1999 REPORT OF GEOLOGICAL, GEOCHEMICAL AND GEOPHYSICAL WORK ON THE YREKA PROPERTY

British Columbia Nanaimo Mining Division 92L/5E Latitude 50°27'30''N Longitude 127°34'00''W

For

TALLTREE RESOURCES LTD. 1104 – 750 West Pender Street, Vancouver, B.C., V6C 2T8

by

KENNETH E. HICKS, P. GEO.

Felipe Vallese 2202 (1406) Buenos Aires, Argentina

October 7, 1899 OLOGICAL SURVEY BRANCH

新前1:000 د رو به در در areas and

SUMMARY

The Yreka Cu-Zn property is situated 24-km south-southwest of the town of Port Hardy on northern Vancouver Island in southwestern British Columbia. Skarn hosted high-grade copper mineralization has been the focus of exploration and mining efforts since the turn of the century. In addition, zinc, molybdenum and gold occurrences are found within the property borders.

The most significant economic deposit in the area was the Island Copper mine, a large coppermolybdenum-gold porphyry deposit located 16 kilometers northeast of the Yreka property. During its production from 1971 to 1997, the mine produced copper concentrate containing 1.3 billion kilograms of copper, 31 million kilograms of molybdenum, 31.7 million grams of gold, 336 million grams of silver and 27,000 kilograms of rhenium. It was the third largest copper mine in Canada. In addition to porphyry mineralization, the Island Copper mineralized area was also host to copper skarn mineralization (the Northwest Zone).

In 1998 Talltree Resources Ltd. conducted an initial exploration program of prospecting, rock and soil geochemistry. A total of 83 rock samples and 285 soil samples were collected from the property area. Two areas were selected for detailed sampling and examination: Lower Blue Grouse and Clyde (Figure 4). Results were encouraging in the North Arm (Cu and Mo) prospect and the Upper Blue Grouse area (Cu, Zn, Au).

The efforts of the 1999 exploration program consisting of property mapping, prospecting, soil geochemistry and VLF-EM in the North Arm creek, Upper Blue Grouse and the Tuscarora areas. A total of 31 rock samples were collected and analyzed for 30 element ICP and FAA gold. A total of 491 soil samples were collected on the Canyon Grid and the Tuscarora grids, following up on the 1998 areas. A total of 12.5 line km of VLF-EM was carried out on the grids. Approximately 11 days were spent conducting geological and prospecting traverses.

Results from the 1999 work program indicate an area of strongly anomalous copper and molybdenum concentrations in soils over the North Arm Creek area. The combination of anomalous levels of both elements, together with the discovery of a dense quartz-stockwork zone and visible molybdenum in hand specimen is a very positive indication that porphyry-style mineralization might exist on the property.

The Blue Grouse and Tuscarora prospects were found to contain high concentrations of zinc in rock samples and this contributed to the hypothesis that a mineralogical zonation might exist on the property. Mo and Cu would represent proximal mineralization while zinc would be distal to the intrusive heat source.

Recommendations for future exploration involve a detailed airborne survey of the entire property, correlation with ground information and, given positive results, a second phase of aggressive diamond drilling with a helicopter-supported rig.

TABLE OF CONTENTS

	Summary					
	Table of Contents, List of Figures, List of Appendices					
1.	Introduction1					
2.	Location, Access and Topography1					
3.	Claims					
4.	Property History and Development					
5.	Regional Geology and Metallogeny					
6.	Property Geology					
6.1	Stratigraphy7					
	6.2 Intrusives					
	6.2 Structure					
	6.3 Alteration and Mineralization					
7 .	1999 Work Completed					
8.	1999 Work Program Results					
	8.1 Reconnaissance Rock Sampling Results					
	8.2 Soil Geochemistry Results					
	8.3 Geophysics – VLF-EM Results					
9.	Conclusions					
10.	Recommendations					
11.	Proposed Exploration Budget					
12.	References					
13.	Certificate of Qualifications					
14.	Itemized Cost Statement					

LIST OF FIGURES

Figure 1 Figure 2 Figure 3 Figure 4	Location of Yreka Project in British Columbia. 2 Property Location – Northern Vancouver Island. 3 Claim Map. 4 Regional Geology of the Yreka Area. 8
Canyon Grid	
Figure 5a	COPPER in Soils
Figure 5b	ZINC in Soils
Figure 5c	MOLYBDENUM in Soils
Figure 5d	ARSENIC in Soils
Figure 5e	VLF Readings
Figure 5f	VLF Profiles & Interpretation
Lower Blue G	rouse Grid
Figure 6a	COPPER in Soils
Figure 6b	ZINC in Soils
Figure 6c	MOLYBDENUM in Soils
Figure 6d	ARSENIC in Soils
Tuscarora Gri	d
Figure 7a	COPPER in Soils
Figure 7b	ZINC in Soils
Figure 7c	MOLYBDENUM in Soils
Figure 7d	ARSENIC in Soils
Figure 7e	VLF Readings
Figure 7f	VLF Profiles & Interpretation
Fieldwork Sur	mmary
Figure 8a	Rock Sampling 1998 & 1999
Figure 8b	Geology, Sampling, Geochem & Geophysics

Page

LIST OF APPENDICES

Appendix 1

Soil Sampling Field Notes for 1999

Canyon Grid	8 pages
Lower Blue Grouse Grid	2 pages
Tuscarora Grid	2 pages

Appendix II

Soil and Rock geochemical analysis - Acme Labs

Appendix III

Rock Sample Descriptions

Appendix IV

Figure Xa	Scatterplot Matrix: 1998 & 1999 Soil Assays [Linear Distribution]
Figure Xb	Scatterplot Matrix: 1998 & 1999 Soil Assays [Log10 Distribution]
Figure Xa	Scatterplot Matrix: 1998 & 1999 Rock Assays [Linear Distribution]
Figure Xb	Scatterplot Matrix: 1998 & 1999 Rock Assays [Log10 Distribution]

Appendix V

Analytical procedures - Acme Labs

Appendix VI

VLF Field Readings	
Canyon Grid	11 pages
Tuscarora Grid	4 pages

Appendix VII

Geonics EM16 VLF Operating Manual (abridged) 15 pages

1. INTRODUCTION

This report was prepared at the request of J. Minni, president of Talltree Resources Ltd., 1104 – 750 West Pender Street, Vancouver, B.C., who controls the claims under option. This report and the general focus of the 1999 work program on the Yreka property described within it are based upon the conclusions and recommendations of the previous work program and report in 1998 authored by Chris Baldys, P. Geo. Therefore, readers are advised to refer to the 1998 report for a detailed version of the historical property data and regional geology.

The CD, BF, Bern, and Micha 5 claims form a contiguous group called the "Yreka property", situated 24 km south-southwest of the town of Port Hardy on northern Vancouver Island in southwestern British Columbia (Figure 1).

The property is host to Cu-Zn skarn mineralization and is underlain by sedimentary, volcanic and intrusive rocks of the Wrangellia Terrane of the Insular physiographic belt (Figure 2).

Copper skarn mineralization was discovered on the Yreka property at the turn of the century and was the target of intermittent exploration and production until 1979. A total 145,334 tonnes of ore averaging 2.71 percent copper, 31.22 g/t silver and 0.34 g/t gold was mined. Noranda Explorations Ltd. delineated the deposit by diamond drilling and underground development in 1953-56. Most of the production took place between 1965 and 1967 by a joint venture between Mitsubishi Metal Mining Co. and Yreka Mines Limited.

The Yreka property has had considerable historical exploration since the turn of the century. Numerous geochemical, geophysical and geological programs have been completed on the Yreka and to a lesser extent on the surrounding occurrences. The potential for developing an economic deposit on the property lies within three areas: 1) greatly expanding the tonnage of the known mineralization at the Yreka mine itself 2) defining a geological resource in the outlying occurrences such as the Blue Grouse or Tuscarora through detailed drill testing or 3) the discovery of a Cu-Mo resource of porphyry-style mineralization in the North Arm creek area. Expanding the tonnage of the Yreka deposit is considered unlikely considering the great amount of drilling carried out by Noranda in locating the "blind" deposit. The other two avenues are considered to be geologically possible.

2. LOCATION, ACCESS AND TOPOGRAPHY

The Yreka property is located in the northern part of Vancouver Island, B.C. (Figures 1 and 2), centered at approximately 50°27'30''N Lat., 127°34'00''W Long (UTM 5,590,500N and 601,700E).

The nearest settlement is Port Alice, the site of a pulp mill, situated across Neurotsos Inlet, 3.5 km southeast of the property. The inlet is the southeast arm of Quatsino Sound, which leads westerly to the Pacific Ocean. Access to a dock on the property is by boat from Juneau Landing near Port Alice or Coal Harbour at Holberg Inlet 12 kilometers southwest of Port Hardy. A 1.9-km reconditioned road leads from the dock to the property workings.

The west side of Vancouver Island is well known for rugged terrane, high relief and high annual precipitation. The property extends from tidewater up the mountainside to the west, and

covers an area of 675 hectares. Most of it is heavily wooded and accessible by foot. Steep slopes and bedrock cliffs are common and the elevation ranges from 0 to 1128 metres above sea

Figure 1. Location of Yreka Property in British Columbia

level (Mount Comstock). The highest peak in the area, Mount Wolfenden (1273 m), lies to the south of the claim area only 3 kilometers from the shore of Neroutsos Inlet. Mine workings range in elevation from 325 to 700 meters.

Montane and lowland areas are deeply incised by valleys that drain to Neroutsos Inlet. Major valleys and fjords exploit regional northwest and northeast-striking faults.

3. CLAIMS

The property consists of 4 continuous mineral claims comprising 27 units located in Nanaimo Mining Division, NTS 92L/5E (Figure 3). The particulars are as follows:

CLAIM	NUMBER	TYPE	RECORD	REGISTERED	EXPIRY DATE
NAME	OF UNIT	S	NUMBER	OWNER	
CD BF BERN MICHA 5	16 6 4 1	MGS MGS MSG 2 POST	353373 353335 361294 361321	C.DYAKOWSK C.DYAKOWSK C.DYAKOWSK C.DYAKOWSK	I JAN. 25, 2001 I JAN. 25, 2001 I JAN. 25, 2001 I JAN. 24, 2001 I FEB. 19, 2001

The claims are currently under option to Talltree Resources Ltd. of Vancouver B.C. The Edison Crown Granted claim (Lot #244) is contained within the perimeter of the claim group boundary but is not part of the Yreka property (Figure 3). The property is approximately 675 hectares in size.

4. PROPERTY HISTORY AND DEVELOPMENT

The Yreka copper deposit was discovered at the end of the last century, the first claims being staked in 1898 and 1899. By 1903 the property was equipped with an aerial tram, a ten-drill air compressor powered by a Pelton wheel, ore bunkers, and a wharf. In that year 2500 tons of copper ore, of unknown grade, was shipped from the Clyde workings on the property. In 1903 the Northwestern Smelting and Refining Company assumed control of the property from Yreka Copper Company, however all work ceased in 1904.

A new wharf, ore bunkers and aerial tramway were erected in the spring of 1917 and a shipment of 900 tons of 3% copper ore was made, but the property was again abandoned later in the year.

No further work was done on the property until 1952, when it was taken over by Noranda Exploration Company Limited. In 1953 the company conducted detailed mapping and "X-Ray" diamond drilling. Two short holes were drilled at the portal of Tunnel # 1 on the Clyde workings. One hole intersected 18.5 feet of 1.42 % copper.

Underground sampling indicated similar average copper grades in sulphide zones mapped in Tunnels # 1, 2 and 3. Gold assays of up to 0.05 oz/t and silver up to 3.0 oz/t were returned from chip samples of the best mineralized sections. At Upper Blue Grouse they outlined an area of mineralization approximately 34 metres long and 5 - 10 metres wide on a steep northerly facing scarp immediately south of, and across Canyon Creek from the Clyde prospect. Nine samples taken later by Green Eagle Mines Ltd. in 1971 averaged 0.42 % copper and 1.30 % zinc (Poloni, 1971).

Noranda carried out more diamond drilling at higher elevation in 1954 followed by underground development on two levels in 1955 and 1956 at the central and northern part of the main skarn zone. No production was reported during this period.

By 1956 a total 40,388 feet of diamond drilling (EX and AX size), 6103 feet of drifting and cross cutting and 1723 feet of raises were completed on the property (Poloni, 1971).

The property was dormant between 1958 and 1964. In 1965, Minoca Mines Ltd., jointly owned by Mitsubishi Metal Mining Co. Ltd. (49%) and Yreka Mines Ltd. (51%), prepared the property for production based on the ore resource figure of 154,221 tonnes grading 3.7% copper and 41.15 g/t silver. Based on Noranda's exploration work from 1953 to 1956, this figure was classified as "measured geological resource". An additional indicated resource was estimated at 45,359 tonnes of 2.6 percent copper and 34.29 g/t silver (MINFILE reprint from Northern Miner, 1965).

Production between the commencement of milling in November, 1965 and cessation of operations at the beginning of October 1967 was 133,572 tonnes of ore, grading 2.9% copper, 32.79 g/t silver and 0.36 g/t gold (MINFILE, 1989).

In 1970 the property was optioned by Green Eagle Mines Ltd from K.Akre. The company conducted airborne electromagnetic and magnetometer surveys over the main part of the property as well as ground geophysical and geochemical surveys over the Tuscarora and Upper Blue Grouse areas. In addition, reconnaissance stream sediment sampling was carried out along the creeks to the south and north of Canyon Creek. Copper, zinc and molybdenum anomalies were located in creeks draining the slopes of Upper and Lower Blue Grouse prospects to the south of Canyon Creek.

In 1972 ISO Explorations Ltd., who optioned the property from Green Eagle Mines Ltd., conducted geochemical and geophysical surveys on nine prospective areas in the vicinity of the Yreka Mine workings. The main focus of ISO's work was the targets surrounding the Yreka deposit. It did, however, include the northern (Superior) and the southern (Clyde) limits of the skarn horizon. A majority of the target areas were surveyed by MAG, VLF, self-potential and soil geochemistry surveys. A total of 1,844 feet of drilling at Comstock-Edison was performed to test two copper-silver showings discovered in 1971 and 1972. The down dip extension of one of the showings (No.8) was intersected. The best assay yielded 1.92 % copper across 5.9 metres. Two holes drilled in the North Arm Creek were aimed at testing a VLF conductor. One hole was lost in bad ground at 46 feet. The second hole was drilled to 116 feet. No mineralization, only pyrite, was intersected (Crossley, 1972).

In March and May 1998 Talltree Resources Ltd. conducted an exploration program aimed at evaluating the economic potential of the property. Initial examination was done by using boat access from Coal Harbour located 15 kilometres northeast of the property. Subsequently a camp with a 5-man crew was established on the property to conduct detailed work on two selected exploration targets. A total of 135 man-days were spent on the property.

The exploration work consisted of rock and soil geochemistry surveys, prospecting and line cutting. A total of 83 rock samples and 285 soil samples were collected from the property area.

Two areas were selected for detailed sampling and examination in 1998: Lower Blue Grouse and Clyde. Blue Grouse is an old prospect with showings comprising trenches and open cuts. The Clyde area surrounds old underground exploratory workings, which have seen little surveying since the 1950's. It is situated 300 metres south of the former Yreka Mine. Geological evidence suggests that the skarn horizon of the main zone reaches its greatest thickness in this area. A part of the footwall zone branches off and traverses the steep hill to the northeast (Baldys, 1998).

5. REGIONAL GEOLOGY AND METALLOGENY

The generalized geology of northern Vancouver Island is shown in Figure 4. The oldest rocks encountered in the Quatsino Sound area belong to the Upper Triassic Vancouver Group and comprise tholeitic flood basalts (Karmutsen Formation) at the base, overlain by thinly bedded to massive limestone (Quatsino Formation) and intercalated marine shale, siltstone and impure limestone (Parson Bay Formation). Above it, the Lower to Middle Jurassic Bonanza Group is composed of mafic to felsic volcanic and lesser intercalated sedimentary rocks laid down in both submarine and subaerial environments. The Bonanza Group is unconformably overlain by marine to non-marine Upper Jurassic (?) to Cretaceous clastic sequences and localized Tertiary volcanic rocks. The Mesozoic strata are intruded by Lower to Middle Jurassic granitoids of the Island Plutonic Suite, and mafic to felsic dykes and sills of Karmutsen, Bonanza and Tertiary age (Perello *et al*, 1995).

The regional structure of northern Vancouver Island is dominated by block faulting. The blocks being bounded by prominent northwest to west-northwest-trending, normal or strike-slip faults which dip steeply northeast.

The collisional and volcanic arc tectonics of the Wrangellia Terrane give rise to a large number and variety of mineral deposits. Exhalative massive sulphides (Myra falls, H-W), Cu-Mo-Au porphyry (Island Copper), Au, Cu and Fe skarns (Yreka, Merry Widow) are just some examples of the wide range of mineral deposit types in this terrane.

Timing of mineralization can be divided into two age groups. The first is within the Triassic Sicker Group volcanics and are represented primarily by exhalative massive sulphides like the H-W deposit. The second major period of mineralization is related to volcanic and plutonic activity in the Early to Mid Jurassic. This is best represented by the porphyry and skarn mineralization at Island Copper and adjacent areas. At Island Copper a wide quartz-feldspar porphyry dyke intrudes the volcanic sequence. The mine produced copper concentrate containing 1.3 billion kilograms of copper, 31 million kilograms of molybdenum, 31.7 million grams of gold, 336 million grams of silver and 27,000 kilograms of rhenium.

6. PROPERTY GEOLOGY

6.1 STRATIGRAPHY

New mapping data collected in 1999 is correlated with stratigraphic subdivisions used in the 1998 report by Baldys. The basic framework of geological units is the same (Figures 8a, 8b).

Sediments and volcanics of the Lower to Middle Jurassic Bonanza Group are the best exposed stratigraphy on the Yreka property. The highest stratigraphic unit is seen above the upper Blue Grouse area and consists of a cliff-forming porphyritic and amygdaloidal flow. This is correlated with the JBF₃ unit of the Bonanza Group. Underlying this is the most important unit in term of receptiveness for skarn mineralization. A new debris slide that occurred in the winter of 1998 in the area of third creek has exposed a thick (unmineralized) section of this unit. It is comprised of a thick sequence of mainly bedded limestones, lesser tuff and angular breccias intruded by narrow dioritic dykes. The limestones ranged from arenaceous near the base to black

argillaceous and finally fossiliferous (crinoidal) limestone. This dominantly limestone package is the JBtls subdivision. A mafic volcanic flow unit is shown within the area between the Upper and Lower blue grouse but appears to pinch out laterally in the Edison creek area to the northwest. The Lower Blue grouse and the Tuscarora area are underlain by a package of thinbedded tuffs, calcareous tuffs and thin-bedded limestones. A coarse heterolithic debris flow with limestone and sedimentary clasts possibly marks a transition between regimes. Finally, the lowest stratigraphic unit encountered in the Bonanza Group is mafic flows and breccias in the area of the Gold Adit in the lower reaches of Canyon Creek (JBF1).

Limestone exposed on the shoreline is tentatively correlated with the Upper Triassic Quatsino Formation. The intervening Parson's Bay Formation, consisting of limestone and impure limestone are suggested to be absent in this area.

6.2 INTRUSIVES

Dykes and sills of felsic porphyries and quartz-diorite that are probably comagmatic with the Upper Bonanza Group volcanics intrude the bedded sequences. A large number of small quartz-feldspar and feldspar porphyry intrusions, usually one to several metres in thickness, are found in the Yreka skarn zone and the 3rd Creek slide area. Many appear to be sill-like, and conform to the existing bedding while others definitely cut stratigraphy.

6.3 STRUCTURE

Minor variations of bedding orientations are found in the sedimentary and tuffaceous layers, however no solid evidence of minor or major fold structures or stratigraphic repetitions was found. The structure is essentially homoclinal with an average strike of approximately 135° and dip of 35° southwest (Figures 8a, 8b). The BC Minfile report on the Yreka reports that "the rocks have been folded about a northwest plunging and trending axis".

The most prominent regional fault orientation is the northeast trending Brooks Peninsula Fault Zone which cuts across the southern reaches of Neroutsos Inlet, south of the Yreka property. Coincidentally, many of the creek drainages on the property follow minor fault or shear zones parallel to that orientation. The significance or more importantly correlation of these minor structures to mineralization is unknown at this time.

6.4 ALTERATION AND MINERALIZATION

The bedded limestone and calcareous tuffs within the JBtl2 and JBt subdivisions of the Bonanza Group appear to have been the "receptive hosts" of the majority of the alteration and mineralization evident on the Yreka Property (Figures 8a, 8b). A large amount of this calcareous rock has undergone a pervasive silicification, resulting in hard, blocky fracturing outcrops. Exposed at the very end of the access road, vertically below the Yreka workings, is mediumbedded limestone, partially silicified and with irregular patches of tremolite. This exposure displays the erratic occurrence of calc-silicate formation within the general area of contact metamorphism.

New rock outcrops in the North Arm slide area exposed a number of shear related gossans with narrow zones of calcite-quartz and ankerite veins with abundant sulphides. The T & P showing and the Upper Showing are examples of this type of mineralization. The veins have a general orientation of 245 degrees with a vertical dip. A 1 meter wide fine-grained quartz monzonite dyke trending 162 degrees with a vertical dip was also exposed by the slide.

A well-developed quartz stockwork outcrop was discovered in the 5+50NW, 0+23SW area of the Canyon Grid. A sample (JL99-1) collected from outcrop in this area contained visible molybdenite in the general area of closely spaced veining pervasive through the silicified limestone host (Figures 8a, 8b, Appendices II and II).

The 3rd Creek slide area showed a nearly continuous rock exposure through the very little in the way of silicification or mineralization in contrast to the Tuscarora and Blue Grouse areas.

The mineralization at the Yreka deposit is hosted by a garnet skarn which is 500 metres long and 30–100 metres wide. It strikes in a northwesterly direction, appears conformable to bedding and contains calcite, biotite, chlorite, hedenbergite, epidote, quartz, magnetite and sulphides. Most of the copper-gold-silver production came from a high-grade sulphide zone of limited size. It was oval-shaped with a steep southwest dip with dimensions approximately 15 meters wide by 49 meters long by 60 meters high. The average mined grade from this zone was 2.9% Cu (Baldys, 1998).

The presence of garnet in skarn within the Yreka area appears to be unique compared to other mineralized locals. Silicification and only weak calc-silicate formation are found in the Tuscarora and Blue Grouse zones. This lends credence to the hypothesis that a mineralogical zonation is discernible on a property-wide scale.

Pyrrhotite is pervasive throughout most of the property. It occurs as fine-grained dissemination as well as massive replacements generally devoid of other sulphides.

7. 1999 WORK COMPLETED

A total of 31 rock samples were collected and analyzed for 30 element ICP and FAA gold (Figures 8a, 8b). A total of 491 soil samples were collected on the Canyon Grid (Figures 5a-5d), Lower Blue Grouse (Figures 6a-6d) and the Tuscarora grids (Figures 7a-7d), following up on the 1998 areas of coverage. A total of 12.5 line kms of VLF-EM was carried out (Figures 5e,5f, 7e, 7f).

Rock samples were collected from a wide area throughout the property wherever economic mineralization was found. No attempt was made to resample the existing Clyde or Yreka workings in detail. A total of 31 reconnaissance rock samples were collected from various areas of the property. These include the Upper and Lower Blue Grouse, Tuscarora, North Arm creek and the Gold Adit. Sample descriptions, locations and analytical results are listed in Appendix III. Rock samples were located whenever possible through either relative coordinates to preexisting soil grid lines and/or GPS coordinates taken in the field.

Soil sample coverage followed up on the 1998 recommendations by extending a grid from the North Arm prospect up into the Upper Blue Grouse area. The existing 1998 Grid #2 (now the Tuscarora grid) was extended to the west to cover a prospective area between the Clyde Prospect and lower Edison Creek. This also corresponded to a multi-element anomaly in the lower Tuscarora creek. Additional samples were collected and coverage extended on the 1998 Grid #1 (now the Lower Grouse Grid) to follow up Cu + Zn anomalies near the ridge nose. A new grid was established in the North Arm – Canyon Creek-Upper Blue Grouse areas (called the Canyon Grid) to follow up evidence of Mo near the lower reaches of North Arm creek.

Reconnaissance mapping was carried out in the newly exposed areas of the North Arm and 3rd Creek slide areas together with traverses to most of the known areas of interest (Figures 8a, 8b). The "Gold Adit", a small exploratory working mentioned in the 1972 ISO assessment report was "rediscovered" in Canyon Creek just below the Lower Blue Grouse grid area. The adit itself was collapsed; however, samples of float material from outside the adit workings were collected for analysis and the results are displayed in Appendix III. Whenever possible, GPS coordinates were collected on grid locations and property landmarks in order to tie them into a relocateable coordinate position.

Within the Canyon and Tuscarora grids, approximately 12.5 line-kms of VLF-EM were completed during the 1999 field program. This was carried out in an attempt to correlate the soil geochemistry and reconnaissance mapping with possible structural features such as faults, which can be the loci of mineralizing fluids in a skarn system. In addition, other conductive bodies such as massive sulphides might be detected (Figures 5e, 5f, 7e, 7f).

8. 1999 WORK PROGRAM RESULTS

8.1 RECONNAISSANCE ROCK SAMPLING RESULTS

The Tuscarora area rock samples returned values very anomalous in zinc (highest > 99999 ppm Zn) or greater than 10% Zn. Copper values ranged from 1000 to 3000 ppm. Silver was slightly enriched with the highest values in the range of 7.0 ppm. All samples contained very low gold values.

The Upper Blue Grouse and Lower Blue Grouse areas generated moderately anomalous zinc values to 19408 ppm or roughly 1.9 % Zn. Copper values had a high of 10095 ppm (1%) but were generally in the 500 – 2000 ppm range. The best sample (KH140999-3), returned the highest copper, zinc, as well as silver and gold values in this area.

Samples collected from North Arm creek area contained very little in terms of zinc values but did contain copper in the 500 – 2000 ppm. The only rock sample strongly anomalous in Mo (JL99-1) was taken on the Canyon grid, close to North Arm creek and had a value of 1027 ppm Mo. Visible molybdenite was seen (Figures 8a, 8b).

r^{i,e} : 750N (3.50N sit sON Ree treat te or a to to to the to ംര്ം പ്രം - 100% * * * * * * * * * * * * * * * * * ******* . 2^{...}.N * * * * * * * * * * * * * * * * * * **** ***** 10.00 8 NOTES: **YREKA PROJECT** Sail sampling conducted by Pat Poissant & Milton Grace, August & September 1999. Samples highlighted with filled circle of size proportional to **COPPER** in Soils assay value. Assay values in ppm. Canyon Grid Scole: 1 : 500 Survey by: Pat Paissant & Milton Grace 100 METRES 0 50 100 150 200 250 Figure: 5a^{Canyon} Drawn by: J.D.Williams, P.Eng. N.T.S. 092L/05H File: Conyon_grid.dwg Date: Sept. 1999

8.2 SOIL GEOCHEMISTRY RESULTS

<u>Canyon Grid:</u> The northwest corner of the grid, immediately adjacent to North Arm Creek shows a well defined cluster of samples anomalous in Cu and Mo. This is in the vicinity of the Quartz Stockwork outcrop and visible Molybdenite. There appears to be an approximate upslope termination of this geochemical anomaly on line 750N. Zinc has a slightly larger dispersion of the elements plotted. This multi-element anomaly is considered a high priority in follow-up work. The highest Cu value is 1885ppm which is 50m upslope of the highest Mo value of 144ppm. An isolated Mo value of 188ppm occurs on the northeastern part of the grid.

Lower Blue Grouse Grid: (Figures 6a-6d) Copper and zinc appear to have a good correlation along the nose of the ridge although the zinc values are more consistent in magnitude. Arsenic is anomalous in the same general area but does not show the same geochemical dispersion train. The distribution of zinc appears to indicate a zinc enrichment parallel to the ridge connecting the Upper and Lower Blue Grouse.

<u>Tuscarora Grid: (Figures 7a-7d)</u> The 1999 work on the Tuscarora grid did not show the extension of a strong Cu-Zn anomaly on line 200S. Therefore, the termination of the anomaly occurs at the end of the 1998 line. Arsenic appears to be the only element which shows a consistent multi-point anomaly on line 00S. Copper, zinc, and molybdenum values on the 1999 grid are minimal or single point anomalies.

8.3 GEOPHYSICS – VLF-EM - RESULTS

A number of strong conductors were found and are displayed in Figures 5e, 5f, 7e, 7f. Refer to the soil geochemistry and rock sampling results.

VLF-EM on the Tuscarora Grid shows a strong conductor axis trending northwest, which is parallel to stratigraphy at that point. This could be interpreted as bedding parallel shears, which were prominent in the exposed outcrops.

A similar response was found at the Canyon Grid with possible shear zones parallel bedding. The conductors have an east-west strike on the lower half of the grid where the geochemical values are at background levels. They appear to deflect to a roughly northerly trend in the area of the anomalous Cu, Mo, and Zn geochemistry.

Konseriest

arithmen a announced announced announced announced announced announced

9. CONCLUSIONS

The Yreka property has been a focus of copper exploration since the turn of the century. Cu, Zn, Mo and less amounts of other elements are contained within skarn and/or calc-silicate rocks as a result of contact metamorphism with an adjacent intrusive. To date no large intrusive body has been discovered on the property. It is postulated to reside at depth below Comstock Mtn (Figures 8a, 8b).

Soil geochemistry and prospecting have been effective in defining a crude mineralogical zonation of copper and zinc concentrations on the property. Higher grade copper mineralization at the Yreka and Clyde workings are considered to be higher temperature and proximal to the intrusive body. The occurrence of molybdenite near North Arm creek to the south of the Clyde workings is also considered to indicate that an intrusive source is close by. Zinc-rich sulphide occurrences at the Tuscarora and the Upper and Lower Blue Grouse Showings occur peripheral to the old working, distal to the hidden intrusive. In addition, while the peripheral occurrences are zinc rich their copper values are still significant and worthy of follow-up. If the same model of lateral zonation is carried into the third dimension, these zinc-rich occurrences might possibly become more copper rich with an increase in depth as they approach the proposed intrusive contact. The occurrence of pyrrhotite as opposed to magnetite as the dominant Fe-oxide suggests a more reducing, possibly higher temperature formation than the oxidizing conditions prevalent for the creation of magnetite.

VLF-EM geophysics was successful in defining a number of high conductivity zones. However, they do not correlate with the known areas of anomalous geochemistry or with the signature of sulphide zones exposed in outcrop. Therefore, these anomalies are suggested to be conductive faults rather than massive sulphides.

The samples of high sulphide float from the area of the Gold adit indicate an arsenic-rich precious metal occurrence outside of the Cu-Zn mineralized zone. Insufficient evidence is available to draw definite conclusions but this might possibly point to a peripheral gold zone which might be expected in porphyry related mineralization.

The specific controls on the mineralization within the property boundary are not well defined. Skarns, by their genesis, can be erratic in the distribution of mineralization even within a restricted area because of host lithology, structures, depth of formation and many other factors. This fact, together with the rugged terrain and considerable extent of cover, make prospecting difficult. The correlation of anomalous Cu and Mo soil geochemistry and the outcrop of molybdenite at the North Arm prospect is a very good indicator for the possibility of Cu-Mo porphyry-style mineralization in the area (Figures 8a, 8b).

10. RECOMMENDATIONS

Future exploration on the Yreka property should concentrate on determining if a large concentration of mineralization does exist on the property. From the information gathered to date, high concentrations of copper and zinc sulphides are intimately associated with pyrrhotite within skarn rock. High concentrations of magnetic pyrrhotite will be readily detectable with an airborne survey. Porphyry-style Cu-Mo mineralization should be closely associated with a large intrusive body which should have a distinctive magnetic signature. Therefore, a detailed property-wide helicopter magnetic, radiometrics and EM survey would be useful in locating magnetic targets as well as providing a mapping tool. However, there are magnetite bearing mafic flows in the stratigraphy which might cause problems as well the pervasive disseminated pyrrhotite.

The solution would be the compilation of all previous geological, geochemical and ground geophysical data onto a common base to be used for interpreting the airborne data. With careful calibration and redundancy checks of differential GPS readings from the survey, the correlation of ground and airborne data should be adequate.

Once the airborne anomalies have been interpreted and ground-checked, drill testing of significant anomalies should be carried out using a helicopter supported fly rig. Emphasis should be on defining the limits of a geological resource.

11. PROPOSED EXPLORATION BUDGET	
PHASE 1: a) Compilation of all previous data into a single database interpretation	<u>COST</u>
and plotting on a detailed orthophoto.	
	\$10,000
b) Property-wide Helicopter magnetometer, radiometrics and multi-	
approximately 3 km long (150 line-km total)	
	\$30,000
Total budget Phase 1:	\$40,000

PHASE 2:

Drill testing of significant anomalies using a helicopter-supported diamond drill fly rig.

ITEM				· · · · · · · · · · · · · · · · · · ·	COST
1) Helicopter Suppor	t 100 ho	urs @\$	800/hr		\$80,000
2) Drill Site Preparat	ion (5 sites	s)			\$ 8,000
3) Permitting and En	vironmental				\$ 3,000
4) Diamond Drilling	NQ size (all inc	lusive)			
	2000 meters @	d \$100/1	meter		\$200,000
5) Assays	30 % (2000 m	etres)	@ \$25.00		\$17,500
6) Travel	·		-		\$ 7,000
7) Personel:					
Geologist	(\$300/day *	1 mont	h)		\$9,000
Core Technician	(\$200/day *	1 mon	th)		\$6,000
Cook/Expediting	(\$200/day *	1 mont	th)		\$6,000
8) Reporting, Consu	lting Geologist	(\$300/ð	lay * 10 days)		\$3,000
9) Food, Materials	(7-8 man)	crew * 1	month)		\$15,000
10) Field Camp Equi	pment, Supplies	5	·		\$5,000
11) Communications					\$2,000
11) Truck Rental		\$70/da	y * 1 month		\$2,000
12) 4-Wheel Drive A	TV Rental	\$30/da	y * 1 month		\$1,000
			<u></u>	Subtotal	\$364,500
Contingency (10%)					\$35,500
Total budget Phase	2:				\$400,000

12. REFERENCES

Crossley, R.V. (1972)

Jeletzky, J.A. (1976)

Massey, N.W.D. (1995)

Meinert, D.L. (1992)

Ball, C.W. (1980)

	3,
Assessment Work, Tuscarora Mineral Claim Yreka Copper – Zin Property, Nanaimo M.D., British Columbia, Assessment Report 7981	C
Report on Exploration, Yreka (Green Eagle Mines Ltd. Option), ISO Explorations Ltd., Assessment Report 4425	
Mesozoic and Tertiary Rocks of Quatsino Sound, Vancouver Island, British Columbia; Geological Survey of Canada, Bulletin 242	
The Vancouver Island Mineral Potential Project (92B,C,E,F,G,K,L, and 102I), Geological Fieldwork 1994, Paper 1995-1, Mineral Resources Division GSB, Government of Britis Columbia	h
Skarn and Skarn Deposits. Internet website based upon updated and expanded information from: Meinert, L.D., 1992, Skarns and skarn deposits: Geoscience Canada, v. 19, p. 145-162. Site addre http://www.wsu.edu:8080/~meinert/aboutskarn.html	d ss

Nixon, G.T. et al (1993) Quatsino – San Josef Map Area, Northern Vancouver Island; Geological Overview (921L/12W, 1021/8,9) Geological Fieldwork 1994, Paper 1995-1, Mineral Resources Division GSB, Government of British Columbia

OPENFILE Report (1991) Geology & Mineral Occurrences of the Merry Widow Skarn Camp. Open file No. 1991-8. By G.E. Ray and I.C.L. Webster. NTS 092L/6. Scale 1:5000. Mineral Resource Division GSB, Government of British Columbia.

Perello, J.A. et al (1995) Porphyry Cu-Au-Mo deposits in the Island Copper Cluster, northern Vancouver Island, BC. Paper 11 in "Porphyry Deposits of the Northwestern Cordilleran of North America". CIM Special Volume 46, Ed. Tom Schoeter, 1995

Assessment Report on the Green Eagle Mines Ltd. Claims, Poloni, J.R. (1971) Nanaimo M.D., British Columbia, Assessment Report 3165

STATEMENT OF QUALIFICATIONS

I, Kenneth Elbert Hicks, of Calle Felipe Vallese 2202, Suite 4A, in the capital city of Buenos Aires, in the country of Argentina, hereby certify that:

- 1. I am a Professional Geologist residing at the above address.
- 2. I graduated with a Bachelor of Science (Honours) degree in Geology from the University of British Columbia in 1982.
- 3. I have practiced my profession on a continual basis since graduation.
- 4. I am a registered Professional Geoscientist in the Province of British Columbia in good standing.
- 5. I do not have, nor do I expect to receive, any direct or indirect interest in the mineral properties that are the subject of this report.
- 6. The interpretations contained within this report are based upon my personal experience on the Yreka property on northern Vancouver Island as well as a review of available relevant literature in the public domain.
- 7. I consent to the use of this report in a Prospectus or Statement of Material Facts for the purpose of a public or private financing.

Kenneth E. Hicks, P. Geo. Dated: October 1999

<u>1999 WORK PROGRAM</u> <u>ON THE YREKA PROJECT,</u> <u>ITEMIZED COST STATEMENT</u>

PERSONNEL:		
C.1. Dyakowski, P.Geo		
13 days @ 400/day		\$5200
B.Fitch.		<i>432</i> 00
Field Coordinator		
32 days @ \$300/day		\$9600
Ken Hicks, P. Geo		
Field Geologist		
Fieldwork: Sept 4 to Sep	t 16 (13 days @ 300/day)	\$3900
Integrex Engineering		
Geophysical Survey (VLF-EM)) and Geological Field Work	£4600
20 days @ \$225/day		\$4500
J. LUCKE Geophysical Survey (FM and M	(ag)	
11 days @ \$275/day	nag)	\$3025
T Iones		\$3020
Line Cutting, Soil Sampling an	d Prospecting	
12 days @ \$175/day	1 0	\$2100
P. Poissant		
Line Cutting, Soil Sampling an	d Prospecting	
33 days @ \$175/day		\$5775
M. Grace		
Line Cutting, Soil Sampling an	d Prospecting	#3050
22 days @ \$175/day		\$3850
S. Dyakowski Helper		
13 days @ \$100 00/day		\$1300
15 days (2, \$100.00/day		\$1500
TRANSPORTATION:		
Toyota P/U truck		
2 days @ \$100.00		\$200
Chevrolet 4x4 pick-up truck		
10 days @ \$100.00		\$1000
Ford F250 4x4 pick-up truck		\$1300
$\frac{13 \text{ days } (\mu) 5100/\text{ day}}{\text{Evol}}$		\$1500
r uci		φ-75 0
Thomas Cook Group (Travel company)		
J. Lucke:	Flight from Castlegar to Port Hardy return	\$698
J. Williams :	Flight from Vancouver to Port Hardy return	، \$333
Pacific Coastal Airlines		****
K. Hicks:	Flight from Port Hardy to Vancouver	\$390
S. Dyakowski:	Flight from Port Hardy to Vancouver	\$1/0
J. Lucke	Penalty for changing return	\$100

	¢1907
Quatisno Sound Marine Transportation Ltd Water Taxi-19 trips	\$102 <i>1</i>
AquaSea Industries	\$550
Barge	\$550
BC Ferries	ددده
ACCOMMODATION:	
Field Camp	
169 man days @ \$60/day	\$10140
Hotels	\$723
Misc meals and groceries	\$894
RENTALS:	
Northern Exposures	
2 ATV's for 33 days	\$2260
Magnetometer	\$100
Rhonka VLF-EM	
3 wks @ \$150/wk	\$450
Chainsaw	
4 wks @ \$100/wk	\$400
Honda Generator	
4 wks @ 100/wk	\$400
ASSAYS:	* • • • • •
Acme Analytical Labs Ltd	\$4643
TELEPHONE:	#0 07
BC Tel Mobility	\$206
Autotel	\$361
EXPLORATION SUPPLIES:	
Neville Crosby Miscellaneous items	\$304
WCB	\$2076
TOTAL 1999 PROPERTY EXPENDITURES	\$69744

APPENDIX I: SOIL SAMPLING FIELD NOTES FOR YREKA PROJECT 1999

SOIL SAMPLE FIELD NOTES

CANYON	GRID			Survey: Date:	Pat Poissant, Milton Grace August & September 1999
Grid Coo	rdinate		SOIL	· · · · · · · · · · · · · · · · · · ·	_
Line	Station	Horizon	Color	Depth [cm] Remarks
200SE	0	В	orange		
	25NE	В	orange		
	50NE	В	orange		
	75NE	В	brown		
	100NE	В	orange		
	125NE	8	orange		
	150NE	В	tan/orange		
	1/5NE	B	brite orange		
	200NE	В	mixed brn/org		
	225NE	В	mixed/orange		
	250NE	В	orange		
	2/5NE	В	mixed/orange		
	300NE	В	orange		
	325NE	В	tan/orange	ł	
	350NE	В	orange		
	375NE	В	orange	2	
	400NE	В	mixed tan/brn		
	425NE	A	mixed		
	450NE	n/s	n/s	i	
	475NE	В	orange	ł	
150SE	ο	в	lite orange	e 15	silty
	25NE	В	brite orange	e 20	silty
	50NE	В	red brite org	, 40	silty
	75NE	В	brite orange	e 10	silty
	100NE	В	brite orange	e 15	silty
	125NE	В	brite orange	e 15	silty
	150NE	В	brite orange	e 20	silty
	175NE	В	brite orange	e 10	sitty
	200NE	В	brite orange	e 20) silty
	225NE	В	red-orange	e 20) silty
	250NE	В	drk org mixed	si 40) silty
	275NE	В	lite red-org	g expose	ed silty
	300NE	В	lite red-org	g 15	5 silty
	325NE	В	mixed org-bri	n 60) silty
	350NE	В	brite orange	e 15	5 silty, dry; creek at 355NE
	375NE	В	red-orange	e 30) silty
	400NE	В	brow	n 30) silty
	425NE	В	brow	n 15	5 clayish
	450NE	В	orange	e 10) silty
	475NE	В	red-brow	n 30) clayish, edge of topography

Page: 1

SOIL SAMPLE FIELD NOTES

				Survey:	Pat Poissant, Milton Grace
CANYON	GRID			Date:	August & September 1999
Grid Coo	rdinate		SOIL		
Line	Station	Horizon	Color	Depth [cm]	Remarks
40005		-		40	- 14
1005E		В	red-orange	10	sifty
	25NE	В	mixed prn-red	30	sity
	JONE	В	red-orange	20	siny
	/SNE	В	brite orange	50	ciayish
	TOONE	В	inte rea-org	15	Siny
	12ONE	8	brite orange	30	
	1 ZENIE		brite orange	20	Silly, CidyiSil
	175INE 000NE	р Р	orange	40	clayish
	200INE	D D	orange		clayish
			orange	20	
	23UNE	D	brite orange	20	Silly
	2/5NE	B D	lite orange	30	clayish
	300INE 30ENIE	В	tan-orange	UI	city
	320NE	B	lite orange	exposed	Silly
	300INE	D D	brite orange	exposed	
	JOINE 400NE	р р	light brange	30	
	400INE 40ENIE		brown		sity, wet
	420NE	AGD	DIOWN	40	siity, canyon
	40UNE A7ENIE	D D	orange mixed grange	10	
	4/JINE	D	nixed orange	30	
	SOUNE	р р	orange-prown	15	city completation at 520NE, edge of topography
	SZONE	D	reu-orange	10	Silly, sample laken at SZONE, edge of topography
050SE	o	В	red-orange	20	
	25NE	В	lite orange	· 10	
	50NE	В	lite orange	. 30	
	75NE	В	brite orange	20	stoney
	100NE	В	orange-brown	20	
	125NE	В	light orange	e 10	
	150NE	В	mixed brown	i 30	moist
	175NE	В	red-orange	e 30	stoney
	200NE	В	orange-browr	n 40	stoney
	225NE	В	brite orange	e 10	stoney
	250NE	В	brite orange	e 30	stoney
	275NE	В	brite orange	e 50	stoney
	300NE	В	brite orange	e 50	very stoney
	325NE	В	brite red-org	j 10	stoney
	350NE	В	red-orange	e 50	stoney
	375NE	В	brite orange	e 10	clayish
	400NE	В	brite orange	e 30	clayish
	425NE	В	red-orange	e 30	clayish
	450NE	В	red-orange	e 30	silty
	475NE	В	red-orange	e 10	clayish; canyon at 467NE
	500NE	В	red-orange	e 50	clayish
	525NE	В	red & brown	n 30	clayish; sample taken at 520NE

SOIL SAMPLE FIELD NOTES

CANYON	GRID			Survey: Date:	Pat Poissant, Milton Grace August & September 1999
Grid Co	ordinate		SOIL		-
Line	Station	Horizon	Color	Depth [cm] Remarks
OOSE	2005\//		hrn slightvred		
UUUL	1755\//	B	reddy org		
	15051	B	reddich brown		
	12551/	B	reduisit brown		
	1005W/	B	reduisit		
	75SW/	B			
	50SW/	B	reddsib-brown		
	255W	B	org_red (gp/)		
	0	B	arev & brown		clav mix
	25NF	B	orange		Oray Think
	50NE	B	reddish		
	75NE	B	reddish		
	100NE	B&C	ora & arev		grev clay of C-horiz
	125NE	B	brown		sandy
	150NE	В	lite brown		
	175NE	В	reddsih-brn		mushroom spores: spring at 5NW 170NF
	200NE	B	orange-brown		creek nearby
	225NE	В	orange	30	clavish
	250NE	В	orange	30	clavish
	275NE	в	brite orange	40	muddy
	300NE	В	orange-brown	expose	d clavish
	325NE	В	brite orange	· 20	clayish
	350NE	В	orange	30	clayish
	375NE	В	orange	30	clayish
	400NE	В	lite orange	30	silty
	425NE	В	brown-orange	10	clayish
	450NE	В	brite orange	30	clayish
	475NE	В	red-orange	5	clayish
	500NE	В	reddsih	30	clayish
	525NE	В	brite orange	30	clayish
050NW	200SW	В	brown		
	175SW	В	red-brn mixed		
	150SW	В	red-brn mixed		
	125SW	В	brown		
	100SW	В	red-brn mixed		
	75SW	В	red		
	50SW	В	reddish-brn		
	25SW	В	brown		
	0	В	brown		
	25NE	В	brown		
	50NE	В	brown		
	75NE	В	brown		
	100NE	В	lite brown		
	125NE	В	brown mixed		
	150NE	В	bm-gry mixed		outcrop area
	175NE	В	red		
	200NE	В	red-brn mixed		creek at 195NE

SOIL SAMPLE FIELD NOTES

Line

100NW

CANYON GRID

Grid Coordinate

Station

200SW 175SW 150SW 125SW 100SW 75SW 50SW 25SW 0 25NE 50NE 75NE 100NE 125NE

200NE

?

TES			
		Survey: Date:	Pat Poissant, Milton Grace August & September 1999
	SOIL		
Horizon	Color	Depth [cm]	Remarks
В	dark orange		creek at 240SW
В	dark orange		
B	brown		
B	brn-org-red mix		Clay
A.B.C	brown		laroe mushv area
B	brown mix		
в	brown mix		stoney
в	reddish		clayish
в	brown		slide at 35 to 45NE
в	brown		
в	brown mix		rocky
В	red-orange		old trench sample 113 95NE [from 85 to 105NE]
в	orange-red		
в	brown		
В	lite brown		
В	orange		
в	red		Canyon Creek at 218SW
в	brown		

150NE 175NE 200NE 150NW 200SW 175SW 150SW в brown stoney 125SW в brown mixed 100SW old slide в dark orange 75SW ₿ orange 50SW в brown uprooted trees 25SW в reddsih brown creek at 35NW 0 в brown 25NE в brown slide at 55NE 50NE В lite brown **75NE** в red 100NE creek at 97NE в red 125NE outcrop at 152NE В lite brown **150NE** В orange-brown 175NE В orange-brown 200NE creek at 198NE в brown 200NW 200SW в brown mixed 175SW n/s n/s main creek 150SW В lite brown В 125SW orange-red 100SW в drk & lite brn В brown mixed 75SW creek at 52SW 50SW В lite brown 25SW В brown В 0 brown lite brown mix 25NE В outcrop 50NE В lite brown slide at 70NE **75NE** В brite orange 100NE В org & brn mix creek at 110NE 125NE в lite orange 150NE В red 175NE в brite orange

no entry

SOIL SAMPLE FIELD NOTES

CANYON	GRID			Survey: Date:	Pat Poissant, Milton Grace August & September 1999
Grid Co	ordinate		SOIL		
Line	Station	Horizon	Color	Depth [cm]	Remarks
250NW	200SW	В	red mixed		
	175SW	В	red		
	150SW	A&B	brown mixed		
	125SW	n/s	n/s	i	no sample - main creek
	100SW	В	red		
	75SW	В	red		
	50SW	В	lite brown		slide area
	25SW	В	red		
	0	В	red		
	25NE	В	lite brown)	outcrop above
	JUNE		orange-brown		olido et 95NE
	100NE		reu		Side at OSINE
	100NE		orange	:	crock at 125NE
	150NE		hrn red mived		Creek at 125NE
	175NE	B			creek at 158NE
	200NE	B	red	•	Order at TOSTIE
	LOONE				
300NW	200SW	В	reddish-brn	•	
	175SW	В	brown mixed	1	
	150SW	В	lite brn mixed	1	
	125SW	silt	brown	ı	
	100SW	silt	brown	1	fork at 90NW; old cribbing at junction
	75SW	В	lite browr	ı	sample taken at 295NW
	50SW	В	reddish	ı	main creek - sample taken at 307NW
	25SW	В	brown	ı	main creek - sample taken at 297NW
	0	В	brown	ı	main creek - sample taken at 297NW
	25NE	В	brown mixed	ł	silty
	50NE	В	red-orange	9	
	75NE	В	rec	ł	
	100NE	В	reddist	l	slide at 94NE
	125NE	В	reddisł	ו	
	150NE	В	red-orange	•	creek at 153NE
	175NE	В	red-org mixed	1	
	200NE	В	orange	9	
350NW	200sW	в	reddist	h	
5501414	175SW	B	red-orange		
	150SW	В	lite brown	- n	main creek at 145SW: sample taken at 155NW
	125SW	В	lite orange	8	stn 150SW just below log jam (slide)
	100SW	в	red-orange	e	
	75SW	В	lite orange	9	overflow creek bed; sample taken at 355NW
	50SW	В	brown mixed	d	
	25SW	В	brn-org mixed	d	
	0	В	orange	e	
	25NE	В	ree	d	
	50NE	B	brite orang	e	
	75NE	B	orange-brow	n	main creek at 340NVV
	TOONE	В	orang	e	main creek at 30UNVV
	120NE	L B	brow	n	Cierk al JO4NVV
	17ENIE	n/s	n/:	5	Creek at 348N/M/
	200NE	P	lite hrn mi	а Х	creek at 330NW
		1 0	INCE DETERMIN	n	

5

-

1

SOIL SAMPLE FIELD NOTES

CAN

		JIE3		Survey	Pat Poissant Milton Grace
CANYON	GRID			Date:	August & September 1999
Grid Co	ordinate		SOIL		•
Line	Station	Horizon	Color	Depth [cm]	Remarks
4000	000011/	_			
400NW	2005W	В	lite org-prn		
	1/5500	В	tan & org mix		sample taken at 399 NVV, 1785 VV
	100500	В	orange		Sample taken at 403NVV, 143SVV
	12000		orange		Silue area stations 150 & 1758 VV
	75014		orange		
	FORM		red-orange		
	255\//	B	orange		
	23377	B	reddish		
	25NE	B	red_orange		
	50NE	B	lite brown		
	75NE	B	orange		
	100NE	В	red		
	125NE	в	orange		
	150NE	В	lite brown		
	175NE	в	orange	•	
	200NE	В	orange	•	
			Ũ		
450NW	200SW				field notes missing
	175SW				field notes missing
	150SW				field notes missing
	125SW				field notes missing
	100SW				field notes missing
	75SW				field notes missing
	50SW				field notes missing
	25SW				field notes missing
	0				field notes missing
	25NE	В	orange	•	
	50NE	В	lite orange	9	
	75NE	В	reddist	ו	
	100NE	В	reddist	ו	
	125NE	В	red-orange	•	
	150NE	L R	orange	•	
	1/5NE	B	brite orange	3	
	200NE	l P	prite orange	3	
500NW	2005\//				field notes missing
000/11/	175SW				field notes missing
	150SW				field notes missing
	125SW				field notes missing
	100SW		× ×		field notes missing
	75SW				field notes missing
	50SW				field notes missing
	25SW				field notes missing
	0				field notes missing
	25NE				field notes missing
	50NE				field notes missing
	75NE				field notes missing
	100NE				field notes missing
	125NE				field notes missing
	150NE				field notes missing
	175NE				field notes missing
	200NE				field notes missing

SOIL SAMPLE FIELD NOTES

CAN

CANYON	GRID			Survey: Date:	Pat Poissant, Milton Grace August & September 1999
Grid Co	ordinate		<u> </u>		
Line	Station	Horizon	Color	Depth [cm]	Remarks
				b b	
550NW	200SW	В	brite org-gry		
	175SW	В	lite orange		
	150SW	В	orange		
	125SW	В	orange		
	100SW	A & B	dark red		
	75SW	В	dark red		
	50SW	В	lite orange		
	25SW	В	mixed brown		outcrop at 29SW
	0	n/s	n/s		no sample - outcrop
	25NE				field notes missing
	50NE				field notes missing
	75NE				field notes missing
	100NE				field notes missing
	125NE				field notes missing
	150NE				field notes missing
	175NE				field notes missing
	200NE				field notes missing
600NW	200SW	В	red & org mix		
	175SW	В	brown	l	creek at 162SW
	150SW	В	red-orange	!	
	125SW	n/s	n/s	i	no soil
	100SW	В	lite brown	l	steep/rocky
	75SW	В	red-orange	ł	
	50SW	В	dark orange	2	
	25SW	В	brite orange	•	
	0	В	super orange	2	
	25NE	В	dark brown	ł	
	50NE	В	lite greyish	Ì	
	75NE	В	orange)	
	100NE	В	greyish brown	1	
	125NE	B	orange	•	
	150NE	В	orange)	
	175NE	n/s	n/s	5	outcrop
	200NE	В	red-orange)	
SEONIN	2005/4/		red orange		
0301444	1759\/		orange	-	
	150914/		lite reddict	-	creek at 147SW
	1255\/			•	Cleek at 14/04
	1009\/		reu-orange		
	75514/		orange	-	
	50914/		lite rec	-	
	25514		brite orange	A 5	
	20099	R	Dite United	-	
	251		180	4	
	SONE		areviet brown	-	
	75NE		greyisirbiowi	۰ ۲	
			reddeib_brown	- 1	
	125NE			·	
			arev 2 lite or	-	
	JUNE		Aley or the old	1	

BB

orange

orange

175NE

-

200NE

SOIL SAMPLE FIELD NOTES

CANYON	GRID			Survey: Date:	Pat Poissant, Milton Grace August & September 1999
Grid Cov	ordinate		8011		-
	Station	Horizon	Color	Depth [cm]	Remarks
	Otation	110112011	00101	Departering	Tremano
700NW	200SW	n/s	n/s		no sample & no station due to steep terrain
	175SW	В	orange		
	150SW	в	lite brown		
	125SW	В	brite orange		
	100SW	В	dark orange		
	75SW	В	orange		
	50SW	В	brite orange		
	25SW	В	orange-brown		
	0	В	red-brown mix		
	25NE	В	orange		
	50NE	В	grey		
	75NE	В	greyish-brown		
	100NE	В	dark brown		
	125NE	B	brown mix		
	150NE	В	reddsih		
	175NE	В	lite orange		
	200NE	В	orange		
		_			
750NW	200SW	В	orange		
	175SW	В	lite brown		
	150SW	В	lite brown		
	1255W	В	reddsin brown		Creek at 1155VV
	100500	8	orange		
	100VV		rea-prn mix		
	JUSVV DECIM		orange lite brown		
	20000		ite brown		
			orange		
	SONE		dark orange		
	75NE	B	dank urange		
	100NE	B	grevish brown	1	
	125NE	B	lite orange	•	
	150NE	B	brite orange		
	175NE	B&C	arevish brown	,)	
	200NE	В	lite orange		
	=	_			
800NW	200SW	В	orange	÷	
	175SW	В	reddish-brn mix	(
	150SW	В	orange-browr	1	
	125SW	В	red-orange	9	creek at 115SW
	100SW	В	orange	9	
	75SW	В	lite orange	3	
	50SW	В	lite orange	9	
	25SW	B&C	lite orange	•	
	0	B&C	gry-brn-lit org	3	
	25NE	В	red-orange	•	
	50NE	В	greyist	ו	
	75NE	B	red-orange	9	
	100NE	В	orange	9	
	125NE	В	orange	9	
	150NE	В	rec	t	
	175NE	В	lite orange	9	
	200NE	В	lite orange	9	

Page: 8

SOIL SAMPLE FIELD NOTES

LOWER BLUE GROUSE GRID Survey by: Pat Poissant, Milton Grace Date: August 1999

Grid Co	ordinate	s	OIL	
Line	Station	Horizon	Color	Remarks
050S	0	В	reddish	valley bottom 5mE
	25W	в	red	
	50W	B & C	reddish	
	75W	A & C	brn & wht	sample taken at 55S, 76W [big mess]
	100W	В	brite red	line offset 10m south for stations 100 to 150W
	125W	n/s	n/s	no sample - too close to cliff edge
	150W	n/s	n/s	no sample - soil leached
150S	0	В	brown	
	25W	В	reddish	
	50W	8 & A	red-brn	outcrop at 55W
	75W	n/s	n/s	site of 1998 #1040 rock sample
	100W	В	lite brn	saddle
	125W	В	brown	
	150W	В	reddish-brn	
	-	_		
2508	0	В	red	base of o/c, many small skarns
	25W	A&B	brown	
	50W	В	red	
	/5W	В	lite reddish brh	
	10000	в	red	
	125W	В	reddisn	1. An advantation and all a
	150W	В	brite org	big o/c - start of upper hige
	1/5W	В	brite org	
	20077	в	brite rea	
2505	0	ь	red	
3503	2514/		reu	
	20VV EOM/		drk bro	
	751/	A & D		no sample - outeron
	10010/	R IIIS	drk bro	unstable soil - fluid ground
	1251/		red-ord	end of line at cliff - hig skarn area
	12011		ica-oig	
450S	0	в	reddish	
	25W	В	lit brn	
	50W	В	red	
	75W	В	lit ord	
	100W	В	orange	
	125W	В	brown	1
	150W	В	brown	1
	175W	В	brown	base of outcrop

SOIL SAMPLE FIELD NOTES

LOWER BLUE GROUSE GRID Survey by: Pat Poissant, Milton Grace Date: August 1999

Grid Co	ordinate	S S	OIL		
Line	Station	Horizon	Color	Remarks	
EEOS	0	Б			
3303	0	D	rea	narger rock - marble	
	25W	В	drk & lit brn		
	50W	В	brite org		
	75W	В	brite org		
	100W	В	drk red		
	125W	В	red		
	150W	В	red		
	175W	B&C	reddish		
600S	ο	n/s	n/s	sample previously taken	
	25W	В	red		
	50W	В	mixed brown		
	75W	В	brite org		
	100W	В	red		
	125W	В	brown		
	150W	В	brite org		
	175W	В	lit org - brn		
	200W	В	brite org		

. . . .

5 5 5-4

SOIL SAMPLE FIELD NOTES

TUSCARORA GRID

Survey by:: Pat Poissant, Milton Grace Date: September 1999

Grid Co	ordinate	S	OIL	
Line	Station	Horizon	Color	Remarks
000S	150W	A & B	brown	
	175W	A	brown	
	200W	A&B	red-brn-org	
	225W	В	orange	
	250W	A&B	mixed	
	275W	В	mixed	
	300W	В	mixed	sampled at 307W
	325W	В	org/mixed	
	350W	В	org/mixed	
	375W	В	brite red/org	
	400W	В	org/mixed	
1005	175W	в	brite red/ora	
	200W	В	brite red/org	
	225W	В	red-org	
	250W	В	brite red/org	
	275W	n/s	n/s	
	300W	B	brn-tan/red	
	325W	в	tan	
	350W	B	brite ora	
	375W	A&C	brown-mixed	
	400W	n/s	n/s	
2005	1500		brown miyed	
2003	17514/			
	2001/		ora-tan miyed	taken at 205W
	20011		org-tain mixed	
	25011	B	ora/tan miyed	
	27511/		miyed	
	27544		orange	
	3251/		tar	
	35014/		orangellar	
	375\/		brite orange	
	400W	В	tan mixed	i gully
2006	15014		0.000	
2002	17514		orange	
	20014		oranye/tar	
	20077		brita omno	
	22377		brite orange	= taken at 245W
	27511/		bite ora re	
	2/044		brown/mive	4
	325\//		orandelta	
	JZJVV JEMN/		u anyc/tai	
	37514/		tai brite era/era	1
	3/599		Drite org/org	
	400W	I B	brite org/red	3

i.

SOIL SAMPLE FIELD NOTES

TUSCARORA GRID

Survey by: Pat Poissant, Milton Grace Date: September 1999

 Grid Co	ordinate		SOIL	
 Line	Station	Horizon	Color	Remarks
400S	150W	В	tan/orange	taken at 145W
	175W	В	tan/orange	
	200W	Α	brown	
	225W	В	tan	
	250W	В	tan	
	275W	A & B	brown	
	300W	В	brn/red/org mix	
	325W	В	mixed	
	350W	В	mixed	
	375W	В	brite orange	
	400W	В	brite org/red	
500S	175W	A & B	tan	
	200W	A&C	brown/grey	
	225W	A&C	grey/drk brn	
	250W	В	dark brown	
	275W	В	brown	
	300W	В	drk red/drk brn	
	325W	A & B	bm/drk brn	
	350W	в	brown	
	375W	n/s	n/s	
	400W	A&B	dark brown	
600S	175W	В	tan-orange	
	200W	В	brite orange	
	225W	n/s	n/s	
	250W	В	tan/red	
	275W	n/s	n/s	
	300W	В	orange	sampled at 307W
	325W	A&B	orange	
	350W	A&B	brite orange	
	375W	В	orange	
	400W	B	brite red/org	

APPENDIX II: 1999 SOIL AND ROCK ANALYTICAL RESULTS

1

9. S. S. S. H

. .

lan an an a bh

ACM ALY L L LATC 3 LT E. ITIN (ISO 9002 Accredited Co.)

IE(6 253 8 F 504)

-17___

GEOCHEMICAL ANALYSIS CERTIFICATE

COU

BC

A 11

Max Investment Inc. PROJECT YREKA File # 9903559 3750 West 49th Ave, Vancouver BC V6B 318

ST.

SAMPLE#	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca	P	La	Cr	Mg	Ba	Ti	В	At	Na	κ	W	Au*
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	*	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	*	ppm	ppb
JDW-08-09-99-1	2	15	3	33	<.3	6	7	246	2.08	<2	<8	<2	4	12	<.2	<3	<3	28	. 16	.046	10	14	.58	28	.01	13	1.00	.07	.07	3	1
JDW-09-09-99-1	2	1552	23	99591	4.1	20	21	1286	9.30	2	<8	<2	<2	64	510.7	<3	8	35	5.82	.049	4	53	.55	7	.03	55	.99	.03	.05	<2	14
JDW-09-09-99-2	<1	915	10	99999	2.8	15	62	2276	10.91	4	<8	<2	<2	111	659.7	<3	4	52	3.51	.062	5	43	.76	6	.04	61	2.35	.11	.03	<2	4
JDW-09-09-99-3	2	2902	20	7792	7.3	27	18	1139	8.91	3	<8	<2	<2	75	46.7	<3	5	98	3.65	.091	4	40	.61	34	.05	47	1.79	.07	.16	51	Ś
KH-08-09-99-1	<1	291	7	866	.3	70	27	358	5.44	4	<8	<2	<2	194	5.2	<3	<3	68	1.81	. 153	4	151	1.64	18	.21	27	3.06	. 33	. 12	6	<1
KH-08-09-99-2	2	433	7	76	<.3	19	33	188	5.85	4	<8	<2	<2	51	<.2	<3	3	73	1.54	.271	12	7	.49	37	.23	28	. 86	. 11	. 25	2	1
KH-08-09-99-3	1	473	7	126	.3	20	51	153	5.72	3	<8	<2	<2	86	<.2	<3	<3	60	1.63	.292	11	3	39	39	.24	28	1.13	15	.21	2	1
KH-08-09-99-4	1	417	9	827	1.1	118	19	482	4.58	3	<8	<2	<2	406	4.9	<3	<3	66	3.67	.123	4	174	.61	20	.12	21	4.39	.60	.06	6	<1
KH-08-09-99-5	30	46	16	81	.5	16	13	592	7.81	11	<8	<2	<2	30	<.2	6	<3	160	.35	.065	5	19	.61	19	.24	42	2.34	.10	.11	<2	<1
KH-08-09-99-6	14	51	10	49	.4	36	26	538	6.90	26	<8	<2	<2	61	<.2	<3	<3	199	1.31	.089	4	46	1.31	11	.30	39	3.46	.28	.05	<2	3
KH-08-09-99-7	76	17	12	48	< 3	23	7	507	7 55	20	<8	0	~2	25	~ >	3	~3	6	23	057	5	20	1 07	78	٥٨	10	2 10	04	15	-2	-1
KH-00-00-00-1	2	2627	14	36610	6.8	20	34	1538	0 08	7	28	2	~2	06	211 5	~~~	- 73	58	2 50	.057	i.	30	72	17	.04	57	1 07	.00	. 15	2	
KH-09-09-99-2	5	443	11	189	4	40	60	167	3 11	Š	<8	2	~ ~ ~	760	5	~ ~ ~	्य	10	3 60	058	2	26	.12	16	11	16	1.75	50	.04	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6
RE KH-09-09-99-2	Ś	432	0	141	.3	40	61	159	3.06	ś	<8	~2	2	775		ं तर	- 23	10	3 68	058	2	27	.41	16	11	15	4.71	51	.05	~2	4
KH-14-09-99-1	1	456	6	332	.9	112	45	272	3.96	5	<8	<2	~2	479	2.0	<3	<3	25	3.35	.076	2	65	.67	27	.10	20	4.14	.21	.03	Ž	4
										_	_	_	_			_														_	
KH-14-09-99-2	6	1136	10	1207	3.5	19	15	202	5.70	3	<8	<2	<2	336	9.9	<3	6	28	2.85	.087	3	19	. 45	18	.06	24	4.66	.74	.02	<2	4
KH-14-09-99-3	<1	5732	10	19408	21.0	29	258	171	24.48	<2	<8	3	<2	- 7	104.1	11	10	12	. 06	.087	11	18	. 15	5	.01	143	.31	.01	.01	<2	26
KH-15-09-99-1	35	995	457	46942	21.9	27	11	548	9.79	24878	<8	6	<2	4	286.1	49	96	9	.21	.033	4	59	. 16	3<	.01	52	.24	.01	.03	<2 :	3680
STN-32	2	943	14	40660	2.3	17	- 54	1987	8.41	39	<8	<2	<2	190	236.9	<3	4	64	6.48	.062	4	31	1.02	8	.04	43	2.92	.21	.04	<2	9
STN-40	2	253	5	167	<.3	67	21	166	3.04	8	<8	<2	<2	294	.4	<3	<3	35	1.93	.065	2	59	.41	23	. 19	15	2.35	.32	.12	3	8
STN-55	1	10095	9	765	32.7	24	37	542	7.17	4	<8	<2	<2	178	5.9	<3	9	132	3.43	.095	4	37	.99	21	.07	36	3.14	.37	.06	8	140
STANDARD C3/AU-R	26	66	39	164	6.2	41	12	815	3.51	57	24	3	22	30	25.1	19	24	82	.57	.101	19	177	.61	125	.08	43	1.92	.04	.17	15	486
STANDARD G-2	2	7	4	52	<.3	10	4	519	2.08	2	<8	<2	5	67	<.2	<3	<3	39	.61	. 103	8	83	.56	187	.12	7	.92	.07	.46	3	<1

GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK AU* GROUP 3A- 10.00 GM SAMPLE, AQUA-REGIA/MIBK EXTRACT, ANALYSIS BY GF/AA. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: SEP 20 1999 DATE REPORT MAILED:

opt 27/99

SIGNED BYD. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.) 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE(604)253-3158 FAX(604)253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

44

Max Investment Inc. File # 9903346 3750 West 49th Ave, Vancouver BC V6B 3TB Submitted by: C. Dyakowski

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm (Cr ppm	Mg %	Ba ppm	ті %	B Spm	Al %	Na %	K %	W ppm	Tl ppm	Hg ppm	Au* ppb	
WP62 RS-L300N-032W KH060999-1 KH060999-2 KH070999-1	6 3 4 3 3	3507 254 777 2312 10	<3 4 <3 4 <3	170 58 35 25 18	2.3 .3 1.5 .9 <.3	7 16 4 <1 1	114 23 20 53 3	659 353 94 107 449	21.31 4.67 4.08 25.75 3.47	134 4 4 4 <2	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	110 81 31 4 73	2.3 .5 <.2 <.2 <.2	<3 <3 <3 <3 <3	<3 <3 <3 23 <3	16 117 21 7 13	2.33 1.34 .57 .17 .83	.022 .144 .023 .051 .184	9 12 5 2 11	7 14 5 11 7	.02 .17 .34 .11 .92	5 12 26 5 103	.02 .26 .13 .01 .09	<3 (<3 (<3 (<3 (<3 (<3 (1.06 2.02 .72 .16< 1.51	.09 .23 .10 .01< .17	.03 .08 .09 .01 .03	< 2 2 2 2 2 2 2 2	<5 <5 22 <5	<1 1 <1 <1 <1	2 1 3 <1 2	
UPPER SHOWING RE UPPER SHOWING T & P SHOWING RS-400N-160W 0509A	11 12 11 1 4	244 246 946 26 100	3 4 31 <3 <3	27 27 58 27 34	.3 .3 2.5 <.3 <.3	25 25 6 14 17	26 27 42 6 22	205 209 1245 1837 249	11.09 11.15 14.42 2.76 3.68	30 31 115 224 3	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	98 100 40 82 70	<.2 <.2 1.1 .3 .2	<3 <3 7 <3 <3	<3 <3 52 <3 <3	62 63 62 90 107	.72 .74 2.49 16.92 1.38	.102 .102 .024 .042 .198	7 8 9 17 13	23 22 11 25 24	.55 .57 1.63 .75 .90	20 20 12 7< 81	.14 .14 .02 .01 .29	<3 <3 <3 <3 <3 <3	1.72 1.77 1.09 .88 2.04	.18 .19 .01 .02 .26	.12 .13 .02 .05 .47	<2 <2 <2 <2 <2 3	<5 <5 <5 <5 <5	<1 <1 <1 <1 <1	1 1 201 2 1	

GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK AU* GROUP 3A- 10.00 GM SAMPLE, AQUA-REGIA/MIBK EXTRACT, ANALYSIS BY GF/AA. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: SEP 9 1999

ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.) 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE(604)253-3158 FAX(604)253-1716

Data_

FA

GEOCHEMICAL ANALYSIS CERTIFICATE

Max Investment Inc. PROJECT YREKA File # 9903345 Page 1 3750 West 49th Ave, Vancouver BC V6B 318 Submitted by: C. Dyakowski

 						1.1.1	1.1.1.11.1			e e par																							
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	K %	W ppm	Tl ppm	Hg ppm	
 8+00NW 2+00NE 8+00NW 1+75NE 8+00NW 1+25NE 8+00NW 1+00NE 8+00NW 0+75NE	6 4 5 1 1	42 134 61 63 22	<3 <3 3 3 8	15 14 15 33 40	<.3 <.3 .3 .4 .9	3 <1 5 9 4	<1 <1 <1 2 2	42 68 33 56 62	4.82 5.94 4.12 4.12 3.15	2 <2 3 22 31	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	2 <2 2 4 2	12 45 8 5 2	<.2 <.2 <.2 <.2 <.2 <.2	<3 <3 <3 <3 <3	<3 <3 <3 <3 <3	173 98 109 71 52	.09 .24 .05 .03 .01	.027 .038 .043 .054 .017	3 2 3 4 4	10 1 17 12 9	.28 .85 .13 .27 .23	15 96 13 15 10	.31 .41 .20 .11 .14	8 3 <3 3 <3	1.23 1.74 2.05 4.80 1.13	.03 .11 .01 .01 <.01	.05 .51 .03 .02 .03	<2 <2 <2 <2 <2 <2	<5 <5 <5 <5 <5	<1 <1 <1 <1 <1 <1	
8+00NW 0+50NE 8+00NW 0+25NE 8+00NW BL 8+00NW 0+25SW 8+00NW 0+50SW	1 12 3 <1 18	18 158 41 9 882	<3 7 4 6 <3	27 103 24 2 21	<.3 1.8 <.3 <.3 1.6	5 1 4 1 2	1 <1 <1 <1 <1	30 22 13 6 29	1.13 5.70 2.62 1.65 12.93	14 60 19 <2 3	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	3 5 2 4 4	<.2 <.2 <.2 <.2 <.2	3 3 3 3 3 3	<3 8 <3 <3 6	42 151 97 99 237	.02 .02 .02 .02 .02	.007 .046 .014 .014 .014	4 2 2 2 2 2	5 4 2 3	.11 .03 .01 .02 .07	14 8 3 12 11	.11 .22 .11 .18 .29	<3 6 <3 <3 5	.40 1.53 .80 .37 .56	.01 .01 <.01 .01 <.01	.02 .01 .01 .01 .01	<2 <2 <2 <2 <2 <2	<5 <5 <5 <5 <5	<1 <1 <1 <1 <1	
8+00nw 0+75sw 8+00nw 1+00sw 8+00nw 1+25sw 8+00nw 1+50sw 8+00nw 1+75sw	3 2 1 <1 <1	182 40 116 254 180	3 <3 <3 <3 9	46 43 265 430 161	<.3 <.3 <.3 <.3 1.5	5 4 14 39 25	<1 <1 23 32 33	40 83 672 805 909	5.03 4.45 6.29 7.77 5.68	14 21 200 45 34	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	2 ~2 ~2 ~2 ~2 ~2 ~2 ~2	5 19 27 226 167	<.2 <.2 1.1 1.2 1.5	<3 <3 <3 <3 <3 <3	<3 <3 <3 <3 <3	147 154 115 126 109	.02 .29 .25 .49 .42	.018 .017 .088 .059 .180	3 2 8 4 3	9 11 18 23 15	.38 1.64 1.18 1.54 1.17	19 25 97 65 49	.34 .38 .13 .08 .06	<3 <3 <3 <3 6	1.43 2.58 4.09 5.62 5.96	.02 .04 .03 .10 .08	.06 .09 .13 .11 .09	<2 <2 <2 <2 <2 <2	<5 <5 <5 <5 <5	<1 <1 <1 <1 <1	
8+00nw 2+00sw 7+50nw 2+00ne 7+50nw 1+75ne Re 7+50nw 1+75ne 7+50nw 1+50ne	<1 188 28 26 51	461 763 44 39 147	9 <3 7 7 3	395 26 5 4 10	.9 2.1 .3 .3 .4	36 3 <1 3 1	29 <1 <1 <1 <1	574 33 9 8 30	7.79 8.97 1.69 1.58 5.64	58 3 2 2 12	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	<2 2 2 2 2 2 2 2 2 2	104 6 5 4 3	.2 <.2 <.2 <.2 <.2	<3 <3 <3 <3 <3 <3	3 <3 <3 <3 <3 <3	164 245 63 60 84	.51 .04 .03 .03 .04	.092 .040 .012 .012 .012 .052	4 3 2 2 2	23 16 3 2 8	1.84 .06 .01 .01 .06	51 9 7 6 5	.14 .62 .31 .30 .27	7 ~3 ~3 ~3	7.46 2.03 .25 .24 1.92	.13 .01 .01 .01 .01	.09 .01 .01 .01 .01	~? ~? ~? ?	<5 6 <5 <5 <5	<1 <1 <1 1 <1	
7+50NW 1+25NE 7+50NW 1+00NE 7+50NW 0+75NE 7+50NW 0+50NE 7+50NW 0+25NE	4 4 <1 <1 4	64 80 14 12 256	<3 5 <3 <3 <3	10 44 13 11 88	.5 .4 <.3 <.3 1.2	2 6 3 4 7	<1 4 <1 <1 <1	28 50 19 20 60	5.35 2.99 1.70 1.03 6.50	3 52 9 9 33	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	2 2 2 2 2 2 2 2 2	6 5 3 2 5	<.2 <.2 <.2 <.2 <.2	<3 <3 <3 <3 <3 <3	<3 <3 <3 <3 <3 <3	82 94 46 29 82	.03 .04 .02 .01 .04	.033 .024 .013 .011 .055	1 3 4 4 2	5 8 6 5 13	.13 .12 .04 .06 .16	14 15 6 5 16	.28 .11 .10 .05 .25	<3 <3 <3 <3 <3	1.14 .89 .49 .32 9.76	.01 .01 .01 .01 .01	.03 .02 .01 .02 .02	<2 <2 <2 <2 <2 <2 <2	<5 <5 <5 <5 <5	<1 <1 <1 <1 <1	
7+50NW BL 7+50NW 0+25SW 7+50NW 0+50SW 7+50NW 0+75SW 7+50NW 1+00SW	2 3 8 5 2	89 130 101 533 249	<3 17 6 <3 <3	27 18 24 108 151	.5 2.3 1.7 .7 1.0	5 <1 <1 5 12	<1 <1 <1 7 4	34 36 29 342 183	6.43 4.18 4.63 5.90 7.01	6 76 66 13 51	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	<2 <2 2 2 2 2 2	8 10 10 26 28	.5 .5 <.2 <.2 .5	<3 <3 <3 <3 <3	<3 8 3 <3 <3	168 65 90 110 122	.05 .07 .06 .15 .14	.043 .024 .024 .041 .033	3 3 4 4 4	2 4 6 2 16	.08 .14 .13 .88 1.51	8 17 10 29 59	.39 .21 .18 .30 .25	6 <3 <3 9 4	3.92 2.70 1.44 4.00 6.15	.01 .02 .02 .06 .02	.02 .07 .03 .18 .11	<2 <2 <2 <2 <2 <2 <2	<5 <5 <5 <5	<1 <1 <1 <1 <1	
7+50NW 1+25SW 7+50NW 1+50SW 7+50NW 1+75SW 7+50NW 2+00SW 7+00NW 2+00NE	<1 <1 2 <1 9	75 307 152 232 91	<3 4 <3 <3 4	79 333 117 306 62	<.3 <.3 <.3 .4 .5	3 17 11 19 8	31 23 17 13 <1	1025 397 448 501 63	6.66 9.36 9.93 7.59 6.48	164 60 48 26 19	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	<2 2 <2 <2 2 2	114 76 69 132 17	.9 1.5 1.3 1.4 .2	८३ ८३ ८३ ८३ ८३	<3 3 <3 <3 <3 <3	103 163 135 122 169	.55 .17 .19 .16 .06	.073 .116 .281 .168 .034	7 7 6 5 3	3 10 3 17 50	2.09 1.16 .90 .89 .15	122 117 113 108 23	.10 .21 .22 .14 .22	<3 <3 <3 <3 <3	5.23 5.89 4.79 5.09 3.49	.09 .03 .04 .03 .01	.85 .17 .17 .11 .02	<2 <2 <2 <2 <2 <2	<5 <5 <5 <5 <5	<1 <1 <1 <1 <1	
 STANDARD C3 Standard G-2	26 2	66 2	34 <3	171 45	6.2 <.3	36 10	11 4	824 565	3.57 2.22	59 <2	25 <8	2 <2	20 5	33 78	26.5 <.2	14 <3	25 <3	82 42	.59 .66	.095 .105	18 7	179 87	.61 .60	146 225	.09 .12	21 <3	1.91 .86	.04 .07	.20 .56	13 3	<5 <5	<1 <1	
GROUP 1D) - 0	50	GM S	AMPL	E LE	ACHE	DWI	TH 3 1	41 2-2	-2 H	CI - H	NO3-1	H20	AT O	5 DEG	. C	FOR	ONE	HOUR	011.	ITED	TO 1	10 MI	AN/	1 75	ED B'	Y ICP	-FS					

UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: SOIL <u>Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns</u>.

Max Investment Inc. PROJECT YREKA FILE # 9903345

Page 2

Data 4 FA

ACRE AMALETTON																																	
SAMPLE#	Mo	Cu ppr	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U mqq	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Ai %	Na %	K %	W ppm (Tl porm	Hg ppm	
7+00NW 1+75 7+00NW 1+50 7+00NW 1+25 7+00NW 1+00 7+00NW 0+7!	5NE 17 ONE 20 5NE 5 ONE 2 5NE 2 5NE 2 5NE 2 5NE 2	237 1217 118 49 2 29	7 <3 5 7	103 127 24 31 27	.4 3.9 2.3 .8 .3	7 12 3 3 2	<1 8 <1 <1 <1	89 135 33 24 11	8.01 7.16 3.69 2.52 1.63	32 29 9 13 9	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	2 3 2 2 2	20 8 5 3 1	.9 .8 <.2 <.2 <.2	<3 <3 <3 <3 <3 <3	<3 6 <3 <3 <3	194 109 52 62 60	.11 .08 .05 .03 .01	.039 .052 .035 .027 .010	3 4 5 3 3	73 19 10 10 4	.27 .58 .12 .05 .01	28 22 19 14 8	.30 .30 .14 .11 .11	3 4 <3 <3 3	6.18 8.33 2.74 1.52 .68<	.01 .01 .01 .01 .01	.03 .02 .04 .01	<2 <2 <2 <2 <2 <2	<5 <5 <5 <5 <5	<1 <1 <1 <1 <1	
7+00NW 0+50 7+00NW 0+25 7+00NW BL 7+00NW 0+25 7+00NW 0+56	ONE <1 5NE 15 63 5SW 33 0SW 8	3 133 83 252 811	<3 <3 <3 <3 <3 <3	3 43 24 71 413	<.3 .6 .6 .3 .6	2 <1 <1 8 15	<1 <1 <1 <1 14	5 38 24 55 127	.25 5.10 5.49 8.10 5.91	<2 19 7 13 24	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	<2 <2 2 <2 <2 <2	1 2 6 4 11	<.2 <.2 <.2 .4 .5	<3 <3 <3 <3 <3 <3	<3 <3 <3 <3 <3 <3	14 140 148 133 102	.01 .03 .05 .06 .16	.003 .022 .011 .038 .031	2 2 1 <1 1	1 7 3 11 8	.01 .35 .11 .53 1.87	4 13 7 13 34	.03 .32 .34 .33 .27	3 3 3 3 3 3 3	.10 1.72 1.06 1.55 3.73	.01 .01 .01 .01 .01	.01 .04 .02 .02 .03	<2 <2 <2 <2 <2 <2	<5 <5 <5 <5 <5	1 <1 <1 <1 <1	
7+00NW 0+75 7+00NW 1+00 7+00NW 1+25 7+00NW 1+50 7+00NW 1+75	55W 10 05W 12 55W 8 05W <1 55W <1) 317 2 1745 3 1525 584 82	5 7 <3 5 <3	179 770 455 423 61	1.3 4.7 1.5 .9 <.3	4 12 19 19 15	2 12 30 87 16	61 191 941 2031 267	6.85 6.68 6.18 9.28 5.33	84 256 177 46 15	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	<2 2 <2 <2 <2 <2	12 21 83 298 37	.6 1.1 3.0 3.2 .4	<3 <3 <3 <3 <3	4 3 <3 4 <3	155 95 87 119 108	.08 .13 .94 .26 .20	.040 .038 .070 .130 .088	2 5 6 9 4	9 11 13 13 12	.46 1.80 3.38 1.07 .75	25 33 104 120 85	.35 .23 .12 .11 .25	<3 <3 4 <3 <3 <3	2.77 6.80 4.74 6.54 3.97	.01 .02 .04 .02 .03	.02 .07 .47 .28 .12	<2 <2 <2 <2 <2 <2 <2	<5 <5 <5 <5 <5	<1 <1 <1 <1 <1	
6+50NW 2+00 6+50NW 1+75 6+50NW 1+50 6+50NW 1+25 6+50NW 1+00	ONE 2 5NE 1 ONE 1 5NE 1 5NE 1 ONE 1 ONE 1	2 65 17 20 58 43	4 5 3 <3	36 31 10 19 40	<.3 <.3 .4 .6 .9	9 5 5 4 5	3 1 <1 <1 <1	50 36 19 8 17	3.46 3.83 1.95 1.41 3.06	6 6 <2 7 17	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	<2 <2 2 <2 <2 <2	18 7 14 4 2	<.2 <.2 <.2 <.2 <.2	<3 <3 <3 <3 <3	<उ <उ <उ <उ	140 160 93 39 77	.19 .09 .16 .01 .01	.015 .018 .008 .012 .024	3 2 1 4 5	51 41 24 6 8	.21 .12 .07 .01 .04	19 26 6 20 16	.30 .15 .22 .03 .08	ব্য ব্য ব্য ব্য ব্য	1.48 1.25 .85 1.03< 1.89	.05 .02 .02 .01 .01	.02 .01 .01 .01 .01	<2 <2 <2 <2 <2 <2	<5 <5 <5 <5 <5	<1 <1 1 <1 <1	
6+50NW 0+75 6+50NW 0+50 6+50NW 0+25 RE 6+50NW (6+50NW BL	5NE <1 ONE <1 5NE 2 0+25NE 3	35 8 149 136 77	3 <3 4 3 4	26 10 53 51 28	.4 <.3 1.9 1.9 .7	5 4 8 10 5	1 <1 <1 <1 <1	20 4 20 19 25	1.91 .53 4.20 4.19 3.65	6 3 14 15 13	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	2 2 7 6 10	<.2 <.2 .2 .2 <.2	<3 <3 <3 <3 <3 <3	<3 <3 <3 <3 <3	42 17 90 82 127	.02 .01 .06 .06 .05	.015 .008 .029 .029 .022	5 2 2 2 2	6 1 46 44 18	.03 .01 .06 .05 .05	9 7 41 39 12	.07 .04 .11 .10 .25	<3 3 <3 <3 <3	1.63 .31 2.94 2.61 1.52	.01 .01 .01 .01 .01	.01 .01 .01 .01 .01	<2 <2 <2 <2 <2 <2	<5 <5 <5 <5 <5	<1 <1 <1 <1 <1	
6+50nw 0+25 6+50nw 0+5(6+50nw 0+7! 6+50nw 1+0(6+50nw 1+2!	55W 12 05W 46 55W 36 05W 25 55W 9	2 45 5 52 5 525 5 711 9 336	7 6 <3 <3 5	6 11 119 105 202	<.3 .6 .7 1.6 .5	<1 4 11 13 11	<1 <1 1 2 39	14 15 81 63 1543	4.64 2.96 6.85 5.69 5.54	2 5 14 11 65	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	3 9 10 11 34	<.2 <.2 .5 <.2 .7	<3 <3 <3 <3 <3 <3	<3 <3 <3 <3 <3	160 238 199 144 90	.02 .03 .11 .12 .68	.014 .020 .031 .031 .079	2 2 2 3	9 11 14 8 13	.05 .04 .83 .50 .66	8 15 44 21 40	.27 .46 .46 .34 .12	<3 4 <3 <3 5	.65 .73 7.20 3.55 2.66	.01 .01 .01 .01 .01	.02 .02 .02 .02 .02	<2 <2 <2 <2 <2 <2	<5 <5 <5 <5 <5	1 <1 <1 <1 <1	
6+50NW 1+50 6+50NW 1+75 6+50NW 2+00 6+00NW 2+00 6+00NW 1+50	0SW <1 5SW <1 0SW 3 0NE 4 0NE 4	143 137 231 52 119	7 <3 5 9 5	287 314 107 68 61	<.3 .5 <.3 <.3 1.1	15 8 22 9 7	26 22 15 1 1	3157 772 246 63 44	7.04 4.92 5.76 5.56 5.55	217 62 21 67 13	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	197 57 17 19 7	2.0 1.0 .2 <.2 <.2	<3 <3 <3 <3 <3	5 <3 <3 <3 <3	132 112 122 146 176	.70 .41 .15 .13 .10	.087 .043 .050 .036 .028	12 3 4 2 2	11 8 17 56 76	1.47 3.99 .98 .13 .09	68 30 90 22 11	.08 .14 .28 .14 .30	<3 <3 <3 <3 <3	3.37 4.38 7.23 2.27 4.09	.04 .06 .02 .01 .01	.35 .33 .08 .02 .02	<2 <2 <2 <2 <2 <2 <2	<5 <5 <5 <5	<1 <1 <1 <1 <1	
STANDARD C3 Standard G	3 28 -2 2	3 66 2 3	36 <3	167 46	6.2 <.3	41 6	12 4	745 586	3.61 2.19	59 <2	26 <8	2 <2	21 5	32 89	26.7 <.2	16 <3	25 <3	77 46	.55 .77	.094 .104	17 8	183 83	.58 .68	187 278	.08 .15	18 <3	1.92 1.07	.04 .09	. 19 .65	13 2	<5 <5	1 <1	

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Max Investment Inc. PROJECT YREKA FILE # 9903345

Page 3

Data_

FA

ALML ANA	TICAL																																AUML	ANAL TELLAL
	SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	K %	W ppm	Tl ppm	Hg ppm	
	6+00NW 1+00NE 6+00NW 0+75NE 6+00NW 0+50NE 6+00NW 0+25NE 6+00NW BL	<1 1 <1 2 10	22 24 13 115 280	<3 <3 4 4 3	18 33 8 42 50	<.3 .6 .3 1.3 1.3	<1 <1 <1 5 9	<1 2 <1 <1 <1	13 32 9 30 20	1.10 1.99 .96 3.02 4.78	15 11 <2 34 29	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	2 5 2 11 1 3	<.2 <.2 <.2 <.2 <.2 <.2	<3 <3 <3 <3 <3 <3	<3 <3 <3 <3 <3	36 53 22 35 170	.01 .05 .01 .05 .13	.011 .018 .013 .038 .017	5 7 1 5 2	5 9 2 10 81	.01 .08 .04 .07 .05	8 13 7 29 37	.03 .06 .07 .04 .37	<3 <3 <3 <3 <3	.68 1.10 .53 4.50 5.02	.01 .01 .01 .01 .01	.01 .02 .01 .01 .01	<2 <2 <2 <2 <2 <2 <2	<5 <5 <5 <5 <5	<1 <1 <1 <1 <1	
	6+00nw 0+25sw 6+00nw 0+50sw 6+00nw 0+75sw 6+00nw 1+00sw 6+00nw 1+25sw	50 37 71 38 2	471 230 365 130 61	6 4 6 7 4	69 29 46 73 121	3.6 1.0 .7 .6 .3	7 2 9 7 2	2 <1 2 4 1	69 32 48 34 65	5.35 8.16 6.72 7.94 3.48	322 15 28 20 37	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 2	7 6 5 3 2	<.2 <.2 <.2 <.2 <.2	<उ <उ <उ <उ	<3 <3 <3 <3 <3	121 145 112 143 96	.07 .05 .07 .03 .02	.079 .044 .037 .032 .023	<1 <1 <1 <1 6	15 32 32 20 11	.21 .11 .26 .11 .20	19 12 11 13 26	.23 .33 .24 .29 .12	<3 <3 <3 <3 <3	7.11 5.08 4.58 2.54 2.65	.01 .01 .01 .01 .01	.02 .01 .01 .02 .03	<2 <2 <2 <2 <2 <2 <2	<5 <5 <5 <5 <5	<1 <1 <1 <1 <1	
	6+00NW 1+50SW 6+00NW 1+75SW 6+00NW 2+00SW 5+50NW 0+25SW 5+50NW 0+50SW	3 2 <1 76 44	318 248 129 1885 145	<3 7 <3 <3 4	129 313 98 52 6	<.3 .4 .4 4.8 1.1	14 15 19 8 3	13 23 9 270 1	217 1225 308 4159 50	5.69 5.90 5.35 4.45 6.28	204 96 16 79 7	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	35 42 26 30 6	<.2 1.2 <.2 1.1 <.2	ও ও ও ও ও	<3 <3 <3 <3 <3 <3	122 120 113 81 154	.20 .45 .26 .28 .04	.034 .079 .089 .097 .042	3 5 3 7 <1	19 11 14 24 7	1.31 1.58 .86 .11 .03	65 49 117 31 13	.11 .20 .21 .07 .27	<3 <3 <3 <3 <3	4.28 4.40 4.84 11.35 1.22	.04 .04 .03 .01 .01	.05 .26 .10 .02 .02	<2 <2 <2 <2 <2 <2	<5 <5 <5 <5 <5	<1 <1 <1 <1 <1	
	5+50NW 0+75SW 5+50NW 1+00SW 5+50NW 1+25SW 5+50NW 1+20SW 5+50NW 1+75SW	30 11 5 1 2	220 158 68 124 253	<3 <3 5 <3 5	10 24 18 34 192	1.4 .4 .4 <.3 .3	3 5 1 6 13	<1 <1 <1 2 23	37 53 64 205 936	7.69 5.28 6.05 6.51 6.29	<2 13 18 21 85	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	6 7 16 43 136	.2 <.2 <.2 <.2 <.2	ও ও ও ও ও ও	ব্য ব্য ব্য ব্য ব্য	94 52 209 104 111	.04 .04 .08 .13 .27	.069 .059 .029 .023 .066	3 2 1 <1 6	19 16 11 21 13	.06 .21 .17 1.26 1.36	12 10 20 37 95	.15 .13 .44 .28 .17	<3 <3 <3 <3 <3	8.49 9.11 3.07 5.07 5.14	.01 .01 .01 .02 .03	.01 .02 .03 .11 .19	<2 <2 <2 <2 <2 <2 <2	<5 <5 <5 <5 <5	<1 <1 <1 <1 <1	
	RE 5+50NW 1+75SW 5+50NW 2+00SW 4+50NW 2+00NE 4+50NW 1+75NE 4+50NW 1+50NE	2 5 19 10 4	244 161 39 169 204	6 4 4 4 7	187 70 17 101 162	.3 <.3 2.2 .7 3.0	16 10 9 17 17	24 9 <1 5 23	889 267 92 116 420	6.11 4.35 6.49 4.59 3.38	86 19 9 25 50	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	125 16 9 8 20	.6 <.2 <.2 <.2 1.3	<3 <3 <3 <3 <3	उ उ उ उ उ उ	107 85 367 88 62	.26 .23 .14 .11 .25	.065 .067 .021 .033 .049	6 2 1 3 3	13 15 82 71 48	1.28 .74 .21 .33 .20	93 47 9 22 32	.16 .18 .51 .17 .11	<3 <3 <3 <3 <3	4.85 2.73 2.20 7.68 5.40	.03 .03 .01 .01 .02	.18 .07 .02 .01 .02	<2 <2 <2 <2 <2 <2	<5 <5 <5 <5 <5	<1 <1 <1 <1 <1	
	4+50NW 1+25NE 4+50NW 1+00NE 4+50NW 0+75NE 4+50NW 0+50NE 4+50NW 0+25NE	4 3 2 8 9	106 90 155 243 168	5 <3 <3 4 7	46 70 227 132 101	.8 1.0 .5 1.2 1.5	13 13 16 10 6	2 2 13 2 2	138 97 413 102 79	5.23 4.04 3.67 4.25 3.99	16 29 93 59 51	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	9 7 31 9 11	<.2 <.2 1.4 .2 .5	<3 <3 <3 <3 <3 <3	<3 <3 <3 <3 <3 <3	129 84 54 77 94	.18 .10 .28 .06 .12	.034 .041 .051 .050 .028	4 3 8 3 3	79 65 22 57 36	.30 .25 .49 .21 .15	20 20 75 27 18	.31 .18 .09 .14 .16	<3 <3 <3 <3 <3	3.94 6.75 3.82 7.92 3.05	.02 .01 .01 .01 .01	.03 .02 .05 .02 .01	<2 <2 <2 <2 <2 <2	<5 <5 <5 <5 <5	<1 <1 <1 <1 <1	
	4+50NW BL 4+00NW 2+00NE 4+00NW 1+75NE 4+00NW 1+50NE 4+00NW 1+25NE	22 17 6 3 3	391 147 364 425 121	7 4 <3 5 4	146 92 171 276 77	.6 .3 1.1 .4 .7	14 21 20 32 17	22 9 5 33 5	1161 479 113 1353 209	4.71 5.44 3.54 4.14 4.23	60 19 43 39 25	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	25 9 12 34 10	.9 2.> 2.> .7 .7	3 3 3 3 3 3 3	<3 <3 <3 <3 <3	92 121 71 82 82	.26 .13 .09 .38 .13	.032 .039 .057 .076 .043	5 5 7 7 3	36 64 63 42 49	.28 .53 .47 .92 .47	28 20 35 92 26	. 16 . 16 . 15 . 14 . 16	<3 <3 <3 <3 <3	3.75 6.18 9.11 3.43 4.80	.01 .01 .01 .03 .01	.02 .02 .03 .12 .03	<2 <2 <2 <2 <2 <2 <2	<5 <5 <5 <5 <5	<1 <1 <1 <1 <1	
	STANDARD C3 Standard G-2	25 1	59 3	34 <3	155 45	5.4 <.3	32 9	12 4	763 603	3.31 2.10	57 <2	22 <8	2 <2	18 3	27 69	24.1 <.2	14 <3	22 <3	73 42	.52 .70	.086	17 8	168 81	.52 .59	166 253	.08 .12	17 <3	1.90 1.04	.04 .08	. 16 .59	14 2	<5 <5	<1 <1	

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Max Investment Inc. PROJECT YREKA FILE # 9903345 Page 4 Mo Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Col Sb Bi V Ca P La Cr Mg Ba Ti B Al Na K W TL Ha SAMPLE# % ppm ppm ppm ppm ppm ppm ppm ppm % % ppm ppm % ppm % ppm % % mag mag mag % mag mag mag mag mag mag mag mag 4+00NW 1+00NE 6 254 3.79 36 <2 12 <.2 <3 <3 85 .13 .040</pre> 6 31 .44 34 .13 3 3.24 .01 .03 <2 3 114 4 116 .4 12 <8 <2 <5 <1 4+00NW 0+75NE 3 239 4 250 1.2 14 9 168 3.08 57 <8 <2 <2 9 .5 <3 <3 56.10.054 7 25 .50 47 .09 <3 4.95 .01 .03 <2 <5 <1 <2 32 1.1 6 34 .81 75 .12 <3 5.04 .02 .05 7 383 1.1 24 30 535 3.93 87 <2 <3 <3 85 .29 .054 <2 <5 <1 4+00NW 0+50NE 6 466 <8 5 13 .75 35 .28 <3 3.81 .03 .07 <2 4+00NW 0+25NE 3 87 1.7 12 5 160 5.60 41 <8 <2 <2 12 .9 <3 <3 128 .21 .032 <5 <1 3 186 4+00NW BL 2 88 3 43 1.3 5 3 103 6.02 30 <8 <2 <2 9 .8 <3 <3 142 .22 .039 3 16 .42 15 .26 <3 2.47 .02 .04 <2 <5 <1 <.2 <3 <3 138 .09 .018 4 10 .32 13 .28 <3 1.68 .01 .02 <2 4+00NW 0+25SW 2 48 5 28 .8 9 2 83 4.39 19 <8 <2 <2 4 <5 <1 24 .7 7 3 75 4.97 30 <8 <2 <2 .3 <3 <3 140 .12 .027 4 12 .26 11 .28 <3 2.02 .01 .04 <2 <5 <1 4+00NW 0+50SW 55 4 4 1 92 5.14 35 <2 <2 3 .5 <3 <3 132 .09 .046 4 15 .32 23 .27 <3 3.69 .01 .04 <2 <5 <1 4+00NW 0+75SW 1 83 5 36 1.0 9 3 <8 4 194 5.46 46 <8 <2 <2 8 .7 <3 <3 116 .11 .114 4 16 .78 25 .23 <3 9.03 .02 .06 <2 <5 <1 4+00NW 1+00SW 2 156 <3 81 .9 7 .3 17 19 631 4.71 82 <8 <2 <2 20 <3 <3 113 .17 .096 7 15 1.19 79 .16 4 7.28 .04 .15 <2 <5 <1 4+00NW 1+25SW 1 239 <3 156 .5 4+00NW 1+50SW 1 162 <3 175 .6 8 274 5.03 90 <8 <2 <2 31 .8 <3 <3 109 .17 .037 5 13 1.77 109 .21 <3 5.57 .02 .08 <2 <5 <1 -14 9 356 6.13 48 <2 <2 51 1.3 <3 <3 130 .24 .060 4 15 1.16 86 .25 <3 4.57 .03 .11 <2 4+00NW 1+75SW 1 139 5 124 .3 15 <8 <5 <1 1 127 <3 144 <.3 37 21 532 5.13 21 <8 <2 <2 20 .9 <3 <3 111 .35 .058 6 24 .81 59 .27 <3 6.38 .03 .08 <2 <5 <1 4+00NW 2+00SW 3+50NW 2+00NE 5 144 <.3 27 19 1528 4.47 29 <8 <2 <2 45 1.2 <3 <3 103 .76 .063 12 41 1.14 45 .14 3 3.15 .03 .05 <2 <5 <1 8 135 5 151 <.3 18 21 780 5.20 84 <8 <2 <2 <1 1.0 <3 <3 104 .33 .078 4 16 1.13 67 .14 <3 2.71 .04 .08 <2 <5 <1 3+50NW 1+25NE <1 85 3+50NW 1+00NE 3 217 5 191 <.3 20 36 897 6.56 228 <8 <2 <2 104 2.0 <3 <3 118 .43 .079 8 19 1.34 91 .08 <3 3.93 .05 .16 <2 <5 <1 35 993 6.61 235 <2 <2 117 1.3 <3 <3 127 .47 .075 9 18 1.48 88 .09 <3 4.43 .05 .18 <2 <5 <1 **RE 3+50NW 1+00NE** 3 241 4 196 <.3 21 <8 7 17 1.53 77 .13 <3 3.70 .06 .17 <2 <5 <1 3+50NW 0+75NE 2 167 4 189 .4 18 24 1060 5.34 108 <8 <2 <2 82 1.5 <3 <3 112 .85 .061</p> 3+50NW 0+50NE 4 209 1.2 18 20 953 5.94 64 <8 <2 <2 145 <.2 <3 <3 129 .31 .042</pre> 8 10 1.39 88 .17 3 5.49 .05 .15 <2 <5 1 1 213 <2 <2 45 <.2 <3 <3 133 .28 .039 6 10 1.19 73 .24 <3 3.91 .03 .25 3+50NW 0+25NE 2 124 4 138 .4 15 7 656 5.54 124 <8 <2 <5 <1 10 574 5.32 97 <2 39 1.2 <3 132 .23 .063 6 14 1.66 104 .25 <3 6.08 .03 .28 <2 3+50NW BL 1 173 3 153 .3 19 <8 <2 <3 <5 <1 3+50NW 0+25SW 4 72 -4 15 7 273 5.06 88 <8 <2 <2 29 .4 <3 <3 151 .31 .040 5 18 .93 59 .26 5 2.66 .05 .23 <2 <5 <1 1 81 .3 17 17 560 4.70 88 <8 <2 <2 48 <3 <3 85 .28 .124 4 14 1.00 72 .08 <3 2.58 .05 .15 <2 3+50NW 0+50SW <1 129 5 121 .6 <5 <1 <8 <2 <2 70 1.5 <3 <3 74 .30 .076</pre> 3+50NW 0+75SW 5 165 <.3 19 31 1557 5.42 154 4 15 .93 91 .06 <3 2.26 .04 .14 <2 <5 <1 <1 116 8 181 1.6 16 25 508 5.94 73 <8 <2 <2 58 1.5 <3 <3 73 .20 .069 3+50NW 1+00SW 1 112 2 18 .91 129 .09 <3 2.66 .03 .07 <2 <5 <1 3+50NW 1+25SW <1 127 4 141 <.3 18 23 784 5.44 160 <8 <2 <2 85 1.0 <3 <3 101 .43 .072 5 16 1.48 88 .10 <3 3.03 .07 .20 <2 <5 <1 3+50NW 1+50SW 1 73 4 124 .4 12 26 1051 5.04 29 <8 <2 <2 47 .9 <3 <3 118 .53 .057 6 16 1.12 109 .25 <3 4.12 .05 .13 <2 <5 <1 3+50NW 1+75SW <1 55 <3 91 <.3 19 26 810 5.49 5 <8 <2 <2 20 1.0 <3 <3 135 .42 .062</pre> 7 19 .90 34 .33 <3 5.26 .02 .05 <2 <5 <1 3+50NW 2+00SW 1 68 3 83 <.3 16 22 694 5.39 9 <8 <2 <2 13 1.2 <3 <3 124 .28 .068</p> 6 19 1.07 30 .32 <3 4.99 .02 .06 <2 <5 <1 3+00NW 2+00NE 3 45 <3 62 .5 9 4 274 7.45 6 <8 <2 <2 5 1.5 <3 <3 165 .04 .039 6 36 .52 30 .26 <3 8.65 .01 .02 <2 <5 <1 3+00NW 1+75NE 2 37 5 110 .3 16 7 474 6.37 30 <8 <2 <2 10 1.2 <3 <3 144 .07 .036 4 28 .80 31 .24 <3 3.43 .01 .03 <2 <5 <1 3+00NW 1+50NE 29 3 90 .4 10 5 469 5.39 26 <8 <2 <2 10 <.2 <3 <3 137 .10 .031 6 21 .73 20 .22 3 3.85 .01 .04 <2 <5 <1 2 3+00NW 1+25NE 1 33 6 49 .4 14 8 373 6.86 7 <8 <2 <2 7 1.3 <3 <3 187 .10 .025 3 23 .56 16 .33 <3 2.26 .01 .02 <2 <5 <1 3+00NW 1+00NE 1 7 30 <.3 3 9 18 6.11 22 <8 <2 <2 <1 2.0 <3 <3 10<.01 .043 <1 19 .03 16 .01 <3 .10<.01<.01 2 <5 <1 2 5 285 7.53 8 1.4 <3 <3 217 .09 .018 3 27 3+00NW 0+75NE 1 23 6 54 <.3 12 - 4 <8 <2 <2 .60 16 .45 <3 2.29 .01 .02 <2 <5 <1 25 60 34 159 5.8 35 11 757 3.31 59 23 2 19 28 24.2 15 23 77 .56 .087 17 168 .59 163 .08 17 1.90 .04 .17 14 <5 <1 STANDARD C3 STANDARD G-2 2 5 <3 48 <.3 10 4 595 2.27 <2 <8 <2 4 74 <.2 <3 <3 45 .74 .106 9 87 .67 263 .13 <3 1.09 .08 .54 2 <5 <1

Data

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Max Investment Inc. PROJECT YREKA FILE # 9903345 Page 5 SAMPLE# Mo Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Mg Ba Ti B Al Na K W TI Hg mag mag mgg mgg mgg mgg mgg mag mag mag mag mag mag mag mag mag % % ppm ppm % ppm % ppm % % % ppm ppm ppm 3+00NW 0+50NE 9 496 7.39 9 <.2 <3 <3 198 .13 .032 1 54 <3 89 <.3 26 12 <8 <2 <2 4 38 1.25 21 .37 <3 4.10 .01 .04 <2 <5 <1 3+00NW 0+25NE 26 <.2 <3 <3 148 .35 .053 2 114 <3 152 <.3 22 17 861 5.82 22 <8 <2 <2 6 24 1.37 79 .29 <3 4.75 .02 .05 <2 <5 <1 3+00NW BL <1 55 <3 98 <.3 18 15 1587 5.24 8 <8 <2 <2 23 <.2 <3 <3 133 .42 .079</pre> 6 26 1.13 36 .27 <3 4.90 .03 .06 <2 <5 <1 3+00NW 0+25SW 1 127 <3 190 .4 11 19 1367 4.92 83 <8 <2 <2 63 <.2 <3 <3 107 .85 .081</pre> 7 14 1.41 50 .14 <3 3.38 .07 .22 <2 <5 <1 3+00NW 0+50SW 2 79 6 105 .3 12 8 299 6.39 58 <8 <2 <2 43 <.2 <3 <3 142 .17 .041 3 20 .73 77 .23 <3 3.02 .03 .05 <2 <5 <1 3+00NW 0+75SW 15 20 543 6.33 31 <8 <2 <2 202 <.2 <3 <3 128 .31 .066 <1 174 4 180 .4 5 17 1.10 148 .20 <3 5.80 .04 .17 <2 <5 <1 3+00NW 1+00SW <3 169 .3 26 1016 5.88 182 <8 <2 <2 63 <.2 <3 <3 111 .63 .090 1 235 14 7 14 1.63 67 .12 <3 3.19 .07 .35 <2 <5 1 3+00NW 1+25SW 1 155 4 188 .4 20 28 1425 5.60 157 <8 <2 <2 56 <.2 <3 <3 82 .55 .097 5 15 1.23 74 .08 <3 2.31 .04 .25 <2 <5 <1 3+00NW 1+50SW <1 110 <3 126 <.3 17 48 1858 5.50 53 <8 <2 <2 31 <.2 <3 <3 121 .30 .095</p> 7 20 1.30 98 .22 <3 5.89 .02 .24 <2 <5 <1 3+00NW 1+75SW <1 24 5 20 .3 9 4 156 2.36 5 <8 <2 <2 16 <.2 <3 <3 84 .25 .049 8 8 .35 33 .25 <3 2.21 .01 .05 <2 <5 <1 3+00NW 2+00SW <1 36 <3 33 .3 295 6.36 9 <8 <2 <2 6 <.2 <3 <3 184 .15 .039 - 5 3 5 18 .50 20 .44 <3 4.18 .02 .06 <2 <5 2+50NW 2+00NE 6 44 3 105 <.3 16 7 394 7.02 15 <8 <2 <2 11 <.2 <3 <3 127 .11 .038 4 35 1.03 22 .17 <3 5.84 .01 .02 <2 <5 <1 4 48 .96 17 .21 <3 5.98 .01 .02 <2 <5 <1 2+50NW 1+75NE 4 41 <3 80 <.3 9 6 441 7.31 12 <8 <2 <2 5 <.2 <3 <3 144 .05 .044 2+50NW 1+50NE .3 17 11 787 6.26 16 <8 <2 <2 7 <.2 <3 <3 144 .11 .057 4 24 .84 24 .27 <3 6.75 .01 .02 <2 <5 <1 <1 51 <3 115 2+50NW 1+25NE 2 28 <3 68 .4 7 5 375 6.40 18 <8 <2 <2 6 <.2 <3 <3 163 .06 .042 4 22 .59 22 .31 <3 4.38 .01 .02 2 <5 <1 2+50NW 1+00NE 5 4 265 7.25 13 <8 7 <.2 <3 <3 153 .05 .039 1 24 3 57 .4 <2 <2 3 21 .42 15 .26 <3 2.77 .01 .02 <2 <5 <1 RE 2+50NW 1+00NE 22 4 56 .4 7 4 253 7.35 13 <8 <2 <2 6 <.2 <3 <3 147 .05 .039 3 21 .39 15 .26 <3 2.68 .01 .02 <2 <5 1 1 2+50NW 0+75NE 1 27 3 107 <.3 12 19 604 5.59 13 <8 <2 <2 7 < 2 <3 <3 136 .15 .048 3 26 .83 18 .27 <3 4.04 .01 .02 <2 <5 <1 2+50NW 0+50NE 1 30 4 65 .3 6 3 299 7.94 13 <8 <2 <2 7 <.2 <3 <3 220 .07 .035 4 35 .36 18 .41 <3 4.45 .01 .02 <2 <5 1 2+50NW 0+25NE 25 <3 85 <.3 26 36 4084 5.07 8 <8 <2 <2 19 <.2 <3 <3 146 .44 .053 1 3 84 .98 21 .23 <3 4.56 .03 .06 <2 <5 1 2+50NW BL 2 37 <3 106 .3 14 20 2036 6.37 35 <8 <2 <2 8 <.2 <3 <3 165 .13 .079 5 38 .62 20 .32 <3 7.58 .01 .02 <2 <5 <1 2+50NW 0+25SW <1 36 <3 71 .3 10 12 561 6.36 23 <8 <2 <2 9 <.2 <3 <3 141 .14 .049 4 24 .68 32 .31 <3 4.68 .01 .02 <2 <5 <1 2+50NW 0+50SW <3 154 <.3 20 20 767 5.57 74 <2 <2 20 <.2 <3 <3 126 .33 .068 7 26 1.26 46 .24 <3 5.28 .02 .06 <2 1 118 <8 <5 <1 2+50NW 0+75SW 7 3 164 7.08 49 <2 <2 7 <.2 <3 <3 204 .08 .029 1 25 3 44 .7 <8 3 24 .34 20 .44 <3 3.40 .01 .02 <2 < 5 1 2+50NW 1+00SW 5 160 5.33 91 <8 <2 <2 13 <.2 <3 <3 77 .11 .043 3 251 <3 217 .6 6 3 14 1.21 30 .16 <3 5.49 .03 .05 <2 <5 1 1 232 6.01 2+50NW 1+50SW <1 18 4 24 <.3 4 4 <8 <2 <2 12 <.2 <3 <3 243 .18 .014</p> 3 13 .45 27 .79 <3 1.55 .01 .13 <2 <5 2+50NW 1+75SW <3 37 .5 4 425 6.09 12 <8 <1 32 <2 <2 9 <.2 <3 <3 178 .24 .035 4 20 .75 33 .57 <3 4.39 .02 .15 <2 <5 <1 6 2+50NW 2+00SW <1 57 <3 52 <.3 5 11 635 6.57 69 <8 <2 <2 23 <.2 <3 <3 174 .19 .033</pre> 6 15 .38 41 .34 <3 2.33 .02 .08 <2 <5 <1 2+00NW 2+00NE 3 26 3 67 .3 5 4 288 6.99 13 <8 <2 <2 5 <.2 <3 <3 153 .06 .037 4 28 .63 15 .25 <3 4.59 .01 .02 <2 <5 <1 <2 <2 2+00NW 1+75NE 2 35 <3 72 .4 10 3 249 6.64 9 <8 5 <.2 <3 <3 153 .05 .051 4 29 .45 16 .29 <3 8.73 .01 .01 <2 <5 <1 2+00NW 1+50NE 4 273 6.42 11 <8 <2 <2 6 <.2 <3 <3 164 .06 .047 1 34 <3 81 <.3 9 5 27 .46 15 .33 <3 5.44 .01 .01 <2 <5 <1 2+00NW 1+25NE 1 46 <3 96 <.3 10 6 311 6.55 12 <8 <2 <2 5 <.2 <3 <3 153 .07 .047 4 26 .63 14 .32 <3 6.50 .01 .01 <2 <5 <1 2+00NW 1+00NE 3 24 4 63 <.3 12 6 347 6.01 19 <8 <2 <2 7 <.2 <3 <3 166 .10 .032 3 20 .50 21 .32 <3 3.10 .01 .02 <2 <5 <1 2+00NW 0+75NE <1 33 <3 66 .38 3 237 8.21 15 <8 <2 <2 4 <.2 <3 <3 159 .08 .042 3 25 .55 16 .27 <3 5.24 .01 .02 <2 <5 <1 2+00NW 0+50NE 2 39 <3 109 <.3 10 14 475 5.58 21 <8 <2 <2 5 <.2 <3 <3 120 .10 .057 5 31 .58 20 .26 <3 6.92 .01 .02 <2 <5 <1 STANDARD C3 26 63 31 160 5.8 35 11 776 3.40 59 25 2 20 27 22.9 15 23 77 .60 .096 17 170 .60 148 .08 18 1.97 .04 .18 14 <5 1 STANDARD G-2 2 3 <3 44 <.3 8 4 570 2.14 <2 <8 <2 4 65 <.2 <3 <3 39 .66 .106 7 82 .60 234 .13 <3 .95 .07 .53 2 <5 <1

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

 $\mathcal{L}_{\mathsf{Data}} \mathcal{L}_{\mathsf{FA}}$

				Ma	x :	Inv	res	tme	nt	Inc	2.	PRO	JJE	СТ	YR	EKA	A	FII	E :	# 9	903	34	5				P	age	e 6			ACME AN	ALYFICAL
SAMPLE# Mo ppm	C pp	u m p	РЬ pm (Zn ppill	Ag	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppin	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	8 ppm	Al %	Na %	К %	W ppm	τι ppm p	Hg opm	
2+00NW 0+25NE 3 2+00NW BL 2 2+00NW 0+25SW 3 2+00NW 0+50SW 1 2+00NW 0+75SW 2	1 1 3 3	9 3 7 8 9	9 9 5 6 5	27 45 103 147 57	<.3 <.3 <.3 <.3 .3	9 13 15 22 14	<1 6 29 14 4	124 482 3186 567 222	4.28 6.94 5.18 5.09 5.59	<2 38 93 52 13	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	14 14 30 24 8	<.2 <.2 <.2 <.2 <.2 <.2	<3 <3 <3 <3 <3	<3 <3 <3 <3 <3 <3	338 269 183 152 168	.16 .27 .77 .58 .09	.023 .026 .062 .041 .043	3 4 6 4 4	52 24 30 23 26	.38 .60 .99 1.22 .63	10 15 22 35 14	.88 .52 .20 .31 .38	<3 <3 <3 <3 <3	1.07 2.12 4.53 4.56 5.32	.02 .02 .02 .02 .02 .01	.03 .03 .02 .03 .03	<2 <2 <2 <2 <2 <2 <2 <2	5 <5 <5 <5 <5	4 1 <1 <1 <1	
2+00NW 1+00SW <1 2+00NW 1+25SW <1 2+00NW 1+50SW 2 2+00NW 2+00SW <1 1+50NW 4+00NE 30	2 6 6 3	3 7 1 8 6	5 <3 4 6 9	56 88 135 16 70	<.3 .5 <.3 <.3 .8	17 20 23 5 19	6 7 17 2 4	234 385 1103 99 215	6.47 5.31 4.76 3.08 8.43	5 52 61 13 19	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	11 9 48 13 5	<.2 <.2 <.2 <.2 <.2 <.2	<3 <3 <3 <3 <3	<3 <3 <3 <3 <3 <3	203 186 153 135 98	.19 .08 1.13 .13 .02	.021 .037 .058 .016 .055	4 5 8 3 4	24 36 44 12 21	.69 1.14 1.89 .40 .33	17 26 26 22 22	.40 .43 .22 .35 .03	<3 4 <3 <3 <3	3.27 19.25 5.94 1.30 4.26	.01 .01 .03 .01 .01	.01 .02 .07 .08 .03	<2 <2 <2 <2 <2 <2 <2	<5 <5 <5 <5 <5	<1 <1 <1 1 <1	
1+50NW 3+75NE 20 1+50NW 3+50NE 14 1+50NW 3+25NE 22 RE 1+50NW 3+25NE 21 1+50NW 3+00NE 10	5 4 4 3	5 9 2 0 3	8 8 8 13	111 125 79 73 103	1.0 .3 .7 .7	28 21 12 15 10	14 12 5 5 12	586 1784 272 248 788	7.58 7.78 6.67 6.37 7.09	21 19 14 13 24	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	10 8 7 6 10	<.2 <.2 <.2 <.2 <.2 <.2	3 3 3 3 3 3	ও ও ও ও ও ও ও	74 109 98 93 161	.03 .09 .04 .04 .06	.074 .331 .067 .067 .055	9 5 9 8 6	24 23 24 24 18	.62 .82 .38 .36 .61	45 27 30 29 40	.04 .07 .04 .04 .18	<3 <3 <3 <3 <3	7.84 8.08 8.23 7.95 4.31	.01 .01 .01 .01 .01	.04 .06 .04 .03 .04	<2 <2 <2 <2 <2 <2 <2	<5 <5 <5 <5 <5	<1 <1 <1 <1 <1	
1+50NW 2+75NE <1 1+50NW 2+50NE <1 1+50NW 2+25NE <1 1+50NW 2+00NE <1 1+50NW 1+75NE <1	7 5 6 6	7 1 2 7 3	10 8 8 10 7	310 252 239 229 155	<.3 <.3 <.3 <.3 <.3	18 21 22 20 12	16 12 11 10 4	670 641 518 514 463	7.59 8.37 8.04 8.32 8.38	36 14 21 41 15	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	7 9 8 8 8	<.2 <.2 <.2 <.2 <.2 <.2	८३ ८३ ८३ ८३ ८३	<3 <3 <3 <3 <3 <3	196 175 172 178 256	.06 .07 .06 .07 .07	.050 .038 .045 .036 .058	4 5 4 3 6	28 26 33 32 32	1.20 1.19 .94 1.02 .55	70 43 81 72 21	.34 .38 .29 .34 .49	<3 <3 <3 <3 <3	6.78 5.63 6.28 5.08 6.54	.01 .01 .01 .01 .01	.03 .03 .02 .02 .02	<2 <2 <2 <2 <2 <2 <2	<5 <5 <5 <5	<1 1 <1 <1 <1	
1+50NW 1+50NE <1 1+50NW 1+25NE <1 1+50NW 1+00NE <1 1+50NW 0+75NE <1 1+50NW 0+50NE <1	5 3 3 1	6 3 3 6 7	6 5 6 7	234 137 106 136 72	<.3 .4 .4 <.3 .4	16 14 17 16 11	10 7 8 8 8	694 449 317 330 272	7.51 6.97 7.27 6.51 6.10	19 38 7 20 19	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	11 12 7 8 10	<.2 <.2 <.2 <.2 <.2 <.2	<3 <3 <3 <3 <3	⊲ ⊲ ⊲ ⊲ ⊲	154 144 189 136 100	.10 .07 .07 .07 .12	.043 .040 .039 .074 .053	5 5 3 3 3	23 36 29 28 26	1.08 .70 .73 .55 .40	41 26 21 43 21	.40 .27 .42 .27 .19	ব্য ব্য ব্য ব্য	6.22 6.41 5.01 4.71 2.21	.01 .01 .01 .01 .01	.04 .02 .02 .02 .02	<2 <2 <2 <2 <2 <2 <2	<5 <5 <5 <5	<1 <1 <1 <1 <1	
1+50NW 0+25NE <1 1+50NW BL <1 1+00NW 4+00NE 7 1+00NW 3+75NE 3 1+00NW 3+50NE 3	3 6 3 5 4	2 1 3 1 0	6 5 8 9	111 193 87 142 97	.5 .5 .4 <.3 <.3	13 22 15 14 12	7 7 50 23 7	393 408 5588 1135 493	7.97 6.74 5.74 6.91 7.75	30 114 13 19 23	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	9 7 17 6 5	<.2 <.2 <.2 <.2 <.2 <.2	<3 <3 <3 <3 <3	<3 <3 <3 <3 <3	169 182 141 163 180	.08 .08 .13 .03 .03	.046 .062 .056 .049 .033	4 3 6 5	37 39 24 24 24	.81 .92 .52 1.28 1.15	20 20 41 39 30	.35 .41 .15 .19 .22	<3 <3 <3 <3 <3	6.59 10.43 5.21 8.09 6.85	.01 .01 .01 .01 .01	.02 .03 .04 .04 .04	<2 <2 <2 <2 <2 <2 <2	<5 <5 <5 <5	<1 <1 <1 <1 <1	
1+00NW 3+25NE 2 1+00NW 3+00NE 4 1+00NW 2+75NE <1 1+00NW 2+50NE <1 1+00NW 2+25NE 1	6 6 4 3	3 5 8 0 5	9 7 7 8 11	172 183 227 106 205	<.3 .3 .4 .4 .3	17 19 17 7 13	11 10 9 2 9	672 618 622 303 392	6.90 6.71 8.32 7.69 8.75	25 27 14 8 155	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	6 6 10 10 7	<.2 <.2 <.2 <.2 <.2 <.2	<3 <3 <3 <3 <3	८३ ८३ ८३ ८३ ८३	157 131 207 232 164	.05 .05 .07 .07 .06	.043 .048 .038 .042 .039	7 5 5 4 3	20 25 29 20 44	2.11 1.83 1.14 .43 .75	42 22 38 25 22	.24 .17 .48 .48 .31	ও ও ও ও ও	9.24 8.48 5.93 3.36 4.16	.01 .01 .01 .01 .01	.06 .06 .03 .02 .02	<2 <2 <2 <2 <2 <2	<5 <5 <5 <5 <5	<1 <1 <1 1 <1	
STANDARD C3 27 STANDARD G-2 2	6	5 3	35 <3	171 43	5.9 <.3	39 8	11 4	751 555	3.54 2.14	60 <2	25 <8	3 <2	20 4	33 76	25.5 <.2	16 <3	25 <3	81 41	.57 .67	.093 .102	18 7	178 84	.61 .60	161 240	.08 .13	18 <3	2.00 .98	.04 .08	.21 .59	14 2	<5 <5	1 <1	

Data_+FA

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Max Investment Inc. PROJECT YREKA FILE # 9903345

Page 7

ACME ANALYTICA

LIME ANALY I	ILAI																											L						
	SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ва ррп	⊺i %	B ppm	Al %	Na %	К %	W ppm	Tl ppm p	Hg opm	
	1+00NW 2+00NE 1+00NW 1+75NE 1+00NW 1+50NE 1+00NW 1+25NE 1+00NW 1+25NE 1+00NW 1+00NE	1 <1 <1 <1 <1 <1	83 49 20 40 36	<3 <3 4 <3 4	269 149 73 104 118	<.3 <.3 .4 <.3 <.3	21 14 10 17 19	14 5 2 4 6	807 468 347 336 440	7.55 7.40 8.83 8.02 7.50	24 16 23 12 13	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	<2 2 <2 <2 <2 <2 <2	8 8 10 9 11	.6 .6 .2 .2 .2	<3 <3 <3 <3 <3 <3	<3 <3 <3 <3 <3	211 198 181 197 180	.06 .06 .05 .08 .06	.043 .041 .044 .053 .032	4 4 3 3 4	29 25 28 27 33	1.10 .63 .30 .56 .68	52 26 14 27 24	.32 .38 .34 .34 .34 .32	<3 <3 <3 <3 <3 <3	9.96 6.13 3.28 4.93 5.09	.01 .01 .01 .01 .01	.03 .03 .02 .02 .02	<2 <2 <2 <2 <2 <2	<5 <5 <5 <5 <5	1 <1 <1 <1 <1	
	1+00NW 0+75NE 1+00NW 0+50NE 1+00NW 0+25NE 1+00NW BL 0+50SE 4+00NE	<1 <1 <1 <1 <1 3	39 38 47 18 26	4 6 9 5	122 121 149 56 47	.3 .3 .3 .3 .3	13 32 21 10 16	6 17 9 3 7	570 1211 443 211 486	9.37 6.89 5.70 6.84 6.44	15 52 106 22 13	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	8 8 10 9 8	<.2 .2 .3 <.2 <.2	<3 <3 <3 <3 <3 <3	<3 <3 <3 <3 <3	232 172 143 179 156	.09 .15 .12 .05 .04	.034 .034 .041 .029 .039	3 3 2 2 3	31 36 26 23 70	.68 1.17 .71 .22 .63	22 19 23 13 12	.42 .28 .26 .32 .19	<उ <उ <उ <उ <उ	4.47 4.90 4.87 1.73 3.79	.01 .01 .01 .01 .01	.02 .03 .02 .02 .02	<2 <2 <2 <2 <2 <2	<5 <5 <5 <5 <5	<1 <1 <1 <1 <1	
	0+50SE 3+75NE 0+50SE 3+50NE 0+50SE 3+25NE 0+50SE 3+00NE 0+50SE 2+75NE	3 4 3 <1 1	24 50 48 64 70	7 3 <3 5 6	32 87 179 252 279	.5 <.3 <.3 <.3 <.3	19 28 17 17 17	4 10 112 11 13	217 520 4528 574 682	7.41 7.24 7.67 7.25 7.04	10 18 13 30 28	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	2 <2 <2 <2 <2 <2 <2	10 6 8 8 7	<.2 .4 .7 .6	ব্য ব্য ব্য ব্য ব্য	3 3 5 5 5 3 3 3	255 124 155 177 163	.04 .04 .06 .07 .05	.034 .044 .052 .062 .053	3 4 8 4 6	91 48 24 26 25	.35 1.29 .85 .90 1.19	9 36 32 47 32	.20 .08 .21 .31 .31	<3 <3 <3 <3 <3	3.42 9.39 8.10 6.58 7.44	.01 .01 .01 .01 .01	.02 .04 .03 .03 .03	<2 <2 <2 <2 <2 <2 <2	<5 <5 <5 <5 <5	<1 <1 <1 <1 <1	
	0+50SE 2+50NE 0+50SE 2+25NE 0+50SE 2+00NE RE 0+50SE 2+00NE 0+50SE 1+75NE	<1 <1 <1 <1 <1 <1	35 44 50 54 52	7 8 6 <3	116 170 160 164 174	.3 <.3 <.3 <.3 <.3	10 15 19 20 19	3 7 6 5 15	225 419 344 364 601	8.19 9.81 8.33 8.32 6.53	19 19 28 25 29	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	<2 <2 2 <2 2 2	6 9 9 10 10	<.2 .6 .5 .6	<3 <3 <3 <3 <3	<3 <3 <3 <3 <3	213 202 226 239 139	.04 .06 .07 .07 .06	.043 .039 .041 .041 .067	3 2 3 3 6	25 32 33 33 32	.28 .64 .73 .78 .86	22 48 36 37 24	.29 .38 .38 .37 .33	3 3 3 3 3 3	3.05 3.94 5.15 5.51 9.50	.01 .01 .01 .01 .01	.02 .02 .03 .03 .03	<2 <2 <2 <2 <2 <2 <2	<5 <5 <5 <5	<1 <1 <1 <1	
	0+50SE 1+50NE 0+50SE 1+25NE 0+50SE 1+00NE 0+50SE 0+75NE 0+50SE 0+50NE	<1 <1 <1 <1 <1	38 47 49 39 34	<3 <3 4 4 6	196 201 157 136 152	<.3 <.3 .3 .3 <.3	22 17 15 13 15	47 17 9 6 12	2010 919 379 308 521	5.25 6.22 6.32 8.64 6.59	10 24 20 18 20	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	19 9 6 6	.7 .6 .5 .3 .6	<3 <3 <3 <3 <3	८३ ८३ ८३ ८३ ८३ ८३	142 145 133 170 119	.24 .06 .07 .04 .06	.058 .056 .059 .049 .046	8 5 3 2 2	28 35 27 28 30	.90 .77 .77 .49 .79	61 28 27 29 23	.21 .24 .25 .24 .22	⊲ ⊲ ⊲ ⊲ ⊲ ⊲	6.35 8.55 6.57 4.99 4.35	.01 .01 .01 .01	.03 .02 .02 .01 .01	<2 <2 <2 <2 <2 <2	<5 <5 <5 <5	1 <1 <1 <1 <1	
	0+50SE 0+25NE 0+50SE BL 0+00NW 4+00NE 0+00NW 3+75NE 0+00NW 3+50NE	<1 <1 3 5	44 28 60 34 39	<3 5 <3 6 8	122 83 55 35 106	.3 .3 <.3 .7 <.3	15 13 37 18 22	7 3 12 4 10	442 340 542 205 363	6.75 7.15 6.21 7.58 6.31	19 27 13 15 21	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	<2 2 2 2 2 2 2 2 2	10 10 16 13 5	.4 <.2 .8 .2 1.1	ও ও ও ও ও ও	ব ব ব ব ব ব	184 199 221 277 104	.06 .09 .07 .05 .03	.070 .053 .045 .029 .057	5 3 5 3 3	31 26 133 107 36	.71 .51 1.23 .45 .97	26 12 27 15 31	.32 .38 .35 .27 .08	<3 5 10 3 <3	7.64 2.72 11.62 3.99 5.70	.01 .01 .01 .01 .01	.02 .02 .03 .02 .03	<2 <2 <2 <2 <2 <2	<5 <5 <5 <5	<1 <1 <1 <1 <1	
	0+00NW 3+25NE 0+00NW 3+00NE 0+00NW 2+75NE 0+00NW 2+55NE 0+00NW 2+25NE	2 4 <1 <1 <1	44 76 49 62 81	8 <3 3 7 <3	118 256 147 220 222	<.3 <.3 <.3 <.3 <.3	6 23 15 15 18	5 8 5 8 8	345 702 460 527 493	7.82 6.61 7.20 8.10 8.43	32 38 11 22 31	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	3 2 2 2 3	5 8 10 6 5	<.2 <.2 .3 .8	ও ও ও ও ও ও ও	<3 <3 <3 <3 <3	233 204 219 186 208	.03 .06 .08 .04 .03	.039 .049 .036 .045 .057	5 7 7 5 4	16 19 23 32 33	.57 1.68 .77 .94 .80	25 34 24 38 32	.32 .27 .39 .35 .35	<3 9 3 <3 <3	4.97 9.82 5.44 7.24 12.33	.01 .01 .01 .01 .01	.02 .04 .03 .02 .02	<2 <2 <2 <2 <2 <2	<5 <5 <5 <5	<1 1 <1 <1 <1	
	STANDARD C3 Standard G-2	27 2	68 2	36 3	174 44	5.9 <.3	43 8	12 4	809 555	3.68 2.13	57 <2	26 <8	3 <2	23 4	31 78	27.9 <.2	13 <3	24 <3	86 42	.60 .65	.101 .107	18 7	189 85	.62 .59	146 221	.08 .13	16 <3	2.11	.04 .07	.18 .55	14 2	<5 <5	<1 <1	

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

	NALY SO 9	TICA 002	L LA Acci	BOR	ATOR ted	IES Co.	LTD)	•	85	2 E GEC	. HA DCHE	STIN EMIC	igs : Cal	ST. ANI	VANC	COUV	er e Cef	C V NTIF	'6A ICI	1R6 ATE		PHO	one (604)	253-	-315	8 F.A	LX (6)	04)2	:53-	1716
tt							Max	<u>In</u> 3	vest 750 Wes	<u>mer</u> st 491	nt] ch Ave	[nc. e, Var	. PF	ROJE er BC	ECT V6B 3	YRI 18	<u>EKA</u> Submi	Fi tted b	le by:0	# 9 2. Dya	903 ikowsk	8089 (i	9							4	
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Со ррт	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V mqq	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	K %	W ppm	Au* ppb
L99-1	1027	1412	<3	46	1.1	18	46	235	7.17	<2	<8	<2	<2	106	<.2	<3	<3	37 1	.07	.077	2	11	.14	74	.11	<3	1.57	.29	.13	23	3 170
16AA+ 1	10	1424	93 01	60 60	5.0	9 0	76	707 0/.0	16.90	11	- 10 - 28	~2	2	56	4.U 7.5	ر ۲>	104	63 4	80	013	<1	14	1.34	4	.01	3	.85	.02	.01	3	170

GROUP 1D - 0.50 GM SAMPLE, 3 MLS 2-2-2 AQUA REGIA, 1 HOUR AT 95 DEG. C, DILUTED TO 10 MLS. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK AU* - IGNITED, AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED. (10 gm)

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: AUG 25 1999 DATE REPORT MAILED: Sept 1/99

Data 🖊

ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.)

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

44

GEOCHEMICAL ANALYSIS CERTIFICATE

Max Investment Inc.PROJECT YREKAFile # 9903088Page 13750 West 49th Ave, Vancouver BC V6B 3T8Submitted by: C. Dyakowski

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U mqq	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ва ррп	Ti %	BA ppm	. Na 6 %	K %	W mqq	Au* ppb
0+50S 1+00W 0+50S 0+75W 0+50S 0+50W 0+50S 0+25W 0+50S BL	5 2 3 1 2	128 497 1124 144 148	5 9 3 8 6	48 110 169 124 352	2.0 1.7 18.5 1.6 1.5	11 18 17 10 13	7 13 27 6 26	160 665 710 194 953	9.16 5.14 9.39 5.20 6.39	10 <2 <2 <2 <2	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	13 60 21 11 18	<.2 .4 .5 <.2 1.1	<3 <3 <3 <3 <3	<3 3 <3 3 3	255 133 108 76 100	.10 .99 .25 .19 .22	.038 .043 .084 .057 .084	3 2 2 3 5	40 16 35 36 36	.19 .27 .21 .11 .20	21 14 12 17 30	.43 .19 .17 .17 .21	<3 4.5 <3 1.8 <3 6.9 <3 7.9 <3 7.7	; .01 , .03 ; .03 ; .01 ; .01	.03 .03 .02 .02 .01	<2 <2 <2 <2 <2 <2	15 27 46 1 2
1+50S 1+50W 1+50S 1+25W 1+50S 1+00W 1+50S 0+50W 1+50S 0+25W	2 1 1 4 3	16 21 26 346 314	9 8 7 9 7	27 58 46 70 100	.3 <.3 .3 1.0 3.1	22 52 30 8 8	5 10 6 15 8	119 189 143 411 251	6.83 5.87 7.52 6.41 4.56	<2 <2 <2 <2 3	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	5 8 5 15 14	<.2 <.2 <.2 <.2 <.2 <.2	<3 <3 <3 <3 3	<3 3 <3 <3 <3	344 202 275 129 83	.16 .30 .25 .45 .16	.028 .029 .028 .061 .078	2 3 2 4 4	137 219 258 20 17	.44 1.08 .65 .15 .16	8 22 10 15 11	.55 .40 .55 .18 .13	<3 1.5 <3 3.2 <3 3.5 <3 4.8 <3 4.9) .01 7 .03 5 .02 5 .01 3 .02	.01 .03 .02 .02 .02	<2 <2 <2 2 2 <2	<1 <1 1 1 1
1+50S BL 2+50S 2+00W 2+50S 1+75W 2+50S 1+50W 2+50S 1+25W	2 2 3 1 2	186 118 187 152 53	<3 4 7 <3 8	879 51 232 131 116	1.0 1.5 1.2 .9 .8	33 30 101 75 28	25 6 19 14 10	3798 92 268 244 417	6.15 7.92 7.69 12.12 7.09	158 6 20 6 6	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2	<2 <2 <2 2 2	52 35 25 4 10	7.3 .2 .8 1.5 .7	3 3 <3 <3 <3	<3 <3 <3 4 <3	134 187 193 235 195	1.05 .11 .21 .30 .11	.072 .042 .038 .036 .066	4 3 5 2 4	57 147 306 579 92	.66 .23 1.09 1.48 .58	53 22 29 9 20	. 16 . 33 . 36 . 57 . 36	<3 3.0 <3 5.4 <3 7.1 <3 4.4 <3 6.1	i .02 i .01 2 .02 5 .04 5 .01	.03 .01 .02 .04 .03	<2 <2 <2 <2 <2 <2	1 2 21 <1 <1
2+50S 1+00W 2+50S 0+75W 2+50S 0+50W 2+50S 0+25W 2+50S BL	2 2 1 5	57 45 91 226 303	8 <3 <3 23 17	146 14 140 984 760	.6 .5 1.3 1.5 1.0	30 5 11 65 25	10 3 12 23 36	313 109 1524 1640 852	7.19 5.97 5.85 5.67 6.81	<2 <2 <2 361 64	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	2 <2 <2 <2 <2 <2	7 15 12 37 27	.2 <.2 .4 8.5 1.5	<3 3 <3 <3 <3	<3 <3 <3 <3 <3	159 226 147 121 131	.19 :12 .12 .46 .22	.056 .039 .063 .063 .075	4 3 6 7 6	234 11 53 122 85	.44 .16 .22 .93 .55	13 14 16 53 48	.30 .47 .29 .27 .30	3 6.4 <3 2.0 <3 5.2 <3 6.9 <3 7.6	2 .02 5 .02 5 .01 5 .03 5 .02	.02 .02 .01 .03 .03	<2 <2 <2 <2 <2 <2	<1 <1 23 15
3+50S 1+25W 3+50S 1+00W 3+50S 0+50W 3+50S 0+25W 3+50S BL	5 1 1 2 2	732 721 216 68 64	3 11 12 10 5	5745 1266 867 114 132	.4 2.0 .8 3.7 .7	18 25 18 16 27	13 19 18 9 12	2951 3792 3918 564 259	6.62 4.36 4.30 6.04 6.10	4 <2 <2 7 <2	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	23 61 52 9 13	9.2 11.0 5.3 _4 .3	<3 <3 <3 <3 <3	<3 <3 <3 3 <3	80 35 53 159 163	.58 .54 .63 .07 .11	.126 .159 .206 .057 .076	2 4 5 5 4	47 22 32 71 115	5.67 .15 .14 .35 .64	137 30 31 18 31	. 16 . 05 . 05 . 25 . 31	<3 6.6 4 6.2 <3 4.1 <3 5.0 <3 6.7) .02 2 .05 2 .05 2 .04 3 .01 5 .01	.64 .02 .01 .01 .03	7 <2 3 <2 <2	<1 1 <1 1 <1
RE 3+50S BL 4+50S 1+75W 4+50S 1+50W 4+50S 1+25W 4+50S 1+00W	2 3 2 3 2	67 239 83 154 54	9 7 4 9 7	135 718 193 250 115	.9 .9 1.3 1.1 .9	30 28 10 38 14	13 12 7 17 7	269 1105 692 625 343	6.28 3.96 3.25 5.24 4.99	11 5 <2 12 6	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	14 53 47 12 10	.4 1.2 .4 .6 <.2	6 <3 <3 4 <3	<3 3 3 <3 <3	169 57 63 121 115	.12 .25 .42 .08 .05	.080 .067 .036 .075 .053	4 6 3 5 4	121 31 21 91 40	.66 .19 .08 .82 .12	33 23 13 36 17	.32 .07 .07 .20 .19	<3 6.9 <3 3.8 <3 1.7 <3 6.4 <3 3.1	3 .01 2 .03 1 .01 4 .01 5 .01	.03 .01 .01 .02 .01	<2 2 <2 <2 <2 <2	1 <1 1 3 <1
4+50S 0+75W 4+50S 0+50W 4+50S 0+25W 4+50S BL 5+50S 1+75W	1 3 4 3 2	70 28 91 30 451	12 14 16 126 16	168 50 107 97 833	.8 .4 .5 .9 .7	37 13 24 12 92	14 3 15 3 24	315 117 746 141 715	5.70 6.09 4.22 5.10 6.14	13 2 <2 16 5	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	11 6 228 17 32	<.2 <.2 <.2 <.2 1.7	<3 <3 <3 <3 <3	<3 <3 <3 <3 <3	137 148 68 97 111	.07 .04 .91 .04 .18	.053 .039 .063 .032 .040	4 3 4 3	92 46 29 49 115	.78 .14 .15 .11 1.04	29 13 45 19 29	.24 .25 .10 .19 .34	<3 6.6 <3 2.3 <3 3.9 <3 3.5 <3 7.9	5 .01 2 .01 5 .31 2 .01 2 .03	.02 .01 .03 .02 .02	<2 <2 <2 <2 <2 <2	2 1 <1 2 3
STANDARD C3/AU-S STANDARD G-2	26 1	65 4	36 3	175 45	6.1 <.3	38 8	12 4	797 552	3.43 2.10	58 <2	25 <8	2 <2	22 4	31 77	24.6 <.2	23 <3	25 <3	83 42	.60 .69	.094 .097	18 8	173 78	.61 .61	159 235	.09 .12	19 1.9 <3 1.0	, .04) .08	.18 .50	15 2	50 <1
		ICP THIS - SA Samp	50 LEAC MPLE les b	0 GRA H IS TYPE: eginn	M SAM PARTI SOIL ting '	PLE I AL FO RE' a	SDIG RMN AU* - reRe	ESTED FE SR AQUA runs	WITH CA P -REGIA and 'R	3ML 2 LA CR /MIBK RE' a	-2-2 MG B EXTR re Re 7	HCL-H A TI ACT, ject	NO3-H B W A GF/AA Rerun	20 AT ND MA FINI S.	95 D SSIVE SHED.	EG. C SULF (10	FOR IDE A gm)	ONE H ND LI	IOUR A MITED	ND IS FOR	DILU NA K	TED T	0 10 I	ML WI	TH WA	TER.				
DATE RECE		: A nside	UG 25 red t	1999 he co	DA nfide	NTE 1	prop	RT 1 ertv	MAILE	D: >	it. Ad	C //	'99 ssume:	s the	SIGN	IED 1	BY	r r	v ual c). TOY f the	Έ, C. analy	LEONG ysis (i, J. only.	WANG;	CERTIFI	ED B.C	ASSI	IYERS	
All results a	re co	nside	red t	he co	nfide	ntial	prop	erty	of the	clier	nt. Ad	cme a	ssume	s the	liab	iliti	es fo	r act	ual c	ost o	f the	analy	ysis (only.			Da	:a	FA	

Max Investment Inc. PROJECT YREKA FILE # 9903088 Page 2 CME ANALYTICA SAMPLE# Ca Ρ Сг Mg Ва В Αl Mo Cu Pb Zn Ag Ni Со Mn Fe As U Au Th SΓ Cd Sb Βi V La Τi Na u Au* % % ppm ppm % mag % % ppm ppm % ppm nqq % % ppm ppb ppm ppm ppm ppm ppm nda ppin mag maa ppm ppm mag ppm ppm <3 9.14 <2 5+50s 1+50W .10 .062 69 .23 .02 .01 <1 2 136 13 126 1.5 19 9 217 3.43 2 <8 <2 <2 10 .3 <3 <3 43 4 .04 8 <2 12 3 <3 2 72 <3 6.05 3 3 5+50s 1+25W 1 135 12 315 .9 27 9 178 5.28 21 <8 <2 .6 101 .11 .056 .20 11 .41 .01 .02 5+50s 1+00W 1 99 7 114 <.3 27 11 248 3.94 7 <8 <2 <2 10 <.2 <3 <3 104 .18 .058 3 90 .27 10 .33 <3 6.21 .01 .01 <2 <1 5+50S 0+75W 59 9 119 .3 27 299 5.63 20 <8 <2 <2 <.2 <3 <3 152 .05 .047 4 114 .56 20 .24 <3 6.97 .01 .02 <2 1 1 11 6 2 21 .01 .02 5+50S 0+50W 1 21 221 <.3 29 12 387 7.41 36 <8 <2 13 .3 <3 <3 200 .16 .033 3 120 1.07 .37 <3 4.06 <2 8 44 5+50s 0+25W 15 1000 4.19 <2 <2 28 <3 <3 110 .56 .057 8 41 .37 35 .10 <3 4.14 .01 .01 <2 4 25 30 150 .6 17 17 <8 .6 4 5+50S BL 2 13 8 49 9 3 163 5.85 4 <8 <2 <2 6 <.2 <3 <3 144 .04 .030 3 52 .15 12 .21 <3 2.74 .01 .01 <2 <1 <.3 <8 <2 2 5 .2 <3 <3 356 .15 .040 2 260 .72 9 .70 <3 3.37 .02 .04 <2 <1 6+005 2+00W 71 7 46 .5 44 12 161 8.78 6 1 <2 7 <8 <2 <.2 <3 <3 .12 .022 85 .25 6+005 1+75W 1 83 9 127 .6 26 7 122 5.97 <2 266 3 8 .47 <3 1.23 .01 .01 <2 <1 <2 2 3 279 1.49 27 6+005 1+50W <1 95 6 298 1.2 55 11 269 5.12 9 <8 12 .6 3 <3 125 .28 .046 .37 <3 7.32 .05 .06 <2 <1 6+00s 1+25W 769 10 <2 2 13 3 .20 .041 246 1.51 43 .36 <3 4.68 .02 .07 <2 35 1 182 34 1.8 60 269 5.67 165 <8 .4 4 151 3 2 59 264 5.59 <8 <2 13 .3 3 .19 .040 3 240 1.48 42 .36 <3 4.62 .02 <2 18 RE 6+00S 1+25W 1 180 32 754 1.7 10 165 6 149 .06 6+005 1+00W 23 291 .3 396 6.21 <8 <2 <2 9 .2 <3 <3 132 .11 .040 5 211 1.33 41 .24 <3 6.60 .02 .03 <2 5 1 104 46 10 40 11 <8 <2 <2 19 <3 <3 198 .17 .054 3 230 1.73 28 <3 6.18 .03 .04 <2 <1 6+005 0+75W 1 89 10 371 <.3 35 13 430 6.25 .6 .34 3 3 253 2.09 37 .33 <3 6.48 .03 .08 <2 <1 6+005 0+50W 1 47 6 91 <.3 36 13 450 4.76 <2 <8 <2 <2 21 <.2 <3 179 .19 .040 6+005 0+25W 2 17 .5 30 290 6.97 25 <8 <2 <2 9 <.2 4 3 210 .06 .044 5 124 .73 23 .31 <3 6.14 .01 .02 <2 <1 60 96 11 3 23 27 88 19 185 .65 167 .09 20 2.07 .04 17 57 STANDARD C3/AU-S 28 69 38 175 6.3 39 13 854 3.48 57 24 33 26.3 21 .64 .100 .18 553 2.00 <2 <8 <2 78 <.2 <3 <3 42 .67 .098 8 76 .60 239 .12 <3 1.01 .09 .52 2 <1 STANDARD G-2 2 4 3 42 <.3 8 4 4

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

	i		1				1				<u>]</u>		1		1			;		: 		,		i i		۱) 			
ACME ANALY	TICA	L LA	BOR	ATOF	RIES	LTD	•	8	52 I	S. HA	STI	NGS	ST.	VAN	COUN	ER I	BC	V6A	1R6		PH	ONE (604)	253	-315	58 F	AX (6	04)2	53-1	.716	
	002	ACCI	ea1	cea	Co.,				GE	OCH	EMI	CAL	AN	ALY	SIS	CE	RTI	FIC	ATE												
					Max	In	ves	tme	nt_	Inc	<u>.</u> PI	ROJ	ECT	YR	EKA	F	ile	#	990	320	1	Pa	ge :	1					1		•
								3750	West	49th /	ve, V	/anco	uver	BC V6	B 378	Sul	omitte	ed by	: B.	Fitch											
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	7h ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	K %	W ppm	Au* ppb
5+50NW 2+00NE 5+50NW 1+75NE 5+50NW 1+50NE 5+50NW 1+25NE 5+50NW 1+20NE	5 1 2 8	124 99 67 31 306	10 10 6 21 5	203 52 39 30 500	.8 .9 .5 .9 .4	35 12 10 <1 64	6 50 2 <1 31	198 619 54 15 595	7.46 2.35 1.66 2.82 6.52	51 50 44 248 229	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	2 <2 <2 2 2 2	17 31 52 4 34	<.2 .6 <.2 <.2 .8	<3 3 <3 <3 <3	4 <3 <3 <3 <3	183 57 60 72 143	. 15 .31 .30 .04 .37	.041 .066 .061 .018 .064	3 4 3 4 4	137 37 16 14 48	.38 .13 .08 .03 .74	41 24 51 19 194	.27 .07 .09 .10 .24	<3 / 6 / 4 <3 / <3 /	6.12 4.13 1.26 1.86 5.37	.02 .01 .02 .01 .04	.06 .03 .03 .01 .05	<2 13 <2 <2 <2	21 6 2 210 8
5+50NW 0+75NE 5+50NW 0+50NE 5+50NW 0+25NE 5+50NW 0+00 5+00NW 2+00NE	2 3 7 51 10	26 70 268 137 62	8 10 52 13 8	37 71 551 29 52	.6 .3 2.0 1.6 <.3	5 11 21 7 14	1 3 41 3 2	44 53 3374 58 174	3.15 4.67 2.17 4.30 8.20	63 41 131 21 10	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	3 3 <2 <2 <2 <2	4 8 120 12 7	<.2 <.2 13.0 .2 <.2	ও ও ও ও ও	<3 <3 <3 4 7	74 114 48 227 193	.03 .08 1.41 .10 .63	.018 .026 .134 .022 .046	5 3 15 1 1	11 41 34 27 67	.15 .25 .29 .06 .16	31 24 64 12 8	. 14 . 26 . 05 . 53 . 34	<3 <3 <3 <3	1.14 2.63 3.85 1.09 1.79	.01 .02 .03 .01 .01	.03 .04 .05 .01 .02	<2 <2 <2 <2 <2 <2	7 3 7 570 3
5+00NW 1+75NE 5+00NW 1+50NE 5+00NW 1+25NE RE 5+00NW 1+25NE 5+00NW 1+20NE	4 6 6 7	45 122 109 103 78	6 5 3 6 4	93 108 67 62 69	.3 1.1 1.1 1.0 1.2	11 19 27 25 16	4 3 4 5 3	156 116 81 96 91	6.94 4.29 5.37 5.11 5.36	23 35 18 19 73	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	11 18 14 14 6	<.2 <.2 <.2 .5 <.2	<3 <3 <3 <3	<3 4 <3 4 3	180 97 145 137 154	.31 .24 .33 .32 .08	.021 .048 .045 .043 .040	4 2 3 4 3	58 84 125 118 102	.07 .34 .38 .36 .27	16 20 12 20 12	. 15 . 18 . 32 . 30 . 33	<3 <3 <3 <3 <3	1.90 2.46 3.99 3.75 3.14	<.01 .03 .04 .03 .01	.02 .03 .03 .03 .03	<2 <2 <2 <2 <2 <2 <2	55 4 2 5 2
5+00NW 0+75NE 5+00NW 0+50NE 5+00NW 0+25NE 5+00NW 0+00 5+00NW 0+25SW	3 7 10 25 144	67 221 190 202 1451	9 13 17 10 7	97 178 145 75 100	1.5 4.5 1.5 2.9 6.4	10 12 13 6 18	4 15 3 2 10	127 200 73 60 202	4.41 3.68 4.89 5.35 7.82	127 57 126 76 120	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	2 2 2 2 2 2 2 2	4 9 7 24 10	.3 .9 <.2 .7 .6	ব্য ব্য ব্য ব্য ব্য	<3 <3 <3 <3	103 99 116 166 136	,05 .07 .07 .26 .07	.038 .045 .024 .024 .024	4 8 3 2 5	50 49 55 34 28	. 16 . 19 . 20 . 11 . 44	20 28 20 16 21	.20 .17 .23 .40 .24	3 <3 <3 <3 <3	2.80 4.77 4.58 2.14 6.83	.01 .01 .01 .02 .03	.02 .03 .03 .01 .03	<2 <2 <2 <2 <2 <2 <2 <2 <2	4 21 77 8 30
5+00NW 0+50SW 5+00NW 0+75SW 5+00NW 1+00SW 5+00NW 1+25SW 5+00NW 1+50SW	97 43 6 12 2	715 162 197 200 191	<3 9 <3 5 4	50 24 75 64 259	2.8 1.2 .8 1.6 .6	8 6 10 8 17	1 5 5 13	89 55 108 117 189	7.13 8.90 5.31 6.65 6.38	54 13 27 25 80	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	2 2 3 2	6 5 6 7 12	<.2 <.2 .4 <.2 <.2	<3 <3 <3 <3 <4	6 <3 <3 <3 3	123 171 104 115 117	.07 .04 .07 .07 .09	.072 .053 .113 .052 .043	5 3 4 5	28 26 23 21 18	.17 .11 .31 .36 1.12	21 13 21 29 95	.21 .24 .25 .28 .21	८३ ८३ ८३ ८३ ८३	6.52 2.98 9.01 7.49 5.96	<.01 .01 .01 .02 .03	.02 .03 .04 .04 .04	<2 <2 3 <2 <2 <2	11 9 12 8 10
5+00nw 1+75sw 5+00nw 2+00sw 4+50nw 0+25sw 4+50nw 0+50sw 4+50nw 0+75sw	2 3 22 74 3	372 294 104 406 79	7 13 3 6 <3	882 188 35 49 82	.5 .5 <.3 8.0 2.2	38 29 7 8 11	52 25 2 2 5	1658 642 82 92 175	4.58 6.47 5.52 7.27 6.05	66 15 21 45 32	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	<2 <2 <2 2 2 2	62 18 6 7 14	1.0 .4 <.2 <.2 <.2	<उ <उ <उ <उ	5 3 6 6 <3	95 134 155 158 168	1.00 .29 .09 .11 .11	.118 .062 .025 .033 .048	9 5 3 5 6	17 22 20 22 18	1.18 1.45 .23 .21 .71	62 111 20 17 82	.10 .26 .29 .31 .31	<3 <3 <3 <3 <3	4.93 5.43 1.85 2.93 6.13	.11 .05 .01 .04 .03	.25 .07 .03 .03 .07	<2 <2 <2 <2 <2 <2 <2	7 16 2 13 4
4+50NW 1+00SW 4+50NW 1+25SW 4+50NW 1+50SW 4+50NW 1+75SW 4+50NW 2+00SW	3 2 1 1	65 93 320 277 325	<3 7 4 7 14	76 87 225 329 208	1.0 1.0 1.1 .3 .3	11 9 14 17 29	5 4 13 59 66	142 148 235 1548 1057	6.41 6.81 5.83 9.05 6.72	30 57 88 50 13	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	2 2 2 2 2 2 2	13 7 13 321 81	<.2 <.2 .2 2.3 <.2	<3 <3 <3 <3 <3	<3 <3 <3 5 28	186 171 159 129 123	.12 .08 .12 .56 .24	.040 .049 .061 .135 .084	4 4 13 9	22 16 19 13 21	.59 .48 .99 1.15 1.39	78 33 70 100 174	.32 .26 .21 .14 .19	3 <3 <3 <3 <3	5.15 3.53 4.57 4.68 5.93	.04 .02 .05 .05 .04	.06 .04 .09 .32 .16	<2 <2 <2 <2 <2 <2 <2	4 9 14 14
STANDARD C3/AU-S STANDARD G-2	26 2	66 4	38 5	170 45	5.7 <.3	35 9	11 4	798 560	3.46 2.13	57 <2	23 <8	3 <2	21 5	30 76	23.6 <.2	17 <3	20 <3	80 41	.57 .66	.088 .097	17 7	175 80	.60 .60	157 230	.08 .13	22 <3	1.96 1.00	.04 .07	.17 .51	13 2	43 <1
GROU UPPE - SA Samy DATE RECEI	UP 1D ER LIM AMPLE Dies 1 VED:	- 0.5 NITS - TYPE: Deginr	50 GM AG, SOIL	SAMPI AU, I RE' 1	LE, 3 HG, W AU* G are Re DA'	MLS 2 = 100 ROUP Pruns TE F	2-2-2) PPM; 3A - and (AQUA MO, 10.00 'RRE'	REGI CO, GM are AIL	A, 1 H CD, SB SAMPLE Reject	OUR A , BI, , AQU, Reru	т 95 тн, A-REG <u>ns.</u>	DEG. U & B SIA,MI	C, DI = 20 BK EX	LUTED 00 PP TRACT SIGI	TO 1 M; CU , ANA	0 MLS , PB, LYSIS BY	, ICP ZN, BY G	NI, NIF/AG	INALYS IN, AS	IS. L , V,	EACH LA, C 'E, C.	IS PA R = 1 LEONG	RTIAL 0,000	FOR PPM.	SOME	MINER	ALS.	ASSA	TERS	

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data A FA

Max Investment Inc. PROJECT YREKA FILE # 9903201

Page 2

SAMPLE#	Mo ppm	Cu ppm	Pb ppr	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm (Сг ррт	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	к %	W ppm	Au* ppb	
1+50NW 2+00NE 1+50NW 1+75NE 1+50NW 1+50NE 1+50NW 1+55NE 1+50NW 1+25NE 1+50NW 1+00NE	3 2 2 7 4	50 34 60 55 49	11 11 11 14	164 87 149 147 85	.9 .7 .8 1.3 .9	26 6 8 22 15	26 4 9 34 12	1028 255 376 869 394	5.88 8.29 7.90 7.73 7.79	97 16 22 28 34	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	71 7 6 11 13	.8 <.2 .2 .4 .4	<3 <3 <3 <3 <3 <3	<3 <3 4 <3 6	166 182 199 178 181	.80 .05 .05 .10 .10	.069 .046 .047 .054 .046	5 3 3 7 4	66 27 36 63 46	.52 .38 .61 .63 .58	33 17 38 46 46	.24 .33 .44 .33 .38	<3 3 <3 3 3 3 3	5.50 3.96 5.49 6.29 6.83	07. 01.> 01. 02. 02.	.03 .03 .03 .04 .02	<2 <2 <2 <2 <2 <2	<1 1 2 1 26	
1+50NW 0+75NE 1+50NW 0+50NE 1+50NW 0+25NE 1+50NW BL 1+50NW 0+25SW	7 4 4 7 2	56 63 23 21 32	13 10 13 14	88 150 92 99 69	.7 .5 1.0 1.0	7 9 9 5 10	9 12 15 20 7	365 381 539 1117 343	10.03 7.55 7.74 6.83 7.59	18 42 8 111 223	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	2 <2 <2 <2 <2 <2	13 8 7 15 9	.2 .3 <.2 <.2 <.2	<3 <3 <3 <3 <3	<3 <3 6 <3 <3	212 184 234 241 211	.09 .07 .10 .25 .13	.036 .037 .042 .051 .051	4 4 4 5 4	56 29 35 35 46	.58 1.03 .62 .51 .55	42 46 21 29 13	.50 .28 .52 .34 .46	<3 <3 <3 <3 4	5.98 5.63 4.48 3.09 3.69	.02 .02 .01 .02 .02	.02 .03 .03 .03 .03	<2 <2 <2 <2 <2 <2	<1 11 4 1 <1	
1+50nw 0+50sw RE 1+50nw 0+75sw 1+50nw 0+75sw 1+50nw 1+00sw 1+50nw 1+25sw	2 2 2 2 1	28 51 51 45 41	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	87 9 95 9 94 9 86 9 80	1.0 1.5 1.5 1.4	14 16 13 16 13	13 12 12 13 10	542 438 432 393 528	6.50 7.05 6.90 7.82 6.54	22 3 2 81 149	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	10 6 8 8	<.2 .5 .3 .3 <.2	<3 <3 <3 <3 <3	<3 3 <3 <3 <3	187 170 168 223 178	.13 .07 .07 .11 .09	.043 .064 .058 .038 .032	4 5 5 4 4	35 38 38 51 53	.74 .80 .80 .83 1.27	17 22 18 30 21	.46 .48 .47 .52 .32	<3 5 <3 <3 <3	4.89 10.21 9.91 8.72 5.46	.01 .01 .02 .02 .01	.02 .02 .02 .02 .03	<2 <2 <2 2 2 <2	2 1 2 3 <1	
1+50nw 1+50sw 1+50nw 1+75sw 1+50nw 2+00sw 1+00nw 2+00ne 1+00nw 1+75ne	1 1 3 2 12	62 41 31 55 46	11 <3 12 13	114 85 69 142 183	1.1 .9 1.3 1.5 1.2	21 13 8 71 16	25 18 9 11 15	1639 961 834 306 407	6.14 6.22 8.54 6.78 7.64	24 14 37 68 15	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	18 26 9 7 10	<.2 <.2 <.2 <.2 <.2	<3 3 <3 <3 <3	3 3 3 3 3 3	221 249 201 158 148	.20 .25 .09 .08 .07	.042 ,036 .047 .044 .043	5 4 5 3 5	35 22 37 293 45	2.28 1.69 .65 .99 .69	66 70 25 17 34	.28 .32 .53 .36 .27	3 <3 <3 4 8	4.69 3.53 4.54 9.07 7.23	.03 .04 .01 .01 .01	.08 .11 .03 .04 .03	<2 <2 <2 <2 <2 <2	2 1 4 1 2	
1+00NW 1+50NE 1+00NW 1+25NE 1+00NW 1+00NE 1+00NW 0+75NE 1+00NW 0+50NE	3 6 11 5 4	44 52 73 28 71	14 11 8 5	132 134 8 88 6 60 9 194	.5 .9 1.1 <.3 .7	11 10 8 1 15	11 11 6 3 24	671 424 242 114 939	7.69 8.11 6.61 7.40 7.39	25 20 28 4 42	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	7 15 11 6 50	<.2 .5 <.2 <.2 1.0	3 3 3 3 3 3 3	<3 3 <3 5 <3	144 206 105 223 152	.06 .11 .08 .04 .85	.028 .033 .052 .021 .043	3 6 9 3 5	31 38 25 16 26	1.77 .75 .27 .10 1.74	41 50 33 8 54	.21 .32 .20 .40 .28	<3 <3 <3 <3 4	4.62 4.80 6.22 1.71 4.82	.01 .01 .01 .01 <.01	.04 .03 .02 .01 .04	<2 <2 <2 <2 <2	2 6 <1 <1 5	
1+00NW 0+25NE 1+00NW BL 1+00NW 0+25SW 1+00NW 0+50SW 1+00NW 0+75SW	2 2 1 1 2	35 42 89 51 48		58 103 203 111 5 106	.6 .7 1.4 .7 2.2	17 10 23 22 18	8 20 18 18	252 431 789 537 2014	6.98 7.18 6.39 5.56 4.84	3 14 14 28 118	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	10 6 14 12 70	<.2 .3 1.1 .6 .4	3 <3 <3 <3 <3 4	4 3 3 3 3	206 198 149 132 132	.09 .07 .30 .18 2.20	.029 .051 .055 .056 .061	3 5 6 13	36 36 27 30 87	.73 .68 1.61 .94 1.23	21 17 62 37 21	.39 .47 .34 .34 .24	<3 <3 <3 <3 <3	4.26 6.12 6.01 6.02 3.52	.01 .01 .02 .02 .03	.02 .01 .02 .04 .05	<2 <2 2 <2 <2 <2	1 <1 2 <1	
1+00nw 1+00sw 1+00nw 1+25sw 1+00nw 1+50sw 1+00nw 1+75sw 1+00nw 2+00sw	2 1 1 1	28 63 40 38 21		3 43 1 120 3 65 5 76 0 42	3 .3) .6 i .6 i .5 2 .3	8 20 12 10 7	5 19 13 12 5	232 960 888 659 367	5.79 5.92 5.67 7.90 6.99	<2 6 <2 9 5	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	6 24 7 10 9	<.2 .3 .3 <.2 <.2	<3 3 <3 <3 <3	3 4 <3 4 3	151 194 147 206 222	.08 .22 .09 .15 .08	.040 .040 .083 .025 .022	4 5 5 5 4	27 29 26 30 24	.41 1.94 .58 1.01 .40	17 82 21 33 20	.32 .28 .40 .52 .52	ও ও ও ও ও	4.51 4.72 6.03 3.09 2.12	.01 .04 .01 .01 .01	.02 .10 .03 .07 .03	<2 <2 2 <2 <2 <2	1 3 <1 <1	
STANDARD C3/AU-S Standard G-2	26 2	64 3	39	5 169 5 46	> 5.8	39 7	10 4	803 594	3.45 2.21	58 5	21 <8	3 <2	20 4	30 79	23.6 <.2	17 <3	24 <3	81 44	.58 .71	.091	18 8	175 86	.60 .64	153 246	.09 .15	21 3	1.94	.04 .07	.17 .52	15 2	44 <1	

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

ACHE ANALYTICAL

Max Investment Inc. PROJECT YREKA FILE # 9903201

ACME ANALYTICAL Sb Bi ρ La Cr Mg Ba Ti 8 AL Na W Au* Cd ۷ Са Co Mn As U Au Th Sr SAMPLE# Cu Pb Zn Ag Ni Fe Mo × % % % % ppm % % % ppm ppm ppm ppm mqq ppm ppm DDM ppm ppm ppm ppm ppm ppb ppm nqq mqq ppm ppm mag DDM DDM <3 4.31 .03 .04 .15 .035 2 130 1.11 25 .36 <2 1 22 <2 <2 33 <.2 <3 161 0+50NW 2+00NE 54 <3 on .6 36 12 299 6.53 <8 4 1 22 .24 5 4.32 .02 <2 3 19 .21 .01 1 .8 2 1 154 8.61 18 <8 <2 <2 9 .3 3 8 135 .03 .042 0+50NW 1+75NE 13 24 11 66 <.2 9 217 .10 .044 2 27 .28 18 .30 8 2.46 .02 .03 <2 2 202 9.91 29 <8 <2 <2 16 <3 10 79 .7 5 2 0+50NW 1+50NE 30 3 30 .28 14 .23 4 3.49 .03 .03 <2 2 <2 3 196 .04 .033 8 32 <8 <2 7 <.2 <3 0+50NW 1+25NE 20 34 17 90 .7 11 5 188 7.50 38 .02 3 39 1.26 <3 4.24 .04 <2 1 28 <8 <2 <2 7 .3 <3 8 160 .05 .034 .18 0+50NW 1+00NE 6 44 10 81 .6 13 6 348 6.16 2 2 25 .54 22 .27 <3 2.17 .02 .04 <2 <2 <.2 3 10 195 .07 .036 0+50NW 0+75NE 12 28 8 74 6 3 239 7.62 26 <8 <2 8 .4 .03 44 <8 <2 <2 10 .5 <3 <3 189 .10 .032 4 31 1.15 87 .29 6 3.89 .02 <2 3 7 50 5 196 .5 18 14 780 7.83 0+50NW 0+50NE 2 25 .49 12 .43 <3 2.76 .02 .01 <2 14 3 226 .09 .028 259 7.62 10 <8 <2 <2 8 <.2 <3 25 .5 5 6 0+50NW 0+25NE 1 8 48 25 .28 12 .37 <3 3.46 .03 .02 <2 <1 <3 207 .15 .045 4 3 10 130 .7 8 16 426 7.15 31 <8 <2 <2 11 .4 4 0+50NW BL 24 20 <8 <2 <2 <.2 <3 <3 164 .08 .057 3 37 .84 16 .33 <3 5.82 .02 .01 <2 2 8 0+50NW 0+25SW 2 41 <3 88 1.1 15 14 478 6.30 2 .25 .43 <3 3.25 .02 .01 <2 <8 <2 <2 .3 <3 6 226 .04 .044 2 31 9 0+50NW 0+50SW 2 27 5 37 .8 7 4 170 7.56 16 6 <3 238 .05 .048 2 34 .26 5 .45 <3 3.37 .01 .01 <2 2 <.2 <3 28 12 38 5 4 184 7.95 17 <8 <2 <2 6 2 1.0 RE 0+50NW 0+50SW .01 .3 <3 9 149 .07 .058 3 38 .56 14 .39 <3 6.27 .01 <2 1 334 7.31 5 <8 <2 <2 0+50NW 0+75SW 1 41 5 51 .9 11 6 6 <2 770 6.09 <8 <2 <2 9 <3 4 155 .17 .080 5 28 .90 21 .41 <3 6.45 .01 .02 1 7 72 1.1 15 18 11 .4 0+50NW 1+00SW 1 58 .49 10 .37 <3 4.24 .02 .03 <2 1 22 45 323 5.43 9 <8 <2 <2 8 <.2 <3 <3 143 .08 .048 4 31 8 .7 6 6 0+50NW 1+25SW 1 7 <3 <3 169 .11 .046 4 29 .73 14 .45 <3 4.50 .01 .03 <2 1 361 7.22 9 <8 <2 <2 <.2 0+50NW 1+50SW 2 32 5 61 .8 10 8 33 .90 14 .35 <3 3.68 .02 .02 <2 <3 <3 1 .9 671 6.89 16 <8 <2 <2 9 <.2 171 .10 .034 4 29 69 16 12 0+50NW 1+75SW 1 8 28 .71 11 .29 <3 5.40 .02 .03 <2 4 <2 <2 7 <.2 <3 <3 149 .08 .055 6 2 5 83 .7 13 10 415 5.81 12 <8 0+50NW 2+00SW 46 37 <8 <2 <2 8 .3 <3 3 202 .05 .045 5 35 .82 52 .31 3 6.06 .01 .03 <2 4 21 453 8.43 0+00 2+00NE 8 69 8 250 1.1 14 30 .32 .02 .02 <2 7 24 .34 4 4.48 1 17 120 272 8.33 27 <8 <2 <2 8 <.2 <3 196 .05 .033 4 32 1.3 7 8 0+00 1+75NE 6 .03 .030 17 31 .17 <3 2.44 .02 .02 <2 54 23 <2 <2 <.2 <3 3 170 6 .16 0+00 1+50NE 2 15 6 73 <.3 3 2 178 7.03 <8 6 <3 5.64 .03 .04 <2 2 32 <8 <2 <2 9 <.2 <3 <3 175 .05 .029 6 36 1.03 65 .28 20 710 7.69 0+00 1+25NE 2 56 9 251 1.0 14 23 .33 12 .37 <3 1.94 .01 .02 <2 1 32 86 10 5 258 6.16 8 <8 <2 <2 8 .3 <3 6 218 .07 .021 4 0+00 1+00NE 1 4 .6 3 34 .95 53 .30 <3 5.81 .02 .02 <2 1 27 <8 <2 <2 8 .8 <3 3 130 .10 .055 63 9 164 .9 19 12 598 6.92 0+00 0+75NE 1 34 .80 17 .25 <3 3.99 .02 .02 <2 1 17 29 2500 7.44 51 <8 <2 <2 10 .5 <3 <3 159 .12 .045 7 0+00 0+50NE 2 34 14 137 1.0 .38 17 <3 5.77 .01 .02 <2 1 409 9.40 23 <8 <2 2 1.0 3 3 179 .04 .073 4 41 .56 0+00 0+25NE 3 1.3 7 7 36 8 110 6 <2 <3 5 260 .07 .016 3 17 .28 13 .47 <3 1.24 .01 .01 <2 2 0+00 BL 15 10 40 <.3 7 4 135 5.28 24 <8 <2 8 <.2 1 7 <8 <2 <2 .3 <3 <3 267 .04 .035 3 23 .17 6 .49 <3 1.83 .02 .01 <2 1 9 45 .3 2 4 235 8.15 6 0+00 0+25sW 25 1 <3 7.14 .01 <2 2 <2 <2 9 <.2 <3 5 181 .08 .076 6 41 .75 22 .30 .01 20 879 6.90 20 <8 0+00 0+50SW 2 38 8 82 1.1 22 37 18 .39 <3 6.42 .03 .02 <2 2 80 1.3 12 13 789 7.28 21 <8 <2 <2 8 <.2 <3 <3 191 .07 .082 6 .66 0+00 0+75SW 41 10 1 <2 <1 <2 <2 9 <.2 <3 241 .07 .042 3 31 .26 10 .44 3 2.24 .02 .02 0+00 1+00SW 17 6 31 . 6 7 5 247 8.45 11 <8 6 1 29 <2 8 40 .9 12 9 387 7.64 9 <8 <2 <2 9 <.2 <3 <3 203 .10 .035 3 .58 19 .47 <3 2.52 .03 .03 <1 24 0+00 1+25SW 1 <8 <2 <2 7 <.2 <3 3 132 .12 .048 4 21 .51 7 .25 <3 3.99 .02 .02 <2 6 57 .7 7 15 1576 5.28 6 0+00 1+50sW 29 9 1 .35 .02 .03 <2 <2 <2 <.2 <3 <3 203 .10 .030 3 25 23 .38 <3 2.12 1 0+00 1+75SW <1 21 5 42 <.3 7 6 437 6.29 16 <8 11 26 2849 6.25 49 <8 <2 <2 12 <3 <3 140 .13 .064 7 29 .65 28 .24 <3 4.28 .03 .02 <2 2 5 137 .9 .6 0+00 2+00SW 39 14 1 23 1.88 49 27 34 11 803 3.42 57 19 3 20 29 23.3 18 25 79 .57 .091 17 170 .61 155 .08 .05 .17 14 STANDARD C3/AU-S 36 161 5.6 64 2 5 <2 <8 <2 3 94 <.2 <3 <3 40 .72 .097 7 79 .61 255 .13 <3 1.18 .16 .59 <1 7 3 559 2.07 STANDARD G-2 2 3 41 <.3

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 🖊 / FA

Page 3

CME LY	02 A	LA	A. dit	roi. ed C)	TL.	<u></u>	 	. B.		FINC		r . •	j	ουν.		c ,		lR.		P	.5 (6		53-		FA.	5	4) 2 .	, <mark>1</mark> '	71.
· 44				M	ax	Inv	est	men	GEO t I	CHE nc.	PR	AL J DJE	ANA	LYS <u>YRE</u>	19 <u>KA</u>	CER Fi	rır le	1 CA # 9	те 903	560		Pag	e 1						4	4
						•••				3750) West	49th	Ave	, Van	couver	BC V	/68 31	r8				C	N	0	•:			· ~		
SAMPLE#	ppm	ppm	ppm	ppm	Ag ppm	ppm	ppm	ppm	re %	ppm	ppm	ppm	ррт	ppm	ppm	ppm	ppm	v ppm	۲۵ ۲	%	ррп	ppm	۳g %	ppm	%	ррт	× *	Na %	×	ppm
T 0+00S 4+00W T 0+00S 3+75W T 0+00S 3+50W T 0+00S 3+25W T 0+00S 3+00W	2 3 2 5 3	62 61 57 47 242	<3 3 4 5 10	91 70 67 86 175	<.3 .4 .3 .3 .8	27 26 15 17 28	17 10 7 11 10	1244 380 353 1210 335	5.28 4.75 4.55 5.13 4.01	26 26 101 807 973	<8 <8 <8 <8 8	<2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	268 31 19 81 88	1.6 .9 1.1 1.2 1.7	<3 <3 <3 <3 <3	<3 <3 <3 <3 <3	74 69 113 121 85	.60 .12 .15 1.12 1.91	.068 .073 .061 .059 .067	17 6 6 10 11	48 40 38 85 97	.96 .73 1.74 .89 .84	77 51 29 20 20	.06 .04 .13 .06 .11	3 (3 (3) 5 (5.96 5.84 5.33 5.01 5.98	.07 .02 .01 .02 .03	.03 .02 .03 .04 .05	2 <2 2 3 2
T 0+00S 2+75W T 0+00S 2+50W T 0+00S 2+25W T 0+00S 2+00W T 0+00S 1+75W	3 3 2 2 2 2	131 290 283 88 34	9 43 28 23 9	138 226 189 47 34	.4 .6 .7 .6	33 32 31 10 8	17 28 15 3	585 822 513 107 161	3.91 4.43 3.45 6.03 3.97	539 261 129 180 38	<8 <8 <8 <8	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	75 129 52 13 10	1.5 1.8 1.3 <.2 <.2	<3 <3 <3 <3 <3	<3 <3 <3 <3 <3	79 93 79 171 169	1.17 .69 .44 .13 .16	.067 .064 .069 .029 .027	11 8 8 4 3	63 67 66 49 24	.90 1.31 .86 .25 .20	25 63 46 14 11	.08 .11 .13 .16 .15	3 3 <3 <3 <3	.75 .20 5.44 2.46 1.12	.04 .11 .03 .01 .01	.04 .08 .05 .02 .01	3 3 5 4
T 0+00S 1+50W T 1+00S 3+75W T 1+00S 3+50W T 1+00S 3+25W T 1+00S 3+00W	6 1 2 1	253 99 69 81 151	13 <3 12 13 5	458 52 88 130 231	.9 .3 <.3 1.2 1.0	34 45 18 21 15	15 35 12 21 24	8184 1629 475 2076 1614	3.29 4.26 5.78 6.49 5.12	64 22 23 27 6	<8 <8 <8 <8	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	75 92 12 101 48	16.3 1.2 1.1 2.0 2.4	<3 <3 <3 <3 <3	<3 <3 <3 <3 <3	85 101 90 113 120	1.35 .24 .09 .90 .37	.162 .122 .048 .105 .117	20 7 10 13 6	49 117 38 32 23	.80 1.05 1.19 3.41 1.22	117 41 42 41 22	.05 .12 .07 .07 .07	5 3 3 3 3	5.77 7.18 6.57 5.49 5.14	.04 .03 .01 .10 .08	.04 .07 .04 .09 .02	2 2 <2 <2 2 2
T 1+00S 2+50W T 1+00S 2+25W T 1+00S 2+00W T 1+00S 1+75W T 2+00S 4+00W	3 1 3 3 3	270 77 93 59 291	5 4 8 5 7	246 123 72 56 138	.3 <.3 <.3 <.3 .5	9 11 8 12 35	10 18 4 4 13	275 1182 338 213 267	5.72 5.66 8.16 4.55 4.22	16 7 33 13 51	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	9 100 8 8 26	1.6 1.4 .8 1.0 1.0	<3 <3 <3 <3 <3	८३ ८३ ८३ ८३ ८३	91 137 170 136 117	.07 .67 .09 .05 .24	.071 .119 .041 .047 .048	5 9 4 6	39 29 52 32 68	.22 1.44 .71 .64 1.05	8 52 18 11 30	. 16 . 13 . 28 . 19 . 18	3 <3 <3 <3 <3	7.45 5.69 5.43 7.57 7.07	.01 .18 .01 .01 .03	.01 .04 .02 .01 .05	3 4 3 3 4
T 2+00S 3+75W T 2+00S 3+50W T 2+00S 3+25W RE T 2+00S 3+25W T 2+00S 3+00W	5 1 4 2	190 31 51 47 178	10 5 3 3 8	61 42 74 74 106	.5 .3 .5 .7	9 13 24 22 20	3 12 8 8 8	80 612 186 170 172	4.97 2.78 3.81 3.76 4.02	41 36 16 16 32	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	22 152 24 21 7	.9 .5 .9 .8	<3 <3 <3 <3 <3	<3 <3 <3 <3 <3	166 74 120 112 84	.12 .49 .07 .07 .08	.030 .083 .050 .049 .054	4 6 4 4 4	49 44 62 61 67	.27 .64 1.10 1.03 .51	10 15 62 53 10	.24 .06 .12 .12 .12	4 / <3 ! <3 ! <3 ! <3 !	.56 .89 .49 3.80 5.93	.01 .12 .01 .01 .01	.01 .01 .02 .02 .01	5 <2 2 2 2
T 2+00S 2+75W T 2+00S 2+50W T 2+00S 2+25W T 2+00S 2+00W T 2+00S 1+75W	1 2 1 2 2	57 167 38 21 113	<3 7 5 7 5	161 132 47 70 70	.7 .3 .7 .7 .5	26 22 11 6 14	10 16 3 5 7	190 463 254 255 261	4.22 4.50 5.68 6.26 6.30	41 96 13 16 31	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	22 50 7 4	.9 1.7 .4 .7 .8	<उ <उ <उ <उ	<3 <3 <3 <3 <3	104 102 182 116 120	.26 1.18 .05 .07 .83	.044 .057 .024 .025 .040	5 14 4 5 7	69 62 45 35 45	.67 .98 .95 1.09 .65	15 20 15 42 28	. 18 . 15 . 26 . 13 . 08	3 (3 (3) 3) 3 (3)	5.92 5.66 5.10 5.58 5.52	.02 .02 .01 .01 .01	.02 .03 .01 .02 .03	3 3 4 3 4
T 3+00S 3+75W T 3+00S 3+50W T 3+00S 3+25W T 3+00S 3+00W T 3+00S 2+75W	12 6 2 3 4	79 101 530 482 125	8 10 14 17 14	25 77 242 235 48	.7 .9 .9 .9	3 10 38 30 7	1 2 26 17 2	50 36 843 715 80	5.34 4.41 4.59 4.25 5.76	30 22 121 64 39	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	7 7 29 118 6	.4 .6 1.4 2.3 .4	<3 <3 <3 <3 <3	<3 <3 <3 <3 3	228 127 67 85 191	.12 .03 .25 .94 .09	.021 .024 .051 .049 .028	4 . 3 7 8 4	40 44 34 59 29	. 15 . 13 . 55 . 80 . 09	7 9 47 50 9	.32 .17 .06 .11 .28	<3 2 <3 2 <3 2 <3 2 <3 1	.66 .64 .10 .80 .83	.01 .01 .02 .08 .01	.01 .01 .03 .05 .01	4 5 4 5 6
STANDARD C3 Standard G-2	27 2	61 3	35 3	166 45	5.1 <.3	35 7	12 4	717 601	3.40 2.12	53 5	22 <8	<2 <2	15 3	28 79	26.4 <.2	13 <3	24 <3	74 46	.59 .67	.098 .111	17 11	173 82	.58 .61	138 252	.07 .12	21 1 <3 1	.82 .11	.03 .08	.14 .54	15 5
	GROUP UPPER - SAM	1D - LIMIT PLE TY	0.50 TS - 1 YPE:	GM S/ AG, AU SOIL	AMPLE J, HG, <u>S</u> a	LEACI , W = ample:	HED W 100 beg	ITH 3 PPM; innin	ML 2 MO, C g 'RE	-2-2 0, CD ' are	HCL-HN , SB, <u>Reru</u> r	NO3-H2 BI, 1 ns and	20 AT TH, U H 'RR	95 D & B E' ar	EG. C = 2,0 e Rej	FOR 00 PP ect R	ONE H M; CU eruns	OUR, , PB 	DILUT) ZN,	ED TO NI, M	10 M N, AS	L, AN , V,	ALYSE LA, C	D BY R = 1	ICP-E 0,000	S. PPM.				
DATE RECEIV	ED :	SEP 2	20 199	99 I	DATE	REP	ORT	MAI	LED	Ś	ept	27/	99	S	IGNE	D BY	r	:1:		7.0.	TOYE,	C.LE	ONG,	J. WA	NG; C	ERTIF	IED B	.C. A	SSAYE	RS
All results are	consi	dered	the d	confid	dentia	al pro	opert	y of	the c	lient	. Acme	/ assl	mes	the l	iabil	ities	for	actua	l cos	/ t of	the a	nalys	is on	ly.			C	ata_	<u>{</u> FA	
Max Investment Inc. PROJECT YREKA F1LE # 9903560 Page 2 ME ANALYTICAL SЬ SAMPLE# Th Cd Bi v Ca P Mg Na Mo Cu Pb Zn Ag Ni Co Mn Fe As U Au Sr La Cr Ba Τi В AL M. % % % % % % X DDM ppm ppm ppm DDM ppm DDU ppm ppm DDM ppm Χ. ppm ppm ppm ppm ppm ppm ppm DDM ppm ppm ppm 735 4.85 82 .9 .50 .65 .05 T 3+00S 2+50W 781 15 241 1.8 26 23 <8 <2 <2 47 <3 <3 84 .050 10 52 37 .15 4 4.64 .04 5 1 9 75 <3 .15 .035 33 163 1.6 20 191 4.69 <8 <2 <2 20 .8 <3 108 6 44 .47 . 19 4 4.14 .02 .02 3 T 3+00\$ 2+25W 2 429 11 273 2.1 24 14 1183 3.88 51 <8 <2 <2 49 2.1 <3 <3 78 .51 .053 10 45 .53 23 .13 4 4.62 .04 .03 <2 T 3+00S 2+00W 163 8 1 4.95 T 3+005 1+75W 216 4 142 .7 14 14 750 101 <8 <2 <2 33 1.5 <3 <3 109 .70 .041 10 49 1.07 23 . 12 3 3.85 .01 .03 2 <1 2.7 <8 <2 7 .09 .043 T 4+00S 4+00W <1 131 5 43 5 <1 73 6.15 42 <2 .8 <3 <3 100 4 59 .07 17 .20 4 4.82 .01 .01 4 .23 .033 T 4+005 3+75W <1 689 6 192 <.3 29 9 162 3.94 94 <8 <2 <2 19 1.1 <3 <3 69 6 58 .88 37 .17 3 6.90 .02 .04 2 29 <3 <3 .32 .040 7 .10 93 <.3 20 148 2.93 71 <8 <2 <2 .9 56 28 .22 24 3 2.25 .01 .01 T 4+00S 3+50W 1 44 11 6 5 <8 <2 <2 15 .8 <3 21 99 .13 .052 65 10 .21 3 2.94 .01 .01 84 15 40 .3 130 4.80 99 6 . 19 54 T 4+00S 3+25W 1 12 4 98 9 44 .3 26 16 397 5.90 121 <8 <2 <2 15 .2 <3 <3 125 .20 .063 6 159 .74 9 .35 3 5.11 .02 .04 4 T 4+00S 3+00W <1 <8 <2 <2 152 1.5 <3 <3 58 1.16 .100 27 .09 .03 3 71 60 251 .5 41 18 1807 3.83 130 11 43 .42 .05 4 4.25 T 4+00S 2+75W 2 .69 .14 750 3.49 117 <8 <2 <2 169 <3 <3 12 40 27 .07 <3 4.53 .02 <2 T 4+00S 2+50W 38 27 155 .4 31 16 1.4 66 .062 .64 <2 <2 92 <3 .23 7 29 .07 <3 4.90 .07 <2 38 14 78 .3 18 14 731 3.88 80 <8 1.2 <3 81 .063 51 .47 .02 T 4+005 2+25W 1 18 11 84 .5 13 9 774 3.17 18 <8 <2 <2 137 .9 <3 <3 70 .43 .086 11 44 .53 26 .06 3 4.64 .13 .02 <2 T 4+00S 2+00W 1 7 79 .7 15 11 802 3.60 18 <8 <2 <2 210 1.3 <3 <3 95 .97 .063 10 38 1.25 29 .10 3 4.98 .34 .04 <2 T 4+00S 1+75W <1 26 T 4+00S 1+50W <1 24 43 93 .8 20 10 235 4.71 30 <8 <2 <2 23 1.0 <3 <3 110 .13 .036 5 59 . 89 15 .15 3 4.50 .02 .02 2 10 110 .7 45 16 939 3.46 <8 <2 <2 67 2.1 <3 <3 74 1.87 .056 10 123 1.08 29 .13 5 3.28 .06 2 T 5+00S 4+00W <1 114 217 .05 97 79 5021 6.39 645 <8 <2 <2 108 <3 <3 114 .25 .071 5 94 .28 117 .14 3 2.64 .01 .02 2 T 5+005 3+50W <1 46 106 <.3 26 1.4 233 15 135 57 12049 4.67 72 <8 <2 <2 41 2.0 <3 <3 99. .46 .115 7 94 .59 100 .07 3 3.62 .03 .04 2 <1 <.3 56 T 5+00S 3+25W 5 T 5+00S 3+00W <1 127 3 45 .5 43 40 1135 5.20 13 <8 <2 <2 18 1.0 <3 <3 120 .19 .083 170 1.05 31 .24 4 6.68 .02 .06 4 <2 <2 <3 <3 77 .05 .053 . 13 <3 3.67 .01 .01 3 48 11 36 .4 8 3 165 4.10 19 <8 4 .6 4 47 6 .14 T 5+00S 2+75W 1 <3 .04 .054 47 .12 .14 3 3.56 3 3 157 4.24 18 <8 <2 <2 4 .5 <3 74 4 6 .01 .01 RE T 5+00S 2+75W 1 47 10 33 .4 8 .03 73 1323 2.38 15 <8 <2 <2 180 1.0 <3 <3 31 .76 .078 9 22 . 15 29 <3 1.94 .12 .02 <2 22 7 32 8 T 5+005 2+50W 2 <.3 7 3.41 .13 .05 <2 8 37 12 89 .6 49 7 852 3.43 27 <8 <2 <2 176 2.3 <3 <3 86 .70 .094 19 71 .59 36 .04 T 5+005 2+25W 19 2.08 36 6 4.57 .43 .08 2 17 <8 <2 <2 485 2.6 <3 <3 110 2.87 .192 19 .07 15 3 86 <.3 14 26 862 9.40 T 5+00S 2+00W 1 . 10 26 <8 <2 <2 107 <3 <3 59 .99 .058 12 37 .68 15 .04 3 3.33 .02 2 849 1.5 T 5+005 1+75W <1 16 13 41 1.2 13 10 3.61 3 3.46 .01 5 2101 15.33 13 <8 <2 <2 23 .7 <3 <3 83 1.56 .094 12 74 . 11 12 .16 .01 T 6+005 4+00W 2 238 <3 238 <.3 12 22 <3 - 80 - 22 107 <3 122 1.29 .039 9 200 2.83 34 .33 2 T 6+00S 3+75W <1 169 <3 207 <.3 81 15 1969 4.13 6 <8 <2 <2 1.1 <3 . 13 <8 <2 <2 53 .9 <3 <3 144 .56 .040 6 193 2.62 45 .36 <3 4.18 .09 .26 <2 6 T 6+005 3+50W <1 46 <3 54 .3 62 13 408 4.81 13 <3 206 35 .47 <3 5.10 .02 . 15 2 162 7.22 <8 <2 <2 .6 <3 .17 .038 4 239 1.82 T 6+00S 3+25W <1 48 <3 25 .4 43 7 4 <3 102 27 137 5.90 4 <8 <2 <2 22 1.2 <3 <3 185 .21 .023 304 3.64 43 .39 <3 8.29 .05 . 18 <2 49 39 4 T 6+00S 3+00W <1 <.3 .02 3 52 1142 6.81 33 <8 <2 <2 43 .6 <3 <3 166 .28 .063 5 157 1.08 27 .34 <3 3.19 .05 79 5 50 <.3 32 T 6+00S 2+50W <1 2 22 .25 .028 22 .60 <3 7.90 .04 .07 <3 33 45 12 117 7.35 8 <8 <2 <2 1.3 <3 <3 220 5 265 1.58 127 T 6+00S 2+00W <1 .4 7 .11 <2 103 <3 <3 53 .66 .071 30 <3 2.92 .02 3 100 <3 46 <.3 47 29 655 3.93 11 <8 <2 .8 63 .45 . 10 T 6+00S 1+75W <1 <3 .04 3 167 1.38 15 .01 .01 2 <8 <2 <2 8 1.2 3 189 .040 .20 3 4.04 46 27 71 .7 32 9 354 9.68 24 0+00SE 5+25NE <1 12 <2 <2 7 1.0 <3 <3 180 .05 .066 3 192 1.98 14 .29 <3 4.87 .01 .01 2 55 51 54 12 377 6.98 <8 0+00SE 5+00NE <1 11 .5 21 1.96 14 21 32 26.2 16 23 82 .60 .098 22 172 .64 168 .09 .04 . 18 167 5.9 38 11 803 3.52 58 26 2 67 36 STANDARD C3 26 3 70 <.2 <3 <3 37 .64 .112 11 84 .59 223 .12 <3 .87 .07 .47 5 499 2.10 <8 <2 STANDARD G-2 <1 3 <3 42 <.3 9 4 4

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data A FA

Max Investment Inc. PROJECT YREKA FILE # 9903560 Page 3 ACHE ANALYTICAL SAMPLE# Мо Ni Co Mn Fe As U Au Th Cd Sb Bi P Cu Pb Zn Ag Sr v Са La Cr Mg Ba Τi В AL Na W ppm ppm ppm DDM ppm DDM ppm % DDU DDM DDM mdd ndd mag ppm DDM DDM % % ppm DDM % DDM % DDM % X DDM X ppm 9 0+00SE 4+50NE 1 65 5 56 <.3 31 9 457 6.88 13 <8 <2 2 .2 <3 <3 187 .06 .057 6 137 1.38 20 .34 <3 7.31 .01 .02 <2 0+00SE 4+25NE 62 3 52 .4 39 12 543 7.26 13 <8 <2 <2 15 .4 <3 <3 189 .11 .050 5 162 1.31 18 .28 <1 <3 6.51 .02 .03 <2 7 29 <8 <2 9 0+50SE 5+25NE <1 24 15 25 .3 4 404 8.18 <2 <.2 <3 <3 281 .04 .047 2 246 1.23 19 .54 <3 2.34 .01 .01 <2 0+50SE 5+00NE <1 37 22 43 <.3 53 12 405 8.74 9 <8 <2 <2 7 <.2 <3 <3 438 .03 .027 2 182 . 64 12 .60 <3 1.47 .01 .01 2 65 7 91 <.3 36 33 1614 8.57 12 <8 <2 <2 10 .7 <3 <3 121 .04 .053 5 123 1.28 48 .07 <3 5.90 .01 .03 0+50SE 4+75NE 6 <2 0+50SE 4+50NE 2 28 9 42 3 241 10.23 12 <8 <2 <2 <3 <3 209 .04 .041 3 45 .31 <3 2.92 .01 <2 .8 8 5 <.2 .46 18 .02 9 0+50SE 4+25NE 3 52 549 6.77 14 <8 <2 <2 12 .7 <3 <3 .12 .036 26 10 <.3 11 150 6 45 .73 25 . 18 <3 3.09 .02 .03 2 .5 <3 1+00SE 5+25NE <1 44 4 35 <.3 41 11 621 9.08 6 <8 <2 2 7 <3 179 .05 .061 3 248 1.29 13 .37 <3 5.11 .01 .01 3 39 7 38 7.09 8 <8 <2 <2 17 <.2 <3 <3 223 .11 .029 18 1+00SE 5+00NE <1 <.3 18 8 508 4 164 1.27 .31 <3 2.99 .01 .02 2 1 20 9 39 <.3 3 225 6.72 7 <8 <2 <2 19 <.2 <3 <3 225 .08 .019 77 .84 18 .27 <3 2.61 1+00SE 4+75NE 8 5 .01 .03 <2 1+00SE 4+50NE 1 29 5 .3 9 257 5.32 9 <8 <2 <2 29 .5 <3 <3 157 .11 .039 23 .24 27 4 5 52 .56 <3 3.77 .02 .03 <2 1+00SE 4+25NE 12 53 11 72 .4 13 31 1754 7.33 20 <8 <2 <2 12 .2 <3 <3 119 .05 .081 5 37 .80 36 .04 <3 3.18 .01 .03 <2 374 24 <2 <2 21 .7 <3 254 1+50SE 4+75NE <1 41 14 54 .8 8 8.28 16 <8 <3 .45 .030 6 124 1.06 21 .23 <3 4.66 .01 .02 <2 1+50SE 4+50NE 1 73 8 83 <.3 63 21 671 7.00 17 <8 <2 <2 13 .6 <3 <3 147 .07 .074 7 151 1.49 38 .14 <3 8.14 .01 .02 <2 42 25 25 1307 19 <8 <2 <2 12 .8 <3 <3 192 .07 .049 .81 28 1+50SE 4+25NE <1 46 8 <.3 6.40 4 99 . 12 <3 4.01 .01 .03 2 71 20 515 7.56 13 29 <3 193 2+00SE 4+75NE 54 8 47 <8 <2 <2 <3 .06 .056 4 151 .99 43 <3 5.87 <2 <1 <.3 1.1 . 15 .01 .02 2+00SE 4+25NE 6 22 8 44 <.3 15 7 284 7.42 9 <8 <2 <2 9 .2 <3 <3 144 .04 .029 2 43 .46 11 .06 <3 1.73 .01 .03 3 2+00SE 4+00NE 20 13 10 30 <.3 4 2 137 5.62 11 <8 <2 <2 5 <.2 <3 <3 134 .02 .019 3 20 .31 16 .05 <3 2.06 .01 .02 <2 <2 3 28 17 <8 <2 3 <.2 <3 <3 145 .01 .034 26 .01 .03 2+00SE 3+75NE 40 20 9 .3 4 1 144 7.60 16 . 13 .05 <3 2.89 <2 22 39 237 7.77 13 <8 <2 <2 6 <.2 <3 <3 111 .02 .081 4 22 .31 42 .02 <3 3.89 .01 .04 <2 2+00SE 3+50NE 55 0 .3 6 1 147 .03 .043 23 <3 4.08 2 2+00SE 3+25NE 3 30 8 75 7 17 1903 9.59 20 <8 <2 <2 4 .3 <3 <3 4 24 1.27 .10 .01 .04 <.3 5 <3 <3 81 .02 .064 4 20 .02 <3 5.56 .01 .03 2+00SE 3+00NE 20 28 7 89 <.3 6 5 248 8.84 23 <8 <2 <2 <.2 21 .43 <2 <8 <2 <2 1.2 <3 <3 117 .03 .064 5 29 1.25 28 .11 .01 .03 <2 159 36 6 <3 6.53 2+00SE 2+75NE 1 54 8 .3 11 12 772 7.45 7 1.2 27 1.33 <3 4.62 2+00SE 2+50NE 12 242 21 16 808 9.08 32 <8 <2 <2 <3 <3 133 .07 .059 6 42 .22 .01 .03 2 <1 64 <.3 13 235 19 707 8.88 31 <8 <2 <2 6 1.3 <3 <3 117 .05 .058 5 27 1.18 36 .20 <3 4.03 .01 .03 3 **RE 2+00SE 2+50NE** <1 56 <.3 17 9 <3 <3 .06 .030 5 30 1.46 .33 <3 4.89 2 2+00SE 2+25NE <1 72 7 204 .3 14 9 806 10.33 31 <8 <2 <2 .6 199 44 .01 .03 12 25 <8 <2 <2 12 1.0 <3 <3 155 .12 .063 5 26 1.05 25 .42 <3 21 .01 .02 5 166 <.3 7 494 6.69 <2 2+00SE 2+00NE <1 56 3 17 .59 <3 5.31 .01 2 49 4 119 <.3 424 13.04 18 <8 <2 <2 6 <.2 <3 273 .06 .046 5 33 .56 .02 2+00SE 1+75NE <1 4 1 <1 97 4 196 <.3 18 15 1026 7.30 21 <8 <2 <2 10 1.4 <3 <3 158 .12 .049 6 31 1.27 42 .34 <3 6.51 .01 .02 <2 2+00SE 1+50NE 52 <8 <2 <2 22 <3 <3 154 .10 .044 35 1.04 35 .29 <3 4.44 .01 <2 37 4 128 <.3 19 9 750 9.77 .6 4 .02 2+00SE 1+25NE <1 <8 <2 <2 12 <3 <3 105 .07 .041 7 27 .83 71 .13 <3 3.75 .01 .04 <2 2+00SE 1+00NE 42 10 182 <.3 12 7 667 7.94 31 .8 <1 <2 18 <3 26 1.51 99 .24 <3 4.54 .02 .04 3 55 4 184 <.3 27 22 1981 7.10 21 <8 <2 1.1 <3 134 .15 .072 6 2+00SE 0+75NE <1 2+00SE 0+50NE <1 21 5 76 <.3 6 3 368 9.24 18 <8 <2 <2 10 .4 <3 <3 116 .05 .041 5. 29 .44 19 .22 <3 3.54 .01 . 02 2 .01 59 <8 <2 <2 7 .5 <3 <3 151 .05 .055 4 40 .74 19 .29 <3 5.22 .03 <2 117 .5 9 463 10.77 2+00SE 0+25NE <1 41 8 6 39 <8 <2 <2 11 .9 <3 <3 156 .08 .041 5 35 .89 39 .24 <3 5.26 .01 .03 <2 2+00SE BL <1 41 6 158 <.3 13 9 538 8.70 25 25 71 19 180 .63 .08 18 1.84 .04 .15 15 STANDARD C3 36 160 5.5 32 12 754 3.46 56 3 17 28 24.3 15 .60 .101 141 26 62 STANDARD G-2 <1 3 4 42 <.3 7 4 626 2.04 4 <8 <2 2 82 <.2 <3 <3 45 .75 .107 13 82 .69 255 .14 <3 1.10 .09 .57 3

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 🚈 FA

APPENDIX III: ROCK SAMPLE DESCRIPTIONS

-

"*.

	There	LITH East	UTM North	Δrea	Description	Cu ppm	Mo ppm	Zn ppm	Ag ppm	Au ppb
Sample	i ype	UIM East		7,54						
										ļ
1014/000000 1	arab	601809	5591029	Tuscarora	Med- It grey silicified Imst	1552	2	99591	4.1	14
JD44090999-1	grau				Patches of massive sulphides, mainly SP					
					lesser cpy. Diss po to 3%					• •
IDW090999-2	orab	601742	5591005	Tuscarora	Calc-silicate/hornfels with abdt sulphides	915	<1	99999	2.8	4
	3,				Po>Sp>>cpy					+
									}	+
							-	<u> </u>		+
					1011 1010	2002	2	7702	73	5
JDW090999-3	grab	601791	5591093	Tuscarora	Site of 1998 samples 1014, 1015, 1016	2902	۷	1192	1.5	<u> </u>
					Strongly frac silicitied imst, patchy sulprides					
					of Sp and Cpy			+	+	1
					Duct was calle eiligets (cilipified Imst	943	2	40660	2.3	9
STN 32	grab	601742	5591005	luscarora	Rusty wea calc-silicate/silicitied inist					
					Розбрэзору				1	
				+					-	
		600536	5500516	Lower	Silicifed Imst fractured and abdt iron oxides	10095	1	765	32.7	140
STN 55	grab	602536	5590510	Rive Grouse	Po>Cov>So		1			
				Dide Greater						
STN 40	areh			Extension	Rusty wea breccia and calc-silicate with	253	2	167	<0.3	8
5111 40	grau			Lower Skarn	minor patches of Sp					
KH080999-1	arab	602199	5589900	Blue Grouse	Silicifed Imst and calc-silicate	291	<1	866	0.3	<1
111000000-1	9.00				Abdt diss Po>Py. Qtz vein with Py and					
					minor Sp					+
						400		76	<0.2	1
KH080999-2	grab	602199	5589900	Blue Grouse	Rusty wea silicified Imst. Chlorite in fracs	433	2	0		
	1				Diss Po and patchy sp					
									+	-
					But the state of the state of the state of the state	472	1	126	0.3	1
KH080999-3	grab	602250	5589853	Blue Grouse	Rusty wea strongly tractured silicitied (mst	413	1	120		+
					up to 5% diss Po and minor Upy					-
					Dente all all all all all all all all all mot	417	1	827	1.1	<1
KH080999-4	grab	602243	3 5589850	Blue Grouse	Kusty calc-silicate/ silicited imst	41/	+			
					Diss suiphides Po.Py, minor Opy			-+		

Yreka Property - 1999 Rock Sample Descriptions

1

STATES AND A CONTRACT (STATES)

Yreka	Property -	1999	Rock	Sample	Descriptions
-------	------------	------	------	--------	--------------

THE FORMER FOR THE STATE STATES AND A STATES

Sample	Type	UTM East	UTM North	Area	Description	Cu ppm	Mo ppm	Zn ppm	Ag ppm	Au ppb
					Destruction attend where a line and the state	16	30	81	0.5	<1
KH080999-5	grab	602190	5589464	Blue Grouse	Kusty wea, strongly trac silicitied litist. At	40	30		0.0	
					contact with intrusive dyke. Diss and plebs			<u> </u>		
					or Po, minor py. Slignuy graphiuc					
KHU8U000-6	arah	602190	5589464	Blue Grouse	as above	51	14	49	0.4	3
N 1000333-0	grau									
KH080999-7	grab	602190	5589464	Blue Grouse	as above	17	76	12	<0.3	<1
			5500447	T	Interview flagt with fing disc Dy	15	2	33	<0.3	1
JDW080999-1	grab	602117	5589447	luscarora	Traces of Po and Cnv	10	<u> </u>			
								-		1
KH000000 1	arab	601809	5591029	Tuscarora	Cliff-forming Mn-rich calc-silicate	2627	2	36610	6.8	8
1090999-1	yran	001009	0001020		Patches of massive Sp with minor Cpy					
alda (11, 1 - 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		<u> </u>								1
KH090999-2	grab	601809	5591029	Tuscarora	As above	443	5	189	0.4	4
								+		+
	ļ			1	Purchause colo cilicate with PassasCau	456	1	332	0.9	4
KH140999-1	grab			Lower	Rusty wea calc-silicate with P0-3p-Cpy		+			<u>+</u>
				Blue Grouse						1
1/11/ 40000 0		600954	5580072	Linner	Rusty weal silicified Imst	1136	6	1207	3.5	4
KH140999-2	grab	002301	5569912	Blue Grouse	Patchy sp with silicification, minor Cpv			1		
KH140990-3	grab	602226	5589895	Upper	Rusty wea calc-silicate	5732	<1	19408	21.0	26
11140303-0	grad			Blue Grouse	Patchy massive Sp and lesser Cpy					
								400.10		2000
KH150999-1	grab	602518	5590630	Gold Adit	Quart vein float in lower Canyon Creek	995	35	46942	21.9	3680
					Heavy massive Sp and Aspy. Lesser Cpy					
					and Bornite				+	
										+
1	1	1	[1			1	1		

Yreka Property - 1999 R	ock Sample Descriptions
-------------------------	-------------------------

Sample	Туре	UTM East	UTM North	Area	Description	Cu ppm	Mo ppm	Zn ppm	Ag ppm	Au ppb
		001050	5500074	A lumor	Purchaves cale silicate with natchy massive	3507	6	170	2.3	2
WP62	grab	601653	2289071	Opper Blue Creuree	Rusly wea care-smeate with patchy massive					
				Blue Grouse	Sp and minor Cpy					
				Canvon Creek	Silicified Inst with diss Po	254	3	58	0.3	1
RS-L300N-032VV	grab									
					mi a da da alta alta atta	777		35	15	3
KH060999-1	float	601330	5590216	North Arm Ck	Fine grained calc-silicate		4		1.5	
KH060999-2	grab	601145	5590386	Upper	Patchy massive sulphides in calc-silicate	2312	3	25	0.9	<1
			-	North Arm Ck	Py>10%, lesser Po and Cpy					
1/1070000 4	rrah	601083	5580782	Linner	Silicified Imst with blebs of Pv and Po	10	3	18	<0.3	2
KH070999-1	grap	001903	5565762	Blue Grouse						
Upper Showing	grab	601310	5589777	North Arm Ck	Rusty wea calc-silicate	244	11	27	0.3	1
T & P Showing	grab	601363	5589635	North Arm Ck	Rusty wea calc-silicate	946	11	58	2.5	201
RS-400N-160W	grab	601486	5589775		Silicified Imst with diss Po	26	1	27	<0.3	2
					Durth was calle alliante	100	4	34	<0.3	1
0509A	grab	601408	5589763	North Arm Ck	Rusty wea caic-silicate	100	*	J T	-0.0	
JL99-1	grab			Canyon Grid C	Coords 5+50NW, 0+23SW	1412	1027	46	1.1	3
				Outcrop with v	isible moly					
JP99-1	grab			North Arm cre	ek, gossanous outcrop in new slide area	1424	16	62	5.6	170
				abundant sulp	hides in silicitiedzone					

APPENDIX IV: GEOCHEMICAL STATISTICS YREKA PROJECT

SPLOM Page 1

YREKA PROJECT

APPENDIX V: ANALYTICAL PROCEDURES – ACME LABS

(

a station of the

the second second

_

ACME Analytical Laboratories Ltd.

852 East Hastings Street, Vancouver, British Columbia, Canada V6A 1R6 Telephone: (604) 253-3158 · Facsimile: (604) 253-1716 · Toll free: 1-800-990-ACME (2263) · e-mail: acme_labs@mindlink.bc.ca

METHODS AND SPECIFICATIONS FOR ANALYTICAL PACKAGE GROUP 1D - 30 ELEMENT ICP BY AQUA REGIA

Analytical Process

Comments

Sample Preparation

Soils and sediments are dried (60°C) and sieved to -80 mesh (-177 microns), rocks and drill core are crushed and pulverized to -100 mesh (-150 microns). Plant samples are dried (60°C) and pulverized or dry ashed (550°C). Moss-mat samples are dried (60°C), pounded to loosen trapped sediment then sieved to -80 mesh. At the clients request, moss mats can be ashed at 550°C then sieved to -80 mesh although this can result in the potential loss by volatilization of Hg, As, Sb, Bi and Cr. A 0.5 g split from each sample is placed in a test tube. A duplicate split is taken from 1 sample in each batch of 34 samples for monitoring precision. A sample standard is added to each batch of samples to monitor accuracy.

Sample Digestion

Aqua Regia is a 3:1:2 mixture of ACS grade conc. HCl, conc. HNO₃ and demineralized H₂O. Aqua Regia is added to each sample and to the empty reagent blank test tube in each batch of samples. Sample solutions are heated for 1 hr in a boiling hot water bath (95°C).

Sample Analysis

Sample solutions are aspirated into and ICP emission spectrograph (Jarrel Ash AtomComp model 800 or 975) for the determination of 30 elements comprising: Ag, Al, As, Au, B, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sr, Th, Ti, U, V, W, Zn.

Data Evaluation

Raw and final data from the ICP-ES undergoes a final verification by a British Columbia Certified Assayer who then signs the Analytical Report before it is released to the client. Chief Assayer is Clarence Leong, other certified assayers are Dean Toye and Jacky Wang.

Document: ICP30M&S.doc

Date: November 15, 1995

852 East Hastings Street, Vancouver, British Columbia, Canada V6A 1R6 Telephone: (604) 253-3158 · Facsimile: (604) 253-1716 · Toll free: 1-800-990-ACME (2263) · e-mail: acme_labs@mindlink.bc.ca

METHODS AND SPECIFICATIONS FOR ANALYTICAL PACKAGE GROUP 3A - AU BY WET EXTRACTION

Comments

Sample Preparation

Soils and sediments are dried $(60^{\circ}C)$ and sieved to -80 mesh (-177 microns), rocks and drill core are crushed and pulverized to -100 mesh (-150 microns). Plant samples are dried $(60^{\circ}C)$ and pulverized or ashed $(550^{\circ}C)$. Sediment in moss mats is recovered by disaggregation then sieved to -80 mesh. A precise quantity of the fine fraction (client may select from 10 g to 150 g sample weights) is weighed. In every analytical batch (34 samples) a duplicate split is added from a randomly selected sample to monitor precision. Reference materials (in-house control standards) are also added to each batch to monitor accuracy.

Sample Digestion and Extraction

Aqua Regia is a 3:1:2 mixture of ACS grade conc. HCl, conc. HNO₃ and demineralized H₂O. Aqua Regia is added to each sample and to the empty reagent blank test tube in each batch of samples. Sample solutions are heated for 1 hr in a boiling hot water bath (95°C). After cooling, MIBK is added and the samples are shaken to extract Au into the MIBK phase.

Sample Analysis

Sample extracts are aspirated into a graphite furnace AAS (Varian model SpectrAA 10Plus) for the determination of Au.

Data Evaluation

Raw and final data from the undergoes a final verification by a British Columbia Certified Assayer who then signs the Analytical Report before it is released to the client. Chief Assayer is Clarence Leong, other certified assayers are Dean Toye and Jacky Wang.

Document: meth3A.doc

Date: January 31, 1997

ACME Analytical Laboratories Ltd.

852 East Hastings Street, Vancouver, British Columbia, Canada V6A 1R6 acme_lab@iSTAR.ca Telephone: (604) 253-3158 • Facsimile: (604) 253-1716 • Toll free: 1-800-990-ACME (2263) • e-mail: acme_labs@mindlink.bc.ca

METHODS AND SPECIFICATIONS FOR ANALYTICAL PACKAGE GROUP 6 - PRECIOUS METAL ASSAY

Comments

Sample Preparation

Rocks and drill core are crushed to -8 mesh (-0.25 cm), riffle split to 250 g splits then pulverized to -100 mesh (-150 or -200 at client's request). Duplicates of crushed (rejects) and pulverized (pulp) material are added in each analytical batch (34 samples) to monitor sample inhomogeniety and analytical precision, respectively. One assay ton (29.2 ± 0.01 g) or two assay ton (58.4 ± 0.01 g) splits are weighed. High-grade gold standard STD Au-I (Ag-2 if Ag assay requested) and a blank are added to each analytical batch to monitor accuracy. Results are reported in imperial (oz/t) or metric (gm/tonne) measure. For metallics testing, a 1Kg (or larger) split is pulverized and sieved to -100 mesh (-150 or -200 mesh at client's request). A representative 1 or 2 assay ton split of the undersize (-100, -150 or -200 mesh) fraction is assayed. Material remaining in the sieve (oversize fraction) is collected, weighed and assayed in total.

Sample Digestion

Fusing at 1000°C for 1 hour with fire-assay fluxes containing a PbO litharge and Ag inquart liberates all Au, Pt and Pd. After cooling, lead buttons are recovered and cupelled at 950°C to render Ag \pm Au \pm Pt \pm Pd dore beads. Beads are weighed then leached in 1 mL of conc. HNO₃ at >95°C to dissolve Ag leaving Au sponges.

Sample Analysis

Large Au sponges >2 mm weighed by micro-balance (gravimetric determination). Small flakes are digested by adding 6 mL of 50% HCl to the HNO₃ solution then determined by ICP-ES (Jarrel Ash Atom-Comp model 800 or 975). Pt and Pd are also determined by ICP-ES. Every Ag fire assay is accompanied by a wet assay. Ag concentrations <10 oz/t are reported from the wet assay, results >10 oz/t are from the fire assay. Au metallics testing reports concentrations of Au in the -100 mesh fraction, the +100 mesh fraction and the calculated weighted average of these fractions.

Data Evaluation

Raw and final data undergoes a final verification by a British Columbia Certified Assayer who then signs the Analytical Report before it is released to the client. Chief Assayer is Clarence Leong, other certified assayers are Dean Toye and Jacky Wang.

Demonstration	A
Locument	ASSAVAU.00C

Date: March 5, 1997

ACME Analytical Laboratories Ltd.

852 East Hastings Street, Vancouver, British Columbia, Canada V6A 1R6 Telephone: (604) 253-3158 · Facsimile: (604) 253-1716 · Toll free: 1-800-990-ACME (2263) · e-mail:-acme_labs@mindlink.be.ca

METHODS AND SPECIFICATIONS FOR ANALYTICAL PACKAGE GROUP 8 - WET ASSAY FOR COPPER, LAD ZINC, Co, NG

Analytical Process

Comments

Sample Preparation

Soils and sediment samples are rarely assayed, however the procedure is provided for completeness. Assaying is recommended for rocks and drill core where concentrations exceed 5000 ppm. Rocks are crushed to -8 mesh (-0.25 cm) prior to riffle splitting. 250 g splits are pulverized to -100 mesh. A reject duplicate split and pulp duplicate split is taken from one sample in every 34. These measure the subsampling error due to sample inhomogeniety (reject split) and precision of the analysis (pulp split). Precisely 1.000 \pm 0.002g of pulp are added to 100 ml volumetric flasks. Standard STD R-1 and a blank are added to each batch of 34 samples during weighing to monitor accuracy.

Sample Digestion

30 ml of Aqua Regia (3:1:2 ACS grade conc. HCl, conc. HNO₃ and demineralized H_2O) is added to each flask. Sample solutions are heated for 1 hr in a boiling water bath (95°C) then cooled for 3 hrs. Demineralized H_2O is added to bring the volume to the 100 ml mark.

Sample Analysis

Sample solutions are aspirated into and ICP emission spectrograph (Jarrel Ash AtomComp model 800 or 975) for the determination of Cu. A concentrated Cu solution standard is analysed together with the samples to monitor accuracy.

Data Evaluation

Raw and final data from the ICP-ES undergoes a final verification by a British Columbia Certified Assayer who then signs the Analytical Report before it is released to the client. Chief Assayer is Clarence Leong, other certified assayers are Dean Toye and Jacky Wang.

Document: AssayCu.doc

Date: November 20, 1995

APPENDIX VI: VLF FIELD READINGS

-

-

~~

-

, **---**

-

.

State Frank 1 - 1 - 1

منعم

<u>_</u>__

-

-

, . .

-

*----

بسب : :

> . مىلار

..... ا

_

محطر

_

يىتغۇر . 1

VLF SURVEY FIELD DATA

			リー・モリン ざい おんじ たいだい	さんがく だいがく よう
Linching Coopie	SEL116 SH 196	70.4		이 같은 것 같은 것이 같이 많이 많이 많이 많이 했다.
	3 CM 10 SHI 100	HUM		ゆもひろう しょみ しょうぞう
	이번 성격이 있는 것이 같은 것이 있었다.	이 동안 물이 있는 것 같아요. 이 것 같아요.		
실패 수있는 것 같은 것 같아요. 그는 것 같아.		and the second secon	ala da ser en este en e	
Onerstor David	- 18/illiame Det D	Niccont Blitton	Grano	그는 김 승규는 것이 같아요. 것
	J 3 4 HHRI 110. [" G([`		GIQUE	
		전 소개가 제 것 같은 것 같은 것 같이 했다.	- 전 김 영화 영화 이 것이 가지 않는 것은	
요즘 아이들은 것이 아이들이 있는 것이 같이 했다.			ふかわ いたい かたい たい	이 나는 것을 가장 나는 것을 통하는 것을 못하는 것이 같이 같이 않는 것을 못하는 것을 못하는 것을 것이 않아. 것이 것을 것이 같이 않아. 것이 것이 것이 않아. 것이 것이 같이 않아. 것이 것이 것이 않아. 것이 것이 것이 같이 않아. 것이 것이 것이 않아. 것이 것이 않아. 것이 것이 것이 않아. 것이 것이 않아. 것이 것이 것이 않아. 것이 것이 것이 않아. 것이 것이 않아. 것이 것이 것이 않아. 것이 것이 것이 않아. 것이 것이 않아. 것이 것이 않아. 것이 것이 않아. 것이 않 것이 것이 것이 않아. 것이 것
	2 Contombor 10		승규는 이 가지 않는 것이 있는 것이 같아.	
vale, nuuuo				이상 이 것 같이 많이 있는 것
지수 영상 전 것이 가지 않는 것이 못 많이 ?	그렇게 물건 방법에 걸 것을 들었다. 것 같은 것 들었		이 집에 집에서 가지 않는 것이 없다.	マー・キャック みんかう ちちょう
📻 ಚಿತ್ರಗಳಲ್ಲಿ ಎಂದು 👘 ಮಾತ್ರಗಳಲ್ಲಿ			지수는 것 같은 것이 같이 같이 같이 같이 같이 같이 같이 많이	
Headinde' megeli			ビー・教育 かやくか 経営法 しかしょう	ないい ときせんせい ひょう
i vouun ga, maaaa	the burner of the second se		化热带 化合金化合合合合合合合合合合合合合合合合合合合合合合合合合合合合合合合合合合	
있는 지역에 가루 전 이상 방법을 통		이는 것 같은 것 같아요. 그는 것 같아요.		ほうしょ かいかいしょう
مسالك محكم والمتحالية والم			지수 집에 가 좀 지는 것	
Fillecaroli. Leading	15 T2KEN 1761NO E	asi	그 같은 것은 것을 가지 않는 것	문화가 가지 않는 것이 같이 나
			A final state of the state o	An a share s

Grid Co	ordinate	Seattle, WA - NLK		-	
Line	Station	InPhase	Quadrature		Remarks
200S	0	-8	-11		
	25E	-7	-12		
	50E	-5	-12		
	75E	-9	-16		
	100E	-9	-18		
	125E	-12	-21		
	150E	-10	-19		
	175E	-10	-16		
	200E	-17	-21		
	225E	-15	-20		
	250E	-12	-17		
	275E	-12	-6		
	300E	-17	0		
	312E	-23	+6		
	325E	-78	+13	creek gully at 324E	
	337E	-120	+8		
	350E	-130	+6		
	375E	-96	+10		
	400E	-68	+14		
	425E	-57	+10	edge of slope	
	450E	-49	+10	down-slope	
	4/5E	-48	+10	down-slope	
	487E	-54	+6	down-siope	
1508	0	i _4	-10		
	25F	-6	-14		
	50E	-3	-14		
	75E	-6	-14		
	100E	-5	-14		
	125E	-12	-21		
	150E	-5	-24		
	175E	-7	-19		
	200E	-8	-18		
	225E	-12	-12		
	250E	-20	+2		
	275E	-57	+8		
	287E	-90	+2		
	300E	-103	+7		
	325E	-82	+14		
	350E	-65	+12		
	375E	-52	+10		
	400E	-48	+10		

Machine:	Geonics EM16 s/n:13678A
Operator:	J. David Williams, Pat Poissant, Milton Grace
Date:	August & September 1999
Readings:	measured in percent[%]
Direction:	readings taken facing east

				_		
Grid Coordinate		Seattle, WA - NLK				
Line	Station	InPhase	Quadrature		Remarks	
						_
100S	0	-5	-12			
	25E	-6	-12			
	50E	-3	-12			
	75E	0	-9			
	100E	-8	-16			
	125E	-7	-16			
	150E	-5	-14			
	175E	-12	-6			
	200E	-29	+1			
	225E	-45	+4			
	250E	-62	+12			
	275E	-80 ·	+12			
	287E	-59	+19			
	300E	-44	+26			
	325E	-44	+12		,	
	350E	-49	+6			
	375E .	-51	+4			
	400E	-45	+8			
050S	0	1 .3	-16			
	25E	-3	-16			
	50E	-2	-12			
	75E	0	-9			
	100E	-2	-9			
	125E	-4	-6			
	137E	-10	-4			
	150E	-9	+12			
	175E	-32	+1			
	200E	-44	+3	creek at 212E		
	225E	-79	+16			
	250E	-69	+12	creek at 250E		
	2/5E	-51	+16			
	300E	-53	+4	creek at 327E		
	3505	-36	0+ +0			
	375E	-00-	.0			
	400F	-67	-2			
			-2			

CANYON GRID

Machine:	Geonics EM16 s/n:13678A	
Operator:	J.David Williams, Pat Poissant,	Milton Grace
Date:	August & September 1999	
Readings:	measured in percent[%]	
Direction:	readings taken facing east	

Grid Co	oordinate	Seattle, WA - NLK		•
Line	Station	InPhase	Quadrature	Remarks
00N	225W	+3	-10	
	200W	+8	-9	
	175W	+8	-9	
	150W	+8	-4	
	125W	+10	-6	
	100W	+12	-3	
	75W	+8	-5	
	50W	+3	-13	
	25W	0	-15	
	0	-1	-12	
	25E	+6	-13	
	50E	+7	-9	bottom shallow ravine
	62E	+6	-5	
	75E	-3	-3	top of local ridge
	87E	-16	+1	
	100E	-31	+5	
	112E	-28	+3	· · ·
	125E ·	-30	-1	
	137E	-30	0	
	150E	-34	-2	
	162E	-50	+4	small ravine
	175E	-85	+8	
	187E	-170	-1	In-phase est'd - reading off-scale
	200E	-125	+2	smail creek at 203E
	212E	-106	+14	
		-83	+13	
	230E	-54	+0	
	275E	-42	+4	arrak at 2005
	300E	-21	-0 +0	CLEER at 280E
	3505	-33		
	375E	-27	-2	
	400F	-25	$\tilde{}$	
	425E	-32	+4	
	450F	.34	+4	
	475F	-35	+2	
	500F	-30	0	
	525E	-28	+2	
	537E	-32	0	brow of slope to canyon to East

. . *

-

VLF SURVEY FIELD DATA

CANYON GRID

Machine: Geonics EM16 s/n:13678A Operator: J.David Williams, Pat Poissant, Milton Grace Date: August & September 1999 Readings: measured in percent[%] Direction: readings taken facing east

Grid Co	ordinate	Seattle, V	NA - NLK	
Line	Station	InPhase	Quadrature	Remarks
		ini nase	Gidduiddic	remarks
050N	2001/1	+7	_13	
	175\/	+7	-10	
	1501/	+16	-0	
	1251/	+16		
	100W	+13	-10	
	75W	+9	-7	
	50W	+10	_9	
	25W	+5	-6	
	0	Ō	-3	
	25E	Ō	-1	large eroded spring/scour north of stn
	37E	0	-1	
	50E	-14	+1	
	62E	-84	Ó	small creek at ~58E
	75E	-68	+6	
	87E	-64	+6	
	100E	-72	+4	
	112E	-60	+9	
	125E	-55	+10	
	137E	-98	-4	
	150E	-82	0	at 160E, drk gry lst? dipping into slope
	162E	-80	-5	
	175E	-68	-2	
	187E	-54	0	
	200E	-47	+4	small creek at 197E
	212E	-42	+6	
	225E	-38	+8	base small bluff of lamellar tuff?
4000			~~	0
TUUN	21200	-3	-20	Canyon Creek 25-30m further W
	200VV		-23	
	1/044	+14	-13	
	10044	112	-0	
	12000/	+1/	-10	
	75\/	+10	ۍ۔ ۲۰	
	501	+10	-0	small creek ~55W/
	251/		+8	Sindi Geer Witt
	0	-20	+10	
	25F	30	+12	
	50E	-23	+11	creek at 40F & m.g. grn-gry lst? o/c
	62E	-58	-5	
	75E	-100	-6	
	100F	-75	-12	at creek w/ med-drk gry f.g. ist o/c
	112F	-56	.2	
	125F	-47	0	
	150F	-38	+1	
	175E	-33	-1	
	200E	-25	+3	
	225E	-24	+6	ravine w/ small creek

Machine:	Geonics	EM16 s/n:	13678A					
Operator:	J.David V	Villiams, P	at Poiss	ant, M	ilton G	race		
Date:	August &	Septembe	r 1999					
Readings:	measured	d in percen	t[%]					
Direction:	readings	taken facir	ig east					

Grid Co	ordinate	Seattle, V	VA - NLK	•
Line	Station	InPhase	Quadrature	Remarks
			· · · · · · · · · · · · · · · · · · ·	
150N	225W	-12	-22	Canyon Creek at ~215W
	200W	+2	-24	
	175W	+9	-12	
	150W	+7	-6	
	125W	+5	+1	
	100W	-5	+18	creek at 98W
	75W	-23	+16	
	50W	-34	+24	
	25W	-45	+20	creek at 35W
	0	-28	+18	
	25E	-43	+6	
	50E	-64	-7	creek at 53E
	75E	-50	-7	
	100E	-27	+3	small creek at 95E
	125E	-24	0	
	150E	-18	+4	
	175E	-19	+3	
	200E	-16	+6	shallow nearly dry ravine
	225E	-28	+2	large ravine, nearly dry
2001	0054/	1 40	40	
2001	22500	-12	-13	
	175\/	-/	-0	and hank of Conven Creek
	150\/		0	east bank of Canyon Creek
	125\/	-21	±17	small creek at 115M
	100W	-48	+16	Sinal creek at 11014
	75W	-50	+22	
	50W	-46	+14	small creek at 60W
	25W	-48	+10	
	0	-47	+4	
	25E	-39	+3	
	50E	-30	+5	
	75E	-27	-1	creek with steep sides at 70E
	100E	-22	-2	
	125E	-17	+2	deep ravine w/ small creek at 110E
	150E	-16	+2	
	175E	-21	+3	ravine w/ v.small creek at 158E
	200E	-36	-2	
	225E	-42	+1	overgrown ravine w/ small creek ~230E

(

-

VLF SURVEY FIELD DATA

Machine:	Geonics I	EM16 s/n	13678A					
Operator:	J.David V	Villiams, P	at Poiss	ant, Mil	ton Gra	ice		
Date:	August &	Septembe	r 1999					
Readings:	measured	in percen	t[%]					
Direction:	readings l	laken facir	ng east					

Grid Co	ordinate	Seattle, V	VA - NLK	•
Line	Station	InPhase	Quadrature	Remarks
250N	225W	-16	-9	
	200W	-16	-6	
	175W	-29	+3	
	150W	-52	+7	
	125W	-78	+4	stn in Canvon Creek w/ steep banks
	100W	-45	+14	narrow ravine w/ small creek at 90W
	75W	-34	+14	
	50W	-35	+12	
	25W	-34	+6	
	0	-26	+8	
	25E	-19	+8	small bluff 10&15m S of stn of bed'd tuff? w/ po
	50E	-19	0	•
	75E	-13	-2	creek w/ cemented bed near 80E
	100E	-14	-1	
	125E	-14	-1	shallow ravine w/ small creek at 120E
	150E	-19	0	small ravine near 180E
	175E	-23	+4	
	200E	-38	+1	deep overgrown ravine w/ small cr ~220E
300N	225W	-17	-10	
	200W	-18	-3	
	1 75 W	-29	+4	
	150W	-58	+7	
	125W	-45	+14	
	100W	-31	+13	creek 8m grid-N
	75W	-14	+22	stn in Canyon Creek; confluence of creeks ~60W
	50W	-3	+11	Canyon Creek 8m grid-N
	25W	-1	+9	station in Canyon Creek
	0	-7	+3	station in Canyon Creek
	25E	-6	+4	Canyon Creek 10m grid-N
	50E	-7	0	old flume crosses line ~30E; ~6m grid-S at stn.
	75E	-7	-2	
	100E	-7	0	
	125E		-2	
	150E	-12	+3	ravine w/ small creek at 155E
	1/5E	-26	+1	
	200E	-30	+6	nearly dry ravine at 182E
	225E	-36	+8	

Machine:	Geonics EM16 s/n:13678A
Operator:	J.David Williams, Pat Poissant, Milton Grace
Date:	August & September 1999
Readings:	measured in percent[%]
Direction:	readings taken facing east

Grid Co	ordinate	Seattle, \	NA - NLK	
Line	Station	InPhase	Quadrature	Remarks
		L		
350N	225W	-18	-11	
	200W	-24	-3	
	175W	-42	+3	
	150W	-36	+9	creek crosses line ~142W
	125W	-24	+16	
	100W	-22	+14	
	75W	-11	+14	
	50W	-8	+10	
	25W	-6	+6	
	0	-5	+4	
	25E	-3	+2	
	50E	+2	0	Canyon Creek 12m grid-S
	75E	-3	-5	Canyon Creek 10m grid-S
	100E	0	-7	Canyon Creek 4m grid-S
	125E	+2	+1	Canyon Creek 3m grid-N
	150E	-2	0	Canyon Creek 2m grid-S
	175E	-23	+10	Canyon Creek 4m grid-S
	200E	-28	+16	
	225E	-35	+13	
		I		
400N	225W	-15	-11	
	200W	-18	-4	
	1/5W	-18	+11	Creek w/ washout 1/3-145mW
	150W	-3/	+/	
	12500	-28	+13	
	70000	-19	+14	
	TOVY ECM	-20	+12	
	26/1/	-10	+10	
	2544	-10	· • • (
	255	12	13	
	505	_10	+4	
	755	-6	+5	
	100F	-4	+8	
	125E	-10	+7	
	150F	-15	+16	shallow dry ravine
	175F	-17	+16	
	200E	-21	+18	
	225E	-27	+15	
	250E	-48	+4	
	275E	-42	+7	

_

Machine:	Geonics EM16 s/n:13678A
Operator:	J.David Williams, Pat Poissant, Milton Grace
Date:	August & September 1999
Readings:	measured in percent[%]
Direction:	readings taken facing east

Grid Co	ordinate	Seattle, V	VA - NLK	
Line	Station	InPhase	Quadrature	Remarks
450N	215W	-14	-10	
	200W	-21	+3	wide washout & strongly flowing cr 195-210F
	175W	-29	+7	small creek 170E
	150W	-23	+9	
	125W	-23	+12	
	100W	-18	+11	
	75W	-18	+11	
	50W	-15	+9	
	25W	-16	+8	
	0	-16	+9	
	25E	-16	+8	
	50E	-16	+8	
	75E	-11	+10	
	100E	-10	+12	
	125E	-10	+13	
	150E	-16	+13	
	175E	-22	+12	
	200E	-25	+4	
	225E	-29	+10	
500N	262W	0	-10	slope begins to face E, near cr parallel grid, 4m grid-S
	250W	+3	-6	
	237W	+7	-4	slide area w/ small creek 238-260W
	225W	+6	0	slope facing west
	212W	0	0	crest of local ridge
	200W	+3	-2	
	187W	-2	-3	
	1/5W	+5	+2	steep E-facing slope 1/9-205W
	162W	+10	+4	steep VV-facing slope 158-1/8VV, creek at 178VV
	10000	+13	+0	
	13777	+11	+0	drill setup or camp ruins
	12000	-21	+0	
	75\/	-14	+12	
	TOWV FOWN	-10	+12	
	251/	-13	+10	
	2.54V	-10	±10	
	255	-10	±10	
	50E	-11	+10	
	75F	-5	+12	
	100E	-3	+14	
	125F	-3	+16	
	150E	-2	+13	
	175E	-13	+12	
	200E	-14	+12	
	220E	-12	+10	

Machine:	Geonics EM16 s/n:13678A
Operator:	J David Williams, Pat Poissant, Milton Grace
Date:	August & September 1999
Readings:	measured in percent[%]
Direction:	readings taken facing east

Grid Co	ordinate	Seattle, V	WA - NLK	
Line	Station	InPhase	Quadrature	Remarks
550N	215W	+2	-4	
	200W	-1	-6	
	175W	-6	-6	very steep 175-200W, creek at 170W
	150W	+15	+11	
	137W	+17	+8	steep from stn to creek at 170W
	125W	+23	+10	
	112W	+12	+8	
	100W	-14	+5	
	75W	-8	+14	
	50W	-4	+16	
	25W	-15	+12	
	0	-13	+12	
		-12	+11	
	30E 75E	-/	+ +14	
	1005	-> 	114 16	
	125E	-1	+15	
	150E	0	+15	
	175E	-2	+14	
	200E	-3	+13	
	225E	-7	+11	andesite/melano-rhvolite o/c
		•		,
600N	260W	+3	-7	West edge of washout
	235W	+5	-5	East edge of washout
	210W	+5	-7	edge of steep slope falling to E
	200W	+1	-10	
	187W	+2	-8	steep E-facing slope 200-175W
	175W	+9	-4	
	162W	+15	+4	bottom of steep ravine w/ creek; maroon fragmental o/c?
	150W	+29	+11	
	125VV	+35	+17	steep W-facing slope 162-87W
	9704	+17	+14	have at VA/ facing along
	0/VV 75\\/	+12	+13	brow of vv-racing slope
	6211	-6	+1	
	50W	-14	+4	
	25W	-20	+7	~32W banded buff & lit-grv f.g. lst?
	0	-19	+10	
	25E	-13	+13	
	50E	-9	+12	
	75E	-7	+14	
	87E	+2	+15	
	100E	+3	+16	
	112E	+3	+16	
	125E	+6	+23	
	137E	+5	+16	
	150E	+2	+15	in shallow ravine & dry creek-bed
	162E	-3	+13	
	175E	-3	+15	on cliff w/ buff alt'd andesite & abund. garnet skarn
	200E	-4	+10	
	225E	-7	+11	

Machine:	Geonics EM16 s/n:13678A	
Operator:	J.David Williams, Pat Poissant, Milton Grace	
Date:	August & September 1999	
Readings:	measured in percent[%]	
Direction:	readings taken facing east	

Grid Coordinate		Seattle)		
	Station			Demesica
	Station	InfidSe	Quadrature	
650N	25010/	+0	-5	Mast edge of slide
00011	2251	+15	-5	Fast edge of slide
	2001/	+15	-5	on edge of large o/c of drk maroon f a tuff?
	175\/	+10	-12	steen E-facing slone 150-205\\/
	150\/	+23	-12	creek at 147W: v strong silicitication & unto 30% no pv in o/c
	137W	+45	-12	creek at 14777, v.strong silicineation a upto 50 % po,py in o/c
	125W	+50	+6	
	112W	+37	+15	
	100W	+25	+21	
	87W	+23	+23	
	75W	+15	+21	brow of steep W-facing slopes from stn to 147W
	62W	+7	+17	
	50W	-1	+12	
	25W	-21	+1	
	0	-11	+6	
	25E	-6	+12	
	50E	0	+11	
	75E	+4	+15	
	100E	+6	+15	
	125E	+7	+15	dry ravine 142E
	150E	-1	+13	med-lit gry-grn f.g. bedded? tuff? 152E
	175E	-3	+13	
	200E	-5	+10	base bluff med gry-grn tuff?; shallow ravine 212E
	225E	-13	+8	base bluff med gry-grn f.g. tuff?, local silicification
700N	200W	+15	-2	middle of slide; edges of slide 190 & 210W
	187W	+20	-4	near vert rock bluff 175-187W
	175W	+27	-4	
	162W	+25	-2	steep E-facing slope 125-175W
	150W	+24	-1	
	13/W	+23	+2	in an all an an all all and for
	12500	+/0	+13	In small cr., mod skamified o/c
	11200	+27	+8	at 1996 samples 1079 & 1080, skarn & drk maroon tun?
	9704	+23	+20	atean W faring along EQ 19514
	7511	+24	+24	steep vv-racing slope 50-125vv
	10VV 60\\/	+15	+10	
	62VV 50M/	+15	+19	brow of steen W/ facing slope
	251/		±11	brow of steep vv-facing slope
	0	-6	+10	
	25F	3	+9	
	50E	+1	+12	
	75E	+7	+13	
	100E	+11	+16	
	125E	+11	+15	in shallow dry ravine
	150E	+4	+14	
	175E	-1	+14	
	200E	-6	+9	
	225E	-7	+10	

Machine:	Geonics EM16 s/n:13678A
Operator:	J. David Williams, Pat Poissant, Milton Grace
Date:	August & September 1999
Readings:	measured in percent[%]
Direction:	readings taken facing east

Grid Coordinate		Seattle, \	NA - NLK	
Line	Station	InPhase	Quadrature	Remarks
750N	225W	+23	-5	brow steep E-facing slope & near top E corner of washout
	200W	+22	-5	
	175W	+27	-1	steep E-facing slope 225-116W
	150W	+37	-2	
	125W	+26	-5	creek near 116W
	112W	+34	+4	
	100W	+42	+11	large o/c immed N of line 75-100W
	87W	+33	+20	of silicified leuco & melano mat'l
	75W	+36	+24	sometimes nearly cherty & locally strongly sheared
	50W	+37	+23	line offset around bluff of bleach'd rusty wx'g sheared mat'l
	37W	+23	+14	steep W-facing slope 45-116W
	25W	+12	+8	
	0	+8	+6	
	12E	+2	+9	
	25E	+1	+10	
	37E	+2	+10	
	50E	+5	+12	
	75E	+10	+15	
	100E	+15	+18	
	125E	+13	+19	
	150E	+4	+15	
	175E	0	+16	
	200E	-5	+12	
	225E	-11	+4	
000N	20014		40	
OUUN	20000	+12	-10	stern F factor along 407 00001
	15014	+17	-0	steep E-facing slope 137-200W
	127/1/	+10	+2	amall analy near 12004/
	125\//	14	+1	small creek hear 130vv
	112000	+10	+0	
	100\/	+23	+71	
	870/	±//5	+21	
	75W	+64	+20	steen W-facing slone 37-130W/
	62W	+85	+31	steep waracing slope of 10000
	50W	+82	+27	
	37W	+43	+8	brow of steen W-facing slope
	25W	+32	+9	bion of bleep 11 hading slope
	12W	+8	+10	o/c of banded buff colored rusty wx'd tuff? 175°/45° at 8W
	0	-20	0	
	25E	-10	+9	
	50E	+1	+10	
	75E	+10	+13	
	100E	+11	+17	
	125E	+13	+18	
	150E	+10	+16	
	175E	-2	+8	scattered large & small o/c 150-225E
	200E	-5	+8	of dense drk red-brn silicified tuff?
	225E	-16	+6	& drk grn rhyodacite-andesite

Machine:	Geonics EM16 s/n:13678A	
Operator:	Pat Poissant, Milton Grace	1.1
Date:	10-13 September 1999	
Readings:	measured in percent[%]	
Direction:	readings taken facing east	

Grid Coordinate		Seattle, V	NA - NLK	•
Line	Station	InPhase	Quadrature	Remarks
000S	0	-40	+4	
	25W	-38	+4	
	50W	-46	-3	
	75W	-35	+3	
	100W	-28	+4	line offset 10m south for stations 100 to 150W
	125W	-22	+7	
	150W	-27	+5	
	175W	-22	+10	
	200W	-28	+6	
	225W	-35	+4	
	250W	-39	+3	
	275W	-40	+5	
	300W	-32	+10	
	325W	-32	+8	
	350W	-36	+8	
	375W	-46	+4	
	400W	-60	+2	
100S	0	-46	+3	
	25W	-58	-1	creek at 30W
	50W	-45	-1	
	62W	-32	+6	
	75W	-29	+7	
	100W	-26	+8	
	125W	-28	+4	
	15000	-30	+1	
	1/5//	-33	-2	
	20000	-30	+2	
	22000	-34	0	
	23000	-30		
	21000	-59	1 + 1	
	3251	3	-4 A	
	350\/	-50	-4	arack at 36234/
	375\//	-47	+∠ +2	UTECK AL JUZYY
	400W	-47	,0 +9	

Machine:	Geonics EM16 s/n:13678A	
Operator:	Pat Poissant, Milton Grace	
Date:	10-13 September 1999	 : .
Readings:	measured in percent[%]	
Direction:	readings taken facing east	

Grid Coordinate		Seattle, V	VA - NLK	
Line	Station	InPhase	Quadrature	Remarks
200S	0	-19	+8	
	25W	-29	+2	
	50W	-39	-2	
	75W	-47	-5	
	100W	-33	-1	
	125W	-26	+2	
	150W	-13	+8	creek
	175W	-14	+8	
	200W	-17	+8	
	225W	-21	+8	
	250W	-27	+8	
	275W	-29	+11	
	300W	-30	+14	
	325W	-41	+11	
	350W	-56	+6	
	375W	-59	+4	
	400W	-75	0	
	-			
3005	0	-23	+8	
	25W	-27	+7	
	50W	-25	+8	
	75W	-24	+4	
	100W	-20	+2	
	125W	-18	+1	
	150W	-17	+2	creek at 140W
	175W	-20	+5	
	2000	-25	+5	
	225W	-29	+8	
	250W	-38	+9	
	2/5W	-46	+9	creek parallel to line 275 to 320W
	300W	-58	+8	
	32500	-60	+7	
	35000	-68	+5	
	3/5W	-34	+3	
	400W	-17	-1	

Machine:	Geonics EM16 s/n:13678A
Operator:	Pat Poissant, Milton Grace
Date:	10-13 September 1999
Readings:	measured in percent[%]
Direction:	readings taken facing east

Grid Coordinate		Seattle, V	NA - NLK	-
Line	Station	InPhase	Quadrature	Remarks
400S	0	-23	+2	
	25W	-26	-1	
	50W	-33	-5	
	75W	-27	-4	
	100W	-16	+6	
	125W	-12	+10	
	150W	-24	+8	
	175W	-33	+4	
	200W	-44	+2	
	225W	-60	0	
	250W	-78	-4	
	275W	-74	-3	cpy & sphal in place at 260W
	287W	-42	-7	
	300W	-22	-6	
	325W	-29	-17	
	350W	-37	-16	
	375W	-34	-14	
	400W	-24	-10	creek at 410W
500S	0	-14	+10	
	25W	-16	+7	
	50W	-28	+3	
	75W	-22	+3	
	100W	-18	+9	
	125W	-26	+9	
	150W	-37	+6	
	175W	-52	+1	
	200W	-71	+4	showing found at 495S, 210W followed for more than 50m
	225W	-28	+6	towards south side of hill and slightly up
	250W	-25	0	
	275W	-26	-4	
	300W	-22	-5	
	325W	-20	-6	
	350W	-26	-8	
	375W	-46	-12	
	400W	-56	-16	

Machine:	Geonics EM16 s/n:13678A			
Operator:	Pat Poissant, Milton Grace			
Date:	10-13 September 1999			
Readings:	measured in percent[%]			
Direction:	readings taken facing east			

Grid Co	oordinate	Seattle, V	NA - NLK	
Line	Station	InPhase	Quadrature	Remarks
600S	0	-4	+14	
	25W	-26	+18	
	50W	-43	+14	
	75W	-55	+11	
	100W	-63	+8	
	125W	-82	+10	
	137W	-37	+18	
	150W	-23	+19	
	175W	-1	+20	
	200W	-24	+12	
	225W	-39	+8	
	250W	-34	-8	
	275W	-45	-14	
	300W	-25	-2	
	325W	-32	-3	
	350W	-32	-2	
	375W	-34	-3	
	400W	-37	-4	
	40077	-57	-4	

APPENDIX VII: GEONICS EM16 VLF OPERATING

-

GEONICS LIMITED

1745 Meyerside Dr. Unit 8 Mississauga, Ontario Canada L5T 1C5

Tel. (416) 676-9580 Telex 06-968688 Cables: Geonics

OPERATING MANUAL for EM16 VLF-EM

Revised June, 1983

Page 1

Station

EM16 SPECIFICATIONS

Inphase:

MEASURED QUANTITY

Inphase and quad-phase components of vertical magnetic field as a percentage of horizontal primary field. (i.e. tangent of the tilt angle and ellipticity).

Nulling by audio tone. Inphase indication from mechanical inclinometer and quad-phase from a graduated dial.

selection done by means of plug-in

±150%

15-25 kHz VLF Radio Band.

SENSITIVITY

RESOLUTION

Quad-phase: ± 40%

±1%

units.

OUTPUT

OPERATING FREQUENCY

OPERATOR CONTROLS

ON/OFF switch, battery test push button, station selector switch, audio volume control, quadrature dial, inclinometer.

POWER SUPPLY

DIMENSIONS

WEIGHT

42 x 14 x 9cm

6 disposable 'AA' cells.

Instrument: 1.6 kg Shipping: 5.5 kg

PRINCIPLES OF OPERATION

The VLF-transmitting stations operating for communications with submarines have a vertical antenna. The Antenna current is thus vertical, creating a concentric horizontal magnetic field around them. When these magnetic fields meet conductive bodies in the ground, there will be secondary fields radiating from these bodies. (See Figures 3 & 4). This equipment measures the vertical components of these secondary fields.

The EM16 is simply a sensitive receiver covering the frequency band of the VLF-transmitting stations with means of measuring the vertical field components.

The receiver has two inputs, with two receiving coils built into the instrument. One coil has normally vertical axis and the other is horizontal.

The signal from one of the coils (vertical axis) is first minimized by tilting the instrument. The tilt-angle is calibrated in percentage. The remaining signal in this coil is finally balanced out by a measured percentage of a signal from the other coil, after being shifted by 90°. This coil is normally parallel to the primary field, (See instrument Block Diagram - Figure 2).

Thus, if the secondary signals are small compared to the primary horizontal field, the mechanical tilt-angle is an accurate measure of the vertical real-component, and the compensation 1/2-signal from the horizontal coil is a measure of the quadrature vertical signal.

SELECTION OF THE STATION

The magnetic field lines from the station are at right angles to the direction of the station. Always select a station which gives the field approximately at right angles to the main strike of the ore bodies or geological structure of the area you are presently working on. In other words, the strike of geology should point to the transmitter. (See Figure 3). Of course, ±45° variations are tolerable in practice.

Tuning of the EM16 to the proper transmitting station is done by means of plug-in units inside the receiver. The instrument takes two selector-units simultaneously. A switch is provided for quick switching between these two stations.

To change a plug-in unit, open the cover on top of the instrument, and insert the proper plug. (Figure 10) Close the cover and set the selector switch to the desired plug-in.

On the following pages is a variety of information on the most commonly used (i.e. reliable) VLF Transmitters including transmission frequency, geographical location and their scheduled maintenance periods.

FIELD PROCEDURE

Orientation & Taking a Reading

The direction of the survey lines should be selected approximately along the lines of the primary magnetic field, at right angles to the direction to the station being used. Before starting the survey, the instrument can be used to orient oneself in that respect. By turning the instrument sideways, the signal is minimum when the instrument is pointing towards the station, thus indicating that the magnetic field is at right angles to the receiving coil inside the handle.(Fig.11).

To take a reading, first orient the reference coil (in the lower end of the handle) along the magnetic lines. (Fig.12) Swing the instrument back and forth for minimum sound intensity in the speaker. Use the volume control to set the sound level for comfortable listening. Then use your left hand to adjust the quadrature component dial on the front left corner of the instrument to further minimize the sound. After finding the minimum signal strength on both adjustments, read the inclinometer by looking into the small lens. Also, mark down the quadrature reading.

While travelling to the next location you can, if you wish, keep the instrument in operating position. If fast changes in the readings occur, you might take extra stations to pinpoint accurately the details of anomaly.

The dials inside the inclinometer are calibrated in positive and negative percentages. If the instrument is facing 180° from the original direction of travel, the polarities of the readings will be reversed. Therefore, in the same area take the readings always facing in the same direction even when travelling in opposite way along the lines.

The lower end of the handle, will as a rule, point towards the conductor. (Figs.13 & 14) The instrument is so calibrated that when approaching the conductor, the angles are positive in the in-phase component. Turn always in the same direction for readings and mark all this on your notes, maps, etc.

THE INCLINOMETER DIALS

The right-hand scale is the in-phase percentage(ie.Hs/Hp as a percentage). This percentage is in fact the tangent of the dip angle. To compute the dip angle simply take the arctangent of the percentage reading divided by 100. See the conversion graph on the following page.

The left-hand scale is the secant of the slope of the ground surface. You can use it to "calculate" your distance to the next station along the slope of the terrain.

- (1) Open both eyes.
- (2) Aim the hairline along the slope to the next station to about your eye level height above ground.
- (3) Read on the left scale directly the <u>distance necessary</u> to measure along the slope to advance 100 (ft) horizontally.

We feel that this will make your reconnaissance work easier. The outside scale on the inclinometer is calibrated in degrees just in case you have use for it.

PLOTTING THE RESULTS

For easy interpretation of the results, it is good practice to plot the actual curves directly on the survey line map using suitable scales for the percentage readings. (Fig.15) The horizontal scale should be the same as your other maps on the area for convenience.

A more convenient form of this data is easily achieved by transforming the zero-crossings into peaks by means of a simple numerical filtering technique. This technique is described by D.C. Fraser in his paper "Contouring of VLF-EM Data", Geophysics, Vol. 34, No. 6. (December 1969)pp958-967. A reprint of this paper is included in this manual for the convenience of the user.

This simple data manipulation procedure which can be implemented in the field produces VLF-EM data which can be contoured and as such provides a significant advantage in the evaluation of this data.

INTERPRETATION

The VLF primary field's magnetic component is horizontal. Local conductivity inhomogeneities will add vertical components. The total field is then tilted locally on both sides of a local conductor. This local vertical field is not always in the same phase as the primary field on the ground surface. The EM16 measures the in-phase and quadrature components of the vertical field.

When the primary field penetrates the conductive ground and rock, the wave length of the wave becomes very short, maybe only few tens of meters, depending on conductivity and frequency. At the same time the wave travels practically directly downwards. The amplitude of the field also decreases very fast, completely disappearing within one wavelength. The magnetic field remains, however, horizontal.

Figure 16 shows graphically the length and phase angle of the primary field penetrating into a conductive material.

The phase shift in radians per meter and the attenuation in nepers per meter (1/e) is:

 $\beta = \alpha = \left[\frac{\omega \mu \sigma}{2}\right]^{\frac{1}{2}} \quad \text{where} \quad \omega = 2 \, \P \, f$ $\mu = \mu_0 \mu_r = 4 \, \P \, x \, 10^{-7}$ $\sigma = \text{conductivity}$ $\frac{\sigma}{\text{mho/m}}$

Figure 16 also reminds us of the fact that all secondary fields have a small (or large in poor conductors) positive phase shift in the target itself due to its resistive component, and that the secondary fields have another negative phase shift while penetrating back to surface from the upper edge of the target.

The targets are located somewhere in the depth scale (phase shift scale in this case). Suppose we have a semi-infinite vertical sheet target starting from the surface. Figure 17 shows that the total integrated primary field inphase and quadrature flux has a value of + 0.5 and - 0.5 respectively.

These two charts can be used to analyze the inphase and quadrature readings taken on both sides of the target. If one knows the actual conductivity of the overburden and the rock, the task is easier. Because of the many variables involved the precise analysis is usually impossible.

The most frequently encountered and easily solved problem is, however, the separation of surface conductors from the more interesting ones at depth. This is easily done by observing the negative quadrature signals compared to the usually positive or zero ones from the surface targets. See the sample profiles in Figures 18 and 19. This way we can often tell if we have a more interesting sulfide target under a swamp for example.

J

Another use for the quadrature polarity is in the tracing of a fault or a shear zone. Normally these weak conductors give a fair amount of positive (the quadrature follows the in-phase polarity) quadrature. When we have a local sulfide concentration in these structures, we get a negative quadrature response.

All the interpretation is made easier by other indications of the depth to the target. The horizontal distance between the maximum positive and negative readings is about the same as the actual depth from the ground surface to the centre of the effective area of the conductive body. This point is not the centre of the body, but somewhat closer to the upper edge.

Theoretically, the depth 'h' of a spherical conductor with radius 'a' equals ΔX where ΔX is the horizontal distance between the maximum points of the vertical field H_z (Fig. 20a). The radius of the sphere is given by

 $a = 1.3 h 3 H_2(max).$

For a cylindrical conductor the depth 'h' equals $0.86\Delta X$ and the radius of the cylinder is given by

 $a = 1.22 h H_{z} (max)$.

In these equations $H_2 = 1$ means 100% on the instrument dial.

The determination of the depth is generally more reliable than the estimation of the actual dimension a. The real component of H_z , which we should use in these calculations, decreases proportionally for a poorer conductor and with the depth in conductive material.

One can also draw some conclusions about the dip and shape of the upper area of the conductor by observing the smaller details of the profile. See the modelling curves.

A vertical sheet type conductor, if it comes close to the surface, gives a sharp gradient of large amplitude and slow roll-off on both sides. (Fig. 275 & 20c).

Horizontal sheets should give a single polarity on the edge of it, and again the opposite way on the other edge. (Fig. 20f)

When looking at the plotted curves, one notices that two adjacent conductors may modify the shape of the anomalies for each one. In cases like this, one has to look for the steepest gradients of the vertical (plotted) field, rather than for the actual zero-crossings. Forget the word "crossover". Look for the centres of slopes on the in-phase for location of targets. See Figures 20d and 20e.

As with any EM, the largest and best conductors give the highest ratio of in-phase to quadrature components. In VLF however, the surrounding conductive material influences the results so much that it is almost an irrelevant statement except in a few cases. Also in practice most of the ore bodies are composed of different individual sections, and therefore one cannot use the in-phase/quadrature ratio as the sole indicator of the conductivity-size factor. In other words the characteristic response curves are flat, much flatter than with modelling.

MISCELLANEOUS NOTES

- It has been shown in practice that this instrument can be used (in proper areas) also underground in mines. The rails and pipes may cause background variations. It was found in one mine even at 1400 foot level, that the signal strength was good. By taking readings at two directions at each station, one could obtain a very good indication about the location of the ore pockets in otherwise difficult geology.
- On the other hand a thick layer of conductive clay can suppress the secondary field to a negligibly small value.
- 3) In mountainous areas one can expect a smooth rolling background variation. However, the actual sharper anomalies induced by conductive mineral zones can be usually easily recognized. Background variations can be effectively removed by standard numerical filtering procedures to emphasize local anomalies. +
- 4) Faults and shear-zones can give anomalies, but not without a reason. There must be conductivity associated with them. Reverse quadrature may indicate sulfide deposits in these structures.

SERVICING

Changing the batteries is done by removing the cover and changing the penlight batteries one by one. Please notice the polarities marked on each individual cell. To test the condition of the batteries, turn the instrument on, press the push-button on the front panel. There should be a whistling sound in the loudspeaker if the batteries are in useable condition. If the sound is not heard, the battery voltage may be low, or the battery holders may be dirty or faulty.

- * Telford, King and Becker, "VLF Mapping of Geological" Structure".
- + D.C. Fraser, "Contouring of VLF-EM Data".

It may be occasionally necessary to clean the contacts of the plug-in unit. For this, use a clean rag that is very slightly moistened with oil. The oily rag is good also for the battery terminals.

If any repairs are necessary, we recommend that the instrument be shipped to Geonics Limited for a thorough check-up and testing with proper measuring instruments.