (1.69/1) associated						
ļ				<u> </u>		with 1-5% alsenopyrite. Lower Zone V in						
00.00	10001	0252	4202		252.4	Sillstone at 96.2 - 99.2 (0.6 g/1)						
98-03	10331	9352	1293	-90	252.4	Zone v mineralization at 201-205 m in Steared,						
						graphilic quartz veins with arsenopyme. (1.03						
	10000		4000		000.0	g/1 over 4.0 m including 4.7 g/1 over 1.0 m						
98-04	10222	9523	1282	-90	322.2	Zone v quarz - carbonate - arsenopyrite veins						
			<u></u>			at 234.5 - 237.5 snowing elevated gold values						
						(0.13 - 0.20 g/1).						
98-05	10400	9100	1282	-90	237.4	Zone v is poorly defined (max. 0.21 g/1 over						
						0.4 m)						
98-06	10331	8300	1293	-90	259.1	Zone VII -Shows a wide zone of silicification						
						within argillite and Feldspar porphyry. Quartz-						
						graphite breccia within FP gave 4.24 g/T						
						over 1.0 m.						
98-07	10780	10745	1080	-90	83.8	Zone VIII - did not intersect lower thrust trace.						
						May be cut off by Feldspar Porphyry						
98-08	10735	10790	1100	-80/180	154.6	Zone VIII - lower thrust intersected at 120.7 -						
						131.1. represented by graphitic shears within						
L	L					sandstone. Significant quartz veining at 142.6 -						
						146.1. No significant Au values.						
98-09	10550	11260	1290	-90	127	Anomalous gold (up to 810 ppb) and Arsenic						
						(>10000 ppm) at 40.0 - 44.0 in clay altered						
						conglomerate.Zone X - Conglomerate showing						
L						clay alteration and realgar mineralization (AsS)						
						at 93.0 - 102.5 m.						
98-10	9340	10950	1405	-0.2	127.1	Zone IV - test of good sulfide mineralization						
						encountered in previou drill holes. Hole was						
						drilled at 322° to test N-S trending mineraliza-						
						tion and structure. Intersected a wide zone of						
						intense clay altered and silicified sediments with						
	· · · · ·					disseminated sulfide mineralization. Max. Au-						
						80 ppb at 94.0-95.0 m.						
98-11	9770	9805	1200	-60	292.3	Zone 1 - tested mineralized zone from prevoius						
						drilling. Intersected 1) Upper argillic/siliceous						
						alteration at 0-95.0, 134.6 - 163.7 m.						
			-			2) Lower carbonaceous zone with quartz veining,						
						py, cp at 197.4 - 202.3 m. (Au 330 ppb max.)						
						Carbonaceous, pyritic siltstone showed 800 ppb						
						Au at 211.6 - 212.6 m. /						
						- AL						
	Total Metr	res Drilled			2121.7							
						DURIE						
	Total Feet	Drilled			6961.0	R. M. Barrison						

Table 1

Zone VII

Diamond drillholes 98-07 and 08 were collared up-slope of a strong gold and arsenic in soil and colluvium anomalies. The silicious, carbonaceous shear zones in 98-08 did not return significant gold assays.

Zone X

From 41 to 44 metres diamond drill hole 98-09 intersected the down-dip extension of the 1997 trench sampling. The highest gold value .023 oz/ton over 1 metre has greater than 10,000 ppm arsenic. Not all of the intervals in this mineralized intersection have been sampled. Sampling should be filled in to define the full extent of this mineralization.

► 7. Project Cost Summary

Diamond Drilling	Beaupre Diamond Drilling	2121.7 metres	\$147,555.00
Geologist and Manager	John Casey, M.Sc, P.Geo	3 months	\$30,000.00
Core Splitter	Vince Sault	3 months	\$9,000.00
Assaying	Min-En Laboratories.		\$15,977.77
Truck Rental			\$8,100.00
Truck Fuel			\$1,900.00
Camp Costs		6 persons X 68 days X \$40/day	\$16,320.00
Report Preparation and Drafting			\$8,000.00

Total Cost of Project \$23

\$236,852.77

Dated at Williams Lake, British Columbia this 23 rd day of September, 1999.
FESSION A
R. M. DURFELD R. M. DURFELD BRITISH COLUMBIA
R.M. Durfeld, B.Sc., P.Geo.

▶8. Statement of Qualifactions

I, Rudolf M. Durfeld, do hereby certify that:

1.) I am a geologist with offices at 1725 Signal Point Road, Williams Lake, BC.

2.) I am a graduate of the University of British Columbia, B.Sc. Geology 1972, and have practised my profession with various mining and/or exploration companies and as an independent geological consultant since graduation.

3.) I am a member of The British Columbia and Yukon Chamber of Mines and the Canadian Institute of Mining and Metallurgy.

4.) That I am registered as a Professional Geoscientist by the Association of Engineers and Geoscientists of B.C. (No. 18241).

5.) That this report is based on:

a.) my supervision, direct observations and compilation of the results for the diamond drilling conducted on the Watson Bar property during the period July 15th to September 21st, 1998.

b.) my personal knowledge of the property area and a review of available government maps and assessment reports.

R.M. Durfeld, B.Sc., P.Geo.

Appendix I - Diamond Drill Logs

.

-

- · - · · · ·

.

- -- -- --

		Hole	1	Northing		Easting		Elev.		1							
		98-01		10492.31		9205.9	3	1232.87									
	Depth		Azimuth	Dip	*Gold valu	es converte	d from fire	e assav in q/T									
	0.0		0	-89.9													
	162.5		0	-89.9													
				Au	Au	Aa	As	Cu	Pb	Sb	Zn	Geology Characteristics					
rom	То	Sample #	Geology	ppb*	a/T	maa	ppm	ppm	ppm	ppm	bom						
0.0	1.7	1	OB		0	<u> </u>											
					1												
1.7	17.7	1	SD/SS	1								17-177-SANDSTONE/SILTSTONE - Grev medium to fine					
					+							arained massive to finely banded					
					1	1	+					17 - 100 - Predominantly medium grained cand no alter-					
						1	+					ation Bedding at 50 degrees					
				+													
												5.1.5.4. tom poloite etriprom et 45 degrees					
							-					9.2 15.7 Plocky					
					1							8.2 Coloite attingers at 60, 75 (2, 10mm)					
						<u> </u>			· · · · ·			10.0.17.7 Eine greined eend with distinct eith leminetions					
			<u> </u>									at 45 to 50 degrees. Opencianal 1. Arm calaite stringers at					
			}	1			+					45 to 50 degrees. Occasional 1 - 40m calcile stringers at					
						+	+										
17.7	28.3	1	FP									17.7 - 28.3 - EELDSPAR PORPHYRY - Modium grained freeh to					
						1						workly altered with white foldener phoneen ut in a grow					
				1		-						groundmass. Phonoonists are subhodral equigranular (2, 5mm)					
			İ	1						••••		Contact is irregular intrusive concordant with bodding					
				ł								17.7 a 19.5 Weak grange feldenathic alteration controlled					
												by fracture					
	i											24.9 - 5cm fault gauge at 45 degrees					
							+					27.5 - 28.3 Weak feldenathic alteration lower contact in					
												chilled within 20 cm of the contact					
							-										
28.3	32.0	1	SD/SS									28.3 - 32.0 - SANDSTONE/SILTSTONE - Grey massive to					
	02.0	•	00/00					-	· · · · · · · · · · · · · · · · · · ·			laminated unaltered					
												30.3 - 30.5 - Coloite bairling fracture, parcellal to the pare					
							1										
32.0	37 R	1	FP									32.0 - 37.8 - EELDSPAR PORPHYRY Work grantist					
52.0												oblarite alteration					
							+										
37.0	72 7	1	20/02				+										
57.0	14.1		00,00									28.2 AA2 Blocks					
							+					30.3 - 44.2 - DIOCKY.					
												41.75 - Calcite veining at 70 degrees,					
							<u> </u>					42.0 - 43.0 Carbonaceous fault gouge.					
						Į	<u> </u>					50.2 - 51.0 - Carbonaceous rauit gouge.					
												51.5 - 51.7 - Fault gouge.					
												53.0 Bedding at 45 degrees.					
												50.0 - 57.2 - Calcite stringers (1 - 5cm) parrallel to core axis.					
							<u> </u>					51.8 - 52.7 - Blocky.					
	1						l					/U.5 - Bedding at 60 degrees.					

							98	ALL			
					1]					of the contact.
73.7	74.7	293852	2 SSgph	10	0.01	80	0 119	<2	5	89	73.7 - 83.7 - GRAPHITIC SILTSTONE - Sharp contact between
				PILL							upper laminated/massive sediments and fine grained, black
			· · ·								carbonaceous sediment. Contact @ 70-80 degrees is offset 4 cm
											by calcite filled fracture @ 10 degrees. Shearing parallel to
											bedding @ 75 degrees.Some sandy non-carbonaceous layers
								-			within this unit. Occasional finely disseminate pyite (<5%).
74 7	75.7	203853	· · · · · · · · · · · · · · · · · · ·		0.07	<u>, </u>					72.0.75.7
75.7	76.7	200000		10	0.02	2	52		E	04	73.9-75.7m. Sheared fault gouge (shearing @ 75 degrees).
76.7	70.7	20000-		10	0.01	3	J55	~~~		94	nairine quarz stringers @ 75 degrees.
77 7	78.1	20000		10	0.01	2	70	6	E	04	
78.1	70.1	20000	,	10	0.01	<u> </u>	/ /3	0	5	04	
70.1	70.9	293037	,		0.01		70	6	E		70.0.01.0
70.9	13.2	293030	<u>}</u>	10	0.02		/ /9	0	5	63	79.6-81.6m: Sandy non-carbonaceous.
91.2	01.2 91.0	293008	1	10	0.01	5			E	70	17.32-77.42m. White qtz-calcite fracture fill @ 10 degrees.
91.2	01.9	293000		20	0.02		<u> </u>	~~~~	<u> </u>	/6	82.3-83.7m: Carbonaceous fault gouge with 3 cm qtz vein
01.0	02.3	293001		240	0.24	EE!	110	20	45	4.05	@ upper contact @ 80 degrees. Lower contact @ 35 degrees.
02.9		293002	-	190	0.18	500		30	15	120	
83.7	85.6	293863	SD/SS	10	0.01						83.7 - 129.0 - SANDSTONE/SILTSTONE - Massive to weakly
							1				aminated with thin units of sheared graphitic sitistone
85.6	86.0	293864		30	0.03	245	5 40	<2	5	89	83 7-90 6m: 5% multidirectional carbonate fracture fillings
			1						· · ·		Hairline to 1 cm
86.0	87.0	293865		10	0.01						
87.0	88.0	293866		10	0.01	50	31	<2	5	73	
88.0	89.0	293867	-	20	0.02			~	Ŭ		
89.0	91.0	293868	·	10	0.01	25	36	<2	5	77	
91.0	93.0	293869		10	0.01			<u> </u>			
93.0	95.0	293870		10	0.01	25	32	<2	<5	72	
95.0	97.0	293871		10	0.01						99.0-99.3m ² 20% carbonate shears and fracture filling
97.0	98.9	293872		10	0.01	45	33	<2	<5	73	@ 60 and 30 degrees
98.9	100.1	293873		20	0.02						99.4 - 100.1 - 10% Carbonate shear and fracture fillings @
100.1	101.5	293874		10	0.01	105	5 45	<2	5	85	45 and 60 degrees
											100.8m; 5 cm fracture fill
101.5	102.6	293875	aph	1080	1.08						101 5-102 6m Graphitic fault gouge Shearing @ 50
											degrees
102.6	104.6	293876		20	0.02	55	69	<2	5	97	103 6-103 75m. Graphitic fault gouge
104.6	105.1	293877		10	0.01		1		-		104 7-104 9m: Graphitic fault gouge
105.1	106.6	293878	aph	10	0.01	50	48	<2	5	78	106-106 4m; Graphitic fault gouge. Shearing @ 45 degrees
106.6	107.6	293879	51	20	0.02						100 100.4m. Orephild fault gouge. Offeaning @ 40 degrees.
107.6	108.4	293880		30	0.03	105	62	4	5	90	107 7-108 7m: Graphitic fault gouge
108.4	110.4	293881		10	0.00				ŭ		110 1-115 1m; Blocky core
					0.01						
112.7	113.7	293882		20	0.02	5	26	<2	<5	65	113.4-113.7m: Lost core.
113.7	114.7	293883		10	0.01		1	_			113.8-114.1m; Graphitic fault gouge.
114.7	115.7	293884		20	0.02	60	49	<2	5	86	119.9-123.4m: Broken, blocky core.
126.8	127.8	293885		10	0.01						124.3-127.6m: Clay alteration in SD. Weak to moderate
											increasing intensity towards bottom contact. Minor

98ALL

								·····			
127.8	129.0	293886	i	10	0.01	35	55	<2	5	82	disseminated pyrite.
129.0	130.0	293887	FP	10	0.01						129.0 - 137.3 - FELDSPAR PORPHYRY - White, zoned feldspar
											phenocrysts in a grey siliceous matrix. Biotite and hornblende
				1							(5-10%). Chilled lower contact @ 50 degrees.
136.3	137.3	293888		10	0.01	275	48	<2	5	62	
137.3	139.0	293889	SD/SS	10	0.01						137.3 - 162.5 - SANDSTONE/SILTSTONE -Fine to medium
	*****										grained with occasional graphitic bands.
139.0	140.0	293890		10	0.01	20	40	<2	20	78	137.2 - 139.0 - Sheared graphitic siltstone.
140.0	140.9	293891		10	0.01						140.7-140.85m: Graphitic shearing and 50% carbonate
											veining @ 70 degrees.
140.9	141.9	293892		10	0.01	95	46	<2	10	101	
141.9	142.9	293893	gph	140	0.14		f				141.9-142.4m: Graphitic shearing and 25% fractured carbona
									-		veining.
142.9	143.9	293894	1	20	0.02	55	27	2	5	59	142.4-147.8m: Weakly alt'd sandstone. Weak clay alteration
			1								gives the rock a soft corroded appearance.
143.9	147.8	293895	laph	10	0.01						
147.8	148.3	293896		10	0.01	35	51	<2	5	86	147.8-148.3m; Graphitic, sheared siltstone with 10%
											carbonate veining.
148.3	149.3	293897		10	0.01						
149.3	152.4	293898	1	10	0.01	25	51	<2	10	89	
152.4	153.7	293899		20	0.02						152.4-153.7m: Graphitic sheared siltstone with 10%
				1 1							carbonate stringers @ 65 degrees.
153.7	154.9	293900		10	0.01	15	42	<2	<5	79	
154.9	155.9	294151	1	10	0.01						154.9-155.6m: Sheared, graphitic siltstone @ 45 degrees.
155.9	156.9	294152		10	0.01	20	53	<2	<5	83	
1			1	1					ĺ		160-160.2m: Sheared, graphitic siltstone @ 50 degrees.
156.9	162.5	1	EOH	1							162.5 - END OF HOLE
			*	1					†		
L			La companya da								and a second seco

1.1.1

		Hole	<u> </u>	Northing		Easting		Elev.								
		98-02		10476.23		9334.89		1228.05	i l							
	Depth		Azimuth	Dip	*Gold values	s converted	d from fire a	issay in g/T	1							
	0.0		180	-89.9		*****	T	T								1
	103.3		180	-89.9					1							
				Au	Au	Ag	As	Cu	Pb	Sb	Zn	Geology (haracterist	ics		
From	То	Sample #	Geology	ppb*	a/T	maa	ppm	ppm	ppm	mag	mag		1			
0.0	4.0	1	OB	<u> </u>	×		<u>† </u>	1				00-40-	OVERBUR			
					<u> </u>		1		1				1			
4.0	22.0	1	SD/SS					+	1			40-220	- SANDST	ONE/SILT	STONE - Gre	-v/areen
		+	1				· · · · · · · · · · · · · · · · · · ·	1	1			unattered	fine to med	ium graine	d	
					ł		<u> </u>	+	1			9.8m	Bedding @	70 degree	96	
	·		P		[[-		<u> </u>	+	+			4-15 7	m' Broken	blocky co	ne I ower con	tact
					1			·				ie irre	nular intrus	ive conform	mable to bed	ting
							<u> </u>	+				10 11 0				<u></u>
22.0	30.5	1	FP				+	+	+			22 0 - 30				isive with
									+			50-60%	white subbe	dral felden	ar graine in a	
								+	<u> </u>			aroundm		iron etainii	ar grains in a	by fractures
		+	· · · ·					+	+			grounan	ass. VVCan	I UN Stairin		
30.5	36.6	1	SDISS									30 5 - 36	L 6 - SANDS			j j odium to fino
	00.0		00/00					+	<u> </u>			grained as				
								+	+			granieu as				-
26.6	20.0		ED									26.6 20				ite ereeniek
50.0	00.0		[' '					+	+			bornhunu		mocition		butlocc
												distinctivo	foldener ni	anooniete	Mook Eo o	bulless
30.0	40.0	294154		10	0.01		<u> </u>					20.6.4		on blocky	. Weakres	lan on nactures.
40.0	40.0	204155		20	0.01	<0.2	10	19	10		5 50	33.0-4			•	
40.0	41.0	204100		20	0.02	-0.2	10				<u> </u>			•••		
41.0	42.0	294156	SD/SS	10	0.01				+			SANDST			ne to medium	areined
	141.0		00,00					+				with weak	to moderat	e iron stair	controlled b	v fractures
42.0	42.5	294157		20	0.02	<0.2	20	39	<2		5 74	41 0-4	5.8m [·] Brok	en blockv	and around i	core
42.5	43.5	294158	a	10	0.01				1			42 4-4	2.5m: Vuo	av quartz c	arh vein and	iron stain
43.5	44.5	294159		10	0.01	<0.2	50	70	<2		5 92	44 2-4	5.9m Gou	9, 444. <u>-</u> -		
44.5	45.5	294160		10	0.01				†- <u>-</u>					go. 		
45.5	46.5	294161		10	0.01	<0.2	70	58	<2	<5	88	5				
46.5	47.5	294162		10	0.01											
47.5	48.6	294163		10	0.01	<0.2	45	78	<2	<5	99	47 8-4	9.5m: Mod	erate fe sta	aining control	led hv
U .1F						~V,£			-			fractur	es and 10-1	5% carbor	nate filled free	tures
48.6	49 7	294164	· · · · · · · · · · · · · · · · · · ·	10	0.01				<u>+</u>							
49 7	51.5	294165	1	10	0.01	<0.2	20	21	<2		5 59	1				
51.5	52.5	294166		10	0.01	- V i h		<u> </u>			-	51 5m	Bedding 4	ി ന 45 deare		
52.5	53.5	294167		10	0.01	<0.2	55	63	2		5 101	+ 01.000				
53.5	54.5	294168		20	0.02				+ ·			1				
54.5	55 1	294160	,	10	0.02	<0.2	10	A1	0		5 97					
		204100			0.01	-0.2	+0		<u>``</u>		<u> </u>					
55 1	56.1	294170	SD/SSaph	20	0.02				<u> </u>			55 1 - 67		NACEOUS	HANGING	Mixed
		204170	SD/SSyph	<u>~</u> U	0.02				·······			Carbonno		and ere	detone	
56 1	58.2	294171		10	0.01	(0.2	25	57	0		5 97		5 7m . Sha	ared and fr	actured area	hitic
	50.2	2.041/1		10	0.01	~U.Z		51	**			eiltetor	0.7111. O1107		actured grap	
58.2	50 2	20/172		10	0.01							56 7 5	8.2m Prot	on blocky		
JU,Z		204112	<u> </u>	10	0.01		l	ι	I	I		1 30.7*3	J.ZIII. DIOP	OI, DUCKY		

59.2	60.6	294173	3	10	0.01	<0.2	35	33	<2	}		5 8	38
60.6	61.6	294174	1	10	0.01								
61.6	62.6	294175	5	180	0.18	0.2	340	154		24		10 21	4 61.6-63.3m; Fine graphitic siltstone. Sharp
													lower contact @ 45 degrees.
62.6	64.0	294176	3	10	0.01				1	i i i i i i i i i i i i i i i i i i i			
64.0	65.2	294177	,	10	0.01	<0.2	2 45	36	<2		<5	8	64.3-65.3m; 5% carbonate stringers @ 45 degrees.
65.2	66.2	294178	3	10	0.01								
66.2	67.7	294179		50	0.05	<0.2	315	40	<2			5 9	13
									1				
67.7	68 7	294180	SD/SSk	570	0.57								67 7 - 76 2 - ALTERED SANDSTONE/SILTSTONE - Weak
									†				clay alteration in sandstone leaves a corroded appearance
			+			••••••	-						to core
													67.6-69.5m ² Weak to moderate clav alteration
			+				++						and 25% graphite. Sheared with 10-20% guartz
													stringers and veins
68.7	69.3	294181	aen	1800	1.8	22	>10000	55		342		10 78	68.7 - 69.3 - 1-5% disseminated arsenonyrite
69.3	70 4	204182		20	0.02	ک . ک	10000						
70 4	71.8	204192		10	0.02	<0.2	240	25	<2			5 7	
71.9	71.0	204100		30	0.01	-V.Z	240	20					
72.9	72.0	204104	· · · · · · · · · · · · · · · · · · ·	10	0.03	<0.2	80	26	12			5 7	
72.0	73.4	204100		20	0.01	NU.2		20	~~			<u> </u>	74 2m; Bodding @ 90 degraac
73.4	74.4	204100	· · · · · · · · · · · · · · · · · · ·	20	0.02	<0 2	185	18	0			5 6	14.2111. Dedding gy oo degrees.
75.2	75.2	204107		150	0.04	-V.Z	100	10	~~			<u> </u>	
13.2	70.2	234100	·	150	0.15		-	•					
76.2	77.0	20/190	envee	120	0.12	<0.2	45	10	12			6 5	
/0.2	77.0	294109	130/33	120	0.12	~ 0.2	40	10	~~		·····	5 5	79/76.2 - 67.4 - SANDSTONE/SILTSTONE - Grey, medium
77.0	70.0	204400		10	0.01								grained sandstone with minor sitty layers.
77.6	78.6	294190		10	0.01	-0.0	25	~~~			~C		78.4-78.8m; Carbonate stringers @ 20 degrees
78.0	79.7	294191	dcv	10	0.01	<0.2	30	77	~2		< 0		
/9./	00.2	294192	4	10	0.01	-0.0	00						79.0-00. Im. Graphite quartz shear.
80.2	81.5	294193		10	0.01	<u.2< td=""><td>30</td><td><u>2</u>U</td><td><<u> </u></td><td></td><td></td><td>ວ<u></u> ເ</td><td></td></u.2<>	30	<u>2</u> U	< <u> </u>			ວ <u></u> ເ	
							·						
									i				84.4-84.9m: 10% quartz carbonate stringers
													@ 30-70%.
			00/00				·						
87.4	88.4	294194	SD/SSUN	20	0.02	- ^ ^		~~					81.4 - 93.2 - ALTERED SANDSTONE/SILTSTONE - Weak
88.4	89.4	294195		10	0.01	<0.2	115	56	<2			<u>ə </u> 9	US clay alteration. 10% quartz stringers (up to 2cm) and
89.4	91.1	294196		10	0.01	- A -							20% graphite. Shearing @ 30 degrees.
91.1	92.2	294197		10	0.01	<0.2	60	70	<2			5 11	
92.2	93.2	294198		10	0.01		<u> </u>		ļ				
						····· ··· <u>-</u> ····							
93.2	94.2	294199	SD	10	0.01	<0.2	35	31	<2		<5	7	0 93.2 - 98.2 - SANDSTONE - Unaltered, massive, medium
							 _						grained with bedding @ 40 degrees.
							ļ						
98.2	99.2	294200	SS	80	0.08		ļļ.						98.2 - 103.33 - SILTSTONE - Fine-grained siltstone with 5%
			ļ			******							carbonate stringers, minor graphite.
99.2	100.2	294251		30	0.03	<0.2	35	72	<2		<5	7	7 98.9-103.3m: 10% quartz, sheared and .
100.2	101.2	294252		10	0.01								weakly altered, minor graphite
101.2	102.2	294253		10	0.01	<0.2	25	69	<2		<5	9)6
102.2	103.3	294254		10	0.01								
Į	103.3	1	EOH										103.3m: EOH

98-03 10331.28 9351.51 1292.78 Image: constraint of the start of the s	ium grained, ts. 5% i. um to fine 's.
Depth Azimuth Dip *Gold values converted from fire assay in g/T 0.0 180 -89.9	ium grained, ts. 5% i. um to fine 's.
0.0 180 -89.9 Image: stringer strin	ium grained, ts. 5% i. um to fine s.
252.4 180 -89.9 -	ium grained, ts. 5% i, um to fine 's.
Image: Construction of the construc	ium grained, ts. 5% t. um to fine t.
From To Sample # Geology ppb* g/T ppm ptm ptm ptm	ium grained, ts. 5% s. um to fine 's.
0.0 4.9 1 OB 0.0 - 4.9 - OVERBURDEN 4.9 7.4 1 GD 4.9 - 7.4 - GRANODIORITE - Grey-white mean with subhedral to euhedral feldspar phenocrys 0 0 0.0 - 4.9 - OVERBURDEN 0.0 - 4.9 - OVERBURDEN 4.9 7.4 1 GD 4.9 - 7.4 - GRANODIORITE - Grey-white mean with subhedral to euhedral feldspar phenocrys 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0	lium grained, ts. 5% s. um to fine 's.
4.9 7.4 1 GD 4.9 - 7.4 - GRANODIORITE - Grey-white mer 4.9 7.4 1 GD 4.9 - 7.4 - GRANODIORITE - Grey-white mer 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 SD/SS 0	lium grained, ts. 5% s. um to fine rs.
4.9 7.4 1 GD 4.9 - 7.4 - GRANODIORITE - Grey-white mean with subhedral to euhedral feldspar phenocrys	lium grained, ts. 5% s. um to fine rs.
Image: Constraint of the second se	ts. 5% 3. ium to fine rs.
Image: Constraint of the second sec	s. ium to fine rs.
7.4 53.4 1 SD/SS 7.4 - 54.4 - SANDSTONE/SILTSTONE - Med	ium to fine Is.
7.4 53.4 1 SD/SS 7.4 - 54.4 - SANDSTONE/SILTSTONE - Med	ium to fine IS.
	15.
grained, grey green with bedding @ 45 degree	
53.4 54.4 294255 10 0.01 20 62 2 5 94 15.2-15.5m; Granodiorite dyke.	í
19.2-19.6m: Quartz injection. Green clay	chlorite
alteration.	
19.8-23.6m: Series of fine grained granod	orite dykes
intruding sediments.	
24.6-28m: Ground core rubble.	
28.5-30m: Granodiorite intrusive with qua	tz.
33-34.1m: 20% quartz stringers parallel to	core axis.
54.4 55.4 294256 SD/SSfe 10 0.01 HEMATITE ALTERATION - Moderate to inter	se hematite
stain in sandstone/sittstone.	
55.4 56.4 294257 10 0.01 <0.2 65 46 6 <5 97	ļ
<u>56.4</u> 57.4 294258 10 0.01	
57.4 58.4 294259 20 0.02 <0.2 70 47 6 5 96	
58.4 60.0 294260 10 0.01	
<u>60.0</u> 61.0 294261 10 0.01 <0.2 15 39 <2 5 88	ļ
	L
68.3 71.5 1 FP 68.3 - 75.0 - FELDSPAR PORPHYRY - Stror	g hematite
71.5 72.5 294262 10 0.01 alteration	· · · · · · · · · · · · · · · · · · ·
72.5 73.5 294263 10 0.01 < 0.2 30 < 1 6 < 5 55	
73.5 75.0 294264 10 0.01	
	ļ
75.0 77.1 294265 SD/SS 10 0.01 <0.2 100 60 4 <5 98 75.0 - 88.2 - SANDSTONE/SILTSTONE	
78.1 79.1 294267 10 0.01 < 0.2 570 52 < 10 77	
80.1 81.4 294269 80 0.08 < 0.2 6510 79 30 85 148	<u> </u>
81.4 82.9 294270 10 0.01	
82.9 84.4 294271 10 0.01 < 80 68 2 5 93	
84.4 86.0 294272 10 0.01	
88.2 92.2 1 SD/SSfe 88.2 - 92.2 - SANDSTONE/SILTSTONE - We	ak hematite stain.
	1
92.2 95.3 1 FP 92.2 - 95.3 - FELDSPAR PORPHYRY - Text	rally variable
from dark feldspar porphyritic to white quartz	ich felsite.

95.3	96.3	294273	SS/SD	10	0.01	<0.2	35	5 4 4	<2	<5	90	95.3 - 130.9 - SILTSTONE/SANDSTONE - Fine grained
			· . ·			1		1	1			siltstone with variable graphite content and <20% sandstone
												interbeds. Bedding @ 45 degrees.
96.3	97.3	294274		10	0.01						1	96.3-98.3m: Sheared graphitic siltstone.
97.3	98.3	294275		20	0.02	<0.2	50	118	<2		5 89	96.3-96.7m: 20-30% quartz-carbonate stringers.
98.3	99.3	294276	,	10	0.01							
99.3	100.3	294287		10	0.01	<0.2	85	82	<2	<5	130	
100.3	101.5	294288		10	0.01	1		1		1	1	
101.5	103.0	294289		10	0.01	<0.2	35	82	<2		5 96	
103.0	103.5	294290		10	0.01			1	1		1	
103.5	104.9	294291		10	0.01	<0.2	30	41	<2	<5	81	
104.9	105.8	294292		10	0.01	1						104.9-106m: Sheared graphitic siltstone with <5%
105.8	106.8	294293		10	0.01	<0.2	10	88	<2	<5	88	guartz-carbonate stringers.
109.6	110.6	294294		10	0.01			1	1	1		
110.6	111.6	294295	aph	10	0.01	<0.2	15	114	<2	5	5 93	109.3-110.4m; 10% quartz-carbonate stringers
111.6	112.6	294296		10	0.01			1				110.6-111.2m; Weakly sheared graphitic siltstone.
				1							-	121.0 - Downsize to NO.
								1		1	+	121 2-125m Weak green alteration in sandstone
				1			1					beds
				1			1	+				
130.9	147.1	1	FPsfe	1								130.9 - 148.1 - FELDSPAR PORPHYRY - Siliceous intrusive
				1			-	1				with sharp contacts Equigranular medium grained with
				1			1	1				fracture controlled bematite alteration
147.1	148.1	294297		10	0.01	<0.2	30	15	4	<5	50	140 1 - 141 4 - Siltstone
			······································				1		· · · · ·	-		
148.1	149.5	294298	SD/SS	10	0.01		1	1				148.1 - 252.4 - SANDSTONE/SILTSTONE - Medium to fine
				1			1	1				grained. Light grey sandy layers with fine dark to black silty
							1	1				lavers. Bedding at 45 to 55 degrees. Hairline carbonate
							1				1	stringers throughout
149.5	150.7	294299		10	0.01	<0.2	5	61	<2	<5	90	148.6 - 148.8 - Sheared, graphitic with 30% carbonate
			, ¹	1								stringers.
							1					168.3 - 168.5 - 20% carbonate stringers at 65 degrees
												180.2 - 193.3 - Tending to finer grained sediment with
										<u> </u>		distinct bedding taminations
192.6	193.6	294300	· •	10	0.01		1					193.3 - 195.0 Graphitic siltstone with 10 to 15% carb-
193.6	194.2	293901	anh	10	0.01							onate stringers. Bedding at 45 degrees
194.2	195.1	293902	aph	10	0.01	<0.2	35	67	0	<5	Q1	
195.1	196.1	293903	<i>ər"</i> '	10	0.01				-		+	
196.1	197 1	293904		10	0.01	<0.2	20	27	A	<5	29	
107.1	198.0	293905		10	0.01	·V.£	20					
108.0	100.0	203000		10	0.01	<0.2	20	22	2		70	
100.0	200.0	200000	<u> </u>	01	0.01	1 2	1460	169	114		/ 19 / AAG	100 1 - 100 2 - Sheared graphitic siltetone with 5 to 100/
200.0	200.0	204270	<u>40</u> 4	40	0.04	1.4	1400	100	114		440	arbonata etringem
200.0	200.0	204210		200	0.11	50	>10000	271	224	10	2000	100.2 201.0 Sandatana with 20% quarte astronate
200.5	201.0	234213	404	300	0.35	5.8	-1000	3/1	334	<u>-</u>	2090	voice 50 discominated purits (among the function of the functi
201.0	204 5	204200	AA1 (0) 10 40	4400	<u> </u>						<u> </u>	venis, 3% disseminated pyrite/arsenopyrite.
201.0	201.5	294280	qcvpyasp	1100	1.1		>10000	040				ZUI .0 - 201.5 - Quartz carbonate vein with 10% pyrite,
201.5	202.5	294201	pyasp	400	0.4	2.2	>1000	613	114	L	951	Ir, arsenopyme.
202.5	203.5	294202	qcvasp	1450	1.45		>10000	204	400		4070	201.5 - 202.5 - Fine grained black sittstone with 10%
203.5	204.0	294283		540	0.54	2.2	1210000	201	138	10	10/8 וע	quartz carbonate stringers.

Ì

204.0	204.5	294284	qcvasp	2640	2.64							201.5 - 205.0 - 30% quartz carbonate, graphite with 10%
204.5	205.0	294285		6670	6.67	21.2	>10000	227	2654	25	2677	pyrite, arsenopyrite,tr. sphalerite.
205.0	206.0	294286	;	70	0.07	1			1			205.0 - 205.5 - Fine black siltstone with 5% carbonate
			1	1		1						stringers.
1							1					211.3 - 212.3 - 2cm quartz carbonate stringer, sub-parrallel
			1									to core axis.
												216.0 - 217.0 Black siltstone with 5% carbonate stringers.
												219.1 - 220.0 Black siltstone, weakly sheared.
220.3	221.3	293908		10	0.01							
221.3	221.8	293909	gphqcv	10	0.01	<0.2	25	71	<2	5	90	221.3- 221.8 - Graphitic siltstone with 20% carbonate
221.8	222.8	293910		10	0.01							quartz stringers.
222.8	223.9	293911		30	0.03	<0.2	75	44	8	10	78	223.5 - 223.6 - Graphite quartz carbonate vein.
223.9	224.9	293912	gphqcv	190	0.19		1					223.9 - 225.6 - Sheared graphitic quartz carbonate, 25%,
224.9	225.5	293913	i i	40	0.04	0.2	50	40	<2	5	70	trace arsenopyrite, pyrite.
225.5	226.5	293914		20	0.02	!						
226.5	227.2	293915		20	0.02	<0.2	30	30	2	5	75	
227.2	227.7	293916	gphqcv	370	0.37							227.2 - 230.0 - Sheared graphitic siltstone with 10 to 15%
227.7	228.8	293917	'	60	0.06	0.2	65	43	2	10	77	carbonate-quartz stringers, trace pyrite, arsenopyrite.
228.8	229.8	293918	4 ×	240	0.24	,						
229.8	230.8	293919		30	0.03	<0.2	15	37	<2	<5	69	
235.9	236.9	293920		30	0.03		1					
236.9	237.5	293921	gphqcv	30	0.03	<0.2	70	60	<2	5	89	236.9 - 237.5 - Sheared graphitic siltstone with 10%
237.5	238.5	293922		10	0.01							carbonate-quartz stringers.
												242.2 - 242.5 - Sheared graphitic siltstone.
244.2	245.2	293923	gph	20	0.02	<0.2	10	50	<2	<5	82	
245.2	245.8	293924		20	0.02							245.5 - 246 - Sheared graphitic siltstone, with 1cm carb-
245.8	246.5	293925		10	0.01	<0.2	5	25	<2	<5	62	onate-quartz stringer.
												252.3 - 252.4 - Sheared graphitic siltstone.
246.5	252.4	1	EOH									252.4 - End of Hole

		Hole		Northing		Fasting	[Flev	1											
		98-04		10222.24		9522.66		1281.99	+		•••••									
	Depth		Azimuth	Dip	*Gold value	s converter	from fire a	ssav in n/T	+											
	0.0		180	-89.9				1	+	••										
	322.2	······	180	-89.9																
				Au	Au	An	As	Cu	Ph	Sh	Zn	Geology Characteristics								
From	Το	Sample #	Geology	nnh*	aЛ	nom	nnm	nom .	nnm	00	0000									
0.0	43	1	OB	PPD	9,1	ppm				ppm										
0.0	4,0	<u> </u>	00																	
43	46.0	1	SD/SS									A 2 470 SANDSTONE/SUITSTONE Westbering and								
46.0	40.0	294304	00/00	10	0.01							4.5 - 47.0 - SANDSTONE/SILTSTONE - Weathering and								
40.0	41.0	204004		10	0.01							and ment with heading at 45 decrees. Openained								
												sediment with bedding at 45 degrees. Occasional namine								
·····																				
47.0	48.0	204305	50	10	0.01	0.2	50	17												
53.6	40.0 54.5	294303	FF	10	0.01	0.2	50	17	(0	/	47.0 - 66.0 - FELDSPAR PORPHYRY - coarse porphyry with								
		294300		10	0.01			<u>}</u>				white subhedral feldspar phenocrysts in a grey to orange								
l												groundmass, vveak to moderate limonitic stain throughout.								
65.0	66.0	204207		10	0.01	0.0	20					D7.7 - D7.9 - Black sitstone								
	00.0	294307		10	0.01	0.2	30			•	<u> </u>									
66.0	67.0	204209	00/00-01	10	0.01															
00.0	67.0	294308	50/55CV	10	0.01							66.0 - 79.0 - SANDSTONE/SILTSTONE - fine to medium								
70.0	72 0	204200			0.00		05			.		grained, grey to black. Bedding at 50 - 60 degrees.								
72.0	73.0	294309		20	0.02	0.2	25	5/	10	<u>' </u>	5 5	Multidirectional carbonate stringers.								
/6.0	79.0	294310		10	0.01				ļ											
70.0	90.0	204211	50	10	0.01															
	00.0	294311	FP	10	0.01	0.2	50	12	8	\$	5 5	79.0 - 83.0 - FELDSPAR PORPHYRY - 50% white subhedral								
												teldspar phenocrysts in a grey siliceous groundmass.								
	02.0	204242										Moderate limonitic stain throughout. Occasional quartz								
02.0	63.0	294312		10	0.01							stringers (10%)								
02.0	04.0	204040									-									
65.0	64.0	294313	SSCV	10	0.01	0.2	195	41	6	۶ <u> </u>	5 7	83.0 - 85.7 - SILTSTONE - grey to black with 5 - 10%								
				·····								carbonate stringers.								
05 7	00.0																			
65.7	00.0	1				******						85.7 - 87.0 - HORNBLENDE PORPHYRY - Dark Hornblende								
	07.0	201011		10								phenocrysts in a buff to greenish matrix. Fine carbonate in								
0.68	87.0	294314		10	0.01						_	matrix								
87.0	88.0	294315	SD/SSte	10	0.01	0.2	90	27	4		5 79	87.0 - 94.9 - SANDSTONE/SILTSTONE - medium grained,								
	· ·····											grey, massive to weakly banded sediment. Weak fracture								
												controlled limonite stain.								
94.9	97.0	1	SSArg									94.9 - 100.0 - ARGILLACEOUS SILTSTONE - grey to black,								
												finely laminated silt bands with light grey fine grained sand.								
												Occasional multidirectional quartz-carbonate stringers.								
97.0	98.0	294316		10	0.01															
100.0	101.0	1	SD/SS									100.0 - 113.3 - SANDSTONE/SILTSTONE - mixture of grey,								
												medium grained sandstone and black siltstone. Moderate								
												fracture controlled limonite stain. Bedding at 50 degrees. 5%								
												quartz veins and fracture fillings at 60 and 20 degrees.								

Ĵ.

Ĩ

Ì

101.0	102.0	294317		10	0.01	0.2	35	20	4	5	72	10.8 - 101.2 - 20% qtz veins and fractures at 60 & 20 degrees.
108.0	109.0	294318		40	0.04							108.3 - 109.1 - 10-20% quartz veins and fracture fillings at 50
				1								and 35 degrees.
110.0	111.0	294319	qvasp	60	0.06	0.2	3585	38	22	45	391	110.6-110.75 - 60% quartz veining with 5% pyrite, trace
			<u>∤ </u> †				t					arsenopyrite, scorodite.
111.0	112.3	294320		10	0.01							
1123	113.3	293926		10	0.01							
			<u> </u>									+
1133	114.2	203027	EPavaen	20	0.02	0.2	380	10	8	5	72	113 3 - 120 1 - FELDSPAR PORPHYRY - white subbedral
	114.6	200021	11 qvaop		0.02	U.Z						feldspar phyocrysts (2 - 4mm) in a grey siliceous
												aroundmass. Moderate limonite stain (fracture controlled)
			<u>+</u>									and vellow scorodite throughout 10 - 15% carbonaceous
·												
114.2	115 2	202020	<u> </u>	110	0.11							
114.2	113.2	293920										2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 =
			· · · · · · · · · · · · · · · · · · ·									1156_1157_1108_1200
445.0	440.0	000000	<u> </u>		0.02		1075				105	113.0 - 113.7, 118.8 - 120.0.
115.2	116.2	293929	·····	30	0.03	0.2	18/5				120	
116.2	117.2	293930		50	0.05		1015			45		
117.2	118.2	293931	<u> </u>	40	0.04	0.2	1845	25	8	15	383	
118.2	119.2	293932	<u> </u>	10	0.01		10000			405	4050	<u> </u>
119.2	120.1	293933		4/0	0.4/	0.6	>10000	115	114	125	1658	
										·····		
120.1	121.0	293934	SD/SS	210	0.21							120.1 - 162.5 - SANDSTONE/SILTSTONE - grey to black
												medium to fine grained with bedding @ 50 degrees.
121.0	123.0	294321		10		0.2	205	29	2	5	68	122.6 - 122.65 sheared, graphitic 40% quartz - carbonate.
127.0	128.0	294322		20								
132.0	134.0	294323		10		0.2	30	35	6	5	70	
136.0	138.0	294324		10								
			ļ									
142.0	144.0	294325				0.2	110	38	12	5	84	143.8 - 144.8 Graphitic sittstone with 5% pyrite.
144.0	145.0	294326		10	0.01							144.8 - 144.9 Sheared graphitic quartz - carbonate @ 65 deg
145.0	147.0	294327		10	0.01	0.2	85	47	10	5	92	
152.0	153.8	294328		10	0.01							
]
153.8	155.8	294329		10	0.01	0.2	5515	48	20	75	89	153.8 - 153.85 Sheared quartz - carbonate, pyrite.
												153.85 - 157.3 Graphitic siltstone.
155.8	157.8	294330		10	0.01							
157.8	159.8	294331		10	0.01	0.2	875	35	14	20	85	
159.8	161.8	294332		10	0.01							
162.5	163.5	1	FPh									162.5 - 167.7 - FELDSPAR PORPHYRY - fresh, unaltered,
			,									with white subhedral feldspar phenocrysts (2 - 5mm) in a
			<u> </u>									grey feldspathic matrix. Evenly disseminated black
			+									hornblende(?) grains (0.5 - 1mm) - 1% Sharp irregular
166.0	167.7	294333	SS	10	0.01	0.2	160	9	10	5	50	contact subparallel to bedding.
167 7	168 7	294334	SS	20	0.02			····				167.7 - 176.8 - SILTSTONE - variable composition from dark
		201004										graphitic to light
			<u>}</u>					·····				167.7 - 168.2 Sheared sandstone.
	1			1	1	1	1	1	1	1		,

Ĭ

Ì

												168.2 - 168.8 Hornblende Porphyry - light green matrix						
												with b	ack mafic p	henocrysts	i,]		1	
168.7	170.7	294335	HP	10	0.01	0.2	115	49	10	5	73	170.6	171.4 - Ho	mblende P	orphyry - with	n black angu	ular	
												clasts	n a fine lig	nt green ma	trix. Top of u	unit shows		
												offset s	ubparallel t	o core axis	i.			
171.4	171.9	1	SS															
171.9	172.9	293935		30	0.03	0.2	220	41	4	10	88					<u> </u>	1	
172.9	173.3	293936		20	0.02							172.8	173.3 - Sh	eared siltst	one with 50 -	70 quartz,	minor	
												calcite	. Shearing	; @ 50 deg	rees.			
173.3	174.3	293937		20	0.02	0.2	130	42	8	10	99							
																	ļ	
176.8	177.8	1	QFP									176.8 - 18	4.7 - QUAF	RTZ-FELDS	SPAR PORPH	IYRY - Feld	dspar	
												and quart	phenocrys	its in a grey	siliceous ma	trix. Minor	4	
												hornblend	e (?) grains	. Irregular ir	ntrusive conta	acts.		
179.0	180.0	294336		10	0.01													
181.0	182.0	294337		10	0.01	0.2	50	2		5	38		<u>.</u>					
	100.0		0.5.00									4047.00	0.7. 0.4.1/5		I TOTONE N	 /		
184.7	185.0	1	SD/SS									184.7 - 22	3.7 - SANL	STONE/SI	LISTONE -	variable gra		
	107.0				0.04							size from	coarse sand		iminated sand			
185.0	187.0	294338		10	0.01							DIACK SIIT.		-				
107.0	100 5		FO									197.9	188 5 Eeld	lenar Phom			+	
107.0	100.0		rr									107.0	100.0 1 60				-+	
199.5	100.0	1	22/02															
100.5	130.0	1	00,00										+					
190.0	191.0	294339	FP	10	0.01	02	2275	52	10	75	81	189.2	194.8 Coa	rse angular	porphyry.	+		
191.0	193.0	294340		10	0.01								1		1	+		
193.0	195.0	294341		10	0.01	0.2	535	46	12	15	75							
															-			
195.0	197.0	294342	SD/SS	10	0.01							196.2	197.2 -Bla	ck sheared	siltstone with	10% quart	tz - carbonat	
200.0	202.0	294343		10	0.01	0.2	110	48	10	5	76							
210.0	212.0	294344		10	0.01			1				209.2	211.8 - Fir	nely banded	I sandstone a	nd siltstone).	
												Beddin	g @ 45 deg	grees.				
214.0	216.0	294345		10	0.01	0.2	115	28	10	5	61							
216.0	218.0	294346		10	0.01												•	
218.0	220.0	294347		10	0.01	0.2	45	73	12	5	89							
220.0	222.0	294348		10	0.01													
222.7	223.7	293938																
223.7	224.9	293939	SSgphqv		0.01	0.2	230	58	8	5	81	223.7 - 22	9.8 - SILTS	STONE - sh	eared graphi	tic with qua	rtz	
												carbonate	stringers, t	race - 5% p	oyrite .			
											L		1	1		1		
224.9	225.7	293940		10	0.01							223.7	- 226.9 she	eared graph	nitic siltstone	with 10% q	uartz-	
												carbon	ate stringer	s trace 5%	pyrite trace	asenopyrite). - 1	
225.7	226.9	293941		10	0.01	0.2	60	60	14	5	76							
226.9	227.9	293942		10	0.01												+	
		00000.10											227.0 -1			ith 150/		
227.9	228.6	293943		10	0.01	0.2	55	65	2	5	86	221.6	221.9 she	area graphi	uc sitistone w	/un 15% qu	aruz -	
									l			carbonate stringers .						

)

228.6	229.8	293944		10	0.01							228.5 - 228.6 Weakly sheared graphitic siltstone with 5%
												quartz - carbonate stringers. Locally 15 - 20% disseminated
												pyrite. (229.6 - 229.8).
												229.6 - 229.8 Sheared graphitic siltstone with 5%
												disseminated pyrite.
229.8	230.8	293945	SD/SSgph	10	0.01	0.2	55	40	8	5	67	229.8 - 322.15 - SANDSTONE/SILTSTONE - mixed light grey
				1								sand and black graphitic siltstone.
230.8	231.8	293946		10	0.01							229.8 - 231.8 - 1 - 5% pyrite in sandstone .
231.8	233.0	293947	gphqv	400	0.4	0.8	4540	73	80	5	148	Sheared graphitic sandstone/siltstone with weak clay
1												alteration. 10 - 15% quartz - carbonate stringers.
233.0	234.5	293956		10	0.01							
234.5	235.0	293957	gphqcvasp	140	0.14	5.8	5045	319	524	5	938	234.5 - 236. Sheared, graphitic with 10% quartz -
235.0	236.0	293958		130	0.13							carbonate stringers, finely disseminated pyrite. 10 - 15%
236.0	237.0	293959		140	0.14	0.2	2835	82	34	5	112	arsenopyrite.
237.0	237.5	293960		140	0.14							
237.5	238.0	293961		200	0.2	5	7665	235	590	5	549	* 237.5 - 238.0 Sheared graphitic with 30% quartz vein.
238.0	239.0	293962		40	0.04							238.9-239.0 - 10-15% arsenopyrite
239.0	239.8	293963		20	0.02	0.2	1215	44	2	5	75	
239.8	240.8	293948		30	0.03							
240.8	241.3	293949		810	0.81	0.2	>10000	18	16	5	35	240.9 - 242.3 - Sheared graphitic quartz veins with minor
												carbonate.
241.3	242.2	293950		280	0.28							241.3-242.2 - Trace disseminated pyrite, asenopyrite.
242.2	243.3	293951		60	0.06	0.2	440	71	8	5	86	Quartz veining is subparallel to core axis.
243.3	244.3	293952		10	0.01							243.3-244.3 - sheared quartz-carbonate stringers
244.3	245.1	293953		10	0.01	0.2	35	49	4	5	73	244.3 - 244.9 Graphitic with 10% quartz carbonate veins.
245.1	246.1	293954		10	0.01							
246.1	248.1	293955		40	0.04	0.2	20	30	4	5	63	246.3 - 246.45 Quartz veining.
248.1	250.1	293964		10	0.01							248.6 - 252.1 Weak shearing with thin graphitic sheares
												in grey sandstone . Multidirectional quartz fractures.
250.1	252.1	293965		10	0.01	0.2	20	26	2	5	61	
252.1	254.1	293966	SSgph	10	0.01							253.5 - 258.2 - Predominantly black graphite siltstone with
254.1	255.1	293967		10	0.01	0.2	55	50	6	5	81	10 - 15 sheared quartz carbonate stringers. Shearing @
255.1	256.3	293968	1.4.5	10	0.01							30 degrees.
256.3	257.8	293969		10	0.01	0.2	30	60	2	5	80	
257.8	258.3	293970		10	0.01							
258.3	260.3	293971	·····	10	0.01	0.2	5	29	2	5	82	258.2 - 275.9 Grey medium grained sandstone with minor
260.3	261.8	293972		10	0.01							silty component. Bedding @ 50 degrees.
261.8	263.0	293973		10	0.01	0.2	5	59	2	5	87	
263.0	265.0	293974		10	0.01							
267.0	269.0	293975		10	0.01	0.2	5	18	2	5	74	
271.0	273.0	293976	•••• ·· · · · · · ·	10	0.01							
273.0	275.0	293977		10	0.01	0.2	10	37	2	5	83	
275.0	277.0	293978		10	0.01							275.9 - 277.9 Sheared, graphite with minor quartz stringers.
277.0	278.0	293979		10	0.01	0.2	35	51	6	10	88	
278.0	279.0	293980		10	0.01							

279.0	281.0	293981		10	0.01	0.2	25	57	2	5	81	279.7 - 281.6 Weakly sheared, graphite with 10%			
				1								carbonate stringers.			
281.0	283.0	293982		40	0.04										
283.0	285.0	293983		30	0.03	0.2	30	46	2	5	71				
287.0	289.0	293984	·····	10	0.01							287.8 - 291.1 Weakly graphitic siltstone.			
291.0	293.0	293985		10	0.01	0.2	10	26	10	5	92	292.0 - 292.7 10 - 15% carbonate fracture in grey			
												sandstone.			
293.0	294.0	293986		10	0.01							293.3 - 297.7 Weakly sheared sandstone with 10 - 15%			
294.0	295.0	293987		10	0.01	0.2	25	38	2	5	147	carbonate stringers. Shearing @ 10 - 30 degrees .			
295.0	296.0	293988		10	0.01										
296.0	297.0	293989	1	10	0.01	0.2	35	21	2	5	79				
				·····						-					
297.0	298.0	293990	<u> </u>	10	0.01							297.7 - 299.4 Moderate shearing, moderately graphite			
298.0	299.0	293991		20	0.02	0.2	100	307	2	5	80	shearing @ 0 - 10 degrees, 5% carbonate stringers.			
299.0	300.0	293992		20	0.02										
200.0															
300.0	301.0	293993		10	0.01	0.2	60	57	2	5	99	300.1 - 301.6 Moderate shearing parallel to core 5%			
												carbonate stringers.			
301.0	302.0	293994		10	0.01							301.6 - 303.6 Strongly graphite.			
302.0	302.5	293995		20	0.02	0.2	55	356	8	10	53				
302.5	303.5	293996		10	0.01										
002.0	000.0														
303.5	305.5	293997	SD	10	0.01	0.2	5	35	2	5	74	303.6 - 311.9 - Sandstone massive weakly bedding @ 45			
305.5	307.5	293998		10	0.01							degrees.			
307.5	309.5	293999		10	0.01	0.2	5	37	2	5	79				
				tt											
311.5	313.5	294000	CNG	10	0.01							3.11 - 314.0 Coarse sand and conglomerate.			
315.5	317.5	294301	SD/SS	10	0.01	0.2	5	32	2	5	73				
319.5	320.5	294302		10	0.01										
320.5	322.2	294303		10	0.01	0.2	10	68	2	5	106	Graphitic siltstone with bedding running parallel to core			
												axis. Minor carbonate veining @ contact.			
	322.2	1	EOH									322.2m END OF HOLE (1057 feet)			

۱

ì

		Hole		Northing		Easting		Elev.								
		98-05		10405.09		9098.83		1262.21								
	Depth		Azimuth	Dip	*Gold value	es converte	d from fire a	issay in g/T								
	0.0		180	-89.9	1				1							
	237.4		180	-89.9												
				Au	Au	Ag	As	Cu	Pb	Sb	Zn	Geology Characteristics				
From	To	Sample #	Geology	ppb*	g/T	ppm	ppm	ppm	ppm	ppm	ppm					
0.0	0.7	1	OB		1							0.0 - 0.7 - OVERBURDEN.				
											-					
0.7	7 5.2	: 1	SD/SSgph									0.7 - 11.0 - SANDSTONE/SILTSTONE - medium to fine				
		1]					grained massive sediment. Weakly bedded at 45 degrees.				
												0.7 - 5.2 - Fine black siltstone.				
5.2	2 11.0	1	SD/SS				1					5.2 - 11.0 - Grey, medium grained sandstone				
11.0	13.4	1	FP									11.0 - 13.4 - FELDSPAR PORPHYRY - Weathered coarse				
			1									siliceous porphyry with 2 - 5mm white feldspar phenocrysts				
												(70%), 10% white carbonate stringers.				
		1														
13.4	4 14.5	1										13.4 - 14.5 - FAULT - missing core.				
		1			1		}									
14.5	5 25.5	1	SS/SD									14.5 - 26.0 - SILTSTONE/SANDSTONE - blocky fractured				
		1										core. Predominantly fine grained dark grey.				
												14.5 - 16.2 Siltstone				
												16.2 - 25.5 Siltstone and sandstone.				
25.5	5 26.0	1	gph									25.5 - 26.0 Graphitic siltstone.				
26.0	0 34.0	1	FP	<u> </u>								26.0 - 34.0 - FELDSPAR PORPHYRY - 10 - 15% white				
				<u> </u>		<u> </u>						feldspar phenocrysts (up to 5mm) in a dark grey siliceous				
									4			groundmass. Tracedisseminated pyrite, irregular lower				
		<u> </u>										contact at 60 degrees.				
				1												
34.0	53.2	1	SD/SS		4							34.0 - 67.6 - SANDSTONE/SILTSTONE - Variable grain size.				
53.2	2 54.2	294349		0.01					-			Massive to weakly banded.				
54.2	2 54.7	294350)	0.02		<0.2	1(<u> </u>	<2		73	54.0 - 50.5 Diack sitistone.				
54.7	7 55.7	294351		0.01	+		<u> </u>					54.3 - 54.5 - Weakly sheared quartz carbonate				
					+				+		-	C1.0. C0.1 Massive grev medium grained sandstone				
						.	1				• • • • • • • • • • • • • • • • • • • •	61.0 - 69.1 Massive grey medium grained sandstone.				
		<u> </u>	<u> </u>			l					+					
				ļ	ļ	<u> </u>	<u> </u>		+			ET 6 76 2 CRAPHITIC SILTETONIE workly to moderately				
67.6	68.6	1	SSGph		_		l;		+			on or 10.2 - GRAPHING SILTSTONE - Weakly to moderately				
68.6	69.6	294352		0.01		<0.2		<u>56</u>	> <2	<2	00	Sheared with 10 to 25 % quartz carbonate stringers thoughout.				
69.6	3 70.3	294353	<u> </u>	0.01					+			71.4.71.7 Sheared graphitic				
70.3	3 71.2	294354		0.01	ļ	<0.2	<u></u>	29	1 <2	<>	4/	71.4 - /1./ Sneareo graphiuc.				
71.2	2 72.2	294355	dc	0.02		ļ. <u>.</u>						71.7 - 75.5 intense quartz carbonate stringers (50%).				
72.2	2 73.2	294356	<u>}</u>	0.01		<0.2	15	oj <u>3</u> 7	< <u> </u> <2	<5	4/	13.3 - 10.2 Graphilic with 20% quartz carbonate stringers.				
73.2	2 74.2	294357	qcgph	0.01	_		_									
74.2	2 75.2	294358	8	0.01		<0.2	15	oj 62	2 <2	<5	5/					
75.2	2 76.2	294359	<u> </u>	0.02	<u> </u>											
					l		4		<u> </u>			76.2 111 4 CANDETONE/SILTETONE magning to weakly				
76.2	2 77.2	294360	SD/SS			1		1	1		1	10.2 - 111.4 - SANDSTUNE/SILTSTUNE - massive to weakly				

ţ

151.7

١

	1		10 C	1								banded.					
				0.01	<0.2	10	38	<2	<5		59	81.6 -	82.6 Weak	y graphitic :	siltstone.		
109.0	110.0	294361		0.02								83.4 -	83.5 Black	raphitic with	th 20% quart	z veining.	
110.0	111 4	294362		0.01	<0.2	50	36	<2		5	65	84.7 -	85.0 Black	core.			
				+								85.0 -	85.6 - 10%	carbonate s	stringers.		
				+								87.5 -	89.3 Black	weakly she	ared graphitic	siltstone	
				+								89.2 P	edding at 4	5 degrees	1	Γ	
				++		} <u>}</u>						94.4	94 6 Shear	d graphitic	siltstone 15	% quartz	
						<u> </u>						carbor	oto etringer	e grapino			
												05.2	07 A Broker	blocky oo	<u> </u>		
				+								400.0	112 0 Prol	i blocky col	<u>e.</u>		
						ļ						100.0	- 113.0 BIO	Cert DIOCKy	450/ eachan		L
				+								105.5	- 106.0 Bred		15% carbon	ate stringers	
												and m	atrix.	<u> </u>			
												110 - 1	111.4 Carbo	nate stringe	ers and tracti	ire tullings.	
111.4	113.6	294363	QFP	0.01								<u>111.4 - 1:</u>	33.5 - QUAF	TZ-FELDS	PAR PORP	HYRY - med	ium
												grained in	trusive with	clear quart	z grains (2-4	nm) in a gre	y
												feldspathi	c matrix. M	inor hornble	onde. Trace o	lisseminated	
												pyrite and	l stringers.			<u> </u>	
												111.4	- 113.6 Alte	red porphyr	y, moderate	to intense	
				1								clay a	teration.				
113.6	114.2	294364		0.02	<0.2	40	56	<2	<5		67	113.6	- 114.2 Blac	k siltstone	with minor ca	rbonate stri	ngers.
114.2	116.2	294365		0.02								114.2	- 115.6 We	ak clay alter	ration in porp	hyry.	
120.7	122.7	294366		0.01	<0.2	10	5		4 <5		40					Ţ	
126.8	127.8	294367		0.01													
127.8	128.4	294368		0.01	<0.2	65	101	<2		5	97	127.8	-128.4 Shea	red graphi	ic siltstone w	ith carbonat	e
121.0			·									stringe	ers.			1	
128.4	128.9	294369		0.03								128.4	- 128.9 She	ared graph	tic carbonate	breccia.	
128.9	120.0	294370	FP	0.02	<0.2	15	28		2 <5		38	128.9	- 129.8 Feld	spar porph	VIV.	T	
120.0	120.0	204070										128.9	- 131.* We	akly sheare	d graphitic s	Itstone with	
120.9	132.5	1	22			···· / ·-						10% c	arbonate st	ingers.		7	
123.0	122.5	20/271	00	0.01		 							1			+	
132.5	155.5	234311		0.01													
400.6	441.0		<u> </u>	+		<u> </u>						133 5 - 1	41 0 - SU TS	TONE - BI	ack finely ha	nded with	
133.5	141.0	1	00	+								hodding c	t 50 degree				
						70	64	-2		E	02	140.7	2 cm mloit	o etringer		+	
133.5	134.3	294372		0.01	<0.2	/0	04	~2			03	140.7	- 2011 Calcil	e su il iger.		+	
134.3	135.5	2943/3		0.01				-2						·· ······		+	<u> </u>
135.5	136.5	294374		0.01	<0.2	105		<u>~</u>		<u> </u>	82					+	
136.5	137.5	294375		0.01												+	·
						ļ										.l,	l.,
141.0	144.1	1	CNG	1		ļ						141.0 - 1	44.1 - CON	JOMERA	IE - Mixture	ot coarse sa	nd
												and cong	lomerate.				L
														1		<u> </u>	L
144.1	145.2	294376	SS									144.1 - 1	50.7 - SILTS	STONE - Fi	ne grained bl	ack massive	to
				0.01	<0.2	20	115	<2	<5		83	weakly ba	anded with 2	5% sandy	bands.		
145.2	145.6	294377	gph	0.01								145.1	5 - 145.6 Sh	eared, grap	phitic with min	nor carbonat	0
146.0	147.0	294378	×	0.01	<0.2	15	36	<2		10	88	string	ers.				
				+		<u> </u>						X					
150.7	151 7	1	SD	++		<u> </u>						150.7 - 1	82.1 - SANE	STONE -	Grey medium	to fine grain	ned,
151 7	152.7	294379		0.01		<u> </u>						massive	to weakly ba	nded.		Ţ	
		201010				1											

)

152.7	153.2	294380		0.01	<0.2	10	38	<2	5	70	152.7 - 153.2 - Sheared graphitic with 10 - 15%
153.2	154.2	294381		0.01							carbonate stringers.
177.2	178.2	294382		0.02	<0.2	65	52	<2	5	78	156.8 - 158.2 Weakly sheared, graphitic with 10%
178.2	178.6	294383		0.21							carbonate stringers.
178.6	179.5	294384		0.03	<0.2	70	14		2 <5	49	177.8 - 178.4 - Finely banded siltstone. Bedding at 60°
179.5	181.1	294385		0.01		-++					178.4 - 178.9 - Sheared fault gouge.
181 1	182.1	294386		0.01	<0.2	10	37	<2	<5	62	178.6 - 179.5 - Feldspar porphyry.
											178.5 - 182.1 - Sandstone.
182 1	183.1	294387	SSGoh								182,1 - 186,1 - GRAPHITIC SILTSTONE - Black,fine grained
				0.01							massive to weakly bedded. Bedding at 50 degrees.
183 1	184 1	294388		0.02	<0.2	20	71	<2	5	96	185.5 - 186.0 - Sheared graphitic with 20% carbonate
184.1	185.1	294389		0.01							stringers.
185.1	186.1	294390		0.01	<0.2	25	68	<2	5	95	183.5 - 183.6 - Calcite fracture filling.
		201000									
186.1	189.9	1	SD					<u> </u>			186.1 - 190.1 - SANDSTONE - Grey, medium grained with
186.1	187.1	294391		0.01							10% multi-directional calcite stringers (fracture filling).
187.1	188.1	294392		0.01	<0.2	10	37	<2	<5	66	188.2 - 189.9 - Sheared graphitic siltstone with 10%
188 1	180.1	204002		0.01							carbonate stringers. Shearing at 30 degrees.
190.1	109.1	204304		0.01	<0.2	375	76		6 10	77	(185.6 - 190.9 - Calcite vein fracture fill zone Total
100.1		204004		0.12							10% calcite veining)
100.1	100.7	204305	SD/SS								190 1 - 195 3 - SANDSTONE/SILTSTONE - Massive
130.1	130.7	204000	00/00	0.11							sandstone to moderately sheared graphitic sittstone.
100 7	101 7	204306		0.11	<0.2	5	44	<2	5	81	194.2 - 195.3 - Highly sheared graphitic with
190.7	103.1	204307		0.01							30 - 40% calcite
102.1	195.1	294397		0.01	< <u></u>	<5	24	<2	5	72	
193.1	105.3	204300		0.02					~		
134.1	133.3	234333		0.01							
105.3	106.6	204400	sn								195.3 - 217.5 - SANDSTONE - Medium to fine grained with
133.3	130.0	234400	00	0.01	<0.2	5	27	<2	5	74	minor siltstone lavers
				0.01	-0.2	-+	- -/				199 0 - 199 4 - Black siltstone
}+											200.6 - 201.6 - Black siltstone
202.0	200.0	251501		0.01							208.7 - 209.7 - Sheared graphitic sittstone with
200.0	209.0	251501		0.01		- 25		12	5	90	10 - 20% Calcite stringers
209.0	210.0	201002	CV	0.01				~~			
210.0	211.0	251505		0.01			50	12		87	216 1 - 217 5 · 10 - 15% calcite stringers. Strongly
210.0	217.0	201004		0.02				~~	ÿ		sheared within Am of contact
217.0	217.5	201000		0.01							
017.0	040.5	054500	<u></u>	0.01			10	-2	E	56	217.5 228.4 EELDSPAR DORDHVRV - Erech porphypy
217.5	218.5	251506	rP	0.01	<0.2		43	~2			with 2 5mm foldanar phonon into in a grow ellipsoure matrix
·											With 2 - Shift leospar phenocitysis in a grey sinceous matrix.
											(2. 2mm) in groundmann. Sharp lower contact at 20 degrads
											(2-3mm) in groundmass. Sharp lower contact at 30 degrees.
228.4	229.3	251507	SD	0.01							228.4 - 237.4 - SANDSTONE - Fine to medium grained, grey
				-							with weak to moderate bedding laminations at 45 degrees.
											Occasional calcite stringers and fracture fillings.
229.3	230.3	251508		0.01	<0.2	10	55	<2	5	79	228.4 - 229.9 - Graphitic siltstone with minor pyrite as
											hairline stringers and disseminated.
230.3	231.3	251508	<u> </u>	0.01	<0.2	10	55	<2	5	79	<u> </u>
)

ŷ

231.3	232.3	251509		0.01			232.0 -	232.1 Calci	te fracture fillin	g.	
			1.1		 		232.2 -	232.3 Calci	te fracture fillin	g.	
232.3	233.3	251510		0.01							
233.3	237.4	1	EOH				End of Ho	e			1

}

		Hole		Northing		Easting		Elev.								ļ	
		98-06		10188		8330		1326							·		
	Depth		Azimuth	Dip	*Gold value	es converter	from fire a	ssay in g/T									
	0.0		180	-89.9				1									
	259.1		180	-89.9													
				Au	Au	Ag	As	Cu	РЪ	Sb	Zn	Geology (haracteristic	>s		<u> </u>	
From	To	Sample #	Geology	daa	а/Т	mqq	ppm	ppm	ppm	ppm	ppm						
	34	1	OB		<u>.</u>	<u></u>		1			1	0-3.4 - 0	/ERBURDE	N			
		·		1									1			T	
34	45	251513	ARGfe	20								3.4-8.5 - /	ARGILLITE	Massive,	white, fine gr	ained, with	
4.5	5.5	251514		20		<0.2	85	71	4	25	57	intense li	monitic stain	. Weak be	dding at 55°.		
55	6.5	251515	{·······	20					1		1	1					
6.5	75	251516	· · · ·	30		<0.2	65	8	6	5	48	3					
7.5	85	251517		80						1	1			T			
ļ	0.0							1									
85	95	251518	SD .	20		<0.2	270	159	2	5	99	8.5 - 23.0	- SANDSTO	ONE - Grey	y green medi	um grained	
0.0	10.8	251519		80				+			1	massive	sediment, lin	nonitic on fr	actures.		
10.8	12.0	251520		10		<0.2	210	86	2	5	104	8.5 -8	8 - Sheared	with dark g	green chlorite	. Shearing at	t
12.0	12.0	251521		10						1		45°.		T			
12.0	12.0	251521		20		<0.2	90	44	2	5	73	8.8 - 1	3.1 - Moder	ate limonite	stain.		
12.0	13.3	231322			+	-0.2		<u> </u>	+			10.6 -	11.6 - Broke	n, rubbly c	core.		
42.2	14.2	251522	001	10	+	<u> </u>		+	+			13.1 -	14.3 - Carb	onate-quar	tz vein 30/70	c/q	
13.3	14.0	251525		10	<u> </u>	<0.2	50	31	2	5	55	5 14.6 -	16.0 - Inten	se limonitic	stain. 10 to	20% carbona	ite
14.3	10.0	201024		10	<u> </u>	-0.2	+	+		+	1	veins.	1	1			
15.3	17.5	251525		20		<0.2	5	65	2	5	87	7		1			
17.5	10.5	251520		20		-0.2	-		+==			20.6 -	21.0 - Carb	onate vein i	in agillite.		
		<u> </u>		+			+		+	+			1	1			
	27.2	1	550	+					+			23.0 - 10	5.2 - SILTST	ONE - Gre	ey, fine grain	ed, massive	
23.0	J.Z		000		<u> </u>	+				+	1	sediment	with very we	ak bedding	g. Weak clay	carbonate	1
	<u>}</u>			+		+			+	1		alteration		1		1	
27.0	20.2	251527		10		<u> </u>			+		+	32 - 4	5.0 - Highly	fractured c	ore.Texture i	s that of shat	tered
31.2	30.2	251527	+	10		+	5	37	2	5	5 8'	brecci	a with mode	rate clay al	teration and	carbonate im	preg-
30.4		251520		10		+						nation		T		T	
39.2	40.2	251528		10			10	38	2	5	5 90	5					
40.2	41.2	251550	·	10		+		1		· · · · · · · · · · · · · · · · · · ·						1	[
41.2	42.2	251551		10		+	10	72	2	5	5 90	2		1			
42.2	43.2	251552		10		+		+		·				-			[
43.2	44.2	251555	·}	10		<u> </u>	50	70	2	5	5 100	2					
44.2	45.2	251554	+	20	+	+	+			·		45.8 -	48.8 - Mode	rate clav/c	arbonate alte	eration.	
45.2	40.2	251555		20	·	+	35	70	2		5 9'	1		T	1	1	
46.2	47.2	201030		20	<u></u>			/		·	/	·					[
41.2	48.8	251537				+	210	87		10	7	48.8 -	49.8 - Blaci	araphitic :	siltstone. Uo	per contact a	t t
48.8	49.9	201038	gpnc	2	·	<u> </u>	210			·	·	300				T	[
				+		ļ	+	ļ	+			100.	52.0 - Mode	arate fractu	ring/brecciat		
49.9	<u> 52.0</u>	251539	4	10	+	+				+	+	claylo	arbonate alte	ration		<u>,</u>	
	<u> </u>		_		<u> </u>					<u> </u>		2 52 0	52 A \A/h#	a eiliceoue	auartz vein	minor carbon	(Iate
52.0	52.5	251540	·	10	<u> </u>	.	15	41			<u> </u>		<u></u>		yuaruz voni,		~~~, [
52.5	53.5	251541	ļ	20	l			+					576 Hich	v chottora	- brecciated	l	l
53.5	54.5	251542		10	1		+ 20	93	2		<u>, 9</u> ,	c 52.4 ·		y shallord			ř
54.5	55.5	251543	ļ	10	<u> </u>	<u> </u>						allera		-+			
55.5	56.5	251544	·]	10	<u>' </u>	<u> </u>		80	<u>'</u>	<u>دا</u>	9	<u></u>		1			l

)

															1
56.5	57.5	251545		10								1	l		ļ
57.5	58.5	251546	· .	20		5	86	2	5	101	57.6 -	60.6 - Mode	ate shatterir	ng, breccia	ion.
58.5	59.5	251547		10											
59.5	60.5	251548		10		45	60	2	5	97					
60.5	61.5	251549	1	10							60.6 -	69.0 - Highly	shattered, I	precciated	with increased
61.5	62.5	251550		10		5	66	2	5	85	carbon	ate alteration	n as irregulai	r fracture a	nd breccia filling
62.5	64.0	251551		10							(10 - 1	5%).			
64.0	65.0	251552		10		10	112	2	5	86					<u> </u>
65.0	66.0	251553		10											
66.0	67.0	251554		10		5	104	2	5	94					
67.0	68.2	251555		10											1
68.2	69.2	251556		10		5	175	2	5	79	67.9 -	70.2 - 30 to	40% carbon	ate fracture	e fill.
69.2	70.2	251557		10											
						1					84.8 -	90.5 - Broke	n, blocky co	re.	
											84.1 -	84.5 - Graph	itic shears a	at 30°.	
											86.0 -	86.5 - Dark	grey siltston	Ð.	
				+		++-					87.7 -	88.7 - 10% i	rregular cart	ponate frac	ture fill.
92.6	93.6	251558		10		5	95	2	5	85	92.6 -	93.0 - Dark	grey siltston	Ð.	
02.0	94.6	251559		10							93.6 -	93.7 - 40%	arbonate st	ringers.	
94.6	96.0	251560		10		5	122	2	5	75	94.5 -	95.9 - 10%	arbonate st	ringers and	fracture fill.
96.0	97.0	251561		10								- T			
97.0	98.0	251562		10		5	68	2	5	90					
98.0	99.0	251563	+	10		++-					98.7 -	103.3 - 10%	carbonate s	stringers ar	d fracture fill at
00.0	100.0	251564	+	10		5	62	2	5	93	45°.				
100.0	101.0	251565	+	10		++									
101.0	102.0	251566		10		5	65	2	5	100					
102.0	103.0	251567		20											
103.0	104.5	251568		20		10	68	2	5	84	103.6	- 104.2 - Bre	cciated and	fractured.	
104.5	105.2	251569		10											
			1			-									
105.2	106.2	251570	SDcv								105.2 - 11	18.2 - SAND	STONE - M	edium to co	barse grained
106.2	107.2	251571	1	10							sediment	with weak b	edding. Min	or carbona	te in matrix
107.2	108.2	251572		10	· · · · · · · · · · · · · · · · · · ·	5	62	6	5	89	Occasion	al carbonate	hairline frac	cture fills.	
				+							109.5	- 109.6 - Ca	rbonate vein	at 30°.	
											114.2	- 114.8 Brok	en fractured	core, wea	kly graphitic.
			+		•••••						116.5	- 116.6 - 50	% carbonate	fracture fil	lings.
				+							117.0	- 117.1 - Ca	rbonate vein	at 45 degr	ees.
			+	+											
118.2	141 3	1	SSaph			-					118.2-142	2.3 - SILTST	ONE - Fine	grained, gr	ey, massive
110.2			looghi	+							transition	al to sandste	one. Wery w	eak beddin	g at 30°.
			+	+							118.5	- 119.4 - Bro	ken, blocky	core.	
				+							119.6	- 120.3 - Gr	aphitic gouge	e.	
141 2	1422	251572	1	10							142.0	- 142.3 - Gr	aphitic with 1	10% carbor	nate fracture fills
141.3	142.3	2010/3	' <u> </u>	······		++-					at 30°			1	
			+	·									1		*+
				1 1	[1.00.44		1	1	
		054574		20	102	225	10	6	5	64	142 4-14	っ フェトトレロト	PAR PORPI	HYRY - Inti	rusive dyke with
142.3	143.4	251574	FPH	30	<0.2	225	18	6	5	69	142.3-14: feldspar =	and hornhler	PAR PORPI	HYRY - Int vsts in a fir	rusive dyke with e grained
142.3 143.4	143.4 144.2	251574 251575	FPH	30 10	<0.2	225	18	6	5	69	feldspar a	and hornbler	PAR PORPI Ide phenocr I	HYRY - Inti ysts in a fir	rusive dyke with he grained
142.3 143.4	143.4 144.2	251574 251575	FPH	30 10	<0.2	225	18 	6	5	69 76	142.3-14: feldspar a groundma 142.3	and hornbler ass. - 144.4 - Wi	PAR PORPI	HYRY - Inti ysts in a fir	rusive dyke with e grained vith fine buff

Ŋ

1

r						1					144.4 -	145.2 - Bro	wn hornble	ende and feld	dspar	
						+					phenoci	ysts in a da	ark aphani	tic matrix.		
												Í	T			
															-	
											161.05	nurito otrir	1			
						+					151.65	- pyrite su				
														1		L
145.2	145.7	251577	SD/SSgph	20							145.2 - 157	7.5 - SAND	STONE/SI	LTSTONE -	Medium to fi	ne
											grained ma	ssive se din	nent with n	ninor graphit	ic zones and	
											carbonate 1	fracture fills	. Increasi	ng argillaceo	us componer	nt
145.7	146.7	251578		20	<0.2	30	79	2	5	89	toward the	bottom of t	the unit.			
146.7	147 7	251579		10		1 1					145.7 -	145.8 - Gra	phitic zon	e at 45 degre	es.	[
143.7	148.7	251580		20	<0.2	435	67	10	5	76	147.7 -	148.3 - Qu	artz-carbo	nate graphite	shear.	
147.7	140.7	251500	+	10									T		1	
140.7	143.1	251501				165	70	8	5	94			+			
149.7	151.0	201082		20		105			-		151.0	152 2 14/4	ita silica fl	oodod feider		
151.0	152.3	251583	S	10		+					101.0-	152.5 - 991	inte sinca in	udded reidst	ai porpriyry.	
											Contact	s at 40 deg	rees.			
157.5	158.8	1	FPHc								157.5 - 159	9.8 - FELDS	SPAR POP	RPHYRY -Br	own intrusive	<u>}</u>
158.8	159.8	251585		10							with cream	feldspar ar	nd hornble	nde phenocr	ysts in a darl	(
											brown grou	indmass, 5	to 10% ca	alcite stringer	s and fractur	e fill.
159.8	160.7	251586	SDaph	10	<0.2	45	127	8	5	74	159.8 - 16	1.5 - SAND	STONE -	Fine grained	sediment wit	h
	100.7	201000	Cogp.1								strong frac	turina, 30%	carbonate	e veinina.		[
+											159.8 -	160 7 - Gra	phitic with	1 40% carbo	nate veinino.	
400.7	101 5	051507		10								1		1	1	
160.7	101.5	201007														+
							E7			EE	161 5 10	A A POIL	LITE WAR			1
161.5	162.4	251588	ARG	10	<0.2	30	5/	12			101.5 - 194	+.3 - ARGIL		nie-Diowira	ymaceous sa	**
											to silt. Mas		ry weak b	edding. very	low carbona	16
											content.	<u> </u>	<u> </u>			
162.4	163.4	251589		10							162.4 -	163.0 - Gra	aphitic silts	stone.		
163.4	164.9	251590		10	<0.2	30	95	14	5	83	164.4 -	164.9 - Gra	aphitic faul	t breccia.		
164.9	165.9	251591		10							165.0 -	168.3 - Bro	ken, block	(y core.		
165.9	166.9	251592	+	10	<0.2	30	62	8	5	104						
166.9	168.9	251593		10												1
100.0						+					171.9 -	172.0 - Gra	phitic.			
						+					173.7 -	174 0 - Gra	ohitic			†
470 5	477.0	051504		10		310	52	12	5	86	177.2 -	177 8 - 309	% quartz v	eining at 50	degrees	
176.5	177.0	251594	qv	10		510					177.8	179.5 - Eel	depar por	byry - white	siliceous wi	.1 th
177.8	1/9.5	251595		10			54				177.0-	179.0 - Fei	70 6 to 17	0 7		ц, Т
179.5	180.0	251596		20	<0.2	310	51	12	5	83	quartz V	veining at 1		0.1.		+
180.0	181.0	251597		10		ļ					180.0 -	182.1 - 309	n quanz v	iening, breco	ated.	4
181.0	182.1	251598		20	<0.2	700	33	12	15	51		<u> </u>	<u> </u>			<u> </u>
182.1	183.1	251599		10							182.1 -	184.1 - 109	% quartz s	tringers and	fracture fill.	
183 1	184.1	251600		10	<0.2	60	59	12	5	76						
184 1	186 1	251601		20		+										
199.7	180.1	251602	+	10	<0.2	545	55	12	10	87						T
100.2	100.2	201002	+	10		+		·			189.2 -	189 8 - 209	% quartz s	tringers and	fracture fill	
189.2	109.8	201003	+ - +	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		75	E1	12	2	22	100.2	190.1 - 200	K quartz h	reccia fill		
189.8	190.8	251604	<u> </u>	20	<u>~0.2</u>	10		12	.	02	1.50,0 -	100.1 - 20				+
190.8	191.8	251605		20		+				05		<u> </u>	+			
191.8	192.7	251606		10	<0.2	30	68	10	5	65	<u> </u>	1	1		1	.1

)

															-
192 7	194.3	251607	20							192.7 - 1	193.0 - Qua	rtz-graphite	breccia.	L	
										193.3 - 1	194.3 - Bred	ciation, grap	shite injection	on 10% quart	Z .
<u> </u>			+							I		i T			
404.2	105.2	251609 EDe	40	<0.2	125	11	4	5	16	194.3 - 207	2 - FELDS	PAR PORPI	HYRY - WI	nite siliceous	
194.3	195.5	251600	30							porphyry wi	th 10% whi	te feldspar p	henocrysts	in a cream to	>
195.3	190.0	251009	50	(0.2	30	5	4	5	10	buff matrix.		i — — — — — — — — — — — — — — — — — — —			
196.0	197.0	251610	50	~0.2											
197.0	199.0	251611	50	-0.0	CE.		6	5	17			rt		tt-	
199.0	200.0	251612	20	<0.2	60							·		<u> </u>	
200.0	201.0	251613	50		0.15			E				<u> </u>			
201.0	202.0	251614	20	<0.2	245	8	2		/	202.0	202.9 6.00		oreccia with	1 to 5% ovri	te
202.0	203.0	251615	4240							202.0-	202.0 -Gra		Jeccia Wit		
203.0	204.0	251616	20	<0.2	135	11	4		9	tr. arser	орупте.	ļł		<u> </u>	
204.0	205.0	251617	40									<u> </u>		<u> </u>	<u></u>
205.0	207.2	251618	70	<0.2	65	5	4	5	9					<u> </u>	
														<u> </u>	
207.2	208.2	251619 ARG	10							207.2 - 226	6 - SILICE	OUS ARGIL	LITE - Wh	ite, massive,	
208.2	209.2	251620	10	<0.2	80	49	8	5	74	medium to	fine grained	clastic sedir	ment with v	veak bedding	at
213.6	214 6	251621	10		1					40 degrees	•			<u> </u>	
213.0	215.2	251622	10	<0.2	45	81	8	5	67	214.6 -	215.2 - Fine	ely banded, ç	grey colour	ed.	
214.0	215.2	251623	10		+							T			
215.2	210.2	201020	10	<0.2	25	44	10	5	75						
216.2	217.8	201024	10			''						t			
217.8	218.8	231023			++					218.8 -	219.0 - 209	6 quartz strir	ngers.	1	
					<u> </u>					219.2 -	219 4 - Fin	e black silty	with quart	z fractures.	
			40		125	46	8	5	69	219.8 -	220.0 - 409	6 Quartz stri	inders at 30) degrees.	
218.8	220.0	251626 s	10	<0.2	125	40		¥		210.0	220.0 107				
220.0	221.0	251627	10		00	00			60	221.8 -	222 0 - Fin	e black sith	·	<u>+</u>	
221.0	222.0	251628	10	<0.2	60		•			221.0-	222.0 - 1 11	I Dialon, only	·	+	
222.0	224.0	251629	10						70	224.0	224.2 Ein	a block cith	10%	quartz fractur	
224.0	225.5	251630	10	<0.2	40	65	8	5	/6	224.0-	224.3 - FW	J. Diack, Silly	Will 1070	quare nacion	<u> </u>
										118.			<u></u>	- +-	
225.5	226.6	251631	10							224.3 -	226.6 - 109	6 Quartz stri	ngers.	++-	
												<u>∫</u>	<u>I</u>	<u> </u>	
226.6	227.6	251632 CNGqv	10	<0.2	20	56	10	5	86	226.6 - 228	<u>3.8 - CONG</u>	LOMERATE	- Argillace	ous, silicified	
227.6	228.8	251633	10							clastic with	rounded cl	asts up to 30	om in size,	10% quartz	
221.0										stringers.					
			+		+										·
	220.0	251634 APCs	10	<0.2	50	89	10	5	71	228.8 - 256	5.2 - ARGIL	LITE - Silice	ous sedim	ent with varial	ole
228.8	230.2	201004 AROS			+					black silty	component.	Occasional	fine beddir	ng laminations	; ;
					++					at 40%.		1		1 1	
		054005			++					230.4 -	230.6 - Gre	av. siltv.		+	
230.2	230.7	251635	10		4			5	69			1		+	
230.7	231.7	251636	10	<0.2	10		•					+	<u> </u>	++	
231.7	232.7	251637	10		<u> </u>					004 7	222.0 0-		tr ovrita in	hlack claste	
232.7	233.8	251638	10	<0.2	10	112	2	<u> </u>	/6	231./ -	233.0 - 619	sy, silly with	u. pyrite in		
233.8	234.9	251639	10		<u> </u>							1.50	L		
234.9	235.4	251640	20	<0.2	25	70	8	5	64	234.9 -	235.1 -10 to	15% quartz	veins parra	allel to core, g	rey
235.4	236.3	251641	10							silty.			L	l	
236.3	237.0	251642	10	<0.2	25	70	6	5	59	236.0 -	237.0 - Fin	e bedding la	minations a	at 40 degrees	·
230.3	239.0	251643	20											1	
237.0	230.0	251644	10	<0.2	35	76	2	5	62						
238.0	239.0	251645	10		+					239.3 -	239.6 - We	akly sheare	d, grey silit	у.	
I 239.0	∠33.01	2010-01													

2

1

3

			Γ	10	c0 2	110	137	10	5	88	240.1 - 240.8 -	Brecciation, m	inor quartz fi	racture fill.	
239.6	240.8	251646	· -												
240.8	242.0	251647		10							242.0 242.6	Brecciation 1	1 to 15% qua	rtz fracture	611.
242.0	242.6	251648		10	<0.2	50	60				242.0 - 242.0 -	Creve aithe	10 10 /0 400		
242.6	244.8	251649		10							243.0 - 244.8 -	Grey, silly.		+	
244.8	245.7	251650		10	<0.2	45	69	8	5	69	245.4 - 245.7 -	Conglomerate			
245 7	246.8	251651		10									<u></u>	in - and from	L
246.8	247.9	251652		10	<0.2	45	72	6	5	74	246.8 - 250.3 -	Grey silty, 20°	% quartz veir	ning and mac	
240.0	248.8	251653		10							fill at 30 degree	S.			L
247.5	240.0	251000		20	<0.2	545	82	8	5	82				1	L
248.8	250.1	251054		10		<u> </u>					250.1 - 250.2 -	50% quartz ve	eining at 45 c	legrees.	1
250.1	252.1	251655	qv	10		25	74	10	5	71	252.1 - 256.2 -	20% white au	artz veins an	d fracture fill	J.
252.1	253.1	251656		10	<0.2	20						<u> </u>			
253.1	254.1	251657		10										+	
254.1	255.6	251658	1 . 1	10	<0.2	135	/4	10	5						
255.6	256.2	251659		20											
														Albita alliant	1
256.2	257.2	251660	FPs	10	<0.2	25	5	2	5	15	256.2 - 259.08 - F	ELDSPAR PC	KPRITRT - V	vrine, sinced	105,
257.2	259.1	251661	1	20						<u> </u>	with high feldspar	phenocryst co	ntent (50%).		
251.2	250.1	1	FOH			1					259.1 EOH				<u></u>
	259.1	_				+							1		
		1	1												

Easting 10745

*Gold values converted from fire assay in g/T

Northing 10780

Azimuth Dip

3

Depth

÷

Hole 98-07 98ALL

1080

Elev.

- 1
- 7

	0		180	-89.9													
	85.34		180	-89.9													
				Au	Au-fire	Ag	As	Cu	Pb	Sb	Zn	Geology Cha	aracteristic	s			
From	То	Sample #	Geology	ppb*	g/T	ppm	ppm	ppm	ppm	ppm	ppm						
0	15	1	OB									0-41.0 - OVI	ERBURDE	EN			
15	17	251806		10		0.2	100	64	6	5	73	B L					
19	20	251807		10								T I					
27	28	251808		10		0.2	95	36	16	5	80						
28	30	251809		10													
33	35	251810		10		0.2	100	43	18	5	93	3					
36	37	251811		10													
39.45	41.45	251812		20		0.2	65	53	14	5	84						
41.45	43	251796	CNG	10		0.2	10	44	14	5	85	5 41.0-43.9 - 0	CONGLO	MERATE - V	Veathered,	coarse angu	lar
43	43.9	251797		20								clasts in ma	trix of 50%	6 fine mud.	Occasional	quartz	
												fragments					
														<u> </u>	L		
43.9	44.9	251798	SDfe	10		0.2	55	54	16	5	94	43.9-48.0 - 9	SANDSTO	NE - Intens	e limonite s	tained, medi	ium
44.9	45.9	251799		10								grained, mas	ssive sand	stone. Very	subtle beda	ling at 50 - 6	500.
45.9	47	251800		20		0.2	15	35	16	5	85	Minor hairlin	e quartz si	tringers.		L	
		1												·			
47	48	251705		10											L	L	
																<u> </u>	l
48	48.8	251706	CNGfe	30		0.2	110	13	18	5	66	6 48.0-49.6 - 0	CONGLO	MERATE/BI	RECCIA - A	ngular, unsc	orted
48.8	49.6	251707		10								breccia with	sandstone	e, feldspar p	orphyry and	l black, grap	hitic
												clasts. Mode	erate to inte	ense limonit	e stain.	Ļ	
														<u> </u>		<u> </u>	I
49.6	50.6	251708	FP	10		0.2	95	85	10	5	50	9 49.6-63.0 - 1	ELDSPA	R PORPHY	RY - grey, v	with clusters	s of
50.6	52.6	251801		10						ļ <u>.</u>		corroded fe	dspar phe	nocrysts (2	-5mm) in a	grey fine	I
54.6	56.6	251802		10		0.2	60	92	10	5	58	grained mat	ix Cut by I	black carbo	naceous hai	rline stringer	
57.6	58.6	251813												L	L		
									ļ	L		at a variety o	of angles.	Upper conta	ict appears	to be at 200	;
60	62	251803		10						L		Moderate to	pervasive	limonite sta	ain.	<u> </u>	·
62	63	251709		10		L						11			<u> </u>	<u> </u>	l
63	64	251710	CNG	10		0.2	70	77	8	5	36	63.0-66.8 - (CONGLO	MERATE - L	Jnsorted br	accia of coar	rse
64	65	251711		20								sand, porphy	yry, and v	veathered lir	nonitic clas	.	
65	66	251712		10		0.2	80	43	10	5	61					·	
														L	L	L	
66.8	67	1	FP									66.8-83.8 - 1	FELDSPA	R PORPHY	RY - Grey	xorphyry as	
67	68	251804		10		0.2	125	90	8	5	59	above with c	listinctive I	black alterat	ion caused	by fluid	
68	69	251805		10								streaming. E	Black hairli	ne fractures	and black	nottling of c	ore.
												Some cavitie	es are fille	d with black	, carbonace	ous materia	al
70	71	251814		10		0.2	195	111	10	5	51			L		L	L
72	73	251815		10											L	L	
74	75	251816		10		0.2	195	93	8	5	50				<u> </u>	L	
75.9	76.9	251713		10								76.5 - 78	1 - black	alteration ar	nd brecciatio	on caused by	y
76.9	77.9	251714		10		0.2	120	32	8	5	54	fluid stre	aming. Ca	vities lined v	vith carbona	iceous mate	erial.

77.9	78.9	251715	10									ļ		
79.8	80	251817	10								<u> </u>			
						1				1	1	<u> </u>		ļ
81.8	82.8	251716	10	0.2 13	5 74	8	5	53	81.8-82	2.8 - black a	Iteration and	brecciation	l	L
82.8	83.8	251717	10			<u> </u>			83.8 - End	l of Hole		l		
							l	l	1	1		L	1	

		Hole		Northing		Easting	1	Elev.		-							
		98-08		10735		10790		1100								<u> </u>	
	Depth		Azimuth	Dip	*Gold value	s converted	from fire a	issay in g/T		1							
	0		180	-80			Γ	1	1								
	154.6		180	-80													
			 	Au	Au	Ag	As	Cu	Pb	Sb	Zn						
From	То	Sample #	Geology	ppb*	g/T	ppm	ppm	ppm	ppm	ppm	ppm	Geology C	haracteristic	s			
0	31	1	ОВ	1.1				1			1	0-43.6 - 0	VERBURDE	EN - contair	ns zones wit	h mud	
					1							with high g	raphite conf	ent and zor	nes with whi	te quartz	
 									1			fragments	in soft matri	x.			
31	32	251775		10					1			31.0 - 3	2.0 - High	graphite co	ntent in muc	d.	
32	33	251776	1	10		0.2	85	54	6	5	79	32.0 - 3	3.0 - High g	graphite cor	ntent in mud		
34	35	251777		10								33.0 - 3	4.0 - Quart	z fragments	s in mud. in	mud	
													I				
43.6	44.2	1	CNG								1	43.6-63.4	CONGLO	MERATE -	Polymictic	1	
												conglomer	ate/breccia	with matrix	of mud. May	y be	
			1		1		1					weathered	colluvium b	ut very simi	ilar to bedro	ck below.	
44.2	45.4	251778		10		0.2	45	45	16	5	98	43.6 -4	4.5 - soft gr	aphitic matr	rix.		
48.2	50.2	251779		10				1			1	48.1 - 5	4.9 - mode	rate graphit	e in matrix.	Predominant	tly
										T		angular	sandstone	clasts.			
			1								1	57.6 - 5	8.5 - light, a	angular san	idstone and	quartz fragn	nents
												in black	matrix				
60.3	61.3	251780		10	1	0.2	45	5 51	16	5	94	60.3 - 6	3.5 - light, a	angular san	dstone and	siliceous	
61.3	62.3	251781	1	10				1				fragme	nts in black,	muddy ma	atrix. 5 cm. c	luartz vein a	t top.
62.3	63.4	251782		10	1	0.2	55	5 53	14	5	89						
												64.85 -	64.9 - quar	tz vein			
	1				Ι							64.9 - 6	5.0 graphiti	c gouge			
													ļ				
													<u> </u>		<u> </u>		
63.4	64.5	251783	CNG	10								63.4-79.4	CONGLO	MERATE -	polymictic	<u> </u>	
64.5	65	251784		10	1	0.2	20	32	2 10	5	82	conglomer	ate/breccia.	Clasts are	up to 10 cm	1. IN SIZE,	
65	66	251785	1	10	1		L					angular to	rounded. Co	barse sand	matrix make	es up	
66	68	251786		10		0.2	10	23	<u> 12</u>	5	61	10 - 20 %.	Clasts are	mostly silici	eous teldspa	ar	
68	69	251787		10	1		L					porphyry a	nd sandsto	ne. Occasio	onal quartz s	tringers	
					ļ		ļ	<u> </u>		ļ	+	(5%). Wea	ik limonitic s	stain is frac	ture controll	ed near	
					L		ļ			ļ		surface (fil	rst / m).	<u> </u>	+		-
69	70	251788		10		0.2	5	29	8 8	5	72	·	ļ				
70	71	251789	l	10	1					ļ		ļ	<u> </u>	<u> </u>			
71	72	251790		10	<u> </u>	0.2	10	31	6	5	71	ļ		<u> </u>			
72	73	251791		10						ļ		<u> </u>		ļ			
73	74	251792		10	ļ	0.2	5	28	8 8	5	67						
74	75	251793		10					<u>_</u>	<u>-</u>							
75	76	251794	K	10		0.2	5	28	6	<u> 5</u>	76	i					
77.4	78.4	251795		10			ļ			ļ				<u> </u>	1		
78.4	79.4	251718	ĸ	10		0.2	10	39	10	5	81	75.9 -	9.4 - Weak	clay altera	tion in matri	X OT	
										<u> </u>		conglor	nerate. Mat	rix is triable	, crumbly.		
										ļ		-				<u> </u>	
79.4	80.6	251719	SSgph	10				1		ļ		/9.4-81.6	- SANDSTO	INE - black	sand with v	weak clay	
				ļ	<u> </u>		ļ			.		alteration,	nign graphit	e content.	Goog beddir	10 at 60 -	
							<u> </u>	1	1	<u> </u>	.1	10 0.	<u></u>	1	<u> </u>		

4

98A	LL
-----	----

			T	T							81.1 - 8	1.6 - graph	ite content	increases, cor	ntains
		051700			0.2	50	37	18	5	74	10% sh	eared quar	z .		
80.6	81.6	251/20	. <u> </u>		0.2										
											31.6-84.5	SANDSTO	NE - light	grey sand with	weak
81.6	82.6	251721	SSK			25	46	16	5	100	lay alterat	ion giving c	ore a corro	ded appearance	ж. 10%
82.6	83.6	251722		10	U.2						uartz strir	naers.	1	T	
83.6	84.5	251723		10							1	1			
									E	76	24 5-08 0	CONGLO	MERATE -	polymictic bre	ccia as
84.5	85.3	251724	CNG	10	0.2	35	50	12		10	54.0-30.0	cubangula		nded clasts M	Ioderate
												i subaligua	otriv Matri	v je weakly sh	eared
											clay altera	ion in the fi	auix. Waui	in cub parallel	carca.
											Contacts a	reat/00 D	u snearing	is sub-parallel	
											to core.				toote
85.3	86.8	251725		10							85.3 - 8	36.8 - Stron	giy graphiu	c, sneared co	ILACIS
86.8	87.9	251726		10	0.2	70	35	12	5	60	at 30o, 5%	sheared q	uartz.		
97.0	901.0	251727		10		1						1	<u> </u>		
<u> </u>		251729	<u> </u>	10	0.2	35	29	14	10	72	89.0 - 8	39.2 - shea	red, strongl	y graphitic. Co	ontacts at
69	50	231120				tt					450.				
		251720		10											
90	91	231/29	·	10	02	25	31	12	5	79				<u> </u>	
91	92	251/30	 								92.8 -	94.7 - Stror	ig clay alter	ation. Core is	soft and
92	93	251/31		10		20		14	5	75	crumb	у			
93	94.4	251732		10	0.2	20			-			·			
94.4	95.4	251733		20				10	5	70		1			
95.4	95.9	251734		10	0.2	20					95.9 -	97 3 - grou	nd core, ara	aphitic.	
											973.	98 5 - silty	oraphitic, r	ninor quartz	
97.3	98.5	251735		10					E	52		cm)	graphico, r	1	
98.5	98.9	251736		10	0.2	25		14			ven (1				
											09 0 113			w medium to	fine
98.9	99.9	251737	SS	10							90,9-115.	oll corted	and Linne	r contact is at	45.0
											graineo, v	vithin unit	sand. Oppo	let to core	
											DUT TADIIC	within thit	s sub-para		
			1								Uccasion	al quartz su	ingers.		
99.9	100.9	251738	aph	10	0.2	80	73	24	5	111	98.9 -	100.7 - mo	derately gra		
100.0	101 0	251739	19F	10											<u> </u>
100.8	105.4	251740	1	10	0.2	2 50	58	12	5	94				<u> </u>	1
104.4	100.4	251740		10		-					105.4	- 106.9 - 20)% sheared	quartz veins	and
105.4	100.4	201141	<u>, 4</u>	10		145	27	16	5	67	stringe	ers.		<u> </u>	1
106.4	106.9	201/42	- 	10							106.9	- 109.3 - bl	ack, graphi	tic. Shearing f	abric is
106.9	107.9	251/43	gpn	10	O'	55	27	14	5	73	paralle	to core. S	heared qua	rtz at upper a	nd lower
107.9	109.3	251/44	<u> </u>	10			<u> </u>				contac	ts.			
							<u> </u>								
109.3	110.3	251745	5	10		4	∤ ∤…								
						-					113 5-12	7 - SAND	STONE/SI	LTSTONE - fil	ne to
113.5	118.7	1	SD/SS				 				medium	rained me	ssive to fin	ly banded	1
											Banding	namou, ma	lel to core		++
118.7	119.7	251746	\$	10	0.2	2 35	62	16	5	88	Danding	S SUD-paral	adding is at	50 0	++
119.7	120.7	251747		10							119.0	- 120.5 - D	outing is al		<u> </u>
			+	<u>† </u>							119.8	- 120.5 - 1	UNO TINO QUE		· · · · · · · · · · · · · · · · · · ·
			+	<u>+</u>							L				1
120 7	101 0	251749	SSaph	10	0.1	2 75	58	22	5	85	120.7-13	1.1 - GRAF	HITIC SIL	SIONE - stro	ongly
120.7	121.0	231/40	100961	+		1	1				sheared,	graphitic w	ith sheared	quartz stringe	ers.
				L			++-				1207	- 121 8 - 2	0% sheared	d quartz parali	el to core.

121.8	122.8	251749		20]			
122.8	123.8	251750		10	0.2	135	73	14	5	107						
123.8	124.8	251751	1.00	10												
124.8	125.8	251752		10	0.2	130	60	16	5	125						Ţ
125.8	127	251753		10									1			
127	127.8	251754		10	0.2	120	50	22	5	105	127.0 -	131.1 - 20	% sheared (quartz string	jers	
127.8	128.8	251755		10							parallel	to core.				
128.8	129.8	251756		10	0.2	90	84	26	5	123						
129.8	131.1	251757		10												
131.1	132.1	251758	SD	10	0.2	40	52	16	5	93	131.1-154	.64 - SANC	STONE - g	rey, massiv	e, medium	
											to fine gra	ined sand v	with occasio	inal quartz s	tringers.	
											Upper con	tact is at 45	50 but beddi	ng within ur	nit is at	1
											20 - 300.		· ·			1
											135.6 -	136.6 - 1 c	m. quartz ve	ein parallel t	o core.10-	
137.1	138.1	251759		10							15% qu	uartz stringe	ers at 70o.			
138.1	138.7	251760	9	10	0.2	45	40	14	5	65	138.1 -	138.7 - 50	% quartz ve	ins and stri	ngers	
138.7	139.7	251761	L	20												
139.7	140.7	251762		10	0.2	40	42	14	5	103		}				<u> </u>
140.7	141.7	251763		10												
141.7	142.8	251764	q	10	0.2	45	43	12	5	89	142.65	- 142.8 - 5	0% quartz v	eins at 650		
142.8	144.4	251765		10								.l	<u> </u>			
144.4	145.4	251766		10	0.2	70	45	16	5	80	144.4 -	146.1 - 70	% quartz ve	in, graphite		
145.4	146.1	251767	q	10								1			<u>.</u>	
146.1	147.1	251768	ļ	10	0.2	75	85	14	5	96	146.1 -	148.1 - sh	eared sands	stone. shear	ing at	
147.1	148.1	251769	ļ	10						~~	30 - 40	0	<u> </u>			
148.1	149.1	251770	qgph	10	0.2	70	60	18	5	88	148.1 •	148.9 - sh	eared, grapi	nnic with 10	% quartz.	
149.1	150.1	251771	- <u> </u>	10						405	ļ			<u></u>		
152.7	153.7	251772		10	0.2	35	36	14	5	105	450 7	154.0.00	0	1	<u></u>	
153.7	154.2	251773	ļ	10							153.7 -	154.2 - 30	% quanz st	ringers at 60	<u>.</u> ,	
154.2	154.6	251774		10	0.2	5	35	8	5	83	454 04 5					
			l								<u> 154.64 En</u>	d of Hole		<u> </u>		

Be60 Azimutho Dig 11280 11275 Azimutho Dig Cold values converted from free away in gT Azimutho Dig Cold values converted from free away in gT Azimutho Dig Cold values converted from free away in gT Azimutho Dig Cold values converted from free away in gT Azimutho Dig Cold values converted from free away in gT Azimutho Dig Cold values converted from free away in gT Pin Pin Cold values converted from free away in gT Pin Pi			Hole		Northing		Easting		Elev.									
Depth Azonum Dop "Gold subseas converted from fire assay in g/T Image: Con			98-09		10550		11260		1275	i l								
0 180 -86.9 - P S Z Geology Characteristics 122 3 Sample # Geology pbt' 9 pm pm pm pm pm pm 0 0.22 CARACTERUNCEN 0.122 0.122 10.860(gy Dbt') 9 0.122 10.800(gy Dbt') 9 0.122 0.12		Depth	1	Azimuth	Dip	*Gold value	s converted	from fire a	ssay in g/T									
120 24 180		0		180	-89.9	1		T	T						1			
nm nu Au Au<		129 24		180	-89.9	1						1						
From To Sample # Geology pb* pr ppm ppm <th< td=""><td></td><td></td><td></td><td></td><td>Au</td><td>Au</td><td>Ασ</td><td>As</td><td>Cu</td><td>Pb</td><td>Sb</td><td>Zn</td><td>Geology C</td><td>haracteristi</td><td>ĊS</td><td></td><td></td><td></td></th<>					Au	Au	Ασ	As	Cu	Pb	Sb	Zn	Geology C	haracteristi	ĊS			
Internet	From	To	Sample #	Geology	nnh*	oft	nom	nom	ppm	nom	ppm	ppm		T	T	-		
1/2 1/2 <td>0</td> <td>12.2</td> <td>dampic #</td> <td>OB</td> <td>1990</td> <td>9,1</td> <td>PP</td> <td>PP</td> <td>PP</td> <td>ppin</td> <td></td> <td>PP-0</td> <td>0-122-0</td> <td></td> <td>FN</td> <td></td> <td>+</td> <td></td>	0	12.2	dampic #	OB	1990	9,1	PP	PP	PP	ppin		PP-0	0-122-0		FN		+	
122 134 251818 50185 10 0.2 760 52 14 10 80 12.2.2.0.1 SANDSTONE/SILITSTONE-medium to integration with backing at 400. Occessional quarks takingers. 18 10 55 16.5 251010 0.2 50 39 10 5 77.0 14 10.0 10.0 2		12.2	· · · · ·	00	+	+						+	0 12.2 0	1	T		+	
122 132 238180 208180 00 02 10 02 10 02 10 02 10 02 10 02 10 02 10 02 10 02 10 02 10	40.0	12.4	251010	enree	10		0.2	760	52	1	1 10	80	12 2-32 0	SANDST	ONE/SILTS	TONE - mer	fium to	
15.5 16.5 2.51619 20 10 0.2 60 35 10 0.2 60 36 10 0.2 60 36 10 10 0.2 60 36 10 </td <td>12.2</td> <td>13.4</td> <td>251010</td> <td>30/33</td> <td>10</td> <td></td> <td>0.2</td> <td>100</td> <td>52</td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td> <td></td> <td>fine grains</td> <td>d with beda</td> <td>ling at 400</td> <td></td> <td>num to</td> <td>*****</td>	12.2	13.4	251010	30/33	10		0.2	100	52	· · · · · · · · · · · · · · · · · · ·			fine grains	d with beda	ling at 400		num to	*****
18 19 251820 10 0.2 50 39 10 5 76 176 16 18.8 -class attraction, graphite, quartz stringers. 19 20 251821 10 0 24 25 22 -class - class attraction, graphite, quartz stringers. 28 27 251824 10 0.2 40 27 8 5 62 28.3 23.0 251824 10 0.2 40 27 10 5 61 27.8 5.6 28.3 23.7 broken factured core, weak imonite 31 32 251825 20	15.5	10.5	251019		20	<u> </u>			+			1	etripgore					
18 19 2162/ 10 02 00 13 10 10 02 10		10	054000	ļ	10		0.2	50	20	4		79	17.0		atteration a		tz stringers	
19 20 201821 10 0 24 25 26 27 26 27 26 27 26 28 5 66 28.8.2.3.10% multi-directional quartz stringers. 26 27 26/823 10 0 2.0 28.3.2.3.10% multi-directional quartz stringers. 28 32.3.2.57.broken fractured core, weak limonitic 33.4.2.2.4. graphte, weak limonitic stain 31.4.3.2.4. graphte, weak limonitic stain 31 32.2.55.8.57 10 0.2 135 33 10 5 51.2.0.4.05.ANDSTONE - medium grained, measive with 38 40 251828 10 0.2 865 46 14 20 96 33.3.3.9.6. graphtic 14 39 40 251828 10 0.2.2 865 46 14 20 96 33.3.3.9.6. graphtic 14 41 42 251832 600 10000 47 75 20 131 14 24.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.	18	19	251820	ļ	10	<u> </u>	0.2	50	55	1	<u> </u>	/ //	10.0	10.0 - Clay a	allerauon, g	hapine, quai		
23 24 251822 10 0 21 0 0 28.8 - 28.3 - 10% multi-directional quartz stringers. 29 30 251824 10 0 2 61 27.8 - good bedding at 40c 28.8 - 28.3 - 10% multi-directional quartz stringers. 1 28 28 28.7 - 28.7 - 10% 61 27.8 - good bedding at 40c 28.7 - 28.7 - 10% multi-directional quartz stringers. 1 28 28.7 - 28.7 - 10% 10 5 51.2 - 0.41.0 - 5.NIDST - medium grained, massive with 39 30 251826 SXP 10 5 51.2 - 0.41.0 - 5.NIDST - medium grained, massive with 39 30 251826 SXP 10 0 5 51.2 - 0.41.0 - 5.NIDST - medium grained, massive with 30 37 251826 SXP 10 0 2 865 46 14 20 96.39.3.9.3 ergaphite 10 40.8 - 42.4 - weakly graphite, ito 15% quartz stringers. 41 42 251830 650 10000 47 58 20 131 1 1 40.8 - 42.4 - weakly graphite, ito 15% quartz stringers. 14.3 - 44.8 - 10.4 - 8.0 - 5.NIDSTONE - sheared and al	19	20	251821	ļ	10	1		40				60	19.9-	20.2 - quait	Z Vental Sc			
26 27 281 823 10 0	23	24	251822		10		0.2	40	21			02	26.0	29.2 10%	multi diract	tional quarta	stringers	
29 30 25/824 10 0.2 20 20 23 24	26	21	251823		10						6		20.0 -	20.3 - 10%				
31 32 251825 20 431 331 332 251825 20 431 331 332 251825 20 331 332 251826 S56 10 0.2 135 39 10 5 532.0-44.0-SANDSTONE - medum graned, massive with intense limonitic stain 33 33 251826 S56 10 0.2 865 46 14 20 96 39.3 - 39.6-graphite 1 40 41 251820 120 6 40.8 - 42.4 - weakly graphite, 10-15% quartz stringers 41 42 251830 810 10000 47 58 20 131 43.5 - 43.8 - 30% sheared quartz 43 44 251832 SSkgph 40 275 56 22 1506 4048.0 - SANDSTONE - sheared and altered, moderate 44 45 251832 SSkgph 40 275 56 22 1506 4048.0 - SANDSTONE - sheared and altered, moderate 44 45 251832 Skgph 10 </td <td>29</td> <td>30</td> <td>251824</td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td>10</td> <td>1</td> <td>0.2</td> <td>60</td> <td>21</td> <td>1</td> <td></td> <td>01</td> <td>21.0-</td> <td>good beddir 20.7 broke</td> <td>ig at 400</td> <td>d core week</td> <td>limonitio</td> <td></td>	29	30	251824	· · · · · · · · · · · · · · · · · · ·	10	1	0.2	60	21	1		01	21.0-	good beddir 20.7 broke	ig at 400	d core week	limonitio	
31 32 251825 20 31 31 32 32 32 33 251826 SSfe 10 0 13 1 32 33 251826 SSfe 10 0 13 13 13 23 23 251827 10 10 11 21 33 251827 10 10 11 251827 10 10 11 251828 10 0.2 865 46 14 20 96 39.3 39.6 27.6 96 39.3 39.6 27.6 96 39.3 39.6 27.6 20 13 14 40.8 40.4 40.8 40.4 40.8 40.4 40.8 40.4 40.8 40.4									 				20.3-	29.7 - DIOKE	Tractured	COLE, WEAK		
31 32 251826 20								 		ļ			stain	22.4			- [
33 251826 SSfe 10 0.2 135 39 10 5 51 32.0-44.0 SANDSTONE - medium grained, massive with interse limonitic stain. 36 37 251827 10 0.2 865 46 14 20 6 33.3 3.9.6 graphic 1	31	32	251825		20	 						+	31.4-	32.4 - grapr	ntte, weak ii	imonite stain		
32 33 251826 [SS6 10 0.2 135 39 10 5 13120-440 - SANUS FORE - moduling grained, massive with a single											-		000440	CANDOT				
36 37 25/827 10 0.2 865 46 4 20 96 30.3 39.3 39.6 carried information stain. 40 41 25/828 120 40.8 -42.4 weakly graphtic. -10-15% quartz stringers 41 42 25/830 810 10000 47 58 20 131 43 44 25/832 Skgph 40 275 59 22 106 44.0-48.0 SANDSTONE - sheared and altered, moderate 44 45 25/832 Skgph 40 275 59 22 15 106 44.0-48.0 SANDSTONE - sheared and altered, moderate 44 45 25/832 Skgph 40 275 59 22 150 64.4-4.4-interse clay alteration gives the core a corroded appearance. 44 45 25/832 Skgph 40 275 59 22 150 66.0 - 43.8 - 44.4-interse clay alteration, graphite, shearing at 160.0 46 47 25/833 gph 10 215 62 10 45.4 - 45.8 - 1	32	33	251826	SSfe	10	1.	0.2	135	39	1	<u> </u>	51	32.0-44.0	- SANUST		lium grained,	massive with	
39 40 251828 10 0.2 865 44 20 96 39.3 - 39.5 - graphtic 1 41 42 251829 120 10 10000 47 58 20 131 40.8 - 42.4 weakly graphtic, 10-15% quartz stringers 41 42 251830 810 10000 47 58 20 131 41 43.6 - 30.8 - 30.4 shered quartz 10000 44 45 251832 SSkgph 40 275 59 22 15 166 44.0 -48.0 - SANDSTONE - sheared and altered, moderate 44 45 251832 SSkgph 40 275 59 22 15 166 44.0 -48.0 - SANDSTONE - sheared and altered, moderate 44 45 251832 SSkgph 40 275 59 22 15 166 44.0 -48.0 - SANDSTONE - sheared and altered, moderate 46 47 251833 gph 10 215 62 10 45.8 - 48.7 - moderately graphtic, shearing at 70o. 47 48 251833 Gph 10 215 62 10 <	36	37	251827		10	<u> </u>							lintense lin	nonitic stain	<u>. </u>			
40 41 251829 120 10000 47 58 20 131 1	39	40	251828		10		0.2	865	46	5 1	4 20	96	39.3 -	39.6 - grapi		10.15%		
41 42 251830 810 10000 47 58 20 131 1111 111 111	40	41	251829		120	1							40.8 -	42.4 - weak	ly graphitic	:, 10-15% qu	artz stringers	
43 44 251831 600 43.5 - 30% sheared quarz 44 45 251832 SSkgph 40 275 59 22 15 106 44.0-48.0 - SANDSTONE - sheared and altered, moderate clay alteration gives the core a corroded appearance. 44 45 251832 SSkgph 40 275 59 22 15 106 44.0-48.0 - SANDSTONE - sheared and altered, moderate clay alteration gives the core a corroded appearance. 46 47 251833 gph 10 43.8 - 44.4 - intense clay alteration, graphite, shearing at at 600 46 47 251833 gph 10 45.8 - 48.7 - moderately graphic, shearing at 700. 47 48 251835 FPfe 10 46.0 - 49.0 - FELDSPAR PORPHYRY - strong limonitic stain, coarse grained. 48 49 251835 FPfe 10 60.5 - 78 14 10 80 50.5 - 51.5 - S1LSTONE - graphitic with minor carbonate stringer. 50.5 52.5 251837 CNGFE 10 51.5 - 52.5 - CONGLOMERATE - coarse, unsorted 52.5 55.7 1 FP 51.5 - 52.5 - CONGLOMERATE - Stain - Controlled by fractures. Fresh portions show good porphyritic	41	42	251830		810	1		10000	47	5	8 20	131		1				
44 45 251832 SSkgph 40 275 59 22 15 106 44.0-48.0 - SANDSTONE - sheared and altered, moderate 1 </td <td>43</td> <td>44</td> <td>251831</td> <td></td> <td>600</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>43.5 -</td> <td>43.8 - 30%</td> <td>sheared qu</td> <td>Jartz</td> <td></td> <td></td>	43	44	251831		600	1							43.5 -	43.8 - 30%	sheared qu	Jartz		
44 45 251832 SSkgph 40 275 59 22 15 106 44.0-48.0 - SANDBYONE - sheared and atpread, moderate 1 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><u> </u></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><u> </u></td> <td></td>									<u> </u>								<u> </u>	
All All All Clay alteration gives the core a corroded appearance. Collay alteration gives the core a corroded appearance. Collay alteration gives the core a corroded appearance. Collay alteration gives the core a corroded appearance. Collay alteration gives the core a corroded appearance. Collay alteration gives the core a corroded appearance. Collay alteration gives the core a corroded appearance. Collay alteration gives the core a corroded appearance. Collay alteration gives the core a corroded appearance. Collay alteration gives the core a corroded appearance. Collay alteration gives the core a corroded appearance. Collay alteration gives the core a corroded appearance. Collay alteration gives the core a corroded appearance. Collay alteration gives the core a corroded appearance. Collay alteration gives the core a corroded appearance. Collay alteration gives the core a corroded appearance. Collay alteration gives the core a corroded appearance. Collay alteration gives the core a corroded appearance. Collay alteration gives the core a corroded appearance. Collay alteration gives the core a corroded appearance. Collay alteration gives the core alteration. Collay alteration gives the core alteration. Collay alteration. Collay alteration dives the core alteration. Collay alteration. Collay alteration. Collay alte	44	45	251832	SSkgph	40			275	59	2	2 15	5 106	44.0-48.0	- SANDST	ONE - shea	ared and alter	red, moderate	
Image: Contains graphite, and quartz-carbonate stringers. Image: Contains graphite, and quartz-carbonate stringers. Image: Contains graphite, and quartz-carbonate stringers. Image: Contains graphite, and quartz-carbonate stringers. Image: Contains graphite, shearing Image: Contains graphite, shearing Image: Contains graphite, shearing Image: Contains graphite, shearing Image: Contains graphite, shearing Image: Contains graphite, shearing Image: Contains graphite, shearing Image: Contains graphite, shearing Image: Contains graphite, shearing Image: Contains graphite, shearing Image: Contains graphite, shearing Image: Contains graphite, shearing Image: Contains graphite, shearing Image: Contains graphite, shearing Image: Contains graphite, shearing Image: Contains graphite, shearing Image: Contains graphite, shearing Image: Contains graphite, shearing Image: Contains graphite, shearing Image: Contains graphite, shearing Image: Contains graphite, shearing Image: Contains graphite, shearing Image: Contains graphite, shearing Image: Contains graphite, shearing Image: Contains graphite, shearing Image: Contains graphite, shearing Image: Contains graphite, shearing Image: Contains graphite, shearing Image: Contains graphite, shearing Image: Contains graphite, shearing Image: Contain											_		clay altera	tion gives the	ne core a ci	orroded appe	arance.	
Image: Color of the second													Contains	graphite,and	d quartz-ca	rbonate string	gers. Shearing	at
a a													600.					
Image: Constraint of the constraint													43.8 -	44.4 - inten	se clay alte	ration, graph	ite, shearing	
46 47 251833 gph 10 215 62 10 5 82 2													at 60o					
46 47 251833 gph 10 215 62 10 5 82 Image: control of the series of the ser													45.4 -	45.8 - 10-1	5% quartz-	carbonate str	ingers.	
47 48 251834 10 215 62 10 5 82	46	47	251833	gph	10								45.8 -	48.7 - mode	erately grap	hitic, shearin	g at 70o.	
48 49 251835 FPfe 10 465 78 14 10 80 60.5-51.5 - SILTSTONE - gTaphitic with minor carbonate 50.5 51.5 251836 SSgph 20 465 78 14 10 80 50.5-51.5 - SILTSTONE - gTaphitic with minor carbonate 50.5 51.5 251836 SSgph 20 465 78 14 10 80 50.5-51.5 - SILTSTONE - gTaphitic with minor carbonate 51.5 52.5 251837 CNGFE 10 10 10 80 51.5-52.5 - CONGLOMERATE - coarse, unsorted 51.5 52.5 251837 CNGFE 10 <	47	48	251834		10			215	62	2 1	0 5	5 82	2					
48 49 251835 FPfe 10 48.0-49.0 - FELDSPAR PORPHYRY - strong limonitic stain, 50.5 51.5 251836 SSgph 20 465 78 14 10 80 50.5-51.5 - SILTSTONE - graphitic with minor carbonate 50.5 51.5 251836 SSgph 20 465 78 14 10 80 50.5-51.5 - SILTSTONE - graphitic with minor carbonate 51.5 52.5 251837 CNGFE 10 6																	<u> </u>	
Image: state of the state	48	49	251835	FPfe	10								48.0-49.0	- FELDSP/	AR PORPH	YRY - strong	g limonitic stain	1,
50.5 51.5 251836 SSgph 20 465 78 14 10 80 50.5-51.5 - SILTSTONE - graphitic with minor carbonate 6 6 6 6 6 6 6 51.5 51.5 - SILTSTONE - graphitic with minor carbonate 51.5 52.5 251837 CNGFE 10 6 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>coarse gr</td><td>ained.</td><td></td><td></td><td></td><td></td></td<>													coarse gr	ained.				
Image: Section of the section of th	50.5	51.5	251836	SSgph	20			465	78	3 1	4 10) 80	50.5-51.5	- SILTSTO	NE - graph	itic with mind	r carbonate	
51.5 52.5 251837 CNGFE 10 Image: constraint of the stain of the stai				······									stringers.					
51.5 52.5 251837 CNGFE 10 Image: constraint of the state of the stat			<u> </u>			1		1										
S2.5 55.7 1 FP S2.5 S5.7.7 FELDSPAR PORPHYRY - intense limonite stain S2.5 S5.7 1 FP S2.5 S5.7.7 FELDSPAR PORPHYRY - intense limonite stain S2.5 S5.7 1 FP S2.5 S5.7.7 FELDSPAR PORPHYRY - intense limonite stain S2.5 S5.7 1 FP S2.5 S5.7.7 FELDSPAR PORPHYRY - intense limonite stain S2.5 S5.7 1 FP S2.5 S5.7.7 FELDSPAR PORPHYRY - intense limonite stain S2.5 S5.7 1 FP S2.5 S5.7.7 FELDSPAR PORPHYRY - intense limonite stain S2.5 S5.7 1 FP S2.5 S5.7.7 FELDSPAR PORPHYRY - intense limonite stain S2.5 S5.7 1 FP S2.5 S5.7.7 FELDSPAR PORPHYRY - intense limonite stain S2.5 S5.7 1 FP S2.5 S5.7.7 FELDSPAR PORPHYRY - intense limonite stain S2.5 S5.7 1 FP S2.5 S2.5 S2.5 S2.5 S2.5 S2.5 S2.5 S2.5 S2.5	51.5	52 5	251837	CNGFE	10								51.5-52.5	- CONGLC	MERATE	- coarse, uns	orted	
52.5 55.7 1 FP 52.5-55.7 - FELDSPAR PORPHYRY - intense limonite stain controlled by fractures. Fresh portions show good porphyritic controlled by fractures. Fresh portions show good porphyritic controlled by fractures. Fresh portions show good porphyritic texture with 40% white feldspar phenocrysts in a grey silliceous matrix. silliceous matrix.					1								conglome	rate breccia	. Moderate	e limonite sta	in.	
52.5 55.7 1 FP 52.5-55.7 - FELDSPAR PORPHYRY - intense limonite stain controlled by fractures. Fresh portions show good porphyritic controlled by fractures. Fresh portions show good porphyritic texture with 40% white feldspar phenocrysts in a grey siliceous matrix.			<u>}</u>	· · · · · · · · · · · · · · · · · · ·		+				1			1	1				
Image: Controlled by fractures. Fresh portions show good porphyritic Image: Controlled by fractures. Fresh portions show good porphyritic Image: Controlled by fractures. Fresh portions show good porphyritic Image: Controlled by fractures. Fresh portions show good porphyritic Image: Controlled by fractures. Fresh portions show good porphyritic Image: Controlled by fractures. Fresh portions show good porphyritic Image: Controlled by fractures. Fresh portions show good porphyritic Image: Controlled by fractures. Fresh portions show good porphyritic Image: Controlled by fractures. Fresh portions show good porphyritic Image: Controlled by fractures. Fresh portions show good porphyritic Image: Controlled by fractures. Fresh portions show good porphyritic Image: Controlled by fractures. Fresh portions show good porphyritic Image: Controlled by fractures. Fresh portions show good porphyritic Image: Controlled by fractures. Fresh portions show good porphyritic Image: Controlled by fractures. Fresh portions show good porphyritic Image: Controlled by fractures. Fresh portions show good porphyritic Image: Controlled by fractures. Fresh portions show good porphyritic Image: Controlled by fractures. Fresh portions show good porphyritic Image: Controlled by fractures. Fresh portions show good porphyritic Image: Controlled by fractures. Fresh portions show good porphyritic Image: Controlled by fractures. Fresh portions show good porphyritic	52 5	55.7	1	FP		+				1		+	52.5-55.7	- FELDSP/	AR PORPH	IYRY - intens	se limonite stair	ה. ה
texture with 40% white feldspar phenocrysts in a grey siliceous matrix.			· · · · ·	···	<u> </u>	+		†					controlled	by fracture	s. Fresh po	ortions show	good porphyriti	C
siliceous matrix.								<u> </u>		1			texture wi	th 40% whit	e feldspar	phenocrysts	in a grey	
									1	1	1	-	siliceous	matrix.		· · · · · ·		

657 99.5 1 SD/SS 65.7 / 7.7 SANDSTONE - massive, medium to the grained wave lay alteration. Care is broken 655 66.5 251398 40 6625 67 44 5 238 65.7 - 67.7 - shared contact threecia 650.5 66.5 251398 10 20 4 5 60.7 - 67.7 - shared contact threecia 50.1 - 64.5 - moderate cig alteration. Care is broken 66.5 66.5 251441 10 20 4 5 60.7 - 97.7 - shared contact threecia or output the shared contact threecia 71.7 71.2 S1944 50 60 36 65 77.7 - 68.7 1.7 - 57.8 5.0 10 10 28 2 68 71.7 - 77.7 3 251844 SS 10 10 28 2 68 71.7 - 77.8 - 57.7 5.3 -											
Solution The graned with weak clay alteration. 555 565 551333 40 655 567 57 57 567 717 251844 10 60 967 568 717 251845 10 10 36 2 587 717 751845 10 10 36 2 567 770 720 120 10	55.7	59.5	1	SD/SS							55.7-71.7 - SANDSTONE SILTSTONE - massive, medium to
55.5 56.5 251838 40 525 67. 44 5 238 56.7 57.7 56.7 57.7 56.7 57.7 56.8 77.7 77.7 25.7 77.7 23.7 37.7 25.7 77.7 25.7 77.7 25.7 36.7 <td></td> <td>fine grained with weak clay alteration.</td>											fine grained with weak clay alteration.
6856 60.6 251439 k 10 20 20 4 5 60 result 20 20 4 5 60 result 20 20 4 5 60 result 70 7	55.5	56.5	251838	B	40	625	67	44	5	238	3 55.7 - 56.7 - sheared contact breccia
60:5 62:5 2014/t 5 60 cumby 64:5 66:5 251842 20 60 30 6 5 73 66.8 - 71.7 - graphic shear braccia in contact zone. 65:5 71.7 251843 10 -	59.5	60.5	251839	k	10						59.1 - 64.5 - moderate clay alteration. Core is broken
645 665 251841 10 10 60 30 6 7 66.8 7.17 7.8 7.7 7.8 7.7 7.8 7.7 7.8 7.7 7.8 7.8 7.8 7.8 9.7 7.8 9.7 7.8 9.8 9.9 9.7 7.8 9.8 9.9 9.7 7.8 9.8 9.9 9.7 7.8 9.8 9.9 9.7 7.8 9.8 9.9 9.9 9.9 9.9 9.7 9.8 9.9	60.5	62.5	251840	k	10	20	20	4	5	60) crumbly.
665.5 65.5 251842 20 60 30 6 5 73 66.8 - 71.7 - graphic shear broccia in contect zone. 68.5 71.7 251843 10	64.5	66.5	251841		10						
685 71.7 251843 10 10 36 2 5 88 71.7.7.0 - SANDSTONE - unatered, massive, light green, mass	66.5	68.5	251842	2	20	60	30	6	5	73	66.8 - 71.7 - graphitic shear breccia in contact zone.
71. 73 251844 SS 10 10 26 2 58 21.77.7.0 SANDSTONE - unablered, massive, light green, medium grained clesis: with occasional hairline quartz 76 77 251846 SS 10 36 5 56 2 5 577.77.0 SANDSTONE - unablered, massive, light green, medium grained clesis: with occasional hairline quartz 77 778 251846 SS 10 5 56 2 5 577.052.0 SUITSTONE - fine grained, weakly graphitic. 77 778 251846 SS 10 5 56 2 5 6577.052.0 SUITSTONE - fine grained, weakly graphitic. 80 61 251847 10 77.75.77.5.2 nonedraiting graphitic. 6 77.8.2 77.75.2 nonedraiting graphitic. 6 77.8.2 10	68.5	71.7	251843	1	10						
77.7 73 251844 (SS 10 10 36 2 5 88,71,7.77.0 - SANOSTONE - unalered, massive, light green, isolation with occasional hairing quartz 77 78 251846 10 5 56 2 5 65,77.9.20 - SILTSTONE - fine grained, weakly graphtic. 77 78 251846 SS 10 5 56 2 5 65,77.9.20 - SILTSTONE - fine grained, weakly graphtic. 80 81 251847 10 77.0 - 78.0 - fine grained, silicified. 77.0 - 78.0 - fine grained, silicified. 80 81 251847 10 77.0 - 78.0 - fine grained, silicified. 77.0 - 78.0 - grained, silicified. 82 83 251848 Sx 10 45 89 10 5 106 80.7 - 61.5 - moderataly graphtic. 84 251849 10 45 89 10 5 66 66 5 66 80.7 - 62.7 - 61.5 - moderataly graphtic. 85 11 SDarg 84 64.0 - 50.2 - SANOSTONE - angliacoous, light grey firee mucd with with graphic informatics. 10 10 10 10 10 10 10											
76 77 251845 10 medium graned clasts with occasional hairline quartz 77 78 251846 56 2 5 57 0.20 51/15TONE fine grained, veakly graphito. 77 78 251846 58 10 5 56 2 5 67/7.0 7.80 ensity graphito. 80 81 251847 10 77.75 ensity graphito. 97.75	71.7	73	251844	SS	10	10	36	2	5	88	71.7-77.0 - SANDSTONE - unaltered, massive, light green,
Image: Constraint of the second sec	76	77	251845	i	10						medium grained clastic with occasional hairline quartz
77 251846 SS 10 5 56 2 5 65/77-052 - SILTSTONE - fine grained, weakly graphic. 80 81 251847 10 77.25 77.35 - quartz-graphite braccia. 80 81 251848 SSx 10 45 89 10 516 62/77.35 - quartz-graphite braccia. 82 83 251848 SSx 10 45 89 10 516 62/77.45.75 - quartz-graphite braccia. 84 85 1 SDarg -											stringers.
77 78 251846 [SS 10 5 56 2 5 65/770-62.0 - SILTSTONE - fine grained, weakly graphitic. 80 81 251847 10 77.0 78.0 fing raphitic. 82 83 251848 SSx 10 45 89 10 5 106 80.7 - 81.5 - moderately graphitic. 84 251848 SSx 10 45 89 10 5 106 82.0-84.0 - SILTSTONE - fault gouge. Light grey fine mud 84 455 1 SDarg 94.0-90.2 - SANOSTONE - argitaecous. light grey/green 84 85 10 5 61 6 86 64.0-90.2 - SANOSTONE - argitaecous. light grey/green 84 85 10 5 61 6 86 60.0 - 88.7 - spinitic. 86 89 90 251850 10 61 85 86 87.0 - 89.7 - sheared. graphitic. 90.2 92 1 SD/SS 90 90.2-20.2 - SANDSTONE/SILTSTONE - massive to finely 90.2 92 1 SD/SS 90 90.2-20.2 - SANDSTONE/SILTSTONE - massive to fine											
Image: Second	77	78	251846	SS	10	5	56	2	5	65	77.0-82.0 - SILTSTONE - fine grained, weakly graphitic.
80 81 251847 10 77.25 - 77.35 - quart-graphite breccia. 82 83 251848 SSx 10 45 89 10 5 106 62.0-84.0 - SILTSTONE - fault gouge. Light gray fine mud 83 84 251849 10											77.0 - 78.0 - fine grained, silicified.
80 81 251847 10 80 81 251847 10 82 83 251848 SSx 10 45 89 10 5 106 62.0-84.0 - SILTSTONE - fault gouge. Light grey fine mud with graphtic fragments. 84 85 1 SDarg 84 86 251856 10 5 61 6 66 84.0-82 SANDSTONE - argillaceous, light grey/green with 10% quartz stringers. 85 86 251856 10 5 61 6 86 84.0-84.+ sheared, graphtic. 86 86 251851 10 - 86 7088.7-sheared, moderate lay alteration. 89 90 251852 10 40 61 8 56 7088.7-sheared, moderate lay alteration. 90.2 92 1 SD/SS - <td< td=""><td>ļ</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>77.25 - 77.35 - quartz-graphite breccia.</td></td<>	ļ										77.25 - 77.35 - quartz-graphite breccia.
82 83 251848 SSx 10 45 89 10 5 106 82.0.84.0. SILTSTONE - fault gouge. Light grey fine mud with graphitic fragments. 83 84 251849 10 with graphitic fragments. with graphitic fragments. 84 85 1 SDarg with 10% quartz stringers. 84.0.90.2 - SANDSTONE - argilaceous, light grey/green with 10% quartz stringers. 85 86 251850 10 5 61 6 86.0 8.4.8 - shearing at 60. 89 90 251852 10 40 61 8 5 86.87.0 - 99.7 - shearing at 60. 89 90 251852 10 40 61 8 5 86.87.0 - 99.7 - shearing at 60. 90 251853 10 90.2 - 92.0 - SANDSTONE/SILTSTONE - massive to finely 92 93 251853 10 90.2 - 92.0 - SANDSTONE/SILTSTONE - massive to finely 93 94 251854 CNG 10 40 80 18 5 107 93.0 - 102.5 - Congiomerate - weak clay atteration, sub- rounded	80	81	251847		10						80.7 - 81.5 - moderately graphitic.
82 83 251848 (SSx 10 45 89 10 5 106 (82 0-84.0 - SILTSTONE - fault gouge. Light grey fine mud with graphtic fragments. 83 84 251849 10 84 85 1 SDarg 84 84 85 1 SDarg 84 84 85 1 SDarg 84 84 94 95 251850 10 5 61 6 5 86 84.0 84.4 - sheared, graphtic is shearing at 800. 89 96 251851 10 96 96.0 86.3 graphtic is shearing at 800. 89 7 90.2 - SANDSTONE - fault gouge. Light grey fine mud 86 86 251851 10 96 66 87.0 84.4 - sheared, graphtic is shearing at 800. 89 7 90.2 - SIGH64 96.0 86.3 graphtic is shearing at 800. 96 96 97.9 92 - silicified, bedding at 40 degrees. 20% 96 97.9 92 - silicified, bedding at 40 degrees. 20% 96 97 90.2 92.0 - SANDSTONE - fault gouge. Light grey fine mud 96 90.2 92.0 - SANDSTONE/SILTSTONE - massive to finely 90.2 92.0 - SANDSTONE/SILTSTONE - massive to finely 96 <td></td>											
83 84 251849 10 with graphtic fragments. 84 85 1 SDarg 84.0-90.2 - SANDSTONE - argillaceous, light grey/green 84 85 1 SDarg 84.0-90.2 - SANDSTONE - argillaceous, light grey/green 86 86 251850 10 5 61 6 5 86 86.0 - 86.8 - graphtic, shearing at 60o. 89 90 251852 10 40 61 8 5 86 70 - 98.7 - sheared, moderate ciay atteration. 90 251852 10 40 61 8 5 86 70 - 98.7 - sheared, moderate ciay atteration. 90 251852 10 40 61 8 5 86 87.0 - 98.7 - sheared, moderate ciay atteration. 90 292 1 SD/SS 90 90.2-92.0 - SANDSTONE/SILTSTONE - massive to finely 92 93 251853 10 90.2-92.0 - SANDSTONE/SILTSTONE - massive to finely 93 94 251854 10 40 80 18 5 107 93.0-92.5 Sanded with 10% quartz-carbonate stringers. 93 <td>82</td> <td>83</td> <td>251848</td> <td>SSx</td> <td>10</td> <td>45</td> <td>89</td> <td>10</td> <td>5</td> <td>106</td> <td>82.0-84.0 - SILTSTONE - fault gouge. Light grey fine mud</td>	82	83	251848	SSx	10	45	89	10	5	106	82.0-84.0 - SILTSTONE - fault gouge. Light grey fine mud
84 85 1 SDarg 84 96 1 SDarg 84 96 1 SDarg 84 96 1 SDarg 84 96 96 98 251850 10 96 86 86 251851 10 86 86 251852 10 40 61 8 5 86 7.5 Shared, moderate clay alteration. 89 90 251852 10 40 61 8 5 86 7.5 shared, moderate clay alteration. 89 90 251852 10 40 61 8 5 86 7.5 o.2 - silicified, bedding at 40 degrees. 20% 91 91 92 92 1 SD/SS 90 2.292.0 - SANDSTONE/SILTSTONE - massive to finely 92 93 251853 10 90 2.292.0 - SANDSTONE/SILTSTONE - massive to finely 93 94 251854 CNG 10 40 80 18 5 107 33.0-102.5 - Conglomerate - weak clay alteration, sub- rounded to angular polymictic clasts. Predominantly fieldspar <	83	84	251849		10						with graphitic fragments.
64 85 1 SDarg 84.0-90.2 - SANDSTONE - argillaceous, ight grey/green 85 86 251850 10 5 61 6 5 86 40.84.2 - sheared, graphitic 86 88 251851 10 40 61 8 5 86 87.0 - 89.7 - sheared, moderate ciay attration. 89 90 251852 10 40 61 8 5 86 87.0 - 89.7 - sheared, moderate ciay attration. 89 90 251852 10 40 61 8 5 86 87.0 - 89.7 - sheared, moderate ciay attration. 89 90 251853 10 40 61 8 5 86 87.0 - 89.7 - sheared, moderate ciay attration. 90.2 92 1 SD/SS sub-parallel to core. 90.2-92.0 - SANDSTONE/SILTSTONE - massive to finely 90.2-92.0 - SANDSTONE/SILTSTONE - massive to finely 90.2-92.0 - SANDSTONE/SILTSTONE - massive to finely 90.2-92.0 - SANDSTONE/SILTSTONE - massive to finely 90.2-92.0 - SANDSTONE/SILTSTONE - massive to finely </td <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				1							
B6 251850 10 5 61 6 5 86 87.0 + sheared, graphtic 88 251852 10 40 61 8 5 86 87.0 + 87.0 + 87.0 + 87.0 g at 80.0 89 90 251852 10 40 61 8 5 86 87.0 + 89.7 - sheared, moderate clay alteration. 89 90 251852 10 40 61 8 5 86 87.0 + 89.7 - sheared, graphtic 80 90 251852 10 40 61 8 5 86 87.0 + 89.7 - sheared, graphtic 80.7 - 90.2 - silicified, bedding at 40 degrees. 20% 89.7 - 90.2 - silicified, bedding at 40 degrees. 20% 89.7 - 90.2 - SANDSTONE/SILTSTONE - massive to finely 90.2 92 1 SD/SS 90.2 - 92.0 - SANDSTONE/SILTSTONE - massive to finely 92 93 251853 10 90.2 - 92.0 - SANDSTONE/SILTSTONE - massive to finely 93 94 251854 CNG 10 40 80 18 5 107 93.0 - 02.5 - Con	84	85	1	SDarg							84.0-90.2 - SANDSTONE - argillaceous, light grey/green
85 86 251850 10 5 61 6 5 86 84.0.84.4 - sheared, graphtic, shearing at 60o. 86 88 251852 10 40 61 8 5 86.0.96.8.9 raphtic, shearing at 60o. 89 90 251852 10 40 61 8 5 86.0.70.97sheared, moderate clay atteration. 89 90 251852 10 40 61 8 5 89.7.90.2 - silicified, bedding at 40 degrees. 20% white quartz-carbonate stringers at 90o and sub-parallel to core 90.2.92.0 - SANDSTONE/SILTSTONE - massive to finely 90.2 92 1 SD/SS 90.2.92.0 - SANDSTONE/SILTSTONE - massive to finely 92 93 251853 10 90.2.92.0 - SANDSTONE/SILTSTONE - massive to finely 93 94 251854 CNG 10 40 80 18 5 107 93.0-102.5 - Conglomerate - weak clay atteration, sub- 93 94 251854 CNG 10 40 80 18 5 107 93.0-102.5 - Conglomerate - weak clay atteration, sub- 93 94 25185											with 10% quartz stringers.
86 88 251851 10 40 61 8 5 86 97.0 shearing at 600. 89 90 251852 10 40 61 8 5 86 67.0 89.7 subcapered, moderate day atteration. 90.2 92 1 50.5 90.2 92 1 50/53 90.2 92.0 SANDSTONE/SILTSTONE - massive to finely 90.2 92 1 SD/SS 90.2-92.0 SANDSTONE/SILTSTONE - massive to finely 93 94 251854 CNG 10 40 80 18 5 107 93.0-102.5 Conglomerate - weak clay atteration, sub- 93 94 251854 CNG 10 40 80 18 5 107 93.0-102.5 Conglomerate - weak clay atteration, sub- 94 95 251855 gqc 10 40 80 18 5 107 93.0-402.5 Conglomerate - weak clay atteration, sub- 94 95 251855	85	86	251850		10	5	61	6	5	86	84.0 84.4 - sheared, graphitic
89 90 251852 10 40 61 8 5 86 87.0 - 89.7 - sheared, moderate clay alteration. 89 90 251852 10 89.7 - 90.2 - silicified, bedding at 40 degrees. 20% white quartz-carbonate stringers at 900 and white quartz-carbonate stringers at 900 and white quartz-carbonate stringers at 900 and 90.2 92 1 SD/SS 90.2-92.0 - SANDSTONE/SILTSTONE - massive to finely 90.2 93 251853 10 10 10 93 94 251854 CNG 10 40 80 18 5 107 93.0-102.5 - Conglormerate - weak clay alteration, sub- rounded to angular polymical to a	86	88	251851		10						86.0 - 86.8 - graphitic, shearing at 60o.
Image: Section of the sector of the secto	89	90	251852		10	40	61	8	5	86	87.0 - 89.7 - sheared, moderate clay alteration.
white quartz-carbonate stringers at 900 and 90.2 92 1 SD/SS 90.2 92 1 SD/SS 90.2 92.0 - SANDSTONE/SILTSTONE - massive to finely 90.2 92 1 SD/SS 90.2 92.0 - SANDSTONE/SILTSTONE - massive to finely 93 94 251853 10 90.2 93 251854 CNG 10 40 80 18 5 107 93.0-102.5 - Conglomerate - weak clay alteration, sub- rounded to angular polymictic clasts. Predominantly feldspar 93 94 251854 CNG 10 40 80 18 5 107 93.0-102.5 - Conglomerate - weak clay alteration, sub- rounded to angular polymictic clasts. Predominantly feldspar 93 94 251855 GRC 10 40 80 18 5 107 93.0-102.5 - Conglomerate - weak clay alteration, sub- rounded to angular polymictic clasts. Predominantly feldspar 94 95 251855 gqc 10 93 94 93.1 - 94.2 - sheared, brecciated contact zone with 95 96 251856 10 10 27 10 5 88 98.0 - realgar in clasts and matrix.											89.7 - 90.2 - silicified, bedding at 40 degrees. 20%
90.2 92 1 SD/SS 90.2 90.2-92.0-SANDSTONE/SILTSTONE - massive to finely 90.2 93 251853 10 90.2-92.0-SANDSTONE/SILTSTONE - massive to finely 93 94 251854 CNG 10 40 80 18 5 107 93.0-102.5 - Conglomerate - weak clay alteration, sub- 93 94 251854 CNG 10 40 80 18 5 107 93.0-102.5 - Conglomerate - weak clay alteration, sub- 93 94 251854 CNG 10 40 80 18 5 107 93.0-102.5 - Conglomerate - weak clay alteration, sub- 93 94 251854 CNG 10 40 80 18 5 107 93.0-102.5 - Conglomerate - weak clay alteration, sub- 93 94 251854 CNG 10 40 80 18 5 107 93.0-102.5 - Conglomerate - weak clay alteration, sub- 93 94 95 251855 gqc 10 40 80 18 5 107 93.1 - 94.2 - sheared, breciates containing 18 18 18 <td></td> <td>white quartz-carbonate stringers at 90o and</td>											white quartz-carbonate stringers at 90o and
90.2 92 1 SD/SS 90.2-92.0 - SANDSTONE/SILTSTONE - massive to finely 92 93 251853 10 banded with 10% quartz-carbonate stringers. 93 94 251854 CNG 10 40 80 18 5 107 93.0-102.5 - Conglomerate - weak clay attention, sub- 93 94 251854 CNG 10 40 80 18 5 107 93.0-102.5 - Conglomerate - weak clay attention, sub- 93 94 251854 CNG 10 40 80 18 5 107 93.0-102.5 - Conglomerate - weak clay attention, sub- 93 94 251854 CNG 10 40 80 18 5 107 93.0-102.5 - Conglomerate - weak clay attention, sub- 93 94 251855 graphite, carbonate stringers. porphyry and sandstone/siltstone. Clasts up 7 cm. Sandy 94 95 251855 gqc 10 10 27 10 5 68 graphite, carbonate fragments. 98.0 - realgar with matrix. 94 95 251857 10 10 27 10											sub-parallel to core.
90.2 92 1 SD/SS 90.2-92.0 - SANDSTONE/SILTSTONE - massive to finely 92 93 251853 10											
92 93 251853 10 image: straight of the straight of	90.2	92	1	SD/SS							90.2-92.0 - SANDSTONE/SILTSTONE - massive to finely
93 94 251854 CNG 10 40 80 18 5 107 93.0-102.5 - Conglomerate - weak clay alteration, sub- rounded to angular polymictic clasts. Predominantly feldspar 93 94 251854 CNG 10 40 80 18 5 107 93.0-102.5 - Conglomerate - weak clay alteration, sub- rounded to angular polymictic clasts. Predominantly feldspar 94 95 96 97 251855 gqc 10 0 0 0 93.0-102.5 - Conglomerate - weak clay alteration, sub- rounded to angular polymictic clasts. Predominantly feldspar 94 95 96 97 251855 gqc 10 0 <t< td=""><td>92</td><td>93</td><td>251853</td><td></td><td>10</td><td></td><td></td><td></td><td></td><td></td><td>banded with 10% quartz-carbonate stringers.</td></t<>	92	93	251853		10						banded with 10% quartz-carbonate stringers.
93 94 251854 CNG 10 40 80 18 5 107 93.0-102.5 - Conglomerate - weak clay alteration, sub- rounded to angular polymictic clasts. Predominantly feldspar 1											
Image: style styl	93	94	251854	CNG	10	40	80	18	5	107	93.0-102.5 - Conglomerate - weak clay alteration, sub-
Image: state of the state											rounded to angular polymictic clasts. Predominantly feldspar
Image: state of the state											porphyry and sandstone/siltstone. Clasts up 7 cm. Sandy
Image: style styl											matrix makes up 10-20%. Occasional clasts containing
94 95 251855 gqc 10 10 27 10 93.1 - 94.2 - sheared, brecciated contact zone with 95 96 251856 10 10 27 10 5 68 graphite, carbonate fragments. 98.0 - realgar in clasts and matrix. 96 97 251857 10 5 30 10 5 68 98.0 - realgar in clasts and matrix. 97 99 251858 10 5 30 10 5 68 98.0 - realgar in clasts and matrix. 99 101 251859 10 5 30 10 5 68 98.0 - realgar in clasts and matrix.											realgar and fine stringers of realgar with matrix. Clay
94 95 251855 gqc 10 0 0 93.1 - 94.2 - sheared, brecciated contact zone with 95 96 251856 10 10 27 10 5 68 graphite, carbonate fragments. 0 96 97 251857 10 0 0 0 98.0 - realgar in clasts and matrix. 0 97 99 251858 10 5 30 10 5 68 0 0 0 99 101 251859 10 0											alteration affects the sandy matrix.
95 96 251856 10 10 27 10 5 68 graphite, carbonate fragments. 96 97 251857 10 98.0 - realgar in clasts and matrix. 97 99 251858 10 5 30 10 5 68 99 10 251859 10 <td>94</td> <td>95</td> <td>251855</td> <td>gqc</td> <td>10</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>93.1 - 94.2 - sheared, brecciated contact zone with</td>	94	95	251855	gqc	10						93.1 - 94.2 - sheared, brecciated contact zone with
96 97 251857 10 98.0 - realgar in clasts and matrix. 97 99 251858 10 5 30 10 5 68 </td <td>95</td> <td>96</td> <td>251856</td> <td></td> <td>10</td> <td>10</td> <td>27</td> <td>10</td> <td>5</td> <td>68</td> <td>graphite, carbonate fragments.</td>	95	96	251856		10	10	27	10	5	68	graphite, carbonate fragments.
97 99 251858 10 5 30 10 5 68 0 99 101 251859 10 0 <td>96</td> <td>97</td> <td>251857</td> <td></td> <td>10</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>98.0 - realgar in clasts and matrix.</td>	96	97	251857		10						98.0 - realgar in clasts and matrix.
99 101 251859 10 10	97	99	251858		10	5	30	10	5	68	
	99	101	251859		10						
101 102.5 251860 10 10 10 31 10 5 70	101	102.5	251860		10	 10	31	10	5	70	
102.5 103.5 251861 SD/SS 10 102.5-108.8 - SANDSTONE/SILTSTONE - alternating lavers	102.5	103.5	251861	SD/SS	10					,	102.5-108.8 - SANDSTONE/SILTSTONE - alternating lavers
of black graphitic sediment and grev sandstone. Shearing at .											of black graphitic sediment and grey sandstone. Shearing at
											600

98ALL

	1														
103.5	104.5	251862		10	70	18	16	5	64	104.0 -	104.3 - gra	phitic, 10%	quartz-carb	onate.	
104.5	105.5	251863	g	10						104.8 -	106.4 - gra	phitic			
105.5	106.5	251864		10	90	40	16	5	103						
106.5	108.8	251865	g	10						107.85	- 108.8 - gr	aphitic, she	aring at 65o	•	
			,												
108.8	110	251866	FPk	10	80	8	10	5	47	108.8-115	6 - FELDSF	PAR PORP	HYRY - moo	derate to inte	ense
110	112	251867		10						clay alterat	tion. Weakl	y porphyritic	with 10% v	vhite feldspa	r
			1							phenocrys	ts in a white	, altered ma	atrix.		
											1		T		
112	114	251868	k	10	25	10	6	5	51	113.0 -	114.5 - inte	nse clay alt	eration.		
114	115.6	251869		10						1		1]		
											1		1		
115.6	116.6	251870	SS	10	110	30	16	5	79	115.6-129	24 - SAND	STONE - w	eakly altered	I massive cla	astic
116.6	117.6	251871		10						with little e	vidence of b	edding.	T	I	
117.6	118.6	251872		10	70	51	20	5	93	115.6 -	117.4 - gra	phitic with c	lasts of fres	h sandstone	•
118.6	120	251873		10									1		
120	121	251874		10	55	16	14	5	58	120.2 -	120.4 - qua	rtz-carbona	ite stringers.	,graphitic.	
125	127	251875		10										-	
										129.24 En	d of hole.				

Pb

ppm

Sb Zn

ppm ppm

Geology Characteristics

0.0 - 2.5 - OVERBURDEN

2.5 -4.0 - SANDSTONE/SILTSTONE - silicified, fine grained

sediment with intense fracture controlled limonite stain.

Occasional large (up to 7 cm.) siliceous clasts and quartz

27.4-39.0 - SANDSTONE/SILTSTONE - grey to brown

silicified, fine to medium grained sediment with 10-15%

quartz stringers at 30 and 60°. 1% pyrite stringers and

porphyry clasts (up to 7cm.)

on hairline stringers at 30 and 60 °

arev matrix.

disseminated. Minor limonite fracture coatings. Brown color

may be due to secondary biotite. Local epidote and chlorite. 28.0 - 28.9 - rare, rounded and stretched feldspar

33.2 - 34.2 - rounded feldspar porphyry clasts in a fine

34.0 - 38.0 - quartz-carbonate stringer zone. 1-3% pyrite

1395

Elev.

Cu

mqq

4
<u>,</u> #

0.01								And the second sec						
7.0	7.7	251879		10					stringers. (Quartz form	ns a fine sto	ockwork show	ving multiple	
									episodes o	f alteration.	Pyrite stri	ngers (1-5%)	at 60° and	
									subparallel	to core. St	trongly blea	iched and set	ricitized.	
									Contains ti	aces of blu	ie-grey sulf	fide and arser	nopyrite.	
7.7	8.5	251880		10					7.7 - 8.	5 - green c	hloritic she	ars		
8.5	10.0	251881		10		l.								
10.0	12.0	251882		10						ļ				
12.0	13.5	251883		10					12.0 - 1	3.5 - inten	se limonite.	, fractured co	re.	
13.5	14.9	251884		10					14.0 - 1	4.9 - inten	se limonite	stain.		
										1				l
14.9	16.5	251885	SD/SSs	10					14.9-27.4	- SANDST	ONE/SILTS	STONE - fine	to medium g	rained,
16.5	18.6	251886		10					ight green	to grey se	diment with	occasional r	ounded clast	s
	1								(up to 7 cr	n) of feldsp	ar porphyr	y and dark qu	artz. Highly	
									silicified wi	th minor lin	nonite stair	on fractures	. 1-5% pyrite	;
								}	stringers a	ind dissemi	inated.			l
18.6	19.1	251887		10					18.6 - 1	18.8 - 10-1	5% pyrite s	tringers and	disseminated	1,
									trace c	halcopyrite	and realga	r.		
19.1	21.5	251888		10					19.5 - 2	20.0 - roun	ded and str	etched feldsp	par porphyry	
									clasts u	up to 7 cm.		<u> </u>		
21.5	22.9	251889		10					21.5 - 2	22.9 - inten	se limonite	stain]
22.9	24.6	251890		10					24.6 - 2	24.8 - inten	se limonite	stain.	1	L
24.6	25.6	251891		10					26.7 - 2	27.4 - light	green epid	ote chlorite al	teration. Con	tact
25.6	26.7	251892		10					at 45 d	egrees. 5%	pyrite stri	ngers and dis	seminated.	
26.7	27.4	251893		10										
													1	
							T							

Easting

10937

*Gold values converted from fire assay in g/T

Ag As

ppm ppm

Northing

Dip

Au

ppb*

300

300

Azimuth

Sample # Geology

251877

251878

1 OB

251876 SD/SSsfe

9341

-60

-60

10

10

10

10

10

10

10

10

10

10

Au

a/T

Hole

0.0

2.5

4.0

5.5

7.0

28.9

30.4

31.9

33.2

34.2

35.7

37.0

251894 SD/SSs

251895

251896

251897

251898

251899

251900

127.1

Depth

То

0.0

2.5

4.0

5.5

27.4

28.9

30.4

31.9

33.2

34.2

35.7

From

98-10

Page 31

37.0	38.0	251670	10						
38.0	39.0	251671	10				1		
39.0	40,4	251672 SD/SSsk	10	 	39.0-60.2 - SANDSTO	NE/SILTSTO	NE - light	grey	
					argillaceous sediment	with 5% pyrite	e stringers	and	
					 disseminations through	nout. Fine blu	e-arev sulfi	de and reald	ar.
40.4	41.9	251673 kpy	10		40 4 - 43 0 - intens	e clav alteratio	on Core is	s broken and	1
41.9	43.0	251674	10		 converted in places	to soft clay	Not sheare	d Sulphide	 >
41.5	43.0	251675	10	 	 stringers subparalle	to solt clay.	TVOL STIGAT		
45.0	45.3	251676 400	10	 			on Alterer	to soft	
40.42	40.33	251676 Kpy	10	 					
49.50		2010/7		 	 49.4 doumoiro to				
50.7		054070 1	10	 	 40.4 - downsize to		10 150/		
50.7	52.5	2516/8 kpy	10	 	 50.7 - 52.5 - quartz	-pyrite zone.	10 - 15%	white miky	
52.5	54.4	2516/9 pyepchi	20	 	 quartz, 10 - 15% p	yrite stringers	s. Strong c	arteration	n.
			· · · · · · · · · · · · · · · · · · ·	 	 50.9 - 51.51 - 0.4 n	1 lost core.	· · · · · · · · · · · · · · · · · · ·		
				 	 52.5 - 54.4 - green	epidote-chior	ite alteratio	n with 15 -	
				 	 20% finely dissemi	nated pyrite.			
54.4	55.9	251680	10	 	 53.04 - 54.56 - 0.8	n lost core.			*****
55.9	57.4	251681 kpy	10	 	 54.4 - 60.2 - moder	ate clay alter	ation. 5 - 1	5% pyrite	
57.4	58.9	251682	10	 	 stringers and disse	minations.			
58.9	60.2	251683	20	 	 				
60.2	61.5	251684 FPkpy	10	 	 60.2-62.8 - FELDSPA	R PORPHYR	Y - mediun	n grained wr	nite
61.5	62.8	251685	10	 	 porphyry with white fel	dspar phenoc	rysts in alt	ered matrix.	
				 	 Moderate white clay al	teration. Up to	2% fine d	isseminated	
				 	 suifide locally. Local qu	iartz eyes.			
		054000 00/001		 				te liebt area	
62.8	63.44	251686 SD/SSK	10	 	 62.8-71.8 - SANDSTO			interne util	ý, ita
63.44	64.1	251687	10	 		seament. N		intense whi	le
-				 		ine dissemina			•
				 	 63.0 - 63.4 - quanz	graphite strir	igers paral	lei to core.	
				 -	 63.7 - 64.9 - dark g	rey massive	siitstone.		
64.7	65.2	251688 q	10	 	 64.7 - 65.0 - 30% 0	uanz veining			
65.2	66.2	251689	10	 	 65.8 - 67.7 - intens	e clay alterati	on. 10 - 20	0% quartz.	
66.2	67.7	251690	10	 	 Core is soft, muddy	(67.4 - 67.7)). VVeak gr	een epidote	
67.7	69.7	251691	10	 	 chlorite alteration.	ļ			
69.7	71.6	251692	10	 	 70.0 - 71.6 - grey s	iltstone.	l		
ļ				 	 71.4 - 71.6 - green	epidote-chlor	ite alteratio	n.	
				 	 	<u> </u>			
71.6	72.9	251693 SD/SSk	10	 ļ	 71.6-89.6 - SANDSTO	NE/SILTSTC	NE - inten	sely altered	
72.9	74.7	251694 k	20	 	 sediment. 10% white	quartz stringe	ers (multidi	rectional).	
74.7	76.0	251695	10		Core is soft and crumb	ly. Weak to	moderate li	ight green	
76.0	77.5	251696	10		epidote-chlorite alterati	on. Occasior	nal pyrite st	ringers and	
					fine disseminations(1 -	3%).			
					72.8 - 74.7 - intens	e clay alterati	on.		
77.5	78.0	251697	10						
78.0	78.6	251698	10						
78.6	79.6	251699	10						
79.6	81.0	251700 k	10						
81.0	83.0	251901	10		81.0 - 89.6 - intens	e clay alterati	on.		

83.0	85.0	251902 q	10				84.7 - 8	36.0 - 40%	quartz runni	ng parailei te	o core.	
85.0	87.0	251903	10									
87.0	89.6	251904 k	10									
89.6	91.0	251905 HPchipy	10				89.6-96.8	- HORNBLE	ENDE POR	HYRY - g	ey-brown v	weakly
91.0	93.0	251906	10			1	altered witl	h 10 - 15%	white quartz	stringers.	Weak to	
93.0	94.0	251907	40				moderate I	ight green e	pidote-chlor	ite alteration	. Brown co	olor may
94.0	95.0	251908	80				be due to s	secondary b	piotite.	1	1	1
95.0	95.5	251909	60					1	1	1		
95.5	96.8	251910 gpy	10				95.6 - 9	95.8 - quart	z (50%) - py	rite (20%).	Sheared v	ein
						1 1	at 60°.	T	T 7.17		T	
						1	96.6- c	halcopyrite	-ovrite string			
96.8	98.8	251911 SSk	20				96.8-101.3	- SILTSTC	NE - white	fine grained	sediment	with
98.8	101.3	251912	10	······			5% pyrite s	stringers, 5	% quartz str	ingers. Mo	derate clay	T
						1	alteration a	and fine diss	seminated si	ulfides.	1	
									1	1		
101.3	102.0	251913 QVPY	20				101.3-102	.6 - QUART	Z-PYRITE	VEIN ZONE		
102.0	102.6	251914	20				101.3 -	102.0 - qu	artz (20%), j	ovrite (50%)	, graphite a	at 30 ⁰
						+	Breccia	ted coarse	massive pvi	ite in quartz	matrix.	Τ
						1	102.0 -	102.6 - 409	6 white quar	tz parailel to	core, 10	-
							15% pv	rite stringe	`S .	T	T	
									T		1	
102.6	103.6	251915 SD/SSs	10				102.6-104	4 - SILTST	ONE/SAND	STONE - s	licified fine	to
103.6	104.4	251916	10				medium gr	rained with t	5% quartz s	tringers and	finely diss	eminated
							sulphides.	T	1	1		T
104.4	106.4	251917 SD/SS	10				104.4-127	1 - SANDS	TONE/SILT	STONE - w	eakly altere	ed
106.4	108.4	251918	10			1	sediment v	with intermit	tent epidote	-chlorite alte	ration. Fine	ely
							disseminat	ted magneti	te.		1	
108.4	110.0	251919	10				109.0 -	117.0 - 10	% whitre qua	artz stringer	s at 40 - 60	D°
110.0	111.0	251920	30				110.0 -	110.3 - gre	en chlorite-	epidote alter	ation	T
111.0	113.0	251921 q	20				112.9 -	113.0 - 30	% quartz, m	oderate clay	alteration	
113.0	114.0	251922 k	10				113.2 -	114.0 - inte	ense clay alt	eration	1	1
114.0	115.0	251923	10				114.9 -	2 cm. quar	tz vein at 40) ^ò	1	1
115.0	116.0	251924	10					1	1	1		
116.0	117.0	251925 k	10			1	116.3 -	117.0 - mo	derate clav	alteration. 1	5% white a	uartz
117.0	118.5	251926	10				117.9 -	120.0 - we	ak chlorite-e	pidote alter	ation	
118.5	120.0	251927	10			1	118.6 -	118.8 - 1 c	m, py string	er at 30°	T	
120.0	121.5	251928	20				120.0 -	120.1 - 2 0	m. py string	er at 45°	1	
121.5	123.0	251929	10			1						
123.0	125.0	251930	10			1	123.9 -	124.0 - wh	ite quartz-ca	arbonate vei	n	
125.0	127 1	251931	10			+	127.1 End	of Hole	1	1	T	
						+		T		+	+	
,			· · · ·		1			1	1	1	1	1

3

[Hole		Northing		Easting		Elev.									
		98-11		9780		9815		1195									
	Depth		Azimuth	Dip	*Gold value	es converted	from fire a	ssay in g/T									
	00		60	-60				1									
	292.30		60	-60				1		1							
	202.00			Au	Au	Aa	As	Cu	Pb	Sb	Zn	Geology Cl	haracteristic	5			
From	To	Sample #	Geology	ppb*	a/T	maa	mag	mag	ppm	ppm	ppm						
0.0	25.0	1	OB	PP-	J		1.1	1	<u> </u>		1	OVERBUR	RDEN				
25.0	33.8	1	HR		+						1	25.0-33.8 -	HORNBLE	NDE POR	PHYRY - da	rk grey	L
20.0	00.0											medium gr	ained, mass	ive intrusiv	e with hornb	lende and	l
				<u> </u>								feldspar ph	nenocrysts.	Weakly ma	ignetic.		
					+												
22.8	48.0	1	SD/SS	<u> </u>					1		1	33.8-58.4	SANDSTO	NE/SILTS	TONE - grey	, fine graine	d,
	40.0		00,00		+			1	+	1		massive w	ith 5-10% m	ultidirectio	nal fracture-c	ontrolled	1
	+											quartz stri	ngers.				L
49.0	50.0	251032		10							1	48.0-58	8.4 - increas	ingly silicifi	ed, light grey	alteration	
40.0	51.5	251002		10				-	+	1		50.8-51	.4 - strong l	ight grey s	ilicification		
50.0	57.0	251933		10	1				1	1		48.0-49	.4 - strong	ight grey s	ilicification		
51.5	52.4	231304										52.1-52	2.4 - 50% qu	artz veins	at 60°.		
50.4	E4.0	251025		10								52.6-52	2.8 - light gre	ey hornbler	nde-feldspar	porphyry dy	ke.
52.4	54.0	201900			+	+				+	1	at 60°.	1	1			
L												53.0-54	19 - Hornble	nde-Felds	par Porphyry	dyke . Upp	er
ļ				+	+				•			contact	at 10-20°.	1	1		
						+		-+			+	56.0-58	3.4 - increas	ing silicific	ation and qua	artz stringers	5
									+			towards	s lower cont	act. May b	e altered mat	ic porphyry.	
	+			<u> </u>	ł								1	1		1	
50.4	60.0		enjese	+	+					1	+	58.4-74.0	- SILICIFIED	SANDST	ONE/SILTS	FONE - light	grey
50.4	00.0	·····	00/003		+		+					to white, in	tensely silic	ified and c	ay altered. G	irain size va	ries
				+	+				-			from fine to	o medium. V	/ery weak	bedding. Loc	al dissemina	uted
					-				-			realgar.	T	T			
60.0	61.0	251936		10	1				-	1		59.1-60	0.0 - coarse	sand			
61.0	62.0	251937		10	1				-			61.0-63	3.0 - intense	clay altera	ition. Quartz	stringers ru	<u>Ď</u>
62.0	63.0	251038	+	10	1	+			-	-		parallel	to core.				
62.0	65.0	201000		10	1	f						66.0-6	7.7 - intense	clay altera	tion. Fine be	dding at 30°	•
65.0	66.0	251933		10)	+						locally	altered to so	ft white cla	IY.		
65.0	67.0	251040		10	<u> </u>			-				71.6-72	2.9 - intense	silicificatio	on, clay altera	ition.	
67.0	60.0	251041		10	<u>,</u>		+		+		1	68.0-72	2.9 - tr py as	s fine disse	minations an	d black	
07.0	70.0	201042	+	10	1		+		-		+	hairline	stringers.	1			
70.0	70.0	201040	+	10	1	+	+	+	•		1	74.0-70	6.0 - possibl	e dissemin	ated arsenor	oyrite	
70.0	74.0	201044		10	1									T		T	
/2.0	4.0	201940	+	+ ^{IC}	+	+	+		-		-						
	70 4		enice	+	+		+		1		1	74.0-81.7	- SANDSTO	DNE/SILTS	TONE - grey	, moderatel	у
/4.0	/6.4		30/33		+	+	+		+		+	silicified w	ith weak lia!	nt green ep	idote alteratio	on. Tr 1%	ру
	. <u> </u>	ļ	<u> </u>	+	+	+	+				+	as fine bla	ck stringers	and fine d	issemination	S .	
	77.40	264040		40	,†		+	+	-+			77.4-7	7.6 - 1-3% с	y, 20% wt	nite quartz.	1	1
76.4	//.40	201946		10	<u> </u>	+	+			-+	1	78.0-7	8.6 - pale ve	llow scoro	dite (?) in qu	artz stringen	S
77.40	/8.4	25194/				+	+				-+	paralle	to core.			1	T
78.4	/9.4	201948	·	+10		+	+	-+	+			78.9-8	0.2 - strona	clay and m	noderate gree	en epidote	1
		<u> </u>		<u> </u>				+	+		+	alterati	on, realcar i	n quartz st	ringers.		1
		<u> </u>		+	+		+	+		-			T	T			T
	1	1	1	1	1	1	1	1	1		1	1					

)

٠,

81.7	82.7	251949	SD/SSs	10				81.7-84.4 -	SILICIFIED	SANDSTO	NE/SILTST	ONE - inten	sely
82.7	83.7	251950		10		 		silicified wit	th trace to 1	% pyrite (bla	ick stringers	and	
						 		 finely disse	minated) an	d dissemina	ted realgar.	Brecciation	1
						 		 at upper co	ontact.				
			20/00			 		 84 4-95 0 -	SANDSTO	NE/SILTST	ONE - mode	rately silicifi	ed.
04.4	09.4	054454	50/00	10		 		 grey with 1	10% quartz	stringers tra	ce to 1% p	rite as blac	k
89.4	91.0	251451		10		 		 stringers		Jungoro, ut		1	
91.0	93.0	251452		10		 				ion clav alte	protion runni	na narallel ti	<u></u>
93.0	94.0	251453		10		 		 93.0-93		Jon, clay and		ng paraner a	
94.0	95.0	251454		10		 		 Core		<u> </u>			
						 		 94.2-95	0.0 - shearing	J, Drecciatio	n at 60		
						 						TOUE	
95.0	96.0	251455	SD/SSs	60		 		 95.0-100.3	5 - SILICIFI	ED SANDS	TONE/SILT	STONE -	
96.0	97.0	251456		10				 intensely s	ilicified, wea	kly sheared			
97.0	98.0	251457		10				 96.7-96	6.9 - green e	pidote and ir	ntense clay a	alteration	
98.0	99.6	251458		10				99.6-10	0.1 - intense	e clay altera	tion, 30% qu	iartz veins	
99.6	100.40	251459		10									
100 40	101 4	251460 \$	SD/SS/FP	10		 		 101.4-124.	0 - Mixed zo	ne with alte	rnating band	is of feldspa	ar
101.4	102.8	251461		10				 porphyry w	vithin modera	ately silicified	sandstone	and siltston	ne.
107.4	104.3	251462		10		 		 Porphyry	shows trace	to 1% pyrite	stringers.		
102.0	104.0	251463		20		 		 100.35-	-102.8 - feld	spar porphy	ry		
104.5	100.0	251464		10		 		 104.3-1	06.0 - felds	par porphyn	,		
100.0	100.0	251404		10		 		 108.0-1	09.6 - felds	par porphyn	,		
108.0	109.0	251405		10		 		 112.0-1	12.4 - felds	par porphyry	,		
109.6	111.0	251400		10		 		 113.5-1	15.6 - felds	par porphyry	,		
111.0	112.4	251407		10		 		 116.0-1	16.7 - felds	par porphyn	,		
112.4	113.5	251468		10		 		 119.7-1	20 3 - felds	par porphyn			
113.5	115.0	251469		10		 		 121.0.1	20.5 feids	par porphyn			
115.0	117.0	2514/0		10		 		 121.0-1	21.0 - 16103				
117.0	118.7	2514/1		20		 		 	+				
118.7	119.7	251472		10		 		 					
119.7	120.7	251473		10		 		 					
120.7	121.7	251474		10		 		 	+				
121.7	123.0	251475		10		 		 		L			
123.0	124.0	251476		10				 					
								 	1				L
124.0	125.0	251477 F	Pk	10				 124.0-134	.6 - FELDSF	PAR PORPH	IYRY - whit	e, crowded	r
								porphyry w	vith 1-3% bla	ack pyritic st	ringers. Loc	al finely	<u> </u>
								 disseminat	ted chalcopy	rite and bor	nite associa	ted with pyr	ite.
125.0	127.0	251478		10		 		Phenocrys	sts (2-4mm)	compose m	ore than 70	% of rock	
						 		126.0-1	134.6 moder	ate clay alte	ration		
127.0	128.0	251479		10		 		 					{
127.0	120.0	251480		10		 		 131.0-1	131.5 - black	carbonace	ous shear.		
120.0	100.0	251400		10		 		 131 7-1	132.2 - black	carbonace	ous shear a	t 45°.	
131.0	132.0	251461		10		 		 					+
132.0	133.0	251482		10		 		 	+	+			
133.0	134.0	251483		20		 		 	+		+		
						 		 134 6 162			ACEOUSS	II TSTONE	- fine
134.0	135.0	251484	SSsarg	10		 		 134.0-103	hite interes		with local we	ak day	
135.0	136.0	251485		20		 		 grained, w	Least finch	diocominate	d cultidos /r	w on 2)	l
136.0	137.0	251486		10	1		l.	 alteration.	Local finely	uisseminate	a sundes (p	<u>, , , , , , , , , , , , , , , , , , , </u>	L

						ŝ	98ALL								
137.0	138.0	251487		20										<u> </u>	
138.0	139.0	251488		10										<u> </u>	
139.0	140.0	251489		10										++	
140.0	141.0	251490		10					_		ļ	<u> </u>		<u>∔</u> †	
141 0	142.0	251491		10								4		++	
142.0	143.0	251492		10	-										
143.0	144.0	251493		10						143.0-1	44.0 - qua	tz flooding.	, minor sheal	ring	
144.0	145.0	251494		10									<u> </u>	+	
145.0	146.0	251495		10						145.1-1	45.5 - grey	r, highly sili	cified.	1	
140.0	147.0	251496		10	 					146.8-1	47.3 - 2 cr	n, white qu	artz vein at 1	0°.	
140.0	147.0	251407		10	 					147.8-1	49.0 - lost	core.			
147.0	145.0	251408		10	 					150.6-1	51.5 - lost	core			
149.0	152.0	251450		10	 										
152.0	153.0	251499		10	 										
103.0	104.0	251000		10	 				1						
154.0	100.0	201401		10	 		***								
155.0	100.0	201402		10	 					155.8-1	57.2 - bree	ciation, cla	y alteration,	20% white	
156.0	157.0	251403		20	 					quartz	Less inter	nse alteratio	on		
157.0	158.0	201404		10	 					157.2-1	158.5 - blac	k, carbona	ceous, with	10% quartz	
158.0	159.0	251405		10	 					stringer	rs. Upper c	ontact at 3	0°. Lower at	60°. Less	
159.0	160.0	251406			 					intense	alteration.				
				10	 					160.0-1	163.7 - bre	cciation, 10	% white qua	rtz. Core is	
160.0	161.0	251407		10	 					broken	, rubbly. R	ealgar as fr	acture coatir	ngs and finely	
161.0	162.0	251408		10	 					dissem	inated.				
162.0	163.0	251409		10	 						1				
163.0	163.9	251410		10	 						1				
		054444	00	10	 					163.7-170	9 - SILTS	TONE - bre	ecciated, wea	akly silicified v	with
163.9	165.0	251411	555X	10	 					black carb	onaceous	fragments i	n a fine grey	matrix. Weal	<u>k</u>
165.0	166.0	251412		10	 					shearing p	arallel to c	ore. 10% w	hite quartz s	tringers. Fine	ly
166.0	167.0	251413		10	 					dissemina	ted sulfide:	s (tr1%)			
167.0	168.0	251414		10	 						1				<u> </u>
168.0	169.0	251415		10	 						1				
169.0	1/0.0	251416		10	 										
170.0	171.0	251417		10	 										
					 					170.9-177	.0 - SAND	STONE - n	nassive, grey	, medium gra	ained
171.0	172.0	251418	SD	10	 					weakly sil	icified. 10%	guartz str	ingers. Wea	kly altered, tra	ace ,
					 					ovrite	1				Τ
					 					172.02	-172.5 - w	eak shearir	ng at 30°, bre	ecciation.	Т
172.00	173.0	251419		10	 					173.6-	175.0 - Fe	dspar porp	hyry		T
173.0	174.0	251420	ļ	10	 								· / · · · ·		1
174.0	175.0	251421	L	10	 						-+				1
175.0	176.0	251422	L	10	 					-+					1
176.0	177.0	251423		10	 						-+				1
			L	L	 					177 0-170	SILTS	TONE - h	ack, fine grai	ned. carbona	ceous
177.0	178.0	251424	SS	10	 					with 10%	auartz etri	ngers Wes	kly altered	trace ovrite.	1
178.00	179.0	251425		10	 							1.9013. 1100			-+
179.00	179.8	251426		10	 										+
					 					170 9 10	26 SANT	STONE -	nev medium	n grained ma	issive.
179.8	181.0	251427	SD	10	 					1/9.0-18/	2.0 - OMINL	r and laws	r contacte /h	edding at 70°	2
					 					Fine grain	ieu at uppe				<u>/</u>
t								<u></u>			!			<u>l</u>	<u></u>

'n

Ì

Ξŗ

Page 36

3

1

. .) 1

								 1					
182.6	184.0	251428 SSs	10				L	 182.6-185.	9 - SILTST	ONE - grey,	weakly silic	citied, fine	L
184.00	185.0	251429	10					grained wit	h bedding la	aminations a	t 70°. 10%	multidirectio	nal
185.00	185.9	251430	10					quartz strir	ngers				
185.9	192.2	1 SD						185.9-193.	2 - SANDS	TONE - grey	, medium (grained, mas	sive
192.2	193.2	251431	10			1		 with 10% c	uartz string	ers.			
				<u> </u>	-			 	1	1			
193.2	194.0	251432 55	20				<u> </u>	 193 2-197	4 - SILTST	ONE - black	carbonac	eous weakly	L
100.2								 silicified	I	1		1	
194.0	104 7	251/33	80			+	· · · · · · · · · · · · · · · · · · ·	 194 0-1	94 7 - brec	ciated shea	red with 20	% quartz	
194.0	105.7	251434	10			+		 fragme	ote 5% ovri	to		1 4444	+
194.7	195.7	201404	10			+		 inagine		1		+	
195.7	196.7	201400	10			+		 					
196.7	197.6	201430	10			+	├ ──── │ ─ ───	 				+	+
						<u> </u>	<u> </u>	 407 4 000			COLA 701	IT condute	L
197.6	198.6	251437 QVx	ру 290			+		 197.4-202.	3- QUART	Z VEIN/BRE		E - Sanosto	
								 with 30-40	% quartz ve	ins (up to 5	cm.) and D	reccia. 1-15	% 0 T
								 pyrite in qu	iartz veins,	trace arsend	pyrite.	1,	
								 197.6-1	98.4 - sanc	istone, grey,	medium g	rained	
								 198.4-1	98.5 - coar	se feldspar j	porphyry.		
								198.5-1	98.6 - sano	Istone			
198.6	199.3	251438	330					Black c	arbonaceou	is injections	at ,199.1-1	99.3,	
								199.9-1	99.95				1
199.3	200.3	251439	60					Quartz	veins at 199	9.3-199.45(2	20% pyrite)	, 200.1-200.2	2
200.3	200.8	251440	200					200.5-2	200.9,				
200.8	201.4	251441	40										
201.4	202.5	251442	70					201.4-2	01.8 - quar	tz vein breco	cia with tr c	halcopyrite.	
								 201.9-2	202.5 60% \$	sheared quar	tz vein.	1	T
								 		1			T
202.5	203 5	251443 SS	20			1		 202.5-205	2 - SILTST	ONE - fine c	rained, dar	k grey, weak	kly
203.5	204.5	251444	10					 silicified.		1		1	T
204.5	205.2	251445	50					 +		+			+
204.0	200.2	201440				4		 +		+			
205.2		251446 EDc	20			+		 205 2-211	6 - FELDSI	PAR PORPL	IYRY - coa	rse crowde	d
205.2	200.2	201440 FFS	20					 weakly silie	ified with w	hite feldsna	nhenocrys	sts (75%) in	2
240.0		251117	60			+	<u> </u>	 arey matrix		al white qua	tz veine (u	$\frac{1}{1}$ $\frac{1}$	<u> </u>
210.6	211.0	201447				+	<u>↓</u>	 grey madu					+
			000					 011 0 014				look fino	
211.6	212.6	251448 55	800					 211.0-214	0-51L151				
						<u> </u>	<u> </u>	 grained Wi	11 1-5% pyr) -) = = = ! :		
212.6	214.0	251449	90					 212.9-2	213.6 - quar	tz vein (2 ch	n.) parallel	to core.	
								 ļ					
								 1	<u> </u>	1	L	<u> </u>	.L
214.0	215.0	1 SD				L		 214.0-217	5 - SANDS	TONE - gre	y, fine-grair	ned with bed	ding
215.0	216.0	251450	20					at 70-80°.	Fine beddin	g lamination	s from 216	.4-217.5.	1
216.0	216.5	251351	10		1			 216.25	-216.35 - w	hite, vuggy o	uartz at 40)°	1
216.5	217.5	251352	10		+			 1		1		1	[
217.5	218.5	251353	90		1			 1	1				†
218.5	219.5	251354	20			+		 +	1	+		+	t ·
219.5	220.8	251355	30		-+	+		 +	+	†	+	+	
220.8	222.1	251356	180			1		 1	<u> </u>	1			+
220,0					-+	+		 +	+	1	+	+	
		1											

						98ALL						
000.4	000.4	054057	ED	10			222 1-226	3 - FELDSF	PAR PORP	HYRY - coar	se grained	
222.1	223.1	201307	<u> </u>		 		 with 60% v	vhite feldspa	ar phenocry	sts in a grey	matrix.	
225.3	226.3	251358		10	 		 					
225.5	220.3	201000			 		 					
226.3	227.3	251359	ss	10			226.3-238.	1 - SILTST	ONE - grey	to black, fine	e grained,	
220.3	228.3	251360		10			massive to	weakly lam	inated. Bed	ding laminae	at 80°. 1-39	%
221.3	220.0	251361		10	 		 finely disse	minated py	rite.			
220.3	220.0	251362		10	 		 229.3-2	29.5 - carb	onaceous, 1	5% quartz s	tringers.	
229.3	230.0	251363		10	 		<u> </u>	1				
231.3	232.3	251364		10			231.2-2	232.8 - 2-5%	6 dissemina	ted pyrite. Lo	ocal concen-	
201.0							trations	up to 10%				
232.3	233.4	251365		20			232.8-2	233.4 - shea	red , carbo	naceous, sar	ndy with 10%	6
233.4	234.4	251366		10			white q	uartz, 5% d	isseminated	l pyrite.		
234.4	235.1	251367		10								
235.1	237.1	251368		10				L				
237.1	238.1	251369		10				<u> </u>	<u> </u>			
							 	1	<u> </u>			·
238.1	244.0	1	SD				 238.1-262.	3 - SANDS	TONE/SILT	STONE - fir	e to medium	1
244.0	245.0	251370		10			grained, m	assive with	some local	silty laminati	ons	
245.0	246.3	251371		10			 245.0-2	246.3 - shea	ird at 80°, g	raphitic, 10%	o quartz.	
246.3	247.3	251372		10			 					
247.3	249.3	251373		10			 					¦
249.3	249.8	251374		10			 				i	
249.8	250.8	251375		10	 		 					
261.3	262.3	251376		20	 		 					
					 		 202.2.202	8 CARRO	NACEOUS		look graphit	L
262.3	263.1	251377	GPH	20	 		 202.3-203	.0 - CARDU		are Shoori	na at 80°	
263.1	263.8	251378		10	 		 snear with	40% white	quartz sum	gers. Shearn	ig at ou .	
263.8	264.8	251379		10	 		 					
					 		 762 9 770	6 SANDS		dium to fine	arained	
263.8	273.3		SD		 		 203.0-213	weakly her		casional wh	ite quartz	F
					 		 etringers	Quartz strin	ners (1-3 c	m) at 265 2	265 4 265	8
			·····		 		 266.3.266	6 266 9 2	67 3 268 9	5 269 4 270	12	Γ΄
273.3	274.3	251380		10	 		 200.3, 200	274 6 - quar	tz vein at 4	0°		<u> </u>
274.3	275.3	251381	L	10	 		 274.54	274.0 - quai 275.1 - whit	e quartz vei	n breccia		
275.3	276.3	251382		20	 		 277.0-2	277.1 - blac	k carbonac	eous		
			<u>↓</u>		 		 275.8-2	276.1 - blac	k. carbonac	eous		
	070.0	054000		10	 		 		1	T		
2/8.6	2/9.6	251383	<u> </u>		 		 		1	-	1	
070 0		251204		10	 		 279.6-292	3 - SANDS	TONE/SIL	TSTONE - al	ternating fin	e
2/9.6	280.9	201304	33/30	10	 		 graphitic s	ilt and med	ium grained	grey sand.		Γ
280.9	281.9	201300			 		 279.6-2	283.8 - blac	k, carbonad	eous, with 1	0% quartz v	eins
					 		 weakly	sheared wi	th 1-3% pvi	rite.	1	
	202.4	251200	┟	10	 		 281.9-2	282.4 - 5%	disseminate	ed pyrite		
281.9	202.4	201000	<u> </u>	10	 		 					
282.4	203.0	201007	<u> </u>	10	 							
283.5	204.0	201000	+	20	 		 	-	1		1	
200.2	201.1	251309	<u> </u>	10	 		 287.7-2	288.3 - she	ared, black,	carbonaceo	us with 10%	<u>,</u>
201.1	200.3	251300	<u> </u>	10	 		quartz.	Shearing a	t 80°.			<u> </u>
400.3	203.Z	201001	I		 		 					

à

1

7

Page 38

)

1

.

)

200.2	251392		10			-		289.2-291.8 - black, carbonaceous, weakly sheared at 80"
230.2	201002				<u> </u>			289.3-289.4 - quartz vein
								290.8-290.85 - quartz vein
	251202		10					290.5-290.55 - quartz vein
202.2	251393		10					291.2-291.4 - quartz vein
292.3	251394							292.3 - End of Hole
	290.2 291.2 292.3	290.2 251392 291.2 251393 292.3 251394	290.2 251392 291.2 251393 292.3 251394	290.2 251392 10 291.2 251393 10 292.3 251394 10	290.2 251392 10 291.2 251393 10 292.3 251394 10	290.2 251392 10 291.2 251393 10 292.3 251394 10	290.2 251392 10 291.2 251393 10 292.3 251394 10	290.2 251392 10 291.2 251393 10 292.3 251394 10

Appendix II - Geochemical / Assay Results
 Detailed Description of Geochemical Procedures

.

.

Vancouver:

TELS SULL

Saskatoon:

8282 Sherbrooke St,Vancouver, B.C. V5X 4R6 Tel: 604 327-3436 Fax: 604 327-3423

Swastika:

#2 – 302 48th Street East, Saskatoon, Sask, S7K 6A4 Tel: 306 931-1033 Fax: 306 242-4717 1 Cameron Avenue, Swastika, Ontario, P0K 1T0 Tel: 705 642-3244 Fax: 705 642-3300

ASSAY PROCEDURE FOR AU FIRE ASSAY

Samples are fire assayed using one assay ton sample weight. The samples are fluxed, a silver inquart added and mixed. The assays are fused in batches of 24 assays along with a natural standard and a blank. This batch of 26 assays is carried through the whole procedure as a set. After cupellation the process metal beads are transferred into new glassware, dissolved, diluted to volume and mixed.

These aqua regia solutions are analyzed on an atomic absorption spectrometer using a suitable standard set. The natural standard fused along with this set must be within 2 standard deviations of its known or the whole set is re-assayed. Likewise the blank must be less than 0.015 g/tonne.

The top 10% of all assay per page are recheck and reported in duplicate along with the standard and blank.

551-20-1999 10-20-20

S S A Y E R S

PHICLS LISE.

Vancouver:

Saskatoon:

1 **81:** **2 - 202

Swastika:

Tel: 604 327-3436 Fax: 604 327-3423 #2 – 302 48th Street East, Saskatoon, Sask, S7K 6A4 Tel: 306 931-1033 Fax: 306 242-4717 1 Cameron Avenue, Swastika, Ontario, P0K 1T0 Tel: 705 642-3244 Fax: 705 642-3300

8282 Sherbrooke St, Vancouver, B.C. V5X 4R6

PROCEDURE FOR AU GEOCHEM FIRE ASSAY

Samples are dried @ 65 C and when dry the Rock & Core samples are crushed on a jaw crusher. The 1/4 inch output of the jaw crusher is put through a secondary roll crusher to reduce it to 1/8 inch. The whole sample is then riffled on a Jones Riffle down to a statistically representative 300 gram sub-sample. This sub-sample is then pulverized on a ring pulverizer to 95% - 150 mesh, rolled and bagged for analysis. The remaining reject from the Jones Riffle is bagged and stored.

Soil and stream sediment samples are screened to - 80 mesh for analysis.

The samples are fluxed, a silver inquart added and mixed. The assays are fused in batches of 24 assays along with a natural standard and a blank. This batch of 26 assays is carried through the whole procedure as a set. After cupellation the precious metal beads are transferred into new glassware, dissolved with aqua regia solution, diluted to volume and mixed.

These resulting solutions are analyzed on an atomic absorption spectrometer using a suitable standard set. The natural standard fused along with this set must be within 2 standard deviations of its known or the whole set is re-assayed.

10% of all assay per page are rechecked, then reported in PPB. The detection limit is 1 PPB.

/ancouver:	8282 Sherbrooke St, Vancouver, B.C. V5X 4R6
	Tel: 604 327-3436 Fax: 604 327-3423
Saskaloon:	#2 - 302 48 th Street East, Saskatoon, Sask, S7K 6A4 Tel: 306 931-1033 Fax: 306 242-4717
Swastika:	1 Cameron Avenue, Swastika, Ontario, POK 1T0 Tel: 705 642-3244 Fax: 705 642-3300

ANALYTICAL PROCEDURE REPORT FOR ASSESSMENT WORK <u>PROCEDURE FOR TRACE ELEMENT ICP</u> Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sn, Sr, Th, Ti, U, W, Zn.

١

0.50 grams for the sample pulp is digested for 2 hours with an 1:3:4 HNO₃:HCl:H₂0 mixture. After cooling, the sample is diluted to standard volume.

The solutions are analyzed by computer operated Perkin Elmer Optima 3000, Inductively Coupled Plasma Spectrophotometers.

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

Quality Assaying for over 25 Years

Assay Certificate

Company:	DURFELD GEOLO
Project:	WATSON BAR
Attn:	RUDI DURFELD

GICAL

Sample Au-fire Name g/tonne 293851 0.01 293852 0.01 293853 0.02 293854 0.01 293855 0.01 293856 0.01 293857 0.01 293858 0.02 293859 0.01 293860 0.02 293861 0.24 293862 0.19 293863 0.01 293864 0.03 293865 0.01 293866 0.01 293867 0.02 293868 0.01 293869 0.01 293870 0.01 293871 0.01 293872 0.01 293873 0.02 293874 0.01

We hereby certify the following Assay of 24 CORE samples submitted Aug-11-98 by C.RUSSELL.

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C., CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C., CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Aug-19-98

8V-0528-RA1

Certified by

Æt l c

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

Quality Assaying for over 25 Years

Assay Certificate

Company:	DURFELD GEOLOGICAL
Project:	WATSON BAR
Attn:	RUDI DURFELD

We *hereby certify* the following Assay of 24 CORE samples submitted Aug-11-98 by C.RUSSELL.

Sample Name	Au-fire g/tonne	
293875	1.08	
293876	0.02	
293877	0.01	
293878	0.01	
293879	0.02	
293880	0.03	
293881	0.01	
293882	0.02	
293883	0.01	
293884	0.02	
293885	0.01	
293886	0.01	
293887	0.01	
293888	0.01	
293889	0.01	
293890	0.01	
293891	0.01	
293892	0.01	
293893	0.14	
293894	0.02	
293895	0.01	
293896	0.01	
293897	0.01	
293898	0.01	

VANCOUVER OFFICE:

8282 SHERBROOKE STREET VANCOUVER, B.C., CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C., CANADA VOJ 2N0 TELEPHONE (604) 847-3004 FAX (604) 847-3005

8V-0528-RA2

Aug-19-98

Certified by

£1)

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

Quality Assaying for over 25 Years

Assay Certificate

Company:	DURFELD GEOLOGICAL
Project:	WATSON BAR
Attn:	RUDI DURFELD

We *hereby certify* the following Assay of 24 CORE samples submitted Aug-11-98 by C.RUSSELL.

Sample Name	Au-fire g/tonne	
293899	0.02	
293900	0.01	
294151	0.01	
294152	0.01	
294154	0.01	
294155	0.02	
294156	0.01	
294157	0.02	
294158	0.01	
294159	0.01	
294160	0.01	
294161	0.01	
294162	0.01	
294163	0.01	
294164	0.01	
294165	0.01	
294166	0.01	
294167	0.01	
294168	0.02	
294169	0.01	
294170	0.02	
294171	0.01	
294172	0.01	
294173	0.01	

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C., CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C., CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

8V-0528-RA3

Aug-19-98

Certified by

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

Quality Assaying for over 25 Years

Assay Certificate

Company:	DURFELD GEOLOGICAL
Project:	WATSON BAR
Attn:	RUDI DURFELD

We *hereby certify* the following Assay of 24 CORE samples submitted Aug-11-98 by C.RUSSELL.

Sample Name	Au-fire g/tonne	
294174	0.01	
294175	0.18	
294176	0.01	
294177	0.01	
294178	0.01	
294179	0.05	
294180	0.57	
294181	1.80	
294182	0.02	
294183	0.01	
294184	0.03	
294185	0.01	
294186	0.02	
294187	0.04	
294188	0.15	
294189	0.12	
294190	0.01	
294191	0.01	
294192	0.01	
294193	0.01	
294194	0.02	
294195	0.01	
294196	0.01	
294197	0.01	

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C., CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C., CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

8V-0528-RA4

Aug-19-98

Certified by

thu

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

Quality Assaying for over 25 Years

Assay Certificate

Company:	DURFELD GEOLOGICAL
Project:	WATSON BAR
Attn:	RUDI DURFELD

We *hereby certify* the following Assay of 24 CORE samples submitted Aug-11-98 by C.RUSSELL.

Sample Name	Au-fire g/tonne	
294198	0.01	
294199	0.01	
294200	0.08	
294251	0.03	
294252	0.01	
294253	0.01	
294254	0.01	
294255	0.01	
294256	0.01	
294257	0.01	
294258	0.01	
294259	0.02	
294260	0.01	
294261	0.01	
294262	0.01	
294263	0.01	
294264	0.01	
294265	0.01	
294266	0.01	
294267	0.01	
294268	0.02	
294269	0.08	
294270	0.01	
294271	0.01	

VANCOUVER OFFICE:

8282 SHERBROOKE STREET VANCOUVER, B.C., CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C., CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Certified by

10.

Min-En Laboratories

8V-0528-RA5

Aug-19-98

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

Quality Assaying for over 25 Years

Assay Certificate

Company:	DURFELD GEOLOGICAL
Project:	WATSON BAR
Attn:	RUDI DURFELD

We *hereby certify* the following Assay of 5 CORE samples submitted Aug-11-98 by C.RUSSELL.

Sample Name	Au-fire g/tonne	
294272	0.01	
294273	0.01	
294274	0.01	
294275	0.02	
294276	0.01	

D.

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C., CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C., CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

8V-0528-RA6

Aug-19-98

Certified by

DURFELD GEOLOGICAL

Attention: RUDI DURFELD

Project: WATSON BAR

Sample: CORE

Mineral Environ Ints Laboratories

8282 Sherbrooke St., Vancouver, B.C., V5X 4E8

Tel (604) 327-3436 Fax (604) 327-3423

Report No:8V0528Date:Aug-19-98

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Sample Number	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	TI %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm	Hg ppb
293852	<0.2	2.39	80	40	0.5	<5	1.91	<1	21	22	119	5.56	0.09	1.28	470	2	0.03	23	840	<2	5	4	<10	42	<0.01	62	<10	12	89	4	240
293854	<0.2	1.93	30	30	<0.5	<5	2.08	<1	17	33	53	3.80	0.08	1.30	460	<2	0.04	28	630	<2	5	5	<10	41	<0.01	52	<10	8	94	3	195
293856	<0.2	2.35	20	30	0.5	<5	3.53	<1	19	37	79	6.65	0.08	1.43	600	<2	0.03	29	1480	6	5	5	<10	64	0.01	68	<10	11	84	5	210
293858	<0.2	2.10	35	40	<0.5	5	3.91	<1	17	40	79	5.55	0.08	1.32	675	<2	0.03	28	930	6	5	4	<10	66	<0.01	66	<10	9	83	5	225
293860	<0.2	1.76	55	30	<0.5	<5	3.09	<1	13	34	33	3.77	0.10	1.16	700	<2	0.03	19	680	<2	5	2	<10	49	<0.01	41	<10	5	76	3	200
293862	0.2	1.59	555	40	0.5	5	3.06	<1	19	27	112	6.25	0.12	0.86	475	<2	0.02	27	660	30	15	2	<10	107	<0.01	39	<10	6	125	5	290
293864	<0.2	2.29	245	50	0.5	<5	2.10	<1	14	34	40	4.08	0.09	1.32	445	<2	0.03	20	730	<2	5	4	<10	114	<0.01	50	<10	6	89	3	175
293866	<0.2	2.34	50	50	0.5	<5	3.84	<1	- 14	44	31	3.85	0.07	1.65	700	<2	0.03	24	650	<2	5	5	<10	129	<0.01	63	<10	6	73	3	135
293868	<0.2	2.26	25	40	0.5	<5	3.84	<1	14	41	36	3.65	0.06	1.71	725	<2	0.03	23	570	<2	· 5	5	<10	121	<0.01	60	<10	7 -	77	2	110
293870	<0.2	2.40	25	50	0.5	<5	3,51	<1	13	39	32	3.85	0.06	1.69	645	<2	0.03	20	690	<2	<5	5	<10	175	<0.01	70	<10	6	, 72	3	80
293872	<0.2	2.15	45	50	0.5	<5	4.14	<1	14	40	33	3.36	0.08	1.42	640	<2	0.03	25	640	<2	<5	5	<10	163	<0.01	50	<10	6	73	3	105
293874	<0.2	2.39	105	80	0.5	<5	4.36	<1	14	37	45	3.98	0.10	1.56	750	<2	0.03	25	670	<2	5	4	<10	146	<0.01	50	<10	8	85	3	75
293876	<0.2	2.24	55	90	0.5	<5	1.99	<1	16	46	69	4.31	0.09	1.45	500	<2	0,03	28	1000	<2	5	4	<10	72	0.01	62	<10	7	97	4	105
293878	<0.2	1.97	50	130	<0.5	<5	3.75	<1	16	40	48	4.01	0.07	1.24	655	<2	0.04	22	760	<2	5	4.	<10	113	<0.01	59	<10	7 1	78	3	175
293880	<0.2	2.18	105	70	0.5	<5	3.36	<1	18	34	62	5.09	0.10	1.42	570	<2	0.03	26	920	4	5	4	<10	115	<0.01	59	<10	9	90	4	275
293882	<0.2	2.53	5	80	<0.5	<5	1.57	<1	14	61	26	3.57	0.03	1.66	615	<2	0.37	20	510	<2	<5	4	<10	57	0.04	94	<10	5	65	3	225
293884	12.0	2.71	60	130	<0.5	<5	1.45	<1	17	71	49	4.15	0.05	2.22	745	<2	0.06	28	610	<2	5	5	<10	61	0.07	91	<10	4	86	4	90
293886	<0.2	2.27	35	60	0.5	<5	3.58	<1	17	43	55	5.69	0.13	1.58	660	<2	0.03	29	1210	<2	5	5	<10	129	0.01	68	<10	10	82	4	150
293888	<0.2	2.04	275	70	<0.5	<5	3.83	<1	17	64	48	4.51	0.05	2.15	760	<2	0.05	16	1000	<2	5	8	<10	141	0.03	144	<10	6	62	7	150
293890	<0.2	2.83	20	60	0.5	<5	3.62	<1	17	56	40	5.64	0,08	2.31	870	<2	0.04	29	1480	<2	20	11	<10	245	<0.01	107	<10	11	78	4	415
293892	<0.2	3.31	95	80	<0.5	<5	3.06	<1	20	67	46	6.90	0.08	1.89	775	<2	0.03	33	1070	<2	10	8	<10	165	<0.01	132	<10	9	101	5	840
293894	<0.2	1.16	.55	120	0.5	<5	4.79	<1	11	28	27	3.30	0.06	1.15	665	<2	0.04	17	740	2	5	7	<10	292	<0.01	53	<10	7	59	2	315
293896	<0.2	2.01	35	140	0.5	<5	3.41	<1	17	51	51	3.42	0.05	1.39	605	<2	0.04	26	600	<2	5	5	<10	150	0.01	74	<10	7	86	3	115
293898	<0.2	2.42	25	50	0.5	<5	4.52	<1	17	43	51	4.69	0.08	1.66	970	<2	0.03	25	1450	<2	10	7	<10	204	<0.01	72	<10	10	89	4	310
293900	<0.2	2.41	15	60	<0.5	<5	2.81	<1	15	55	42	3.86	0.04	1.95	705	<2	0.04	26	720	<2	<5	7	<10	164	0,03	85	<10	4	79	3	170
294152	<0.2	2.61	20	60	<0.5	<5	2.37	<1	20	72	53	3.90	0.04	2.27	770	<2	0.04	33	700	<2	<5	7	<10	141	0.06	95	<10	5	83	4	140
294155	<0.2	0.91	10	90	<0.5	<5	2.41	<1	4	33	18	1.75	0.19	0.52	420	<2	0.04	4	480	<2	5	2	<10	85	< 0.01	14	<10	4	50	3	70
294157	<0.2	2.14	20	60	0.5	<5	4.45	<1	15	50	39	4.90	0.03	1.75	915	<2	0,04	28	580	<2	5	8	<10	140	<0.01	117	<10	11	74	3	105
294159	<0.2	2.15	50	80	0.5	<5	3.31	<1	20	58	70	6.34	0.06	1.58	720	<2	0.04	36	1060	<2	5	8	<10	166	<0.01	141	<10	11	92	4	110
294161	<0.2	2.34	70	220	0.5	<5	2.80	<1	13	47	58	4.62	0.09	1.48	810	<2	0.06	25	1100	<2	<5	5	<10	106	<0.01	89	<10	7	88	4	75

A .5 gm sample is digested with 10 ml 3:1 HCl/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

Signed:	AU

DURFELD GEOLOGICAL

Attention: RUDI DURFELD

Project: WATSON BAR

Sample: CORE

Mineral Environ Ints Laboratories

8282 Sherbrooke St., Vancouver, B.C., V5X 4E8

Tel (604) 327-3436 Fax (604) 327-3423

Report No : 8V0528 Date : Aug-19-98

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Sample Number	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm	Hg ppb
294163	<0.2	2.24	45	50	0.5	<5	1.48	<1	17	43	78	4.68	0.09	1.49	610	<2	0.04	30	1000	<2	<5	6	<10	66	<0.01	71	<10	10	99	3	80
294165	<0.2	2.66	20	40	<0.5	<5	1.49	<1	10	42	21	3.20	0.03	1.61	555	<2	0.65	16	580	<2	5	4	<10	69	0.01	68	<10	6	59	2	55
294167	<0.2	2.86	55	40	0.5	<5	0.87	<1	17	49	63	5.64	0.06	1.93	610	<2	0.05	26	890	<2	5	5	<10	65	0.01	95	<10	10	101	4	80
294169	<0.2	2.11	40	90	<0.5	< 5	1.09	<1	14	37	41	4.68	0.08	1.33	605	<2	0.04	19	920	<2	5	4	<10	36	0.01	57	<10	9	87	4	165
294171	<0.2	2.39	35	40	<0.5	<5	1.64	<1	10	40	57	4.68	0.08	1.34	490	<2	0.08	21	1010	<2	5	4	<10	41	<0.01	70	<10	8	87	3	120
294173	<0.2	2.27	35	30	<0.5	<5	2.43	<1	13	64	33	4.01	0.06	1.54	585	<2	0.04	22	650	<2	5	4	<10	48	<0.01	66	<10	5	- 88	3	125
294175	0.2	1.65	340	60	0.5	5	2.79	<1	19	31	154	6.12	0.14	0.87	670	2	0.03	27	860	24	10	3	<10	38	<0.01	46	<10	7	214	5	145
294177	<0.2	1.96	45	30	<0.5	<5	4.62	<1	12	64	36	3.38	0.07	1.51	830	<2	0.03	23	740	<2	<5	3	<10	84	0.02	54	<10	7	88	2	115
294179	<0.2	1.96	315	80	<0.5	<5	2.51	<1	14	64	40	3.59	0.08	1.45	595	<2	0.03	23	610	<2	5	3	<10	51	<0.01	49	<10	6	93	3	140
294181	2.2	1.10	>10000	20	<0.5	10	1.52	<1	12	85	55	3.57	0.11	0.72	370	<2	0.02	23	630	342	10	2	<10	40	<0.01	30	<10	3	784	3	125
294183	<0.2	2.11	240	430	<0.5	<5	2.54	<1	13	85	25	3.85	0.08	1.46	560	<2	0.03	22	560	<2	5	3	<10	80	0.01	61	<10	5	70	3	80
294185	<0.2	2.02	80	40	<0.5	<5	2.65	<1	11	67	26	3.62	0.10	1.37	550	<2	0.03	20	650	<2	5	3	<10	80	0.01	57	<10	5	73	3	90
294187	<0.2	1.70	185	40	<0.5	<5	2.94	<1	9	60	18	3.13	0.09	1.16	555	<2	0.03	16	600	<2	5	3	<10	78	<0.01	43	<10	5	69	3	100
294189	<0.2	1.81	45	30	<0.5	<5	3.06	<1	10	68	18	3.21	0.10	1.28	580	<2	0.03	17	570	<2	5	3	<10	101	<0.01	45	<10	5	59	3	130
294191	<0.2	1.97	35	80	<0.5	5	5.75	<1	10	69	22	3.61	0.09	1.30	900	<2	0.03	18	650	<2	<5	3	<10	146	<0.01	59	<10	7	58	3	80
294193	<0.2	1.88	35	170	<0.5	<5	3.53	<1	11	71	20	3.36	0.10	1.25	685	<2	0.03	18	670	<2	5	3	<10	89	<0.01	50	<10	6	64	3	90
294195	<0.2	1.92	115	· 80	0.5	<5	3.05	<1	17	49	56	3.85	0.11	1.24	585	<2	0.03	25	590	<2	5	3	<10	96	<0.01	51	<10	5	93	3	230
294197	<0.2	2.66	60	40	0.5	<5	3.38	<1	22	39	70	5.48	0.09	1.48	755	<2	0.03	31	1110	<2	5	7	<10	94	<0.01	95	<10	6	111	4	160
294199	<0.2	2.07	35	130	0.5	<5	2.44	<1	13	51	31	3.77	0.07	1.41	605	<2	0.03	20	1530	<2	<5	4	<10	79	<0.01	59	<10	7	70	3	90
294251	<0.2	2.22	35	150	0.5	<5	4.02	<1	16	40	72	3.70	0.10	1.58	910	<2	0.03	27	690	<2	<5	4	<10	136	<0.01	55	<10	8	77	3	65
294253	<0.2	2.57	25	70	0.5	<5	2.25	<1	16	46	69	4.40	0.09	1.85	635	<2	0.03	28	810	<2	<5	5	<10	101	<0.01	64	<10	6	96	3	80
294255	<0.2	3.40	20	50	<0.5	<5	3.19	<1	24	81	62	5.37	0.02	3.36	975	<2	0.04	48	950	<2	5	12	<10	109	<0.01	165	<10	9	94	3	235
294257	<0.2	0.31	65	60	0.5	<5	5.57	<1	18	66	46	5.32	0.04	0.80	1120	<2	0.03	35	790	6	<5	8	<10	354	<0.01	121	<10	9	97	4	220
294259	<0.2	0.35	70	70	0.5	<5	2.38	<1	20	62	47	5.38	0.05	0.49	875	<2	0.03	37	660	6	5	9	<10	156	<0.01	101	<10	7	96	4	260
294261	<0.2	2.70	15	80	0.5	<5	3.00	<1	17	70	39	5.37	0.04	2.22	750	<2	0.03	34	1540	<2	5	9	<10	104	<0.01	120	<10	9	88	4	125
294263	<0.2	0.23	30	50	<0.5	<5	2.03	<1	5	39	<1	2.38	0.06	0.44	710	<2	0.04	3	640	6	<5	2	<10	161	<0.01	31	<10	5	55	5	135
294265	<0.2	0.95	100	50	0.5	5	0.61	<1	21	46	60	4.84	0.06	0.61	620	<2	0.04	34	730	4	<5	7	<10	39	<0.01	79	<10	6	98	3	165
294267	<0.2	0.90	570	120	0.5	5	3.95	<1	16	34	52	4.12	0.08	0.76	615	<2	0.03	28	720	<2	10	5	<10	98	<0.01	44	<10	7	77	3	185
294269	<0.2	0.28	6510	80	0.5	<5	3.65	<1	16	24	7 9	4.53	0.09	0.94	725	<2	0.03	25	660	30	85	5	<10	374	<0.01	39	<10	9	148	3	400
294271	<0.2	1.57	80	220	0.5	<5	2.67	<1	19	40	68	4.45	0.06	1.44	845	<2	0.03	33	820	2	5	7	<10	202	<0.01	71	<10	7	93	3	85

A .5 gm sample is digested with 10 ml 3:1 HCI/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

Signed:_____

Ĩ										Mineral Environ Ints Laboratories																					
DURFELD GEOLOGICAL									8282 Sherbrooke St., Vancouver, B.C., V5X 4E8														Report No			81	V0528	3			
Attention: RUDI DURFELD								Tel (604) 327-3436 Fax (604) 327-3423															Date			Au	ıg-19-	98			
Project: WATSC	N BA	R																													
Sample: CORE MULTI-ELEMENT ICP ANALYSIS																															
Aqua Regia Digestion																															
Sample Number	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm	Hg ppb

830

705

<2 0.04

<2 0.04

37

23 500

770

<2

<2

<5

5

8 <10

6 <10

44 4.97 0.03 2.35

17 118 4.88 0.08 1.18

63

16

19

294273 294275 <0.2 2.73

<0.2 2.19

35 1040 <0.5

<0.5

50 70

<5 3.14

<5 3.57

<1

<1

A .5 gm sample is digested with 10 ml 3:1 HCI/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

.

Signed:

£1,

Š.

65

3

3 .95

121 <0.01

<0.01

156

120

54 <10

<10

7 90

8

89

Quality Assaying for over 25 Years

Assay Certificate

Company:	DURFELD GEORLOGICAL
Project:	W.B.
Attn:	RUDI DURFELD

We *hereby certify* the following Assay of 1 CORE sample submitted Aug-14-98 by RUDI DURFELDS.

Sample Name	Au-fire g/tonne	
294283-A	1.35	

VANCOUVER OFFICE:

8282 SHERBROOKE STREET VANCOUVER, BC, CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB:

3176 TATLOW ROAD SMITHERS, BC, CANADA VOJ 2NO TELEPHONE (250) 847-3004 FAX (250) 847-3005

8V-0541-PA1

Sep-15-98

Certified by

RClus :____

Quality Assaying for over 25 Years

Assay Certificate

Company:	DURFELD GEORLOGICAL
Project:	W.B.
Attn:	RUDI DURFELD

We *hereby certify* the following Assay of 24 CORE samples submitted Aug-14-98 by RUDI DURFELDS.

Sample Name	Au-fire g/tonne	
293901	0.01	
293902	0.01	
293903	0.01	
293904	0.01	
293905	0.01	
293906	0.01	
293908	0.01	
293909	0.01	
293910	0.01	
293911	0.03	
293912	0.19	
293913	0.04	
293914	0.02	
293915	0.02	
293916	0.37	
293917	0.06	
293918	0.24	
293919	0.03	
293920	0.03	
293921	0.03	
293922	0.01	
293923	0.02	
293924	0.02	
293925	0.01	

VANCOUVER OFFICE:

8282 SHERBROOKE STREET VANCOUVER, BC, CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB:

3176 TATLOW ROAD SMITHERS, BC, CANADA VOJ 2NO TELEPHONE (250) 847-3004 FAX (250) 847-3005

8V-0541-RA1

Aug-19-98

Certified by

Quality Assaying for over 25 Years

Assay Certificate

Company:	DURFELD GEORLOGICAL
Project:	W.B.
Attn:	RUDI DURFELD

We *hereby certify* the following Assay of 24 CORE samples submitted Aug-14-98 by RUDI DURFELDS.

SampleANameg	Au-fire /tonne
293926	0.01
293927	0.02
293928	0.11
293929	0.03
293930	0.05
293931	0.04
293932	0.01
293933	0.47
293934	0.21
293935	0.03
293936	0.02
293937	0.02
293938	0.01
293939	0.01
293940	0.01
293941	0.01
293942	0.01
293943	0.01
293944	0.01
293945	0.01
293946	0.01
293947	0.40
293948	0.03
293949	0.81

VANCOUVER OFFICE:

8282 SHERBROOKE STREET VANCOUVER, BC, CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB:

3176 TATLOW ROAD SMITHERS, BC, CANADA VOJ 2NO TELEPHONE (250) 847-3004 FAX (250) 847-3005

8V-0541-RA2

Aug-19-98

Certified by

Quality Assaying for over 25 Years

Assay Certificate

Company:	DURFELD GEORLOGICAL
Project:	W.B.
Attn:	RUDI DURFELD

We *hereby certify* the following Assay of 24 CORE samples submitted Aug-14-98 by RUDI DURFELDS.

Sample Name	Au-fire g/tonne
293950	0.28
293951	0.06
293952	0.01
293953	0.01
293954	0.01
293955	0.04
293956	0.01
293957	0.14
293958	0.13
293959	0.14
293960	0.14
293961	0.20
293962	0.04
293963	0.02
293964	0.01
293965	0.01
293966	0.01
293967	0.01
293968	0.01
293969	0.01
293970	0.01
293971	0.01
293972	0.01
293973	0.01

VANCOUVER OFFICE:

8282 SHERBROOKE STREET VANCOUVER, BC, CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB:

3176 TATLOW ROAD SMITHERS, BC, CANADA VOJ 2NO TELEPHONE (250) 847-3004 FAX (250) 847-3005

8V-0541-RA3

Aug-19-98

 t_{\prime}

Quality Assaying for over 25 Years

Assay Certificate

Company:	DURFELD GEORLOGICAL
Project:	W.B.
Attn:	RUDI DURFELD

We *hereby certify* the following Assay of 24 CORE samples submitted Aug-14-98 by RUDI DURFELDS.

Sample Name	Au-fire g/tonne	
293974	0.01	
293975	0.01	
293976	0.01	
293977	0.01	
293978	0.01	
293979	0.01	
293980	0.01	
293981	0.01	
293982	0.04	
293983	0.03	
293984	0.01	
293985	0.01	
293986	0.01	
293987	0.01	
293988	0.01	
293989	0.01	
293990	0.01	
293991	0.02	
293992	0.02	
293993	0.01	
293994	0.01	
293995	0.02	
293996	0.01	
293997	0.01	

VANCOUVER OFFICE:

8282 SHERBROOKE STREET VANCOUVER, BC, CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB:

3176 TATLOW ROAD SMITHERS, BC, CANADA VOJ 2N0 TELEPHONE (250) 847-3004 FAX (250) 847-3005

8V-0541-RA4

Aug-19-98

Certified by

Quality Assaying for over 25 Years

Assay Certificate

Company:	DURFELD GEORLOGICAL
Project:	W.B.
Attn:	RUDI DURFELD

We *hereby certify* the following Assay of 24 CORE samples submitted Aug-14-98 by RUDI DURFELDS.

Sample Name	Au-fire g/tonne	
293998	0.01	
293999	0.01	
294000	0.01	
294277	0.04	
294278	0.11	
294279	0.38	
294280	1.10	
294281	0.40	
294282	1.45	
294283	0.54	
294284	2.64	
294285	6.67	
294286	0.07	
294287	0.01	
294288	0.01	
294289	0.01	
294290	0.01	
294291	0.01	
294292	0.01	
294293	0.01	
294294	0.01	
294295	0.01	
294296	0.01	
294297	0.01	

VANCOUVER OFFICE:

8282 SHERBROOKE STREET VANCOUVER, BC, CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB:

3176 TATLOW ROAD SMITHERS, BC, CANADA VOJ 2NO TELEPHONE (250) 847-3004 FAX (250) 847-3005

8V-0541-RA5

Aug-19-98

Certified by

Quality Assaying for over 25 Years

Assay Certificate

Company:	DURFELD GEORLOGICAL
Project:	W.B.
Attn:	RUDI DURFELD

We *hereby certify* the following Assay of 24 CORE samples submitted Aug-14-98 by RUDI DURFELDS.

Sample Name	Au-fire g/tonne
294298	0.01
294299	0.01
294300	0.01
294301	0.01
294302	0.01
294303	0.01
294304	0.01
294305	0.01
294306	0.01
294307	0.01
294308	0.01
294309	0.02
294310	0.01
294311	0.01
294312	0.01
294313	0.01
294314	0.01
294315	0.01
294316	0.01
294317	0.01
294318	0.04
294319	0.06
294320	0.01
294321	0.01

VANCOUVER OFFICE:

8282 SHERBROOKE STREET VANCOUVER, BC, CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB:

3176 TATLOW ROAD SMITHERS, BC, CANADA VOJ 2NO TELEPHONE (250) 847-3004 FAX (250) 847-3005

Aug-19-98

8V-0541-RA6

Certified by

MINERAL ·ENVIRONMENTS LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

Quality Assaying for over 25 Years

Assay Certificate

Company:	DURFELD GEORLOGICAL
Project:	W.B.
Attn:	RUDI DURFELD

We *hereby certify* the following Assay of 24 CORE samples submitted Aug-14-98 by RUDI DURFELDS.

Sample A Name g	Au-fire /tonne
294322	0.02
294323	0.01
294324	0.01
294325	0.01
294326	0.01
294327	0.01
294328	0.01
294329	0.01
294330	0.01
294331	0.01
294332	0.01
294333	0.01
294334	0.02
294335	0.01
294336	0.01
294337	0.01
294338	0.01
294339	0.01
294340	0.01
294341	0.01
294342	0.01
294343	0.01
294344	0.01
294345	0.01

VANCOUVER OFFICE:

8282 SHERBROOKE STREET VANCOUVER, BC, CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB:

3176 TATLOW ROAD SMITHERS, BC, CANADA VOJ 2NO TELEPHONE (250) 847-3004 FAX (250) 847-3005

8V-0541-RA7

Aug-19-98

Certified by

T/ c

Quality Assaying for over 25 Years

Assay Certificate

Company:	DURFELD GEORLOGICAL
Project:	W.B.
Attn:	RUDI DURFELD

We *hereby certify* the following Assay of 3 CORE samples submitted Aug-14-98 by RUDI DURFELDS.

Sample Name	Au-fire g/tonne	
294346	0.01	
294347	0.01	
294348	0.01	

VANCOUVER OFFICE:

8282 SHERBROOKE STREET VANCOUVER, BC, CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB:

3176 TATLOW ROAD SMITHERS, BC, CANADA VOJ 2N0 TELEPHONE (250) 847-3004 FAX (250) 847-3005

8V-0541-RA8

Aug-19-98

Certified by

DURFELD JEORLOGICAL

Attention: RUDI DURFELD

Project: W.B.

Sample: CORE

Mineral Environments Laboratories

8282 Sherbrooke St., Vcouver, B.C., V5X 4E8

Tel (604) 327-3436 Fax (604) 327-3423

Report No . 8V0541 Date : Aug-19-98

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Sample Number	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	К %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm	Hg ppb
293902	<0.2	2.58	35	150	<0.5	<5	1.41	<1	19	43	67	4.32	0.16	1.30	450	<2	0.14	28	560	<2	<5	5	<10	153	0.14	58	<10	7	91	10	175
293904	<0.2	2.45	20	400	<0.5	<5	1.94	<1	15	75	37	4.48	0.06	1.65	670	<2	0.06	26	950	4	<5	6	<10	114	0.08	92	<10	7	86	8	105
293906	<0.2	2.05	20	60	<0.5	<5	2.25	<1	13	47	33	3.91	0.09	1.32	675	<2	0.09	19	690	2	5	3	<10	147	0.03	54	<10	7	79	5	115
293909	<0.2	2.64	25	120	0.5	<5	3.28	<1	15	43	71	4.17	0.15	1.85	695	<2	0.08	29	1020	<2	5	5	<10	144	0.01	63	<10	8	90	4	45
293911	<0.2	2.08	75	120	0.5	<5	3.56	<1	16	67	44	4.38	0.15	1.38	615	14	0.07	27	940	8	10	4	<10	144	0.01	54	<10	7	78	4	155
293913	0.2	2.21	50	110	0.5	<5	6.21	<1	14	46	40	3.72	0.15	1.50	1140	<2	0.06	22	720	<2	5	4	<10	195	0.01	51	<10	11	70	4	115
293915	<0.2	2.24	30	100	<0.5	<5	2.58	<1	17	65	30	3.44	0.11	1.51	610	<2	0.06	27	480	Ż	5	3	<10	119	<0.01	53	<10	5	75	3	125
293917	0.2	2.14	65	100	0.5	<5	2.78	<1	15	49	43	4.03	0.15	1.38	595	<2	0.06	25	960	2	10	4	<10	147	0.01	51	<10	6	77	4	150
293919	<0.2	2.40	15	100	0.5	<5	2.16	<1	13	63	37	3.37	0.10	1.63	585	<2	0.08	21	620	<2	<5	4	<10	123	0.01	62	<10	5	69	3	95
293921	<0.2	2.69	70	110	0.5	<5	1.89	<1	17	57	60	5.27	0.17	1.68	600	<2	0.11	31	900	<2	5	5	<10	166	0.01	69	<10	8	89	4	110
293923	<0.2	2.65	10	70	<0.5	<5	2.17	<1	17	72	50	4.11	0.07	2.06	700	<2	0.08	30	950	<2	<5	6	<10	97	0.11	83	<10	5	82	6	30
293925	<0.2	2.07	5	100	<0.5	<5	3.37	<1	13	71	25	3.41	0.05	1.45	620	<2	0.08	. 22	520	<2	<5	5	<10	105	0.07	70	<10	6	62	5	65
293927	<0.2	0.47	380	100	<0.5	<5	2.77	<1	7	23	10	2.65	0.08	1.12	615	<2	0.03	9	670	8	5	4	<10	129	<0.01	44	<10	6	72	6	155
293929	<0.2	0.33	1875	430	<0.5	<5	4.72	<1	6	24	8	3.03	0.09	1.51	935	<2	0.02	6	400	8	20	3	<10	134	<0.01	24	<10	6	125	5	250
293931	<0.2	0.38	1845	130	<0.5	<5	2.96	<1	7	32	25	2.22	0.13	0.89	590	<2	0.02	8	680	8	15	3	<10	82	<0.01	19	<10	5	383	5	195
									· · ·																			_			
293933	0.6	0.24	>10000	470	<0.5	<5	4.31	<1	6	55	115	3.52	0.14	1.24	770	<2	0.02	6	400	114	125	2	<10	135	<0.01	15	<10	5	1658	5	880
293935	<0.2	0.53	220	310	0.5	<5	3.81	<1	22	102	41	5.39	0.03	2.81	865	<2	0.04	64	990	4	10	12	<10	252	<0.01	132	<10	8	88	5	130
293937	<0.2	0.76	130	120	0.5	<5	2,12	<1	21	44	42	5.38	0.07	1.55	595	<2	0,06	42	640	8	10	9	<10	182	<0.01	115	<10	6	99	4	185
293939	<0.2	0.40	230	40	0.5	<5	2.24	<1	16	21	58	5.35	0.13	1.04	470	2	0.04	28	540	8	<5	5	<10	160	<0.01	42	<10	9	81	4	450
293941	<0.2	0.47	60	50	0.5	<5	3.03	<1	17	18	60	5.17	0.15	1.24	460	<2	0.05	33	890	14	<5	5	<10	245	<0.01	44	<10	11	76	4	275
293943	<0.2	0.95	55.	40	<0.5	<5	2.50	<1	17	32	65	4.25	0.11	1.37	650	<2	0.05	30	1380	<2	<5	6	<10	139	0.01	60	<10	12	86	4	85
293945	<0.2	0.76	55	40	<0.5	<5	2.12	<1	14	34	40	4.05	0.09	1.07	560	<2	0.05	22	620	8	<5	5	<10	158	< 0.01	51	<10	7	67	4	80
293947	0.8	0.38	4540	50	0.5	5	3.73	<1	19	21	73	4.25	0.19	1.36	580	<2	0.04	29	560	80	5	3	<10	295	<0.01	30	<10	7	148	4	150
293949	<0.2	0.22	>10000	170	<0.5	<5	3.02	<1	8	101	18	3.06	0.11	1.23	665	<2	0.03	16	330	16	5	1	<10	222	<0.01	19	<10	5	35	3	50
293951	<0.2	0.40	440	40	0.5	<5	2.32	<1	16	32	71	3.87	0.16	1.25	610	<2	0.04	25	640	8	5	4	<10	213	<0.01	42	<10	6	86	4	. 105
293953	<0.2	1.08	35	40	0.5	<5	3.67	<1	16	35	49	3.90	0.11	1.91	660	<2	0.05	27	800	4	<5	6	<10	307	<0.01	53	<10	7	73	3	65
293955	<0.2	0.97	20	160	<0.5	<5	4.12	<1	12	39	30	3.55	0.09	1.43	830	<2	0.06	19	620	4	<5	6	<10	298	<0.01	58	<10	8	63	3	120
293957	5.8	0.40	5045	50	0.5	10	3.75	<1	16	18	319	2.84	0.21	1.26	510	<2	0.04	23	800	524	5	3	<10	240	<0.01	20	<10	7	938	3	420
293959	0.2	0.94	2835	30	<0.5	<5	4.15	<1	13	54	82	2.98	0.18	1.25	860	<2	0.03	22	530	34	5	2	<10	180	<0.01	30	<10	6	112	3	125
293961	5.0	0.80	7665	40	<0.5	15	2.87	<1	11	49	235	2.60	0.18	0.76	550	<2	0.03	20	950	590	5	2	<10	136	<0.01	22	<10	7	549	3	200

A .5 gm sample is digested with 10 ml 3:1 HCI/HNO3 at 95c for 2 hours and diluted to 25ml with D.1.H20.

Signed:__

Page 1 of 3

DURFELD GEORLOGICAL

Attention: RUDI DURFELD

Project: W.B.

Sample: CORE

Mineral Environ nts Laboratories

8282 Sherbrooke St., Vancouver, B.C., V5X 4E8

Tel (604) 327-3436 Fax (604) 327-3423

Report No : 8V0541 Date : Aug-19-98

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Sample Number	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ті %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm	Hg ppb
293963	<0.2	1.46	1215	60	<0.5	<5	2.21	<1	14	52	44	3.50	0.20	1.58	855	<2	0.04	25	660	<2	5	3	<10	142	<0.01	50	<10	6	75	3	100
293965	<0.2	0.91	20	.120	0.5	< 5	4:20	<1	12	50	26	3.50	0.09	1.88	725	<2	0.06	21	700	2	5	7	<10	332	<0.01	87	<10	9	61	3	105
293967	<0.2	0.46	55	50	0.5	<5	2.34	<1	17	33	50	4.46	0.12	1.83	640	<2	0.06	31	900	6	<5	8	<10	258	<0.01	68	<10	10	81	4	125
293969	<0.2	2.89	30	140	<0.5	< 5	3.07	<1	19	68	60	4.83	0.05	2.41	805	<2	0.06	32	990	<2	5	8	<10	241	0.01	100	<10	9	80	3	125
293971	<0.2	3.04	. 5	50	<0.5	<5	1.74	<1	16	81	29	5.78	0.06	2.22	830	<2	0.06	29	290	<2	5	7	<10	111	0.01	132	<10	7	82	4	85
293973	<0.2	2.84	<5	430	<0.5	<5	1.37	<1	18	49	59	3.93	0.10	1.91	640	<2	0.46	30	620	<2	5	5	<10	142	0.11	73	<10	7	87	6	90
293975	<0.2	2.71	<5	400	<0.5	<5	2.10	<1	15	91	18	4.73	0.06	1.88	715	<2	0.12	24	500	<2	<5	6	<10	121	0.08	108	<10	5	/4	5	120
293977	<0.2	2.42	10	190	<0.5	<5	2.98	<1	18	64	37	4.56	0.13	1.50	910	<2	0.21	24	1020	<2	5	6	<10	102	0.19	69	<10	8	83	13	105
293979	<0.2	2.59	35	160	<0.5	<5	2.69	<1	23	48	51	6.24	0.16	1.62	670	<2	0.10	30	220	6	10	5	<10	202	0.15	69	<10	7	88	9	375
293981	<0.2	2.65	25	150	<0.5	<5	2.50	<1	17	67	57	4.16	0.07	2.14	650	<2	0.09	31	810	<2	5	7	<10	168	0.01	85	<10	7	81	3	110
293983	<0.2	2.57	30	.150	<0.5	<5	3.40	<1	17	76	46	4.08	0.08	2.01	705	<2	0.09	29	720	<2	5	6	<10	185	0.01	80	<10	8	71	3	125
293985	<0.2	2.56	10	140	<0.5	<5	2.96	<1	14	86	26	3.64	0.04	2.10	795	<2	0.10	25	470	10	<5	8	<10	156	0.01	93	<10	9	92	3	75
293987	<0.2	2.69	25	140	<0.5	<5	3.21	<1	14	68	38	3.71	0.06	1.94	725	<2	0.09	25	480	2	5	6	<10	184	<0.01	83	<10	9	147	3	90
293989	<0.2	3.06	35	130	0.5	<5	2.47	<1	21	99	21	4.48	0.08	2.38	615	<2	0.08	47	630	<2	5	7	<10	155	<0.01	106	<10	8	79	3	95
293991	<0.2	2.95	100	130	<0.5	< 5	2.44	<1	33	153	307	5.49	0.05	2.40	565	<2	0.09	63	800	2	5	9	<10	154	0.01	125	<10	8	80	4	155
293993	<0.2	3.76	60	100	<0.5	< 5	1.45	<1	33	211	57	5.58	0.06	3.38	605	<2	0.08	100	1080	<2	5	11	<10	99	0.01	136	<10	6	99	4	95
293995	0.2	1.66	55	210	<0.5	<5	7.10	<1	21	34	356	3.68	0.15	0.89	525	<2	0.12	21	890	8	10	4	<10	290	<0.01	42	<10	12	53	3	210
293997	<0.2	2.65	<5	400	<0.5	< 5	2.77	<1	15	82	35	4.23	0.05	1.98	735	<2	0.09	25	500	<2	<5	7	<10	155	0.08	117	<10	7	74	6	95
293999	<0.2	2.42	5	170	<0.5	<5	2.53	<1	15	61	37	3.89	0.07	1.73	675	<2	0.10	23	720	<2	5	6	<10	150	0.13	93	<10	6	79	9	115
294277	1.2	1.72	1460	40	<0.5	10	1.96	<1	17	41	168	4.44	0.14	1.14	540	<2	0.06	25	880	114	5	3	<10	118	<0.01	42	<10	7	446	4	240
294279	5.8	1.93	>10000	40	<0.5	45	1.12	<1	24	56	371	4.81	0.14	1.35	570	<2	0.03	37	890	334	10	3	<10	48	<0.01	63	<10	4	2096	4	295
294281	2.2	1.73	>10000	50	<0.5	10	1.16	<1	18	49	613	4.67	0.18	1.28	480	<2	0.04	29	630	114	5	2	<10	69	<0.01	39	<10	3	951	5	285
294283	2.2	1.66	>10000	40	<0.5	15	1,38	<1	15	66	201	4.61	0.15	1.25	500	<2	0.03	25	700	138	10	2	<10	63	< 0.01	43	<10	4	1078	4	300
294285	21.2	0.76	>10000	60	<0.5	80	2.91	<1	9	63	227	5.05	0.11	0.39	410	<2	0.04	16	630	2654	25	2	<10	97	<0.01	26	10	5	2677	4	1720
294287	<0.2	3.52	85	60	<0.5	<5	1.89	<1	20	37	82	6.60	0.05	1.74	675	<2	0.06	27	650	<2	<5	9	<10	105	<0.01	113	<10	7	130	4	110
294289	<0.2	3.13	35	50	<0.5	<5	2.93	<1	16	42	82	4.91	0.07	2.00	940	<2	0.06	27	950	<2	5	9	<10	153	< 0.01	104	<10	, '7	96	3	80
294291	<0.2	2.46	30	70	<0.5	<5	3.80	<1	16	65	41	4.20	0.07	1.64	845	<2	0.05	30	910	<2	<5	7	<10	151	0.01	82	<10		81	3	105
294293	<0.2	3.33	10	70	<0.5	<5	5.02	<1	19	54	88	5.80	0.07	1.85	1980	<2	0.05	31	1790	<2	<5	7	<10	141	<0.01	102	<10	9	88	4	95
294295	<0.2	3.29	15	360	<0.5	<5	1.14	<1	22	29	114	6.55	0.09	1.54	705	<2	0.15	26	770	<2	5	6	<10	200	0.05	108	<10	10	93	7	105
294297	<0.2	0.40	30	410	<0.5	<5	2.97	<1	4	47	15	1.70	0.20	0.56	470	2	0.04	5	440	4	<5	1	<10	191	<0.01	12	<10	4	50	6	115

A .5 gm sample is digested with 10 ml 3:1 HCl/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

. De

Signed:

DURFELD GEORLOGICAL

 $\frac{1}{2}$

Attention: RUDI DURFELD

Project: W.B.

Sample: CORE

Mineral Environ Ints Laboratories

8282 Sherbrooke St., Vancouver, B.C., V5X 4E8

Tel (604) 327-3436 Fax (604) 327-3423

Report No : 8V0541 Date : Aug-19-98

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Sample Number	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm	Hg ppb
294299	<0.2	1.74	5	60	0.5	<5	1.50	<1	17	45	61	5.15	0.12	1.54	785	<2	0.05	i 30	860	<2	<5	6	<10	130	<0.01	74	<10	11	90	4	190
294301	<0.2	2.44	5	360	<0.5	<5	2.22	<1	13	54	32	3.85	0.07	1.79	580	<2	0.06	5 21	700	<2	<5	5	<10	112	0.01	78	<10	7	73	3	170
294303	<0.2	3.67	10	70	0.5	< 5	1.76	<1	19	67	68	5.56	0.07	3.04	970	<2	0.07	32	1210	<2	5	11	<10	102	0.01	128	<10	9	106	4	-105
294305	<0.2	0.47	50	190	0.5	<5	1.62	<1	6	18	17	2.58	0.05	0.70	745	<2	0.04	3	650	8	.<5	3	<10	114	<0.01	33	<10	6	77	4	520
294307	<0.2	0.44	30	220	0.5	<5	2.10	<1	18	42	35	4.44	0.05	1.51	635	<2	0.04	30	520	4	5	9	<10	187	<0.01	107	<10	8	75	4	300
294309	<0.2	0.36	25	110	<0.5	<5	3.06	<1	13	13	57	4.33	0.18	0.95	460	2	0.02	21	320	10	5	2	<10	172	<0.01	24	<10	7	56	3	290
294311	<0.2	0.40	50	600	<0.5	<5	2.44	<1	7	27	12	2.63	0.09	1.00	570	<2	0.04	8	590	8	5	3	<10	140	<0.01	40	<10	6	58	5	285
294313	<0.2	0.40	195	170	0.5	<5	3.88	<1	13	24	41	3.71	0.12	1.98	585	2	0.03	23	410	6	5	5	<10	203	<0.01	58	<10	8	70	3	190
294315	<0.2	0.43	90	110	0.5	<5	4.40	<1	17	61	27	5.16	0.03	2.07	990	<2	0.03	33	430	4	5	13	<10	277	<0.01	138	<10	11	79	4	170
294317	<0.2	0.37	35	100	0.5	<5	4.30	<1	12	22	20	3.45	0.14	2.09	760	<2	0.03	17	430	4	5	4	<10	338	<0.01	35	<10	7	72	3	145
294319	<0.2	0.39	3585	90	0.5	<5	3.84	<1	13	25	38	3.77	0.08	1.69	720	<2	0.03	15	590	22	45	5	<10	203	<0.01	57	<10	7	391	3	4460
294321	<0.2	0.49	205	60	0.5	<5	3.39	<1	12	36	29	3.97	0.07	1.61	780	<2	0.03	21	560	2	5	6	<10	197	< 0.01	69	<10	8	68	4	285
294323	<0.2	1.90	30	270	<0.5	<5	2.12	<1	14	55	35	4.34	0.05	2.00	745	<2	0.11	21	720	6	<5	9	<10	152	0.01	87	<10	10	70	3	125
294325	<0.2	0.95	110	80	0.5	<5	3.21	<1	15	39	38	4.76	0.10	1.37	710	4	0.04	19	800	12	5	5	<10	151	<0.01	57	<10	9	84	4	240
294327	<0.2	1.50	85	50	0.5	<5	2.41	<1	17	45	47	5.03	0.11	1.50	620	2	0.07	24	1400	10	5	7	<10	133	<0.01	74	<10	10	92	4	145
294329	<0.2	0.31	5515	40	0.5	<5	4.24	<1	15	21	48	4.46	0.09	0.97	425	2	0.02	21	680	20	75	5	<10	166	<0.01	28	<10	8	89	4	325
294331	<0.2	0.67	875	160	0.5	<5	3.92	<1	14	27	35	4.26	0.08	1.44	570	2	0.03	17	750	14	20	6	<10	194	<0.01	55	<10	9	85	4	180
294333	<0.2	0.29	160	180	<0.5	<5	3.49	<1	7	37	9	2.76	0.07	1.58	595	<2	0.04	7	660	10	<5	2	<10	185	<0.01	29	<10	5	50	4	300
294335	<0.2	0.66	115	120	<0.5	<5	4.05	<1	15	44	49	4.66	0.06	1.81	770	<2	0.04	26	810	10	5	8	<10	219	<0.01	84	<10	8	73	4	100
294337	<0.2	0.32	50	160	<0.5	<5	4.30	<1	4	59	2	2.26	0.13	1.43	580	<2	0.04	5	380	8	<5	2	<10	266	<0.01	21	<10	5	38	4	160
294339	<0.2	0.46	2275	50	0.5	<5	3.74	<1	18	42	52	3.48	0.08	1.55	620	<2	0.03	34	580	10	75	5	<10	182	<0.01	53	<10	7	81	3	19400
294341	<0.2	0.42	535	90	0.5	<5	3.53	<1	16	46	46	4.46	0.08	1.88	920	<2	0.04	32	630	12	15	6	<10	191	<0.01	/1	<10	8	/5	4	1230
294343	<0.2	0.44	110	290	0.5	<5	2.39	<1	17	44	48	4.11	0.13	1.64	680	<2	0.04	28	300	10	5	7	<10	201	<0.01	58	<10	8	/6	3	110
294345	<0.2	0.41	115	40	0.5	<5	3.85	<1	12	47	28	3.79	0.07	2.06	815	<2	0.04	20	480	10	5		<10	2//	<0.01	60	<10	9	61	د .	255
294347	<0.2	0.72	45	50	0.5	<5	2.34	<1	17	31	73	4.98	0.08	2.02	700	<2	0.04	25	1010	12	<5	/	<10	253	<0.01	65	<10	10	89	4	135

A .5 gm sample is digested with 10 ml 3:1 HCI/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

1110

Signed:

VINERAL ENVIRONMENTS LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

Quality Assaying for over 25 Years

Assay Certificate

Company:	DURFELD GEORLOGICAL
Project:	W.B.
Attn:	RUDI DURFELD

We *hereby certify* the following Assay of 24 CORE samples submitted Aug-25-98 by RUDI DURFELD.

Sample Name	Au-fire g/tonne	
251513	0.02	
251514	0.02	
251515	0.02	
251516	0.03	
251517	0.08	
251518	0.02	
251519	0.08	
251520	0.01	
251521	0.01	
251522	0.02	
251523	0.01	
251524	0.01	
251525	0.01	
251526	0.02	
251527	0.01	
251528	0.01	
251529	0.01	
251530	0.01	
251531	0.01	
251532	0.01	
251533	0.01	
251534	0.01	
251535	0.02	
251536	0.02	

VANCOUVER OFFICE:

8282 SHERBROOKE STREET VANCOUVER, BC, CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB:

3176 TATLOW ROAD SMITHERS, BC, CANADA VOJ 2NO TELEPHONE (250) 847-3004 FAX (250) 847-3005

8V-0564-RA1

Aug-28-98

Certified by

Quality Assaying for over 25 Years

Assay Certificate

Company:	DURFELD GEORLOGICAL
Project:	W.B.
Attn:	RUDI DURFELD

We *hereby certify* the following Assay of 24 CORE samples submitted Aug-25-98 by RUDI DURFELD.

Sample Name	Au-fire g/tonne	
251537	0.01	
251538	0.02	
251539	0.01	
251540	0.01	
251541	0.02	
251542	0.01	
251543	0.01	
251544	0.01	
251545	0.01	
251546	0.02	
251547	0.01	
251548	0.01	
251549	0.01	
251550	0.01	
251551	0.01	
251552	0.01	
251553	0.01	
251554	0.01	
251555	0.01	
251556	0.01	
251557	0.01	
251558	0.01	
251559	0.01	
251560	0.01	

8282 SHERBROOKE STREET VANCOUVER, BC, CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB:

3176 TATLOW ROAD SMITHERS, BC, CANADA VOJ 2NO TELEPHONE (250) 847-3004 FAX (250) 847-3005

8V-0564-RA2

Aug-28-98

Certified by

Quality Assaying for over 25 Years

Assay Certificate

Company:	DURFELD GEORLOGICAL
Project:	W.B.
Attn:	RUDI DURFELD

We *hereby certify* the following Assay of 24 CORE samples submitted Aug-25-98 by RUDI DURFELD.

Sample Name	Au-fire g/tonne	
251561	0.01	
251562	0.01	
251563	0.01	
251564	0.01	
251565	0.01	
251566	0.01	
251567	0.02	
251568	0.02	
251569	0.01	
251570	0.01	
294349	0.01	
294350	0.02	
294351	0.01	
294352	0.01	
294353	0.01	
294354	0.01	
294355	0.02	
294356	0.01	
294357	0.01	
294358	0.01	
294359	0.02	
294360	0.01	
294361	0.02	
294362	0.01	

VANCOUVER OFFICE:

8282 SHERBROOKE STREET VANCOUVER, BC, CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB:

3176 TATLOW ROAD SMITHERS, BC, CANADA VOJ 2NO TELEPHONE (250) 847-3004 FAX (250) 847-3005

8V-0564-RA3

Aug-28-98

Certified by

DU

Quality Assaying for over 25 Years

Assay Certificate

Company:	DURFELD GEORLOGICAL
Project:	W.B.
Attn:	RUDI DURFELD

We *hereby certify* the following Assay of 24 CORE samples submitted Aug-25-98 by RUDI DURFELD.

Sample Name	Au-fire g/tonne
294363	0.01
294364	0.02
294365	0.02
294366	0.01
294367	0.01
294368	0.01
294369	0.03
294370	0.02
294371	0.01
294372	0.01
294373	0.01
294374	0.01
294375	0.01
294376	0.01
294377	0.01
294378	0.01
294379	0.01
294380	0.01
294381	0.01
294382	0.02
294383	0.21
294384	0.03
294385	0.01
294386	0.01

3176 TATLOW ROAD

SMITHERS, BC, CANADA VOJ 2NO TELEPHONE (250) 847-3004 FAX (250) 847-3005

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, BC. CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423 **SMITHERS LAB:**

8V-0564-RA4

Aug-28-98

Certified by

Ø11

NINERAL ENVIRONMENTS LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

Quality Assaying for over 25 Years

Assay Certificate

Company:	DURFELD GEORLOGICAL
Project:	W.B.
Attn:	RUDI DURFELD

We *hereby certify* the following Assay of 24 CORE samples submitted Aug-25-98 by RUDI DURFELD.

Sample Name	Au-fire g/tonne
294387	0.01
294388	0.02
294389	0.01
294390	0.01
294391	0.01
294392	0.01
294393	0.01
294394	0.12
294395	0.11
294396	0.01
294397	0.01
294398	0.02
294399	0.01
294400	0.01
294401 = 251501	0.01
294402 = 251502	0.01
294403 = 251503	0.01
294404 = 251504	0.02
294405 = 251505	0.01
294406 = 251506	0.01
294407 = 251507	0.01
294408 = 251508	0.01
294409 = 251509	0.01
294410 EMPTY BAG	

VANCOUVER OFFICE:

8282 SHERBROOKE STREET VANCOUVER, BC, CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB:

3176 TATLOW ROAD SMITHERS, BC, CANADA VOJ 2NO TELEPHONE (250) 847-3004 FAX (250) 847-3005

8V-0564-RA5

Aug-28-98

Certified by

tu-

Quality Assaying for over 25 Years

Assay Certificate

Company:	DURFELD GEORLOGICAL
Project:	W.B.
Attn:	RUDI DURFELD

We *hereby certify* the following Assay of 2 CORE samples submitted Aug-25-98 by RUDI DURFELD.

Sample Name	Au-fire g/tonne	
294411 = 251511	0.01	
294412 = 251512	0.02	

VANCOUVER OFFICE:

8282 SHERBROOKE STREET VANCOUVER, BC. CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB:

3176 TATLOW ROAD SMITHERS, BC, CANADA VOJ 2N0 TELEPHONE (250) 847-3004 FAX (250) 847-3005

8V-0564-RA6

Aug-28-98

Certified by

tty.

DURFELD GEORLOGICAL

ĥ

Attention: RUDI DURFELD

Project: W.B.

Sample: CORE

Mineral Environ Ints Laboratories

8282 Sherbrooke St., Vancouver, B.C., V5X 4E8

Tel (604) 327-3436 Fax (604) 327-3423

Report No : 8V0564 Date : Aug-28-98

\$11

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Sample Number	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm	Hg ppb
251 514	<0 2	0.65	85	50	0.5	<5	6.55	<1	13	11	71	4.15	0.13	1.41	855	<2	0.02	10	640	4	25	7	<10	436	<0.01	59	<10	8	57	3	510
251516	<0.2	0.67	65	40	0.5	<5	2.96	<1	13	9	8	3.81	0.20	0.60	485	<2	0.02	14	1030	6	5	10	<10	65	<0.01	50	<10	7	48	3	240
251518	<0.2	0.84	270	.90	0.5	5	0.77	<1	31	12	159	6.55	0.18	0.15	410	2	0.03	32	600	<2	5	4	<10	48	<0.01	44	<10	7	99	4	210
251520	<0.2	2.07	210	70	0.5	<5	2.70	<1	25	43	86	6.07	0.09	0.82	720	2	0.02	30	730	<2	5	15	<10	98	<0.01	161	<10	8	104	4	420
251520	<0.2	1.21	90	30	<0.5	<5	8.83	<1	19	44	44	5.18	0.03	2.08	860	<2	0.02	22	1710	<2	5	14	<10	600	<0.01	136	<10	8	73	3	605
251524	<0.2	0.95	50	110	<0.5	<5	11.16	<1	14	31	31	4.20	0.14	2.49	1755	<2	0.02	17	1390	<2	5	10	<10	674	0.01	89	<10	6	55	3	365
251526	<0.2	3.09	<5	160	<0.5	<5	2.59	<1	21	60	65	5.84	0.27	2.48	655	<2	0.07	27	670	<2	5	14	<10	135	0.02	166	<10	7	87	4	195
251528	<0.2	3.15	5	40	<0.5	<5	3.05	<1	16	42	37	4.50	0.03	2.01	680	<2	0.20	23	710	<2	5	7	<10	142	0.08	108	<10	5	81	4	70
251530	<0.2	3.16	10	880	<0.5	<5	3.82	<1	18	49	38	5.41	0.05	2.53	850	<2	0.08	30	1440	<2	<5	8	<10	135	0.01	127	<10	7	90	4	80
251532	<0.2	3.32	10	70	0.5	<5	3.75	<1	18	52	72	4.81	0.09	1.89	695	<2	0.15	29	430	<2	5	8	<10	199	<0.01	142	<10	6	90	3	85
																								_							
251534	<0.2	3.17	50	910	0.5	<5	3.27	<1	20	53	70	5.58	0.13	2.05	840	<2	0.06	33	1320	<2	<5	9	<10	145	<0.01	157	<10	6	100	4	75
251536	<0.2	2.53	35	340	0.5	<5	3.93	<1	17	20	70	4.69	0.15	1.16	655	<2	0.04	19	2020	<2	5	8	<10	116	<0.01	103	<10	8	91	3	/0
251538	<0.2	1.46	210	280	0.5	<5	6.38	<1	16	9	87	2.74	0.26	0.42	510	<2	0.03	18	810	<2	10	4	<10	154	<0.01	35	<10	9	71	2	90
251540	<0.2	1.02	15	90	<0.5	<5	1.59	<1	7	40	47	1.27	0.21	0.38	250	<2	0.06	10	500	<2	<5	1	<10	65	<0.01	13	<10	6	33	2	115
251542	<0.2	4.10	20	100	<0.5	<5	2.63	<1	19	36	93	4.78	0.04	1.95	645	<2	0.32	21	710	<2	<5	9	<10	208	<0.01	143	<10		92	د	45
			_	_		_					~~						0.00		700			•	-10	154	0.01	120	-10	6	05		65
251544	<0.2	3.93	5	40	<0.5	<5	2.29	<1	19	36	80	5.26	0.03	2.39	//0	<2	0.28	20	780	<2	< >		<10	104	0.01	103	<10	0	101		25
251546	<0.2	4.36	<5	80	<0.5	<5	2.62	<1	23	32	86	6.14	0.03	2.50	830	<2	0.28	19	1190	~~	5	13	<10	200	0.07	172	<10	0	101	5	40
251548	<0.2	3.65	45	150	<0.5	<5	5.45	<1	22	27	60	6.55	0.07	2.54	2245	<2	0.00	20	940	<2	- 5	10	<10	125	0.02	1/5	<10	11	97	נ נ	40
251550	<0.2	4.19	5	60	<0.5	<5	3.97	<1	16	1/	66	4.59	0.09	1.80	715	<2	0.30	11	2130	~2	< 2	10	<10	220	0.01	140	<10	11	00	2	
251552	<0.2	3.58	10	130	<0.5	<5	2.14	<1	18	25	112	4.07	0.11	1.50	515	<2	0.23	13	1200	< <u>2</u>	< 3	11	<10	290	0.01	102	<10	0	00	5	50
				100	40 E	-5	2 00	~1	15	76	104	4 85	0 17	1 70	620	~2	0.31	16	460	<2	5	9	<10	330	0.03	136	<10	6	94	4	45
251554	<0.2	4.04	< 5	160	<0.5	< 5 E	2.09	~1	12	20	175	3 78	0.17	1 38	500	-2	0.20	17	420	<2	<5	7	<10	342	0.02		<10	6	79	3	65
251556	<0.2	3.34	< 5	100	<0.5	~5	2.07	~1	20	20	95	5.20	0.12	2 22	865	<2	0.26	14	3040	<2	5	11	<10	238	0.10	165	<10	6	85	6	50
251558	<0.2	3.74	< 5	140	<0.5	~5	2.00	~1	10	20	122	4 51	0.16	1 26	530	-2	0.38	19	450	<7	5	8	<10	301	0.12	126	<10	6	75	5	55
251560	<0.2	3.71	< 5	140	<0.5	< 5	2.09	~1	21	20	122	F.J1	0.10	2 18	1140	-2	0.34	17	1100	-2	-5	11	<10	268	0.13	145	<10	8	90	7	55
251562	<0.2	3.70	5	60	<0.5	< 5	3.70	~1	21	20	00	5.40	0.05	2.10	1140	~2	0.24	1,	1100	~~	~.	**	-10	200	0.10	1.5	-10		50	,	55
351564	-0.2	364	5	-30	~0.5	-5	3 52	<1	19	25	62	5.45	0.06	2.70	825	<2	0.18	18	910	<2	5	10	<10	236	0.01	128	<10	8	93	4	35
201004	<0.2	2.04	2	30 40	20.5	~ 25	3.32	يد 1 م	19	27	65	5.61	0.07	1.96	820	<2	0.15	19	520	<2	5	11	<10	315	<0.01	141	<10	7	100	4	45
201000	<0.2	3.33	د ۱۰		<0.5	~5	4 05	~1	16	26	68	4 70	0.06	1.96	1885	<2	0.24	16	1640	<2	5	10	<10	309	0.01	125	<10	9	84	3	35
201008	<0.2	3,40	20	00 00	~0.5		7.79	~1	25	49	61	4.75	0.09	1.63	630	<2	0.41	25	300	<2	<5	11	<10	492	0.01	175	<10	4	88	3	35
2010/0	<0.2	4.19	-06	110	~0.5		2.20	~1	16	35	50	3 43	0.10	1.57	585	<2	0.09	25	690	<2	5	4	<10	89	0.05	59	<10	5	73	3	80
294350	<0.2	2.70	10	110	<0.5	< 2	2.74	~1	10	22		5.45	0.10	1.37	505	~4	0.09	23	0.00	-4	5	-	-10		0.00			5		2	

A .5 gm sample is digested with 10 ml 3:1 HCI/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

Page 1 of 2

DURFELD GEORLOGICAL

Attention: RUDI DURFELD

Project: W.B.

Sample: CORE

Mineral Environ Ints Laboratories 8282 Sherbrooke St., Vancouver, B.C., V5X 4E8

Tel (604) 327-3436 Fax (604) 327-3423

`¢ 8V0564 **Report No** : : Aug-28-98 Date

Aller

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Sample Number	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	К %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm	Hg ppb
					-0.5	~ 5	1 76	-1	13	30	56	3 28	0.07	1 16	415	<2	0.79	16	890	<2	<5	4	<10	85	0.11	74	<10	4	65	6	75
294352	<0.2	2.81	2	110	<0.5	< 5 E	1.30	1	15	22	20	2 30	0:04	0.72	270	<2	1.23	13	380	<2	<5	3	<10	68	0.05	54	<10	2	47	3	45
294354	<0.2	2.03	16	210	<0.5 <0.5	-5	1.20	~ ~1	11	21	37	2 36	0.06	0.71	260	<2	0.16	13	530	<2	<5	3	<10	89	0.07	51	<10	3	47	4	85
294356	<0.2	2.41	10	170	<0.5	<5	1.74	~1	12	18	67	2 52	0.00	0.67	240	2	0.14	15	430	<2	<5	3	<10	72	0.09	45	<10	3	57	4	175
294358	<0.2	2.11	10	1/0	<0.5	~5	0.03	~ 1	11	29	38	3.02	0.05	1 08	325	<2	0.96	16	690	<2	<5	4	<10	47	0.08	81	<10	4	59	5	90
294360	<0.2	2.65	10	00	NU. 3	~5	0.93	~1	**		50		0.02	2.00		-						-									
294362	<0.2	2.48	50	30	<0.5	5	4.59	<1	16	58	36	4.02	0.05	1.69	730	<2	0.04	37	590	<2	5	8	<10	119	<0.01	94	<10	7	65	3	55
294364	<0.2	2.37	40	30	0.5	<5	2.64	<1	14	32	56	3.93	0.11	1.41	590	<2	0.03	24	910	<2	<5	6	<10	139	<0.01	60	<10	6	67	3	70
294366	<0.2	0.92	10	60	<0.5	5	2.04	<1	5	46	5	1.66	0.12	0.52	410	<2	0.05	4	390	4	<5	2	<10	76	< 0.01	22	<10	3	40	3	50
294368	<0.2	2.91	65	180	0.5	<5	1.80	<1	27	32	101	4.83	0.19	1.81	560	<2	0.05	36	250	<2	5	7	<10	147	<0.01	58	<10	5	97	3	60
294370	<0.2	1.14	15	440	<0.5	5	2.97	<1	5	45	28	1.88	0.16	0.61	425	<2	0.06	5	450	2	<5	1	<10	192	<0.01	14	<10	3	38	4	80
294372	<0.2	3.44	70	60	<0.5	5	4.61	<1	22	47	64	5.87	0.09	1.97	840	<2	0.06	36	1360	<2	5	8	<10	286	< 0.01	103	<10	8	83	4	90
294374	<0.2	2.74	105	50	<0.5	5	5.86	<1	24	44	79	4.67	0.09	1.44	955	<2	0.08	39	1100	<2	5	7	<10	309	< 0.01	86	<10	8	82	3	45
294376	<0.2	2.66	20	60	<0.5	5	1.85	<1	17	20	115	4.51	0.08	1.71	595	<2	0.07	23	830	<2	<5	6	<10	101	<0.01	89	<10	7	83	3	70
294378	<0.2	3.16	15	50	<0.5	<5	3.61	<1	22	61	36	5.28	0.07	2.22	1010	<2	0.06	38	880	<2	10	10	<10	107	0.23	111	<10	7	88	10	130
294380	<0.2	3.24	10	390	<0.5	<5	4.20	<1	18	63	38	4.16	0.10	1.79	765	<2	0.14	34	780	<2	5	8	<10	140	0.21	99	<10	6	70	10	95
																_					-	_			• • •			-			
294382	<0.2	2.02	65	90	<0.5	<5	3.40	<1	15	44	52	4.74	0.16	1.30	600	<2	0.05	23	1060	<2	5	3	<10	86	0.01	52	<10		/8	4	145
294384	<0.2	1.84	70	250	<0.5	<5	3.93	<1	12	88	14	3.22	0.15	1.59	680	<2	0.06	20	740	2	<5	5	<10	129	<0.01	/8	<10	5	49	4	315
294386	<0.2	1.76	10	140	<0.5	<5	6.67	<1	13	44	37	2.98	0.10	1.04	1375	<2	0.09	19	820	<2	< 5	4	<10	150	0.01	45	<10	8	62	د	85
294388	<0.2	2.68	20	130	0.5	5	1.79	<1	18	45	71	5.97	0.13	1.60	665	<2	0.09	29	940	<2	5	5	<10	129	0.01	66	<10	8	96	6	165
294390	<0.2	2.67	25	180	0.5	<5	1.98	<1	19	45	68	6.36	0.15	1.48	695	<2	0.09	29	1000	<2	5	5	<10	126	0.01	. 60	<10	8	95	0	215
						. =	~ ~ ~				37	7 61	0.06	1 77	71 E	-2	0.00		730	~ 7	~5	5	~10	169	0.01	67	~10	R	66	3	55
294392	<0.2	2.35	10	160	<0.5	<5	3.61	<1	13	22	3/	5.01	0.00	1.72	670	~2	0.09	22	620	-2	10	2	<10	209	0.01	49	<10	9	77	4	140
294394	<0,2	2.27	375	190	0.5	5	5.4/	<1	10	55	70	3.03	0.14	1.30	595	-2	0.09	37	700	~7	5	5	~10	114	0.01	69	<10	6	81	8	150
294396	<0.2	2.37	5	80	<0.5	<5	1.41	<1	22	20	44	4.52	0.00	1.74	720	~2	0.00	27	620	-2	5	5	~10	75	0.12	132	<10	4	77	6	65
294398	<0.2	3.30	<5	120	<0.5	<5	1.50	<1	10	70	24	4.00	0.03	1.00	720	~2	0.00	23	540	~2	5	7	~10	04	0.11	120	<10	4	74	5	50
294400	<0.2	2.76	5	50	<0.5	< 5	1.02	<1	10	02	21	4.50	0.04	1.57	/25	~2	0.00	2,	540	1	5	,	-10		0.41	120					50
				- 200	-0 F	~5	2 27	~1	21	57	44	5 48	0 12	1 95	710	<2	0.13	30	680	<2	5	6	<10	148	0.15	79	<10	7	90	7	160
294402 = 251502	<0.2	3.2/	< 0 . r	200	<0.5	<5	5 10	~1	20	47	50	4 27	0.14	1.65	1030	<2	0.06	27	1440	<2	5	5	<10	130	0.20	66	<10	9	87	8	100
294404 = 251504	<0.2	2.31	<5	100	<0.5	< D	3.61	~1	1.2	68	47	4.32	0.06	2.01	795	<2	0.07	16	990	<2	5	8	<10	133	0.17	144	<10	5	56	12	240
294406 = 251506	<0.2	2.15	< 5	100	<0.5	<.) 	2.01		15	30	55	4 21	0.11	1.72	725	<2	0.09	26	810	<2	5	7	<10	206	< 0.01	60	<10	11	79	3	55
294408 = 251508	<0.2	2.30	10	150	<0.5 20 F	< 5 	5.02	~1	14	51	41	3.67	0.08	1.85	875	~ ~ ~	0.13	28	780	<7	5	11	<10	336	< 0.01	70	<10	11	62	3	60
294412 = 251512	<0.2	1.65	- 25	160	<0'2	< 5	⊃. ∡5	<1	7.4	21	-+1	J.0Z	0.00	1.05	073	~2	0.13	20	,00	~2	2	**	0	550	-0.01	, 0	-10			5	

A .5 gm sample is digested with 10 ml 3:1 HCl/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

Signed:

Quality Assaying for over 25 Years

Assay Certificate

Company:	DURFELD GEOLOGICAL
Project:	W.B
Attn:	RUDI DURFELD

We *hereby certify* the following Assay of 24 CORE samples submitted Aug-28-98 by RUDI DURFELD.

Sample Name	Au-fire g/tonne	
251571 -	0.01	
251572	0.01	
251573	0.01	
251574	0.03	
251575	0.01	
251576	0.01	
251577	0.02	
251578	0.02	
251579	0.01	
251580	0.02	
251581	0.01	
251582	0.02	
251583	0.01	
251584	0.01	
251585	0.01	
251586	0.01	
251587	0.01	
251588	0.01	
251589	0.01	
251590	0.01	
251591	0.01	
251592	0.01	
251593	0.01	
251594	0.01	

VANCOUVER OFFICE:

8282 SHERBROOKE STREET VANCOUVER, BC, CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB:

3176 TATLOW ROAD SMITHERS, BC, CANADA VOJ 2NO TELEPHONE (250) 847-3004 FAX (250) 847-3005

8V-0581-RA1

Sep-03-98

Q. Certified by

NINERAL ENVIRONMENTS LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

Quality Assaying for over 25 Years

Assay Certificate

Company:	DURFELD GEOLOGICAL
Project:	W.B
Attn:	RUDI DURFELD

We *hereby certify* the following Assay of 24 CORE samples submitted Aug-28-98 by RUDI DURFELD.

Sample A Name g	Au-fire z/tonne
251595	0.01
251596	0.02
251597	0.01
251598	0.02
251599	0.01
251600	0.01
251601	0.02
251602	0.01
251603	0.01
251604	0.02
251605	0.02
251606	0.01
251607	0.02
251608	0.04
251609	0.03
251610	0.05
251611	0.05
251612	0.02
251613	0.05
251614	0.02
251615	4.24
251616	0.02
251617	0.04
251618	0.07

VANCOUVER OFFICE:

8282 SHERBROOKE STREET VANCOUVER, BC, CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB:

3176 TATLOW ROAD SMITHERS, BC, CANADA VOJ 2NO TELEPHONE (250) 847-3004 FAX (250) 847-3005

Certified by

FLI A

Min-En Laboratories

8V-0581-RA2

Sep-03-98

VINERAL ENVIRONMENTS LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

Quality Assaying for over 25 Years

Assay Certificate

Company:	DURFELD GEOLOGICAL
Project:	W.B
Attn:	RUDI DURFELD

We *hereby certify* the following Assay of 24 CORE samples submitted Aug-28-98 by RUDI DURFELD.

Sample Name	Au-fire g/tonne
251619	0.01
251620	0.01
251621	0.01
251622	0.01
251623	0.01
251624	0.01
251625	0.01
251626	0.01
251627	0.01
251628	0.01
251629	0.01
251630	0.01
251631	0.01
251632	0.01
251633	0.01
251634	0.01
251635	0.01
251636	0.01
251637	0.01
251638	0.01
251639	0.01
251640	0.02
251641	0.01
251642	0.01

VANCOUVER OFFICE:

8282 SHERBROOKE STREET VANCOUVER, BC, CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB:

3176 TATLOW ROAD SMITHERS, BC, CANADA VOJ 2NO TELEPHONE (250) 847-3004 FAX (250) 847-3005

8V-0581-RA3

Sep-03-98

Certified by

Min-En Laboratories

l 1

INERAL ENVIRONMENTS LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

Quality Assaying for over 25 Years

Assay Certificate

Company:	DURFELD GEOLOGICAL
Project:	W.B
Attn:	RUDI DURFELD

We *hereby certify* the following Assay of 23 CORE samples submitted Aug-28-98 by RUDI DURFELD.

Sample Name	Au-fire g/tonne	
251643	0.02	
251644	0.01	
251645	0.01	
251646	0.01	
251647	0.01	
251648	0.01	
251649	0.01	
251650	0.01	
251651	0.01	
251652	0.01	
251653	0.01	
251654	0.02	
251655	0.01	
251656	0.01	
251657	0.01	
251658	0.01	
251659	0.02	
251660	0.01	
251661	0.02	
251701	0.21	
251702	1.36	
251703	0.99	
251704	0.51	

VANCOUVER OFFICE:

8282 SHERBROOKE STREET VANCOUVER, BC, CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB:

3176 TATLOW ROAD SMITHERS, BC, CANADA VOJ 2N0 TELEPHONE (250) 847-3004 FAX (250) 847-3005

8V-0581-RA4

Sep-03-98

Certified by

DURFELD GEOLOGICAL

Attention: RUDI DURFELD

Project: W.B

Sample: CORE

Mineral Envirorments Laboratories

8282 Sherbrooke St., . uncouver, B.C., V5X 4E8

Tel (604) 327-3436 Fax (604) 327-3423

Report No 8V0581 Sep-03-98 Date :

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Sample Number	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	К %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm	Hg ppb
251572	<0.2	4.19	5	90	<0.5	<5	3.14	<1	23	45	62	6.56	0.14	2.70	975	<2	0.23	26	1690	6	<5	14	<10	348	0.02	181	<10	8	89	5	70
251574	<0.2	1.40	225	140	0.5	<5	2.40	<1	4	32	18	1.84	0.36	0.82	590	<2	0.16	5	320	6	<5	3	<10	179	0.02	38	<10	6	69	4	60
251576	<0.2	4.60	30	90	0.5	<5	4.92	<1	12	40	87	4.40	0.22	1.99	965	<2	0.52	18	500	4	<5	9	<10	300	0.01	126	<10	6	76	З	40
251578	<0.2	5.40	30	310	0.5	<5	2.87	<1	21	39	79	4.90	0.77	2.10	535	<2	0.54	23	530	<2	<5	13	<10	322	0.04	171	<10	6	89	3	30
251580	<0.2	1.69	435	110	0.5	<5	5.96	<1	14	25	67	4.40	0.15	1.30	550	<2	0.07	20	600	10	5	8	<10	271	<0.01	87	<10	7	76	, a	60
251582	<0.2	3.21	165	160	0.5	<5	2.97	<1	17	28	79	5.61	0.48	1.92	735	<2	0.27	25	690	8	<5	11	<10	329	0.02	140	<10	6	94	4	120
251584	<0.2	1.65	120	70	0.5	<5	2.76	<1	20	27	82	4.50	0.11	1.76	655	<2	0.21	28	510	6	<5	11	<10	354	<0.01	115	<10	9	89	3	110
251586	<0.2	1.41	45	190	0.5	<5	4.68	<1	17	14	127	3.74	0.21	1.70	585	<2	0.12	20	440	8	<5	7	<10	372	0.01	73	<10	6	74	3	70
251588	<0.2	0.58	30	60	0.5	<5	4.85	<1	15	45	57	3.47	0.07	1.82	480	<2	0.03	44	670	12	<5	7	<10	539	< 0.01	60	<10	6	55	ל	1100
251590	<0.2	0.72	30	160	0.5	<5	2.94	<1	18	20	95	4.87	0.11	2.05	685	<2	0.02	27	990	14	<5	10	<10	207	<0.01	105	<10	9	83	4	185
251592	<0.2	2.26	30	50	0.5	<5	0.93	<1	20	42	62	5.67	0.10	2.17	875	<2	0.03	29	1060	8	<5	12	<10	91	0.01	164	<10	8	104	4	130
251594	<0.2	0.67	310	40	0.5	<5	5.16	<1	18	18	52	4.83	0.11	2.51	1175	<2	0.03	18	870	12	5	11	<10	300	<0.01	111	<10	8	86	4	310
251596	<0.2	0.54	310	70	0.5	<5	4.21	<1	24	12	51	4.30	0.09	2.07	925	<2	0.03	16	690	12	5	10	<10	271	<0.01	97	<10	8	83	3	210
251598	<0.2	0.38	700	320	0.5	<5	8.04	<1	10	6	33	3.65	0.17	3.15	830	<2	0.02	11	320	12	15	5	<10	389	<0.01	35	<10	6	51	3	53Ġ
251600	<0.2	0.62	60	90	0.5	<5	4.29	<1	15	18	59	4.54	0.04	2.27	775	<2	0.03	16	1290	12	5	10	<10	276	<0.01	107	<10	9	76	4	365
					<u> </u>								0.06	1.64	705	~7	0.03	16	000	17	10	13	~10	230	-0.01	110	~10	8	87	d	330
251602	<0.2	0.60	545	40	0,5	< 5	2.72	<1	1/	10	55	4.01	0.00	2.04	030	~2	0.03	15	550	17	10	13	~10	218	~0.01	118	~10	a	87	å	405
251604	<0.2	0.54	/5	30	0.5	<5	5.40	<1 	10	17	21	4.75	0.00	1 65	500	~2	0.03	19	910	10	5	13	~10	218	~0.01	132	210	G G	85	4	220
251606	<0.2	0.64	30	30	0.5	< 5	2.28	<1	~ ~ ~ ~	15	11	4.75	0.04	1.05	200	~2	0.03	10	220	10		2	~10	173	~0.01	17	-10	á	16	ว	120
251608	<0.2	0.38	125	70	<0.5	< 5	2.79	~1	- 1	70		0.61	0.17	0.42	165	-2	0.03	-1	230	4	-5	<1	<10	66	<0.01	2	<10	٦	10	2	320
251610	<0.2	0.28	30	60	<0.5	< 5	1.11	<1	<1	20	2	0.01	0.17	0.42	105	~2	0.04	~ 1	250	-	~5	~	-10	00	-0.01	~		<i></i>		a .	
251612	<0.2	0.26	65	60	<0.5	<5	0.96	<1	<1	34	10	0.60	0.17	0.36	140	<2	0.04	1	230	6	5	<1	<10	54	<0.01	1	<10	3	17	2	300
251614	< 0.2	0.29	245	90	<0.5	<5	1.46	<1	<1	28	8	0.80	0.19	0.56	245	<2	0.03	1	210	2	5	<1	<10	70	<0.01	2	<10	3	7	2	160
251616	<0.2	0.30	135	140	<0.5	<5	1.03	<1	<1	40	11	0.63	0.18	0.42	145	<2	0.04	1	180	4	5	<1	<10	74	<0.01	1	<10	3	9	2	265
251618	<0.2	0.29	65	120	<0.5	<5	1.64	<1	<1	32	5	0.61	0.16	0.69	170	<2	0.04	1	210	4	<5	<1	<10	101	<0.01	1	<10	3	9	2	175
251620	<0.2	0.93	80	180	0.5	<5	2.90	<1	16	16	49	3.94	0.08	1.80	645	<2	0.05	14	650	8	5	12	<10	220	<0.01	92	<10	8	74	4	140
251622	<0.2	0.88	45	50	0.5	<5	3.80	<1	15	13	81	3.97	0.04	2.01	605	<2	0.07	13	580	8	<5	7	<10	288	<0.01	82	<10	7	67	3	170
251624	<0.2	0.66	25	60	0.5	<5	4.14	<1	14	15	44	4.18	0.04	2.14	650	<2	0.03	15	630	10	<5	9	<10	325	< 0.01	98	<10	8	75	4	125
251626	<0.2	0.70	125	90	0.5	<5	5.00	<1	11	10	46	3.78	0.04	2.29	800	<2	0.03	13	830	8	5	8	<10	278	<0.01	68	<10	8	69	4	265
251628	<0.2	0.62	60	30	0.5	<5	3.20	<1	14	12	80	4.27	0.05	1.77	625	<2	0.03	15	420	8	5	10	<10	200	<0.01	86	<10	7	69	4	195
251630	<0.2	0.72	40	70	0.5	<5	2.83	<1	18	31	65	4.47	0.05	1.70	630	<2	0.03	24	430	8	5	12	<10	222	< 0.01	116	<10	8	76	4	170

A .5 gm sample is digested with 10 ml 3:1 HCl/HNO3 at 95c for 2 hours and diluted to 25ml with D.1.H20.

Signed:

DURFELD GEOLOGICAL

Attention: RUDI DURFELD

Project: W.B

Sample: CORE

Mineral Envirov vents Laboratories

8282 Sherbrooke St., Vancouver, B.C., V5X 4E8 Tel (604) 327-3436 Fax (604) 327-3423 Report No*8V0581Date:Sep-03-98

£11-

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Sample	Ag	Al	As	Ba	Be	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	K %	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sc	Sn	Sr	Ti %	V man	W	Y	Zn	Zr	Hg daa
Number	ppm	70	ррт	ppm	ppm	ppin	70	ppin	ppm	phin	Phu	70	70	70	ppm	ppin	70	ppm	ppm	PPIII	ppm	ppin	PPIII	PPIII		PP			FF	F F	P 7
251632	<0.2	0.82	20	60	0.5	<5	2.65	<1	18	19	56	5.34	0.06	1.77	705	<2	0.10	16	610	10	5	12	<10	264	<0.01	117	<10	9	86	4	155
251634	<0.2	0.78	50	70	0.5	<5	3.40	<1	16	18	89	4.07	0.08	1.86	590	<2	0.06	15	800	10	5	10	<10	314	<0.01	96	<10	7	71	3	18G
251636	<0.2	1.93	15	130	<0.5	<5	4,43	<1	14	19	80	4.35	0.21	1.16	1640	<2	0.25	13	990	8	<5	8	<10	282	0.02	97	<10	9	68	3	145
251638	<0.2	2.41	10	150	<0.5	< 5	1.10	<1	16	28	112	4.58	0.30	1.37	565	<2	0.21	19	610	2	<5	7	<10	361	0.03	96	<10	8	76	3	95
251640	<0.2	2.79	25	130	0.5	<5	4.31	<1	16	21	70	4.45	0.15	1.27	590	<2	0.34	13	400	8	<5	7	<10	368	0.01	85	<10	10	64	3	105
																_					-	-							50	2	
251642	<0.2	0.68	25	100	0.5	<5	1.60	<1	9	8	70	3.04	0.23	0.81	260	<2	0.06	10	800	6	<5	د	<10	187	<0.01	30	<10	1	59	ر د	111
251644	<0.2	2.01	35	170	0.5	<5	1.75	<1	11	15	76	2.90	0.40	0.79	255	<2	0.20	12	2180	2	<5	3	<10	243	<0.01	30	<10	10	62	5	3.00
251646	<0.7	0.94	110	40	0.5	< 5	2.21	<1	16	11	137	4.35	0.07	1.29	500	<2	0.04	14	750	10	5	9	<10	235	< 0.01	88	<10	7	88	4	205
251648	<0.2	1.11	50	20	0.5	i <5	3.16	<1	15	14	60	4.19	0.07	1.65	615	<2	0.04	14	910	6	<5	9	<10	286	<0.01	85	<10	9	80	3	215
251650	<0.2	1.12	45	210	0.5	< 5	3.88	<1	16	34	69	4.53	0.07	1.99	2120	<2	0.05	26	800	8	<5	11	<10	441	<0.01	114	<10	7	69	3	185
254652	-0.5	0.00	45	00			2.08	- 1	18	19	72	4 16	0.36	1 40	520	<7	0.06	26	470	6	<5	9	<10	259	0.01	83	<10	8	74	3	225
251652	-0.2	0.90		30	0.2		2.00	-1	15	16	87	3 96	0.17	1 19	455	<7	0.02	22	620	8	5	6	<10	183	< 0.01	58	<10	6	82	3	165
251054		0.02	343	370			4 41	- 1	16	17	74	4 53	0.08	2 48	680	<7	0.03	18	810	10	<5	10	<10	478	< 0.01	110	<10	9	71	4	105
251656	<0.4	0.62	20	2/0	0.5		3 3 3 3	~1	10	10	74	A 07	0.00	2 30	645	-7	0.03	22	570	10	<5	12	<10	554	< 0.01	119	<10	7	79	4	2.50
251658	<0.4	0.66	100	120	0.2		3.32		. 19	15		1 20	0.03	1.67	250	-7	0.00	3	110		-5		<10	345	<0.01	14	<10	3	15	з	140
251660	<0.2	0.40	25	50	<0.5	< > < 5	4.15	<1	2	34	5	1.29	0.11	1.07	250	~2	0.02	3	110	2		•	10	5-5	-0.01	* *		-	4.0	4	1.0
251701	⇒ <0.2	2.07	280	90	0.5	i <5	1.92	<1	20	41	69	4.78	0.15	1.20	510	<2	0.06	30	250	14	5	4	<10	107	0.01	48	<10	6	83	4	120
251703	1.4	1.84	>10000	130	0.5	10	9.09	<1	11	45	100	4.20	0.18	1.23	1560	<2	0.04	16	470	60	10	3	<10	220	<0.01	30	<10	6	423	3	495

A .5 gm sample is digested with 10 ml 3:1 HCl/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

Signed:

VINERAL •ENVIRONMENTS LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

Quality Assaying for over 25 Years

Assay Certificate

Company:	Durfeld Geological
Project:	Watson Bar
Attn:	Rudi Durfeld

We *hereby certify* the following Assay of 24 core samples submitted Sep-09-98 by Rudi Durfeld.

Sample Name	Au-fire g/tonne	
251662	0.02	
251663	7.39	
251664	1.47	
251665	0.13	
251666	0.56	
251667	13.75	
251705	0.01	
251706	0.03	
251707	0.01	
251708	0.01	
251709	0.01	
251710	0.01	
251711	0.02	
251712	0.01	
251713	0.01	
251714	0.01	
251715	0.01	
251716	0.01	
251717	0.01	
251718	0.01	
251719	0.01	
251720	0.01	
251721	0.01	
251722	0.01	

VANCOUVER OFFICE:

8282 SHERBROOKE STREET VANCOUVER, BC, CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB:

3176 TATLOW ROAD SMITHERS, BC, CANADA VOJ 2N0 TELEPHONE (250) 847-3004 FAX (250) 847-3005

8V-0597-RA1

Sep-15-98

tu. Certified by

Quality Assaying for over 25 Years

Assay Certificate

Company:	Durfeld Geological
Project:	Watson Bar
Attn:	Rudi Durfeld

We *hereby certify* the following Assay of 24 core samples submitted Sep-09-98 by Rudi Durfeld.

Sample Name	Au-fire g/tonne	
251723	0.01	
251724	0.01	
251725	0.01	
251726	0.01	
251727	0.01	
251728	0.01	
251729	0.01	
251730	0.01	
251731	0.01	
251732	0.01	
251733	0.02	
251734	0.01	
251735	0.01	
251736	0.01	
251737	0.01	
251738	0.01	
251739	0.01	
251740	0.01	
251741	0.01	
251742	0.01	
251743	0.01	
251744	0.01	
251745	0.01	
251746	0.01	

VANCOUVER OFFICE:

8282 SHERBROOKE STREET VANCOUVER, BC, CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB:

3176 TATLOW ROAD SMITHERS, BC, CANADA VOJ 2NO TELEPHONE (250) 847-3004 FAX (250) 847-3005

Certified by

E[1

Min-En Laboratories

8V-0597-RA2

Sep-15-98

MINERAL ·ENVIRONMENTS LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

Quality Assaying for over 25 Years

Assay Certificate

Company:	Durfeld Geological
Project:	Watson Bar
Attn:	Rudi Durfeld

We *hereby certify* the following Assay of 24 core samples submitted Sep-09-98 by Rudi Durfeld.

Sample A Name g	Au-fire /tonne
251747	0.01
251748	0.01
251749	0.02
251750	0.01
251751	0.01
251752	0.01
251753	0.01
251754	0.01
251755	0.01
251756	0.01
251757	0.01
251758	0.01
251759	0.01
251760	0.01
251761	0.02
251762	0.01
251763	0.01
251764	0.01
251765	0.01
251766	0.01
251767	0.01
251768	0.01
251769	0.01
251770	0.01

VANCOUVER OFFICE:

8282 SHERBROOKE STREET VANCOUVER, BC, CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB:

3176 TATLOW ROAD SMITHERS, BC, CANADA VOJ 2NO TELEPHONE (250) 847-3004 FAX (250) 847-3005

8V-0597-RA3

Sep-15-98

Certified by

VINERAL ENVIRONMENTS LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

Quality Assaying for over 25 Years

Assay Certificate

Company:	Durfeld Geological
Project:	Watson Bar
Attn:	Rudi Durfeld

We *hereby certify* the following Assay of 24 core samples submitted Sep-09-98 by Rudi Durfeld.

Sample A Name g	Au-fire /tonne
251771	0.01
251772	0.01
251773	0.01
251774	0.01
251775	0.01
251776	0.01
251777	0.01
251778	0.01
251779	0.01
251780	0.01
251781	0.01
251782	0.01
251783	0.01
251784	0.01
251785	0.01
251786	0.01
251787	0.01
251788	0.01
251789	0.01
251790	0.01
251791	0.01
251792	0.01
251793	0.01
251794	0.01

VANCOUVER OFFICE:

8282 SHERBROOKE STREET VANCOUVER, BC, CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB:

3176 TATLOW ROAD SMITHERS, BC, CANADA VOJ 2NO TELEPHONE (250) 847-3004 FAX (250) 847-3005

Certified by

Min-En Laboratories

8V-0597-RA4

Sep-15-98

/INERAL ENVIRONMENTS LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

Quality Assaying for over 25 Years

Assay Certificate

Company:	Durfeld Geological
Project:	Watson Bar
Attn:	Rudi Durfeld

We *hereby certify* the following Assay of 24 core samples submitted Sep-09-98 by Rudi Durfeld.

Sample Anne Anne Anne Anne Anne Anne Anne An	Au-fire g/tonne
251795	0.01
251796	0.01
251797	0.02
251798	0.01
251799	0.01
251800	0.02
251801	0.01
251802	0.01
251803	0.01
251804	0.01
251805	0.01
251806	0.01
251807	0.01
251808	0.01
251809	0.01
251810	0.01
251811	0.01
251812	0.02
251813	0.01
251814	0.01
251815	0.01
251816	0.01
251817	0.02
251818	0.01

Certified by

Min-En Laboratories

VANCOUVER OFFICE:

8282 SHERBROOKE STREET VANCOUVER, BC, CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB:

3176 TATLOW ROAD SMITHERS, BC, CANADA VOJ 2NO TELEPHONE (250) 847-3004 FAX (250) 847-3005

8V-0597-RA5

Sep-15-98

Quality Assaying for over 25 Years

Assay Certificate

Company:	Durfeld Geological
Project:	Watson Bar
Attn:	Rudi Durfeld

We *hereby certify* the following Assay of 24 core samples submitted Sep-09-98 by Rudi Durfeld.

Sample A Name g	Au-fire y/tonne
251819	0.02
251820	0.01
251821	0.01
251822	0.01
251823	0.01
251824	0.01
251825	0.02
251826	0.01
251827	0.01
251828	0.01
251829	0.12
251830	0.81
251831	0.60
251832	0.04
251833	0.01
251834	0.01
251835	0.01
251836	0.02
251837	0.01
251838	0.04
251839	0.01
251840	0.01
251841	0.01
251842	0.02

8282 SHERBROOKE STREET VANCOUVER, BC, CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB:

3176 TATLOW ROAD SMITHERS, BC, CANADA VOJ 2N0 TELEPHONE (250) 847-3004 FAX (250) 847-3005

8V-0597-RA6

Sep-15-98

Certified by

Quality Assaying for over 25 Years

Assay Certificate

Company:	Durfeld Geological
Project:	Watson Bar
Attn:	Rudi Durfeld

We *hereby certify* the following Assay of 24 core samples submitted Sep-09-98 by Rudi Durfeld.

Sample Name	Au-fire g/tonne	
251843	0.01	
251844	0.01	
251845	0.01	
251846	0.01	
251847	0.01	
251848	0.01	
251849	0.01	
251850	0.01	
251851	0.01	
251852	0.01	
251853	0.01	
251854	0.01	
251855	0.01	
251856	0.01	
251857	0.01	
251858	0.01	
251859	0.01	
251860	0.01	
251861	0.01	
251862	0.01	
251863	0.01	
251864	0.01	
251865	0.01	
251866	0.01	

VANCOUVER OFFICE:

8282 SHERBROOKE STREET VANCOUVER, BC, CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB:

3176 TATLOW ROAD SMITHERS, BC, CANADA VOJ 2N0 TELEPHONE (250) 847-3004 FAX (250) 847-3005

8V-0597-RA7

Sep-15-98

Certified by

La

Quality Assaying for over 25 Years

Assay Certificate

Company:	Durfeld Geological
Project:	Watson Bar
Attn:	Rudi Durfeld

We *hereby certify* the following Assay of 9 core samples submitted Sep-09-98 by Rudi Durfeld.

Sample Name	Au-fire g/tonne	
251867	0.01	
251868	0.01	
251869	0.01	
251870	0.01	
251871	0.01	
251872	0.01	
251873	0.01	
251874	0.01	
251875	0.01	

VANCOUVER OFFICE:

8282 SHERBROOKE STREET VANCOUVER. BC, CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB:

3176 TATLOW ROAD SMITHERS, BC, CANADA VOJ 2NO TELEPHONE (250) 847-3004 FAX (250) 847-3005

Certified by

Min-En Laboratories

8V-0597-RA8

Sep-15-98

Attention: Rudi Durfeld

Project: Watson Bar

Sample: core

Mineral Enviroyments Laboratories

8282 Sherbrooke St., rancouver, B.C., V5X 4E8

Tel (604) 327-3436 Fax (604) 327-3423

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Sample Number	Ag	Al %	As	Ba	Be	Bi	Ca %	Cd ppm	Co	Cr	Cu ppm	Fe %	K %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr	Hg ppb
110111001	PPro		P.P		PP					•	• •				••	••														_	200
251663	9.6	0.18	>10000	30	<0.5	25	0.10	<1	8	98	30	4.04	0.11	0.04	20	<2	0.02	13	230	892	20	<1	<10	6	<0.01	4	<10	<1	733	3	200
251665	<0.2	1.56	265	50	0.5	<5	3.93	<1	18	26	69	6.67	0.11	0.99	650	<2	0.04	25	760	28	20	3	<10	106	<0.01	32	<10	/	/3	6	420
251667	24.8	0.16	>10000	60	<0.5	65	0.08	<1	1	70	277	3.87	0.09	0.03	25	<2	0.02	3	250	4698	25	1	<10	18	<0.01	12	<10	<1	204	3	130
251706	<0.2	0.25	110	330	0.5	<5	4.89	<1	12	25	13	3.95	0.11	1.87	1030	<2	0.03	16	280	18	5	5	<10	184	<0.01	33	<10	7	66	4	365
251708	<0.2	0.39	95	120	0.5	<5	2.99	<1	16	114	85	3.44	0.03	2.09	555	<2	0.02	93	490	10	5	11	<10	152	<0.01	73	<10	5	50	4	900
251710	<0.2	0.31	70	220	0.5	<5	1.89	<1		41	77	2.61	0.14	1.05	340	<2	0.02	28	160	8	5	6	<10	68	<0.01	32	<10	2	36	3	695
251712	<0.2	0.38	80	230	0.5	<5	0.66	<1	15	30	43	4.01	0.14	0.43	450	<2	0.03	32	490	10	5	8	<10	34	<0.01	57	<10	4	61	4	485
251714	<0.2	0.26	120	120	<0.5	<5	4.16	<1	13	108	32	2.84	0.01	2.44	430	<2	0.02	69	70	8	5	8	<10	226	<0.01	64	<10	2	54	4	315
251716	<0.2	0.29	135	50	<0.5	<5	2.41	<1	16	112	74	3.21	0.01	2.00	440	<2	0.02	96	210	8	5	8	<10	149	<0.01	57	<10	2	53	5	610
251718	<0.2	0.66	10	380	0.5	<5	0.93	<1	13	38	39	4.15	0.17	0.92	530	<2	0.16	22	540	10	5	-5	<10	1375	<0.01	35	<10	4	81	4	1010
251720	~0.2	0.34	50	710	0.5	~5	0 57	<1	11	37	37	2.76	0.14	0.65	350	4	0.24	17	220	18	<5	4	<10	101	<0.01	23	<10	2	74	3	430
231/20	<0.2	0.40	35	350	0.5	~5	1.96	<1	15	17	46	5.25	0.13	0.67	700	<2	0.30	9	870	16	5	9	<10	123	<0.01	46	<10	6	100	4	860
231722	<0.2	0.31	35	190	0.5	<5	1.52	<1	12	34	50	3.52	0.15	1.08	685	<2	0.18	16	330	12	5	6	<10	97	<0.01	36	<10	4	76	4	820
251724	<0.2	0.27	70	160	0.5	<	1.84	<1	13	29	35	2.38	0.15	0.82	430	<2	0.15	18	40	12	5	6	<10	124	<0.01	31	<10	3	60	3	325
251720	<0.2	0.20	35	250	0.5	<5	0.97	<1	12	45	29	2.92	0.16	0.66	450	2	0.15	18	330	14	10	5	<10	59	<0.01	28	<10	4	72	3	515
231/20	~0.2	0.25															anti di Anti-								i di jing						
251730	<0.2	0.25	25	410	0.5	<5	1.82	<1	13	31	31	3.18	0.15	1.13	590	<2	0.15	17	410	12	5	5	<10	173	<0.01	28	<10	5	79	4	605
251732	<0.2	0.28	20	210	0.5	<5	1.77	<1	11	35	33	3.50	0.13	1.10	680	<2	0.12	17	420	14	<5	6	<10	164	<0.01	41	<10	5	75	4	1490
251734	<0.2	0.27	20	380	0.5	<5	0.82	<1	10	32	37	3.34	0.14	0.83	540	<2	0.14	15	360	10	<5	5	<10	101	<0.01	30	<10	4	70	4	965
251736	<0.2	0.28	25	210	0.5	<5	0.96	<1	12	34	35	2.86	0.13	0.83	610	<2	0,14	15	480	14	5	4	<10	59	'<0.01	27	<10	4	53	3	825
251738	<0.2	0.47	80	820	0.5	<5	0.30	<1	13	10	73	3.97	0.21	0.90	400	<2	0,35	23	420	24	5	7	<10	51	<0.01	28	<10	4	111	4	430
251740	<0.2	0.43	50	810	0.5	<5	0.22	<1	14	13	58	4.46	0.18	0.99	465	<2	0.30	20	240	12	<5	8	<10	44	<0.01	30	<10	3	94	4	385
251742	<0,2	0.42	145	2740	0.5	. <5	1.35	<1	12	21	27	5.29	0.19	1.16	925	<2	0.29	16	230	16	- 5	6	<10	142	<0.01	30	<10	7	67	5	285
251744	<0.2	0.41	55	730	Q.5	<5	0.24	<1	14	25	27	3.73	0,19	0.74	395	2	0.29	15	230	14	<5	5	<10	34 ु	<0.01	25	<10	3	73	4	300
251746	<0.2	0.63	35	940	0.5	<5	0.96	<1	12	23	62	4.73	0:21	0.98	585	2	0.28	18	2610	16	<5	7	<10	61	<0.01	38	<10	10	88	5	225
251748	<0.2	0.58	75	3960	0,5	<5	1.94	<1	13	11	58	4.34	0.21	1.24	1070	<2	0.30	16	2090	22	<5	6	<10	213	<0.01	27	<10	10	85	5	450
251750	<0.2	0.60	135	2550	0.5	<5	0,43	<1	15	14	73	4.09	0.25	0.80	520	<2	0.36	18	470	14	<5	6	<10	97	<0,01	27	<10	5	107	4	285
251752	<0.2	0.46	130	2250	0.5	<5	1.02	<1	14	13	60	2.81	0.20	0.62	625	4	0.26	14	810	16	<5	5	<10	103	<0.01	20	<10	5	125	3	430
251754	<0.2	0.54	120	2440	0.5	<5	1.55	<1	16	11	50	4.46	0.25	1.19	680	2	0.32	16	430	22	<5	6	<10	121	<0.01	25	<10	6	105	4	245
251756	<0.2	0.58	90	1160	0,5	<5	0.82	<1	19	6	84	4.59	0.26	1.11	590	<2	0.35	18	270	26	5	7	<10	69	<0.01	26	<10	5	123	4	230
251758	<0.2	0.68	40	770	0.5	<5	0.66	<1	16	17	52	4.85	0.23	0.91	650	<2	0.31	16	260	16	<5	9	<10	43	<0.01	37	<10	5	93	4	210

A .5 gm sample is digested with 10 ml 3:1 HCI/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

Page 1 of 3

Signed:

Durfeld Geological

Attention: Rudi Durfeld

Project: Watson Bar

Sample: core

Mineral Environ nts Laboratories

8282 Sherbrooke St., Vancouver, B.C., V5X 4E8 Tel (604) 327-3436 Fax (604) 327-3423

Report No	•	8V0597
Date	:	Sep-15-98

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Sample Number	Ag ppm	A! %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	К %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm	Hg ppb
						-					40	4 20	0 1 2	1 50	1280	~)	0.15	11	330	14	5	8	<10	130	<0.01	43	<10	6	65	5	635
251760	<0.2	0.36	45	350	< 0.5	<5	4./1	<1	11	23	40	4.39	0.12	1.05	4200	~2	0.15	15	360	14	Š	8	<10	64	<0.01	34	<10	5	103	4	535
251762	<0.2	0.52	40	540	0.5	<5	1.48	<1	13	20	42	4.83	0.22	1.05	0.30	-2	0.23	14	270	10	5	а я	-10	70	<0.01	37	<10	4	89	4	375
251764	<0.2	0.49	45	540	0.5	<5	1.42	<1	12	19	43	4.60	0.21	1.02	665	<2	0.24	14	220	14	נ ב	0 0	~10	80	~0.01	30	210	7	୍ଦ୍ଧିନ	4	\$ 775
251766	<0.2	0.33	70	660	0.5	<5	3.69	<1	15	2.2	45	4.59	0.12	1.28	1020	<2	0.17	10	220	10		~ ~	~10	47	<0.01	26	<u></u>	2	AP	, 3	195
251768	<0.2	0.57	75	870	0.5	<5	0.24	<1	11	10	85	3.21	0,26	0.86	360	<2	0.35	26	330	14	< 5		<10	72	~0.01	20	A.C.		ं र्रो		dille.
						_					60	4.00	0.01	1.54	1060	-7	0.75	19	690	18	5	7	<10	68	<0.01	33	<10	8	88	5	360
251770	<0.2	0.48	70	750	0.5	<5	2.61	<1	. 14	11	00	4.00	0.21	1.04	1000	~2	0.20	17	450	14	- 5	12	<10	77	<0.01	156	<10	6	105	6	565
251772	<0.2	0.88	35	700	0.5	<5	1.62	<1	. 22	34	35	0.03	0.17	1.00	930		0.10	12	220	2		8	<10	63	<0.01	56	<10	4	83	4	210
251774	<0.2	0.53	5	590	0.5	<5	1.62	<1	. 11	20	35	5.17	0.18	0.91	780	< 2	0.10	27	790	6		7	~10	119	0.01	27	<10	7	79	4	145
251776	<0.2	2.42	85	240	0.5	<5	2.21	<1	16	41	54	4.51	0.12	1.66	6/5	<2	0.06	27	700	14	~5	, 5	~10	157	-0.01	31	210	7	1108	4	140
251778	<0.2	0.80	45	1830	0.5	<5	2.33	<1	11	22	45	3.61	0.20	0.57	' 560	<2	0.04	20	510	16	< 5	0	10	172	~0.01	51	Sel.	• (ditte.		See.
251780	< 0.2	0.70	45	1280	0.5	< 5	1.32	<1	. 12	23	51	3.54	0.21	1.12	580	<2	0.09	20	380	16	<5	6	<10	112	<0.01	32	<10	4	94	4	196115
251782	0.2	0.57	55	420	0.5	<5	1.63	<1	15	34	53	3.67	0.17	0.79	540	έ 2	0.09	23	370	14	5	6	<10	122	<0.01	34	<10	5	्, 89	4	1,290
251784	0.2	0.39	20	250	0.5	< 5	3.38	<1	10	29	32	3.67	0.15	1.56	675.	<2	0.07	18	270	10	5	6	<10	157	<0.01	35	<10	4	82	4	1370
251786	<0.2	0.32	10	230	0.5	<5	1.02	<1	. 8	56	23	2.62	0.19	0.67	500	<2	0.08	14	50	12	5	3	<10	74	<0.01	18	<10	3	61	3	<u> (</u> 210
251788	<0.2	0.37	5	220	0.5	<5	0.86	<1	10	45	. 29	3.28	0.19	0.85	585	<2	0.11	18	250	8	< 5	5	<10	81	<0.01	32	<10	4	72	4	11285
251/00		41.37																								1	1.1.1.1		6.11	ŧ	1116
251700	<0.7	0.42	10	220	0.5	<5	1.13	<1	9	49	31	3.27	0.20	0.95	575	<2	0.12	16	280	6	<5	5	<10	97	<0.01	32	्<20	4	<u> </u>	4	1.330
251797	<0.7	0.31	<5	250	0.5	< 5	2.36	<1	. 9	46	2.8	3,25	0.18	1.30	805	<2	0.11	16	220	8	<5	5	<10	96	< 0.01	31	، <1 0`	4	્ોઈટ	4	1140
251794	<0.2	0.86	5	260	0.5	<5	0.44	<1	10	52	28	3.84	0.19	0.93	610	<2	0,13	18	580	6	<5	5	<10	50	<0.01	41	्र10	5	1. 26	4	1115
251796	< 0.2	1.36	10	440	0.5	< 5	1.21	<1	12	26	44	4.55	0.16	0.96	615	<2	0.04	14	390	14	<5	7	<10	65	<0.01	43	<10	6	. 85	4	
251750	<0.2	0.54	55	710	0.5	5	0.51	<)	15	17	54	4.46	0.22	0.35	495	<2	0.04	13	420	16	5	7	<10	85	<0.01	28	<10	5	94	4	410
201790	-0.2	0.01																									an a		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		144
051900	<0.2	0.67	15	550	0.5	5	0.99) <1	13	39	35	5.60	0.16	0.49	945	<2	0,04	13	1720	16	<5	7	<10	97	<0.01	59	<10	8	85	5	285
251800	20.2	0.44	60	90	< 0.5	<5	2.28	<	ı 18	134	92	3.50	0.02	2.88	495	<2	0.03	108	630	10	5	10	<10	155	< 9.01	80	<10	5	58	5	5370
251502	-0.2	0.39	125	. on	<0.5	< 5	2 39) <1	15	102	90	3.41	0.01	1.91	470	<2	0.02	86	340	8	5	9	<10	186	<0.01	65	<10	3	59	5	950
251804	-0.2	2.00	100	1 760		< 5	2.34		17	31	64	4 37	0.13	1.41	660	<2	0.10	22	870	6	< 5	7	<10	125	0.05	80	<10	7 -	73	5	150
251806	<0.2	0.09	100	500	0.5	~ 5	1.89			27	36	3.37	0.17	0.78	570	<2	0.04	19	390	16	5	5	<10	137	<0.01	27	<10	5	. 80	. 3	125
251808	<0.2	0.38	95	520	0.5	~5	1.05			/	50	0.07	••••																		S. S
	0.7	0.54	100	520	0.5	~ 5	1 59		1 11	28	43	3.44	0.17	0.97	555	2	0.03	17	1060	18	<5	5	<10	138	<0.01	2.7	<10	6	93	4	185
251810	0.2	0.04	100		0.5	~ 5	1.55		13		· 53	3.68	0.16	0.98	610	2	0.03	18	460	14	5	6	<10	68	<0.01	35	<10	5	84	4	190
251812	0.2	0.82	100		, U.S	~5	גט.ב		17	127		3.50	0.01	2.56	515	<2	0.02	123	560	10	5	11	<10	195	< 0.01	68	<10	5	51	5	1885
251814	<0.2	0.35	195	1 90 . co	· <0.5		2.04	· · ·	10	156	; 03	3 49	0.01	2.24	525	<2	0.03	135	510	8	5	11	<10	250	<0.01	73	<10	4	50	6	1200
251816	<0.2	0.40	195	90	<0.5	< 5	3.42		. 19	, 190 190	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	4 50	0.13	1 40	685	<2	0.02	30	490	14	10	7	<10	121	< 0.01	48	<10	9	80	. 4	1740
251818	<0.2	0.40	760	410	0.5	< 5	3,06	, <:	1 1/	34	, 32	4.30	0.15	1.40	000	~ 4	0.02										1.5		. N. N.		

A .5 gm sample is digested with 10 ml 3:1 HCI/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

Signed:
Durfeld Geological

Attention: Rudi Durfeld

Project: Watson Bar

Sample: core

Mineral Environgents Laboratories

8282 Sherbrooke St., vancouver, B.C., V5X 4E8

Tel (604) 327-3436 Fax (604) 327-3423

Report No 8V0597 Date : Sep-15-98

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Sample Number	Ag	Al %	As ppm	Ba pom	Be	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm	Hg ppb
	FF		FF	нн ·	•••	••		••	••						•••							_						_			00 da 14
251820	<0.2	1.13	50	300	0.5	<5	2.39	<1	13	39	39	4.23	0.13	0.88	685	2	0.03	21	420	10	<5	5	<10	126	<0.01	54	<10	8	78	3	225
251822	<0.2	1.83	40	540	<0.5	<5	3.34	<1	14	45	27	3.91	0.04	1.65	925	<2	0.04	22	550	8	<5	7	<10	133	<0.01	83	<10	9	62	3	250
251824	<0.2	0.46	60	180	0.5	<5	7.00	<1	12	25	27	3.82	0.17	0.56	1390	2	0.03	19	900	10	<5	4	<10	106	< 0.01	31	<10	11	61	3	380
251826	<0.2	0.47	135	130	0.5	<5	4.89	<1	10	29	39	4.93	0.10	1.57	800	4	0.03	15	590	10	5	5	<10	218	<0.01	51	<10	9	51	4	425
251828	<0.2	0.46	865	80	0.5	5	1.50	<1	17	28	46	4.74	0.14	0.30	625	2	0.02	28	570	14	20	7	<10	56	<0.01	44	<10	9	96	3	4030
																	n Siraya						en net		2						
251830	0.4	0.25	>10000	140	0.5	<5	4.76	<1	6	23	47	3.88	0.12	1.69	535	<2	0.02	9	260	58	20	3	<10	291	<0.01	24	<10	6	131	3	700
251832	<0.2	0.38	275	160	0.5	<5	2.71	<1	15	24	59	4.39	0.16	1.36	805	<2	0.02	24	740	22	15	4	<10	112	<0.01	31	<10	7	106	3	210
251834	<0.2	0.65	215	50	0.5	<5	2.69	<1	13	28	62	4.94	0.15	0.81	735	<2	0.03	25	1030	10	5	6	<10	130	<0.01	46	<10	7	82	4	115
251836	<0.2	0.70	465	280	0.5	<5	3.84	<1	25	21	78	4.10	0.15	0.71	460	2	0.02	31	600	14	10	5	<10	192	<0.01	32	<10	7	80	3	175
251838	0.2	1.49	625	300	0.5	<5	1.85	<1	14	48	67	4.03	0.15	1.25	570	<2	0.03	24	590	44	5	5	<10	69	<0.01	52	<10	9	238	3	190
			· · · · *																												
251840	0.4	2.67	20	90	<0.5	<5	1.89	<1	13	61	20	4.34	0.07	1.84	625	<2	0.26	23	460	4	<5	4	<10	86	0.01	78	<10	6	60	4	45
251842	<0.2	2.83	60	130	<0.5	< 5	2.02	<1	15	69	30	4.65	0.07	2.21	815	<2	0.19	26	660	6	<5	7	<10	71	0.03	112	<10	7	73	4	85
251844	<0.2	3.52	10	370	<0.5	<5	2.21	<1	18	30	36	4.70	0.07	2.26	760	<2	0.50	19	1070	2	<5	4	<10	105	0.16	99	<10	5	88	10	115
251846	<0.2	4.25	5	90	<0.5	<5	1.77	<1	17	34	56	3.94	0.02	2.04	680	<2	1.69	20	690	2	<5	8	<10	50	0.12	119	<10	5	65	6	65
251848	<0.2	3.32	45	630	<0.5	<5	1.46	<1	21	56	89	6.06	0.11	1.36	790	<2	0.20	32	1270	10	<5	7	<10	342	<0.01	107	<10	9	106	4	115
																	n i dinika		Sultantis						ali Mada						
251850	<0.2	3.33	5	310	<0.5	<5	2.73	<1	17	43	61	5.03	0.03	2.17	845	<2	0.33	22	1890	6	5	8	<10	204	<0.01	. 134	<10	11	86	4	85
251852	<0.2	2.83	40	620	<0.5	<5	4.69	<1	24	31	61	5.00	0.08	1.61	795	<2	0,48	29	880	8	<5	6	<10	303	<0.01	80	<10	9	86	4	90
251854	<0.2	1.36	40	720	0.5	<5	2.36	<1	19	12	80	4.60	0.24	0.96	635	<2	0.21	18	900	18	<5	7	<10	396	<0.01	61	<10	9	107	4	100
251856	<0.2	0.32	10	130	0,5	<5	1.52	<1	10	44	27	3.19	0.14	1.16	620	<2	0.07	15	380	10	<5	5	<10	103	<0.01	48	<10	6	68	4	120
251858	<0.2	0.49	<5	230	0.5	<5	1.58	<1	9	40	30	3.24	0.19	1.20	625	<2	0.10	17	510	10	<5	5	<10	172	<0.01	42	<10	7	68	4	50
			an an da sa _{ba}			1															Section.										1.1
251860	<0.2	0.37	10	240	0.5	<5	0.96	<1	10	41	31	3.56	0.20	0.91	585	<2	0.09	17	550	10	<5	5	<10	81	<0.01	38	<10	8	70	4	. 95
251862	<0.2	0.31	70	320	0.5	<5	2.09	<1	9	33	18	3.60	0.19	1.10	650	<2	0.09	14	270	16	5	4	<10	108	<0.01	20	<10	5	64	4	195
251864	<0.2	0.55	90	640	0.5	<5	1.00	<1	16	20	40	6.18	0.25	1.09	755	<2	0.14	23	2450	16	5	6	<10	115	<0.01	44	<10	12	103	6	1,35
251866	<0.2	0.23	80	160	<0.5	<5	2.15	<1	4	42	8	1.97	0.12	0.79	535	<2	0.08	6	330	10	5	2	<10	92	< 0.01	18	<10	3	47	3	90
251868	<0.2	0.20	25	150	<0.5	<5	2.00	<1	5	57	10	1.80	0.12	0.73	480	<2	0.08	7	340	6	5	2	<10	126	<0.01	13	<10	3	51	4	120
									a se são																						
251870	<0.2	0.32	110	480	0.5	<5	0.64	<1	9	64	30	2.51	0.27	0.5 9	380	2	0.10	18	160	16	5	3	<10	68	<0.01	17	<10	3	79	5	90
251872	<0.2	0.34	70	470	0.5	<5	1.18	<1	11	30	51	3.18	0.24	0.90	540	<2	0.10	20	440	20	5	5	<10	96	<0,01	26	<10	4	93	4	135
251874	<0.2	0.24	55	300	0.5	<5	1.57	<1	9	68	16	3.12	0.18	0.89	575	2	0.07	14	260	14	5	4	<10	77	<0.01	26	<10	4	58	4	350

A .5 gm sample is digested with 10 ml 3:1 HCI/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

Signed:

/INERAL ENVIRONMENTS LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

Quality Assaying for over 25 Years

Assay Certificate

Company:	DURFELD GEOLOGICAL
Project:	

Attn: RUDI DURFELD

We *hereby certify* the following Assay of 24 CORE samples submitted Sep-24-98 by DURFELD GEOLOGICAL.

Sample Name	Au-fire g/tonne	
251351	0.01	
251352	0.01	
251353	0.09	
251354	0.02	
251355	0.03	
251356	0.18	
251357	0.01	
251358	0.01	
251359	0.01	
251360	0.01	
251361	0.01	
251362	0.01	
251363	0.01	
251364	0.01	
251365	0.02	
251366	0.01	
251367	0.01	
251368	0.01	
251369	0.01	
251370	0.01	
251371	0.01	
251372	0.01	
251373	0.01	
251374	0.01	

VANCOUVER OFFICE:

8282 SHERBROOKE STREET VANCOUVER, BC, CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB:

3176 TATLOW ROAD SMITHERS, BC, CANADA VOJ 2N0 TELEPHONE (250) 847-3004 FAX (250) 847-3005

8V-0631-RA1

Oct-01-98

Certified by

Min-En Laboratories

Quality Assaying for over 25 Years

Assay Certificate

DURFELD GEOLOGICAL Company: Project:

Attn: **RUDI DURFELD**

We *hereby certify* the following Assay of 24 CORE samples submitted Sep-24-98 by DURFELD GEOLOGICAL.

Sample Name	Au-fire g/tonne	
251375	0.01	
251376	0.02	
251377	0.02	
251378	0.01	
251379	0.01	
251380	0.01	
251381	0.01	
251382	0.02	
251383	0.01	
251384	0.01	
251385	0.01	
251386	0.01	
251387	0.01	
251388	0.01	
251389	0.02	
251390	0.01	
251391	0.01	
251392	0.01	
251393	0.01	
251394	0.01	
251401	0.01	
251402	0.01	
251403	0.01	
251404	0.02	

VANCOUVER OFFICE:

8282 SHERBROOKE STREET VANCOUVER, BC. CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB:

3176 TATLOW ROAD SMITHERS, BC, CANADA VOJ 2NO TELEPHONE (250) 847-3004 FAX (250) 847-3005

Certified by

Min-En Laboratories

8V-0631-RA2

NINERAL ENVIRONMENTS LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

Quality Assaying for over 25 Years

Assay Certificate

Company: DURFELD GEOLOGICAL Project:

Attn: RUDI DURFELD

We *hereby certify* the following Assay of 24 CORE samples submitted Sep-24-98 by DURFELD GEOLOGICAL.

Sample Name	Au-fire g/tonne	
251405	0.01	
251406	0.01	
251407	0.01	
251408	0.01	
251409	0.01	
251410	0.01	
251411	0.01	
251412	0.01	
251413	0.01	
251414	0.01	
251415	0.01	
251416	0.01	
251417	0.01	
251418	0.01	
251419	0.01	
251420	0.01	
251421	0.01	
251422	0.01	
251423	0.01	
251424	0.01	
251425	0.01	
251426	0.01	
251427	0.01	
251428	0.01	

VANCOUVER OFFICE:

8282 SHERBROOKE STREET VANCOUVER, BC, CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB:

3176 TATLOW ROAD SMITHERS, BC, CANADA VOJ 2NO TELEPHONE (250) 847-3004 FAX (250) 847-3005

Certified by

Min-En Laboratories

ttu

8V-0631-RA3

Oct-01-98

يەسىلەر .

Quality Assaying for over 25 Years

Assay Certificate

Company: DURFELD GEOLOGICAL Project:

Attn: RUDI DURFELD

We *hereby certify* the following Assay of 24 CORE samples submitted Sep-24-98 by DURFELD GEOLOGICAL.

Sample A Name g	Lu-fire /tonne
251429	0.01
251430	0.01
251431	0.01
251432	0.02
251433	0.08
251434	0.01
251435	0.01
251436	0.01
251437	0.29
251438	0.33
251439	0.06
251440	0.20
251441	0.04
251442	0.07
251443	0.02
251444	0.01
251445	0.05
251446	0.02
251447	0.06
251448	0.80
251449	0.09
251450	0.02
251451	0.01
251452	0.01

Certified by

Min-En Laboratories

8V-0631-RA4

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, BC, CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423 SMITHERS LAB: 3176 TATLOW ROAD

SMITHERS, BC, CANADA VOJ 2NO TELEPHONE (250) 847-3004

FAX (250) 847-3005

Quality Assaying for over 25 Years

Assay Certificate

Company: **DURFELD GEOLOGICAL** Project:

Attn: RUDI DURFELD

We *hereby certify* the following Assay of 24 CORE samples submitted Sep-24-98 by DURFELD GEOLOGICAL.

Sample Name	Au-fire g/tonne
251453	0.01
251454	0.01
251455	0.06
251456	0.01
251457	0.01
251458	0.01
251459	0.01
251460	0.01
251461	0.01
251462	0.01
251463	0.02
251464	0.01
251465	0.01
251466	0.01
251467	0.01
251468	0.01
251469	0.01
251470	0.01
251471	0.02
251472	0.01
251473	0.01
251474	0.01
251475	0.01
251476	0.01

VANCOUVER OFFICE:

8282 SHERBROOKE STREET VANCOUVER, BC, CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB:

3176 TATLOW ROAD SMITHERS, BC, CANADA VOJ 2N0 TELEPHONE (250) 847-3004 FAX (250) 847-3005

Certified by

Nu

Min-En Laboratories

8V-0631-RA5

Quality Assaying for over 25 Years

Assay Certificate

Company: DURFELD GEOLOGICAL Project:

Attn: RUDI DURFELD

We *hereby certify* the following Assay of 24 CORE samples submitted Sep-24-98 by DURFELD GEOLOGICAL.

Sample Name	Au-fire g/tonne	
251477	0.01	
251478	0.01	
251479	0.01	
251480	0.01	
251481	0.01	
251482	0.01	
251483	0.02	
251484	0.01	
251485	0.02	
251486	0.01	
251487	0.02	
251488	0.01	
251489	0.01	
251490	0.01	
251491	0.01	
251492	0.01	
251493	0.01	
251494	0.01	
251495	0.01	
251496	0.01	
251497	0.01	
251498	0.01	
251499	0.01	
251500	0.01	

VANCOUVER OFFICE:

8282 SHERBROOKE STREET VANCOUVER, BC, CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB:

3176 TATLOW ROAD SMITHERS, BC, CANADA VOJ 2N0 TELEPHONE (250) 847-3004 FAX (250) 847-3005

8V-0631-RA6

Oct-01-98

Certified by_____

Min-En Laboratories

tou

Quality Assaying for over 25 Years

Assay Certificate

Company: **DURFELD GEOLOGICAL**

Project: Attn: **RUDI DURFELD**

We *hereby certify* the following Assay of 24 CORE samples submitted Sep-24-98 by DURFELD GEOLOGICAL.

Sample Name	Au-fire g/tonne
251668	0.01
251669	0.01
251670	0.01
251671	0.01
251672	0.01
251673	0.01
251674	0.01
251675	0.01
251676	0.01
251677	0.01
251678	0.01
251679	0.02
251680	0.01
251681	0.01
251682	0.01
251683	0.02
251684	0.01
251685	0.01
251686	0.01
251687	0.01
251688	0.01
251689	0.01
251690	0.01
251691	0.01

VANCOUVER OFFICE:

8282 SHERBROOKE STREET VANCOUVER, BC. CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB:

3176 TATLOW ROAD SMITHERS, BC, CANADA VOJ 2NO TELEPHONE (250) 847-3004 FAX (250) 847-3005

8V-0631-RA7

Oct-01-98

Certified by

Min-En Laboratories

Quality Assaying for over 25 Years

Assay Certificate

Company: **DURFELD GEOLOGICAL** Project:

Attn: RUDI DURFELD

We *hereby certify* the following Assay of 24 CORE samples submitted Sep-24-98 by DURFELD GEOLOGICAL.

Sample Name	Au-fire g/tonne	
251692	0.01	
251693	0.01	
251694	0.02	
251695	0.01	
251696	0.01	
251697	0.01	
251698	0.01	
251699	0.01	
251700	0.01	
251876	0.01	
251877	0.01	
251878	0.01	
251879	0.01	
251880	0.01	
251881	0.01	
251882	0.01	
251883	0.01	
251884	0.01	
251885	0.01	
251886	0.01	
251887	0.01	
251888	0.01	
251889	0.01	
251890	0.01	

Certified by

ton

Min-En Laboratories

VANCOUVER OFFICE:

8282 SHERBROOKE STREET VANCOUVER, BC, CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB:

3176 TATLOW ROAD SMITHERS, BC, CANADA VOJ 2N0 TELEPHONE (250) 847-3004 FAX (250) 847-3005

8V-0631-RA8

Oct-01-98

ر معدر ا

MINERAL ·ENVIRONMENTS LABORATORIES LTD.

> SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

> > Quality Assaying for over 25 Years

Assay Certificate

Company: DURFELD GEOLOGICAL Project:

Attn: RUDI DURFELD

We *hereby certify* the following Assay of 24 CORE samples submitted Sep-24-98 by DURFELD GEOLOGICAL.

Sample Name	Au-fire g/tonne
251891	0.01
251892	0.01
251893	0.01
251894	0.01
251895	0.01
251896	0.01
251897	0.01
251898	0.01
251899	0.01
251900	0.01
251901	0.01
251902	0.01
251903	0.01
251904	0.01
251905	0.01
251906	0.01
251907	0.04
251908	0.08
251909	0.06
251910	0.01
251911	0.02
251912	0.01
251913	0.02
251914	0.02

VANCOUVER OFFICE:

8282 SHERBROOKE STREET VANCOUVER, BC, CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB:

3176 TATLOW ROAD SMITHERS, BC, CANADA VOJ 2N0 TELEPHONE (250) 847-3004 FAX (250) 847-3005

8V-0631-RA9

Oct-01-98

Certified by

ΤŲ.

Min-En Laboratories

Quality Assaying for over 25 Years

Assay Certificate

Company: DURFELD GEOLOGICAL Project:

Attn: RUDI DURFELD

We *hereby certify* the following Assay of 24 CORE samples submitted Sep-24-98 by DURFELD GEOLOGICAL.

Sample Name	Au-fire g/tonne	
251915	0.01	
251916	0.01	
251917	0.01	
251918	0.01	
251919	0.01	
251920	0.03	
251921	0.02	
251922	0.01	
251923	0.01	
251924	0.01	
251925	0.01	
251926	0.01	
251927	0.01	
251928	0.02	
251929	0.01	
251930	0.01	
251931	0.01	
251932	0.01	
251933	0.01	
251934	0.01	
251935	0.01	
251936	0.01	
251937	0.01	
251938	0.01	· ·

VANCOUVER OFFICE:

8282 SHERBROOKE STREET VANCOUVER, BC, CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB:

3176 TATLOW ROAD SMITHERS, BC, CANADA VOJ 2N0 TELEPHONE (250) 847-3004 FAX (250) 847-3005

Certified by

Min-En Laboratories

8V-0631-RA10

VINERAL ENVIRONMENTS LABORATORIES LTD.

> SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

> > Quality Assaying for over 25 Years

Assay Certificate

Company: DURFELD GEOLOGICAL Project:

Attn: RUDI DURFELD

We *hereby certify* the following Assay of 12 CORE samples submitted Sep-24-98 by DURFELD GEOLOGICAL.

Sample Name	Au-fire g/tonne	
251939	0.01	
251940	0.01	
251941	0.01	
251942	0.01	
251943	0.01	
251944	0.01	
251945	0.01	
251946	0.01	
251947	0.01	
251948	0.01	
251949	0.01	
251950	0.01	

VANCOUVER OFFICE:

8282 SHERBROOKE STREET VANCOUVER, BC, CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB:

3176 TATLOW ROAD SMITHERS, BC, CANADA VOJ 2NO TELEPHONE (250) 847-3004 FAX (250) 847-3005

Certified by

Ħw

Min-En Laboratories

8V-0631-RA11

...\second\dgn\99-9100.dgn Sep. 27, 1999 11:29:47

...\second\dgn\99-9250.dgn Sep. 27, 1999 11:46:52

...\second\dgn\99-9275.dgn Sep. 27, 1999 11:50:41

...\second\dgn\99-9300.dgn Sep. 27, 1999 13:17:35

...\second\dgn\99-9350.dgn Sep. 28, 1999 09:47:36

^{...\}projects\second\dgn\99-108.dgn Sep. 28, 1999 10:08:27

...\second\dgn\99-11100.dgn Sep. 28, 1999 10:13:01

