

GEOLOGICAL, GEOCHEMICAL AND MAGNETIC SURVEY REPORT

WARD GROUP GREENWOOD MINING DIVISION BRITISH COLUMBIA

BY

R.E. GALE, Phd., P.Eng.

R.E. GALE AND ASSOCIATES INC.

N.T.S. 82/E 7W

49⁰ 28' N 118⁰ 53' W

Work Paid For By Emjay Enterprises Ltd.

October 1999

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

TABLE OF CONTENTS

SUMMARY	i
(1.0) LOCATION - TOPOGRAPHY	1
(2.0) CLAIMS	1
(3.0) HISTORY	2
(4.0) REGIONAL GEOLOGY	2
(4.1) ROCK TYPES (4.2) INTERPRETATION	3 3
(5.0) GEOLOGY - CLAIMS	4
 (5.1) INTRODUCTION	4 4 5 5 6 6 7 9 10
(6.5) 103N ZINC-GOLD ANOMALY (6.6) 91N GOLD ANOMALY (6.7) 97N I.P. ANOMALY (6.8) 88N DRILL AREA (6.9) 82N GOLD ANOMALY	11 12 12 13 14
(7.0) CONCLUSIONS AND RECOMMENDATIONS	15
(8.0) COST STATEMENT	16
(9.0) REFERENCES	17
(10.0) CERTIFICATE	18

APPENDIX ONE COPIES OF ASSAY CERTIFICATES

APPENDIX TWO MAGNETIC SURVEY REPORT

	FIGURES	SCALE
FIGURE 1	LOCATION - CLAIMS MAP In Report	1:50,000
FIGURE 2	REGIONAL GEOLOGY In Report	1:150,000
FIGURE 3	PRELIMINARY PROPERTY GEOLOGY In Pocket	1:10,000
FIGURE 4	BARNATO SHOWING In Pocket	1:1,000
FIGURE 5	SILVER DOLLAR SHOWING In Report	1:2,000
FIGURE 6	HIGHLAND MARY VEIN In Report	1:2,500
FIGURE 7	103N ZINC-GOLD ANOMALY In Report	1:2,000
FIGURE 8	91N AU-ANOMALY In Report	1:2,500
FIGURE 9	97N I.P. ANOMALY In Report	1:2,500
FIGURE 10	88N DRILL AREA In Report	1:2,500
FIGURE 11	82N GOLD ANOMALY In Report	1:3,000

.

.

SUMMARY

During June through September 1999 geological mapping and sampling, soil geochemical sampling and a magnetometer survey were carried out for Emjay Enterprises Ltd. on parts of the Ward Group claims near Triple Lakes area north of Rock Creek B.C.

The main purpose of the work was to evaluate several gold-arsenic soil geochemical anomalies which were outlined by Phelps Dodge Corporation during work they did in the area in 1994-95. Their work was done along lines 300 metres apart, taking samples at 50 metre intervals. The evaluation this year of some of the best gold anomalies was done by taking soil samples at 25 metre intervals along lines 50 metres apart in conjunction with mapping and rock sampling in order to try to define targets for backhoe trenching and diamond drilling next year. A magnetometer survey was also completed in one area where it was noted that the gold values are associated with both arsenopyrite and strongly magnetic pyrrhotite.

Eight areas were sampled in detail, the most important being the Barnato vein area, now covered by the Bar 1 and 2 claims. Approximately 12 kms of line were flagged, soil sampled and mapped and about 8 kms. were covered by the magnetic survey on the Silver Dollar area which is outside the area sampled by Phelps Dodge.

Old showings were relocated including the Silver Dollar, Highland Mary, Kingstone and Mogul and these showings were tied into the Phelps Dodge grid. In addition 4 new gold showings with gold values in the 0.03 to 0.10 opt. Au. range were found during this work.

Recommendations are made to do backhoe trenching and diamond drilling on 3 primary targets, the South vein zone on the Bar claims, the Highland Mary showing and the 82N Au-As anomaly area on the Ward 4 claim. The cost of this work is estimated to be approximately \$ 120,000.

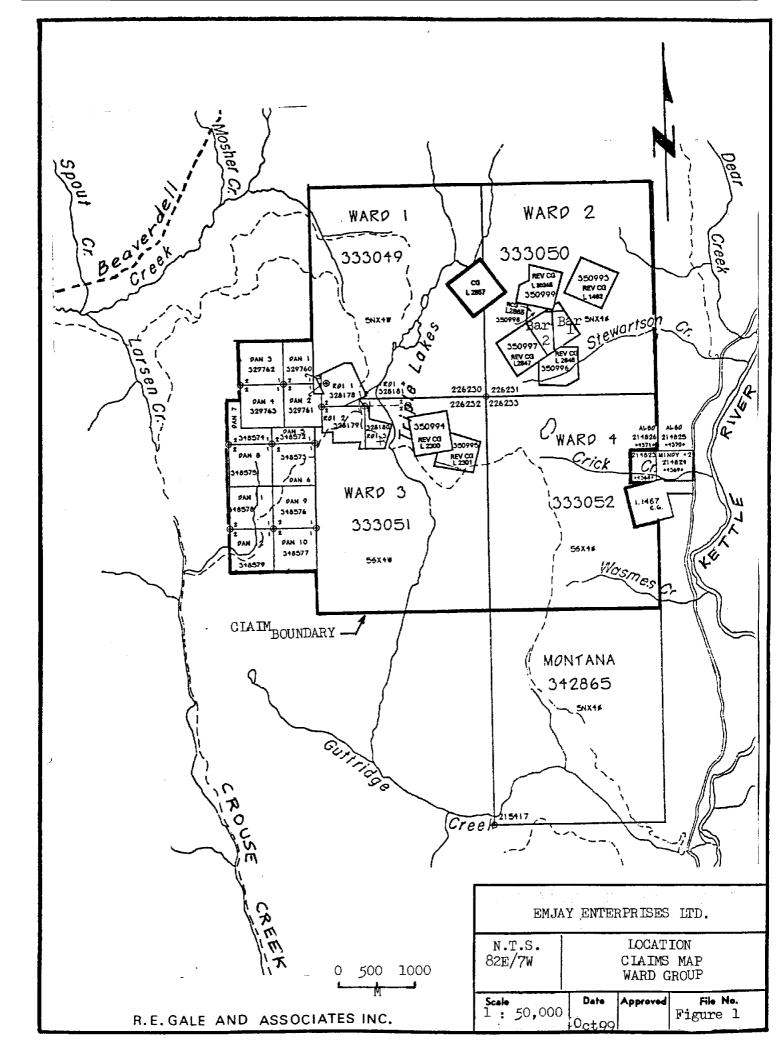
As funds allow, further mapping and sampling is recommended on secondary targets including the 103N Au - Zn anomaly area, the Silver Dollar area and other PD anomalies on the eastern part of the claims which have not been sampled in detail and which still warrant evaluation.

The Ward Group covers a very favorable area for exploration for both higher grade vein-type and low grade disseminated gold deposits and further exploration in the area is strongly recommended.

(1.0) LOCATION - TOPOGRAPHY

The Ward Group of 105 claims is located about 20 kms. east of Bearverdell and 50 kms. north of Rock Creek. and is readily accessible by good paved and gravel roads. During the 1999 program the area was reached by paved highway north up the Kettle River valley from Rock Creek, then the gravel Forestry road up 4th of July Creek.

The claims are in the Greenwood Mining Division, NTS 82E/7W. They occupy the plateau area at elevations of 4000 to 4700 feet which lies between the Kettle River valley on the east and Crouse Creek on the west. The most prominent geographic features in the area are northerly trending ridges known as Kloof ridge and Horseshoe ridge with the Triple Lakes occupying the lowland between these two features.


Fir, pine and cedar are the prominent trees in the area. Much of the timber has been logged and several large clearcuts are present on the claims. Between the clearcuts much of the timber is second growth and larger trees which have fallen because of windy conditions at the edge of clearcuts form a tangle of fallen trees making traverses in these areas very difficult.

(2.0) CLAIMS

The owner of record of the ROI 1-4, Dan 1-12, Bar 1-2 and 7 reverted Crown Grants is R.E. Gale. The owner of record of the Ward 1-4 claims is Phelps Dodge Corporation of Canada Ltd. The location of the claims is shown in Figure 1.

Claim Name	Units	Tenure No.	Anniversary Date *
ROI 1-4	4	328178-81	JULY 18, 2001
DAN 1-4	4	329760-63	AUG. 9, 2001
DAN 5-12	8	348572-79	JULY 19, 2001
BAR 1-2	2	356866-67	JUNE 26, 2003
RCG s	3	350994-96	SEPT 30, 2001
RCGs	2	350998-99	SEPT 30, 2001
RCGs	2	350993&97	SEPT 30, 2003
WARD 1-4	80	330349-52	DEC 8, 2002

* After credit for the present work.

(3.0) HISTORY-

The central part of the Ward Group covers the Horseshoe Mountain area which is the site of the Barnato, Mogul and other old claims which were staked for gold in 1896-1898. Small gold shipments have been made to smelters over the years from the area, principally in 1938 with shipments of 5 tons from the OK-Ivanhoe and 84.9 tons grading 1.58 opt Au from the Barnato claim.

Following a 12 hole drilling program by Cominco on the Barnato showings in 1938 the next recorded drilling did not occur until 1962-66 when Amcana Gold Mines Ltd. drilled some short holes on the Barnato for which no results are available.

In 1977 Camnor Resources completed a 5 hole program totalling 302.9 metres on Barnato but no results were published.

In 1979 Carmac Resources became the Operator on the Barnato group of claims and in 1986 Golden Seal Resources optioned the claims from Carmac and drilled 202.4 metres of percussion drilling in 4 short holes (Assessment Report 14,952).

In 1989, 1990 and 1992 Carmac Resources carried out geological and geochemical surveys (Assessment Reports 19524, 20122,22396) but reported no drilling during this time.

In 1970 Dekalb Mining did a geochemical survey over part of what is now the Ward 4 claim and found a Cu-Mo soil anomaly (Assessment Report 2951) which was apparently drilled in 2 holes which intersected low gold values, according to a report by Lucky 7 Exploration who worked in the same area in 1989(Assessment Report 19157). The latter report describes a significant gold-arsenic soils anomaly in one sample assaying over 1000 ppb Au. The same general area on Ward 4 was mapped for Petroquin Resources in 1983 (Assessment Report 11375) but no sampling of rocks or soils was done for the latter report.

In 1994-95 Phelps Dodge Corporation carried out a program of mapping, sampling, soil geochemistry an induced polarization survey and drilled 3 holes totalling 468.1 metres (Assessment Report 23835)

In 1997, the author was in charge of a geological mapping and sampling program under Emjay Enterprises Ltd. An I.P. survey was carried out by Peter Walcott and Associates for Emjay.

The 1999 program was completed in 3 phases during June 16-26, July 16-25 and September 1-28. Results are presented in this report.

(4.0) **REGIONAL GEOLOGY**

(4.1) ROCK TYPES

Figure 2 shows the Regional Geology of the area as taken from GSC maps 15-1961 and 6-1957.

UNIT 1

These are the oldest rocks in the area which are part of the Anarchist Group of probable Carboniferous-Permian age. They are graywacke, greenstone, quartzite and limestone which are often strongly folded, faulted and metamorphosed to hornfels.

UNIT 2

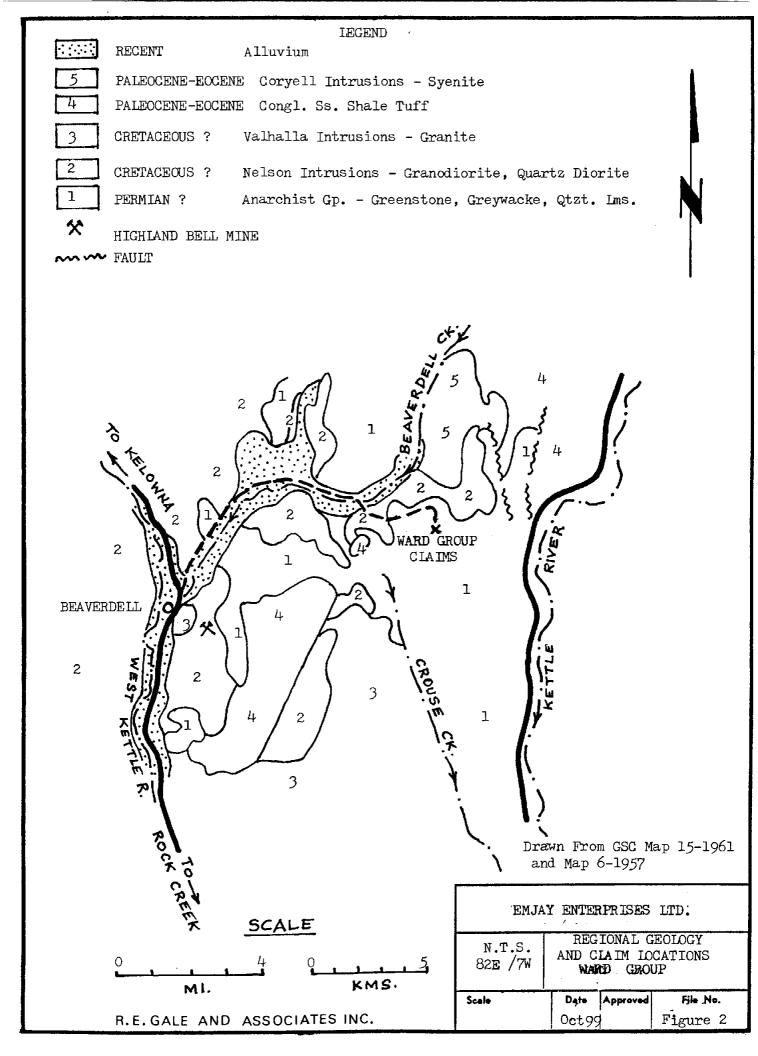
The Anarchist rocks are intruded by stocks of the Nelson Batholith of Cretaceous age, principally granodiorite and quartz diorite.

UNIT 3

Valhalla granitic intrusions also probably of Cretaceous age are younger than the Nelson Batholith intrusions.

UNIT 4

Tertiary rocks of Unit 4 consist of sedimentary and volcanic rocks


UNIT 5

The Coryell intrusions are mainly of syenitic composition, including stocks and dikes. In the Ward claims area, the youngest rocks are porphyry dikes of Tertiary age.

(4.2) INTERPRETATION

The eastern side of the claims area in and along the Kettle River valley is bounded by northerly-trending steep normal faults forming horst and graben structures which have brought the Eocene age sedimentary and volcanic rocks on the east side of the area into contact with the older rocks on the west.

The Ward group claims show similar geology to that of the Beaverdell area, the site of Beaverdell silver mines. In both the Beaverdell and the claims area mineralization is associated with quartz and quartz-calcite sulphide veins emplaced near contacts between Cretaceous diorite and quartz diorite bodies with the Anarchist rocks.

In contrast to the veins at Beaverdell, the Ward area veins are gold-bearing.

(5.0) GEOLOGY - WARD GROUP

(5.1) INTRODUCTION

Figure 3 shows the Preliminary Geology of the main part of the Ward Group. Detailed geology, rock and soil geochemical results on the different areas of interest mapped and sampled during the present program are shown in Figures 4-11.

(5.2) GENERAL GEOLOGY

The claims are located west of and bounded on the east by an Eocene-age graben structure. The northeastern edge of the property is within the graben and is underlain by Eocene Marron Formation rocks.

The oldest rocks are Permian - Carboniferous chert, quartzite and greenstone which are intruded by diorite, quartz diorite and granodiorite of Cretaceous age. The youngest rocks in the area of interest are Tertiary-age porphyry dikes up to 5 metres wide.

(5.3) ROCK TYPES

(5.3-1) ANARCHIST GROUP (CPSV)

These rocks consist of white thin bedded to black and green massive chert and quartzite with lesser dark green massive flows and tuffs and minor limestone. The rocks vary from fresh looking to strongly deformed and recrystallized. Flat lying beds in thin bedded chert were mapped in 2 outcrops in the northern part of the claims while to the south of the Crick Creek Fault, the beds are steep - dipping striking ENE.

(5.3-2) HORNBLENDE DIORITE AND QUARTZ DIORITE (KDi)

Hornblende Diorite and Quartz Diorite intrusions of probable Cretaceous age intrude the Anarchist rocks or are in fault contact with them everywhere on the property. The intrusions are in elongate stocks or dikes trending NE in masses from a few metres to hundreds of metres wide. These rocks are usually the host rocks for gold mineralization, often in proximity to Tertiary porphyry dikes.

(5.3-3) BIOTITE GRANITE AND GRANODIORITE (KG)

These rocks form a large stock of batholithic proportions at the northern end of the property. The southern contact of the batholith appears to be in fault contact along east-west and north-south faults with the Anarchist rocks. One or two dike-like projections of granodiorite trend south into the sedimentary rocks near the west side of the property. The relationship to the dioritic intrusions (KDi) is not clear but the rocks of the batholithic intrusion show different mineralization from that in the dioritic rocks and may have been emplaced prior to the dioritic rocks.

(5.3-4) TERTIARY ANDESITE PORPHYRY DIKES

Dikes and sills of dark grey porphyritic andesite appear to be the youngest rocks in the area forming north to northeasterly trending intrusions one to several metres wide. In many cases these intrusions are located in the vicinity of gold mineralization and may have been intruded during or just after the time that the mineral deposits formed.

(5.4) STRUCTURAL GEOLOGY

Figure 3 shows several inferred northerly-trending faults which appear to be the youngest faults in the area. They may be of Tertiary age and associated with the time of mineralization. Examples of veins associated with north trending faults are seen at the Silver Dollar, Barnato, OK and Ivanhoe. NE trending vein structures are also common whereas NW faults appear to offset mineralization and are probably late or post mineral faults.

Major fault zones along east-west trends cutting earlier north-south features are inferred to occur along Crick Creek and Stewartson Creek.

(5.5) ALTERATION AND MINERALIZATION

The contacts between the cherty and greenstone rocks of the Anarchist Group with the dioritic intrusive rocks are usually fractured, sheared and pyritized. Arsenopyrite in veins or as disseminations may occur at such contacts in either the Anarchist or intrusive rocks, but appears to be more important in the latter type of rock. Such mineralization may fringe higher grade mineralization in massive arsenopyrite veins or may appear only as broad low grade zones of mineralization several metres wide as in the bottom of PD drill hole 95-1.

Silicification is the most important type of alteration forming broad zones of quartz replacement or quartz veins. Some quartz veins also carry calcite. Pyrite is often present in rocks which are relatively barren of gold values and the best indication of the presence of gold is arsenopyrite. Some pyrite, principally a fine grained feathery type, carries gold and some pyrrhotite may carry gold values but much of the massive type pyrrhotite has only very low gold values.

(6.0) GEOLOGICAL AND GEOCHEMICAL SURVEYS

(6.1) INTRODUCTION

Three hundred and sixty five soil samples were collected during work in 1999, all samples being collected from the B horizon and assayed by Chemex Labs using the standard 32 element ICP analysis with Au analyzed by fire assay bead with AA finish. Ninety two rock samples were collected, most of which were also analysed by the same method as the soils, except for several vein samples which were also analysed by wet assay methods including fire assay for gold and silver.

Copies of all soil assay results are included in Appendix 1A, copies of all rock assay results in Appendix 1B.

Based on previous soil geochemical sampling with numerous samples in earlier surveys anomalous results for soils are considered to be Au > 40ppb, As> 30 ppm.

Several areas of interest which show significant gold-arsenic assays for both soils and rocks and which have size potential for gold deposits were mapped and sampled in detail and separate descriptions of these areas are identified in the report in parts (6.2) through (6.9).

Other sample areas or points are noted on Figure 3 but are not described in detail with a separate map because potential for deposits is considered low. The latter areas are noted in the following list:

AREA	APPROXIMA1	E COORD	INATES SAMPLE NO.
New vein	109 N	9+ 70E	Dump sample 119863
			Soils - 6 soil samples
Mogul Vein	112 N	101 E	Adit dump sample 119898
			Glory hole dump sample 119899
Pyrrhotite mas	s 125N	101E	Pit Dump sample 119867
Disseminated	pyrrhotite 125N	102E	Pit Dump sample 119864
Barnato Fr.	108+80N	108+50E	Massive pyrrhotite(Coord. I.D.)
103N Area	102+ 50N	106E	Pit Dump Sample 119845
			Soils - 23 soils 105E-107E
100 N Clearcu	t 100 N	105+50E	Grab-outcrop sample 119841
	100N	106+50E	Pick -outcrop sample 119842

97N Line	97N	101E	Grab-3 chert outcrops
			13 Soils, 3 rocks 101E-102E
97N Old Road	97N	108 E	Soils -20 soils 108E -109E
94N Line	94N	100 E	Grab-Outcrop sample 119857
97N Line	97N	98E	Grab-Outcrop sample119893
			Grab - Dump sample 119894
Kingstone vein	94N	93E	Picked Dump sample 119897
-			Pit-Dump sample 119896
			Pit Dump sample 119897

Those showings with good potential for further exploration are noted on following pages, Sections (6.2) through (6.9).

(6.2) BARNATO SHOWING

Figure 4 details the geology and sample locations on the Barnato showing, now covered by the Bar 1 and 2 claims. This is the best known and most explored showing in the area, but there is still significant potential to find a new deposit in the area of the showings.

The host rock for the mineralization on the Bar claims is diorite and quartz diorite intrusive rock. Several large northerly to easterly trending Tertiary porphyry dikes cut the dioritic rocks and offsets of these dikes suggest the presence of several east-west trending late faults.

Previous exploration and mining has centred on the northern third of the area around 107N 108+50E. Here a 10 metre deep shaft and large opencut were developed on a northerly-trending shear zone and 2 WNW - trending structures which were mineralized by gold-bearing arsenopyrite veins. Two 0.3 metre wide remnants of the westerly-trending mineralized structures were sampled , 119872 and 119874 and another sample 119873 of mineralization was picked from dump material from a small pit to the north of the other samples. The gold values from these samples were 42.19 g/t, 490 ppb and 4460 ppb respectively.

Another important mineralized structure to the west of the large opencut is the ENE-bearing fracture zone starting at the road and running about 70-80 metres easterly to the area of the opencut. Three narrow lenticular looking veins occur at the westerly end of this fracture zone and these veins were sampled across widths of about 0.15 to 0.3 metres. Samples 119876 and 119877 are approximately 0.15 metres wide, the vein at sample site 119878 forms suboutcrop material possibly 0.3 metres wide. Gold assay results are 95 ppb, 30.24 g/t and 47.50 g/t respectively.

Previous drilling by Cominco in 1938 and by Golden Seal in 1989 was concentrated on the area of these veins. The approximate position of the Cominco diamond drill holes and the two of the 1989 percussion drill holes, PDH 86-1 and 86-4 which lie in the area of Figure 4 are shown on the map. No results of the Cominco drilling are available. The short percussion holes cut narrow low grade veins.

It is quite possible that other holes have been drilled in the area covered by Figure 4 for which the results have not been published. In any case judging by what can be seen in the area of the veins described above, it appears that any future drilling should be in drillholes drilled at angles to the northeast from south of the old open cut in order to cross the main mineralized structures at 90 degrees.

The soil geochemical data for Au and As shows that the best results around the old opencut area occur on line 107N at 108+75E, 468 ppm As, 230 ppb Au and on line 108+50E at 107+40N, 186 ppm As 30 ppb Au and at 107+50N, 304 ppm As 40 ppb Au. These anomalies deserve backhoe trenching in any further exploration program here.

The other area of interest on Figure 4 occurs near what I have called the South vein area at the southern end of the area covered by Figure 4. Here a 1 metre wide sample across this vein, sample 119855, assayed 2.60 g/t Au, 0.44% As. The possible east extension of this vein zone is covered by talus and soil. Soil samples along the bank of the road about 50 metres NE of the 119855-sample site show values of As ranging from 515 to > 10,000 ppm and Au from 550 to 4650 ppb suggesting that this vein zone continues under cover beneath the road. Outcrop samples to the north of the inferred mineralized zone, 119861, 119871 and 119879 showed no more than 285ppb Au so that these outcrops are not the source of the gold in the soils above the road.

In the trench below and to the east of the road at the point of the anomalous soils float from a quartz arsenopyrite vein is exposed from which a picked sample 119853 shows 2.53 g/t Au and 0.08 %As. Another float sample from the trench of quartz-pyrite vein 119854 assayed 1340 ppb Au 74ppm As. The soils in the bank above the trench below the road are also anomalous for Au and As. These facts again suggest that the south vein zone extends through this trench.

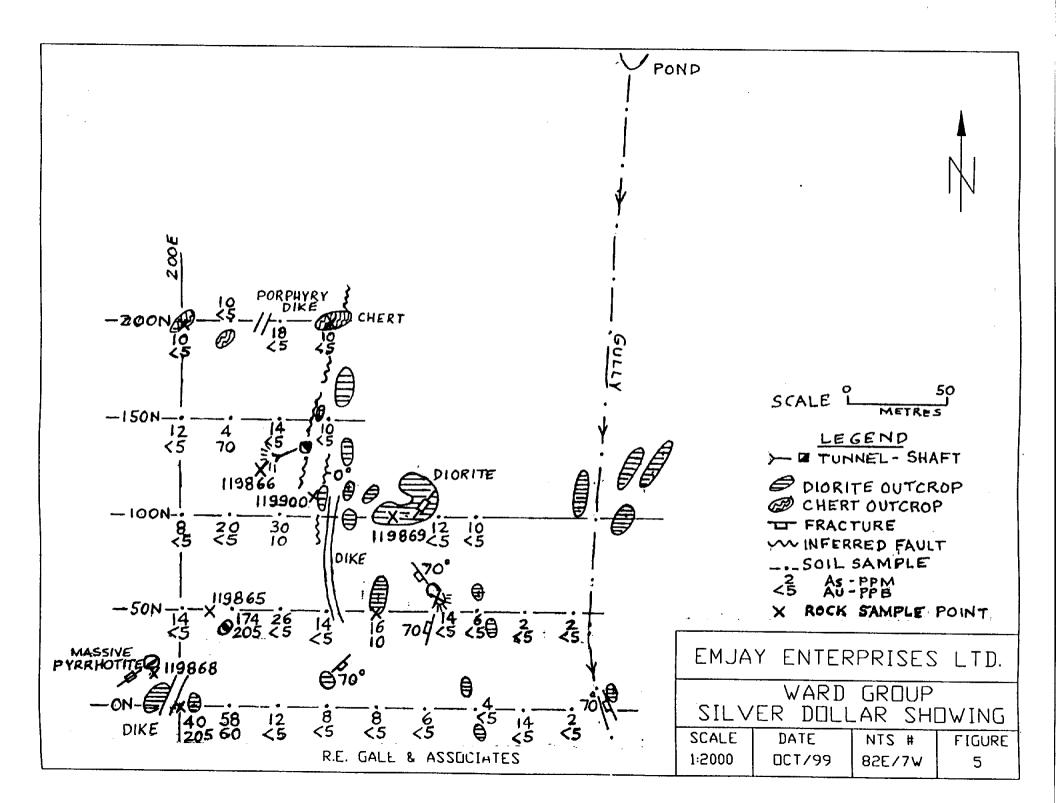
The projected extension of the vein zone through the trench could be correlated with the I.P. chargeability anomaly noted on line 106N at 109+50E. as shown in Figure 4.

It is recommended that the South vein zone be further explored by backhoe trenching and diamond drilling.

(6.3) SILVER DOLLAR SHOWING

The location of the Silver Dollar showing is noted on Figure 3 as approximately 125N 105E. The showing was not covered by the Phelps Dodge grid or regional soil geochemical survey.

Figure 5 is a detailed map of the area and indicates the results of soil and rock geochem sampling done during the 1999 program.


As noted in BCDM Bulletin 1902, page 1138, the old workings on the mineralized zone consist of an adit driven east about 25 feet into the hillside at the eastern end of which is a shaft open to the surface about 30 feet deep including a winze below the adit level. No mineralization is visible in the workings and the shaft below the adit level is flooded. The mineralization on the adit dump, massive pyrrhotite and arsenopyrite apparently was mined from a northerly trending steep dipping shear which is visible in the side of the shaft. The host rocks are weakly altered diorite cut by a fresh looking andesite dike possibly 2 metres wide which strikes northerly on the east side of the workings. A flat fault 0.3 metres wide replaced by quartz alteration occurs to the SE of the tunnel. A sample of the latter rock, 11990 showed 170 ppb Au, 62 ppm As but its relationship to the mineralization from the shaft is not apparent.

Sample 119866, picked massive pyrrhotite and arsenopyrite mineralization from the dump assayed 4.52 g/t Au and 3.37 % As. Two other picked samples of massive pyrrhotite mineralization were collected from the dumps of pits located about 100 metres SW of the tunnel in an area cut by a 2 metre wide NE trending porphyry dike. Samples 119865 and 119868 assayed 365 ppb Au, .10,000 ppm As and 1590 ppb Au, 10,000 ppm As respectively.

Sample 119869 from a prominent hill of pyritized leucodiorite just west of theold workings is barren of gold values. Similarly rock geochem samples and soil samples from the rest of the grid area showed no significant values except for those near the two occurrences of massive pyrrhotite noted above.

Because of the occurrence of gold values with strongly magnetic pyrrhotite here, it was determined that a magnetic survey could be useful in finding new targets for further exploration in the area. A survey was conducted by Peter Walcott and Associates over a grid running 250 metres east and west of the tunnel (Point # 4 on map W-572-1, Walcott report) and 400 metres north+550 metres south.

The magnetic survey report is included as Appendix Two to this report. The primary magnetic target, Area 1, line 0N 200E in the same area as the pyrrhotite veins exposed in pits near this point is recommended for further exploration including backhoe trenching. No direct magnetic response was noted in the tunnel area suggesting that the original old showing may be of limited extent.

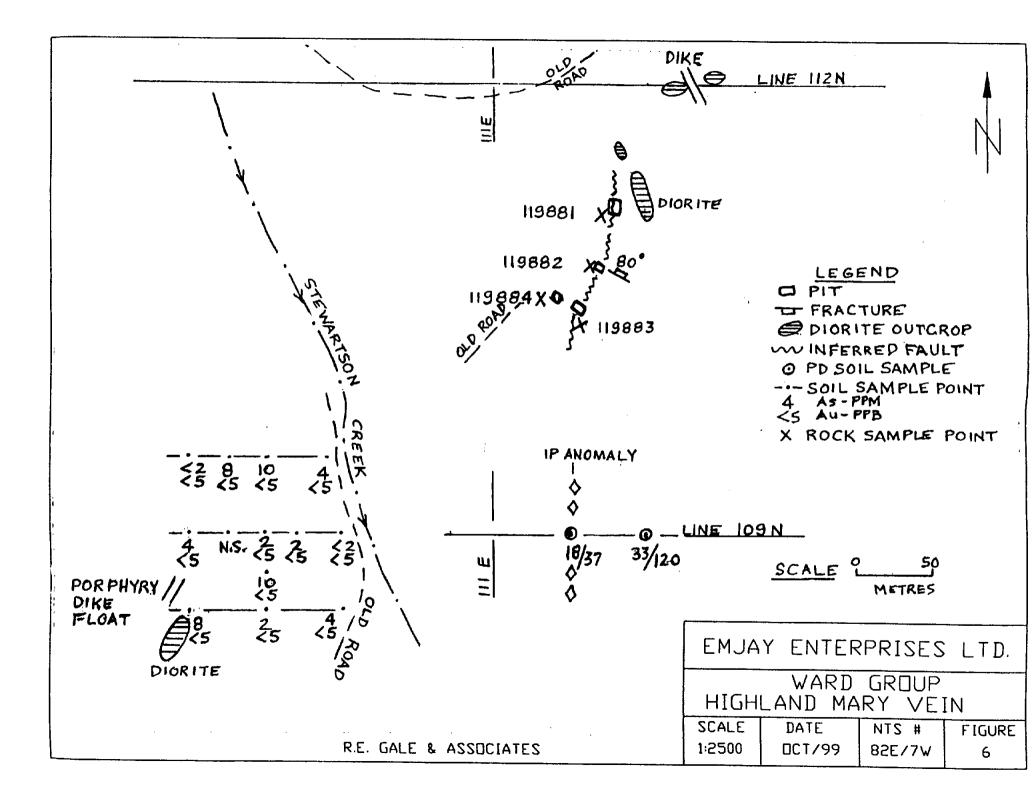
(6.4) HIGHLAND MARY VEINS

With reference to Figure 3, the approximate coordinates of the Highland Mary vein workings are 111N 111+50E. Figure 6 shows the vein workings and adjacent area in more detail.

The Highland Mary veins occur along a northerly-trending fault contact between diorite and chert west of a large northerly - trending porphyry dike. The veins are exposed by a series of cuts in the chert.

In the northernmost pit, a shear zone about 2 metres wide is exposed with remnants of a 5-6cm wide arsenopyrite vein showing on the west side of the shear. A picked sample of arsenopyrite from the dump, 119881 assayed 9380 ppb Au 9.66% As.

About 38 metres SSW of the north pit, strongly fractured black chert shows thin seams of pyrite and arsenopyrite along fractures trending NE and WNW. A sample across 0.6 metres on the WNW fractures, 119882 assayed 765 ppb Au, >10,000 ppm As.


Another 25 metres SW of the middle showing, another cut shows a NE trendiing siliceous shear zone about 1 metre wide with a 5-10 cm wide pod of arsenopyrite mineralization on the west side of the shear. A picked sample of arsenopyrite mineralization on the dump here, 119883 assayed 23.05 g/t Au, > 10,000 ppm As.

The last pit on the shear zone is located about 6 metres WNW of the southern cut described above. There appears to be a NE trending shear in the base of this last cut with a narrow vein of quartz-pyrite-arsenopyrite present in the shear. A picked dump sample of mineralization about 10 cms. wide was sampled, 119884 which assayed 3390 ppb Au, 7110 ppm As.

It is interpreted that there may be two parallel zones of mineralization here which strike N to NE and dip almost vertical. The zone of veins is about 50 metres long and is offset at intervals along younger east-west fracture zones which are also mineralized.

Visagie (1990) also sampled the Highland Mary veins and recommended further work to Carmac Resources but it is not known if any further work was done by Carmac.

During the present work, an attempt was made to find any potential extension of the veins to the north or south of the showings. At the time the presumed location of the veins was further west and soil sampling was done on 109N 109

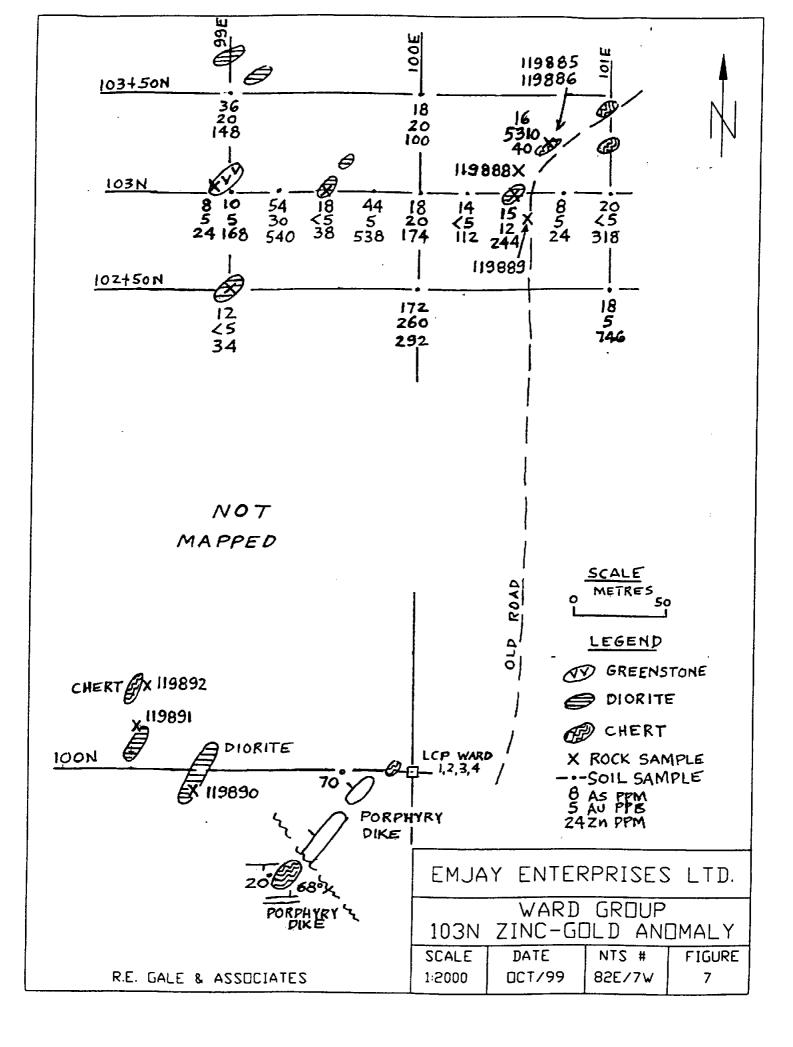
-110 E but as the plotted results on Figure 6 show, the soil results here are negative. Now that the location of the showings is accurately known, it appears likely that the soil sampling and I.P. survey by Phelps Dodge may have discovered the southern extension of the veins on line 109 at 111+50E. At the latter point a narrow IP chargeability anomaly was noted and PD soils show anomalous gold values of 37ppb Au at 111+50E and 120 ppb Au at 112E.

It is recommended that backhoe trenching be done on line 109N 111+50E and that diamond drilling is warranted on the Highland Mary veins.

(6.5) 103N - ZINC-GOLD ANOMALY

The Phelps Dodge soil geochemical values on line 103N from 99 to 101E showed a distinct high zinc-in-soil anomaly from 132 to 535 ppm Zn which is associated with arsenic values of 13-28 ppm As but only one interesting Au value of 24 ppb Au.

The results of followup detailed soil and rock sampling in the area are shown in Figure 7. The high Zn in soils values were confirmed but the values for Zn in the rocks, greenstone, diorite and chert are actually lower than in the soils suggesting that concentration of Zn values in occuring in the soils.


One rock geochem sample of strongly fractured weakly pyritized black chert at 103+20N 100+70E assayed 5310 ppb Au, but only 16 ppm As and 40 ppm Zn.

With the good gold assay it was decided to sample rocks with similar geochemical expression on trend to the SW on line 100N plus take check samples around the original discovery outcrop near 103N line.

A check sample of chips along a NE fracture zone over a 5 metre interval on the original discovery outcrop, 119885, assayed 1530 ppb Au, > 10,000 ppm As, 48 ppm Zn. A 5 metre sample adjacent to the east 119886 assayed only 30 ppb Au, 60 ppm As. and other samples taken to the west and south of 119885, 119888 and 119889 assayed only 5 and 10 ppb Au and 12 and 28 ppm As.

Similarly samples 119890,119891 and 119892 on line 100N showed only values of 45, 15 and 10 ppb Au and 62, 44 and 16 ppm As.

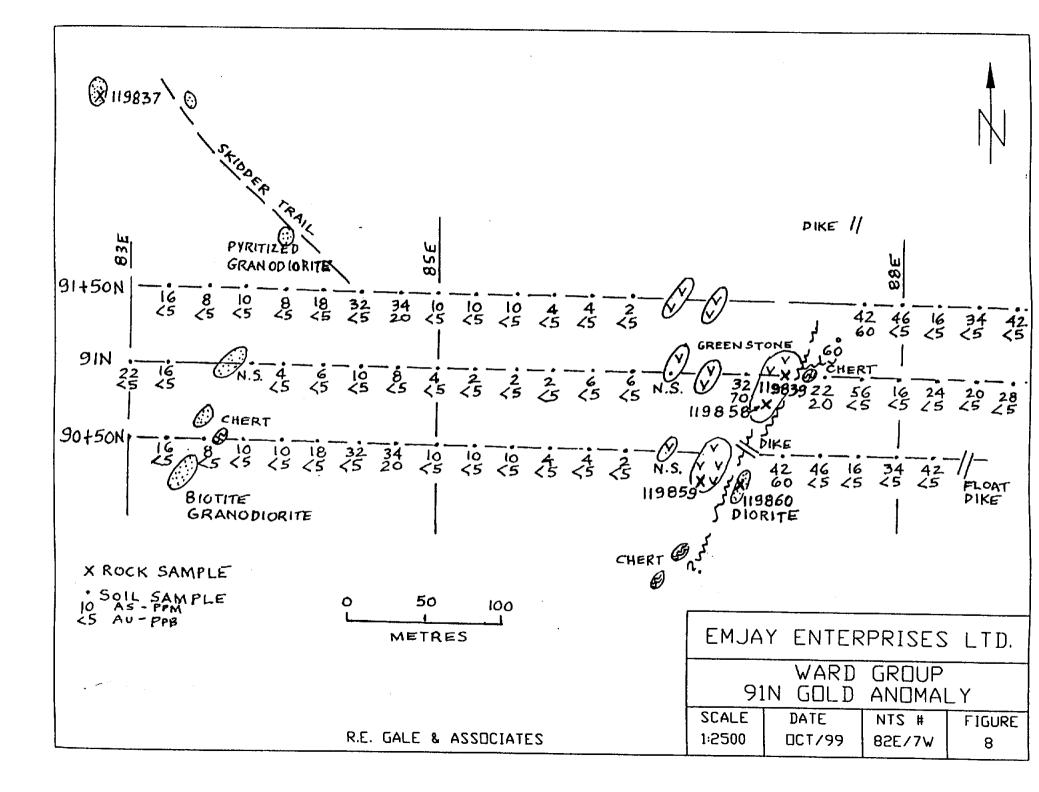
It is concluded that further exploration is warranted to find a possible extension of the anomalous gold values north and northeast of line 103N but extensions in other directions are unlikely.

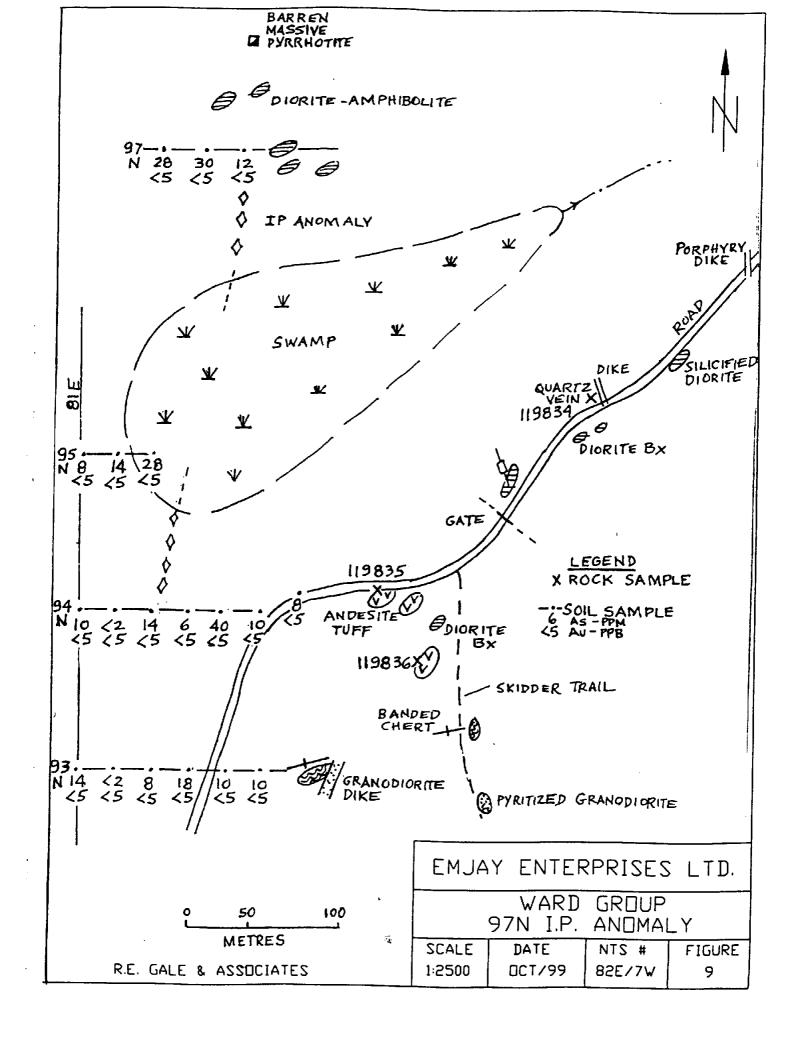
(6.6) 91N GOLD ANOMALY

This area is shown in Figure 8. It covers an area extending from 90+50N to 91+50N and 83E to 88E.

On the west side of Figure 8, previous work indicated that there could be a gold-bearing north south fault zone cutting the area along with dikes of altered pyritized granodiorite. Although pyritized granodiorite outcrops here results show that there are no significant gold values and no major mineralized fault structures present on the west side of the area.

On the east side of Figure 8 numerous outcrops of relatively fresh looking, strongly fractured greenstone form bluffs of outcrop along the east edge of a prominent hill. At a point near 91N 87+25E a NE-trending fault zone forms the contact between the greenstone on the west and altered diorite porphyry on the east. Other outcrops immediately to the south and east are barren chert but in the valley to the east at 88+50E - 89E outcrops of pyritized diorite and quartz diorite are noted which do carry some low gold values.


Several samples of the greenstone and diorite porphyry in and around the contact at the top of the hill have been taken. Results are as follows:


ROCK TYPE	LOCA	TION	SAMPLE NO.	Au - ppb	As - ppm
Greenstone	90+50N	86+50E	119838	46 0	12
Greenstone	91N	87 + 25E	119858	20	6
Greenstone	90+50N	86+25E	119859	110	14
Oxidized Diorite Porphyry	90+50N	86+60E	119860	99 0	184

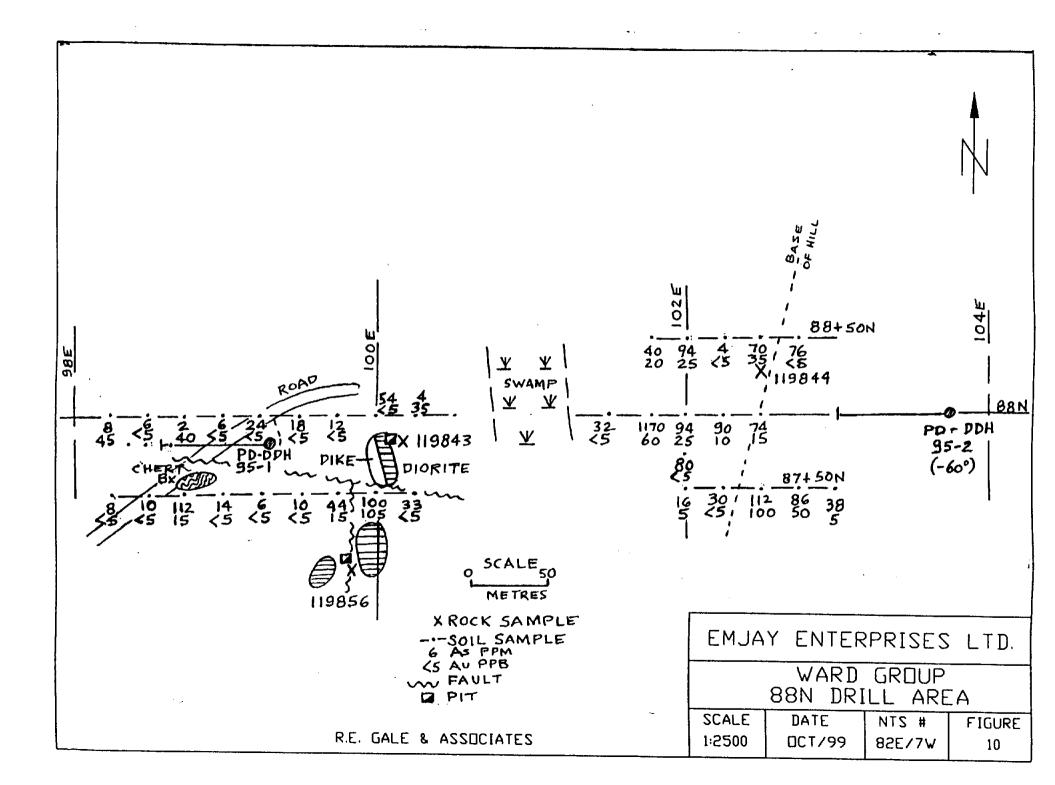
These results show that there is potential for better grade gold mineralization in both types of rock near the contact between the greenstone and diorite. Backhoe trenching along the contact is warranted to see if higher grade gold mineralization can be located here.

(6.7) 97N I.P. ANOMALY

Figure 9 shows the area adjoining Figure 8 to the northwest. It extends from 94N to 97N and from 81E to 84E.

A 1 metre wide mass of pyrrhotite is exposed in a 2 metre deep pit on the ROI 2 claim to the north of Line 97N. Low gold, arsenic and copper values are associated with this deposit. The rocks in the area are hornblende diorite and amphibolite. Phelps Dodge soil sampling on Line 94N at 81E showed 94 ppb Au and at 82E 5 ppb Au, 38 ppm As, 305 ppm Zn and 66 ppm Cu and these results suggested that the pyrrhotite mineralization could extend to the south as a narrow vein.

In addition I.P. chargeability anomalies occur on line 97N 82E, just to the south of the pyrrhotite deposit, and on Line 94N 81+50E, also suggesting that a mineralized zone may occur here.


Unfortunately, a swamp in the area of lines 95N and 96N precludes any soil sampling here. Also soils taken on Line 97N and 94N at the potentially favorable sites do not show any anomalous values. In spite of theoor geochemical results it is still possible that a mineralized structure occurs in association with the I.P. targets so that backhoe trenching and a magnetometer survey are warranted here.

(6.8) 88N DRILL AREA

One of the best secondary target areas for further work is the area around Phelps Dodge drillhole 95-1 and the area to the west towards hole 95-3. This area is shown in Figure 10.

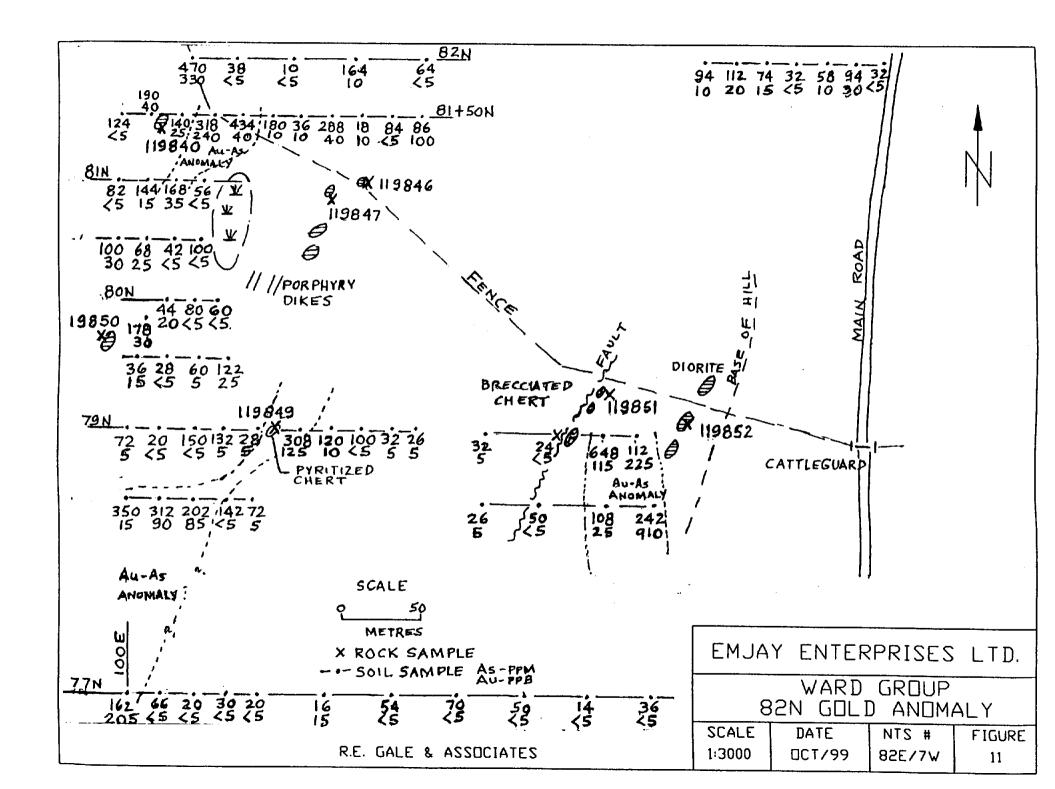
The best potential here is for a large low grade deposit of diseminated-type Au-As mineralization in strongly fractured and sheared diorite intrusive rock. Both DDH 95-1 and 95-2 intersected several metre wide zones of submarginal Au mineralization, but in the case of 95-1 the zone was intersected in the bottom of the hole at a depth of 141 to 152 metres-11 metres averaging 226 ppb Au, so that the zone is open to extension at depth and probably also in the horizontal plane to the north, south and west. Several soil samples taken at the point at which the vertical projection of the bottom of the drillhole should occur failed to pick up any indication of thedrillhole mineralization in the soils. This suggests the mineralization intersected in the bottom of the drillhole may be blind and does not reach the top of bedrock here.

Also of interest is a new zone of highly oxidized outcroping mineralization of a similar type to that in PD 95-1 As shown in Figure 10, a strongly leached and oxidized outcrop on which an old pit has been sunk, was found just south of line 88N at 100+ 10E. Sample 119843, a grab sample of the dump, assayed 514 ppm As. 60 ppb Au. Judging by the strongly leached character of the rock, I would anticipate much better values at depth in unoxidized rocks. The possible extension of the mineralized rock is covered to the north and east.

The mineralized zone borders the eastern contact of a 2-3 metre wide northerly-trending porphyry dike. About 25 metres south of the pit the dike and mineralized rocks are offset by a WNW post mineral fault.

About 90 metres south of the pit, another pit is excavated along a narrow north-trending shear zone which is replaced by massive pyrrhotite mineralization. A picked sample of the dump 119856 assayed 1030 ppb Au,16 ppm As and 1055 ppm Cu.

PD's DDH 90-3, located at 88N 103+ 75E is located about 450 metres east of DDH 90-1. It did not intersect the same type of mineralization in diorite as that in the bottom of 90-1, but float of similar type mineralization does occur at surface about 50 metres west of the projected bottom of 90-3. Anomalous soils were collected in the latter area and a sample of pyritized float 119844 assayed 70 ppm As, 25 ppb Au and 2 float samples taken here previously by Phelps Dodge, 49636 and 49637 assayed 542 ppm As, 22 ppb Au and 3441 ppm As, 380 ppb Au respectively. The soil results and rock geochem results near 88+40N 102+60E suggest that further work is warranted here.


It is concluded that further trenching and drilling near DDH 95-1 and 95-3 is warranted including drilling into the newly discovered mineralization near 100E.

(6.9) 82N GOLD ANOMALY

Figure 11 shows the 82N area which is located on the Ward 4 claim near the southeast side of the property. My original interest in this area was based on the soil sample results described in the report by Mitchell (1989) on the Was claims (Assessment Report 19157). Mitchell's soil sample results on his sample line 0+00N for 20 metre stations starting at 5+00W are as follows:

Station	Au ppb	g/t oz/t	As ppm
5+00W	90		392
5+20W	515		401
5+40W	>1000	1.15.034	990
5+60W	60		189

Mitchell's results suggest that there is possible Au-As mineralized zone as much as 60 metres wide with 2 strongly anomalous gold in soils samples here. It is not known whether or not any followup work was done on Mitchell's results. The area has been logged recently and no old trenches or other workings can be seen here. For the present program, further soil sampling in the area was warranted to try to find the high gold area or other new anomalies.

The position of Mitchell's grid on the ground could not be verified in relation to the Phelps Dodge grid so it has not been possible to duplicate the old grid and indeed it was difficult in this area of numerous windfalls to tie into the PD grid. However as the results in Figure 10 indicate, 3 areas of anomalous soils on the west side of Figure 11, not obviously continuous with each other, have been outlined and a mineralized outcrop of unknown size has been found which assays 8560 ppm As, 1690 ppb Au.(Sample No. 119846). Pyritized diorite outcrop about 20 metres SWof 119846, sample 119847, assayed only 70 ppm As, 135 ppb Au while the best soil sample result 50 metres to the north is 86 ppm As, 100 ppb Au and northwest, 40 ppm As. 280 ppb Au.

Two rock chip samples of outcrops of pyritized diorite on the hillside 150 metres west 119840 and 250 metres southwest 119850 assayed 6 ppm As, 20 ppb Au and 54 ppm As, 75 ppb Au respectively.

As shown in Figure 11, the best soil sample results in the area are on line 78+50N with results on adjacent 25 metre sample points of 350, 312 and 202 ppm As with corresponding gold values of 15, 90 and 85 ppb Au. This anomaly is open to extension to the south, the next line to thesouth being 77N which shows one result of 162 ppm As 205 ppb Au at the western end of the line.

It is concluded that further soil sampling should be done in the area and trenching is also warranted around the area of sample 119846 and the soil anomaly on Line 78+50N.

(7.0) CONCLUSIONS AND RECOMMENDATIONS

Within the Ward Group of claims there are3 primary targets deserving trenching and drilling, the Highland Mary veins, the South vein zone on the Barnato claims and the 82N Gold Anomaly area. The estimated cost of doing this work is as follows:

Rehabilitation of existing access roads, backhoe trenching 15,000

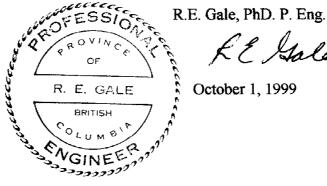
Total	\$ 120,000
GST and miscellaneous costs	10,000
Contingency	10,000
Government Bond, fees	5,000
Assays	10,000
Geological Supervision, Consulting fees	. 10,000
Diamond Drilling 600 metres NQ core @ \$100/metre	60,000

(8.0) COST STATEMENT

June 16-26

R.E. Gale - Geological mapping and sampling, consulting fees	5
10 days @ \$400 per day + 7% GST	4280,00
A. Hall - Assistant, soil sampling 10 days @ \$125.00/day	1250.00
Room and Board 2 men 10 days including GST	812.11
Truck rental 10 days including GST	744.68
Fuel, including GST	128.38
Equipment and supplies including GST	336.98
Assays-Chemex Labs - 158 soils samples @\$20.92	3305.12
12 rock samples @ \$24.08	288.90
Total	\$ 11,146.17
TOTAL COSTS JUNE 16-26 - \$11,146.17	\$ 11,140.17
July 16-25	
R.E. Gale - Geological mapping and sampling, consulting fees	i
10 days @ \$400 per day including 7% GST	4280.00
A. Hall - Assistant, soil sampling, 10 days @ \$125/day	1250.00
Room and Board, 2 men 10 days including GST	802.84
Truck rental, 10 days	998.04
Fuel, including GST	112.73
Equipment and supplies, including GST	374.84
Assays-Chemex Labs - 113 Soils @ \$20.92 including GST	2363.79
33 Rocks@\$28.25 including GST	932.08
Total	\$11,114.32
September 1-28	· · ·
D.E. Colo 12 down coolectical manning and complians 2 down	
R.E. Gale, 13 days geological mapping and sampling, 3 days r 16 days@ \$400 per day including 7% GST	6848.00
A. Hall, Assistant, soil sampling 13 days @\$125/day	1625.00
Room and Board, 2 men 13 days including GST	1111.84
Truck rental 14 days including GST	966.96
Fuel including GST	172.27
Equipment and supplies including GST	223.32
Assays-Chemex Labs - 94 soils @ \$21.29	2001.26
3 rock assays @\$63.15	189.44
41 rock geochem assays @ \$25.73	1055.07
Magnetometer survey P. Walcott and Associates(incl.GST)	4577.70
magnetonictor survey 1. Watcott and Associates (nici.051)	JJ1.IV
Total	\$18,770.86
TO TAK COOPE THIS VICE AS DIFFERENT 1.30 0 30.005 \pm	10

TOTAL COSTS JULY 16 -25 PLUS SEPT 1-28 \$ 29,885.18


(9.0) REFERENCES

- GSC Memoir 179, 1915
- B.C. Minister of Mines Report1902, page 1136 1138
- B.C. Minister of Mines Report 1938, page D17-D23.
- Fox, Peter E., 1994, Assessment Report 23835
- Fox, Peter E., 1995, Assessment Report 24307
- Gale, R.E., 1995, Assessment Report 23969
- Haman, P.J., 1970, Assessment Report 2951
- Gewargis, W.A., 1983, Assessment Report 11375
- Gewargis, W.A. 1986, Asessment Report 14952
- MacLeod, J.W., 1980, Assessment Report 8703
- Mitchell, D.C., 1989, Assessment REport 19157
- Visagie, D., 1990, Assessment Report 20122
- Visagie, D., 1992, Assessment Report 22396
- Vulumiri, M.R., 1989, Assessment Report 19524
- Vulumiri, M.R., 1990, Assessment Report 19525

(10.0) CERTIFICATE

I Robert E. Gale do herby certify that:

- (1) I am a consulting geologist with R.E. Gale and Associates Inc. with my office at 107-2274 Folkestone Way, West Vancouver, B.C.
- (2) I graduated from Stanford University with a PhD. in Geology in 1965.
- (3) I have been practising my profession as a geologist for forty four years.
- (4) I have a Member in good standing with the Association of Professional Engineers and Geoscientists of B.C. since 1966.
- (5) This report is based on my personal work of the Ward Group claims during June, July and September, 1999, and the review of all available data on the area.
- (6) I am the owner of the ROI 1-4, Dan 1-12, Bar 1-2 and 7 Reverted Crown Grant claims which are part of the Ward Group.

October 1, 1999

El Gale

APPENDIX ONE

.

Analytical Chemists * Geochemists * Registered Assayers North Vancouver V7J 2C1

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: GALE, R. E.

107 - 2274 FOLKESTONE WAY WEST VANCOUVER, BC V7S 2X7

Page Number : 1-A Total Pages : 4 Certificate Date: 08-JUL-1999 Invoice No. : 19921490 P.O. Number : :CNF Account

Project : Comments: ATTN: R.E. GALE

													CF	<u></u> R	TIFI	CATE	OF A	NAL	/SIS	<u> </u>	<u>\9921</u>	490			ļ
SAMPLE	PREP		Au ppb FA+AA	A Pp:	Ag pm	A1 %	As ppm	B ppm	Ba ppm		Be ppm	Bi ppm	Ca %		Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm_	K %	La ppm	Mg %	
180+50N 99+75E	201 2		30	0.		3.61	100	< 10	130	< 0		< 2	0.51			18	13	160	4.18	10	< 1	0.10	10	0.82	1
80+50N 100+00E	201 2	202	25 < 5	0. < 0,	. –	3.92	68 42	< 10 < 10	170 110	< 0 < 0		< 2 < 2	0.66		: 0.5 : 0.5	13 6	15 12	190 16	4.08 1.97	10 < 10	< 1 < 1	0.18 0.06	10 10	0.70 0.15	1
80+50N 100+50E		202	< 5			3.27	4∡ 100	< 10	60		0.5	< 2 < 2	0.25		: 0.5	7	10	10	1.97	< 10	< 1 < 1	0.05	< 10	0.15	1
81+00N 99+75E		202	< š	0,		2.24	82	< 10	170			< 2	0.39		0.5	17	14	75	2.78	< 10	< 1	0.12	10	0.42	1
81+00N 100+00E		202	15	0.	.2	2.88	144	< 10	150	< 0	0.5	< 2	0.41		0.5	12	15	52	2.64	< 10	< 1	0.19	10	0.45	1
81+00N 100+25E 81+00N 100+50E	201 2		35	0.		2.10	168	< 10	100	< 0		< 2	0.39		0.5	9	15	56	2.34	< 10	< 1	0.10	10	0.31	1
81+50N 100+50E		202	< 5	< 0.		1.29	56	< 10	70	< 0		< 2	0.19		0.5	6,	17	18	2.50	< 10	< 1	0.06	10	0.25	1
A man has she	201 2 201 2		< 5 40	0. 0.		3.03 2.38	124 190	< 10 < 10	80 60	0 < 0	0.5 0.5	< 2 < 2	0.24 0.57		0.5 0.5	7 11	14 26	21 245	2.65 2.61	< 10 < 10	< 1 < 1	0.07 0.10	10 20	0.25 0.62	1
11+50N 100+25E	201 2	202	25	0.	.2	2.96	140	< 10	130		0.5	< 2	0.19	<u> </u>	0.5	12	21	132	2.54	< 10	< 1	0.12	10	0.49	t
		202	240	< ŏ.		2.53	318	< 10	70		0.5	2	0.59		0.5	13	26	583	2.87	< 10	< 1	0.07	60	0.52	1
7+50N 98+25E	201 2	202	< 5	< 0.		2.18	8	< 10	110			< 2	0.18		0.5	6	15	21	2.11	< 10	< 1	0.06	10	0.23	1
		202	< 5	< 0.		1.98	10	< 10	110	< 0		< 2	0.15		0.5	5	12	9	1.80	< 10	< 1	0.04	10	0.16	1
7+50N 98+75E	201 2	102	15	< 0.	,2	3.24	112	< 10	80	0	0.5	< 2	0.13	<	0.5	9	13	28	2.34	< 10	< 1	0.05	10	0.22	ĺ
7+50N 99+00E		202	< 5			3.05	14	< 10	120		0.5	< 2	0.36		0.5	7	16	16	2.24	< 10	< 1	0.06	30	0.22	1
		202	< 5	< 0.		2.46	6	< 10	130	< 0		< 2	0.13		0.5	5	11	9	1.74	< 10	< 1	0.05	10	0.12	1
		202	< 5	< 0.3		2.95	10	< 10	110		0.5	< 2	0.15		: 0.5	5	11	14	1.88	< 10	< 1	0.05	10	0.16	1
		202 202	15 105	< 0.: 0.:		2.85 3.17	44 100	< 10 < 10	180 110	< 0 < 0		< 2 < 2	0.10 0.29		: 0.5 : 0.5	8 11	11 16	13 61	1.93 3.39	< 10 10	< 1 < 1	0.05 0.07	< 10 10	0.17 0.57	}
7+50N 100+25E	201 2	202	< 5	0.	2	2.69	38	< 10	100	< 0	0.5	< 2	0,24		0.5	7	15	30	2.38	< 10	1	0.06	10	0.25	1
		202	< 5	< 0.3		3.14	8	< 10	70		0.5	< 2	0.26		0.5	5	15	7	1.81	< 10	< 1	0.03	10	0.12	1
	201 2		< 5	< 0.		1.77	Ğ	< 10	70	< 0		< 2	0.17		0.5	4	12	, 7	1.83	< 10	< 1	0.04	10	0.17	1
3+00N 98+75E	201 2	202	40	< 0.		2.37	2	< 10	BO	< 0		< 2	0.28		0.5	5	13	10	1.90	< 10	< 1	0.04	10	0.16	1
8+00N 99+00E	201 2	202	< 5	0.3	.2	3.38	6	< 10	180	0	0.5	< 2	0,30	<	0.5	5	15	9	2.40	< 10	< 1	0.05	10	0.18	1
3+00N 99+25E		202	< 5			2.92	24	< 10	120	< 0		< 2	0.13	-	0.5	5	10	12	1.79	< 10	< 1	0.05	< 10	0.13	1
8+00N 99+50E 8+00N 99+75E	_	202	-	< 0.; < 0.		3.45	18	< 10	210	< 0	-	< 2	0.15		0.5	7	13	15	2.22	< 10	< 1	0.05	< 10	0.21	l
		202 202	< 5 < 5	< 0.3		3.27 2.44	12 54	< 10 < 10	120 130	-	0.5	< 2 < 2	0.11 0.15	-	(0.5 (0.5	5 10	14 13	16 31	2.19 3.08	< 10 10	< 1 < 1	0.04 0.06	10 < 10	0.21 0.41	1
	201 2		35	0.3		2.81 2.81	4	< 10 < 10	80		0.5	< 2	0.15		0.5	6	13	12	1.84	< 10	< 1 < 1	0.05	< 10 10	0.41	
8+00N 101+50E	201 2	202	< 5	0.3	.2	4.10	32	< 10	170		0.5	< 2	0.18	<	0.5	6	15	19	2.18	< 10	< 1	0.07	. 10	0.22	1
8+00N 101+75E	201 2	202	60	0.		4.28	1170	< 10	130		0.5	< 2	0.33		0.5	15	15	98	2.57	< 10	< 1	0.07	10	0.22	1
8+00N 102+00E		202	25	0.		1.50	94	< 10	170			< 2	0.38		0.5	11	10	28	2.23	< 10	1	0.06	< 10	0.20	1
		202	10	0.3		2.57	90	< 10	150			< 2	0.39		0.5	14	13	46	3.21	< 10	< 1	0.09	< 10	0.35	1
8+00N 102+50E		202	15	0.:		2.98	74	< 10	130	< 0	1.5	< 2	0.30	<	« 0.5 	7	16	50	2.44	< 10	< 1	0.07	10	0.33	
8+50N 101+75E	201 2		20	< 0.		1.39	40	< 10	50	-	0.5	< 2	0.31		0.5	6	18	31	2.20	< 10	< 1	0.08	30	0.35	ļ
8+50N 102+00E		202	10	0.3		4.30	40	< 10	240		0.5	< 2	0.27		0.5	9	21	35	3.01	10	< 1	0.11	10	0.36	1
8+50N 102+25E 8+50N 102+50E		202	< 5	< 0.3		1.48	4 70	< 10	140	< 0		< 2	0,13		0.5	4	9	6 98	1.33	< 10	< 1	0.04	< 10	0.10	1
	201 2 201 2	202 202	35 < 5	0.1		3.53 2.43	70 76	< 10 < 10	110 90		0.5 0.5	< 2 < 2	0.24 0.20		0.5 0.5	11 8	14 15	98 102	2.24 2.29	< 10 < 10	< 1 < 1	0.08 0.06	10 10	0.25 0.27	l
]			1		-		• -	•		-	• -		•••	-	•••	-			a	1	, _	••••	-	¥•	ł
						·																-			£.

CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 .'o:, R. E.

£

107 - 2274 FOLKESTONE WAY WEST VANCOUVER, BC V7S 2X7 rage Numper, I-B Total Pages :4 Certificate Date: 08-JUL-1999 Invoice No. : [9921490 P.O. Number : Account : CNF

Project : Comments: ATTN: R.E. GALE

· · · · · · · · · · · · · · · · · · ·	 _									CE	RTIF	ICATE	OF A	ANALY	(SIS	ļ	A9921490		
SAMPLE	PREP CODE	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	S %	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U mqq	V ppm	W ppm	Zn ppm		
90+50N 99+75E	201 20		3	0.02	18	350	8	0.01	6	7	41	0.05	< 10	< 10	72	< 10	114		1
80+50N 100+00E	201 20		3 1	0.03	22 11	360 1370	6 6 <	0.01	< 2	8	64	0.07	< 10	< 10	58	< 10	80		
80+50N 100+50E	201 20		1	0.04	9	300	6 < 6	0.01	< 2 2	2 1	53 28	0.09 0.11	< 10 < 10	< 10 < 10	33	< 10	76		
81+00N 99+755	201 20:	2 1320	2	0.02	40	550	4	0.02	< 2	â	51	0.06	< 10	< 10	29 41	< 10 < 10	62 128		
81+00N 100+00E	201 202		3	0.01	23	430	4	0.01	< 2	4	65	0.07	< 10	< 10	43	< 10	170		-
81+00N 100+25 <u>E</u> 81+00N 100+50E	201 202 201		2	0.01 0.01	13 10	730	8	0.01	2	3	51	0.09	< 10	< 10	40	< 10	98		
81+50N 99+75E	201 202		< 1	0.02	11	420 840	6 < 8	0.01 0.01	< 2 < 2	2	25 32	0.08	< 10	< 10	46	< 10	48		
81+50N 100+00E	201 202		3	0.02	38	430	< 2	0.02	6	7	55	0.12 0.10	< 10 < 10	< 10 < 10	44 50	< 10 < 10	100 58		
81+50N 100+25E	201 202		1	0.03	32	460	₿ <	0.01	2	5	36	0.11	< 10	< 10	41	< 10	88		
81+50N 100+50E	201 202 201 202		1	0.03	68	240	6	0.01	< 2	7	64	0.09	< 10	< 10	44	< 10	80		
87+50N 98+50E	201 202		1	0.01 0.01	11 9	690 900		0.01	< 2	2	26	0.09	< 10	< 10	40	< 10	48		
87+50N 98+75E	201 202		< 1	0.02	9	1640	6	0.01 0.01	2 < 2	1 3	26 21	0.08 0.10	< 10 < 10	< 10 < 10	32 42	< 10 < 10	42 52		
87+50N 99+00E	201 202	470	1	0.03	14	300	8 <	0.01	2	3	59	0.11	< 10	< 10	39	< 10	40		_
87+50N 99+25E	201 202		< 1	0.01	10	1640		0.01	< 2	ĩ	22	0.09	< 10	< 10	27	< 10	40 56		
87+50N 99+50E 87+50N 99+75E	201 202 201 202		1	0.02	10	990		0.01	< 2	2	28	0.10	< 10	< 10	30	< 10	60		
87+50N 100+00E	201 202 201 202		< 1 3	0.01 0.01	9 14	2080 410		0.01 0.01	2 < 2	1 3	15 40	0.10 0.06	< 10 < 10	< 10 < 10	32 47	< 10 < 10	142 108		
87+50N 100+25E	201 202	395	2	0.01	11	1540	8	0.01	2	2	30	0.10	< 10	< 10	38				_
88+00N 98+25E	201 202		1	0.03	8	420		0.01	< 2	1	25	0.11	< 10	< 10	30	< 10 < 10	78 24		
88+00N 98+50E 88+00N 98+75E	201 202 201 202		1	0.01	8	510		0.01	4	1	21	0.09	< 10	< 10	35	< 10	28		
88+00N 99+00E	201 202		< 1 1	0.02	10 12	210 210			< 2	1	32	0.10	< 10	< 10	32	< 10	30		
								0.01	< 2	2	45	0.11	< 10	< 10	38	< 10	30		
88+00N 99+25E 88+00N 99+50E	201 202 201 202		2 1	0.01 0.01	7	1410			< 2	1	16	0.09	< 10	< 10	27	< 10	72	••••••••	18
88+00N 99+75E	201 202		1	0.01	12 10	1820 910		0.01	< 2 2	2	16	0.11	< 10	< 10	35	< 10	104		ΗĔ
88+00N 100+00E	201 202	895	3	0.01	Ĩŷ	790	+	0.01	< 2	23	13 16	0.11 0.07	< 10 < 10	< 10 < 10	37 47	< 10 < 10	68		ĬĽS
88+00N 100+25E	201 202	170	< 1	0.01	11	1290		0.01	2	2	23	0.09	< 10	< 10	32	< 10	192 46		5
88+00N 101+50E	201 202		1	0.03	13	820		0.01	4	3	28	0.12	< 10	< 10	35	< 10	68		PAGE
88+00N 101+75E 88+00N 102+00E	201 202 201 202		3 1	0.02	18	2320		0.01	< 2	4	30	0.10	< 10	< 10	31	< 10	198		
88+00N 102+25E	201 202		3	0.01 0.01	7 12	1330 1040		0.03	< 2 < 2	2	37	0.06	< 10	< 10	31	< 10	144		IA
88+00N 102+50E	201 202		ĩ	0.02	13	180		0.01	2	3	56 34	0.08 0.09	< 10 < 10	< 10 < 10	44 39	< 10 < 10	210 100		
88+50N 101+75E	201 202	290	2	0.01	9	410	2 <	0.01	2	4	29	0.10	< 10	< 10	44	< 10	32		4.
88+50N 102+00E 88+50N 102+25E	201 202	205	1	0.01	21	1410	10 <		< 2	3	38	0.11	< 10	< 10	45	< 10	118]
88+50N 102+25E	201 202 201 202	560 300	< 1 1	0.01 0.02	7	1080	10 <		< 2	1	21	0.07	< 10	< 10	22	< 10	54		
1	201 202		1	0.02	11 12	700 730	6 < 8 <		42	4	26	0.11	< 10	< 10	31	< 10	76		
			-	~.~.	10	750	a < 1	0.01	4	3	25	0.08	< 10	< 10	35	< 10	150		1

CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: GALE, R. E.

107 - 2274 FOLKESTONE WAY WEST VANCOUVER, BC V7S 2X7

Page Number 2-A Total Pages 4 Certificate Date: 08-JUL-1999 Invoice No. : 19921490 P.O. Number : Account CNF

Project : Comments: ATTN: R.E. GALE

backrub COUSE FAAAA Dpm Dpm <th< th=""><th>[</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>CE</th><th>RTIFI</th><th>CATE</th><th>OF A</th><th>NAL</th><th>rsis</th><th>A</th><th>9921</th><th>490</th><th></th><th></th></th<>	[CE	RTIFI	CATE	OF A	NAL	rsis	A	9921	490		
90-508 91-508 20	SAMPLE			-			-														Mg %
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	90+50N 83+50E 90+50N 83+75E 90+50N 84+00E 90+50N 84+25E	201 202 201 202 201 202	< 5 < 5 < 5	0.2 0.2 0.2	3.16 2.77 2.53	8 10 10	< 10 < 10 < 10	90 110 110	< 0.5 < 0.5 < 0.5	< 2 < 2 < 2	0.18 0.19 0.21	0.5 < 0.5 < 0.5	6 7 6	12 17 15	17 19 13	1.99 2.19 1.95	< 10 < 10 < 10	< 1 < 1 < 1	0.05 0.05 0.05	10 10 10	0.22 0.23 0.30 0.26 0.23
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	90+50N 84+75E 90+50N 85+00E 90+50N 85+25E 90+50N 85+50E	201 202 201 202 201 202 201 202 201 202	20 < 5 < 5	0.6 < 0.2 < 0.2	3.26 1.61 2.27	34 10 10	< 10 < 10 < 10	60 80 90	0.5 < 0.5 < 0.5	< 2 < 2 < 2	0.35 0.18 0.19	< 0.5 < 0.5 < 0.5	8 5 4	15 15 8	39 10 6	2.31 2.02 1.52	< 10 < 10 < 10	< 1 < 1 < 1	0.04 0.04 0.04	10 < 10 < 10	0.25 0.29 0.27 0.12 0.18
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	90+50N 86+00E 90+50N 86+25E 90+50N 87+75E 90+50N 88+00E	201 202 201 202 201 202	< 5 < 5 60	< 0.2 < 0.2 < 0.2	0.98 2.68 2.00	4 2 42	< 10 < 10 < 10	90 180 150	< 0.5 < 0.5 < 0.5	< 2 < 2 < 2	0.23 0.26 0.32	< 0.5 < 0.5 < 0.5	3 5 36	10 11 9	4 9 53	1.47 1.77 2.68	< 10 < 10 < 10	< 1 < 1 1	0.04 0.07 0.06	10 < 10 < 10	0.17 0.14 0.16 0.16 0.31
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	90+50N 88+50E 90+50N 88+75E 91+00N 83+00E	201 202 201 202 201 202	< 5 < 5 < 5	< 0.2 0.2 0.4	3.33 4.68 3.18	34 42 22	< 10 < 10 < 10	110 60 50	< 0.5 0.5 < 0.5	< 2 < 2 < 2	0.17 0.21 0.27	< 0.5 < 0.5 < 0.5	8 7 12	19 13 45	42 19 72	2.95 2.32 2.99	< 10 < 10 < 10	< 1 < 1 < 1	0.04 0.04 0.06	10 10 10	0.17 0.45 0.17 0.93 0.41
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	91+00N 83+75E 91+00N 83+85E 91+00N 84+00E 91+00N 84+25E	201 202 201 202 201 202 201 202 201 202	< 5 < 5 < 5	< 0.2 0.2 < 0.2	3.15 2.41 1.88	14 10 4	< 10 < 10 < 10	70 130 100	< 0.5 < 0.5 < 0.5	< 2 < 2 < 2	0.16 0.19 0.15	< 0.5 < 0.5 < 0.5	7 7 5	20 21 14	23 28 14	2.39 2.21 1.87	< 10 < 10 < 10	< 1 < 1 < 1	0.05 0.04 0.06	10 10 10	0.77 0.41 0.42 0.27 0.16
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	91+00N 84+75E 91+00N 85+00E 91+00N 85+25E 91+00N 85+50E	201 202 201 202 201 202 201 202 201 202	< 5 < 5 < 5	< 0.2 < 0.2 < 0.2	2.86 1.22 2.87	8 4 2	< 10 < 10 < 10	90 60 140	< 0.5 < 0.5 0.5	< 2 < 2 < 2	0.23 0.25 0.33	< 0.5 < 0.5 < 0.5	5 4 5	12 13 15	9 9 12	1.91 1.75 2.05	< 10 < 10 < 10	< 1 1 < 1	0.05 0.05 0.06	< 10 < 10 10	0.22 0.23 0.15
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	91+00N 86+00E 91+00N 86+25E 91+00N 87+50E 91+00N 87+75E	201 202 201 202 201 202 201 202 201 202	< 5 < 5 20	< 0.2 < 0.2 < 0.2	0.88 1.40 3.75	6 6 22	< 10 < 10 < 10	70 80 120	< 0.5 < 0.5 0.5	< 2 < 2 < 2	0.21 0.20 0.18	< 0.5 < 0.5 < 0.5	3 3 13	12 10 14	5 6 36	1.60 1.66 2.51	< 10 < 10 < 10	< 1 < 1 < 1	0.04 0.05 0.07	10 10 10	0.12 0.26 0.26
	91+00N 88+25E 91+00N 88+50E 91+00N 88+75E	201 202 201 202 201 202	< 5 < 5 < 5	0.2 0.2 0.2	3.79 4.89 3.49	24 20 28	< 10 < 10 < 10	90 60 70	0.5 0.5 0.5	< 2 < 2 < 2	0.14 0.14 0.15	< 0.5 < 0.5 < 0.5	8 7 6	15 10 10	29 29 15	2.32 2.09 1.98	< 10 < 10 < 10	< 1 < 1 < 1	0.05 0.04 0.05	10 < 10 < 10	0.27 0.16 0.17

CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 io: R. E.

107 - 2274 FOLKESTONE WAY WEST VANCOUVER, BC V7S 2X7 Project : Comments: ATTN: R.E. GALE

	···········								CERTIFICATE OF ANALYSIS						A9921490			
SAMPLE	PREP CODE	Mı ppi			Ni ppm	P ppm	Pb ppm	S %	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	V ppm	W ppm	Zn ppm	
90+50N 83+25E 90+50N 83+50E	201 20				14	760		0.01	< 2	1	15	0.09	< 10	< 10	32	< 10	84	
90+50N 83+75E	201 20				12 16	940 960		0.01	6 < 2	3 2	17 20	0.10 0.09	< 10 < 10	< 10 < 10	33 40	< 10 < 10	78 102	
90+50N 84+00E	201 20		_		13	430		0.01	< 2	2	22	0.09	< 10	< 10	37	< 10	82	
90+50N 84+25E	201 20	2 415	5 < 1	0.03	12	1190	10	0.01	< 2	3	20	0.13	< 10	< 10	35	< 10	72	
90+50N 84+50E	201 20				11	750	< 2	0.01	< 2	3	31	0.12	< 10	< 10	39	< 10	62	
90+50N 84+75E	201 20		_		12	510		0.01	< 2	4	26	0.10	< 10	< 10	32	< 10	56	
90+50N 85+00E 90+50N 85+25E	201 20 201 20		_	0.01	9	340	< 2 <		2	1	17	0.07	< 10	< 10	40	< 10	34	
90+50N 85+50E	201 20			0.02	6 10	2310 820		0.01 0.01	< 2 < 2	1 1	21 28	0.07 0.08	< 10 < 10	< 10 < 10	22 31	< 10 < 10	52 60	
90+50N 85+75E	201 20	2 265	< 1	0.02	11	500	2 <	0.01	< 2	1	16	0.08	< 10	< 10	33	< 10	52	
90+50N 86+00E	201 20			0.01	6	900	2 <	0.01	< 2	1	31	0.05	< 10	< 10	25	< 10	50	
90+50N 86+25E 90+50N 87+75E	201 20		-	0.02	10	22B0		0.01	< 2	1	36	0.08	< 10	< 10	27	< 10	104	,
90+50N 88+00E	201 20 201 20		_	0.03	15 15	550 2040		0.02	2 < 2	1 2	32 17	0.06 0.07	< 10 < 10	< 10 < 10	31 43	< 10	58	
									<u> </u>			0.07	~ 10	< 10 	4 .3	< 10	56	
90+50N 88+25E	201 20			0.02	9	1490		0.01	2	3	16	0.10	< 10	< 10	29	< 10	56	
90+50N 88+50E 90+50N 88+75E	201 20 201 20			0.01	12	940		0.01	< 2	4	27	0.09	< 10	< 10	53	< 10	52	
91+00N 83+00E	201 20			0.03 0.01	11 44	640 730	10 2 <	0.01	< 2	3 5	18 14	0.13 0.12	< 10 < 10	< 10 < 10	33 71	< 10	46	
21+00N 83+25E	201 20	2 265		0.02	28	470		0.01	< 2	3	21	0.10	< 10	< 10	44	< 10 < 10	172 122	
91+00N 83+50E	201 20		7	0.01	44	900	2 <	0.01	< 2	4	18	0.08	< 10	< 10	70	< 10	266	1 81 80
91+00N 83+75E	201 20			0.01	15	920		0.01	< 2	3	17	0.09	< 10	< 10	44	< 10	84	
91+00N 83+85E 91+00N 84+00E	201 20 201 20			0.01	18	880	6 <		< 2	3	20	0.08	< 10	< 10	43	< 10	78	
91+00N 84+25E	201 20			0.01 0.03	10 11	470 680		0.01 0.01	< 2 2	1 3	20 22	0.07 0.11	< 10 < 10	< 10 < 10	34 30	< 10 < 10	54 54	
91+00N 84+50E	201 20	2 295	1	0.02	10	1190	4 <	0 01	< 2	1	19	0.10	< 10	< 10	32	< 10	64	
91+00N 84+75E	201 20			0.02	10	650			2	1	17	0.10	< 10	< 10	33	< 10	46	
91+00N 85+00E	201 20		< 1	0.01	6	260	< 2 <		2	ĩ	20	0.08	< 10	< 10	35	< 10	26	
91+00N 85+25E	201 20			0.02	11	410	6 <		< 2	2	30	0.11	< 10	< 10	36	< 10	66	
91+00N 85+50E	201 20	2 140	1	0.01	8	720	6 <	0.01	< 2	1	20	0.08	< 10	< 10	32	< 10	38	
91+00N 85+75E	201 20	-		0.01	7	490	4 <		< 2	1	27	0.09	< 10	< 10	33	< 10	32	
91+00N 86+00E 91+00N 86+25E	201 20 201 20			0.01	5	410 700	< 2 <		< 2	1	20	0.06	< 10	< 10	30	< 10	28	
91+00N 87+50E	201 20			0.01 0.02	8 17	700 1130	6 < 4	0.01	< 2 < 2	1 3	23 20	0.07	< 10 < 10	< 10 < 10	28 42	< 10 < 10	50 56	
91+00N 87+75E	201 20			0.01	23	1500		0.01	< 2	2	15	0.11	< 10	< 10	38	< 10	78	
1+00N 88+00E	201 20			0.01	8	1100	6 <	0.01	< 2	1	13	0.07	< 10	< 10	25	< 10	64	
1+00N 88+25E	201 20			0.02	12	800	8 <		2	3	19	0.11	< 10	< 10	38	< 10	52	
1+00N 88+50E 1+00N 88+75E	201 20			0.03	8	1230		0.01	< 2	3	18	0.11	< 10	< 10	30	< 10	30	
91+50N 88+75E	201 20 201 20			0.02	8 12	450 1590		0.01	4	2 1	17	0.10	< 10	< 10	31	< 10	30	
		-	1	V.V4	14	1090	2 <	0.01	< 2	Т	32	0.06	< 10	< 10	29	< 10	7 ⁸⁶	_
																	,	

SOIIS PAGE 2A

CERTIFICATION:_

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave North Vapouvor

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: GALE, R. E.

107 - 2274 FOLKESTONE WAY WEST VANCOUVER, BC V7S 2X7 Page Number :3-A Total Pages :4 Certificate Date: 08-JUL-1999 Invoice No. : 19921490 P.O. Number : Account : CNF

i.

Project : Comments: ATTN: R.E. GALE

r										CE	RTIFI	CATE	OF A	NAL	(SIS	A	9921	490			
SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm	A1 %	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	
91+50N 84+25E 91+50N 84+50E 91+50N 84+75E 91+50N 85+00E 91+50N 85+25E	201 202 201 202 201 202 201 202 201 202 201 202	<pre>5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</pre>	< 0.2 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.86 2.69 2.49 1.45 1.31	10 2 < 2 2 2	< 10 < 10 < 10 < 10 < 10 < 10	90 120 90 80 70	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.29 0.20 0.17 0.28 0.19	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 5 4 4 4	21 15 9 12 12	24 17 8 8 5	2.28 2.08 1.55 1.57 1.58	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.06 0.05 0.03 0.05 0.05	10 10 < 10 < 10 < 10	0.39 0.28 0.14 0.19 0.19	
91+50N 85+35E 91+50N 85+50E 91+50N 85+75E 91+50N 86+00E 91+50N 86+25E	201 202 201 202 201 202 201 202 201 202 201 202	< 5 < 5 < 5 < 5 < 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.68 0.70 1.36 2.02 2.06	8 < 2 2 6 2	< 10 < 10 < 10 < 10 < 10 < 10	110 40 50 130 100	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.25 0.20 0.22 0.21 0.16	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	5 3 3 4 4	12 11 13 9 11	8 3 6 5 7	1.86 1.84 1.85 1.60 1.64	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.05 0.04 0.04 0.06 0.05	< 10 10 10 < 10 10	0.16 0.13 0.18 0.13 0.14	
91+50N 87+25E 91+50N 87+50E 91+50N 87+75E 91+50N 88+00E 91+50N 88+25E	201 202 201 202 201 202 201 202 201 202 201 202	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5</pre>	< 0.2 < 0.2 < 0.2 0.6 < 0.2	2.30 3.17 4.70 6.86 3.02	26 22 38 106 34	< 10 < 10 < 10 < 10 < 10	150 140 70 240 90	< 0.5 0.5 0.5 1.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.16 0.35 0.14 0.61 0.30	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	11 18 10 10 8	15 19 12 27 16	25 97 23 231 41	2.68 3.48 2.26 3.76 2.68	< 10 < 10 < 10 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.05 0.09 0.04 0.14 0.07	< 10 10 < 10 50 < 10	0.26 0.38 0.22 0.41 0.34	
91+50N 88+50F 93+00N 81+00E 93+00N 81+25E 93+00N 81+50E 93+00N 81+75E	201 202 201 202 201 202 201 202 201 202 201 202	< 5 < 5 < 5 < 5 < 5 < 5	0.2 0.2 < 0.2 < 0.2 0.2	4.43 2.99 4.25 3.55 2.81	52 14 < 2 8 18	< 10 < 10 < 10 < 10 < 10 < 10	90 80 140 110 110	1.0 < 0.5 0.5 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.65 0.18 0.18 0.19 0.42	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	9 5 5 6 7	16 14 11 11 17	26 13 15 21 34	3.15 2.11 1.96 2.02 2.59	10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.05 0.03 0.04 0.05 0.05	30 < 10 < 10 10 10	0.25 0.20 0.14 0.17 0.36	•
93+00N 82+00E 93+00N 82+25E 94+00N 81+00E 94+00N 81+25E 94+00N 81+50E	201 202 201 202 201 202 201 202 201 202 201 202		< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.61 3.25 1.07 1.91 4.29	10 10 10 < 2 14	< 10 < 10 < 10 < 10 < 10 < 10	100 90 60 120 120	< 0.5 0.5 < 0.5 < 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.15 0.17 0.11 0.20 0.31	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	5 6 4 5	13 12 11 14 11	11 15 9 18 18	2.05 2.09 1.78 2.22 2.22	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.04 0.04 0.03 0.03 0.04	< 10 < 10 < 10 10 10	0.24 0.21 0.18 0.27 0.13	
94+00N 81+75E 94+00N 82+00E 94+00N 82+25E 94+00N 82+50E 95+00N 80+75E	201 202 201 202 201 202 201 202 201 202 201 202	< 5 < 5 < 5 < 5 < 5	0.2 0.2 < 0.2 < 0.2 < 0.2 < 0.2	3.18 2.46 2.57 2.42 1.14	6 40 10 8 8	< 10 < 10 < 10 < 10 < 10 < 10	80 70 80 80 50	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.13 0.29 0.18 0.19 0.26	< 0.5 0.5 0.5 < 0.5 < 0.5	5 7 7 7 6	9 16 17 16 16	9 22 9 18 18	1.61 2.28 2.28 2.37 2.03	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.04 0.05 0.04 0.04 0.05	< 10 10 < 10 < 10 10	0.29	SOI
95+00N 81+00E 95+00N 81+25E 96+50N 10800E 96+50N 10825E 96+50N 10850E	201 202 201 202 201 202 201 202 201 202 201 202	< 5 < 5 5 5 5 5 5 5 5	0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	3.12 3.32 2.84 2.02 2.32	14 28 76 40 20	< 10 < 10 < 10 < 10 < 10 < 10	70 70 150 280 90	< 0.5 0.5 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.27 0.35 0.25 0.22 0.24	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 6 7 5	15 17 14 12 14	17 45 40 17 12	2.39 2.27 2.35 2.35 1.98	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.05 0.03 0.10 0.07 0.08	<pre>< 10 10 20 < 10 < 10</pre>	0.25	ILS PAGE
96+50N 10875E 96+50N 10900E 97+00N 81+50E 97+00N 81+75E 97+00N 82+00E	201 202 201 202 201 202 201 202 201 202 201 202	< 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.45 3.20 3.89 3.36 4.01	92 66 28 30 12	< 10 < 10 < 10 < 10 < 10 < 10	90 90 80 110 80	< 0.5 0.5 < 0.5 < 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.19 0.14 0.15	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 5 8 8 5	13 13 14 13 10	10 17 15 25 19	2.08 1.98 2.51 2.47 1.99	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.05 0.04 0.03 0.05 0.03	< 10 10 < 10 < 10 < 10	0.20 0.20 0.20 0.24 0.17	ω
L															· · · ·	-AF	/		<u> </u>		7

CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

o:, R. E.

107 - 2274 FOLKESTONE WAY WEST VANCOUVER, BC V7S 2X7

Invoice No. P.O. Number :19921490 : Account :CNF

Project : Comments: ATTN: R.E. GALE

										CE	RTIFI	CATE	OF A	NALY	(SIS	ļ	\99214	90	
SAMPLE	PREP CODE	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	8 %	Sb ppm	Sc ppm	Sr ppm	Ti %	Tl ppm	U ppm	V ppm	W ppm	Zn ppm		
91+50N 84+25E 91+50N 84+50E	201 202 201 202		1 < 1	0.01	18	860		.01	< 2	3	22	0.07	< 10	< 10	43	< 10	102		
91+50N 84+75E	201 202		< 1	0.02	12 8	600 1030	< 2 < 0 4 < 0		< 2 < 2	2 1	23 20	0.09 0.08	< 10 < 10	< 10 < 10	37 25	< 10 < 10	68 46		
91+50N 85+00E	201 202	2 200	1	0.01	8	740	< 2 < 0		2	1	29	0.06	< 10	< 10	30	< 10	44		
91+50N 85+25E	201 203	2 195	< 1	0.02	6	370	< 2 < 0	.01	< 2	1	20	0.07	< 10	< 10	30	< 10	32		
91+50N 85+35E 91+50N 85+50E	201 202		< 1	0.02	11	690	8 < 0		< 2	1	27	0.09	< 10	< 10	31	< 10	62		
91+50N 85+75E	201 202 201 202		1	0.01 0.01	5 7	210 180	2 < 0 6 < 0		< 2 < 2	1 1	15 18	0.07 0.08	< 10 < 10	< 10 < 10	32 33	< 10 < 10	28 32		
91+50N 86+00E	201 202	2 790	< 1	0.01	, e	1510		.01	< 2	1	26	0.07	< 10	< 10	26	< 10	66		
91+50N 86+25E	201 202	2 245	< 1	0.01	9	950	2 < 0	.01	< 2	1	25	0.07	< 10	< 10	28	< 10	40		
91+50N 87+25E 91+50N 87+50E	201 202 201 202		< 1	0.01	16	1280		.01	< 2	1	20	0.08	< 10	< 10	38	< 10	112		
91+50N 87+75E	201 202		1 < 1	0.01 0.03	31 15	880 1530		.01	6	32	34 14	0.11 0.12	< 10 < 10	< 10 < 10	45 33	< 10 < 10	80 86		
91+50N 88+00E	201 202	440	3	0.04	46	270		.01	< 2	10	114	0.14	< 10	< 10	50	< 10	64		•
91+50N 88+25E	201 202	305	2	0.02	11	1250	4 0	.01	< 2	3	29	0.09	< 10	< 10	45	< 10	74		
91+50N 88+50E	201 202		5	0.03	14	300		.03	4	4	79	0.10	< 10	< 10	49	< 10	92		
93+00N 81+00E 93+00N 81+25E	201 202 201 202		1 < 1	0.02	10 10	950 640	6 < 0 8 < 0	.01	< 2 < 2	2	15 20	0.09 0.11	< 10 < 10	< 10 < 10	37 29	< 10 < 10	50 50		1
93+00N 81+50E	201 202		1	0.03	11	790	6 < 0		< 2	3	23	0.11	< 10	< 10	32	< 10	56		
93+00N 81+75E	201 202	385	3	0.03	19	370	6 < 0	.01	2	4	42	0.10	< 10	< 10	44	< 10	58		
93+00N 82+00E	201 202		1		7	860	< 2 < 0		< 2	1	20	0.06	< 10	< 10	38	< 10	56		
93+00N 82+25E 94+00N 81+00E	201 202 201 202		1 1	0.01 0.01	9 6	730 210	6 < 0 < 2 < 0		< 2 < 2	3 1	25 13	0.09 0.05	< 10 < 10	< 10 < 10	34 34	< 10 < 10	34 32		
94+00N 81+25E	201 202		< 1	0.01	9	550	< 2 < 0		< 2	2	27	0.05	< 10	< 10	42	< 10	32 48		
94+00N 81+50E	201 202	110	1	0.04	12	270		.01	2	3	32	0.11	< 10	< 10	31	< 10	30		
94+00N 81+75E	201 202		< 1	0.03	6	2360	8 < 0		6	2	16	0.10	< 10	< 10	25	< 10	76		
94+00N 82+00E 94+00N 82+25E	201 202 201 202		1 1	0.02	16 16	440 940		.01	< 2	2	24	0.10	< 10	< 10	43	< 10	170		
94+00N 82+50E	201 202		< 1	0.01	15	850	8 < 0 2 < 0		< 2 < 2	1 2	17 21	0.09 0.09	< 10 < 10	< 10 < 10	41 42	< 10 < 10	178 82		
95+00N 80+75E	201 202	215	1	0.01	9	310	< 2 < 0		2	3	26	0.07	< 10	< 10	39	< 10	26		
95+00N 81+00E	201 202		< 1	0.01	13	930	10 < 0		2	2	20	0.09	< 10	< 10	41	< 10	70		<u>p</u>
95+00N 81+25E 96+50N 10800E	201 202 201 202		2	0.03	17	260		.02	< 2	4	32	0.10	< 10	< 10	38	< 10	64		
96+50N 10825E	201 202		2	0.03 0.01	10 8	490 1450	8 < 0 4 0	.01 .01	< 2 < 2	4	46 46	0.09 0.07	< 10 < 10	< 10 < 10	36 31	< 10 < 10	46 138		
96+50N 10850E	201 202		î	0.01	10	400	4 < 0		< 2	1	38	0.09	< 10	< 10	34	< 10	48		L 2
96+50N 10875E	201 202		< 1	0.01	9	770	6 < 0	.01	< 2	1	27	0.08	< 10	< 10	31	< 10	62		
96+50N 10900E	201 202		< 1	0.01	8	810	8 < 0		< 2	3	34	0.09	< 10	< 10	29	< 10	44		
97+00N 81+50E 97+00N 81+75E	201 202 201 202		~ 1 1	0.02 0.01	14 14	270 870	80 6<0	.01	< 2 < 2	2	16 15	0.12 0.10	< 10	< 10	38	< 10	44		L.
97+00N 82+00E	201 202		< 1	0.01	9	1110		.01	< 2	3	10	0.10	< 10 < 10	< 10 < 10	34 29	< 10 < 10	66 40		-
					-		- •		• =	-				1 20	~~~	1	7 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	_	
L				····												_///		\leq	

CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assavers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

TO: UNLL, R. E.

107 - 2274 FOLKESTONE WAY WEST VANCOUVER, BC V7S 2X7

Fage Numper .4-A Total Pages :4 Certificate Date: 08-JUL-1999 Invoice No. :19921490 P.O. Number : Account CNF

Project : Comments: ATTN: R.E. GALE

CERTIFICATE OF ANALYSIS

S	A9921490
---	----------

SMC12 PCODE Ai ppb Ag Ai Ba Ca Ca Ca Ppa Ag Ppa Ag Ppa Ag Ppa Ag Ppa Ag Ppa Ag Ag Ag Ppa Ag Ag <th></th>																						
97+0000 192-5000 97+0000 190502 201 202 201 201 202 201 202 20	SAMPLE			-			-															
97-000 108002 201 202 5 0.0 32 2.05 5 10 33 2.05 4.10 1.00 4.20 1.00 4.20 4.20 4.10 1.00 4.20 4.20 4.10 1.00 4.20 4.20 4.10 1.00 4.20 4.20 4.10 1.00 4.20 4.20 4.00 1.00 4.20 4.20 4.00 1.00 4.20 4.20 4.10 1.00 4.20 4.20 4.10 1.00 4.20 4.20 4.10 1.00 4.20 4.20 4.10 1.00 4.10 1.00 4.10 1.00 4.10 1.00 4.10 1.00 4.10 1.00 4.10 1.00 4.10 1.00 4.10 1.00 4.10 1.00 4.10 1.00 4.10 1.00 4.10 1.00 4.10 1.00 4.10 1.00 4.10 1.00 1.00 1.00 1.00 1.00 1.00 1.00																						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					4.45																	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$													-								0.33	
$ \begin{array}{c} 97+001 \ 10900 \ 201 \ 102 \ < 5 < 0.2 \ 2.16 \ 3.6 < 1.0 \ 130 \ 0.5 < 2 \ 0.25 < 0.5 \ -6 \ 17 \ 12 \ 2.16 \ -10 \ -1 \ 0.06 \ -1 \ 0.06 \ -10 \ 0.29 \ 97+501 \ 1060 \ 201 \ 102 \ < 5 < 0.2 \ .5 \ 0.2 \ .5 \ .5 \ .5 \ .5 \ .5 \ .5 \ .5 \ $	97400N 10850E	201 202	< 5	< 0.2	1.96	24	< 10	140	< 0.5	< 2	0.24	< 0.5	5	15	10	1.83	< 10	< 1	0.06	10	0.19	
97+5001 10800E 201 102 < 5				· · -								< 0.5			9	1.74	< 10	< 1	0.06	< 10	0.17	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													-									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$																						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																						
$ \begin{array}{c} 97+50N \ 1090078 \\ 98+00N \ 108007 \\ 98+00N \ 108007 \\ 98+00N \ 108527 \\ 98+00N \ 108528 \\ 201 \ 202 \\ <5 \\ <0.2 \\ 2.5 \\ <0.2 \\ 2.6 \\ 2.0 \\ 2.$	07.500 10075-										· · · · -·											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										_			-					-				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	98+00N 10825E	201 202	-																			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	98+00N 10850E	201 202	< 5	< 0.2	4.90	102	< 10	100	1.0	< 2	0.18	< 0.5	6									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	98+00N 10875E	201 202	< 5	< 0.2	2.63	24	< 10	90	< 0.5	< 2	0.15	< 0.5	5	13	12	1.82	< 10	< 1	0.05	10	0.18	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		201 202	< 5															_				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $														13	15	2.26						
102+50N 105+75E 201 202 < 5 < 0.2 3.11 14 < 10 150 0.15 0.15 7 16 22 2.52 < 10 1 0.05 10 0.13 102+50N 106+20E 201 202 < 5 < 0.2 3.14 12 < 10 110 0.5 < 2 0.15 < 0.5 7 16 22 2.52 < 10 1 0.06 10 0.03 102+50N 106+20E 201 202 < 5 < 0.2 3.14 12 <10 140 <0.5 < 2 0.15 <0.5 7 17 36 2.58 <10 <10 0.06 10 0.06 10 0.27 103+00N 105+25E 201 202 < 5 <0.2 3.22 14 <10 150 0.5 <2 0.31 <0.5 7 12 23 2.29 <10 <1 0.0.6 <0.27 10																		_				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TOATJON TOSTSUE	201 202	< 2	< 0.2	4.39	8	< 10	140	< 0.5	< 2	0.13	< 0.5	6	12	13	2.09	< 10	< 1	0.05	10	0.23	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						14	< 10	150	0.5	< 2	0.16	< 0.5	7	16	22	2.52	< 10	1	0.05	10	0.30	•
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					=												< 10	< 1	0.06	10	0.35	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$																						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 10			` ^	0.51	· · · · ·		4 3		4.04	× 10	• 1	0.08	10	0.09	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																		_				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																						ro
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	103+00N 106+25E												-									0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	103+00N 106+50P	201 202			1 00																	H.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																						
103+50N 105+75EA 201 202 < 5 < 0.2										_												ΡĮ
103+50N 105+75EA 201 202 < 5 < 0.2	103+50N 105+00E																	_				Γ,
103+30N 105+75EB 201 202 < 5 < 0.2	103+50N 105+25E	201 202	< 5	< 0.2	3.08	24	< 10	150	< 0.5				10									
103+50N 105+75EB 201 202 < 5 0.2 1.72 18 < 10 100 < 0.5 < 2 0.15 < 0.5 9 17 27 2.98 < 10 < 1 0.05 < 10 0.35	103+50N 105+75EA	201 202	< 5	< 0.2	1.32	2	< 10	90	< 0.5	<u>(</u>)	0.16	< 0 5	6	10	13	2 75	< 10		0.05	10	0.21	7
																		_				
\square	103+50N 106+00E		< 5																			
$\square \square $	-																					
																	~	,				
					n												_4/	, 		<u> </u>		,

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

fo: GALE, R. E.

Г

107 - 2274 FOLKESTONE WAY WEST VANCOUVER, BC V7S 2X7 Page Number :4-B Total Pages :4 Certificate Date: 08-JUL-1999 Invoice No. : I9921490 P.O. Number : Account :CNF

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

Project : Comments: ATTN: R.E. GALE

	······									CE	RTIFI	CATE	OF A	NALY	/SIS	A	9921490		
SAMPLE	PREP CODE	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	S %	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	V ppm	W ppm	Zn ppm		
97+00N 82+25E	201 202	500	< 1	0.01	11	800	6	0.01	< 2	3	16	0.10	< 10	< 10	39	< 10	52		1
97+00N 82+50E	201 202	260	2	0.01	15	500	4 <		2	5	36	0.10	< 10	< 10	53	< 10	62		
97+00N 10800E 97+00N 10825E	201 202	265	1	0.05	9	540	4	0.02	< 2	5	99	0.12	< 10	< 10	25	< 10	36		
97+00N 10829E	201 202 201 202	1240 375	1 < 1	0.01 0.01	10 9	3110 1030	10 2 <	0.01 0.01	< 2 4	3 1	73 33	0.09 0.07	< 10 < 10	< 10 < 10	39 30	< 10 < 10	98 56		
97+00N 10875E	201 202	520	1	0.02	9	1490		0.01	< 2	1	34	0.07	< 10	< 10	27	< 10	56		-
97+00N 10900E 97+50N 10800E	201 202	215	1	0.01	9	530		0.01	2	1	34	0.10	< 10	< 10	37	< 10	42		
97+50N 10800E	201 202 201 202	360 435	< 1 1	0.02	8 9	790 1450	8	0.01	2	4	62	0.09/	< 10	< 10	28	< 10	90		
97+50N 10850E	201 202	410	< 1	0.01	10	1270	8	0.01 0.01	< 2 2	2	41 26	0.11 0.09	< 10 < 10	< 10 < 10	41 32	< 10 < 10	64 50		
97+50N 10875E 97+50N 10900E	201 202 201 202	325 570	< 1	0.02	12	1040		0.01	2	3	28	0.10	< 10	< 10	29	< 10	52		1
98+00N 10800E	201 202	360	1 < 1	0.01 0.03	10 11	1090 640	10	0.01 0.01	< 2	1	31 56	0.09	< 10	< 10	36	< 10	54		
98+00N 10825E	201 202	355	1	0.01	12	1200		0.01	< 2	4	24	0.12 0.09	< 10 < 10	< 10 < 10	31 39	< 10 < 10	66 44		
98+00N 10850E	201 202	130	ī	0.02	10	730	8	0.01	< 2	4	29	0.13	< 10	< 10	31	< 10	42		
98+00N 10875E	201 202	240	1	0.02	11	860	6 <	0.01	< 2	2	25	0.09	< 10	< 10	28	< 10	52		4
98+00N 10900E	201 202	165	< 1	0.01	13	530	6 <	0.01	6	1	41	0.11	< 10	< 10	34	< 10	38		
102+50N 105+00E	201 202	405	1	0.01	11	670		0.01	2	2	23	0.09	< 10	< 10	37	< 10	68		
102+50N 105+25E 102+50N 105+50E	201 202 201 202	400	1	0.02	13	320	4	0.01	< 2	3	434	0.11	< 10	< 10	52	< 10	74		
		380	1	0.01	9	870		0.01	< 2	1	28	0.09	< 10	< 10	32	< 10	66		
102+50N 105+75E 102+50N 106+00E	201 202 201 202	615 270	1 1	0.01 0.01	23 21	1010 640		0.01 0.01	2	2 3	22	0.11	< 10	< 10	40	< 10	84		
102+50N 106+25E	201 202	1150	12	0.02	16	990	8	0.01	6 < 2	1	21 37	0.11 0.08	< 10 < 10	< 10 < 10	39 43	< 10 < 10	64 88		Ì
102+50N 106+50E	201 202	1575	4	0.01	28	840	10	0.01	< 2	4	34	0.08	< 10	< 10	43	< 10	170		
103+00N 105+00E	201 202	335	4	0.01	13	320		0.01	2	3	40	0.14	< 10	< 10	50	< 10	52		
103+00N 105+25E	201 202	315	2	0.01	9	690	2 <	0.01	< 2	1	39	0.10	< 10	< 10	33	< 10	50		-
103+00N 105+50E	201 202	665	- 1	0.01	9	600		0.01	< 2	1	36	0.08	< 10	< 10	29	< 10	46		
103+00N 105+75E 103+00N 106+00E	201 202	240	2	0.01	12	420		0.01	< 2	3	29	0.10	< 10	< 10	36	< 10	44		S
103+00N 106+25E	201 202 201 202	365 300	1 5	0.01 0.01	11 15	680 510	6 < 4	0.01 0.04	< 2 2	1 4	25 28	0.09 0.09	< 10 < 10	< 10 < 10	32 43	< 10 < 10	62 34		SOILS
103+00N 106+50E	201 202	300	10 •		14	510	< 2	0.05	< 2	5	57	0.08	< 10	< 10	48	< 10	40	•	
103+00N 106+75E	201 202	230	1	0.01	10	950	6	0.01	2	3	27	0.10	< 10	< 10	30	< 10	44		P
103+00N 107+00E 103+50N 105+00E	201 202	300	1	0.01	12	1650		0.01	2	1	27	0.08	< 10	< 10	29	< 10	56		PAGE
103+50N 105+25E	201 202 201 202	695 970	4 1	0.01 0.01	7 18	980 1190		0.01 0.01	< 2 < 2	2 3	115 81	0.12 0.11	< 10 < 10	< 10 < 10	57 44	< 10 < 10	146 92		
103+50N 105+75EA		195	1 4	< 0.01	11	480	4 <	0.01	< 2	1	22	0.07	< 10	< 10	32	< 10	68		4A
103+50N 105+75EB		580	4	0.01	19	890	2	0.01	< 2	2	33	0.08	< 10	< 10	44	< 10	108		
103+50N 106+00E	201 202	285	1	0.02	9	1000	6	0.01	4	2	31	0.09	< 10	< 10	28	< 10	44		
																Λ			
· · · · · · · · · · · · · · · · · · ·																			1

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 IO: GALE, R. E.

107 - 2274 FOLKESTONE WAY WEST VANCOUVER, BC V7S 2X7 Page Number :1-A Total Pages :3 Certificate Date: 10-AUG-1999 Invoice No. : 19924464 P.O. Number : Account : CNF

Project : Comments: ATTN: R.E. GALE

			·								CE	RTIFI	CATE	OF A	NAL	YSIS	A	9924	464		
SAMPLE	PRE COD		Au ppb FA+AA	Ag ppm	A1 %	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %
TOP ROAD 39M TOP ROAD 45M TOP ROAD 50M TOP ROAD 55M TOP ROAD 76M	201 201 201	202 202 202 202 202 202	550 515 4650 4490 245	0.4 < 0.2 0.8 1.0 0.2	2.19 1.14 1.75 3.40 2.46	1000 984 4490 >10000 832	< 10 < 10 < 10 < 10 < 10 < 10	80 40 80 140 100	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.26 0.29 0.25 0.28 0.26	1.5 0.5 1.5 1.5 0.5	11 7 18 18 9	11 14 13 5 11	81 64 113 179 83	3.48 3.19 5.51 8.67 4.03	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 1 < 1	0.08 0.06 0.08 0.11 0.07	10 10 10 10	0.29 0.30 0.37 0.32 0.31
TOP ROAD 81M TOP ROAD 86M TOP ROAD 91M TOP ROAD 105M TOP ROAD 130M	201 201 201 201 201 201	202 202 202	385 155 135 30 10	0.2 0.2 < 0.2 < 0.2 < 0.2	1.68 2.45 2.16 2.13 2.22	466 116 116 52 30	< 10 < 10 < 10 < 10 < 10 < 10	80 80 90 110 120	< 0.5 0.5 0.5 < 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.28 0.19 0.22 0.21 0.20	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	9 10 7 6 5	14 12 12 10 11	97 86 30 23 17	4.47 3.90 2.52 2.21 1.80	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.10 0.07 0.07 0.06 0.06	20 10 10 10 10	0.38 0.36 0.29 0.29 0.22
South Trench 13m South Trench 18m South Trench 21m South Trench 26m South Trench 31m	201 201 201 201 201 201	202 202 202	40	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.96 1.10 0.47 0.86 1.99	62 288 32 66 234	< 10 < 10 < 10 < 10 < 10 < 10	30 50 10 30 60	< 0.5 0.5 < 0.5 < 0.5 1.0	< 2 < 2 < 2 < 2 < 2 < 2	0.30 0.46 0.31 0.26 0.52	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 0.5	5 8 4 6 17	15 15 11 14 14	27 99 22 49 123	2.44 4.62 1.65 2.78 3.77	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.06 0.07 0.02 0.05 0.07	20 50 20 20 30	0.30 0.35 0.19 0.25 0.41
SOUTH TRENCH 36M 77N 10000e 77N 10025E 77N 10050E 77N 10075E	201 201	202	< 5	< 0.2 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.99 2.25 2.27 2.40 2.45	106 162 66 20 30	< 10 < 10 < 10 < 10 < 10 < 10	30 110 130 100 90	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.30 0.28 0.15 0.16 0.15	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 11 8 4 4	14 13 15 10 7	38 68 24 13 6	2.61 2.48 2.68 1.86 1.60	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.05 0.06 0.05 0.05 0.06	20 < 10 < 10 < 10 < 10 < 10	0.27 0.24 0.25 0.16 0.11
77N 10100E 77N 10150E 77N 10200E 77N 10250E 77N 10300E	201 2	202 202 202 202 202	15 < 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.62 1.60 2.99 2.21 2.05	20 16 54 70 50	< 10 < 10 < 10 < 10 < 10 < 10	90 60 100 120 130	< 0.5 < 0.5 0.5 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.09 0.17 0.30 0.41 0.15	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 4 5 5 5	8 11 10 11 10	14 13 18 31 15	1.55 1.81 1.86 1.86 1.58	< 10 < 10 < 10 < 10 < 10 < 10	< 1 1 < 1 < 1 < 1 < 1	0.03 0.03 0.05 0.04 0.05	< 10 10 < 10 10 < 10	0.12 0.13 0.16 0.16 0.16
77N 10350E 77N 10400E 77N 10450E 77N 10500E 77N 10525E	201 2 201 2 201 2	102 102 102 102 102	< 5 < 5 < 5 5 75	< 0.2 0.2 < 0.2 0.2 0.2 0.4	1.35 1.70 1.63 2.63 2.63	14 36 52 230 256	< 10 < 10 < 10 < 10 < 10 < 10	70 130 110 120 130	< 0.5 < 0.5 < 0.5 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.21 0.22 0.11 0.23 0.47	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	5 7 5 9 7	16 12 11 15 11	29 32 19 54 250	2.06 1.91 1.83 2.43 2.26	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.04 0.05 0.04 0.08 0.10	20 < 10 < 10 10 10	0.31 0.24 0.18 0.30 0.27
77N 10600E 78+50N 102+00E 78+50N 103+00E 78+50N 103+50E 78+50N 103+50E 78+50N 104+00E	201 2 201 2 201 2 201 2 201 2	102 102	25 5 < 5 25 910	< 0.2 0.2 < 0.2 0.2 0.2 0.8	1.28 2.21 2.68 2.04 1.59	54 26 50 108 242	< 10 < 10 < 10 < 10 < 10 < 10	60 90 120 70 130	< 0.5 < 0.5 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.20 0.20 0.23 0.67 0.28	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 0.5	6 5 5 7 10	17 10 12 11 7	27 14 29 53 120	2.33 1.74 1.90 2.36 2.42	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.05 0.04 0.06 0.06 0.06	10 < 10 10 10 < 10	0.25 0.15 0.20 0.22 0.34
79N 100+050E 79N 100+75E 79N 101E 79N 101+25E 79N 101+55E	201 2 201 2 201 2 201 2 201 2 201 2	02 02 02	< 5	0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.70 1.62 2.18 2.18 0.80	190 60 120 100 32	< 10 < 10 < 10 < 10 < 10 < 10	70 70 70 70 110	0.5 < 0.5 0.5 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.54 0.58 0.72 0.59 0.53	0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 8 5 5 5	10 12 10 11 6	75 38 381 107 25	1.73 2.04 1.63 1.72 1.42	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.05 0.09 0.05 0.06 0.07	20 < 10 30 40 < 10	0.17 0.28 0.20 0.19 0.16

SOILS PAGE

Ś

a

CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: GALE, R. E.

Project :

107 - 2274 FOLKESTONE WAY WEST VANCOUVER, BC V7S 2X7

Comments: ATTN: R.E. GALE

Page Number :1-B Total Pages :3 Certificate Date: 10-AUG-1999 Invoice No. :19924464 P.O. Number : Account :CNF

SUITS

PAGE

5A

										CE	RTIFI	CATE	OF A	NALY	/SIS	٨	9924464	
SAMPLE	PREP CODE	Mn ppm	Mo ppm	Na %	Ni ppm	P PPM	Pb ppm	S %	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	V mgq	W ppm	Zn ppm	
TOP ROAD 39M TOP ROAD 45M TOP ROAD 50M TOP ROAD 55M TOP ROAD 76M	201 202 201 202 201 202 201 202 201 202 201 202	195 275 420	2 3 5 < 1 3	0.02 0.01 0.02 0.03 0.01	9 7 10 10 8	700 510 640 1990 610	< 2 2 < 2 8 2	0.01 0.01 0.07 0.13 0.04	2 < 2 8 12 8	3 3 4 5 3	71 50 97 108 67	0.08 0.06 0.07 0.10 0.09	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	40 41 48 31 42	< 10 < 10 < 10 < 10 < 10 < 10	146 48 64 54 40	
TOP ROAD 81M TOP ROAD 86M TOP ROAD 91M TOP ROAD 105M TOP ROAD 130M	201 202 201 202 201 202 201 202 201 202 201 202	200 185 180	4 4 1 1 1	0.01 0.01 0.01 0.01 0.01	9 9 8 6 8	560 530 410 370 840		0.05 0.01 0.01 c 0.01 c 0.01	< 2 4 2 2 < 2	3 3 3 2 2	92 66 47 55 36	0.06 0.09 0.09 0.09 0.09	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	46 45 41 37 31	< 10 < 10 < 10 < 10 < 10 < 10	30 44 44 40 46	
SOUTH TRENCH 13M SOUTH TRENCH 18M SOUTH TRENCH 21M SOUTH TRENCH 26M SOUTH TRENCH 31M	201 202 201 202 201 202	185 165 190	2 12 1 2 7	0.01	10 8 7 10 18	650 730 670 580 850	8	<pre> 0.01 0.05 0.01 0.09 0.01 </pre>	6 < 2 < 2 < 2 < 2 4	2 3 1 2 4	30 106 25 28 191	0.06 0.06 0.04 0.06 0.05	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	42 58 28 41 48	< 10 < 10 < 10 < 10 < 10 < 10	34 32 22 30 46	
SOUTH TRENCH 36M 77N 100008 77N 100258 77N 100508 77N 100758	201 202 201 202 201 202 201 202 201 202 201 202	840 410 130	2 < 1 < 1 < 1 < 1 < 1	0.01 0.01 0.01 0.01 0.01	8 13 18 9 7	520 1050 1140 380 680	2 6	<pre> 0.01 0.02 0.01 0.01 0.01 0.01 0.01 </pre>	< 2 4 < 2 2 2	2 2 1 1 < 1	37 33 17 28 22	0.07 0.09 0.10 0.08 0.08	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	41 39 47 30 25	< 10 < 10 < 10 < 10 < 10 < 10	28 122 108 36 34	
77N 10100E 77N 10150E 77N 10200E 77N 10250E 77N 10300E	201 202 201 202 201 202 201 202 201 202 201 202	460 210 180	< 1 < 1 < 1 < 1 < 1 < 1	0.01 0.01 0.02 0.01	7 8 10 11 12	1100 850 1020 180 990	2 · < 2 2	<pre> 0.01 0.01 0.01 0.01 0.01 0.01 0.01 </pre>	4 2 2 4 < 2	2 1 2 2 1	15 17 45 48 27	0.08 0.07 0.10 0.08 0.07	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	24 31 30 26 26	< 10 < 10 < 10 < 10 < 10 < 10	36 50 46 30 54	
77N 10350E 77N 10400E 77N 10450E 77N 10550E 77N 10525E	201 202 201 202 201 202 201 202 201 202 201 202	735 420 435	1 1 1 1	< 0.01 0.01 0.01 0.01 0.03	9 14 12 22 25	330 330 600 2010 490	< 2 <	: 0.01 : 0.01 : 0.01 : 0.01 0.01 0.01	2 6 < 2 4 2	2 1 1 2 4	24 28 14 26 50	0.07 0.06 0.07 0.09 0.08	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	43 35 32 37 32	< 10 < 10 < 10 < 10 < 10 < 10	32 92 78 112 68	
77N 10600E 78+50N 102+00E 78+50N 103+00E 78+50N 103+50E 78+50N 103+50E	201 202 201 202 201 202 201 202 201 202 201 202	285 240	< 1 < 1 < 1 < 1 < 1	0.01 0.02 0.02 0.02 0.02 0.03	11 8 9 7 6	480 340 540 160 540	< 2 <	<pre>c 0.01 c 0.01 c 0.01 c 0.01 c 0.01 c 0.01 c 0.01</pre>	< 2 6 2 2 < 2	2 1 3 4 2	19 24 22 59 30	0.07 0.08 0.10 0.07 0.04	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	43 29 32 32 35	< 10 < 10 < 10 < 10 < 10 < 10	48 56 50 32 112	
79N 100+050E 79N 100+75E 79N 101E 79N 101+25E 79N 101+50E	201 202 201 202 201 202 201 202 201 202 201 202	240 460	< 1 < 1 < 1 1 < 1	0.04 0.01 0.03 0.03 0.03	17 6 17 10 3	290 320 250 160 260	< 2 2 2 8	0.02 0.01 0.03 0.01 0.01	4 4 < 2 < 2	3 2 3 3 1	60 63 80 65 55	0.10 0.08 0.08 0.09 0.04	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	24 34 23 28 26	< 10 < 10 < 10 < 10 < 10 < 10	46 74 26 34 58	
							······									_{}//		

CERTIFICATION: ha all.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 io: Gale, R. E.

107 - 2274 FOLKESTONE WAY WEST VANCOUVER, BC V7S 2X7

CERTIFICATION:

Page Number : 2-A Total Pages :3 Certificate Date: 10-AUG-1999 Invoice No. : 19924464 P.O. Number : Account : CNF

Project : Comments: ATTN: R.E. GALE

SMPLE CODE PA+AA ppm % ppm ppm % ppm ppm %											ĺ	CE	RTIFI	CATE	OF A	NAL	/SIS	A	9924	464		
$ \begin{array}{c} \text{N1} 104:05 \\ \text{N1} 104:05 $	SAMPLE				-														-			Mg %
$ \begin{array}{c} 101 - 002 \\ 101 - 002 \\ 101 - 002 \\ 101 - 002 \\ 101 - 002 \\ 102 $	9N 101+075E			5	< 0.2	2.38	26	< 10	180	0.5	< 2	0.22	< 0.5	6	15	18	2.17	< 10	< 1	0.06	10	0.25
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9N 102+50E													5	9			< 10	< 1	0.08	< 10	0.16
$ \begin{array}{c} x 1 0 + 0.75 x \\ 2 0 1 2 0 2 \\ 2 2 5 \\ 0 . 2 \\ 2 2 5 \\ 0 . 2 \\ 2 2 5 \\ 0 . 2 \\ 2 2 5 \\ 0 . 2 \\ 2 2 5 \\ 0 . 2 \\ 2 \\ 2 5 \\ 0 . 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$														-								0.18
$ \begin{array}{c} 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 $											-								-			0.26
$ \begin{array}{c} + cont \ 102 + Som \ 1$	5M 1037073E	TOT	204	445	0.4	4.43	112	< 10	370	< 0.5	< 2	0.48	< 0.5	10	16	90	3,00	< 10	< 1	0.16	10	0.42
$ \begin{array}{c} + 50 \\ +$	9N 104+25E	201	202	5	< 0.2	1.20	60	< 10	80	< 0.5	< 2	0.13	< 0.5	4	10	12	1.52	< 10	< 1	0.04	< 10	0.12
$ \begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	9+50N 102+50E			< 5		2.42	144	< 10	100	< 0.5	< 2	0.28	< 0.5						-			0.22
$ \begin{array}{c} \mathbf{a} = 50 + 100 - 25E \\ \mathbf{a} = 50 + 100 - 55E \\ \mathbf{a} = 10 \\ \mathbf{a} = 50 + 100 - 55E \\ \mathbf{a} = 10 \\ \mathbf{a} = 50 + 100 - 55E \\ \mathbf{a} = 10 \\ \mathbf{a} = 50 + 100 - 55E \\ \mathbf{a} = 10 \\ \mathbf{a} = 50 + 100 - 55E \\ \mathbf{a} = 10 \\ \mathbf{a} = 50 + 100 - 55E \\ \mathbf{a} = 10 \\ \mathbf{a} = 50 + 100 - 55E \\ \mathbf{a} = 10 \\ \mathbf{a} = 50 + 100 - 55E \\ \mathbf{a} = 10 \\ \mathbf{a} = 50 + 100 - 55E \\ \mathbf{a} = 10 \\ \mathbf{a} = 50 + 100 - 55E \\ \mathbf{a} = 10 \\ \mathbf{a} = 50 + 100 - 55E \\ \mathbf{a} = 10 \\ \mathbf{a} = 50 + 100 - 55E \\ \mathbf{a} = 10 \\ \mathbf{a} = 50 + 100 - 55E \\ \mathbf{a} = 10 \\ \mathbf{a} = 50 + 100 - 55E \\ \mathbf{a} = 10 \\ \mathbf{a} = 50 + 100 - 55E \\ \mathbf{a} = 10 \\ \mathbf{a} = 50 + 100 - 55E \\ \mathbf{a} = 10 \\ \mathbf{a} = 50 + 100 - 55E \\ \mathbf{a} = 10 \\ \mathbf{a} = 50 + 100 - 55E \\ \mathbf{a} = 10 $													< 0.5	7	14	29	2.19	< 10	< 1	0.05	10	0.21
a SON 100-507 201 202 45 0.2 2.34 202 100 20.0 20.0 100																						0.16
$ \begin{array}{c} a = 50 100 + 75E 201 202 < 5 0.2 2.47 142 < 10 70 < 0.5 < 2 0.16 < 0.5 < 10 15 1.59 < 10 < 1 0.04 < 10 0.01 0.0$	8+50N 100+25E	201	202	90	0.2	2.14	312	< 10	160	< 0.5	< 2	0.54	0.5	14	10	105	4.06	< 10	< 1	0.09	< 10	0.51
$ \begin{array}{c} \mathbf{s} - \mathbf$	8+50N 100+50E			85	0.2	2.34	202	< 10	120	< 0.5	< 2	0.23	< 0.5	7	9	19	1.76	< 10	< 1	0.06	< 10	0.14
$\begin{array}{c} \texttt{PM 100-00E} \\ \texttt{PM 100-28E} \\ \texttt{201 202} \\ \texttt{201 202} \\ \texttt{201 202} \\ \texttt{(5 < 0.2 2.52 0 < 10 2.55 < 0.1 110 < 0.5 < 2 0.43 < 0.5 9 38 14 3.07 < 10 < 1 0.20 < 1 0 200 0.5 0.20 0.27 \\ \texttt{(10 0 - 28E - 10)} \\ (10 0 - 28E - $	8+50N 100+75E	201	202			2.47	142	< 10	70	< 0.5	< 2	0.16	< 0.5	6	10	15	1.89	< 10	-			0.13
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				-				< 10	50	< 0.5	< 2	0.20	< 0.5	4	12	28	1.80	< 10	< 1	0.03	10	0.13
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				-										-								0.60
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		201	202	< 5	< 0.2	2.52	50	< 10	110	< 0.5	< 2	0.27	< 0.5	6	12	16	1.90	< 10	< 1	0.07	10	0.19
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	79N 100+75E	201	202	< 5	< 0.2	2.15	28	< 10	90	< 0.5	< 2	0.27	< 0.5	6	17	16	2.04	< 10	< 1	0.05	10	0.30
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				25	0.2	2.72	308	< 10	60	< 0.5	< 2								-			0.17
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								< 10	90	< 0.5	< 2	0.22	< 0.5	6	19	18	2.54	< 10	< 1	0.10		0.36
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$																-		< 10	< 1	0.05	< 10	0.14
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		201	202	5	< 0.2	2.89	60	< 10	110	< 0.5	< 2	0.14	< 0.5	5	9	15	1.73	< 10	< 1	0.05	< 10	0.14
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	79+50N 100+75E	201	202	25	0.4	3.19	122	< 10	120	0.5	< 2	0.68	< 0.5	7	14	62	2.05	< 10	< 1	0.05	40	0.17
$ \begin{array}{c} 0.0 + 0.01 \ 100 + 50e \ 201 \ 202 \ < 5 \ < 0.2 \ 2.61 \ 80 \ < 10 \ 100 \ < 0.5 \ < 2 \ 0.14 \ < 0.5 \ 6 \ 10 \ 7 \ 1.81 \ < 10 \ < 1 \ 0.05 \ < 10 \ 0.23 \ \\ \hline 90 \ 100 + 70e \ 201 \ 202 \ < 5 \ < 0.2 \ 2.60 \ 60 \ < 10 \ 120 \ 0.5 \ < 2 \ 0.27 \ < 0.5 \ 7 \ 14 \ 13 \ 2.16 \ < 10 \ < 1 \ 0.05 \ < 10 \ 0.23 \ \\ \hline 91 \ 100 \ < 0.5 \ < 2 \ 0.27 \ < 0.5 \ 7 \ 14 \ 13 \ 2.16 \ < 10 \ < 1 \ 0.04 \ 20 \ 0.14 \ \\ \hline 90 \ 100 \ < 0.5 \ < 2 \ 0.27 \ < 0.5 \ 7 \ 14 \ 13 \ 2.16 \ < 10 \ < 1 \ 0.06 \ < 10 \ 0.23 \ \\ \hline 91 \ 100 \ < 0.5 \ < 2 \ 0.27 \ < 0.5 \ 7 \ 14 \ 13 \ 2.16 \ < 10 \ < 1 \ 0.04 \ 20 \ 0.14 \ \\ \hline 90 \ 100 \ < 0.5 \ < 2 \ 0.48 \ < 0.5 \ 5 \ 9 \ 21 \ 1.63 \ < 10 \ < 1 \ 0.04 \ 20 \ 0.14 \ \\ \hline 90 \ 100 \ < 0.5 \ < 2 \ 0.48 \ < 0.5 \ 8 \ 15 \ 176 \ 2.16 \ < 10 \ < 1 \ 0.04 \ 20 \ 0.14 \ \\ \hline 90 \ 10 \ 0.38 \ 10 \ 0.5 \ < 2 \ 0.48 \ < 0.5 \ 8 \ 15 \ 176 \ 2.16 \ < 10 \ < 1 \ 0.04 \ 20 \ 0.14 \ \\ \hline 90 \ 100 \ < 0.5 \ < 2 \ 0.48 \ < 0.5 \ 8 \ 15 \ 176 \ 2.16 \ < 10 \ < 1 \ 0.04 \ 20 \ 0.14 \ \\ \hline 90 \ 100 \ .05 \ < 2 \ 0.48 \ < 0.5 \ 8 \ 15 \ 176 \ 2.16 \ < 10 \ < 1 \ 0.04 \ 10 \ 0.08 \ 10 \ 0.38 \ \ \ 0.5 \ \ \ 0.27 \ \ 0.46 \ < 0.5 \ 8 \ 15 \ 176 \ 2.16 \ < 10 \ < 1 \ 0.06 \ < 10 \ 0.27 \ \ \ 0.27 \ \ \ 0.27 \$	79+75N 100+00E	201	202	30	< 0.2	2.11	178	< 10	220	< 0.5	< 2	0.34	< 0.5	6					_			0.23
$ \begin{array}{c} 0.0001 \ 1000+70E \\ 201 \ 202 \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	B0+00N 100+25E	201						< 10	190	< 0.5	< 2	0.24	< 0.5	5	10	13	1.55	< 10	< 1	0.06	< 10	0.16
9N 100+50E 201 202 5 0.4 2.82 132 < 10 60 0.5 < 2 0.48 < 0.5 5 9 21 1.63 < 10 < 11 0.04 20 0.14 +50N 102+00E 201 202 5 0.2 2.53 15 < 10	BU+00N 100+50E	201	202											•		7		< 10	< 1	0.05	< 10	0.13
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	JOTOGN IGOT/OE	201	202	< 5	< 0.2	2.60	60	< 10	120	0.5	< 2	0.27	< 0.5	7	14	13	2.16	< 10	< 1	0.07	10	0.22
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	79N 100+50E	201	202	5	0.4	2.82	132	< 10	60	0.5	< 2	0.48	< 0.5	5	9	21	1.63	< 10	< 1	0.04	20	0.14
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	7+50N 102+00E	201	202	5	0.2						_											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7+50N 102+25E			< 5	< 0.2	1.91	30	< 10	100	< 0.5	< 2	0.29	< 0.5	7					-			0.27
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7+50N 102+50E						112	< 10	100	0.5	< 2	0.38	0.5	19	16	130	3.21	< 10	< 1	0.11	10	0.47
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7+50N 102+075E	201	202	60	0.2	2.58	86	< 10	130	< 0.5	< 2	0.34	< 0.5	12	10	77	2.18	< 10	< 1	0.10	< 10	0.27
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	7+50N 103+00E	201	202	5	0.2	3.38	38	< 10	80	0.5	< 2	0.14	< 0.5	6	9	20	1 66	< 10	< 1	0.06	× 10	0 12
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	7+75N 102+00E	201	202	< 5											-				_			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N 100+50E	201	202	10	< 0.2		36							-								0.21
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5+50N 101+00E								180	< 0.5	< 2								_			0.38
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5+50N 101+50E	201	202	15	< 0.2	3.82	28	< 10	140	< 0.5	< 2	0.39	< 0.5	23	13	139	3.59	< 10	< 1	0.05		0.45
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+50N 102+00E	201	202	65	< 0.2	3.22	34	< 10	130	< 0.5	< 2	0.23	< 0.5	15	15	65	3 21	< 10	<u> </u>	0 00	10	0.40
N 101+25E 201 202 5 < 0.2 3.07 14 < 10 90 0.5 < 2 0.29 < 0.5 15 13 38 2.55 < 10 < 1 0.06 10 0.35 N 101+50E 201 202 30 < 0.2 2.46 20 < 10 80 < 0.5 < 2 0.48 < 0.5 19 9 94 2.75 < 10 < 1 0.06 < 10 0.39											_								. –			
N 101+50E 201 202 30 < 0.2 2.46 20 < 10 80 < 0.5 < 2 0.48 < 0.5 19 9 94 2.75 < 10 < 1 0.06 < 10 0.39																						
																						0.39
$\square \square $	7N 101+75E	201	202	10	< 0.2	2.33	36	< 10	180	< 0.5	< 2	0.37	< 0.5	11	11				_			0.30
																		Λ	r			

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: GALE, R. E.

107 - 2274 FOLKESTONE WAY WEST VANCOUVER, BC V7S 2X7

Page Number :2-B Total Pages :3 Certificate Date: 10-AUG-1999 Invoice No. :19924464 P.O. Number : Account CNF

Project : Comments: ATTN: R.E. GALE

										CE	RTIFI	CATE	OF A	NAL	/SIS	A	9924464	
SAMPLE	PREP CODE	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	S %	Sb ppm	Sc ppm	Sr ppm	Tİ %	T1 ppm	U ppm	V ppm	W ppm	Zn ppm	
79N 101+075E 79N 102+50E 79N 103+00E 79N 103+50E	201 20 201 20 201 20 201 20 201 20	2 855 2 455	1 1 < 1 1	0.01 0.01 0.01 0.01	9 8 10 17	350 740 1110 780	< 2 < < 2 <	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	2 2 4 2	2 1 1	26 26 16 17	0.09 0.07 0.09 0.08	< 10 < 10 < 10	< 10 < 10 < 10	41 24 35	< 10 < 10 < 10	44 70 88	
79N 103+075E	201 20	2 1080	1	0.01	17	1210	4	0.02	< 2	1 4	49	0.02	< 10 < 10	< 10 < 10	34 41	< 10 < 10	80 116	
79N 104+25E 79+50N 102+50E 79+50N 103+00E 78+50N 100+00E 78+50N 100+25E	201 20 201 20 201 20 201 20 201 20 201 20	2 350 2 1205 2 170	< 1 1 < 1 1 < 1	0.02 0.02 0.01 0.03 0.03	7 9 12 13 12	780 690 1140 240 2110	2 < < 2 < 2 < 2 4	<pre>c 0.01 0.01 0.01 0.01 0.01 0.04</pre>	< 2 6 < 2 4 < 2	1 2 1 3	16 29 14 26 59	0.07 0.10 0.11 0.11 0.08	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	27 34 40 36 46	< 10 < 10 < 10 < 10 < 10	48 60 104 90 212	
78+50N 100+50E 78+50N 100+75E 78+50N 100+100E 79N 100+00E 79N 100+25E	201 20 201 20 201 20 201 20 201 20 201 20	2 220 2 125 2 345	< 1 < 1 1 < 1 < 1 < 1	0.03 0.02 0.01 0.01 0.03	17 19 16 10 9	1160 380 50 800 2050		0.01 0.01 0.01 0.01 0.01	4 < 2 2 2 2	1 1 2 4 3	25 21 19 51 39	0.09 0.11 0.09 0.08 0.09	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	26 33 31 65 32	< 10 < 10 < 10 < 10 < 10 < 10	126 66 174 92 102	
79N 100+75E 79N 100+100E 79+50N 100+00E 79+50N 100+25E 79+50N 100+50E	201 20 201 20 201 20 201 20 201 20 201 20	2 225 2 150 2 360	< 1 1 < 1 1 < 1	0.01 0.02 0.01 0.01 0.03	10 35 9 8 9	730 270 430 790 1720	< 2 < 2 < < 2 <	<pre>< 0.01 0.01 < 0.01 < 0.01 < 0.01 < 0.01</pre>	2 2 < 2 < 2 2 2	2 3 2 1 1	36 44 27 20 19	0.09 0.10 0.07 0.08 0.10	< 10 < 10 < 10 < 10 < 10 < 10	<pre>< 10 < 10</pre>	40 31 51 29 28	< 10 < 10 < 10 < 10 < 10 < 10	68 66 42 56 62	
79+50N 100+75E 79+75N 100+00E 80+00N 100+25E 80+00N 100+50E 80+00N 100+70E	201 20 201 20 201 20 201 20 201 20 201 20	2 390 2 625 2 240	2 < 1 < 1 1 < 1	0.05 0.05 0.03 0.02 0.02	14 9 9 8 10	260 1970 1870 630 1610	14 < 2 < 2 < 2 < 2 < 2	0.03 0.01 0.01 0.01 0.01 0.01	2 < 2 2 2 2	4 2 1 1 2	61 47 32 16 36	0.11 0.07 0.08 0.10 0.10	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	33 25 27 32 37	< 10 < 10 < 10 < 10 < 10	30 92 104 40 68	
79N 100-50E 87+50N 102+00E 87+50N 102+25E 87+50N 102+50E 87+50N 102+50E 87+50N 102+075E	201 20 201 20 201 20 201 20 201 20 201 20	2 1270 2 960 2 790	1 < 1 < 1 < 1 < 1 < 1	0.05 0.01 0.02 0.01 0.03	8 12 9 17 13	110 530 1240 790 830	< 2 8 2 4 2	0.01 0.01 0.02 0.01 0.01	2 2 < 2 2 2 2	3 2 1 4 3	52 42 28 44 41	0.10 0.11 0.10 0.12 0.09	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	24 39 35 50 33	< 10 < 10 < 10 < 10 < 10 < 10	26 100 100 160 94	
87+50N 103+00E 87+75N 102+00E 94N 100+50E 96+50N 101+00E 96+50N 101+50E	201 20 201 20 201 20 201 20 201 20 201 20	2 450 2 155 2 2000	< 1 < 1 < 1 < 1 < 1 < 1	0.03 0.01 0.03 0.01 0.02	9 7 10 12 13	1380 1000 700 1120 550	< 2 2 < 2 2 2 < 2 2 < 2	0.01 0.01 0.02 0.03	< 2 < 2 2 6 6	1 1 3 3 4	19 20 32 70 83	0.11 0.08 0.11 0.11 0.14	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	24 29 29 59 65	< 10 < 10 < 10 < 10 < 10 < 10	54 62 40 104 52	
96+50N 102+00E 97N 101+00E 97N 101+25E 97N 101+50E 97N 101+50E 97N 101+75E	201 20 201 20 201 20 201 20 201 20 201 20	2 1715 2 1330 2 970	< 1 < 1 < 1 < 1 < 1	0.01 0.01 0.01 0.04 0.03	16 11 12 16 16	1180 1020 1220 600 510	< 2 2 2 < 2 2 2	0.01 0.03 0.04 0.03 0.01	6 6 4 < 2 < 2	3 3 3 3 2	58 42 38 97 58	0.13 0.12 0.11 0.09 0.09	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	60 64 50 50 38	< 10 < 10 < 10 < 10 < 10 < 10	100 92 70 46 82	
																+		

SOILS PAGE бA

CERTIFICATION: ha all.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 TO: UNEL, R. E.

107 - 2274 FOLKESTONE WAY WEST VANCOUVER, BC V7S 2X7 Page Number : 3-A Total Pages :3 Certificate Date: 10-AUG-1999 Invoice No. : 19924464 P.O. Number : Account : CNF

Project : Comments: ATTN: R.E. GALE

_										CE	RTIFI	CATE	OF A	NAL	(SIS	A	9924	464		
SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm	A1 %	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %
97N 102+00E 97N 102+25E 97+50N 101+50E 97+50N 102+00E 102+50N 100+00E	201 202 201 202 201 202 201 202 201 202 201 202	40 50 < 5 10 260	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 0.2	3.12 3.48 2.23 2.23 3.58	58 62 16 24 172	< 10 < 10 < 10 < 10 < 10 < 10	110 150 140 220 80	0.5 < 0.5 0.5 < 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.18 0.15 0.18 0.33 0.41	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 0.5	16 11 8 12 17	13 12 13 11 21	53 70 21 34 94	2.68 2.39 2.06 1.96 3.64	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.07 0.07 0.06 0.10 0.10	10 < 10 10 < 10 10	0.34 0.31 0.26 0.28 0.54
102+50N 101+00E 103N 99+00E 103N 99+25E 103N 99+75E 103N 100+00E	201 202 201 202 201 202 201 202 201 202 201 202	5 5 30 5 20	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 0.2	2.58 2.70 3.10 3.65 3.34	18 10 54 44 18	< 10 < 10 < 10 < 10 < 10 < 10	70 160 230 200 90	0.5 < 0.5 < 0.5 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.43 0.21 0.25 0.17 0.62	1.5 < 0.5 1.5 1.0 < 0.5	B 7 15 10 13	19 13 17 12 18	49 32 83 37 107	2.21 2.45 4.12 2.29 3.08	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.06 0.08 0.09 0.08 0.11	10 < 10 10 < 10 30	0.40 0.32 0.56 0.31 0.67
103N 100+025E 103N 100+075E 103N 101+00E 103+50N 99+00E 103+50N 100+00E	201 202 201 202 201 202 201 202 201 202 201 202	< 5 15 < 5 20 5	0.2 0.4 0.2 < 0.2 < 0.2	3.86 3.63 2.55 3.74 2.32	14 22 20 36 12	< 10 < 10 < 10 < 10 < 10 < 10	140 50 180 100 90	0.5 0.5 0.5 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.37 0.43 0.34 0.59 0.20	< 0.5 < 0.5 0.5 < 0.5 < 0.5 < 0.5	21 9 18 13 7	20 20 31 15 16	120 103 51 66 19	3.93 2.30 2.89 3.23 2.41	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.11 0.07 0.08 0.13 0.07	10 10 < 10 10 10	0.60 0.33 0.71 0.83 0.32
108+50E 107+50N 108+50E 107+60N 108+50E 107+70N 108+50E 107+80N 108+50E 107+90N	201 202 201 202 201 202 201 202 201 202 201 202	10 < 5 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.98 2.34 2.50 2.15 1.87	304 94 24 8 4	< 10 < 10 < 10 < 10 < 10 < 10	150 120 150 70 170	< 0.5 < 0.5 < 0.5 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.25 0.27 0.19 0.26 0.23	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	9 9 7 9 8	15 18 12 16 12	23 32 16 42 24	2.32 2.46 1.99 2.51 1.98	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.06 0.06 0.07 0.05 0.08	10 10 < 10 10 < 10	0.26 0.31 0.20 0.33 0.22
108+50E 108+00N 108+50N 109+00E 108+50N 109+50E 108+50N 110+00E 108+75N 109+50E	201 202 201 202 201 202 201 202 201 202 201 202	<pre>< 5 < 5 < 5 < 5 < 5 < 5 </pre>	< 0.2 0.2 < 0.2 0.2 0.2	2.12 2.22 1.83 2.39 3.64	6 8 2 4 10	< 10 < 10 < 10 < 10 < 10 < 10	100 80 140 50 90	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.20 0.37 0.21 0.28 0.43	< 0.5 0.5 < 0.5 0.5 0.5	6 8 5 5 6	12 13 11 11 10	13 16 6 15 27	1.84 2.17 1.51 1.73 1.87	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.04 0.07 0.06 0.03 0.05	< 10 < 10 < 10 10 < 10	0.20 0.21 0.14 0.10 0.16
109N 109+00E 109N 109+75E 109N 110+00E 109+50N 109+00E 109+50N 109+25E	201 202 201 202 201 202 201 202 201 202 201 202	< 5 < 5 < 5 < 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 0.2	2.92 2.17 1.47 1.94 3.06	4 2 < 2 < 2 8	< 10 < 10 < 10 < 10 < 10 < 10	130 120 80 100 110	0.5 < 0.5 < 0.5 < 0.5 < 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.18 0.20 0.19 0.30 0.33	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	5 5 4 9	9 13 15 11 14	12 12 9 8 35	1.72 1.81 1.85 1.79 2.23	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.07 0.05 0.04 0.08 0.08	< 10 10 10 < 10 < 10	0.16 0.20 0.17 0.17 0.28
109+50N 109+50EA 109+50N 109+50EB 109+50N 110+00E	201 202 201 202 201 202	< 5 < 5 < 5	< 0.2 < 0.2 < 0.2	2.08 2.37 1.28	10 2 4	< 10 < 10 < 10	150 110 40	< 0.5 0.5 < 0.5	< 2 < 2 < 2		0.5 < 0.5 < 0.5	7 6 6	13 14 20	22 12 23	1.84 1.96 2.42	< 10 < 10 < 10	< 1 < 1 < 1	0.07 0.07 0.07	< 10 < 10 10	0.26 0.23 0.31
								×								Λ				

SOIIS PAGE ~7

CERTIFICATION

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: GALE, R. E.

107 - 2274 FOLKESTONE WAY WEST VANCOUVER, BC V7S 2X7

Project : Comments: ATTN: R.E. GALE Page Number : 3-B Total Pages : 3 Certificate Date: 10-AUG-1999 Invoice No. : 19924464 P.O. Number : Account : CNF

[CE	RTIF	CATE	OF A	NALY	'SIS		4992446 4	1	
SAMPLE	PR CO		Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	S %	Sb ppm	Sc ppm	Sr ppm	Ti %	Tl ppm	U mqq	V mqq	W ppm	Zn ppm		
97N 102+00E		202		< 1	0.01	17	690	< 2	0.01	4	3	37	0.12	< 10	< 10	50	< 10	84		
97N 102+25E 97+50N 101+50E		202 202		< 1	0.03	13	690		< 0.01	< 2	3	37	0.12	< 10	< 10	44	< 10	50		
97+50N 101+50E		202		< 1 < 1	0.01 0.03	14 17	330 550	< 2 -	< 0.01 0.01	2	2	33 58	0.10	< 10	< 10	40	< 10	54		
102+50N 100+00E		202		< 1	0.01	40	1570	< 2	0.01	2	3 5	187	0.09 0.10	< 10 < 10	< 10 < 10	39 54	< 10 < 10	70 292		
102+50N 101+00E	201	202	760	< 1	0.03	99	260	< 2	0.01	2	4	30	0.12	< 10	< 10	34	< 10	746		
103N 99+00E		202	1000	< 1	0.02	23	1080	2	0.01	4	3	24	0.11	< 10	< 10	37	< 10	168		
103N 99+25E	201		2320	1	0.01	41	1030	< 2	0.04	6	4	30	0.11	< 10	< 10	52	< 10	540		
103N 99+75E 103N 100+00E		202 202	1070 1165	< 1 < 1	0.03 0.03	36 75	1000 330	< 2 < 2	0.01 0.02	26	4	23 45	0.12 0.14	< 10 < 10	< 10 < 10	32 51	< 10 < 10	53B 174		
103N 100+025E	201	202	1045								-									
103N 100+075E		202	390	4 < 1	0.01 0.04	58 79	1390 250	< 2 < 2	0.03 0.01	< 2	5 4	107 30	0.14	< 10 < 10	< 10 < 10	58 35	< 10	112		
103N 101+00E		202	2370	< 1	0.02	43	1240	6	0.02	2	1	41	0.14	< 10	< 10	35 55	< 10 < 10	244 318		
103+50N 99+00E		202	1010	< 1	0.03	84	290	< 2	0.01	- 4	6	61	0.17	< 10	< 10	51	< 10	148		
103+50N 100+00E	201	202	590	< 1	0.01	18	1140	6	0.01	< 2	3	22	0.11	< 10	< 10	43	< 10	100		
108+50E 107+50N		202	460	1	0.01	24	B9 0	2	0.01	< 2	1	28	0.09	< 10	< 10	39	< 10	100		
108+50E 107+60N		202	245	< 1	0.01	29	3170	< 2	0.01	2	2	60	0.09	< 10	< 10	42	< 10	62		1
108+50E 107+70N 108+50E 107+80N		202	425	< 1	0.02	21	720	< 2	0.01	< 2	1	27	0.11	< 10	< 10	33	< 10	74		.
108+50E 107+80N		202 202	190 745	1 < 1	0.01 0.01	16 21	490 600	< 2 · 4	< 0.01 0.01	< 2 2	3 1	28 31	0.12 0.10	< 10 < 10	< 10 < 10	46 33	< 10 < 10	50 74		
108+50E 108+00N	201	202	410	< 1	0.01	13	520	< 2 •	< 0.01	< 2	1	21	0.10	< 10	< 10	34	< 10	50		`
108+50N 109+00E		202	785	< 1	0.02	13	1130	B	0.03	< 2	1	39	0.12	< 10	< 10	38	< 10	170		
108+50N 109+50E	201	202	580	< 1	0.02	12	2310	2	0.01	< 2	1	28	0.08	< 10	< 10	25	< 10	126		
108+50N 110+00E	201		125	1	0.03	14	250	< 2	0.01	2	1	25	0.11	< 10	< 10	30	< 10	56		
108+75N 109+50E	201	202	430	1	0.04	25	2790	< 2	0.01	4	2	36	0.12	< 10	< 10	28	< 10	194		
109N 109+00E 109N 109+75E	201		320	< 1	0.03	15	720		< 0.01	4	1	25	0.13	< 10	< 10	27	< 10	106		
	201 201		185 315	<pre>1 <1</pre>	0.02 0.01	10	850	< 2	0.01	< 2	1	22	0.10	< 10	< 10	34	< 10	60		
109+50N 109+00E	201		580	< 1	0.01	10 11	810 890		< 0.01 < 0.01	< 2	1 1	22 29	0.08 0.10	< 10	< 10	36	< 10	52		
	201		320	1	0.03	32	2000	< 2	0.01	6	3	38	0.13	< 10 < 10	< 10 < 10	33 35	< 10 < 10	86 172		
	201		715	< 1	0.02	20	890	6	0.02	< 2	2	38	0.10	< 10	< 10	34	< 10	124		· · · · · · · · · · · · · · · · · · ·
109+50N 109+50EB	201		555	1	0.02	16	1180		< 0.01	2	1	23	0.10	< 10	< 10	37	< 10	114		
109+50N 110+00E	201	202	225	1	0.01	12	540	6 4	< 0.01	< 2	1	27	0.10	< 10	< 10	51	< 10	52		ULLS PAGE
																				- <u></u> A
																				A
																	1	7	_	

CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 io: Gries, R. E.

107 - 2274 FOLKESTONE WAY WEST VANCOUVER, BC V7S 2X7 rage Number 3-A Total Pages 3 Certificate Date: 24-SEP-1999 Invoice No. 19928629 P.O. Number : Account : CNF

Project : Comments: ATTN: R.E. GALE

		-								CE	RTIF	CATE	OF A	NAL	YSIS		19928	629		
SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm	A1 %	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %
01L 10M 01L 20M 01L 30M D-1 60W D-1 70W	201 202 201 202 201 202 201 202 201 202 201 202	10 20 20 20	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 0.2	1.87 1.74 2.43 1.56 2.38	36 24 78 4 82	< 10 < 10 < 10 < 10 < 10 < 10	80 70 180 80 100	0.5 0.5 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.31 0.20 0.16	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 6 7 5 5	14 14 12 12 11	24 20 17 7 9	2.49 2.16 2.05 1.71 1.57	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.06 0.06 0.08 0.04 0.06	30 20 10 10 10	0.32 0.27 0.25 0.15 0.15
D-1 80W D-1 70W-10S D-1 70W-10N NEW 25N 0E NEW 25N 10E	201 202 201 202 201 202 201 202 201 202 201 202	<pre>< 5 < 5 < 5 < 5</pre>	0.2 < 0.2 0.2 0.2 0.2	3.49 1.91 2.54 4.12 3.50	12 6 10 22 22	< 10 < 10 < 10 < 10 < 10 < 10	100 100 80 100 140	0.5 < 0.5 < 0.5 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.18 0.16 0.13	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 5 5 6 8	11 12 11 8 17	9 7 7 18 13	1.86 1.64 1.66 1.83 2.78	< 10 < 10 < 10 < 10 10	< 1 < 1 < 1 < 1 < 1	0.04 0.05 0.05 0.04 0.05	< 10 10 10 10 < 10	0.13 0.15 0.14 0.14 0.21
NEW 25N 10W NEW 25S 0E NEW 25S 10E NEW 25S 10W	201 202 201 202 201 202 201 202	60 15	0.2 0.4 0.2 0.8	3.23 2.84 2.97 2.67	78 46 14 190	< 10 < 10 < 10 < 10	80 100 90 80	0.5 0.5 0.5 0.5	< 2 < 2 < 2 < 2	0.12	< 0.5 < 0.5 < 0.5 < 0.5	6 6 10	11 10 13 23	23 30 17 66	2.18 1.94 2.10 3.97	< 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1	0.04 0.05 0.05 0.05	10 < 10 10 10	0.18 0.18 0.23 0.84
																	ſ	ł		

SOILS PAGE ω

CERTIFICATION:_

, 1

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave.. North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: GALE, R. E.

107 - 2274 FOLKESTONE WAY WEST VANCOUVER, BC V7S 2X7

Page Number :3-B Total Pages :3 Certificate Date: 24-SEP-1999 Invoice No. :19928629 P.O. Number : :CNF Account

Proiect : Comments: ATTN: R.E. GALE

CERTIFICATE OF ANALYSIS A9928629 PREP Mn Mo Na Ni Ρ Pb 8 Sb Sc Sr Тİ **T**1 U V W Zn SAMPLE CODE ppm % % % ppm ndd DDW ECC ppm ppm ppm ppm ppm ppm ppm ppm 01L 10M 201 202 345 4 0.01 7 600 8 < 0.01 < 2 3 44 0.09 < 10 < 10 41 < 10 40 01L 20M 201 202 300 Э 0.01 7 500 8 < 0.01 < 2 3 34 0.09 < 10 < 10 38 < 10 38 01L 30M 201 202 480 1 0.03 740 8 < 0.01 10 < 2 1 32 0.10 < 10 < 10 33 < 10 332 b-1 60w 201 202 200 1 0.01 340 6 < 0.01 -8 < 2 1 22 0.09 < 10 < 10 34 < 10 32 D-1 70W 201 202 335 0.03 9 < 1 610 6 0.03 < 2 1 26 0.10 < 10 < 10 29 < 10 44 201 202 D-1 80W 180 1 0.03 11 670 8 0.01 < 2 1 22 0.12 < 10 33 < 10 36 < 10 D-1 70W-10S 201 202 345 1 0.03 8 790 6 < 0.01< 2 20 0.10 1 < 10 < 10 31 < 10 44 D-1 70W-10N 201 202 280 < 1 0.03 8 830 6 < 0.01 < 2 16 0.11 / 1 < 10 < 10 31 < 10 40 NEW 25N OE 201 202 345 < 1 0.04 13 870 8 < 0.01 < 2 3 15 0.14 < 10 < 10 28 < 10 68 NEW 25N 10E 201 202 585 1 0.03 17 1460 0.01 6 < 2 1 14 0.15 < 10 < 10 53 < 10 214 NEW 25N 10W 201 202 245 < 1 0.02 16 760 0.01 8 < 2 З 10 0.12 < 10 < 10 35 < 10 64 NEW 258 OE 201 202 350 1 0.02 14 700 8 < 0.01 < 2 2 14 0.10 < 10 < 10 28 < 10 72 NEW 258 10E 201 202 295 0.01 11 730 8 < 0.01 < 1 < 2 3 14 0.11 < 10 < 10 35 < 10 62 NEW 255 10W 201 202 385 4 0.01 34 430 10 0.01 < 2 5 24 0.10 49 < 10 < 10 < 10 102 -... ĩ

CERTIFICATION:

;

SOIIS PAGE

8A

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 IO: GALL, R. E.

107 - 2274 FOLKESTONE WAY WEST VANCOUVER, BC V7S 2X7 Page Number :1-A Total Pages :3 Certificate Date: 24-SEP-1999 Invoice No. : 19928629 P.O. Number : Account :CNF

Project : Comments: ATTN: R.E. GALE

	.										CE	RTIFI	CATE	OF A	NAL	/SIS	4	19928	629		
SAMPLE	PRE COD	_	Au ppb FA+AA	Ag ppm	A1 %	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %
N 225E	201		60	0.2	2.22	58	< 10	200	< 0.5	< 2	0.20	< 0.5	7	13	33	2.57	< 10	< 1	0.05	< 10	0.20
N 250E	201		< 5	0.4	2.72	12	< 10	150	0.5	< 2	0.30	0.5	11	13	21	2.05	< 10	< 1	0.05	10	0.19
N 275E N 300E		202	< 5	0.2	3.21	8	< 10	80	< 0.5	< 2	0.27	< 0.5	10	17	48	2.91	< 10	< 1	0.07	10	0.42
N 325E		202 202	< 5 < 5	< 0.2 0.2	1.87 2.47	8 6	< 10 < 10	160 100	< 0.5 < 0.5	< 2 < 2	0.23 0.15	< 0.5 < 0.5	7 5	13 11	22 13	1.90 1.65	< 10 < 10	< 1 < 1	0.07 0.05	< 10 < 10	0.20 0.14
N 350E	201	202	< 5	0.2	2.97	4	< 10	100	0.5	< 2	0.20	< 0.5		17	31	2.53	< 10	< 1	0.05	10	0.28
N 375E	201	202	< 5	0.2	2.97	2	< 10	90	0.5	< 2	0.20	< 0.5	7	15	35	2.38	< 10	< 1	0.05	10	0.22
N 400E		202	< 5	0.2	2.26	4	< 10	80	0.5	< 2	0.25	< 0.5	6	13	21	1.98	< 10	< 1	0.06	< 10	0.21
ON 2+00E ON 2+25E	201 201	202 202	< 5 205	0.2 1.4	3.13 3.32	14 174	< 10 < 10	90 100	< 0.5 < 0.5	< 2 10	0.13 0.10	< 0.5 < 0.5	777	12 12	32 172	2.31 6.85	< 10 < 10	< 1 < 1	0.05 0.06	< 10 < 10	0.19 0.22
ON 2+50E	201	202	< 5	0.2	2.08	26	< 10	150	< 0.5	< 2	0.18	< 0.5	10	13	37	2.75	< 10	< 1	0.06	< 10	0.21
+50N 2+75E	201	202	< 5	< 0.2	2.79	14	< 10	100	< 0.5	< 2	0.22	< 0.5	B	13	26	2.19	< 10	< 1	0.07	< 10	0.23
+50N 3+25E		202	5	0.2	3.06	16	< 10	150	< 0.5	< 2	0.29	< 0.5	B	14	66	3.84	< 10	< 1	0.09	< 10	0.35
+50N 3+50E		202	< 5	< 0.2	1.82	6	< 10	70	< 0.5	< 2	0.19	< 0.5	7	12	13	1.91	< 10	< 1	0.05	< 10	0.21
+50N 3+75E	201	202	< 5	0.2	2.14	2	< 10	90	< 0.5	< 2	0.21	< 0.5	6	16	14	2.18	< 10	< 1	0.08	< 10	0.22
50N 4+00E		202	< 5	0.2	1.78	2	< 10	100	< 0.5	< 2	0.22	< 0.5	5	14	18	1.89	< 10	< 1	0.05	10	0.17
00N 3+25E		202	< 5	0.2	3.05	12	< 10	100	0.5	< 2	0.26	< 0.5	10	14	54	2.44	< 10	< 1	0.07	10	0.30
00N 3+50E 00N 2+00E		202	< 5	0.2	1.59	10	< 10	100	< 0.5	< 2	0.30	< 0.5	6	14	25	1.67	< 10	< 1	0.06	< 10	0.20
+00N 2+25E		202 202	< 5 < 5	0.4 0.4	3.73 3.09	8 20	< 10 < 10	90 170	0.5 < 0.5	< 2 < 2	0.15 0.17	< 0.5 < 0.5	8 12	12 14	28 33	1.95 2.66	< 10 < 10	< 1 < 1	0.04 0.06	< 10 < 10	0.15 0.19
+00N 2+50E	201	202	10	0.6	2.80	30	< 10	30	1.5	< 2	0.41	0.5	7	22	173	1.50	< 10	< 1	0.03	30	0.16
+50N 2+00E	201		< Š	0.2	2.67	12	< 10	120	< 0.5	< 2	0.16	< 0.5	2	13	1/3	2.13	< 10	< 1	0.03	< 10	0.16
+50N 2+25E	201	202	70	0.2	1.31	4	< 10	100	< 0.5	< 2	0.48	< 0.5	6	12	18	1.39	< 10	< 1	0.05	< 10	0.17
+50N 2+50E	201		< 5	0.2	2.38	14	< 10	110	< 0.5	< 2	0.17	< 0.5	7	12	32	1.76	< 10	< 1	0.06	< 10	0.17
+50N 2+75E	201	202	< 5	0.2	2.52	10	< 10	130	0.5	< 2	0.17	< 0.5	8	14	25	1.92	< 10	< 1	0.06	10	0.22
+00N 2+25E	201		< 5	0.2	1.97	10	< 10	120	< 0.5	< 2	0.37	< 0.5	6	16	16	1.99	< 10	< 1	0.05	10	0.22
+00N 2+50E	201		< 5	0.2	2.07	18	< 10	130	< 0.5	< 2	0.38	< 0.5	9	13	66	1.74	< 10	< 1	0.10	< 10	0.24
1+50N 101+50E 1+50N 101+75E	201		40	1.2	3.02	434	< 10	70	1.0	2	0.45	< 0.5	9	15	369	2.11	< 10	< 1	0.04	40	0.26
1+50N 101+75E	201 201		10 10	0.2 < 0.2	2.29 1.09	180 36	< 10 < 10	70 60	< 0.5 < 0.5	< 2 < 2	0.47 0.33	< 0.5 < 0.5	6 5	11 15	98 11	$1.76 \\ 2.04$	< 10 < 10	< 1 < 1	0.05 0.09	20 30	0.20
1+50N 102+25E	201	202	40	0.6	3.44	288	< 10	90	0.5	< 2	1.03	< 0.5	11	13	225	3.00	< 10	< 1	0.05	40	0.30
1+50N 102+50E	201		10	< 0.2	2.12	18	< 10	100	< 0.5	< 2	0.25	< 0.5	5	12	10	1.68	< 10	< 1	0.05	10	0.30
L+50N 102+75E	201 :		< 5	< 0.2	2.33	84	< 10	70	< 0,5	< 2	0.40	< 0.5	5	10	Îŷ	1.67	< 10	< 1	0.09	< 10	0.15
L+50N 103+00E		202	100	< 0.2	1.92	86	< 10	100	< 0.5	< 2	0.16	< 0.5	5	11	13	1.89	< 10	< 1	0.05	10	0.17
L+50N 105+50E	201	202	10	< 0.2	1.96	20	< 10	100	< 0.5	< 2	0.23	< 0.5	5	13	13	1.79	< 10	< 1	0.06	10	0.17
IN 100+37E		202	330	0.8	2.46	470	< 10	110	< 0.5	< 2	0.43	< 0.5	14	15	160	2.60	< 10	< 1	0.12	10	0.32
IN 100+75E		202	< 5 < 5	0.2	2.48	38	< 10	100	< 0.5	< 2	0.18	< 0.5	6	9	20	1.58	< 10	< 1	0.07	< 10	0.15
2N 101+77E	201		10	0.2	2.10	10 164	< 10 < 10	290 120	< 0.5 < 0.5	< 2 < 2	0.28	< 0.5 < 0.5	6	13	9	1.68	< 10	< 1	0.12	10	0.25
2N 102+25E	201			< 0.2	2.01	64	< 10	80	< 0.5	< 2		< 0.5	4	10 11	14	1.76 1.70	< 10 < 10	$\begin{pmatrix} 1 \\ \langle A \rangle \end{pmatrix}$	0.05	< 10 < 10	0.13 0.13
											V.1.0		-		2	1.10	× 10	<u>`</u> [* \	~		v.13
																				1	

CERTIFICATION:___

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave.,North VancouverBritish Columbia, CanadaV7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

To: GALE, R. E.

107 - 2274 FOLKESTONE WAY WEST VANCOUVER, BC V7S 2X7 Page Number :1-B Total Pages :3 Certificate Date: 24-SEP-1999 Invoice No. : 19928629 P.O. Number : Account :CNF

i.

Project : Comments: ATTN: R.E. GALE

[CE	RTIFI	CATE	OF /	NAL	SIS	4	9928629	
SAMPLE	PREP CODE	Mr ppr		Na %	Ni ppm	P ppm	Pb ppm	S %	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U mqq	V ppm	W	Zn ppm	
ON 225E	201 20			0.01	10	1130	8	0.01	< 2	1	18	0.09	< 10	< 10	35	< 10	92	
ON 250E	201 20			0.01	10	990	10	0.01	< 2	1	31	0.10	< 10	< 10	33	< 10	92	
ON 275E On 300E	201 20 201 20			0.02	14	1010	6	0.02	< 2	3	27	0.13	< 10	< 10	47	< 10	86	
N 325E	201 20			0.02	12 9	380 770		0.01 0.01	< 2 < 2	1 1	22 13	0.09 0.10	< 10 < 10	< 10 < 10	30 26	< 10 < 10	108	
										-		0110	· + ·				11	
N 350E	201 20				12	720	8	0.01	< 2	3	19	0.12	< 10	< 10	42	< 10	56	
N 375E N 400E	201 20 201 20			0.02	14	1500	6	0.01	< 2	2	18	0.11	< 10	< 10	37	< 10	94	
ON 2+00E	201 20			0.03 0.02	11 10	610 1040	6 8	0.01 0.01	< 2	1	23	0.12	< 10	< 10	34	< 10	116	
ON 2+25E	201 20			0.02	7	1910	6	0.01	< 2 < 2	2	12 24	0.12 0.10	< 10 < 10	< 10 < 10	34 47	< 10 < 10	76 56	
													· 10		• • •	< 10	20	
ON 2+50E)+50N 2+75E	201 20 201 20				9	1620	8	0.01	< 2	1	23	0.10	< 10	< 10	35	< 10	192	
+50N 3+25E	201 20			0.02	13 10	850 790	6 6	0.01	< 2	1	20	0.12	< 10	< 10	33	< 10	70	
+50N 3+50E	201 20				7	270	6 <	0.03	< 2 < 2	3 1	44 20	0.12 0.09	< 10 < 10	< 10 < 10	45 33	< 10 < 10	56 50	
+50N 3+75E	201 20				13	660	. Š	0.01	< 2	1	21	0.11	< 10	< 10	36	< 10	166	
											·				-			
+50N 4+00E 00N 3+25E	201 20 201 20				9	820	8 <		< 2	2	19	0.09	< 10	< 10	35	< 10	60	
00N 3+50E	201 20 201 20			0.02	13	700	6	0.01	< 2	2	38	0.12	< 10	< 10	38	< 10	70	
+00N 2+00E	201 20				12 12	410 1370	6 < 8	0.01	< 2 < 2	1 2	36 16	0.09 0.12	< 10 < 10	< 10 < 10	30 33	< 10	86	
+00N 2+25E	201 20				12	2960	ĕ	0.01	< 2	1	19	0.11	< 10	< 10	35	< 10 < 10	66 164	
+00N 2+50E	201 20	2 305	-	0.05		040		0.01										
+50N 2+00E	201 20			0.05 0.01	64 10	240 980	6 10	0.01 0.01	< 2 < 2	2 1	32 14	0.10 0.12	< 10 < 10	< 10 < 10	25 35	< 10 < 10	86 86	
+50N 2+25E	201 20			0.03	18	580		0.01	< 2	1	14	0.08	< 10	< 10	27	< 10	222	
+50N 2+50E	201 20			0.02	24	500		0.01	< 2	ī	17	0.11	< 10	< 10	27	< 10	78	
+50N 2+75E	201 20	2 400	1	0.01	26	1440		0.01	< 2	1	24	0.11	< 10	< 10	32	< 10	76	
+00N 2+25E	201 20	2 555		0.01														
+00N 2+50E	201 20			0.01	20 35	490 230		0.01 0.01	< 2 < 2	1	25	0.10	< 10	< 10	36	< 10	86	
1+50N 101+50E	201 20			0.04	51	290	6	0.01	2	1 5	28 42	0.09 0.11	< 10 < 10	< 10 < 10	29 28	< 10	92	
1+50N 101+75E	201 20			0.03	12	290	6	0.01	< 2	3	44	0.09	< 10	< 10	27	< 10 < 10	38 38	
1+50N 102+00E	201 20			0.01	5	420	6 <	0.01	< 2	3	30	0.07	< 10	< 10	41	< 10	32	
1+50N 102+25E	201 20	1 100		0.04		210												
1+50N 102+50E	201 20			0.04	22 9	240 460	4 6 <	0.03	< 2	9	85	0.09	< 10	< 10	51	< 10	40	
1+50N 102+75E	201 20			0.02	10	480	6 < 6	0.01	< 2 < 2	1 1	24 38	0.09 0.10	< 10 < 10	< 10 < 10	29	< 10	48	
1+50N 103+00E	201 20			0.01	8	1120	6	0.01	< 2	1	18	0.08	< 10	< 10 < 10	28 31	< 10 < 10	34 74	
1+50N 105+50E	201 20			0.02	9	560	-	0.01	< 2	1	24	0.10	< 10	< 10	32	< 10	62	
2N 100+37E	201 20	2 510	2	0.03	20	E 6 0	10	0.00										
2N 100+75E	201 20			0.03	39 12	560 900	10 6	0.02	< 2 < 2	4	49 25	0.09	< 10	< 10	40	< 10	78	
2N 101+37E	201 20			0.03	8	1640		0.01	< 2	1 2	25 54	0.09	< 10 < 10	< 10	25	< 10	74	
2N 101+75E	201 20	2 825		0.01	ő	1980	8	0.01	< 2	1	54 18	0.08	< 10 < 10	< 10 < 10	26 27	< 10 < 10	80 102	
2N 102+25E	201 20	2 80		0.01	ě	90	-	0.01	< 2	1	27	0.09	< 10	< 10	29	< 10	20/	
		1	-		=					-					A.2		-7 \	,
																	<u></u>	1

CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave North Vancouver

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 10: Unic, R. E.

107 - 2274 FOLKESTONE WAY WEST VANCOUVER, BC V7S 2X7 Page Number : 2-A Total Pages :3 Certificate Date: 24-SEP-1999 Invoice No. : 19928629 P.O. Number : Account : CNF

Project : Comments: ATTN: R.E. GALE

	·					Ł				CE	RTIFI	CATE	OF A	NAL	YSIS		49928	629		
SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm	A1 %	As ppm	B mqq	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %
82N 104+50E	201 202	10	< 0.2	2.05	94	< 10	60	< 0.5	< 2	0.50	< 0.5	5	12	84	1.71	< 10	< 1	0.03	20	0.14
82N 104+75E 82N 105+00E	201 202 201 202	20 15	< 0.2 0.4	1.01 2.98	112 74	< 10	40	< 0.5	< 2	0.29	< 0.5	3	13	47	1.51	< 10	< 1	0.04	20	0.19
82N 105+25E	201 202	< 5	0.1	2.28	32	< 10 < 10	90 110	0.5	< 2 < 2	0.15 0.19	< 0.5 < 0.5	5 5	10 13	15 20	1.76 1.80	< 10	< 1	0.04	< 10	0.15
82N 105+50E	201 202	10	0.4	2.66	58	< 10	160	0.5	< 2	0.47	< 0.5	8	15	54	2.33	< 10 < 10	< 1 < 1	0.06 0.12	10 20	0.20 0.29
82N 105+75E	201 202	30	0.8	2.73	94	< 10	70	0.5	< 2	0.24	< 0.5	7	11	180	2.04	< 10	< 1	0.07	30	0.24
32N 106E 32+50N105+50E	201 202 201 202	< 5 10	0.2 0.2	2.84 2.01	32	< 10	120	0.5	< 2	0.21	< 0.5	6	13	48	2.09	< 10	< 1	0.08	10	0.25
1N 87+00E	201 202	70	< 0.2	1.88	42 32	< 10 < 10	100 140	< 0.5 < 0.5	< 2 < 2	0.34	< 0.5 < 0.5	7	10 10	49 32	1.92 2.81	< 10	< 1	0.08	10	0.22
04+50N 108+00E	201 202	< 5	0.2	3.03	32	< 10	110	0.5	< 2	0.18	< 0.5	14 6	9	16	1.79	< 10 < 10	< 1 < 1	0.07 0.06	< 10 10	0.22 0.20
06N 108+25E	201 202	< 5	< 0.2	1.66	34	< 10	140	< 0.5	< 2	0.27	< 0.5	8	9	23	2.12	< 10	< 1	0.04	< 10	0.25
06+50N 107+50E	201 202	45	< 0.2	2.06	190	< 10	80	< 0.5	< 2	0.24	< 0.5	6	11	32	2.25	< 10	< 1	0.06	10	0.20
L06+50N 107+75E L06+50N 108+00E	201 202 201 202	< 5 < 5	< 0.2 0.2	2.73 2.56	34 34	< 10	90	< 0.5	< 2	0.29	< 0.5	5	9	13	1.57	< 10	< 1	0.04	< 10	0.16
06+50N 108+20E	201 202	20	0.2	3.76	124	< 10 < 10	90 100	< 0.5 0.5	< 2 < 2	0.16 0.24	< 0.5 1.0	5 6	9 6	12 21	1.58 1.70	< 10 < 10	< 1 < 1	0.06 0.06	< 10 < 10	0.15 0.13
06+50N 108+75E	201 202	20	0.2	3.57	250	< 10	50	1.0	< 2	0.36	1.5	6	9	29	1.88	< 10	< 1	0.07	30	0.13
06+50N 109+00E	201 202	85	0.2	2.49	382	< 10	120	< 0.5	< 2	0.20	1.5	10	10	78	4.36	< 10	< 1	0.10	10	0.23
06+50N 109+25E 06XN 107+40E	201 202 201 202	60	< 0.2	2.34	116	< 10	70	0.5	< 2	0.22	1.0	6	11	17	2.10	< 10	< 1	0.06	10	0.20
.06XN 107+75E	201 202	15 < 5	0.2 0.2	2.97 2.63	1B 50	< 10 < 10	130 90	0.5 < 0.5	< 2 < 2	0.20 0.21	< 0.5 < 0.5	6 5	10 10	22 12	1.83 1.68	< 10 < 10	< 1 < 1	0.05 0.05	10 < 10	0.16 0.15
06XN 108+00E	201 202	10	0.2	2.89	326	< 10	50	0.5	< 2	0.37	< 0.5	6	14	63	2.24	< 10	< 1	0.04	30	0.23
L06XN 108+25E	201 202	< 5	0.2	2.61	120	< 10	80	< 0.5	< 2	0.28	< 0.5	5	11	12	1.74	< 10	< 1	0.05	10	0.16
06XN 108+50E	201 202	45	0.2	2.22	72	< 10	100	< 0.5	< 2	0.17	0.5	6	12	13	1.99	< 10	< 1	0.05	10	0.18
	201 202	40	0.2	2.09	90	< 10	120	0.5	< 2	0.27	0,5	8	11	25	2.42	< 10	< 1	0.06	< 10	0.28
	201 202	75	0.2	2.35	106	< 10	90	< 0.5	< 2	0.27	0.5	5	10	10	1.78	< 10	< 1	0.05	< 10	0.17
07+00N 107+50E 07+00N 107+75E	201 202 201 202	< 5 < 5	0.2	2.52 1.65	34 18	< 10 < 10	100 40	0.5	< 2 < 2	0.32	< 0.5 < 0.5	6 5	11	17	1.96	< 10	< 1	0.07	10	0.23
07+00N 108+00E	201 202	< 5	< 0.2	2.63	32	< 10	80	< 0.5	< 2	0.40	< 0.5	10	13 7	23 40	1.84 2.59	< 10 < 10	< 1 < 1	0.06	30 < 10	0.20
07+00N 108+25E	201 202	10	0.4	2.11	62	< 10	150	< 0.5	< 2	0.43	2.5	14	13	62	2.71	< 10	< 1	0.13	< 10	0.75
07+00N 108+50E	201 202	45	0.2	2.37	68	< 10	90	< 0.5	< 2	0.25	0.5	12	13	89	3.20	< 10	< 1	0.06	10	0.38
07+00N 108+75E 07+00N 109+00E	201 202 201 202	230	0.2	2.67	468	< 10	140	< 0.5	< 2	0.16	< 0.5	6	7	16	1.68	< 10	< 1	0.07	< 10	0.13
07+00N 109+25E	201 202	< 5 < 5	< 0.2	1.67 2.56	92 356	< 10 < 10	70 40	< 0.5 0.5	< 2 < 2	0.17 0.27	< 0.5 1.5	6	12	11	1.95	< 10	< 1	0.04	< 10	0.17
07+00N 109+50E	201 202	10	< 0.2	2.38	38	< 10	110	< 0.5	< 2	0.27	< 0.5	5 4	12 11	17 8	1.86 1.72	< 10 < 10	< 1 < 1	0.04 0.08	10 < 10	0.14 0.17
07+10N 108+50E	201 202	5	0.2	3.20	10	< 10	70	0.5	< 2	0.25	< 0.5	8	13	37	2.29	< 10	< 1	0.06	10	0.17
07+20N 108+50E	201 202	20	0.2	3.48	30	< 10	120	0.5	< 2	0.20	< 0.5	13	12	59	3.01	< 10	< 1	0.06	10	0.30
07+30N 108+50E 07+40N 108+50E	201 202 201 202	5 30	0.2	2.63	52	< 10	180	< 0.5	< 2	0.22	< 0.5	11	16	25	2.67	< 10	< 1	0.07	< 10	0.26
08E 104+75N	201 202	10	0.2	3.62 3.25	186 52	< 10 < 10	90 130	0.5 0.5	< 2	0.23 0.19	< 0.5 <-0.5	11 8	15	53	2.74	< 10	< 1	0.07	10	0.30
08E 105+00N	201 202	< 5	0.2	3.07	24	< 10	110	0.5	< 2		< 0.5	в 6	12 14	22 18	2.26 2.16	< 10 < 10	< 1 < 1	0.06	10 10	0.26 0.25
																	Ī		Ĵ	
										-			-**			·		1 1	1-1-	

CERTIFICATION:_

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: GALE, R. E.

107 - 2274 FOLKESTONE WAY WEST VANCOUVER, BC V7S 2X7

Page Number :2-B Total Pages :3 Certificate Date: 24-SEP-1999 Invoice No. P.O. Number :19928629 : Account CNF

SOIIS

PACE

10A

Project : Comments: ATTN: R.E. GALE

							·				CE	RTIFI	CATE	OF A	NALY	/SIS	A	9928629	
SAMPLE	PRE COD		Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	S %	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	V ppm	W ppm	Zn ppm	
82N 104+50E 82N 104+75E 82N 105+00E 82N 105+25E 82N 105+50E	201 201	202 202 202 202 202 202	125 105 530 255 620	3 1 < 1 2	0.03 0.01 0.01 0.01 0.03	10 6 7 9 9	270 280 1610 840 1170	2 < 0		< 2 < 2 < 2 < 2 < 2 < 2	3 3 1 2 3	40 25 17 20 48	0.08 0.08 0.09 0.10 0.10	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	27 30 27 32 40	< 10 < 10 < 10 < 10 < 10 < 10	58 58 74 48 70	
82N 105+75E 82N 106E 82+50N105+50E 91N 87+00E 104+50N 108+00E	201		190 345 365 785 335	2 1 1 2 1	0.03 0.02 0.02 0.01 0.03	19 10 8 8 9	400 610 490 1820 820		.01 .01 .02	< 2 < 2 < 2 < 2 < 2 < 2 < 2	4 2 1 3	35 24 32 36 27	0.10 0.10 0.08 0.08 0.10	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	29 33 31 42 27	< 10 < 10 < 10 < 10 < 10 < 10	72 60 76 100 48	
106N 108+25E 106+50N 107+50E 106+50N 107+75E 106+50N 108+00E 106+50N 108+20E	201 201 201 201 201 201	202 202 202	1055 295 300 235 375	1 3 3 1 < 1	0.02 0.01 0.03 0.02 0.04	9 9 7 7 9	600 470 360 1140 1640	80 10<0 8<0		< 2 < 2 < 2 < 2 < 2 < 2 < 2	1 2 1 1 2	66 24 22 18 31	0.07 0.09 0.11 0.10 0.12	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	31 30 23 26 21	< 10 < 10 < 10 < 10 < 10 < 10	56 72 52 58 126	
106+50N 108+75E 106+50N 109+00E 106+50N 109+25E 106XN 107+40E 106XN 107+75E	201	202 202	185 225 270 515 345	2 7 2 2 2	0.04 0.03 0.03 0.03 0.03	45 23 12 9 7	260 610 1010 810 810		.01	< 2 < 2 < 2 < 2 < 2 < 2	3 1 1 2 1	24 43 26 23 21	0.12 0.10 0.09 0.11 0.10	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	22 36 30 29 27	< 10 < 10 < 10 < 10 < 10 < 10	354 350 258 54 50	
106XN 108+00E 106XN 108+25E 106XN 108+50E 106XN 108+75E 106XN 108+75E	201 201 201 201 201 201	202 202	325 455 380 610 360	4 3 1 3 2	0.03 0.03 0.02 0.02 0.02	13 10 16 11 12	260 730 1120 1030 1240	10 < 0 8 < 0 8 < 0 8 < 0 8 < 0	.01 .01 .01	< 2 < 2 < 2 < 2 < 2 < 2	3 1 1 2 1	30 20 19 83 32	0.12 0.10 0.09 0.08 0.09	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	33 26 32 39 27	< 10 < 10 < 10 < 10 < 10 < 10	58 100 192 186 160	
L07+00N 107+50B L07+00N 107+75E L07+00N 108+00E L07+00N 108+25E L07+00N 108+50E	201 201 201 201 201 201	202 202 202	380 320 530 880 380	2 6 3 3 2	0.02 0.02 0.01 0.03 0.01	8 6 7 18 13	710 250 280 480 570	8 0 8 0 10 0	.01 .01 .01 .01 .02	< 2 < 2 < 2 < 2 < 2 < 2	2 3 3 3 3	31 29 43 59 30	0.10 0.09 0.06 0.06 0.09	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	33 30 48 42 44	< 10 < 10 < 10 < 10 < 10 < 10	52 30 134 364 92	
07+00N 108+75E 07+00N 109+00E 07+00N 109+25E 07+00N 109+50E 07+10N 108+50E	201 201 201 201 201 201	202 202 202	565 315 130 250 205	< 1 1 2 1 1	0.02 0.01 0.04 0.02 0.03	9 9 20 12 10	900 910 230 2240 550	4 < 0 6 < 0 6 < 0 6 < 0 6 < 0	.01 .01 .01	< 2 < 2 < 2 < 2 < 2 < 2 < 2	1 1 1 1 4	26 18 23 35 27	0.09 0.08 0.10 0.10 0.13	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	22 33 25 27 38	< 10 < 10 < 10 < 10 < 10 < 10	78 82 614 122 54	
07+20N 108+50E 07+30N 108+50E 07+40N 108+50E 08E 104+75N 08E 105+00N	201 2 201 2 201 2 201 2 201 2	202 202 202	385 1050 195 215 230	1 1 1 1	0.01 0.02 0.01 0.02 0.02	14 24 33 9 9	1070 1580 1040 1200 840	8 0 8 0	.01 .01 .01 .01 .01	< 2 < 2 < 2 < 2 < 2 < 2 < 2	3 2 3 3 3	33 27 27 30 33	0.12 0.12 0.12 0.12 0.12 0.12	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	42 40 39 38 37	< 10 < 10 < 10 < 10 < 10 < 10	80 128 78 66 54	
								·							ERTIFIC	ATION:			17

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: GALE, R. E.

107 - 2274 FOLKESTONE WAY WEST VANCOUVER, BC V7S 2X7

Page Number : 1-A Total Pages : 1 Certificate Date: 07-JUL-1999 Invoice No. : 19921324 P.O. Number : Account CNF

Project :
Comments:

		r								CE	ERTIFI	CATE	OF A	NAL	YSIS	4	49921	324		
SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm	A1 %	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %
119834M 119835M 119836M 119837M 119838M	205 226 205 226 205 226 205 226 205 226 205 226	< 5 < 5 < 5	< 0.2 0.2 < 0.2 0.6 < 0.2	1.74 2.72 1.30 1.66 2.27	16 14 16 14 6	< 10 < 10 < 10 < 10 < 10 < 10	80 30	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.47	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	8 13 6 7 6	74 129 110 46 19	22 54 35 60 8	2.76 3.72 3.24 2.88 3.45	< 10 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.05 0.46 0.15 0.13 0.17	< 10 < 10 < 10 < 10 < 10 < 10	1.36 1.64 0.73 0.41 0.86
119839M 119840M 119841M 119842M 119842M 119843M	205 226 205 226 205 226 205 226 205 226 205 226	15 20	0.2 < 0.2 0.6 0.4 0.2	1.92 1.83 1.76 1.86 2.20	12 6 156 16 514	< 10 < 10 < 10 < 10 < 10 < 10	80 30	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 2	0.48 1.53	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	22 11 18 20 13	16 30 104 38 76	176 103 252 204 131	4.49 2.43 3.42 4.19 5.66	< 10 < 10 < 10 < 10 < 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.13 0.14 0.47 0.08 0.26	< 10 < 10 < 10 < 10 < 10 < 10	0.98 0.51 0.99 1.06 1.17
119844M 119845M	205 226 205 226	25 < 5	1.2 < 0.2	2.24 1.07	70 28	< 10 < 10	40 100	< 0.5 < 0.5	< 2 < 2	1.05 0.78	< 0.5 < 0.5	16 16	51 167	460 160	4.54 3.36	< 10 < 10	< 1 < 1	0.15 0.23	< 10 10	0.91 0.70
			-									•		-						
													-							
														,ĩ						
																	\cap			
									<u> </u>							,		01.	D	

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 o: 🜔 ..., R. E.

107 - 2274 FOLKESTONE WAY WEST VANCOUVER, BC V7S 2X7 ·LXac

CERTIFICATION:_

Project :	
Comments:	

										CE	RTIFI	CATE	OF A	NALY	(SIS	ļ	4992132 4	ļ.	
SAMPLE	PREP CODE	Mn ppm	Mo ppm	Na %	Ni ppm	p pm	Pb ppm	S %	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	V ppm	W ppm	Zn ppm		
119834M 119835M 119836M 119837M 119837M	205 226 205 226 205 226 205 226 205 226 205 226	335 510 115 265 425	2 2 3 3 3	0.06 0.12 0.05 0.08 0.13	20 40 20 3 3	450 450 510 870 890	4 6 2 36 2	0.05 0.45 0.13 0.70 0.01	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	8 14 4 1 5	20 55 25 53 60	0.18 0.26 0.25 0.13 0.17	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	82 157 93 40 91	< 10 < 10 < 10 < 10 < 10 < 10	30 90 44 40 34		
119839M 119840M 119841M 119842M 119843M	205 226 205 226 205 226 205 226 205 226 205 226	515 230 210 460 445	3 2 15 21 6	0.14 0.13 0.09 0.13 < 0.01	3 5 30 8 2	860 900 390 1000 840	2 2 2 4	1.06 0.20 0.69 1.16 0.12	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	8 3 9 7 2	56 70 19 98 16	0.21 0.20 0.15 0.21 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	126 74 75 116 37	< 10 < 10 < 10 < 10 < 10 < 10	36 16 32 32 34		
119844M 119845M	205 226 205 226	330 225	4 8	0.14 0.04	4 42	960 810	6 2	1.29 0.97	< 2 < 2	5 6	66 36	0.11 0.18	< 10 < 10	< 10 < 10	65 55	< 10 < 10	58 30		
																			RC
																			ROCKS PAGE
																			GE lA
																·	$\left(\right) $	12	

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: GALE, R. E.

107 - 2274 FOLKESTONE WAY WEST VANCOUVER, BC V7S 2X7 Page Number : 1-A Total Pages : 1 Certificate Date: 10-AUG-1999 Invoice No. : 19924417 P.O. Number : Account : CNF

Project : Comments: ATTN: R.E. GALE

······································	r		· · · · · · · · · · · · · · · · · · ·				<u></u>				CE	RTIFI	CATE	OF A	NAL	YSIS	4	9924	417		
SAMPLE	PR CO		Au ppb FA+AA	Ag ppm	A1 %	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %
77N 10460E 77N 10500E 79N 104+00E 79N 103+025E 87+50N 102+75E	205 205 205	226 226 226 226 226 226	25 40 < 5	1.2 0.2 0.6 < 0.2 0.4	1.32 1.45 1.67 2.64 2.04	162 166 22 24 10	< 10 20 < 10 < 10 < 10	60 60 70	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.50 0.60 2.82	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 8 4 9 9	40 68 59 25 46	284 116 119 38 105	3.20 3.03 3.01 4.36 2.97	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.11 0.07 0.14 0.15 0.10	< 10 < 10 < 10 < 10 < 10 < 10	0.59 0.87 0.71 1.54 0.80
96+60N 101+50E 97N 101+00E 97N 101+25E 102+50N 99+00E 103N 99+05E	205 205 205	226 226 226 226 226 226	105 < 5	< 0.2 0.2 < 0.2 0.2 < 0.2 < 0.2	1.55 2.77 2.03 2.03 1.17	4 10 8 12 12	< 10 < 10 < 10 < 10 < 10 < 10	70 50 390	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	1.76 1.33 0.38	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	12 11 9 5 2	20 17 28 80 125	186 17 131 54 28	3.04 2.71 2.67 3.09 2.13	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.09 0.15 0.09 0.86 0.47	< 10 < 10 < 10 < 10 < 10 < 10	0.45 0.88 0.52 1.25 0.63
103N 99+50E 103N 100+050E 103N720N 100+070E 108+80N 108+50E	205 205	226 226 226 226	< 5 5 5310 < 5	< 0.2 < 0.2 0.2 0.8	1.22 1.82 1.56 0.88	18 8 16 14	< 10 < 10 < 10 < 10 < 10	120	< 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.56 0.77	< 0.5 < 0.5 < 0.5 < 0.5	3 4 7 33	78 92 88 149	33 62 77 490	2.84 2.05 2.52 8.08	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.27 0.58 0.40 0.01	< 10 < 10 < 10 < 10 < 10	0.77 1.16 1.02 0.30
				-									-		-						
				. * .*											ĩ						
																					-
																					, ,
			,															7	\langle		e A
														с	ERTIFIC	CATION:	ha	<u>`</u>	G	N	K

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 .'o:, R. E.

Г

107 - 2274 FOLKESTONE WAY WEST VANCOUVER, BC V7S 2X7 rage Number : --B Total Pages :1 Certificate Date: 10-AUG-1999 Invoice No. : [9924417 P.O. Number : Account : CNF

Project : Comments: ATTN: R.E. GALE

	r		.		- 						CE	RTIF	CATE	OF /	NAL	SIS	4	9924417	·
SAMPLE	PR	EP DE	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	S %	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	V ppm	W	Zn ppm	
77N 10460E 77N 10500E 79N 104+00E 79N 103+025E 87+50N 102+75E	205 205 205	226 226 226 226 226 226	410 215 785	< 1 1 3 < 1 1	0.11 0.06 0.13 0.06 0.14	5 21 3 2 4	920 680 800 840 970	6 4 6 4 2	0.62 0.26 0.16 < 0.01 0.36	< 2 < 2 < 2 2 2 < 2	3 5 3 8 2	31 21 47 69 65	0.14 0.06 0.10 0.03 0.11	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	59 60 58 109 61	< 10 < 10 < 10 < 10 < 10 < 10	20 40 26 52 30	
96+60N 101+50E 97N 101+00E 97N 101+25E 102+50N 99+00E 103N 99+05E	205 205 205 205	226 226 226 226 226 226	435 200 665 285	1 1 1 × 1	0.18 0.27 0.22 0.10 0.06	4 3 3 16 14	1070 1020 1010 500 270	< 2 < 2 < 2 2 2 2	0.70 0.03 0.27 0.11 0.03	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	3 3 3 7 4	62 118 95 33 12	0.22 0.20 0.21 0.24 0.06	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	71 110 73 86 47	< 10 < 10 < 10 < 10 < 10 < 10	10 26 14 34 64	
103N 99+50E 103N 100+050E 103N70N 100+070E 108+80N 108+50E	205 205	226 226 226 226	315 465	4 1 1 < 1	0.08 0.12 0.08 0.02	8 20 30 30	740 460 870 1270	2 < 2 < 2 < 2	0.05 0.17 0.20 4.31	< 2 < 2 < 2 < 2 < 2	6 6 5 2	18 61 70 47	0.07 0.20 0.18 0.07	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	56 67 68 24	< 10 < 10 < 10 < 10 < 10	38 24 40 14	
																	Λ		

ROCKS PACE N

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: GALE, R. E.

Project :

107 - 2274 FOLKESTONE WAY WEST VANCOUVER, BC V7S 2X7

Comments: ATTN: R.E. GALE

Page Number : 1-A Total Pages : 1 Certificate Date: 10-AUG-1999 Invoice No. : 19924418 P.O. Number : Account : CNF

ROCKS

PAGE

ω

r										CE	RTIF		OFA	NAL	YSIS		49924	418		
SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm	A1 %	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	к %	La ppm	Mg %
119846 119847 119848 119849 119850	205 226 205 226 205 226 205 226 205 226 205 226	135 45 115	1.2 0.6 < 0.2 0.2 0.2	0.73 1.75 1.70 0.57 2.27	8560 70 34 116 54	< 10 < 10 < 10 < 10 < 10 < 10	50 60 60 120 100	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.30	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	49 9 7 6 9	32 35 81 103 28	323 164 60 129 55	3.95 3.63 3.02 2.51 3.63	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.13 0.18 0.07 0.11 0.16	< 10 < 10 < 10 < 10 < 10 < 10	0.17 1.06 1.08 0.36 1.22
119851 119852 119853 119854 119855	205 226 205 226 205 226 205 226 205 226 205 226	40 1340	0.2 0.2 1.4	1.67 1.75 1.14	66 26 74	< 10 < 10 < 10		< 0.5 < 0.5 < 0.5	< 2 < 2 6	0.84 1.29 0.19	< 0.5 < 0.5 < 0.5	10 8 69	98 18 46	121 68 363	2.58 3.19 >15.00	< 10 < 10 < 10	< 1 < 1 1	0.12 0.12 0.17	< 10 < 10 < 10	1.04 0.79 0.26
119856 119857 119858 119859 119860	205 226 205 226 205 226 205 226 205 226 205 226	20 20 110	1.8 0.2 < 0.2 < 0.2 < 0.2 0.2	0.96 1.80 2.04 2.26 1.40	16 10 6 14 184	< 10 < 10 < 10 < 10 < 10 < 10	40 40 40 80 60	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	1.05 0.90 1.26 0.97 0.62	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	49 10 8 4 7	74 53 19 22 26	1055 149 43 9 142	8.90 2.98 2.53 2.63 3.13	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.08 0.15 0.15 0.22 0.17	10 < 10 < 10 < 10 < 10 < 10	0.27 0.59 0.69 0.83 0.60
119861 119862 119863 119864 119865	205 226 205 226 205 226 205 226 205 226 205 226	35 2320 15	< 0.2 1.0 3.8 0.2 4.2	2.19 1.78 1.04 2.17 1.32	58 70 8 10 >10000	< 10 < 10 < 10 < 10 < 10 < 10	50 30 70	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.71 0.61 0.13 0.85 0.39	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 43 5 6 215	52 90 194 98 54	69 614 79 93 1015	3.51 8.42 3.24 3.58 ≻15.00	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 5	0.14 0.08 0.07 0.19 0.33	< 10 10 < 10 < 10 < 10	1.19 0.78 0.87 1.02 0.33
119866 119867	205 226 205 226		0.8	2.25	108	< 10	50	< 0.5	< 2	0.44	< 0.5	17	84	318 ,	7.68	< 10	< 1	0.84	< 10	0.88
																				-
																1	7		-	

CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., British Columbia, Canada North Vancouver V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 . o: C. ..., R. E.

107 - 2274 FOLKESTONE WAY WEST VANCOUVER, BC V7S 2X7

rage Number : --B Total Pages :1 Certificate Date: 10-AUG-1999 Invoice No. : 19924418 P.O. Number : Account :CNF

Project : Comments: ATTN: R.E. GALE

											CE	RTIF	ICATE	E OF A	ANAL)	rsis	ļ	\992 4	4418]
SAMPLE	PRE		Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	S %	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U Eqq	V mqq	W ppm	Zn ppm	Au FA g/t	-		
119846 119847 119848 119849 119850	205 205 205 205 205	226 226 226	60 370 595 250 570	7 1 5 4 < 1	0.07 0.08 0.06 0.03 0.09	4 9 16 41 3	150 930 920 500 1020	2 < 2 < 2 2 2 < 2	1.14 0.38 0.07 0.45 0.06	2 < 2 < 2 < 2 < 2 < 2	< 1 4 6 4 7	21 35 81 17 40	0.07 0.11 0.05 0.07 0.07	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	54 123 101 48 109	< 10 < 10 < 10 < 10 < 10 < 10	6 42 34 16 50				
119851 119852 119853 119854 119855	205 205 205 205 205 205	226 226 226		6 < 1 < 1	0.03 0.12 0.01	36 2 25	430 1030 730	4 2 < 2	0.02 0.25 >5.00	< 2 < 2 < 2	4	40 65 80	< 0.01 0.10 0.05	< 10 < 10 < 10	< 10 < 10 10	49 84 16	< 10 < 10 	38 42 16	2.53	3	0.08	
119856 119857 119858 119859 119860	205 205 205 205 205 205	226 226 226	265 135 285 300 205	3 5 1 < 1 2	0.07 0.16 0.13 0.16 0.10	39 5 3 3	730 880 940 990 1060	6 < 2 2 < 2 < 2 < 2	3.56 0.58 0.14 0.01 0.25	< 2 < 2 < 2 < 2 < 2 < 2 < 2	5 1 3 1 3	31 69 52 47 45	0.17 0.12 0.19 0.18 0.10	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	48 54 85 76 61	< 10 < 10 < 10 < 10 < 10 < 10	36 10 16 22 18				
119861 119862 119863 119864 119865	205 205 205 205 205 205	226 226 226	255 185 180 180 125	4 16 8 12 < 1	0.11 0.08 0.03 0.15 0.03	3 61 11 3 17	1260 980 260 770 520	< 2 < 2 2 2 2 < 2 < 2	0.33 3.07 0.91 0.96 >5.00	< 2 < 2 < 2 < 2 < 2 10	3 6 1 1 < 1	65 37 10 104 39	0.05 0.04 0.03 0.08 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 10	69 75 36 58 22	< 10 < 10 < 10 < 10 < 10 < 10	24 28 30 16 58				
119866 119867	205 205		350	< 1	0.07	3	740	2	3.66	< 2	3	39	0.09	< 10	< 10	61	< 10	58	4.52	4	3.37	
																	1	7		_		ROCKS PAGE 3A

CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: GALE, R. E.

Project :

107 - 2274 FOLKESTONE WAY WEST VANCOUVER, BC V7S 2X7

Comments: ATTN: R.E. GALE

Page Number :1 Total Pages :1 Certificate Date: 17-AUG-1999 Invoice No. :19925753 P.O. Number : Account CNF

.

					CERTIFIC	ATE OF A	NALYSIS	A99	25753	
SAMPLE	PREP CODE	Co %	Cu %							
119866	244	0.010	0.07							
			-							
						÷				
								1		
		-					-			
										r I
							ş			
								*.		

CERTIFICATION:

106+50N 109+50E 205 226

106N 108+35E

205 226

205 226

15 -----

10 -----

< 5 -----

0.2

0.4

< 0.2

2.56

1.95

2.12

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave.. North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 . »: C.,, R. E.

107 - 2274 FOLKESTONE WAY WEST VANCOUVER, BC V7S 2X7

CERTIFICATE OF ANALYSIS

rage Number . i-A Total Pages :2 Certificate Date: 24-SEP-1999 Invoice No. :19928631 P.O. Number . CNF Account

A9928631

Project : Comments: ATTN: R.E. GALE

		_																			
SAMPLE	PREP CODE		Au ppb FA+AA	Au FA g/t	Ag ppm	A1 %	As ppm	B	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La
14.00.000																			••		
119868M	205 22				2.0		>10000	< 10		< 0.5	12	0.7B	< 0.5	149	94	592	13.80	10	1	0.26	< 10
119869M 119870M	205 22				0.2	2.70	40	< 10	50	< 0.5	< 2	1.36	< 0.5	6	68	50	2.45	< 10	< 1	0.10	< 10
119871M	205 22				0.2	1.87	42	< 10	70	< 0.5	< 2	1.27	< 0,5	12	156	77	3.60	< 10	< 1	0.21	< 10
119872M	205 22				< 0.2	2.80	28	< 10	50	< 0.5	< 2	1.19	< 0.5	12	67	95	4.58	< 10	< 1	0.19	< 10
1190/20	205 22	"	>10000	42.19	5.6	0.95	>10000	< 10	< 10	< 0.5	12	0.03	< 0.5	65	86	645	>15.00	10	6	0.11	< 10
119873M	205 22	26	4460		1.0	2.87	>10000	< 10	80	< 0.5	< 2	0.83	< 0.5	20	70	174	6.47	< 10	< 1	0.32	< 10
119874M	205 22	26	490		0.8	1.04	1495	< 10	190	< 0.5	2	0.08	< 0.5	< 1	133	73	4.73	< 10	< 1	0.47	< 10
119875M	205 22	26	375		2.4	0.77	7960	< 10	10	< 0.5	12	0.05	< 0.5	40	56		>15.00	10	1	0.09	< 10
119876 m	205 22	26	95		0.2	1.58	68	< 10	50	< 0.5	< 2	0.13	< 0.5	3	210	91	6.15	< 10	< 1	0.27	< 10
119877M	205 22	16	>10000	30.24	3.6	0.35	>10000	< 10	< 10	< 0.5	58	0.03	2.5	117	48		>15.00	20	11	0.09	< 10
		_														100	12.00			0.03	× 10
119879M 119880M	205 22				0.2	2.72	222	< 10	80	< 0.5	< 2	0.75	< 0.5	10	81	82	4.42	< 10	< 1	0.33	< 10
119882M	205 22				0.2	1.68	716	< 10	50	< 0.5	4	0.30	< 0.5	7	81	105	4.30	< 10	< 1	0.12	< 10
119682M	205 22				0.6		>10000	< 10	40	< 0.5	2	0.27	< 0.5	19	128	51	6.74	< 10	3	0.32	< 10
119884M	205 22		>10000		6.2		>10000	< 10	< 10	< 0.5		< 0.01	0.5	515	40		>15.00	20	13	0.03	< 10
1170048	205 22	10	3390		0.6	2.00	7110	< 10	100	< 0.5	2	0.59	< 0.5	35	134	161	5.58	< 10	< 1	0.58	< 10
119885M	205 22	26	1530		0.8	1.41	>10000	< 10	150	< 0.5	- 6	0.74	< 0.5	32	126	76	3.64	< 10	< 1	0.32	< 10
119886M	205 22	86	30		0.2	1.44	60	< 10	180	< 0.5	< 2	1.13	< 0.5	7	142	69	1.85	< 10	< 1	0.26	< 10
119887M	205 22	86	25		0.2	1.45	152	< 10	80	< 0.5	< 2	2.16	< 0.5	8	123	59	2.19	< 10	< 1	0.17	10
119888m	205 22		5		< 0.2	2.17	12	< 10	210	< 0.5	< 2	0.52	< 0.5	5	141	93	2.94	< 10	< î	0.69	< 10
119889M	205 22	86	10		< 0.2	1.73	28	< 10	340	< 0.5	< 2	0.80	< 0.5	8	156	100	2.74	< 10	< 1	0.54	< 10
11989DM	205 22	2	45		< 0.2	1.33	<u> </u>														
119891M	205 22				< 0.2		62	< 10	70	< 0.5	< 2	1.22	< 0.5	7	65	72	2.06	< 10	< 1	0.15	20
119892M	205 22				0.2	2.59	44	< 10	100	< 0.5	< 2	1.34	< 0.5	13	60	B4	3.69	< 10	< 1	0.21	< 10
119893M	205 22				0.2	2.07	16	< 10	100	< 0.5	< 2	1.22	< 0.5	13	132	118	3.06	< 10	< 1	0.28	< 10
119894M	205 22			*****	< 0.2	2.19 2.22	20	< 10	60	< 0.5	< 2	1.22	< 0.5	13	54	160	4.05	< 10	< 1	0.18	< 10
		Ĩ	195		× 0.2	4.44	12	< 10	60	< 0.5	< 2	1.58	< 0.5	B	106	87	4.24	< 10	< 1	0.14	< 10
119895M	205 22		20		0.2	1.51	10	10	60	< 0.5	< 2	2.32	< 0.5	12	94	154	6.10	< 10	< 1	0.08	10
119896 M	205 22				0.2	1.20	40	< 10	10	< 0.5	< 2	1.53	< 0.5	14	188	114	3.74	< 10	< 1	0.06	10
119898M	205 22		>10000		1.8	1.65	12	< 10	90	< 0.5	36	0.50	< 0.5	24	80	390	11.80	10	< 1	0.22	< 10
119899M	205 22		975		< 0.2	1.72	6	< 10	40	< 0.5	2	0.64	< 0.5	6	182	96	3.18	< 10	< 1	0.11	< 10
119900M	205 22	6	170		0.6	2.59	62	< 10	120	< 0.5	< 2	0.65	< 0.5	2	70	98	3.98	< 10	< 1	0.38	< 10
5D ON-200E	205 22	6	205		2.0	2.42	40	< 10	80	< 0 F		0.00	- A F	4.5	110	400					
SD L0+50N 3+00E	205 22	-			0.2	2.91	16	< 10	70	< 0.5 < 0.5	< 2	0.69	< 0.5	15	149	402	8.53	< 10	< 1	0.25	< 10
SD 50N 335E	205 22				0.6	2.77	14	< 10			< 2	1.02	< 0.5	7	74	68	3.08	< 10	< 1	0.18	< 10
2+00N 2+00E	205 22				< 0.2	1.30	14		120 80	< 0.5	< 2	1.13	< 0.5	18	118	99	6.10	< 10	< 1	0.44	< 10
+00N 2+75E	205 22				< 0.2	1.30	10	< 10 < 10	80 80	< 0.5	< 2	2.48	< 0.5	6	101	29	2.61	< 10	< 1	0.09	10
		Ĩ			- V·4	1.4/	10	< 10	60	< 0.5	< 2	0.97	< 0.5	2	102	48	1.53	< 10	< 1	0.16	10
0+60N 86+75E	205 22				0.2	1.19	44	< 10	90	< 0.5	< 2	0.59	< 0.5	4	75	69	1.91	< 10	< 1	0.18	< 10
91+35N 87+25E	205 22				< 0.2	2.28	< 2	< 10	70		< 2		< 0.5	12	39	49	3.22	< 10	< 1	0.24	< 10
105+5N 107+95E	205 22	6	15		0.2	2.56	24	× 10	80	< 0.5	1.5	0 01	~ 0 F	4.4	01	02	4 20			0.00	

< 10

< 10

< 10

80 < 0.5

< 0.5

< 0.5

100

80

< 2

< 2

2

0.91

2.86

< 0.5

0.43 < 0.5

0.5

24

14

10

PAGE S

< 10

< 10

< 10

ROCKS

CERTIFICATION:

93

56

237

4.30

2.43

3.64

< 10

10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10

< 1

< 1

< 1

0.20

0.23

0.13

91

119

100

11

7

10

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

IO: GALE, R. E.

107 - 2274 FOLKESTONE WAY WEST VANCOUVER, BC V7S 2X7

Page Number : 1-B Total Pages :2 Certificate Date: 24-SEP-1999 Invoice No. P.O. Number :19928631 : Account CNF

ç

Project : Comments: ATTN: R.E. GALE

······	<u>r — – – – – – – – – – – – – – – – – – – </u>										CERTIFICATE OF ANALYSIS					A9928	631				
SAMPLE	PR CO		Mg %	Mn ppm	Мо ррш	Na %	Ni ppm	p ppm	Pb ppm	S %	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	V ppm	W	Zn ppm		
119868M	205			105	6	0.10	15	450	< 2	>5.00	8	3	43	0.05	< 10	< 10	32	< 10	26		-
119869M 119870M	205			205	4	0.22	2	870	< 2	0.35	< 2	3	140	0.11	< 10	< 10	51	< 10	22		
119871M	205			275 295	5 4	0.10 0.16	37 2	630	< 2	0.53	< 2	7	63	0.15	< 10	< 10	77	< 10	24		
119872M	205			125	10		17	1060 130	< 2 < 2	1.36 >5.00	< 2 20	6 1	73 9	0.13 0.01	< 10 < 10	< 10 10	75 15	< 10 < 10	22 30		
19873M	205			95	3	0.23	6	610	< 2	2.67	8	2	69	0.05	< 10	10	38	< 10	80		-
L19874M L19875M	205 205			55	6	0.03	< 1	530	< 2	0.55	< 2	2	16	0.09	< 10	< 10	39	< 10	14		
119876M	205			80 90	14 <	: 0.01 0.01	5 1	220 600	< 2 < 2	>5.00 1.36	2	1	5. R	0.01	< 10	< 10	14	< 10	8		
119877M		226		15	-	0.01	< 1	180	< 2	>5.00	< 2 76	< 1	15	0.06 0.01	< 10 < 10	< 10 10	37 7	< 10 < 10	8 60		
119879M 119880M		226		245	14	0.10	2	960	< 2	0.72	< 2	5	111	0.09	< 10	< 10	59	< 10	24		-
119882M		226 226		125 165	5 5	0.08	3	760	< 2	0.66	< 2	3	34	0.09	< 10	< 10	58	< 10	14		
1198B3M		226		105	2 <		10 5	620 40	< 2 6	2.57 >5.00	18 124	3 < 1	27 17 <	0.04	< 10 < 10	20 10	43	< 10	14		
11988 4 M		226		220	5	0.12	39	580	< 2	1.64	4	6	53	0.15	< 10	< 10	< 1 73	< 10 < 10	26 42		
119885M 119886M		226	0.85	345	4	0.08	31	760	< 2	0.97	4	5	75	0.09	< 10	< 10	65	< 10	48		-
L19887M	205	226	0.59	450 905	5	0.10	29	570	< 2	0.20	< 2	6	101	0.19	< 10	< 10	55	< 10	60		
L19888M	205		1.47	280	6	0.13	34 13	600 400	< 2 < 2	0.08	< 2 < 2	5 11	85 87	0.13	< 10 < 10	< 10	49	< 10	48		
119889M		226	1.01	275	6	0.12	41	580	< 2	0.67	< 2	B	70	0.18	< 10	< 10 < 10	71 51	< 10 < 10	22 24		
19890M	205		0.35	170	4	0.16	8	980	< 2	0.40	< 2	3	62	0.19	< 10	< 10	48	< 10	34		- `
119891M 119892M	205	226	0.86	305 200	3	0.24 0.27	3	950	< 2	0.75	< 2	5	114	0.21	< 10	< 10	85	< 10	32		
119893M	205		0.96	295	4	0.16	28 3	820 1020	< 2 < 2	1.07 0.93	< 2 2	4	105 74	0.20	< 10 < 10	< 10 < 10	60 94	< 10	24		
119894M		226		430	3	0.10	4	760	< 2	0.43	< 2	9	86	0.16	< 10	< 10	105	< 10 < 10	22 22		
19895M	205		0.45	1085	8	0.11	27	1260	< 2	0.90	< 2	6	89	0.15	< 10	< 10	61	< 10	60		\neg
119896M 11989BM		226 226	0.23	300	777	0.10	14	1030	< 2	1.07	< 2	1	59	0.13	< 10	< 10	45	< 10	14		
L19899M	205		0.78	190 205	7	0.0B 0.11	2 1	730 690	< 2 < 2	>5.00	< 2 < 2	4	40	0.10	< 10	10	54	< 10	44		
L19900M	205		0.79	215	3	0.14	3	800	< 2	0.30	< 2	4	53 81	0.12 0.13	< 10 < 10	< 10 < 10	55 58	< 10 < 10	24 30		. ROC
D ON-200E			0.82	150	5	0.13	6	590	< 2	3.53	< 2	5	105	0.11	< 10	< 10	53	< 10	40		- CKS
3D LO+50N 3+00E 3D 50N 335E	205 205		0.95	200	3	0.20	3	880	< 2	0.11	< 2	4	112	0.15	< 10	< 10	61	< 10	26		1
2+00N 2+00E	205		1.14	250 470	10 3	0.21 0.07	3 11	730 790	< 2 < 2	0.64	< 2	5	138	0.16	< 10	< 10	82	< 10	28		17
2+00N 2+75E	205		0.24	135	5	0.14	10	550	< 2	0.02	< 2 < 2	3	181 88	0.15 0.24	< 10 < 10	< 10 < 10	47 44	< 10 < 10	24 14		PAGE
0+60N 86+75E	205		0.38	100	7	0.12	< 1	910	< 2	0.21	< 2	3	60	0.16	< 10	< 10	44	< 10	10		- JA
)1+35N 87+25E 105+5N 107+95E	205 205		0.77	395	3	0.28	3	890	< 2	0.42	< 2	6	97	0.26	< 10	< 10	117	< 10	24		- I P
LOSTSN 107795E	205		1.14	150 555	4	0.16 0.03	11 28	1090 410	< 2	1.34	< 2	5	67	0.21	< 10	< 10	67	< 10	12		
L06+50N 109+50E	205		1.50	265	3	0.09	51	510	< 2	0.15 0.27	< 2 < 2	5 13	77 25	0.07 0.18	< 10 < 10	< 10 < 10	43 105	< 10 < 10	50 28		
						-						14	47		- 10	. 10	103) ()	40	1	
															CERTIFIC	CATION:_		. <u> </u>	wel	lef .	•

Chemex Laps ∟to.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 o: (R.E.

107 - 2274 FOLKESTONE WAY WEST VANCOUVER, BC V7S 2X7 ___Numł Total Pages :1 Certificate Date: 21-SEP-1999 Invoice No. : 19928632 P.O. Number : Account :CNF

¢

Project : Comments: ATTN: R.E. GALE

						CERTIFIC	ATE OF A	NALYSIS	A99	928632	
SAMPLE	PREP CODE	Au ppb FA+AA	Au FA g/t	Ag g/t	Ав %	Sb %	Bi %				
119878M 119881M 119897M	208 226 208 226 208 226	>10000 9380 >10000	47.50	3.3 2.1 2.1	27.0 9.66 12.05	<pre> < 0.01 < 0.01</pre>	< 0.001 0.006				

Analytical Chemists * Geochemists * Registered Assayers

212 Brocksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

o: (R. E.

> 107 - 2274 FOLKESTONE WAY WEST VANCOUVER, BC V7S 2X7

Project : Comments: ATTN: R.E. GALE Total Pages :2 Certificate Date: 24-SEP-1999 Invoice No. : 19928631 P.O. Number : CNF Account

ROCKS

PAGE

2

The second second second second second second second second second second second second second second second se										CE	RTIF	ICATE	OF A	NALY	'SIS	4	9928	631		
SAMPLE	PREP CODE	Ац ррb FA+AA	Au FA g/t	Ag ppm	A1 %	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Со ррш	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm
07+71E 107+42N	205 226	445		1.2	2.02	48	< 10	30	< 0.5	< 2	0.33	< 0.5	46	94	121	10.15	10	< 1	0.24	< 10
																	\cap		j	

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: GALE, R. E.

107 - 2274 FOLKESTONE WAY WEST VANCOUVER, BC V7S 2X7

Project : Comments: ATTN: R.E. GALE Page Number :2-B Total Pages :2 Certificate Date: 24-SEP-1999 Invoice No. :19928631 P.O. Number : Account :CNF

> i i i

.

											CE	RTIF	CATE	OF A	NAL	YSIS		49928	631	
SAMPLE	PREP CODE		Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	S %	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U Mqq	V mqq	W ppm	Zn ppm	
107+71E 107+42N	205 22	26	0.88	155	7	0.03	10	620	8	>5.00	< 2	4	36	0.08	< 10	< 10	60	< 10	20	
				-									-							
															ĩ					
			~	-																-
																		() • / Xa		

APPENDIX TWO

•

,

A REPORT

<u>ON</u>

GROUND MAGNETIC SURVEYING

Rock Creek Area, B.C. 49' 29°, 118° 53' W N.T.S. 82E/07

BY

PETER E. WALCOTT & ASSOCIATES LIMITED

Vancouver, British Columbia

SEPTEMBER 1999

TABLE OF CONTENTS

INTRODUCTION	1
PURPOSE	2
SURVEY SPECIFICATIONS	3
DISCUSSION OF RESULTS	4
SUMMARY, CONCLUSIONS & RECOMMENDATIONS	5

<u>APPENDIX</u>

PERSONNEL EMPLOYED ON SURVEY

CERTIFICATION

MODELED MAGNETIC RESPONSES

ACCOMPANYING MAPS

PROFILES OF TOTAL FIELD INTENSITY	W-572- 1
CONTOURS OF TOTAL FIELD INTENSITY	W-572-2

INTRODUCTION.

Between September 1st and 6th, 1999, Peter E. Walcott & Associates Limited under took a small magnetometer surveying programme on the Ward property, located in the Rock Creek area of British Columbia, for Emjay Enterprises Ltd.

The survey was carried out over 15 east-west flagged "chain and compass lines" established by the survey crew at 50 metre intervals from a similar north-south tie line.

Due to the high magnetic relief the lines could be somewhat crooked even though controlled by backsighting on the flagging.

Measurements of the total intensity of the earth's magnetic field were made at 12.5 metre intervals using a Scintrex Envi magnetometer.

The data after filtering are presented in profile and contour form on plan maps – W-572-1 & 2 - that accompany this report.

The progress of the survey particularly the grid establishment was severely hampered by the windfall occasioned by last winter's heavy snowfall.

,

.

PURPOSE.

The purpose of the survey was to define areas of high magnetic relief that could be caused by heavy pyrrhotite mineralization and magnetite associated with gold-bearing mineralization.

SURVEY SPECIFICATIONS.

• .

The magnetic survey was carried out using an Envi precession magnetometer manufactured by Scintrex Ltd. of Metropolitan Toronto, Ontario. The instrument measures variations in the earth's magnetic field intensity to an accuracy of plus or minus one gamma. Corrrections for diurnal variations of the earth's field were made by comparison with readings taken at 10 second intervals on a similar Envi base magnetometer.

In all some 8.3 kilometres of line were established, and some 7.5 kilometres of magnetic work undertaken using the above method.

DISCUSSION OF RESULTS.

The magnetic data was filtered to remove isolated spikes caused by near surface mineralization -4000 gammas plus over 5 metres not uncommon, and in places higher as magnetic gradient too high for magnetometer to read.

The results of the filtering are shown on Maps W-572-1 and 2.

From the profiles on Map W-572-1 it can be seen that the magnetic background is higher in the western part of the grid presumably due to intrusive rocks, and drops off going eastwards over the greenstone and later tuffs.

Above the background a number of magnetic highs and lows are readily discernible, some exhibiting apparent continuity from line to line.

A number of these anomalies have been modeled as shown in the enclosed plates. The results suggest the causative sources to be shallow.

As a result the writer has outlined five areas for further study as shown on Map W-572-1.

The writer has tried to tie in the results of the survey to a previously done survey in 1961 by A.R. Allen P.Eng. Although he cannot read the numbers on the poor copy of the assessment report his number one anomaly would appear to correlate with the strong magnetic response on Line 150N at 450E.

Four mineralized samples from locations shown on Map W-572-1 were tested using a handheld susceptibility meter. The results were as follows:

Sample No. 1 k = 0.6 to 1.1 x10⁻⁶ c.g.s. units Sample No. 2 $k = 0.4 \times 10^{-6}$ c.g.s. units Sample No. 3 $k = 11.0 \times 10^{-6}$ c.g.s. units Sample No. 4 $k = 26.0 \times 10^{-6}$ c.g.s. units

Samples 1 and 2 were mostly arsenopyrite while 3 and 4 were laced with pyrrhotite.

SUMMARY, CONCLUSIONS & RECOMMENDATIONS

Between September 1st and 6th, 1999 Peter E. Walcott & Associates Limited undertook a small magnetic programme for Emjay Enterprises Ltd. over part of their Ward property, located in the Rock Creek area of British Columbia.

The magnetic survey as expected located a number of magnetic highs and lows symptomatic of magnetite/pyrrhotite mineralization.

The stronger and more continuous of these have been lumped into five areas suggested for further investigation.

This work should consists of prospecting and mapping, soil sampling and detail magnetic work on 12.5 metre centres, as the writer would expect that irregular bodies of mineralization will occur within these areas.

It should be mentioned here that if the gold is only associated with arsenopyrite magnetic surveys will not delineate these bodies.

Respectfully submitted,

PETER E. WALCOTT & ASSSOCIATES LTD.

Ri hen

Peter E. Walcott, P.Eng. Geophysicist

September 1999 Vancouver, B.C.

APPENDIX

.

.

.

.

PERSONNEL EMPLOYED ON SURVEY

Name	Occupation	Address	Dates
Peter E. Walcott	Geophysicist	1526 W. 6 th , Ave. Vancouver, B.C.	Sept. 20 th , 24, 27 th , 1999
Alexander Walcott	Geophysical Operator	66	Sept. 1 st - 3 rd , 6 th , 8 th , 20 th , 27 th , 1999
T. Kocan	Helper	"	Sept 1 st – 4 th , 1999
J. Walcott	Typing		Sept. 27 th , 99

Peter E. Walcott & Associates Limited

Geophysical Services

INVOICE

GST #104 159 298

NO. 4146

Date: September 28, 1999

Terms: On Receipt

- To: EMJAY ENTERPRISES LTD. 5353 192nd Street Surrey, B.C. VS 8E5
- Re: Mag Survey, Rock Creek, Sept. 1st 6th
- 1. Report Writing and Interpretation

\$300.00

2. GST

,

<u>\$21.00</u>

\$321.00

506. 1529 West 6th Avenue, Vancouver, B.C V6J 1R1

Peter E. Walcott & Associates Limited

Geophysical Services

INVOICE

GST #104 159 298

NO. 4146

Date: September 28, 1999

Terms: On Receipt

- To: EMJAY ENTERPRISES LTD. 5353 192nd Street Surrey, B.C. VS 8E5
- Re: Mag Survey, Rock Creek, Sept. 1st 6th
- 1. Report Writing and Interpretation

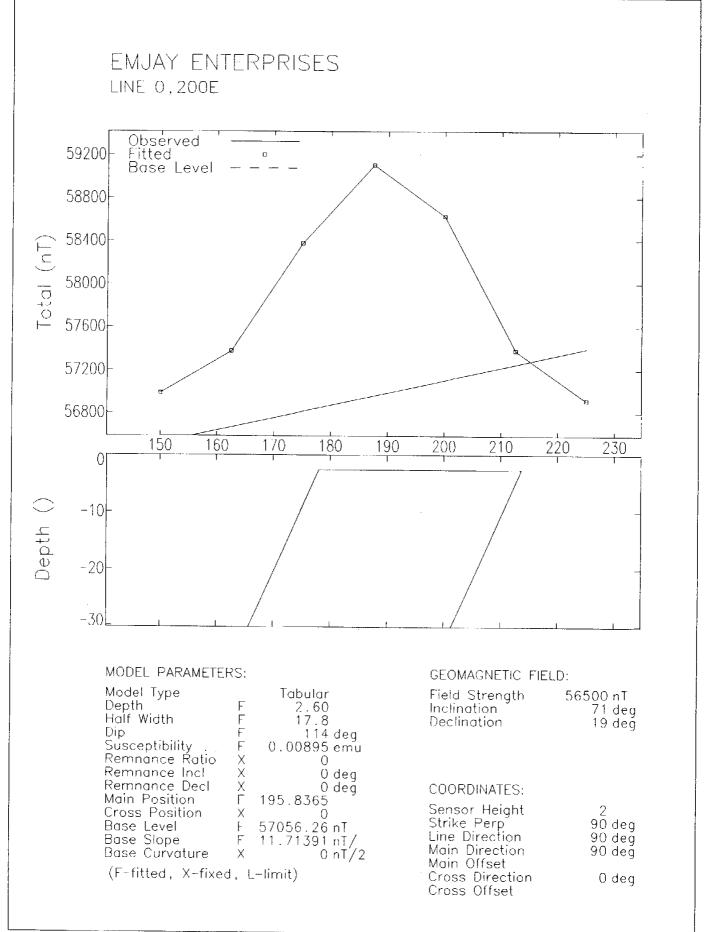
\$300.00

2. GST

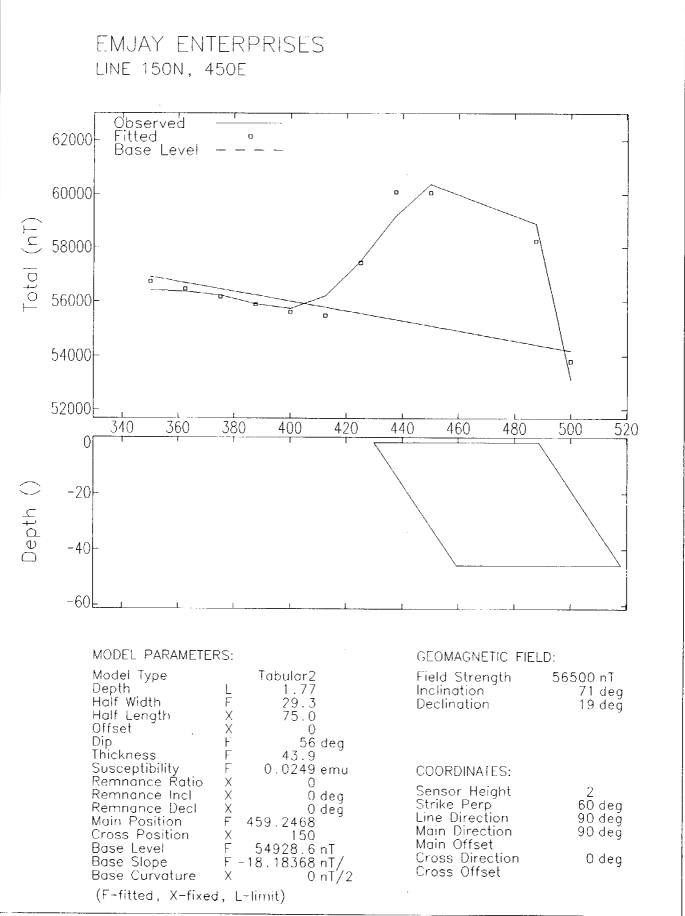
\$21.00

\$321.00

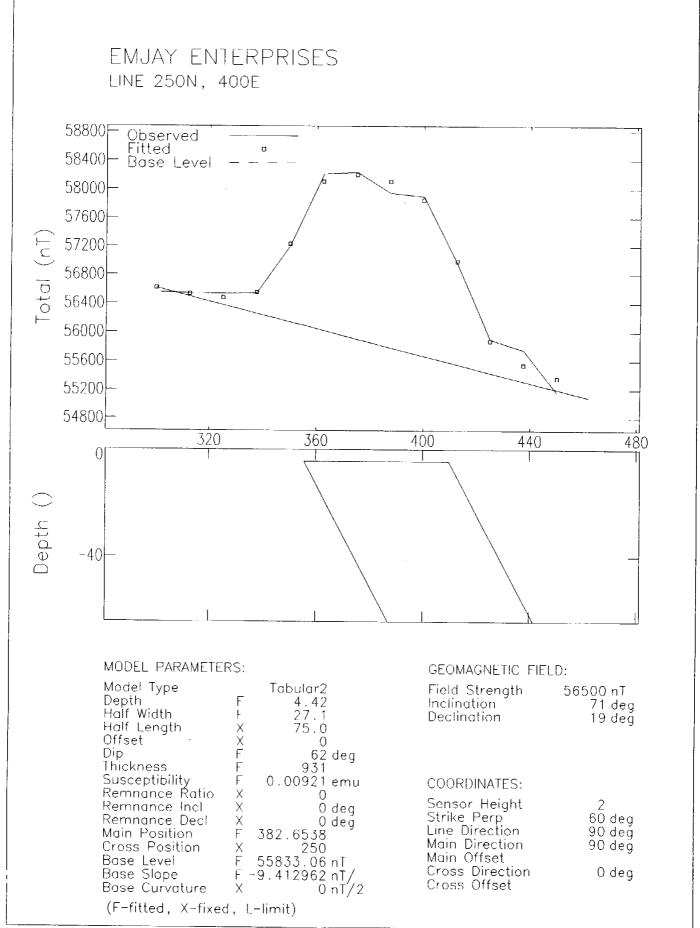
506. 1529 West 6th Avenue, Vancouver, B.C V6J 1R1

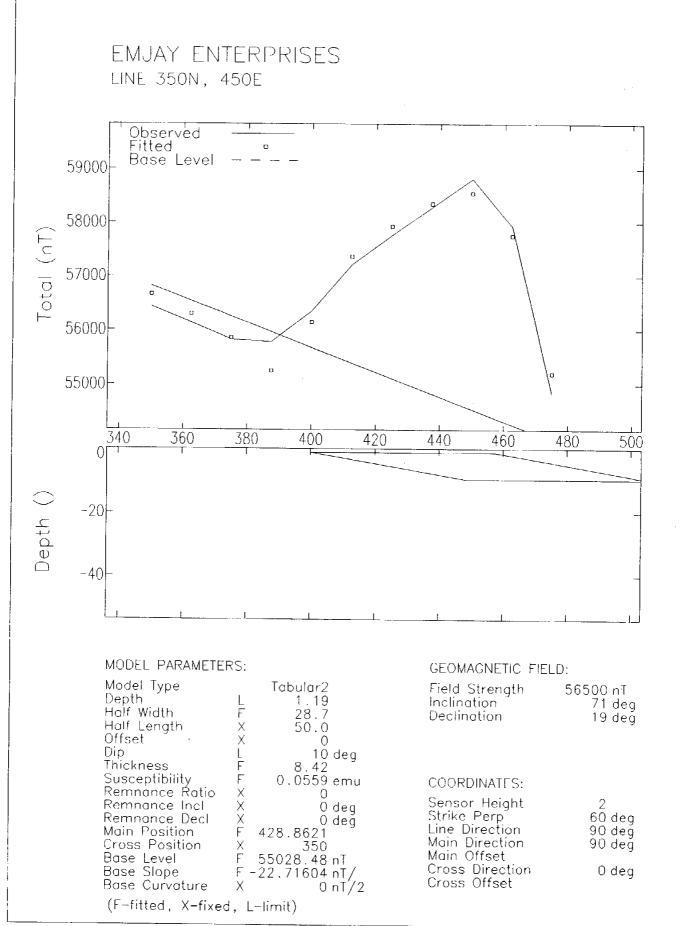

CERTIFICATION

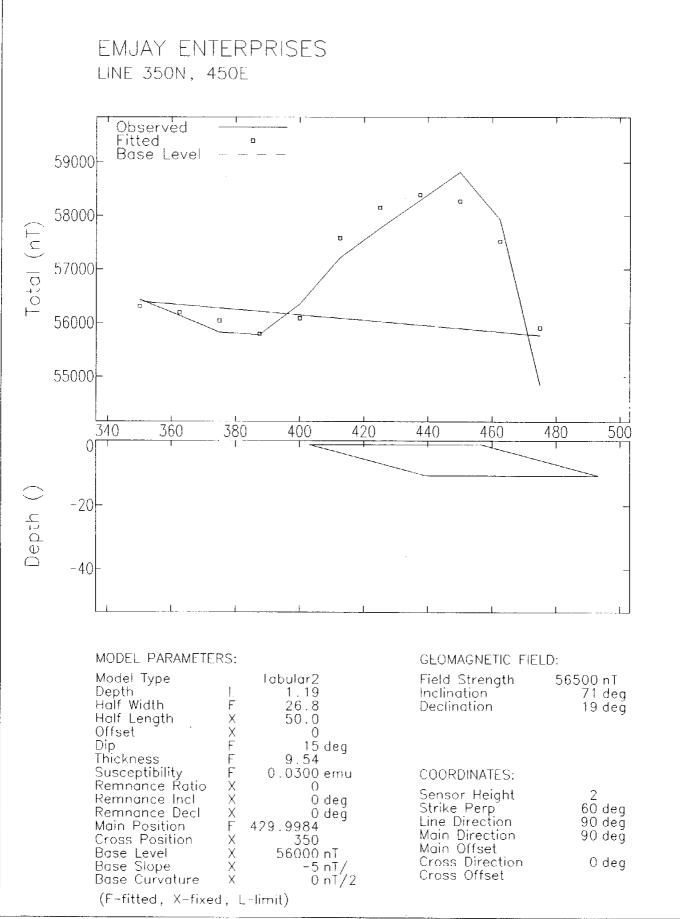
- I, Peter E. Walcott of the City of Coquitlam, British Columbia, hereby certify that:
- 1. I am a graduate of the University of Toronto with a B.A.Sc., In Engineering Physics, Geophysics Option.
- 2. I have been practicing my profession for the past thirty seven years.
- 3. I am a member of the Association of Professional Engineers of British Columbia and Ontario.

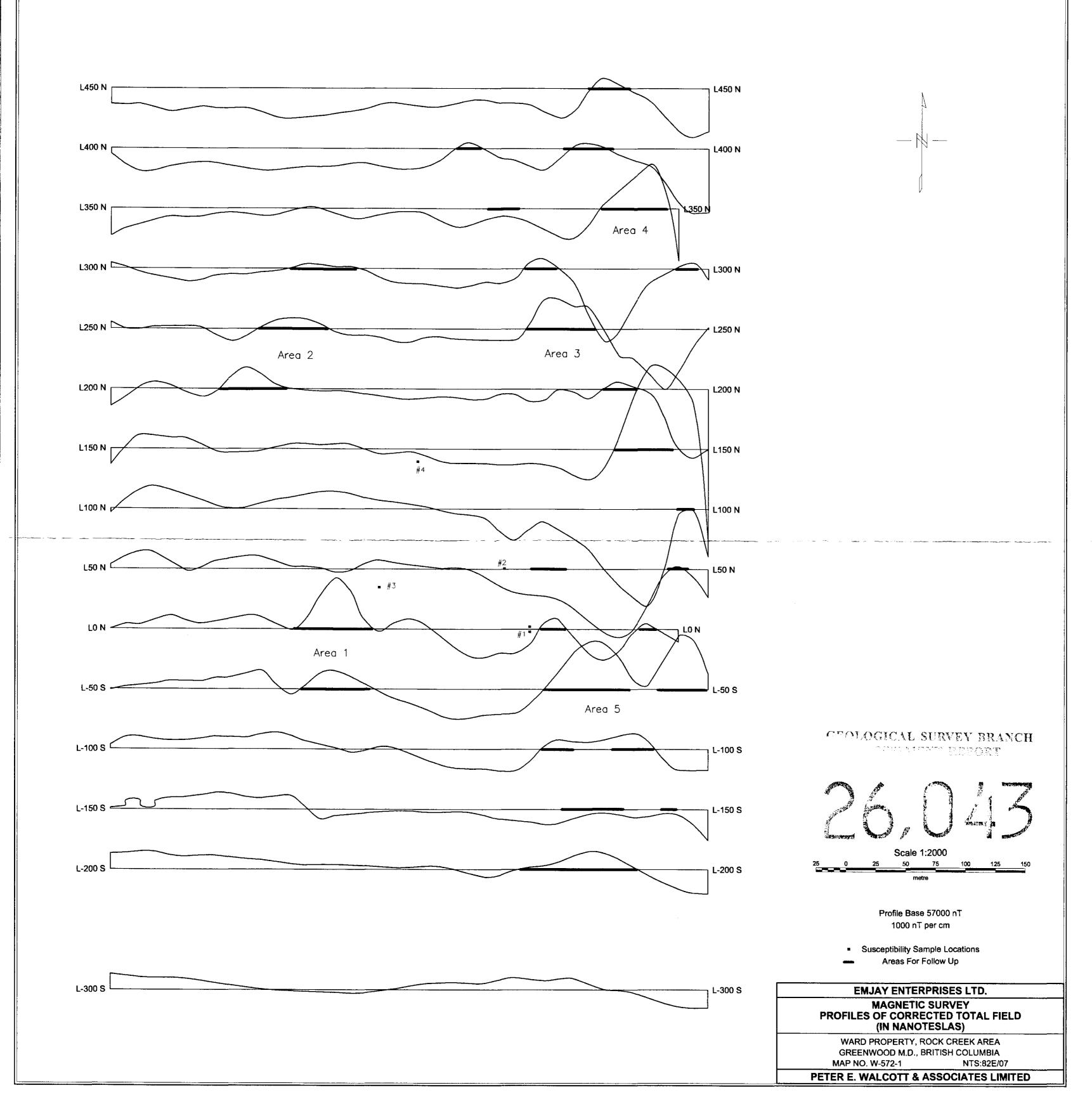

Ash hun

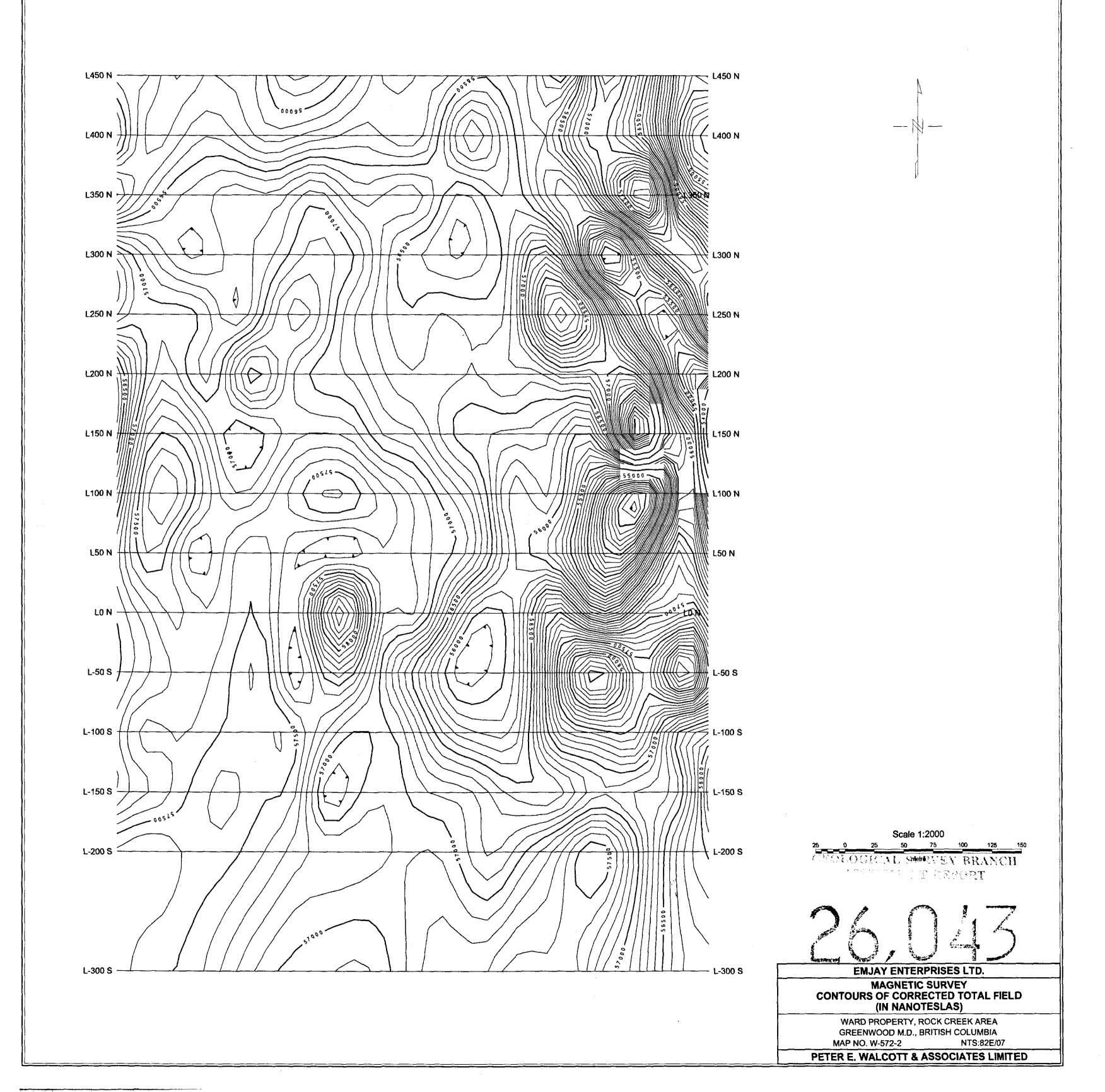
Peter E. Walcott, P.Eng.


September 1999 Vancouver, B.C.




99/09/27




99/09/27

