

BT 1-7 & 11 CLAIMS

CARIBOO MINING DIVISION BRITISH COLUMBIA

LAT 54° 03' N LONG 121° 36' W

N.T.S. 93 I 4

FOR

26BT RESOURCE DEVELOPMENT CO. LTD.

BY

S. JAIN, P. GEOPH (ALBERTA), P. GEO. (B.C.)

&

W. L. KELSCH, P. GEOPH (ALBERTA)

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

RECEIVED GOVERNMENT AGENT QUESNEL

OCT 0 4 1999

NOT AN OFFICIAL RECEIPT

Calgary, Alberta

September 28, 1999

SUDHIR JAIN received M.Tech. in Exploration Geophysics from Indian Institute of Technology and Ph.D. in Geophysics from University of Liverpool. After working for twelve years for Mobil and sundry service companies in U.K., Libya, U.S.A., and Canada, Dr. Jain set up Commonwealth Geophysical, a service company for oil and mineral exploration in 1976. He developed innovative interpretation techniques for geophysical data which quickly became industry standards. He published over 40 papers and was honoured by European and Canadian professional societies.

2

Since 1974, Dr. Jain has explored for numerous companies in Canada and overseas as well as in Madagascar and Southeastern Alberta on his own account. He is also associated with ore exploration in British Columbia and diamond exploration in Saskatchewan. He is a registered Geoscientist in British Columbia, a member of Association of Professional Engineers, Geologists and Geophysicists of Alberta, and honorary member of Canadian Society of Exploration Geophysicists.

LORNE KELSCH graduated with B.Sc. from University of Manitoba in 1952. After working on seismic data acquisition, processing and interpretation for 22 years with Petty Ray Geophysical, Mr. Kelsch moved to PanCanadian where he worked in various capacities including Chief Geophysicist till his retirement in 1995.

Mr. Kelsch is a professional member of Association of Professional Engineers, Geologists and Geophysicists of Alberta, Canadian Society of Exploration Geophysicists and Canadian Society of Petroleum Geologists.

CONTENTS

 $\sum_{i=1}^{n}$

	PAGE
INTRODUCTION	
Claim Data	1
Location & Access	2
History	2-3
Geology	3
Geophysics	
Data Acquisition in 1993	3-4
Data Acquisition in 1997	4
Interpretation of E-M Data	4
DRILLING AND CORE ANALYSIS	5
INTEGRATION OF GEOLOGY AND GEOPHYSICS	6
Silt Samples	6
Rock Samples	7
Ground Geophysical Survey	7-8
CONCLUSIONS AND FUTURE WORK	8
References	9
Table 1 - Chemical analysis of two boulder samples collected in May, 1994	10
Table 2 - Whole rock analysis by ICP, Loring Laboratories Ltd.	In back pocket
Figure 1 - Area of 26BT claims area of aeromagnetic and EM survey in 1993 is shaded.	In back pocket
Figure 2 - Geological map of Bearpaw Ridge	In back pocket

	PAGE
Figure 3 - Location of holes drilled	In back pocket
Figure 4A - Total of magnetic field from ground magnetic survey, western part	In back pocket
Figure 4B - Total of magnetic field from ground magnetic survey, eastern part	In back pocket
Appendix 1 - Details of drilling in 1994, 1995 and 1996	11
Appendix 2 - Assessment report by E.R. Kruchkowski	Attached
Appendix 3 - Core analysis by Overburden Drilling & Intertek Testing	Attached
STATEMENT OF COSTS (October 3, 1998 to September 28, 1999)	12-13

INTRODUCTION

Claim Data

The B.T. Properties are presently held in the name of 26BT Resource Development Co. Ltd. They were originally staked by Brendan A. Gordon on behalf of Malcolm T. MacDonald, one of the principals of the Company.

<u>Claim Name</u>	<u>Tenure Number</u>	Anniversary Date
BT 1-4	313837-313840	October 8, 1993
BT 5,6	313845-313846	October 8, 1993

These were then sold to the company.

BT 7, 8, 9, 10 and 11 were acquired on behalf of the company in 1993. Details are as follows:

BT 8-10	323096-323098	December 21, 1994
BT 7,11	323202-323203	December 29, 1994

BT 12, 13, 14, 15, 16, 17, 18, 19 and 20 were acquired on behalf of the company by Brendan A. Gordon in June 1996. The details are as follows:

BT 12-17	346620-346625	June 09, 1996
BT 18	346941	June 10, 1996
BT 19	346626	June 10, 1996

Stone 1 and Stone 2 were acquired on behalf of the company by Malcolm McDonald in 1996. The details are as follows:

Stone 1 and 2	349810-349811	August 04, 1996

The total area of claim is approximately 75 sq. km.

This report covers claims 1-11 only. Claims 12-19 were relinquished this year and Stone 1 and 2 are reported separately.

Location & Access

The property lies north of the Fraser River and south of the West Torphy River. The centre of the claims is about 6 kilometres N.N.E. of Sinclair Mills (Figure 1). Access to the claims is by old logging roads. The claims lie between the elevation of 700 meters and 1690 meters in generally rugged terrain. Devil's club and windfall trees make the claims difficult to traverse.

History

Two of the principals of the company entered the area north and east of MacGregor in 1989. This was based on projections of the trends seen in the configuration of the North American Continental mass as demonstrated by Government gravity and magnetic maps. Later, while studying reports and maps in the Provincial offices in Prince George, the magnetic feature shown on Aeromagnetic Map 1536 G of the Geophysics Division of Mines and Technical Surveys (Figure 2) was noted. Subsequent sampling along Creeks Crossing the old logging road north of Sinclair Mills yielded unusually high amounts of magnetite. The decision to stake the area at the north west end of Bearpaw Ridge was then made and carried out in 1992. An aeromagnetic survey was flown, processed and interpreted in 1993. As a result of this survey, additional areas surrounding the claims were staked. 9 holes were drilled to the depth of 100' on the claims in October 1994. The chemical analysis from the cores showed that Fe_2O_3 content averaged between 10 - 20% in the holes and reached up to 35% in some zones. The magnetic separation in 20 samples from two of the holes showed that in samples with high Fe_2O_3 content (greater than 10%), magnetite is more than 75% of total Fe_2O_3 percentage.

Three holes were drilled to the depths of 300' in June 1995. Two of the holes confirmed the presence of magnetite in a variable amount to at least 300'. The third hole was mislocated and missed the anomaly. This hole does not appear to have any commercial significance.

Three holes were drilled in July 1996, two to the depth of 300' and one to 500'. One hole confirmed magnetic concentration while the other two were discouraging. Detailed surface geology was undertaken in 1997 together with mineral and chemical analysis of 60 stream samples and 109 chip samples. The report of professional geologist is included as Appendix 7 in Assessment Report Number 25280.

In summer of 1998, ground magnetic and VLF-EM data was collected along eleven cut lines and four roads. 25 silt samples and 81 rock samples were also collected by E. R. Kruchkowski, P. Geol. and his crew. His report is included as Appendix 2 in Assessment Report Number 25664. Ground geophysical data results are discussed in a later section (Integration of Geology and Geophysics).

In summer of 1999, ground magnetic data was collected along three extended and two new lines. 63 rock samples and magnetic data at 25' intervals were collected by E.R. Kruchkowski, P. Geol. and his crew. Two gravel samples were also collected for detailed analysis. Five cores from previous holes (94-4, 94-6, 95-2, 96-1, and 96-3) were analysed in detail in 3.3 m (10') sections by Overburden Drilling Management for mineralogical content. Core for 94-4 was shipped to MD Technologies of Perth, Australia for metallurgical analysis.

Geology

Following summary of known geology of Bearpaw ridge closely follows the report by Pell (1994). The area is mapped as Silurian volcaniclastics, felsic and intermediate tuffs, agglomerates of Nonda formation over the ridge, foliated hornblende gneiss on the western slope and coarse grained massive pink syenites in the southwest (Figure 3). Pell notes sodalite syenite outcrop and two flanking syenite sills in southeast portion of the claim area which intrude the volcaniclastics whose southeastern extent is not defined. These volcaniclastics "largely comprise clinopyroxene crystal tuffs, calcareous tuffs and minor basaltic flows. Flow rocks contain clinopyroxene phenocrysts and altered phenocrysts (now chlorite) in a ground mass of opaque oxides, plagioclase and clinopyroxene microphenocrysts and chlorite". These may be classified as alkali basalts. Folded and foliated dioritic orthogneiss vary from a banded gneiss containing 5 - 10% magnetite-ilmenite to a mafic gneiss with 15 - 20% magnetite-ilmenite. Chemical analyses indicates Fe₂O₃ content of 6.9 and 14.5% in two volcanic samples and 1.5, 7 and 11.2% in three samples from mafic gneiss. Corresponding TiO₂ content is .59 and 2.06% in volcanics and .27, .80 and 2.01% in mafic gneisses.

Kelsch in an appendix to Kelsch and Jain (1994) reported that the accessible part of the terrain is generally covered by a thin layer of soil. The vegetation is thick. Devil's club and mosquitoes are plentiful and they make the work quite difficult. In spite of these problems, he obtained several surface samples. The majority of these samples were from glacial erratics which had not moved very far from their original location. The magnetic susceptibility of these samples ranged from .001 to .250 emu. Two of the samples were analyzed chemically by Terramin Research Labs Ltd (Table 1). The analysis showed 22 and 25% Iron Oxide and 4.34 and 5% Titanium Oxide in these samples. These figures support more work on the prospect to define concentrations of magnetite and ilmenite which may have economic interest.

The magnetic data acquired by 26BT strongly suggest a magnetite rich intrusive of elliptical shape on the ridge. This is confirmed by the mineralogical analysis of samples from fifteen holes drilled so far which contain crystalline gabbro with high mafic content. The gabbro is quite heterogeneous laterally as well as vertically. Pell (1994) does not mention this intrusive. Incidentally, the sodalite body mapped by Pell was not encountered in hole 95-3.

Geophysics

Data Acquisition in 1993

26BT engaged Geonex Aerodat to conduct an aeromagnetic and electromagnetic survey over a 12 km X 13 km area including the company's claims. The data were acquired in February,

1993 by a helicopter with mean terrain clearance of 100 m for helicopter and 70 m for sensing equipment. The survey comprises 321 line kilometres, with east-west traverse lines spaced 500 m apart and two north-south tie lines. In addition to the total field map with variable contour interval, Geonex also supplied maps for vertical gradient of the magnetic field and VLF-EM total field. The VLF-EM map is relatively quiet and indicates general absence of sulphide ores in the area. The vertical gradient measurements did not provide meaningful data probably because magnetic anomalies were very strong and very sharp. The details of acquisition and preliminary processing are contained in the report submitted by Geonex and included in Kelsch, and Jain (1993). Final processing and interpretation are described by Jain and Kelsch (1997) in Assessment Report Number 25280.

Data Acquisition in 1997

26BT engaged Dighem, A Division of CGG Canada Ltd. to conduct an aeromagnetic and multi-coil, multi-frequency electromagnetic survey over an approximately 62 sq km area. Total coverage amounted to 361 km including tie-lines. The survey was flown on February 8 and February 9, 1997. Dighem processed the data in their Mississauga, Ontario facility and final maps and their report was received by 26BT on April 8,1997.

The survey was conducted to evaluate claims 12 - 21 which have now been relinquished. However, the survey area overlapped claims BT 6, BT 8, BT 9, and BT 10. 22.5% of the survey covered these claims and 22.5% is assigned to claims covered by this report. Overall costs of the survey were distributed accordingly.

Sixteen traverse lines were flown with the spacing of 200 m in a NE - SW direction. The length of lines was variable. Two tie lines were flown six kilometers apart. The survey employed the DIGHEM5 electromagnetic system installed in an Aerospatiale AS350BA turbine helicopter. Ancillary equipment consisted of an optically pumped Cesium vapour (model Picodas 3340) magnetometer, radar altimeter, video camera, analog and digital recorders and GPS navigational system (model Sercel NR106, Real-time differential positioning). In addition, a field work station was employed to verify data quality and completeness. Magnetic base station used a digital recording cesium vapour magnetometer. The helicopter flew at an average speed of 107 km/h, with average terrain clearance of 60 m. Clearance was 40 m for magnetic and 30 m for EM bird. For technical details of the Dighem report see Assessment Report Number 25034.

Interpretation of E-M Data

This is included in Assessment Report Number 25543 (D.R. Stevenson, P.Geo. electromagneic data), Assessment Report Number 25664 (Appendix 2) and Assessment Report Number 25034 (Dighem maps).

DRILLING AND CORE ANALYSIS

9 holes were drilled to a depth of 30.46 m (100 ft) in October 1994, 3 holes to the depth of 91.38 m (300 ft) in June 1995 and three holes, two to the depth of 91.38 m (300 ft) and one to 152.29 m (500 ft) in July 1996. All holes were cored in hard rock. Location of the holes is shown in Figure 4. Core diameter was 43 mm (1 $\frac{3}{4}$ "). Hole 7 did not hit the hard rock till it reached the bottom. Susceptibility was measured at 1 ft intervals on the cores as an indicator of the magnetite content. Two boulder specimens collected in 1994 were analyzed. The holes were drilled to determine the source of magnetic anomaly and not for details of local geology. No obvious metals have been noted in the cores. Appendix 1 gives details of the drilling logistics. Core logs are given in Assessment Report Number 25034.

140 samples were selected from fourteen cores to include a wide variety of susceptibility and core type (grain-size, colour, rock type) and two from boulders picked up on the site. Magnetic susceptibility of the samples was measured several times at different locations on the sample and the average recorded.

The samples were chemically analyzed by Terramin Research Labs of Calgary in December, 1994, August, 1995 and October, 1996. The results of their analyses, measured susceptibility and rock type are given in Assessment Report Number 25664.

Cores from five holes, 94-4, 94-6, 95-2, 96-1 and 96-3 were cut in two halves along the diameter. One part was sent to Stu Averill, Overburden Drilling Management Limited, Napean, Ontario. His reports and analyses conducted by them are included in Appendix 3. Overall results of this study are generally negative. The summary of Stu Averill's work is as follows:

- 1. The magnetite in the gabbro contains approximately 10% of its weight in TiO₂ in intercrystalline form. The titaniferous magnetite is of little commercial value.
- 2. There is no rutile contained in these cores.
- 3. Ilmenite content ranges from 2.5% to 5% in all holes except 96-4 where it is 10%. 94-4 also contained 2.5% P_2O_5 . However, apatite contained in the core is very fine-grained and may be deleterious to Ilmenite instead of being a by-product. As as result of this analysis, core from 94-4 was sent to MD Technologies in Perth, Australia for metallurgical analysis and review of commerciality of the core. Preliminary results from their analysis show that recoverable ilmenite is only 3.2% because substantial proportion of TiO₂ is contained in Pyroxenes as well as in magnetite and that calcium and phosphorus content makes it unsuitable for chloride feed stock but acceptable as sulphate feed stock.

INTEGRATION OF GEOLOGY AND GEOPHYSICS

The geological study conducted in the summer of 1997, 1998 and 1999 by Ed Kruchkowski (see Assessment Report Numbers 25280, 25664 and Appendix 2) provided encouraging results from silt and rock samples. Analyses of these samples generally supported the magnetic data interpretation and drill hole results of previous years. General conclusions from magnetic separation and petrographic studies are:

- 1. Recoverable magnetite is expected to be 60 75% of Fe₂O₃ content of the rock. However, this magnetite is of little commercial interest due to its TiO₂ content.
- 2. Recoverable ilmenite is expected to be about the same percentage as TiO_2 since pyroxenes and magnetite also contain TiO_2 .
- 3. Rutile is absent in all five holes analysed in detail.
- 4. Apatite is present along the rims of zones with concentrated ilmenite. This apatite is very fine-grained, widely dispersed and probably not commercial.

Silt Samples

86 silt samples were collected in 1997 and 1998 from the stream beds. The chemical analyses showed Fe_2O_3 and TiO_2 content ranges of 5 - 36% and 0.5 - 14% respectively. Iron and titanium contents increased in tandem, TiO_2 being 20 - 40% of Fe_2O_3 . Generally the percentage was at the higher end of the spectrum when the Fe_2O_3 content was higher.

Higher concentrations were noted in streams which flowed through highly magnetic areas than in streams which bypassed such areas. The ground magnetic survey shows that many streams have moved since concentrating magnetite along several kilometers of their lengths. The data indicates the width of concentrated zones ranges from 100 - 200 m. It should be noted that string anomalies are also caused by sources other than streams.

If the surface samples are representative of the overburden, approximately 2.4 sq km of overburden could be ore grade. This overburden is estimated to contain 0.3 m tons (worth \$15 m) of ilmenite for one sq km area each metre of thickness. Unless a thick zone can be isolated, environmental approval may be a problem for a project stripping off all top soil for a large area.

Two bulk samples collected last summer are being analysed for their chemical content.

Rock Samples

Rock samples were collected from accessible outcrops in 1997, 1998 and 1999. Chemical analyses of these samples showed that generally TiO_2 is 15 - 35% of Fe₂O₃, its proportion increases when Fe₂O₃ concentration is high.

The chemical analysis done in 1997 did not include P_2O_5 and V_2O_5 . The analysis for these samples was repeated by Loring Lab in 1999 (Table 2). This analysis indicates that ilmenite enrichment noted in 94-4 probably extends eastwards and may be better than in 94-4. P_2O_5 content seems to be higher along the rims of high ilmenite zones. There is indication of local concentration of V_2O_5 but not to economic levels.

Ground Geophysical Survey

In June 1998 and 1999, total magnetic field data were collected along slashed lines and four roads. Station spacing was 25 m and line spacing averaged 1 km. The meter, ENVI MAG/VLF, S/N 9602230, was manufactured by and rented from Scintrex.

Manually contoured map of magnetic field (Figure 4, contour interval 1000 nT) shows very strong (2000 -6000 nT) string like anomalies. When these strings follow the dips on topographic map, they indicate magnetite concentration in existing or old streams. When string like anomalies follow the trend of the topographic strikes, they may be due to the outcropping gabbro. Thickness and magnetite and ilmenite content of enriched stream beds is of vital importance in estimating reserves. Rectangular rims of high anomalies indicate edges of magnetite concentrations, one such concentration is noted west of the top of the ridge.

Modelling with 10 m thick, 100 m wide and 4 km long horizontal plate placed 1 m and 70 m below observation plane shows that narrow anomalies are ten times as strong and half as wide on ground data than on aeromagnetic data. The magnitude of the anomalies with the susceptibility of 0.01 cgs units was 1600 nT on the surface and 125 nT at flight level. Therefore, the overburden anomalies are expected to be subdued by deeper-source anomalies on aeromagnetic data. Following parameters are estimated for <u>magnetic overburden</u> from ground magnetic data:

Width 100 - 200 m Thickness 5 - 20 m Susceptibility .01 - .03 cgs Magnetite content 5 - 10% Ilmenite content 2-5%

These estimates do not apply to magnetite rich gabbros which are the probable source of anomalies on aeromagnetic map.

In shallow models a very strong negative field is observed at the northern edge of the source. Some very strong negative anomalies were observed in the field. These could be the northern edges of streams located south of the stations.

Continuation of ground magnetic data to the flight height for aeromagnetic data resembles the aeromagnetic map within the limits set by field parameters of the data sets. This supports the validity of both data sets.

CONCLUSIONS AND FUTURE WORK

The surface geology, ground magnetic survey and integration of all data with 15 holes drilled in 1995 and 1996 and aeromagnetic surveys in 1993 and 1997 lead to following conclusions:

- 1. The best prospect so far drilled is in the vicinity of hole 94-4 in west slope of the ridge. The metallurgical analysis shows that recoverable percentage of ilmenite is only about $\frac{1}{3}$ of ore grade and impurities make it unsuitable as chlorite feed stock.
- 2. P_2O_5 is contained as fine particles in other minerals and is not separable.
- 3. Magnetite contains 8-15% TiO₂ which is inseparable. Therefore, magnetite is unsuitable as iron ore and almost worthless.
- 4. From surface geology and magnetic data, there is a possibility of different phase of gabbro intrusion on top of the ridge which may have higher magnetite and ilmenite concentration. Surface rock samples have significantly higher TiO₂.

Based on these conclusions, we plan to do metallurgical analysis on surface samples to determine if there is sufficient concentration of TiO_2 in ilmenite and to analyze impurities in ilmenite and magnetite. If this analysis is encouraging additional surface geology will be done and at least two holes will be drilled next summer.

<u>References</u>

Kelsch, W.L., Jain, S., 1993, Assessment report on the BT 1-6 claims: Prince George Mining Division, British Columbia

Kelsch, W.L., Jain, S., 1994, Assessment Report on the BT 1-11 claims: Prince George Mining Division, British Columbia

Pell, J., 1994, Carbonatites, Nepheline Syenites, Rimberlites and Related rocks in British Columbia: Province of British Columbia, Mineral Resources Division, Bulletin 88, p 14-18

Jain, S., Kelsch, W.L., 1996, Assessment report number 25034, BT claims 12-19

Jain, S., Kelsch, W.L., 1997, Assessment report number 25164 & 25280, BT claims 1-11

Jain, S., Kelsch, W.L., 1997, Assessment report number 25543, BT claims 12-19

Jain, S., Kelsch, W.L., 1998, Assessment report number 25664, BT claims 1-11

Table 1

Chemical analysis of two boulder samples collected in May, 1994.

Sample	SiO ₂	Al ₂ O ₃	CaO	MgO	Na ₂ O	K ₂ O	Fe ₂ O ₃	MnO	TiO ₂	LOI	Total	
Number	%	%	%	%	%	%	%	%	%	%	%	
93-2	37.9	10.0	13.850	9.882	0.949	0.151	22.45	0.182	4.34		99.67	
93-3	34.7	8.7	8.982	13.513	0.325	0.245	27.60	0.219	5.00		99.23	

APPENDIX 1

Drill hole and core information

1 ¾" 43 mm					
90°					
n.a.					
no obvious metals noted, detailed analysis planned					
15					
2900' 883.2 m					
2611' 795.2 m					
7203 Keewatin Street S.W., Calgary, AB, T2V 2M6					
94-13620'94-23700'94-34080'94-43990'94-53630'94-63880'94-72810'94-82695'94-92490'95-12400'95-24575'95-35320'96-12470'96-25250'					

STATEMENT OF COSTS

(October 3, 1998 to September 28, 1999)

BT 2, 3, 7 and 11

A. EXPLORATION COSTS

 Geological Field Trips (June 9-26, 1999) 2 men X 16.0 days 1 man X 14.0 days 	\$8,920.89
- Rental of magnetometer	437.21
- Cutting of Core	550.90
- Clearing of Roads	1,178.20
- Maps	4,693.25
- 20% of \$331.44 Transportation Expense	62.29
TOTAL EXPLORATION EXPENSES	\$ <u>15,842.74</u>
B. SAMPLE ANALYSIS	
- Edward Kruchkowski	\$ 400.00
- Loring Laboratories Ltd.	2,835.84
- Overburden Drilling Management Limited	4,868.11
- Intertek Testing Services	805.47
TOTAL SAMPLE ANALYSIS EXPENSES	\$ <u>8,909.42</u>
TOTAL EXPENSES	\$ <u>24,752.16</u>

STATEMENT OF COSTS

(October 3, 1998 to September 28, 1999)

BT 1, 4, 5 and 6

A. EXPLORATION COSTS

 Geological Field Trips (June 9-26, 1999) 2 men X 16.0 days 1 man X 14.0 days 	\$8,920.89
- Rental of magnetometer	437.20
- Cutting of Core	550.90
- Clearing of Roads	1,178.20
- Maps	4,693.25
- 20% of \$331.44 Transportation Expense	62.29
TOTAL EXPLORATION EXPENSES	\$ <u>15,842.73</u>
B. SAMPLE ANALYSIS	
- Edward Kruchkowski	\$ 400.00
- Loring Laboratories Ltd.	2,835.84
- Overburden Drilling Management Limited	4,868.11
- Intertek Testing Services	805.47
TOTAL SAMPLE ANALYSIS EXPENSES	\$ <u>8,909.42</u>
TOTAL EXPENSES	\$ <u>24,752.15</u>

TABLE 2

Loring Laboratories Ltd.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541

۰.,

FILE: 41275 DATE: July 22, 1999

TO: 26 BT RESOURCE CO., LTD Suite 200, 5920 McLeod Trail S.W., Calgary, Alberta T2H 0K2

Attn: Sudhir Jain

: .

Sample	AI_2O_3	Ba	CaO	Cr	Fe ₂ O ₃	K ₂ O	MgO	MnO	Na ₂ O	Ni	P2O5	SO3	SiO2	Sr	TiO₂	V_2O_5	LOI	SUM
No.	%	ppm	%	ppm	%	%	%	%	%	ppm	%	%	%	ppm	%	%	%	%
R-1	12.61	605	11.04	33	20.13	1.02	5.71	0.18	1.90	_ 42	0.443	0.10	38.56	664	4.36	0.09	1.31	97.45
R-2	15.14	616	10.71	143	16.41	1.58	5.89	0.17	2.63	87	0.492	0.10	41.11	651	2.89	0.04	1.59	98.75
R-3	12.32	189	11.52	59	17.10	0.68	5.76	0.14	2.36	189	1.655	0.15	38.98	408	4.76	0.08	1.99	97.50
R-4	10.74	189	10.64	17	22.55	0.44	5.53	0.23	1.75	42	1.972	0.09	36.80	469	4.71	0.07	3.22	98.74
R-5	14.32	680	11.98	47	16.34	0.99	5.25	0.18	2.41	49	0.679	0.11	40.42	942	2.95	0.06	1.69	97.37
R-6	10.27	152	12.03	45	21.19	0.37	6.99	0.17	0.68	237	0.046	0.10	38.44	365	3.46	0.26	3.05	97.04
R-7	9.65	61	13.80	344	19.77	0.12	9.74	0.14	0.78	226	0.045	0.11	37.81	369	2.41	0.10	2.11	96.58
R-8	8.66	63	14.04	222	23.01	0.11	8.65	0.17	0.85	437	1.058	0.13	36.39	291	3.76	0.19	0.90	97.92
R-9	8.54	69	14.02	169	22.72	0.13	8.10	0.18	0.89	154	0.026	0.17	36.77	313	3.70	0.17	0.84	96.25
R-10	11.07	_134	12.27	5	21.14	0.28	6.35	0.18	1.33	85	0.174	0.12	38.15	486	3.82	0.18	2.20	97.26
R-11	10.47	167	12.17	31	21.82	0.23	6.27	0.19	1.21	184	0.354	0.12	38.75	512	3.62	0.17	3.00	98.37
R-12	16.15	167	14.95	129	16.01	0.14	5.54	0.11	1.25	199	0.107	0.13	39.51	642	2.41	0.14	1.51	97.95
R-13	17.79	230	9.82	30	12.88	0.49	4.45	0.15	2.25	51	0.038	0.10	41.92	1189	3.43	0.06	3,92	97.30
R-14	18.74	143	11.02	44	14.35	0.24	4.03	0.12	1.96	99	0.209	0.15	41.82	953	2.51	0.09	3.12	98.35
R-15	13.40	621	5.12	9	16.06	3.22	2.83	0.19	4.53	40	0.734	0.18	46.77	402	2.03	0.01	2.98	98.05
R-16	12.57	597	9.87	17	19.89	1.08	5.35	0.24	3.02	47	2.306	0.13	37.91	553	4.32	0.06	3.05	99.79
R-17	12.00	168	10.90	42	17.95	0.85	3.94	0.28	3.27	56	1.708	0.16	41.99	621	3.79	0.02	1.61	98.46
R-18	16.46	770	1.86	12	6.59	4.48	0.47	0.17	5.87	27	0.136	0.36	59.58	161	0.59	< 0.01	1.51	98.08
R-19	16.10	400	2.25	23	7.50	4.40	0.37	0.13	5.24	41	0.091	0.06	59.76	64	0.42	< 0.01	2.13	98.46
R-20	19.41	591	7.10	47	4.77	3.93	0.28	0.15	4.45	146	0.047	0.10	56.87	1836	0.12	< 0.01	1.76	98.99
R-21	23.30	526	4.60	24	2.44	5.83	0.27	0.08	4.18	234	0.814	0.10	53.93	391	0.11	< 0.01	2.31	97.96
R-22	12.17	43	20.30	89	10.53	0.88	5.23	0.06	0.94	130	0.979	0.43	39.01	104	4.16	0.11	4.95	99.74
R-23	11.88	25	22.64	136	12.85	0.15	4.50	0.14	0.80	40	0.172	0.30	44.12	499	0.54	< 0.01	0.84	98.93
R-24	9.72	336	14.21	770	15.40	2.11	9.54	0.22	1.37	348	0.485	0.19	41.37	469	2.47	< 0.01	2.17	99.26
R-25	9.13	181	11.65	45	22.87	0.21	7.22	0.15	0.94	28	0.091	0.20	39.63	282	4.59	0.31	1.11	98.09
R-26	9.85	188	11.87	49	_28.17	0.16	7.32	0.19	1.16	54	0.231	0.14	33.01	369	6.49	0.26	0.64	99.48
R=27	9.83	250	11.93	36	25.89	0.36	7.23	0.22	1.71	- 38	0.414	0.13	33.27	517	6.87	0.15	0.40	98.41
R-28	18.05	_243	0.37	47	4.77	4.45	0.29	0.08	5.48	86	0.526	0.06	60.54	25	0.77	< 0.01	1.15	96.51
R-29	19.55	238	0.35	70	4.95	4.94	0.51	0.11	5.35	266	1.218	0.05	61.18	30	0.74	< 0.01	0.79	99.74
R-30	15.60	78	0.25	51	3.48	4.81	0.44	0.12	5.68	8	0.094	0.04	65.88	27	0.70	< 0.01	0.58	97.67
R-31	16.65	211	0.37	55	4.06	4.51	0.58	0.16	6.66	16	0.145	0.06	61.72	25	0.78	< 0.01	0.44	96.13
R-32	16.54	731	1.45	62	6.29	4.55	0.36	0.12	5.22	17	0.170	0.05	61.09	116	0.44	< 0.01	0.59	96.87
R-33	18.05	548	0.37	53	4.13	5.48	0.23	0.09	6.13	24	0.142	0.06	61.36	53	0.47	< 0.01	0.74	97.25
R-34	15.26	654	10.03	74	15.12	1.76	4.90	0.17	3.29	47	0.673	0.18	43.32	873	3.09	0.09	1.24	99.12
R-35	15.55	1350	8.76	28	13.66	6.38	3.29	0.08	1.13	138	0.670	0.11	45.52	574	2.33	0.04	1.05	98.57
R-36	13.97	166	13.50	36	15.30	1.11	4.67	0.09	2.16	103	0.830	0.18	42.50	513	3.30	0.12	1.01	98.73

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541

TO: 26 BT RESOURCE CO., LTD Suite 200, 5920 McLeod Trail S.W., Calgary, Alberta T2H 0K2 FILE: 41275

DATE: July 22, 1999

Attn: Sudhir Jain

Sample	Al ₂ O ₃	Ba	CaO	Cr	Fe ₂ O ₃	K ₂ 0	MgO	MnO	Na ₂ O	Ni	P2O5	SO3	SiO2	Sr	TiO ₂	V_2O_5	LOI	SUM
No.	%	ppm	%	ррт	%	%	%	%	%	ppm	%	%	%	ppm	%	%	%	%
R-37	12.34	46	17.98	74	8.19	0.84	4.90	0.07	1.44	105	0.881	0.48	43.61	172	3.80	0.13	4.62	99.28
R-38	15.10	514	9.83	21	13.93	1.93	3.89	0.14	3.13	164	0.640	0.13	44.65	699	3.06	0.08	1.71	98.22
R-39	15.13	274	9.71	32	14.39	1.36	4.00	0.17	3.15	28	0.676	0.14	43.75	530	3.14	0.09	2.69	98.40
R-40	11.43	587	18.67	125	9.03	2.19	5.25	0.13	1.01	71	0.354	0.22	44.96	338	1.47	0.04	2.13	96.89
R-41	11.67	729	18.76	127	6.80	4.23	4.95	0.25	0.64	86	0.238	0.21	49.44	248	0.45	<0.01	1.00	98.63
R-42	6.83	75	16.72	454	11.86	0.28	15.32	0.15	0.85	256	0.109	0.25	43.43	187	1.28	< 0.01	1.43	98.51
R-43	17.37	186	3.05	53	8.56	4.03	0.49	0.15	6.66	35	0.104	0.07	56.18	74	0.38	< 0.01	0.47	97.52
R-44	18.48	204	3.48	55	6.43	4.21	0.19	0.11	6.54	22	0.075	0.10	57.92	559	0.10	< 0.01	1.22	98,84
R-45	10.37	285	21.06	91	9.82	0.80	7.98	0.16	1.08	46	0.554	0.30	40.11	341	2.09	0.07	2.17	96.56
R-46	14.62	1013	9.44	59	14.35	1.80	4.54	0.18	3.03	53	0.605	0.27	43.64	610	2.81	0.08	1.47	96.84
R-47	17.81	779	9.80	38	11.38	2.02	4.18	0.20	3.50	22	1.206	0.13	42.96	1404	2.43	0.04	1.83	97.49
R-48	20.77	299	3.96	21	4.99	3.54	0.13	0.16	6.11	305	0.041	0.07	55.82	635	0.05	< 0.01	1.45	97.08
R-49	15.77	250	15.81	148	5.94	2.33	2.97	0.08	2.59	42	0.117	0.17	49.15	318	0.51	< 0.01	2.30	97.74
R-50	20.78	951	6.65	45	7.80	2.73	1.35	0.16	5.80	28	0.264	0.10	49.76	1396	1.14	< 0.01	1.49	98.01
R-51	14.49	1008	11.98	55	15.72	1.37	5.04	0.18	2.85	33	1.254	0.20	37.82	1106	3.63	0.09	0.87	95.49
R-52	11.29	590	13.31	8	18.76	0.97	5.09	0.24	2.39	24	3.122	0.20	37.46	1080	4.89	0.10	1.81	99.63
R-53	14.25	466	9.74	53	17.14	0.77	4.23	0.24	4.35	41	0.641	0.19	43.95	641	3.07	0.08	0.34	98.99
R-54	13.53	500	13.48	47	12.78	1.25	6.03	0.15	2.23	50	0.420	0.24	42.99	816	3.79	0.06	1.63	98.58
R-55	12.06	523	12.11	20	17.51	0.84	5.62	0.20	2.10	32	0.495	0.15	39.47	822	5.74	0.10	0.73	97.12
R-56	13.19	607	12.08	32	17.33	0.80	5.31	0.21	2.57	46	2.584	0.16	38.89	1313	4.66	0.06	0.53	98.37
R-57	12.99	420	13.99	75	18.09	0.45	5.53	0.20	2.39	46	2.371	0.24	37.11	1410	4.90	0.06	0.57	98.88
R=58	9.23	153	12.32	77	26.27	0.16	7.30	0.24	1.31	90	0.568	0.21	33.14	430	4.83	0.24	1.48	97 28
R-59	9.80	114	13.42	59	26.28	0.12	7.39	0.22	1.35	51	0.134	0.18	34.74	431	5.13	0.27	0 19	99.22
R-60	6.94	147	12.60	26	28.30	0.15	9.84	0.26	0.85	61	0.156	0.20	32.15	310	6.15	0.30	1.64	99.55
R-61	7.70	103	12.48	51	27.71	0.13	9.86	0.25	1.12	91	0.163	0.16	32.30	333	7.45	0.25	0.23	99.80
R-62	6.15	141	12.34	63	31.01	0.20	10.92	0.25	0.86	72	0.097	0.16	30.73	184	6.13	0.34	0.33	99.51
R-63	7.53	95	13.00	77	28.19	0.11	9.56	0.24	1.07	51	0.114	0.20	32.46	293	7.05	0.28	< 0.01	99.82
R-64	7.97	88	13.31	67	29.05	0.11	8.08	0.24	1.05	39	0.080	0.20	32.92	295	5.98	0.33	0.52	99.83
R-65	6.33	76	12.41	61	30.11	0.11	10.19	0.26	0.88	73	0.099	0.17	30.42	209	8.51	0.31	< 0.01	99.81
R-66	17.73	220	13.13	51	13.65	0.27	4.77	0.12	2.67	42	2.187	0.22	38.35	1057	3.88	0.09	1.01	98.07
R-67	18.33	300	14.12	65	14.55	0.22	4.17	0.11	2.47	80	0.126	0.24	40.60	830	2.65	0.17	0.64	98.39
R-68	14.49	166	13.05	47	17.94	0.21	5.17	0.17	2.23	38	0.109	0.21	38.23	805	5.06	0.11	1.41	98.39
R-69	11.25	107	12.59	45	22.92	0.14	5.71	0.17	1.59	73	0.158	0.28	38.77	544	3.80	0.24	0.54	98,16
R-70	11.85	116	14.35	63	23.52	0.17	6.50	0.16	1.22	167	0.146	0.94	35.62	387	3.77	0.29	0.33	98.86
R-71	12.27	107	14.88	39	20.49	0.15	6.79	0.15	1.37	114	0.084	0.23	38.31	508	3.82	0.26	0.47	99.26
R-72	13,28	676	14.27	57	19.87	0.22	5.79	0.20	2.33	37	0.693	0.17	37.35	827	5.08	0.12	<0.01	99.38

Loring Laboratories Ltd.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541

a - 2

FILE: 41275 DATE: July 22, 1999

TO: 26 BT RESOURCE CO., LTD Suite 200, 5920 McLeod Trail S.W., Calgary, Alberta T2H 0K2

Attn: Sudhir Jain

Sample	Al ₂ O ₃	Ba	CaO	Cr	Fe ₂ O ₃	K ₂ O	MgO	MnO	Na ₂ O	Ni	P2O5	SO3	SiO2	Sr	TiO ₂	V_2O_5	LOI	SUM
No.	%	ppm	%	ррт	%	%	%	%	%	ppm	%	%	%	ppm	%	%	%	%
R-73	9.00	2	11.96	29	24.28	0.22	5.81	0.31	2.17	41	2.086	0.18	36.13	564	5.89	0,07	< 0.01	98.10
R-74	11.07	210	11.89	49	24.87	0.16	6.54	0.19	1.45	37	0.179	0.17	35.20	459	5.14	0.22	0.53	97.61
R-74A	10.72	544	11.81	33	24.62	0.14	6.41	0.20	1.93	40	2.442	0.16	33.51	642	6.34	0.15	<0.01	98.43
R-75	3.34	74	11.45	23	35.93	0.04	9.95	0.40	0.41	36	0.367	0.21	26.47	61	10.09	0.30	< 0.01	98.97
R-76	13.24	155	12.71	58	21.96	0.13	5.65	0.15	1.62	48	0.076	1.00	36.77	591	4.31	0.20	0.63	98.45
R-77	13.64	169	13.72	90	22.96	0.12	5.84	0.15	2.02	124	0.069	1.12	35.11	427	3.38	0.21	0.97	99.31
R-78	12.89	187	11.91	43	18.24	0.15	5.16	0.16	1.94	51	0.103	1.21	39.87	598	5.47	0.12	0.65	97.87
R-79	11.03	400	13.99	12	18.86	1.24	5.46	0.21	2.20	41	2.052	0.42	37.33	757	4.06	0.08	2.13	99.06
R-80	8.83	159	13.08	49	18.60	0.33	5.10	0.16	0.94	103	0.709	1.19	31.09	460	4.19	0.11	14.80	99.12
R-81	11.72	188	13.02	47	21.00	0.62	5.75	0.20	1.52	98	0.102	0.66	39.76	1018	3.52	0.14	1.76	99.77
R-82	18.53	273	14.14	2	13.72	1.13	4.36	0.25	2.50	51	0.414	0.58	38.16	725	2.52	0.06	2.81	99.17
R-83	12.21	130	16.89	12	12.80	0.66	6.73	0.20	1.25	68	0.245	0.21	42.16	508	1.91	0.07	2.09	97.42
R-84	27.72	636	12.77	20	6.64	2.48	1.95	0.06	2.56	20	0.231	0.15	38.20	1040	1.22	0.04	4.57	98.60
R-85	20.17	228	14.48	4	13.18	1.34	3.47	0.11	2.51	26	0.193	0.23	38.38	775	2.16	0.08	3.43	99.73
R-85A	17.21	643	1.79	27	11.22	5.15	0.42	0.25	5.27	9	0.139	0.05	55.65	62	0.64	< 0.01	0.78	98.56
R-86	18.92	1046	0.61	41	9.11	5.35	0.82	0.10	6.19	13	0.088	0.06	55.45	58	0.45	< 0.01	1.31	98.46
R-87	14.71	472	13.25	6	19.38	0.96	5.31	0.32	2.74	29	0.358	0.24	36.56	1001	5.37	0.12	0.50	99.83
R-88	14.82	643	13.62	8	17.65	0.78	6.08	0.18	2.43	13	0.344	0.28	37.16	1164	5.72	0.11	0.33	99.51
R-89	9.60	308	12.89	632	24.84	0.44	11.23	0.26	1.03	310	1.821	0.41	32.65	634	2.87	<0.01	1.77	99.80
R-90	13.97	676	15.64	16	19.56	1.57	4.32	0.19	1.70	31	2.890	0.20	33.69	1225	4.68	0.14	1.30	99.86
R-91	17.83	394	0.70	37	11.05	5.53	0.42	0.25	6.52	_ 25	0.195	0.05	54.60	40	0.89	<0.01	1.43	99.47
R-92	17.51	351	0.60	43	10.56	5.63	0.31	0.25	6.35	46	0.232	0.04	55.32	49	0.78	<0.01	1.58	99.15
R-93	20.22	637	0.28	22	4.94	4.47	0.15	0.15	7.79	6	0.075	0.04	59.70	155	0.32	<0.01	1.38	99.51
R-94	19.54	25	0.68	53	3.17	5.58	0.39	0.17	6.96	18	0.127	0.06	60.96	41	0.50	<0.01	0.52	98.63
R-95	18.81	154	0.74	39	5.04	5.76	0.39	0.17	6.61	12	0.074	0.03	59.62	43	0.46	<0.01	0.56	98.26
R-96	19.63	220	1.25	65	5.75	5.48	0.55	0.14	6.55	57	0.539	0.05	56.41	97	1.09	<0.01	0.85	98.28
R-9/	19.22	266	0.58	39	4.95	5.45	0.49	0.16	6.96	15	0.039	0.05	60.58	91	0.77	<0.01	0.50	99.75
K-98	11.66	140	15.96	463	18.62	0.41	9.80	0.29	1.46	251	0.421	0.19	36.91	509	2.03	<0.01	2.24	99.99
R-99	23.30	200	16.60	57	6.81	0.58	1.83	0.09	2.44	72	0.319	0.57	43.88	2094	1.40	0.03	1.15	98.98
K-100	8.53	122	15.51	35	27.92	0.15	7.45	0.28	1.17	47	3.370	0.18	28.15	787	6.93	0.19	<0.01	99.83
R-101	12.98	201	16.19	53	22.22	0.22	6.72	0.22	1.88	48	3.100	0.22	30.52	1043	5.48	0.12	<0.01	99.87
R-102	16.16	765	10.77	2	17.42	2.43	3.70	0.25	3.16	33	1.020	0.15	38.87	904	3.32	0.05	2.39	99.69
K-103	13.16	475	12.52	16	19.28	1.31	3.49	0.21	2.55	37	0.740	0.17	41.33	620	3.54	0.10	1.51	99.91
R-104	20.14	155	4.94	16	6.54	5.18	0.38	0.15	4.42	13	0.118	0.09	53.48	925	0.46	<0.01	2.20	98.10
K-105	19.65	/28	5.70	18	6.81	4.36	0.93	0.16	4.83	12	0.213	0.10	53.35	524	0.48	<0.01	1.83	98.41
K-106	14.33	105	13.77	22	19.53	1.85	4.50	0.25	1.77	216	0.630	0.69	35.62	707	3.66	0.15	3.18	99.92

Suite 200, 5920 McLeod Trail S.W.,

TO: 26 BT RESOURCE CO., LTD

Loring Laboratories Ltd.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541

FILE: 41275

DATE: July 22, 1999

Attn: Sudhir Jain

T2H 0K2

Calgary, Alberta

No. % ppm % % % % ppm % % % ppm % <th>% % 20 99.58 15 99.73 01 99.33 62 99.37 37 99.97 75 99.57 37 99.06 54 99.65 53 99.62</th>	% % 20 99.58 15 99.73 01 99.33 62 99.37 37 99.97 75 99.57 37 99.06 54 99.65 53 99.62
R-107 19.10 197 3.95 22 6.26 4.94 0.55 0.22 5.02 17 0.101 1.39 55.56 298 0.29 <0.01	20 99.58 15 99.73 01 99.33 62 99.37 37 99.97 75 99.57 37 99.06 54 99.65 53 99.62
R-189 15.15 208 12.74 57 17.68 0.16 6.35 0.18 2.60 28 0.483 0.17 38.26 1001 5.68 0.12 0 R-190 7.03 454 13.60 61 25.74 0.08 7.58 0.25 1.04 38 1.062 0.56 34.75 311 7.47 0.17 <0 R-191 10.84 764 12.94 73 21.17 0.30 6.95 0.19 1.80 43 0.840 0.20 36.58 522 6.76 0.18 0.84 R-192 3.64 118 10.74 20 36.16 0.06 10.74 0.60 0.70 38 3.502 0.82 24.09 217 8.46 0.08 0.70 R-193 13.97 188 13.48 71 17.98 0.15 6.53 0.16 2.12 54 2.847 0.17 35.52 912 5.78 0.11 0.16 R-194 15.46 255 11.98 57 17.87 0.14	15 99.73 01 99.33 62 99.37 37 99.97 75 99.57 37 99.06 54 99.65 53 99.62
R-190 7.03 454 13.60 61 25.74 0.08 7.58 0.25 1.04 38 1.062 0.56 34.75 311 7.47 0.17 <0.77	01 99.33 62 99.37 37 99.97 75 99.57 37 99.06 54 99.65 53 99.62
R-191 10.84 764 12.94 73 21.17 0.30 6.95 0.19 1.80 43 0.840 0.20 36.58 522 6.76 0.18 0 R-192 3.64 118 10.74 20 36.16 0.06 10.74 0.60 0.70 38 3.502 0.82 24.09 217 8.46 0.08 0 R-193 13.97 188 13.48 71 17.98 0.15 6.53 0.16 2.12 54 2.847 0.17 35.52 912 5.78 0.11 0 R-194 15.46 255 11.98 57 17.87 0.14 5.99 0.15 3.51 26 0.092 1.57 36.03 960 5.75 0.15 0.15 0.51 26 0.092 1.57 36.03 960 5.75 0.15 0.15	62 99.37 37 99.97 75 99.57 37 99.06 54 99.65 53 99.62
R-192 3.64 118 10.74 20 36.16 0.06 10.74 0.60 0.70 38 3.502 0.82 24.09 217 8.46 0.08 0 R-193 13.97 188 13.48 71 17.98 0.15 6.53 0.16 2.12 54 2.847 0.17 35.52 912 5.78 0.11 0 R-194 15.46 255 11.98 57 17.87 0.14 5.99 0.15 3.51 26 0.092 1.57 36.03 960 5.75 0.15	.37 99.97 .75 99.57 37 99.06 54 99.65 53 99.62
R-193 13.97 188 13.48 71 17.98 0.15 6.53 0.16 2.12 54 2.847 0.17 35.52 912 5.78 0.11 0 R-194 15.46 255 11.98 57 17.87 0.14 5.99 0.15 3.51 26 0.092 1.57 36.03 960 5.75 0.15 0.15 0.15 0.15 0.51 26 0.092 1.57 36.03 960 5.75 0.15 </th <th>.7599.57.3799.065499.655399.62</th>	.7599.57.3799.065499.655399.62
R-194 15.46 255 11.98 57 17.87 0.14 5.99 0.15 3.51 26 0.092 1.57 36.03 960 5.75 0.15 0	.3799.065499.655399.62
	.54 99.65 .53 99.62
R-195 18.80 361 13.65 63 14.75 0.23 4.29 0.12 2.67 42 0.542 0.22 40.42 862 3.31 0.11 0	.53 99.62
R-196 12.95 464 13.05 71 19.92 0.17 5.87 0.18 2.06 45 0.524 0.18 37.98 682 6.05 0.15 0	
R-197 10.39 305 12.42 34 21.94 0.23 6.07 0.25 2.10 62 2.319 0.92 36.97 818 5.26 0.12 <0	.01 98.99
R-198 10.98 571 10.21 2 20.58 0.51 4.86 0.32 2.81 27 2.202 0.45 38.46 665 4.36 0.02 1	45 97.21
R-199 11.77 257 20.82 314 8.33 0.72 7.10 0.15 1.08 95 1.385 0.31 41.58 341 1.94 <0.01 1	.71 96.91
R-200 14.22 169 12.81 61 9.94 1.32 5.33 0.14 2.56 40 0.259 1.10 45.01 814 3.20 0.05 1	.68 97.60
R-201 15.58 426 12.62 49 14.51 0.63 5.29 0.15 2.20 30 0.354 0.23 41.49 1225 5.09 0.08 0	.24 98.47
R-202 13.98 331 12.89 63 16.90 0.68 5.72 0.17 1.90 27 2.139 0.26 39.62 1062 4.28 0.07 (.36 98.97
R-203 7.97 195 16.87 554 13.84 0.29 8.13 0.18 1.72 252 1.500 1.86 43.69 330 1.79 <0.01 1	.81 99.65
R-204 13.38 705 12.29 24 17.46 1.92 5.46 0.18 2.72 30 2.190 0.21 37.74 996 4.84 0.10 1	.00 99.49
R-205 13.38 370 15.38 69 14.65 1.43 4.43 0.19 2.08 60 1.398 0.16 39.03 956 5.86 0.04 1	.63 99.67
R-206 9.73 82 13.54 51 25.75 0.12 6.90 0.25 1.38 31 0.443 0.20 35.09 400 4.71 0.33 (34 98.79
R-207 18.08 147 13.97 75 15.57 0.16 5.25 0.11 2.14 95 0.373 0.18 39.72 823 2.73 0.16 (39 98.83
R-208 10.88 96 14.20 24 19.41 0.10 6.04 0.16 1.59 29 2.893 0.22 35.29 604 5.99 0.17 0	50 97.45
R-209 15.84 518 13.36 22 15.02 0.17 4.77 0.12 2.48 21 2.390 0.18 38.63 1015 4.32 0.11 (12 97.50
R-210 20.45 108 15.11 69 12.34 0.29 4.10 0.14 2.30 58 0.488 0.24 41.06 789 2.34 0.08 0	.50 99.43
R-211 21.08 453 13.42 48 10.99 0.39 3.37 0.12 3.28 20 0.610 0.18 43.13 1117 2.24 0.06 0	.51 99.38
R-212 9.42 307 12.55 3 22.45 0.12 7.18 0.21 1.64 31 3.052 0.17 33.79 662 6.40 0.17 <0	.01 97.15
R-213 11.36 170 12.86 11 22.75 0.10 7.55 0.17 1.86 47 0.871 0.21 33.68 555 7.23 0.23 (.06 98.93
R-214 11.61 149 12.75 38 25.83 0.09 6.95 0.18 1.52 51 0.276 0.24 34.10 450 5.36 0.33 (.05 99.29
R-107R 20.50 480 2.81 2 4.82 5.47 0.55 0.15 4.91 15 0.087 0.06 57.21 306 0.27 <0.01 2	.12 98.95
R-215 9.37 124 13.46 58 22.52 0.10 7.96 0.19 1.40 111 0.333 0.26 36.64 377 6.74 0.30 <	.01 99.26
R-216 14.13 275 12.98 27 17.23 0.16 6.10 0.15 2.22 33 2.622 0.19 36.96 814 4.98 0.15 0	.08 97.95
R-217 7.21 124 12.87 16 25.06 0.06 9.29 0.21 1.10 28 3.524 0.39 29.74 439 7.54 0.24 <	.01 97.23
R-218 10.14 120 12.53 25 28.33 0.15 7.51 0.22 1.38 41 0.256 0.24 31.80 420 4.93 0.33 <0	01 97.82
R-219 7.91 115 11.93 4 29.31 0.22 8.30 0.23 1.22 35 0.215 0.16 31.13 286 6.87 0.37 (10 97.96
R-220 18.48 260 13.40 25 14.37 0.22 4.26 0.12 2.66 20 0.182 0.18 39.92 843 4.01 0.13 0	.39 98.32
R-221 14.70 187 12.66 13 20.87 0.17 5.84 0.15 2.05 37 0.458 0.20 35.93 653 4.77 0.23 0	.14 98.16
R-222 4.43 91 11.83 <1 33.40 0.07 11.33 0.25 0.67 33 3.751 0.21 22.34 244 9.95 0.32 <0	.01 98.56

TO: 26 BT RESOURCE CO., LTD

Suite 200, 5920 McLeod Trail S.W.,

Loring Laboratories Ltd.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541

FILE: 41275

DATE: July 22, 1999

Attn: Sudhir Jain

T2H 0K2

Calgary, Alberta

.

WHOLE ROCK ANALYSIS BY ICP

Sample	AI_2O_3	Ba	CaO	Cr	Fe ₂ O ₃	K ₂ O	MgO	MnO	Na ₂ O	Ni	P2O5	SO3	SiO2	Sr	TiO ₂	V ₂ O ₅	LOI	SUM
No.	%	ppm	%	ppm	%	%	%	%	%	ppm	%	%	%	ppm	%	%	%	%
R-223	15.52	146	11.99	<1	17.85	0.42	5.21	0.16	1.90	23	0.132	0.17	38.08	643	3.94	0.17	3.08	98.62
R-224	6.54	132	10.42	<1	32.13	0.06	10.01	0.26	0.97	30	1.012	0.15	26.51	292	9.71	0.36	<0.01	98.13
R-225	8.21	124	11.96	7	27.84	0.09	8.06	0.20	1.26	34	0.573	0.17	32.73	401	8.28	0.32	<0.01	99.70
R-226	6.57	162	11.44	<1	28.40	0.16	9.09	0.26	1.18	24	2.475	0.17	30.80	472	8,37	0,21	<0.01	99.11
R-227	17.99	309	13.20	27	15.83	Ö.39	4.96	0.15	2.77	20	2.179	0.20	36.75	1159	4.05	0.12	0.22	98.80
R-228	12.90	187	13.04	165	18.02	0.14	7.93	0.18	1.98	44	0.964	0.19	36.92	782	4.02	0.09	2.87	99.25
R-229	12.57	70	14.80	161	20.88	0.08	7.07	0.18	1.40	70	0.121	0.41	38.28	564	3.51	0.13	0.41	99.84
R-230	12.31	186	13.82	11	22.38	0.23	6.61	0.17	1.30	38	0.177	0.24	37.29	480	3.64	0.30	0.84	99.30
R-231	9.79	74	16.54	25	22.42	0.09	6.38	0.18	1.41	24	2.210	0.26	32.98	614	4.71	0.20	0.92	98.09
R-232	13.22	183	14.24	56	20.52	0.26	6.09	0.16	1.44	33	0.165	0.27	37.88	509	3.22	0.23	1.22	98.92
R-233	17.64	502	13.94	125	14.23	0.78	5.34	0.15	2.13	72	0.359	0.24	40.50	890	2.41	0.08	1.44	99.24
R-234	12.03	256	18.55	36	10.60	0.47	6.56	0.18	2.34	15	2.810	0.26	42.42	842	2.05	0.05	0.77	99.08
R-235	17.13	228	14.18	101	12.91	0.27	6.12	0.13	2.53	56	0.072	0.21	42.59	700	1.90	0.09	0.75	98.88
R-236	11.61	121	10.42	37	24.52	0.24	6.46	0.28	2.77	24	2.346	0.14	34.69	732	5.89	0.12	< 0.01	99.49
R-237	16.13	1172	12.54	41	15.86	0.25	4.91	0.16	3.41	16	0.613	0.16	39.79	910	4.14	0.08	0.14	98.17
R-238	14.52	1382	11.38	41	16.98	0.25	4.87	0.17	3.09	16	2.014	0.16	39.76	983	4.65	0.04	<0.01	97.89
R-239	16.39	317	12.20	56	16.64	0.16	5.00	0.15	2.81	16	0.236	0.17	40.10	846	5.14	0.11	0.41	99.51
R-240	15.54	209	12.65	28	17.93	0.16	5.45	0.14	2.09	24	0.104	0.18	40.70	740	4.03	0.18	0.46	99.61
R-241	15.45	219	11.84	45	17.95	0.18	5.39	0.15	2.30	18	0.089	0.16	40.20	852	5.28	0.15	<0.01	99.13
R-242	24.85	225	14.48	45	8.38	0.18	2.54	0.07	2.51	28	0.154	0.19	43.06	1124	1.59	0.06	0.72	98.77
R-243	25.82	250	14.87	99	6.71	0.37	2.78	0.07	2.29	29	0.154	0.19	43.44	1001	1.09	0.02	0.92	98.72
R-244	22.15	206	15.59	192	8.27	0.26	4.38	0.10	2.18	63	0.169	0.20	43.73	841	1.22	0.00	0.48	98.73
R-245	26.36	262	13.98	67	6.55	0.26	1.68	0.06	2.82	12	0.125	0.18	46.24	1274	1.06	0.03	0.36	99.69
R-246	16.18	144	12.41	28	17.22	0.15	5.62	0.14	2.19	20	0.056	0.18	37.19	825	5.51	0.20	0.34	97.38
R-247	17.91	246	12.47	60	14.28	0.28	5.48	0.12	2.22	52	0.090	0.19	41.21	917	2.63	0.14	1.67	98.69
R-248	17.33	154	13.66	11	16.72	0.14	5.99	0.14	2.09	50	0.054	0.21	39.19	893	3.12	0.19	<0.01	98.82
R-249	24.88	255	15.20	77	7.47	0.22	2.56	0.07	2.34	51	0.157	0.23	43.75	1013	1.14	0.04	0.68	98.75
R-250	14.56	245	12.27	22	19.87	0.19	5.88	0.16	2.00	23	0.118	0.16	38.05	709	5.21	0.15	<0.01	98.63
R-251	21.71	87	16.88	56	11.53	0.11	3.40	0.07	1.86	84	0.045	0.20	39.91	976	1.53	0.10	2.17	99.51
R-226R	6.42	162	11.52	18	28.98	0.15	8.88	0.25	1.17	20	2.380	0.16	30.98	448	8.14	0.18	<0.01	99.23

0.2g. of sample fused with lithium metaborate and dissolved in 5% HNO3.

fore Sum Certified by:__

FIGURE 2 GEOLOGICAL MAP OF BEARPAW RIDGE

APPENDIX 2

Assessment Report On Geological and Geochemical Work On The Following Claims

-

BT 1-4 313837 - 33840 BT 5-6 313845 - 313846 BT 7 323202 BT 8-10 323096 - 323098 BT 11 323203 BT 12-17 346620 - 346625 BT 18 346941 BT 19 346626 BT 20-21 347097 - 347098

located

60 km East Of Prince George, British Columbia Prince George Mining Division

54 degrees 03 minutes latitude North 121 degrees 36 minutes longitude West

NTS 93I/4E and W

Project Period: June 1 to July 30, 1998

On Behalf Of 26 BT Resource Development Ltd. Suite 200 5920 Macleod Tr. S.W. Calgary, Alberta T2H 0K2

Report By: E.R. Kruchkowski, B.Sc., P. Geol. September 12, 1999

Table Of Contents

	<u>Page</u>
SUMMARY	1
INTRODUCTION	3
Location and Access	3
Physiography and Topography	3
Personnel and Operations	4
Property Ownership	4
Previous Work	5
GEOLOGICAL SURVEY	6
Regional Geology	6
Local Geology	7
Mineralogy	10
GEOCHEMICAL SURVEYS	12
Introduction	13
Field Procedure and Laboratory Technique	13
Statistical Treatment	13
Anomalous Results	14
DRILL CORE LOGGING	14
CONCLUSIONS	14
RECOMMENDATIONS	17
REFERENCES	18
STATEMENT OF CERTIFICATE	19

۰.

.

_

I.....

,

List of Figures

			After Page
Figure	1.	Location Map	ŝ
	2	Claim Map	4
	2a.	Sketch showing grid location	10
	3.	Local Geology, 1999- West Half	In Back Pocket
	4.	Local Geology. 1999- East Half	In Back Pocket
	5.	Rock Geochemistry-West Half	In Back Pocket
	6.	Rock Geochemistry-East Half	In Back Pocket
	7.	Map Showing Drill Holes	
		and Magnetic Anomalies.	14

-

.....

List of Appendices

Appendix I	Description of Rock Geochemical Samples
Appendix II	Geochemical Analysis for the Geochemical Program
Appendix III	Drill Log DDH 95-2
Appendix IV	Mineralogical Studies

۰.

SUMMARY

The BT 1-21 Claims owned by 26 BT Development Co. Ltd. are located approximately 60 kilometers east of Prince George, British Columbia, in the Prince George Mining Division. The property covers an area of Cambrian to Ordovician sediments and Silurian volcaniclastics and sediments intruded by a variety of plutons ranging in composition from anorthosite/gabbro to sodalite syenite.

A large mafic intrusion, carrying magnetite-ilmenite-apatite and having a surface expression in the order of 25 square kilometres has been identified on the claim area. It belongs to sub-type 26.2 classification (Gabbro-anorthosite hosted iron-titanium - Gross. G.A., in Geology of Canadian Mineral Deposit Types) deposits in which host intrusive complexes are typically differentiated and include gabbro, leucogabbro, diorite, diabase, gabbro-norite and quartz monzonite.

On the 26 BT claims, concentrations of metallic iron/titanium oxides occur primarily in the gabbros in two main styles:

disseminated oxides in coarse grained gabbro host rocks with mafics less than 30 %.
 as fine disseminations along mafic rich layering in highly foliated gabbros with mafic content varying from 30 % to 70% of the rock

In the period January 1 to July 30, 1999, a program was conducted on the property as follows:

1. Re-logging DDH 95 - 2 which was drilled in the area of the 1999 surveys.

2. Cutting of approximately 7.3 km of grid line to provide survey control for geological mapping and magnetometer surveys (results of survey covered in separate report). This work extended the 1998 grid an additional 1.5 km to the east within an area of high magnetics outlined in an airborne survey.

3. Geological mapping along grid lines as well as limited chain and compass lines .

4. Collection of 63 rock geochemical samples in the course of the geological survey.

5. Mineralogical studies to determine mode of occurrence of the titanium and purity of the magnetite.

Geological mapping has indicated that gabbro portion of the intrusive complex occurs along the northern and western portions of the surface exposures. The gabbro varies from a very coarse grained phase to a coarse to medium grained, highly foliated, mafic rich phase. Greatest magnetite and ilmenite appear to occur in areas of highest mafic content. The coarse grained, non foliated gabbro appears to be in contact with siliceous sediments along the northern edge. Along the contact area within the gabbro, sausseritization has led to the development of local abundant epidote extending for several hundreds of meters into the intrusive. In addition, pyrite occurs locally in the gabbro along the contacts in amounts up to 5 %. The highly foliated gabbro appears to form a wide SE-NW trending zone between the anorthosite and the coarse grained gabbro above. The anorthosite appears to have been placed juxtaposition to the gabbro along several faults. Logging of DDH 95-2 indicates that anorthosite dykes intrude a highly foliated, mafic rich gabbro. Also local strong pyrrhotite mineralization was noted in the gabbro in the area of the dykes.

The 1999 rock geochemical program has indicated highly anomalous values for iron oxides and titanium oxides with results ranging from 6.71 to 36.16% Fe2 O3 and 1.06 to 9.95% Ti O2.

Mineralogical studies indicate that the gabbro is composed of plagioclase, augite, biotite, titanomagnetite, ilmenite and apatite. The titanium bearing minerals are titanomagnetite, ilmenite, biotite and augite.

Results to date indicate that the property contains large areas of magnetite-titaniumapatite bearing gabbro. The recommended program would include the following:

1. Extending the present grid to the north and south along the eastern portion to better determine the gabbro/anorthosite relationship and determine the northern boundary of the gabbro

2. Geological mapping along any new logging slashes as well as any newly placed grid lines.

3. Geochemical rock sampling in areas of rock outcrops.

Estimated cost of the program is \$ 25,000.

INTRODUCTION

An exploration program designed to further test the magnetite-titanium oxide potential of the BT claims was conducted during the period January to July 30, 1999. The work expanded on airborne magnetometer surveys completed prior to 1997 and a rock and silt geochemistry and reconnaissance mapping program as well as grid work and magnetometer survey in 1998.

Work was conducted by personnel accommodated in a tent site erected on the BT 6/8 claim boundaries.

All rock geochemical samples analysis were performed by Loring Laboratories Ltd. in Calgary, Alberta.

Mineralogical studies were performed by Overburden Drilling Management Ltd from Nepean, Ontario.

Location and Access

The property consisting of the BT claims is located about 60 kilometers east of Prince George, British Columbia (figure 1). The village of Sinclair Mills is just 2 kilometers south of the southern portion of the claims. The claim area is approximately 54 degrees 3 minutes latitude north and longitude 121 degrees 36 minutes west on NTS sheet 93 I/4E and W.

Access to the lower slopes of the property is via vehicle along logging roads from McGregor and Prince George while the upper slopes are accessed by helicopter.

Roads within logging slashes are generally overgrown or have had culverts and bridges removed by logging companies.

Physiography and Topography

The 26 BT property area is situated along the northern edge of the Bearpaw Ridge. The property encompasses an area between the Fraser River and West Torpy River. The property lies at the eastern edge of the Interior Plateau and the western edge of the McGregor Range Plateau. Elevations vary from approximately 600 m on the southern portion of the BT 12 (near the Fraser River) claim to 1680 m on the eastern edge of BT-7 (along Bearpaw Ridge).

Except for north facing slopes along the top of Bearpaw Ridge and logging slashes, the property is generally heavily wooded. Recent logging slashes are present within the BT

8, 9 and 11 claims while older, more overgrown logging slashes are present within the BT 1, 2 and 3 claims.

The slopes are wooded with a variety of pine trees, poplars, willows as well as underbrush consisting of alder and devil's club. The presence of abundant windfall along with the above devil's club makes traversing the claims difficult

Numerous small intermittent streams are present in the property area while Pritchard Creek and one draining the BT 8 and 9 claims appear to flow on a yearly basis.

Personnel and Operations

Personnel involved during the exploration program are listed below:

E.R. Kruchkows	ki - Geologist (Calgary)	January 1 to July 30, 1999
M. Moorman	- Prospector (Vancouver)	June 1 to July 30, 1999

Personnel in the program mobilized to the project area via vehicle from Vancouver and Calgary.

All personnel involved in the program, while on site were accommodated in the tent camp located on the BT 6/8 claim boundary. During the program, a JD 450 bulldozer was used to clear the brush off an old logging road extending across the BT 6 and part of the BT 3 claim for a distance of approximately 2 km. A four wheel drive quad provided transportation along this cleared trail as well as an overgrown logging road to the area of Line 20+00 E and 9+00 S from which point, the crew walked to the survey area.

Supplies and materials for the job were purchased in Prince George and taken to the job site via truck.

Property Ownership

The property, approximately 75 square kms, consists of 21 modified grid claims containing 306 units. Relevant claim information is summarized below:

Tenure	No. Of Units	Expiry Date
313837	20	Oct. 02/99
313839	20	Oct. 02/99
313838	20	Oct. 03/99
313840	20	Oct. 05/99
313845	20	Oct. 06/99
313846	20	Oct. 07/99
323202	20	Dec. 29/99
	Tenure 313837 313839 313838 313840 313845 313846 323202	Tenure No. Of Units 313837 20 313839 20 313838 20 313840 20 313845 20 313846 20 323202 20

}

BT 8	323096	20	Dec. 21/99
BT 9	323097	20	Dec. 21/99
BT 10	323098	10	Dec. 22/99
BT 11	323203	16	Dec. 31/99
BT 12	346620	6	June 09/99
BT 13	346621	12	June 08/99
BT 14	346622	12	June 08/99
BT 15	346623	18	June 07/99
BT 16	346624	4	June 09/99
BT 17	346625	12	June 10/99
BT 18	346941	16	June 10/99
BT 19	346626	18	June 10/99
BT 20	347097	1	June 16/99
BT 21	347098	1	June 16/99

The claims are registered in the name of 26 BT Resource Development Ltd. of Calgary. The author did not examine the claim posts and cannot verify the quality and accuracy of the staking. The exact location of these claims would be subject to further surveys. Claim location is illustrated on Figure 2 copied after available government NTS maps.

Previous Work

The creeks in the vicinity of Bearpaw Ridge were in all likelihood examined for their placer potential in the late 1800's. This would have occurred as a result of the gold rush in the Cariboo area to the south.

Subsequently, prospectors have examined the Bearpaw Ridge and the underlying intrusives as a potential source for precious and base metals. Old claim posts were noted along Bearpaw Ridge in an area now covered by the BT 7 claim. Exploration activity from the late 1980's to now is quoted from an assessment report by Jain and Kelsch as follows:

"Two of the principals of the company entered the area north and east of McGregor in 1989. This was based on projections of the trends seen in the configuration of the North American Continental mass as demonstrated by Government gravity and magnetic maps. Later, while studying reports and maps in the Provincial offices in Prince George, the magnetic feature shown on Aeromagnetic Map 1536 G of the Geophysics Division of Mines and Technical Surveys was noted. Subsequent sampling along creeks crossing, the old logging road north of Sinclair Mills, yielded unusually high amounts of magnetite. The decision to stake the area at the north west end of Bearspaw Ridge was then made and carried out in 1992. An aeromagnetic survey was flown, processed and interpreted in 1993. As a result of this survey, additional areas surrounding the claims were staked. 9 holes were drilled to the depth of 100' on the claims in October 1994. The chemical analysis from the cores showed that Fe2O3 content averaged between 10-20% in the holes and reached up to 35% in some zones. The magnetic separation in 20 samples from two holes showed that in samples with high Fe2O3 content (greater than 10%), magnetite is more than 75% of total Fe2O3 percentage.

Three holes were drilled to the depths of 300' in June 1995. Two of the holes confirmed the presence of magnetite in a variable amounts to at least 300'. The third hole was and missed the anomaly. This hole does not appear to have any commercial significance.

Three holes were drilled in July 1996, two to the depth of 300' and one to 500'. One hole confirmed magnetic concentration while the other two were discouraging. The cores have not been fully analyzed yet and the results of this drilling could not be incorporated in to this report."

In the period June 15 to July 10, 1997, a program was conducted on the property including re-logging of some drill holes, petrographic studies, rock and silt geochemical sampling, reconnaissance geological mapping and magnetic separation tests.

Based on the petrographic studies, the re-logging of the core and surface mapping, it was concluded that the property is underlain by a gabbro-anorthosite intrusive complex subsequently hydrothermally altered by a later nearby syenite intrusive. The gabbro anorthosite complex corresponds with a large magnetic anomaly.

The 1997 rock geochemical program indicated highly anomalous values for iron oxides and titanium oxides with results ranging from 2.20 to 29.57% Fe2 O3 and 0.03 to 9.17% Ti O2. The silt sampling has also indicated highly anomalous results with values ranging from 3.30 to 36.75% Fe2 O3 and 0.47 to 13.84% Ti O2.

During 1998, a program consisting of gridding, geological mapping, rock and silt sampling and magnetometer surveying was completed on the property. A total of 29.1 km of grid provided survey control for the mapping, geochemical and magnetometer program. Results of the mapping indicated the continuation of the gabbro to the east and south. Magnetic surveys confirmed the results of the airborne data. Geochemical sampling indicated results varying from 5.23 % to 27.82 % Fe2O3 and 0.75 to 7.76 % TiO2 for the rocks collected while the silts carried from 6.52 to 30.33 % Fe2O3 and 0.99 to 11.29 % TiO2.

GEOLOGICAL SURVEY

Regional Geology

The Geological Survey of Canada Open File 630 shows that Bearpaw Ridge is underlain by a Cambrian to Silurian age sedimentary sequence to the east with a Lower Cambrian sedimentary sequence thrust on to the above rocks in the western portion of the area. Silurian age symplets are shown intruding the Cambrian to Silurian sediments. Along the eastern edge of the Bearspaw Ridge, just west of the Torpy River, limestone and shale of the Lower Cambrian Mural Formation have been mapped. Overlying this formation is an undivided sequence of argillaceous limestone with minor shale that may range in age from Upper Cambrian to Upper Ordovician. West of this undivided sequence are more dolomitic siltstones, dolomite and shale of the Snake Indian Formation of Middle Cambrian age. This formation appears to be overlain by an undivided sequence of argillaceous limestone with minor shale that may be from Upper Cambrian to Upper Ordovician in age.

West of the above rocks, alkalic agglomerates of Silurian age form a synclinal structure along the west slopes of Bearpaw Ridge. Sodalite syncite of Silurian age intrudes both the alkalic agglomerates and argillaceous limestone and minor shale of Upper Cambrian to Upper Ordovician age. Lenticular horizons of Nonda Formation of Silurian age have been mapped between the above agglomerates and Upper Ordovician sediments. The Nonda Formation consists of dolomite, limestone, calcareous shale and quartzite. Thick quartzite beds are indicated for the southern portions of Bearpaw Ridge.

The Gog group of undivided sediments of Lower Cambrian age have been thrust along a northwest trenching belt over the Silurian Nonda Formation in the western edge of Bearpaw Ridge.

The above rocks all have a northwest trend, similar to trends for the overall region.

Local Geology

The area of the BT claims was mapped by Pell in 1987 on behalf of the British Columbia Department of Mines, Energy and Petroleum Resources. This work identified the area of the gabbro as orthogneiss and that of the anorthosite as being underlain by syenite. A full description of her mapping as well as 26 BT Resource results are included in the 1997 and 1998 geological reports by the author.

Work during 1997-1999 has identified the area of the BT claims as being underlain by an anorthosite/gabbro complex that exceeds 25 square km in area extent. Abundant magnetism is associated with the gabbro portion of the complex. Both iron, titanium and phosphate minerals appear to have been concentrated in the gabbroic part of the intrusive complex.

The gabbro appears to occur as an arcuate body extending from the west central area of the BT 8 and 9 claims through the southern part of the BT 6 claim and on to the northern part of the BT 3 claim and the western part of the BT 4 claim.

The anorthosite occurs south of the gabbro and is located within the BT claims 2, 3, 8, 9 and 11. North of the intrusive complex, siliceous sediments are present while along the south edge of the anorthosite, limestone and marble have been mapped.

7
Based on 1997 surveys, the eastern portions of the BT 2 and BT 4-6 claims appear to be underlain by a sedimentary sequence including cherty, thinly bedded sediments, limestone/dolomite and argillites. The cherts and/or quartzites consist of siliceous very fine grained rocks with individual beds from 1-2 cm thick. The rocks vary from light gray to light green in color. Along the contacts with the gabbro, the siliceous sediments have been altered to hornfels containing up to 5% pyrite. The limestones are dark gray in color with local brecciation and subsequent calcite filling along fractures. The argillites are fissile, black and easily eroded. Based on the GSC Open File 630, it appears that the cherts may be part of the Nonda Formation of Silurian age. The limestone and argillite is probably of Upper Cambrian to Upper Ordovician in age.

Dark gray limestone was noted in the southern portion of the BT 11 claim, while a gray marble unit is exposed in a creek bed on the BT 9 claim.

The anorthosite consists of a coarse grained, feldspar rich, pink to white intrusive with a low mafic content, generally less than 10%. Locally very coarse grained varieties contain 1-2% mafics that appear to have been altered to green chlorite. The phenocrysts occur in an equigranular habit and locally the feldspars are up to 6 cm in length. Initially the rock was identified as syenite in hand specimens corresponding to Pell's classification. However, thin section work indicated that the K-feldspar were formed by the potassic alteration of plagioclases. Because of the low mafic content, the original rock type appears to be an anorthosite. Contacts of the anorthosite with the intruded country rocks were not seen in the course of the survey. Contacts with the gabbro were not seen as well, although it may be a gradational one.

Initially, it was speculated that the anorthosite may have been the first intrusion emplaced due to the strong subsequent alteration of the plagioclase by the gabbro. However, in logging DDH-96-2, it appears that narrow anorthosite dykes have intruded the gabbro. These may be late stage events rather than indicating a later emplacement of the anorthosite.

The gabbro varies from a coarse equigranular variety to a thinly foliated, gray to dark gray rock with mafics forming bands from 1mm to 1cm in width. The gabbro contains from 10-70% mafics as determined visually. The intrusive always exhibits some magnetism whether weak or strong. Three different varieties of gabbro (based on texture and mineralogy) have been noted in claim group and are outlined below:

- 1. Coarse grained equigranular intrusive with mafics approximately 15-30%, generally moderately magnetic with coarse blebs of magnetite occurring between mineral grains.
- 2. Highly foliated, highly magnetic black rock with mafics forming layers up to 1 cm wide and ranging from 30% to 70%.

3. Coarse grained, equigranular variety with abundant local epidote found near the contacts with siliceous sediments. It may well be a variety of Unit 1 above that has had the plagioclase sausseritized to epidote.

Locally coarse grained varieties are found within areas of highly foliated rocks and vice versa. This indicates that a certain amount of movement was present in the magma chamber during the cooling process. Overall, it appears that the highly foliated unit forms a band approximately 500 m wide trending NW-SE for a distance of 6 km, roughly 500 m from the northern boundary. Coarse grained equigranular varieties appear to separate the foliated variety from the sediments. To the south of the highly foliated variety, coarse banding is evident in the gabbro. Zones or bands of predominantly plagioclase with 10% mafics form layers up to 5-10 m wide. These are interlayered with more mafic horizons that may contain up to 25% mafics. Layering in these units generally parallels the overall foliation noted in the highly foliated variety. As the anothosite is approached to the south, mafic content is greatly decreased overall.

Foliation in the gabbro is basically northwest trending and vertical along the eastern most portions examined. As the anorthosite is approached, the foliation shows a pronounced westerly dip. This may indicate a possible extension of the gabbro beneath the anorthosite to the west as the foliation appears to parallel the contact. This indicates that if the anorthosite crystallized out first, the highly foliated variety underlying it represents the base of the intrusive complex. This would suggest that the coarse grained equigranular variety represents a phase of intrusion whereby the mafic portion did not have time to settle out of the melt.

In weathered outcrop, the more mafic portions of the gabbro show a pronounced "ribbed" appearance. It appears that the magnetite and ilmenite occurring along the mafic bands causes these portions to be more resistive to weathering.

Within the highly foliated gabbro, a later phase of cross-cutting gabbroic intrusion was noted. In several localities on the BT 3 claim, narrow 1 cm stringers of gabbro cross-cut the earlier foliated gabbro. Even in the later intrusion, mafics show a pronounced orientation parallel to the contact walls. In the north central portion of BT 3, within a logging slash, a 1 m wide, non-foliated, magnetite-rich gabbro dyke is present. The contact of the dyke with the earlier foliated gabbro is irregular but definitely cross-cuts foliation.

It is possible that the coarse grained equigranular variety represents a later gabbro phase that intruded into the area between the layered or foliated variety and the sediments. Along the contact areas, sausseritization of the plagioclase occurred while within the main intrusive little or no alteration occurred.

Based on work during 1997-1999, a large mafic intrusion carrying magnetite-ilmeniterutile and having a surface expression in the order of 25 square kilometers on the claim

area has been identified. It belongs to sub-type 26.2 classification (gabbro-anorthosite hosted iron-titanium-Gross. G.A., in Geology of Canadian Mineral Deposit Types) deposits in which host intrusive complex are typically differentiated and include gabbro, leucogabbro, diorite, diabase, gabbro-norite and quartz monzonite.

Titaniferous magnetite deposits of sub-type 26.2 range in size from one million tonnes to more than 1000 million tonnes. They usually contain from 20-45% iron and from 2-20% TiO2. Ratios for Fe:Ti range from 40:1 to 2:1 and are commonly about 5:1. The average content of the V is about 0.25%, Cr is present in trace amounts and the content of P2O5 is variable, but usually less than 7.1%.

The presence of conformable layers within the gabbro phase of the complex indicates an origin by crystal settling and accumulation on the floor of the magma chamber. This would indicate some prior plagioclase crystallization to yield a residual melt rich in Fe and Ti. If this is the case, then the anorthosite noted within the 26 BT claims was the first to be emplaced. This implies that the intrusive complex has been tilted and partially overturned exposing the gabbro formed at the bottom. Dykes of anorthosite cutting the gabbro, as in DDH-95-2, may be late stage events.

Work during 1999 was restricted to areas of new logging slashes in the BT 6 claim as well as extending grid lines on both BT 4 and 1 claims from the existing grid on the BT 3 claims. A total of 7.9 km of grid lines was cut (Figure 2a) and used for survey control. In addition, chain and compass traverses were used in mapping and sampling in areas not covered by grid lines. Figure 3 and 4 show the geology of the BT claims surveyed in the 1997-1999 work. Based on work to date it appears that within the BT 2 and BT 9 claim, fault zones separate the anorthosite from the gabbro. Within line BT 9, on L 12+00E, strong faulting along a creek bed at 040 deg. and dipping 75 deg. south appears to separate gabbro from anorthosite to the south. In the area of sample R-198, strong faulting has resulted in a crushed gabbro. Faulting in the area along a NW-SE direction appear to separate the gabbro from the anorthosite to the SW.

In the area of L 5+00S and 25+00 E, very mafic, magnetite rich rocks were noted. These appear to be the most magnetic rocks mapped to date.

In the area of R-197, strong faulting is indicated in a creek bed striking 240 deg./vertical as evidenced from slickenslides on a rock surface. The rock in this vicinity was all crushed over a width of at least 3 meters.

Mineralogy

According to available literature (GSPP 959) sub-type 26.2 deposits consist of layered disseminated concentrations and massive irregular to tabular intrusions of titaniferous magnetite, titanomagnetite, magnetite and ilmenite. These minerals are distributed as discrete grains and as granular and exsolution intergrowths.

.

In May 1999, a resolution of the Ti mineralogy for the gabbro was undertaken by Overburden Drilling Management Limited. An electron scanning microscope and energy dispersive x-ray analytical investigation was performed on gabbro samples from drill core. Results of this work indicated that the gabbro analyzed was composed of 50-60 % plagioclase, 30-35 % augite, 3-5 % biotite, 8-10 % titanomagnetite, 1-2 % ilmenite and 1-2 % apatite.

The mineralogy of the Ti bearing minerals are excerpted from a letter report by Overburden as follows:

"The Ti bearing minerals (Table 1) are titanomagnetite, ilmenite, biotite and augite. Rutile is absent, even at micron scale, corraborating our earlier heavy mineral processing results where none was found. Titanomagnetite is on average ten times more abundant than ilmenite (Plates 1a, b) although in local patches the two minerals occur in subequal concentrations (Plate 1c). Both minerals occur in close association with the ferromagnesian silicate minerals (augite and biotite; Plates 1a to 1c), not with plagioclase. The titanomagnetite contains approximately 15% T1O2 in solid solution (Fig. 1a) whereas the ilmenite contains 55% (Fig. 1b). In some grains, part of the TiO2 has exsolved from the magnetite, forming thin (maximum 0.02 mm) parallel ilmenite lamellae (Plate 1d) and lowering the TiO2 content of the inter-lamellae titanomagnetite to 10% (Fig. 1c). The ilmenite contributes only 28% of the TiO2 in the gabbro compared to 57% from the titanomagnetite due to the much greater abundance of titanomagnetite (Table 1). The balance is contributed by the augite which contains 1% TiO2 (Fig. 1d) and biotite which contains 5% TiO2 (Fig. 1e).

Much of the gap between the Fe2O3 content of the Fe-Ti oxide minerals in our concentrates and the 8-16% Fe2O3 whole rock values (Table 2) is explained by the abundant augite and biotite which together would be expected to contribute about 6-8% Fe2O3. The Fe2O3 gap narrows in relation to total Fe2O3 as the titanomagnetite content of the rock increases. The remaining gap is explained by the very fine grain size of part of the titanomagnetie and ilmenite; 20-30% by volume is silt-sized (<0.1 mm; Plate 1a), well below the 0.18-0.25 mm grain size used in our recovery tests which were intended to simulate recoveries achievable in an actual mining and milling operation. The larger, recoverable titanomagnetite and ilmenite grains are in the 0.2 to 0.4 mm range (Plates 1a to 1c) which rather than having sharp, mill-friendly boundaries, much of the titanomagnetite is shrouded in biotite (Plates 1b, d).

The apatite occurs as isolated crystals, mainly in association with plagioclase (Plates 1b, c, d). Most grains are much smaller than the 0.18 mm cut-off used in our processing test; this explains the missing P2O5 mentioned by Sudhir.

An interesting feature of the gabbro is the presence of barian feldspar (hyalophane) lamellae in the plagioclase (Plates 1b, d, f; Figs. 1f, g). This explains the high Ba content (0.5-1.5%; Table 2) of the gabbro and the absence of barite in our heavy mineral concentrates."

Based on the above work, Overburden concluded that:

- 1. Rutile is absent in the samples tested
- 2. Approximately 60% of the TiO2 value resides in solid solution form in titanomagnetite, requiring chemical extraction.
- 3. Although significant ilmenite is present, part of it occurs as thin exsolution lamellae rather than discrete grains.
- 4. Much of the titanomagnetite is shrouded in biotite.
- 5. Approximately 20-30% by volume of the titanomagnetite and ilmenite occurs in small grains.
- 6. Most of the apatite is fine-grained.

For more complete descriptions of the Overburden analysis, refer to Appendix IV.

Based on surface work on the 26 BT claims, concentrations of metallic iron/titanium oxide occur in three different styles within the gabbro portion of the intrusive complex:

1. Disseminated oxides as coarse patches in coarse grained host rock.

2. As fine disseminations in mafic rich layers generally 1-5 cm thick forming greater than 30 and sometimes up to 70% of the rock.

3. As disseminated concentrations in late stage dykes and intrusions transacting the lithified gabbro complex.

Sulfides present in the intrusive vary from zero to minor amounts. These include pyrrhotite, pyrite and very rare chalcopyrite. Pyrrhotite is most abundant along contact zones of basaltic dykes intruding cherts.

Based on studies to date, further exploration efforts should be directed at locating possible areas of slow cooling of the Ti rich melt. This may either be in the upper or anorthosite portion of the intrusive complex or in an area of abundant CO2 fluids, possibly along limestone contacts. During slow cooling the titanium component in titanomagnetite may be exsolved to form either discrete lamellae of ilmenite in magnetite or granular exsolutions of ilmenite around magnetite grains. In addition, due to the slow cooling, magnetite and ilmenite grains may be much larger than presently found to date on the property. In the presence of CO2 rich fluids, titanomagnetite grains can purify themselves of the titanium content and the resultant ore mineralogy is one of interlocking discrete grains of magnetite and ilmenite.

It is recommended that exploration be concentrated in the southern and western portions of the claim areas to determine if the above situation is present.

GEOCHEMICAL SURVEYS

Introduction

Reconnaissance rock geochemical samples were taken from a variety of rock types on the BT 2,3, 4, and 6 claims. Samples were collected from outcrops located in the vicinity of the grid lines and were as representative of the main rock types as possible Sample location maps are as shown in Figure 5 and 6 in relation to grid lines, roads and creeks.

The location maps were prepared from 1:15,000 digitized maps with just the creeks and roads shown. Altogether, 63 rock samples were collected. Locations for the samples were fixed in the field by reference to the grid lines and chain and compass traverses.

Field Procedure and Laboratory Technique

Rock samples were taken in the field with a prospectors' pick and collected in standard plastic sample bags. All samples were of a grab nature and were taken in such a manner as to reflect the nature of the outcrops. These samples varied from 1 large piece to a variety of small pieces with total sample weight ranging from 0.5 to 2.0 kg. Complete descriptions of the rock samples in terms of type are located in Appendix I and all analyses conducted on the samples are located in Appendix II.

All rock samples were analyzed for the major elements at the Loring Laboratory Ltd. facilities in Calgary, Alberta.

For the major element analysis, rock samples were first crushed to minus 10 mesh using jaw and cone crushes. Then 250 grams of the minus 10 mesh material was pulverized to minus 140 mesh using a ring pulverizer. A portion of this prepared sample is then mixed with a flux and fused. The resulting melt is poured into an acid mixture and completely dissolved. The elements are determined by atomic absorption spectrophotometry. The major elements are usually calculated as oxides. For the analysis, a loss on ignition is done. A portion of the prepared sample is weighed into a ceramic dish an placed in a furnace. The temperature is gradually increased up to 950 deg. Celsius and held for 16 hours. After cooling, the sample is re-weighed to determine the loss.

For the ICP analysis, a 1.00 gram portion of the minus 140 mesh material is digested with aqua regia for 2 hours at 95 degrees Celsius and made up to a volume of 20 mls prior to the actual analysis in the plasma. The absolute amounts were determined by comparing the analytical results to those of prepared standards.

Statistical Treatment

A cumulative frequency plot to determine background and threshold values (greater than threshold is considered anomalous) was not conducted for the results. Rather, for the rock geochemistry, the average TiO2 content for igneous rocks was used as a guide

(GSPP 959-A). These are 1.32 and 1.13% TiO2 in 2 different averages for a variety of gabbros and 0.32% TiO2 in one average for a variety of anorthosites. Any results enhanced in TiO2 would also be generally enhanced in Fe2O3.

Anomalous Zones

The geochemical program indicated anomalous values both for the rock and silt geochemical programs. Rock sampling in the 1999 rock geochemical program has indicated highly anomalous values for iron oxides and titanium oxides with results ranging from 6.71 to 36.16% Fe2 O3 and 1.06 to 9.95% Ti O2. The work indicated that the area of gabbro was highly anomalous in both Fe2O3 and TiO2 content. Figures 5 and 6 show the location of the samples which indicate oxide values for the rocks in addition to the P2O5 values.

The 1999 work has indicated enhanced Fe-Ti values along line 5+00S and 25+00 E in an area of the highly foliated gabbro. This area is in the center of a large magnetic anomaly. The area of the above location should be more extensively explored through rock geochemistry and diamond drilling.

Estimated cost of this portion of the program would be \$25,000.

DRILL CORE LOGGING

In January 1999, drill hole 95-2 was relogged using the 1997 petrographic work as the basis for rock unit identification.

Drill hole 95-2 was drilled to a depth of 91.5 m on the BT 4 claim to test the southern edge of a large magnetic anomaly. The hole intersected predominantly gabbro with some narrow anorthosite dykes at depth. The gabbro was a coarse grained, light gray rock with approximately 30 % mafics, predominantly biotite showing local weak alteration to chlorite. Magnetite was present as coarse grains approximately 1-2 % of the rock. At 38.7 m and down hole, stronger magnetite mineralization was noted along with an increase of pyroxenes. Between 57 to 73 m, three narrow anorthosite dykes were noted. Inclusions of gabbro are present in the wall areas of the dykes. Abundant pyrrhotite was noted in several areas of the core, generally in the vicinity of the anothosite dykes.

For a more complete description, refer to Appendix III.

CONCLUSION

1. The property covers an area of Cambrian to Ordovician sediments and Silurian volcaniclastics and sediments intruded by a variety of plutons ranging from anorthosite/gabbro to sodalite syenite.

- 2. A large mafic intrusion, carrying magnetite and ilmenite having a surface expression of 25 square km has been identified on the claim area.
- 3. On the 26 BT claim, concentrations of metallic iron/titanium oxides occur in three different styles:
 - a) disseminated oxides in coarse grained host rocks

lines.

- b) within mafic rich layers generally 1-5 cm thick forming greater than 30 and sometimes up to 70% of the rock. Oxides occur as fine disseminations
- c) as disseminated concentration in late stage dykes and intrusions transacting the lithified gabbro complex
- 4. The occurrence on the 26 BT claim is of subtype 26.2, which can have a range in size from one million tonnes to more than 1000 million tonnes.
- 5. In the period January 1 to July 30, 1999, a program was conducted on the property as follows:

Re-logging DDH 95 - 2 which was drilled in the area of the 1999 surveys.
 Cutting of approximately 7.3 km of grid line to provide survey control for geological mapping and magnetometer surveys (results of survey covered in separate report). This work extended the 1998 grid an additional 1.5 km to the east within an area of high magnetics outlined in an airborne survey.
 Geological mapping along grid lines as well as limited chain and compass

4. Collection of 63 rock geochemical samples in the course of the geological survey.

5. Mineralogical studies to determine mode of occurrence of the titanium and purity of the magnetite.

- 6. Geological mapping has indicated that the gabbro portions of the intrusive complex occurs along the eastern and southern portion of the claim area.
- 7. The gabbro varies from a very coarse grained phase to a highly foliated, mafic rich phase.
- 8. The 1999 rock geochemical program has indicated highly anomalous values for iron oxides and titanium oxides with results ranging from 6.71 to 36.16% Fe2 O3 and 1.06 to 9.95% Ti O2 The more iron and titanium rocks are related to the more mafic portion of the gabbro.
- 9. Mineralogical studies indicate that the gabbro is composed of plagioclase, augite, biotite, titanomagnetite, ilmenite and apatite. The titanium bearing minerals are titanomagnetite, ilmenite, biotite and augite

- 10. Results to date indicate that the property contains large areas of magnetitetitanium-apatite bearing gabbro.
- 11. The recommended program would include further gridding, mapping and rock sampling.
- 12. Estimated cost of the program is \$ 25,000.

RECOMMENDATIONS

The recommended program would include the following:

- Gridding
 The present grid would be extended by approximately 6 km . Line 30+00 E would be extended to the west to explore the region underlain by the anorthosite. It would also be extended to the east to outline the eastern contact of the gabbro.
- 2. <u>Geological Mapping</u> Mapping would be completed along these extended grid lines, creek beds and cleared out old logging roads and or new logging slashes.
- 3. <u>Geochemical Surveys</u> Further rock and silt geochemistry to expand on the 1997 to 1999 surveys. This would be conducted in conjunction with the geological mapping.

Estimated Cost of the Program is as follows:

	Total	\$ 25,000.00
8. Contingency		<u>\$1,600.00</u>
7. Report, drafting, etc.		\$2,500.00
6. Mobilization/demobilization		\$1,500.00
5. Subsistence, hotel		\$1,500.00
4. Rentals, truck, communications		\$1,500.00
3. Geochemical Analysis 200 samples @ \$20/sample		\$4,000.00
 2. Personnel 1 geologist for 20 days @ \$300/each/day 1 assistants for 20 days @ \$200/day 		\$6,000.00 \$4,000.00
 Gridding 6.0 line kilometers @ \$400/km 		\$2,400.00

REFERENCES

- 1. Scoates, J.S., Genetic Models for Mafic Intrusion Hosted Titanium Iron Deposits pp. 580-581. Geology of Canadian Mineral Deposit Types.
- 2. Force, E.R., 1991. Geology of Titanium Mineral Deposits.
- 3. Geological Survey of Canada, 1979. Open File 630
- 4. Geological Survey Professional Paper, 1976. 959-A, B, C, D, E, F
- 5. Gross, G.A., Mafic Intrusion Hosted Titanium-Iron pp. 573-580. Geology of Canadian Mineral Deposit Types.
- 6. Gross, G.A., Gower, C.F., and Lefebure D.V. (1997) Magnetic Ti-Fe and V oxide Deposits in Geological Fieldwork 1997 BCMEI Paper 1998 pp. 24J 1-3.
- 7. Jain, S., Kelsch, W.L., 1996. Assessment Report on the BT 1-11 Claims
- 8. Kruchkowski, E.R., 1998 Fieldnotes
- 9. Kruchkowski, E.R., 1997, Assessment Report on Geological and Geochemical Work on the BT Claims
- 10. Kruchkowski, E.R., 1998, Assessment Report on Geological and Geochemical work.
- 11. Overburden Drilling Management Limited reports and correspondence 1999.
- 12. Pell, J., 1988. British Columbia Ministry of Energy Mine and Petroleum Resources Open File 1987-17, p.17-23

STATEMENT OF CERTIFICATE

I, Edward R. Kruchkowski, geologist, residing at 23 Templeside Bay, N.E., in the City of Calgary, in the Province of Alberta, hereby certify that:

- 1. I received a Bachelor of Science degree in Geology from the University of Alberta in 1972.
- 2. I have been practicing my profession continuously since graduation.
- 3. I am a member of the Association of Professional Engineers, Geologists and Geophysicists of Alberta.
- 4. I am a consulting geologist working on behalf of 26 BT Resources Co. Ltd.
- 5. This report is based on a review of reports, documents, maps and other technical data on the property area and work done by myself on the property in 1997 to 1999.
- 6. I authorize 26 BT Resources Co. Ltd. to use information in this report or portions of it in any brochures, promotional material or company reports.

E.R. Kruchkowski, B.Sc.

Appendix I

Description of Rock Geochemical Samples

R-189	Highly foliated, mafic rich gabbro, strongly magnetic.Fe2O3 - 17.68 %TiO2 - 5.68 %
R-190	Highly foliated, mafic rich gabbro. Fe2O3 - 25.74 % TiO2 - 7.47 %
R-191	Very coarse grained gabbro, course blebs magnetic, mafics approximately 25%, strongly magnetic. Fe2O3 - 21.17 % TiO2 - 6.76 %
R-192	Highly foliated gabbro, mafics approximately 60%, strongly magnetic.Fe2O3 - 36.16 %TiO2 - 8.46 %
R-193	Outcrop is highly foliated gabbro - magnetic with approximately 30% mafics. Fe2O3 - 17.98 % TiO2 - 5.78 %
R-194	Strongly magnetic, mafics approximately 40%. Fe2O3 - 17.87 % TiO2 - 5.75 %
R-195	Outcrop is coarsely crystalline equigranular gabbro, mafics approximately 25%, moderately magnetic. Fe2O3 - 14.75 % TiO2 - 3.31 %
R-196	Foliated mafic rock gabbro, mafics approximately 40%, magnetic. Fe2O3 - 19.92 % TiO2 - 6.05 %
R-197	Crushed gabbro, sample of crushed material, mafics approximately 30%. Fe2O3 - 21.94 % TiO2 - 5.26 %
R-198	Highly foliated crushed gabbro, highly weathered, matrices approximately $30-40\%$.
R-199	Fine grained hornfels volcanic, non-magnetic, minor epidote plus chert intrusive veinlet? Highly chloritic. Fe2O3 - 8.33 % TiO2 - 1.94 %
R-200	Medium grained equigranular gabbro, weakly magnetic. Local fine pyrite veinlets, chloritic, mafics approximately 25%. Fe2O3 - 9.94 % TiO2 - 3.20 %
R-201	Coarse grained, primarily mafics, moderately magnetic gabbro, mafics approximately 80%.

يد مير. مرجع

~

-

	Fe2O3 - 14.51 %	TiO2 - 5.09 %
R-202	Coarse grained mafic rock crysta minor pyrite, moderately magnet	lline with mafics approximately 20%, ic.
	Fe2O3 - 16.90 %	TiO2 - 4.28 %
R-203	Highly rusty, medium grained ga local fine pyrite approximately 5 Fe2O3 - 13.84 %	bbro, crystalline with coarse mafic blebs, %, magnetic only in mafic blebs. TiO2 - 1.79 %
R-204	Coarse grained crystalline gabbro magnetic.	o mafics approximately 30%, strongly
	Fe2O3 - 17.46 %	TiO2 - 4.84 %
R-205	Course grained crystalline gabbro pyrite, very weakly magnetic.	o, mafics approximately 20%, minor
	Fe2O3 - 14.65 %	TiO2 - 5.86 %
R-206	Outcrop is coarse crystalline gables strongly magnetic.	bro, mafics approximately 30%,
	Fe2O3 - 25.75 %	TiO2 - 4.71 %
R-207	Sample is coarsely crystalline gal strongly magnetic.	bbro, mafics approximately 30%,
	Fe2O3 - 15.57 %	TiO2 - 2.73 %
R-208	Mafics approximately 40-50%, h	ighly magnetic.
	Fe2O3 - 19.44 %	TiO2 - 5.99 %
R-209	Mafics approximately 20%, mod Fe2O3 - 15.02 %	erately magnetic, coarse crystalline. TiO2 - 4.32 %
R-210	Coarsely crystalline gabbro, mafi magnetic.	ics approximately 30%, moderately
	Fe2O3 - 12.34 %	TiO2 - 2.34 %
R-211	Outcrop is coarsely crystalline ga moderately magnetic.	abbro, mafics approximately 30%,
	Fe2O3 - 10.99 %	TiO2 - 2.24 %
R-212	Highly foliated gabbro, mafics ap Coarse crystalline.	oproximately 40%, strongly magnetic.
	Fe2O3 - 22.45 %	TiO2 - 6.40 %
R-213	Outcrop highly foliated, mafic rid	ch gabbro, coarse crystalline, strongly

, en

. .

-

Nation

-

. .

	magnetic. Fe2O3 - 22.75 %	TiO2 - 7.23 %						
R-214	Outcrop is highly mafic, mafics appr	oximately 60%, highly magnetic,						
	coarse crystalline. Fe2O3 - 25.83 %	TiO2 - 5.36 %						
R-215	Outcrop is coarsely crystalline gabbr approximately 50%.	o, strongly magnetic, mafics						
	Fe2O3 - 22.52 %	TiO2 - 6.74 %						
R-216	Outcrop is coarse crystalline gabbro, magnetic, highly weathered sample.	mafics approximately 25%, weakly						
	Fe2O3 - 17.23 %	TiO2 - 4.98 %						
R-217	Highly magnetic with approximately gabbro.	60% mafics, coarsely crystalline						
	Fe2O3 - 25.06 %	TiO2 - 7.54 %						
R-218	Sample is magnetite rich gabbro, ma Fe2O3 - 28.33 %	fics approximately 60%. TiO2 - 4.93 %						
R-219	Mafic rich foliated gabbro, mafics approximately 50%, strongly magnetic.							
	Fe2O3 - 29.31 %	TiO2 - 6.87 %						
R-220	Highly weathered gabbro, mafics app Fe2O3 - 14.37 %	proximately 25%, weakly magnetic. TiO2 - 6.87 %						
R-221	Coarsely crystalline gabbro, mafics a magnetic.	approximately 40%, strongly						
	Fe2O3 - 20.87 %	TiO2 - 4.77 %						
R-222	Subcrop of coarse crystalline gabbro very strongly magnetic, mafics appro	, magnetite approximately 20%, oximately 35%.						
	Fe2O3 - 33.40 %	TiO2 - 9.95 %						
R-223	Highly shattered outcrop mafic rich to crystalline, magnetic sample.	foliated gabbro, coarsely						
	Fe2O3 - 17.85 %	TiO2 - 3.94 %						
R-224	Highly magnetite bearing gabbro, ma 20%, highly magnetic mafics approx	agnetite approximately imately 50%.						
	Fe2O3 - 32.13 %	TiO2 - 9.71 %						

, ,

معم .

R-225	Gabbro mafics approximately 40%, 20%, highly magnetic. Fe2O3 - 27.84 %	high magnetite approximately TiO2 - 8.28 %
R-226	Coarse crystalline gabbro, magnetite magnetic, mafics approximately 40% Fe2O3 - 28.40 %	e approximately 10%, highly %. TiO2 - 8.37 %
R-227	Coarsely crystalline equigranular gal approximately 5%, moderately magr Fe2O3 - 15.83 %	bbro, minor biotite mafics netic. TiO2 - 4.05 %
R-228	Outcrop is mafic rich gabbro, mafics magnetic. Fe2O3 - 18.02 %	s approximately 60%, strongly TiO2 - 4.02 %
R-229	Mafic rich gabbro, coarsely crystalli magnetic. Fe2O3 - 20.88 %	ne, abundant pyrite, strongly TiO2 - 3.51 %
R-230	Very coarsely crystalline gabbro, ma biotite, magnetite approximately 10 Fe2O3 - 22.38 %	afics approximately 25%, minor %, strongly magnetic equigranular. TiO2 - 3.64 %
R-231	Gabbro coarse crystalline, mafics ap Fe2O3 - 22.42 %	proximately 40%, strongly magnetic. TiO2 - 4.71 %
R-232	Very coarse crystalline gabbro, mine coarse magnetic blebs approximately Fe2O3 - 20.52 %	or biotite, mafics approximately 25%, y 7-10%, strongly magnetic. TiO2 - 3.22 %
R-233	Rock is coarsely crystalline, equigra 25%, moderately magnetic. Fe2O3 - 14.23 %	nular gabbro, mafics approximately TiO2 - 2.41 %
R-234	Sample is coarsely crystalline equig 30%, minor pyrite, moderately magn Fe2O3 - 10.60 %	ranular gabbro, mafics approximately netic. TiO2 - 2.05 %
R-235	Sample is coarsely crystalline equig 25%, moderately magnetic. Fe2O3 - 12.91 %	ranular gabbro, mafics approximately TiO2 - 1.90 %
R-236	Highly foliated crystalline gabbro, n magnetic.	nafics approximately 50%, strongly

1

,

-

. .

Fe2O3 - 24.52 % TiO2 - 5.89 % Highly foliated crystalline, gabbro mafics approximately 50% along crude R-237 banding, strongly magnetic. Fe2O3 - 15.86 % TiO2 - 4.14 % R-238 Same as R-237. TiO2 - 4.56 % Fe2O3 - 16.98 % R-239 Foliated mafic rich crystalline gabbro, mafics approximately 40-50%, minor magnetite, strongly magnetic. Fe2O3 - 16.64 % TiO2 - 5.14 % Foliated with crude bands approximately 5 mm, mafics approximately R-240 35%, moderately magnetic. TiO2 - 4.03 % Fe2O3 - 17.93 % Weakly foliated crystalline gabbro, mafics approximately 30%, R-241 moderately magnetic. Fe2O3 - 17.95 % TiO2 - 5.28 % Outcrop is light grey, foliated crystalline gabbro, mafics approximately **R-242** 15%, weakly magnetic. Fe2O3 - 8.38 % TiO2 - 1.59 % R-243 Outcrop is grey, coarsely crystalline equigranular gabbro, mafics approximately 25%, moderately magnetic. Fe2O3 - 6.71 % TiO2 - 1.09 % R-244 Same as R-243, mafics approximately 20%. Fe2O3 - 8.27 % TiO2 - 1.22 % Grey, coarse crystalline gabbro, equigranular, mafics approximately 15%, R-245 weakly magnetic. Fe2O3 - 6.55 % TiO2 - 1.06 % R-246 Foliated, mafic rich crystalline gabbro, mafics approximately 40%, moderately magnetic. Fe2O3 - 17.22 % TiO2 - 5.51 % Pale grey to grey, foliated crystalline gabbro, mafics approximately 25%, R-247 moderately magnetic. Fe2O3 - 17.22 % TiO2 - 5.51 % Highly foliated mafic rich gabbro, strongly magnetic. R-248

	Fe2O3 - 16.72 %	TiO2 - 3.12 %					
R-249	Grey, coarse crystalline, equigra mafics approximately 30%.	anular gabbro, moderately ma	gnetic,				
	Fe2O3 - 7.47 %	TiO2 - 1.14 %					
R-250	Highly foliated, mafic rich with mafics approximately 50%, strongly magnetic.						
	Fe2O3 - 19.87 %	TiO2 - 5.21 %					
R-251	Coarse crystalline gabbro, mod 30-40%.	erately magnetic, mafics appr	oximately				
	Fe2O3 - 11.53 %	TiO2 - 1.53 %					

[

<u>____</u>

-

Appendix II

-

. . .

1947-19

ſ

Connect on an other Connect on Co

- strange

Analyses for the Geochemical Program

Loring Laboratories Ltd.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541

5 BT RESOURCE CO., LTD Suite 200, 5920 McLeod Trail S.W., Calgary, Alberta 2H 0K2

4.1

FILE: 41275

DATE: July 22, 1999

ttn:_Sudhir Jain

WHOLE ROCK ANALYSIS BY ICP

amole	Al ₂ O ₃	Ba	CaO	Cr	Fe _z O ₃	K ₂ O	MgO	MnO	Na _z O	Ni	P205	SO3	SiO2	Sr	TiO ₂	V205	LOI	SUM
Ne	%	ppm	%	ppm	%	%	%	%	%	ppm	%	%	%	ppm	%	%	%	%
-223	15.52	146	11.99	<1	17.85	0.42	5.21	0.16	1.90	23	0.132	0.17	38.08	643	3.94	0.17	3.08	98.62
-224	6.54	132	10.42	<1	32.13	0.06	10.01	0.26	0,97	30	1.012	0.15	26.51	292	9.71	0.36	<0.01	98.13
-2:	8.21	124	11.98	7	27.84	0.09	8.06	0.20	1.26	- 34	0.573	0.17	32.73	401	8.28	0.32	<0.01	99.70
-220	6.57	162	11.44	<1	28.40	0.16	9.09	0.26	1.18	24	2.475	0.17	30.80	472	8.37	0.21	<0.01	99.11
-227	17.99	309	13.20	27	15.83	0.39	4.96	0.15	2.77	20	2.179	0.20	36.75	1159	4.05	0.12	0.22	98.80
-2:	12.90	187	13.04	165	18.02	0.14	7.93	0.18	1.98	44	0.964	0.19	36.92	782	4.02	0.09	2.87	99.25
-32	12.57	70	14.80	161	20.88	0.08	7.07	0.18	1.40	70	0.121	0.41	38.28	564	3.51	0.13	0.41	99.84
-230	12.31	186	13.82	11	22.38	0.23	6.61	0.17	1.30	38	0.177	0.24	37.29	480	3.64	0.30	0.84	99.30
-2.	9.79	74	16.54	25	22.42	0.09	6.38	0.18	1.41	24	2.210	0.28	32.98	614	4.71	0.20	0.92	98.09
-2	13.22	183	14.24	58	20.52	0.26	6.09	0.16	1.44	33	0.185	0.27	37.88	509	3.22	0.23	1.22	98.92
1-233	17.84	502	13.94	125	14.23	0.78	5.34	0.15	2.13	72	0.359	0.24	40.50	890	2.41	0.08	1.44	99.24
<u>l-2</u>	12.03	256	18.55	36	10.60	0.47	6.56	0.18	2.34	15	2.810	0.26	42.42	842	2.05	0.05	0.77	99.08
-2 1	17.13	228	14.18	1 101	12.91	0.27	6.12	0.13	2.53	56	0.072	0.21	42.59	700	1.90	0.09	0.75	98.88
1-238	11.61	121	10.42	37	24.52	0.24	6.46	0.28	2.77	24	2.346	0.14	34.69	732	5.89	0.12	<0.01	99.49
-274	16,13	1172	12.54	41	15.86	0.25	4.91	0.16	3.41	18	0.613	0.18	39.79	910	4.14	0.08	0.14	98.17
-2.	14.52	1382	11.38	41	16.98	0.25	4.87	0.17	3.09	16	2.014	0.15	39.76	983	4.65	0.04	<0.01	97.89
1-239	16.39	317	12.20	56	16.64	0.16	5.00	0.15	2.81	16	0.236	0.17	40.10	846	5.14	0.11	0.41	99.51
-240	15.54	209	12.65	28	17.93	0.16	5.45	0.14	2.09	24	0.104	0.18	40.70	740	4.03	0.18	0.48	99.61
<u>-2-</u>	15.45	219	11.84	45	17.95	0.16	5.39	0.15	2.30	18	0.089	0.16	40.20	852	5.28	0.15	<0.01	99.13
-242	24.85	225	14.48	45	8.38	0.18	2.54	0.07	2.51	-28	0.154	0.19	43.06	11124	1.59	0.06	0.72	88.77
1-243	25.82	250	14.87	99	6.71	0.37	2.78	0.07	2.29	29	0.154	0.19	43.44	1001	1.09	0.02	0.92	98.72
1-2	22,15	206	15.59	192	8.27	0.26	4.38	0.10	2.18	63	0.169	0.20	43.73	841	1.22	0.00	0.48	98.73
1-245	28.36	262	13,98	67	6.55	0.26	1.68	0.06	2.82	12	0.125	0.18	46.24	1274	1:06	0.03	0.38	99.69
1-246	16.18	144	12.41	28	17.22	0.15	5.62	0.14	2.19	20	0.058	0.18	37.19	825	5.51	0.20	0.34	97.38
<u><u>1-2</u></u>	17.91	246	12.47	1 60	14.28	0.28	5.48	0.12	2.22	52	0.090	0.19	41.21	917	2.63	0.14	1.87	98.69
1-245	17.33	154	13.66	5 11	16.72	0.14	5.99	0.14	2.09	50	0.054	0.21	39.19	893	3.12	0.19	< 0.01	98.82
1-249	24.88	255	15.20	77	7.47	0.22	2.56	0.07	2.34	51	0.157	0.23	43.75	1013	1.14	0.04	0.68	98.75
1-2	14.58	245	12.27	1 22	19.87	0.19	5.88	0.16	2.00	23	0.118	0.16	38.05	709	5.21	0.15	< 0.01	98.63
1-2	21.71	87	16.88	56	11.53	0.11	3.40	0.07	1.86	84	0.045	0.20	39.91	978	1 1.53	0.10	2.17	99.51
1-226R	6.42	182	11.52	2 18	28.98	0.15	8.88	0.25	1.17	20	2.380	0.16	30.98	448	8.14	0.18	< 0.01	99.23

0.2g. of sample fused with lithium metaborate and dissolved in 5% HNO3.

K.S. Certified by:

Page 5 of 5

Loring Laboratories Ltd.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541

: 26 BT RESOURCE CO., LTD Suite 200, 5920 McLeod Trail S.W., Calgary, Alberta T2H 0K2

41

FILE: 41275

DATE: July 22, 1999

Attn: Sudhir Jain

WHOLE ROCK ANALYSIS BY ICP

					FOI	V OI	14-0	11-0	No OI	NI:	DOCE	50	Sin2	Sr	TIO	V.O.	101	SUM	
ample	AJ203	88	CaO	<u> </u>	Fe ₂ U ₃	K ₂ U	MgU	MIU	Na20	191	P200	0/2	0/02	nnm	0/0	%	%	%	1
No.	%	ppm	%	ppm	70	%	70	70	70 E 00	<u>ppin</u>	0 101	1 20	55 56	208	0.201	<0.01	2 20	99.58	
R-107	19.10	197	3.85	22	6.26	4.94	0,55	0.22	5.02		0.101	0.47	20.20	1001	5 68	0.01	0 15	99.73	
R-189	15.15	208	12.74	57	17.88	0.16	6,35	0.18	2.60	20	0.403	0.17	30.20	211	7 47	0.12	<0.15	09 33	
-190	7.03	454	13.60	61	25.74	0.08	7.58	0.25	1.04	30	1.002	0.50	34.15	511	2 78	0.18	0.62	09 37	
n-191	10.84	764	12.94	73	21.17	0.30	6.95	0.19	1.80	43	0.840	0.20	30.50	247	0.70	0.10	0.02	00 07	
R-192	3.64	118	10.74	20	36.16	0.06	10.74	0.60	0.70	30	3.502	0.02	24.09	012	5 78	0.00	0.51	99.57	
-193	13.97	188	13.48	/1	17.98	0.15	6.53	0.10	2.12	- 54	2.047	4 57	100.02	312	5.76	0.15	0.75	00.06	
1-194	15.48	255	11.98	57	17.87	0.14	2.99	0.15	3.51	20	0.092	1.57	1 30.03	900	2.75	0.15	0.57	00 65	
R-195	18.80	361	13.65	63	14.75	0.23	4.29	0.12	2.07	42	0.542	0.22	40.42	602	3.31	0.11	0.54	00.62	ĺ
2-196	12.95	464	13.05	71	19.92	0.17	5.87	0.18	2.00	45	0.524	0.10	31.80	002	0.03	0.13	0.00	08.02	
2-197	10.39	305	12.42	34	21.94	0.23	6.07	0.25	2.10	62	2.319	10.92	30.97	010	5.20	0.12	4 45	90.98	
<u>R-198</u>	10.98	571	10.21	2	20.58	0.51	4.86	0.32	2.81	21	2.202	10.45	38.40	000	4.30	0.02	1.40	02.01	
<u>R-199</u>	11.77	257	20.82	314	8.33	0.72	7.10	0.15	1.08	95	1.385	0.31	41.58	341	1 1.94	<0.01	1.71	80.91	
R-200	14.22	169	12.81	61	9.94	1.32	5.33	0.14	2.56	40	0.259	1.10	45.01	814	3.20	0.05	1.00	97.00	1
R-201	15.58	428	12.62	48	14.51	0.63	5.29	0.15	2.20	30	0.354	0.23	47.49	1225	5.09	0.08	0.24	98.47	-
R-202	13.98	331	12.89	01 63	18.90	0.68	5.72	2 0.17	1.90	27	2.139	0.28	39.62	1062	4.28	0.07	0.36	98.97	-
R-203	7.97	195	16.87	554	13.84	0.29	8.13	3 0.18	1.72	252	1.500	1.86	43.62	330	1.79	<0.01	1.81	99.65	Į
R-204	13.38	705	12.29	24	17.46	3 1.92	5.46	5 0.18	2.72	30	2.190	0.21	37.74	996	4,84	0.10	1,00	99,48	
R-205	13.38	370	15.38	8 65	14.65	5 1.43	4.43	3 0.19	2.08	60	1.398	0.16	39.03	958	5.86	0.04	1.63	99.67	
R-206	9.73	8 82	2 13.54	1 51	25.75	5 0.12	6.90	0.25	5 1.38	31	0.443	0.20	35.09	400	4.71	0.33	0.34	98.79	1
R-207	18.08	3 147	7 13.97	7 7	5 15.57	7 0.16	5.25	5 0.11	2.14	95	0.373	0.18	3 39.72	823	2.73	0.16	0.39	98.83	
R-208	10.88	3 96	3 14.20	24	19.4	10.10	6.04	4 0.16	3 1.59	<u>H 29</u>	2.893	0.22	2 35.29	604	5.99	0.17	0.50	97.45	1
R-209	15.84	4 518	3 13.30	3 22	2 15.02	2 0.17	4.7	7 0.12	2.48	3 21	2.390	0.18	3 38.63	3 1015	6 4.32	0.11	0.12	97.50	1
R-210	20.45	5 10	3 15.1	1 61	12.34	4 0.29	4.10	0.14	1 2.30	58	3 0.488	3 0.24	4 41.06	5 789	2.34	0.08	0.50	1 99.43	4
2-211	21.08	3 45	3 13.4	2 4	3 10.9	9 0.39	3.3	7 0.12	2 3.28	3] 20	0.610	0.18	3 43.13	3 1117	2.24	0.06	0.51	99.38	1
R-212	9.4	2 30	7 12.5	5	3 22.4	5 0.12	2 7.1	8 0.2	1 1.64	\$ <u>3</u> '	1 3.052	2 0.1	7 33.79	662	6.40	0.17	< 0.01	97.15	<u>1</u>
R-213	11.3	6 17	0 12.8	6 1	1 22.7	5 0.10	0 7.5	5 0.1	7 1.80	3 4	7 0.87	1 0.2	1 33.6	3 55	5 7.23	3 0.23	0.06	98.93	51
R-214	11.6	1 14	9 12.7	5 3	81 25.8	3 0.0	9 6.9	5 0.1	B 1.5:	2 5	1 0.270	3 0.2	4 34.1	450	5.36	31 0.33	0.05	99.29	Ŋ
R-107F	20.5	0 48	01 2.8	1	2 4.8	2 5.4	7 0.5	5 0.1	5 4.9	1 1	5 0.08	7 0.0	6 57.2	1 306	0.27	/ <0.01	2.12	2 98.95	51
₹-215	9.3	7 12	41 13.4	6 5	8 22.5	2 0.1	0 7.9	6 0.1	9 1.40	0 11	1 0.33	3 0.2	6 38.6	\$ 37	6.74	1 0.30	< 0.01	99.26	j
3-215	14.1	3 27	5 12.9	8 2	7 17.2	3 0.1	6.1	0 0.1	5 2.2	2 3	31 2.62	2 0.1	9 36.9	3 814	4 4.98	3 0.15	0.08	97.95	5
2-217	7.2	1 12	41 12.8	71 1	61 25.0	810.0	61 9.2	9 0.2	1 1.1	0 2	8 3.52	4 0.3	9 29.7	4 43	3 7.5	1 0.24	≤0.01	07.23	3
2-218	10.1	4 12	0 12.5	3 2	51 28.3	3 0.1	5 7.5	1 0.2	2 1.3	8 4	1 0.25	610.2	4 31.8	0 42	01 4.9	31 0.33	31 < 0.0	1 97.8	2
2-219	7.9	1 11	5111.8	3	4 29.3	10.2	2 8.3	0 0.2	3 1.2	21 3	5 0.21	5 0.1	6 31.1	31 28	6 8.8	7 0.37	0.10	3 97.9	ā
2-220	18.4	81 28	0113.4	01 2	5 14.3	7 0.2	2 4.2	6 0.1	2 2.6	6 2	0 0.18	2 0.1	8 39.9	21 84	3 4.0	1 0.13	3 0.3	9 98.3	2
7-221	14.7	0 18	71 12.6	6 1	3 20.8	7 0.1	71 5.8	41 0.1	5 2.0	5 3	7 0.45	8 0.2	0 35.9	3 65	3 4.7	7 0.2	3 0.1.	4 98.11	6
2-222	4.4	3 8	11 11.8	3 <	1 33.4	0.0	7 11.3	31 0.2	5 0.6	7 3	3 3.75	1 0.2	1 22.3	4 24	4 9.9	5 0.3	2 < 0.0	1 98.5	8
														_					_

Page 4 of 5

Appendix III

--

•

, **---**, ,

franker to see the second

Drill Log DDH 95-2

-

DDH-95-2 - Drill Log

0-3.05m -Overburden

3.05-27.6m -Gabbro, coarse grained, light grey gabbro with approximately 30% mafics, predominantly biotite, local weak alteration to chlorite, weakly magnetic, foliated approximately 75 deg. to C.A., magnetic as coarse grains approximately 2-5%, local coarse euhedral trimmed plagioclase approximately 5 mm. Rusty fractures @ 45 deg. to C.A.

> -@ approximately 13.7m, foliation is coarse biotite approximately 2-3 mm in aligned crystals - parallel to C.A. Local traces of pyrite at 45 deg. increase of biotite to approximately 40% of rock.

27.6-54.4m -Gabbro - light grey, fine to medium grained equigranular, mafics approximately 50%, more strongly magnetic fractures, 60 deg. to C.A. Mafics are biotite plus pyroxene, mixed zone.

-@ 38.7m down hole - local coarse grained sections up to 6 cm wide - strongly magnetic at 38.7m down. Mixed zone, varies from coarse grained to medium grained equigranular.

-@49.7-50.3m, sheared, rusty gabbro - shearing @ 45 deg. to C.A.

Local 2-4 cm blue grey plagioclase rich section - crystals up to 1 cm coarser-grained sections.

54.4-61.3m -Gabbro/anorthosite mafics approximately 20%, minor magnetite blebs, weakly foliated @ 45 deg. to C.A. Coarse grained - mafics predominantly biotite with lesser pyroxene.

-@56m, 1 cm semi-massive magnetite with minor pyrite veinlet.

-appears to be dyke with 0.6m of anorthosite in middle with inclusions of gabbro along walls.

- 61.3-62.3m -Gabbro mafic rich with mafics approximately 50%. Highly magnetic coarse bleb magnetite.
- 62.3-62.7m -Very coarse grained minor pyrrhotite, anorthosite dyke.

62.7-66.5m -Fine to coarse grained gabbro, highly magnetic with coarse magnetite and up to 5% pyrrhotite locally, mafics approximately 70% of rock. Mafics highly altered to chlorite.

- 66.5-71.5m -Gabbro very coarse grained mafics approximately 50% moderately magnetic with blebs of magnetite approximately 5%. Mafics (biotite, pyroxene altered to chlorite).
- 71.5-72.6m -Anorthosite, pale grey, coarse grained, mafics approximately 15%.
- 72.6-91.5m -Gabbro same as from 218-234.5 , 66.5-71.5m

75.9 m -@ 249.1, local pyrrhotite approximately 5% - strongly magnetic. Mafics approximately 40-50%.

91.5m-E.O.H.

Constraint Constraint

Appendix IV

Mineralogical Studies

.

~	
-	
·	
_	
-	

Mines

Where WE

Find Them.

Are

OVERBURDEN DRILLING MANAGEMENT LIMITED

May 21, 1999

Mr. Ed Kruchkowski c/o AURORA CORROSION CONTROL 3773 - 19th Street N.E. Calgary, Alberta T2E 6S8

fax: (403) 250-5872

Dear Mr. Kruchkowski:

Re: Resolution of Ti Mineralogy, British Columbia Titanium-Phosphate Project, 26BT Resource Development Company Ltd.

As proposed in my May 13 letter and agreed in our May 19 telephone discussions, we have performed a brief scanning electron microscope (SEM) visual and energy dispersive x-ray (EDS) analytical investigation on 26BT's gabbro samples to resolve reported differences between: 1) the Ti mineral species recovered in our heavy mineral processing of the mineralized drill core and those observed in other thin section studies; and 2) Fe₂O₃, TiO₂ and P₂O₅ whole rock analyses and the quantity of Fe₂O₃, TiO₂ and P₂O₅ recovered in our heavy mineral concentrates. These questions are outlined in Sudhir's May 14 letter, a copy of which is attached. Sudhir's questions relate specifically to Hole 94-4. We performed our tests on samples from Hole 95-2 because these samples were already mounted and polished ready for SEM analysis. However, the SEM results for all holes would be expected to be very similar as our heavy mineral processing results are very consistent between holes.

We used crusher rejects from four 10-foot sample intervals in our test work -- 30-40, 5060, 130-140 and 140-150 feet. The reject material, consisting of 1-5 mm rock fragments, was cast in epoxy pucks, one side of which was ground and polished to a mirror finish suitable for SEM photography and EDS analysis. A brief SEM examination showed similar
mineralogy in all four samples; therefore a single sample (130-140 foot interval) was photographed (Plate 1) and analyzed (Fig. 1) in detail.

SEM photography relies on density contrasts to highlight different mineral species. In 26BT's samples, Fe and Ti oxides are nearly white, marginally heavy apatite, pyroxene and biotite are medium grey and low-density plagioclase is dark grey (Plate 1). By volume, the subject
 gabbro consists of 50-60 percent plagioclase, 30-35 percent augite, 3-5 percent biotite, 10 percent Fe and Ti oxides and 1-2 percent apatite (Plates 1a to 1c).

/... p.2

107-15 Capella Court Nepean, Ontario K2E 7X1 Tel. 613-226-1771 FAX 613-226-8753

Page 2 Mr. Kruchkowski

The Ti-bearing minerals (Table 1) are titanomagnetite, ilmenite, biotite and augite. Rutile is absent, even at micron scale, corroborating our earlier heavy mineral processing results where none was found. Titanomagnetite is on average ten times more abundant than ilmenite (Plates 1a, b) although in local patches the two minerals occur in subequal concentrations (Plate 1c). Both minerals occur in close association with the ferromagnesian silicate minerals (augite and biotite; Plates 1a to 1c), not with plagioclase. The titanomagnetite contains approximately 15 percent TiO₂ in solid solution (Fig. 1a) whereas the ilmenite contains 55 percent (Fig. 1b). In some grains, part of the TiO₂ has exsolved from the magnetite, forming thin (maximum 0.02 mm) parallel ilmenite lamellae (Plate 1d) and lowering the TiO₂ content of the inter-lamellae titanomagnetite to 10 percent (Fig. 1c). The ilmenite contributes only 28 percent of the TiO₂ in the gabbro compared to 57 percent from the titanomagnetite due to the much greater abundance of titanomagnetite (Table 1). The balance is contributed by the augite which contains 1 percent TiO₂ (Fig. 1d) and biotite which contains 5 percent TiO₂ (Fig. 1e).

1

Much of the gap between the Fe₂O₃ content of the Fe-Ti oxide minerals in our concentrates and the 8-16 percent Fe₂O₃ whole rock values (Table 2) is explained by the abundant augite and biotite which together would be expected to contribute about 6-8 percent Fe₂O₃. The Fe₂O₃ gap narrows in relation to total Fe₂O₃ as the titanomagnetite content of the rock increases. The remaining gap is explained by the very fine grain size of part of the titanomagnetite and ilmenite; 20-30 percent by volume is silt-sized (<0.1 mm; Plate 1a), well below the 0.18-0.25 mm grain size used in our recovery tests which were intended to simulate recoveries achievable in an actual mining and milling operation. The larger, recoverable titanomagnetite and ilmenite grains are in the 0.2 to 0.4 mm range (Plates 1a to 1c) which is rather small compared to the grain size of productive deposits in anorthosites. Moreover, rather than having sharp, mill-friendly boundaries, much of the titanomagnetite is shrouded in biotite (Plates 1b, d).

The apatite occurs as isolated crystals, mainly in association with plagioclase (Plates 1b, c, d). Most grains are much smaller than the 0.18 mm cut-off used in our processing tests; this explains the missing P_2O_5 mentioned by Sudhir.

An interesting feature of the gabbro is the presence of barian feldspar (hyalophane) lamellae in the plagioclase (Plates 1b, d, f; Figs. 1f, g). This explains the high Ba content (0.5-1.5 percent; Table 2) of the gabbro and the absence of barite in our heavy mineral concentrates.

/... p.3

Page 3 Mr. Kruchkowski

In summary, our SEM study has fully corroborated our earlier and ongoing heavy mineral processing results and has revealed additional details on the mineralogy of the gabbro. Sudhir mentioned that I appeared to be very negative about the project. It would not be appropriate for me to form an opinion on the project itself as many factors influence the viability of a titanium operation and the only factor I have considered is the mineralogy. However, I would have been remiss in my responsibilities if I had not reported from the outset, as I did on December 10, 1998, the apparent milling/metallurgical problems of the mineralization. Our SEM study has confirmed these problems and identified others. The problems are:

- 1. Rutile, the most valuable Ti ore mineral, is absent.
- 2. Approximately 60 percent of the TiO_2 value resides in solid solution form in titanomagnetite, requiring chemical extraction.
- 3. Although significant ilmenite is present, part of it occurs as thin exsolution lamellae rather than discrete grains and would be difficult to separate from the titanomagnetite by milling.
- 4. Much of the titanomagnetite is shrouded in biotite which would be difficult to separate by milling and therefore dilute the titanomagnetite concentrate.
- 5. Approximately 20-30 percent by volume of the titanomagnetite and ilmenite occurs in grains too small to be free-milling.
- 6. Most of the byproduct apatite is too fine-grained to be free-milling.

The milling/metallurgical problems appear to be common to the mineralization in all four drill holes that we have tested and therefore may extend throughout the gabbro intrusive. Possibly some or all of the problems could be overcome in a deposit of sufficient grade but the mineralization encountered to date is of modest grade. I hope our test results are useful for resolving the future direction of the project.

Youns sincerely,

Stu Averill, President

cc Sudhir Jain

- Plate 1 SEM Photos of Representative Fragments of Crushed Gabbro from the 130-140 Foot Interval, Hole 95-2. Brightness of minerals increases with density. Scale bar is 0.1 or 0.01 mm (100 or 10 microns) as indicated.
- Plate 1a Overview of 15 fragments showing an average composition of 50-60 percent plagioclase (pl; dark grey), 30-40 percent augite + biotite + apatite (aug + bt + ap; medium grey) and 10 percent titanomagnetite ± ilmenite (tm, ilm; greywhite). Note that the titanomagnetite and ilmenite grains are closely associated with augite and biotite and that 20-30 percent (by volume) of the grains are silt-sized inclusions (<0.1 mm) which would not readily be liberated by milling.
- Plate 1b Typical section showing a 10:1 ratio of titanomagnetite (tm; white) to ilmenite (im; very pale grey) and 1-2 percent apatite occurring as silt-sized inclusions (<0.1 mm) in plagioclase (pl; dark grey). Note: 1) the perthitic texture of some of the plagioclase, 2) the shrouding of the titanomagnetite by biotite (bt) which has the same medium grey tone as the augite (aug), and 3) the presence of ilmenite as thin exsolution lamellae in one titanomagnetite grain. The titanomagnetite contains approximately 15 percent TiO₂, the biotite contains 5 percent and the augite 1 percent.
- Plate 1c Atypical section with an unusually low 1:1 ratio of titanomagnetite (tm; white) to ilmenite (im; very pale grey). Both oxides are closely associated with augite and biotite (aug, bt; both medium grey). Apatite (ap; pale grey crystals) is more closely associated with plagioclase (pl; dark grey), comprises 1-2 percent of the gabbro, and occurs mainly as silt-sized (<0.1 mm) inclusions which would not be liberated by milling.
- Plate 1d Detail of the lamellar titanomagnetite-ilmenite grain of Plate 1b showing thin (0.005-0.02 mm) ilmenite (ilm; pale grey) exsolution lamellae in the titanomagnetite (tm; grey-white) which contains less (10 percent versus 15 percent) TiO₂ than unexsolved titanomagnetite. The grain is shrouded by biotite (bt; medium grey). Note the slightly perthitic texture of the plagioclase (pl; dark grey) and the presence of 2 percent apatite (ap; medium grey crystals) as siltsized inclusions (<0.1 mm) in both the plagioclase and titanomagnetite.
- Plate le Extreme detail of a titanomagnetite grain (tm; grey-white) showing hints of submicroscopic (<0.001 mm), irregularly oriented ilmenite (ilm; pale grey) exsolution lamellae. The dark grey dendritic inclusions appear to be calcite (cal).
- Plate 1f Detail of a perthitic plagioclase grain showing pale grey hyalophane $((K,Ba)Al(Si,Al)_3 O_8)$ lamellae in dark grey andesine $((Na,Ca)Al_{1-2}Si_{2-3} O_8))$.

sure 1 - EDS Analytical Spectra for Representative Mineral Grains in Gabbro from 130-140 Foot Interval, Hole 95-2. Peak heights for the same concentrations of different elements in any spectrum analyzed at the same magnification vary according to the bell curve line of Figure 1a. Peak heights for different spectra vary due to the different magnifications of analysis and the scale of the chart (5,000 versus 10,000 counts). Primary peaks for Fe and Ti are flanked by an unlabeled smaller secondary peak. Page 1 of 2.

1e - Biotite. TiO₂ content is approximately 5 percent.

1f - Hyalophane intergrowth in plagioclase.
 Ba content is approximately 5 percent.

lg - Plagioclase. Na:Ca ratio indicates an andesine composition.

A DE LEVE

gure 1 - EDS Analytical Spectra for Representative Mineral Grains in Gabbro from 130-140 Foot Interval, Hole 95-2. Peak heights for the same concentrations of different elements in any spectrum analyzed at the same magnification vary according to the bell curve line of Figure 1a. Peak heights for different spectra vary due to the different magnifications of analysis and the scale of the chart (5,000 versus 10,000 counts). Primary peaks for Fe and Ti are flanked by an unlabeled smaller secondary peak. Page 2 of 2. Overburden Drilling Management Limited

i
1

Mineral	% of Gabbro		_ Weight %	TiO2 Contribution to Gabbro				
	Volume	Weight	TiO2	Wt%	Proportion (%)			
Plagioclase	50-60	45	0	0	0			
Augite	30-35	30-35	1	0.3	9			
Biotite	3-5	3-5	` 5	0.2	6			
Titanomagnetite	8-10	13-15	15	2	57			
llmenite*	1-2	2	55	1	28			
Apatite	1-2	1-2	0	0	0			
				3.5	100			

*Includes ilmenite exsolution lamellae in titanomagnetite.

Table 1 - Mineralogy of Gabbro Illustrating Mineralogical Distribution of TiO2.

Intertek lesting Services	Rapport L	•
Chimitee Bondar Clegg	Geochemical 🛌 🔨	
CLIENT: OVERBURDEN DRILLING MONT LTD		Ì.
REPORT: C99-60250.1 (COMPLETE:).	2-MAR-99 PAGE 1 OF 3	
		1
SAMPLE ELEMENT SID2. 1102 . 1203 Fe203* MHO MgO Cao Na20 K20 P205 LOI Juital Ba Cr. Sr		
NUMBER UNITS PCT		
		i
95-2-10-20 50.93 2.83 16.92 9.17 0.14 2.99 5.32 4.55 2.97 1.09 0.79 99.95 >10000 76 1220		
95-2-20-30 51.40 2.76 17.44 8.46 0.11 2.62 4.54 4.75 2.61 1.18 1.22 9.9.34 >10000 52 887		
95-2-30-40 51.42 2.64 17.94 8.31 0.13 2.92 5.52 6.69 2.62 1.14 0.54 10(0,35)>10000 52 1043		
95-2-40-50		
93-2-30-60 50.34 2.82 16.66 9.33 0.15 3.16 6.24 4.72 2.30 1.21 0.69 100.04 >10000 55 1106		
95-2-80-90 49.47 3 34 16 17 11 21 0 20 3 30 6 80 4 42 1 90 1 27 0 44 100 20 51 1000 50 1000		
95-2-90-100 44.94 3.75 13.14 15 14 0.27 4.94 10.36 3 48 0.90 1 29 0.44 99 17 4590 41 700		
95-2-100-110 43.93 3.90 12.48 16:07 0.28 4.80 10.07 3 28 0.83 0.91 0.60 97 68 4590 45 657		
95-2-110-120 46.44 3.80 12.63 45.37 0.28 4.93 10.18 3.67 0.98 0.97 0.25 59.97 3955 59 569		
95-2-120-130 46.57 3.49 12.08 15,04 0.29 4.97 9.88 3.81 1.10 1.03 1.03 99.83 4655 38 573		
95-2-130-140 45.89 3.67 11.96 16.22 0.30 6.91 9.85 3.65 1.03 1.08 1.27 100.36 4580 35 603		
95-2-140-150 47.10 3.37 12.93 15:09 0.28 4.68 9.40 3.91 1.36 0.82 0.59 100.14 5448 47 629		
95-2-150-160 46.62 3.20 13.48 14.13 0.26 4.74 9.86 3.89 1.22 0.80 0.93 592.69 5183 52 683		
95-2-160-170 46.63 3 13 11.98 15.40 D.32 4.80 10.29 3 68 1.22 D.91 0.69 99.62 5135 57 575		
95-2-170-180 47.63 3.06 12.39 15:40 0.32 3.91 9.11 4.10 1.66 1.25 0.74 100.46 8320 62 387		
95-2-180-190 54.20 1 92 17.91 8.75 0.14 1.42 4.90 5.98 2.24 0.37 0.65 100 10 >10000 57 490		
95-2-190-200 56.00 1.74 19.45 6.91 0.11 0.67 3.52 6.54 2.56 0.11 0.79 100 13 >10000 63 582		
y>-2-200-210 46.50 3.55 9.92 21,56 0.51 2.54 8.20 3.96 1.96 0.66 <.05 99.76 3643 90 241		
57-2-210-220 53.9(1);00: 4.99 (52:2] 0.10 5:73 11.90 1.95 0.14 1.00 4.05 59:55 588 667 205 05.2.20.210 5.1.1 (1.15 10.11 12 15.44 0.25 5 11 10.12 1 10.0 27 0.200 1/ 0.201 5275 588 667 205		
52 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 =		
95-2-240-250 - 44 85 5 04 12 68 16 72 0 31 5 00 9 69 3 42 1 00 0 41 0 40 00 77 4871 44 767		
95-2-250-260 45.87 4 32 13.62 14.83 0.27 4 54 9.58 3.75 1.05 0.62 0.63 59 77 5817 62 871		
95-2-260-270 45,00 4.80 13.07 16.23 0.29 5.04 10.19 3.37 0.78 0.33 0.34 59.90 3704 70 782		
95-2-270-280 45.33 4.35 14.45 15.97 0.25 4.17 9.15 3.65 0.86 0.39 0.40 99.61 5265 54 1217		
95-2-280-290 49.37 2.69 17.37 11.77 0.17 2.68 7.82 4.74 1.12 0.68 0.45 100.05 8440 62 1279		
95-2-290-300 45.57 4 08 14.15 15.64 0.23 4.93 9.97 3 45 0.88 0.44 0.29 100.17 4452 57 810		

 Table 2 - Intertek Testing Services Whole Rock Analyses for Hole 95-2.

· •

X.K.

APPENDIX 3

OVERBURDEN DRILLING MANAGEMENT LIMITED

June 30, 1999

Mr. Sudhir Jain 26 BT RESOURCE DEVELOPMENT CO. LTD. MacLeod Place 1, Suite 200 5920 MacLeod Trail S.W. Calgary, Alberta T2E 0K2

fax: (403) 212-0733

Dear Mr. Jain:

Re: Confirmation of Ti Mineralogy, Hole 94-4, British Columbia Titanium-Phosphate Project

As instructed on June 03, we have performed a brief scanning electron microscope (SEM) visual and energy dispersive x-ray spectrometry (EDS) analytical investigation of a single sample from the mineralized section in Hole 94-4. It will be recalled that your TiO_2 analyses for this section (Table 1) are higher than those for other drill holes. As well, our earlier test work, particularly that described in my December 18, 1998 and June 01, 1999 reports, showed that the gabbro in Hole 94-4, unlike that in the other holes, is olivine-bearing and most of its TiO_2 is held in ilmenite rather than titanomagnetite.

For our SEM/EDS study, we chose the sample from 65-75 feet because the TiO₂ assay (7 percent), recovered ilmenite (7.7 percent) and TiO₂ recovered as ilmenite (\approx 4 percent) for this interval were typical of the 10-sample, 97.5 foot mineralized section. However, the mineralogy of the section is so consistent that any sample would have sufficed. As in our earlier (May 21) SEM/EDS study of the mineralization in Hole 95-2, we cast a representative subsample of the coarse (1-5 mm) crusher reject in an epoxy puck, ground and polished one side to a mirror finish, photographed the relationships of the Ti-oxides to other minerals by SEM (Plates 1 to 3) and analyzed the Ti-oxides by EDS (Figure 1).

The gabbro is unaltered; all minerals are primary (Plate 1). These minerals include 30-40 percent clinopyroxene (intermediate between diopside and hedenbergite), 25 percent olivine, 15-20 percent plagioclase and 15 percent FeTi-oxides plus accessory apatite and pyrrhotite. All minerals are anhedral but oxide-silicate grain boundaries are more complex than oxide-oxide or silicate-silicate boundaries (Plates 2, 3). Only two oxide minerals are present -- ilmenite and titanomagnetite. They occur mainly as 0.2-0.5 mm grains and their concentrations are subequal.

The ilmenite is relatively pure (Figure 1a) and therefore probably contains about 52 percent TiO_2 . With 7-8 percent ilmenite present, the TiO_2 -in-ilmenite content of the gabbro is roughly 4 percent. Interestingly, this matches the TiO_2 -in-ilmenite recovered in our December 18 and June 01 tests on Hole 94-4. Our high recovery rate was probably achieved because the ilmenite is relatively coarse-grained and occurs only as discrete grains; ilmenite exsolution lamellae are not present in the titanomagnetite as in Hole 95-2. The titanomagnetite, which also constitutes 7-8 percent of the gabbro, appears to contain about 20 percent TiO_2 (Figure 1b), accounting for a further 1.5 percent TiO_2 and bringing the oxide total to 5.5 percent. The balance of the averge 6 percent TiO_2 assay value for the 97.5 foot mineralized section (Table 1) is probably held in the augite.

Mines Are Where <u>WE</u> Find Them.

.../p.2

107-15 Capella Court Nepean, Ontario K2E 7X1 Tel. 613-226-1771 FAX 613-226-8753

30 June 1999

Page 2 Mr. Sudhir Jain

All minerals contain about 5 percent apatite as 0.01-0.05 mm (maximum 0.1-0.2 mm) inclusions but these inclusions are readily visible by SEM only in the ilmenite and titanomagnetite. Pyrrhotite is concentrated along the ilmenite and titanomagnetite boundaries; it occurs as minute (0.1-0.2 mm grains) that comprise less than 0.5 percent of the gabbro.

1.1

In summary, the Hole 94-4 olivine gabbro appears to contain about 4 percent TiO_2 in ilmenite. The ilmenite has irregular grain boundaries but its 0.2-0.5 mm grain size and the absence of ilmenite exsolution lamellae in the titanomagnetite promote a very high rate of ilmenite recovery. Most of the remaining TiO_2 is held in titanomagnetite which is also recoverable. Both oxides contain about 5 percent apatite inclusions but the apatite is very fine-grained and may be deleterious rather than a potential byproduct.

On a final note, I have enclosed Intertek's Zr analyses for the quartz diorite in Hole 96-3. The Zr content is only 0.1-0.15 percent.

I hope this information is helpful. Please call me if you have any questions.

Yours sincerely.

Stu Averill, President

ITS Intertek Testing Services Chimitec Bondar Clegg										Geochemical Lab Report													
LIENT: OVER	IENT: OVERBURDEN DRILLING NGNT LTD PORT: C99-60682.1 (COMPLETE) DATE RECEIVED: 31-MAR-99													DATE PRINTED: 20-APR	-99	PAGE	PROJECT: 1 OF 5	OJECT: NONE 5					
AMPLE	ELEMENT	si02	1102	.1203	Fe203*	MinO	NgQ	CaO	Na20	K20	P205	LOI	Total	Ba	Cr	Sr							
LIMBER	UNITS	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PCT	РСТ	PCT	PCT	PCT	PPH	PPM	РРМ							
4-4/2.5-15		41.07	5.76	11.74	18.60	0.31	5.98	10.91	2.75	0.27	2.50	0.20	100.36	1743	; 76	932							
4-4/15-25		41.97	5.00	13.29	16.43	0.28	5.53	10.85	3.07	0.34	2.34	0.94	100.35	2063	51	1037							
4-4/25 -35		41.33	5.26	13.03	17.51	0.29	5.70	10.87	2.95	0.30	2.35	1.03	100.92	2010) 52	1006							
4-4/35-45		42.00	5.07	13.33	16.95	0.29	5.55	10.60	3.17	0.34	2.22	0.54	100.43	2412	: 55	1037							
4-4/45-55		34.92	7.14	8.27	25.55	0.41	7.77	11.05	1.98	0.23	2.95	⊲0.05	100.49	1447	' 57	666							
4-4/5 5-65		39.19	5.96	10.94	20.55	0.34	6.46	10.80	2.73	0.34	2.60	⊲0.05	100.22	2159	52	862							
×-4/65-75		35.33	7.15	8.06	25.46	0.41	7.99	10.99	1.97	0.26	2.90	⊲0.05	100.76	5 1602	2 38	642							
74 -4/75-85		34.75	6.94	8.14	25.16	0.42	7.75	10.74	1.95	0.21	2.84	⊲0.05	99.14	1609	> 59	659							
74-4/ 85-9 5		39.14	5.85	§10.62	21.49	0.39	6.90	10.56	2.65	0.30	2.41	⊲0.05	100.6	2 2232	2 53	837							
74-4/95-100		40.23	5.46	11.49	19.94	0.36	6,35	10.43	2.89	0.32	2.33	⊲0.05	100.15	5 247	7 53	893							

٠

_

1a - Ilmenite. TiO₂ content is approximately 52 percent.

1b - Titanomagnetite. TiO₂ content is approximately 20 percent.

Figure 1 - EDS Analytical Spectra for Representative Ilmenite (1a) and Titanomagnetite (1b) Grains in Olivine Gabbro from 65-75 Foot Interval, Hole 94-4. Peak heights for the same concentrations of different elements vary according to the bell curve line. Primary peaks for Fe and Ti are flanked by an unlabeled smaller secondary peak.

Plate 1 - Overview of fifteen fragments showing an average composition of 30-40 percent clinopyroxene (cpx; dark grey), 25 percent fayalitic (~Fo₃₀) olivine (ol; medium grey), 15-20 percent plagioclase (pl; near-black), 7-8 percent ilmenite (ilm; pale grey), 7-8 percent titanomagnetite (tm; grey-white), 5 percent apatite (minute inclusions having medium grey tone similar to silicate minerals; therefore visible only in ilmenite and titanomagnetite grains) and <0.5 percent pyrrhotite (po; minute, bright white grains).</p>

Plates 1 to 3 - SEM Photos of Mineralized Olivine Gabbro from 65-75 Feet in Hole 94-4. Mineral tone changes from dark grey to bright white with increasing density. Scale bar = 100 microns. Page 1 of 3.

Plate 2 - Detail of a large, plagioclase-poor grain from Plate 1. Note the irregular grain boundaries and 0.2-0.5 mm grain size of the ilmenite and titanomagnetite, the high frequency of apatite inclusions (readily visible only in oxide minerals), the absence of ilmenite exsolution lamellae in the titanomagnetite, and the restriction of pyrrhotite to the margins of the ilmenite and titanomagnetite grains.

Plates 1 to 3 - SEM Photos of Mineralized Olivine Gabbro from 65-75 Feet in Hole 94-4. Mineral tone changes from dark grey to bright white with increasing density. Scale bar = 100 microns. Page 2 of 3.

Plate 3 - Detail of a large, plagioclase-rich grain from Plate 1 showing the same relationships as Plate 2.

Plates 1 to 3 - SEM Photos of Mineralized Olivine Gabbro from 65-75 Feet in Hole 94-4. Mineral tone changes from dark grey to bright white with increasing density. Scale bar = 100 microns. Page 3 of 3.

FAXSR: JITS VAL D'OR At 23-JUN-1999 19:09 Page 2

ITS Intertek Testing Services Chimitec

CLIENT:	OVERBURDEN	DRJ	LLING	MGNT	LTD
REPORT:	C99-61162.0) (COMPLI	ETE)	

DATE	RECEIVED:	01-JUN-99	
	1	,	

PROJECT: 26BTODM#955 DATE PRINTED: 23-JUN-99 PAGE 1 DE 1

SAMPLE	ELEMENT	Zr
NUMBER	UNITS	PPM
96-3 (40-50)		1089
96-3 (50-60)		1593
96-3 (60-70)		1173

OVERBURDEN DRILLING MANAGEMENT LIMITED

Mr. Sudhir Jain 26 BT RESOURCE DEVELOPMENT CO. LTD. MacLeod Place 1, Suite 200 5920 MacLeod Trail S.W. Calgary, Alberta T2E 0K2

fax: (403) 212-0733

June 01, 1999

Dear Mr. Jain:

Re: Calculating Recoverable TiO₂ and P₂O₅ Grades from Ilmenite and Apatite Percentages, Hole 94-4, and Zr Grade from Zircon Content, Hole 96-3

Thank you for supplying the calculations that you used in your May 27 grade estimates for the above drill holes. Together with your May 26 telephone questions, these calculations made us realize that we had not supplied key figures needed to make grade calculations. These figures are the total weights for the 0.18 to 0.25 mm fraction.

Just to review, we crushed 2 kg from each 10-foot section to -2.0 mm but mineralogically processed only the 0.18 to 0.25 mm portion which we found to be: a) the most suitable grind size for a titanium milling operation as it consists almost entirely of liberated mineral grains rather than lithic grains, and b) representative of the whole sample (i.e. any or all of the sample ground to this size would give the same results). Consequently, the total weight of sample material on which the ilmenite and apatite recoveries for your ten Hole 94-4 samples should be based is the 0.18-0.25 mm crushed weight (1213.4 g; see supplementary table), not the total crushed weight figure (20,400 g) that you used. Obviously this has a major bearing on mineral recovery calculations!

Following is my calculation of TiO_2 -in-ilmenite and P_2O_5 -in-apatite recovery rates for Hole 94-4 using your format:

Total weight processed	1213.4 2
Total weight of HMC	752.7 g
Total weight of paramagnetic HMC	563.7 g
Average proportion of ilmenite in paramagnetic HMC, by volume	10-15%
Average proportion of ilmenite in paramagnetic HMC, by weight (x 1.3)	13-20%
Approximate weight of recoverable ilmenite in sample	75-115 g
Approximate grade of TiO_2 recoverable as ilmenite (basis 52 wt% contained TiO_2)	3.2-4.9%
Average TiO ₂ assay grade of samples	6.0%
Total weight of nonmagnetic HMC	39.8 g
Average proportion of apatite in nonmagnetic HMC, by volume	60%
Average proportion of apatite in nonmagnetic HMC, by weight (x 1.0)	60%
Approximate weight of recoverable apatite in sample	25 g
Approximate grade of $P_2 O_5$ recoverable as apatite (basis 42% contained $P_2 O_5$)	0.8%
Average P2 O3 assay grade of samples	2.5%
Mines	
Are	~ /0

Page 2 Mr. Sudhir Jain

The 3.2 to 4.9 percent TiO_2 recovery is lower than the 6.0 percent head grade but we know that about one-third of the TiO_2 in Hole 94-4 occurs in titanomagnetite, pyroxene and biotite as outlined in my December 18, 1998 and May 21, 1999 reports. The apatite recovery is only 0.8 percent compared to the head grade of 2.5 percent due to the tendency of apatite to occur as inclusions finer than 0.18 mm in plagioclase and other minerals rather than as discrete grains like the titanium minerals as outlined in my May 21 report. Finer grinding at added cost would be required to achieve a satisfactory recovery rate.

1,

Turning to Hole 96-3, the weight of material processed from the three samples was 232.2 g, not 6,000 g. The corrected zircon values are shown below:

Total weight processed	232.2 g
Total weight of HMC	11.6 g
Total weight of nonmagnetic HMC	4.5 g
Average proportion of zircon in nonmagnetic HMC, by volume	20%
Average proportion of zircon in nonmagnetic HMC, by weight (x 1.25)	25%
Approximate weight of recoverable zircon in sample	1 g
Approximate grade of ZrO_2 recoverable as zircon (basis 67% contained ZrO_2)	0.3%

Since ZrO_2 was not analyzed, we cannot calculate zircon recovery rates. The actual rates are probably low because zircon, to a greater extent than apatite, is an inclusion-forming accessory mineral similar to apatite. We have sent the three samples for analysis so that the recovery rates can be calculated.

I hope this information is helpful. We will now attend to identifying the reported rutile in the thin sections that we received today. The thin section descriptions suggest that any rutile present occurs as a microscopic alteration product of the ilmenite, augite and biotite and therefore is very fine-grained and would be difficult to recover.

You**n**s sincerely.

Stu Averill, President

	Weight in Grams													
			Heavy Miner	als >SG 3.2										
SAMPLE NUMBER	LIGHT MINERALS <sg 3.2<="" th=""><th>TOTAL HEAVY MINERALS</th><th>FERROMAGNETIC</th><th>PARAMAGNETIC (<1.0 amp)</th><th>NONMAGNETIC (>1.0 amp)</th><th>TOTAL</th></sg>	TOTAL HEAVY MINERALS	FERROMAGNETIC	PARAMAGNETIC (<1.0 amp)	NONMAGNETIC (>1.0 amp)	TOTAL								
94-4 (2.5-15 ft)	57.5	88.2	19.4	64.9	3.9	145.7								
94-4(15-25 ft)	68.2	70.6	16.2	52.1	2.3	138.8								
94-4(25-35 ft)	56.4	58.8	16.1	40.9	1.8	115.2								
94-4(35-45 ft)	61.7	52.9	9.0	41.9	2.0	114.6								
94-4(45-55 ft)	30.6	97.0	23.2	69.4	4.4	127.6								
94-4(55-65 ft)	47.7	74.4	12.3	55.9	6.2	122.1								
94-4(65-75 ft)	26.1	88.7	16.5	66.9	5.3	114.8								
94-4(75-85 ft)	22.7	68.7	10.9	54.3	3.5	91.4								
94-4(85-95 ft)	40.9	76.8	10.1	61.1	5.6	117.7								
94-4(95-100 ft)	48.9	76.6	15.5	56.3	4.8 _	125.5								
96-3(40-50 ft)	60.4	2.4	0.2	0.9	1.3	62.8								
96-3(50-60 ft)	85.1	5.3	0.8	2.9	1.6	90.4								
96-3(60-70 ft)	75.1	3.9	0.4	1.9	1.6	79.0								

.•

4

1

OVERBURDEN DRILLING MANAGEMENT LIMITED ,

May 25, 1999

Mr. Lorne Kelsch 26 BT RESOURCE DEVELOPMENT CO. LTD. MacLeod Place 1, Suite 200 5920 MacLeod Trail S.W. Calgary, Alberta T2E 0K2

fax: (403) 212-0733

Dear Mr. Kelsch:

Re: Titanium Mineralalogy of Test Samples from Holes 96-1 and 96-3, British Columbia

Attached find our laboratory data for the nineteen 10-foot core samples tested from the above two drill holes. One other sample from Hole 96-1 had been tested earlier (December 10, 1998) but from a much deeper level (273 feet) and from an ultramafic (90 percent heavy minerals) rather than gabbroic section.

As in our other extensive tests, the principal Ti-oxide mineral is titanomagnetite with subordinate ilmenite and no rutile. The Hole 96-3 samples, which tend to be dioritic rather than gabbroic and are deficient in heavy minerals, also contain titanite and accessory zircon.

Some sections of the Hole 96-1 gabbro are hydrated and contain significant epidote and actinolite. These sections give lower grade magnetic (titanomagnetite-bearing) concentrates than fresh gabbro. As well, part of the apatite in this drill hole is too closely associated with magnetite to be fully separable from it.

I hope these observations are helpful. Please call me if you have any questions.

s sincerely. Averill.

President

Mines Are Where <u>WE</u> Find Them.

107-15 Capella Court Nepean, Ontario K2E 7X1 Tel. 613-226-1771 FAX 613-226-8753

OVERBURDEN DRILLING MANAGEMENT LIMITED

107-15 CAPELLA COURT, NEPEAN, ONTARIO, K2E 7X1 TELEPHONE: (613) 226-1771/1774 FAX NO.: (613) 226-8753 EMAIL: odm@storm.ca

DATA TRANSMITTAL REPORT

DATE: 20-May-99

ATTENTION: Mr. Lorne Kelsch

- CLIENT: 26 BT RESOURCE DEVELOPMENT CO. LTD. MacLeod Place 1, Suite 200 5920 MacLeod Trail S.W. Calgary, AB T2H 0K2
- FAX NO.: (403) 212-0733
- NO. OF PAGES:
- PROJECT: Titanium 96-1 (55-65 ft) to 96-3 (290-300 ft) Mineralogy
- FILE NO: Ed Kruchkowski 26BT (95-2).wb3
- NO. OF SAMPLES: 19

THESE SAMPLES WERE PROCESSED FOR: Titanium-bearing minerals

SPECIFICATIONS: SUBMITTED BY CLIENT: 5-FOOT 1/4 NQ CORE SECTIONS. COMBINED INTO 10-FOOT SECTIONS AND CRUSHED TO <2.0 MM. PREPARED 0.18 MM TO 1.0 MM HEAVY MINERAL CONCENTRATE (S.G.>3.2) FROM 2 KG SPLIT OF CRUSHED PRODUCT. PARAMAGNETIC SEPARATION AND PICKING DONE ON 0.18 TO 0.25 MM FRACTION ONLY. ALL FRACTIONS ARE PRESENTLY STORED.

REMARKS: we mineral sta have now com oun トマ process sander 96-3 (40 30 Ft), (50-60 Ft) and (60-70 Ft) - though T: 02 was x 2% as per your instructions. 200 **Reny Huneault** Laboratory Manager

.

OVERBURDEN DRILLING MANAGEMENT LIMITED

PROJECT: TOTAL OF: 19 SAMPLES FILENAME: Ed Kruchkowski 26BT (95-2).wb3

1

	Weig	ht (kg)	Weight (g)													
			S	ieve Fractio	ns			0.18	to 1.0 mr	n M.I. Sep	paration (S	.G. 3.20)				
			_						FERROMAGNETIC HMC NONFER					ERROMAGNETIC HMC		
Sample Number	Total Rec'd and Crushed	Processed Split	1.0 to 2.0 mm	0.18 to 1.0 mm	-0.18 mm	Total	M.I. Lights	Total Mag	-0.18 mm (wash)	0.18 to 0.25 mm	0.25 to 1.0 mm	Total Non Mag	-0.18 mm (wash)	0.18 to 0.25 mm	0.25 to 1.0 mm	
Titanium Mineralogy				*		*										
96-1(55-65)	5.35	2.00	477.0	679.4	843.6	574.3	220.9	76.8	6.5	14.0	56.3	276.6	40.2	5 8.5	177.9	
96-1(65-75)	5.10	2.00	479.2	691.8	829.0	611.2	224.5	85.6	6.5	14.0	65.1	301.1	33.6	64.2	203.3	
96-1(75-85)	5.05	2.00	504.5	651.2	844.3	529.8	198.1	100.0	6.2	14.7	79.1	231.7	34.6	53.1	144.0	
96-1(85-95)	4.85	2.00	457.9	720.1	822.0	614.0	234.1	109.2	7.4	15.6	86.2	270.7	32.1	58.3	180.3	
96-1(95-105)	5.00	2.00	530.4	720.9	748.7	578.0	145.5	84.1	9.4	10.0	64.7	348.4	57.2	61.2	230.0	
96-1(105-115)	4.75	2.00	536.8	674.4	788.8	529.4	183.9	83.9	8.9	11.5	63.5	261.6	48.9	48.8	163.9	
96-1(115-125)	4.10	2.00	549.1	645.7	805.2	563.8	208.0	88.7	5.6	12.7	70.4	267.1	33.8	53.8	179.5	
96-1(125-135)	5.55	2.00	454.2	642.8	903.0	583.1	196.5	115.7	5.4	16.8	93.5	270.9	31.2	56.9	182.8	
96-1(135-145)	5.50	2.00	434.0	696.2	869.8	630.2	223.4	119.0	6.1	15.5	97.4	287.8	37.2	61.0	189.6	
96-1(145-155)	5.35	2.00	485.1	693.0	821.9	630.0	246.0	78.5	5.2	11.6	61.7.	305.5	34.6	57.3	213.6	
96-1(155-165)	5.20	2.00	582.3	682.7	735.0	534.6	167.7	94.7	9.8	14.8	70.1	272.2	41.1	56.5	174.6	
96-1(165-175)	5.25	2.00	466.9	696.3	836.8	602.0	194.0	149.8	9.8	21.5	118.5	258.2	32.6	56.2	169.4	
96-1(175-180)	2.35	2.00	643.2	641.3	715.5	433.8	238.5	56.8	4.1	7.9	44.8	138.5	26.2	32.2	80.1	
96-3(40-50)	3.40	2.00	577.8	574.8	847.4	442.4	430.8	1.0	0.2	0.2	0.6	10.6	3.3	2.2	5.1	
96-3(50-60)	3.35	2.00	528.0	638.8	833.2	565.6	542.9	4.8	1.0	0.8	3.0	17.9	4.5	4.5	8.9	
96-3(60-70)	4.15	2.00	477.8	611.8	910.4	477.6	464.2	2.2	0.6	0.4	1.2	11.2	2.9	3.5	4.8	
96-3(270-280)	3.75	2.00	608.5	614.2	777.3	462.8	262.2	49.5	8.3	8.0	33.2	151.1	24.4	36.5	90.2	
96-3(280-290)	3.20	2.00	446.6	696.1	857.3	479.0	413.8	27.1	4.4	5.1	17.6	38.1	6.5	9.0	22.6	
96-3(290-300)	4.80	2.00	446.6	606.7	946.7	544.6	475.6	30.5	3.3	6.3	20.9	38.5	5.1	9.1	24.3	

* After initial dry sieving, weight of 0.18-1.0 mm fraction is further reduced 10-20 percent by oxalic acid wash to remove adhering -0.18 mm crusher dust prior to final M.I. separation.

FILENAME: Ed Kruchkowski 26BT (95-2).wb3 PROJECT: Titanium Mineralogy TOTAL OF 19 SAMPLES

Ì

				MINERALOGY (VOLUME PERCENT)										_
SAMPLE NO. FRACTION		SEPARATION AMPERAGE	MT	ILM	RUT	TT	СРХ	OL	BT	EP	AP	GTH	PY	REMARKS:
96-1(55-65)	Ferromagnetic	NA	90-92	TR	0	0	3-5	0	0	0	5	0	0	SEM checks from 0.18-0.25 mm fraction: 4 representative Fe-oxide candidates = 4 titanomagnetite (5-10 wt% TiO2).
	Paramagnetic	<1.0	3-5	1	0	0	80-85	0	0	5	2-3	0	TR	1-3% homblende.
	Nonmagnetic	>1.0	0	0	0	0	45-55	0	0	TR	45-55	0	0.5	Trace hornblende.
96-1(65-75)	Ferromagnetic	NA	85-90	TB	0	0	5-10	0	RTR	TR	5	0	TR	
30-1(03 70)	Paramagnetic	<1.0	0	1	0	0	90-95	0	RTR	3-5	2-3	0	0	
	Nonmagnetic	>1.0	0	0	0	0	30-40	0	0	0.5	60-70	0	0.5	
96-1(75-85)	Ferromagnetic	NA	80-85	TR	0	0	10-20	0	0	RTR	3-5	0	0	
	Paramagnetic	<1.0	0	1	0	0	90-95	0	0	5-10	1-2	0	TR	
	Nonmagnetic	>1.0	0	0	0	0	45-55	0	RTR	2-3	45-55	0	TR	
96-1(85-95)	Ferromagnetic	NA	70-80	1	0	0	20-30	0	0	TR	5-10	0	TR	
50 1(00 00)	Paramagnetic	<1.0	0	2	0	0	70-80	0	0	10-15	1-2	0	0	1% homblende. 5-10% actinolite.
	Nonmagnetic	>1.0	0	0	0	RTR	40-50	0	0	2	50-60	0	0.5	Trace actinolite.
96-1/95-105)	Ferromagnetic	NA	80-85	0.5	0	0	0	0	0	5	3-5	0	TR	5-10% actinolite.
30-1(00-100)	Paramagnetic	<1.0	0	TR	Ō	0	25-35	0	0	45-55	TR	0	TR	30-40% actinolite.
	Nonmagnetic	>1.0	0	0	0	0	30-40	0	0	30-40	30-40	0	2-3	5-10% actinolite.
96-1(105-115)	Ferromagnetic	NA	70-80	2	0	0	15-25	0	0	1	3-5	0	TR	
	Paramagnetic	<1.0	0	0.5	0	0	65-75	0	0	15-25	2	0	IH	Hare trace hornblende. 5-10% actinolite.
	Nonmagnetic	>1.0	0	0	0	0	45-55	0	0	10-15	30-40	0	0.5	Rare trace homblende 5-10% actinolite.
96-1(115-125)	Ferromagnetic	NA	75-85	2	0	0	10-15	0	0	0	5	0	0	Trace actinolite.
	Paramagnetic	<1.0	0	3-5	0	0	85-90	0	RTR	2	2-3	0	0	2-3% actinolite.
	Nonmagnetic	>1.0	0	0	0	0	40-50	0	0	1-2	50-60	0	1	Rare trace hornblende. Trace actinolite.
96-1(125-135)	Ferromagnetic	NA	75-85	2-3	0	0	10-20	0	0	RTR	5	0	0	Trace actinolite.
	Paramagnetic	<1.0	0	TR	0	0	90-95	0	0	1-2	2-3	0	RTR	Trace homblende. 2-3% actinolite.
	Nonmagnetic	>1.0	0	0	0	0	45-55	0	0	1-2	45-55	0	0.5	Rare trace hornblende. Rare trace actinolite.
96-1(135-145)	Ferromagnetic	NA	75-85	2-3	0	0	10-20	0	0	0	5	0	0	SEM checks from 0.18-0.25 mm fraction: 3 representative Fe-oxide candidates = 3 titanomagnetite (5-10 wt% TiO2).
	Paramagnetic	<1.0	0	0	0	0	90-95	0	RTR	1	3-5	0	RTR	Trace homblende.
	Nonmagnetic	>1.0	0	0	0	0	40-50	0	0	0.5	50-60	0	1	Rare trace hornblende. Trace actinolite.
96-1(145-155)	Ferromagnetic	NA	75-85	1	0	0	10-20	0	0	0	5-10	0	0	
(- ····)	Paramagnetic	<1.0	0	TR	0	0	90-95	0	0	1-2	1-2	0	ΤR	3-5% actinolite.
	Nonmagnetic	>1.0	0	0	0	0	40-50	0	0	1	50-60	0	TR	

٠

J

.

FILENAME: Ed Kruchkowski 26BT (95-2).wb3 PROJECT: Titanium Mineralogy TOTAL OF 19 SAMPLES

)

						MINE	RALOGY	(VOLU	ME PER	CENT)				_
SAMPLE NO.	FRACTION	SEPARATION AMPERAGE	мт	ILM	RUT	π	CPX	OL	BT	EP	AP	GTH	PY	
96-1(155-165)	Ferromagnetic	NA	40-50	5-10	0	0	30-40	0	0	1-2	1-3	0	0	
00 ((100 100))	Paramagnetic	<1.0	0	TR	0	0	70-80	0	0	20-30	0.5	0	TR	Trace actinolite.
	Nonmagnetic	>1.0	0	0	0	0	50-60	0	0	1-2	40-50	0	2	
96-1(165-175)	Ferromagnetic	NA	55-65	1-2	0	0	20-30	0	0	0.5	2-3	0	0	
50 .(Paramagnetic	<1.0	0	1-2	0	0	70-80	0	0	15-25	0.5	0	RTR	3% actinolite.
	Nonmagnetic	>1.0	0	0	0	0	40-50	0	0	1-2	50-60	0	3-5	1% actinolite.
96-1(175-180)	Ferromagnetic	NA	50-60	1-2	0	0	30-40	0	0	1-2	5-10	0	TR	Trace actinolite.
90-1(170-100)	Paramagnetic	<10	0	0.5	Ō	RTR	30-40	0	0	60-70	TR	0	0.5	
	Nonmagnetic	>1.0	Ö	0	õ	15-20	50-60	0	0	1-2	15-20	0	5-7	SEM checks from 0.18-0.25 mm fraction: 2 representative pale yellow-brown titanite candidates = 2 titanite.
96-3(40-50)	Ferromagnetic	NA	90-92	1	0	0	1-3	0	0	0	5	0	0	SEM checks from 0.18-0.25 mm fraction: 4 representative Fe-oxide candidates = 4 titanomagnetite (~5 wt% TiO2). Trace hornblende. 1% zircon.
	Paramagnetic	<1.0	0	0.5	0	1-2	30-40	0	0	TR	TR	0	0	60-70% hornblende. Trace zircon.
	Nonmagnetic	>1.0	0	0	0	50-60	15-20	0	0	0	1	0	RTR	SEM checks from 0.18-0.25 mm fraction: 2 black rutile versus allanite candidates = 2 allanite. 5-10% homblende. 10-15% zircon.
96-3(50-60)	Ferromagnetic	NA	90-95	TR	0	2-3	1-2	0	RTR	0	1	0	0	2-3% homblende.
	Paramagnetic	<1.0	0	RTR	0	3-5	0	0	0	0	0	0	0	95-97% hornblende. Trace zircon. "Hornblende" is a mixture of both green-black hornblende and green-black clinopyroxene.
	Nonmagnetic	>1.0	0	0	0	55-65	0	0	0	0	0.5	0	0	10-15% homblende. 20-30% zircon.
96-3(60-70)	Ferromagnetic	NA	95-97	0	0	1	TB	0	0	TR	2-3	0	0	
30-3(00-70)	Paramagnetic	~10	0	õ	ō	5	0	Ō	0	0	0	0	0	95% homblende.
	raianagnete		Ū	Ū	Ţ	-	_	-						Rare trace zircon. "Hornblende" is a mixture of both green-black homblende and green-black clinopyroxene.
	Nonmagnetic	>1.0	0	0	0	45-55	10-15	0	0	0	0	0	0	15-20% hornblende. 15-20% zircon.
96-3(270-280)	Ferromagnetic	NA	30-40	1	0	RTR	60-70	0	0	0	0	0	0	•
	Paramaonetic	<1.0	0	0.5	0	0.5	90-95	0	0	0.5	0	0	0	5-10% homblende.
	Nonmagnetic	>1.0	0	0	0	5-10	65-70	0	0	RTR	20-30	0	1	0.5% hornblende. 1-2% zircon.

)

•

FILENAME: Ed Kruchkowski 26BT (95-2).wb3 PROJECT: Titanium Mineralogy TOTAL OF 19 SAMPLES

)

IUIAL OF 19 37						_									
SAMPLE NO.	FRACTION	SEPARATION AMPERAGE	мт	ILM	RUT	Π	СРХ	OL	вт	EP	AP	GTH	PY		REMARKS:
06 3/380 390)	Ferromagnetic	NA	60-70	1	0	TR	30-40	0	0	0	0	0	0		
90-3(200-290)	Paramagnetic	<1.0	0	15-25	0	2-3	65-75	0	0	TR	1-2	0	0	5% homblende. Rare trace zircon.	
	Nonmagnetic	>1.0	0	0	0	15-20	45-55	0	0	2-3	15-20	0	0	10-15% hornblende. 1% zircon.	
06-2(200-300)	Ferromagnetic	NA	60-70	20-30	0	1	5	0	0	0	5	0	0		
90-3(230-000)	Paramagnetic	<1.0	0	5-10	0	3-5	75-85	0	0	RTR	0.5	0	0	Rare trace actinolite. 0.5% zircon.	
	Nonmagnetic	>1.0	0	0	0	50-60	5-10	0	0	0	20-30	0	RTR	2-3% zircon.	

Table 2 - Mineralogy of the 0.18-0.25 mm Heavy Mineral Fraction. Heavy lithic grains, where present, are classified according to their dominant contained heavy mineral species.

_

)

OVERBURDEN DRILLING MANAGEMENT LIMITED

	Weight (g) of Heavy Minerals in 0.18 to 0.25 mm Fraction											
SAMPLE NUMBER	TOTAL	FERROMAGNETIC	PARAMAGNETIC (<1.0 amp)	NONMAGNETIC (>1.0 amp)								
	aannee ar hen an hen aan de servier de servi	and the second										
96-1(55-65)	72.5	14.0	55.6	2.9								
96-1(65-75)	78.2	14.0	61.2	3.0								
96-1(75-85)	67.8	14.7	50.5	2.6								
96-1(85-95)	73.9	15.6	55.6	2.7								
96-1(95-105)	71.2	10.0	58.5	2.7								
96-1(105-115)	60.3	11.5	46.0	2.8								
96-1(115-125)	66.5	12.7	51.8	2.0								
96-1(125-135)	73.7	16.8	53.7	3.2								
96-1(135-145)	76.5	15.5	57.1	3.9								
96-1(145-155)	68.9	11.6	53.2	4.1								
96-1(155-165)	71.3	14.8	52.8	3.7								
96-1(165-175)	77.7	21.5	52.6	3.6								
96-1(175-180)	40.1	7.9	27.5	4.7								
96-3(40-50)	2.4	0.2	0.9	1.3								
96-3(50-60)	5.3	0.8	2.9	1.6								
96-3(60-70)	3.9	0.4	1.9	1.6								
96-3(270-280)	44.5	8.0	33.6	2.9								
96-3(280-290)	14.1	5.1	8.1	0.9								
96-3(290-300)	15.4	6.3	7.4	1.7								

Table 3 - Magnetic Susceptibility of Heavy Minerals in 0.18 to 0.25 mm Fraction. No paramagnetic separation done on other HMC fractions.

1-5

.--

,--

CLIENT: OVE	RBURDEN DRILL	ING MGNT	ltd										
REPORT: C99-60682.1 (COMPLETE)				DATE	RECEIVED:	31-MAR-99		DATE PRI	E PRINTED: 20-APR-99			1A(1/ 4)	
SAMPLE	LLEMENT	S102	T102	.1203	Fe203*	MnO	MgO	CaO	Na20	K 20	P205	LOI	Total
NOMBER	UNITS	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PCT
96-1/55-	.65	42.51	3.69	12.14	14.91	0.19	8.11	14.94	1.57	0.56	0.59	1.55	100.89
96-1/65-	-75	42.06	3.66	11.40	15.20	0.20	8.47	14.85	1.48	0.61	0.52	1.76	100.36
96-1/75-	-85	40.51	4.30	11.75	15.65	0.22	7.94	15.06	1.49	0.64	1.14	1.59	100.43
96-1/85-	95	41.71	3.73	11,94	14.94	0.20	7.84	14.92	1.48	0.59	0.59	2.01	100.08
96-1/95-	105	38.90	3.62	11.45	15.79	0.19	8.20	15.85	0.84	0.29	0.85	2.88	99.06
96-1/105	-115	40.71	3.79	12.05	15.41	0.21	8.04	15.07	1.36	0.53	0.81	2.06	100.19
96-1/115	-125	42.20	3.78	11.58	15.29	0.21	8.23	15.23	1.57	0.44	0.46	1.29	100.40
96-1/125	-135	42.06	3.75	11.44	15.21	0.21	8.19	15.27	1.61	0.37	0.53	1.23	100.00
96-1/135	-145	42.61	3.65	11.65	14.95	0.21	8.27	15.25	1.67	0.42	0.45	1.03	100.29
96-1/145	-155	42.79	3.57	11.64	14.74	0.20	8.01	15.03	1.79	0.42	0.36	1.43	100.11
96-1/155	-165	39.25	3.63	10.87	16.04	0.21	8.14	15.84	1.22	0.28	0.70	2.73	99.03
96-1/165	-175	36.63	4.49	10.36	17.78	0.23	7.55	15.53	1.15	0.36	1.27	2.57	98.04
96-1/175	-180	40.35	2.56	13.48	11.34	0.17	7.00	17.83	0.96	0.49	0.50	5.10	99.88
96-3/20-	30	47.78	1.17	13.40	8.41	0.27	4.26	19.09	1.64	1.61	0.45	2.44	100.61
96-3/30-	40	56.67	0.76	16.87	5.33	0.18	1.37	8.21	4.18	4.85	0.21	1.43	100.18
96-3/40-	50	57.71	1.41	15.99	6.06	0.13	2.92	5.63	5.39	2.57	0.27	2.66	100.82
96-3/50-	60	62.54	0.69	16.03	4.38	0.19	1.51	2.86	6.56	3.57	0.09	1.78	100.26
96-3/60-	70	56.83	1.50	14.97	6.59	0.23	2.81	5.72	4.38	2.80	0.25	4.69	100.83
96-3/70-	80	60.80	0.75	13.45	5.02	0.24	3.28	6.03	5.54	2.68	0.09	2.19	100.10
96-3/80-	90	55.50	1.49	12.31	7.92	0.21	5.42	9.08	4.11	1.38	0.28	3.03	100.81
96-3/90-	100	56.95	1.12	12.71	6.36	0.19	5.56	10.29	2.94	1.39	0.25	2.32	100.16
96-3/100	-110	66.89	0.61	10.51	5.70	0.13	4.39	6.82	1.55	0.50	0.15	2.97	100.28
96-3/110	-120	58.83	0.86	14.12	7.33	0.35	2.77	5.88	6.02	2.08	0.24	1.38	99.95
96-3/120	-130	59.17	0.28	11.86	7.69	0.50	3.36	7.56	5.13	1.89	0.11	3.03	100.64
96-3/130-	-140	67.75	0.20	9.41	6.65	0.37	3.04	5.49	4.99	1.17	0.12	0.99	100.22
96-3/270	-280	43.19	3.69	10.31	14.34	0.25	7.12	12.60	2.37	0.85	1.48	3.23	99.52
96-3/280	-290	41.36	3.81	12.24	13.26	0.24	4.22	10.66	1.48	0.96	1.67	9.34	99.28
96-3/290	-300	54.65	2.16	14.85	9.34	0.18	2.21	4.98	5.87	2.97	0.75	2.13	100.16

IIIS Intertek Testing Services Chimitec

CLIENT: OVER REPORT: C99-	BURDEN DRILLI -60682.1 (COM	ng mgnt i Iplete)	TD		DATE P	ECEIVED:	31-MAR-99	PRO	OJECT: DATE	NONE PRINTED	: 20-APR-99	PAGE	1B (2/4)
SAMPLE	ELEMENT	Ba	Cr	Sr										
NUMBER	UNITS	P PM	PPM	PPM										
96-1/55-6	5	163	338	850			E j							
96-1/65-7	15	160	358	823										
96-1/75-8	15	157	269	929	•									
96-1/85-9	5	170	322	953										
96-1/95-1	.05	74	254	1614										
96-1/105-	-115	138	274	1230										
96-1/115-	125	135	366	853										
96-1/125-	135	137	373	813										
96-1/135-	145	141	374	814										
96-1/145-	-155	156	347	770										
96-1/155-	-165	118	360	895										
96-1/165-	-175	140	168	816										
96-1/175-	-180	171	85	866										
96-3/20-3	10	365	91	309										
96-3/30-4	10	586	74	457										
96-3/40-5	50	278	51	342										
96-3/50-6	50	217	55	187										
96-3/60-7	70	306	96	258										
96-3/70-8	90	200	73	173										
96-3/80-9	90	281	139	301										
96-3/90-1	100	222	85	385										
96-3/100	-110	84	142	393										
96-3/110	-120	390	50	320										
96-3/120	-130	329	22	199										
96-3/130	-140	247	96	88										
96-3/270	-280	273	194	495										
96-3/280	-290	181	<10	293										
96-3/290	-300	342	37	364										

OVERBURDEN DRILLING MANAGEMENT LIMITED 1.4

May 21, 1999

Mr. Ed Kruchkowski c/o AURORA CORROSION CONTROL 3773 - 19th Street N.E. Calgary, Alberta T2E 6S8

fax: (403) 250-5872

Dear Mr. Kruchkowski:

Re: Resolution of Ti Mineralogy, British Columbia Titanium-Phosphate Project, 26BT Resource Development Company Ltd.

As proposed in my May 13 letter and agreed in our May 19 telephone discussions, we have performed a brief scanning electron microscope (SEM) visual and energy dispersive x-ray (EDS) analytical investigation on 26BT's gabbro samples to resolve reported differences between: 1) the Ti mineral species recovered in our heavy mineral processing of the mineralized drill core and those observed in other thin section studies; and 2) Fe₂O₃, TiO₂ and P₂O₅ whole rock analyses and the quantity of Fe₂O₃, TiO₂ and P₂O₅ recovered in our heavy mineral concentrates. These questions are outlined in Sudhir's May 14 letter, a copy of which is attached. Sudhir's questions relate specifically to Hole 94-4. We performed our tests on samples from Hole 95-2 because these samples were already mounted and polished ready for SEM analysis. However, the SEM results for all holes would be expected to be very similar as our heavy mineral processing results are very consistent between holes.

We used crusher rejects from four 10-foot sample intervals in our test work --30-40, 50-60, 130-140 and 140-150 feet. The reject material, consisting of 1-5 mm rock fragments, was cast in epoxy pucks, one side of which was ground and polished to a mirror finish suitable for SEM photography and EDS analysis. A brief SEM examination showed similar mineralogy in all four samples; therefore a single sample (130-140 foot interval) was photographed (Plate 1) and analyzed (Fig. 1) in detail.

SEM photography relies on density contrasts to highlight different mineral species. In 26BT's samples, Fe and Ti oxides are nearly white, marginally heavy apatite, pyroxene and biotite are medium grey and low-density plagioclase is dark grey (Plate 1). By volume, the subject gabbro consists of 50-60 percent plagioclase, 30-35 percent augite, 3-5 percent biotite, 10 percent Fe and Ti oxides and 1-2 percent apatite (Plates 1a to 1c).

Mines Are Where <u>WE</u> Find Them. 10

/... p.2

Page 2 Mr. Kruchkowski

The Ti-bearing minerals (Table 1) are titanomagnetite, ilmenite, biotite and augite. Rutile is absent, even at micron scale, corroborating our earlier heavy mineral processing results where none was found. Titanomagnetite is on average ten times more abundant than ilmenite (Plates 1a, b) although in local patches the two minerals occur in subequal concentrations (Plate 1c). Both minerals occur in close association with the ferromagnesian silicate minerals (augite and biotite; Plates 1a to 1c), not with plagioclase. The titanomagnetite contains approximately 15 percent TiO₂ in solid solution (Fig: 1a) whereas the ilmenite contains 55 percent (Fig. 1b). In some grains, part of the TiO₂ has exsolved from the magnetite, forming thin (maximum 0.02 mm) parallel ilmenite lamellae (Plate 1d) and lowering the TiO₂ content of the inter-lamellae titanomagnetite to 10 percent (Fig. 1c). The ilmenite contributes only 28 percent of the TiO₂ in the gabbro compared to 57 percent from the titanomagnetite due to the much greater abundance of titanomagnetite (Table 1). The balance is contributed by the augite which contains 1 percent TiO₂ (Fig. 1d) and biotite which contains 5 percent TiO₂ (Fig. 1e).

Much of the gap between the Fe₂O₃ content of the Fe-Ti oxide minerals in our concentrates and the 8-16 percent Fe₂O₃ whole rock values (Table 2) is explained by the abundant augite and biotite which together would be expected to contribute about 6-8 percent Fe₂O₃. The Fe₂O₃ gap narrows in relation to total Fe₂O₃ as the titanomagnetite content of the rock increases. The remaining gap is explained by the very fine grain size of part of the titanomagnetite and ilmenite; 20-30 percent by volume is silt-sized (<0.1 mm; Plate 1a), well below the 0.18-0.25 mm grain size used in our recovery tests which were intended to simulate recoveries achievable in an actual mining and milling operation. The larger, recoverable titanomagnetite and ilmenite grains are in the 0.2 to 0.4 mm range (Plates 1a to 1c) which is rather small compared to the grain size of productive deposits in anorthosites. Moreover, rather than having sharp, mill-friendly boundaries, much of the titanomagnetite is shrouded in biotite (Plates 1b, d).

The apatite occurs as isolated crystals, mainly in association with plagioclase (Plates 1b, c, d). Most grains are much smaller than the 0.18 mm cut-off used in our processing tests; this explains the missing $P_2 O_5$ mentioned by Sudhir.

An interesting feature of the gabbro is the presence of barian feldspar (hyalophane) lamellae in the plagioclase (Plates 1b, d, f; Figs. 1f, g). This explains the high Ba content (0.5-1.5 percent; Table 2) of the gabbro and the absence of barite in our heavy mineral concentrates.

La -

Page 3 Mr. Kruchkowski

1.1

In summary, our SEM study has fully corroborated our earlier and ongoing heavy mineral processing results and has revealed additional details on the mineralogy of the gabbro. Sudhir mentioned that I appeared to be very negative about the project. It would not be appropriate for me to form an opinion on the project itself as many factors influence the viability of a titanium operation and the only factor I have considered is the mineralogy. However, I would have been remiss in my responsibilities if I had not reported from the outset, as I did on December 10, 1998, the apparent milling/metallurgical problems of the mineralization. Our SEM study has confirmed these problems and identified others. The problems are:

- 1. Rutile, the most valuable Ti ore mineral, is absent.
- 2. Approximately 60 percent of the TiO_2 value resides in solid solution form in titanomagnetite, requiring chemical extraction.
- 3. Although significant ilmenite is present, part of it occurs as thin exsolution lamellae rather than discrete grains and would be difficult to separate from the titanomagnetite by milling.
- 4. Much of the titanomagnetite is shrouded in biotite which would be difficult to separate by milling and therefore dilute the titanomagnetite concentrate.
- 5. Approximately 20-30 percent by volume of the titanomagnetite and ilmenite occurs in grains too small to be free-milling.
- 6. Most of the byproduct apatite is too fine-grained to be free-milling.

The milling/metallurgical problems appear to be common to the mineralization in all four drill holes that we have tested and therefore may extend throughout the gabbro intrusive. Possibly some or all of the problems could be overcome in a deposit of sufficient grade but the mineralization encountered to date is of modest grade. I hope our test results are useful for resolving the future direction of the project.

Youns sincerely,

Stu Averill, President

cc Sudhir Jain

Plate 1 - SEM Photos of Representative Fragments of Crushed Gabbro from the 130-140 Foot Interval, Hole 95-2. Brightness of minerals increases with density. Scale bar is 0.1 or 0.01 mm (100 or 10 microns) as indicated.

1.1

- Plate 1a Overview of 15 fragments showing an average composition of 50-60 percent plagioclase (pl; dark grey), 30-40 percent augite + biotite + apatite (aug + bt + ap; medium grey) and 10 percent titanomagnetite ± ilmenite (tm, ilm; greywhite). Note that the titanomagnetite and ilmenite grains are closely associated with augite and biotite and that 20-30 percent (by volume) of the grains are silt-sized inclusions (<0.1 mm) which would not readily be liberated by milling.
- Plate 1b Typical section showing a 10:1 ratio of titanomagnetite (tm; white) to ilmenite (im; very pale grey) and 1-2 percent apatite occurring as silt-sized inclusions (<0.1 mm) in plagioclase (pl; dark grey). Note: 1) the perthitic texture of some of the plagioclase, 2) the shrouding of the titanomagnetite by biotite (bt) which has the same medium grey tone as the augite (aug), and 3) the presence of ilmenite as thin exsolution lamellae in one titanomagnetite grain. The titanomagnetite contains approximately 15 percent TiO₂, the biotite contains 5 percent and the augite 1 percent.
- Plate 1c Atypical section with an unusually low 1:1 ratio of titanomagnetite (tm; white) to ilmenite (im; very pale grey). Both oxides are closely associated with augite and biotite (aug, bt; both medium grey). Apatite (ap; pale grey crystals) is more closely associated with plagioclase (pl; dark grey), comprises 1-2 percent of the gabbro, and occurs mainly as silt-sized (<0.1 mm) inclusions which would not be liberated by milling.
- Plate 1d Detail of the lamellar titanomagnetite-ilmenite grain of Plate 1b showing thin (0.005-0.02 mm) ilmenite (ilm; pale grey) exsolution lamellae in the titanomagnetite (tm; grey-white) which contains less (10 percent versus 15 percent) TiO₂ than unexsolved titanomagnetite. The grain is shrouded by biotite (bt; medium grey). Note the slightly perthitic texture of the plagioclase (pl; dark grey) and the presence of 2 percent apatite (ap; medium grey crystals) as siltsized inclusions (<0.1 mm) in both the plagioclase and titanomagnetite.
- Plate le Extreme detail of a titanomagnetite grain (tm; grey-white) showing hints of submicroscopic (<0.001 mm), irregularly oriented ilmenite (ilm; pale grey) exsolution lamellae. The dark grey dendritic inclusions appear to be calcite (cal).
- Plate 1f Detail of a perthitic plagioclase grain showing pale grey hyalophane $((K,Ba)Al(Si,Al)_3 O_8)$ lamellae in dark grey andesine $((Na,Ca)Al_{1-2}Si_{2-3} O_8))$.

1e)

1b - Ilmenite. TiO₂ content is approximately 55 percent.

 Exsolved titanomagnetite. TiO₂ content is approximately 10 percent.

1d - Augite. TiO₂ content is approximately 1 percent.

Figure 1 - EDS Analytical Spectra for Representative Mineral Grains in Gabbro from 130-140 Foot Interval, Hole 95-2. Peak heights for the same concentrations of different elements in any spectrum analyzed at the same magnification vary according to the bell curve line of Figure 1a. Peak heights for different spectra vary due to the different magnifications of analysis and the scale of the chart (5,000 versus 10,000 counts). Primary peaks for Fe and Ti are flanked by an unlabeled smaller secondary peak. Page 1 of 2.

1f - Hyalophane intergrowth in plagioclase.
Ba content is approximately 5 percent.

1g - Plagioclase. Na:Ca ratio indicates an andesine composition.

re 1 - EDS Analytical Spectra for Representative Mineral Grains in Gabbro from 130-140 Foot Interval, Hole 95-2. Peak heights for the same concentrations of different elements in any spectrum analyzed at the same magnification vary according to the bell curve line of Figure 1a. Peak heights for different spectra vary due to the different magnifications of analysis and the scale of the chart (5,000 versus 10,000 counts). Primary peaks for Fe and Ti are flanked by an unlabeled smaller secondary peak. Page 2 of 2.

Overburden Drilling Management Limited

 $\mathbf{1}_{\mathbf{1}}$

Mineral	% of (Gabbro	Weight %	TiO2 Contribution to Gabbro				
	Volume	Weight	TiO2	Wt%	Proportion (%)			
Plagioclase	50-60	45 、	0	0	0			
Augite	30-35	30-35	1	0.3	9			
Biotite	3-5	3-5	5	0.2	6			
Titanomagnetite	8-10	13-15	15	2	57			
Ilmenite*	1-2 .	2	55	1	28			
Apatite	1-2	1-2	0	0	0			
				3.5	100			

*Includes ilmenite exsolution lamellae in titanomagnetite.

Table 1 - Mineralogy of Gabbro Illustrating Mineralogical Distribution of TiO2.

ITS Intertek Testing Services Chimitec Bondar Clegg

 $q \in \{k_1, j\}$

Rapport Lab Geochimie Geochemical Lab Report

		LI ING MONT	tinner: LD		••••••			17 7167		•••••							PROJECT: NONE	•
	EDORT - 099-60250.1 () :			11 - 111	· ·		F 1.		DATE R	ECEIV	ED: 10-FEB-99	DATE PRINTED:	2-148-99	PAGE	1 OF 3	,
					••••••		······				•••••••••••••••••••••••••••••••••••••••	••••••		••••••	•••••••••••	•••••		······
		sice. Tipz	.1203	Fe203* Hn0	NgO	CaO Na	20 120	P205	LON 🖁	otel	Ba 🖁	a	Sr					
	ILINBER UNITS	PCT PCT	PCT	PCT PCT	PCT	PCT R	CT PCT	PCT	PCT/ 🖉	PCT	PPN 🖁	FR P	рн					
	95-2-10-20 ····	50.93 2.83	16.92	9.17 0.14	2.99	5.32 4.	55 2.97	1,09 0	.798	7. 95	>10000 🖁	76 12	20					
	95-2-20-30	51.40 2.76	17.44	8.46 0.11	2.62	4.54 🌡	75 2.61	1.18 1	.22	99.34	>10000	52 8	187					
	95-2-30-40	51.42 2.64	17.94	8.31 0.13	2.92	5.52 4	69 2.62	1.14 0	.54 🖁	00.35	>10000	52 10	43					
	95-2-40-50	51.39 2.58	17.89	8.01 0.13	2.81	5.55 4	77 2.53	1.10 0).499 ²	99.66	>10000	60 11	197					
•	95-2-50-60	50.54 2.89	16.66	9.33 0.15	3.16	6.24	.72 Z.30	1.21 0).69 🖡	00.04	>10000	53 1 1	106					
:									Ĩ									
	95-2-60-70	50.15 3.03	16.06	9.92 0.16	3,37	6.30 🐇	54 2.41	1.31 0).599 🕴	00.19	>10000	\$1 10	48					
	95-2-70-80	50.10 2.94	16.31	9.35 0.16	3.17	6.21 4	.80 2.44	1.26 0).545	99.64	>10000	39 10	255 .					
•	95-2-80-90	49.47 3.34	16.17	11.21 0.20	3.30	6.80 義	.62 1.90	1.27 (0.44	00.40	>10000	50 1	049					
:	95-2-90-100	44.94 3.7	5 13.14	15.14 0.27	4.94	10.36 3	.48 0.90	1.29 (0.445	99.17	4590	(41) :	700					
÷	95-2-100-110	43.93 3.9	0 12.48	16.07 0.28	3 4,80	10.07 3	.28 0.8	6 8.91 (0.669	97.68	4590	45 (657					
:			22 22			2												
, ,	95-2-110-120	46.44 3.8	0 12.63	15,37 0.2	3 4.93	10.18 3	.67 0.9	3 0.9 7 (0.255	99.97	3955	39	569					
*	95-2-120-130	46.57 3.4	9 12.08	15,04 0.2	9 4.97	9.88 3	.81 1.1) 1,03	1.035	99,83	4655	38	573					
	95-2-130-140	45.89 3.6	7 11.96	6.22 0.3	0 4.91	9.85 3	.65 1.0	5 1.08	1.27	00.36	4580	35	603					
	95-2-140-150	47.10 3.3	7 12.93	15.09 0.2	8 4.68	9.40 3	.91 1.3	6 8.8 2	0.59	00.14	5448	47	629					
	95-2-150-160	46.62 3.2	0 13.48	3 14,13 0.2	6 6.74	9.86	1.65 1.2	2 0.80	0.935	99.69	5183	52	683			-		
											2							
•	95-2-160-170	46.63 \$.	3 11.98	B 15.40 D.3	2 4.80	10.29	5.68 1.2	2 0.91	0. <i>6</i> 97	99.6	5135	57	575					
יי	95-2-170-180	47.63 3.0	12. 3 9	9 15.40 0.3	2 3.91	9.11	4.10 1.6	6 1.25	0.74	100.44	5 8320	62	387					
22	95-2-180-190	54.20	92 17 .9 1	1 8.75 0.1	4 1.42	4.90	5.98 2.2	4 0.37	0.65	100.1) >10000	57	490					
i o	95-2-190-200	56.00 1.	74 19.4	5 6.91 0.1	1 0.67	3.52	6.54 2.5	6 0.11	0.79	100.1	5>10000	63	582					
۲ C	95-2-200-210	46.50 3.	55 9 .9 7	2 21.56 0.5	i1 2.54	8.20	3.96 1.9	X 0.66	×.85	99.7	6 3643	90	241					
Ú T					- 1992				2		Ö _							
1	95-2-210-220	35.97 5.	66 4.9	9 32.21 0.7	D 3.75	11.90	1.93 0.7	74 1.60	<.05	99.5	5 588	67	205					
	95-2-220-230	44.03:5.	30 13.3	2 15.66 0.2	25 5,13	10.13	3.30 0.8	37 0.28	0.44	99.0	1 2235	58	750					
1	95-2+230-240 (10)	46.23.4.	53 14.1	6 13.50 0.2	21 4.22	9.37	3.72 1.2	27 0.37	1.61	99.8	9 5995	44	995					
:	95-2-240-250	44.85 5.	04 12.6	8 16.22 0.3	51 5.00	9.69	3.42 1.0	0.41	0.49	99.7	7 4871	46	767					
-	95-2-250-260	45,87:4.	32 13.6	2 14.83 0.1	27 6.54	§ 9.58	3.75 1.(05 0.62	0.63	99.7	7 5817	62	871					
WV.						×.		_ 200			<u> </u>	. 📖						
7.	95-2-260-270	45.00 4.	80 13.0	7 16.23 0.	29 5.04	10.19	3.37 0.	78 D.33	0.34	99.9	U: 3704		782					
ה	95-2-270-280	45.33 4.	35 14.4	5 15.97 0.	25 4.17	9.15	3.65 0.	86 0.39	0.460	99.6	5265	2 🕅	1217					
ì	95-2-280-290	49.37 2	.B9 17.3	57 11.77 0.	17 2.6	7.82	6.74 1.	12 0.68	5 U.445	100.0	D 844(02	12/9					
2	95-2-290-300	:::::::::::::::::::::::::::::::::::::::	.D8 14.1	15 15.64 0.	23 6.9	s: 9.97	\$.45 0.	68 0.44	0. 23	100	4457	c :26	aw					

Table 2 - Intertek Testing Services Whole Rock Analyses for Hole 95-2.

OVERBURDEN DRILLING MANAGEMENT LIMITED

107-15 CAPELLA COURT, NEPEAN, ONTARIO, K2E 7X1 TELEPHONE: (613) 226-1771/1774 FAX NO.: (613) 226-8753 EMAIL: odm@storm.ca

DATA TRANSMITTAL REPORT

DATE: 12-May-99

ATTENTION: Mr. Lorne Kelsch

CLIENT: 26 BT RESOURCE DEVELOPMENT CO. LTD. MacLeod Place 1, Suite 200 5920 MacLeod Trail S.W. Calgary, AB T2H 0K2

FAX NO.: (403) 212-0733

5

NO. OF PAGES:

- PROJECT: Titanium 94-4 (2.5-15 ft) to 94-4 (95-100 ft) Mineralogy
- FILE NO: Ed Kruchkowski 26BT (95-2).wb3
- NO. OF SAMPLES: 10

THESE SAMPLES WERE PROCESSED FOR: Titanium-bearing minerals

SPECIFICATIONS:

SUBMITTED BY CLIENT: 5-FOOT 1/4 NQ CORE SECTIONS. COMBINED INTO 10-FOOT SECTIONS AND CRUSHED TO <2.0 MM. PREPARED 0.18 MM TO 1.0 MM HEAVY MINERAL CONCENTRATE (S.G.>3.2) FROM 2 KG SPLIT OF CRUSHED PRODUCT. PARAMAGNETIC SEPARATION AND PICKING DONE ON 0.18 TO 0.25 MM FRACTION ONLY. ALL FRACTIONS ARE PRESENTLY STORED.

REMARKS: Note th Sanples Tanda trom miner los On Remy Huneault Laboratory Manager

OVERBURDEN DRILLING MANAGEMENT LIMITED

PROJECT: TOTAL OF: 10 SAMPLES FILENAME: Ed Kruchkowski 26BT (95-2).wb3

	Weig	ht (ka)						Weig	ght (g)				-				
			Q	iovo Fractio	ns	0.18 to 1.0 mm M.I. Separation (S.G. 3.20)											
			5	GAC L LOCIO				FERROMAGNETIC HMC NONFERROMAGNETIC H									
Sample Number	Total Rec'd and Crushed	Processed Split	1.0 to 2.0 mm	0.18 to 1.0 mm	-0.18 mm	Total	M.I. Lights	Total Mag	-0.18 mm (wash)	0.18 to 0.25 mm	0.25 to 1.0 mm	Total Non Mag	-0.18 mm (wash)	0.18 to 0.25 mm	0.25 to 1.0 mm		
Titanium Mineralogy				*		*											
94-4 (2 5-15 ft)	3.50	2.50	415.6	915.8	1168.6	859.5	379.0	173.0	14.1	19.4	139.5	307.5	30.3	68.8	208.4		
94-4(15-25 ft)	4.30	2.40	424.9	793.3	1181.8	744.8	369.6	125.1	5.3	16.2	103.6	250.1	19.3	54.4	1/6.4		
94-4(25-35 ft)	4.70	2.00	417.2	662.7	920.1	615.6	311.3	123.2	5.2	16.1	101.9	181.1	15.6	42.7	122.8		
94-4(35-45 ft)	4.60	2.00	379.3	688.2	932.5	659.7	344.7	98.6	4.0	9.0	85.6	216.4	11.0	43.9	161.5		
94-4(45-55 ft)	5.10	2.00	318.5	666.0	1015.5	635.1	161.4	166.3	8.6	23.2	134.5	307.4	25.3	/3.8	208.3		
94-4(55-65 ft)	5.45	2.00	330.9	665.2	1003.9	637.6	239.8	103.8	5.7	12.3	85.8	_ 294.0	22.3	62.1	209.6		
94-4(65-75 ft)	5.15	2.00	353.1	671.5	975.4	626.7	140.6	202.2	9.2	16.5	176.5	- 283.9	23.7	/2.2	188.0		
94-4(75-85 ft)	5.95	1.50	257.7	522.0	720.3	493.7	113.1	145.0	9.8	10.9	124.3	235.6	21.6	57.8	156.2		
94-4(85-95 ft)	4.90	2.00	354.9	667.2	977.9	634.5	209.1	121.4	6.7	10.1	104.6	304.0	22.9	66.7	214.4		
94-4(95-100 ft)	2.85	2.00	303.8	647.8	1048.4	619.4	236.6	124.1	6.0	15.5	102.6	258.7	25.9	61.1	171.7		

* After initial dry sieving, weight of 0.18-1.0 mm fraction is further reduced 5-10 percent by oxalic acid wash to remove adhering -0.18 mm crusher dust prior to final M.I. separation.

. *

FILENAME: Ed Kruchkowski 26BT (95-2).wb3 PROJECT: Titanium Mineralogy TOTAL OF 10 SAMPLES

, **4**

.

IOTAL OF TO SAME LED						MINE	RALOG	(VOLUN	NE PERC	CENT)				
SAMPLE NO.	FRACTION	SEPARATION AMPERAGE	мт	ILM	RUT	тт	СРХ	OL	BT	EP	AP	GTH	PY	HEMAHKS:
94-4 (2.5-15 ft)	Ferromagnetic	NA	89-90	2	0	0	5-10	1	RTR	0	3-5	0	0	SEM checks from 0.18-0.25 mm fraction: 4 representative Fe-oxide candidates = 4 titanomagnetite (<15 wt% TiO2).
	Paramagnetic	<1.0	0	15-20	0	0	70-75	10-15	RTR	0	3-5	0	0	SEM checks from 0.18-0.25 mm fraction: 2 yellow olivine versus apatite candidates = 2 fayalite olivine. 3% hornblende.
	Nonmagnetic	>1.0	0	RTR	0	0	40-50	0	RTR	0	50-60	0	RTR	Rare trace of homblende.
04 4/15 05 41	Forromagnetic	NA	50-60	2	0	0	30-40	0.5	RTR	0	3-5	0	0	
94-4(15-25 11)	Periomagnetic	<10	0	10-15	Ō	Ó	70-75	10-15	1-2	0	5	0	0	3% homblende.
	Nonmagnetic	>1.0	Ō	TR	0	0	40-50	0	TR	0	50-60	0	RTR	Rare trace of homblende.
04 4/05 25 41	Forromagnetic	NA	75-80	3	0	0	15-20	1-2	TR	0	2-3	0	0	
94-4(25-35 11)	Perromagnetic	<10	0	5-10	ō	Ó	70-75	15	RTR	0	5	0	0	1-2% hornblende.
	Nonmagnetic	>1.0	Ō	TR	0	0	45-55	0	RTR	0	45-55	0	1	1% hornblende.
04 4/05 45 H)	Forromagnetic	NΔ	80-85	2	0	0	5-10	5	RTR	0	5	0	0	
94-4(35-45 11)	Paramagnetic	<10	0	10	ō	Ō	60-65	20-30	0.5	0	3-5	0	0	3-5% homblende.
	Nonmagnetic	>1.0	0	0.5	0	0	45-55	0	0.5	0	45-55	0	RTR	1-2% homblende.
04 4/45-55 ft)	Ferromagnetic	NA	80-90	1-2	0	0	5-10	5-10	TR	0	3-5	0	0	
94-4(40-00 11)	Paramagnetic	= <1.0	0	5-10	0	0	70-75	20	2	0	3	0	0	
•	Nonmagnetic	- >1.0	0	0	0	0	20	1	0.5	0	70-80	0	RTR	
04-4(55-65 ft)	Ferromagnetic	NA	85-90	1	0	0	5	5	TR	0	3-5	0	0	
34-4(33-03 11)	Paramagnetic	<1.0	0	10	0	0	55-65	20-30	2	0	3	0	0	
	Nonmagnetic	>1.0	0	0	0	0	20-25	1	TR	0	70-80	0	0	0.5% homblende.
04 4(65 75 #)	Forromagnetic	NA	70-75	1	0	0	20	з	TR	0	3	0	0	Trace of homblende.
94-4(65-75 11)	Paramagnetic	<10	0	10	Ó	0	70-75	10-20	3-5	0	3	0	0	2% homblende.
	Nonmagnetic	>1.0	Ō	RTR	0	0	30-40	TR	1	0	60-70	0	0	1% homblende.
94-4(75-85 ft)	Ferromagnetic	NA	60-65	1	0	0	20	10	RTR	0	5	0	0	SEM checks from 0.18-0.25 mm fraction: 4 representative Fe-oxide candidates = 4 titanomagnetite (10-15 wt% TiO2).
	Paramagnetic	<10	0	10	0	0	45-50	30-40	RTR	0	3-5	0	0	
	Nonmagnetic	>1.0	õ	0	0	0	45-50	1	1	0	45-50	0	0	SEM checks from 0.18-0.25 mm fraction: 2 representative brown pyroxene candidates = 2 diopside-hedenbergite (<1 wt% TiO2). 0.5% homblende.
94-4(85-95 ft)	Ferromagnetic	NA	60-65	1	0	0	10-20	10	RTR	0	10	0	0	
57-7(05-50 N)	Paramagnetic	<1.0	0	15-20	0	0	40-50	25-35	TR	0	5	0	0	
	Nonmagnetic	>1.0	0	0	0	0	45-50	1	TR	0	45-50	0	0	0.5% homblende.
04 4/05 100 4	Ferromagnetic	NA	60-65	2	0	0	15-25	10	RTR	0	5-10	0	0	
94-4(95-100 10)	Paramagnetic	<10	0	5	ō	Ő	60-65	30	RTR	0	2	0	0	
	Nonmagnetic	>1.0	Õ	Õ	Ō	0	30-40	1	TR	0	60-70	0	0	Trace of homblende.

Table 2 - Mineralogy of the 0.18-0.25 mm Heavy Mineral Fraction. Heavy lithic grains, where present, are classified according to their dominant contained heavy mineral species.

.

OVERBURDEN DRILLING MANAGEMENT LIMITED

	Weight (g) of Heavy Minerals in 0.18 to 0.25 mm Fraction											
SAMPLE NUMBER	TOTAL	FERROMAGNETIC	PARAMAGNETIC (<1.0 amp)	NONMAGNETIC (>1.0 amp)								
94-4 (2 5-15 ft)	88.2	19.4	64.9	3.9								
94-4(15-25 ft)	70.6	16.2	52.1	2.3								
94-4(25-35 ft)	58.8	16.1	40.9	1.8								
94-4(35-45 ft)	52.9	9.0	41.9	2.0								
94-4(45-55 ft)	97.0	23.2	69.4	4.4								
94-4(55-65 ft)	74.4	12.3	55.9	6.2								
94-4(65-75 ft)	88.7	16.5	66.9	5.3								
94-4(75-85 ft)	68.7	10.9	54.3	3.5								
94-4(85-95 ft)	76.8	10.1	61.1	5.6								
94-4(95-100 ft)	76.6	15.5	56.3	4.8								

Table 3 - Magnetic Susceptibility of Heavy Minerals in 0.18 to 0.25 mm Fraction. No paramagnetic separation done on other HMC fractions.

ſ	TS Intertek Test	ing Services		Rapport Lab Geochimie Geochemical Lab Report PROJECT: NONE DATE PRINTED: 20-APR-92 PAGE 1 OF 5				
CLIENT: OVE		Bondar Clegg	DATE DECEIVED. 31-MAD-00					
REPORT: C99	-60682.1 (COMPLETE)		DATE RECEIVED. 31 TAX 77					
SAMPLE	FLEMENT SIO2 1102 .1203 Fe203* Mn0 Mgg	CaO Na20 K20 P205 LOI Total	Ba Cr Sr					
NUMBER	UNITS PCT PCT PCT PCT PCT PCT	PCT PCT PCT PCT PCT PCT	PPN PPN PPM					
94-4/2.5-15	41.07 5.76 11.74 18.60 0.31 5.98	10.91 2.75 0.27 2.50 0.20 100.36	1743 76 932					
94-4/15-25	41.97 5.00 13.29 16.43 0.28 5.53	10.85 3.07 0.34 2.34 0.94 100.35	2063 51 1037	,				
94-4/25-35	41.33 5.26 13.03 17.51 0.29 5.70	10.87 2.95 0.30 2.35 1.03 100.92	2 2010 52 1006					
94-4/35-45	42.00 5.07 13.33 16.95 0.29 5.55	10.60 3.17 0.34 2.22 0.54 100.43	5 2412 55 1037					
94-4/45-55	34.92 7.14 8.27 25.55 0.41 7.77	11.05 1,98 0.23 2,95 ⊲.05 100.45	9 1447 57 666					
94-4/55-65	39.19 5.96 10.94 20.55 0.34 6.46	i 10.80 2.73 0.34 2.60 ⊲.05 100.2	2 2155 52 862					
94-4/65-75	35.33 7.15 8.06 25.46 0.41 7.99	10.99 1.97 0.26 2.90 ⊲0.05 100.7	6 1602 38 642		·			
94 -4/75-85	34.75 6.94 8.14 25.16 0.42 7.75	10.74 1.95 0.21 2.84 ⊲.05 99.1	4 1609 59 659					
94-4/85-95	39.14 5.85 10.62 21.49 0.39 6.90	10.56 2.65 0.30 2.41 ⊲0.05 100.6	2 2232 53 837					
94-4/95-100	0 40.23 5.46 11.49 19.94 0.36 6.33	10.43 2,89 0.32 2.33 ⊲.05 100.1	5 2477 53 893					
94-6/5-15	47.48 3.96 12.96 15.64 0.14 5.66	8.62 3.20 0.45 0.26 2.35 100.8	1 128 61 721					
94-6/15-25	48.54 3.59 14.13 14.86 0.16 5.2	7.57 3.33 0.53 0.24 2.55 100.7	9 139 63 756					
94-6/25-35	48.41 3.79 13.00 14.90 0.16 5.4	5 8.80 3.01 0.47 0.23 2.42 100 .7	5 131 64 749					
94-6/35-45	39.98 4.93 12.72 18.92 0.20 7.0	11.33 1.65 0.56 0.32 2.58 100.3	2 158 48 778	•				
94-6/45-55	39.86 4.92 12.53 18.94 0.20 7.1	2 12.21 1.56 0.44 0.32 2.33 100.5	4 152 53 945					
94-6/55-65	39.13 5.21 11.89 19.60 0.21 7.4	0 11.84 1.46 0.37 0.32 2.65 100.1	8 128 47 842					
94-6/65-75	39.23 5.16 12.23 19.33 0.20 7.2	8 11.90 1.49 0.43 0.30 2.67 100.3	3 151 36 881					
94-6/75-85	39.25 5.09 12.12 19.15 0.20 7.3	5 12.42 1.38 0.38 0.38 2.79 100.6	2 133 29 1028					
94-6/85-95	38.70 5.34 11.44 20.81 0.22 7.7	4 11.66 1.44 0.38 0.32 2.24 100.3	17 147 34 626					
94-6/95-10	0 38.75 5.60 11.41 20.98 0.22 7.8	2 11.80 1.47 0.34 0.31 1.98 100.7	7 143 24 561					

.

.

Table 4 - Intertek Testing Services Whole Rock Analyses of Test Samples.

J

OVERBURDEN DRILLING MANAGEMENT LIMITED ,

May 13, 1999

Mr. Lorne Kelsch 26 BT RESOURCE DEVELOPMENT CO. LTD. MacLeod Place 1, Suite 200 5920 MacLeod Trail S.W. Calgary, Alberta T2E 0K2

fax: (403) 212-0733

Dear Mr. Kelsch:

Re: Titanium-Bearing Mineral Species in Gabbro, British Columbia

Attached find our laboratory data for the third drill hole, No. 94-6, covered in our most recent tests. As before, the principal Ti-bearing oxide is titanomagnetite; ilmenite is much less common and rutile and titanite are absent.

Ed Kruschkowski has reported apparent discrepancies between our test results and Rio Tinito's. We find this curious as we actually do a lot of Ti-mineral work for Rio; however we are addressing your concerns by examining polished mounts of the coarsest crusher rejects from a few samples by scanning electron microscope (SEM). Our main objective is to show the type of titanomagnetite present (*i.e.* ilmenite and magnetite intergrowths versus ilmenite exsolution lamellae in magnetite versus chemical substitution Ti for Fe in magnetite).

I hope these observations are helpful. Please call me if you have any questions.

sincerely. Stů Averill.

President

Mines Are Where <u>WE</u> Find Them.

107-15 CAPELLA COURT, NEPEAN, ONTARIO, K2E 7X1 TELEPHONE: (613) 226-1771/1774 FAX NO.: (613) 226-8753 EMAIL: odm@storm.ca

DATA TRANSMITTAL REPORT

DATE: 12-May-99

ATTENTION: Mr. Lorne Kelsch

CLIENT: 26 BT RESOURCE DEVELOPMENT CO. LTD. MacLeod Place 1, Suite 200 5920 MacLeod Trail S.W. Calgary, AB T2H 0K2

FAX NO.: (403) 212-0733

NO. OF PAGES:

- PROJECT: Titanium 94-6 (5-15 ft) to 94-6 (95-100 ft) Mineralogy
- FILE NO: Ed Kruchkowski 26BT (95-2).wb3

NO. OF SAMPLES: 10

THESE SAMPLES WERE PROCESSED FOR: Titanium-bearing minerals

SPECIFICATIONS: SUBMITTED BY CLIENT: 5-FOOT 1/4 NQ CORE SECTIONS. COMBINED INTO 10-FOOT SECTIONS AND CRUSHED TO <2.0 MM. PREPARED 0.18 MM TO 1.0 MM HEAVY MINERAL CONCENTRATE (S.G.>3.2) FROM 2 KG SPLIT OF CRUSHED PRODUCT. PARAMAGNETIC SEPARATION AND PICKING DONE ON 0.18 TO 0.25 MM FRACTION ONLY. ALL FRACTIONS ARE PRESENTLY STORED.

REMARKS:

Remy Huneault Laboratory Manager

PROJECT: TOTAL OF: 10 SAMPLES FILENAME: Ed Kruchkowski 26BT (95-2).wb3

	Weight (kg)							Wei	ght (g)						
			S	ieve Fractio	ns			0.18	3 to 1.0 m	m M.I. Sej	paration (S	.G. 3.20)			
									FERROMA	GNETIC HM	1C	NON	IFERROMA	GNETIC H	мс
Sample Number	Total Rec'd and Crushed	Processed Split	1.0 to 2.0 mm	0.18 to 1.0 mm	-0.18 mm	Total	M.I. Lights	Total Mag	-0.18 mm (wash)	0.18 to 0.25 mm	0.25 to 1.0 mm	Total Non Mag	-0.18 mm (wash)	0.18 to 0.25 mm	0.25 to 1.0 mm
Titanium Mineralogy				*		*									
94-6 (5-15 ft)	3.95	2.00	508.9	671.7	819.4	557.3	266.3	63.5	3.2	9.4	50.9	227.5	26.1	44.2	157.2
94-6(15-25 ft)	3.50	2.00	493.6	714.9	791.5	602.1	397.5	39.3	2.2	5.2	31.9	165.3	20.3	33.0	112.0
94-6(25-35 ft)	4.65	2.00	471.0	703.9	825.1	597.7	338.0	55.9	3.4	7.2	45.3	203.8	27.3	43.2	133.3
94-6(35-45 ft)	4.35	2.00	531.9	696.8	771.3	594.0	203.2	88.2	3.6	11.4	73.2	302.6	30.0	64.0	208.6
94-6(45-55 ft)	4.60	2.00	589.4	629.4	781.2	414.0	108.2	76.2	5.1	12.1	59.0	229.6	31.4	46.0	152.2
94-6(55-65 ft)	4.85	2.00	573.1	689.6	737.3	552.4	157.4	99.3	5.3	14.1	79.9	295.7	31.2	60.4	204.1
94-6(65-75 ft)	3.65	2.00	677.8	628.0	694.2	409.7	139.8	74.9	5.2	11.5	58.2	- 195.0	31.4	39.8	123.8
94-6(75-85 ft)	4.95	2.00	608.7	703.7	687.6	538.0	147.8	86.2	3.8	10.8	71.6	304.0	30.1	60.9	213.0
94-6(85-95 ft)	4.60	2.00	642.2	669.8	688.0	435.2	128.6	117.2	7.3	20.1	89.8	189.4	31.3	40.8	117.3
94-6(95-100 ft)	2.65	2.00	511.2	713.8	775.0	647.8	167.4	161.9	4.3	19.7	137.9	318.5	23.8	67.1	227.6

* After initial dry sieving, weight of 0.18-1.0 mm fraction is further reduced 10-20 percent by oxalic acid wash to remove adhering -0.18 mm crusher dust prior to final M.I. separation.

FILENAME: Ed Kruchkowski 26BT (95-2).wb3 PROJECT: Titanium Mineralogy TOTAL OF 10 SAMPLES

.

· · · · · · ·

						MIN	ERALOGY	(VOLL	JME PER	CENT)				_
SAMPLE NO.	FRACTION	SEPARATION AMPERAGE	MT	ILM	RUT	Π	СРХ	OL	вт	EP	AP	GTH	PY	REMARKS:
94-6 (5-15 ft)	Ferromagnetic	NA	85-90	2	0	0	5-10	0	0	2	0	0	0	SEM checks from 0.18-0.25 mm fraction: 4 representative Fe-oxide candidates = 4 intergrowths of titanomagnetite, titanite and augite.
	Paramagnetic	<1.0	0	2-3	0	0	50-60	0	0	10-15	0	0	0	SEM checks from 0.18-0.25 mm fraction: 2 black ilmenite candidates = 2 ilmenite. 20-30% hornblende.
	Nonmagnetic	>1.0	0	0	0	0	50-60	0	0	30-40	0	0	0	SEM checks from 0.18-0.25 mm fraction: 2 brown clinopyroxene versus titanite candidates = 2 augite (-1 wt% TiO2). 5% hornblende.
94-6(15-25 ft)	Ferromagnetic	NA	85-95	2	0	0	5-10	0	0	TR	0	0	0	
54 6(10 20 11)	Paramagnetic	<1.0	0	3	0	0	70-80	0	0	15-20	0	0	0	5-10% homblende.
	Nonmagnetic	>1.0	Ō	Ō	Ō	0	40-50	0	0	40-50	0	0	0	3-5% homblende.
94-6(25-35 ft)	Ferromagnetic	NA	75-85	1	0	0	10-20	0	0	1	0	0	0	
•	Paramagnetic	<1.0	0	1	0	0	60-70	0	0	20-30	0	0	0	5-10% homblende.
	Nonmagnetic	>1.0	0	0	0	0	60-65	0	0	35-40	0	0	0	5% hornblende.
94-6(35-45 ft)	Ferromagnetic	NA	80-90	TR	0	0	10-20	0	0	1	0	0	0	
	Paramagnetic	<1.0	0	1-2	0	0	60-70	0	0	10-15	0	0	0	10-20% homblende.
	Nonmagnetic	>1.0	0	0	0	0	60-70	0	RIR	30-40	0	0	0	5% homblende.
94-6(45-55 ft)	Ferromagnetic	NA	85-95	2	0	0	5-15	0	0	RTR	0	0	0	SEM checks from 0.18-0.25 mm fraction: 4 representative Fe-oxide candidates = 4 titanomagnetite (10-20 wt% TiO2).
	Paramagnetic	<1.0	0	1	0	0	45-55	0	0	40-50	0	0	0	5-10% homblende.
	Nonmagnetic	>1.0	0	0	0	0	65-75	0	.0	20-30	TR	0	0	5% homblende.
94-6(55-65 ft)	Ferromagnetic	NA	80-90	1	0	0	10-20	0	0	RTR	0	0	0	<u>-</u>
	Paramagnetic	<1.0	0	1	0	0	55-65	0	0	20-30	0	0	0	10-20% homblende.
	Nonmagnetic	>1.0	0	0	0	0	75-80	0	0	20	0	0	0	2% homblende.
94-6(65-75 ft)	Ferromagnetic	NA	90-95	2	0	0	5-10	0	0	TR	0	0	0	
	Paramagnetic	<1.0	0	2	0	0	60-70	0	0	20-30	0	0	0	10-20% hornblende.
	Nonmagnetic	>1.0	0	0	0	0	60-70	0	0	30-40	IK	0	0	1-2% homblende.
94-6(75-85 ft)	Ferromagnetic	NA	80-90	2	0	0	10-15	0	0	RTR	0	0	0	
	Paramagnetic	<1.0	0	2	0	0	60-70	0	0	15-25	U TO	0	0	10-20% nomblende.
	Nonmagnetic	>1.0	0	0	0	0	60-70	0	0	20-30	iH	0	0	3-5% homblende.
94-6(85-95 ft)	Ferromagnetic	NA	80-90	2	0	0	10-20	0	0	0.5	0	0	0	C 400/ howklands
	Paramagnetic	<1.0	0	3-5	0	0	05-90	0	0	5		0	010	5-10% nombiende.
	Nonmagnetic	>1.0	U	U	U	U	92-91	U	U	3-3	in.	U	ыĸ	
94-6(95-100 ft)	Ferromagnetic	NA	85-90	3	0	0	10-15	0	0	RTR	0	0	0	10.00% homblanda
	Paramagnetic	<1.0	0	нін	0	0	00-90	0	0	2	U DTP	0	0	Trees homblende.
	Nonmagnetic	>1.0	U	U	U	U	32-100	U	U	I I	nin.	U	U	race nomblende.

Table 2 - Mineralogy of the 0.18-0.25 mm Heavy Mineral Fraction. Heavy lithic grains, where present, are classified according to their dominant contained heavy mineral species.

1......

· <u>··················</u>	We	eight (g) of Heavy Minera	ls in 0.18 to 0.25 mm F	raction
SAMPLE NUMBER	TOTAL	FERROMAGNETIC	PARAMAGNETIC (<1.0 amp)	NONMAGNETIC (>1.0 amp)
94-6 (5-15 ft)	53.6	9.4	42.0	2.2
94-6(15-25 ft)	38.2	5.2	30.3	2.7
94-6(25-35 ft)	50.4	7.2	40.6	2.6
94-6(35-45 ft)	75.4	11.4	60.7	3.3
94-6(45-55 ft)	58.1	12.1	43.2	2.8
94-6(55-65 ft)	74.5	14.1	58.0	2.4
94-6(65-75 ft)	51.3	11.5	37.1	2.7
94-6(75-85 ft)	71.7	10.8	57.9	3.0
94-6(85-95 ft)	60.9	20.1	39.5	1.3
94-6(95-100 ft)	86.8	19.7	65.2	1.9

able 3 - Magnetic Susceptibility of Heavy Minerals in 0.18 to 0.25 mm Fraction. No paramagnetic separation done on other HMC fractions.

.

Intertek Testing Services Chimitec Bondar Clegg

Rapport Lab Geochimie Geochemical Lab Report

PROJECT: NONE

CLIENT: OVERBURDEN DRILLING MONT LTD

REPORT: C99	60682.1	COMPLI	ETE 🕽										DATE	RECE	IVED:	31-HAR-99	DATE	PRINTED	: 20-APR-9	9 P	AGE	1 OF 5	
SAMPLE	ELEMENT	sice	1102 -	1203	Fe203* Hn	D NgC	CaO	Na20	K20 P 2	05 L	.01	Total	Ba	CP.	Sr						•		
hlimber	· UNITS	PCT	PCT	PCT	PCT PC	t PCT	РСТ	PCT	PCT P	CT F	хt	PCT	PPN	224	PPN								
×-4/2.5-15		41.07	5,76 1	1.74	18.60 0.3	1 5.98	10.91	2.75 0	.27 2,	50 0.	.20	100.36	1743	76	932								
74-4/15-25		41.97	5.00 1	3.29	16.43 0.2	8 5,53	10.85	3.07 0).34 🖁	34 0.	.94 🖠	00.35	2063	51 1	037								
74-4/25-35		41.33	5.26 1	3.03	17.51 0.2	9 5.70	10.87	2.95 0).30 2.	35 1.	.03 🖞	00.72	2010	52 1	i 006		•						
×-4/35-45		42.00	5.07 1	3.33	16.95 0.2	9 5,55	10.60	3.17 0).34 2	22 0.	.54	00.43	2412	55 1	037								
%-4/45-55		34.92	7.16	8.27	25,55 0.4	1 7.77	11.05	1.98 0).23 2.	95 - 0.	.05	100.49	1447	57	666								
94-4/55-65		39.1 9	5.96	10.94	20,55 0.3	4 6.46	10. 8 0	2.73).34 2.	60 40	.05	100.22	2155	52	862								
94-4/65-75		35.33	7.15	8.06	25.46 0.4	1 7.99	10.99	1.97 ().26 2	90 Ø	.05	100.76	1602	38	642						· ·		
94 -4/75-85		34.75	6.942	8.14	25,16 0.4	2 7.75	10.74	1.95	0.21 2	84 J	.05	\$9.14	1609	59	659								
%-4/85-95		39.14	5.85	10.62	21,49 0.3	9 6.90	10.56	2.65	0.30 2	41 -O	.05	100.62	2232	538	837								
94-4/95-100		40.23	5.46	11.49	19.94 0.3	6 6.35	10.43	2.89 (0.32 2	33 Ø	.05	100.15	2477	53	893								
94-6/5-15		47.48	3.96	12.96	15.64 0.1	4 5.66	8.62	3.20 (D.45 🖁	26 2	.35	100.81	128		721								
94-6/15-25		48.54	3.59	14.13	14.86 0.1	6 5.21	8 7.57	5.33	0.53 0	24 2	.55	100.79	139	3	756								
94-6/25-35		48.41	3.79	13.00	14.90 0.1	6 5.46	8.80	5.01	0.47 🕅	23 2	.42	100.75	131	64	749							_	
94-6/35-45		39.98	4.95	12.72	18.92 0.2	20 7.04	11.33	1,65	0.56 D	. 32 2	.58	100. SZ	158	48	778							÷	
94-6/45-55		39.86	4.92	12.53	18.94 0.3	20 7.12	12.21	1.56	0.44 0	.32 2	.33	100.54	152	53	945								
94-6/55-65		39.13	5.21	11.89	19.60 0.3	21 7.40	11.84	1.46	0.37 0	.32 2	.65	100.18	8 128	47	842								
94-6/65-75		39.23	5.16	12.23	19.33 0.	20 7,24	11.90	1,49	0.43 0	.30 Z	2.67	100.33	8 151	36	881								
94-6/75-85		39.25	5.09	12.12	19.15 0.	20 7.35	12.42	2 1.38	0.38 🖗	.38 2	2.79	100.62	133	29	1028								
94-6/85-95		38.70	5.34	11.44	20,81 0.	22 7.74	11.66	5 1.44	0.38 🖁	.32 Z	2.24	100.37	147	34	626								
94-6/95-100)	38.75	5.60	11.41	20.98 0.	22 7.82	11.80	1.47	0.34 0	.31 1	.98	100.77	143	24	561								
							×		. 8				8										

Table 4 - Intertek Testing Services Whole Rock Analyses of Test Samples.

May 10, 1999

Mr. Lorne Kelsch 26 BT RESOURCE DEVELOPMENT CO. LTD. MacLeod Place 1, Suite 200 5920 MacLeod Trail S.W. Calgary, Alberta T2E 0K2

fax: (403) 212-0733

Dear Mr. Kelsch:

Re: Titanium Mineralogy of Test Samples from DDH 95-2, British Columbia

Attached in data five tables find our test results from the eighteen upper 10-foot core intervals in the above diamond drill hole.

As in the nine lower 10-foot intervals reported on April 16, 1999 and in our intital tests on Holes 99-4 and 96-1 reported on December 10 and 18, 1998, the principal Ti-bearing oxide is titanomagnetite. Unlike the earlier samples, some samples of the present batch, notably in the interval from 10 to 80 feet, are enriched in biotite which is also Ti-bearing ($^{5}\%$ TiO₂). Only a small portion of this biotite is concentrated in heavy mineral fraction with the Ti-oxides; therefore we have added a table (No. 5) showing its abundance in the original drill core. The maximum concentration is 10-15 percent which would contribute about 0.5 percent or 1/6 of the 3 percent total average TiO₂ content of the rock.

I hope these observations are helpful. Please call me if you have any questions.

Yo**urs sincere**ly,

Stu Averill, President

107-15 CAPELLA COURT, NEPEAN, ONTARIO, K2E 7X1 TELEPHONE: (613) 226-1771/1774 FAX NO.: (613) 226-8753 EMAIL: odm@storm.ca

DATA TRANSMITTAL REPORT

DATE: 10-May-99

ATTENTION: Mr. Lorne Kelsch

- CLIENT: 26 BT RESOURCE DEVELOPMENT CO. LTD. MacLeaod Place 1, Suite 200 5920 MacLeaod Trail S.W. Calgary, AB T2H 0K2
- FAX NO.: (403) 212-0733

NO. OF PAGES:

- PROJECT: Titanium 95-2 (10-20) to 95-2 (200-210) Mineralogy
- FILE NO: Ed Kruchkowski 26BT (95-2).wb3
- NO. OF SAMPLES: 18

THESE SAMPLES WERE PROCESSED FOR: Titanium-bearing minerals

SPECIFICATIONS: SUBMITTED BY CLIENT: 5-FOOT 1/4 NQ CORE SECTIONS. COMBINED INTO 10-FOOT SECTIONS AND CRUSHED TO <2.0 MM. PREPARED 0.18 MM TO 1.0 MM HEAVY MINERAL CONCENTRATE (S.G.>3.2) FROM 2 KG SPLIT OF CRUSHED PRODUCT. PARAMAGNETIC SEPARATION AND PICKING DONE ON 0.18 TO 0.25 MM FRACTION ONLY. ALL FRACTIONS ARE PRESENTLY STORED.

REMARKS: Hole 94-4 is now completed and data will fallow

5000.

Remy Huneault Laboratory Manager

PROJECT: TOTAL OF: 18 SAMPLES FILENAME: Ed Kruchkowski 26BT (95-2).wb3

	Weig	ht (kg)						Wei	ght (g)						
	<u> </u>		S	ieve Fractio	ns			0.18	3 to 1.0 m	m M.I. Se	paration (S	.G. 3.20)			
								}	FERROMA	GNETIC H	1C	NON	FERROMA	GNETIC H	ИC
Sample Number	Total Rec'd and Crushed	Processed Split	1.0 to 2.0 mm	0.18 to 1.0 mm	-0.18 mm	Total	M.I. Lights	Total Mag	-0.18 mm (wash)	0.18 to 0.25 mm	0.25 to 1.0 mm	Total Non Mag	-0.18 mm (wash)	0.18 to 0.25 mm	0.25 to 1.0 mm
Titanium Mineralogy				*		*									
95-2 (10-20 ft)	2.45	2.00	527.8	674.3	797.9	558.9	452.5	31.1	3.0	5.6	22.5	75.3	10.9	20.4	44.0
95-2 (20-30 ft)	2.20	2.00	526.9	689.5	783.6	585.8	504.5	22.3	2.1	3.0	17.2	59.0	6.8	17.0	35.2
95-2 (30-40 ft)	3.95	2.00	489.2	667.5	843.3	576.3	461.8	25.6	2.9	3.6	19.1	88.9	7.9	27.1	53.9
95-2 (40-50 ft)	4.25	2.00	500.4	655.2	844.4	566.4	472.0	22.9	2.8	1.8	18.3	71.5	6.6	19.3	45.6
95-2 (50-60 ft)	4.25	2.00	457.3	673.1	869.6	581.8	478.6	34.7	3.6	4.1	27.0	68.5	5.4	18.1	45.0
95-2 (60-70 ft)	4.15	2.00	469.4	651.1	879.5	578.8	464.8	39.6	3.6	5.0	31.0	_ 74.4	6.1	20.4	47.9
95-2 (70-80 ft)	4.40	2.00	470.5	639.9	889.6	573.7	467.4	30.8	3.7	4.2	22.9	- 75.5	6.3	22.1	47.1
95-2 (80-90 ft)	4.30	2.00	501.4	588.5	910.1	525.5	412.3	40.0	4.6	6.1	29.3	73.2	10.0	18.8	44.4
95-2 (90-100 ft)	4.60	2.00	487.1	536.5	976.4	436.6	213.7	123.7	13.3	17.9	92.5	99.2	17.5	28.2	53.5
95-2 (100-110 ft)	3.95	2.00	466.3	556.6	977.1	441.4	214.4	115.7	15.5	21.0	79.2	111.3	20.9	33.8	56.6
95-2 (110-120 ft)	4.95	2.00	447.7	583.0	969.3	479.7	238.9	114.4	12.9	19.7	81.8	126.4	22.0	36.9	67.5
95-2 (120-130 ft)	5.10	2.00	428.0	636.9	935.1	475.9	262.5	91.2	13.1	16.7	61.4	122.2	24.5	33.3	64.4
95-2 (130-140 ft)	4.10	2.00	444.5	619.4	936.1	479.5	258.6	105.7	10.8	19.1	75.8	115.2	19.9	30.2	65.1
95-2 (140-150 ft)	4.45	2.00	439.6	606.6	953.8	503.2	294.2	95.0	11.3	17.0	66.7	114.0	20.1	26.3	67.6
95-2 (150-160 ft)	4.10	2.00	524.5	574.5	901.0	481.9	276.1	78.8	8.5	14.4	55.9	127.0	23.6	28.1	75.3
95-2 (160-170 ft)	4.55	2.00	449.8	583.9	966.3	483.6	240.2	88.1	8.8	12.8	66.5	155.3	24.0	33.8	97.5
95-2 (170-180 ft)	4.65	2.00	461.5	566.9	971.6	487.7	304.7	82.0	7.6	14.6	59.8	101.0	15.7	24.3	61.0
95-2 (200-210 ft)	4.35	2.00	492.2	580.8	927.0	532.6	272.4	106.6	8.3	18.0	80.3	153.6	22.2	31.5	99.9

* After initial dry sieving, weight of 0.18-1.0 mm fraction is further reduced 10-20 percent by oxalic acid wash to remove adhering -0.18 mm crusher dust prior to final M.I. separation.

)

10-May-99

FILENAME: Ed Kruchkowski 26BT (95-2).wb3 PROJECT: Titanium Mineralogy TOTAL OF 18 SAMPLES

1.1

						MIN	ERALOG	Y (VOLL	ME PER	CENT)				
SAMPLE NO.	FRACTION	SEPARATION AMPERAGE	MT	ILM	RUT	Π	СРХ	OL	8T	EP	AP	GTH	PY	REMARKS: .
95-2 (10-20 ft)	Ferromagnetic	NA	80	0	0	0	0	0	20	0	0	0	0	SEM checks from 0.18-0.25 mm fraction: 4 representative Fe-oxide candidates = 4 titanomagnetite (~10 wt% TiO2); and 4 representative biotite candidates = 4 biotite (~5 wt% TiO2). Note: biotite could not be dismounted after SEM analysis.
	Paramagnetic	<1.0	0	3	0	0	10	0	85-90	0	0	0	0	SEM checks from 0.18-0.25 mm fraction: 2 representative ilmenite candidates = 2 ilmenite.
	Nonmagnetic	>1.0	0	0	0	0	5	0	85	0	10	0	0	SEM checks from 0.18-0.25 mm fraction: 3 representative apatite candidates = 3 apatite.
95-2 (20-30 ft)	Ferromagnetic	NA	85-90	0.5	0	0	0	0	10	0	3	0	0	Apatite is intergrown with magnetite.
	Paramagnetic	<1.0	0	5	0	0	5	0	90	0	0	0	0	
	Nonmagnetic	>1.0	0	0	0	0	5	0	85-90	0	3	0	0	
95-2 (30-40 ft)	Ferromagnetic	NA	85-90	3-5	0	0	1	0	5	0	3-5	0	0	
	Paramagnetic	<1.0	0	3	0	0	3	0	95-100	0	_1	0	0	
	Nonmagnetic	>1.0	0	0	0	0	1	0	85-90	0	5-10	0	0	
95-2 (40-50 ft)	Ferromagnetic	NA	75	5	0	0	10-20	0	5	0	5	0	0	
	Paramagnetic	<1.0	0	1	0	0	3	0	95	0	1	0	0	
	Nonmagnetic	>1.0	0	0	0	0	15	0	65	0	20	0	0	
95-2 (50-60 ft)	Ferromagnetic	NA	70-75	10	0	0	10	0.5	5	0	1	0	0	SEM check from 0.18-0.25 mm fraction: 1 yellow-green olivine versus epidote candidate = 1 fayalite olivine.
	Paramagnetic	<1.0	0	10	0	0	20-25	0.5	65-70	0	TR	0	0	
	Nonmagnetic	>1.0	0	0	0	0	15	0	70	0	15	0	0	<u> </u>
95-2 (60-70 ft)	Ferromagnetic	NA	70-75	5	0	0	10	3	3	0	3	0	0	<u>-</u>
• •	Paramagnetic	<1.0	0	10	0	0	20-30	3	60-70	0	TR	0	0	
	Nonmagnetic	>1.0	0	0	0	0	20-30	0	60-70	0	10	0	0	
95-2 (70-80 ft)	Ferromagnetic	NA	85-90	3	0	0	5-7	1	1	0	1	0	0	
	Paramagnetic	<1.0	0	5-7	0	0	15	3	75-80	0	TR	0	0	
	Nonmagnetic	>1.0	0	0	0	0	5-10	0	75-85	0	10-15	0	0	
95-2 (80-90 ft)	Ferromagnetic	NA	85-90	5	0	0	5	TR	TR	0	3-5	0	0	SEM checks from 0.18-0.25 mm fraction: 4 representative Fe-oxide candidates = 4 titanomagnetite (~10 wt% TiO2).
	Paramagnetic	<1.0	0	25	0	0	40	25	10	0	TR	0	0	
	Nonmagnetic	>1.0	0	0	0	0	75-80	0	3	0	20-25	0	0	
95-2 (90-100 ft)	Ferromagnetic	NA	70-75	3-5	0	0	15-20	0	1	0	5	0	0	
	Paramagnetic	<1.0	0	5	0	0	40	5	50	0	TR	0	0	
	Nonmagnetic	>1.0	0	0	0	0	30-40	0	5	0	60	0	TR	
95-2 (100-110 ft)	Ferromagnetic	NA	90-95	2	0	0	5-10	RTR	TR	0	1	0	0	
	Paramagnetic	<1.0	0	3	0	0	80-85	TR	15	RTR	3-5	0	0	
	Nonmagnetic	>1.0	0	0	0	0	45-50	0	0.5	0	50	0	3	
95-2 (110-120 ft)	Ferromagnetic	NA	85- 9 0	1-2	0	0	10	0	0	0	3	0	0	
	Paramagnetic	<1.0	0	5	0	0	85- 9 0	0	5	0	2	0	0	
	Nonmagnetic	>1.0	0	0	0	0	40-50	0	2	0	50-60	0	1	

Table 2 - Mineralogy of the 0.18-0.25 mm Heavy Mineral Fraction. Heavy lithic grains, where present, are classified according to their dominant contained heavy mineral species.

.

)

FILENAME: Ed Kruchkowski 26BT (95-2).wb3 PROJECT: Titanium Mineralogy TOTAL OF 18 SAMPLES

1

						MIN	ERALOGY	' (VOLU	IME PERG	CENT)				
SAMPLE NO.	FRACTION	SEPARATION AMPERAGE	MT	ILM	RUT	TT	СРХ	OL	вт	EP	AP	GTH	PY	- REMARKS: .
95-2 (120-130 ft)	Ferromagnetic	NA	80-85	1	0	0	15-20	0	TR	0	3	0	0	
00 = (120 100 1)	Paramagnetic	<1.0	0	3-5	0	0	90-95	0	2	0	0.5	0	0	
	Nonmagnetic	>1.0	0	0	0	0	45-50	0	5	0	45-50	0	3-5	
95-2 (130-140 ft)	Ferromagnetic	NA	90-95	1	0	0	5	0	TR	0	2	0	TR	
,	Paramagnetic	<1.0	0	5-7	0	0	90-95	TR	0.5	0	0.5	0	0	
	Nonmagnetic	>1.0	0	0	0	0	45-50	0	RTR	0	45-50	0	3	
95-2 (140-150 ft)	Ferromagnetic	NA	90-95	1	0	0	5	0	0	0	1	0	0	
	Paramagnetic	<1.0	0	15-20	0	0	80-85	0	1	0	1	0	1	
	Nonmagnetic	>1.0	0	0	0	0	45-50	0	1	0	45-50	0	5-10	
95-2 (150-160 ft)	Ferromagnetic	NA	90-95	3	0	0	3-5	0	0.5	0	3-5	0	0	
	Paramagnetic	<1.0	0	2	0	0	95	0	3	0	TR	0	0	
	Nonmagnetic	>1.0	0	0	0	TR	45-50	0	RTR	0	45-50	0	3	
95-2 (160-170 ft)	Ferromagnetic	NA	85-90	1	0	0	10	0	TR	0	1	0	RTR	SEM checks from 0.18-0.25 mm fraction: 3 representative Fe-oxide candidates = 3 titanomagnetite (<10 wt% TiO2) \pm exsolved ilmenite.
	Paramagnetic	<1.0	0	0.5	0	0	95-100	0	1	0	0.5	0	0	
	Nonmagnetic	>1.0	0	0	0	0	40-50	0	TR	0	50-60	0	1	Rare trace of molybdenite.
95-2 (170-180 ft)	Ferromagnetic	NA	90-95	TR	0	0	5-10	0	0	0	1	0	0	
	Paramagnetic	<1.0	0	0.5	0	0	95-97	0	3	0	RTR	0	0	
	Nonmagnetic	>1.0	0	0	0	0	60-70	0	TR	0	20-30	0	5	Rare trace of spinel.
95-2 (200-210 ft)	Ferromagnetic	NA	85-90	0	0	0	10	0	0	0	1	0	0	<u>-</u>
, ,	Paramagnetic	<1.0	0	0.5	0	0	95-97	0	3	0	0.5	0	0	
	Nonmagnetic	>1.0	0	0	0	15-20	20	0	0	0	60-70	0	3-5	SEM checks from 0.18-0.25 mm fraction: 2 brown titanite candidates = 2 titanite; and 2 pink-grey zircon versus garnet candidates = 2 zircon. Estimate 3.5% zircon in nonmagnetic >1.0 amp fraction.

Table 2 - Mineralogy of the 0.18-0.25 mm Heavy Mineral Fraction. Heavy lithic grains, where present, are classified according to their dominant contained heavy mineral species.

	Weig	ht (g) of Heavy Mineral	s in 0.18 to 0.25 mm Fr	action
SAMPLE NUMBER	TOTAL	FERROMAGNETIC	PARAMAGNETIC (<1.0 amp)	NONMAGNETIC (>1.0 amp)
95-2 (10-20 ft) 95-2 (20-30 ft) 95-2 (30-40 ft) 95-2 (40-50 ft) 95-2 (50-60 ft) 95-2 (60-70 ft) 95-2 (70-80 ft) 95-2 (80-90 ft) 95-2 (90-100 ft) 95-2 (100-110 ft) 95-2 (110-120 ft) 95-2 (120-130 ft)	26.0 20.0 30.7 21.1 22.2 25.4 26.3 24.9 46.1 54.8 56.6 50.0 49.3	5.6 ^{1,4} 3.0 3.6 1.8 4.1 5.0 4.2 6.1 17.9 21.0 19.7 16.7 19.1	18.5 14.4 24.1 16.9 16.2 18.4 19.7 17.3 26.6 31.9 34.2 30.9 27.7	1.9 2.6 3.0 2.4 1.9 2.0 2.4 1.5 1.6 1.9 2.7 2.4 2.5
95-2 (130-140 ft) 95-2 (140-150 ft)	43.3	17.0	23.9	2.4
95-2 (150-160 ft)	42.5	14.4	25.6	2.5
95-2 (160-170 ft)	46.6	12.8	31.6	2.2
95-2 (170-180 ft)	38.9	14.6	22.8	1.5
95-2 (200-210 ft)	49.5	18.0	30.3	1.2

.

•

 Table 3 - Magnetic Susceptibility of Heavy Minerals in 0.18 to 0.25 mm Fraction. No paramagnetic separation done on other HMC fractions.

ITTS Intertek Testing Services Chimitec Bondar Clegg

Rapport Lab Geochimie Geochemical Lab Report

)

			himi	tec		•••••	R	onda	ar C	leg	3g			** * * * * * * * * * * * * * * * * * * *	*******				 ·····
	BURDEN DA	ILLING	MGNT LTD							~								PROJECT: NONE	
REPORT = C99-	60250.1	COMPLI	ETE)									DATE	RECEIVED	10-FEB-99	DATE PRINTED:	2-MAR-99	PAGE	1 OF 3	
							o_o 2					Re							
SAPLE	ELEMENT	SICE				ngu		IBAU KA			ICTOL	158 DOM	CT ST						
NUMBER	UNITS	PLI	n r	• •	J. r.:	P LL	PLIS	ru ru		PLI (n.	777	FIR PPR						
05-2-101-20		50.03	2 83 16 9	p 🐻	7 0.14	2 00	5.32	55 7.0	7 1 09	0.79	00 05	>10000	76 1220						
95-2-240-30		51.40	2.76 17.4	4 8	6 0.11	2.62	4.54	75 2.6	1 1 18	1.22	99.34	>10000	52 887						
95-2-30-40		51.42	2.64 17.9	4 8	31 0.13	2.92	5.52	4.69 2.6	2 1.14	0.54	100.35	>10000	52 1043						
95-2-40-50		51.39	2.58 17.8	9 8.	01 0.13	2.81	5.55	4.77 2.5	3 1.10	0_49	99.66	>10000	60 1197						
95-2-550-60		50.54	2.89 16.6	56 9.	33 0.15	3.16	6.24	.72 2.3	0 1.21	0.69	100.04	>10000	55 1106						
										2									
95-2 -60-70		50.15	3.03 16.0	ye 🧐 🤆	92 0.16	3.37	6.30	4.54 2.4	1 1.31	0.59	100.19	>10000	\$1 1048						
95 -2-7/0 -80		50.10	2.94 16.3	51 9.	35 0.16	3.17	6.21	4.80 2.4	4 1.26	0.54	99.64	>10000	39 1055						
95-2 -80-9 0		49.47	3.34 16.1	17 11.	21 0.20	3.30	6.80	4.62 1.9	0 1.27	0.44	100.48	>10000	50 1049						
95-2 -90-1 00		44.94	3.75 13.1	14 15	14 0.27	4.94	10.36	3.48 0.9	0 1.29	0.44	99.17	4590	41 700						
95-2 -100-1 1	0	43.93	3,90 12.4	48 16.	07 0.28	4,80	10.07	3.28 0.8	3 0.91	0.60	97.68	4590	45 657						
										8		i X							
95-2-110-12	0	46.44	3.80 12.0	63 [15,	37 0.28	6.93	10.18	3.67 0.9	8 0.97	0.3	99.97	3955	39 569						
95-2 -12 0-13	0	46.57	3.49 12.0	08 15,	04 0.29	4.97	9.88	3.81 1.1	0 1.03	1.05	99,83	4655	38 573						
95-2-130-14	0	45.89	3.67 11.	% <u>1</u> 6.	22 0. 30	4:91	9.85	3.65 1.0	B 1.08	1.27	100.36	4580	35 603						
95-2-140-15	0	47.10	3.37 12.	93 15	09 0.28	4.68	9.40	3.91 1.3	6 B.82	20.59	100.14	5448	47 629						
95-2-150-16	0	46.62	3.20 13.	48 14	13 0.26	6.74	9.86	3.85 1.2	2 0.80	1:0.93	99.69	5183	5 52 683						
	_									<u>.</u>			.)						
95-2-160-17	0	46.63	5.13 11.	98 15	.40 0.32	4.80	10.29	3.68 1.7	22 0.9	1 0.69	99.04	515	o 200 5/0 	•					
95-2-17U-18	su m	47.65	3.00.12.	39 35	-40 U.SZ		9.11	4.10 1.0	x 1.2	7 U./4	100.40	8 802	J (02: 38/						
93-2-100-19 05-2-100-20	20 20	24.20	· ····································	/E 24	13 U. 14	1.46	4.9U	1.70 2.4	24 U.Ə.	/_∪.⊡ •070	400210	~1000	J JC 471						
95-2-190-20 95-2-200-21	N 10	20.00) 1.(4 7.) 7.65 0	42 00 07 994	54 0 59	1 4.0/	3.7C	7 04 1 I		FU.17	00.7	741	3 00 24 3 00 24	i I					
73 °C °C (00 °C)		40.30	· • • • • • • • •	7 (1)			0.00			8`. .				1					
95-2-210-22	n	35 07	544 4	00 37	21 0 70	375	11.90	1 93 0.7	74 96		00 55	58	3 67 205						
95-2-220-23		44.01	5.30 13.	32 15	.66 0.25	5 93	10.13	3 30 0.1	87 8 2	B 0.44	99.0	223	5 58 750						
95-2-230-24		46.73	4.53 14.	16 13	50 0.21	4.22	9.37	3.72 1.2	27 0.3	7 1.61	99.89	599	5 44 99						
95-2-240-25	i0	44.85	5.04 12.	.68 16	.22 0.31	5.00	9.69	3.42 1.0	09 0.4	1 0.49	99.77	487	1 46 767	,					
95-2-250-26	50	45.87	4.32 13.	.62 14	.83 0.27	7 4.54	9.58	3.75 1.	0.0 20	2 0.63	99.7	581	7 62 87						
							2												
95-2-260-27	70	45.00) 4.8 0 13.	.07 16	.23 0.25	7 5.04	10.19	3.37 0.	78 0.3	3 0.34	99.9	370	4 70 78	2					
95-2-270-20	30	45.3	5 4.35 14.	.45 15	.97 0.25	5 4.17	9.15	3.65 0.	86 0.3	9 0.40	99.6	526	5 54 121	7					
95-2-280-29	90	49.37	7 2.89 17	.37 31	.77 0.17	7 2.68	7.82	4.74 1.	12 0.6	80.45	i 100.0	5 844	0 62 127)					
95-2-290-3	00	45.5	7 4.08 14	.15 15	.64 0.23	3 4.93	9.97	3.45 0.	88 0.4	4 0.29) 100.1	7 445	2 57 81)					
							2 X				- 3649	8							
			36 T ()																

Table 4 - Intertek Testing Services Whole Rock Analyses of Test Samples.

1	0-	Ma	/-99
---	----	----	------

`

Sample Number	% Biotite
95-2 (10-20 ft)	15
95-2 (20-30 ft)	3-5
95-2 (30-40 ft)	10
95-2 (40-50 ft)	10
95-2 (50-60 ft)	1.1 5
95-2 (60-70 ft)	5
95-2 (70-80 ft)	5-7
95-2 (80-90 ft)	7-10
95-2 (90-100 ft)	2-3
95-2 (100-110 ft)	TR
95-2 (110-120 ft)	1-2
95-2 (120-130 ft)	1-2
95-2 (130-140 ft)	3
95-2 (140-150 ft)	1
95-2 (150-160 ft)	TR
95-2 (160-170 ft)	1
95-2 (170-180 ft)	1
95-2 (200-210 ft)	0
95-2 (210-220 ft)	1
95-2 (220-230 ft)	5
95-2 (230-240 ft)	1
95-2 (240-250 ft)	1
95-2 (250-260 ft)	1
95-2 (260-270 ft)	TR
95-2 (270-280 ft)	1
95-2 (280-290 ft)	2
95-2 (290-300 ft)	TR

Table 5 - Biotite Content of Drill Core.

April 16, 1999

Mr. Lorne Kelsch 26 BT RESOURCE DEVELOPMENT CO. LTD. MacLeod Place 1, Suite 200 5920 MacLeod Trail S.W. Calgary, Alberta T2E 0K2

fax: (403) 212-0733

Dear Mr. Kelsch:

Re: Titanium Mineralogy of Test Samples from DDH 95-2, British Columbia

Attached find our test results from the nine lower 10-foot intervals in the above diamond drill hole.

Our general processing procedures are outlined in my earlier (December 10 and 18, 1998) reports on Holes 94-4 and 96-1. Based on these earlier tests, we utilized only the milled 0.18-0.25 mm fraction which consists mainly of liberated mineral grains. This fraction should be representative of the entire sample as its weight is very consistent (Table 1).

As before, the principal Ti-bearing oxide is titanomagnetite (Table 2) which concentrates in the ferromagnetic fraction (Table 3). Ilmenite is not plentiful although we did note some as exsolution lamellae in the ferromagnetic titanomagnetite in addition to the usual liberated grains in the paramagnetic fraction. Titanite is rare and rutile is absent.

We haven't calculated the relative TiO_2 contributions of the titanomagnetite and ilmenite but they appear to be within the range defined by the other two drill holes and to explain the 2-5% TiO_2 analyses (Table 4). We noted, however, that the biotite in the samples is also Ti-bearing and this will have to be taken into account in the upper part of the drill hole which is relatively biotite-rich. Most of the biotite is not heavy.

I hope these observations are helpful. Please call me if you have any questions.

fs. sincerely

Stu Averill, President

Mines Are Where <u>WE</u> Find Them.

107-15 Capella Court Nepean, Ontario K2E 7X1 Tel. 613-226-1771 FAX 613-226-8753

107-15 CAPELLA COURT, NEPEAN, ONTARIO, K2E 7X1 TELEPHONE: (613) 226-1771/1774 FAX NO.: (613) 226-8753 EMAIL: odm@storm.ca

DATA TRANSMITTAL REPORT

DATE: 16-Apr-99

ATTENTION: Mr. Lorne Keisch

- CLIENT: 26 BT RESOURCE DEVELOPMENT CO. LTD. MacLeaod Place 1, Suite 200 5920 MacLeaod Trail S.W. Calgary, AB T2H 0K2
- FAX NO.: (403) 212-0733
- NO. OF PAGES:
- PROJECT: Titanium 95-2 (210-220 ft) to 95-2 (290-300 ft) Mineralogy
- FILE NO: Ed Kruchkowski 26BT (March 31).wb3

9

NO. OF SAMPLES:

THESE SAMPLES WERE PROCESSED FOR: Titanium-bearing minerals

SPECIFICATIONS: SUBMITTED BY CLIENT: 5-FOOT 1/4 NQ CORE SECTIONS. COMBINED INTO 10-FOOT SECTIONS AND CRUSHED TO <2.0 MM. PREPARED 0.18 MM TO 1.0 MM HEAVY MINERAL CONCENTRATE (S.G.>3.2) FROM 2 KG SPLIT OF CRUSHED PRODUCT. PARAMAGNETIC SEPARATION AND PICKING DONE ON 0.18 TO 0.25 MM FRACTION ONLY. ALL FRACTIONS ARE PRESENTLY STORED.

REMARKS:

Huneault Laboratory Manager

PROJECT: TOTAL OF: 9 SAMPLES FILENAME: Ed Kruchkowski 26BT (March 31).wb3

	Weig	ht (kg)						١	Weight (g)							
			S	ieve Fractio	ns				0.18 to 1.0	0 mm M.I.	Separatio	n (S.G. 3.	20)			<u></u>
									MAGN	ETIC HMC			NONM	AGNETIC H	IMC	
Sample Number	Total Rec'd and Crushed	Processed Split	1.0 to 2.0 mm	0.18 to 1.0 mm	-0.18 mm	Total	M.I. Lights	Total Mag	-0.18 mm (wash)	0.18 to 0.25 mm	0.25 to 1.0 mm	Total Non Mag	-0.18 mm (wash)	0.18 to 0.25 mm	0.25 to 0.5 mm	0.5 to 1.0 mm
Titanium Mineralogy				*		*										
95-2 (210-220 ft)	5.00	2.00	442.4	599.7	957.9	590.3	98.1	187.9	34.7	27.0	126.2	304.3	63.6	56.5	99.2	85.0
95-2 (220-230 ft)	4.80	2.00	486.8	558.9	954.3	556.5	285.7	81.7	12.2	7.1	62.4	189.1	42.6	27.9	67.9	50.7
95-2 (230-240 ft)	4.55	2.00	429.6	620.3	950.1	618.9	408.1	72.5	16.2	10.8	45.5	138.3	36.6	23.1	47.2	31.4
95-2 (240-250 ft)	4.45	2.00	445.0	584.5	970.5	579.2	310.6	76.8	12.2	11.8	52.8	191.8	47.8	33.2	60.2	50.6
95-2 (250-260 ft)	5.05	2.00	416.5	576.0	1007.5	574.9	330.7	81.1	16.8	12.3	52.0	163.1	41.9	29.2	52. 9	39.1
95-2 (260-270 ft)	4.80	2.00	440.7	563.1	996.2	560.3	282.5	92.6	13.6	10.6	68.4	185.2	33.6	33.2	66.5	51.9
95-2 (270-280 ft)	4.55	2.00	457.1	570.0	972.9	567.4	325.9	98.9	13.1	11.8	74.0	142.6	24.8	28.4	49.9	39.5
95-2 (280-290 ft)	4.35	2.00	441.0	575.1	983.9	572.2	421.6	63.0	9.9	10.3	42.8	87.6	16.6	18.8	32.9	19.3
95-2 (290-300 ft)	5.05	2.00	482.5	548.8	968.7	547.3	293.3	92.7	13.7	12.5	66.5	161.3 <u>-</u>	- 32.3	26.9	56.4	45.7

* Weight of 0.18-0.25 mm fraction is reduced slightly by loss of crusher dust in suspension during wash procedure between crushing and M.I. separation.

Table 1 - Sample Processing Weights.

FILENAME: Ed Kruchkowski 26BT (March 31).wb3 PROJECT: Titanium Mineralogy TOTAL OF 9 SAMPLES

						MIN	ERALOG	Y (VOLI	UME PER	CENT)				
SAMPLE NO.	FRACTION	SEPARATION AMPERAGE	мт	ILM	RUT	π	СРХ	OL	BT	EP	AP	GTH	PY	REMARKS:
95-2 (210-220 ft)	Ferromagnetic	NA	~100	0	0	0	0	0	0	0	0	0	0	SEM checks from 0.18-0.25 mm fraction: 5 representative black oxide = 5 titanomagnetite ± exsolved ilmenite (polished section work is needed to confirm extent of exsolution).
	Paramagnetic	<1.0	0	TR	0	0	100	0	TR	0	TR	0	TR	SEM checks from 0.18-0.25 mm fraction: 2 black oxide = ilmenite; and 2 brown orthopyroxene versus clinopyroxene candidates = 2 clinopyroxene (Ti-bearing augite).
	Nonmagnetic	>1.0	0	0	0	TR	5	0	0	0	90-95	0	2	SEM checks from 0.18-0.25 mm fraction: 5 water-clear to grey apatite versus epidote candidates = 5 apatite; and 1 orange titanite versus staurolite candidate = 1 titanite.
95-2 (220-230 ft)	Ferromagnetic	NA	~100	0	0	0	0	0	0	0	0	0	0	
00 2 (220 200)	Paramagnetic	<1.0	0	TR	ŏ	õ	100	õ	TR	õ	õ	ŏ	BTB	
	Nonmagnetic	>1.0	Ō	0	Ō	TR	80-85	Ō	0	Ō	15	õ	1-2	
95.2 (230.240 ft)	Ferromagnetic	NA	90	0	٥	0	TR	0	TB	0	TR	0	0	
33-2 (200 240 N)	Paramagnetic	<10	ñ	3 3	ň	õ	97	õ	TR	ň	TR	ň	õ	
	Nonmagnetic	>10	õ	ñ	ň	BTR	75-80	ň	RTR	ŏ	20	ň	1	
	Normagnetic	21.0	Ũ	v	U		75-00	Ŭ		U	20	Ŭ		
95-2 (240-250 ft)	Ferromagnetic	NA	99-100	0	0	0	0	0	RTR	0	0	0	RTR	
	Paramagnetic	<1.0	0	10	0	0	85-90	0	TR	0	0.5	0	RTR	
	Nonmagnetic	>1.0	0	0	0	RTR	75-80	0	RTR	0	20	0	2	
95-2 (250-260 ft)	Ferromagnetic	NA	99-100	0	0	0	0	0	RTR	0	TR	0	0	SEM checks from 0.25-0.50 mm fraction: 5 magnetite candidates = 5 titanomagnetite ± exsolved ilmenite.
	Paramagnetic	<1.0	0	10	0	0	85-90	0	2	0	2	0	0	SEM checks from 0.25-0.50 mm fraction: 5 green to brown clinopyroxene versus orthopyzoxene candidates = 5 augite; 3 ilmenite candidates = 3 ilmenite; and 2 brown biotite versus phlogopite candidates = 2 biotite (~6 wt% TiO2). Analyzed biotite grains could not be encapsulated.
	Nonmagnetic	>1.0	0	0	0	0	20-30	0	0	0	60-70	0	15	SEM checks from 0.25-0.50 mm fraction: 5 white to grey apatite versus feldspar candidates = 5 apatite.
95-2 (260-270 ft)	Ferromagnetic	NA	99-100	0	0	0	0	0	TB	0	TB	0	0	
	Paramagnetic	<1.0	0	10-15	ŏ	õ	85-90	ō	TB	ŏ	1	õ	õ	
	Nonmagnetic	>1.0	Ō	0	0	0	20-30	Ó	0	Ō	70	Ō	7	
95-2 (270-280 ft)	Ferromagnetic	NA	99-100	0	0	0	0	0	TB	0	TB	0	0	
00 L (L/ 0 L00 II)	Paramagnetic	<1.0	0	5	õ	õ	85-90	ŏ	5	ŏ	1	õ	ŏ	
	Nonmagnetic	>1.0	ō	ō	Ō	ō	40-70	Ō	3	ō	50-60	ŏ	7	
05-2 (280 200 4)	Common at the	614	00.100	0	^	^	0	^	TO	^	TO	~	^	
90-2 (200-290 ft)	Peromagnetic	NA 1 0	33-100	10.15	0	0	70 75	0	15	0		0	ů v	
	Faramagnetic	<1.0	0	10-15	0	0	10-15	0	15	0	111	070	10.15	
	Nonmagnetic	>1.0	U	U	U	U	50	U	0.5	U	30-40	нін	10-15	
95-2 (290-300 ft)	Ferromagnetic	NA	98-99	0	0	0	0	0	TR	0	1	0	0	
	Paramagnetic	<1.0	0	5	0	0	60-65	0	30-35	0	1	0	0	
	Nonmagnetic	>1.0	0	0	0	0	30-40	0	30	0	30-40	RTR	5	

Table 2 - Mineralogy of the 0.18-0.25 mm Heavy Mineral Fraction. Heavy lithic grains, where present, are classified according to their dominant contained heavy mineral species.

.

SAMPLE NUMBERTOTALFERROMAGNETICPARAMAGNETIC (<1.0 amp)		Weig	ht (g) of Heavy Minerals	s in 0.18 to 0.25 mm Fra	action
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SAMPLE NUMBER	TOTAL	FERROMAGNETIC	PARAMAGNETIC (<1.0 amp)	NONMAGNETIC (>1.0 amp)
95-2 (220-230 ft)35.37.126.02.295-2 (230-240 ft)34.110.821.41.995-2 (240-250 ft)45.911.831.52.695-2 (250-260 ft)42.812.329.01.595-2 (260-270 ft)44.510.632.31.695-2 (270-280 ft)40.511.827.21.595-2 (280-290 ft)29.510.317.61.6	95-2 (210-220 ft)	84.0	27.0	53.7	3.3
95-2 (230-240 ft)34.110.821.41.995-2 (240-250 ft)45.911.831.52.695-2 (250-260 ft)42.812.329.01.595-2 (260-270 ft)44.510.632.31.695-2 (270-280 ft)40.511.827.21.595-2 (280-290 ft)29.510.317.61.6	95-2 (220-230 ft)	35.3	7.1	26.0	2.2
95-2 (240-250 ft)45.911.831.52.695-2 (250-260 ft)42.812.329.01.595-2 (260-270 ft)44.510.632.31.695-2 (270-280 ft)40.511.827.21.595-2 (280-290 ft)29.510.317.61.6	95-2 (230-240 ft)	34.1	10.8	21.4	1.9
95-2 (250-260 ft)42.812.329.01.595-2 (260-270 ft)44.510.632.31.695-2 (270-280 ft)40.511.827.21.595-2 (280-290 ft)29.510.317.61.6	95-2 (240-250 ft)	45.9	11.8	31.5	2.6
95-2 (260-270 ft)44.510.632.31.695-2 (270-280 ft)40.511.827.21.595-2 (280-290 ft)29.510.317.61.6	95-2 (250-260 ft)	42.8	12.3	29.0	1.5
95-2 (270-280 ft)40.511.827.21.595-2 (280-290 ft)29.510.317.61.6	95-2 (260-270 ft)	44.5	10.6	32.3	1.6
95-2 (280-290 ft) 29.5 10.3 17.6 1.6	95-2 (270-280 ft)	40.5	11.8	27.2	1.5
	95-2 (280-290 ft)	29.5	10.3	17.6	1.6
95-2 (290-300 ft) 39.5 12.5 25.7 1.3	95-2 (290-300 ft)	39.5	12.5	25.7	1.3

Table 3 - Magnetic Susceptibility of Heavy Minerals in 0.18 to 0.25 mm Fraction. No paramagnetic separation done on other HMC fractions.

16-Apr-99

CLIENT: OVERBURDEN DRILLING MONT ILTD

Intertek Testing Services Chimitec Bondar Clegg

	CLIENT: OVER REPORT: C99-	Burden di 60250.1 ((COMPLETE)						DATE	RECEIVED: 10-FER-99	2-MAR-00 (PROJECT: NONE	
											C.LAN	AGE TOPJ	
	SAMPLE	ELEMENT	sio2 1102 .120	5 Fe203* MnC) NgO Ca	10 Na20 K2	0 P205 LO	I Totel	Ba	Cr Sr			
	NUMBER	UNITS	PCT PCT PCT	r PCT PC 1	i pet pi	CT PCT PC	T PCT PC	T PCT	PPN	PPN PPN			
	95-2-10-20		50.93 2.83 16.9	2 9.17 0.14	2.99 5.3	52 4.55 2.9	7 1.09 0.7	9 99.95	>10000	76 1220			
	95-2-20-30		51.40 2.76 17.44	8.46 0.11	2.62 4.9	54 4.75 2.6	1 1.18 1.2	2 99.34	>10000	52 887			
	95-2-30-40		51.42 2.64 17.94	8.31 0.13	5 2.92 5.5	52 4.69 2.6	2 1.14 0.5	4 100.35	>10000	52 1043			
3	95-2-40-50		51.39 2.58 17.8	8.01 0.13	5 2.81 5.9	55 4,77 2.5	3 1.10 0_4	9 99.66	>10000	60 1197			
RCLI	95-2-50-60		50.54 2.89 \$6.6	5 9,33 0.15	5 3.16 6.2	24 4.72 2.3	0 1.21 0.6	9 100.04	>10000	53 1106			
YDA	95-2-60-70		50.15 3.03 16.0	5 9.92 0.16	5 3,37 6.3	50 4.54 2.4	1 1.31 0.5	9 100.19	>10000	51 1048			
BO	95-2-70-80		50.10 2.94 16.3	1 9.35 0.16	5 3, 17 6.2	21 4.80 2.4	4 1.26 0.5	4 99.64	>10000	39 1055			
2	95 -2-80-9 0		49.47 3.34 16.1	7 11.21 0.20	3.30 6.8	80 4.62 1.9	0 1.27 0.4	4 100.40	>10000	50 1049			
H.	95-2-90-100		44.94 3.75 13.14	4 15.14 0.27	7 4.94 10.3	36 3.48 0.9	0 1.29 0.4	4 99.17	4590	41 700			
INTH	95-2-100-110	t	43.93 3,90 12.4	8 16.07 0.20	8 4.80 10.0	07 3_28 0.8	3 0.91 0.6	97.68	4590	45 657			
0	95-2-110-120	r	46.44 3.80 12.6	15.37 0.2	3 4.93 10.4	18 3.67 0.9	B 9.97 D.2	5 99.97	3955	39 569			
ST	95-2-120-130	F.,	46.57 3,49 12.0	3 15.04 0.25	9 4.97 9.8	88 3.81 1.1	0 1.03 1.a	5 99.83	4655	38 573			
_	95-2-130-140	1	45.89 3.67 11.9	5 16.22 0.30) 4.91 9.8	5 3.65 1.0	3 1.08 1.2	7 100.36	4580	35 603			
	95-2-140-150	1	47.10 3.37 12.9	5 15.09 0.28	3 4.68 9.4	40 3.91 1.3	5 0.82 0.5	9 100.14	5448	47 629			
	95-2-150-160	•	46.62 3.20 13.44	3 14.13 0.20	5 4.74 9.8	86 3.85 1.2	2 0.80 0.9	3 99.69	5183	52 683		-	
												÷-	
	95-2-160-170	1	46.63 5.13 11.9	3 15.40 0.32	2 4.80 10.2	29 3.68 1.2	2 0.91 0. <i>8</i>	9 99.62	5135	57 575			
000	95-2-170-180)	47.63 3.06 12.3	7 15.40 0.32	2 3.91 9.1	11 4.10 1.6	6 1. 25 0.7	4 100.46	8320	62 387			
502	95-2-180-190)	54.20 1.92 17.9	8.75 0.14	1.42 4.9	0 5.98 2.2	4 0.37 0.6	5 100.10	>10000	57 490			·
825	95-2-190-200	r	56.00 1.74 19.4	5 6,91 0.11	0.67 3.5	52 6.54 2.5	5 0.11 0.7	9 100,13	>10000	63 582			
19	95-2-200-210	1	46.50 3,55 9.9	2 21,56 0.51	1 2.54 8.2	20 3.96 1.9	5 0.66 <.0	5 99.76	3643	90 241			
18													
4	95-2-210-220	t	35.97 5.66 4.99	32.21 0.70	3.75 11.9	70 1.93 0.74	4 1.60 <.0	5 99.55	588	67 205			
L I	95-2-220-230	i i	44.03 5,30 13.32	15.66 0.25	5.13 10.1	3 3.30 0.8	7 0.28 0.44	\$ 99.01	2235	58 750			
7	95-2-230-240		46.23 4.53 14.10	5 13.50 0.21	4.22 9.3	57 3.72 1.2	7 0.37 1.6	99.89	5995	44 995			
	95-2-240-250		44.85 5.04 12.68	8 16.22 0.31	5.00 9.6	9 3. 42 1.0	0.41 0.49	99.77	4871	46 767			
	95-2-250-260		45.87 4.32 13.62	2 14.83 0.27	7 4.54 9.5	8 3.75 1.0	5 0 .62 0. 63	5 99,77	5817	62 871			
¥F.													
R	95-2-260-270		45.00 4.80 13.07	16.23 0.29	5.0 4 10.1	19 3_37 0.7	3 0,33 0.34	6 99.90	3704	70 782			
5	95-2-270-280	I	45.33 4.35 14.45	5 15.97 0.29	5 4.17 9.1	5 3.65 0.8	5 0.39 0.40	99.61	5265	54 1217			
5	95-2-280-290	i	49.37 2.89 17.37	11.77 0.17	7 2.68 7.8	2 4.74 1.12	2 0,68 0.49	5 100.05	8440	62 1279			
,7 0,7	95-2-290-300	I	45.57 4.08 14.19	5 15.64 0.23	5 4.93 9.9	77 3.45 0.8	3 0.44 0.2	9 100.17	4452	57 810			
ŝ													

Table 4 - Intertek Testing Services Whole Rock Analyses of Test Samples.

December 23, 1998

Mr. Ed Kruchkowski c/o AURORA CORROSION CONTROL 3773 - 19th Street N.E. Calgary, Alberta T2E 6S8

fax: (403) 250-5872

Dear Mr. Kruchkowski:

Re: Titanium Mineralogy of Test Samples from Mafic Intrusion, British Columbia

We are mailing our final report on the above work today. Table 1 of the copy that we faxed to you on December 18 contained some calculation errors. We have revised it and added a supplementary table showing the weight breakdown of the subfractions that constitute the paramagnetic fraction of Table 1.

Have a great Christmas!

Yours sincerely,

Stu Averill, President

Mines Are Where <u>WE</u> Find Them.

December 18, 1998

Mr. Ed Kruchkowski c/o AURORA CORROSION CONTROL 3773 - 19th Street N.E. Calgary, Alberta T2E 6S8

fax: (403) 250-5872

...p/2

Dear Mr. Kruchkowski:

Re: Titanium Mineralogy of Test Samples from Mafic Intrusion, British Columbia

We have completed our test work on the two small NQ core samples that you supplied from Holes 94-4 (85 foot depth) and 96-1 (273 foot depth) and I am pleased to report the final results. The text of my report differs slightly from the preliminary one submitted on December 10 and more data tables are included.

I understand that assays of about 6 percent TiO_2 have been reported for both samples. The objective of our work was to determine: 1) the mill grind size required to effectively liberate the Ti-bearing minerals; 2) the separation procedures required to concentrate all Ti-mineral species present, and 3) the relative abundances of these minerals. The same procedures would then be applied to larger samples representing your eighty 10-foot core intervals.

The Hole 94-4 sample is an olivine-clinopyroxene (hedenbergite) gabbro with 70 percent heavy minerals and the Hole 96-1 sample is a clinopyroxene gabbro with 90 percent heavy minerals (Tables 1, 2). The average grain size of the heavy minerals and minor intermixed plagioclase is 0.5 mm. The Hole 94-4 sample also contains 30 percent coarser (3 mm) plagioclase laths. These laths, together with the change between holes from olivine-rich to olivine-free gabbro, are indicative of gravitational settling (i.e. cumulate layering) within the mafic intrusive. Only two Ti-bearing minerals are present -- titanomagnetite and ilmenite. More than 90 percent of the magnetite is titanomagnetite; its TiO₂ content appears to be about 10 percent. Rare grains of non-titaniferous magnetite may reflect minor recrystallization of the titanomagnetite.

Milling to 0.18-0.25 mm is effective in separating the gabbro into heavy and light grains; finer milling does not improve the separation (Table 3). In the ferromagnetic heavy mineral fraction, which represents 20 (Hole 94-4) to 35 (Hole 96-1) percent of the 0.18-0.25 mm sample material (Table 1) and contains all of the titanomagnetite, only 50-60 percent of the heavy grains are of liberated titanomagnetite (Table 2), the balance being lithic grains consisting of titanomagnetite intergrown with clinopyroxene \pm olivine \pm plagioclase, often as small inclusions. In the strongly paramagnetic (<0.6 amp) fraction, which represents 40 (Hole 94-4) to 50 (Hole 96-1) percent of the sample (weights not shown in Table 1) and contains about 90 percent of the ilmenite, the proportion of individual liberated mineral grains rises to 90 percent with a corresponding drop in lithic grains to 10 percent.

Mines	
Are	
Where	WE
Find T	nem.

107-15 Capella Court Nepean, Ontario K2E 7X1 Tel. 613-226-1771 FAX 613-226-8753

Page 2 Mr. Ed Kruchkowski

With the ferromagnetic fraction grading about 50 percent titanomagnetite by volume and the titanomagnetiite grading about 10 percent TiO2 and the ferromagnetic fraction constituting 20 percent by weight of the Hole 94-4 sample and 35 percent of the Hole 96-1 sample, the uncorrected (for differences in mineral weights within the ferromagnetic fraction) TiO_{2} – in-titanomagnetite content is about 1 percent in Hole 94-4 and 2.1 percent in Hole 96-1. Similarly, the strongly paramagnetic fractions in Holes 94-4 and 96-1, which represent 40 and 50 weight percent of the total sample, contain roughly 15 and 3 volume percent ilmenite. respectively, which translates into 3.1 and 0.75 percent (uncorrected) TiO2 since ilmenite contains 52 percent TiO_2 . Therefore the combined uncorrected TiO₂ content of the titanomagnetite and ilmenite in Holes 94-4 and 96-1 is roughly 3.5 and 2.9 percent. The corresponding corrected (Table 4) weight percent values are 5.3 and 3.4 percent. These are somewhat lower than your previously reported 6 percent figure, in part because minor ilmenite in the ferromagnetic and moderately paramagnetic fractions (Table 2) was not included in the recovery calculations. The titanomagnetite:ilmenite TiO2 contribution ratio is roughly 1:4 in Hole 94-4 and 2.5:1 in Hole 96-1.

According to Gross (1996; text attached), commercial Ti-Fe deposits are of two types: 1) dominantly ilmenite (e.g. Lac Allard), and 2) dominantly titaniferrous magnetite, a term that includes granular and exsolution intergrowths of magnetite + ilmenite \pm hematite as well as the mineral titanomagnetite. Your occurrence is clearly of the second type. Historically, such deposits are more of interest for their iron than their titanium. To be commercially viable the Fe and Ti minerals must be sufficiently coarse-grained to be easily separated by milling, thereby reducing the TiO₂ content of the iron concentrate to less than 1 percent. Since all of the Fe in your intrusive is chemically intermixed with Ti in titanomagnetite and ilmenite, it would be inseparable by milling. This is very deleterious to the commercial viability of the Fe-Ti resource. If there are no firm indications of cleaner Fe and Ti mineralogical zones elsewhere in your drill core, processing of the remaining core samples may not be warranted.

I hope these observations and interpretations are helpful. Please call me if you have any questions or comments.

rs spincerely,

Stu Averill, President

				WEIGHT IN	GRAMS				
				HEA	VY MINERALS*			T	
SAMPLE NUMBER	GRAIN SIZE (mm)	TOTAL**	FERROMAGNETIC	PARAMAGNETIC	NONMAGNETIC	OTHER ***	TOTAL	LIGHT MINERALS*	% HEAVY MINERALS
t - 15.00-00-00-00-00-00-00-00-00-00-00-00-00-	,	and and a construction of the second s							
94-4 (85 FT)	0.25-0.5	213.76	59.95	97.29	0.56	··· ····	157.80	55.96	74.2
	0.10-0.25	83.56	16.70	38.71	0.51		55.92	27.64	66.9
	-0.125-0.10	8.58	11.34	34.34	2.13		47.81	19.27	71.3
	TOTAL	372.98	90.49	470.94		2.17	3.66	4.92	42.7
		012.00	03.40	170.34	3.20	2.17	265.19	107.79	
96-1 (273 FT)	0.25-0.5	23.11	7.19	3.09	0.11		10.39	12 72	45.0
	0.18-0.25	177.54	61.55	98.81	1.12	· · · · · · · · · · · · · · · · · · ·	161.48	16.06	45.0 Q1 A
والمراجع بردورونيها المراجع مستعارين الرارين	0.125-0.18	140.30	39.54	82.40	1.76		123.70	16.60	88.2
	TOTAL	19.63	3.99			10.94	14.93	4.70	73.1
	TUTAL	300.58	112.27	184.30	2.99	10.94	310.50	50.08	

*Heavy and light "minerals" include impure lithic grains that are dominated by a heavy or light mineral **Excludes -0.125 mm fines sieved out after milling and not processed for heavy minerals (178.2 g in Sample 94-4 and 299.0 g in Sample 96-1). ***No paragmagnetic separation performed on -0.125 mm wash.

Table 1 - Mineral Separation by Grain Size and Magnetism.

					MINE	RALOG	Y (VOLU	ME PER	RCENT))		
SAMPLE NO.	FRACTION	SEPARATION AMPERAGE	MT	ILM	RUT	СРХ	OL	BT	EP	AP	PY	REMARKS
94-4 (85 FT)	Ferromagnetic	NA	50	0*	0	30	20	0	0	0	 °*0	SFM checks from 0.25-0.50 mm fragilities 20
	Paramagnetic	<0.6	0	15	0	40	40-45	1	0	0	0	representative ferromagnetic oxide grains = 18 titanomagnetite and 2 ilmenite; 3 representative
		0.6-0.8	0	5	0	70-75	25	2	0	0	0	olivine candidates = 3 fayalite olivine; 3 representative brown orthopyroxene candidates = 3 hedenbergite
		0.8-1.0	0	٦r	0	90	3	7	0	0	0	clinopyroxene; and 3 representative red-brown phlogopite candidates = 3 biotite. SEM checks
	Nonmagnetic >1.0		0	0	0	80-85	Tr	6	0	12	0	from 0.18-0.25 mm fraction: 3 representative zoisite versus zircon candidates = 3 apatite.
96-1 (273 FT)	Ferromagnetic	NA	60	0*	0	40	0	0	0	0	1	SEM checks from 0.25-0.50 mm fraction: 20
	Paramagnetic	<0.6	0	3	0	90-95	0	0	1	0	3	representative ferromagnetic oxide grains = 16 titanomagnetite, 1 common magnetite and 3 imenite
		0.6-0.8	0	0	0	97-98	0	0	2	0	Tr	
		0.8-1.0	0	0	0	99	0	0	Tr	0	Tr	
	Nonmagnetic	>1.0	0	0	Tr	75-80	0	0	2	20	Tr	

* SEM analysis shows that 10-15 percent of "magnetite" in ferromagnetic fraction is actually ilmenite.

 Table 2 - Mineralogy of the 0.18-0.25 mm Heavy Mineral Fraction. Heavy lithic grains, where present, are classified according to their dominant contained heavy mineral species.

			LIBERATIO	N RATIO						
	FEF	RROMAGNETIC I	HMC	NONFERROMAGNETIC HMC						
SAMPLE NO.	0.25-0.50 mm	0.18-0.25 mm	0.125-0.18 mm	0.25-0.50 mm	0.18-0.25 mm	0.125-0.18 mm				
94-4 (85 ft)	0.2	0.5	0.5-0.6	0.8	0.9	0.9				
96-1 (273 ft)	0.5	0.6	0.6	0.8	0.9	0.9				

-

 Table 3 - Variation in Heavy Mineral Liberation Ratio with Grain Size and Magnetism.

 Liberation ratio = heavy mineral grains/(heavy mineral + heavy lithic grains).

Sample No.:	94-4 (85 FT)											
TiO2-Bearing Mineral:	Ilmenite											
Ilmenite Liberation Size:	0.18-0.25 mm											
Weight of 0.18-0.25 mm Fraction:	83.56 g											
Principal Ilmenite-Bearing Fraction:	<0.6 amp paramagnetic											
Weight of Ilmenite-Bearing Fraction:	33.16 g											
Ilmenite Content:	15 volume percent											
TiO ₂ Content of Ilmenite:	52 weight percent											
Percent TiO ₂ as Ilmenite by Volume:	$33.16/83.56 \ge 15\% \ge 0.52 = 3.1$											
Ilmenite Fraction Mineralogy:	15% ilmenite + titanomagnetite @ SG 4.7, 40% hedenbergite @ SG 3.5, 45% olivine @ SG 3.3											

Ilmenite Weight Percent Correction Factor:

• •

 $\frac{0.15 \times 4.7}{(0.15 \times 4.7) + (0.4 \times 3.5) + (0.45 \times 3.3)} / 0.15 = 1.31$

.

Weight Percent TiO₂ as Ilmenite : $1.31 \times 3.1 = 4.06$

			WEIGH	Γ IN GRAMS	
			AMPERAC	GE FRACTION	
SAMPLE NUMBER	GRAIN SIZE (mm)	TOTAL	<0.6	0.6 to 0.8	0.8 to 1.0
94-4 (85 FT)	0.25-0.5	97.29	86.78	9.01	1.50
	0.18-0.25	38.71	33.16	4.09	1.46
	0.125-0.18	34.34	30.56	2.62	1.16
and a second	-0.125 WASH	2.17	NA	NA	NA
	TOTAL	172.51	150.50	15.72	4.12
96-1 (273 FT)	0.25-0.5	3.09	1.68	0.69	0.72
المحمول المحمول المحمول المحمول المحمول والمحمول والمحمول المحمول والمحمول والمحمول والمحمول والمحمول والمحمول	0.18-0.25	98.81	85.43	11.28	2.10
. 1987-19. ""Alfred S. Terry, (and annu), annu altrena a annua a suarra a spacina an annua a suarra a suarra a	0.125-0.18	82.40	67.40	12.97	2.03
a statistic sector of the Sector Science States of the Sector Science Science Sciences	-0.125 WASH	10.94	NA	NA	NA
	TOTAL	195.24	154.51	24.94	4.85

Supplementary Table - Weights of Paramagnetic Subfractions.

No paramagnetic separations were done on -0.125 mm wash.

REPORT: C99-60682.1 (COMPLETE)

Rapport Lab Geochimie Geochemical Lab Report

in

REFERENCE: 165456

CLIENT: OVERBURDEN DRILLING MGNT LTD

PROJECT: NONE

DATE APPROVED ELE	MENT A	MBER OF	LOWER DETECTION	EXTRACTION	METHCO
000000 1 sio2	Silica (SiO2)	48	0.01 PCT	BORATE FUSION	INDUC, COUP, PLASMA
000000 2 TiO2	Titanium (TiO2)	48	0.01 PCT	BORATE FUSION	INDUC. COUP. PLASMA
000000 3 AL203	Alumina (Al203)	48	0.01 PCT	BORATE FUSION	INDUC. COUP. PLASMA
000000 4 Fe203*	Total Iron (Fe203)	48	0.01 PCT	BORATE FUSION	INDUC. COUP. PLASMA
000000 5 Mn0	Manganese (MnO)	48	0.01 PCT	BORATE FUSION	INDUC. COUP. PLASMA
000000 6 Mg0	Magnesium (MgO)	48	0.01 PCT	BORATE FUSION	INDUC. COUP. PLASMA
000000 7 Ca0	Calcium (CaO)	68	0 01 PCT	ROPATE FUSION	
000000 8 Na20	Sodium (Na20)	48	0.01 PCT	BORATE FUSION	INDUC COUP PLASHA
000000 9 K20	Potassium (K20)	- 48	0.05 PCT	BORATE FUSION	INDUC COUP PLASMA
000000 10 P205	Phosphorous (P205)	- 48	0 03 PCT	BORATE FUSION	
000000 11 LOI	Loss on Ignition	48	0.05 PCT	Ignition 1000 Deg	GPAVIMETPIC
000000 12 Total	Whole Rock Total	48	0.01 PCT	ighteroit loop beg.	GRATINETATO
000000 13 Ba	Barium	48	10 PPM	BORATE FUSION	INDUC. COUP. PLASMA
000000 14 Cr	Chromium	48	10 PPM	BORATE FUSION	INDUC. COUP. PLASMA
000000 15 Sr	Strontium	48	5 PPM	BORATE FUSION	INDUC. COUP. PLASMA
SAMPLE TYPES	NUMBER S	IZE FRACT	IONS	NUMBER SAMPLE P	REPARATIONS NUMBER
					'
DRILL CORE		- 150		48 COMPOSIT	ING 45
DRILL CORE	48 0: REMY HUNEAULT 26 BT RESOURCE	- 150		48 COMPOSIT	ING 45 RESOURCE
DRILL CORE	48 O: REMY HUNEAULT 26 BT RESOURCE	- 150	*****	48 COMPOSIT	ING 45 RESOURCE
DRILL CORE REPORT COPIES T This repor appli other	48 O: REMY HUNEAULT 26 BT RESOURCE report must not be t is specific to th cable only to the s wise indicated	-150	d except in es identifie received ex	48 COMPOSIT INVOICE TO: 26 BT i full. The data press of under "Sample Num (pressed on a dry bas	ING 45 RESOURCE ented in this per" and is sis unless
DRILL CORE REPORT COPIES T This repor appli other	48 O: REMY HUNEAULT 26 BT RESOURCE report must not be t is specific to th cable only to the s wise indicated	-150	d except in es identifie received ex	48 COMPOSIT INVOICE TO: 26 BT 1 full. The data press of under "Sample Num (pressed on a dry bas	ING 45 RESOURCE ented in this per" and is sis unless
DRILL CORE REPORT COPIES T This repor appli other ******	48 O: REMY HUNEAULT 26 BT RESOURCE report must not be t is specific to th cable only to the s wise indicated	-150	d except in es identifie received ex	48 COMPOSIT INVOICE TO: 26 BT 1 full. The data prese of under "Sample Numi (pressed on a dry bas	ING 45 RESOURCE ented in this per" and is sis unless
DRILL CORE REPORT COPIES T This repor appli other	48 O: REMY HUNEAULT 26 BT RESOURCE report must not be t is specific to th cable only to the s wise indicated	-150	d except in es identifie received ex	48 COMPOSIT INVOICE TO: 26 BT 1 full. The data pres of under "Sample Num (pressed on a dry bas	ING 45 RESOURCE ented in this per" and is sis unless
DRILL CORE REPORT COPIES T This repor appli other	48 O: REMY HUNEAULT 26 BT RESOURCE report must not be t is specific to th cable only to the s wise indicated	-150	d except in es identifie received ex	48 COMPOSIT INVOICE TO: 26 BT 1 full. The data press of under "Sample Num (pressed on a dry base)	ING 45 RESOURCE ented in this per" and is sis unless
DRILL CORE REPORT COPIES T This repor appli other	48 O: REMY HUNEAULT 26 BT RESOURCE report must not be t is specific to th cable only to the s wise indicated	-150	d except in es identifie received ex	48 COMPOSIT INVOICE TO: 26 BT i full. The data pres d under "Sample Num pressed on a dry ba	ING 45 RESOURCE ented in this per" and is sis unless
DRILL CORE REPORT COPIES T This repor appli other	48 O: REMY HUNEAULT 26 BT RESOURCE report must not be t is specific to th cable only to the s wise indicated	-150	d except in es identifie received ex	48 COMPOSIT INVOICE TO: 26 BT i full. The data press of under "Sample Num (pressed on a dry base)	ING 45 RESOURCE ented in this ber" and is sis unless
DRILL CORE REPORT COPIES T This repor appli other	48 O: REMY HUNEAULT 26 BT RESOURCE report must not be t is specific to th cable only to the s wise indicated	-150	d except in es identifie received ex	48 COMPOSIT INVOICE TO: 26 BT i full. The data press of under "Sample Num (pressed on a dry ba	ING 45 RESOURCE ented in this per" and is sis unless

SUBMITTED BY: R. HUNEAULT

DATE RECEIVED: 31-MAR-99 DATE PRINTED: 3-MAY-99

ITS Intertek Testing Services Chimitec Bondar Clegg

Rapport Lab Geochimie Geochemical Lab Report

m

PROJECT: NONE

PAGE 1 OF 5

DATE PRINTED: 3-MAY-99

CLIENT: OVERBURDEN DRILLING MGNT LTD

REPORT: C99-60682.1 (COMPLETE)

ELEMENT SIO2 TIO2 AL203 Fe203* MnO Mg0 SAMPLE CaO Na20 K20 P205 Ba Cr Sr LOI Total NUMBER UNITS PCT PPM PPM PPM 94-4/2.5-15 41.07 5.76 11.74 18.60 0.31 5.98 10.91 2.75 0.27 2.50 0.20 100.36 1743 76 932 94-4/15-25 41.97 5.00 13.29 16.43 0.28 5.53 10.85 3.07 0.34 2.34 0.94 100.35 2063 51 1037 94-4/25-35 41.33 5.26 13.03 17.51 0.29 5.70 10.87 2.95 0.30 2.35 1.03 100.92 2010 52 1006 42.00 5.07 13.33 16.95 0.29 5.55 10.60 3.17 0.34 2.22 0.54 100.43 2412 55 1037 94-4/35-45 94-4/45-55 34.92 7.14 8.27 25.55 0.41 7.77 11.05 1.98 0.23 2.95 0.05 100.49 1447 57 666 94-4/55-65 39.19 5.96 10.94 20,55 0.34 6.46 10.80 2.73 0.34 2.60 <0.05 100.22 2155 52 862 94-4/65-75 35.33 7.15 8.06 25.46 0.41 7.99 10.99 1.97 0.26 2.90 <0.05 100.76 1602 38 642 94-4/75-85 34.75 6.94 8.14 25.16 0.42 7.75 10.74 1.95 0.21 2.84 <0.05 99.14 1609 59 659 94-4/85-95 39.14 5.85 10.62 21.49 0.39 6.90 10.56 2.65 0.30 2.41 <0.05 100.62 2232 53 837 40.23 5.46 11.49 19.94 0.36 6.35 10.43 2.89 0.32 2.33 0.05 100.15 2477 53 893 94-4/95-100 94-6/5-15 47.48 3.96 12.96 15.64 0.14 5.66 8.62 3.20 0.45 0.26 2.35 100.81 128 ×41×721 94-6/15-25 48.54 3.59 14.13 14.86 0.16 5.21 7.57 3.33 0.53 0.24 2.55 100.79 139 63 756 94-6/25-35 48.41 3.79 13.00 14.90 0.16 5.46 8.80 3.01 0.47 0.23 2.42 100.75 131 64 749 94-6/35-45 39.98 4.93 12.72 18.92 0.20 7.04 11.33 1.65 0.56 0.32 2.58 100.32 158 48 778 39.86 4.92 12.53 18.94 0.20 7.12 12.21 1.56 0.44 0.32 2.33 100.54 152 53 945 94-6/45-55 94-6/55-65 39.13 5.21 11.89 19.60 0.21 7.40 11.84 1.46 0.37 0.32 2.65 100.18 128 47 842 94-6/65-75 39.23 5.16 12.23 19.33 0.20 7.28 11.90 1.49 0.43 0.30 2.67 100.33 151 36 881 94-6/75-85 39.25 5.09 12.12 19.15 0.20 7.35 12.42 1.38 0.38 0.38 2.79 100.62 133 29 1028 94-6/85-95 38.70 5.34 11.44 20.81 0.22 7.74 11.66 1.44 0.38 0.32 2.24 100.37 147 34 626 94-6/95-100 38.75 5.60 11.41 20.98 0.22 7.82 11.80 1.47 0.34 0.31 1.98 100.77 143 24 561 96-1/55-65 42.51 3.69 12.14 14.91 0.19 8.11 14.94 1.57 0.56 0.59 1.55 100.89 163 338 850 96-1/65-75 42.06 3.66 11.40 15.20 0.20 8.47 14.85 1.48 0.61 0.52 1.76 100.36 160 358 823 96-1/75-85 40.51 4.30 11.75 15.65 0.22 7.94 15.06 1.49 0.64 1.14 1.59 100.43 157 269 929 96-1/85-95 41.71 3.73 11.94 14.94 0.20 7.84 14.92 1.48 0.59 0.59 2.01 100.08 170 322 953 38.90 3.62 11.45 15.79 0.19 8.20 15.85 0.84 0.29 0.85 2.88 99.06 96-1/95-105 74 254 1614 96-1/105-115 40.71 3.79 12.05 15.41 0.21 8.04 15.07 1.36 0.53 0.81 2.06 100.19 138 274 1230 96-1/115-125 42.20 3.78 11.58 15.29 0.21 8.23 15.23 1.57 0.44 0.46 1.29 100.40 135 366 853 96-1/125-135 42.06 3.75 11.44 15.21 0.21 8.19 15.27 1.61 0.37 0.53 1.23 100.00 137 373 813 96-1/135-145 42.61 3.65 11.65 14.95 0.21 8.27 15.25 1.67 0.42 0.45 1.03 100.29 141 374 814 96-1/145-155 42.79 3.57 11.64 14.74 0.20 8.01 15.03 1.79 0.42 0.36 1.43 100.11 156 347 770

ITS - Chimitec - Bondar Clegg, 1322-B Harricana, Val-d'Or, P.Quebec, J9P 3X6, (819) 825-0178

DATE RECEIVED: 31-MAR-99

CLIENT: OVERBURDEN DRILLING MGNT LTD

Rapport Lab Geochimie Geochemical Lab Report

PROJECT: NONE

DATE PRINTED: 3-MAY-99 PAGE 2 OF 5

REPORT: C99-60682.	1(COMPLETE)
--------------------	----	----------	---

SAMPLE	ELEMENT	si02	T 102	AL 203	Fe203*	MnO	MgQ	CaO	Na20	K2 0	P205	LOI	Total	Ba	Cr	Sг
NUMBER	UNITS	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PPM	PPM	PPM
96-1/155-165		39.25	3.63	10.87	16.04	0.21	8.14	15.84	1.22	0.28	0.70	2.73	99.03	118	360	895
96-1/165-175		36.63	4.49	10.36	17.78	0.23	7.55	15.53	1.15	0.36	1.27	2.57	98.04	140	168	816
96-1/175-180		40.35	2.56	13.48	11.34	0.17	7.00	17.83	0.96	0.49	0.50	5.10	99.88	171	85	866
96-3/20-30		47.78	1.17	13.40	8.41	0.27	4.26	19.09	1.64	1.61	0.45	2.44	100.61	365	91	309
96-3/30-40		56.67	0.76	16.87	5.33	0.18	1.37	8.21	4.18	4.85	0.21	1.43	100,18	586	74	457
96-3/40-50		57 71	1 41	15 00	6 04	0 17	່າຫ	5 43	5 30	2 57	0.27	2 44	100 82	779	54	7/2
96-3/50-60		62.54	0.69	16.03	4 38	0.10	1 51	2.86	6 56	3 57	n ng	1 78	100.26	217	55	187
96-3/60-70		56.83	1.50	14.97	6.59	0.23	2 81	5.72	4 38	2.80	0.25	4 69	100.83	306	04	258
96-3/70-80		60.80	0.75	13.45	5.02	0.24	3.28	6.03	5.54	2.68	0 00	2.19	100 10	200	73	173
96-3/80-90		55.50	1.49	12. <u>3Ť</u>	7.92	0.21	5.42	9.08	4.11	1.38	0.28	3.03	100.81	281	139	301
								•								
96-3/90-100		56.95	1.12	12.71	6.36	0.19	5.56	10.29	2.94	1.39	0.25	2.32	100.16	222	85	385
96-3/100-110		66.89	0.61	10.51	5.70	0.13	4.39	6.82	1.55	0.50	0.15	2.97	100.28	84	142	393
96-3/110-120		58.83	0.86	14.12	7.33	0.35	2.77	5.88	6.02	2.08	0.24	1.38	99.95	390	50	320
96-3/120-130		59.17	0.28	11.86	7.69	0.50	3.36	7.56	5.13	1.89	0.11	3.03	100.64	329	22	199
96-3/130-140		67.75	0.20	9.41	6.65	0.37	3.04	5.49	4.99	1.17	0.12	0 .9 9	100.22	247	96	88
96-3/270-280		43.19	3.69	10.31	14.34	0.25	7.12	12.60	2.37	0.85	1.48	3.23	99.52	273	194	495
96-3/280-290		41.36	3.81	12.24	13.26	0.24	4.77	10.66	1.48	0.96	1.67	9.34	99.78	181	<10	293
96-3/290-300		54.65	2.16	14.85	9.34	0.18	2.21	4.98	5.87	2.97	0.75	2.13	100.16	342	37	364
						-										

ITS - Chimitec - Bondar Clegg, 1322-B Harricana, Val-d'Or, P.Quebec, J9P 3X6, (819) 825-0178

DATE RECEIVED: 31-MAR-99

CLENT: OPERARDER DELLING KANNEL TO REFORT: 679-6082.1 (COMPLETE) DATE RECEIVED: 31-WAR-99 DATE PRINTED: 3-WAR-99 PAGET: KOME STANDARD ELDRENT SIQ TIG2 AL203 FE001* WO MG Cao Mado Kob P201 LOI Teal A Ba CF: Sr Sr Sr NOME UNITS PT ECT PCT PCT PCT PCT PCT PCT PCT PCT PCT P	nimie Report
STANDARD ELDRENT Site T162 A1203 Re203* Ho0 Ho1 Colored A201 Re203* Ho1 Ho1 FCT PCT	
Loss on Jgnition Std \cdot	
Number of Analyses -	
AMET STD SY-3 $61.07 \ 0.16 \ 11.81$ $6.45 \ 0.33 \ 2.65 \ 8.31 \ 4.14 \ 4.20 \ 0.54$ $99.71 \ 4.37 \ <10 \ 322$ AMET STD SY-3 $61.07 \ 0.16 \ 11.81$ $6.45 \ 0.33 \ 2.65 \ 8.26 \ 4.17 \ 4.25 \ 0.54$ $99.71 \ 4.37 \ <10 \ 322$ AMET STD SY-3 $60.07 \ 0.16 \ 11.81$ $6.45 \ 0.33 \ 2.65 \ 8.26 \ 4.17 \ 4.25 \ 0.54$ $99.71 \ 4.07 \ <10 \ 322$ AMET STD SY-3 $60.07 \ 0.16 \ 11.81$ $6.45 \ 0.33 \ 2.65 \ 8.26 \ 4.17 \ 4.25 \ 0.54$ $99.71 \ 4.07 \ <10 \ 322$ AMET STD SY-3 $60.07 \ 0.16 \ 11.77 \ 6.40 \ 0.33 \ 2.65 \ 8.26 \ 4.17 \ 4.25 \ 0.54$ $99.71 \ 4.07 \ <10 \ 52$ een Value $60.90 \ 0.16 \ 11.77 \ 6.40 \ 0.33 \ 2.65 \ 8.26 \ 4.17 \ 4.20 \ 0.54 \ -99.77 \ 4.00 \ <10 \ 53$ $53 \ 522$ tandard Deviation $0.22 \ 4.01 \ 4.01 \ 0.07 \ 0.06 \ 4.01 \ 0.02 \ 0.04 \ 4.01 \ -0.31 \ 2 \ -31$ $2 \ -3 \ -31$	
AMMET STD SY-3 61.07 0.16 11.81 6.45 0.33 2.63 8.31 4.14 4.20 0.54 -99.27 407 <10 322 AMMET STD SY-3 60.74 0.15 11.72 6.36 0.32 2.67 8.26 4.17 4.25 0.54 -99.27 407 <10 321 under of Analyses 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
AMMET STD SY-3 61.07 0.16 11.81 6.45 0.33 2.63 8.31 4.14 4.20 0.54 99.71 437 10 322 AMMET STD SY-3 60.74 0.15 11.72 6.36 0.32 2.67 8.26 4.17 4.25 0.54 99.71 437 10 321 AMMET STD SY-3 60.74 0.15 11.77 6.40 0.33 2.65 8.29 4.15 4.25 0.54 99.74 439 5 322 Lumber of Analyses 2	
ANMET STD SY-3 $60.74 \ 0.15 \ 11.72$ $6.36 \ 0.32 \ 2.67 \ 8.26 \ 4.17 \ 4.25 \ 0.54$ $-99.27 \ 440 \ 410 \ 321$ unber of Analyses 2 </td <td></td>	
Inter of Analyses 2	
ten 60.90 0.16 11.77 6.40 0.33 2.65 8.29 4.15 4.23 0.54 -99.49 439 5 322 tendard Deviation 0.23 <.01	
candard Deviation 0.23 <.01	
Image: Second Value 59.68 0.15 11.80 6.42 0.32 2.67 8.26 4.15 4.20 0.54 1.20 -430 10 306 IALYTICAL BLANK <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	
VALYTICAL BLANK $<0.01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < $	
NALYTICAL BLANK $< 0.01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 <$	
IALYTICAL BLANK $< 0.01 < .01 < 0.01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01 $	
Index of Analyses 2	
an Value <0.01 <.01 <0.01 <.01 <.01 <.01 <.01 <.	

ITS - Chimitec - Bondar Clegg, 1322-B Harricana, Val-d'Or, P.Quebec, J9P 3X6, (819) 825-0178

24

	Inte	ertek	Testi	ng So	ervice	S		Geochemical I	beochimie
	📕 Chi	mitec		Bond	lar Cleg	g		Ococitentical 1	
CLIENT: OVERBURDEN D REPORT: C99-60682.1	(COMPLETE)	LTD				DATE RECEIVED: 31-MAR-99	DATE PRINTED: 3-MAY	PROJECT: NONE 7-99 PAGE 4 OF 5	4
STANDARD ELEMENT NAME UNITS	SiO2 TiO2 PCT PCT	Al203 Fe203* PCT PCT	Mno MgO PCT PCT	Cao Na20 K PCT PCT P	(20 P205 LOI PCT PCT PCT	Total Ba Cr Sr PCT PPM PPM PPM			
NAME UNITS Loss On Ignition Number of Analyses Mean Value Standard Deviation Accepted Value	• PCT PCT		PCT PCT	PCT PCT P	PCT PCT PCT 37.39 1 37.39 	PCT PPM PPM PPM			

NAMAZAN NAMAZAN NAMA NAMAZAN NA

.

ITS - Chimitec - Bondar Clegg, 1322-B Harricana, Val-d'Or, P.Quebec, J9P 3X6, (819) 825-0178

.

	FS		nt	ert	tek	Te	est	ing	g S	Sei	rvi	ce	s									Ra Gé	app	ort I hem	Lab (ical	Geoo Lab	chimie Report	ł
) (Chi	mit	tec			<u>E</u>	S on	da	r C	leg	<u>g</u>												Ivai	Lau	тероп	۳
CLIENT: OVER	BURDEN D	RILLIN	ig Mgn	TLTD								U	C											PROJE	CT: NON	E	*	
REPORT: C99	60682.1	(COMP	LETE)		•••••		•••••			• • • • • • • • • • • • • • • • • • • •			DAT	E RE	CE I VED	: 31-MAR-99) Di	ATE PR	INTED:	3-MAY	-99	PAGE	5 OF 5				
SAMPLE	ELEMENT	si02	: Tio2	AL 203	Fe203*	MnO	MgO	CaO	Na20	к 2 0	P205	LOI	Total	8 Ba	Cr	Sr												
NUMBER	UNITS	РСТ	РСТ	РСТ	PCT	🖁 РСТ	PCT	РСТ	PCT	РСТ	РСТ	PCT	PCT	S PPM	PPM	PPM												
										8 8				ě														
94-4/2.5-15		41.07	5.76	11.74	18.60	0.31	5.98	10.91	2.75	0.27	2.50	0.20	100,36	1743	76	932												
Dupricate												0.10																
94-4/25-35		41.33	5.26	13.03	17.51	0.29	5.70	10.87	2.95	0.30	2.35	1.03	100.92	2010	52	1006												
Duplicate		40.75	5.23	13.03	17.52	0.29	5.73	10.93	2.%	0.31	2.31			1989	47	1004												
0/.//05.100		(0.07		44 /0	10.0/			40 /7																				
Duplicate		40.25	2,40	11.49	19.94	0.30	6.35	10.43	2.89	0.32	2.35	<0.05	100.15	2477	->5	893												
												-0.05																
94-6/75-85		39.25	5.09	12.12	19.15	0.20	7.35	12.42	1.38	0.38	0.38	2.79	100.62	133	29	1028												
Duplicate					•							2.73																
94-6/95-100		38 75	5 60	11 41	20 08	n 22	7 82	11 80	1 17	0 7/	0 31	1 02	100 77	1/7	9/	541												
Duplicate		38.14	5.56	11.24	20.91	0.22	7.73	11.70	1.47	0.34	0.31	1.70	100211	142	36	548												
•																												
96-3/30-40		56.67	0.76	16.87	5.33	0.18	1.37	8.21	4.18	4.85	0.21	1.43	100.18	586	74	457	·											
Duplicate												1.47																
96-3/80-90		55.50	1.49	12.31	7.92	0.21	5.42	9.08	4.11	1.38	0.28	3.03	100.81	281	130	301												
Duplicate		55.29	1.48	12.22	7.90	0.21	5.42	9.08	4.13	1.40	0.29	0100		284	173	301												
96-3/120-130		59.17	0.28	11.86	7.69	0.50	3.36	7.56	5.13	1.89	0.11	3.03	100.64	329	22	199												
Duplicate												2.99																
						× • • • • • • • • • • • • • • • • • • •																						
						6 8 8																						
						č Š																						

ITS - Chimitec - Bondar Clegg, 1322-B Harricana, Val-d'Or, P.Quebec, J9P 3X6, (819) 825-0178

Intertek Testing Services Chimitec Bondar Clegg

REPORT: C99-60250.1 (COMPLETE)

CLIENT: OVERBURDEN DRILLING MGNT LTD

PROJECT: NONE

DATE Approv	ED	ELE	MENT	NUMBER ANALYS	of Ses	Lover Detec	R TICN	EXTRA	ACTION	METH	1 00	
000000	1	si02	Silica (SiO2)		29	0.01	PCT	BORATE	FUSION	INDUC.	COUP.	PLASMA
000000	2	TiO2	Titanium (TiO2)		29	0.01	PCT	BORATE	FUSION	INDUC.	COUP.	PLASMA
00000	3	.1203	Alumina (Al203)		29	0.01	PCT	BORATE	FUSION	INDUC.	COUP.	PLASMA
000000	- 4	Fe203*	Total Iron (Fe20	3)	29	0.01	PCT	BORATE	FUSION	INDUC.	COUP.	PLASMA
000000	5	MinO	Manganese (MnO)		29	0.01	PCT	BORATE	FUSION	INDUC.	COUP.	PLASMA
000000	6	MgO	Magnesium (MgO)		29	0.01	PCT	BORATE	FUSION	INDUC.	COUP.	PLASMA
000000	7	CaO	Calcium (CaO)		29	0.01	PCT	BORATE	FUSION	INDUC.	COUP.	PLASMA
000000	8	Na20	Sodium (Na2O)		29	0 .01	PCT	BORATE	FUSION	INDUC.	COUP.	PLASMA
000000	9	K20	Potassium (K2O)	_	29	0.05	PCT	BORATE	FUSION	INDUC.	COUP.	PLASMA
000000	10	P205	Phosphorous (P20	5)	29	0.03	PCT	BORATE	FUSION	INDUC.	COUP.	PLASMA
000000	11	LOI	Loss on Ignition	ו	29	0.05	PCT	Ignitic	on 1000 Deg.	GRAVIME	TRIC	
000000	12	Iotal	Whole Rock Total		29	0.01	PCT					
000000	13	Ba	Barium		29	10	PPM	BORATE	FUSION	INDUC.	COUP.	PLASMA
00000	14	Cr	Chromium		29	10	PPM	BORATE	FUSION	INDUC.	COUP.	PLASMA
000000	15	Sr	Strontium		29	5	PPM	BORATE	FUSION	INDUC.	COUP.	PLASMA
SAMPLI	ΕT	YPES	NUMBER	SIZE F	RACT	IONS		NUMBER	SAMPLE PR	REPARATIO	MS N	umber
DIR	ELL	CORE	29	-1	50			29	COMPOSITI	ING		29
rep or t	rα	OPIES TO	D: 26 BT RESOURCE MR ED KRUCHKOM MR REMI HUNEAU	ISKI ILT				INVOICE	: TO: 26 BT R	Resource		
		This a report applic othern	report must not b t is specific to cable only to the wise indicated	******* e repro those s sample	**** duced ample s as ****	d excep es ider receiv	tin htifie ved e	full. The dunder the second se	************* e data prese "Sample Numic on a dry bas	ented in ber" and sis unles	this is is	*

Rapport Lab Geochimie Geochemical Lab Report

REFERENCE: 165452

SUBMITTED BY: R. HUNEAULT DATE RECEIVED: 10-FEB-99 DATE PRINTED: 2-MAR-99

_

n

Intertek Testing Services Chimitec Bondar Clegg

Rapport Lab Geochimie - Geochemical Lab Report

PROJECT: NONE

CLIENT: OVERBURDEN DRILLING MGNT LTD

95-2-290-300

45.57 4.08 14.15

REPORT: C99-60250.1 (COMPLETE) DATE RECEIVED: 10-FEB-99 DATE PRINTED: 2-MAR-99 PAGE 1 OF 3 ELEMENT SIO2 1102 .1203 Fe203* Mn0 Mg0 CaO Wa20 K20 P205 LOI Total Ba Cr Sr SAMPLE PCT PPN PPM PPM NUMBER UNITS PCT 95-2-10-20 50.93 2.83 16.92 9.17 0.14 2.99 5.32 4.55 2.97 1.09 0.79 99.95 >10000 76 1220 51.40 2.76 17.44 8,46 0.11 2.62 4.54 4,75 2.61 1.18 1.22 99.34 >10000 95-2-20-30 52 887 8.31 0.13 2.92 5.52 4.69 2.62 1.14 0.54 100.35 >10000 52 1043 95-2-30-40 51.42 2.64 17.94 8.01 0.13 2.81 5.55 4.77 2.53 1.10 0.49 99.66 >10000 95-2-40-50 51.39 2.58 17.89 60 1197 95-2-50-60 50.54 2,89 16.66 9.33 0.15 3,16 6.24 4,72 2.30 1.21 0.69 100.04 >10000 53 1106 50.15 3.03 16.06 9.92 0.16 3.37 6.30 4.54 2.41 1.31 0.59 100.19 >10000 51 1048 95-2-60-70 50.10 2.94 16.31 9.35 0.16 3.17 6.21 4.80 2.44 1.26 0.54 99.64 >10000 95-2-70-80 39 1055 95-2-80-90 49.47 3.34 16.17 11.21 0.20 3.30 6.80 4.62 1.90 1.27 0.44 100.40 >10000 50 1049 15.14 0.27 4.94 10.36 3.48 0.90 1.29 0.44 99.17 95-2-90-100 44.94 3.75 13.14 4590 41 700 95-2-100-110 43.93 3.90 12.48 16.07 0.28 4.80 10.07 3.28 0.83 0.91 0.60 97.68 4590 45 657 15.37 0.28 4.93 10.18 3.67 0.98 0.97 0.25 99.97 95-2-110-120 46.44 3.80 12.63 3955 39 569 95-2-120-130 46.57 3.49 12.08 15.04 0.29 4.97 9.88 3.81 1.10 1.03 1.03 99.83 4655 38 573 _ 95-2-130-140 45.89 3.67 11.96 16.22 0.30 4.91 9.85 3_65 1.03 1.08 1.27 100.36 4580 35 603 15.09 0.28 4.68 9.40 3.91 1.36 0.82 0.59 100.14 47 629 95-2-140-150 47.10 3.37 12.93 5448 5183 52 683 95-2-150-160 46.62 3.20 13.48 14.13 0.26 4.74 9.86 3.85 1.22 0.80 0.93 99.69 95-2-160-170 46.63 3.13 11.98 15.40 0.32 4.80 10.29 3.68 1.22 0.91 0.69 99.62 5135 57 575 95-2-170-180 47.63 3.06 12.39 15.40 0.32 3.91 9.11 4.10 1.66 1.25 0.74 100.46 8320 62 387 95-2-180-190 54.20 1.92 17.91 8.75 0.14 1.42 4.90 5.98 2.24 0.37 0.65 100.10 >10000 578 490 95-2-190-200 56.00 1.74 19.45 6.91 0.11 0.67 3.52 6.54 2.56 0.11 0.79 100.13 >1000 63 582 46.50 3.55 9.92 21.56 0.51 2.54 8.20 3.96 1.96 0.66 <.05 99.76 3643 95-2-200-210 90 241 95-2-210-220 35.97 5.66 4.99 32.21 0.70 3.75 11.90 1.93 0.74 1.60 <.05 99.55 588 67 205 95-2-220-230 44.03 5.30 13.32 15.66 0.25 5.13 10.13 3.30 0.87 0.28 0.44 99.01 2235 58 750 95-2-230-240 46.23 4.53 14.16 13.50 0.21 4.22 9.37 3.72 1.27 0.37 1.61 99.89 5995 44 995 95-2-240-250 44.85 5.04 12.68 16.22 0.31 5.00 9.69 3.42 1.09 0.41 0.49 99.77 4871 46 767 45.87 4.32 13.62 14.83 0.27 4.54 9.58 3.75 1.05 0.62 0.63 99.77 5817 62 871 95-2-250-260 95-2-260-270 16.23 0.29 5.04 10.19 3.37 0.78 0.33 0.34 99.90 45.00 4.80 13.07 3704 70 782 95-2-270-280 45.33 4.35 14.45 15,97 0.25 4.17 9.15 3.65 0.86 0.39 0.40 99.61 5265 54 1217 95-2-280-290 49.37 2.89 17.37 11.77 0.17 2.68 7.82 4.74 1.12 0.68 0.45 100.05 8440 62 1279

4452 57 810

15.64 0.23 4.93 9.97 3.45 0.88 0.44 0.29 100.17

TTS	Inte	ertek	Festin	g Servic	ces			R	apport Lab Geog	chimie ·
CLIENT: OVERBURDEN	DRILLING MENT	nitec		Bondar Clo	egg			C	PROJECT: NONE	Report
REPORT: C99-60250.1	(COMPLETE)					DATE RECEIVED: 10-FEB-99	DATE PRINTED:	2-MAR-99	PAGE 2 OF 3	
STANDARD ELEMEN	T SIO2 1102 .	1203 Fe203* I	in0 MgO Cad	o Na20 K20 P205 L0)I Total	Ba Cr Sr				
NAME UNIT	S PCT PCT	PCT PCT I	CT PCT PC1	T PCT PCT PCT PC	T PCT	PPM PPM PPN				
Loss on Ignition St	d	-		4.0	B -					
Number of Analyses		-			1					
Mean Value	-	-	-	4.0	13 -					
Standard Deviation	-	•	•	• • • •	-					
Accepted Value	-	-		4.2	*	•)
CALMET STD SY-Z	40 10 0 1 5 1	1 77 4 /1 0	77 7 47 9 7/		09./5	//2 -10 711				
Number of Analyses	1 1	1 1	1 1 0.24	+ 4.04 4.10 0.33	- 90.45	442 <10 511				
Mean Value	60.10 0.15 1	1.73 6.41 0.	33 2.67 8.24	4 4.04 4.18 0.53	- 98.45	442 5 311				•
Standard Deviation	-	-	-	•	-					
Accepted Value	59.68 0 .15 1	1.80 6.42 0.	32 2,67 8.26	5 4.15 4.20 0 .54 1.2	.o	430 10 306				
ANALYTICAL BLANK	<0.01 <.011 <	0.01 <0.01 <.	01 <.01 <0.01	I <.01 <.05 <.03	-	<10 <10 <5				
Number of Analyses	1 1	1 1	1 1	I 1 1 1	-	1 1 1				
Mean Value	<0.01 <.01 <	0.01 <0.01 <.	01 <.01 <0.01	I <.01 0.03 0.02	-	5 5 3			-	
Standard Deviation		-								
Accepted value		0.01 <0.01 <.	01 <.01 <0.01	• • • • • • • • • • • • • • • • • • • •	0.01	<। <।				
										1.1

Bennetten Statementen andere bereiten in

ITS - Chimitec - Bondar Clegg, 1322-B Harricana, Val-d'Or, P.Quebec, J9P 3X6, (819) 825-0178
Intertek Testing Services Chimitec Bondar Clegg Bondar Clegg

Rapport Lab Geochimie Geochemical Lab Report

CLIENT: OVER REPORT: C99-	BURDEN DI 60250.1	RILLIN (COMP	g Mgnt Lete)	LTD								DATE	RECE	IVED: 10-FEB-99	DATE PRINT	ED: 2-MAR-9	99 PAGE	PROJECT: NONE 3 OF 3	
SAMPLE NUMBER	ELEMENT UNITS	SiO2 PCT	T 102 PCT	.1203 PCT	Fe203* PCT	MinO PCT	MgQ PCT	CaO PCT	Na20 K20 PCT PC1	P205 LOI PCT PCT	Total PCT	Ba PPM	Cr PPM	Sr PPM					
95-2-10-20		50.93	2 83	16.92	9 17	n 14	2 00	5 32	4 55 2 07	1 09 0 79	00.05	>10000	76	1220					
Duplicate		51.72	2.84	16.67	8.94	0.14	2.94	5.26	4.62 3.12	: 1.10 0.60)	>10000	76	1252					
95-2-100-110 Duplicate		43.93	3.90	12.48	16.07	0.28	4.80	10.07	3.28 0.83	0.91 0.60 0.70) 97 .68	4590	45	657					
95-2-180-190 Duplicate		54.20	1.92	17.91	8,75	0.14	1.42	4.90	5.98 2.24	0.37 0.65 0.69	100 .10	>10000	57	490					
95-2-190-200		56.00	1.74	19.45	6.91	0.11	0.67	3.52	6.54 2.56	0.11 0.79	100.13	>10000	63	582					
Duplicate		57.04	1.73	19.32	6.78	0.11	0.67	3.49	6.42 2.5 2	0.11		>10000	63	577					

ITS - Chimitee - Bondar Clegg, 1322-B Harricana, Val-d'Or, P.Quebec, J9P 3X6, (819) 825-0178

C

Certificat D'Analyse Assay Lab Report

_					••••••	••••••	••••••	•••••••••••••••••••••••••••••••••••••••	
CLIENT	T: NO	RBURDE	N DRILLING	MGNT LTD			DATE PECEL	VED- 10-EER-00	SUBMITTED BY: R. HUNEAULT
				•••••••••••••••••••••••					DATE FRINTED: IJ-FEB-39
DATE					NUMBER	OF	LOWER	1	
PROVED	ORDEF	2	ELEMENT		ANALY	rses	DETECTION	LIMIT EXTRACTION	METHOD
990215	1	A 11	Gold - Fi	na Accev	4			EIDE ACCAY	
990215	2	Pt	Platinum	ie Assay	4		5 PPB	FIRE ASSAT	FIRE ASSAT-DCP
••••••	•••••	•••••	••••••	••••••	•••••				
990215	3	Pd	Palladium		4		1 PPB	FIRE ASSAY	FIRE ASSAY-DCP
s	AMPLE	TYPES	:	NUMBER	SIZ	ZE FRAG	CTIONS	NUMBER	SAMPLE PREPARATIONS NUMBER
	DR I	LL.COF	E			- 150	······		CRUSH/SPLIT & PULV. 58
R	EPOR	COPIE	S TO: 26 B	T RESOURCE	I			INVOI	E TO: 26 BT RESOURCE
			MR E	KRUCHKOW	Iski				
			MD D						
				EMI HUNEAU	ILT ·····			****	
		11 Tł re ar of	nr report i port is sp plicable of therwise in	MI HUNEAU Must not b ecific to nly to the dicated	ULT be reproduc those samp samples a	ced exc oles ic as reco	cept in ful dentified u eived expre	l. The data preser nder "Sample Numbe ssed on a dry basi	nted in this er" and is is unless
		Ti re ap ot	nr r nis report i port is sp plicable of therwise in	must not b ecific to hly to the dicated	ULT De reproduc those samp samples a	ced exc bles id as reco	cept in ful dentified u eived expre	l. The data preser nder "Sample Numbe ssed on a dry bas	nted in this er" and is is unless
		*** Tł re ap ot	nr r is report i port is sp plicable of therwise in	must not b ecific to nly to the dicated	NLT xe reproduce those samples a samples a	ced exc bles io as reco	cept in ful dentified u eived expre	to the data preser nder "Sample Numbe ssed on a dry basi	nted in this er" and is is unless
		Th re ap ot	nr r nis report i port is sp plicable o cherwise in	must not b ecific to hly to the dicated	ULT we reproduce those samples a	ced exc bles ic as reco	cept in ful dentified u eived expre	l. The data preser nder "Sample Numbe ssed on a dry bas	nted in this er" and is is unless
		*** Tł ce ap ol	nr report i port is sp plicable of therwise in	must not b ecific to nly to the dicated	NLT e reproduce those samples a *****	ced exc oles ic as reco	cept in ful dentified u eived expre	terreturn terreturn terreturn I. The data preser nder "Sample Numbe ssed on a dry basi	nted in this er" and is is unless
		71 Fe ap 01	nr report i port is sp plicable on therwise in	must not b ecific to hly to the dicated	LT e reproduce those samples a	ced exc oles id as reco	cept in ful dentified u eived expre	l. The data preser nder "Sample Numbe ssed on a dry bas	nted in this er" and is is unless
		*** Tł ci oi ***	The River of the R	must not b ecific to nly to the dicated	NLT those samples a samples a	ced exc oles ic as reco	cept in ful dentified u eived expre	I. The data preser nder "Sample Numbe ssed on a dry basi	nted in this er" and is is unless
		Th Fe ap of	nk k is report i port is sp plicable on therwise in	must not b ecific to hly to the dicated	LT e reproduc those samp e samples a	ced exc bles id as reco	cept in ful dentified u eived expre	l. The data preser nder "Sample Numbe ssed on a dry basi	nted in this er" and is is unless
		*** Fe ap 01	nr r is report i port is sp plicable of therwise in	must not b ecific to nly to the dicated	NLT e reproduc those samp e samples a	ced exc oles ic as reco	cept in ful dentified u eived expre	I. The data preser nder "Sample Numbe ssed on a dry bas	nted in this er" and is is unless
		71 Fe ap 01	nr r is report i port is sp plicable of therwise in	must not b ecific to nly to the dicated	ULT e reproduc those samp samples a	ced exc oles id as reco	cept in ful dentified u eived expre	l. The data preser nder "Sample Numbe ssed on a dry basi	nted in this er" and is is unless
		*** Tł ci oi ***	nr r is report i port is sp plicable o herwise in	must not b ecific to nly to the dicated	NLT xe reproduce those samples a ************************************	ced exc oles ic as reco	cept in ful dentified u eived expre	terreturn terreturn ter "Sample Numbe ssed on a dry basi *****	nted in this er" and is is unless
		*** Tł ce ap o1 ***	nk ki is report i port is sp plicable on therwise in	must not b ecific to nly to the dicated	ULT e reproduc those samp samples a	ced exc oles id as reco	cept in ful dentified u eived expre	I. The data preser nder "Sample Numbe ssed on a dry basi	nted in this er" and is is unless
		*** Tł ci ai ci ***	n k is report i port is sp plicable o herwise in	must not b ecific to hly to the dicated	NLT xe reproduce those samples a ************************************	ced exc oles ic as reco	cept in ful dentified u eived expre	I. The data presen nder "Sample Numbe ssed on a dry basi	nted in this er" and is is unless
		*** Tł ce ap o1 ***	nr r is report i port is sp plicable on therwise in	must not b ecific to hly to the dicated	LT e reproduc those samples a ***********	ced exc oles ic as reco	cept in ful dentified u eived expre	l. The data presen nder "Sample Numbe ssed on a dry basi	<pre>http://www.www.www.http://www.www.www.www.www.www.http://www.http:/ http://www.http</pre>
		*** Tł ci ai ci ***	n k is report i port is sp plicable o therwise in	must not b ecific to hly to the dicated	LT e reproduc those samp samples a	ced exc oles id as reco	cept in ful dentified u eived expre	l. The data preser nder "Sample Numbe ssed on a dry basi	hted in this ber" and is is unless
		*** Tł ci ap ci	nr r is report i port is sp plicable on therwise in	must not b ecific to hly to the dicated	NLT ve reproduc those samples a ************************************	ced exc oles ic as reco	cept in ful dentified u eived expre	l. The data preser nder "Sample Numbe ssed on a dry basi	hted in this br" and is is unless
		****	nk ki	must not b ecific to nly to the dicated	LT reproduc those samp samples a	ed excoles id	cept in ful dentified u eived expre	l. The data preser nder "Sample Numbe ssed on a dry basi	hted in this ber" and is is unless
		*** Tł ci ap ci	hk ki is report i port is sp plicable o herwise in **********	must not b ecific to hly to the dicated	NLT x reproduce those samples a x ************************************	ced exc oles id as reco	cept in ful dentified u eived expre	l. The data preser nder "Sample Numbe ssed on a dry basi	hted in this ber" and is is unless
		***	nk ki	must not b ecific to nly to the dicated	LT ve reproduc those samp samples a	ced exc oles id as reco	cept in ful dentified u eived expre	l. The data preser nder "Sample Numbe ssed on a dry basi	hered in this ber" and is is unless

1322-B rue Harricana, Val d'Or, Québec, J9P 3X6 Tél: (819) 825-0178, Fax: (819) 825-0256

-15 ergen ρ

Certificat D'Analyse Assay Lab Report

CLIENT: OVERBURDEN DRILLING MGNT LTD				PROJECT: NONE					
REPORT: C99-	60250.0 (COM	PLETE)		DATE RECEIV	/ED: 10-FEB-99	DATE PRINTED:	15-FEB-99	PAGE	1 DE 3
SAMPLE	ELEMENT	Au	Pt	Pd	SAMPLE	ELEMENT	Au	Pt	Pd
NUMBER	UNITS	PPB	PPB	PPB	NUMBER	UNITS	PPB	PPB	PPB
		•••••••••••••••••••••••	••••••	••••••	·····	•••••••••••••••••••••••••••••••••••••••	••••••••		
95-2-10-1	5				¹ " 95-2-210	-215	1	<5	2
95-2-15-2	:0				95-2- 215	-220	<1	<5	1
95-2-20-2	5				95-2-220	-225			
95-2-25-3	60 				95-2-225	-230			
95-2-30-3	5				95-2-230	-235			
95-2-35-4	0				95-2-235	-240	••••••		******
95-2-40-4	5				95-2-240	-245			
95-2-45-5	i0				95-2-24 5	-250	<1	<5	1
95-2-50-5	5				95-2-250	-255			٠
95-2-55-6	0				95-2-255	-260			
95-2-60-6	 S	•••••••				- 745		••••••	
95-2-65-7	70 70				95-2-200	-203			
95-2-70-7	~ ~				95-2-205	-275			
95-2-75-8	0				95-2-275	-280			
95-2-80-8	15			•	95-2-280	-285			
					,,, L CO			•••••••	•••••••
95-2-85-9	ю				95-2-285	-290	••••••		********
95-2-90-9	5				95-2-290	-295			
95-2-95-1	00				95-2-295	-300			
95-2-100-	105								
95-2-105-	110								
						•••••••••••••••••••••••••••••••••••••••	••••••••••••••••••••••••••••	••••••	•••••••••••••••••••••••••••••••••••
95-2-110-	115								
93-2-113-	120								
93-2-120-	125								
93-2-123-	130								3
- 150- 			••••••			•••••••••••••••••••••••••••••••••••••••		••••••	
95-2-135-	140						••••••••••••••••••••••••••••••		*****
95-2-140-	145								
95-2-145-	150								
95-2-150-	155								
95-2-155-	160								
		•••••••••••••••••	••••••			•••••••••••••••••••••••••••••••••••••••	••••••		•••••••••••••••••••••••••••••••
95-2-160-	165								
95-2-165-	170								
95-2-170-	175								
95-2-175-	180								
95-2-180-	לאו								
95-2-185-	· 190		••••••	••••••			••••••		••••••
95-2-190-	195								
95-2-195-	200								
95-2-200-	205								
95-2-205-	210	2	<5	1					ł.
			•••	•••••••••••••••••••••••••••••••••••••••					

ITS - Chimitec - Bondar Clegg 1322-B rue Harricana, Val d'Or, Québec, J9P 3X6 Tél: (819) 825-0178, Fax: (819) 825-0256

ITS

Bondar Clegg

Certificat D'Analyse Assay Lab Report

	CLIENT: OVER	BURDEN DRILLI	NG MGNT L	.TD	PROJECT: NONE							
	REPORT: C99-	60250.0 (CON	PLETE)		DATE RECEI	VED: 10-FEB-99	DATE PRINTED:	15-FEB-	99 PA	GE 2 DE 3		
•••••	STANDARD	ELEMENT	Au	Pt	Pd	STANDARD	ELEMENT	Au	Pt	Pd	•••	
	NAME	UNITS	PPB	PPB	PPB	NAME	UNITS	PPB	PPB	PPB		
•••••		••••••••••••••••••••••••••••••••••••	••••••	•••••••••••••••••		·····	•••••••	•••••••	••••••	•••••••••••••••••••••••••••••••••••••••	•••	
	ANALYTICAL B	BLANK	<1	<5	2	* **						
	Number of Ar	alyses	1	1	1					4 ¹		
	Mean Value		0.5	2.5	1.5							
	Standard Dev	viation	-	•	-							
	Accepted Val	ue	5	5	5							
•••••		•••••••	80	£1					•••••			
	Number of Ar		4	4	1							
		Mar 19868	70.0	90 O	97.0							
			(9.9	60.Y	65.0							
	Standard Dev	/lation	•	-	-							
	Accepted Val	,ue	83	83	83							

ITS - Chimitec - Bondar Clegg 1322-B rue Harricana, Val d'Or, Québec, J9P 3X6 Tél: (819) 825-0178, Fax: (819) 825-0256

•

Certificat D'Analyse Assay Lab Report

CLIENT: OVERBL REPORT: C99-60	JRDEN DRILLI 0250.0 (COM	NG MGNT LI Plete)	TD	DATE REC	EIVED: 10-FEB-99	PROJECT: NONE DATE PRINTED:	15-FEB-99	PAGE	3 DE 3
SAMPLE NUMBER	ELEMENT UNITS	Au PPB	Pt PPB	Pd PPB	SAMPLE NUMBER	ELEMENT Units	Au PPB	Pt PPB	Pd PPB
95-2-205-210 Duplicate		2 <1	<5 <5	1 2),(

							,,		
								•	
			1322	ITS - Chi -B rue Harrice	mitec - Bondar Clegg ana, Val d'Or, Québec, J9P	3X6			

-121 39 0 -121 43 59 54°6′ 54°6′ "Hisyny 59810 36147 3660 3960 3960 3960 61000^m 140 - 141 - 140 -

-+--

54°2′′ –

್ರಿಸ್ ಎಂದು ಕ್ಷಮ್ ಕ್ಷ ಕ್ಷಮ್ ಕ್

.

.

.

.

GROUND MAGNETIC DATA

+-

5

км <mark>д. 75</mark> Е	0.50	0.25 0.22	-0. 25
, MILES	0.25	0. 20	. (). 25

Ground Station 26BT Line Locations NAD-83 W.

FIGURE 4A TOTAL OF MAGNETIC FIELD FROM GROUND MAGNETIC SURVEY, WESTERN PART

50ALE 1 10 10000

ν.

+ 54°2′

· · · · · · · ·

1 ---

-121 39 0

~~ ~ ~ ~ ~ ~

·╾╋╌╵ -----54°6′

-121 340

+

59000

-+--

-

ا المنظم معني والمنظم المنظم ا

4 4.

Ł.

-

----· ~ .

491 35.52

54°6′

FIGURE 4B GEOLOGICAL SURVE**TOTAD OF MAGNETIC FIELD FROM GROUND MAGNETIC SURVEY,** EASTERN PART

